Access to online PMP output database

This notebook provides example usages of PMP APIs to access the PMP output online archive and load the information.

Kristin Chang, Jiwoo Lee (LLNL)

2025.02

[1]:
from pcmdi_metrics.utils import database_metrics, find_pmp_archive_json_urls, load_json_from_url

Find and load PMP output

Usage examples

[2]:
json_url_list = find_pmp_archive_json_urls("enso_metric", "cmip6", "historical")
json_url_list
[2]:
['https://raw.githubusercontent.com/PCMDI/pcmdi_metrics_results_archive/main/metrics_results/enso_metric/cmip6/historical/v20210620/ENSO_perf/cmip6_historical_ENSO_perf_v20210620_allModels_allRuns.json',
 'https://raw.githubusercontent.com/PCMDI/pcmdi_metrics_results_archive/main/metrics_results/enso_metric/cmip6/historical/v20210620/ENSO_proc/cmip6_historical_ENSO_proc_v20210620_allModels_allRuns.json',
 'https://raw.githubusercontent.com/PCMDI/pcmdi_metrics_results_archive/main/metrics_results/enso_metric/cmip6/historical/v20210620/ENSO_tel/cmip6_historical_ENSO_tel_v20210620_allModels_allRuns.json']
[3]:
json_url_list = find_pmp_archive_json_urls("enso_metric", "cmip6", "historical", search_keys=["ENSO_perf"])
json_url_list
[3]:
['https://raw.githubusercontent.com/PCMDI/pcmdi_metrics_results_archive/main/metrics_results/enso_metric/cmip6/historical/v20210620/ENSO_perf/cmip6_historical_ENSO_perf_v20210620_allModels_allRuns.json']
[4]:
json_url_list = find_pmp_archive_json_urls("mean_climate", "cmip6", "historical")
json_url_list
[4]:
['https://raw.githubusercontent.com/PCMDI/pcmdi_metrics_results_archive/main/metrics_results/mean_climate/cmip6/historical/v20230823/rlutcs.cmip6.historical.regrid2.2p5x2p5.v20230823.json',
 'https://raw.githubusercontent.com/PCMDI/pcmdi_metrics_results_archive/main/metrics_results/mean_climate/cmip6/historical/v20230823/ts.cmip6.historical.regrid2.2p5x2p5.v20230823.json',
 'https://raw.githubusercontent.com/PCMDI/pcmdi_metrics_results_archive/main/metrics_results/mean_climate/cmip6/historical/v20230823/tas.cmip6.historical.regrid2.2p5x2p5.v20230823.json',
 'https://raw.githubusercontent.com/PCMDI/pcmdi_metrics_results_archive/main/metrics_results/mean_climate/cmip6/historical/v20230823/psl.cmip6.historical.regrid2.2p5x2p5.v20230823.json',
 'https://raw.githubusercontent.com/PCMDI/pcmdi_metrics_results_archive/main/metrics_results/mean_climate/cmip6/historical/v20230823/rsut.cmip6.historical.regrid2.2p5x2p5.v20230823.json',
 'https://raw.githubusercontent.com/PCMDI/pcmdi_metrics_results_archive/main/metrics_results/mean_climate/cmip6/historical/v20230823/va-850.cmip6.historical.regrid2.2p5x2p5.v20230823.json',
 'https://raw.githubusercontent.com/PCMDI/pcmdi_metrics_results_archive/main/metrics_results/mean_climate/cmip6/historical/v20230823/tauu.cmip6.historical.regrid2.2p5x2p5.v20230823.json',
 'https://raw.githubusercontent.com/PCMDI/pcmdi_metrics_results_archive/main/metrics_results/mean_climate/cmip6/historical/v20230823/ta-850.cmip6.historical.regrid2.2p5x2p5.v20230823.json',
 'https://raw.githubusercontent.com/PCMDI/pcmdi_metrics_results_archive/main/metrics_results/mean_climate/cmip6/historical/v20230823/rsutcs.cmip6.historical.regrid2.2p5x2p5.v20230823.json',
 'https://raw.githubusercontent.com/PCMDI/pcmdi_metrics_results_archive/main/metrics_results/mean_climate/cmip6/historical/v20230823/rstcre.cmip6.historical.regrid2.2p5x2p5.v20230823.json',
 'https://raw.githubusercontent.com/PCMDI/pcmdi_metrics_results_archive/main/metrics_results/mean_climate/cmip6/historical/v20230823/va-200.cmip6.historical.regrid2.2p5x2p5.v20230823.json',
 'https://raw.githubusercontent.com/PCMDI/pcmdi_metrics_results_archive/main/metrics_results/mean_climate/cmip6/historical/v20230823/rt.cmip6.historical.regrid2.2p5x2p5.v20230823.json',
 'https://raw.githubusercontent.com/PCMDI/pcmdi_metrics_results_archive/main/metrics_results/mean_climate/cmip6/historical/v20230823/rldscs.cmip6.historical.regrid2.2p5x2p5.v20230823.json',
 'https://raw.githubusercontent.com/PCMDI/pcmdi_metrics_results_archive/main/metrics_results/mean_climate/cmip6/historical/v20230823/rltcre.cmip6.historical.regrid2.2p5x2p5.v20230823.json',
 'https://raw.githubusercontent.com/PCMDI/pcmdi_metrics_results_archive/main/metrics_results/mean_climate/cmip6/historical/v20230823/rsds.cmip6.historical.regrid2.2p5x2p5.v20230823.json',
 'https://raw.githubusercontent.com/PCMDI/pcmdi_metrics_results_archive/main/metrics_results/mean_climate/cmip6/historical/v20230823/prw.cmip6.historical.regrid2.2p5x2p5.v20230823.json',
 'https://raw.githubusercontent.com/PCMDI/pcmdi_metrics_results_archive/main/metrics_results/mean_climate/cmip6/historical/v20230823/rlut.cmip6.historical.regrid2.2p5x2p5.v20230823.json',
 'https://raw.githubusercontent.com/PCMDI/pcmdi_metrics_results_archive/main/metrics_results/mean_climate/cmip6/historical/v20230823/rsus.cmip6.historical.regrid2.2p5x2p5.v20230823.json',
 'https://raw.githubusercontent.com/PCMDI/pcmdi_metrics_results_archive/main/metrics_results/mean_climate/cmip6/historical/v20230823/ua-850.cmip6.historical.regrid2.2p5x2p5.v20230823.json',
 'https://raw.githubusercontent.com/PCMDI/pcmdi_metrics_results_archive/main/metrics_results/mean_climate/cmip6/historical/v20230823/ta-200.cmip6.historical.regrid2.2p5x2p5.v20230823.json',
 'https://raw.githubusercontent.com/PCMDI/pcmdi_metrics_results_archive/main/metrics_results/mean_climate/cmip6/historical/v20230823/zg-500.cmip6.historical.regrid2.2p5x2p5.v20230823.json',
 'https://raw.githubusercontent.com/PCMDI/pcmdi_metrics_results_archive/main/metrics_results/mean_climate/cmip6/historical/v20230823/ua-200.cmip6.historical.regrid2.2p5x2p5.v20230823.json',
 'https://raw.githubusercontent.com/PCMDI/pcmdi_metrics_results_archive/main/metrics_results/mean_climate/cmip6/historical/v20230823/rlds.cmip6.historical.regrid2.2p5x2p5.v20230823.json',
 'https://raw.githubusercontent.com/PCMDI/pcmdi_metrics_results_archive/main/metrics_results/mean_climate/cmip6/historical/v20230823/tauv.cmip6.historical.regrid2.2p5x2p5.v20230823.json',
 'https://raw.githubusercontent.com/PCMDI/pcmdi_metrics_results_archive/main/metrics_results/mean_climate/cmip6/historical/v20230823/rsdt.cmip6.historical.regrid2.2p5x2p5.v20230823.json',
 'https://raw.githubusercontent.com/PCMDI/pcmdi_metrics_results_archive/main/metrics_results/mean_climate/cmip6/historical/v20230823/sfcWind.cmip6.historical.regrid2.2p5x2p5.v20230823.json',
 'https://raw.githubusercontent.com/PCMDI/pcmdi_metrics_results_archive/main/metrics_results/mean_climate/cmip6/historical/v20230823/pr.cmip6.historical.regrid2.2p5x2p5.v20230823.json',
 'https://raw.githubusercontent.com/PCMDI/pcmdi_metrics_results_archive/main/metrics_results/mean_climate/cmip6/historical/v20230823/rlus.cmip6.historical.regrid2.2p5x2p5.v20230823.json',
 'https://raw.githubusercontent.com/PCMDI/pcmdi_metrics_results_archive/main/metrics_results/mean_climate/cmip6/historical/v20230823/rsdscs.cmip6.historical.regrid2.2p5x2p5.v20230823.json']
[5]:
json_url_list = find_pmp_archive_json_urls("mean_climate", "cmip6", "historical", search_keys=["tas", "pr"])
json_url_list
[5]:
['https://raw.githubusercontent.com/PCMDI/pcmdi_metrics_results_archive/main/metrics_results/mean_climate/cmip6/historical/v20230823/tas.cmip6.historical.regrid2.2p5x2p5.v20230823.json',
 'https://raw.githubusercontent.com/PCMDI/pcmdi_metrics_results_archive/main/metrics_results/mean_climate/cmip6/historical/v20230823/prw.cmip6.historical.regrid2.2p5x2p5.v20230823.json',
 'https://raw.githubusercontent.com/PCMDI/pcmdi_metrics_results_archive/main/metrics_results/mean_climate/cmip6/historical/v20230823/pr.cmip6.historical.regrid2.2p5x2p5.v20230823.json']
[6]:
json_url_list = find_pmp_archive_json_urls("variability_modes", "cmip6", "historical")
json_url_list
[6]:
['https://raw.githubusercontent.com/PCMDI/pcmdi_metrics_results_archive/main/metrics_results/variability_modes/cmip6/historical/v20220825/NAM/NOAA-CIRES_20CR/var_mode_NAM_EOF1_stat_cmip6_historical_mo_atm_allModels_allRuns_1900-2005.json',
 'https://raw.githubusercontent.com/PCMDI/pcmdi_metrics_results_archive/main/metrics_results/variability_modes/cmip6/historical/v20220825/NAO/NOAA-CIRES_20CR/var_mode_NAO_EOF1_stat_cmip6_historical_mo_atm_allModels_allRuns_1900-2005.json',
 'https://raw.githubusercontent.com/PCMDI/pcmdi_metrics_results_archive/main/metrics_results/variability_modes/cmip6/historical/v20220825/NPGO/HadISSTv1.1/var_mode_NPGO_EOF2_stat_cmip6_historical_mo_atm_allModels_allRuns_1900-2005.json',
 'https://raw.githubusercontent.com/PCMDI/pcmdi_metrics_results_archive/main/metrics_results/variability_modes/cmip6/historical/v20220825/NPO/NOAA-CIRES_20CR/var_mode_NPO_EOF2_stat_cmip6_historical_mo_atm_allModels_allRuns_1900-2005.json',
 'https://raw.githubusercontent.com/PCMDI/pcmdi_metrics_results_archive/main/metrics_results/variability_modes/cmip6/historical/v20220825/PDO/HadISSTv1.1/var_mode_PDO_EOF1_stat_cmip6_historical_mo_atm_allModels_allRuns_1900-2005.json',
 'https://raw.githubusercontent.com/PCMDI/pcmdi_metrics_results_archive/main/metrics_results/variability_modes/cmip6/historical/v20220825/PNA/NOAA-CIRES_20CR/var_mode_PNA_EOF1_stat_cmip6_historical_mo_atm_allModels_allRuns_1900-2005.json',
 'https://raw.githubusercontent.com/PCMDI/pcmdi_metrics_results_archive/main/metrics_results/variability_modes/cmip6/historical/v20220825/SAM/NOAA-CIRES_20CR/var_mode_SAM_EOF1_stat_cmip6_historical_mo_atm_allModels_allRuns_1900-2005.json']
[7]:
json_url_list = find_pmp_archive_json_urls("variability_modes", "cmip6", "historical", search_keys=["NAO", "PDO"])
json_url_list
[7]:
['https://raw.githubusercontent.com/PCMDI/pcmdi_metrics_results_archive/main/metrics_results/variability_modes/cmip6/historical/v20220825/NAO/NOAA-CIRES_20CR/var_mode_NAO_EOF1_stat_cmip6_historical_mo_atm_allModels_allRuns_1900-2005.json',
 'https://raw.githubusercontent.com/PCMDI/pcmdi_metrics_results_archive/main/metrics_results/variability_modes/cmip6/historical/v20220825/PDO/HadISSTv1.1/var_mode_PDO_EOF1_stat_cmip6_historical_mo_atm_allModels_allRuns_1900-2005.json']
[8]:
json_url_list = find_pmp_archive_json_urls("mjo", "cmip6", "historical")
json_url_list
[8]:
['https://raw.githubusercontent.com/PCMDI/pcmdi_metrics_results_archive/main/metrics_results/mjo/cmip6/historical/v20230924/mjo_stat_cmip6_historical_da_atm_allModels_allRuns_1985-2004.json']
[9]:
json_url_list = find_pmp_archive_json_urls("qbo-mjo", "cmip6", "historical")
json_url_list
[9]:
['https://raw.githubusercontent.com/PCMDI/pcmdi_metrics_results_archive/main/metrics_results/qbo-mjo/cmip6/historical/v20240422/QBO_MJO_cmip6_historical_v20240422.json']

Retrive Model Metrics from Data Base Access

Usage Example

[10]:
results_dict = database_metrics("cmip6", "ACCESS-CM2", "historical")
Found 3 JSON files for metric 'enso_metric' and collected info for model 'ACCESS-CM2'.
Found 29 JSON files for metric 'mean_climate' and collected info for model 'ACCESS-CM2'.
Found 1 JSON files for metric 'mjo' and collected info for model 'ACCESS-CM2'.
Found 7 JSON files for metric 'variability_modes' and collected info for model 'ACCESS-CM2'.
Found 1 JSON files for metric 'qbo-mjo' and collected info for model 'ACCESS-CM2'.
[11]:
metrics = list(results_dict.keys())
metrics
[11]:
['enso_metric', 'mean_climate', 'mjo', 'variability_modes', 'qbo-mjo']
[12]:
results_dict["enso_metric"].keys()
[12]:
dict_keys(['ENSO_perf', 'ENSO_proc', 'ENSO_tel'])
[13]:
results_dict["mean_climate"].keys()
[13]:
dict_keys(['rlutcs', 'ts', 'tas', 'psl', 'rsut', 'va', 'tauu', 'ta', 'rsutcs', 'rstcre', 'rt', 'rldscs', 'rltcre', 'rsds', 'prw', 'rlut', 'rsus', 'ua', 'zg', 'rlds', 'tauv', 'rsdt', 'sfcWind', 'pr', 'rlus', 'rsdscs'])
[14]:
import json

results_dict
with open('results_dict.json', 'w') as json_file:
    json.dump(results_dict, json_file, indent=4)
[15]:
import pprint

pprint.pprint(results_dict)
{'enso_metric': {'ENSO_perf': {'REFERENCE': 'MC for ENSO Performance...',
                               'RESULTS': {'ACCESS-CM2': {'r1i1p1f1': {'metadata': {'description_of_the_collection': 'Describe '
                                                                                                                     'which '
                                                                                                                     'science '
                                                                                                                     'question '
                                                                                                                     'this '
                                                                                                                     'collection '
                                                                                                                     'is '
                                                                                                                     'about',
                                                                                    'metrics': {'BiasPrLatRmse': {'diagnostic': {'ACCESS-CM2_r1i1p1f1': {'keyerror': None,
                                                                                                                                                         'name': 'ACCESS-CM2_r1i1p1f1',
                                                                                                                                                         'nyears': 165,
                                                                                                                                                         'time_period': ['1850-1-16 '
                                                                                                                                                                         '12:0:0.0',
                                                                                                                                                                         '2014-12-16 '
                                                                                                                                                                         '12:0:0.0']},
                                                                                                                                 'CMAP': {'name': 'CMAP',
                                                                                                                                          'nyears': 40,
                                                                                                                                          'time_period': ['1979-1-16 '
                                                                                                                                                          '12:0:0.0',
                                                                                                                                                          '2018-12-16 '
                                                                                                                                                          '12:0:0.0']},
                                                                                                                                 'ERA-Interim': {'name': 'ERA-Interim',
                                                                                                                                                 'nyears': 40,
                                                                                                                                                 'time_period': ['1979-1-16 '
                                                                                                                                                                 '12:0:0.0',
                                                                                                                                                                 '2018-12-16 '
                                                                                                                                                                 '12:0:0.0']},
                                                                                                                                 'GPCPv2.3': {'name': 'GPCPv2.3',
                                                                                                                                              'nyears': 40,
                                                                                                                                              'time_period': ['1979-1-16 '
                                                                                                                                                              '12:0:0.0',
                                                                                                                                                              '2018-12-16 '
                                                                                                                                                              '12:0:0.0']},
                                                                                                                                 'TRMM-3B43v-7': {'name': 'TRMM-3B43v-7',
                                                                                                                                                  'nyears': 20,
                                                                                                                                                  'time_period': ['1998-1-16 '
                                                                                                                                                                  '12:0:0.0',
                                                                                                                                                                  '2017-12-16 '
                                                                                                                                                                  '12:0:0.0']},
                                                                                                                                 'method': 'Meridional '
                                                                                                                                           'root '
                                                                                                                                           'mean '
                                                                                                                                           'square '
                                                                                                                                           'error '
                                                                                                                                           'of '
                                                                                                                                           'nino3_LatExt '
                                                                                                                                           'pr, '
                                                                                                                                           'time '
                                                                                                                                           'series '
                                                                                                                                           'are '
                                                                                                                                           'linearly '
                                                                                                                                           'detrended, '
                                                                                                                                           'observations '
                                                                                                                                           'and '
                                                                                                                                           'model '
                                                                                                                                           'regridded '
                                                                                                                                           'to '
                                                                                                                                           'generic_1x1deg',
                                                                                                                                 'name': 'pr '
                                                                                                                                         'Meridional '
                                                                                                                                         'RMSE',
                                                                                                                                 'ref': 'Using '
                                                                                                                                        'CDAT '
                                                                                                                                        'regridding '
                                                                                                                                        'and '
                                                                                                                                        'rms '
                                                                                                                                        '(uncentered '
                                                                                                                                        'and '
                                                                                                                                        'biased) '
                                                                                                                                        'calculation',
                                                                                                                                 'time_frequency': 'monthly',
                                                                                                                                 'units': 'mm/day'},
                                                                                                                  'metric': {'datasets': 'ACCESS-CM2_r1i1p1f1; '
                                                                                                                                         "CMAP's "
                                                                                                                                         'pr; '
                                                                                                                                         "ERA-Interim's "
                                                                                                                                         'pr; '
                                                                                                                                         "GPCPv2.3's "
                                                                                                                                         'pr; '
                                                                                                                                         "TRMM-3B43v-7's "
                                                                                                                                         'pr; '
                                                                                                                                         "'s ",
                                                                                                                             'method': 'The '
                                                                                                                                       'metric '
                                                                                                                                       'is '
                                                                                                                                       'the '
                                                                                                                                       'statistical '
                                                                                                                                       'value '
                                                                                                                                       'between '
                                                                                                                                       'the '
                                                                                                                                       'model '
                                                                                                                                       'and '
                                                                                                                                       'the '
                                                                                                                                       'observations',
                                                                                                                             'name': 'BiasPrLatRmse',
                                                                                                                             'units': 'mm/day'}},
                                                                                                'BiasPrLonRmse': {'diagnostic': {'ACCESS-CM2_r1i1p1f1': {'keyerror': None,
                                                                                                                                                         'name': 'ACCESS-CM2_r1i1p1f1',
                                                                                                                                                         'nyears': 165,
                                                                                                                                                         'time_period': ['1850-1-16 '
                                                                                                                                                                         '12:0:0.0',
                                                                                                                                                                         '2014-12-16 '
                                                                                                                                                                         '12:0:0.0']},
                                                                                                                                 'CMAP': {'name': 'CMAP',
                                                                                                                                          'nyears': 40,
                                                                                                                                          'time_period': ['1979-1-16 '
                                                                                                                                                          '12:0:0.0',
                                                                                                                                                          '2018-12-16 '
                                                                                                                                                          '12:0:0.0']},
                                                                                                                                 'ERA-Interim': {'name': 'ERA-Interim',
                                                                                                                                                 'nyears': 40,
                                                                                                                                                 'time_period': ['1979-1-16 '
                                                                                                                                                                 '12:0:0.0',
                                                                                                                                                                 '2018-12-16 '
                                                                                                                                                                 '12:0:0.0']},
                                                                                                                                 'GPCPv2.3': {'name': 'GPCPv2.3',
                                                                                                                                              'nyears': 40,
                                                                                                                                              'time_period': ['1979-1-16 '
                                                                                                                                                              '12:0:0.0',
                                                                                                                                                              '2018-12-16 '
                                                                                                                                                              '12:0:0.0']},
                                                                                                                                 'TRMM-3B43v-7': {'name': 'TRMM-3B43v-7',
                                                                                                                                                  'nyears': 20,
                                                                                                                                                  'time_period': ['1998-1-16 '
                                                                                                                                                                  '12:0:0.0',
                                                                                                                                                                  '2017-12-16 '
                                                                                                                                                                  '12:0:0.0']},
                                                                                                                                 'method': 'Zonal '
                                                                                                                                           'root '
                                                                                                                                           'mean '
                                                                                                                                           'square '
                                                                                                                                           'error '
                                                                                                                                           'of '
                                                                                                                                           'equatorial_pacific '
                                                                                                                                           'pr, '
                                                                                                                                           'time '
                                                                                                                                           'series '
                                                                                                                                           'are '
                                                                                                                                           'linearly '
                                                                                                                                           'detrended, '
                                                                                                                                           'observations '
                                                                                                                                           'and '
                                                                                                                                           'model '
                                                                                                                                           'regridded '
                                                                                                                                           'to '
                                                                                                                                           'generic_1x1deg',
                                                                                                                                 'name': 'pr '
                                                                                                                                         'Zonal '
                                                                                                                                         'RMSE',
                                                                                                                                 'ref': 'Using '
                                                                                                                                        'CDAT '
                                                                                                                                        'regridding '
                                                                                                                                        'and '
                                                                                                                                        'rms '
                                                                                                                                        '(uncentered '
                                                                                                                                        'and '
                                                                                                                                        'biased) '
                                                                                                                                        'calculation',
                                                                                                                                 'time_frequency': 'monthly',
                                                                                                                                 'units': 'mm/day'},
                                                                                                                  'metric': {'datasets': 'ACCESS-CM2_r1i1p1f1; '
                                                                                                                                         "CMAP's "
                                                                                                                                         'pr; '
                                                                                                                                         "ERA-Interim's "
                                                                                                                                         'pr; '
                                                                                                                                         "GPCPv2.3's "
                                                                                                                                         'pr; '
                                                                                                                                         "TRMM-3B43v-7's "
                                                                                                                                         'pr; '
                                                                                                                                         "'s ",
                                                                                                                             'method': 'The '
                                                                                                                                       'metric '
                                                                                                                                       'is '
                                                                                                                                       'the '
                                                                                                                                       'statistical '
                                                                                                                                       'value '
                                                                                                                                       'between '
                                                                                                                                       'the '
                                                                                                                                       'model '
                                                                                                                                       'and '
                                                                                                                                       'the '
                                                                                                                                       'observations',
                                                                                                                             'name': 'BiasPrLonRmse',
                                                                                                                             'units': 'mm/day'}},
                                                                                                'BiasSstLonRmse': {'diagnostic': {'20CRv2': {'name': '20CRv2',
                                                                                                                                             'nyears': 142,
                                                                                                                                             'time_period': ['1871-1-16 '
                                                                                                                                                             '12:0:0.0',
                                                                                                                                                             '2012-12-16 '
                                                                                                                                                             '12:0:0.0']},
                                                                                                                                  'ACCESS-CM2_r1i1p1f1': {'keyerror': None,
                                                                                                                                                          'name': 'ACCESS-CM2_r1i1p1f1',
                                                                                                                                                          'nyears': 165,
                                                                                                                                                          'time_period': ['1850-1-16 '
                                                                                                                                                                          '12:0:0.0',
                                                                                                                                                                          '2014-12-16 '
                                                                                                                                                                          '12:0:0.0']},
                                                                                                                                  'ERA-20C': {'name': 'ERA-20C',
                                                                                                                                              'nyears': 111,
                                                                                                                                              'time_period': ['1900-1-16 '
                                                                                                                                                              '12:0:0.0',
                                                                                                                                                              '2010-12-16 '
                                                                                                                                                              '12:0:0.0']},
                                                                                                                                  'ERA-5': {'name': 'ERA-5',
                                                                                                                                            'nyears': 40,
                                                                                                                                            'time_period': ['1979-1-16 '
                                                                                                                                                            '12:0:0.0',
                                                                                                                                                            '2018-12-16 '
                                                                                                                                                            '12:0:0.0']},
                                                                                                                                  'ERA-Interim': {'name': 'ERA-Interim',
                                                                                                                                                  'nyears': 40,
                                                                                                                                                  'time_period': ['1979-1-16 '
                                                                                                                                                                  '12:0:0.0',
                                                                                                                                                                  '2018-12-16 '
                                                                                                                                                                  '12:0:0.0']},
                                                                                                                                  'HadISST': {'name': 'HadISST',
                                                                                                                                              'nyears': 149,
                                                                                                                                              'time_period': ['1870-1-16 '
                                                                                                                                                              '11:59:59.5',
                                                                                                                                                              '2018-12-16 '
                                                                                                                                                              '18:0:0.0']},
                                                                                                                                  'Tropflux': {'name': 'Tropflux',
                                                                                                                                               'nyears': 39,
                                                                                                                                               'time_period': ['1979-1-15 '
                                                                                                                                                               '0:0:0.0',
                                                                                                                                                               '2017-7-15 '
                                                                                                                                                               '12:0:0.0']},
                                                                                                                                  'method': 'Zonal '
                                                                                                                                            'root '
                                                                                                                                            'mean '
                                                                                                                                            'square '
                                                                                                                                            'error '
                                                                                                                                            'of '
                                                                                                                                            'equatorial_pacific '
                                                                                                                                            'sst, '
                                                                                                                                            'time '
                                                                                                                                            'series '
                                                                                                                                            'are '
                                                                                                                                            'linearly '
                                                                                                                                            'detrended, '
                                                                                                                                            'observations '
                                                                                                                                            'and '
                                                                                                                                            'model '
                                                                                                                                            'regridded '
                                                                                                                                            'to '
                                                                                                                                            'generic_1x1deg',
                                                                                                                                  'name': 'sst '
                                                                                                                                          'Zonal '
                                                                                                                                          'RMSE',
                                                                                                                                  'ref': 'Using '
                                                                                                                                         'CDAT '
                                                                                                                                         'regridding '
                                                                                                                                         'and '
                                                                                                                                         'rms '
                                                                                                                                         '(uncentered '
                                                                                                                                         'and '
                                                                                                                                         'biased) '
                                                                                                                                         'calculation',
                                                                                                                                  'time_frequency': 'monthly',
                                                                                                                                  'units': 'C'},
                                                                                                                   'metric': {'datasets': 'ACCESS-CM2_r1i1p1f1; '
                                                                                                                                          "20CRv2's "
                                                                                                                                          'ts; '
                                                                                                                                          "ERA-20C's "
                                                                                                                                          'ts; '
                                                                                                                                          "ERA-5's "
                                                                                                                                          'ts; '
                                                                                                                                          "ERA-Interim's "
                                                                                                                                          'ts; '
                                                                                                                                          "HadISST's "
                                                                                                                                          'ts; '
                                                                                                                                          "Tropflux's "
                                                                                                                                          'ts; '
                                                                                                                                          "'s ",
                                                                                                                              'method': 'The '
                                                                                                                                        'metric '
                                                                                                                                        'is '
                                                                                                                                        'the '
                                                                                                                                        'statistical '
                                                                                                                                        'value '
                                                                                                                                        'between '
                                                                                                                                        'the '
                                                                                                                                        'model '
                                                                                                                                        'and '
                                                                                                                                        'the '
                                                                                                                                        'observations',
                                                                                                                              'name': 'BiasSstLonRmse',
                                                                                                                              'units': 'C'}},
                                                                                                'BiasTauxLonRmse': {'diagnostic': {'ACCESS-CM2_r1i1p1f1': {'keyerror': None,
                                                                                                                                                           'name': 'ACCESS-CM2_r1i1p1f1',
                                                                                                                                                           'nyears': 165,
                                                                                                                                                           'time_period': ['1850-1-16 '
                                                                                                                                                                           '12:0:0.0',
                                                                                                                                                                           '2014-12-16 '
                                                                                                                                                                           '12:0:0.0']},
                                                                                                                                   'ERA-Interim': {'name': 'ERA-Interim',
                                                                                                                                                   'nyears': 40,
                                                                                                                                                   'time_period': ['1979-1-16 '
                                                                                                                                                                   '12:0:0.0',
                                                                                                                                                                   '2018-12-16 '
                                                                                                                                                                   '12:0:0.0']},
                                                                                                                                   'Tropflux': {'name': 'Tropflux',
                                                                                                                                                'nyears': 39,
                                                                                                                                                'time_period': ['1979-1-15 '
                                                                                                                                                                '0:0:0.0',
                                                                                                                                                                '2017-7-15 '
                                                                                                                                                                '12:0:0.0']},
                                                                                                                                   'method': 'Zonal '
                                                                                                                                             'root '
                                                                                                                                             'mean '
                                                                                                                                             'square '
                                                                                                                                             'error '
                                                                                                                                             'of '
                                                                                                                                             'equatorial_pacific '
                                                                                                                                             'taux, '
                                                                                                                                             'time '
                                                                                                                                             'series '
                                                                                                                                             'are '
                                                                                                                                             'linearly '
                                                                                                                                             'detrended, '
                                                                                                                                             'observations '
                                                                                                                                             'and '
                                                                                                                                             'model '
                                                                                                                                             'regridded '
                                                                                                                                             'to '
                                                                                                                                             'generic_1x1deg',
                                                                                                                                   'name': 'taux '
                                                                                                                                           'Zonal '
                                                                                                                                           'RMSE',
                                                                                                                                   'ref': 'Using '
                                                                                                                                          'CDAT '
                                                                                                                                          'regridding '
                                                                                                                                          'and '
                                                                                                                                          'rms '
                                                                                                                                          '(uncentered '
                                                                                                                                          'and '
                                                                                                                                          'biased) '
                                                                                                                                          'calculation',
                                                                                                                                   'time_frequency': 'monthly',
                                                                                                                                   'units': '1e-3 '
                                                                                                                                            'N/m2'},
                                                                                                                    'metric': {'datasets': 'ACCESS-CM2_r1i1p1f1; '
                                                                                                                                           "ERA-Interim's "
                                                                                                                                           'tauu; '
                                                                                                                                           "Tropflux's "
                                                                                                                                           'tauu; '
                                                                                                                                           "'s ",
                                                                                                                               'method': 'The '
                                                                                                                                         'metric '
                                                                                                                                         'is '
                                                                                                                                         'the '
                                                                                                                                         'statistical '
                                                                                                                                         'value '
                                                                                                                                         'between '
                                                                                                                                         'the '
                                                                                                                                         'model '
                                                                                                                                         'and '
                                                                                                                                         'the '
                                                                                                                                         'observations',
                                                                                                                               'name': 'BiasTauxLonRmse',
                                                                                                                               'units': '1e-3 '
                                                                                                                                        'N/m2'}},
                                                                                                'EnsoAmpl': {'diagnostic': {'20CRv2': {'keyerror': None,
                                                                                                                                       'name': '20CRv2',
                                                                                                                                       'nyears': 142,
                                                                                                                                       'time_period': ['1871-1-16 '
                                                                                                                                                       '12:0:0.0',
                                                                                                                                                       '2012-12-16 '
                                                                                                                                                       '12:0:0.0']},
                                                                                                                            'ACCESS-CM2_r1i1p1f1': {'keyerror': None,
                                                                                                                                                    'name': 'ACCESS-CM2_r1i1p1f1',
                                                                                                                                                    'nyears': 165,
                                                                                                                                                    'time_period': ['1850-1-16 '
                                                                                                                                                                    '12:0:0.0',
                                                                                                                                                                    '2014-12-16 '
                                                                                                                                                                    '12:0:0.0']},
                                                                                                                            'ERA-20C': {'keyerror': None,
                                                                                                                                        'name': 'ERA-20C',
                                                                                                                                        'nyears': 111,
                                                                                                                                        'time_period': ['1900-1-16 '
                                                                                                                                                        '12:0:0.0',
                                                                                                                                                        '2010-12-16 '
                                                                                                                                                        '12:0:0.0']},
                                                                                                                            'ERA-5': {'keyerror': None,
                                                                                                                                      'name': 'ERA-5',
                                                                                                                                      'nyears': 40,
                                                                                                                                      'time_period': ['1979-1-16 '
                                                                                                                                                      '12:0:0.0',
                                                                                                                                                      '2018-12-16 '
                                                                                                                                                      '12:0:0.0']},
                                                                                                                            'ERA-Interim': {'keyerror': None,
                                                                                                                                            'name': 'ERA-Interim',
                                                                                                                                            'nyears': 40,
                                                                                                                                            'time_period': ['1979-1-16 '
                                                                                                                                                            '12:0:0.0',
                                                                                                                                                            '2018-12-16 '
                                                                                                                                                            '12:0:0.0']},
                                                                                                                            'HadISST': {'keyerror': 'unlikely '
                                                                                                                                                    'units: '
                                                                                                                                                    'K([-1e+30, '
                                                                                                                                                    '304.7203])',
                                                                                                                                        'name': 'HadISST',
                                                                                                                                        'nyears': 149,
                                                                                                                                        'time_period': ['1870-1-16 '
                                                                                                                                                        '11:59:59.5',
                                                                                                                                                        '2018-12-16 '
                                                                                                                                                        '18:0:0.0']},
                                                                                                                            'Tropflux': {'keyerror': None,
                                                                                                                                         'name': 'Tropflux',
                                                                                                                                         'nyears': 39,
                                                                                                                                         'time_period': ['1979-1-15 '
                                                                                                                                                         '0:0:0.0',
                                                                                                                                                         '2017-7-15 '
                                                                                                                                                         '12:0:0.0']},
                                                                                                                            'method': 'Standard '
                                                                                                                                      'deviation '
                                                                                                                                      'of '
                                                                                                                                      'nino3.4 '
                                                                                                                                      'sstA, '
                                                                                                                                      'time '
                                                                                                                                      'series '
                                                                                                                                      'are '
                                                                                                                                      'linearly '
                                                                                                                                      'detrended',
                                                                                                                            'name': 'ENSO '
                                                                                                                                    'amplitude',
                                                                                                                            'ref': 'Using '
                                                                                                                                   'CDAT '
                                                                                                                                   'regression '
                                                                                                                                   'calculation',
                                                                                                                            'time_frequency': 'monthly',
                                                                                                                            'units': 'C'},
                                                                                                             'metric': {'datasets': 'ACCESS-CM2_r1i1p1f1; '
                                                                                                                                    "20CRv2's "
                                                                                                                                    'ts; '
                                                                                                                                    "ERA-20C's "
                                                                                                                                    'ts; '
                                                                                                                                    "ERA-5's "
                                                                                                                                    'ts; '
                                                                                                                                    "ERA-Interim's "
                                                                                                                                    'ts; '
                                                                                                                                    "HadISST's "
                                                                                                                                    'ts; '
                                                                                                                                    "Tropflux's "
                                                                                                                                    'ts; '
                                                                                                                                    "'s ",
                                                                                                                        'method': 'The '
                                                                                                                                  'metric '
                                                                                                                                  'is '
                                                                                                                                  'the '
                                                                                                                                  'absolute '
                                                                                                                                  'value '
                                                                                                                                  'of '
                                                                                                                                  'the '
                                                                                                                                  'relative '
                                                                                                                                  'difference '
                                                                                                                                  'between '
                                                                                                                                  'model '
                                                                                                                                  'and '
                                                                                                                                  'observations '
                                                                                                                                  'values '
                                                                                                                                  '(M '
                                                                                                                                  '= '
                                                                                                                                  '100 '
                                                                                                                                  '* '
                                                                                                                                  'abs[[model-obs] '
                                                                                                                                  '/ '
                                                                                                                                  'obs])',
                                                                                                                        'name': 'EnsoAmpl',
                                                                                                                        'units': '%'}},
                                                                                                'EnsoDuration': {'diagnostic': {'20CRv2': {'keyerror': None,
                                                                                                                                           'name': '20CRv2',
                                                                                                                                           'nyears': 142,
                                                                                                                                           'time_period': ['1871-1-16 '
                                                                                                                                                           '12:0:0.0',
                                                                                                                                                           '2012-12-16 '
                                                                                                                                                           '12:0:0.0']},
                                                                                                                                'ACCESS-CM2_r1i1p1f1': {'keyerror': None,
                                                                                                                                                        'name': 'ACCESS-CM2_r1i1p1f1',
                                                                                                                                                        'nyears': 165,
                                                                                                                                                        'time_period': ['1850-1-16 '
                                                                                                                                                                        '12:0:0.0',
                                                                                                                                                                        '2014-12-16 '
                                                                                                                                                                        '12:0:0.0']},
                                                                                                                                'ERA-20C': {'keyerror': None,
                                                                                                                                            'name': 'ERA-20C',
                                                                                                                                            'nyears': 111,
                                                                                                                                            'time_period': ['1900-1-16 '
                                                                                                                                                            '12:0:0.0',
                                                                                                                                                            '2010-12-16 '
                                                                                                                                                            '12:0:0.0']},
                                                                                                                                'ERA-5': {'keyerror': None,
                                                                                                                                          'name': 'ERA-5',
                                                                                                                                          'nyears': 40,
                                                                                                                                          'time_period': ['1979-1-16 '
                                                                                                                                                          '12:0:0.0',
                                                                                                                                                          '2018-12-16 '
                                                                                                                                                          '12:0:0.0']},
                                                                                                                                'ERA-Interim': {'keyerror': None,
                                                                                                                                                'name': 'ERA-Interim',
                                                                                                                                                'nyears': 40,
                                                                                                                                                'time_period': ['1979-1-16 '
                                                                                                                                                                '12:0:0.0',
                                                                                                                                                                '2018-12-16 '
                                                                                                                                                                '12:0:0.0']},
                                                                                                                                'HadISST': {'keyerror': None,
                                                                                                                                            'name': 'HadISST',
                                                                                                                                            'nyears': 149,
                                                                                                                                            'time_period': ['1870-1-16 '
                                                                                                                                                            '11:59:59.5',
                                                                                                                                                            '2018-12-16 '
                                                                                                                                                            '18:0:0.0']},
                                                                                                                                'Tropflux': {'keyerror': None,
                                                                                                                                             'name': 'Tropflux',
                                                                                                                                             'nyears': 39,
                                                                                                                                             'time_period': ['1979-1-15 '
                                                                                                                                                             '0:0:0.0',
                                                                                                                                                             '2017-7-15 '
                                                                                                                                                             '12:0:0.0']},
                                                                                                                                'method': 'nino3.4 '
                                                                                                                                          'SSTA '
                                                                                                                                          'during '
                                                                                                                                          'DEC '
                                                                                                                                          'regressed '
                                                                                                                                          'against '
                                                                                                                                          'nino3.4 '
                                                                                                                                          'SSTA '
                                                                                                                                          'during '
                                                                                                                                          '6 '
                                                                                                                                          'years '
                                                                                                                                          '(centered '
                                                                                                                                          'on '
                                                                                                                                          'ENSO), '
                                                                                                                                          'the '
                                                                                                                                          'duration '
                                                                                                                                          'is '
                                                                                                                                          'the '
                                                                                                                                          'number '
                                                                                                                                          'of '
                                                                                                                                          'consecutive '
                                                                                                                                          'months '
                                                                                                                                          'during '
                                                                                                                                          'which '
                                                                                                                                          'the '
                                                                                                                                          'regression '
                                                                                                                                          'is '
                                                                                                                                          'above '
                                                                                                                                          '0.25, '
                                                                                                                                          'time '
                                                                                                                                          'series '
                                                                                                                                          'are '
                                                                                                                                          'linearly '
                                                                                                                                          'detrended, '
                                                                                                                                          'smoothing '
                                                                                                                                          'using '
                                                                                                                                          'a '
                                                                                                                                          'triangle '
                                                                                                                                          'shaped '
                                                                                                                                          'window '
                                                                                                                                          'of '
                                                                                                                                          '5 '
                                                                                                                                          'points',
                                                                                                                                'name': 'ENSO '
                                                                                                                                        'Duration '
                                                                                                                                        'based '
                                                                                                                                        'on '
                                                                                                                                        'life '
                                                                                                                                        'cyle '
                                                                                                                                        'SSTA '
                                                                                                                                        'pattern',
                                                                                                                                'ref': 'Using '
                                                                                                                                       'CDAT',
                                                                                                                                'time_frequency': 'monthly',
                                                                                                                                'units': 'months'},
                                                                                                                 'metric': {'datasets': 'ACCESS-CM2_r1i1p1f1; '
                                                                                                                                        "20CRv2's "
                                                                                                                                        'ts; '
                                                                                                                                        "ERA-20C's "
                                                                                                                                        'ts; '
                                                                                                                                        "ERA-5's "
                                                                                                                                        'ts; '
                                                                                                                                        "ERA-Interim's "
                                                                                                                                        'ts; '
                                                                                                                                        "HadISST's "
                                                                                                                                        'ts; '
                                                                                                                                        "Tropflux's "
                                                                                                                                        'ts; '
                                                                                                                                        "'s ",
                                                                                                                            'method': 'The '
                                                                                                                                      'metric '
                                                                                                                                      'is '
                                                                                                                                      'the '
                                                                                                                                      'absolute '
                                                                                                                                      'value '
                                                                                                                                      'of '
                                                                                                                                      'the '
                                                                                                                                      'relative '
                                                                                                                                      'difference '
                                                                                                                                      'between '
                                                                                                                                      'model '
                                                                                                                                      'and '
                                                                                                                                      'observations '
                                                                                                                                      'values '
                                                                                                                                      '(M '
                                                                                                                                      '= '
                                                                                                                                      '100 '
                                                                                                                                      '* '
                                                                                                                                      'abs[[model-obs] '
                                                                                                                                      '/ '
                                                                                                                                      'obs])',
                                                                                                                            'name': 'EnsoDuration',
                                                                                                                            'units': '%'}},
                                                                                                'EnsoSeasonality': {'diagnostic': {'20CRv2': {'keyerror': None,
                                                                                                                                              'name': '20CRv2',
                                                                                                                                              'nyears': 142,
                                                                                                                                              'time_period': ['1871-1-16 '
                                                                                                                                                              '12:0:0.0',
                                                                                                                                                              '2012-12-16 '
                                                                                                                                                              '12:0:0.0']},
                                                                                                                                   'ACCESS-CM2_r1i1p1f1': {'keyerror': None,
                                                                                                                                                           'name': 'ACCESS-CM2_r1i1p1f1',
                                                                                                                                                           'nyears': 165,
                                                                                                                                                           'time_period': ['1850-1-16 '
                                                                                                                                                                           '12:0:0.0',
                                                                                                                                                                           '2014-12-16 '
                                                                                                                                                                           '12:0:0.0']},
                                                                                                                                   'ERA-20C': {'keyerror': None,
                                                                                                                                               'name': 'ERA-20C',
                                                                                                                                               'nyears': 111,
                                                                                                                                               'time_period': ['1900-1-16 '
                                                                                                                                                               '12:0:0.0',
                                                                                                                                                               '2010-12-16 '
                                                                                                                                                               '12:0:0.0']},
                                                                                                                                   'ERA-5': {'keyerror': None,
                                                                                                                                             'name': 'ERA-5',
                                                                                                                                             'nyears': 40,
                                                                                                                                             'time_period': ['1979-1-16 '
                                                                                                                                                             '12:0:0.0',
                                                                                                                                                             '2018-12-16 '
                                                                                                                                                             '12:0:0.0']},
                                                                                                                                   'ERA-Interim': {'keyerror': None,
                                                                                                                                                   'name': 'ERA-Interim',
                                                                                                                                                   'nyears': 40,
                                                                                                                                                   'time_period': ['1979-1-16 '
                                                                                                                                                                   '12:0:0.0',
                                                                                                                                                                   '2018-12-16 '
                                                                                                                                                                   '12:0:0.0']},
                                                                                                                                   'HadISST': {'keyerror': 'unlikely '
                                                                                                                                                           'units: '
                                                                                                                                                           'K([-1e+30, '
                                                                                                                                                           '304.7203])',
                                                                                                                                               'name': 'HadISST',
                                                                                                                                               'nyears': 149,
                                                                                                                                               'time_period': ['1870-1-16 '
                                                                                                                                                               '11:59:59.5',
                                                                                                                                                               '2018-12-16 '
                                                                                                                                                               '18:0:0.0']},
                                                                                                                                   'Tropflux': {'keyerror': None,
                                                                                                                                                'name': 'Tropflux',
                                                                                                                                                'nyears': 39,
                                                                                                                                                'time_period': ['1979-1-15 '
                                                                                                                                                                '0:0:0.0',
                                                                                                                                                                '2017-7-15 '
                                                                                                                                                                '12:0:0.0']},
                                                                                                                                   'method': 'Ratio '
                                                                                                                                             'between '
                                                                                                                                             'NDJ '
                                                                                                                                             'and '
                                                                                                                                             'MAM '
                                                                                                                                             'standard '
                                                                                                                                             'deviation '
                                                                                                                                             'nino3.4 '
                                                                                                                                             'sstA, '
                                                                                                                                             'time '
                                                                                                                                             'series '
                                                                                                                                             'are '
                                                                                                                                             'linearly '
                                                                                                                                             'detrended',
                                                                                                                                   'name': 'ENSO '
                                                                                                                                           'seasonality',
                                                                                                                                   'ref': 'Using '
                                                                                                                                          'CDAT '
                                                                                                                                          'std '
                                                                                                                                          'dev '
                                                                                                                                          'calculation',
                                                                                                                                   'time_frequency': 'monthly',
                                                                                                                                   'units': 'C/C'},
                                                                                                                    'metric': {'datasets': 'ACCESS-CM2_r1i1p1f1; '
                                                                                                                                           "20CRv2's "
                                                                                                                                           'ts; '
                                                                                                                                           "ERA-20C's "
                                                                                                                                           'ts; '
                                                                                                                                           "ERA-5's "
                                                                                                                                           'ts; '
                                                                                                                                           "ERA-Interim's "
                                                                                                                                           'ts; '
                                                                                                                                           "HadISST's "
                                                                                                                                           'ts; '
                                                                                                                                           "Tropflux's "
                                                                                                                                           'ts; '
                                                                                                                                           "'s ",
                                                                                                                               'method': 'The '
                                                                                                                                         'metric '
                                                                                                                                         'is '
                                                                                                                                         'the '
                                                                                                                                         'absolute '
                                                                                                                                         'value '
                                                                                                                                         'of '
                                                                                                                                         'the '
                                                                                                                                         'relative '
                                                                                                                                         'difference '
                                                                                                                                         'between '
                                                                                                                                         'model '
                                                                                                                                         'and '
                                                                                                                                         'observations '
                                                                                                                                         'values '
                                                                                                                                         '(M '
                                                                                                                                         '= '
                                                                                                                                         '100 '
                                                                                                                                         '* '
                                                                                                                                         'abs[[model-obs] '
                                                                                                                                         '/ '
                                                                                                                                         'obs])',
                                                                                                                               'name': 'EnsoSeasonality',
                                                                                                                               'units': '%'}},
                                                                                                'EnsoSstDiversity_2': {'diagnostic': {'20CRv2': {'keyerror': None,
                                                                                                                                                 'name': '20CRv2',
                                                                                                                                                 'nyears': 142,
                                                                                                                                                 'time_period': ['1871-1-16 '
                                                                                                                                                                 '12:0:0.0',
                                                                                                                                                                 '2012-12-16 '
                                                                                                                                                                 '12:0:0.0']},
                                                                                                                                      'ACCESS-CM2_r1i1p1f1': {'keyerror': None,
                                                                                                                                                              'name': 'ACCESS-CM2_r1i1p1f1',
                                                                                                                                                              'nyears': 165,
                                                                                                                                                              'time_period': ['1850-1-16 '
                                                                                                                                                                              '12:0:0.0',
                                                                                                                                                                              '2014-12-16 '
                                                                                                                                                                              '12:0:0.0']},
                                                                                                                                      'ERA-20C': {'keyerror': None,
                                                                                                                                                  'name': 'ERA-20C',
                                                                                                                                                  'nyears': 111,
                                                                                                                                                  'time_period': ['1900-1-16 '
                                                                                                                                                                  '12:0:0.0',
                                                                                                                                                                  '2010-12-16 '
                                                                                                                                                                  '12:0:0.0']},
                                                                                                                                      'ERA-5': {'keyerror': None,
                                                                                                                                                'name': 'ERA-5',
                                                                                                                                                'nyears': 40,
                                                                                                                                                'time_period': ['1979-1-16 '
                                                                                                                                                                '12:0:0.0',
                                                                                                                                                                '2018-12-16 '
                                                                                                                                                                '12:0:0.0']},
                                                                                                                                      'ERA-Interim': {'keyerror': None,
                                                                                                                                                      'name': 'ERA-Interim',
                                                                                                                                                      'nyears': 40,
                                                                                                                                                      'time_period': ['1979-1-16 '
                                                                                                                                                                      '12:0:0.0',
                                                                                                                                                                      '2018-12-16 '
                                                                                                                                                                      '12:0:0.0']},
                                                                                                                                      'HadISST': {'keyerror': None,
                                                                                                                                                  'name': 'HadISST',
                                                                                                                                                  'nyears': 149,
                                                                                                                                                  'time_period': ['1870-1-16 '
                                                                                                                                                                  '11:59:59.5',
                                                                                                                                                                  '2018-12-16 '
                                                                                                                                                                  '18:0:0.0']},
                                                                                                                                      'Tropflux': {'keyerror': None,
                                                                                                                                                   'name': 'Tropflux',
                                                                                                                                                   'nyears': 39,
                                                                                                                                                   'time_period': ['1979-1-15 '
                                                                                                                                                                   '0:0:0.0',
                                                                                                                                                                   '2017-7-15 '
                                                                                                                                                                   '12:0:0.0']},
                                                                                                                                      'method': 'Nino '
                                                                                                                                                '(Nina) '
                                                                                                                                                'events '
                                                                                                                                                '= '
                                                                                                                                                'nino3.4 '
                                                                                                                                                'sstA '
                                                                                                                                                '> '
                                                                                                                                                '0.75 '
                                                                                                                                                '(< '
                                                                                                                                                '-0.75) '
                                                                                                                                                'during '
                                                                                                                                                'DEC, '
                                                                                                                                                'zonal '
                                                                                                                                                'SSTA '
                                                                                                                                                '(meridional '
                                                                                                                                                'averaged '
                                                                                                                                                '[-5.0 '
                                                                                                                                                '; '
                                                                                                                                                '5.0]), '
                                                                                                                                                'the '
                                                                                                                                                'zonal '
                                                                                                                                                'SSTA '
                                                                                                                                                'maximum '
                                                                                                                                                '(minimum) '
                                                                                                                                                'is '
                                                                                                                                                'located '
                                                                                                                                                'for '
                                                                                                                                                'each '
                                                                                                                                                'event, '
                                                                                                                                                'the '
                                                                                                                                                'diversity '
                                                                                                                                                'is '
                                                                                                                                                'the '
                                                                                                                                                'interquartile '
                                                                                                                                                'range '
                                                                                                                                                '(IQR '
                                                                                                                                                '= '
                                                                                                                                                'Q3 '
                                                                                                                                                '- '
                                                                                                                                                'Q1), '
                                                                                                                                                'time '
                                                                                                                                                'series '
                                                                                                                                                'are '
                                                                                                                                                'linearly '
                                                                                                                                                'detrended, '
                                                                                                                                                'smoothing '
                                                                                                                                                'using '
                                                                                                                                                'a '
                                                                                                                                                'triangle '
                                                                                                                                                'shaped '
                                                                                                                                                'window '
                                                                                                                                                'of '
                                                                                                                                                '5 '
                                                                                                                                                'points',
                                                                                                                                      'name': 'ENSO '
                                                                                                                                              'Diversity '
                                                                                                                                              '(interquartile '
                                                                                                                                              'range)',
                                                                                                                                      'ref': 'Using '
                                                                                                                                             'CDAT '
                                                                                                                                             'regridding',
                                                                                                                                      'time_frequency': 'monthly',
                                                                                                                                      'units': 'long'},
                                                                                                                       'metric': {'datasets': 'ACCESS-CM2_r1i1p1f1; '
                                                                                                                                              "20CRv2's "
                                                                                                                                              'ts; '
                                                                                                                                              "ERA-20C's "
                                                                                                                                              'ts; '
                                                                                                                                              "ERA-5's "
                                                                                                                                              'ts; '
                                                                                                                                              "ERA-Interim's "
                                                                                                                                              'ts; '
                                                                                                                                              "HadISST's "
                                                                                                                                              'ts; '
                                                                                                                                              "Tropflux's "
                                                                                                                                              'ts; '
                                                                                                                                              "'s ",
                                                                                                                                  'method': 'The '
                                                                                                                                            'metric '
                                                                                                                                            'is '
                                                                                                                                            'the '
                                                                                                                                            'absolute '
                                                                                                                                            'value '
                                                                                                                                            'of '
                                                                                                                                            'the '
                                                                                                                                            'relative '
                                                                                                                                            'difference '
                                                                                                                                            'between '
                                                                                                                                            'model '
                                                                                                                                            'and '
                                                                                                                                            'observations '
                                                                                                                                            'values '
                                                                                                                                            '(M '
                                                                                                                                            '= '
                                                                                                                                            '100 '
                                                                                                                                            '* '
                                                                                                                                            'abs[[model-obs] '
                                                                                                                                            '/ '
                                                                                                                                            'obs])',
                                                                                                                                  'name': 'EnsoSstDiversity',
                                                                                                                                  'units': '%'}},
                                                                                                'EnsoSstLonRmse': {'diagnostic': {'20CRv2': {'name': '20CRv2',
                                                                                                                                             'nyears': 142,
                                                                                                                                             'time_period': ['1871-1-16 '
                                                                                                                                                             '12:0:0.0',
                                                                                                                                                             '2012-12-16 '
                                                                                                                                                             '12:0:0.0']},
                                                                                                                                  'ACCESS-CM2_r1i1p1f1': {'keyerror': None,
                                                                                                                                                          'name': 'ACCESS-CM2_r1i1p1f1',
                                                                                                                                                          'nyears': 165,
                                                                                                                                                          'time_period': ['1850-1-16 '
                                                                                                                                                                          '12:0:0.0',
                                                                                                                                                                          '2014-12-16 '
                                                                                                                                                                          '12:0:0.0']},
                                                                                                                                  'ERA-20C': {'name': 'ERA-20C',
                                                                                                                                              'nyears': 111,
                                                                                                                                              'time_period': ['1900-1-16 '
                                                                                                                                                              '12:0:0.0',
                                                                                                                                                              '2010-12-16 '
                                                                                                                                                              '12:0:0.0']},
                                                                                                                                  'ERA-5': {'name': 'ERA-5',
                                                                                                                                            'nyears': 40,
                                                                                                                                            'time_period': ['1979-1-16 '
                                                                                                                                                            '12:0:0.0',
                                                                                                                                                            '2018-12-16 '
                                                                                                                                                            '12:0:0.0']},
                                                                                                                                  'ERA-Interim': {'name': 'ERA-Interim',
                                                                                                                                                  'nyears': 40,
                                                                                                                                                  'time_period': ['1979-1-16 '
                                                                                                                                                                  '12:0:0.0',
                                                                                                                                                                  '2018-12-16 '
                                                                                                                                                                  '12:0:0.0']},
                                                                                                                                  'HadISST': {'name': 'HadISST',
                                                                                                                                              'nyears': 149,
                                                                                                                                              'time_period': ['1870-1-16 '
                                                                                                                                                              '11:59:59.5',
                                                                                                                                                              '2018-12-16 '
                                                                                                                                                              '18:0:0.0']},
                                                                                                                                  'Tropflux': {'name': 'Tropflux',
                                                                                                                                               'nyears': 39,
                                                                                                                                               'time_period': ['1979-1-15 '
                                                                                                                                                               '0:0:0.0',
                                                                                                                                                               '2017-7-15 '
                                                                                                                                                               '12:0:0.0']},
                                                                                                                                  'method': 'nino3.4 '
                                                                                                                                            'SSTA '
                                                                                                                                            'during '
                                                                                                                                            'DEC '
                                                                                                                                            'regressed '
                                                                                                                                            'against '
                                                                                                                                            'equatorial_pacific '
                                                                                                                                            'SSTA, '
                                                                                                                                            'time '
                                                                                                                                            'series '
                                                                                                                                            'are '
                                                                                                                                            'linearly '
                                                                                                                                            'detrended, '
                                                                                                                                            'smoothing '
                                                                                                                                            'using '
                                                                                                                                            'a '
                                                                                                                                            'triangle '
                                                                                                                                            'shaped '
                                                                                                                                            'window '
                                                                                                                                            'of '
                                                                                                                                            '5 '
                                                                                                                                            'points, '
                                                                                                                                            'observations '
                                                                                                                                            'and '
                                                                                                                                            'model '
                                                                                                                                            'regridded '
                                                                                                                                            'to '
                                                                                                                                            'generic_1x1deg',
                                                                                                                                  'name': 'ENSO '
                                                                                                                                          'Zonal '
                                                                                                                                          'SSTA '
                                                                                                                                          'pattern',
                                                                                                                                  'ref': 'Using '
                                                                                                                                         'CDAT '
                                                                                                                                         'regridding '
                                                                                                                                         'and '
                                                                                                                                         'rms '
                                                                                                                                         '(uncentered '
                                                                                                                                         'and '
                                                                                                                                         'biased) '
                                                                                                                                         'calculation',
                                                                                                                                  'time_frequency': 'monthly',
                                                                                                                                  'units': 'C/C'},
                                                                                                                   'metric': {'datasets': 'ACCESS-CM2_r1i1p1f1; '
                                                                                                                                          "20CRv2's "
                                                                                                                                          'ts; '
                                                                                                                                          "ERA-20C's "
                                                                                                                                          'ts; '
                                                                                                                                          "ERA-5's "
                                                                                                                                          'ts; '
                                                                                                                                          "ERA-Interim's "
                                                                                                                                          'ts; '
                                                                                                                                          "HadISST's "
                                                                                                                                          'ts; '
                                                                                                                                          "Tropflux's "
                                                                                                                                          'ts; '
                                                                                                                                          "'s ",
                                                                                                                              'method': 'The '
                                                                                                                                        'metric '
                                                                                                                                        'is '
                                                                                                                                        'the '
                                                                                                                                        'statistical '
                                                                                                                                        'value '
                                                                                                                                        'between '
                                                                                                                                        'the '
                                                                                                                                        'model '
                                                                                                                                        'and '
                                                                                                                                        'the '
                                                                                                                                        'observations',
                                                                                                                              'name': 'EnsoSstLonRmse',
                                                                                                                              'units': 'C/C'}},
                                                                                                'EnsoSstSkew': {'diagnostic': {'20CRv2': {'keyerror': None,
                                                                                                                                          'name': '20CRv2',
                                                                                                                                          'nyears': 142,
                                                                                                                                          'time_period': ['1871-1-16 '
                                                                                                                                                          '12:0:0.0',
                                                                                                                                                          '2012-12-16 '
                                                                                                                                                          '12:0:0.0']},
                                                                                                                               'ACCESS-CM2_r1i1p1f1': {'keyerror': None,
                                                                                                                                                       'name': 'ACCESS-CM2_r1i1p1f1',
                                                                                                                                                       'nyears': 165,
                                                                                                                                                       'time_period': ['1850-1-16 '
                                                                                                                                                                       '12:0:0.0',
                                                                                                                                                                       '2014-12-16 '
                                                                                                                                                                       '12:0:0.0']},
                                                                                                                               'ERA-20C': {'keyerror': None,
                                                                                                                                           'name': 'ERA-20C',
                                                                                                                                           'nyears': 111,
                                                                                                                                           'time_period': ['1900-1-16 '
                                                                                                                                                           '12:0:0.0',
                                                                                                                                                           '2010-12-16 '
                                                                                                                                                           '12:0:0.0']},
                                                                                                                               'ERA-5': {'keyerror': None,
                                                                                                                                         'name': 'ERA-5',
                                                                                                                                         'nyears': 40,
                                                                                                                                         'time_period': ['1979-1-16 '
                                                                                                                                                         '12:0:0.0',
                                                                                                                                                         '2018-12-16 '
                                                                                                                                                         '12:0:0.0']},
                                                                                                                               'ERA-Interim': {'keyerror': None,
                                                                                                                                               'name': 'ERA-Interim',
                                                                                                                                               'nyears': 40,
                                                                                                                                               'time_period': ['1979-1-16 '
                                                                                                                                                               '12:0:0.0',
                                                                                                                                                               '2018-12-16 '
                                                                                                                                                               '12:0:0.0']},
                                                                                                                               'HadISST': {'keyerror': 'unlikely '
                                                                                                                                                       'units: '
                                                                                                                                                       'K([-1e+30, '
                                                                                                                                                       '304.7203])',
                                                                                                                                           'name': 'HadISST',
                                                                                                                                           'nyears': 149,
                                                                                                                                           'time_period': ['1870-1-16 '
                                                                                                                                                           '11:59:59.5',
                                                                                                                                                           '2018-12-16 '
                                                                                                                                                           '18:0:0.0']},
                                                                                                                               'Tropflux': {'keyerror': None,
                                                                                                                                            'name': 'Tropflux',
                                                                                                                                            'nyears': 39,
                                                                                                                                            'time_period': ['1979-1-15 '
                                                                                                                                                            '0:0:0.0',
                                                                                                                                                            '2017-7-15 '
                                                                                                                                                            '12:0:0.0']},
                                                                                                                               'method': 'Standard '
                                                                                                                                         'deviation '
                                                                                                                                         'of '
                                                                                                                                         'nino3.4 '
                                                                                                                                         'sstA, '
                                                                                                                                         'time '
                                                                                                                                         'series '
                                                                                                                                         'are '
                                                                                                                                         'linearly '
                                                                                                                                         'detrended',
                                                                                                                               'name': 'ENSO '
                                                                                                                                       'skewness',
                                                                                                                               'ref': 'Using '
                                                                                                                                      'CDAT '
                                                                                                                                      'regression '
                                                                                                                                      'calculation',
                                                                                                                               'time_frequency': 'monthly',
                                                                                                                               'units': 'C'},
                                                                                                                'metric': {'datasets': 'ACCESS-CM2_r1i1p1f1; '
                                                                                                                                       "20CRv2's "
                                                                                                                                       'ts; '
                                                                                                                                       "ERA-20C's "
                                                                                                                                       'ts; '
                                                                                                                                       "ERA-5's "
                                                                                                                                       'ts; '
                                                                                                                                       "ERA-Interim's "
                                                                                                                                       'ts; '
                                                                                                                                       "HadISST's "
                                                                                                                                       'ts; '
                                                                                                                                       "Tropflux's "
                                                                                                                                       'ts; '
                                                                                                                                       "'s ",
                                                                                                                           'method': 'The '
                                                                                                                                     'metric '
                                                                                                                                     'is '
                                                                                                                                     'the '
                                                                                                                                     'absolute '
                                                                                                                                     'value '
                                                                                                                                     'of '
                                                                                                                                     'the '
                                                                                                                                     'relative '
                                                                                                                                     'difference '
                                                                                                                                     'between '
                                                                                                                                     'model '
                                                                                                                                     'and '
                                                                                                                                     'observations '
                                                                                                                                     'values '
                                                                                                                                     '(M '
                                                                                                                                     '= '
                                                                                                                                     '100 '
                                                                                                                                     '* '
                                                                                                                                     'abs[[model-obs] '
                                                                                                                                     '/ '
                                                                                                                                     'obs])',
                                                                                                                           'name': 'EnsoSstSkew',
                                                                                                                           'units': '%'}},
                                                                                                'EnsoSstTsRmse': {'diagnostic': {'20CRv2': {'name': '20CRv2',
                                                                                                                                            'nyears': 142,
                                                                                                                                            'time_period': ['1871-1-16 '
                                                                                                                                                            '12:0:0.0',
                                                                                                                                                            '2012-12-16 '
                                                                                                                                                            '12:0:0.0']},
                                                                                                                                 'ACCESS-CM2_r1i1p1f1': {'keyerror': None,
                                                                                                                                                         'name': 'ACCESS-CM2_r1i1p1f1',
                                                                                                                                                         'nyears': 165,
                                                                                                                                                         'time_period': ['1850-1-16 '
                                                                                                                                                                         '12:0:0.0',
                                                                                                                                                                         '2014-12-16 '
                                                                                                                                                                         '12:0:0.0']},
                                                                                                                                 'ERA-20C': {'name': 'ERA-20C',
                                                                                                                                             'nyears': 111,
                                                                                                                                             'time_period': ['1900-1-16 '
                                                                                                                                                             '12:0:0.0',
                                                                                                                                                             '2010-12-16 '
                                                                                                                                                             '12:0:0.0']},
                                                                                                                                 'ERA-5': {'name': 'ERA-5',
                                                                                                                                           'nyears': 40,
                                                                                                                                           'time_period': ['1979-1-16 '
                                                                                                                                                           '12:0:0.0',
                                                                                                                                                           '2018-12-16 '
                                                                                                                                                           '12:0:0.0']},
                                                                                                                                 'ERA-Interim': {'name': 'ERA-Interim',
                                                                                                                                                 'nyears': 40,
                                                                                                                                                 'time_period': ['1979-1-16 '
                                                                                                                                                                 '12:0:0.0',
                                                                                                                                                                 '2018-12-16 '
                                                                                                                                                                 '12:0:0.0']},
                                                                                                                                 'HadISST': {'name': 'HadISST',
                                                                                                                                             'nyears': 149,
                                                                                                                                             'time_period': ['1870-1-16 '
                                                                                                                                                             '11:59:59.5',
                                                                                                                                                             '2018-12-16 '
                                                                                                                                                             '18:0:0.0']},
                                                                                                                                 'Tropflux': {'name': 'Tropflux',
                                                                                                                                              'nyears': 39,
                                                                                                                                              'time_period': ['1979-1-15 '
                                                                                                                                                              '0:0:0.0',
                                                                                                                                                              '2017-7-15 '
                                                                                                                                                              '12:0:0.0']},
                                                                                                                                 'method': 'nino3.4 '
                                                                                                                                           'SSTA '
                                                                                                                                           'during '
                                                                                                                                           'DEC '
                                                                                                                                           'regressed '
                                                                                                                                           'against '
                                                                                                                                           'nino3.4 '
                                                                                                                                           'SSTA '
                                                                                                                                           'during '
                                                                                                                                           '6 '
                                                                                                                                           'years '
                                                                                                                                           '(centered '
                                                                                                                                           'on '
                                                                                                                                           'ENSO), '
                                                                                                                                           'time '
                                                                                                                                           'series '
                                                                                                                                           'are '
                                                                                                                                           'linearly '
                                                                                                                                           'detrended, '
                                                                                                                                           'smoothing '
                                                                                                                                           'using '
                                                                                                                                           'a '
                                                                                                                                           'triangle '
                                                                                                                                           'shaped '
                                                                                                                                           'window '
                                                                                                                                           'of '
                                                                                                                                           '5 '
                                                                                                                                           'points',
                                                                                                                                 'name': 'ENSO '
                                                                                                                                         'life '
                                                                                                                                         'cyle '
                                                                                                                                         'SSTA '
                                                                                                                                         'pattern',
                                                                                                                                 'ref': 'Using '
                                                                                                                                        'CDAT '
                                                                                                                                        'regridding '
                                                                                                                                        'and '
                                                                                                                                        'rms '
                                                                                                                                        '(uncentered '
                                                                                                                                        'and '
                                                                                                                                        'biased) '
                                                                                                                                        'calculation',
                                                                                                                                 'time_frequency': 'monthly',
                                                                                                                                 'units': 'C/C'},
                                                                                                                  'metric': {'datasets': 'ACCESS-CM2_r1i1p1f1; '
                                                                                                                                         "20CRv2's "
                                                                                                                                         'ts; '
                                                                                                                                         "ERA-20C's "
                                                                                                                                         'ts; '
                                                                                                                                         "ERA-5's "
                                                                                                                                         'ts; '
                                                                                                                                         "ERA-Interim's "
                                                                                                                                         'ts; '
                                                                                                                                         "HadISST's "
                                                                                                                                         'ts; '
                                                                                                                                         "Tropflux's "
                                                                                                                                         'ts; '
                                                                                                                                         "'s ",
                                                                                                                             'method': 'The '
                                                                                                                                       'metric '
                                                                                                                                       'is '
                                                                                                                                       'the '
                                                                                                                                       'statistical '
                                                                                                                                       'value '
                                                                                                                                       'between '
                                                                                                                                       'the '
                                                                                                                                       'model '
                                                                                                                                       'and '
                                                                                                                                       'the '
                                                                                                                                       'observations',
                                                                                                                             'name': 'EnsoSstTsRmse',
                                                                                                                             'units': 'C/C'}},
                                                                                                'SeasonalPrLatRmse': {'diagnostic': {'ACCESS-CM2_r1i1p1f1': {'keyerror': None,
                                                                                                                                                             'name': 'ACCESS-CM2_r1i1p1f1',
                                                                                                                                                             'nyears': 165,
                                                                                                                                                             'time_period': ['1850-1-16 '
                                                                                                                                                                             '12:0:0.0',
                                                                                                                                                                             '2014-12-16 '
                                                                                                                                                                             '12:0:0.0']},
                                                                                                                                     'CMAP': {'name': 'CMAP',
                                                                                                                                              'nyears': 40,
                                                                                                                                              'time_period': ['1979-1-16 '
                                                                                                                                                              '12:0:0.0',
                                                                                                                                                              '2018-12-16 '
                                                                                                                                                              '12:0:0.0']},
                                                                                                                                     'ERA-Interim': {'name': 'ERA-Interim',
                                                                                                                                                     'nyears': 40,
                                                                                                                                                     'time_period': ['1979-1-16 '
                                                                                                                                                                     '12:0:0.0',
                                                                                                                                                                     '2018-12-16 '
                                                                                                                                                                     '12:0:0.0']},
                                                                                                                                     'GPCPv2.3': {'name': 'GPCPv2.3',
                                                                                                                                                  'nyears': 40,
                                                                                                                                                  'time_period': ['1979-1-16 '
                                                                                                                                                                  '12:0:0.0',
                                                                                                                                                                  '2018-12-16 '
                                                                                                                                                                  '12:0:0.0']},
                                                                                                                                     'TRMM-3B43v-7': {'name': 'TRMM-3B43v-7',
                                                                                                                                                      'nyears': 20,
                                                                                                                                                      'time_period': ['1998-1-16 '
                                                                                                                                                                      '12:0:0.0',
                                                                                                                                                                      '2017-12-16 '
                                                                                                                                                                      '12:0:0.0']},
                                                                                                                                     'method': 'Meridional '
                                                                                                                                               'root '
                                                                                                                                               'mean '
                                                                                                                                               'square '
                                                                                                                                               'error '
                                                                                                                                               'of '
                                                                                                                                               'nino3_LatExt '
                                                                                                                                               'climatological '
                                                                                                                                               'pr '
                                                                                                                                               'STD, '
                                                                                                                                               'time '
                                                                                                                                               'series '
                                                                                                                                               'are '
                                                                                                                                               'linearly '
                                                                                                                                               'detrended, '
                                                                                                                                               'observations '
                                                                                                                                               'and '
                                                                                                                                               'model '
                                                                                                                                               'regridded '
                                                                                                                                               'to '
                                                                                                                                               'generic_1x1deg',
                                                                                                                                     'name': 'pr '
                                                                                                                                             'meridional '
                                                                                                                                             'seasonality '
                                                                                                                                             'RMSE',
                                                                                                                                     'ref': 'Using '
                                                                                                                                            'CDAT '
                                                                                                                                            'regridding '
                                                                                                                                            'and '
                                                                                                                                            'rms '
                                                                                                                                            '(uncentered '
                                                                                                                                            'and '
                                                                                                                                            'biased) '
                                                                                                                                            'calculation',
                                                                                                                                     'time_frequency': 'monthly',
                                                                                                                                     'units': 'mm/day'},
                                                                                                                      'metric': {'datasets': 'ACCESS-CM2_r1i1p1f1; '
                                                                                                                                             "CMAP's "
                                                                                                                                             'pr; '
                                                                                                                                             "ERA-Interim's "
                                                                                                                                             'pr; '
                                                                                                                                             "GPCPv2.3's "
                                                                                                                                             'pr; '
                                                                                                                                             "TRMM-3B43v-7's "
                                                                                                                                             'pr; '
                                                                                                                                             "'s ",
                                                                                                                                 'method': 'The '
                                                                                                                                           'metric '
                                                                                                                                           'is '
                                                                                                                                           'the '
                                                                                                                                           'statistical '
                                                                                                                                           'value '
                                                                                                                                           'between '
                                                                                                                                           'the '
                                                                                                                                           'model '
                                                                                                                                           'and '
                                                                                                                                           'the '
                                                                                                                                           'observations',
                                                                                                                                 'name': 'SeasonalPrLatRmse',
                                                                                                                                 'units': 'mm/day'}},
                                                                                                'SeasonalPrLonRmse': {'diagnostic': {'ACCESS-CM2_r1i1p1f1': {'keyerror': None,
                                                                                                                                                             'name': 'ACCESS-CM2_r1i1p1f1',
                                                                                                                                                             'nyears': 165,
                                                                                                                                                             'time_period': ['1850-1-16 '
                                                                                                                                                                             '12:0:0.0',
                                                                                                                                                                             '2014-12-16 '
                                                                                                                                                                             '12:0:0.0']},
                                                                                                                                     'CMAP': {'name': 'CMAP',
                                                                                                                                              'nyears': 40,
                                                                                                                                              'time_period': ['1979-1-16 '
                                                                                                                                                              '12:0:0.0',
                                                                                                                                                              '2018-12-16 '
                                                                                                                                                              '12:0:0.0']},
                                                                                                                                     'ERA-Interim': {'name': 'ERA-Interim',
                                                                                                                                                     'nyears': 40,
                                                                                                                                                     'time_period': ['1979-1-16 '
                                                                                                                                                                     '12:0:0.0',
                                                                                                                                                                     '2018-12-16 '
                                                                                                                                                                     '12:0:0.0']},
                                                                                                                                     'GPCPv2.3': {'name': 'GPCPv2.3',
                                                                                                                                                  'nyears': 40,
                                                                                                                                                  'time_period': ['1979-1-16 '
                                                                                                                                                                  '12:0:0.0',
                                                                                                                                                                  '2018-12-16 '
                                                                                                                                                                  '12:0:0.0']},
                                                                                                                                     'TRMM-3B43v-7': {'name': 'TRMM-3B43v-7',
                                                                                                                                                      'nyears': 20,
                                                                                                                                                      'time_period': ['1998-1-16 '
                                                                                                                                                                      '12:0:0.0',
                                                                                                                                                                      '2017-12-16 '
                                                                                                                                                                      '12:0:0.0']},
                                                                                                                                     'method': 'Zonal '
                                                                                                                                               'root '
                                                                                                                                               'mean '
                                                                                                                                               'square '
                                                                                                                                               'error '
                                                                                                                                               'of '
                                                                                                                                               'equatorial_pacific '
                                                                                                                                               'climatological '
                                                                                                                                               'pr '
                                                                                                                                               'STD, '
                                                                                                                                               'time '
                                                                                                                                               'series '
                                                                                                                                               'are '
                                                                                                                                               'linearly '
                                                                                                                                               'detrended, '
                                                                                                                                               'observations '
                                                                                                                                               'and '
                                                                                                                                               'model '
                                                                                                                                               'regridded '
                                                                                                                                               'to '
                                                                                                                                               'generic_1x1deg',
                                                                                                                                     'name': 'pr '
                                                                                                                                             'zonal '
                                                                                                                                             'seasonality '
                                                                                                                                             'RMSE',
                                                                                                                                     'ref': 'Using '
                                                                                                                                            'CDAT '
                                                                                                                                            'regridding '
                                                                                                                                            'and '
                                                                                                                                            'rms '
                                                                                                                                            '(uncentered '
                                                                                                                                            'and '
                                                                                                                                            'biased) '
                                                                                                                                            'calculation',
                                                                                                                                     'time_frequency': 'monthly',
                                                                                                                                     'units': 'mm/day'},
                                                                                                                      'metric': {'datasets': 'ACCESS-CM2_r1i1p1f1; '
                                                                                                                                             "CMAP's "
                                                                                                                                             'pr; '
                                                                                                                                             "ERA-Interim's "
                                                                                                                                             'pr; '
                                                                                                                                             "GPCPv2.3's "
                                                                                                                                             'pr; '
                                                                                                                                             "TRMM-3B43v-7's "
                                                                                                                                             'pr; '
                                                                                                                                             "'s ",
                                                                                                                                 'method': 'The '
                                                                                                                                           'metric '
                                                                                                                                           'is '
                                                                                                                                           'the '
                                                                                                                                           'statistical '
                                                                                                                                           'value '
                                                                                                                                           'between '
                                                                                                                                           'the '
                                                                                                                                           'model '
                                                                                                                                           'and '
                                                                                                                                           'the '
                                                                                                                                           'observations',
                                                                                                                                 'name': 'SeasonalPrLonRmse',
                                                                                                                                 'units': 'mm/day'}},
                                                                                                'SeasonalSstLonRmse': {'diagnostic': {'20CRv2': {'name': '20CRv2',
                                                                                                                                                 'nyears': 142,
                                                                                                                                                 'time_period': ['1871-1-16 '
                                                                                                                                                                 '12:0:0.0',
                                                                                                                                                                 '2012-12-16 '
                                                                                                                                                                 '12:0:0.0']},
                                                                                                                                      'ACCESS-CM2_r1i1p1f1': {'keyerror': None,
                                                                                                                                                              'name': 'ACCESS-CM2_r1i1p1f1',
                                                                                                                                                              'nyears': 165,
                                                                                                                                                              'time_period': ['1850-1-16 '
                                                                                                                                                                              '12:0:0.0',
                                                                                                                                                                              '2014-12-16 '
                                                                                                                                                                              '12:0:0.0']},
                                                                                                                                      'ERA-20C': {'name': 'ERA-20C',
                                                                                                                                                  'nyears': 111,
                                                                                                                                                  'time_period': ['1900-1-16 '
                                                                                                                                                                  '12:0:0.0',
                                                                                                                                                                  '2010-12-16 '
                                                                                                                                                                  '12:0:0.0']},
                                                                                                                                      'ERA-5': {'name': 'ERA-5',
                                                                                                                                                'nyears': 40,
                                                                                                                                                'time_period': ['1979-1-16 '
                                                                                                                                                                '12:0:0.0',
                                                                                                                                                                '2018-12-16 '
                                                                                                                                                                '12:0:0.0']},
                                                                                                                                      'ERA-Interim': {'name': 'ERA-Interim',
                                                                                                                                                      'nyears': 40,
                                                                                                                                                      'time_period': ['1979-1-16 '
                                                                                                                                                                      '12:0:0.0',
                                                                                                                                                                      '2018-12-16 '
                                                                                                                                                                      '12:0:0.0']},
                                                                                                                                      'HadISST': {'name': 'HadISST',
                                                                                                                                                  'nyears': 149,
                                                                                                                                                  'time_period': ['1870-1-16 '
                                                                                                                                                                  '11:59:59.5',
                                                                                                                                                                  '2018-12-16 '
                                                                                                                                                                  '18:0:0.0']},
                                                                                                                                      'Tropflux': {'name': 'Tropflux',
                                                                                                                                                   'nyears': 39,
                                                                                                                                                   'time_period': ['1979-1-15 '
                                                                                                                                                                   '0:0:0.0',
                                                                                                                                                                   '2017-7-15 '
                                                                                                                                                                   '12:0:0.0']},
                                                                                                                                      'method': 'Zonal '
                                                                                                                                                'root '
                                                                                                                                                'mean '
                                                                                                                                                'square '
                                                                                                                                                'error '
                                                                                                                                                'of '
                                                                                                                                                'equatorial_pacific '
                                                                                                                                                'climatological '
                                                                                                                                                'sst '
                                                                                                                                                'STD, '
                                                                                                                                                'time '
                                                                                                                                                'series '
                                                                                                                                                'are '
                                                                                                                                                'linearly '
                                                                                                                                                'detrended, '
                                                                                                                                                'observations '
                                                                                                                                                'and '
                                                                                                                                                'model '
                                                                                                                                                'regridded '
                                                                                                                                                'to '
                                                                                                                                                'generic_1x1deg',
                                                                                                                                      'name': 'sst '
                                                                                                                                              'zonal '
                                                                                                                                              'seasonality '
                                                                                                                                              'RMSE',
                                                                                                                                      'ref': 'Using '
                                                                                                                                             'CDAT '
                                                                                                                                             'regridding '
                                                                                                                                             'and '
                                                                                                                                             'rms '
                                                                                                                                             '(uncentered '
                                                                                                                                             'and '
                                                                                                                                             'biased) '
                                                                                                                                             'calculation',
                                                                                                                                      'time_frequency': 'monthly',
                                                                                                                                      'units': 'C'},
                                                                                                                       'metric': {'datasets': 'ACCESS-CM2_r1i1p1f1; '
                                                                                                                                              "20CRv2's "
                                                                                                                                              'ts; '
                                                                                                                                              "ERA-20C's "
                                                                                                                                              'ts; '
                                                                                                                                              "ERA-5's "
                                                                                                                                              'ts; '
                                                                                                                                              "ERA-Interim's "
                                                                                                                                              'ts; '
                                                                                                                                              "HadISST's "
                                                                                                                                              'ts; '
                                                                                                                                              "Tropflux's "
                                                                                                                                              'ts; '
                                                                                                                                              "'s ",
                                                                                                                                  'method': 'The '
                                                                                                                                            'metric '
                                                                                                                                            'is '
                                                                                                                                            'the '
                                                                                                                                            'statistical '
                                                                                                                                            'value '
                                                                                                                                            'between '
                                                                                                                                            'the '
                                                                                                                                            'model '
                                                                                                                                            'and '
                                                                                                                                            'the '
                                                                                                                                            'observations',
                                                                                                                                  'name': 'SeasonalSstLonRmse',
                                                                                                                                  'units': 'C'}},
                                                                                                'SeasonalTauxLonRmse': {'diagnostic': {'ACCESS-CM2_r1i1p1f1': {'keyerror': None,
                                                                                                                                                               'name': 'ACCESS-CM2_r1i1p1f1',
                                                                                                                                                               'nyears': 165,
                                                                                                                                                               'time_period': ['1850-1-16 '
                                                                                                                                                                               '12:0:0.0',
                                                                                                                                                                               '2014-12-16 '
                                                                                                                                                                               '12:0:0.0']},
                                                                                                                                       'ERA-Interim': {'name': 'ERA-Interim',
                                                                                                                                                       'nyears': 40,
                                                                                                                                                       'time_period': ['1979-1-16 '
                                                                                                                                                                       '12:0:0.0',
                                                                                                                                                                       '2018-12-16 '
                                                                                                                                                                       '12:0:0.0']},
                                                                                                                                       'Tropflux': {'name': 'Tropflux',
                                                                                                                                                    'nyears': 39,
                                                                                                                                                    'time_period': ['1979-1-15 '
                                                                                                                                                                    '0:0:0.0',
                                                                                                                                                                    '2017-7-15 '
                                                                                                                                                                    '12:0:0.0']},
                                                                                                                                       'method': 'Zonal '
                                                                                                                                                 'root '
                                                                                                                                                 'mean '
                                                                                                                                                 'square '
                                                                                                                                                 'error '
                                                                                                                                                 'of '
                                                                                                                                                 'equatorial_pacific '
                                                                                                                                                 'climatological '
                                                                                                                                                 'taux '
                                                                                                                                                 'STD, '
                                                                                                                                                 'time '
                                                                                                                                                 'series '
                                                                                                                                                 'are '
                                                                                                                                                 'linearly '
                                                                                                                                                 'detrended, '
                                                                                                                                                 'observations '
                                                                                                                                                 'and '
                                                                                                                                                 'model '
                                                                                                                                                 'regridded '
                                                                                                                                                 'to '
                                                                                                                                                 'generic_1x1deg',
                                                                                                                                       'name': 'taux '
                                                                                                                                               'zonal '
                                                                                                                                               'seasonality '
                                                                                                                                               'RMSE',
                                                                                                                                       'ref': 'Using '
                                                                                                                                              'CDAT '
                                                                                                                                              'regridding '
                                                                                                                                              'and '
                                                                                                                                              'rms '
                                                                                                                                              '(uncentered '
                                                                                                                                              'and '
                                                                                                                                              'biased) '
                                                                                                                                              'calculation',
                                                                                                                                       'time_frequency': 'monthly',
                                                                                                                                       'units': '1e-3 '
                                                                                                                                                'N/m2'},
                                                                                                                        'metric': {'datasets': 'ACCESS-CM2_r1i1p1f1; '
                                                                                                                                               "ERA-Interim's "
                                                                                                                                               'tauu; '
                                                                                                                                               "Tropflux's "
                                                                                                                                               'tauu; '
                                                                                                                                               "'s ",
                                                                                                                                   'method': 'The '
                                                                                                                                             'metric '
                                                                                                                                             'is '
                                                                                                                                             'the '
                                                                                                                                             'statistical '
                                                                                                                                             'value '
                                                                                                                                             'between '
                                                                                                                                             'the '
                                                                                                                                             'model '
                                                                                                                                             'and '
                                                                                                                                             'the '
                                                                                                                                             'observations',
                                                                                                                                   'name': 'SeasonalTauxLonRmse',
                                                                                                                                   'units': '1e-3 '
                                                                                                                                            'N/m2'}}},
                                                                                    'name': 'Metrics '
                                                                                            'Collection '
                                                                                            'for '
                                                                                            'ENSO '
                                                                                            'performance'},
                                                                       'value': {'BiasPrLatRmse': {'diagnostic': {'ACCESS-CM2_r1i1p1f1': {'value': None,
                                                                                                                                          'value_error': None},
                                                                                                                  'CMAP': {'value': None,
                                                                                                                           'value_error': None},
                                                                                                                  'ERA-Interim': {'value': None,
                                                                                                                                  'value_error': None},
                                                                                                                  'GPCPv2.3': {'value': None,
                                                                                                                               'value_error': None},
                                                                                                                  'TRMM-3B43v-7': {'value': None,
                                                                                                                                   'value_error': None}},
                                                                                                   'metric': {'CMAP': {'value': 2.0869991859619423,
                                                                                                                       'value_error': None},
                                                                                                              'ERA-Interim': {'value': 1.655447234881955,
                                                                                                                              'value_error': None},
                                                                                                              'GPCPv2.3': {'value': 2.0647494381009803,
                                                                                                                           'value_error': None},
                                                                                                              'TRMM-3B43v-7': {'value': 2.024030502343981,
                                                                                                                               'value_error': None}}},
                                                                                 'BiasPrLonRmse': {'diagnostic': {'ACCESS-CM2_r1i1p1f1': {'value': None,
                                                                                                                                          'value_error': None},
                                                                                                                  'CMAP': {'value': None,
                                                                                                                           'value_error': None},
                                                                                                                  'ERA-Interim': {'value': None,
                                                                                                                                  'value_error': None},
                                                                                                                  'GPCPv2.3': {'value': None,
                                                                                                                               'value_error': None},
                                                                                                                  'TRMM-3B43v-7': {'value': None,
                                                                                                                                   'value_error': None}},
                                                                                                   'metric': {'CMAP': {'value': 0.6446395021127977,
                                                                                                                       'value_error': None},
                                                                                                              'ERA-Interim': {'value': 1.0210307836213295,
                                                                                                                              'value_error': None},
                                                                                                              'GPCPv2.3': {'value': 0.4915585903492389,
                                                                                                                           'value_error': None},
                                                                                                              'TRMM-3B43v-7': {'value': 0.5911642243012007,
                                                                                                                               'value_error': None}}},
                                                                                 'BiasSstLonRmse': {'diagnostic': {'20CRv2': {'value': None,
                                                                                                                              'value_error': None},
                                                                                                                   'ACCESS-CM2_r1i1p1f1': {'value': None,
                                                                                                                                           'value_error': None},
                                                                                                                   'ERA-20C': {'value': None,
                                                                                                                               'value_error': None},
                                                                                                                   'ERA-5': {'value': None,
                                                                                                                             'value_error': None},
                                                                                                                   'ERA-Interim': {'value': None,
                                                                                                                                   'value_error': None},
                                                                                                                   'HadISST': {'value': None,
                                                                                                                               'value_error': None},
                                                                                                                   'Tropflux': {'value': None,
                                                                                                                                'value_error': None}},
                                                                                                    'metric': {'20CRv2': {'value': 0.5086063943211802,
                                                                                                                          'value_error': None},
                                                                                                               'ERA-20C': {'value': 0.49792070738173966,
                                                                                                                           'value_error': None},
                                                                                                               'ERA-5': {'value': 0.4665249564478334,
                                                                                                                         'value_error': None},
                                                                                                               'ERA-Interim': {'value': 0.5918436453916678,
                                                                                                                               'value_error': None},
                                                                                                               'HadISST': {'value': 0.5144345310648003,
                                                                                                                           'value_error': None},
                                                                                                               'Tropflux': {'value': 0.6144647650906735,
                                                                                                                            'value_error': None}}},
                                                                                 'BiasTauxLonRmse': {'diagnostic': {'ACCESS-CM2_r1i1p1f1': {'value': None,
                                                                                                                                            'value_error': None},
                                                                                                                    'ERA-Interim': {'value': None,
                                                                                                                                    'value_error': None},
                                                                                                                    'Tropflux': {'value': None,
                                                                                                                                 'value_error': None}},
                                                                                                     'metric': {'ERA-Interim': {'value': 6.905344203497415,
                                                                                                                                'value_error': None},
                                                                                                                'Tropflux': {'value': 6.641704430321212,
                                                                                                                             'value_error': None}}},
                                                                                 'EnsoAmpl': {'diagnostic': {'20CRv2': {'value': 0.7407960057502115,
                                                                                                                        'value_error': 0.062166219832622445},
                                                                                                             'ACCESS-CM2_r1i1p1f1': {'value': 0.8079451055122988,
                                                                                                                                     'value_error': 0.06289844115817948},
                                                                                                             'ERA-20C': {'value': 0.8265126323027572,
                                                                                                                         'value_error': 0.07844910735406072},
                                                                                                             'ERA-5': {'value': 0.9075909980564855,
                                                                                                                       'value_error': 0.14350273688619733},
                                                                                                             'ERA-Interim': {'value': 0.9001341048707652,
                                                                                                                             'value_error': 0.1423236985494241},
                                                                                                             'HadISST': {'value': 0.7688706055408969,
                                                                                                                         'value_error': 0.06298833428079066},
                                                                                                             'Tropflux': {'value': 0.9128364190673677,
                                                                                                                          'value_error': 0.14617081051130443}},
                                                                                              'metric': {'20CRv2': {'value': 9.064452189383056,
                                                                                                                    'value_error': 17.643141600516042},
                                                                                                         'ERA-20C': {'value': 2.2464903819711926,
                                                                                                                     'value_error': 16.888452929253955},
                                                                                                         'ERA-5': {'value': 10.97916272391069,
                                                                                                                   'value_error': 21.005693033164114},
                                                                                                         'ERA-Interim': {'value': 10.241696082796707,
                                                                                                                         'value_error': 21.17970844752598},
                                                                                                         'HadISST': {'value': 5.082064483907947,
                                                                                                                     'value_error': 16.789285775029295},
                                                                                                         'Tropflux': {'value': 11.490702097779455,
                                                                                                                      'value_error': 21.06326996420269}}},
                                                                                 'EnsoDuration': {'diagnostic': {'20CRv2': {'value': 13.0,
                                                                                                                            'value_error': None},
                                                                                                                 'ACCESS-CM2_r1i1p1f1': {'value': 11.0,
                                                                                                                                         'value_error': None},
                                                                                                                 'ERA-20C': {'value': 13.0,
                                                                                                                             'value_error': None},
                                                                                                                 'ERA-5': {'value': 13.0,
                                                                                                                           'value_error': None},
                                                                                                                 'ERA-Interim': {'value': 13.0,
                                                                                                                                 'value_error': None},
                                                                                                                 'HadISST': {'value': 13.0,
                                                                                                                             'value_error': None},
                                                                                                                 'Tropflux': {'value': 13.0,
                                                                                                                              'value_error': None}},
                                                                                                  'metric': {'20CRv2': {'value': 15.384615384615385,
                                                                                                                        'value_error': None},
                                                                                                             'ERA-20C': {'value': 15.384615384615385,
                                                                                                                         'value_error': None},
                                                                                                             'ERA-5': {'value': 15.384615384615385,
                                                                                                                       'value_error': None},
                                                                                                             'ERA-Interim': {'value': 15.384615384615385,
                                                                                                                             'value_error': None},
                                                                                                             'HadISST': {'value': 15.384615384615385,
                                                                                                                         'value_error': None},
                                                                                                             'Tropflux': {'value': 15.384615384615385,
                                                                                                                          'value_error': None}}},
                                                                                 'EnsoSeasonality': {'diagnostic': {'20CRv2': {'value': 1.6436435961094338,
                                                                                                                               'value_error': 0.27635126775510105},
                                                                                                                    'ACCESS-CM2_r1i1p1f1': {'value': 1.35689584352529,
                                                                                                                                            'value_error': 0.21158996233933872},
                                                                                                                    'ERA-20C': {'value': 1.5951589911955568,
                                                                                                                                'value_error': 0.30349823329934555},
                                                                                                                    'ERA-5': {'value': 2.0283123524204223,
                                                                                                                              'value_error': 0.6454942543282691},
                                                                                                                    'ERA-Interim': {'value': 2.052960044692134,
                                                                                                                                    'value_error': 0.6533381861195713},
                                                                                                                    'HadISST': {'value': 1.6666267700450468,
                                                                                                                                'value_error': 0.273531261566947},
                                                                                                                    'Tropflux': {'value': 2.06093854374807,
                                                                                                                                 'value_error': 0.6643426635460994}},
                                                                                                     'metric': {'20CRv2': {'value': 17.445859507674687,
                                                                                                                           'value_error': 26.75332883692444},
                                                                                                                'ERA-20C': {'value': 14.936639481415629,
                                                                                                                            'value_error': 29.448836215769177},
                                                                                                                'ERA-5': {'value': 33.10222452148056,
                                                                                                                          'value_error': 31.72150771348471},
                                                                                                                'ERA-Interim': {'value': 33.90539445550813,
                                                                                                                                'value_error': 31.340661548193676},
                                                                                                                'HadISST': {'value': 18.584300461667556,
                                                                                                                            'value_error': 26.057864916471747},
                                                                                                                'Tropflux': {'value': 34.16126610657646,
                                                                                                                             'value_error': 31.489767742015175}}},
                                                                                 'EnsoSstDiversity_2': {'diagnostic': {'20CRv2': {'value': 48.0,
                                                                                                                                  'value_error': None},
                                                                                                                       'ACCESS-CM2_r1i1p1f1': {'value': 26.0,
                                                                                                                                               'value_error': None},
                                                                                                                       'ERA-20C': {'value': 29.5,
                                                                                                                                   'value_error': None},
                                                                                                                       'ERA-5': {'value': 31.25,
                                                                                                                                 'value_error': None},
                                                                                                                       'ERA-Interim': {'value': 32.0,
                                                                                                                                       'value_error': None},
                                                                                                                       'HadISST': {'value': 49.0,
                                                                                                                                   'value_error': None},
                                                                                                                       'Tropflux': {'value': 33.25,
                                                                                                                                    'value_error': None}},
                                                                                                        'metric': {'20CRv2': {'value': 45.83333333333333,
                                                                                                                              'value_error': None},
                                                                                                                   'ERA-20C': {'value': 11.864406779661017,
                                                                                                                               'value_error': None},
                                                                                                                   'ERA-5': {'value': 16.8,
                                                                                                                             'value_error': None},
                                                                                                                   'ERA-Interim': {'value': 18.75,
                                                                                                                                   'value_error': None},
                                                                                                                   'HadISST': {'value': 46.93877551020408,
                                                                                                                               'value_error': None},
                                                                                                                   'Tropflux': {'value': 21.804511278195488,
                                                                                                                                'value_error': None}}},
                                                                                 'EnsoSstLonRmse': {'diagnostic': {'20CRv2': {'value': None,
                                                                                                                              'value_error': None},
                                                                                                                   'ACCESS-CM2_r1i1p1f1': {'value': None,
                                                                                                                                           'value_error': None},
                                                                                                                   'ERA-20C': {'value': None,
                                                                                                                               'value_error': None},
                                                                                                                   'ERA-5': {'value': None,
                                                                                                                             'value_error': None},
                                                                                                                   'ERA-Interim': {'value': None,
                                                                                                                                   'value_error': None},
                                                                                                                   'HadISST': {'value': None,
                                                                                                                               'value_error': None},
                                                                                                                   'Tropflux': {'value': None,
                                                                                                                                'value_error': None}},
                                                                                                    'metric': {'20CRv2': {'value': 0.0659544064205628,
                                                                                                                          'value_error': None},
                                                                                                               'ERA-20C': {'value': 0.0848741234618347,
                                                                                                                           'value_error': None},
                                                                                                               'ERA-5': {'value': 0.055882763305978356,
                                                                                                                         'value_error': None},
                                                                                                               'ERA-Interim': {'value': 0.06132020021246395,
                                                                                                                               'value_error': None},
                                                                                                               'HadISST': {'value': 0.07329593603923167,
                                                                                                                           'value_error': None},
                                                                                                               'Tropflux': {'value': 0.06022298994696265,
                                                                                                                            'value_error': None}}},
                                                                                 'EnsoSstSkew': {'diagnostic': {'20CRv2': {'value': 0.35464371256710725,
                                                                                                                           'value_error': 0.029761039242344564},
                                                                                                                'ACCESS-CM2_r1i1p1f1': {'value': -0.28449736152546684,
                                                                                                                                        'value_error': -0.0221480895564315},
                                                                                                                'ERA-20C': {'value': 0.19142977450459012,
                                                                                                                            'value_error': 0.01816971010961296},
                                                                                                                'ERA-5': {'value': 0.473403564017451,
                                                                                                                          'value_error': 0.07485167573682382},
                                                                                                                'ERA-Interim': {'value': 0.40501535626049495,
                                                                                                                                'value_error': 0.06403855065638503},
                                                                                                                'HadISST': {'value': 0.40320728014992363,
                                                                                                                            'value_error': 0.033032027448448076},
                                                                                                                'Tropflux': {'value': 0.3838870736969205,
                                                                                                                             'value_error': 0.061471128380725305}},
                                                                                                 'metric': {'20CRv2': {'value': 180.2206133773295,
                                                                                                                       'value_error': -12.977130611162165},
                                                                                                            'ERA-20C': {'value': 248.6170906598676,
                                                                                                                        'value_error': -25.675934806835166},
                                                                                                            'ERA-5': {'value': 160.09615962987965,
                                                                                                                      'value_error': -14.180516834976428},
                                                                                                            'ERA-Interim': {'value': 170.2435987001159,
                                                                                                                            'value_error': -16.574944889175054},
                                                                                                            'HadISST': {'value': 170.55858748871867,
                                                                                                                        'value_error': -11.273363299898966},
                                                                                                            'Tropflux': {'value': 174.10964864893523,
                                                                                                                         'value_error': -17.636469539835424}}},
                                                                                 'EnsoSstTsRmse': {'diagnostic': {'20CRv2': {'value': None,
                                                                                                                             'value_error': None},
                                                                                                                  'ACCESS-CM2_r1i1p1f1': {'value': None,
                                                                                                                                          'value_error': None},
                                                                                                                  'ERA-20C': {'value': None,
                                                                                                                              'value_error': None},
                                                                                                                  'ERA-5': {'value': None,
                                                                                                                            'value_error': None},
                                                                                                                  'ERA-Interim': {'value': None,
                                                                                                                                  'value_error': None},
                                                                                                                  'HadISST': {'value': None,
                                                                                                                              'value_error': None},
                                                                                                                  'Tropflux': {'value': None,
                                                                                                                               'value_error': None}},
                                                                                                   'metric': {'20CRv2': {'value': 0.2318292365046637,
                                                                                                                         'value_error': None},
                                                                                                              'ERA-20C': {'value': 0.24235173601215299,
                                                                                                                          'value_error': None},
                                                                                                              'ERA-5': {'value': 0.2559001854380496,
                                                                                                                        'value_error': None},
                                                                                                              'ERA-Interim': {'value': 0.24670281428369187,
                                                                                                                              'value_error': None},
                                                                                                              'HadISST': {'value': 0.2332720516854003,
                                                                                                                          'value_error': None},
                                                                                                              'Tropflux': {'value': 0.24054170002615,
                                                                                                                           'value_error': None}}},
                                                                                 'SeasonalPrLatRmse': {'diagnostic': {'ACCESS-CM2_r1i1p1f1': {'value': None,
                                                                                                                                              'value_error': None},
                                                                                                                      'CMAP': {'value': None,
                                                                                                                               'value_error': None},
                                                                                                                      'ERA-Interim': {'value': None,
                                                                                                                                      'value_error': None},
                                                                                                                      'GPCPv2.3': {'value': None,
                                                                                                                                   'value_error': None},
                                                                                                                      'TRMM-3B43v-7': {'value': None,
                                                                                                                                       'value_error': None}},
                                                                                                       'metric': {'CMAP': {'value': 1.6282222675754856,
                                                                                                                           'value_error': None},
                                                                                                                  'ERA-Interim': {'value': 1.5246041142831264,
                                                                                                                                  'value_error': None},
                                                                                                                  'GPCPv2.3': {'value': 1.785780507427625,
                                                                                                                               'value_error': None},
                                                                                                                  'TRMM-3B43v-7': {'value': 1.6174760488399123,
                                                                                                                                   'value_error': None}}},
                                                                                 'SeasonalPrLonRmse': {'diagnostic': {'ACCESS-CM2_r1i1p1f1': {'value': None,
                                                                                                                                              'value_error': None},
                                                                                                                      'CMAP': {'value': None,
                                                                                                                               'value_error': None},
                                                                                                                      'ERA-Interim': {'value': None,
                                                                                                                                      'value_error': None},
                                                                                                                      'GPCPv2.3': {'value': None,
                                                                                                                                   'value_error': None},
                                                                                                                      'TRMM-3B43v-7': {'value': None,
                                                                                                                                       'value_error': None}},
                                                                                                       'metric': {'CMAP': {'value': 0.6723574816699895,
                                                                                                                           'value_error': None},
                                                                                                                  'ERA-Interim': {'value': 0.7440359157207032,
                                                                                                                                  'value_error': None},
                                                                                                                  'GPCPv2.3': {'value': 0.7937650237246925,
                                                                                                                               'value_error': None},
                                                                                                                  'TRMM-3B43v-7': {'value': 0.7481964037794036,
                                                                                                                                   'value_error': None}}},
                                                                                 'SeasonalSstLonRmse': {'diagnostic': {'20CRv2': {'value': None,
                                                                                                                                  'value_error': None},
                                                                                                                       'ACCESS-CM2_r1i1p1f1': {'value': None,
                                                                                                                                               'value_error': None},
                                                                                                                       'ERA-20C': {'value': None,
                                                                                                                                   'value_error': None},
                                                                                                                       'ERA-5': {'value': None,
                                                                                                                                 'value_error': None},
                                                                                                                       'ERA-Interim': {'value': None,
                                                                                                                                       'value_error': None},
                                                                                                                       'HadISST': {'value': None,
                                                                                                                                   'value_error': None},
                                                                                                                       'Tropflux': {'value': None,
                                                                                                                                    'value_error': None}},
                                                                                                        'metric': {'20CRv2': {'value': 0.2565624576088454,
                                                                                                                              'value_error': None},
                                                                                                                   'ERA-20C': {'value': 0.2678862834741029,
                                                                                                                               'value_error': None},
                                                                                                                   'ERA-5': {'value': 0.26387439522963646,
                                                                                                                             'value_error': None},
                                                                                                                   'ERA-Interim': {'value': 0.251552958410868,
                                                                                                                                   'value_error': None},
                                                                                                                   'HadISST': {'value': 0.2602255481819392,
                                                                                                                               'value_error': None},
                                                                                                                   'Tropflux': {'value': 0.26020818794362344,
                                                                                                                                'value_error': None}}},
                                                                                 'SeasonalTauxLonRmse': {'diagnostic': {'ACCESS-CM2_r1i1p1f1': {'value': None,
                                                                                                                                                'value_error': None},
                                                                                                                        'ERA-Interim': {'value': None,
                                                                                                                                        'value_error': None},
                                                                                                                        'Tropflux': {'value': None,
                                                                                                                                     'value_error': None}},
                                                                                                         'metric': {'ERA-Interim': {'value': 2.6040552295763786,
                                                                                                                                    'value_error': None},
                                                                                                                    'Tropflux': {'value': 2.296629224701738,
                                                                                                                                 'value_error': None}}}}},
                                                          'r2i1p1f1': {'metadata': {'description_of_the_collection': 'Describe '
                                                                                                                     'which '
                                                                                                                     'science '
                                                                                                                     'question '
                                                                                                                     'this '
                                                                                                                     'collection '
                                                                                                                     'is '
                                                                                                                     'about',
                                                                                    'metrics': {'BiasPrLatRmse': {'diagnostic': {'ACCESS-CM2_r2i1p1f1': {'keyerror': None,
                                                                                                                                                         'name': 'ACCESS-CM2_r2i1p1f1',
                                                                                                                                                         'nyears': 165,
                                                                                                                                                         'time_period': ['1850-1-16 '
                                                                                                                                                                         '12:0:0.0',
                                                                                                                                                                         '2014-12-16 '
                                                                                                                                                                         '12:0:0.0']},
                                                                                                                                 'CMAP': {'name': 'CMAP',
                                                                                                                                          'nyears': 40,
                                                                                                                                          'time_period': ['1979-1-16 '
                                                                                                                                                          '12:0:0.0',
                                                                                                                                                          '2018-12-16 '
                                                                                                                                                          '12:0:0.0']},
                                                                                                                                 'ERA-Interim': {'name': 'ERA-Interim',
                                                                                                                                                 'nyears': 40,
                                                                                                                                                 'time_period': ['1979-1-16 '
                                                                                                                                                                 '12:0:0.0',
                                                                                                                                                                 '2018-12-16 '
                                                                                                                                                                 '12:0:0.0']},
                                                                                                                                 'GPCPv2.3': {'name': 'GPCPv2.3',
                                                                                                                                              'nyears': 40,
                                                                                                                                              'time_period': ['1979-1-16 '
                                                                                                                                                              '12:0:0.0',
                                                                                                                                                              '2018-12-16 '
                                                                                                                                                              '12:0:0.0']},
                                                                                                                                 'TRMM-3B43v-7': {'name': 'TRMM-3B43v-7',
                                                                                                                                                  'nyears': 20,
                                                                                                                                                  'time_period': ['1998-1-16 '
                                                                                                                                                                  '12:0:0.0',
                                                                                                                                                                  '2017-12-16 '
                                                                                                                                                                  '12:0:0.0']},
                                                                                                                                 'method': 'Meridional '
                                                                                                                                           'root '
                                                                                                                                           'mean '
                                                                                                                                           'square '
                                                                                                                                           'error '
                                                                                                                                           'of '
                                                                                                                                           'nino3_LatExt '
                                                                                                                                           'pr, '
                                                                                                                                           'time '
                                                                                                                                           'series '
                                                                                                                                           'are '
                                                                                                                                           'linearly '
                                                                                                                                           'detrended, '
                                                                                                                                           'observations '
                                                                                                                                           'and '
                                                                                                                                           'model '
                                                                                                                                           'regridded '
                                                                                                                                           'to '
                                                                                                                                           'generic_1x1deg',
                                                                                                                                 'name': 'pr '
                                                                                                                                         'Meridional '
                                                                                                                                         'RMSE',
                                                                                                                                 'ref': 'Using '
                                                                                                                                        'CDAT '
                                                                                                                                        'regridding '
                                                                                                                                        'and '
                                                                                                                                        'rms '
                                                                                                                                        '(uncentered '
                                                                                                                                        'and '
                                                                                                                                        'biased) '
                                                                                                                                        'calculation',
                                                                                                                                 'time_frequency': 'monthly',
                                                                                                                                 'units': 'mm/day'},
                                                                                                                  'metric': {'datasets': 'ACCESS-CM2_r2i1p1f1; '
                                                                                                                                         "CMAP's "
                                                                                                                                         'pr; '
                                                                                                                                         "ERA-Interim's "
                                                                                                                                         'pr; '
                                                                                                                                         "GPCPv2.3's "
                                                                                                                                         'pr; '
                                                                                                                                         "TRMM-3B43v-7's "
                                                                                                                                         'pr; '
                                                                                                                                         "'s ",
                                                                                                                             'method': 'The '
                                                                                                                                       'metric '
                                                                                                                                       'is '
                                                                                                                                       'the '
                                                                                                                                       'statistical '
                                                                                                                                       'value '
                                                                                                                                       'between '
                                                                                                                                       'the '
                                                                                                                                       'model '
                                                                                                                                       'and '
                                                                                                                                       'the '
                                                                                                                                       'observations',
                                                                                                                             'name': 'BiasPrLatRmse',
                                                                                                                             'units': 'mm/day'}},
                                                                                                'BiasPrLonRmse': {'diagnostic': {'ACCESS-CM2_r2i1p1f1': {'keyerror': None,
                                                                                                                                                         'name': 'ACCESS-CM2_r2i1p1f1',
                                                                                                                                                         'nyears': 165,
                                                                                                                                                         'time_period': ['1850-1-16 '
                                                                                                                                                                         '12:0:0.0',
                                                                                                                                                                         '2014-12-16 '
                                                                                                                                                                         '12:0:0.0']},
                                                                                                                                 'CMAP': {'name': 'CMAP',
                                                                                                                                          'nyears': 40,
                                                                                                                                          'time_period': ['1979-1-16 '
                                                                                                                                                          '12:0:0.0',
                                                                                                                                                          '2018-12-16 '
                                                                                                                                                          '12:0:0.0']},
                                                                                                                                 'ERA-Interim': {'name': 'ERA-Interim',
                                                                                                                                                 'nyears': 40,
                                                                                                                                                 'time_period': ['1979-1-16 '
                                                                                                                                                                 '12:0:0.0',
                                                                                                                                                                 '2018-12-16 '
                                                                                                                                                                 '12:0:0.0']},
                                                                                                                                 'GPCPv2.3': {'name': 'GPCPv2.3',
                                                                                                                                              'nyears': 40,
                                                                                                                                              'time_period': ['1979-1-16 '
                                                                                                                                                              '12:0:0.0',
                                                                                                                                                              '2018-12-16 '
                                                                                                                                                              '12:0:0.0']},
                                                                                                                                 'TRMM-3B43v-7': {'name': 'TRMM-3B43v-7',
                                                                                                                                                  'nyears': 20,
                                                                                                                                                  'time_period': ['1998-1-16 '
                                                                                                                                                                  '12:0:0.0',
                                                                                                                                                                  '2017-12-16 '
                                                                                                                                                                  '12:0:0.0']},
                                                                                                                                 'method': 'Zonal '
                                                                                                                                           'root '
                                                                                                                                           'mean '
                                                                                                                                           'square '
                                                                                                                                           'error '
                                                                                                                                           'of '
                                                                                                                                           'equatorial_pacific '
                                                                                                                                           'pr, '
                                                                                                                                           'time '
                                                                                                                                           'series '
                                                                                                                                           'are '
                                                                                                                                           'linearly '
                                                                                                                                           'detrended, '
                                                                                                                                           'observations '
                                                                                                                                           'and '
                                                                                                                                           'model '
                                                                                                                                           'regridded '
                                                                                                                                           'to '
                                                                                                                                           'generic_1x1deg',
                                                                                                                                 'name': 'pr '
                                                                                                                                         'Zonal '
                                                                                                                                         'RMSE',
                                                                                                                                 'ref': 'Using '
                                                                                                                                        'CDAT '
                                                                                                                                        'regridding '
                                                                                                                                        'and '
                                                                                                                                        'rms '
                                                                                                                                        '(uncentered '
                                                                                                                                        'and '
                                                                                                                                        'biased) '
                                                                                                                                        'calculation',
                                                                                                                                 'time_frequency': 'monthly',
                                                                                                                                 'units': 'mm/day'},
                                                                                                                  'metric': {'datasets': 'ACCESS-CM2_r2i1p1f1; '
                                                                                                                                         "CMAP's "
                                                                                                                                         'pr; '
                                                                                                                                         "ERA-Interim's "
                                                                                                                                         'pr; '
                                                                                                                                         "GPCPv2.3's "
                                                                                                                                         'pr; '
                                                                                                                                         "TRMM-3B43v-7's "
                                                                                                                                         'pr; '
                                                                                                                                         "'s ",
                                                                                                                             'method': 'The '
                                                                                                                                       'metric '
                                                                                                                                       'is '
                                                                                                                                       'the '
                                                                                                                                       'statistical '
                                                                                                                                       'value '
                                                                                                                                       'between '
                                                                                                                                       'the '
                                                                                                                                       'model '
                                                                                                                                       'and '
                                                                                                                                       'the '
                                                                                                                                       'observations',
                                                                                                                             'name': 'BiasPrLonRmse',
                                                                                                                             'units': 'mm/day'}},
                                                                                                'BiasSstLonRmse': {'diagnostic': {'20CRv2': {'name': '20CRv2',
                                                                                                                                             'nyears': 142,
                                                                                                                                             'time_period': ['1871-1-16 '
                                                                                                                                                             '12:0:0.0',
                                                                                                                                                             '2012-12-16 '
                                                                                                                                                             '12:0:0.0']},
                                                                                                                                  'ACCESS-CM2_r2i1p1f1': {'keyerror': None,
                                                                                                                                                          'name': 'ACCESS-CM2_r2i1p1f1',
                                                                                                                                                          'nyears': 165,
                                                                                                                                                          'time_period': ['1850-1-16 '
                                                                                                                                                                          '12:0:0.0',
                                                                                                                                                                          '2014-12-16 '
                                                                                                                                                                          '12:0:0.0']},
                                                                                                                                  'ERA-20C': {'name': 'ERA-20C',
                                                                                                                                              'nyears': 111,
                                                                                                                                              'time_period': ['1900-1-16 '
                                                                                                                                                              '12:0:0.0',
                                                                                                                                                              '2010-12-16 '
                                                                                                                                                              '12:0:0.0']},
                                                                                                                                  'ERA-5': {'name': 'ERA-5',
                                                                                                                                            'nyears': 40,
                                                                                                                                            'time_period': ['1979-1-16 '
                                                                                                                                                            '12:0:0.0',
                                                                                                                                                            '2018-12-16 '
                                                                                                                                                            '12:0:0.0']},
                                                                                                                                  'ERA-Interim': {'name': 'ERA-Interim',
                                                                                                                                                  'nyears': 40,
                                                                                                                                                  'time_period': ['1979-1-16 '
                                                                                                                                                                  '12:0:0.0',
                                                                                                                                                                  '2018-12-16 '
                                                                                                                                                                  '12:0:0.0']},
                                                                                                                                  'HadISST': {'name': 'HadISST',
                                                                                                                                              'nyears': 149,
                                                                                                                                              'time_period': ['1870-1-16 '
                                                                                                                                                              '11:59:59.5',
                                                                                                                                                              '2018-12-16 '
                                                                                                                                                              '18:0:0.0']},
                                                                                                                                  'Tropflux': {'name': 'Tropflux',
                                                                                                                                               'nyears': 39,
                                                                                                                                               'time_period': ['1979-1-15 '
                                                                                                                                                               '0:0:0.0',
                                                                                                                                                               '2017-7-15 '
                                                                                                                                                               '12:0:0.0']},
                                                                                                                                  'method': 'Zonal '
                                                                                                                                            'root '
                                                                                                                                            'mean '
                                                                                                                                            'square '
                                                                                                                                            'error '
                                                                                                                                            'of '
                                                                                                                                            'equatorial_pacific '
                                                                                                                                            'sst, '
                                                                                                                                            'time '
                                                                                                                                            'series '
                                                                                                                                            'are '
                                                                                                                                            'linearly '
                                                                                                                                            'detrended, '
                                                                                                                                            'observations '
                                                                                                                                            'and '
                                                                                                                                            'model '
                                                                                                                                            'regridded '
                                                                                                                                            'to '
                                                                                                                                            'generic_1x1deg',
                                                                                                                                  'name': 'sst '
                                                                                                                                          'Zonal '
                                                                                                                                          'RMSE',
                                                                                                                                  'ref': 'Using '
                                                                                                                                         'CDAT '
                                                                                                                                         'regridding '
                                                                                                                                         'and '
                                                                                                                                         'rms '
                                                                                                                                         '(uncentered '
                                                                                                                                         'and '
                                                                                                                                         'biased) '
                                                                                                                                         'calculation',
                                                                                                                                  'time_frequency': 'monthly',
                                                                                                                                  'units': 'C'},
                                                                                                                   'metric': {'datasets': 'ACCESS-CM2_r2i1p1f1; '
                                                                                                                                          "20CRv2's "
                                                                                                                                          'ts; '
                                                                                                                                          "ERA-20C's "
                                                                                                                                          'ts; '
                                                                                                                                          "ERA-5's "
                                                                                                                                          'ts; '
                                                                                                                                          "ERA-Interim's "
                                                                                                                                          'ts; '
                                                                                                                                          "HadISST's "
                                                                                                                                          'ts; '
                                                                                                                                          "Tropflux's "
                                                                                                                                          'ts; '
                                                                                                                                          "'s ",
                                                                                                                              'method': 'The '
                                                                                                                                        'metric '
                                                                                                                                        'is '
                                                                                                                                        'the '
                                                                                                                                        'statistical '
                                                                                                                                        'value '
                                                                                                                                        'between '
                                                                                                                                        'the '
                                                                                                                                        'model '
                                                                                                                                        'and '
                                                                                                                                        'the '
                                                                                                                                        'observations',
                                                                                                                              'name': 'BiasSstLonRmse',
                                                                                                                              'units': 'C'}},
                                                                                                'BiasTauxLonRmse': {'diagnostic': {'ACCESS-CM2_r2i1p1f1': {'keyerror': None,
                                                                                                                                                           'name': 'ACCESS-CM2_r2i1p1f1',
                                                                                                                                                           'nyears': 165,
                                                                                                                                                           'time_period': ['1850-1-16 '
                                                                                                                                                                           '12:0:0.0',
                                                                                                                                                                           '2014-12-16 '
                                                                                                                                                                           '12:0:0.0']},
                                                                                                                                   'ERA-Interim': {'name': 'ERA-Interim',
                                                                                                                                                   'nyears': 40,
                                                                                                                                                   'time_period': ['1979-1-16 '
                                                                                                                                                                   '12:0:0.0',
                                                                                                                                                                   '2018-12-16 '
                                                                                                                                                                   '12:0:0.0']},
                                                                                                                                   'Tropflux': {'name': 'Tropflux',
                                                                                                                                                'nyears': 39,
                                                                                                                                                'time_period': ['1979-1-15 '
                                                                                                                                                                '0:0:0.0',
                                                                                                                                                                '2017-7-15 '
                                                                                                                                                                '12:0:0.0']},
                                                                                                                                   'method': 'Zonal '
                                                                                                                                             'root '
                                                                                                                                             'mean '
                                                                                                                                             'square '
                                                                                                                                             'error '
                                                                                                                                             'of '
                                                                                                                                             'equatorial_pacific '
                                                                                                                                             'taux, '
                                                                                                                                             'time '
                                                                                                                                             'series '
                                                                                                                                             'are '
                                                                                                                                             'linearly '
                                                                                                                                             'detrended, '
                                                                                                                                             'observations '
                                                                                                                                             'and '
                                                                                                                                             'model '
                                                                                                                                             'regridded '
                                                                                                                                             'to '
                                                                                                                                             'generic_1x1deg',
                                                                                                                                   'name': 'taux '
                                                                                                                                           'Zonal '
                                                                                                                                           'RMSE',
                                                                                                                                   'ref': 'Using '
                                                                                                                                          'CDAT '
                                                                                                                                          'regridding '
                                                                                                                                          'and '
                                                                                                                                          'rms '
                                                                                                                                          '(uncentered '
                                                                                                                                          'and '
                                                                                                                                          'biased) '
                                                                                                                                          'calculation',
                                                                                                                                   'time_frequency': 'monthly',
                                                                                                                                   'units': '1e-3 '
                                                                                                                                            'N/m2'},
                                                                                                                    'metric': {'datasets': 'ACCESS-CM2_r2i1p1f1; '
                                                                                                                                           "ERA-Interim's "
                                                                                                                                           'tauu; '
                                                                                                                                           "Tropflux's "
                                                                                                                                           'tauu; '
                                                                                                                                           "'s ",
                                                                                                                               'method': 'The '
                                                                                                                                         'metric '
                                                                                                                                         'is '
                                                                                                                                         'the '
                                                                                                                                         'statistical '
                                                                                                                                         'value '
                                                                                                                                         'between '
                                                                                                                                         'the '
                                                                                                                                         'model '
                                                                                                                                         'and '
                                                                                                                                         'the '
                                                                                                                                         'observations',
                                                                                                                               'name': 'BiasTauxLonRmse',
                                                                                                                               'units': '1e-3 '
                                                                                                                                        'N/m2'}},
                                                                                                'EnsoAmpl': {'diagnostic': {'20CRv2': {'keyerror': None,
                                                                                                                                       'name': '20CRv2',
                                                                                                                                       'nyears': 142,
                                                                                                                                       'time_period': ['1871-1-16 '
                                                                                                                                                       '12:0:0.0',
                                                                                                                                                       '2012-12-16 '
                                                                                                                                                       '12:0:0.0']},
                                                                                                                            'ACCESS-CM2_r2i1p1f1': {'keyerror': None,
                                                                                                                                                    'name': 'ACCESS-CM2_r2i1p1f1',
                                                                                                                                                    'nyears': 165,
                                                                                                                                                    'time_period': ['1850-1-16 '
                                                                                                                                                                    '12:0:0.0',
                                                                                                                                                                    '2014-12-16 '
                                                                                                                                                                    '12:0:0.0']},
                                                                                                                            'ERA-20C': {'keyerror': None,
                                                                                                                                        'name': 'ERA-20C',
                                                                                                                                        'nyears': 111,
                                                                                                                                        'time_period': ['1900-1-16 '
                                                                                                                                                        '12:0:0.0',
                                                                                                                                                        '2010-12-16 '
                                                                                                                                                        '12:0:0.0']},
                                                                                                                            'ERA-5': {'keyerror': None,
                                                                                                                                      'name': 'ERA-5',
                                                                                                                                      'nyears': 40,
                                                                                                                                      'time_period': ['1979-1-16 '
                                                                                                                                                      '12:0:0.0',
                                                                                                                                                      '2018-12-16 '
                                                                                                                                                      '12:0:0.0']},
                                                                                                                            'ERA-Interim': {'keyerror': None,
                                                                                                                                            'name': 'ERA-Interim',
                                                                                                                                            'nyears': 40,
                                                                                                                                            'time_period': ['1979-1-16 '
                                                                                                                                                            '12:0:0.0',
                                                                                                                                                            '2018-12-16 '
                                                                                                                                                            '12:0:0.0']},
                                                                                                                            'HadISST': {'keyerror': 'unlikely '
                                                                                                                                                    'units: '
                                                                                                                                                    'K([-1e+30, '
                                                                                                                                                    '304.7203])',
                                                                                                                                        'name': 'HadISST',
                                                                                                                                        'nyears': 149,
                                                                                                                                        'time_period': ['1870-1-16 '
                                                                                                                                                        '11:59:59.5',
                                                                                                                                                        '2018-12-16 '
                                                                                                                                                        '18:0:0.0']},
                                                                                                                            'Tropflux': {'keyerror': None,
                                                                                                                                         'name': 'Tropflux',
                                                                                                                                         'nyears': 39,
                                                                                                                                         'time_period': ['1979-1-15 '
                                                                                                                                                         '0:0:0.0',
                                                                                                                                                         '2017-7-15 '
                                                                                                                                                         '12:0:0.0']},
                                                                                                                            'method': 'Standard '
                                                                                                                                      'deviation '
                                                                                                                                      'of '
                                                                                                                                      'nino3.4 '
                                                                                                                                      'sstA, '
                                                                                                                                      'time '
                                                                                                                                      'series '
                                                                                                                                      'are '
                                                                                                                                      'linearly '
                                                                                                                                      'detrended',
                                                                                                                            'name': 'ENSO '
                                                                                                                                    'amplitude',
                                                                                                                            'ref': 'Using '
                                                                                                                                   'CDAT '
                                                                                                                                   'regression '
                                                                                                                                   'calculation',
                                                                                                                            'time_frequency': 'monthly',
                                                                                                                            'units': 'C'},
                                                                                                             'metric': {'datasets': 'ACCESS-CM2_r2i1p1f1; '
                                                                                                                                    "20CRv2's "
                                                                                                                                    'ts; '
                                                                                                                                    "ERA-20C's "
                                                                                                                                    'ts; '
                                                                                                                                    "ERA-5's "
                                                                                                                                    'ts; '
                                                                                                                                    "ERA-Interim's "
                                                                                                                                    'ts; '
                                                                                                                                    "HadISST's "
                                                                                                                                    'ts; '
                                                                                                                                    "Tropflux's "
                                                                                                                                    'ts; '
                                                                                                                                    "'s ",
                                                                                                                        'method': 'The '
                                                                                                                                  'metric '
                                                                                                                                  'is '
                                                                                                                                  'the '
                                                                                                                                  'absolute '
                                                                                                                                  'value '
                                                                                                                                  'of '
                                                                                                                                  'the '
                                                                                                                                  'relative '
                                                                                                                                  'difference '
                                                                                                                                  'between '
                                                                                                                                  'model '
                                                                                                                                  'and '
                                                                                                                                  'observations '
                                                                                                                                  'values '
                                                                                                                                  '(M '
                                                                                                                                  '= '
                                                                                                                                  '100 '
                                                                                                                                  '* '
                                                                                                                                  'abs[[model-obs] '
                                                                                                                                  '/ '
                                                                                                                                  'obs])',
                                                                                                                        'name': 'EnsoAmpl',
                                                                                                                        'units': '%'}},
                                                                                                'EnsoDuration': {'diagnostic': {'20CRv2': {'keyerror': None,
                                                                                                                                           'name': '20CRv2',
                                                                                                                                           'nyears': 142,
                                                                                                                                           'time_period': ['1871-1-16 '
                                                                                                                                                           '12:0:0.0',
                                                                                                                                                           '2012-12-16 '
                                                                                                                                                           '12:0:0.0']},
                                                                                                                                'ACCESS-CM2_r2i1p1f1': {'keyerror': None,
                                                                                                                                                        'name': 'ACCESS-CM2_r2i1p1f1',
                                                                                                                                                        'nyears': 165,
                                                                                                                                                        'time_period': ['1850-1-16 '
                                                                                                                                                                        '12:0:0.0',
                                                                                                                                                                        '2014-12-16 '
                                                                                                                                                                        '12:0:0.0']},
                                                                                                                                'ERA-20C': {'keyerror': None,
                                                                                                                                            'name': 'ERA-20C',
                                                                                                                                            'nyears': 111,
                                                                                                                                            'time_period': ['1900-1-16 '
                                                                                                                                                            '12:0:0.0',
                                                                                                                                                            '2010-12-16 '
                                                                                                                                                            '12:0:0.0']},
                                                                                                                                'ERA-5': {'keyerror': None,
                                                                                                                                          'name': 'ERA-5',
                                                                                                                                          'nyears': 40,
                                                                                                                                          'time_period': ['1979-1-16 '
                                                                                                                                                          '12:0:0.0',
                                                                                                                                                          '2018-12-16 '
                                                                                                                                                          '12:0:0.0']},
                                                                                                                                'ERA-Interim': {'keyerror': None,
                                                                                                                                                'name': 'ERA-Interim',
                                                                                                                                                'nyears': 40,
                                                                                                                                                'time_period': ['1979-1-16 '
                                                                                                                                                                '12:0:0.0',
                                                                                                                                                                '2018-12-16 '
                                                                                                                                                                '12:0:0.0']},
                                                                                                                                'HadISST': {'keyerror': None,
                                                                                                                                            'name': 'HadISST',
                                                                                                                                            'nyears': 149,
                                                                                                                                            'time_period': ['1870-1-16 '
                                                                                                                                                            '11:59:59.5',
                                                                                                                                                            '2018-12-16 '
                                                                                                                                                            '18:0:0.0']},
                                                                                                                                'Tropflux': {'keyerror': None,
                                                                                                                                             'name': 'Tropflux',
                                                                                                                                             'nyears': 39,
                                                                                                                                             'time_period': ['1979-1-15 '
                                                                                                                                                             '0:0:0.0',
                                                                                                                                                             '2017-7-15 '
                                                                                                                                                             '12:0:0.0']},
                                                                                                                                'method': 'nino3.4 '
                                                                                                                                          'SSTA '
                                                                                                                                          'during '
                                                                                                                                          'DEC '
                                                                                                                                          'regressed '
                                                                                                                                          'against '
                                                                                                                                          'nino3.4 '
                                                                                                                                          'SSTA '
                                                                                                                                          'during '
                                                                                                                                          '6 '
                                                                                                                                          'years '
                                                                                                                                          '(centered '
                                                                                                                                          'on '
                                                                                                                                          'ENSO), '
                                                                                                                                          'the '
                                                                                                                                          'duration '
                                                                                                                                          'is '
                                                                                                                                          'the '
                                                                                                                                          'number '
                                                                                                                                          'of '
                                                                                                                                          'consecutive '
                                                                                                                                          'months '
                                                                                                                                          'during '
                                                                                                                                          'which '
                                                                                                                                          'the '
                                                                                                                                          'regression '
                                                                                                                                          'is '
                                                                                                                                          'above '
                                                                                                                                          '0.25, '
                                                                                                                                          'time '
                                                                                                                                          'series '
                                                                                                                                          'are '
                                                                                                                                          'linearly '
                                                                                                                                          'detrended, '
                                                                                                                                          'smoothing '
                                                                                                                                          'using '
                                                                                                                                          'a '
                                                                                                                                          'triangle '
                                                                                                                                          'shaped '
                                                                                                                                          'window '
                                                                                                                                          'of '
                                                                                                                                          '5 '
                                                                                                                                          'points',
                                                                                                                                'name': 'ENSO '
                                                                                                                                        'Duration '
                                                                                                                                        'based '
                                                                                                                                        'on '
                                                                                                                                        'life '
                                                                                                                                        'cyle '
                                                                                                                                        'SSTA '
                                                                                                                                        'pattern',
                                                                                                                                'ref': 'Using '
                                                                                                                                       'CDAT',
                                                                                                                                'time_frequency': 'monthly',
                                                                                                                                'units': 'months'},
                                                                                                                 'metric': {'datasets': 'ACCESS-CM2_r2i1p1f1; '
                                                                                                                                        "20CRv2's "
                                                                                                                                        'ts; '
                                                                                                                                        "ERA-20C's "
                                                                                                                                        'ts; '
                                                                                                                                        "ERA-5's "
                                                                                                                                        'ts; '
                                                                                                                                        "ERA-Interim's "
                                                                                                                                        'ts; '
                                                                                                                                        "HadISST's "
                                                                                                                                        'ts; '
                                                                                                                                        "Tropflux's "
                                                                                                                                        'ts; '
                                                                                                                                        "'s ",
                                                                                                                            'method': 'The '
                                                                                                                                      'metric '
                                                                                                                                      'is '
                                                                                                                                      'the '
                                                                                                                                      'absolute '
                                                                                                                                      'value '
                                                                                                                                      'of '
                                                                                                                                      'the '
                                                                                                                                      'relative '
                                                                                                                                      'difference '
                                                                                                                                      'between '
                                                                                                                                      'model '
                                                                                                                                      'and '
                                                                                                                                      'observations '
                                                                                                                                      'values '
                                                                                                                                      '(M '
                                                                                                                                      '= '
                                                                                                                                      '100 '
                                                                                                                                      '* '
                                                                                                                                      'abs[[model-obs] '
                                                                                                                                      '/ '
                                                                                                                                      'obs])',
                                                                                                                            'name': 'EnsoDuration',
                                                                                                                            'units': '%'}},
                                                                                                'EnsoSeasonality': {'diagnostic': {'20CRv2': {'keyerror': None,
                                                                                                                                              'name': '20CRv2',
                                                                                                                                              'nyears': 142,
                                                                                                                                              'time_period': ['1871-1-16 '
                                                                                                                                                              '12:0:0.0',
                                                                                                                                                              '2012-12-16 '
                                                                                                                                                              '12:0:0.0']},
                                                                                                                                   'ACCESS-CM2_r2i1p1f1': {'keyerror': None,
                                                                                                                                                           'name': 'ACCESS-CM2_r2i1p1f1',
                                                                                                                                                           'nyears': 165,
                                                                                                                                                           'time_period': ['1850-1-16 '
                                                                                                                                                                           '12:0:0.0',
                                                                                                                                                                           '2014-12-16 '
                                                                                                                                                                           '12:0:0.0']},
                                                                                                                                   'ERA-20C': {'keyerror': None,
                                                                                                                                               'name': 'ERA-20C',
                                                                                                                                               'nyears': 111,
                                                                                                                                               'time_period': ['1900-1-16 '
                                                                                                                                                               '12:0:0.0',
                                                                                                                                                               '2010-12-16 '
                                                                                                                                                               '12:0:0.0']},
                                                                                                                                   'ERA-5': {'keyerror': None,
                                                                                                                                             'name': 'ERA-5',
                                                                                                                                             'nyears': 40,
                                                                                                                                             'time_period': ['1979-1-16 '
                                                                                                                                                             '12:0:0.0',
                                                                                                                                                             '2018-12-16 '
                                                                                                                                                             '12:0:0.0']},
                                                                                                                                   'ERA-Interim': {'keyerror': None,
                                                                                                                                                   'name': 'ERA-Interim',
                                                                                                                                                   'nyears': 40,
                                                                                                                                                   'time_period': ['1979-1-16 '
                                                                                                                                                                   '12:0:0.0',
                                                                                                                                                                   '2018-12-16 '
                                                                                                                                                                   '12:0:0.0']},
                                                                                                                                   'HadISST': {'keyerror': 'unlikely '
                                                                                                                                                           'units: '
                                                                                                                                                           'K([-1e+30, '
                                                                                                                                                           '304.7203])',
                                                                                                                                               'name': 'HadISST',
                                                                                                                                               'nyears': 149,
                                                                                                                                               'time_period': ['1870-1-16 '
                                                                                                                                                               '11:59:59.5',
                                                                                                                                                               '2018-12-16 '
                                                                                                                                                               '18:0:0.0']},
                                                                                                                                   'Tropflux': {'keyerror': None,
                                                                                                                                                'name': 'Tropflux',
                                                                                                                                                'nyears': 39,
                                                                                                                                                'time_period': ['1979-1-15 '
                                                                                                                                                                '0:0:0.0',
                                                                                                                                                                '2017-7-15 '
                                                                                                                                                                '12:0:0.0']},
                                                                                                                                   'method': 'Ratio '
                                                                                                                                             'between '
                                                                                                                                             'NDJ '
                                                                                                                                             'and '
                                                                                                                                             'MAM '
                                                                                                                                             'standard '
                                                                                                                                             'deviation '
                                                                                                                                             'nino3.4 '
                                                                                                                                             'sstA, '
                                                                                                                                             'time '
                                                                                                                                             'series '
                                                                                                                                             'are '
                                                                                                                                             'linearly '
                                                                                                                                             'detrended',
                                                                                                                                   'name': 'ENSO '
                                                                                                                                           'seasonality',
                                                                                                                                   'ref': 'Using '
                                                                                                                                          'CDAT '
                                                                                                                                          'std '
                                                                                                                                          'dev '
                                                                                                                                          'calculation',
                                                                                                                                   'time_frequency': 'monthly',
                                                                                                                                   'units': 'C/C'},
                                                                                                                    'metric': {'datasets': 'ACCESS-CM2_r2i1p1f1; '
                                                                                                                                           "20CRv2's "
                                                                                                                                           'ts; '
                                                                                                                                           "ERA-20C's "
                                                                                                                                           'ts; '
                                                                                                                                           "ERA-5's "
                                                                                                                                           'ts; '
                                                                                                                                           "ERA-Interim's "
                                                                                                                                           'ts; '
                                                                                                                                           "HadISST's "
                                                                                                                                           'ts; '
                                                                                                                                           "Tropflux's "
                                                                                                                                           'ts; '
                                                                                                                                           "'s ",
                                                                                                                               'method': 'The '
                                                                                                                                         'metric '
                                                                                                                                         'is '
                                                                                                                                         'the '
                                                                                                                                         'absolute '
                                                                                                                                         'value '
                                                                                                                                         'of '
                                                                                                                                         'the '
                                                                                                                                         'relative '
                                                                                                                                         'difference '
                                                                                                                                         'between '
                                                                                                                                         'model '
                                                                                                                                         'and '
                                                                                                                                         'observations '
                                                                                                                                         'values '
                                                                                                                                         '(M '
                                                                                                                                         '= '
                                                                                                                                         '100 '
                                                                                                                                         '* '
                                                                                                                                         'abs[[model-obs] '
                                                                                                                                         '/ '
                                                                                                                                         'obs])',
                                                                                                                               'name': 'EnsoSeasonality',
                                                                                                                               'units': '%'}},
                                                                                                'EnsoSstDiversity_2': {'diagnostic': {'20CRv2': {'keyerror': None,
                                                                                                                                                 'name': '20CRv2',
                                                                                                                                                 'nyears': 142,
                                                                                                                                                 'time_period': ['1871-1-16 '
                                                                                                                                                                 '12:0:0.0',
                                                                                                                                                                 '2012-12-16 '
                                                                                                                                                                 '12:0:0.0']},
                                                                                                                                      'ACCESS-CM2_r2i1p1f1': {'keyerror': None,
                                                                                                                                                              'name': 'ACCESS-CM2_r2i1p1f1',
                                                                                                                                                              'nyears': 165,
                                                                                                                                                              'time_period': ['1850-1-16 '
                                                                                                                                                                              '12:0:0.0',
                                                                                                                                                                              '2014-12-16 '
                                                                                                                                                                              '12:0:0.0']},
                                                                                                                                      'ERA-20C': {'keyerror': None,
                                                                                                                                                  'name': 'ERA-20C',
                                                                                                                                                  'nyears': 111,
                                                                                                                                                  'time_period': ['1900-1-16 '
                                                                                                                                                                  '12:0:0.0',
                                                                                                                                                                  '2010-12-16 '
                                                                                                                                                                  '12:0:0.0']},
                                                                                                                                      'ERA-5': {'keyerror': None,
                                                                                                                                                'name': 'ERA-5',
                                                                                                                                                'nyears': 40,
                                                                                                                                                'time_period': ['1979-1-16 '
                                                                                                                                                                '12:0:0.0',
                                                                                                                                                                '2018-12-16 '
                                                                                                                                                                '12:0:0.0']},
                                                                                                                                      'ERA-Interim': {'keyerror': None,
                                                                                                                                                      'name': 'ERA-Interim',
                                                                                                                                                      'nyears': 40,
                                                                                                                                                      'time_period': ['1979-1-16 '
                                                                                                                                                                      '12:0:0.0',
                                                                                                                                                                      '2018-12-16 '
                                                                                                                                                                      '12:0:0.0']},
                                                                                                                                      'HadISST': {'keyerror': None,
                                                                                                                                                  'name': 'HadISST',
                                                                                                                                                  'nyears': 149,
                                                                                                                                                  'time_period': ['1870-1-16 '
                                                                                                                                                                  '11:59:59.5',
                                                                                                                                                                  '2018-12-16 '
                                                                                                                                                                  '18:0:0.0']},
                                                                                                                                      'Tropflux': {'keyerror': None,
                                                                                                                                                   'name': 'Tropflux',
                                                                                                                                                   'nyears': 39,
                                                                                                                                                   'time_period': ['1979-1-15 '
                                                                                                                                                                   '0:0:0.0',
                                                                                                                                                                   '2017-7-15 '
                                                                                                                                                                   '12:0:0.0']},
                                                                                                                                      'method': 'Nino '
                                                                                                                                                '(Nina) '
                                                                                                                                                'events '
                                                                                                                                                '= '
                                                                                                                                                'nino3.4 '
                                                                                                                                                'sstA '
                                                                                                                                                '> '
                                                                                                                                                '0.75 '
                                                                                                                                                '(< '
                                                                                                                                                '-0.75) '
                                                                                                                                                'during '
                                                                                                                                                'DEC, '
                                                                                                                                                'zonal '
                                                                                                                                                'SSTA '
                                                                                                                                                '(meridional '
                                                                                                                                                'averaged '
                                                                                                                                                '[-5.0 '
                                                                                                                                                '; '
                                                                                                                                                '5.0]), '
                                                                                                                                                'the '
                                                                                                                                                'zonal '
                                                                                                                                                'SSTA '
                                                                                                                                                'maximum '
                                                                                                                                                '(minimum) '
                                                                                                                                                'is '
                                                                                                                                                'located '
                                                                                                                                                'for '
                                                                                                                                                'each '
                                                                                                                                                'event, '
                                                                                                                                                'the '
                                                                                                                                                'diversity '
                                                                                                                                                'is '
                                                                                                                                                'the '
                                                                                                                                                'interquartile '
                                                                                                                                                'range '
                                                                                                                                                '(IQR '
                                                                                                                                                '= '
                                                                                                                                                'Q3 '
                                                                                                                                                '- '
                                                                                                                                                'Q1), '
                                                                                                                                                'time '
                                                                                                                                                'series '
                                                                                                                                                'are '
                                                                                                                                                'linearly '
                                                                                                                                                'detrended, '
                                                                                                                                                'smoothing '
                                                                                                                                                'using '
                                                                                                                                                'a '
                                                                                                                                                'triangle '
                                                                                                                                                'shaped '
                                                                                                                                                'window '
                                                                                                                                                'of '
                                                                                                                                                '5 '
                                                                                                                                                'points',
                                                                                                                                      'name': 'ENSO '
                                                                                                                                              'Diversity '
                                                                                                                                              '(interquartile '
                                                                                                                                              'range)',
                                                                                                                                      'ref': 'Using '
                                                                                                                                             'CDAT '
                                                                                                                                             'regridding',
                                                                                                                                      'time_frequency': 'monthly',
                                                                                                                                      'units': 'long'},
                                                                                                                       'metric': {'datasets': 'ACCESS-CM2_r2i1p1f1; '
                                                                                                                                              "20CRv2's "
                                                                                                                                              'ts; '
                                                                                                                                              "ERA-20C's "
                                                                                                                                              'ts; '
                                                                                                                                              "ERA-5's "
                                                                                                                                              'ts; '
                                                                                                                                              "ERA-Interim's "
                                                                                                                                              'ts; '
                                                                                                                                              "HadISST's "
                                                                                                                                              'ts; '
                                                                                                                                              "Tropflux's "
                                                                                                                                              'ts; '
                                                                                                                                              "'s ",
                                                                                                                                  'method': 'The '
                                                                                                                                            'metric '
                                                                                                                                            'is '
                                                                                                                                            'the '
                                                                                                                                            'absolute '
                                                                                                                                            'value '
                                                                                                                                            'of '
                                                                                                                                            'the '
                                                                                                                                            'relative '
                                                                                                                                            'difference '
                                                                                                                                            'between '
                                                                                                                                            'model '
                                                                                                                                            'and '
                                                                                                                                            'observations '
                                                                                                                                            'values '
                                                                                                                                            '(M '
                                                                                                                                            '= '
                                                                                                                                            '100 '
                                                                                                                                            '* '
                                                                                                                                            'abs[[model-obs] '
                                                                                                                                            '/ '
                                                                                                                                            'obs])',
                                                                                                                                  'name': 'EnsoSstDiversity',
                                                                                                                                  'units': '%'}},
                                                                                                'EnsoSstLonRmse': {'diagnostic': {'20CRv2': {'name': '20CRv2',
                                                                                                                                             'nyears': 142,
                                                                                                                                             'time_period': ['1871-1-16 '
                                                                                                                                                             '12:0:0.0',
                                                                                                                                                             '2012-12-16 '
                                                                                                                                                             '12:0:0.0']},
                                                                                                                                  'ACCESS-CM2_r2i1p1f1': {'keyerror': None,
                                                                                                                                                          'name': 'ACCESS-CM2_r2i1p1f1',
                                                                                                                                                          'nyears': 165,
                                                                                                                                                          'time_period': ['1850-1-16 '
                                                                                                                                                                          '12:0:0.0',
                                                                                                                                                                          '2014-12-16 '
                                                                                                                                                                          '12:0:0.0']},
                                                                                                                                  'ERA-20C': {'name': 'ERA-20C',
                                                                                                                                              'nyears': 111,
                                                                                                                                              'time_period': ['1900-1-16 '
                                                                                                                                                              '12:0:0.0',
                                                                                                                                                              '2010-12-16 '
                                                                                                                                                              '12:0:0.0']},
                                                                                                                                  'ERA-5': {'name': 'ERA-5',
                                                                                                                                            'nyears': 40,
                                                                                                                                            'time_period': ['1979-1-16 '
                                                                                                                                                            '12:0:0.0',
                                                                                                                                                            '2018-12-16 '
                                                                                                                                                            '12:0:0.0']},
                                                                                                                                  'ERA-Interim': {'name': 'ERA-Interim',
                                                                                                                                                  'nyears': 40,
                                                                                                                                                  'time_period': ['1979-1-16 '
                                                                                                                                                                  '12:0:0.0',
                                                                                                                                                                  '2018-12-16 '
                                                                                                                                                                  '12:0:0.0']},
                                                                                                                                  'HadISST': {'name': 'HadISST',
                                                                                                                                              'nyears': 149,
                                                                                                                                              'time_period': ['1870-1-16 '
                                                                                                                                                              '11:59:59.5',
                                                                                                                                                              '2018-12-16 '
                                                                                                                                                              '18:0:0.0']},
                                                                                                                                  'Tropflux': {'name': 'Tropflux',
                                                                                                                                               'nyears': 39,
                                                                                                                                               'time_period': ['1979-1-15 '
                                                                                                                                                               '0:0:0.0',
                                                                                                                                                               '2017-7-15 '
                                                                                                                                                               '12:0:0.0']},
                                                                                                                                  'method': 'nino3.4 '
                                                                                                                                            'SSTA '
                                                                                                                                            'during '
                                                                                                                                            'DEC '
                                                                                                                                            'regressed '
                                                                                                                                            'against '
                                                                                                                                            'equatorial_pacific '
                                                                                                                                            'SSTA, '
                                                                                                                                            'time '
                                                                                                                                            'series '
                                                                                                                                            'are '
                                                                                                                                            'linearly '
                                                                                                                                            'detrended, '
                                                                                                                                            'smoothing '
                                                                                                                                            'using '
                                                                                                                                            'a '
                                                                                                                                            'triangle '
                                                                                                                                            'shaped '
                                                                                                                                            'window '
                                                                                                                                            'of '
                                                                                                                                            '5 '
                                                                                                                                            'points, '
                                                                                                                                            'observations '
                                                                                                                                            'and '
                                                                                                                                            'model '
                                                                                                                                            'regridded '
                                                                                                                                            'to '
                                                                                                                                            'generic_1x1deg',
                                                                                                                                  'name': 'ENSO '
                                                                                                                                          'Zonal '
                                                                                                                                          'SSTA '
                                                                                                                                          'pattern',
                                                                                                                                  'ref': 'Using '
                                                                                                                                         'CDAT '
                                                                                                                                         'regridding '
                                                                                                                                         'and '
                                                                                                                                         'rms '
                                                                                                                                         '(uncentered '
                                                                                                                                         'and '
                                                                                                                                         'biased) '
                                                                                                                                         'calculation',
                                                                                                                                  'time_frequency': 'monthly',
                                                                                                                                  'units': 'C/C'},
                                                                                                                   'metric': {'datasets': 'ACCESS-CM2_r2i1p1f1; '
                                                                                                                                          "20CRv2's "
                                                                                                                                          'ts; '
                                                                                                                                          "ERA-20C's "
                                                                                                                                          'ts; '
                                                                                                                                          "ERA-5's "
                                                                                                                                          'ts; '
                                                                                                                                          "ERA-Interim's "
                                                                                                                                          'ts; '
                                                                                                                                          "HadISST's "
                                                                                                                                          'ts; '
                                                                                                                                          "Tropflux's "
                                                                                                                                          'ts; '
                                                                                                                                          "'s ",
                                                                                                                              'method': 'The '
                                                                                                                                        'metric '
                                                                                                                                        'is '
                                                                                                                                        'the '
                                                                                                                                        'statistical '
                                                                                                                                        'value '
                                                                                                                                        'between '
                                                                                                                                        'the '
                                                                                                                                        'model '
                                                                                                                                        'and '
                                                                                                                                        'the '
                                                                                                                                        'observations',
                                                                                                                              'name': 'EnsoSstLonRmse',
                                                                                                                              'units': 'C/C'}},
                                                                                                'EnsoSstSkew': {'diagnostic': {'20CRv2': {'keyerror': None,
                                                                                                                                          'name': '20CRv2',
                                                                                                                                          'nyears': 142,
                                                                                                                                          'time_period': ['1871-1-16 '
                                                                                                                                                          '12:0:0.0',
                                                                                                                                                          '2012-12-16 '
                                                                                                                                                          '12:0:0.0']},
                                                                                                                               'ACCESS-CM2_r2i1p1f1': {'keyerror': None,
                                                                                                                                                       'name': 'ACCESS-CM2_r2i1p1f1',
                                                                                                                                                       'nyears': 165,
                                                                                                                                                       'time_period': ['1850-1-16 '
                                                                                                                                                                       '12:0:0.0',
                                                                                                                                                                       '2014-12-16 '
                                                                                                                                                                       '12:0:0.0']},
                                                                                                                               'ERA-20C': {'keyerror': None,
                                                                                                                                           'name': 'ERA-20C',
                                                                                                                                           'nyears': 111,
                                                                                                                                           'time_period': ['1900-1-16 '
                                                                                                                                                           '12:0:0.0',
                                                                                                                                                           '2010-12-16 '
                                                                                                                                                           '12:0:0.0']},
                                                                                                                               'ERA-5': {'keyerror': None,
                                                                                                                                         'name': 'ERA-5',
                                                                                                                                         'nyears': 40,
                                                                                                                                         'time_period': ['1979-1-16 '
                                                                                                                                                         '12:0:0.0',
                                                                                                                                                         '2018-12-16 '
                                                                                                                                                         '12:0:0.0']},
                                                                                                                               'ERA-Interim': {'keyerror': None,
                                                                                                                                               'name': 'ERA-Interim',
                                                                                                                                               'nyears': 40,
                                                                                                                                               'time_period': ['1979-1-16 '
                                                                                                                                                               '12:0:0.0',
                                                                                                                                                               '2018-12-16 '
                                                                                                                                                               '12:0:0.0']},
                                                                                                                               'HadISST': {'keyerror': 'unlikely '
                                                                                                                                                       'units: '
                                                                                                                                                       'K([-1e+30, '
                                                                                                                                                       '304.7203])',
                                                                                                                                           'name': 'HadISST',
                                                                                                                                           'nyears': 149,
                                                                                                                                           'time_period': ['1870-1-16 '
                                                                                                                                                           '11:59:59.5',
                                                                                                                                                           '2018-12-16 '
                                                                                                                                                           '18:0:0.0']},
                                                                                                                               'Tropflux': {'keyerror': None,
                                                                                                                                            'name': 'Tropflux',
                                                                                                                                            'nyears': 39,
                                                                                                                                            'time_period': ['1979-1-15 '
                                                                                                                                                            '0:0:0.0',
                                                                                                                                                            '2017-7-15 '
                                                                                                                                                            '12:0:0.0']},
                                                                                                                               'method': 'Standard '
                                                                                                                                         'deviation '
                                                                                                                                         'of '
                                                                                                                                         'nino3.4 '
                                                                                                                                         'sstA, '
                                                                                                                                         'time '
                                                                                                                                         'series '
                                                                                                                                         'are '
                                                                                                                                         'linearly '
                                                                                                                                         'detrended',
                                                                                                                               'name': 'ENSO '
                                                                                                                                       'skewness',
                                                                                                                               'ref': 'Using '
                                                                                                                                      'CDAT '
                                                                                                                                      'regression '
                                                                                                                                      'calculation',
                                                                                                                               'time_frequency': 'monthly',
                                                                                                                               'units': 'C'},
                                                                                                                'metric': {'datasets': 'ACCESS-CM2_r2i1p1f1; '
                                                                                                                                       "20CRv2's "
                                                                                                                                       'ts; '
                                                                                                                                       "ERA-20C's "
                                                                                                                                       'ts; '
                                                                                                                                       "ERA-5's "
                                                                                                                                       'ts; '
                                                                                                                                       "ERA-Interim's "
                                                                                                                                       'ts; '
                                                                                                                                       "HadISST's "
                                                                                                                                       'ts; '
                                                                                                                                       "Tropflux's "
                                                                                                                                       'ts; '
                                                                                                                                       "'s ",
                                                                                                                           'method': 'The '
                                                                                                                                     'metric '
                                                                                                                                     'is '
                                                                                                                                     'the '
                                                                                                                                     'absolute '
                                                                                                                                     'value '
                                                                                                                                     'of '
                                                                                                                                     'the '
                                                                                                                                     'relative '
                                                                                                                                     'difference '
                                                                                                                                     'between '
                                                                                                                                     'model '
                                                                                                                                     'and '
                                                                                                                                     'observations '
                                                                                                                                     'values '
                                                                                                                                     '(M '
                                                                                                                                     '= '
                                                                                                                                     '100 '
                                                                                                                                     '* '
                                                                                                                                     'abs[[model-obs] '
                                                                                                                                     '/ '
                                                                                                                                     'obs])',
                                                                                                                           'name': 'EnsoSstSkew',
                                                                                                                           'units': '%'}},
                                                                                                'EnsoSstTsRmse': {'diagnostic': {'20CRv2': {'name': '20CRv2',
                                                                                                                                            'nyears': 142,
                                                                                                                                            'time_period': ['1871-1-16 '
                                                                                                                                                            '12:0:0.0',
                                                                                                                                                            '2012-12-16 '
                                                                                                                                                            '12:0:0.0']},
                                                                                                                                 'ACCESS-CM2_r2i1p1f1': {'keyerror': None,
                                                                                                                                                         'name': 'ACCESS-CM2_r2i1p1f1',
                                                                                                                                                         'nyears': 165,
                                                                                                                                                         'time_period': ['1850-1-16 '
                                                                                                                                                                         '12:0:0.0',
                                                                                                                                                                         '2014-12-16 '
                                                                                                                                                                         '12:0:0.0']},
                                                                                                                                 'ERA-20C': {'name': 'ERA-20C',
                                                                                                                                             'nyears': 111,
                                                                                                                                             'time_period': ['1900-1-16 '
                                                                                                                                                             '12:0:0.0',
                                                                                                                                                             '2010-12-16 '
                                                                                                                                                             '12:0:0.0']},
                                                                                                                                 'ERA-5': {'name': 'ERA-5',
                                                                                                                                           'nyears': 40,
                                                                                                                                           'time_period': ['1979-1-16 '
                                                                                                                                                           '12:0:0.0',
                                                                                                                                                           '2018-12-16 '
                                                                                                                                                           '12:0:0.0']},
                                                                                                                                 'ERA-Interim': {'name': 'ERA-Interim',
                                                                                                                                                 'nyears': 40,
                                                                                                                                                 'time_period': ['1979-1-16 '
                                                                                                                                                                 '12:0:0.0',
                                                                                                                                                                 '2018-12-16 '
                                                                                                                                                                 '12:0:0.0']},
                                                                                                                                 'HadISST': {'name': 'HadISST',
                                                                                                                                             'nyears': 149,
                                                                                                                                             'time_period': ['1870-1-16 '
                                                                                                                                                             '11:59:59.5',
                                                                                                                                                             '2018-12-16 '
                                                                                                                                                             '18:0:0.0']},
                                                                                                                                 'Tropflux': {'name': 'Tropflux',
                                                                                                                                              'nyears': 39,
                                                                                                                                              'time_period': ['1979-1-15 '
                                                                                                                                                              '0:0:0.0',
                                                                                                                                                              '2017-7-15 '
                                                                                                                                                              '12:0:0.0']},
                                                                                                                                 'method': 'nino3.4 '
                                                                                                                                           'SSTA '
                                                                                                                                           'during '
                                                                                                                                           'DEC '
                                                                                                                                           'regressed '
                                                                                                                                           'against '
                                                                                                                                           'nino3.4 '
                                                                                                                                           'SSTA '
                                                                                                                                           'during '
                                                                                                                                           '6 '
                                                                                                                                           'years '
                                                                                                                                           '(centered '
                                                                                                                                           'on '
                                                                                                                                           'ENSO), '
                                                                                                                                           'time '
                                                                                                                                           'series '
                                                                                                                                           'are '
                                                                                                                                           'linearly '
                                                                                                                                           'detrended, '
                                                                                                                                           'smoothing '
                                                                                                                                           'using '
                                                                                                                                           'a '
                                                                                                                                           'triangle '
                                                                                                                                           'shaped '
                                                                                                                                           'window '
                                                                                                                                           'of '
                                                                                                                                           '5 '
                                                                                                                                           'points',
                                                                                                                                 'name': 'ENSO '
                                                                                                                                         'life '
                                                                                                                                         'cyle '
                                                                                                                                         'SSTA '
                                                                                                                                         'pattern',
                                                                                                                                 'ref': 'Using '
                                                                                                                                        'CDAT '
                                                                                                                                        'regridding '
                                                                                                                                        'and '
                                                                                                                                        'rms '
                                                                                                                                        '(uncentered '
                                                                                                                                        'and '
                                                                                                                                        'biased) '
                                                                                                                                        'calculation',
                                                                                                                                 'time_frequency': 'monthly',
                                                                                                                                 'units': 'C/C'},
                                                                                                                  'metric': {'datasets': 'ACCESS-CM2_r2i1p1f1; '
                                                                                                                                         "20CRv2's "
                                                                                                                                         'ts; '
                                                                                                                                         "ERA-20C's "
                                                                                                                                         'ts; '
                                                                                                                                         "ERA-5's "
                                                                                                                                         'ts; '
                                                                                                                                         "ERA-Interim's "
                                                                                                                                         'ts; '
                                                                                                                                         "HadISST's "
                                                                                                                                         'ts; '
                                                                                                                                         "Tropflux's "
                                                                                                                                         'ts; '
                                                                                                                                         "'s ",
                                                                                                                             'method': 'The '
                                                                                                                                       'metric '
                                                                                                                                       'is '
                                                                                                                                       'the '
                                                                                                                                       'statistical '
                                                                                                                                       'value '
                                                                                                                                       'between '
                                                                                                                                       'the '
                                                                                                                                       'model '
                                                                                                                                       'and '
                                                                                                                                       'the '
                                                                                                                                       'observations',
                                                                                                                             'name': 'EnsoSstTsRmse',
                                                                                                                             'units': 'C/C'}},
                                                                                                'SeasonalPrLatRmse': {'diagnostic': {'ACCESS-CM2_r2i1p1f1': {'keyerror': None,
                                                                                                                                                             'name': 'ACCESS-CM2_r2i1p1f1',
                                                                                                                                                             'nyears': 165,
                                                                                                                                                             'time_period': ['1850-1-16 '
                                                                                                                                                                             '12:0:0.0',
                                                                                                                                                                             '2014-12-16 '
                                                                                                                                                                             '12:0:0.0']},
                                                                                                                                     'CMAP': {'name': 'CMAP',
                                                                                                                                              'nyears': 40,
                                                                                                                                              'time_period': ['1979-1-16 '
                                                                                                                                                              '12:0:0.0',
                                                                                                                                                              '2018-12-16 '
                                                                                                                                                              '12:0:0.0']},
                                                                                                                                     'ERA-Interim': {'name': 'ERA-Interim',
                                                                                                                                                     'nyears': 40,
                                                                                                                                                     'time_period': ['1979-1-16 '
                                                                                                                                                                     '12:0:0.0',
                                                                                                                                                                     '2018-12-16 '
                                                                                                                                                                     '12:0:0.0']},
                                                                                                                                     'GPCPv2.3': {'name': 'GPCPv2.3',
                                                                                                                                                  'nyears': 40,
                                                                                                                                                  'time_period': ['1979-1-16 '
                                                                                                                                                                  '12:0:0.0',
                                                                                                                                                                  '2018-12-16 '
                                                                                                                                                                  '12:0:0.0']},
                                                                                                                                     'TRMM-3B43v-7': {'name': 'TRMM-3B43v-7',
                                                                                                                                                      'nyears': 20,
                                                                                                                                                      'time_period': ['1998-1-16 '
                                                                                                                                                                      '12:0:0.0',
                                                                                                                                                                      '2017-12-16 '
                                                                                                                                                                      '12:0:0.0']},
                                                                                                                                     'method': 'Meridional '
                                                                                                                                               'root '
                                                                                                                                               'mean '
                                                                                                                                               'square '
                                                                                                                                               'error '
                                                                                                                                               'of '
                                                                                                                                               'nino3_LatExt '
                                                                                                                                               'climatological '
                                                                                                                                               'pr '
                                                                                                                                               'STD, '
                                                                                                                                               'time '
                                                                                                                                               'series '
                                                                                                                                               'are '
                                                                                                                                               'linearly '
                                                                                                                                               'detrended, '
                                                                                                                                               'observations '
                                                                                                                                               'and '
                                                                                                                                               'model '
                                                                                                                                               'regridded '
                                                                                                                                               'to '
                                                                                                                                               'generic_1x1deg',
                                                                                                                                     'name': 'pr '
                                                                                                                                             'meridional '
                                                                                                                                             'seasonality '
                                                                                                                                             'RMSE',
                                                                                                                                     'ref': 'Using '
                                                                                                                                            'CDAT '
                                                                                                                                            'regridding '
                                                                                                                                            'and '
                                                                                                                                            'rms '
                                                                                                                                            '(uncentered '
                                                                                                                                            'and '
                                                                                                                                            'biased) '
                                                                                                                                            'calculation',
                                                                                                                                     'time_frequency': 'monthly',
                                                                                                                                     'units': 'mm/day'},
                                                                                                                      'metric': {'datasets': 'ACCESS-CM2_r2i1p1f1; '
                                                                                                                                             "CMAP's "
                                                                                                                                             'pr; '
                                                                                                                                             "ERA-Interim's "
                                                                                                                                             'pr; '
                                                                                                                                             "GPCPv2.3's "
                                                                                                                                             'pr; '
                                                                                                                                             "TRMM-3B43v-7's "
                                                                                                                                             'pr; '
                                                                                                                                             "'s ",
                                                                                                                                 'method': 'The '
                                                                                                                                           'metric '
                                                                                                                                           'is '
                                                                                                                                           'the '
                                                                                                                                           'statistical '
                                                                                                                                           'value '
                                                                                                                                           'between '
                                                                                                                                           'the '
                                                                                                                                           'model '
                                                                                                                                           'and '
                                                                                                                                           'the '
                                                                                                                                           'observations',
                                                                                                                                 'name': 'SeasonalPrLatRmse',
                                                                                                                                 'units': 'mm/day'}},
                                                                                                'SeasonalPrLonRmse': {'diagnostic': {'ACCESS-CM2_r2i1p1f1': {'keyerror': None,
                                                                                                                                                             'name': 'ACCESS-CM2_r2i1p1f1',
                                                                                                                                                             'nyears': 165,
                                                                                                                                                             'time_period': ['1850-1-16 '
                                                                                                                                                                             '12:0:0.0',
                                                                                                                                                                             '2014-12-16 '
                                                                                                                                                                             '12:0:0.0']},
                                                                                                                                     'CMAP': {'name': 'CMAP',
                                                                                                                                              'nyears': 40,
                                                                                                                                              'time_period': ['1979-1-16 '
                                                                                                                                                              '12:0:0.0',
                                                                                                                                                              '2018-12-16 '
                                                                                                                                                              '12:0:0.0']},
                                                                                                                                     'ERA-Interim': {'name': 'ERA-Interim',
                                                                                                                                                     'nyears': 40,
                                                                                                                                                     'time_period': ['1979-1-16 '
                                                                                                                                                                     '12:0:0.0',
                                                                                                                                                                     '2018-12-16 '
                                                                                                                                                                     '12:0:0.0']},
                                                                                                                                     'GPCPv2.3': {'name': 'GPCPv2.3',
                                                                                                                                                  'nyears': 40,
                                                                                                                                                  'time_period': ['1979-1-16 '
                                                                                                                                                                  '12:0:0.0',
                                                                                                                                                                  '2018-12-16 '
                                                                                                                                                                  '12:0:0.0']},
                                                                                                                                     'TRMM-3B43v-7': {'name': 'TRMM-3B43v-7',
                                                                                                                                                      'nyears': 20,
                                                                                                                                                      'time_period': ['1998-1-16 '
                                                                                                                                                                      '12:0:0.0',
                                                                                                                                                                      '2017-12-16 '
                                                                                                                                                                      '12:0:0.0']},
                                                                                                                                     'method': 'Zonal '
                                                                                                                                               'root '
                                                                                                                                               'mean '
                                                                                                                                               'square '
                                                                                                                                               'error '
                                                                                                                                               'of '
                                                                                                                                               'equatorial_pacific '
                                                                                                                                               'climatological '
                                                                                                                                               'pr '
                                                                                                                                               'STD, '
                                                                                                                                               'time '
                                                                                                                                               'series '
                                                                                                                                               'are '
                                                                                                                                               'linearly '
                                                                                                                                               'detrended, '
                                                                                                                                               'observations '
                                                                                                                                               'and '
                                                                                                                                               'model '
                                                                                                                                               'regridded '
                                                                                                                                               'to '
                                                                                                                                               'generic_1x1deg',
                                                                                                                                     'name': 'pr '
                                                                                                                                             'zonal '
                                                                                                                                             'seasonality '
                                                                                                                                             'RMSE',
                                                                                                                                     'ref': 'Using '
                                                                                                                                            'CDAT '
                                                                                                                                            'regridding '
                                                                                                                                            'and '
                                                                                                                                            'rms '
                                                                                                                                            '(uncentered '
                                                                                                                                            'and '
                                                                                                                                            'biased) '
                                                                                                                                            'calculation',
                                                                                                                                     'time_frequency': 'monthly',
                                                                                                                                     'units': 'mm/day'},
                                                                                                                      'metric': {'datasets': 'ACCESS-CM2_r2i1p1f1; '
                                                                                                                                             "CMAP's "
                                                                                                                                             'pr; '
                                                                                                                                             "ERA-Interim's "
                                                                                                                                             'pr; '
                                                                                                                                             "GPCPv2.3's "
                                                                                                                                             'pr; '
                                                                                                                                             "TRMM-3B43v-7's "
                                                                                                                                             'pr; '
                                                                                                                                             "'s ",
                                                                                                                                 'method': 'The '
                                                                                                                                           'metric '
                                                                                                                                           'is '
                                                                                                                                           'the '
                                                                                                                                           'statistical '
                                                                                                                                           'value '
                                                                                                                                           'between '
                                                                                                                                           'the '
                                                                                                                                           'model '
                                                                                                                                           'and '
                                                                                                                                           'the '
                                                                                                                                           'observations',
                                                                                                                                 'name': 'SeasonalPrLonRmse',
                                                                                                                                 'units': 'mm/day'}},
                                                                                                'SeasonalSstLonRmse': {'diagnostic': {'20CRv2': {'name': '20CRv2',
                                                                                                                                                 'nyears': 142,
                                                                                                                                                 'time_period': ['1871-1-16 '
                                                                                                                                                                 '12:0:0.0',
                                                                                                                                                                 '2012-12-16 '
                                                                                                                                                                 '12:0:0.0']},
                                                                                                                                      'ACCESS-CM2_r2i1p1f1': {'keyerror': None,
                                                                                                                                                              'name': 'ACCESS-CM2_r2i1p1f1',
                                                                                                                                                              'nyears': 165,
                                                                                                                                                              'time_period': ['1850-1-16 '
                                                                                                                                                                              '12:0:0.0',
                                                                                                                                                                              '2014-12-16 '
                                                                                                                                                                              '12:0:0.0']},
                                                                                                                                      'ERA-20C': {'name': 'ERA-20C',
                                                                                                                                                  'nyears': 111,
                                                                                                                                                  'time_period': ['1900-1-16 '
                                                                                                                                                                  '12:0:0.0',
                                                                                                                                                                  '2010-12-16 '
                                                                                                                                                                  '12:0:0.0']},
                                                                                                                                      'ERA-5': {'name': 'ERA-5',
                                                                                                                                                'nyears': 40,
                                                                                                                                                'time_period': ['1979-1-16 '
                                                                                                                                                                '12:0:0.0',
                                                                                                                                                                '2018-12-16 '
                                                                                                                                                                '12:0:0.0']},
                                                                                                                                      'ERA-Interim': {'name': 'ERA-Interim',
                                                                                                                                                      'nyears': 40,
                                                                                                                                                      'time_period': ['1979-1-16 '
                                                                                                                                                                      '12:0:0.0',
                                                                                                                                                                      '2018-12-16 '
                                                                                                                                                                      '12:0:0.0']},
                                                                                                                                      'HadISST': {'name': 'HadISST',
                                                                                                                                                  'nyears': 149,
                                                                                                                                                  'time_period': ['1870-1-16 '
                                                                                                                                                                  '11:59:59.5',
                                                                                                                                                                  '2018-12-16 '
                                                                                                                                                                  '18:0:0.0']},
                                                                                                                                      'Tropflux': {'name': 'Tropflux',
                                                                                                                                                   'nyears': 39,
                                                                                                                                                   'time_period': ['1979-1-15 '
                                                                                                                                                                   '0:0:0.0',
                                                                                                                                                                   '2017-7-15 '
                                                                                                                                                                   '12:0:0.0']},
                                                                                                                                      'method': 'Zonal '
                                                                                                                                                'root '
                                                                                                                                                'mean '
                                                                                                                                                'square '
                                                                                                                                                'error '
                                                                                                                                                'of '
                                                                                                                                                'equatorial_pacific '
                                                                                                                                                'climatological '
                                                                                                                                                'sst '
                                                                                                                                                'STD, '
                                                                                                                                                'time '
                                                                                                                                                'series '
                                                                                                                                                'are '
                                                                                                                                                'linearly '
                                                                                                                                                'detrended, '
                                                                                                                                                'observations '
                                                                                                                                                'and '
                                                                                                                                                'model '
                                                                                                                                                'regridded '
                                                                                                                                                'to '
                                                                                                                                                'generic_1x1deg',
                                                                                                                                      'name': 'sst '
                                                                                                                                              'zonal '
                                                                                                                                              'seasonality '
                                                                                                                                              'RMSE',
                                                                                                                                      'ref': 'Using '
                                                                                                                                             'CDAT '
                                                                                                                                             'regridding '
                                                                                                                                             'and '
                                                                                                                                             'rms '
                                                                                                                                             '(uncentered '
                                                                                                                                             'and '
                                                                                                                                             'biased) '
                                                                                                                                             'calculation',
                                                                                                                                      'time_frequency': 'monthly',
                                                                                                                                      'units': 'C'},
                                                                                                                       'metric': {'datasets': 'ACCESS-CM2_r2i1p1f1; '
                                                                                                                                              "20CRv2's "
                                                                                                                                              'ts; '
                                                                                                                                              "ERA-20C's "
                                                                                                                                              'ts; '
                                                                                                                                              "ERA-5's "
                                                                                                                                              'ts; '
                                                                                                                                              "ERA-Interim's "
                                                                                                                                              'ts; '
                                                                                                                                              "HadISST's "
                                                                                                                                              'ts; '
                                                                                                                                              "Tropflux's "
                                                                                                                                              'ts; '
                                                                                                                                              "'s ",
                                                                                                                                  'method': 'The '
                                                                                                                                            'metric '
                                                                                                                                            'is '
                                                                                                                                            'the '
                                                                                                                                            'statistical '
                                                                                                                                            'value '
                                                                                                                                            'between '
                                                                                                                                            'the '
                                                                                                                                            'model '
                                                                                                                                            'and '
                                                                                                                                            'the '
                                                                                                                                            'observations',
                                                                                                                                  'name': 'SeasonalSstLonRmse',
                                                                                                                                  'units': 'C'}},
                                                                                                'SeasonalTauxLonRmse': {'diagnostic': {'ACCESS-CM2_r2i1p1f1': {'keyerror': None,
                                                                                                                                                               'name': 'ACCESS-CM2_r2i1p1f1',
                                                                                                                                                               'nyears': 165,
                                                                                                                                                               'time_period': ['1850-1-16 '
                                                                                                                                                                               '12:0:0.0',
                                                                                                                                                                               '2014-12-16 '
                                                                                                                                                                               '12:0:0.0']},
                                                                                                                                       'ERA-Interim': {'name': 'ERA-Interim',
                                                                                                                                                       'nyears': 40,
                                                                                                                                                       'time_period': ['1979-1-16 '
                                                                                                                                                                       '12:0:0.0',
                                                                                                                                                                       '2018-12-16 '
                                                                                                                                                                       '12:0:0.0']},
                                                                                                                                       'Tropflux': {'name': 'Tropflux',
                                                                                                                                                    'nyears': 39,
                                                                                                                                                    'time_period': ['1979-1-15 '
                                                                                                                                                                    '0:0:0.0',
                                                                                                                                                                    '2017-7-15 '
                                                                                                                                                                    '12:0:0.0']},
                                                                                                                                       'method': 'Zonal '
                                                                                                                                                 'root '
                                                                                                                                                 'mean '
                                                                                                                                                 'square '
                                                                                                                                                 'error '
                                                                                                                                                 'of '
                                                                                                                                                 'equatorial_pacific '
                                                                                                                                                 'climatological '
                                                                                                                                                 'taux '
                                                                                                                                                 'STD, '
                                                                                                                                                 'time '
                                                                                                                                                 'series '
                                                                                                                                                 'are '
                                                                                                                                                 'linearly '
                                                                                                                                                 'detrended, '
                                                                                                                                                 'observations '
                                                                                                                                                 'and '
                                                                                                                                                 'model '
                                                                                                                                                 'regridded '
                                                                                                                                                 'to '
                                                                                                                                                 'generic_1x1deg',
                                                                                                                                       'name': 'taux '
                                                                                                                                               'zonal '
                                                                                                                                               'seasonality '
                                                                                                                                               'RMSE',
                                                                                                                                       'ref': 'Using '
                                                                                                                                              'CDAT '
                                                                                                                                              'regridding '
                                                                                                                                              'and '
                                                                                                                                              'rms '
                                                                                                                                              '(uncentered '
                                                                                                                                              'and '
                                                                                                                                              'biased) '
                                                                                                                                              'calculation',
                                                                                                                                       'time_frequency': 'monthly',
                                                                                                                                       'units': '1e-3 '
                                                                                                                                                'N/m2'},
                                                                                                                        'metric': {'datasets': 'ACCESS-CM2_r2i1p1f1; '
                                                                                                                                               "ERA-Interim's "
                                                                                                                                               'tauu; '
                                                                                                                                               "Tropflux's "
                                                                                                                                               'tauu; '
                                                                                                                                               "'s ",
                                                                                                                                   'method': 'The '
                                                                                                                                             'metric '
                                                                                                                                             'is '
                                                                                                                                             'the '
                                                                                                                                             'statistical '
                                                                                                                                             'value '
                                                                                                                                             'between '
                                                                                                                                             'the '
                                                                                                                                             'model '
                                                                                                                                             'and '
                                                                                                                                             'the '
                                                                                                                                             'observations',
                                                                                                                                   'name': 'SeasonalTauxLonRmse',
                                                                                                                                   'units': '1e-3 '
                                                                                                                                            'N/m2'}}},
                                                                                    'name': 'Metrics '
                                                                                            'Collection '
                                                                                            'for '
                                                                                            'ENSO '
                                                                                            'performance'},
                                                                       'value': {'BiasPrLatRmse': {'diagnostic': {'ACCESS-CM2_r2i1p1f1': {'value': None,
                                                                                                                                          'value_error': None},
                                                                                                                  'CMAP': {'value': None,
                                                                                                                           'value_error': None},
                                                                                                                  'ERA-Interim': {'value': None,
                                                                                                                                  'value_error': None},
                                                                                                                  'GPCPv2.3': {'value': None,
                                                                                                                               'value_error': None},
                                                                                                                  'TRMM-3B43v-7': {'value': None,
                                                                                                                                   'value_error': None}},
                                                                                                   'metric': {'CMAP': {'value': 2.1317682673563865,
                                                                                                                       'value_error': None},
                                                                                                              'ERA-Interim': {'value': 1.6983805702110217,
                                                                                                                              'value_error': None},
                                                                                                              'GPCPv2.3': {'value': 2.1047316705637242,
                                                                                                                           'value_error': None},
                                                                                                              'TRMM-3B43v-7': {'value': 2.0627096326180876,
                                                                                                                               'value_error': None}}},
                                                                                 'BiasPrLonRmse': {'diagnostic': {'ACCESS-CM2_r2i1p1f1': {'value': None,
                                                                                                                                          'value_error': None},
                                                                                                                  'CMAP': {'value': None,
                                                                                                                           'value_error': None},
                                                                                                                  'ERA-Interim': {'value': None,
                                                                                                                                  'value_error': None},
                                                                                                                  'GPCPv2.3': {'value': None,
                                                                                                                               'value_error': None},
                                                                                                                  'TRMM-3B43v-7': {'value': None,
                                                                                                                                   'value_error': None}},
                                                                                                   'metric': {'CMAP': {'value': 0.7125321957768509,
                                                                                                                       'value_error': None},
                                                                                                              'ERA-Interim': {'value': 1.0329996205334822,
                                                                                                                              'value_error': None},
                                                                                                              'GPCPv2.3': {'value': 0.4465909760041622,
                                                                                                                           'value_error': None},
                                                                                                              'TRMM-3B43v-7': {'value': 0.6309101170704136,
                                                                                                                               'value_error': None}}},
                                                                                 'BiasSstLonRmse': {'diagnostic': {'20CRv2': {'value': None,
                                                                                                                              'value_error': None},
                                                                                                                   'ACCESS-CM2_r2i1p1f1': {'value': None,
                                                                                                                                           'value_error': None},
                                                                                                                   'ERA-20C': {'value': None,
                                                                                                                               'value_error': None},
                                                                                                                   'ERA-5': {'value': None,
                                                                                                                             'value_error': None},
                                                                                                                   'ERA-Interim': {'value': None,
                                                                                                                                   'value_error': None},
                                                                                                                   'HadISST': {'value': None,
                                                                                                                               'value_error': None},
                                                                                                                   'Tropflux': {'value': None,
                                                                                                                                'value_error': None}},
                                                                                                    'metric': {'20CRv2': {'value': 0.5390012963087842,
                                                                                                                          'value_error': None},
                                                                                                               'ERA-20C': {'value': 0.526127105192347,
                                                                                                                           'value_error': None},
                                                                                                               'ERA-5': {'value': 0.4945591581204164,
                                                                                                                         'value_error': None},
                                                                                                               'ERA-Interim': {'value': 0.6258387652235506,
                                                                                                                               'value_error': None},
                                                                                                               'HadISST': {'value': 0.5446363993051538,
                                                                                                                           'value_error': None},
                                                                                                               'Tropflux': {'value': 0.6491058945682061,
                                                                                                                            'value_error': None}}},
                                                                                 'BiasTauxLonRmse': {'diagnostic': {'ACCESS-CM2_r2i1p1f1': {'value': None,
                                                                                                                                            'value_error': None},
                                                                                                                    'ERA-Interim': {'value': None,
                                                                                                                                    'value_error': None},
                                                                                                                    'Tropflux': {'value': None,
                                                                                                                                 'value_error': None}},
                                                                                                     'metric': {'ERA-Interim': {'value': 7.301982440374169,
                                                                                                                                'value_error': None},
                                                                                                                'Tropflux': {'value': 7.046539147746591,
                                                                                                                             'value_error': None}}},
                                                                                 'EnsoAmpl': {'diagnostic': {'20CRv2': {'value': 0.7407960057502115,
                                                                                                                        'value_error': 0.062166219832622445},
                                                                                                             'ACCESS-CM2_r2i1p1f1': {'value': 0.8622105536310941,
                                                                                                                                     'value_error': 0.0671230005646729},
                                                                                                             'ERA-20C': {'value': 0.8265126323027572,
                                                                                                                         'value_error': 0.07844910735406072},
                                                                                                             'ERA-5': {'value': 0.9075909980564855,
                                                                                                                       'value_error': 0.14350273688619733},
                                                                                                             'ERA-Interim': {'value': 0.9001341048707652,
                                                                                                                             'value_error': 0.1423236985494241},
                                                                                                             'HadISST': {'value': 0.7688706055408969,
                                                                                                                         'value_error': 0.06298833428079066},
                                                                                                             'Tropflux': {'value': 0.9128364190673677,
                                                                                                                          'value_error': 0.14617081051130443}},
                                                                                              'metric': {'20CRv2': {'value': 16.389741161998415,
                                                                                                                    'value_error': 18.828139168597463},
                                                                                                         'ERA-20C': {'value': 4.319101721274182,
                                                                                                                     'value_error': 18.022762005435613},
                                                                                                         'ERA-5': {'value': 5.000098560096893,
                                                                                                                   'value_error': 22.4165355987215},
                                                                                                         'ERA-Interim': {'value': 4.213100140796893,
                                                                                                                         'value_error': 22.602238718566696},
                                                                                                         'HadISST': {'value': 12.139877297628379,
                                                                                                                     'value_error': 17.916934311991206},
                                                                                                         'Tropflux': {'value': 5.5459953589491215,
                                                                                                                      'value_error': 22.47797967115718}}},
                                                                                 'EnsoDuration': {'diagnostic': {'20CRv2': {'value': 13.0,
                                                                                                                            'value_error': None},
                                                                                                                 'ACCESS-CM2_r2i1p1f1': {'value': 12.0,
                                                                                                                                         'value_error': None},
                                                                                                                 'ERA-20C': {'value': 13.0,
                                                                                                                             'value_error': None},
                                                                                                                 'ERA-5': {'value': 13.0,
                                                                                                                           'value_error': None},
                                                                                                                 'ERA-Interim': {'value': 13.0,
                                                                                                                                 'value_error': None},
                                                                                                                 'HadISST': {'value': 13.0,
                                                                                                                             'value_error': None},
                                                                                                                 'Tropflux': {'value': 13.0,
                                                                                                                              'value_error': None}},
                                                                                                  'metric': {'20CRv2': {'value': 7.6923076923076925,
                                                                                                                        'value_error': None},
                                                                                                             'ERA-20C': {'value': 7.6923076923076925,
                                                                                                                         'value_error': None},
                                                                                                             'ERA-5': {'value': 7.6923076923076925,
                                                                                                                       'value_error': None},
                                                                                                             'ERA-Interim': {'value': 7.6923076923076925,
                                                                                                                             'value_error': None},
                                                                                                             'HadISST': {'value': 7.6923076923076925,
                                                                                                                         'value_error': None},
                                                                                                             'Tropflux': {'value': 7.6923076923076925,
                                                                                                                          'value_error': None}}},
                                                                                 'EnsoSeasonality': {'diagnostic': {'20CRv2': {'value': 1.6436435961094338,
                                                                                                                               'value_error': 0.27635126775510105},
                                                                                                                    'ACCESS-CM2_r2i1p1f1': {'value': 1.2814325356033485,
                                                                                                                                            'value_error': 0.199822457443958},
                                                                                                                    'ERA-20C': {'value': 1.5951589911955568,
                                                                                                                                'value_error': 0.30349823329934555},
                                                                                                                    'ERA-5': {'value': 2.0283123524204223,
                                                                                                                              'value_error': 0.6454942543282691},
                                                                                                                    'ERA-Interim': {'value': 2.052960044692134,
                                                                                                                                    'value_error': 0.6533381861195713},
                                                                                                                    'HadISST': {'value': 1.6666267700450468,
                                                                                                                                'value_error': 0.273531261566947},
                                                                                                                    'Tropflux': {'value': 2.06093854374807,
                                                                                                                                 'value_error': 0.6643426635460994}},
                                                                                                     'metric': {'20CRv2': {'value': 22.03708038430305,
                                                                                                                           'value_error': 25.265451413177164},
                                                                                                                'ERA-20C': {'value': 19.667409789482697,
                                                                                                                            'value_error': 27.811049051855584},
                                                                                                                'ERA-5': {'value': 36.82272190108237,
                                                                                                                          'value_error': 29.957326685328788},
                                                                                                                'ERA-Interim': {'value': 37.58122380820546,
                                                                                                                                'value_error': 29.597661151977473},
                                                                                                                'HadISST': {'value': 23.11220732589619,
                                                                                                                            'value_error': 24.608665485754038},
                                                                                                                'Tropflux': {'value': 37.822865243089396,
                                                                                                                             'value_error': 29.738474854764302}}},
                                                                                 'EnsoSstDiversity_2': {'diagnostic': {'20CRv2': {'value': 48.0,
                                                                                                                                  'value_error': None},
                                                                                                                       'ACCESS-CM2_r2i1p1f1': {'value': 19.25,
                                                                                                                                               'value_error': None},
                                                                                                                       'ERA-20C': {'value': 29.5,
                                                                                                                                   'value_error': None},
                                                                                                                       'ERA-5': {'value': 31.25,
                                                                                                                                 'value_error': None},
                                                                                                                       'ERA-Interim': {'value': 32.0,
                                                                                                                                       'value_error': None},
                                                                                                                       'HadISST': {'value': 49.0,
                                                                                                                                   'value_error': None},
                                                                                                                       'Tropflux': {'value': 33.25,
                                                                                                                                    'value_error': None}},
                                                                                                        'metric': {'20CRv2': {'value': 59.895833333333336,
                                                                                                                              'value_error': None},
                                                                                                                   'ERA-20C': {'value': 34.74576271186441,
                                                                                                                               'value_error': None},
                                                                                                                   'ERA-5': {'value': 38.4,
                                                                                                                             'value_error': None},
                                                                                                                   'ERA-Interim': {'value': 39.84375,
                                                                                                                                   'value_error': None},
                                                                                                                   'HadISST': {'value': 60.71428571428571,
                                                                                                                               'value_error': None},
                                                                                                                   'Tropflux': {'value': 42.10526315789473,
                                                                                                                                'value_error': None}}},
                                                                                 'EnsoSstLonRmse': {'diagnostic': {'20CRv2': {'value': None,
                                                                                                                              'value_error': None},
                                                                                                                   'ACCESS-CM2_r2i1p1f1': {'value': None,
                                                                                                                                           'value_error': None},
                                                                                                                   'ERA-20C': {'value': None,
                                                                                                                               'value_error': None},
                                                                                                                   'ERA-5': {'value': None,
                                                                                                                             'value_error': None},
                                                                                                                   'ERA-Interim': {'value': None,
                                                                                                                                   'value_error': None},
                                                                                                                   'HadISST': {'value': None,
                                                                                                                               'value_error': None},
                                                                                                                   'Tropflux': {'value': None,
                                                                                                                                'value_error': None}},
                                                                                                    'metric': {'20CRv2': {'value': 0.07871049480199414,
                                                                                                                          'value_error': None},
                                                                                                               'ERA-20C': {'value': 0.09219488954801747,
                                                                                                                           'value_error': None},
                                                                                                               'ERA-5': {'value': 0.06736418555616827,
                                                                                                                         'value_error': None},
                                                                                                               'ERA-Interim': {'value': 0.0733895852726686,
                                                                                                                               'value_error': None},
                                                                                                               'HadISST': {'value': 0.08581263382615822,
                                                                                                                           'value_error': None},
                                                                                                               'Tropflux': {'value': 0.07200721549200347,
                                                                                                                            'value_error': None}}},
                                                                                 'EnsoSstSkew': {'diagnostic': {'20CRv2': {'value': 0.35464371256710725,
                                                                                                                           'value_error': 0.029761039242344564},
                                                                                                                'ACCESS-CM2_r2i1p1f1': {'value': -0.1849490598954878,
                                                                                                                                        'value_error': -0.014398264785230352},
                                                                                                                'ERA-20C': {'value': 0.19142977450459012,
                                                                                                                            'value_error': 0.01816971010961296},
                                                                                                                'ERA-5': {'value': 0.473403564017451,
                                                                                                                          'value_error': 0.07485167573682382},
                                                                                                                'ERA-Interim': {'value': 0.40501535626049495,
                                                                                                                                'value_error': 0.06403855065638503},
                                                                                                                'HadISST': {'value': 0.40320728014992363,
                                                                                                                            'value_error': 0.033032027448448076},
                                                                                                                'Tropflux': {'value': 0.3838870736969205,
                                                                                                                             'value_error': 0.061471128380725305}},
                                                                                                 'metric': {'20CRv2': {'value': 152.15066652577153,
                                                                                                                       'value_error': -8.436310599880745},
                                                                                                            'ERA-20C': {'value': 196.61457334634903,
                                                                                                                        'value_error': -16.69168381386522},
                                                                                                            'ERA-5': {'value': 139.06794835382146,
                                                                                                                      'value_error': -9.21862066979577},
                                                                                                            'ERA-Interim': {'value': 145.66470308758701,
                                                                                                                            'value_error': -10.775215835518514},
                                                                                                            'HadISST': {'value': 145.86947433754634,
                                                                                                                        'value_error': -7.328707489577084},
                                                                                                            'Tropflux': {'value': 148.17798581087555,
                                                                                                                         'value_error': -11.465303030502733}}},
                                                                                 'EnsoSstTsRmse': {'diagnostic': {'20CRv2': {'value': None,
                                                                                                                             'value_error': None},
                                                                                                                  'ACCESS-CM2_r2i1p1f1': {'value': None,
                                                                                                                                          'value_error': None},
                                                                                                                  'ERA-20C': {'value': None,
                                                                                                                              'value_error': None},
                                                                                                                  'ERA-5': {'value': None,
                                                                                                                            'value_error': None},
                                                                                                                  'ERA-Interim': {'value': None,
                                                                                                                                  'value_error': None},
                                                                                                                  'HadISST': {'value': None,
                                                                                                                              'value_error': None},
                                                                                                                  'Tropflux': {'value': None,
                                                                                                                               'value_error': None}},
                                                                                                   'metric': {'20CRv2': {'value': 0.2797562872982935,
                                                                                                                         'value_error': None},
                                                                                                              'ERA-20C': {'value': 0.28621490061223265,
                                                                                                                          'value_error': None},
                                                                                                              'ERA-5': {'value': 0.3067809124106395,
                                                                                                                        'value_error': None},
                                                                                                              'ERA-Interim': {'value': 0.29678780868123145,
                                                                                                                              'value_error': None},
                                                                                                              'HadISST': {'value': 0.28089708992098766,
                                                                                                                          'value_error': None},
                                                                                                              'Tropflux': {'value': 0.2901233874495213,
                                                                                                                           'value_error': None}}},
                                                                                 'SeasonalPrLatRmse': {'diagnostic': {'ACCESS-CM2_r2i1p1f1': {'value': None,
                                                                                                                                              'value_error': None},
                                                                                                                      'CMAP': {'value': None,
                                                                                                                               'value_error': None},
                                                                                                                      'ERA-Interim': {'value': None,
                                                                                                                                      'value_error': None},
                                                                                                                      'GPCPv2.3': {'value': None,
                                                                                                                                   'value_error': None},
                                                                                                                      'TRMM-3B43v-7': {'value': None,
                                                                                                                                       'value_error': None}},
                                                                                                       'metric': {'CMAP': {'value': 1.6949061843250506,
                                                                                                                           'value_error': None},
                                                                                                                  'ERA-Interim': {'value': 1.5868964769613116,
                                                                                                                                  'value_error': None},
                                                                                                                  'GPCPv2.3': {'value': 1.8489843117138665,
                                                                                                                               'value_error': None},
                                                                                                                  'TRMM-3B43v-7': {'value': 1.6829210665961776,
                                                                                                                                   'value_error': None}}},
                                                                                 'SeasonalPrLonRmse': {'diagnostic': {'ACCESS-CM2_r2i1p1f1': {'value': None,
                                                                                                                                              'value_error': None},
                                                                                                                      'CMAP': {'value': None,
                                                                                                                               'value_error': None},
                                                                                                                      'ERA-Interim': {'value': None,
                                                                                                                                      'value_error': None},
                                                                                                                      'GPCPv2.3': {'value': None,
                                                                                                                                   'value_error': None},
                                                                                                                      'TRMM-3B43v-7': {'value': None,
                                                                                                                                       'value_error': None}},
                                                                                                       'metric': {'CMAP': {'value': 0.6463177560101,
                                                                                                                           'value_error': None},
                                                                                                                  'ERA-Interim': {'value': 0.6987627359070118,
                                                                                                                                  'value_error': None},
                                                                                                                  'GPCPv2.3': {'value': 0.7726025086530327,
                                                                                                                               'value_error': None},
                                                                                                                  'TRMM-3B43v-7': {'value': 0.7248167331757345,
                                                                                                                                   'value_error': None}}},
                                                                                 'SeasonalSstLonRmse': {'diagnostic': {'20CRv2': {'value': None,
                                                                                                                                  'value_error': None},
                                                                                                                       'ACCESS-CM2_r2i1p1f1': {'value': None,
                                                                                                                                               'value_error': None},
                                                                                                                       'ERA-20C': {'value': None,
                                                                                                                                   'value_error': None},
                                                                                                                       'ERA-5': {'value': None,
                                                                                                                                 'value_error': None},
                                                                                                                       'ERA-Interim': {'value': None,
                                                                                                                                       'value_error': None},
                                                                                                                       'HadISST': {'value': None,
                                                                                                                                   'value_error': None},
                                                                                                                       'Tropflux': {'value': None,
                                                                                                                                    'value_error': None}},
                                                                                                        'metric': {'20CRv2': {'value': 0.24534552134167883,
                                                                                                                              'value_error': None},
                                                                                                                   'ERA-20C': {'value': 0.25425045334364965,
                                                                                                                               'value_error': None},
                                                                                                                   'ERA-5': {'value': 0.2500539293288333,
                                                                                                                             'value_error': None},
                                                                                                                   'ERA-Interim': {'value': 0.23835501354460759,
                                                                                                                                   'value_error': None},
                                                                                                                   'HadISST': {'value': 0.2487025524141048,
                                                                                                                               'value_error': None},
                                                                                                                   'Tropflux': {'value': 0.24664559512297343,
                                                                                                                                'value_error': None}}},
                                                                                 'SeasonalTauxLonRmse': {'diagnostic': {'ACCESS-CM2_r2i1p1f1': {'value': None,
                                                                                                                                                'value_error': None},
                                                                                                                        'ERA-Interim': {'value': None,
                                                                                                                                        'value_error': None},
                                                                                                                        'Tropflux': {'value': None,
                                                                                                                                     'value_error': None}},
                                                                                                         'metric': {'ERA-Interim': {'value': 2.6791711124066717,
                                                                                                                                    'value_error': None},
                                                                                                                    'Tropflux': {'value': 2.368528997220155,
                                                                                                                                 'value_error': None}}}}},
                                                          'r3i1p1f1': {'metadata': {'description_of_the_collection': 'Describe '
                                                                                                                     'which '
                                                                                                                     'science '
                                                                                                                     'question '
                                                                                                                     'this '
                                                                                                                     'collection '
                                                                                                                     'is '
                                                                                                                     'about',
                                                                                    'metrics': {'BiasPrLatRmse': {'diagnostic': {'ACCESS-CM2_r3i1p1f1': {'keyerror': None,
                                                                                                                                                         'name': 'ACCESS-CM2_r3i1p1f1',
                                                                                                                                                         'nyears': 165,
                                                                                                                                                         'time_period': ['1850-1-16 '
                                                                                                                                                                         '12:0:0.0',
                                                                                                                                                                         '2014-12-16 '
                                                                                                                                                                         '12:0:0.0']},
                                                                                                                                 'CMAP': {'name': 'CMAP',
                                                                                                                                          'nyears': 40,
                                                                                                                                          'time_period': ['1979-1-16 '
                                                                                                                                                          '12:0:0.0',
                                                                                                                                                          '2018-12-16 '
                                                                                                                                                          '12:0:0.0']},
                                                                                                                                 'ERA-Interim': {'name': 'ERA-Interim',
                                                                                                                                                 'nyears': 40,
                                                                                                                                                 'time_period': ['1979-1-16 '
                                                                                                                                                                 '12:0:0.0',
                                                                                                                                                                 '2018-12-16 '
                                                                                                                                                                 '12:0:0.0']},
                                                                                                                                 'GPCPv2.3': {'name': 'GPCPv2.3',
                                                                                                                                              'nyears': 40,
                                                                                                                                              'time_period': ['1979-1-16 '
                                                                                                                                                              '12:0:0.0',
                                                                                                                                                              '2018-12-16 '
                                                                                                                                                              '12:0:0.0']},
                                                                                                                                 'TRMM-3B43v-7': {'name': 'TRMM-3B43v-7',
                                                                                                                                                  'nyears': 20,
                                                                                                                                                  'time_period': ['1998-1-16 '
                                                                                                                                                                  '12:0:0.0',
                                                                                                                                                                  '2017-12-16 '
                                                                                                                                                                  '12:0:0.0']},
                                                                                                                                 'method': 'Meridional '
                                                                                                                                           'root '
                                                                                                                                           'mean '
                                                                                                                                           'square '
                                                                                                                                           'error '
                                                                                                                                           'of '
                                                                                                                                           'nino3_LatExt '
                                                                                                                                           'pr, '
                                                                                                                                           'time '
                                                                                                                                           'series '
                                                                                                                                           'are '
                                                                                                                                           'linearly '
                                                                                                                                           'detrended, '
                                                                                                                                           'observations '
                                                                                                                                           'and '
                                                                                                                                           'model '
                                                                                                                                           'regridded '
                                                                                                                                           'to '
                                                                                                                                           'generic_1x1deg',
                                                                                                                                 'name': 'pr '
                                                                                                                                         'Meridional '
                                                                                                                                         'RMSE',
                                                                                                                                 'ref': 'Using '
                                                                                                                                        'CDAT '
                                                                                                                                        'regridding '
                                                                                                                                        'and '
                                                                                                                                        'rms '
                                                                                                                                        '(uncentered '
                                                                                                                                        'and '
                                                                                                                                        'biased) '
                                                                                                                                        'calculation',
                                                                                                                                 'time_frequency': 'monthly',
                                                                                                                                 'units': 'mm/day'},
                                                                                                                  'metric': {'datasets': 'ACCESS-CM2_r3i1p1f1; '
                                                                                                                                         "CMAP's "
                                                                                                                                         'pr; '
                                                                                                                                         "ERA-Interim's "
                                                                                                                                         'pr; '
                                                                                                                                         "GPCPv2.3's "
                                                                                                                                         'pr; '
                                                                                                                                         "TRMM-3B43v-7's "
                                                                                                                                         'pr; '
                                                                                                                                         "'s ",
                                                                                                                             'method': 'The '
                                                                                                                                       'metric '
                                                                                                                                       'is '
                                                                                                                                       'the '
                                                                                                                                       'statistical '
                                                                                                                                       'value '
                                                                                                                                       'between '
                                                                                                                                       'the '
                                                                                                                                       'model '
                                                                                                                                       'and '
                                                                                                                                       'the '
                                                                                                                                       'observations',
                                                                                                                             'name': 'BiasPrLatRmse',
                                                                                                                             'units': 'mm/day'}},
                                                                                                'BiasPrLonRmse': {'diagnostic': {'ACCESS-CM2_r3i1p1f1': {'keyerror': None,
                                                                                                                                                         'name': 'ACCESS-CM2_r3i1p1f1',
                                                                                                                                                         'nyears': 165,
                                                                                                                                                         'time_period': ['1850-1-16 '
                                                                                                                                                                         '12:0:0.0',
                                                                                                                                                                         '2014-12-16 '
                                                                                                                                                                         '12:0:0.0']},
                                                                                                                                 'CMAP': {'name': 'CMAP',
                                                                                                                                          'nyears': 40,
                                                                                                                                          'time_period': ['1979-1-16 '
                                                                                                                                                          '12:0:0.0',
                                                                                                                                                          '2018-12-16 '
                                                                                                                                                          '12:0:0.0']},
                                                                                                                                 'ERA-Interim': {'name': 'ERA-Interim',
                                                                                                                                                 'nyears': 40,
                                                                                                                                                 'time_period': ['1979-1-16 '
                                                                                                                                                                 '12:0:0.0',
                                                                                                                                                                 '2018-12-16 '
                                                                                                                                                                 '12:0:0.0']},
                                                                                                                                 'GPCPv2.3': {'name': 'GPCPv2.3',
                                                                                                                                              'nyears': 40,
                                                                                                                                              'time_period': ['1979-1-16 '
                                                                                                                                                              '12:0:0.0',
                                                                                                                                                              '2018-12-16 '
                                                                                                                                                              '12:0:0.0']},
                                                                                                                                 'TRMM-3B43v-7': {'name': 'TRMM-3B43v-7',
                                                                                                                                                  'nyears': 20,
                                                                                                                                                  'time_period': ['1998-1-16 '
                                                                                                                                                                  '12:0:0.0',
                                                                                                                                                                  '2017-12-16 '
                                                                                                                                                                  '12:0:0.0']},
                                                                                                                                 'method': 'Zonal '
                                                                                                                                           'root '
                                                                                                                                           'mean '
                                                                                                                                           'square '
                                                                                                                                           'error '
                                                                                                                                           'of '
                                                                                                                                           'equatorial_pacific '
                                                                                                                                           'pr, '
                                                                                                                                           'time '
                                                                                                                                           'series '
                                                                                                                                           'are '
                                                                                                                                           'linearly '
                                                                                                                                           'detrended, '
                                                                                                                                           'observations '
                                                                                                                                           'and '
                                                                                                                                           'model '
                                                                                                                                           'regridded '
                                                                                                                                           'to '
                                                                                                                                           'generic_1x1deg',
                                                                                                                                 'name': 'pr '
                                                                                                                                         'Zonal '
                                                                                                                                         'RMSE',
                                                                                                                                 'ref': 'Using '
                                                                                                                                        'CDAT '
                                                                                                                                        'regridding '
                                                                                                                                        'and '
                                                                                                                                        'rms '
                                                                                                                                        '(uncentered '
                                                                                                                                        'and '
                                                                                                                                        'biased) '
                                                                                                                                        'calculation',
                                                                                                                                 'time_frequency': 'monthly',
                                                                                                                                 'units': 'mm/day'},
                                                                                                                  'metric': {'datasets': 'ACCESS-CM2_r3i1p1f1; '
                                                                                                                                         "CMAP's "
                                                                                                                                         'pr; '
                                                                                                                                         "ERA-Interim's "
                                                                                                                                         'pr; '
                                                                                                                                         "GPCPv2.3's "
                                                                                                                                         'pr; '
                                                                                                                                         "TRMM-3B43v-7's "
                                                                                                                                         'pr; '
                                                                                                                                         "'s ",
                                                                                                                             'method': 'The '
                                                                                                                                       'metric '
                                                                                                                                       'is '
                                                                                                                                       'the '
                                                                                                                                       'statistical '
                                                                                                                                       'value '
                                                                                                                                       'between '
                                                                                                                                       'the '
                                                                                                                                       'model '
                                                                                                                                       'and '
                                                                                                                                       'the '
                                                                                                                                       'observations',
                                                                                                                             'name': 'BiasPrLonRmse',
                                                                                                                             'units': 'mm/day'}},
                                                                                                'BiasSstLonRmse': {'diagnostic': {'20CRv2': {'name': '20CRv2',
                                                                                                                                             'nyears': 142,
                                                                                                                                             'time_period': ['1871-1-16 '
                                                                                                                                                             '12:0:0.0',
                                                                                                                                                             '2012-12-16 '
                                                                                                                                                             '12:0:0.0']},
                                                                                                                                  'ACCESS-CM2_r3i1p1f1': {'keyerror': None,
                                                                                                                                                          'name': 'ACCESS-CM2_r3i1p1f1',
                                                                                                                                                          'nyears': 165,
                                                                                                                                                          'time_period': ['1850-1-16 '
                                                                                                                                                                          '12:0:0.0',
                                                                                                                                                                          '2014-12-16 '
                                                                                                                                                                          '12:0:0.0']},
                                                                                                                                  'ERA-20C': {'name': 'ERA-20C',
                                                                                                                                              'nyears': 111,
                                                                                                                                              'time_period': ['1900-1-16 '
                                                                                                                                                              '12:0:0.0',
                                                                                                                                                              '2010-12-16 '
                                                                                                                                                              '12:0:0.0']},
                                                                                                                                  'ERA-5': {'name': 'ERA-5',
                                                                                                                                            'nyears': 40,
                                                                                                                                            'time_period': ['1979-1-16 '
                                                                                                                                                            '12:0:0.0',
                                                                                                                                                            '2018-12-16 '
                                                                                                                                                            '12:0:0.0']},
                                                                                                                                  'ERA-Interim': {'name': 'ERA-Interim',
                                                                                                                                                  'nyears': 40,
                                                                                                                                                  'time_period': ['1979-1-16 '
                                                                                                                                                                  '12:0:0.0',
                                                                                                                                                                  '2018-12-16 '
                                                                                                                                                                  '12:0:0.0']},
                                                                                                                                  'HadISST': {'name': 'HadISST',
                                                                                                                                              'nyears': 149,
                                                                                                                                              'time_period': ['1870-1-16 '
                                                                                                                                                              '11:59:59.5',
                                                                                                                                                              '2018-12-16 '
                                                                                                                                                              '18:0:0.0']},
                                                                                                                                  'Tropflux': {'name': 'Tropflux',
                                                                                                                                               'nyears': 39,
                                                                                                                                               'time_period': ['1979-1-15 '
                                                                                                                                                               '0:0:0.0',
                                                                                                                                                               '2017-7-15 '
                                                                                                                                                               '12:0:0.0']},
                                                                                                                                  'method': 'Zonal '
                                                                                                                                            'root '
                                                                                                                                            'mean '
                                                                                                                                            'square '
                                                                                                                                            'error '
                                                                                                                                            'of '
                                                                                                                                            'equatorial_pacific '
                                                                                                                                            'sst, '
                                                                                                                                            'time '
                                                                                                                                            'series '
                                                                                                                                            'are '
                                                                                                                                            'linearly '
                                                                                                                                            'detrended, '
                                                                                                                                            'observations '
                                                                                                                                            'and '
                                                                                                                                            'model '
                                                                                                                                            'regridded '
                                                                                                                                            'to '
                                                                                                                                            'generic_1x1deg',
                                                                                                                                  'name': 'sst '
                                                                                                                                          'Zonal '
                                                                                                                                          'RMSE',
                                                                                                                                  'ref': 'Using '
                                                                                                                                         'CDAT '
                                                                                                                                         'regridding '
                                                                                                                                         'and '
                                                                                                                                         'rms '
                                                                                                                                         '(uncentered '
                                                                                                                                         'and '
                                                                                                                                         'biased) '
                                                                                                                                         'calculation',
                                                                                                                                  'time_frequency': 'monthly',
                                                                                                                                  'units': 'C'},
                                                                                                                   'metric': {'datasets': 'ACCESS-CM2_r3i1p1f1; '
                                                                                                                                          "20CRv2's "
                                                                                                                                          'ts; '
                                                                                                                                          "ERA-20C's "
                                                                                                                                          'ts; '
                                                                                                                                          "ERA-5's "
                                                                                                                                          'ts; '
                                                                                                                                          "ERA-Interim's "
                                                                                                                                          'ts; '
                                                                                                                                          "HadISST's "
                                                                                                                                          'ts; '
                                                                                                                                          "Tropflux's "
                                                                                                                                          'ts; '
                                                                                                                                          "'s ",
                                                                                                                              'method': 'The '
                                                                                                                                        'metric '
                                                                                                                                        'is '
                                                                                                                                        'the '
                                                                                                                                        'statistical '
                                                                                                                                        'value '
                                                                                                                                        'between '
                                                                                                                                        'the '
                                                                                                                                        'model '
                                                                                                                                        'and '
                                                                                                                                        'the '
                                                                                                                                        'observations',
                                                                                                                              'name': 'BiasSstLonRmse',
                                                                                                                              'units': 'C'}},
                                                                                                'BiasTauxLonRmse': {'diagnostic': {'ACCESS-CM2_r3i1p1f1': {'keyerror': None,
                                                                                                                                                           'name': 'ACCESS-CM2_r3i1p1f1',
                                                                                                                                                           'nyears': 165,
                                                                                                                                                           'time_period': ['1850-1-16 '
                                                                                                                                                                           '12:0:0.0',
                                                                                                                                                                           '2014-12-16 '
                                                                                                                                                                           '12:0:0.0']},
                                                                                                                                   'ERA-Interim': {'name': 'ERA-Interim',
                                                                                                                                                   'nyears': 40,
                                                                                                                                                   'time_period': ['1979-1-16 '
                                                                                                                                                                   '12:0:0.0',
                                                                                                                                                                   '2018-12-16 '
                                                                                                                                                                   '12:0:0.0']},
                                                                                                                                   'Tropflux': {'name': 'Tropflux',
                                                                                                                                                'nyears': 39,
                                                                                                                                                'time_period': ['1979-1-15 '
                                                                                                                                                                '0:0:0.0',
                                                                                                                                                                '2017-7-15 '
                                                                                                                                                                '12:0:0.0']},
                                                                                                                                   'method': 'Zonal '
                                                                                                                                             'root '
                                                                                                                                             'mean '
                                                                                                                                             'square '
                                                                                                                                             'error '
                                                                                                                                             'of '
                                                                                                                                             'equatorial_pacific '
                                                                                                                                             'taux, '
                                                                                                                                             'time '
                                                                                                                                             'series '
                                                                                                                                             'are '
                                                                                                                                             'linearly '
                                                                                                                                             'detrended, '
                                                                                                                                             'observations '
                                                                                                                                             'and '
                                                                                                                                             'model '
                                                                                                                                             'regridded '
                                                                                                                                             'to '
                                                                                                                                             'generic_1x1deg',
                                                                                                                                   'name': 'taux '
                                                                                                                                           'Zonal '
                                                                                                                                           'RMSE',
                                                                                                                                   'ref': 'Using '
                                                                                                                                          'CDAT '
                                                                                                                                          'regridding '
                                                                                                                                          'and '
                                                                                                                                          'rms '
                                                                                                                                          '(uncentered '
                                                                                                                                          'and '
                                                                                                                                          'biased) '
                                                                                                                                          'calculation',
                                                                                                                                   'time_frequency': 'monthly',
                                                                                                                                   'units': '1e-3 '
                                                                                                                                            'N/m2'},
                                                                                                                    'metric': {'datasets': 'ACCESS-CM2_r3i1p1f1; '
                                                                                                                                           "ERA-Interim's "
                                                                                                                                           'tauu; '
                                                                                                                                           "Tropflux's "
                                                                                                                                           'tauu; '
                                                                                                                                           "'s ",
                                                                                                                               'method': 'The '
                                                                                                                                         'metric '
                                                                                                                                         'is '
                                                                                                                                         'the '
                                                                                                                                         'statistical '
                                                                                                                                         'value '
                                                                                                                                         'between '
                                                                                                                                         'the '
                                                                                                                                         'model '
                                                                                                                                         'and '
                                                                                                                                         'the '
                                                                                                                                         'observations',
                                                                                                                               'name': 'BiasTauxLonRmse',
                                                                                                                               'units': '1e-3 '
                                                                                                                                        'N/m2'}},
                                                                                                'EnsoAmpl': {'diagnostic': {'20CRv2': {'keyerror': None,
                                                                                                                                       'name': '20CRv2',
                                                                                                                                       'nyears': 142,
                                                                                                                                       'time_period': ['1871-1-16 '
                                                                                                                                                       '12:0:0.0',
                                                                                                                                                       '2012-12-16 '
                                                                                                                                                       '12:0:0.0']},
                                                                                                                            'ACCESS-CM2_r3i1p1f1': {'keyerror': None,
                                                                                                                                                    'name': 'ACCESS-CM2_r3i1p1f1',
                                                                                                                                                    'nyears': 165,
                                                                                                                                                    'time_period': ['1850-1-16 '
                                                                                                                                                                    '12:0:0.0',
                                                                                                                                                                    '2014-12-16 '
                                                                                                                                                                    '12:0:0.0']},
                                                                                                                            'ERA-20C': {'keyerror': None,
                                                                                                                                        'name': 'ERA-20C',
                                                                                                                                        'nyears': 111,
                                                                                                                                        'time_period': ['1900-1-16 '
                                                                                                                                                        '12:0:0.0',
                                                                                                                                                        '2010-12-16 '
                                                                                                                                                        '12:0:0.0']},
                                                                                                                            'ERA-5': {'keyerror': None,
                                                                                                                                      'name': 'ERA-5',
                                                                                                                                      'nyears': 40,
                                                                                                                                      'time_period': ['1979-1-16 '
                                                                                                                                                      '12:0:0.0',
                                                                                                                                                      '2018-12-16 '
                                                                                                                                                      '12:0:0.0']},
                                                                                                                            'ERA-Interim': {'keyerror': None,
                                                                                                                                            'name': 'ERA-Interim',
                                                                                                                                            'nyears': 40,
                                                                                                                                            'time_period': ['1979-1-16 '
                                                                                                                                                            '12:0:0.0',
                                                                                                                                                            '2018-12-16 '
                                                                                                                                                            '12:0:0.0']},
                                                                                                                            'HadISST': {'keyerror': 'unlikely '
                                                                                                                                                    'units: '
                                                                                                                                                    'K([-1e+30, '
                                                                                                                                                    '304.7203])',
                                                                                                                                        'name': 'HadISST',
                                                                                                                                        'nyears': 149,
                                                                                                                                        'time_period': ['1870-1-16 '
                                                                                                                                                        '11:59:59.5',
                                                                                                                                                        '2018-12-16 '
                                                                                                                                                        '18:0:0.0']},
                                                                                                                            'Tropflux': {'keyerror': None,
                                                                                                                                         'name': 'Tropflux',
                                                                                                                                         'nyears': 39,
                                                                                                                                         'time_period': ['1979-1-15 '
                                                                                                                                                         '0:0:0.0',
                                                                                                                                                         '2017-7-15 '
                                                                                                                                                         '12:0:0.0']},
                                                                                                                            'method': 'Standard '
                                                                                                                                      'deviation '
                                                                                                                                      'of '
                                                                                                                                      'nino3.4 '
                                                                                                                                      'sstA, '
                                                                                                                                      'time '
                                                                                                                                      'series '
                                                                                                                                      'are '
                                                                                                                                      'linearly '
                                                                                                                                      'detrended',
                                                                                                                            'name': 'ENSO '
                                                                                                                                    'amplitude',
                                                                                                                            'ref': 'Using '
                                                                                                                                   'CDAT '
                                                                                                                                   'regression '
                                                                                                                                   'calculation',
                                                                                                                            'time_frequency': 'monthly',
                                                                                                                            'units': 'C'},
                                                                                                             'metric': {'datasets': 'ACCESS-CM2_r3i1p1f1; '
                                                                                                                                    "20CRv2's "
                                                                                                                                    'ts; '
                                                                                                                                    "ERA-20C's "
                                                                                                                                    'ts; '
                                                                                                                                    "ERA-5's "
                                                                                                                                    'ts; '
                                                                                                                                    "ERA-Interim's "
                                                                                                                                    'ts; '
                                                                                                                                    "HadISST's "
                                                                                                                                    'ts; '
                                                                                                                                    "Tropflux's "
                                                                                                                                    'ts; '
                                                                                                                                    "'s ",
                                                                                                                        'method': 'The '
                                                                                                                                  'metric '
                                                                                                                                  'is '
                                                                                                                                  'the '
                                                                                                                                  'absolute '
                                                                                                                                  'value '
                                                                                                                                  'of '
                                                                                                                                  'the '
                                                                                                                                  'relative '
                                                                                                                                  'difference '
                                                                                                                                  'between '
                                                                                                                                  'model '
                                                                                                                                  'and '
                                                                                                                                  'observations '
                                                                                                                                  'values '
                                                                                                                                  '(M '
                                                                                                                                  '= '
                                                                                                                                  '100 '
                                                                                                                                  '* '
                                                                                                                                  'abs[[model-obs] '
                                                                                                                                  '/ '
                                                                                                                                  'obs])',
                                                                                                                        'name': 'EnsoAmpl',
                                                                                                                        'units': '%'}},
                                                                                                'EnsoDuration': {'diagnostic': {'20CRv2': {'keyerror': None,
                                                                                                                                           'name': '20CRv2',
                                                                                                                                           'nyears': 142,
                                                                                                                                           'time_period': ['1871-1-16 '
                                                                                                                                                           '12:0:0.0',
                                                                                                                                                           '2012-12-16 '
                                                                                                                                                           '12:0:0.0']},
                                                                                                                                'ACCESS-CM2_r3i1p1f1': {'keyerror': None,
                                                                                                                                                        'name': 'ACCESS-CM2_r3i1p1f1',
                                                                                                                                                        'nyears': 165,
                                                                                                                                                        'time_period': ['1850-1-16 '
                                                                                                                                                                        '12:0:0.0',
                                                                                                                                                                        '2014-12-16 '
                                                                                                                                                                        '12:0:0.0']},
                                                                                                                                'ERA-20C': {'keyerror': None,
                                                                                                                                            'name': 'ERA-20C',
                                                                                                                                            'nyears': 111,
                                                                                                                                            'time_period': ['1900-1-16 '
                                                                                                                                                            '12:0:0.0',
                                                                                                                                                            '2010-12-16 '
                                                                                                                                                            '12:0:0.0']},
                                                                                                                                'ERA-5': {'keyerror': None,
                                                                                                                                          'name': 'ERA-5',
                                                                                                                                          'nyears': 40,
                                                                                                                                          'time_period': ['1979-1-16 '
                                                                                                                                                          '12:0:0.0',
                                                                                                                                                          '2018-12-16 '
                                                                                                                                                          '12:0:0.0']},
                                                                                                                                'ERA-Interim': {'keyerror': None,
                                                                                                                                                'name': 'ERA-Interim',
                                                                                                                                                'nyears': 40,
                                                                                                                                                'time_period': ['1979-1-16 '
                                                                                                                                                                '12:0:0.0',
                                                                                                                                                                '2018-12-16 '
                                                                                                                                                                '12:0:0.0']},
                                                                                                                                'HadISST': {'keyerror': None,
                                                                                                                                            'name': 'HadISST',
                                                                                                                                            'nyears': 149,
                                                                                                                                            'time_period': ['1870-1-16 '
                                                                                                                                                            '11:59:59.5',
                                                                                                                                                            '2018-12-16 '
                                                                                                                                                            '18:0:0.0']},
                                                                                                                                'Tropflux': {'keyerror': None,
                                                                                                                                             'name': 'Tropflux',
                                                                                                                                             'nyears': 39,
                                                                                                                                             'time_period': ['1979-1-15 '
                                                                                                                                                             '0:0:0.0',
                                                                                                                                                             '2017-7-15 '
                                                                                                                                                             '12:0:0.0']},
                                                                                                                                'method': 'nino3.4 '
                                                                                                                                          'SSTA '
                                                                                                                                          'during '
                                                                                                                                          'DEC '
                                                                                                                                          'regressed '
                                                                                                                                          'against '
                                                                                                                                          'nino3.4 '
                                                                                                                                          'SSTA '
                                                                                                                                          'during '
                                                                                                                                          '6 '
                                                                                                                                          'years '
                                                                                                                                          '(centered '
                                                                                                                                          'on '
                                                                                                                                          'ENSO), '
                                                                                                                                          'the '
                                                                                                                                          'duration '
                                                                                                                                          'is '
                                                                                                                                          'the '
                                                                                                                                          'number '
                                                                                                                                          'of '
                                                                                                                                          'consecutive '
                                                                                                                                          'months '
                                                                                                                                          'during '
                                                                                                                                          'which '
                                                                                                                                          'the '
                                                                                                                                          'regression '
                                                                                                                                          'is '
                                                                                                                                          'above '
                                                                                                                                          '0.25, '
                                                                                                                                          'time '
                                                                                                                                          'series '
                                                                                                                                          'are '
                                                                                                                                          'linearly '
                                                                                                                                          'detrended, '
                                                                                                                                          'smoothing '
                                                                                                                                          'using '
                                                                                                                                          'a '
                                                                                                                                          'triangle '
                                                                                                                                          'shaped '
                                                                                                                                          'window '
                                                                                                                                          'of '
                                                                                                                                          '5 '
                                                                                                                                          'points',
                                                                                                                                'name': 'ENSO '
                                                                                                                                        'Duration '
                                                                                                                                        'based '
                                                                                                                                        'on '
                                                                                                                                        'life '
                                                                                                                                        'cyle '
                                                                                                                                        'SSTA '
                                                                                                                                        'pattern',
                                                                                                                                'ref': 'Using '
                                                                                                                                       'CDAT',
                                                                                                                                'time_frequency': 'monthly',
                                                                                                                                'units': 'months'},
                                                                                                                 'metric': {'datasets': 'ACCESS-CM2_r3i1p1f1; '
                                                                                                                                        "20CRv2's "
                                                                                                                                        'ts; '
                                                                                                                                        "ERA-20C's "
                                                                                                                                        'ts; '
                                                                                                                                        "ERA-5's "
                                                                                                                                        'ts; '
                                                                                                                                        "ERA-Interim's "
                                                                                                                                        'ts; '
                                                                                                                                        "HadISST's "
                                                                                                                                        'ts; '
                                                                                                                                        "Tropflux's "
                                                                                                                                        'ts; '
                                                                                                                                        "'s ",
                                                                                                                            'method': 'The '
                                                                                                                                      'metric '
                                                                                                                                      'is '
                                                                                                                                      'the '
                                                                                                                                      'absolute '
                                                                                                                                      'value '
                                                                                                                                      'of '
                                                                                                                                      'the '
                                                                                                                                      'relative '
                                                                                                                                      'difference '
                                                                                                                                      'between '
                                                                                                                                      'model '
                                                                                                                                      'and '
                                                                                                                                      'observations '
                                                                                                                                      'values '
                                                                                                                                      '(M '
                                                                                                                                      '= '
                                                                                                                                      '100 '
                                                                                                                                      '* '
                                                                                                                                      'abs[[model-obs] '
                                                                                                                                      '/ '
                                                                                                                                      'obs])',
                                                                                                                            'name': 'EnsoDuration',
                                                                                                                            'units': '%'}},
                                                                                                'EnsoSeasonality': {'diagnostic': {'20CRv2': {'keyerror': None,
                                                                                                                                              'name': '20CRv2',
                                                                                                                                              'nyears': 142,
                                                                                                                                              'time_period': ['1871-1-16 '
                                                                                                                                                              '12:0:0.0',
                                                                                                                                                              '2012-12-16 '
                                                                                                                                                              '12:0:0.0']},
                                                                                                                                   'ACCESS-CM2_r3i1p1f1': {'keyerror': None,
                                                                                                                                                           'name': 'ACCESS-CM2_r3i1p1f1',
                                                                                                                                                           'nyears': 165,
                                                                                                                                                           'time_period': ['1850-1-16 '
                                                                                                                                                                           '12:0:0.0',
                                                                                                                                                                           '2014-12-16 '
                                                                                                                                                                           '12:0:0.0']},
                                                                                                                                   'ERA-20C': {'keyerror': None,
                                                                                                                                               'name': 'ERA-20C',
                                                                                                                                               'nyears': 111,
                                                                                                                                               'time_period': ['1900-1-16 '
                                                                                                                                                               '12:0:0.0',
                                                                                                                                                               '2010-12-16 '
                                                                                                                                                               '12:0:0.0']},
                                                                                                                                   'ERA-5': {'keyerror': None,
                                                                                                                                             'name': 'ERA-5',
                                                                                                                                             'nyears': 40,
                                                                                                                                             'time_period': ['1979-1-16 '
                                                                                                                                                             '12:0:0.0',
                                                                                                                                                             '2018-12-16 '
                                                                                                                                                             '12:0:0.0']},
                                                                                                                                   'ERA-Interim': {'keyerror': None,
                                                                                                                                                   'name': 'ERA-Interim',
                                                                                                                                                   'nyears': 40,
                                                                                                                                                   'time_period': ['1979-1-16 '
                                                                                                                                                                   '12:0:0.0',
                                                                                                                                                                   '2018-12-16 '
                                                                                                                                                                   '12:0:0.0']},
                                                                                                                                   'HadISST': {'keyerror': 'unlikely '
                                                                                                                                                           'units: '
                                                                                                                                                           'K([-1e+30, '
                                                                                                                                                           '304.7203])',
                                                                                                                                               'name': 'HadISST',
                                                                                                                                               'nyears': 149,
                                                                                                                                               'time_period': ['1870-1-16 '
                                                                                                                                                               '11:59:59.5',
                                                                                                                                                               '2018-12-16 '
                                                                                                                                                               '18:0:0.0']},
                                                                                                                                   'Tropflux': {'keyerror': None,
                                                                                                                                                'name': 'Tropflux',
                                                                                                                                                'nyears': 39,
                                                                                                                                                'time_period': ['1979-1-15 '
                                                                                                                                                                '0:0:0.0',
                                                                                                                                                                '2017-7-15 '
                                                                                                                                                                '12:0:0.0']},
                                                                                                                                   'method': 'Ratio '
                                                                                                                                             'between '
                                                                                                                                             'NDJ '
                                                                                                                                             'and '
                                                                                                                                             'MAM '
                                                                                                                                             'standard '
                                                                                                                                             'deviation '
                                                                                                                                             'nino3.4 '
                                                                                                                                             'sstA, '
                                                                                                                                             'time '
                                                                                                                                             'series '
                                                                                                                                             'are '
                                                                                                                                             'linearly '
                                                                                                                                             'detrended',
                                                                                                                                   'name': 'ENSO '
                                                                                                                                           'seasonality',
                                                                                                                                   'ref': 'Using '
                                                                                                                                          'CDAT '
                                                                                                                                          'std '
                                                                                                                                          'dev '
                                                                                                                                          'calculation',
                                                                                                                                   'time_frequency': 'monthly',
                                                                                                                                   'units': 'C/C'},
                                                                                                                    'metric': {'datasets': 'ACCESS-CM2_r3i1p1f1; '
                                                                                                                                           "20CRv2's "
                                                                                                                                           'ts; '
                                                                                                                                           "ERA-20C's "
                                                                                                                                           'ts; '
                                                                                                                                           "ERA-5's "
                                                                                                                                           'ts; '
                                                                                                                                           "ERA-Interim's "
                                                                                                                                           'ts; '
                                                                                                                                           "HadISST's "
                                                                                                                                           'ts; '
                                                                                                                                           "Tropflux's "
                                                                                                                                           'ts; '
                                                                                                                                           "'s ",
                                                                                                                               'method': 'The '
                                                                                                                                         'metric '
                                                                                                                                         'is '
                                                                                                                                         'the '
                                                                                                                                         'absolute '
                                                                                                                                         'value '
                                                                                                                                         'of '
                                                                                                                                         'the '
                                                                                                                                         'relative '
                                                                                                                                         'difference '
                                                                                                                                         'between '
                                                                                                                                         'model '
                                                                                                                                         'and '
                                                                                                                                         'observations '
                                                                                                                                         'values '
                                                                                                                                         '(M '
                                                                                                                                         '= '
                                                                                                                                         '100 '
                                                                                                                                         '* '
                                                                                                                                         'abs[[model-obs] '
                                                                                                                                         '/ '
                                                                                                                                         'obs])',
                                                                                                                               'name': 'EnsoSeasonality',
                                                                                                                               'units': '%'}},
                                                                                                'EnsoSstDiversity_2': {'diagnostic': {'20CRv2': {'keyerror': None,
                                                                                                                                                 'name': '20CRv2',
                                                                                                                                                 'nyears': 142,
                                                                                                                                                 'time_period': ['1871-1-16 '
                                                                                                                                                                 '12:0:0.0',
                                                                                                                                                                 '2012-12-16 '
                                                                                                                                                                 '12:0:0.0']},
                                                                                                                                      'ACCESS-CM2_r3i1p1f1': {'keyerror': None,
                                                                                                                                                              'name': 'ACCESS-CM2_r3i1p1f1',
                                                                                                                                                              'nyears': 165,
                                                                                                                                                              'time_period': ['1850-1-16 '
                                                                                                                                                                              '12:0:0.0',
                                                                                                                                                                              '2014-12-16 '
                                                                                                                                                                              '12:0:0.0']},
                                                                                                                                      'ERA-20C': {'keyerror': None,
                                                                                                                                                  'name': 'ERA-20C',
                                                                                                                                                  'nyears': 111,
                                                                                                                                                  'time_period': ['1900-1-16 '
                                                                                                                                                                  '12:0:0.0',
                                                                                                                                                                  '2010-12-16 '
                                                                                                                                                                  '12:0:0.0']},
                                                                                                                                      'ERA-5': {'keyerror': None,
                                                                                                                                                'name': 'ERA-5',
                                                                                                                                                'nyears': 40,
                                                                                                                                                'time_period': ['1979-1-16 '
                                                                                                                                                                '12:0:0.0',
                                                                                                                                                                '2018-12-16 '
                                                                                                                                                                '12:0:0.0']},
                                                                                                                                      'ERA-Interim': {'keyerror': None,
                                                                                                                                                      'name': 'ERA-Interim',
                                                                                                                                                      'nyears': 40,
                                                                                                                                                      'time_period': ['1979-1-16 '
                                                                                                                                                                      '12:0:0.0',
                                                                                                                                                                      '2018-12-16 '
                                                                                                                                                                      '12:0:0.0']},
                                                                                                                                      'HadISST': {'keyerror': None,
                                                                                                                                                  'name': 'HadISST',
                                                                                                                                                  'nyears': 149,
                                                                                                                                                  'time_period': ['1870-1-16 '
                                                                                                                                                                  '11:59:59.5',
                                                                                                                                                                  '2018-12-16 '
                                                                                                                                                                  '18:0:0.0']},
                                                                                                                                      'Tropflux': {'keyerror': None,
                                                                                                                                                   'name': 'Tropflux',
                                                                                                                                                   'nyears': 39,
                                                                                                                                                   'time_period': ['1979-1-15 '
                                                                                                                                                                   '0:0:0.0',
                                                                                                                                                                   '2017-7-15 '
                                                                                                                                                                   '12:0:0.0']},
                                                                                                                                      'method': 'Nino '
                                                                                                                                                '(Nina) '
                                                                                                                                                'events '
                                                                                                                                                '= '
                                                                                                                                                'nino3.4 '
                                                                                                                                                'sstA '
                                                                                                                                                '> '
                                                                                                                                                '0.75 '
                                                                                                                                                '(< '
                                                                                                                                                '-0.75) '
                                                                                                                                                'during '
                                                                                                                                                'DEC, '
                                                                                                                                                'zonal '
                                                                                                                                                'SSTA '
                                                                                                                                                '(meridional '
                                                                                                                                                'averaged '
                                                                                                                                                '[-5.0 '
                                                                                                                                                '; '
                                                                                                                                                '5.0]), '
                                                                                                                                                'the '
                                                                                                                                                'zonal '
                                                                                                                                                'SSTA '
                                                                                                                                                'maximum '
                                                                                                                                                '(minimum) '
                                                                                                                                                'is '
                                                                                                                                                'located '
                                                                                                                                                'for '
                                                                                                                                                'each '
                                                                                                                                                'event, '
                                                                                                                                                'the '
                                                                                                                                                'diversity '
                                                                                                                                                'is '
                                                                                                                                                'the '
                                                                                                                                                'interquartile '
                                                                                                                                                'range '
                                                                                                                                                '(IQR '
                                                                                                                                                '= '
                                                                                                                                                'Q3 '
                                                                                                                                                '- '
                                                                                                                                                'Q1), '
                                                                                                                                                'time '
                                                                                                                                                'series '
                                                                                                                                                'are '
                                                                                                                                                'linearly '
                                                                                                                                                'detrended, '
                                                                                                                                                'smoothing '
                                                                                                                                                'using '
                                                                                                                                                'a '
                                                                                                                                                'triangle '
                                                                                                                                                'shaped '
                                                                                                                                                'window '
                                                                                                                                                'of '
                                                                                                                                                '5 '
                                                                                                                                                'points',
                                                                                                                                      'name': 'ENSO '
                                                                                                                                              'Diversity '
                                                                                                                                              '(interquartile '
                                                                                                                                              'range)',
                                                                                                                                      'ref': 'Using '
                                                                                                                                             'CDAT '
                                                                                                                                             'regridding',
                                                                                                                                      'time_frequency': 'monthly',
                                                                                                                                      'units': 'long'},
                                                                                                                       'metric': {'datasets': 'ACCESS-CM2_r3i1p1f1; '
                                                                                                                                              "20CRv2's "
                                                                                                                                              'ts; '
                                                                                                                                              "ERA-20C's "
                                                                                                                                              'ts; '
                                                                                                                                              "ERA-5's "
                                                                                                                                              'ts; '
                                                                                                                                              "ERA-Interim's "
                                                                                                                                              'ts; '
                                                                                                                                              "HadISST's "
                                                                                                                                              'ts; '
                                                                                                                                              "Tropflux's "
                                                                                                                                              'ts; '
                                                                                                                                              "'s ",
                                                                                                                                  'method': 'The '
                                                                                                                                            'metric '
                                                                                                                                            'is '
                                                                                                                                            'the '
                                                                                                                                            'absolute '
                                                                                                                                            'value '
                                                                                                                                            'of '
                                                                                                                                            'the '
                                                                                                                                            'relative '
                                                                                                                                            'difference '
                                                                                                                                            'between '
                                                                                                                                            'model '
                                                                                                                                            'and '
                                                                                                                                            'observations '
                                                                                                                                            'values '
                                                                                                                                            '(M '
                                                                                                                                            '= '
                                                                                                                                            '100 '
                                                                                                                                            '* '
                                                                                                                                            'abs[[model-obs] '
                                                                                                                                            '/ '
                                                                                                                                            'obs])',
                                                                                                                                  'name': 'EnsoSstDiversity',
                                                                                                                                  'units': '%'}},
                                                                                                'EnsoSstLonRmse': {'diagnostic': {'20CRv2': {'name': '20CRv2',
                                                                                                                                             'nyears': 142,
                                                                                                                                             'time_period': ['1871-1-16 '
                                                                                                                                                             '12:0:0.0',
                                                                                                                                                             '2012-12-16 '
                                                                                                                                                             '12:0:0.0']},
                                                                                                                                  'ACCESS-CM2_r3i1p1f1': {'keyerror': None,
                                                                                                                                                          'name': 'ACCESS-CM2_r3i1p1f1',
                                                                                                                                                          'nyears': 165,
                                                                                                                                                          'time_period': ['1850-1-16 '
                                                                                                                                                                          '12:0:0.0',
                                                                                                                                                                          '2014-12-16 '
                                                                                                                                                                          '12:0:0.0']},
                                                                                                                                  'ERA-20C': {'name': 'ERA-20C',
                                                                                                                                              'nyears': 111,
                                                                                                                                              'time_period': ['1900-1-16 '
                                                                                                                                                              '12:0:0.0',
                                                                                                                                                              '2010-12-16 '
                                                                                                                                                              '12:0:0.0']},
                                                                                                                                  'ERA-5': {'name': 'ERA-5',
                                                                                                                                            'nyears': 40,
                                                                                                                                            'time_period': ['1979-1-16 '
                                                                                                                                                            '12:0:0.0',
                                                                                                                                                            '2018-12-16 '
                                                                                                                                                            '12:0:0.0']},
                                                                                                                                  'ERA-Interim': {'name': 'ERA-Interim',
                                                                                                                                                  'nyears': 40,
                                                                                                                                                  'time_period': ['1979-1-16 '
                                                                                                                                                                  '12:0:0.0',
                                                                                                                                                                  '2018-12-16 '
                                                                                                                                                                  '12:0:0.0']},
                                                                                                                                  'HadISST': {'name': 'HadISST',
                                                                                                                                              'nyears': 149,
                                                                                                                                              'time_period': ['1870-1-16 '
                                                                                                                                                              '11:59:59.5',
                                                                                                                                                              '2018-12-16 '
                                                                                                                                                              '18:0:0.0']},
                                                                                                                                  'Tropflux': {'name': 'Tropflux',
                                                                                                                                               'nyears': 39,
                                                                                                                                               'time_period': ['1979-1-15 '
                                                                                                                                                               '0:0:0.0',
                                                                                                                                                               '2017-7-15 '
                                                                                                                                                               '12:0:0.0']},
                                                                                                                                  'method': 'nino3.4 '
                                                                                                                                            'SSTA '
                                                                                                                                            'during '
                                                                                                                                            'DEC '
                                                                                                                                            'regressed '
                                                                                                                                            'against '
                                                                                                                                            'equatorial_pacific '
                                                                                                                                            'SSTA, '
                                                                                                                                            'time '
                                                                                                                                            'series '
                                                                                                                                            'are '
                                                                                                                                            'linearly '
                                                                                                                                            'detrended, '
                                                                                                                                            'smoothing '
                                                                                                                                            'using '
                                                                                                                                            'a '
                                                                                                                                            'triangle '
                                                                                                                                            'shaped '
                                                                                                                                            'window '
                                                                                                                                            'of '
                                                                                                                                            '5 '
                                                                                                                                            'points, '
                                                                                                                                            'observations '
                                                                                                                                            'and '
                                                                                                                                            'model '
                                                                                                                                            'regridded '
                                                                                                                                            'to '
                                                                                                                                            'generic_1x1deg',
                                                                                                                                  'name': 'ENSO '
                                                                                                                                          'Zonal '
                                                                                                                                          'SSTA '
                                                                                                                                          'pattern',
                                                                                                                                  'ref': 'Using '
                                                                                                                                         'CDAT '
                                                                                                                                         'regridding '
                                                                                                                                         'and '
                                                                                                                                         'rms '
                                                                                                                                         '(uncentered '
                                                                                                                                         'and '
                                                                                                                                         'biased) '
                                                                                                                                         'calculation',
                                                                                                                                  'time_frequency': 'monthly',
                                                                                                                                  'units': 'C/C'},
                                                                                                                   'metric': {'datasets': 'ACCESS-CM2_r3i1p1f1; '
                                                                                                                                          "20CRv2's "
                                                                                                                                          'ts; '
                                                                                                                                          "ERA-20C's "
                                                                                                                                          'ts; '
                                                                                                                                          "ERA-5's "
                                                                                                                                          'ts; '
                                                                                                                                          "ERA-Interim's "
                                                                                                                                          'ts; '
                                                                                                                                          "HadISST's "
                                                                                                                                          'ts; '
                                                                                                                                          "Tropflux's "
                                                                                                                                          'ts; '
                                                                                                                                          "'s ",
                                                                                                                              'method': 'The '
                                                                                                                                        'metric '
                                                                                                                                        'is '
                                                                                                                                        'the '
                                                                                                                                        'statistical '
                                                                                                                                        'value '
                                                                                                                                        'between '
                                                                                                                                        'the '
                                                                                                                                        'model '
                                                                                                                                        'and '
                                                                                                                                        'the '
                                                                                                                                        'observations',
                                                                                                                              'name': 'EnsoSstLonRmse',
                                                                                                                              'units': 'C/C'}},
                                                                                                'EnsoSstSkew': {'diagnostic': {'20CRv2': {'keyerror': None,
                                                                                                                                          'name': '20CRv2',
                                                                                                                                          'nyears': 142,
                                                                                                                                          'time_period': ['1871-1-16 '
                                                                                                                                                          '12:0:0.0',
                                                                                                                                                          '2012-12-16 '
                                                                                                                                                          '12:0:0.0']},
                                                                                                                               'ACCESS-CM2_r3i1p1f1': {'keyerror': None,
                                                                                                                                                       'name': 'ACCESS-CM2_r3i1p1f1',
                                                                                                                                                       'nyears': 165,
                                                                                                                                                       'time_period': ['1850-1-16 '
                                                                                                                                                                       '12:0:0.0',
                                                                                                                                                                       '2014-12-16 '
                                                                                                                                                                       '12:0:0.0']},
                                                                                                                               'ERA-20C': {'keyerror': None,
                                                                                                                                           'name': 'ERA-20C',
                                                                                                                                           'nyears': 111,
                                                                                                                                           'time_period': ['1900-1-16 '
                                                                                                                                                           '12:0:0.0',
                                                                                                                                                           '2010-12-16 '
                                                                                                                                                           '12:0:0.0']},
                                                                                                                               'ERA-5': {'keyerror': None,
                                                                                                                                         'name': 'ERA-5',
                                                                                                                                         'nyears': 40,
                                                                                                                                         'time_period': ['1979-1-16 '
                                                                                                                                                         '12:0:0.0',
                                                                                                                                                         '2018-12-16 '
                                                                                                                                                         '12:0:0.0']},
                                                                                                                               'ERA-Interim': {'keyerror': None,
                                                                                                                                               'name': 'ERA-Interim',
                                                                                                                                               'nyears': 40,
                                                                                                                                               'time_period': ['1979-1-16 '
                                                                                                                                                               '12:0:0.0',
                                                                                                                                                               '2018-12-16 '
                                                                                                                                                               '12:0:0.0']},
                                                                                                                               'HadISST': {'keyerror': 'unlikely '
                                                                                                                                                       'units: '
                                                                                                                                                       'K([-1e+30, '
                                                                                                                                                       '304.7203])',
                                                                                                                                           'name': 'HadISST',
                                                                                                                                           'nyears': 149,
                                                                                                                                           'time_period': ['1870-1-16 '
                                                                                                                                                           '11:59:59.5',
                                                                                                                                                           '2018-12-16 '
                                                                                                                                                           '18:0:0.0']},
                                                                                                                               'Tropflux': {'keyerror': None,
                                                                                                                                            'name': 'Tropflux',
                                                                                                                                            'nyears': 39,
                                                                                                                                            'time_period': ['1979-1-15 '
                                                                                                                                                            '0:0:0.0',
                                                                                                                                                            '2017-7-15 '
                                                                                                                                                            '12:0:0.0']},
                                                                                                                               'method': 'Standard '
                                                                                                                                         'deviation '
                                                                                                                                         'of '
                                                                                                                                         'nino3.4 '
                                                                                                                                         'sstA, '
                                                                                                                                         'time '
                                                                                                                                         'series '
                                                                                                                                         'are '
                                                                                                                                         'linearly '
                                                                                                                                         'detrended',
                                                                                                                               'name': 'ENSO '
                                                                                                                                       'skewness',
                                                                                                                               'ref': 'Using '
                                                                                                                                      'CDAT '
                                                                                                                                      'regression '
                                                                                                                                      'calculation',
                                                                                                                               'time_frequency': 'monthly',
                                                                                                                               'units': 'C'},
                                                                                                                'metric': {'datasets': 'ACCESS-CM2_r3i1p1f1; '
                                                                                                                                       "20CRv2's "
                                                                                                                                       'ts; '
                                                                                                                                       "ERA-20C's "
                                                                                                                                       'ts; '
                                                                                                                                       "ERA-5's "
                                                                                                                                       'ts; '
                                                                                                                                       "ERA-Interim's "
                                                                                                                                       'ts; '
                                                                                                                                       "HadISST's "
                                                                                                                                       'ts; '
                                                                                                                                       "Tropflux's "
                                                                                                                                       'ts; '
                                                                                                                                       "'s ",
                                                                                                                           'method': 'The '
                                                                                                                                     'metric '
                                                                                                                                     'is '
                                                                                                                                     'the '
                                                                                                                                     'absolute '
                                                                                                                                     'value '
                                                                                                                                     'of '
                                                                                                                                     'the '
                                                                                                                                     'relative '
                                                                                                                                     'difference '
                                                                                                                                     'between '
                                                                                                                                     'model '
                                                                                                                                     'and '
                                                                                                                                     'observations '
                                                                                                                                     'values '
                                                                                                                                     '(M '
                                                                                                                                     '= '
                                                                                                                                     '100 '
                                                                                                                                     '* '
                                                                                                                                     'abs[[model-obs] '
                                                                                                                                     '/ '
                                                                                                                                     'obs])',
                                                                                                                           'name': 'EnsoSstSkew',
                                                                                                                           'units': '%'}},
                                                                                                'EnsoSstTsRmse': {'diagnostic': {'20CRv2': {'name': '20CRv2',
                                                                                                                                            'nyears': 142,
                                                                                                                                            'time_period': ['1871-1-16 '
                                                                                                                                                            '12:0:0.0',
                                                                                                                                                            '2012-12-16 '
                                                                                                                                                            '12:0:0.0']},
                                                                                                                                 'ACCESS-CM2_r3i1p1f1': {'keyerror': None,
                                                                                                                                                         'name': 'ACCESS-CM2_r3i1p1f1',
                                                                                                                                                         'nyears': 165,
                                                                                                                                                         'time_period': ['1850-1-16 '
                                                                                                                                                                         '12:0:0.0',
                                                                                                                                                                         '2014-12-16 '
                                                                                                                                                                         '12:0:0.0']},
                                                                                                                                 'ERA-20C': {'name': 'ERA-20C',
                                                                                                                                             'nyears': 111,
                                                                                                                                             'time_period': ['1900-1-16 '
                                                                                                                                                             '12:0:0.0',
                                                                                                                                                             '2010-12-16 '
                                                                                                                                                             '12:0:0.0']},
                                                                                                                                 'ERA-5': {'name': 'ERA-5',
                                                                                                                                           'nyears': 40,
                                                                                                                                           'time_period': ['1979-1-16 '
                                                                                                                                                           '12:0:0.0',
                                                                                                                                                           '2018-12-16 '
                                                                                                                                                           '12:0:0.0']},
                                                                                                                                 'ERA-Interim': {'name': 'ERA-Interim',
                                                                                                                                                 'nyears': 40,
                                                                                                                                                 'time_period': ['1979-1-16 '
                                                                                                                                                                 '12:0:0.0',
                                                                                                                                                                 '2018-12-16 '
                                                                                                                                                                 '12:0:0.0']},
                                                                                                                                 'HadISST': {'name': 'HadISST',
                                                                                                                                             'nyears': 149,
                                                                                                                                             'time_period': ['1870-1-16 '
                                                                                                                                                             '11:59:59.5',
                                                                                                                                                             '2018-12-16 '
                                                                                                                                                             '18:0:0.0']},
                                                                                                                                 'Tropflux': {'name': 'Tropflux',
                                                                                                                                              'nyears': 39,
                                                                                                                                              'time_period': ['1979-1-15 '
                                                                                                                                                              '0:0:0.0',
                                                                                                                                                              '2017-7-15 '
                                                                                                                                                              '12:0:0.0']},
                                                                                                                                 'method': 'nino3.4 '
                                                                                                                                           'SSTA '
                                                                                                                                           'during '
                                                                                                                                           'DEC '
                                                                                                                                           'regressed '
                                                                                                                                           'against '
                                                                                                                                           'nino3.4 '
                                                                                                                                           'SSTA '
                                                                                                                                           'during '
                                                                                                                                           '6 '
                                                                                                                                           'years '
                                                                                                                                           '(centered '
                                                                                                                                           'on '
                                                                                                                                           'ENSO), '
                                                                                                                                           'time '
                                                                                                                                           'series '
                                                                                                                                           'are '
                                                                                                                                           'linearly '
                                                                                                                                           'detrended, '
                                                                                                                                           'smoothing '
                                                                                                                                           'using '
                                                                                                                                           'a '
                                                                                                                                           'triangle '
                                                                                                                                           'shaped '
                                                                                                                                           'window '
                                                                                                                                           'of '
                                                                                                                                           '5 '
                                                                                                                                           'points',
                                                                                                                                 'name': 'ENSO '
                                                                                                                                         'life '
                                                                                                                                         'cyle '
                                                                                                                                         'SSTA '
                                                                                                                                         'pattern',
                                                                                                                                 'ref': 'Using '
                                                                                                                                        'CDAT '
                                                                                                                                        'regridding '
                                                                                                                                        'and '
                                                                                                                                        'rms '
                                                                                                                                        '(uncentered '
                                                                                                                                        'and '
                                                                                                                                        'biased) '
                                                                                                                                        'calculation',
                                                                                                                                 'time_frequency': 'monthly',
                                                                                                                                 'units': 'C/C'},
                                                                                                                  'metric': {'datasets': 'ACCESS-CM2_r3i1p1f1; '
                                                                                                                                         "20CRv2's "
                                                                                                                                         'ts; '
                                                                                                                                         "ERA-20C's "
                                                                                                                                         'ts; '
                                                                                                                                         "ERA-5's "
                                                                                                                                         'ts; '
                                                                                                                                         "ERA-Interim's "
                                                                                                                                         'ts; '
                                                                                                                                         "HadISST's "
                                                                                                                                         'ts; '
                                                                                                                                         "Tropflux's "
                                                                                                                                         'ts; '
                                                                                                                                         "'s ",
                                                                                                                             'method': 'The '
                                                                                                                                       'metric '
                                                                                                                                       'is '
                                                                                                                                       'the '
                                                                                                                                       'statistical '
                                                                                                                                       'value '
                                                                                                                                       'between '
                                                                                                                                       'the '
                                                                                                                                       'model '
                                                                                                                                       'and '
                                                                                                                                       'the '
                                                                                                                                       'observations',
                                                                                                                             'name': 'EnsoSstTsRmse',
                                                                                                                             'units': 'C/C'}},
                                                                                                'SeasonalPrLatRmse': {'diagnostic': {'ACCESS-CM2_r3i1p1f1': {'keyerror': None,
                                                                                                                                                             'name': 'ACCESS-CM2_r3i1p1f1',
                                                                                                                                                             'nyears': 165,
                                                                                                                                                             'time_period': ['1850-1-16 '
                                                                                                                                                                             '12:0:0.0',
                                                                                                                                                                             '2014-12-16 '
                                                                                                                                                                             '12:0:0.0']},
                                                                                                                                     'CMAP': {'name': 'CMAP',
                                                                                                                                              'nyears': 40,
                                                                                                                                              'time_period': ['1979-1-16 '
                                                                                                                                                              '12:0:0.0',
                                                                                                                                                              '2018-12-16 '
                                                                                                                                                              '12:0:0.0']},
                                                                                                                                     'ERA-Interim': {'name': 'ERA-Interim',
                                                                                                                                                     'nyears': 40,
                                                                                                                                                     'time_period': ['1979-1-16 '
                                                                                                                                                                     '12:0:0.0',
                                                                                                                                                                     '2018-12-16 '
                                                                                                                                                                     '12:0:0.0']},
                                                                                                                                     'GPCPv2.3': {'name': 'GPCPv2.3',
                                                                                                                                                  'nyears': 40,
                                                                                                                                                  'time_period': ['1979-1-16 '
                                                                                                                                                                  '12:0:0.0',
                                                                                                                                                                  '2018-12-16 '
                                                                                                                                                                  '12:0:0.0']},
                                                                                                                                     'TRMM-3B43v-7': {'name': 'TRMM-3B43v-7',
                                                                                                                                                      'nyears': 20,
                                                                                                                                                      'time_period': ['1998-1-16 '
                                                                                                                                                                      '12:0:0.0',
                                                                                                                                                                      '2017-12-16 '
                                                                                                                                                                      '12:0:0.0']},
                                                                                                                                     'method': 'Meridional '
                                                                                                                                               'root '
                                                                                                                                               'mean '
                                                                                                                                               'square '
                                                                                                                                               'error '
                                                                                                                                               'of '
                                                                                                                                               'nino3_LatExt '
                                                                                                                                               'climatological '
                                                                                                                                               'pr '
                                                                                                                                               'STD, '
                                                                                                                                               'time '
                                                                                                                                               'series '
                                                                                                                                               'are '
                                                                                                                                               'linearly '
                                                                                                                                               'detrended, '
                                                                                                                                               'observations '
                                                                                                                                               'and '
                                                                                                                                               'model '
                                                                                                                                               'regridded '
                                                                                                                                               'to '
                                                                                                                                               'generic_1x1deg',
                                                                                                                                     'name': 'pr '
                                                                                                                                             'meridional '
                                                                                                                                             'seasonality '
                                                                                                                                             'RMSE',
                                                                                                                                     'ref': 'Using '
                                                                                                                                            'CDAT '
                                                                                                                                            'regridding '
                                                                                                                                            'and '
                                                                                                                                            'rms '
                                                                                                                                            '(uncentered '
                                                                                                                                            'and '
                                                                                                                                            'biased) '
                                                                                                                                            'calculation',
                                                                                                                                     'time_frequency': 'monthly',
                                                                                                                                     'units': 'mm/day'},
                                                                                                                      'metric': {'datasets': 'ACCESS-CM2_r3i1p1f1; '
                                                                                                                                             "CMAP's "
                                                                                                                                             'pr; '
                                                                                                                                             "ERA-Interim's "
                                                                                                                                             'pr; '
                                                                                                                                             "GPCPv2.3's "
                                                                                                                                             'pr; '
                                                                                                                                             "TRMM-3B43v-7's "
                                                                                                                                             'pr; '
                                                                                                                                             "'s ",
                                                                                                                                 'method': 'The '
                                                                                                                                           'metric '
                                                                                                                                           'is '
                                                                                                                                           'the '
                                                                                                                                           'statistical '
                                                                                                                                           'value '
                                                                                                                                           'between '
                                                                                                                                           'the '
                                                                                                                                           'model '
                                                                                                                                           'and '
                                                                                                                                           'the '
                                                                                                                                           'observations',
                                                                                                                                 'name': 'SeasonalPrLatRmse',
                                                                                                                                 'units': 'mm/day'}},
                                                                                                'SeasonalPrLonRmse': {'diagnostic': {'ACCESS-CM2_r3i1p1f1': {'keyerror': None,
                                                                                                                                                             'name': 'ACCESS-CM2_r3i1p1f1',
                                                                                                                                                             'nyears': 165,
                                                                                                                                                             'time_period': ['1850-1-16 '
                                                                                                                                                                             '12:0:0.0',
                                                                                                                                                                             '2014-12-16 '
                                                                                                                                                                             '12:0:0.0']},
                                                                                                                                     'CMAP': {'name': 'CMAP',
                                                                                                                                              'nyears': 40,
                                                                                                                                              'time_period': ['1979-1-16 '
                                                                                                                                                              '12:0:0.0',
                                                                                                                                                              '2018-12-16 '
                                                                                                                                                              '12:0:0.0']},
                                                                                                                                     'ERA-Interim': {'name': 'ERA-Interim',
                                                                                                                                                     'nyears': 40,
                                                                                                                                                     'time_period': ['1979-1-16 '
                                                                                                                                                                     '12:0:0.0',
                                                                                                                                                                     '2018-12-16 '
                                                                                                                                                                     '12:0:0.0']},
                                                                                                                                     'GPCPv2.3': {'name': 'GPCPv2.3',
                                                                                                                                                  'nyears': 40,
                                                                                                                                                  'time_period': ['1979-1-16 '
                                                                                                                                                                  '12:0:0.0',
                                                                                                                                                                  '2018-12-16 '
                                                                                                                                                                  '12:0:0.0']},
                                                                                                                                     'TRMM-3B43v-7': {'name': 'TRMM-3B43v-7',
                                                                                                                                                      'nyears': 20,
                                                                                                                                                      'time_period': ['1998-1-16 '
                                                                                                                                                                      '12:0:0.0',
                                                                                                                                                                      '2017-12-16 '
                                                                                                                                                                      '12:0:0.0']},
                                                                                                                                     'method': 'Zonal '
                                                                                                                                               'root '
                                                                                                                                               'mean '
                                                                                                                                               'square '
                                                                                                                                               'error '
                                                                                                                                               'of '
                                                                                                                                               'equatorial_pacific '
                                                                                                                                               'climatological '
                                                                                                                                               'pr '
                                                                                                                                               'STD, '
                                                                                                                                               'time '
                                                                                                                                               'series '
                                                                                                                                               'are '
                                                                                                                                               'linearly '
                                                                                                                                               'detrended, '
                                                                                                                                               'observations '
                                                                                                                                               'and '
                                                                                                                                               'model '
                                                                                                                                               'regridded '
                                                                                                                                               'to '
                                                                                                                                               'generic_1x1deg',
                                                                                                                                     'name': 'pr '
                                                                                                                                             'zonal '
                                                                                                                                             'seasonality '
                                                                                                                                             'RMSE',
                                                                                                                                     'ref': 'Using '
                                                                                                                                            'CDAT '
                                                                                                                                            'regridding '
                                                                                                                                            'and '
                                                                                                                                            'rms '
                                                                                                                                            '(uncentered '
                                                                                                                                            'and '
                                                                                                                                            'biased) '
                                                                                                                                            'calculation',
                                                                                                                                     'time_frequency': 'monthly',
                                                                                                                                     'units': 'mm/day'},
                                                                                                                      'metric': {'datasets': 'ACCESS-CM2_r3i1p1f1; '
                                                                                                                                             "CMAP's "
                                                                                                                                             'pr; '
                                                                                                                                             "ERA-Interim's "
                                                                                                                                             'pr; '
                                                                                                                                             "GPCPv2.3's "
                                                                                                                                             'pr; '
                                                                                                                                             "TRMM-3B43v-7's "
                                                                                                                                             'pr; '
                                                                                                                                             "'s ",
                                                                                                                                 'method': 'The '
                                                                                                                                           'metric '
                                                                                                                                           'is '
                                                                                                                                           'the '
                                                                                                                                           'statistical '
                                                                                                                                           'value '
                                                                                                                                           'between '
                                                                                                                                           'the '
                                                                                                                                           'model '
                                                                                                                                           'and '
                                                                                                                                           'the '
                                                                                                                                           'observations',
                                                                                                                                 'name': 'SeasonalPrLonRmse',
                                                                                                                                 'units': 'mm/day'}},
                                                                                                'SeasonalSstLonRmse': {'diagnostic': {'20CRv2': {'name': '20CRv2',
                                                                                                                                                 'nyears': 142,
                                                                                                                                                 'time_period': ['1871-1-16 '
                                                                                                                                                                 '12:0:0.0',
                                                                                                                                                                 '2012-12-16 '
                                                                                                                                                                 '12:0:0.0']},
                                                                                                                                      'ACCESS-CM2_r3i1p1f1': {'keyerror': None,
                                                                                                                                                              'name': 'ACCESS-CM2_r3i1p1f1',
                                                                                                                                                              'nyears': 165,
                                                                                                                                                              'time_period': ['1850-1-16 '
                                                                                                                                                                              '12:0:0.0',
                                                                                                                                                                              '2014-12-16 '
                                                                                                                                                                              '12:0:0.0']},
                                                                                                                                      'ERA-20C': {'name': 'ERA-20C',
                                                                                                                                                  'nyears': 111,
                                                                                                                                                  'time_period': ['1900-1-16 '
                                                                                                                                                                  '12:0:0.0',
                                                                                                                                                                  '2010-12-16 '
                                                                                                                                                                  '12:0:0.0']},
                                                                                                                                      'ERA-5': {'name': 'ERA-5',
                                                                                                                                                'nyears': 40,
                                                                                                                                                'time_period': ['1979-1-16 '
                                                                                                                                                                '12:0:0.0',
                                                                                                                                                                '2018-12-16 '
                                                                                                                                                                '12:0:0.0']},
                                                                                                                                      'ERA-Interim': {'name': 'ERA-Interim',
                                                                                                                                                      'nyears': 40,
                                                                                                                                                      'time_period': ['1979-1-16 '
                                                                                                                                                                      '12:0:0.0',
                                                                                                                                                                      '2018-12-16 '
                                                                                                                                                                      '12:0:0.0']},
                                                                                                                                      'HadISST': {'name': 'HadISST',
                                                                                                                                                  'nyears': 149,
                                                                                                                                                  'time_period': ['1870-1-16 '
                                                                                                                                                                  '11:59:59.5',
                                                                                                                                                                  '2018-12-16 '
                                                                                                                                                                  '18:0:0.0']},
                                                                                                                                      'Tropflux': {'name': 'Tropflux',
                                                                                                                                                   'nyears': 39,
                                                                                                                                                   'time_period': ['1979-1-15 '
                                                                                                                                                                   '0:0:0.0',
                                                                                                                                                                   '2017-7-15 '
                                                                                                                                                                   '12:0:0.0']},
                                                                                                                                      'method': 'Zonal '
                                                                                                                                                'root '
                                                                                                                                                'mean '
                                                                                                                                                'square '
                                                                                                                                                'error '
                                                                                                                                                'of '
                                                                                                                                                'equatorial_pacific '
                                                                                                                                                'climatological '
                                                                                                                                                'sst '
                                                                                                                                                'STD, '
                                                                                                                                                'time '
                                                                                                                                                'series '
                                                                                                                                                'are '
                                                                                                                                                'linearly '
                                                                                                                                                'detrended, '
                                                                                                                                                'observations '
                                                                                                                                                'and '
                                                                                                                                                'model '
                                                                                                                                                'regridded '
                                                                                                                                                'to '
                                                                                                                                                'generic_1x1deg',
                                                                                                                                      'name': 'sst '
                                                                                                                                              'zonal '
                                                                                                                                              'seasonality '
                                                                                                                                              'RMSE',
                                                                                                                                      'ref': 'Using '
                                                                                                                                             'CDAT '
                                                                                                                                             'regridding '
                                                                                                                                             'and '
                                                                                                                                             'rms '
                                                                                                                                             '(uncentered '
                                                                                                                                             'and '
                                                                                                                                             'biased) '
                                                                                                                                             'calculation',
                                                                                                                                      'time_frequency': 'monthly',
                                                                                                                                      'units': 'C'},
                                                                                                                       'metric': {'datasets': 'ACCESS-CM2_r3i1p1f1; '
                                                                                                                                              "20CRv2's "
                                                                                                                                              'ts; '
                                                                                                                                              "ERA-20C's "
                                                                                                                                              'ts; '
                                                                                                                                              "ERA-5's "
                                                                                                                                              'ts; '
                                                                                                                                              "ERA-Interim's "
                                                                                                                                              'ts; '
                                                                                                                                              "HadISST's "
                                                                                                                                              'ts; '
                                                                                                                                              "Tropflux's "
                                                                                                                                              'ts; '
                                                                                                                                              "'s ",
                                                                                                                                  'method': 'The '
                                                                                                                                            'metric '
                                                                                                                                            'is '
                                                                                                                                            'the '
                                                                                                                                            'statistical '
                                                                                                                                            'value '
                                                                                                                                            'between '
                                                                                                                                            'the '
                                                                                                                                            'model '
                                                                                                                                            'and '
                                                                                                                                            'the '
                                                                                                                                            'observations',
                                                                                                                                  'name': 'SeasonalSstLonRmse',
                                                                                                                                  'units': 'C'}},
                                                                                                'SeasonalTauxLonRmse': {'diagnostic': {'ACCESS-CM2_r3i1p1f1': {'keyerror': None,
                                                                                                                                                               'name': 'ACCESS-CM2_r3i1p1f1',
                                                                                                                                                               'nyears': 165,
                                                                                                                                                               'time_period': ['1850-1-16 '
                                                                                                                                                                               '12:0:0.0',
                                                                                                                                                                               '2014-12-16 '
                                                                                                                                                                               '12:0:0.0']},
                                                                                                                                       'ERA-Interim': {'name': 'ERA-Interim',
                                                                                                                                                       'nyears': 40,
                                                                                                                                                       'time_period': ['1979-1-16 '
                                                                                                                                                                       '12:0:0.0',
                                                                                                                                                                       '2018-12-16 '
                                                                                                                                                                       '12:0:0.0']},
                                                                                                                                       'Tropflux': {'name': 'Tropflux',
                                                                                                                                                    'nyears': 39,
                                                                                                                                                    'time_period': ['1979-1-15 '
                                                                                                                                                                    '0:0:0.0',
                                                                                                                                                                    '2017-7-15 '
                                                                                                                                                                    '12:0:0.0']},
                                                                                                                                       'method': 'Zonal '
                                                                                                                                                 'root '
                                                                                                                                                 'mean '
                                                                                                                                                 'square '
                                                                                                                                                 'error '
                                                                                                                                                 'of '
                                                                                                                                                 'equatorial_pacific '
                                                                                                                                                 'climatological '
                                                                                                                                                 'taux '
                                                                                                                                                 'STD, '
                                                                                                                                                 'time '
                                                                                                                                                 'series '
                                                                                                                                                 'are '
                                                                                                                                                 'linearly '
                                                                                                                                                 'detrended, '
                                                                                                                                                 'observations '
                                                                                                                                                 'and '
                                                                                                                                                 'model '
                                                                                                                                                 'regridded '
                                                                                                                                                 'to '
                                                                                                                                                 'generic_1x1deg',
                                                                                                                                       'name': 'taux '
                                                                                                                                               'zonal '
                                                                                                                                               'seasonality '
                                                                                                                                               'RMSE',
                                                                                                                                       'ref': 'Using '
                                                                                                                                              'CDAT '
                                                                                                                                              'regridding '
                                                                                                                                              'and '
                                                                                                                                              'rms '
                                                                                                                                              '(uncentered '
                                                                                                                                              'and '
                                                                                                                                              'biased) '
                                                                                                                                              'calculation',
                                                                                                                                       'time_frequency': 'monthly',
                                                                                                                                       'units': '1e-3 '
                                                                                                                                                'N/m2'},
                                                                                                                        'metric': {'datasets': 'ACCESS-CM2_r3i1p1f1; '
                                                                                                                                               "ERA-Interim's "
                                                                                                                                               'tauu; '
                                                                                                                                               "Tropflux's "
                                                                                                                                               'tauu; '
                                                                                                                                               "'s ",
                                                                                                                                   'method': 'The '
                                                                                                                                             'metric '
                                                                                                                                             'is '
                                                                                                                                             'the '
                                                                                                                                             'statistical '
                                                                                                                                             'value '
                                                                                                                                             'between '
                                                                                                                                             'the '
                                                                                                                                             'model '
                                                                                                                                             'and '
                                                                                                                                             'the '
                                                                                                                                             'observations',
                                                                                                                                   'name': 'SeasonalTauxLonRmse',
                                                                                                                                   'units': '1e-3 '
                                                                                                                                            'N/m2'}}},
                                                                                    'name': 'Metrics '
                                                                                            'Collection '
                                                                                            'for '
                                                                                            'ENSO '
                                                                                            'performance'},
                                                                       'value': {'BiasPrLatRmse': {'diagnostic': {'ACCESS-CM2_r3i1p1f1': {'value': None,
                                                                                                                                          'value_error': None},
                                                                                                                  'CMAP': {'value': None,
                                                                                                                           'value_error': None},
                                                                                                                  'ERA-Interim': {'value': None,
                                                                                                                                  'value_error': None},
                                                                                                                  'GPCPv2.3': {'value': None,
                                                                                                                               'value_error': None},
                                                                                                                  'TRMM-3B43v-7': {'value': None,
                                                                                                                                   'value_error': None}},
                                                                                                   'metric': {'CMAP': {'value': 2.1391933497959617,
                                                                                                                       'value_error': None},
                                                                                                              'ERA-Interim': {'value': 1.6957165843482407,
                                                                                                                              'value_error': None},
                                                                                                              'GPCPv2.3': {'value': 2.1116244884812527,
                                                                                                                           'value_error': None},
                                                                                                              'TRMM-3B43v-7': {'value': 2.0762233164578854,
                                                                                                                               'value_error': None}}},
                                                                                 'BiasPrLonRmse': {'diagnostic': {'ACCESS-CM2_r3i1p1f1': {'value': None,
                                                                                                                                          'value_error': None},
                                                                                                                  'CMAP': {'value': None,
                                                                                                                           'value_error': None},
                                                                                                                  'ERA-Interim': {'value': None,
                                                                                                                                  'value_error': None},
                                                                                                                  'GPCPv2.3': {'value': None,
                                                                                                                               'value_error': None},
                                                                                                                  'TRMM-3B43v-7': {'value': None,
                                                                                                                                   'value_error': None}},
                                                                                                   'metric': {'CMAP': {'value': 0.7886584536749921,
                                                                                                                       'value_error': None},
                                                                                                              'ERA-Interim': {'value': 1.0690338968390953,
                                                                                                                              'value_error': None},
                                                                                                              'GPCPv2.3': {'value': 0.46371850845036583,
                                                                                                                           'value_error': None},
                                                                                                              'TRMM-3B43v-7': {'value': 0.6852066568283688,
                                                                                                                               'value_error': None}}},
                                                                                 'BiasSstLonRmse': {'diagnostic': {'20CRv2': {'value': None,
                                                                                                                              'value_error': None},
                                                                                                                   'ACCESS-CM2_r3i1p1f1': {'value': None,
                                                                                                                                           'value_error': None},
                                                                                                                   'ERA-20C': {'value': None,
                                                                                                                               'value_error': None},
                                                                                                                   'ERA-5': {'value': None,
                                                                                                                             'value_error': None},
                                                                                                                   'ERA-Interim': {'value': None,
                                                                                                                                   'value_error': None},
                                                                                                                   'HadISST': {'value': None,
                                                                                                                               'value_error': None},
                                                                                                                   'Tropflux': {'value': None,
                                                                                                                                'value_error': None}},
                                                                                                    'metric': {'20CRv2': {'value': 0.541184671035061,
                                                                                                                          'value_error': None},
                                                                                                               'ERA-20C': {'value': 0.5312798674415361,
                                                                                                                           'value_error': None},
                                                                                                               'ERA-5': {'value': 0.5002622936625699,
                                                                                                                         'value_error': None},
                                                                                                               'ERA-Interim': {'value': 0.6127163520938992,
                                                                                                                               'value_error': None},
                                                                                                               'HadISST': {'value': 0.5481567062502946,
                                                                                                                           'value_error': None},
                                                                                                               'Tropflux': {'value': 0.6312817570271734,
                                                                                                                            'value_error': None}}},
                                                                                 'BiasTauxLonRmse': {'diagnostic': {'ACCESS-CM2_r3i1p1f1': {'value': None,
                                                                                                                                            'value_error': None},
                                                                                                                    'ERA-Interim': {'value': None,
                                                                                                                                    'value_error': None},
                                                                                                                    'Tropflux': {'value': None,
                                                                                                                                 'value_error': None}},
                                                                                                     'metric': {'ERA-Interim': {'value': 7.318457710429736,
                                                                                                                                'value_error': None},
                                                                                                                'Tropflux': {'value': 7.017214896301271,
                                                                                                                             'value_error': None}}},
                                                                                 'EnsoAmpl': {'diagnostic': {'20CRv2': {'value': 0.7407960057502115,
                                                                                                                        'value_error': 0.062166219832622445},
                                                                                                             'ACCESS-CM2_r3i1p1f1': {'value': 0.9173210955753004,
                                                                                                                                     'value_error': 0.07141335043624629},
                                                                                                             'ERA-20C': {'value': 0.8265126323027572,
                                                                                                                         'value_error': 0.07844910735406072},
                                                                                                             'ERA-5': {'value': 0.9075909980564855,
                                                                                                                       'value_error': 0.14350273688619733},
                                                                                                             'ERA-Interim': {'value': 0.9001341048707652,
                                                                                                                             'value_error': 0.1423236985494241},
                                                                                                             'HadISST': {'value': 0.7688706055408969,
                                                                                                                         'value_error': 0.06298833428079066},
                                                                                                             'Tropflux': {'value': 0.9128364190673677,
                                                                                                                          'value_error': 0.14617081051130443}},
                                                                                              'metric': {'20CRv2': {'value': 23.829109289853704,
                                                                                                                    'value_error': 20.031591096914156},
                                                                                                         'ERA-20C': {'value': 10.986941968393225,
                                                                                                                     'value_error': 19.174736053152937},
                                                                                                         'ERA-5': {'value': 1.072079553416787,
                                                                                                                   'value_error': 23.849349683580996},
                                                                                                         'ERA-Interim': {'value': 1.9093811257160185,
                                                                                                                         'value_error': 24.046922525424254},
                                                                                                         'HadISST': {'value': 19.307603771634533,
                                                                                                                     'value_error': 19.062144093701967},
                                                                                                         'Tropflux': {'value': 0.49129027000419734,
                                                                                                                      'value_error': 23.914721121689627}}},
                                                                                 'EnsoDuration': {'diagnostic': {'20CRv2': {'value': 13.0,
                                                                                                                            'value_error': None},
                                                                                                                 'ACCESS-CM2_r3i1p1f1': {'value': 12.0,
                                                                                                                                         'value_error': None},
                                                                                                                 'ERA-20C': {'value': 13.0,
                                                                                                                             'value_error': None},
                                                                                                                 'ERA-5': {'value': 13.0,
                                                                                                                           'value_error': None},
                                                                                                                 'ERA-Interim': {'value': 13.0,
                                                                                                                                 'value_error': None},
                                                                                                                 'HadISST': {'value': 13.0,
                                                                                                                             'value_error': None},
                                                                                                                 'Tropflux': {'value': 13.0,
                                                                                                                              'value_error': None}},
                                                                                                  'metric': {'20CRv2': {'value': 7.6923076923076925,
                                                                                                                        'value_error': None},
                                                                                                             'ERA-20C': {'value': 7.6923076923076925,
                                                                                                                         'value_error': None},
                                                                                                             'ERA-5': {'value': 7.6923076923076925,
                                                                                                                       'value_error': None},
                                                                                                             'ERA-Interim': {'value': 7.6923076923076925,
                                                                                                                             'value_error': None},
                                                                                                             'HadISST': {'value': 7.6923076923076925,
                                                                                                                         'value_error': None},
                                                                                                             'Tropflux': {'value': 7.6923076923076925,
                                                                                                                          'value_error': None}}},
                                                                                 'EnsoSeasonality': {'diagnostic': {'20CRv2': {'value': 1.6436435961094338,
                                                                                                                               'value_error': 0.27635126775510105},
                                                                                                                    'ACCESS-CM2_r3i1p1f1': {'value': 1.4749615632589719,
                                                                                                                                            'value_error': 0.2300007499552203},
                                                                                                                    'ERA-20C': {'value': 1.5951589911955568,
                                                                                                                                'value_error': 0.30349823329934555},
                                                                                                                    'ERA-5': {'value': 2.0283123524204223,
                                                                                                                              'value_error': 0.6454942543282691},
                                                                                                                    'ERA-Interim': {'value': 2.052960044692134,
                                                                                                                                    'value_error': 0.6533381861195713},
                                                                                                                    'HadISST': {'value': 1.6666267700450468,
                                                                                                                                'value_error': 0.273531261566947},
                                                                                                                    'Tropflux': {'value': 2.06093854374807,
                                                                                                                                 'value_error': 0.6643426635460994}},
                                                                                                     'metric': {'20CRv2': {'value': 10.262689140744296,
                                                                                                                           'value_error': 29.081179599733908},
                                                                                                                'ERA-20C': {'value': 7.535137788772898,
                                                                                                                            'value_error': 32.011227470576856},
                                                                                                                'ERA-5': {'value': 27.281340001756966,
                                                                                                                          'value_error': 34.48164782084904},
                                                                                                                'ERA-Interim': {'value': 28.154395061295016,
                                                                                                                                'value_error': 34.067663609754824},
                                                                                                                'HadISST': {'value': 11.500187698346789,
                                                                                                                            'value_error': 28.325202229624146},
                                                                                                                'Tropflux': {'value': 28.43253052191585,
                                                                                                                             'value_error': 34.229743776615074}}},
                                                                                 'EnsoSstDiversity_2': {'diagnostic': {'20CRv2': {'value': 48.0,
                                                                                                                                  'value_error': None},
                                                                                                                       'ACCESS-CM2_r3i1p1f1': {'value': 21.0,
                                                                                                                                               'value_error': None},
                                                                                                                       'ERA-20C': {'value': 29.5,
                                                                                                                                   'value_error': None},
                                                                                                                       'ERA-5': {'value': 31.25,
                                                                                                                                 'value_error': None},
                                                                                                                       'ERA-Interim': {'value': 32.0,
                                                                                                                                       'value_error': None},
                                                                                                                       'HadISST': {'value': 49.0,
                                                                                                                                   'value_error': None},
                                                                                                                       'Tropflux': {'value': 33.25,
                                                                                                                                    'value_error': None}},
                                                                                                        'metric': {'20CRv2': {'value': 56.25,
                                                                                                                              'value_error': None},
                                                                                                                   'ERA-20C': {'value': 28.8135593220339,
                                                                                                                               'value_error': None},
                                                                                                                   'ERA-5': {'value': 32.800000000000004,
                                                                                                                             'value_error': None},
                                                                                                                   'ERA-Interim': {'value': 34.375,
                                                                                                                                   'value_error': None},
                                                                                                                   'HadISST': {'value': 57.14285714285714,
                                                                                                                               'value_error': None},
                                                                                                                   'Tropflux': {'value': 36.84210526315789,
                                                                                                                                'value_error': None}}},
                                                                                 'EnsoSstLonRmse': {'diagnostic': {'20CRv2': {'value': None,
                                                                                                                              'value_error': None},
                                                                                                                   'ACCESS-CM2_r3i1p1f1': {'value': None,
                                                                                                                                           'value_error': None},
                                                                                                                   'ERA-20C': {'value': None,
                                                                                                                               'value_error': None},
                                                                                                                   'ERA-5': {'value': None,
                                                                                                                             'value_error': None},
                                                                                                                   'ERA-Interim': {'value': None,
                                                                                                                                   'value_error': None},
                                                                                                                   'HadISST': {'value': None,
                                                                                                                               'value_error': None},
                                                                                                                   'Tropflux': {'value': None,
                                                                                                                                'value_error': None}},
                                                                                                    'metric': {'20CRv2': {'value': 0.08284732594316847,
                                                                                                                          'value_error': None},
                                                                                                               'ERA-20C': {'value': 0.09274124177770596,
                                                                                                                           'value_error': None},
                                                                                                               'ERA-5': {'value': 0.07010114542502865,
                                                                                                                         'value_error': None},
                                                                                                               'ERA-Interim': {'value': 0.07418859433347023,
                                                                                                                               'value_error': None},
                                                                                                               'HadISST': {'value': 0.08911231601705723,
                                                                                                                           'value_error': None},
                                                                                                               'Tropflux': {'value': 0.0727567841871812,
                                                                                                                            'value_error': None}}},
                                                                                 'EnsoSstSkew': {'diagnostic': {'20CRv2': {'value': 0.35464371256710725,
                                                                                                                           'value_error': 0.029761039242344564},
                                                                                                                'ACCESS-CM2_r3i1p1f1': {'value': -0.4111261945242061,
                                                                                                                                        'value_error': -0.03200613083542394},
                                                                                                                'ERA-20C': {'value': 0.19142977450459012,
                                                                                                                            'value_error': 0.01816971010961296},
                                                                                                                'ERA-5': {'value': 0.473403564017451,
                                                                                                                          'value_error': 0.07485167573682382},
                                                                                                                'ERA-Interim': {'value': 0.40501535626049495,
                                                                                                                                'value_error': 0.06403855065638503},
                                                                                                                'HadISST': {'value': 0.40320728014992363,
                                                                                                                            'value_error': 0.033032027448448076},
                                                                                                                'Tropflux': {'value': 0.3838870736969205,
                                                                                                                             'value_error': 0.061471128380725305}},
                                                                                                 'metric': {'20CRv2': {'value': 215.9265425991194,
                                                                                                                       'value_error': -18.75320844946782},
                                                                                                            'ERA-20C': {'value': 314.7660653041976,
                                                                                                                        'value_error': -37.1042083180825},
                                                                                                            'ERA-5': {'value': 186.84476116640536,
                                                                                                                      'value_error': -20.49221789435972},
                                                                                                            'ERA-Interim': {'value': 201.50879174560998,
                                                                                                                            'value_error': -23.95239794209827},
                                                                                                            'HadISST': {'value': 201.96398100037726,
                                                                                                                        'value_error': -16.291099953000533},
                                                                                                            'Tropflux': {'value': 207.09560771738592,
                                                                                                                         'value_error': -25.486403697651006}}},
                                                                                 'EnsoSstTsRmse': {'diagnostic': {'20CRv2': {'value': None,
                                                                                                                             'value_error': None},
                                                                                                                  'ACCESS-CM2_r3i1p1f1': {'value': None,
                                                                                                                                          'value_error': None},
                                                                                                                  'ERA-20C': {'value': None,
                                                                                                                              'value_error': None},
                                                                                                                  'ERA-5': {'value': None,
                                                                                                                            'value_error': None},
                                                                                                                  'ERA-Interim': {'value': None,
                                                                                                                                  'value_error': None},
                                                                                                                  'HadISST': {'value': None,
                                                                                                                              'value_error': None},
                                                                                                                  'Tropflux': {'value': None,
                                                                                                                               'value_error': None}},
                                                                                                   'metric': {'20CRv2': {'value': 0.2850961542484494,
                                                                                                                         'value_error': None},
                                                                                                              'ERA-20C': {'value': 0.2962886807572088,
                                                                                                                          'value_error': None},
                                                                                                              'ERA-5': {'value': 0.30550059079433967,
                                                                                                                        'value_error': None},
                                                                                                              'ERA-Interim': {'value': 0.29679926912887367,
                                                                                                                              'value_error': None},
                                                                                                              'HadISST': {'value': 0.2861012193838602,
                                                                                                                          'value_error': None},
                                                                                                              'Tropflux': {'value': 0.29049484136611026,
                                                                                                                           'value_error': None}}},
                                                                                 'SeasonalPrLatRmse': {'diagnostic': {'ACCESS-CM2_r3i1p1f1': {'value': None,
                                                                                                                                              'value_error': None},
                                                                                                                      'CMAP': {'value': None,
                                                                                                                               'value_error': None},
                                                                                                                      'ERA-Interim': {'value': None,
                                                                                                                                      'value_error': None},
                                                                                                                      'GPCPv2.3': {'value': None,
                                                                                                                                   'value_error': None},
                                                                                                                      'TRMM-3B43v-7': {'value': None,
                                                                                                                                       'value_error': None}},
                                                                                                       'metric': {'CMAP': {'value': 1.6707433394293603,
                                                                                                                           'value_error': None},
                                                                                                                  'ERA-Interim': {'value': 1.5631116920622932,
                                                                                                                                  'value_error': None},
                                                                                                                  'GPCPv2.3': {'value': 1.8260054219807613,
                                                                                                                               'value_error': None},
                                                                                                                  'TRMM-3B43v-7': {'value': 1.6603674467839862,
                                                                                                                                   'value_error': None}}},
                                                                                 'SeasonalPrLonRmse': {'diagnostic': {'ACCESS-CM2_r3i1p1f1': {'value': None,
                                                                                                                                              'value_error': None},
                                                                                                                      'CMAP': {'value': None,
                                                                                                                               'value_error': None},
                                                                                                                      'ERA-Interim': {'value': None,
                                                                                                                                      'value_error': None},
                                                                                                                      'GPCPv2.3': {'value': None,
                                                                                                                                   'value_error': None},
                                                                                                                      'TRMM-3B43v-7': {'value': None,
                                                                                                                                       'value_error': None}},
                                                                                                       'metric': {'CMAP': {'value': 0.6668792147581909,
                                                                                                                           'value_error': None},
                                                                                                                  'ERA-Interim': {'value': 0.7112262216015944,
                                                                                                                                  'value_error': None},
                                                                                                                  'GPCPv2.3': {'value': 0.7937140775821184,
                                                                                                                               'value_error': None},
                                                                                                                  'TRMM-3B43v-7': {'value': 0.7454132278374197,
                                                                                                                                   'value_error': None}}},
                                                                                 'SeasonalSstLonRmse': {'diagnostic': {'20CRv2': {'value': None,
                                                                                                                                  'value_error': None},
                                                                                                                       'ACCESS-CM2_r3i1p1f1': {'value': None,
                                                                                                                                               'value_error': None},
                                                                                                                       'ERA-20C': {'value': None,
                                                                                                                                   'value_error': None},
                                                                                                                       'ERA-5': {'value': None,
                                                                                                                                 'value_error': None},
                                                                                                                       'ERA-Interim': {'value': None,
                                                                                                                                       'value_error': None},
                                                                                                                       'HadISST': {'value': None,
                                                                                                                                   'value_error': None},
                                                                                                                       'Tropflux': {'value': None,
                                                                                                                                    'value_error': None}},
                                                                                                        'metric': {'20CRv2': {'value': 0.2554585558369024,
                                                                                                                              'value_error': None},
                                                                                                                   'ERA-20C': {'value': 0.2670068037258789,
                                                                                                                               'value_error': None},
                                                                                                                   'ERA-5': {'value': 0.2631029492278568,
                                                                                                                             'value_error': None},
                                                                                                                   'ERA-Interim': {'value': 0.2506751949918031,
                                                                                                                                   'value_error': None},
                                                                                                                   'HadISST': {'value': 0.2591660014479898,
                                                                                                                               'value_error': None},
                                                                                                                   'Tropflux': {'value': 0.2593749232159955,
                                                                                                                                'value_error': None}}},
                                                                                 'SeasonalTauxLonRmse': {'diagnostic': {'ACCESS-CM2_r3i1p1f1': {'value': None,
                                                                                                                                                'value_error': None},
                                                                                                                        'ERA-Interim': {'value': None,
                                                                                                                                        'value_error': None},
                                                                                                                        'Tropflux': {'value': None,
                                                                                                                                     'value_error': None}},
                                                                                                         'metric': {'ERA-Interim': {'value': 2.587471160907709,
                                                                                                                                    'value_error': None},
                                                                                                                    'Tropflux': {'value': 2.2934249066850017,
                                                                                                                                 'value_error': None}}}}}}},
                               'provenance': {'commandLine': '/home/lee1043/.conda/envs/pmp_nightly_20210620/bin/enso_driver.py '
                                                             '-p '
                                                             '../param/my_Param_ENSO_PCMDIobs.py '
                                                             '--mip cmip6 '
                                                             '--metricsCollection '
                                                             'ENSO_perf '
                                                             '--case_id '
                                                             'v20210620 '
                                                             '--modnames '
                                                             'UKESM1-0-LL '
                                                             '--realization '
                                                             'r9i1p1f2',
                                              'conda': {'Platform': 'linux-64',
                                                        'PythonVersion': '3.7.3.final.0',
                                                        'Version': '4.8.3',
                                                        'buildVersion': '3.18.8'},
                                              'date': '2021-06-22 07:31:40',
                                              'history': 'import EnsoMetrics\n'
                                                         'from '
                                                         '...script.PMPdriver_lib '
                                                         'import '
                                                         'AddParserArgument\n'
                                                         'from '
                                                         '...script.PMPdriver_lib '
                                                         'import '
                                                         'AddParserArgument\n'
                                                         'from '
                                                         'script.PMPdriver_lib '
                                                         'import '
                                                         'AddParserArgument\n'
                                                         'from '
                                                         'script.PMPdriver_libfrom '
                                                         'PMPdriver_lib import '
                                                         'AddParserArgument\n'
                                                         ' import '
                                                         'AddParserArgument\n'
                                                         'from PMPdriver_lib '
                                                         'import '
                                                         'AddParserArgument\n',
                                              'openGL': {'GLX': {'client': {},
                                                                 'server': {}}},
                                              'osAccess': False,
                                              'packages': {'PMP': 'v2.0-15-g182be71',
                                                           'PMPObs': 'See '
                                                                     "'References' "
                                                                     'key '
                                                                     'below, '
                                                                     'for '
                                                                     'detailed '
                                                                     'obs '
                                                                     'provenance '
                                                                     'information.',
                                                           'blas': '0.3.10',
                                                           'cdat_info': '8.2.2020.08.27.15.53.ga42e5c8',
                                                           'cdms': '3.1.5.2020.11.03.21.54.gf997653',
                                                           'cdp': '1.7.0',
                                                           'cdtime': '3.1.4.2020.10.12.15.52.g2b715b5',
                                                           'cdutil': '8.2.2020.09.28.17.09.g484910c',
                                                           'clapack': None,
                                                           'esmf': '8.0.1',
                                                           'esmpy': '8.0.1',
                                                           'genutil': '8.2.2020.10.07.17.46.ge34ccd5',
                                                           'lapack': '3.8.0',
                                                           'matplotlib': '3.4.2',
                                                           'mesalib': None,
                                                           'numpy': '1.20.3',
                                                           'python': '3.8.10',
                                                           'scipy': '1.5.2',
                                                           'uvcdat': None,
                                                           'vcs': '8.2.2020.08.06.20.48.g4abe712',
                                                           'vtk': '8.2.0.8.2.2020.07.20.18.56.g3aa9eaf'},
                                              'platform': {'Name': 'gates.llnl.gov',
                                                           'OS': 'Linux',
                                                           'Version': '3.10.0-1160.31.1.el7.x86_64'},
                                              'userId': 'lee1043'}},
                 'ENSO_proc': {'REFERENCE': 'MC for ENSO Process...',
                               'RESULTS': {'ACCESS-CM2': {'r1i1p1f1': {'metadata': {'description_of_the_collection': 'Describe '
                                                                                                                     'which '
                                                                                                                     'science '
                                                                                                                     'question '
                                                                                                                     'this '
                                                                                                                     'collection '
                                                                                                                     'is '
                                                                                                                     'about',
                                                                                    'metrics': {'BiasSstLonRmse': {'diagnostic': {'20CRv2': {'name': '20CRv2',
                                                                                                                                             'nyears': 142,
                                                                                                                                             'time_period': ['1871-1-16 '
                                                                                                                                                             '12:0:0.0',
                                                                                                                                                             '2012-12-16 '
                                                                                                                                                             '12:0:0.0']},
                                                                                                                                  'ACCESS-CM2_r1i1p1f1': {'keyerror': None,
                                                                                                                                                          'name': 'ACCESS-CM2_r1i1p1f1',
                                                                                                                                                          'nyears': 165,
                                                                                                                                                          'time_period': ['1850-1-16 '
                                                                                                                                                                          '12:0:0.0',
                                                                                                                                                                          '2014-12-16 '
                                                                                                                                                                          '12:0:0.0']},
                                                                                                                                  'ERA-20C': {'name': 'ERA-20C',
                                                                                                                                              'nyears': 111,
                                                                                                                                              'time_period': ['1900-1-16 '
                                                                                                                                                              '12:0:0.0',
                                                                                                                                                              '2010-12-16 '
                                                                                                                                                              '12:0:0.0']},
                                                                                                                                  'ERA-5': {'name': 'ERA-5',
                                                                                                                                            'nyears': 40,
                                                                                                                                            'time_period': ['1979-1-16 '
                                                                                                                                                            '12:0:0.0',
                                                                                                                                                            '2018-12-16 '
                                                                                                                                                            '12:0:0.0']},
                                                                                                                                  'ERA-Interim': {'name': 'ERA-Interim',
                                                                                                                                                  'nyears': 40,
                                                                                                                                                  'time_period': ['1979-1-16 '
                                                                                                                                                                  '12:0:0.0',
                                                                                                                                                                  '2018-12-16 '
                                                                                                                                                                  '12:0:0.0']},
                                                                                                                                  'HadISST': {'name': 'HadISST',
                                                                                                                                              'nyears': 149,
                                                                                                                                              'time_period': ['1870-1-16 '
                                                                                                                                                              '11:59:59.5',
                                                                                                                                                              '2018-12-16 '
                                                                                                                                                              '18:0:0.0']},
                                                                                                                                  'Tropflux': {'name': 'Tropflux',
                                                                                                                                               'nyears': 39,
                                                                                                                                               'time_period': ['1979-1-15 '
                                                                                                                                                               '0:0:0.0',
                                                                                                                                                               '2017-7-15 '
                                                                                                                                                               '12:0:0.0']},
                                                                                                                                  'method': 'Zonal '
                                                                                                                                            'root '
                                                                                                                                            'mean '
                                                                                                                                            'square '
                                                                                                                                            'error '
                                                                                                                                            'of '
                                                                                                                                            'equatorial_pacific '
                                                                                                                                            'sst, '
                                                                                                                                            'time '
                                                                                                                                            'series '
                                                                                                                                            'are '
                                                                                                                                            'linearly '
                                                                                                                                            'detrended, '
                                                                                                                                            'observations '
                                                                                                                                            'and '
                                                                                                                                            'model '
                                                                                                                                            'regridded '
                                                                                                                                            'to '
                                                                                                                                            'generic_1x1deg',
                                                                                                                                  'name': 'sst '
                                                                                                                                          'Zonal '
                                                                                                                                          'RMSE',
                                                                                                                                  'ref': 'Using '
                                                                                                                                         'CDAT '
                                                                                                                                         'regridding '
                                                                                                                                         'and '
                                                                                                                                         'rms '
                                                                                                                                         '(uncentered '
                                                                                                                                         'and '
                                                                                                                                         'biased) '
                                                                                                                                         'calculation',
                                                                                                                                  'time_frequency': 'monthly',
                                                                                                                                  'units': 'C'},
                                                                                                                   'metric': {'datasets': 'ACCESS-CM2_r1i1p1f1; '
                                                                                                                                          "20CRv2's "
                                                                                                                                          'ts; '
                                                                                                                                          "ERA-20C's "
                                                                                                                                          'ts; '
                                                                                                                                          "ERA-5's "
                                                                                                                                          'ts; '
                                                                                                                                          "ERA-Interim's "
                                                                                                                                          'ts; '
                                                                                                                                          "HadISST's "
                                                                                                                                          'ts; '
                                                                                                                                          "Tropflux's "
                                                                                                                                          'ts; '
                                                                                                                                          "'s ",
                                                                                                                              'method': 'The '
                                                                                                                                        'metric '
                                                                                                                                        'is '
                                                                                                                                        'the '
                                                                                                                                        'statistical '
                                                                                                                                        'value '
                                                                                                                                        'between '
                                                                                                                                        'the '
                                                                                                                                        'model '
                                                                                                                                        'and '
                                                                                                                                        'the '
                                                                                                                                        'observations',
                                                                                                                              'name': 'BiasSstLonRmse',
                                                                                                                              'units': 'C'}},
                                                                                                'BiasTauxLonRmse': {'diagnostic': {'ACCESS-CM2_r1i1p1f1': {'keyerror': None,
                                                                                                                                                           'name': 'ACCESS-CM2_r1i1p1f1',
                                                                                                                                                           'nyears': 165,
                                                                                                                                                           'time_period': ['1850-1-16 '
                                                                                                                                                                           '12:0:0.0',
                                                                                                                                                                           '2014-12-16 '
                                                                                                                                                                           '12:0:0.0']},
                                                                                                                                   'ERA-Interim': {'name': 'ERA-Interim',
                                                                                                                                                   'nyears': 40,
                                                                                                                                                   'time_period': ['1979-1-16 '
                                                                                                                                                                   '12:0:0.0',
                                                                                                                                                                   '2018-12-16 '
                                                                                                                                                                   '12:0:0.0']},
                                                                                                                                   'Tropflux': {'name': 'Tropflux',
                                                                                                                                                'nyears': 39,
                                                                                                                                                'time_period': ['1979-1-15 '
                                                                                                                                                                '0:0:0.0',
                                                                                                                                                                '2017-7-15 '
                                                                                                                                                                '12:0:0.0']},
                                                                                                                                   'method': 'Zonal '
                                                                                                                                             'root '
                                                                                                                                             'mean '
                                                                                                                                             'square '
                                                                                                                                             'error '
                                                                                                                                             'of '
                                                                                                                                             'equatorial_pacific '
                                                                                                                                             'taux, '
                                                                                                                                             'time '
                                                                                                                                             'series '
                                                                                                                                             'are '
                                                                                                                                             'linearly '
                                                                                                                                             'detrended, '
                                                                                                                                             'observations '
                                                                                                                                             'and '
                                                                                                                                             'model '
                                                                                                                                             'regridded '
                                                                                                                                             'to '
                                                                                                                                             'generic_1x1deg',
                                                                                                                                   'name': 'taux '
                                                                                                                                           'Zonal '
                                                                                                                                           'RMSE',
                                                                                                                                   'ref': 'Using '
                                                                                                                                          'CDAT '
                                                                                                                                          'regridding '
                                                                                                                                          'and '
                                                                                                                                          'rms '
                                                                                                                                          '(uncentered '
                                                                                                                                          'and '
                                                                                                                                          'biased) '
                                                                                                                                          'calculation',
                                                                                                                                   'time_frequency': 'monthly',
                                                                                                                                   'units': '1e-3 '
                                                                                                                                            'N/m2'},
                                                                                                                    'metric': {'datasets': 'ACCESS-CM2_r1i1p1f1; '
                                                                                                                                           "ERA-Interim's "
                                                                                                                                           'tauu; '
                                                                                                                                           "Tropflux's "
                                                                                                                                           'tauu; '
                                                                                                                                           "'s ",
                                                                                                                               'method': 'The '
                                                                                                                                         'metric '
                                                                                                                                         'is '
                                                                                                                                         'the '
                                                                                                                                         'statistical '
                                                                                                                                         'value '
                                                                                                                                         'between '
                                                                                                                                         'the '
                                                                                                                                         'model '
                                                                                                                                         'and '
                                                                                                                                         'the '
                                                                                                                                         'observations',
                                                                                                                               'name': 'BiasTauxLonRmse',
                                                                                                                               'units': '1e-3 '
                                                                                                                                        'N/m2'}},
                                                                                                'EnsoAmpl': {'diagnostic': {'20CRv2': {'keyerror': None,
                                                                                                                                       'name': '20CRv2',
                                                                                                                                       'nyears': 142,
                                                                                                                                       'time_period': ['1871-1-16 '
                                                                                                                                                       '12:0:0.0',
                                                                                                                                                       '2012-12-16 '
                                                                                                                                                       '12:0:0.0']},
                                                                                                                            'ACCESS-CM2_r1i1p1f1': {'keyerror': None,
                                                                                                                                                    'name': 'ACCESS-CM2_r1i1p1f1',
                                                                                                                                                    'nyears': 165,
                                                                                                                                                    'time_period': ['1850-1-16 '
                                                                                                                                                                    '12:0:0.0',
                                                                                                                                                                    '2014-12-16 '
                                                                                                                                                                    '12:0:0.0']},
                                                                                                                            'ERA-20C': {'keyerror': None,
                                                                                                                                        'name': 'ERA-20C',
                                                                                                                                        'nyears': 111,
                                                                                                                                        'time_period': ['1900-1-16 '
                                                                                                                                                        '12:0:0.0',
                                                                                                                                                        '2010-12-16 '
                                                                                                                                                        '12:0:0.0']},
                                                                                                                            'ERA-5': {'keyerror': None,
                                                                                                                                      'name': 'ERA-5',
                                                                                                                                      'nyears': 40,
                                                                                                                                      'time_period': ['1979-1-16 '
                                                                                                                                                      '12:0:0.0',
                                                                                                                                                      '2018-12-16 '
                                                                                                                                                      '12:0:0.0']},
                                                                                                                            'ERA-Interim': {'keyerror': None,
                                                                                                                                            'name': 'ERA-Interim',
                                                                                                                                            'nyears': 40,
                                                                                                                                            'time_period': ['1979-1-16 '
                                                                                                                                                            '12:0:0.0',
                                                                                                                                                            '2018-12-16 '
                                                                                                                                                            '12:0:0.0']},
                                                                                                                            'HadISST': {'keyerror': 'unlikely '
                                                                                                                                                    'units: '
                                                                                                                                                    'K([-1e+30, '
                                                                                                                                                    '304.7203])',
                                                                                                                                        'name': 'HadISST',
                                                                                                                                        'nyears': 149,
                                                                                                                                        'time_period': ['1870-1-16 '
                                                                                                                                                        '11:59:59.5',
                                                                                                                                                        '2018-12-16 '
                                                                                                                                                        '18:0:0.0']},
                                                                                                                            'Tropflux': {'keyerror': None,
                                                                                                                                         'name': 'Tropflux',
                                                                                                                                         'nyears': 39,
                                                                                                                                         'time_period': ['1979-1-15 '
                                                                                                                                                         '0:0:0.0',
                                                                                                                                                         '2017-7-15 '
                                                                                                                                                         '12:0:0.0']},
                                                                                                                            'method': 'Standard '
                                                                                                                                      'deviation '
                                                                                                                                      'of '
                                                                                                                                      'nino3.4 '
                                                                                                                                      'sstA, '
                                                                                                                                      'time '
                                                                                                                                      'series '
                                                                                                                                      'are '
                                                                                                                                      'linearly '
                                                                                                                                      'detrended',
                                                                                                                            'name': 'ENSO '
                                                                                                                                    'amplitude',
                                                                                                                            'ref': 'Using '
                                                                                                                                   'CDAT '
                                                                                                                                   'regression '
                                                                                                                                   'calculation',
                                                                                                                            'time_frequency': 'monthly',
                                                                                                                            'units': 'C'},
                                                                                                             'metric': {'datasets': 'ACCESS-CM2_r1i1p1f1; '
                                                                                                                                    "20CRv2's "
                                                                                                                                    'ts; '
                                                                                                                                    "ERA-20C's "
                                                                                                                                    'ts; '
                                                                                                                                    "ERA-5's "
                                                                                                                                    'ts; '
                                                                                                                                    "ERA-Interim's "
                                                                                                                                    'ts; '
                                                                                                                                    "HadISST's "
                                                                                                                                    'ts; '
                                                                                                                                    "Tropflux's "
                                                                                                                                    'ts; '
                                                                                                                                    "'s ",
                                                                                                                        'method': 'The '
                                                                                                                                  'metric '
                                                                                                                                  'is '
                                                                                                                                  'the '
                                                                                                                                  'absolute '
                                                                                                                                  'value '
                                                                                                                                  'of '
                                                                                                                                  'the '
                                                                                                                                  'relative '
                                                                                                                                  'difference '
                                                                                                                                  'between '
                                                                                                                                  'model '
                                                                                                                                  'and '
                                                                                                                                  'observations '
                                                                                                                                  'values '
                                                                                                                                  '(M '
                                                                                                                                  '= '
                                                                                                                                  '100 '
                                                                                                                                  '* '
                                                                                                                                  'abs[[model-obs] '
                                                                                                                                  '/ '
                                                                                                                                  'obs])',
                                                                                                                        'name': 'EnsoAmpl',
                                                                                                                        'units': '%'}},
                                                                                                'EnsoFbSshSst': {'diagnostic': {'20CRv2_AVISO': {'keyerror': None,
                                                                                                                                                 'name': '20CRv2_AVISO',
                                                                                                                                                 'nyears': 20,
                                                                                                                                                 'time_period': ['1993-1-16 '
                                                                                                                                                                 '12:0:0.0',
                                                                                                                                                                 '2012-12-16 '
                                                                                                                                                                 '12:0:0.0']},
                                                                                                                                'ACCESS-CM2_r1i1p1f1': {'keyerror': None,
                                                                                                                                                        'name': 'ACCESS-CM2_r1i1p1f1',
                                                                                                                                                        'nyears': 165,
                                                                                                                                                        'time_period': ['1850-1-16 '
                                                                                                                                                                        '12:0:0.0',
                                                                                                                                                                        '2014-12-16 '
                                                                                                                                                                        '12:0:0.0']},
                                                                                                                                'ERA-20C_AVISO': {'keyerror': None,
                                                                                                                                                  'name': 'ERA-20C_AVISO',
                                                                                                                                                  'nyears': 18,
                                                                                                                                                  'time_period': ['1993-1-16 '
                                                                                                                                                                  '12:0:0.0',
                                                                                                                                                                  '2010-12-16 '
                                                                                                                                                                  '12:0:0.0']},
                                                                                                                                'ERA-5_AVISO': {'keyerror': None,
                                                                                                                                                'name': 'ERA-5_AVISO',
                                                                                                                                                'nyears': 26,
                                                                                                                                                'time_period': ['1993-1-16 '
                                                                                                                                                                '12:0:0.0',
                                                                                                                                                                '2018-12-16 '
                                                                                                                                                                '12:0:0.0']},
                                                                                                                                'ERA-Interim_AVISO': {'keyerror': None,
                                                                                                                                                      'name': 'ERA-Interim_AVISO',
                                                                                                                                                      'nyears': 26,
                                                                                                                                                      'time_period': ['1993-1-16 '
                                                                                                                                                                      '12:0:0.0',
                                                                                                                                                                      '2018-12-16 '
                                                                                                                                                                      '12:0:0.0']},
                                                                                                                                'HadISST_AVISO': {'keyerror': None,
                                                                                                                                                  'name': 'HadISST_AVISO',
                                                                                                                                                  'nyears': 26,
                                                                                                                                                  'time_period': ['1993-1-16 '
                                                                                                                                                                  '3:0:0.0',
                                                                                                                                                                  '2018-12-16 '
                                                                                                                                                                  '18:0:0.0']},
                                                                                                                                'Tropflux_AVISO': {'keyerror': None,
                                                                                                                                                   'name': 'Tropflux_AVISO',
                                                                                                                                                   'nyears': 25,
                                                                                                                                                   'time_period': ['1993-1-15 '
                                                                                                                                                                   '0:0:0.0',
                                                                                                                                                                   '2017-7-15 '
                                                                                                                                                                   '12:0:0.0']},
                                                                                                                                'method': 'Regression '
                                                                                                                                          'of '
                                                                                                                                          'nino3 '
                                                                                                                                          'sstA '
                                                                                                                                          'over '
                                                                                                                                          'nino3 '
                                                                                                                                          'sshA, '
                                                                                                                                          'time '
                                                                                                                                          'series '
                                                                                                                                          'are '
                                                                                                                                          'linearly '
                                                                                                                                          'detrended',
                                                                                                                                'method_nonlinearity': 'The '
                                                                                                                                                       'nonlinearity '
                                                                                                                                                       'is '
                                                                                                                                                       'the '
                                                                                                                                                       'regression '
                                                                                                                                                       'computed '
                                                                                                                                                       'when '
                                                                                                                                                       'sshA<0 '
                                                                                                                                                       'minus '
                                                                                                                                                       'the '
                                                                                                                                                       'regression '
                                                                                                                                                       'computed '
                                                                                                                                                       'when '
                                                                                                                                                       'sshA>0',
                                                                                                                                'name': 'Sst-Ssh '
                                                                                                                                        'feedback',
                                                                                                                                'ref': 'Using '
                                                                                                                                       'CDAT '
                                                                                                                                       'regression '
                                                                                                                                       'calculation',
                                                                                                                                'time_frequency': 'monthly',
                                                                                                                                'units': 'C/cm'},
                                                                                                                 'metric': {'datasets': 'ACCESS-CM2_r1i1p1f1; '
                                                                                                                                        "20CRv2's "
                                                                                                                                        'ts; '
                                                                                                                                        "ERA-20C's "
                                                                                                                                        'ts; '
                                                                                                                                        "ERA-5's "
                                                                                                                                        'ts; '
                                                                                                                                        "ERA-Interim's "
                                                                                                                                        'ts; '
                                                                                                                                        "HadISST's "
                                                                                                                                        'ts; '
                                                                                                                                        "Tropflux's "
                                                                                                                                        'ts; '
                                                                                                                                        "AVISO's "
                                                                                                                                        'zos',
                                                                                                                            'method': 'The '
                                                                                                                                      'metric '
                                                                                                                                      'is '
                                                                                                                                      'the '
                                                                                                                                      'absolute '
                                                                                                                                      'value '
                                                                                                                                      'of '
                                                                                                                                      'the '
                                                                                                                                      'relative '
                                                                                                                                      'difference '
                                                                                                                                      'between '
                                                                                                                                      'model '
                                                                                                                                      'and '
                                                                                                                                      'observations '
                                                                                                                                      'values '
                                                                                                                                      '(M '
                                                                                                                                      '= '
                                                                                                                                      '100 '
                                                                                                                                      '* '
                                                                                                                                      'abs[[model-obs] '
                                                                                                                                      '/ '
                                                                                                                                      'obs])',
                                                                                                                            'name': 'EnsoFbSshSst',
                                                                                                                            'units': '%'}},
                                                                                                'EnsoFbSstTaux': {'diagnostic': {'20CRv2_ERA-Interim': {'keyerror': None,
                                                                                                                                                        'name': '20CRv2_ERA-Interim',
                                                                                                                                                        'nyears': 34,
                                                                                                                                                        'time_period': ['1979-1-16 '
                                                                                                                                                                        '12:0:0.0',
                                                                                                                                                                        '2012-12-16 '
                                                                                                                                                                        '12:0:0.0']},
                                                                                                                                 '20CRv2_Tropflux': {'keyerror': None,
                                                                                                                                                     'name': '20CRv2_Tropflux',
                                                                                                                                                     'nyears': 34,
                                                                                                                                                     'time_period': ['1979-1-16 '
                                                                                                                                                                     '12:0:0.0',
                                                                                                                                                                     '2012-12-16 '
                                                                                                                                                                     '12:0:0.0']},
                                                                                                                                 'ACCESS-CM2_r1i1p1f1': {'keyerror': None,
                                                                                                                                                         'name': 'ACCESS-CM2_r1i1p1f1',
                                                                                                                                                         'nyears': 165,
                                                                                                                                                         'time_period': ['1850-1-16 '
                                                                                                                                                                         '12:0:0.0',
                                                                                                                                                                         '2014-12-16 '
                                                                                                                                                                         '12:0:0.0']},
                                                                                                                                 'ERA-20C_ERA-Interim': {'keyerror': None,
                                                                                                                                                         'name': 'ERA-20C_ERA-Interim',
                                                                                                                                                         'nyears': 32,
                                                                                                                                                         'time_period': ['1979-1-16 '
                                                                                                                                                                         '12:0:0.0',
                                                                                                                                                                         '2010-12-16 '
                                                                                                                                                                         '12:0:0.0']},
                                                                                                                                 'ERA-20C_Tropflux': {'keyerror': None,
                                                                                                                                                      'name': 'ERA-20C_Tropflux',
                                                                                                                                                      'nyears': 32,
                                                                                                                                                      'time_period': ['1979-1-16 '
                                                                                                                                                                      '12:0:0.0',
                                                                                                                                                                      '2010-12-16 '
                                                                                                                                                                      '12:0:0.0']},
                                                                                                                                 'ERA-5_ERA-Interim': {'keyerror': None,
                                                                                                                                                       'name': 'ERA-5_ERA-Interim',
                                                                                                                                                       'nyears': 40,
                                                                                                                                                       'time_period': ['1979-1-16 '
                                                                                                                                                                       '12:0:0.0',
                                                                                                                                                                       '2018-12-16 '
                                                                                                                                                                       '12:0:0.0']},
                                                                                                                                 'ERA-5_Tropflux': {'keyerror': None,
                                                                                                                                                    'name': 'ERA-5_Tropflux',
                                                                                                                                                    'nyears': 39,
                                                                                                                                                    'time_period': ['1979-1-16 '
                                                                                                                                                                    '12:0:0.0',
                                                                                                                                                                    '2017-7-16 '
                                                                                                                                                                    '12:0:0.0']},
                                                                                                                                 'ERA-Interim_ERA-Interim': {'keyerror': None,
                                                                                                                                                             'name': 'ERA-Interim_ERA-Interim',
                                                                                                                                                             'nyears': 40,
                                                                                                                                                             'time_period': ['1979-1-16 '
                                                                                                                                                                             '12:0:0.0',
                                                                                                                                                                             '2018-12-16 '
                                                                                                                                                                             '12:0:0.0']},
                                                                                                                                 'ERA-Interim_Tropflux': {'keyerror': None,
                                                                                                                                                          'name': 'ERA-Interim_Tropflux',
                                                                                                                                                          'nyears': 39,
                                                                                                                                                          'time_period': ['1979-1-16 '
                                                                                                                                                                          '12:0:0.0',
                                                                                                                                                                          '2017-7-16 '
                                                                                                                                                                          '12:0:0.0']},
                                                                                                                                 'HadISST_ERA-Interim': {'keyerror': None,
                                                                                                                                                         'name': 'HadISST_ERA-Interim',
                                                                                                                                                         'nyears': 40,
                                                                                                                                                         'time_period': ['1979-1-16 '
                                                                                                                                                                         '3:0:0.0',
                                                                                                                                                                         '2018-12-16 '
                                                                                                                                                                         '18:0:0.0']},
                                                                                                                                 'HadISST_Tropflux': {'keyerror': None,
                                                                                                                                                      'name': 'HadISST_Tropflux',
                                                                                                                                                      'nyears': 39,
                                                                                                                                                      'time_period': ['1979-1-16 '
                                                                                                                                                                      '3:0:0.0',
                                                                                                                                                                      '2017-7-16 '
                                                                                                                                                                      '18:0:0.0']},
                                                                                                                                 'Tropflux_ERA-Interim': {'keyerror': None,
                                                                                                                                                          'name': 'Tropflux_ERA-Interim',
                                                                                                                                                          'nyears': 39,
                                                                                                                                                          'time_period': ['1979-1-15 '
                                                                                                                                                                          '0:0:0.0',
                                                                                                                                                                          '2017-7-15 '
                                                                                                                                                                          '12:0:0.0']},
                                                                                                                                 'Tropflux_Tropflux': {'keyerror': None,
                                                                                                                                                       'name': 'Tropflux_Tropflux',
                                                                                                                                                       'nyears': 39,
                                                                                                                                                       'time_period': ['1979-1-15 '
                                                                                                                                                                       '0:0:0.0',
                                                                                                                                                                       '2017-7-15 '
                                                                                                                                                                       '12:0:0.0']},
                                                                                                                                 'method': 'Regression '
                                                                                                                                           'of '
                                                                                                                                           'nino4 '
                                                                                                                                           'tauxA '
                                                                                                                                           'over '
                                                                                                                                           'nino3 '
                                                                                                                                           'sstA, '
                                                                                                                                           'time '
                                                                                                                                           'series '
                                                                                                                                           'are '
                                                                                                                                           'linearly '
                                                                                                                                           'detrended',
                                                                                                                                 'method_nonlinearity': 'The '
                                                                                                                                                        'nonlinearity '
                                                                                                                                                        'is '
                                                                                                                                                        'the '
                                                                                                                                                        'regression '
                                                                                                                                                        'computed '
                                                                                                                                                        'when '
                                                                                                                                                        'sstA<0 '
                                                                                                                                                        'minus '
                                                                                                                                                        'the '
                                                                                                                                                        'regression '
                                                                                                                                                        'computed '
                                                                                                                                                        'when '
                                                                                                                                                        'sstA>0',
                                                                                                                                 'name': 'Taux-Sst '
                                                                                                                                         'feedback '
                                                                                                                                         '(mu)',
                                                                                                                                 'ref': 'Using '
                                                                                                                                        'CDAT '
                                                                                                                                        'regression '
                                                                                                                                        'calculation',
                                                                                                                                 'time_frequency': 'monthly',
                                                                                                                                 'units': '1e-3 '
                                                                                                                                          'N/m2/C'},
                                                                                                                  'metric': {'datasets': 'ACCESS-CM2_r1i1p1f1; '
                                                                                                                                         "20CRv2's "
                                                                                                                                         'ts; '
                                                                                                                                         "ERA-20C's "
                                                                                                                                         'ts; '
                                                                                                                                         "ERA-5's "
                                                                                                                                         'ts; '
                                                                                                                                         "ERA-Interim's "
                                                                                                                                         'ts; '
                                                                                                                                         "HadISST's "
                                                                                                                                         'ts; '
                                                                                                                                         "Tropflux's "
                                                                                                                                         'ts; '
                                                                                                                                         "ERA-Interim's "
                                                                                                                                         'tauu; '
                                                                                                                                         "Tropflux's "
                                                                                                                                         'tauu',
                                                                                                                             'method': 'The '
                                                                                                                                       'metric '
                                                                                                                                       'is '
                                                                                                                                       'the '
                                                                                                                                       'absolute '
                                                                                                                                       'value '
                                                                                                                                       'of '
                                                                                                                                       'the '
                                                                                                                                       'relative '
                                                                                                                                       'difference '
                                                                                                                                       'between '
                                                                                                                                       'model '
                                                                                                                                       'and '
                                                                                                                                       'observations '
                                                                                                                                       'values '
                                                                                                                                       '(M '
                                                                                                                                       '= '
                                                                                                                                       '100 '
                                                                                                                                       '* '
                                                                                                                                       'abs[[model-obs] '
                                                                                                                                       '/ '
                                                                                                                                       'obs])',
                                                                                                                             'name': 'EnsoFbSstTaux',
                                                                                                                             'units': '%'}},
                                                                                                'EnsoFbSstThf': {'diagnostic': {'20CRv2_ERA-Interim': {'keyerror': '',
                                                                                                                                                       'name': '20CRv2_ERA-Interim',
                                                                                                                                                       'nyears': 34,
                                                                                                                                                       'time_period': ['1979-1-16 '
                                                                                                                                                                       '12:0:0.0',
                                                                                                                                                                       '2012-12-16 '
                                                                                                                                                                       '12:0:0.0']},
                                                                                                                                'ACCESS-CM2_r1i1p1f1': {'keyerror': '',
                                                                                                                                                        'name': 'ACCESS-CM2_r1i1p1f1',
                                                                                                                                                        'nyears': 165,
                                                                                                                                                        'time_period': ['1850-1-16 '
                                                                                                                                                                        '12:0:0.0',
                                                                                                                                                                        '2014-12-16 '
                                                                                                                                                                        '12:0:0.0']},
                                                                                                                                'ERA-20C_ERA-Interim': {'keyerror': '',
                                                                                                                                                        'name': 'ERA-20C_ERA-Interim',
                                                                                                                                                        'nyears': 32,
                                                                                                                                                        'time_period': ['1979-1-16 '
                                                                                                                                                                        '12:0:0.0',
                                                                                                                                                                        '2010-12-16 '
                                                                                                                                                                        '12:0:0.0']},
                                                                                                                                'ERA-5_ERA-Interim': {'keyerror': '',
                                                                                                                                                      'name': 'ERA-5_ERA-Interim',
                                                                                                                                                      'nyears': 40,
                                                                                                                                                      'time_period': ['1979-1-16 '
                                                                                                                                                                      '12:0:0.0',
                                                                                                                                                                      '2018-12-16 '
                                                                                                                                                                      '12:0:0.0']},
                                                                                                                                'ERA-Interim_ERA-Interim': {'keyerror': '',
                                                                                                                                                            'name': 'ERA-Interim_ERA-Interim',
                                                                                                                                                            'nyears': 40,
                                                                                                                                                            'time_period': ['1979-1-16 '
                                                                                                                                                                            '12:0:0.0',
                                                                                                                                                                            '2018-12-16 '
                                                                                                                                                                            '12:0:0.0']},
                                                                                                                                'HadISST_ERA-Interim': {'keyerror': '',
                                                                                                                                                        'name': 'HadISST_ERA-Interim',
                                                                                                                                                        'nyears': 40,
                                                                                                                                                        'time_period': ['1979-1-16 '
                                                                                                                                                                        '3:0:0.0',
                                                                                                                                                                        '2018-12-16 '
                                                                                                                                                                        '18:0:0.0']},
                                                                                                                                'Tropflux_ERA-Interim': {'keyerror': '',
                                                                                                                                                         'name': 'Tropflux_ERA-Interim',
                                                                                                                                                         'nyears': 39,
                                                                                                                                                         'time_period': ['1979-1-15 '
                                                                                                                                                                         '0:0:0.0',
                                                                                                                                                                         '2017-7-15 '
                                                                                                                                                                         '12:0:0.0']},
                                                                                                                                'method': 'Regression '
                                                                                                                                          'of '
                                                                                                                                          'nino3 '
                                                                                                                                          'thfA '
                                                                                                                                          'over '
                                                                                                                                          'nino3 '
                                                                                                                                          'sstA, '
                                                                                                                                          'time '
                                                                                                                                          'series '
                                                                                                                                          'are '
                                                                                                                                          'linearly '
                                                                                                                                          'detrended',
                                                                                                                                'method_nonlinearity': 'The '
                                                                                                                                                       'nonlinearity '
                                                                                                                                                       'is '
                                                                                                                                                       'the '
                                                                                                                                                       'regression '
                                                                                                                                                       'computed '
                                                                                                                                                       'when '
                                                                                                                                                       'sstA<0 '
                                                                                                                                                       'minus '
                                                                                                                                                       'the '
                                                                                                                                                       'regression '
                                                                                                                                                       'computed '
                                                                                                                                                       'when '
                                                                                                                                                       'sstA>0',
                                                                                                                                'name': 'Thf-Sst '
                                                                                                                                        'feedback '
                                                                                                                                        '(alpha)',
                                                                                                                                'ref': 'Using '
                                                                                                                                       'CDAT '
                                                                                                                                       'regression '
                                                                                                                                       'calculation',
                                                                                                                                'time_frequency': 'monthly',
                                                                                                                                'units': 'W/m2/C'},
                                                                                                                 'metric': {'datasets': 'ACCESS-CM2_r1i1p1f1; '
                                                                                                                                        "20CRv2's "
                                                                                                                                        'ts; '
                                                                                                                                        "ERA-20C's "
                                                                                                                                        'ts; '
                                                                                                                                        "ERA-5's "
                                                                                                                                        'ts; '
                                                                                                                                        "ERA-Interim's "
                                                                                                                                        'ts; '
                                                                                                                                        "HadISST's "
                                                                                                                                        'ts; '
                                                                                                                                        "Tropflux's "
                                                                                                                                        'ts; '
                                                                                                                                        "ERA-Interim's "
                                                                                                                                        'hfls '
                                                                                                                                        '& '
                                                                                                                                        'hfss '
                                                                                                                                        '& '
                                                                                                                                        'rlds '
                                                                                                                                        '& '
                                                                                                                                        'rlus '
                                                                                                                                        '& '
                                                                                                                                        'rsds '
                                                                                                                                        '& '
                                                                                                                                        'rsus',
                                                                                                                            'method': 'The '
                                                                                                                                      'metric '
                                                                                                                                      'is '
                                                                                                                                      'the '
                                                                                                                                      'absolute '
                                                                                                                                      'value '
                                                                                                                                      'of '
                                                                                                                                      'the '
                                                                                                                                      'relative '
                                                                                                                                      'difference '
                                                                                                                                      'between '
                                                                                                                                      'model '
                                                                                                                                      'and '
                                                                                                                                      'observations '
                                                                                                                                      'values '
                                                                                                                                      '(M '
                                                                                                                                      '= '
                                                                                                                                      '100 '
                                                                                                                                      '* '
                                                                                                                                      'abs[[model-obs] '
                                                                                                                                      '/ '
                                                                                                                                      'obs])',
                                                                                                                            'name': 'EnsoFbSstThf',
                                                                                                                            'units': '%'}},
                                                                                                'EnsoFbTauxSsh': {'diagnostic': {'ACCESS-CM2_r1i1p1f1': {'keyerror': None,
                                                                                                                                                         'name': 'ACCESS-CM2_r1i1p1f1',
                                                                                                                                                         'nyears': 165,
                                                                                                                                                         'time_period': ['1850-1-16 '
                                                                                                                                                                         '12:0:0.0',
                                                                                                                                                                         '2014-12-16 '
                                                                                                                                                                         '12:0:0.0']},
                                                                                                                                 'ERA-Interim_AVISO': {'keyerror': None,
                                                                                                                                                       'name': 'ERA-Interim_AVISO',
                                                                                                                                                       'nyears': 26,
                                                                                                                                                       'time_period': ['1993-1-16 '
                                                                                                                                                                       '12:0:0.0',
                                                                                                                                                                       '2018-12-16 '
                                                                                                                                                                       '12:0:0.0']},
                                                                                                                                 'Tropflux_AVISO': {'keyerror': None,
                                                                                                                                                    'name': 'Tropflux_AVISO',
                                                                                                                                                    'nyears': 25,
                                                                                                                                                    'time_period': ['1993-1-16 '
                                                                                                                                                                    '12:0:0.0',
                                                                                                                                                                    '2017-7-16 '
                                                                                                                                                                    '12:0:0.0']},
                                                                                                                                 'method': 'Regression '
                                                                                                                                           'of '
                                                                                                                                           'nino3 '
                                                                                                                                           'sshA '
                                                                                                                                           'over '
                                                                                                                                           'nino4 '
                                                                                                                                           'tauxA, '
                                                                                                                                           'time '
                                                                                                                                           'series '
                                                                                                                                           'are '
                                                                                                                                           'linearly '
                                                                                                                                           'detrended',
                                                                                                                                 'method_nonlinearity': 'The '
                                                                                                                                                        'nonlinearity '
                                                                                                                                                        'is '
                                                                                                                                                        'the '
                                                                                                                                                        'regression '
                                                                                                                                                        'computed '
                                                                                                                                                        'when '
                                                                                                                                                        'tauxA<0 '
                                                                                                                                                        'minus '
                                                                                                                                                        'the '
                                                                                                                                                        'regression '
                                                                                                                                                        'computed '
                                                                                                                                                        'when '
                                                                                                                                                        'tauxA>0',
                                                                                                                                 'name': 'Ssh-Taux '
                                                                                                                                         'feedback',
                                                                                                                                 'ref': 'Using '
                                                                                                                                        'CDAT '
                                                                                                                                        'regression '
                                                                                                                                        'calculation',
                                                                                                                                 'time_frequency': 'monthly',
                                                                                                                                 'units': '1e3 '
                                                                                                                                          'cm/N/m2'},
                                                                                                                  'metric': {'datasets': 'ACCESS-CM2_r1i1p1f1; '
                                                                                                                                         "ERA-Interim's "
                                                                                                                                         'tauu; '
                                                                                                                                         "Tropflux's "
                                                                                                                                         'tauu; '
                                                                                                                                         "AVISO's "
                                                                                                                                         'zos',
                                                                                                                             'method': 'The '
                                                                                                                                       'metric '
                                                                                                                                       'is '
                                                                                                                                       'the '
                                                                                                                                       'absolute '
                                                                                                                                       'value '
                                                                                                                                       'of '
                                                                                                                                       'the '
                                                                                                                                       'relative '
                                                                                                                                       'difference '
                                                                                                                                       'between '
                                                                                                                                       'model '
                                                                                                                                       'and '
                                                                                                                                       'observations '
                                                                                                                                       'values '
                                                                                                                                       '(M '
                                                                                                                                       '= '
                                                                                                                                       '100 '
                                                                                                                                       '* '
                                                                                                                                       'abs[[model-obs] '
                                                                                                                                       '/ '
                                                                                                                                       'obs])',
                                                                                                                             'name': 'EnsoFbTauxSsh',
                                                                                                                             'units': '%'}},
                                                                                                'EnsoSeasonality': {'diagnostic': {'20CRv2': {'keyerror': None,
                                                                                                                                              'name': '20CRv2',
                                                                                                                                              'nyears': 142,
                                                                                                                                              'time_period': ['1871-1-16 '
                                                                                                                                                              '12:0:0.0',
                                                                                                                                                              '2012-12-16 '
                                                                                                                                                              '12:0:0.0']},
                                                                                                                                   'ACCESS-CM2_r1i1p1f1': {'keyerror': None,
                                                                                                                                                           'name': 'ACCESS-CM2_r1i1p1f1',
                                                                                                                                                           'nyears': 165,
                                                                                                                                                           'time_period': ['1850-1-16 '
                                                                                                                                                                           '12:0:0.0',
                                                                                                                                                                           '2014-12-16 '
                                                                                                                                                                           '12:0:0.0']},
                                                                                                                                   'ERA-20C': {'keyerror': None,
                                                                                                                                               'name': 'ERA-20C',
                                                                                                                                               'nyears': 111,
                                                                                                                                               'time_period': ['1900-1-16 '
                                                                                                                                                               '12:0:0.0',
                                                                                                                                                               '2010-12-16 '
                                                                                                                                                               '12:0:0.0']},
                                                                                                                                   'ERA-5': {'keyerror': None,
                                                                                                                                             'name': 'ERA-5',
                                                                                                                                             'nyears': 40,
                                                                                                                                             'time_period': ['1979-1-16 '
                                                                                                                                                             '12:0:0.0',
                                                                                                                                                             '2018-12-16 '
                                                                                                                                                             '12:0:0.0']},
                                                                                                                                   'ERA-Interim': {'keyerror': None,
                                                                                                                                                   'name': 'ERA-Interim',
                                                                                                                                                   'nyears': 40,
                                                                                                                                                   'time_period': ['1979-1-16 '
                                                                                                                                                                   '12:0:0.0',
                                                                                                                                                                   '2018-12-16 '
                                                                                                                                                                   '12:0:0.0']},
                                                                                                                                   'HadISST': {'keyerror': 'unlikely '
                                                                                                                                                           'units: '
                                                                                                                                                           'K([-1e+30, '
                                                                                                                                                           '304.7203])',
                                                                                                                                               'name': 'HadISST',
                                                                                                                                               'nyears': 149,
                                                                                                                                               'time_period': ['1870-1-16 '
                                                                                                                                                               '11:59:59.5',
                                                                                                                                                               '2018-12-16 '
                                                                                                                                                               '18:0:0.0']},
                                                                                                                                   'Tropflux': {'keyerror': None,
                                                                                                                                                'name': 'Tropflux',
                                                                                                                                                'nyears': 39,
                                                                                                                                                'time_period': ['1979-1-15 '
                                                                                                                                                                '0:0:0.0',
                                                                                                                                                                '2017-7-15 '
                                                                                                                                                                '12:0:0.0']},
                                                                                                                                   'method': 'Ratio '
                                                                                                                                             'between '
                                                                                                                                             'NDJ '
                                                                                                                                             'and '
                                                                                                                                             'MAM '
                                                                                                                                             'standard '
                                                                                                                                             'deviation '
                                                                                                                                             'nino3.4 '
                                                                                                                                             'sstA, '
                                                                                                                                             'time '
                                                                                                                                             'series '
                                                                                                                                             'are '
                                                                                                                                             'linearly '
                                                                                                                                             'detrended',
                                                                                                                                   'name': 'ENSO '
                                                                                                                                           'seasonality',
                                                                                                                                   'ref': 'Using '
                                                                                                                                          'CDAT '
                                                                                                                                          'std '
                                                                                                                                          'dev '
                                                                                                                                          'calculation',
                                                                                                                                   'time_frequency': 'monthly',
                                                                                                                                   'units': 'C/C'},
                                                                                                                    'metric': {'datasets': 'ACCESS-CM2_r1i1p1f1; '
                                                                                                                                           "20CRv2's "
                                                                                                                                           'ts; '
                                                                                                                                           "ERA-20C's "
                                                                                                                                           'ts; '
                                                                                                                                           "ERA-5's "
                                                                                                                                           'ts; '
                                                                                                                                           "ERA-Interim's "
                                                                                                                                           'ts; '
                                                                                                                                           "HadISST's "
                                                                                                                                           'ts; '
                                                                                                                                           "Tropflux's "
                                                                                                                                           'ts; '
                                                                                                                                           "'s ",
                                                                                                                               'method': 'The '
                                                                                                                                         'metric '
                                                                                                                                         'is '
                                                                                                                                         'the '
                                                                                                                                         'absolute '
                                                                                                                                         'value '
                                                                                                                                         'of '
                                                                                                                                         'the '
                                                                                                                                         'relative '
                                                                                                                                         'difference '
                                                                                                                                         'between '
                                                                                                                                         'model '
                                                                                                                                         'and '
                                                                                                                                         'observations '
                                                                                                                                         'values '
                                                                                                                                         '(M '
                                                                                                                                         '= '
                                                                                                                                         '100 '
                                                                                                                                         '* '
                                                                                                                                         'abs[[model-obs] '
                                                                                                                                         '/ '
                                                                                                                                         'obs])',
                                                                                                                               'name': 'EnsoSeasonality',
                                                                                                                               'units': '%'}},
                                                                                                'EnsoSstLonRmse': {'diagnostic': {'20CRv2': {'name': '20CRv2',
                                                                                                                                             'nyears': 142,
                                                                                                                                             'time_period': ['1871-1-16 '
                                                                                                                                                             '12:0:0.0',
                                                                                                                                                             '2012-12-16 '
                                                                                                                                                             '12:0:0.0']},
                                                                                                                                  'ACCESS-CM2_r1i1p1f1': {'keyerror': None,
                                                                                                                                                          'name': 'ACCESS-CM2_r1i1p1f1',
                                                                                                                                                          'nyears': 165,
                                                                                                                                                          'time_period': ['1850-1-16 '
                                                                                                                                                                          '12:0:0.0',
                                                                                                                                                                          '2014-12-16 '
                                                                                                                                                                          '12:0:0.0']},
                                                                                                                                  'ERA-20C': {'name': 'ERA-20C',
                                                                                                                                              'nyears': 111,
                                                                                                                                              'time_period': ['1900-1-16 '
                                                                                                                                                              '12:0:0.0',
                                                                                                                                                              '2010-12-16 '
                                                                                                                                                              '12:0:0.0']},
                                                                                                                                  'ERA-5': {'name': 'ERA-5',
                                                                                                                                            'nyears': 40,
                                                                                                                                            'time_period': ['1979-1-16 '
                                                                                                                                                            '12:0:0.0',
                                                                                                                                                            '2018-12-16 '
                                                                                                                                                            '12:0:0.0']},
                                                                                                                                  'ERA-Interim': {'name': 'ERA-Interim',
                                                                                                                                                  'nyears': 40,
                                                                                                                                                  'time_period': ['1979-1-16 '
                                                                                                                                                                  '12:0:0.0',
                                                                                                                                                                  '2018-12-16 '
                                                                                                                                                                  '12:0:0.0']},
                                                                                                                                  'HadISST': {'name': 'HadISST',
                                                                                                                                              'nyears': 149,
                                                                                                                                              'time_period': ['1870-1-16 '
                                                                                                                                                              '11:59:59.5',
                                                                                                                                                              '2018-12-16 '
                                                                                                                                                              '18:0:0.0']},
                                                                                                                                  'Tropflux': {'name': 'Tropflux',
                                                                                                                                               'nyears': 39,
                                                                                                                                               'time_period': ['1979-1-15 '
                                                                                                                                                               '0:0:0.0',
                                                                                                                                                               '2017-7-15 '
                                                                                                                                                               '12:0:0.0']},
                                                                                                                                  'method': 'nino3.4 '
                                                                                                                                            'SSTA '
                                                                                                                                            'during '
                                                                                                                                            'DEC '
                                                                                                                                            'regressed '
                                                                                                                                            'against '
                                                                                                                                            'equatorial_pacific '
                                                                                                                                            'SSTA, '
                                                                                                                                            'time '
                                                                                                                                            'series '
                                                                                                                                            'are '
                                                                                                                                            'linearly '
                                                                                                                                            'detrended, '
                                                                                                                                            'smoothing '
                                                                                                                                            'using '
                                                                                                                                            'a '
                                                                                                                                            'triangle '
                                                                                                                                            'shaped '
                                                                                                                                            'window '
                                                                                                                                            'of '
                                                                                                                                            '5 '
                                                                                                                                            'points, '
                                                                                                                                            'observations '
                                                                                                                                            'and '
                                                                                                                                            'model '
                                                                                                                                            'regridded '
                                                                                                                                            'to '
                                                                                                                                            'generic_1x1deg',
                                                                                                                                  'name': 'ENSO '
                                                                                                                                          'Zonal '
                                                                                                                                          'SSTA '
                                                                                                                                          'pattern',
                                                                                                                                  'ref': 'Using '
                                                                                                                                         'CDAT '
                                                                                                                                         'regridding '
                                                                                                                                         'and '
                                                                                                                                         'rms '
                                                                                                                                         '(uncentered '
                                                                                                                                         'and '
                                                                                                                                         'biased) '
                                                                                                                                         'calculation',
                                                                                                                                  'time_frequency': 'monthly',
                                                                                                                                  'units': 'C/C'},
                                                                                                                   'metric': {'datasets': 'ACCESS-CM2_r1i1p1f1; '
                                                                                                                                          "20CRv2's "
                                                                                                                                          'ts; '
                                                                                                                                          "ERA-20C's "
                                                                                                                                          'ts; '
                                                                                                                                          "ERA-5's "
                                                                                                                                          'ts; '
                                                                                                                                          "ERA-Interim's "
                                                                                                                                          'ts; '
                                                                                                                                          "HadISST's "
                                                                                                                                          'ts; '
                                                                                                                                          "Tropflux's "
                                                                                                                                          'ts; '
                                                                                                                                          "'s ",
                                                                                                                              'method': 'The '
                                                                                                                                        'metric '
                                                                                                                                        'is '
                                                                                                                                        'the '
                                                                                                                                        'statistical '
                                                                                                                                        'value '
                                                                                                                                        'between '
                                                                                                                                        'the '
                                                                                                                                        'model '
                                                                                                                                        'and '
                                                                                                                                        'the '
                                                                                                                                        'observations',
                                                                                                                              'name': 'EnsoSstLonRmse',
                                                                                                                              'units': 'C/C'}},
                                                                                                'EnsoSstSkew': {'diagnostic': {'20CRv2': {'keyerror': None,
                                                                                                                                          'name': '20CRv2',
                                                                                                                                          'nyears': 142,
                                                                                                                                          'time_period': ['1871-1-16 '
                                                                                                                                                          '12:0:0.0',
                                                                                                                                                          '2012-12-16 '
                                                                                                                                                          '12:0:0.0']},
                                                                                                                               'ACCESS-CM2_r1i1p1f1': {'keyerror': None,
                                                                                                                                                       'name': 'ACCESS-CM2_r1i1p1f1',
                                                                                                                                                       'nyears': 165,
                                                                                                                                                       'time_period': ['1850-1-16 '
                                                                                                                                                                       '12:0:0.0',
                                                                                                                                                                       '2014-12-16 '
                                                                                                                                                                       '12:0:0.0']},
                                                                                                                               'ERA-20C': {'keyerror': None,
                                                                                                                                           'name': 'ERA-20C',
                                                                                                                                           'nyears': 111,
                                                                                                                                           'time_period': ['1900-1-16 '
                                                                                                                                                           '12:0:0.0',
                                                                                                                                                           '2010-12-16 '
                                                                                                                                                           '12:0:0.0']},
                                                                                                                               'ERA-5': {'keyerror': None,
                                                                                                                                         'name': 'ERA-5',
                                                                                                                                         'nyears': 40,
                                                                                                                                         'time_period': ['1979-1-16 '
                                                                                                                                                         '12:0:0.0',
                                                                                                                                                         '2018-12-16 '
                                                                                                                                                         '12:0:0.0']},
                                                                                                                               'ERA-Interim': {'keyerror': None,
                                                                                                                                               'name': 'ERA-Interim',
                                                                                                                                               'nyears': 40,
                                                                                                                                               'time_period': ['1979-1-16 '
                                                                                                                                                               '12:0:0.0',
                                                                                                                                                               '2018-12-16 '
                                                                                                                                                               '12:0:0.0']},
                                                                                                                               'HadISST': {'keyerror': 'unlikely '
                                                                                                                                                       'units: '
                                                                                                                                                       'K([-1e+30, '
                                                                                                                                                       '304.7203])',
                                                                                                                                           'name': 'HadISST',
                                                                                                                                           'nyears': 149,
                                                                                                                                           'time_period': ['1870-1-16 '
                                                                                                                                                           '11:59:59.5',
                                                                                                                                                           '2018-12-16 '
                                                                                                                                                           '18:0:0.0']},
                                                                                                                               'Tropflux': {'keyerror': None,
                                                                                                                                            'name': 'Tropflux',
                                                                                                                                            'nyears': 39,
                                                                                                                                            'time_period': ['1979-1-15 '
                                                                                                                                                            '0:0:0.0',
                                                                                                                                                            '2017-7-15 '
                                                                                                                                                            '12:0:0.0']},
                                                                                                                               'method': 'Standard '
                                                                                                                                         'deviation '
                                                                                                                                         'of '
                                                                                                                                         'nino3.4 '
                                                                                                                                         'sstA, '
                                                                                                                                         'time '
                                                                                                                                         'series '
                                                                                                                                         'are '
                                                                                                                                         'linearly '
                                                                                                                                         'detrended',
                                                                                                                               'name': 'ENSO '
                                                                                                                                       'skewness',
                                                                                                                               'ref': 'Using '
                                                                                                                                      'CDAT '
                                                                                                                                      'regression '
                                                                                                                                      'calculation',
                                                                                                                               'time_frequency': 'monthly',
                                                                                                                               'units': 'C'},
                                                                                                                'metric': {'datasets': 'ACCESS-CM2_r1i1p1f1; '
                                                                                                                                       "20CRv2's "
                                                                                                                                       'ts; '
                                                                                                                                       "ERA-20C's "
                                                                                                                                       'ts; '
                                                                                                                                       "ERA-5's "
                                                                                                                                       'ts; '
                                                                                                                                       "ERA-Interim's "
                                                                                                                                       'ts; '
                                                                                                                                       "HadISST's "
                                                                                                                                       'ts; '
                                                                                                                                       "Tropflux's "
                                                                                                                                       'ts; '
                                                                                                                                       "'s ",
                                                                                                                           'method': 'The '
                                                                                                                                     'metric '
                                                                                                                                     'is '
                                                                                                                                     'the '
                                                                                                                                     'absolute '
                                                                                                                                     'value '
                                                                                                                                     'of '
                                                                                                                                     'the '
                                                                                                                                     'relative '
                                                                                                                                     'difference '
                                                                                                                                     'between '
                                                                                                                                     'model '
                                                                                                                                     'and '
                                                                                                                                     'observations '
                                                                                                                                     'values '
                                                                                                                                     '(M '
                                                                                                                                     '= '
                                                                                                                                     '100 '
                                                                                                                                     '* '
                                                                                                                                     'abs[[model-obs] '
                                                                                                                                     '/ '
                                                                                                                                     'obs])',
                                                                                                                           'name': 'EnsoSstSkew',
                                                                                                                           'units': '%'}},
                                                                                                'EnsodSstOce_2': {'diagnostic': {'20CRv2_ERA-Interim': {'keyerror': None,
                                                                                                                                                        'name': '20CRv2_ERA-Interim',
                                                                                                                                                        'nyears': 34,
                                                                                                                                                        'time_period': ['1979-1-16 '
                                                                                                                                                                        '12:0:0.0',
                                                                                                                                                                        '2012-12-16 '
                                                                                                                                                                        '12:0:0.0']},
                                                                                                                                 'ACCESS-CM2_r1i1p1f1': {'keyerror': None,
                                                                                                                                                         'name': 'ACCESS-CM2_r1i1p1f1',
                                                                                                                                                         'nyears': 165,
                                                                                                                                                         'time_period': ['1850-1-16 '
                                                                                                                                                                         '12:0:0.0',
                                                                                                                                                                         '2014-12-16 '
                                                                                                                                                                         '12:0:0.0']},
                                                                                                                                 'ERA-20C_ERA-Interim': {'keyerror': None,
                                                                                                                                                         'name': 'ERA-20C_ERA-Interim',
                                                                                                                                                         'nyears': 32,
                                                                                                                                                         'time_period': ['1979-1-16 '
                                                                                                                                                                         '12:0:0.0',
                                                                                                                                                                         '2010-12-16 '
                                                                                                                                                                         '12:0:0.0']},
                                                                                                                                 'ERA-5_ERA-Interim': {'keyerror': None,
                                                                                                                                                       'name': 'ERA-5_ERA-Interim',
                                                                                                                                                       'nyears': 40,
                                                                                                                                                       'time_period': ['1979-1-16 '
                                                                                                                                                                       '12:0:0.0',
                                                                                                                                                                       '2018-12-16 '
                                                                                                                                                                       '12:0:0.0']},
                                                                                                                                 'ERA-Interim_ERA-Interim': {'keyerror': None,
                                                                                                                                                             'name': 'ERA-Interim_ERA-Interim',
                                                                                                                                                             'nyears': 40,
                                                                                                                                                             'time_period': ['1979-1-16 '
                                                                                                                                                                             '12:0:0.0',
                                                                                                                                                                             '2018-12-16 '
                                                                                                                                                                             '12:0:0.0']},
                                                                                                                                 'HadISST_ERA-Interim': {'keyerror': None,
                                                                                                                                                         'name': 'HadISST_ERA-Interim',
                                                                                                                                                         'nyears': 40,
                                                                                                                                                         'time_period': ['1979-1-16 '
                                                                                                                                                                         '3:0:0.0',
                                                                                                                                                                         '2018-12-16 '
                                                                                                                                                                         '18:0:0.0']},
                                                                                                                                 'Tropflux_ERA-Interim': {'keyerror': None,
                                                                                                                                                          'name': 'Tropflux_ERA-Interim',
                                                                                                                                                          'nyears': 39,
                                                                                                                                                          'time_period': ['1979-1-15 '
                                                                                                                                                                          '0:0:0.0',
                                                                                                                                                                          '2017-7-15 '
                                                                                                                                                                          '12:0:0.0']},
                                                                                                                                 'method': 'Nino '
                                                                                                                                           '(Nina) '
                                                                                                                                           'events '
                                                                                                                                           '= '
                                                                                                                                           'nino3.4 '
                                                                                                                                           'sstA '
                                                                                                                                           '> '
                                                                                                                                           '0.75 '
                                                                                                                                           '(< '
                                                                                                                                           '-0.75) '
                                                                                                                                           'during '
                                                                                                                                           'DEC, '
                                                                                                                                           'dSSToce '
                                                                                                                                           '= '
                                                                                                                                           'dSST '
                                                                                                                                           '- '
                                                                                                                                           'dSSTthf '
                                                                                                                                           'during '
                                                                                                                                           'ENSO '
                                                                                                                                           'events '
                                                                                                                                           '(relative '
                                                                                                                                           'difference '
                                                                                                                                           'between '
                                                                                                                                           'nino3 '
                                                                                                                                           'SST '
                                                                                                                                           'change '
                                                                                                                                           'and '
                                                                                                                                           'heat '
                                                                                                                                           'flux-driven '
                                                                                                                                           'nino3 '
                                                                                                                                           'SST '
                                                                                                                                           'change '
                                                                                                                                           'in '
                                                                                                                                           ', '
                                                                                                                                           'time '
                                                                                                                                           'series '
                                                                                                                                           'are '
                                                                                                                                           'linearly '
                                                                                                                                           'detrended, '
                                                                                                                                           'smoothing '
                                                                                                                                           'using '
                                                                                                                                           'a '
                                                                                                                                           'triangle '
                                                                                                                                           'shaped '
                                                                                                                                           'window '
                                                                                                                                           'of '
                                                                                                                                           '5 '
                                                                                                                                           'points',
                                                                                                                                 'name': 'SST '
                                                                                                                                         'change '
                                                                                                                                         'caused '
                                                                                                                                         'by '
                                                                                                                                         'an '
                                                                                                                                         'anomalous '
                                                                                                                                         'ocean '
                                                                                                                                         'circulation '
                                                                                                                                         '(dSSToce)',
                                                                                                                                 'ref': 'Using '
                                                                                                                                        'CDAT',
                                                                                                                                 'time_frequency': 'monthly',
                                                                                                                                 'units': 'C/C'},
                                                                                                                  'metric': {'datasets': 'ACCESS-CM2_r1i1p1f1; '
                                                                                                                                         "20CRv2's "
                                                                                                                                         'ts; '
                                                                                                                                         "ERA-20C's "
                                                                                                                                         'ts; '
                                                                                                                                         "ERA-5's "
                                                                                                                                         'ts; '
                                                                                                                                         "ERA-Interim's "
                                                                                                                                         'ts; '
                                                                                                                                         "HadISST's "
                                                                                                                                         'ts; '
                                                                                                                                         "Tropflux's "
                                                                                                                                         'ts; '
                                                                                                                                         "ERA-Interim's "
                                                                                                                                         'hfls '
                                                                                                                                         '& '
                                                                                                                                         'hfss '
                                                                                                                                         '& '
                                                                                                                                         'rlds '
                                                                                                                                         '& '
                                                                                                                                         'rlus '
                                                                                                                                         '& '
                                                                                                                                         'rsds '
                                                                                                                                         '& '
                                                                                                                                         'rsus',
                                                                                                                             'method': 'The '
                                                                                                                                       'metric '
                                                                                                                                       'is '
                                                                                                                                       'the '
                                                                                                                                       'absolute '
                                                                                                                                       'value '
                                                                                                                                       'of '
                                                                                                                                       'the '
                                                                                                                                       'relative '
                                                                                                                                       'difference '
                                                                                                                                       'between '
                                                                                                                                       'model '
                                                                                                                                       'and '
                                                                                                                                       'observations '
                                                                                                                                       'values '
                                                                                                                                       '(M '
                                                                                                                                       '= '
                                                                                                                                       '100 '
                                                                                                                                       '* '
                                                                                                                                       'abs[[model-obs] '
                                                                                                                                       '/ '
                                                                                                                                       'obs])',
                                                                                                                             'name': 'EnsodSstOce',
                                                                                                                             'units': '%'}}},
                                                                                    'name': 'Metrics '
                                                                                            'Collection '
                                                                                            'for '
                                                                                            'ENSO '
                                                                                            'processes'},
                                                                       'value': {'BiasSstLonRmse': {'diagnostic': {'20CRv2': {'value': None,
                                                                                                                              'value_error': None},
                                                                                                                   'ACCESS-CM2_r1i1p1f1': {'value': None,
                                                                                                                                           'value_error': None},
                                                                                                                   'ERA-20C': {'value': None,
                                                                                                                               'value_error': None},
                                                                                                                   'ERA-5': {'value': None,
                                                                                                                             'value_error': None},
                                                                                                                   'ERA-Interim': {'value': None,
                                                                                                                                   'value_error': None},
                                                                                                                   'HadISST': {'value': None,
                                                                                                                               'value_error': None},
                                                                                                                   'Tropflux': {'value': None,
                                                                                                                                'value_error': None}},
                                                                                                    'metric': {'20CRv2': {'value': 0.5086063943211802,
                                                                                                                          'value_error': None},
                                                                                                               'ERA-20C': {'value': 0.49792070738173966,
                                                                                                                           'value_error': None},
                                                                                                               'ERA-5': {'value': 0.4665249564478334,
                                                                                                                         'value_error': None},
                                                                                                               'ERA-Interim': {'value': 0.5918436453916678,
                                                                                                                               'value_error': None},
                                                                                                               'HadISST': {'value': 0.5144345310648003,
                                                                                                                           'value_error': None},
                                                                                                               'Tropflux': {'value': 0.6144647650906735,
                                                                                                                            'value_error': None}}},
                                                                                 'BiasTauxLonRmse': {'diagnostic': {'ACCESS-CM2_r1i1p1f1': {'value': None,
                                                                                                                                            'value_error': None},
                                                                                                                    'ERA-Interim': {'value': None,
                                                                                                                                    'value_error': None},
                                                                                                                    'Tropflux': {'value': None,
                                                                                                                                 'value_error': None}},
                                                                                                     'metric': {'ERA-Interim': {'value': 6.905344203497415,
                                                                                                                                'value_error': None},
                                                                                                                'Tropflux': {'value': 6.641704430321212,
                                                                                                                             'value_error': None}}},
                                                                                 'EnsoAmpl': {'diagnostic': {'20CRv2': {'value': 0.7407960057502115,
                                                                                                                        'value_error': 0.062166219832622445},
                                                                                                             'ACCESS-CM2_r1i1p1f1': {'value': 0.8079451055122988,
                                                                                                                                     'value_error': 0.06289844115817948},
                                                                                                             'ERA-20C': {'value': 0.8265126323027572,
                                                                                                                         'value_error': 0.07844910735406072},
                                                                                                             'ERA-5': {'value': 0.9075909980564855,
                                                                                                                       'value_error': 0.14350273688619733},
                                                                                                             'ERA-Interim': {'value': 0.9001341048707652,
                                                                                                                             'value_error': 0.1423236985494241},
                                                                                                             'HadISST': {'value': 0.7688706055408969,
                                                                                                                         'value_error': 0.06298833428079066},
                                                                                                             'Tropflux': {'value': 0.9128364190673677,
                                                                                                                          'value_error': 0.14617081051130443}},
                                                                                              'metric': {'20CRv2': {'value': 9.064452189383056,
                                                                                                                    'value_error': 17.643141600516042},
                                                                                                         'ERA-20C': {'value': 2.2464903819711926,
                                                                                                                     'value_error': 16.888452929253955},
                                                                                                         'ERA-5': {'value': 10.97916272391069,
                                                                                                                   'value_error': 21.005693033164114},
                                                                                                         'ERA-Interim': {'value': 10.241696082796707,
                                                                                                                         'value_error': 21.17970844752598},
                                                                                                         'HadISST': {'value': 5.082064483907947,
                                                                                                                     'value_error': 16.789285775029295},
                                                                                                         'Tropflux': {'value': 11.490702097779455,
                                                                                                                      'value_error': 21.06326996420269}}},
                                                                                 'EnsoFbSshSst': {'diagnostic': {'20CRv2_AVISO': {'nonlinearity': -0.04152801980348014,
                                                                                                                                  'nonlinearity_error': 0.017513672368536456,
                                                                                                                                  'value': 0.11810260256238658,
                                                                                                                                  'value_error': 0.003759915555702643},
                                                                                                                 'ACCESS-CM2_r1i1p1f1': {'nonlinearity': 0.020266541355327627,
                                                                                                                                         'nonlinearity_error': 0.015409717129024262,
                                                                                                                                         'value': 0.17052884006803973,
                                                                                                                                         'value_error': 0.0034249704919345645},
                                                                                                                 'ERA-20C_AVISO': {'nonlinearity': -0.032011742613362676,
                                                                                                                                   'nonlinearity_error': 0.0183450811389117,
                                                                                                                                   'value': 0.12657346976318096,
                                                                                                                                   'value_error': 0.003913658970403057},
                                                                                                                 'ERA-5_AVISO': {'nonlinearity': -0.02566396021245236,
                                                                                                                                 'nonlinearity_error': 0.015885984596935174,
                                                                                                                                 'value': 0.12628612766653574,
                                                                                                                                 'value_error': 0.0034955457677469676},
                                                                                                                 'ERA-Interim_AVISO': {'nonlinearity': -0.01795688795240266,
                                                                                                                                       'nonlinearity_error': 0.015596453142222452,
                                                                                                                                       'value': 0.12602582769944173,
                                                                                                                                       'value_error': 0.0034298901844770405},
                                                                                                                 'HadISST_AVISO': {'nonlinearity': -0.027397296086239156,
                                                                                                                                   'nonlinearity_error': 0.01524011202550052,
                                                                                                                                   'value': 0.12238689206984654,
                                                                                                                                   'value_error': 0.0033466415532667315},
                                                                                                                 'Tropflux_AVISO': {'nonlinearity': -0.015122526459173655,
                                                                                                                                    'nonlinearity_error': 0.01524840165408661,
                                                                                                                                    'value': 0.1278402683633683,
                                                                                                                                    'value_error': 0.0033530380648741243}},
                                                                                                  'metric': {'20CRv2_AVISO': {'value': 44.390416780154766,
                                                                                                                              'value_error': 7.496810435416509},
                                                                                                             'ERA-20C_AVISO': {'value': 34.72715916463323,
                                                                                                                               'value_error': 6.871686506203786},
                                                                                                             'ERA-5_AVISO': {'value': 35.03370735883903,
                                                                                                                             'value_error': 6.449746844764999},
                                                                                                             'ERA-Interim_AVISO': {'value': 35.31261264534836,
                                                                                                                                   'value_error': 6.40031068127834},
                                                                                                             'HadISST_AVISO': {'value': 39.335869376206105,
                                                                                                                               'value_error': 6.608585656761562},
                                                                                                             'Tropflux_AVISO': {'value': 33.39211678071191,
                                                                                                                                'value_error': 6.177755291224182}}},
                                                                                 'EnsoFbSstTaux': {'diagnostic': {'20CRv2_ERA-Interim': {'nonlinearity': 4.934033160844237,
                                                                                                                                         'nonlinearity_error': 2.902746466279199,
                                                                                                                                         'value': 14.279399855092704,
                                                                                                                                         'value_error': 0.6474408536852889},
                                                                                                                  '20CRv2_Tropflux': {'nonlinearity': 4.246457468336489,
                                                                                                                                      'nonlinearity_error': 3.158751303915279,
                                                                                                                                      'value': 14.953358496715085,
                                                                                                                                      'value_error': 0.7041991995478306},
                                                                                                                  'ACCESS-CM2_r1i1p1f1': {'nonlinearity': -4.770721287236016,
                                                                                                                                          'nonlinearity_error': 0.9952607262798567,
                                                                                                                                          'value': 5.646927141929493,
                                                                                                                                          'value_error': 0.22028816687777947},
                                                                                                                  'ERA-20C_ERA-Interim': {'nonlinearity': 4.935065161864337,
                                                                                                                                          'nonlinearity_error': 2.7819513240604192,
                                                                                                                                          'value': 13.745001697775006,
                                                                                                                                          'value_error': 0.6142727838878883},
                                                                                                                  'ERA-20C_Tropflux': {'nonlinearity': 4.42190934284047,
                                                                                                                                       'nonlinearity_error': 2.9683595503356464,
                                                                                                                                       'value': 14.35072947741424,
                                                                                                                                       'value_error': 0.6543595156569981},
                                                                                                                  'ERA-5_ERA-Interim': {'nonlinearity': 3.1738377820903914,
                                                                                                                                        'nonlinearity_error': 2.4631712135067945,
                                                                                                                                        'value': 13.283692727594216,
                                                                                                                                        'value_error': 0.5482165088552355},
                                                                                                                  'ERA-5_Tropflux': {'nonlinearity': 2.619020521914347,
                                                                                                                                     'nonlinearity_error': 2.7583727584713595,
                                                                                                                                     'value': 14.195776796140159,
                                                                                                                                     'value_error': 0.6128603267022297},
                                                                                                                  'ERA-Interim_ERA-Interim': {'nonlinearity': 2.8547933106941965,
                                                                                                                                              'nonlinearity_error': 2.4777477618225165,
                                                                                                                                              'value': 13.423273078794779,
                                                                                                                                              'value_error': 0.5526753704697444},
                                                                                                                  'ERA-Interim_Tropflux': {'nonlinearity': 2.4475732791951845,
                                                                                                                                           'nonlinearity_error': 2.7697102686012887,
                                                                                                                                           'value': 14.360849877943336,
                                                                                                                                           'value_error': 0.6188884044938651},
                                                                                                                  'HadISST_ERA-Interim': {'nonlinearity': 3.801963983723919,
                                                                                                                                          'nonlinearity_error': 2.501025104389977,
                                                                                                                                          'value': 13.751193218218148,
                                                                                                                                          'value_error': 0.5563520982567903},
                                                                                                                  'HadISST_Tropflux': {'nonlinearity': 3.2962744768928225,
                                                                                                                                       'nonlinearity_error': 2.792416048517307,
                                                                                                                                       'value': 14.736359645293911,
                                                                                                                                       'value_error': 0.6225707941895763},
                                                                                                                  'Tropflux_ERA-Interim': {'nonlinearity': 3.28318688399591,
                                                                                                                                           'nonlinearity_error': 2.49301234198086,
                                                                                                                                           'value': 13.500147572549228,
                                                                                                                                           'value_error': 0.5581279487605476},
                                                                                                                  'Tropflux_Tropflux': {'nonlinearity': 2.3821759870445565,
                                                                                                                                        'nonlinearity_error': 2.751049544418355,
                                                                                                                                        'value': 14.293782294300136,
                                                                                                                                        'value_error': 0.6147433238666429}},
                                                                                                   'metric': {'20CRv2_ERA-Interim': {'value': 60.45403028674532,
                                                                                                                                     'value_error': 3.335748950384084},
                                                                                                              '20CRv2_Tropflux': {'value': 62.236395635335064,
                                                                                                                                  'value_error': 3.2515716562334216},
                                                                                                              'ERA-20C_ERA-Interim': {'value': 58.91650458767425,
                                                                                                                                      'value_error': 3.4387256419330754},
                                                                                                              'ERA-20C_Tropflux': {'value': 60.650591659351846,
                                                                                                                                   'value_error': 3.3292716266548},
                                                                                                              'ERA-5_ERA-Interim': {'value': 57.48977895130673,
                                                                                                                                    'value_error': 3.412727363648315},
                                                                                                              'ERA-5_Tropflux': {'value': 60.22107685248408,
                                                                                                                                 'value_error': 3.2691230068118386},
                                                                                                              'ERA-Interim_ERA-Interim': {'value': 57.9318165637996,
                                                                                                                                          'value_error': 3.373161321205467},
                                                                                                              'ERA-Interim_Tropflux': {'value': 60.67832203578324,
                                                                                                                                       'value_error': 3.228537838577674},
                                                                                                              'HadISST_ERA-Interim': {'value': 58.93500256800836,
                                                                                                                                      'value_error': 3.2633832905877154},
                                                                                                              'HadISST_Tropflux': {'value': 61.68031129904696,
                                                                                                                                   'value_error': 3.1137632916065034},
                                                                                                              'Tropflux_ERA-Interim': {'value': 58.171367301111765,
                                                                                                                                       'value_error': 3.361040715416324},
                                                                                                              'Tropflux_Tropflux': {'value': 60.493821539584445,
                                                                                                                                    'value_error': 3.2402183826649833}}},
                                                                                 'EnsoFbSstThf': {'diagnostic': {'20CRv2_ERA-Interim': {'nonlinearity': 7.290671056417352,
                                                                                                                                        'nonlinearity_error': 2.7213675471816154,
                                                                                                                                        'value': -20.113546892594773,
                                                                                                                                        'value_error': 0.6239588205021478},
                                                                                                                 'ACCESS-CM2_r1i1p1f1': {'nonlinearity': 15.943666541058981,
                                                                                                                                         'nonlinearity_error': 0.9977832452212813,
                                                                                                                                         'value': -11.596634903187125,
                                                                                                                                         'value_error': 0.2446127191038785},
                                                                                                                 'ERA-20C_ERA-Interim': {'nonlinearity': 8.087922977609816,
                                                                                                                                         'nonlinearity_error': 2.8639453483138015,
                                                                                                                                         'value': -18.936262328678282,
                                                                                                                                         'value_error': 0.6479348809996519},
                                                                                                                 'ERA-5_ERA-Interim': {'nonlinearity': 5.529894486857337,
                                                                                                                                       'nonlinearity_error': 2.3481393074511283,
                                                                                                                                       'value': -18.28980905577124,
                                                                                                                                       'value_error': 0.5373483889642887},
                                                                                                                 'ERA-Interim_ERA-Interim': {'nonlinearity': 5.07833225316738,
                                                                                                                                             'nonlinearity_error': 2.1935774857773334,
                                                                                                                                             'value': -18.913017373316936,
                                                                                                                                             'value_error': 0.5089173190939691},
                                                                                                                 'HadISST_ERA-Interim': {'nonlinearity': 5.687118446440536,
                                                                                                                                         'nonlinearity_error': 2.2961441447418176,
                                                                                                                                         'value': -19.11377276412325,
                                                                                                                                         'value_error': 0.525893438083763},
                                                                                                                 'Tropflux_ERA-Interim': {'nonlinearity': 5.034100130047683,
                                                                                                                                          'nonlinearity_error': 2.218257664682187,
                                                                                                                                          'value': -18.815094627609692,
                                                                                                                                          'value_error': 0.5133781975037957}},
                                                                                                  'metric': {'20CRv2_ERA-Interim': {'value': 42.344157571449166,
                                                                                                                                    'value_error': -3.0047481764350055},
                                                                                                             'ERA-20C_ERA-Interim': {'value': 38.75964167635953,
                                                                                                                                     'value_error': -3.3872067824098844},
                                                                                                             'ERA-5_ERA-Interim': {'value': 36.595101305730275,
                                                                                                                                   'value_error': -3.200240740497412},
                                                                                                             'ERA-Interim_ERA-Interim': {'value': 38.68437450098252,
                                                                                                                                         'value_error': -2.9432562006976597},
                                                                                                             'HadISST_ERA-Interim': {'value': 39.32838353632555,
                                                                                                                                     'value_error': -2.9490816691287924},
                                                                                                             'Tropflux_ERA-Interim': {'value': 38.365258678157474,
                                                                                                                                      'value_error': -2.9818188759721127}}},
                                                                                 'EnsoFbTauxSsh': {'diagnostic': {'ACCESS-CM2_r1i1p1f1': {'nonlinearity': -0.09326113121420865,
                                                                                                                                          'nonlinearity_error': 0.0275223166557046,
                                                                                                                                          'value': 0.27626377628399973,
                                                                                                                                          'value_error': 0.006085553509778141},
                                                                                                                  'ERA-Interim_AVISO': {'nonlinearity': -0.15648680083918742,
                                                                                                                                        'nonlinearity_error': 0.05449477245662225,
                                                                                                                                        'value': 0.336153745357779,
                                                                                                                                        'value_error': 0.0122472536568305},
                                                                                                                  'Tropflux_AVISO': {'nonlinearity': -0.15327955460805903,
                                                                                                                                     'nonlinearity_error': 0.05100216480941061,
                                                                                                                                     'value': 0.3010796248015885,
                                                                                                                                     'value_error': 0.011538549705726963}},
                                                                                                   'metric': {'ERA-Interim_AVISO': {'value': 17.816243281786576,
                                                                                                                                    'value_error': 4.804589234185211},
                                                                                                              'Tropflux_AVISO': {'value': 8.242287578889613,
                                                                                                                                 'value_error': 5.537758583734624}}},
                                                                                 'EnsoSeasonality': {'diagnostic': {'20CRv2': {'value': 1.6436435961094338,
                                                                                                                               'value_error': 0.27635126775510105},
                                                                                                                    'ACCESS-CM2_r1i1p1f1': {'value': 1.35689584352529,
                                                                                                                                            'value_error': 0.21158996233933872},
                                                                                                                    'ERA-20C': {'value': 1.5951589911955568,
                                                                                                                                'value_error': 0.30349823329934555},
                                                                                                                    'ERA-5': {'value': 2.0283123524204223,
                                                                                                                              'value_error': 0.6454942543282691},
                                                                                                                    'ERA-Interim': {'value': 2.052960044692134,
                                                                                                                                    'value_error': 0.6533381861195713},
                                                                                                                    'HadISST': {'value': 1.6666267700450468,
                                                                                                                                'value_error': 0.273531261566947},
                                                                                                                    'Tropflux': {'value': 2.06093854374807,
                                                                                                                                 'value_error': 0.6643426635460994}},
                                                                                                     'metric': {'20CRv2': {'value': 17.445859507674687,
                                                                                                                           'value_error': 26.75332883692444},
                                                                                                                'ERA-20C': {'value': 14.936639481415629,
                                                                                                                            'value_error': 29.448836215769177},
                                                                                                                'ERA-5': {'value': 33.10222452148056,
                                                                                                                          'value_error': 31.72150771348471},
                                                                                                                'ERA-Interim': {'value': 33.90539445550813,
                                                                                                                                'value_error': 31.340661548193676},
                                                                                                                'HadISST': {'value': 18.584300461667556,
                                                                                                                            'value_error': 26.057864916471747},
                                                                                                                'Tropflux': {'value': 34.16126610657646,
                                                                                                                             'value_error': 31.489767742015175}}},
                                                                                 'EnsoSstLonRmse': {'diagnostic': {'20CRv2': {'value': None,
                                                                                                                              'value_error': None},
                                                                                                                   'ACCESS-CM2_r1i1p1f1': {'value': None,
                                                                                                                                           'value_error': None},
                                                                                                                   'ERA-20C': {'value': None,
                                                                                                                               'value_error': None},
                                                                                                                   'ERA-5': {'value': None,
                                                                                                                             'value_error': None},
                                                                                                                   'ERA-Interim': {'value': None,
                                                                                                                                   'value_error': None},
                                                                                                                   'HadISST': {'value': None,
                                                                                                                               'value_error': None},
                                                                                                                   'Tropflux': {'value': None,
                                                                                                                                'value_error': None}},
                                                                                                    'metric': {'20CRv2': {'value': 0.0659544064205628,
                                                                                                                          'value_error': None},
                                                                                                               'ERA-20C': {'value': 0.0848741234618347,
                                                                                                                           'value_error': None},
                                                                                                               'ERA-5': {'value': 0.055882763305978356,
                                                                                                                         'value_error': None},
                                                                                                               'ERA-Interim': {'value': 0.06132020021246395,
                                                                                                                               'value_error': None},
                                                                                                               'HadISST': {'value': 0.07329593603923167,
                                                                                                                           'value_error': None},
                                                                                                               'Tropflux': {'value': 0.06022298994696265,
                                                                                                                            'value_error': None}}},
                                                                                 'EnsoSstSkew': {'diagnostic': {'20CRv2': {'value': 0.35464371256710725,
                                                                                                                           'value_error': 0.029761039242344564},
                                                                                                                'ACCESS-CM2_r1i1p1f1': {'value': -0.28449736152546684,
                                                                                                                                        'value_error': -0.0221480895564315},
                                                                                                                'ERA-20C': {'value': 0.19142977450459012,
                                                                                                                            'value_error': 0.01816971010961296},
                                                                                                                'ERA-5': {'value': 0.473403564017451,
                                                                                                                          'value_error': 0.07485167573682382},
                                                                                                                'ERA-Interim': {'value': 0.40501535626049495,
                                                                                                                                'value_error': 0.06403855065638503},
                                                                                                                'HadISST': {'value': 0.40320728014992363,
                                                                                                                            'value_error': 0.033032027448448076},
                                                                                                                'Tropflux': {'value': 0.3838870736969205,
                                                                                                                             'value_error': 0.061471128380725305}},
                                                                                                 'metric': {'20CRv2': {'value': 180.2206133773295,
                                                                                                                       'value_error': -12.977130611162165},
                                                                                                            'ERA-20C': {'value': 248.6170906598676,
                                                                                                                        'value_error': -25.675934806835166},
                                                                                                            'ERA-5': {'value': 160.09615962987965,
                                                                                                                      'value_error': -14.180516834976428},
                                                                                                            'ERA-Interim': {'value': 170.2435987001159,
                                                                                                                            'value_error': -16.574944889175054},
                                                                                                            'HadISST': {'value': 170.55858748871867,
                                                                                                                        'value_error': -11.273363299898966},
                                                                                                            'Tropflux': {'value': 174.10964864893523,
                                                                                                                         'value_error': -17.636469539835424}}},
                                                                                 'EnsodSstOce_2': {'diagnostic': {'20CRv2_ERA-Interim': {'value': 2.363055944556165,
                                                                                                                                         'value_error': None},
                                                                                                                  'ACCESS-CM2_r1i1p1f1': {'value': 1.621685462712441,
                                                                                                                                          'value_error': None},
                                                                                                                  'ERA-20C_ERA-Interim': {'value': 2.44408374051583,
                                                                                                                                          'value_error': None},
                                                                                                                  'ERA-5_ERA-Interim': {'value': 2.4614131442372607,
                                                                                                                                        'value_error': None},
                                                                                                                  'ERA-Interim_ERA-Interim': {'value': 1.8011858193585126,
                                                                                                                                              'value_error': None},
                                                                                                                  'HadISST_ERA-Interim': {'value': 2.3814159901043817,
                                                                                                                                          'value_error': None},
                                                                                                                  'Tropflux_ERA-Interim': {'value': 1.6738291099743765,
                                                                                                                                           'value_error': None}},
                                                                                                   'metric': {'20CRv2_ERA-Interim': {'value': 31.373378338825997,
                                                                                                                                     'value_error': None},
                                                                                                              'ERA-20C_ERA-Interim': {'value': 33.64853111087837,
                                                                                                                                      'value_error': None},
                                                                                                              'ERA-5_ERA-Interim': {'value': 34.11567389614446,
                                                                                                                                    'value_error': None},
                                                                                                              'ERA-Interim_ERA-Interim': {'value': 9.965676762323174,
                                                                                                                                          'value_error': None},
                                                                                                              'HadISST_ERA-Interim': {'value': 31.90247023404929,
                                                                                                                                      'value_error': None},
                                                                                                              'Tropflux_ERA-Interim': {'value': 3.115231235447546,
                                                                                                                                       'value_error': None}}}}},
                                                          'r2i1p1f1': {'metadata': {'description_of_the_collection': 'Describe '
                                                                                                                     'which '
                                                                                                                     'science '
                                                                                                                     'question '
                                                                                                                     'this '
                                                                                                                     'collection '
                                                                                                                     'is '
                                                                                                                     'about',
                                                                                    'metrics': {'BiasSstLonRmse': {'diagnostic': {'20CRv2': {'name': '20CRv2',
                                                                                                                                             'nyears': 142,
                                                                                                                                             'time_period': ['1871-1-16 '
                                                                                                                                                             '12:0:0.0',
                                                                                                                                                             '2012-12-16 '
                                                                                                                                                             '12:0:0.0']},
                                                                                                                                  'ACCESS-CM2_r2i1p1f1': {'keyerror': None,
                                                                                                                                                          'name': 'ACCESS-CM2_r2i1p1f1',
                                                                                                                                                          'nyears': 165,
                                                                                                                                                          'time_period': ['1850-1-16 '
                                                                                                                                                                          '12:0:0.0',
                                                                                                                                                                          '2014-12-16 '
                                                                                                                                                                          '12:0:0.0']},
                                                                                                                                  'ERA-20C': {'name': 'ERA-20C',
                                                                                                                                              'nyears': 111,
                                                                                                                                              'time_period': ['1900-1-16 '
                                                                                                                                                              '12:0:0.0',
                                                                                                                                                              '2010-12-16 '
                                                                                                                                                              '12:0:0.0']},
                                                                                                                                  'ERA-5': {'name': 'ERA-5',
                                                                                                                                            'nyears': 40,
                                                                                                                                            'time_period': ['1979-1-16 '
                                                                                                                                                            '12:0:0.0',
                                                                                                                                                            '2018-12-16 '
                                                                                                                                                            '12:0:0.0']},
                                                                                                                                  'ERA-Interim': {'name': 'ERA-Interim',
                                                                                                                                                  'nyears': 40,
                                                                                                                                                  'time_period': ['1979-1-16 '
                                                                                                                                                                  '12:0:0.0',
                                                                                                                                                                  '2018-12-16 '
                                                                                                                                                                  '12:0:0.0']},
                                                                                                                                  'HadISST': {'name': 'HadISST',
                                                                                                                                              'nyears': 149,
                                                                                                                                              'time_period': ['1870-1-16 '
                                                                                                                                                              '11:59:59.5',
                                                                                                                                                              '2018-12-16 '
                                                                                                                                                              '18:0:0.0']},
                                                                                                                                  'Tropflux': {'name': 'Tropflux',
                                                                                                                                               'nyears': 39,
                                                                                                                                               'time_period': ['1979-1-15 '
                                                                                                                                                               '0:0:0.0',
                                                                                                                                                               '2017-7-15 '
                                                                                                                                                               '12:0:0.0']},
                                                                                                                                  'method': 'Zonal '
                                                                                                                                            'root '
                                                                                                                                            'mean '
                                                                                                                                            'square '
                                                                                                                                            'error '
                                                                                                                                            'of '
                                                                                                                                            'equatorial_pacific '
                                                                                                                                            'sst, '
                                                                                                                                            'time '
                                                                                                                                            'series '
                                                                                                                                            'are '
                                                                                                                                            'linearly '
                                                                                                                                            'detrended, '
                                                                                                                                            'observations '
                                                                                                                                            'and '
                                                                                                                                            'model '
                                                                                                                                            'regridded '
                                                                                                                                            'to '
                                                                                                                                            'generic_1x1deg',
                                                                                                                                  'name': 'sst '
                                                                                                                                          'Zonal '
                                                                                                                                          'RMSE',
                                                                                                                                  'ref': 'Using '
                                                                                                                                         'CDAT '
                                                                                                                                         'regridding '
                                                                                                                                         'and '
                                                                                                                                         'rms '
                                                                                                                                         '(uncentered '
                                                                                                                                         'and '
                                                                                                                                         'biased) '
                                                                                                                                         'calculation',
                                                                                                                                  'time_frequency': 'monthly',
                                                                                                                                  'units': 'C'},
                                                                                                                   'metric': {'datasets': 'ACCESS-CM2_r2i1p1f1; '
                                                                                                                                          "20CRv2's "
                                                                                                                                          'ts; '
                                                                                                                                          "ERA-20C's "
                                                                                                                                          'ts; '
                                                                                                                                          "ERA-5's "
                                                                                                                                          'ts; '
                                                                                                                                          "ERA-Interim's "
                                                                                                                                          'ts; '
                                                                                                                                          "HadISST's "
                                                                                                                                          'ts; '
                                                                                                                                          "Tropflux's "
                                                                                                                                          'ts; '
                                                                                                                                          "'s ",
                                                                                                                              'method': 'The '
                                                                                                                                        'metric '
                                                                                                                                        'is '
                                                                                                                                        'the '
                                                                                                                                        'statistical '
                                                                                                                                        'value '
                                                                                                                                        'between '
                                                                                                                                        'the '
                                                                                                                                        'model '
                                                                                                                                        'and '
                                                                                                                                        'the '
                                                                                                                                        'observations',
                                                                                                                              'name': 'BiasSstLonRmse',
                                                                                                                              'units': 'C'}},
                                                                                                'BiasTauxLonRmse': {'diagnostic': {'ACCESS-CM2_r2i1p1f1': {'keyerror': None,
                                                                                                                                                           'name': 'ACCESS-CM2_r2i1p1f1',
                                                                                                                                                           'nyears': 165,
                                                                                                                                                           'time_period': ['1850-1-16 '
                                                                                                                                                                           '12:0:0.0',
                                                                                                                                                                           '2014-12-16 '
                                                                                                                                                                           '12:0:0.0']},
                                                                                                                                   'ERA-Interim': {'name': 'ERA-Interim',
                                                                                                                                                   'nyears': 40,
                                                                                                                                                   'time_period': ['1979-1-16 '
                                                                                                                                                                   '12:0:0.0',
                                                                                                                                                                   '2018-12-16 '
                                                                                                                                                                   '12:0:0.0']},
                                                                                                                                   'Tropflux': {'name': 'Tropflux',
                                                                                                                                                'nyears': 39,
                                                                                                                                                'time_period': ['1979-1-15 '
                                                                                                                                                                '0:0:0.0',
                                                                                                                                                                '2017-7-15 '
                                                                                                                                                                '12:0:0.0']},
                                                                                                                                   'method': 'Zonal '
                                                                                                                                             'root '
                                                                                                                                             'mean '
                                                                                                                                             'square '
                                                                                                                                             'error '
                                                                                                                                             'of '
                                                                                                                                             'equatorial_pacific '
                                                                                                                                             'taux, '
                                                                                                                                             'time '
                                                                                                                                             'series '
                                                                                                                                             'are '
                                                                                                                                             'linearly '
                                                                                                                                             'detrended, '
                                                                                                                                             'observations '
                                                                                                                                             'and '
                                                                                                                                             'model '
                                                                                                                                             'regridded '
                                                                                                                                             'to '
                                                                                                                                             'generic_1x1deg',
                                                                                                                                   'name': 'taux '
                                                                                                                                           'Zonal '
                                                                                                                                           'RMSE',
                                                                                                                                   'ref': 'Using '
                                                                                                                                          'CDAT '
                                                                                                                                          'regridding '
                                                                                                                                          'and '
                                                                                                                                          'rms '
                                                                                                                                          '(uncentered '
                                                                                                                                          'and '
                                                                                                                                          'biased) '
                                                                                                                                          'calculation',
                                                                                                                                   'time_frequency': 'monthly',
                                                                                                                                   'units': '1e-3 '
                                                                                                                                            'N/m2'},
                                                                                                                    'metric': {'datasets': 'ACCESS-CM2_r2i1p1f1; '
                                                                                                                                           "ERA-Interim's "
                                                                                                                                           'tauu; '
                                                                                                                                           "Tropflux's "
                                                                                                                                           'tauu; '
                                                                                                                                           "'s ",
                                                                                                                               'method': 'The '
                                                                                                                                         'metric '
                                                                                                                                         'is '
                                                                                                                                         'the '
                                                                                                                                         'statistical '
                                                                                                                                         'value '
                                                                                                                                         'between '
                                                                                                                                         'the '
                                                                                                                                         'model '
                                                                                                                                         'and '
                                                                                                                                         'the '
                                                                                                                                         'observations',
                                                                                                                               'name': 'BiasTauxLonRmse',
                                                                                                                               'units': '1e-3 '
                                                                                                                                        'N/m2'}},
                                                                                                'EnsoAmpl': {'diagnostic': {'20CRv2': {'keyerror': None,
                                                                                                                                       'name': '20CRv2',
                                                                                                                                       'nyears': 142,
                                                                                                                                       'time_period': ['1871-1-16 '
                                                                                                                                                       '12:0:0.0',
                                                                                                                                                       '2012-12-16 '
                                                                                                                                                       '12:0:0.0']},
                                                                                                                            'ACCESS-CM2_r2i1p1f1': {'keyerror': None,
                                                                                                                                                    'name': 'ACCESS-CM2_r2i1p1f1',
                                                                                                                                                    'nyears': 165,
                                                                                                                                                    'time_period': ['1850-1-16 '
                                                                                                                                                                    '12:0:0.0',
                                                                                                                                                                    '2014-12-16 '
                                                                                                                                                                    '12:0:0.0']},
                                                                                                                            'ERA-20C': {'keyerror': None,
                                                                                                                                        'name': 'ERA-20C',
                                                                                                                                        'nyears': 111,
                                                                                                                                        'time_period': ['1900-1-16 '
                                                                                                                                                        '12:0:0.0',
                                                                                                                                                        '2010-12-16 '
                                                                                                                                                        '12:0:0.0']},
                                                                                                                            'ERA-5': {'keyerror': None,
                                                                                                                                      'name': 'ERA-5',
                                                                                                                                      'nyears': 40,
                                                                                                                                      'time_period': ['1979-1-16 '
                                                                                                                                                      '12:0:0.0',
                                                                                                                                                      '2018-12-16 '
                                                                                                                                                      '12:0:0.0']},
                                                                                                                            'ERA-Interim': {'keyerror': None,
                                                                                                                                            'name': 'ERA-Interim',
                                                                                                                                            'nyears': 40,
                                                                                                                                            'time_period': ['1979-1-16 '
                                                                                                                                                            '12:0:0.0',
                                                                                                                                                            '2018-12-16 '
                                                                                                                                                            '12:0:0.0']},
                                                                                                                            'HadISST': {'keyerror': 'unlikely '
                                                                                                                                                    'units: '
                                                                                                                                                    'K([-1e+30, '
                                                                                                                                                    '304.7203])',
                                                                                                                                        'name': 'HadISST',
                                                                                                                                        'nyears': 149,
                                                                                                                                        'time_period': ['1870-1-16 '
                                                                                                                                                        '11:59:59.5',
                                                                                                                                                        '2018-12-16 '
                                                                                                                                                        '18:0:0.0']},
                                                                                                                            'Tropflux': {'keyerror': None,
                                                                                                                                         'name': 'Tropflux',
                                                                                                                                         'nyears': 39,
                                                                                                                                         'time_period': ['1979-1-15 '
                                                                                                                                                         '0:0:0.0',
                                                                                                                                                         '2017-7-15 '
                                                                                                                                                         '12:0:0.0']},
                                                                                                                            'method': 'Standard '
                                                                                                                                      'deviation '
                                                                                                                                      'of '
                                                                                                                                      'nino3.4 '
                                                                                                                                      'sstA, '
                                                                                                                                      'time '
                                                                                                                                      'series '
                                                                                                                                      'are '
                                                                                                                                      'linearly '
                                                                                                                                      'detrended',
                                                                                                                            'name': 'ENSO '
                                                                                                                                    'amplitude',
                                                                                                                            'ref': 'Using '
                                                                                                                                   'CDAT '
                                                                                                                                   'regression '
                                                                                                                                   'calculation',
                                                                                                                            'time_frequency': 'monthly',
                                                                                                                            'units': 'C'},
                                                                                                             'metric': {'datasets': 'ACCESS-CM2_r2i1p1f1; '
                                                                                                                                    "20CRv2's "
                                                                                                                                    'ts; '
                                                                                                                                    "ERA-20C's "
                                                                                                                                    'ts; '
                                                                                                                                    "ERA-5's "
                                                                                                                                    'ts; '
                                                                                                                                    "ERA-Interim's "
                                                                                                                                    'ts; '
                                                                                                                                    "HadISST's "
                                                                                                                                    'ts; '
                                                                                                                                    "Tropflux's "
                                                                                                                                    'ts; '
                                                                                                                                    "'s ",
                                                                                                                        'method': 'The '
                                                                                                                                  'metric '
                                                                                                                                  'is '
                                                                                                                                  'the '
                                                                                                                                  'absolute '
                                                                                                                                  'value '
                                                                                                                                  'of '
                                                                                                                                  'the '
                                                                                                                                  'relative '
                                                                                                                                  'difference '
                                                                                                                                  'between '
                                                                                                                                  'model '
                                                                                                                                  'and '
                                                                                                                                  'observations '
                                                                                                                                  'values '
                                                                                                                                  '(M '
                                                                                                                                  '= '
                                                                                                                                  '100 '
                                                                                                                                  '* '
                                                                                                                                  'abs[[model-obs] '
                                                                                                                                  '/ '
                                                                                                                                  'obs])',
                                                                                                                        'name': 'EnsoAmpl',
                                                                                                                        'units': '%'}},
                                                                                                'EnsoFbSshSst': {'diagnostic': {'20CRv2_AVISO': {'keyerror': None,
                                                                                                                                                 'name': '20CRv2_AVISO',
                                                                                                                                                 'nyears': 20,
                                                                                                                                                 'time_period': ['1993-1-16 '
                                                                                                                                                                 '12:0:0.0',
                                                                                                                                                                 '2012-12-16 '
                                                                                                                                                                 '12:0:0.0']},
                                                                                                                                'ACCESS-CM2_r2i1p1f1': {'keyerror': None,
                                                                                                                                                        'name': 'ACCESS-CM2_r2i1p1f1',
                                                                                                                                                        'nyears': 165,
                                                                                                                                                        'time_period': ['1850-1-16 '
                                                                                                                                                                        '12:0:0.0',
                                                                                                                                                                        '2014-12-16 '
                                                                                                                                                                        '12:0:0.0']},
                                                                                                                                'ERA-20C_AVISO': {'keyerror': None,
                                                                                                                                                  'name': 'ERA-20C_AVISO',
                                                                                                                                                  'nyears': 18,
                                                                                                                                                  'time_period': ['1993-1-16 '
                                                                                                                                                                  '12:0:0.0',
                                                                                                                                                                  '2010-12-16 '
                                                                                                                                                                  '12:0:0.0']},
                                                                                                                                'ERA-5_AVISO': {'keyerror': None,
                                                                                                                                                'name': 'ERA-5_AVISO',
                                                                                                                                                'nyears': 26,
                                                                                                                                                'time_period': ['1993-1-16 '
                                                                                                                                                                '12:0:0.0',
                                                                                                                                                                '2018-12-16 '
                                                                                                                                                                '12:0:0.0']},
                                                                                                                                'ERA-Interim_AVISO': {'keyerror': None,
                                                                                                                                                      'name': 'ERA-Interim_AVISO',
                                                                                                                                                      'nyears': 26,
                                                                                                                                                      'time_period': ['1993-1-16 '
                                                                                                                                                                      '12:0:0.0',
                                                                                                                                                                      '2018-12-16 '
                                                                                                                                                                      '12:0:0.0']},
                                                                                                                                'HadISST_AVISO': {'keyerror': None,
                                                                                                                                                  'name': 'HadISST_AVISO',
                                                                                                                                                  'nyears': 26,
                                                                                                                                                  'time_period': ['1993-1-16 '
                                                                                                                                                                  '3:0:0.0',
                                                                                                                                                                  '2018-12-16 '
                                                                                                                                                                  '18:0:0.0']},
                                                                                                                                'Tropflux_AVISO': {'keyerror': None,
                                                                                                                                                   'name': 'Tropflux_AVISO',
                                                                                                                                                   'nyears': 25,
                                                                                                                                                   'time_period': ['1993-1-15 '
                                                                                                                                                                   '0:0:0.0',
                                                                                                                                                                   '2017-7-15 '
                                                                                                                                                                   '12:0:0.0']},
                                                                                                                                'method': 'Regression '
                                                                                                                                          'of '
                                                                                                                                          'nino3 '
                                                                                                                                          'sstA '
                                                                                                                                          'over '
                                                                                                                                          'nino3 '
                                                                                                                                          'sshA, '
                                                                                                                                          'time '
                                                                                                                                          'series '
                                                                                                                                          'are '
                                                                                                                                          'linearly '
                                                                                                                                          'detrended',
                                                                                                                                'method_nonlinearity': 'The '
                                                                                                                                                       'nonlinearity '
                                                                                                                                                       'is '
                                                                                                                                                       'the '
                                                                                                                                                       'regression '
                                                                                                                                                       'computed '
                                                                                                                                                       'when '
                                                                                                                                                       'sshA<0 '
                                                                                                                                                       'minus '
                                                                                                                                                       'the '
                                                                                                                                                       'regression '
                                                                                                                                                       'computed '
                                                                                                                                                       'when '
                                                                                                                                                       'sshA>0',
                                                                                                                                'name': 'Sst-Ssh '
                                                                                                                                        'feedback',
                                                                                                                                'ref': 'Using '
                                                                                                                                       'CDAT '
                                                                                                                                       'regression '
                                                                                                                                       'calculation',
                                                                                                                                'time_frequency': 'monthly',
                                                                                                                                'units': 'C/cm'},
                                                                                                                 'metric': {'datasets': 'ACCESS-CM2_r2i1p1f1; '
                                                                                                                                        "20CRv2's "
                                                                                                                                        'ts; '
                                                                                                                                        "ERA-20C's "
                                                                                                                                        'ts; '
                                                                                                                                        "ERA-5's "
                                                                                                                                        'ts; '
                                                                                                                                        "ERA-Interim's "
                                                                                                                                        'ts; '
                                                                                                                                        "HadISST's "
                                                                                                                                        'ts; '
                                                                                                                                        "Tropflux's "
                                                                                                                                        'ts; '
                                                                                                                                        "AVISO's "
                                                                                                                                        'zos',
                                                                                                                            'method': 'The '
                                                                                                                                      'metric '
                                                                                                                                      'is '
                                                                                                                                      'the '
                                                                                                                                      'absolute '
                                                                                                                                      'value '
                                                                                                                                      'of '
                                                                                                                                      'the '
                                                                                                                                      'relative '
                                                                                                                                      'difference '
                                                                                                                                      'between '
                                                                                                                                      'model '
                                                                                                                                      'and '
                                                                                                                                      'observations '
                                                                                                                                      'values '
                                                                                                                                      '(M '
                                                                                                                                      '= '
                                                                                                                                      '100 '
                                                                                                                                      '* '
                                                                                                                                      'abs[[model-obs] '
                                                                                                                                      '/ '
                                                                                                                                      'obs])',
                                                                                                                            'name': 'EnsoFbSshSst',
                                                                                                                            'units': '%'}},
                                                                                                'EnsoFbSstTaux': {'diagnostic': {'20CRv2_ERA-Interim': {'keyerror': None,
                                                                                                                                                        'name': '20CRv2_ERA-Interim',
                                                                                                                                                        'nyears': 34,
                                                                                                                                                        'time_period': ['1979-1-16 '
                                                                                                                                                                        '12:0:0.0',
                                                                                                                                                                        '2012-12-16 '
                                                                                                                                                                        '12:0:0.0']},
                                                                                                                                 '20CRv2_Tropflux': {'keyerror': None,
                                                                                                                                                     'name': '20CRv2_Tropflux',
                                                                                                                                                     'nyears': 34,
                                                                                                                                                     'time_period': ['1979-1-16 '
                                                                                                                                                                     '12:0:0.0',
                                                                                                                                                                     '2012-12-16 '
                                                                                                                                                                     '12:0:0.0']},
                                                                                                                                 'ACCESS-CM2_r2i1p1f1': {'keyerror': None,
                                                                                                                                                         'name': 'ACCESS-CM2_r2i1p1f1',
                                                                                                                                                         'nyears': 165,
                                                                                                                                                         'time_period': ['1850-1-16 '
                                                                                                                                                                         '12:0:0.0',
                                                                                                                                                                         '2014-12-16 '
                                                                                                                                                                         '12:0:0.0']},
                                                                                                                                 'ERA-20C_ERA-Interim': {'keyerror': None,
                                                                                                                                                         'name': 'ERA-20C_ERA-Interim',
                                                                                                                                                         'nyears': 32,
                                                                                                                                                         'time_period': ['1979-1-16 '
                                                                                                                                                                         '12:0:0.0',
                                                                                                                                                                         '2010-12-16 '
                                                                                                                                                                         '12:0:0.0']},
                                                                                                                                 'ERA-20C_Tropflux': {'keyerror': None,
                                                                                                                                                      'name': 'ERA-20C_Tropflux',
                                                                                                                                                      'nyears': 32,
                                                                                                                                                      'time_period': ['1979-1-16 '
                                                                                                                                                                      '12:0:0.0',
                                                                                                                                                                      '2010-12-16 '
                                                                                                                                                                      '12:0:0.0']},
                                                                                                                                 'ERA-5_ERA-Interim': {'keyerror': None,
                                                                                                                                                       'name': 'ERA-5_ERA-Interim',
                                                                                                                                                       'nyears': 40,
                                                                                                                                                       'time_period': ['1979-1-16 '
                                                                                                                                                                       '12:0:0.0',
                                                                                                                                                                       '2018-12-16 '
                                                                                                                                                                       '12:0:0.0']},
                                                                                                                                 'ERA-5_Tropflux': {'keyerror': None,
                                                                                                                                                    'name': 'ERA-5_Tropflux',
                                                                                                                                                    'nyears': 39,
                                                                                                                                                    'time_period': ['1979-1-16 '
                                                                                                                                                                    '12:0:0.0',
                                                                                                                                                                    '2017-7-16 '
                                                                                                                                                                    '12:0:0.0']},
                                                                                                                                 'ERA-Interim_ERA-Interim': {'keyerror': None,
                                                                                                                                                             'name': 'ERA-Interim_ERA-Interim',
                                                                                                                                                             'nyears': 40,
                                                                                                                                                             'time_period': ['1979-1-16 '
                                                                                                                                                                             '12:0:0.0',
                                                                                                                                                                             '2018-12-16 '
                                                                                                                                                                             '12:0:0.0']},
                                                                                                                                 'ERA-Interim_Tropflux': {'keyerror': None,
                                                                                                                                                          'name': 'ERA-Interim_Tropflux',
                                                                                                                                                          'nyears': 39,
                                                                                                                                                          'time_period': ['1979-1-16 '
                                                                                                                                                                          '12:0:0.0',
                                                                                                                                                                          '2017-7-16 '
                                                                                                                                                                          '12:0:0.0']},
                                                                                                                                 'HadISST_ERA-Interim': {'keyerror': None,
                                                                                                                                                         'name': 'HadISST_ERA-Interim',
                                                                                                                                                         'nyears': 40,
                                                                                                                                                         'time_period': ['1979-1-16 '
                                                                                                                                                                         '3:0:0.0',
                                                                                                                                                                         '2018-12-16 '
                                                                                                                                                                         '18:0:0.0']},
                                                                                                                                 'HadISST_Tropflux': {'keyerror': None,
                                                                                                                                                      'name': 'HadISST_Tropflux',
                                                                                                                                                      'nyears': 39,
                                                                                                                                                      'time_period': ['1979-1-16 '
                                                                                                                                                                      '3:0:0.0',
                                                                                                                                                                      '2017-7-16 '
                                                                                                                                                                      '18:0:0.0']},
                                                                                                                                 'Tropflux_ERA-Interim': {'keyerror': None,
                                                                                                                                                          'name': 'Tropflux_ERA-Interim',
                                                                                                                                                          'nyears': 39,
                                                                                                                                                          'time_period': ['1979-1-15 '
                                                                                                                                                                          '0:0:0.0',
                                                                                                                                                                          '2017-7-15 '
                                                                                                                                                                          '12:0:0.0']},
                                                                                                                                 'Tropflux_Tropflux': {'keyerror': None,
                                                                                                                                                       'name': 'Tropflux_Tropflux',
                                                                                                                                                       'nyears': 39,
                                                                                                                                                       'time_period': ['1979-1-15 '
                                                                                                                                                                       '0:0:0.0',
                                                                                                                                                                       '2017-7-15 '
                                                                                                                                                                       '12:0:0.0']},
                                                                                                                                 'method': 'Regression '
                                                                                                                                           'of '
                                                                                                                                           'nino4 '
                                                                                                                                           'tauxA '
                                                                                                                                           'over '
                                                                                                                                           'nino3 '
                                                                                                                                           'sstA, '
                                                                                                                                           'time '
                                                                                                                                           'series '
                                                                                                                                           'are '
                                                                                                                                           'linearly '
                                                                                                                                           'detrended',
                                                                                                                                 'method_nonlinearity': 'The '
                                                                                                                                                        'nonlinearity '
                                                                                                                                                        'is '
                                                                                                                                                        'the '
                                                                                                                                                        'regression '
                                                                                                                                                        'computed '
                                                                                                                                                        'when '
                                                                                                                                                        'sstA<0 '
                                                                                                                                                        'minus '
                                                                                                                                                        'the '
                                                                                                                                                        'regression '
                                                                                                                                                        'computed '
                                                                                                                                                        'when '
                                                                                                                                                        'sstA>0',
                                                                                                                                 'name': 'Taux-Sst '
                                                                                                                                         'feedback '
                                                                                                                                         '(mu)',
                                                                                                                                 'ref': 'Using '
                                                                                                                                        'CDAT '
                                                                                                                                        'regression '
                                                                                                                                        'calculation',
                                                                                                                                 'time_frequency': 'monthly',
                                                                                                                                 'units': '1e-3 '
                                                                                                                                          'N/m2/C'},
                                                                                                                  'metric': {'datasets': 'ACCESS-CM2_r2i1p1f1; '
                                                                                                                                         "20CRv2's "
                                                                                                                                         'ts; '
                                                                                                                                         "ERA-20C's "
                                                                                                                                         'ts; '
                                                                                                                                         "ERA-5's "
                                                                                                                                         'ts; '
                                                                                                                                         "ERA-Interim's "
                                                                                                                                         'ts; '
                                                                                                                                         "HadISST's "
                                                                                                                                         'ts; '
                                                                                                                                         "Tropflux's "
                                                                                                                                         'ts; '
                                                                                                                                         "ERA-Interim's "
                                                                                                                                         'tauu; '
                                                                                                                                         "Tropflux's "
                                                                                                                                         'tauu',
                                                                                                                             'method': 'The '
                                                                                                                                       'metric '
                                                                                                                                       'is '
                                                                                                                                       'the '
                                                                                                                                       'absolute '
                                                                                                                                       'value '
                                                                                                                                       'of '
                                                                                                                                       'the '
                                                                                                                                       'relative '
                                                                                                                                       'difference '
                                                                                                                                       'between '
                                                                                                                                       'model '
                                                                                                                                       'and '
                                                                                                                                       'observations '
                                                                                                                                       'values '
                                                                                                                                       '(M '
                                                                                                                                       '= '
                                                                                                                                       '100 '
                                                                                                                                       '* '
                                                                                                                                       'abs[[model-obs] '
                                                                                                                                       '/ '
                                                                                                                                       'obs])',
                                                                                                                             'name': 'EnsoFbSstTaux',
                                                                                                                             'units': '%'}},
                                                                                                'EnsoFbSstThf': {'diagnostic': {'20CRv2_ERA-Interim': {'keyerror': '',
                                                                                                                                                       'name': '20CRv2_ERA-Interim',
                                                                                                                                                       'nyears': 34,
                                                                                                                                                       'time_period': ['1979-1-16 '
                                                                                                                                                                       '12:0:0.0',
                                                                                                                                                                       '2012-12-16 '
                                                                                                                                                                       '12:0:0.0']},
                                                                                                                                'ACCESS-CM2_r2i1p1f1': {'keyerror': '',
                                                                                                                                                        'name': 'ACCESS-CM2_r2i1p1f1',
                                                                                                                                                        'nyears': 165,
                                                                                                                                                        'time_period': ['1850-1-16 '
                                                                                                                                                                        '12:0:0.0',
                                                                                                                                                                        '2014-12-16 '
                                                                                                                                                                        '12:0:0.0']},
                                                                                                                                'ERA-20C_ERA-Interim': {'keyerror': '',
                                                                                                                                                        'name': 'ERA-20C_ERA-Interim',
                                                                                                                                                        'nyears': 32,
                                                                                                                                                        'time_period': ['1979-1-16 '
                                                                                                                                                                        '12:0:0.0',
                                                                                                                                                                        '2010-12-16 '
                                                                                                                                                                        '12:0:0.0']},
                                                                                                                                'ERA-5_ERA-Interim': {'keyerror': '',
                                                                                                                                                      'name': 'ERA-5_ERA-Interim',
                                                                                                                                                      'nyears': 40,
                                                                                                                                                      'time_period': ['1979-1-16 '
                                                                                                                                                                      '12:0:0.0',
                                                                                                                                                                      '2018-12-16 '
                                                                                                                                                                      '12:0:0.0']},
                                                                                                                                'ERA-Interim_ERA-Interim': {'keyerror': '',
                                                                                                                                                            'name': 'ERA-Interim_ERA-Interim',
                                                                                                                                                            'nyears': 40,
                                                                                                                                                            'time_period': ['1979-1-16 '
                                                                                                                                                                            '12:0:0.0',
                                                                                                                                                                            '2018-12-16 '
                                                                                                                                                                            '12:0:0.0']},
                                                                                                                                'HadISST_ERA-Interim': {'keyerror': '',
                                                                                                                                                        'name': 'HadISST_ERA-Interim',
                                                                                                                                                        'nyears': 40,
                                                                                                                                                        'time_period': ['1979-1-16 '
                                                                                                                                                                        '3:0:0.0',
                                                                                                                                                                        '2018-12-16 '
                                                                                                                                                                        '18:0:0.0']},
                                                                                                                                'Tropflux_ERA-Interim': {'keyerror': '',
                                                                                                                                                         'name': 'Tropflux_ERA-Interim',
                                                                                                                                                         'nyears': 39,
                                                                                                                                                         'time_period': ['1979-1-15 '
                                                                                                                                                                         '0:0:0.0',
                                                                                                                                                                         '2017-7-15 '
                                                                                                                                                                         '12:0:0.0']},
                                                                                                                                'method': 'Regression '
                                                                                                                                          'of '
                                                                                                                                          'nino3 '
                                                                                                                                          'thfA '
                                                                                                                                          'over '
                                                                                                                                          'nino3 '
                                                                                                                                          'sstA, '
                                                                                                                                          'time '
                                                                                                                                          'series '
                                                                                                                                          'are '
                                                                                                                                          'linearly '
                                                                                                                                          'detrended',
                                                                                                                                'method_nonlinearity': 'The '
                                                                                                                                                       'nonlinearity '
                                                                                                                                                       'is '
                                                                                                                                                       'the '
                                                                                                                                                       'regression '
                                                                                                                                                       'computed '
                                                                                                                                                       'when '
                                                                                                                                                       'sstA<0 '
                                                                                                                                                       'minus '
                                                                                                                                                       'the '
                                                                                                                                                       'regression '
                                                                                                                                                       'computed '
                                                                                                                                                       'when '
                                                                                                                                                       'sstA>0',
                                                                                                                                'name': 'Thf-Sst '
                                                                                                                                        'feedback '
                                                                                                                                        '(alpha)',
                                                                                                                                'ref': 'Using '
                                                                                                                                       'CDAT '
                                                                                                                                       'regression '
                                                                                                                                       'calculation',
                                                                                                                                'time_frequency': 'monthly',
                                                                                                                                'units': 'W/m2/C'},
                                                                                                                 'metric': {'datasets': 'ACCESS-CM2_r2i1p1f1; '
                                                                                                                                        "20CRv2's "
                                                                                                                                        'ts; '
                                                                                                                                        "ERA-20C's "
                                                                                                                                        'ts; '
                                                                                                                                        "ERA-5's "
                                                                                                                                        'ts; '
                                                                                                                                        "ERA-Interim's "
                                                                                                                                        'ts; '
                                                                                                                                        "HadISST's "
                                                                                                                                        'ts; '
                                                                                                                                        "Tropflux's "
                                                                                                                                        'ts; '
                                                                                                                                        "ERA-Interim's "
                                                                                                                                        'hfls '
                                                                                                                                        '& '
                                                                                                                                        'hfss '
                                                                                                                                        '& '
                                                                                                                                        'rlds '
                                                                                                                                        '& '
                                                                                                                                        'rlus '
                                                                                                                                        '& '
                                                                                                                                        'rsds '
                                                                                                                                        '& '
                                                                                                                                        'rsus',
                                                                                                                            'method': 'The '
                                                                                                                                      'metric '
                                                                                                                                      'is '
                                                                                                                                      'the '
                                                                                                                                      'absolute '
                                                                                                                                      'value '
                                                                                                                                      'of '
                                                                                                                                      'the '
                                                                                                                                      'relative '
                                                                                                                                      'difference '
                                                                                                                                      'between '
                                                                                                                                      'model '
                                                                                                                                      'and '
                                                                                                                                      'observations '
                                                                                                                                      'values '
                                                                                                                                      '(M '
                                                                                                                                      '= '
                                                                                                                                      '100 '
                                                                                                                                      '* '
                                                                                                                                      'abs[[model-obs] '
                                                                                                                                      '/ '
                                                                                                                                      'obs])',
                                                                                                                            'name': 'EnsoFbSstThf',
                                                                                                                            'units': '%'}},
                                                                                                'EnsoFbTauxSsh': {'diagnostic': {'ACCESS-CM2_r2i1p1f1': {'keyerror': None,
                                                                                                                                                         'name': 'ACCESS-CM2_r2i1p1f1',
                                                                                                                                                         'nyears': 165,
                                                                                                                                                         'time_period': ['1850-1-16 '
                                                                                                                                                                         '12:0:0.0',
                                                                                                                                                                         '2014-12-16 '
                                                                                                                                                                         '12:0:0.0']},
                                                                                                                                 'ERA-Interim_AVISO': {'keyerror': None,
                                                                                                                                                       'name': 'ERA-Interim_AVISO',
                                                                                                                                                       'nyears': 26,
                                                                                                                                                       'time_period': ['1993-1-16 '
                                                                                                                                                                       '12:0:0.0',
                                                                                                                                                                       '2018-12-16 '
                                                                                                                                                                       '12:0:0.0']},
                                                                                                                                 'Tropflux_AVISO': {'keyerror': None,
                                                                                                                                                    'name': 'Tropflux_AVISO',
                                                                                                                                                    'nyears': 25,
                                                                                                                                                    'time_period': ['1993-1-16 '
                                                                                                                                                                    '12:0:0.0',
                                                                                                                                                                    '2017-7-16 '
                                                                                                                                                                    '12:0:0.0']},
                                                                                                                                 'method': 'Regression '
                                                                                                                                           'of '
                                                                                                                                           'nino3 '
                                                                                                                                           'sshA '
                                                                                                                                           'over '
                                                                                                                                           'nino4 '
                                                                                                                                           'tauxA, '
                                                                                                                                           'time '
                                                                                                                                           'series '
                                                                                                                                           'are '
                                                                                                                                           'linearly '
                                                                                                                                           'detrended',
                                                                                                                                 'method_nonlinearity': 'The '
                                                                                                                                                        'nonlinearity '
                                                                                                                                                        'is '
                                                                                                                                                        'the '
                                                                                                                                                        'regression '
                                                                                                                                                        'computed '
                                                                                                                                                        'when '
                                                                                                                                                        'tauxA<0 '
                                                                                                                                                        'minus '
                                                                                                                                                        'the '
                                                                                                                                                        'regression '
                                                                                                                                                        'computed '
                                                                                                                                                        'when '
                                                                                                                                                        'tauxA>0',
                                                                                                                                 'name': 'Ssh-Taux '
                                                                                                                                         'feedback',
                                                                                                                                 'ref': 'Using '
                                                                                                                                        'CDAT '
                                                                                                                                        'regression '
                                                                                                                                        'calculation',
                                                                                                                                 'time_frequency': 'monthly',
                                                                                                                                 'units': '1e3 '
                                                                                                                                          'cm/N/m2'},
                                                                                                                  'metric': {'datasets': 'ACCESS-CM2_r2i1p1f1; '
                                                                                                                                         "ERA-Interim's "
                                                                                                                                         'tauu; '
                                                                                                                                         "Tropflux's "
                                                                                                                                         'tauu; '
                                                                                                                                         "AVISO's "
                                                                                                                                         'zos',
                                                                                                                             'method': 'The '
                                                                                                                                       'metric '
                                                                                                                                       'is '
                                                                                                                                       'the '
                                                                                                                                       'absolute '
                                                                                                                                       'value '
                                                                                                                                       'of '
                                                                                                                                       'the '
                                                                                                                                       'relative '
                                                                                                                                       'difference '
                                                                                                                                       'between '
                                                                                                                                       'model '
                                                                                                                                       'and '
                                                                                                                                       'observations '
                                                                                                                                       'values '
                                                                                                                                       '(M '
                                                                                                                                       '= '
                                                                                                                                       '100 '
                                                                                                                                       '* '
                                                                                                                                       'abs[[model-obs] '
                                                                                                                                       '/ '
                                                                                                                                       'obs])',
                                                                                                                             'name': 'EnsoFbTauxSsh',
                                                                                                                             'units': '%'}},
                                                                                                'EnsoSeasonality': {'diagnostic': {'20CRv2': {'keyerror': None,
                                                                                                                                              'name': '20CRv2',
                                                                                                                                              'nyears': 142,
                                                                                                                                              'time_period': ['1871-1-16 '
                                                                                                                                                              '12:0:0.0',
                                                                                                                                                              '2012-12-16 '
                                                                                                                                                              '12:0:0.0']},
                                                                                                                                   'ACCESS-CM2_r2i1p1f1': {'keyerror': None,
                                                                                                                                                           'name': 'ACCESS-CM2_r2i1p1f1',
                                                                                                                                                           'nyears': 165,
                                                                                                                                                           'time_period': ['1850-1-16 '
                                                                                                                                                                           '12:0:0.0',
                                                                                                                                                                           '2014-12-16 '
                                                                                                                                                                           '12:0:0.0']},
                                                                                                                                   'ERA-20C': {'keyerror': None,
                                                                                                                                               'name': 'ERA-20C',
                                                                                                                                               'nyears': 111,
                                                                                                                                               'time_period': ['1900-1-16 '
                                                                                                                                                               '12:0:0.0',
                                                                                                                                                               '2010-12-16 '
                                                                                                                                                               '12:0:0.0']},
                                                                                                                                   'ERA-5': {'keyerror': None,
                                                                                                                                             'name': 'ERA-5',
                                                                                                                                             'nyears': 40,
                                                                                                                                             'time_period': ['1979-1-16 '
                                                                                                                                                             '12:0:0.0',
                                                                                                                                                             '2018-12-16 '
                                                                                                                                                             '12:0:0.0']},
                                                                                                                                   'ERA-Interim': {'keyerror': None,
                                                                                                                                                   'name': 'ERA-Interim',
                                                                                                                                                   'nyears': 40,
                                                                                                                                                   'time_period': ['1979-1-16 '
                                                                                                                                                                   '12:0:0.0',
                                                                                                                                                                   '2018-12-16 '
                                                                                                                                                                   '12:0:0.0']},
                                                                                                                                   'HadISST': {'keyerror': 'unlikely '
                                                                                                                                                           'units: '
                                                                                                                                                           'K([-1e+30, '
                                                                                                                                                           '304.7203])',
                                                                                                                                               'name': 'HadISST',
                                                                                                                                               'nyears': 149,
                                                                                                                                               'time_period': ['1870-1-16 '
                                                                                                                                                               '11:59:59.5',
                                                                                                                                                               '2018-12-16 '
                                                                                                                                                               '18:0:0.0']},
                                                                                                                                   'Tropflux': {'keyerror': None,
                                                                                                                                                'name': 'Tropflux',
                                                                                                                                                'nyears': 39,
                                                                                                                                                'time_period': ['1979-1-15 '
                                                                                                                                                                '0:0:0.0',
                                                                                                                                                                '2017-7-15 '
                                                                                                                                                                '12:0:0.0']},
                                                                                                                                   'method': 'Ratio '
                                                                                                                                             'between '
                                                                                                                                             'NDJ '
                                                                                                                                             'and '
                                                                                                                                             'MAM '
                                                                                                                                             'standard '
                                                                                                                                             'deviation '
                                                                                                                                             'nino3.4 '
                                                                                                                                             'sstA, '
                                                                                                                                             'time '
                                                                                                                                             'series '
                                                                                                                                             'are '
                                                                                                                                             'linearly '
                                                                                                                                             'detrended',
                                                                                                                                   'name': 'ENSO '
                                                                                                                                           'seasonality',
                                                                                                                                   'ref': 'Using '
                                                                                                                                          'CDAT '
                                                                                                                                          'std '
                                                                                                                                          'dev '
                                                                                                                                          'calculation',
                                                                                                                                   'time_frequency': 'monthly',
                                                                                                                                   'units': 'C/C'},
                                                                                                                    'metric': {'datasets': 'ACCESS-CM2_r2i1p1f1; '
                                                                                                                                           "20CRv2's "
                                                                                                                                           'ts; '
                                                                                                                                           "ERA-20C's "
                                                                                                                                           'ts; '
                                                                                                                                           "ERA-5's "
                                                                                                                                           'ts; '
                                                                                                                                           "ERA-Interim's "
                                                                                                                                           'ts; '
                                                                                                                                           "HadISST's "
                                                                                                                                           'ts; '
                                                                                                                                           "Tropflux's "
                                                                                                                                           'ts; '
                                                                                                                                           "'s ",
                                                                                                                               'method': 'The '
                                                                                                                                         'metric '
                                                                                                                                         'is '
                                                                                                                                         'the '
                                                                                                                                         'absolute '
                                                                                                                                         'value '
                                                                                                                                         'of '
                                                                                                                                         'the '
                                                                                                                                         'relative '
                                                                                                                                         'difference '
                                                                                                                                         'between '
                                                                                                                                         'model '
                                                                                                                                         'and '
                                                                                                                                         'observations '
                                                                                                                                         'values '
                                                                                                                                         '(M '
                                                                                                                                         '= '
                                                                                                                                         '100 '
                                                                                                                                         '* '
                                                                                                                                         'abs[[model-obs] '
                                                                                                                                         '/ '
                                                                                                                                         'obs])',
                                                                                                                               'name': 'EnsoSeasonality',
                                                                                                                               'units': '%'}},
                                                                                                'EnsoSstLonRmse': {'diagnostic': {'20CRv2': {'name': '20CRv2',
                                                                                                                                             'nyears': 142,
                                                                                                                                             'time_period': ['1871-1-16 '
                                                                                                                                                             '12:0:0.0',
                                                                                                                                                             '2012-12-16 '
                                                                                                                                                             '12:0:0.0']},
                                                                                                                                  'ACCESS-CM2_r2i1p1f1': {'keyerror': None,
                                                                                                                                                          'name': 'ACCESS-CM2_r2i1p1f1',
                                                                                                                                                          'nyears': 165,
                                                                                                                                                          'time_period': ['1850-1-16 '
                                                                                                                                                                          '12:0:0.0',
                                                                                                                                                                          '2014-12-16 '
                                                                                                                                                                          '12:0:0.0']},
                                                                                                                                  'ERA-20C': {'name': 'ERA-20C',
                                                                                                                                              'nyears': 111,
                                                                                                                                              'time_period': ['1900-1-16 '
                                                                                                                                                              '12:0:0.0',
                                                                                                                                                              '2010-12-16 '
                                                                                                                                                              '12:0:0.0']},
                                                                                                                                  'ERA-5': {'name': 'ERA-5',
                                                                                                                                            'nyears': 40,
                                                                                                                                            'time_period': ['1979-1-16 '
                                                                                                                                                            '12:0:0.0',
                                                                                                                                                            '2018-12-16 '
                                                                                                                                                            '12:0:0.0']},
                                                                                                                                  'ERA-Interim': {'name': 'ERA-Interim',
                                                                                                                                                  'nyears': 40,
                                                                                                                                                  'time_period': ['1979-1-16 '
                                                                                                                                                                  '12:0:0.0',
                                                                                                                                                                  '2018-12-16 '
                                                                                                                                                                  '12:0:0.0']},
                                                                                                                                  'HadISST': {'name': 'HadISST',
                                                                                                                                              'nyears': 149,
                                                                                                                                              'time_period': ['1870-1-16 '
                                                                                                                                                              '11:59:59.5',
                                                                                                                                                              '2018-12-16 '
                                                                                                                                                              '18:0:0.0']},
                                                                                                                                  'Tropflux': {'name': 'Tropflux',
                                                                                                                                               'nyears': 39,
                                                                                                                                               'time_period': ['1979-1-15 '
                                                                                                                                                               '0:0:0.0',
                                                                                                                                                               '2017-7-15 '
                                                                                                                                                               '12:0:0.0']},
                                                                                                                                  'method': 'nino3.4 '
                                                                                                                                            'SSTA '
                                                                                                                                            'during '
                                                                                                                                            'DEC '
                                                                                                                                            'regressed '
                                                                                                                                            'against '
                                                                                                                                            'equatorial_pacific '
                                                                                                                                            'SSTA, '
                                                                                                                                            'time '
                                                                                                                                            'series '
                                                                                                                                            'are '
                                                                                                                                            'linearly '
                                                                                                                                            'detrended, '
                                                                                                                                            'smoothing '
                                                                                                                                            'using '
                                                                                                                                            'a '
                                                                                                                                            'triangle '
                                                                                                                                            'shaped '
                                                                                                                                            'window '
                                                                                                                                            'of '
                                                                                                                                            '5 '
                                                                                                                                            'points, '
                                                                                                                                            'observations '
                                                                                                                                            'and '
                                                                                                                                            'model '
                                                                                                                                            'regridded '
                                                                                                                                            'to '
                                                                                                                                            'generic_1x1deg',
                                                                                                                                  'name': 'ENSO '
                                                                                                                                          'Zonal '
                                                                                                                                          'SSTA '
                                                                                                                                          'pattern',
                                                                                                                                  'ref': 'Using '
                                                                                                                                         'CDAT '
                                                                                                                                         'regridding '
                                                                                                                                         'and '
                                                                                                                                         'rms '
                                                                                                                                         '(uncentered '
                                                                                                                                         'and '
                                                                                                                                         'biased) '
                                                                                                                                         'calculation',
                                                                                                                                  'time_frequency': 'monthly',
                                                                                                                                  'units': 'C/C'},
                                                                                                                   'metric': {'datasets': 'ACCESS-CM2_r2i1p1f1; '
                                                                                                                                          "20CRv2's "
                                                                                                                                          'ts; '
                                                                                                                                          "ERA-20C's "
                                                                                                                                          'ts; '
                                                                                                                                          "ERA-5's "
                                                                                                                                          'ts; '
                                                                                                                                          "ERA-Interim's "
                                                                                                                                          'ts; '
                                                                                                                                          "HadISST's "
                                                                                                                                          'ts; '
                                                                                                                                          "Tropflux's "
                                                                                                                                          'ts; '
                                                                                                                                          "'s ",
                                                                                                                              'method': 'The '
                                                                                                                                        'metric '
                                                                                                                                        'is '
                                                                                                                                        'the '
                                                                                                                                        'statistical '
                                                                                                                                        'value '
                                                                                                                                        'between '
                                                                                                                                        'the '
                                                                                                                                        'model '
                                                                                                                                        'and '
                                                                                                                                        'the '
                                                                                                                                        'observations',
                                                                                                                              'name': 'EnsoSstLonRmse',
                                                                                                                              'units': 'C/C'}},
                                                                                                'EnsoSstSkew': {'diagnostic': {'20CRv2': {'keyerror': None,
                                                                                                                                          'name': '20CRv2',
                                                                                                                                          'nyears': 142,
                                                                                                                                          'time_period': ['1871-1-16 '
                                                                                                                                                          '12:0:0.0',
                                                                                                                                                          '2012-12-16 '
                                                                                                                                                          '12:0:0.0']},
                                                                                                                               'ACCESS-CM2_r2i1p1f1': {'keyerror': None,
                                                                                                                                                       'name': 'ACCESS-CM2_r2i1p1f1',
                                                                                                                                                       'nyears': 165,
                                                                                                                                                       'time_period': ['1850-1-16 '
                                                                                                                                                                       '12:0:0.0',
                                                                                                                                                                       '2014-12-16 '
                                                                                                                                                                       '12:0:0.0']},
                                                                                                                               'ERA-20C': {'keyerror': None,
                                                                                                                                           'name': 'ERA-20C',
                                                                                                                                           'nyears': 111,
                                                                                                                                           'time_period': ['1900-1-16 '
                                                                                                                                                           '12:0:0.0',
                                                                                                                                                           '2010-12-16 '
                                                                                                                                                           '12:0:0.0']},
                                                                                                                               'ERA-5': {'keyerror': None,
                                                                                                                                         'name': 'ERA-5',
                                                                                                                                         'nyears': 40,
                                                                                                                                         'time_period': ['1979-1-16 '
                                                                                                                                                         '12:0:0.0',
                                                                                                                                                         '2018-12-16 '
                                                                                                                                                         '12:0:0.0']},
                                                                                                                               'ERA-Interim': {'keyerror': None,
                                                                                                                                               'name': 'ERA-Interim',
                                                                                                                                               'nyears': 40,
                                                                                                                                               'time_period': ['1979-1-16 '
                                                                                                                                                               '12:0:0.0',
                                                                                                                                                               '2018-12-16 '
                                                                                                                                                               '12:0:0.0']},
                                                                                                                               'HadISST': {'keyerror': 'unlikely '
                                                                                                                                                       'units: '
                                                                                                                                                       'K([-1e+30, '
                                                                                                                                                       '304.7203])',
                                                                                                                                           'name': 'HadISST',
                                                                                                                                           'nyears': 149,
                                                                                                                                           'time_period': ['1870-1-16 '
                                                                                                                                                           '11:59:59.5',
                                                                                                                                                           '2018-12-16 '
                                                                                                                                                           '18:0:0.0']},
                                                                                                                               'Tropflux': {'keyerror': None,
                                                                                                                                            'name': 'Tropflux',
                                                                                                                                            'nyears': 39,
                                                                                                                                            'time_period': ['1979-1-15 '
                                                                                                                                                            '0:0:0.0',
                                                                                                                                                            '2017-7-15 '
                                                                                                                                                            '12:0:0.0']},
                                                                                                                               'method': 'Standard '
                                                                                                                                         'deviation '
                                                                                                                                         'of '
                                                                                                                                         'nino3.4 '
                                                                                                                                         'sstA, '
                                                                                                                                         'time '
                                                                                                                                         'series '
                                                                                                                                         'are '
                                                                                                                                         'linearly '
                                                                                                                                         'detrended',
                                                                                                                               'name': 'ENSO '
                                                                                                                                       'skewness',
                                                                                                                               'ref': 'Using '
                                                                                                                                      'CDAT '
                                                                                                                                      'regression '
                                                                                                                                      'calculation',
                                                                                                                               'time_frequency': 'monthly',
                                                                                                                               'units': 'C'},
                                                                                                                'metric': {'datasets': 'ACCESS-CM2_r2i1p1f1; '
                                                                                                                                       "20CRv2's "
                                                                                                                                       'ts; '
                                                                                                                                       "ERA-20C's "
                                                                                                                                       'ts; '
                                                                                                                                       "ERA-5's "
                                                                                                                                       'ts; '
                                                                                                                                       "ERA-Interim's "
                                                                                                                                       'ts; '
                                                                                                                                       "HadISST's "
                                                                                                                                       'ts; '
                                                                                                                                       "Tropflux's "
                                                                                                                                       'ts; '
                                                                                                                                       "'s ",
                                                                                                                           'method': 'The '
                                                                                                                                     'metric '
                                                                                                                                     'is '
                                                                                                                                     'the '
                                                                                                                                     'absolute '
                                                                                                                                     'value '
                                                                                                                                     'of '
                                                                                                                                     'the '
                                                                                                                                     'relative '
                                                                                                                                     'difference '
                                                                                                                                     'between '
                                                                                                                                     'model '
                                                                                                                                     'and '
                                                                                                                                     'observations '
                                                                                                                                     'values '
                                                                                                                                     '(M '
                                                                                                                                     '= '
                                                                                                                                     '100 '
                                                                                                                                     '* '
                                                                                                                                     'abs[[model-obs] '
                                                                                                                                     '/ '
                                                                                                                                     'obs])',
                                                                                                                           'name': 'EnsoSstSkew',
                                                                                                                           'units': '%'}},
                                                                                                'EnsodSstOce_2': {'diagnostic': {'20CRv2_ERA-Interim': {'keyerror': None,
                                                                                                                                                        'name': '20CRv2_ERA-Interim',
                                                                                                                                                        'nyears': 34,
                                                                                                                                                        'time_period': ['1979-1-16 '
                                                                                                                                                                        '12:0:0.0',
                                                                                                                                                                        '2012-12-16 '
                                                                                                                                                                        '12:0:0.0']},
                                                                                                                                 'ACCESS-CM2_r2i1p1f1': {'keyerror': None,
                                                                                                                                                         'name': 'ACCESS-CM2_r2i1p1f1',
                                                                                                                                                         'nyears': 165,
                                                                                                                                                         'time_period': ['1850-1-16 '
                                                                                                                                                                         '12:0:0.0',
                                                                                                                                                                         '2014-12-16 '
                                                                                                                                                                         '12:0:0.0']},
                                                                                                                                 'ERA-20C_ERA-Interim': {'keyerror': None,
                                                                                                                                                         'name': 'ERA-20C_ERA-Interim',
                                                                                                                                                         'nyears': 32,
                                                                                                                                                         'time_period': ['1979-1-16 '
                                                                                                                                                                         '12:0:0.0',
                                                                                                                                                                         '2010-12-16 '
                                                                                                                                                                         '12:0:0.0']},
                                                                                                                                 'ERA-5_ERA-Interim': {'keyerror': None,
                                                                                                                                                       'name': 'ERA-5_ERA-Interim',
                                                                                                                                                       'nyears': 40,
                                                                                                                                                       'time_period': ['1979-1-16 '
                                                                                                                                                                       '12:0:0.0',
                                                                                                                                                                       '2018-12-16 '
                                                                                                                                                                       '12:0:0.0']},
                                                                                                                                 'ERA-Interim_ERA-Interim': {'keyerror': None,
                                                                                                                                                             'name': 'ERA-Interim_ERA-Interim',
                                                                                                                                                             'nyears': 40,
                                                                                                                                                             'time_period': ['1979-1-16 '
                                                                                                                                                                             '12:0:0.0',
                                                                                                                                                                             '2018-12-16 '
                                                                                                                                                                             '12:0:0.0']},
                                                                                                                                 'HadISST_ERA-Interim': {'keyerror': None,
                                                                                                                                                         'name': 'HadISST_ERA-Interim',
                                                                                                                                                         'nyears': 40,
                                                                                                                                                         'time_period': ['1979-1-16 '
                                                                                                                                                                         '3:0:0.0',
                                                                                                                                                                         '2018-12-16 '
                                                                                                                                                                         '18:0:0.0']},
                                                                                                                                 'Tropflux_ERA-Interim': {'keyerror': None,
                                                                                                                                                          'name': 'Tropflux_ERA-Interim',
                                                                                                                                                          'nyears': 39,
                                                                                                                                                          'time_period': ['1979-1-15 '
                                                                                                                                                                          '0:0:0.0',
                                                                                                                                                                          '2017-7-15 '
                                                                                                                                                                          '12:0:0.0']},
                                                                                                                                 'method': 'Nino '
                                                                                                                                           '(Nina) '
                                                                                                                                           'events '
                                                                                                                                           '= '
                                                                                                                                           'nino3.4 '
                                                                                                                                           'sstA '
                                                                                                                                           '> '
                                                                                                                                           '0.75 '
                                                                                                                                           '(< '
                                                                                                                                           '-0.75) '
                                                                                                                                           'during '
                                                                                                                                           'DEC, '
                                                                                                                                           'dSSToce '
                                                                                                                                           '= '
                                                                                                                                           'dSST '
                                                                                                                                           '- '
                                                                                                                                           'dSSTthf '
                                                                                                                                           'during '
                                                                                                                                           'ENSO '
                                                                                                                                           'events '
                                                                                                                                           '(relative '
                                                                                                                                           'difference '
                                                                                                                                           'between '
                                                                                                                                           'nino3 '
                                                                                                                                           'SST '
                                                                                                                                           'change '
                                                                                                                                           'and '
                                                                                                                                           'heat '
                                                                                                                                           'flux-driven '
                                                                                                                                           'nino3 '
                                                                                                                                           'SST '
                                                                                                                                           'change '
                                                                                                                                           'in '
                                                                                                                                           ', '
                                                                                                                                           'time '
                                                                                                                                           'series '
                                                                                                                                           'are '
                                                                                                                                           'linearly '
                                                                                                                                           'detrended, '
                                                                                                                                           'smoothing '
                                                                                                                                           'using '
                                                                                                                                           'a '
                                                                                                                                           'triangle '
                                                                                                                                           'shaped '
                                                                                                                                           'window '
                                                                                                                                           'of '
                                                                                                                                           '5 '
                                                                                                                                           'points',
                                                                                                                                 'name': 'SST '
                                                                                                                                         'change '
                                                                                                                                         'caused '
                                                                                                                                         'by '
                                                                                                                                         'an '
                                                                                                                                         'anomalous '
                                                                                                                                         'ocean '
                                                                                                                                         'circulation '
                                                                                                                                         '(dSSToce)',
                                                                                                                                 'ref': 'Using '
                                                                                                                                        'CDAT',
                                                                                                                                 'time_frequency': 'monthly',
                                                                                                                                 'units': 'C/C'},
                                                                                                                  'metric': {'datasets': 'ACCESS-CM2_r2i1p1f1; '
                                                                                                                                         "20CRv2's "
                                                                                                                                         'ts; '
                                                                                                                                         "ERA-20C's "
                                                                                                                                         'ts; '
                                                                                                                                         "ERA-5's "
                                                                                                                                         'ts; '
                                                                                                                                         "ERA-Interim's "
                                                                                                                                         'ts; '
                                                                                                                                         "HadISST's "
                                                                                                                                         'ts; '
                                                                                                                                         "Tropflux's "
                                                                                                                                         'ts; '
                                                                                                                                         "ERA-Interim's "
                                                                                                                                         'hfls '
                                                                                                                                         '& '
                                                                                                                                         'hfss '
                                                                                                                                         '& '
                                                                                                                                         'rlds '
                                                                                                                                         '& '
                                                                                                                                         'rlus '
                                                                                                                                         '& '
                                                                                                                                         'rsds '
                                                                                                                                         '& '
                                                                                                                                         'rsus',
                                                                                                                             'method': 'The '
                                                                                                                                       'metric '
                                                                                                                                       'is '
                                                                                                                                       'the '
                                                                                                                                       'absolute '
                                                                                                                                       'value '
                                                                                                                                       'of '
                                                                                                                                       'the '
                                                                                                                                       'relative '
                                                                                                                                       'difference '
                                                                                                                                       'between '
                                                                                                                                       'model '
                                                                                                                                       'and '
                                                                                                                                       'observations '
                                                                                                                                       'values '
                                                                                                                                       '(M '
                                                                                                                                       '= '
                                                                                                                                       '100 '
                                                                                                                                       '* '
                                                                                                                                       'abs[[model-obs] '
                                                                                                                                       '/ '
                                                                                                                                       'obs])',
                                                                                                                             'name': 'EnsodSstOce',
                                                                                                                             'units': '%'}}},
                                                                                    'name': 'Metrics '
                                                                                            'Collection '
                                                                                            'for '
                                                                                            'ENSO '
                                                                                            'processes'},
                                                                       'value': {'BiasSstLonRmse': {'diagnostic': {'20CRv2': {'value': None,
                                                                                                                              'value_error': None},
                                                                                                                   'ACCESS-CM2_r2i1p1f1': {'value': None,
                                                                                                                                           'value_error': None},
                                                                                                                   'ERA-20C': {'value': None,
                                                                                                                               'value_error': None},
                                                                                                                   'ERA-5': {'value': None,
                                                                                                                             'value_error': None},
                                                                                                                   'ERA-Interim': {'value': None,
                                                                                                                                   'value_error': None},
                                                                                                                   'HadISST': {'value': None,
                                                                                                                               'value_error': None},
                                                                                                                   'Tropflux': {'value': None,
                                                                                                                                'value_error': None}},
                                                                                                    'metric': {'20CRv2': {'value': 0.5390012963087842,
                                                                                                                          'value_error': None},
                                                                                                               'ERA-20C': {'value': 0.526127105192347,
                                                                                                                           'value_error': None},
                                                                                                               'ERA-5': {'value': 0.4945591581204164,
                                                                                                                         'value_error': None},
                                                                                                               'ERA-Interim': {'value': 0.6258387652235506,
                                                                                                                               'value_error': None},
                                                                                                               'HadISST': {'value': 0.5446363993051538,
                                                                                                                           'value_error': None},
                                                                                                               'Tropflux': {'value': 0.6491058945682061,
                                                                                                                            'value_error': None}}},
                                                                                 'BiasTauxLonRmse': {'diagnostic': {'ACCESS-CM2_r2i1p1f1': {'value': None,
                                                                                                                                            'value_error': None},
                                                                                                                    'ERA-Interim': {'value': None,
                                                                                                                                    'value_error': None},
                                                                                                                    'Tropflux': {'value': None,
                                                                                                                                 'value_error': None}},
                                                                                                     'metric': {'ERA-Interim': {'value': 7.301982440374169,
                                                                                                                                'value_error': None},
                                                                                                                'Tropflux': {'value': 7.046539147746591,
                                                                                                                             'value_error': None}}},
                                                                                 'EnsoAmpl': {'diagnostic': {'20CRv2': {'value': 0.7407960057502115,
                                                                                                                        'value_error': 0.062166219832622445},
                                                                                                             'ACCESS-CM2_r2i1p1f1': {'value': 0.8622105536310941,
                                                                                                                                     'value_error': 0.0671230005646729},
                                                                                                             'ERA-20C': {'value': 0.8265126323027572,
                                                                                                                         'value_error': 0.07844910735406072},
                                                                                                             'ERA-5': {'value': 0.9075909980564855,
                                                                                                                       'value_error': 0.14350273688619733},
                                                                                                             'ERA-Interim': {'value': 0.9001341048707652,
                                                                                                                             'value_error': 0.1423236985494241},
                                                                                                             'HadISST': {'value': 0.7688706055408969,
                                                                                                                         'value_error': 0.06298833428079066},
                                                                                                             'Tropflux': {'value': 0.9128364190673677,
                                                                                                                          'value_error': 0.14617081051130443}},
                                                                                              'metric': {'20CRv2': {'value': 16.389741161998415,
                                                                                                                    'value_error': 18.828139168597463},
                                                                                                         'ERA-20C': {'value': 4.319101721274182,
                                                                                                                     'value_error': 18.022762005435613},
                                                                                                         'ERA-5': {'value': 5.000098560096893,
                                                                                                                   'value_error': 22.4165355987215},
                                                                                                         'ERA-Interim': {'value': 4.213100140796893,
                                                                                                                         'value_error': 22.602238718566696},
                                                                                                         'HadISST': {'value': 12.139877297628379,
                                                                                                                     'value_error': 17.916934311991206},
                                                                                                         'Tropflux': {'value': 5.5459953589491215,
                                                                                                                      'value_error': 22.47797967115718}}},
                                                                                 'EnsoFbSshSst': {'diagnostic': {'20CRv2_AVISO': {'nonlinearity': -0.04152801980348014,
                                                                                                                                  'nonlinearity_error': 0.017513672368536456,
                                                                                                                                  'value': 0.11810260256238658,
                                                                                                                                  'value_error': 0.003759915555702643},
                                                                                                                 'ACCESS-CM2_r2i1p1f1': {'nonlinearity': 0.03972377669451063,
                                                                                                                                         'nonlinearity_error': 0.015497896313684197,
                                                                                                                                         'value': 0.17736383623953692,
                                                                                                                                         'value_error': 0.003272883265824272},
                                                                                                                 'ERA-20C_AVISO': {'nonlinearity': -0.032011742613362676,
                                                                                                                                   'nonlinearity_error': 0.0183450811389117,
                                                                                                                                   'value': 0.12657346976318096,
                                                                                                                                   'value_error': 0.003913658970403057},
                                                                                                                 'ERA-5_AVISO': {'nonlinearity': -0.02566396021245236,
                                                                                                                                 'nonlinearity_error': 0.015885984596935174,
                                                                                                                                 'value': 0.12628612766653574,
                                                                                                                                 'value_error': 0.0034955457677469676},
                                                                                                                 'ERA-Interim_AVISO': {'nonlinearity': -0.01795688795240266,
                                                                                                                                       'nonlinearity_error': 0.015596453142222452,
                                                                                                                                       'value': 0.12602582769944173,
                                                                                                                                       'value_error': 0.0034298901844770405},
                                                                                                                 'HadISST_AVISO': {'nonlinearity': -0.027397296086239156,
                                                                                                                                   'nonlinearity_error': 0.01524011202550052,
                                                                                                                                   'value': 0.12238689206984654,
                                                                                                                                   'value_error': 0.0033466415532667315},
                                                                                                                 'Tropflux_AVISO': {'nonlinearity': -0.015122526459173655,
                                                                                                                                    'nonlinearity_error': 0.01524840165408661,
                                                                                                                                    'value': 0.1278402683633683,
                                                                                                                                    'value_error': 0.0033530380648741243}},
                                                                                                  'metric': {'20CRv2_AVISO': {'value': 50.17775425045875,
                                                                                                                              'value_error': 7.552280657304354},
                                                                                                             'ERA-20C_AVISO': {'value': 40.12718192160234,
                                                                                                                               'value_error': 6.9184982504283035},
                                                                                                             'ERA-5_AVISO': {'value': 40.44601692742863,
                                                                                                                             'value_error': 6.479126581587619},
                                                                                                             'ERA-Interim_AVISO': {'value': 40.73610106535535,
                                                                                                                                   'value_error': 6.427235694573791},
                                                                                                             'HadISST_AVISO': {'value': 44.920614650721646,
                                                                                                                               'value_error': 6.637031660497709},
                                                                                                             'Tropflux_AVISO': {'value': 38.738629471118394,
                                                                                                                                'value_error': 6.199018841348387}}},
                                                                                 'EnsoFbSstTaux': {'diagnostic': {'20CRv2_ERA-Interim': {'nonlinearity': 4.934033160844237,
                                                                                                                                         'nonlinearity_error': 2.902746466279199,
                                                                                                                                         'value': 14.279399855092704,
                                                                                                                                         'value_error': 0.6474408536852889},
                                                                                                                  '20CRv2_Tropflux': {'nonlinearity': 4.246457468336489,
                                                                                                                                      'nonlinearity_error': 3.158751303915279,
                                                                                                                                      'value': 14.953358496715085,
                                                                                                                                      'value_error': 0.7041991995478306},
                                                                                                                  'ACCESS-CM2_r2i1p1f1': {'nonlinearity': -3.2458665385371583,
                                                                                                                                          'nonlinearity_error': 1.0129505091547086,
                                                                                                                                          'value': 6.443086075760712,
                                                                                                                                          'value_error': 0.20610779643757524},
                                                                                                                  'ERA-20C_ERA-Interim': {'nonlinearity': 4.935065161864337,
                                                                                                                                          'nonlinearity_error': 2.7819513240604192,
                                                                                                                                          'value': 13.745001697775006,
                                                                                                                                          'value_error': 0.6142727838878883},
                                                                                                                  'ERA-20C_Tropflux': {'nonlinearity': 4.42190934284047,
                                                                                                                                       'nonlinearity_error': 2.9683595503356464,
                                                                                                                                       'value': 14.35072947741424,
                                                                                                                                       'value_error': 0.6543595156569981},
                                                                                                                  'ERA-5_ERA-Interim': {'nonlinearity': 3.1738377820903914,
                                                                                                                                        'nonlinearity_error': 2.4631712135067945,
                                                                                                                                        'value': 13.283692727594216,
                                                                                                                                        'value_error': 0.5482165088552355},
                                                                                                                  'ERA-5_Tropflux': {'nonlinearity': 2.619020521914347,
                                                                                                                                     'nonlinearity_error': 2.7583727584713595,
                                                                                                                                     'value': 14.195776796140159,
                                                                                                                                     'value_error': 0.6128603267022297},
                                                                                                                  'ERA-Interim_ERA-Interim': {'nonlinearity': 2.8547933106941965,
                                                                                                                                              'nonlinearity_error': 2.4777477618225165,
                                                                                                                                              'value': 13.423273078794779,
                                                                                                                                              'value_error': 0.5526753704697444},
                                                                                                                  'ERA-Interim_Tropflux': {'nonlinearity': 2.4475732791951845,
                                                                                                                                           'nonlinearity_error': 2.7697102686012887,
                                                                                                                                           'value': 14.360849877943336,
                                                                                                                                           'value_error': 0.6188884044938651},
                                                                                                                  'HadISST_ERA-Interim': {'nonlinearity': 3.801963983723919,
                                                                                                                                          'nonlinearity_error': 2.501025104389977,
                                                                                                                                          'value': 13.751193218218148,
                                                                                                                                          'value_error': 0.5563520982567903},
                                                                                                                  'HadISST_Tropflux': {'nonlinearity': 3.2962744768928225,
                                                                                                                                       'nonlinearity_error': 2.792416048517307,
                                                                                                                                       'value': 14.736359645293911,
                                                                                                                                       'value_error': 0.6225707941895763},
                                                                                                                  'Tropflux_ERA-Interim': {'nonlinearity': 3.28318688399591,
                                                                                                                                           'nonlinearity_error': 2.49301234198086,
                                                                                                                                           'value': 13.500147572549228,
                                                                                                                                           'value_error': 0.5581279487605476},
                                                                                                                  'Tropflux_Tropflux': {'nonlinearity': 2.3821759870445565,
                                                                                                                                        'nonlinearity_error': 2.751049544418355,
                                                                                                                                        'value': 14.293782294300136,
                                                                                                                                        'value_error': 0.6147433238666429}},
                                                                                                   'metric': {'20CRv2_ERA-Interim': {'value': 54.87845328833757,
                                                                                                                                     'value_error': 3.4892441469511204},
                                                                                                              '20CRv2_Tropflux': {'value': 56.912113909553405,
                                                                                                                                  'value_error': 3.4074776278554006},
                                                                                                              'ERA-20C_ERA-Interim': {'value': 53.12415220142391,
                                                                                                                                      'value_error': 3.594422049150519},
                                                                                                              'ERA-20C_Tropflux': {'value': 55.102727802784514,
                                                                                                                                   'value_error': 3.4834282822851432},
                                                                                                              'ERA-5_ERA-Interim': {'value': 51.49627285207758,
                                                                                                                                    'value_error': 3.5533284738819013},
                                                                                                              'ERA-5_Tropflux': {'value': 54.61265580399524,
                                                                                                                                 'value_error': 3.411358387167292},
                                                                                                              'ERA-Interim_ERA-Interim': {'value': 52.000633243921094,
                                                                                                                                          'value_error': 3.5117252827444516},
                                                                                                              'ERA-Interim_Tropflux': {'value': 55.13436787848766,
                                                                                                                                       'value_error': 3.368714215051548},
                                                                                                              'HadISST_ERA-Interim': {'value': 53.14525820766851,
                                                                                                                                      'value_error': 3.394506412095181},
                                                                                                              'HadISST_Tropflux': {'value': 56.27762737306479,
                                                                                                                                   'value_error': 3.245784783030599},
                                                                                                              'Tropflux_ERA-Interim': {'value': 52.27395818352476,
                                                                                                                                       'value_error': 3.499814888047564},
                                                                                                              'Tropflux_Tropflux': {'value': 54.92385470058551,
                                                                                                                                    'value_error': 3.3805635231679787}}},
                                                                                 'EnsoFbSstThf': {'diagnostic': {'20CRv2_ERA-Interim': {'nonlinearity': 7.290671056417352,
                                                                                                                                        'nonlinearity_error': 2.7213675471816154,
                                                                                                                                        'value': -20.113546892594773,
                                                                                                                                        'value_error': 0.6239588205021478},
                                                                                                                 'ACCESS-CM2_r2i1p1f1': {'nonlinearity': 15.69381483913832,
                                                                                                                                         'nonlinearity_error': 1.0360805723789395,
                                                                                                                                         'value': -11.943621750883757,
                                                                                                                                         'value_error': 0.23510384888231506},
                                                                                                                 'ERA-20C_ERA-Interim': {'nonlinearity': 8.087922977609816,
                                                                                                                                         'nonlinearity_error': 2.8639453483138015,
                                                                                                                                         'value': -18.936262328678282,
                                                                                                                                         'value_error': 0.6479348809996519},
                                                                                                                 'ERA-5_ERA-Interim': {'nonlinearity': 5.529894486857337,
                                                                                                                                       'nonlinearity_error': 2.3481393074511283,
                                                                                                                                       'value': -18.28980905577124,
                                                                                                                                       'value_error': 0.5373483889642887},
                                                                                                                 'ERA-Interim_ERA-Interim': {'nonlinearity': 5.07833225316738,
                                                                                                                                             'nonlinearity_error': 2.1935774857773334,
                                                                                                                                             'value': -18.913017373316936,
                                                                                                                                             'value_error': 0.5089173190939691},
                                                                                                                 'HadISST_ERA-Interim': {'nonlinearity': 5.687118446440536,
                                                                                                                                         'nonlinearity_error': 2.2961441447418176,
                                                                                                                                         'value': -19.11377276412325,
                                                                                                                                         'value_error': 0.525893438083763},
                                                                                                                 'Tropflux_ERA-Interim': {'nonlinearity': 5.034100130047683,
                                                                                                                                          'nonlinearity_error': 2.218257664682187,
                                                                                                                                          'value': -18.815094627609692,
                                                                                                                                          'value_error': 0.5133781975037957}},
                                                                                                  'metric': {'20CRv2_ERA-Interim': {'value': 40.61901754741699,
                                                                                                                                    'value_error': -3.0109892095610937},
                                                                                                             'ERA-20C_ERA-Interim': {'value': 36.92724813599791,
                                                                                                                                     'value_error': -3.399689956980423},
                                                                                                             'ERA-5_ERA-Interim': {'value': 34.69794181850674,
                                                                                                                                   'value_error': -3.203988651243911},
                                                                                                             'ERA-Interim_ERA-Interim': {'value': 36.849728865928164,
                                                                                                                                         'value_error': -2.942346558215054},
                                                                                                             'HadISST_ERA-Interim': {'value': 37.513007514131075,
                                                                                                                                     'value_error': -2.949280861387553},
                                                                                                             'Tropflux_ERA-Interim': {'value': 36.52106467029181,
                                                                                                                                      'value_error': -2.9816000077371947}}},
                                                                                 'EnsoFbTauxSsh': {'diagnostic': {'ACCESS-CM2_r2i1p1f1': {'nonlinearity': -0.1199687607291412,
                                                                                                                                          'nonlinearity_error': 0.027640414478480455,
                                                                                                                                          'value': 0.28957590497870744,
                                                                                                                                          'value_error': 0.005839595481571258},
                                                                                                                  'ERA-Interim_AVISO': {'nonlinearity': -0.15648680083918742,
                                                                                                                                        'nonlinearity_error': 0.05449477245662225,
                                                                                                                                        'value': 0.336153745357779,
                                                                                                                                        'value_error': 0.0122472536568305},
                                                                                                                  'Tropflux_AVISO': {'nonlinearity': -0.15327955460805903,
                                                                                                                                     'nonlinearity_error': 0.05100216480941061,
                                                                                                                                     'value': 0.3010796248015885,
                                                                                                                                     'value_error': 0.011538549705726963}},
                                                                                                   'metric': {'ERA-Interim_AVISO': {'value': 13.856112276689725,
                                                                                                                                    'value_error': 4.875702308018641},
                                                                                                              'Tropflux_AVISO': {'value': 3.820823089726519,
                                                                                                                                 'value_error': 5.625514389120123}}},
                                                                                 'EnsoSeasonality': {'diagnostic': {'20CRv2': {'value': 1.6436435961094338,
                                                                                                                               'value_error': 0.27635126775510105},
                                                                                                                    'ACCESS-CM2_r2i1p1f1': {'value': 1.2814325356033485,
                                                                                                                                            'value_error': 0.199822457443958},
                                                                                                                    'ERA-20C': {'value': 1.5951589911955568,
                                                                                                                                'value_error': 0.30349823329934555},
                                                                                                                    'ERA-5': {'value': 2.0283123524204223,
                                                                                                                              'value_error': 0.6454942543282691},
                                                                                                                    'ERA-Interim': {'value': 2.052960044692134,
                                                                                                                                    'value_error': 0.6533381861195713},
                                                                                                                    'HadISST': {'value': 1.6666267700450468,
                                                                                                                                'value_error': 0.273531261566947},
                                                                                                                    'Tropflux': {'value': 2.06093854374807,
                                                                                                                                 'value_error': 0.6643426635460994}},
                                                                                                     'metric': {'20CRv2': {'value': 22.03708038430305,
                                                                                                                           'value_error': 25.265451413177164},
                                                                                                                'ERA-20C': {'value': 19.667409789482697,
                                                                                                                            'value_error': 27.811049051855584},
                                                                                                                'ERA-5': {'value': 36.82272190108237,
                                                                                                                          'value_error': 29.957326685328788},
                                                                                                                'ERA-Interim': {'value': 37.58122380820546,
                                                                                                                                'value_error': 29.597661151977473},
                                                                                                                'HadISST': {'value': 23.11220732589619,
                                                                                                                            'value_error': 24.608665485754038},
                                                                                                                'Tropflux': {'value': 37.822865243089396,
                                                                                                                             'value_error': 29.738474854764302}}},
                                                                                 'EnsoSstLonRmse': {'diagnostic': {'20CRv2': {'value': None,
                                                                                                                              'value_error': None},
                                                                                                                   'ACCESS-CM2_r2i1p1f1': {'value': None,
                                                                                                                                           'value_error': None},
                                                                                                                   'ERA-20C': {'value': None,
                                                                                                                               'value_error': None},
                                                                                                                   'ERA-5': {'value': None,
                                                                                                                             'value_error': None},
                                                                                                                   'ERA-Interim': {'value': None,
                                                                                                                                   'value_error': None},
                                                                                                                   'HadISST': {'value': None,
                                                                                                                               'value_error': None},
                                                                                                                   'Tropflux': {'value': None,
                                                                                                                                'value_error': None}},
                                                                                                    'metric': {'20CRv2': {'value': 0.07871049480199414,
                                                                                                                          'value_error': None},
                                                                                                               'ERA-20C': {'value': 0.09219488954801747,
                                                                                                                           'value_error': None},
                                                                                                               'ERA-5': {'value': 0.06736418555616827,
                                                                                                                         'value_error': None},
                                                                                                               'ERA-Interim': {'value': 0.0733895852726686,
                                                                                                                               'value_error': None},
                                                                                                               'HadISST': {'value': 0.08581263382615822,
                                                                                                                           'value_error': None},
                                                                                                               'Tropflux': {'value': 0.07200721549200347,
                                                                                                                            'value_error': None}}},
                                                                                 'EnsoSstSkew': {'diagnostic': {'20CRv2': {'value': 0.35464371256710725,
                                                                                                                           'value_error': 0.029761039242344564},
                                                                                                                'ACCESS-CM2_r2i1p1f1': {'value': -0.1849490598954878,
                                                                                                                                        'value_error': -0.014398264785230352},
                                                                                                                'ERA-20C': {'value': 0.19142977450459012,
                                                                                                                            'value_error': 0.01816971010961296},
                                                                                                                'ERA-5': {'value': 0.473403564017451,
                                                                                                                          'value_error': 0.07485167573682382},
                                                                                                                'ERA-Interim': {'value': 0.40501535626049495,
                                                                                                                                'value_error': 0.06403855065638503},
                                                                                                                'HadISST': {'value': 0.40320728014992363,
                                                                                                                            'value_error': 0.033032027448448076},
                                                                                                                'Tropflux': {'value': 0.3838870736969205,
                                                                                                                             'value_error': 0.061471128380725305}},
                                                                                                 'metric': {'20CRv2': {'value': 152.15066652577153,
                                                                                                                       'value_error': -8.436310599880745},
                                                                                                            'ERA-20C': {'value': 196.61457334634903,
                                                                                                                        'value_error': -16.69168381386522},
                                                                                                            'ERA-5': {'value': 139.06794835382146,
                                                                                                                      'value_error': -9.21862066979577},
                                                                                                            'ERA-Interim': {'value': 145.66470308758701,
                                                                                                                            'value_error': -10.775215835518514},
                                                                                                            'HadISST': {'value': 145.86947433754634,
                                                                                                                        'value_error': -7.328707489577084},
                                                                                                            'Tropflux': {'value': 148.17798581087555,
                                                                                                                         'value_error': -11.465303030502733}}},
                                                                                 'EnsodSstOce_2': {'diagnostic': {'20CRv2_ERA-Interim': {'value': 2.363055944556165,
                                                                                                                                         'value_error': None},
                                                                                                                  'ACCESS-CM2_r2i1p1f1': {'value': 1.9242936137047122,
                                                                                                                                          'value_error': None},
                                                                                                                  'ERA-20C_ERA-Interim': {'value': 2.44408374051583,
                                                                                                                                          'value_error': None},
                                                                                                                  'ERA-5_ERA-Interim': {'value': 2.4614131442372607,
                                                                                                                                        'value_error': None},
                                                                                                                  'ERA-Interim_ERA-Interim': {'value': 1.8011858193585126,
                                                                                                                                              'value_error': None},
                                                                                                                  'HadISST_ERA-Interim': {'value': 2.3814159901043817,
                                                                                                                                          'value_error': None},
                                                                                                                  'Tropflux_ERA-Interim': {'value': 1.6738291099743765,
                                                                                                                                           'value_error': None}},
                                                                                                   'metric': {'20CRv2_ERA-Interim': {'value': 18.56758118072665,
                                                                                                                                     'value_error': None},
                                                                                                              'ERA-20C_ERA-Interim': {'value': 21.267279766012223,
                                                                                                                                      'value_error': None},
                                                                                                              'ERA-5_ERA-Interim': {'value': 21.821591868478883,
                                                                                                                                    'value_error': None},
                                                                                                              'ERA-Interim_ERA-Interim': {'value': 6.834819207606468,
                                                                                                                                          'value_error': None},
                                                                                                              'HadISST_ERA-Interim': {'value': 19.195402159856705,
                                                                                                                                      'value_error': None},
                                                                                                              'Tropflux_ERA-Interim': {'value': 14.96356481302741,
                                                                                                                                       'value_error': None}}}}},
                                                          'r3i1p1f1': {'metadata': {'description_of_the_collection': 'Describe '
                                                                                                                     'which '
                                                                                                                     'science '
                                                                                                                     'question '
                                                                                                                     'this '
                                                                                                                     'collection '
                                                                                                                     'is '
                                                                                                                     'about',
                                                                                    'metrics': {'BiasSstLonRmse': {'diagnostic': {'20CRv2': {'name': '20CRv2',
                                                                                                                                             'nyears': 142,
                                                                                                                                             'time_period': ['1871-1-16 '
                                                                                                                                                             '12:0:0.0',
                                                                                                                                                             '2012-12-16 '
                                                                                                                                                             '12:0:0.0']},
                                                                                                                                  'ACCESS-CM2_r3i1p1f1': {'keyerror': None,
                                                                                                                                                          'name': 'ACCESS-CM2_r3i1p1f1',
                                                                                                                                                          'nyears': 165,
                                                                                                                                                          'time_period': ['1850-1-16 '
                                                                                                                                                                          '12:0:0.0',
                                                                                                                                                                          '2014-12-16 '
                                                                                                                                                                          '12:0:0.0']},
                                                                                                                                  'ERA-20C': {'name': 'ERA-20C',
                                                                                                                                              'nyears': 111,
                                                                                                                                              'time_period': ['1900-1-16 '
                                                                                                                                                              '12:0:0.0',
                                                                                                                                                              '2010-12-16 '
                                                                                                                                                              '12:0:0.0']},
                                                                                                                                  'ERA-5': {'name': 'ERA-5',
                                                                                                                                            'nyears': 40,
                                                                                                                                            'time_period': ['1979-1-16 '
                                                                                                                                                            '12:0:0.0',
                                                                                                                                                            '2018-12-16 '
                                                                                                                                                            '12:0:0.0']},
                                                                                                                                  'ERA-Interim': {'name': 'ERA-Interim',
                                                                                                                                                  'nyears': 40,
                                                                                                                                                  'time_period': ['1979-1-16 '
                                                                                                                                                                  '12:0:0.0',
                                                                                                                                                                  '2018-12-16 '
                                                                                                                                                                  '12:0:0.0']},
                                                                                                                                  'HadISST': {'name': 'HadISST',
                                                                                                                                              'nyears': 149,
                                                                                                                                              'time_period': ['1870-1-16 '
                                                                                                                                                              '11:59:59.5',
                                                                                                                                                              '2018-12-16 '
                                                                                                                                                              '18:0:0.0']},
                                                                                                                                  'Tropflux': {'name': 'Tropflux',
                                                                                                                                               'nyears': 39,
                                                                                                                                               'time_period': ['1979-1-15 '
                                                                                                                                                               '0:0:0.0',
                                                                                                                                                               '2017-7-15 '
                                                                                                                                                               '12:0:0.0']},
                                                                                                                                  'method': 'Zonal '
                                                                                                                                            'root '
                                                                                                                                            'mean '
                                                                                                                                            'square '
                                                                                                                                            'error '
                                                                                                                                            'of '
                                                                                                                                            'equatorial_pacific '
                                                                                                                                            'sst, '
                                                                                                                                            'time '
                                                                                                                                            'series '
                                                                                                                                            'are '
                                                                                                                                            'linearly '
                                                                                                                                            'detrended, '
                                                                                                                                            'observations '
                                                                                                                                            'and '
                                                                                                                                            'model '
                                                                                                                                            'regridded '
                                                                                                                                            'to '
                                                                                                                                            'generic_1x1deg',
                                                                                                                                  'name': 'sst '
                                                                                                                                          'Zonal '
                                                                                                                                          'RMSE',
                                                                                                                                  'ref': 'Using '
                                                                                                                                         'CDAT '
                                                                                                                                         'regridding '
                                                                                                                                         'and '
                                                                                                                                         'rms '
                                                                                                                                         '(uncentered '
                                                                                                                                         'and '
                                                                                                                                         'biased) '
                                                                                                                                         'calculation',
                                                                                                                                  'time_frequency': 'monthly',
                                                                                                                                  'units': 'C'},
                                                                                                                   'metric': {'datasets': 'ACCESS-CM2_r3i1p1f1; '
                                                                                                                                          "20CRv2's "
                                                                                                                                          'ts; '
                                                                                                                                          "ERA-20C's "
                                                                                                                                          'ts; '
                                                                                                                                          "ERA-5's "
                                                                                                                                          'ts; '
                                                                                                                                          "ERA-Interim's "
                                                                                                                                          'ts; '
                                                                                                                                          "HadISST's "
                                                                                                                                          'ts; '
                                                                                                                                          "Tropflux's "
                                                                                                                                          'ts; '
                                                                                                                                          "'s ",
                                                                                                                              'method': 'The '
                                                                                                                                        'metric '
                                                                                                                                        'is '
                                                                                                                                        'the '
                                                                                                                                        'statistical '
                                                                                                                                        'value '
                                                                                                                                        'between '
                                                                                                                                        'the '
                                                                                                                                        'model '
                                                                                                                                        'and '
                                                                                                                                        'the '
                                                                                                                                        'observations',
                                                                                                                              'name': 'BiasSstLonRmse',
                                                                                                                              'units': 'C'}},
                                                                                                'BiasTauxLonRmse': {'diagnostic': {'ACCESS-CM2_r3i1p1f1': {'keyerror': None,
                                                                                                                                                           'name': 'ACCESS-CM2_r3i1p1f1',
                                                                                                                                                           'nyears': 165,
                                                                                                                                                           'time_period': ['1850-1-16 '
                                                                                                                                                                           '12:0:0.0',
                                                                                                                                                                           '2014-12-16 '
                                                                                                                                                                           '12:0:0.0']},
                                                                                                                                   'ERA-Interim': {'name': 'ERA-Interim',
                                                                                                                                                   'nyears': 40,
                                                                                                                                                   'time_period': ['1979-1-16 '
                                                                                                                                                                   '12:0:0.0',
                                                                                                                                                                   '2018-12-16 '
                                                                                                                                                                   '12:0:0.0']},
                                                                                                                                   'Tropflux': {'name': 'Tropflux',
                                                                                                                                                'nyears': 39,
                                                                                                                                                'time_period': ['1979-1-15 '
                                                                                                                                                                '0:0:0.0',
                                                                                                                                                                '2017-7-15 '
                                                                                                                                                                '12:0:0.0']},
                                                                                                                                   'method': 'Zonal '
                                                                                                                                             'root '
                                                                                                                                             'mean '
                                                                                                                                             'square '
                                                                                                                                             'error '
                                                                                                                                             'of '
                                                                                                                                             'equatorial_pacific '
                                                                                                                                             'taux, '
                                                                                                                                             'time '
                                                                                                                                             'series '
                                                                                                                                             'are '
                                                                                                                                             'linearly '
                                                                                                                                             'detrended, '
                                                                                                                                             'observations '
                                                                                                                                             'and '
                                                                                                                                             'model '
                                                                                                                                             'regridded '
                                                                                                                                             'to '
                                                                                                                                             'generic_1x1deg',
                                                                                                                                   'name': 'taux '
                                                                                                                                           'Zonal '
                                                                                                                                           'RMSE',
                                                                                                                                   'ref': 'Using '
                                                                                                                                          'CDAT '
                                                                                                                                          'regridding '
                                                                                                                                          'and '
                                                                                                                                          'rms '
                                                                                                                                          '(uncentered '
                                                                                                                                          'and '
                                                                                                                                          'biased) '
                                                                                                                                          'calculation',
                                                                                                                                   'time_frequency': 'monthly',
                                                                                                                                   'units': '1e-3 '
                                                                                                                                            'N/m2'},
                                                                                                                    'metric': {'datasets': 'ACCESS-CM2_r3i1p1f1; '
                                                                                                                                           "ERA-Interim's "
                                                                                                                                           'tauu; '
                                                                                                                                           "Tropflux's "
                                                                                                                                           'tauu; '
                                                                                                                                           "'s ",
                                                                                                                               'method': 'The '
                                                                                                                                         'metric '
                                                                                                                                         'is '
                                                                                                                                         'the '
                                                                                                                                         'statistical '
                                                                                                                                         'value '
                                                                                                                                         'between '
                                                                                                                                         'the '
                                                                                                                                         'model '
                                                                                                                                         'and '
                                                                                                                                         'the '
                                                                                                                                         'observations',
                                                                                                                               'name': 'BiasTauxLonRmse',
                                                                                                                               'units': '1e-3 '
                                                                                                                                        'N/m2'}},
                                                                                                'EnsoAmpl': {'diagnostic': {'20CRv2': {'keyerror': None,
                                                                                                                                       'name': '20CRv2',
                                                                                                                                       'nyears': 142,
                                                                                                                                       'time_period': ['1871-1-16 '
                                                                                                                                                       '12:0:0.0',
                                                                                                                                                       '2012-12-16 '
                                                                                                                                                       '12:0:0.0']},
                                                                                                                            'ACCESS-CM2_r3i1p1f1': {'keyerror': None,
                                                                                                                                                    'name': 'ACCESS-CM2_r3i1p1f1',
                                                                                                                                                    'nyears': 165,
                                                                                                                                                    'time_period': ['1850-1-16 '
                                                                                                                                                                    '12:0:0.0',
                                                                                                                                                                    '2014-12-16 '
                                                                                                                                                                    '12:0:0.0']},
                                                                                                                            'ERA-20C': {'keyerror': None,
                                                                                                                                        'name': 'ERA-20C',
                                                                                                                                        'nyears': 111,
                                                                                                                                        'time_period': ['1900-1-16 '
                                                                                                                                                        '12:0:0.0',
                                                                                                                                                        '2010-12-16 '
                                                                                                                                                        '12:0:0.0']},
                                                                                                                            'ERA-5': {'keyerror': None,
                                                                                                                                      'name': 'ERA-5',
                                                                                                                                      'nyears': 40,
                                                                                                                                      'time_period': ['1979-1-16 '
                                                                                                                                                      '12:0:0.0',
                                                                                                                                                      '2018-12-16 '
                                                                                                                                                      '12:0:0.0']},
                                                                                                                            'ERA-Interim': {'keyerror': None,
                                                                                                                                            'name': 'ERA-Interim',
                                                                                                                                            'nyears': 40,
                                                                                                                                            'time_period': ['1979-1-16 '
                                                                                                                                                            '12:0:0.0',
                                                                                                                                                            '2018-12-16 '
                                                                                                                                                            '12:0:0.0']},
                                                                                                                            'HadISST': {'keyerror': 'unlikely '
                                                                                                                                                    'units: '
                                                                                                                                                    'K([-1e+30, '
                                                                                                                                                    '304.7203])',
                                                                                                                                        'name': 'HadISST',
                                                                                                                                        'nyears': 149,
                                                                                                                                        'time_period': ['1870-1-16 '
                                                                                                                                                        '11:59:59.5',
                                                                                                                                                        '2018-12-16 '
                                                                                                                                                        '18:0:0.0']},
                                                                                                                            'Tropflux': {'keyerror': None,
                                                                                                                                         'name': 'Tropflux',
                                                                                                                                         'nyears': 39,
                                                                                                                                         'time_period': ['1979-1-15 '
                                                                                                                                                         '0:0:0.0',
                                                                                                                                                         '2017-7-15 '
                                                                                                                                                         '12:0:0.0']},
                                                                                                                            'method': 'Standard '
                                                                                                                                      'deviation '
                                                                                                                                      'of '
                                                                                                                                      'nino3.4 '
                                                                                                                                      'sstA, '
                                                                                                                                      'time '
                                                                                                                                      'series '
                                                                                                                                      'are '
                                                                                                                                      'linearly '
                                                                                                                                      'detrended',
                                                                                                                            'name': 'ENSO '
                                                                                                                                    'amplitude',
                                                                                                                            'ref': 'Using '
                                                                                                                                   'CDAT '
                                                                                                                                   'regression '
                                                                                                                                   'calculation',
                                                                                                                            'time_frequency': 'monthly',
                                                                                                                            'units': 'C'},
                                                                                                             'metric': {'datasets': 'ACCESS-CM2_r3i1p1f1; '
                                                                                                                                    "20CRv2's "
                                                                                                                                    'ts; '
                                                                                                                                    "ERA-20C's "
                                                                                                                                    'ts; '
                                                                                                                                    "ERA-5's "
                                                                                                                                    'ts; '
                                                                                                                                    "ERA-Interim's "
                                                                                                                                    'ts; '
                                                                                                                                    "HadISST's "
                                                                                                                                    'ts; '
                                                                                                                                    "Tropflux's "
                                                                                                                                    'ts; '
                                                                                                                                    "'s ",
                                                                                                                        'method': 'The '
                                                                                                                                  'metric '
                                                                                                                                  'is '
                                                                                                                                  'the '
                                                                                                                                  'absolute '
                                                                                                                                  'value '
                                                                                                                                  'of '
                                                                                                                                  'the '
                                                                                                                                  'relative '
                                                                                                                                  'difference '
                                                                                                                                  'between '
                                                                                                                                  'model '
                                                                                                                                  'and '
                                                                                                                                  'observations '
                                                                                                                                  'values '
                                                                                                                                  '(M '
                                                                                                                                  '= '
                                                                                                                                  '100 '
                                                                                                                                  '* '
                                                                                                                                  'abs[[model-obs] '
                                                                                                                                  '/ '
                                                                                                                                  'obs])',
                                                                                                                        'name': 'EnsoAmpl',
                                                                                                                        'units': '%'}},
                                                                                                'EnsoFbSshSst': {'diagnostic': {'20CRv2_AVISO': {'keyerror': None,
                                                                                                                                                 'name': '20CRv2_AVISO',
                                                                                                                                                 'nyears': 20,
                                                                                                                                                 'time_period': ['1993-1-16 '
                                                                                                                                                                 '12:0:0.0',
                                                                                                                                                                 '2012-12-16 '
                                                                                                                                                                 '12:0:0.0']},
                                                                                                                                'ACCESS-CM2_r3i1p1f1': {'keyerror': None,
                                                                                                                                                        'name': 'ACCESS-CM2_r3i1p1f1',
                                                                                                                                                        'nyears': 165,
                                                                                                                                                        'time_period': ['1850-1-16 '
                                                                                                                                                                        '12:0:0.0',
                                                                                                                                                                        '2014-12-16 '
                                                                                                                                                                        '12:0:0.0']},
                                                                                                                                'ERA-20C_AVISO': {'keyerror': None,
                                                                                                                                                  'name': 'ERA-20C_AVISO',
                                                                                                                                                  'nyears': 18,
                                                                                                                                                  'time_period': ['1993-1-16 '
                                                                                                                                                                  '12:0:0.0',
                                                                                                                                                                  '2010-12-16 '
                                                                                                                                                                  '12:0:0.0']},
                                                                                                                                'ERA-5_AVISO': {'keyerror': None,
                                                                                                                                                'name': 'ERA-5_AVISO',
                                                                                                                                                'nyears': 26,
                                                                                                                                                'time_period': ['1993-1-16 '
                                                                                                                                                                '12:0:0.0',
                                                                                                                                                                '2018-12-16 '
                                                                                                                                                                '12:0:0.0']},
                                                                                                                                'ERA-Interim_AVISO': {'keyerror': None,
                                                                                                                                                      'name': 'ERA-Interim_AVISO',
                                                                                                                                                      'nyears': 26,
                                                                                                                                                      'time_period': ['1993-1-16 '
                                                                                                                                                                      '12:0:0.0',
                                                                                                                                                                      '2018-12-16 '
                                                                                                                                                                      '12:0:0.0']},
                                                                                                                                'HadISST_AVISO': {'keyerror': None,
                                                                                                                                                  'name': 'HadISST_AVISO',
                                                                                                                                                  'nyears': 26,
                                                                                                                                                  'time_period': ['1993-1-16 '
                                                                                                                                                                  '3:0:0.0',
                                                                                                                                                                  '2018-12-16 '
                                                                                                                                                                  '18:0:0.0']},
                                                                                                                                'Tropflux_AVISO': {'keyerror': None,
                                                                                                                                                   'name': 'Tropflux_AVISO',
                                                                                                                                                   'nyears': 25,
                                                                                                                                                   'time_period': ['1993-1-15 '
                                                                                                                                                                   '0:0:0.0',
                                                                                                                                                                   '2017-7-15 '
                                                                                                                                                                   '12:0:0.0']},
                                                                                                                                'method': 'Regression '
                                                                                                                                          'of '
                                                                                                                                          'nino3 '
                                                                                                                                          'sstA '
                                                                                                                                          'over '
                                                                                                                                          'nino3 '
                                                                                                                                          'sshA, '
                                                                                                                                          'time '
                                                                                                                                          'series '
                                                                                                                                          'are '
                                                                                                                                          'linearly '
                                                                                                                                          'detrended',
                                                                                                                                'method_nonlinearity': 'The '
                                                                                                                                                       'nonlinearity '
                                                                                                                                                       'is '
                                                                                                                                                       'the '
                                                                                                                                                       'regression '
                                                                                                                                                       'computed '
                                                                                                                                                       'when '
                                                                                                                                                       'sshA<0 '
                                                                                                                                                       'minus '
                                                                                                                                                       'the '
                                                                                                                                                       'regression '
                                                                                                                                                       'computed '
                                                                                                                                                       'when '
                                                                                                                                                       'sshA>0',
                                                                                                                                'name': 'Sst-Ssh '
                                                                                                                                        'feedback',
                                                                                                                                'ref': 'Using '
                                                                                                                                       'CDAT '
                                                                                                                                       'regression '
                                                                                                                                       'calculation',
                                                                                                                                'time_frequency': 'monthly',
                                                                                                                                'units': 'C/cm'},
                                                                                                                 'metric': {'datasets': 'ACCESS-CM2_r3i1p1f1; '
                                                                                                                                        "20CRv2's "
                                                                                                                                        'ts; '
                                                                                                                                        "ERA-20C's "
                                                                                                                                        'ts; '
                                                                                                                                        "ERA-5's "
                                                                                                                                        'ts; '
                                                                                                                                        "ERA-Interim's "
                                                                                                                                        'ts; '
                                                                                                                                        "HadISST's "
                                                                                                                                        'ts; '
                                                                                                                                        "Tropflux's "
                                                                                                                                        'ts; '
                                                                                                                                        "AVISO's "
                                                                                                                                        'zos',
                                                                                                                            'method': 'The '
                                                                                                                                      'metric '
                                                                                                                                      'is '
                                                                                                                                      'the '
                                                                                                                                      'absolute '
                                                                                                                                      'value '
                                                                                                                                      'of '
                                                                                                                                      'the '
                                                                                                                                      'relative '
                                                                                                                                      'difference '
                                                                                                                                      'between '
                                                                                                                                      'model '
                                                                                                                                      'and '
                                                                                                                                      'observations '
                                                                                                                                      'values '
                                                                                                                                      '(M '
                                                                                                                                      '= '
                                                                                                                                      '100 '
                                                                                                                                      '* '
                                                                                                                                      'abs[[model-obs] '
                                                                                                                                      '/ '
                                                                                                                                      'obs])',
                                                                                                                            'name': 'EnsoFbSshSst',
                                                                                                                            'units': '%'}},
                                                                                                'EnsoFbSstTaux': {'diagnostic': {'20CRv2_ERA-Interim': {'keyerror': None,
                                                                                                                                                        'name': '20CRv2_ERA-Interim',
                                                                                                                                                        'nyears': 34,
                                                                                                                                                        'time_period': ['1979-1-16 '
                                                                                                                                                                        '12:0:0.0',
                                                                                                                                                                        '2012-12-16 '
                                                                                                                                                                        '12:0:0.0']},
                                                                                                                                 '20CRv2_Tropflux': {'keyerror': None,
                                                                                                                                                     'name': '20CRv2_Tropflux',
                                                                                                                                                     'nyears': 34,
                                                                                                                                                     'time_period': ['1979-1-16 '
                                                                                                                                                                     '12:0:0.0',
                                                                                                                                                                     '2012-12-16 '
                                                                                                                                                                     '12:0:0.0']},
                                                                                                                                 'ACCESS-CM2_r3i1p1f1': {'keyerror': None,
                                                                                                                                                         'name': 'ACCESS-CM2_r3i1p1f1',
                                                                                                                                                         'nyears': 165,
                                                                                                                                                         'time_period': ['1850-1-16 '
                                                                                                                                                                         '12:0:0.0',
                                                                                                                                                                         '2014-12-16 '
                                                                                                                                                                         '12:0:0.0']},
                                                                                                                                 'ERA-20C_ERA-Interim': {'keyerror': None,
                                                                                                                                                         'name': 'ERA-20C_ERA-Interim',
                                                                                                                                                         'nyears': 32,
                                                                                                                                                         'time_period': ['1979-1-16 '
                                                                                                                                                                         '12:0:0.0',
                                                                                                                                                                         '2010-12-16 '
                                                                                                                                                                         '12:0:0.0']},
                                                                                                                                 'ERA-20C_Tropflux': {'keyerror': None,
                                                                                                                                                      'name': 'ERA-20C_Tropflux',
                                                                                                                                                      'nyears': 32,
                                                                                                                                                      'time_period': ['1979-1-16 '
                                                                                                                                                                      '12:0:0.0',
                                                                                                                                                                      '2010-12-16 '
                                                                                                                                                                      '12:0:0.0']},
                                                                                                                                 'ERA-5_ERA-Interim': {'keyerror': None,
                                                                                                                                                       'name': 'ERA-5_ERA-Interim',
                                                                                                                                                       'nyears': 40,
                                                                                                                                                       'time_period': ['1979-1-16 '
                                                                                                                                                                       '12:0:0.0',
                                                                                                                                                                       '2018-12-16 '
                                                                                                                                                                       '12:0:0.0']},
                                                                                                                                 'ERA-5_Tropflux': {'keyerror': None,
                                                                                                                                                    'name': 'ERA-5_Tropflux',
                                                                                                                                                    'nyears': 39,
                                                                                                                                                    'time_period': ['1979-1-16 '
                                                                                                                                                                    '12:0:0.0',
                                                                                                                                                                    '2017-7-16 '
                                                                                                                                                                    '12:0:0.0']},
                                                                                                                                 'ERA-Interim_ERA-Interim': {'keyerror': None,
                                                                                                                                                             'name': 'ERA-Interim_ERA-Interim',
                                                                                                                                                             'nyears': 40,
                                                                                                                                                             'time_period': ['1979-1-16 '
                                                                                                                                                                             '12:0:0.0',
                                                                                                                                                                             '2018-12-16 '
                                                                                                                                                                             '12:0:0.0']},
                                                                                                                                 'ERA-Interim_Tropflux': {'keyerror': None,
                                                                                                                                                          'name': 'ERA-Interim_Tropflux',
                                                                                                                                                          'nyears': 39,
                                                                                                                                                          'time_period': ['1979-1-16 '
                                                                                                                                                                          '12:0:0.0',
                                                                                                                                                                          '2017-7-16 '
                                                                                                                                                                          '12:0:0.0']},
                                                                                                                                 'HadISST_ERA-Interim': {'keyerror': None,
                                                                                                                                                         'name': 'HadISST_ERA-Interim',
                                                                                                                                                         'nyears': 40,
                                                                                                                                                         'time_period': ['1979-1-16 '
                                                                                                                                                                         '3:0:0.0',
                                                                                                                                                                         '2018-12-16 '
                                                                                                                                                                         '18:0:0.0']},
                                                                                                                                 'HadISST_Tropflux': {'keyerror': None,
                                                                                                                                                      'name': 'HadISST_Tropflux',
                                                                                                                                                      'nyears': 39,
                                                                                                                                                      'time_period': ['1979-1-16 '
                                                                                                                                                                      '3:0:0.0',
                                                                                                                                                                      '2017-7-16 '
                                                                                                                                                                      '18:0:0.0']},
                                                                                                                                 'Tropflux_ERA-Interim': {'keyerror': None,
                                                                                                                                                          'name': 'Tropflux_ERA-Interim',
                                                                                                                                                          'nyears': 39,
                                                                                                                                                          'time_period': ['1979-1-15 '
                                                                                                                                                                          '0:0:0.0',
                                                                                                                                                                          '2017-7-15 '
                                                                                                                                                                          '12:0:0.0']},
                                                                                                                                 'Tropflux_Tropflux': {'keyerror': None,
                                                                                                                                                       'name': 'Tropflux_Tropflux',
                                                                                                                                                       'nyears': 39,
                                                                                                                                                       'time_period': ['1979-1-15 '
                                                                                                                                                                       '0:0:0.0',
                                                                                                                                                                       '2017-7-15 '
                                                                                                                                                                       '12:0:0.0']},
                                                                                                                                 'method': 'Regression '
                                                                                                                                           'of '
                                                                                                                                           'nino4 '
                                                                                                                                           'tauxA '
                                                                                                                                           'over '
                                                                                                                                           'nino3 '
                                                                                                                                           'sstA, '
                                                                                                                                           'time '
                                                                                                                                           'series '
                                                                                                                                           'are '
                                                                                                                                           'linearly '
                                                                                                                                           'detrended',
                                                                                                                                 'method_nonlinearity': 'The '
                                                                                                                                                        'nonlinearity '
                                                                                                                                                        'is '
                                                                                                                                                        'the '
                                                                                                                                                        'regression '
                                                                                                                                                        'computed '
                                                                                                                                                        'when '
                                                                                                                                                        'sstA<0 '
                                                                                                                                                        'minus '
                                                                                                                                                        'the '
                                                                                                                                                        'regression '
                                                                                                                                                        'computed '
                                                                                                                                                        'when '
                                                                                                                                                        'sstA>0',
                                                                                                                                 'name': 'Taux-Sst '
                                                                                                                                         'feedback '
                                                                                                                                         '(mu)',
                                                                                                                                 'ref': 'Using '
                                                                                                                                        'CDAT '
                                                                                                                                        'regression '
                                                                                                                                        'calculation',
                                                                                                                                 'time_frequency': 'monthly',
                                                                                                                                 'units': '1e-3 '
                                                                                                                                          'N/m2/C'},
                                                                                                                  'metric': {'datasets': 'ACCESS-CM2_r3i1p1f1; '
                                                                                                                                         "20CRv2's "
                                                                                                                                         'ts; '
                                                                                                                                         "ERA-20C's "
                                                                                                                                         'ts; '
                                                                                                                                         "ERA-5's "
                                                                                                                                         'ts; '
                                                                                                                                         "ERA-Interim's "
                                                                                                                                         'ts; '
                                                                                                                                         "HadISST's "
                                                                                                                                         'ts; '
                                                                                                                                         "Tropflux's "
                                                                                                                                         'ts; '
                                                                                                                                         "ERA-Interim's "
                                                                                                                                         'tauu; '
                                                                                                                                         "Tropflux's "
                                                                                                                                         'tauu',
                                                                                                                             'method': 'The '
                                                                                                                                       'metric '
                                                                                                                                       'is '
                                                                                                                                       'the '
                                                                                                                                       'absolute '
                                                                                                                                       'value '
                                                                                                                                       'of '
                                                                                                                                       'the '
                                                                                                                                       'relative '
                                                                                                                                       'difference '
                                                                                                                                       'between '
                                                                                                                                       'model '
                                                                                                                                       'and '
                                                                                                                                       'observations '
                                                                                                                                       'values '
                                                                                                                                       '(M '
                                                                                                                                       '= '
                                                                                                                                       '100 '
                                                                                                                                       '* '
                                                                                                                                       'abs[[model-obs] '
                                                                                                                                       '/ '
                                                                                                                                       'obs])',
                                                                                                                             'name': 'EnsoFbSstTaux',
                                                                                                                             'units': '%'}},
                                                                                                'EnsoFbSstThf': {'diagnostic': {'20CRv2_ERA-Interim': {'keyerror': '',
                                                                                                                                                       'name': '20CRv2_ERA-Interim',
                                                                                                                                                       'nyears': 34,
                                                                                                                                                       'time_period': ['1979-1-16 '
                                                                                                                                                                       '12:0:0.0',
                                                                                                                                                                       '2012-12-16 '
                                                                                                                                                                       '12:0:0.0']},
                                                                                                                                'ACCESS-CM2_r3i1p1f1': {'keyerror': '',
                                                                                                                                                        'name': 'ACCESS-CM2_r3i1p1f1',
                                                                                                                                                        'nyears': 165,
                                                                                                                                                        'time_period': ['1850-1-16 '
                                                                                                                                                                        '12:0:0.0',
                                                                                                                                                                        '2014-12-16 '
                                                                                                                                                                        '12:0:0.0']},
                                                                                                                                'ERA-20C_ERA-Interim': {'keyerror': '',
                                                                                                                                                        'name': 'ERA-20C_ERA-Interim',
                                                                                                                                                        'nyears': 32,
                                                                                                                                                        'time_period': ['1979-1-16 '
                                                                                                                                                                        '12:0:0.0',
                                                                                                                                                                        '2010-12-16 '
                                                                                                                                                                        '12:0:0.0']},
                                                                                                                                'ERA-5_ERA-Interim': {'keyerror': '',
                                                                                                                                                      'name': 'ERA-5_ERA-Interim',
                                                                                                                                                      'nyears': 40,
                                                                                                                                                      'time_period': ['1979-1-16 '
                                                                                                                                                                      '12:0:0.0',
                                                                                                                                                                      '2018-12-16 '
                                                                                                                                                                      '12:0:0.0']},
                                                                                                                                'ERA-Interim_ERA-Interim': {'keyerror': '',
                                                                                                                                                            'name': 'ERA-Interim_ERA-Interim',
                                                                                                                                                            'nyears': 40,
                                                                                                                                                            'time_period': ['1979-1-16 '
                                                                                                                                                                            '12:0:0.0',
                                                                                                                                                                            '2018-12-16 '
                                                                                                                                                                            '12:0:0.0']},
                                                                                                                                'HadISST_ERA-Interim': {'keyerror': '',
                                                                                                                                                        'name': 'HadISST_ERA-Interim',
                                                                                                                                                        'nyears': 40,
                                                                                                                                                        'time_period': ['1979-1-16 '
                                                                                                                                                                        '3:0:0.0',
                                                                                                                                                                        '2018-12-16 '
                                                                                                                                                                        '18:0:0.0']},
                                                                                                                                'Tropflux_ERA-Interim': {'keyerror': '',
                                                                                                                                                         'name': 'Tropflux_ERA-Interim',
                                                                                                                                                         'nyears': 39,
                                                                                                                                                         'time_period': ['1979-1-15 '
                                                                                                                                                                         '0:0:0.0',
                                                                                                                                                                         '2017-7-15 '
                                                                                                                                                                         '12:0:0.0']},
                                                                                                                                'method': 'Regression '
                                                                                                                                          'of '
                                                                                                                                          'nino3 '
                                                                                                                                          'thfA '
                                                                                                                                          'over '
                                                                                                                                          'nino3 '
                                                                                                                                          'sstA, '
                                                                                                                                          'time '
                                                                                                                                          'series '
                                                                                                                                          'are '
                                                                                                                                          'linearly '
                                                                                                                                          'detrended',
                                                                                                                                'method_nonlinearity': 'The '
                                                                                                                                                       'nonlinearity '
                                                                                                                                                       'is '
                                                                                                                                                       'the '
                                                                                                                                                       'regression '
                                                                                                                                                       'computed '
                                                                                                                                                       'when '
                                                                                                                                                       'sstA<0 '
                                                                                                                                                       'minus '
                                                                                                                                                       'the '
                                                                                                                                                       'regression '
                                                                                                                                                       'computed '
                                                                                                                                                       'when '
                                                                                                                                                       'sstA>0',
                                                                                                                                'name': 'Thf-Sst '
                                                                                                                                        'feedback '
                                                                                                                                        '(alpha)',
                                                                                                                                'ref': 'Using '
                                                                                                                                       'CDAT '
                                                                                                                                       'regression '
                                                                                                                                       'calculation',
                                                                                                                                'time_frequency': 'monthly',
                                                                                                                                'units': 'W/m2/C'},
                                                                                                                 'metric': {'datasets': 'ACCESS-CM2_r3i1p1f1; '
                                                                                                                                        "20CRv2's "
                                                                                                                                        'ts; '
                                                                                                                                        "ERA-20C's "
                                                                                                                                        'ts; '
                                                                                                                                        "ERA-5's "
                                                                                                                                        'ts; '
                                                                                                                                        "ERA-Interim's "
                                                                                                                                        'ts; '
                                                                                                                                        "HadISST's "
                                                                                                                                        'ts; '
                                                                                                                                        "Tropflux's "
                                                                                                                                        'ts; '
                                                                                                                                        "ERA-Interim's "
                                                                                                                                        'hfls '
                                                                                                                                        '& '
                                                                                                                                        'hfss '
                                                                                                                                        '& '
                                                                                                                                        'rlds '
                                                                                                                                        '& '
                                                                                                                                        'rlus '
                                                                                                                                        '& '
                                                                                                                                        'rsds '
                                                                                                                                        '& '
                                                                                                                                        'rsus',
                                                                                                                            'method': 'The '
                                                                                                                                      'metric '
                                                                                                                                      'is '
                                                                                                                                      'the '
                                                                                                                                      'absolute '
                                                                                                                                      'value '
                                                                                                                                      'of '
                                                                                                                                      'the '
                                                                                                                                      'relative '
                                                                                                                                      'difference '
                                                                                                                                      'between '
                                                                                                                                      'model '
                                                                                                                                      'and '
                                                                                                                                      'observations '
                                                                                                                                      'values '
                                                                                                                                      '(M '
                                                                                                                                      '= '
                                                                                                                                      '100 '
                                                                                                                                      '* '
                                                                                                                                      'abs[[model-obs] '
                                                                                                                                      '/ '
                                                                                                                                      'obs])',
                                                                                                                            'name': 'EnsoFbSstThf',
                                                                                                                            'units': '%'}},
                                                                                                'EnsoFbTauxSsh': {'diagnostic': {'ACCESS-CM2_r3i1p1f1': {'keyerror': None,
                                                                                                                                                         'name': 'ACCESS-CM2_r3i1p1f1',
                                                                                                                                                         'nyears': 165,
                                                                                                                                                         'time_period': ['1850-1-16 '
                                                                                                                                                                         '12:0:0.0',
                                                                                                                                                                         '2014-12-16 '
                                                                                                                                                                         '12:0:0.0']},
                                                                                                                                 'ERA-Interim_AVISO': {'keyerror': None,
                                                                                                                                                       'name': 'ERA-Interim_AVISO',
                                                                                                                                                       'nyears': 26,
                                                                                                                                                       'time_period': ['1993-1-16 '
                                                                                                                                                                       '12:0:0.0',
                                                                                                                                                                       '2018-12-16 '
                                                                                                                                                                       '12:0:0.0']},
                                                                                                                                 'Tropflux_AVISO': {'keyerror': None,
                                                                                                                                                    'name': 'Tropflux_AVISO',
                                                                                                                                                    'nyears': 25,
                                                                                                                                                    'time_period': ['1993-1-16 '
                                                                                                                                                                    '12:0:0.0',
                                                                                                                                                                    '2017-7-16 '
                                                                                                                                                                    '12:0:0.0']},
                                                                                                                                 'method': 'Regression '
                                                                                                                                           'of '
                                                                                                                                           'nino3 '
                                                                                                                                           'sshA '
                                                                                                                                           'over '
                                                                                                                                           'nino4 '
                                                                                                                                           'tauxA, '
                                                                                                                                           'time '
                                                                                                                                           'series '
                                                                                                                                           'are '
                                                                                                                                           'linearly '
                                                                                                                                           'detrended',
                                                                                                                                 'method_nonlinearity': 'The '
                                                                                                                                                        'nonlinearity '
                                                                                                                                                        'is '
                                                                                                                                                        'the '
                                                                                                                                                        'regression '
                                                                                                                                                        'computed '
                                                                                                                                                        'when '
                                                                                                                                                        'tauxA<0 '
                                                                                                                                                        'minus '
                                                                                                                                                        'the '
                                                                                                                                                        'regression '
                                                                                                                                                        'computed '
                                                                                                                                                        'when '
                                                                                                                                                        'tauxA>0',
                                                                                                                                 'name': 'Ssh-Taux '
                                                                                                                                         'feedback',
                                                                                                                                 'ref': 'Using '
                                                                                                                                        'CDAT '
                                                                                                                                        'regression '
                                                                                                                                        'calculation',
                                                                                                                                 'time_frequency': 'monthly',
                                                                                                                                 'units': '1e3 '
                                                                                                                                          'cm/N/m2'},
                                                                                                                  'metric': {'datasets': 'ACCESS-CM2_r3i1p1f1; '
                                                                                                                                         "ERA-Interim's "
                                                                                                                                         'tauu; '
                                                                                                                                         "Tropflux's "
                                                                                                                                         'tauu; '
                                                                                                                                         "AVISO's "
                                                                                                                                         'zos',
                                                                                                                             'method': 'The '
                                                                                                                                       'metric '
                                                                                                                                       'is '
                                                                                                                                       'the '
                                                                                                                                       'absolute '
                                                                                                                                       'value '
                                                                                                                                       'of '
                                                                                                                                       'the '
                                                                                                                                       'relative '
                                                                                                                                       'difference '
                                                                                                                                       'between '
                                                                                                                                       'model '
                                                                                                                                       'and '
                                                                                                                                       'observations '
                                                                                                                                       'values '
                                                                                                                                       '(M '
                                                                                                                                       '= '
                                                                                                                                       '100 '
                                                                                                                                       '* '
                                                                                                                                       'abs[[model-obs] '
                                                                                                                                       '/ '
                                                                                                                                       'obs])',
                                                                                                                             'name': 'EnsoFbTauxSsh',
                                                                                                                             'units': '%'}},
                                                                                                'EnsoSeasonality': {'diagnostic': {'20CRv2': {'keyerror': None,
                                                                                                                                              'name': '20CRv2',
                                                                                                                                              'nyears': 142,
                                                                                                                                              'time_period': ['1871-1-16 '
                                                                                                                                                              '12:0:0.0',
                                                                                                                                                              '2012-12-16 '
                                                                                                                                                              '12:0:0.0']},
                                                                                                                                   'ACCESS-CM2_r3i1p1f1': {'keyerror': None,
                                                                                                                                                           'name': 'ACCESS-CM2_r3i1p1f1',
                                                                                                                                                           'nyears': 165,
                                                                                                                                                           'time_period': ['1850-1-16 '
                                                                                                                                                                           '12:0:0.0',
                                                                                                                                                                           '2014-12-16 '
                                                                                                                                                                           '12:0:0.0']},
                                                                                                                                   'ERA-20C': {'keyerror': None,
                                                                                                                                               'name': 'ERA-20C',
                                                                                                                                               'nyears': 111,
                                                                                                                                               'time_period': ['1900-1-16 '
                                                                                                                                                               '12:0:0.0',
                                                                                                                                                               '2010-12-16 '
                                                                                                                                                               '12:0:0.0']},
                                                                                                                                   'ERA-5': {'keyerror': None,
                                                                                                                                             'name': 'ERA-5',
                                                                                                                                             'nyears': 40,
                                                                                                                                             'time_period': ['1979-1-16 '
                                                                                                                                                             '12:0:0.0',
                                                                                                                                                             '2018-12-16 '
                                                                                                                                                             '12:0:0.0']},
                                                                                                                                   'ERA-Interim': {'keyerror': None,
                                                                                                                                                   'name': 'ERA-Interim',
                                                                                                                                                   'nyears': 40,
                                                                                                                                                   'time_period': ['1979-1-16 '
                                                                                                                                                                   '12:0:0.0',
                                                                                                                                                                   '2018-12-16 '
                                                                                                                                                                   '12:0:0.0']},
                                                                                                                                   'HadISST': {'keyerror': 'unlikely '
                                                                                                                                                           'units: '
                                                                                                                                                           'K([-1e+30, '
                                                                                                                                                           '304.7203])',
                                                                                                                                               'name': 'HadISST',
                                                                                                                                               'nyears': 149,
                                                                                                                                               'time_period': ['1870-1-16 '
                                                                                                                                                               '11:59:59.5',
                                                                                                                                                               '2018-12-16 '
                                                                                                                                                               '18:0:0.0']},
                                                                                                                                   'Tropflux': {'keyerror': None,
                                                                                                                                                'name': 'Tropflux',
                                                                                                                                                'nyears': 39,
                                                                                                                                                'time_period': ['1979-1-15 '
                                                                                                                                                                '0:0:0.0',
                                                                                                                                                                '2017-7-15 '
                                                                                                                                                                '12:0:0.0']},
                                                                                                                                   'method': 'Ratio '
                                                                                                                                             'between '
                                                                                                                                             'NDJ '
                                                                                                                                             'and '
                                                                                                                                             'MAM '
                                                                                                                                             'standard '
                                                                                                                                             'deviation '
                                                                                                                                             'nino3.4 '
                                                                                                                                             'sstA, '
                                                                                                                                             'time '
                                                                                                                                             'series '
                                                                                                                                             'are '
                                                                                                                                             'linearly '
                                                                                                                                             'detrended',
                                                                                                                                   'name': 'ENSO '
                                                                                                                                           'seasonality',
                                                                                                                                   'ref': 'Using '
                                                                                                                                          'CDAT '
                                                                                                                                          'std '
                                                                                                                                          'dev '
                                                                                                                                          'calculation',
                                                                                                                                   'time_frequency': 'monthly',
                                                                                                                                   'units': 'C/C'},
                                                                                                                    'metric': {'datasets': 'ACCESS-CM2_r3i1p1f1; '
                                                                                                                                           "20CRv2's "
                                                                                                                                           'ts; '
                                                                                                                                           "ERA-20C's "
                                                                                                                                           'ts; '
                                                                                                                                           "ERA-5's "
                                                                                                                                           'ts; '
                                                                                                                                           "ERA-Interim's "
                                                                                                                                           'ts; '
                                                                                                                                           "HadISST's "
                                                                                                                                           'ts; '
                                                                                                                                           "Tropflux's "
                                                                                                                                           'ts; '
                                                                                                                                           "'s ",
                                                                                                                               'method': 'The '
                                                                                                                                         'metric '
                                                                                                                                         'is '
                                                                                                                                         'the '
                                                                                                                                         'absolute '
                                                                                                                                         'value '
                                                                                                                                         'of '
                                                                                                                                         'the '
                                                                                                                                         'relative '
                                                                                                                                         'difference '
                                                                                                                                         'between '
                                                                                                                                         'model '
                                                                                                                                         'and '
                                                                                                                                         'observations '
                                                                                                                                         'values '
                                                                                                                                         '(M '
                                                                                                                                         '= '
                                                                                                                                         '100 '
                                                                                                                                         '* '
                                                                                                                                         'abs[[model-obs] '
                                                                                                                                         '/ '
                                                                                                                                         'obs])',
                                                                                                                               'name': 'EnsoSeasonality',
                                                                                                                               'units': '%'}},
                                                                                                'EnsoSstLonRmse': {'diagnostic': {'20CRv2': {'name': '20CRv2',
                                                                                                                                             'nyears': 142,
                                                                                                                                             'time_period': ['1871-1-16 '
                                                                                                                                                             '12:0:0.0',
                                                                                                                                                             '2012-12-16 '
                                                                                                                                                             '12:0:0.0']},
                                                                                                                                  'ACCESS-CM2_r3i1p1f1': {'keyerror': None,
                                                                                                                                                          'name': 'ACCESS-CM2_r3i1p1f1',
                                                                                                                                                          'nyears': 165,
                                                                                                                                                          'time_period': ['1850-1-16 '
                                                                                                                                                                          '12:0:0.0',
                                                                                                                                                                          '2014-12-16 '
                                                                                                                                                                          '12:0:0.0']},
                                                                                                                                  'ERA-20C': {'name': 'ERA-20C',
                                                                                                                                              'nyears': 111,
                                                                                                                                              'time_period': ['1900-1-16 '
                                                                                                                                                              '12:0:0.0',
                                                                                                                                                              '2010-12-16 '
                                                                                                                                                              '12:0:0.0']},
                                                                                                                                  'ERA-5': {'name': 'ERA-5',
                                                                                                                                            'nyears': 40,
                                                                                                                                            'time_period': ['1979-1-16 '
                                                                                                                                                            '12:0:0.0',
                                                                                                                                                            '2018-12-16 '
                                                                                                                                                            '12:0:0.0']},
                                                                                                                                  'ERA-Interim': {'name': 'ERA-Interim',
                                                                                                                                                  'nyears': 40,
                                                                                                                                                  'time_period': ['1979-1-16 '
                                                                                                                                                                  '12:0:0.0',
                                                                                                                                                                  '2018-12-16 '
                                                                                                                                                                  '12:0:0.0']},
                                                                                                                                  'HadISST': {'name': 'HadISST',
                                                                                                                                              'nyears': 149,
                                                                                                                                              'time_period': ['1870-1-16 '
                                                                                                                                                              '11:59:59.5',
                                                                                                                                                              '2018-12-16 '
                                                                                                                                                              '18:0:0.0']},
                                                                                                                                  'Tropflux': {'name': 'Tropflux',
                                                                                                                                               'nyears': 39,
                                                                                                                                               'time_period': ['1979-1-15 '
                                                                                                                                                               '0:0:0.0',
                                                                                                                                                               '2017-7-15 '
                                                                                                                                                               '12:0:0.0']},
                                                                                                                                  'method': 'nino3.4 '
                                                                                                                                            'SSTA '
                                                                                                                                            'during '
                                                                                                                                            'DEC '
                                                                                                                                            'regressed '
                                                                                                                                            'against '
                                                                                                                                            'equatorial_pacific '
                                                                                                                                            'SSTA, '
                                                                                                                                            'time '
                                                                                                                                            'series '
                                                                                                                                            'are '
                                                                                                                                            'linearly '
                                                                                                                                            'detrended, '
                                                                                                                                            'smoothing '
                                                                                                                                            'using '
                                                                                                                                            'a '
                                                                                                                                            'triangle '
                                                                                                                                            'shaped '
                                                                                                                                            'window '
                                                                                                                                            'of '
                                                                                                                                            '5 '
                                                                                                                                            'points, '
                                                                                                                                            'observations '
                                                                                                                                            'and '
                                                                                                                                            'model '
                                                                                                                                            'regridded '
                                                                                                                                            'to '
                                                                                                                                            'generic_1x1deg',
                                                                                                                                  'name': 'ENSO '
                                                                                                                                          'Zonal '
                                                                                                                                          'SSTA '
                                                                                                                                          'pattern',
                                                                                                                                  'ref': 'Using '
                                                                                                                                         'CDAT '
                                                                                                                                         'regridding '
                                                                                                                                         'and '
                                                                                                                                         'rms '
                                                                                                                                         '(uncentered '
                                                                                                                                         'and '
                                                                                                                                         'biased) '
                                                                                                                                         'calculation',
                                                                                                                                  'time_frequency': 'monthly',
                                                                                                                                  'units': 'C/C'},
                                                                                                                   'metric': {'datasets': 'ACCESS-CM2_r3i1p1f1; '
                                                                                                                                          "20CRv2's "
                                                                                                                                          'ts; '
                                                                                                                                          "ERA-20C's "
                                                                                                                                          'ts; '
                                                                                                                                          "ERA-5's "
                                                                                                                                          'ts; '
                                                                                                                                          "ERA-Interim's "
                                                                                                                                          'ts; '
                                                                                                                                          "HadISST's "
                                                                                                                                          'ts; '
                                                                                                                                          "Tropflux's "
                                                                                                                                          'ts; '
                                                                                                                                          "'s ",
                                                                                                                              'method': 'The '
                                                                                                                                        'metric '
                                                                                                                                        'is '
                                                                                                                                        'the '
                                                                                                                                        'statistical '
                                                                                                                                        'value '
                                                                                                                                        'between '
                                                                                                                                        'the '
                                                                                                                                        'model '
                                                                                                                                        'and '
                                                                                                                                        'the '
                                                                                                                                        'observations',
                                                                                                                              'name': 'EnsoSstLonRmse',
                                                                                                                              'units': 'C/C'}},
                                                                                                'EnsoSstSkew': {'diagnostic': {'20CRv2': {'keyerror': None,
                                                                                                                                          'name': '20CRv2',
                                                                                                                                          'nyears': 142,
                                                                                                                                          'time_period': ['1871-1-16 '
                                                                                                                                                          '12:0:0.0',
                                                                                                                                                          '2012-12-16 '
                                                                                                                                                          '12:0:0.0']},
                                                                                                                               'ACCESS-CM2_r3i1p1f1': {'keyerror': None,
                                                                                                                                                       'name': 'ACCESS-CM2_r3i1p1f1',
                                                                                                                                                       'nyears': 165,
                                                                                                                                                       'time_period': ['1850-1-16 '
                                                                                                                                                                       '12:0:0.0',
                                                                                                                                                                       '2014-12-16 '
                                                                                                                                                                       '12:0:0.0']},
                                                                                                                               'ERA-20C': {'keyerror': None,
                                                                                                                                           'name': 'ERA-20C',
                                                                                                                                           'nyears': 111,
                                                                                                                                           'time_period': ['1900-1-16 '
                                                                                                                                                           '12:0:0.0',
                                                                                                                                                           '2010-12-16 '
                                                                                                                                                           '12:0:0.0']},
                                                                                                                               'ERA-5': {'keyerror': None,
                                                                                                                                         'name': 'ERA-5',
                                                                                                                                         'nyears': 40,
                                                                                                                                         'time_period': ['1979-1-16 '
                                                                                                                                                         '12:0:0.0',
                                                                                                                                                         '2018-12-16 '
                                                                                                                                                         '12:0:0.0']},
                                                                                                                               'ERA-Interim': {'keyerror': None,
                                                                                                                                               'name': 'ERA-Interim',
                                                                                                                                               'nyears': 40,
                                                                                                                                               'time_period': ['1979-1-16 '
                                                                                                                                                               '12:0:0.0',
                                                                                                                                                               '2018-12-16 '
                                                                                                                                                               '12:0:0.0']},
                                                                                                                               'HadISST': {'keyerror': 'unlikely '
                                                                                                                                                       'units: '
                                                                                                                                                       'K([-1e+30, '
                                                                                                                                                       '304.7203])',
                                                                                                                                           'name': 'HadISST',
                                                                                                                                           'nyears': 149,
                                                                                                                                           'time_period': ['1870-1-16 '
                                                                                                                                                           '11:59:59.5',
                                                                                                                                                           '2018-12-16 '
                                                                                                                                                           '18:0:0.0']},
                                                                                                                               'Tropflux': {'keyerror': None,
                                                                                                                                            'name': 'Tropflux',
                                                                                                                                            'nyears': 39,
                                                                                                                                            'time_period': ['1979-1-15 '
                                                                                                                                                            '0:0:0.0',
                                                                                                                                                            '2017-7-15 '
                                                                                                                                                            '12:0:0.0']},
                                                                                                                               'method': 'Standard '
                                                                                                                                         'deviation '
                                                                                                                                         'of '
                                                                                                                                         'nino3.4 '
                                                                                                                                         'sstA, '
                                                                                                                                         'time '
                                                                                                                                         'series '
                                                                                                                                         'are '
                                                                                                                                         'linearly '
                                                                                                                                         'detrended',
                                                                                                                               'name': 'ENSO '
                                                                                                                                       'skewness',
                                                                                                                               'ref': 'Using '
                                                                                                                                      'CDAT '
                                                                                                                                      'regression '
                                                                                                                                      'calculation',
                                                                                                                               'time_frequency': 'monthly',
                                                                                                                               'units': 'C'},
                                                                                                                'metric': {'datasets': 'ACCESS-CM2_r3i1p1f1; '
                                                                                                                                       "20CRv2's "
                                                                                                                                       'ts; '
                                                                                                                                       "ERA-20C's "
                                                                                                                                       'ts; '
                                                                                                                                       "ERA-5's "
                                                                                                                                       'ts; '
                                                                                                                                       "ERA-Interim's "
                                                                                                                                       'ts; '
                                                                                                                                       "HadISST's "
                                                                                                                                       'ts; '
                                                                                                                                       "Tropflux's "
                                                                                                                                       'ts; '
                                                                                                                                       "'s ",
                                                                                                                           'method': 'The '
                                                                                                                                     'metric '
                                                                                                                                     'is '
                                                                                                                                     'the '
                                                                                                                                     'absolute '
                                                                                                                                     'value '
                                                                                                                                     'of '
                                                                                                                                     'the '
                                                                                                                                     'relative '
                                                                                                                                     'difference '
                                                                                                                                     'between '
                                                                                                                                     'model '
                                                                                                                                     'and '
                                                                                                                                     'observations '
                                                                                                                                     'values '
                                                                                                                                     '(M '
                                                                                                                                     '= '
                                                                                                                                     '100 '
                                                                                                                                     '* '
                                                                                                                                     'abs[[model-obs] '
                                                                                                                                     '/ '
                                                                                                                                     'obs])',
                                                                                                                           'name': 'EnsoSstSkew',
                                                                                                                           'units': '%'}},
                                                                                                'EnsodSstOce_2': {'diagnostic': {'20CRv2_ERA-Interim': {'keyerror': None,
                                                                                                                                                        'name': '20CRv2_ERA-Interim',
                                                                                                                                                        'nyears': 34,
                                                                                                                                                        'time_period': ['1979-1-16 '
                                                                                                                                                                        '12:0:0.0',
                                                                                                                                                                        '2012-12-16 '
                                                                                                                                                                        '12:0:0.0']},
                                                                                                                                 'ACCESS-CM2_r3i1p1f1': {'keyerror': None,
                                                                                                                                                         'name': 'ACCESS-CM2_r3i1p1f1',
                                                                                                                                                         'nyears': 165,
                                                                                                                                                         'time_period': ['1850-1-16 '
                                                                                                                                                                         '12:0:0.0',
                                                                                                                                                                         '2014-12-16 '
                                                                                                                                                                         '12:0:0.0']},
                                                                                                                                 'ERA-20C_ERA-Interim': {'keyerror': None,
                                                                                                                                                         'name': 'ERA-20C_ERA-Interim',
                                                                                                                                                         'nyears': 32,
                                                                                                                                                         'time_period': ['1979-1-16 '
                                                                                                                                                                         '12:0:0.0',
                                                                                                                                                                         '2010-12-16 '
                                                                                                                                                                         '12:0:0.0']},
                                                                                                                                 'ERA-5_ERA-Interim': {'keyerror': None,
                                                                                                                                                       'name': 'ERA-5_ERA-Interim',
                                                                                                                                                       'nyears': 40,
                                                                                                                                                       'time_period': ['1979-1-16 '
                                                                                                                                                                       '12:0:0.0',
                                                                                                                                                                       '2018-12-16 '
                                                                                                                                                                       '12:0:0.0']},
                                                                                                                                 'ERA-Interim_ERA-Interim': {'keyerror': None,
                                                                                                                                                             'name': 'ERA-Interim_ERA-Interim',
                                                                                                                                                             'nyears': 40,
                                                                                                                                                             'time_period': ['1979-1-16 '
                                                                                                                                                                             '12:0:0.0',
                                                                                                                                                                             '2018-12-16 '
                                                                                                                                                                             '12:0:0.0']},
                                                                                                                                 'HadISST_ERA-Interim': {'keyerror': None,
                                                                                                                                                         'name': 'HadISST_ERA-Interim',
                                                                                                                                                         'nyears': 40,
                                                                                                                                                         'time_period': ['1979-1-16 '
                                                                                                                                                                         '3:0:0.0',
                                                                                                                                                                         '2018-12-16 '
                                                                                                                                                                         '18:0:0.0']},
                                                                                                                                 'Tropflux_ERA-Interim': {'keyerror': None,
                                                                                                                                                          'name': 'Tropflux_ERA-Interim',
                                                                                                                                                          'nyears': 39,
                                                                                                                                                          'time_period': ['1979-1-15 '
                                                                                                                                                                          '0:0:0.0',
                                                                                                                                                                          '2017-7-15 '
                                                                                                                                                                          '12:0:0.0']},
                                                                                                                                 'method': 'Nino '
                                                                                                                                           '(Nina) '
                                                                                                                                           'events '
                                                                                                                                           '= '
                                                                                                                                           'nino3.4 '
                                                                                                                                           'sstA '
                                                                                                                                           '> '
                                                                                                                                           '0.75 '
                                                                                                                                           '(< '
                                                                                                                                           '-0.75) '
                                                                                                                                           'during '
                                                                                                                                           'DEC, '
                                                                                                                                           'dSSToce '
                                                                                                                                           '= '
                                                                                                                                           'dSST '
                                                                                                                                           '- '
                                                                                                                                           'dSSTthf '
                                                                                                                                           'during '
                                                                                                                                           'ENSO '
                                                                                                                                           'events '
                                                                                                                                           '(relative '
                                                                                                                                           'difference '
                                                                                                                                           'between '
                                                                                                                                           'nino3 '
                                                                                                                                           'SST '
                                                                                                                                           'change '
                                                                                                                                           'and '
                                                                                                                                           'heat '
                                                                                                                                           'flux-driven '
                                                                                                                                           'nino3 '
                                                                                                                                           'SST '
                                                                                                                                           'change '
                                                                                                                                           'in '
                                                                                                                                           ', '
                                                                                                                                           'time '
                                                                                                                                           'series '
                                                                                                                                           'are '
                                                                                                                                           'linearly '
                                                                                                                                           'detrended, '
                                                                                                                                           'smoothing '
                                                                                                                                           'using '
                                                                                                                                           'a '
                                                                                                                                           'triangle '
                                                                                                                                           'shaped '
                                                                                                                                           'window '
                                                                                                                                           'of '
                                                                                                                                           '5 '
                                                                                                                                           'points',
                                                                                                                                 'name': 'SST '
                                                                                                                                         'change '
                                                                                                                                         'caused '
                                                                                                                                         'by '
                                                                                                                                         'an '
                                                                                                                                         'anomalous '
                                                                                                                                         'ocean '
                                                                                                                                         'circulation '
                                                                                                                                         '(dSSToce)',
                                                                                                                                 'ref': 'Using '
                                                                                                                                        'CDAT',
                                                                                                                                 'time_frequency': 'monthly',
                                                                                                                                 'units': 'C/C'},
                                                                                                                  'metric': {'datasets': 'ACCESS-CM2_r3i1p1f1; '
                                                                                                                                         "20CRv2's "
                                                                                                                                         'ts; '
                                                                                                                                         "ERA-20C's "
                                                                                                                                         'ts; '
                                                                                                                                         "ERA-5's "
                                                                                                                                         'ts; '
                                                                                                                                         "ERA-Interim's "
                                                                                                                                         'ts; '
                                                                                                                                         "HadISST's "
                                                                                                                                         'ts; '
                                                                                                                                         "Tropflux's "
                                                                                                                                         'ts; '
                                                                                                                                         "ERA-Interim's "
                                                                                                                                         'hfls '
                                                                                                                                         '& '
                                                                                                                                         'hfss '
                                                                                                                                         '& '
                                                                                                                                         'rlds '
                                                                                                                                         '& '
                                                                                                                                         'rlus '
                                                                                                                                         '& '
                                                                                                                                         'rsds '
                                                                                                                                         '& '
                                                                                                                                         'rsus',
                                                                                                                             'method': 'The '
                                                                                                                                       'metric '
                                                                                                                                       'is '
                                                                                                                                       'the '
                                                                                                                                       'absolute '
                                                                                                                                       'value '
                                                                                                                                       'of '
                                                                                                                                       'the '
                                                                                                                                       'relative '
                                                                                                                                       'difference '
                                                                                                                                       'between '
                                                                                                                                       'model '
                                                                                                                                       'and '
                                                                                                                                       'observations '
                                                                                                                                       'values '
                                                                                                                                       '(M '
                                                                                                                                       '= '
                                                                                                                                       '100 '
                                                                                                                                       '* '
                                                                                                                                       'abs[[model-obs] '
                                                                                                                                       '/ '
                                                                                                                                       'obs])',
                                                                                                                             'name': 'EnsodSstOce',
                                                                                                                             'units': '%'}}},
                                                                                    'name': 'Metrics '
                                                                                            'Collection '
                                                                                            'for '
                                                                                            'ENSO '
                                                                                            'processes'},
                                                                       'value': {'BiasSstLonRmse': {'diagnostic': {'20CRv2': {'value': None,
                                                                                                                              'value_error': None},
                                                                                                                   'ACCESS-CM2_r3i1p1f1': {'value': None,
                                                                                                                                           'value_error': None},
                                                                                                                   'ERA-20C': {'value': None,
                                                                                                                               'value_error': None},
                                                                                                                   'ERA-5': {'value': None,
                                                                                                                             'value_error': None},
                                                                                                                   'ERA-Interim': {'value': None,
                                                                                                                                   'value_error': None},
                                                                                                                   'HadISST': {'value': None,
                                                                                                                               'value_error': None},
                                                                                                                   'Tropflux': {'value': None,
                                                                                                                                'value_error': None}},
                                                                                                    'metric': {'20CRv2': {'value': 0.541184671035061,
                                                                                                                          'value_error': None},
                                                                                                               'ERA-20C': {'value': 0.5312798674415361,
                                                                                                                           'value_error': None},
                                                                                                               'ERA-5': {'value': 0.5002622936625699,
                                                                                                                         'value_error': None},
                                                                                                               'ERA-Interim': {'value': 0.6127163520938992,
                                                                                                                               'value_error': None},
                                                                                                               'HadISST': {'value': 0.5481567062502946,
                                                                                                                           'value_error': None},
                                                                                                               'Tropflux': {'value': 0.6312817570271734,
                                                                                                                            'value_error': None}}},
                                                                                 'BiasTauxLonRmse': {'diagnostic': {'ACCESS-CM2_r3i1p1f1': {'value': None,
                                                                                                                                            'value_error': None},
                                                                                                                    'ERA-Interim': {'value': None,
                                                                                                                                    'value_error': None},
                                                                                                                    'Tropflux': {'value': None,
                                                                                                                                 'value_error': None}},
                                                                                                     'metric': {'ERA-Interim': {'value': 7.318457710429736,
                                                                                                                                'value_error': None},
                                                                                                                'Tropflux': {'value': 7.017214896301271,
                                                                                                                             'value_error': None}}},
                                                                                 'EnsoAmpl': {'diagnostic': {'20CRv2': {'value': 0.7407960057502115,
                                                                                                                        'value_error': 0.062166219832622445},
                                                                                                             'ACCESS-CM2_r3i1p1f1': {'value': 0.9173210955753004,
                                                                                                                                     'value_error': 0.07141335043624629},
                                                                                                             'ERA-20C': {'value': 0.8265126323027572,
                                                                                                                         'value_error': 0.07844910735406072},
                                                                                                             'ERA-5': {'value': 0.9075909980564855,
                                                                                                                       'value_error': 0.14350273688619733},
                                                                                                             'ERA-Interim': {'value': 0.9001341048707652,
                                                                                                                             'value_error': 0.1423236985494241},
                                                                                                             'HadISST': {'value': 0.7688706055408969,
                                                                                                                         'value_error': 0.06298833428079066},
                                                                                                             'Tropflux': {'value': 0.9128364190673677,
                                                                                                                          'value_error': 0.14617081051130443}},
                                                                                              'metric': {'20CRv2': {'value': 23.829109289853704,
                                                                                                                    'value_error': 20.031591096914156},
                                                                                                         'ERA-20C': {'value': 10.986941968393225,
                                                                                                                     'value_error': 19.174736053152937},
                                                                                                         'ERA-5': {'value': 1.072079553416787,
                                                                                                                   'value_error': 23.849349683580996},
                                                                                                         'ERA-Interim': {'value': 1.9093811257160185,
                                                                                                                         'value_error': 24.046922525424254},
                                                                                                         'HadISST': {'value': 19.307603771634533,
                                                                                                                     'value_error': 19.062144093701967},
                                                                                                         'Tropflux': {'value': 0.49129027000419734,
                                                                                                                      'value_error': 23.914721121689627}}},
                                                                                 'EnsoFbSshSst': {'diagnostic': {'20CRv2_AVISO': {'nonlinearity': -0.04152801980348014,
                                                                                                                                  'nonlinearity_error': 0.017513672368536456,
                                                                                                                                  'value': 0.11810260256238658,
                                                                                                                                  'value_error': 0.003759915555702643},
                                                                                                                 'ACCESS-CM2_r3i1p1f1': {'nonlinearity': 0.041627092093874246,
                                                                                                                                         'nonlinearity_error': 0.014558494264799928,
                                                                                                                                         'value': 0.1663685576882898,
                                                                                                                                         'value_error': 0.0032137028841764557},
                                                                                                                 'ERA-20C_AVISO': {'nonlinearity': -0.032011742613362676,
                                                                                                                                   'nonlinearity_error': 0.0183450811389117,
                                                                                                                                   'value': 0.12657346976318096,
                                                                                                                                   'value_error': 0.003913658970403057},
                                                                                                                 'ERA-5_AVISO': {'nonlinearity': -0.02566396021245236,
                                                                                                                                 'nonlinearity_error': 0.015885984596935174,
                                                                                                                                 'value': 0.12628612766653574,
                                                                                                                                 'value_error': 0.0034955457677469676},
                                                                                                                 'ERA-Interim_AVISO': {'nonlinearity': -0.01795688795240266,
                                                                                                                                       'nonlinearity_error': 0.015596453142222452,
                                                                                                                                       'value': 0.12602582769944173,
                                                                                                                                       'value_error': 0.0034298901844770405},
                                                                                                                 'HadISST_AVISO': {'nonlinearity': -0.027397296086239156,
                                                                                                                                   'nonlinearity_error': 0.01524011202550052,
                                                                                                                                   'value': 0.12238689206984654,
                                                                                                                                   'value_error': 0.0033466415532667315},
                                                                                                                 'Tropflux_AVISO': {'nonlinearity': -0.015122526459173655,
                                                                                                                                    'nonlinearity_error': 0.01524840165408661,
                                                                                                                                    'value': 0.1278402683633683,
                                                                                                                                    'value_error': 0.0033530380648741243}},
                                                                                                  'metric': {'20CRv2_AVISO': {'value': 40.8678166938846,
                                                                                                                              'value_error': 7.2057801033919375},
                                                                                                             'ERA-20C_AVISO': {'value': 31.44030735632472,
                                                                                                                               'value_error': 6.603143833688139},
                                                                                                             'ERA-5_AVISO': {'value': 31.739376891493198,
                                                                                                                             'value_error': 6.191268385557707},
                                                                                                             'ERA-Interim_AVISO': {'value': 32.0114779051967,
                                                                                                                                   'value_error': 6.142829409295891},
                                                                                                             'HadISST_AVISO': {'value': 35.93658183046497,
                                                                                                                               'value_error': 6.343010175775079},
                                                                                                             'Tropflux_AVISO': {'value': 30.13783514237483,
                                                                                                                                'value_error': 5.9271418390378106}}},
                                                                                 'EnsoFbSstTaux': {'diagnostic': {'20CRv2_ERA-Interim': {'nonlinearity': 4.934033160844237,
                                                                                                                                         'nonlinearity_error': 2.902746466279199,
                                                                                                                                         'value': 14.279399855092704,
                                                                                                                                         'value_error': 0.6474408536852889},
                                                                                                                  '20CRv2_Tropflux': {'nonlinearity': 4.246457468336489,
                                                                                                                                      'nonlinearity_error': 3.158751303915279,
                                                                                                                                      'value': 14.953358496715085,
                                                                                                                                      'value_error': 0.7041991995478306},
                                                                                                                  'ACCESS-CM2_r3i1p1f1': {'nonlinearity': -2.9954687827320576,
                                                                                                                                          'nonlinearity_error': 0.9985754067182548,
                                                                                                                                          'value': 6.288464480125982,
                                                                                                                                          'value_error': 0.21429541399281996},
                                                                                                                  'ERA-20C_ERA-Interim': {'nonlinearity': 4.935065161864337,
                                                                                                                                          'nonlinearity_error': 2.7819513240604192,
                                                                                                                                          'value': 13.745001697775006,
                                                                                                                                          'value_error': 0.6142727838878883},
                                                                                                                  'ERA-20C_Tropflux': {'nonlinearity': 4.42190934284047,
                                                                                                                                       'nonlinearity_error': 2.9683595503356464,
                                                                                                                                       'value': 14.35072947741424,
                                                                                                                                       'value_error': 0.6543595156569981},
                                                                                                                  'ERA-5_ERA-Interim': {'nonlinearity': 3.1738377820903914,
                                                                                                                                        'nonlinearity_error': 2.4631712135067945,
                                                                                                                                        'value': 13.283692727594216,
                                                                                                                                        'value_error': 0.5482165088552355},
                                                                                                                  'ERA-5_Tropflux': {'nonlinearity': 2.619020521914347,
                                                                                                                                     'nonlinearity_error': 2.7583727584713595,
                                                                                                                                     'value': 14.195776796140159,
                                                                                                                                     'value_error': 0.6128603267022297},
                                                                                                                  'ERA-Interim_ERA-Interim': {'nonlinearity': 2.8547933106941965,
                                                                                                                                              'nonlinearity_error': 2.4777477618225165,
                                                                                                                                              'value': 13.423273078794779,
                                                                                                                                              'value_error': 0.5526753704697444},
                                                                                                                  'ERA-Interim_Tropflux': {'nonlinearity': 2.4475732791951845,
                                                                                                                                           'nonlinearity_error': 2.7697102686012887,
                                                                                                                                           'value': 14.360849877943336,
                                                                                                                                           'value_error': 0.6188884044938651},
                                                                                                                  'HadISST_ERA-Interim': {'nonlinearity': 3.801963983723919,
                                                                                                                                          'nonlinearity_error': 2.501025104389977,
                                                                                                                                          'value': 13.751193218218148,
                                                                                                                                          'value_error': 0.5563520982567903},
                                                                                                                  'HadISST_Tropflux': {'nonlinearity': 3.2962744768928225,
                                                                                                                                       'nonlinearity_error': 2.792416048517307,
                                                                                                                                       'value': 14.736359645293911,
                                                                                                                                       'value_error': 0.6225707941895763},
                                                                                                                  'Tropflux_ERA-Interim': {'nonlinearity': 3.28318688399591,
                                                                                                                                           'nonlinearity_error': 2.49301234198086,
                                                                                                                                           'value': 13.500147572549228,
                                                                                                                                           'value_error': 0.5581279487605476},
                                                                                                                  'Tropflux_Tropflux': {'nonlinearity': 2.3821759870445565,
                                                                                                                                        'nonlinearity_error': 2.751049544418355,
                                                                                                                                        'value': 14.293782294300136,
                                                                                                                                        'value_error': 0.6147433238666429}},
                                                                                                   'metric': {'20CRv2_ERA-Interim': {'value': 55.96128307953209,
                                                                                                                                     'value_error': 3.497486335860457},
                                                                                                              '20CRv2_Tropflux': {'value': 57.94613978185959,
                                                                                                                                  'value_error': 3.4135365720019357},
                                                                                                              'ERA-20C_ERA-Interim': {'value': 54.249081823366105,
                                                                                                                                      'value_error': 3.603716198964758},
                                                                                                              'ERA-20C_Tropflux': {'value': 56.180175439701365,
                                                                                                                                   'value_error': 3.491352871893271},
                                                                                                              'ERA-5_ERA-Interim': {'value': 52.66026842774709,
                                                                                                                                    'value_error': 3.5669271145921564},
                                                                                                              'ERA-5_Tropflux': {'value': 55.701864220379825,
                                                                                                                                 'value_error': 3.4220114941993294},
                                                                                                              'ERA-Interim_ERA-Interim': {'value': 53.152525146343834,
                                                                                                                                          'value_error': 3.525294214147598},
                                                                                                              'ERA-Interim_Tropflux': {'value': 56.211056214824985,
                                                                                                                                       'value_error': 3.379327224045229},
                                                                                                              'HadISST_ERA-Interim': {'value': 54.269681326310184,
                                                                                                                                      'value_error': 3.4085551270738783},
                                                                                                              'HadISST_Tropflux': {'value': 57.32687969423834,
                                                                                                                                   'value_error': 3.2570174014391116},
                                                                                                              'Tropflux_ERA-Interim': {'value': 53.419290816400064,
                                                                                                                                       'value_error': 3.5131124910200153},
                                                                                                              'Tropflux_Tropflux': {'value': 56.00559494575762,
                                                                                                                                    'value_error': 3.3913212889210196}}},
                                                                                 'EnsoFbSstThf': {'diagnostic': {'20CRv2_ERA-Interim': {'nonlinearity': 7.290671056417352,
                                                                                                                                        'nonlinearity_error': 2.7213675471816154,
                                                                                                                                        'value': -20.113546892594773,
                                                                                                                                        'value_error': 0.6239588205021478},
                                                                                                                 'ACCESS-CM2_r3i1p1f1': {'nonlinearity': 15.404711788112055,
                                                                                                                                         'nonlinearity_error': 0.9664169535745293,
                                                                                                                                         'value': -12.249477229185853,
                                                                                                                                         'value_error': 0.23254572742197527},
                                                                                                                 'ERA-20C_ERA-Interim': {'nonlinearity': 8.087922977609816,
                                                                                                                                         'nonlinearity_error': 2.8639453483138015,
                                                                                                                                         'value': -18.936262328678282,
                                                                                                                                         'value_error': 0.6479348809996519},
                                                                                                                 'ERA-5_ERA-Interim': {'nonlinearity': 5.529894486857337,
                                                                                                                                       'nonlinearity_error': 2.3481393074511283,
                                                                                                                                       'value': -18.28980905577124,
                                                                                                                                       'value_error': 0.5373483889642887},
                                                                                                                 'ERA-Interim_ERA-Interim': {'nonlinearity': 5.07833225316738,
                                                                                                                                             'nonlinearity_error': 2.1935774857773334,
                                                                                                                                             'value': -18.913017373316936,
                                                                                                                                             'value_error': 0.5089173190939691},
                                                                                                                 'HadISST_ERA-Interim': {'nonlinearity': 5.687118446440536,
                                                                                                                                         'nonlinearity_error': 2.2961441447418176,
                                                                                                                                         'value': -19.11377276412325,
                                                                                                                                         'value_error': 0.525893438083763},
                                                                                                                 'Tropflux_ERA-Interim': {'nonlinearity': 5.034100130047683,
                                                                                                                                          'nonlinearity_error': 2.218257664682187,
                                                                                                                                          'value': -18.815094627609692,
                                                                                                                                          'value_error': 0.5133781975037957}},
                                                                                                  'metric': {'20CRv2_ERA-Interim': {'value': 39.098373376921614,
                                                                                                                                    'value_error': -3.045443957930062},
                                                                                                             'ERA-20C_ERA-Interim': {'value': 35.31206414143057,
                                                                                                                                     'value_error': -3.441446977957104},
                                                                                                             'ERA-5_ERA-Interim': {'value': 33.025669148139066,
                                                                                                                                   'value_error': -3.2391328606414542},
                                                                                                             'ERA-Interim_ERA-Interim': {'value': 35.23255973704233,
                                                                                                                                         'value_error': -2.9723361267944366},
                                                                                                             'HadISST_ERA-Interim': {'value': 35.91282380327211,
                                                                                                                                     'value_error': -2.9799244174485873},
                                                                                                             'Tropflux_ERA-Interim': {'value': 34.895479020282494,
                                                                                                                                      'value_error': -3.012358720159858}}},
                                                                                 'EnsoFbTauxSsh': {'diagnostic': {'ACCESS-CM2_r3i1p1f1': {'nonlinearity': -0.048001401473511174,
                                                                                                                                          'nonlinearity_error': 0.026617486490050676,
                                                                                                                                          'value': 0.30795851487819453,
                                                                                                                                          'value_error': 0.0057146442583586405},
                                                                                                                  'ERA-Interim_AVISO': {'nonlinearity': -0.15648680083918742,
                                                                                                                                        'nonlinearity_error': 0.05449477245662225,
                                                                                                                                        'value': 0.336153745357779,
                                                                                                                                        'value_error': 0.0122472536568305},
                                                                                                                  'Tropflux_AVISO': {'nonlinearity': -0.15327955460805903,
                                                                                                                                     'nonlinearity_error': 0.05100216480941061,
                                                                                                                                     'value': 0.3010796248015885,
                                                                                                                                     'value_error': 0.011538549705726963}},
                                                                                                   'metric': {'ERA-Interim_AVISO': {'value': 8.387599682869924,
                                                                                                                                    'value_error': 5.0377684438067085},
                                                                                                              'Tropflux_AVISO': {'value': 2.2847411481727518,
                                                                                                                                 'value_error': 5.818002453224224}}},
                                                                                 'EnsoSeasonality': {'diagnostic': {'20CRv2': {'value': 1.6436435961094338,
                                                                                                                               'value_error': 0.27635126775510105},
                                                                                                                    'ACCESS-CM2_r3i1p1f1': {'value': 1.4749615632589719,
                                                                                                                                            'value_error': 0.2300007499552203},
                                                                                                                    'ERA-20C': {'value': 1.5951589911955568,
                                                                                                                                'value_error': 0.30349823329934555},
                                                                                                                    'ERA-5': {'value': 2.0283123524204223,
                                                                                                                              'value_error': 0.6454942543282691},
                                                                                                                    'ERA-Interim': {'value': 2.052960044692134,
                                                                                                                                    'value_error': 0.6533381861195713},
                                                                                                                    'HadISST': {'value': 1.6666267700450468,
                                                                                                                                'value_error': 0.273531261566947},
                                                                                                                    'Tropflux': {'value': 2.06093854374807,
                                                                                                                                 'value_error': 0.6643426635460994}},
                                                                                                     'metric': {'20CRv2': {'value': 10.262689140744296,
                                                                                                                           'value_error': 29.081179599733908},
                                                                                                                'ERA-20C': {'value': 7.535137788772898,
                                                                                                                            'value_error': 32.011227470576856},
                                                                                                                'ERA-5': {'value': 27.281340001756966,
                                                                                                                          'value_error': 34.48164782084904},
                                                                                                                'ERA-Interim': {'value': 28.154395061295016,
                                                                                                                                'value_error': 34.067663609754824},
                                                                                                                'HadISST': {'value': 11.500187698346789,
                                                                                                                            'value_error': 28.325202229624146},
                                                                                                                'Tropflux': {'value': 28.43253052191585,
                                                                                                                             'value_error': 34.229743776615074}}},
                                                                                 'EnsoSstLonRmse': {'diagnostic': {'20CRv2': {'value': None,
                                                                                                                              'value_error': None},
                                                                                                                   'ACCESS-CM2_r3i1p1f1': {'value': None,
                                                                                                                                           'value_error': None},
                                                                                                                   'ERA-20C': {'value': None,
                                                                                                                               'value_error': None},
                                                                                                                   'ERA-5': {'value': None,
                                                                                                                             'value_error': None},
                                                                                                                   'ERA-Interim': {'value': None,
                                                                                                                                   'value_error': None},
                                                                                                                   'HadISST': {'value': None,
                                                                                                                               'value_error': None},
                                                                                                                   'Tropflux': {'value': None,
                                                                                                                                'value_error': None}},
                                                                                                    'metric': {'20CRv2': {'value': 0.08284732594316847,
                                                                                                                          'value_error': None},
                                                                                                               'ERA-20C': {'value': 0.09274124177770596,
                                                                                                                           'value_error': None},
                                                                                                               'ERA-5': {'value': 0.07010114542502865,
                                                                                                                         'value_error': None},
                                                                                                               'ERA-Interim': {'value': 0.07418859433347023,
                                                                                                                               'value_error': None},
                                                                                                               'HadISST': {'value': 0.08911231601705723,
                                                                                                                           'value_error': None},
                                                                                                               'Tropflux': {'value': 0.0727567841871812,
                                                                                                                            'value_error': None}}},
                                                                                 'EnsoSstSkew': {'diagnostic': {'20CRv2': {'value': 0.35464371256710725,
                                                                                                                           'value_error': 0.029761039242344564},
                                                                                                                'ACCESS-CM2_r3i1p1f1': {'value': -0.4111261945242061,
                                                                                                                                        'value_error': -0.03200613083542394},
                                                                                                                'ERA-20C': {'value': 0.19142977450459012,
                                                                                                                            'value_error': 0.01816971010961296},
                                                                                                                'ERA-5': {'value': 0.473403564017451,
                                                                                                                          'value_error': 0.07485167573682382},
                                                                                                                'ERA-Interim': {'value': 0.40501535626049495,
                                                                                                                                'value_error': 0.06403855065638503},
                                                                                                                'HadISST': {'value': 0.40320728014992363,
                                                                                                                            'value_error': 0.033032027448448076},
                                                                                                                'Tropflux': {'value': 0.3838870736969205,
                                                                                                                             'value_error': 0.061471128380725305}},
                                                                                                 'metric': {'20CRv2': {'value': 215.9265425991194,
                                                                                                                       'value_error': -18.75320844946782},
                                                                                                            'ERA-20C': {'value': 314.7660653041976,
                                                                                                                        'value_error': -37.1042083180825},
                                                                                                            'ERA-5': {'value': 186.84476116640536,
                                                                                                                      'value_error': -20.49221789435972},
                                                                                                            'ERA-Interim': {'value': 201.50879174560998,
                                                                                                                            'value_error': -23.95239794209827},
                                                                                                            'HadISST': {'value': 201.96398100037726,
                                                                                                                        'value_error': -16.291099953000533},
                                                                                                            'Tropflux': {'value': 207.09560771738592,
                                                                                                                         'value_error': -25.486403697651006}}},
                                                                                 'EnsodSstOce_2': {'diagnostic': {'20CRv2_ERA-Interim': {'value': 2.363055944556165,
                                                                                                                                         'value_error': None},
                                                                                                                  'ACCESS-CM2_r3i1p1f1': {'value': 2.570044986402793,
                                                                                                                                          'value_error': None},
                                                                                                                  'ERA-20C_ERA-Interim': {'value': 2.44408374051583,
                                                                                                                                          'value_error': None},
                                                                                                                  'ERA-5_ERA-Interim': {'value': 2.4614131442372607,
                                                                                                                                        'value_error': None},
                                                                                                                  'ERA-Interim_ERA-Interim': {'value': 1.8011858193585126,
                                                                                                                                              'value_error': None},
                                                                                                                  'HadISST_ERA-Interim': {'value': 2.3814159901043817,
                                                                                                                                          'value_error': None},
                                                                                                                  'Tropflux_ERA-Interim': {'value': 1.6738291099743765,
                                                                                                                                           'value_error': None}},
                                                                                                   'metric': {'20CRv2_ERA-Interim': {'value': 8.759379663586646,
                                                                                                                                     'value_error': None},
                                                                                                              'ERA-20C_ERA-Interim': {'value': 5.153720545613489,
                                                                                                                                      'value_error': None},
                                                                                                              'ERA-5_ERA-Interim': {'value': 4.41339327450431,
                                                                                                                                    'value_error': None},
                                                                                                              'ERA-Interim_ERA-Interim': {'value': 42.6862769393836,
                                                                                                                                          'value_error': None},
                                                                                                              'HadISST_ERA-Interim': {'value': 7.920875524571555,
                                                                                                                                      'value_error': None},
                                                                                                              'Tropflux_ERA-Interim': {'value': 53.54285399195477,
                                                                                                                                       'value_error': None}}}}}}},
                               'provenance': {'commandLine': '/home/lee1043/.conda/envs/pmp_nightly_20210620/bin/enso_driver.py '
                                                             '-p '
                                                             '../param/my_Param_ENSO_PCMDIobs.py '
                                                             '--mip cmip6 '
                                                             '--metricsCollection '
                                                             'ENSO_proc '
                                                             '--case_id '
                                                             'v20210620 '
                                                             '--modnames '
                                                             'UKESM1-0-LL '
                                                             '--realization '
                                                             'r9i1p1f2',
                                              'conda': {'Platform': 'linux-64',
                                                        'PythonVersion': '3.7.3.final.0',
                                                        'Version': '4.8.3',
                                                        'buildVersion': '3.18.8'},
                                              'date': '2021-06-22 06:52:45',
                                              'history': 'import EnsoMetrics\n'
                                                         'from '
                                                         '...script.PMPdriver_lib '
                                                         'import '
                                                         'AddParserArgument\n'
                                                         'from '
                                                         '...script.PMPdriver_lib '
                                                         'import '
                                                         'AddParserArgument\n'
                                                         'from '
                                                         'script.PMPdriver_lib '
                                                         'import '
                                                         'AddParserArgument\n'
                                                         'from '
                                                         'script.PMPdriver_libfrom '
                                                         'PMPdriver_lib import '
                                                         'AddParserArgument\n'
                                                         ' import '
                                                         'AddParserArgument\n'
                                                         'from PMPdriver_lib '
                                                         'import '
                                                         'AddParserArgument\n',
                                              'openGL': {'GLX': {'client': {},
                                                                 'server': {}}},
                                              'osAccess': False,
                                              'packages': {'PMP': 'v2.0-15-g182be71',
                                                           'PMPObs': 'See '
                                                                     "'References' "
                                                                     'key '
                                                                     'below, '
                                                                     'for '
                                                                     'detailed '
                                                                     'obs '
                                                                     'provenance '
                                                                     'information.',
                                                           'blas': '0.3.10',
                                                           'cdat_info': '8.2.2020.08.27.15.53.ga42e5c8',
                                                           'cdms': '3.1.5.2020.11.03.21.54.gf997653',
                                                           'cdp': '1.7.0',
                                                           'cdtime': '3.1.4.2020.10.12.15.52.g2b715b5',
                                                           'cdutil': '8.2.2020.09.28.17.09.g484910c',
                                                           'clapack': None,
                                                           'esmf': '8.0.1',
                                                           'esmpy': '8.0.1',
                                                           'genutil': '8.2.2020.10.07.17.46.ge34ccd5',
                                                           'lapack': '3.8.0',
                                                           'matplotlib': '3.4.2',
                                                           'mesalib': None,
                                                           'numpy': '1.20.3',
                                                           'python': '3.8.10',
                                                           'scipy': '1.5.2',
                                                           'uvcdat': None,
                                                           'vcs': '8.2.2020.08.06.20.48.g4abe712',
                                                           'vtk': '8.2.0.8.2.2020.07.20.18.56.g3aa9eaf'},
                                              'platform': {'Name': 'gates.llnl.gov',
                                                           'OS': 'Linux',
                                                           'Version': '3.10.0-1160.31.1.el7.x86_64'},
                                              'userId': 'lee1043'}},
                 'ENSO_tel': {'REFERENCE': 'MC for ENSO Teleconnection...',
                              'RESULTS': {'ACCESS-CM2': {'r1i1p1f1': {'metadata': {'description_of_the_collection': 'Describe '
                                                                                                                    'which '
                                                                                                                    'science '
                                                                                                                    'question '
                                                                                                                    'this '
                                                                                                                    'collection '
                                                                                                                    'is '
                                                                                                                    'about',
                                                                                   'metrics': {'EnsoAmpl': {'diagnostic': {'20CRv2': {'keyerror': None,
                                                                                                                                      'name': '20CRv2',
                                                                                                                                      'nyears': 142,
                                                                                                                                      'time_period': ['1871-1-16 '
                                                                                                                                                      '12:0:0.0',
                                                                                                                                                      '2012-12-16 '
                                                                                                                                                      '12:0:0.0']},
                                                                                                                           'ACCESS-CM2_r1i1p1f1': {'keyerror': None,
                                                                                                                                                   'name': 'ACCESS-CM2_r1i1p1f1',
                                                                                                                                                   'nyears': 165,
                                                                                                                                                   'time_period': ['1850-1-16 '
                                                                                                                                                                   '12:0:0.0',
                                                                                                                                                                   '2014-12-16 '
                                                                                                                                                                   '12:0:0.0']},
                                                                                                                           'ERA-20C': {'keyerror': None,
                                                                                                                                       'name': 'ERA-20C',
                                                                                                                                       'nyears': 111,
                                                                                                                                       'time_period': ['1900-1-16 '
                                                                                                                                                       '12:0:0.0',
                                                                                                                                                       '2010-12-16 '
                                                                                                                                                       '12:0:0.0']},
                                                                                                                           'ERA-5': {'keyerror': None,
                                                                                                                                     'name': 'ERA-5',
                                                                                                                                     'nyears': 40,
                                                                                                                                     'time_period': ['1979-1-16 '
                                                                                                                                                     '12:0:0.0',
                                                                                                                                                     '2018-12-16 '
                                                                                                                                                     '12:0:0.0']},
                                                                                                                           'ERA-Interim': {'keyerror': None,
                                                                                                                                           'name': 'ERA-Interim',
                                                                                                                                           'nyears': 40,
                                                                                                                                           'time_period': ['1979-1-16 '
                                                                                                                                                           '12:0:0.0',
                                                                                                                                                           '2018-12-16 '
                                                                                                                                                           '12:0:0.0']},
                                                                                                                           'HadISST': {'keyerror': 'unlikely '
                                                                                                                                                   'units: '
                                                                                                                                                   'K([-1e+30, '
                                                                                                                                                   '304.7203])',
                                                                                                                                       'name': 'HadISST',
                                                                                                                                       'nyears': 149,
                                                                                                                                       'time_period': ['1870-1-16 '
                                                                                                                                                       '11:59:59.5',
                                                                                                                                                       '2018-12-16 '
                                                                                                                                                       '18:0:0.0']},
                                                                                                                           'Tropflux': {'keyerror': None,
                                                                                                                                        'name': 'Tropflux',
                                                                                                                                        'nyears': 39,
                                                                                                                                        'time_period': ['1979-1-15 '
                                                                                                                                                        '0:0:0.0',
                                                                                                                                                        '2017-7-15 '
                                                                                                                                                        '12:0:0.0']},
                                                                                                                           'method': 'Standard '
                                                                                                                                     'deviation '
                                                                                                                                     'of '
                                                                                                                                     'nino3.4 '
                                                                                                                                     'sstA, '
                                                                                                                                     'time '
                                                                                                                                     'series '
                                                                                                                                     'are '
                                                                                                                                     'linearly '
                                                                                                                                     'detrended',
                                                                                                                           'name': 'ENSO '
                                                                                                                                   'amplitude',
                                                                                                                           'ref': 'Using '
                                                                                                                                  'CDAT '
                                                                                                                                  'regression '
                                                                                                                                  'calculation',
                                                                                                                           'time_frequency': 'monthly',
                                                                                                                           'units': 'C'},
                                                                                                            'metric': {'datasets': 'ACCESS-CM2_r1i1p1f1; '
                                                                                                                                   "20CRv2's "
                                                                                                                                   'ts; '
                                                                                                                                   "ERA-20C's "
                                                                                                                                   'ts; '
                                                                                                                                   "ERA-5's "
                                                                                                                                   'ts; '
                                                                                                                                   "ERA-Interim's "
                                                                                                                                   'ts; '
                                                                                                                                   "HadISST's "
                                                                                                                                   'ts; '
                                                                                                                                   "Tropflux's "
                                                                                                                                   'ts; '
                                                                                                                                   "'s ",
                                                                                                                       'method': 'The '
                                                                                                                                 'metric '
                                                                                                                                 'is '
                                                                                                                                 'the '
                                                                                                                                 'absolute '
                                                                                                                                 'value '
                                                                                                                                 'of '
                                                                                                                                 'the '
                                                                                                                                 'relative '
                                                                                                                                 'difference '
                                                                                                                                 'between '
                                                                                                                                 'model '
                                                                                                                                 'and '
                                                                                                                                 'observations '
                                                                                                                                 'values '
                                                                                                                                 '(M '
                                                                                                                                 '= '
                                                                                                                                 '100 '
                                                                                                                                 '* '
                                                                                                                                 'abs[[model-obs] '
                                                                                                                                 '/ '
                                                                                                                                 'obs])',
                                                                                                                       'name': 'EnsoAmpl',
                                                                                                                       'units': '%'}},
                                                                                               'EnsoPrMapJjaCorr': {'diagnostic': {'20CRv2_CMAP': {'name': '20CRv2_CMAP',
                                                                                                                                                   'nyears': 34,
                                                                                                                                                   'time_period': ['1979-1-16 '
                                                                                                                                                                   '12:0:0.0',
                                                                                                                                                                   '2012-12-16 '
                                                                                                                                                                   '12:0:0.0']},
                                                                                                                                   '20CRv2_ERA-Interim': {'name': '20CRv2_ERA-Interim',
                                                                                                                                                          'nyears': 34,
                                                                                                                                                          'time_period': ['1979-1-16 '
                                                                                                                                                                          '12:0:0.0',
                                                                                                                                                                          '2012-12-16 '
                                                                                                                                                                          '12:0:0.0']},
                                                                                                                                   '20CRv2_GPCPv2.3': {'name': '20CRv2_GPCPv2.3',
                                                                                                                                                       'nyears': 34,
                                                                                                                                                       'time_period': ['1979-1-16 '
                                                                                                                                                                       '12:0:0.0',
                                                                                                                                                                       '2012-12-16 '
                                                                                                                                                                       '12:0:0.0']},
                                                                                                                                   '20CRv2_TRMM-3B43v-7': {'name': '20CRv2_TRMM-3B43v-7',
                                                                                                                                                           'nyears': 15,
                                                                                                                                                           'time_period': ['1998-1-16 '
                                                                                                                                                                           '12:0:0.0',
                                                                                                                                                                           '2012-12-16 '
                                                                                                                                                                           '12:0:0.0']},
                                                                                                                                   'ACCESS-CM2_r1i1p1f1': {'keyerror': None,
                                                                                                                                                           'name': 'ACCESS-CM2_r1i1p1f1',
                                                                                                                                                           'nyears': 165,
                                                                                                                                                           'time_period': ['1850-1-16 '
                                                                                                                                                                           '12:0:0.0',
                                                                                                                                                                           '2014-12-16 '
                                                                                                                                                                           '12:0:0.0']},
                                                                                                                                   'ERA-20C_CMAP': {'name': 'ERA-20C_CMAP',
                                                                                                                                                    'nyears': 32,
                                                                                                                                                    'time_period': ['1979-1-16 '
                                                                                                                                                                    '12:0:0.0',
                                                                                                                                                                    '2010-12-16 '
                                                                                                                                                                    '12:0:0.0']},
                                                                                                                                   'ERA-20C_ERA-Interim': {'name': 'ERA-20C_ERA-Interim',
                                                                                                                                                           'nyears': 32,
                                                                                                                                                           'time_period': ['1979-1-16 '
                                                                                                                                                                           '12:0:0.0',
                                                                                                                                                                           '2010-12-16 '
                                                                                                                                                                           '12:0:0.0']},
                                                                                                                                   'ERA-20C_GPCPv2.3': {'name': 'ERA-20C_GPCPv2.3',
                                                                                                                                                        'nyears': 32,
                                                                                                                                                        'time_period': ['1979-1-16 '
                                                                                                                                                                        '12:0:0.0',
                                                                                                                                                                        '2010-12-16 '
                                                                                                                                                                        '12:0:0.0']},
                                                                                                                                   'ERA-20C_TRMM-3B43v-7': {'name': 'ERA-20C_TRMM-3B43v-7',
                                                                                                                                                            'nyears': 13,
                                                                                                                                                            'time_period': ['1998-1-16 '
                                                                                                                                                                            '12:0:0.0',
                                                                                                                                                                            '2010-12-16 '
                                                                                                                                                                            '12:0:0.0']},
                                                                                                                                   'ERA-5_CMAP': {'name': 'ERA-5_CMAP',
                                                                                                                                                  'nyears': 40,
                                                                                                                                                  'time_period': ['1979-1-16 '
                                                                                                                                                                  '12:0:0.0',
                                                                                                                                                                  '2018-12-16 '
                                                                                                                                                                  '12:0:0.0']},
                                                                                                                                   'ERA-5_ERA-Interim': {'name': 'ERA-5_ERA-Interim',
                                                                                                                                                         'nyears': 40,
                                                                                                                                                         'time_period': ['1979-1-16 '
                                                                                                                                                                         '12:0:0.0',
                                                                                                                                                                         '2018-12-16 '
                                                                                                                                                                         '12:0:0.0']},
                                                                                                                                   'ERA-5_GPCPv2.3': {'name': 'ERA-5_GPCPv2.3',
                                                                                                                                                      'nyears': 40,
                                                                                                                                                      'time_period': ['1979-1-16 '
                                                                                                                                                                      '12:0:0.0',
                                                                                                                                                                      '2018-12-16 '
                                                                                                                                                                      '12:0:0.0']},
                                                                                                                                   'ERA-5_TRMM-3B43v-7': {'name': 'ERA-5_TRMM-3B43v-7',
                                                                                                                                                          'nyears': 20,
                                                                                                                                                          'time_period': ['1998-1-16 '
                                                                                                                                                                          '12:0:0.0',
                                                                                                                                                                          '2017-12-16 '
                                                                                                                                                                          '12:0:0.0']},
                                                                                                                                   'ERA-Interim_CMAP': {'name': 'ERA-Interim_CMAP',
                                                                                                                                                        'nyears': 40,
                                                                                                                                                        'time_period': ['1979-1-16 '
                                                                                                                                                                        '12:0:0.0',
                                                                                                                                                                        '2018-12-16 '
                                                                                                                                                                        '12:0:0.0']},
                                                                                                                                   'ERA-Interim_ERA-Interim': {'name': 'ERA-Interim_ERA-Interim',
                                                                                                                                                               'nyears': 40,
                                                                                                                                                               'time_period': ['1979-1-16 '
                                                                                                                                                                               '12:0:0.0',
                                                                                                                                                                               '2018-12-16 '
                                                                                                                                                                               '12:0:0.0']},
                                                                                                                                   'ERA-Interim_GPCPv2.3': {'name': 'ERA-Interim_GPCPv2.3',
                                                                                                                                                            'nyears': 40,
                                                                                                                                                            'time_period': ['1979-1-16 '
                                                                                                                                                                            '12:0:0.0',
                                                                                                                                                                            '2018-12-16 '
                                                                                                                                                                            '12:0:0.0']},
                                                                                                                                   'ERA-Interim_TRMM-3B43v-7': {'name': 'ERA-Interim_TRMM-3B43v-7',
                                                                                                                                                                'nyears': 20,
                                                                                                                                                                'time_period': ['1998-1-16 '
                                                                                                                                                                                '12:0:0.0',
                                                                                                                                                                                '2017-12-16 '
                                                                                                                                                                                '12:0:0.0']},
                                                                                                                                   'HadISST_CMAP': {'name': 'HadISST_CMAP',
                                                                                                                                                    'nyears': 40,
                                                                                                                                                    'time_period': ['1979-1-16 '
                                                                                                                                                                    '3:0:0.0',
                                                                                                                                                                    '2018-12-16 '
                                                                                                                                                                    '18:0:0.0']},
                                                                                                                                   'HadISST_ERA-Interim': {'name': 'HadISST_ERA-Interim',
                                                                                                                                                           'nyears': 40,
                                                                                                                                                           'time_period': ['1979-1-16 '
                                                                                                                                                                           '3:0:0.0',
                                                                                                                                                                           '2018-12-16 '
                                                                                                                                                                           '18:0:0.0']},
                                                                                                                                   'HadISST_GPCPv2.3': {'name': 'HadISST_GPCPv2.3',
                                                                                                                                                        'nyears': 40,
                                                                                                                                                        'time_period': ['1979-1-16 '
                                                                                                                                                                        '3:0:0.0',
                                                                                                                                                                        '2018-12-16 '
                                                                                                                                                                        '18:0:0.0']},
                                                                                                                                   'HadISST_TRMM-3B43v-7': {'name': 'HadISST_TRMM-3B43v-7',
                                                                                                                                                            'nyears': 20,
                                                                                                                                                            'time_period': ['1998-1-16 '
                                                                                                                                                                            '3:0:0.0',
                                                                                                                                                                            '2017-12-16 '
                                                                                                                                                                            '18:0:0.0']},
                                                                                                                                   'Tropflux_CMAP': {'name': 'Tropflux_CMAP',
                                                                                                                                                     'nyears': 39,
                                                                                                                                                     'time_period': ['1979-1-15 '
                                                                                                                                                                     '0:0:0.0',
                                                                                                                                                                     '2017-7-15 '
                                                                                                                                                                     '12:0:0.0']},
                                                                                                                                   'Tropflux_ERA-Interim': {'name': 'Tropflux_ERA-Interim',
                                                                                                                                                            'nyears': 39,
                                                                                                                                                            'time_period': ['1979-1-15 '
                                                                                                                                                                            '0:0:0.0',
                                                                                                                                                                            '2017-7-15 '
                                                                                                                                                                            '12:0:0.0']},
                                                                                                                                   'Tropflux_GPCPv2.3': {'name': 'Tropflux_GPCPv2.3',
                                                                                                                                                         'nyears': 39,
                                                                                                                                                         'time_period': ['1979-1-15 '
                                                                                                                                                                         '0:0:0.0',
                                                                                                                                                                         '2017-7-15 '
                                                                                                                                                                         '12:0:0.0']},
                                                                                                                                   'Tropflux_TRMM-3B43v-7': {'name': 'Tropflux_TRMM-3B43v-7',
                                                                                                                                                             'nyears': 20,
                                                                                                                                                             'time_period': ['1998-1-15 '
                                                                                                                                                                             '0:0:0.0',
                                                                                                                                                                             '2017-7-15 '
                                                                                                                                                                             '12:0:0.0']},
                                                                                                                                   'method': 'nino3.4 '
                                                                                                                                             'SSTA '
                                                                                                                                             'regressed '
                                                                                                                                             'against '
                                                                                                                                             'precipitation '
                                                                                                                                             'anomalies '
                                                                                                                                             'in '
                                                                                                                                             'global '
                                                                                                                                             'during '
                                                                                                                                             'JJA, '
                                                                                                                                             'time '
                                                                                                                                             'series '
                                                                                                                                             'are '
                                                                                                                                             'linearly '
                                                                                                                                             'detrended, '
                                                                                                                                             'observations '
                                                                                                                                             'and '
                                                                                                                                             'model '
                                                                                                                                             'regridded '
                                                                                                                                             'to '
                                                                                                                                             'generic_1x1deg',
                                                                                                                                   'name': 'ENSO '
                                                                                                                                           'JJA '
                                                                                                                                           'PRA '
                                                                                                                                           'pattern',
                                                                                                                                   'ref': 'Using '
                                                                                                                                          'CDAT '
                                                                                                                                          'regridding, '
                                                                                                                                          'correlation '
                                                                                                                                          '(centered '
                                                                                                                                          'and '
                                                                                                                                          'biased), '
                                                                                                                                          'std '
                                                                                                                                          '(centered '
                                                                                                                                          'and '
                                                                                                                                          'biased) '
                                                                                                                                          'and '
                                                                                                                                          'rms '
                                                                                                                                          '(uncentered '
                                                                                                                                          'and '
                                                                                                                                          'biased) '
                                                                                                                                          'calculation',
                                                                                                                                   'time_frequency': 'monthly',
                                                                                                                                   'units': ''},
                                                                                                                    'metric': {'datasets': 'ACCESS-CM2_r1i1p1f1; '
                                                                                                                                           "20CRv2's "
                                                                                                                                           'ts; '
                                                                                                                                           "ERA-20C's "
                                                                                                                                           'ts; '
                                                                                                                                           "ERA-5's "
                                                                                                                                           'ts; '
                                                                                                                                           "ERA-Interim's "
                                                                                                                                           'ts; '
                                                                                                                                           "HadISST's "
                                                                                                                                           'ts; '
                                                                                                                                           "Tropflux's "
                                                                                                                                           'ts; '
                                                                                                                                           "CMAP's "
                                                                                                                                           'pr; '
                                                                                                                                           "ERA-Interim's "
                                                                                                                                           'pr; '
                                                                                                                                           "GPCPv2.3's "
                                                                                                                                           'pr; '
                                                                                                                                           "TRMM-3B43v-7's "
                                                                                                                                           'pr',
                                                                                                                               'method': 'The '
                                                                                                                                         'metric '
                                                                                                                                         'is '
                                                                                                                                         'the '
                                                                                                                                         'statistical '
                                                                                                                                         'value '
                                                                                                                                         'between '
                                                                                                                                         'the '
                                                                                                                                         'model '
                                                                                                                                         'and '
                                                                                                                                         'the '
                                                                                                                                         'observations',
                                                                                                                               'name': 'EnsoPrMapJja',
                                                                                                                               'units': ''}},
                                                                                               'EnsoPrMapJjaRmse': {'diagnostic': {'20CRv2_CMAP': {'name': '20CRv2_CMAP',
                                                                                                                                                   'nyears': 34,
                                                                                                                                                   'time_period': ['1979-1-16 '
                                                                                                                                                                   '12:0:0.0',
                                                                                                                                                                   '2012-12-16 '
                                                                                                                                                                   '12:0:0.0']},
                                                                                                                                   '20CRv2_ERA-Interim': {'name': '20CRv2_ERA-Interim',
                                                                                                                                                          'nyears': 34,
                                                                                                                                                          'time_period': ['1979-1-16 '
                                                                                                                                                                          '12:0:0.0',
                                                                                                                                                                          '2012-12-16 '
                                                                                                                                                                          '12:0:0.0']},
                                                                                                                                   '20CRv2_GPCPv2.3': {'name': '20CRv2_GPCPv2.3',
                                                                                                                                                       'nyears': 34,
                                                                                                                                                       'time_period': ['1979-1-16 '
                                                                                                                                                                       '12:0:0.0',
                                                                                                                                                                       '2012-12-16 '
                                                                                                                                                                       '12:0:0.0']},
                                                                                                                                   '20CRv2_TRMM-3B43v-7': {'name': '20CRv2_TRMM-3B43v-7',
                                                                                                                                                           'nyears': 15,
                                                                                                                                                           'time_period': ['1998-1-16 '
                                                                                                                                                                           '12:0:0.0',
                                                                                                                                                                           '2012-12-16 '
                                                                                                                                                                           '12:0:0.0']},
                                                                                                                                   'ACCESS-CM2_r1i1p1f1': {'keyerror': None,
                                                                                                                                                           'name': 'ACCESS-CM2_r1i1p1f1',
                                                                                                                                                           'nyears': 165,
                                                                                                                                                           'time_period': ['1850-1-16 '
                                                                                                                                                                           '12:0:0.0',
                                                                                                                                                                           '2014-12-16 '
                                                                                                                                                                           '12:0:0.0']},
                                                                                                                                   'ERA-20C_CMAP': {'name': 'ERA-20C_CMAP',
                                                                                                                                                    'nyears': 32,
                                                                                                                                                    'time_period': ['1979-1-16 '
                                                                                                                                                                    '12:0:0.0',
                                                                                                                                                                    '2010-12-16 '
                                                                                                                                                                    '12:0:0.0']},
                                                                                                                                   'ERA-20C_ERA-Interim': {'name': 'ERA-20C_ERA-Interim',
                                                                                                                                                           'nyears': 32,
                                                                                                                                                           'time_period': ['1979-1-16 '
                                                                                                                                                                           '12:0:0.0',
                                                                                                                                                                           '2010-12-16 '
                                                                                                                                                                           '12:0:0.0']},
                                                                                                                                   'ERA-20C_GPCPv2.3': {'name': 'ERA-20C_GPCPv2.3',
                                                                                                                                                        'nyears': 32,
                                                                                                                                                        'time_period': ['1979-1-16 '
                                                                                                                                                                        '12:0:0.0',
                                                                                                                                                                        '2010-12-16 '
                                                                                                                                                                        '12:0:0.0']},
                                                                                                                                   'ERA-20C_TRMM-3B43v-7': {'name': 'ERA-20C_TRMM-3B43v-7',
                                                                                                                                                            'nyears': 13,
                                                                                                                                                            'time_period': ['1998-1-16 '
                                                                                                                                                                            '12:0:0.0',
                                                                                                                                                                            '2010-12-16 '
                                                                                                                                                                            '12:0:0.0']},
                                                                                                                                   'ERA-5_CMAP': {'name': 'ERA-5_CMAP',
                                                                                                                                                  'nyears': 40,
                                                                                                                                                  'time_period': ['1979-1-16 '
                                                                                                                                                                  '12:0:0.0',
                                                                                                                                                                  '2018-12-16 '
                                                                                                                                                                  '12:0:0.0']},
                                                                                                                                   'ERA-5_ERA-Interim': {'name': 'ERA-5_ERA-Interim',
                                                                                                                                                         'nyears': 40,
                                                                                                                                                         'time_period': ['1979-1-16 '
                                                                                                                                                                         '12:0:0.0',
                                                                                                                                                                         '2018-12-16 '
                                                                                                                                                                         '12:0:0.0']},
                                                                                                                                   'ERA-5_GPCPv2.3': {'name': 'ERA-5_GPCPv2.3',
                                                                                                                                                      'nyears': 40,
                                                                                                                                                      'time_period': ['1979-1-16 '
                                                                                                                                                                      '12:0:0.0',
                                                                                                                                                                      '2018-12-16 '
                                                                                                                                                                      '12:0:0.0']},
                                                                                                                                   'ERA-5_TRMM-3B43v-7': {'name': 'ERA-5_TRMM-3B43v-7',
                                                                                                                                                          'nyears': 20,
                                                                                                                                                          'time_period': ['1998-1-16 '
                                                                                                                                                                          '12:0:0.0',
                                                                                                                                                                          '2017-12-16 '
                                                                                                                                                                          '12:0:0.0']},
                                                                                                                                   'ERA-Interim_CMAP': {'name': 'ERA-Interim_CMAP',
                                                                                                                                                        'nyears': 40,
                                                                                                                                                        'time_period': ['1979-1-16 '
                                                                                                                                                                        '12:0:0.0',
                                                                                                                                                                        '2018-12-16 '
                                                                                                                                                                        '12:0:0.0']},
                                                                                                                                   'ERA-Interim_ERA-Interim': {'name': 'ERA-Interim_ERA-Interim',
                                                                                                                                                               'nyears': 40,
                                                                                                                                                               'time_period': ['1979-1-16 '
                                                                                                                                                                               '12:0:0.0',
                                                                                                                                                                               '2018-12-16 '
                                                                                                                                                                               '12:0:0.0']},
                                                                                                                                   'ERA-Interim_GPCPv2.3': {'name': 'ERA-Interim_GPCPv2.3',
                                                                                                                                                            'nyears': 40,
                                                                                                                                                            'time_period': ['1979-1-16 '
                                                                                                                                                                            '12:0:0.0',
                                                                                                                                                                            '2018-12-16 '
                                                                                                                                                                            '12:0:0.0']},
                                                                                                                                   'ERA-Interim_TRMM-3B43v-7': {'name': 'ERA-Interim_TRMM-3B43v-7',
                                                                                                                                                                'nyears': 20,
                                                                                                                                                                'time_period': ['1998-1-16 '
                                                                                                                                                                                '12:0:0.0',
                                                                                                                                                                                '2017-12-16 '
                                                                                                                                                                                '12:0:0.0']},
                                                                                                                                   'HadISST_CMAP': {'name': 'HadISST_CMAP',
                                                                                                                                                    'nyears': 40,
                                                                                                                                                    'time_period': ['1979-1-16 '
                                                                                                                                                                    '3:0:0.0',
                                                                                                                                                                    '2018-12-16 '
                                                                                                                                                                    '18:0:0.0']},
                                                                                                                                   'HadISST_ERA-Interim': {'name': 'HadISST_ERA-Interim',
                                                                                                                                                           'nyears': 40,
                                                                                                                                                           'time_period': ['1979-1-16 '
                                                                                                                                                                           '3:0:0.0',
                                                                                                                                                                           '2018-12-16 '
                                                                                                                                                                           '18:0:0.0']},
                                                                                                                                   'HadISST_GPCPv2.3': {'name': 'HadISST_GPCPv2.3',
                                                                                                                                                        'nyears': 40,
                                                                                                                                                        'time_period': ['1979-1-16 '
                                                                                                                                                                        '3:0:0.0',
                                                                                                                                                                        '2018-12-16 '
                                                                                                                                                                        '18:0:0.0']},
                                                                                                                                   'HadISST_TRMM-3B43v-7': {'name': 'HadISST_TRMM-3B43v-7',
                                                                                                                                                            'nyears': 20,
                                                                                                                                                            'time_period': ['1998-1-16 '
                                                                                                                                                                            '3:0:0.0',
                                                                                                                                                                            '2017-12-16 '
                                                                                                                                                                            '18:0:0.0']},
                                                                                                                                   'Tropflux_CMAP': {'name': 'Tropflux_CMAP',
                                                                                                                                                     'nyears': 39,
                                                                                                                                                     'time_period': ['1979-1-15 '
                                                                                                                                                                     '0:0:0.0',
                                                                                                                                                                     '2017-7-15 '
                                                                                                                                                                     '12:0:0.0']},
                                                                                                                                   'Tropflux_ERA-Interim': {'name': 'Tropflux_ERA-Interim',
                                                                                                                                                            'nyears': 39,
                                                                                                                                                            'time_period': ['1979-1-15 '
                                                                                                                                                                            '0:0:0.0',
                                                                                                                                                                            '2017-7-15 '
                                                                                                                                                                            '12:0:0.0']},
                                                                                                                                   'Tropflux_GPCPv2.3': {'name': 'Tropflux_GPCPv2.3',
                                                                                                                                                         'nyears': 39,
                                                                                                                                                         'time_period': ['1979-1-15 '
                                                                                                                                                                         '0:0:0.0',
                                                                                                                                                                         '2017-7-15 '
                                                                                                                                                                         '12:0:0.0']},
                                                                                                                                   'Tropflux_TRMM-3B43v-7': {'name': 'Tropflux_TRMM-3B43v-7',
                                                                                                                                                             'nyears': 20,
                                                                                                                                                             'time_period': ['1998-1-15 '
                                                                                                                                                                             '0:0:0.0',
                                                                                                                                                                             '2017-7-15 '
                                                                                                                                                                             '12:0:0.0']},
                                                                                                                                   'method': 'nino3.4 '
                                                                                                                                             'SSTA '
                                                                                                                                             'regressed '
                                                                                                                                             'against '
                                                                                                                                             'precipitation '
                                                                                                                                             'anomalies '
                                                                                                                                             'in '
                                                                                                                                             'global '
                                                                                                                                             'during '
                                                                                                                                             'JJA, '
                                                                                                                                             'time '
                                                                                                                                             'series '
                                                                                                                                             'are '
                                                                                                                                             'linearly '
                                                                                                                                             'detrended, '
                                                                                                                                             'observations '
                                                                                                                                             'and '
                                                                                                                                             'model '
                                                                                                                                             'regridded '
                                                                                                                                             'to '
                                                                                                                                             'generic_1x1deg',
                                                                                                                                   'name': 'ENSO '
                                                                                                                                           'JJA '
                                                                                                                                           'PRA '
                                                                                                                                           'pattern',
                                                                                                                                   'ref': 'Using '
                                                                                                                                          'CDAT '
                                                                                                                                          'regridding, '
                                                                                                                                          'correlation '
                                                                                                                                          '(centered '
                                                                                                                                          'and '
                                                                                                                                          'biased), '
                                                                                                                                          'std '
                                                                                                                                          '(centered '
                                                                                                                                          'and '
                                                                                                                                          'biased) '
                                                                                                                                          'and '
                                                                                                                                          'rms '
                                                                                                                                          '(uncentered '
                                                                                                                                          'and '
                                                                                                                                          'biased) '
                                                                                                                                          'calculation',
                                                                                                                                   'time_frequency': 'monthly',
                                                                                                                                   'units': ''},
                                                                                                                    'metric': {'datasets': 'ACCESS-CM2_r1i1p1f1; '
                                                                                                                                           "20CRv2's "
                                                                                                                                           'ts; '
                                                                                                                                           "ERA-20C's "
                                                                                                                                           'ts; '
                                                                                                                                           "ERA-5's "
                                                                                                                                           'ts; '
                                                                                                                                           "ERA-Interim's "
                                                                                                                                           'ts; '
                                                                                                                                           "HadISST's "
                                                                                                                                           'ts; '
                                                                                                                                           "Tropflux's "
                                                                                                                                           'ts; '
                                                                                                                                           "CMAP's "
                                                                                                                                           'pr; '
                                                                                                                                           "ERA-Interim's "
                                                                                                                                           'pr; '
                                                                                                                                           "GPCPv2.3's "
                                                                                                                                           'pr; '
                                                                                                                                           "TRMM-3B43v-7's "
                                                                                                                                           'pr',
                                                                                                                               'method': 'The '
                                                                                                                                         'metric '
                                                                                                                                         'is '
                                                                                                                                         'the '
                                                                                                                                         'statistical '
                                                                                                                                         'value '
                                                                                                                                         'between '
                                                                                                                                         'the '
                                                                                                                                         'model '
                                                                                                                                         'and '
                                                                                                                                         'the '
                                                                                                                                         'observations',
                                                                                                                               'name': 'EnsoPrMapJja',
                                                                                                                               'units': 'mm/day/C'}},
                                                                                               'EnsoPrMapJjaStd': {'diagnostic': {'20CRv2_CMAP': {'name': '20CRv2_CMAP',
                                                                                                                                                  'nyears': 34,
                                                                                                                                                  'time_period': ['1979-1-16 '
                                                                                                                                                                  '12:0:0.0',
                                                                                                                                                                  '2012-12-16 '
                                                                                                                                                                  '12:0:0.0']},
                                                                                                                                  '20CRv2_ERA-Interim': {'name': '20CRv2_ERA-Interim',
                                                                                                                                                         'nyears': 34,
                                                                                                                                                         'time_period': ['1979-1-16 '
                                                                                                                                                                         '12:0:0.0',
                                                                                                                                                                         '2012-12-16 '
                                                                                                                                                                         '12:0:0.0']},
                                                                                                                                  '20CRv2_GPCPv2.3': {'name': '20CRv2_GPCPv2.3',
                                                                                                                                                      'nyears': 34,
                                                                                                                                                      'time_period': ['1979-1-16 '
                                                                                                                                                                      '12:0:0.0',
                                                                                                                                                                      '2012-12-16 '
                                                                                                                                                                      '12:0:0.0']},
                                                                                                                                  '20CRv2_TRMM-3B43v-7': {'name': '20CRv2_TRMM-3B43v-7',
                                                                                                                                                          'nyears': 15,
                                                                                                                                                          'time_period': ['1998-1-16 '
                                                                                                                                                                          '12:0:0.0',
                                                                                                                                                                          '2012-12-16 '
                                                                                                                                                                          '12:0:0.0']},
                                                                                                                                  'ACCESS-CM2_r1i1p1f1': {'keyerror': None,
                                                                                                                                                          'name': 'ACCESS-CM2_r1i1p1f1',
                                                                                                                                                          'nyears': 165,
                                                                                                                                                          'time_period': ['1850-1-16 '
                                                                                                                                                                          '12:0:0.0',
                                                                                                                                                                          '2014-12-16 '
                                                                                                                                                                          '12:0:0.0']},
                                                                                                                                  'ERA-20C_CMAP': {'name': 'ERA-20C_CMAP',
                                                                                                                                                   'nyears': 32,
                                                                                                                                                   'time_period': ['1979-1-16 '
                                                                                                                                                                   '12:0:0.0',
                                                                                                                                                                   '2010-12-16 '
                                                                                                                                                                   '12:0:0.0']},
                                                                                                                                  'ERA-20C_ERA-Interim': {'name': 'ERA-20C_ERA-Interim',
                                                                                                                                                          'nyears': 32,
                                                                                                                                                          'time_period': ['1979-1-16 '
                                                                                                                                                                          '12:0:0.0',
                                                                                                                                                                          '2010-12-16 '
                                                                                                                                                                          '12:0:0.0']},
                                                                                                                                  'ERA-20C_GPCPv2.3': {'name': 'ERA-20C_GPCPv2.3',
                                                                                                                                                       'nyears': 32,
                                                                                                                                                       'time_period': ['1979-1-16 '
                                                                                                                                                                       '12:0:0.0',
                                                                                                                                                                       '2010-12-16 '
                                                                                                                                                                       '12:0:0.0']},
                                                                                                                                  'ERA-20C_TRMM-3B43v-7': {'name': 'ERA-20C_TRMM-3B43v-7',
                                                                                                                                                           'nyears': 13,
                                                                                                                                                           'time_period': ['1998-1-16 '
                                                                                                                                                                           '12:0:0.0',
                                                                                                                                                                           '2010-12-16 '
                                                                                                                                                                           '12:0:0.0']},
                                                                                                                                  'ERA-5_CMAP': {'name': 'ERA-5_CMAP',
                                                                                                                                                 'nyears': 40,
                                                                                                                                                 'time_period': ['1979-1-16 '
                                                                                                                                                                 '12:0:0.0',
                                                                                                                                                                 '2018-12-16 '
                                                                                                                                                                 '12:0:0.0']},
                                                                                                                                  'ERA-5_ERA-Interim': {'name': 'ERA-5_ERA-Interim',
                                                                                                                                                        'nyears': 40,
                                                                                                                                                        'time_period': ['1979-1-16 '
                                                                                                                                                                        '12:0:0.0',
                                                                                                                                                                        '2018-12-16 '
                                                                                                                                                                        '12:0:0.0']},
                                                                                                                                  'ERA-5_GPCPv2.3': {'name': 'ERA-5_GPCPv2.3',
                                                                                                                                                     'nyears': 40,
                                                                                                                                                     'time_period': ['1979-1-16 '
                                                                                                                                                                     '12:0:0.0',
                                                                                                                                                                     '2018-12-16 '
                                                                                                                                                                     '12:0:0.0']},
                                                                                                                                  'ERA-5_TRMM-3B43v-7': {'name': 'ERA-5_TRMM-3B43v-7',
                                                                                                                                                         'nyears': 20,
                                                                                                                                                         'time_period': ['1998-1-16 '
                                                                                                                                                                         '12:0:0.0',
                                                                                                                                                                         '2017-12-16 '
                                                                                                                                                                         '12:0:0.0']},
                                                                                                                                  'ERA-Interim_CMAP': {'name': 'ERA-Interim_CMAP',
                                                                                                                                                       'nyears': 40,
                                                                                                                                                       'time_period': ['1979-1-16 '
                                                                                                                                                                       '12:0:0.0',
                                                                                                                                                                       '2018-12-16 '
                                                                                                                                                                       '12:0:0.0']},
                                                                                                                                  'ERA-Interim_ERA-Interim': {'name': 'ERA-Interim_ERA-Interim',
                                                                                                                                                              'nyears': 40,
                                                                                                                                                              'time_period': ['1979-1-16 '
                                                                                                                                                                              '12:0:0.0',
                                                                                                                                                                              '2018-12-16 '
                                                                                                                                                                              '12:0:0.0']},
                                                                                                                                  'ERA-Interim_GPCPv2.3': {'name': 'ERA-Interim_GPCPv2.3',
                                                                                                                                                           'nyears': 40,
                                                                                                                                                           'time_period': ['1979-1-16 '
                                                                                                                                                                           '12:0:0.0',
                                                                                                                                                                           '2018-12-16 '
                                                                                                                                                                           '12:0:0.0']},
                                                                                                                                  'ERA-Interim_TRMM-3B43v-7': {'name': 'ERA-Interim_TRMM-3B43v-7',
                                                                                                                                                               'nyears': 20,
                                                                                                                                                               'time_period': ['1998-1-16 '
                                                                                                                                                                               '12:0:0.0',
                                                                                                                                                                               '2017-12-16 '
                                                                                                                                                                               '12:0:0.0']},
                                                                                                                                  'HadISST_CMAP': {'name': 'HadISST_CMAP',
                                                                                                                                                   'nyears': 40,
                                                                                                                                                   'time_period': ['1979-1-16 '
                                                                                                                                                                   '3:0:0.0',
                                                                                                                                                                   '2018-12-16 '
                                                                                                                                                                   '18:0:0.0']},
                                                                                                                                  'HadISST_ERA-Interim': {'name': 'HadISST_ERA-Interim',
                                                                                                                                                          'nyears': 40,
                                                                                                                                                          'time_period': ['1979-1-16 '
                                                                                                                                                                          '3:0:0.0',
                                                                                                                                                                          '2018-12-16 '
                                                                                                                                                                          '18:0:0.0']},
                                                                                                                                  'HadISST_GPCPv2.3': {'name': 'HadISST_GPCPv2.3',
                                                                                                                                                       'nyears': 40,
                                                                                                                                                       'time_period': ['1979-1-16 '
                                                                                                                                                                       '3:0:0.0',
                                                                                                                                                                       '2018-12-16 '
                                                                                                                                                                       '18:0:0.0']},
                                                                                                                                  'HadISST_TRMM-3B43v-7': {'name': 'HadISST_TRMM-3B43v-7',
                                                                                                                                                           'nyears': 20,
                                                                                                                                                           'time_period': ['1998-1-16 '
                                                                                                                                                                           '3:0:0.0',
                                                                                                                                                                           '2017-12-16 '
                                                                                                                                                                           '18:0:0.0']},
                                                                                                                                  'Tropflux_CMAP': {'name': 'Tropflux_CMAP',
                                                                                                                                                    'nyears': 39,
                                                                                                                                                    'time_period': ['1979-1-15 '
                                                                                                                                                                    '0:0:0.0',
                                                                                                                                                                    '2017-7-15 '
                                                                                                                                                                    '12:0:0.0']},
                                                                                                                                  'Tropflux_ERA-Interim': {'name': 'Tropflux_ERA-Interim',
                                                                                                                                                           'nyears': 39,
                                                                                                                                                           'time_period': ['1979-1-15 '
                                                                                                                                                                           '0:0:0.0',
                                                                                                                                                                           '2017-7-15 '
                                                                                                                                                                           '12:0:0.0']},
                                                                                                                                  'Tropflux_GPCPv2.3': {'name': 'Tropflux_GPCPv2.3',
                                                                                                                                                        'nyears': 39,
                                                                                                                                                        'time_period': ['1979-1-15 '
                                                                                                                                                                        '0:0:0.0',
                                                                                                                                                                        '2017-7-15 '
                                                                                                                                                                        '12:0:0.0']},
                                                                                                                                  'Tropflux_TRMM-3B43v-7': {'name': 'Tropflux_TRMM-3B43v-7',
                                                                                                                                                            'nyears': 20,
                                                                                                                                                            'time_period': ['1998-1-15 '
                                                                                                                                                                            '0:0:0.0',
                                                                                                                                                                            '2017-7-15 '
                                                                                                                                                                            '12:0:0.0']},
                                                                                                                                  'method': 'nino3.4 '
                                                                                                                                            'SSTA '
                                                                                                                                            'regressed '
                                                                                                                                            'against '
                                                                                                                                            'precipitation '
                                                                                                                                            'anomalies '
                                                                                                                                            'in '
                                                                                                                                            'global '
                                                                                                                                            'during '
                                                                                                                                            'JJA, '
                                                                                                                                            'time '
                                                                                                                                            'series '
                                                                                                                                            'are '
                                                                                                                                            'linearly '
                                                                                                                                            'detrended, '
                                                                                                                                            'observations '
                                                                                                                                            'and '
                                                                                                                                            'model '
                                                                                                                                            'regridded '
                                                                                                                                            'to '
                                                                                                                                            'generic_1x1deg',
                                                                                                                                  'name': 'ENSO '
                                                                                                                                          'JJA '
                                                                                                                                          'PRA '
                                                                                                                                          'pattern',
                                                                                                                                  'ref': 'Using '
                                                                                                                                         'CDAT '
                                                                                                                                         'regridding, '
                                                                                                                                         'correlation '
                                                                                                                                         '(centered '
                                                                                                                                         'and '
                                                                                                                                         'biased), '
                                                                                                                                         'std '
                                                                                                                                         '(centered '
                                                                                                                                         'and '
                                                                                                                                         'biased) '
                                                                                                                                         'and '
                                                                                                                                         'rms '
                                                                                                                                         '(uncentered '
                                                                                                                                         'and '
                                                                                                                                         'biased) '
                                                                                                                                         'calculation',
                                                                                                                                  'time_frequency': 'monthly',
                                                                                                                                  'units': ''},
                                                                                                                   'metric': {'datasets': 'ACCESS-CM2_r1i1p1f1; '
                                                                                                                                          "20CRv2's "
                                                                                                                                          'ts; '
                                                                                                                                          "ERA-20C's "
                                                                                                                                          'ts; '
                                                                                                                                          "ERA-5's "
                                                                                                                                          'ts; '
                                                                                                                                          "ERA-Interim's "
                                                                                                                                          'ts; '
                                                                                                                                          "HadISST's "
                                                                                                                                          'ts; '
                                                                                                                                          "Tropflux's "
                                                                                                                                          'ts; '
                                                                                                                                          "CMAP's "
                                                                                                                                          'pr; '
                                                                                                                                          "ERA-Interim's "
                                                                                                                                          'pr; '
                                                                                                                                          "GPCPv2.3's "
                                                                                                                                          'pr; '
                                                                                                                                          "TRMM-3B43v-7's "
                                                                                                                                          'pr',
                                                                                                                              'method': 'The '
                                                                                                                                        'metric '
                                                                                                                                        'is '
                                                                                                                                        'the '
                                                                                                                                        'statistical '
                                                                                                                                        'value '
                                                                                                                                        'between '
                                                                                                                                        'the '
                                                                                                                                        'model '
                                                                                                                                        'and '
                                                                                                                                        'the '
                                                                                                                                        'observations',
                                                                                                                              'name': 'EnsoPrMapJja',
                                                                                                                              'units': 'mm/day/C '
                                                                                                                                       '/ '
                                                                                                                                       'mm/day/C'}},
                                                                                               'EnsoSeasonality': {'diagnostic': {'20CRv2': {'keyerror': None,
                                                                                                                                             'name': '20CRv2',
                                                                                                                                             'nyears': 142,
                                                                                                                                             'time_period': ['1871-1-16 '
                                                                                                                                                             '12:0:0.0',
                                                                                                                                                             '2012-12-16 '
                                                                                                                                                             '12:0:0.0']},
                                                                                                                                  'ACCESS-CM2_r1i1p1f1': {'keyerror': None,
                                                                                                                                                          'name': 'ACCESS-CM2_r1i1p1f1',
                                                                                                                                                          'nyears': 165,
                                                                                                                                                          'time_period': ['1850-1-16 '
                                                                                                                                                                          '12:0:0.0',
                                                                                                                                                                          '2014-12-16 '
                                                                                                                                                                          '12:0:0.0']},
                                                                                                                                  'ERA-20C': {'keyerror': None,
                                                                                                                                              'name': 'ERA-20C',
                                                                                                                                              'nyears': 111,
                                                                                                                                              'time_period': ['1900-1-16 '
                                                                                                                                                              '12:0:0.0',
                                                                                                                                                              '2010-12-16 '
                                                                                                                                                              '12:0:0.0']},
                                                                                                                                  'ERA-5': {'keyerror': None,
                                                                                                                                            'name': 'ERA-5',
                                                                                                                                            'nyears': 40,
                                                                                                                                            'time_period': ['1979-1-16 '
                                                                                                                                                            '12:0:0.0',
                                                                                                                                                            '2018-12-16 '
                                                                                                                                                            '12:0:0.0']},
                                                                                                                                  'ERA-Interim': {'keyerror': None,
                                                                                                                                                  'name': 'ERA-Interim',
                                                                                                                                                  'nyears': 40,
                                                                                                                                                  'time_period': ['1979-1-16 '
                                                                                                                                                                  '12:0:0.0',
                                                                                                                                                                  '2018-12-16 '
                                                                                                                                                                  '12:0:0.0']},
                                                                                                                                  'HadISST': {'keyerror': 'unlikely '
                                                                                                                                                          'units: '
                                                                                                                                                          'K([-1e+30, '
                                                                                                                                                          '304.7203])',
                                                                                                                                              'name': 'HadISST',
                                                                                                                                              'nyears': 149,
                                                                                                                                              'time_period': ['1870-1-16 '
                                                                                                                                                              '11:59:59.5',
                                                                                                                                                              '2018-12-16 '
                                                                                                                                                              '18:0:0.0']},
                                                                                                                                  'Tropflux': {'keyerror': None,
                                                                                                                                               'name': 'Tropflux',
                                                                                                                                               'nyears': 39,
                                                                                                                                               'time_period': ['1979-1-15 '
                                                                                                                                                               '0:0:0.0',
                                                                                                                                                               '2017-7-15 '
                                                                                                                                                               '12:0:0.0']},
                                                                                                                                  'method': 'Ratio '
                                                                                                                                            'between '
                                                                                                                                            'NDJ '
                                                                                                                                            'and '
                                                                                                                                            'MAM '
                                                                                                                                            'standard '
                                                                                                                                            'deviation '
                                                                                                                                            'nino3.4 '
                                                                                                                                            'sstA, '
                                                                                                                                            'time '
                                                                                                                                            'series '
                                                                                                                                            'are '
                                                                                                                                            'linearly '
                                                                                                                                            'detrended',
                                                                                                                                  'name': 'ENSO '
                                                                                                                                          'seasonality',
                                                                                                                                  'ref': 'Using '
                                                                                                                                         'CDAT '
                                                                                                                                         'std '
                                                                                                                                         'dev '
                                                                                                                                         'calculation',
                                                                                                                                  'time_frequency': 'monthly',
                                                                                                                                  'units': 'C/C'},
                                                                                                                   'metric': {'datasets': 'ACCESS-CM2_r1i1p1f1; '
                                                                                                                                          "20CRv2's "
                                                                                                                                          'ts; '
                                                                                                                                          "ERA-20C's "
                                                                                                                                          'ts; '
                                                                                                                                          "ERA-5's "
                                                                                                                                          'ts; '
                                                                                                                                          "ERA-Interim's "
                                                                                                                                          'ts; '
                                                                                                                                          "HadISST's "
                                                                                                                                          'ts; '
                                                                                                                                          "Tropflux's "
                                                                                                                                          'ts; '
                                                                                                                                          "'s ",
                                                                                                                              'method': 'The '
                                                                                                                                        'metric '
                                                                                                                                        'is '
                                                                                                                                        'the '
                                                                                                                                        'absolute '
                                                                                                                                        'value '
                                                                                                                                        'of '
                                                                                                                                        'the '
                                                                                                                                        'relative '
                                                                                                                                        'difference '
                                                                                                                                        'between '
                                                                                                                                        'model '
                                                                                                                                        'and '
                                                                                                                                        'observations '
                                                                                                                                        'values '
                                                                                                                                        '(M '
                                                                                                                                        '= '
                                                                                                                                        '100 '
                                                                                                                                        '* '
                                                                                                                                        'abs[[model-obs] '
                                                                                                                                        '/ '
                                                                                                                                        'obs])',
                                                                                                                              'name': 'EnsoSeasonality',
                                                                                                                              'units': '%'}},
                                                                                               'EnsoSstLonRmse': {'diagnostic': {'20CRv2': {'name': '20CRv2',
                                                                                                                                            'nyears': 142,
                                                                                                                                            'time_period': ['1871-1-16 '
                                                                                                                                                            '12:0:0.0',
                                                                                                                                                            '2012-12-16 '
                                                                                                                                                            '12:0:0.0']},
                                                                                                                                 'ACCESS-CM2_r1i1p1f1': {'keyerror': None,
                                                                                                                                                         'name': 'ACCESS-CM2_r1i1p1f1',
                                                                                                                                                         'nyears': 165,
                                                                                                                                                         'time_period': ['1850-1-16 '
                                                                                                                                                                         '12:0:0.0',
                                                                                                                                                                         '2014-12-16 '
                                                                                                                                                                         '12:0:0.0']},
                                                                                                                                 'ERA-20C': {'name': 'ERA-20C',
                                                                                                                                             'nyears': 111,
                                                                                                                                             'time_period': ['1900-1-16 '
                                                                                                                                                             '12:0:0.0',
                                                                                                                                                             '2010-12-16 '
                                                                                                                                                             '12:0:0.0']},
                                                                                                                                 'ERA-5': {'name': 'ERA-5',
                                                                                                                                           'nyears': 40,
                                                                                                                                           'time_period': ['1979-1-16 '
                                                                                                                                                           '12:0:0.0',
                                                                                                                                                           '2018-12-16 '
                                                                                                                                                           '12:0:0.0']},
                                                                                                                                 'ERA-Interim': {'name': 'ERA-Interim',
                                                                                                                                                 'nyears': 40,
                                                                                                                                                 'time_period': ['1979-1-16 '
                                                                                                                                                                 '12:0:0.0',
                                                                                                                                                                 '2018-12-16 '
                                                                                                                                                                 '12:0:0.0']},
                                                                                                                                 'HadISST': {'name': 'HadISST',
                                                                                                                                             'nyears': 149,
                                                                                                                                             'time_period': ['1870-1-16 '
                                                                                                                                                             '11:59:59.5',
                                                                                                                                                             '2018-12-16 '
                                                                                                                                                             '18:0:0.0']},
                                                                                                                                 'Tropflux': {'name': 'Tropflux',
                                                                                                                                              'nyears': 39,
                                                                                                                                              'time_period': ['1979-1-15 '
                                                                                                                                                              '0:0:0.0',
                                                                                                                                                              '2017-7-15 '
                                                                                                                                                              '12:0:0.0']},
                                                                                                                                 'method': 'nino3.4 '
                                                                                                                                           'SSTA '
                                                                                                                                           'during '
                                                                                                                                           'DEC '
                                                                                                                                           'regressed '
                                                                                                                                           'against '
                                                                                                                                           'equatorial_pacific '
                                                                                                                                           'SSTA, '
                                                                                                                                           'time '
                                                                                                                                           'series '
                                                                                                                                           'are '
                                                                                                                                           'linearly '
                                                                                                                                           'detrended, '
                                                                                                                                           'smoothing '
                                                                                                                                           'using '
                                                                                                                                           'a '
                                                                                                                                           'triangle '
                                                                                                                                           'shaped '
                                                                                                                                           'window '
                                                                                                                                           'of '
                                                                                                                                           '5 '
                                                                                                                                           'points, '
                                                                                                                                           'observations '
                                                                                                                                           'and '
                                                                                                                                           'model '
                                                                                                                                           'regridded '
                                                                                                                                           'to '
                                                                                                                                           'generic_1x1deg',
                                                                                                                                 'name': 'ENSO '
                                                                                                                                         'Zonal '
                                                                                                                                         'SSTA '
                                                                                                                                         'pattern',
                                                                                                                                 'ref': 'Using '
                                                                                                                                        'CDAT '
                                                                                                                                        'regridding '
                                                                                                                                        'and '
                                                                                                                                        'rms '
                                                                                                                                        '(uncentered '
                                                                                                                                        'and '
                                                                                                                                        'biased) '
                                                                                                                                        'calculation',
                                                                                                                                 'time_frequency': 'monthly',
                                                                                                                                 'units': 'C/C'},
                                                                                                                  'metric': {'datasets': 'ACCESS-CM2_r1i1p1f1; '
                                                                                                                                         "20CRv2's "
                                                                                                                                         'ts; '
                                                                                                                                         "ERA-20C's "
                                                                                                                                         'ts; '
                                                                                                                                         "ERA-5's "
                                                                                                                                         'ts; '
                                                                                                                                         "ERA-Interim's "
                                                                                                                                         'ts; '
                                                                                                                                         "HadISST's "
                                                                                                                                         'ts; '
                                                                                                                                         "Tropflux's "
                                                                                                                                         'ts; '
                                                                                                                                         "'s ",
                                                                                                                             'method': 'The '
                                                                                                                                       'metric '
                                                                                                                                       'is '
                                                                                                                                       'the '
                                                                                                                                       'statistical '
                                                                                                                                       'value '
                                                                                                                                       'between '
                                                                                                                                       'the '
                                                                                                                                       'model '
                                                                                                                                       'and '
                                                                                                                                       'the '
                                                                                                                                       'observations',
                                                                                                                             'name': 'EnsoSstLonRmse',
                                                                                                                             'units': 'C/C'}},
                                                                                               'EnsoSstMapDjfCorr': {'diagnostic': {'20CRv2': {'name': '20CRv2',
                                                                                                                                               'nyears': 142,
                                                                                                                                               'time_period': ['1871-1-16 '
                                                                                                                                                               '12:0:0.0',
                                                                                                                                                               '2012-12-16 '
                                                                                                                                                               '12:0:0.0']},
                                                                                                                                    'ACCESS-CM2_r1i1p1f1': {'keyerror': None,
                                                                                                                                                            'name': 'ACCESS-CM2_r1i1p1f1',
                                                                                                                                                            'nyears': 165,
                                                                                                                                                            'time_period': ['1850-1-16 '
                                                                                                                                                                            '12:0:0.0',
                                                                                                                                                                            '2014-12-16 '
                                                                                                                                                                            '12:0:0.0']},
                                                                                                                                    'ERA-20C': {'name': 'ERA-20C',
                                                                                                                                                'nyears': 111,
                                                                                                                                                'time_period': ['1900-1-16 '
                                                                                                                                                                '12:0:0.0',
                                                                                                                                                                '2010-12-16 '
                                                                                                                                                                '12:0:0.0']},
                                                                                                                                    'ERA-5': {'name': 'ERA-5',
                                                                                                                                              'nyears': 40,
                                                                                                                                              'time_period': ['1979-1-16 '
                                                                                                                                                              '12:0:0.0',
                                                                                                                                                              '2018-12-16 '
                                                                                                                                                              '12:0:0.0']},
                                                                                                                                    'ERA-Interim': {'name': 'ERA-Interim',
                                                                                                                                                    'nyears': 40,
                                                                                                                                                    'time_period': ['1979-1-16 '
                                                                                                                                                                    '12:0:0.0',
                                                                                                                                                                    '2018-12-16 '
                                                                                                                                                                    '12:0:0.0']},
                                                                                                                                    'method': 'nino3.4 '
                                                                                                                                              'SSTA '
                                                                                                                                              'regressed '
                                                                                                                                              'against '
                                                                                                                                              'surface '
                                                                                                                                              'temperature '
                                                                                                                                              'anomalies '
                                                                                                                                              'in '
                                                                                                                                              'global '
                                                                                                                                              'during '
                                                                                                                                              'DJF, '
                                                                                                                                              'time '
                                                                                                                                              'series '
                                                                                                                                              'are '
                                                                                                                                              'linearly '
                                                                                                                                              'detrended, '
                                                                                                                                              'observations '
                                                                                                                                              'and '
                                                                                                                                              'model '
                                                                                                                                              'regridded '
                                                                                                                                              'to '
                                                                                                                                              'generic_1x1deg',
                                                                                                                                    'name': 'ENSO '
                                                                                                                                            'DJF '
                                                                                                                                            'TSA '
                                                                                                                                            'pattern',
                                                                                                                                    'ref': 'Using '
                                                                                                                                           'CDAT '
                                                                                                                                           'regridding, '
                                                                                                                                           'correlation '
                                                                                                                                           '(centered '
                                                                                                                                           'and '
                                                                                                                                           'biased), '
                                                                                                                                           'std '
                                                                                                                                           '(centered '
                                                                                                                                           'and '
                                                                                                                                           'biased) '
                                                                                                                                           'and '
                                                                                                                                           'rms '
                                                                                                                                           '(uncentered '
                                                                                                                                           'and '
                                                                                                                                           'biased) '
                                                                                                                                           'calculation',
                                                                                                                                    'time_frequency': 'monthly',
                                                                                                                                    'units': ''},
                                                                                                                     'metric': {'datasets': 'ACCESS-CM2_r1i1p1f1; '
                                                                                                                                            "20CRv2's "
                                                                                                                                            'ts; '
                                                                                                                                            "ERA-20C's "
                                                                                                                                            'ts; '
                                                                                                                                            "ERA-5's "
                                                                                                                                            'ts; '
                                                                                                                                            "ERA-Interim's "
                                                                                                                                            'ts; '
                                                                                                                                            "HadISST's "
                                                                                                                                            'ts; '
                                                                                                                                            "Tropflux's "
                                                                                                                                            'ts; '
                                                                                                                                            "'s ",
                                                                                                                                'method': 'The '
                                                                                                                                          'metric '
                                                                                                                                          'is '
                                                                                                                                          'the '
                                                                                                                                          'statistical '
                                                                                                                                          'value '
                                                                                                                                          'between '
                                                                                                                                          'the '
                                                                                                                                          'model '
                                                                                                                                          'and '
                                                                                                                                          'the '
                                                                                                                                          'observations',
                                                                                                                                'name': 'EnsoSstMapDjf',
                                                                                                                                'units': ''}},
                                                                                               'EnsoSstMapDjfRmse': {'diagnostic': {'20CRv2': {'name': '20CRv2',
                                                                                                                                               'nyears': 142,
                                                                                                                                               'time_period': ['1871-1-16 '
                                                                                                                                                               '12:0:0.0',
                                                                                                                                                               '2012-12-16 '
                                                                                                                                                               '12:0:0.0']},
                                                                                                                                    'ACCESS-CM2_r1i1p1f1': {'keyerror': None,
                                                                                                                                                            'name': 'ACCESS-CM2_r1i1p1f1',
                                                                                                                                                            'nyears': 165,
                                                                                                                                                            'time_period': ['1850-1-16 '
                                                                                                                                                                            '12:0:0.0',
                                                                                                                                                                            '2014-12-16 '
                                                                                                                                                                            '12:0:0.0']},
                                                                                                                                    'ERA-20C': {'name': 'ERA-20C',
                                                                                                                                                'nyears': 111,
                                                                                                                                                'time_period': ['1900-1-16 '
                                                                                                                                                                '12:0:0.0',
                                                                                                                                                                '2010-12-16 '
                                                                                                                                                                '12:0:0.0']},
                                                                                                                                    'ERA-5': {'name': 'ERA-5',
                                                                                                                                              'nyears': 40,
                                                                                                                                              'time_period': ['1979-1-16 '
                                                                                                                                                              '12:0:0.0',
                                                                                                                                                              '2018-12-16 '
                                                                                                                                                              '12:0:0.0']},
                                                                                                                                    'ERA-Interim': {'name': 'ERA-Interim',
                                                                                                                                                    'nyears': 40,
                                                                                                                                                    'time_period': ['1979-1-16 '
                                                                                                                                                                    '12:0:0.0',
                                                                                                                                                                    '2018-12-16 '
                                                                                                                                                                    '12:0:0.0']},
                                                                                                                                    'method': 'nino3.4 '
                                                                                                                                              'SSTA '
                                                                                                                                              'regressed '
                                                                                                                                              'against '
                                                                                                                                              'surface '
                                                                                                                                              'temperature '
                                                                                                                                              'anomalies '
                                                                                                                                              'in '
                                                                                                                                              'global '
                                                                                                                                              'during '
                                                                                                                                              'DJF, '
                                                                                                                                              'time '
                                                                                                                                              'series '
                                                                                                                                              'are '
                                                                                                                                              'linearly '
                                                                                                                                              'detrended, '
                                                                                                                                              'observations '
                                                                                                                                              'and '
                                                                                                                                              'model '
                                                                                                                                              'regridded '
                                                                                                                                              'to '
                                                                                                                                              'generic_1x1deg',
                                                                                                                                    'name': 'ENSO '
                                                                                                                                            'DJF '
                                                                                                                                            'TSA '
                                                                                                                                            'pattern',
                                                                                                                                    'ref': 'Using '
                                                                                                                                           'CDAT '
                                                                                                                                           'regridding, '
                                                                                                                                           'correlation '
                                                                                                                                           '(centered '
                                                                                                                                           'and '
                                                                                                                                           'biased), '
                                                                                                                                           'std '
                                                                                                                                           '(centered '
                                                                                                                                           'and '
                                                                                                                                           'biased) '
                                                                                                                                           'and '
                                                                                                                                           'rms '
                                                                                                                                           '(uncentered '
                                                                                                                                           'and '
                                                                                                                                           'biased) '
                                                                                                                                           'calculation',
                                                                                                                                    'time_frequency': 'monthly',
                                                                                                                                    'units': ''},
                                                                                                                     'metric': {'datasets': 'ACCESS-CM2_r1i1p1f1; '
                                                                                                                                            "20CRv2's "
                                                                                                                                            'ts; '
                                                                                                                                            "ERA-20C's "
                                                                                                                                            'ts; '
                                                                                                                                            "ERA-5's "
                                                                                                                                            'ts; '
                                                                                                                                            "ERA-Interim's "
                                                                                                                                            'ts; '
                                                                                                                                            "HadISST's "
                                                                                                                                            'ts; '
                                                                                                                                            "Tropflux's "
                                                                                                                                            'ts; '
                                                                                                                                            "'s ",
                                                                                                                                'method': 'The '
                                                                                                                                          'metric '
                                                                                                                                          'is '
                                                                                                                                          'the '
                                                                                                                                          'statistical '
                                                                                                                                          'value '
                                                                                                                                          'between '
                                                                                                                                          'the '
                                                                                                                                          'model '
                                                                                                                                          'and '
                                                                                                                                          'the '
                                                                                                                                          'observations',
                                                                                                                                'name': 'EnsoSstMapDjf',
                                                                                                                                'units': 'C/C'}},
                                                                                               'EnsoSstMapDjfStd': {'diagnostic': {'20CRv2': {'name': '20CRv2',
                                                                                                                                              'nyears': 142,
                                                                                                                                              'time_period': ['1871-1-16 '
                                                                                                                                                              '12:0:0.0',
                                                                                                                                                              '2012-12-16 '
                                                                                                                                                              '12:0:0.0']},
                                                                                                                                   'ACCESS-CM2_r1i1p1f1': {'keyerror': None,
                                                                                                                                                           'name': 'ACCESS-CM2_r1i1p1f1',
                                                                                                                                                           'nyears': 165,
                                                                                                                                                           'time_period': ['1850-1-16 '
                                                                                                                                                                           '12:0:0.0',
                                                                                                                                                                           '2014-12-16 '
                                                                                                                                                                           '12:0:0.0']},
                                                                                                                                   'ERA-20C': {'name': 'ERA-20C',
                                                                                                                                               'nyears': 111,
                                                                                                                                               'time_period': ['1900-1-16 '
                                                                                                                                                               '12:0:0.0',
                                                                                                                                                               '2010-12-16 '
                                                                                                                                                               '12:0:0.0']},
                                                                                                                                   'ERA-5': {'name': 'ERA-5',
                                                                                                                                             'nyears': 40,
                                                                                                                                             'time_period': ['1979-1-16 '
                                                                                                                                                             '12:0:0.0',
                                                                                                                                                             '2018-12-16 '
                                                                                                                                                             '12:0:0.0']},
                                                                                                                                   'ERA-Interim': {'name': 'ERA-Interim',
                                                                                                                                                   'nyears': 40,
                                                                                                                                                   'time_period': ['1979-1-16 '
                                                                                                                                                                   '12:0:0.0',
                                                                                                                                                                   '2018-12-16 '
                                                                                                                                                                   '12:0:0.0']},
                                                                                                                                   'method': 'nino3.4 '
                                                                                                                                             'SSTA '
                                                                                                                                             'regressed '
                                                                                                                                             'against '
                                                                                                                                             'surface '
                                                                                                                                             'temperature '
                                                                                                                                             'anomalies '
                                                                                                                                             'in '
                                                                                                                                             'global '
                                                                                                                                             'during '
                                                                                                                                             'DJF, '
                                                                                                                                             'time '
                                                                                                                                             'series '
                                                                                                                                             'are '
                                                                                                                                             'linearly '
                                                                                                                                             'detrended, '
                                                                                                                                             'observations '
                                                                                                                                             'and '
                                                                                                                                             'model '
                                                                                                                                             'regridded '
                                                                                                                                             'to '
                                                                                                                                             'generic_1x1deg',
                                                                                                                                   'name': 'ENSO '
                                                                                                                                           'DJF '
                                                                                                                                           'TSA '
                                                                                                                                           'pattern',
                                                                                                                                   'ref': 'Using '
                                                                                                                                          'CDAT '
                                                                                                                                          'regridding, '
                                                                                                                                          'correlation '
                                                                                                                                          '(centered '
                                                                                                                                          'and '
                                                                                                                                          'biased), '
                                                                                                                                          'std '
                                                                                                                                          '(centered '
                                                                                                                                          'and '
                                                                                                                                          'biased) '
                                                                                                                                          'and '
                                                                                                                                          'rms '
                                                                                                                                          '(uncentered '
                                                                                                                                          'and '
                                                                                                                                          'biased) '
                                                                                                                                          'calculation',
                                                                                                                                   'time_frequency': 'monthly',
                                                                                                                                   'units': ''},
                                                                                                                    'metric': {'datasets': 'ACCESS-CM2_r1i1p1f1; '
                                                                                                                                           "20CRv2's "
                                                                                                                                           'ts; '
                                                                                                                                           "ERA-20C's "
                                                                                                                                           'ts; '
                                                                                                                                           "ERA-5's "
                                                                                                                                           'ts; '
                                                                                                                                           "ERA-Interim's "
                                                                                                                                           'ts; '
                                                                                                                                           "HadISST's "
                                                                                                                                           'ts; '
                                                                                                                                           "Tropflux's "
                                                                                                                                           'ts; '
                                                                                                                                           "'s ",
                                                                                                                               'method': 'The '
                                                                                                                                         'metric '
                                                                                                                                         'is '
                                                                                                                                         'the '
                                                                                                                                         'statistical '
                                                                                                                                         'value '
                                                                                                                                         'between '
                                                                                                                                         'the '
                                                                                                                                         'model '
                                                                                                                                         'and '
                                                                                                                                         'the '
                                                                                                                                         'observations',
                                                                                                                               'name': 'EnsoSstMapDjf',
                                                                                                                               'units': 'C/C '
                                                                                                                                        '/ '
                                                                                                                                        'C/C'}},
                                                                                               'EnsoSstMapJjaCorr': {'diagnostic': {'20CRv2': {'name': '20CRv2',
                                                                                                                                               'nyears': 142,
                                                                                                                                               'time_period': ['1871-1-16 '
                                                                                                                                                               '12:0:0.0',
                                                                                                                                                               '2012-12-16 '
                                                                                                                                                               '12:0:0.0']},
                                                                                                                                    'ACCESS-CM2_r1i1p1f1': {'keyerror': None,
                                                                                                                                                            'name': 'ACCESS-CM2_r1i1p1f1',
                                                                                                                                                            'nyears': 165,
                                                                                                                                                            'time_period': ['1850-1-16 '
                                                                                                                                                                            '12:0:0.0',
                                                                                                                                                                            '2014-12-16 '
                                                                                                                                                                            '12:0:0.0']},
                                                                                                                                    'ERA-20C': {'name': 'ERA-20C',
                                                                                                                                                'nyears': 111,
                                                                                                                                                'time_period': ['1900-1-16 '
                                                                                                                                                                '12:0:0.0',
                                                                                                                                                                '2010-12-16 '
                                                                                                                                                                '12:0:0.0']},
                                                                                                                                    'ERA-5': {'name': 'ERA-5',
                                                                                                                                              'nyears': 40,
                                                                                                                                              'time_period': ['1979-1-16 '
                                                                                                                                                              '12:0:0.0',
                                                                                                                                                              '2018-12-16 '
                                                                                                                                                              '12:0:0.0']},
                                                                                                                                    'ERA-Interim': {'name': 'ERA-Interim',
                                                                                                                                                    'nyears': 40,
                                                                                                                                                    'time_period': ['1979-1-16 '
                                                                                                                                                                    '12:0:0.0',
                                                                                                                                                                    '2018-12-16 '
                                                                                                                                                                    '12:0:0.0']},
                                                                                                                                    'method': 'nino3.4 '
                                                                                                                                              'SSTA '
                                                                                                                                              'regressed '
                                                                                                                                              'against '
                                                                                                                                              'surface '
                                                                                                                                              'temperature '
                                                                                                                                              'anomalies '
                                                                                                                                              'in '
                                                                                                                                              'global '
                                                                                                                                              'during '
                                                                                                                                              'JJA, '
                                                                                                                                              'time '
                                                                                                                                              'series '
                                                                                                                                              'are '
                                                                                                                                              'linearly '
                                                                                                                                              'detrended, '
                                                                                                                                              'observations '
                                                                                                                                              'and '
                                                                                                                                              'model '
                                                                                                                                              'regridded '
                                                                                                                                              'to '
                                                                                                                                              'generic_1x1deg',
                                                                                                                                    'name': 'ENSO '
                                                                                                                                            'JJA '
                                                                                                                                            'TSA '
                                                                                                                                            'pattern',
                                                                                                                                    'ref': 'Using '
                                                                                                                                           'CDAT '
                                                                                                                                           'regridding, '
                                                                                                                                           'correlation '
                                                                                                                                           '(centered '
                                                                                                                                           'and '
                                                                                                                                           'biased), '
                                                                                                                                           'std '
                                                                                                                                           '(centered '
                                                                                                                                           'and '
                                                                                                                                           'biased) '
                                                                                                                                           'and '
                                                                                                                                           'rms '
                                                                                                                                           '(uncentered '
                                                                                                                                           'and '
                                                                                                                                           'biased) '
                                                                                                                                           'calculation',
                                                                                                                                    'time_frequency': 'monthly',
                                                                                                                                    'units': ''},
                                                                                                                     'metric': {'datasets': 'ACCESS-CM2_r1i1p1f1; '
                                                                                                                                            "20CRv2's "
                                                                                                                                            'ts; '
                                                                                                                                            "ERA-20C's "
                                                                                                                                            'ts; '
                                                                                                                                            "ERA-5's "
                                                                                                                                            'ts; '
                                                                                                                                            "ERA-Interim's "
                                                                                                                                            'ts; '
                                                                                                                                            "HadISST's "
                                                                                                                                            'ts; '
                                                                                                                                            "Tropflux's "
                                                                                                                                            'ts; '
                                                                                                                                            "'s ",
                                                                                                                                'method': 'The '
                                                                                                                                          'metric '
                                                                                                                                          'is '
                                                                                                                                          'the '
                                                                                                                                          'statistical '
                                                                                                                                          'value '
                                                                                                                                          'between '
                                                                                                                                          'the '
                                                                                                                                          'model '
                                                                                                                                          'and '
                                                                                                                                          'the '
                                                                                                                                          'observations',
                                                                                                                                'name': 'EnsoSstMapJja',
                                                                                                                                'units': ''}},
                                                                                               'EnsoSstMapJjaRmse': {'diagnostic': {'20CRv2': {'name': '20CRv2',
                                                                                                                                               'nyears': 142,
                                                                                                                                               'time_period': ['1871-1-16 '
                                                                                                                                                               '12:0:0.0',
                                                                                                                                                               '2012-12-16 '
                                                                                                                                                               '12:0:0.0']},
                                                                                                                                    'ACCESS-CM2_r1i1p1f1': {'keyerror': None,
                                                                                                                                                            'name': 'ACCESS-CM2_r1i1p1f1',
                                                                                                                                                            'nyears': 165,
                                                                                                                                                            'time_period': ['1850-1-16 '
                                                                                                                                                                            '12:0:0.0',
                                                                                                                                                                            '2014-12-16 '
                                                                                                                                                                            '12:0:0.0']},
                                                                                                                                    'ERA-20C': {'name': 'ERA-20C',
                                                                                                                                                'nyears': 111,
                                                                                                                                                'time_period': ['1900-1-16 '
                                                                                                                                                                '12:0:0.0',
                                                                                                                                                                '2010-12-16 '
                                                                                                                                                                '12:0:0.0']},
                                                                                                                                    'ERA-5': {'name': 'ERA-5',
                                                                                                                                              'nyears': 40,
                                                                                                                                              'time_period': ['1979-1-16 '
                                                                                                                                                              '12:0:0.0',
                                                                                                                                                              '2018-12-16 '
                                                                                                                                                              '12:0:0.0']},
                                                                                                                                    'ERA-Interim': {'name': 'ERA-Interim',
                                                                                                                                                    'nyears': 40,
                                                                                                                                                    'time_period': ['1979-1-16 '
                                                                                                                                                                    '12:0:0.0',
                                                                                                                                                                    '2018-12-16 '
                                                                                                                                                                    '12:0:0.0']},
                                                                                                                                    'method': 'nino3.4 '
                                                                                                                                              'SSTA '
                                                                                                                                              'regressed '
                                                                                                                                              'against '
                                                                                                                                              'surface '
                                                                                                                                              'temperature '
                                                                                                                                              'anomalies '
                                                                                                                                              'in '
                                                                                                                                              'global '
                                                                                                                                              'during '
                                                                                                                                              'JJA, '
                                                                                                                                              'time '
                                                                                                                                              'series '
                                                                                                                                              'are '
                                                                                                                                              'linearly '
                                                                                                                                              'detrended, '
                                                                                                                                              'observations '
                                                                                                                                              'and '
                                                                                                                                              'model '
                                                                                                                                              'regridded '
                                                                                                                                              'to '
                                                                                                                                              'generic_1x1deg',
                                                                                                                                    'name': 'ENSO '
                                                                                                                                            'JJA '
                                                                                                                                            'TSA '
                                                                                                                                            'pattern',
                                                                                                                                    'ref': 'Using '
                                                                                                                                           'CDAT '
                                                                                                                                           'regridding, '
                                                                                                                                           'correlation '
                                                                                                                                           '(centered '
                                                                                                                                           'and '
                                                                                                                                           'biased), '
                                                                                                                                           'std '
                                                                                                                                           '(centered '
                                                                                                                                           'and '
                                                                                                                                           'biased) '
                                                                                                                                           'and '
                                                                                                                                           'rms '
                                                                                                                                           '(uncentered '
                                                                                                                                           'and '
                                                                                                                                           'biased) '
                                                                                                                                           'calculation',
                                                                                                                                    'time_frequency': 'monthly',
                                                                                                                                    'units': ''},
                                                                                                                     'metric': {'datasets': 'ACCESS-CM2_r1i1p1f1; '
                                                                                                                                            "20CRv2's "
                                                                                                                                            'ts; '
                                                                                                                                            "ERA-20C's "
                                                                                                                                            'ts; '
                                                                                                                                            "ERA-5's "
                                                                                                                                            'ts; '
                                                                                                                                            "ERA-Interim's "
                                                                                                                                            'ts; '
                                                                                                                                            "HadISST's "
                                                                                                                                            'ts; '
                                                                                                                                            "Tropflux's "
                                                                                                                                            'ts; '
                                                                                                                                            "'s ",
                                                                                                                                'method': 'The '
                                                                                                                                          'metric '
                                                                                                                                          'is '
                                                                                                                                          'the '
                                                                                                                                          'statistical '
                                                                                                                                          'value '
                                                                                                                                          'between '
                                                                                                                                          'the '
                                                                                                                                          'model '
                                                                                                                                          'and '
                                                                                                                                          'the '
                                                                                                                                          'observations',
                                                                                                                                'name': 'EnsoSstMapJja',
                                                                                                                                'units': 'C/C'}},
                                                                                               'EnsoSstMapJjaStd': {'diagnostic': {'20CRv2': {'name': '20CRv2',
                                                                                                                                              'nyears': 142,
                                                                                                                                              'time_period': ['1871-1-16 '
                                                                                                                                                              '12:0:0.0',
                                                                                                                                                              '2012-12-16 '
                                                                                                                                                              '12:0:0.0']},
                                                                                                                                   'ACCESS-CM2_r1i1p1f1': {'keyerror': None,
                                                                                                                                                           'name': 'ACCESS-CM2_r1i1p1f1',
                                                                                                                                                           'nyears': 165,
                                                                                                                                                           'time_period': ['1850-1-16 '
                                                                                                                                                                           '12:0:0.0',
                                                                                                                                                                           '2014-12-16 '
                                                                                                                                                                           '12:0:0.0']},
                                                                                                                                   'ERA-20C': {'name': 'ERA-20C',
                                                                                                                                               'nyears': 111,
                                                                                                                                               'time_period': ['1900-1-16 '
                                                                                                                                                               '12:0:0.0',
                                                                                                                                                               '2010-12-16 '
                                                                                                                                                               '12:0:0.0']},
                                                                                                                                   'ERA-5': {'name': 'ERA-5',
                                                                                                                                             'nyears': 40,
                                                                                                                                             'time_period': ['1979-1-16 '
                                                                                                                                                             '12:0:0.0',
                                                                                                                                                             '2018-12-16 '
                                                                                                                                                             '12:0:0.0']},
                                                                                                                                   'ERA-Interim': {'name': 'ERA-Interim',
                                                                                                                                                   'nyears': 40,
                                                                                                                                                   'time_period': ['1979-1-16 '
                                                                                                                                                                   '12:0:0.0',
                                                                                                                                                                   '2018-12-16 '
                                                                                                                                                                   '12:0:0.0']},
                                                                                                                                   'method': 'nino3.4 '
                                                                                                                                             'SSTA '
                                                                                                                                             'regressed '
                                                                                                                                             'against '
                                                                                                                                             'surface '
                                                                                                                                             'temperature '
                                                                                                                                             'anomalies '
                                                                                                                                             'in '
                                                                                                                                             'global '
                                                                                                                                             'during '
                                                                                                                                             'JJA, '
                                                                                                                                             'time '
                                                                                                                                             'series '
                                                                                                                                             'are '
                                                                                                                                             'linearly '
                                                                                                                                             'detrended, '
                                                                                                                                             'observations '
                                                                                                                                             'and '
                                                                                                                                             'model '
                                                                                                                                             'regridded '
                                                                                                                                             'to '
                                                                                                                                             'generic_1x1deg',
                                                                                                                                   'name': 'ENSO '
                                                                                                                                           'JJA '
                                                                                                                                           'TSA '
                                                                                                                                           'pattern',
                                                                                                                                   'ref': 'Using '
                                                                                                                                          'CDAT '
                                                                                                                                          'regridding, '
                                                                                                                                          'correlation '
                                                                                                                                          '(centered '
                                                                                                                                          'and '
                                                                                                                                          'biased), '
                                                                                                                                          'std '
                                                                                                                                          '(centered '
                                                                                                                                          'and '
                                                                                                                                          'biased) '
                                                                                                                                          'and '
                                                                                                                                          'rms '
                                                                                                                                          '(uncentered '
                                                                                                                                          'and '
                                                                                                                                          'biased) '
                                                                                                                                          'calculation',
                                                                                                                                   'time_frequency': 'monthly',
                                                                                                                                   'units': ''},
                                                                                                                    'metric': {'datasets': 'ACCESS-CM2_r1i1p1f1; '
                                                                                                                                           "20CRv2's "
                                                                                                                                           'ts; '
                                                                                                                                           "ERA-20C's "
                                                                                                                                           'ts; '
                                                                                                                                           "ERA-5's "
                                                                                                                                           'ts; '
                                                                                                                                           "ERA-Interim's "
                                                                                                                                           'ts; '
                                                                                                                                           "HadISST's "
                                                                                                                                           'ts; '
                                                                                                                                           "Tropflux's "
                                                                                                                                           'ts; '
                                                                                                                                           "'s ",
                                                                                                                               'method': 'The '
                                                                                                                                         'metric '
                                                                                                                                         'is '
                                                                                                                                         'the '
                                                                                                                                         'statistical '
                                                                                                                                         'value '
                                                                                                                                         'between '
                                                                                                                                         'the '
                                                                                                                                         'model '
                                                                                                                                         'and '
                                                                                                                                         'the '
                                                                                                                                         'observations',
                                                                                                                               'name': 'EnsoSstMapJja',
                                                                                                                               'units': 'C/C '
                                                                                                                                        '/ '
                                                                                                                                        'C/C'}}},
                                                                                   'name': 'Metrics '
                                                                                           'Collection '
                                                                                           'for '
                                                                                           'ENSO '
                                                                                           'teleconnections'},
                                                                      'value': {'EnsoAmpl': {'diagnostic': {'20CRv2': {'value': 0.7407960057502115,
                                                                                                                       'value_error': 0.062166219832622445},
                                                                                                            'ACCESS-CM2_r1i1p1f1': {'value': 0.8079451055122988,
                                                                                                                                    'value_error': 0.06289844115817948},
                                                                                                            'ERA-20C': {'value': 0.8265126323027572,
                                                                                                                        'value_error': 0.07844910735406072},
                                                                                                            'ERA-5': {'value': 0.9075909980564855,
                                                                                                                      'value_error': 0.14350273688619733},
                                                                                                            'ERA-Interim': {'value': 0.9001341048707652,
                                                                                                                            'value_error': 0.1423236985494241},
                                                                                                            'HadISST': {'value': 0.7688706055408969,
                                                                                                                        'value_error': 0.06298833428079066},
                                                                                                            'Tropflux': {'value': 0.9128364190673677,
                                                                                                                         'value_error': 0.14617081051130443}},
                                                                                             'metric': {'20CRv2': {'value': 9.064452189383056,
                                                                                                                   'value_error': 17.643141600516042},
                                                                                                        'ERA-20C': {'value': 2.2464903819711926,
                                                                                                                    'value_error': 16.888452929253955},
                                                                                                        'ERA-5': {'value': 10.97916272391069,
                                                                                                                  'value_error': 21.005693033164114},
                                                                                                        'ERA-Interim': {'value': 10.241696082796707,
                                                                                                                        'value_error': 21.17970844752598},
                                                                                                        'HadISST': {'value': 5.082064483907947,
                                                                                                                    'value_error': 16.789285775029295},
                                                                                                        'Tropflux': {'value': 11.490702097779455,
                                                                                                                     'value_error': 21.06326996420269}}},
                                                                                'EnsoPrMapJjaCorr': {'diagnostic': {'20CRv2_CMAP': {'value': None,
                                                                                                                                    'value_error': None},
                                                                                                                    '20CRv2_ERA-Interim': {'value': None,
                                                                                                                                           'value_error': None},
                                                                                                                    '20CRv2_GPCPv2.3': {'value': None,
                                                                                                                                        'value_error': None},
                                                                                                                    '20CRv2_TRMM-3B43v-7': {'value': None,
                                                                                                                                            'value_error': None},
                                                                                                                    'ACCESS-CM2_r1i1p1f1': {'value': None,
                                                                                                                                            'value_error': None},
                                                                                                                    'ERA-20C_CMAP': {'value': None,
                                                                                                                                     'value_error': None},
                                                                                                                    'ERA-20C_ERA-Interim': {'value': None,
                                                                                                                                            'value_error': None},
                                                                                                                    'ERA-20C_GPCPv2.3': {'value': None,
                                                                                                                                         'value_error': None},
                                                                                                                    'ERA-20C_TRMM-3B43v-7': {'value': None,
                                                                                                                                             'value_error': None},
                                                                                                                    'ERA-5_CMAP': {'value': None,
                                                                                                                                   'value_error': None},
                                                                                                                    'ERA-5_ERA-Interim': {'value': None,
                                                                                                                                          'value_error': None},
                                                                                                                    'ERA-5_GPCPv2.3': {'value': None,
                                                                                                                                       'value_error': None},
                                                                                                                    'ERA-5_TRMM-3B43v-7': {'value': None,
                                                                                                                                           'value_error': None},
                                                                                                                    'ERA-Interim_CMAP': {'value': None,
                                                                                                                                         'value_error': None},
                                                                                                                    'ERA-Interim_ERA-Interim': {'value': None,
                                                                                                                                                'value_error': None},
                                                                                                                    'ERA-Interim_GPCPv2.3': {'value': None,
                                                                                                                                             'value_error': None},
                                                                                                                    'ERA-Interim_TRMM-3B43v-7': {'value': None,
                                                                                                                                                 'value_error': None},
                                                                                                                    'HadISST_CMAP': {'value': None,
                                                                                                                                     'value_error': None},
                                                                                                                    'HadISST_ERA-Interim': {'value': None,
                                                                                                                                            'value_error': None},
                                                                                                                    'HadISST_GPCPv2.3': {'value': None,
                                                                                                                                         'value_error': None},
                                                                                                                    'HadISST_TRMM-3B43v-7': {'value': None,
                                                                                                                                             'value_error': None},
                                                                                                                    'Tropflux_CMAP': {'value': None,
                                                                                                                                      'value_error': None},
                                                                                                                    'Tropflux_ERA-Interim': {'value': None,
                                                                                                                                             'value_error': None},
                                                                                                                    'Tropflux_GPCPv2.3': {'value': None,
                                                                                                                                          'value_error': None},
                                                                                                                    'Tropflux_TRMM-3B43v-7': {'value': None,
                                                                                                                                              'value_error': None}},
                                                                                                     'metric': {'20CRv2_CMAP': {'value': 0.563236858039843,
                                                                                                                                'value_error': None},
                                                                                                                '20CRv2_ERA-Interim': {'value': 0.5076711289090614,
                                                                                                                                       'value_error': None},
                                                                                                                '20CRv2_GPCPv2.3': {'value': 0.5502594220821068,
                                                                                                                                    'value_error': None},
                                                                                                                '20CRv2_TRMM-3B43v-7': {'value': 0.6934672502606147,
                                                                                                                                        'value_error': None},
                                                                                                                'ERA-20C_CMAP': {'value': 0.5659803703740915,
                                                                                                                                 'value_error': None},
                                                                                                                'ERA-20C_ERA-Interim': {'value': 0.5041542156220613,
                                                                                                                                        'value_error': None},
                                                                                                                'ERA-20C_GPCPv2.3': {'value': 0.5528019373616363,
                                                                                                                                     'value_error': None},
                                                                                                                'ERA-20C_TRMM-3B43v-7': {'value': 0.6852801199229523,
                                                                                                                                         'value_error': None},
                                                                                                                'ERA-5_CMAP': {'value': 0.5498636577116178,
                                                                                                                               'value_error': None},
                                                                                                                'ERA-5_ERA-Interim': {'value': 0.48992521261098143,
                                                                                                                                      'value_error': None},
                                                                                                                'ERA-5_GPCPv2.3': {'value': 0.5538548373734409,
                                                                                                                                   'value_error': None},
                                                                                                                'ERA-5_TRMM-3B43v-7': {'value': 0.6183028286859966,
                                                                                                                                       'value_error': None},
                                                                                                                'ERA-Interim_CMAP': {'value': 0.5537449257941922,
                                                                                                                                     'value_error': None},
                                                                                                                'ERA-Interim_ERA-Interim': {'value': 0.5003434666710267,
                                                                                                                                            'value_error': None},
                                                                                                                'ERA-Interim_GPCPv2.3': {'value': 0.5588335394949722,
                                                                                                                                         'value_error': None},
                                                                                                                'ERA-Interim_TRMM-3B43v-7': {'value': 0.6167360053399146,
                                                                                                                                             'value_error': None},
                                                                                                                'HadISST_CMAP': {'value': 0.5434024693248449,
                                                                                                                                 'value_error': None},
                                                                                                                'HadISST_ERA-Interim': {'value': 0.490053193181483,
                                                                                                                                        'value_error': None},
                                                                                                                'HadISST_GPCPv2.3': {'value': 0.5489782301496418,
                                                                                                                                     'value_error': None},
                                                                                                                'HadISST_TRMM-3B43v-7': {'value': 0.6101966728054249,
                                                                                                                                         'value_error': None},
                                                                                                                'Tropflux_CMAP': {'value': 0.5533973187574572,
                                                                                                                                  'value_error': None},
                                                                                                                'Tropflux_ERA-Interim': {'value': 0.4972298189070047,
                                                                                                                                         'value_error': None},
                                                                                                                'Tropflux_GPCPv2.3': {'value': 0.5566488164684908,
                                                                                                                                      'value_error': None},
                                                                                                                'Tropflux_TRMM-3B43v-7': {'value': 0.6230288370581273,
                                                                                                                                          'value_error': None}}},
                                                                                'EnsoPrMapJjaRmse': {'diagnostic': {'20CRv2_CMAP': {'value': None,
                                                                                                                                    'value_error': None},
                                                                                                                    '20CRv2_ERA-Interim': {'value': None,
                                                                                                                                           'value_error': None},
                                                                                                                    '20CRv2_GPCPv2.3': {'value': None,
                                                                                                                                        'value_error': None},
                                                                                                                    '20CRv2_TRMM-3B43v-7': {'value': None,
                                                                                                                                            'value_error': None},
                                                                                                                    'ACCESS-CM2_r1i1p1f1': {'value': None,
                                                                                                                                            'value_error': None},
                                                                                                                    'ERA-20C_CMAP': {'value': None,
                                                                                                                                     'value_error': None},
                                                                                                                    'ERA-20C_ERA-Interim': {'value': None,
                                                                                                                                            'value_error': None},
                                                                                                                    'ERA-20C_GPCPv2.3': {'value': None,
                                                                                                                                         'value_error': None},
                                                                                                                    'ERA-20C_TRMM-3B43v-7': {'value': None,
                                                                                                                                             'value_error': None},
                                                                                                                    'ERA-5_CMAP': {'value': None,
                                                                                                                                   'value_error': None},
                                                                                                                    'ERA-5_ERA-Interim': {'value': None,
                                                                                                                                          'value_error': None},
                                                                                                                    'ERA-5_GPCPv2.3': {'value': None,
                                                                                                                                       'value_error': None},
                                                                                                                    'ERA-5_TRMM-3B43v-7': {'value': None,
                                                                                                                                           'value_error': None},
                                                                                                                    'ERA-Interim_CMAP': {'value': None,
                                                                                                                                         'value_error': None},
                                                                                                                    'ERA-Interim_ERA-Interim': {'value': None,
                                                                                                                                                'value_error': None},
                                                                                                                    'ERA-Interim_GPCPv2.3': {'value': None,
                                                                                                                                             'value_error': None},
                                                                                                                    'ERA-Interim_TRMM-3B43v-7': {'value': None,
                                                                                                                                                 'value_error': None},
                                                                                                                    'HadISST_CMAP': {'value': None,
                                                                                                                                     'value_error': None},
                                                                                                                    'HadISST_ERA-Interim': {'value': None,
                                                                                                                                            'value_error': None},
                                                                                                                    'HadISST_GPCPv2.3': {'value': None,
                                                                                                                                         'value_error': None},
                                                                                                                    'HadISST_TRMM-3B43v-7': {'value': None,
                                                                                                                                             'value_error': None},
                                                                                                                    'Tropflux_CMAP': {'value': None,
                                                                                                                                      'value_error': None},
                                                                                                                    'Tropflux_ERA-Interim': {'value': None,
                                                                                                                                             'value_error': None},
                                                                                                                    'Tropflux_GPCPv2.3': {'value': None,
                                                                                                                                          'value_error': None},
                                                                                                                    'Tropflux_TRMM-3B43v-7': {'value': None,
                                                                                                                                              'value_error': None}},
                                                                                                     'metric': {'20CRv2_CMAP': {'value': 0.34017183041862653,
                                                                                                                                'value_error': None},
                                                                                                                '20CRv2_ERA-Interim': {'value': 0.32172950428725294,
                                                                                                                                       'value_error': None},
                                                                                                                '20CRv2_GPCPv2.3': {'value': 0.3282310702259359,
                                                                                                                                    'value_error': None},
                                                                                                                '20CRv2_TRMM-3B43v-7': {'value': 0.6535126574619106,
                                                                                                                                        'value_error': None},
                                                                                                                'ERA-20C_CMAP': {'value': 0.3261115209210186,
                                                                                                                                 'value_error': None},
                                                                                                                'ERA-20C_ERA-Interim': {'value': 0.3084482965870762,
                                                                                                                                        'value_error': None},
                                                                                                                'ERA-20C_GPCPv2.3': {'value': 0.3162582274190687,
                                                                                                                                     'value_error': None},
                                                                                                                'ERA-20C_TRMM-3B43v-7': {'value': 0.6198161214702806,
                                                                                                                                         'value_error': None},
                                                                                                                'ERA-5_CMAP': {'value': 0.3107413414808187,
                                                                                                                               'value_error': None},
                                                                                                                'ERA-5_ERA-Interim': {'value': 0.29569906518128325,
                                                                                                                                      'value_error': None},
                                                                                                                'ERA-5_GPCPv2.3': {'value': 0.3091418430062798,
                                                                                                                                   'value_error': None},
                                                                                                                'ERA-5_TRMM-3B43v-7': {'value': 0.5107923161770437,
                                                                                                                                       'value_error': None},
                                                                                                                'ERA-Interim_CMAP': {'value': 0.3113030891389101,
                                                                                                                                     'value_error': None},
                                                                                                                'ERA-Interim_ERA-Interim': {'value': 0.29944546019011253,
                                                                                                                                            'value_error': None},
                                                                                                                'ERA-Interim_GPCPv2.3': {'value': 0.3119239104543755,
                                                                                                                                         'value_error': None},
                                                                                                                'ERA-Interim_TRMM-3B43v-7': {'value': 0.49878379011757557,
                                                                                                                                             'value_error': None},
                                                                                                                'HadISST_CMAP': {'value': 0.31886413189048984,
                                                                                                                                 'value_error': None},
                                                                                                                'HadISST_ERA-Interim': {'value': 0.3055995129226426,
                                                                                                                                        'value_error': None},
                                                                                                                'HadISST_GPCPv2.3': {'value': 0.31574126130983726,
                                                                                                                                     'value_error': None},
                                                                                                                'HadISST_TRMM-3B43v-7': {'value': 0.5264169827781355,
                                                                                                                                         'value_error': None},
                                                                                                                'Tropflux_CMAP': {'value': 0.3081302641708409,
                                                                                                                                  'value_error': None},
                                                                                                                'Tropflux_ERA-Interim': {'value': 0.29423741963016015,
                                                                                                                                         'value_error': None},
                                                                                                                'Tropflux_GPCPv2.3': {'value': 0.3061891594876015,
                                                                                                                                      'value_error': None},
                                                                                                                'Tropflux_TRMM-3B43v-7': {'value': 0.4921615993219608,
                                                                                                                                          'value_error': None}}},
                                                                                'EnsoPrMapJjaStd': {'diagnostic': {'20CRv2_CMAP': {'value': None,
                                                                                                                                   'value_error': None},
                                                                                                                   '20CRv2_ERA-Interim': {'value': None,
                                                                                                                                          'value_error': None},
                                                                                                                   '20CRv2_GPCPv2.3': {'value': None,
                                                                                                                                       'value_error': None},
                                                                                                                   '20CRv2_TRMM-3B43v-7': {'value': None,
                                                                                                                                           'value_error': None},
                                                                                                                   'ACCESS-CM2_r1i1p1f1': {'value': None,
                                                                                                                                           'value_error': None},
                                                                                                                   'ERA-20C_CMAP': {'value': None,
                                                                                                                                    'value_error': None},
                                                                                                                   'ERA-20C_ERA-Interim': {'value': None,
                                                                                                                                           'value_error': None},
                                                                                                                   'ERA-20C_GPCPv2.3': {'value': None,
                                                                                                                                        'value_error': None},
                                                                                                                   'ERA-20C_TRMM-3B43v-7': {'value': None,
                                                                                                                                            'value_error': None},
                                                                                                                   'ERA-5_CMAP': {'value': None,
                                                                                                                                  'value_error': None},
                                                                                                                   'ERA-5_ERA-Interim': {'value': None,
                                                                                                                                         'value_error': None},
                                                                                                                   'ERA-5_GPCPv2.3': {'value': None,
                                                                                                                                      'value_error': None},
                                                                                                                   'ERA-5_TRMM-3B43v-7': {'value': None,
                                                                                                                                          'value_error': None},
                                                                                                                   'ERA-Interim_CMAP': {'value': None,
                                                                                                                                        'value_error': None},
                                                                                                                   'ERA-Interim_ERA-Interim': {'value': None,
                                                                                                                                               'value_error': None},
                                                                                                                   'ERA-Interim_GPCPv2.3': {'value': None,
                                                                                                                                            'value_error': None},
                                                                                                                   'ERA-Interim_TRMM-3B43v-7': {'value': None,
                                                                                                                                                'value_error': None},
                                                                                                                   'HadISST_CMAP': {'value': None,
                                                                                                                                    'value_error': None},
                                                                                                                   'HadISST_ERA-Interim': {'value': None,
                                                                                                                                           'value_error': None},
                                                                                                                   'HadISST_GPCPv2.3': {'value': None,
                                                                                                                                        'value_error': None},
                                                                                                                   'HadISST_TRMM-3B43v-7': {'value': None,
                                                                                                                                            'value_error': None},
                                                                                                                   'Tropflux_CMAP': {'value': None,
                                                                                                                                     'value_error': None},
                                                                                                                   'Tropflux_ERA-Interim': {'value': None,
                                                                                                                                            'value_error': None},
                                                                                                                   'Tropflux_GPCPv2.3': {'value': None,
                                                                                                                                         'value_error': None},
                                                                                                                   'Tropflux_TRMM-3B43v-7': {'value': None,
                                                                                                                                             'value_error': None}},
                                                                                                    'metric': {'20CRv2_CMAP': {'value': 0.8299462167382936,
                                                                                                                               'value_error': None},
                                                                                                               '20CRv2_ERA-Interim': {'value': 0.8358504626167129,
                                                                                                                                      'value_error': None},
                                                                                                               '20CRv2_GPCPv2.3': {'value': 0.8613644893325917,
                                                                                                                                   'value_error': None},
                                                                                                               '20CRv2_TRMM-3B43v-7': {'value': 0.44100799303743937,
                                                                                                                                       'value_error': None},
                                                                                                               'ERA-20C_CMAP': {'value': 0.89000619865303,
                                                                                                                                'value_error': None},
                                                                                                               'ERA-20C_ERA-Interim': {'value': 0.887145361127454,
                                                                                                                                       'value_error': None},
                                                                                                               'ERA-20C_GPCPv2.3': {'value': 0.9186378828306975,
                                                                                                                                    'value_error': None},
                                                                                                               'ERA-20C_TRMM-3B43v-7': {'value': 0.4650808026611463,
                                                                                                                                        'value_error': None},
                                                                                                               'ERA-5_CMAP': {'value': 0.9435616768452278,
                                                                                                                              'value_error': None},
                                                                                                               'ERA-5_ERA-Interim': {'value': 0.929636077059787,
                                                                                                                                     'value_error': None},
                                                                                                               'ERA-5_GPCPv2.3': {'value': 0.9596602494376422,
                                                                                                                                  'value_error': None},
                                                                                                               'ERA-5_TRMM-3B43v-7': {'value': 0.5513037757577366,
                                                                                                                                      'value_error': None},
                                                                                                               'ERA-Interim_CMAP': {'value': 0.9462959127774696,
                                                                                                                                    'value_error': None},
                                                                                                               'ERA-Interim_ERA-Interim': {'value': 0.9261973712509209,
                                                                                                                                           'value_error': None},
                                                                                                               'ERA-Interim_GPCPv2.3': {'value': 0.9519864980870834,
                                                                                                                                        'value_error': None},
                                                                                                               'ERA-Interim_TRMM-3B43v-7': {'value': 0.5655860701372795,
                                                                                                                                            'value_error': None},
                                                                                                               'HadISST_CMAP': {'value': 0.893850554721543,
                                                                                                                                'value_error': None},
                                                                                                               'HadISST_ERA-Interim': {'value': 0.8804187162086693,
                                                                                                                                       'value_error': None},
                                                                                                               'HadISST_GPCPv2.3': {'value': 0.9178724882727477,
                                                                                                                                    'value_error': None},
                                                                                                               'HadISST_TRMM-3B43v-7': {'value': 0.5303051885979281,
                                                                                                                                        'value_error': None},
                                                                                                               'Tropflux_CMAP': {'value': 0.9637887242170196,
                                                                                                                                 'value_error': None},
                                                                                                               'Tropflux_ERA-Interim': {'value': 0.9501842836614527,
                                                                                                                                        'value_error': None},
                                                                                                               'Tropflux_GPCPv2.3': {'value': 0.9819068801235163,
                                                                                                                                     'value_error': None},
                                                                                                               'Tropflux_TRMM-3B43v-7': {'value': 0.5769800865132376,
                                                                                                                                         'value_error': None}}},
                                                                                'EnsoSeasonality': {'diagnostic': {'20CRv2': {'value': 1.6436435961094338,
                                                                                                                              'value_error': 0.27635126775510105},
                                                                                                                   'ACCESS-CM2_r1i1p1f1': {'value': 1.35689584352529,
                                                                                                                                           'value_error': 0.21158996233933872},
                                                                                                                   'ERA-20C': {'value': 1.5951589911955568,
                                                                                                                               'value_error': 0.30349823329934555},
                                                                                                                   'ERA-5': {'value': 2.0283123524204223,
                                                                                                                             'value_error': 0.6454942543282691},
                                                                                                                   'ERA-Interim': {'value': 2.052960044692134,
                                                                                                                                   'value_error': 0.6533381861195713},
                                                                                                                   'HadISST': {'value': 1.6666267700450468,
                                                                                                                               'value_error': 0.273531261566947},
                                                                                                                   'Tropflux': {'value': 2.06093854374807,
                                                                                                                                'value_error': 0.6643426635460994}},
                                                                                                    'metric': {'20CRv2': {'value': 17.445859507674687,
                                                                                                                          'value_error': 26.75332883692444},
                                                                                                               'ERA-20C': {'value': 14.936639481415629,
                                                                                                                           'value_error': 29.448836215769177},
                                                                                                               'ERA-5': {'value': 33.10222452148056,
                                                                                                                         'value_error': 31.72150771348471},
                                                                                                               'ERA-Interim': {'value': 33.90539445550813,
                                                                                                                               'value_error': 31.340661548193676},
                                                                                                               'HadISST': {'value': 18.584300461667556,
                                                                                                                           'value_error': 26.057864916471747},
                                                                                                               'Tropflux': {'value': 34.16126610657646,
                                                                                                                            'value_error': 31.489767742015175}}},
                                                                                'EnsoSstLonRmse': {'diagnostic': {'20CRv2': {'value': None,
                                                                                                                             'value_error': None},
                                                                                                                  'ACCESS-CM2_r1i1p1f1': {'value': None,
                                                                                                                                          'value_error': None},
                                                                                                                  'ERA-20C': {'value': None,
                                                                                                                              'value_error': None},
                                                                                                                  'ERA-5': {'value': None,
                                                                                                                            'value_error': None},
                                                                                                                  'ERA-Interim': {'value': None,
                                                                                                                                  'value_error': None},
                                                                                                                  'HadISST': {'value': None,
                                                                                                                              'value_error': None},
                                                                                                                  'Tropflux': {'value': None,
                                                                                                                               'value_error': None}},
                                                                                                   'metric': {'20CRv2': {'value': 0.0659544064205628,
                                                                                                                         'value_error': None},
                                                                                                              'ERA-20C': {'value': 0.0848741234618347,
                                                                                                                          'value_error': None},
                                                                                                              'ERA-5': {'value': 0.055882763305978356,
                                                                                                                        'value_error': None},
                                                                                                              'ERA-Interim': {'value': 0.06132020021246395,
                                                                                                                              'value_error': None},
                                                                                                              'HadISST': {'value': 0.07329593603923167,
                                                                                                                          'value_error': None},
                                                                                                              'Tropflux': {'value': 0.06022298994696265,
                                                                                                                           'value_error': None}}},
                                                                                'EnsoSstMapDjfCorr': {'diagnostic': {'20CRv2': {'value': None,
                                                                                                                                'value_error': None},
                                                                                                                     'ACCESS-CM2_r1i1p1f1': {'value': None,
                                                                                                                                             'value_error': None},
                                                                                                                     'ERA-20C': {'value': None,
                                                                                                                                 'value_error': None},
                                                                                                                     'ERA-5': {'value': None,
                                                                                                                               'value_error': None},
                                                                                                                     'ERA-Interim': {'value': None,
                                                                                                                                     'value_error': None}},
                                                                                                      'metric': {'20CRv2': {'value': 0.31523984944746164,
                                                                                                                            'value_error': None},
                                                                                                                 'ERA-20C': {'value': 0.517241617938448,
                                                                                                                             'value_error': None},
                                                                                                                 'ERA-5': {'value': 0.3441635322780102,
                                                                                                                           'value_error': None},
                                                                                                                 'ERA-Interim': {'value': 0.3320970045598708,
                                                                                                                                 'value_error': None}}},
                                                                                'EnsoSstMapDjfRmse': {'diagnostic': {'20CRv2': {'value': None,
                                                                                                                                'value_error': None},
                                                                                                                     'ACCESS-CM2_r1i1p1f1': {'value': None,
                                                                                                                                             'value_error': None},
                                                                                                                     'ERA-20C': {'value': None,
                                                                                                                                 'value_error': None},
                                                                                                                     'ERA-5': {'value': None,
                                                                                                                               'value_error': None},
                                                                                                                     'ERA-Interim': {'value': None,
                                                                                                                                     'value_error': None}},
                                                                                                      'metric': {'20CRv2': {'value': 0.16793980189002244,
                                                                                                                            'value_error': None},
                                                                                                                 'ERA-20C': {'value': 0.18858244815265107,
                                                                                                                             'value_error': None},
                                                                                                                 'ERA-5': {'value': 0.18075024908611623,
                                                                                                                           'value_error': None},
                                                                                                                 'ERA-Interim': {'value': 0.17263217197936837,
                                                                                                                                 'value_error': None}}},
                                                                                'EnsoSstMapDjfStd': {'diagnostic': {'20CRv2': {'value': None,
                                                                                                                               'value_error': None},
                                                                                                                    'ACCESS-CM2_r1i1p1f1': {'value': None,
                                                                                                                                            'value_error': None},
                                                                                                                    'ERA-20C': {'value': None,
                                                                                                                                'value_error': None},
                                                                                                                    'ERA-5': {'value': None,
                                                                                                                              'value_error': None},
                                                                                                                    'ERA-Interim': {'value': None,
                                                                                                                                    'value_error': None}},
                                                                                                     'metric': {'20CRv2': {'value': 0.8934610625690018,
                                                                                                                           'value_error': None},
                                                                                                                'ERA-20C': {'value': 1.396891408512994,
                                                                                                                            'value_error': None},
                                                                                                                'ERA-5': {'value': 0.8406377824508356,
                                                                                                                          'value_error': None},
                                                                                                                'ERA-Interim': {'value': 0.874560512132294,
                                                                                                                                'value_error': None}}},
                                                                                'EnsoSstMapJjaCorr': {'diagnostic': {'20CRv2': {'value': None,
                                                                                                                                'value_error': None},
                                                                                                                     'ACCESS-CM2_r1i1p1f1': {'value': None,
                                                                                                                                             'value_error': None},
                                                                                                                     'ERA-20C': {'value': None,
                                                                                                                                 'value_error': None},
                                                                                                                     'ERA-5': {'value': None,
                                                                                                                               'value_error': None},
                                                                                                                     'ERA-Interim': {'value': None,
                                                                                                                                     'value_error': None}},
                                                                                                      'metric': {'20CRv2': {'value': 0.5308137719189451,
                                                                                                                            'value_error': None},
                                                                                                                 'ERA-20C': {'value': 0.6858896573246779,
                                                                                                                             'value_error': None},
                                                                                                                 'ERA-5': {'value': 0.7307062950011409,
                                                                                                                           'value_error': None},
                                                                                                                 'ERA-Interim': {'value': 0.7237340301085726,
                                                                                                                                 'value_error': None}}},
                                                                                'EnsoSstMapJjaRmse': {'diagnostic': {'20CRv2': {'value': None,
                                                                                                                                'value_error': None},
                                                                                                                     'ACCESS-CM2_r1i1p1f1': {'value': None,
                                                                                                                                             'value_error': None},
                                                                                                                     'ERA-20C': {'value': None,
                                                                                                                                 'value_error': None},
                                                                                                                     'ERA-5': {'value': None,
                                                                                                                               'value_error': None},
                                                                                                                     'ERA-Interim': {'value': None,
                                                                                                                                     'value_error': None}},
                                                                                                      'metric': {'20CRv2': {'value': 0.24566196242317268,
                                                                                                                            'value_error': None},
                                                                                                                 'ERA-20C': {'value': 0.2290317533291159,
                                                                                                                             'value_error': None},
                                                                                                                 'ERA-5': {'value': 0.3011175962794281,
                                                                                                                           'value_error': None},
                                                                                                                 'ERA-Interim': {'value': 0.2917902816553294,
                                                                                                                                 'value_error': None}}},
                                                                                'EnsoSstMapJjaStd': {'diagnostic': {'20CRv2': {'value': None,
                                                                                                                               'value_error': None},
                                                                                                                    'ACCESS-CM2_r1i1p1f1': {'value': None,
                                                                                                                                            'value_error': None},
                                                                                                                    'ERA-20C': {'value': None,
                                                                                                                                'value_error': None},
                                                                                                                    'ERA-5': {'value': None,
                                                                                                                              'value_error': None},
                                                                                                                    'ERA-Interim': {'value': None,
                                                                                                                                    'value_error': None}},
                                                                                                     'metric': {'20CRv2': {'value': 0.8940403791539789,
                                                                                                                           'value_error': None},
                                                                                                                'ERA-20C': {'value': 1.3357218503755024,
                                                                                                                            'value_error': None},
                                                                                                                'ERA-5': {'value': 0.8063148379784217,
                                                                                                                          'value_error': None},
                                                                                                                'ERA-Interim': {'value': 0.8370831952681334,
                                                                                                                                'value_error': None}}}}},
                                                         'r2i1p1f1': {'metadata': {'description_of_the_collection': 'Describe '
                                                                                                                    'which '
                                                                                                                    'science '
                                                                                                                    'question '
                                                                                                                    'this '
                                                                                                                    'collection '
                                                                                                                    'is '
                                                                                                                    'about',
                                                                                   'metrics': {'EnsoAmpl': {'diagnostic': {'20CRv2': {'keyerror': None,
                                                                                                                                      'name': '20CRv2',
                                                                                                                                      'nyears': 142,
                                                                                                                                      'time_period': ['1871-1-16 '
                                                                                                                                                      '12:0:0.0',
                                                                                                                                                      '2012-12-16 '
                                                                                                                                                      '12:0:0.0']},
                                                                                                                           'ACCESS-CM2_r2i1p1f1': {'keyerror': None,
                                                                                                                                                   'name': 'ACCESS-CM2_r2i1p1f1',
                                                                                                                                                   'nyears': 165,
                                                                                                                                                   'time_period': ['1850-1-16 '
                                                                                                                                                                   '12:0:0.0',
                                                                                                                                                                   '2014-12-16 '
                                                                                                                                                                   '12:0:0.0']},
                                                                                                                           'ERA-20C': {'keyerror': None,
                                                                                                                                       'name': 'ERA-20C',
                                                                                                                                       'nyears': 111,
                                                                                                                                       'time_period': ['1900-1-16 '
                                                                                                                                                       '12:0:0.0',
                                                                                                                                                       '2010-12-16 '
                                                                                                                                                       '12:0:0.0']},
                                                                                                                           'ERA-5': {'keyerror': None,
                                                                                                                                     'name': 'ERA-5',
                                                                                                                                     'nyears': 40,
                                                                                                                                     'time_period': ['1979-1-16 '
                                                                                                                                                     '12:0:0.0',
                                                                                                                                                     '2018-12-16 '
                                                                                                                                                     '12:0:0.0']},
                                                                                                                           'ERA-Interim': {'keyerror': None,
                                                                                                                                           'name': 'ERA-Interim',
                                                                                                                                           'nyears': 40,
                                                                                                                                           'time_period': ['1979-1-16 '
                                                                                                                                                           '12:0:0.0',
                                                                                                                                                           '2018-12-16 '
                                                                                                                                                           '12:0:0.0']},
                                                                                                                           'HadISST': {'keyerror': 'unlikely '
                                                                                                                                                   'units: '
                                                                                                                                                   'K([-1e+30, '
                                                                                                                                                   '304.7203])',
                                                                                                                                       'name': 'HadISST',
                                                                                                                                       'nyears': 149,
                                                                                                                                       'time_period': ['1870-1-16 '
                                                                                                                                                       '11:59:59.5',
                                                                                                                                                       '2018-12-16 '
                                                                                                                                                       '18:0:0.0']},
                                                                                                                           'Tropflux': {'keyerror': None,
                                                                                                                                        'name': 'Tropflux',
                                                                                                                                        'nyears': 39,
                                                                                                                                        'time_period': ['1979-1-15 '
                                                                                                                                                        '0:0:0.0',
                                                                                                                                                        '2017-7-15 '
                                                                                                                                                        '12:0:0.0']},
                                                                                                                           'method': 'Standard '
                                                                                                                                     'deviation '
                                                                                                                                     'of '
                                                                                                                                     'nino3.4 '
                                                                                                                                     'sstA, '
                                                                                                                                     'time '
                                                                                                                                     'series '
                                                                                                                                     'are '
                                                                                                                                     'linearly '
                                                                                                                                     'detrended',
                                                                                                                           'name': 'ENSO '
                                                                                                                                   'amplitude',
                                                                                                                           'ref': 'Using '
                                                                                                                                  'CDAT '
                                                                                                                                  'regression '
                                                                                                                                  'calculation',
                                                                                                                           'time_frequency': 'monthly',
                                                                                                                           'units': 'C'},
                                                                                                            'metric': {'datasets': 'ACCESS-CM2_r2i1p1f1; '
                                                                                                                                   "20CRv2's "
                                                                                                                                   'ts; '
                                                                                                                                   "ERA-20C's "
                                                                                                                                   'ts; '
                                                                                                                                   "ERA-5's "
                                                                                                                                   'ts; '
                                                                                                                                   "ERA-Interim's "
                                                                                                                                   'ts; '
                                                                                                                                   "HadISST's "
                                                                                                                                   'ts; '
                                                                                                                                   "Tropflux's "
                                                                                                                                   'ts; '
                                                                                                                                   "'s ",
                                                                                                                       'method': 'The '
                                                                                                                                 'metric '
                                                                                                                                 'is '
                                                                                                                                 'the '
                                                                                                                                 'absolute '
                                                                                                                                 'value '
                                                                                                                                 'of '
                                                                                                                                 'the '
                                                                                                                                 'relative '
                                                                                                                                 'difference '
                                                                                                                                 'between '
                                                                                                                                 'model '
                                                                                                                                 'and '
                                                                                                                                 'observations '
                                                                                                                                 'values '
                                                                                                                                 '(M '
                                                                                                                                 '= '
                                                                                                                                 '100 '
                                                                                                                                 '* '
                                                                                                                                 'abs[[model-obs] '
                                                                                                                                 '/ '
                                                                                                                                 'obs])',
                                                                                                                       'name': 'EnsoAmpl',
                                                                                                                       'units': '%'}},
                                                                                               'EnsoPrMapJjaCorr': {'diagnostic': {'20CRv2_CMAP': {'name': '20CRv2_CMAP',
                                                                                                                                                   'nyears': 34,
                                                                                                                                                   'time_period': ['1979-1-16 '
                                                                                                                                                                   '12:0:0.0',
                                                                                                                                                                   '2012-12-16 '
                                                                                                                                                                   '12:0:0.0']},
                                                                                                                                   '20CRv2_ERA-Interim': {'name': '20CRv2_ERA-Interim',
                                                                                                                                                          'nyears': 34,
                                                                                                                                                          'time_period': ['1979-1-16 '
                                                                                                                                                                          '12:0:0.0',
                                                                                                                                                                          '2012-12-16 '
                                                                                                                                                                          '12:0:0.0']},
                                                                                                                                   '20CRv2_GPCPv2.3': {'name': '20CRv2_GPCPv2.3',
                                                                                                                                                       'nyears': 34,
                                                                                                                                                       'time_period': ['1979-1-16 '
                                                                                                                                                                       '12:0:0.0',
                                                                                                                                                                       '2012-12-16 '
                                                                                                                                                                       '12:0:0.0']},
                                                                                                                                   '20CRv2_TRMM-3B43v-7': {'name': '20CRv2_TRMM-3B43v-7',
                                                                                                                                                           'nyears': 15,
                                                                                                                                                           'time_period': ['1998-1-16 '
                                                                                                                                                                           '12:0:0.0',
                                                                                                                                                                           '2012-12-16 '
                                                                                                                                                                           '12:0:0.0']},
                                                                                                                                   'ACCESS-CM2_r2i1p1f1': {'keyerror': None,
                                                                                                                                                           'name': 'ACCESS-CM2_r2i1p1f1',
                                                                                                                                                           'nyears': 165,
                                                                                                                                                           'time_period': ['1850-1-16 '
                                                                                                                                                                           '12:0:0.0',
                                                                                                                                                                           '2014-12-16 '
                                                                                                                                                                           '12:0:0.0']},
                                                                                                                                   'ERA-20C_CMAP': {'name': 'ERA-20C_CMAP',
                                                                                                                                                    'nyears': 32,
                                                                                                                                                    'time_period': ['1979-1-16 '
                                                                                                                                                                    '12:0:0.0',
                                                                                                                                                                    '2010-12-16 '
                                                                                                                                                                    '12:0:0.0']},
                                                                                                                                   'ERA-20C_ERA-Interim': {'name': 'ERA-20C_ERA-Interim',
                                                                                                                                                           'nyears': 32,
                                                                                                                                                           'time_period': ['1979-1-16 '
                                                                                                                                                                           '12:0:0.0',
                                                                                                                                                                           '2010-12-16 '
                                                                                                                                                                           '12:0:0.0']},
                                                                                                                                   'ERA-20C_GPCPv2.3': {'name': 'ERA-20C_GPCPv2.3',
                                                                                                                                                        'nyears': 32,
                                                                                                                                                        'time_period': ['1979-1-16 '
                                                                                                                                                                        '12:0:0.0',
                                                                                                                                                                        '2010-12-16 '
                                                                                                                                                                        '12:0:0.0']},
                                                                                                                                   'ERA-20C_TRMM-3B43v-7': {'name': 'ERA-20C_TRMM-3B43v-7',
                                                                                                                                                            'nyears': 13,
                                                                                                                                                            'time_period': ['1998-1-16 '
                                                                                                                                                                            '12:0:0.0',
                                                                                                                                                                            '2010-12-16 '
                                                                                                                                                                            '12:0:0.0']},
                                                                                                                                   'ERA-5_CMAP': {'name': 'ERA-5_CMAP',
                                                                                                                                                  'nyears': 40,
                                                                                                                                                  'time_period': ['1979-1-16 '
                                                                                                                                                                  '12:0:0.0',
                                                                                                                                                                  '2018-12-16 '
                                                                                                                                                                  '12:0:0.0']},
                                                                                                                                   'ERA-5_ERA-Interim': {'name': 'ERA-5_ERA-Interim',
                                                                                                                                                         'nyears': 40,
                                                                                                                                                         'time_period': ['1979-1-16 '
                                                                                                                                                                         '12:0:0.0',
                                                                                                                                                                         '2018-12-16 '
                                                                                                                                                                         '12:0:0.0']},
                                                                                                                                   'ERA-5_GPCPv2.3': {'name': 'ERA-5_GPCPv2.3',
                                                                                                                                                      'nyears': 40,
                                                                                                                                                      'time_period': ['1979-1-16 '
                                                                                                                                                                      '12:0:0.0',
                                                                                                                                                                      '2018-12-16 '
                                                                                                                                                                      '12:0:0.0']},
                                                                                                                                   'ERA-5_TRMM-3B43v-7': {'name': 'ERA-5_TRMM-3B43v-7',
                                                                                                                                                          'nyears': 20,
                                                                                                                                                          'time_period': ['1998-1-16 '
                                                                                                                                                                          '12:0:0.0',
                                                                                                                                                                          '2017-12-16 '
                                                                                                                                                                          '12:0:0.0']},
                                                                                                                                   'ERA-Interim_CMAP': {'name': 'ERA-Interim_CMAP',
                                                                                                                                                        'nyears': 40,
                                                                                                                                                        'time_period': ['1979-1-16 '
                                                                                                                                                                        '12:0:0.0',
                                                                                                                                                                        '2018-12-16 '
                                                                                                                                                                        '12:0:0.0']},
                                                                                                                                   'ERA-Interim_ERA-Interim': {'name': 'ERA-Interim_ERA-Interim',
                                                                                                                                                               'nyears': 40,
                                                                                                                                                               'time_period': ['1979-1-16 '
                                                                                                                                                                               '12:0:0.0',
                                                                                                                                                                               '2018-12-16 '
                                                                                                                                                                               '12:0:0.0']},
                                                                                                                                   'ERA-Interim_GPCPv2.3': {'name': 'ERA-Interim_GPCPv2.3',
                                                                                                                                                            'nyears': 40,
                                                                                                                                                            'time_period': ['1979-1-16 '
                                                                                                                                                                            '12:0:0.0',
                                                                                                                                                                            '2018-12-16 '
                                                                                                                                                                            '12:0:0.0']},
                                                                                                                                   'ERA-Interim_TRMM-3B43v-7': {'name': 'ERA-Interim_TRMM-3B43v-7',
                                                                                                                                                                'nyears': 20,
                                                                                                                                                                'time_period': ['1998-1-16 '
                                                                                                                                                                                '12:0:0.0',
                                                                                                                                                                                '2017-12-16 '
                                                                                                                                                                                '12:0:0.0']},
                                                                                                                                   'HadISST_CMAP': {'name': 'HadISST_CMAP',
                                                                                                                                                    'nyears': 40,
                                                                                                                                                    'time_period': ['1979-1-16 '
                                                                                                                                                                    '3:0:0.0',
                                                                                                                                                                    '2018-12-16 '
                                                                                                                                                                    '18:0:0.0']},
                                                                                                                                   'HadISST_ERA-Interim': {'name': 'HadISST_ERA-Interim',
                                                                                                                                                           'nyears': 40,
                                                                                                                                                           'time_period': ['1979-1-16 '
                                                                                                                                                                           '3:0:0.0',
                                                                                                                                                                           '2018-12-16 '
                                                                                                                                                                           '18:0:0.0']},
                                                                                                                                   'HadISST_GPCPv2.3': {'name': 'HadISST_GPCPv2.3',
                                                                                                                                                        'nyears': 40,
                                                                                                                                                        'time_period': ['1979-1-16 '
                                                                                                                                                                        '3:0:0.0',
                                                                                                                                                                        '2018-12-16 '
                                                                                                                                                                        '18:0:0.0']},
                                                                                                                                   'HadISST_TRMM-3B43v-7': {'name': 'HadISST_TRMM-3B43v-7',
                                                                                                                                                            'nyears': 20,
                                                                                                                                                            'time_period': ['1998-1-16 '
                                                                                                                                                                            '3:0:0.0',
                                                                                                                                                                            '2017-12-16 '
                                                                                                                                                                            '18:0:0.0']},
                                                                                                                                   'Tropflux_CMAP': {'name': 'Tropflux_CMAP',
                                                                                                                                                     'nyears': 39,
                                                                                                                                                     'time_period': ['1979-1-15 '
                                                                                                                                                                     '0:0:0.0',
                                                                                                                                                                     '2017-7-15 '
                                                                                                                                                                     '12:0:0.0']},
                                                                                                                                   'Tropflux_ERA-Interim': {'name': 'Tropflux_ERA-Interim',
                                                                                                                                                            'nyears': 39,
                                                                                                                                                            'time_period': ['1979-1-15 '
                                                                                                                                                                            '0:0:0.0',
                                                                                                                                                                            '2017-7-15 '
                                                                                                                                                                            '12:0:0.0']},
                                                                                                                                   'Tropflux_GPCPv2.3': {'name': 'Tropflux_GPCPv2.3',
                                                                                                                                                         'nyears': 39,
                                                                                                                                                         'time_period': ['1979-1-15 '
                                                                                                                                                                         '0:0:0.0',
                                                                                                                                                                         '2017-7-15 '
                                                                                                                                                                         '12:0:0.0']},
                                                                                                                                   'Tropflux_TRMM-3B43v-7': {'name': 'Tropflux_TRMM-3B43v-7',
                                                                                                                                                             'nyears': 20,
                                                                                                                                                             'time_period': ['1998-1-15 '
                                                                                                                                                                             '0:0:0.0',
                                                                                                                                                                             '2017-7-15 '
                                                                                                                                                                             '12:0:0.0']},
                                                                                                                                   'method': 'nino3.4 '
                                                                                                                                             'SSTA '
                                                                                                                                             'regressed '
                                                                                                                                             'against '
                                                                                                                                             'precipitation '
                                                                                                                                             'anomalies '
                                                                                                                                             'in '
                                                                                                                                             'global '
                                                                                                                                             'during '
                                                                                                                                             'JJA, '
                                                                                                                                             'time '
                                                                                                                                             'series '
                                                                                                                                             'are '
                                                                                                                                             'linearly '
                                                                                                                                             'detrended, '
                                                                                                                                             'observations '
                                                                                                                                             'and '
                                                                                                                                             'model '
                                                                                                                                             'regridded '
                                                                                                                                             'to '
                                                                                                                                             'generic_1x1deg',
                                                                                                                                   'name': 'ENSO '
                                                                                                                                           'JJA '
                                                                                                                                           'PRA '
                                                                                                                                           'pattern',
                                                                                                                                   'ref': 'Using '
                                                                                                                                          'CDAT '
                                                                                                                                          'regridding, '
                                                                                                                                          'correlation '
                                                                                                                                          '(centered '
                                                                                                                                          'and '
                                                                                                                                          'biased), '
                                                                                                                                          'std '
                                                                                                                                          '(centered '
                                                                                                                                          'and '
                                                                                                                                          'biased) '
                                                                                                                                          'and '
                                                                                                                                          'rms '
                                                                                                                                          '(uncentered '
                                                                                                                                          'and '
                                                                                                                                          'biased) '
                                                                                                                                          'calculation',
                                                                                                                                   'time_frequency': 'monthly',
                                                                                                                                   'units': ''},
                                                                                                                    'metric': {'datasets': 'ACCESS-CM2_r2i1p1f1; '
                                                                                                                                           "20CRv2's "
                                                                                                                                           'ts; '
                                                                                                                                           "ERA-20C's "
                                                                                                                                           'ts; '
                                                                                                                                           "ERA-5's "
                                                                                                                                           'ts; '
                                                                                                                                           "ERA-Interim's "
                                                                                                                                           'ts; '
                                                                                                                                           "HadISST's "
                                                                                                                                           'ts; '
                                                                                                                                           "Tropflux's "
                                                                                                                                           'ts; '
                                                                                                                                           "CMAP's "
                                                                                                                                           'pr; '
                                                                                                                                           "ERA-Interim's "
                                                                                                                                           'pr; '
                                                                                                                                           "GPCPv2.3's "
                                                                                                                                           'pr; '
                                                                                                                                           "TRMM-3B43v-7's "
                                                                                                                                           'pr',
                                                                                                                               'method': 'The '
                                                                                                                                         'metric '
                                                                                                                                         'is '
                                                                                                                                         'the '
                                                                                                                                         'statistical '
                                                                                                                                         'value '
                                                                                                                                         'between '
                                                                                                                                         'the '
                                                                                                                                         'model '
                                                                                                                                         'and '
                                                                                                                                         'the '
                                                                                                                                         'observations',
                                                                                                                               'name': 'EnsoPrMapJja',
                                                                                                                               'units': ''}},
                                                                                               'EnsoPrMapJjaRmse': {'diagnostic': {'20CRv2_CMAP': {'name': '20CRv2_CMAP',
                                                                                                                                                   'nyears': 34,
                                                                                                                                                   'time_period': ['1979-1-16 '
                                                                                                                                                                   '12:0:0.0',
                                                                                                                                                                   '2012-12-16 '
                                                                                                                                                                   '12:0:0.0']},
                                                                                                                                   '20CRv2_ERA-Interim': {'name': '20CRv2_ERA-Interim',
                                                                                                                                                          'nyears': 34,
                                                                                                                                                          'time_period': ['1979-1-16 '
                                                                                                                                                                          '12:0:0.0',
                                                                                                                                                                          '2012-12-16 '
                                                                                                                                                                          '12:0:0.0']},
                                                                                                                                   '20CRv2_GPCPv2.3': {'name': '20CRv2_GPCPv2.3',
                                                                                                                                                       'nyears': 34,
                                                                                                                                                       'time_period': ['1979-1-16 '
                                                                                                                                                                       '12:0:0.0',
                                                                                                                                                                       '2012-12-16 '
                                                                                                                                                                       '12:0:0.0']},
                                                                                                                                   '20CRv2_TRMM-3B43v-7': {'name': '20CRv2_TRMM-3B43v-7',
                                                                                                                                                           'nyears': 15,
                                                                                                                                                           'time_period': ['1998-1-16 '
                                                                                                                                                                           '12:0:0.0',
                                                                                                                                                                           '2012-12-16 '
                                                                                                                                                                           '12:0:0.0']},
                                                                                                                                   'ACCESS-CM2_r2i1p1f1': {'keyerror': None,
                                                                                                                                                           'name': 'ACCESS-CM2_r2i1p1f1',
                                                                                                                                                           'nyears': 165,
                                                                                                                                                           'time_period': ['1850-1-16 '
                                                                                                                                                                           '12:0:0.0',
                                                                                                                                                                           '2014-12-16 '
                                                                                                                                                                           '12:0:0.0']},
                                                                                                                                   'ERA-20C_CMAP': {'name': 'ERA-20C_CMAP',
                                                                                                                                                    'nyears': 32,
                                                                                                                                                    'time_period': ['1979-1-16 '
                                                                                                                                                                    '12:0:0.0',
                                                                                                                                                                    '2010-12-16 '
                                                                                                                                                                    '12:0:0.0']},
                                                                                                                                   'ERA-20C_ERA-Interim': {'name': 'ERA-20C_ERA-Interim',
                                                                                                                                                           'nyears': 32,
                                                                                                                                                           'time_period': ['1979-1-16 '
                                                                                                                                                                           '12:0:0.0',
                                                                                                                                                                           '2010-12-16 '
                                                                                                                                                                           '12:0:0.0']},
                                                                                                                                   'ERA-20C_GPCPv2.3': {'name': 'ERA-20C_GPCPv2.3',
                                                                                                                                                        'nyears': 32,
                                                                                                                                                        'time_period': ['1979-1-16 '
                                                                                                                                                                        '12:0:0.0',
                                                                                                                                                                        '2010-12-16 '
                                                                                                                                                                        '12:0:0.0']},
                                                                                                                                   'ERA-20C_TRMM-3B43v-7': {'name': 'ERA-20C_TRMM-3B43v-7',
                                                                                                                                                            'nyears': 13,
                                                                                                                                                            'time_period': ['1998-1-16 '
                                                                                                                                                                            '12:0:0.0',
                                                                                                                                                                            '2010-12-16 '
                                                                                                                                                                            '12:0:0.0']},
                                                                                                                                   'ERA-5_CMAP': {'name': 'ERA-5_CMAP',
                                                                                                                                                  'nyears': 40,
                                                                                                                                                  'time_period': ['1979-1-16 '
                                                                                                                                                                  '12:0:0.0',
                                                                                                                                                                  '2018-12-16 '
                                                                                                                                                                  '12:0:0.0']},
                                                                                                                                   'ERA-5_ERA-Interim': {'name': 'ERA-5_ERA-Interim',
                                                                                                                                                         'nyears': 40,
                                                                                                                                                         'time_period': ['1979-1-16 '
                                                                                                                                                                         '12:0:0.0',
                                                                                                                                                                         '2018-12-16 '
                                                                                                                                                                         '12:0:0.0']},
                                                                                                                                   'ERA-5_GPCPv2.3': {'name': 'ERA-5_GPCPv2.3',
                                                                                                                                                      'nyears': 40,
                                                                                                                                                      'time_period': ['1979-1-16 '
                                                                                                                                                                      '12:0:0.0',
                                                                                                                                                                      '2018-12-16 '
                                                                                                                                                                      '12:0:0.0']},
                                                                                                                                   'ERA-5_TRMM-3B43v-7': {'name': 'ERA-5_TRMM-3B43v-7',
                                                                                                                                                          'nyears': 20,
                                                                                                                                                          'time_period': ['1998-1-16 '
                                                                                                                                                                          '12:0:0.0',
                                                                                                                                                                          '2017-12-16 '
                                                                                                                                                                          '12:0:0.0']},
                                                                                                                                   'ERA-Interim_CMAP': {'name': 'ERA-Interim_CMAP',
                                                                                                                                                        'nyears': 40,
                                                                                                                                                        'time_period': ['1979-1-16 '
                                                                                                                                                                        '12:0:0.0',
                                                                                                                                                                        '2018-12-16 '
                                                                                                                                                                        '12:0:0.0']},
                                                                                                                                   'ERA-Interim_ERA-Interim': {'name': 'ERA-Interim_ERA-Interim',
                                                                                                                                                               'nyears': 40,
                                                                                                                                                               'time_period': ['1979-1-16 '
                                                                                                                                                                               '12:0:0.0',
                                                                                                                                                                               '2018-12-16 '
                                                                                                                                                                               '12:0:0.0']},
                                                                                                                                   'ERA-Interim_GPCPv2.3': {'name': 'ERA-Interim_GPCPv2.3',
                                                                                                                                                            'nyears': 40,
                                                                                                                                                            'time_period': ['1979-1-16 '
                                                                                                                                                                            '12:0:0.0',
                                                                                                                                                                            '2018-12-16 '
                                                                                                                                                                            '12:0:0.0']},
                                                                                                                                   'ERA-Interim_TRMM-3B43v-7': {'name': 'ERA-Interim_TRMM-3B43v-7',
                                                                                                                                                                'nyears': 20,
                                                                                                                                                                'time_period': ['1998-1-16 '
                                                                                                                                                                                '12:0:0.0',
                                                                                                                                                                                '2017-12-16 '
                                                                                                                                                                                '12:0:0.0']},
                                                                                                                                   'HadISST_CMAP': {'name': 'HadISST_CMAP',
                                                                                                                                                    'nyears': 40,
                                                                                                                                                    'time_period': ['1979-1-16 '
                                                                                                                                                                    '3:0:0.0',
                                                                                                                                                                    '2018-12-16 '
                                                                                                                                                                    '18:0:0.0']},
                                                                                                                                   'HadISST_ERA-Interim': {'name': 'HadISST_ERA-Interim',
                                                                                                                                                           'nyears': 40,
                                                                                                                                                           'time_period': ['1979-1-16 '
                                                                                                                                                                           '3:0:0.0',
                                                                                                                                                                           '2018-12-16 '
                                                                                                                                                                           '18:0:0.0']},
                                                                                                                                   'HadISST_GPCPv2.3': {'name': 'HadISST_GPCPv2.3',
                                                                                                                                                        'nyears': 40,
                                                                                                                                                        'time_period': ['1979-1-16 '
                                                                                                                                                                        '3:0:0.0',
                                                                                                                                                                        '2018-12-16 '
                                                                                                                                                                        '18:0:0.0']},
                                                                                                                                   'HadISST_TRMM-3B43v-7': {'name': 'HadISST_TRMM-3B43v-7',
                                                                                                                                                            'nyears': 20,
                                                                                                                                                            'time_period': ['1998-1-16 '
                                                                                                                                                                            '3:0:0.0',
                                                                                                                                                                            '2017-12-16 '
                                                                                                                                                                            '18:0:0.0']},
                                                                                                                                   'Tropflux_CMAP': {'name': 'Tropflux_CMAP',
                                                                                                                                                     'nyears': 39,
                                                                                                                                                     'time_period': ['1979-1-15 '
                                                                                                                                                                     '0:0:0.0',
                                                                                                                                                                     '2017-7-15 '
                                                                                                                                                                     '12:0:0.0']},
                                                                                                                                   'Tropflux_ERA-Interim': {'name': 'Tropflux_ERA-Interim',
                                                                                                                                                            'nyears': 39,
                                                                                                                                                            'time_period': ['1979-1-15 '
                                                                                                                                                                            '0:0:0.0',
                                                                                                                                                                            '2017-7-15 '
                                                                                                                                                                            '12:0:0.0']},
                                                                                                                                   'Tropflux_GPCPv2.3': {'name': 'Tropflux_GPCPv2.3',
                                                                                                                                                         'nyears': 39,
                                                                                                                                                         'time_period': ['1979-1-15 '
                                                                                                                                                                         '0:0:0.0',
                                                                                                                                                                         '2017-7-15 '
                                                                                                                                                                         '12:0:0.0']},
                                                                                                                                   'Tropflux_TRMM-3B43v-7': {'name': 'Tropflux_TRMM-3B43v-7',
                                                                                                                                                             'nyears': 20,
                                                                                                                                                             'time_period': ['1998-1-15 '
                                                                                                                                                                             '0:0:0.0',
                                                                                                                                                                             '2017-7-15 '
                                                                                                                                                                             '12:0:0.0']},
                                                                                                                                   'method': 'nino3.4 '
                                                                                                                                             'SSTA '
                                                                                                                                             'regressed '
                                                                                                                                             'against '
                                                                                                                                             'precipitation '
                                                                                                                                             'anomalies '
                                                                                                                                             'in '
                                                                                                                                             'global '
                                                                                                                                             'during '
                                                                                                                                             'JJA, '
                                                                                                                                             'time '
                                                                                                                                             'series '
                                                                                                                                             'are '
                                                                                                                                             'linearly '
                                                                                                                                             'detrended, '
                                                                                                                                             'observations '
                                                                                                                                             'and '
                                                                                                                                             'model '
                                                                                                                                             'regridded '
                                                                                                                                             'to '
                                                                                                                                             'generic_1x1deg',
                                                                                                                                   'name': 'ENSO '
                                                                                                                                           'JJA '
                                                                                                                                           'PRA '
                                                                                                                                           'pattern',
                                                                                                                                   'ref': 'Using '
                                                                                                                                          'CDAT '
                                                                                                                                          'regridding, '
                                                                                                                                          'correlation '
                                                                                                                                          '(centered '
                                                                                                                                          'and '
                                                                                                                                          'biased), '
                                                                                                                                          'std '
                                                                                                                                          '(centered '
                                                                                                                                          'and '
                                                                                                                                          'biased) '
                                                                                                                                          'and '
                                                                                                                                          'rms '
                                                                                                                                          '(uncentered '
                                                                                                                                          'and '
                                                                                                                                          'biased) '
                                                                                                                                          'calculation',
                                                                                                                                   'time_frequency': 'monthly',
                                                                                                                                   'units': ''},
                                                                                                                    'metric': {'datasets': 'ACCESS-CM2_r2i1p1f1; '
                                                                                                                                           "20CRv2's "
                                                                                                                                           'ts; '
                                                                                                                                           "ERA-20C's "
                                                                                                                                           'ts; '
                                                                                                                                           "ERA-5's "
                                                                                                                                           'ts; '
                                                                                                                                           "ERA-Interim's "
                                                                                                                                           'ts; '
                                                                                                                                           "HadISST's "
                                                                                                                                           'ts; '
                                                                                                                                           "Tropflux's "
                                                                                                                                           'ts; '
                                                                                                                                           "CMAP's "
                                                                                                                                           'pr; '
                                                                                                                                           "ERA-Interim's "
                                                                                                                                           'pr; '
                                                                                                                                           "GPCPv2.3's "
                                                                                                                                           'pr; '
                                                                                                                                           "TRMM-3B43v-7's "
                                                                                                                                           'pr',
                                                                                                                               'method': 'The '
                                                                                                                                         'metric '
                                                                                                                                         'is '
                                                                                                                                         'the '
                                                                                                                                         'statistical '
                                                                                                                                         'value '
                                                                                                                                         'between '
                                                                                                                                         'the '
                                                                                                                                         'model '
                                                                                                                                         'and '
                                                                                                                                         'the '
                                                                                                                                         'observations',
                                                                                                                               'name': 'EnsoPrMapJja',
                                                                                                                               'units': 'mm/day/C'}},
                                                                                               'EnsoPrMapJjaStd': {'diagnostic': {'20CRv2_CMAP': {'name': '20CRv2_CMAP',
                                                                                                                                                  'nyears': 34,
                                                                                                                                                  'time_period': ['1979-1-16 '
                                                                                                                                                                  '12:0:0.0',
                                                                                                                                                                  '2012-12-16 '
                                                                                                                                                                  '12:0:0.0']},
                                                                                                                                  '20CRv2_ERA-Interim': {'name': '20CRv2_ERA-Interim',
                                                                                                                                                         'nyears': 34,
                                                                                                                                                         'time_period': ['1979-1-16 '
                                                                                                                                                                         '12:0:0.0',
                                                                                                                                                                         '2012-12-16 '
                                                                                                                                                                         '12:0:0.0']},
                                                                                                                                  '20CRv2_GPCPv2.3': {'name': '20CRv2_GPCPv2.3',
                                                                                                                                                      'nyears': 34,
                                                                                                                                                      'time_period': ['1979-1-16 '
                                                                                                                                                                      '12:0:0.0',
                                                                                                                                                                      '2012-12-16 '
                                                                                                                                                                      '12:0:0.0']},
                                                                                                                                  '20CRv2_TRMM-3B43v-7': {'name': '20CRv2_TRMM-3B43v-7',
                                                                                                                                                          'nyears': 15,
                                                                                                                                                          'time_period': ['1998-1-16 '
                                                                                                                                                                          '12:0:0.0',
                                                                                                                                                                          '2012-12-16 '
                                                                                                                                                                          '12:0:0.0']},
                                                                                                                                  'ACCESS-CM2_r2i1p1f1': {'keyerror': None,
                                                                                                                                                          'name': 'ACCESS-CM2_r2i1p1f1',
                                                                                                                                                          'nyears': 165,
                                                                                                                                                          'time_period': ['1850-1-16 '
                                                                                                                                                                          '12:0:0.0',
                                                                                                                                                                          '2014-12-16 '
                                                                                                                                                                          '12:0:0.0']},
                                                                                                                                  'ERA-20C_CMAP': {'name': 'ERA-20C_CMAP',
                                                                                                                                                   'nyears': 32,
                                                                                                                                                   'time_period': ['1979-1-16 '
                                                                                                                                                                   '12:0:0.0',
                                                                                                                                                                   '2010-12-16 '
                                                                                                                                                                   '12:0:0.0']},
                                                                                                                                  'ERA-20C_ERA-Interim': {'name': 'ERA-20C_ERA-Interim',
                                                                                                                                                          'nyears': 32,
                                                                                                                                                          'time_period': ['1979-1-16 '
                                                                                                                                                                          '12:0:0.0',
                                                                                                                                                                          '2010-12-16 '
                                                                                                                                                                          '12:0:0.0']},
                                                                                                                                  'ERA-20C_GPCPv2.3': {'name': 'ERA-20C_GPCPv2.3',
                                                                                                                                                       'nyears': 32,
                                                                                                                                                       'time_period': ['1979-1-16 '
                                                                                                                                                                       '12:0:0.0',
                                                                                                                                                                       '2010-12-16 '
                                                                                                                                                                       '12:0:0.0']},
                                                                                                                                  'ERA-20C_TRMM-3B43v-7': {'name': 'ERA-20C_TRMM-3B43v-7',
                                                                                                                                                           'nyears': 13,
                                                                                                                                                           'time_period': ['1998-1-16 '
                                                                                                                                                                           '12:0:0.0',
                                                                                                                                                                           '2010-12-16 '
                                                                                                                                                                           '12:0:0.0']},
                                                                                                                                  'ERA-5_CMAP': {'name': 'ERA-5_CMAP',
                                                                                                                                                 'nyears': 40,
                                                                                                                                                 'time_period': ['1979-1-16 '
                                                                                                                                                                 '12:0:0.0',
                                                                                                                                                                 '2018-12-16 '
                                                                                                                                                                 '12:0:0.0']},
                                                                                                                                  'ERA-5_ERA-Interim': {'name': 'ERA-5_ERA-Interim',
                                                                                                                                                        'nyears': 40,
                                                                                                                                                        'time_period': ['1979-1-16 '
                                                                                                                                                                        '12:0:0.0',
                                                                                                                                                                        '2018-12-16 '
                                                                                                                                                                        '12:0:0.0']},
                                                                                                                                  'ERA-5_GPCPv2.3': {'name': 'ERA-5_GPCPv2.3',
                                                                                                                                                     'nyears': 40,
                                                                                                                                                     'time_period': ['1979-1-16 '
                                                                                                                                                                     '12:0:0.0',
                                                                                                                                                                     '2018-12-16 '
                                                                                                                                                                     '12:0:0.0']},
                                                                                                                                  'ERA-5_TRMM-3B43v-7': {'name': 'ERA-5_TRMM-3B43v-7',
                                                                                                                                                         'nyears': 20,
                                                                                                                                                         'time_period': ['1998-1-16 '
                                                                                                                                                                         '12:0:0.0',
                                                                                                                                                                         '2017-12-16 '
                                                                                                                                                                         '12:0:0.0']},
                                                                                                                                  'ERA-Interim_CMAP': {'name': 'ERA-Interim_CMAP',
                                                                                                                                                       'nyears': 40,
                                                                                                                                                       'time_period': ['1979-1-16 '
                                                                                                                                                                       '12:0:0.0',
                                                                                                                                                                       '2018-12-16 '
                                                                                                                                                                       '12:0:0.0']},
                                                                                                                                  'ERA-Interim_ERA-Interim': {'name': 'ERA-Interim_ERA-Interim',
                                                                                                                                                              'nyears': 40,
                                                                                                                                                              'time_period': ['1979-1-16 '
                                                                                                                                                                              '12:0:0.0',
                                                                                                                                                                              '2018-12-16 '
                                                                                                                                                                              '12:0:0.0']},
                                                                                                                                  'ERA-Interim_GPCPv2.3': {'name': 'ERA-Interim_GPCPv2.3',
                                                                                                                                                           'nyears': 40,
                                                                                                                                                           'time_period': ['1979-1-16 '
                                                                                                                                                                           '12:0:0.0',
                                                                                                                                                                           '2018-12-16 '
                                                                                                                                                                           '12:0:0.0']},
                                                                                                                                  'ERA-Interim_TRMM-3B43v-7': {'name': 'ERA-Interim_TRMM-3B43v-7',
                                                                                                                                                               'nyears': 20,
                                                                                                                                                               'time_period': ['1998-1-16 '
                                                                                                                                                                               '12:0:0.0',
                                                                                                                                                                               '2017-12-16 '
                                                                                                                                                                               '12:0:0.0']},
                                                                                                                                  'HadISST_CMAP': {'name': 'HadISST_CMAP',
                                                                                                                                                   'nyears': 40,
                                                                                                                                                   'time_period': ['1979-1-16 '
                                                                                                                                                                   '3:0:0.0',
                                                                                                                                                                   '2018-12-16 '
                                                                                                                                                                   '18:0:0.0']},
                                                                                                                                  'HadISST_ERA-Interim': {'name': 'HadISST_ERA-Interim',
                                                                                                                                                          'nyears': 40,
                                                                                                                                                          'time_period': ['1979-1-16 '
                                                                                                                                                                          '3:0:0.0',
                                                                                                                                                                          '2018-12-16 '
                                                                                                                                                                          '18:0:0.0']},
                                                                                                                                  'HadISST_GPCPv2.3': {'name': 'HadISST_GPCPv2.3',
                                                                                                                                                       'nyears': 40,
                                                                                                                                                       'time_period': ['1979-1-16 '
                                                                                                                                                                       '3:0:0.0',
                                                                                                                                                                       '2018-12-16 '
                                                                                                                                                                       '18:0:0.0']},
                                                                                                                                  'HadISST_TRMM-3B43v-7': {'name': 'HadISST_TRMM-3B43v-7',
                                                                                                                                                           'nyears': 20,
                                                                                                                                                           'time_period': ['1998-1-16 '
                                                                                                                                                                           '3:0:0.0',
                                                                                                                                                                           '2017-12-16 '
                                                                                                                                                                           '18:0:0.0']},
                                                                                                                                  'Tropflux_CMAP': {'name': 'Tropflux_CMAP',
                                                                                                                                                    'nyears': 39,
                                                                                                                                                    'time_period': ['1979-1-15 '
                                                                                                                                                                    '0:0:0.0',
                                                                                                                                                                    '2017-7-15 '
                                                                                                                                                                    '12:0:0.0']},
                                                                                                                                  'Tropflux_ERA-Interim': {'name': 'Tropflux_ERA-Interim',
                                                                                                                                                           'nyears': 39,
                                                                                                                                                           'time_period': ['1979-1-15 '
                                                                                                                                                                           '0:0:0.0',
                                                                                                                                                                           '2017-7-15 '
                                                                                                                                                                           '12:0:0.0']},
                                                                                                                                  'Tropflux_GPCPv2.3': {'name': 'Tropflux_GPCPv2.3',
                                                                                                                                                        'nyears': 39,
                                                                                                                                                        'time_period': ['1979-1-15 '
                                                                                                                                                                        '0:0:0.0',
                                                                                                                                                                        '2017-7-15 '
                                                                                                                                                                        '12:0:0.0']},
                                                                                                                                  'Tropflux_TRMM-3B43v-7': {'name': 'Tropflux_TRMM-3B43v-7',
                                                                                                                                                            'nyears': 20,
                                                                                                                                                            'time_period': ['1998-1-15 '
                                                                                                                                                                            '0:0:0.0',
                                                                                                                                                                            '2017-7-15 '
                                                                                                                                                                            '12:0:0.0']},
                                                                                                                                  'method': 'nino3.4 '
                                                                                                                                            'SSTA '
                                                                                                                                            'regressed '
                                                                                                                                            'against '
                                                                                                                                            'precipitation '
                                                                                                                                            'anomalies '
                                                                                                                                            'in '
                                                                                                                                            'global '
                                                                                                                                            'during '
                                                                                                                                            'JJA, '
                                                                                                                                            'time '
                                                                                                                                            'series '
                                                                                                                                            'are '
                                                                                                                                            'linearly '
                                                                                                                                            'detrended, '
                                                                                                                                            'observations '
                                                                                                                                            'and '
                                                                                                                                            'model '
                                                                                                                                            'regridded '
                                                                                                                                            'to '
                                                                                                                                            'generic_1x1deg',
                                                                                                                                  'name': 'ENSO '
                                                                                                                                          'JJA '
                                                                                                                                          'PRA '
                                                                                                                                          'pattern',
                                                                                                                                  'ref': 'Using '
                                                                                                                                         'CDAT '
                                                                                                                                         'regridding, '
                                                                                                                                         'correlation '
                                                                                                                                         '(centered '
                                                                                                                                         'and '
                                                                                                                                         'biased), '
                                                                                                                                         'std '
                                                                                                                                         '(centered '
                                                                                                                                         'and '
                                                                                                                                         'biased) '
                                                                                                                                         'and '
                                                                                                                                         'rms '
                                                                                                                                         '(uncentered '
                                                                                                                                         'and '
                                                                                                                                         'biased) '
                                                                                                                                         'calculation',
                                                                                                                                  'time_frequency': 'monthly',
                                                                                                                                  'units': ''},
                                                                                                                   'metric': {'datasets': 'ACCESS-CM2_r2i1p1f1; '
                                                                                                                                          "20CRv2's "
                                                                                                                                          'ts; '
                                                                                                                                          "ERA-20C's "
                                                                                                                                          'ts; '
                                                                                                                                          "ERA-5's "
                                                                                                                                          'ts; '
                                                                                                                                          "ERA-Interim's "
                                                                                                                                          'ts; '
                                                                                                                                          "HadISST's "
                                                                                                                                          'ts; '
                                                                                                                                          "Tropflux's "
                                                                                                                                          'ts; '
                                                                                                                                          "CMAP's "
                                                                                                                                          'pr; '
                                                                                                                                          "ERA-Interim's "
                                                                                                                                          'pr; '
                                                                                                                                          "GPCPv2.3's "
                                                                                                                                          'pr; '
                                                                                                                                          "TRMM-3B43v-7's "
                                                                                                                                          'pr',
                                                                                                                              'method': 'The '
                                                                                                                                        'metric '
                                                                                                                                        'is '
                                                                                                                                        'the '
                                                                                                                                        'statistical '
                                                                                                                                        'value '
                                                                                                                                        'between '
                                                                                                                                        'the '
                                                                                                                                        'model '
                                                                                                                                        'and '
                                                                                                                                        'the '
                                                                                                                                        'observations',
                                                                                                                              'name': 'EnsoPrMapJja',
                                                                                                                              'units': 'mm/day/C '
                                                                                                                                       '/ '
                                                                                                                                       'mm/day/C'}},
                                                                                               'EnsoSeasonality': {'diagnostic': {'20CRv2': {'keyerror': None,
                                                                                                                                             'name': '20CRv2',
                                                                                                                                             'nyears': 142,
                                                                                                                                             'time_period': ['1871-1-16 '
                                                                                                                                                             '12:0:0.0',
                                                                                                                                                             '2012-12-16 '
                                                                                                                                                             '12:0:0.0']},
                                                                                                                                  'ACCESS-CM2_r2i1p1f1': {'keyerror': None,
                                                                                                                                                          'name': 'ACCESS-CM2_r2i1p1f1',
                                                                                                                                                          'nyears': 165,
                                                                                                                                                          'time_period': ['1850-1-16 '
                                                                                                                                                                          '12:0:0.0',
                                                                                                                                                                          '2014-12-16 '
                                                                                                                                                                          '12:0:0.0']},
                                                                                                                                  'ERA-20C': {'keyerror': None,
                                                                                                                                              'name': 'ERA-20C',
                                                                                                                                              'nyears': 111,
                                                                                                                                              'time_period': ['1900-1-16 '
                                                                                                                                                              '12:0:0.0',
                                                                                                                                                              '2010-12-16 '
                                                                                                                                                              '12:0:0.0']},
                                                                                                                                  'ERA-5': {'keyerror': None,
                                                                                                                                            'name': 'ERA-5',
                                                                                                                                            'nyears': 40,
                                                                                                                                            'time_period': ['1979-1-16 '
                                                                                                                                                            '12:0:0.0',
                                                                                                                                                            '2018-12-16 '
                                                                                                                                                            '12:0:0.0']},
                                                                                                                                  'ERA-Interim': {'keyerror': None,
                                                                                                                                                  'name': 'ERA-Interim',
                                                                                                                                                  'nyears': 40,
                                                                                                                                                  'time_period': ['1979-1-16 '
                                                                                                                                                                  '12:0:0.0',
                                                                                                                                                                  '2018-12-16 '
                                                                                                                                                                  '12:0:0.0']},
                                                                                                                                  'HadISST': {'keyerror': 'unlikely '
                                                                                                                                                          'units: '
                                                                                                                                                          'K([-1e+30, '
                                                                                                                                                          '304.7203])',
                                                                                                                                              'name': 'HadISST',
                                                                                                                                              'nyears': 149,
                                                                                                                                              'time_period': ['1870-1-16 '
                                                                                                                                                              '11:59:59.5',
                                                                                                                                                              '2018-12-16 '
                                                                                                                                                              '18:0:0.0']},
                                                                                                                                  'Tropflux': {'keyerror': None,
                                                                                                                                               'name': 'Tropflux',
                                                                                                                                               'nyears': 39,
                                                                                                                                               'time_period': ['1979-1-15 '
                                                                                                                                                               '0:0:0.0',
                                                                                                                                                               '2017-7-15 '
                                                                                                                                                               '12:0:0.0']},
                                                                                                                                  'method': 'Ratio '
                                                                                                                                            'between '
                                                                                                                                            'NDJ '
                                                                                                                                            'and '
                                                                                                                                            'MAM '
                                                                                                                                            'standard '
                                                                                                                                            'deviation '
                                                                                                                                            'nino3.4 '
                                                                                                                                            'sstA, '
                                                                                                                                            'time '
                                                                                                                                            'series '
                                                                                                                                            'are '
                                                                                                                                            'linearly '
                                                                                                                                            'detrended',
                                                                                                                                  'name': 'ENSO '
                                                                                                                                          'seasonality',
                                                                                                                                  'ref': 'Using '
                                                                                                                                         'CDAT '
                                                                                                                                         'std '
                                                                                                                                         'dev '
                                                                                                                                         'calculation',
                                                                                                                                  'time_frequency': 'monthly',
                                                                                                                                  'units': 'C/C'},
                                                                                                                   'metric': {'datasets': 'ACCESS-CM2_r2i1p1f1; '
                                                                                                                                          "20CRv2's "
                                                                                                                                          'ts; '
                                                                                                                                          "ERA-20C's "
                                                                                                                                          'ts; '
                                                                                                                                          "ERA-5's "
                                                                                                                                          'ts; '
                                                                                                                                          "ERA-Interim's "
                                                                                                                                          'ts; '
                                                                                                                                          "HadISST's "
                                                                                                                                          'ts; '
                                                                                                                                          "Tropflux's "
                                                                                                                                          'ts; '
                                                                                                                                          "'s ",
                                                                                                                              'method': 'The '
                                                                                                                                        'metric '
                                                                                                                                        'is '
                                                                                                                                        'the '
                                                                                                                                        'absolute '
                                                                                                                                        'value '
                                                                                                                                        'of '
                                                                                                                                        'the '
                                                                                                                                        'relative '
                                                                                                                                        'difference '
                                                                                                                                        'between '
                                                                                                                                        'model '
                                                                                                                                        'and '
                                                                                                                                        'observations '
                                                                                                                                        'values '
                                                                                                                                        '(M '
                                                                                                                                        '= '
                                                                                                                                        '100 '
                                                                                                                                        '* '
                                                                                                                                        'abs[[model-obs] '
                                                                                                                                        '/ '
                                                                                                                                        'obs])',
                                                                                                                              'name': 'EnsoSeasonality',
                                                                                                                              'units': '%'}},
                                                                                               'EnsoSstLonRmse': {'diagnostic': {'20CRv2': {'name': '20CRv2',
                                                                                                                                            'nyears': 142,
                                                                                                                                            'time_period': ['1871-1-16 '
                                                                                                                                                            '12:0:0.0',
                                                                                                                                                            '2012-12-16 '
                                                                                                                                                            '12:0:0.0']},
                                                                                                                                 'ACCESS-CM2_r2i1p1f1': {'keyerror': None,
                                                                                                                                                         'name': 'ACCESS-CM2_r2i1p1f1',
                                                                                                                                                         'nyears': 165,
                                                                                                                                                         'time_period': ['1850-1-16 '
                                                                                                                                                                         '12:0:0.0',
                                                                                                                                                                         '2014-12-16 '
                                                                                                                                                                         '12:0:0.0']},
                                                                                                                                 'ERA-20C': {'name': 'ERA-20C',
                                                                                                                                             'nyears': 111,
                                                                                                                                             'time_period': ['1900-1-16 '
                                                                                                                                                             '12:0:0.0',
                                                                                                                                                             '2010-12-16 '
                                                                                                                                                             '12:0:0.0']},
                                                                                                                                 'ERA-5': {'name': 'ERA-5',
                                                                                                                                           'nyears': 40,
                                                                                                                                           'time_period': ['1979-1-16 '
                                                                                                                                                           '12:0:0.0',
                                                                                                                                                           '2018-12-16 '
                                                                                                                                                           '12:0:0.0']},
                                                                                                                                 'ERA-Interim': {'name': 'ERA-Interim',
                                                                                                                                                 'nyears': 40,
                                                                                                                                                 'time_period': ['1979-1-16 '
                                                                                                                                                                 '12:0:0.0',
                                                                                                                                                                 '2018-12-16 '
                                                                                                                                                                 '12:0:0.0']},
                                                                                                                                 'HadISST': {'name': 'HadISST',
                                                                                                                                             'nyears': 149,
                                                                                                                                             'time_period': ['1870-1-16 '
                                                                                                                                                             '11:59:59.5',
                                                                                                                                                             '2018-12-16 '
                                                                                                                                                             '18:0:0.0']},
                                                                                                                                 'Tropflux': {'name': 'Tropflux',
                                                                                                                                              'nyears': 39,
                                                                                                                                              'time_period': ['1979-1-15 '
                                                                                                                                                              '0:0:0.0',
                                                                                                                                                              '2017-7-15 '
                                                                                                                                                              '12:0:0.0']},
                                                                                                                                 'method': 'nino3.4 '
                                                                                                                                           'SSTA '
                                                                                                                                           'during '
                                                                                                                                           'DEC '
                                                                                                                                           'regressed '
                                                                                                                                           'against '
                                                                                                                                           'equatorial_pacific '
                                                                                                                                           'SSTA, '
                                                                                                                                           'time '
                                                                                                                                           'series '
                                                                                                                                           'are '
                                                                                                                                           'linearly '
                                                                                                                                           'detrended, '
                                                                                                                                           'smoothing '
                                                                                                                                           'using '
                                                                                                                                           'a '
                                                                                                                                           'triangle '
                                                                                                                                           'shaped '
                                                                                                                                           'window '
                                                                                                                                           'of '
                                                                                                                                           '5 '
                                                                                                                                           'points, '
                                                                                                                                           'observations '
                                                                                                                                           'and '
                                                                                                                                           'model '
                                                                                                                                           'regridded '
                                                                                                                                           'to '
                                                                                                                                           'generic_1x1deg',
                                                                                                                                 'name': 'ENSO '
                                                                                                                                         'Zonal '
                                                                                                                                         'SSTA '
                                                                                                                                         'pattern',
                                                                                                                                 'ref': 'Using '
                                                                                                                                        'CDAT '
                                                                                                                                        'regridding '
                                                                                                                                        'and '
                                                                                                                                        'rms '
                                                                                                                                        '(uncentered '
                                                                                                                                        'and '
                                                                                                                                        'biased) '
                                                                                                                                        'calculation',
                                                                                                                                 'time_frequency': 'monthly',
                                                                                                                                 'units': 'C/C'},
                                                                                                                  'metric': {'datasets': 'ACCESS-CM2_r2i1p1f1; '
                                                                                                                                         "20CRv2's "
                                                                                                                                         'ts; '
                                                                                                                                         "ERA-20C's "
                                                                                                                                         'ts; '
                                                                                                                                         "ERA-5's "
                                                                                                                                         'ts; '
                                                                                                                                         "ERA-Interim's "
                                                                                                                                         'ts; '
                                                                                                                                         "HadISST's "
                                                                                                                                         'ts; '
                                                                                                                                         "Tropflux's "
                                                                                                                                         'ts; '
                                                                                                                                         "'s ",
                                                                                                                             'method': 'The '
                                                                                                                                       'metric '
                                                                                                                                       'is '
                                                                                                                                       'the '
                                                                                                                                       'statistical '
                                                                                                                                       'value '
                                                                                                                                       'between '
                                                                                                                                       'the '
                                                                                                                                       'model '
                                                                                                                                       'and '
                                                                                                                                       'the '
                                                                                                                                       'observations',
                                                                                                                             'name': 'EnsoSstLonRmse',
                                                                                                                             'units': 'C/C'}},
                                                                                               'EnsoSstMapDjfCorr': {'diagnostic': {'20CRv2': {'name': '20CRv2',
                                                                                                                                               'nyears': 142,
                                                                                                                                               'time_period': ['1871-1-16 '
                                                                                                                                                               '12:0:0.0',
                                                                                                                                                               '2012-12-16 '
                                                                                                                                                               '12:0:0.0']},
                                                                                                                                    'ACCESS-CM2_r2i1p1f1': {'keyerror': None,
                                                                                                                                                            'name': 'ACCESS-CM2_r2i1p1f1',
                                                                                                                                                            'nyears': 165,
                                                                                                                                                            'time_period': ['1850-1-16 '
                                                                                                                                                                            '12:0:0.0',
                                                                                                                                                                            '2014-12-16 '
                                                                                                                                                                            '12:0:0.0']},
                                                                                                                                    'ERA-20C': {'name': 'ERA-20C',
                                                                                                                                                'nyears': 111,
                                                                                                                                                'time_period': ['1900-1-16 '
                                                                                                                                                                '12:0:0.0',
                                                                                                                                                                '2010-12-16 '
                                                                                                                                                                '12:0:0.0']},
                                                                                                                                    'ERA-5': {'name': 'ERA-5',
                                                                                                                                              'nyears': 40,
                                                                                                                                              'time_period': ['1979-1-16 '
                                                                                                                                                              '12:0:0.0',
                                                                                                                                                              '2018-12-16 '
                                                                                                                                                              '12:0:0.0']},
                                                                                                                                    'ERA-Interim': {'name': 'ERA-Interim',
                                                                                                                                                    'nyears': 40,
                                                                                                                                                    'time_period': ['1979-1-16 '
                                                                                                                                                                    '12:0:0.0',
                                                                                                                                                                    '2018-12-16 '
                                                                                                                                                                    '12:0:0.0']},
                                                                                                                                    'method': 'nino3.4 '
                                                                                                                                              'SSTA '
                                                                                                                                              'regressed '
                                                                                                                                              'against '
                                                                                                                                              'surface '
                                                                                                                                              'temperature '
                                                                                                                                              'anomalies '
                                                                                                                                              'in '
                                                                                                                                              'global '
                                                                                                                                              'during '
                                                                                                                                              'DJF, '
                                                                                                                                              'time '
                                                                                                                                              'series '
                                                                                                                                              'are '
                                                                                                                                              'linearly '
                                                                                                                                              'detrended, '
                                                                                                                                              'observations '
                                                                                                                                              'and '
                                                                                                                                              'model '
                                                                                                                                              'regridded '
                                                                                                                                              'to '
                                                                                                                                              'generic_1x1deg',
                                                                                                                                    'name': 'ENSO '
                                                                                                                                            'DJF '
                                                                                                                                            'TSA '
                                                                                                                                            'pattern',
                                                                                                                                    'ref': 'Using '
                                                                                                                                           'CDAT '
                                                                                                                                           'regridding, '
                                                                                                                                           'correlation '
                                                                                                                                           '(centered '
                                                                                                                                           'and '
                                                                                                                                           'biased), '
                                                                                                                                           'std '
                                                                                                                                           '(centered '
                                                                                                                                           'and '
                                                                                                                                           'biased) '
                                                                                                                                           'and '
                                                                                                                                           'rms '
                                                                                                                                           '(uncentered '
                                                                                                                                           'and '
                                                                                                                                           'biased) '
                                                                                                                                           'calculation',
                                                                                                                                    'time_frequency': 'monthly',
                                                                                                                                    'units': ''},
                                                                                                                     'metric': {'datasets': 'ACCESS-CM2_r2i1p1f1; '
                                                                                                                                            "20CRv2's "
                                                                                                                                            'ts; '
                                                                                                                                            "ERA-20C's "
                                                                                                                                            'ts; '
                                                                                                                                            "ERA-5's "
                                                                                                                                            'ts; '
                                                                                                                                            "ERA-Interim's "
                                                                                                                                            'ts; '
                                                                                                                                            "HadISST's "
                                                                                                                                            'ts; '
                                                                                                                                            "Tropflux's "
                                                                                                                                            'ts; '
                                                                                                                                            "'s ",
                                                                                                                                'method': 'The '
                                                                                                                                          'metric '
                                                                                                                                          'is '
                                                                                                                                          'the '
                                                                                                                                          'statistical '
                                                                                                                                          'value '
                                                                                                                                          'between '
                                                                                                                                          'the '
                                                                                                                                          'model '
                                                                                                                                          'and '
                                                                                                                                          'the '
                                                                                                                                          'observations',
                                                                                                                                'name': 'EnsoSstMapDjf',
                                                                                                                                'units': ''}},
                                                                                               'EnsoSstMapDjfRmse': {'diagnostic': {'20CRv2': {'name': '20CRv2',
                                                                                                                                               'nyears': 142,
                                                                                                                                               'time_period': ['1871-1-16 '
                                                                                                                                                               '12:0:0.0',
                                                                                                                                                               '2012-12-16 '
                                                                                                                                                               '12:0:0.0']},
                                                                                                                                    'ACCESS-CM2_r2i1p1f1': {'keyerror': None,
                                                                                                                                                            'name': 'ACCESS-CM2_r2i1p1f1',
                                                                                                                                                            'nyears': 165,
                                                                                                                                                            'time_period': ['1850-1-16 '
                                                                                                                                                                            '12:0:0.0',
                                                                                                                                                                            '2014-12-16 '
                                                                                                                                                                            '12:0:0.0']},
                                                                                                                                    'ERA-20C': {'name': 'ERA-20C',
                                                                                                                                                'nyears': 111,
                                                                                                                                                'time_period': ['1900-1-16 '
                                                                                                                                                                '12:0:0.0',
                                                                                                                                                                '2010-12-16 '
                                                                                                                                                                '12:0:0.0']},
                                                                                                                                    'ERA-5': {'name': 'ERA-5',
                                                                                                                                              'nyears': 40,
                                                                                                                                              'time_period': ['1979-1-16 '
                                                                                                                                                              '12:0:0.0',
                                                                                                                                                              '2018-12-16 '
                                                                                                                                                              '12:0:0.0']},
                                                                                                                                    'ERA-Interim': {'name': 'ERA-Interim',
                                                                                                                                                    'nyears': 40,
                                                                                                                                                    'time_period': ['1979-1-16 '
                                                                                                                                                                    '12:0:0.0',
                                                                                                                                                                    '2018-12-16 '
                                                                                                                                                                    '12:0:0.0']},
                                                                                                                                    'method': 'nino3.4 '
                                                                                                                                              'SSTA '
                                                                                                                                              'regressed '
                                                                                                                                              'against '
                                                                                                                                              'surface '
                                                                                                                                              'temperature '
                                                                                                                                              'anomalies '
                                                                                                                                              'in '
                                                                                                                                              'global '
                                                                                                                                              'during '
                                                                                                                                              'DJF, '
                                                                                                                                              'time '
                                                                                                                                              'series '
                                                                                                                                              'are '
                                                                                                                                              'linearly '
                                                                                                                                              'detrended, '
                                                                                                                                              'observations '
                                                                                                                                              'and '
                                                                                                                                              'model '
                                                                                                                                              'regridded '
                                                                                                                                              'to '
                                                                                                                                              'generic_1x1deg',
                                                                                                                                    'name': 'ENSO '
                                                                                                                                            'DJF '
                                                                                                                                            'TSA '
                                                                                                                                            'pattern',
                                                                                                                                    'ref': 'Using '
                                                                                                                                           'CDAT '
                                                                                                                                           'regridding, '
                                                                                                                                           'correlation '
                                                                                                                                           '(centered '
                                                                                                                                           'and '
                                                                                                                                           'biased), '
                                                                                                                                           'std '
                                                                                                                                           '(centered '
                                                                                                                                           'and '
                                                                                                                                           'biased) '
                                                                                                                                           'and '
                                                                                                                                           'rms '
                                                                                                                                           '(uncentered '
                                                                                                                                           'and '
                                                                                                                                           'biased) '
                                                                                                                                           'calculation',
                                                                                                                                    'time_frequency': 'monthly',
                                                                                                                                    'units': ''},
                                                                                                                     'metric': {'datasets': 'ACCESS-CM2_r2i1p1f1; '
                                                                                                                                            "20CRv2's "
                                                                                                                                            'ts; '
                                                                                                                                            "ERA-20C's "
                                                                                                                                            'ts; '
                                                                                                                                            "ERA-5's "
                                                                                                                                            'ts; '
                                                                                                                                            "ERA-Interim's "
                                                                                                                                            'ts; '
                                                                                                                                            "HadISST's "
                                                                                                                                            'ts; '
                                                                                                                                            "Tropflux's "
                                                                                                                                            'ts; '
                                                                                                                                            "'s ",
                                                                                                                                'method': 'The '
                                                                                                                                          'metric '
                                                                                                                                          'is '
                                                                                                                                          'the '
                                                                                                                                          'statistical '
                                                                                                                                          'value '
                                                                                                                                          'between '
                                                                                                                                          'the '
                                                                                                                                          'model '
                                                                                                                                          'and '
                                                                                                                                          'the '
                                                                                                                                          'observations',
                                                                                                                                'name': 'EnsoSstMapDjf',
                                                                                                                                'units': 'C/C'}},
                                                                                               'EnsoSstMapDjfStd': {'diagnostic': {'20CRv2': {'name': '20CRv2',
                                                                                                                                              'nyears': 142,
                                                                                                                                              'time_period': ['1871-1-16 '
                                                                                                                                                              '12:0:0.0',
                                                                                                                                                              '2012-12-16 '
                                                                                                                                                              '12:0:0.0']},
                                                                                                                                   'ACCESS-CM2_r2i1p1f1': {'keyerror': None,
                                                                                                                                                           'name': 'ACCESS-CM2_r2i1p1f1',
                                                                                                                                                           'nyears': 165,
                                                                                                                                                           'time_period': ['1850-1-16 '
                                                                                                                                                                           '12:0:0.0',
                                                                                                                                                                           '2014-12-16 '
                                                                                                                                                                           '12:0:0.0']},
                                                                                                                                   'ERA-20C': {'name': 'ERA-20C',
                                                                                                                                               'nyears': 111,
                                                                                                                                               'time_period': ['1900-1-16 '
                                                                                                                                                               '12:0:0.0',
                                                                                                                                                               '2010-12-16 '
                                                                                                                                                               '12:0:0.0']},
                                                                                                                                   'ERA-5': {'name': 'ERA-5',
                                                                                                                                             'nyears': 40,
                                                                                                                                             'time_period': ['1979-1-16 '
                                                                                                                                                             '12:0:0.0',
                                                                                                                                                             '2018-12-16 '
                                                                                                                                                             '12:0:0.0']},
                                                                                                                                   'ERA-Interim': {'name': 'ERA-Interim',
                                                                                                                                                   'nyears': 40,
                                                                                                                                                   'time_period': ['1979-1-16 '
                                                                                                                                                                   '12:0:0.0',
                                                                                                                                                                   '2018-12-16 '
                                                                                                                                                                   '12:0:0.0']},
                                                                                                                                   'method': 'nino3.4 '
                                                                                                                                             'SSTA '
                                                                                                                                             'regressed '
                                                                                                                                             'against '
                                                                                                                                             'surface '
                                                                                                                                             'temperature '
                                                                                                                                             'anomalies '
                                                                                                                                             'in '
                                                                                                                                             'global '
                                                                                                                                             'during '
                                                                                                                                             'DJF, '
                                                                                                                                             'time '
                                                                                                                                             'series '
                                                                                                                                             'are '
                                                                                                                                             'linearly '
                                                                                                                                             'detrended, '
                                                                                                                                             'observations '
                                                                                                                                             'and '
                                                                                                                                             'model '
                                                                                                                                             'regridded '
                                                                                                                                             'to '
                                                                                                                                             'generic_1x1deg',
                                                                                                                                   'name': 'ENSO '
                                                                                                                                           'DJF '
                                                                                                                                           'TSA '
                                                                                                                                           'pattern',
                                                                                                                                   'ref': 'Using '
                                                                                                                                          'CDAT '
                                                                                                                                          'regridding, '
                                                                                                                                          'correlation '
                                                                                                                                          '(centered '
                                                                                                                                          'and '
                                                                                                                                          'biased), '
                                                                                                                                          'std '
                                                                                                                                          '(centered '
                                                                                                                                          'and '
                                                                                                                                          'biased) '
                                                                                                                                          'and '
                                                                                                                                          'rms '
                                                                                                                                          '(uncentered '
                                                                                                                                          'and '
                                                                                                                                          'biased) '
                                                                                                                                          'calculation',
                                                                                                                                   'time_frequency': 'monthly',
                                                                                                                                   'units': ''},
                                                                                                                    'metric': {'datasets': 'ACCESS-CM2_r2i1p1f1; '
                                                                                                                                           "20CRv2's "
                                                                                                                                           'ts; '
                                                                                                                                           "ERA-20C's "
                                                                                                                                           'ts; '
                                                                                                                                           "ERA-5's "
                                                                                                                                           'ts; '
                                                                                                                                           "ERA-Interim's "
                                                                                                                                           'ts; '
                                                                                                                                           "HadISST's "
                                                                                                                                           'ts; '
                                                                                                                                           "Tropflux's "
                                                                                                                                           'ts; '
                                                                                                                                           "'s ",
                                                                                                                               'method': 'The '
                                                                                                                                         'metric '
                                                                                                                                         'is '
                                                                                                                                         'the '
                                                                                                                                         'statistical '
                                                                                                                                         'value '
                                                                                                                                         'between '
                                                                                                                                         'the '
                                                                                                                                         'model '
                                                                                                                                         'and '
                                                                                                                                         'the '
                                                                                                                                         'observations',
                                                                                                                               'name': 'EnsoSstMapDjf',
                                                                                                                               'units': 'C/C '
                                                                                                                                        '/ '
                                                                                                                                        'C/C'}},
                                                                                               'EnsoSstMapJjaCorr': {'diagnostic': {'20CRv2': {'name': '20CRv2',
                                                                                                                                               'nyears': 142,
                                                                                                                                               'time_period': ['1871-1-16 '
                                                                                                                                                               '12:0:0.0',
                                                                                                                                                               '2012-12-16 '
                                                                                                                                                               '12:0:0.0']},
                                                                                                                                    'ACCESS-CM2_r2i1p1f1': {'keyerror': None,
                                                                                                                                                            'name': 'ACCESS-CM2_r2i1p1f1',
                                                                                                                                                            'nyears': 165,
                                                                                                                                                            'time_period': ['1850-1-16 '
                                                                                                                                                                            '12:0:0.0',
                                                                                                                                                                            '2014-12-16 '
                                                                                                                                                                            '12:0:0.0']},
                                                                                                                                    'ERA-20C': {'name': 'ERA-20C',
                                                                                                                                                'nyears': 111,
                                                                                                                                                'time_period': ['1900-1-16 '
                                                                                                                                                                '12:0:0.0',
                                                                                                                                                                '2010-12-16 '
                                                                                                                                                                '12:0:0.0']},
                                                                                                                                    'ERA-5': {'name': 'ERA-5',
                                                                                                                                              'nyears': 40,
                                                                                                                                              'time_period': ['1979-1-16 '
                                                                                                                                                              '12:0:0.0',
                                                                                                                                                              '2018-12-16 '
                                                                                                                                                              '12:0:0.0']},
                                                                                                                                    'ERA-Interim': {'name': 'ERA-Interim',
                                                                                                                                                    'nyears': 40,
                                                                                                                                                    'time_period': ['1979-1-16 '
                                                                                                                                                                    '12:0:0.0',
                                                                                                                                                                    '2018-12-16 '
                                                                                                                                                                    '12:0:0.0']},
                                                                                                                                    'method': 'nino3.4 '
                                                                                                                                              'SSTA '
                                                                                                                                              'regressed '
                                                                                                                                              'against '
                                                                                                                                              'surface '
                                                                                                                                              'temperature '
                                                                                                                                              'anomalies '
                                                                                                                                              'in '
                                                                                                                                              'global '
                                                                                                                                              'during '
                                                                                                                                              'JJA, '
                                                                                                                                              'time '
                                                                                                                                              'series '
                                                                                                                                              'are '
                                                                                                                                              'linearly '
                                                                                                                                              'detrended, '
                                                                                                                                              'observations '
                                                                                                                                              'and '
                                                                                                                                              'model '
                                                                                                                                              'regridded '
                                                                                                                                              'to '
                                                                                                                                              'generic_1x1deg',
                                                                                                                                    'name': 'ENSO '
                                                                                                                                            'JJA '
                                                                                                                                            'TSA '
                                                                                                                                            'pattern',
                                                                                                                                    'ref': 'Using '
                                                                                                                                           'CDAT '
                                                                                                                                           'regridding, '
                                                                                                                                           'correlation '
                                                                                                                                           '(centered '
                                                                                                                                           'and '
                                                                                                                                           'biased), '
                                                                                                                                           'std '
                                                                                                                                           '(centered '
                                                                                                                                           'and '
                                                                                                                                           'biased) '
                                                                                                                                           'and '
                                                                                                                                           'rms '
                                                                                                                                           '(uncentered '
                                                                                                                                           'and '
                                                                                                                                           'biased) '
                                                                                                                                           'calculation',
                                                                                                                                    'time_frequency': 'monthly',
                                                                                                                                    'units': ''},
                                                                                                                     'metric': {'datasets': 'ACCESS-CM2_r2i1p1f1; '
                                                                                                                                            "20CRv2's "
                                                                                                                                            'ts; '
                                                                                                                                            "ERA-20C's "
                                                                                                                                            'ts; '
                                                                                                                                            "ERA-5's "
                                                                                                                                            'ts; '
                                                                                                                                            "ERA-Interim's "
                                                                                                                                            'ts; '
                                                                                                                                            "HadISST's "
                                                                                                                                            'ts; '
                                                                                                                                            "Tropflux's "
                                                                                                                                            'ts; '
                                                                                                                                            "'s ",
                                                                                                                                'method': 'The '
                                                                                                                                          'metric '
                                                                                                                                          'is '
                                                                                                                                          'the '
                                                                                                                                          'statistical '
                                                                                                                                          'value '
                                                                                                                                          'between '
                                                                                                                                          'the '
                                                                                                                                          'model '
                                                                                                                                          'and '
                                                                                                                                          'the '
                                                                                                                                          'observations',
                                                                                                                                'name': 'EnsoSstMapJja',
                                                                                                                                'units': ''}},
                                                                                               'EnsoSstMapJjaRmse': {'diagnostic': {'20CRv2': {'name': '20CRv2',
                                                                                                                                               'nyears': 142,
                                                                                                                                               'time_period': ['1871-1-16 '
                                                                                                                                                               '12:0:0.0',
                                                                                                                                                               '2012-12-16 '
                                                                                                                                                               '12:0:0.0']},
                                                                                                                                    'ACCESS-CM2_r2i1p1f1': {'keyerror': None,
                                                                                                                                                            'name': 'ACCESS-CM2_r2i1p1f1',
                                                                                                                                                            'nyears': 165,
                                                                                                                                                            'time_period': ['1850-1-16 '
                                                                                                                                                                            '12:0:0.0',
                                                                                                                                                                            '2014-12-16 '
                                                                                                                                                                            '12:0:0.0']},
                                                                                                                                    'ERA-20C': {'name': 'ERA-20C',
                                                                                                                                                'nyears': 111,
                                                                                                                                                'time_period': ['1900-1-16 '
                                                                                                                                                                '12:0:0.0',
                                                                                                                                                                '2010-12-16 '
                                                                                                                                                                '12:0:0.0']},
                                                                                                                                    'ERA-5': {'name': 'ERA-5',
                                                                                                                                              'nyears': 40,
                                                                                                                                              'time_period': ['1979-1-16 '
                                                                                                                                                              '12:0:0.0',
                                                                                                                                                              '2018-12-16 '
                                                                                                                                                              '12:0:0.0']},
                                                                                                                                    'ERA-Interim': {'name': 'ERA-Interim',
                                                                                                                                                    'nyears': 40,
                                                                                                                                                    'time_period': ['1979-1-16 '
                                                                                                                                                                    '12:0:0.0',
                                                                                                                                                                    '2018-12-16 '
                                                                                                                                                                    '12:0:0.0']},
                                                                                                                                    'method': 'nino3.4 '
                                                                                                                                              'SSTA '
                                                                                                                                              'regressed '
                                                                                                                                              'against '
                                                                                                                                              'surface '
                                                                                                                                              'temperature '
                                                                                                                                              'anomalies '
                                                                                                                                              'in '
                                                                                                                                              'global '
                                                                                                                                              'during '
                                                                                                                                              'JJA, '
                                                                                                                                              'time '
                                                                                                                                              'series '
                                                                                                                                              'are '
                                                                                                                                              'linearly '
                                                                                                                                              'detrended, '
                                                                                                                                              'observations '
                                                                                                                                              'and '
                                                                                                                                              'model '
                                                                                                                                              'regridded '
                                                                                                                                              'to '
                                                                                                                                              'generic_1x1deg',
                                                                                                                                    'name': 'ENSO '
                                                                                                                                            'JJA '
                                                                                                                                            'TSA '
                                                                                                                                            'pattern',
                                                                                                                                    'ref': 'Using '
                                                                                                                                           'CDAT '
                                                                                                                                           'regridding, '
                                                                                                                                           'correlation '
                                                                                                                                           '(centered '
                                                                                                                                           'and '
                                                                                                                                           'biased), '
                                                                                                                                           'std '
                                                                                                                                           '(centered '
                                                                                                                                           'and '
                                                                                                                                           'biased) '
                                                                                                                                           'and '
                                                                                                                                           'rms '
                                                                                                                                           '(uncentered '
                                                                                                                                           'and '
                                                                                                                                           'biased) '
                                                                                                                                           'calculation',
                                                                                                                                    'time_frequency': 'monthly',
                                                                                                                                    'units': ''},
                                                                                                                     'metric': {'datasets': 'ACCESS-CM2_r2i1p1f1; '
                                                                                                                                            "20CRv2's "
                                                                                                                                            'ts; '
                                                                                                                                            "ERA-20C's "
                                                                                                                                            'ts; '
                                                                                                                                            "ERA-5's "
                                                                                                                                            'ts; '
                                                                                                                                            "ERA-Interim's "
                                                                                                                                            'ts; '
                                                                                                                                            "HadISST's "
                                                                                                                                            'ts; '
                                                                                                                                            "Tropflux's "
                                                                                                                                            'ts; '
                                                                                                                                            "'s ",
                                                                                                                                'method': 'The '
                                                                                                                                          'metric '
                                                                                                                                          'is '
                                                                                                                                          'the '
                                                                                                                                          'statistical '
                                                                                                                                          'value '
                                                                                                                                          'between '
                                                                                                                                          'the '
                                                                                                                                          'model '
                                                                                                                                          'and '
                                                                                                                                          'the '
                                                                                                                                          'observations',
                                                                                                                                'name': 'EnsoSstMapJja',
                                                                                                                                'units': 'C/C'}},
                                                                                               'EnsoSstMapJjaStd': {'diagnostic': {'20CRv2': {'name': '20CRv2',
                                                                                                                                              'nyears': 142,
                                                                                                                                              'time_period': ['1871-1-16 '
                                                                                                                                                              '12:0:0.0',
                                                                                                                                                              '2012-12-16 '
                                                                                                                                                              '12:0:0.0']},
                                                                                                                                   'ACCESS-CM2_r2i1p1f1': {'keyerror': None,
                                                                                                                                                           'name': 'ACCESS-CM2_r2i1p1f1',
                                                                                                                                                           'nyears': 165,
                                                                                                                                                           'time_period': ['1850-1-16 '
                                                                                                                                                                           '12:0:0.0',
                                                                                                                                                                           '2014-12-16 '
                                                                                                                                                                           '12:0:0.0']},
                                                                                                                                   'ERA-20C': {'name': 'ERA-20C',
                                                                                                                                               'nyears': 111,
                                                                                                                                               'time_period': ['1900-1-16 '
                                                                                                                                                               '12:0:0.0',
                                                                                                                                                               '2010-12-16 '
                                                                                                                                                               '12:0:0.0']},
                                                                                                                                   'ERA-5': {'name': 'ERA-5',
                                                                                                                                             'nyears': 40,
                                                                                                                                             'time_period': ['1979-1-16 '
                                                                                                                                                             '12:0:0.0',
                                                                                                                                                             '2018-12-16 '
                                                                                                                                                             '12:0:0.0']},
                                                                                                                                   'ERA-Interim': {'name': 'ERA-Interim',
                                                                                                                                                   'nyears': 40,
                                                                                                                                                   'time_period': ['1979-1-16 '
                                                                                                                                                                   '12:0:0.0',
                                                                                                                                                                   '2018-12-16 '
                                                                                                                                                                   '12:0:0.0']},
                                                                                                                                   'method': 'nino3.4 '
                                                                                                                                             'SSTA '
                                                                                                                                             'regressed '
                                                                                                                                             'against '
                                                                                                                                             'surface '
                                                                                                                                             'temperature '
                                                                                                                                             'anomalies '
                                                                                                                                             'in '
                                                                                                                                             'global '
                                                                                                                                             'during '
                                                                                                                                             'JJA, '
                                                                                                                                             'time '
                                                                                                                                             'series '
                                                                                                                                             'are '
                                                                                                                                             'linearly '
                                                                                                                                             'detrended, '
                                                                                                                                             'observations '
                                                                                                                                             'and '
                                                                                                                                             'model '
                                                                                                                                             'regridded '
                                                                                                                                             'to '
                                                                                                                                             'generic_1x1deg',
                                                                                                                                   'name': 'ENSO '
                                                                                                                                           'JJA '
                                                                                                                                           'TSA '
                                                                                                                                           'pattern',
                                                                                                                                   'ref': 'Using '
                                                                                                                                          'CDAT '
                                                                                                                                          'regridding, '
                                                                                                                                          'correlation '
                                                                                                                                          '(centered '
                                                                                                                                          'and '
                                                                                                                                          'biased), '
                                                                                                                                          'std '
                                                                                                                                          '(centered '
                                                                                                                                          'and '
                                                                                                                                          'biased) '
                                                                                                                                          'and '
                                                                                                                                          'rms '
                                                                                                                                          '(uncentered '
                                                                                                                                          'and '
                                                                                                                                          'biased) '
                                                                                                                                          'calculation',
                                                                                                                                   'time_frequency': 'monthly',
                                                                                                                                   'units': ''},
                                                                                                                    'metric': {'datasets': 'ACCESS-CM2_r2i1p1f1; '
                                                                                                                                           "20CRv2's "
                                                                                                                                           'ts; '
                                                                                                                                           "ERA-20C's "
                                                                                                                                           'ts; '
                                                                                                                                           "ERA-5's "
                                                                                                                                           'ts; '
                                                                                                                                           "ERA-Interim's "
                                                                                                                                           'ts; '
                                                                                                                                           "HadISST's "
                                                                                                                                           'ts; '
                                                                                                                                           "Tropflux's "
                                                                                                                                           'ts; '
                                                                                                                                           "'s ",
                                                                                                                               'method': 'The '
                                                                                                                                         'metric '
                                                                                                                                         'is '
                                                                                                                                         'the '
                                                                                                                                         'statistical '
                                                                                                                                         'value '
                                                                                                                                         'between '
                                                                                                                                         'the '
                                                                                                                                         'model '
                                                                                                                                         'and '
                                                                                                                                         'the '
                                                                                                                                         'observations',
                                                                                                                               'name': 'EnsoSstMapJja',
                                                                                                                               'units': 'C/C '
                                                                                                                                        '/ '
                                                                                                                                        'C/C'}}},
                                                                                   'name': 'Metrics '
                                                                                           'Collection '
                                                                                           'for '
                                                                                           'ENSO '
                                                                                           'teleconnections'},
                                                                      'value': {'EnsoAmpl': {'diagnostic': {'20CRv2': {'value': 0.7407960057502115,
                                                                                                                       'value_error': 0.062166219832622445},
                                                                                                            'ACCESS-CM2_r2i1p1f1': {'value': 0.8622105536310941,
                                                                                                                                    'value_error': 0.0671230005646729},
                                                                                                            'ERA-20C': {'value': 0.8265126323027572,
                                                                                                                        'value_error': 0.07844910735406072},
                                                                                                            'ERA-5': {'value': 0.9075909980564855,
                                                                                                                      'value_error': 0.14350273688619733},
                                                                                                            'ERA-Interim': {'value': 0.9001341048707652,
                                                                                                                            'value_error': 0.1423236985494241},
                                                                                                            'HadISST': {'value': 0.7688706055408969,
                                                                                                                        'value_error': 0.06298833428079066},
                                                                                                            'Tropflux': {'value': 0.9128364190673677,
                                                                                                                         'value_error': 0.14617081051130443}},
                                                                                             'metric': {'20CRv2': {'value': 16.389741161998415,
                                                                                                                   'value_error': 18.828139168597463},
                                                                                                        'ERA-20C': {'value': 4.319101721274182,
                                                                                                                    'value_error': 18.022762005435613},
                                                                                                        'ERA-5': {'value': 5.000098560096893,
                                                                                                                  'value_error': 22.4165355987215},
                                                                                                        'ERA-Interim': {'value': 4.213100140796893,
                                                                                                                        'value_error': 22.602238718566696},
                                                                                                        'HadISST': {'value': 12.139877297628379,
                                                                                                                    'value_error': 17.916934311991206},
                                                                                                        'Tropflux': {'value': 5.5459953589491215,
                                                                                                                     'value_error': 22.47797967115718}}},
                                                                                'EnsoPrMapJjaCorr': {'diagnostic': {'20CRv2_CMAP': {'value': None,
                                                                                                                                    'value_error': None},
                                                                                                                    '20CRv2_ERA-Interim': {'value': None,
                                                                                                                                           'value_error': None},
                                                                                                                    '20CRv2_GPCPv2.3': {'value': None,
                                                                                                                                        'value_error': None},
                                                                                                                    '20CRv2_TRMM-3B43v-7': {'value': None,
                                                                                                                                            'value_error': None},
                                                                                                                    'ACCESS-CM2_r2i1p1f1': {'value': None,
                                                                                                                                            'value_error': None},
                                                                                                                    'ERA-20C_CMAP': {'value': None,
                                                                                                                                     'value_error': None},
                                                                                                                    'ERA-20C_ERA-Interim': {'value': None,
                                                                                                                                            'value_error': None},
                                                                                                                    'ERA-20C_GPCPv2.3': {'value': None,
                                                                                                                                         'value_error': None},
                                                                                                                    'ERA-20C_TRMM-3B43v-7': {'value': None,
                                                                                                                                             'value_error': None},
                                                                                                                    'ERA-5_CMAP': {'value': None,
                                                                                                                                   'value_error': None},
                                                                                                                    'ERA-5_ERA-Interim': {'value': None,
                                                                                                                                          'value_error': None},
                                                                                                                    'ERA-5_GPCPv2.3': {'value': None,
                                                                                                                                       'value_error': None},
                                                                                                                    'ERA-5_TRMM-3B43v-7': {'value': None,
                                                                                                                                           'value_error': None},
                                                                                                                    'ERA-Interim_CMAP': {'value': None,
                                                                                                                                         'value_error': None},
                                                                                                                    'ERA-Interim_ERA-Interim': {'value': None,
                                                                                                                                                'value_error': None},
                                                                                                                    'ERA-Interim_GPCPv2.3': {'value': None,
                                                                                                                                             'value_error': None},
                                                                                                                    'ERA-Interim_TRMM-3B43v-7': {'value': None,
                                                                                                                                                 'value_error': None},
                                                                                                                    'HadISST_CMAP': {'value': None,
                                                                                                                                     'value_error': None},
                                                                                                                    'HadISST_ERA-Interim': {'value': None,
                                                                                                                                            'value_error': None},
                                                                                                                    'HadISST_GPCPv2.3': {'value': None,
                                                                                                                                         'value_error': None},
                                                                                                                    'HadISST_TRMM-3B43v-7': {'value': None,
                                                                                                                                             'value_error': None},
                                                                                                                    'Tropflux_CMAP': {'value': None,
                                                                                                                                      'value_error': None},
                                                                                                                    'Tropflux_ERA-Interim': {'value': None,
                                                                                                                                             'value_error': None},
                                                                                                                    'Tropflux_GPCPv2.3': {'value': None,
                                                                                                                                          'value_error': None},
                                                                                                                    'Tropflux_TRMM-3B43v-7': {'value': None,
                                                                                                                                              'value_error': None}},
                                                                                                     'metric': {'20CRv2_CMAP': {'value': 0.5011435141558942,
                                                                                                                                'value_error': None},
                                                                                                                '20CRv2_ERA-Interim': {'value': 0.515349483747148,
                                                                                                                                       'value_error': None},
                                                                                                                '20CRv2_GPCPv2.3': {'value': 0.5392560278291461,
                                                                                                                                    'value_error': None},
                                                                                                                '20CRv2_TRMM-3B43v-7': {'value': 0.7712980557696323,
                                                                                                                                        'value_error': None},
                                                                                                                'ERA-20C_CMAP': {'value': 0.5012591131693435,
                                                                                                                                 'value_error': None},
                                                                                                                'ERA-20C_ERA-Interim': {'value': 0.5139255050639014,
                                                                                                                                        'value_error': None},
                                                                                                                'ERA-20C_GPCPv2.3': {'value': 0.5364208476746359,
                                                                                                                                     'value_error': None},
                                                                                                                'ERA-20C_TRMM-3B43v-7': {'value': 0.7522220440719143,
                                                                                                                                         'value_error': None},
                                                                                                                'ERA-5_CMAP': {'value': 0.5000786070929146,
                                                                                                                               'value_error': None},
                                                                                                                'ERA-5_ERA-Interim': {'value': 0.5039547435163327,
                                                                                                                                      'value_error': None},
                                                                                                                'ERA-5_GPCPv2.3': {'value': 0.5459958663497622,
                                                                                                                                   'value_error': None},
                                                                                                                'ERA-5_TRMM-3B43v-7': {'value': 0.6622865224159066,
                                                                                                                                       'value_error': None},
                                                                                                                'ERA-Interim_CMAP': {'value': 0.509546474732367,
                                                                                                                                     'value_error': None},
                                                                                                                'ERA-Interim_ERA-Interim': {'value': 0.5149905686969947,
                                                                                                                                            'value_error': None},
                                                                                                                'ERA-Interim_GPCPv2.3': {'value': 0.5550734447823791,
                                                                                                                                         'value_error': None},
                                                                                                                'ERA-Interim_TRMM-3B43v-7': {'value': 0.6602518686287868,
                                                                                                                                             'value_error': None},
                                                                                                                'HadISST_CMAP': {'value': 0.48830809784396034,
                                                                                                                                 'value_error': None},
                                                                                                                'HadISST_ERA-Interim': {'value': 0.49649004032298694,
                                                                                                                                        'value_error': None},
                                                                                                                'HadISST_GPCPv2.3': {'value': 0.5385783952589875,
                                                                                                                                     'value_error': None},
                                                                                                                'HadISST_TRMM-3B43v-7': {'value': 0.6528483282881745,
                                                                                                                                         'value_error': None},
                                                                                                                'Tropflux_CMAP': {'value': 0.5019164328215233,
                                                                                                                                  'value_error': None},
                                                                                                                'Tropflux_ERA-Interim': {'value': 0.5074802186486653,
                                                                                                                                         'value_error': None},
                                                                                                                'Tropflux_GPCPv2.3': {'value': 0.5460218388874303,
                                                                                                                                      'value_error': None},
                                                                                                                'Tropflux_TRMM-3B43v-7': {'value': 0.662083122730246,
                                                                                                                                          'value_error': None}}},
                                                                                'EnsoPrMapJjaRmse': {'diagnostic': {'20CRv2_CMAP': {'value': None,
                                                                                                                                    'value_error': None},
                                                                                                                    '20CRv2_ERA-Interim': {'value': None,
                                                                                                                                           'value_error': None},
                                                                                                                    '20CRv2_GPCPv2.3': {'value': None,
                                                                                                                                        'value_error': None},
                                                                                                                    '20CRv2_TRMM-3B43v-7': {'value': None,
                                                                                                                                            'value_error': None},
                                                                                                                    'ACCESS-CM2_r2i1p1f1': {'value': None,
                                                                                                                                            'value_error': None},
                                                                                                                    'ERA-20C_CMAP': {'value': None,
                                                                                                                                     'value_error': None},
                                                                                                                    'ERA-20C_ERA-Interim': {'value': None,
                                                                                                                                            'value_error': None},
                                                                                                                    'ERA-20C_GPCPv2.3': {'value': None,
                                                                                                                                         'value_error': None},
                                                                                                                    'ERA-20C_TRMM-3B43v-7': {'value': None,
                                                                                                                                             'value_error': None},
                                                                                                                    'ERA-5_CMAP': {'value': None,
                                                                                                                                   'value_error': None},
                                                                                                                    'ERA-5_ERA-Interim': {'value': None,
                                                                                                                                          'value_error': None},
                                                                                                                    'ERA-5_GPCPv2.3': {'value': None,
                                                                                                                                       'value_error': None},
                                                                                                                    'ERA-5_TRMM-3B43v-7': {'value': None,
                                                                                                                                           'value_error': None},
                                                                                                                    'ERA-Interim_CMAP': {'value': None,
                                                                                                                                         'value_error': None},
                                                                                                                    'ERA-Interim_ERA-Interim': {'value': None,
                                                                                                                                                'value_error': None},
                                                                                                                    'ERA-Interim_GPCPv2.3': {'value': None,
                                                                                                                                             'value_error': None},
                                                                                                                    'ERA-Interim_TRMM-3B43v-7': {'value': None,
                                                                                                                                                 'value_error': None},
                                                                                                                    'HadISST_CMAP': {'value': None,
                                                                                                                                     'value_error': None},
                                                                                                                    'HadISST_ERA-Interim': {'value': None,
                                                                                                                                            'value_error': None},
                                                                                                                    'HadISST_GPCPv2.3': {'value': None,
                                                                                                                                         'value_error': None},
                                                                                                                    'HadISST_TRMM-3B43v-7': {'value': None,
                                                                                                                                             'value_error': None},
                                                                                                                    'Tropflux_CMAP': {'value': None,
                                                                                                                                      'value_error': None},
                                                                                                                    'Tropflux_ERA-Interim': {'value': None,
                                                                                                                                             'value_error': None},
                                                                                                                    'Tropflux_GPCPv2.3': {'value': None,
                                                                                                                                          'value_error': None},
                                                                                                                    'Tropflux_TRMM-3B43v-7': {'value': None,
                                                                                                                                              'value_error': None}},
                                                                                                     'metric': {'20CRv2_CMAP': {'value': 0.32645587956187955,
                                                                                                                                'value_error': None},
                                                                                                                '20CRv2_ERA-Interim': {'value': 0.32917178299922345,
                                                                                                                                       'value_error': None},
                                                                                                                '20CRv2_GPCPv2.3': {'value': 0.33062106169670163,
                                                                                                                                    'value_error': None},
                                                                                                                '20CRv2_TRMM-3B43v-7': {'value': 0.6804148728910637,
                                                                                                                                        'value_error': None},
                                                                                                                'ERA-20C_CMAP': {'value': 0.31275239074621375,
                                                                                                                                 'value_error': None},
                                                                                                                'ERA-20C_ERA-Interim': {'value': 0.31699336004394296,
                                                                                                                                        'value_error': None},
                                                                                                                'ERA-20C_GPCPv2.3': {'value': 0.3177152679077545,
                                                                                                                                     'value_error': None},
                                                                                                                'ERA-20C_TRMM-3B43v-7': {'value': 0.6435388030544077,
                                                                                                                                         'value_error': None},
                                                                                                                'ERA-5_CMAP': {'value': 0.30253008098552536,
                                                                                                                               'value_error': None},
                                                                                                                'ERA-5_ERA-Interim': {'value': 0.305831923435619,
                                                                                                                                      'value_error': None},
                                                                                                                'ERA-5_GPCPv2.3': {'value': 0.3136125062881885,
                                                                                                                                   'value_error': None},
                                                                                                                'ERA-5_TRMM-3B43v-7': {'value': 0.5278159130887007,
                                                                                                                                       'value_error': None},
                                                                                                                'ERA-Interim_CMAP': {'value': 0.3048708138789514,
                                                                                                                                     'value_error': None},
                                                                                                                'ERA-Interim_ERA-Interim': {'value': 0.30976430922070475,
                                                                                                                                            'value_error': None},
                                                                                                                'ERA-Interim_GPCPv2.3': {'value': 0.31753872436987207,
                                                                                                                                         'value_error': None},
                                                                                                                'ERA-Interim_TRMM-3B43v-7': {'value': 0.5157874437401107,
                                                                                                                                             'value_error': None},
                                                                                                                'HadISST_CMAP': {'value': 0.3080529322897896,
                                                                                                                                 'value_error': None},
                                                                                                                'HadISST_ERA-Interim': {'value': 0.3129568606966145,
                                                                                                                                        'value_error': None},
                                                                                                                'HadISST_GPCPv2.3': {'value': 0.3190254631195006,
                                                                                                                                     'value_error': None},
                                                                                                                'HadISST_TRMM-3B43v-7': {'value': 0.5427530768068775,
                                                                                                                                         'value_error': None},
                                                                                                                'Tropflux_CMAP': {'value': 0.2998035868441256,
                                                                                                                                  'value_error': None},
                                                                                                                'Tropflux_ERA-Interim': {'value': 0.3034176085644871,
                                                                                                                                         'value_error': None},
                                                                                                                'Tropflux_GPCPv2.3': {'value': 0.31012397608486475,
                                                                                                                                      'value_error': None},
                                                                                                                'Tropflux_TRMM-3B43v-7': {'value': 0.507890903914066,
                                                                                                                                          'value_error': None}}},
                                                                                'EnsoPrMapJjaStd': {'diagnostic': {'20CRv2_CMAP': {'value': None,
                                                                                                                                   'value_error': None},
                                                                                                                   '20CRv2_ERA-Interim': {'value': None,
                                                                                                                                          'value_error': None},
                                                                                                                   '20CRv2_GPCPv2.3': {'value': None,
                                                                                                                                       'value_error': None},
                                                                                                                   '20CRv2_TRMM-3B43v-7': {'value': None,
                                                                                                                                           'value_error': None},
                                                                                                                   'ACCESS-CM2_r2i1p1f1': {'value': None,
                                                                                                                                           'value_error': None},
                                                                                                                   'ERA-20C_CMAP': {'value': None,
                                                                                                                                    'value_error': None},
                                                                                                                   'ERA-20C_ERA-Interim': {'value': None,
                                                                                                                                           'value_error': None},
                                                                                                                   'ERA-20C_GPCPv2.3': {'value': None,
                                                                                                                                        'value_error': None},
                                                                                                                   'ERA-20C_TRMM-3B43v-7': {'value': None,
                                                                                                                                            'value_error': None},
                                                                                                                   'ERA-5_CMAP': {'value': None,
                                                                                                                                  'value_error': None},
                                                                                                                   'ERA-5_ERA-Interim': {'value': None,
                                                                                                                                         'value_error': None},
                                                                                                                   'ERA-5_GPCPv2.3': {'value': None,
                                                                                                                                      'value_error': None},
                                                                                                                   'ERA-5_TRMM-3B43v-7': {'value': None,
                                                                                                                                          'value_error': None},
                                                                                                                   'ERA-Interim_CMAP': {'value': None,
                                                                                                                                        'value_error': None},
                                                                                                                   'ERA-Interim_ERA-Interim': {'value': None,
                                                                                                                                               'value_error': None},
                                                                                                                   'ERA-Interim_GPCPv2.3': {'value': None,
                                                                                                                                            'value_error': None},
                                                                                                                   'ERA-Interim_TRMM-3B43v-7': {'value': None,
                                                                                                                                                'value_error': None},
                                                                                                                   'HadISST_CMAP': {'value': None,
                                                                                                                                    'value_error': None},
                                                                                                                   'HadISST_ERA-Interim': {'value': None,
                                                                                                                                           'value_error': None},
                                                                                                                   'HadISST_GPCPv2.3': {'value': None,
                                                                                                                                        'value_error': None},
                                                                                                                   'HadISST_TRMM-3B43v-7': {'value': None,
                                                                                                                                            'value_error': None},
                                                                                                                   'Tropflux_CMAP': {'value': None,
                                                                                                                                     'value_error': None},
                                                                                                                   'Tropflux_ERA-Interim': {'value': None,
                                                                                                                                            'value_error': None},
                                                                                                                   'Tropflux_GPCPv2.3': {'value': None,
                                                                                                                                         'value_error': None},
                                                                                                                   'Tropflux_TRMM-3B43v-7': {'value': None,
                                                                                                                                             'value_error': None}},
                                                                                                    'metric': {'20CRv2_CMAP': {'value': 0.8667519136722,
                                                                                                                               'value_error': None},
                                                                                                               '20CRv2_ERA-Interim': {'value': 0.8728943273851572,
                                                                                                                                      'value_error': None},
                                                                                                               '20CRv2_GPCPv2.3': {'value': 0.8995391043938606,
                                                                                                                                   'value_error': None},
                                                                                                               '20CRv2_TRMM-3B43v-7': {'value': 0.46070523049246115,
                                                                                                                                       'value_error': None},
                                                                                                               'ERA-20C_CMAP': {'value': 0.9294753808196268,
                                                                                                                                'value_error': None},
                                                                                                               'ERA-20C_ERA-Interim': {'value': 0.926462552727344,
                                                                                                                                       'value_error': None},
                                                                                                               'ERA-20C_GPCPv2.3': {'value': 0.9593507842702879,
                                                                                                                                    'value_error': None},
                                                                                                               'ERA-20C_TRMM-3B43v-7': {'value': 0.4858532311667925,
                                                                                                                                        'value_error': None},
                                                                                                               'ERA-5_CMAP': {'value': 0.9854058884531771,
                                                                                                                              'value_error': None},
                                                                                                               'ERA-5_ERA-Interim': {'value': 0.9708364049445863,
                                                                                                                                     'value_error': None},
                                                                                                               'ERA-5_GPCPv2.3': {'value': 1.0021912117254757,
                                                                                                                                  'value_error': None},
                                                                                                               'ERA-5_TRMM-3B43v-7': {'value': 0.575927278171282,
                                                                                                                                      'value_error': None},
                                                                                                               'ERA-Interim_CMAP': {'value': 0.9882613797837063,
                                                                                                                                    'value_error': None},
                                                                                                               'ERA-Interim_ERA-Interim': {'value': 0.9672452999223929,
                                                                                                                                           'value_error': None},
                                                                                                               'ERA-Interim_GPCPv2.3': {'value': 0.9941773691504568,
                                                                                                                                        'value_error': None},
                                                                                                               'ERA-Interim_TRMM-3B43v-7': {'value': 0.5908474787752876,
                                                                                                                                            'value_error': None},
                                                                                                               'HadISST_CMAP': {'value': 0.933490222880497,
                                                                                                                                'value_error': None},
                                                                                                               'HadISST_ERA-Interim': {'value': 0.9194377911766242,
                                                                                                                                       'value_error': None},
                                                                                                               'HadISST_GPCPv2.3': {'value': 0.9585514683666342,
                                                                                                                                    'value_error': None},
                                                                                                               'HadISST_TRMM-3B43v-7': {'value': 0.5539908074265119,
                                                                                                                                        'value_error': None},
                                                                                                               'Tropflux_CMAP': {'value': 1.0065299464509823,
                                                                                                                                 'value_error': None},
                                                                                                               'Tropflux_ERA-Interim': {'value': 0.9922952827974267,
                                                                                                                                        'value_error': None},
                                                                                                               'Tropflux_GPCPv2.3': {'value': 1.0254237857296091,
                                                                                                                                     'value_error': None},
                                                                                                               'Tropflux_TRMM-3B43v-7': {'value': 0.6027503989572242,
                                                                                                                                         'value_error': None}}},
                                                                                'EnsoSeasonality': {'diagnostic': {'20CRv2': {'value': 1.6436435961094338,
                                                                                                                              'value_error': 0.27635126775510105},
                                                                                                                   'ACCESS-CM2_r2i1p1f1': {'value': 1.2814325356033485,
                                                                                                                                           'value_error': 0.199822457443958},
                                                                                                                   'ERA-20C': {'value': 1.5951589911955568,
                                                                                                                               'value_error': 0.30349823329934555},
                                                                                                                   'ERA-5': {'value': 2.0283123524204223,
                                                                                                                             'value_error': 0.6454942543282691},
                                                                                                                   'ERA-Interim': {'value': 2.052960044692134,
                                                                                                                                   'value_error': 0.6533381861195713},
                                                                                                                   'HadISST': {'value': 1.6666267700450468,
                                                                                                                               'value_error': 0.273531261566947},
                                                                                                                   'Tropflux': {'value': 2.06093854374807,
                                                                                                                                'value_error': 0.6643426635460994}},
                                                                                                    'metric': {'20CRv2': {'value': 22.03708038430305,
                                                                                                                          'value_error': 25.265451413177164},
                                                                                                               'ERA-20C': {'value': 19.667409789482697,
                                                                                                                           'value_error': 27.811049051855584},
                                                                                                               'ERA-5': {'value': 36.82272190108237,
                                                                                                                         'value_error': 29.957326685328788},
                                                                                                               'ERA-Interim': {'value': 37.58122380820546,
                                                                                                                               'value_error': 29.597661151977473},
                                                                                                               'HadISST': {'value': 23.11220732589619,
                                                                                                                           'value_error': 24.608665485754038},
                                                                                                               'Tropflux': {'value': 37.822865243089396,
                                                                                                                            'value_error': 29.738474854764302}}},
                                                                                'EnsoSstLonRmse': {'diagnostic': {'20CRv2': {'value': None,
                                                                                                                             'value_error': None},
                                                                                                                  'ACCESS-CM2_r2i1p1f1': {'value': None,
                                                                                                                                          'value_error': None},
                                                                                                                  'ERA-20C': {'value': None,
                                                                                                                              'value_error': None},
                                                                                                                  'ERA-5': {'value': None,
                                                                                                                            'value_error': None},
                                                                                                                  'ERA-Interim': {'value': None,
                                                                                                                                  'value_error': None},
                                                                                                                  'HadISST': {'value': None,
                                                                                                                              'value_error': None},
                                                                                                                  'Tropflux': {'value': None,
                                                                                                                               'value_error': None}},
                                                                                                   'metric': {'20CRv2': {'value': 0.07871049480199414,
                                                                                                                         'value_error': None},
                                                                                                              'ERA-20C': {'value': 0.09219488954801747,
                                                                                                                          'value_error': None},
                                                                                                              'ERA-5': {'value': 0.06736418555616827,
                                                                                                                        'value_error': None},
                                                                                                              'ERA-Interim': {'value': 0.0733895852726686,
                                                                                                                              'value_error': None},
                                                                                                              'HadISST': {'value': 0.08581263382615822,
                                                                                                                          'value_error': None},
                                                                                                              'Tropflux': {'value': 0.07200721549200347,
                                                                                                                           'value_error': None}}},
                                                                                'EnsoSstMapDjfCorr': {'diagnostic': {'20CRv2': {'value': None,
                                                                                                                                'value_error': None},
                                                                                                                     'ACCESS-CM2_r2i1p1f1': {'value': None,
                                                                                                                                             'value_error': None},
                                                                                                                     'ERA-20C': {'value': None,
                                                                                                                                 'value_error': None},
                                                                                                                     'ERA-5': {'value': None,
                                                                                                                               'value_error': None},
                                                                                                                     'ERA-Interim': {'value': None,
                                                                                                                                     'value_error': None}},
                                                                                                      'metric': {'20CRv2': {'value': 0.3454260858900555,
                                                                                                                            'value_error': None},
                                                                                                                 'ERA-20C': {'value': 0.47949763624206965,
                                                                                                                             'value_error': None},
                                                                                                                 'ERA-5': {'value': 0.4028858089973969,
                                                                                                                           'value_error': None},
                                                                                                                 'ERA-Interim': {'value': 0.39540555125266685,
                                                                                                                                 'value_error': None}}},
                                                                                'EnsoSstMapDjfRmse': {'diagnostic': {'20CRv2': {'value': None,
                                                                                                                                'value_error': None},
                                                                                                                     'ACCESS-CM2_r2i1p1f1': {'value': None,
                                                                                                                                             'value_error': None},
                                                                                                                     'ERA-20C': {'value': None,
                                                                                                                                 'value_error': None},
                                                                                                                     'ERA-5': {'value': None,
                                                                                                                               'value_error': None},
                                                                                                                     'ERA-Interim': {'value': None,
                                                                                                                                     'value_error': None}},
                                                                                                      'metric': {'20CRv2': {'value': 0.17457605592662348,
                                                                                                                            'value_error': None},
                                                                                                                 'ERA-20C': {'value': 0.18164994049679511,
                                                                                                                             'value_error': None},
                                                                                                                 'ERA-5': {'value': 0.1944739606356305,
                                                                                                                           'value_error': None},
                                                                                                                 'ERA-Interim': {'value': 0.18754601796511558,
                                                                                                                                 'value_error': None}}},
                                                                                'EnsoSstMapDjfStd': {'diagnostic': {'20CRv2': {'value': None,
                                                                                                                               'value_error': None},
                                                                                                                    'ACCESS-CM2_r2i1p1f1': {'value': None,
                                                                                                                                            'value_error': None},
                                                                                                                    'ERA-20C': {'value': None,
                                                                                                                                'value_error': None},
                                                                                                                    'ERA-5': {'value': None,
                                                                                                                              'value_error': None},
                                                                                                                    'ERA-Interim': {'value': None,
                                                                                                                                    'value_error': None}},
                                                                                                     'metric': {'20CRv2': {'value': 0.9011300919475274,
                                                                                                                           'value_error': None},
                                                                                                                'ERA-20C': {'value': 1.4088816358427594,
                                                                                                                            'value_error': None},
                                                                                                                'ERA-5': {'value': 0.847853402829162,
                                                                                                                          'value_error': None},
                                                                                                                'ERA-Interim': {'value': 0.8820673085018593,
                                                                                                                                'value_error': None}}},
                                                                                'EnsoSstMapJjaCorr': {'diagnostic': {'20CRv2': {'value': None,
                                                                                                                                'value_error': None},
                                                                                                                     'ACCESS-CM2_r2i1p1f1': {'value': None,
                                                                                                                                             'value_error': None},
                                                                                                                     'ERA-20C': {'value': None,
                                                                                                                                 'value_error': None},
                                                                                                                     'ERA-5': {'value': None,
                                                                                                                               'value_error': None},
                                                                                                                     'ERA-Interim': {'value': None,
                                                                                                                                     'value_error': None}},
                                                                                                      'metric': {'20CRv2': {'value': 0.49006386785502587,
                                                                                                                            'value_error': None},
                                                                                                                 'ERA-20C': {'value': 0.6149679128524015,
                                                                                                                             'value_error': None},
                                                                                                                 'ERA-5': {'value': 0.6244795636299234,
                                                                                                                           'value_error': None},
                                                                                                                 'ERA-Interim': {'value': 0.6058749254103148,
                                                                                                                                 'value_error': None}}},
                                                                                'EnsoSstMapJjaRmse': {'diagnostic': {'20CRv2': {'value': None,
                                                                                                                                'value_error': None},
                                                                                                                     'ACCESS-CM2_r2i1p1f1': {'value': None,
                                                                                                                                             'value_error': None},
                                                                                                                     'ERA-20C': {'value': None,
                                                                                                                                 'value_error': None},
                                                                                                                     'ERA-5': {'value': None,
                                                                                                                               'value_error': None},
                                                                                                                     'ERA-Interim': {'value': None,
                                                                                                                                     'value_error': None}},
                                                                                                      'metric': {'20CRv2': {'value': 0.22677045505223595,
                                                                                                                            'value_error': None},
                                                                                                                 'ERA-20C': {'value': 0.20728092389695468,
                                                                                                                             'value_error': None},
                                                                                                                 'ERA-5': {'value': 0.27297038856869105,
                                                                                                                           'value_error': None},
                                                                                                                 'ERA-Interim': {'value': 0.26189095419809955,
                                                                                                                                 'value_error': None}}},
                                                                                'EnsoSstMapJjaStd': {'diagnostic': {'20CRv2': {'value': None,
                                                                                                                               'value_error': None},
                                                                                                                    'ACCESS-CM2_r2i1p1f1': {'value': None,
                                                                                                                                            'value_error': None},
                                                                                                                    'ERA-20C': {'value': None,
                                                                                                                                'value_error': None},
                                                                                                                    'ERA-5': {'value': None,
                                                                                                                              'value_error': None},
                                                                                                                    'ERA-Interim': {'value': None,
                                                                                                                                    'value_error': None}},
                                                                                                     'metric': {'20CRv2': {'value': 0.8655671977221406,
                                                                                                                           'value_error': None},
                                                                                                                'ERA-20C': {'value': 1.2931821044367315,
                                                                                                                            'value_error': None},
                                                                                                                'ERA-5': {'value': 0.7806355183321791,
                                                                                                                          'value_error': None},
                                                                                                                'ERA-Interim': {'value': 0.8104239724319492,
                                                                                                                                'value_error': None}}}}},
                                                         'r3i1p1f1': {'metadata': {'description_of_the_collection': 'Describe '
                                                                                                                    'which '
                                                                                                                    'science '
                                                                                                                    'question '
                                                                                                                    'this '
                                                                                                                    'collection '
                                                                                                                    'is '
                                                                                                                    'about',
                                                                                   'metrics': {'EnsoAmpl': {'diagnostic': {'20CRv2': {'keyerror': None,
                                                                                                                                      'name': '20CRv2',
                                                                                                                                      'nyears': 142,
                                                                                                                                      'time_period': ['1871-1-16 '
                                                                                                                                                      '12:0:0.0',
                                                                                                                                                      '2012-12-16 '
                                                                                                                                                      '12:0:0.0']},
                                                                                                                           'ACCESS-CM2_r3i1p1f1': {'keyerror': None,
                                                                                                                                                   'name': 'ACCESS-CM2_r3i1p1f1',
                                                                                                                                                   'nyears': 165,
                                                                                                                                                   'time_period': ['1850-1-16 '
                                                                                                                                                                   '12:0:0.0',
                                                                                                                                                                   '2014-12-16 '
                                                                                                                                                                   '12:0:0.0']},
                                                                                                                           'ERA-20C': {'keyerror': None,
                                                                                                                                       'name': 'ERA-20C',
                                                                                                                                       'nyears': 111,
                                                                                                                                       'time_period': ['1900-1-16 '
                                                                                                                                                       '12:0:0.0',
                                                                                                                                                       '2010-12-16 '
                                                                                                                                                       '12:0:0.0']},
                                                                                                                           'ERA-5': {'keyerror': None,
                                                                                                                                     'name': 'ERA-5',
                                                                                                                                     'nyears': 40,
                                                                                                                                     'time_period': ['1979-1-16 '
                                                                                                                                                     '12:0:0.0',
                                                                                                                                                     '2018-12-16 '
                                                                                                                                                     '12:0:0.0']},
                                                                                                                           'ERA-Interim': {'keyerror': None,
                                                                                                                                           'name': 'ERA-Interim',
                                                                                                                                           'nyears': 40,
                                                                                                                                           'time_period': ['1979-1-16 '
                                                                                                                                                           '12:0:0.0',
                                                                                                                                                           '2018-12-16 '
                                                                                                                                                           '12:0:0.0']},
                                                                                                                           'HadISST': {'keyerror': 'unlikely '
                                                                                                                                                   'units: '
                                                                                                                                                   'K([-1e+30, '
                                                                                                                                                   '304.7203])',
                                                                                                                                       'name': 'HadISST',
                                                                                                                                       'nyears': 149,
                                                                                                                                       'time_period': ['1870-1-16 '
                                                                                                                                                       '11:59:59.5',
                                                                                                                                                       '2018-12-16 '
                                                                                                                                                       '18:0:0.0']},
                                                                                                                           'Tropflux': {'keyerror': None,
                                                                                                                                        'name': 'Tropflux',
                                                                                                                                        'nyears': 39,
                                                                                                                                        'time_period': ['1979-1-15 '
                                                                                                                                                        '0:0:0.0',
                                                                                                                                                        '2017-7-15 '
                                                                                                                                                        '12:0:0.0']},
                                                                                                                           'method': 'Standard '
                                                                                                                                     'deviation '
                                                                                                                                     'of '
                                                                                                                                     'nino3.4 '
                                                                                                                                     'sstA, '
                                                                                                                                     'time '
                                                                                                                                     'series '
                                                                                                                                     'are '
                                                                                                                                     'linearly '
                                                                                                                                     'detrended',
                                                                                                                           'name': 'ENSO '
                                                                                                                                   'amplitude',
                                                                                                                           'ref': 'Using '
                                                                                                                                  'CDAT '
                                                                                                                                  'regression '
                                                                                                                                  'calculation',
                                                                                                                           'time_frequency': 'monthly',
                                                                                                                           'units': 'C'},
                                                                                                            'metric': {'datasets': 'ACCESS-CM2_r3i1p1f1; '
                                                                                                                                   "20CRv2's "
                                                                                                                                   'ts; '
                                                                                                                                   "ERA-20C's "
                                                                                                                                   'ts; '
                                                                                                                                   "ERA-5's "
                                                                                                                                   'ts; '
                                                                                                                                   "ERA-Interim's "
                                                                                                                                   'ts; '
                                                                                                                                   "HadISST's "
                                                                                                                                   'ts; '
                                                                                                                                   "Tropflux's "
                                                                                                                                   'ts; '
                                                                                                                                   "'s ",
                                                                                                                       'method': 'The '
                                                                                                                                 'metric '
                                                                                                                                 'is '
                                                                                                                                 'the '
                                                                                                                                 'absolute '
                                                                                                                                 'value '
                                                                                                                                 'of '
                                                                                                                                 'the '
                                                                                                                                 'relative '
                                                                                                                                 'difference '
                                                                                                                                 'between '
                                                                                                                                 'model '
                                                                                                                                 'and '
                                                                                                                                 'observations '
                                                                                                                                 'values '
                                                                                                                                 '(M '
                                                                                                                                 '= '
                                                                                                                                 '100 '
                                                                                                                                 '* '
                                                                                                                                 'abs[[model-obs] '
                                                                                                                                 '/ '
                                                                                                                                 'obs])',
                                                                                                                       'name': 'EnsoAmpl',
                                                                                                                       'units': '%'}},
                                                                                               'EnsoPrMapDjfCorr': {'diagnostic': {'20CRv2_CMAP': {'name': '20CRv2_CMAP',
                                                                                                                                                   'nyears': 34,
                                                                                                                                                   'time_period': ['1979-1-16 '
                                                                                                                                                                   '12:0:0.0',
                                                                                                                                                                   '2012-12-16 '
                                                                                                                                                                   '12:0:0.0']},
                                                                                                                                   '20CRv2_ERA-Interim': {'name': '20CRv2_ERA-Interim',
                                                                                                                                                          'nyears': 34,
                                                                                                                                                          'time_period': ['1979-1-16 '
                                                                                                                                                                          '12:0:0.0',
                                                                                                                                                                          '2012-12-16 '
                                                                                                                                                                          '12:0:0.0']},
                                                                                                                                   '20CRv2_GPCPv2.3': {'name': '20CRv2_GPCPv2.3',
                                                                                                                                                       'nyears': 34,
                                                                                                                                                       'time_period': ['1979-1-16 '
                                                                                                                                                                       '12:0:0.0',
                                                                                                                                                                       '2012-12-16 '
                                                                                                                                                                       '12:0:0.0']},
                                                                                                                                   '20CRv2_TRMM-3B43v-7': {'name': '20CRv2_TRMM-3B43v-7',
                                                                                                                                                           'nyears': 15,
                                                                                                                                                           'time_period': ['1998-1-16 '
                                                                                                                                                                           '12:0:0.0',
                                                                                                                                                                           '2012-12-16 '
                                                                                                                                                                           '12:0:0.0']},
                                                                                                                                   'ACCESS-CM2_r3i1p1f1': {'keyerror': None,
                                                                                                                                                           'name': 'ACCESS-CM2_r3i1p1f1',
                                                                                                                                                           'nyears': 165,
                                                                                                                                                           'time_period': ['1850-1-16 '
                                                                                                                                                                           '12:0:0.0',
                                                                                                                                                                           '2014-12-16 '
                                                                                                                                                                           '12:0:0.0']},
                                                                                                                                   'ERA-20C_CMAP': {'name': 'ERA-20C_CMAP',
                                                                                                                                                    'nyears': 32,
                                                                                                                                                    'time_period': ['1979-1-16 '
                                                                                                                                                                    '12:0:0.0',
                                                                                                                                                                    '2010-12-16 '
                                                                                                                                                                    '12:0:0.0']},
                                                                                                                                   'ERA-20C_ERA-Interim': {'name': 'ERA-20C_ERA-Interim',
                                                                                                                                                           'nyears': 32,
                                                                                                                                                           'time_period': ['1979-1-16 '
                                                                                                                                                                           '12:0:0.0',
                                                                                                                                                                           '2010-12-16 '
                                                                                                                                                                           '12:0:0.0']},
                                                                                                                                   'ERA-20C_GPCPv2.3': {'name': 'ERA-20C_GPCPv2.3',
                                                                                                                                                        'nyears': 32,
                                                                                                                                                        'time_period': ['1979-1-16 '
                                                                                                                                                                        '12:0:0.0',
                                                                                                                                                                        '2010-12-16 '
                                                                                                                                                                        '12:0:0.0']},
                                                                                                                                   'ERA-20C_TRMM-3B43v-7': {'name': 'ERA-20C_TRMM-3B43v-7',
                                                                                                                                                            'nyears': 13,
                                                                                                                                                            'time_period': ['1998-1-16 '
                                                                                                                                                                            '12:0:0.0',
                                                                                                                                                                            '2010-12-16 '
                                                                                                                                                                            '12:0:0.0']},
                                                                                                                                   'ERA-5_CMAP': {'name': 'ERA-5_CMAP',
                                                                                                                                                  'nyears': 40,
                                                                                                                                                  'time_period': ['1979-1-16 '
                                                                                                                                                                  '12:0:0.0',
                                                                                                                                                                  '2018-12-16 '
                                                                                                                                                                  '12:0:0.0']},
                                                                                                                                   'ERA-5_ERA-Interim': {'name': 'ERA-5_ERA-Interim',
                                                                                                                                                         'nyears': 40,
                                                                                                                                                         'time_period': ['1979-1-16 '
                                                                                                                                                                         '12:0:0.0',
                                                                                                                                                                         '2018-12-16 '
                                                                                                                                                                         '12:0:0.0']},
                                                                                                                                   'ERA-5_GPCPv2.3': {'name': 'ERA-5_GPCPv2.3',
                                                                                                                                                      'nyears': 40,
                                                                                                                                                      'time_period': ['1979-1-16 '
                                                                                                                                                                      '12:0:0.0',
                                                                                                                                                                      '2018-12-16 '
                                                                                                                                                                      '12:0:0.0']},
                                                                                                                                   'ERA-5_TRMM-3B43v-7': {'name': 'ERA-5_TRMM-3B43v-7',
                                                                                                                                                          'nyears': 20,
                                                                                                                                                          'time_period': ['1998-1-16 '
                                                                                                                                                                          '12:0:0.0',
                                                                                                                                                                          '2017-12-16 '
                                                                                                                                                                          '12:0:0.0']},
                                                                                                                                   'ERA-Interim_CMAP': {'name': 'ERA-Interim_CMAP',
                                                                                                                                                        'nyears': 40,
                                                                                                                                                        'time_period': ['1979-1-16 '
                                                                                                                                                                        '12:0:0.0',
                                                                                                                                                                        '2018-12-16 '
                                                                                                                                                                        '12:0:0.0']},
                                                                                                                                   'ERA-Interim_ERA-Interim': {'name': 'ERA-Interim_ERA-Interim',
                                                                                                                                                               'nyears': 40,
                                                                                                                                                               'time_period': ['1979-1-16 '
                                                                                                                                                                               '12:0:0.0',
                                                                                                                                                                               '2018-12-16 '
                                                                                                                                                                               '12:0:0.0']},
                                                                                                                                   'ERA-Interim_GPCPv2.3': {'name': 'ERA-Interim_GPCPv2.3',
                                                                                                                                                            'nyears': 40,
                                                                                                                                                            'time_period': ['1979-1-16 '
                                                                                                                                                                            '12:0:0.0',
                                                                                                                                                                            '2018-12-16 '
                                                                                                                                                                            '12:0:0.0']},
                                                                                                                                   'ERA-Interim_TRMM-3B43v-7': {'name': 'ERA-Interim_TRMM-3B43v-7',
                                                                                                                                                                'nyears': 20,
                                                                                                                                                                'time_period': ['1998-1-16 '
                                                                                                                                                                                '12:0:0.0',
                                                                                                                                                                                '2017-12-16 '
                                                                                                                                                                                '12:0:0.0']},
                                                                                                                                   'HadISST_CMAP': {'name': 'HadISST_CMAP',
                                                                                                                                                    'nyears': 40,
                                                                                                                                                    'time_period': ['1979-1-16 '
                                                                                                                                                                    '3:0:0.0',
                                                                                                                                                                    '2018-12-16 '
                                                                                                                                                                    '18:0:0.0']},
                                                                                                                                   'HadISST_ERA-Interim': {'name': 'HadISST_ERA-Interim',
                                                                                                                                                           'nyears': 40,
                                                                                                                                                           'time_period': ['1979-1-16 '
                                                                                                                                                                           '3:0:0.0',
                                                                                                                                                                           '2018-12-16 '
                                                                                                                                                                           '18:0:0.0']},
                                                                                                                                   'HadISST_GPCPv2.3': {'name': 'HadISST_GPCPv2.3',
                                                                                                                                                        'nyears': 40,
                                                                                                                                                        'time_period': ['1979-1-16 '
                                                                                                                                                                        '3:0:0.0',
                                                                                                                                                                        '2018-12-16 '
                                                                                                                                                                        '18:0:0.0']},
                                                                                                                                   'HadISST_TRMM-3B43v-7': {'name': 'HadISST_TRMM-3B43v-7',
                                                                                                                                                            'nyears': 20,
                                                                                                                                                            'time_period': ['1998-1-16 '
                                                                                                                                                                            '3:0:0.0',
                                                                                                                                                                            '2017-12-16 '
                                                                                                                                                                            '18:0:0.0']},
                                                                                                                                   'Tropflux_CMAP': {'name': 'Tropflux_CMAP',
                                                                                                                                                     'nyears': 39,
                                                                                                                                                     'time_period': ['1979-1-15 '
                                                                                                                                                                     '0:0:0.0',
                                                                                                                                                                     '2017-7-15 '
                                                                                                                                                                     '12:0:0.0']},
                                                                                                                                   'Tropflux_ERA-Interim': {'name': 'Tropflux_ERA-Interim',
                                                                                                                                                            'nyears': 39,
                                                                                                                                                            'time_period': ['1979-1-15 '
                                                                                                                                                                            '0:0:0.0',
                                                                                                                                                                            '2017-7-15 '
                                                                                                                                                                            '12:0:0.0']},
                                                                                                                                   'Tropflux_GPCPv2.3': {'name': 'Tropflux_GPCPv2.3',
                                                                                                                                                         'nyears': 39,
                                                                                                                                                         'time_period': ['1979-1-15 '
                                                                                                                                                                         '0:0:0.0',
                                                                                                                                                                         '2017-7-15 '
                                                                                                                                                                         '12:0:0.0']},
                                                                                                                                   'Tropflux_TRMM-3B43v-7': {'name': 'Tropflux_TRMM-3B43v-7',
                                                                                                                                                             'nyears': 20,
                                                                                                                                                             'time_period': ['1998-1-15 '
                                                                                                                                                                             '0:0:0.0',
                                                                                                                                                                             '2017-7-15 '
                                                                                                                                                                             '12:0:0.0']},
                                                                                                                                   'method': 'nino3.4 '
                                                                                                                                             'SSTA '
                                                                                                                                             'regressed '
                                                                                                                                             'against '
                                                                                                                                             'precipitation '
                                                                                                                                             'anomalies '
                                                                                                                                             'in '
                                                                                                                                             'global '
                                                                                                                                             'during '
                                                                                                                                             'DJF, '
                                                                                                                                             'time '
                                                                                                                                             'series '
                                                                                                                                             'are '
                                                                                                                                             'linearly '
                                                                                                                                             'detrended, '
                                                                                                                                             'observations '
                                                                                                                                             'and '
                                                                                                                                             'model '
                                                                                                                                             'regridded '
                                                                                                                                             'to '
                                                                                                                                             'generic_1x1deg',
                                                                                                                                   'name': 'ENSO '
                                                                                                                                           'DJF '
                                                                                                                                           'PRA '
                                                                                                                                           'pattern',
                                                                                                                                   'ref': 'Using '
                                                                                                                                          'CDAT '
                                                                                                                                          'regridding, '
                                                                                                                                          'correlation '
                                                                                                                                          '(centered '
                                                                                                                                          'and '
                                                                                                                                          'biased), '
                                                                                                                                          'std '
                                                                                                                                          '(centered '
                                                                                                                                          'and '
                                                                                                                                          'biased) '
                                                                                                                                          'and '
                                                                                                                                          'rms '
                                                                                                                                          '(uncentered '
                                                                                                                                          'and '
                                                                                                                                          'biased) '
                                                                                                                                          'calculation',
                                                                                                                                   'time_frequency': 'monthly',
                                                                                                                                   'units': ''},
                                                                                                                    'metric': {'datasets': 'ACCESS-CM2_r3i1p1f1; '
                                                                                                                                           "20CRv2's "
                                                                                                                                           'ts; '
                                                                                                                                           "ERA-20C's "
                                                                                                                                           'ts; '
                                                                                                                                           "ERA-5's "
                                                                                                                                           'ts; '
                                                                                                                                           "ERA-Interim's "
                                                                                                                                           'ts; '
                                                                                                                                           "HadISST's "
                                                                                                                                           'ts; '
                                                                                                                                           "Tropflux's "
                                                                                                                                           'ts; '
                                                                                                                                           "CMAP's "
                                                                                                                                           'pr; '
                                                                                                                                           "ERA-Interim's "
                                                                                                                                           'pr; '
                                                                                                                                           "GPCPv2.3's "
                                                                                                                                           'pr; '
                                                                                                                                           "TRMM-3B43v-7's "
                                                                                                                                           'pr',
                                                                                                                               'method': 'The '
                                                                                                                                         'metric '
                                                                                                                                         'is '
                                                                                                                                         'the '
                                                                                                                                         'statistical '
                                                                                                                                         'value '
                                                                                                                                         'between '
                                                                                                                                         'the '
                                                                                                                                         'model '
                                                                                                                                         'and '
                                                                                                                                         'the '
                                                                                                                                         'observations',
                                                                                                                               'name': 'EnsoPrMapDjf',
                                                                                                                               'units': ''}},
                                                                                               'EnsoPrMapDjfRmse': {'diagnostic': {'20CRv2_CMAP': {'name': '20CRv2_CMAP',
                                                                                                                                                   'nyears': 34,
                                                                                                                                                   'time_period': ['1979-1-16 '
                                                                                                                                                                   '12:0:0.0',
                                                                                                                                                                   '2012-12-16 '
                                                                                                                                                                   '12:0:0.0']},
                                                                                                                                   '20CRv2_ERA-Interim': {'name': '20CRv2_ERA-Interim',
                                                                                                                                                          'nyears': 34,
                                                                                                                                                          'time_period': ['1979-1-16 '
                                                                                                                                                                          '12:0:0.0',
                                                                                                                                                                          '2012-12-16 '
                                                                                                                                                                          '12:0:0.0']},
                                                                                                                                   '20CRv2_GPCPv2.3': {'name': '20CRv2_GPCPv2.3',
                                                                                                                                                       'nyears': 34,
                                                                                                                                                       'time_period': ['1979-1-16 '
                                                                                                                                                                       '12:0:0.0',
                                                                                                                                                                       '2012-12-16 '
                                                                                                                                                                       '12:0:0.0']},
                                                                                                                                   '20CRv2_TRMM-3B43v-7': {'name': '20CRv2_TRMM-3B43v-7',
                                                                                                                                                           'nyears': 15,
                                                                                                                                                           'time_period': ['1998-1-16 '
                                                                                                                                                                           '12:0:0.0',
                                                                                                                                                                           '2012-12-16 '
                                                                                                                                                                           '12:0:0.0']},
                                                                                                                                   'ACCESS-CM2_r3i1p1f1': {'keyerror': None,
                                                                                                                                                           'name': 'ACCESS-CM2_r3i1p1f1',
                                                                                                                                                           'nyears': 165,
                                                                                                                                                           'time_period': ['1850-1-16 '
                                                                                                                                                                           '12:0:0.0',
                                                                                                                                                                           '2014-12-16 '
                                                                                                                                                                           '12:0:0.0']},
                                                                                                                                   'ERA-20C_CMAP': {'name': 'ERA-20C_CMAP',
                                                                                                                                                    'nyears': 32,
                                                                                                                                                    'time_period': ['1979-1-16 '
                                                                                                                                                                    '12:0:0.0',
                                                                                                                                                                    '2010-12-16 '
                                                                                                                                                                    '12:0:0.0']},
                                                                                                                                   'ERA-20C_ERA-Interim': {'name': 'ERA-20C_ERA-Interim',
                                                                                                                                                           'nyears': 32,
                                                                                                                                                           'time_period': ['1979-1-16 '
                                                                                                                                                                           '12:0:0.0',
                                                                                                                                                                           '2010-12-16 '
                                                                                                                                                                           '12:0:0.0']},
                                                                                                                                   'ERA-20C_GPCPv2.3': {'name': 'ERA-20C_GPCPv2.3',
                                                                                                                                                        'nyears': 32,
                                                                                                                                                        'time_period': ['1979-1-16 '
                                                                                                                                                                        '12:0:0.0',
                                                                                                                                                                        '2010-12-16 '
                                                                                                                                                                        '12:0:0.0']},
                                                                                                                                   'ERA-20C_TRMM-3B43v-7': {'name': 'ERA-20C_TRMM-3B43v-7',
                                                                                                                                                            'nyears': 13,
                                                                                                                                                            'time_period': ['1998-1-16 '
                                                                                                                                                                            '12:0:0.0',
                                                                                                                                                                            '2010-12-16 '
                                                                                                                                                                            '12:0:0.0']},
                                                                                                                                   'ERA-5_CMAP': {'name': 'ERA-5_CMAP',
                                                                                                                                                  'nyears': 40,
                                                                                                                                                  'time_period': ['1979-1-16 '
                                                                                                                                                                  '12:0:0.0',
                                                                                                                                                                  '2018-12-16 '
                                                                                                                                                                  '12:0:0.0']},
                                                                                                                                   'ERA-5_ERA-Interim': {'name': 'ERA-5_ERA-Interim',
                                                                                                                                                         'nyears': 40,
                                                                                                                                                         'time_period': ['1979-1-16 '
                                                                                                                                                                         '12:0:0.0',
                                                                                                                                                                         '2018-12-16 '
                                                                                                                                                                         '12:0:0.0']},
                                                                                                                                   'ERA-5_GPCPv2.3': {'name': 'ERA-5_GPCPv2.3',
                                                                                                                                                      'nyears': 40,
                                                                                                                                                      'time_period': ['1979-1-16 '
                                                                                                                                                                      '12:0:0.0',
                                                                                                                                                                      '2018-12-16 '
                                                                                                                                                                      '12:0:0.0']},
                                                                                                                                   'ERA-5_TRMM-3B43v-7': {'name': 'ERA-5_TRMM-3B43v-7',
                                                                                                                                                          'nyears': 20,
                                                                                                                                                          'time_period': ['1998-1-16 '
                                                                                                                                                                          '12:0:0.0',
                                                                                                                                                                          '2017-12-16 '
                                                                                                                                                                          '12:0:0.0']},
                                                                                                                                   'ERA-Interim_CMAP': {'name': 'ERA-Interim_CMAP',
                                                                                                                                                        'nyears': 40,
                                                                                                                                                        'time_period': ['1979-1-16 '
                                                                                                                                                                        '12:0:0.0',
                                                                                                                                                                        '2018-12-16 '
                                                                                                                                                                        '12:0:0.0']},
                                                                                                                                   'ERA-Interim_ERA-Interim': {'name': 'ERA-Interim_ERA-Interim',
                                                                                                                                                               'nyears': 40,
                                                                                                                                                               'time_period': ['1979-1-16 '
                                                                                                                                                                               '12:0:0.0',
                                                                                                                                                                               '2018-12-16 '
                                                                                                                                                                               '12:0:0.0']},
                                                                                                                                   'ERA-Interim_GPCPv2.3': {'name': 'ERA-Interim_GPCPv2.3',
                                                                                                                                                            'nyears': 40,
                                                                                                                                                            'time_period': ['1979-1-16 '
                                                                                                                                                                            '12:0:0.0',
                                                                                                                                                                            '2018-12-16 '
                                                                                                                                                                            '12:0:0.0']},
                                                                                                                                   'ERA-Interim_TRMM-3B43v-7': {'name': 'ERA-Interim_TRMM-3B43v-7',
                                                                                                                                                                'nyears': 20,
                                                                                                                                                                'time_period': ['1998-1-16 '
                                                                                                                                                                                '12:0:0.0',
                                                                                                                                                                                '2017-12-16 '
                                                                                                                                                                                '12:0:0.0']},
                                                                                                                                   'HadISST_CMAP': {'name': 'HadISST_CMAP',
                                                                                                                                                    'nyears': 40,
                                                                                                                                                    'time_period': ['1979-1-16 '
                                                                                                                                                                    '3:0:0.0',
                                                                                                                                                                    '2018-12-16 '
                                                                                                                                                                    '18:0:0.0']},
                                                                                                                                   'HadISST_ERA-Interim': {'name': 'HadISST_ERA-Interim',
                                                                                                                                                           'nyears': 40,
                                                                                                                                                           'time_period': ['1979-1-16 '
                                                                                                                                                                           '3:0:0.0',
                                                                                                                                                                           '2018-12-16 '
                                                                                                                                                                           '18:0:0.0']},
                                                                                                                                   'HadISST_GPCPv2.3': {'name': 'HadISST_GPCPv2.3',
                                                                                                                                                        'nyears': 40,
                                                                                                                                                        'time_period': ['1979-1-16 '
                                                                                                                                                                        '3:0:0.0',
                                                                                                                                                                        '2018-12-16 '
                                                                                                                                                                        '18:0:0.0']},
                                                                                                                                   'HadISST_TRMM-3B43v-7': {'name': 'HadISST_TRMM-3B43v-7',
                                                                                                                                                            'nyears': 20,
                                                                                                                                                            'time_period': ['1998-1-16 '
                                                                                                                                                                            '3:0:0.0',
                                                                                                                                                                            '2017-12-16 '
                                                                                                                                                                            '18:0:0.0']},
                                                                                                                                   'Tropflux_CMAP': {'name': 'Tropflux_CMAP',
                                                                                                                                                     'nyears': 39,
                                                                                                                                                     'time_period': ['1979-1-15 '
                                                                                                                                                                     '0:0:0.0',
                                                                                                                                                                     '2017-7-15 '
                                                                                                                                                                     '12:0:0.0']},
                                                                                                                                   'Tropflux_ERA-Interim': {'name': 'Tropflux_ERA-Interim',
                                                                                                                                                            'nyears': 39,
                                                                                                                                                            'time_period': ['1979-1-15 '
                                                                                                                                                                            '0:0:0.0',
                                                                                                                                                                            '2017-7-15 '
                                                                                                                                                                            '12:0:0.0']},
                                                                                                                                   'Tropflux_GPCPv2.3': {'name': 'Tropflux_GPCPv2.3',
                                                                                                                                                         'nyears': 39,
                                                                                                                                                         'time_period': ['1979-1-15 '
                                                                                                                                                                         '0:0:0.0',
                                                                                                                                                                         '2017-7-15 '
                                                                                                                                                                         '12:0:0.0']},
                                                                                                                                   'Tropflux_TRMM-3B43v-7': {'name': 'Tropflux_TRMM-3B43v-7',
                                                                                                                                                             'nyears': 20,
                                                                                                                                                             'time_period': ['1998-1-15 '
                                                                                                                                                                             '0:0:0.0',
                                                                                                                                                                             '2017-7-15 '
                                                                                                                                                                             '12:0:0.0']},
                                                                                                                                   'method': 'nino3.4 '
                                                                                                                                             'SSTA '
                                                                                                                                             'regressed '
                                                                                                                                             'against '
                                                                                                                                             'precipitation '
                                                                                                                                             'anomalies '
                                                                                                                                             'in '
                                                                                                                                             'global '
                                                                                                                                             'during '
                                                                                                                                             'DJF, '
                                                                                                                                             'time '
                                                                                                                                             'series '
                                                                                                                                             'are '
                                                                                                                                             'linearly '
                                                                                                                                             'detrended, '
                                                                                                                                             'observations '
                                                                                                                                             'and '
                                                                                                                                             'model '
                                                                                                                                             'regridded '
                                                                                                                                             'to '
                                                                                                                                             'generic_1x1deg',
                                                                                                                                   'name': 'ENSO '
                                                                                                                                           'DJF '
                                                                                                                                           'PRA '
                                                                                                                                           'pattern',
                                                                                                                                   'ref': 'Using '
                                                                                                                                          'CDAT '
                                                                                                                                          'regridding, '
                                                                                                                                          'correlation '
                                                                                                                                          '(centered '
                                                                                                                                          'and '
                                                                                                                                          'biased), '
                                                                                                                                          'std '
                                                                                                                                          '(centered '
                                                                                                                                          'and '
                                                                                                                                          'biased) '
                                                                                                                                          'and '
                                                                                                                                          'rms '
                                                                                                                                          '(uncentered '
                                                                                                                                          'and '
                                                                                                                                          'biased) '
                                                                                                                                          'calculation',
                                                                                                                                   'time_frequency': 'monthly',
                                                                                                                                   'units': ''},
                                                                                                                    'metric': {'datasets': 'ACCESS-CM2_r3i1p1f1; '
                                                                                                                                           "20CRv2's "
                                                                                                                                           'ts; '
                                                                                                                                           "ERA-20C's "
                                                                                                                                           'ts; '
                                                                                                                                           "ERA-5's "
                                                                                                                                           'ts; '
                                                                                                                                           "ERA-Interim's "
                                                                                                                                           'ts; '
                                                                                                                                           "HadISST's "
                                                                                                                                           'ts; '
                                                                                                                                           "Tropflux's "
                                                                                                                                           'ts; '
                                                                                                                                           "CMAP's "
                                                                                                                                           'pr; '
                                                                                                                                           "ERA-Interim's "
                                                                                                                                           'pr; '
                                                                                                                                           "GPCPv2.3's "
                                                                                                                                           'pr; '
                                                                                                                                           "TRMM-3B43v-7's "
                                                                                                                                           'pr',
                                                                                                                               'method': 'The '
                                                                                                                                         'metric '
                                                                                                                                         'is '
                                                                                                                                         'the '
                                                                                                                                         'statistical '
                                                                                                                                         'value '
                                                                                                                                         'between '
                                                                                                                                         'the '
                                                                                                                                         'model '
                                                                                                                                         'and '
                                                                                                                                         'the '
                                                                                                                                         'observations',
                                                                                                                               'name': 'EnsoPrMapDjf',
                                                                                                                               'units': 'mm/day/C'}},
                                                                                               'EnsoPrMapDjfStd': {'diagnostic': {'20CRv2_CMAP': {'name': '20CRv2_CMAP',
                                                                                                                                                  'nyears': 34,
                                                                                                                                                  'time_period': ['1979-1-16 '
                                                                                                                                                                  '12:0:0.0',
                                                                                                                                                                  '2012-12-16 '
                                                                                                                                                                  '12:0:0.0']},
                                                                                                                                  '20CRv2_ERA-Interim': {'name': '20CRv2_ERA-Interim',
                                                                                                                                                         'nyears': 34,
                                                                                                                                                         'time_period': ['1979-1-16 '
                                                                                                                                                                         '12:0:0.0',
                                                                                                                                                                         '2012-12-16 '
                                                                                                                                                                         '12:0:0.0']},
                                                                                                                                  '20CRv2_GPCPv2.3': {'name': '20CRv2_GPCPv2.3',
                                                                                                                                                      'nyears': 34,
                                                                                                                                                      'time_period': ['1979-1-16 '
                                                                                                                                                                      '12:0:0.0',
                                                                                                                                                                      '2012-12-16 '
                                                                                                                                                                      '12:0:0.0']},
                                                                                                                                  '20CRv2_TRMM-3B43v-7': {'name': '20CRv2_TRMM-3B43v-7',
                                                                                                                                                          'nyears': 15,
                                                                                                                                                          'time_period': ['1998-1-16 '
                                                                                                                                                                          '12:0:0.0',
                                                                                                                                                                          '2012-12-16 '
                                                                                                                                                                          '12:0:0.0']},
                                                                                                                                  'ACCESS-CM2_r3i1p1f1': {'keyerror': None,
                                                                                                                                                          'name': 'ACCESS-CM2_r3i1p1f1',
                                                                                                                                                          'nyears': 165,
                                                                                                                                                          'time_period': ['1850-1-16 '
                                                                                                                                                                          '12:0:0.0',
                                                                                                                                                                          '2014-12-16 '
                                                                                                                                                                          '12:0:0.0']},
                                                                                                                                  'ERA-20C_CMAP': {'name': 'ERA-20C_CMAP',
                                                                                                                                                   'nyears': 32,
                                                                                                                                                   'time_period': ['1979-1-16 '
                                                                                                                                                                   '12:0:0.0',
                                                                                                                                                                   '2010-12-16 '
                                                                                                                                                                   '12:0:0.0']},
                                                                                                                                  'ERA-20C_ERA-Interim': {'name': 'ERA-20C_ERA-Interim',
                                                                                                                                                          'nyears': 32,
                                                                                                                                                          'time_period': ['1979-1-16 '
                                                                                                                                                                          '12:0:0.0',
                                                                                                                                                                          '2010-12-16 '
                                                                                                                                                                          '12:0:0.0']},
                                                                                                                                  'ERA-20C_GPCPv2.3': {'name': 'ERA-20C_GPCPv2.3',
                                                                                                                                                       'nyears': 32,
                                                                                                                                                       'time_period': ['1979-1-16 '
                                                                                                                                                                       '12:0:0.0',
                                                                                                                                                                       '2010-12-16 '
                                                                                                                                                                       '12:0:0.0']},
                                                                                                                                  'ERA-20C_TRMM-3B43v-7': {'name': 'ERA-20C_TRMM-3B43v-7',
                                                                                                                                                           'nyears': 13,
                                                                                                                                                           'time_period': ['1998-1-16 '
                                                                                                                                                                           '12:0:0.0',
                                                                                                                                                                           '2010-12-16 '
                                                                                                                                                                           '12:0:0.0']},
                                                                                                                                  'ERA-5_CMAP': {'name': 'ERA-5_CMAP',
                                                                                                                                                 'nyears': 40,
                                                                                                                                                 'time_period': ['1979-1-16 '
                                                                                                                                                                 '12:0:0.0',
                                                                                                                                                                 '2018-12-16 '
                                                                                                                                                                 '12:0:0.0']},
                                                                                                                                  'ERA-5_ERA-Interim': {'name': 'ERA-5_ERA-Interim',
                                                                                                                                                        'nyears': 40,
                                                                                                                                                        'time_period': ['1979-1-16 '
                                                                                                                                                                        '12:0:0.0',
                                                                                                                                                                        '2018-12-16 '
                                                                                                                                                                        '12:0:0.0']},
                                                                                                                                  'ERA-5_GPCPv2.3': {'name': 'ERA-5_GPCPv2.3',
                                                                                                                                                     'nyears': 40,
                                                                                                                                                     'time_period': ['1979-1-16 '
                                                                                                                                                                     '12:0:0.0',
                                                                                                                                                                     '2018-12-16 '
                                                                                                                                                                     '12:0:0.0']},
                                                                                                                                  'ERA-5_TRMM-3B43v-7': {'name': 'ERA-5_TRMM-3B43v-7',
                                                                                                                                                         'nyears': 20,
                                                                                                                                                         'time_period': ['1998-1-16 '
                                                                                                                                                                         '12:0:0.0',
                                                                                                                                                                         '2017-12-16 '
                                                                                                                                                                         '12:0:0.0']},
                                                                                                                                  'ERA-Interim_CMAP': {'name': 'ERA-Interim_CMAP',
                                                                                                                                                       'nyears': 40,
                                                                                                                                                       'time_period': ['1979-1-16 '
                                                                                                                                                                       '12:0:0.0',
                                                                                                                                                                       '2018-12-16 '
                                                                                                                                                                       '12:0:0.0']},
                                                                                                                                  'ERA-Interim_ERA-Interim': {'name': 'ERA-Interim_ERA-Interim',
                                                                                                                                                              'nyears': 40,
                                                                                                                                                              'time_period': ['1979-1-16 '
                                                                                                                                                                              '12:0:0.0',
                                                                                                                                                                              '2018-12-16 '
                                                                                                                                                                              '12:0:0.0']},
                                                                                                                                  'ERA-Interim_GPCPv2.3': {'name': 'ERA-Interim_GPCPv2.3',
                                                                                                                                                           'nyears': 40,
                                                                                                                                                           'time_period': ['1979-1-16 '
                                                                                                                                                                           '12:0:0.0',
                                                                                                                                                                           '2018-12-16 '
                                                                                                                                                                           '12:0:0.0']},
                                                                                                                                  'ERA-Interim_TRMM-3B43v-7': {'name': 'ERA-Interim_TRMM-3B43v-7',
                                                                                                                                                               'nyears': 20,
                                                                                                                                                               'time_period': ['1998-1-16 '
                                                                                                                                                                               '12:0:0.0',
                                                                                                                                                                               '2017-12-16 '
                                                                                                                                                                               '12:0:0.0']},
                                                                                                                                  'HadISST_CMAP': {'name': 'HadISST_CMAP',
                                                                                                                                                   'nyears': 40,
                                                                                                                                                   'time_period': ['1979-1-16 '
                                                                                                                                                                   '3:0:0.0',
                                                                                                                                                                   '2018-12-16 '
                                                                                                                                                                   '18:0:0.0']},
                                                                                                                                  'HadISST_ERA-Interim': {'name': 'HadISST_ERA-Interim',
                                                                                                                                                          'nyears': 40,
                                                                                                                                                          'time_period': ['1979-1-16 '
                                                                                                                                                                          '3:0:0.0',
                                                                                                                                                                          '2018-12-16 '
                                                                                                                                                                          '18:0:0.0']},
                                                                                                                                  'HadISST_GPCPv2.3': {'name': 'HadISST_GPCPv2.3',
                                                                                                                                                       'nyears': 40,
                                                                                                                                                       'time_period': ['1979-1-16 '
                                                                                                                                                                       '3:0:0.0',
                                                                                                                                                                       '2018-12-16 '
                                                                                                                                                                       '18:0:0.0']},
                                                                                                                                  'HadISST_TRMM-3B43v-7': {'name': 'HadISST_TRMM-3B43v-7',
                                                                                                                                                           'nyears': 20,
                                                                                                                                                           'time_period': ['1998-1-16 '
                                                                                                                                                                           '3:0:0.0',
                                                                                                                                                                           '2017-12-16 '
                                                                                                                                                                           '18:0:0.0']},
                                                                                                                                  'Tropflux_CMAP': {'name': 'Tropflux_CMAP',
                                                                                                                                                    'nyears': 39,
                                                                                                                                                    'time_period': ['1979-1-15 '
                                                                                                                                                                    '0:0:0.0',
                                                                                                                                                                    '2017-7-15 '
                                                                                                                                                                    '12:0:0.0']},
                                                                                                                                  'Tropflux_ERA-Interim': {'name': 'Tropflux_ERA-Interim',
                                                                                                                                                           'nyears': 39,
                                                                                                                                                           'time_period': ['1979-1-15 '
                                                                                                                                                                           '0:0:0.0',
                                                                                                                                                                           '2017-7-15 '
                                                                                                                                                                           '12:0:0.0']},
                                                                                                                                  'Tropflux_GPCPv2.3': {'name': 'Tropflux_GPCPv2.3',
                                                                                                                                                        'nyears': 39,
                                                                                                                                                        'time_period': ['1979-1-15 '
                                                                                                                                                                        '0:0:0.0',
                                                                                                                                                                        '2017-7-15 '
                                                                                                                                                                        '12:0:0.0']},
                                                                                                                                  'Tropflux_TRMM-3B43v-7': {'name': 'Tropflux_TRMM-3B43v-7',
                                                                                                                                                            'nyears': 20,
                                                                                                                                                            'time_period': ['1998-1-15 '
                                                                                                                                                                            '0:0:0.0',
                                                                                                                                                                            '2017-7-15 '
                                                                                                                                                                            '12:0:0.0']},
                                                                                                                                  'method': 'nino3.4 '
                                                                                                                                            'SSTA '
                                                                                                                                            'regressed '
                                                                                                                                            'against '
                                                                                                                                            'precipitation '
                                                                                                                                            'anomalies '
                                                                                                                                            'in '
                                                                                                                                            'global '
                                                                                                                                            'during '
                                                                                                                                            'DJF, '
                                                                                                                                            'time '
                                                                                                                                            'series '
                                                                                                                                            'are '
                                                                                                                                            'linearly '
                                                                                                                                            'detrended, '
                                                                                                                                            'observations '
                                                                                                                                            'and '
                                                                                                                                            'model '
                                                                                                                                            'regridded '
                                                                                                                                            'to '
                                                                                                                                            'generic_1x1deg',
                                                                                                                                  'name': 'ENSO '
                                                                                                                                          'DJF '
                                                                                                                                          'PRA '
                                                                                                                                          'pattern',
                                                                                                                                  'ref': 'Using '
                                                                                                                                         'CDAT '
                                                                                                                                         'regridding, '
                                                                                                                                         'correlation '
                                                                                                                                         '(centered '
                                                                                                                                         'and '
                                                                                                                                         'biased), '
                                                                                                                                         'std '
                                                                                                                                         '(centered '
                                                                                                                                         'and '
                                                                                                                                         'biased) '
                                                                                                                                         'and '
                                                                                                                                         'rms '
                                                                                                                                         '(uncentered '
                                                                                                                                         'and '
                                                                                                                                         'biased) '
                                                                                                                                         'calculation',
                                                                                                                                  'time_frequency': 'monthly',
                                                                                                                                  'units': ''},
                                                                                                                   'metric': {'datasets': 'ACCESS-CM2_r3i1p1f1; '
                                                                                                                                          "20CRv2's "
                                                                                                                                          'ts; '
                                                                                                                                          "ERA-20C's "
                                                                                                                                          'ts; '
                                                                                                                                          "ERA-5's "
                                                                                                                                          'ts; '
                                                                                                                                          "ERA-Interim's "
                                                                                                                                          'ts; '
                                                                                                                                          "HadISST's "
                                                                                                                                          'ts; '
                                                                                                                                          "Tropflux's "
                                                                                                                                          'ts; '
                                                                                                                                          "CMAP's "
                                                                                                                                          'pr; '
                                                                                                                                          "ERA-Interim's "
                                                                                                                                          'pr; '
                                                                                                                                          "GPCPv2.3's "
                                                                                                                                          'pr; '
                                                                                                                                          "TRMM-3B43v-7's "
                                                                                                                                          'pr',
                                                                                                                              'method': 'The '
                                                                                                                                        'metric '
                                                                                                                                        'is '
                                                                                                                                        'the '
                                                                                                                                        'statistical '
                                                                                                                                        'value '
                                                                                                                                        'between '
                                                                                                                                        'the '
                                                                                                                                        'model '
                                                                                                                                        'and '
                                                                                                                                        'the '
                                                                                                                                        'observations',
                                                                                                                              'name': 'EnsoPrMapDjf',
                                                                                                                              'units': 'mm/day/C '
                                                                                                                                       '/ '
                                                                                                                                       'mm/day/C'}},
                                                                                               'EnsoPrMapJjaCorr': {'diagnostic': {'20CRv2_CMAP': {'name': '20CRv2_CMAP',
                                                                                                                                                   'nyears': 34,
                                                                                                                                                   'time_period': ['1979-1-16 '
                                                                                                                                                                   '12:0:0.0',
                                                                                                                                                                   '2012-12-16 '
                                                                                                                                                                   '12:0:0.0']},
                                                                                                                                   '20CRv2_ERA-Interim': {'name': '20CRv2_ERA-Interim',
                                                                                                                                                          'nyears': 34,
                                                                                                                                                          'time_period': ['1979-1-16 '
                                                                                                                                                                          '12:0:0.0',
                                                                                                                                                                          '2012-12-16 '
                                                                                                                                                                          '12:0:0.0']},
                                                                                                                                   '20CRv2_GPCPv2.3': {'name': '20CRv2_GPCPv2.3',
                                                                                                                                                       'nyears': 34,
                                                                                                                                                       'time_period': ['1979-1-16 '
                                                                                                                                                                       '12:0:0.0',
                                                                                                                                                                       '2012-12-16 '
                                                                                                                                                                       '12:0:0.0']},
                                                                                                                                   '20CRv2_TRMM-3B43v-7': {'name': '20CRv2_TRMM-3B43v-7',
                                                                                                                                                           'nyears': 15,
                                                                                                                                                           'time_period': ['1998-1-16 '
                                                                                                                                                                           '12:0:0.0',
                                                                                                                                                                           '2012-12-16 '
                                                                                                                                                                           '12:0:0.0']},
                                                                                                                                   'ACCESS-CM2_r3i1p1f1': {'keyerror': None,
                                                                                                                                                           'name': 'ACCESS-CM2_r3i1p1f1',
                                                                                                                                                           'nyears': 165,
                                                                                                                                                           'time_period': ['1850-1-16 '
                                                                                                                                                                           '12:0:0.0',
                                                                                                                                                                           '2014-12-16 '
                                                                                                                                                                           '12:0:0.0']},
                                                                                                                                   'ERA-20C_CMAP': {'name': 'ERA-20C_CMAP',
                                                                                                                                                    'nyears': 32,
                                                                                                                                                    'time_period': ['1979-1-16 '
                                                                                                                                                                    '12:0:0.0',
                                                                                                                                                                    '2010-12-16 '
                                                                                                                                                                    '12:0:0.0']},
                                                                                                                                   'ERA-20C_ERA-Interim': {'name': 'ERA-20C_ERA-Interim',
                                                                                                                                                           'nyears': 32,
                                                                                                                                                           'time_period': ['1979-1-16 '
                                                                                                                                                                           '12:0:0.0',
                                                                                                                                                                           '2010-12-16 '
                                                                                                                                                                           '12:0:0.0']},
                                                                                                                                   'ERA-20C_GPCPv2.3': {'name': 'ERA-20C_GPCPv2.3',
                                                                                                                                                        'nyears': 32,
                                                                                                                                                        'time_period': ['1979-1-16 '
                                                                                                                                                                        '12:0:0.0',
                                                                                                                                                                        '2010-12-16 '
                                                                                                                                                                        '12:0:0.0']},
                                                                                                                                   'ERA-20C_TRMM-3B43v-7': {'name': 'ERA-20C_TRMM-3B43v-7',
                                                                                                                                                            'nyears': 13,
                                                                                                                                                            'time_period': ['1998-1-16 '
                                                                                                                                                                            '12:0:0.0',
                                                                                                                                                                            '2010-12-16 '
                                                                                                                                                                            '12:0:0.0']},
                                                                                                                                   'ERA-5_CMAP': {'name': 'ERA-5_CMAP',
                                                                                                                                                  'nyears': 40,
                                                                                                                                                  'time_period': ['1979-1-16 '
                                                                                                                                                                  '12:0:0.0',
                                                                                                                                                                  '2018-12-16 '
                                                                                                                                                                  '12:0:0.0']},
                                                                                                                                   'ERA-5_ERA-Interim': {'name': 'ERA-5_ERA-Interim',
                                                                                                                                                         'nyears': 40,
                                                                                                                                                         'time_period': ['1979-1-16 '
                                                                                                                                                                         '12:0:0.0',
                                                                                                                                                                         '2018-12-16 '
                                                                                                                                                                         '12:0:0.0']},
                                                                                                                                   'ERA-5_GPCPv2.3': {'name': 'ERA-5_GPCPv2.3',
                                                                                                                                                      'nyears': 40,
                                                                                                                                                      'time_period': ['1979-1-16 '
                                                                                                                                                                      '12:0:0.0',
                                                                                                                                                                      '2018-12-16 '
                                                                                                                                                                      '12:0:0.0']},
                                                                                                                                   'ERA-5_TRMM-3B43v-7': {'name': 'ERA-5_TRMM-3B43v-7',
                                                                                                                                                          'nyears': 20,
                                                                                                                                                          'time_period': ['1998-1-16 '
                                                                                                                                                                          '12:0:0.0',
                                                                                                                                                                          '2017-12-16 '
                                                                                                                                                                          '12:0:0.0']},
                                                                                                                                   'ERA-Interim_CMAP': {'name': 'ERA-Interim_CMAP',
                                                                                                                                                        'nyears': 40,
                                                                                                                                                        'time_period': ['1979-1-16 '
                                                                                                                                                                        '12:0:0.0',
                                                                                                                                                                        '2018-12-16 '
                                                                                                                                                                        '12:0:0.0']},
                                                                                                                                   'ERA-Interim_ERA-Interim': {'name': 'ERA-Interim_ERA-Interim',
                                                                                                                                                               'nyears': 40,
                                                                                                                                                               'time_period': ['1979-1-16 '
                                                                                                                                                                               '12:0:0.0',
                                                                                                                                                                               '2018-12-16 '
                                                                                                                                                                               '12:0:0.0']},
                                                                                                                                   'ERA-Interim_GPCPv2.3': {'name': 'ERA-Interim_GPCPv2.3',
                                                                                                                                                            'nyears': 40,
                                                                                                                                                            'time_period': ['1979-1-16 '
                                                                                                                                                                            '12:0:0.0',
                                                                                                                                                                            '2018-12-16 '
                                                                                                                                                                            '12:0:0.0']},
                                                                                                                                   'ERA-Interim_TRMM-3B43v-7': {'name': 'ERA-Interim_TRMM-3B43v-7',
                                                                                                                                                                'nyears': 20,
                                                                                                                                                                'time_period': ['1998-1-16 '
                                                                                                                                                                                '12:0:0.0',
                                                                                                                                                                                '2017-12-16 '
                                                                                                                                                                                '12:0:0.0']},
                                                                                                                                   'HadISST_CMAP': {'name': 'HadISST_CMAP',
                                                                                                                                                    'nyears': 40,
                                                                                                                                                    'time_period': ['1979-1-16 '
                                                                                                                                                                    '3:0:0.0',
                                                                                                                                                                    '2018-12-16 '
                                                                                                                                                                    '18:0:0.0']},
                                                                                                                                   'HadISST_ERA-Interim': {'name': 'HadISST_ERA-Interim',
                                                                                                                                                           'nyears': 40,
                                                                                                                                                           'time_period': ['1979-1-16 '
                                                                                                                                                                           '3:0:0.0',
                                                                                                                                                                           '2018-12-16 '
                                                                                                                                                                           '18:0:0.0']},
                                                                                                                                   'HadISST_GPCPv2.3': {'name': 'HadISST_GPCPv2.3',
                                                                                                                                                        'nyears': 40,
                                                                                                                                                        'time_period': ['1979-1-16 '
                                                                                                                                                                        '3:0:0.0',
                                                                                                                                                                        '2018-12-16 '
                                                                                                                                                                        '18:0:0.0']},
                                                                                                                                   'HadISST_TRMM-3B43v-7': {'name': 'HadISST_TRMM-3B43v-7',
                                                                                                                                                            'nyears': 20,
                                                                                                                                                            'time_period': ['1998-1-16 '
                                                                                                                                                                            '3:0:0.0',
                                                                                                                                                                            '2017-12-16 '
                                                                                                                                                                            '18:0:0.0']},
                                                                                                                                   'Tropflux_CMAP': {'name': 'Tropflux_CMAP',
                                                                                                                                                     'nyears': 39,
                                                                                                                                                     'time_period': ['1979-1-15 '
                                                                                                                                                                     '0:0:0.0',
                                                                                                                                                                     '2017-7-15 '
                                                                                                                                                                     '12:0:0.0']},
                                                                                                                                   'Tropflux_ERA-Interim': {'name': 'Tropflux_ERA-Interim',
                                                                                                                                                            'nyears': 39,
                                                                                                                                                            'time_period': ['1979-1-15 '
                                                                                                                                                                            '0:0:0.0',
                                                                                                                                                                            '2017-7-15 '
                                                                                                                                                                            '12:0:0.0']},
                                                                                                                                   'Tropflux_GPCPv2.3': {'name': 'Tropflux_GPCPv2.3',
                                                                                                                                                         'nyears': 39,
                                                                                                                                                         'time_period': ['1979-1-15 '
                                                                                                                                                                         '0:0:0.0',
                                                                                                                                                                         '2017-7-15 '
                                                                                                                                                                         '12:0:0.0']},
                                                                                                                                   'Tropflux_TRMM-3B43v-7': {'name': 'Tropflux_TRMM-3B43v-7',
                                                                                                                                                             'nyears': 20,
                                                                                                                                                             'time_period': ['1998-1-15 '
                                                                                                                                                                             '0:0:0.0',
                                                                                                                                                                             '2017-7-15 '
                                                                                                                                                                             '12:0:0.0']},
                                                                                                                                   'method': 'nino3.4 '
                                                                                                                                             'SSTA '
                                                                                                                                             'regressed '
                                                                                                                                             'against '
                                                                                                                                             'precipitation '
                                                                                                                                             'anomalies '
                                                                                                                                             'in '
                                                                                                                                             'global '
                                                                                                                                             'during '
                                                                                                                                             'JJA, '
                                                                                                                                             'time '
                                                                                                                                             'series '
                                                                                                                                             'are '
                                                                                                                                             'linearly '
                                                                                                                                             'detrended, '
                                                                                                                                             'observations '
                                                                                                                                             'and '
                                                                                                                                             'model '
                                                                                                                                             'regridded '
                                                                                                                                             'to '
                                                                                                                                             'generic_1x1deg',
                                                                                                                                   'name': 'ENSO '
                                                                                                                                           'JJA '
                                                                                                                                           'PRA '
                                                                                                                                           'pattern',
                                                                                                                                   'ref': 'Using '
                                                                                                                                          'CDAT '
                                                                                                                                          'regridding, '
                                                                                                                                          'correlation '
                                                                                                                                          '(centered '
                                                                                                                                          'and '
                                                                                                                                          'biased), '
                                                                                                                                          'std '
                                                                                                                                          '(centered '
                                                                                                                                          'and '
                                                                                                                                          'biased) '
                                                                                                                                          'and '
                                                                                                                                          'rms '
                                                                                                                                          '(uncentered '
                                                                                                                                          'and '
                                                                                                                                          'biased) '
                                                                                                                                          'calculation',
                                                                                                                                   'time_frequency': 'monthly',
                                                                                                                                   'units': ''},
                                                                                                                    'metric': {'datasets': 'ACCESS-CM2_r3i1p1f1; '
                                                                                                                                           "20CRv2's "
                                                                                                                                           'ts; '
                                                                                                                                           "ERA-20C's "
                                                                                                                                           'ts; '
                                                                                                                                           "ERA-5's "
                                                                                                                                           'ts; '
                                                                                                                                           "ERA-Interim's "
                                                                                                                                           'ts; '
                                                                                                                                           "HadISST's "
                                                                                                                                           'ts; '
                                                                                                                                           "Tropflux's "
                                                                                                                                           'ts; '
                                                                                                                                           "CMAP's "
                                                                                                                                           'pr; '
                                                                                                                                           "ERA-Interim's "
                                                                                                                                           'pr; '
                                                                                                                                           "GPCPv2.3's "
                                                                                                                                           'pr; '
                                                                                                                                           "TRMM-3B43v-7's "
                                                                                                                                           'pr',
                                                                                                                               'method': 'The '
                                                                                                                                         'metric '
                                                                                                                                         'is '
                                                                                                                                         'the '
                                                                                                                                         'statistical '
                                                                                                                                         'value '
                                                                                                                                         'between '
                                                                                                                                         'the '
                                                                                                                                         'model '
                                                                                                                                         'and '
                                                                                                                                         'the '
                                                                                                                                         'observations',
                                                                                                                               'name': 'EnsoPrMapJja',
                                                                                                                               'units': ''}},
                                                                                               'EnsoPrMapJjaRmse': {'diagnostic': {'20CRv2_CMAP': {'name': '20CRv2_CMAP',
                                                                                                                                                   'nyears': 34,
                                                                                                                                                   'time_period': ['1979-1-16 '
                                                                                                                                                                   '12:0:0.0',
                                                                                                                                                                   '2012-12-16 '
                                                                                                                                                                   '12:0:0.0']},
                                                                                                                                   '20CRv2_ERA-Interim': {'name': '20CRv2_ERA-Interim',
                                                                                                                                                          'nyears': 34,
                                                                                                                                                          'time_period': ['1979-1-16 '
                                                                                                                                                                          '12:0:0.0',
                                                                                                                                                                          '2012-12-16 '
                                                                                                                                                                          '12:0:0.0']},
                                                                                                                                   '20CRv2_GPCPv2.3': {'name': '20CRv2_GPCPv2.3',
                                                                                                                                                       'nyears': 34,
                                                                                                                                                       'time_period': ['1979-1-16 '
                                                                                                                                                                       '12:0:0.0',
                                                                                                                                                                       '2012-12-16 '
                                                                                                                                                                       '12:0:0.0']},
                                                                                                                                   '20CRv2_TRMM-3B43v-7': {'name': '20CRv2_TRMM-3B43v-7',
                                                                                                                                                           'nyears': 15,
                                                                                                                                                           'time_period': ['1998-1-16 '
                                                                                                                                                                           '12:0:0.0',
                                                                                                                                                                           '2012-12-16 '
                                                                                                                                                                           '12:0:0.0']},
                                                                                                                                   'ACCESS-CM2_r3i1p1f1': {'keyerror': None,
                                                                                                                                                           'name': 'ACCESS-CM2_r3i1p1f1',
                                                                                                                                                           'nyears': 165,
                                                                                                                                                           'time_period': ['1850-1-16 '
                                                                                                                                                                           '12:0:0.0',
                                                                                                                                                                           '2014-12-16 '
                                                                                                                                                                           '12:0:0.0']},
                                                                                                                                   'ERA-20C_CMAP': {'name': 'ERA-20C_CMAP',
                                                                                                                                                    'nyears': 32,
                                                                                                                                                    'time_period': ['1979-1-16 '
                                                                                                                                                                    '12:0:0.0',
                                                                                                                                                                    '2010-12-16 '
                                                                                                                                                                    '12:0:0.0']},
                                                                                                                                   'ERA-20C_ERA-Interim': {'name': 'ERA-20C_ERA-Interim',
                                                                                                                                                           'nyears': 32,
                                                                                                                                                           'time_period': ['1979-1-16 '
                                                                                                                                                                           '12:0:0.0',
                                                                                                                                                                           '2010-12-16 '
                                                                                                                                                                           '12:0:0.0']},
                                                                                                                                   'ERA-20C_GPCPv2.3': {'name': 'ERA-20C_GPCPv2.3',
                                                                                                                                                        'nyears': 32,
                                                                                                                                                        'time_period': ['1979-1-16 '
                                                                                                                                                                        '12:0:0.0',
                                                                                                                                                                        '2010-12-16 '
                                                                                                                                                                        '12:0:0.0']},
                                                                                                                                   'ERA-20C_TRMM-3B43v-7': {'name': 'ERA-20C_TRMM-3B43v-7',
                                                                                                                                                            'nyears': 13,
                                                                                                                                                            'time_period': ['1998-1-16 '
                                                                                                                                                                            '12:0:0.0',
                                                                                                                                                                            '2010-12-16 '
                                                                                                                                                                            '12:0:0.0']},
                                                                                                                                   'ERA-5_CMAP': {'name': 'ERA-5_CMAP',
                                                                                                                                                  'nyears': 40,
                                                                                                                                                  'time_period': ['1979-1-16 '
                                                                                                                                                                  '12:0:0.0',
                                                                                                                                                                  '2018-12-16 '
                                                                                                                                                                  '12:0:0.0']},
                                                                                                                                   'ERA-5_ERA-Interim': {'name': 'ERA-5_ERA-Interim',
                                                                                                                                                         'nyears': 40,
                                                                                                                                                         'time_period': ['1979-1-16 '
                                                                                                                                                                         '12:0:0.0',
                                                                                                                                                                         '2018-12-16 '
                                                                                                                                                                         '12:0:0.0']},
                                                                                                                                   'ERA-5_GPCPv2.3': {'name': 'ERA-5_GPCPv2.3',
                                                                                                                                                      'nyears': 40,
                                                                                                                                                      'time_period': ['1979-1-16 '
                                                                                                                                                                      '12:0:0.0',
                                                                                                                                                                      '2018-12-16 '
                                                                                                                                                                      '12:0:0.0']},
                                                                                                                                   'ERA-5_TRMM-3B43v-7': {'name': 'ERA-5_TRMM-3B43v-7',
                                                                                                                                                          'nyears': 20,
                                                                                                                                                          'time_period': ['1998-1-16 '
                                                                                                                                                                          '12:0:0.0',
                                                                                                                                                                          '2017-12-16 '
                                                                                                                                                                          '12:0:0.0']},
                                                                                                                                   'ERA-Interim_CMAP': {'name': 'ERA-Interim_CMAP',
                                                                                                                                                        'nyears': 40,
                                                                                                                                                        'time_period': ['1979-1-16 '
                                                                                                                                                                        '12:0:0.0',
                                                                                                                                                                        '2018-12-16 '
                                                                                                                                                                        '12:0:0.0']},
                                                                                                                                   'ERA-Interim_ERA-Interim': {'name': 'ERA-Interim_ERA-Interim',
                                                                                                                                                               'nyears': 40,
                                                                                                                                                               'time_period': ['1979-1-16 '
                                                                                                                                                                               '12:0:0.0',
                                                                                                                                                                               '2018-12-16 '
                                                                                                                                                                               '12:0:0.0']},
                                                                                                                                   'ERA-Interim_GPCPv2.3': {'name': 'ERA-Interim_GPCPv2.3',
                                                                                                                                                            'nyears': 40,
                                                                                                                                                            'time_period': ['1979-1-16 '
                                                                                                                                                                            '12:0:0.0',
                                                                                                                                                                            '2018-12-16 '
                                                                                                                                                                            '12:0:0.0']},
                                                                                                                                   'ERA-Interim_TRMM-3B43v-7': {'name': 'ERA-Interim_TRMM-3B43v-7',
                                                                                                                                                                'nyears': 20,
                                                                                                                                                                'time_period': ['1998-1-16 '
                                                                                                                                                                                '12:0:0.0',
                                                                                                                                                                                '2017-12-16 '
                                                                                                                                                                                '12:0:0.0']},
                                                                                                                                   'HadISST_CMAP': {'name': 'HadISST_CMAP',
                                                                                                                                                    'nyears': 40,
                                                                                                                                                    'time_period': ['1979-1-16 '
                                                                                                                                                                    '3:0:0.0',
                                                                                                                                                                    '2018-12-16 '
                                                                                                                                                                    '18:0:0.0']},
                                                                                                                                   'HadISST_ERA-Interim': {'name': 'HadISST_ERA-Interim',
                                                                                                                                                           'nyears': 40,
                                                                                                                                                           'time_period': ['1979-1-16 '
                                                                                                                                                                           '3:0:0.0',
                                                                                                                                                                           '2018-12-16 '
                                                                                                                                                                           '18:0:0.0']},
                                                                                                                                   'HadISST_GPCPv2.3': {'name': 'HadISST_GPCPv2.3',
                                                                                                                                                        'nyears': 40,
                                                                                                                                                        'time_period': ['1979-1-16 '
                                                                                                                                                                        '3:0:0.0',
                                                                                                                                                                        '2018-12-16 '
                                                                                                                                                                        '18:0:0.0']},
                                                                                                                                   'HadISST_TRMM-3B43v-7': {'name': 'HadISST_TRMM-3B43v-7',
                                                                                                                                                            'nyears': 20,
                                                                                                                                                            'time_period': ['1998-1-16 '
                                                                                                                                                                            '3:0:0.0',
                                                                                                                                                                            '2017-12-16 '
                                                                                                                                                                            '18:0:0.0']},
                                                                                                                                   'Tropflux_CMAP': {'name': 'Tropflux_CMAP',
                                                                                                                                                     'nyears': 39,
                                                                                                                                                     'time_period': ['1979-1-15 '
                                                                                                                                                                     '0:0:0.0',
                                                                                                                                                                     '2017-7-15 '
                                                                                                                                                                     '12:0:0.0']},
                                                                                                                                   'Tropflux_ERA-Interim': {'name': 'Tropflux_ERA-Interim',
                                                                                                                                                            'nyears': 39,
                                                                                                                                                            'time_period': ['1979-1-15 '
                                                                                                                                                                            '0:0:0.0',
                                                                                                                                                                            '2017-7-15 '
                                                                                                                                                                            '12:0:0.0']},
                                                                                                                                   'Tropflux_GPCPv2.3': {'name': 'Tropflux_GPCPv2.3',
                                                                                                                                                         'nyears': 39,
                                                                                                                                                         'time_period': ['1979-1-15 '
                                                                                                                                                                         '0:0:0.0',
                                                                                                                                                                         '2017-7-15 '
                                                                                                                                                                         '12:0:0.0']},
                                                                                                                                   'Tropflux_TRMM-3B43v-7': {'name': 'Tropflux_TRMM-3B43v-7',
                                                                                                                                                             'nyears': 20,
                                                                                                                                                             'time_period': ['1998-1-15 '
                                                                                                                                                                             '0:0:0.0',
                                                                                                                                                                             '2017-7-15 '
                                                                                                                                                                             '12:0:0.0']},
                                                                                                                                   'method': 'nino3.4 '
                                                                                                                                             'SSTA '
                                                                                                                                             'regressed '
                                                                                                                                             'against '
                                                                                                                                             'precipitation '
                                                                                                                                             'anomalies '
                                                                                                                                             'in '
                                                                                                                                             'global '
                                                                                                                                             'during '
                                                                                                                                             'JJA, '
                                                                                                                                             'time '
                                                                                                                                             'series '
                                                                                                                                             'are '
                                                                                                                                             'linearly '
                                                                                                                                             'detrended, '
                                                                                                                                             'observations '
                                                                                                                                             'and '
                                                                                                                                             'model '
                                                                                                                                             'regridded '
                                                                                                                                             'to '
                                                                                                                                             'generic_1x1deg',
                                                                                                                                   'name': 'ENSO '
                                                                                                                                           'JJA '
                                                                                                                                           'PRA '
                                                                                                                                           'pattern',
                                                                                                                                   'ref': 'Using '
                                                                                                                                          'CDAT '
                                                                                                                                          'regridding, '
                                                                                                                                          'correlation '
                                                                                                                                          '(centered '
                                                                                                                                          'and '
                                                                                                                                          'biased), '
                                                                                                                                          'std '
                                                                                                                                          '(centered '
                                                                                                                                          'and '
                                                                                                                                          'biased) '
                                                                                                                                          'and '
                                                                                                                                          'rms '
                                                                                                                                          '(uncentered '
                                                                                                                                          'and '
                                                                                                                                          'biased) '
                                                                                                                                          'calculation',
                                                                                                                                   'time_frequency': 'monthly',
                                                                                                                                   'units': ''},
                                                                                                                    'metric': {'datasets': 'ACCESS-CM2_r3i1p1f1; '
                                                                                                                                           "20CRv2's "
                                                                                                                                           'ts; '
                                                                                                                                           "ERA-20C's "
                                                                                                                                           'ts; '
                                                                                                                                           "ERA-5's "
                                                                                                                                           'ts; '
                                                                                                                                           "ERA-Interim's "
                                                                                                                                           'ts; '
                                                                                                                                           "HadISST's "
                                                                                                                                           'ts; '
                                                                                                                                           "Tropflux's "
                                                                                                                                           'ts; '
                                                                                                                                           "CMAP's "
                                                                                                                                           'pr; '
                                                                                                                                           "ERA-Interim's "
                                                                                                                                           'pr; '
                                                                                                                                           "GPCPv2.3's "
                                                                                                                                           'pr; '
                                                                                                                                           "TRMM-3B43v-7's "
                                                                                                                                           'pr',
                                                                                                                               'method': 'The '
                                                                                                                                         'metric '
                                                                                                                                         'is '
                                                                                                                                         'the '
                                                                                                                                         'statistical '
                                                                                                                                         'value '
                                                                                                                                         'between '
                                                                                                                                         'the '
                                                                                                                                         'model '
                                                                                                                                         'and '
                                                                                                                                         'the '
                                                                                                                                         'observations',
                                                                                                                               'name': 'EnsoPrMapJja',
                                                                                                                               'units': 'mm/day/C'}},
                                                                                               'EnsoPrMapJjaStd': {'diagnostic': {'20CRv2_CMAP': {'name': '20CRv2_CMAP',
                                                                                                                                                  'nyears': 34,
                                                                                                                                                  'time_period': ['1979-1-16 '
                                                                                                                                                                  '12:0:0.0',
                                                                                                                                                                  '2012-12-16 '
                                                                                                                                                                  '12:0:0.0']},
                                                                                                                                  '20CRv2_ERA-Interim': {'name': '20CRv2_ERA-Interim',
                                                                                                                                                         'nyears': 34,
                                                                                                                                                         'time_period': ['1979-1-16 '
                                                                                                                                                                         '12:0:0.0',
                                                                                                                                                                         '2012-12-16 '
                                                                                                                                                                         '12:0:0.0']},
                                                                                                                                  '20CRv2_GPCPv2.3': {'name': '20CRv2_GPCPv2.3',
                                                                                                                                                      'nyears': 34,
                                                                                                                                                      'time_period': ['1979-1-16 '
                                                                                                                                                                      '12:0:0.0',
                                                                                                                                                                      '2012-12-16 '
                                                                                                                                                                      '12:0:0.0']},
                                                                                                                                  '20CRv2_TRMM-3B43v-7': {'name': '20CRv2_TRMM-3B43v-7',
                                                                                                                                                          'nyears': 15,
                                                                                                                                                          'time_period': ['1998-1-16 '
                                                                                                                                                                          '12:0:0.0',
                                                                                                                                                                          '2012-12-16 '
                                                                                                                                                                          '12:0:0.0']},
                                                                                                                                  'ACCESS-CM2_r3i1p1f1': {'keyerror': None,
                                                                                                                                                          'name': 'ACCESS-CM2_r3i1p1f1',
                                                                                                                                                          'nyears': 165,
                                                                                                                                                          'time_period': ['1850-1-16 '
                                                                                                                                                                          '12:0:0.0',
                                                                                                                                                                          '2014-12-16 '
                                                                                                                                                                          '12:0:0.0']},
                                                                                                                                  'ERA-20C_CMAP': {'name': 'ERA-20C_CMAP',
                                                                                                                                                   'nyears': 32,
                                                                                                                                                   'time_period': ['1979-1-16 '
                                                                                                                                                                   '12:0:0.0',
                                                                                                                                                                   '2010-12-16 '
                                                                                                                                                                   '12:0:0.0']},
                                                                                                                                  'ERA-20C_ERA-Interim': {'name': 'ERA-20C_ERA-Interim',
                                                                                                                                                          'nyears': 32,
                                                                                                                                                          'time_period': ['1979-1-16 '
                                                                                                                                                                          '12:0:0.0',
                                                                                                                                                                          '2010-12-16 '
                                                                                                                                                                          '12:0:0.0']},
                                                                                                                                  'ERA-20C_GPCPv2.3': {'name': 'ERA-20C_GPCPv2.3',
                                                                                                                                                       'nyears': 32,
                                                                                                                                                       'time_period': ['1979-1-16 '
                                                                                                                                                                       '12:0:0.0',
                                                                                                                                                                       '2010-12-16 '
                                                                                                                                                                       '12:0:0.0']},
                                                                                                                                  'ERA-20C_TRMM-3B43v-7': {'name': 'ERA-20C_TRMM-3B43v-7',
                                                                                                                                                           'nyears': 13,
                                                                                                                                                           'time_period': ['1998-1-16 '
                                                                                                                                                                           '12:0:0.0',
                                                                                                                                                                           '2010-12-16 '
                                                                                                                                                                           '12:0:0.0']},
                                                                                                                                  'ERA-5_CMAP': {'name': 'ERA-5_CMAP',
                                                                                                                                                 'nyears': 40,
                                                                                                                                                 'time_period': ['1979-1-16 '
                                                                                                                                                                 '12:0:0.0',
                                                                                                                                                                 '2018-12-16 '
                                                                                                                                                                 '12:0:0.0']},
                                                                                                                                  'ERA-5_ERA-Interim': {'name': 'ERA-5_ERA-Interim',
                                                                                                                                                        'nyears': 40,
                                                                                                                                                        'time_period': ['1979-1-16 '
                                                                                                                                                                        '12:0:0.0',
                                                                                                                                                                        '2018-12-16 '
                                                                                                                                                                        '12:0:0.0']},
                                                                                                                                  'ERA-5_GPCPv2.3': {'name': 'ERA-5_GPCPv2.3',
                                                                                                                                                     'nyears': 40,
                                                                                                                                                     'time_period': ['1979-1-16 '
                                                                                                                                                                     '12:0:0.0',
                                                                                                                                                                     '2018-12-16 '
                                                                                                                                                                     '12:0:0.0']},
                                                                                                                                  'ERA-5_TRMM-3B43v-7': {'name': 'ERA-5_TRMM-3B43v-7',
                                                                                                                                                         'nyears': 20,
                                                                                                                                                         'time_period': ['1998-1-16 '
                                                                                                                                                                         '12:0:0.0',
                                                                                                                                                                         '2017-12-16 '
                                                                                                                                                                         '12:0:0.0']},
                                                                                                                                  'ERA-Interim_CMAP': {'name': 'ERA-Interim_CMAP',
                                                                                                                                                       'nyears': 40,
                                                                                                                                                       'time_period': ['1979-1-16 '
                                                                                                                                                                       '12:0:0.0',
                                                                                                                                                                       '2018-12-16 '
                                                                                                                                                                       '12:0:0.0']},
                                                                                                                                  'ERA-Interim_ERA-Interim': {'name': 'ERA-Interim_ERA-Interim',
                                                                                                                                                              'nyears': 40,
                                                                                                                                                              'time_period': ['1979-1-16 '
                                                                                                                                                                              '12:0:0.0',
                                                                                                                                                                              '2018-12-16 '
                                                                                                                                                                              '12:0:0.0']},
                                                                                                                                  'ERA-Interim_GPCPv2.3': {'name': 'ERA-Interim_GPCPv2.3',
                                                                                                                                                           'nyears': 40,
                                                                                                                                                           'time_period': ['1979-1-16 '
                                                                                                                                                                           '12:0:0.0',
                                                                                                                                                                           '2018-12-16 '
                                                                                                                                                                           '12:0:0.0']},
                                                                                                                                  'ERA-Interim_TRMM-3B43v-7': {'name': 'ERA-Interim_TRMM-3B43v-7',
                                                                                                                                                               'nyears': 20,
                                                                                                                                                               'time_period': ['1998-1-16 '
                                                                                                                                                                               '12:0:0.0',
                                                                                                                                                                               '2017-12-16 '
                                                                                                                                                                               '12:0:0.0']},
                                                                                                                                  'HadISST_CMAP': {'name': 'HadISST_CMAP',
                                                                                                                                                   'nyears': 40,
                                                                                                                                                   'time_period': ['1979-1-16 '
                                                                                                                                                                   '3:0:0.0',
                                                                                                                                                                   '2018-12-16 '
                                                                                                                                                                   '18:0:0.0']},
                                                                                                                                  'HadISST_ERA-Interim': {'name': 'HadISST_ERA-Interim',
                                                                                                                                                          'nyears': 40,
                                                                                                                                                          'time_period': ['1979-1-16 '
                                                                                                                                                                          '3:0:0.0',
                                                                                                                                                                          '2018-12-16 '
                                                                                                                                                                          '18:0:0.0']},
                                                                                                                                  'HadISST_GPCPv2.3': {'name': 'HadISST_GPCPv2.3',
                                                                                                                                                       'nyears': 40,
                                                                                                                                                       'time_period': ['1979-1-16 '
                                                                                                                                                                       '3:0:0.0',
                                                                                                                                                                       '2018-12-16 '
                                                                                                                                                                       '18:0:0.0']},
                                                                                                                                  'HadISST_TRMM-3B43v-7': {'name': 'HadISST_TRMM-3B43v-7',
                                                                                                                                                           'nyears': 20,
                                                                                                                                                           'time_period': ['1998-1-16 '
                                                                                                                                                                           '3:0:0.0',
                                                                                                                                                                           '2017-12-16 '
                                                                                                                                                                           '18:0:0.0']},
                                                                                                                                  'Tropflux_CMAP': {'name': 'Tropflux_CMAP',
                                                                                                                                                    'nyears': 39,
                                                                                                                                                    'time_period': ['1979-1-15 '
                                                                                                                                                                    '0:0:0.0',
                                                                                                                                                                    '2017-7-15 '
                                                                                                                                                                    '12:0:0.0']},
                                                                                                                                  'Tropflux_ERA-Interim': {'name': 'Tropflux_ERA-Interim',
                                                                                                                                                           'nyears': 39,
                                                                                                                                                           'time_period': ['1979-1-15 '
                                                                                                                                                                           '0:0:0.0',
                                                                                                                                                                           '2017-7-15 '
                                                                                                                                                                           '12:0:0.0']},
                                                                                                                                  'Tropflux_GPCPv2.3': {'name': 'Tropflux_GPCPv2.3',
                                                                                                                                                        'nyears': 39,
                                                                                                                                                        'time_period': ['1979-1-15 '
                                                                                                                                                                        '0:0:0.0',
                                                                                                                                                                        '2017-7-15 '
                                                                                                                                                                        '12:0:0.0']},
                                                                                                                                  'Tropflux_TRMM-3B43v-7': {'name': 'Tropflux_TRMM-3B43v-7',
                                                                                                                                                            'nyears': 20,
                                                                                                                                                            'time_period': ['1998-1-15 '
                                                                                                                                                                            '0:0:0.0',
                                                                                                                                                                            '2017-7-15 '
                                                                                                                                                                            '12:0:0.0']},
                                                                                                                                  'method': 'nino3.4 '
                                                                                                                                            'SSTA '
                                                                                                                                            'regressed '
                                                                                                                                            'against '
                                                                                                                                            'precipitation '
                                                                                                                                            'anomalies '
                                                                                                                                            'in '
                                                                                                                                            'global '
                                                                                                                                            'during '
                                                                                                                                            'JJA, '
                                                                                                                                            'time '
                                                                                                                                            'series '
                                                                                                                                            'are '
                                                                                                                                            'linearly '
                                                                                                                                            'detrended, '
                                                                                                                                            'observations '
                                                                                                                                            'and '
                                                                                                                                            'model '
                                                                                                                                            'regridded '
                                                                                                                                            'to '
                                                                                                                                            'generic_1x1deg',
                                                                                                                                  'name': 'ENSO '
                                                                                                                                          'JJA '
                                                                                                                                          'PRA '
                                                                                                                                          'pattern',
                                                                                                                                  'ref': 'Using '
                                                                                                                                         'CDAT '
                                                                                                                                         'regridding, '
                                                                                                                                         'correlation '
                                                                                                                                         '(centered '
                                                                                                                                         'and '
                                                                                                                                         'biased), '
                                                                                                                                         'std '
                                                                                                                                         '(centered '
                                                                                                                                         'and '
                                                                                                                                         'biased) '
                                                                                                                                         'and '
                                                                                                                                         'rms '
                                                                                                                                         '(uncentered '
                                                                                                                                         'and '
                                                                                                                                         'biased) '
                                                                                                                                         'calculation',
                                                                                                                                  'time_frequency': 'monthly',
                                                                                                                                  'units': ''},
                                                                                                                   'metric': {'datasets': 'ACCESS-CM2_r3i1p1f1; '
                                                                                                                                          "20CRv2's "
                                                                                                                                          'ts; '
                                                                                                                                          "ERA-20C's "
                                                                                                                                          'ts; '
                                                                                                                                          "ERA-5's "
                                                                                                                                          'ts; '
                                                                                                                                          "ERA-Interim's "
                                                                                                                                          'ts; '
                                                                                                                                          "HadISST's "
                                                                                                                                          'ts; '
                                                                                                                                          "Tropflux's "
                                                                                                                                          'ts; '
                                                                                                                                          "CMAP's "
                                                                                                                                          'pr; '
                                                                                                                                          "ERA-Interim's "
                                                                                                                                          'pr; '
                                                                                                                                          "GPCPv2.3's "
                                                                                                                                          'pr; '
                                                                                                                                          "TRMM-3B43v-7's "
                                                                                                                                          'pr',
                                                                                                                              'method': 'The '
                                                                                                                                        'metric '
                                                                                                                                        'is '
                                                                                                                                        'the '
                                                                                                                                        'statistical '
                                                                                                                                        'value '
                                                                                                                                        'between '
                                                                                                                                        'the '
                                                                                                                                        'model '
                                                                                                                                        'and '
                                                                                                                                        'the '
                                                                                                                                        'observations',
                                                                                                                              'name': 'EnsoPrMapJja',
                                                                                                                              'units': 'mm/day/C '
                                                                                                                                       '/ '
                                                                                                                                       'mm/day/C'}},
                                                                                               'EnsoSeasonality': {'diagnostic': {'20CRv2': {'keyerror': None,
                                                                                                                                             'name': '20CRv2',
                                                                                                                                             'nyears': 142,
                                                                                                                                             'time_period': ['1871-1-16 '
                                                                                                                                                             '12:0:0.0',
                                                                                                                                                             '2012-12-16 '
                                                                                                                                                             '12:0:0.0']},
                                                                                                                                  'ACCESS-CM2_r3i1p1f1': {'keyerror': None,
                                                                                                                                                          'name': 'ACCESS-CM2_r3i1p1f1',
                                                                                                                                                          'nyears': 165,
                                                                                                                                                          'time_period': ['1850-1-16 '
                                                                                                                                                                          '12:0:0.0',
                                                                                                                                                                          '2014-12-16 '
                                                                                                                                                                          '12:0:0.0']},
                                                                                                                                  'ERA-20C': {'keyerror': None,
                                                                                                                                              'name': 'ERA-20C',
                                                                                                                                              'nyears': 111,
                                                                                                                                              'time_period': ['1900-1-16 '
                                                                                                                                                              '12:0:0.0',
                                                                                                                                                              '2010-12-16 '
                                                                                                                                                              '12:0:0.0']},
                                                                                                                                  'ERA-5': {'keyerror': None,
                                                                                                                                            'name': 'ERA-5',
                                                                                                                                            'nyears': 40,
                                                                                                                                            'time_period': ['1979-1-16 '
                                                                                                                                                            '12:0:0.0',
                                                                                                                                                            '2018-12-16 '
                                                                                                                                                            '12:0:0.0']},
                                                                                                                                  'ERA-Interim': {'keyerror': None,
                                                                                                                                                  'name': 'ERA-Interim',
                                                                                                                                                  'nyears': 40,
                                                                                                                                                  'time_period': ['1979-1-16 '
                                                                                                                                                                  '12:0:0.0',
                                                                                                                                                                  '2018-12-16 '
                                                                                                                                                                  '12:0:0.0']},
                                                                                                                                  'HadISST': {'keyerror': 'unlikely '
                                                                                                                                                          'units: '
                                                                                                                                                          'K([-1e+30, '
                                                                                                                                                          '304.7203])',
                                                                                                                                              'name': 'HadISST',
                                                                                                                                              'nyears': 149,
                                                                                                                                              'time_period': ['1870-1-16 '
                                                                                                                                                              '11:59:59.5',
                                                                                                                                                              '2018-12-16 '
                                                                                                                                                              '18:0:0.0']},
                                                                                                                                  'Tropflux': {'keyerror': None,
                                                                                                                                               'name': 'Tropflux',
                                                                                                                                               'nyears': 39,
                                                                                                                                               'time_period': ['1979-1-15 '
                                                                                                                                                               '0:0:0.0',
                                                                                                                                                               '2017-7-15 '
                                                                                                                                                               '12:0:0.0']},
                                                                                                                                  'method': 'Ratio '
                                                                                                                                            'between '
                                                                                                                                            'NDJ '
                                                                                                                                            'and '
                                                                                                                                            'MAM '
                                                                                                                                            'standard '
                                                                                                                                            'deviation '
                                                                                                                                            'nino3.4 '
                                                                                                                                            'sstA, '
                                                                                                                                            'time '
                                                                                                                                            'series '
                                                                                                                                            'are '
                                                                                                                                            'linearly '
                                                                                                                                            'detrended',
                                                                                                                                  'name': 'ENSO '
                                                                                                                                          'seasonality',
                                                                                                                                  'ref': 'Using '
                                                                                                                                         'CDAT '
                                                                                                                                         'std '
                                                                                                                                         'dev '
                                                                                                                                         'calculation',
                                                                                                                                  'time_frequency': 'monthly',
                                                                                                                                  'units': 'C/C'},
                                                                                                                   'metric': {'datasets': 'ACCESS-CM2_r3i1p1f1; '
                                                                                                                                          "20CRv2's "
                                                                                                                                          'ts; '
                                                                                                                                          "ERA-20C's "
                                                                                                                                          'ts; '
                                                                                                                                          "ERA-5's "
                                                                                                                                          'ts; '
                                                                                                                                          "ERA-Interim's "
                                                                                                                                          'ts; '
                                                                                                                                          "HadISST's "
                                                                                                                                          'ts; '
                                                                                                                                          "Tropflux's "
                                                                                                                                          'ts; '
                                                                                                                                          "'s ",
                                                                                                                              'method': 'The '
                                                                                                                                        'metric '
                                                                                                                                        'is '
                                                                                                                                        'the '
                                                                                                                                        'absolute '
                                                                                                                                        'value '
                                                                                                                                        'of '
                                                                                                                                        'the '
                                                                                                                                        'relative '
                                                                                                                                        'difference '
                                                                                                                                        'between '
                                                                                                                                        'model '
                                                                                                                                        'and '
                                                                                                                                        'observations '
                                                                                                                                        'values '
                                                                                                                                        '(M '
                                                                                                                                        '= '
                                                                                                                                        '100 '
                                                                                                                                        '* '
                                                                                                                                        'abs[[model-obs] '
                                                                                                                                        '/ '
                                                                                                                                        'obs])',
                                                                                                                              'name': 'EnsoSeasonality',
                                                                                                                              'units': '%'}},
                                                                                               'EnsoSstLonRmse': {'diagnostic': {'20CRv2': {'name': '20CRv2',
                                                                                                                                            'nyears': 142,
                                                                                                                                            'time_period': ['1871-1-16 '
                                                                                                                                                            '12:0:0.0',
                                                                                                                                                            '2012-12-16 '
                                                                                                                                                            '12:0:0.0']},
                                                                                                                                 'ACCESS-CM2_r3i1p1f1': {'keyerror': None,
                                                                                                                                                         'name': 'ACCESS-CM2_r3i1p1f1',
                                                                                                                                                         'nyears': 165,
                                                                                                                                                         'time_period': ['1850-1-16 '
                                                                                                                                                                         '12:0:0.0',
                                                                                                                                                                         '2014-12-16 '
                                                                                                                                                                         '12:0:0.0']},
                                                                                                                                 'ERA-20C': {'name': 'ERA-20C',
                                                                                                                                             'nyears': 111,
                                                                                                                                             'time_period': ['1900-1-16 '
                                                                                                                                                             '12:0:0.0',
                                                                                                                                                             '2010-12-16 '
                                                                                                                                                             '12:0:0.0']},
                                                                                                                                 'ERA-5': {'name': 'ERA-5',
                                                                                                                                           'nyears': 40,
                                                                                                                                           'time_period': ['1979-1-16 '
                                                                                                                                                           '12:0:0.0',
                                                                                                                                                           '2018-12-16 '
                                                                                                                                                           '12:0:0.0']},
                                                                                                                                 'ERA-Interim': {'name': 'ERA-Interim',
                                                                                                                                                 'nyears': 40,
                                                                                                                                                 'time_period': ['1979-1-16 '
                                                                                                                                                                 '12:0:0.0',
                                                                                                                                                                 '2018-12-16 '
                                                                                                                                                                 '12:0:0.0']},
                                                                                                                                 'HadISST': {'name': 'HadISST',
                                                                                                                                             'nyears': 149,
                                                                                                                                             'time_period': ['1870-1-16 '
                                                                                                                                                             '11:59:59.5',
                                                                                                                                                             '2018-12-16 '
                                                                                                                                                             '18:0:0.0']},
                                                                                                                                 'Tropflux': {'name': 'Tropflux',
                                                                                                                                              'nyears': 39,
                                                                                                                                              'time_period': ['1979-1-15 '
                                                                                                                                                              '0:0:0.0',
                                                                                                                                                              '2017-7-15 '
                                                                                                                                                              '12:0:0.0']},
                                                                                                                                 'method': 'nino3.4 '
                                                                                                                                           'SSTA '
                                                                                                                                           'during '
                                                                                                                                           'DEC '
                                                                                                                                           'regressed '
                                                                                                                                           'against '
                                                                                                                                           'equatorial_pacific '
                                                                                                                                           'SSTA, '
                                                                                                                                           'time '
                                                                                                                                           'series '
                                                                                                                                           'are '
                                                                                                                                           'linearly '
                                                                                                                                           'detrended, '
                                                                                                                                           'smoothing '
                                                                                                                                           'using '
                                                                                                                                           'a '
                                                                                                                                           'triangle '
                                                                                                                                           'shaped '
                                                                                                                                           'window '
                                                                                                                                           'of '
                                                                                                                                           '5 '
                                                                                                                                           'points, '
                                                                                                                                           'observations '
                                                                                                                                           'and '
                                                                                                                                           'model '
                                                                                                                                           'regridded '
                                                                                                                                           'to '
                                                                                                                                           'generic_1x1deg',
                                                                                                                                 'name': 'ENSO '
                                                                                                                                         'Zonal '
                                                                                                                                         'SSTA '
                                                                                                                                         'pattern',
                                                                                                                                 'ref': 'Using '
                                                                                                                                        'CDAT '
                                                                                                                                        'regridding '
                                                                                                                                        'and '
                                                                                                                                        'rms '
                                                                                                                                        '(uncentered '
                                                                                                                                        'and '
                                                                                                                                        'biased) '
                                                                                                                                        'calculation',
                                                                                                                                 'time_frequency': 'monthly',
                                                                                                                                 'units': 'C/C'},
                                                                                                                  'metric': {'datasets': 'ACCESS-CM2_r3i1p1f1; '
                                                                                                                                         "20CRv2's "
                                                                                                                                         'ts; '
                                                                                                                                         "ERA-20C's "
                                                                                                                                         'ts; '
                                                                                                                                         "ERA-5's "
                                                                                                                                         'ts; '
                                                                                                                                         "ERA-Interim's "
                                                                                                                                         'ts; '
                                                                                                                                         "HadISST's "
                                                                                                                                         'ts; '
                                                                                                                                         "Tropflux's "
                                                                                                                                         'ts; '
                                                                                                                                         "'s ",
                                                                                                                             'method': 'The '
                                                                                                                                       'metric '
                                                                                                                                       'is '
                                                                                                                                       'the '
                                                                                                                                       'statistical '
                                                                                                                                       'value '
                                                                                                                                       'between '
                                                                                                                                       'the '
                                                                                                                                       'model '
                                                                                                                                       'and '
                                                                                                                                       'the '
                                                                                                                                       'observations',
                                                                                                                             'name': 'EnsoSstLonRmse',
                                                                                                                             'units': 'C/C'}},
                                                                                               'EnsoSstMapDjfCorr': {'diagnostic': {'20CRv2': {'name': '20CRv2',
                                                                                                                                               'nyears': 142,
                                                                                                                                               'time_period': ['1871-1-16 '
                                                                                                                                                               '12:0:0.0',
                                                                                                                                                               '2012-12-16 '
                                                                                                                                                               '12:0:0.0']},
                                                                                                                                    'ACCESS-CM2_r3i1p1f1': {'keyerror': None,
                                                                                                                                                            'name': 'ACCESS-CM2_r3i1p1f1',
                                                                                                                                                            'nyears': 165,
                                                                                                                                                            'time_period': ['1850-1-16 '
                                                                                                                                                                            '12:0:0.0',
                                                                                                                                                                            '2014-12-16 '
                                                                                                                                                                            '12:0:0.0']},
                                                                                                                                    'ERA-20C': {'name': 'ERA-20C',
                                                                                                                                                'nyears': 111,
                                                                                                                                                'time_period': ['1900-1-16 '
                                                                                                                                                                '12:0:0.0',
                                                                                                                                                                '2010-12-16 '
                                                                                                                                                                '12:0:0.0']},
                                                                                                                                    'ERA-5': {'name': 'ERA-5',
                                                                                                                                              'nyears': 40,
                                                                                                                                              'time_period': ['1979-1-16 '
                                                                                                                                                              '12:0:0.0',
                                                                                                                                                              '2018-12-16 '
                                                                                                                                                              '12:0:0.0']},
                                                                                                                                    'ERA-Interim': {'name': 'ERA-Interim',
                                                                                                                                                    'nyears': 40,
                                                                                                                                                    'time_period': ['1979-1-16 '
                                                                                                                                                                    '12:0:0.0',
                                                                                                                                                                    '2018-12-16 '
                                                                                                                                                                    '12:0:0.0']},
                                                                                                                                    'method': 'nino3.4 '
                                                                                                                                              'SSTA '
                                                                                                                                              'regressed '
                                                                                                                                              'against '
                                                                                                                                              'surface '
                                                                                                                                              'temperature '
                                                                                                                                              'anomalies '
                                                                                                                                              'in '
                                                                                                                                              'global '
                                                                                                                                              'during '
                                                                                                                                              'DJF, '
                                                                                                                                              'time '
                                                                                                                                              'series '
                                                                                                                                              'are '
                                                                                                                                              'linearly '
                                                                                                                                              'detrended, '
                                                                                                                                              'observations '
                                                                                                                                              'and '
                                                                                                                                              'model '
                                                                                                                                              'regridded '
                                                                                                                                              'to '
                                                                                                                                              'generic_1x1deg',
                                                                                                                                    'name': 'ENSO '
                                                                                                                                            'DJF '
                                                                                                                                            'TSA '
                                                                                                                                            'pattern',
                                                                                                                                    'ref': 'Using '
                                                                                                                                           'CDAT '
                                                                                                                                           'regridding, '
                                                                                                                                           'correlation '
                                                                                                                                           '(centered '
                                                                                                                                           'and '
                                                                                                                                           'biased), '
                                                                                                                                           'std '
                                                                                                                                           '(centered '
                                                                                                                                           'and '
                                                                                                                                           'biased) '
                                                                                                                                           'and '
                                                                                                                                           'rms '
                                                                                                                                           '(uncentered '
                                                                                                                                           'and '
                                                                                                                                           'biased) '
                                                                                                                                           'calculation',
                                                                                                                                    'time_frequency': 'monthly',
                                                                                                                                    'units': ''},
                                                                                                                     'metric': {'datasets': 'ACCESS-CM2_r3i1p1f1; '
                                                                                                                                            "20CRv2's "
                                                                                                                                            'ts; '
                                                                                                                                            "ERA-20C's "
                                                                                                                                            'ts; '
                                                                                                                                            "ERA-5's "
                                                                                                                                            'ts; '
                                                                                                                                            "ERA-Interim's "
                                                                                                                                            'ts; '
                                                                                                                                            "HadISST's "
                                                                                                                                            'ts; '
                                                                                                                                            "Tropflux's "
                                                                                                                                            'ts; '
                                                                                                                                            "'s ",
                                                                                                                                'method': 'The '
                                                                                                                                          'metric '
                                                                                                                                          'is '
                                                                                                                                          'the '
                                                                                                                                          'statistical '
                                                                                                                                          'value '
                                                                                                                                          'between '
                                                                                                                                          'the '
                                                                                                                                          'model '
                                                                                                                                          'and '
                                                                                                                                          'the '
                                                                                                                                          'observations',
                                                                                                                                'name': 'EnsoSstMapDjf',
                                                                                                                                'units': ''}},
                                                                                               'EnsoSstMapDjfRmse': {'diagnostic': {'20CRv2': {'name': '20CRv2',
                                                                                                                                               'nyears': 142,
                                                                                                                                               'time_period': ['1871-1-16 '
                                                                                                                                                               '12:0:0.0',
                                                                                                                                                               '2012-12-16 '
                                                                                                                                                               '12:0:0.0']},
                                                                                                                                    'ACCESS-CM2_r3i1p1f1': {'keyerror': None,
                                                                                                                                                            'name': 'ACCESS-CM2_r3i1p1f1',
                                                                                                                                                            'nyears': 165,
                                                                                                                                                            'time_period': ['1850-1-16 '
                                                                                                                                                                            '12:0:0.0',
                                                                                                                                                                            '2014-12-16 '
                                                                                                                                                                            '12:0:0.0']},
                                                                                                                                    'ERA-20C': {'name': 'ERA-20C',
                                                                                                                                                'nyears': 111,
                                                                                                                                                'time_period': ['1900-1-16 '
                                                                                                                                                                '12:0:0.0',
                                                                                                                                                                '2010-12-16 '
                                                                                                                                                                '12:0:0.0']},
                                                                                                                                    'ERA-5': {'name': 'ERA-5',
                                                                                                                                              'nyears': 40,
                                                                                                                                              'time_period': ['1979-1-16 '
                                                                                                                                                              '12:0:0.0',
                                                                                                                                                              '2018-12-16 '
                                                                                                                                                              '12:0:0.0']},
                                                                                                                                    'ERA-Interim': {'name': 'ERA-Interim',
                                                                                                                                                    'nyears': 40,
                                                                                                                                                    'time_period': ['1979-1-16 '
                                                                                                                                                                    '12:0:0.0',
                                                                                                                                                                    '2018-12-16 '
                                                                                                                                                                    '12:0:0.0']},
                                                                                                                                    'method': 'nino3.4 '
                                                                                                                                              'SSTA '
                                                                                                                                              'regressed '
                                                                                                                                              'against '
                                                                                                                                              'surface '
                                                                                                                                              'temperature '
                                                                                                                                              'anomalies '
                                                                                                                                              'in '
                                                                                                                                              'global '
                                                                                                                                              'during '
                                                                                                                                              'DJF, '
                                                                                                                                              'time '
                                                                                                                                              'series '
                                                                                                                                              'are '
                                                                                                                                              'linearly '
                                                                                                                                              'detrended, '
                                                                                                                                              'observations '
                                                                                                                                              'and '
                                                                                                                                              'model '
                                                                                                                                              'regridded '
                                                                                                                                              'to '
                                                                                                                                              'generic_1x1deg',
                                                                                                                                    'name': 'ENSO '
                                                                                                                                            'DJF '
                                                                                                                                            'TSA '
                                                                                                                                            'pattern',
                                                                                                                                    'ref': 'Using '
                                                                                                                                           'CDAT '
                                                                                                                                           'regridding, '
                                                                                                                                           'correlation '
                                                                                                                                           '(centered '
                                                                                                                                           'and '
                                                                                                                                           'biased), '
                                                                                                                                           'std '
                                                                                                                                           '(centered '
                                                                                                                                           'and '
                                                                                                                                           'biased) '
                                                                                                                                           'and '
                                                                                                                                           'rms '
                                                                                                                                           '(uncentered '
                                                                                                                                           'and '
                                                                                                                                           'biased) '
                                                                                                                                           'calculation',
                                                                                                                                    'time_frequency': 'monthly',
                                                                                                                                    'units': ''},
                                                                                                                     'metric': {'datasets': 'ACCESS-CM2_r3i1p1f1; '
                                                                                                                                            "20CRv2's "
                                                                                                                                            'ts; '
                                                                                                                                            "ERA-20C's "
                                                                                                                                            'ts; '
                                                                                                                                            "ERA-5's "
                                                                                                                                            'ts; '
                                                                                                                                            "ERA-Interim's "
                                                                                                                                            'ts; '
                                                                                                                                            "HadISST's "
                                                                                                                                            'ts; '
                                                                                                                                            "Tropflux's "
                                                                                                                                            'ts; '
                                                                                                                                            "'s ",
                                                                                                                                'method': 'The '
                                                                                                                                          'metric '
                                                                                                                                          'is '
                                                                                                                                          'the '
                                                                                                                                          'statistical '
                                                                                                                                          'value '
                                                                                                                                          'between '
                                                                                                                                          'the '
                                                                                                                                          'model '
                                                                                                                                          'and '
                                                                                                                                          'the '
                                                                                                                                          'observations',
                                                                                                                                'name': 'EnsoSstMapDjf',
                                                                                                                                'units': 'C/C'}},
                                                                                               'EnsoSstMapDjfStd': {'diagnostic': {'20CRv2': {'name': '20CRv2',
                                                                                                                                              'nyears': 142,
                                                                                                                                              'time_period': ['1871-1-16 '
                                                                                                                                                              '12:0:0.0',
                                                                                                                                                              '2012-12-16 '
                                                                                                                                                              '12:0:0.0']},
                                                                                                                                   'ACCESS-CM2_r3i1p1f1': {'keyerror': None,
                                                                                                                                                           'name': 'ACCESS-CM2_r3i1p1f1',
                                                                                                                                                           'nyears': 165,
                                                                                                                                                           'time_period': ['1850-1-16 '
                                                                                                                                                                           '12:0:0.0',
                                                                                                                                                                           '2014-12-16 '
                                                                                                                                                                           '12:0:0.0']},
                                                                                                                                   'ERA-20C': {'name': 'ERA-20C',
                                                                                                                                               'nyears': 111,
                                                                                                                                               'time_period': ['1900-1-16 '
                                                                                                                                                               '12:0:0.0',
                                                                                                                                                               '2010-12-16 '
                                                                                                                                                               '12:0:0.0']},
                                                                                                                                   'ERA-5': {'name': 'ERA-5',
                                                                                                                                             'nyears': 40,
                                                                                                                                             'time_period': ['1979-1-16 '
                                                                                                                                                             '12:0:0.0',
                                                                                                                                                             '2018-12-16 '
                                                                                                                                                             '12:0:0.0']},
                                                                                                                                   'ERA-Interim': {'name': 'ERA-Interim',
                                                                                                                                                   'nyears': 40,
                                                                                                                                                   'time_period': ['1979-1-16 '
                                                                                                                                                                   '12:0:0.0',
                                                                                                                                                                   '2018-12-16 '
                                                                                                                                                                   '12:0:0.0']},
                                                                                                                                   'method': 'nino3.4 '
                                                                                                                                             'SSTA '
                                                                                                                                             'regressed '
                                                                                                                                             'against '
                                                                                                                                             'surface '
                                                                                                                                             'temperature '
                                                                                                                                             'anomalies '
                                                                                                                                             'in '
                                                                                                                                             'global '
                                                                                                                                             'during '
                                                                                                                                             'DJF, '
                                                                                                                                             'time '
                                                                                                                                             'series '
                                                                                                                                             'are '
                                                                                                                                             'linearly '
                                                                                                                                             'detrended, '
                                                                                                                                             'observations '
                                                                                                                                             'and '
                                                                                                                                             'model '
                                                                                                                                             'regridded '
                                                                                                                                             'to '
                                                                                                                                             'generic_1x1deg',
                                                                                                                                   'name': 'ENSO '
                                                                                                                                           'DJF '
                                                                                                                                           'TSA '
                                                                                                                                           'pattern',
                                                                                                                                   'ref': 'Using '
                                                                                                                                          'CDAT '
                                                                                                                                          'regridding, '
                                                                                                                                          'correlation '
                                                                                                                                          '(centered '
                                                                                                                                          'and '
                                                                                                                                          'biased), '
                                                                                                                                          'std '
                                                                                                                                          '(centered '
                                                                                                                                          'and '
                                                                                                                                          'biased) '
                                                                                                                                          'and '
                                                                                                                                          'rms '
                                                                                                                                          '(uncentered '
                                                                                                                                          'and '
                                                                                                                                          'biased) '
                                                                                                                                          'calculation',
                                                                                                                                   'time_frequency': 'monthly',
                                                                                                                                   'units': ''},
                                                                                                                    'metric': {'datasets': 'ACCESS-CM2_r3i1p1f1; '
                                                                                                                                           "20CRv2's "
                                                                                                                                           'ts; '
                                                                                                                                           "ERA-20C's "
                                                                                                                                           'ts; '
                                                                                                                                           "ERA-5's "
                                                                                                                                           'ts; '
                                                                                                                                           "ERA-Interim's "
                                                                                                                                           'ts; '
                                                                                                                                           "HadISST's "
                                                                                                                                           'ts; '
                                                                                                                                           "Tropflux's "
                                                                                                                                           'ts; '
                                                                                                                                           "'s ",
                                                                                                                               'method': 'The '
                                                                                                                                         'metric '
                                                                                                                                         'is '
                                                                                                                                         'the '
                                                                                                                                         'statistical '
                                                                                                                                         'value '
                                                                                                                                         'between '
                                                                                                                                         'the '
                                                                                                                                         'model '
                                                                                                                                         'and '
                                                                                                                                         'the '
                                                                                                                                         'observations',
                                                                                                                               'name': 'EnsoSstMapDjf',
                                                                                                                               'units': 'C/C '
                                                                                                                                        '/ '
                                                                                                                                        'C/C'}},
                                                                                               'EnsoSstMapJjaCorr': {'diagnostic': {'20CRv2': {'name': '20CRv2',
                                                                                                                                               'nyears': 142,
                                                                                                                                               'time_period': ['1871-1-16 '
                                                                                                                                                               '12:0:0.0',
                                                                                                                                                               '2012-12-16 '
                                                                                                                                                               '12:0:0.0']},
                                                                                                                                    'ACCESS-CM2_r3i1p1f1': {'keyerror': None,
                                                                                                                                                            'name': 'ACCESS-CM2_r3i1p1f1',
                                                                                                                                                            'nyears': 165,
                                                                                                                                                            'time_period': ['1850-1-16 '
                                                                                                                                                                            '12:0:0.0',
                                                                                                                                                                            '2014-12-16 '
                                                                                                                                                                            '12:0:0.0']},
                                                                                                                                    'ERA-20C': {'name': 'ERA-20C',
                                                                                                                                                'nyears': 111,
                                                                                                                                                'time_period': ['1900-1-16 '
                                                                                                                                                                '12:0:0.0',
                                                                                                                                                                '2010-12-16 '
                                                                                                                                                                '12:0:0.0']},
                                                                                                                                    'ERA-5': {'name': 'ERA-5',
                                                                                                                                              'nyears': 40,
                                                                                                                                              'time_period': ['1979-1-16 '
                                                                                                                                                              '12:0:0.0',
                                                                                                                                                              '2018-12-16 '
                                                                                                                                                              '12:0:0.0']},
                                                                                                                                    'ERA-Interim': {'name': 'ERA-Interim',
                                                                                                                                                    'nyears': 40,
                                                                                                                                                    'time_period': ['1979-1-16 '
                                                                                                                                                                    '12:0:0.0',
                                                                                                                                                                    '2018-12-16 '
                                                                                                                                                                    '12:0:0.0']},
                                                                                                                                    'method': 'nino3.4 '
                                                                                                                                              'SSTA '
                                                                                                                                              'regressed '
                                                                                                                                              'against '
                                                                                                                                              'surface '
                                                                                                                                              'temperature '
                                                                                                                                              'anomalies '
                                                                                                                                              'in '
                                                                                                                                              'global '
                                                                                                                                              'during '
                                                                                                                                              'JJA, '
                                                                                                                                              'time '
                                                                                                                                              'series '
                                                                                                                                              'are '
                                                                                                                                              'linearly '
                                                                                                                                              'detrended, '
                                                                                                                                              'observations '
                                                                                                                                              'and '
                                                                                                                                              'model '
                                                                                                                                              'regridded '
                                                                                                                                              'to '
                                                                                                                                              'generic_1x1deg',
                                                                                                                                    'name': 'ENSO '
                                                                                                                                            'JJA '
                                                                                                                                            'TSA '
                                                                                                                                            'pattern',
                                                                                                                                    'ref': 'Using '
                                                                                                                                           'CDAT '
                                                                                                                                           'regridding, '
                                                                                                                                           'correlation '
                                                                                                                                           '(centered '
                                                                                                                                           'and '
                                                                                                                                           'biased), '
                                                                                                                                           'std '
                                                                                                                                           '(centered '
                                                                                                                                           'and '
                                                                                                                                           'biased) '
                                                                                                                                           'and '
                                                                                                                                           'rms '
                                                                                                                                           '(uncentered '
                                                                                                                                           'and '
                                                                                                                                           'biased) '
                                                                                                                                           'calculation',
                                                                                                                                    'time_frequency': 'monthly',
                                                                                                                                    'units': ''},
                                                                                                                     'metric': {'datasets': 'ACCESS-CM2_r3i1p1f1; '
                                                                                                                                            "20CRv2's "
                                                                                                                                            'ts; '
                                                                                                                                            "ERA-20C's "
                                                                                                                                            'ts; '
                                                                                                                                            "ERA-5's "
                                                                                                                                            'ts; '
                                                                                                                                            "ERA-Interim's "
                                                                                                                                            'ts; '
                                                                                                                                            "HadISST's "
                                                                                                                                            'ts; '
                                                                                                                                            "Tropflux's "
                                                                                                                                            'ts; '
                                                                                                                                            "'s ",
                                                                                                                                'method': 'The '
                                                                                                                                          'metric '
                                                                                                                                          'is '
                                                                                                                                          'the '
                                                                                                                                          'statistical '
                                                                                                                                          'value '
                                                                                                                                          'between '
                                                                                                                                          'the '
                                                                                                                                          'model '
                                                                                                                                          'and '
                                                                                                                                          'the '
                                                                                                                                          'observations',
                                                                                                                                'name': 'EnsoSstMapJja',
                                                                                                                                'units': ''}},
                                                                                               'EnsoSstMapJjaRmse': {'diagnostic': {'20CRv2': {'name': '20CRv2',
                                                                                                                                               'nyears': 142,
                                                                                                                                               'time_period': ['1871-1-16 '
                                                                                                                                                               '12:0:0.0',
                                                                                                                                                               '2012-12-16 '
                                                                                                                                                               '12:0:0.0']},
                                                                                                                                    'ACCESS-CM2_r3i1p1f1': {'keyerror': None,
                                                                                                                                                            'name': 'ACCESS-CM2_r3i1p1f1',
                                                                                                                                                            'nyears': 165,
                                                                                                                                                            'time_period': ['1850-1-16 '
                                                                                                                                                                            '12:0:0.0',
                                                                                                                                                                            '2014-12-16 '
                                                                                                                                                                            '12:0:0.0']},
                                                                                                                                    'ERA-20C': {'name': 'ERA-20C',
                                                                                                                                                'nyears': 111,
                                                                                                                                                'time_period': ['1900-1-16 '
                                                                                                                                                                '12:0:0.0',
                                                                                                                                                                '2010-12-16 '
                                                                                                                                                                '12:0:0.0']},
                                                                                                                                    'ERA-5': {'name': 'ERA-5',
                                                                                                                                              'nyears': 40,
                                                                                                                                              'time_period': ['1979-1-16 '
                                                                                                                                                              '12:0:0.0',
                                                                                                                                                              '2018-12-16 '
                                                                                                                                                              '12:0:0.0']},
                                                                                                                                    'ERA-Interim': {'name': 'ERA-Interim',
                                                                                                                                                    'nyears': 40,
                                                                                                                                                    'time_period': ['1979-1-16 '
                                                                                                                                                                    '12:0:0.0',
                                                                                                                                                                    '2018-12-16 '
                                                                                                                                                                    '12:0:0.0']},
                                                                                                                                    'method': 'nino3.4 '
                                                                                                                                              'SSTA '
                                                                                                                                              'regressed '
                                                                                                                                              'against '
                                                                                                                                              'surface '
                                                                                                                                              'temperature '
                                                                                                                                              'anomalies '
                                                                                                                                              'in '
                                                                                                                                              'global '
                                                                                                                                              'during '
                                                                                                                                              'JJA, '
                                                                                                                                              'time '
                                                                                                                                              'series '
                                                                                                                                              'are '
                                                                                                                                              'linearly '
                                                                                                                                              'detrended, '
                                                                                                                                              'observations '
                                                                                                                                              'and '
                                                                                                                                              'model '
                                                                                                                                              'regridded '
                                                                                                                                              'to '
                                                                                                                                              'generic_1x1deg',
                                                                                                                                    'name': 'ENSO '
                                                                                                                                            'JJA '
                                                                                                                                            'TSA '
                                                                                                                                            'pattern',
                                                                                                                                    'ref': 'Using '
                                                                                                                                           'CDAT '
                                                                                                                                           'regridding, '
                                                                                                                                           'correlation '
                                                                                                                                           '(centered '
                                                                                                                                           'and '
                                                                                                                                           'biased), '
                                                                                                                                           'std '
                                                                                                                                           '(centered '
                                                                                                                                           'and '
                                                                                                                                           'biased) '
                                                                                                                                           'and '
                                                                                                                                           'rms '
                                                                                                                                           '(uncentered '
                                                                                                                                           'and '
                                                                                                                                           'biased) '
                                                                                                                                           'calculation',
                                                                                                                                    'time_frequency': 'monthly',
                                                                                                                                    'units': ''},
                                                                                                                     'metric': {'datasets': 'ACCESS-CM2_r3i1p1f1; '
                                                                                                                                            "20CRv2's "
                                                                                                                                            'ts; '
                                                                                                                                            "ERA-20C's "
                                                                                                                                            'ts; '
                                                                                                                                            "ERA-5's "
                                                                                                                                            'ts; '
                                                                                                                                            "ERA-Interim's "
                                                                                                                                            'ts; '
                                                                                                                                            "HadISST's "
                                                                                                                                            'ts; '
                                                                                                                                            "Tropflux's "
                                                                                                                                            'ts; '
                                                                                                                                            "'s ",
                                                                                                                                'method': 'The '
                                                                                                                                          'metric '
                                                                                                                                          'is '
                                                                                                                                          'the '
                                                                                                                                          'statistical '
                                                                                                                                          'value '
                                                                                                                                          'between '
                                                                                                                                          'the '
                                                                                                                                          'model '
                                                                                                                                          'and '
                                                                                                                                          'the '
                                                                                                                                          'observations',
                                                                                                                                'name': 'EnsoSstMapJja',
                                                                                                                                'units': 'C/C'}},
                                                                                               'EnsoSstMapJjaStd': {'diagnostic': {'20CRv2': {'name': '20CRv2',
                                                                                                                                              'nyears': 142,
                                                                                                                                              'time_period': ['1871-1-16 '
                                                                                                                                                              '12:0:0.0',
                                                                                                                                                              '2012-12-16 '
                                                                                                                                                              '12:0:0.0']},
                                                                                                                                   'ACCESS-CM2_r3i1p1f1': {'keyerror': None,
                                                                                                                                                           'name': 'ACCESS-CM2_r3i1p1f1',
                                                                                                                                                           'nyears': 165,
                                                                                                                                                           'time_period': ['1850-1-16 '
                                                                                                                                                                           '12:0:0.0',
                                                                                                                                                                           '2014-12-16 '
                                                                                                                                                                           '12:0:0.0']},
                                                                                                                                   'ERA-20C': {'name': 'ERA-20C',
                                                                                                                                               'nyears': 111,
                                                                                                                                               'time_period': ['1900-1-16 '
                                                                                                                                                               '12:0:0.0',
                                                                                                                                                               '2010-12-16 '
                                                                                                                                                               '12:0:0.0']},
                                                                                                                                   'ERA-5': {'name': 'ERA-5',
                                                                                                                                             'nyears': 40,
                                                                                                                                             'time_period': ['1979-1-16 '
                                                                                                                                                             '12:0:0.0',
                                                                                                                                                             '2018-12-16 '
                                                                                                                                                             '12:0:0.0']},
                                                                                                                                   'ERA-Interim': {'name': 'ERA-Interim',
                                                                                                                                                   'nyears': 40,
                                                                                                                                                   'time_period': ['1979-1-16 '
                                                                                                                                                                   '12:0:0.0',
                                                                                                                                                                   '2018-12-16 '
                                                                                                                                                                   '12:0:0.0']},
                                                                                                                                   'method': 'nino3.4 '
                                                                                                                                             'SSTA '
                                                                                                                                             'regressed '
                                                                                                                                             'against '
                                                                                                                                             'surface '
                                                                                                                                             'temperature '
                                                                                                                                             'anomalies '
                                                                                                                                             'in '
                                                                                                                                             'global '
                                                                                                                                             'during '
                                                                                                                                             'JJA, '
                                                                                                                                             'time '
                                                                                                                                             'series '
                                                                                                                                             'are '
                                                                                                                                             'linearly '
                                                                                                                                             'detrended, '
                                                                                                                                             'observations '
                                                                                                                                             'and '
                                                                                                                                             'model '
                                                                                                                                             'regridded '
                                                                                                                                             'to '
                                                                                                                                             'generic_1x1deg',
                                                                                                                                   'name': 'ENSO '
                                                                                                                                           'JJA '
                                                                                                                                           'TSA '
                                                                                                                                           'pattern',
                                                                                                                                   'ref': 'Using '
                                                                                                                                          'CDAT '
                                                                                                                                          'regridding, '
                                                                                                                                          'correlation '
                                                                                                                                          '(centered '
                                                                                                                                          'and '
                                                                                                                                          'biased), '
                                                                                                                                          'std '
                                                                                                                                          '(centered '
                                                                                                                                          'and '
                                                                                                                                          'biased) '
                                                                                                                                          'and '
                                                                                                                                          'rms '
                                                                                                                                          '(uncentered '
                                                                                                                                          'and '
                                                                                                                                          'biased) '
                                                                                                                                          'calculation',
                                                                                                                                   'time_frequency': 'monthly',
                                                                                                                                   'units': ''},
                                                                                                                    'metric': {'datasets': 'ACCESS-CM2_r3i1p1f1; '
                                                                                                                                           "20CRv2's "
                                                                                                                                           'ts; '
                                                                                                                                           "ERA-20C's "
                                                                                                                                           'ts; '
                                                                                                                                           "ERA-5's "
                                                                                                                                           'ts; '
                                                                                                                                           "ERA-Interim's "
                                                                                                                                           'ts; '
                                                                                                                                           "HadISST's "
                                                                                                                                           'ts; '
                                                                                                                                           "Tropflux's "
                                                                                                                                           'ts; '
                                                                                                                                           "'s ",
                                                                                                                               'method': 'The '
                                                                                                                                         'metric '
                                                                                                                                         'is '
                                                                                                                                         'the '
                                                                                                                                         'statistical '
                                                                                                                                         'value '
                                                                                                                                         'between '
                                                                                                                                         'the '
                                                                                                                                         'model '
                                                                                                                                         'and '
                                                                                                                                         'the '
                                                                                                                                         'observations',
                                                                                                                               'name': 'EnsoSstMapJja',
                                                                                                                               'units': 'C/C '
                                                                                                                                        '/ '
                                                                                                                                        'C/C'}}},
                                                                                   'name': 'Metrics '
                                                                                           'Collection '
                                                                                           'for '
                                                                                           'ENSO '
                                                                                           'teleconnections'},
                                                                      'value': {'EnsoAmpl': {'diagnostic': {'20CRv2': {'value': 0.7407960057502115,
                                                                                                                       'value_error': 0.062166219832622445},
                                                                                                            'ACCESS-CM2_r3i1p1f1': {'value': 0.9173210955753004,
                                                                                                                                    'value_error': 0.07141335043624629},
                                                                                                            'ERA-20C': {'value': 0.8265126323027572,
                                                                                                                        'value_error': 0.07844910735406072},
                                                                                                            'ERA-5': {'value': 0.9075909980564855,
                                                                                                                      'value_error': 0.14350273688619733},
                                                                                                            'ERA-Interim': {'value': 0.9001341048707652,
                                                                                                                            'value_error': 0.1423236985494241},
                                                                                                            'HadISST': {'value': 0.7688706055408969,
                                                                                                                        'value_error': 0.06298833428079066},
                                                                                                            'Tropflux': {'value': 0.9128364190673677,
                                                                                                                         'value_error': 0.14617081051130443}},
                                                                                             'metric': {'20CRv2': {'value': 23.829109289853704,
                                                                                                                   'value_error': 20.031591096914156},
                                                                                                        'ERA-20C': {'value': 10.986941968393225,
                                                                                                                    'value_error': 19.174736053152937},
                                                                                                        'ERA-5': {'value': 1.072079553416787,
                                                                                                                  'value_error': 23.849349683580996},
                                                                                                        'ERA-Interim': {'value': 1.9093811257160185,
                                                                                                                        'value_error': 24.046922525424254},
                                                                                                        'HadISST': {'value': 19.307603771634533,
                                                                                                                    'value_error': 19.062144093701967},
                                                                                                        'Tropflux': {'value': 0.49129027000419734,
                                                                                                                     'value_error': 23.914721121689627}}},
                                                                                'EnsoPrMapDjfCorr': {'diagnostic': {'20CRv2_CMAP': {'value': None,
                                                                                                                                    'value_error': None},
                                                                                                                    '20CRv2_ERA-Interim': {'value': None,
                                                                                                                                           'value_error': None},
                                                                                                                    '20CRv2_GPCPv2.3': {'value': None,
                                                                                                                                        'value_error': None},
                                                                                                                    '20CRv2_TRMM-3B43v-7': {'value': None,
                                                                                                                                            'value_error': None},
                                                                                                                    'ACCESS-CM2_r3i1p1f1': {'value': None,
                                                                                                                                            'value_error': None},
                                                                                                                    'ERA-20C_CMAP': {'value': None,
                                                                                                                                     'value_error': None},
                                                                                                                    'ERA-20C_ERA-Interim': {'value': None,
                                                                                                                                            'value_error': None},
                                                                                                                    'ERA-20C_GPCPv2.3': {'value': None,
                                                                                                                                         'value_error': None},
                                                                                                                    'ERA-20C_TRMM-3B43v-7': {'value': None,
                                                                                                                                             'value_error': None},
                                                                                                                    'ERA-5_CMAP': {'value': None,
                                                                                                                                   'value_error': None},
                                                                                                                    'ERA-5_ERA-Interim': {'value': None,
                                                                                                                                          'value_error': None},
                                                                                                                    'ERA-5_GPCPv2.3': {'value': None,
                                                                                                                                       'value_error': None},
                                                                                                                    'ERA-5_TRMM-3B43v-7': {'value': None,
                                                                                                                                           'value_error': None},
                                                                                                                    'ERA-Interim_CMAP': {'value': None,
                                                                                                                                         'value_error': None},
                                                                                                                    'ERA-Interim_ERA-Interim': {'value': None,
                                                                                                                                                'value_error': None},
                                                                                                                    'ERA-Interim_GPCPv2.3': {'value': None,
                                                                                                                                             'value_error': None},
                                                                                                                    'ERA-Interim_TRMM-3B43v-7': {'value': None,
                                                                                                                                                 'value_error': None},
                                                                                                                    'HadISST_CMAP': {'value': None,
                                                                                                                                     'value_error': None},
                                                                                                                    'HadISST_ERA-Interim': {'value': None,
                                                                                                                                            'value_error': None},
                                                                                                                    'HadISST_GPCPv2.3': {'value': None,
                                                                                                                                         'value_error': None},
                                                                                                                    'HadISST_TRMM-3B43v-7': {'value': None,
                                                                                                                                             'value_error': None},
                                                                                                                    'Tropflux_CMAP': {'value': None,
                                                                                                                                      'value_error': None},
                                                                                                                    'Tropflux_ERA-Interim': {'value': None,
                                                                                                                                             'value_error': None},
                                                                                                                    'Tropflux_GPCPv2.3': {'value': None,
                                                                                                                                          'value_error': None},
                                                                                                                    'Tropflux_TRMM-3B43v-7': {'value': None,
                                                                                                                                              'value_error': None}},
                                                                                                     'metric': {'20CRv2_CMAP': {'value': 0.2445041108775713,
                                                                                                                                'value_error': None},
                                                                                                                '20CRv2_ERA-Interim': {'value': 0.29747317130155093,
                                                                                                                                       'value_error': None},
                                                                                                                '20CRv2_GPCPv2.3': {'value': 0.27179868103228366,
                                                                                                                                    'value_error': None},
                                                                                                                '20CRv2_TRMM-3B43v-7': {'value': 0.4037432958530064,
                                                                                                                                        'value_error': None},
                                                                                                                'ERA-20C_CMAP': {'value': 0.2574662811663777,
                                                                                                                                 'value_error': None},
                                                                                                                'ERA-20C_ERA-Interim': {'value': 0.31989800780160726,
                                                                                                                                        'value_error': None},
                                                                                                                'ERA-20C_GPCPv2.3': {'value': 0.2826073906892712,
                                                                                                                                     'value_error': None},
                                                                                                                'ERA-20C_TRMM-3B43v-7': {'value': 0.44253755456537525,
                                                                                                                                         'value_error': None},
                                                                                                                'ERA-5_CMAP': {'value': 0.25758644904259664,
                                                                                                                               'value_error': None},
                                                                                                                'ERA-5_ERA-Interim': {'value': 0.3198993458391334,
                                                                                                                                      'value_error': None},
                                                                                                                'ERA-5_GPCPv2.3': {'value': 0.29052494908540016,
                                                                                                                                   'value_error': None},
                                                                                                                'ERA-5_TRMM-3B43v-7': {'value': 0.3887816748802557,
                                                                                                                                       'value_error': None},
                                                                                                                'ERA-Interim_CMAP': {'value': 0.2593054542736315,
                                                                                                                                     'value_error': None},
                                                                                                                'ERA-Interim_ERA-Interim': {'value': 0.31961182320274073,
                                                                                                                                            'value_error': None},
                                                                                                                'ERA-Interim_GPCPv2.3': {'value': 0.293026500054801,
                                                                                                                                         'value_error': None},
                                                                                                                'ERA-Interim_TRMM-3B43v-7': {'value': 0.38845307828037967,
                                                                                                                                             'value_error': None},
                                                                                                                'HadISST_CMAP': {'value': 0.2594084715029715,
                                                                                                                                 'value_error': None},
                                                                                                                'HadISST_ERA-Interim': {'value': 0.3211391386587247,
                                                                                                                                        'value_error': None},
                                                                                                                'HadISST_GPCPv2.3': {'value': 0.29329473466381994,
                                                                                                                                     'value_error': None},
                                                                                                                'HadISST_TRMM-3B43v-7': {'value': 0.38813564460050753,
                                                                                                                                         'value_error': None},
                                                                                                                'Tropflux_CMAP': {'value': 0.26134773623479224,
                                                                                                                                  'value_error': None},
                                                                                                                'Tropflux_ERA-Interim': {'value': 0.32019840395195565,
                                                                                                                                         'value_error': None},
                                                                                                                'Tropflux_GPCPv2.3': {'value': 0.28888238062427596,
                                                                                                                                      'value_error': None},
                                                                                                                'Tropflux_TRMM-3B43v-7': {'value': 0.38663454953322063,
                                                                                                                                          'value_error': None}}},
                                                                                'EnsoPrMapDjfRmse': {'diagnostic': {'20CRv2_CMAP': {'value': None,
                                                                                                                                    'value_error': None},
                                                                                                                    '20CRv2_ERA-Interim': {'value': None,
                                                                                                                                           'value_error': None},
                                                                                                                    '20CRv2_GPCPv2.3': {'value': None,
                                                                                                                                        'value_error': None},
                                                                                                                    '20CRv2_TRMM-3B43v-7': {'value': None,
                                                                                                                                            'value_error': None},
                                                                                                                    'ACCESS-CM2_r3i1p1f1': {'value': None,
                                                                                                                                            'value_error': None},
                                                                                                                    'ERA-20C_CMAP': {'value': None,
                                                                                                                                     'value_error': None},
                                                                                                                    'ERA-20C_ERA-Interim': {'value': None,
                                                                                                                                            'value_error': None},
                                                                                                                    'ERA-20C_GPCPv2.3': {'value': None,
                                                                                                                                         'value_error': None},
                                                                                                                    'ERA-20C_TRMM-3B43v-7': {'value': None,
                                                                                                                                             'value_error': None},
                                                                                                                    'ERA-5_CMAP': {'value': None,
                                                                                                                                   'value_error': None},
                                                                                                                    'ERA-5_ERA-Interim': {'value': None,
                                                                                                                                          'value_error': None},
                                                                                                                    'ERA-5_GPCPv2.3': {'value': None,
                                                                                                                                       'value_error': None},
                                                                                                                    'ERA-5_TRMM-3B43v-7': {'value': None,
                                                                                                                                           'value_error': None},
                                                                                                                    'ERA-Interim_CMAP': {'value': None,
                                                                                                                                         'value_error': None},
                                                                                                                    'ERA-Interim_ERA-Interim': {'value': None,
                                                                                                                                                'value_error': None},
                                                                                                                    'ERA-Interim_GPCPv2.3': {'value': None,
                                                                                                                                             'value_error': None},
                                                                                                                    'ERA-Interim_TRMM-3B43v-7': {'value': None,
                                                                                                                                                 'value_error': None},
                                                                                                                    'HadISST_CMAP': {'value': None,
                                                                                                                                     'value_error': None},
                                                                                                                    'HadISST_ERA-Interim': {'value': None,
                                                                                                                                            'value_error': None},
                                                                                                                    'HadISST_GPCPv2.3': {'value': None,
                                                                                                                                         'value_error': None},
                                                                                                                    'HadISST_TRMM-3B43v-7': {'value': None,
                                                                                                                                             'value_error': None},
                                                                                                                    'Tropflux_CMAP': {'value': None,
                                                                                                                                      'value_error': None},
                                                                                                                    'Tropflux_ERA-Interim': {'value': None,
                                                                                                                                             'value_error': None},
                                                                                                                    'Tropflux_GPCPv2.3': {'value': None,
                                                                                                                                          'value_error': None},
                                                                                                                    'Tropflux_TRMM-3B43v-7': {'value': None,
                                                                                                                                              'value_error': None}},
                                                                                                     'metric': {'20CRv2_CMAP': {'value': 0.22318708807931165,
                                                                                                                                'value_error': None},
                                                                                                                '20CRv2_ERA-Interim': {'value': 0.2308905261707947,
                                                                                                                                       'value_error': None},
                                                                                                                '20CRv2_GPCPv2.3': {'value': 0.227769038073298,
                                                                                                                                    'value_error': None},
                                                                                                                '20CRv2_TRMM-3B43v-7': {'value': 0.38143081634424336,
                                                                                                                                        'value_error': None},
                                                                                                                'ERA-20C_CMAP': {'value': 0.21765658223087617,
                                                                                                                                 'value_error': None},
                                                                                                                'ERA-20C_ERA-Interim': {'value': 0.23048600630493446,
                                                                                                                                        'value_error': None},
                                                                                                                'ERA-20C_GPCPv2.3': {'value': 0.22183165746613737,
                                                                                                                                     'value_error': None},
                                                                                                                'ERA-20C_TRMM-3B43v-7': {'value': 0.38856680750798916,
                                                                                                                                         'value_error': None},
                                                                                                                'ERA-5_CMAP': {'value': 0.2138367695324667,
                                                                                                                               'value_error': None},
                                                                                                                'ERA-5_ERA-Interim': {'value': 0.2291202804569194,
                                                                                                                                      'value_error': None},
                                                                                                                'ERA-5_GPCPv2.3': {'value': 0.2222906017330502,
                                                                                                                                   'value_error': None},
                                                                                                                'ERA-5_TRMM-3B43v-7': {'value': 0.33161500605829025,
                                                                                                                                       'value_error': None},
                                                                                                                'ERA-Interim_CMAP': {'value': 0.21377084019473622,
                                                                                                                                     'value_error': None},
                                                                                                                'ERA-Interim_ERA-Interim': {'value': 0.22869535976120117,
                                                                                                                                            'value_error': None},
                                                                                                                'ERA-Interim_GPCPv2.3': {'value': 0.22308566256491205,
                                                                                                                                         'value_error': None},
                                                                                                                'ERA-Interim_TRMM-3B43v-7': {'value': 0.3264346281958339,
                                                                                                                                             'value_error': None},
                                                                                                                'HadISST_CMAP': {'value': 0.21749313654914765,
                                                                                                                                 'value_error': None},
                                                                                                                'HadISST_ERA-Interim': {'value': 0.23204094149487148,
                                                                                                                                        'value_error': None},
                                                                                                                'HadISST_GPCPv2.3': {'value': 0.22642331679324232,
                                                                                                                                     'value_error': None},
                                                                                                                'HadISST_TRMM-3B43v-7': {'value': 0.3289356731594322,
                                                                                                                                         'value_error': None},
                                                                                                                'Tropflux_CMAP': {'value': 0.21474054175332313,
                                                                                                                                  'value_error': None},
                                                                                                                'Tropflux_ERA-Interim': {'value': 0.22888747231465556,
                                                                                                                                         'value_error': None},
                                                                                                                'Tropflux_GPCPv2.3': {'value': 0.22172456945346827,
                                                                                                                                      'value_error': None},
                                                                                                                'Tropflux_TRMM-3B43v-7': {'value': 0.32626754995471874,
                                                                                                                                          'value_error': None}}},
                                                                                'EnsoPrMapDjfStd': {'diagnostic': {'20CRv2_CMAP': {'value': None,
                                                                                                                                   'value_error': None},
                                                                                                                   '20CRv2_ERA-Interim': {'value': None,
                                                                                                                                          'value_error': None},
                                                                                                                   '20CRv2_GPCPv2.3': {'value': None,
                                                                                                                                       'value_error': None},
                                                                                                                   '20CRv2_TRMM-3B43v-7': {'value': None,
                                                                                                                                           'value_error': None},
                                                                                                                   'ACCESS-CM2_r3i1p1f1': {'value': None,
                                                                                                                                           'value_error': None},
                                                                                                                   'ERA-20C_CMAP': {'value': None,
                                                                                                                                    'value_error': None},
                                                                                                                   'ERA-20C_ERA-Interim': {'value': None,
                                                                                                                                           'value_error': None},
                                                                                                                   'ERA-20C_GPCPv2.3': {'value': None,
                                                                                                                                        'value_error': None},
                                                                                                                   'ERA-20C_TRMM-3B43v-7': {'value': None,
                                                                                                                                            'value_error': None},
                                                                                                                   'ERA-5_CMAP': {'value': None,
                                                                                                                                  'value_error': None},
                                                                                                                   'ERA-5_ERA-Interim': {'value': None,
                                                                                                                                         'value_error': None},
                                                                                                                   'ERA-5_GPCPv2.3': {'value': None,
                                                                                                                                      'value_error': None},
                                                                                                                   'ERA-5_TRMM-3B43v-7': {'value': None,
                                                                                                                                          'value_error': None},
                                                                                                                   'ERA-Interim_CMAP': {'value': None,
                                                                                                                                        'value_error': None},
                                                                                                                   'ERA-Interim_ERA-Interim': {'value': None,
                                                                                                                                               'value_error': None},
                                                                                                                   'ERA-Interim_GPCPv2.3': {'value': None,
                                                                                                                                            'value_error': None},
                                                                                                                   'ERA-Interim_TRMM-3B43v-7': {'value': None,
                                                                                                                                                'value_error': None},
                                                                                                                   'HadISST_CMAP': {'value': None,
                                                                                                                                    'value_error': None},
                                                                                                                   'HadISST_ERA-Interim': {'value': None,
                                                                                                                                           'value_error': None},
                                                                                                                   'HadISST_GPCPv2.3': {'value': None,
                                                                                                                                        'value_error': None},
                                                                                                                   'HadISST_TRMM-3B43v-7': {'value': None,
                                                                                                                                            'value_error': None},
                                                                                                                   'Tropflux_CMAP': {'value': None,
                                                                                                                                     'value_error': None},
                                                                                                                   'Tropflux_ERA-Interim': {'value': None,
                                                                                                                                            'value_error': None},
                                                                                                                   'Tropflux_GPCPv2.3': {'value': None,
                                                                                                                                         'value_error': None},
                                                                                                                   'Tropflux_TRMM-3B43v-7': {'value': None,
                                                                                                                                             'value_error': None}},
                                                                                                    'metric': {'20CRv2_CMAP': {'value': 0.907232995979541,
                                                                                                                               'value_error': None},
                                                                                                               '20CRv2_ERA-Interim': {'value': 1.0044286984744037,
                                                                                                                                      'value_error': None},
                                                                                                               '20CRv2_GPCPv2.3': {'value': 0.9487838268308356,
                                                                                                                                   'value_error': None},
                                                                                                               '20CRv2_TRMM-3B43v-7': {'value': 0.6651393163901305,
                                                                                                                                       'value_error': None},
                                                                                                               'ERA-20C_CMAP': {'value': 0.9839419325831551,
                                                                                                                                'value_error': None},
                                                                                                               'ERA-20C_ERA-Interim': {'value': 1.1027024245113732,
                                                                                                                                       'value_error': None},
                                                                                                               'ERA-20C_GPCPv2.3': {'value': 1.0362649650564075,
                                                                                                                                    'value_error': None},
                                                                                                               'ERA-20C_TRMM-3B43v-7': {'value': 0.6788998314801452,
                                                                                                                                        'value_error': None},
                                                                                                               'ERA-5_CMAP': {'value': 1.0175522250064721,
                                                                                                                              'value_error': None},
                                                                                                               'ERA-5_ERA-Interim': {'value': 1.1215168581622763,
                                                                                                                                     'value_error': None},
                                                                                                               'ERA-5_GPCPv2.3': {'value': 1.0656178082563807,
                                                                                                                                  'value_error': None},
                                                                                                               'ERA-5_TRMM-3B43v-7': {'value': 0.7651765060825332,
                                                                                                                                      'value_error': None},
                                                                                                               'ERA-Interim_CMAP': {'value': 1.025888121311449,
                                                                                                                                    'value_error': None},
                                                                                                               'ERA-Interim_ERA-Interim': {'value': 1.1257798664884218,
                                                                                                                                           'value_error': None},
                                                                                                               'ERA-Interim_GPCPv2.3': {'value': 1.0676166952001307,
                                                                                                                                        'value_error': None},
                                                                                                               'ERA-Interim_TRMM-3B43v-7': {'value': 0.779761465005274,
                                                                                                                                            'value_error': None},
                                                                                                               'HadISST_CMAP': {'value': 0.9911583190108029,
                                                                                                                                'value_error': None},
                                                                                                               'HadISST_ERA-Interim': {'value': 1.08665715115304,
                                                                                                                                       'value_error': None},
                                                                                                               'HadISST_GPCPv2.3': {'value': 1.0316887765744778,
                                                                                                                                    'value_error': None},
                                                                                                               'HadISST_TRMM-3B43v-7': {'value': 0.7719536279013486,
                                                                                                                                        'value_error': None},
                                                                                                               'Tropflux_CMAP': {'value': 1.0245405125264626,
                                                                                                                                 'value_error': None},
                                                                                                               'Tropflux_ERA-Interim': {'value': 1.126175236308296,
                                                                                                                                        'value_error': None},
                                                                                                               'Tropflux_GPCPv2.3': {'value': 1.0650666537412425,
                                                                                                                                     'value_error': None},
                                                                                                               'Tropflux_TRMM-3B43v-7': {'value': 0.7782132354042344,
                                                                                                                                         'value_error': None}}},
                                                                                'EnsoPrMapJjaCorr': {'diagnostic': {'20CRv2_CMAP': {'value': None,
                                                                                                                                    'value_error': None},
                                                                                                                    '20CRv2_ERA-Interim': {'value': None,
                                                                                                                                           'value_error': None},
                                                                                                                    '20CRv2_GPCPv2.3': {'value': None,
                                                                                                                                        'value_error': None},
                                                                                                                    '20CRv2_TRMM-3B43v-7': {'value': None,
                                                                                                                                            'value_error': None},
                                                                                                                    'ACCESS-CM2_r3i1p1f1': {'value': None,
                                                                                                                                            'value_error': None},
                                                                                                                    'ERA-20C_CMAP': {'value': None,
                                                                                                                                     'value_error': None},
                                                                                                                    'ERA-20C_ERA-Interim': {'value': None,
                                                                                                                                            'value_error': None},
                                                                                                                    'ERA-20C_GPCPv2.3': {'value': None,
                                                                                                                                         'value_error': None},
                                                                                                                    'ERA-20C_TRMM-3B43v-7': {'value': None,
                                                                                                                                             'value_error': None},
                                                                                                                    'ERA-5_CMAP': {'value': None,
                                                                                                                                   'value_error': None},
                                                                                                                    'ERA-5_ERA-Interim': {'value': None,
                                                                                                                                          'value_error': None},
                                                                                                                    'ERA-5_GPCPv2.3': {'value': None,
                                                                                                                                       'value_error': None},
                                                                                                                    'ERA-5_TRMM-3B43v-7': {'value': None,
                                                                                                                                           'value_error': None},
                                                                                                                    'ERA-Interim_CMAP': {'value': None,
                                                                                                                                         'value_error': None},
                                                                                                                    'ERA-Interim_ERA-Interim': {'value': None,
                                                                                                                                                'value_error': None},
                                                                                                                    'ERA-Interim_GPCPv2.3': {'value': None,
                                                                                                                                             'value_error': None},
                                                                                                                    'ERA-Interim_TRMM-3B43v-7': {'value': None,
                                                                                                                                                 'value_error': None},
                                                                                                                    'HadISST_CMAP': {'value': None,
                                                                                                                                     'value_error': None},
                                                                                                                    'HadISST_ERA-Interim': {'value': None,
                                                                                                                                            'value_error': None},
                                                                                                                    'HadISST_GPCPv2.3': {'value': None,
                                                                                                                                         'value_error': None},
                                                                                                                    'HadISST_TRMM-3B43v-7': {'value': None,
                                                                                                                                             'value_error': None},
                                                                                                                    'Tropflux_CMAP': {'value': None,
                                                                                                                                      'value_error': None},
                                                                                                                    'Tropflux_ERA-Interim': {'value': None,
                                                                                                                                             'value_error': None},
                                                                                                                    'Tropflux_GPCPv2.3': {'value': None,
                                                                                                                                          'value_error': None},
                                                                                                                    'Tropflux_TRMM-3B43v-7': {'value': None,
                                                                                                                                              'value_error': None}},
                                                                                                     'metric': {'20CRv2_CMAP': {'value': 0.4927843084036734,
                                                                                                                                'value_error': None},
                                                                                                                '20CRv2_ERA-Interim': {'value': 0.4581720810566299,
                                                                                                                                       'value_error': None},
                                                                                                                '20CRv2_GPCPv2.3': {'value': 0.478280680304213,
                                                                                                                                    'value_error': None},
                                                                                                                '20CRv2_TRMM-3B43v-7': {'value': 0.644402389235111,
                                                                                                                                        'value_error': None},
                                                                                                                'ERA-20C_CMAP': {'value': 0.5021535821134742,
                                                                                                                                 'value_error': None},
                                                                                                                'ERA-20C_ERA-Interim': {'value': 0.45888699398079724,
                                                                                                                                        'value_error': None},
                                                                                                                'ERA-20C_GPCPv2.3': {'value': 0.48305343523547983,
                                                                                                                                     'value_error': None},
                                                                                                                'ERA-20C_TRMM-3B43v-7': {'value': 0.6418186588705477,
                                                                                                                                         'value_error': None},
                                                                                                                'ERA-5_CMAP': {'value': 0.47983225297181076,
                                                                                                                               'value_error': None},
                                                                                                                'ERA-5_ERA-Interim': {'value': 0.4437466809409535,
                                                                                                                                      'value_error': None},
                                                                                                                'ERA-5_GPCPv2.3': {'value': 0.4728664137814702,
                                                                                                                                   'value_error': None},
                                                                                                                'ERA-5_TRMM-3B43v-7': {'value': 0.5523318589219708,
                                                                                                                                       'value_error': None},
                                                                                                                'ERA-Interim_CMAP': {'value': 0.48695112862601664,
                                                                                                                                     'value_error': None},
                                                                                                                'ERA-Interim_ERA-Interim': {'value': 0.45612103942068816,
                                                                                                                                            'value_error': None},
                                                                                                                'ERA-Interim_GPCPv2.3': {'value': 0.48013258554021865,
                                                                                                                                         'value_error': None},
                                                                                                                'ERA-Interim_TRMM-3B43v-7': {'value': 0.5509926672255938,
                                                                                                                                             'value_error': None},
                                                                                                                'HadISST_CMAP': {'value': 0.4723439945718283,
                                                                                                                                 'value_error': None},
                                                                                                                'HadISST_ERA-Interim': {'value': 0.4430306569204452,
                                                                                                                                        'value_error': None},
                                                                                                                'HadISST_GPCPv2.3': {'value': 0.466275010467628,
                                                                                                                                     'value_error': None},
                                                                                                                'HadISST_TRMM-3B43v-7': {'value': 0.5389926053953293,
                                                                                                                                         'value_error': None},
                                                                                                                'Tropflux_CMAP': {'value': 0.48550426649803846,
                                                                                                                                  'value_error': None},
                                                                                                                'Tropflux_ERA-Interim': {'value': 0.45384192861203243,
                                                                                                                                         'value_error': None},
                                                                                                                'Tropflux_GPCPv2.3': {'value': 0.4775814490900119,
                                                                                                                                      'value_error': None},
                                                                                                                'Tropflux_TRMM-3B43v-7': {'value': 0.5587219573270054,
                                                                                                                                          'value_error': None}}},
                                                                                'EnsoPrMapJjaRmse': {'diagnostic': {'20CRv2_CMAP': {'value': None,
                                                                                                                                    'value_error': None},
                                                                                                                    '20CRv2_ERA-Interim': {'value': None,
                                                                                                                                           'value_error': None},
                                                                                                                    '20CRv2_GPCPv2.3': {'value': None,
                                                                                                                                        'value_error': None},
                                                                                                                    '20CRv2_TRMM-3B43v-7': {'value': None,
                                                                                                                                            'value_error': None},
                                                                                                                    'ACCESS-CM2_r3i1p1f1': {'value': None,
                                                                                                                                            'value_error': None},
                                                                                                                    'ERA-20C_CMAP': {'value': None,
                                                                                                                                     'value_error': None},
                                                                                                                    'ERA-20C_ERA-Interim': {'value': None,
                                                                                                                                            'value_error': None},
                                                                                                                    'ERA-20C_GPCPv2.3': {'value': None,
                                                                                                                                         'value_error': None},
                                                                                                                    'ERA-20C_TRMM-3B43v-7': {'value': None,
                                                                                                                                             'value_error': None},
                                                                                                                    'ERA-5_CMAP': {'value': None,
                                                                                                                                   'value_error': None},
                                                                                                                    'ERA-5_ERA-Interim': {'value': None,
                                                                                                                                          'value_error': None},
                                                                                                                    'ERA-5_GPCPv2.3': {'value': None,
                                                                                                                                       'value_error': None},
                                                                                                                    'ERA-5_TRMM-3B43v-7': {'value': None,
                                                                                                                                           'value_error': None},
                                                                                                                    'ERA-Interim_CMAP': {'value': None,
                                                                                                                                         'value_error': None},
                                                                                                                    'ERA-Interim_ERA-Interim': {'value': None,
                                                                                                                                                'value_error': None},
                                                                                                                    'ERA-Interim_GPCPv2.3': {'value': None,
                                                                                                                                             'value_error': None},
                                                                                                                    'ERA-Interim_TRMM-3B43v-7': {'value': None,
                                                                                                                                                 'value_error': None},
                                                                                                                    'HadISST_CMAP': {'value': None,
                                                                                                                                     'value_error': None},
                                                                                                                    'HadISST_ERA-Interim': {'value': None,
                                                                                                                                            'value_error': None},
                                                                                                                    'HadISST_GPCPv2.3': {'value': None,
                                                                                                                                         'value_error': None},
                                                                                                                    'HadISST_TRMM-3B43v-7': {'value': None,
                                                                                                                                             'value_error': None},
                                                                                                                    'Tropflux_CMAP': {'value': None,
                                                                                                                                      'value_error': None},
                                                                                                                    'Tropflux_ERA-Interim': {'value': None,
                                                                                                                                             'value_error': None},
                                                                                                                    'Tropflux_GPCPv2.3': {'value': None,
                                                                                                                                          'value_error': None},
                                                                                                                    'Tropflux_TRMM-3B43v-7': {'value': None,
                                                                                                                                              'value_error': None}},
                                                                                                     'metric': {'20CRv2_CMAP': {'value': 0.32957704306055546,
                                                                                                                                'value_error': None},
                                                                                                                '20CRv2_ERA-Interim': {'value': 0.3163592554102679,
                                                                                                                                       'value_error': None},
                                                                                                                '20CRv2_GPCPv2.3': {'value': 0.3177291067102115,
                                                                                                                                    'value_error': None},
                                                                                                                '20CRv2_TRMM-3B43v-7': {'value': 0.6412595129139168,
                                                                                                                                        'value_error': None},
                                                                                                                'ERA-20C_CMAP': {'value': 0.31981903920750926,
                                                                                                                                 'value_error': None},
                                                                                                                'ERA-20C_ERA-Interim': {'value': 0.3061143315301226,
                                                                                                                                        'value_error': None},
                                                                                                                'ERA-20C_GPCPv2.3': {'value': 0.3085658703474311,
                                                                                                                                     'value_error': None},
                                                                                                                'ERA-20C_TRMM-3B43v-7': {'value': 0.6099933875991584,
                                                                                                                                         'value_error': None},
                                                                                                                'ERA-5_CMAP': {'value': 0.30368938414700786,
                                                                                                                               'value_error': None},
                                                                                                                'ERA-5_ERA-Interim': {'value': 0.2939956989752748,
                                                                                                                                      'value_error': None},
                                                                                                                'ERA-5_GPCPv2.3': {'value': 0.2992474983138922,
                                                                                                                                   'value_error': None},
                                                                                                                'ERA-5_TRMM-3B43v-7': {'value': 0.4934959863652836,
                                                                                                                                       'value_error': None},
                                                                                                                'ERA-Interim_CMAP': {'value': 0.3055034613428609,
                                                                                                                                     'value_error': None},
                                                                                                                'ERA-Interim_ERA-Interim': {'value': 0.2985965949340489,
                                                                                                                                            'value_error': None},
                                                                                                                'ERA-Interim_GPCPv2.3': {'value': 0.3026637126299943,
                                                                                                                                         'value_error': None},
                                                                                                                'ERA-Interim_TRMM-3B43v-7': {'value': 0.48204306063766456,
                                                                                                                                             'value_error': None},
                                                                                                                'HadISST_CMAP': {'value': 0.30954389468500537,
                                                                                                                                 'value_error': None},
                                                                                                                'HadISST_ERA-Interim': {'value': 0.3020042224348254,
                                                                                                                                        'value_error': None},
                                                                                                                'HadISST_GPCPv2.3': {'value': 0.30362385834815714,
                                                                                                                                     'value_error': None},
                                                                                                                'HadISST_TRMM-3B43v-7': {'value': 0.5060693973972301,
                                                                                                                                         'value_error': None},
                                                                                                                'Tropflux_CMAP': {'value': 0.3025314647223973,
                                                                                                                                  'value_error': None},
                                                                                                                'Tropflux_ERA-Interim': {'value': 0.2943092249086676,
                                                                                                                                         'value_error': None},
                                                                                                                'Tropflux_GPCPv2.3': {'value': 0.29773943279022563,
                                                                                                                                      'value_error': None},
                                                                                                                'Tropflux_TRMM-3B43v-7': {'value': 0.4766041957151523,
                                                                                                                                          'value_error': None}}},
                                                                                'EnsoPrMapJjaStd': {'diagnostic': {'20CRv2_CMAP': {'value': None,
                                                                                                                                   'value_error': None},
                                                                                                                   '20CRv2_ERA-Interim': {'value': None,
                                                                                                                                          'value_error': None},
                                                                                                                   '20CRv2_GPCPv2.3': {'value': None,
                                                                                                                                       'value_error': None},
                                                                                                                   '20CRv2_TRMM-3B43v-7': {'value': None,
                                                                                                                                           'value_error': None},
                                                                                                                   'ACCESS-CM2_r3i1p1f1': {'value': None,
                                                                                                                                           'value_error': None},
                                                                                                                   'ERA-20C_CMAP': {'value': None,
                                                                                                                                    'value_error': None},
                                                                                                                   'ERA-20C_ERA-Interim': {'value': None,
                                                                                                                                           'value_error': None},
                                                                                                                   'ERA-20C_GPCPv2.3': {'value': None,
                                                                                                                                        'value_error': None},
                                                                                                                   'ERA-20C_TRMM-3B43v-7': {'value': None,
                                                                                                                                            'value_error': None},
                                                                                                                   'ERA-5_CMAP': {'value': None,
                                                                                                                                  'value_error': None},
                                                                                                                   'ERA-5_ERA-Interim': {'value': None,
                                                                                                                                         'value_error': None},
                                                                                                                   'ERA-5_GPCPv2.3': {'value': None,
                                                                                                                                      'value_error': None},
                                                                                                                   'ERA-5_TRMM-3B43v-7': {'value': None,
                                                                                                                                          'value_error': None},
                                                                                                                   'ERA-Interim_CMAP': {'value': None,
                                                                                                                                        'value_error': None},
                                                                                                                   'ERA-Interim_ERA-Interim': {'value': None,
                                                                                                                                               'value_error': None},
                                                                                                                   'ERA-Interim_GPCPv2.3': {'value': None,
                                                                                                                                            'value_error': None},
                                                                                                                   'ERA-Interim_TRMM-3B43v-7': {'value': None,
                                                                                                                                                'value_error': None},
                                                                                                                   'HadISST_CMAP': {'value': None,
                                                                                                                                    'value_error': None},
                                                                                                                   'HadISST_ERA-Interim': {'value': None,
                                                                                                                                           'value_error': None},
                                                                                                                   'HadISST_GPCPv2.3': {'value': None,
                                                                                                                                        'value_error': None},
                                                                                                                   'HadISST_TRMM-3B43v-7': {'value': None,
                                                                                                                                            'value_error': None},
                                                                                                                   'Tropflux_CMAP': {'value': None,
                                                                                                                                     'value_error': None},
                                                                                                                   'Tropflux_ERA-Interim': {'value': None,
                                                                                                                                            'value_error': None},
                                                                                                                   'Tropflux_GPCPv2.3': {'value': None,
                                                                                                                                         'value_error': None},
                                                                                                                   'Tropflux_TRMM-3B43v-7': {'value': None,
                                                                                                                                             'value_error': None}},
                                                                                                    'metric': {'20CRv2_CMAP': {'value': 0.9103875481968411,
                                                                                                                               'value_error': None},
                                                                                                               '20CRv2_ERA-Interim': {'value': 0.916846130948728,
                                                                                                                                      'value_error': None},
                                                                                                               '20CRv2_GPCPv2.3': {'value': 0.9448325205310747,
                                                                                                                                   'value_error': None},
                                                                                                               '20CRv2_TRMM-3B43v-7': {'value': 0.4842314089346725,
                                                                                                                                       'value_error': None},
                                                                                                               'ERA-20C_CMAP': {'value': 0.9762687566141632,
                                                                                                                                'value_error': None},
                                                                                                               'ERA-20C_ERA-Interim': {'value': 0.9731116130419604,
                                                                                                                                       'value_error': None},
                                                                                                               'ERA-20C_GPCPv2.3': {'value': 1.0076558263538073,
                                                                                                                                    'value_error': None},
                                                                                                               'ERA-20C_TRMM-3B43v-7': {'value': 0.5106636067749374,
                                                                                                                                        'value_error': None},
                                                                                                               'ERA-5_CMAP': {'value': 1.0350150217342304,
                                                                                                                              'value_error': None},
                                                                                                               'ERA-5_ERA-Interim': {'value': 1.0197197687422526,
                                                                                                                                     'value_error': None},
                                                                                                               'ERA-5_GPCPv2.3': {'value': 1.0526533465898935,
                                                                                                                                  'value_error': None},
                                                                                                               'ERA-5_TRMM-3B43v-7': {'value': 0.6053373369663848,
                                                                                                                                      'value_error': None},
                                                                                                               'ERA-Interim_CMAP': {'value': 1.038014269512391,
                                                                                                                                    'value_error': None},
                                                                                                               'ERA-Interim_ERA-Interim': {'value': 1.0159478451059842,
                                                                                                                                           'value_error': None},
                                                                                                               'ERA-Interim_GPCPv2.3': {'value': 1.0442359925890397,
                                                                                                                                        'value_error': None},
                                                                                                               'ERA-Interim_TRMM-3B43v-7': {'value': 0.6210194462238438,
                                                                                                                                            'value_error': None},
                                                                                                               'HadISST_CMAP': {'value': 0.9804857213102175,
                                                                                                                                'value_error': None},
                                                                                                               'HadISST_ERA-Interim': {'value': 0.9657331420786899,
                                                                                                                                       'value_error': None},
                                                                                                               'HadISST_GPCPv2.3': {'value': 1.0068162634529163,
                                                                                                                                    'value_error': None},
                                                                                                               'HadISST_TRMM-3B43v-7': {'value': 0.5822806676847277,
                                                                                                                                        'value_error': None},
                                                                                                               'Tropflux_CMAP': {'value': 1.0572025462902623,
                                                                                                                                 'value_error': None},
                                                                                                               'Tropflux_ERA-Interim': {'value': 1.0422591397939753,
                                                                                                                                        'value_error': None},
                                                                                                               'Tropflux_GPCPv2.3': {'value': 1.077055722592815,
                                                                                                                                     'value_error': None},
                                                                                                               'Tropflux_TRMM-3B43v-7': {'value': 0.6335301958933776,
                                                                                                                                         'value_error': None}}},
                                                                                'EnsoSeasonality': {'diagnostic': {'20CRv2': {'value': 1.6436435961094338,
                                                                                                                              'value_error': 0.27635126775510105},
                                                                                                                   'ACCESS-CM2_r3i1p1f1': {'value': 1.4749615632589719,
                                                                                                                                           'value_error': 0.2300007499552203},
                                                                                                                   'ERA-20C': {'value': 1.5951589911955568,
                                                                                                                               'value_error': 0.30349823329934555},
                                                                                                                   'ERA-5': {'value': 2.0283123524204223,
                                                                                                                             'value_error': 0.6454942543282691},
                                                                                                                   'ERA-Interim': {'value': 2.052960044692134,
                                                                                                                                   'value_error': 0.6533381861195713},
                                                                                                                   'HadISST': {'value': 1.6666267700450468,
                                                                                                                               'value_error': 0.273531261566947},
                                                                                                                   'Tropflux': {'value': 2.06093854374807,
                                                                                                                                'value_error': 0.6643426635460994}},
                                                                                                    'metric': {'20CRv2': {'value': 10.262689140744296,
                                                                                                                          'value_error': 29.081179599733908},
                                                                                                               'ERA-20C': {'value': 7.535137788772898,
                                                                                                                           'value_error': 32.011227470576856},
                                                                                                               'ERA-5': {'value': 27.281340001756966,
                                                                                                                         'value_error': 34.48164782084904},
                                                                                                               'ERA-Interim': {'value': 28.154395061295016,
                                                                                                                               'value_error': 34.067663609754824},
                                                                                                               'HadISST': {'value': 11.500187698346789,
                                                                                                                           'value_error': 28.325202229624146},
                                                                                                               'Tropflux': {'value': 28.43253052191585,
                                                                                                                            'value_error': 34.229743776615074}}},
                                                                                'EnsoSstLonRmse': {'diagnostic': {'20CRv2': {'value': None,
                                                                                                                             'value_error': None},
                                                                                                                  'ACCESS-CM2_r3i1p1f1': {'value': None,
                                                                                                                                          'value_error': None},
                                                                                                                  'ERA-20C': {'value': None,
                                                                                                                              'value_error': None},
                                                                                                                  'ERA-5': {'value': None,
                                                                                                                            'value_error': None},
                                                                                                                  'ERA-Interim': {'value': None,
                                                                                                                                  'value_error': None},
                                                                                                                  'HadISST': {'value': None,
                                                                                                                              'value_error': None},
                                                                                                                  'Tropflux': {'value': None,
                                                                                                                               'value_error': None}},
                                                                                                   'metric': {'20CRv2': {'value': 0.08284732594316847,
                                                                                                                         'value_error': None},
                                                                                                              'ERA-20C': {'value': 0.09274124177770596,
                                                                                                                          'value_error': None},
                                                                                                              'ERA-5': {'value': 0.07010114542502865,
                                                                                                                        'value_error': None},
                                                                                                              'ERA-Interim': {'value': 0.07418859433347023,
                                                                                                                              'value_error': None},
                                                                                                              'HadISST': {'value': 0.08911231601705723,
                                                                                                                          'value_error': None},
                                                                                                              'Tropflux': {'value': 0.0727567841871812,
                                                                                                                           'value_error': None}}},
                                                                                'EnsoSstMapDjfCorr': {'diagnostic': {'20CRv2': {'value': None,
                                                                                                                                'value_error': None},
                                                                                                                     'ACCESS-CM2_r3i1p1f1': {'value': None,
                                                                                                                                             'value_error': None},
                                                                                                                     'ERA-20C': {'value': None,
                                                                                                                                 'value_error': None},
                                                                                                                     'ERA-5': {'value': None,
                                                                                                                               'value_error': None},
                                                                                                                     'ERA-Interim': {'value': None,
                                                                                                                                     'value_error': None}},
                                                                                                      'metric': {'20CRv2': {'value': 0.22010335344634524,
                                                                                                                            'value_error': None},
                                                                                                                 'ERA-20C': {'value': 0.5483848749134925,
                                                                                                                             'value_error': None},
                                                                                                                 'ERA-5': {'value': 0.3774123365012655,
                                                                                                                           'value_error': None},
                                                                                                                 'ERA-Interim': {'value': 0.3891168860535016,
                                                                                                                                 'value_error': None}}},
                                                                                'EnsoSstMapDjfRmse': {'diagnostic': {'20CRv2': {'value': None,
                                                                                                                                'value_error': None},
                                                                                                                     'ACCESS-CM2_r3i1p1f1': {'value': None,
                                                                                                                                             'value_error': None},
                                                                                                                     'ERA-20C': {'value': None,
                                                                                                                                 'value_error': None},
                                                                                                                     'ERA-5': {'value': None,
                                                                                                                               'value_error': None},
                                                                                                                     'ERA-Interim': {'value': None,
                                                                                                                                     'value_error': None}},
                                                                                                      'metric': {'20CRv2': {'value': 0.14337568243839707,
                                                                                                                            'value_error': None},
                                                                                                                 'ERA-20C': {'value': 0.19803433522126415,
                                                                                                                             'value_error': None},
                                                                                                                 'ERA-5': {'value': 0.19093016303816374,
                                                                                                                           'value_error': None},
                                                                                                                 'ERA-Interim': {'value': 0.1888154995841528,
                                                                                                                                 'value_error': None}}},
                                                                                'EnsoSstMapDjfStd': {'diagnostic': {'20CRv2': {'value': None,
                                                                                                                               'value_error': None},
                                                                                                                    'ACCESS-CM2_r3i1p1f1': {'value': None,
                                                                                                                                            'value_error': None},
                                                                                                                    'ERA-20C': {'value': None,
                                                                                                                                'value_error': None},
                                                                                                                    'ERA-5': {'value': None,
                                                                                                                              'value_error': None},
                                                                                                                    'ERA-Interim': {'value': None,
                                                                                                                                    'value_error': None}},
                                                                                                     'metric': {'20CRv2': {'value': 0.9312396328376017,
                                                                                                                           'value_error': None},
                                                                                                                'ERA-20C': {'value': 1.4559567247813636,
                                                                                                                            'value_error': None},
                                                                                                                'ERA-5': {'value': 0.8761828049092779,
                                                                                                                          'value_error': None},
                                                                                                                'ERA-Interim': {'value': 0.9115399028924603,
                                                                                                                                'value_error': None}}},
                                                                                'EnsoSstMapJjaCorr': {'diagnostic': {'20CRv2': {'value': None,
                                                                                                                                'value_error': None},
                                                                                                                     'ACCESS-CM2_r3i1p1f1': {'value': None,
                                                                                                                                             'value_error': None},
                                                                                                                     'ERA-20C': {'value': None,
                                                                                                                                 'value_error': None},
                                                                                                                     'ERA-5': {'value': None,
                                                                                                                               'value_error': None},
                                                                                                                     'ERA-Interim': {'value': None,
                                                                                                                                     'value_error': None}},
                                                                                                      'metric': {'20CRv2': {'value': 0.4332852154217304,
                                                                                                                            'value_error': None},
                                                                                                                 'ERA-20C': {'value': 0.6390529255503123,
                                                                                                                             'value_error': None},
                                                                                                                 'ERA-5': {'value': 0.5300150969143984,
                                                                                                                           'value_error': None},
                                                                                                                 'ERA-Interim': {'value': 0.5243428509211177,
                                                                                                                                 'value_error': None}}},
                                                                                'EnsoSstMapJjaRmse': {'diagnostic': {'20CRv2': {'value': None,
                                                                                                                                'value_error': None},
                                                                                                                     'ACCESS-CM2_r3i1p1f1': {'value': None,
                                                                                                                                             'value_error': None},
                                                                                                                     'ERA-20C': {'value': None,
                                                                                                                                 'value_error': None},
                                                                                                                     'ERA-5': {'value': None,
                                                                                                                               'value_error': None},
                                                                                                                     'ERA-Interim': {'value': None,
                                                                                                                                     'value_error': None}},
                                                                                                      'metric': {'20CRv2': {'value': 0.2120366930044247,
                                                                                                                            'value_error': None},
                                                                                                                 'ERA-20C': {'value': 0.21130492543500035,
                                                                                                                             'value_error': None},
                                                                                                                 'ERA-5': {'value': 0.25246285541202407,
                                                                                                                           'value_error': None},
                                                                                                                 'ERA-Interim': {'value': 0.24389968909678275,
                                                                                                                                 'value_error': None}}},
                                                                                'EnsoSstMapJjaStd': {'diagnostic': {'20CRv2': {'value': None,
                                                                                                                               'value_error': None},
                                                                                                                    'ACCESS-CM2_r3i1p1f1': {'value': None,
                                                                                                                                            'value_error': None},
                                                                                                                    'ERA-20C': {'value': None,
                                                                                                                                'value_error': None},
                                                                                                                    'ERA-5': {'value': None,
                                                                                                                              'value_error': None},
                                                                                                                    'ERA-Interim': {'value': None,
                                                                                                                                    'value_error': None}},
                                                                                                     'metric': {'20CRv2': {'value': 0.9322502053474849,
                                                                                                                           'value_error': None},
                                                                                                                'ERA-20C': {'value': 1.3928084215592476,
                                                                                                                            'value_error': None},
                                                                                                                'ERA-5': {'value': 0.8407754177629219,
                                                                                                                          'value_error': None},
                                                                                                                'ERA-Interim': {'value': 0.8728587644107338,
                                                                                                                                'value_error': None}}}}}}},
                              'provenance': {'commandLine': '/home/lee1043/.conda/envs/pmp_nightly_20210620/bin/enso_driver.py '
                                                            '-p '
                                                            '../param/my_Param_ENSO_PCMDIobs.py '
                                                            '--mip cmip6 '
                                                            '--metricsCollection '
                                                            'ENSO_tel '
                                                            '--case_id '
                                                            'v20210620 '
                                                            '--modnames '
                                                            'UKESM1-0-LL '
                                                            '--realization '
                                                            'r9i1p1f2',
                                             'conda': {'Platform': 'linux-64',
                                                       'PythonVersion': '3.7.3.final.0',
                                                       'Version': '4.8.3',
                                                       'buildVersion': '3.18.8'},
                                             'date': '2021-06-23 12:19:24',
                                             'history': 'import EnsoMetrics\n'
                                                        'from '
                                                        '...script.PMPdriver_lib '
                                                        'import '
                                                        'AddParserArgument\n'
                                                        'from '
                                                        '...script.PMPdriver_lib '
                                                        'import '
                                                        'AddParserArgument\n'
                                                        'from '
                                                        'script.PMPdriver_lib '
                                                        'import '
                                                        'AddParserArgument\n'
                                                        'from '
                                                        'script.PMPdriver_libfrom '
                                                        'PMPdriver_lib import '
                                                        'AddParserArgument\n'
                                                        ' import '
                                                        'AddParserArgument\n'
                                                        'from PMPdriver_lib '
                                                        'import '
                                                        'AddParserArgument\n',
                                             'openGL': {'GLX': {'client': {},
                                                                'server': {}}},
                                             'osAccess': False,
                                             'packages': {'PMP': 'v2.0-15-g182be71',
                                                          'PMPObs': 'See '
                                                                    "'References' "
                                                                    'key '
                                                                    'below, '
                                                                    'for '
                                                                    'detailed '
                                                                    'obs '
                                                                    'provenance '
                                                                    'information.',
                                                          'blas': '0.3.10',
                                                          'cdat_info': '8.2.2020.08.27.15.53.ga42e5c8',
                                                          'cdms': '3.1.5.2020.11.03.21.54.gf997653',
                                                          'cdp': '1.7.0',
                                                          'cdtime': '3.1.4.2020.10.12.15.52.g2b715b5',
                                                          'cdutil': '8.2.2020.09.28.17.09.g484910c',
                                                          'clapack': None,
                                                          'esmf': '8.0.1',
                                                          'esmpy': '8.0.1',
                                                          'genutil': '8.2.2020.10.07.17.46.ge34ccd5',
                                                          'lapack': '3.8.0',
                                                          'matplotlib': '3.4.2',
                                                          'mesalib': None,
                                                          'numpy': '1.20.3',
                                                          'python': '3.8.10',
                                                          'scipy': '1.5.2',
                                                          'uvcdat': None,
                                                          'vcs': '8.2.2020.08.06.20.48.g4abe712',
                                                          'vtk': '8.2.0.8.2.2020.07.20.18.56.g3aa9eaf'},
                                             'platform': {'Name': 'gates.llnl.gov',
                                                          'OS': 'Linux',
                                                          'Version': '3.10.0-1160.31.1.el7.x86_64'},
                                             'userId': 'lee1043'}}},
 'mean_climate': {'pr': {'REFERENCE': {'default': {'CMIP_CMOR_TABLE': 'Amon',
                                                   'MD5sum': '3792901034585d3d495722f10a0dfecb',
                                                   'RefTrackingDate': 'Wed '
                                                                      'Aug  4 '
                                                                      '12:22:10 '
                                                                      '2021',
                                                   'filename': 'pr_mon_GPCP-2-3_PCMDI_gn.200301-201812.AC.v20210804.nc',
                                                   'period': '200301-201812',
                                                   'shape': '(12, 72, 144)',
                                                   'template': 'pr/GPCP-2-3/v20210804/pr_mon_GPCP-2-3_PCMDI_gn.200301-201812.AC.v20210804.nc'}},
                         'RESULTS': {'ACCESS-CM2': {'default': {'r1i1p1f1': {'InputClimatologyFileName': 'cmip6.historical.ACCESS-CM2.r1i1p1f1.mon.pr.198101-200512.AC.v20230823.nc',
                                                                             'NHEX': {'bias_xy': {'CalendarMonths': ['0.068',
                                                                                                                     '0.077',
                                                                                                                     '0.202',
                                                                                                                     '0.294',
                                                                                                                     '0.236',
                                                                                                                     '0.066',
                                                                                                                     '0.055',
                                                                                                                     '0.008',
                                                                                                                     '0.015',
                                                                                                                     '0.097',
                                                                                                                     '0.087',
                                                                                                                     '0.054'],
                                                                                                  'ann': '0.105',
                                                                                                  'djf': '0.066',
                                                                                                  'jja': '0.043',
                                                                                                  'mam': '0.245',
                                                                                                  'son': '0.066'},
                                                                                      'cor_xy': {'CalendarMonths': ['0.90',
                                                                                                                    '0.93',
                                                                                                                    '0.93',
                                                                                                                    '0.91',
                                                                                                                    '0.89',
                                                                                                                    '0.83',
                                                                                                                    '0.83',
                                                                                                                    '0.86',
                                                                                                                    '0.89',
                                                                                                                    '0.92',
                                                                                                                    '0.92',
                                                                                                                    '0.91'],
                                                                                                 'ann': '0.952',
                                                                                                 'djf': '0.93',
                                                                                                 'jja': '0.89',
                                                                                                 'mam': '0.94',
                                                                                                 'son': '0.94'},
                                                                                      'mae_xy': {'CalendarMonths': ['0.644',
                                                                                                                    '0.515',
                                                                                                                    '0.485',
                                                                                                                    '0.495',
                                                                                                                    '0.461',
                                                                                                                    '0.548',
                                                                                                                    '0.609',
                                                                                                                    '0.528',
                                                                                                                    '0.505',
                                                                                                                    '0.498',
                                                                                                                    '0.596',
                                                                                                                    '0.649'],
                                                                                                 'ann': '0.347',
                                                                                                 'djf': '0.558',
                                                                                                 'jja': '0.472',
                                                                                                 'mam': '0.387',
                                                                                                 'son': '0.439'},
                                                                                      'mean-obs_xy': {'CalendarMonths': ['2.379',
                                                                                                                         '2.209',
                                                                                                                         '1.974',
                                                                                                                         '1.785',
                                                                                                                         '1.870',
                                                                                                                         '2.099',
                                                                                                                         '2.215',
                                                                                                                         '2.270',
                                                                                                                         '2.372',
                                                                                                                         '2.441',
                                                                                                                         '2.493',
                                                                                                                         '2.516'],
                                                                                                      'ann': '2.219',
                                                                                                      'djf': '2.366',
                                                                                                      'jja': '2.194',
                                                                                                      'mam': '1.873',
                                                                                                      'son': '2.436'},
                                                                                      'mean_xy': {'CalendarMonths': ['2.447',
                                                                                                                     '2.286',
                                                                                                                     '2.176',
                                                                                                                     '2.078',
                                                                                                                     '2.105',
                                                                                                                     '2.166',
                                                                                                                     '2.270',
                                                                                                                     '2.278',
                                                                                                                     '2.387',
                                                                                                                     '2.539',
                                                                                                                     '2.580',
                                                                                                                     '2.570'],
                                                                                                  'ann': '2.324',
                                                                                                  'djf': '2.433',
                                                                                                  'jja': '2.238',
                                                                                                  'mam': '2.118',
                                                                                                  'son': '2.502'},
                                                                                      'rms_devzm': {'ann': '0.439'},
                                                                                      'rms_xy': {'CalendarMonths': ['0.996',
                                                                                                                    '0.795',
                                                                                                                    '0.681',
                                                                                                                    '0.682',
                                                                                                                    '0.637',
                                                                                                                    '0.902',
                                                                                                                    '0.945',
                                                                                                                    '0.784',
                                                                                                                    '0.744',
                                                                                                                    '0.698',
                                                                                                                    '0.833',
                                                                                                                    '0.957'],
                                                                                                 'ann': '0.486',
                                                                                                 'djf': '0.844',
                                                                                                 'jja': '0.688',
                                                                                                 'mam': '0.543',
                                                                                                 'son': '0.601'},
                                                                                      'rms_xyt': {'ann': '0.804'},
                                                                                      'rms_y': {'ann': '0.207'},
                                                                                      'rmsc_xy': {'CalendarMonths': ['0.994',
                                                                                                                     '0.791',
                                                                                                                     '0.650',
                                                                                                                     '0.616',
                                                                                                                     '0.592',
                                                                                                                     '0.899',
                                                                                                                     '0.943',
                                                                                                                     '0.784',
                                                                                                                     '0.743',
                                                                                                                     '0.691',
                                                                                                                     '0.828',
                                                                                                                     '0.956'],
                                                                                                  'ann': '0.474',
                                                                                                  'djf': '0.841',
                                                                                                  'jja': '0.687',
                                                                                                  'mam': '0.485',
                                                                                                  'son': '0.598'},
                                                                                      'std-obs_xy': {'CalendarMonths': ['1.982',
                                                                                                                        '1.745',
                                                                                                                        '1.506',
                                                                                                                        '1.345',
                                                                                                                        '1.275',
                                                                                                                        '1.630',
                                                                                                                        '1.575',
                                                                                                                        '1.430',
                                                                                                                        '1.552',
                                                                                                                        '1.642',
                                                                                                                        '1.800',
                                                                                                                        '1.989'],
                                                                                                     'ann': '1.391',
                                                                                                     'djf': '1.882',
                                                                                                     'jja': '1.459',
                                                                                                     'mam': '1.311',
                                                                                                     'son': '1.581'},
                                                                                      'std-obs_xy_devzm': {'ann': '1.264'},
                                                                                      'std-obs_xyt': {'ann': '1.654'},
                                                                                      'std_xy': {'CalendarMonths': ['2.311',
                                                                                                                    '2.068',
                                                                                                                    '1.766',
                                                                                                                    '1.459',
                                                                                                                    '1.293',
                                                                                                                    '1.373',
                                                                                                                    '1.617',
                                                                                                                    '1.496',
                                                                                                                    '1.629',
                                                                                                                    '1.812',
                                                                                                                    '2.088',
                                                                                                                    '2.311'],
                                                                                                 'ann': '1.533',
                                                                                                 'djf': '2.213',
                                                                                                 'jja': '1.431',
                                                                                                 'mam': '1.421',
                                                                                                 'son': '1.751'},
                                                                                      'std_xy_devzm': {'ann': '1.367'},
                                                                                      'std_xyt': {'ann': '1.809'}},
                                                                             'SHEX': {'bias_xy': {'CalendarMonths': ['-0.002',
                                                                                                                     '0.004',
                                                                                                                     '-0.098',
                                                                                                                     '0.079',
                                                                                                                     '0.424',
                                                                                                                     '0.533',
                                                                                                                     '0.560',
                                                                                                                     '0.422',
                                                                                                                     '0.373',
                                                                                                                     '0.293',
                                                                                                                     '0.104',
                                                                                                                     '0.127'],
                                                                                                  'ann': '0.235',
                                                                                                  'djf': '0.042',
                                                                                                  'jja': '0.505',
                                                                                                  'mam': '0.139',
                                                                                                  'son': '0.256'},
                                                                                      'cor_xy': {'CalendarMonths': ['0.88',
                                                                                                                    '0.86',
                                                                                                                    '0.86',
                                                                                                                    '0.86',
                                                                                                                    '0.85',
                                                                                                                    '0.85',
                                                                                                                    '0.83',
                                                                                                                    '0.81',
                                                                                                                    '0.78',
                                                                                                                    '0.82',
                                                                                                                    '0.85',
                                                                                                                    '0.87'],
                                                                                                 'ann': '0.897',
                                                                                                 'djf': '0.90',
                                                                                                 'jja': '0.85',
                                                                                                 'mam': '0.88',
                                                                                                 'son': '0.84'},
                                                                                      'mae_xy': {'CalendarMonths': ['0.400',
                                                                                                                    '0.443',
                                                                                                                    '0.483',
                                                                                                                    '0.478',
                                                                                                                    '0.590',
                                                                                                                    '0.689',
                                                                                                                    '0.726',
                                                                                                                    '0.676',
                                                                                                                    '0.655',
                                                                                                                    '0.533',
                                                                                                                    '0.407',
                                                                                                                    '0.394'],
                                                                                                 'ann': '0.381',
                                                                                                 'djf': '0.343',
                                                                                                 'jja': '0.669',
                                                                                                 'mam': '0.413',
                                                                                                 'son': '0.484'},
                                                                                      'mean-obs_xy': {'CalendarMonths': ['2.247',
                                                                                                                         '2.470',
                                                                                                                         '2.808',
                                                                                                                         '2.839',
                                                                                                                         '2.645',
                                                                                                                         '2.593',
                                                                                                                         '2.500',
                                                                                                                         '2.440',
                                                                                                                         '2.292',
                                                                                                                         '2.127',
                                                                                                                         '2.111',
                                                                                                                         '2.017'],
                                                                                                      'ann': '2.424',
                                                                                                      'djf': '2.247',
                                                                                                      'jja': '2.511',
                                                                                                      'mam': '2.764',
                                                                                                      'son': '2.177'},
                                                                                      'mean_xy': {'CalendarMonths': ['2.244',
                                                                                                                     '2.474',
                                                                                                                     '2.709',
                                                                                                                     '2.918',
                                                                                                                     '3.069',
                                                                                                                     '3.127',
                                                                                                                     '3.059',
                                                                                                                     '2.862',
                                                                                                                     '2.665',
                                                                                                                     '2.419',
                                                                                                                     '2.216',
                                                                                                                     '2.144'],
                                                                                                  'ann': '2.659',
                                                                                                  'djf': '2.289',
                                                                                                  'jja': '3.015',
                                                                                                  'mam': '2.903',
                                                                                                  'son': '2.434'},
                                                                                      'rms_devzm': {'ann': '0.475'},
                                                                                      'rms_xy': {'CalendarMonths': ['0.580',
                                                                                                                    '0.636',
                                                                                                                    '0.689',
                                                                                                                    '0.686',
                                                                                                                    '0.822',
                                                                                                                    '0.945',
                                                                                                                    '1.003',
                                                                                                                    '0.911',
                                                                                                                    '0.886',
                                                                                                                    '0.720',
                                                                                                                    '0.595',
                                                                                                                    '0.575'],
                                                                                                 'ann': '0.570',
                                                                                                 'djf': '0.515',
                                                                                                 'jja': '0.907',
                                                                                                 'mam': '0.618',
                                                                                                 'son': '0.675'},
                                                                                      'rms_xyt': {'ann': '0.754'},
                                                                                      'rms_y': {'ann': '0.314'},
                                                                                      'rmsc_xy': {'CalendarMonths': ['0.580',
                                                                                                                     '0.636',
                                                                                                                     '0.682',
                                                                                                                     '0.682',
                                                                                                                     '0.704',
                                                                                                                     '0.780',
                                                                                                                     '0.832',
                                                                                                                     '0.808',
                                                                                                                     '0.803',
                                                                                                                     '0.658',
                                                                                                                     '0.586',
                                                                                                                     '0.561'],
                                                                                                  'ann': '0.519',
                                                                                                  'djf': '0.513',
                                                                                                  'jja': '0.754',
                                                                                                  'mam': '0.603',
                                                                                                  'son': '0.624'},
                                                                                      'std-obs_xy': {'CalendarMonths': ['1.118',
                                                                                                                        '1.171',
                                                                                                                        '1.314',
                                                                                                                        '1.333',
                                                                                                                        '1.147',
                                                                                                                        '1.230',
                                                                                                                        '1.210',
                                                                                                                        '1.198',
                                                                                                                        '1.108',
                                                                                                                        '1.031',
                                                                                                                        '1.024',
                                                                                                                        '1.046'],
                                                                                                     'ann': '1.059',
                                                                                                     'djf': '1.082',
                                                                                                     'jja': '1.193',
                                                                                                     'mam': '1.204',
                                                                                                     'son': '1.029'},
                                                                                      'std-obs_xy_devzm': {'ann': '0.700'},
                                                                                      'std-obs_xyt': {'ann': '1.193'},
                                                                                      'std_xy': {'CalendarMonths': ['1.208',
                                                                                                                    '1.199',
                                                                                                                    '1.234',
                                                                                                                    '1.255',
                                                                                                                    '1.354',
                                                                                                                    '1.484',
                                                                                                                    '1.503',
                                                                                                                    '1.374',
                                                                                                                    '1.282',
                                                                                                                    '1.132',
                                                                                                                    '1.102',
                                                                                                                    '1.147'],
                                                                                                 'ann': '1.171',
                                                                                                 'djf': '1.165',
                                                                                                 'jja': '1.437',
                                                                                                 'mam': '1.236',
                                                                                                 'son': '1.135'},
                                                                                      'std_xy_devzm': {'ann': '0.793'},
                                                                                      'std_xyt': {'ann': '1.323'}},
                                                                             'TROPICS': {'bias_xy': {'CalendarMonths': ['0.662',
                                                                                                                        '0.723',
                                                                                                                        '0.684',
                                                                                                                        '0.753',
                                                                                                                        '0.650',
                                                                                                                        '0.656',
                                                                                                                        '0.632',
                                                                                                                        '0.634',
                                                                                                                        '0.568',
                                                                                                                        '0.623',
                                                                                                                        '0.674',
                                                                                                                        '0.714'],
                                                                                                     'ann': '0.664',
                                                                                                     'djf': '0.699',
                                                                                                     'jja': '0.641',
                                                                                                     'mam': '0.696',
                                                                                                     'son': '0.621'},
                                                                                         'cor_xy': {'CalendarMonths': ['0.80',
                                                                                                                       '0.75',
                                                                                                                       '0.69',
                                                                                                                       '0.64',
                                                                                                                       '0.65',
                                                                                                                       '0.68',
                                                                                                                       '0.74',
                                                                                                                       '0.78',
                                                                                                                       '0.79',
                                                                                                                       '0.84',
                                                                                                                       '0.83',
                                                                                                                       '0.80'],
                                                                                                    'ann': '0.822',
                                                                                                    'djf': '0.82',
                                                                                                    'jja': '0.78',
                                                                                                    'mam': '0.67',
                                                                                                    'son': '0.85'},
                                                                                         'mae_xy': {'CalendarMonths': ['1.570',
                                                                                                                       '1.719',
                                                                                                                       '1.791',
                                                                                                                       '1.874',
                                                                                                                       '1.737',
                                                                                                                       '1.757',
                                                                                                                       '1.715',
                                                                                                                       '1.689',
                                                                                                                       '1.615',
                                                                                                                       '1.337',
                                                                                                                       '1.415',
                                                                                                                       '1.576'],
                                                                                                    'ann': '1.189',
                                                                                                    'djf': '1.422',
                                                                                                    'jja': '1.586',
                                                                                                    'mam': '1.686',
                                                                                                    'son': '1.312'},
                                                                                         'mean-obs_xy': {'CalendarMonths': ['3.183',
                                                                                                                            '3.119',
                                                                                                                            '3.080',
                                                                                                                            '2.971',
                                                                                                                            '3.057',
                                                                                                                            '3.052',
                                                                                                                            '3.079',
                                                                                                                            '3.082',
                                                                                                                            '3.067',
                                                                                                                            '3.040',
                                                                                                                            '3.079',
                                                                                                                            '3.138'],
                                                                                                         'ann': '3.079',
                                                                                                         'djf': '3.147',
                                                                                                         'jja': '3.071',
                                                                                                         'mam': '3.035',
                                                                                                         'son': '3.062'},
                                                                                         'mean_xy': {'CalendarMonths': ['3.846',
                                                                                                                        '3.842',
                                                                                                                        '3.764',
                                                                                                                        '3.725',
                                                                                                                        '3.707',
                                                                                                                        '3.708',
                                                                                                                        '3.711',
                                                                                                                        '3.716',
                                                                                                                        '3.634',
                                                                                                                        '3.663',
                                                                                                                        '3.752',
                                                                                                                        '3.851'],
                                                                                                     'ann': '3.743',
                                                                                                     'djf': '3.846',
                                                                                                     'jja': '3.712',
                                                                                                     'mam': '3.731',
                                                                                                     'son': '3.683'},
                                                                                         'rms_devzm': {'ann': '1.434'},
                                                                                         'rms_xy': {'CalendarMonths': ['2.514',
                                                                                                                       '2.845',
                                                                                                                       '2.953',
                                                                                                                       '2.993',
                                                                                                                       '2.833',
                                                                                                                       '2.900',
                                                                                                                       '2.794',
                                                                                                                       '2.627',
                                                                                                                       '2.451',
                                                                                                                       '2.084',
                                                                                                                       '2.203',
                                                                                                                       '2.470'],
                                                                                                    'ann': '1.752',
                                                                                                    'djf': '2.263',
                                                                                                    'jja': '2.436',
                                                                                                    'mam': '2.707',
                                                                                                    'son': '1.980'},
                                                                                         'rms_xyt': {'ann': '2.639'},
                                                                                         'rms_y': {'ann': '1.006'},
                                                                                         'rmsc_xy': {'CalendarMonths': ['2.425',
                                                                                                                        '2.752',
                                                                                                                        '2.873',
                                                                                                                        '2.897',
                                                                                                                        '2.757',
                                                                                                                        '2.825',
                                                                                                                        '2.721',
                                                                                                                        '2.550',
                                                                                                                        '2.384',
                                                                                                                        '1.989',
                                                                                                                        '2.097',
                                                                                                                        '2.365'],
                                                                                                     'ann': '1.621',
                                                                                                     'djf': '2.152',
                                                                                                     'jja': '2.350',
                                                                                                     'mam': '2.616',
                                                                                                     'son': '1.880'},
                                                                                         'std-obs_xy': {'CalendarMonths': ['3.201',
                                                                                                                           '3.059',
                                                                                                                           '2.900',
                                                                                                                           '2.737',
                                                                                                                           '2.807',
                                                                                                                           '3.257',
                                                                                                                           '3.430',
                                                                                                                           '3.389',
                                                                                                                           '3.182',
                                                                                                                           '2.906',
                                                                                                                           '2.999',
                                                                                                                           '3.036'],
                                                                                                        'ann': '2.404',
                                                                                                        'djf': '2.978',
                                                                                                        'jja': '3.228',
                                                                                                        'mam': '2.584',
                                                                                                        'son': '2.819'},
                                                                                         'std-obs_xy_devzm': {'ann': '2.032'},
                                                                                         'std-obs_xyt': {'ann': '3.083'},
                                                                                         'std_xy': {'CalendarMonths': ['4.000',
                                                                                                                       '4.157',
                                                                                                                       '3.983',
                                                                                                                       '3.750',
                                                                                                                       '3.578',
                                                                                                                       '3.758',
                                                                                                                       '4.024',
                                                                                                                       '4.055',
                                                                                                                       '3.887',
                                                                                                                       '3.674',
                                                                                                                       '3.735',
                                                                                                                       '3.948'],
                                                                                                    'ann': '2.846',
                                                                                                    'djf': '3.763',
                                                                                                    'jja': '3.716',
                                                                                                    'mam': '3.513',
                                                                                                    'son': '3.528'},
                                                                                         'std_xy_devzm': {'ann': '2.376'},
                                                                                         'std_xyt': {'ann': '3.883'}},
                                                                             'global': {'bias_xy': {'CalendarMonths': ['0.348',
                                                                                                                       '0.382',
                                                                                                                       '0.368',
                                                                                                                       '0.470',
                                                                                                                       '0.490',
                                                                                                                       '0.478',
                                                                                                                       '0.470',
                                                                                                                       '0.425',
                                                                                                                       '0.381',
                                                                                                                       '0.409',
                                                                                                                       '0.385',
                                                                                                                       '0.402'],
                                                                                                    'ann': '0.417',
                                                                                                    'djf': '0.377',
                                                                                                    'jja': '0.457',
                                                                                                    'mam': '0.444',
                                                                                                    'son': '0.391'},
                                                                                        'cor_xy': {'CalendarMonths': ['0.82',
                                                                                                                      '0.78',
                                                                                                                      '0.73',
                                                                                                                      '0.69',
                                                                                                                      '0.70',
                                                                                                                      '0.71',
                                                                                                                      '0.76',
                                                                                                                      '0.79',
                                                                                                                      '0.80',
                                                                                                                      '0.85',
                                                                                                                      '0.85',
                                                                                                                      '0.83'],
                                                                                                   'ann': '0.849',
                                                                                                   'djf': '0.84',
                                                                                                   'jja': '0.80',
                                                                                                   'mam': '0.72',
                                                                                                   'son': '0.86'},
                                                                                        'mae_xy': {'CalendarMonths': ['1.046',
                                                                                                                      '1.099',
                                                                                                                      '1.137',
                                                                                                                      '1.180',
                                                                                                                      '1.132',
                                                                                                                      '1.188',
                                                                                                                      '1.191',
                                                                                                                      '1.146',
                                                                                                                      '1.097',
                                                                                                                      '0.926',
                                                                                                                      '0.958',
                                                                                                                      '1.049'],
                                                                                                   'ann': '0.777',
                                                                                                   'djf': '0.936',
                                                                                                   'jja': '1.078',
                                                                                                   'mam': '1.043',
                                                                                                   'son': '0.887'},
                                                                                        'mean-obs_xy': {'CalendarMonths': ['2.748',
                                                                                                                           '2.729',
                                                                                                                           '2.735',
                                                                                                                           '2.642',
                                                                                                                           '2.657',
                                                                                                                           '2.699',
                                                                                                                           '2.718',
                                                                                                                           '2.718',
                                                                                                                           '2.699',
                                                                                                                           '2.662',
                                                                                                                           '2.690',
                                                                                                                           '2.702'],
                                                                                                        'ann': '2.700',
                                                                                                        'djf': '2.727',
                                                                                                        'jja': '2.712',
                                                                                                        'mam': '2.677',
                                                                                                        'son': '2.684'},
                                                                                        'mean_xy': {'CalendarMonths': ['3.096',
                                                                                                                       '3.111',
                                                                                                                       '3.103',
                                                                                                                       '3.111',
                                                                                                                       '3.147',
                                                                                                                       '3.177',
                                                                                                                       '3.188',
                                                                                                                       '3.143',
                                                                                                                       '3.080',
                                                                                                                       '3.071',
                                                                                                                       '3.075',
                                                                                                                       '3.104'],
                                                                                                    'ann': '3.117',
                                                                                                    'djf': '3.104',
                                                                                                    'jja': '3.169',
                                                                                                    'mam': '3.121',
                                                                                                    'son': '3.076'},
                                                                                        'rms_devzm': {'ann': '1.064'},
                                                                                        'rms_xy': {'CalendarMonths': ['1.869',
                                                                                                                      '2.075',
                                                                                                                      '2.144',
                                                                                                                      '2.171',
                                                                                                                      '2.069',
                                                                                                                      '2.152',
                                                                                                                      '2.092',
                                                                                                                      '1.953',
                                                                                                                      '1.827',
                                                                                                                      '1.557',
                                                                                                                      '1.639',
                                                                                                                      '1.834'],
                                                                                                   'ann': '1.294',
                                                                                                   'djf': '1.675',
                                                                                                   'jja': '1.814',
                                                                                                   'mam': '1.958',
                                                                                                   'son': '1.471'},
                                                                                        'rms_xyt': {'ann': '1.949'},
                                                                                        'rms_y': {'ann': '0.736'},
                                                                                        'rmsc_xy': {'CalendarMonths': ['1.836',
                                                                                                                       '2.040',
                                                                                                                       '2.112',
                                                                                                                       '2.120',
                                                                                                                       '2.011',
                                                                                                                       '2.099',
                                                                                                                       '2.039',
                                                                                                                       '1.906',
                                                                                                                       '1.787',
                                                                                                                       '1.502',
                                                                                                                       '1.594',
                                                                                                                       '1.789'],
                                                                                                    'ann': '1.225',
                                                                                                    'djf': '1.632',
                                                                                                    'jja': '1.755',
                                                                                                    'mam': '1.907',
                                                                                                    'son': '1.418'},
                                                                                        'std-obs_xy': {'CalendarMonths': ['2.571',
                                                                                                                          '2.438',
                                                                                                                          '2.326',
                                                                                                                          '2.211',
                                                                                                                          '2.216',
                                                                                                                          '2.550',
                                                                                                                          '2.647',
                                                                                                                          '2.598',
                                                                                                                          '2.471',
                                                                                                                          '2.306',
                                                                                                                          '2.395',
                                                                                                                          '2.468'],
                                                                                                       'ann': '1.950',
                                                                                                       'djf': '2.407',
                                                                                                       'jja': '2.498',
                                                                                                       'mam': '2.088',
                                                                                                       'son': '2.239'},
                                                                                        'std-obs_xy_devzm': {'ann': '1.608'},
                                                                                        'std-obs_xyt': {'ann': '2.437'},
                                                                                        'std_xy': {'CalendarMonths': ['3.204',
                                                                                                                      '3.257',
                                                                                                                      '3.093',
                                                                                                                      '2.902',
                                                                                                                      '2.776',
                                                                                                                      '2.912',
                                                                                                                      '3.109',
                                                                                                                      '3.102',
                                                                                                                      '2.991',
                                                                                                                      '2.871',
                                                                                                                      '2.974',
                                                                                                                      '3.168'],
                                                                                                   'ann': '2.321',
                                                                                                   'djf': '3.033',
                                                                                                   'jja': '2.882',
                                                                                                   'mam': '2.740',
                                                                                                   'son': '2.772'},
                                                                                        'std_xy_devzm': {'ann': '1.856'},
                                                                                        'std_xyt': {'ann': '3.033'}},
                                                                             'land_NHEX': {'bias_xy': {'CalendarMonths': ['-0.185',
                                                                                                                          '-0.110',
                                                                                                                          '0.043',
                                                                                                                          '0.286',
                                                                                                                          '0.333',
                                                                                                                          '0.260',
                                                                                                                          '0.096',
                                                                                                                          '0.078',
                                                                                                                          '0.046',
                                                                                                                          '0.041',
                                                                                                                          '-0.098',
                                                                                                                          '-0.194'],
                                                                                                       'ann': '0.050',
                                                                                                       'djf': '-0.162',
                                                                                                       'jja': '0.145',
                                                                                                       'mam': '0.225',
                                                                                                       'son': '-0.004'},
                                                                                           'cor_xy': {'CalendarMonths': ['0.87',
                                                                                                                         '0.88',
                                                                                                                         '0.83',
                                                                                                                         '0.86',
                                                                                                                         '0.87',
                                                                                                                         '0.79',
                                                                                                                         '0.81',
                                                                                                                         '0.86',
                                                                                                                         '0.89',
                                                                                                                         '0.88',
                                                                                                                         '0.86',
                                                                                                                         '0.85'],
                                                                                                      'ann': '0.903',
                                                                                                      'djf': '0.88',
                                                                                                      'jja': '0.85',
                                                                                                      'mam': '0.88',
                                                                                                      'son': '0.91'},
                                                                                           'mae_xy': {'CalendarMonths': ['0.437',
                                                                                                                         '0.381',
                                                                                                                         '0.428',
                                                                                                                         '0.452',
                                                                                                                         '0.484',
                                                                                                                         '0.581',
                                                                                                                         '0.600',
                                                                                                                         '0.467',
                                                                                                                         '0.375',
                                                                                                                         '0.401',
                                                                                                                         '0.481',
                                                                                                                         '0.502'],
                                                                                                      'ann': '0.305',
                                                                                                      'djf': '0.409',
                                                                                                      'jja': '0.487',
                                                                                                      'mam': '0.374',
                                                                                                      'son': '0.339'},
                                                                                           'mean-obs_xy': {'CalendarMonths': ['1.359',
                                                                                                                              '1.305',
                                                                                                                              '1.300',
                                                                                                                              '1.344',
                                                                                                                              '1.642',
                                                                                                                              '1.912',
                                                                                                                              '2.178',
                                                                                                                              '2.038',
                                                                                                                              '1.778',
                                                                                                                              '1.623',
                                                                                                                              '1.571',
                                                                                                                              '1.485'],
                                                                                                           'ann': '1.628',
                                                                                                           'djf': '1.382',
                                                                                                           'jja': '2.041',
                                                                                                           'mam': '1.430',
                                                                                                           'son': '1.658'},
                                                                                           'mean_xy': {'CalendarMonths': ['1.175',
                                                                                                                          '1.195',
                                                                                                                          '1.342',
                                                                                                                          '1.630',
                                                                                                                          '1.975',
                                                                                                                          '2.171',
                                                                                                                          '2.274',
                                                                                                                          '2.116',
                                                                                                                          '1.825',
                                                                                                                          '1.664',
                                                                                                                          '1.473',
                                                                                                                          '1.292'],
                                                                                                       'ann': '1.678',
                                                                                                       'djf': '1.220',
                                                                                                       'jja': '2.186',
                                                                                                       'mam': '1.655',
                                                                                                       'son': '1.654'},
                                                                                           'rms_devzm': {'ann': '0.406'},
                                                                                           'rms_xy': {'CalendarMonths': ['0.623',
                                                                                                                         '0.536',
                                                                                                                         '0.600',
                                                                                                                         '0.660',
                                                                                                                         '0.680',
                                                                                                                         '0.850',
                                                                                                                         '0.905',
                                                                                                                         '0.709',
                                                                                                                         '0.555',
                                                                                                                         '0.558',
                                                                                                                         '0.639',
                                                                                                                         '0.708'],
                                                                                                      'ann': '0.422',
                                                                                                      'djf': '0.571',
                                                                                                      'jja': '0.716',
                                                                                                      'mam': '0.562',
                                                                                                      'son': '0.455'},
                                                                                           'rms_xyt': {'ann': '0.669'},
                                                                                           'rms_y': {'ann': '0.123'},
                                                                                           'rmsc_xy': {'CalendarMonths': ['0.595',
                                                                                                                          '0.524',
                                                                                                                          '0.599',
                                                                                                                          '0.595',
                                                                                                                          '0.592',
                                                                                                                          '0.809',
                                                                                                                          '0.900',
                                                                                                                          '0.705',
                                                                                                                          '0.553',
                                                                                                                          '0.556',
                                                                                                                          '0.631',
                                                                                                                          '0.681'],
                                                                                                       'ann': '0.419',
                                                                                                       'djf': '0.547',
                                                                                                       'jja': '0.701',
                                                                                                       'mam': '0.515',
                                                                                                       'son': '0.455'},
                                                                                           'std-obs_xy': {'CalendarMonths': ['1.158',
                                                                                                                             '1.055',
                                                                                                                             '0.962',
                                                                                                                             '0.948',
                                                                                                                             '0.982',
                                                                                                                             '1.221',
                                                                                                                             '1.495',
                                                                                                                             '1.317',
                                                                                                                             '1.148',
                                                                                                                             '1.123',
                                                                                                                             '1.197',
                                                                                                                             '1.257'],
                                                                                                          'ann': '0.930',
                                                                                                          'djf': '1.132',
                                                                                                          'jja': '1.292',
                                                                                                          'mam': '0.899',
                                                                                                          'son': '1.068'},
                                                                                           'std-obs_xy_devzm': {'ann': '0.893'},
                                                                                           'std-obs_xyt': {'ann': '1.199'},
                                                                                           'std_xy': {'CalendarMonths': ['1.144',
                                                                                                                         '1.084',
                                                                                                                         '1.081',
                                                                                                                         '1.175',
                                                                                                                         '1.191',
                                                                                                                         '1.255',
                                                                                                                         '1.431',
                                                                                                                         '1.367',
                                                                                                                         '1.204',
                                                                                                                         '1.180',
                                                                                                                         '1.189',
                                                                                                                         '1.210'],
                                                                                                      'ann': '0.968',
                                                                                                      'djf': '1.130',
                                                                                                      'jja': '1.289',
                                                                                                      'mam': '1.084',
                                                                                                      'son': '1.092'},
                                                                                           'std_xy_devzm': {'ann': '0.921'},
                                                                                           'std_xyt': {'ann': '1.270'}},
                                                                             'ocean_SHEX': {'bias_xy': {'CalendarMonths': ['-0.030',
                                                                                                                           '-0.013',
                                                                                                                           '-0.156',
                                                                                                                           '0.063',
                                                                                                                           '0.481',
                                                                                                                           '0.615',
                                                                                                                           '0.659',
                                                                                                                           '0.517',
                                                                                                                           '0.440',
                                                                                                                           '0.342',
                                                                                                                           '0.118',
                                                                                                                           '0.120'],
                                                                                                        'ann': '0.263',
                                                                                                        'djf': '0.024',
                                                                                                        'jja': '0.596',
                                                                                                        'mam': '0.134',
                                                                                                        'son': '0.300'},
                                                                                            'cor_xy': {'CalendarMonths': ['0.85',
                                                                                                                          '0.81',
                                                                                                                          '0.81',
                                                                                                                          '0.79',
                                                                                                                          '0.77',
                                                                                                                          '0.79',
                                                                                                                          '0.77',
                                                                                                                          '0.76',
                                                                                                                          '0.71',
                                                                                                                          '0.75',
                                                                                                                          '0.81',
                                                                                                                          '0.85'],
                                                                                                       'ann': '0.858',
                                                                                                       'djf': '0.88',
                                                                                                       'jja': '0.80',
                                                                                                       'mam': '0.81',
                                                                                                       'son': '0.78'},
                                                                                            'mae_xy': {'CalendarMonths': ['0.408',
                                                                                                                          '0.455',
                                                                                                                          '0.495',
                                                                                                                          '0.493',
                                                                                                                          '0.624',
                                                                                                                          '0.732',
                                                                                                                          '0.767',
                                                                                                                          '0.705',
                                                                                                                          '0.686',
                                                                                                                          '0.558',
                                                                                                                          '0.421',
                                                                                                                          '0.401'],
                                                                                                       'ann': '0.393',
                                                                                                       'djf': '0.349',
                                                                                                       'jja': '0.705',
                                                                                                       'mam': '0.424',
                                                                                                       'son': '0.505'},
                                                                                            'mean-obs_xy': {'CalendarMonths': ['2.478',
                                                                                                                               '2.715',
                                                                                                                               '3.124',
                                                                                                                               '3.158',
                                                                                                                               '2.912',
                                                                                                                               '2.847',
                                                                                                                               '2.737',
                                                                                                                               '2.654',
                                                                                                                               '2.499',
                                                                                                                               '2.312',
                                                                                                                               '2.303',
                                                                                                                               '2.211'],
                                                                                                            'ann': '2.662',
                                                                                                            'djf': '2.471',
                                                                                                            'jja': '2.746',
                                                                                                            'mam': '3.065',
                                                                                                            'son': '2.372'},
                                                                                            'mean_xy': {'CalendarMonths': ['2.448',
                                                                                                                           '2.702',
                                                                                                                           '2.968',
                                                                                                                           '3.221',
                                                                                                                           '3.393',
                                                                                                                           '3.462',
                                                                                                                           '3.396',
                                                                                                                           '3.171',
                                                                                                                           '2.938',
                                                                                                                           '2.654',
                                                                                                                           '2.421',
                                                                                                                           '2.330'],
                                                                                                        'ann': '2.925',
                                                                                                        'djf': '2.495',
                                                                                                        'jja': '3.342',
                                                                                                        'mam': '3.199',
                                                                                                        'son': '2.671'},
                                                                                            'rms_devzm': {'ann': '0.430'},
                                                                                            'rms_xy': {'CalendarMonths': ['0.553',
                                                                                                                          '0.607',
                                                                                                                          '0.663',
                                                                                                                          '0.670',
                                                                                                                          '0.821',
                                                                                                                          '0.953',
                                                                                                                          '1.018',
                                                                                                                          '0.919',
                                                                                                                          '0.884',
                                                                                                                          '0.727',
                                                                                                                          '0.567',
                                                                                                                          '0.543'],
                                                                                                       'ann': '0.541',
                                                                                                       'djf': '0.478',
                                                                                                       'jja': '0.914',
                                                                                                       'mam': '0.589',
                                                                                                       'son': '0.664'},
                                                                                            'rms_xyt': {'ann': '0.744'},
                                                                                            'rms_y': {'ann': '0.323'},
                                                                                            'rmsc_xy': {'CalendarMonths': ['0.552',
                                                                                                                           '0.607',
                                                                                                                           '0.645',
                                                                                                                           '0.667',
                                                                                                                           '0.666',
                                                                                                                           '0.729',
                                                                                                                           '0.776',
                                                                                                                           '0.760',
                                                                                                                           '0.767',
                                                                                                                           '0.641',
                                                                                                                           '0.554',
                                                                                                                           '0.530'],
                                                                                                        'ann': '0.473',
                                                                                                        'djf': '0.477',
                                                                                                        'jja': '0.694',
                                                                                                        'mam': '0.573',
                                                                                                        'son': '0.593'},
                                                                                            'std-obs_xy': {'CalendarMonths': ['0.945',
                                                                                                                              '0.949',
                                                                                                                              '1.056',
                                                                                                                              '1.073',
                                                                                                                              '0.914',
                                                                                                                              '1.042',
                                                                                                                              '1.061',
                                                                                                                              '1.078',
                                                                                                                              '0.981',
                                                                                                                              '0.899',
                                                                                                                              '0.887',
                                                                                                                              '0.907'],
                                                                                                           'ann': '0.863',
                                                                                                           'djf': '0.896',
                                                                                                           'jja': '1.037',
                                                                                                           'mam': '0.936',
                                                                                                           'son': '0.895'},
                                                                                            'std-obs_xy_devzm': {'ann': '0.677'},
                                                                                            'std-obs_xyt': {'ann': '1.030'},
                                                                                            'std_xy': {'CalendarMonths': ['1.045',
                                                                                                                          '0.998',
                                                                                                                          '1.004',
                                                                                                                          '0.951',
                                                                                                                          '1.026',
                                                                                                                          '1.163',
                                                                                                                          '1.212',
                                                                                                                          '1.105',
                                                                                                                          '1.040',
                                                                                                                          '0.912',
                                                                                                                          '0.902',
                                                                                                                          '0.984'],
                                                                                                       'ann': '0.905',
                                                                                                       'djf': '0.987',
                                                                                                       'jja': '1.137',
                                                                                                       'mam': '0.930',
                                                                                                       'son': '0.907'},
                                                                                            'std_xy_devzm': {'ann': '0.736'},
                                                                                            'std_xyt': {'ann': '1.104'}}},
                                                                'source': 'GPCP-2-3'},
                                                    'units': 'kg m-2 s-1'}},
                         'provenance': {'commandLine': '/home/lee1043/.conda/envs/pcmdi_metrics_dev_20230822/bin/mean_climate_driver.py '
                                                       '-p basic_param.py -v '
                                                       'pr',
                                        'conda': {'Platform': 'linux-64',
                                                  'PythonVersion': '3.10.12.final.0',
                                                  'Version': '23.3.1',
                                                  'buildVersion': 'not '
                                                                  'installed'},
                                        'date': '2023-09-19 01:17:53',
                                        'openGL': {'GLX': {'client': {'vendor': 'Mesa '
                                                                                'Project '
                                                                                'and '
                                                                                'SGI',
                                                                      'version': '1.4'},
                                                           'server': {'vendor': 'SGI',
                                                                      'version': '1.4'},
                                                           'version': '1.4'},
                                                   'renderer': 'llvmpipe (LLVM '
                                                               '7.0, 256 bits)',
                                                   'shading language version': '1.20',
                                                   'vendor': 'VMware, Inc.',
                                                   'version': '2.1 Mesa '
                                                              '18.3.4'},
                                        'osAccess': False,
                                        'packages': {'PMP': 'v3.0.2-11-g06b151f',
                                                     'PMPObs': 'See '
                                                               "'References' "
                                                               'key below, for '
                                                               'detailed obs '
                                                               'provenance '
                                                               'information.',
                                                     'blas': '0.3.23',
                                                     'cdat_info': '8.2.1',
                                                     'cdms': '3.1.5',
                                                     'cdp': '1.7.0',
                                                     'cdtime': '3.1.4',
                                                     'cdutil': '8.2.1',
                                                     'clapack': None,
                                                     'esmf': '8.4.2',
                                                     'esmpy': '8.4.2',
                                                     'genutil': '8.2.1',
                                                     'lapack': '3.9.0',
                                                     'matplotlib': '3.7.1',
                                                     'mesalib': None,
                                                     'numpy': '1.23.5',
                                                     'python': '3.10.10',
                                                     'scipy': '1.11.2',
                                                     'uvcdat': None,
                                                     'vcs': None,
                                                     'vtk': None,
                                                     'xarray': '2023.8.0',
                                                     'xcdat': '0.5.0'},
                                        'platform': {'Name': 'gates.llnl.gov',
                                                     'OS': 'Linux',
                                                     'Version': '3.10.0-1160.71.1.el7.x86_64'},
                                        'userId': 'lee1043'}},
                  'prw': {'REFERENCE': {'default': {'CMIP_CMOR_TABLE': 'Amon',
                                                    'MD5sum': '2edff29527f570bbd0a9b3ac274f2d16',
                                                    'RefTrackingDate': 'Wed '
                                                                       'Aug  4 '
                                                                       '12:22:14 '
                                                                       '2021',
                                                    'filename': 'prw_mon_REMSS-PRW-v07r01_PCMDI_gn.200301-201812.AC.v20210804.nc',
                                                    'period': '200301-201812',
                                                    'shape': '(12, 180, 360)',
                                                    'template': 'prw/REMSS-PRW-v07r01/v20210804/prw_mon_REMSS-PRW-v07r01_PCMDI_gn.200301-201812.AC.v20210804.nc'}},
                          'RESULTS': {'ACCESS-CM2': {'default': {'r1i1p1f1': {'InputClimatologyFileName': 'cmip6.historical.ACCESS-CM2.r1i1p1f1.mon.prw.198101-200512.AC.v20230823.nc',
                                                                              'NHEX': {'bias_xy': {'CalendarMonths': ['98.674',
                                                                                                                      '103.952',
                                                                                                                      '106.377',
                                                                                                                      '102.851',
                                                                                                                      '93.828',
                                                                                                                      '85.241',
                                                                                                                      '74.242',
                                                                                                                      '58.204',
                                                                                                                      '49.134',
                                                                                                                      '66.115',
                                                                                                                      '80.034',
                                                                                                                      '91.184'],
                                                                                                   'ann': '84.999',
                                                                                                   'djf': '97.658',
                                                                                                   'jja': '72.383',
                                                                                                   'mam': '100.774',
                                                                                                   'son': '64.647'},
                                                                                       'cor_xy': {'CalendarMonths': ['0.80',
                                                                                                                     '0.82',
                                                                                                                     '0.85',
                                                                                                                     '0.84',
                                                                                                                     '0.79',
                                                                                                                     '0.73',
                                                                                                                     '0.69',
                                                                                                                     '0.69',
                                                                                                                     '0.67',
                                                                                                                     '0.73',
                                                                                                                     '0.76',
                                                                                                                     '0.78'],
                                                                                                  'ann': '0.826',
                                                                                                  'djf': '0.81',
                                                                                                  'jja': '0.73',
                                                                                                  'mam': '0.84',
                                                                                                  'son': '0.75'},
                                                                                       'mae_xy': {'CalendarMonths': ['99.886',
                                                                                                                     '104.947',
                                                                                                                     '107.298',
                                                                                                                     '104.035',
                                                                                                                     '96.467',
                                                                                                                     '90.046',
                                                                                                                     '80.224',
                                                                                                                     '63.507',
                                                                                                                     '52.911',
                                                                                                                     '68.837',
                                                                                                                     '81.779',
                                                                                                                     '92.439'],
                                                                                                  'ann': '87.393',
                                                                                                  'djf': '98.739',
                                                                                                  'jja': '77.594',
                                                                                                  'mam': '102.246',
                                                                                                  'son': '67.198'},
                                                                                       'mean-obs_xy': {'CalendarMonths': ['-87.732',
                                                                                                                          '-93.308',
                                                                                                                          '-95.289',
                                                                                                                          '-90.356',
                                                                                                                          '-78.757',
                                                                                                                          '-65.950',
                                                                                                                          '-50.836',
                                                                                                                          '-34.055',
                                                                                                                          '-27.929',
                                                                                                                          '-49.106',
                                                                                                                          '-66.065',
                                                                                                                          '-79.100'],
                                                                                                       'ann': '-69.081',
                                                                                                       'djf': '-86.434',
                                                                                                       'jja': '-50.108',
                                                                                                       'mam': '-87.849',
                                                                                                       'son': '-47.226'},
                                                                                       'mean_xy': {'CalendarMonths': ['7.480',
                                                                                                                      '7.412',
                                                                                                                      '8.175',
                                                                                                                      '9.962',
                                                                                                                      '12.853',
                                                                                                                      '16.822',
                                                                                                                      '20.340',
                                                                                                                      '20.189',
                                                                                                                      '16.499',
                                                                                                                      '12.785',
                                                                                                                      '10.027',
                                                                                                                      '8.311'],
                                                                                                   'ann': '12.571',
                                                                                                   'djf': '7.728',
                                                                                                   'jja': '19.104',
                                                                                                   'mam': '10.368',
                                                                                                   'son': '13.107'},
                                                                                       'rms_devzm': {'ann': '75.277'},
                                                                                       'rms_xy': {'CalendarMonths': ['217.138',
                                                                                                                     '222.638',
                                                                                                                     '224.749',
                                                                                                                     '221.406',
                                                                                                                     '213.675',
                                                                                                                     '206.917',
                                                                                                                     '191.750',
                                                                                                                     '166.870',
                                                                                                                     '149.596',
                                                                                                                     '178.270',
                                                                                                                     '195.736',
                                                                                                                     '209.870'],
                                                                                                  'ann': '194.126',
                                                                                                  'djf': '215.175',
                                                                                                  'jja': '184.639',
                                                                                                  'mam': '218.738',
                                                                                                  'son': '169.724'},
                                                                                       'rms_xyt': {'ann': '199.885'},
                                                                                       'rms_y': {'ann': '144.390'},
                                                                                       'rmsc_xy': {'CalendarMonths': ['193.453',
                                                                                                                      '196.906',
                                                                                                                      '198.001',
                                                                                                                      '196.083',
                                                                                                                      '191.986',
                                                                                                                      '188.559',
                                                                                                                      '176.821',
                                                                                                                      '156.440',
                                                                                                                      '141.375',
                                                                                                                      '165.610',
                                                                                                                      '178.669',
                                                                                                                      '189.064'],
                                                                                                   'ann': '174.560',
                                                                                                   'djf': '191.770',
                                                                                                   'jja': '169.890',
                                                                                                   'mam': '194.159',
                                                                                                   'son': '156.989'},
                                                                                       'std-obs_xy': {'CalendarMonths': ['197.902',
                                                                                                                         '201.284',
                                                                                                                         '202.512',
                                                                                                                         '200.761',
                                                                                                                         '196.684',
                                                                                                                         '193.296',
                                                                                                                         '182.033',
                                                                                                                         '162.102',
                                                                                                                         '146.883',
                                                                                                                         '170.939',
                                                                                                                         '183.690',
                                                                                                                         '193.724'],
                                                                                                      'ann': '179.709',
                                                                                                      'djf': '196.292',
                                                                                                      'jja': '175.256',
                                                                                                      'mam': '198.809',
                                                                                                      'son': '162.469'},
                                                                                       'std-obs_xy_devzm': {'ann': '75.821'},
                                                                                       'std-obs_xyt': {'ann': '188.072'},
                                                                                       'std_xy': {'CalendarMonths': ['5.637',
                                                                                                                     '5.403',
                                                                                                                     '5.362',
                                                                                                                     '5.620',
                                                                                                                     '6.020',
                                                                                                                     '6.585',
                                                                                                                     '7.758',
                                                                                                                     '8.562',
                                                                                                                     '8.637',
                                                                                                                     '7.584',
                                                                                                                     '6.757',
                                                                                                                     '6.129'],
                                                                                                  'ann': '6.360',
                                                                                                  'djf': '5.709',
                                                                                                  'jja': '7.544',
                                                                                                  'mam': '5.606',
                                                                                                  'son': '7.547'},
                                                                                       'std_xy_devzm': {'ann': '4.402'},
                                                                                       'std_xyt': {'ann': '8.191'}},
                                                                              'SHEX': {'bias_xy': {'CalendarMonths': ['42.510',
                                                                                                                      '25.638',
                                                                                                                      '30.433',
                                                                                                                      '44.794',
                                                                                                                      '62.036',
                                                                                                                      '77.567',
                                                                                                                      '89.821',
                                                                                                                      '97.693',
                                                                                                                      '101.198',
                                                                                                                      '99.154',
                                                                                                                      '89.963',
                                                                                                                      '72.108'],
                                                                                                   'ann': '69.509',
                                                                                                   'djf': '46.519',
                                                                                                   'jja': '88.328',
                                                                                                   'mam': '46.059',
                                                                                                   'son': '96.793'},
                                                                                       'cor_xy': {'CalendarMonths': ['0.46',
                                                                                                                     '0.41',
                                                                                                                     '0.43',
                                                                                                                     '0.49',
                                                                                                                     '0.55',
                                                                                                                     '0.60',
                                                                                                                     '0.62',
                                                                                                                     '0.64',
                                                                                                                     '0.64',
                                                                                                                     '0.62',
                                                                                                                     '0.59',
                                                                                                                     '0.55'],
                                                                                                  'ann': '0.600',
                                                                                                  'djf': '0.51',
                                                                                                  'jja': '0.63',
                                                                                                  'mam': '0.51',
                                                                                                  'son': '0.62'},
                                                                                       'mae_xy': {'CalendarMonths': ['42.662',
                                                                                                                     '25.862',
                                                                                                                     '30.491',
                                                                                                                     '44.854',
                                                                                                                     '62.092',
                                                                                                                     '77.667',
                                                                                                                     '89.879',
                                                                                                                     '97.701',
                                                                                                                     '101.219',
                                                                                                                     '99.199',
                                                                                                                     '90.114',
                                                                                                                     '72.443'],
                                                                                                  'ann': '69.519',
                                                                                                  'djf': '46.666',
                                                                                                  'jja': '88.340',
                                                                                                  'mam': '46.088',
                                                                                                  'son': '96.838'},
                                                                                       'mean-obs_xy': {'CalendarMonths': ['-24.698',
                                                                                                                          '-7.128',
                                                                                                                          '-12.646',
                                                                                                                          '-28.772',
                                                                                                                          '-47.876',
                                                                                                                          '-64.765',
                                                                                                                          '-77.835',
                                                                                                                          '-86.061',
                                                                                                                          '-89.294',
                                                                                                                          '-86.493',
                                                                                                                          '-75.906',
                                                                                                                          '-56.229'],
                                                                                                       'ann': '-54.910',
                                                                                                       'djf': '-29.100',
                                                                                                       'jja': '-76.187',
                                                                                                       'mam': '-30.101',
                                                                                                       'son': '-83.918'},
                                                                                       'mean_xy': {'CalendarMonths': ['16.311',
                                                                                                                      '16.924',
                                                                                                                      '16.192',
                                                                                                                      '14.532',
                                                                                                                      '12.816',
                                                                                                                      '11.563',
                                                                                                                      '10.804',
                                                                                                                      '10.508',
                                                                                                                      '10.795',
                                                                                                                      '11.529',
                                                                                                                      '12.834',
                                                                                                                      '14.554'],
                                                                                                   'ann': '13.280',
                                                                                                   'djf': '15.945',
                                                                                                   'jja': '10.960',
                                                                                                   'mam': '14.481',
                                                                                                   'son': '11.721'},
                                                                                       'rms_devzm': {'ann': '49.893'},
                                                                                       'rms_xy': {'CalendarMonths': ['129.828',
                                                                                                                     '96.865',
                                                                                                                     '108.914',
                                                                                                                     '137.039',
                                                                                                                     '165.758',
                                                                                                                     '187.948',
                                                                                                                     '203.520',
                                                                                                                     '212.463',
                                                                                                                     '216.597',
                                                                                                                     '214.232',
                                                                                                                     '203.730',
                                                                                                                     '179.218'],
                                                                                                  'ann': '161.139',
                                                                                                  'djf': '127.138',
                                                                                                  'jja': '199.365',
                                                                                                  'mam': '133.173',
                                                                                                  'son': '210.783'},
                                                                                       'rms_xyt': {'ann': '171.343'},
                                                                                       'rms_y': {'ann': '208.826'},
                                                                                       'rmsc_xy': {'CalendarMonths': ['122.680',
                                                                                                                      '93.424',
                                                                                                                      '104.588',
                                                                                                                      '129.520',
                                                                                                                      '153.717',
                                                                                                                      '171.199',
                                                                                                                      '182.631',
                                                                                                                      '188.673',
                                                                                                                      '191.506',
                                                                                                                      '189.908',
                                                                                                                      '182.795',
                                                                                                                      '164.077'],
                                                                                                   'ann': '145.383',
                                                                                                   'djf': '118.332',
                                                                                                   'jja': '178.734',
                                                                                                   'mam': '124.963',
                                                                                                   'son': '187.248'},
                                                                                       'std-obs_xy': {'CalendarMonths': ['126.194',
                                                                                                                         '96.673',
                                                                                                                         '108.029',
                                                                                                                         '133.161',
                                                                                                                         '157.360',
                                                                                                                         '174.847',
                                                                                                                         '186.235',
                                                                                                                         '192.269',
                                                                                                                         '195.149',
                                                                                                                         '193.629',
                                                                                                                         '186.586',
                                                                                                                         '167.929'],
                                                                                                      'ann': '149.425',
                                                                                                      'djf': '122.225',
                                                                                                      'jja': '182.396',
                                                                                                      'mam': '128.746',
                                                                                                      'son': '190.989'},
                                                                                       'std-obs_xy_devzm': {'ann': '50.173'},
                                                                                       'std-obs_xyt': {'ann': '165.876'},
                                                                                       'std_xy': {'CalendarMonths': ['7.984',
                                                                                                                     '8.477',
                                                                                                                     '8.433',
                                                                                                                     '7.635',
                                                                                                                     '6.780',
                                                                                                                     '6.210',
                                                                                                                     '5.835',
                                                                                                                     '5.646',
                                                                                                                     '5.788',
                                                                                                                     '6.064',
                                                                                                                     '6.522',
                                                                                                                     '7.197'],
                                                                                                  'ann': '6.843',
                                                                                                  'djf': '7.884',
                                                                                                  'jja': '5.893',
                                                                                                  'mam': '7.583',
                                                                                                  'son': '6.111'},
                                                                                       'std_xy_devzm': {'ann': '1.702'},
                                                                                       'std_xyt': {'ann': '7.306'}},
                                                                              'TROPICS': {'bias_xy': {'CalendarMonths': ['-0.426',
                                                                                                                         '-0.712',
                                                                                                                         '-1.368',
                                                                                                                         '-1.754',
                                                                                                                         '-1.287',
                                                                                                                         '-0.939',
                                                                                                                         '-0.853',
                                                                                                                         '-0.651',
                                                                                                                         '-0.895',
                                                                                                                         '-1.064',
                                                                                                                         '-1.043',
                                                                                                                         '-0.726'],
                                                                                                      'ann': '-0.974',
                                                                                                      'djf': '-0.616',
                                                                                                      'jja': '-0.814',
                                                                                                      'mam': '-1.474',
                                                                                                      'son': '-0.998'},
                                                                                          'cor_xy': {'CalendarMonths': ['0.77',
                                                                                                                        '0.77',
                                                                                                                        '0.77',
                                                                                                                        '0.74',
                                                                                                                        '0.72',
                                                                                                                        '0.75',
                                                                                                                        '0.79',
                                                                                                                        '0.83',
                                                                                                                        '0.85',
                                                                                                                        '0.86',
                                                                                                                        '0.83',
                                                                                                                        '0.78'],
                                                                                                     'ann': '0.777',
                                                                                                     'djf': '0.77',
                                                                                                     'jja': '0.80',
                                                                                                     'mam': '0.74',
                                                                                                     'son': '0.85'},
                                                                                          'mae_xy': {'CalendarMonths': ['2.835',
                                                                                                                        '3.106',
                                                                                                                        '3.731',
                                                                                                                        '4.514',
                                                                                                                        '4.464',
                                                                                                                        '3.785',
                                                                                                                        '3.520',
                                                                                                                        '3.478',
                                                                                                                        '2.900',
                                                                                                                        '2.672',
                                                                                                                        '2.891',
                                                                                                                        '2.839'],
                                                                                                     'ann': '2.839',
                                                                                                     'djf': '2.739',
                                                                                                     'jja': '3.439',
                                                                                                     'mam': '4.079',
                                                                                                     'son': '2.639'},
                                                                                          'mean-obs_xy': {'CalendarMonths': ['37.676',
                                                                                                                             '38.186',
                                                                                                                             '39.028',
                                                                                                                             '39.708',
                                                                                                                             '39.236',
                                                                                                                             '38.336',
                                                                                                                             '37.811',
                                                                                                                             '37.722',
                                                                                                                             '38.062',
                                                                                                                             '38.079',
                                                                                                                             '38.077',
                                                                                                                             '37.886'],
                                                                                                          'ann': '38.332',
                                                                                                          'djf': '37.896',
                                                                                                          'jja': '37.955',
                                                                                                          'mam': '39.321',
                                                                                                          'son': '38.064'},
                                                                                          'mean_xy': {'CalendarMonths': ['34.769',
                                                                                                                         '34.947',
                                                                                                                         '35.231',
                                                                                                                         '35.536',
                                                                                                                         '35.576',
                                                                                                                         '35.097',
                                                                                                                         '35.052',
                                                                                                                         '35.296',
                                                                                                                         '35.103',
                                                                                                                         '35.009',
                                                                                                                         '34.977',
                                                                                                                         '34.808'],
                                                                                                      'ann': '35.117',
                                                                                                      'djf': '34.842',
                                                                                                      'jja': '35.149',
                                                                                                      'mam': '35.453',
                                                                                                      'son': '35.030'},
                                                                                          'rms_devzm': {'ann': '3.552'},
                                                                                          'rms_xy': {'CalendarMonths': ['3.833',
                                                                                                                        '4.235',
                                                                                                                        '4.684',
                                                                                                                        '5.634',
                                                                                                                        '5.873',
                                                                                                                        '5.296',
                                                                                                                        '5.101',
                                                                                                                        '4.798',
                                                                                                                        '4.192',
                                                                                                                        '3.507',
                                                                                                                        '3.589',
                                                                                                                        '3.708'],
                                                                                                     'ann': '3.599',
                                                                                                     'djf': '3.633',
                                                                                                     'jja': '4.771',
                                                                                                     'mam': '5.138',
                                                                                                     'son': '3.459'},
                                                                                          'rms_xyt': {'ann': '4.538'},
                                                                                          'rms_y': {'ann': '4.994'},
                                                                                          'rmsc_xy': {'CalendarMonths': ['4.545',
                                                                                                                         '4.880',
                                                                                                                         '5.096',
                                                                                                                         '5.875',
                                                                                                                         '6.203',
                                                                                                                         '5.696',
                                                                                                                         '5.379',
                                                                                                                         '5.074',
                                                                                                                         '4.586',
                                                                                                                         '3.898',
                                                                                                                         '4.004',
                                                                                                                         '4.331'],
                                                                                                      'ann': '4.126',
                                                                                                      'djf': '4.331',
                                                                                                      'jja': '5.105',
                                                                                                      'mam': '5.473',
                                                                                                      'son': '3.888'},
                                                                                          'std-obs_xy': {'CalendarMonths': ['10.555',
                                                                                                                            '10.535',
                                                                                                                            '10.751',
                                                                                                                            '10.896',
                                                                                                                            '11.243',
                                                                                                                            '11.747',
                                                                                                                            '12.418',
                                                                                                                            '12.817',
                                                                                                                            '12.524',
                                                                                                                            '11.525',
                                                                                                                            '10.938',
                                                                                                                            '10.526'],
                                                                                                         'ann': '9.869',
                                                                                                         'djf': '10.302',
                                                                                                         'jja': '12.157',
                                                                                                         'mam': '10.453',
                                                                                                         'son': '11.340'},
                                                                                          'std-obs_xy_devzm': {'ann': '6.065'},
                                                                                          'std-obs_xyt': {'ann': '11.418'},
                                                                                          'std_xy': {'CalendarMonths': ['13.212',
                                                                                                                        '13.613',
                                                                                                                        '13.308',
                                                                                                                        '12.792',
                                                                                                                        '12.373',
                                                                                                                        '12.614',
                                                                                                                        '13.058',
                                                                                                                        '13.242',
                                                                                                                        '12.927',
                                                                                                                        '12.105',
                                                                                                                        '11.887',
                                                                                                                        '12.566'],
                                                                                                     'ann': '11.193',
                                                                                                     'djf': '12.897',
                                                                                                     'jja': '12.763',
                                                                                                     'mam': '12.390',
                                                                                                     'son': '11.971'},
                                                                                          'std_xy_devzm': {'ann': '7.591'},
                                                                                          'std_xyt': {'ann': '12.820'}},
                                                                              'global': {'bias_xy': {'CalendarMonths': ['28.745',
                                                                                                                        '24.023',
                                                                                                                        '25.581',
                                                                                                                        '29.435',
                                                                                                                        '33.795',
                                                                                                                        '37.652',
                                                                                                                        '39.962',
                                                                                                                        '40.116',
                                                                                                                        '39.677',
                                                                                                                        '41.570',
                                                                                                                        '40.806',
                                                                                                                        '36.938'],
                                                                                                     'ann': '35.042',
                                                                                                     'djf': '29.792',
                                                                                                     'jja': '39.184',
                                                                                                     'mam': '29.651',
                                                                                                     'son': '40.609'},
                                                                                         'cor_xy': {'CalendarMonths': ['0.46',
                                                                                                                       '0.45',
                                                                                                                       '0.46',
                                                                                                                       '0.48',
                                                                                                                       '0.49',
                                                                                                                       '0.50',
                                                                                                                       '0.51',
                                                                                                                       '0.52',
                                                                                                                       '0.52',
                                                                                                                       '0.52',
                                                                                                                       '0.50',
                                                                                                                       '0.48'],
                                                                                                    'ann': '0.534',
                                                                                                    'djf': '0.48',
                                                                                                    'jja': '0.52',
                                                                                                    'mam': '0.49',
                                                                                                    'son': '0.52'},
                                                                                         'mae_xy': {'CalendarMonths': ['30.688',
                                                                                                                       '26.246',
                                                                                                                       '28.411',
                                                                                                                       '32.919',
                                                                                                                       '37.234',
                                                                                                                       '40.900',
                                                                                                                       '43.194',
                                                                                                                       '43.099',
                                                                                                                       '42.254',
                                                                                                                       '43.961',
                                                                                                                       '43.183',
                                                                                                                       '39.106'],
                                                                                                    'ann': '37.411',
                                                                                                    'djf': '31.762',
                                                                                                    'jja': '42.220',
                                                                                                    'mam': '32.796',
                                                                                                    'son': '42.922'},
                                                                                         'mean-obs_xy': {'CalendarMonths': ['-1.824',
                                                                                                                            '3.183',
                                                                                                                            '1.566',
                                                                                                                            '-2.479',
                                                                                                                            '-7.035',
                                                                                                                            '-10.970',
                                                                                                                            '-13.143',
                                                                                                                            '-13.234',
                                                                                                                            '-13.101',
                                                                                                                            '-15.482',
                                                                                                                            '-14.740',
                                                                                                                            '-10.507'],
                                                                                                         'ann': '-8.332',
                                                                                                         'djf': '-2.943',
                                                                                                         'jja': '-12.386',
                                                                                                         'mam': '-2.703',
                                                                                                         'son': '-14.361'},
                                                                                         'mean_xy': {'CalendarMonths': ['23.332',
                                                                                                                        '23.558',
                                                                                                                        '23.707',
                                                                                                                        '23.891',
                                                                                                                        '24.205',
                                                                                                                        '24.645',
                                                                                                                        '25.312',
                                                                                                                        '25.322',
                                                                                                                        '24.375',
                                                                                                                        '23.583',
                                                                                                                        '23.204',
                                                                                                                        '23.120'],
                                                                                                     'ann': '24.021',
                                                                                                     'djf': '23.339',
                                                                                                     'jja': '25.091',
                                                                                                     'mam': '23.939',
                                                                                                     'son': '23.722'},
                                                                                         'rms_devzm': {'ann': '41.072'},
                                                                                         'rms_xy': {'CalendarMonths': ['112.862',
                                                                                                                       '103.575',
                                                                                                                       '108.010',
                                                                                                                       '116.866',
                                                                                                                       '126.172',
                                                                                                                       '134.176',
                                                                                                                       '137.982',
                                                                                                                       '137.304',
                                                                                                                       '136.231',
                                                                                                                       '140.311',
                                                                                                                       '138.924',
                                                                                                                       '131.000'],
                                                                                                    'ann': '119.199',
                                                                                                    'djf': '111.306',
                                                                                                    'jja': '134.428',
                                                                                                    'mam': '114.584',
                                                                                                    'son': '136.940'},
                                                                                         'rms_xyt': {'ann': '126.951'},
                                                                                         'rms_y': {'ann': '126.784'},
                                                                                         'rmsc_xy': {'CalendarMonths': ['109.199',
                                                                                                                        '100.817',
                                                                                                                        '104.993',
                                                                                                                        '113.139',
                                                                                                                        '121.589',
                                                                                                                        '128.801',
                                                                                                                        '132.077',
                                                                                                                        '131.322',
                                                                                                                        '130.343',
                                                                                                                        '134.035',
                                                                                                                        '132.826',
                                                                                                                        '125.728'],
                                                                                                     'ann': '113.963',
                                                                                                     'djf': '107.302',
                                                                                                     'jja': '128.601',
                                                                                                     'mam': '110.722',
                                                                                                     'son': '130.805'},
                                                                                         'std-obs_xy': {'CalendarMonths': ['115.675',
                                                                                                                           '107.143',
                                                                                                                           '111.508',
                                                                                                                           '119.858',
                                                                                                                           '128.334',
                                                                                                                           '135.498',
                                                                                                                           '138.928',
                                                                                                                           '138.514',
                                                                                                                           '137.621',
                                                                                                                           '141.245',
                                                                                                                           '139.878',
                                                                                                                           '132.548'],
                                                                                                        'ann': '121.060',
                                                                                                        'djf': '114.071',
                                                                                                        'jja': '135.597',
                                                                                                        'mam': '117.473',
                                                                                                        'son': '138.006'},
                                                                                         'std-obs_xy_devzm': {'ann': '41.490'},
                                                                                         'std-obs_xyt': {'ann': '129.577'},
                                                                                         'std_xy': {'CalendarMonths': ['15.865',
                                                                                                                       '16.092',
                                                                                                                       '15.948',
                                                                                                                       '15.572',
                                                                                                                       '15.046',
                                                                                                                       '14.586',
                                                                                                                       '14.664',
                                                                                                                       '15.005',
                                                                                                                       '15.157',
                                                                                                                       '15.086',
                                                                                                                       '15.241',
                                                                                                                       '15.581'],
                                                                                                    'ann': '14.409',
                                                                                                    'djf': '15.736',
                                                                                                    'jja': '14.623',
                                                                                                    'mam': '15.286',
                                                                                                    'son': '14.945'},
                                                                                         'std_xy_devzm': {'ann': '5.863'},
                                                                                         'std_xyt': {'ann': '15.345'}}},
                                                                 'source': 'REMSS-PRW-v07r01'},
                                                     'units': 'kg m-2'}},
                          'provenance': {'commandLine': '/home/lee1043/.conda/envs/pcmdi_metrics_dev_20230822/bin/mean_climate_driver.py '
                                                        '-p basic_param.py -v '
                                                        'prw',
                                         'conda': {'Platform': 'linux-64',
                                                   'PythonVersion': '3.10.12.final.0',
                                                   'Version': '23.3.1',
                                                   'buildVersion': 'not '
                                                                   'installed'},
                                         'date': '2023-09-19 00:43:40',
                                         'openGL': {'GLX': {'client': {'vendor': 'Mesa '
                                                                                 'Project '
                                                                                 'and '
                                                                                 'SGI',
                                                                       'version': '1.4'},
                                                            'server': {'vendor': 'SGI',
                                                                       'version': '1.4'},
                                                            'version': '1.4'},
                                                    'renderer': 'llvmpipe '
                                                                '(LLVM 7.0, '
                                                                '256 bits)',
                                                    'shading language version': '1.20',
                                                    'vendor': 'VMware, Inc.',
                                                    'version': '2.1 Mesa '
                                                               '18.3.4'},
                                         'osAccess': False,
                                         'packages': {'PMP': 'v3.0.2-11-g06b151f',
                                                      'PMPObs': 'See '
                                                                "'References' "
                                                                'key below, '
                                                                'for detailed '
                                                                'obs '
                                                                'provenance '
                                                                'information.',
                                                      'blas': '0.3.23',
                                                      'cdat_info': '8.2.1',
                                                      'cdms': '3.1.5',
                                                      'cdp': '1.7.0',
                                                      'cdtime': '3.1.4',
                                                      'cdutil': '8.2.1',
                                                      'clapack': None,
                                                      'esmf': '8.4.2',
                                                      'esmpy': '8.4.2',
                                                      'genutil': '8.2.1',
                                                      'lapack': '3.9.0',
                                                      'matplotlib': '3.7.1',
                                                      'mesalib': None,
                                                      'numpy': '1.23.5',
                                                      'python': '3.10.10',
                                                      'scipy': '1.11.2',
                                                      'uvcdat': None,
                                                      'vcs': None,
                                                      'vtk': None,
                                                      'xarray': '2023.8.0',
                                                      'xcdat': '0.5.0'},
                                         'platform': {'Name': 'gates.llnl.gov',
                                                      'OS': 'Linux',
                                                      'Version': '3.10.0-1160.71.1.el7.x86_64'},
                                         'userId': 'lee1043'}},
                  'psl': {'REFERENCE': {'default': {'CMIP_CMOR_TABLE': 'Amon',
                                                    'MD5sum': '66ce5a6117f23425965a8a7c9019c2b2',
                                                    'RefTrackingDate': 'Thu '
                                                                       'Aug  5 '
                                                                       '08:55:31 '
                                                                       '2021',
                                                    'filename': 'psl_mon_ERA-5_PCMDI_1x1.200301-201812.AC.v20210805.nc',
                                                    'period': '200301-201812',
                                                    'shape': '(12, 180, 360)',
                                                    'template': 'psl/ERA-5/v20210805/psl_mon_ERA-5_PCMDI_1x1.200301-201812.AC.v20210805.nc'}},
                          'RESULTS': {'ACCESS-CM2': {'default': {'r1i1p1f1': {'InputClimatologyFileName': 'cmip6.historical.ACCESS-CM2.r1i1p1f1.mon.psl.198101-200512.AC.v20230823.nc',
                                                                              'NHEX_ocean': {'bias_xy': {'CalendarMonths': ['82.443',
                                                                                                                            '59.415',
                                                                                                                            '65.005',
                                                                                                                            '74.270',
                                                                                                                            '90.838',
                                                                                                                            '72.650',
                                                                                                                            '78.730',
                                                                                                                            '77.850',
                                                                                                                            '66.931',
                                                                                                                            '82.746',
                                                                                                                            '76.537',
                                                                                                                            '84.061'],
                                                                                                         'ann': '75.956',
                                                                                                         'djf': '75.211',
                                                                                                         'jja': '76.385',
                                                                                                         'mam': '76.906',
                                                                                                         'son': '75.325'},
                                                                                             'cor_xy': {'CalendarMonths': ['0.97',
                                                                                                                           '0.96',
                                                                                                                           '0.97',
                                                                                                                           '0.99',
                                                                                                                           '0.98',
                                                                                                                           '0.97',
                                                                                                                           '0.97',
                                                                                                                           '0.97',
                                                                                                                           '0.97',
                                                                                                                           '0.99',
                                                                                                                           '0.97',
                                                                                                                           '0.96'],
                                                                                                        'ann': '0.984',
                                                                                                        'djf': '0.97',
                                                                                                        'jja': '0.98',
                                                                                                        'mam': '0.99',
                                                                                                        'son': '0.98'},
                                                                                             'mae_xy': {'CalendarMonths': ['161.072',
                                                                                                                           '156.488',
                                                                                                                           '143.544',
                                                                                                                           '127.073',
                                                                                                                           '133.042',
                                                                                                                           '150.924',
                                                                                                                           '159.109',
                                                                                                                           '154.510',
                                                                                                                           '159.984',
                                                                                                                           '123.935',
                                                                                                                           '147.242',
                                                                                                                           '160.784'],
                                                                                                        'ann': '111.459',
                                                                                                        'djf': '141.978',
                                                                                                        'jja': '137.425',
                                                                                                        'mam': '118.332',
                                                                                                        'son': '123.143'},
                                                                                             'mean-obs_xy': {'CalendarMonths': ['101023.692',
                                                                                                                                '101062.003',
                                                                                                                                '101097.604',
                                                                                                                                '101118.528',
                                                                                                                                '101118.105',
                                                                                                                                '101146.318',
                                                                                                                                '101168.613',
                                                                                                                                '101153.589',
                                                                                                                                '101118.072',
                                                                                                                                '101089.803',
                                                                                                                                '101064.714',
                                                                                                                                '101031.329'],
                                                                                                             'ann': '101099.364',
                                                                                                             'djf': '101039.092',
                                                                                                             'jja': '101156.038',
                                                                                                             'mam': '101111.763',
                                                                                                             'son': '101090.875'},
                                                                                             'mean_xy': {'CalendarMonths': ['101106.135',
                                                                                                                            '101121.419',
                                                                                                                            '101162.609',
                                                                                                                            '101192.798',
                                                                                                                            '101208.942',
                                                                                                                            '101218.967',
                                                                                                                            '101247.344',
                                                                                                                            '101231.439',
                                                                                                                            '101185.003',
                                                                                                                            '101172.549',
                                                                                                                            '101141.251',
                                                                                                                            '101115.390'],
                                                                                                         'ann': '101175.321',
                                                                                                         'djf': '101114.303',
                                                                                                         'jja': '101232.423',
                                                                                                         'mam': '101188.669',
                                                                                                         'son': '101166.200'},
                                                                                             'rms_devzm': {'ann': '85.380'},
                                                                                             'rms_xy': {'CalendarMonths': ['245.767',
                                                                                                                           '247.476',
                                                                                                                           '219.075',
                                                                                                                           '160.652',
                                                                                                                           '183.409',
                                                                                                                           '218.860',
                                                                                                                           '245.803',
                                                                                                                           '222.897',
                                                                                                                           '237.408',
                                                                                                                           '184.820',
                                                                                                                           '231.709',
                                                                                                                           '250.640'],
                                                                                                        'ann': '176.044',
                                                                                                        'djf': '224.015',
                                                                                                        'jja': '205.459',
                                                                                                        'mam': '160.879',
                                                                                                        'son': '194.394'},
                                                                                             'rms_xyt': {'ann': '220.710'},
                                                                                             'rms_y': {'ann': '175.176'},
                                                                                             'rmsc_xy': {'CalendarMonths': ['231.527',
                                                                                                                            '240.238',
                                                                                                                            '209.208',
                                                                                                                            '142.453',
                                                                                                                            '159.334',
                                                                                                                            '206.450',
                                                                                                                            '232.854',
                                                                                                                            '208.860',
                                                                                                                            '227.778',
                                                                                                                            '165.262',
                                                                                                                            '218.703',
                                                                                                                            '236.123'],
                                                                                                         'ann': '158.815',
                                                                                                         'djf': '211.012',
                                                                                                         'jja': '190.732',
                                                                                                         'mam': '141.307',
                                                                                                         'son': '179.207'},
                                                                                             'std-obs_xy': {'CalendarMonths': ['875.577',
                                                                                                                               '872.828',
                                                                                                                               '889.936',
                                                                                                                               '886.913',
                                                                                                                               '900.069',
                                                                                                                               '881.549',
                                                                                                                               '946.847',
                                                                                                                               '914.022',
                                                                                                                               '970.468',
                                                                                                                               '980.794',
                                                                                                                               '921.216',
                                                                                                                               '880.064'],
                                                                                                            'ann': '884.111',
                                                                                                            'djf': '870.559',
                                                                                                            'jja': '909.446',
                                                                                                            'mam': '884.136',
                                                                                                            'son': '948.776'},
                                                                                             'std-obs_xy_devzm': {'ann': '216.590'},
                                                                                             'std-obs_xyt': {'ann': '911.832'},
                                                                                             'std_xy': {'CalendarMonths': ['772.191',
                                                                                                                           '825.827',
                                                                                                                           '854.398',
                                                                                                                           '892.601',
                                                                                                                           '898.417',
                                                                                                                           '883.023',
                                                                                                                           '888.641',
                                                                                                                           '926.918',
                                                                                                                           '897.264',
                                                                                                                           '932.107',
                                                                                                                           '894.409',
                                                                                                                           '827.701'],
                                                                                                        'ann': '841.701',
                                                                                                        'djf': '802.557',
                                                                                                        'jja': '894.890',
                                                                                                        'mam': '872.380',
                                                                                                        'son': '895.559'},
                                                                                             'std_xy_devzm': {'ann': '217.888'},
                                                                                             'std_xyt': {'ann': '876.741'}},
                                                                              'SHEX_ocean': {'bias_xy': {'CalendarMonths': ['82.443',
                                                                                                                            '59.415',
                                                                                                                            '65.005',
                                                                                                                            '74.270',
                                                                                                                            '90.838',
                                                                                                                            '72.650',
                                                                                                                            '78.730',
                                                                                                                            '77.850',
                                                                                                                            '66.931',
                                                                                                                            '82.746',
                                                                                                                            '76.537',
                                                                                                                            '84.061'],
                                                                                                         'ann': '75.956',
                                                                                                         'djf': '75.211',
                                                                                                         'jja': '76.385',
                                                                                                         'mam': '76.906',
                                                                                                         'son': '75.325'},
                                                                                             'cor_xy': {'CalendarMonths': ['0.97',
                                                                                                                           '0.96',
                                                                                                                           '0.97',
                                                                                                                           '0.99',
                                                                                                                           '0.98',
                                                                                                                           '0.97',
                                                                                                                           '0.97',
                                                                                                                           '0.97',
                                                                                                                           '0.97',
                                                                                                                           '0.99',
                                                                                                                           '0.97',
                                                                                                                           '0.96'],
                                                                                                        'ann': '0.984',
                                                                                                        'djf': '0.97',
                                                                                                        'jja': '0.98',
                                                                                                        'mam': '0.99',
                                                                                                        'son': '0.98'},
                                                                                             'mae_xy': {'CalendarMonths': ['161.072',
                                                                                                                           '156.488',
                                                                                                                           '143.544',
                                                                                                                           '127.073',
                                                                                                                           '133.042',
                                                                                                                           '150.924',
                                                                                                                           '159.109',
                                                                                                                           '154.510',
                                                                                                                           '159.984',
                                                                                                                           '123.935',
                                                                                                                           '147.242',
                                                                                                                           '160.784'],
                                                                                                        'ann': '111.459',
                                                                                                        'djf': '141.978',
                                                                                                        'jja': '137.425',
                                                                                                        'mam': '118.332',
                                                                                                        'son': '123.143'},
                                                                                             'mean-obs_xy': {'CalendarMonths': ['101023.692',
                                                                                                                                '101062.003',
                                                                                                                                '101097.604',
                                                                                                                                '101118.528',
                                                                                                                                '101118.105',
                                                                                                                                '101146.318',
                                                                                                                                '101168.613',
                                                                                                                                '101153.589',
                                                                                                                                '101118.072',
                                                                                                                                '101089.803',
                                                                                                                                '101064.714',
                                                                                                                                '101031.329'],
                                                                                                             'ann': '101099.364',
                                                                                                             'djf': '101039.092',
                                                                                                             'jja': '101156.038',
                                                                                                             'mam': '101111.763',
                                                                                                             'son': '101090.875'},
                                                                                             'mean_xy': {'CalendarMonths': ['101106.135',
                                                                                                                            '101121.419',
                                                                                                                            '101162.609',
                                                                                                                            '101192.798',
                                                                                                                            '101208.942',
                                                                                                                            '101218.967',
                                                                                                                            '101247.344',
                                                                                                                            '101231.439',
                                                                                                                            '101185.003',
                                                                                                                            '101172.549',
                                                                                                                            '101141.251',
                                                                                                                            '101115.390'],
                                                                                                         'ann': '101175.321',
                                                                                                         'djf': '101114.303',
                                                                                                         'jja': '101232.423',
                                                                                                         'mam': '101188.669',
                                                                                                         'son': '101166.200'},
                                                                                             'rms_devzm': {'ann': '85.380'},
                                                                                             'rms_xy': {'CalendarMonths': ['245.767',
                                                                                                                           '247.476',
                                                                                                                           '219.075',
                                                                                                                           '160.652',
                                                                                                                           '183.409',
                                                                                                                           '218.860',
                                                                                                                           '245.803',
                                                                                                                           '222.897',
                                                                                                                           '237.408',
                                                                                                                           '184.820',
                                                                                                                           '231.709',
                                                                                                                           '250.640'],
                                                                                                        'ann': '176.044',
                                                                                                        'djf': '224.015',
                                                                                                        'jja': '205.459',
                                                                                                        'mam': '160.879',
                                                                                                        'son': '194.394'},
                                                                                             'rms_xyt': {'ann': '220.710'},
                                                                                             'rms_y': {'ann': '175.176'},
                                                                                             'rmsc_xy': {'CalendarMonths': ['231.527',
                                                                                                                            '240.238',
                                                                                                                            '209.208',
                                                                                                                            '142.453',
                                                                                                                            '159.334',
                                                                                                                            '206.450',
                                                                                                                            '232.854',
                                                                                                                            '208.860',
                                                                                                                            '227.778',
                                                                                                                            '165.262',
                                                                                                                            '218.703',
                                                                                                                            '236.123'],
                                                                                                         'ann': '158.815',
                                                                                                         'djf': '211.012',
                                                                                                         'jja': '190.732',
                                                                                                         'mam': '141.307',
                                                                                                         'son': '179.207'},
                                                                                             'std-obs_xy': {'CalendarMonths': ['875.577',
                                                                                                                               '872.828',
                                                                                                                               '889.936',
                                                                                                                               '886.913',
                                                                                                                               '900.069',
                                                                                                                               '881.549',
                                                                                                                               '946.847',
                                                                                                                               '914.022',
                                                                                                                               '970.468',
                                                                                                                               '980.794',
                                                                                                                               '921.216',
                                                                                                                               '880.064'],
                                                                                                            'ann': '884.111',
                                                                                                            'djf': '870.559',
                                                                                                            'jja': '909.446',
                                                                                                            'mam': '884.136',
                                                                                                            'son': '948.776'},
                                                                                             'std-obs_xy_devzm': {'ann': '216.590'},
                                                                                             'std-obs_xyt': {'ann': '911.832'},
                                                                                             'std_xy': {'CalendarMonths': ['772.191',
                                                                                                                           '825.827',
                                                                                                                           '854.398',
                                                                                                                           '892.601',
                                                                                                                           '898.417',
                                                                                                                           '883.023',
                                                                                                                           '888.641',
                                                                                                                           '926.918',
                                                                                                                           '897.264',
                                                                                                                           '932.107',
                                                                                                                           '894.409',
                                                                                                                           '827.701'],
                                                                                                        'ann': '841.701',
                                                                                                        'djf': '802.557',
                                                                                                        'jja': '894.890',
                                                                                                        'mam': '872.380',
                                                                                                        'son': '895.559'},
                                                                                             'std_xy_devzm': {'ann': '217.888'},
                                                                                             'std_xyt': {'ann': '876.741'}},
                                                                              'global': {'bias_xy': {'CalendarMonths': ['63.959',
                                                                                                                        '61.458',
                                                                                                                        '56.572',
                                                                                                                        '50.190',
                                                                                                                        '47.383',
                                                                                                                        '41.317',
                                                                                                                        '36.535',
                                                                                                                        '41.696',
                                                                                                                        '48.704',
                                                                                                                        '54.649',
                                                                                                                        '58.391',
                                                                                                                        '60.583'],
                                                                                                     'ann': '51.786',
                                                                                                     'djf': '62.015',
                                                                                                     'jja': '39.885',
                                                                                                     'mam': '51.267',
                                                                                                     'son': '53.907'},
                                                                                         'cor_xy': {'CalendarMonths': ['0.96',
                                                                                                                       '0.95',
                                                                                                                       '0.94',
                                                                                                                       '0.96',
                                                                                                                       '0.95',
                                                                                                                       '0.94',
                                                                                                                       '0.95',
                                                                                                                       '0.95',
                                                                                                                       '0.95',
                                                                                                                       '0.97',
                                                                                                                       '0.96',
                                                                                                                       '0.96'],
                                                                                                    'ann': '0.964',
                                                                                                    'djf': '0.96',
                                                                                                    'jja': '0.95',
                                                                                                    'mam': '0.96',
                                                                                                    'son': '0.97'},
                                                                                         'mae_xy': {'CalendarMonths': ['173.235',
                                                                                                                       '185.818',
                                                                                                                       '186.741',
                                                                                                                       '166.943',
                                                                                                                       '163.124',
                                                                                                                       '187.370',
                                                                                                                       '188.397',
                                                                                                                       '183.123',
                                                                                                                       '187.724',
                                                                                                                       '148.152',
                                                                                                                       '166.886',
                                                                                                                       '173.876'],
                                                                                                    'ann': '141.900',
                                                                                                    'djf': '160.464',
                                                                                                    'jja': '169.953',
                                                                                                    'mam': '158.418',
                                                                                                    'son': '149.101'},
                                                                                         'mean-obs_xy': {'CalendarMonths': ['101160.310',
                                                                                                                            '101162.949',
                                                                                                                            '101157.113',
                                                                                                                            '101147.656',
                                                                                                                            '101135.660',
                                                                                                                            '101130.105',
                                                                                                                            '101131.746',
                                                                                                                            '101132.650',
                                                                                                                            '101135.083',
                                                                                                                            '101138.279',
                                                                                                                            '101146.635',
                                                                                                                            '101155.798'],
                                                                                                         'ann': '101144.499',
                                                                                                         'djf': '101159.728',
                                                                                                         'jja': '101131.498',
                                                                                                         'mam': '101146.617',
                                                                                                         'son': '101140.018'},
                                                                                         'mean_xy': {'CalendarMonths': ['101224.269',
                                                                                                                        '101224.406',
                                                                                                                        '101213.685',
                                                                                                                        '101197.846',
                                                                                                                        '101183.042',
                                                                                                                        '101171.422',
                                                                                                                        '101168.281',
                                                                                                                        '101174.346',
                                                                                                                        '101183.788',
                                                                                                                        '101192.928',
                                                                                                                        '101205.026',
                                                                                                                        '101216.381'],
                                                                                                     'ann': '101196.285',
                                                                                                     'djf': '101221.743',
                                                                                                     'jja': '101171.383',
                                                                                                     'mam': '101197.884',
                                                                                                     'son': '101193.925'},
                                                                                         'rms_devzm': {'ann': '162.205'},
                                                                                         'rms_xy': {'CalendarMonths': ['257.498',
                                                                                                                       '277.765',
                                                                                                                       '286.406',
                                                                                                                       '246.370',
                                                                                                                       '256.538',
                                                                                                                       '292.269',
                                                                                                                       '285.938',
                                                                                                                       '278.067',
                                                                                                                       '274.268',
                                                                                                                       '224.837',
                                                                                                                       '257.278',
                                                                                                                       '269.276'],
                                                                                                    'ann': '223.117',
                                                                                                    'djf': '245.507',
                                                                                                    'jja': '265.448',
                                                                                                    'mam': '243.566',
                                                                                                    'son': '231.836'},
                                                                                         'rms_xyt': {'ann': '267.209'},
                                                                                         'rms_y': {'ann': '153.202'},
                                                                                         'rmsc_xy': {'CalendarMonths': ['249.428',
                                                                                                                        '270.881',
                                                                                                                        '280.763',
                                                                                                                        '241.204',
                                                                                                                        '252.124',
                                                                                                                        '289.334',
                                                                                                                        '283.595',
                                                                                                                        '274.923',
                                                                                                                        '269.909',
                                                                                                                        '218.095',
                                                                                                                        '250.564',
                                                                                                                        '262.373'],
                                                                                                     'ann': '217.024',
                                                                                                     'djf': '237.545',
                                                                                                     'jja': '262.434',
                                                                                                     'mam': '238.110',
                                                                                                     'son': '225.481'},
                                                                                         'std-obs_xy': {'CalendarMonths': ['890.824',
                                                                                                                           '855.676',
                                                                                                                           '829.938',
                                                                                                                           '807.904',
                                                                                                                           '821.797',
                                                                                                                           '813.832',
                                                                                                                           '884.465',
                                                                                                                           '841.554',
                                                                                                                           '883.617',
                                                                                                                           '914.324',
                                                                                                                           '884.324',
                                                                                                                           '883.988'],
                                                                                                        'ann': '810.567',
                                                                                                        'djf': '870.720',
                                                                                                        'jja': '841.160',
                                                                                                        'mam': '806.372',
                                                                                                        'son': '879.450'},
                                                                                         'std-obs_xy_devzm': {'ann': '289.879'},
                                                                                         'std-obs_xyt': {'ann': '860.100'},
                                                                                         'std_xy': {'CalendarMonths': ['826.387',
                                                                                                                       '860.894',
                                                                                                                       '855.821',
                                                                                                                       '846.885',
                                                                                                                       '848.808',
                                                                                                                       '837.758',
                                                                                                                       '853.432',
                                                                                                                       '880.347',
                                                                                                                       '843.231',
                                                                                                                       '903.040',
                                                                                                                       '894.796',
                                                                                                                       '858.696'],
                                                                                                    'ann': '800.948',
                                                                                                    'djf': '842.893',
                                                                                                    'jja': '851.871',
                                                                                                    'mam': '832.722',
                                                                                                    'son': '863.071'},
                                                                                         'std_xy_devzm': {'ann': '264.790'},
                                                                                         'std_xyt': {'ann': '859.675'}},
                                                                              'ocean': {'bias_xy': {'CalendarMonths': ['82.443',
                                                                                                                       '59.415',
                                                                                                                       '65.005',
                                                                                                                       '74.270',
                                                                                                                       '90.838',
                                                                                                                       '72.650',
                                                                                                                       '78.730',
                                                                                                                       '77.850',
                                                                                                                       '66.931',
                                                                                                                       '82.746',
                                                                                                                       '76.537',
                                                                                                                       '84.061'],
                                                                                                    'ann': '75.956',
                                                                                                    'djf': '75.211',
                                                                                                    'jja': '76.385',
                                                                                                    'mam': '76.906',
                                                                                                    'son': '75.325'},
                                                                                        'cor_xy': {'CalendarMonths': ['0.97',
                                                                                                                      '0.96',
                                                                                                                      '0.97',
                                                                                                                      '0.99',
                                                                                                                      '0.98',
                                                                                                                      '0.97',
                                                                                                                      '0.97',
                                                                                                                      '0.97',
                                                                                                                      '0.97',
                                                                                                                      '0.99',
                                                                                                                      '0.97',
                                                                                                                      '0.96'],
                                                                                                   'ann': '0.984',
                                                                                                   'djf': '0.97',
                                                                                                   'jja': '0.98',
                                                                                                   'mam': '0.99',
                                                                                                   'son': '0.98'},
                                                                                        'mae_xy': {'CalendarMonths': ['161.072',
                                                                                                                      '156.488',
                                                                                                                      '143.544',
                                                                                                                      '127.073',
                                                                                                                      '133.042',
                                                                                                                      '150.924',
                                                                                                                      '159.109',
                                                                                                                      '154.510',
                                                                                                                      '159.984',
                                                                                                                      '123.935',
                                                                                                                      '147.242',
                                                                                                                      '160.784'],
                                                                                                   'ann': '111.459',
                                                                                                   'djf': '141.978',
                                                                                                   'jja': '137.425',
                                                                                                   'mam': '118.332',
                                                                                                   'son': '123.143'},
                                                                                        'mean-obs_xy': {'CalendarMonths': ['101023.692',
                                                                                                                           '101062.003',
                                                                                                                           '101097.604',
                                                                                                                           '101118.528',
                                                                                                                           '101118.105',
                                                                                                                           '101146.318',
                                                                                                                           '101168.613',
                                                                                                                           '101153.589',
                                                                                                                           '101118.072',
                                                                                                                           '101089.803',
                                                                                                                           '101064.714',
                                                                                                                           '101031.329'],
                                                                                                        'ann': '101099.364',
                                                                                                        'djf': '101039.092',
                                                                                                        'jja': '101156.038',
                                                                                                        'mam': '101111.763',
                                                                                                        'son': '101090.875'},
                                                                                        'mean_xy': {'CalendarMonths': ['101106.135',
                                                                                                                       '101121.419',
                                                                                                                       '101162.609',
                                                                                                                       '101192.798',
                                                                                                                       '101208.942',
                                                                                                                       '101218.967',
                                                                                                                       '101247.344',
                                                                                                                       '101231.439',
                                                                                                                       '101185.003',
                                                                                                                       '101172.549',
                                                                                                                       '101141.251',
                                                                                                                       '101115.390'],
                                                                                                    'ann': '101175.321',
                                                                                                    'djf': '101114.303',
                                                                                                    'jja': '101232.423',
                                                                                                    'mam': '101188.669',
                                                                                                    'son': '101166.200'},
                                                                                        'rms_devzm': {'ann': '85.380'},
                                                                                        'rms_xy': {'CalendarMonths': ['245.767',
                                                                                                                      '247.476',
                                                                                                                      '219.075',
                                                                                                                      '160.652',
                                                                                                                      '183.409',
                                                                                                                      '218.860',
                                                                                                                      '245.803',
                                                                                                                      '222.897',
                                                                                                                      '237.408',
                                                                                                                      '184.820',
                                                                                                                      '231.709',
                                                                                                                      '250.640'],
                                                                                                   'ann': '176.044',
                                                                                                   'djf': '224.015',
                                                                                                   'jja': '205.459',
                                                                                                   'mam': '160.879',
                                                                                                   'son': '194.394'},
                                                                                        'rms_xyt': {'ann': '220.710'},
                                                                                        'rms_y': {'ann': '175.176'},
                                                                                        'rmsc_xy': {'CalendarMonths': ['231.527',
                                                                                                                       '240.238',
                                                                                                                       '209.208',
                                                                                                                       '142.453',
                                                                                                                       '159.334',
                                                                                                                       '206.450',
                                                                                                                       '232.854',
                                                                                                                       '208.860',
                                                                                                                       '227.778',
                                                                                                                       '165.262',
                                                                                                                       '218.703',
                                                                                                                       '236.123'],
                                                                                                    'ann': '158.815',
                                                                                                    'djf': '211.012',
                                                                                                    'jja': '190.732',
                                                                                                    'mam': '141.307',
                                                                                                    'son': '179.207'},
                                                                                        'std-obs_xy': {'CalendarMonths': ['875.577',
                                                                                                                          '872.828',
                                                                                                                          '889.936',
                                                                                                                          '886.913',
                                                                                                                          '900.069',
                                                                                                                          '881.549',
                                                                                                                          '946.847',
                                                                                                                          '914.022',
                                                                                                                          '970.468',
                                                                                                                          '980.794',
                                                                                                                          '921.216',
                                                                                                                          '880.064'],
                                                                                                       'ann': '884.111',
                                                                                                       'djf': '870.559',
                                                                                                       'jja': '909.446',
                                                                                                       'mam': '884.136',
                                                                                                       'son': '948.776'},
                                                                                        'std-obs_xy_devzm': {'ann': '216.590'},
                                                                                        'std-obs_xyt': {'ann': '911.832'},
                                                                                        'std_xy': {'CalendarMonths': ['772.191',
                                                                                                                      '825.827',
                                                                                                                      '854.398',
                                                                                                                      '892.601',
                                                                                                                      '898.417',
                                                                                                                      '883.023',
                                                                                                                      '888.641',
                                                                                                                      '926.918',
                                                                                                                      '897.264',
                                                                                                                      '932.107',
                                                                                                                      '894.409',
                                                                                                                      '827.701'],
                                                                                                   'ann': '841.701',
                                                                                                   'djf': '802.557',
                                                                                                   'jja': '894.890',
                                                                                                   'mam': '872.380',
                                                                                                   'son': '895.559'},
                                                                                        'std_xy_devzm': {'ann': '217.888'},
                                                                                        'std_xyt': {'ann': '876.741'}},
                                                                              'ocean_50S50N': {'bias_xy': {'CalendarMonths': ['1.942',
                                                                                                                              '-7.761',
                                                                                                                              '10.221',
                                                                                                                              '56.205',
                                                                                                                              '64.751',
                                                                                                                              '31.025',
                                                                                                                              '10.590',
                                                                                                                              '41.778',
                                                                                                                              '2.312',
                                                                                                                              '36.698',
                                                                                                                              '29.547',
                                                                                                                              '29.242'],
                                                                                                           'ann': '25.546',
                                                                                                           'djf': '7.575',
                                                                                                           'jja': '27.985',
                                                                                                           'mam': '44.523',
                                                                                                           'son': '22.702'},
                                                                                               'cor_xy': {'CalendarMonths': ['0.96',
                                                                                                                             '0.95',
                                                                                                                             '0.95',
                                                                                                                             '0.97',
                                                                                                                             '0.96',
                                                                                                                             '0.95',
                                                                                                                             '0.97',
                                                                                                                             '0.97',
                                                                                                                             '0.96',
                                                                                                                             '0.97',
                                                                                                                             '0.95',
                                                                                                                             '0.95'],
                                                                                                          'ann': '0.983',
                                                                                                          'djf': '0.97',
                                                                                                          'jja': '0.98',
                                                                                                          'mam': '0.97',
                                                                                                          'son': '0.98'},
                                                                                               'mae_xy': {'CalendarMonths': ['96.487',
                                                                                                                             '90.920',
                                                                                                                             '92.948',
                                                                                                                             '102.345',
                                                                                                                             '107.212',
                                                                                                                             '105.197',
                                                                                                                             '91.774',
                                                                                                                             '107.190',
                                                                                                                             '101.175',
                                                                                                                             '79.406',
                                                                                                                             '96.630',
                                                                                                                             '106.493'],
                                                                                                          'ann': '63.608',
                                                                                                          'djf': '81.594',
                                                                                                          'jja': '85.798',
                                                                                                          'mam': '86.396',
                                                                                                          'son': '71.731'},
                                                                                               'mean-obs_xy': {'CalendarMonths': ['101339.158',
                                                                                                                                  '101363.633',
                                                                                                                                  '101401.977',
                                                                                                                                  '101414.029',
                                                                                                                                  '101407.334',
                                                                                                                                  '101443.869',
                                                                                                                                  '101494.183',
                                                                                                                                  '101471.923',
                                                                                                                                  '101474.332',
                                                                                                                                  '101456.355',
                                                                                                                                  '101407.616',
                                                                                                                                  '101356.346'],
                                                                                                               'ann': '101419.230',
                                                                                                               'djf': '101353.009',
                                                                                                               'jja': '101469.729',
                                                                                                               'mam': '101407.964',
                                                                                                               'son': '101445.990'},
                                                                                               'mean_xy': {'CalendarMonths': ['101341.100',
                                                                                                                              '101355.871',
                                                                                                                              '101412.198',
                                                                                                                              '101470.234',
                                                                                                                              '101472.085',
                                                                                                                              '101474.894',
                                                                                                                              '101504.773',
                                                                                                                              '101513.701',
                                                                                                                              '101476.644',
                                                                                                                              '101493.053',
                                                                                                                              '101437.163',
                                                                                                                              '101385.588'],
                                                                                                           'ann': '101444.775',
                                                                                                           'djf': '101360.584',
                                                                                                           'jja': '101497.714',
                                                                                                           'mam': '101452.486',
                                                                                                           'son': '101468.691'},
                                                                                               'rms_devzm': {'ann': '68.024'},
                                                                                               'rms_xy': {'CalendarMonths': ['128.421',
                                                                                                                             '133.132',
                                                                                                                             '125.804',
                                                                                                                             '127.698',
                                                                                                                             '145.092',
                                                                                                                             '146.041',
                                                                                                                             '126.488',
                                                                                                                             '143.134',
                                                                                                                             '131.136',
                                                                                                                             '104.258',
                                                                                                                             '135.339',
                                                                                                                             '146.224'],
                                                                                                          'ann': '79.074',
                                                                                                          'djf': '104.367',
                                                                                                          'jja': '117.535',
                                                                                                          'mam': '107.117',
                                                                                                          'son': '94.042'},
                                                                                               'rms_xyt': {'ann': '132.731'},
                                                                                               'rms_y': {'ann': '40.213'},
                                                                                               'rmsc_xy': {'CalendarMonths': ['128.406',
                                                                                                                              '132.906',
                                                                                                                              '125.388',
                                                                                                                              '114.664',
                                                                                                                              '129.842',
                                                                                                                              '142.707',
                                                                                                                              '126.044',
                                                                                                                              '136.901',
                                                                                                                              '131.116',
                                                                                                                              '97.586',
                                                                                                                              '132.074',
                                                                                                                              '143.270'],
                                                                                                           'ann': '74.834',
                                                                                                           'djf': '104.091',
                                                                                                           'jja': '114.155',
                                                                                                           'mam': '97.426',
                                                                                                           'son': '91.261'},
                                                                                               'std-obs_xy': {'CalendarMonths': ['453.608',
                                                                                                                                 '398.892',
                                                                                                                                 '382.229',
                                                                                                                                 '390.336',
                                                                                                                                 '404.045',
                                                                                                                                 '462.455',
                                                                                                                                 '512.786',
                                                                                                                                 '474.398',
                                                                                                                                 '454.120',
                                                                                                                                 '399.812',
                                                                                                                                 '402.805',
                                                                                                                                 '428.141'],
                                                                                                              'ann': '383.791',
                                                                                                              'djf': '418.961',
                                                                                                              'jja': '478.044',
                                                                                                              'mam': '376.945',
                                                                                                              'son': '403.947'},
                                                                                               'std-obs_xy_devzm': {'ann': '189.156'},
                                                                                               'std-obs_xyt': {'ann': '434.699'},
                                                                                               'std_xy': {'CalendarMonths': ['444.147',
                                                                                                                             '433.750',
                                                                                                                             '404.019',
                                                                                                                             '433.275',
                                                                                                                             '452.126',
                                                                                                                             '473.499',
                                                                                                                             '526.716',
                                                                                                                             '540.919',
                                                                                                                             '475.781',
                                                                                                                             '417.505',
                                                                                                                             '418.958',
                                                                                                                             '450.795'],
                                                                                                          'ann': '400.677',
                                                                                                          'djf': '435.736',
                                                                                                          'jja': '508.970',
                                                                                                          'mam': '411.453',
                                                                                                          'son': '419.293'},
                                                                                               'std_xy_devzm': {'ann': '193.692'},
                                                                                               'std_xyt': {'ann': '461.131'}}},
                                                                 'source': 'ERA-5'},
                                                     'units': 'Pa'}},
                          'provenance': {'commandLine': '/home/lee1043/.conda/envs/pcmdi_metrics_dev_20230822/bin/mean_climate_driver.py '
                                                        '-p basic_param.py -v '
                                                        'psl',
                                         'conda': {'Platform': 'linux-64',
                                                   'PythonVersion': '3.10.12.final.0',
                                                   'Version': '23.3.1',
                                                   'buildVersion': 'not '
                                                                   'installed'},
                                         'date': '2023-09-19 01:05:38',
                                         'openGL': {'GLX': {'client': {'vendor': 'Mesa '
                                                                                 'Project '
                                                                                 'and '
                                                                                 'SGI',
                                                                       'version': '1.4'},
                                                            'server': {'vendor': 'SGI',
                                                                       'version': '1.4'},
                                                            'version': '1.4'},
                                                    'renderer': 'llvmpipe '
                                                                '(LLVM 7.0, '
                                                                '256 bits)',
                                                    'shading language version': '1.20',
                                                    'vendor': 'VMware, Inc.',
                                                    'version': '2.1 Mesa '
                                                               '18.3.4'},
                                         'osAccess': False,
                                         'packages': {'PMP': 'v3.0.2-11-g06b151f',
                                                      'PMPObs': 'See '
                                                                "'References' "
                                                                'key below, '
                                                                'for detailed '
                                                                'obs '
                                                                'provenance '
                                                                'information.',
                                                      'blas': '0.3.23',
                                                      'cdat_info': '8.2.1',
                                                      'cdms': '3.1.5',
                                                      'cdp': '1.7.0',
                                                      'cdtime': '3.1.4',
                                                      'cdutil': '8.2.1',
                                                      'clapack': None,
                                                      'esmf': '8.4.2',
                                                      'esmpy': '8.4.2',
                                                      'genutil': '8.2.1',
                                                      'lapack': '3.9.0',
                                                      'matplotlib': '3.7.1',
                                                      'mesalib': None,
                                                      'numpy': '1.23.5',
                                                      'python': '3.10.10',
                                                      'scipy': '1.11.2',
                                                      'uvcdat': None,
                                                      'vcs': None,
                                                      'vtk': None,
                                                      'xarray': '2023.8.0',
                                                      'xcdat': '0.5.0'},
                                         'platform': {'Name': 'gates.llnl.gov',
                                                      'OS': 'Linux',
                                                      'Version': '3.10.0-1160.71.1.el7.x86_64'},
                                         'userId': 'lee1043'}},
                  'rlds': {'REFERENCE': {'default': {'CMIP_CMOR_TABLE': 'Amon',
                                                     'MD5sum': 'c3fc85241bd4ef73e4e1dab7c6ae2589',
                                                     'RefTrackingDate': 'Wed '
                                                                        'Aug  '
                                                                        '4 '
                                                                        '12:22:48 '
                                                                        '2021',
                                                     'filename': 'rlds_mon_CERES-EBAF-4-1_PCMDI_gn.200301-201812.AC.v20210804.nc',
                                                     'period': '200301-201812',
                                                     'shape': '(12, 180, 360)',
                                                     'template': 'rlds/CERES-EBAF-4-1/v20210804/rlds_mon_CERES-EBAF-4-1_PCMDI_gn.200301-201812.AC.v20210804.nc'}},
                           'RESULTS': {'ACCESS-CM2': {'default': {'r1i1p1f1': {'InputClimatologyFileName': 'cmip6.historical.ACCESS-CM2.r1i1p1f1.mon.rlds.198101-200512.AC.v20230823.nc',
                                                                               'NHEX': {'bias_xy': {'CalendarMonths': ['-5.147',
                                                                                                                       '-5.410',
                                                                                                                       '-4.828',
                                                                                                                       '-5.550',
                                                                                                                       '-9.405',
                                                                                                                       '-11.907',
                                                                                                                       '-14.307',
                                                                                                                       '-13.221',
                                                                                                                       '-10.378',
                                                                                                                       '-7.381',
                                                                                                                       '-5.105',
                                                                                                                       '-4.326'],
                                                                                                    'ann': '-8.081',
                                                                                                    'djf': '-4.968',
                                                                                                    'jja': '-13.133',
                                                                                                    'mam': '-6.618',
                                                                                                    'son': '-7.624'},
                                                                                        'cor_xy': {'CalendarMonths': ['0.98',
                                                                                                                      '0.98',
                                                                                                                      '0.98',
                                                                                                                      '0.97',
                                                                                                                      '0.96',
                                                                                                                      '0.96',
                                                                                                                      '0.95',
                                                                                                                      '0.96',
                                                                                                                      '0.96',
                                                                                                                      '0.97',
                                                                                                                      '0.98',
                                                                                                                      '0.98'],
                                                                                                   'ann': '0.985',
                                                                                                   'djf': '0.98',
                                                                                                   'jja': '0.96',
                                                                                                   'mam': '0.98',
                                                                                                   'son': '0.98'},
                                                                                        'mae_xy': {'CalendarMonths': ['10.728',
                                                                                                                      '10.835',
                                                                                                                      '10.656',
                                                                                                                      '9.681',
                                                                                                                      '10.851',
                                                                                                                      '13.649',
                                                                                                                      '16.054',
                                                                                                                      '14.089',
                                                                                                                      '12.669',
                                                                                                                      '11.080',
                                                                                                                      '9.990',
                                                                                                                      '10.407'],
                                                                                                   'ann': '9.157',
                                                                                                   'djf': '10.004',
                                                                                                   'jja': '14.305',
                                                                                                   'mam': '9.156',
                                                                                                   'son': '10.003'},
                                                                                        'mean-obs_xy': {'CalendarMonths': ['250.793',
                                                                                                                           '252.513',
                                                                                                                           '262.646',
                                                                                                                           '281.766',
                                                                                                                           '309.483',
                                                                                                                           '334.084',
                                                                                                                           '349.723',
                                                                                                                           '347.013',
                                                                                                                           '326.842',
                                                                                                                           '301.666',
                                                                                                                           '276.242',
                                                                                                                           '258.046'],
                                                                                                        'ann': '295.901',
                                                                                                        'djf': '253.738',
                                                                                                        'jja': '343.540',
                                                                                                        'mam': '285.031',
                                                                                                        'son': '301.582'},
                                                                                        'mean_xy': {'CalendarMonths': ['245.646',
                                                                                                                       '247.103',
                                                                                                                       '257.817',
                                                                                                                       '276.216',
                                                                                                                       '300.078',
                                                                                                                       '322.177',
                                                                                                                       '335.415',
                                                                                                                       '333.792',
                                                                                                                       '316.463',
                                                                                                                       '294.285',
                                                                                                                       '271.136',
                                                                                                                       '253.720'],
                                                                                                    'ann': '287.821',
                                                                                                    'djf': '248.770',
                                                                                                    'jja': '330.407',
                                                                                                    'mam': '278.413',
                                                                                                    'son': '293.958'},
                                                                                        'rms_devzm': {'ann': '6.254'},
                                                                                        'rms_xy': {'CalendarMonths': ['14.455',
                                                                                                                      '14.648',
                                                                                                                      '13.750',
                                                                                                                      '12.861',
                                                                                                                      '13.738',
                                                                                                                      '16.456',
                                                                                                                      '19.194',
                                                                                                                      '17.514',
                                                                                                                      '16.090',
                                                                                                                      '14.649',
                                                                                                                      '13.582',
                                                                                                                      '13.837'],
                                                                                                   'ann': '11.438',
                                                                                                   'djf': '13.662',
                                                                                                   'jja': '17.258',
                                                                                                   'mam': '12.320',
                                                                                                   'son': '13.216'},
                                                                                        'rms_xyt': {'ann': '15.065'},
                                                                                        'rms_y': {'ann': '9.577'},
                                                                                        'rmsc_xy': {'CalendarMonths': ['13.507',
                                                                                                                       '13.612',
                                                                                                                       '12.875',
                                                                                                                       '11.602',
                                                                                                                       '10.014',
                                                                                                                       '11.358',
                                                                                                                       '12.795',
                                                                                                                       '11.487',
                                                                                                                       '12.296',
                                                                                                                       '12.654',
                                                                                                                       '12.586',
                                                                                                                       '13.143'],
                                                                                                    'ann': '8.095',
                                                                                                    'djf': '12.726',
                                                                                                    'jja': '11.197',
                                                                                                    'mam': '10.392',
                                                                                                    'son': '10.795'},
                                                                                        'std-obs_xy': {'CalendarMonths': ['61.666',
                                                                                                                          '60.245',
                                                                                                                          '55.546',
                                                                                                                          '47.991',
                                                                                                                          '38.102',
                                                                                                                          '35.831',
                                                                                                                          '37.036',
                                                                                                                          '38.364',
                                                                                                                          '43.019',
                                                                                                                          '48.374',
                                                                                                                          '57.088',
                                                                                                                          '61.758'],
                                                                                                       'ann': '46.247',
                                                                                                       'djf': '61.083',
                                                                                                       'jja': '36.789',
                                                                                                       'mam': '46.260',
                                                                                                       'son': '48.774'},
                                                                                        'std-obs_xy_devzm': {'ann': '28.187'},
                                                                                        'std-obs_xyt': {'ann': '61.134'},
                                                                                        'std_xy': {'CalendarMonths': ['67.009',
                                                                                                                      '65.022',
                                                                                                                      '59.918',
                                                                                                                      '50.592',
                                                                                                                      '37.208',
                                                                                                                      '29.451',
                                                                                                                      '30.762',
                                                                                                                      '33.894',
                                                                                                                      '39.998',
                                                                                                                      '48.937',
                                                                                                                      '59.410',
                                                                                                                      '64.952'],
                                                                                                   'ann': '46.816',
                                                                                                   'djf': '65.489',
                                                                                                   'jja': '31.083',
                                                                                                   'mam': '48.355',
                                                                                                   'son': '48.602'},
                                                                                        'std_xy_devzm': {'ann': '28.976'},
                                                                                        'std_xyt': {'ann': '60.168'}},
                                                                               'SHEX': {'bias_xy': {'CalendarMonths': ['3.404',
                                                                                                                       '2.539',
                                                                                                                       '3.416',
                                                                                                                       '3.131',
                                                                                                                       '3.513',
                                                                                                                       '4.132',
                                                                                                                       '3.198',
                                                                                                                       '1.909',
                                                                                                                       '1.383',
                                                                                                                       '0.147',
                                                                                                                       '-0.274',
                                                                                                                       '1.939'],
                                                                                                    'ann': '2.370',
                                                                                                    'djf': '2.635',
                                                                                                    'jja': '3.078',
                                                                                                    'mam': '3.350',
                                                                                                    'son': '0.422'},
                                                                                        'cor_xy': {'CalendarMonths': ['0.99',
                                                                                                                      '0.99',
                                                                                                                      '0.99',
                                                                                                                      '0.99',
                                                                                                                      '0.99',
                                                                                                                      '0.98',
                                                                                                                      '0.98',
                                                                                                                      '0.99',
                                                                                                                      '0.99',
                                                                                                                      '0.99',
                                                                                                                      '0.99',
                                                                                                                      '0.99'],
                                                                                                   'ann': '0.992',
                                                                                                   'djf': '0.99',
                                                                                                   'jja': '0.99',
                                                                                                   'mam': '0.99',
                                                                                                   'son': '0.99'},
                                                                                        'mae_xy': {'CalendarMonths': ['7.200',
                                                                                                                      '7.514',
                                                                                                                      '7.158',
                                                                                                                      '7.948',
                                                                                                                      '8.657',
                                                                                                                      '9.861',
                                                                                                                      '9.659',
                                                                                                                      '8.927',
                                                                                                                      '7.866',
                                                                                                                      '6.955',
                                                                                                                      '6.090',
                                                                                                                      '7.271'],
                                                                                                   'ann': '6.552',
                                                                                                   'djf': '6.680',
                                                                                                   'jja': '9.243',
                                                                                                   'mam': '7.686',
                                                                                                   'son': '6.449'},
                                                                                        'mean-obs_xy': {'CalendarMonths': ['309.239',
                                                                                                                           '310.192',
                                                                                                                           '305.541',
                                                                                                                           '298.319',
                                                                                                                           '289.609',
                                                                                                                           '282.334',
                                                                                                                           '278.964',
                                                                                                                           '278.823',
                                                                                                                           '281.145',
                                                                                                                           '287.134',
                                                                                                                           '295.944',
                                                                                                                           '304.467'],
                                                                                                        'ann': '293.476',
                                                                                                        'djf': '308.004',
                                                                                                        'jja': '280.052',
                                                                                                        'mam': '297.677',
                                                                                                        'son': '288.085'},
                                                                                        'mean_xy': {'CalendarMonths': ['312.643',
                                                                                                                       '312.731',
                                                                                                                       '308.957',
                                                                                                                       '301.450',
                                                                                                                       '293.122',
                                                                                                                       '286.466',
                                                                                                                       '282.162',
                                                                                                                       '280.732',
                                                                                                                       '282.528',
                                                                                                                       '287.281',
                                                                                                                       '295.670',
                                                                                                                       '306.406'],
                                                                                                    'ann': '295.846',
                                                                                                    'djf': '310.639',
                                                                                                    'jja': '283.130',
                                                                                                    'mam': '301.027',
                                                                                                    'son': '288.506'},
                                                                                        'rms_devzm': {'ann': '5.175'},
                                                                                        'rms_xy': {'CalendarMonths': ['9.091',
                                                                                                                      '9.056',
                                                                                                                      '9.114',
                                                                                                                      '9.999',
                                                                                                                      '10.910',
                                                                                                                      '12.405',
                                                                                                                      '12.125',
                                                                                                                      '11.345',
                                                                                                                      '9.976',
                                                                                                                      '8.460',
                                                                                                                      '7.586',
                                                                                                                      '10.021'],
                                                                                                   'ann': '8.185',
                                                                                                   'djf': '8.330',
                                                                                                   'jja': '11.611',
                                                                                                   'mam': '9.623',
                                                                                                   'son': '7.830'},
                                                                                        'rms_xyt': {'ann': '10.007'},
                                                                                        'rms_y': {'ann': '6.341'},
                                                                                        'rmsc_xy': {'CalendarMonths': ['8.430',
                                                                                                                       '8.692',
                                                                                                                       '8.450',
                                                                                                                       '9.496',
                                                                                                                       '10.328',
                                                                                                                       '11.697',
                                                                                                                       '11.696',
                                                                                                                       '11.183',
                                                                                                                       '9.880',
                                                                                                                       '8.459',
                                                                                                                       '7.581',
                                                                                                                       '9.831'],
                                                                                                    'ann': '7.834',
                                                                                                    'djf': '7.902',
                                                                                                    'jja': '11.196',
                                                                                                    'mam': '9.021',
                                                                                                    'son': '7.819'},
                                                                                        'std-obs_xy': {'CalendarMonths': ['58.297',
                                                                                                                          '62.972',
                                                                                                                          '65.610',
                                                                                                                          '66.607',
                                                                                                                          '65.138',
                                                                                                                          '64.449',
                                                                                                                          '64.457',
                                                                                                                          '63.396',
                                                                                                                          '63.104',
                                                                                                                          '60.439',
                                                                                                                          '58.073',
                                                                                                                          '57.075'],
                                                                                                       'ann': '62.071',
                                                                                                       'djf': '59.421',
                                                                                                       'jja': '64.060',
                                                                                                       'mam': '65.670',
                                                                                                       'son': '60.362'},
                                                                                        'std-obs_xy_devzm': {'ann': '18.408'},
                                                                                        'std-obs_xyt': {'ann': '63.588'},
                                                                                        'std_xy': {'CalendarMonths': ['53.329',
                                                                                                                      '61.914',
                                                                                                                      '65.656',
                                                                                                                      '66.248',
                                                                                                                      '65.962',
                                                                                                                      '66.255',
                                                                                                                      '66.489',
                                                                                                                      '66.048',
                                                                                                                      '64.660',
                                                                                                                      '61.826',
                                                                                                                      '55.954',
                                                                                                                      '49.777'],
                                                                                                   'ann': '61.579',
                                                                                                   'djf': '54.977',
                                                                                                   'jja': '66.202',
                                                                                                   'mam': '65.819',
                                                                                                   'son': '60.645'},
                                                                                        'std_xy_devzm': {'ann': '17.996'},
                                                                                        'std_xyt': {'ann': '63.349'}},
                                                                               'TROPICS': {'bias_xy': {'CalendarMonths': ['-6.382',
                                                                                                                          '-6.934',
                                                                                                                          '-7.302',
                                                                                                                          '-8.278',
                                                                                                                          '-8.804',
                                                                                                                          '-9.631',
                                                                                                                          '-9.036',
                                                                                                                          '-9.135',
                                                                                                                          '-10.217',
                                                                                                                          '-9.624',
                                                                                                                          '-8.124',
                                                                                                                          '-7.056'],
                                                                                                       'ann': '-8.377',
                                                                                                       'djf': '-6.788',
                                                                                                       'jja': '-9.270',
                                                                                                       'mam': '-8.146',
                                                                                                       'son': '-9.318'},
                                                                                           'cor_xy': {'CalendarMonths': ['0.97',
                                                                                                                         '0.96',
                                                                                                                         '0.95',
                                                                                                                         '0.92',
                                                                                                                         '0.91',
                                                                                                                         '0.92',
                                                                                                                         '0.93',
                                                                                                                         '0.91',
                                                                                                                         '0.92',
                                                                                                                         '0.96',
                                                                                                                         '0.96',
                                                                                                                         '0.97'],
                                                                                                      'ann': '0.951',
                                                                                                      'djf': '0.97',
                                                                                                      'jja': '0.92',
                                                                                                      'mam': '0.92',
                                                                                                      'son': '0.96'},
                                                                                           'mae_xy': {'CalendarMonths': ['9.332',
                                                                                                                         '10.383',
                                                                                                                         '10.512',
                                                                                                                         '10.956',
                                                                                                                         '11.251',
                                                                                                                         '11.989',
                                                                                                                         '11.485',
                                                                                                                         '11.471',
                                                                                                                         '11.383',
                                                                                                                         '10.683',
                                                                                                                         '9.634',
                                                                                                                         '9.092'],
                                                                                                      'ann': '9.565',
                                                                                                      'djf': '9.242',
                                                                                                      'jja': '11.480',
                                                                                                      'mam': '10.498',
                                                                                                      'son': '10.348'},
                                                                                           'mean-obs_xy': {'CalendarMonths': ['391.440',
                                                                                                                              '393.433',
                                                                                                                              '396.167',
                                                                                                                              '398.554',
                                                                                                                              '398.708',
                                                                                                                              '398.258',
                                                                                                                              '397.032',
                                                                                                                              '397.260',
                                                                                                                              '398.216',
                                                                                                                              '397.597',
                                                                                                                              '395.086',
                                                                                                                              '392.449'],
                                                                                                           'ann': '396.183',
                                                                                                           'djf': '392.440',
                                                                                                           'jja': '397.522',
                                                                                                           'mam': '397.850',
                                                                                                           'son': '396.960'},
                                                                                           'mean_xy': {'CalendarMonths': ['385.058',
                                                                                                                          '386.498',
                                                                                                                          '388.865',
                                                                                                                          '390.276',
                                                                                                                          '389.904',
                                                                                                                          '388.627',
                                                                                                                          '387.996',
                                                                                                                          '388.124',
                                                                                                                          '387.999',
                                                                                                                          '387.973',
                                                                                                                          '386.962',
                                                                                                                          '385.393'],
                                                                                                       'ann': '387.806',
                                                                                                       'djf': '385.652',
                                                                                                       'jja': '388.252',
                                                                                                       'mam': '389.704',
                                                                                                       'son': '387.641'},
                                                                                           'rms_devzm': {'ann': '7.147'},
                                                                                           'rms_xy': {'CalendarMonths': ['11.864',
                                                                                                                         '13.643',
                                                                                                                         '13.938',
                                                                                                                         '14.718',
                                                                                                                         '15.352',
                                                                                                                         '15.804',
                                                                                                                         '15.303',
                                                                                                                         '16.211',
                                                                                                                         '15.700',
                                                                                                                         '13.172',
                                                                                                                         '11.758',
                                                                                                                         '11.313'],
                                                                                                      'ann': '12.493',
                                                                                                      'djf': '11.791',
                                                                                                      'jja': '15.374',
                                                                                                      'mam': '14.256',
                                                                                                      'son': '12.976'},
                                                                                           'rms_xyt': {'ann': '14.065'},
                                                                                           'rms_y': {'ann': '10.247'},
                                                                                           'rmsc_xy': {'CalendarMonths': ['10.001',
                                                                                                                          '11.749',
                                                                                                                          '11.873',
                                                                                                                          '12.170',
                                                                                                                          '12.576',
                                                                                                                          '12.530',
                                                                                                                          '12.351',
                                                                                                                          '13.392',
                                                                                                                          '11.920',
                                                                                                                          '8.994',
                                                                                                                          '8.500',
                                                                                                                          '8.843'],
                                                                                                       'ann': '9.268',
                                                                                                       'djf': '9.640',
                                                                                                       'jja': '12.265',
                                                                                                       'mam': '11.699',
                                                                                                       'son': '9.030'},
                                                                                           'std-obs_xy': {'CalendarMonths': ['33.225',
                                                                                                                             '30.511',
                                                                                                                             '27.241',
                                                                                                                             '25.211',
                                                                                                                             '27.663',
                                                                                                                             '30.160',
                                                                                                                             '31.560',
                                                                                                                             '30.771',
                                                                                                                             '27.031',
                                                                                                                             '24.940',
                                                                                                                             '28.090',
                                                                                                                             '32.319'],
                                                                                                          'ann': '23.973',
                                                                                                          'djf': '31.762',
                                                                                                          'jja': '30.574',
                                                                                                          'mam': '25.018',
                                                                                                          'son': '24.863'},
                                                                                           'std-obs_xy_devzm': {'ann': '16.488'},
                                                                                           'std-obs_xyt': {'ann': '29.278'},
                                                                                           'std_xy': {'CalendarMonths': ['37.689',
                                                                                                                         '37.111',
                                                                                                                         '33.809',
                                                                                                                         '30.436',
                                                                                                                         '29.541',
                                                                                                                         '31.048',
                                                                                                                         '32.674',
                                                                                                                         '32.269',
                                                                                                                         '30.719',
                                                                                                                         '29.293',
                                                                                                                         '31.108',
                                                                                                                         '35.409'],
                                                                                                      'ann': '28.322',
                                                                                                      'djf': '36.435',
                                                                                                      'jja': '31.676',
                                                                                                      'mam': '29.951',
                                                                                                      'son': '29.310'},
                                                                                           'std_xy_devzm': {'ann': '19.031'},
                                                                                           'std_xyt': {'ann': '32.742'}},
                                                                               'global': {'bias_xy': {'CalendarMonths': ['-3.627',
                                                                                                                         '-4.185',
                                                                                                                         '-4.004',
                                                                                                                         '-4.744',
                                                                                                                         '-5.875',
                                                                                                                         '-6.759',
                                                                                                                         '-7.295',
                                                                                                                         '-7.396',
                                                                                                                         '-7.357',
                                                                                                                         '-6.620',
                                                                                                                         '-5.407',
                                                                                                                         '-4.125'],
                                                                                                      'ann': '-5.616',
                                                                                                      'djf': '-3.977',
                                                                                                      'jja': '-7.149',
                                                                                                      'mam': '-4.890',
                                                                                                      'son': '-6.460'},
                                                                                          'cor_xy': {'CalendarMonths': ['0.99',
                                                                                                                        '0.99',
                                                                                                                        '0.99',
                                                                                                                        '0.98',
                                                                                                                        '0.98',
                                                                                                                        '0.98',
                                                                                                                        '0.98',
                                                                                                                        '0.98',
                                                                                                                        '0.98',
                                                                                                                        '0.99',
                                                                                                                        '0.99',
                                                                                                                        '0.99'],
                                                                                                     'ann': '0.989',
                                                                                                     'djf': '0.99',
                                                                                                     'jja': '0.98',
                                                                                                     'mam': '0.99',
                                                                                                     'son': '0.99'},
                                                                                          'mae_xy': {'CalendarMonths': ['9.148',
                                                                                                                        '9.779',
                                                                                                                        '9.709',
                                                                                                                        '9.885',
                                                                                                                        '10.503',
                                                                                                                        '11.872',
                                                                                                                        '12.171',
                                                                                                                        '11.489',
                                                                                                                        '10.825',
                                                                                                                        '9.850',
                                                                                                                        '8.837',
                                                                                                                        '8.965'],
                                                                                                     'ann': '8.710',
                                                                                                     'djf': '8.792',
                                                                                                     'jja': '11.627',
                                                                                                     'mam': '9.459',
                                                                                                     'son': '9.287'},
                                                                                          'mean-obs_xy': {'CalendarMonths': ['335.728',
                                                                                                                             '337.393',
                                                                                                                             '340.130',
                                                                                                                             '344.298',
                                                                                                                             '349.127',
                                                                                                                             '353.233',
                                                                                                                             '355.688',
                                                                                                                             '355.089',
                                                                                                                             '351.105',
                                                                                                                             '345.999',
                                                                                                                             '340.590',
                                                                                                                             '336.853'],
                                                                                                          'ann': '345.436',
                                                                                                          'djf': '336.656',
                                                                                                          'jja': '354.659',
                                                                                                          'mam': '344.602',
                                                                                                          'son': '345.897'},
                                                                                          'mean_xy': {'CalendarMonths': ['332.101',
                                                                                                                         '333.208',
                                                                                                                         '336.126',
                                                                                                                         '339.554',
                                                                                                                         '343.252',
                                                                                                                         '346.474',
                                                                                                                         '348.392',
                                                                                                                         '347.693',
                                                                                                                         '343.747',
                                                                                                                         '339.378',
                                                                                                                         '335.183',
                                                                                                                         '332.728'],
                                                                                                      'ann': '339.820',
                                                                                                      'djf': '332.678',
                                                                                                      'jja': '347.510',
                                                                                                      'mam': '339.712',
                                                                                                      'son': '339.437'},
                                                                                          'rms_devzm': {'ann': '6.482'},
                                                                                          'rms_xy': {'CalendarMonths': ['11.970',
                                                                                                                        '12.931',
                                                                                                                        '12.852',
                                                                                                                        '13.216',
                                                                                                                        '13.956',
                                                                                                                        '15.200',
                                                                                                                        '15.683',
                                                                                                                        '15.501',
                                                                                                                        '14.589',
                                                                                                                        '12.582',
                                                                                                                        '11.386',
                                                                                                                        '11.703'],
                                                                                                     'ann': '11.291',
                                                                                                     'djf': '11.555',
                                                                                                     'jja': '15.045',
                                                                                                     'mam': '12.756',
                                                                                                     'son': '11.966'},
                                                                                          'rms_xyt': {'ann': '13.464'},
                                                                                          'rms_y': {'ann': '9.246'},
                                                                                          'rmsc_xy': {'CalendarMonths': ['11.407',
                                                                                                                         '12.235',
                                                                                                                         '12.212',
                                                                                                                         '12.335',
                                                                                                                         '12.659',
                                                                                                                         '13.615',
                                                                                                                         '13.883',
                                                                                                                         '13.623',
                                                                                                                         '12.598',
                                                                                                                         '10.699',
                                                                                                                         '10.020',
                                                                                                                         '10.952'],
                                                                                                      'ann': '9.795',
                                                                                                      'djf': '10.849',
                                                                                                      'jja': '13.238',
                                                                                                      'mam': '11.781',
                                                                                                      'son': '10.072'},
                                                                                          'std-obs_xy': {'CalendarMonths': ['76.701',
                                                                                                                            '76.945',
                                                                                                                            '74.758',
                                                                                                                            '70.573',
                                                                                                                            '65.681',
                                                                                                                            '64.623',
                                                                                                                            '64.922',
                                                                                                                            '64.852',
                                                                                                                            '65.605',
                                                                                                                            '67.068',
                                                                                                                            '71.210',
                                                                                                                            '75.169'],
                                                                                                         'ann': '66.040',
                                                                                                         'djf': '76.158',
                                                                                                         'jja': '64.597',
                                                                                                         'mam': '69.148',
                                                                                                         'son': '66.670'},
                                                                                          'std-obs_xy_devzm': {'ann': '20.476'},
                                                                                          'std-obs_xyt': {'ann': '70.355'},
                                                                                          'std_xy': {'CalendarMonths': ['76.872',
                                                                                                                        '77.989',
                                                                                                                        '75.200',
                                                                                                                        '69.660',
                                                                                                                        '63.660',
                                                                                                                        '61.094',
                                                                                                                        '61.632',
                                                                                                                        '62.330',
                                                                                                                        '63.397',
                                                                                                                        '65.962',
                                                                                                                        '70.038',
                                                                                                                        '73.631'],
                                                                                                     'ann': '64.867',
                                                                                                     'djf': '76.002',
                                                                                                     'jja': '61.467',
                                                                                                     'mam': '68.405',
                                                                                                     'son': '65.322'},
                                                                                          'std_xy_devzm': {'ann': '21.724'},
                                                                                          'std_xyt': {'ann': '68.957'}}},
                                                                  'source': 'CERES-EBAF-4-1'},
                                                      'units': 'W m-2'}},
                           'provenance': {'commandLine': '/home/lee1043/.conda/envs/pcmdi_metrics_dev_20230822/bin/mean_climate_driver.py '
                                                         '-p basic_param.py -v '
                                                         'rlds',
                                          'conda': {'Platform': 'linux-64',
                                                    'PythonVersion': '3.10.12.final.0',
                                                    'Version': '23.3.1',
                                                    'buildVersion': 'not '
                                                                    'installed'},
                                          'date': '2023-09-19 00:48:30',
                                          'openGL': {'GLX': {'client': {'vendor': 'Mesa '
                                                                                  'Project '
                                                                                  'and '
                                                                                  'SGI',
                                                                        'version': '1.4'},
                                                             'server': {'vendor': 'SGI',
                                                                        'version': '1.4'},
                                                             'version': '1.4'},
                                                     'renderer': 'llvmpipe '
                                                                 '(LLVM 7.0, '
                                                                 '256 bits)',
                                                     'shading language version': '1.20',
                                                     'vendor': 'VMware, Inc.',
                                                     'version': '2.1 Mesa '
                                                                '18.3.4'},
                                          'osAccess': False,
                                          'packages': {'PMP': 'v3.0.2-11-g06b151f',
                                                       'PMPObs': 'See '
                                                                 "'References' "
                                                                 'key below, '
                                                                 'for detailed '
                                                                 'obs '
                                                                 'provenance '
                                                                 'information.',
                                                       'blas': '0.3.23',
                                                       'cdat_info': '8.2.1',
                                                       'cdms': '3.1.5',
                                                       'cdp': '1.7.0',
                                                       'cdtime': '3.1.4',
                                                       'cdutil': '8.2.1',
                                                       'clapack': None,
                                                       'esmf': '8.4.2',
                                                       'esmpy': '8.4.2',
                                                       'genutil': '8.2.1',
                                                       'lapack': '3.9.0',
                                                       'matplotlib': '3.7.1',
                                                       'mesalib': None,
                                                       'numpy': '1.23.5',
                                                       'python': '3.10.10',
                                                       'scipy': '1.11.2',
                                                       'uvcdat': None,
                                                       'vcs': None,
                                                       'vtk': None,
                                                       'xarray': '2023.8.0',
                                                       'xcdat': '0.5.0'},
                                          'platform': {'Name': 'gates.llnl.gov',
                                                       'OS': 'Linux',
                                                       'Version': '3.10.0-1160.71.1.el7.x86_64'},
                                          'userId': 'lee1043'}},
                  'rldscs': {'REFERENCE': {'default': {'CMIP_CMOR_TABLE': 'Amon',
                                                       'MD5sum': '6bc4282d67fe7abe9df467f6268a3c51',
                                                       'RefTrackingDate': 'Wed '
                                                                          'Aug  '
                                                                          '4 '
                                                                          '12:22:57 '
                                                                          '2021',
                                                       'filename': 'rldscs_mon_CERES-EBAF-4-1_PCMDI_gn.200301-201812.AC.v20210804.nc',
                                                       'period': '200301-201812',
                                                       'shape': '(12, 180, '
                                                                '360)',
                                                       'template': 'rldscs/CERES-EBAF-4-1/v20210804/rldscs_mon_CERES-EBAF-4-1_PCMDI_gn.200301-201812.AC.v20210804.nc'}},
                             'RESULTS': {'ACCESS-CM2': {'default': {'source': 'CERES-EBAF-4-1'}}},
                             'provenance': {'commandLine': '/home/lee1043/.conda/envs/pcmdi_metrics_dev_20230822/bin/mean_climate_driver.py '
                                                           '-p basic_param.py '
                                                           '-v rldscs',
                                            'conda': {'Platform': 'linux-64',
                                                      'PythonVersion': '3.10.12.final.0',
                                                      'Version': '23.3.1',
                                                      'buildVersion': 'not '
                                                                      'installed'},
                                            'date': '2023-09-18 23:19:34',
                                            'openGL': {'GLX': {'client': {'vendor': 'Mesa '
                                                                                    'Project '
                                                                                    'and '
                                                                                    'SGI',
                                                                          'version': '1.4'},
                                                               'server': {'vendor': 'SGI',
                                                                          'version': '1.4'},
                                                               'version': '1.4'},
                                                       'renderer': 'llvmpipe '
                                                                   '(LLVM 7.0, '
                                                                   '256 bits)',
                                                       'shading language version': '1.20',
                                                       'vendor': 'VMware, Inc.',
                                                       'version': '2.1 Mesa '
                                                                  '18.3.4'},
                                            'osAccess': False,
                                            'packages': {'PMP': 'v3.0.2-11-g06b151f',
                                                         'PMPObs': 'See '
                                                                   "'References' "
                                                                   'key below, '
                                                                   'for '
                                                                   'detailed '
                                                                   'obs '
                                                                   'provenance '
                                                                   'information.',
                                                         'blas': '0.3.23',
                                                         'cdat_info': '8.2.1',
                                                         'cdms': '3.1.5',
                                                         'cdp': '1.7.0',
                                                         'cdtime': '3.1.4',
                                                         'cdutil': '8.2.1',
                                                         'clapack': None,
                                                         'esmf': '8.4.2',
                                                         'esmpy': '8.4.2',
                                                         'genutil': '8.2.1',
                                                         'lapack': '3.9.0',
                                                         'matplotlib': '3.7.1',
                                                         'mesalib': None,
                                                         'numpy': '1.23.5',
                                                         'python': '3.10.10',
                                                         'scipy': '1.11.2',
                                                         'uvcdat': None,
                                                         'vcs': None,
                                                         'vtk': None,
                                                         'xarray': '2023.8.0',
                                                         'xcdat': '0.5.0'},
                                            'platform': {'Name': 'gates.llnl.gov',
                                                         'OS': 'Linux',
                                                         'Version': '3.10.0-1160.71.1.el7.x86_64'},
                                            'userId': 'lee1043'}},
                  'rltcre': {'REFERENCE': {'default': {'CMIP_CMOR_TABLE': 'Amon',
                                                       'MD5sum': '156246a8d6d37efc2c861ed73a8c86c1',
                                                       'RefTrackingDate': 'Wed '
                                                                          'Aug  '
                                                                          '4 '
                                                                          '12:23:20 '
                                                                          '2021',
                                                       'filename': 'rltcre_mon_CERES-EBAF-4-1_PCMDI_gn.200301-201812.AC.v20210804.nc',
                                                       'period': '200301-201812',
                                                       'shape': '(12, 180, '
                                                                '360)',
                                                       'template': 'rltcre/CERES-EBAF-4-1/v20210804/rltcre_mon_CERES-EBAF-4-1_PCMDI_gn.200301-201812.AC.v20210804.nc'}},
                             'RESULTS': {'ACCESS-CM2': {'default': {'r1i1p1f1': {'InputClimatologyFileName': 'cmip6.historical.ACCESS-CM2.r1i1p1f1.mon.rltcre.198101-200512.AC.v20230823.nc',
                                                                                 'NHEX': {'bias_xy': {'CalendarMonths': ['-0.730',
                                                                                                                         '-0.363',
                                                                                                                         '0.351',
                                                                                                                         '1.556',
                                                                                                                         '1.621',
                                                                                                                         '0.686',
                                                                                                                         '-0.541',
                                                                                                                         '-1.447',
                                                                                                                         '0.061',
                                                                                                                         '0.893',
                                                                                                                         '0.456',
                                                                                                                         '-0.561'],
                                                                                                      'ann': '0.165',
                                                                                                      'djf': '-0.551',
                                                                                                      'jja': '-0.433',
                                                                                                      'mam': '1.196',
                                                                                                      'son': '0.465'},
                                                                                          'cor_xy': {'CalendarMonths': ['0.94',
                                                                                                                        '0.94',
                                                                                                                        '0.92',
                                                                                                                        '0.91',
                                                                                                                        '0.88',
                                                                                                                        '0.84',
                                                                                                                        '0.83',
                                                                                                                        '0.85',
                                                                                                                        '0.82',
                                                                                                                        '0.85',
                                                                                                                        '0.92',
                                                                                                                        '0.94'],
                                                                                                     'ann': '0.956',
                                                                                                     'djf': '0.95',
                                                                                                     'jja': '0.87',
                                                                                                     'mam': '0.93',
                                                                                                     'son': '0.91'},
                                                                                          'mae_xy': {'CalendarMonths': ['4.692',
                                                                                                                        '4.040',
                                                                                                                        '3.785',
                                                                                                                        '3.307',
                                                                                                                        '3.281',
                                                                                                                        '3.785',
                                                                                                                        '3.720',
                                                                                                                        '3.484',
                                                                                                                        '3.287',
                                                                                                                        '3.381',
                                                                                                                        '3.598',
                                                                                                                        '4.000'],
                                                                                                     'ann': '1.919',
                                                                                                     'djf': '4.032',
                                                                                                     'jja': '3.157',
                                                                                                     'mam': '2.764',
                                                                                                     'son': '2.573'},
                                                                                          'mean-obs_xy': {'CalendarMonths': ['23.993',
                                                                                                                             '23.436',
                                                                                                                             '23.385',
                                                                                                                             '22.793',
                                                                                                                             '22.786',
                                                                                                                             '22.213',
                                                                                                                             '21.415',
                                                                                                                             '21.457',
                                                                                                                             '21.872',
                                                                                                                             '23.325',
                                                                                                                             '24.074',
                                                                                                                             '24.567'],
                                                                                                          'ann': '22.943',
                                                                                                          'djf': '23.992',
                                                                                                          'jja': '21.698',
                                                                                                          'mam': '22.978',
                                                                                                          'son': '23.088'},
                                                                                          'mean_xy': {'CalendarMonths': ['23.263',
                                                                                                                         '23.073',
                                                                                                                         '23.736',
                                                                                                                         '24.349',
                                                                                                                         '24.406',
                                                                                                                         '22.899',
                                                                                                                         '20.874',
                                                                                                                         '20.011',
                                                                                                                         '21.933',
                                                                                                                         '24.218',
                                                                                                                         '24.530',
                                                                                                                         '24.006'],
                                                                                                      'ann': '23.108',
                                                                                                      'djf': '23.441',
                                                                                                      'jja': '21.266',
                                                                                                      'mam': '24.174',
                                                                                                      'son': '23.553'},
                                                                                          'rms_devzm': {'ann': '2.366'},
                                                                                          'rms_xy': {'CalendarMonths': ['5.717',
                                                                                                                        '5.158',
                                                                                                                        '4.833',
                                                                                                                        '4.335',
                                                                                                                        '4.223',
                                                                                                                        '5.106',
                                                                                                                        '5.126',
                                                                                                                        '4.406',
                                                                                                                        '4.261',
                                                                                                                        '4.419',
                                                                                                                        '4.605',
                                                                                                                        '5.007'],
                                                                                                     'ann': '2.532',
                                                                                                     'djf': '4.990',
                                                                                                     'jja': '4.075',
                                                                                                     'mam': '3.622',
                                                                                                     'son': '3.338'},
                                                                                          'rms_xyt': {'ann': '4.766'},
                                                                                          'rms_y': {'ann': '0.904'},
                                                                                          'rmsc_xy': {'CalendarMonths': ['5.670',
                                                                                                                         '5.146',
                                                                                                                         '4.820',
                                                                                                                         '4.046',
                                                                                                                         '3.900',
                                                                                                                         '5.060',
                                                                                                                         '5.098',
                                                                                                                         '4.162',
                                                                                                                         '4.261',
                                                                                                                         '4.328',
                                                                                                                         '4.583',
                                                                                                                         '4.975'],
                                                                                                      'ann': '2.527',
                                                                                                      'djf': '4.959',
                                                                                                      'jja': '4.052',
                                                                                                      'mam': '3.419',
                                                                                                      'son': '3.306'},
                                                                                          'std-obs_xy': {'CalendarMonths': ['11.709',
                                                                                                                            '11.054',
                                                                                                                            '9.341',
                                                                                                                            '8.078',
                                                                                                                            '7.944',
                                                                                                                            '9.157',
                                                                                                                            '8.521',
                                                                                                                            '7.296',
                                                                                                                            '6.804',
                                                                                                                            '7.306',
                                                                                                                            '9.635',
                                                                                                                            '11.759'],
                                                                                                         'ann': '7.197',
                                                                                                         'djf': '11.393',
                                                                                                         'jja': '7.873',
                                                                                                         'mam': '7.979',
                                                                                                         'son': '7.316'},
                                                                                          'std-obs_xy_devzm': {'ann': '5.579'},
                                                                                          'std-obs_xyt': {'ann': '9.252'},
                                                                                          'std_xy': {'CalendarMonths': ['14.971',
                                                                                                                        '13.866',
                                                                                                                        '11.836',
                                                                                                                        '9.541',
                                                                                                                        '7.831',
                                                                                                                        '8.143',
                                                                                                                        '8.705',
                                                                                                                        '7.763',
                                                                                                                        '7.275',
                                                                                                                        '8.283',
                                                                                                                        '11.593',
                                                                                                                        '14.017'],
                                                                                                     'ann': '8.252',
                                                                                                     'djf': '14.169',
                                                                                                     'jja': '7.807',
                                                                                                     'mam': '9.131',
                                                                                                     'son': '8.075'},
                                                                                          'std_xy_devzm': {'ann': '6.511'},
                                                                                          'std_xyt': {'ann': '10.752'}},
                                                                                 'SHEX': {'bias_xy': {'CalendarMonths': ['-1.395',
                                                                                                                         '-1.917',
                                                                                                                         '-1.744',
                                                                                                                         '-0.720',
                                                                                                                         '-0.011',
                                                                                                                         '0.828',
                                                                                                                         '1.410',
                                                                                                                         '1.226',
                                                                                                                         '0.868',
                                                                                                                         '0.242',
                                                                                                                         '0.004',
                                                                                                                         '-0.542'],
                                                                                                      'ann': '-0.146',
                                                                                                      'djf': '-1.293',
                                                                                                      'jja': '1.152',
                                                                                                      'mam': '-0.806',
                                                                                                      'son': '0.373'},
                                                                                          'cor_xy': {'CalendarMonths': ['0.88',
                                                                                                                        '0.86',
                                                                                                                        '0.87',
                                                                                                                        '0.85',
                                                                                                                        '0.87',
                                                                                                                        '0.91',
                                                                                                                        '0.92',
                                                                                                                        '0.89',
                                                                                                                        '0.89',
                                                                                                                        '0.86',
                                                                                                                        '0.81',
                                                                                                                        '0.76'],
                                                                                                     'ann': '0.909',
                                                                                                     'djf': '0.86',
                                                                                                     'jja': '0.92',
                                                                                                     'mam': '0.88',
                                                                                                     'son': '0.88'},
                                                                                          'mae_xy': {'CalendarMonths': ['2.706',
                                                                                                                        '3.181',
                                                                                                                        '3.489',
                                                                                                                        '3.808',
                                                                                                                        '4.015',
                                                                                                                        '3.766',
                                                                                                                        '3.957',
                                                                                                                        '4.256',
                                                                                                                        '4.115',
                                                                                                                        '3.392',
                                                                                                                        '3.314',
                                                                                                                        '3.649'],
                                                                                                     'ann': '2.782',
                                                                                                     'djf': '2.927',
                                                                                                     'jja': '3.838',
                                                                                                     'mam': '3.613',
                                                                                                     'son': '3.086'},
                                                                                          'mean-obs_xy': {'CalendarMonths': ['22.999',
                                                                                                                             '23.551',
                                                                                                                             '25.114',
                                                                                                                             '26.424',
                                                                                                                             '27.758',
                                                                                                                             '28.223',
                                                                                                                             '28.031',
                                                                                                                             '27.612',
                                                                                                                             '26.885',
                                                                                                                             '25.615',
                                                                                                                             '23.981',
                                                                                                                             '23.191'],
                                                                                                          'ann': '25.782',
                                                                                                          'djf': '23.247',
                                                                                                          'jja': '27.955',
                                                                                                          'mam': '26.458',
                                                                                                          'son': '25.493'},
                                                                                          'mean_xy': {'CalendarMonths': ['21.604',
                                                                                                                         '21.634',
                                                                                                                         '23.370',
                                                                                                                         '25.704',
                                                                                                                         '27.747',
                                                                                                                         '29.051',
                                                                                                                         '29.441',
                                                                                                                         '28.838',
                                                                                                                         '27.753',
                                                                                                                         '25.857',
                                                                                                                         '23.985',
                                                                                                                         '22.649'],
                                                                                                      'ann': '25.636',
                                                                                                      'djf': '21.955',
                                                                                                      'jja': '29.107',
                                                                                                      'mam': '25.652',
                                                                                                      'son': '25.865'},
                                                                                          'rms_devzm': {'ann': '2.020'},
                                                                                          'rms_xy': {'CalendarMonths': ['3.680',
                                                                                                                        '4.304',
                                                                                                                        '4.519',
                                                                                                                        '4.836',
                                                                                                                        '4.805',
                                                                                                                        '4.584',
                                                                                                                        '4.898',
                                                                                                                        '5.282',
                                                                                                                        '4.988',
                                                                                                                        '4.246',
                                                                                                                        '4.200',
                                                                                                                        '4.863'],
                                                                                                     'ann': '3.437',
                                                                                                     'djf': '3.889',
                                                                                                     'jja': '4.658',
                                                                                                     'mam': '4.369',
                                                                                                     'son': '3.863'},
                                                                                          'rms_xyt': {'ann': '4.600'},
                                                                                          'rms_y': {'ann': '2.781'},
                                                                                          'rmsc_xy': {'CalendarMonths': ['3.405',
                                                                                                                         '3.853',
                                                                                                                         '4.169',
                                                                                                                         '4.782',
                                                                                                                         '4.805',
                                                                                                                         '4.509',
                                                                                                                         '4.691',
                                                                                                                         '5.138',
                                                                                                                         '4.912',
                                                                                                                         '4.239',
                                                                                                                         '4.200',
                                                                                                                         '4.833'],
                                                                                                      'ann': '3.434',
                                                                                                      'djf': '3.668',
                                                                                                      'jja': '4.514',
                                                                                                      'mam': '4.294',
                                                                                                      'son': '3.845'},
                                                                                          'std-obs_xy': {'CalendarMonths': ['7.185',
                                                                                                                            '7.219',
                                                                                                                            '7.299',
                                                                                                                            '8.266',
                                                                                                                            '8.649',
                                                                                                                            '8.852',
                                                                                                                            '8.703',
                                                                                                                            '8.238',
                                                                                                                            '7.549',
                                                                                                                            '7.033',
                                                                                                                            '7.153',
                                                                                                                            '7.394'],
                                                                                                         'ann': '7.414',
                                                                                                         'djf': '7.095',
                                                                                                         'jja': '8.505',
                                                                                                         'mam': '7.929',
                                                                                                         'son': '7.046'},
                                                                                          'std-obs_xy_devzm': {'ann': '3.833'},
                                                                                          'std-obs_xyt': {'ann': '8.049'},
                                                                                          'std_xy': {'CalendarMonths': ['6.229',
                                                                                                                        '7.556',
                                                                                                                        '8.328',
                                                                                                                        '9.102',
                                                                                                                        '9.924',
                                                                                                                        '10.567',
                                                                                                                        '11.137',
                                                                                                                        '10.904',
                                                                                                                        '10.185',
                                                                                                                        '8.363',
                                                                                                                        '6.378',
                                                                                                                        '5.437'],
                                                                                                     'ann': '8.250',
                                                                                                     'djf': '6.259',
                                                                                                     'jja': '10.786',
                                                                                                     'mam': '8.972',
                                                                                                     'son': '8.149'},
                                                                                          'std_xy_devzm': {'ann': '3.679'},
                                                                                          'std_xyt': {'ann': '9.307'}},
                                                                                 'TROPICS': {'bias_xy': {'CalendarMonths': ['-5.745',
                                                                                                                            '-6.057',
                                                                                                                            '-6.548',
                                                                                                                            '-6.556',
                                                                                                                            '-5.279',
                                                                                                                            '-4.412',
                                                                                                                            '-4.115',
                                                                                                                            '-4.028',
                                                                                                                            '-4.912',
                                                                                                                            '-5.206',
                                                                                                                            '-5.420',
                                                                                                                            '-5.605'],
                                                                                                         'ann': '-5.324',
                                                                                                         'djf': '-5.805',
                                                                                                         'jja': '-4.186',
                                                                                                         'mam': '-6.124',
                                                                                                         'son': '-5.179'},
                                                                                             'cor_xy': {'CalendarMonths': ['0.84',
                                                                                                                           '0.80',
                                                                                                                           '0.71',
                                                                                                                           '0.60',
                                                                                                                           '0.57',
                                                                                                                           '0.69',
                                                                                                                           '0.81',
                                                                                                                           '0.84',
                                                                                                                           '0.83',
                                                                                                                           '0.85',
                                                                                                                           '0.83',
                                                                                                                           '0.80'],
                                                                                                        'ann': '0.836',
                                                                                                        'djf': '0.85',
                                                                                                        'jja': '0.82',
                                                                                                        'mam': '0.63',
                                                                                                        'son': '0.87'},
                                                                                             'mae_xy': {'CalendarMonths': ['9.020',
                                                                                                                           '9.946',
                                                                                                                           '10.738',
                                                                                                                           '11.397',
                                                                                                                           '10.843',
                                                                                                                           '9.620',
                                                                                                                           '8.574',
                                                                                                                           '7.886',
                                                                                                                           '7.790',
                                                                                                                           '7.543',
                                                                                                                           '8.309',
                                                                                                                           '9.106'],
                                                                                                        'ann': '7.175',
                                                                                                        'djf': '8.790',
                                                                                                        'jja': '7.908',
                                                                                                        'mam': '10.545',
                                                                                                        'son': '7.006'},
                                                                                             'mean-obs_xy': {'CalendarMonths': ['27.981',
                                                                                                                                '27.685',
                                                                                                                                '27.494',
                                                                                                                                '27.484',
                                                                                                                                '27.050',
                                                                                                                                '26.583',
                                                                                                                                '26.503',
                                                                                                                                '26.172',
                                                                                                                                '26.398',
                                                                                                                                '26.762',
                                                                                                                                '27.614',
                                                                                                                                '27.990'],
                                                                                                             'ann': '27.143',
                                                                                                             'djf': '27.884',
                                                                                                             'jja': '26.418',
                                                                                                             'mam': '27.342',
                                                                                                             'son': '26.926'},
                                                                                             'mean_xy': {'CalendarMonths': ['22.235',
                                                                                                                            '21.628',
                                                                                                                            '20.946',
                                                                                                                            '20.929',
                                                                                                                            '21.771',
                                                                                                                            '22.171',
                                                                                                                            '22.388',
                                                                                                                            '22.144',
                                                                                                                            '21.486',
                                                                                                                            '21.556',
                                                                                                                            '22.194',
                                                                                                                            '22.385'],
                                                                                                         'ann': '21.819',
                                                                                                         'djf': '22.079',
                                                                                                         'jja': '22.233',
                                                                                                         'mam': '21.217',
                                                                                                         'son': '21.747'},
                                                                                             'rms_devzm': {'ann': '6.551'},
                                                                                             'rms_xy': {'CalendarMonths': ['11.896',
                                                                                                                           '13.099',
                                                                                                                           '14.292',
                                                                                                                           '14.957',
                                                                                                                           '14.903',
                                                                                                                           '13.912',
                                                                                                                           '12.257',
                                                                                                                           '11.243',
                                                                                                                           '11.248',
                                                                                                                           '10.067',
                                                                                                                           '10.841',
                                                                                                                           '12.342'],
                                                                                                        'ann': '9.114',
                                                                                                        'djf': '11.231',
                                                                                                        'jja': '11.281',
                                                                                                        'mam': '13.656',
                                                                                                        'son': '9.355'},
                                                                                             'rms_xyt': {'ann': '12.588'},
                                                                                             'rms_y': {'ann': '6.336'},
                                                                                             'rmsc_xy': {'CalendarMonths': ['10.417',
                                                                                                                            '11.614',
                                                                                                                            '12.704',
                                                                                                                            '13.444',
                                                                                                                            '13.937',
                                                                                                                            '13.193',
                                                                                                                            '11.546',
                                                                                                                            '10.497',
                                                                                                                            '10.119',
                                                                                                                            '8.617',
                                                                                                                            '9.389',
                                                                                                                            '10.996'],
                                                                                                         'ann': '7.397',
                                                                                                         'djf': '9.615',
                                                                                                         'jja': '10.475',
                                                                                                         'mam': '12.206',
                                                                                                         'son': '7.790'},
                                                                                             'std-obs_xy': {'CalendarMonths': ['18.242',
                                                                                                                               '17.846',
                                                                                                                               '16.298',
                                                                                                                               '14.497',
                                                                                                                               '15.161',
                                                                                                                               '17.420',
                                                                                                                               '18.995',
                                                                                                                               '18.527',
                                                                                                                               '17.551',
                                                                                                                               '15.913',
                                                                                                                               '16.147',
                                                                                                                               '17.214'],
                                                                                                            'ann': '13.259',
                                                                                                            'djf': '17.404',
                                                                                                            'jja': '17.932',
                                                                                                            'mam': '13.833',
                                                                                                            'son': '15.312'},
                                                                                             'std-obs_xy_devzm': {'ann': '11.268'},
                                                                                             'std-obs_xyt': {'ann': '17.047'},
                                                                                             'std_xy': {'CalendarMonths': ['18.368',
                                                                                                                           '18.705',
                                                                                                                           '16.883',
                                                                                                                           '15.368',
                                                                                                                           '14.930',
                                                                                                                           '16.244',
                                                                                                                           '18.602',
                                                                                                                           '18.937',
                                                                                                                           '17.577',
                                                                                                                           '15.577',
                                                                                                                           '15.601',
                                                                                                                           '17.197'],
                                                                                                        'ann': '12.451',
                                                                                                        'djf': '17.221',
                                                                                                        'jja': '17.070',
                                                                                                        'mam': '14.403',
                                                                                                        'son': '15.212'},
                                                                                             'std_xy_devzm': {'ann': '10.605'},
                                                                                             'std_xyt': {'ann': '17.063'}},
                                                                                 'global': {'bias_xy': {'CalendarMonths': ['-3.404',
                                                                                                                           '-3.599',
                                                                                                                           '-3.623',
                                                                                                                           '-3.069',
                                                                                                                           '-2.237',
                                                                                                                           '-1.828',
                                                                                                                           '-1.840',
                                                                                                                           '-2.069',
                                                                                                                           '-2.224',
                                                                                                                           '-2.319',
                                                                                                                           '-2.595',
                                                                                                                           '-3.078'],
                                                                                                        'ann': '-2.657',
                                                                                                        'djf': '-3.363',
                                                                                                        'jja': '-1.913',
                                                                                                        'mam': '-2.965',
                                                                                                        'son': '-2.380'},
                                                                                            'cor_xy': {'CalendarMonths': ['0.84',
                                                                                                                          '0.81',
                                                                                                                          '0.73',
                                                                                                                          '0.64',
                                                                                                                          '0.63',
                                                                                                                          '0.73',
                                                                                                                          '0.82',
                                                                                                                          '0.84',
                                                                                                                          '0.82',
                                                                                                                          '0.83',
                                                                                                                          '0.82',
                                                                                                                          '0.81'],
                                                                                                       'ann': '0.832',
                                                                                                       'djf': '0.85',
                                                                                                       'jja': '0.83',
                                                                                                       'mam': '0.67',
                                                                                                       'son': '0.85'},
                                                                                            'mae_xy': {'CalendarMonths': ['6.359',
                                                                                                                          '6.779',
                                                                                                                          '7.188',
                                                                                                                          '7.477',
                                                                                                                          '7.245',
                                                                                                                          '6.698',
                                                                                                                          '6.206',
                                                                                                                          '5.878',
                                                                                                                          '5.745',
                                                                                                                          '5.465',
                                                                                                                          '5.883',
                                                                                                                          '6.465'],
                                                                                                       'ann': '4.763',
                                                                                                       'djf': '6.135',
                                                                                                       'jja': '5.703',
                                                                                                       'mam': '6.867',
                                                                                                       'son': '4.917'},
                                                                                            'mean-obs_xy': {'CalendarMonths': ['25.738',
                                                                                                                               '25.589',
                                                                                                                               '25.872',
                                                                                                                               '26.047',
                                                                                                                               '26.161',
                                                                                                                               '25.901',
                                                                                                                               '25.613',
                                                                                                                               '25.353',
                                                                                                                               '25.388',
                                                                                                                               '25.616',
                                                                                                                               '25.820',
                                                                                                                               '25.934'],
                                                                                                            'ann': '25.753',
                                                                                                            'djf': '25.752',
                                                                                                            'jja': '25.623',
                                                                                                            'mam': '26.030',
                                                                                                            'son': '25.608'},
                                                                                            'mean_xy': {'CalendarMonths': ['22.334',
                                                                                                                           '21.990',
                                                                                                                           '22.250',
                                                                                                                           '22.978',
                                                                                                                           '23.924',
                                                                                                                           '24.073',
                                                                                                                           '23.773',
                                                                                                                           '23.284',
                                                                                                                           '23.165',
                                                                                                                           '23.297',
                                                                                                                           '23.226',
                                                                                                                           '22.856'],
                                                                                                        'ann': '23.096',
                                                                                                        'djf': '22.389',
                                                                                                        'jja': '23.709',
                                                                                                        'mam': '23.065',
                                                                                                        'son': '23.228'},
                                                                                            'rms_devzm': {'ann': '4.886'},
                                                                                            'rms_xy': {'CalendarMonths': ['9.073',
                                                                                                                          '9.852',
                                                                                                                          '10.634',
                                                                                                                          '11.064',
                                                                                                                          '11.013',
                                                                                                                          '10.418',
                                                                                                                          '9.364',
                                                                                                                          '8.662',
                                                                                                                          '8.604',
                                                                                                                          '7.750',
                                                                                                                          '8.275',
                                                                                                                          '9.399'],
                                                                                                       'ann': '6.789',
                                                                                                       'djf': '8.548',
                                                                                                       'jja': '8.556',
                                                                                                       'mam': '10.064',
                                                                                                       'son': '7.090'},
                                                                                            'rms_xyt': {'ann': '9.509'},
                                                                                            'rms_y': {'ann': '4.713'},
                                                                                            'rmsc_xy': {'CalendarMonths': ['8.410',
                                                                                                                           '9.172',
                                                                                                                           '9.998',
                                                                                                                           '10.629',
                                                                                                                           '10.783',
                                                                                                                           '10.257',
                                                                                                                           '9.182',
                                                                                                                           '8.412',
                                                                                                                           '8.311',
                                                                                                                           '7.395',
                                                                                                                           '7.858',
                                                                                                                           '8.880'],
                                                                                                        'ann': '6.247',
                                                                                                        'djf': '7.859',
                                                                                                        'jja': '8.339',
                                                                                                        'mam': '9.618',
                                                                                                        'son': '6.679'},
                                                                                            'std-obs_xy': {'CalendarMonths': ['14.789',
                                                                                                                              '14.395',
                                                                                                                              '13.075',
                                                                                                                              '11.925',
                                                                                                                              '12.381',
                                                                                                                              '14.045',
                                                                                                                              '14.958',
                                                                                                                              '14.398',
                                                                                                                              '13.565',
                                                                                                                              '12.421',
                                                                                                                              '13.022',
                                                                                                                              '14.172'],
                                                                                                           'ann': '10.841',
                                                                                                           'djf': '14.181',
                                                                                                           'jja': '14.138',
                                                                                                           'mam': '11.426',
                                                                                                           'son': '12.061'},
                                                                                            'std-obs_xy_devzm': {'ann': '8.657'},
                                                                                            'std-obs_xyt': {'ann': '13.632'},
                                                                                            'std_xy': {'CalendarMonths': ['15.323',
                                                                                                                          '15.416',
                                                                                                                          '14.021',
                                                                                                                          '12.884',
                                                                                                                          '12.547',
                                                                                                                          '13.593',
                                                                                                                          '15.299',
                                                                                                                          '15.334',
                                                                                                                          '14.167',
                                                                                                                          '12.622',
                                                                                                                          '12.906',
                                                                                                                          '14.312'],
                                                                                                       'ann': '10.676',
                                                                                                       'djf': '14.444',
                                                                                                       'jja': '14.138',
                                                                                                       'mam': '12.181',
                                                                                                       'son': '12.307'},
                                                                                            'std_xy_devzm': {'ann': '8.379'},
                                                                                            'std_xyt': {'ann': '14.091'}}},
                                                                    'source': 'CERES-EBAF-4-1'},
                                                        'units': 'W m-2'}},
                             'provenance': {'commandLine': '/home/lee1043/.conda/envs/pcmdi_metrics_dev_20230822/bin/mean_climate_driver.py '
                                                           '-p basic_param.py '
                                                           '-v rltcre',
                                            'conda': {'Platform': 'linux-64',
                                                      'PythonVersion': '3.10.12.final.0',
                                                      'Version': '23.3.1',
                                                      'buildVersion': 'not '
                                                                      'installed'},
                                            'date': '2023-09-19 00:51:04',
                                            'openGL': {'GLX': {'client': {'vendor': 'Mesa '
                                                                                    'Project '
                                                                                    'and '
                                                                                    'SGI',
                                                                          'version': '1.4'},
                                                               'server': {'vendor': 'SGI',
                                                                          'version': '1.4'},
                                                               'version': '1.4'},
                                                       'renderer': 'llvmpipe '
                                                                   '(LLVM 7.0, '
                                                                   '256 bits)',
                                                       'shading language version': '1.20',
                                                       'vendor': 'VMware, Inc.',
                                                       'version': '2.1 Mesa '
                                                                  '18.3.4'},
                                            'osAccess': False,
                                            'packages': {'PMP': 'v3.0.2-11-g06b151f',
                                                         'PMPObs': 'See '
                                                                   "'References' "
                                                                   'key below, '
                                                                   'for '
                                                                   'detailed '
                                                                   'obs '
                                                                   'provenance '
                                                                   'information.',
                                                         'blas': '0.3.23',
                                                         'cdat_info': '8.2.1',
                                                         'cdms': '3.1.5',
                                                         'cdp': '1.7.0',
                                                         'cdtime': '3.1.4',
                                                         'cdutil': '8.2.1',
                                                         'clapack': None,
                                                         'esmf': '8.4.2',
                                                         'esmpy': '8.4.2',
                                                         'genutil': '8.2.1',
                                                         'lapack': '3.9.0',
                                                         'matplotlib': '3.7.1',
                                                         'mesalib': None,
                                                         'numpy': '1.23.5',
                                                         'python': '3.10.10',
                                                         'scipy': '1.11.2',
                                                         'uvcdat': None,
                                                         'vcs': None,
                                                         'vtk': None,
                                                         'xarray': '2023.8.0',
                                                         'xcdat': '0.5.0'},
                                            'platform': {'Name': 'gates.llnl.gov',
                                                         'OS': 'Linux',
                                                         'Version': '3.10.0-1160.71.1.el7.x86_64'},
                                            'userId': 'lee1043'}},
                  'rlus': {'REFERENCE': {'default': {'CMIP_CMOR_TABLE': 'Amon',
                                                     'MD5sum': 'b945dddda16784a5059e4fccfb1b47d8',
                                                     'RefTrackingDate': 'Wed '
                                                                        'Aug  '
                                                                        '4 '
                                                                        '12:22:51 '
                                                                        '2021',
                                                     'filename': 'rlus_mon_CERES-EBAF-4-1_PCMDI_gn.200301-201812.AC.v20210804.nc',
                                                     'period': '200301-201812',
                                                     'shape': '(12, 180, 360)',
                                                     'template': 'rlus/CERES-EBAF-4-1/v20210804/rlus_mon_CERES-EBAF-4-1_PCMDI_gn.200301-201812.AC.v20210804.nc'}},
                           'RESULTS': {'ACCESS-CM2': {'default': {'r1i1p1f1': {'InputClimatologyFileName': 'cmip6.historical.ACCESS-CM2.r1i1p1f1.mon.rlus.198101-200512.AC.v20230823.nc',
                                                                               'NHEX': {'bias_xy': {'CalendarMonths': ['-7.161',
                                                                                                                       '-5.796',
                                                                                                                       '-5.898',
                                                                                                                       '-6.908',
                                                                                                                       '-8.831',
                                                                                                                       '-8.003',
                                                                                                                       '-6.760',
                                                                                                                       '-7.577',
                                                                                                                       '-8.533',
                                                                                                                       '-7.150',
                                                                                                                       '-5.835',
                                                                                                                       '-6.463'],
                                                                                                    'ann': '-7.076',
                                                                                                    'djf': '-6.473',
                                                                                                    'jja': '-7.454',
                                                                                                    'mam': '-7.234',
                                                                                                    'son': '-7.173'},
                                                                                        'cor_xy': {'CalendarMonths': ['0.98',
                                                                                                                      '0.98',
                                                                                                                      '0.98',
                                                                                                                      '0.98',
                                                                                                                      '0.98',
                                                                                                                      '0.98',
                                                                                                                      '0.97',
                                                                                                                      '0.97',
                                                                                                                      '0.98',
                                                                                                                      '0.99',
                                                                                                                      '0.99',
                                                                                                                      '0.98'],
                                                                                                   'ann': '0.989',
                                                                                                   'djf': '0.98',
                                                                                                   'jja': '0.98',
                                                                                                   'mam': '0.99',
                                                                                                   'son': '0.99'},
                                                                                        'mae_xy': {'CalendarMonths': ['11.261',
                                                                                                                      '11.132',
                                                                                                                      '10.105',
                                                                                                                      '9.382',
                                                                                                                      '11.063',
                                                                                                                      '10.706',
                                                                                                                      '10.722',
                                                                                                                      '11.087',
                                                                                                                      '10.008',
                                                                                                                      '8.998',
                                                                                                                      '9.128',
                                                                                                                      '10.345'],
                                                                                                   'ann': '8.577',
                                                                                                   'djf': '10.570',
                                                                                                   'jja': '10.510',
                                                                                                   'mam': '9.296',
                                                                                                   'son': '8.604'},
                                                                                        'mean-obs_xy': {'CalendarMonths': ['299.246',
                                                                                                                           '301.208',
                                                                                                                           '315.362',
                                                                                                                           '338.699',
                                                                                                                           '366.165',
                                                                                                                           '389.889',
                                                                                                                           '402.841',
                                                                                                                           '401.248',
                                                                                                                           '382.632',
                                                                                                                           '355.037',
                                                                                                                           '326.423',
                                                                                                                           '307.215'],
                                                                                                        'ann': '348.830',
                                                                                                        'djf': '302.506',
                                                                                                        'jja': '397.940',
                                                                                                        'mam': '340.544',
                                                                                                        'son': '354.693'},
                                                                                        'mean_xy': {'CalendarMonths': ['292.085',
                                                                                                                       '295.411',
                                                                                                                       '309.465',
                                                                                                                       '331.790',
                                                                                                                       '357.334',
                                                                                                                       '381.885',
                                                                                                                       '396.081',
                                                                                                                       '393.671',
                                                                                                                       '374.098',
                                                                                                                       '347.887',
                                                                                                                       '320.588',
                                                                                                                       '300.752'],
                                                                                                    'ann': '341.754',
                                                                                                    'djf': '296.032',
                                                                                                    'jja': '390.485',
                                                                                                    'mam': '333.310',
                                                                                                    'son': '347.520'},
                                                                                        'rms_devzm': {'ann': '7.183'},
                                                                                        'rms_xy': {'CalendarMonths': ['15.564',
                                                                                                                      '15.392',
                                                                                                                      '13.534',
                                                                                                                      '12.358',
                                                                                                                      '14.102',
                                                                                                                      '13.194',
                                                                                                                      '13.424',
                                                                                                                      '13.762',
                                                                                                                      '12.575',
                                                                                                                      '12.125',
                                                                                                                      '12.551',
                                                                                                                      '14.130'],
                                                                                                   'ann': '11.152',
                                                                                                   'djf': '14.626',
                                                                                                   'jja': '12.809',
                                                                                                   'mam': '12.234',
                                                                                                   'son': '11.463'},
                                                                                        'rms_xyt': {'ann': '13.559'},
                                                                                        'rms_y': {'ann': '8.531'},
                                                                                        'rmsc_xy': {'CalendarMonths': ['13.819',
                                                                                                                       '14.259',
                                                                                                                       '12.181',
                                                                                                                       '10.247',
                                                                                                                       '10.995',
                                                                                                                       '10.490',
                                                                                                                       '11.597',
                                                                                                                       '11.489',
                                                                                                                       '9.237',
                                                                                                                       '9.793',
                                                                                                                       '11.112',
                                                                                                                       '12.565'],
                                                                                                    'ann': '8.620',
                                                                                                    'djf': '13.115',
                                                                                                    'jja': '10.416',
                                                                                                    'mam': '9.866',
                                                                                                    'son': '8.941'},
                                                                                        'std-obs_xy': {'CalendarMonths': ['70.533',
                                                                                                                          '68.526',
                                                                                                                          '62.998',
                                                                                                                          '53.747',
                                                                                                                          '45.765',
                                                                                                                          '46.395',
                                                                                                                          '48.664',
                                                                                                                          '49.026',
                                                                                                                          '51.211',
                                                                                                                          '57.364',
                                                                                                                          '66.264',
                                                                                                                          '70.136'],
                                                                                                       'ann': '53.085',
                                                                                                       'djf': '69.592',
                                                                                                       'jja': '47.579',
                                                                                                       'mam': '52.509',
                                                                                                       'son': '57.156'},
                                                                                        'std-obs_xy_devzm': {'ann': '24.334'},
                                                                                        'std-obs_xyt': {'ann': '69.393'},
                                                                                        'std_xy': {'CalendarMonths': ['74.521',
                                                                                                                      '72.613',
                                                                                                                      '66.516',
                                                                                                                      '56.735',
                                                                                                                      '49.605',
                                                                                                                      '49.118',
                                                                                                                      '50.878',
                                                                                                                      '50.751',
                                                                                                                      '52.522',
                                                                                                                      '58.321',
                                                                                                                      '66.621',
                                                                                                                      '72.357'],
                                                                                                   'ann': '55.915',
                                                                                                   'djf': '72.955',
                                                                                                   'jja': '49.884',
                                                                                                   'mam': '56.122',
                                                                                                   'son': '58.136'},
                                                                                        'std_xy_devzm': {'ann': '24.015'},
                                                                                        'std_xyt': {'ann': '71.186'}},
                                                                               'SHEX': {'bias_xy': {'CalendarMonths': ['3.916',
                                                                                                                       '4.070',
                                                                                                                       '4.079',
                                                                                                                       '3.724',
                                                                                                                       '2.715',
                                                                                                                       '2.232',
                                                                                                                       '1.995',
                                                                                                                       '1.559',
                                                                                                                       '1.702',
                                                                                                                       '1.275',
                                                                                                                       '1.374',
                                                                                                                       '2.403'],
                                                                                                    'ann': '2.587',
                                                                                                    'djf': '3.475',
                                                                                                    'jja': '1.928',
                                                                                                    'mam': '3.497',
                                                                                                    'son': '1.452'},
                                                                                        'cor_xy': {'CalendarMonths': ['0.99',
                                                                                                                      '0.99',
                                                                                                                      '0.99',
                                                                                                                      '0.99',
                                                                                                                      '0.99',
                                                                                                                      '0.99',
                                                                                                                      '0.99',
                                                                                                                      '0.99',
                                                                                                                      '0.99',
                                                                                                                      '1.00',
                                                                                                                      '0.99',
                                                                                                                      '0.99'],
                                                                                                   'ann': '0.996',
                                                                                                   'djf': '0.99',
                                                                                                   'jja': '0.99',
                                                                                                   'mam': '1.00',
                                                                                                   'son': '1.00'},
                                                                                        'mae_xy': {'CalendarMonths': ['7.073',
                                                                                                                      '6.550',
                                                                                                                      '6.350',
                                                                                                                      '6.188',
                                                                                                                      '5.926',
                                                                                                                      '5.954',
                                                                                                                      '6.415',
                                                                                                                      '6.659',
                                                                                                                      '6.484',
                                                                                                                      '5.824',
                                                                                                                      '6.312',
                                                                                                                      '7.119'],
                                                                                                   'ann': '5.428',
                                                                                                   'djf': '6.532',
                                                                                                   'jja': '6.161',
                                                                                                   'mam': '5.978',
                                                                                                   'son': '5.853'},
                                                                                        'mean-obs_xy': {'CalendarMonths': ['359.285',
                                                                                                                           '358.108',
                                                                                                                           '351.754',
                                                                                                                           '343.620',
                                                                                                                           '336.138',
                                                                                                                           '329.532',
                                                                                                                           '325.085',
                                                                                                                           '324.001',
                                                                                                                           '326.098',
                                                                                                                           '333.209',
                                                                                                                           '343.930',
                                                                                                                           '354.011'],
                                                                                                        'ann': '340.397',
                                                                                                        'djf': '357.168',
                                                                                                        'jja': '326.218',
                                                                                                        'mam': '343.680',
                                                                                                        'son': '334.425'},
                                                                                        'mean_xy': {'CalendarMonths': ['363.201',
                                                                                                                       '362.178',
                                                                                                                       '355.832',
                                                                                                                       '347.344',
                                                                                                                       '338.852',
                                                                                                                       '331.764',
                                                                                                                       '327.079',
                                                                                                                       '325.560',
                                                                                                                       '327.799',
                                                                                                                       '334.485',
                                                                                                                       '345.304',
                                                                                                                       '356.414'],
                                                                                                    'ann': '342.984',
                                                                                                    'djf': '360.643',
                                                                                                    'jja': '328.146',
                                                                                                    'mam': '347.176',
                                                                                                    'son': '335.878'},
                                                                                        'rms_devzm': {'ann': '5.953'},
                                                                                        'rms_xy': {'CalendarMonths': ['9.399',
                                                                                                                      '8.667',
                                                                                                                      '8.766',
                                                                                                                      '9.125',
                                                                                                                      '8.739',
                                                                                                                      '8.624',
                                                                                                                      '8.976',
                                                                                                                      '9.031',
                                                                                                                      '8.594',
                                                                                                                      '7.318',
                                                                                                                      '8.345',
                                                                                                                      '9.866'],
                                                                                                   'ann': '7.149',
                                                                                                   'djf': '8.642',
                                                                                                   'jja': '8.538',
                                                                                                   'mam': '8.418',
                                                                                                   'son': '7.365'},
                                                                                        'rms_xyt': {'ann': '8.787'},
                                                                                        'rms_y': {'ann': '3.960'},
                                                                                        'rmsc_xy': {'CalendarMonths': ['8.544',
                                                                                                                       '7.653',
                                                                                                                       '7.759',
                                                                                                                       '8.331',
                                                                                                                       '8.306',
                                                                                                                       '8.330',
                                                                                                                       '8.751',
                                                                                                                       '8.895',
                                                                                                                       '8.424',
                                                                                                                       '7.206',
                                                                                                                       '8.231',
                                                                                                                       '9.569'],
                                                                                                    'ann': '6.665',
                                                                                                    'djf': '7.913',
                                                                                                    'jja': '8.318',
                                                                                                    'mam': '7.657',
                                                                                                    'son': '7.221'},
                                                                                        'std-obs_xy': {'CalendarMonths': ['59.975',
                                                                                                                          '67.510',
                                                                                                                          '74.744',
                                                                                                                          '77.977',
                                                                                                                          '77.405',
                                                                                                                          '77.012',
                                                                                                                          '77.146',
                                                                                                                          '75.905',
                                                                                                                          '74.051',
                                                                                                                          '68.391',
                                                                                                                          '60.495',
                                                                                                                          '56.784'],
                                                                                                       'ann': '69.880',
                                                                                                       'djf': '61.373',
                                                                                                       'jja': '76.638',
                                                                                                       'mam': '76.565',
                                                                                                       'son': '67.381'},
                                                                                        'std-obs_xy_devzm': {'ann': '17.971'},
                                                                                        'std-obs_xyt': {'ann': '72.114'},
                                                                                        'std_xy': {'CalendarMonths': ['54.969',
                                                                                                                      '65.049',
                                                                                                                      '73.394',
                                                                                                                      '76.145',
                                                                                                                      '76.038',
                                                                                                                      '75.638',
                                                                                                                      '75.402',
                                                                                                                      '74.769',
                                                                                                                      '72.022',
                                                                                                                      '65.578',
                                                                                                                      '56.616',
                                                                                                                      '51.874'],
                                                                                                   'ann': '67.257',
                                                                                                   'djf': '57.077',
                                                                                                   'jja': '75.213',
                                                                                                   'mam': '75.046',
                                                                                                   'son': '64.387'},
                                                                                        'std_xy_devzm': {'ann': '16.117'},
                                                                                        'std_xyt': {'ann': '69.970'}},
                                                                               'TROPICS': {'bias_xy': {'CalendarMonths': ['1.761',
                                                                                                                          '1.474',
                                                                                                                          '1.700',
                                                                                                                          '1.307',
                                                                                                                          '0.874',
                                                                                                                          '1.415',
                                                                                                                          '2.142',
                                                                                                                          '1.628',
                                                                                                                          '1.249',
                                                                                                                          '1.140',
                                                                                                                          '1.388',
                                                                                                                          '1.480'],
                                                                                                       'ann': '1.463',
                                                                                                       'djf': '1.573',
                                                                                                       'jja': '1.724',
                                                                                                       'mam': '1.286',
                                                                                                       'son': '1.260'},
                                                                                           'cor_xy': {'CalendarMonths': ['0.94',
                                                                                                                         '0.92',
                                                                                                                         '0.89',
                                                                                                                         '0.88',
                                                                                                                         '0.92',
                                                                                                                         '0.93',
                                                                                                                         '0.92',
                                                                                                                         '0.91',
                                                                                                                         '0.88',
                                                                                                                         '0.88',
                                                                                                                         '0.90',
                                                                                                                         '0.93'],
                                                                                                      'ann': '0.878',
                                                                                                      'djf': '0.94',
                                                                                                      'jja': '0.92',
                                                                                                      'mam': '0.89',
                                                                                                      'son': '0.87'},
                                                                                           'mae_xy': {'CalendarMonths': ['6.340',
                                                                                                                         '6.411',
                                                                                                                         '6.940',
                                                                                                                         '7.182',
                                                                                                                         '6.944',
                                                                                                                         '7.387',
                                                                                                                         '7.734',
                                                                                                                         '7.599',
                                                                                                                         '7.515',
                                                                                                                         '6.988',
                                                                                                                         '6.870',
                                                                                                                         '6.444'],
                                                                                                      'ann': '6.318',
                                                                                                      'djf': '6.189',
                                                                                                      'jja': '7.406',
                                                                                                      'mam': '6.815',
                                                                                                      'son': '6.921'},
                                                                                           'mean-obs_xy': {'CalendarMonths': ['449.182',
                                                                                                                              '451.686',
                                                                                                                              '454.553',
                                                                                                                              '456.565',
                                                                                                                              '456.304',
                                                                                                                              '454.389',
                                                                                                                              '452.477',
                                                                                                                              '452.764',
                                                                                                                              '454.251',
                                                                                                                              '454.553',
                                                                                                                              '452.157',
                                                                                                                              '449.699'],
                                                                                                           'ann': '453.215',
                                                                                                           'djf': '450.194',
                                                                                                           'jja': '453.218',
                                                                                                           'mam': '455.840',
                                                                                                           'son': '453.644'},
                                                                                           'mean_xy': {'CalendarMonths': ['450.942',
                                                                                                                          '453.161',
                                                                                                                          '456.253',
                                                                                                                          '457.872',
                                                                                                                          '457.178',
                                                                                                                          '455.804',
                                                                                                                          '454.619',
                                                                                                                          '454.393',
                                                                                                                          '455.499',
                                                                                                                          '455.692',
                                                                                                                          '453.545',
                                                                                                                          '451.179'],
                                                                                                       'ann': '454.678',
                                                                                                       'djf': '451.767',
                                                                                                       'jja': '454.942',
                                                                                                       'mam': '457.126',
                                                                                                       'son': '454.904'},
                                                                                           'rms_devzm': {'ann': '8.321'},
                                                                                           'rms_xy': {'CalendarMonths': ['9.029',
                                                                                                                         '9.439',
                                                                                                                         '10.338',
                                                                                                                         '10.499',
                                                                                                                         '9.901',
                                                                                                                         '10.706',
                                                                                                                         '11.629',
                                                                                                                         '11.365',
                                                                                                                         '11.173',
                                                                                                                         '10.309',
                                                                                                                         '9.860',
                                                                                                                         '9.121'],
                                                                                                      'ann': '9.091',
                                                                                                      'djf': '8.945',
                                                                                                      'jja': '10.891',
                                                                                                      'mam': '9.929',
                                                                                                      'son': '10.090'},
                                                                                           'rms_xyt': {'ann': '10.281'},
                                                                                           'rms_y': {'ann': '3.663'},
                                                                                           'rmsc_xy': {'CalendarMonths': ['8.855',
                                                                                                                          '9.323',
                                                                                                                          '10.198',
                                                                                                                          '10.417',
                                                                                                                          '9.863',
                                                                                                                          '10.612',
                                                                                                                          '11.430',
                                                                                                                          '11.247',
                                                                                                                          '11.103',
                                                                                                                          '10.246',
                                                                                                                          '9.761',
                                                                                                                          '9.000'],
                                                                                                       'ann': '8.973',
                                                                                                       'djf': '8.805',
                                                                                                       'jja': '10.753',
                                                                                                       'mam': '9.845',
                                                                                                       'son': '10.011'},
                                                                                           'std-obs_xy': {'CalendarMonths': ['24.817',
                                                                                                                             '21.966',
                                                                                                                             '19.442',
                                                                                                                             '20.215',
                                                                                                                             '23.566',
                                                                                                                             '26.709',
                                                                                                                             '27.209',
                                                                                                                             '25.701',
                                                                                                                             '22.716',
                                                                                                                             '20.705',
                                                                                                                             '20.947',
                                                                                                                             '24.284'],
                                                                                                          'ann': '17.446',
                                                                                                          'djf': '23.325',
                                                                                                          'jja': '26.174',
                                                                                                          'mam': '19.614',
                                                                                                          'son': '19.779'},
                                                                                           'std-obs_xy_devzm': {'ann': '14.162'},
                                                                                           'std-obs_xyt': {'ann': '23.430'},
                                                                                           'std_xy': {'CalendarMonths': ['26.420',
                                                                                                                         '24.380',
                                                                                                                         '21.945',
                                                                                                                         '21.854',
                                                                                                                         '24.650',
                                                                                                                         '28.683',
                                                                                                                         '29.322',
                                                                                                                         '26.604',
                                                                                                                         '23.156',
                                                                                                                         '20.972',
                                                                                                                         '21.673',
                                                                                                                         '25.141'],
                                                                                                      'ann': '18.588',
                                                                                                      'djf': '25.012',
                                                                                                      'jja': '27.882',
                                                                                                      'mam': '21.205',
                                                                                                      'son': '20.181'},
                                                                                           'std_xy_devzm': {'ann': '13.777'},
                                                                                           'std_xyt': {'ann': '24.798'}},
                                                                               'global': {'bias_xy': {'CalendarMonths': ['0.069',
                                                                                                                         '0.306',
                                                                                                                         '0.395',
                                                                                                                         '-0.143',
                                                                                                                         '-1.092',
                                                                                                                         '-0.735',
                                                                                                                         '-0.120',
                                                                                                                         '-0.690',
                                                                                                                         '-1.083',
                                                                                                                         '-0.899',
                                                                                                                         '-0.421',
                                                                                                                         '-0.275'],
                                                                                                      'ann': '-0.391',
                                                                                                      'djf': '0.037',
                                                                                                      'jja': '-0.520',
                                                                                                      'mam': '-0.291',
                                                                                                      'son': '-0.800'},
                                                                                          'cor_xy': {'CalendarMonths': ['0.99',
                                                                                                                        '0.99',
                                                                                                                        '0.99',
                                                                                                                        '0.99',
                                                                                                                        '0.99',
                                                                                                                        '0.99',
                                                                                                                        '0.99',
                                                                                                                        '0.99',
                                                                                                                        '0.99',
                                                                                                                        '0.99',
                                                                                                                        '0.99',
                                                                                                                        '0.99'],
                                                                                                     'ann': '0.992',
                                                                                                     'djf': '0.99',
                                                                                                     'jja': '0.99',
                                                                                                     'mam': '0.99',
                                                                                                     'son': '0.99'},
                                                                                          'mae_xy': {'CalendarMonths': ['7.754',
                                                                                                                        '7.626',
                                                                                                                        '7.584',
                                                                                                                        '7.483',
                                                                                                                        '7.719',
                                                                                                                        '7.859',
                                                                                                                        '8.151',
                                                                                                                        '8.236',
                                                                                                                        '7.880',
                                                                                                                        '7.199',
                                                                                                                        '7.295',
                                                                                                                        '7.588'],
                                                                                                     'ann': '6.660',
                                                                                                     'djf': '7.370',
                                                                                                     'jja': '7.871',
                                                                                                     'mam': '7.226',
                                                                                                     'son': '7.075'},
                                                                                          'mean-obs_xy': {'CalendarMonths': ['389.223',
                                                                                                                             '390.672',
                                                                                                                             '394.056',
                                                                                                                             '398.862',
                                                                                                                             '403.727',
                                                                                                                             '407.049',
                                                                                                                             '408.220',
                                                                                                                             '407.694',
                                                                                                                             '404.308',
                                                                                                                             '399.338',
                                                                                                                             '393.667',
                                                                                                                             '390.156'],
                                                                                                          'ann': '398.914',
                                                                                                          'djf': '390.016',
                                                                                                          'jja': '407.648',
                                                                                                          'mam': '398.976',
                                                                                                          'son': '399.102'},
                                                                                          'mean_xy': {'CalendarMonths': ['389.293',
                                                                                                                         '390.978',
                                                                                                                         '394.451',
                                                                                                                         '398.720',
                                                                                                                         '402.636',
                                                                                                                         '406.314',
                                                                                                                         '408.100',
                                                                                                                         '407.004',
                                                                                                                         '403.224',
                                                                                                                         '398.439',
                                                                                                                         '393.246',
                                                                                                                         '389.881'],
                                                                                                      'ann': '398.524',
                                                                                                      'djf': '390.052',
                                                                                                      'jja': '407.129',
                                                                                                      'mam': '398.685',
                                                                                                      'son': '398.301'},
                                                                                          'rms_devzm': {'ann': '7.508'},
                                                                                          'rms_xy': {'CalendarMonths': ['11.109',
                                                                                                                        '11.071',
                                                                                                                        '10.883',
                                                                                                                        '10.682',
                                                                                                                        '10.855',
                                                                                                                        '10.928',
                                                                                                                        '11.524',
                                                                                                                        '11.503',
                                                                                                                        '10.974',
                                                                                                                        '10.163',
                                                                                                                        '10.266',
                                                                                                                        '10.763'],
                                                                                                     'ann': '9.230',
                                                                                                     'djf': '10.590',
                                                                                                     'jja': '10.888',
                                                                                                     'mam': '10.219',
                                                                                                     'son': '9.865'},
                                                                                          'rms_xyt': {'ann': '10.893'},
                                                                                          'rms_y': {'ann': '5.369'},
                                                                                          'rmsc_xy': {'CalendarMonths': ['11.109',
                                                                                                                         '11.066',
                                                                                                                         '10.876',
                                                                                                                         '10.681',
                                                                                                                         '10.800',
                                                                                                                         '10.904',
                                                                                                                         '11.524',
                                                                                                                         '11.482',
                                                                                                                         '10.920',
                                                                                                                         '10.123',
                                                                                                                         '10.258',
                                                                                                                         '10.759'],
                                                                                                      'ann': '9.222',
                                                                                                      'djf': '10.590',
                                                                                                      'jja': '10.875',
                                                                                                      'mam': '10.215',
                                                                                                      'son': '9.832'},
                                                                                          'std-obs_xy': {'CalendarMonths': ['80.601',
                                                                                                                            '81.744',
                                                                                                                            '80.021',
                                                                                                                            '76.022',
                                                                                                                            '71.945',
                                                                                                                            '71.231',
                                                                                                                            '71.865',
                                                                                                                            '71.755',
                                                                                                                            '71.961',
                                                                                                                            '72.901',
                                                                                                                            '75.442',
                                                                                                                            '78.421'],
                                                                                                         'ann': '70.957',
                                                                                                         'djf': '80.121',
                                                                                                         'jja': '71.389',
                                                                                                         'mam': '74.713',
                                                                                                         'son': '71.928'},
                                                                                          'std-obs_xy_devzm': {'ann': '18.140'},
                                                                                          'std-obs_xyt': {'ann': '75.736'},
                                                                                          'std_xy': {'CalendarMonths': ['83.220',
                                                                                                                        '84.245',
                                                                                                                        '82.352',
                                                                                                                        '77.603',
                                                                                                                        '73.362',
                                                                                                                        '72.166',
                                                                                                                        '72.510',
                                                                                                                        '72.256',
                                                                                                                        '72.493',
                                                                                                                        '73.795',
                                                                                                                        '76.539',
                                                                                                                        '80.264'],
                                                                                                     'ann': '72.380',
                                                                                                     'djf': '82.392',
                                                                                                     'jja': '72.090',
                                                                                                     'mam': '76.549',
                                                                                                     'son': '72.841'},
                                                                                          'std_xy_devzm': {'ann': '17.436'},
                                                                                          'std_xyt': {'ann': '77.148'}}},
                                                                  'source': 'CERES-EBAF-4-1'},
                                                      'units': 'W m-2'}},
                           'provenance': {'commandLine': '/home/lee1043/.conda/envs/pcmdi_metrics_dev_20230822/bin/mean_climate_driver.py '
                                                         '-p basic_param.py -v '
                                                         'rlus',
                                          'conda': {'Platform': 'linux-64',
                                                    'PythonVersion': '3.10.12.final.0',
                                                    'Version': '23.3.1',
                                                    'buildVersion': 'not '
                                                                    'installed'},
                                          'date': '2023-09-19 00:47:56',
                                          'openGL': {'GLX': {'client': {'vendor': 'Mesa '
                                                                                  'Project '
                                                                                  'and '
                                                                                  'SGI',
                                                                        'version': '1.4'},
                                                             'server': {'vendor': 'SGI',
                                                                        'version': '1.4'},
                                                             'version': '1.4'},
                                                     'renderer': 'llvmpipe '
                                                                 '(LLVM 7.0, '
                                                                 '256 bits)',
                                                     'shading language version': '1.20',
                                                     'vendor': 'VMware, Inc.',
                                                     'version': '2.1 Mesa '
                                                                '18.3.4'},
                                          'osAccess': False,
                                          'packages': {'PMP': 'v3.0.2-11-g06b151f',
                                                       'PMPObs': 'See '
                                                                 "'References' "
                                                                 'key below, '
                                                                 'for detailed '
                                                                 'obs '
                                                                 'provenance '
                                                                 'information.',
                                                       'blas': '0.3.23',
                                                       'cdat_info': '8.2.1',
                                                       'cdms': '3.1.5',
                                                       'cdp': '1.7.0',
                                                       'cdtime': '3.1.4',
                                                       'cdutil': '8.2.1',
                                                       'clapack': None,
                                                       'esmf': '8.4.2',
                                                       'esmpy': '8.4.2',
                                                       'genutil': '8.2.1',
                                                       'lapack': '3.9.0',
                                                       'matplotlib': '3.7.1',
                                                       'mesalib': None,
                                                       'numpy': '1.23.5',
                                                       'python': '3.10.10',
                                                       'scipy': '1.11.2',
                                                       'uvcdat': None,
                                                       'vcs': None,
                                                       'vtk': None,
                                                       'xarray': '2023.8.0',
                                                       'xcdat': '0.5.0'},
                                          'platform': {'Name': 'gates.llnl.gov',
                                                       'OS': 'Linux',
                                                       'Version': '3.10.0-1160.71.1.el7.x86_64'},
                                          'userId': 'lee1043'}},
                  'rlut': {'REFERENCE': {'default': {'CMIP_CMOR_TABLE': 'Amon',
                                                     'MD5sum': '9f3e08d6a4c2d62bce80fcd7d5ed16ee',
                                                     'RefTrackingDate': 'Wed '
                                                                        'Aug  '
                                                                        '4 '
                                                                        '12:22:57 '
                                                                        '2021',
                                                     'filename': 'rlut_mon_CERES-EBAF-4-1_PCMDI_gn.200301-201812.AC.v20210804.nc',
                                                     'period': '200301-201812',
                                                     'shape': '(12, 180, 360)',
                                                     'template': 'rlut/CERES-EBAF-4-1/v20210804/rlut_mon_CERES-EBAF-4-1_PCMDI_gn.200301-201812.AC.v20210804.nc'}},
                           'RESULTS': {'ACCESS-CM2': {'default': {'r1i1p1f1': {'InputClimatologyFileName': 'cmip6.historical.ACCESS-CM2.r1i1p1f1.mon.rlut.198101-200512.AC.v20230823.nc',
                                                                               'NHEX': {'bias_xy': {'CalendarMonths': ['-7.005',
                                                                                                                       '-6.457',
                                                                                                                       '-6.831',
                                                                                                                       '-6.746',
                                                                                                                       '-6.377',
                                                                                                                       '-4.806',
                                                                                                                       '-3.368',
                                                                                                                       '-1.776',
                                                                                                                       '-4.428',
                                                                                                                       '-5.545',
                                                                                                                       '-5.751',
                                                                                                                       '-5.966'],
                                                                                                    'ann': '-5.421',
                                                                                                    'djf': '-6.482',
                                                                                                    'jja': '-3.316',
                                                                                                    'mam': '-6.649',
                                                                                                    'son': '-5.238'},
                                                                                        'cor_xy': {'CalendarMonths': ['0.96',
                                                                                                                      '0.96',
                                                                                                                      '0.98',
                                                                                                                      '0.98',
                                                                                                                      '0.97',
                                                                                                                      '0.95',
                                                                                                                      '0.93',
                                                                                                                      '0.97',
                                                                                                                      '0.98',
                                                                                                                      '0.98',
                                                                                                                      '0.98',
                                                                                                                      '0.97'],
                                                                                                   'ann': '0.987',
                                                                                                   'djf': '0.97',
                                                                                                   'jja': '0.96',
                                                                                                   'mam': '0.99',
                                                                                                   'son': '0.99'},
                                                                                        'mae_xy': {'CalendarMonths': ['7.812',
                                                                                                                      '7.810',
                                                                                                                      '7.431',
                                                                                                                      '7.186',
                                                                                                                      '6.873',
                                                                                                                      '6.618',
                                                                                                                      '6.777',
                                                                                                                      '5.338',
                                                                                                                      '5.913',
                                                                                                                      '6.022',
                                                                                                                      '6.395',
                                                                                                                      '6.608'],
                                                                                                   'ann': '5.899',
                                                                                                   'djf': '7.315',
                                                                                                   'jja': '5.718',
                                                                                                   'mam': '6.959',
                                                                                                   'son': '5.753'},
                                                                                        'mean-obs_xy': {'CalendarMonths': ['201.774',
                                                                                                                           '203.051',
                                                                                                                           '209.500',
                                                                                                                           '219.668',
                                                                                                                           '231.198',
                                                                                                                           '242.561',
                                                                                                                           '249.970',
                                                                                                                           '247.931',
                                                                                                                           '238.876',
                                                                                                                           '224.950',
                                                                                                                           '211.975',
                                                                                                                           '203.584'],
                                                                                                        'ann': '223.753',
                                                                                                        'djf': '202.794',
                                                                                                        'jja': '246.786',
                                                                                                        'mam': '220.325',
                                                                                                        'son': '225.271'},
                                                                                        'mean_xy': {'CalendarMonths': ['194.769',
                                                                                                                       '196.594',
                                                                                                                       '202.669',
                                                                                                                       '212.922',
                                                                                                                       '224.821',
                                                                                                                       '237.755',
                                                                                                                       '246.602',
                                                                                                                       '246.154',
                                                                                                                       '234.449',
                                                                                                                       '219.405',
                                                                                                                       '206.224',
                                                                                                                       '197.617'],
                                                                                                    'ann': '218.332',
                                                                                                    'djf': '196.313',
                                                                                                    'jja': '243.470',
                                                                                                    'mam': '213.676',
                                                                                                    'son': '220.033'},
                                                                                        'rms_devzm': {'ann': '3.525'},
                                                                                        'rms_xy': {'CalendarMonths': ['9.280',
                                                                                                                      '9.166',
                                                                                                                      '8.540',
                                                                                                                      '8.033',
                                                                                                                      '7.740',
                                                                                                                      '8.038',
                                                                                                                      '9.004',
                                                                                                                      '6.785',
                                                                                                                      '6.845',
                                                                                                                      '7.107',
                                                                                                                      '7.651',
                                                                                                                      '7.936'],
                                                                                                   'ann': '6.611',
                                                                                                   'djf': '8.602',
                                                                                                   'jja': '6.989',
                                                                                                   'mam': '7.646',
                                                                                                   'son': '6.509'},
                                                                                        'rms_xyt': {'ann': '8.011'},
                                                                                        'rms_y': {'ann': '5.593'},
                                                                                        'rmsc_xy': {'CalendarMonths': ['6.088',
                                                                                                                       '6.506',
                                                                                                                       '5.127',
                                                                                                                       '4.361',
                                                                                                                       '4.387',
                                                                                                                       '6.443',
                                                                                                                       '8.350',
                                                                                                                       '6.548',
                                                                                                                       '5.220',
                                                                                                                       '4.446',
                                                                                                                       '5.047',
                                                                                                                       '5.232'],
                                                                                                    'ann': '3.784',
                                                                                                    'djf': '5.655',
                                                                                                    'jja': '6.152',
                                                                                                    'mam': '3.776',
                                                                                                    'son': '3.864'},
                                                                                        'std-obs_xy': {'CalendarMonths': ['22.182',
                                                                                                                          '21.437',
                                                                                                                          '20.112',
                                                                                                                          '17.489',
                                                                                                                          '16.174',
                                                                                                                          '19.231',
                                                                                                                          '21.207',
                                                                                                                          '22.277',
                                                                                                                          '22.943',
                                                                                                                          '22.917',
                                                                                                                          '23.045',
                                                                                                                          '22.716'],
                                                                                                       'ann': '19.593',
                                                                                                       'djf': '22.052',
                                                                                                       'jja': '20.546',
                                                                                                       'mam': '17.457',
                                                                                                       'son': '22.522'},
                                                                                        'std-obs_xy_devzm': {'ann': '9.115'},
                                                                                        'std-obs_xyt': {'ann': '27.274'},
                                                                                        'std_xy': {'CalendarMonths': ['23.034',
                                                                                                                      '23.412',
                                                                                                                      '22.134',
                                                                                                                      '19.400',
                                                                                                                      '18.208',
                                                                                                                      '20.495',
                                                                                                                      '23.382',
                                                                                                                      '25.286',
                                                                                                                      '25.406',
                                                                                                                      '23.833',
                                                                                                                      '22.859',
                                                                                                                      '22.815'],
                                                                                                   'ann': '21.380',
                                                                                                   'djf': '23.018',
                                                                                                   'jja': '22.739',
                                                                                                   'mam': '19.516',
                                                                                                   'son': '23.653'},
                                                                                        'std_xy_devzm': {'ann': '10.502'},
                                                                                        'std_xyt': {'ann': '29.256'}},
                                                                               'SHEX': {'bias_xy': {'CalendarMonths': ['0.688',
                                                                                                                       '1.139',
                                                                                                                       '0.408',
                                                                                                                       '-0.979',
                                                                                                                       '-2.497',
                                                                                                                       '-4.161',
                                                                                                                       '-5.455',
                                                                                                                       '-5.534',
                                                                                                                       '-4.902',
                                                                                                                       '-3.732',
                                                                                                                       '-1.399',
                                                                                                                       '-0.191'],
                                                                                                    'ann': '-2.218',
                                                                                                    'djf': '0.553',
                                                                                                    'jja': '-5.045',
                                                                                                    'mam': '-1.050',
                                                                                                    'son': '-3.340'},
                                                                                        'cor_xy': {'CalendarMonths': ['0.98',
                                                                                                                      '0.99',
                                                                                                                      '0.99',
                                                                                                                      '0.99',
                                                                                                                      '0.99',
                                                                                                                      '0.99',
                                                                                                                      '0.99',
                                                                                                                      '0.99',
                                                                                                                      '0.99',
                                                                                                                      '0.99',
                                                                                                                      '0.99',
                                                                                                                      '0.98'],
                                                                                                   'ann': '0.992',
                                                                                                   'djf': '0.99',
                                                                                                   'jja': '0.99',
                                                                                                   'mam': '0.99',
                                                                                                   'son': '0.99'},
                                                                                        'mae_xy': {'CalendarMonths': ['3.098',
                                                                                                                      '3.322',
                                                                                                                      '3.092',
                                                                                                                      '3.583',
                                                                                                                      '3.959',
                                                                                                                      '4.829',
                                                                                                                      '5.960',
                                                                                                                      '5.944',
                                                                                                                      '5.559',
                                                                                                                      '4.692',
                                                                                                                      '3.299',
                                                                                                                      '2.773'],
                                                                                                   'ann': '3.328',
                                                                                                   'djf': '2.634',
                                                                                                   'jja': '5.464',
                                                                                                   'mam': '3.228',
                                                                                                   'son': '4.257'},
                                                                                        'mean-obs_xy': {'CalendarMonths': ['231.401',
                                                                                                                           '229.443',
                                                                                                                           '223.445',
                                                                                                                           '216.276',
                                                                                                                           '210.051',
                                                                                                                           '206.069',
                                                                                                                           '204.840',
                                                                                                                           '205.704',
                                                                                                                           '208.809',
                                                                                                                           '214.928',
                                                                                                                           '221.855',
                                                                                                                           '228.296'],
                                                                                                        'ann': '216.760',
                                                                                                        'djf': '229.729',
                                                                                                        'jja': '205.545',
                                                                                                        'mam': '216.453',
                                                                                                        'son': '215.200'},
                                                                                        'mean_xy': {'CalendarMonths': ['232.089',
                                                                                                                       '230.582',
                                                                                                                       '223.853',
                                                                                                                       '215.297',
                                                                                                                       '207.554',
                                                                                                                       '201.908',
                                                                                                                       '199.385',
                                                                                                                       '200.171',
                                                                                                                       '203.907',
                                                                                                                       '211.196',
                                                                                                                       '220.456',
                                                                                                                       '228.105'],
                                                                                                    'ann': '214.542',
                                                                                                    'djf': '230.282',
                                                                                                    'jja': '200.500',
                                                                                                    'mam': '215.403',
                                                                                                    'son': '211.860'},
                                                                                        'rms_devzm': {'ann': '2.656'},
                                                                                        'rms_xy': {'CalendarMonths': ['3.976',
                                                                                                                      '4.479',
                                                                                                                      '4.222',
                                                                                                                      '4.560',
                                                                                                                      '5.028',
                                                                                                                      '5.910',
                                                                                                                      '7.168',
                                                                                                                      '7.369',
                                                                                                                      '6.719',
                                                                                                                      '5.827',
                                                                                                                      '4.148',
                                                                                                                      '3.865'],
                                                                                                   'ann': '4.164',
                                                                                                   'djf': '3.652',
                                                                                                   'jja': '6.636',
                                                                                                   'mam': '4.165',
                                                                                                   'son': '5.122'},
                                                                                        'rms_xyt': {'ann': '5.273'},
                                                                                        'rms_y': {'ann': '3.207'},
                                                                                        'rmsc_xy': {'CalendarMonths': ['3.916',
                                                                                                                       '4.332',
                                                                                                                       '4.202',
                                                                                                                       '4.454',
                                                                                                                       '4.364',
                                                                                                                       '4.197',
                                                                                                                       '4.650',
                                                                                                                       '4.866',
                                                                                                                       '4.595',
                                                                                                                       '4.475',
                                                                                                                       '3.905',
                                                                                                                       '3.860'],
                                                                                                    'ann': '3.524',
                                                                                                    'djf': '3.609',
                                                                                                    'jja': '4.310',
                                                                                                    'mam': '4.030',
                                                                                                    'son': '3.883'},
                                                                                        'std-obs_xy': {'CalendarMonths': ['22.247',
                                                                                                                          '25.330',
                                                                                                                          '29.286',
                                                                                                                          '30.765',
                                                                                                                          '30.980',
                                                                                                                          '32.235',
                                                                                                                          '34.273',
                                                                                                                          '34.045',
                                                                                                                          '32.302',
                                                                                                                          '27.376',
                                                                                                                          '21.881',
                                                                                                                          '19.784'],
                                                                                                       'ann': '28.047',
                                                                                                       'djf': '22.372',
                                                                                                       'jja': '33.490',
                                                                                                       'mam': '30.279',
                                                                                                       'son': '27.076'},
                                                                                        'std-obs_xy_devzm': {'ann': '7.883'},
                                                                                        'std-obs_xyt': {'ann': '30.284'},
                                                                                        'std_xy': {'CalendarMonths': ['21.729',
                                                                                                                      '26.611',
                                                                                                                      '30.876',
                                                                                                                      '32.272',
                                                                                                                      '32.102',
                                                                                                                      '32.136',
                                                                                                                      '32.734',
                                                                                                                      '33.569',
                                                                                                                      '32.278',
                                                                                                                      '28.641',
                                                                                                                      '23.018',
                                                                                                                      '21.100'],
                                                                                                   'ann': '28.541',
                                                                                                   'djf': '23.059',
                                                                                                   'jja': '32.791',
                                                                                                   'mam': '31.705',
                                                                                                   'son': '27.797'},
                                                                                        'std_xy_devzm': {'ann': '7.179'},
                                                                                        'std_xyt': {'ann': '31.510'}},
                                                                               'TROPICS': {'bias_xy': {'CalendarMonths': ['5.233',
                                                                                                                          '5.945',
                                                                                                                          '7.101',
                                                                                                                          '6.834',
                                                                                                                          '4.202',
                                                                                                                          '2.753',
                                                                                                                          '2.462',
                                                                                                                          '2.340',
                                                                                                                          '3.626',
                                                                                                                          '4.332',
                                                                                                                          '4.536',
                                                                                                                          '4.754'],
                                                                                                       'ann': '4.510',
                                                                                                       'djf': '5.317',
                                                                                                       'jja': '2.519',
                                                                                                       'mam': '6.033',
                                                                                                       'son': '4.163'},
                                                                                           'cor_xy': {'CalendarMonths': ['0.84',
                                                                                                                         '0.81',
                                                                                                                         '0.74',
                                                                                                                         '0.65',
                                                                                                                         '0.61',
                                                                                                                         '0.70',
                                                                                                                         '0.79',
                                                                                                                         '0.83',
                                                                                                                         '0.83',
                                                                                                                         '0.87',
                                                                                                                         '0.84',
                                                                                                                         '0.81'],
                                                                                                      'ann': '0.825',
                                                                                                      'djf': '0.85',
                                                                                                      'jja': '0.81',
                                                                                                      'mam': '0.67',
                                                                                                      'son': '0.88'},
                                                                                           'mae_xy': {'CalendarMonths': ['11.226',
                                                                                                                         '12.801',
                                                                                                                         '14.055',
                                                                                                                         '14.719',
                                                                                                                         '14.083',
                                                                                                                         '13.272',
                                                                                                                         '12.512',
                                                                                                                         '11.561',
                                                                                                                         '10.794',
                                                                                                                         '8.761',
                                                                                                                         '9.787',
                                                                                                                         '10.920'],
                                                                                                      'ann': '8.985',
                                                                                                      'djf': '10.841',
                                                                                                      'jja': '11.441',
                                                                                                      'mam': '13.516',
                                                                                                      'son': '8.384'},
                                                                                           'mean-obs_xy': {'CalendarMonths': ['258.480',
                                                                                                                              '259.702',
                                                                                                                              '260.170',
                                                                                                                              '260.131',
                                                                                                                              '260.891',
                                                                                                                              '261.606',
                                                                                                                              '261.319',
                                                                                                                              '261.798',
                                                                                                                              '261.844',
                                                                                                                              '260.959',
                                                                                                                              '259.222',
                                                                                                                              '258.440'],
                                                                                                           'ann': '260.380',
                                                                                                           'djf': '258.879',
                                                                                                           'jja': '261.577',
                                                                                                           'mam': '260.399',
                                                                                                           'son': '260.672'},
                                                                                           'mean_xy': {'CalendarMonths': ['263.713',
                                                                                                                          '265.647',
                                                                                                                          '267.270',
                                                                                                                          '266.964',
                                                                                                                          '265.093',
                                                                                                                          '264.358',
                                                                                                                          '263.781',
                                                                                                                          '264.138',
                                                                                                                          '265.471',
                                                                                                                          '265.291',
                                                                                                                          '263.758',
                                                                                                                          '263.194'],
                                                                                                       'ann': '264.890',
                                                                                                       'djf': '264.195',
                                                                                                       'jja': '264.096',
                                                                                                       'mam': '266.432',
                                                                                                       'son': '264.835'},
                                                                                           'rms_devzm': {'ann': '9.407'},
                                                                                           'rms_xy': {'CalendarMonths': ['15.016',
                                                                                                                         '17.072',
                                                                                                                         '18.931',
                                                                                                                         '19.694',
                                                                                                                         '20.001',
                                                                                                                         '19.498',
                                                                                                                         '17.777',
                                                                                                                         '16.348',
                                                                                                                         '15.678',
                                                                                                                         '12.347',
                                                                                                                         '13.156',
                                                                                                                         '15.181'],
                                                                                                      'ann': '11.931',
                                                                                                      'djf': '14.136',
                                                                                                      'jja': '16.287',
                                                                                                      'mam': '18.104',
                                                                                                      'son': '11.670'},
                                                                                           'rms_xyt': {'ann': '16.725'},
                                                                                           'rms_y': {'ann': '7.339'},
                                                                                           'rmsc_xy': {'CalendarMonths': ['14.075',
                                                                                                                          '16.003',
                                                                                                                          '17.549',
                                                                                                                          '18.470',
                                                                                                                          '19.555',
                                                                                                                          '19.303',
                                                                                                                          '17.606',
                                                                                                                          '16.180',
                                                                                                                          '15.253',
                                                                                                                          '11.562',
                                                                                                                          '12.349',
                                                                                                                          '14.418'],
                                                                                                       'ann': '11.046',
                                                                                                       'djf': '13.099',
                                                                                                       'jja': '16.091',
                                                                                                       'mam': '17.069',
                                                                                                       'son': '10.903'},
                                                                                           'std-obs_xy': {'CalendarMonths': ['24.626',
                                                                                                                             '24.620',
                                                                                                                             '23.064',
                                                                                                                             '20.724',
                                                                                                                             '22.025',
                                                                                                                             '25.407',
                                                                                                                             '27.296',
                                                                                                                             '27.009',
                                                                                                                             '25.890',
                                                                                                                             '23.050',
                                                                                                                             '22.211',
                                                                                                                             '23.245'],
                                                                                                          'ann': '18.843',
                                                                                                          'djf': '23.674',
                                                                                                          'jja': '26.016',
                                                                                                          'mam': '19.931',
                                                                                                          'son': '21.978'},
                                                                                           'std-obs_xy_devzm': {'ann': '16.253'},
                                                                                           'std-obs_xyt': {'ann': '24.205'},
                                                                                           'std_xy': {'CalendarMonths': ['25.638',
                                                                                                                         '26.839',
                                                                                                                         '25.241',
                                                                                                                         '23.210',
                                                                                                                         '22.441',
                                                                                                                         '24.735',
                                                                                                                         '27.473',
                                                                                                                         '28.096',
                                                                                                                         '26.436',
                                                                                                                         '22.972',
                                                                                                                         '22.128',
                                                                                                                         '23.973'],
                                                                                                      'ann': '18.455',
                                                                                                      'djf': '24.307',
                                                                                                      'jja': '25.602',
                                                                                                      'mam': '21.831',
                                                                                                      'son': '22.366'},
                                                                                           'std_xy_devzm': {'ann': '15.921'},
                                                                                           'std_xyt': {'ann': '25.038'}},
                                                                               'global': {'bias_xy': {'CalendarMonths': ['1.037',
                                                                                                                         '1.643',
                                                                                                                         '1.945',
                                                                                                                         '1.486',
                                                                                                                         '-0.118',
                                                                                                                         '-0.865',
                                                                                                                         '-0.975',
                                                                                                                         '-0.658',
                                                                                                                         '-0.519',
                                                                                                                         '-0.153',
                                                                                                                         '0.480',
                                                                                                                         '0.837'],
                                                                                                      'ann': '0.345',
                                                                                                      'djf': '1.176',
                                                                                                      'jja': '-0.831',
                                                                                                      'mam': '1.092',
                                                                                                      'son': '-0.063'},
                                                                                          'cor_xy': {'CalendarMonths': ['0.95',
                                                                                                                        '0.94',
                                                                                                                        '0.93',
                                                                                                                        '0.92',
                                                                                                                        '0.91',
                                                                                                                        '0.92',
                                                                                                                        '0.93',
                                                                                                                        '0.95',
                                                                                                                        '0.95',
                                                                                                                        '0.96',
                                                                                                                        '0.96',
                                                                                                                        '0.95'],
                                                                                                     'ann': '0.961',
                                                                                                     'djf': '0.96',
                                                                                                     'jja': '0.94',
                                                                                                     'mam': '0.93',
                                                                                                     'son': '0.97'},
                                                                                          'mae_xy': {'CalendarMonths': ['8.340',
                                                                                                                        '9.184',
                                                                                                                        '9.658',
                                                                                                                        '10.052',
                                                                                                                        '9.750',
                                                                                                                        '9.498',
                                                                                                                        '9.440',
                                                                                                                        '8.601',
                                                                                                                        '8.265',
                                                                                                                        '7.059',
                                                                                                                        '7.317',
                                                                                                                        '7.805'],
                                                                                                     'ann': '6.799',
                                                                                                     'djf': '7.908',
                                                                                                     'jja': '8.516',
                                                                                                     'mam': '9.305',
                                                                                                     'son': '6.695'},
                                                                                          'mean-obs_xy': {'CalendarMonths': ['237.534',
                                                                                                                             '237.974',
                                                                                                                             '238.321',
                                                                                                                             '239.051',
                                                                                                                             '240.758',
                                                                                                                             '242.960',
                                                                                                                             '244.362',
                                                                                                                             '244.308',
                                                                                                                             '242.844',
                                                                                                                             '240.449',
                                                                                                                             '238.069',
                                                                                                                             '237.190'],
                                                                                                          'ann': '240.318',
                                                                                                          'djf': '237.570',
                                                                                                          'jja': '243.872',
                                                                                                          'mam': '239.394',
                                                                                                          'son': '240.454'},
                                                                                          'mean_xy': {'CalendarMonths': ['238.571',
                                                                                                                         '239.618',
                                                                                                                         '240.266',
                                                                                                                         '240.537',
                                                                                                                         '240.640',
                                                                                                                         '242.095',
                                                                                                                         '243.387',
                                                                                                                         '243.650',
                                                                                                                         '242.324',
                                                                                                                         '240.296',
                                                                                                                         '238.549',
                                                                                                                         '238.028'],
                                                                                                      'ann': '240.663',
                                                                                                      'djf': '238.746',
                                                                                                      'jja': '243.041',
                                                                                                      'mam': '240.486',
                                                                                                      'son': '240.391'},
                                                                                          'rms_devzm': {'ann': '7.008'},
                                                                                          'rms_xy': {'CalendarMonths': ['11.757',
                                                                                                                        '13.105',
                                                                                                                        '14.209',
                                                                                                                        '14.671',
                                                                                                                        '14.877',
                                                                                                                        '14.662',
                                                                                                                        '13.825',
                                                                                                                        '12.598',
                                                                                                                        '12.079',
                                                                                                                        '9.866',
                                                                                                                        '10.270',
                                                                                                                        '11.607'],
                                                                                                     'ann': '9.297',
                                                                                                     'djf': '11.034',
                                                                                                     'jja': '12.484',
                                                                                                     'mam': '13.521',
                                                                                                     'son': '9.233'},
                                                                                          'rms_xyt': {'ann': '12.794'},
                                                                                          'rms_y': {'ann': '6.109'},
                                                                                          'rmsc_xy': {'CalendarMonths': ['11.711',
                                                                                                                         '13.002',
                                                                                                                         '14.075',
                                                                                                                         '14.596',
                                                                                                                         '14.876',
                                                                                                                         '14.636',
                                                                                                                         '13.790',
                                                                                                                         '12.581',
                                                                                                                         '12.068',
                                                                                                                         '9.865',
                                                                                                                         '10.259',
                                                                                                                         '11.577'],
                                                                                                      'ann': '9.291',
                                                                                                      'djf': '10.971',
                                                                                                      'jja': '12.456',
                                                                                                      'mam': '13.477',
                                                                                                      'son': '9.233'},
                                                                                          'std-obs_xy': {'CalendarMonths': ['33.142',
                                                                                                                            '33.727',
                                                                                                                            '32.912',
                                                                                                                            '31.203',
                                                                                                                            '31.767',
                                                                                                                            '34.483',
                                                                                                                            '36.342',
                                                                                                                            '36.157',
                                                                                                                            '34.665',
                                                                                                                            '31.899',
                                                                                                                            '30.965',
                                                                                                                            '32.014'],
                                                                                                         'ann': '29.644',
                                                                                                         'djf': '32.736',
                                                                                                         'jja': '35.361',
                                                                                                         'mam': '30.775',
                                                                                                         'son': '31.194'},
                                                                                          'std-obs_xy_devzm': {'ann': '12.976'},
                                                                                          'std-obs_xyt': {'ann': '33.418'},
                                                                                          'std_xy': {'CalendarMonths': ['37.223',
                                                                                                                        '38.680',
                                                                                                                        '38.272',
                                                                                                                        '36.372',
                                                                                                                        '35.036',
                                                                                                                        '36.406',
                                                                                                                        '38.426',
                                                                                                                        '38.991',
                                                                                                                        '37.731',
                                                                                                                        '35.272',
                                                                                                                        '34.186',
                                                                                                                        '35.754'],
                                                                                                     'ann': '32.817',
                                                                                                     'djf': '36.779',
                                                                                                     'jja': '37.416',
                                                                                                     'mam': '35.474',
                                                                                                     'son': '34.482'},
                                                                                          'std_xy_devzm': {'ann': '12.931'},
                                                                                          'std_xyt': {'ann': '36.937'}}},
                                                                  'source': 'CERES-EBAF-4-1'},
                                                      'units': 'W m-2'}},
                           'provenance': {'commandLine': '/home/lee1043/.conda/envs/pcmdi_metrics_dev_20230822/bin/mean_climate_driver.py '
                                                         '-p basic_param.py -v '
                                                         'rlut',
                                          'conda': {'Platform': 'linux-64',
                                                    'PythonVersion': '3.10.12.final.0',
                                                    'Version': '23.3.1',
                                                    'buildVersion': 'not '
                                                                    'installed'},
                                          'date': '2023-09-19 00:52:19',
                                          'openGL': {'GLX': {'client': {'vendor': 'Mesa '
                                                                                  'Project '
                                                                                  'and '
                                                                                  'SGI',
                                                                        'version': '1.4'},
                                                             'server': {'vendor': 'SGI',
                                                                        'version': '1.4'},
                                                             'version': '1.4'},
                                                     'renderer': 'llvmpipe '
                                                                 '(LLVM 7.0, '
                                                                 '256 bits)',
                                                     'shading language version': '1.20',
                                                     'vendor': 'VMware, Inc.',
                                                     'version': '2.1 Mesa '
                                                                '18.3.4'},
                                          'osAccess': False,
                                          'packages': {'PMP': 'v3.0.2-11-g06b151f',
                                                       'PMPObs': 'See '
                                                                 "'References' "
                                                                 'key below, '
                                                                 'for detailed '
                                                                 'obs '
                                                                 'provenance '
                                                                 'information.',
                                                       'blas': '0.3.23',
                                                       'cdat_info': '8.2.1',
                                                       'cdms': '3.1.5',
                                                       'cdp': '1.7.0',
                                                       'cdtime': '3.1.4',
                                                       'cdutil': '8.2.1',
                                                       'clapack': None,
                                                       'esmf': '8.4.2',
                                                       'esmpy': '8.4.2',
                                                       'genutil': '8.2.1',
                                                       'lapack': '3.9.0',
                                                       'matplotlib': '3.7.1',
                                                       'mesalib': None,
                                                       'numpy': '1.23.5',
                                                       'python': '3.10.10',
                                                       'scipy': '1.11.2',
                                                       'uvcdat': None,
                                                       'vcs': None,
                                                       'vtk': None,
                                                       'xarray': '2023.8.0',
                                                       'xcdat': '0.5.0'},
                                          'platform': {'Name': 'gates.llnl.gov',
                                                       'OS': 'Linux',
                                                       'Version': '3.10.0-1160.71.1.el7.x86_64'},
                                          'userId': 'lee1043'}},
                  'rlutcs': {'REFERENCE': {'default': {'CMIP_CMOR_TABLE': 'Amon',
                                                       'MD5sum': 'e60b8f66dc16d4e1daa897269702c7fb',
                                                       'RefTrackingDate': 'Wed '
                                                                          'Aug  '
                                                                          '4 '
                                                                          '12:22:52 '
                                                                          '2021',
                                                       'filename': 'rlutcs_mon_CERES-EBAF-4-1_PCMDI_gn.200301-201812.AC.v20210804.nc',
                                                       'period': '200301-201812',
                                                       'shape': '(12, 180, '
                                                                '360)',
                                                       'template': 'rlutcs/CERES-EBAF-4-1/v20210804/rlutcs_mon_CERES-EBAF-4-1_PCMDI_gn.200301-201812.AC.v20210804.nc'}},
                             'RESULTS': {'ACCESS-CM2': {'default': {'r1i1p1f1': {'InputClimatologyFileName': 'cmip6.historical.ACCESS-CM2.r1i1p1f1.mon.rlutcs.198101-200512.AC.v20230823.nc',
                                                                                 'NHEX': {'bias_xy': {'CalendarMonths': ['-7.441',
                                                                                                                         '-6.841',
                                                                                                                         '-7.198',
                                                                                                                         '-6.924',
                                                                                                                         '-7.240',
                                                                                                                         '-7.332',
                                                                                                                         '-7.053',
                                                                                                                         '-6.241',
                                                                                                                         '-7.167',
                                                                                                                         '-6.398',
                                                                                                                         '-5.839',
                                                                                                                         '-6.420'],
                                                                                                      'ann': '-6.841',
                                                                                                      'djf': '-6.906',
                                                                                                      'jja': '-6.873',
                                                                                                      'mam': '-7.117',
                                                                                                      'son': '-6.469'},
                                                                                          'cor_xy': {'CalendarMonths': ['0.98',
                                                                                                                        '0.98',
                                                                                                                        '0.99',
                                                                                                                        '0.99',
                                                                                                                        '0.98',
                                                                                                                        '0.97',
                                                                                                                        '0.97',
                                                                                                                        '0.98',
                                                                                                                        '0.98',
                                                                                                                        '0.98',
                                                                                                                        '0.98',
                                                                                                                        '0.99'],
                                                                                                     'ann': '0.990',
                                                                                                     'djf': '0.98',
                                                                                                     'jja': '0.98',
                                                                                                     'mam': '0.99',
                                                                                                     'son': '0.99'},
                                                                                          'mae_xy': {'CalendarMonths': ['7.971',
                                                                                                                        '7.700',
                                                                                                                        '7.625',
                                                                                                                        '7.126',
                                                                                                                        '7.726',
                                                                                                                        '7.628',
                                                                                                                        '7.618',
                                                                                                                        '6.880',
                                                                                                                        '7.498',
                                                                                                                        '7.244',
                                                                                                                        '7.061',
                                                                                                                        '7.312'],
                                                                                                     'ann': '6.972',
                                                                                                     'djf': '7.532',
                                                                                                     'jja': '7.183',
                                                                                                     'mam': '7.258',
                                                                                                     'son': '6.825'},
                                                                                          'mean-obs_xy': {'CalendarMonths': ['225.473',
                                                                                                                             '226.508',
                                                                                                                             '233.603',
                                                                                                                             '244.195',
                                                                                                                             '256.467',
                                                                                                                             '267.986',
                                                                                                                             '274.530',
                                                                                                                             '272.406',
                                                                                                                             '263.549',
                                                                                                                             '250.021',
                                                                                                                             '236.594',
                                                                                                                             '228.043'],
                                                                                                          'ann': '248.281',
                                                                                                          'djf': '226.660',
                                                                                                          'jja': '271.609',
                                                                                                          'mam': '244.967',
                                                                                                          'son': '250.055'},
                                                                                          'mean_xy': {'CalendarMonths': ['218.032',
                                                                                                                         '219.666',
                                                                                                                         '226.405',
                                                                                                                         '237.271',
                                                                                                                         '249.227',
                                                                                                                         '260.654',
                                                                                                                         '267.476',
                                                                                                                         '266.165',
                                                                                                                         '256.382',
                                                                                                                         '243.623',
                                                                                                                         '230.754',
                                                                                                                         '221.623'],
                                                                                                      'ann': '241.440',
                                                                                                      'djf': '219.754',
                                                                                                      'jja': '264.736',
                                                                                                      'mam': '237.851',
                                                                                                      'son': '243.586'},
                                                                                          'rms_devzm': {'ann': '3.334'},
                                                                                          'rms_xy': {'CalendarMonths': ['9.480',
                                                                                                                        '9.122',
                                                                                                                        '8.661',
                                                                                                                        '7.992',
                                                                                                                        '8.563',
                                                                                                                        '8.595',
                                                                                                                        '8.621',
                                                                                                                        '7.763',
                                                                                                                        '8.235',
                                                                                                                        '8.156',
                                                                                                                        '8.275',
                                                                                                                        '8.623'],
                                                                                                     'ann': '7.658',
                                                                                                     'djf': '8.935',
                                                                                                     'jja': '8.022',
                                                                                                     'mam': '7.985',
                                                                                                     'son': '7.824'},
                                                                                          'rms_xyt': {'ann': '8.507'},
                                                                                          'rms_y': {'ann': '6.895'},
                                                                                          'rmsc_xy': {'CalendarMonths': ['5.874',
                                                                                                                         '6.034',
                                                                                                                         '4.816',
                                                                                                                         '3.993',
                                                                                                                         '4.573',
                                                                                                                         '4.485',
                                                                                                                         '4.957',
                                                                                                                         '4.617',
                                                                                                                         '4.057',
                                                                                                                         '5.058',
                                                                                                                         '5.863',
                                                                                                                         '5.757'],
                                                                                                      'ann': '3.442',
                                                                                                      'djf': '5.670',
                                                                                                      'jja': '4.137',
                                                                                                      'mam': '3.622',
                                                                                                      'son': '4.401'},
                                                                                          'std-obs_xy': {'CalendarMonths': ['32.891',
                                                                                                                            '31.883',
                                                                                                                            '29.176',
                                                                                                                            '24.838',
                                                                                                                            '21.118',
                                                                                                                            '19.422',
                                                                                                                            '19.026',
                                                                                                                            '20.030',
                                                                                                                            '22.656',
                                                                                                                            '26.902',
                                                                                                                            '31.342',
                                                                                                                            '33.250'],
                                                                                                         'ann': '24.394',
                                                                                                         'djf': '32.620',
                                                                                                         'jja': '19.320',
                                                                                                         'mam': '24.483',
                                                                                                         'son': '26.505'},
                                                                                          'std-obs_xy_devzm': {'ann': '9.643'},
                                                                                          'std-obs_xyt': {'ann': '31.902'},
                                                                                          'std_xy': {'CalendarMonths': ['32.577',
                                                                                                                        '31.948',
                                                                                                                        '29.051',
                                                                                                                        '23.559',
                                                                                                                        '19.375',
                                                                                                                        '18.837',
                                                                                                                        '20.253',
                                                                                                                        '21.417',
                                                                                                                        '22.417',
                                                                                                                        '24.707',
                                                                                                                        '28.626',
                                                                                                                        '31.572'],
                                                                                                     'ann': '23.830',
                                                                                                     'djf': '31.958',
                                                                                                     'jja': '20.025',
                                                                                                     'mam': '23.461',
                                                                                                     'son': '24.795'},
                                                                                          'std_xy_devzm': {'ann': '8.964'},
                                                                                          'std_xyt': {'ann': '31.263'}},
                                                                                 'SHEX': {'bias_xy': {'CalendarMonths': ['-2.516',
                                                                                                                         '-2.490',
                                                                                                                         '-2.811',
                                                                                                                         '-2.983',
                                                                                                                         '-3.448',
                                                                                                                         '-4.054',
                                                                                                                         '-4.473',
                                                                                                                         '-4.778',
                                                                                                                         '-4.683',
                                                                                                                         '-4.521',
                                                                                                                         '-3.041',
                                                                                                                         '-2.545'],
                                                                                                      'ann': '-3.529',
                                                                                                      'djf': '-2.517',
                                                                                                      'jja': '-4.435',
                                                                                                      'mam': '-3.085',
                                                                                                      'son': '-4.077'},
                                                                                          'cor_xy': {'CalendarMonths': ['0.99',
                                                                                                                        '0.99',
                                                                                                                        '0.99',
                                                                                                                        '0.99',
                                                                                                                        '0.99',
                                                                                                                        '0.99',
                                                                                                                        '0.99',
                                                                                                                        '0.99',
                                                                                                                        '0.99',
                                                                                                                        '0.99',
                                                                                                                        '0.99',
                                                                                                                        '0.99'],
                                                                                                     'ann': '0.995',
                                                                                                     'djf': '0.99',
                                                                                                     'jja': '0.99',
                                                                                                     'mam': '0.99',
                                                                                                     'son': '0.99'},
                                                                                          'mae_xy': {'CalendarMonths': ['5.081',
                                                                                                                        '4.062',
                                                                                                                        '4.561',
                                                                                                                        '5.026',
                                                                                                                        '5.380',
                                                                                                                        '5.756',
                                                                                                                        '6.445',
                                                                                                                        '6.299',
                                                                                                                        '6.121',
                                                                                                                        '5.513',
                                                                                                                        '4.897',
                                                                                                                        '5.370'],
                                                                                                     'ann': '5.109',
                                                                                                     'djf': '4.764',
                                                                                                     'jja': '6.067',
                                                                                                     'mam': '4.942',
                                                                                                     'son': '5.331'},
                                                                                          'mean-obs_xy': {'CalendarMonths': ['256.209',
                                                                                                                             '254.706',
                                                                                                                             '250.034',
                                                                                                                             '243.984',
                                                                                                                             '238.749',
                                                                                                                             '235.014',
                                                                                                                             '233.299',
                                                                                                                             '233.787',
                                                                                                                             '236.343',
                                                                                                                             '241.574',
                                                                                                                             '247.482',
                                                                                                                             '253.299'],
                                                                                                          'ann': '243.707',
                                                                                                          'djf': '254.754',
                                                                                                          'jja': '234.041',
                                                                                                          'mam': '244.139',
                                                                                                          'son': '241.802'},
                                                                                          'mean_xy': {'CalendarMonths': ['253.693',
                                                                                                                         '252.216',
                                                                                                                         '247.223',
                                                                                                                         '241.001',
                                                                                                                         '235.301',
                                                                                                                         '230.960',
                                                                                                                         '228.826',
                                                                                                                         '229.009',
                                                                                                                         '231.660',
                                                                                                                         '237.053',
                                                                                                                         '244.441',
                                                                                                                         '250.754'],
                                                                                                      'ann': '240.178',
                                                                                                      'djf': '252.237',
                                                                                                      'jja': '229.607',
                                                                                                      'mam': '241.055',
                                                                                                      'son': '237.725'},
                                                                                          'rms_devzm': {'ann': '2.629'},
                                                                                          'rms_xy': {'CalendarMonths': ['5.739',
                                                                                                                        '4.748',
                                                                                                                        '5.363',
                                                                                                                        '5.846',
                                                                                                                        '6.109',
                                                                                                                        '6.511',
                                                                                                                        '7.143',
                                                                                                                        '6.882',
                                                                                                                        '6.741',
                                                                                                                        '6.162',
                                                                                                                        '5.440',
                                                                                                                        '5.998'],
                                                                                                     'ann': '5.622',
                                                                                                     'djf': '5.323',
                                                                                                     'jja': '6.732',
                                                                                                     'mam': '5.611',
                                                                                                     'son': '5.916'},
                                                                                          'rms_xyt': {'ann': '6.057'},
                                                                                          'rms_y': {'ann': '4.969'},
                                                                                          'rmsc_xy': {'CalendarMonths': ['5.158',
                                                                                                                         '4.043',
                                                                                                                         '4.568',
                                                                                                                         '5.027',
                                                                                                                         '5.043',
                                                                                                                         '5.095',
                                                                                                                         '5.569',
                                                                                                                         '4.953',
                                                                                                                         '4.849',
                                                                                                                         '4.188',
                                                                                                                         '4.510',
                                                                                                                         '5.431'],
                                                                                                      'ann': '4.376',
                                                                                                      'djf': '4.691',
                                                                                                      'jja': '5.065',
                                                                                                      'mam': '4.687',
                                                                                                      'son': '4.287'},
                                                                                          'std-obs_xy': {'CalendarMonths': ['26.181',
                                                                                                                            '30.090',
                                                                                                                            '35.179',
                                                                                                                            '38.581',
                                                                                                                            '39.728',
                                                                                                                            '40.806',
                                                                                                                            '41.924',
                                                                                                                            '41.160',
                                                                                                                            '39.034',
                                                                                                                            '33.763',
                                                                                                                            '27.900',
                                                                                                                            '24.987'],
                                                                                                         'ann': '34.688',
                                                                                                         'djf': '27.023',
                                                                                                         'jja': '41.271',
                                                                                                         'mam': '37.832',
                                                                                                         'son': '33.476'},
                                                                                          'std-obs_xy_devzm': {'ann': '8.641'},
                                                                                          'std-obs_xyt': {'ann': '36.364'},
                                                                                          'std_xy': {'CalendarMonths': ['21.942',
                                                                                                                        '27.791',
                                                                                                                        '33.325',
                                                                                                                        '36.071',
                                                                                                                        '37.138',
                                                                                                                        '37.777',
                                                                                                                        '38.300',
                                                                                                                        '38.435',
                                                                                                                        '36.528',
                                                                                                                        '31.633',
                                                                                                                        '24.425',
                                                                                                                        '20.647'],
                                                                                                     'ann': '31.664',
                                                                                                     'djf': '23.357',
                                                                                                     'jja': '38.151',
                                                                                                     'mam': '35.498',
                                                                                                     'son': '30.723'},
                                                                                          'std_xy_devzm': {'ann': '8.060'},
                                                                                          'std_xyt': {'ann': '33.821'}},
                                                                                 'TROPICS': {'bias_xy': {'CalendarMonths': ['-3.889',
                                                                                                                            '-3.338',
                                                                                                                            '-2.701',
                                                                                                                            '-2.896',
                                                                                                                            '-4.179',
                                                                                                                            '-4.347',
                                                                                                                            '-4.074',
                                                                                                                            '-4.094',
                                                                                                                            '-3.870',
                                                                                                                            '-3.933',
                                                                                                                            '-4.139',
                                                                                                                            '-4.162'],
                                                                                                         'ann': '-3.802',
                                                                                                         'djf': '-3.792',
                                                                                                         'jja': '-4.173',
                                                                                                         'mam': '-3.266',
                                                                                                         'son': '-3.981'},
                                                                                             'cor_xy': {'CalendarMonths': ['0.87',
                                                                                                                           '0.85',
                                                                                                                           '0.82',
                                                                                                                           '0.80',
                                                                                                                           '0.80',
                                                                                                                           '0.81',
                                                                                                                           '0.79',
                                                                                                                           '0.80',
                                                                                                                           '0.82',
                                                                                                                           '0.87',
                                                                                                                           '0.87',
                                                                                                                           '0.88'],
                                                                                                        'ann': '0.808',
                                                                                                        'djf': '0.88',
                                                                                                        'jja': '0.81',
                                                                                                        'mam': '0.80',
                                                                                                        'son': '0.86'},
                                                                                             'mae_xy': {'CalendarMonths': ['5.346',
                                                                                                                           '5.379',
                                                                                                                           '5.427',
                                                                                                                           '5.502',
                                                                                                                           '6.182',
                                                                                                                           '6.922',
                                                                                                                           '7.183',
                                                                                                                           '6.831',
                                                                                                                           '6.341',
                                                                                                                           '5.195',
                                                                                                                           '5.007',
                                                                                                                           '5.191'],
                                                                                                        'ann': '5.176',
                                                                                                        'djf': '5.031',
                                                                                                        'jja': '6.790',
                                                                                                        'mam': '5.451',
                                                                                                        'son': '5.277'},
                                                                                             'mean-obs_xy': {'CalendarMonths': ['289.838',
                                                                                                                                '290.613',
                                                                                                                                '290.917',
                                                                                                                                '290.789',
                                                                                                                                '291.043',
                                                                                                                                '290.877',
                                                                                                                                '290.244',
                                                                                                                                '290.376',
                                                                                                                                '290.826',
                                                                                                                                '290.780',
                                                                                                                                '290.090',
                                                                                                                                '289.741'],
                                                                                                             'ann': '290.511',
                                                                                                             'djf': '290.067',
                                                                                                             'jja': '290.502',
                                                                                                             'mam': '290.915',
                                                                                                             'son': '290.563'},
                                                                                             'mean_xy': {'CalendarMonths': ['285.948',
                                                                                                                            '287.275',
                                                                                                                            '288.216',
                                                                                                                            '287.893',
                                                                                                                            '286.864',
                                                                                                                            '286.529',
                                                                                                                            '286.170',
                                                                                                                            '286.282',
                                                                                                                            '286.957',
                                                                                                                            '286.847',
                                                                                                                            '285.952',
                                                                                                                            '285.579'],
                                                                                                         'ann': '286.709',
                                                                                                         'djf': '286.275',
                                                                                                         'jja': '286.329',
                                                                                                         'mam': '287.649',
                                                                                                         'son': '286.582'},
                                                                                             'rms_devzm': {'ann': '4.028'},
                                                                                             'rms_xy': {'CalendarMonths': ['6.261',
                                                                                                                           '6.466',
                                                                                                                           '6.532',
                                                                                                                           '6.652',
                                                                                                                           '7.493',
                                                                                                                           '8.239',
                                                                                                                           '8.505',
                                                                                                                           '8.189',
                                                                                                                           '7.535',
                                                                                                                           '6.066',
                                                                                                                           '5.949',
                                                                                                                           '6.121'],
                                                                                                        'ann': '5.996',
                                                                                                        'djf': '5.956',
                                                                                                        'jja': '7.965',
                                                                                                        'mam': '6.557',
                                                                                                        'son': '6.150'},
                                                                                             'rms_xyt': {'ann': '7.001'},
                                                                                             'rms_y': {'ann': '4.441'},
                                                                                             'rmsc_xy': {'CalendarMonths': ['4.907',
                                                                                                                            '5.538',
                                                                                                                            '5.947',
                                                                                                                            '5.988',
                                                                                                                            '6.220',
                                                                                                                            '6.999',
                                                                                                                            '7.466',
                                                                                                                            '7.092',
                                                                                                                            '6.465',
                                                                                                                            '4.619',
                                                                                                                            '4.273',
                                                                                                                            '4.488'],
                                                                                                         'ann': '4.636',
                                                                                                         'djf': '4.593',
                                                                                                         'jja': '6.784',
                                                                                                         'mam': '5.686',
                                                                                                         'son': '4.688'},
                                                                                             'std-obs_xy': {'CalendarMonths': ['9.006',
                                                                                                                               '8.605',
                                                                                                                               '8.044',
                                                                                                                               '7.643',
                                                                                                                               '8.344',
                                                                                                                               '9.635',
                                                                                                                               '9.732',
                                                                                                                               '9.381',
                                                                                                                               '9.038',
                                                                                                                               '7.960',
                                                                                                                               '7.629',
                                                                                                                               '8.553'],
                                                                                                            'ann': '6.328',
                                                                                                            'djf': '8.570',
                                                                                                            'jja': '9.322',
                                                                                                            'mam': '7.319',
                                                                                                            'son': '7.474'},
                                                                                             'std-obs_xy_devzm': {'ann': '5.352'},
                                                                                             'std-obs_xyt': {'ann': '8.670'},
                                                                                             'std_xy': {'CalendarMonths': ['9.966',
                                                                                                                           '10.423',
                                                                                                                           '10.346',
                                                                                                                           '9.980',
                                                                                                                           '10.272',
                                                                                                                           '11.822',
                                                                                                                           '12.127',
                                                                                                                           '11.899',
                                                                                                                           '11.253',
                                                                                                                           '9.434',
                                                                                                                           '8.634',
                                                                                                                           '9.286'],
                                                                                                        'ann': '7.866',
                                                                                                        'djf': '9.574',
                                                                                                        'jja': '11.595',
                                                                                                        'mam': '9.521',
                                                                                                        'son': '9.106'},
                                                                                             'std_xy_devzm': {'ann': '6.759'},
                                                                                             'std_xyt': {'ann': '10.535'}},
                                                                                 'global': {'bias_xy': {'CalendarMonths': ['-4.434',
                                                                                                                           '-4.002',
                                                                                                                           '-3.853',
                                                                                                                           '-3.925',
                                                                                                                           '-4.761',
                                                                                                                           '-5.020',
                                                                                                                           '-4.919',
                                                                                                                           '-4.802',
                                                                                                                           '-4.897',
                                                                                                                           '-4.696',
                                                                                                                           '-4.289',
                                                                                                                           '-4.322'],
                                                                                                        'ann': '-4.493',
                                                                                                        'djf': '-4.252',
                                                                                                        'jja': '-4.914',
                                                                                                        'mam': '-4.183',
                                                                                                        'son': '-4.627'},
                                                                                            'cor_xy': {'CalendarMonths': ['0.99',
                                                                                                                          '0.99',
                                                                                                                          '0.99',
                                                                                                                          '0.99',
                                                                                                                          '0.98',
                                                                                                                          '0.98',
                                                                                                                          '0.98',
                                                                                                                          '0.98',
                                                                                                                          '0.98',
                                                                                                                          '0.99',
                                                                                                                          '0.99',
                                                                                                                          '0.99'],
                                                                                                       'ann': '0.989',
                                                                                                       'djf': '0.99',
                                                                                                       'jja': '0.98',
                                                                                                       'mam': '0.99',
                                                                                                       'son': '0.99'},
                                                                                            'mae_xy': {'CalendarMonths': ['5.936',
                                                                                                                          '5.630',
                                                                                                                          '5.760',
                                                                                                                          '5.789',
                                                                                                                          '6.368',
                                                                                                                          '6.807',
                                                                                                                          '7.108',
                                                                                                                          '6.710',
                                                                                                                          '6.575',
                                                                                                                          '5.787',
                                                                                                                          '5.493',
                                                                                                                          '5.766'],
                                                                                                       'ann': '5.608',
                                                                                                       'djf': '5.589',
                                                                                                       'jja': '6.708',
                                                                                                       'mam': '5.775',
                                                                                                       'son': '5.678'},
                                                                                            'mean-obs_xy': {'CalendarMonths': ['265.339',
                                                                                                                               '265.610',
                                                                                                                               '266.368',
                                                                                                                               '267.439',
                                                                                                                               '269.325',
                                                                                                                               '271.188',
                                                                                                                               '272.079',
                                                                                                                               '271.736',
                                                                                                                               '270.386',
                                                                                                                               '268.289',
                                                                                                                               '266.064',
                                                                                                                               '265.206'],
                                                                                                            'ann': '268.253',
                                                                                                            'djf': '265.387',
                                                                                                            'jja': '271.663',
                                                                                                            'mam': '267.734',
                                                                                                            'son': '268.246'},
                                                                                            'mean_xy': {'CalendarMonths': ['260.905',
                                                                                                                           '261.608',
                                                                                                                           '262.515',
                                                                                                                           '263.515',
                                                                                                                           '264.564',
                                                                                                                           '266.168',
                                                                                                                           '267.160',
                                                                                                                           '266.934',
                                                                                                                           '265.489',
                                                                                                                           '263.593',
                                                                                                                           '261.775',
                                                                                                                           '260.884'],
                                                                                                        'ann': '263.759',
                                                                                                        'djf': '261.135',
                                                                                                        'jja': '266.750',
                                                                                                        'mam': '263.551',
                                                                                                        'son': '263.619'},
                                                                                            'rms_devzm': {'ann': '3.552'},
                                                                                            'rms_xy': {'CalendarMonths': ['7.093',
                                                                                                                          '6.881',
                                                                                                                          '6.876',
                                                                                                                          '6.829',
                                                                                                                          '7.466',
                                                                                                                          '7.938',
                                                                                                                          '8.216',
                                                                                                                          '7.774',
                                                                                                                          '7.530',
                                                                                                                          '6.673',
                                                                                                                          '6.497',
                                                                                                                          '6.806'],
                                                                                                       'ann': '6.367',
                                                                                                       'djf': '6.692',
                                                                                                       'jja': '7.690',
                                                                                                       'mam': '6.731',
                                                                                                       'son': '6.555'},
                                                                                            'rms_xyt': {'ann': '7.215'},
                                                                                            'rms_y': {'ann': '5.284'},
                                                                                            'rmsc_xy': {'CalendarMonths': ['5.536',
                                                                                                                           '5.597',
                                                                                                                           '5.695',
                                                                                                                           '5.589',
                                                                                                                           '5.750',
                                                                                                                           '6.149',
                                                                                                                           '6.581',
                                                                                                                           '6.114',
                                                                                                                           '5.720',
                                                                                                                           '4.740',
                                                                                                                           '4.880',
                                                                                                                           '5.257'],
                                                                                                        'ann': '4.511',
                                                                                                        'djf': '5.167',
                                                                                                        'jja': '5.916',
                                                                                                        'mam': '5.273',
                                                                                                        'son': '4.643'},
                                                                                            'std-obs_xy': {'CalendarMonths': ['34.650',
                                                                                                                              '35.243',
                                                                                                                              '34.510',
                                                                                                                              '33.178',
                                                                                                                              '32.431',
                                                                                                                              '32.872',
                                                                                                                              '33.462',
                                                                                                                              '33.192',
                                                                                                                              '32.564',
                                                                                                                              '31.818',
                                                                                                                              '32.579',
                                                                                                                              '33.923'],
                                                                                                           'ann': '31.107',
                                                                                                           'djf': '34.541',
                                                                                                           'jja': '33.074',
                                                                                                           'mam': '32.740',
                                                                                                           'son': '31.469'},
                                                                                            'std-obs_xy_devzm': {'ann': '7.499'},
                                                                                            'std-obs_xyt': {'ann': '33.476'},
                                                                                            'std_xy': {'CalendarMonths': ['34.949',
                                                                                                                          '35.970',
                                                                                                                          '35.452',
                                                                                                                          '33.315',
                                                                                                                          '31.827',
                                                                                                                          '32.251',
                                                                                                                          '33.029',
                                                                                                                          '33.191',
                                                                                                                          '32.554',
                                                                                                                          '31.519',
                                                                                                                          '31.611',
                                                                                                                          '33.389'],
                                                                                                       'ann': '30.829',
                                                                                                       'djf': '34.662',
                                                                                                       'jja': '32.694',
                                                                                                       'mam': '32.863',
                                                                                                       'son': '31.028'},
                                                                                            'std_xy_devzm': {'ann': '7.692'},
                                                                                            'std_xyt': {'ann': '33.357'}}},
                                                                    'source': 'CERES-EBAF-4-1'},
                                                        'units': 'W m-2'}},
                             'provenance': {'commandLine': '/home/lee1043/.conda/envs/pcmdi_metrics_dev_20230822/bin/mean_climate_driver.py '
                                                           '-p basic_param.py '
                                                           '-v rlutcs',
                                            'conda': {'Platform': 'linux-64',
                                                      'PythonVersion': '3.10.12.final.0',
                                                      'Version': '23.3.1',
                                                      'buildVersion': 'not '
                                                                      'installed'},
                                            'date': '2023-09-19 00:49:00',
                                            'openGL': {'GLX': {'client': {'vendor': 'Mesa '
                                                                                    'Project '
                                                                                    'and '
                                                                                    'SGI',
                                                                          'version': '1.4'},
                                                               'server': {'vendor': 'SGI',
                                                                          'version': '1.4'},
                                                               'version': '1.4'},
                                                       'renderer': 'llvmpipe '
                                                                   '(LLVM 7.0, '
                                                                   '256 bits)',
                                                       'shading language version': '1.20',
                                                       'vendor': 'VMware, Inc.',
                                                       'version': '2.1 Mesa '
                                                                  '18.3.4'},
                                            'osAccess': False,
                                            'packages': {'PMP': 'v3.0.2-11-g06b151f',
                                                         'PMPObs': 'See '
                                                                   "'References' "
                                                                   'key below, '
                                                                   'for '
                                                                   'detailed '
                                                                   'obs '
                                                                   'provenance '
                                                                   'information.',
                                                         'blas': '0.3.23',
                                                         'cdat_info': '8.2.1',
                                                         'cdms': '3.1.5',
                                                         'cdp': '1.7.0',
                                                         'cdtime': '3.1.4',
                                                         'cdutil': '8.2.1',
                                                         'clapack': None,
                                                         'esmf': '8.4.2',
                                                         'esmpy': '8.4.2',
                                                         'genutil': '8.2.1',
                                                         'lapack': '3.9.0',
                                                         'matplotlib': '3.7.1',
                                                         'mesalib': None,
                                                         'numpy': '1.23.5',
                                                         'python': '3.10.10',
                                                         'scipy': '1.11.2',
                                                         'uvcdat': None,
                                                         'vcs': None,
                                                         'vtk': None,
                                                         'xarray': '2023.8.0',
                                                         'xcdat': '0.5.0'},
                                            'platform': {'Name': 'gates.llnl.gov',
                                                         'OS': 'Linux',
                                                         'Version': '3.10.0-1160.71.1.el7.x86_64'},
                                            'userId': 'lee1043'}},
                  'rsds': {'REFERENCE': {'default': {'CMIP_CMOR_TABLE': 'Amon',
                                                     'MD5sum': 'a56d3513c6b90a6bc06d643f28b58106',
                                                     'RefTrackingDate': 'Wed '
                                                                        'Aug  '
                                                                        '4 '
                                                                        '12:22:52 '
                                                                        '2021',
                                                     'filename': 'rsds_mon_CERES-EBAF-4-1_PCMDI_gn.200301-201812.AC.v20210804.nc',
                                                     'period': '200301-201812',
                                                     'shape': '(12, 180, 360)',
                                                     'template': 'rsds/CERES-EBAF-4-1/v20210804/rsds_mon_CERES-EBAF-4-1_PCMDI_gn.200301-201812.AC.v20210804.nc'}},
                           'RESULTS': {'ACCESS-CM2': {'default': {'r1i1p1f1': {'InputClimatologyFileName': 'cmip6.historical.ACCESS-CM2.r1i1p1f1.mon.rsds.198101-200512.AC.v20230823.nc',
                                                                               'NHEX': {'bias_xy': {'CalendarMonths': ['-3.134',
                                                                                                                       '-4.813',
                                                                                                                       '-8.667',
                                                                                                                       '-9.282',
                                                                                                                       '-2.413',
                                                                                                                       '5.734',
                                                                                                                       '9.791',
                                                                                                                       '6.578',
                                                                                                                       '-1.056',
                                                                                                                       '-3.273',
                                                                                                                       '-3.040',
                                                                                                                       '-2.519'],
                                                                                                    'ann': '-1.341',
                                                                                                    'djf': '-3.499',
                                                                                                    'jja': '7.341',
                                                                                                    'mam': '-6.778',
                                                                                                    'son': '-2.448'},
                                                                                        'cor_xy': {'CalendarMonths': ['0.98',
                                                                                                                      '0.97',
                                                                                                                      '0.96',
                                                                                                                      '0.92',
                                                                                                                      '0.84',
                                                                                                                      '0.86',
                                                                                                                      '0.89',
                                                                                                                      '0.97',
                                                                                                                      '0.98',
                                                                                                                      '0.99',
                                                                                                                      '0.99',
                                                                                                                      '0.98'],
                                                                                                   'ann': '0.978',
                                                                                                   'djf': '0.98',
                                                                                                   'jja': '0.92',
                                                                                                   'mam': '0.93',
                                                                                                   'son': '0.99'},
                                                                                        'mae_xy': {'CalendarMonths': ['6.290',
                                                                                                                      '8.923',
                                                                                                                      '12.443',
                                                                                                                      '14.623',
                                                                                                                      '17.181',
                                                                                                                      '19.391',
                                                                                                                      '19.682',
                                                                                                                      '12.841',
                                                                                                                      '9.999',
                                                                                                                      '7.315',
                                                                                                                      '5.364',
                                                                                                                      '4.749'],
                                                                                                   'ann': '7.054',
                                                                                                   'djf': '6.377',
                                                                                                   'jja': '15.630',
                                                                                                   'mam': '13.036',
                                                                                                   'son': '6.253'},
                                                                                        'mean-obs_xy': {'CalendarMonths': ['52.817',
                                                                                                                           '82.479',
                                                                                                                           '134.321',
                                                                                                                           '194.438',
                                                                                                                           '233.854',
                                                                                                                           '247.494',
                                                                                                                           '233.981',
                                                                                                                           '197.187',
                                                                                                                           '147.324',
                                                                                                                           '95.110',
                                                                                                                           '58.966',
                                                                                                                           '44.936'],
                                                                                                        'ann': '143.576',
                                                                                                        'djf': '60.242',
                                                                                                        'jja': '226.136',
                                                                                                        'mam': '188.658',
                                                                                                        'son': '100.525'},
                                                                                        'mean_xy': {'CalendarMonths': ['49.683',
                                                                                                                       '77.666',
                                                                                                                       '125.654',
                                                                                                                       '185.156',
                                                                                                                       '231.440',
                                                                                                                       '253.228',
                                                                                                                       '243.773',
                                                                                                                       '203.765',
                                                                                                                       '146.267',
                                                                                                                       '91.837',
                                                                                                                       '55.926',
                                                                                                                       '42.416'],
                                                                                                    'ann': '142.234',
                                                                                                    'djf': '56.743',
                                                                                                    'jja': '233.478',
                                                                                                    'mam': '181.880',
                                                                                                    'son': '98.077'},
                                                                                        'rms_devzm': {'ann': '8.734'},
                                                                                        'rms_xy': {'CalendarMonths': ['9.890',
                                                                                                                      '12.844',
                                                                                                                      '16.318',
                                                                                                                      '18.159',
                                                                                                                      '21.927',
                                                                                                                      '24.473',
                                                                                                                      '24.146',
                                                                                                                      '16.254',
                                                                                                                      '12.624',
                                                                                                                      '9.542',
                                                                                                                      '8.019',
                                                                                                                      '7.526'],
                                                                                                   'ann': '9.147',
                                                                                                   'djf': '9.738',
                                                                                                   'jja': '19.460',
                                                                                                   'mam': '15.979',
                                                                                                   'son': '8.193'},
                                                                                        'rms_xyt': {'ann': '15.143'},
                                                                                        'rms_y': {'ann': '2.720'},
                                                                                        'rmsc_xy': {'CalendarMonths': ['9.380',
                                                                                                                       '11.909',
                                                                                                                       '13.826',
                                                                                                                       '15.607',
                                                                                                                       '21.794',
                                                                                                                       '23.792',
                                                                                                                       '22.072',
                                                                                                                       '14.864',
                                                                                                                       '12.580',
                                                                                                                       '8.962',
                                                                                                                       '7.420',
                                                                                                                       '7.092'],
                                                                                                    'ann': '9.048',
                                                                                                    'djf': '9.088',
                                                                                                    'jja': '18.022',
                                                                                                    'mam': '14.470',
                                                                                                    'son': '7.818'},
                                                                                        'std-obs_xy': {'CalendarMonths': ['43.026',
                                                                                                                          '50.211',
                                                                                                                          '50.887',
                                                                                                                          '37.792',
                                                                                                                          '37.803',
                                                                                                                          '46.122',
                                                                                                                          '46.682',
                                                                                                                          '54.593',
                                                                                                                          '61.798',
                                                                                                                          '58.462',
                                                                                                                          '47.583',
                                                                                                                          '40.520'],
                                                                                                       'ann': '42.479',
                                                                                                       'djf': '44.258',
                                                                                                       'jja': '45.109',
                                                                                                       'mam': '37.754',
                                                                                                       'son': '55.373'},
                                                                                        'std-obs_xy_devzm': {'ann': '19.549'},
                                                                                        'std-obs_xyt': {'ann': '87.626'},
                                                                                        'std_xy': {'CalendarMonths': ['42.188',
                                                                                                                      '49.980',
                                                                                                                      '50.488',
                                                                                                                      '40.011',
                                                                                                                      '39.697',
                                                                                                                      '42.407',
                                                                                                                      '45.579',
                                                                                                                      '57.398',
                                                                                                                      '65.595',
                                                                                                                      '59.130',
                                                                                                                      '46.399',
                                                                                                                      '39.394'],
                                                                                                   'ann': '43.594',
                                                                                                   'djf': '43.582',
                                                                                                   'jja': '45.663',
                                                                                                   'mam': '38.996',
                                                                                                   'son': '56.462'},
                                                                                        'std_xy_devzm': {'ann': '21.715'},
                                                                                        'std_xyt': {'ann': '90.311'}},
                                                                               'SHEX': {'bias_xy': {'CalendarMonths': ['9.485',
                                                                                                                       '8.251',
                                                                                                                       '2.712',
                                                                                                                       '-0.156',
                                                                                                                       '-1.165',
                                                                                                                       '-1.973',
                                                                                                                       '-3.190',
                                                                                                                       '-4.477',
                                                                                                                       '-4.158',
                                                                                                                       '0.187',
                                                                                                                       '5.719',
                                                                                                                       '7.035'],
                                                                                                    'ann': '1.522',
                                                                                                    'djf': '8.270',
                                                                                                    'jja': '-3.214',
                                                                                                    'mam': '0.413',
                                                                                                    'son': '0.587'},
                                                                                        'cor_xy': {'CalendarMonths': ['0.96',
                                                                                                                      '0.97',
                                                                                                                      '0.99',
                                                                                                                      '1.00',
                                                                                                                      '1.00',
                                                                                                                      '1.00',
                                                                                                                      '1.00',
                                                                                                                      '0.99',
                                                                                                                      '0.99',
                                                                                                                      '0.96',
                                                                                                                      '0.95',
                                                                                                                      '0.96'],
                                                                                                   'ann': '0.986',
                                                                                                   'djf': '0.96',
                                                                                                   'jja': '1.00',
                                                                                                   'mam': '1.00',
                                                                                                   'son': '0.97'},
                                                                                        'mae_xy': {'CalendarMonths': ['16.037',
                                                                                                                      '11.348',
                                                                                                                      '6.064',
                                                                                                                      '3.671',
                                                                                                                      '2.552',
                                                                                                                      '2.413',
                                                                                                                      '3.421',
                                                                                                                      '5.332',
                                                                                                                      '6.925',
                                                                                                                      '9.327',
                                                                                                                      '12.580',
                                                                                                                      '16.782'],
                                                                                                   'ann': '5.326',
                                                                                                   'djf': '13.836',
                                                                                                   'jja': '3.621',
                                                                                                   'mam': '3.367',
                                                                                                   'son': '7.946'},
                                                                                        'mean-obs_xy': {'CalendarMonths': ['254.001',
                                                                                                                           '199.948',
                                                                                                                           '136.437',
                                                                                                                           '83.485',
                                                                                                                           '51.981',
                                                                                                                           '40.124',
                                                                                                                           '45.894',
                                                                                                                           '70.738',
                                                                                                                           '116.960',
                                                                                                                           '181.582',
                                                                                                                           '244.078',
                                                                                                                           '273.268'],
                                                                                                        'ann': '141.541',
                                                                                                        'djf': '242.070',
                                                                                                        'jja': '52.321',
                                                                                                        'mam': '89.656',
                                                                                                        'son': '180.866'},
                                                                                        'mean_xy': {'CalendarMonths': ['263.487',
                                                                                                                       '208.199',
                                                                                                                       '139.150',
                                                                                                                       '83.328',
                                                                                                                       '50.815',
                                                                                                                       '38.150',
                                                                                                                       '42.704',
                                                                                                                       '66.261',
                                                                                                                       '112.801',
                                                                                                                       '181.769',
                                                                                                                       '249.798',
                                                                                                                       '280.303'],
                                                                                                    'ann': '143.064',
                                                                                                    'djf': '250.341',
                                                                                                    'jja': '49.107',
                                                                                                    'mam': '90.069',
                                                                                                    'son': '181.453'},
                                                                                        'rms_devzm': {'ann': '5.690'},
                                                                                        'rms_xy': {'CalendarMonths': ['20.633',
                                                                                                                      '14.436',
                                                                                                                      '7.746',
                                                                                                                      '4.891',
                                                                                                                      '3.627',
                                                                                                                      '3.519',
                                                                                                                      '4.948',
                                                                                                                      '7.204',
                                                                                                                      '9.107',
                                                                                                                      '11.603',
                                                                                                                      '16.206',
                                                                                                                      '21.213'],
                                                                                                   'ann': '6.694',
                                                                                                   'djf': '17.355',
                                                                                                   'jja': '5.028',
                                                                                                   'mam': '4.416',
                                                                                                   'son': '10.071'},
                                                                                        'rms_xyt': {'ann': '10.428'},
                                                                                        'rms_y': {'ann': '3.526'},
                                                                                        'rmsc_xy': {'CalendarMonths': ['18.323',
                                                                                                                       '11.845',
                                                                                                                       '7.256',
                                                                                                                       '4.889',
                                                                                                                       '3.435',
                                                                                                                       '2.913',
                                                                                                                       '3.782',
                                                                                                                       '5.644',
                                                                                                                       '8.102',
                                                                                                                       '11.601',
                                                                                                                       '15.164',
                                                                                                                       '20.013'],
                                                                                                    'ann': '6.519',
                                                                                                    'djf': '15.257',
                                                                                                    'jja': '3.867',
                                                                                                    'mam': '4.396',
                                                                                                    'son': '10.054'},
                                                                                        'std-obs_xy': {'CalendarMonths': ['59.456',
                                                                                                                          '47.931',
                                                                                                                          '54.331',
                                                                                                                          '52.151',
                                                                                                                          '42.347',
                                                                                                                          '36.504',
                                                                                                                          '39.476',
                                                                                                                          '47.515',
                                                                                                                          '49.418',
                                                                                                                          '38.431',
                                                                                                                          '46.619',
                                                                                                                          '64.266'],
                                                                                                       'ann': '38.500',
                                                                                                       'djf': '52.716',
                                                                                                       'jja': '41.071',
                                                                                                       'mam': '49.237',
                                                                                                       'son': '36.922'},
                                                                                        'std-obs_xy_devzm': {'ann': '12.357'},
                                                                                        'std-obs_xyt': {'ann': '96.032'},
                                                                                        'std_xy': {'CalendarMonths': ['49.192',
                                                                                                                      '46.988',
                                                                                                                      '55.385',
                                                                                                                      '53.590',
                                                                                                                      '42.902',
                                                                                                                      '36.023',
                                                                                                                      '38.148',
                                                                                                                      '46.385',
                                                                                                                      '49.962',
                                                                                                                      '40.921',
                                                                                                                      '42.946',
                                                                                                                      '51.943'],
                                                                                                   'ann': '38.861',
                                                                                                   'djf': '45.660',
                                                                                                   'jja': '40.117',
                                                                                                   'mam': '50.323',
                                                                                                   'son': '38.586'},
                                                                                        'std_xy_devzm': {'ann': '11.116'},
                                                                                        'std_xyt': {'ann': '98.523'}},
                                                                               'TROPICS': {'bias_xy': {'CalendarMonths': ['8.497',
                                                                                                                          '7.723',
                                                                                                                          '8.905',
                                                                                                                          '8.224',
                                                                                                                          '8.405',
                                                                                                                          '9.808',
                                                                                                                          '10.050',
                                                                                                                          '9.460',
                                                                                                                          '11.487',
                                                                                                                          '11.827',
                                                                                                                          '10.679',
                                                                                                                          '9.306'],
                                                                                                       'ann': '9.531',
                                                                                                       'djf': '8.500',
                                                                                                       'jja': '9.770',
                                                                                                       'mam': '8.501',
                                                                                                       'son': '11.326'},
                                                                                           'cor_xy': {'CalendarMonths': ['0.94',
                                                                                                                         '0.85',
                                                                                                                         '0.72',
                                                                                                                         '0.86',
                                                                                                                         '0.92',
                                                                                                                         '0.92',
                                                                                                                         '0.90',
                                                                                                                         '0.85',
                                                                                                                         '0.78',
                                                                                                                         '0.88',
                                                                                                                         '0.94',
                                                                                                                         '0.95'],
                                                                                                      'ann': '0.799',
                                                                                                      'djf': '0.93',
                                                                                                      'jja': '0.91',
                                                                                                      'mam': '0.86',
                                                                                                      'son': '0.88'},
                                                                                           'mae_xy': {'CalendarMonths': ['15.501',
                                                                                                                         '16.395',
                                                                                                                         '17.159',
                                                                                                                         '15.896',
                                                                                                                         '15.818',
                                                                                                                         '16.935',
                                                                                                                         '16.360',
                                                                                                                         '16.218',
                                                                                                                         '16.326',
                                                                                                                         '15.385',
                                                                                                                         '15.666',
                                                                                                                         '15.659'],
                                                                                                      'ann': '13.085',
                                                                                                      'djf': '14.773',
                                                                                                      'jja': '15.506',
                                                                                                      'mam': '15.283',
                                                                                                      'son': '14.707'},
                                                                                           'mean-obs_xy': {'CalendarMonths': ['232.400',
                                                                                                                              '242.873',
                                                                                                                              '246.358',
                                                                                                                              '239.659',
                                                                                                                              '225.086',
                                                                                                                              '213.448',
                                                                                                                              '214.292',
                                                                                                                              '225.668',
                                                                                                                              '236.195',
                                                                                                                              '238.952',
                                                                                                                              '232.919',
                                                                                                                              '227.619'],
                                                                                                           'ann': '231.289',
                                                                                                           'djf': '234.370',
                                                                                                           'jja': '217.840',
                                                                                                           'mam': '236.881',
                                                                                                           'son': '235.990'},
                                                                                           'mean_xy': {'CalendarMonths': ['240.897',
                                                                                                                          '250.597',
                                                                                                                          '255.263',
                                                                                                                          '247.883',
                                                                                                                          '233.492',
                                                                                                                          '223.256',
                                                                                                                          '224.342',
                                                                                                                          '235.128',
                                                                                                                          '247.681',
                                                                                                                          '250.780',
                                                                                                                          '243.598',
                                                                                                                          '236.925'],
                                                                                                       'ann': '240.820',
                                                                                                       'djf': '242.870',
                                                                                                       'jja': '227.610',
                                                                                                       'mam': '245.382',
                                                                                                       'son': '247.316'},
                                                                                           'rms_devzm': {'ann': '13.327'},
                                                                                           'rms_xy': {'CalendarMonths': ['20.344',
                                                                                                                         '21.769',
                                                                                                                         '22.775',
                                                                                                                         '21.397',
                                                                                                                         '21.347',
                                                                                                                         '24.520',
                                                                                                                         '24.024',
                                                                                                                         '22.758',
                                                                                                                         '22.071',
                                                                                                                         '20.294',
                                                                                                                         '20.208',
                                                                                                                         '20.277'],
                                                                                                      'ann': '16.979',
                                                                                                      'djf': '19.173',
                                                                                                      'jja': '22.328',
                                                                                                      'mam': '20.335',
                                                                                                      'son': '19.173'},
                                                                                           'rms_xyt': {'ann': '21.815'},
                                                                                           'rms_y': {'ann': '10.520'},
                                                                                           'rmsc_xy': {'CalendarMonths': ['18.485',
                                                                                                                          '20.353',
                                                                                                                          '20.962',
                                                                                                                          '19.753',
                                                                                                                          '19.622',
                                                                                                                          '22.473',
                                                                                                                          '21.821',
                                                                                                                          '20.698',
                                                                                                                          '18.847',
                                                                                                                          '16.491',
                                                                                                                          '17.156',
                                                                                                                          '18.016'],
                                                                                                       'ann': '14.051',
                                                                                                       'djf': '17.186',
                                                                                                       'jja': '20.077',
                                                                                                       'mam': '18.473',
                                                                                                       'son': '15.470'},
                                                                                           'std-obs_xy': {'CalendarMonths': ['49.893',
                                                                                                                             '37.304',
                                                                                                                             '27.722',
                                                                                                                             '34.176',
                                                                                                                             '45.760',
                                                                                                                             '51.770',
                                                                                                                             '47.343',
                                                                                                                             '37.336',
                                                                                                                             '29.565',
                                                                                                                             '34.122',
                                                                                                                             '47.199',
                                                                                                                             '54.941'],
                                                                                                          'ann': '22.878',
                                                                                                          'djf': '46.306',
                                                                                                          'jja': '44.273',
                                                                                                          'mam': '32.230',
                                                                                                          'son': '32.618'},
                                                                                           'std-obs_xy_devzm': {'ann': '21.604'},
                                                                                           'std-obs_xyt': {'ann': '43.513'},
                                                                                           'std_xy': {'CalendarMonths': ['52.476',
                                                                                                                         '37.098',
                                                                                                                         '28.358',
                                                                                                                         '38.067',
                                                                                                                         '50.642',
                                                                                                                         '55.711',
                                                                                                                         '50.547',
                                                                                                                         '38.657',
                                                                                                                         '27.439',
                                                                                                                         '32.937',
                                                                                                                         '49.533',
                                                                                                                         '58.100'],
                                                                                                      'ann': '21.223',
                                                                                                      'djf': '47.806',
                                                                                                      'jja': '47.229',
                                                                                                      'mam': '35.590',
                                                                                                      'son': '31.384'},
                                                                                           'std_xy_devzm': {'ann': '19.615'},
                                                                                           'std_xyt': {'ann': '45.604'}},
                                                                               'global': {'bias_xy': {'CalendarMonths': ['5.836',
                                                                                                                         '4.721',
                                                                                                                         '2.964',
                                                                                                                         '1.753',
                                                                                                                         '3.308',
                                                                                                                         '5.844',
                                                                                                                         '6.675',
                                                                                                                         '5.255',
                                                                                                                         '4.440',
                                                                                                                         '5.142',
                                                                                                                         '6.009',
                                                                                                                         '5.782'],
                                                                                                      'ann': '4.811',
                                                                                                      'djf': '5.443',
                                                                                                      'jja': '5.917',
                                                                                                      'mam': '2.659',
                                                                                                      'son': '5.198'},
                                                                                          'cor_xy': {'CalendarMonths': ['0.98',
                                                                                                                        '0.98',
                                                                                                                        '0.97',
                                                                                                                        '0.98',
                                                                                                                        '0.98',
                                                                                                                        '0.98',
                                                                                                                        '0.98',
                                                                                                                        '0.98',
                                                                                                                        '0.98',
                                                                                                                        '0.98',
                                                                                                                        '0.99',
                                                                                                                        '0.99'],
                                                                                                     'ann': '0.979',
                                                                                                     'djf': '0.99',
                                                                                                     'jja': '0.98',
                                                                                                     'mam': '0.98',
                                                                                                     'son': '0.98'},
                                                                                          'mae_xy': {'CalendarMonths': ['13.332',
                                                                                                                        '13.265',
                                                                                                                        '13.206',
                                                                                                                        '12.521',
                                                                                                                        '12.842',
                                                                                                                        '13.919',
                                                                                                                        '13.956',
                                                                                                                        '12.652',
                                                                                                                        '12.394',
                                                                                                                        '11.853',
                                                                                                                        '12.319',
                                                                                                                        '13.212'],
                                                                                                     'ann': '9.637',
                                                                                                     'djf': '12.440',
                                                                                                     'jja': '12.566',
                                                                                                     'mam': '11.742',
                                                                                                     'son': '10.903'},
                                                                                          'mean-obs_xy': {'CalendarMonths': ['192.904',
                                                                                                                             '192.043',
                                                                                                                             '190.868',
                                                                                                                             '189.310',
                                                                                                                             '184.002',
                                                                                                                             '178.628',
                                                                                                                             '177.115',
                                                                                                                             '179.815',
                                                                                                                             '184.168',
                                                                                                                             '188.649',
                                                                                                                             '192.221',
                                                                                                                             '193.360'],
                                                                                                          'ann': '186.924',
                                                                                                          'djf': '192.763',
                                                                                                          'jja': '178.535',
                                                                                                          'mam': '188.019',
                                                                                                          'son': '188.343'},
                                                                                          'mean_xy': {'CalendarMonths': ['198.741',
                                                                                                                         '196.765',
                                                                                                                         '193.833',
                                                                                                                         '191.063',
                                                                                                                         '187.310',
                                                                                                                         '184.472',
                                                                                                                         '183.790',
                                                                                                                         '185.070',
                                                                                                                         '188.608',
                                                                                                                         '193.791',
                                                                                                                         '198.230',
                                                                                                                         '199.142'],
                                                                                                      'ann': '191.735',
                                                                                                      'djf': '198.206',
                                                                                                      'jja': '184.451',
                                                                                                      'mam': '190.678',
                                                                                                      'son': '193.540'},
                                                                                          'rms_devzm': {'ann': '10.769'},
                                                                                          'rms_xy': {'CalendarMonths': ['18.380',
                                                                                                                        '18.174',
                                                                                                                        '18.464',
                                                                                                                        '17.814',
                                                                                                                        '18.744',
                                                                                                                        '21.294',
                                                                                                                        '20.987',
                                                                                                                        '18.384',
                                                                                                                        '17.440',
                                                                                                                        '16.197',
                                                                                                                        '16.909',
                                                                                                                        '18.227'],
                                                                                                     'ann': '13.276',
                                                                                                     'djf': '16.817',
                                                                                                     'jja': '18.715',
                                                                                                     'mam': '16.597',
                                                                                                     'son': '15.031'},
                                                                                          'rms_xyt': {'ann': '18.418'},
                                                                                          'rms_y': {'ann': '7.764'},
                                                                                          'rmsc_xy': {'CalendarMonths': ['17.429',
                                                                                                                         '17.550',
                                                                                                                         '18.225',
                                                                                                                         '17.727',
                                                                                                                         '18.450',
                                                                                                                         '20.477',
                                                                                                                         '19.897',
                                                                                                                         '17.617',
                                                                                                                         '16.865',
                                                                                                                         '15.359',
                                                                                                                         '15.806',
                                                                                                                         '17.286'],
                                                                                                      'ann': '12.374',
                                                                                                      'djf': '15.912',
                                                                                                      'jja': '17.755',
                                                                                                      'mam': '16.382',
                                                                                                      'son': '14.104'},
                                                                                          'std-obs_xy': {'CalendarMonths': ['95.971',
                                                                                                                            '78.797',
                                                                                                                            '69.636',
                                                                                                                            '75.464',
                                                                                                                            '87.608',
                                                                                                                            '93.770',
                                                                                                                            '88.652',
                                                                                                                            '78.151',
                                                                                                                            '69.457',
                                                                                                                            '72.601',
                                                                                                                            '90.349',
                                                                                                                            '103.164'],
                                                                                                         'ann': '55.247',
                                                                                                         'djf': '90.113',
                                                                                                         'jja': '85.040',
                                                                                                         'mam': '71.376',
                                                                                                         'son': '68.676'},
                                                                                          'std-obs_xy_devzm': {'ann': '19.160'},
                                                                                          'std-obs_xyt': {'ann': '84.502'},
                                                                                          'std_xy': {'CalendarMonths': ['99.589',
                                                                                                                        '83.020',
                                                                                                                        '74.851',
                                                                                                                        '79.796',
                                                                                                                        '91.364',
                                                                                                                        '98.042',
                                                                                                                        '94.121',
                                                                                                                        '83.534',
                                                                                                                        '75.537',
                                                                                                                        '78.063',
                                                                                                                        '94.777',
                                                                                                                        '106.073'],
                                                                                                     'ann': '59.054',
                                                                                                     'djf': '93.908',
                                                                                                     'jja': '90.281',
                                                                                                     'mam': '75.450',
                                                                                                     'son': '73.637'},
                                                                                          'std_xy_devzm': {'ann': '18.470'},
                                                                                          'std_xyt': {'ann': '88.967'}}},
                                                                  'source': 'CERES-EBAF-4-1'},
                                                      'units': 'W m-2'}},
                           'provenance': {'commandLine': '/home/lee1043/.conda/envs/pcmdi_metrics_dev_20230822/bin/mean_climate_driver.py '
                                                         '-p basic_param.py -v '
                                                         'rsds',
                                          'conda': {'Platform': 'linux-64',
                                                    'PythonVersion': '3.10.12.final.0',
                                                    'Version': '23.3.1',
                                                    'buildVersion': 'not '
                                                                    'installed'},
                                          'date': '2023-09-19 00:53:08',
                                          'openGL': {'GLX': {'client': {'vendor': 'Mesa '
                                                                                  'Project '
                                                                                  'and '
                                                                                  'SGI',
                                                                        'version': '1.4'},
                                                             'server': {'vendor': 'SGI',
                                                                        'version': '1.4'},
                                                             'version': '1.4'},
                                                     'renderer': 'llvmpipe '
                                                                 '(LLVM 7.0, '
                                                                 '256 bits)',
                                                     'shading language version': '1.20',
                                                     'vendor': 'VMware, Inc.',
                                                     'version': '2.1 Mesa '
                                                                '18.3.4'},
                                          'osAccess': False,
                                          'packages': {'PMP': 'v3.0.2-11-g06b151f',
                                                       'PMPObs': 'See '
                                                                 "'References' "
                                                                 'key below, '
                                                                 'for detailed '
                                                                 'obs '
                                                                 'provenance '
                                                                 'information.',
                                                       'blas': '0.3.23',
                                                       'cdat_info': '8.2.1',
                                                       'cdms': '3.1.5',
                                                       'cdp': '1.7.0',
                                                       'cdtime': '3.1.4',
                                                       'cdutil': '8.2.1',
                                                       'clapack': None,
                                                       'esmf': '8.4.2',
                                                       'esmpy': '8.4.2',
                                                       'genutil': '8.2.1',
                                                       'lapack': '3.9.0',
                                                       'matplotlib': '3.7.1',
                                                       'mesalib': None,
                                                       'numpy': '1.23.5',
                                                       'python': '3.10.10',
                                                       'scipy': '1.11.2',
                                                       'uvcdat': None,
                                                       'vcs': None,
                                                       'vtk': None,
                                                       'xarray': '2023.8.0',
                                                       'xcdat': '0.5.0'},
                                          'platform': {'Name': 'gates.llnl.gov',
                                                       'OS': 'Linux',
                                                       'Version': '3.10.0-1160.71.1.el7.x86_64'},
                                          'userId': 'lee1043'}},
                  'rsdscs': {'REFERENCE': {'default': {'CMIP_CMOR_TABLE': 'Amon',
                                                       'MD5sum': '8c03b223fdaad3fe932f6af2e829552f',
                                                       'RefTrackingDate': 'Wed '
                                                                          'Aug  '
                                                                          '4 '
                                                                          '12:23:21 '
                                                                          '2021',
                                                       'filename': 'rsdscs_mon_CERES-EBAF-4-1_PCMDI_gn.200301-201812.AC.v20210804.nc',
                                                       'period': '200301-201812',
                                                       'shape': '(12, 180, '
                                                                '360)',
                                                       'template': 'rsdscs/CERES-EBAF-4-1/v20210804/rsdscs_mon_CERES-EBAF-4-1_PCMDI_gn.200301-201812.AC.v20210804.nc'}},
                             'RESULTS': {'ACCESS-CM2': {'default': {'r1i1p1f1': {'InputClimatologyFileName': 'cmip6.historical.ACCESS-CM2.r1i1p1f1.mon.rsdscs.198101-200512.AC.v20230823.nc',
                                                                                 'NHEX': {'bias_xy': {'CalendarMonths': ['-1.919',
                                                                                                                         '-2.218',
                                                                                                                         '-2.095',
                                                                                                                         '-1.748',
                                                                                                                         '0.265',
                                                                                                                         '3.861',
                                                                                                                         '6.235',
                                                                                                                         '4.519',
                                                                                                                         '1.862',
                                                                                                                         '-0.004',
                                                                                                                         '-0.942',
                                                                                                                         '-1.565'],
                                                                                                      'ann': '0.521',
                                                                                                      'djf': '-1.904',
                                                                                                      'jja': '4.857',
                                                                                                      'mam': '-1.181',
                                                                                                      'son': '0.309'},
                                                                                          'cor_xy': {'CalendarMonths': ['1.00',
                                                                                                                        '1.00',
                                                                                                                        '1.00',
                                                                                                                        '0.99',
                                                                                                                        '0.92',
                                                                                                                        '0.90',
                                                                                                                        '0.90',
                                                                                                                        '0.99',
                                                                                                                        '1.00',
                                                                                                                        '1.00',
                                                                                                                        '1.00',
                                                                                                                        '1.00'],
                                                                                                     'ann': '0.997',
                                                                                                     'djf': '1.00',
                                                                                                     'jja': '0.94',
                                                                                                     'mam': '0.99',
                                                                                                     'son': '1.00'},
                                                                                          'mae_xy': {'CalendarMonths': ['2.622',
                                                                                                                        '3.535',
                                                                                                                        '4.292',
                                                                                                                        '4.738',
                                                                                                                        '4.737',
                                                                                                                        '6.099',
                                                                                                                        '7.083',
                                                                                                                        '5.433',
                                                                                                                        '3.389',
                                                                                                                        '2.380',
                                                                                                                        '1.910',
                                                                                                                        '2.099'],
                                                                                                     'ann': '2.249',
                                                                                                     'djf': '2.710',
                                                                                                     'jja': '5.916',
                                                                                                     'mam': '4.020',
                                                                                                     'son': '2.158'},
                                                                                          'mean-obs_xy': {'CalendarMonths': ['78.937',
                                                                                                                             '119.966',
                                                                                                                             '186.561',
                                                                                                                             '264.140',
                                                                                                                             '324.759',
                                                                                                                             '347.066',
                                                                                                                             '324.949',
                                                                                                                             '270.743',
                                                                                                                             '201.690',
                                                                                                                             '134.027',
                                                                                                                             '86.520',
                                                                                                                             '67.613'],
                                                                                                          'ann': '200.581',
                                                                                                          'djf': '89.069',
                                                                                                          'jja': '314.137',
                                                                                                          'mam': '259.960',
                                                                                                          'son': '140.818'},
                                                                                          'mean_xy': {'CalendarMonths': ['77.018',
                                                                                                                         '117.748',
                                                                                                                         '184.466',
                                                                                                                         '262.392',
                                                                                                                         '325.024',
                                                                                                                         '350.926',
                                                                                                                         '331.184',
                                                                                                                         '275.262',
                                                                                                                         '203.552',
                                                                                                                         '134.023',
                                                                                                                         '85.578',
                                                                                                                         '66.048'],
                                                                                                      'ann': '201.102',
                                                                                                      'djf': '87.165',
                                                                                                      'jja': '318.993',
                                                                                                      'mam': '258.779',
                                                                                                      'son': '141.127'},
                                                                                          'rms_devzm': {'ann': '3.259'},
                                                                                          'rms_xy': {'CalendarMonths': ['3.271',
                                                                                                                        '4.326',
                                                                                                                        '5.354',
                                                                                                                        '6.280',
                                                                                                                        '6.624',
                                                                                                                        '8.123',
                                                                                                                        '9.266',
                                                                                                                        '7.342',
                                                                                                                        '5.316',
                                                                                                                        '3.765',
                                                                                                                        '2.589',
                                                                                                                        '2.705'],
                                                                                                     'ann': '3.692',
                                                                                                     'djf': '3.321',
                                                                                                     'jja': '7.767',
                                                                                                     'mam': '5.484',
                                                                                                     'son': '3.543'},
                                                                                          'rms_xyt': {'ann': '5.414'},
                                                                                          'rms_y': {'ann': '1.733'},
                                                                                          'rmsc_xy': {'CalendarMonths': ['2.649',
                                                                                                                         '3.714',
                                                                                                                         '4.927',
                                                                                                                         '6.032',
                                                                                                                         '6.619',
                                                                                                                         '7.147',
                                                                                                                         '6.855',
                                                                                                                         '5.787',
                                                                                                                         '4.980',
                                                                                                                         '3.765',
                                                                                                                         '2.411',
                                                                                                                         '2.206'],
                                                                                                      'ann': '3.655',
                                                                                                      'djf': '2.721',
                                                                                                      'jja': '6.061',
                                                                                                      'mam': '5.356',
                                                                                                      'son': '3.530'},
                                                                                          'std-obs_xy': {'CalendarMonths': ['57.969',
                                                                                                                            '66.919',
                                                                                                                            '64.801',
                                                                                                                            '41.095',
                                                                                                                            '15.351',
                                                                                                                            '15.909',
                                                                                                                            '15.489',
                                                                                                                            '35.441',
                                                                                                                            '59.812',
                                                                                                                            '66.460',
                                                                                                                            '59.685',
                                                                                                                            '53.865'],
                                                                                                         'ann': '43.049',
                                                                                                         'djf': '59.341',
                                                                                                         'jja': '17.675',
                                                                                                         'mam': '38.270',
                                                                                                         'son': '61.435'},
                                                                                          'std-obs_xy_devzm': {'ann': '7.663'},
                                                                                          'std-obs_xyt': {'ann': '111.090'},
                                                                                          'std_xy': {'CalendarMonths': ['57.948',
                                                                                                                        '67.604',
                                                                                                                        '66.949',
                                                                                                                        '44.065',
                                                                                                                        '16.715',
                                                                                                                        '15.124',
                                                                                                                        '15.905',
                                                                                                                        '36.273',
                                                                                                                        '61.015',
                                                                                                                        '67.720',
                                                                                                                        '60.184',
                                                                                                                        '53.792'],
                                                                                                     'ann': '44.197',
                                                                                                     'djf': '59.563',
                                                                                                     'jja': '18.134',
                                                                                                     'mam': '40.772',
                                                                                                     'son': '62.446'},
                                                                                          'std_xy_devzm': {'ann': '8.363'},
                                                                                          'std_xyt': {'ann': '113.265'}},
                                                                                 'SHEX': {'bias_xy': {'CalendarMonths': ['-6.060',
                                                                                                                         '-5.353',
                                                                                                                         '-4.597',
                                                                                                                         '-3.871',
                                                                                                                         '-2.777',
                                                                                                                         '-2.385',
                                                                                                                         '-2.883',
                                                                                                                         '-4.009',
                                                                                                                         '-4.891',
                                                                                                                         '-6.028',
                                                                                                                         '-6.618',
                                                                                                                         '-6.441'],
                                                                                                      'ann': '-4.659',
                                                                                                      'djf': '-5.946',
                                                                                                      'jja': '-3.095',
                                                                                                      'mam': '-3.733',
                                                                                                      'son': '-5.844'},
                                                                                          'cor_xy': {'CalendarMonths': ['0.95',
                                                                                                                        '1.00',
                                                                                                                        '1.00',
                                                                                                                        '1.00',
                                                                                                                        '1.00',
                                                                                                                        '1.00',
                                                                                                                        '1.00',
                                                                                                                        '1.00',
                                                                                                                        '1.00',
                                                                                                                        '1.00',
                                                                                                                        '0.91',
                                                                                                                        '0.99'],
                                                                                                     'ann': '0.999',
                                                                                                     'djf': '0.93',
                                                                                                     'jja': '1.00',
                                                                                                     'mam': '1.00',
                                                                                                     'son': '1.00'},
                                                                                          'mae_xy': {'CalendarMonths': ['6.449',
                                                                                                                        '5.897',
                                                                                                                        '4.760',
                                                                                                                        '3.878',
                                                                                                                        '2.831',
                                                                                                                        '2.431',
                                                                                                                        '2.907',
                                                                                                                        '4.009',
                                                                                                                        '4.930',
                                                                                                                        '6.079',
                                                                                                                        '6.827',
                                                                                                                        '6.880'],
                                                                                                     'ann': '4.678',
                                                                                                     'djf': '6.368',
                                                                                                     'jja': '3.095',
                                                                                                     'mam': '3.740',
                                                                                                     'son': '5.898'},
                                                                                          'mean-obs_xy': {'CalendarMonths': ['370.754',
                                                                                                                             '298.043',
                                                                                                                             '208.267',
                                                                                                                             '129.919',
                                                                                                                             '81.149',
                                                                                                                             '62.523',
                                                                                                                             '71.261',
                                                                                                                             '109.319',
                                                                                                                             '177.646',
                                                                                                                             '268.983',
                                                                                                                             '354.260',
                                                                                                                             '394.692'],
                                                                                                          'ann': '210.568',
                                                                                                          'djf': '354.059',
                                                                                                          'jja': '81.141',
                                                                                                          'mam': '138.325',
                                                                                                          'son': '266.941'},
                                                                                          'mean_xy': {'CalendarMonths': ['364.693',
                                                                                                                         '292.690',
                                                                                                                         '203.670',
                                                                                                                         '126.047',
                                                                                                                         '78.372',
                                                                                                                         '60.138',
                                                                                                                         '68.378',
                                                                                                                         '105.310',
                                                                                                                         '172.755',
                                                                                                                         '262.955',
                                                                                                                         '347.642',
                                                                                                                         '388.251'],
                                                                                                      'ann': '205.909',
                                                                                                      'djf': '348.113',
                                                                                                      'jja': '78.046',
                                                                                                      'mam': '134.592',
                                                                                                      'son': '261.097'},
                                                                                          'rms_devzm': {'ann': '1.208'},
                                                                                          'rms_xy': {'CalendarMonths': ['7.854',
                                                                                                                        '6.808',
                                                                                                                        '5.424',
                                                                                                                        '4.314',
                                                                                                                        '3.324',
                                                                                                                        '2.992',
                                                                                                                        '3.392',
                                                                                                                        '4.416',
                                                                                                                        '5.613',
                                                                                                                        '7.196',
                                                                                                                        '8.096',
                                                                                                                        '8.298'],
                                                                                                     'ann': '5.121',
                                                                                                     'djf': '7.511',
                                                                                                     'jja': '3.523',
                                                                                                     'mam': '4.185',
                                                                                                     'son': '6.791'},
                                                                                          'rms_xyt': {'ann': '5.644'},
                                                                                          'rms_y': {'ann': '4.976'},
                                                                                          'rmsc_xy': {'CalendarMonths': ['4.997',
                                                                                                                         '4.207',
                                                                                                                         '2.880',
                                                                                                                         '1.903',
                                                                                                                         '1.826',
                                                                                                                         '1.807',
                                                                                                                         '1.788',
                                                                                                                         '1.851',
                                                                                                                         '2.754',
                                                                                                                         '3.931',
                                                                                                                         '4.664',
                                                                                                                         '5.232'],
                                                                                                      'ann': '2.124',
                                                                                                      'djf': '4.589',
                                                                                                      'jja': '1.683',
                                                                                                      'mam': '1.891',
                                                                                                      'son': '3.460'},
                                                                                          'std-obs_xy': {'CalendarMonths': ['15.532',
                                                                                                                            '29.482',
                                                                                                                            '59.263',
                                                                                                                            '65.530',
                                                                                                                            '56.806',
                                                                                                                            '50.446',
                                                                                                                            '53.490',
                                                                                                                            '62.570',
                                                                                                                            '62.984',
                                                                                                                            '39.603',
                                                                                                                            '10.256',
                                                                                                                            '24.499'],
                                                                                                         'ann': '38.030',
                                                                                                         'djf': '11.858',
                                                                                                         'jja': '55.285',
                                                                                                         'mam': '60.141',
                                                                                                         'son': '34.823'},
                                                                                          'std-obs_xy_devzm': {'ann': '3.552'},
                                                                                          'std-obs_xyt': {'ann': '127.441'},
                                                                                          'std_xy': {'CalendarMonths': ['14.139',
                                                                                                                        '32.471',
                                                                                                                        '60.194',
                                                                                                                        '65.308',
                                                                                                                        '56.044',
                                                                                                                        '49.310',
                                                                                                                        '52.403',
                                                                                                                        '61.813',
                                                                                                                        '63.348',
                                                                                                                        '41.491',
                                                                                                                        '11.520',
                                                                                                                        '21.029'],
                                                                                                     'ann': '39.298',
                                                                                                     'djf': '12.786',
                                                                                                     'jja': '54.312',
                                                                                                     'mam': '60.154',
                                                                                                     'son': '36.783'},
                                                                                          'std_xy_devzm': {'ann': '3.460'},
                                                                                          'std_xyt': {'ann': '126.147'}},
                                                                                 'TROPICS': {'bias_xy': {'CalendarMonths': ['2.979',
                                                                                                                            '4.098',
                                                                                                                            '5.561',
                                                                                                                            '5.400',
                                                                                                                            '4.972',
                                                                                                                            '5.353',
                                                                                                                            '4.966',
                                                                                                                            '4.837',
                                                                                                                            '6.441',
                                                                                                                            '5.661',
                                                                                                                            '4.252',
                                                                                                                            '3.406'],
                                                                                                         'ann': '4.827',
                                                                                                         'djf': '3.495',
                                                                                                         'jja': '5.053',
                                                                                                         'mam': '5.307',
                                                                                                         'son': '5.449'},
                                                                                             'cor_xy': {'CalendarMonths': ['1.00',
                                                                                                                           '0.99',
                                                                                                                           '0.87',
                                                                                                                           '0.98',
                                                                                                                           '0.99',
                                                                                                                           '0.99',
                                                                                                                           '0.99',
                                                                                                                           '0.98',
                                                                                                                           '0.82',
                                                                                                                           '0.98',
                                                                                                                           '1.00',
                                                                                                                           '1.00'],
                                                                                                        'ann': '0.859',
                                                                                                        'djf': '1.00',
                                                                                                        'jja': '0.99',
                                                                                                        'mam': '0.98',
                                                                                                        'son': '0.98'},
                                                                                             'mae_xy': {'CalendarMonths': ['4.135',
                                                                                                                           '4.918',
                                                                                                                           '6.089',
                                                                                                                           '6.178',
                                                                                                                           '6.002',
                                                                                                                           '6.529',
                                                                                                                           '6.614',
                                                                                                                           '6.222',
                                                                                                                           '7.101',
                                                                                                                           '6.017',
                                                                                                                           '4.818',
                                                                                                                           '4.254'],
                                                                                                        'ann': '5.143',
                                                                                                        'djf': '4.300',
                                                                                                        'jja': '6.298',
                                                                                                        'mam': '5.936',
                                                                                                        'son': '5.792'},
                                                                                             'mean-obs_xy': {'CalendarMonths': ['284.679',
                                                                                                                                '293.437',
                                                                                                                                '295.273',
                                                                                                                                '286.113',
                                                                                                                                '270.737',
                                                                                                                                '259.910',
                                                                                                                                '262.762',
                                                                                                                                '275.606',
                                                                                                                                '286.736',
                                                                                                                                '290.844',
                                                                                                                                '285.560',
                                                                                                                                '279.825'],
                                                                                                             'ann': '280.957',
                                                                                                             'djf': '286.047',
                                                                                                             'jja': '266.129',
                                                                                                             'mam': '283.844',
                                                                                                             'son': '287.679'},
                                                                                             'mean_xy': {'CalendarMonths': ['287.658',
                                                                                                                            '297.535',
                                                                                                                            '300.833',
                                                                                                                            '291.513',
                                                                                                                            '275.709',
                                                                                                                            '265.263',
                                                                                                                            '267.728',
                                                                                                                            '280.443',
                                                                                                                            '293.177',
                                                                                                                            '296.504',
                                                                                                                            '289.811',
                                                                                                                            '283.231'],
                                                                                                         'ann': '285.784',
                                                                                                         'djf': '289.542',
                                                                                                         'jja': '271.182',
                                                                                                         'mam': '289.151',
                                                                                                         'son': '293.128'},
                                                                                             'rms_devzm': {'ann': '4.656'},
                                                                                             'rms_xy': {'CalendarMonths': ['5.972',
                                                                                                                           '7.221',
                                                                                                                           '8.615',
                                                                                                                           '8.623',
                                                                                                                           '8.681',
                                                                                                                           '9.799',
                                                                                                                           '9.942',
                                                                                                                           '9.380',
                                                                                                                           '10.317',
                                                                                                                           '8.131',
                                                                                                                           '6.503',
                                                                                                                           '5.995'],
                                                                                                        'ann': '7.368',
                                                                                                        'djf': '6.161',
                                                                                                        'jja': '9.457',
                                                                                                        'mam': '8.411',
                                                                                                        'son': '7.996'},
                                                                                             'rms_xyt': {'ann': '8.265'},
                                                                                             'rms_y': {'ann': '5.711'},
                                                                                             'rmsc_xy': {'CalendarMonths': ['5.176',
                                                                                                                            '5.946',
                                                                                                                            '6.580',
                                                                                                                            '6.723',
                                                                                                                            '7.116',
                                                                                                                            '8.208',
                                                                                                                            '8.613',
                                                                                                                            '8.037',
                                                                                                                            '8.060',
                                                                                                                            '5.836',
                                                                                                                            '4.920',
                                                                                                                            '4.934'],
                                                                                                         'ann': '5.567',
                                                                                                         'djf': '5.073',
                                                                                                         'jja': '7.994',
                                                                                                         'mam': '6.526',
                                                                                                         'son': '5.852'},
                                                                                             'std-obs_xy': {'CalendarMonths': ['56.359',
                                                                                                                               '36.058',
                                                                                                                               '12.900',
                                                                                                                               '24.711',
                                                                                                                               '43.911',
                                                                                                                               '51.920',
                                                                                                                               '46.399',
                                                                                                                               '30.054',
                                                                                                                               '12.857',
                                                                                                                               '29.350',
                                                                                                                               '52.492',
                                                                                                                               '63.108'],
                                                                                                            'ann': '10.433',
                                                                                                            'djf': '51.596',
                                                                                                            'jja': '42.516',
                                                                                                            'mam': '22.760',
                                                                                                            'son': '27.575'},
                                                                                             'std-obs_xy_devzm': {'ann': '7.180'},
                                                                                             'std-obs_xyt': {'ann': '42.973'},
                                                                                             'std_xy': {'CalendarMonths': ['55.878',
                                                                                                                           '34.681',
                                                                                                                           '12.738',
                                                                                                                           '28.903',
                                                                                                                           '48.597',
                                                                                                                           '56.995',
                                                                                                                           '51.581',
                                                                                                                           '34.372',
                                                                                                                           '13.644',
                                                                                                                           '28.233',
                                                                                                                           '52.075',
                                                                                                                           '62.673'],
                                                                                                        'ann': '10.505',
                                                                                                        'djf': '50.798',
                                                                                                        'jja': '47.436',
                                                                                                        'mam': '26.743',
                                                                                                        'son': '26.376'},
                                                                                             'std_xy_devzm': {'ann': '7.304'},
                                                                                             'std_xyt': {'ann': '44.598'}},
                                                                                 'global': {'bias_xy': {'CalendarMonths': ['-0.505',
                                                                                                                           '0.156',
                                                                                                                           '1.107',
                                                                                                                           '1.295',
                                                                                                                           '1.858',
                                                                                                                           '3.046',
                                                                                                                           '3.321',
                                                                                                                           '2.546',
                                                                                                                           '2.463',
                                                                                                                           '1.322',
                                                                                                                           '0.236',
                                                                                                                           '-0.299'],
                                                                                                        'ann': '1.379',
                                                                                                        'djf': '-0.215',
                                                                                                        'jja': '2.967',
                                                                                                        'mam': '1.425',
                                                                                                        'son': '1.341'},
                                                                                            'cor_xy': {'CalendarMonths': ['1.00',
                                                                                                                          '1.00',
                                                                                                                          '1.00',
                                                                                                                          '1.00',
                                                                                                                          '1.00',
                                                                                                                          '1.00',
                                                                                                                          '1.00',
                                                                                                                          '1.00',
                                                                                                                          '0.99',
                                                                                                                          '1.00',
                                                                                                                          '1.00',
                                                                                                                          '1.00'],
                                                                                                       'ann': '0.995',
                                                                                                       'djf': '1.00',
                                                                                                       'jja': '1.00',
                                                                                                       'mam': '1.00',
                                                                                                       'son': '1.00'},
                                                                                            'mae_xy': {'CalendarMonths': ['4.336',
                                                                                                                          '4.817',
                                                                                                                          '5.308',
                                                                                                                          '5.243',
                                                                                                                          '4.893',
                                                                                                                          '5.397',
                                                                                                                          '5.804',
                                                                                                                          '5.471',
                                                                                                                          '5.630',
                                                                                                                          '5.123',
                                                                                                                          '4.593',
                                                                                                                          '4.372'],
                                                                                                       'ann': '4.304',
                                                                                                       'djf': '4.419',
                                                                                                       'jja': '5.402',
                                                                                                       'mam': '4.908',
                                                                                                       'son': '4.910'},
                                                                                            'mean-obs_xy': {'CalendarMonths': ['254.762',
                                                                                                                               '251.221',
                                                                                                                               '246.343',
                                                                                                                               '241.571',
                                                                                                                               '236.845',
                                                                                                                               '232.352',
                                                                                                                               '230.434',
                                                                                                                               '232.819',
                                                                                                                               '238.202',
                                                                                                                               '246.174',
                                                                                                                               '252.975',
                                                                                                                               '255.489'],
                                                                                                            'ann': '243.266',
                                                                                                            'djf': '253.806',
                                                                                                            'jja': '231.884',
                                                                                                            'mam': '241.493',
                                                                                                            'son': '245.779'},
                                                                                            'mean_xy': {'CalendarMonths': ['254.257',
                                                                                                                           '251.377',
                                                                                                                           '247.451',
                                                                                                                           '242.866',
                                                                                                                           '238.704',
                                                                                                                           '235.398',
                                                                                                                           '233.755',
                                                                                                                           '235.365',
                                                                                                                           '240.665',
                                                                                                                           '247.497',
                                                                                                                           '253.211',
                                                                                                                           '255.190'],
                                                                                                        'ann': '244.644',
                                                                                                        'djf': '253.591',
                                                                                                        'jja': '234.851',
                                                                                                        'mam': '242.918',
                                                                                                        'son': '247.120'},
                                                                                            'rms_devzm': {'ann': '3.723'},
                                                                                            'rms_xy': {'CalendarMonths': ['5.994',
                                                                                                                          '6.507',
                                                                                                                          '7.185',
                                                                                                                          '7.190',
                                                                                                                          '7.171',
                                                                                                                          '8.170',
                                                                                                                          '8.589',
                                                                                                                          '7.896',
                                                                                                                          '8.256',
                                                                                                                          '7.039',
                                                                                                                          '6.261',
                                                                                                                          '6.084'],
                                                                                                       'ann': '6.092',
                                                                                                       'djf': '5.987',
                                                                                                       'jja': '7.931',
                                                                                                       'mam': '6.876',
                                                                                                       'son': '6.829'},
                                                                                            'rms_xyt': {'ann': '7.195'},
                                                                                            'rms_y': {'ann': '4.822'},
                                                                                            'rmsc_xy': {'CalendarMonths': ['5.973',
                                                                                                                           '6.505',
                                                                                                                           '7.099',
                                                                                                                           '7.072',
                                                                                                                           '6.926',
                                                                                                                           '7.581',
                                                                                                                           '7.921',
                                                                                                                           '7.474',
                                                                                                                           '7.880',
                                                                                                                           '6.913',
                                                                                                                           '6.257',
                                                                                                                           '6.077'],
                                                                                                        'ann': '5.933',
                                                                                                        'djf': '5.983',
                                                                                                        'jja': '7.355',
                                                                                                        'mam': '6.726',
                                                                                                        'son': '6.696'},
                                                                                            'std-obs_xy': {'CalendarMonths': ['118.441',
                                                                                                                              '87.938',
                                                                                                                              '66.813',
                                                                                                                              '77.698',
                                                                                                                              '101.964',
                                                                                                                              '113.698',
                                                                                                                              '104.602',
                                                                                                                              '82.658',
                                                                                                                              '66.307',
                                                                                                                              '78.734',
                                                                                                                              '110.982',
                                                                                                                              '129.736'],
                                                                                                           'ann': '48.087',
                                                                                                           'djf': '109.834',
                                                                                                           'jja': '98.512',
                                                                                                           'mam': '71.919',
                                                                                                           'son': '73.286'},
                                                                                            'std-obs_xy_devzm': {'ann': '6.604'},
                                                                                            'std-obs_xyt': {'ann': '97.478'},
                                                                                            'std_xy': {'CalendarMonths': ['117.945',
                                                                                                                          '89.240',
                                                                                                                          '70.734',
                                                                                                                          '81.607',
                                                                                                                          '104.928',
                                                                                                                          '117.264',
                                                                                                                          '108.939',
                                                                                                                          '86.703',
                                                                                                                          '70.022',
                                                                                                                          '80.344',
                                                                                                                          '110.539',
                                                                                                                          '128.690'],
                                                                                                       'ann': '51.234',
                                                                                                       'djf': '109.646',
                                                                                                       'jja': '102.575',
                                                                                                       'mam': '75.783',
                                                                                                       'son': '74.678'},
                                                                                            'std_xy_devzm': {'ann': '6.867'},
                                                                                            'std_xyt': {'ann': '99.375'}}},
                                                                    'source': 'CERES-EBAF-4-1'},
                                                        'units': 'W m-2'}},
                             'provenance': {'commandLine': '/home/lee1043/.conda/envs/pcmdi_metrics_dev_20230822/bin/mean_climate_driver.py '
                                                           '-p basic_param.py '
                                                           '-v rsdscs',
                                            'conda': {'Platform': 'linux-64',
                                                      'PythonVersion': '3.10.12.final.0',
                                                      'Version': '23.3.1',
                                                      'buildVersion': 'not '
                                                                      'installed'},
                                            'date': '2023-09-19 00:51:11',
                                            'openGL': {'GLX': {'client': {'vendor': 'Mesa '
                                                                                    'Project '
                                                                                    'and '
                                                                                    'SGI',
                                                                          'version': '1.4'},
                                                               'server': {'vendor': 'SGI',
                                                                          'version': '1.4'},
                                                               'version': '1.4'},
                                                       'renderer': 'llvmpipe '
                                                                   '(LLVM 7.0, '
                                                                   '256 bits)',
                                                       'shading language version': '1.20',
                                                       'vendor': 'VMware, Inc.',
                                                       'version': '2.1 Mesa '
                                                                  '18.3.4'},
                                            'osAccess': False,
                                            'packages': {'PMP': 'v3.0.2-11-g06b151f',
                                                         'PMPObs': 'See '
                                                                   "'References' "
                                                                   'key below, '
                                                                   'for '
                                                                   'detailed '
                                                                   'obs '
                                                                   'provenance '
                                                                   'information.',
                                                         'blas': '0.3.23',
                                                         'cdat_info': '8.2.1',
                                                         'cdms': '3.1.5',
                                                         'cdp': '1.7.0',
                                                         'cdtime': '3.1.4',
                                                         'cdutil': '8.2.1',
                                                         'clapack': None,
                                                         'esmf': '8.4.2',
                                                         'esmpy': '8.4.2',
                                                         'genutil': '8.2.1',
                                                         'lapack': '3.9.0',
                                                         'matplotlib': '3.7.1',
                                                         'mesalib': None,
                                                         'numpy': '1.23.5',
                                                         'python': '3.10.10',
                                                         'scipy': '1.11.2',
                                                         'uvcdat': None,
                                                         'vcs': None,
                                                         'vtk': None,
                                                         'xarray': '2023.8.0',
                                                         'xcdat': '0.5.0'},
                                            'platform': {'Name': 'gates.llnl.gov',
                                                         'OS': 'Linux',
                                                         'Version': '3.10.0-1160.71.1.el7.x86_64'},
                                            'userId': 'lee1043'}},
                  'rsdt': {'REFERENCE': {'default': {'CMIP_CMOR_TABLE': 'Amon',
                                                     'MD5sum': 'db440d0ec47bfcc021fac3509067267e',
                                                     'RefTrackingDate': 'Wed '
                                                                        'Aug  '
                                                                        '4 '
                                                                        '12:22:51 '
                                                                        '2021',
                                                     'filename': 'rsdt_mon_CERES-EBAF-4-1_PCMDI_gn.200301-201812.AC.v20210804.nc',
                                                     'period': '200301-201812',
                                                     'shape': '(12, 180, 360)',
                                                     'template': 'rsdt/CERES-EBAF-4-1/v20210804/rsdt_mon_CERES-EBAF-4-1_PCMDI_gn.200301-201812.AC.v20210804.nc'}},
                           'RESULTS': {'ACCESS-CM2': {'default': {'r1i1p1f1': {'InputClimatologyFileName': 'cmip6.historical.ACCESS-CM2.r1i1p1f1.mon.rsdt.198101-200512.AC.v20230823.nc',
                                                                               'NHEX': {'bias_xy': {'CalendarMonths': ['-2.673',
                                                                                                                       '-0.573',
                                                                                                                       '-5.241',
                                                                                                                       '-3.051',
                                                                                                                       '-1.921',
                                                                                                                       '0.907',
                                                                                                                       '4.018',
                                                                                                                       '5.350',
                                                                                                                       '3.717',
                                                                                                                       '3.664',
                                                                                                                       '1.098',
                                                                                                                       '-1.487'],
                                                                                                    'ann': '0.317',
                                                                                                    'djf': '-1.579',
                                                                                                    'jja': '3.419',
                                                                                                    'mam': '-3.365',
                                                                                                    'son': '2.817'},
                                                                                        'cor_xy': {'CalendarMonths': ['1.00',
                                                                                                                      '1.00',
                                                                                                                      '1.00',
                                                                                                                      '1.00',
                                                                                                                      '1.00',
                                                                                                                      '1.00',
                                                                                                                      '0.99',
                                                                                                                      '1.00',
                                                                                                                      '1.00',
                                                                                                                      '1.00',
                                                                                                                      '1.00',
                                                                                                                      '1.00'],
                                                                                                   'ann': '1.000',
                                                                                                   'djf': '1.00',
                                                                                                   'jja': '1.00',
                                                                                                   'mam': '1.00',
                                                                                                   'son': '1.00'},
                                                                                        'mae_xy': {'CalendarMonths': ['2.673',
                                                                                                                      '0.656',
                                                                                                                      '5.241',
                                                                                                                      '3.051',
                                                                                                                      '1.921',
                                                                                                                      '0.907',
                                                                                                                      '4.018',
                                                                                                                      '5.350',
                                                                                                                      '3.717',
                                                                                                                      '3.665',
                                                                                                                      '1.102',
                                                                                                                      '1.487'],
                                                                                                   'ann': '0.317',
                                                                                                   'djf': '1.579',
                                                                                                   'jja': '3.419',
                                                                                                   'mam': '3.365',
                                                                                                   'son': '2.817'},
                                                                                        'mean-obs_xy': {'CalendarMonths': ['116.489',
                                                                                                                           '168.174',
                                                                                                                           '259.996',
                                                                                                                           '360.499',
                                                                                                                           '444.206',
                                                                                                                           '480.119',
                                                                                                                           '455.936',
                                                                                                                           '381.232',
                                                                                                                           '284.532',
                                                                                                                           '190.098',
                                                                                                                           '125.774',
                                                                                                                           '100.884'],
                                                                                                        'ann': '280.661',
                                                                                                        'djf': '128.816',
                                                                                                        'jja': '438.912',
                                                                                                        'mam': '356.824',
                                                                                                        'son': '200.244'},
                                                                                        'mean_xy': {'CalendarMonths': ['113.816',
                                                                                                                       '167.601',
                                                                                                                       '254.755',
                                                                                                                       '357.448',
                                                                                                                       '442.284',
                                                                                                                       '481.026',
                                                                                                                       '459.953',
                                                                                                                       '386.582',
                                                                                                                       '288.249',
                                                                                                                       '193.761',
                                                                                                                       '126.872',
                                                                                                                       '99.396'],
                                                                                                    'ann': '280.979',
                                                                                                    'djf': '127.237',
                                                                                                    'jja': '442.331',
                                                                                                    'mam': '353.459',
                                                                                                    'son': '203.061'},
                                                                                        'rms_devzm': {'ann': '0.004'},
                                                                                        'rms_xy': {'CalendarMonths': ['2.831',
                                                                                                                      '0.800',
                                                                                                                      '5.523',
                                                                                                                      '3.453',
                                                                                                                      '2.268',
                                                                                                                      '0.973',
                                                                                                                      '4.434',
                                                                                                                      '5.696',
                                                                                                                      '3.791',
                                                                                                                      '3.814',
                                                                                                                      '1.264',
                                                                                                                      '1.645'],
                                                                                                   'ann': '0.376',
                                                                                                   'djf': '1.697',
                                                                                                   'jja': '3.685',
                                                                                                   'mam': '3.684',
                                                                                                   'son': '2.889'},
                                                                                        'rms_xyt': {'ann': '3.041'},
                                                                                        'rms_y': {'ann': '0.376'},
                                                                                        'rmsc_xy': {'CalendarMonths': ['0.932',
                                                                                                                       '0.558',
                                                                                                                       '1.742',
                                                                                                                       '1.618',
                                                                                                                       '1.204',
                                                                                                                       '0.354',
                                                                                                                       '1.875',
                                                                                                                       '1.953',
                                                                                                                       '0.747',
                                                                                                                       '1.058',
                                                                                                                       '0.627',
                                                                                                                       '0.704'],
                                                                                                    'ann': '0.202',
                                                                                                    'djf': '0.623',
                                                                                                    'jja': '1.375',
                                                                                                    'mam': '1.501',
                                                                                                    'son': '0.639'},
                                                                                        'std-obs_xy': {'CalendarMonths': ['81.304',
                                                                                                                          '91.143',
                                                                                                                          '86.242',
                                                                                                                          '55.716',
                                                                                                                          '17.050',
                                                                                                                          '8.586',
                                                                                                                          '10.315',
                                                                                                                          '43.883',
                                                                                                                          '78.939',
                                                                                                                          '90.832',
                                                                                                                          '83.499',
                                                                                                                          '76.677'],
                                                                                                       'ann': '58.611',
                                                                                                       'djf': '82.795',
                                                                                                       'jja': '16.718',
                                                                                                       'mam': '51.914',
                                                                                                       'son': '83.844'},
                                                                                        'std-obs_xy_devzm': {'ann': '0.004'},
                                                                                        'std-obs_xyt': {'ann': '150.966'},
                                                                                        'std_xy': {'CalendarMonths': ['80.904',
                                                                                                                      '91.215',
                                                                                                                      '87.875',
                                                                                                                      '57.266',
                                                                                                                      '18.145',
                                                                                                                      '8.792',
                                                                                                                      '9.222',
                                                                                                                      '42.034',
                                                                                                                      '78.512',
                                                                                                                      '91.351',
                                                                                                                      '83.871',
                                                                                                                      '76.271'],
                                                                                                   'ann': '58.593',
                                                                                                   'djf': '82.532',
                                                                                                   'jja': '15.524',
                                                                                                   'mam': '53.361',
                                                                                                   'son': '83.986'},
                                                                                        'std_xy_devzm': {'ann': '0.000'},
                                                                                        'std_xyt': {'ann': '151.774'}},
                                                                               'SHEX': {'bias_xy': {'CalendarMonths': ['4.805',
                                                                                                                       '1.057',
                                                                                                                       '5.454',
                                                                                                                       '2.558',
                                                                                                                       '1.449',
                                                                                                                       '-0.319',
                                                                                                                       '-2.479',
                                                                                                                       '-4.384',
                                                                                                                       '-3.976',
                                                                                                                       '-5.264',
                                                                                                                       '-1.729',
                                                                                                                       '2.957'],
                                                                                                    'ann': '0.011',
                                                                                                    'djf': '2.939',
                                                                                                    'jja': '-2.393',
                                                                                                    'mam': '3.102',
                                                                                                    'son': '-3.639'},
                                                                                        'cor_xy': {'CalendarMonths': ['0.99',
                                                                                                                      '1.00',
                                                                                                                      '1.00',
                                                                                                                      '1.00',
                                                                                                                      '1.00',
                                                                                                                      '1.00',
                                                                                                                      '1.00',
                                                                                                                      '1.00',
                                                                                                                      '1.00',
                                                                                                                      '1.00',
                                                                                                                      '1.00',
                                                                                                                      '0.99'],
                                                                                                   'ann': '1.000',
                                                                                                   'djf': '1.00',
                                                                                                   'jja': '1.00',
                                                                                                   'mam': '1.00',
                                                                                                   'son': '1.00'},
                                                                                        'mae_xy': {'CalendarMonths': ['4.805',
                                                                                                                      '1.057',
                                                                                                                      '5.454',
                                                                                                                      '2.560',
                                                                                                                      '1.450',
                                                                                                                      '0.325',
                                                                                                                      '2.479',
                                                                                                                      '4.384',
                                                                                                                      '3.976',
                                                                                                                      '5.264',
                                                                                                                      '1.729',
                                                                                                                      '2.957'],
                                                                                                   'ann': '0.198',
                                                                                                   'djf': '2.939',
                                                                                                   'jja': '2.393',
                                                                                                   'mam': '3.102',
                                                                                                   'son': '3.639'},
                                                                                        'mean-obs_xy': {'CalendarMonths': ['481.423',
                                                                                                                           '396.649',
                                                                                                                           '279.400',
                                                                                                                           '180.845',
                                                                                                                           '117.077',
                                                                                                                           '93.303',
                                                                                                                           '106.733',
                                                                                                                           '158.289',
                                                                                                                           '244.482',
                                                                                                                           '357.498',
                                                                                                                           '458.882',
                                                                                                                           '508.514'],
                                                                                                        'ann': '281.925',
                                                                                                        'djf': '461.692',
                                                                                                        'jja': '119.580',
                                                                                                        'mam': '190.606',
                                                                                                        'son': '353.579'},
                                                                                        'mean_xy': {'CalendarMonths': ['486.228',
                                                                                                                       '397.706',
                                                                                                                       '284.854',
                                                                                                                       '183.404',
                                                                                                                       '118.526',
                                                                                                                       '92.983',
                                                                                                                       '104.254',
                                                                                                                       '153.905',
                                                                                                                       '240.506',
                                                                                                                       '352.234',
                                                                                                                       '457.153',
                                                                                                                       '511.470'],
                                                                                                    'ann': '281.935',
                                                                                                    'djf': '464.631',
                                                                                                    'jja': '117.187',
                                                                                                    'mam': '193.708',
                                                                                                    'son': '349.940'},
                                                                                        'rms_devzm': {'ann': '0.003'},
                                                                                        'rms_xy': {'CalendarMonths': ['5.217',
                                                                                                                      '1.159',
                                                                                                                      '5.522',
                                                                                                                      '2.707',
                                                                                                                      '1.628',
                                                                                                                      '0.450',
                                                                                                                      '2.633',
                                                                                                                      '4.470',
                                                                                                                      '4.145',
                                                                                                                      '5.746',
                                                                                                                      '1.978',
                                                                                                                      '3.274'],
                                                                                                   'ann': '0.206',
                                                                                                   'djf': '3.190',
                                                                                                   'jja': '2.469',
                                                                                                   'mam': '3.175',
                                                                                                   'son': '3.914'},
                                                                                        'rms_xyt': {'ann': '3.244'},
                                                                                        'rms_y': {'ann': '0.206'},
                                                                                        'rmsc_xy': {'CalendarMonths': ['2.034',
                                                                                                                       '0.474',
                                                                                                                       '0.860',
                                                                                                                       '0.886',
                                                                                                                       '0.742',
                                                                                                                       '0.317',
                                                                                                                       '0.889',
                                                                                                                       '0.876',
                                                                                                                       '1.173',
                                                                                                                       '2.302',
                                                                                                                       '0.961',
                                                                                                                       '1.407'],
                                                                                                    'ann': '0.205',
                                                                                                    'djf': '1.239',
                                                                                                    'jja': '0.606',
                                                                                                    'mam': '0.674',
                                                                                                    'son': '1.442'},
                                                                                        'std-obs_xy': {'CalendarMonths': ['12.672',
                                                                                                                          '47.970',
                                                                                                                          '82.636',
                                                                                                                          '89.506',
                                                                                                                          '79.050',
                                                                                                                          '71.546',
                                                                                                                          '75.587',
                                                                                                                          '86.056',
                                                                                                                          '86.383',
                                                                                                                          '59.395',
                                                                                                                          '20.265',
                                                                                                                          '8.483'],
                                                                                                       'ann': '58.370',
                                                                                                       'djf': '19.437',
                                                                                                       'jja': '77.457',
                                                                                                       'mam': '83.310',
                                                                                                       'son': '54.901'},
                                                                                        'std-obs_xy_devzm': {'ann': '0.003'},
                                                                                        'std-obs_xyt': {'ann': '162.005'},
                                                                                        'std_xy': {'CalendarMonths': ['11.281',
                                                                                                                      '47.713',
                                                                                                                      '82.284',
                                                                                                                      '89.984',
                                                                                                                      '79.567',
                                                                                                                      '71.501',
                                                                                                                      '75.138',
                                                                                                                      '86.090',
                                                                                                                      '87.384',
                                                                                                                      '61.617',
                                                                                                                      '21.135',
                                                                                                                      '9.168'],
                                                                                                   'ann': '58.411',
                                                                                                   'djf': '18.320',
                                                                                                   'jja': '77.317',
                                                                                                   'mam': '83.529',
                                                                                                   'son': '56.268'},
                                                                                        'std_xy_devzm': {'ann': '0.000'},
                                                                                        'std_xyt': {'ann': '163.045'}},
                                                                               'TROPICS': {'bias_xy': {'CalendarMonths': ['-0.366',
                                                                                                                          '0.149',
                                                                                                                          '0.812',
                                                                                                                          '0.928',
                                                                                                                          '0.862',
                                                                                                                          '0.053',
                                                                                                                          '-0.651',
                                                                                                                          '-0.565',
                                                                                                                          '0.135',
                                                                                                                          '0.700',
                                                                                                                          '0.492',
                                                                                                                          '-0.424'],
                                                                                                       'ann': '0.177',
                                                                                                       'djf': '-0.211',
                                                                                                       'jja': '-0.385',
                                                                                                       'mam': '0.869',
                                                                                                       'son': '0.439'},
                                                                                           'cor_xy': {'CalendarMonths': ['1.00',
                                                                                                                         '1.00',
                                                                                                                         '0.99',
                                                                                                                         '1.00',
                                                                                                                         '1.00',
                                                                                                                         '1.00',
                                                                                                                         '1.00',
                                                                                                                         '1.00',
                                                                                                                         '1.00',
                                                                                                                         '1.00',
                                                                                                                         '1.00',
                                                                                                                         '1.00'],
                                                                                                      'ann': '1.000',
                                                                                                      'djf': '1.00',
                                                                                                      'jja': '1.00',
                                                                                                      'mam': '1.00',
                                                                                                      'son': '1.00'},
                                                                                           'mae_xy': {'CalendarMonths': ['1.307',
                                                                                                                         '0.361',
                                                                                                                         '1.894',
                                                                                                                         '1.205',
                                                                                                                         '0.925',
                                                                                                                         '0.299',
                                                                                                                         '1.222',
                                                                                                                         '1.690',
                                                                                                                         '1.292',
                                                                                                                         '1.595',
                                                                                                                         '0.628',
                                                                                                                         '0.853'],
                                                                                                      'ann': '0.186',
                                                                                                      'djf': '0.796',
                                                                                                      'jja': '1.033',
                                                                                                      'mam': '1.282',
                                                                                                      'son': '1.133'},
                                                                                           'mean-obs_xy': {'CalendarMonths': ['403.630',
                                                                                                                              '414.914',
                                                                                                                              '417.215',
                                                                                                                              '404.792',
                                                                                                                              '384.761',
                                                                                                                              '372.850',
                                                                                                                              '377.766',
                                                                                                                              '394.495',
                                                                                                                              '409.019',
                                                                                                                              '411.404',
                                                                                                                              '403.368',
                                                                                                                              '397.659'],
                                                                                                           'ann': '399.323',
                                                                                                           'djf': '405.485',
                                                                                                           'jja': '381.747',
                                                                                                           'mam': '401.991',
                                                                                                           'son': '407.893'},
                                                                                           'mean_xy': {'CalendarMonths': ['403.264',
                                                                                                                          '415.063',
                                                                                                                          '418.026',
                                                                                                                          '405.720',
                                                                                                                          '385.624',
                                                                                                                          '372.904',
                                                                                                                          '377.115',
                                                                                                                          '393.930',
                                                                                                                          '409.154',
                                                                                                                          '412.104',
                                                                                                                          '403.859',
                                                                                                                          '397.236'],
                                                                                                       'ann': '399.500',
                                                                                                       'djf': '405.274',
                                                                                                       'jja': '381.362',
                                                                                                       'mam': '402.860',
                                                                                                       'son': '408.332'},
                                                                                           'rms_devzm': {'ann': '0.002'},
                                                                                           'rms_xy': {'CalendarMonths': ['1.525',
                                                                                                                         '0.432',
                                                                                                                         '2.226',
                                                                                                                         '1.445',
                                                                                                                         '1.105',
                                                                                                                         '0.350',
                                                                                                                         '1.444',
                                                                                                                         '1.981',
                                                                                                                         '1.508',
                                                                                                                         '1.867',
                                                                                                                         '0.771',
                                                                                                                         '1.011'],
                                                                                                      'ann': '0.209',
                                                                                                      'djf': '0.940',
                                                                                                      'jja': '1.214',
                                                                                                      'mam': '1.532',
                                                                                                      'son': '1.330'},
                                                                                           'rms_xyt': {'ann': '1.305'},
                                                                                           'rms_y': {'ann': '0.209'},
                                                                                           'rmsc_xy': {'CalendarMonths': ['1.480',
                                                                                                                          '0.405',
                                                                                                                          '2.073',
                                                                                                                          '1.107',
                                                                                                                          '0.691',
                                                                                                                          '0.346',
                                                                                                                          '1.289',
                                                                                                                          '1.898',
                                                                                                                          '1.502',
                                                                                                                          '1.731',
                                                                                                                          '0.593',
                                                                                                                          '0.918'],
                                                                                                       'ann': '0.112',
                                                                                                       'djf': '0.916',
                                                                                                       'jja': '1.152',
                                                                                                       'mam': '1.261',
                                                                                                       'son': '1.255'},
                                                                                           'std-obs_xy': {'CalendarMonths': ['71.546',
                                                                                                                             '46.762',
                                                                                                                             '17.435',
                                                                                                                             '38.047',
                                                                                                                             '64.356',
                                                                                                                             '75.367',
                                                                                                                             '68.386',
                                                                                                                             '45.467',
                                                                                                                             '18.380',
                                                                                                                             '36.075',
                                                                                                                             '65.648',
                                                                                                                             '79.460'],
                                                                                                          'ann': '14.818',
                                                                                                          'djf': '65.599',
                                                                                                          'jja': '62.855',
                                                                                                          'mam': '35.528',
                                                                                                          'son': '33.449'},
                                                                                           'std-obs_xy_devzm': {'ann': '0.002'},
                                                                                           'std-obs_xyt': {'ann': '57.848'},
                                                                                           'std_xy': {'CalendarMonths': ['72.954',
                                                                                                                         '47.069',
                                                                                                                         '18.058',
                                                                                                                         '37.123',
                                                                                                                         '63.757',
                                                                                                                         '75.614',
                                                                                                                         '69.609',
                                                                                                                         '47.224',
                                                                                                                         '19.078',
                                                                                                                         '34.617',
                                                                                                                         '65.148',
                                                                                                                         '80.306'],
                                                                                                      'ann': '14.836',
                                                                                                      'djf': '66.449',
                                                                                                      'jja': '63.948',
                                                                                                      'mam': '34.462',
                                                                                                      'son': '32.404'},
                                                                                           'std_xy_devzm': {'ann': '0.000'},
                                                                                           'std_xyt': {'ann': '58.239'}},
                                                                               'global': {'bias_xy': {'CalendarMonths': ['0.350',
                                                                                                                         '0.195',
                                                                                                                         '0.459',
                                                                                                                         '0.341',
                                                                                                                         '0.313',
                                                                                                                         '0.174',
                                                                                                                         '0.059',
                                                                                                                         '-0.041',
                                                                                                                         '0.003',
                                                                                                                         '-0.050',
                                                                                                                         '0.088',
                                                                                                                         '0.155'],
                                                                                                      'ann': '0.170',
                                                                                                      'djf': '0.234',
                                                                                                      'jja': '0.064',
                                                                                                      'mam': '0.369',
                                                                                                      'son': '0.014'},
                                                                                          'cor_xy': {'CalendarMonths': ['1.00',
                                                                                                                        '1.00',
                                                                                                                        '1.00',
                                                                                                                        '1.00',
                                                                                                                        '1.00',
                                                                                                                        '1.00',
                                                                                                                        '1.00',
                                                                                                                        '1.00',
                                                                                                                        '1.00',
                                                                                                                        '1.00',
                                                                                                                        '1.00',
                                                                                                                        '1.00'],
                                                                                                     'ann': '1.000',
                                                                                                     'djf': '1.00',
                                                                                                     'jja': '1.00',
                                                                                                     'mam': '1.00',
                                                                                                     'son': '1.00'},
                                                                                          'mae_xy': {'CalendarMonths': ['2.523',
                                                                                                                        '0.609',
                                                                                                                        '3.621',
                                                                                                                        '2.005',
                                                                                                                        '1.306',
                                                                                                                        '0.457',
                                                                                                                        '2.235',
                                                                                                                        '3.279',
                                                                                                                        '2.569',
                                                                                                                        '3.030',
                                                                                                                        '1.022',
                                                                                                                        '1.538'],
                                                                                                     'ann': '0.222',
                                                                                                     'djf': '1.528',
                                                                                                     'jja': '1.970',
                                                                                                     'mam': '2.258',
                                                                                                     'son': '2.181'},
                                                                                          'mean-obs_xy': {'CalendarMonths': ['351.293',
                                                                                                                             '348.663',
                                                                                                                             '343.456',
                                                                                                                             '337.732',
                                                                                                                             '332.701',
                                                                                                                             '329.781',
                                                                                                                             '329.550',
                                                                                                                             '332.128',
                                                                                                                             '336.763',
                                                                                                                             '342.601',
                                                                                                                             '347.848',
                                                                                                                             '351.179'],
                                                                                                          'ann': '340.308',
                                                                                                          'djf': '350.370',
                                                                                                          'jja': '330.496',
                                                                                                          'mam': '337.853',
                                                                                                          'son': '342.402'},
                                                                                          'mean_xy': {'CalendarMonths': ['351.643',
                                                                                                                         '348.858',
                                                                                                                         '343.915',
                                                                                                                         '338.073',
                                                                                                                         '333.014',
                                                                                                                         '329.954',
                                                                                                                         '329.609',
                                                                                                                         '332.087',
                                                                                                                         '336.766',
                                                                                                                         '342.551',
                                                                                                                         '347.936',
                                                                                                                         '351.334'],
                                                                                                      'ann': '340.478',
                                                                                                      'djf': '350.604',
                                                                                                      'jja': '330.560',
                                                                                                      'mam': '338.222',
                                                                                                      'son': '342.416'},
                                                                                          'rms_devzm': {'ann': '0.003'},
                                                                                          'rms_xy': {'CalendarMonths': ['3.158',
                                                                                                                        '0.767',
                                                                                                                        '4.210',
                                                                                                                        '2.420',
                                                                                                                        '1.600',
                                                                                                                        '0.591',
                                                                                                                        '2.773',
                                                                                                                        '3.882',
                                                                                                                        '3.005',
                                                                                                                        '3.692',
                                                                                                                        '1.294',
                                                                                                                        '1.967'],
                                                                                                     'ann': '0.260',
                                                                                                     'djf': '1.925',
                                                                                                     'jja': '2.378',
                                                                                                     'mam': '2.662',
                                                                                                     'son': '2.608'},
                                                                                          'rms_xyt': {'ann': '2.447'},
                                                                                          'rms_y': {'ann': '0.260'},
                                                                                          'rmsc_xy': {'CalendarMonths': ['3.138',
                                                                                                                         '0.742',
                                                                                                                         '4.185',
                                                                                                                         '2.396',
                                                                                                                         '1.569',
                                                                                                                         '0.565',
                                                                                                                         '2.773',
                                                                                                                         '3.882',
                                                                                                                         '3.005',
                                                                                                                         '3.692',
                                                                                                                         '1.291',
                                                                                                                         '1.961'],
                                                                                                      'ann': '0.197',
                                                                                                      'djf': '1.911',
                                                                                                      'jja': '2.377',
                                                                                                      'mam': '2.636',
                                                                                                      'son': '2.608'},
                                                                                          'std-obs_xy': {'CalendarMonths': ['153.748',
                                                                                                                            '121.078',
                                                                                                                            '95.947',
                                                                                                                            '109.700',
                                                                                                                            '140.686',
                                                                                                                            '157.151',
                                                                                                                            '146.154',
                                                                                                                            '116.056',
                                                                                                                            '94.941',
                                                                                                                            '108.775',
                                                                                                                            '144.752',
                                                                                                                            '166.059'],
                                                                                                         'ann': '72.824',
                                                                                                         'djf': '144.390',
                                                                                                         'jja': '137.544',
                                                                                                         'mam': '102.992',
                                                                                                         'son': '101.481'},
                                                                                          'std-obs_xy_devzm': {'ann': '0.003'},
                                                                                          'std-obs_xyt': {'ann': '131.967'},
                                                                                          'std_xy': {'CalendarMonths': ['155.982',
                                                                                                                        '121.485',
                                                                                                                        '96.912',
                                                                                                                        '109.068',
                                                                                                                        '139.884',
                                                                                                                        '157.553',
                                                                                                                        '148.079',
                                                                                                                        '118.328',
                                                                                                                        '95.692',
                                                                                                                        '107.756',
                                                                                                                        '144.068',
                                                                                                                        '167.429'],
                                                                                                     'ann': '72.835',
                                                                                                     'djf': '145.646',
                                                                                                     'jja': '139.266',
                                                                                                     'mam': '102.069',
                                                                                                     'son': '100.606'},
                                                                                          'std_xy_devzm': {'ann': '0.000'},
                                                                                          'std_xyt': {'ann': '132.606'}}},
                                                                  'source': 'CERES-EBAF-4-1'},
                                                      'units': 'W m-2'}},
                           'provenance': {'commandLine': '/home/lee1043/.conda/envs/pcmdi_metrics_dev_20230822/bin/mean_climate_driver.py '
                                                         '-p basic_param.py -v '
                                                         'rsdt',
                                          'conda': {'Platform': 'linux-64',
                                                    'PythonVersion': '3.10.12.final.0',
                                                    'Version': '23.3.1',
                                                    'buildVersion': 'not '
                                                                    'installed'},
                                          'date': '2023-09-19 00:53:17',
                                          'openGL': {'GLX': {'client': {'vendor': 'Mesa '
                                                                                  'Project '
                                                                                  'and '
                                                                                  'SGI',
                                                                        'version': '1.4'},
                                                             'server': {'vendor': 'SGI',
                                                                        'version': '1.4'},
                                                             'version': '1.4'},
                                                     'renderer': 'llvmpipe '
                                                                 '(LLVM 7.0, '
                                                                 '256 bits)',
                                                     'shading language version': '1.20',
                                                     'vendor': 'VMware, Inc.',
                                                     'version': '2.1 Mesa '
                                                                '18.3.4'},
                                          'osAccess': False,
                                          'packages': {'PMP': 'v3.0.2-11-g06b151f',
                                                       'PMPObs': 'See '
                                                                 "'References' "
                                                                 'key below, '
                                                                 'for detailed '
                                                                 'obs '
                                                                 'provenance '
                                                                 'information.',
                                                       'blas': '0.3.23',
                                                       'cdat_info': '8.2.1',
                                                       'cdms': '3.1.5',
                                                       'cdp': '1.7.0',
                                                       'cdtime': '3.1.4',
                                                       'cdutil': '8.2.1',
                                                       'clapack': None,
                                                       'esmf': '8.4.2',
                                                       'esmpy': '8.4.2',
                                                       'genutil': '8.2.1',
                                                       'lapack': '3.9.0',
                                                       'matplotlib': '3.7.1',
                                                       'mesalib': None,
                                                       'numpy': '1.23.5',
                                                       'python': '3.10.10',
                                                       'scipy': '1.11.2',
                                                       'uvcdat': None,
                                                       'vcs': None,
                                                       'vtk': None,
                                                       'xarray': '2023.8.0',
                                                       'xcdat': '0.5.0'},
                                          'platform': {'Name': 'gates.llnl.gov',
                                                       'OS': 'Linux',
                                                       'Version': '3.10.0-1160.71.1.el7.x86_64'},
                                          'userId': 'lee1043'}},
                  'rstcre': {'REFERENCE': {'default': {'CMIP_CMOR_TABLE': 'Amon',
                                                       'MD5sum': 'adc7adfd9d58b2539ca66a75edaec6b2',
                                                       'RefTrackingDate': 'Wed '
                                                                          'Aug  '
                                                                          '4 '
                                                                          '12:23:20 '
                                                                          '2021',
                                                       'filename': 'rstcre_mon_CERES-EBAF-4-1_PCMDI_gn.200301-201812.AC.v20210804.nc',
                                                       'period': '200301-201812',
                                                       'shape': '(12, 180, '
                                                                '360)',
                                                       'template': 'rstcre/CERES-EBAF-4-1/v20210804/rstcre_mon_CERES-EBAF-4-1_PCMDI_gn.200301-201812.AC.v20210804.nc'}},
                             'RESULTS': {'ACCESS-CM2': {'default': {'r1i1p1f1': {'InputClimatologyFileName': 'cmip6.historical.ACCESS-CM2.r1i1p1f1.mon.rstcre.198101-200512.AC.v20230823.nc',
                                                                                 'NHEX': {'bias_xy': {'CalendarMonths': ['-3.094',
                                                                                                                         '-5.261',
                                                                                                                         '-7.799',
                                                                                                                         '-7.373',
                                                                                                                         '-4.514',
                                                                                                                         '-0.813',
                                                                                                                         '0.726',
                                                                                                                         '-0.270',
                                                                                                                         '-4.134',
                                                                                                                         '-4.807',
                                                                                                                         '-3.386',
                                                                                                                         '-2.469'],
                                                                                                      'ann': '-3.600',
                                                                                                      'djf': '-3.621',
                                                                                                      'jja': '-0.128',
                                                                                                      'mam': '-6.547',
                                                                                                      'son': '-4.102'},
                                                                                          'cor_xy': {'CalendarMonths': ['0.96',
                                                                                                                        '0.95',
                                                                                                                        '0.94',
                                                                                                                        '0.92',
                                                                                                                        '0.84',
                                                                                                                        '0.82',
                                                                                                                        '0.86',
                                                                                                                        '0.90',
                                                                                                                        '0.91',
                                                                                                                        '0.95',
                                                                                                                        '0.96',
                                                                                                                        '0.96'],
                                                                                                     'ann': '0.935',
                                                                                                     'djf': '0.96',
                                                                                                     'jja': '0.88',
                                                                                                     'mam': '0.92',
                                                                                                     'son': '0.95'},
                                                                                          'mae_xy': {'CalendarMonths': ['5.055',
                                                                                                                        '7.616',
                                                                                                                        '10.709',
                                                                                                                        '12.488',
                                                                                                                        '14.665',
                                                                                                                        '16.148',
                                                                                                                        '13.444',
                                                                                                                        '9.089',
                                                                                                                        '8.263',
                                                                                                                        '6.602',
                                                                                                                        '4.867',
                                                                                                                        '4.004'],
                                                                                                     'ann': '6.227',
                                                                                                     'djf': '5.385',
                                                                                                     'jja': '11.694',
                                                                                                     'mam': '11.117',
                                                                                                     'son': '5.389'},
                                                                                          'mean-obs_xy': {'CalendarMonths': ['-18.738',
                                                                                                                             '-25.892',
                                                                                                                             '-36.887',
                                                                                                                             '-50.539',
                                                                                                                             '-65.649',
                                                                                                                             '-74.447',
                                                                                                                             '-70.190',
                                                                                                                             '-57.319',
                                                                                                                             '-42.439',
                                                                                                                             '-29.810',
                                                                                                                             '-20.982',
                                                                                                                             '-16.805'],
                                                                                                          'ann': '-42.475',
                                                                                                          'djf': '-20.518',
                                                                                                          'jja': '-67.287',
                                                                                                          'mam': '-51.297',
                                                                                                          'son': '-31.091'},
                                                                                          'mean_xy': {'CalendarMonths': ['-21.832',
                                                                                                                         '-31.153',
                                                                                                                         '-44.686',
                                                                                                                         '-57.912',
                                                                                                                         '-70.163',
                                                                                                                         '-75.260',
                                                                                                                         '-69.464',
                                                                                                                         '-57.589',
                                                                                                                         '-46.573',
                                                                                                                         '-34.618',
                                                                                                                         '-24.368',
                                                                                                                         '-19.275'],
                                                                                                      'ann': '-46.074',
                                                                                                      'djf': '-24.139',
                                                                                                      'jja': '-67.415',
                                                                                                      'mam': '-57.844',
                                                                                                      'son': '-35.192'},
                                                                                          'rms_devzm': {'ann': '6.965'},
                                                                                          'rms_xy': {'CalendarMonths': ['8.120',
                                                                                                                        '11.216',
                                                                                                                        '14.144',
                                                                                                                        '15.538',
                                                                                                                        '19.112',
                                                                                                                        '21.654',
                                                                                                                        '17.502',
                                                                                                                        '11.884',
                                                                                                                        '10.166',
                                                                                                                        '8.393',
                                                                                                                        '7.015',
                                                                                                                        '6.351'],
                                                                                                     'ann': '8.235',
                                                                                                     'djf': '8.350',
                                                                                                     'jja': '15.153',
                                                                                                     'mam': '13.640',
                                                                                                     'son': '7.051'},
                                                                                          'rms_xyt': {'ann': '12.591'},
                                                                                          'rms_y': {'ann': '4.394'},
                                                                                          'rmsc_xy': {'CalendarMonths': ['7.507',
                                                                                                                         '9.906',
                                                                                                                         '11.799',
                                                                                                                         '13.677',
                                                                                                                         '18.571',
                                                                                                                         '21.639',
                                                                                                                         '17.487',
                                                                                                                         '11.881',
                                                                                                                         '9.287',
                                                                                                                         '6.880',
                                                                                                                         '6.144',
                                                                                                                         '5.851'],
                                                                                                      'ann': '7.407',
                                                                                                      'djf': '7.524',
                                                                                                      'jja': '15.152',
                                                                                                      'mam': '11.966',
                                                                                                      'son': '5.736'},
                                                                                          'std-obs_xy': {'CalendarMonths': ['15.819',
                                                                                                                            '20.070',
                                                                                                                            '24.959',
                                                                                                                            '28.378',
                                                                                                                            '33.192',
                                                                                                                            '37.963',
                                                                                                                            '34.333',
                                                                                                                            '26.566',
                                                                                                                            '18.149',
                                                                                                                            '15.477',
                                                                                                                            '14.535',
                                                                                                                            '14.186'],
                                                                                                         'ann': '19.122',
                                                                                                         'djf': '16.571',
                                                                                                         'jja': '31.932',
                                                                                                         'mam': '27.600',
                                                                                                         'son': '14.278'},
                                                                                          'std-obs_xy_devzm': {'ann': '16.159'},
                                                                                          'std-obs_xyt': {'ann': '31.955'},
                                                                                          'std_xy': {'CalendarMonths': ['20.978',
                                                                                                                        '26.723',
                                                                                                                        '31.807',
                                                                                                                        '34.048',
                                                                                                                        '33.045',
                                                                                                                        '33.840',
                                                                                                                        '31.998',
                                                                                                                        '27.329',
                                                                                                                        '21.619',
                                                                                                                        '19.423',
                                                                                                                        '18.699',
                                                                                                                        '18.122'],
                                                                                                     'ann': '20.799',
                                                                                                     'djf': '21.832',
                                                                                                     'jja': '30.186',
                                                                                                     'mam': '30.893',
                                                                                                     'son': '17.371'},
                                                                                          'std_xy_devzm': {'ann': '17.177'},
                                                                                          'std_xyt': {'ann': '33.217'}},
                                                                                 'SHEX': {'bias_xy': {'CalendarMonths': ['7.564',
                                                                                                                         '5.980',
                                                                                                                         '1.394',
                                                                                                                         '-0.382',
                                                                                                                         '-1.245',
                                                                                                                         '-1.386',
                                                                                                                         '-2.318',
                                                                                                                         '-3.197',
                                                                                                                         '-2.706',
                                                                                                                         '2.165',
                                                                                                                         '7.001',
                                                                                                                         '8.132'],
                                                                                                      'ann': '1.750',
                                                                                                      'djf': '7.216',
                                                                                                      'jja': '-2.300',
                                                                                                      'mam': '-0.110',
                                                                                                      'son': '2.153'},
                                                                                          'cor_xy': {'CalendarMonths': ['0.95',
                                                                                                                        '0.95',
                                                                                                                        '0.97',
                                                                                                                        '0.97',
                                                                                                                        '0.98',
                                                                                                                        '0.99',
                                                                                                                        '0.98',
                                                                                                                        '0.97',
                                                                                                                        '0.96',
                                                                                                                        '0.95',
                                                                                                                        '0.95',
                                                                                                                        '0.95'],
                                                                                                     'ann': '0.965',
                                                                                                     'djf': '0.96',
                                                                                                     'jja': '0.98',
                                                                                                     'mam': '0.98',
                                                                                                     'son': '0.95'},
                                                                                          'mae_xy': {'CalendarMonths': ['11.306',
                                                                                                                        '9.200',
                                                                                                                        '4.950',
                                                                                                                        '3.388',
                                                                                                                        '2.231',
                                                                                                                        '2.126',
                                                                                                                        '2.882',
                                                                                                                        '4.433',
                                                                                                                        '6.418',
                                                                                                                        '8.022',
                                                                                                                        '10.303',
                                                                                                                        '11.344'],
                                                                                                     'ann': '4.605',
                                                                                                     'djf': '10.109',
                                                                                                     'jja': '2.875',
                                                                                                     'mam': '2.835',
                                                                                                     'son': '7.120'},
                                                                                          'mean-obs_xy': {'CalendarMonths': ['-91.335',
                                                                                                                             '-77.478',
                                                                                                                             '-56.379',
                                                                                                                             '-36.343',
                                                                                                                             '-22.593',
                                                                                                                             '-17.630',
                                                                                                                             '-19.722',
                                                                                                                             '-29.704',
                                                                                                                             '-46.346',
                                                                                                                             '-66.684',
                                                                                                                             '-84.024',
                                                                                                                             '-94.106'],
                                                                                                          'ann': '-53.529',
                                                                                                          'djf': '-87.570',
                                                                                                          'jja': '-22.381',
                                                                                                          'mam': '-38.063',
                                                                                                          'son': '-65.674'},
                                                                                          'mean_xy': {'CalendarMonths': ['-83.771',
                                                                                                                         '-71.498',
                                                                                                                         '-54.985',
                                                                                                                         '-36.725',
                                                                                                                         '-23.838',
                                                                                                                         '-19.017',
                                                                                                                         '-22.040',
                                                                                                                         '-32.901',
                                                                                                                         '-49.052',
                                                                                                                         '-64.520',
                                                                                                                         '-77.023',
                                                                                                                         '-85.974'],
                                                                                                      'ann': '-51.779',
                                                                                                      'djf': '-80.354',
                                                                                                      'jja': '-24.681',
                                                                                                      'mam': '-38.173',
                                                                                                      'son': '-63.521'},
                                                                                          'rms_devzm': {'ann': '4.846'},
                                                                                          'rms_xy': {'CalendarMonths': ['15.272',
                                                                                                                        '11.870',
                                                                                                                        '6.136',
                                                                                                                        '4.163',
                                                                                                                        '2.997',
                                                                                                                        '2.915',
                                                                                                                        '3.972',
                                                                                                                        '5.730',
                                                                                                                        '8.247',
                                                                                                                        '10.457',
                                                                                                                        '14.486',
                                                                                                                        '15.722'],
                                                                                                     'ann': '6.110',
                                                                                                     'djf': '13.643',
                                                                                                     'jja': '3.894',
                                                                                                     'mam': '3.562',
                                                                                                     'son': '9.586'},
                                                                                          'rms_xyt': {'ann': '8.497'},
                                                                                          'rms_y': {'ann': '3.721'},
                                                                                          'rmsc_xy': {'CalendarMonths': ['13.267',
                                                                                                                         '10.254',
                                                                                                                         '5.976',
                                                                                                                         '4.146',
                                                                                                                         '2.726',
                                                                                                                         '2.565',
                                                                                                                         '3.226',
                                                                                                                         '4.755',
                                                                                                                         '7.791',
                                                                                                                         '10.231',
                                                                                                                         '12.682',
                                                                                                                         '13.455'],
                                                                                                      'ann': '5.854',
                                                                                                      'djf': '11.579',
                                                                                                      'jja': '3.142',
                                                                                                      'mam': '3.560',
                                                                                                      'son': '9.341'},
                                                                                          'std-obs_xy': {'CalendarMonths': ['42.463',
                                                                                                                            '33.750',
                                                                                                                            '22.834',
                                                                                                                            '17.579',
                                                                                                                            '14.154',
                                                                                                                            '12.228',
                                                                                                                            '13.464',
                                                                                                                            '17.435',
                                                                                                                            '22.412',
                                                                                                                            '30.187',
                                                                                                                            '39.194',
                                                                                                                            '43.313'],
                                                                                                         'ann': '22.177',
                                                                                                         'djf': '39.366',
                                                                                                         'jja': '14.118',
                                                                                                         'mam': '16.723',
                                                                                                         'son': '29.748'},
                                                                                          'std-obs_xy_devzm': {'ann': '8.964'},
                                                                                          'std-obs_xyt': {'ann': '39.261'},
                                                                                          'std_xy': {'CalendarMonths': ['37.177',
                                                                                                                        '30.821',
                                                                                                                        '22.705',
                                                                                                                        '17.354',
                                                                                                                        '14.499',
                                                                                                                        '13.572',
                                                                                                                        '15.002',
                                                                                                                        '18.981',
                                                                                                                        '25.740',
                                                                                                                        '32.332',
                                                                                                                        '37.403',
                                                                                                                        '39.660'],
                                                                                                     'ann': '22.241',
                                                                                                     'djf': '35.477',
                                                                                                     'jja': '15.631',
                                                                                                     'mam': '16.811',
                                                                                                     'son': '31.181'},
                                                                                          'std_xy_devzm': {'ann': '7.960'},
                                                                                          'std_xyt': {'ann': '35.973'}},
                                                                                 'TROPICS': {'bias_xy': {'CalendarMonths': ['2.162',
                                                                                                                            '0.589',
                                                                                                                            '0.534',
                                                                                                                            '0.295',
                                                                                                                            '0.793',
                                                                                                                            '1.768',
                                                                                                                            '2.380',
                                                                                                                            '2.103',
                                                                                                                            '2.712',
                                                                                                                            '3.378',
                                                                                                                            '3.213',
                                                                                                                            '2.629'],
                                                                                                         'ann': '1.880',
                                                                                                         'djf': '1.784',
                                                                                                         'jja': '2.080',
                                                                                                         'mam': '0.538',
                                                                                                         'son': '3.098'},
                                                                                             'cor_xy': {'CalendarMonths': ['0.80',
                                                                                                                           '0.76',
                                                                                                                           '0.70',
                                                                                                                           '0.68',
                                                                                                                           '0.69',
                                                                                                                           '0.71',
                                                                                                                           '0.79',
                                                                                                                           '0.81',
                                                                                                                           '0.80',
                                                                                                                           '0.82',
                                                                                                                           '0.81',
                                                                                                                           '0.80'],
                                                                                                        'ann': '0.814',
                                                                                                        'djf': '0.81',
                                                                                                        'jja': '0.80',
                                                                                                        'mam': '0.70',
                                                                                                        'son': '0.83'},
                                                                                             'mae_xy': {'CalendarMonths': ['11.262',
                                                                                                                           '12.149',
                                                                                                                           '12.410',
                                                                                                                           '11.334',
                                                                                                                           '11.154',
                                                                                                                           '11.707',
                                                                                                                           '10.941',
                                                                                                                           '10.973',
                                                                                                                           '10.631',
                                                                                                                           '9.702',
                                                                                                                           '10.563',
                                                                                                                           '11.053'],
                                                                                                        'ann': '8.107',
                                                                                                        'djf': '10.442',
                                                                                                        'jja': '10.294',
                                                                                                        'mam': '10.680',
                                                                                                        'son': '9.388'},
                                                                                             'mean-obs_xy': {'CalendarMonths': ['-44.526',
                                                                                                                                '-42.964',
                                                                                                                                '-41.549',
                                                                                                                                '-39.645',
                                                                                                                                '-39.067',
                                                                                                                                '-39.967',
                                                                                                                                '-41.767',
                                                                                                                                '-43.105',
                                                                                                                                '-43.776',
                                                                                                                                '-44.600',
                                                                                                                                '-45.007',
                                                                                                                                '-44.633'],
                                                                                                             'ann': '-42.551',
                                                                                                             'djf': '-44.034',
                                                                                                             'jja': '-41.611',
                                                                                                             'mam': '-40.054',
                                                                                                             'son': '-44.460'},
                                                                                             'mean_xy': {'CalendarMonths': ['-42.364',
                                                                                                                            '-42.375',
                                                                                                                            '-41.015',
                                                                                                                            '-39.350',
                                                                                                                            '-38.274',
                                                                                                                            '-38.199',
                                                                                                                            '-39.387',
                                                                                                                            '-41.003',
                                                                                                                            '-41.064',
                                                                                                                            '-41.222',
                                                                                                                            '-41.794',
                                                                                                                            '-42.003'],
                                                                                                         'ann': '-40.671',
                                                                                                         'djf': '-42.250',
                                                                                                         'jja': '-39.531',
                                                                                                         'mam': '-39.515',
                                                                                                         'son': '-41.362'},
                                                                                             'rms_devzm': {'ann': '9.814'},
                                                                                             'rms_xy': {'CalendarMonths': ['15.338',
                                                                                                                           '16.390',
                                                                                                                           '16.585',
                                                                                                                           '15.789',
                                                                                                                           '16.002',
                                                                                                                           '17.394',
                                                                                                                           '16.133',
                                                                                                                           '15.111',
                                                                                                                           '14.400',
                                                                                                                           '13.459',
                                                                                                                           '14.362',
                                                                                                                           '15.146'],
                                                                                                        'ann': '10.585',
                                                                                                        'djf': '14.070',
                                                                                                        'jja': '14.673',
                                                                                                        'mam': '14.580',
                                                                                                        'son': '12.477'},
                                                                                             'rms_xyt': {'ann': '15.509'},
                                                                                             'rms_y': {'ann': '3.964'},
                                                                                             'rmsc_xy': {'CalendarMonths': ['15.185',
                                                                                                                            '16.379',
                                                                                                                            '16.576',
                                                                                                                            '15.787',
                                                                                                                            '15.982',
                                                                                                                            '17.304',
                                                                                                                            '15.956',
                                                                                                                            '14.964',
                                                                                                                            '14.142',
                                                                                                                            '13.028',
                                                                                                                            '13.998',
                                                                                                                            '14.916'],
                                                                                                         'ann': '10.416',
                                                                                                         'djf': '13.957',
                                                                                                         'jja': '14.525',
                                                                                                         'mam': '14.570',
                                                                                                         'son': '12.086'},
                                                                                             'std-obs_xy': {'CalendarMonths': ['24.390',
                                                                                                                               '23.267',
                                                                                                                               '20.976',
                                                                                                                               '19.707',
                                                                                                                               '21.175',
                                                                                                                               '24.263',
                                                                                                                               '25.585',
                                                                                                                               '25.040',
                                                                                                                               '23.271',
                                                                                                                               '22.661',
                                                                                                                               '23.790',
                                                                                                                               '24.030'],
                                                                                                            'ann': '17.730',
                                                                                                            'djf': '23.212',
                                                                                                            'jja': '24.215',
                                                                                                            'mam': '18.952',
                                                                                                            'son': '21.523'},
                                                                                             'std-obs_xy_devzm': {'ann': '16.181'},
                                                                                             'std-obs_xyt': {'ann': '23.329'},
                                                                                             'std_xy': {'CalendarMonths': ['23.814',
                                                                                                                           '24.338',
                                                                                                                           '22.022',
                                                                                                                           '19.837',
                                                                                                                           '19.268',
                                                                                                                           '20.714',
                                                                                                                           '22.360',
                                                                                                                           '22.721',
                                                                                                                           '21.370',
                                                                                                                           '19.801',
                                                                                                                           '20.548',
                                                                                                                           '22.459'],
                                                                                                        'ann': '16.071',
                                                                                                        'djf': '22.565',
                                                                                                        'jja': '20.819',
                                                                                                        'mam': '18.756',
                                                                                                        'son': '19.091'},
                                                                                             'std_xy_devzm': {'ann': '14.616'},
                                                                                             'std_xyt': {'ann': '21.707'}},
                                                                                 'global': {'bias_xy': {'CalendarMonths': ['2.198',
                                                                                                                           '0.474',
                                                                                                                           '-1.334',
                                                                                                                           '-1.791',
                                                                                                                           '-1.043',
                                                                                                                           '0.334',
                                                                                                                           '0.792',
                                                                                                                           '0.185',
                                                                                                                           '-0.354',
                                                                                                                           '1.029',
                                                                                                                           '2.510',
                                                                                                                           '2.730'],
                                                                                                        'ann': '0.477',
                                                                                                        'djf': '1.791',
                                                                                                        'jja': '0.433',
                                                                                                        'mam': '-1.395',
                                                                                                        'son': '1.062'},
                                                                                            'cor_xy': {'CalendarMonths': ['0.94',
                                                                                                                          '0.90',
                                                                                                                          '0.84',
                                                                                                                          '0.84',
                                                                                                                          '0.86',
                                                                                                                          '0.87',
                                                                                                                          '0.89',
                                                                                                                          '0.88',
                                                                                                                          '0.85',
                                                                                                                          '0.90',
                                                                                                                          '0.93',
                                                                                                                          '0.94'],
                                                                                                       'ann': '0.894',
                                                                                                       'djf': '0.94',
                                                                                                       'jja': '0.90',
                                                                                                       'mam': '0.85',
                                                                                                       'son': '0.91'},
                                                                                            'mae_xy': {'CalendarMonths': ['9.721',
                                                                                                                          '10.279',
                                                                                                                          '10.120',
                                                                                                                          '9.636',
                                                                                                                          '9.801',
                                                                                                                          '10.422',
                                                                                                                          '9.552',
                                                                                                                          '8.867',
                                                                                                                          '8.986',
                                                                                                                          '8.507',
                                                                                                                          '9.074',
                                                                                                                          '9.363'],
                                                                                                       'ann': '6.761',
                                                                                                       'djf': '9.095',
                                                                                                       'jja': '8.789',
                                                                                                       'mam': '8.828',
                                                                                                       'son': '7.821'},
                                                                                            'mean-obs_xy': {'CalendarMonths': ['-49.781',
                                                                                                                               '-47.325',
                                                                                                                               '-44.091',
                                                                                                                               '-41.543',
                                                                                                                               '-41.594',
                                                                                                                               '-43.003',
                                                                                                                               '-43.362',
                                                                                                                               '-43.308',
                                                                                                                               '-44.084',
                                                                                                                               '-46.424',
                                                                                                                               '-48.755',
                                                                                                                               '-50.044'],
                                                                                                            'ann': '-45.276',
                                                                                                            'djf': '-49.039',
                                                                                                            'jja': '-43.223',
                                                                                                            'mam': '-42.367',
                                                                                                            'son': '-46.421'},
                                                                                            'mean_xy': {'CalendarMonths': ['-47.583',
                                                                                                                           '-46.850',
                                                                                                                           '-45.425',
                                                                                                                           '-43.334',
                                                                                                                           '-42.637',
                                                                                                                           '-42.668',
                                                                                                                           '-42.570',
                                                                                                                           '-43.124',
                                                                                                                           '-44.438',
                                                                                                                           '-45.395',
                                                                                                                           '-46.245',
                                                                                                                           '-47.314'],
                                                                                                        'ann': '-44.799',
                                                                                                        'djf': '-47.248',
                                                                                                        'jja': '-42.790',
                                                                                                        'mam': '-43.762',
                                                                                                        'son': '-45.359'},
                                                                                            'rms_devzm': {'ann': '8.134'},
                                                                                            'rms_xy': {'CalendarMonths': ['13.871',
                                                                                                                          '14.177',
                                                                                                                          '14.034',
                                                                                                                          '13.760',
                                                                                                                          '14.886',
                                                                                                                          '16.451',
                                                                                                                          '14.514',
                                                                                                                          '12.558',
                                                                                                                          '12.104',
                                                                                                                          '11.641',
                                                                                                                          '12.958',
                                                                                                                          '13.659'],
                                                                                                       'ann': '9.072',
                                                                                                       'djf': '12.765',
                                                                                                       'jja': '12.994',
                                                                                                       'mam': '12.489',
                                                                                                       'son': '10.641'},
                                                                                            'rms_xyt': {'ann': '13.718'},
                                                                                            'rms_y': {'ann': '4.018'},
                                                                                            'rmsc_xy': {'CalendarMonths': ['13.696',
                                                                                                                           '14.169',
                                                                                                                           '13.971',
                                                                                                                           '13.643',
                                                                                                                           '14.849',
                                                                                                                           '16.448',
                                                                                                                           '14.492',
                                                                                                                           '12.556',
                                                                                                                           '12.099',
                                                                                                                           '11.596',
                                                                                                                           '12.712',
                                                                                                                           '13.383'],
                                                                                                        'ann': '9.060',
                                                                                                        'djf': '12.639',
                                                                                                        'jja': '12.987',
                                                                                                        'mam': '12.411',
                                                                                                        'son': '10.588'},
                                                                                            'std-obs_xy': {'CalendarMonths': ['38.694',
                                                                                                                              '31.746',
                                                                                                                              '23.665',
                                                                                                                              '22.395',
                                                                                                                              '28.068',
                                                                                                                              '33.238',
                                                                                                                              '31.436',
                                                                                                                              '25.715',
                                                                                                                              '21.925',
                                                                                                                              '26.791',
                                                                                                                              '35.081',
                                                                                                                              '39.803'],
                                                                                                           'ann': '19.856',
                                                                                                           'djf': '36.228',
                                                                                                           'jja': '29.199',
                                                                                                           'mam': '21.614',
                                                                                                           'son': '25.635'},
                                                                                            'std-obs_xy_devzm': {'ann': '14.706'},
                                                                                            'std-obs_xyt': {'ann': '30.585'},
                                                                                            'std_xy': {'CalendarMonths': ['35.297',
                                                                                                                          '30.589',
                                                                                                                          '25.632',
                                                                                                                          '25.176',
                                                                                                                          '28.257',
                                                                                                                          '31.020',
                                                                                                                          '29.214',
                                                                                                                          '24.811',
                                                                                                                          '22.868',
                                                                                                                          '26.093',
                                                                                                                          '31.853',
                                                                                                                          '36.219'],
                                                                                                       'ann': '19.547',
                                                                                                       'djf': '33.293',
                                                                                                       'jja': '27.285',
                                                                                                       'mam': '23.485',
                                                                                                       'son': '24.840'},
                                                                                            'std_xy_devzm': {'ann': '14.015'},
                                                                                            'std_xyt': {'ann': '29.259'}}},
                                                                    'source': 'CERES-EBAF-4-1'},
                                                        'units': 'W m-2'}},
                             'provenance': {'commandLine': '/home/lee1043/.conda/envs/pcmdi_metrics_dev_20230822/bin/mean_climate_driver.py '
                                                           '-p basic_param.py '
                                                           '-v rstcre',
                                            'conda': {'Platform': 'linux-64',
                                                      'PythonVersion': '3.10.12.final.0',
                                                      'Version': '23.3.1',
                                                      'buildVersion': 'not '
                                                                      'installed'},
                                            'date': '2023-09-19 00:50:59',
                                            'openGL': {'GLX': {'client': {'vendor': 'Mesa '
                                                                                    'Project '
                                                                                    'and '
                                                                                    'SGI',
                                                                          'version': '1.4'},
                                                               'server': {'vendor': 'SGI',
                                                                          'version': '1.4'},
                                                               'version': '1.4'},
                                                       'renderer': 'llvmpipe '
                                                                   '(LLVM 7.0, '
                                                                   '256 bits)',
                                                       'shading language version': '1.20',
                                                       'vendor': 'VMware, Inc.',
                                                       'version': '2.1 Mesa '
                                                                  '18.3.4'},
                                            'osAccess': False,
                                            'packages': {'PMP': 'v3.0.2-11-g06b151f',
                                                         'PMPObs': 'See '
                                                                   "'References' "
                                                                   'key below, '
                                                                   'for '
                                                                   'detailed '
                                                                   'obs '
                                                                   'provenance '
                                                                   'information.',
                                                         'blas': '0.3.23',
                                                         'cdat_info': '8.2.1',
                                                         'cdms': '3.1.5',
                                                         'cdp': '1.7.0',
                                                         'cdtime': '3.1.4',
                                                         'cdutil': '8.2.1',
                                                         'clapack': None,
                                                         'esmf': '8.4.2',
                                                         'esmpy': '8.4.2',
                                                         'genutil': '8.2.1',
                                                         'lapack': '3.9.0',
                                                         'matplotlib': '3.7.1',
                                                         'mesalib': None,
                                                         'numpy': '1.23.5',
                                                         'python': '3.10.10',
                                                         'scipy': '1.11.2',
                                                         'uvcdat': None,
                                                         'vcs': None,
                                                         'vtk': None,
                                                         'xarray': '2023.8.0',
                                                         'xcdat': '0.5.0'},
                                            'platform': {'Name': 'gates.llnl.gov',
                                                         'OS': 'Linux',
                                                         'Version': '3.10.0-1160.71.1.el7.x86_64'},
                                            'userId': 'lee1043'}},
                  'rsus': {'REFERENCE': {'default': {'CMIP_CMOR_TABLE': 'Amon',
                                                     'MD5sum': 'e62544189ebd7cd078b074900ad5a000',
                                                     'RefTrackingDate': 'Wed '
                                                                        'Aug  '
                                                                        '4 '
                                                                        '12:23:21 '
                                                                        '2021',
                                                     'filename': 'rsus_mon_CERES-EBAF-4-1_PCMDI_gn.200301-201812.AC.v20210804.nc',
                                                     'period': '200301-201812',
                                                     'shape': '(12, 180, 360)',
                                                     'template': 'rsus/CERES-EBAF-4-1/v20210804/rsus_mon_CERES-EBAF-4-1_PCMDI_gn.200301-201812.AC.v20210804.nc'}},
                           'RESULTS': {'ACCESS-CM2': {'default': {'r1i1p1f1': {'InputClimatologyFileName': 'cmip6.historical.ACCESS-CM2.r1i1p1f1.mon.rsus.198101-200512.AC.v20230823.nc',
                                                                               'NHEX': {'bias_xy': {'CalendarMonths': ['-0.330',
                                                                                                                       '-1.406',
                                                                                                                       '-2.703',
                                                                                                                       '-1.445',
                                                                                                                       '0.312',
                                                                                                                       '1.649',
                                                                                                                       '3.911',
                                                                                                                       '4.165',
                                                                                                                       '2.497',
                                                                                                                       '1.076',
                                                                                                                       '0.257',
                                                                                                                       '0.019'],
                                                                                                    'ann': '0.667',
                                                                                                    'djf': '-0.579',
                                                                                                    'jja': '3.234',
                                                                                                    'mam': '-1.252',
                                                                                                    'son': '1.279'},
                                                                                        'cor_xy': {'CalendarMonths': ['0.88',
                                                                                                                      '0.85',
                                                                                                                      '0.83',
                                                                                                                      '0.91',
                                                                                                                      '0.90',
                                                                                                                      '0.93',
                                                                                                                      '0.95',
                                                                                                                      '0.95',
                                                                                                                      '0.95',
                                                                                                                      '0.97',
                                                                                                                      '0.96',
                                                                                                                      '0.92'],
                                                                                                   'ann': '0.927',
                                                                                                   'djf': '0.88',
                                                                                                   'jja': '0.95',
                                                                                                   'mam': '0.90',
                                                                                                   'son': '0.96'},
                                                                                        'mae_xy': {'CalendarMonths': ['2.851',
                                                                                                                      '5.337',
                                                                                                                      '8.906',
                                                                                                                      '10.844',
                                                                                                                      '13.378',
                                                                                                                      '9.465',
                                                                                                                      '7.008',
                                                                                                                      '5.331',
                                                                                                                      '3.534',
                                                                                                                      '2.150',
                                                                                                                      '1.652',
                                                                                                                      '1.868'],
                                                                                                   'ann': '4.822',
                                                                                                   'djf': '3.283',
                                                                                                   'jja': '6.686',
                                                                                                   'mam': '10.579',
                                                                                                   'son': '2.251'},
                                                                                        'mean-obs_xy': {'CalendarMonths': ['11.116',
                                                                                                                           '19.795',
                                                                                                                           '34.889',
                                                                                                                           '50.725',
                                                                                                                           '54.810',
                                                                                                                           '45.842',
                                                                                                                           '34.656',
                                                                                                                           '25.826',
                                                                                                                           '18.444',
                                                                                                                           '12.495',
                                                                                                                           '8.903',
                                                                                                                           '8.090'],
                                                                                                        'ann': '27.133',
                                                                                                        'djf': '13.054',
                                                                                                        'jja': '35.450',
                                                                                                        'mam': '47.086',
                                                                                                        'son': '13.289'},
                                                                                        'mean_xy': {'CalendarMonths': ['10.786',
                                                                                                                       '18.388',
                                                                                                                       '32.186',
                                                                                                                       '49.281',
                                                                                                                       '55.122',
                                                                                                                       '47.491',
                                                                                                                       '38.567',
                                                                                                                       '29.990',
                                                                                                                       '20.941',
                                                                                                                       '13.571',
                                                                                                                       '9.159',
                                                                                                                       '8.109'],
                                                                                                    'ann': '27.799',
                                                                                                    'djf': '12.475',
                                                                                                    'jja': '38.684',
                                                                                                    'mam': '45.833',
                                                                                                    'son': '14.568'},
                                                                                        'rms_devzm': {'ann': '7.457'},
                                                                                        'rms_xy': {'CalendarMonths': ['5.984',
                                                                                                                      '10.024',
                                                                                                                      '15.581',
                                                                                                                      '19.337',
                                                                                                                      '26.653',
                                                                                                                      '19.516',
                                                                                                                      '12.596',
                                                                                                                      '9.527',
                                                                                                                      '6.286',
                                                                                                                      '3.703',
                                                                                                                      '3.063',
                                                                                                                      '3.926'],
                                                                                                   'ann': '7.746',
                                                                                                   'djf': '6.447',
                                                                                                   'jja': '11.959',
                                                                                                   'mam': '18.326',
                                                                                                   'son': '3.831'},
                                                                                        'rms_xyt': {'ann': '11.350'},
                                                                                        'rms_y': {'ann': '2.096'},
                                                                                        'rmsc_xy': {'CalendarMonths': ['5.975',
                                                                                                                       '9.925',
                                                                                                                       '15.345',
                                                                                                                       '19.283',
                                                                                                                       '26.651',
                                                                                                                       '19.446',
                                                                                                                       '11.973',
                                                                                                                       '8.569',
                                                                                                                       '5.769',
                                                                                                                       '3.544',
                                                                                                                       '3.052',
                                                                                                                       '3.926'],
                                                                                                    'ann': '7.717',
                                                                                                    'djf': '6.421',
                                                                                                    'jja': '11.514',
                                                                                                    'mam': '18.283',
                                                                                                    'son': '3.611'},
                                                                                        'std-obs_xy': {'CalendarMonths': ['12.598',
                                                                                                                          '18.936',
                                                                                                                          '27.634',
                                                                                                                          '45.520',
                                                                                                                          '60.081',
                                                                                                                          '53.918',
                                                                                                                          '35.640',
                                                                                                                          '23.355',
                                                                                                                          '15.628',
                                                                                                                          '11.759',
                                                                                                                          '9.995',
                                                                                                                          '9.688'],
                                                                                                       'ann': '20.017',
                                                                                                       'djf': '13.304',
                                                                                                       'jja': '35.935',
                                                                                                       'mam': '41.049',
                                                                                                       'son': '11.819'},
                                                                                        'std-obs_xy_devzm': {'ann': '17.258'},
                                                                                        'std-obs_xyt': {'ann': '35.763'},
                                                                                        'std_xy': {'CalendarMonths': ['12.165',
                                                                                                                      '16.587',
                                                                                                                      '24.860',
                                                                                                                      '43.421',
                                                                                                                      '58.658',
                                                                                                                      '51.566',
                                                                                                                      '36.724',
                                                                                                                      '26.417',
                                                                                                                      '18.008',
                                                                                                                      '13.173',
                                                                                                                      '10.406',
                                                                                                                      '9.883'],
                                                                                                   'ann': '20.316',
                                                                                                   'djf': '12.431',
                                                                                                   'jja': '36.836',
                                                                                                   'mam': '39.163',
                                                                                                   'son': '13.240'},
                                                                                        'std_xy_devzm': {'ann': '17.375'},
                                                                                        'std_xyt': {'ann': '35.208'}},
                                                                               'SHEX': {'bias_xy': {'CalendarMonths': ['-4.143',
                                                                                                                       '-1.524',
                                                                                                                       '-0.685',
                                                                                                                       '0.121',
                                                                                                                       '0.429',
                                                                                                                       '0.315',
                                                                                                                       '0.177',
                                                                                                                       '-0.057',
                                                                                                                       '-1.069',
                                                                                                                       '-2.364',
                                                                                                                       '-4.146',
                                                                                                                       '-5.571'],
                                                                                                    'ann': '-1.543',
                                                                                                    'djf': '-3.726',
                                                                                                    'jja': '0.144',
                                                                                                    'mam': '-0.031',
                                                                                                    'son': '-2.528'},
                                                                                        'cor_xy': {'CalendarMonths': ['0.98',
                                                                                                                      '0.98',
                                                                                                                      '0.95',
                                                                                                                      '0.91',
                                                                                                                      '0.98',
                                                                                                                      '0.98',
                                                                                                                      '0.97',
                                                                                                                      '0.88',
                                                                                                                      '0.92',
                                                                                                                      '0.96',
                                                                                                                      '0.98',
                                                                                                                      '0.99'],
                                                                                                   'ann': '0.984',
                                                                                                   'djf': '0.99',
                                                                                                   'jja': '0.93',
                                                                                                   'mam': '0.93',
                                                                                                   'son': '0.97'},
                                                                                        'mae_xy': {'CalendarMonths': ['7.057',
                                                                                                                      '4.274',
                                                                                                                      '2.765',
                                                                                                                      '1.435',
                                                                                                                      '0.710',
                                                                                                                      '0.507',
                                                                                                                      '0.562',
                                                                                                                      '1.244',
                                                                                                                      '3.207',
                                                                                                                      '5.929',
                                                                                                                      '8.541',
                                                                                                                      '9.402'],
                                                                                                   'ann': '3.500',
                                                                                                   'djf': '6.609',
                                                                                                   'jja': '0.756',
                                                                                                   'mam': '1.572',
                                                                                                   'son': '5.651'},
                                                                                        'mean-obs_xy': {'CalendarMonths': ['50.321',
                                                                                                                           '32.806',
                                                                                                                           '17.114',
                                                                                                                           '7.789',
                                                                                                                           '4.290',
                                                                                                                           '3.410',
                                                                                                                           '4.020',
                                                                                                                           '7.603',
                                                                                                                           '18.938',
                                                                                                                           '39.513',
                                                                                                                           '60.221',
                                                                                                                           '63.277'],
                                                                                                        'ann': '25.775',
                                                                                                        'djf': '48.644',
                                                                                                        'jja': '5.022',
                                                                                                        'mam': '9.564',
                                                                                                        'son': '39.558'},
                                                                                        'mean_xy': {'CalendarMonths': ['46.178',
                                                                                                                       '31.282',
                                                                                                                       '16.428',
                                                                                                                       '7.910',
                                                                                                                       '4.718',
                                                                                                                       '3.724',
                                                                                                                       '4.197',
                                                                                                                       '7.546',
                                                                                                                       '17.869',
                                                                                                                       '37.149',
                                                                                                                       '56.074',
                                                                                                                       '57.706'],
                                                                                                    'ann': '24.232',
                                                                                                    'djf': '44.918',
                                                                                                    'jja': '5.166',
                                                                                                    'mam': '9.534',
                                                                                                    'son': '37.030'},
                                                                                        'rms_devzm': {'ann': '5.268'},
                                                                                        'rms_xy': {'CalendarMonths': ['17.745',
                                                                                                                      '12.150',
                                                                                                                      '6.559',
                                                                                                                      '2.643',
                                                                                                                      '1.063',
                                                                                                                      '0.888',
                                                                                                                      '1.035',
                                                                                                                      '2.861',
                                                                                                                      '7.741',
                                                                                                                      '13.759',
                                                                                                                      '18.729',
                                                                                                                      '19.922'],
                                                                                                   'ann': '6.696',
                                                                                                   'djf': '15.371',
                                                                                                   'jja': '1.439',
                                                                                                   'mam': '3.023',
                                                                                                   'son': '12.802'},
                                                                                        'rms_xyt': {'ann': '8.758'},
                                                                                        'rms_y': {'ann': '4.133'},
                                                                                        'rmsc_xy': {'CalendarMonths': ['17.255',
                                                                                                                       '12.054',
                                                                                                                       '6.523',
                                                                                                                       '2.640',
                                                                                                                       '0.972',
                                                                                                                       '0.830',
                                                                                                                       '1.020',
                                                                                                                       '2.860',
                                                                                                                       '7.667',
                                                                                                                       '13.555',
                                                                                                                       '18.264',
                                                                                                                       '19.127'],
                                                                                                    'ann': '6.516',
                                                                                                    'djf': '14.913',
                                                                                                    'jja': '1.432',
                                                                                                    'mam': '3.023',
                                                                                                    'son': '12.550'},
                                                                                        'std-obs_xy': {'CalendarMonths': ['88.313',
                                                                                                                          '53.189',
                                                                                                                          '20.957',
                                                                                                                          '6.219',
                                                                                                                          '3.875',
                                                                                                                          '3.416',
                                                                                                                          '3.659',
                                                                                                                          '5.891',
                                                                                                                          '19.506',
                                                                                                                          '48.978',
                                                                                                                          '86.812',
                                                                                                                          '103.088'],
                                                                                                       'ann': '33.186',
                                                                                                       'djf': '80.562',
                                                                                                       'jja': '3.786',
                                                                                                       'mam': '8.430',
                                                                                                       'son': '50.371'},
                                                                                        'std-obs_xy_devzm': {'ann': '12.410'},
                                                                                        'std-obs_xyt': {'ann': '56.101'},
                                                                                        'std_xy': {'CalendarMonths': ['79.802',
                                                                                                                      '49.393',
                                                                                                                      '18.271',
                                                                                                                      '5.789',
                                                                                                                      '4.342',
                                                                                                                      '3.877',
                                                                                                                      '3.962',
                                                                                                                      '5.511',
                                                                                                                      '17.282',
                                                                                                                      '45.002',
                                                                                                                      '79.452',
                                                                                                                      '91.326'],
                                                                                                   'ann': '29.787',
                                                                                                   'djf': '72.477',
                                                                                                   'jja': '3.967',
                                                                                                   'mam': '7.496',
                                                                                                   'son': '45.869'},
                                                                                        'std_xy_devzm': {'ann': '10.941'},
                                                                                        'std_xyt': {'ann': '50.756'}},
                                                                               'TROPICS': {'bias_xy': {'CalendarMonths': ['1.715',
                                                                                                                          '1.733',
                                                                                                                          '1.733',
                                                                                                                          '1.905',
                                                                                                                          '2.030',
                                                                                                                          '2.301',
                                                                                                                          '2.189',
                                                                                                                          '1.998',
                                                                                                                          '1.911',
                                                                                                                          '1.710',
                                                                                                                          '1.661',
                                                                                                                          '1.718'],
                                                                                                       'ann': '1.884',
                                                                                                       'djf': '1.722',
                                                                                                       'jja': '2.162',
                                                                                                       'mam': '1.893',
                                                                                                       'son': '1.761'},
                                                                                           'cor_xy': {'CalendarMonths': ['0.98',
                                                                                                                         '0.98',
                                                                                                                         '0.99',
                                                                                                                         '0.99',
                                                                                                                         '0.99',
                                                                                                                         '0.99',
                                                                                                                         '0.99',
                                                                                                                         '0.99',
                                                                                                                         '0.99',
                                                                                                                         '0.99',
                                                                                                                         '0.98',
                                                                                                                         '0.98'],
                                                                                                      'ann': '0.988',
                                                                                                      'djf': '0.98',
                                                                                                      'jja': '0.99',
                                                                                                      'mam': '0.99',
                                                                                                      'son': '0.99'},
                                                                                           'mae_xy': {'CalendarMonths': ['2.374',
                                                                                                                         '2.539',
                                                                                                                         '2.482',
                                                                                                                         '2.533',
                                                                                                                         '2.601',
                                                                                                                         '2.803',
                                                                                                                         '2.655',
                                                                                                                         '2.576',
                                                                                                                         '2.506',
                                                                                                                         '2.204',
                                                                                                                         '2.167',
                                                                                                                         '2.290'],
                                                                                                      'ann': '2.289',
                                                                                                      'djf': '2.336',
                                                                                                      'jja': '2.626',
                                                                                                      'mam': '2.469',
                                                                                                      'son': '2.223'},
                                                                                           'mean-obs_xy': {'CalendarMonths': ['19.186',
                                                                                                                              '20.081',
                                                                                                                              '20.805',
                                                                                                                              '20.664',
                                                                                                                              '20.014',
                                                                                                                              '19.269',
                                                                                                                              '19.238',
                                                                                                                              '19.739',
                                                                                                                              '20.199',
                                                                                                                              '20.140',
                                                                                                                              '19.444',
                                                                                                                              '18.875'],
                                                                                                           'ann': '19.805',
                                                                                                           'djf': '19.386',
                                                                                                           'jja': '19.417',
                                                                                                           'mam': '20.490',
                                                                                                           'son': '19.925'},
                                                                                           'mean_xy': {'CalendarMonths': ['20.901',
                                                                                                                          '21.815',
                                                                                                                          '22.538',
                                                                                                                          '22.569',
                                                                                                                          '22.044',
                                                                                                                          '21.570',
                                                                                                                          '21.427',
                                                                                                                          '21.737',
                                                                                                                          '22.110',
                                                                                                                          '21.850',
                                                                                                                          '21.105',
                                                                                                                          '20.593'],
                                                                                                       'ann': '21.688',
                                                                                                       'djf': '21.109',
                                                                                                       'jja': '21.580',
                                                                                                       'mam': '22.383',
                                                                                                       'son': '21.686'},
                                                                                           'rms_devzm': {'ann': '4.295'},
                                                                                           'rms_xy': {'CalendarMonths': ['4.555',
                                                                                                                         '4.999',
                                                                                                                         '5.028',
                                                                                                                         '5.386',
                                                                                                                         '5.624',
                                                                                                                         '5.803',
                                                                                                                         '5.712',
                                                                                                                         '5.824',
                                                                                                                         '5.439',
                                                                                                                         '4.462',
                                                                                                                         '4.158',
                                                                                                                         '4.299'],
                                                                                                      'ann': '4.859',
                                                                                                      'djf': '4.542',
                                                                                                      'jja': '5.690',
                                                                                                      'mam': '5.273',
                                                                                                      'son': '4.572'},
                                                                                           'rms_xyt': {'ann': '5.108'},
                                                                                           'rms_y': {'ann': '2.272'},
                                                                                           'rmsc_xy': {'CalendarMonths': ['4.220',
                                                                                                                          '4.689',
                                                                                                                          '4.719',
                                                                                                                          '5.038',
                                                                                                                          '5.245',
                                                                                                                          '5.327',
                                                                                                                          '5.276',
                                                                                                                          '5.471',
                                                                                                                          '5.092',
                                                                                                                          '4.122',
                                                                                                                          '3.812',
                                                                                                                          '3.941'],
                                                                                                       'ann': '4.479',
                                                                                                       'djf': '4.203',
                                                                                                       'jja': '5.264',
                                                                                                       'mam': '4.922',
                                                                                                       'son': '4.219'},
                                                                                           'std-obs_xy': {'CalendarMonths': ['15.239',
                                                                                                                             '16.839',
                                                                                                                             '19.313',
                                                                                                                             '20.537',
                                                                                                                             '21.010',
                                                                                                                             '21.105',
                                                                                                                             '20.758',
                                                                                                                             '19.803',
                                                                                                                             '18.987',
                                                                                                                             '17.537',
                                                                                                                             '15.811',
                                                                                                                             '14.805'],
                                                                                                          'ann': '18.100',
                                                                                                          'djf': '15.574',
                                                                                                          'jja': '20.506',
                                                                                                          'mam': '20.241',
                                                                                                          'son': '17.325'},
                                                                                           'std-obs_xy_devzm': {'ann': '17.298'},
                                                                                           'std-obs_xyt': {'ann': '18.623'},
                                                                                           'std_xy': {'CalendarMonths': ['17.852',
                                                                                                                         '19.987',
                                                                                                                         '22.477',
                                                                                                                         '24.099',
                                                                                                                         '24.830',
                                                                                                                         '24.929',
                                                                                                                         '24.465',
                                                                                                                         '23.966',
                                                                                                                         '22.636',
                                                                                                                         '20.288',
                                                                                                                         '18.203',
                                                                                                                         '17.231'],
                                                                                                      'ann': '21.374',
                                                                                                      'djf': '18.296',
                                                                                                      'jja': '24.420',
                                                                                                      'mam': '23.763',
                                                                                                      'son': '20.243'},
                                                                                           'std_xy_devzm': {'ann': '20.361'},
                                                                                           'std_xyt': {'ann': '21.931'}},
                                                                               'global': {'bias_xy': {'CalendarMonths': ['-0.261',
                                                                                                                         '0.134',
                                                                                                                         '0.019',
                                                                                                                         '0.622',
                                                                                                                         '1.200',
                                                                                                                         '1.641',
                                                                                                                         '2.117',
                                                                                                                         '2.026',
                                                                                                                         '1.312',
                                                                                                                         '0.533',
                                                                                                                         '-0.142',
                                                                                                                         '-0.529'],
                                                                                                      'ann': '0.723',
                                                                                                      'djf': '-0.215',
                                                                                                      'jja': '1.926',
                                                                                                      'mam': '0.626',
                                                                                                      'son': '0.568'},
                                                                                          'cor_xy': {'CalendarMonths': ['0.98',
                                                                                                                        '0.96',
                                                                                                                        '0.92',
                                                                                                                        '0.94',
                                                                                                                        '0.94',
                                                                                                                        '0.95',
                                                                                                                        '0.97',
                                                                                                                        '0.97',
                                                                                                                        '0.95',
                                                                                                                        '0.97',
                                                                                                                        '0.98',
                                                                                                                        '0.99'],
                                                                                                     'ann': '0.966',
                                                                                                     'djf': '0.98',
                                                                                                     'jja': '0.97',
                                                                                                     'mam': '0.94',
                                                                                                     'son': '0.97'},
                                                                                          'mae_xy': {'CalendarMonths': ['3.664',
                                                                                                                        '3.672',
                                                                                                                        '4.159',
                                                                                                                        '4.336',
                                                                                                                        '4.823',
                                                                                                                        '3.894',
                                                                                                                        '3.220',
                                                                                                                        '2.932',
                                                                                                                        '2.938',
                                                                                                                        '3.122',
                                                                                                                        '3.632',
                                                                                                                        '3.963'],
                                                                                                     'ann': '3.225',
                                                                                                     'djf': '3.641',
                                                                                                     'jja': '3.174',
                                                                                                     'mam': '4.272',
                                                                                                     'son': '3.087'},
                                                                                          'mean-obs_xy': {'CalendarMonths': ['24.953',
                                                                                                                             '23.191',
                                                                                                                             '23.403',
                                                                                                                             '24.961',
                                                                                                                             '24.782',
                                                                                                                             '21.948',
                                                                                                                             '19.288',
                                                                                                                             '18.227',
                                                                                                                             '19.445',
                                                                                                                             '23.072',
                                                                                                                             '27.003',
                                                                                                                             '27.279'],
                                                                                                          'ann': '23.129',
                                                                                                          'djf': '25.118',
                                                                                                          'jja': '19.827',
                                                                                                          'mam': '24.408',
                                                                                                          'son': '23.174'},
                                                                                          'mean_xy': {'CalendarMonths': ['24.692',
                                                                                                                         '23.325',
                                                                                                                         '23.423',
                                                                                                                         '25.582',
                                                                                                                         '25.982',
                                                                                                                         '23.589',
                                                                                                                         '21.405',
                                                                                                                         '20.252',
                                                                                                                         '20.757',
                                                                                                                         '23.605',
                                                                                                                         '26.861',
                                                                                                                         '26.750'],
                                                                                                      'ann': '23.852',
                                                                                                      'djf': '24.903',
                                                                                                      'jja': '21.752',
                                                                                                      'mam': '25.033',
                                                                                                      'son': '23.743'},
                                                                                          'rms_devzm': {'ann': '5.483'},
                                                                                          'rms_xy': {'CalendarMonths': ['9.902',
                                                                                                                        '8.633',
                                                                                                                        '9.170',
                                                                                                                        '10.475',
                                                                                                                        '13.917',
                                                                                                                        '10.595',
                                                                                                                        '7.500',
                                                                                                                        '6.457',
                                                                                                                        '6.297',
                                                                                                                        '7.792',
                                                                                                                        '9.934',
                                                                                                                        '10.598'],
                                                                                                     'ann': '6.165',
                                                                                                     'djf': '8.932',
                                                                                                     'jja': '7.243',
                                                                                                     'mam': '10.007',
                                                                                                     'son': '7.423'},
                                                                                          'rms_xyt': {'ann': '9.272'},
                                                                                          'rms_y': {'ann': '2.820'},
                                                                                          'rmsc_xy': {'CalendarMonths': ['9.899',
                                                                                                                         '8.632',
                                                                                                                         '9.170',
                                                                                                                         '10.457',
                                                                                                                         '13.865',
                                                                                                                         '10.467',
                                                                                                                         '7.195',
                                                                                                                         '6.131',
                                                                                                                         '6.159',
                                                                                                                         '7.774',
                                                                                                                         '9.933',
                                                                                                                         '10.585'],
                                                                                                      'ann': '6.123',
                                                                                                      'djf': '8.929',
                                                                                                      'jja': '6.983',
                                                                                                      'mam': '9.988',
                                                                                                      'son': '7.401'},
                                                                                          'std-obs_xy': {'CalendarMonths': ['48.280',
                                                                                                                            '31.137',
                                                                                                                            '23.097',
                                                                                                                            '31.424',
                                                                                                                            '38.323',
                                                                                                                            '34.419',
                                                                                                                            '25.567',
                                                                                                                            '19.619',
                                                                                                                            '18.358',
                                                                                                                            '29.797',
                                                                                                                            '49.197',
                                                                                                                            '56.931'],
                                                                                                         'ann': '23.465',
                                                                                                         'djf': '44.489',
                                                                                                         'jja': '25.545',
                                                                                                         'mam': '28.900',
                                                                                                         'son': '30.267'},
                                                                                          'std-obs_xy_devzm': {'ann': '16.204'},
                                                                                          'std-obs_xyt': {'ann': '35.934'},
                                                                                          'std_xy': {'CalendarMonths': ['44.265',
                                                                                                                        '30.025',
                                                                                                                        '22.856',
                                                                                                                        '31.514',
                                                                                                                        '38.810',
                                                                                                                        '34.968',
                                                                                                                        '28.072',
                                                                                                                        '23.118',
                                                                                                                        '20.370',
                                                                                                                        '28.776',
                                                                                                                        '45.598',
                                                                                                                        '51.024'],
                                                                                                     'ann': '23.658',
                                                                                                     'djf': '40.807',
                                                                                                     'jja': '27.960',
                                                                                                     'mam': '29.181',
                                                                                                     'son': '29.017'},
                                                                                          'std_xy_devzm': {'ann': '17.683'},
                                                                                          'std_xyt': {'ann': '34.651'}}},
                                                                  'source': 'CERES-EBAF-4-1'},
                                                      'units': 'W m-2'}},
                           'provenance': {'commandLine': '/home/lee1043/.conda/envs/pcmdi_metrics_dev_20230822/bin/mean_climate_driver.py '
                                                         '-p basic_param.py -v '
                                                         'rsus',
                                          'conda': {'Platform': 'linux-64',
                                                    'PythonVersion': '3.10.12.final.0',
                                                    'Version': '23.3.1',
                                                    'buildVersion': 'not '
                                                                    'installed'},
                                          'date': '2023-09-19 00:51:10',
                                          'openGL': {'GLX': {'client': {'vendor': 'Mesa '
                                                                                  'Project '
                                                                                  'and '
                                                                                  'SGI',
                                                                        'version': '1.4'},
                                                             'server': {'vendor': 'SGI',
                                                                        'version': '1.4'},
                                                             'version': '1.4'},
                                                     'renderer': 'llvmpipe '
                                                                 '(LLVM 7.0, '
                                                                 '256 bits)',
                                                     'shading language version': '1.20',
                                                     'vendor': 'VMware, Inc.',
                                                     'version': '2.1 Mesa '
                                                                '18.3.4'},
                                          'osAccess': False,
                                          'packages': {'PMP': 'v3.0.2-11-g06b151f',
                                                       'PMPObs': 'See '
                                                                 "'References' "
                                                                 'key below, '
                                                                 'for detailed '
                                                                 'obs '
                                                                 'provenance '
                                                                 'information.',
                                                       'blas': '0.3.23',
                                                       'cdat_info': '8.2.1',
                                                       'cdms': '3.1.5',
                                                       'cdp': '1.7.0',
                                                       'cdtime': '3.1.4',
                                                       'cdutil': '8.2.1',
                                                       'clapack': None,
                                                       'esmf': '8.4.2',
                                                       'esmpy': '8.4.2',
                                                       'genutil': '8.2.1',
                                                       'lapack': '3.9.0',
                                                       'matplotlib': '3.7.1',
                                                       'mesalib': None,
                                                       'numpy': '1.23.5',
                                                       'python': '3.10.10',
                                                       'scipy': '1.11.2',
                                                       'uvcdat': None,
                                                       'vcs': None,
                                                       'vtk': None,
                                                       'xarray': '2023.8.0',
                                                       'xcdat': '0.5.0'},
                                          'platform': {'Name': 'gates.llnl.gov',
                                                       'OS': 'Linux',
                                                       'Version': '3.10.0-1160.71.1.el7.x86_64'},
                                          'userId': 'lee1043'}},
                  'rsut': {'REFERENCE': {'default': {'CMIP_CMOR_TABLE': 'Amon',
                                                     'MD5sum': 'a9afd3246742f9f3f36daa99f1dbb451',
                                                     'RefTrackingDate': 'Wed '
                                                                        'Aug  '
                                                                        '4 '
                                                                        '12:22:57 '
                                                                        '2021',
                                                     'filename': 'rsut_mon_CERES-EBAF-4-1_PCMDI_gn.200301-201812.AC.v20210804.nc',
                                                     'period': '200301-201812',
                                                     'shape': '(12, 180, 360)',
                                                     'template': 'rsut/CERES-EBAF-4-1/v20210804/rsut_mon_CERES-EBAF-4-1_PCMDI_gn.200301-201812.AC.v20210804.nc'}},
                           'RESULTS': {'ACCESS-CM2': {'default': {'r1i1p1f1': {'InputClimatologyFileName': 'cmip6.historical.ACCESS-CM2.r1i1p1f1.mon.rsut.198101-200512.AC.v20230823.nc',
                                                                               'NHEX': {'bias_xy': {'CalendarMonths': ['2.508',
                                                                                                                       '4.657',
                                                                                                                       '6.886',
                                                                                                                       '11.206',
                                                                                                                       '9.270',
                                                                                                                       '5.132',
                                                                                                                       '3.913',
                                                                                                                       '5.342',
                                                                                                                       '8.628',
                                                                                                                       '7.784',
                                                                                                                       '4.755',
                                                                                                                       '2.522'],
                                                                                                    'ann': '6.050',
                                                                                                    'djf': '3.237',
                                                                                                    'jja': '4.805',
                                                                                                    'mam': '9.188',
                                                                                                    'son': '7.048'},
                                                                                        'cor_xy': {'CalendarMonths': ['0.97',
                                                                                                                      '0.95',
                                                                                                                      '0.88',
                                                                                                                      '0.78',
                                                                                                                      '0.93',
                                                                                                                      '0.93',
                                                                                                                      '0.90',
                                                                                                                      '0.89',
                                                                                                                      '0.88',
                                                                                                                      '0.97',
                                                                                                                      '0.98',
                                                                                                                      '0.98'],
                                                                                                   'ann': '0.872',
                                                                                                   'djf': '0.97',
                                                                                                   'jja': '0.93',
                                                                                                   'mam': '0.82',
                                                                                                   'son': '0.97'},
                                                                                        'mae_xy': {'CalendarMonths': ['6.690',
                                                                                                                      '9.305',
                                                                                                                      '12.933',
                                                                                                                      '15.161',
                                                                                                                      '15.280',
                                                                                                                      '15.553',
                                                                                                                      '14.384',
                                                                                                                      '10.308',
                                                                                                                      '10.352',
                                                                                                                      '8.763',
                                                                                                                      '6.017',
                                                                                                                      '5.202'],
                                                                                                   'ann': '7.131',
                                                                                                   'djf': '6.922',
                                                                                                   'jja': '12.364',
                                                                                                   'mam': '12.692',
                                                                                                   'son': '7.579'},
                                                                                        'mean-obs_xy': {'CalendarMonths': ['48.330',
                                                                                                                           '69.062',
                                                                                                                           '102.583',
                                                                                                                           '137.383',
                                                                                                                           '164.728',
                                                                                                                           '167.957',
                                                                                                                           '150.572',
                                                                                                                           '122.949',
                                                                                                                           '92.652',
                                                                                                                           '66.562',
                                                                                                                           '48.279',
                                                                                                                           '41.274'],
                                                                                                        'ann': '101.028',
                                                                                                        'djf': '53.015',
                                                                                                        'jja': '147.122',
                                                                                                        'mam': '135.559',
                                                                                                        'son': '69.193'},
                                                                                        'mean_xy': {'CalendarMonths': ['50.838',
                                                                                                                       '73.719',
                                                                                                                       '109.469',
                                                                                                                       '148.589',
                                                                                                                       '173.998',
                                                                                                                       '173.089',
                                                                                                                       '154.484',
                                                                                                                       '128.291',
                                                                                                                       '101.280',
                                                                                                                       '74.346',
                                                                                                                       '53.034',
                                                                                                                       '43.796'],
                                                                                                    'ann': '107.078',
                                                                                                    'djf': '56.252',
                                                                                                    'jja': '151.927',
                                                                                                    'mam': '144.747',
                                                                                                    'son': '76.240'},
                                                                                        'rms_devzm': {'ann': '6.364'},
                                                                                        'rms_xy': {'CalendarMonths': ['9.641',
                                                                                                                      '12.906',
                                                                                                                      '15.977',
                                                                                                                      '18.483',
                                                                                                                      '19.230',
                                                                                                                      '19.213',
                                                                                                                      '18.248',
                                                                                                                      '13.248',
                                                                                                                      '12.388',
                                                                                                                      '10.775',
                                                                                                                      '8.622',
                                                                                                                      '7.713'],
                                                                                                   'ann': '9.130',
                                                                                                   'djf': '9.894',
                                                                                                   'jja': '15.114',
                                                                                                   'mam': '15.515',
                                                                                                   'son': '9.174'},
                                                                                        'rms_xyt': {'ann': '13.870'},
                                                                                        'rms_y': {'ann': '6.546'},
                                                                                        'rmsc_xy': {'CalendarMonths': ['9.309',
                                                                                                                       '12.037',
                                                                                                                       '14.417',
                                                                                                                       '14.698',
                                                                                                                       '16.848',
                                                                                                                       '18.515',
                                                                                                                       '17.823',
                                                                                                                       '12.124',
                                                                                                                       '8.890',
                                                                                                                       '7.450',
                                                                                                                       '7.192',
                                                                                                                       '7.289'],
                                                                                                    'ann': '6.838',
                                                                                                    'djf': '9.350',
                                                                                                    'jja': '14.330',
                                                                                                    'mam': '12.502',
                                                                                                    'son': '5.872'},
                                                                                        'std-obs_xy': {'CalendarMonths': ['29.614',
                                                                                                                          '31.541',
                                                                                                                          '23.220',
                                                                                                                          '23.208',
                                                                                                                          '45.530',
                                                                                                                          '49.304',
                                                                                                                          '40.012',
                                                                                                                          '25.170',
                                                                                                                          '16.498',
                                                                                                                          '23.739',
                                                                                                                          '26.908',
                                                                                                                          '27.603'],
                                                                                                       'ann': '12.620',
                                                                                                       'djf': '29.262',
                                                                                                       'jja': '36.806',
                                                                                                       'mam': '21.897',
                                                                                                       'son': '20.283'},
                                                                                        'std-obs_xy_devzm': {'ann': '11.872'},
                                                                                        'std-obs_xyt': {'ann': '54.936'},
                                                                                        'std_xy': {'CalendarMonths': ['33.935',
                                                                                                                      '36.347',
                                                                                                                      '29.584',
                                                                                                                      '20.688',
                                                                                                                      '41.859',
                                                                                                                      '50.255',
                                                                                                                      '41.007',
                                                                                                                      '26.515',
                                                                                                                      '18.634',
                                                                                                                      '27.961',
                                                                                                                      '31.412',
                                                                                                                      '31.422'],
                                                                                                   'ann': '13.952',
                                                                                                   'djf': '33.584',
                                                                                                   'jja': '38.106',
                                                                                                   'mam': '19.434',
                                                                                                   'son': '23.093'},
                                                                                        'std_xy_devzm': {'ann': '12.933'},
                                                                                        'std_xyt': {'ann': '57.089'}},
                                                                               'SHEX': {'bias_xy': {'CalendarMonths': ['-9.026',
                                                                                                                       '-6.748',
                                                                                                                       '0.398',
                                                                                                                       '2.277',
                                                                                                                       '2.817',
                                                                                                                       '2.521',
                                                                                                                       '2.976',
                                                                                                                       '3.383',
                                                                                                                       '2.756',
                                                                                                                       '-2.424',
                                                                                                                       '-7.300',
                                                                                                                       '-7.834'],
                                                                                                    'ann': '-1.350',
                                                                                                    'djf': '-7.870',
                                                                                                    'jja': '2.960',
                                                                                                    'mam': '1.864',
                                                                                                    'son': '-2.322'},
                                                                                        'cor_xy': {'CalendarMonths': ['0.96',
                                                                                                                      '0.93',
                                                                                                                      '0.91',
                                                                                                                      '0.98',
                                                                                                                      '0.99',
                                                                                                                      '1.00',
                                                                                                                      '0.99',
                                                                                                                      '0.98',
                                                                                                                      '0.91',
                                                                                                                      '0.90',
                                                                                                                      '0.97',
                                                                                                                      '0.98'],
                                                                                                   'ann': '0.819',
                                                                                                   'djf': '0.97',
                                                                                                   'jja': '0.99',
                                                                                                   'mam': '0.98',
                                                                                                   'son': '0.91'},
                                                                                        'mae_xy': {'CalendarMonths': ['12.933',
                                                                                                                      '9.858',
                                                                                                                      '5.178',
                                                                                                                      '4.158',
                                                                                                                      '3.467',
                                                                                                                      '3.305',
                                                                                                                      '4.042',
                                                                                                                      '5.814',
                                                                                                                      '7.685',
                                                                                                                      '9.470',
                                                                                                                      '11.146',
                                                                                                                      '12.202'],
                                                                                                   'ann': '5.723',
                                                                                                   'djf': '11.103',
                                                                                                   'jja': '4.324',
                                                                                                   'mam': '3.745',
                                                                                                   'son': '8.392'},
                                                                                        'mean-obs_xy': {'CalendarMonths': ['180.978',
                                                                                                                           '146.633',
                                                                                                                           '102.198',
                                                                                                                           '66.309',
                                                                                                                           '43.607',
                                                                                                                           '35.414',
                                                                                                                           '39.913',
                                                                                                                           '59.006',
                                                                                                                           '93.459',
                                                                                                                           '140.502',
                                                                                                                           '181.926',
                                                                                                                           '196.393'],
                                                                                                        'ann': '107.195',
                                                                                                        'djf': '174.432',
                                                                                                        'jja': '44.831',
                                                                                                        'mam': '70.038',
                                                                                                        'son': '138.609'},
                                                                                        'mean_xy': {'CalendarMonths': ['171.951',
                                                                                                                       '139.885',
                                                                                                                       '102.596',
                                                                                                                       '68.585',
                                                                                                                       '46.424',
                                                                                                                       '37.935',
                                                                                                                       '42.890',
                                                                                                                       '62.389',
                                                                                                                       '96.215',
                                                                                                                       '138.078',
                                                                                                                       '174.626',
                                                                                                                       '188.559'],
                                                                                                    'ann': '105.844',
                                                                                                    'djf': '166.562',
                                                                                                    'jja': '47.791',
                                                                                                    'mam': '71.902',
                                                                                                    'son': '136.287'},
                                                                                        'rms_devzm': {'ann': '5.234'},
                                                                                        'rms_xy': {'CalendarMonths': ['19.047',
                                                                                                                      '13.568',
                                                                                                                      '6.661',
                                                                                                                      '5.243',
                                                                                                                      '4.480',
                                                                                                                      '4.268',
                                                                                                                      '5.191',
                                                                                                                      '7.096',
                                                                                                                      '9.352',
                                                                                                                      '12.328',
                                                                                                                      '15.973',
                                                                                                                      '17.838'],
                                                                                                   'ann': '7.434',
                                                                                                   'djf': '15.961',
                                                                                                   'jja': '5.348',
                                                                                                   'mam': '4.762',
                                                                                                   'son': '11.243'},
                                                                                        'rms_xyt': {'ann': '10.087'},
                                                                                        'rms_y': {'ann': '5.279'},
                                                                                        'rmsc_xy': {'CalendarMonths': ['16.772',
                                                                                                                       '11.771',
                                                                                                                       '6.649',
                                                                                                                       '4.723',
                                                                                                                       '3.484',
                                                                                                                       '3.444',
                                                                                                                       '4.253',
                                                                                                                       '6.237',
                                                                                                                       '8.936',
                                                                                                                       '12.087',
                                                                                                                       '14.208',
                                                                                                                       '16.025'],
                                                                                                    'ann': '7.310',
                                                                                                    'djf': '13.886',
                                                                                                    'jja': '4.454',
                                                                                                    'mam': '4.382',
                                                                                                    'son': '11.000'},
                                                                                        'std-obs_xy': {'CalendarMonths': ['61.410',
                                                                                                                          '31.795',
                                                                                                                          '14.612',
                                                                                                                          '23.317',
                                                                                                                          '24.313',
                                                                                                                          '22.994',
                                                                                                                          '23.475',
                                                                                                                          '23.216',
                                                                                                                          '17.545',
                                                                                                                          '27.430',
                                                                                                                          '58.571',
                                                                                                                          '72.589'],
                                                                                                       'ann': '12.419',
                                                                                                       'djf': '54.629',
                                                                                                       'jja': '22.848',
                                                                                                       'mam': '18.665',
                                                                                                       'son': '26.992'},
                                                                                        'std-obs_xy_devzm': {'ann': '8.026'},
                                                                                        'std-obs_xyt': {'ann': '68.974'},
                                                                                        'std_xy': {'CalendarMonths': ['59.714',
                                                                                                                      '30.994',
                                                                                                                      '16.360',
                                                                                                                      '24.949',
                                                                                                                      '26.071',
                                                                                                                      '25.458',
                                                                                                                      '26.645',
                                                                                                                      '27.270',
                                                                                                                      '21.111',
                                                                                                                      '23.340',
                                                                                                                      '55.676',
                                                                                                                      '71.660'],
                                                                                                   'ann': '11.765',
                                                                                                   'djf': '53.089',
                                                                                                   'jja': '26.077',
                                                                                                   'mam': '20.395',
                                                                                                   'son': '23.223'},
                                                                                        'std_xy_devzm': {'ann': '7.906'},
                                                                                        'std_xyt': {'ann': '65.224'}},
                                                                               'TROPICS': {'bias_xy': {'CalendarMonths': ['-2.643',
                                                                                                                          '-0.792',
                                                                                                                          '-0.774',
                                                                                                                          '-0.109',
                                                                                                                          '-0.571',
                                                                                                                          '-1.859',
                                                                                                                          '-2.354',
                                                                                                                          '-1.932',
                                                                                                                          '-3.066',
                                                                                                                          '-4.012',
                                                                                                                          '-3.788',
                                                                                                                          '-3.042'],
                                                                                                       'ann': '-2.078',
                                                                                                       'djf': '-2.149',
                                                                                                       'jja': '-2.045',
                                                                                                       'mam': '-0.475',
                                                                                                       'son': '-3.618'},
                                                                                           'cor_xy': {'CalendarMonths': ['0.85',
                                                                                                                         '0.81',
                                                                                                                         '0.77',
                                                                                                                         '0.79',
                                                                                                                         '0.82',
                                                                                                                         '0.83',
                                                                                                                         '0.86',
                                                                                                                         '0.86',
                                                                                                                         '0.83',
                                                                                                                         '0.83',
                                                                                                                         '0.84',
                                                                                                                         '0.85'],
                                                                                                      'ann': '0.857',
                                                                                                      'djf': '0.86',
                                                                                                      'jja': '0.87',
                                                                                                      'mam': '0.81',
                                                                                                      'son': '0.84'},
                                                                                           'mae_xy': {'CalendarMonths': ['11.437',
                                                                                                                         '12.027',
                                                                                                                         '12.346',
                                                                                                                         '11.238',
                                                                                                                         '11.333',
                                                                                                                         '12.170',
                                                                                                                         '11.433',
                                                                                                                         '11.238',
                                                                                                                         '10.849',
                                                                                                                         '10.224',
                                                                                                                         '11.129',
                                                                                                                         '11.286'],
                                                                                                      'ann': '8.312',
                                                                                                      'djf': '10.557',
                                                                                                      'jja': '10.707',
                                                                                                      'mam': '10.670',
                                                                                                      'son': '9.766'},
                                                                                           'mean-obs_xy': {'CalendarMonths': ['96.217',
                                                                                                                              '95.475',
                                                                                                                              '94.413',
                                                                                                                              '91.451',
                                                                                                                              '89.435',
                                                                                                                              '89.823',
                                                                                                                              '91.830',
                                                                                                                              '93.834',
                                                                                                                              '95.365',
                                                                                                                              '96.097',
                                                                                                                              '96.054',
                                                                                                                              '95.700'],
                                                                                                           'ann': '93.808',
                                                                                                           'djf': '95.798',
                                                                                                           'jja': '91.829',
                                                                                                           'mam': '91.711',
                                                                                                           'son': '95.836'},
                                                                                           'mean_xy': {'CalendarMonths': ['93.575',
                                                                                                                          '94.684',
                                                                                                                          '93.638',
                                                                                                                          '91.341',
                                                                                                                          '88.864',
                                                                                                                          '87.964',
                                                                                                                          '89.476',
                                                                                                                          '91.902',
                                                                                                                          '92.299',
                                                                                                                          '92.085',
                                                                                                                          '92.265',
                                                                                                                          '92.658'],
                                                                                                       'ann': '91.729',
                                                                                                       'djf': '93.649',
                                                                                                       'jja': '89.784',
                                                                                                       'mam': '91.236',
                                                                                                       'son': '92.218'},
                                                                                           'rms_devzm': {'ann': '9.850'},
                                                                                           'rms_xy': {'CalendarMonths': ['15.466',
                                                                                                                         '16.266',
                                                                                                                         '16.603',
                                                                                                                         '15.706',
                                                                                                                         '15.925',
                                                                                                                         '17.722',
                                                                                                                         '16.505',
                                                                                                                         '15.327',
                                                                                                                         '14.606',
                                                                                                                         '13.977',
                                                                                                                         '14.799',
                                                                                                                         '15.277'],
                                                                                                      'ann': '10.733',
                                                                                                      'djf': '14.161',
                                                                                                      'jja': '15.005',
                                                                                                      'mam': '14.558',
                                                                                                      'son': '12.883'},
                                                                                           'rms_xyt': {'ann': '15.682'},
                                                                                           'rms_y': {'ann': '4.262'},
                                                                                           'rmsc_xy': {'CalendarMonths': ['15.239',
                                                                                                                          '16.246',
                                                                                                                          '16.585',
                                                                                                                          '15.705',
                                                                                                                          '15.915',
                                                                                                                          '17.624',
                                                                                                                          '16.336',
                                                                                                                          '15.204',
                                                                                                                          '14.281',
                                                                                                                          '13.389',
                                                                                                                          '14.306',
                                                                                                                          '14.971'],
                                                                                                       'ann': '10.529',
                                                                                                       'djf': '13.997',
                                                                                                       'jja': '14.865',
                                                                                                       'mam': '14.551',
                                                                                                       'son': '12.364'},
                                                                                           'std-obs_xy': {'CalendarMonths': ['28.536',
                                                                                                                             '26.848',
                                                                                                                             '24.949',
                                                                                                                             '25.288',
                                                                                                                             '27.977',
                                                                                                                             '31.332',
                                                                                                                             '32.266',
                                                                                                                             '29.805',
                                                                                                                             '25.269',
                                                                                                                             '24.171',
                                                                                                                             '26.699',
                                                                                                                             '28.278'],
                                                                                                          'ann': '20.451',
                                                                                                          'djf': '27.109',
                                                                                                          'jja': '30.450',
                                                                                                          'mam': '24.225',
                                                                                                          'son': '23.015'},
                                                                                           'std-obs_xy_devzm': {'ann': '19.713'},
                                                                                           'std-obs_xyt': {'ann': '27.833'},
                                                                                           'std_xy': {'CalendarMonths': ['25.676',
                                                                                                                         '25.158',
                                                                                                                         '23.299',
                                                                                                                         '22.945',
                                                                                                                         '24.534',
                                                                                                                         '26.588',
                                                                                                                         '27.452',
                                                                                                                         '25.499',
                                                                                                                         '22.463',
                                                                                                                         '20.755',
                                                                                                                         '22.350',
                                                                                                                         '24.754'],
                                                                                                      'ann': '17.525',
                                                                                                      'djf': '24.194',
                                                                                                      'jja': '25.542',
                                                                                                      'mam': '21.813',
                                                                                                      'son': '19.852'},
                                                                                           'std_xy_devzm': {'ann': '16.743'},
                                                                                           'std_xyt': {'ann': '24.438'}},
                                                                               'global': {'bias_xy': {'CalendarMonths': ['-2.951',
                                                                                                                         '-0.919',
                                                                                                                         '1.434',
                                                                                                                         '3.316',
                                                                                                                         '2.736',
                                                                                                                         '0.984',
                                                                                                                         '0.545',
                                                                                                                         '1.216',
                                                                                                                         '1.313',
                                                                                                                         '-0.666',
                                                                                                                         '-2.530',
                                                                                                                         '-2.849'],
                                                                                                      'ann': '0.136',
                                                                                                      'djf': '-2.233',
                                                                                                      'jja': '0.919',
                                                                                                      'mam': '2.525',
                                                                                                      'son': '-0.627'},
                                                                                          'cor_xy': {'CalendarMonths': ['0.97',
                                                                                                                        '0.93',
                                                                                                                        '0.81',
                                                                                                                        '0.92',
                                                                                                                        '0.96',
                                                                                                                        '0.96',
                                                                                                                        '0.96',
                                                                                                                        '0.93',
                                                                                                                        '0.82',
                                                                                                                        '0.94',
                                                                                                                        '0.98',
                                                                                                                        '0.98'],
                                                                                                     'ann': '0.850',
                                                                                                     'djf': '0.97',
                                                                                                     'jja': '0.96',
                                                                                                     'mam': '0.93',
                                                                                                     'son': '0.94'},
                                                                                          'mae_xy': {'CalendarMonths': ['10.624',
                                                                                                                        '10.804',
                                                                                                                        '10.701',
                                                                                                                        '10.448',
                                                                                                                        '10.354',
                                                                                                                        '10.800',
                                                                                                                        '10.323',
                                                                                                                        '9.649',
                                                                                                                        '9.934',
                                                                                                                        '9.670',
                                                                                                                        '9.855',
                                                                                                                        '9.994'],
                                                                                                     'ann': '7.370',
                                                                                                     'djf': '9.785',
                                                                                                     'jja': '9.526',
                                                                                                     'mam': '9.444',
                                                                                                     'son': '8.876'},
                                                                                          'mean-obs_xy': {'CalendarMonths': ['105.436',
                                                                                                                             '101.661',
                                                                                                                             '98.401',
                                                                                                                             '96.648',
                                                                                                                             '96.801',
                                                                                                                             '95.754',
                                                                                                                             '93.536',
                                                                                                                             '92.406',
                                                                                                                             '94.210',
                                                                                                                             '99.815',
                                                                                                                             '105.578',
                                                                                                                             '107.266'],
                                                                                                          'ann': '98.959',
                                                                                                          'djf': '104.761',
                                                                                                          'jja': '93.903',
                                                                                                          'mam': '97.255',
                                                                                                          'son': '99.868'},
                                                                                          'mean_xy': {'CalendarMonths': ['102.485',
                                                                                                                         '100.743',
                                                                                                                         '99.835',
                                                                                                                         '99.964',
                                                                                                                         '99.538',
                                                                                                                         '96.738',
                                                                                                                         '94.081',
                                                                                                                         '93.621',
                                                                                                                         '95.523',
                                                                                                                         '99.148',
                                                                                                                         '103.048',
                                                                                                                         '104.417'],
                                                                                                      'ann': '99.095',
                                                                                                      'djf': '102.528',
                                                                                                      'jja': '94.822',
                                                                                                      'mam': '99.780',
                                                                                                      'son': '99.241'},
                                                                                          'rms_devzm': {'ann': '8.092'},
                                                                                          'rms_xy': {'CalendarMonths': ['15.282',
                                                                                                                        '14.831',
                                                                                                                        '14.585',
                                                                                                                        '14.684',
                                                                                                                        '14.976',
                                                                                                                        '15.934',
                                                                                                                        '15.039',
                                                                                                                        '13.188',
                                                                                                                        '12.919',
                                                                                                                        '12.833',
                                                                                                                        '13.852',
                                                                                                                        '14.530'],
                                                                                                     'ann': '9.605',
                                                                                                     'djf': '13.727',
                                                                                                     'jja': '13.298',
                                                                                                     'mam': '13.108',
                                                                                                     'son': '11.646'},
                                                                                          'rms_xyt': {'ann': '14.388'},
                                                                                          'rms_y': {'ann': '5.173'},
                                                                                          'rmsc_xy': {'CalendarMonths': ['14.994',
                                                                                                                         '14.802',
                                                                                                                         '14.515',
                                                                                                                         '14.304',
                                                                                                                         '14.724',
                                                                                                                         '15.903',
                                                                                                                         '15.029',
                                                                                                                         '13.132',
                                                                                                                         '12.852',
                                                                                                                         '12.816',
                                                                                                                         '13.619',
                                                                                                                         '14.248'],
                                                                                                      'ann': '9.604',
                                                                                                      'djf': '13.544',
                                                                                                      'jja': '13.266',
                                                                                                      'mam': '12.863',
                                                                                                      'son': '11.629'},
                                                                                          'std-obs_xy': {'CalendarMonths': ['62.077',
                                                                                                                            '40.648',
                                                                                                                            '22.701',
                                                                                                                            '35.338',
                                                                                                                            '54.272',
                                                                                                                            '58.838',
                                                                                                                            '50.913',
                                                                                                                            '35.361',
                                                                                                                            '21.580',
                                                                                                                            '36.309',
                                                                                                                            '60.979',
                                                                                                                            '71.057'],
                                                                                                         'ann': '17.855',
                                                                                                         'djf': '57.015',
                                                                                                         'jja': '47.382',
                                                                                                         'mam': '32.677',
                                                                                                         'son': '34.182'},
                                                                                          'std-obs_xy_devzm': {'ann': '15.673'},
                                                                                          'std-obs_xyt': {'ann': '48.605'},
                                                                                          'std_xy': {'CalendarMonths': ['58.497',
                                                                                                                        '38.352',
                                                                                                                        '24.524',
                                                                                                                        '37.420',
                                                                                                                        '55.292',
                                                                                                                        '59.221',
                                                                                                                        '50.523',
                                                                                                                        '35.108',
                                                                                                                        '21.544',
                                                                                                                        '33.236',
                                                                                                                        '56.883',
                                                                                                                        '67.785'],
                                                                                                     'ann': '17.067',
                                                                                                     'djf': '53.657',
                                                                                                     'jja': '47.330',
                                                                                                     'mam': '34.244',
                                                                                                     'son': '31.068'},
                                                                                          'std_xy_devzm': {'ann': '14.057'},
                                                                                          'std_xyt': {'ann': '47.237'}}},
                                                                  'source': 'CERES-EBAF-4-1'},
                                                      'units': 'W m-2'}},
                           'provenance': {'commandLine': '/home/lee1043/.conda/envs/pcmdi_metrics_dev_20230822/bin/mean_climate_driver.py '
                                                         '-p basic_param.py -v '
                                                         'rsut',
                                          'conda': {'Platform': 'linux-64',
                                                    'PythonVersion': '3.10.12.final.0',
                                                    'Version': '23.3.1',
                                                    'buildVersion': 'not '
                                                                    'installed'},
                                          'date': '2023-09-19 00:51:46',
                                          'openGL': {'GLX': {'client': {'vendor': 'Mesa '
                                                                                  'Project '
                                                                                  'and '
                                                                                  'SGI',
                                                                        'version': '1.4'},
                                                             'server': {'vendor': 'SGI',
                                                                        'version': '1.4'},
                                                             'version': '1.4'},
                                                     'renderer': 'llvmpipe '
                                                                 '(LLVM 7.0, '
                                                                 '256 bits)',
                                                     'shading language version': '1.20',
                                                     'vendor': 'VMware, Inc.',
                                                     'version': '2.1 Mesa '
                                                                '18.3.4'},
                                          'osAccess': False,
                                          'packages': {'PMP': 'v3.0.2-11-g06b151f',
                                                       'PMPObs': 'See '
                                                                 "'References' "
                                                                 'key below, '
                                                                 'for detailed '
                                                                 'obs '
                                                                 'provenance '
                                                                 'information.',
                                                       'blas': '0.3.23',
                                                       'cdat_info': '8.2.1',
                                                       'cdms': '3.1.5',
                                                       'cdp': '1.7.0',
                                                       'cdtime': '3.1.4',
                                                       'cdutil': '8.2.1',
                                                       'clapack': None,
                                                       'esmf': '8.4.2',
                                                       'esmpy': '8.4.2',
                                                       'genutil': '8.2.1',
                                                       'lapack': '3.9.0',
                                                       'matplotlib': '3.7.1',
                                                       'mesalib': None,
                                                       'numpy': '1.23.5',
                                                       'python': '3.10.10',
                                                       'scipy': '1.11.2',
                                                       'uvcdat': None,
                                                       'vcs': None,
                                                       'vtk': None,
                                                       'xarray': '2023.8.0',
                                                       'xcdat': '0.5.0'},
                                          'platform': {'Name': 'gates.llnl.gov',
                                                       'OS': 'Linux',
                                                       'Version': '3.10.0-1160.71.1.el7.x86_64'},
                                          'userId': 'lee1043'}},
                  'rsutcs': {'REFERENCE': {'default': {'CMIP_CMOR_TABLE': 'Amon',
                                                       'MD5sum': 'b2c8765f60e980e3807b2a7f29143843',
                                                       'RefTrackingDate': 'Wed '
                                                                          'Aug  '
                                                                          '4 '
                                                                          '12:22:51 '
                                                                          '2021',
                                                       'filename': 'rsutcs_mon_CERES-EBAF-4-1_PCMDI_gn.200301-201812.AC.v20210804.nc',
                                                       'period': '200301-201812',
                                                       'shape': '(12, 180, '
                                                                '360)',
                                                       'template': 'rsutcs/CERES-EBAF-4-1/v20210804/rsutcs_mon_CERES-EBAF-4-1_PCMDI_gn.200301-201812.AC.v20210804.nc'}},
                             'RESULTS': {'ACCESS-CM2': {'default': {'r1i1p1f1': {'InputClimatologyFileName': 'cmip6.historical.ACCESS-CM2.r1i1p1f1.mon.rsutcs.198101-200512.AC.v20230823.nc',
                                                                                 'NHEX': {'bias_xy': {'CalendarMonths': ['-0.463',
                                                                                                                         '-0.436',
                                                                                                                         '-0.501',
                                                                                                                         '4.170',
                                                                                                                         '5.299',
                                                                                                                         '6.290',
                                                                                                                         '6.175',
                                                                                                                         '6.320',
                                                                                                                         '5.401',
                                                                                                                         '3.463',
                                                                                                                         '1.697',
                                                                                                                         '0.222'],
                                                                                                      'ann': '3.136',
                                                                                                      'djf': '-0.231',
                                                                                                      'jja': '6.263',
                                                                                                      'mam': '3.071',
                                                                                                      'son': '3.521'},
                                                                                          'cor_xy': {'CalendarMonths': ['0.93',
                                                                                                                        '0.89',
                                                                                                                        '0.83',
                                                                                                                        '0.90',
                                                                                                                        '0.91',
                                                                                                                        '0.94',
                                                                                                                        '0.96',
                                                                                                                        '0.95',
                                                                                                                        '0.93',
                                                                                                                        '0.96',
                                                                                                                        '0.97',
                                                                                                                        '0.95'],
                                                                                                     'ann': '0.909',
                                                                                                     'djf': '0.92',
                                                                                                     'jja': '0.96',
                                                                                                     'mam': '0.90',
                                                                                                     'son': '0.97'},
                                                                                          'mae_xy': {'CalendarMonths': ['4.262',
                                                                                                                        '6.563',
                                                                                                                        '9.754',
                                                                                                                        '11.960',
                                                                                                                        '16.162',
                                                                                                                        '12.390',
                                                                                                                        '7.990',
                                                                                                                        '7.026',
                                                                                                                        '6.027',
                                                                                                                        '4.508',
                                                                                                                        '3.268',
                                                                                                                        '3.295'],
                                                                                                     'ann': '6.192',
                                                                                                     'djf': '4.596',
                                                                                                     'jja': '8.686',
                                                                                                     'mam': '11.458',
                                                                                                     'son': '4.198'},
                                                                                          'mean-obs_xy': {'CalendarMonths': ['29.470',
                                                                                                                             '43.002',
                                                                                                                             '65.284',
                                                                                                                             '86.507',
                                                                                                                             '98.536',
                                                                                                                             '91.539',
                                                                                                                             '78.846',
                                                                                                                             '64.382',
                                                                                                                             '49.306',
                                                                                                                             '36.265',
                                                                                                                             '26.968',
                                                                                                                             '24.299'],
                                                                                                          'ann': '57.867',
                                                                                                          'djf': '32.343',
                                                                                                          'jja': '78.249',
                                                                                                          'mam': '83.832',
                                                                                                          'son': '37.527'},
                                                                                          'mean_xy': {'CalendarMonths': ['29.006',
                                                                                                                         '42.565',
                                                                                                                         '64.783',
                                                                                                                         '90.677',
                                                                                                                         '103.835',
                                                                                                                         '97.829',
                                                                                                                         '85.021',
                                                                                                                         '70.702',
                                                                                                                         '54.707',
                                                                                                                         '39.728',
                                                                                                                         '28.666',
                                                                                                                         '24.521'],
                                                                                                      'ann': '61.003',
                                                                                                      'djf': '32.113',
                                                                                                      'jja': '84.512',
                                                                                                      'mam': '86.904',
                                                                                                      'son': '41.048'},
                                                                                          'rms_devzm': {'ann': '7.817'},
                                                                                          'rms_xy': {'CalendarMonths': ['7.074',
                                                                                                                        '10.622',
                                                                                                                        '14.869',
                                                                                                                        '19.347',
                                                                                                                        '26.934',
                                                                                                                        '21.700',
                                                                                                                        '13.308',
                                                                                                                        '10.579',
                                                                                                                        '7.901',
                                                                                                                        '5.511',
                                                                                                                        '4.418',
                                                                                                                        '5.429'],
                                                                                                     'ann': '8.592',
                                                                                                     'djf': '7.530',
                                                                                                     'jja': '13.441',
                                                                                                     'mam': '18.346',
                                                                                                     'son': '5.197'},
                                                                                          'rms_xyt': {'ann': '12.308'},
                                                                                          'rms_y': {'ann': '3.565'},
                                                                                          'rmsc_xy': {'CalendarMonths': ['7.059',
                                                                                                                         '10.613',
                                                                                                                         '14.860',
                                                                                                                         '18.892',
                                                                                                                         '26.408',
                                                                                                                         '20.768',
                                                                                                                         '11.789',
                                                                                                                         '8.483',
                                                                                                                         '5.767',
                                                                                                                         '4.287',
                                                                                                                         '4.079',
                                                                                                                         '5.424'],
                                                                                                      'ann': '7.999',
                                                                                                      'djf': '7.527',
                                                                                                      'jja': '11.893',
                                                                                                      'mam': '18.087',
                                                                                                      'son': '3.822'},
                                                                                          'std-obs_xy': {'CalendarMonths': ['19.819',
                                                                                                                            '23.480',
                                                                                                                            '26.335',
                                                                                                                            '43.371',
                                                                                                                            '64.097',
                                                                                                                            '58.441',
                                                                                                                            '39.300',
                                                                                                                            '24.455',
                                                                                                                            '15.109',
                                                                                                                            '15.253',
                                                                                                                            '16.154',
                                                                                                                            '17.240'],
                                                                                                         'ann': '19.086',
                                                                                                         'djf': '19.605',
                                                                                                         'jja': '39.325',
                                                                                                         'mam': '40.687',
                                                                                                         'son': '14.151'},
                                                                                          'std-obs_xy_devzm': {'ann': '17.058'},
                                                                                          'std-obs_xyt': {'ann': '42.816'},
                                                                                          'std_xy': {'CalendarMonths': ['18.714',
                                                                                                                        '20.855',
                                                                                                                        '23.376',
                                                                                                                        '40.131',
                                                                                                                        '60.213',
                                                                                                                        '57.373',
                                                                                                                        '40.676',
                                                                                                                        '26.756',
                                                                                                                        '15.783',
                                                                                                                        '16.166',
                                                                                                                        '16.753',
                                                                                                                        '17.020'],
                                                                                                     'ann': '17.967',
                                                                                                     'djf': '18.204',
                                                                                                     'jja': '40.566',
                                                                                                     'mam': '36.630',
                                                                                                     'son': '14.604'},
                                                                                          'std_xy_devzm': {'ann': '15.863'},
                                                                                          'std_xyt': {'ann': '43.108'}},
                                                                                 'SHEX': {'bias_xy': {'CalendarMonths': ['-0.904',
                                                                                                                         '-0.311',
                                                                                                                         '2.017',
                                                                                                                         '2.050',
                                                                                                                         '1.695',
                                                                                                                         '1.272',
                                                                                                                         '0.783',
                                                                                                                         '0.317',
                                                                                                                         '0.234',
                                                                                                                         '-0.137',
                                                                                                                         '-0.005',
                                                                                                                         '0.726'],
                                                                                                      'ann': '0.645',
                                                                                                      'djf': '-0.173',
                                                                                                      'jja': '0.790',
                                                                                                      'mam': '1.921',
                                                                                                      'son': '0.032'},
                                                                                          'cor_xy': {'CalendarMonths': ['0.98',
                                                                                                                        '0.97',
                                                                                                                        '0.93',
                                                                                                                        '0.94',
                                                                                                                        '0.99',
                                                                                                                        '0.99',
                                                                                                                        '0.98',
                                                                                                                        '0.88',
                                                                                                                        '0.88',
                                                                                                                        '0.96',
                                                                                                                        '0.98',
                                                                                                                        '0.99'],
                                                                                                     'ann': '0.980',
                                                                                                     'djf': '0.99',
                                                                                                     'jja': '0.97',
                                                                                                     'mam': '0.89',
                                                                                                     'son': '0.97'},
                                                                                          'mae_xy': {'CalendarMonths': ['6.709',
                                                                                                                        '5.632',
                                                                                                                        '4.193',
                                                                                                                        '3.514',
                                                                                                                        '2.596',
                                                                                                                        '1.931',
                                                                                                                        '2.366',
                                                                                                                        '3.776',
                                                                                                                        '5.106',
                                                                                                                        '7.279',
                                                                                                                        '8.114',
                                                                                                                        '7.378'],
                                                                                                     'ann': '4.323',
                                                                                                     'djf': '6.084',
                                                                                                     'jja': '2.544',
                                                                                                     'mam': '3.194',
                                                                                                     'son': '6.689'},
                                                                                          'mean-obs_xy': {'CalendarMonths': ['89.084',
                                                                                                                             '68.698',
                                                                                                                             '45.594',
                                                                                                                             '29.810',
                                                                                                                             '20.891',
                                                                                                                             '17.647',
                                                                                                                             '20.066',
                                                                                                                             '29.172',
                                                                                                                             '46.929',
                                                                                                                             '73.695',
                                                                                                                             '97.609',
                                                                                                                             '101.859'],
                                                                                                          'ann': '53.421',
                                                                                                          'djf': '86.381',
                                                                                                          'jja': '22.319',
                                                                                                          'mam': '31.808',
                                                                                                          'son': '72.734'},
                                                                                          'mean_xy': {'CalendarMonths': ['88.180',
                                                                                                                         '68.387',
                                                                                                                         '47.611',
                                                                                                                         '31.860',
                                                                                                                         '22.586',
                                                                                                                         '18.918',
                                                                                                                         '20.849',
                                                                                                                         '29.488',
                                                                                                                         '47.163',
                                                                                                                         '73.558',
                                                                                                                         '97.603',
                                                                                                                         '102.584'],
                                                                                                      'ann': '54.066',
                                                                                                      'djf': '86.208',
                                                                                                      'jja': '23.110',
                                                                                                      'mam': '33.729',
                                                                                                      'son': '72.766'},
                                                                                          'rms_devzm': {'ann': '5.308'},
                                                                                          'rms_xy': {'CalendarMonths': ['15.474',
                                                                                                                        '11.950',
                                                                                                                        '6.330',
                                                                                                                        '3.960',
                                                                                                                        '2.947',
                                                                                                                        '2.341',
                                                                                                                        '2.916',
                                                                                                                        '4.987',
                                                                                                                        '8.824',
                                                                                                                        '13.682',
                                                                                                                        '16.017',
                                                                                                                        '14.484'],
                                                                                                     'ann': '6.314',
                                                                                                     'djf': '12.651',
                                                                                                     'jja': '2.989',
                                                                                                     'mam': '3.897',
                                                                                                     'son': '12.253'},
                                                                                          'rms_xyt': {'ann': '8.659'},
                                                                                          'rms_y': {'ann': '3.421'},
                                                                                          'rmsc_xy': {'CalendarMonths': ['15.448',
                                                                                                                         '11.946',
                                                                                                                         '6.000',
                                                                                                                         '3.388',
                                                                                                                         '2.411',
                                                                                                                         '1.966',
                                                                                                                         '2.809',
                                                                                                                         '4.977',
                                                                                                                         '8.821',
                                                                                                                         '13.681',
                                                                                                                         '16.017',
                                                                                                                         '14.465'],
                                                                                                      'ann': '6.281',
                                                                                                      'djf': '12.650',
                                                                                                      'jja': '2.882',
                                                                                                      'mam': '3.391',
                                                                                                      'son': '12.253'},
                                                                                          'std-obs_xy': {'CalendarMonths': ['83.554',
                                                                                                                            '51.320',
                                                                                                                            '16.466',
                                                                                                                            '8.363',
                                                                                                                            '10.700',
                                                                                                                            '11.094',
                                                                                                                            '10.663',
                                                                                                                            '9.198',
                                                                                                                            '18.588',
                                                                                                                            '49.635',
                                                                                                                            '86.076',
                                                                                                                            '97.656'],
                                                                                                         'ann': '29.020',
                                                                                                         'djf': '76.682',
                                                                                                         'jja': '9.577',
                                                                                                         'mam': '7.284',
                                                                                                         'son': '49.285'},
                                                                                          'std-obs_xy_devzm': {'ann': '10.804'},
                                                                                          'std-obs_xyt': {'ann': '58.496'},
                                                                                          'std_xy': {'CalendarMonths': ['79.508',
                                                                                                                        '46.659',
                                                                                                                        '14.623',
                                                                                                                        '9.741',
                                                                                                                        '12.126',
                                                                                                                        '12.276',
                                                                                                                        '12.203',
                                                                                                                        '10.617',
                                                                                                                        '15.986',
                                                                                                                        '45.127',
                                                                                                                        '81.614',
                                                                                                                        '94.507'],
                                                                                                     'ann': '25.867',
                                                                                                     'djf': '72.414',
                                                                                                     'jja': '11.213',
                                                                                                     'mam': '7.411',
                                                                                                     'son': '45.105'},
                                                                                          'std_xy_devzm': {'ann': '9.285'},
                                                                                          'std_xyt': {'ann': '56.099'}},
                                                                                 'TROPICS': {'bias_xy': {'CalendarMonths': ['0.010',
                                                                                                                            '0.306',
                                                                                                                            '0.247',
                                                                                                                            '0.639',
                                                                                                                            '0.697',
                                                                                                                            '0.448',
                                                                                                                            '0.546',
                                                                                                                            '0.637',
                                                                                                                            '0.066',
                                                                                                                            '-0.225',
                                                                                                                            '-0.134',
                                                                                                                            '0.042'],
                                                                                                         'ann': '0.273',
                                                                                                         'djf': '0.120',
                                                                                                         'jja': '0.543',
                                                                                                         'mam': '0.534',
                                                                                                         'son': '-0.096'},
                                                                                             'cor_xy': {'CalendarMonths': ['0.98',
                                                                                                                           '0.98',
                                                                                                                           '0.98',
                                                                                                                           '0.99',
                                                                                                                           '0.99',
                                                                                                                           '0.99',
                                                                                                                           '0.99',
                                                                                                                           '0.99',
                                                                                                                           '0.98',
                                                                                                                           '0.98',
                                                                                                                           '0.98',
                                                                                                                           '0.98'],
                                                                                                        'ann': '0.988',
                                                                                                        'djf': '0.98',
                                                                                                        'jja': '0.99',
                                                                                                        'mam': '0.99',
                                                                                                        'son': '0.98'},
                                                                                             'mae_xy': {'CalendarMonths': ['2.398',
                                                                                                                           '2.628',
                                                                                                                           '2.423',
                                                                                                                           '2.418',
                                                                                                                           '2.469',
                                                                                                                           '2.558',
                                                                                                                           '2.562',
                                                                                                                           '2.514',
                                                                                                                           '2.460',
                                                                                                                           '2.208',
                                                                                                                           '2.244',
                                                                                                                           '2.263'],
                                                                                                        'ann': '1.985',
                                                                                                        'djf': '2.350',
                                                                                                        'jja': '2.409',
                                                                                                        'mam': '2.287',
                                                                                                        'son': '2.155'},
                                                                                             'mean-obs_xy': {'CalendarMonths': ['51.201',
                                                                                                                                '52.002',
                                                                                                                                '52.376',
                                                                                                                                '51.352',
                                                                                                                                '49.894',
                                                                                                                                '49.318',
                                                                                                                                '49.543',
                                                                                                                                '50.263',
                                                                                                                                '51.169',
                                                                                                                                '51.088',
                                                                                                                                '50.605',
                                                                                                                                '50.612'],
                                                                                                             'ann': '50.785',
                                                                                                             'djf': '51.279',
                                                                                                             'jja': '49.710',
                                                                                                             'mam': '51.186',
                                                                                                             'son': '50.952'},
                                                                                             'mean_xy': {'CalendarMonths': ['51.211',
                                                                                                                            '52.309',
                                                                                                                            '52.623',
                                                                                                                            '51.991',
                                                                                                                            '50.590',
                                                                                                                            '49.766',
                                                                                                                            '50.089',
                                                                                                                            '50.900',
                                                                                                                            '51.235',
                                                                                                                            '50.863',
                                                                                                                            '50.471',
                                                                                                                            '50.654'],
                                                                                                         'ann': '51.058',
                                                                                                         'djf': '51.399',
                                                                                                         'jja': '50.253',
                                                                                                         'mam': '51.720',
                                                                                                         'son': '50.856'},
                                                                                             'rms_devzm': {'ann': '2.877'},
                                                                                             'rms_xy': {'CalendarMonths': ['3.478',
                                                                                                                           '3.775',
                                                                                                                           '3.669',
                                                                                                                           '3.743',
                                                                                                                           '3.778',
                                                                                                                           '3.878',
                                                                                                                           '3.938',
                                                                                                                           '4.050',
                                                                                                                           '4.009',
                                                                                                                           '3.355',
                                                                                                                           '3.313',
                                                                                                                           '3.330'],
                                                                                                        'ann': '3.152',
                                                                                                        'djf': '3.428',
                                                                                                        'jja': '3.814',
                                                                                                        'mam': '3.560',
                                                                                                        'son': '3.343'},
                                                                                             'rms_xyt': {'ann': '3.693'},
                                                                                             'rms_y': {'ann': '1.288'},
                                                                                             'rmsc_xy': {'CalendarMonths': ['3.478',
                                                                                                                            '3.763',
                                                                                                                            '3.660',
                                                                                                                            '3.688',
                                                                                                                            '3.713',
                                                                                                                            '3.853',
                                                                                                                            '3.900',
                                                                                                                            '3.999',
                                                                                                                            '4.008',
                                                                                                                            '3.348',
                                                                                                                            '3.310',
                                                                                                                            '3.330'],
                                                                                                         'ann': '3.140',
                                                                                                         'djf': '3.426',
                                                                                                         'jja': '3.775',
                                                                                                         'mam': '3.520',
                                                                                                         'son': '3.341'},
                                                                                             'std-obs_xy': {'CalendarMonths': ['16.105',
                                                                                                                               '17.457',
                                                                                                                               '19.750',
                                                                                                                               '21.457',
                                                                                                                               '22.454',
                                                                                                                               '22.677',
                                                                                                                               '21.865',
                                                                                                                               '20.241',
                                                                                                                               '18.728',
                                                                                                                               '17.271',
                                                                                                                               '16.164',
                                                                                                                               '15.795'],
                                                                                                            'ann': '18.294',
                                                                                                            'djf': '16.338',
                                                                                                            'jja': '21.527',
                                                                                                            'mam': '21.084',
                                                                                                            'son': '17.111'},
                                                                                             'std-obs_xy_devzm': {'ann': '17.498'},
                                                                                             'std-obs_xyt': {'ann': '19.344'},
                                                                                             'std_xy': {'CalendarMonths': ['16.246',
                                                                                                                           '18.146',
                                                                                                                           '20.708',
                                                                                                                           '22.935',
                                                                                                                           '23.991',
                                                                                                                           '24.156',
                                                                                                                           '23.523',
                                                                                                                           '22.107',
                                                                                                                           '20.455',
                                                                                                                           '18.082',
                                                                                                                           '16.357',
                                                                                                                           '15.717'],
                                                                                                        'ann': '19.448',
                                                                                                        'djf': '16.572',
                                                                                                        'jja': '23.214',
                                                                                                        'mam': '22.447',
                                                                                                        'son': '18.038'},
                                                                                             'std_xy_devzm': {'ann': '18.398'},
                                                                                             'std_xyt': {'ann': '20.448'}},
                                                                                 'global': {'bias_xy': {'CalendarMonths': ['-0.337',
                                                                                                                           '-0.034',
                                                                                                                           '0.502',
                                                                                                                           '1.875',
                                                                                                                           '2.097',
                                                                                                                           '2.114',
                                                                                                                           '2.012',
                                                                                                                           '1.978',
                                                                                                                           '1.442',
                                                                                                                           '0.719',
                                                                                                                           '0.356',
                                                                                                                           '0.258'],
                                                                                                        'ann': '1.082',
                                                                                                        'djf': '-0.041',
                                                                                                        'jja': '2.035',
                                                                                                        'mam': '1.515',
                                                                                                        'son': '0.840'},
                                                                                            'cor_xy': {'CalendarMonths': ['0.98',
                                                                                                                          '0.97',
                                                                                                                          '0.92',
                                                                                                                          '0.96',
                                                                                                                          '0.96',
                                                                                                                          '0.97',
                                                                                                                          '0.98',
                                                                                                                          '0.97',
                                                                                                                          '0.94',
                                                                                                                          '0.97',
                                                                                                                          '0.99',
                                                                                                                          '0.99'],
                                                                                                       'ann': '0.966',
                                                                                                       'djf': '0.99',
                                                                                                       'jja': '0.98',
                                                                                                       'mam': '0.95',
                                                                                                       'son': '0.97'},
                                                                                            'mae_xy': {'CalendarMonths': ['3.942',
                                                                                                                          '4.363',
                                                                                                                          '4.698',
                                                                                                                          '5.078',
                                                                                                                          '5.924',
                                                                                                                          '4.859',
                                                                                                                          '3.870',
                                                                                                                          '3.957',
                                                                                                                          '4.013',
                                                                                                                          '4.051',
                                                                                                                          '3.967',
                                                                                                                          '3.800'],
                                                                                                       'ann': '3.621',
                                                                                                       'djf': '3.845',
                                                                                                       'jja': '4.012',
                                                                                                       'mam': '4.806',
                                                                                                       'son': '3.799'},
                                                                                            'mean-obs_xy': {'CalendarMonths': ['55.239',
                                                                                                                               '53.926',
                                                                                                                               '53.908',
                                                                                                                               '54.755',
                                                                                                                               '54.804',
                                                                                                                               '51.955',
                                                                                                                               '49.500',
                                                                                                                               '48.520',
                                                                                                                               '49.643',
                                                                                                                               '53.034',
                                                                                                                               '56.447',
                                                                                                                               '56.846'],
                                                                                                            'ann': '53.215',
                                                                                                            'djf': '55.321',
                                                                                                            'jja': '49.997',
                                                                                                            'mam': '54.503',
                                                                                                            'son': '53.041'},
                                                                                            'mean_xy': {'CalendarMonths': ['54.902',
                                                                                                                           '53.892',
                                                                                                                           '54.410',
                                                                                                                           '56.630',
                                                                                                                           '56.901',
                                                                                                                           '54.070',
                                                                                                                           '51.512',
                                                                                                                           '50.497',
                                                                                                                           '51.085',
                                                                                                                           '53.753',
                                                                                                                           '56.803',
                                                                                                                           '57.104'],
                                                                                                        'ann': '54.297',
                                                                                                        'djf': '55.280',
                                                                                                        'jja': '52.032',
                                                                                                        'mam': '56.018',
                                                                                                        'son': '53.882'},
                                                                                            'rms_devzm': {'ann': '5.144'},
                                                                                            'rms_xy': {'CalendarMonths': ['8.856',
                                                                                                                          '8.428',
                                                                                                                          '8.486',
                                                                                                                          '10.223',
                                                                                                                          '13.808',
                                                                                                                          '11.252',
                                                                                                                          '7.359',
                                                                                                                          '6.511',
                                                                                                                          '6.566',
                                                                                                                          '7.747',
                                                                                                                          '8.631',
                                                                                                                          '8.084'],
                                                                                                       'ann': '5.778',
                                                                                                       'djf': '7.750',
                                                                                                       'jja': '7.394',
                                                                                                       'mam': '9.710',
                                                                                                       'son': '7.062'},
                                                                                            'rms_xyt': {'ann': '8.829'},
                                                                                            'rms_y': {'ann': '2.633'},
                                                                                            'rmsc_xy': {'CalendarMonths': ['8.849',
                                                                                                                           '8.428',
                                                                                                                           '8.471',
                                                                                                                           '10.049',
                                                                                                                           '13.648',
                                                                                                                           '11.052',
                                                                                                                           '7.078',
                                                                                                                           '6.204',
                                                                                                                           '6.406',
                                                                                                                           '7.714',
                                                                                                                           '8.624',
                                                                                                                           '8.080'],
                                                                                                        'ann': '5.676',
                                                                                                        'djf': '7.750',
                                                                                                        'jja': '7.108',
                                                                                                        'mam': '9.591',
                                                                                                        'son': '7.012'},
                                                                                            'std-obs_xy': {'CalendarMonths': ['49.333',
                                                                                                                              '32.169',
                                                                                                                              '22.068',
                                                                                                                              '33.635',
                                                                                                                              '45.668',
                                                                                                                              '42.792',
                                                                                                                              '32.947',
                                                                                                                              '23.098',
                                                                                                                              '17.940',
                                                                                                                              '31.656',
                                                                                                                              '52.020',
                                                                                                                              '58.086'],
                                                                                                           'ann': '21.847',
                                                                                                           'djf': '45.617',
                                                                                                           'jja': '32.130',
                                                                                                           'mam': '31.602',
                                                                                                           'son': '31.033'},
                                                                                            'std-obs_xy_devzm': {'ann': '15.969'},
                                                                                            'std-obs_xyt': {'ann': '38.849'},
                                                                                            'std_xy': {'CalendarMonths': ['47.447',
                                                                                                                          '30.058',
                                                                                                                          '21.084',
                                                                                                                          '33.813',
                                                                                                                          '45.781',
                                                                                                                          '44.150',
                                                                                                                          '35.275',
                                                                                                                          '25.768',
                                                                                                                          '18.507',
                                                                                                                          '29.822',
                                                                                                                          '50.033',
                                                                                                                          '56.852'],
                                                                                                       'ann': '21.298',
                                                                                                       'djf': '43.726',
                                                                                                       'jja': '34.449',
                                                                                                       'mam': '31.193',
                                                                                                       'son': '29.318'},
                                                                                            'std_xy_devzm': {'ann': '15.928'},
                                                                                            'std_xyt': {'ann': '38.431'}}},
                                                                    'source': 'CERES-EBAF-4-1'},
                                                        'units': 'W m-2'}},
                             'provenance': {'commandLine': '/home/lee1043/.conda/envs/pcmdi_metrics_dev_20230822/bin/mean_climate_driver.py '
                                                           '-p basic_param.py '
                                                           '-v rsutcs',
                                            'conda': {'Platform': 'linux-64',
                                                      'PythonVersion': '3.10.12.final.0',
                                                      'Version': '23.3.1',
                                                      'buildVersion': 'not '
                                                                      'installed'},
                                            'date': '2023-09-19 00:51:29',
                                            'openGL': {'GLX': {'client': {'vendor': 'Mesa '
                                                                                    'Project '
                                                                                    'and '
                                                                                    'SGI',
                                                                          'version': '1.4'},
                                                               'server': {'vendor': 'SGI',
                                                                          'version': '1.4'},
                                                               'version': '1.4'},
                                                       'renderer': 'llvmpipe '
                                                                   '(LLVM 7.0, '
                                                                   '256 bits)',
                                                       'shading language version': '1.20',
                                                       'vendor': 'VMware, Inc.',
                                                       'version': '2.1 Mesa '
                                                                  '18.3.4'},
                                            'osAccess': False,
                                            'packages': {'PMP': 'v3.0.2-11-g06b151f',
                                                         'PMPObs': 'See '
                                                                   "'References' "
                                                                   'key below, '
                                                                   'for '
                                                                   'detailed '
                                                                   'obs '
                                                                   'provenance '
                                                                   'information.',
                                                         'blas': '0.3.23',
                                                         'cdat_info': '8.2.1',
                                                         'cdms': '3.1.5',
                                                         'cdp': '1.7.0',
                                                         'cdtime': '3.1.4',
                                                         'cdutil': '8.2.1',
                                                         'clapack': None,
                                                         'esmf': '8.4.2',
                                                         'esmpy': '8.4.2',
                                                         'genutil': '8.2.1',
                                                         'lapack': '3.9.0',
                                                         'matplotlib': '3.7.1',
                                                         'mesalib': None,
                                                         'numpy': '1.23.5',
                                                         'python': '3.10.10',
                                                         'scipy': '1.11.2',
                                                         'uvcdat': None,
                                                         'vcs': None,
                                                         'vtk': None,
                                                         'xarray': '2023.8.0',
                                                         'xcdat': '0.5.0'},
                                            'platform': {'Name': 'gates.llnl.gov',
                                                         'OS': 'Linux',
                                                         'Version': '3.10.0-1160.71.1.el7.x86_64'},
                                            'userId': 'lee1043'}},
                  'rt': {'REFERENCE': {'default': {'CMIP_CMOR_TABLE': 'Amon',
                                                   'MD5sum': 'f7704f6a3000049b4599e5186535514f',
                                                   'RefTrackingDate': 'Wed '
                                                                      'Aug  4 '
                                                                      '12:23:18 '
                                                                      '2021',
                                                   'filename': 'rt_mon_CERES-EBAF-4-1_PCMDI_gn.200301-201812.AC.v20210804.nc',
                                                   'period': '200301-201812',
                                                   'shape': '(12, 180, 360)',
                                                   'template': 'rt/CERES-EBAF-4-1/v20210804/rt_mon_CERES-EBAF-4-1_PCMDI_gn.200301-201812.AC.v20210804.nc'}},
                         'RESULTS': {'ACCESS-CM2': {'default': {'r1i1p1f1': {'InputClimatologyFileName': 'cmip6.historical.ACCESS-CM2.r1i1p1f1.mon.rt.198101-200512.AC.v20230823.nc',
                                                                             'NHEX': {'bias_xy': {'CalendarMonths': ['1.824',
                                                                                                                     '1.227',
                                                                                                                     '-5.297',
                                                                                                                     '-7.511',
                                                                                                                     '-4.815',
                                                                                                                     '0.581',
                                                                                                                     '3.473',
                                                                                                                     '1.785',
                                                                                                                     '-0.483',
                                                                                                                     '1.425',
                                                                                                                     '2.093',
                                                                                                                     '1.956'],
                                                                                                  'ann': '-0.312',
                                                                                                  'djf': '1.666',
                                                                                                  'jja': '1.930',
                                                                                                  'mam': '-5.904',
                                                                                                  'son': '1.007'},
                                                                                      'cor_xy': {'CalendarMonths': ['0.98',
                                                                                                                    '0.98',
                                                                                                                    '0.98',
                                                                                                                    '0.97',
                                                                                                                    '0.94',
                                                                                                                    '0.89',
                                                                                                                    '0.89',
                                                                                                                    '0.97',
                                                                                                                    '0.99',
                                                                                                                    '0.99',
                                                                                                                    '0.99',
                                                                                                                    '0.99'],
                                                                                                 'ann': '0.989',
                                                                                                 'djf': '0.99',
                                                                                                 'jja': '0.94',
                                                                                                 'mam': '0.98',
                                                                                                 'son': '1.00'},
                                                                                      'mae_xy': {'CalendarMonths': ['7.045',
                                                                                                                    '8.408',
                                                                                                                    '11.112',
                                                                                                                    '11.994',
                                                                                                                    '12.368',
                                                                                                                    '12.091',
                                                                                                                    '11.778',
                                                                                                                    '8.147',
                                                                                                                    '5.377',
                                                                                                                    '4.539',
                                                                                                                    '5.170',
                                                                                                                    '5.721'],
                                                                                                 'ann': '5.168',
                                                                                                 'djf': '6.856',
                                                                                                 'jja': '9.558',
                                                                                                 'mam': '10.060',
                                                                                                 'son': '4.036'},
                                                                                      'mean-obs_xy': {'CalendarMonths': ['-133.615',
                                                                                                                         '-103.939',
                                                                                                                         '-52.086',
                                                                                                                         '3.448',
                                                                                                                         '48.280',
                                                                                                                         '69.601',
                                                                                                                         '55.394',
                                                                                                                         '10.351',
                                                                                                                         '-46.997',
                                                                                                                         '-101.415',
                                                                                                                         '-134.480',
                                                                                                                         '-143.974'],
                                                                                                      'ann': '-44.119',
                                                                                                      'djf': '-126.993',
                                                                                                      'jja': '45.004',
                                                                                                      'mam': '0.939',
                                                                                                      'son': '-94.220'},
                                                                                      'mean_xy': {'CalendarMonths': ['-131.792',
                                                                                                                     '-102.712',
                                                                                                                     '-57.383',
                                                                                                                     '-4.063',
                                                                                                                     '43.465',
                                                                                                                     '70.182',
                                                                                                                     '58.867',
                                                                                                                     '12.136',
                                                                                                                     '-47.480',
                                                                                                                     '-99.990',
                                                                                                                     '-132.387',
                                                                                                                     '-142.017'],
                                                                                                  'ann': '-44.431',
                                                                                                  'djf': '-125.328',
                                                                                                  'jja': '46.933',
                                                                                                  'mam': '-4.964',
                                                                                                  'son': '-93.212'},
                                                                                      'rms_devzm': {'ann': '5.476'},
                                                                                      'rms_xy': {'CalendarMonths': ['8.364',
                                                                                                                    '10.431',
                                                                                                                    '13.288',
                                                                                                                    '14.846',
                                                                                                                    '15.919',
                                                                                                                    '15.583',
                                                                                                                    '15.522',
                                                                                                                    '10.730',
                                                                                                                    '7.195',
                                                                                                                    '5.694',
                                                                                                                    '6.147',
                                                                                                                    '6.730'],
                                                                                                 'ann': '6.557',
                                                                                                 'djf': '8.229',
                                                                                                 'jja': '12.543',
                                                                                                 'mam': '12.694',
                                                                                                 'son': '5.196'},
                                                                                      'rms_xyt': {'ann': '10.871'},
                                                                                      'rms_y': {'ann': '3.606'},
                                                                                      'rmsc_xy': {'CalendarMonths': ['8.163',
                                                                                                                     '10.359',
                                                                                                                     '12.187',
                                                                                                                     '12.806',
                                                                                                                     '15.174',
                                                                                                                     '15.572',
                                                                                                                     '15.128',
                                                                                                                     '10.581',
                                                                                                                     '7.179',
                                                                                                                     '5.513',
                                                                                                                     '5.780',
                                                                                                                     '6.439'],
                                                                                                  'ann': '6.549',
                                                                                                  'djf': '8.059',
                                                                                                  'jja': '12.393',
                                                                                                  'mam': '11.237',
                                                                                                  'son': '5.097'},
                                                                                      'std-obs_xy': {'CalendarMonths': ['35.902',
                                                                                                                        '45.730',
                                                                                                                        '54.465',
                                                                                                                        '55.137',
                                                                                                                        '46.277',
                                                                                                                        '32.769',
                                                                                                                        '31.646',
                                                                                                                        '44.821',
                                                                                                                        '54.096',
                                                                                                                        '49.967',
                                                                                                                        '38.540',
                                                                                                                        '32.044'],
                                                                                                     'ann': '40.699',
                                                                                                     'djf': '37.635',
                                                                                                     'jja': '35.174',
                                                                                                     'mam': '50.913',
                                                                                                     'son': '46.720'},
                                                                                      'std-obs_xy_devzm': {'ann': '8.968'},
                                                                                      'std-obs_xyt': {'ann': '88.142'},
                                                                                      'std_xy': {'CalendarMonths': ['30.149',
                                                                                                                    '39.081',
                                                                                                                    '47.741',
                                                                                                                    '50.044',
                                                                                                                    '43.365',
                                                                                                                    '33.584',
                                                                                                                    '31.723',
                                                                                                                    '44.091',
                                                                                                                    '52.935',
                                                                                                                    '47.381',
                                                                                                                    '35.144',
                                                                                                                    '27.670'],
                                                                                                 'ann': '37.546',
                                                                                                 'djf': '32.077',
                                                                                                 'jja': '35.519',
                                                                                                 'mam': '46.275',
                                                                                                 'son': '44.385'},
                                                                                      'std_xy_devzm': {'ann': '9.509'},
                                                                                      'std_xyt': {'ann': '85.703'}},
                                                                             'SHEX': {'bias_xy': {'CalendarMonths': ['13.143',
                                                                                                                     '6.666',
                                                                                                                     '4.649',
                                                                                                                     '1.261',
                                                                                                                     '1.129',
                                                                                                                     '1.321',
                                                                                                                     '-0.000',
                                                                                                                     '-2.233',
                                                                                                                     '-1.830',
                                                                                                                     '0.893',
                                                                                                                     '6.970',
                                                                                                                     '10.982'],
                                                                                                  'ann': '3.579',
                                                                                                  'djf': '10.256',
                                                                                                  'jja': '-0.308',
                                                                                                  'mam': '2.289',
                                                                                                  'son': '2.023'},
                                                                                      'cor_xy': {'CalendarMonths': ['0.95',
                                                                                                                    '0.98',
                                                                                                                    '1.00',
                                                                                                                    '1.00',
                                                                                                                    '0.99',
                                                                                                                    '0.99',
                                                                                                                    '0.99',
                                                                                                                    '0.99',
                                                                                                                    '0.99',
                                                                                                                    '0.99',
                                                                                                                    '0.97',
                                                                                                                    '0.96'],
                                                                                                 'ann': '0.992',
                                                                                                 'djf': '0.97',
                                                                                                 'jja': '0.99',
                                                                                                 'mam': '1.00',
                                                                                                 'son': '0.99'},
                                                                                      'mae_xy': {'CalendarMonths': ['14.244',
                                                                                                                    '8.558',
                                                                                                                    '5.668',
                                                                                                                    '3.059',
                                                                                                                    '3.304',
                                                                                                                    '3.947',
                                                                                                                    '3.685',
                                                                                                                    '4.778',
                                                                                                                    '5.579',
                                                                                                                    '6.951',
                                                                                                                    '9.987',
                                                                                                                    '13.027'],
                                                                                                 'ann': '5.111',
                                                                                                 'djf': '11.626',
                                                                                                 'jja': '3.840',
                                                                                                 'mam': '3.458',
                                                                                                 'son': '6.374'},
                                                                                      'mean-obs_xy': {'CalendarMonths': ['69.045',
                                                                                                                         '20.573',
                                                                                                                         '-46.243',
                                                                                                                         '-101.740',
                                                                                                                         '-136.581',
                                                                                                                         '-148.181',
                                                                                                                         '-138.020',
                                                                                                                         '-106.421',
                                                                                                                         '-57.786',
                                                                                                                         '2.068',
                                                                                                                         '55.101',
                                                                                                                         '83.825'],
                                                                                                      'ann': '-42.030',
                                                                                                      'djf': '57.532',
                                                                                                      'jja': '-130.796',
                                                                                                      'mam': '-95.885',
                                                                                                      'son': '-0.230'},
                                                                                      'mean_xy': {'CalendarMonths': ['82.188',
                                                                                                                     '27.239',
                                                                                                                     '-41.595',
                                                                                                                     '-100.479',
                                                                                                                     '-135.452',
                                                                                                                     '-146.860',
                                                                                                                     '-138.021',
                                                                                                                     '-108.655',
                                                                                                                     '-59.616',
                                                                                                                     '2.961',
                                                                                                                     '62.071',
                                                                                                                     '94.807'],
                                                                                                  'ann': '-38.451',
                                                                                                  'djf': '67.787',
                                                                                                  'jja': '-131.104',
                                                                                                  'mam': '-93.596',
                                                                                                  'son': '1.793'},
                                                                                      'rms_devzm': {'ann': '4.052'},
                                                                                      'rms_xy': {'CalendarMonths': ['20.573',
                                                                                                                    '12.074',
                                                                                                                    '7.125',
                                                                                                                    '3.804',
                                                                                                                    '4.081',
                                                                                                                    '4.910',
                                                                                                                    '4.499',
                                                                                                                    '5.773',
                                                                                                                    '7.090',
                                                                                                                    '9.849',
                                                                                                                    '15.177',
                                                                                                                    '18.922'],
                                                                                                 'ann': '7.137',
                                                                                                 'djf': '16.517',
                                                                                                 'jja': '4.579',
                                                                                                 'mam': '4.252',
                                                                                                 'son': '9.509'},
                                                                                      'rms_xyt': {'ann': '9.490'},
                                                                                      'rms_y': {'ann': '5.874'},
                                                                                      'rmsc_xy': {'CalendarMonths': ['15.828',
                                                                                                                     '10.067',
                                                                                                                     '5.400',
                                                                                                                     '3.589',
                                                                                                                     '3.922',
                                                                                                                     '4.729',
                                                                                                                     '4.499',
                                                                                                                     '5.323',
                                                                                                                     '6.850',
                                                                                                                     '9.808',
                                                                                                                     '13.482',
                                                                                                                     '15.409'],
                                                                                                  'ann': '6.174',
                                                                                                  'djf': '12.947',
                                                                                                  'jja': '4.569',
                                                                                                  'mam': '3.584',
                                                                                                  'son': '9.292'},
                                                                                      'std-obs_xy': {'CalendarMonths': ['51.416',
                                                                                                                        '53.721',
                                                                                                                        '51.832',
                                                                                                                        '42.573',
                                                                                                                        '32.312',
                                                                                                                        '27.183',
                                                                                                                        '27.821',
                                                                                                                        '36.363',
                                                                                                                        '48.655',
                                                                                                                        '57.944',
                                                                                                                        '57.590',
                                                                                                                        '52.184'],
                                                                                                     'ann': '41.824',
                                                                                                     'djf': '52.125',
                                                                                                     'jja': '29.841',
                                                                                                     'mam': '40.918',
                                                                                                     'son': '54.102'},
                                                                                      'std-obs_xy_devzm': {'ann': '7.093'},
                                                                                      'std-obs_xyt': {'ann': '94.228'},
                                                                                      'std_xy': {'CalendarMonths': ['47.899',
                                                                                                                    '49.884',
                                                                                                                    '49.105',
                                                                                                                    '40.699',
                                                                                                                    '29.932',
                                                                                                                    '24.256',
                                                                                                                    '25.163',
                                                                                                                    '32.963',
                                                                                                                    '45.503',
                                                                                                                    '54.030',
                                                                                                                    '54.378',
                                                                                                                    '49.118'],
                                                                                                 'ann': '38.211',
                                                                                                 'djf': '48.290',
                                                                                                 'jja': '26.931',
                                                                                                 'mam': '38.649',
                                                                                                 'son': '50.433'},
                                                                                      'std_xy_devzm': {'ann': '6.556'},
                                                                                      'std_xyt': {'ann': '96.250'}},
                                                                             'TROPICS': {'bias_xy': {'CalendarMonths': ['-2.957',
                                                                                                                        '-5.005',
                                                                                                                        '-5.515',
                                                                                                                        '-5.796',
                                                                                                                        '-2.768',
                                                                                                                        '-0.840',
                                                                                                                        '-0.759',
                                                                                                                        '-0.973',
                                                                                                                        '-0.426',
                                                                                                                        '0.380',
                                                                                                                        '-0.256',
                                                                                                                        '-2.136'],
                                                                                                     'ann': '-2.254',
                                                                                                     'djf': '-3.379',
                                                                                                     'jja': '-0.859',
                                                                                                     'mam': '-4.689',
                                                                                                     'son': '-0.106'},
                                                                                         'cor_xy': {'CalendarMonths': ['0.99',
                                                                                                                       '0.99',
                                                                                                                       '0.95',
                                                                                                                       '0.96',
                                                                                                                       '0.98',
                                                                                                                       '0.98',
                                                                                                                       '0.98',
                                                                                                                       '0.96',
                                                                                                                       '0.92',
                                                                                                                       '0.96',
                                                                                                                       '0.98',
                                                                                                                       '0.99'],
                                                                                                    'ann': '0.946',
                                                                                                    'djf': '0.99',
                                                                                                    'jja': '0.98',
                                                                                                    'mam': '0.96',
                                                                                                    'son': '0.96'},
                                                                                         'mae_xy': {'CalendarMonths': ['8.516',
                                                                                                                       '8.192',
                                                                                                                       '8.799',
                                                                                                                       '9.127',
                                                                                                                       '8.607',
                                                                                                                       '8.397',
                                                                                                                       '8.400',
                                                                                                                       '8.711',
                                                                                                                       '8.791',
                                                                                                                       '7.650',
                                                                                                                       '7.972',
                                                                                                                       '7.858'],
                                                                                                    'ann': '6.689',
                                                                                                    'djf': '7.828',
                                                                                                    'jja': '7.992',
                                                                                                    'mam': '8.206',
                                                                                                    'son': '7.490'},
                                                                                         'mean-obs_xy': {'CalendarMonths': ['48.933',
                                                                                                                            '59.737',
                                                                                                                            '62.632',
                                                                                                                            '53.211',
                                                                                                                            '34.435',
                                                                                                                            '21.421',
                                                                                                                            '24.617',
                                                                                                                            '38.863',
                                                                                                                            '51.810',
                                                                                                                            '54.348',
                                                                                                                            '48.092',
                                                                                                                            '43.520'],
                                                                                                         'ann': '45.135',
                                                                                                         'djf': '50.808',
                                                                                                         'jja': '28.341',
                                                                                                         'mam': '49.882',
                                                                                                         'son': '51.385'},
                                                                                         'mean_xy': {'CalendarMonths': ['45.976',
                                                                                                                        '54.732',
                                                                                                                        '57.117',
                                                                                                                        '47.415',
                                                                                                                        '31.667',
                                                                                                                        '20.581',
                                                                                                                        '23.858',
                                                                                                                        '37.890',
                                                                                                                        '51.384',
                                                                                                                        '54.728',
                                                                                                                        '47.836',
                                                                                                                        '41.384'],
                                                                                                     'ann': '42.881',
                                                                                                     'djf': '47.429',
                                                                                                     'jja': '27.482',
                                                                                                     'mam': '45.192',
                                                                                                     'son': '51.279'},
                                                                                         'rms_devzm': {'ann': '7.533'},
                                                                                         'rms_xy': {'CalendarMonths': ['10.735',
                                                                                                                       '10.542',
                                                                                                                       '11.431',
                                                                                                                       '11.912',
                                                                                                                       '11.422',
                                                                                                                       '11.810',
                                                                                                                       '12.589',
                                                                                                                       '13.235',
                                                                                                                       '12.508',
                                                                                                                       '11.013',
                                                                                                                       '11.232',
                                                                                                                       '10.393'],
                                                                                                    'ann': '8.889',
                                                                                                    'djf': '9.979',
                                                                                                    'jja': '11.851',
                                                                                                    'mam': '10.754',
                                                                                                    'son': '10.591'},
                                                                                         'rms_xyt': {'ann': '11.569'},
                                                                                         'rms_y': {'ann': '4.720'},
                                                                                         'rmsc_xy': {'CalendarMonths': ['10.320',
                                                                                                                        '9.279',
                                                                                                                        '10.012',
                                                                                                                        '10.407',
                                                                                                                        '11.081',
                                                                                                                        '11.780',
                                                                                                                        '12.566',
                                                                                                                        '13.199',
                                                                                                                        '12.501',
                                                                                                                        '11.007',
                                                                                                                        '11.230',
                                                                                                                        '10.171'],
                                                                                                     'ann': '8.599',
                                                                                                     'djf': '9.389',
                                                                                                     'jja': '11.820',
                                                                                                     'mam': '9.678',
                                                                                                     'son': '10.591'},
                                                                                         'std-obs_xy': {'CalendarMonths': ['65.031',
                                                                                                                           '48.262',
                                                                                                                           '30.056',
                                                                                                                           '38.100',
                                                                                                                           '56.631',
                                                                                                                           '66.025',
                                                                                                                           '62.314',
                                                                                                                           '46.942',
                                                                                                                           '31.233',
                                                                                                                           '38.326',
                                                                                                                           '58.375',
                                                                                                                           '70.065'],
                                                                                                        'ann': '25.631',
                                                                                                        'djf': '60.637',
                                                                                                        'jja': '58.011',
                                                                                                        'mam': '36.062',
                                                                                                        'son': '35.980'},
                                                                                         'std-obs_xy_devzm': {'ann': '16.944'},
                                                                                         'std-obs_xyt': {'ann': '54.163'},
                                                                                         'std_xy': {'CalendarMonths': ['69.813',
                                                                                                                       '51.727',
                                                                                                                       '31.197',
                                                                                                                       '35.356',
                                                                                                                       '54.229',
                                                                                                                       '64.522',
                                                                                                                       '62.140',
                                                                                                                       '47.697',
                                                                                                                       '31.393',
                                                                                                                       '38.532',
                                                                                                                       '60.325',
                                                                                                                       '73.364'],
                                                                                                    'ann': '26.538',
                                                                                                    'djf': '64.552',
                                                                                                    'jja': '57.689',
                                                                                                    'mam': '33.710',
                                                                                                    'son': '36.975'},
                                                                                         'std_xy_devzm': {'ann': '17.462'},
                                                                                         'std_xyt': {'ann': '54.869'}},
                                                                             'global': {'bias_xy': {'CalendarMonths': ['2.263',
                                                                                                                       '-0.529',
                                                                                                                       '-2.920',
                                                                                                                       '-4.461',
                                                                                                                       '-2.306',
                                                                                                                       '0.055',
                                                                                                                       '0.489',
                                                                                                                       '-0.599',
                                                                                                                       '-0.791',
                                                                                                                       '0.769',
                                                                                                                       '2.138',
                                                                                                                       '2.167'],
                                                                                                    'ann': '-0.310',
                                                                                                    'djf': '1.291',
                                                                                                    'jja': '-0.024',
                                                                                                    'mam': '-3.248',
                                                                                                    'son': '0.705'},
                                                                                        'cor_xy': {'CalendarMonths': ['0.99',
                                                                                                                      '0.99',
                                                                                                                      '0.99',
                                                                                                                      '0.99',
                                                                                                                      '0.99',
                                                                                                                      '0.99',
                                                                                                                      '0.99',
                                                                                                                      '0.99',
                                                                                                                      '0.99',
                                                                                                                      '0.99',
                                                                                                                      '0.99',
                                                                                                                      '0.99'],
                                                                                                   'ann': '0.991',
                                                                                                   'djf': '0.99',
                                                                                                   'jja': '0.99',
                                                                                                   'mam': '0.99',
                                                                                                   'son': '0.99'},
                                                                                        'mae_xy': {'CalendarMonths': ['9.580',
                                                                                                                      '8.337',
                                                                                                                      '8.595',
                                                                                                                      '8.327',
                                                                                                                      '8.221',
                                                                                                                      '8.208',
                                                                                                                      '8.066',
                                                                                                                      '7.587',
                                                                                                                      '7.135',
                                                                                                                      '6.697',
                                                                                                                      '7.775',
                                                                                                                      '8.616'],
                                                                                                   'ann': '5.914',
                                                                                                   'djf': '8.535',
                                                                                                   'jja': '7.346',
                                                                                                   'mam': '7.482',
                                                                                                   'son': '6.348'},
                                                                                        'mean-obs_xy': {'CalendarMonths': ['8.324',
                                                                                                                           '9.027',
                                                                                                                           '6.734',
                                                                                                                           '2.032',
                                                                                                                           '-4.858',
                                                                                                                           '-8.934',
                                                                                                                           '-8.348',
                                                                                                                           '-4.586',
                                                                                                                           '-0.291',
                                                                                                                           '2.337',
                                                                                                                           '4.201',
                                                                                                                           '6.723'],
                                                                                                        'ann': '1.030',
                                                                                                        'djf': '8.039',
                                                                                                        'jja': '-7.278',
                                                                                                        'mam': '1.205',
                                                                                                        'son': '2.080'},
                                                                                        'mean_xy': {'CalendarMonths': ['10.587',
                                                                                                                       '8.498',
                                                                                                                       '3.814',
                                                                                                                       '-2.428',
                                                                                                                       '-7.163',
                                                                                                                       '-8.879',
                                                                                                                       '-7.859',
                                                                                                                       '-5.185',
                                                                                                                       '-1.082',
                                                                                                                       '3.107',
                                                                                                                       '6.339',
                                                                                                                       '8.889'],
                                                                                                    'ann': '0.720',
                                                                                                    'djf': '9.329',
                                                                                                    'jja': '-7.302',
                                                                                                    'mam': '-2.044',
                                                                                                    'son': '2.785'},
                                                                                        'rms_devzm': {'ann': '6.322'},
                                                                                        'rms_xy': {'CalendarMonths': ['13.451',
                                                                                                                      '10.919',
                                                                                                                      '11.053',
                                                                                                                      '11.387',
                                                                                                                      '11.522',
                                                                                                                      '11.682',
                                                                                                                      '12.022',
                                                                                                                      '11.167',
                                                                                                                      '10.185',
                                                                                                                      '9.644',
                                                                                                                      '11.407',
                                                                                                                      '12.443'],
                                                                                                   'ann': '7.937',
                                                                                                   'djf': '11.615',
                                                                                                   'jja': '10.714',
                                                                                                   'mam': '10.131',
                                                                                                   'son': '9.244'},
                                                                                        'rms_xyt': {'ann': '11.407'},
                                                                                        'rms_y': {'ann': '4.798'},
                                                                                        'rmsc_xy': {'CalendarMonths': ['13.259',
                                                                                                                       '10.906',
                                                                                                                       '10.660',
                                                                                                                       '10.477',
                                                                                                                       '11.289',
                                                                                                                       '11.682',
                                                                                                                       '12.012',
                                                                                                                       '11.151',
                                                                                                                       '10.155',
                                                                                                                       '9.613',
                                                                                                                       '11.205',
                                                                                                                       '12.253'],
                                                                                                    'ann': '7.931',
                                                                                                    'djf': '11.544',
                                                                                                    'jja': '10.714',
                                                                                                    'mam': '9.596',
                                                                                                    'son': '9.217'},
                                                                                        'std-obs_xy': {'CalendarMonths': ['99.401',
                                                                                                                          '83.176',
                                                                                                                          '70.667',
                                                                                                                          '77.079',
                                                                                                                          '90.640',
                                                                                                                          '97.380',
                                                                                                                          '90.267',
                                                                                                                          '74.343',
                                                                                                                          '67.381',
                                                                                                                          '79.004',
                                                                                                                          '96.557',
                                                                                                                          '105.984'],
                                                                                                       'ann': '55.908',
                                                                                                       'djf': '94.642',
                                                                                                       'jja': '85.711',
                                                                                                       'mam': '72.513',
                                                                                                       'son': '73.892'},
                                                                                        'std-obs_xy_devzm': {'ann': '13.275'},
                                                                                        'std-obs_xyt': {'ann': '87.032'},
                                                                                        'std_xy': {'CalendarMonths': ['101.062',
                                                                                                                      '81.181',
                                                                                                                      '67.317',
                                                                                                                      '72.880',
                                                                                                                      '87.600',
                                                                                                                      '96.265',
                                                                                                                      '90.511',
                                                                                                                      '74.662',
                                                                                                                      '66.948',
                                                                                                                      '77.608',
                                                                                                                      '96.521',
                                                                                                                      '107.482'],
                                                                                                   'ann': '53.400',
                                                                                                   'djf': '95.063',
                                                                                                   'jja': '85.632',
                                                                                                   'mam': '68.485',
                                                                                                   'son': '72.745'},
                                                                                        'std_xy_devzm': {'ann': '13.631'},
                                                                                        'std_xyt': {'ann': '86.253'}}},
                                                                'source': 'CERES-EBAF-4-1'},
                                                    'units': 'W m-2'}},
                         'provenance': {'commandLine': '/home/lee1043/.conda/envs/pcmdi_metrics_dev_20230822/bin/mean_climate_driver.py '
                                                       '-p basic_param.py -v '
                                                       'rt',
                                        'conda': {'Platform': 'linux-64',
                                                  'PythonVersion': '3.10.12.final.0',
                                                  'Version': '23.3.1',
                                                  'buildVersion': 'not '
                                                                  'installed'},
                                        'date': '2023-09-19 00:50:47',
                                        'openGL': {'GLX': {'client': {'vendor': 'Mesa '
                                                                                'Project '
                                                                                'and '
                                                                                'SGI',
                                                                      'version': '1.4'},
                                                           'server': {'vendor': 'SGI',
                                                                      'version': '1.4'},
                                                           'version': '1.4'},
                                                   'renderer': 'llvmpipe (LLVM '
                                                               '7.0, 256 bits)',
                                                   'shading language version': '1.20',
                                                   'vendor': 'VMware, Inc.',
                                                   'version': '2.1 Mesa '
                                                              '18.3.4'},
                                        'osAccess': False,
                                        'packages': {'PMP': 'v3.0.2-11-g06b151f',
                                                     'PMPObs': 'See '
                                                               "'References' "
                                                               'key below, for '
                                                               'detailed obs '
                                                               'provenance '
                                                               'information.',
                                                     'blas': '0.3.23',
                                                     'cdat_info': '8.2.1',
                                                     'cdms': '3.1.5',
                                                     'cdp': '1.7.0',
                                                     'cdtime': '3.1.4',
                                                     'cdutil': '8.2.1',
                                                     'clapack': None,
                                                     'esmf': '8.4.2',
                                                     'esmpy': '8.4.2',
                                                     'genutil': '8.2.1',
                                                     'lapack': '3.9.0',
                                                     'matplotlib': '3.7.1',
                                                     'mesalib': None,
                                                     'numpy': '1.23.5',
                                                     'python': '3.10.10',
                                                     'scipy': '1.11.2',
                                                     'uvcdat': None,
                                                     'vcs': None,
                                                     'vtk': None,
                                                     'xarray': '2023.8.0',
                                                     'xcdat': '0.5.0'},
                                        'platform': {'Name': 'gates.llnl.gov',
                                                     'OS': 'Linux',
                                                     'Version': '3.10.0-1160.71.1.el7.x86_64'},
                                        'userId': 'lee1043'}},
                  'sfcWind': {'REFERENCE': {'default': {'CMIP_CMOR_TABLE': 'Amon',
                                                        'MD5sum': '799ddeeb9b4861bb45c3f28585bcccfe',
                                                        'RefTrackingDate': 'Wed '
                                                                           'Aug  '
                                                                           '4 '
                                                                           '12:22:12 '
                                                                           '2021',
                                                        'filename': 'sfcWind_mon_REMSS-PRW-v07r01_PCMDI_gn.200301-201812.AC.v20210804.nc',
                                                        'period': '200301-201812',
                                                        'shape': '(12, 180, '
                                                                 '360)',
                                                        'template': 'sfcWind/REMSS-PRW-v07r01/v20210804/sfcWind_mon_REMSS-PRW-v07r01_PCMDI_gn.200301-201812.AC.v20210804.nc'}},
                              'RESULTS': {'ACCESS-CM2': {'default': {'r1i1p1f1': {'InputClimatologyFileName': 'cmip6.historical.ACCESS-CM2.r1i1p1f1.mon.sfcWind.198101-200512.AC.v20230823.nc',
                                                                                  'NHEX_ocean': {'bias_xy': {'CalendarMonths': ['51.258',
                                                                                                                                '51.157',
                                                                                                                                '49.413',
                                                                                                                                '50.916',
                                                                                                                                '52.142',
                                                                                                                                '55.108',
                                                                                                                                '56.107',
                                                                                                                                '57.503',
                                                                                                                                '58.968',
                                                                                                                                '56.836',
                                                                                                                                '55.950',
                                                                                                                                '53.143'],
                                                                                                             'ann': '57.318',
                                                                                                             'djf': '51.370',
                                                                                                             'jja': '54.690',
                                                                                                             'mam': '50.542',
                                                                                                             'son': '55.814'},
                                                                                                 'cor_xy': {'CalendarMonths': ['0.41',
                                                                                                                               '0.41',
                                                                                                                               '0.43',
                                                                                                                               '0.44',
                                                                                                                               '0.45',
                                                                                                                               '0.45',
                                                                                                                               '0.45',
                                                                                                                               '0.45',
                                                                                                                               '0.43',
                                                                                                                               '0.43',
                                                                                                                               '0.42',
                                                                                                                               '0.42'],
                                                                                                            'ann': '0.487',
                                                                                                            'djf': '0.43',
                                                                                                            'jja': '0.45',
                                                                                                            'mam': '0.45',
                                                                                                            'son': '0.45'},
                                                                                                 'mae_xy': {'CalendarMonths': ['51.638',
                                                                                                                               '51.535',
                                                                                                                               '49.695',
                                                                                                                               '51.216',
                                                                                                                               '52.499',
                                                                                                                               '55.510',
                                                                                                                               '56.483',
                                                                                                                               '57.795',
                                                                                                                               '59.371',
                                                                                                                               '57.128',
                                                                                                                               '56.319',
                                                                                                                               '53.501'],
                                                                                                            'ann': '57.538',
                                                                                                            'djf': '51.675',
                                                                                                            'jja': '54.986',
                                                                                                            'mam': '50.782',
                                                                                                            'son': '56.102'},
                                                                                                 'mean-obs_xy': {'CalendarMonths': ['-43.816',
                                                                                                                                    '-43.702',
                                                                                                                                    '-41.958',
                                                                                                                                    '-43.487',
                                                                                                                                    '-44.775',
                                                                                                                                    '-47.682',
                                                                                                                                    '-48.563',
                                                                                                                                    '-49.990',
                                                                                                                                    '-51.582',
                                                                                                                                    '-49.459',
                                                                                                                                    '-48.545',
                                                                                                                                    '-45.614'],
                                                                                                                 'ann': '-49.886',
                                                                                                                 'djf': '-43.891',
                                                                                                                 'jja': '-47.189',
                                                                                                                 'mam': '-43.132',
                                                                                                                 'son': '-48.417'},
                                                                                                 'mean_xy': {'CalendarMonths': ['7.327',
                                                                                                                                '7.360',
                                                                                                                                '7.371',
                                                                                                                                '7.364',
                                                                                                                                '7.303',
                                                                                                                                '7.367',
                                                                                                                                '7.499',
                                                                                                                                '7.517',
                                                                                                                                '7.414',
                                                                                                                                '7.371',
                                                                                                                                '7.318',
                                                                                                                                '7.386'],
                                                                                                             'ann': '7.383',
                                                                                                             'djf': '7.357',
                                                                                                             'jja': '7.460',
                                                                                                             'mam': '7.345',
                                                                                                             'son': '7.367'},
                                                                                                 'rms_devzm': {'ann': '158.381'},
                                                                                                 'rms_xy': {'CalendarMonths': ['165.847',
                                                                                                                               '165.391',
                                                                                                                               '161.715',
                                                                                                                               '164.407',
                                                                                                                               '166.825',
                                                                                                                               '172.643',
                                                                                                                               '174.671',
                                                                                                                               '176.423',
                                                                                                                               '179.545',
                                                                                                                               '174.867',
                                                                                                                               '173.905',
                                                                                                                               '168.574'],
                                                                                                            'ann': '176.736',
                                                                                                            'djf': '165.315',
                                                                                                            'jja': '171.442',
                                                                                                            'mam': '163.744',
                                                                                                            'son': '173.171'},
                                                                                                 'rms_xyt': {'ann': '170.401'},
                                                                                                 'rms_y': {'ann': '116.256'},
                                                                                                 'rmsc_xy': {'CalendarMonths': ['157.728',
                                                                                                                                '157.280',
                                                                                                                                '153.981',
                                                                                                                                '156.323',
                                                                                                                                '158.467',
                                                                                                                                '163.611',
                                                                                                                                '165.415',
                                                                                                                                '166.789',
                                                                                                                                '169.586',
                                                                                                                                '165.373',
                                                                                                                                '164.658',
                                                                                                                                '159.978'],
                                                                                                             'ann': '167.183',
                                                                                                             'djf': '157.131',
                                                                                                             'jja': '162.485',
                                                                                                             'mam': '155.748',
                                                                                                             'son': '163.930'},
                                                                                                 'std-obs_xy': {'CalendarMonths': ['158.566',
                                                                                                                                   '158.117',
                                                                                                                                   '154.875',
                                                                                                                                   '157.283',
                                                                                                                                   '159.444',
                                                                                                                                   '164.600',
                                                                                                                                   '166.420',
                                                                                                                                   '167.774',
                                                                                                                                   '170.494',
                                                                                                                                   '166.263',
                                                                                                                                   '165.526',
                                                                                                                                   '160.862'],
                                                                                                                'ann': '168.100',
                                                                                                                'djf': '157.997',
                                                                                                                'jja': '163.463',
                                                                                                                'mam': '156.689',
                                                                                                                'son': '164.821'},
                                                                                                 'std-obs_xy_devzm': {'ann': '159.139'},
                                                                                                 'std-obs_xyt': {'ann': '162.614'},
                                                                                                 'std_xy': {'CalendarMonths': ['2.089',
                                                                                                                               '2.045',
                                                                                                                               '2.124',
                                                                                                                               '2.211',
                                                                                                                               '2.193',
                                                                                                                               '2.202',
                                                                                                                               '2.255',
                                                                                                                               '2.231',
                                                                                                                               '2.119',
                                                                                                                               '2.120',
                                                                                                                               '2.070',
                                                                                                                               '2.123'],
                                                                                                            'ann': '1.897',
                                                                                                            'djf': '2.055',
                                                                                                            'jja': '2.201',
                                                                                                            'mam': '2.106',
                                                                                                            'son': '2.011'},
                                                                                                 'std_xy_devzm': {'ann': '1.127'},
                                                                                                 'std_xyt': {'ann': '2.150'}},
                                                                                  'SHEX_ocean': {'bias_xy': {'CalendarMonths': ['51.258',
                                                                                                                                '51.157',
                                                                                                                                '49.413',
                                                                                                                                '50.916',
                                                                                                                                '52.142',
                                                                                                                                '55.108',
                                                                                                                                '56.107',
                                                                                                                                '57.503',
                                                                                                                                '58.968',
                                                                                                                                '56.836',
                                                                                                                                '55.950',
                                                                                                                                '53.143'],
                                                                                                             'ann': '57.318',
                                                                                                             'djf': '51.370',
                                                                                                             'jja': '54.690',
                                                                                                             'mam': '50.542',
                                                                                                             'son': '55.814'},
                                                                                                 'cor_xy': {'CalendarMonths': ['0.41',
                                                                                                                               '0.41',
                                                                                                                               '0.43',
                                                                                                                               '0.44',
                                                                                                                               '0.45',
                                                                                                                               '0.45',
                                                                                                                               '0.45',
                                                                                                                               '0.45',
                                                                                                                               '0.43',
                                                                                                                               '0.43',
                                                                                                                               '0.42',
                                                                                                                               '0.42'],
                                                                                                            'ann': '0.487',
                                                                                                            'djf': '0.43',
                                                                                                            'jja': '0.45',
                                                                                                            'mam': '0.45',
                                                                                                            'son': '0.45'},
                                                                                                 'mae_xy': {'CalendarMonths': ['51.638',
                                                                                                                               '51.535',
                                                                                                                               '49.695',
                                                                                                                               '51.216',
                                                                                                                               '52.499',
                                                                                                                               '55.510',
                                                                                                                               '56.483',
                                                                                                                               '57.795',
                                                                                                                               '59.371',
                                                                                                                               '57.128',
                                                                                                                               '56.319',
                                                                                                                               '53.501'],
                                                                                                            'ann': '57.538',
                                                                                                            'djf': '51.675',
                                                                                                            'jja': '54.986',
                                                                                                            'mam': '50.782',
                                                                                                            'son': '56.102'},
                                                                                                 'mean-obs_xy': {'CalendarMonths': ['-43.816',
                                                                                                                                    '-43.702',
                                                                                                                                    '-41.958',
                                                                                                                                    '-43.487',
                                                                                                                                    '-44.775',
                                                                                                                                    '-47.682',
                                                                                                                                    '-48.563',
                                                                                                                                    '-49.990',
                                                                                                                                    '-51.582',
                                                                                                                                    '-49.459',
                                                                                                                                    '-48.545',
                                                                                                                                    '-45.614'],
                                                                                                                 'ann': '-49.886',
                                                                                                                 'djf': '-43.891',
                                                                                                                 'jja': '-47.189',
                                                                                                                 'mam': '-43.132',
                                                                                                                 'son': '-48.417'},
                                                                                                 'mean_xy': {'CalendarMonths': ['7.327',
                                                                                                                                '7.360',
                                                                                                                                '7.371',
                                                                                                                                '7.364',
                                                                                                                                '7.303',
                                                                                                                                '7.367',
                                                                                                                                '7.499',
                                                                                                                                '7.517',
                                                                                                                                '7.414',
                                                                                                                                '7.371',
                                                                                                                                '7.318',
                                                                                                                                '7.386'],
                                                                                                             'ann': '7.383',
                                                                                                             'djf': '7.357',
                                                                                                             'jja': '7.460',
                                                                                                             'mam': '7.345',
                                                                                                             'son': '7.367'},
                                                                                                 'rms_devzm': {'ann': '158.381'},
                                                                                                 'rms_xy': {'CalendarMonths': ['165.847',
                                                                                                                               '165.391',
                                                                                                                               '161.715',
                                                                                                                               '164.407',
                                                                                                                               '166.825',
                                                                                                                               '172.643',
                                                                                                                               '174.671',
                                                                                                                               '176.423',
                                                                                                                               '179.545',
                                                                                                                               '174.867',
                                                                                                                               '173.905',
                                                                                                                               '168.574'],
                                                                                                            'ann': '176.736',
                                                                                                            'djf': '165.315',
                                                                                                            'jja': '171.442',
                                                                                                            'mam': '163.744',
                                                                                                            'son': '173.171'},
                                                                                                 'rms_xyt': {'ann': '170.401'},
                                                                                                 'rms_y': {'ann': '116.256'},
                                                                                                 'rmsc_xy': {'CalendarMonths': ['157.728',
                                                                                                                                '157.280',
                                                                                                                                '153.981',
                                                                                                                                '156.323',
                                                                                                                                '158.467',
                                                                                                                                '163.611',
                                                                                                                                '165.415',
                                                                                                                                '166.789',
                                                                                                                                '169.586',
                                                                                                                                '165.373',
                                                                                                                                '164.658',
                                                                                                                                '159.978'],
                                                                                                             'ann': '167.183',
                                                                                                             'djf': '157.131',
                                                                                                             'jja': '162.485',
                                                                                                             'mam': '155.748',
                                                                                                             'son': '163.930'},
                                                                                                 'std-obs_xy': {'CalendarMonths': ['158.566',
                                                                                                                                   '158.117',
                                                                                                                                   '154.875',
                                                                                                                                   '157.283',
                                                                                                                                   '159.444',
                                                                                                                                   '164.600',
                                                                                                                                   '166.420',
                                                                                                                                   '167.774',
                                                                                                                                   '170.494',
                                                                                                                                   '166.263',
                                                                                                                                   '165.526',
                                                                                                                                   '160.862'],
                                                                                                                'ann': '168.100',
                                                                                                                'djf': '157.997',
                                                                                                                'jja': '163.463',
                                                                                                                'mam': '156.689',
                                                                                                                'son': '164.821'},
                                                                                                 'std-obs_xy_devzm': {'ann': '159.139'},
                                                                                                 'std-obs_xyt': {'ann': '162.614'},
                                                                                                 'std_xy': {'CalendarMonths': ['2.089',
                                                                                                                               '2.045',
                                                                                                                               '2.124',
                                                                                                                               '2.211',
                                                                                                                               '2.193',
                                                                                                                               '2.202',
                                                                                                                               '2.255',
                                                                                                                               '2.231',
                                                                                                                               '2.119',
                                                                                                                               '2.120',
                                                                                                                               '2.070',
                                                                                                                               '2.123'],
                                                                                                            'ann': '1.897',
                                                                                                            'djf': '2.055',
                                                                                                            'jja': '2.201',
                                                                                                            'mam': '2.106',
                                                                                                            'son': '2.011'},
                                                                                                 'std_xy_devzm': {'ann': '1.127'},
                                                                                                 'std_xyt': {'ann': '2.150'}},
                                                                                  'global': {'bias_xy': {'CalendarMonths': ['320.949',
                                                                                                                            '320.075',
                                                                                                                            '318.972',
                                                                                                                            '322.206',
                                                                                                                            '325.233',
                                                                                                                            '329.289',
                                                                                                                            '331.259',
                                                                                                                            '332.021',
                                                                                                                            '332.346',
                                                                                                                            '331.352',
                                                                                                                            '329.920',
                                                                                                                            '325.776'],
                                                                                                         'ann': '322.690',
                                                                                                         'djf': '324.764',
                                                                                                         'jja': '331.162',
                                                                                                         'mam': '323.999',
                                                                                                         'son': '331.741'},
                                                                                             'cor_xy': {'CalendarMonths': ['0.76',
                                                                                                                           '0.74',
                                                                                                                           '0.72',
                                                                                                                           '0.70',
                                                                                                                           '0.71',
                                                                                                                           '0.72',
                                                                                                                           '0.72',
                                                                                                                           '0.72',
                                                                                                                           '0.72',
                                                                                                                           '0.74',
                                                                                                                           '0.76',
                                                                                                                           '0.78'],
                                                                                                        'ann': '0.769',
                                                                                                        'djf': '0.77',
                                                                                                        'jja': '0.73',
                                                                                                        'mam': '0.72',
                                                                                                        'son': '0.76'},
                                                                                             'mae_xy': {'CalendarMonths': ['321.219',
                                                                                                                           '320.344',
                                                                                                                           '319.173',
                                                                                                                           '322.419',
                                                                                                                           '325.485',
                                                                                                                           '329.572',
                                                                                                                           '331.524',
                                                                                                                           '332.226',
                                                                                                                           '332.630',
                                                                                                                           '331.557',
                                                                                                                           '330.179',
                                                                                                                           '326.030'],
                                                                                                        'ann': '322.847',
                                                                                                        'djf': '324.980',
                                                                                                        'jja': '331.370',
                                                                                                        'mam': '324.168',
                                                                                                        'son': '331.944'},
                                                                                             'mean-obs_xy': {'CalendarMonths': ['-314.753',
                                                                                                                                '-313.809',
                                                                                                                                '-312.674',
                                                                                                                                '-315.914',
                                                                                                                                '-319.026',
                                                                                                                                '-323.065',
                                                                                                                                '-324.965',
                                                                                                                                '-325.756',
                                                                                                                                '-326.169',
                                                                                                                                '-325.206',
                                                                                                                                '-323.774',
                                                                                                                                '-319.548'],
                                                                                                             'ann': '-316.439',
                                                                                                             'djf': '-318.546',
                                                                                                             'jja': '-324.903',
                                                                                                             'mam': '-317.746',
                                                                                                             'son': '-325.589'},
                                                                                             'mean_xy': {'CalendarMonths': ['6.146',
                                                                                                                            '6.226',
                                                                                                                            '6.269',
                                                                                                                            '6.287',
                                                                                                                            '6.213',
                                                                                                                            '6.241',
                                                                                                                            '6.329',
                                                                                                                            '6.334',
                                                                                                                            '6.258',
                                                                                                                            '6.204',
                                                                                                                            '6.141',
                                                                                                                            '6.176'],
                                                                                                         'ann': '6.235',
                                                                                                         'djf': '6.183',
                                                                                                         'jja': '6.301',
                                                                                                         'mam': '6.256',
                                                                                                         'son': '6.201'},
                                                                                             'rms_devzm': {'ann': '390.804'},
                                                                                             'rms_xy': {'CalendarMonths': ['548.424',
                                                                                                                           '547.740',
                                                                                                                           '546.925',
                                                                                                                           '549.610',
                                                                                                                           '552.048',
                                                                                                                           '555.201',
                                                                                                                           '556.665',
                                                                                                                           '556.702',
                                                                                                                           '556.753',
                                                                                                                           '556.116',
                                                                                                                           '555.278',
                                                                                                                           '552.122'],
                                                                                                        'ann': '548.283',
                                                                                                        'djf': '551.795',
                                                                                                        'jja': '556.827',
                                                                                                        'mam': '551.336',
                                                                                                        'son': '556.849'},
                                                                                             'rms_xyt': {'ann': '552.799'},
                                                                                             'rms_y': {'ann': '390.015'},
                                                                                             'rmsc_xy': {'CalendarMonths': ['444.702',
                                                                                                                            '444.489',
                                                                                                                            '444.279',
                                                                                                                            '445.257',
                                                                                                                            '446.073',
                                                                                                                            '447.008',
                                                                                                                            '447.373',
                                                                                                                            '446.854',
                                                                                                                            '446.677',
                                                                                                                            '446.622',
                                                                                                                            '446.639',
                                                                                                                            '445.768'],
                                                                                                         'ann': '443.267',
                                                                                                         'djf': '446.100',
                                                                                                         'jja': '447.647',
                                                                                                         'mam': '446.090',
                                                                                                         'son': '447.245'},
                                                                                             'std-obs_xy': {'CalendarMonths': ['446.776',
                                                                                                                               '446.481',
                                                                                                                               '446.230',
                                                                                                                               '447.186',
                                                                                                                               '448.029',
                                                                                                                               '449.026',
                                                                                                                               '449.459',
                                                                                                                               '448.933',
                                                                                                                               '448.682',
                                                                                                                               '448.654',
                                                                                                                               '448.714',
                                                                                                                               '447.917'],
                                                                                                            'ann': '445.276',
                                                                                                            'djf': '448.184',
                                                                                                            'jja': '449.708',
                                                                                                            'mam': '448.034',
                                                                                                            'son': '449.292'},
                                                                                             'std-obs_xy_devzm': {'ann': '392.497'},
                                                                                             'std-obs_xyt': {'ann': '448.035'},
                                                                                             'std_xy': {'CalendarMonths': ['2.730',
                                                                                                                           '2.685',
                                                                                                                           '2.720',
                                                                                                                           '2.766',
                                                                                                                           '2.764',
                                                                                                                           '2.806',
                                                                                                                           '2.886',
                                                                                                                           '2.887',
                                                                                                                           '2.782',
                                                                                                                           '2.762',
                                                                                                                           '2.719',
                                                                                                                           '2.773'],
                                                                                                        'ann': '2.615',
                                                                                                        'djf': '2.709',
                                                                                                        'jja': '2.842',
                                                                                                        'mam': '2.705',
                                                                                                        'son': '2.696'},
                                                                                             'std_xy_devzm': {'ann': '2.004'},
                                                                                             'std_xyt': {'ann': '2.775'}},
                                                                                  'ocean': {'bias_xy': {'CalendarMonths': ['51.258',
                                                                                                                           '51.157',
                                                                                                                           '49.413',
                                                                                                                           '50.916',
                                                                                                                           '52.142',
                                                                                                                           '55.108',
                                                                                                                           '56.107',
                                                                                                                           '57.503',
                                                                                                                           '58.968',
                                                                                                                           '56.836',
                                                                                                                           '55.950',
                                                                                                                           '53.143'],
                                                                                                        'ann': '57.318',
                                                                                                        'djf': '51.370',
                                                                                                        'jja': '54.690',
                                                                                                        'mam': '50.542',
                                                                                                        'son': '55.814'},
                                                                                            'cor_xy': {'CalendarMonths': ['0.41',
                                                                                                                          '0.41',
                                                                                                                          '0.43',
                                                                                                                          '0.44',
                                                                                                                          '0.45',
                                                                                                                          '0.45',
                                                                                                                          '0.45',
                                                                                                                          '0.45',
                                                                                                                          '0.43',
                                                                                                                          '0.43',
                                                                                                                          '0.42',
                                                                                                                          '0.42'],
                                                                                                       'ann': '0.487',
                                                                                                       'djf': '0.43',
                                                                                                       'jja': '0.45',
                                                                                                       'mam': '0.45',
                                                                                                       'son': '0.45'},
                                                                                            'mae_xy': {'CalendarMonths': ['51.638',
                                                                                                                          '51.535',
                                                                                                                          '49.695',
                                                                                                                          '51.216',
                                                                                                                          '52.499',
                                                                                                                          '55.510',
                                                                                                                          '56.483',
                                                                                                                          '57.795',
                                                                                                                          '59.371',
                                                                                                                          '57.128',
                                                                                                                          '56.319',
                                                                                                                          '53.501'],
                                                                                                       'ann': '57.538',
                                                                                                       'djf': '51.675',
                                                                                                       'jja': '54.986',
                                                                                                       'mam': '50.782',
                                                                                                       'son': '56.102'},
                                                                                            'mean-obs_xy': {'CalendarMonths': ['-43.816',
                                                                                                                               '-43.702',
                                                                                                                               '-41.958',
                                                                                                                               '-43.487',
                                                                                                                               '-44.775',
                                                                                                                               '-47.682',
                                                                                                                               '-48.563',
                                                                                                                               '-49.990',
                                                                                                                               '-51.582',
                                                                                                                               '-49.459',
                                                                                                                               '-48.545',
                                                                                                                               '-45.614'],
                                                                                                            'ann': '-49.886',
                                                                                                            'djf': '-43.891',
                                                                                                            'jja': '-47.189',
                                                                                                            'mam': '-43.132',
                                                                                                            'son': '-48.417'},
                                                                                            'mean_xy': {'CalendarMonths': ['7.327',
                                                                                                                           '7.360',
                                                                                                                           '7.371',
                                                                                                                           '7.364',
                                                                                                                           '7.303',
                                                                                                                           '7.367',
                                                                                                                           '7.499',
                                                                                                                           '7.517',
                                                                                                                           '7.414',
                                                                                                                           '7.371',
                                                                                                                           '7.318',
                                                                                                                           '7.386'],
                                                                                                        'ann': '7.383',
                                                                                                        'djf': '7.357',
                                                                                                        'jja': '7.460',
                                                                                                        'mam': '7.345',
                                                                                                        'son': '7.367'},
                                                                                            'rms_devzm': {'ann': '158.381'},
                                                                                            'rms_xy': {'CalendarMonths': ['165.847',
                                                                                                                          '165.391',
                                                                                                                          '161.715',
                                                                                                                          '164.407',
                                                                                                                          '166.825',
                                                                                                                          '172.643',
                                                                                                                          '174.671',
                                                                                                                          '176.423',
                                                                                                                          '179.545',
                                                                                                                          '174.867',
                                                                                                                          '173.905',
                                                                                                                          '168.574'],
                                                                                                       'ann': '176.736',
                                                                                                       'djf': '165.315',
                                                                                                       'jja': '171.442',
                                                                                                       'mam': '163.744',
                                                                                                       'son': '173.171'},
                                                                                            'rms_xyt': {'ann': '170.401'},
                                                                                            'rms_y': {'ann': '116.256'},
                                                                                            'rmsc_xy': {'CalendarMonths': ['157.728',
                                                                                                                           '157.280',
                                                                                                                           '153.981',
                                                                                                                           '156.323',
                                                                                                                           '158.467',
                                                                                                                           '163.611',
                                                                                                                           '165.415',
                                                                                                                           '166.789',
                                                                                                                           '169.586',
                                                                                                                           '165.373',
                                                                                                                           '164.658',
                                                                                                                           '159.978'],
                                                                                                        'ann': '167.183',
                                                                                                        'djf': '157.131',
                                                                                                        'jja': '162.485',
                                                                                                        'mam': '155.748',
                                                                                                        'son': '163.930'},
                                                                                            'std-obs_xy': {'CalendarMonths': ['158.566',
                                                                                                                              '158.117',
                                                                                                                              '154.875',
                                                                                                                              '157.283',
                                                                                                                              '159.444',
                                                                                                                              '164.600',
                                                                                                                              '166.420',
                                                                                                                              '167.774',
                                                                                                                              '170.494',
                                                                                                                              '166.263',
                                                                                                                              '165.526',
                                                                                                                              '160.862'],
                                                                                                           'ann': '168.100',
                                                                                                           'djf': '157.997',
                                                                                                           'jja': '163.463',
                                                                                                           'mam': '156.689',
                                                                                                           'son': '164.821'},
                                                                                            'std-obs_xy_devzm': {'ann': '159.139'},
                                                                                            'std-obs_xyt': {'ann': '162.614'},
                                                                                            'std_xy': {'CalendarMonths': ['2.089',
                                                                                                                          '2.045',
                                                                                                                          '2.124',
                                                                                                                          '2.211',
                                                                                                                          '2.193',
                                                                                                                          '2.202',
                                                                                                                          '2.255',
                                                                                                                          '2.231',
                                                                                                                          '2.119',
                                                                                                                          '2.120',
                                                                                                                          '2.070',
                                                                                                                          '2.123'],
                                                                                                       'ann': '1.897',
                                                                                                       'djf': '2.055',
                                                                                                       'jja': '2.201',
                                                                                                       'mam': '2.106',
                                                                                                       'son': '2.011'},
                                                                                            'std_xy_devzm': {'ann': '1.127'},
                                                                                            'std_xyt': {'ann': '2.150'}},
                                                                                  'ocean_50S50N': {'bias_xy': {'CalendarMonths': ['52.390',
                                                                                                                                  '53.024',
                                                                                                                                  '51.086',
                                                                                                                                  '52.090',
                                                                                                                                  '52.048',
                                                                                                                                  '53.342',
                                                                                                                                  '52.235',
                                                                                                                                  '51.470',
                                                                                                                                  '52.051',
                                                                                                                                  '51.686',
                                                                                                                                  '52.825',
                                                                                                                                  '52.699'],
                                                                                                               'ann': '52.433',
                                                                                                               'djf': '52.182',
                                                                                                               'jja': '52.350',
                                                                                                               'mam': '51.385',
                                                                                                               'son': '52.193'},
                                                                                                   'cor_xy': {'CalendarMonths': ['0.42',
                                                                                                                                 '0.43',
                                                                                                                                 '0.44',
                                                                                                                                 '0.45',
                                                                                                                                 '0.45',
                                                                                                                                 '0.45',
                                                                                                                                 '0.43',
                                                                                                                                 '0.43',
                                                                                                                                 '0.43',
                                                                                                                                 '0.45',
                                                                                                                                 '0.44',
                                                                                                                                 '0.43'],
                                                                                                              'ann': '0.503',
                                                                                                              'djf': '0.44',
                                                                                                              'jja': '0.44',
                                                                                                              'mam': '0.46',
                                                                                                              'son': '0.46'},
                                                                                                   'mae_xy': {'CalendarMonths': ['52.720',
                                                                                                                                 '53.314',
                                                                                                                                 '51.318',
                                                                                                                                 '52.357',
                                                                                                                                 '52.392',
                                                                                                                                 '53.749',
                                                                                                                                 '52.566',
                                                                                                                                 '51.716',
                                                                                                                                 '52.407',
                                                                                                                                 '51.942',
                                                                                                                                 '53.141',
                                                                                                                                 '53.000'],
                                                                                                              'ann': '52.603',
                                                                                                              'djf': '52.430',
                                                                                                              'jja': '52.622',
                                                                                                              'mam': '51.595',
                                                                                                              'son': '52.450'},
                                                                                                   'mean-obs_xy': {'CalendarMonths': ['-45.193',
                                                                                                                                      '-45.886',
                                                                                                                                      '-44.050',
                                                                                                                                      '-45.080',
                                                                                                                                      '-45.032',
                                                                                                                                      '-46.179',
                                                                                                                                      '-44.874',
                                                                                                                                      '-44.150',
                                                                                                                                      '-44.928',
                                                                                                                                      '-44.668',
                                                                                                                                      '-45.745',
                                                                                                                                      '-45.439'],
                                                                                                                   'ann': '-45.290',
                                                                                                                   'djf': '-44.986',
                                                                                                                   'jja': '-45.070',
                                                                                                                   'mam': '-44.363',
                                                                                                                   'son': '-45.119'},
                                                                                                   'mean_xy': {'CalendarMonths': ['7.197',
                                                                                                                                  '7.139',
                                                                                                                                  '7.034',
                                                                                                                                  '7.010',
                                                                                                                                  '7.016',
                                                                                                                                  '7.163',
                                                                                                                                  '7.361',
                                                                                                                                  '7.320',
                                                                                                                                  '7.123',
                                                                                                                                  '7.018',
                                                                                                                                  '7.080',
                                                                                                                                  '7.260'],
                                                                                                               'ann': '7.144',
                                                                                                               'djf': '7.198',
                                                                                                               'jja': '7.281',
                                                                                                               'mam': '7.020',
                                                                                                               'son': '7.074'},
                                                                                                   'rms_devzm': {'ann': '151.824'},
                                                                                                   'rms_xy': {'CalendarMonths': ['164.325',
                                                                                                                                 '165.412',
                                                                                                                                 '161.412',
                                                                                                                                 '163.269',
                                                                                                                                 '163.614',
                                                                                                                                 '166.673',
                                                                                                                                 '164.674',
                                                                                                                                 '162.545',
                                                                                                                                 '163.627',
                                                                                                                                 '162.473',
                                                                                                                                 '165.211',
                                                                                                                                 '164.955'],
                                                                                                              'ann': '163.959',
                                                                                                              'djf': '163.782',
                                                                                                              'jja': '164.538',
                                                                                                              'mam': '162.076',
                                                                                                              'son': '163.603'},
                                                                                                   'rms_xyt': {'ann': '164.016'},
                                                                                                   'rms_y': {'ann': '65.959'},
                                                                                                   'rmsc_xy': {'CalendarMonths': ['155.750',
                                                                                                                                  '156.683',
                                                                                                                                  '153.114',
                                                                                                                                  '154.736',
                                                                                                                                  '155.114',
                                                                                                                                  '157.906',
                                                                                                                                  '156.170',
                                                                                                                                  '154.181',
                                                                                                                                  '155.128',
                                                                                                                                  '154.032',
                                                                                                                                  '156.538',
                                                                                                                                  '156.310'],
                                                                                                               'ann': '155.348',
                                                                                                               'djf': '155.247',
                                                                                                               'jja': '155.988',
                                                                                                               'mam': '153.714',
                                                                                                               'son': '155.055'},
                                                                                                   'std-obs_xy': {'CalendarMonths': ['156.601',
                                                                                                                                     '157.508',
                                                                                                                                     '153.962',
                                                                                                                                     '155.628',
                                                                                                                                     '156.009',
                                                                                                                                     '158.791',
                                                                                                                                     '157.057',
                                                                                                                                     '155.047',
                                                                                                                                     '155.969',
                                                                                                                                     '154.892',
                                                                                                                                     '157.391',
                                                                                                                                     '157.197'],
                                                                                                                  'ann': '156.213',
                                                                                                                  'djf': '156.109',
                                                                                                                  'jja': '156.867',
                                                                                                                  'mam': '154.592',
                                                                                                                  'son': '155.906'},
                                                                                                   'std-obs_xy_devzm': {'ann': '152.590'},
                                                                                                   'std-obs_xyt': {'ann': '156.344'},
                                                                                                   'std_xy': {'CalendarMonths': ['2.054',
                                                                                                                                 '1.965',
                                                                                                                                 '1.957',
                                                                                                                                 '2.028',
                                                                                                                                 '2.007',
                                                                                                                                 '2.003',
                                                                                                                                 '2.083',
                                                                                                                                 '2.053',
                                                                                                                                 '1.969',
                                                                                                                                 '1.952',
                                                                                                                                 '1.980',
                                                                                                                                 '2.073'],
                                                                                                              'ann': '1.732',
                                                                                                              'djf': '2.000',
                                                                                                              'jja': '2.013',
                                                                                                              'mam': '1.914',
                                                                                                              'son': '1.863'},
                                                                                                   'std_xy_devzm': {'ann': '1.148'},
                                                                                                   'std_xyt': {'ann': '2.014'}}},
                                                                     'source': 'REMSS-PRW-v07r01'},
                                                         'units': 'm s-1'}},
                              'provenance': {'commandLine': '/home/lee1043/.conda/envs/pcmdi_metrics_dev_20230822/bin/mean_climate_driver.py '
                                                            '-p basic_param.py '
                                                            '-v sfcWind',
                                             'conda': {'Platform': 'linux-64',
                                                       'PythonVersion': '3.10.12.final.0',
                                                       'Version': '23.3.1',
                                                       'buildVersion': 'not '
                                                                       'installed'},
                                             'date': '2023-09-19 01:08:14',
                                             'openGL': {'GLX': {'client': {'vendor': 'Mesa '
                                                                                     'Project '
                                                                                     'and '
                                                                                     'SGI',
                                                                           'version': '1.4'},
                                                                'server': {'vendor': 'SGI',
                                                                           'version': '1.4'},
                                                                'version': '1.4'},
                                                        'renderer': 'llvmpipe '
                                                                    '(LLVM '
                                                                    '7.0, 256 '
                                                                    'bits)',
                                                        'shading language version': '1.20',
                                                        'vendor': 'VMware, '
                                                                  'Inc.',
                                                        'version': '2.1 Mesa '
                                                                   '18.3.4'},
                                             'osAccess': False,
                                             'packages': {'PMP': 'v3.0.2-11-g06b151f',
                                                          'PMPObs': 'See '
                                                                    "'References' "
                                                                    'key '
                                                                    'below, '
                                                                    'for '
                                                                    'detailed '
                                                                    'obs '
                                                                    'provenance '
                                                                    'information.',
                                                          'blas': '0.3.23',
                                                          'cdat_info': '8.2.1',
                                                          'cdms': '3.1.5',
                                                          'cdp': '1.7.0',
                                                          'cdtime': '3.1.4',
                                                          'cdutil': '8.2.1',
                                                          'clapack': None,
                                                          'esmf': '8.4.2',
                                                          'esmpy': '8.4.2',
                                                          'genutil': '8.2.1',
                                                          'lapack': '3.9.0',
                                                          'matplotlib': '3.7.1',
                                                          'mesalib': None,
                                                          'numpy': '1.23.5',
                                                          'python': '3.10.10',
                                                          'scipy': '1.11.2',
                                                          'uvcdat': None,
                                                          'vcs': None,
                                                          'vtk': None,
                                                          'xarray': '2023.8.0',
                                                          'xcdat': '0.5.0'},
                                             'platform': {'Name': 'gates.llnl.gov',
                                                          'OS': 'Linux',
                                                          'Version': '3.10.0-1160.71.1.el7.x86_64'},
                                             'userId': 'lee1043'}},
                  'ta': {'REFERENCE': {'default': {'CMIP_CMOR_TABLE': 'Amon',
                                                   'MD5sum': 'd16914100735aed571050db820554731',
                                                   'RefTrackingDate': 'Thu '
                                                                      'Aug  5 '
                                                                      '08:57:57 '
                                                                      '2021',
                                                   'filename': 'ta_mon_ERA-5_PCMDI_1x1.200301-201812.AC.v20210805.nc',
                                                   'period': '200301-201812',
                                                   'shape': '(12, 37, 180, '
                                                            '360)',
                                                   'template': 'ta/ERA-5/v20210805/ta_mon_ERA-5_PCMDI_1x1.200301-201812.AC.v20210805.nc'}},
                         'RESULTS': {'ACCESS-CM2': {'default': {'r1i1p1f1': {'InputClimatologyFileName': 'cmip6.historical.ACCESS-CM2.r1i1p1f1.mon.ta.198101-200512.AC.v20230823.nc',
                                                                             'NHEX': {'bias_xy': {'CalendarMonths': ['-2.649',
                                                                                                                     '-3.639',
                                                                                                                     '-4.352',
                                                                                                                     '-4.821',
                                                                                                                     '-4.594',
                                                                                                                     '-3.775',
                                                                                                                     '-2.905',
                                                                                                                     '-2.149',
                                                                                                                     '-2.028',
                                                                                                                     '-2.133',
                                                                                                                     '-1.972',
                                                                                                                     '-2.011'],
                                                                                                  'ann': '-3.086',
                                                                                                  'djf': '-2.775',
                                                                                                  'jja': '-2.943',
                                                                                                  'mam': '-4.596',
                                                                                                  'son': '-2.043'},
                                                                                      'cor_xy': {'CalendarMonths': ['0.92',
                                                                                                                    '0.80',
                                                                                                                    '0.56',
                                                                                                                    '0.55',
                                                                                                                    '0.89',
                                                                                                                    '0.91',
                                                                                                                    '0.86',
                                                                                                                    '0.74',
                                                                                                                    '0.71',
                                                                                                                    '0.91',
                                                                                                                    '0.84',
                                                                                                                    '0.88'],
                                                                                                 'ann': '0.650',
                                                                                                 'djf': '0.89',
                                                                                                 'jja': '0.85',
                                                                                                 'mam': '0.55',
                                                                                                 'son': '0.82'},
                                                                                      'mae_xy': {'CalendarMonths': ['2.990',
                                                                                                                    '4.126',
                                                                                                                    '4.538',
                                                                                                                    '4.825',
                                                                                                                    '4.594',
                                                                                                                    '3.775',
                                                                                                                    '2.918',
                                                                                                                    '2.590',
                                                                                                                    '2.409',
                                                                                                                    '2.137',
                                                                                                                    '2.164',
                                                                                                                    '2.346'],
                                                                                                 'ann': '3.095',
                                                                                                 'djf': '3.092',
                                                                                                 'jja': '2.946',
                                                                                                 'mam': '4.601',
                                                                                                 'son': '2.134'},
                                                                                      'mean-obs_xy': {'CalendarMonths': ['216.415',
                                                                                                                         '217.266',
                                                                                                                         '217.372',
                                                                                                                         '218.179',
                                                                                                                         '219.826',
                                                                                                                         '221.629',
                                                                                                                         '222.720',
                                                                                                                         '222.069',
                                                                                                                         '220.660',
                                                                                                                         '218.726',
                                                                                                                         '216.846',
                                                                                                                         '215.910'],
                                                                                                      'ann': '218.968',
                                                                                                      'djf': '216.537',
                                                                                                      'jja': '222.133',
                                                                                                      'mam': '218.477',
                                                                                                      'son': '218.744'},
                                                                                      'mean_xy': {'CalendarMonths': ['213.766',
                                                                                                                     '213.627',
                                                                                                                     '213.019',
                                                                                                                     '213.358',
                                                                                                                     '215.233',
                                                                                                                     '217.854',
                                                                                                                     '219.815',
                                                                                                                     '219.921',
                                                                                                                     '218.632',
                                                                                                                     '216.593',
                                                                                                                     '214.874',
                                                                                                                     '213.899'],
                                                                                                  'ann': '215.883',
                                                                                                  'djf': '213.762',
                                                                                                  'jja': '219.190',
                                                                                                  'mam': '213.881',
                                                                                                  'son': '216.701'},
                                                                                      'rms_devzm': {'ann': '0.615'},
                                                                                      'rms_xy': {'CalendarMonths': ['3.432',
                                                                                                                    '4.818',
                                                                                                                    '5.329',
                                                                                                                    '5.502',
                                                                                                                    '5.008',
                                                                                                                    '4.121',
                                                                                                                    '3.455',
                                                                                                                    '3.126',
                                                                                                                    '2.794',
                                                                                                                    '2.333',
                                                                                                                    '2.487',
                                                                                                                    '2.767'],
                                                                                                 'ann': '3.566',
                                                                                                 'djf': '3.601',
                                                                                                 'jja': '3.445',
                                                                                                 'mam': '5.225',
                                                                                                 'son': '2.412'},
                                                                                      'rms_xyt': {'ann': '3.764'},
                                                                                      'rms_y': {'ann': '3.513'},
                                                                                      'rmsc_xy': {'CalendarMonths': ['2.181',
                                                                                                                     '3.157',
                                                                                                                     '3.074',
                                                                                                                     '2.650',
                                                                                                                     '1.994',
                                                                                                                     '1.654',
                                                                                                                     '1.870',
                                                                                                                     '2.270',
                                                                                                                     '1.922',
                                                                                                                     '0.944',
                                                                                                                     '1.515',
                                                                                                                     '1.901'],
                                                                                                  'ann': '1.788',
                                                                                                  'djf': '2.295',
                                                                                                  'jja': '1.790',
                                                                                                  'mam': '2.486',
                                                                                                  'son': '1.282'},
                                                                                      'std-obs_xy': {'CalendarMonths': ['4.043',
                                                                                                                        '3.058',
                                                                                                                        '2.651',
                                                                                                                        '3.067',
                                                                                                                        '3.997',
                                                                                                                        '3.976',
                                                                                                                        '3.594',
                                                                                                                        '3.009',
                                                                                                                        '2.379',
                                                                                                                        '2.230',
                                                                                                                        '2.176',
                                                                                                                        '3.146'],
                                                                                                     'ann': '2.077',
                                                                                                     'djf': '3.361',
                                                                                                     'jja': '3.426',
                                                                                                     'mam': '2.876',
                                                                                                     'son': '2.006'},
                                                                                      'std-obs_xy_devzm': {'ann': '1.721'},
                                                                                      'std-obs_xyt': {'ann': '3.895'},
                                                                                      'std_xy': {'CalendarMonths': ['5.180',
                                                                                                                    '4.993',
                                                                                                                    '3.616',
                                                                                                                    '2.409',
                                                                                                                    '2.776',
                                                                                                                    '3.344',
                                                                                                                    '3.502',
                                                                                                                    '3.210',
                                                                                                                    '2.648',
                                                                                                                    '2.244',
                                                                                                                    '2.801',
                                                                                                                    '3.995'],
                                                                                                 'ann': '2.189',
                                                                                                 'djf': '4.700',
                                                                                                 'jja': '3.126',
                                                                                                 'mam': '2.225',
                                                                                                 'son': '2.208'},
                                                                                      'std_xy_devzm': {'ann': '1.979'},
                                                                                      'std_xyt': {'ann': '4.293'}},
                                                                             'SHEX': {'bias_xy': {'CalendarMonths': ['-3.130',
                                                                                                                     '-2.343',
                                                                                                                     '-2.152',
                                                                                                                     '-2.270',
                                                                                                                     '-2.640',
                                                                                                                     '-3.018',
                                                                                                                     '-3.115',
                                                                                                                     '-3.051',
                                                                                                                     '-3.421',
                                                                                                                     '-3.951',
                                                                                                                     '-3.724',
                                                                                                                     '-3.397'],
                                                                                                  'ann': '-3.018',
                                                                                                  'djf': '-2.952',
                                                                                                  'jja': '-3.061',
                                                                                                  'mam': '-2.357',
                                                                                                  'son': '-3.696'},
                                                                                      'cor_xy': {'CalendarMonths': ['0.85',
                                                                                                                    '0.91',
                                                                                                                    '0.86',
                                                                                                                    '0.23',
                                                                                                                    '0.79',
                                                                                                                    '0.97',
                                                                                                                    '0.98',
                                                                                                                    '0.99',
                                                                                                                    '0.97',
                                                                                                                    '0.92',
                                                                                                                    '0.85',
                                                                                                                    '0.19'],
                                                                                                 'ann': '0.873',
                                                                                                 'djf': '0.69',
                                                                                                 'jja': '0.99',
                                                                                                 'mam': '0.25',
                                                                                                 'son': '0.95'},
                                                                                      'mae_xy': {'CalendarMonths': ['3.250',
                                                                                                                    '2.451',
                                                                                                                    '2.428',
                                                                                                                    '2.534',
                                                                                                                    '2.721',
                                                                                                                    '3.041',
                                                                                                                    '3.162',
                                                                                                                    '3.129',
                                                                                                                    '3.545',
                                                                                                                    '3.982',
                                                                                                                    '3.802',
                                                                                                                    '3.500'],
                                                                                                 'ann': '3.043',
                                                                                                 'djf': '3.044',
                                                                                                 'jja': '3.099',
                                                                                                 'mam': '2.506',
                                                                                                 'son': '3.738'},
                                                                                      'mean-obs_xy': {'CalendarMonths': ['221.344',
                                                                                                                         '221.708',
                                                                                                                         '220.377',
                                                                                                                         '217.774',
                                                                                                                         '215.083',
                                                                                                                         '213.318',
                                                                                                                         '212.594',
                                                                                                                         '212.419',
                                                                                                                         '213.355',
                                                                                                                         '215.281',
                                                                                                                         '217.149',
                                                                                                                         '219.407'],
                                                                                                      'ann': '216.651',
                                                                                                      'djf': '220.835',
                                                                                                      'jja': '212.779',
                                                                                                      'mam': '217.693',
                                                                                                      'son': '215.261'},
                                                                                      'mean_xy': {'CalendarMonths': ['218.214',
                                                                                                                     '219.366',
                                                                                                                     '218.224',
                                                                                                                     '215.505',
                                                                                                                     '212.442',
                                                                                                                     '210.299',
                                                                                                                     '209.479',
                                                                                                                     '209.368',
                                                                                                                     '209.933',
                                                                                                                     '211.330',
                                                                                                                     '213.425',
                                                                                                                     '216.010'],
                                                                                                  'ann': '213.633',
                                                                                                  'djf': '217.883',
                                                                                                  'jja': '209.718',
                                                                                                  'mam': '215.336',
                                                                                                  'son': '211.565'},
                                                                                      'rms_devzm': {'ann': '0.393'},
                                                                                      'rms_xy': {'CalendarMonths': ['4.041',
                                                                                                                    '3.179',
                                                                                                                    '3.102',
                                                                                                                    '3.365',
                                                                                                                    '3.353',
                                                                                                                    '3.369',
                                                                                                                    '3.378',
                                                                                                                    '3.322',
                                                                                                                    '3.942',
                                                                                                                    '4.806',
                                                                                                                    '4.744',
                                                                                                                    '4.733'],
                                                                                                 'ann': '3.562',
                                                                                                 'djf': '3.934',
                                                                                                 'jja': '3.297',
                                                                                                 'mam': '3.237',
                                                                                                 'son': '4.288'},
                                                                                      'rms_xyt': {'ann': '3.778'},
                                                                                      'rms_y': {'ann': '3.540'},
                                                                                      'rmsc_xy': {'CalendarMonths': ['2.556',
                                                                                                                     '2.149',
                                                                                                                     '2.234',
                                                                                                                     '2.484',
                                                                                                                     '2.067',
                                                                                                                     '1.497',
                                                                                                                     '1.308',
                                                                                                                     '1.313',
                                                                                                                     '1.959',
                                                                                                                     '2.736',
                                                                                                                     '2.940',
                                                                                                                     '3.296'],
                                                                                                  'ann': '1.892',
                                                                                                  'djf': '2.601',
                                                                                                  'jja': '1.224',
                                                                                                  'mam': '2.219',
                                                                                                  'son': '2.175'},
                                                                                      'std-obs_xy': {'CalendarMonths': ['3.858',
                                                                                                                        '3.870',
                                                                                                                        '3.512',
                                                                                                                        '2.341',
                                                                                                                        '1.987',
                                                                                                                        '4.091',
                                                                                                                        '6.201',
                                                                                                                        '7.466',
                                                                                                                        '7.374',
                                                                                                                        '5.860',
                                                                                                                        '3.343',
                                                                                                                        '2.709'],
                                                                                                     'ann': '2.126',
                                                                                                     'djf': '3.390',
                                                                                                     'jja': '5.860',
                                                                                                     'mam': '2.032',
                                                                                                     'son': '5.232'},
                                                                                      'std-obs_xy_devzm': {'ann': '1.135'},
                                                                                      'std-obs_xyt': {'ann': '5.781'},
                                                                                      'std_xy': {'CalendarMonths': ['1.750',
                                                                                                                    '2.115',
                                                                                                                    '1.692',
                                                                                                                    '1.526',
                                                                                                                    '3.226',
                                                                                                                    '5.035',
                                                                                                                    '6.842',
                                                                                                                    '7.921',
                                                                                                                    '7.906',
                                                                                                                    '6.838',
                                                                                                                    '5.161',
                                                                                                                    '2.474'],
                                                                                                 'ann': '3.439',
                                                                                                 'djf': '1.478',
                                                                                                 'jja': '6.562',
                                                                                                 'mam': '1.540',
                                                                                                 'son': '6.477'},
                                                                                      'std_xy_devzm': {'ann': '1.013'},
                                                                                      'std_xyt': {'ann': '6.132'}},
                                                                             'TROPICS': {'bias_xy': {'CalendarMonths': ['0.606',
                                                                                                                        '0.835',
                                                                                                                        '0.830',
                                                                                                                        '0.323',
                                                                                                                        '-0.546',
                                                                                                                        '-0.663',
                                                                                                                        '-0.312',
                                                                                                                        '-0.117',
                                                                                                                        '-0.030',
                                                                                                                        '-0.138',
                                                                                                                        '0.063',
                                                                                                                        '0.370'],
                                                                                                     'ann': '0.102',
                                                                                                     'djf': '0.606',
                                                                                                     'jja': '-0.365',
                                                                                                     'mam': '0.191',
                                                                                                     'son': '-0.034'},
                                                                                         'cor_xy': {'CalendarMonths': ['0.85',
                                                                                                                       '0.82',
                                                                                                                       '0.71',
                                                                                                                       '0.92',
                                                                                                                       '0.94',
                                                                                                                       '0.86',
                                                                                                                       '0.87',
                                                                                                                       '0.85',
                                                                                                                       '0.79',
                                                                                                                       '0.83',
                                                                                                                       '0.91',
                                                                                                                       '0.91'],
                                                                                                    'ann': '0.926',
                                                                                                    'djf': '0.88',
                                                                                                    'jja': '0.88',
                                                                                                    'mam': '0.92',
                                                                                                    'son': '0.87'},
                                                                                         'mae_xy': {'CalendarMonths': ['0.744',
                                                                                                                       '0.845',
                                                                                                                       '0.872',
                                                                                                                       '0.437',
                                                                                                                       '0.626',
                                                                                                                       '0.806',
                                                                                                                       '0.631',
                                                                                                                       '0.736',
                                                                                                                       '0.816',
                                                                                                                       '0.550',
                                                                                                                       '0.405',
                                                                                                                       '0.528'],
                                                                                                    'ann': '0.327',
                                                                                                    'djf': '0.660',
                                                                                                    'jja': '0.663',
                                                                                                    'mam': '0.353',
                                                                                                    'son': '0.494'},
                                                                                         'mean-obs_xy': {'CalendarMonths': ['219.646',
                                                                                                                            '219.839',
                                                                                                                            '219.636',
                                                                                                                            '219.425',
                                                                                                                            '219.670',
                                                                                                                            '219.763',
                                                                                                                            '219.783',
                                                                                                                            '219.861',
                                                                                                                            '219.621',
                                                                                                                            '219.373',
                                                                                                                            '219.126',
                                                                                                                            '219.246'],
                                                                                                         'ann': '219.583',
                                                                                                         'djf': '219.581',
                                                                                                         'jja': '219.803',
                                                                                                         'mam': '219.574',
                                                                                                         'son': '219.373'},
                                                                                         'mean_xy': {'CalendarMonths': ['220.253',
                                                                                                                        '220.674',
                                                                                                                        '220.467',
                                                                                                                        '219.747',
                                                                                                                        '219.124',
                                                                                                                        '219.100',
                                                                                                                        '219.471',
                                                                                                                        '219.745',
                                                                                                                        '219.591',
                                                                                                                        '219.235',
                                                                                                                        '219.189',
                                                                                                                        '219.616'],
                                                                                                     'ann': '219.684',
                                                                                                     'djf': '220.187',
                                                                                                     'jja': '219.438',
                                                                                                     'mam': '219.766',
                                                                                                     'son': '219.339'},
                                                                                         'rms_devzm': {'ann': '0.360'},
                                                                                         'rms_xy': {'CalendarMonths': ['0.909',
                                                                                                                       '1.026',
                                                                                                                       '1.123',
                                                                                                                       '0.618',
                                                                                                                       '0.778',
                                                                                                                       '1.106',
                                                                                                                       '0.978',
                                                                                                                       '1.027',
                                                                                                                       '1.099',
                                                                                                                       '0.761',
                                                                                                                       '0.541',
                                                                                                                       '0.708'],
                                                                                                    'ann': '0.441',
                                                                                                    'djf': '0.830',
                                                                                                    'jja': '0.934',
                                                                                                    'mam': '0.521',
                                                                                                    'son': '0.675'},
                                                                                         'rms_xyt': {'ann': '0.889'},
                                                                                         'rms_y': {'ann': '0.254'},
                                                                                         'rmsc_xy': {'CalendarMonths': ['0.678',
                                                                                                                        '0.596',
                                                                                                                        '0.755',
                                                                                                                        '0.527',
                                                                                                                        '0.553',
                                                                                                                        '0.885',
                                                                                                                        '0.927',
                                                                                                                        '1.021',
                                                                                                                        '1.099',
                                                                                                                        '0.748',
                                                                                                                        '0.537',
                                                                                                                        '0.603'],
                                                                                                     'ann': '0.429',
                                                                                                     'djf': '0.567',
                                                                                                     'jja': '0.860',
                                                                                                     'mam': '0.484',
                                                                                                     'son': '0.674'},
                                                                                         'std-obs_xy': {'CalendarMonths': ['1.280',
                                                                                                                           '1.022',
                                                                                                                           '1.077',
                                                                                                                           '1.338',
                                                                                                                           '1.527',
                                                                                                                           '1.607',
                                                                                                                           '1.614',
                                                                                                                           '1.416',
                                                                                                                           '1.164',
                                                                                                                           '1.010',
                                                                                                                           '1.274',
                                                                                                                           '1.430'],
                                                                                                        'ann': '1.054',
                                                                                                        'djf': '1.212',
                                                                                                        'jja': '1.505',
                                                                                                        'mam': '1.249',
                                                                                                        'son': '1.026'},
                                                                                         'std-obs_xy_devzm': {'ann': '0.979'},
                                                                                         'std-obs_xyt': {'ann': '1.349'},
                                                                                         'std_xy': {'CalendarMonths': ['0.987',
                                                                                                                       '0.987',
                                                                                                                       '0.814',
                                                                                                                       '1.254',
                                                                                                                       '1.544',
                                                                                                                       '1.709',
                                                                                                                       '1.887',
                                                                                                                       '1.917',
                                                                                                                       '1.765',
                                                                                                                       '1.342',
                                                                                                                       '1.266',
                                                                                                                       '1.212'],
                                                                                                    'ann': '1.136',
                                                                                                    'djf': '1.025',
                                                                                                    'jja': '1.792',
                                                                                                    'mam': '1.133',
                                                                                                    'son': '1.330'},
                                                                                         'std_xy_devzm': {'ann': '1.050'},
                                                                                         'std_xyt': {'ann': '1.522'}},
                                                                             'global': {'bias_xy': {'CalendarMonths': ['-1.142',
                                                                                                                       '-1.078',
                                                                                                                       '-1.211',
                                                                                                                       '-1.611',
                                                                                                                       '-2.082',
                                                                                                                       '-2.030',
                                                                                                                       '-1.661',
                                                                                                                       '-1.358',
                                                                                                                       '-1.377',
                                                                                                                       '-1.590',
                                                                                                                       '-1.392',
                                                                                                                       '-1.167'],
                                                                                                    'ann': '-1.475',
                                                                                                    'djf': '-1.129',
                                                                                                    'jja': '-1.683',
                                                                                                    'mam': '-1.643',
                                                                                                    'son': '-1.452'},
                                                                                        'cor_xy': {'CalendarMonths': ['0.78',
                                                                                                                      '0.73',
                                                                                                                      '0.61',
                                                                                                                      '0.52',
                                                                                                                      '0.80',
                                                                                                                      '0.92',
                                                                                                                      '0.95',
                                                                                                                      '0.95',
                                                                                                                      '0.94',
                                                                                                                      '0.91',
                                                                                                                      '0.85',
                                                                                                                      '0.70'],
                                                                                                   'ann': '0.822',
                                                                                                   'djf': '0.74',
                                                                                                   'jja': '0.95',
                                                                                                   'mam': '0.54',
                                                                                                   'son': '0.93'},
                                                                                        'mae_xy': {'CalendarMonths': ['1.932',
                                                                                                                      '2.067',
                                                                                                                      '2.177',
                                                                                                                      '2.059',
                                                                                                                      '2.141',
                                                                                                                      '2.107',
                                                                                                                      '1.836',
                                                                                                                      '1.798',
                                                                                                                      '1.897',
                                                                                                                      '1.805',
                                                                                                                      '1.694',
                                                                                                                      '1.726'],
                                                                                                   'ann': '1.698',
                                                                                                   'djf': '1.864',
                                                                                                   'jja': '1.843',
                                                                                                   'mam': '1.954',
                                                                                                   'son': '1.715'},
                                                                                        'mean-obs_xy': {'CalendarMonths': ['219.263',
                                                                                                                           '219.663',
                                                                                                                           '219.255',
                                                                                                                           '218.701',
                                                                                                                           '218.562',
                                                                                                                           '218.618',
                                                                                                                           '218.720',
                                                                                                                           '218.553',
                                                                                                                           '218.314',
                                                                                                                           '218.188',
                                                                                                                           '218.061',
                                                                                                                           '218.452'],
                                                                                                        'ann': '218.696',
                                                                                                        'djf': '219.133',
                                                                                                        'jja': '218.629',
                                                                                                        'mam': '218.830',
                                                                                                        'son': '218.188'},
                                                                                        'mean_xy': {'CalendarMonths': ['218.121',
                                                                                                                       '218.585',
                                                                                                                       '218.044',
                                                                                                                       '217.089',
                                                                                                                       '216.481',
                                                                                                                       '216.589',
                                                                                                                       '217.059',
                                                                                                                       '217.194',
                                                                                                                       '216.937',
                                                                                                                       '216.598',
                                                                                                                       '216.669',
                                                                                                                       '217.285'],
                                                                                                    'ann': '217.221',
                                                                                                    'djf': '218.005',
                                                                                                    'jja': '216.946',
                                                                                                    'mam': '217.187',
                                                                                                    'son': '216.736'},
                                                                                        'rms_devzm': {'ann': '0.445'},
                                                                                        'rms_xy': {'CalendarMonths': ['2.728',
                                                                                                                      '2.976',
                                                                                                                      '3.183',
                                                                                                                      '3.254',
                                                                                                                      '3.063',
                                                                                                                      '2.774',
                                                                                                                      '2.513',
                                                                                                                      '2.393',
                                                                                                                      '2.538',
                                                                                                                      '2.725',
                                                                                                                      '2.706',
                                                                                                                      '2.787'],
                                                                                                   'ann': '2.539',
                                                                                                   'djf': '2.730',
                                                                                                   'jja': '2.474',
                                                                                                   'mam': '3.095',
                                                                                                   'son': '2.506'},
                                                                                        'rms_xyt': {'ann': '2.803'},
                                                                                        'rms_y': {'ann': '2.500'},
                                                                                        'rmsc_xy': {'CalendarMonths': ['2.477',
                                                                                                                       '2.773',
                                                                                                                       '2.944',
                                                                                                                       '2.827',
                                                                                                                       '2.247',
                                                                                                                       '1.891',
                                                                                                                       '1.886',
                                                                                                                       '1.971',
                                                                                                                       '2.132',
                                                                                                                       '2.213',
                                                                                                                       '2.320',
                                                                                                                       '2.531'],
                                                                                                    'ann': '2.067',
                                                                                                    'djf': '2.486',
                                                                                                    'jja': '1.813',
                                                                                                    'mam': '2.624',
                                                                                                    'son': '2.043'},
                                                                                        'std-obs_xy': {'CalendarMonths': ['3.436',
                                                                                                                          '3.017',
                                                                                                                          '2.588',
                                                                                                                          '2.272',
                                                                                                                          '3.192',
                                                                                                                          '4.401',
                                                                                                                          '5.300',
                                                                                                                          '5.527',
                                                                                                                          '4.906',
                                                                                                                          '3.637',
                                                                                                                          '2.436',
                                                                                                                          '2.737'],
                                                                                                       'ann': '2.055',
                                                                                                       'djf': '2.990',
                                                                                                       'jja': '4.997',
                                                                                                       'mam': '2.124',
                                                                                                       'son': '3.361'},
                                                                                        'std-obs_xy_devzm': {'ann': '1.242'},
                                                                                        'std-obs_xyt': {'ann': '3.810'},
                                                                                        'std_xy': {'CalendarMonths': ['3.870',
                                                                                                                      '4.040',
                                                                                                                      '3.684',
                                                                                                                      '3.234',
                                                                                                                      '3.699',
                                                                                                                      '4.903',
                                                                                                                      '5.977',
                                                                                                                      '6.366',
                                                                                                                      '5.953',
                                                                                                                      '4.926',
                                                                                                                      '4.004',
                                                                                                                      '3.499'],
                                                                                                   'ann': '3.391',
                                                                                                   'djf': '3.671',
                                                                                                   'jja': '5.678',
                                                                                                   'mam': '3.064',
                                                                                                   'son': '4.761'},
                                                                                        'std_xy_devzm': {'ann': '1.337'},
                                                                                        'std_xyt': {'ann': '4.676'}},
                                                                             'land_NHEX': {'bias_xy': {'CalendarMonths': ['-3.034',
                                                                                                                          '-4.234',
                                                                                                                          '-4.844',
                                                                                                                          '-5.220',
                                                                                                                          '-4.695',
                                                                                                                          '-3.645',
                                                                                                                          '-2.603',
                                                                                                                          '-1.824',
                                                                                                                          '-2.157',
                                                                                                                          '-2.413',
                                                                                                                          '-2.610',
                                                                                                                          '-2.645'],
                                                                                                       'ann': '-3.327',
                                                                                                       'djf': '-3.312',
                                                                                                       'jja': '-2.692',
                                                                                                       'mam': '-4.924',
                                                                                                       'son': '-2.393'},
                                                                                           'cor_xy': {'CalendarMonths': ['0.93',
                                                                                                                         '0.81',
                                                                                                                         '0.60',
                                                                                                                         '0.48',
                                                                                                                         '0.81',
                                                                                                                         '0.89',
                                                                                                                         '0.82',
                                                                                                                         '0.71',
                                                                                                                         '0.75',
                                                                                                                         '0.95',
                                                                                                                         '0.92',
                                                                                                                         '0.90'],
                                                                                                      'ann': '0.711',
                                                                                                      'djf': '0.90',
                                                                                                      'jja': '0.82',
                                                                                                      'mam': '0.52',
                                                                                                      'son': '0.88'},
                                                                                           'mae_xy': {'CalendarMonths': ['3.283',
                                                                                                                         '4.387',
                                                                                                                         '4.922',
                                                                                                                         '5.222',
                                                                                                                         '4.695',
                                                                                                                         '3.645',
                                                                                                                         '2.621',
                                                                                                                         '2.465',
                                                                                                                         '2.427',
                                                                                                                         '2.413',
                                                                                                                         '2.614',
                                                                                                                         '2.793'],
                                                                                                      'ann': '3.327',
                                                                                                      'djf': '3.455',
                                                                                                      'jja': '2.692',
                                                                                                      'mam': '4.924',
                                                                                                      'son': '2.393'},
                                                                                           'mean-obs_xy': {'CalendarMonths': ['215.484',
                                                                                                                              '216.663',
                                                                                                                              '216.973',
                                                                                                                              '218.037',
                                                                                                                              '219.897',
                                                                                                                              '221.895',
                                                                                                                              '223.445',
                                                                                                                              '222.578',
                                                                                                                              '220.748',
                                                                                                                              '218.199',
                                                                                                                              '216.436',
                                                                                                                              '215.351'],
                                                                                                           'ann': '218.809',
                                                                                                           'djf': '215.838',
                                                                                                           'jja': '222.631',
                                                                                                           'mam': '218.325',
                                                                                                           'son': '218.464'},
                                                                                           'mean_xy': {'CalendarMonths': ['212.450',
                                                                                                                          '212.429',
                                                                                                                          '212.130',
                                                                                                                          '212.817',
                                                                                                                          '215.202',
                                                                                                                          '218.250',
                                                                                                                          '220.842',
                                                                                                                          '220.754',
                                                                                                                          '218.591',
                                                                                                                          '215.786',
                                                                                                                          '213.826',
                                                                                                                          '212.705'],
                                                                                                       'ann': '215.482',
                                                                                                       'djf': '212.526',
                                                                                                       'jja': '219.939',
                                                                                                       'mam': '213.401',
                                                                                                       'son': '216.071'},
                                                                                           'rms_devzm': {'ann': '0.503'},
                                                                                           'rms_xy': {'CalendarMonths': ['3.689',
                                                                                                                         '5.017',
                                                                                                                         '5.620',
                                                                                                                         '5.913',
                                                                                                                         '5.078',
                                                                                                                         '3.930',
                                                                                                                         '3.205',
                                                                                                                         '2.998',
                                                                                                                         '2.831',
                                                                                                                         '2.515',
                                                                                                                         '2.832',
                                                                                                                         '3.152'],
                                                                                                      'ann': '3.708',
                                                                                                      'djf': '3.903',
                                                                                                      'jja': '3.204',
                                                                                                      'mam': '5.497',
                                                                                                      'son': '2.594'},
                                                                                           'rms_xyt': {'ann': '3.898'},
                                                                                           'rms_y': {'ann': '3.540'},
                                                                                           'rmsc_xy': {'CalendarMonths': ['2.099',
                                                                                                                          '2.692',
                                                                                                                          '2.850',
                                                                                                                          '2.778',
                                                                                                                          '1.935',
                                                                                                                          '1.471',
                                                                                                                          '1.870',
                                                                                                                          '2.379',
                                                                                                                          '1.834',
                                                                                                                          '0.710',
                                                                                                                          '1.100',
                                                                                                                          '1.714'],
                                                                                                       'ann': '1.637',
                                                                                                       'djf': '2.065',
                                                                                                       'jja': '1.738',
                                                                                                       'mam': '2.443',
                                                                                                       'son': '1.002'},
                                                                                           'std-obs_xy': {'CalendarMonths': ['3.440',
                                                                                                                             '2.830',
                                                                                                                             '2.647',
                                                                                                                             '2.771',
                                                                                                                             '3.323',
                                                                                                                             '3.133',
                                                                                                                             '2.548',
                                                                                                                             '2.313',
                                                                                                                             '2.049',
                                                                                                                             '2.239',
                                                                                                                             '2.253',
                                                                                                                             '2.701'],
                                                                                                          'ann': '1.829',
                                                                                                          'djf': '2.940',
                                                                                                          'jja': '2.526',
                                                                                                          'mam': '2.567',
                                                                                                          'son': '1.944'},
                                                                                           'std-obs_xy_devzm': {'ann': '1.499'},
                                                                                           'std-obs_xyt': {'ann': '3.836'},
                                                                                           'std_xy': {'CalendarMonths': ['4.849',
                                                                                                                         '4.402',
                                                                                                                         '3.482',
                                                                                                                         '2.692',
                                                                                                                         '2.548',
                                                                                                                         '3.140',
                                                                                                                         '3.274',
                                                                                                                         '3.380',
                                                                                                                         '2.770',
                                                                                                                         '2.196',
                                                                                                                         '2.736',
                                                                                                                         '3.705'],
                                                                                                      'ann': '2.316',
                                                                                                      'djf': '4.300',
                                                                                                      'jja': '2.997',
                                                                                                      'mam': '2.431',
                                                                                                      'son': '2.095'},
                                                                                           'std_xy_devzm': {'ann': '1.710'},
                                                                                           'std_xyt': {'ann': '4.617'}},
                                                                             'ocean_SHEX': {'bias_xy': {'CalendarMonths': ['-2.801',
                                                                                                                           '-2.141',
                                                                                                                           '-1.915',
                                                                                                                           '-1.940',
                                                                                                                           '-2.397',
                                                                                                                           '-2.970',
                                                                                                                           '-3.138',
                                                                                                                           '-3.117',
                                                                                                                           '-3.512',
                                                                                                                           '-3.918',
                                                                                                                           '-3.414',
                                                                                                                           '-2.871'],
                                                                                                        'ann': '-2.844',
                                                                                                        'djf': '-2.602',
                                                                                                        'jja': '-3.074',
                                                                                                        'mam': '-2.086',
                                                                                                        'son': '-3.611'},
                                                                                            'cor_xy': {'CalendarMonths': ['0.87',
                                                                                                                          '0.91',
                                                                                                                          '0.86',
                                                                                                                          '0.39',
                                                                                                                          '0.58',
                                                                                                                          '0.95',
                                                                                                                          '0.98',
                                                                                                                          '0.98',
                                                                                                                          '0.96',
                                                                                                                          '0.86',
                                                                                                                          '0.71',
                                                                                                                          '0.31'],
                                                                                                       'ann': '0.756',
                                                                                                       'djf': '0.78',
                                                                                                       'jja': '0.98',
                                                                                                       'mam': '0.35',
                                                                                                       'son': '0.92'},
                                                                                            'mae_xy': {'CalendarMonths': ['2.927',
                                                                                                                          '2.256',
                                                                                                                          '2.233',
                                                                                                                          '2.223',
                                                                                                                          '2.471',
                                                                                                                          '2.986',
                                                                                                                          '3.174',
                                                                                                                          '3.180',
                                                                                                                          '3.609',
                                                                                                                          '3.951',
                                                                                                                          '3.497',
                                                                                                                          '2.977'],
                                                                                                       'ann': '2.872',
                                                                                                       'djf': '2.701',
                                                                                                       'jja': '3.100',
                                                                                                       'mam': '2.250',
                                                                                                       'son': '3.654'},
                                                                                            'mean-obs_xy': {'CalendarMonths': ['220.901',
                                                                                                                               '221.207',
                                                                                                                               '219.950',
                                                                                                                               '217.687',
                                                                                                                               '215.486',
                                                                                                                               '214.141',
                                                                                                                               '213.662',
                                                                                                                               '213.646',
                                                                                                                               '214.670',
                                                                                                                               '216.481',
                                                                                                                               '217.884',
                                                                                                                               '219.377'],
                                                                                                            'ann': '217.091',
                                                                                                            'djf': '220.507',
                                                                                                            'jja': '213.818',
                                                                                                            'mam': '217.663',
                                                                                                            'son': '216.343'},
                                                                                            'mean_xy': {'CalendarMonths': ['218.099',
                                                                                                                           '219.066',
                                                                                                                           '218.035',
                                                                                                                           '215.747',
                                                                                                                           '213.090',
                                                                                                                           '211.171',
                                                                                                                           '210.524',
                                                                                                                           '210.529',
                                                                                                                           '211.158',
                                                                                                                           '212.563',
                                                                                                                           '214.470',
                                                                                                                           '216.506'],
                                                                                                        'ann': '214.246',
                                                                                                        'djf': '217.905',
                                                                                                        'jja': '210.744',
                                                                                                        'mam': '215.578',
                                                                                                        'son': '212.732'},
                                                                                            'rms_devzm': {'ann': '0.376'},
                                                                                            'rms_xy': {'CalendarMonths': ['3.673',
                                                                                                                          '2.972',
                                                                                                                          '2.887',
                                                                                                                          '2.975',
                                                                                                                          '3.037',
                                                                                                                          '3.308',
                                                                                                                          '3.397',
                                                                                                                          '3.369',
                                                                                                                          '4.022',
                                                                                                                          '4.818',
                                                                                                                          '4.405',
                                                                                                                          '4.068'],
                                                                                                       'ann': '3.365',
                                                                                                       'djf': '3.530',
                                                                                                       'jja': '3.298',
                                                                                                       'mam': '2.925',
                                                                                                       'son': '4.209'},
                                                                                            'rms_xyt': {'ann': '3.578'},
                                                                                            'rms_y': {'ann': '3.568'},
                                                                                            'rmsc_xy': {'CalendarMonths': ['2.376',
                                                                                                                           '2.061',
                                                                                                                           '2.161',
                                                                                                                           '2.255',
                                                                                                                           '1.865',
                                                                                                                           '1.457',
                                                                                                                           '1.303',
                                                                                                                           '1.281',
                                                                                                                           '1.960',
                                                                                                                           '2.804',
                                                                                                                           '2.784',
                                                                                                                           '2.882'],
                                                                                                        'ann': '1.798',
                                                                                                        'djf': '2.387',
                                                                                                        'jja': '1.195',
                                                                                                        'mam': '2.050',
                                                                                                        'son': '2.161'},
                                                                                            'std-obs_xy': {'CalendarMonths': ['3.765',
                                                                                                                              '3.703',
                                                                                                                              '3.406',
                                                                                                                              '2.416',
                                                                                                                              '1.454',
                                                                                                                              '2.937',
                                                                                                                              '4.980',
                                                                                                                              '6.191',
                                                                                                                              '6.034',
                                                                                                                              '4.501',
                                                                                                                              '2.526',
                                                                                                                              '2.843'],
                                                                                                           'ann': '1.476',
                                                                                                           'djf': '3.386',
                                                                                                           'jja': '4.638',
                                                                                                           'mam': '2.108',
                                                                                                           'son': '3.948'},
                                                                                            'std-obs_xy_devzm': {'ann': '1.100'},
                                                                                            'std-obs_xyt': {'ann': '4.807'},
                                                                                            'std_xy': {'CalendarMonths': ['1.791',
                                                                                                                          '1.996',
                                                                                                                          '1.656',
                                                                                                                          '1.288',
                                                                                                                          '2.286',
                                                                                                                          '3.889',
                                                                                                                          '5.685',
                                                                                                                          '6.748',
                                                                                                                          '6.647',
                                                                                                                          '5.488',
                                                                                                                          '3.927',
                                                                                                                          '1.890'],
                                                                                                       'ann': '2.632',
                                                                                                       'djf': '1.519',
                                                                                                       'jja': '5.401',
                                                                                                       'mam': '1.266',
                                                                                                       'son': '5.166'},
                                                                                            'std_xy_devzm': {'ann': '1.001'},
                                                                                            'std_xyt': {'ann': '5.113'}}},
                                                                'source': 'ERA-5'},
                                                    'units': 'K'}},
                         'provenance': {'commandLine': '/home/lee1043/.conda/envs/pcmdi_metrics_dev_20230822/bin/mean_climate_driver.py '
                                                       '-p basic_param.py -v '
                                                       'ta-200',
                                        'conda': {'Platform': 'linux-64',
                                                  'PythonVersion': '3.7.3.final.0',
                                                  'Version': '23.1.0',
                                                  'buildVersion': '3.18.8'},
                                        'date': '2023-09-19 11:07:30',
                                        'openGL': {'GLX': {'client': {'vendor': 'Mesa '
                                                                                'Project '
                                                                                'and '
                                                                                'SGI',
                                                                      'version': '1.4'},
                                                           'server': {'vendor': 'SGI',
                                                                      'version': '1.4'},
                                                           'version': '1.4'},
                                                   'renderer': 'llvmpipe (LLVM '
                                                               '7.0, 256 bits)',
                                                   'shading language version': '1.20',
                                                   'vendor': 'VMware, Inc.',
                                                   'version': '2.1 Mesa '
                                                              '18.3.4'},
                                        'osAccess': False,
                                        'packages': {'PMP': 'v3.0.2-11-g06b151f',
                                                     'PMPObs': 'See '
                                                               "'References' "
                                                               'key below, for '
                                                               'detailed obs '
                                                               'provenance '
                                                               'information.',
                                                     'blas': '0.3.23',
                                                     'cdat_info': '8.2.1',
                                                     'cdms': '3.1.5',
                                                     'cdp': '1.7.0',
                                                     'cdtime': '3.1.4',
                                                     'cdutil': '8.2.1',
                                                     'clapack': None,
                                                     'esmf': '8.4.2',
                                                     'esmpy': '8.4.2',
                                                     'genutil': '8.2.1',
                                                     'lapack': '3.9.0',
                                                     'matplotlib': '3.7.1',
                                                     'mesalib': None,
                                                     'numpy': '1.23.5',
                                                     'python': '3.10.10',
                                                     'scipy': '1.11.2',
                                                     'uvcdat': None,
                                                     'vcs': None,
                                                     'vtk': None,
                                                     'xarray': '2023.8.0',
                                                     'xcdat': '0.5.0'},
                                        'platform': {'Name': 'gates.llnl.gov',
                                                     'OS': 'Linux',
                                                     'Version': '3.10.0-1160.71.1.el7.x86_64'},
                                        'userId': 'lee1043'}},
                  'tas': {'REFERENCE': {'default': {'CMIP_CMOR_TABLE': 'Amon',
                                                    'MD5sum': '9fe5357a251bbc4b908488d143470433',
                                                    'RefTrackingDate': 'Thu '
                                                                       'Aug  5 '
                                                                       '08:55:31 '
                                                                       '2021',
                                                    'filename': 'tas_mon_ERA-5_PCMDI_1x1.200301-201812.AC.v20210805.nc',
                                                    'period': '200301-201812',
                                                    'shape': '(12, 180, 360)',
                                                    'template': 'tas/ERA-5/v20210805/tas_mon_ERA-5_PCMDI_1x1.200301-201812.AC.v20210805.nc'}},
                          'RESULTS': {'ACCESS-CM2': {'default': {'r1i1p1f1': {'InputClimatologyFileName': 'cmip6.historical.ACCESS-CM2.r1i1p1f1.mon.tas.198101-200512.AC.v20230823.nc',
                                                                              'NHEX_land': {'bias_xy': {'CalendarMonths': ['-0.940',
                                                                                                                           '-1.056',
                                                                                                                           '-1.294',
                                                                                                                           '-1.422',
                                                                                                                           '-1.635',
                                                                                                                           '-1.548',
                                                                                                                           '-1.300',
                                                                                                                           '-1.575',
                                                                                                                           '-1.611',
                                                                                                                           '-1.122',
                                                                                                                           '-0.660',
                                                                                                                           '-0.766'],
                                                                                                        'ann': '-1.244',
                                                                                                        'djf': '-0.922',
                                                                                                        'jja': '-1.476',
                                                                                                        'mam': '-1.453',
                                                                                                        'son': '-1.131'},
                                                                                            'cor_xy': {'CalendarMonths': ['0.99',
                                                                                                                          '0.99',
                                                                                                                          '0.99',
                                                                                                                          '1.00',
                                                                                                                          '0.99',
                                                                                                                          '0.99',
                                                                                                                          '0.99',
                                                                                                                          '0.99',
                                                                                                                          '0.99',
                                                                                                                          '0.99',
                                                                                                                          '0.99',
                                                                                                                          '0.99'],
                                                                                                       'ann': '0.995',
                                                                                                       'djf': '0.99',
                                                                                                       'jja': '0.99',
                                                                                                       'mam': '1.00',
                                                                                                       'son': '0.99'},
                                                                                            'mae_xy': {'CalendarMonths': ['2.478',
                                                                                                                          '2.148',
                                                                                                                          '2.127',
                                                                                                                          '2.090',
                                                                                                                          '2.228',
                                                                                                                          '2.219',
                                                                                                                          '2.153',
                                                                                                                          '2.317',
                                                                                                                          '2.349',
                                                                                                                          '1.984',
                                                                                                                          '2.084',
                                                                                                                          '2.512'],
                                                                                                       'ann': '1.842',
                                                                                                       'djf': '2.304',
                                                                                                       'jja': '2.185',
                                                                                                       'mam': '2.040',
                                                                                                       'son': '1.980'},
                                                                                            'mean-obs_xy': {'CalendarMonths': ['276.618',
                                                                                                                               '277.301',
                                                                                                                               '279.733',
                                                                                                                               '282.785',
                                                                                                                               '285.589',
                                                                                                                               '287.797',
                                                                                                                               '288.667',
                                                                                                                               '288.287',
                                                                                                                               '286.396',
                                                                                                                               '283.584',
                                                                                                                               '280.090',
                                                                                                                               '277.567'],
                                                                                                            'ann': '282.868',
                                                                                                            'djf': '277.158',
                                                                                                            'jja': '288.246',
                                                                                                            'mam': '282.762',
                                                                                                            'son': '283.354'},
                                                                                            'mean_xy': {'CalendarMonths': ['275.677',
                                                                                                                           '276.246',
                                                                                                                           '278.440',
                                                                                                                           '281.363',
                                                                                                                           '283.955',
                                                                                                                           '286.249',
                                                                                                                           '287.367',
                                                                                                                           '286.711',
                                                                                                                           '284.785',
                                                                                                                           '282.463',
                                                                                                                           '279.430',
                                                                                                                           '276.801'],
                                                                                                        'ann': '281.624',
                                                                                                        'djf': '276.235',
                                                                                                        'jja': '286.769',
                                                                                                        'mam': '281.309',
                                                                                                        'son': '282.224'},
                                                                                            'rms_devzm': {'ann': '1.350'},
                                                                                            'rms_xy': {'CalendarMonths': ['3.337',
                                                                                                                          '2.887',
                                                                                                                          '2.807',
                                                                                                                          '2.602',
                                                                                                                          '2.862',
                                                                                                                          '2.871',
                                                                                                                          '2.765',
                                                                                                                          '2.913',
                                                                                                                          '2.883',
                                                                                                                          '2.434',
                                                                                                                          '2.708',
                                                                                                                          '3.462'],
                                                                                                       'ann': '2.293',
                                                                                                       'djf': '3.085',
                                                                                                       'jja': '2.745',
                                                                                                       'mam': '2.577',
                                                                                                       'son': '2.420'},
                                                                                            'rms_xyt': {'ann': '2.878'},
                                                                                            'rms_y': {'ann': '1.485'},
                                                                                            'rmsc_xy': {'CalendarMonths': ['3.202',
                                                                                                                           '2.687',
                                                                                                                           '2.491',
                                                                                                                           '2.179',
                                                                                                                           '2.350',
                                                                                                                           '2.418',
                                                                                                                           '2.440',
                                                                                                                           '2.450',
                                                                                                                           '2.391',
                                                                                                                           '2.160',
                                                                                                                           '2.626',
                                                                                                                           '3.376'],
                                                                                                        'ann': '1.927',
                                                                                                        'djf': '2.944',
                                                                                                        'jja': '2.315',
                                                                                                        'mam': '2.128',
                                                                                                        'son': '2.140'},
                                                                                            'std-obs_xy': {'CalendarMonths': ['20.470',
                                                                                                                              '21.074',
                                                                                                                              '20.786',
                                                                                                                              '20.130',
                                                                                                                              '19.373',
                                                                                                                              '19.280',
                                                                                                                              '19.644',
                                                                                                                              '19.465',
                                                                                                                              '19.377',
                                                                                                                              '18.971',
                                                                                                                              '19.061',
                                                                                                                              '19.725'],
                                                                                                           'ann': '18.452',
                                                                                                           'djf': '20.391',
                                                                                                           'jja': '19.434',
                                                                                                           'mam': '19.761',
                                                                                                           'son': '18.622'},
                                                                                            'std-obs_xy_devzm': {'ann': '4.984'},
                                                                                            'std-obs_xyt': {'ann': '20.255'},
                                                                                            'std_xy': {'CalendarMonths': ['21.167',
                                                                                                                          '21.784',
                                                                                                                          '21.794',
                                                                                                                          '21.003',
                                                                                                                          '20.297',
                                                                                                                          '20.230',
                                                                                                                          '20.406',
                                                                                                                          '20.382',
                                                                                                                          '19.979',
                                                                                                                          '19.225',
                                                                                                                          '19.095',
                                                                                                                          '20.136'],
                                                                                                       'ann': '18.951',
                                                                                                       'djf': '20.968',
                                                                                                       'jja': '20.311',
                                                                                                       'mam': '20.661',
                                                                                                       'son': '18.847'},
                                                                                            'std_xy_devzm': {'ann': '4.658'},
                                                                                            'std_xyt': {'ann': '20.876'}},
                                                                              'SHEX_land': {'bias_xy': {'CalendarMonths': ['-0.940',
                                                                                                                           '-1.056',
                                                                                                                           '-1.294',
                                                                                                                           '-1.422',
                                                                                                                           '-1.635',
                                                                                                                           '-1.548',
                                                                                                                           '-1.300',
                                                                                                                           '-1.575',
                                                                                                                           '-1.611',
                                                                                                                           '-1.122',
                                                                                                                           '-0.660',
                                                                                                                           '-0.766'],
                                                                                                        'ann': '-1.244',
                                                                                                        'djf': '-0.922',
                                                                                                        'jja': '-1.476',
                                                                                                        'mam': '-1.453',
                                                                                                        'son': '-1.131'},
                                                                                            'cor_xy': {'CalendarMonths': ['0.99',
                                                                                                                          '0.99',
                                                                                                                          '0.99',
                                                                                                                          '1.00',
                                                                                                                          '0.99',
                                                                                                                          '0.99',
                                                                                                                          '0.99',
                                                                                                                          '0.99',
                                                                                                                          '0.99',
                                                                                                                          '0.99',
                                                                                                                          '0.99',
                                                                                                                          '0.99'],
                                                                                                       'ann': '0.995',
                                                                                                       'djf': '0.99',
                                                                                                       'jja': '0.99',
                                                                                                       'mam': '1.00',
                                                                                                       'son': '0.99'},
                                                                                            'mae_xy': {'CalendarMonths': ['2.478',
                                                                                                                          '2.148',
                                                                                                                          '2.127',
                                                                                                                          '2.090',
                                                                                                                          '2.228',
                                                                                                                          '2.219',
                                                                                                                          '2.153',
                                                                                                                          '2.317',
                                                                                                                          '2.349',
                                                                                                                          '1.984',
                                                                                                                          '2.084',
                                                                                                                          '2.512'],
                                                                                                       'ann': '1.842',
                                                                                                       'djf': '2.304',
                                                                                                       'jja': '2.185',
                                                                                                       'mam': '2.040',
                                                                                                       'son': '1.980'},
                                                                                            'mean-obs_xy': {'CalendarMonths': ['276.618',
                                                                                                                               '277.301',
                                                                                                                               '279.733',
                                                                                                                               '282.785',
                                                                                                                               '285.589',
                                                                                                                               '287.797',
                                                                                                                               '288.667',
                                                                                                                               '288.287',
                                                                                                                               '286.396',
                                                                                                                               '283.584',
                                                                                                                               '280.090',
                                                                                                                               '277.567'],
                                                                                                            'ann': '282.868',
                                                                                                            'djf': '277.158',
                                                                                                            'jja': '288.246',
                                                                                                            'mam': '282.762',
                                                                                                            'son': '283.354'},
                                                                                            'mean_xy': {'CalendarMonths': ['275.677',
                                                                                                                           '276.246',
                                                                                                                           '278.440',
                                                                                                                           '281.363',
                                                                                                                           '283.955',
                                                                                                                           '286.249',
                                                                                                                           '287.367',
                                                                                                                           '286.711',
                                                                                                                           '284.785',
                                                                                                                           '282.463',
                                                                                                                           '279.430',
                                                                                                                           '276.801'],
                                                                                                        'ann': '281.624',
                                                                                                        'djf': '276.235',
                                                                                                        'jja': '286.769',
                                                                                                        'mam': '281.309',
                                                                                                        'son': '282.224'},
                                                                                            'rms_devzm': {'ann': '1.350'},
                                                                                            'rms_xy': {'CalendarMonths': ['3.337',
                                                                                                                          '2.887',
                                                                                                                          '2.807',
                                                                                                                          '2.602',
                                                                                                                          '2.862',
                                                                                                                          '2.871',
                                                                                                                          '2.765',
                                                                                                                          '2.913',
                                                                                                                          '2.883',
                                                                                                                          '2.434',
                                                                                                                          '2.708',
                                                                                                                          '3.462'],
                                                                                                       'ann': '2.293',
                                                                                                       'djf': '3.085',
                                                                                                       'jja': '2.745',
                                                                                                       'mam': '2.577',
                                                                                                       'son': '2.420'},
                                                                                            'rms_xyt': {'ann': '2.878'},
                                                                                            'rms_y': {'ann': '1.485'},
                                                                                            'rmsc_xy': {'CalendarMonths': ['3.202',
                                                                                                                           '2.687',
                                                                                                                           '2.491',
                                                                                                                           '2.179',
                                                                                                                           '2.350',
                                                                                                                           '2.418',
                                                                                                                           '2.440',
                                                                                                                           '2.450',
                                                                                                                           '2.391',
                                                                                                                           '2.160',
                                                                                                                           '2.626',
                                                                                                                           '3.376'],
                                                                                                        'ann': '1.927',
                                                                                                        'djf': '2.944',
                                                                                                        'jja': '2.315',
                                                                                                        'mam': '2.128',
                                                                                                        'son': '2.140'},
                                                                                            'std-obs_xy': {'CalendarMonths': ['20.470',
                                                                                                                              '21.074',
                                                                                                                              '20.786',
                                                                                                                              '20.130',
                                                                                                                              '19.373',
                                                                                                                              '19.280',
                                                                                                                              '19.644',
                                                                                                                              '19.465',
                                                                                                                              '19.377',
                                                                                                                              '18.971',
                                                                                                                              '19.061',
                                                                                                                              '19.725'],
                                                                                                           'ann': '18.452',
                                                                                                           'djf': '20.391',
                                                                                                           'jja': '19.434',
                                                                                                           'mam': '19.761',
                                                                                                           'son': '18.622'},
                                                                                            'std-obs_xy_devzm': {'ann': '4.984'},
                                                                                            'std-obs_xyt': {'ann': '20.255'},
                                                                                            'std_xy': {'CalendarMonths': ['21.167',
                                                                                                                          '21.784',
                                                                                                                          '21.794',
                                                                                                                          '21.003',
                                                                                                                          '20.297',
                                                                                                                          '20.230',
                                                                                                                          '20.406',
                                                                                                                          '20.382',
                                                                                                                          '19.979',
                                                                                                                          '19.225',
                                                                                                                          '19.095',
                                                                                                                          '20.136'],
                                                                                                       'ann': '18.951',
                                                                                                       'djf': '20.968',
                                                                                                       'jja': '20.311',
                                                                                                       'mam': '20.661',
                                                                                                       'son': '18.847'},
                                                                                            'std_xy_devzm': {'ann': '4.658'},
                                                                                            'std_xyt': {'ann': '20.876'}},
                                                                              'global': {'bias_xy': {'CalendarMonths': ['-0.313',
                                                                                                                        '-0.317',
                                                                                                                        '-0.357',
                                                                                                                        '-0.373',
                                                                                                                        '-0.438',
                                                                                                                        '-0.449',
                                                                                                                        '-0.389',
                                                                                                                        '-0.444',
                                                                                                                        '-0.450',
                                                                                                                        '-0.355',
                                                                                                                        '-0.253',
                                                                                                                        '-0.288'],
                                                                                                     'ann': '-0.369',
                                                                                                     'djf': '-0.306',
                                                                                                     'jja': '-0.428',
                                                                                                     'mam': '-0.390',
                                                                                                     'son': '-0.353'},
                                                                                         'cor_xy': {'CalendarMonths': ['0.99',
                                                                                                                       '0.99',
                                                                                                                       '0.99',
                                                                                                                       '0.99',
                                                                                                                       '0.99',
                                                                                                                       '0.99',
                                                                                                                       '0.99',
                                                                                                                       '0.99',
                                                                                                                       '0.99',
                                                                                                                       '0.99',
                                                                                                                       '0.99',
                                                                                                                       '0.99'],
                                                                                                    'ann': '0.993',
                                                                                                    'djf': '0.99',
                                                                                                    'jja': '0.99',
                                                                                                    'mam': '0.99',
                                                                                                    'son': '0.99'},
                                                                                         'mae_xy': {'CalendarMonths': ['1.668',
                                                                                                                       '1.628',
                                                                                                                       '1.606',
                                                                                                                       '1.514',
                                                                                                                       '1.458',
                                                                                                                       '1.426',
                                                                                                                       '1.444',
                                                                                                                       '1.485',
                                                                                                                       '1.494',
                                                                                                                       '1.401',
                                                                                                                       '1.406',
                                                                                                                       '1.573'],
                                                                                                    'ann': '1.319',
                                                                                                    'djf': '1.579',
                                                                                                    'jja': '1.417',
                                                                                                    'mam': '1.474',
                                                                                                    'son': '1.365'},
                                                                                         'mean-obs_xy': {'CalendarMonths': ['285.708',
                                                                                                                            '285.955',
                                                                                                                            '286.660',
                                                                                                                            '287.603',
                                                                                                                            '288.505',
                                                                                                                            '289.195',
                                                                                                                            '289.455',
                                                                                                                            '289.355',
                                                                                                                            '288.716',
                                                                                                                            '287.759',
                                                                                                                            '286.654',
                                                                                                                            '285.929'],
                                                                                                         'ann': '287.624',
                                                                                                         'djf': '285.863',
                                                                                                         'jja': '289.334',
                                                                                                         'mam': '287.608',
                                                                                                         'son': '287.709'},
                                                                                         'mean_xy': {'CalendarMonths': ['285.395',
                                                                                                                        '285.638',
                                                                                                                        '286.303',
                                                                                                                        '287.230',
                                                                                                                        '288.067',
                                                                                                                        '288.746',
                                                                                                                        '289.066',
                                                                                                                        '288.911',
                                                                                                                        '288.266',
                                                                                                                        '287.404',
                                                                                                                        '286.401',
                                                                                                                        '285.641'],
                                                                                                     'ann': '287.256',
                                                                                                     'djf': '285.557',
                                                                                                     'jja': '288.906',
                                                                                                     'mam': '287.218',
                                                                                                     'son': '287.356'},
                                                                                         'rms_devzm': {'ann': '1.087'},
                                                                                         'rms_xy': {'CalendarMonths': ['2.674',
                                                                                                                       '2.554',
                                                                                                                       '2.393',
                                                                                                                       '2.126',
                                                                                                                       '2.049',
                                                                                                                       '2.051',
                                                                                                                       '2.082',
                                                                                                                       '2.135',
                                                                                                                       '2.121',
                                                                                                                       '1.999',
                                                                                                                       '2.127',
                                                                                                                       '2.537'],
                                                                                                    'ann': '1.877',
                                                                                                    'djf': '2.506',
                                                                                                    'jja': '2.021',
                                                                                                    'mam': '2.066',
                                                                                                    'son': '1.933'},
                                                                                         'rms_xyt': {'ann': '2.237'},
                                                                                         'rms_y': {'ann': '1.531'},
                                                                                         'rmsc_xy': {'CalendarMonths': ['2.656',
                                                                                                                        '2.534',
                                                                                                                        '2.366',
                                                                                                                        '2.093',
                                                                                                                        '2.001',
                                                                                                                        '2.002',
                                                                                                                        '2.045',
                                                                                                                        '2.088',
                                                                                                                        '2.073',
                                                                                                                        '1.968',
                                                                                                                        '2.112',
                                                                                                                        '2.521'],
                                                                                                     'ann': '1.840',
                                                                                                     'djf': '2.487',
                                                                                                     'jja': '1.975',
                                                                                                     'mam': '2.028',
                                                                                                     'son': '1.901'},
                                                                                         'std-obs_xy': {'CalendarMonths': ['15.914',
                                                                                                                           '16.191',
                                                                                                                           '15.811',
                                                                                                                           '15.033',
                                                                                                                           '14.272',
                                                                                                                           '14.072',
                                                                                                                           '14.295',
                                                                                                                           '14.282',
                                                                                                                           '14.275',
                                                                                                                           '14.189',
                                                                                                                           '14.609',
                                                                                                                           '15.338'],
                                                                                                        'ann': '14.012',
                                                                                                        'djf': '15.792',
                                                                                                        'jja': '14.183',
                                                                                                        'mam': '14.808',
                                                                                                        'son': '14.041'},
                                                                                         'std-obs_xy_devzm': {'ann': '3.767'},
                                                                                         'std-obs_xyt': {'ann': '14.937'},
                                                                                         'std_xy': {'CalendarMonths': ['17.017',
                                                                                                                       '17.312',
                                                                                                                       '16.916',
                                                                                                                       '15.794',
                                                                                                                       '14.823',
                                                                                                                       '14.557',
                                                                                                                       '14.685',
                                                                                                                       '14.734',
                                                                                                                       '14.664',
                                                                                                                       '14.597',
                                                                                                                       '15.108',
                                                                                                                       '16.164'],
                                                                                                    'ann': '14.609',
                                                                                                    'djf': '16.794',
                                                                                                    'jja': '14.625',
                                                                                                    'mam': '15.584',
                                                                                                    'son': '14.452'},
                                                                                         'std_xy_devzm': {'ann': '3.716'},
                                                                                         'std_xyt': {'ann': '15.618'}},
                                                                              'land': {'bias_xy': {'CalendarMonths': ['-0.940',
                                                                                                                      '-1.056',
                                                                                                                      '-1.294',
                                                                                                                      '-1.422',
                                                                                                                      '-1.635',
                                                                                                                      '-1.548',
                                                                                                                      '-1.300',
                                                                                                                      '-1.575',
                                                                                                                      '-1.611',
                                                                                                                      '-1.122',
                                                                                                                      '-0.660',
                                                                                                                      '-0.766'],
                                                                                                   'ann': '-1.244',
                                                                                                   'djf': '-0.922',
                                                                                                   'jja': '-1.476',
                                                                                                   'mam': '-1.453',
                                                                                                   'son': '-1.131'},
                                                                                       'cor_xy': {'CalendarMonths': ['0.99',
                                                                                                                     '0.99',
                                                                                                                     '0.99',
                                                                                                                     '1.00',
                                                                                                                     '0.99',
                                                                                                                     '0.99',
                                                                                                                     '0.99',
                                                                                                                     '0.99',
                                                                                                                     '0.99',
                                                                                                                     '0.99',
                                                                                                                     '0.99',
                                                                                                                     '0.99'],
                                                                                                  'ann': '0.995',
                                                                                                  'djf': '0.99',
                                                                                                  'jja': '0.99',
                                                                                                  'mam': '1.00',
                                                                                                  'son': '0.99'},
                                                                                       'mae_xy': {'CalendarMonths': ['2.478',
                                                                                                                     '2.148',
                                                                                                                     '2.127',
                                                                                                                     '2.090',
                                                                                                                     '2.228',
                                                                                                                     '2.219',
                                                                                                                     '2.153',
                                                                                                                     '2.317',
                                                                                                                     '2.349',
                                                                                                                     '1.984',
                                                                                                                     '2.084',
                                                                                                                     '2.512'],
                                                                                                  'ann': '1.842',
                                                                                                  'djf': '2.304',
                                                                                                  'jja': '2.185',
                                                                                                  'mam': '2.040',
                                                                                                  'son': '1.980'},
                                                                                       'mean-obs_xy': {'CalendarMonths': ['276.618',
                                                                                                                          '277.301',
                                                                                                                          '279.733',
                                                                                                                          '282.785',
                                                                                                                          '285.589',
                                                                                                                          '287.797',
                                                                                                                          '288.667',
                                                                                                                          '288.287',
                                                                                                                          '286.396',
                                                                                                                          '283.584',
                                                                                                                          '280.090',
                                                                                                                          '277.567'],
                                                                                                       'ann': '282.868',
                                                                                                       'djf': '277.158',
                                                                                                       'jja': '288.246',
                                                                                                       'mam': '282.762',
                                                                                                       'son': '283.354'},
                                                                                       'mean_xy': {'CalendarMonths': ['275.677',
                                                                                                                      '276.246',
                                                                                                                      '278.440',
                                                                                                                      '281.363',
                                                                                                                      '283.955',
                                                                                                                      '286.249',
                                                                                                                      '287.367',
                                                                                                                      '286.711',
                                                                                                                      '284.785',
                                                                                                                      '282.463',
                                                                                                                      '279.430',
                                                                                                                      '276.801'],
                                                                                                   'ann': '281.624',
                                                                                                   'djf': '276.235',
                                                                                                   'jja': '286.769',
                                                                                                   'mam': '281.309',
                                                                                                   'son': '282.224'},
                                                                                       'rms_devzm': {'ann': '1.350'},
                                                                                       'rms_xy': {'CalendarMonths': ['3.337',
                                                                                                                     '2.887',
                                                                                                                     '2.807',
                                                                                                                     '2.602',
                                                                                                                     '2.862',
                                                                                                                     '2.871',
                                                                                                                     '2.765',
                                                                                                                     '2.913',
                                                                                                                     '2.883',
                                                                                                                     '2.434',
                                                                                                                     '2.708',
                                                                                                                     '3.462'],
                                                                                                  'ann': '2.293',
                                                                                                  'djf': '3.085',
                                                                                                  'jja': '2.745',
                                                                                                  'mam': '2.577',
                                                                                                  'son': '2.420'},
                                                                                       'rms_xyt': {'ann': '2.878'},
                                                                                       'rms_y': {'ann': '1.485'},
                                                                                       'rmsc_xy': {'CalendarMonths': ['3.202',
                                                                                                                      '2.687',
                                                                                                                      '2.491',
                                                                                                                      '2.179',
                                                                                                                      '2.350',
                                                                                                                      '2.418',
                                                                                                                      '2.440',
                                                                                                                      '2.450',
                                                                                                                      '2.391',
                                                                                                                      '2.160',
                                                                                                                      '2.626',
                                                                                                                      '3.376'],
                                                                                                   'ann': '1.927',
                                                                                                   'djf': '2.944',
                                                                                                   'jja': '2.315',
                                                                                                   'mam': '2.128',
                                                                                                   'son': '2.140'},
                                                                                       'std-obs_xy': {'CalendarMonths': ['20.470',
                                                                                                                         '21.074',
                                                                                                                         '20.786',
                                                                                                                         '20.130',
                                                                                                                         '19.373',
                                                                                                                         '19.280',
                                                                                                                         '19.644',
                                                                                                                         '19.465',
                                                                                                                         '19.377',
                                                                                                                         '18.971',
                                                                                                                         '19.061',
                                                                                                                         '19.725'],
                                                                                                      'ann': '18.452',
                                                                                                      'djf': '20.391',
                                                                                                      'jja': '19.434',
                                                                                                      'mam': '19.761',
                                                                                                      'son': '18.622'},
                                                                                       'std-obs_xy_devzm': {'ann': '4.984'},
                                                                                       'std-obs_xyt': {'ann': '20.255'},
                                                                                       'std_xy': {'CalendarMonths': ['21.167',
                                                                                                                     '21.784',
                                                                                                                     '21.794',
                                                                                                                     '21.003',
                                                                                                                     '20.297',
                                                                                                                     '20.230',
                                                                                                                     '20.406',
                                                                                                                     '20.382',
                                                                                                                     '19.979',
                                                                                                                     '19.225',
                                                                                                                     '19.095',
                                                                                                                     '20.136'],
                                                                                                  'ann': '18.951',
                                                                                                  'djf': '20.968',
                                                                                                  'jja': '20.311',
                                                                                                  'mam': '20.661',
                                                                                                  'son': '18.847'},
                                                                                       'std_xy_devzm': {'ann': '4.658'},
                                                                                       'std_xyt': {'ann': '20.876'}},
                                                                              'ocean': {'bias_xy': {'CalendarMonths': ['-0.065',
                                                                                                                       '-0.024',
                                                                                                                       '0.015',
                                                                                                                       '0.042',
                                                                                                                       '0.036',
                                                                                                                       '-0.013',
                                                                                                                       '-0.028',
                                                                                                                       '0.004',
                                                                                                                       '0.010',
                                                                                                                       '-0.051',
                                                                                                                       '-0.092',
                                                                                                                       '-0.098'],
                                                                                                    'ann': '-0.022',
                                                                                                    'djf': '-0.062',
                                                                                                    'jja': '-0.012',
                                                                                                    'mam': '0.032',
                                                                                                    'son': '-0.044'},
                                                                                        'cor_xy': {'CalendarMonths': ['0.99',
                                                                                                                      '0.99',
                                                                                                                      '0.99',
                                                                                                                      '0.99',
                                                                                                                      '0.99',
                                                                                                                      '0.99',
                                                                                                                      '0.99',
                                                                                                                      '0.99',
                                                                                                                      '0.99',
                                                                                                                      '0.99',
                                                                                                                      '0.99',
                                                                                                                      '0.99'],
                                                                                                   'ann': '0.990',
                                                                                                   'djf': '0.99',
                                                                                                   'jja': '0.99',
                                                                                                   'mam': '0.99',
                                                                                                   'son': '0.99'},
                                                                                        'mae_xy': {'CalendarMonths': ['1.347',
                                                                                                                      '1.422',
                                                                                                                      '1.399',
                                                                                                                      '1.286',
                                                                                                                      '1.152',
                                                                                                                      '1.112',
                                                                                                                      '1.163',
                                                                                                                      '1.156',
                                                                                                                      '1.154',
                                                                                                                      '1.170',
                                                                                                                      '1.137',
                                                                                                                      '1.201'],
                                                                                                   'ann': '1.111',
                                                                                                   'djf': '1.291',
                                                                                                   'jja': '1.112',
                                                                                                   'mam': '1.250',
                                                                                                   'son': '1.121'},
                                                                                        'mean-obs_xy': {'CalendarMonths': ['289.312',
                                                                                                                           '289.385',
                                                                                                                           '289.406',
                                                                                                                           '289.513',
                                                                                                                           '289.661',
                                                                                                                           '289.748',
                                                                                                                           '289.768',
                                                                                                                           '289.779',
                                                                                                                           '289.635',
                                                                                                                           '289.413',
                                                                                                                           '289.255',
                                                                                                                           '289.243'],
                                                                                                        'ann': '289.510',
                                                                                                        'djf': '289.314',
                                                                                                        'jja': '289.765',
                                                                                                        'mam': '289.529',
                                                                                                        'son': '289.435'},
                                                                                        'mean_xy': {'CalendarMonths': ['289.247',
                                                                                                                       '289.360',
                                                                                                                       '289.420',
                                                                                                                       '289.555',
                                                                                                                       '289.697',
                                                                                                                       '289.736',
                                                                                                                       '289.739',
                                                                                                                       '289.783',
                                                                                                                       '289.645',
                                                                                                                       '289.362',
                                                                                                                       '289.164',
                                                                                                                       '289.145'],
                                                                                                    'ann': '289.488',
                                                                                                    'djf': '289.252',
                                                                                                    'jja': '289.753',
                                                                                                    'mam': '289.560',
                                                                                                    'son': '289.391'},
                                                                                        'rms_devzm': {'ann': '0.888'},
                                                                                        'rms_xy': {'CalendarMonths': ['2.360',
                                                                                                                      '2.409',
                                                                                                                      '2.207',
                                                                                                                      '1.905',
                                                                                                                      '1.617',
                                                                                                                      '1.615',
                                                                                                                      '1.739',
                                                                                                                      '1.733',
                                                                                                                      '1.728',
                                                                                                                      '1.798',
                                                                                                                      '1.848',
                                                                                                                      '2.059'],
                                                                                                   'ann': '1.684',
                                                                                                   'djf': '2.236',
                                                                                                   'jja': '1.648',
                                                                                                   'mam': '1.824',
                                                                                                   'son': '1.702'},
                                                                                        'rms_xyt': {'ann': '1.918'},
                                                                                        'rms_y': {'ann': '1.500'},
                                                                                        'rmsc_xy': {'CalendarMonths': ['2.359',
                                                                                                                       '2.409',
                                                                                                                       '2.207',
                                                                                                                       '1.904',
                                                                                                                       '1.616',
                                                                                                                       '1.615',
                                                                                                                       '1.739',
                                                                                                                       '1.733',
                                                                                                                       '1.728',
                                                                                                                       '1.798',
                                                                                                                       '1.845',
                                                                                                                       '2.057'],
                                                                                                    'ann': '1.684',
                                                                                                    'djf': '2.235',
                                                                                                    'jja': '1.648',
                                                                                                    'mam': '1.823',
                                                                                                    'son': '1.701'},
                                                                                        'std-obs_xy': {'CalendarMonths': ['11.909',
                                                                                                                          '12.190',
                                                                                                                          '12.298',
                                                                                                                          '11.921',
                                                                                                                          '11.443',
                                                                                                                          '11.318',
                                                                                                                          '11.490',
                                                                                                                          '11.577',
                                                                                                                          '11.522',
                                                                                                                          '11.350',
                                                                                                                          '11.409',
                                                                                                                          '11.644'],
                                                                                                       'ann': '11.255',
                                                                                                       'djf': '11.895',
                                                                                                       'jja': '11.425',
                                                                                                       'mam': '11.765',
                                                                                                       'son': '11.285'},
                                                                                        'std-obs_xy_devzm': {'ann': '2.076'},
                                                                                        'std-obs_xyt': {'ann': '11.678'},
                                                                                        'std_xy': {'CalendarMonths': ['13.210',
                                                                                                                      '13.476',
                                                                                                                      '13.307',
                                                                                                                      '12.426',
                                                                                                                      '11.582',
                                                                                                                      '11.411',
                                                                                                                      '11.596',
                                                                                                                      '11.653',
                                                                                                                      '11.634',
                                                                                                                      '11.727',
                                                                                                                      '12.136',
                                                                                                                      '12.683'],
                                                                                                   'ann': '11.751',
                                                                                                   'djf': '13.094',
                                                                                                   'jja': '11.516',
                                                                                                   'mam': '12.271',
                                                                                                   'son': '11.673'},
                                                                                        'std_xy_devzm': {'ann': '2.120'},
                                                                                        'std_xyt': {'ann': '12.261'}},
                                                                              'ocean_50S50N': {'bias_xy': {'CalendarMonths': ['0.194',
                                                                                                                              '0.193',
                                                                                                                              '0.161',
                                                                                                                              '0.095',
                                                                                                                              '0.020',
                                                                                                                              '-0.010',
                                                                                                                              '0.024',
                                                                                                                              '0.074',
                                                                                                                              '0.089',
                                                                                                                              '0.062',
                                                                                                                              '0.079',
                                                                                                                              '0.141'],
                                                                                                           'ann': '0.094',
                                                                                                           'djf': '0.176',
                                                                                                           'jja': '0.029',
                                                                                                           'mam': '0.091',
                                                                                                           'son': '0.077'},
                                                                                               'cor_xy': {'CalendarMonths': ['0.99',
                                                                                                                             '0.99',
                                                                                                                             '0.99',
                                                                                                                             '0.98',
                                                                                                                             '0.98',
                                                                                                                             '0.98',
                                                                                                                             '0.98',
                                                                                                                             '0.98',
                                                                                                                             '0.98',
                                                                                                                             '0.98',
                                                                                                                             '0.98',
                                                                                                                             '0.98'],
                                                                                                          'ann': '0.985',
                                                                                                          'djf': '0.99',
                                                                                                          'jja': '0.98',
                                                                                                          'mam': '0.99',
                                                                                                          'son': '0.98'},
                                                                                               'mae_xy': {'CalendarMonths': ['0.924',
                                                                                                                             '0.921',
                                                                                                                             '0.932',
                                                                                                                             '0.929',
                                                                                                                             '0.914',
                                                                                                                             '0.908',
                                                                                                                             '0.906',
                                                                                                                             '0.877',
                                                                                                                             '0.839',
                                                                                                                             '0.863',
                                                                                                                             '0.888',
                                                                                                                             '0.913'],
                                                                                                          'ann': '0.808',
                                                                                                          'djf': '0.900',
                                                                                                          'jja': '0.871',
                                                                                                          'mam': '0.903',
                                                                                                          'son': '0.843'},
                                                                                               'mean-obs_xy': {'CalendarMonths': ['294.088',
                                                                                                                                  '294.272',
                                                                                                                                  '294.416',
                                                                                                                                  '294.450',
                                                                                                                                  '294.382',
                                                                                                                                  '294.313',
                                                                                                                                  '294.297',
                                                                                                                                  '294.310',
                                                                                                                                  '294.248',
                                                                                                                                  '294.102',
                                                                                                                                  '293.993',
                                                                                                                                  '293.988'],
                                                                                                               'ann': '294.238',
                                                                                                               'djf': '294.117',
                                                                                                               'jja': '294.307',
                                                                                                               'mam': '294.417',
                                                                                                               'son': '294.114'},
                                                                                               'mean_xy': {'CalendarMonths': ['294.282',
                                                                                                                              '294.465',
                                                                                                                              '294.577',
                                                                                                                              '294.546',
                                                                                                                              '294.402',
                                                                                                                              '294.303',
                                                                                                                              '294.322',
                                                                                                                              '294.384',
                                                                                                                              '294.337',
                                                                                                                              '294.164',
                                                                                                                              '294.072',
                                                                                                                              '294.129'],
                                                                                                           'ann': '294.332',
                                                                                                           'djf': '294.294',
                                                                                                           'jja': '294.336',
                                                                                                           'mam': '294.507',
                                                                                                           'son': '294.191'},
                                                                                               'rms_devzm': {'ann': '0.710'},
                                                                                               'rms_xy': {'CalendarMonths': ['1.229',
                                                                                                                             '1.183',
                                                                                                                             '1.180',
                                                                                                                             '1.205',
                                                                                                                             '1.235',
                                                                                                                             '1.284',
                                                                                                                             '1.326',
                                                                                                                             '1.269',
                                                                                                                             '1.192',
                                                                                                                             '1.183',
                                                                                                                             '1.237',
                                                                                                                             '1.271'],
                                                                                                          'ann': '1.107',
                                                                                                          'djf': '1.199',
                                                                                                          'jja': '1.260',
                                                                                                          'mam': '1.175',
                                                                                                          'son': '1.178'},
                                                                                               'rms_xyt': {'ann': '1.233'},
                                                                                               'rms_y': {'ann': '0.906'},
                                                                                               'rmsc_xy': {'CalendarMonths': ['1.214',
                                                                                                                              '1.167',
                                                                                                                              '1.169',
                                                                                                                              '1.201',
                                                                                                                              '1.235',
                                                                                                                              '1.284',
                                                                                                                              '1.326',
                                                                                                                              '1.267',
                                                                                                                              '1.189',
                                                                                                                              '1.182',
                                                                                                                              '1.235',
                                                                                                                              '1.264'],
                                                                                                           'ann': '1.103',
                                                                                                           'djf': '1.186',
                                                                                                           'jja': '1.260',
                                                                                                           'mam': '1.172',
                                                                                                           'son': '1.176'},
                                                                                               'std-obs_xy': {'CalendarMonths': ['6.554',
                                                                                                                                 '6.627',
                                                                                                                                 '6.569',
                                                                                                                                 '6.481',
                                                                                                                                 '6.424',
                                                                                                                                 '6.388',
                                                                                                                                 '6.401',
                                                                                                                                 '6.499',
                                                                                                                                 '6.464',
                                                                                                                                 '6.393',
                                                                                                                                 '6.355',
                                                                                                                                 '6.417'],
                                                                                                              'ann': '6.107',
                                                                                                              'djf': '6.500',
                                                                                                              'jja': '6.374',
                                                                                                              'mam': '6.417',
                                                                                                              'son': '6.312'},
                                                                                               'std-obs_xy_devzm': {'ann': '1.588'},
                                                                                               'std-obs_xyt': {'ann': '6.466'},
                                                                                               'std_xy': {'CalendarMonths': ['7.039',
                                                                                                                             '7.080',
                                                                                                                             '6.965',
                                                                                                                             '6.804',
                                                                                                                             '6.683',
                                                                                                                             '6.565',
                                                                                                                             '6.516',
                                                                                                                             '6.521',
                                                                                                                             '6.553',
                                                                                                                             '6.626',
                                                                                                                             '6.734',
                                                                                                                             '6.879'],
                                                                                                          'ann': '6.396',
                                                                                                          'djf': '6.966',
                                                                                                          'jja': '6.476',
                                                                                                          'mam': '6.746',
                                                                                                          'son': '6.547'},
                                                                                               'std_xy_devzm': {'ann': '1.641'},
                                                                                               'std_xyt': {'ann': '6.752'}}},
                                                                 'source': 'ERA-5'},
                                                     'units': 'K'}},
                          'provenance': {'commandLine': '/home/lee1043/.conda/envs/pcmdi_metrics_dev_20230822/bin/mean_climate_driver.py '
                                                        '-p basic_param.py -v '
                                                        'tas',
                                         'conda': {'Platform': 'linux-64',
                                                   'PythonVersion': '3.10.12.final.0',
                                                   'Version': '23.3.1',
                                                   'buildVersion': 'not '
                                                                   'installed'},
                                         'date': '2023-09-19 01:29:05',
                                         'openGL': {'GLX': {'client': {'vendor': 'Mesa '
                                                                                 'Project '
                                                                                 'and '
                                                                                 'SGI',
                                                                       'version': '1.4'},
                                                            'server': {'vendor': 'SGI',
                                                                       'version': '1.4'},
                                                            'version': '1.4'},
                                                    'renderer': 'llvmpipe '
                                                                '(LLVM 7.0, '
                                                                '256 bits)',
                                                    'shading language version': '1.20',
                                                    'vendor': 'VMware, Inc.',
                                                    'version': '2.1 Mesa '
                                                               '18.3.4'},
                                         'osAccess': False,
                                         'packages': {'PMP': 'v3.0.2-11-g06b151f',
                                                      'PMPObs': 'See '
                                                                "'References' "
                                                                'key below, '
                                                                'for detailed '
                                                                'obs '
                                                                'provenance '
                                                                'information.',
                                                      'blas': '0.3.23',
                                                      'cdat_info': '8.2.1',
                                                      'cdms': '3.1.5',
                                                      'cdp': '1.7.0',
                                                      'cdtime': '3.1.4',
                                                      'cdutil': '8.2.1',
                                                      'clapack': None,
                                                      'esmf': '8.4.2',
                                                      'esmpy': '8.4.2',
                                                      'genutil': '8.2.1',
                                                      'lapack': '3.9.0',
                                                      'matplotlib': '3.7.1',
                                                      'mesalib': None,
                                                      'numpy': '1.23.5',
                                                      'python': '3.10.10',
                                                      'scipy': '1.11.2',
                                                      'uvcdat': None,
                                                      'vcs': None,
                                                      'vtk': None,
                                                      'xarray': '2023.8.0',
                                                      'xcdat': '0.5.0'},
                                         'platform': {'Name': 'gates.llnl.gov',
                                                      'OS': 'Linux',
                                                      'Version': '3.10.0-1160.71.1.el7.x86_64'},
                                         'userId': 'lee1043'}},
                  'tauu': {'REFERENCE': {'default': {'CMIP_CMOR_TABLE': 'Amon',
                                                     'MD5sum': '5573d6b5377383a71eba63ae8510f468',
                                                     'RefTrackingDate': 'Wed '
                                                                        'Aug  '
                                                                        '4 '
                                                                        '12:22:31 '
                                                                        '2021',
                                                     'filename': 'tauu_mon_ERA-INT_PCMDI_gn.200301-201812.AC.v20210804.nc',
                                                     'period': '200301-201812',
                                                     'shape': '(12, 241, 480)',
                                                     'template': 'tauu/ERA-INT/v20210804/tauu_mon_ERA-INT_PCMDI_gn.200301-201812.AC.v20210804.nc'}},
                           'RESULTS': {'ACCESS-CM2': {'default': {'r1i1p1f1': {'InputClimatologyFileName': 'cmip6.historical.ACCESS-CM2.r1i1p1f1.mon.tauu.198101-200512.AC.v20230823.nc',
                                                                               'global': {'bias_xy': {'CalendarMonths': ['-0.008',
                                                                                                                         '-0.007',
                                                                                                                         '-0.006',
                                                                                                                         '-0.005',
                                                                                                                         '-0.004',
                                                                                                                         '-0.002',
                                                                                                                         '-0.003',
                                                                                                                         '-0.002',
                                                                                                                         '-0.003',
                                                                                                                         '-0.003',
                                                                                                                         '-0.005',
                                                                                                                         '-0.007'],
                                                                                                      'ann': '-0.004',
                                                                                                      'djf': '-0.007',
                                                                                                      'jja': '-0.002',
                                                                                                      'mam': '-0.005',
                                                                                                      'son': '-0.004'},
                                                                                          'cor_xy': {'CalendarMonths': ['0.88',
                                                                                                                        '0.88',
                                                                                                                        '0.89',
                                                                                                                        '0.91',
                                                                                                                        '0.92',
                                                                                                                        '0.90',
                                                                                                                        '0.90',
                                                                                                                        '0.91',
                                                                                                                        '0.92',
                                                                                                                        '0.93',
                                                                                                                        '0.89',
                                                                                                                        '0.86'],
                                                                                                     'ann': '0.929',
                                                                                                     'djf': '0.89',
                                                                                                     'jja': '0.92',
                                                                                                     'mam': '0.92',
                                                                                                     'son': '0.93'},
                                                                                          'mae_xy': {'CalendarMonths': ['0.026',
                                                                                                                        '0.026',
                                                                                                                        '0.024',
                                                                                                                        '0.023',
                                                                                                                        '0.022',
                                                                                                                        '0.023',
                                                                                                                        '0.025',
                                                                                                                        '0.023',
                                                                                                                        '0.023',
                                                                                                                        '0.020',
                                                                                                                        '0.025',
                                                                                                                        '0.028'],
                                                                                                     'ann': '0.018',
                                                                                                     'djf': '0.025',
                                                                                                     'jja': '0.021',
                                                                                                     'mam': '0.021',
                                                                                                     'son': '0.020'},
                                                                                          'mean-obs_xy': {'CalendarMonths': ['0.010',
                                                                                                                             '0.010',
                                                                                                                             '0.010',
                                                                                                                             '0.010',
                                                                                                                             '0.010',
                                                                                                                             '0.011',
                                                                                                                             '0.012',
                                                                                                                             '0.012',
                                                                                                                             '0.013',
                                                                                                                             '0.012',
                                                                                                                             '0.009',
                                                                                                                             '0.009'],
                                                                                                          'ann': '0.011',
                                                                                                          'djf': '0.010',
                                                                                                          'jja': '0.011',
                                                                                                          'mam': '0.010',
                                                                                                          'son': '0.011'},
                                                                                          'mean_xy': {'CalendarMonths': ['0.002',
                                                                                                                         '0.003',
                                                                                                                         '0.005',
                                                                                                                         '0.005',
                                                                                                                         '0.006',
                                                                                                                         '0.009',
                                                                                                                         '0.009',
                                                                                                                         '0.010',
                                                                                                                         '0.010',
                                                                                                                         '0.008',
                                                                                                                         '0.005',
                                                                                                                         '0.002'],
                                                                                                      'ann': '0.006',
                                                                                                      'djf': '0.003',
                                                                                                      'jja': '0.009',
                                                                                                      'mam': '0.005',
                                                                                                      'son': '0.008'},
                                                                                          'rms_devzm': {'ann': '0.028'},
                                                                                          'rms_xy': {'CalendarMonths': ['0.042',
                                                                                                                        '0.041',
                                                                                                                        '0.040',
                                                                                                                        '0.035',
                                                                                                                        '0.033',
                                                                                                                        '0.037',
                                                                                                                        '0.039',
                                                                                                                        '0.037',
                                                                                                                        '0.035',
                                                                                                                        '0.032',
                                                                                                                        '0.040',
                                                                                                                        '0.045'],
                                                                                                     'ann': '0.030',
                                                                                                     'djf': '0.040',
                                                                                                     'jja': '0.035',
                                                                                                     'mam': '0.033',
                                                                                                     'son': '0.032'},
                                                                                          'rms_xyt': {'ann': '0.038'},
                                                                                          'rms_y': {'ann': '0.011'},
                                                                                          'rmsc_xy': {'CalendarMonths': ['0.042',
                                                                                                                         '0.041',
                                                                                                                         '0.039',
                                                                                                                         '0.035',
                                                                                                                         '0.033',
                                                                                                                         '0.037',
                                                                                                                         '0.039',
                                                                                                                         '0.037',
                                                                                                                         '0.035',
                                                                                                                         '0.032',
                                                                                                                         '0.039',
                                                                                                                         '0.044'],
                                                                                                      'ann': '0.030',
                                                                                                      'djf': '0.039',
                                                                                                      'jja': '0.035',
                                                                                                      'mam': '0.032',
                                                                                                      'son': '0.032'},
                                                                                          'std-obs_xy': {'CalendarMonths': ['0.088',
                                                                                                                            '0.085',
                                                                                                                            '0.086',
                                                                                                                            '0.084',
                                                                                                                            '0.081',
                                                                                                                            '0.085',
                                                                                                                            '0.091',
                                                                                                                            '0.088',
                                                                                                                            '0.090',
                                                                                                                            '0.088',
                                                                                                                            '0.085',
                                                                                                                            '0.086'],
                                                                                                         'ann': '0.080',
                                                                                                         'djf': '0.085',
                                                                                                         'jja': '0.087',
                                                                                                         'mam': '0.082',
                                                                                                         'son': '0.085'},
                                                                                          'std-obs_xy_devzm': {'ann': '0.043'},
                                                                                          'std-obs_xyt': {'ann': '0.087'},
                                                                                          'std_xy': {'CalendarMonths': ['0.075',
                                                                                                                        '0.075',
                                                                                                                        '0.076',
                                                                                                                        '0.079',
                                                                                                                        '0.078',
                                                                                                                        '0.080',
                                                                                                                        '0.086',
                                                                                                                        '0.088',
                                                                                                                        '0.084',
                                                                                                                        '0.082',
                                                                                                                        '0.078',
                                                                                                                        '0.078'],
                                                                                                     'ann': '0.073',
                                                                                                     'djf': '0.075',
                                                                                                     'jja': '0.084',
                                                                                                     'mam': '0.076',
                                                                                                     'son': '0.079'},
                                                                                          'std_xy_devzm': {'ann': '0.037'},
                                                                                          'std_xyt': {'ann': '0.080'}},
                                                                               'ocean_50S50N': {'bias_xy': {'CalendarMonths': ['-0.000',
                                                                                                                               '0.003',
                                                                                                                               '0.002',
                                                                                                                               '-0.000',
                                                                                                                               '-0.001',
                                                                                                                               '0.001',
                                                                                                                               '0.000',
                                                                                                                               '0.000',
                                                                                                                               '0.002',
                                                                                                                               '-0.001',
                                                                                                                               '0.003',
                                                                                                                               '0.002'],
                                                                                                            'ann': '0.001',
                                                                                                            'djf': '0.001',
                                                                                                            'jja': '0.000',
                                                                                                            'mam': '0.000',
                                                                                                            'son': '0.001'},
                                                                                                'cor_xy': {'CalendarMonths': ['0.96',
                                                                                                                              '0.96',
                                                                                                                              '0.95',
                                                                                                                              '0.96',
                                                                                                                              '0.96',
                                                                                                                              '0.96',
                                                                                                                              '0.96',
                                                                                                                              '0.96',
                                                                                                                              '0.96',
                                                                                                                              '0.97',
                                                                                                                              '0.95',
                                                                                                                              '0.96'],
                                                                                                           'ann': '0.980',
                                                                                                           'djf': '0.97',
                                                                                                           'jja': '0.97',
                                                                                                           'mam': '0.97',
                                                                                                           'son': '0.97'},
                                                                                                'mae_xy': {'CalendarMonths': ['0.017',
                                                                                                                              '0.016',
                                                                                                                              '0.016',
                                                                                                                              '0.016',
                                                                                                                              '0.016',
                                                                                                                              '0.016',
                                                                                                                              '0.017',
                                                                                                                              '0.016',
                                                                                                                              '0.016',
                                                                                                                              '0.013',
                                                                                                                              '0.018',
                                                                                                                              '0.019'],
                                                                                                           'ann': '0.011',
                                                                                                           'djf': '0.015',
                                                                                                           'jja': '0.014',
                                                                                                           'mam': '0.014',
                                                                                                           'son': '0.013'},
                                                                                                'mean-obs_xy': {'CalendarMonths': ['-0.003',
                                                                                                                                   '-0.006',
                                                                                                                                   '-0.008',
                                                                                                                                   '-0.007',
                                                                                                                                   '-0.003',
                                                                                                                                   '-0.001',
                                                                                                                                   '-0.001',
                                                                                                                                   '-0.002',
                                                                                                                                   '-0.002',
                                                                                                                                   '-0.004',
                                                                                                                                   '-0.009',
                                                                                                                                   '-0.006'],
                                                                                                                'ann': '-0.004',
                                                                                                                'djf': '-0.005',
                                                                                                                'jja': '-0.001',
                                                                                                                'mam': '-0.006',
                                                                                                                'son': '-0.005'},
                                                                                                'mean_xy': {'CalendarMonths': ['-0.003',
                                                                                                                               '-0.003',
                                                                                                                               '-0.006',
                                                                                                                               '-0.008',
                                                                                                                               '-0.004',
                                                                                                                               '-0.000',
                                                                                                                               '-0.001',
                                                                                                                               '-0.001',
                                                                                                                               '-0.000',
                                                                                                                               '-0.005',
                                                                                                                               '-0.006',
                                                                                                                               '-0.005'],
                                                                                                            'ann': '-0.004',
                                                                                                            'djf': '-0.004',
                                                                                                            'jja': '-0.001',
                                                                                                            'mam': '-0.006',
                                                                                                            'son': '-0.004'},
                                                                                                'rms_devzm': {'ann': '0.013'},
                                                                                                'rms_xy': {'CalendarMonths': ['0.023',
                                                                                                                              '0.022',
                                                                                                                              '0.023',
                                                                                                                              '0.021',
                                                                                                                              '0.022',
                                                                                                                              '0.023',
                                                                                                                              '0.024',
                                                                                                                              '0.025',
                                                                                                                              '0.023',
                                                                                                                              '0.017',
                                                                                                                              '0.026',
                                                                                                                              '0.026'],
                                                                                                           'ann': '0.015',
                                                                                                           'djf': '0.020',
                                                                                                           'jja': '0.021',
                                                                                                           'mam': '0.018',
                                                                                                           'son': '0.018'},
                                                                                                'rms_xyt': {'ann': '0.023'},
                                                                                                'rms_y': {'ann': '0.007'},
                                                                                                'rmsc_xy': {'CalendarMonths': ['0.023',
                                                                                                                               '0.022',
                                                                                                                               '0.023',
                                                                                                                               '0.021',
                                                                                                                               '0.022',
                                                                                                                               '0.023',
                                                                                                                               '0.024',
                                                                                                                               '0.025',
                                                                                                                               '0.023',
                                                                                                                               '0.017',
                                                                                                                               '0.026',
                                                                                                                               '0.026'],
                                                                                                            'ann': '0.015',
                                                                                                            'djf': '0.020',
                                                                                                            'jja': '0.021',
                                                                                                            'mam': '0.018',
                                                                                                            'son': '0.018'},
                                                                                                'std-obs_xy': {'CalendarMonths': ['0.080',
                                                                                                                                  '0.072',
                                                                                                                                  '0.069',
                                                                                                                                  '0.070',
                                                                                                                                  '0.071',
                                                                                                                                  '0.079',
                                                                                                                                  '0.085',
                                                                                                                                  '0.079',
                                                                                                                                  '0.080',
                                                                                                                                  '0.072',
                                                                                                                                  '0.070',
                                                                                                                                  '0.075'],
                                                                                                               'ann': '0.069',
                                                                                                               'djf': '0.075',
                                                                                                               'jja': '0.080',
                                                                                                               'mam': '0.068',
                                                                                                               'son': '0.072'},
                                                                                                'std-obs_xy_devzm': {'ann': '0.030'},
                                                                                                'std-obs_xyt': {'ann': '0.075'},
                                                                                                'std_xy': {'CalendarMonths': ['0.082',
                                                                                                                              '0.077',
                                                                                                                              '0.072',
                                                                                                                              '0.075',
                                                                                                                              '0.076',
                                                                                                                              '0.079',
                                                                                                                              '0.087',
                                                                                                                              '0.088',
                                                                                                                              '0.083',
                                                                                                                              '0.075',
                                                                                                                              '0.078',
                                                                                                                              '0.086'],
                                                                                                           'ann': '0.072',
                                                                                                           'djf': '0.081',
                                                                                                           'jja': '0.084',
                                                                                                           'mam': '0.072',
                                                                                                           'son': '0.076'},
                                                                                                'std_xy_devzm': {'ann': '0.033'},
                                                                                                'std_xyt': {'ann': '0.080'}}},
                                                                  'source': 'ERA-INT'},
                                                      'units': 'Pa'}},
                           'provenance': {'commandLine': '/home/lee1043/.conda/envs/pcmdi_metrics_dev_20230822/bin/mean_climate_driver.py '
                                                         '-p basic_param.py -v '
                                                         'tauu',
                                          'conda': {'Platform': 'linux-64',
                                                    'PythonVersion': '3.10.12.final.0',
                                                    'Version': '23.3.1',
                                                    'buildVersion': 'not '
                                                                    'installed'},
                                          'date': '2023-09-19 00:16:45',
                                          'openGL': {'GLX': {'client': {'vendor': 'Mesa '
                                                                                  'Project '
                                                                                  'and '
                                                                                  'SGI',
                                                                        'version': '1.4'},
                                                             'server': {'vendor': 'SGI',
                                                                        'version': '1.4'},
                                                             'version': '1.4'},
                                                     'renderer': 'llvmpipe '
                                                                 '(LLVM 7.0, '
                                                                 '256 bits)',
                                                     'shading language version': '1.20',
                                                     'vendor': 'VMware, Inc.',
                                                     'version': '2.1 Mesa '
                                                                '18.3.4'},
                                          'osAccess': False,
                                          'packages': {'PMP': 'v3.0.2-11-g06b151f',
                                                       'PMPObs': 'See '
                                                                 "'References' "
                                                                 'key below, '
                                                                 'for detailed '
                                                                 'obs '
                                                                 'provenance '
                                                                 'information.',
                                                       'blas': '0.3.23',
                                                       'cdat_info': '8.2.1',
                                                       'cdms': '3.1.5',
                                                       'cdp': '1.7.0',
                                                       'cdtime': '3.1.4',
                                                       'cdutil': '8.2.1',
                                                       'clapack': None,
                                                       'esmf': '8.4.2',
                                                       'esmpy': '8.4.2',
                                                       'genutil': '8.2.1',
                                                       'lapack': '3.9.0',
                                                       'matplotlib': '3.7.1',
                                                       'mesalib': None,
                                                       'numpy': '1.23.5',
                                                       'python': '3.10.10',
                                                       'scipy': '1.11.2',
                                                       'uvcdat': None,
                                                       'vcs': None,
                                                       'vtk': None,
                                                       'xarray': '2023.8.0',
                                                       'xcdat': '0.5.0'},
                                          'platform': {'Name': 'gates.llnl.gov',
                                                       'OS': 'Linux',
                                                       'Version': '3.10.0-1160.71.1.el7.x86_64'},
                                          'userId': 'lee1043'}},
                  'tauv': {'REFERENCE': {'default': {'CMIP_CMOR_TABLE': 'Amon',
                                                     'MD5sum': 'e4a512627e9ee9b390e744827b9e9d32',
                                                     'RefTrackingDate': 'Wed '
                                                                        'Aug  '
                                                                        '4 '
                                                                        '12:22:36 '
                                                                        '2021',
                                                     'filename': 'tauv_mon_ERA-INT_PCMDI_gn.200301-201812.AC.v20210804.nc',
                                                     'period': '200301-201812',
                                                     'shape': '(12, 241, 480)',
                                                     'template': 'tauv/ERA-INT/v20210804/tauv_mon_ERA-INT_PCMDI_gn.200301-201812.AC.v20210804.nc'}},
                           'RESULTS': {'ACCESS-CM2': {'default': {'r1i1p1f1': {'InputClimatologyFileName': 'cmip6.historical.ACCESS-CM2.r1i1p1f1.mon.tauv.198101-200512.AC.v20230823.nc',
                                                                               'global': {'bias_xy': {'CalendarMonths': ['-0.002',
                                                                                                                         '-0.004',
                                                                                                                         '-0.004',
                                                                                                                         '-0.004',
                                                                                                                         '-0.003',
                                                                                                                         '-0.002',
                                                                                                                         '-0.001',
                                                                                                                         '-0.000',
                                                                                                                         '-0.002',
                                                                                                                         '-0.002',
                                                                                                                         '-0.003',
                                                                                                                         '-0.002'],
                                                                                                      'ann': '-0.003',
                                                                                                      'djf': '-0.003',
                                                                                                      'jja': '-0.001',
                                                                                                      'mam': '-0.004',
                                                                                                      'son': '-0.002'},
                                                                                          'cor_xy': {'CalendarMonths': ['0.78',
                                                                                                                        '0.77',
                                                                                                                        '0.75',
                                                                                                                        '0.79',
                                                                                                                        '0.80',
                                                                                                                        '0.78',
                                                                                                                        '0.78',
                                                                                                                        '0.79',
                                                                                                                        '0.78',
                                                                                                                        '0.78',
                                                                                                                        '0.75',
                                                                                                                        '0.77'],
                                                                                                     'ann': '0.803',
                                                                                                     'djf': '0.79',
                                                                                                     'jja': '0.81',
                                                                                                     'mam': '0.80',
                                                                                                     'son': '0.79'},
                                                                                          'mae_xy': {'CalendarMonths': ['0.019',
                                                                                                                        '0.018',
                                                                                                                        '0.018',
                                                                                                                        '0.016',
                                                                                                                        '0.016',
                                                                                                                        '0.019',
                                                                                                                        '0.020',
                                                                                                                        '0.018',
                                                                                                                        '0.017',
                                                                                                                        '0.016',
                                                                                                                        '0.017',
                                                                                                                        '0.019'],
                                                                                                     'ann': '0.013',
                                                                                                     'djf': '0.017',
                                                                                                     'jja': '0.017',
                                                                                                     'mam': '0.015',
                                                                                                     'son': '0.015'},
                                                                                          'mean-obs_xy': {'CalendarMonths': ['-0.007',
                                                                                                                             '-0.006',
                                                                                                                             '-0.003',
                                                                                                                             '0.001',
                                                                                                                             '0.005',
                                                                                                                             '0.009',
                                                                                                                             '0.011',
                                                                                                                             '0.010',
                                                                                                                             '0.008',
                                                                                                                             '0.003',
                                                                                                                             '-0.002',
                                                                                                                             '-0.006'],
                                                                                                          'ann': '0.002',
                                                                                                          'djf': '-0.006',
                                                                                                          'jja': '0.010',
                                                                                                          'mam': '0.001',
                                                                                                          'son': '0.003'},
                                                                                          'mean_xy': {'CalendarMonths': ['-0.010',
                                                                                                                         '-0.010',
                                                                                                                         '-0.008',
                                                                                                                         '-0.003',
                                                                                                                         '0.002',
                                                                                                                         '0.007',
                                                                                                                         '0.010',
                                                                                                                         '0.010',
                                                                                                                         '0.006',
                                                                                                                         '0.000',
                                                                                                                         '-0.005',
                                                                                                                         '-0.008'],
                                                                                                      'ann': '-0.001',
                                                                                                      'djf': '-0.009',
                                                                                                      'jja': '0.009',
                                                                                                      'mam': '-0.003',
                                                                                                      'son': '0.001'},
                                                                                          'rms_devzm': {'ann': '0.021'},
                                                                                          'rms_xy': {'CalendarMonths': ['0.032',
                                                                                                                        '0.030',
                                                                                                                        '0.030',
                                                                                                                        '0.026',
                                                                                                                        '0.025',
                                                                                                                        '0.031',
                                                                                                                        '0.033',
                                                                                                                        '0.029',
                                                                                                                        '0.027',
                                                                                                                        '0.027',
                                                                                                                        '0.029',
                                                                                                                        '0.032'],
                                                                                                     'ann': '0.022',
                                                                                                     'djf': '0.030',
                                                                                                     'jja': '0.029',
                                                                                                     'mam': '0.024',
                                                                                                     'son': '0.024'},
                                                                                          'rms_xyt': {'ann': '0.029'},
                                                                                          'rms_y': {'ann': '0.007'},
                                                                                          'rmsc_xy': {'CalendarMonths': ['0.032',
                                                                                                                         '0.030',
                                                                                                                         '0.030',
                                                                                                                         '0.026',
                                                                                                                         '0.025',
                                                                                                                         '0.031',
                                                                                                                         '0.033',
                                                                                                                         '0.029',
                                                                                                                         '0.027',
                                                                                                                         '0.026',
                                                                                                                         '0.028',
                                                                                                                         '0.032'],
                                                                                                      'ann': '0.022',
                                                                                                      'djf': '0.030',
                                                                                                      'jja': '0.029',
                                                                                                      'mam': '0.023',
                                                                                                      'son': '0.024'},
                                                                                          'std-obs_xy': {'CalendarMonths': ['0.051',
                                                                                                                            '0.046',
                                                                                                                            '0.045',
                                                                                                                            '0.041',
                                                                                                                            '0.042',
                                                                                                                            '0.049',
                                                                                                                            '0.052',
                                                                                                                            '0.048',
                                                                                                                            '0.043',
                                                                                                                            '0.042',
                                                                                                                            '0.043',
                                                                                                                            '0.050'],
                                                                                                         'ann': '0.037',
                                                                                                         'djf': '0.048',
                                                                                                         'jja': '0.048',
                                                                                                         'mam': '0.039',
                                                                                                         'son': '0.040'},
                                                                                          'std-obs_xy_devzm': {'ann': '0.033'},
                                                                                          'std-obs_xyt': {'ann': '0.047'},
                                                                                          'std_xy': {'CalendarMonths': ['0.043',
                                                                                                                        '0.042',
                                                                                                                        '0.039',
                                                                                                                        '0.037',
                                                                                                                        '0.036',
                                                                                                                        '0.039',
                                                                                                                        '0.042',
                                                                                                                        '0.040',
                                                                                                                        '0.035',
                                                                                                                        '0.034',
                                                                                                                        '0.036',
                                                                                                                        '0.040'],
                                                                                                     'ann': '0.030',
                                                                                                     'djf': '0.041',
                                                                                                     'jja': '0.039',
                                                                                                     'mam': '0.034',
                                                                                                     'son': '0.032'},
                                                                                          'std_xy_devzm': {'ann': '0.025'},
                                                                                          'std_xyt': {'ann': '0.039'}},
                                                                               'ocean_50S50N': {'bias_xy': {'CalendarMonths': ['-0.001',
                                                                                                                               '-0.003',
                                                                                                                               '-0.003',
                                                                                                                               '-0.003',
                                                                                                                               '-0.002',
                                                                                                                               '-0.001',
                                                                                                                               '0.000',
                                                                                                                               '0.000',
                                                                                                                               '-0.001',
                                                                                                                               '-0.001',
                                                                                                                               '-0.000',
                                                                                                                               '-0.000'],
                                                                                                            'ann': '-0.001',
                                                                                                            'djf': '-0.001',
                                                                                                            'jja': '-0.000',
                                                                                                            'mam': '-0.003',
                                                                                                            'son': '-0.001'},
                                                                                                'cor_xy': {'CalendarMonths': ['0.89',
                                                                                                                              '0.90',
                                                                                                                              '0.87',
                                                                                                                              '0.89',
                                                                                                                              '0.89',
                                                                                                                              '0.87',
                                                                                                                              '0.88',
                                                                                                                              '0.90',
                                                                                                                              '0.88',
                                                                                                                              '0.90',
                                                                                                                              '0.89',
                                                                                                                              '0.89'],
                                                                                                           'ann': '0.925',
                                                                                                           'djf': '0.91',
                                                                                                           'jja': '0.90',
                                                                                                           'mam': '0.91',
                                                                                                           'son': '0.92'},
                                                                                                'mae_xy': {'CalendarMonths': ['0.012',
                                                                                                                              '0.011',
                                                                                                                              '0.012',
                                                                                                                              '0.011',
                                                                                                                              '0.011',
                                                                                                                              '0.013',
                                                                                                                              '0.013',
                                                                                                                              '0.012',
                                                                                                                              '0.011',
                                                                                                                              '0.010',
                                                                                                                              '0.011',
                                                                                                                              '0.012'],
                                                                                                           'ann': '0.008',
                                                                                                           'djf': '0.011',
                                                                                                           'jja': '0.011',
                                                                                                           'mam': '0.009',
                                                                                                           'son': '0.009'},
                                                                                                'mean-obs_xy': {'CalendarMonths': ['-0.008',
                                                                                                                                   '-0.007',
                                                                                                                                   '-0.004',
                                                                                                                                   '0.001',
                                                                                                                                   '0.006',
                                                                                                                                   '0.012',
                                                                                                                                   '0.014',
                                                                                                                                   '0.015',
                                                                                                                                   '0.011',
                                                                                                                                   '0.005',
                                                                                                                                   '-0.001',
                                                                                                                                   '-0.005'],
                                                                                                                'ann': '0.003',
                                                                                                                'djf': '-0.007',
                                                                                                                'jja': '0.014',
                                                                                                                'mam': '0.001',
                                                                                                                'son': '0.005'},
                                                                                                'mean_xy': {'CalendarMonths': ['-0.009',
                                                                                                                               '-0.010',
                                                                                                                               '-0.007',
                                                                                                                               '-0.002',
                                                                                                                               '0.004',
                                                                                                                               '0.011',
                                                                                                                               '0.015',
                                                                                                                               '0.015',
                                                                                                                               '0.010',
                                                                                                                               '0.004',
                                                                                                                               '-0.001',
                                                                                                                               '-0.006'],
                                                                                                            'ann': '0.002',
                                                                                                            'djf': '-0.008',
                                                                                                            'jja': '0.013',
                                                                                                            'mam': '-0.002',
                                                                                                            'son': '0.004'},
                                                                                                'rms_devzm': {'ann': '0.010'},
                                                                                                'rms_xy': {'CalendarMonths': ['0.018',
                                                                                                                              '0.016',
                                                                                                                              '0.017',
                                                                                                                              '0.015',
                                                                                                                              '0.015',
                                                                                                                              '0.019',
                                                                                                                              '0.020',
                                                                                                                              '0.017',
                                                                                                                              '0.016',
                                                                                                                              '0.014',
                                                                                                                              '0.015',
                                                                                                                              '0.017'],
                                                                                                           'ann': '0.011',
                                                                                                           'djf': '0.015',
                                                                                                           'jja': '0.017',
                                                                                                           'mam': '0.013',
                                                                                                           'son': '0.012'},
                                                                                                'rms_xyt': {'ann': '0.016'},
                                                                                                'rms_y': {'ann': '0.004'},
                                                                                                'rmsc_xy': {'CalendarMonths': ['0.018',
                                                                                                                               '0.016',
                                                                                                                               '0.016',
                                                                                                                               '0.014',
                                                                                                                               '0.015',
                                                                                                                               '0.019',
                                                                                                                               '0.020',
                                                                                                                               '0.017',
                                                                                                                               '0.016',
                                                                                                                               '0.014',
                                                                                                                               '0.015',
                                                                                                                               '0.017'],
                                                                                                            'ann': '0.011',
                                                                                                            'djf': '0.015',
                                                                                                            'jja': '0.017',
                                                                                                            'mam': '0.013',
                                                                                                            'son': '0.012'},
                                                                                                'std-obs_xy': {'CalendarMonths': ['0.038',
                                                                                                                                  '0.033',
                                                                                                                                  '0.030',
                                                                                                                                  '0.028',
                                                                                                                                  '0.030',
                                                                                                                                  '0.037',
                                                                                                                                  '0.042',
                                                                                                                                  '0.038',
                                                                                                                                  '0.034',
                                                                                                                                  '0.030',
                                                                                                                                  '0.031',
                                                                                                                                  '0.035'],
                                                                                                               'ann': '0.027',
                                                                                                               'djf': '0.035',
                                                                                                               'jja': '0.038',
                                                                                                               'mam': '0.027',
                                                                                                               'son': '0.029'},
                                                                                                'std-obs_xy_devzm': {'ann': '0.020'},
                                                                                                'std-obs_xyt': {'ann': '0.035'},
                                                                                                'std_xy': {'CalendarMonths': ['0.039',
                                                                                                                              '0.036',
                                                                                                                              '0.033',
                                                                                                                              '0.032',
                                                                                                                              '0.032',
                                                                                                                              '0.036',
                                                                                                                              '0.041',
                                                                                                                              '0.040',
                                                                                                                              '0.033',
                                                                                                                              '0.031',
                                                                                                                              '0.033',
                                                                                                                              '0.037'],
                                                                                                           'ann': '0.028',
                                                                                                           'djf': '0.036',
                                                                                                           'jja': '0.038',
                                                                                                           'mam': '0.030',
                                                                                                           'son': '0.030'},
                                                                                                'std_xy_devzm': {'ann': '0.021'},
                                                                                                'std_xyt': {'ann': '0.036'}}},
                                                                  'source': 'ERA-INT'},
                                                      'units': 'Pa'}},
                           'provenance': {'commandLine': '/home/lee1043/.conda/envs/pcmdi_metrics_dev_20230822/bin/mean_climate_driver.py '
                                                         '-p basic_param.py -v '
                                                         'tauv',
                                          'conda': {'Platform': 'linux-64',
                                                    'PythonVersion': '3.10.12.final.0',
                                                    'Version': '23.3.1',
                                                    'buildVersion': 'not '
                                                                    'installed'},
                                          'date': '2023-09-19 00:13:18',
                                          'openGL': {'GLX': {'client': {'vendor': 'Mesa '
                                                                                  'Project '
                                                                                  'and '
                                                                                  'SGI',
                                                                        'version': '1.4'},
                                                             'server': {'vendor': 'SGI',
                                                                        'version': '1.4'},
                                                             'version': '1.4'},
                                                     'renderer': 'llvmpipe '
                                                                 '(LLVM 7.0, '
                                                                 '256 bits)',
                                                     'shading language version': '1.20',
                                                     'vendor': 'VMware, Inc.',
                                                     'version': '2.1 Mesa '
                                                                '18.3.4'},
                                          'osAccess': False,
                                          'packages': {'PMP': 'v3.0.2-11-g06b151f',
                                                       'PMPObs': 'See '
                                                                 "'References' "
                                                                 'key below, '
                                                                 'for detailed '
                                                                 'obs '
                                                                 'provenance '
                                                                 'information.',
                                                       'blas': '0.3.23',
                                                       'cdat_info': '8.2.1',
                                                       'cdms': '3.1.5',
                                                       'cdp': '1.7.0',
                                                       'cdtime': '3.1.4',
                                                       'cdutil': '8.2.1',
                                                       'clapack': None,
                                                       'esmf': '8.4.2',
                                                       'esmpy': '8.4.2',
                                                       'genutil': '8.2.1',
                                                       'lapack': '3.9.0',
                                                       'matplotlib': '3.7.1',
                                                       'mesalib': None,
                                                       'numpy': '1.23.5',
                                                       'python': '3.10.10',
                                                       'scipy': '1.11.2',
                                                       'uvcdat': None,
                                                       'vcs': None,
                                                       'vtk': None,
                                                       'xarray': '2023.8.0',
                                                       'xcdat': '0.5.0'},
                                          'platform': {'Name': 'gates.llnl.gov',
                                                       'OS': 'Linux',
                                                       'Version': '3.10.0-1160.71.1.el7.x86_64'},
                                          'userId': 'lee1043'}},
                  'ts': {'REFERENCE': {'default': {'CMIP_CMOR_TABLE': 'Amon',
                                                   'MD5sum': '038c2252060aba59dd33fa9e3d192073',
                                                   'RefTrackingDate': 'Thu '
                                                                      'Aug  5 '
                                                                      '08:55:31 '
                                                                      '2021',
                                                   'filename': 'ts_mon_ERA-5_PCMDI_1x1.200301-201812.AC.v20210805.nc',
                                                   'period': '200301-201812',
                                                   'shape': '(12, 180, 360)',
                                                   'template': 'ts/ERA-5/v20210805/ts_mon_ERA-5_PCMDI_1x1.200301-201812.AC.v20210805.nc'}},
                         'RESULTS': {'ACCESS-CM2': {'default': {'r1i1p1f1': {'InputClimatologyFileName': 'cmip6.historical.ACCESS-CM2.r1i1p1f1.mon.ts.198101-200512.AC.v20230823.nc',
                                                                             'NHEX_ocean': {'bias_xy': {'CalendarMonths': ['-0.131',
                                                                                                                           '-0.105',
                                                                                                                           '-0.093',
                                                                                                                           '-0.075',
                                                                                                                           '-0.056',
                                                                                                                           '-0.072',
                                                                                                                           '-0.095',
                                                                                                                           '-0.106',
                                                                                                                           '-0.106',
                                                                                                                           '-0.168',
                                                                                                                           '-0.209',
                                                                                                                           '-0.193'],
                                                                                                        'ann': '-0.117',
                                                                                                        'djf': '-0.142',
                                                                                                        'jja': '-0.091',
                                                                                                        'mam': '-0.074',
                                                                                                        'son': '-0.161'},
                                                                                            'cor_xy': {'CalendarMonths': ['0.98',
                                                                                                                          '0.98',
                                                                                                                          '0.98',
                                                                                                                          '0.99',
                                                                                                                          '0.99',
                                                                                                                          '0.99',
                                                                                                                          '0.99',
                                                                                                                          '0.99',
                                                                                                                          '0.99',
                                                                                                                          '0.99',
                                                                                                                          '0.99',
                                                                                                                          '0.99'],
                                                                                                       'ann': '0.989',
                                                                                                       'djf': '0.98',
                                                                                                       'jja': '0.99',
                                                                                                       'mam': '0.99',
                                                                                                       'son': '0.99'},
                                                                                            'mae_xy': {'CalendarMonths': ['1.425',
                                                                                                                          '1.459',
                                                                                                                          '1.408',
                                                                                                                          '1.290',
                                                                                                                          '1.147',
                                                                                                                          '1.138',
                                                                                                                          '1.217',
                                                                                                                          '1.228',
                                                                                                                          '1.200',
                                                                                                                          '1.196',
                                                                                                                          '1.203',
                                                                                                                          '1.288'],
                                                                                                       'ann': '1.134',
                                                                                                       'djf': '1.358',
                                                                                                       'jja': '1.166',
                                                                                                       'mam': '1.245',
                                                                                                       'son': '1.163'},
                                                                                            'mean-obs_xy': {'CalendarMonths': ['290.357',
                                                                                                                               '290.428',
                                                                                                                               '290.457',
                                                                                                                               '290.552',
                                                                                                                               '290.664',
                                                                                                                               '290.704',
                                                                                                                               '290.704',
                                                                                                                               '290.730',
                                                                                                                               '290.609',
                                                                                                                               '290.442',
                                                                                                                               '290.315',
                                                                                                                               '290.299'],
                                                                                                            'ann': '290.522',
                                                                                                            'djf': '290.362',
                                                                                                            'jja': '290.713',
                                                                                                            'mam': '290.559',
                                                                                                            'son': '290.456'},
                                                                                            'mean_xy': {'CalendarMonths': ['290.226',
                                                                                                                           '290.323',
                                                                                                                           '290.364',
                                                                                                                           '290.477',
                                                                                                                           '290.608',
                                                                                                                           '290.632',
                                                                                                                           '290.609',
                                                                                                                           '290.625',
                                                                                                                           '290.503',
                                                                                                                           '290.275',
                                                                                                                           '290.106',
                                                                                                                           '290.106'],
                                                                                                        'ann': '290.404',
                                                                                                        'djf': '290.220',
                                                                                                        'jja': '290.622',
                                                                                                        'mam': '290.485',
                                                                                                        'son': '290.295'},
                                                                                            'rms_devzm': {'ann': '1.095'},
                                                                                            'rms_xy': {'CalendarMonths': ['2.638',
                                                                                                                          '2.661',
                                                                                                                          '2.423',
                                                                                                                          '2.064',
                                                                                                                          '1.685',
                                                                                                                          '1.682',
                                                                                                                          '1.814',
                                                                                                                          '1.825',
                                                                                                                          '1.794',
                                                                                                                          '1.943',
                                                                                                                          '2.083',
                                                                                                                          '2.335'],
                                                                                                       'ann': '1.791',
                                                                                                       'djf': '2.500',
                                                                                                       'jja': '1.718',
                                                                                                       'mam': '1.950',
                                                                                                       'son': '1.835'},
                                                                                            'rms_xyt': {'ann': '2.079'},
                                                                                            'rms_y': {'ann': '1.452'},
                                                                                            'rmsc_xy': {'CalendarMonths': ['2.635',
                                                                                                                           '2.659',
                                                                                                                           '2.422',
                                                                                                                           '2.062',
                                                                                                                           '1.684',
                                                                                                                           '1.680',
                                                                                                                           '1.811',
                                                                                                                           '1.822',
                                                                                                                           '1.791',
                                                                                                                           '1.936',
                                                                                                                           '2.073',
                                                                                                                           '2.327'],
                                                                                                        'ann': '1.788',
                                                                                                        'djf': '2.496',
                                                                                                        'jja': '1.716',
                                                                                                        'mam': '1.949',
                                                                                                        'son': '1.828'},
                                                                                            'std-obs_xy': {'CalendarMonths': ['12.149',
                                                                                                                              '12.438',
                                                                                                                              '12.584',
                                                                                                                              '12.261',
                                                                                                                              '11.792',
                                                                                                                              '11.632',
                                                                                                                              '11.791',
                                                                                                                              '11.870',
                                                                                                                              '11.847',
                                                                                                                              '11.693',
                                                                                                                              '11.734',
                                                                                                                              '11.915'],
                                                                                                           'ann': '11.596',
                                                                                                           'djf': '12.143',
                                                                                                           'jja': '11.724',
                                                                                                           'mam': '12.101',
                                                                                                           'son': '11.638'},
                                                                                            'std-obs_xy_devzm': {'ann': '2.266'},
                                                                                            'std-obs_xyt': {'ann': '11.980'},
                                                                                            'std_xy': {'CalendarMonths': ['13.334',
                                                                                                                          '13.610',
                                                                                                                          '13.456',
                                                                                                                          '12.573',
                                                                                                                          '11.721',
                                                                                                                          '11.561',
                                                                                                                          '11.741',
                                                                                                                          '11.801',
                                                                                                                          '11.809',
                                                                                                                          '11.933',
                                                                                                                          '12.325',
                                                                                                                          '12.829'],
                                                                                                       'ann': '11.910',
                                                                                                       'djf': '13.223',
                                                                                                       'jja': '11.660',
                                                                                                       'mam': '12.414',
                                                                                                       'son': '11.871'},
                                                                                            'std_xy_devzm': {'ann': '2.244'},
                                                                                            'std_xyt': {'ann': '12.413'}},
                                                                             'SHEX_ocean': {'bias_xy': {'CalendarMonths': ['-0.131',
                                                                                                                           '-0.105',
                                                                                                                           '-0.093',
                                                                                                                           '-0.075',
                                                                                                                           '-0.056',
                                                                                                                           '-0.072',
                                                                                                                           '-0.095',
                                                                                                                           '-0.106',
                                                                                                                           '-0.106',
                                                                                                                           '-0.168',
                                                                                                                           '-0.209',
                                                                                                                           '-0.193'],
                                                                                                        'ann': '-0.117',
                                                                                                        'djf': '-0.142',
                                                                                                        'jja': '-0.091',
                                                                                                        'mam': '-0.074',
                                                                                                        'son': '-0.161'},
                                                                                            'cor_xy': {'CalendarMonths': ['0.98',
                                                                                                                          '0.98',
                                                                                                                          '0.98',
                                                                                                                          '0.99',
                                                                                                                          '0.99',
                                                                                                                          '0.99',
                                                                                                                          '0.99',
                                                                                                                          '0.99',
                                                                                                                          '0.99',
                                                                                                                          '0.99',
                                                                                                                          '0.99',
                                                                                                                          '0.99'],
                                                                                                       'ann': '0.989',
                                                                                                       'djf': '0.98',
                                                                                                       'jja': '0.99',
                                                                                                       'mam': '0.99',
                                                                                                       'son': '0.99'},
                                                                                            'mae_xy': {'CalendarMonths': ['1.425',
                                                                                                                          '1.459',
                                                                                                                          '1.408',
                                                                                                                          '1.290',
                                                                                                                          '1.147',
                                                                                                                          '1.138',
                                                                                                                          '1.217',
                                                                                                                          '1.228',
                                                                                                                          '1.200',
                                                                                                                          '1.196',
                                                                                                                          '1.203',
                                                                                                                          '1.288'],
                                                                                                       'ann': '1.134',
                                                                                                       'djf': '1.358',
                                                                                                       'jja': '1.166',
                                                                                                       'mam': '1.245',
                                                                                                       'son': '1.163'},
                                                                                            'mean-obs_xy': {'CalendarMonths': ['290.357',
                                                                                                                               '290.428',
                                                                                                                               '290.457',
                                                                                                                               '290.552',
                                                                                                                               '290.664',
                                                                                                                               '290.704',
                                                                                                                               '290.704',
                                                                                                                               '290.730',
                                                                                                                               '290.609',
                                                                                                                               '290.442',
                                                                                                                               '290.315',
                                                                                                                               '290.299'],
                                                                                                            'ann': '290.522',
                                                                                                            'djf': '290.362',
                                                                                                            'jja': '290.713',
                                                                                                            'mam': '290.559',
                                                                                                            'son': '290.456'},
                                                                                            'mean_xy': {'CalendarMonths': ['290.226',
                                                                                                                           '290.323',
                                                                                                                           '290.364',
                                                                                                                           '290.477',
                                                                                                                           '290.608',
                                                                                                                           '290.632',
                                                                                                                           '290.609',
                                                                                                                           '290.625',
                                                                                                                           '290.503',
                                                                                                                           '290.275',
                                                                                                                           '290.106',
                                                                                                                           '290.106'],
                                                                                                        'ann': '290.404',
                                                                                                        'djf': '290.220',
                                                                                                        'jja': '290.622',
                                                                                                        'mam': '290.485',
                                                                                                        'son': '290.295'},
                                                                                            'rms_devzm': {'ann': '1.095'},
                                                                                            'rms_xy': {'CalendarMonths': ['2.638',
                                                                                                                          '2.661',
                                                                                                                          '2.423',
                                                                                                                          '2.064',
                                                                                                                          '1.685',
                                                                                                                          '1.682',
                                                                                                                          '1.814',
                                                                                                                          '1.825',
                                                                                                                          '1.794',
                                                                                                                          '1.943',
                                                                                                                          '2.083',
                                                                                                                          '2.335'],
                                                                                                       'ann': '1.791',
                                                                                                       'djf': '2.500',
                                                                                                       'jja': '1.718',
                                                                                                       'mam': '1.950',
                                                                                                       'son': '1.835'},
                                                                                            'rms_xyt': {'ann': '2.079'},
                                                                                            'rms_y': {'ann': '1.452'},
                                                                                            'rmsc_xy': {'CalendarMonths': ['2.635',
                                                                                                                           '2.659',
                                                                                                                           '2.422',
                                                                                                                           '2.062',
                                                                                                                           '1.684',
                                                                                                                           '1.680',
                                                                                                                           '1.811',
                                                                                                                           '1.822',
                                                                                                                           '1.791',
                                                                                                                           '1.936',
                                                                                                                           '2.073',
                                                                                                                           '2.327'],
                                                                                                        'ann': '1.788',
                                                                                                        'djf': '2.496',
                                                                                                        'jja': '1.716',
                                                                                                        'mam': '1.949',
                                                                                                        'son': '1.828'},
                                                                                            'std-obs_xy': {'CalendarMonths': ['12.149',
                                                                                                                              '12.438',
                                                                                                                              '12.584',
                                                                                                                              '12.261',
                                                                                                                              '11.792',
                                                                                                                              '11.632',
                                                                                                                              '11.791',
                                                                                                                              '11.870',
                                                                                                                              '11.847',
                                                                                                                              '11.693',
                                                                                                                              '11.734',
                                                                                                                              '11.915'],
                                                                                                           'ann': '11.596',
                                                                                                           'djf': '12.143',
                                                                                                           'jja': '11.724',
                                                                                                           'mam': '12.101',
                                                                                                           'son': '11.638'},
                                                                                            'std-obs_xy_devzm': {'ann': '2.266'},
                                                                                            'std-obs_xyt': {'ann': '11.980'},
                                                                                            'std_xy': {'CalendarMonths': ['13.334',
                                                                                                                          '13.610',
                                                                                                                          '13.456',
                                                                                                                          '12.573',
                                                                                                                          '11.721',
                                                                                                                          '11.561',
                                                                                                                          '11.741',
                                                                                                                          '11.801',
                                                                                                                          '11.809',
                                                                                                                          '11.933',
                                                                                                                          '12.325',
                                                                                                                          '12.829'],
                                                                                                       'ann': '11.910',
                                                                                                       'djf': '13.223',
                                                                                                       'jja': '11.660',
                                                                                                       'mam': '12.414',
                                                                                                       'son': '11.871'},
                                                                                            'std_xy_devzm': {'ann': '2.244'},
                                                                                            'std_xyt': {'ann': '12.413'}},
                                                                             'global': {'bias_xy': {'CalendarMonths': ['-0.016',
                                                                                                                       '-0.038',
                                                                                                                       '-0.082',
                                                                                                                       '-0.088',
                                                                                                                       '-0.146',
                                                                                                                       '-0.147',
                                                                                                                       '-0.113',
                                                                                                                       '-0.229',
                                                                                                                       '-0.245',
                                                                                                                       '-0.129',
                                                                                                                       '0.004',
                                                                                                                       '0.002'],
                                                                                                    'ann': '-0.102',
                                                                                                    'djf': '-0.018',
                                                                                                    'jja': '-0.164',
                                                                                                    'mam': '-0.106',
                                                                                                    'son': '-0.123'},
                                                                                        'cor_xy': {'CalendarMonths': ['0.99',
                                                                                                                      '0.99',
                                                                                                                      '0.99',
                                                                                                                      '0.99',
                                                                                                                      '0.99',
                                                                                                                      '0.99',
                                                                                                                      '0.99',
                                                                                                                      '0.99',
                                                                                                                      '0.99',
                                                                                                                      '0.99',
                                                                                                                      '0.99',
                                                                                                                      '0.98'],
                                                                                                   'ann': '0.992',
                                                                                                   'djf': '0.99',
                                                                                                   'jja': '0.99',
                                                                                                   'mam': '0.99',
                                                                                                   'son': '0.99'},
                                                                                        'mae_xy': {'CalendarMonths': ['1.772',
                                                                                                                      '1.661',
                                                                                                                      '1.596',
                                                                                                                      '1.452',
                                                                                                                      '1.407',
                                                                                                                      '1.428',
                                                                                                                      '1.478',
                                                                                                                      '1.515',
                                                                                                                      '1.464',
                                                                                                                      '1.393',
                                                                                                                      '1.501',
                                                                                                                      '1.701'],
                                                                                                   'ann': '1.291',
                                                                                                   'djf': '1.666',
                                                                                                   'jja': '1.428',
                                                                                                   'mam': '1.411',
                                                                                                   'son': '1.367'},
                                                                                        'mean-obs_xy': {'CalendarMonths': ['286.388',
                                                                                                                           '286.661',
                                                                                                                           '287.410',
                                                                                                                           '288.384',
                                                                                                                           '289.302',
                                                                                                                           '289.996',
                                                                                                                           '290.263',
                                                                                                                           '290.182',
                                                                                                                           '289.531',
                                                                                                                           '288.553',
                                                                                                                           '287.400',
                                                                                                                           '286.624'],
                                                                                                        'ann': '288.391',
                                                                                                        'djf': '286.557',
                                                                                                        'jja': '290.146',
                                                                                                        'mam': '288.384',
                                                                                                        'son': '288.494'},
                                                                                        'mean_xy': {'CalendarMonths': ['286.372',
                                                                                                                       '286.623',
                                                                                                                       '287.328',
                                                                                                                       '288.295',
                                                                                                                       '289.155',
                                                                                                                       '289.849',
                                                                                                                       '290.150',
                                                                                                                       '289.953',
                                                                                                                       '289.286',
                                                                                                                       '288.424',
                                                                                                                       '287.404',
                                                                                                                       '286.625'],
                                                                                                    'ann': '288.289',
                                                                                                    'djf': '286.539',
                                                                                                    'jja': '289.982',
                                                                                                    'mam': '288.278',
                                                                                                    'son': '288.371'},
                                                                                        'rms_devzm': {'ann': '1.386'},
                                                                                        'rms_xy': {'CalendarMonths': ['2.963',
                                                                                                                      '2.751',
                                                                                                                      '2.545',
                                                                                                                      '2.193',
                                                                                                                      '2.039',
                                                                                                                      '2.083',
                                                                                                                      '2.156',
                                                                                                                      '2.194',
                                                                                                                      '2.104',
                                                                                                                      '2.094',
                                                                                                                      '2.406',
                                                                                                                      '2.889'],
                                                                                                   'ann': '1.910',
                                                                                                   'djf': '2.770',
                                                                                                   'jja': '2.065',
                                                                                                   'mam': '2.107',
                                                                                                   'son': '2.011'},
                                                                                        'rms_xyt': {'ann': '2.368'},
                                                                                        'rms_y': {'ann': '1.314'},
                                                                                        'rmsc_xy': {'CalendarMonths': ['2.963',
                                                                                                                       '2.751',
                                                                                                                       '2.544',
                                                                                                                       '2.192',
                                                                                                                       '2.034',
                                                                                                                       '2.077',
                                                                                                                       '2.153',
                                                                                                                       '2.182',
                                                                                                                       '2.089',
                                                                                                                       '2.090',
                                                                                                                       '2.406',
                                                                                                                       '2.889'],
                                                                                                    'ann': '1.907',
                                                                                                    'djf': '2.769',
                                                                                                    'jja': '2.058',
                                                                                                    'mam': '2.104',
                                                                                                    'son': '2.008'},
                                                                                        'std-obs_xy': {'CalendarMonths': ['16.669',
                                                                                                                          '16.893',
                                                                                                                          '16.474',
                                                                                                                          '15.692',
                                                                                                                          '14.896',
                                                                                                                          '14.651',
                                                                                                                          '14.868',
                                                                                                                          '14.853',
                                                                                                                          '14.853',
                                                                                                                          '14.811',
                                                                                                                          '15.315',
                                                                                                                          '16.096'],
                                                                                                       'ann': '14.627',
                                                                                                       'djf': '16.526',
                                                                                                       'jja': '14.753',
                                                                                                       'mam': '15.450',
                                                                                                       'son': '14.666'},
                                                                                        'std-obs_xy_devzm': {'ann': '4.113'},
                                                                                        'std-obs_xyt': {'ann': '15.589'},
                                                                                        'std_xy': {'CalendarMonths': ['17.494',
                                                                                                                      '17.828',
                                                                                                                      '17.457',
                                                                                                                      '16.343',
                                                                                                                      '15.415',
                                                                                                                      '15.212',
                                                                                                                      '15.360',
                                                                                                                      '15.388',
                                                                                                                      '15.257',
                                                                                                                      '15.116',
                                                                                                                      '15.557',
                                                                                                                      '16.605'],
                                                                                                   'ann': '15.078',
                                                                                                   'djf': '17.262',
                                                                                                   'jja': '15.284',
                                                                                                   'mam': '16.121',
                                                                                                   'son': '14.944'},
                                                                                        'std_xy_devzm': {'ann': '3.872'},
                                                                                        'std_xyt': {'ann': '16.170'}},
                                                                             'ocean': {'bias_xy': {'CalendarMonths': ['-0.131',
                                                                                                                      '-0.105',
                                                                                                                      '-0.093',
                                                                                                                      '-0.075',
                                                                                                                      '-0.056',
                                                                                                                      '-0.072',
                                                                                                                      '-0.095',
                                                                                                                      '-0.106',
                                                                                                                      '-0.106',
                                                                                                                      '-0.168',
                                                                                                                      '-0.209',
                                                                                                                      '-0.193'],
                                                                                                   'ann': '-0.117',
                                                                                                   'djf': '-0.142',
                                                                                                   'jja': '-0.091',
                                                                                                   'mam': '-0.074',
                                                                                                   'son': '-0.161'},
                                                                                       'cor_xy': {'CalendarMonths': ['0.98',
                                                                                                                     '0.98',
                                                                                                                     '0.98',
                                                                                                                     '0.99',
                                                                                                                     '0.99',
                                                                                                                     '0.99',
                                                                                                                     '0.99',
                                                                                                                     '0.99',
                                                                                                                     '0.99',
                                                                                                                     '0.99',
                                                                                                                     '0.99',
                                                                                                                     '0.99'],
                                                                                                  'ann': '0.989',
                                                                                                  'djf': '0.98',
                                                                                                  'jja': '0.99',
                                                                                                  'mam': '0.99',
                                                                                                  'son': '0.99'},
                                                                                       'mae_xy': {'CalendarMonths': ['1.425',
                                                                                                                     '1.459',
                                                                                                                     '1.408',
                                                                                                                     '1.290',
                                                                                                                     '1.147',
                                                                                                                     '1.138',
                                                                                                                     '1.217',
                                                                                                                     '1.228',
                                                                                                                     '1.200',
                                                                                                                     '1.196',
                                                                                                                     '1.203',
                                                                                                                     '1.288'],
                                                                                                  'ann': '1.134',
                                                                                                  'djf': '1.358',
                                                                                                  'jja': '1.166',
                                                                                                  'mam': '1.245',
                                                                                                  'son': '1.163'},
                                                                                       'mean-obs_xy': {'CalendarMonths': ['290.357',
                                                                                                                          '290.428',
                                                                                                                          '290.457',
                                                                                                                          '290.552',
                                                                                                                          '290.664',
                                                                                                                          '290.704',
                                                                                                                          '290.704',
                                                                                                                          '290.730',
                                                                                                                          '290.609',
                                                                                                                          '290.442',
                                                                                                                          '290.315',
                                                                                                                          '290.299'],
                                                                                                       'ann': '290.522',
                                                                                                       'djf': '290.362',
                                                                                                       'jja': '290.713',
                                                                                                       'mam': '290.559',
                                                                                                       'son': '290.456'},
                                                                                       'mean_xy': {'CalendarMonths': ['290.226',
                                                                                                                      '290.323',
                                                                                                                      '290.364',
                                                                                                                      '290.477',
                                                                                                                      '290.608',
                                                                                                                      '290.632',
                                                                                                                      '290.609',
                                                                                                                      '290.625',
                                                                                                                      '290.503',
                                                                                                                      '290.275',
                                                                                                                      '290.106',
                                                                                                                      '290.106'],
                                                                                                   'ann': '290.404',
                                                                                                   'djf': '290.220',
                                                                                                   'jja': '290.622',
                                                                                                   'mam': '290.485',
                                                                                                   'son': '290.295'},
                                                                                       'rms_devzm': {'ann': '1.095'},
                                                                                       'rms_xy': {'CalendarMonths': ['2.638',
                                                                                                                     '2.661',
                                                                                                                     '2.423',
                                                                                                                     '2.064',
                                                                                                                     '1.685',
                                                                                                                     '1.682',
                                                                                                                     '1.814',
                                                                                                                     '1.825',
                                                                                                                     '1.794',
                                                                                                                     '1.943',
                                                                                                                     '2.083',
                                                                                                                     '2.335'],
                                                                                                  'ann': '1.791',
                                                                                                  'djf': '2.500',
                                                                                                  'jja': '1.718',
                                                                                                  'mam': '1.950',
                                                                                                  'son': '1.835'},
                                                                                       'rms_xyt': {'ann': '2.079'},
                                                                                       'rms_y': {'ann': '1.452'},
                                                                                       'rmsc_xy': {'CalendarMonths': ['2.635',
                                                                                                                      '2.659',
                                                                                                                      '2.422',
                                                                                                                      '2.062',
                                                                                                                      '1.684',
                                                                                                                      '1.680',
                                                                                                                      '1.811',
                                                                                                                      '1.822',
                                                                                                                      '1.791',
                                                                                                                      '1.936',
                                                                                                                      '2.073',
                                                                                                                      '2.327'],
                                                                                                   'ann': '1.788',
                                                                                                   'djf': '2.496',
                                                                                                   'jja': '1.716',
                                                                                                   'mam': '1.949',
                                                                                                   'son': '1.828'},
                                                                                       'std-obs_xy': {'CalendarMonths': ['12.149',
                                                                                                                         '12.438',
                                                                                                                         '12.584',
                                                                                                                         '12.261',
                                                                                                                         '11.792',
                                                                                                                         '11.632',
                                                                                                                         '11.791',
                                                                                                                         '11.870',
                                                                                                                         '11.847',
                                                                                                                         '11.693',
                                                                                                                         '11.734',
                                                                                                                         '11.915'],
                                                                                                      'ann': '11.596',
                                                                                                      'djf': '12.143',
                                                                                                      'jja': '11.724',
                                                                                                      'mam': '12.101',
                                                                                                      'son': '11.638'},
                                                                                       'std-obs_xy_devzm': {'ann': '2.266'},
                                                                                       'std-obs_xyt': {'ann': '11.980'},
                                                                                       'std_xy': {'CalendarMonths': ['13.334',
                                                                                                                     '13.610',
                                                                                                                     '13.456',
                                                                                                                     '12.573',
                                                                                                                     '11.721',
                                                                                                                     '11.561',
                                                                                                                     '11.741',
                                                                                                                     '11.801',
                                                                                                                     '11.809',
                                                                                                                     '11.933',
                                                                                                                     '12.325',
                                                                                                                     '12.829'],
                                                                                                  'ann': '11.910',
                                                                                                  'djf': '13.223',
                                                                                                  'jja': '11.660',
                                                                                                  'mam': '12.414',
                                                                                                  'son': '11.871'},
                                                                                       'std_xy_devzm': {'ann': '2.244'},
                                                                                       'std_xyt': {'ann': '12.413'}},
                                                                             'ocean_50S50N': {'bias_xy': {'CalendarMonths': ['0.071',
                                                                                                                             '0.060',
                                                                                                                             '0.008',
                                                                                                                             '-0.082',
                                                                                                                             '-0.146',
                                                                                                                             '-0.141',
                                                                                                                             '-0.120',
                                                                                                                             '-0.104',
                                                                                                                             '-0.082',
                                                                                                                             '-0.087',
                                                                                                                             '-0.072',
                                                                                                                             '-0.005'],
                                                                                                          'ann': '-0.058',
                                                                                                          'djf': '0.043',
                                                                                                          'jja': '-0.122',
                                                                                                          'mam': '-0.075',
                                                                                                          'son': '-0.080'},
                                                                                              'cor_xy': {'CalendarMonths': ['0.98',
                                                                                                                            '0.98',
                                                                                                                            '0.98',
                                                                                                                            '0.98',
                                                                                                                            '0.98',
                                                                                                                            '0.98',
                                                                                                                            '0.98',
                                                                                                                            '0.98',
                                                                                                                            '0.98',
                                                                                                                            '0.98',
                                                                                                                            '0.98',
                                                                                                                            '0.98'],
                                                                                                         'ann': '0.983',
                                                                                                         'djf': '0.98',
                                                                                                         'jja': '0.98',
                                                                                                         'mam': '0.98',
                                                                                                         'son': '0.98'},
                                                                                              'mae_xy': {'CalendarMonths': ['0.914',
                                                                                                                            '0.868',
                                                                                                                            '0.852',
                                                                                                                            '0.873',
                                                                                                                            '0.896',
                                                                                                                            '0.940',
                                                                                                                            '0.979',
                                                                                                                            '0.961',
                                                                                                                            '0.909',
                                                                                                                            '0.879',
                                                                                                                            '0.902',
                                                                                                                            '0.924'],
                                                                                                         'ann': '0.809',
                                                                                                         'djf': '0.878',
                                                                                                         'jja': '0.937',
                                                                                                         'mam': '0.844',
                                                                                                         'son': '0.878'},
                                                                                              'mean-obs_xy': {'CalendarMonths': ['295.272',
                                                                                                                                 '295.447',
                                                                                                                                 '295.575',
                                                                                                                                 '295.596',
                                                                                                                                 '295.507',
                                                                                                                                 '295.399',
                                                                                                                                 '295.374',
                                                                                                                                 '295.397',
                                                                                                                                 '295.344',
                                                                                                                                 '295.236',
                                                                                                                                 '295.161',
                                                                                                                                 '295.171'],
                                                                                                              'ann': '295.373',
                                                                                                              'djf': '295.298',
                                                                                                              'jja': '295.390',
                                                                                                              'mam': '295.559',
                                                                                                              'son': '295.247'},
                                                                                              'mean_xy': {'CalendarMonths': ['295.343',
                                                                                                                             '295.507',
                                                                                                                             '295.582',
                                                                                                                             '295.514',
                                                                                                                             '295.361',
                                                                                                                             '295.258',
                                                                                                                             '295.254',
                                                                                                                             '295.293',
                                                                                                                             '295.262',
                                                                                                                             '295.149',
                                                                                                                             '295.089',
                                                                                                                             '295.166'],
                                                                                                          'ann': '295.315',
                                                                                                          'djf': '295.340',
                                                                                                          'jja': '295.269',
                                                                                                          'mam': '295.484',
                                                                                                          'son': '295.167'},
                                                                                              'rms_devzm': {'ann': '0.921'},
                                                                                              'rms_xy': {'CalendarMonths': ['1.345',
                                                                                                                            '1.235',
                                                                                                                            '1.187',
                                                                                                                            '1.237',
                                                                                                                            '1.291',
                                                                                                                            '1.371',
                                                                                                                            '1.444',
                                                                                                                            '1.419',
                                                                                                                            '1.322',
                                                                                                                            '1.278',
                                                                                                                            '1.324',
                                                                                                                            '1.385'],
                                                                                                         'ann': '1.179',
                                                                                                         'djf': '1.292',
                                                                                                         'jja': '1.381',
                                                                                                         'mam': '1.203',
                                                                                                         'son': '1.279'},
                                                                                              'rms_xyt': {'ann': '1.320'},
                                                                                              'rms_y': {'ann': '0.790'},
                                                                                              'rmsc_xy': {'CalendarMonths': ['1.343',
                                                                                                                             '1.234',
                                                                                                                             '1.187',
                                                                                                                             '1.234',
                                                                                                                             '1.283',
                                                                                                                             '1.364',
                                                                                                                             '1.439',
                                                                                                                             '1.415',
                                                                                                                             '1.319',
                                                                                                                             '1.275',
                                                                                                                             '1.322',
                                                                                                                             '1.385'],
                                                                                                          'ann': '1.177',
                                                                                                          'djf': '1.291',
                                                                                                          'jja': '1.375',
                                                                                                          'mam': '1.201',
                                                                                                          'son': '1.276'},
                                                                                              'std-obs_xy': {'CalendarMonths': ['6.531',
                                                                                                                                '6.632',
                                                                                                                                '6.735',
                                                                                                                                '6.780',
                                                                                                                                '6.697',
                                                                                                                                '6.578',
                                                                                                                                '6.540',
                                                                                                                                '6.616',
                                                                                                                                '6.677',
                                                                                                                                '6.674',
                                                                                                                                '6.596',
                                                                                                                                '6.505'],
                                                                                                             'ann': '6.325',
                                                                                                             'djf': '6.516',
                                                                                                             'jja': '6.515',
                                                                                                             'mam': '6.685',
                                                                                                             'son': '6.581'},
                                                                                              'std-obs_xy_devzm': {'ann': '1.743'},
                                                                                              'std-obs_xyt': {'ann': '6.632'},
                                                                                              'std_xy': {'CalendarMonths': ['6.775',
                                                                                                                            '6.834',
                                                                                                                            '6.843',
                                                                                                                            '6.819',
                                                                                                                            '6.727',
                                                                                                                            '6.564',
                                                                                                                            '6.455',
                                                                                                                            '6.448',
                                                                                                                            '6.537',
                                                                                                                            '6.643',
                                                                                                                            '6.682',
                                                                                                                            '6.712'],
                                                                                                         'ann': '6.370',
                                                                                                         'djf': '6.735',
                                                                                                         'jja': '6.429',
                                                                                                         'mam': '6.744',
                                                                                                         'son': '6.553'},
                                                                                              'std_xy_devzm': {'ann': '1.682'},
                                                                                              'std_xyt': {'ann': '6.673'}}},
                                                                'source': 'ERA-5'},
                                                    'units': 'K'}},
                         'provenance': {'commandLine': '/home/lee1043/.conda/envs/pcmdi_metrics_dev_20230822/bin/mean_climate_driver.py '
                                                       '-p basic_param.py -v '
                                                       'ts',
                                        'conda': {'Platform': 'linux-64',
                                                  'PythonVersion': '3.10.12.final.0',
                                                  'Version': '23.3.1',
                                                  'buildVersion': 'not '
                                                                  'installed'},
                                        'date': '2023-09-19 01:05:53',
                                        'openGL': {'GLX': {'client': {'vendor': 'Mesa '
                                                                                'Project '
                                                                                'and '
                                                                                'SGI',
                                                                      'version': '1.4'},
                                                           'server': {'vendor': 'SGI',
                                                                      'version': '1.4'},
                                                           'version': '1.4'},
                                                   'renderer': 'llvmpipe (LLVM '
                                                               '7.0, 256 bits)',
                                                   'shading language version': '1.20',
                                                   'vendor': 'VMware, Inc.',
                                                   'version': '2.1 Mesa '
                                                              '18.3.4'},
                                        'osAccess': False,
                                        'packages': {'PMP': 'v3.0.2-11-g06b151f',
                                                     'PMPObs': 'See '
                                                               "'References' "
                                                               'key below, for '
                                                               'detailed obs '
                                                               'provenance '
                                                               'information.',
                                                     'blas': '0.3.23',
                                                     'cdat_info': '8.2.1',
                                                     'cdms': '3.1.5',
                                                     'cdp': '1.7.0',
                                                     'cdtime': '3.1.4',
                                                     'cdutil': '8.2.1',
                                                     'clapack': None,
                                                     'esmf': '8.4.2',
                                                     'esmpy': '8.4.2',
                                                     'genutil': '8.2.1',
                                                     'lapack': '3.9.0',
                                                     'matplotlib': '3.7.1',
                                                     'mesalib': None,
                                                     'numpy': '1.23.5',
                                                     'python': '3.10.10',
                                                     'scipy': '1.11.2',
                                                     'uvcdat': None,
                                                     'vcs': None,
                                                     'vtk': None,
                                                     'xarray': '2023.8.0',
                                                     'xcdat': '0.5.0'},
                                        'platform': {'Name': 'gates.llnl.gov',
                                                     'OS': 'Linux',
                                                     'Version': '3.10.0-1160.71.1.el7.x86_64'},
                                        'userId': 'lee1043'}},
                  'ua': {'REFERENCE': {'default': {'CMIP_CMOR_TABLE': 'Amon',
                                                   'MD5sum': 'dc2ccc515b746126077017761a693555',
                                                   'RefTrackingDate': 'Thu '
                                                                      'Aug  5 '
                                                                      '08:57:36 '
                                                                      '2021',
                                                   'filename': 'ua_mon_ERA-5_PCMDI_1x1.200301-201812.AC.v20210805.nc',
                                                   'period': '200301-201812',
                                                   'shape': '(12, 37, 180, '
                                                            '360)',
                                                   'template': 'ua/ERA-5/v20210805/ua_mon_ERA-5_PCMDI_1x1.200301-201812.AC.v20210805.nc'}},
                         'RESULTS': {'ACCESS-CM2': {'default': {'r1i1p1f1': {'InputClimatologyFileName': 'cmip6.historical.ACCESS-CM2.r1i1p1f1.mon.ua.198101-200512.AC.v20230823.nc',
                                                                             'global': {'bias_xy': {'CalendarMonths': ['1.009',
                                                                                                                       '0.820',
                                                                                                                       '0.772',
                                                                                                                       '0.613',
                                                                                                                       '0.933',
                                                                                                                       '2.235',
                                                                                                                       '2.606',
                                                                                                                       '2.839',
                                                                                                                       '3.164',
                                                                                                                       '2.246',
                                                                                                                       '1.046',
                                                                                                                       '1.055'],
                                                                                                    'ann': '1.611',
                                                                                                    'djf': '0.960',
                                                                                                    'jja': '2.559',
                                                                                                    'mam': '0.771',
                                                                                                    'son': '2.151'},
                                                                                        'cor_xy': {'CalendarMonths': ['0.97',
                                                                                                                      '0.97',
                                                                                                                      '0.96',
                                                                                                                      '0.96',
                                                                                                                      '0.94',
                                                                                                                      '0.94',
                                                                                                                      '0.94',
                                                                                                                      '0.96',
                                                                                                                      '0.94',
                                                                                                                      '0.96',
                                                                                                                      '0.96',
                                                                                                                      '0.96'],
                                                                                                   'ann': '0.972',
                                                                                                   'djf': '0.97',
                                                                                                   'jja': '0.96',
                                                                                                   'mam': '0.97',
                                                                                                   'son': '0.96'},
                                                                                        'mae_xy': {'CalendarMonths': ['3.287',
                                                                                                                      '3.352',
                                                                                                                      '3.527',
                                                                                                                      '3.066',
                                                                                                                      '3.359',
                                                                                                                      '4.242',
                                                                                                                      '4.428',
                                                                                                                      '4.322',
                                                                                                                      '4.624',
                                                                                                                      '3.285',
                                                                                                                      '3.256',
                                                                                                                      '3.465'],
                                                                                                   'ann': '2.585',
                                                                                                   'djf': '3.092',
                                                                                                   'jja': '3.969',
                                                                                                   'mam': '2.800',
                                                                                                   'son': '3.174'},
                                                                                        'mean-obs_xy': {'CalendarMonths': ['16.798',
                                                                                                                           '16.634',
                                                                                                                           '16.835',
                                                                                                                           '17.328',
                                                                                                                           '16.714',
                                                                                                                           '13.917',
                                                                                                                           '12.252',
                                                                                                                           '12.185',
                                                                                                                           '13.631',
                                                                                                                           '15.754',
                                                                                                                           '17.255',
                                                                                                                           '17.148'],
                                                                                                        'ann': '15.538',
                                                                                                        'djf': '16.857',
                                                                                                        'jja': '12.790',
                                                                                                        'mam': '16.966',
                                                                                                        'son': '15.545'},
                                                                                        'mean_xy': {'CalendarMonths': ['17.807',
                                                                                                                       '17.454',
                                                                                                                       '17.607',
                                                                                                                       '17.942',
                                                                                                                       '17.647',
                                                                                                                       '16.152',
                                                                                                                       '14.858',
                                                                                                                       '15.024',
                                                                                                                       '16.796',
                                                                                                                       '18.000',
                                                                                                                       '18.301',
                                                                                                                       '18.203'],
                                                                                                    'ann': '17.149',
                                                                                                    'djf': '17.817',
                                                                                                    'jja': '15.350',
                                                                                                    'mam': '17.737',
                                                                                                    'son': '17.695'},
                                                                                        'rms_devzm': {'ann': '2.225'},
                                                                                        'rms_xy': {'CalendarMonths': ['4.513',
                                                                                                                      '4.667',
                                                                                                                      '5.031',
                                                                                                                      '4.177',
                                                                                                                      '4.307',
                                                                                                                      '5.630',
                                                                                                                      '6.151',
                                                                                                                      '5.853',
                                                                                                                      '6.308',
                                                                                                                      '4.346',
                                                                                                                      '4.156',
                                                                                                                      '4.493'],
                                                                                                   'ann': '3.350',
                                                                                                   'djf': '4.191',
                                                                                                   'jja': '5.426',
                                                                                                   'mam': '3.829',
                                                                                                   'son': '4.184'},
                                                                                        'rms_xyt': {'ann': '4.969'},
                                                                                        'rms_y': {'ann': '2.504'},
                                                                                        'rmsc_xy': {'CalendarMonths': ['4.398',
                                                                                                                       '4.594',
                                                                                                                       '4.972',
                                                                                                                       '4.132',
                                                                                                                       '4.205',
                                                                                                                       '5.168',
                                                                                                                       '5.572',
                                                                                                                       '5.118',
                                                                                                                       '5.457',
                                                                                                                       '3.721',
                                                                                                                       '4.022',
                                                                                                                       '4.368'],
                                                                                                    'ann': '2.936',
                                                                                                    'djf': '4.080',
                                                                                                    'jja': '4.785',
                                                                                                    'mam': '3.751',
                                                                                                    'son': '3.589'},
                                                                                        'std-obs_xy': {'CalendarMonths': ['15.616',
                                                                                                                          '15.241',
                                                                                                                          '13.780',
                                                                                                                          '12.030',
                                                                                                                          '12.428',
                                                                                                                          '15.226',
                                                                                                                          '16.632',
                                                                                                                          '16.945',
                                                                                                                          '15.688',
                                                                                                                          '13.366',
                                                                                                                          '12.400',
                                                                                                                          '14.205'],
                                                                                                       'ann': '12.368',
                                                                                                       'djf': '14.857',
                                                                                                       'jja': '16.057',
                                                                                                       'mam': '12.011',
                                                                                                       'son': '13.179'},
                                                                                        'std-obs_xy_devzm': {'ann': '5.115'},
                                                                                        'std-obs_xyt': {'ann': '14.674'},
                                                                                        'std_xy': {'CalendarMonths': ['16.894',
                                                                                                                      '17.330',
                                                                                                                      '16.343',
                                                                                                                      '13.867',
                                                                                                                      '12.569',
                                                                                                                      '13.683',
                                                                                                                      '14.943',
                                                                                                                      '15.198',
                                                                                                                      '13.766',
                                                                                                                      '12.809',
                                                                                                                      '13.781',
                                                                                                                      '15.521'],
                                                                                                   'ann': '12.568',
                                                                                                   'djf': '16.467',
                                                                                                   'jja': '14.323',
                                                                                                   'mam': '13.631',
                                                                                                   'son': '12.645'},
                                                                                        'std_xy_devzm': {'ann': '4.879'},
                                                                                        'std_xyt': {'ann': '14.845'}}},
                                                                'source': 'ERA-5'},
                                                    'units': 'm s-1'}},
                         'provenance': {'commandLine': '/home/lee1043/.conda/envs/pcmdi_metrics_dev_20230822/bin/mean_climate_driver.py '
                                                       '-p basic_param.py -v '
                                                       'ua-200',
                                        'conda': {'Platform': 'linux-64',
                                                  'PythonVersion': '3.7.3.final.0',
                                                  'Version': '23.1.0',
                                                  'buildVersion': '3.18.8'},
                                        'date': '2023-09-19 10:29:09',
                                        'openGL': {'GLX': {'client': {'vendor': 'Mesa '
                                                                                'Project '
                                                                                'and '
                                                                                'SGI',
                                                                      'version': '1.4'},
                                                           'server': {'vendor': 'SGI',
                                                                      'version': '1.4'},
                                                           'version': '1.4'},
                                                   'renderer': 'llvmpipe (LLVM '
                                                               '7.0, 256 bits)',
                                                   'shading language version': '1.20',
                                                   'vendor': 'VMware, Inc.',
                                                   'version': '2.1 Mesa '
                                                              '18.3.4'},
                                        'osAccess': False,
                                        'packages': {'PMP': 'v3.0.2-11-g06b151f',
                                                     'PMPObs': 'See '
                                                               "'References' "
                                                               'key below, for '
                                                               'detailed obs '
                                                               'provenance '
                                                               'information.',
                                                     'blas': '0.3.23',
                                                     'cdat_info': '8.2.1',
                                                     'cdms': '3.1.5',
                                                     'cdp': '1.7.0',
                                                     'cdtime': '3.1.4',
                                                     'cdutil': '8.2.1',
                                                     'clapack': None,
                                                     'esmf': '8.4.2',
                                                     'esmpy': '8.4.2',
                                                     'genutil': '8.2.1',
                                                     'lapack': '3.9.0',
                                                     'matplotlib': '3.7.1',
                                                     'mesalib': None,
                                                     'numpy': '1.23.5',
                                                     'python': '3.10.10',
                                                     'scipy': '1.11.2',
                                                     'uvcdat': None,
                                                     'vcs': None,
                                                     'vtk': None,
                                                     'xarray': '2023.8.0',
                                                     'xcdat': '0.5.0'},
                                        'platform': {'Name': 'gates.llnl.gov',
                                                     'OS': 'Linux',
                                                     'Version': '3.10.0-1160.71.1.el7.x86_64'},
                                        'userId': 'lee1043'}},
                  'va': {'REFERENCE': {'default': {'CMIP_CMOR_TABLE': 'Amon',
                                                   'MD5sum': '4ae2be6f5d5c28ba891a7ecda541ba51',
                                                   'RefTrackingDate': 'Thu '
                                                                      'Aug  5 '
                                                                      '08:57:39 '
                                                                      '2021',
                                                   'filename': 'va_mon_ERA-5_PCMDI_1x1.200301-201812.AC.v20210805.nc',
                                                   'period': '200301-201812',
                                                   'shape': '(12, 37, 180, '
                                                            '360)',
                                                   'template': 'va/ERA-5/v20210805/va_mon_ERA-5_PCMDI_1x1.200301-201812.AC.v20210805.nc'}},
                         'RESULTS': {'ACCESS-CM2': {'default': {'r1i1p1f1': {'InputClimatologyFileName': 'cmip6.historical.ACCESS-CM2.r1i1p1f1.mon.va.198101-200512.AC.v20230823.nc',
                                                                             'NHEX': {'bias_xy': {'CalendarMonths': ['0.044',
                                                                                                                     '0.077',
                                                                                                                     '0.134',
                                                                                                                     '0.040',
                                                                                                                     '0.080',
                                                                                                                     '0.054',
                                                                                                                     '0.057',
                                                                                                                     '0.057',
                                                                                                                     '0.035',
                                                                                                                     '0.020',
                                                                                                                     '0.006',
                                                                                                                     '0.055'],
                                                                                                  'ann': '0.055',
                                                                                                  'djf': '0.058',
                                                                                                  'jja': '0.056',
                                                                                                  'mam': '0.083',
                                                                                                  'son': '0.020'},
                                                                                      'cor_xy': {'CalendarMonths': ['0.93',
                                                                                                                    '0.94',
                                                                                                                    '0.89',
                                                                                                                    '0.83',
                                                                                                                    '0.82',
                                                                                                                    '0.80',
                                                                                                                    '0.71',
                                                                                                                    '0.79',
                                                                                                                    '0.86',
                                                                                                                    '0.87',
                                                                                                                    '0.88',
                                                                                                                    '0.92'],
                                                                                                 'ann': '0.955',
                                                                                                 'djf': '0.95',
                                                                                                 'jja': '0.85',
                                                                                                 'mam': '0.93',
                                                                                                 'son': '0.92'},
                                                                                      'mae_xy': {'CalendarMonths': ['1.634',
                                                                                                                    '1.517',
                                                                                                                    '1.542',
                                                                                                                    '1.579',
                                                                                                                    '1.675',
                                                                                                                    '1.789',
                                                                                                                    '2.133',
                                                                                                                    '1.599',
                                                                                                                    '1.576',
                                                                                                                    '1.661',
                                                                                                                    '1.933',
                                                                                                                    '1.622'],
                                                                                                 'ann': '0.756',
                                                                                                 'djf': '1.292',
                                                                                                 'jja': '1.298',
                                                                                                 'mam': '1.064',
                                                                                                 'son': '1.268'},
                                                                                      'mean-obs_xy': {'CalendarMonths': ['-0.410',
                                                                                                                         '-0.367',
                                                                                                                         '-0.387',
                                                                                                                         '-0.312',
                                                                                                                         '-0.282',
                                                                                                                         '-0.206',
                                                                                                                         '-0.174',
                                                                                                                         '-0.192',
                                                                                                                         '-0.237',
                                                                                                                         '-0.338',
                                                                                                                         '-0.396',
                                                                                                                         '-0.477'],
                                                                                                      'ann': '-0.315',
                                                                                                      'djf': '-0.417',
                                                                                                      'jja': '-0.191',
                                                                                                      'mam': '-0.326',
                                                                                                      'son': '-0.324'},
                                                                                      'mean_xy': {'CalendarMonths': ['-0.366',
                                                                                                                     '-0.290',
                                                                                                                     '-0.253',
                                                                                                                     '-0.272',
                                                                                                                     '-0.202',
                                                                                                                     '-0.153',
                                                                                                                     '-0.117',
                                                                                                                     '-0.135',
                                                                                                                     '-0.202',
                                                                                                                     '-0.318',
                                                                                                                     '-0.391',
                                                                                                                     '-0.422'],
                                                                                                  'ann': '-0.260',
                                                                                                  'djf': '-0.359',
                                                                                                  'jja': '-0.135',
                                                                                                  'mam': '-0.242',
                                                                                                  'son': '-0.303'},
                                                                                      'rms_devzm': {'ann': '0.944'},
                                                                                      'rms_xy': {'CalendarMonths': ['2.069',
                                                                                                                    '1.937',
                                                                                                                    '1.933',
                                                                                                                    '2.014',
                                                                                                                    '2.013',
                                                                                                                    '2.171',
                                                                                                                    '2.658',
                                                                                                                    '2.044',
                                                                                                                    '1.963',
                                                                                                                    '2.032',
                                                                                                                    '2.381',
                                                                                                                    '1.992'],
                                                                                                 'ann': '0.947',
                                                                                                 'djf': '1.622',
                                                                                                 'jja': '1.636',
                                                                                                 'mam': '1.296',
                                                                                                 'son': '1.544'},
                                                                                      'rms_xyt': {'ann': '2.101'},
                                                                                      'rms_y': {'ann': '0.068'},
                                                                                      'rmsc_xy': {'CalendarMonths': ['2.068',
                                                                                                                     '1.935',
                                                                                                                     '1.928',
                                                                                                                     '2.014',
                                                                                                                     '2.012',
                                                                                                                     '2.170',
                                                                                                                     '2.657',
                                                                                                                     '2.043',
                                                                                                                     '1.962',
                                                                                                                     '2.032',
                                                                                                                     '2.381',
                                                                                                                     '1.991'],
                                                                                                  'ann': '0.945',
                                                                                                  'djf': '1.621',
                                                                                                  'jja': '1.635',
                                                                                                  'mam': '1.294',
                                                                                                  'son': '1.543'},
                                                                                      'std-obs_xy': {'CalendarMonths': ['5.778',
                                                                                                                        '5.504',
                                                                                                                        '4.176',
                                                                                                                        '3.236',
                                                                                                                        '2.681',
                                                                                                                        '2.771',
                                                                                                                        '3.401',
                                                                                                                        '3.051',
                                                                                                                        '3.214',
                                                                                                                        '3.856',
                                                                                                                        '4.302',
                                                                                                                        '5.128'],
                                                                                                     'ann': '2.844',
                                                                                                     'djf': '5.360',
                                                                                                     'jja': '2.728',
                                                                                                     'mam': '2.991',
                                                                                                     'son': '3.365'},
                                                                                      'std-obs_xy_devzm': {'ann': '2.834'},
                                                                                      'std-obs_xyt': {'ann': '4.056'},
                                                                                      'std_xy': {'CalendarMonths': ['5.328',
                                                                                                                    '5.133',
                                                                                                                    '4.128',
                                                                                                                    '3.628',
                                                                                                                    '3.516',
                                                                                                                    '3.645',
                                                                                                                    '3.587',
                                                                                                                    '3.243',
                                                                                                                    '3.821',
                                                                                                                    '4.040',
                                                                                                                    '5.010',
                                                                                                                    '4.924'],
                                                                                                 'ann': '3.149',
                                                                                                 'djf': '5.041',
                                                                                                 'jja': '3.149',
                                                                                                 'mam': '3.394',
                                                                                                 'son': '3.921'},
                                                                                      'std_xy_devzm': {'ann': '3.140'},
                                                                                      'std_xyt': {'ann': '4.226'}},
                                                                             'SHEX': {'bias_xy': {'CalendarMonths': ['-0.003',
                                                                                                                     '0.040',
                                                                                                                     '0.025',
                                                                                                                     '0.058',
                                                                                                                     '0.090',
                                                                                                                     '0.020',
                                                                                                                     '-0.007',
                                                                                                                     '0.041',
                                                                                                                     '0.023',
                                                                                                                     '0.038',
                                                                                                                     '0.041',
                                                                                                                     '0.026'],
                                                                                                  'ann': '0.033',
                                                                                                  'djf': '0.021',
                                                                                                  'jja': '0.018',
                                                                                                  'mam': '0.058',
                                                                                                  'son': '0.034'},
                                                                                      'cor_xy': {'CalendarMonths': ['0.68',
                                                                                                                    '0.75',
                                                                                                                    '0.80',
                                                                                                                    '0.78',
                                                                                                                    '0.63',
                                                                                                                    '0.48',
                                                                                                                    '0.59',
                                                                                                                    '0.76',
                                                                                                                    '0.69',
                                                                                                                    '0.73',
                                                                                                                    '0.73',
                                                                                                                    '0.57'],
                                                                                                 'ann': '0.901',
                                                                                                 'djf': '0.73',
                                                                                                 'jja': '0.73',
                                                                                                 'mam': '0.82',
                                                                                                 'son': '0.76'},
                                                                                      'mae_xy': {'CalendarMonths': ['1.310',
                                                                                                                    '1.345',
                                                                                                                    '1.098',
                                                                                                                    '1.213',
                                                                                                                    '1.639',
                                                                                                                    '1.999',
                                                                                                                    '1.831',
                                                                                                                    '1.356',
                                                                                                                    '1.569',
                                                                                                                    '1.252',
                                                                                                                    '1.049',
                                                                                                                    '1.393'],
                                                                                                 'ann': '0.607',
                                                                                                 'djf': '1.152',
                                                                                                 'jja': '1.358',
                                                                                                 'mam': '0.973',
                                                                                                 'son': '0.973'},
                                                                                      'mean-obs_xy': {'CalendarMonths': ['0.349',
                                                                                                                         '0.333',
                                                                                                                         '0.387',
                                                                                                                         '0.404',
                                                                                                                         '0.398',
                                                                                                                         '0.425',
                                                                                                                         '0.430',
                                                                                                                         '0.391',
                                                                                                                         '0.420',
                                                                                                                         '0.410',
                                                                                                                         '0.387',
                                                                                                                         '0.362'],
                                                                                                      'ann': '0.391',
                                                                                                      'djf': '0.348',
                                                                                                      'jja': '0.416',
                                                                                                      'mam': '0.397',
                                                                                                      'son': '0.406'},
                                                                                      'mean_xy': {'CalendarMonths': ['0.345',
                                                                                                                     '0.373',
                                                                                                                     '0.412',
                                                                                                                     '0.462',
                                                                                                                     '0.488',
                                                                                                                     '0.446',
                                                                                                                     '0.424',
                                                                                                                     '0.432',
                                                                                                                     '0.443',
                                                                                                                     '0.449',
                                                                                                                     '0.428',
                                                                                                                     '0.388'],
                                                                                                  'ann': '0.424',
                                                                                                  'djf': '0.368',
                                                                                                  'jja': '0.434',
                                                                                                  'mam': '0.455',
                                                                                                  'son': '0.440'},
                                                                                      'rms_devzm': {'ann': '0.747'},
                                                                                      'rms_xy': {'CalendarMonths': ['1.627',
                                                                                                                    '1.671',
                                                                                                                    '1.369',
                                                                                                                    '1.495',
                                                                                                                    '1.986',
                                                                                                                    '2.449',
                                                                                                                    '2.287',
                                                                                                                    '1.792',
                                                                                                                    '1.894',
                                                                                                                    '1.542',
                                                                                                                    '1.309',
                                                                                                                    '1.733'],
                                                                                                 'ann': '0.751',
                                                                                                 'djf': '1.390',
                                                                                                 'jja': '1.685',
                                                                                                 'mam': '1.179',
                                                                                                 'son': '1.241'},
                                                                                      'rms_xyt': {'ann': '1.763'},
                                                                                      'rms_y': {'ann': '0.070'},
                                                                                      'rmsc_xy': {'CalendarMonths': ['1.627',
                                                                                                                     '1.671',
                                                                                                                     '1.369',
                                                                                                                     '1.494',
                                                                                                                     '1.984',
                                                                                                                     '2.448',
                                                                                                                     '2.287',
                                                                                                                     '1.791',
                                                                                                                     '1.894',
                                                                                                                     '1.541',
                                                                                                                     '1.308',
                                                                                                                     '1.733'],
                                                                                                  'ann': '0.750',
                                                                                                  'djf': '1.390',
                                                                                                  'jja': '1.685',
                                                                                                  'mam': '1.178',
                                                                                                  'son': '1.241'},
                                                                                      'std-obs_xy': {'CalendarMonths': ['2.004',
                                                                                                                        '2.368',
                                                                                                                        '2.270',
                                                                                                                        '2.180',
                                                                                                                        '2.167',
                                                                                                                        '2.103',
                                                                                                                        '2.208',
                                                                                                                        '2.639',
                                                                                                                        '2.420',
                                                                                                                        '2.200',
                                                                                                                        '1.734',
                                                                                                                        '2.009'],
                                                                                                     'ann': '1.717',
                                                                                                     'djf': '1.909',
                                                                                                     'jja': '2.032',
                                                                                                     'mam': '1.900',
                                                                                                     'son': '1.848'},
                                                                                      'std-obs_xy_devzm': {'ann': '1.689'},
                                                                                      'std-obs_xyt': {'ann': '2.203'},
                                                                                      'std_xy': {'CalendarMonths': ['2.070',
                                                                                                                    '2.379',
                                                                                                                    '1.923',
                                                                                                                    '2.343',
                                                                                                                    '2.403',
                                                                                                                    '2.634',
                                                                                                                    '2.734',
                                                                                                                    '2.488',
                                                                                                                    '2.417',
                                                                                                                    '1.975',
                                                                                                                    '1.813',
                                                                                                                    '1.643'],
                                                                                                 'ann': '1.620',
                                                                                                 'djf': '1.878',
                                                                                                 'jja': '2.453',
                                                                                                 'mam': '1.996',
                                                                                                 'son': '1.665'},
                                                                                      'std_xy_devzm': {'ann': '1.578'},
                                                                                      'std_xyt': {'ann': '2.259'}},
                                                                             'TROPICS': {'bias_xy': {'CalendarMonths': ['0.039',
                                                                                                                        '0.424',
                                                                                                                        '0.737',
                                                                                                                        '0.733',
                                                                                                                        '0.749',
                                                                                                                        '0.584',
                                                                                                                        '0.341',
                                                                                                                        '0.408',
                                                                                                                        '0.374',
                                                                                                                        '0.141',
                                                                                                                        '-0.016',
                                                                                                                        '0.000'],
                                                                                                     'ann': '0.376',
                                                                                                     'djf': '0.156',
                                                                                                     'jja': '0.446',
                                                                                                     'mam': '0.739',
                                                                                                     'son': '0.167'},
                                                                                         'cor_xy': {'CalendarMonths': ['0.89',
                                                                                                                       '0.89',
                                                                                                                       '0.77',
                                                                                                                       '0.68',
                                                                                                                       '0.66',
                                                                                                                       '0.69',
                                                                                                                       '0.78',
                                                                                                                       '0.86',
                                                                                                                       '0.84',
                                                                                                                       '0.86',
                                                                                                                       '0.86',
                                                                                                                       '0.89'],
                                                                                                    'ann': '0.914',
                                                                                                    'djf': '0.91',
                                                                                                    'jja': '0.83',
                                                                                                    'mam': '0.75',
                                                                                                    'son': '0.89'},
                                                                                         'mae_xy': {'CalendarMonths': ['1.717',
                                                                                                                       '1.617',
                                                                                                                       '1.937',
                                                                                                                       '1.991',
                                                                                                                       '2.114',
                                                                                                                       '2.167',
                                                                                                                       '1.865',
                                                                                                                       '1.393',
                                                                                                                       '1.554',
                                                                                                                       '1.409',
                                                                                                                       '1.636',
                                                                                                                       '1.686'],
                                                                                                    'ann': '0.934',
                                                                                                    'djf': '1.487',
                                                                                                    'jja': '1.528',
                                                                                                    'mam': '1.616',
                                                                                                    'son': '1.195'},
                                                                                         'mean-obs_xy': {'CalendarMonths': ['1.325',
                                                                                                                            '1.244',
                                                                                                                            '0.832',
                                                                                                                            '0.178',
                                                                                                                            '-0.684',
                                                                                                                            '-1.309',
                                                                                                                            '-1.485',
                                                                                                                            '-1.578',
                                                                                                                            '-1.242',
                                                                                                                            '-0.535',
                                                                                                                            '0.205',
                                                                                                                            '0.796'],
                                                                                                         'ann': '-0.188',
                                                                                                         'djf': '1.125',
                                                                                                         'jja': '-1.457',
                                                                                                         'mam': '0.095',
                                                                                                         'son': '-0.524'},
                                                                                         'mean_xy': {'CalendarMonths': ['1.364',
                                                                                                                        '1.668',
                                                                                                                        '1.569',
                                                                                                                        '0.911',
                                                                                                                        '0.065',
                                                                                                                        '-0.725',
                                                                                                                        '-1.144',
                                                                                                                        '-1.170',
                                                                                                                        '-0.868',
                                                                                                                        '-0.395',
                                                                                                                        '0.189',
                                                                                                                        '0.796'],
                                                                                                     'ann': '0.188',
                                                                                                     'djf': '1.281',
                                                                                                     'jja': '-1.011',
                                                                                                     'mam': '0.835',
                                                                                                     'son': '-0.357'},
                                                                                         'rms_devzm': {'ann': '1.039'},
                                                                                         'rms_xy': {'CalendarMonths': ['2.204',
                                                                                                                       '2.059',
                                                                                                                       '2.495',
                                                                                                                       '2.510',
                                                                                                                       '2.579',
                                                                                                                       '2.660',
                                                                                                                       '2.399',
                                                                                                                       '1.854',
                                                                                                                       '1.968',
                                                                                                                       '1.791',
                                                                                                                       '2.085',
                                                                                                                       '2.134'],
                                                                                                    'ann': '1.179',
                                                                                                    'djf': '1.857',
                                                                                                    'jja': '1.960',
                                                                                                    'mam': '2.067',
                                                                                                    'son': '1.514'},
                                                                                         'rms_xyt': {'ann': '2.228'},
                                                                                         'rms_y': {'ann': '0.557'},
                                                                                         'rmsc_xy': {'CalendarMonths': ['2.203',
                                                                                                                        '2.014',
                                                                                                                        '2.384',
                                                                                                                        '2.400',
                                                                                                                        '2.468',
                                                                                                                        '2.595',
                                                                                                                        '2.375',
                                                                                                                        '1.809',
                                                                                                                        '1.932',
                                                                                                                        '1.785',
                                                                                                                        '2.085',
                                                                                                                        '2.134'],
                                                                                                     'ann': '1.117',
                                                                                                     'djf': '1.851',
                                                                                                     'jja': '1.909',
                                                                                                     'mam': '1.930',
                                                                                                     'son': '1.505'},
                                                                                         'std-obs_xy': {'CalendarMonths': ['4.890',
                                                                                                                           '4.446',
                                                                                                                           '3.676',
                                                                                                                           '3.122',
                                                                                                                           '2.949',
                                                                                                                           '3.237',
                                                                                                                           '3.280',
                                                                                                                           '3.137',
                                                                                                                           '2.991',
                                                                                                                           '3.097',
                                                                                                                           '3.798',
                                                                                                                           '4.553'],
                                                                                                        'ann': '2.679',
                                                                                                        'djf': '4.491',
                                                                                                        'jja': '3.087',
                                                                                                        'mam': '2.806',
                                                                                                        'son': '2.930'},
                                                                                         'std-obs_xy_devzm': {'ann': '2.501'},
                                                                                         'std-obs_xyt': {'ann': '3.801'},
                                                                                         'std_xy': {'CalendarMonths': ['4.685',
                                                                                                                       '4.212',
                                                                                                                       '3.302',
                                                                                                                       '2.836',
                                                                                                                       '3.002',
                                                                                                                       '3.337',
                                                                                                                       '3.784',
                                                                                                                       '3.583',
                                                                                                                       '3.530',
                                                                                                                       '3.454',
                                                                                                                       '4.044',
                                                                                                                       '4.388'],
                                                                                                    'ann': '2.701',
                                                                                                    'djf': '4.320',
                                                                                                    'jja': '3.366',
                                                                                                    'mam': '2.587',
                                                                                                    'son': '3.323'},
                                                                                         'std_xy_devzm': {'ann': '2.528'},
                                                                                         'std_xyt': {'ann': '3.854'}},
                                                                             'global': {'bias_xy': {'CalendarMonths': ['0.030',
                                                                                                                       '0.241',
                                                                                                                       '0.408',
                                                                                                                       '0.391',
                                                                                                                       '0.417',
                                                                                                                       '0.311',
                                                                                                                       '0.183',
                                                                                                                       '0.228',
                                                                                                                       '0.202',
                                                                                                                       '0.085',
                                                                                                                       '0.004',
                                                                                                                       '0.020'],
                                                                                                    'ann': '0.210',
                                                                                                    'djf': '0.098',
                                                                                                    'jja': '0.241',
                                                                                                    'mam': '0.405',
                                                                                                    'son': '0.097'},
                                                                                        'cor_xy': {'CalendarMonths': ['0.90',
                                                                                                                      '0.90',
                                                                                                                      '0.82',
                                                                                                                      '0.74',
                                                                                                                      '0.69',
                                                                                                                      '0.69',
                                                                                                                      '0.75',
                                                                                                                      '0.83',
                                                                                                                      '0.82',
                                                                                                                      '0.85',
                                                                                                                      '0.86',
                                                                                                                      '0.89'],
                                                                                                   'ann': '0.924',
                                                                                                   'djf': '0.92',
                                                                                                   'jja': '0.83',
                                                                                                   'mam': '0.81',
                                                                                                   'son': '0.89'},
                                                                                        'mae_xy': {'CalendarMonths': ['1.594',
                                                                                                                      '1.524',
                                                                                                                      '1.628',
                                                                                                                      '1.694',
                                                                                                                      '1.886',
                                                                                                                      '2.030',
                                                                                                                      '1.924',
                                                                                                                      '1.435',
                                                                                                                      '1.563',
                                                                                                                      '1.432',
                                                                                                                      '1.563',
                                                                                                                      '1.596'],
                                                                                                   'ann': '0.808',
                                                                                                   'djf': '1.354',
                                                                                                   'jja': '1.428',
                                                                                                   'mam': '1.317',
                                                                                                   'son': '1.157'},
                                                                                        'mean-obs_xy': {'CalendarMonths': ['0.647',
                                                                                                                           '0.614',
                                                                                                                           '0.416',
                                                                                                                           '0.112',
                                                                                                                           '-0.313',
                                                                                                                           '-0.600',
                                                                                                                           '-0.678',
                                                                                                                           '-0.739',
                                                                                                                           '-0.575',
                                                                                                                           '-0.250',
                                                                                                                           '0.100',
                                                                                                                           '0.369'],
                                                                                                        'ann': '-0.075',
                                                                                                        'djf': '0.545',
                                                                                                        'jja': '-0.672',
                                                                                                        'mam': '0.065',
                                                                                                        'son': '-0.242'},
                                                                                        'mean_xy': {'CalendarMonths': ['0.677',
                                                                                                                       '0.855',
                                                                                                                       '0.824',
                                                                                                                       '0.503',
                                                                                                                       '0.104',
                                                                                                                       '-0.289',
                                                                                                                       '-0.495',
                                                                                                                       '-0.511',
                                                                                                                       '-0.374',
                                                                                                                       '-0.165',
                                                                                                                       '0.104',
                                                                                                                       '0.390'],
                                                                                                    'ann': '0.135',
                                                                                                    'djf': '0.643',
                                                                                                    'jja': '-0.431',
                                                                                                    'mam': '0.471',
                                                                                                    'son': '-0.145'},
                                                                                        'rms_devzm': {'ann': '0.950'},
                                                                                        'rms_xy': {'CalendarMonths': ['2.040',
                                                                                                                      '1.938',
                                                                                                                      '2.125',
                                                                                                                      '2.173',
                                                                                                                      '2.308',
                                                                                                                      '2.493',
                                                                                                                      '2.439',
                                                                                                                      '1.888',
                                                                                                                      '1.948',
                                                                                                                      '1.797',
                                                                                                                      '2.005',
                                                                                                                      '2.005'],
                                                                                                   'ann': '1.029',
                                                                                                   'djf': '1.693',
                                                                                                   'jja': '1.817',
                                                                                                   'mam': '1.704',
                                                                                                   'son': '1.458'},
                                                                                        'rms_xyt': {'ann': '2.097'},
                                                                                        'rms_y': {'ann': '0.397'},
                                                                                        'rmsc_xy': {'CalendarMonths': ['2.039',
                                                                                                                       '1.923',
                                                                                                                       '2.085',
                                                                                                                       '2.138',
                                                                                                                       '2.270',
                                                                                                                       '2.473',
                                                                                                                       '2.433',
                                                                                                                       '1.874',
                                                                                                                       '1.938',
                                                                                                                       '1.795',
                                                                                                                       '2.005',
                                                                                                                       '2.005'],
                                                                                                    'ann': '1.008',
                                                                                                    'djf': '1.690',
                                                                                                    'jja': '1.800',
                                                                                                    'mam': '1.655',
                                                                                                    'son': '1.455'},
                                                                                        'std-obs_xy': {'CalendarMonths': ['4.673',
                                                                                                                          '4.395',
                                                                                                                          '3.557',
                                                                                                                          '2.958',
                                                                                                                          '2.741',
                                                                                                                          '2.969',
                                                                                                                          '3.191',
                                                                                                                          '3.120',
                                                                                                                          '3.003',
                                                                                                                          '3.142',
                                                                                                                          '3.561',
                                                                                                                          '4.268'],
                                                                                                       'ann': '2.535',
                                                                                                       'djf': '4.311',
                                                                                                       'jja': '2.884',
                                                                                                       'mam': '2.672',
                                                                                                       'son': '2.850'},
                                                                                        'std-obs_xy_devzm': {'ann': '2.418'},
                                                                                        'std-obs_xyt': {'ann': '3.553'},
                                                                                        'std_xy': {'CalendarMonths': ['4.436',
                                                                                                                      '4.194',
                                                                                                                      '3.353',
                                                                                                                      '2.986',
                                                                                                                      '3.017',
                                                                                                                      '3.295',
                                                                                                                      '3.564',
                                                                                                                      '3.327',
                                                                                                                      '3.411',
                                                                                                                      '3.339',
                                                                                                                      '3.920',
                                                                                                                      '4.076'],
                                                                                                   'ann': '2.617',
                                                                                                   'djf': '4.127',
                                                                                                   'jja': '3.167',
                                                                                                   'mam': '2.723',
                                                                                                   'son': '3.189'},
                                                                                        'std_xy_devzm': {'ann': '2.507'},
                                                                                        'std_xyt': {'ann': '3.637'}}},
                                                                'source': 'ERA-5'},
                                                    'units': 'm s-1'}},
                         'provenance': {'commandLine': '/home/lee1043/.conda/envs/pcmdi_metrics_dev_20230822/bin/mean_climate_driver.py '
                                                       '-p basic_param.py -v '
                                                       'va-200',
                                        'conda': {'Platform': 'linux-64',
                                                  'PythonVersion': '3.7.3.final.0',
                                                  'Version': '23.1.0',
                                                  'buildVersion': '3.18.8'},
                                        'date': '2023-09-19 11:08:04',
                                        'openGL': {'GLX': {'client': {'vendor': 'Mesa '
                                                                                'Project '
                                                                                'and '
                                                                                'SGI',
                                                                      'version': '1.4'},
                                                           'server': {'vendor': 'SGI',
                                                                      'version': '1.4'},
                                                           'version': '1.4'},
                                                   'renderer': 'llvmpipe (LLVM '
                                                               '7.0, 256 bits)',
                                                   'shading language version': '1.20',
                                                   'vendor': 'VMware, Inc.',
                                                   'version': '2.1 Mesa '
                                                              '18.3.4'},
                                        'osAccess': False,
                                        'packages': {'PMP': 'v3.0.2-11-g06b151f',
                                                     'PMPObs': 'See '
                                                               "'References' "
                                                               'key below, for '
                                                               'detailed obs '
                                                               'provenance '
                                                               'information.',
                                                     'blas': '0.3.23',
                                                     'cdat_info': '8.2.1',
                                                     'cdms': '3.1.5',
                                                     'cdp': '1.7.0',
                                                     'cdtime': '3.1.4',
                                                     'cdutil': '8.2.1',
                                                     'clapack': None,
                                                     'esmf': '8.4.2',
                                                     'esmpy': '8.4.2',
                                                     'genutil': '8.2.1',
                                                     'lapack': '3.9.0',
                                                     'matplotlib': '3.7.1',
                                                     'mesalib': None,
                                                     'numpy': '1.23.5',
                                                     'python': '3.10.10',
                                                     'scipy': '1.11.2',
                                                     'uvcdat': None,
                                                     'vcs': None,
                                                     'vtk': None,
                                                     'xarray': '2023.8.0',
                                                     'xcdat': '0.5.0'},
                                        'platform': {'Name': 'gates.llnl.gov',
                                                     'OS': 'Linux',
                                                     'Version': '3.10.0-1160.71.1.el7.x86_64'},
                                        'userId': 'lee1043'}},
                  'zg': {'REFERENCE': {'default': {'CMIP_CMOR_TABLE': 'Amon',
                                                   'MD5sum': '40da2ed461a8f9351a4568acd0f50cb5',
                                                   'RefTrackingDate': 'Thu '
                                                                      'Aug  5 '
                                                                      '08:58:01 '
                                                                      '2021',
                                                   'filename': 'zg_mon_ERA-5_PCMDI_1x1.200301-201812.AC.v20210805.nc',
                                                   'period': '200301-201812',
                                                   'shape': '(12, 37, 180, '
                                                            '360)',
                                                   'template': 'zg/ERA-5/v20210805/zg_mon_ERA-5_PCMDI_1x1.200301-201812.AC.v20210805.nc'}},
                         'RESULTS': {'ACCESS-CM2': {'default': {'r1i1p1f1': {'InputClimatologyFileName': 'cmip6.historical.ACCESS-CM2.r1i1p1f1.mon.zg.198101-200512.AC.v20230823.nc',
                                                                             'NHEX': {'bias_xy': {'CalendarMonths': ['-27.538',
                                                                                                                     '-18.714',
                                                                                                                     '-19.482',
                                                                                                                     '-23.897',
                                                                                                                     '-32.643',
                                                                                                                     '-27.956',
                                                                                                                     '-31.118',
                                                                                                                     '-26.235',
                                                                                                                     '-34.766',
                                                                                                                     '-33.274',
                                                                                                                     '-27.784',
                                                                                                                     '-28.710'],
                                                                                                  'ann': '-27.676',
                                                                                                  'djf': '-24.947',
                                                                                                  'jja': '-28.407',
                                                                                                  'mam': '-25.440',
                                                                                                  'son': '-31.927'},
                                                                                      'cor_xy': {'CalendarMonths': ['0.99',
                                                                                                                    '0.99',
                                                                                                                    '0.99',
                                                                                                                    '1.00',
                                                                                                                    '0.99',
                                                                                                                    '0.98',
                                                                                                                    '0.97',
                                                                                                                    '0.99',
                                                                                                                    '0.99',
                                                                                                                    '0.99',
                                                                                                                    '0.98',
                                                                                                                    '0.99'],
                                                                                                 'ann': '0.994',
                                                                                                 'djf': '0.99',
                                                                                                 'jja': '0.98',
                                                                                                 'mam': '1.00',
                                                                                                 'son': '0.99'},
                                                                                      'mae_xy': {'CalendarMonths': ['31.232',
                                                                                                                    '31.544',
                                                                                                                    '32.356',
                                                                                                                    '25.436',
                                                                                                                    '33.468',
                                                                                                                    '31.601',
                                                                                                                    '36.259',
                                                                                                                    '29.718',
                                                                                                                    '35.321',
                                                                                                                    '34.223',
                                                                                                                    '38.498',
                                                                                                                    '38.438'],
                                                                                                 'ann': '28.970',
                                                                                                 'djf': '29.988',
                                                                                                 'jja': '31.203',
                                                                                                 'mam': '26.349',
                                                                                                 'son': '33.919'},
                                                                                      'mean-obs_xy': {'CalendarMonths': ['5389.466',
                                                                                                                         '5390.652',
                                                                                                                         '5426.025',
                                                                                                                         '5496.849',
                                                                                                                         '5588.380',
                                                                                                                         '5669.550',
                                                                                                                         '5727.630',
                                                                                                                         '5717.465',
                                                                                                                         '5654.176',
                                                                                                                         '5565.156',
                                                                                                                         '5481.237',
                                                                                                                         '5419.770'],
                                                                                                      'ann': '5543.863',
                                                                                                      'djf': '5399.747',
                                                                                                      'jja': '5704.635',
                                                                                                      'mam': '5505.198',
                                                                                                      'son': '5566.875'},
                                                                                      'mean_xy': {'CalendarMonths': ['5361.928',
                                                                                                                     '5371.938',
                                                                                                                     '5406.543',
                                                                                                                     '5472.952',
                                                                                                                     '5555.737',
                                                                                                                     '5641.594',
                                                                                                                     '5696.512',
                                                                                                                     '5691.229',
                                                                                                                     '5619.410',
                                                                                                                     '5531.882',
                                                                                                                     '5453.453',
                                                                                                                     '5391.060'],
                                                                                                  'ann': '5516.186',
                                                                                                  'djf': '5374.800',
                                                                                                  'jja': '5676.227',
                                                                                                  'mam': '5479.759',
                                                                                                  'son': '5534.948'},
                                                                                      'rms_devzm': {'ann': '15.921'},
                                                                                      'rms_xy': {'CalendarMonths': ['39.434',
                                                                                                                    '40.159',
                                                                                                                    '41.723',
                                                                                                                    '29.992',
                                                                                                                    '38.780',
                                                                                                                    '40.436',
                                                                                                                    '44.849',
                                                                                                                    '35.008',
                                                                                                                    '41.567',
                                                                                                                    '41.160',
                                                                                                                    '49.392',
                                                                                                                    '46.640'],
                                                                                                 'ann': '34.241',
                                                                                                 'djf': '37.624',
                                                                                                 'jja': '37.204',
                                                                                                 'mam': '31.431',
                                                                                                 'son': '41.011'},
                                                                                      'rms_xyt': {'ann': '40.762'},
                                                                                      'rms_y': {'ann': '30.315'},
                                                                                      'rmsc_xy': {'CalendarMonths': ['28.226',
                                                                                                                     '35.532',
                                                                                                                     '36.895',
                                                                                                                     '18.122',
                                                                                                                     '20.937',
                                                                                                                     '29.215',
                                                                                                                     '32.297',
                                                                                                                     '23.179',
                                                                                                                     '22.784',
                                                                                                                     '24.229',
                                                                                                                     '40.837',
                                                                                                                     '36.757'],
                                                                                                  'ann': '20.161',
                                                                                                  'djf': '28.164',
                                                                                                  'jja': '24.025',
                                                                                                  'mam': '18.459',
                                                                                                  'son': '25.741'},
                                                                                      'std-obs_xy': {'CalendarMonths': ['205.081',
                                                                                                                        '199.953',
                                                                                                                        '198.160',
                                                                                                                        '179.962',
                                                                                                                        '152.245',
                                                                                                                        '133.147',
                                                                                                                        '128.178',
                                                                                                                        '142.233',
                                                                                                                        '174.510',
                                                                                                                        '197.853',
                                                                                                                        '211.818',
                                                                                                                        '213.369'],
                                                                                                     'ann': '175.133',
                                                                                                     'djf': '205.430',
                                                                                                     'jja': '133.783',
                                                                                                     'mam': '175.688',
                                                                                                     'son': '193.755'},
                                                                                      'std-obs_xy_devzm': {'ann': '46.140'},
                                                                                      'std-obs_xyt': {'ann': '217.618'},
                                                                                      'std_xy': {'CalendarMonths': ['193.610',
                                                                                                                    '186.438',
                                                                                                                    '179.158',
                                                                                                                    '173.376',
                                                                                                                    '151.176',
                                                                                                                    '128.317',
                                                                                                                    '119.899',
                                                                                                                    '139.704',
                                                                                                                    '171.913',
                                                                                                                    '191.649',
                                                                                                                    '196.114',
                                                                                                                    '195.316'],
                                                                                                 'ann': '166.285',
                                                                                                 'djf': '191.243',
                                                                                                 'jja': '128.135',
                                                                                                 'mam': '166.803',
                                                                                                 'son': '185.234'},
                                                                                      'std_xy_devzm': {'ann': '51.513'},
                                                                                      'std_xyt': {'ann': '208.155'}},
                                                                             'SHEX': {'bias_xy': {'CalendarMonths': ['12.028',
                                                                                                                     '11.058',
                                                                                                                     '10.874',
                                                                                                                     '6.807',
                                                                                                                     '5.862',
                                                                                                                     '-2.852',
                                                                                                                     '3.599',
                                                                                                                     '-1.027',
                                                                                                                     '4.978',
                                                                                                                     '3.832',
                                                                                                                     '3.051',
                                                                                                                     '8.257'],
                                                                                                  'ann': '5.539',
                                                                                                  'djf': '10.472',
                                                                                                  'jja': '-0.134',
                                                                                                  'mam': '7.776',
                                                                                                  'son': '3.955'},
                                                                                      'cor_xy': {'CalendarMonths': ['1.00',
                                                                                                                    '0.99',
                                                                                                                    '1.00',
                                                                                                                    '1.00',
                                                                                                                    '1.00',
                                                                                                                    '0.99',
                                                                                                                    '0.99',
                                                                                                                    '0.99',
                                                                                                                    '0.99',
                                                                                                                    '1.00',
                                                                                                                    '1.00',
                                                                                                                    '0.99'],
                                                                                                 'ann': '0.998',
                                                                                                 'djf': '1.00',
                                                                                                 'jja': '1.00',
                                                                                                 'mam': '1.00',
                                                                                                 'son': '1.00'},
                                                                                      'mae_xy': {'CalendarMonths': ['28.012',
                                                                                                                    '29.216',
                                                                                                                    '19.770',
                                                                                                                    '19.410',
                                                                                                                    '21.790',
                                                                                                                    '26.321',
                                                                                                                    '30.769',
                                                                                                                    '20.243',
                                                                                                                    '28.205',
                                                                                                                    '16.572',
                                                                                                                    '16.162',
                                                                                                                    '23.541'],
                                                                                                 'ann': '16.957',
                                                                                                 'djf': '25.080',
                                                                                                 'jja': '22.455',
                                                                                                 'mam': '18.096',
                                                                                                 'son': '17.432'},
                                                                                      'mean-obs_xy': {'CalendarMonths': ['5484.721',
                                                                                                                         '5486.261',
                                                                                                                         '5463.909',
                                                                                                                         '5425.552',
                                                                                                                         '5382.730',
                                                                                                                         '5359.710',
                                                                                                                         '5338.488',
                                                                                                                         '5336.447',
                                                                                                                         '5341.802',
                                                                                                                         '5367.652',
                                                                                                                         '5410.154',
                                                                                                                         '5452.613'],
                                                                                                      'ann': '5404.170',
                                                                                                      'djf': '5474.770',
                                                                                                      'jja': '5344.951',
                                                                                                      'mam': '5423.299',
                                                                                                      'son': '5373.263'},
                                                                                      'mean_xy': {'CalendarMonths': ['5496.749',
                                                                                                                     '5497.320',
                                                                                                                     '5474.783',
                                                                                                                     '5432.359',
                                                                                                                     '5388.592',
                                                                                                                     '5356.858',
                                                                                                                     '5342.087',
                                                                                                                     '5335.420',
                                                                                                                     '5346.780',
                                                                                                                     '5371.484',
                                                                                                                     '5413.205',
                                                                                                                     '5460.870'],
                                                                                                  'ann': '5409.709',
                                                                                                  'djf': '5485.242',
                                                                                                  'jja': '5344.817',
                                                                                                  'mam': '5431.076',
                                                                                                  'son': '5377.218'},
                                                                                      'rms_devzm': {'ann': '14.723'},
                                                                                      'rms_xy': {'CalendarMonths': ['35.742',
                                                                                                                    '37.595',
                                                                                                                    '25.126',
                                                                                                                    '25.582',
                                                                                                                    '28.237',
                                                                                                                    '33.251',
                                                                                                                    '37.490',
                                                                                                                    '28.713',
                                                                                                                    '35.452',
                                                                                                                    '20.502',
                                                                                                                    '21.238',
                                                                                                                    '30.404'],
                                                                                                 'ann': '21.954',
                                                                                                 'djf': '32.400',
                                                                                                 'jja': '28.078',
                                                                                                 'mam': '22.963',
                                                                                                 'son': '22.622'},
                                                                                      'rms_xyt': {'ann': '29.944'},
                                                                                      'rms_y': {'ann': '16.286'},
                                                                                      'rmsc_xy': {'CalendarMonths': ['33.657',
                                                                                                                     '35.932',
                                                                                                                     '22.652',
                                                                                                                     '24.660',
                                                                                                                     '27.622',
                                                                                                                     '33.128',
                                                                                                                     '37.317',
                                                                                                                     '28.695',
                                                                                                                     '35.101',
                                                                                                                     '20.141',
                                                                                                                     '21.018',
                                                                                                                     '29.261'],
                                                                                                  'ann': '21.244',
                                                                                                  'djf': '30.661',
                                                                                                  'jja': '28.078',
                                                                                                  'mam': '21.606',
                                                                                                  'son': '22.274'},
                                                                                      'std-obs_xy': {'CalendarMonths': ['264.158',
                                                                                                                        '282.200',
                                                                                                                        '295.492',
                                                                                                                        '291.616',
                                                                                                                        '277.643',
                                                                                                                        '268.545',
                                                                                                                        '278.032',
                                                                                                                        '274.923',
                                                                                                                        '286.375',
                                                                                                                        '290.272',
                                                                                                                        '270.913',
                                                                                                                        '257.639'],
                                                                                                     'ann': '277.208',
                                                                                                     'djf': '267.647',
                                                                                                     'jja': '273.408',
                                                                                                     'mam': '287.865',
                                                                                                     'son': '281.923'},
                                                                                      'std-obs_xy_devzm': {'ann': '37.392'},
                                                                                      'std-obs_xyt': {'ann': '283.739'},
                                                                                      'std_xy': {'CalendarMonths': ['239.132',
                                                                                                                    '260.497',
                                                                                                                    '284.450',
                                                                                                                    '284.977',
                                                                                                                    '274.583',
                                                                                                                    '262.560',
                                                                                                                    '258.072',
                                                                                                                    '266.348',
                                                                                                                    '266.179',
                                                                                                                    '276.196',
                                                                                                                    '261.077',
                                                                                                                    '245.611'],
                                                                                                 'ann': '263.663',
                                                                                                 'djf': '248.066',
                                                                                                 'jja': '262.109',
                                                                                                 'mam': '281.067',
                                                                                                 'son': '267.023'},
                                                                                      'std_xy_devzm': {'ann': '29.800'},
                                                                                      'std_xyt': {'ann': '271.730'}},
                                                                             'TROPICS': {'bias_xy': {'CalendarMonths': ['-4.682',
                                                                                                                        '-3.146',
                                                                                                                        '-2.611',
                                                                                                                        '-4.487',
                                                                                                                        '-8.724',
                                                                                                                        '-10.907',
                                                                                                                        '-11.465',
                                                                                                                        '-9.980',
                                                                                                                        '-10.484',
                                                                                                                        '-6.066',
                                                                                                                        '-4.377',
                                                                                                                        '-4.542'],
                                                                                                     'ann': '-6.789',
                                                                                                     'djf': '-4.119',
                                                                                                     'jja': '-10.777',
                                                                                                     'mam': '-5.317',
                                                                                                     'son': '-6.986'},
                                                                                         'cor_xy': {'CalendarMonths': ['0.97',
                                                                                                                       '0.97',
                                                                                                                       '0.98',
                                                                                                                       '0.95',
                                                                                                                       '0.90',
                                                                                                                       '0.94',
                                                                                                                       '0.96',
                                                                                                                       '0.97',
                                                                                                                       '0.94',
                                                                                                                       '0.95',
                                                                                                                       '0.95',
                                                                                                                       '0.95'],
                                                                                                    'ann': '0.943',
                                                                                                    'djf': '0.97',
                                                                                                    'jja': '0.96',
                                                                                                    'mam': '0.94',
                                                                                                    'son': '0.95'},
                                                                                         'mae_xy': {'CalendarMonths': ['7.709',
                                                                                                                       '6.967',
                                                                                                                       '6.991',
                                                                                                                       '6.564',
                                                                                                                       '11.263',
                                                                                                                       '11.628',
                                                                                                                       '11.556',
                                                                                                                       '10.304',
                                                                                                                       '10.871',
                                                                                                                       '6.743',
                                                                                                                       '5.431',
                                                                                                                       '6.560'],
                                                                                                    'ann': '7.009',
                                                                                                    'djf': '6.642',
                                                                                                    'jja': '10.886',
                                                                                                    'mam': '7.126',
                                                                                                    'son': '7.207'},
                                                                                         'mean-obs_xy': {'CalendarMonths': ['5847.236',
                                                                                                                            '5847.862',
                                                                                                                            '5853.269',
                                                                                                                            '5857.839',
                                                                                                                            '5860.227',
                                                                                                                            '5860.855',
                                                                                                                            '5858.623',
                                                                                                                            '5857.709',
                                                                                                                            '5859.463',
                                                                                                                            '5857.047',
                                                                                                                            '5851.030',
                                                                                                                            '5849.159'],
                                                                                                         'ann': '5855.027',
                                                                                                         'djf': '5848.074',
                                                                                                         'jja': '5859.067',
                                                                                                         'mam': '5857.195',
                                                                                                         'son': '5855.834'},
                                                                                         'mean_xy': {'CalendarMonths': ['5842.554',
                                                                                                                        '5844.716',
                                                                                                                        '5850.658',
                                                                                                                        '5853.352',
                                                                                                                        '5851.503',
                                                                                                                        '5849.948',
                                                                                                                        '5847.157',
                                                                                                                        '5847.729',
                                                                                                                        '5848.979',
                                                                                                                        '5850.981',
                                                                                                                        '5846.654',
                                                                                                                        '5844.616'],
                                                                                                     'ann': '5848.237',
                                                                                                     'djf': '5843.955',
                                                                                                     'jja': '5848.290',
                                                                                                     'mam': '5851.878',
                                                                                                     'son': '5848.848'},
                                                                                         'rms_devzm': {'ann': '3.602'},
                                                                                         'rms_xy': {'CalendarMonths': ['12.065',
                                                                                                                       '12.321',
                                                                                                                       '11.747',
                                                                                                                       '10.447',
                                                                                                                       '14.192',
                                                                                                                       '15.283',
                                                                                                                       '14.957',
                                                                                                                       '13.091',
                                                                                                                       '14.502',
                                                                                                                       '10.203',
                                                                                                                       '8.780',
                                                                                                                       '11.151'],
                                                                                                    'ann': '10.253',
                                                                                                    'djf': '11.355',
                                                                                                    'jja': '13.801',
                                                                                                    'mam': '11.059',
                                                                                                    'son': '10.226'},
                                                                                         'rms_xyt': {'ann': '12.395'},
                                                                                         'rms_y': {'ann': '9.600'},
                                                                                         'rmsc_xy': {'CalendarMonths': ['11.120',
                                                                                                                        '11.913',
                                                                                                                        '11.453',
                                                                                                                        '9.434',
                                                                                                                        '11.194',
                                                                                                                        '10.706',
                                                                                                                        '9.605',
                                                                                                                        '8.471',
                                                                                                                        '10.019',
                                                                                                                        '8.203',
                                                                                                                        '7.611',
                                                                                                                        '10.184'],
                                                                                                     'ann': '7.683',
                                                                                                     'djf': '10.581',
                                                                                                     'jja': '8.621',
                                                                                                     'mam': '9.697',
                                                                                                     'son': '7.468'},
                                                                                         'std-obs_xy': {'CalendarMonths': ['31.261',
                                                                                                                           '31.702',
                                                                                                                           '26.766',
                                                                                                                           '22.101',
                                                                                                                           '25.768',
                                                                                                                           '30.572',
                                                                                                                           '33.395',
                                                                                                                           '33.693',
                                                                                                                           '27.690',
                                                                                                                           '21.722',
                                                                                                                           '20.486',
                                                                                                                           '23.590'],
                                                                                                        'ann': '19.620',
                                                                                                        'djf': '28.368',
                                                                                                        'jja': '32.283',
                                                                                                        'mam': '21.693',
                                                                                                        'son': '21.424'},
                                                                                         'std-obs_xy_devzm': {'ann': '8.639'},
                                                                                         'std-obs_xyt': {'ann': '28.180'},
                                                                                         'std_xy': {'CalendarMonths': ['38.126',
                                                                                                                       '40.490',
                                                                                                                       '36.089',
                                                                                                                       '27.058',
                                                                                                                       '23.399',
                                                                                                                       '29.849',
                                                                                                                       '34.952',
                                                                                                                       '34.444',
                                                                                                                       '30.196',
                                                                                                                       '24.872',
                                                                                                                       '23.425',
                                                                                                                       '29.280'],
                                                                                                    'ann': '22.570',
                                                                                                    'djf': '35.670',
                                                                                                    'jja': '32.653',
                                                                                                    'mam': '26.647',
                                                                                                    'son': '24.019'},
                                                                                         'std_xy_devzm': {'ann': '7.557'},
                                                                                         'std_xyt': {'ann': '31.657'}},
                                                                             'global': {'bias_xy': {'CalendarMonths': ['-6.219',
                                                                                                                       '-3.487',
                                                                                                                       '-3.458',
                                                                                                                       '-6.516',
                                                                                                                       '-11.057',
                                                                                                                       '-13.156',
                                                                                                                       '-12.612',
                                                                                                                       '-11.806',
                                                                                                                       '-12.689',
                                                                                                                       '-10.394',
                                                                                                                       '-8.372',
                                                                                                                       '-7.384'],
                                                                                                    'ann': '-8.929',
                                                                                                    'djf': '-5.678',
                                                                                                    'jja': '-12.524',
                                                                                                    'mam': '-7.075',
                                                                                                    'son': '-10.486'},
                                                                                        'cor_xy': {'CalendarMonths': ['0.99',
                                                                                                                      '0.99',
                                                                                                                      '1.00',
                                                                                                                      '1.00',
                                                                                                                      '1.00',
                                                                                                                      '1.00',
                                                                                                                      '0.99',
                                                                                                                      '1.00',
                                                                                                                      '1.00',
                                                                                                                      '1.00',
                                                                                                                      '1.00',
                                                                                                                      '0.99'],
                                                                                                   'ann': '0.997',
                                                                                                   'djf': '1.00',
                                                                                                   'jja': '1.00',
                                                                                                   'mam': '1.00',
                                                                                                   'son': '1.00'},
                                                                                        'mae_xy': {'CalendarMonths': ['18.665',
                                                                                                                      '18.673',
                                                                                                                      '16.527',
                                                                                                                      '14.494',
                                                                                                                      '19.446',
                                                                                                                      '20.295',
                                                                                                                      '22.535',
                                                                                                                      '17.642',
                                                                                                                      '21.317',
                                                                                                                      '16.070',
                                                                                                                      '16.381',
                                                                                                                      '18.775'],
                                                                                                   'ann': '14.986',
                                                                                                   'djf': '17.088',
                                                                                                   'jja': '18.857',
                                                                                                   'mam': '14.674',
                                                                                                   'son': '16.441'},
                                                                                        'mean-obs_xy': {'CalendarMonths': ['5642.165',
                                                                                                                           '5643.159',
                                                                                                                           '5649.118',
                                                                                                                           '5659.520',
                                                                                                                           '5672.891',
                                                                                                                           '5687.743',
                                                                                                                           '5695.841',
                                                                                                                           '5692.333',
                                                                                                                           '5678.726',
                                                                                                                           '5661.725',
                                                                                                                           '5648.363',
                                                                                                                           '5642.675'],
                                                                                                        'ann': '5664.522',
                                                                                                        'djf': '5642.666',
                                                                                                        'jja': '5691.930',
                                                                                                        'mam': '5660.722',
                                                                                                        'son': '5662.951'},
                                                                                        'mean_xy': {'CalendarMonths': ['5635.946',
                                                                                                                       '5639.672',
                                                                                                                       '5645.660',
                                                                                                                       '5653.004',
                                                                                                                       '5661.834',
                                                                                                                       '5674.587',
                                                                                                                       '5683.228',
                                                                                                                       '5680.527',
                                                                                                                       '5666.037',
                                                                                                                       '5651.332',
                                                                                                                       '5639.991',
                                                                                                                       '5635.291'],
                                                                                                    'ann': '5655.592',
                                                                                                    'djf': '5636.988',
                                                                                                    'jja': '5679.406',
                                                                                                    'mam': '5653.647',
                                                                                                    'son': '5652.466'},
                                                                                        'rms_devzm': {'ann': '11.138'},
                                                                                        'rms_xy': {'CalendarMonths': ['27.945',
                                                                                                                      '28.852',
                                                                                                                      '25.730',
                                                                                                                      '21.049',
                                                                                                                      '26.000',
                                                                                                                      '28.319',
                                                                                                                      '31.082',
                                                                                                                      '24.458',
                                                                                                                      '29.177',
                                                                                                                      '24.097',
                                                                                                                      '27.590',
                                                                                                                      '28.933'],
                                                                                                   'ann': '21.591',
                                                                                                   'djf': '26.092',
                                                                                                   'jja': '25.266',
                                                                                                   'mam': '20.975',
                                                                                                   'son': '24.509'},
                                                                                        'rms_xyt': {'ann': '26.936'},
                                                                                        'rms_y': {'ann': '18.497'},
                                                                                        'rmsc_xy': {'CalendarMonths': ['27.244',
                                                                                                                       '28.640',
                                                                                                                       '25.497',
                                                                                                                       '20.015',
                                                                                                                       '23.532',
                                                                                                                       '25.078',
                                                                                                                       '28.408',
                                                                                                                       '21.420',
                                                                                                                       '26.274',
                                                                                                                       '21.740',
                                                                                                                       '26.289',
                                                                                                                       '27.975'],
                                                                                                    'ann': '19.658',
                                                                                                    'djf': '25.467',
                                                                                                    'jja': '21.944',
                                                                                                    'mam': '19.746',
                                                                                                    'son': '22.153'},
                                                                                        'std-obs_xy': {'CalendarMonths': ['267.650',
                                                                                                                          '271.022',
                                                                                                                          '271.774',
                                                                                                                          '263.755',
                                                                                                                          '256.474',
                                                                                                                          '254.748',
                                                                                                                          '263.472',
                                                                                                                          '264.607',
                                                                                                                          '270.855',
                                                                                                                          '272.238',
                                                                                                                          '267.359',
                                                                                                                          '266.504'],
                                                                                                       'ann': '256.521',
                                                                                                       'djf': '267.875',
                                                                                                       'jja': '260.365',
                                                                                                       'mam': '260.976',
                                                                                                       'son': '267.160'},
                                                                                        'std-obs_xy_devzm': {'ann': '30.316'},
                                                                                        'std-obs_xyt': {'ann': '266.636'},
                                                                                        'std_xy': {'CalendarMonths': ['263.349',
                                                                                                                      '265.484',
                                                                                                                      '267.413',
                                                                                                                      '261.781',
                                                                                                                      '253.580',
                                                                                                                      '250.364',
                                                                                                                      '251.853',
                                                                                                                      '258.823',
                                                                                                                      '261.373',
                                                                                                                      '267.653',
                                                                                                                      '264.276',
                                                                                                                      '263.578'],
                                                                                                   'ann': '251.150',
                                                                                                   'djf': '263.674',
                                                                                                   'jja': '253.108',
                                                                                                   'mam': '258.171',
                                                                                                   'son': '261.472'},
                                                                                        'std_xy_devzm': {'ann': '30.232'},
                                                                                        'std_xyt': {'ann': '261.384'}}},
                                                                'source': 'ERA-5'},
                                                    'units': 'm'}},
                         'provenance': {'commandLine': '/home/lee1043/.conda/envs/pcmdi_metrics_dev_20230822/bin/mean_climate_driver.py '
                                                       '-p basic_param.py -v '
                                                       'zg-500',
                                        'conda': {'Platform': 'linux-64',
                                                  'PythonVersion': '3.7.3.final.0',
                                                  'Version': '23.1.0',
                                                  'buildVersion': '3.18.8'},
                                        'date': '2023-09-19 10:49:28',
                                        'openGL': {'GLX': {'client': {'vendor': 'Mesa '
                                                                                'Project '
                                                                                'and '
                                                                                'SGI',
                                                                      'version': '1.4'},
                                                           'server': {'vendor': 'SGI',
                                                                      'version': '1.4'},
                                                           'version': '1.4'},
                                                   'renderer': 'llvmpipe (LLVM '
                                                               '7.0, 256 bits)',
                                                   'shading language version': '1.20',
                                                   'vendor': 'VMware, Inc.',
                                                   'version': '2.1 Mesa '
                                                              '18.3.4'},
                                        'osAccess': False,
                                        'packages': {'PMP': 'v3.0.2-11-g06b151f',
                                                     'PMPObs': 'See '
                                                               "'References' "
                                                               'key below, for '
                                                               'detailed obs '
                                                               'provenance '
                                                               'information.',
                                                     'blas': '0.3.23',
                                                     'cdat_info': '8.2.1',
                                                     'cdms': '3.1.5',
                                                     'cdp': '1.7.0',
                                                     'cdtime': '3.1.4',
                                                     'cdutil': '8.2.1',
                                                     'clapack': None,
                                                     'esmf': '8.4.2',
                                                     'esmpy': '8.4.2',
                                                     'genutil': '8.2.1',
                                                     'lapack': '3.9.0',
                                                     'matplotlib': '3.7.1',
                                                     'mesalib': None,
                                                     'numpy': '1.23.5',
                                                     'python': '3.10.10',
                                                     'scipy': '1.11.2',
                                                     'uvcdat': None,
                                                     'vcs': None,
                                                     'vtk': None,
                                                     'xarray': '2023.8.0',
                                                     'xcdat': '0.5.0'},
                                        'platform': {'Name': 'gates.llnl.gov',
                                                     'OS': 'Linux',
                                                     'Version': '3.10.0-1160.71.1.el7.x86_64'},
                                        'userId': 'lee1043'}}},
 'mjo': {'REFERENCE': {'GPCP-1-3': {'MJJASO': {'analysis_time_window_end_year': 2010,
                                               'analysis_time_window_start_year': 1997,
                                               'east_power': 0.017083859661554807,
                                               'east_west_power_ratio': 3.0534932772936827,
                                               'west_power': 0.005594857466559176},
                                    'NDJFMA': {'analysis_time_window_end_year': 2010,
                                               'analysis_time_window_start_year': 1997,
                                               'east_power': 0.0212067408339334,
                                               'east_west_power_ratio': 2.494024187737836,
                                               'west_power': 0.008503021317194452}}},
         'RESULTS': {'ACCESS-CM2': {'r10i1p1f1': {'MJJASO': {'analysis_time_window_end_year': 2004,
                                                             'analysis_time_window_start_year': 1985,
                                                             'east_power': 0.008454461395462963,
                                                             'east_west_power_ratio': 1.9523393478587807,
                                                             'west_power': 0.004330426165274677},
                                                  'NDJFMA': {'analysis_time_window_end_year': 2004,
                                                             'analysis_time_window_start_year': 1985,
                                                             'east_power': 0.010728533372104533,
                                                             'east_west_power_ratio': 2.036111337054465,
                                                             'west_power': 0.005269129038702244}},
                                    'r1i1p1f1': {'MJJASO': {'analysis_time_window_end_year': 2004,
                                                            'analysis_time_window_start_year': 1985,
                                                            'east_power': 0.008322433128973817,
                                                            'east_power_normalized_by_observation': 0.4871518084231552,
                                                            'east_west_power_ratio': 2.0540771945510765,
                                                            'west_power': 0.004051665220299914},
                                                 'NDJFMA': {'analysis_time_window_end_year': 2004,
                                                            'analysis_time_window_start_year': 1985,
                                                            'east_power': 0.00892745702168386,
                                                            'east_power_normalized_by_observation': 0.42097260920918256,
                                                            'east_west_power_ratio': 1.494895047416935,
                                                            'west_power': 0.005971962404390747}},
                                    'r2i1p1f1': {'MJJASO': {'analysis_time_window_end_year': 2004,
                                                            'analysis_time_window_start_year': 1985,
                                                            'east_power': 0.0097250199770383,
                                                            'east_west_power_ratio': 2.157133934815046,
                                                            'west_power': 0.004508306053732417},
                                                 'NDJFMA': {'analysis_time_window_end_year': 2004,
                                                            'analysis_time_window_start_year': 1985,
                                                            'east_power': 0.009400282118275849,
                                                            'east_west_power_ratio': 1.747882443125181,
                                                            'west_power': 0.005378097454579566}},
                                    'r3i1p1f1': {'MJJASO': {'analysis_time_window_end_year': 2004,
                                                            'analysis_time_window_start_year': 1985,
                                                            'east_power': 0.00885718789254206,
                                                            'east_west_power_ratio': 1.9404895204133192,
                                                            'west_power': 0.004564409031518759},
                                                 'NDJFMA': {'analysis_time_window_end_year': 2004,
                                                            'analysis_time_window_start_year': 1985,
                                                            'east_power': 0.008617001858747617,
                                                            'east_west_power_ratio': 1.8477165407824487,
                                                            'west_power': 0.004663595128665457}},
                                    'r4i1p1f1': {'MJJASO': {'analysis_time_window_end_year': 2004,
                                                            'analysis_time_window_start_year': 1985,
                                                            'east_power': 0.00944821996671019,
                                                            'east_west_power_ratio': 2.2920015976364865,
                                                            'west_power': 0.004122257146964121},
                                                 'NDJFMA': {'analysis_time_window_end_year': 2004,
                                                            'analysis_time_window_start_year': 1985,
                                                            'east_power': 0.007664235940513062,
                                                            'east_west_power_ratio': 1.3908972436814913,
                                                            'west_power': 0.005510281924369199}},
                                    'r5i1p1f1': {'MJJASO': {'analysis_time_window_end_year': 2004,
                                                            'analysis_time_window_start_year': 1985,
                                                            'east_power': 0.009441837107564724,
                                                            'east_west_power_ratio': 1.9386484006636087,
                                                            'west_power': 0.004870319499055495},
                                                 'NDJFMA': {'analysis_time_window_end_year': 2004,
                                                            'analysis_time_window_start_year': 1985,
                                                            'east_power': 0.009658805004219548,
                                                            'east_west_power_ratio': 1.6985195462238116,
                                                            'west_power': 0.005686602209372997}},
                                    'r6i1p1f1': {'MJJASO': {'analysis_time_window_end_year': 2004,
                                                            'analysis_time_window_start_year': 1985,
                                                            'east_power': 0.00822954828605968,
                                                            'east_west_power_ratio': 1.8957916349047121,
                                                            'west_power': 0.004340956112760419},
                                                 'NDJFMA': {'analysis_time_window_end_year': 2004,
                                                            'analysis_time_window_start_year': 1985,
                                                            'east_power': 0.008723318546158937,
                                                            'east_west_power_ratio': 1.5377174840020025,
                                                            'west_power': 0.005672900670580901}},
                                    'r7i1p1f1': {'MJJASO': {'analysis_time_window_end_year': 2004,
                                                            'analysis_time_window_start_year': 1985,
                                                            'east_power': 0.007753277717156017,
                                                            'east_west_power_ratio': 1.699071538624335,
                                                            'west_power': 0.004563243831059351},
                                                 'NDJFMA': {'analysis_time_window_end_year': 2004,
                                                            'analysis_time_window_start_year': 1985,
                                                            'east_power': 0.008959871265524876,
                                                            'east_west_power_ratio': 1.3568240168350207,
                                                            'west_power': 0.006603561813731018}},
                                    'r8i1p1f1': {'MJJASO': {'analysis_time_window_end_year': 2004,
                                                            'analysis_time_window_start_year': 1985,
                                                            'east_power': 0.009022245708770974,
                                                            'east_west_power_ratio': 1.8232971544330576,
                                                            'west_power': 0.004948313382069848},
                                                 'NDJFMA': {'analysis_time_window_end_year': 2004,
                                                            'analysis_time_window_start_year': 1985,
                                                            'east_power': 0.00848233457926388,
                                                            'east_west_power_ratio': 1.5024424355768744,
                                                            'west_power': 0.005645696885556232}},
                                    'r9i1p1f1': {'MJJASO': {'analysis_time_window_end_year': 2004,
                                                            'analysis_time_window_start_year': 1985,
                                                            'east_power': 0.009572896775638086,
                                                            'east_west_power_ratio': 2.3374986903501314,
                                                            'west_power': 0.004095359203903627},
                                                 'NDJFMA': {'analysis_time_window_end_year': 2004,
                                                            'analysis_time_window_start_year': 1985,
                                                            'east_power': 0.009897550247832572,
                                                            'east_west_power_ratio': 1.7529533958869599,
                                                            'west_power': 0.005646214138411025}}}},
         'provenance': {'commandLine': '/home/lee1043/.conda/envs/pcmdi_metrics_dev_20230822/bin/mjo_metrics_driver.py '
                                       '-p ../param/myParam_mjo.py --case_id '
                                       'v20230924 --mip cmip6 --modnames '
                                       'ACCESS-CM2 --realization r1i1p1f1 '
                                       '--parallel',
                        'conda': {'Platform': 'linux-64',
                                  'PythonVersion': '3.10.12.final.0',
                                  'Version': '23.3.1',
                                  'buildVersion': 'not installed'},
                        'date': '2023-09-24 13:35:17',
                        'openGL': {'GLX': {'client': {'vendor': 'Mesa Project '
                                                                'and SGI',
                                                      'version': '1.4'},
                                           'server': {'vendor': 'SGI',
                                                      'version': '1.4'},
                                           'version': '1.4'},
                                   'renderer': 'llvmpipe (LLVM 7.0, 256 bits)',
                                   'shading language version': '1.20',
                                   'vendor': 'VMware, Inc.',
                                   'version': '2.1 Mesa 18.3.4'},
                        'osAccess': False,
                        'packages': {'PMP': 'v3.0.2-11-g06b151f',
                                     'PMPObs': "See 'References' key below, "
                                               'for detailed obs provenance '
                                               'information.',
                                     'blas': '0.3.23',
                                     'cdat_info': '8.2.1',
                                     'cdms': '3.1.5',
                                     'cdp': '1.7.0',
                                     'cdtime': '3.1.4',
                                     'cdutil': '8.2.1',
                                     'clapack': None,
                                     'esmf': '8.4.2',
                                     'esmpy': '8.4.2',
                                     'genutil': '8.2.1',
                                     'lapack': '3.9.0',
                                     'matplotlib': '3.7.1',
                                     'mesalib': None,
                                     'numpy': '1.23.5',
                                     'python': '3.10.10',
                                     'scipy': '1.11.2',
                                     'uvcdat': None,
                                     'vcs': None,
                                     'vtk': None,
                                     'xarray': '2023.8.0',
                                     'xcdat': '0.5.0'},
                        'platform': {'Name': 'gates.llnl.gov',
                                     'OS': 'Linux',
                                     'Version': '3.10.0-1160.71.1.el7.x86_64'},
                        'userId': 'lee1043'}},
 'qbo-mjo': {'REFERENCE': {},
             'RESULTS': {'ACCESS-CM2': {'r1i1p1f1': {'mjo_activity': 10.53894725101759,
                                                     'mjo_activity_diff': -0.4471835840352233,
                                                     'qbo_east_years': [1982,
                                                                        1984,
                                                                        1986,
                                                                        1991,
                                                                        1994,
                                                                        1996,
                                                                        2001,
                                                                        2003],
                                                     'qbo_west_years': [1981,
                                                                        1983,
                                                                        1985,
                                                                        1987,
                                                                        1989,
                                                                        1990,
                                                                        1992,
                                                                        1995,
                                                                        1997,
                                                                        2000,
                                                                        2002,
                                                                        2004]},
                                        'r4i1p1f1': {'mjo_activity': 10.24179187697071,
                                                     'mjo_activity_diff': -1.1762631975261768,
                                                     'qbo_east_years': [1980,
                                                                        1982,
                                                                        1984,
                                                                        1986,
                                                                        1991,
                                                                        1998,
                                                                        2003],
                                                     'qbo_west_years': [1981,
                                                                        1983,
                                                                        1985,
                                                                        1987,
                                                                        1990,
                                                                        1992,
                                                                        1994,
                                                                        1997,
                                                                        1999,
                                                                        2002,
                                                                        2004]},
                                        'r5i1p1f1': {'mjo_activity': 10.648186918055002,
                                                     'mjo_activity_diff': 0.2881874706211553,
                                                     'qbo_east_years': [1980,
                                                                        1982,
                                                                        1984,
                                                                        1991,
                                                                        1996,
                                                                        1998,
                                                                        2003],
                                                     'qbo_west_years': [1981,
                                                                        1983,
                                                                        1985,
                                                                        1989,
                                                                        1990,
                                                                        1992,
                                                                        1995,
                                                                        1997,
                                                                        1999,
                                                                        2002]}}}},
 'variability_modes': {'NAM/NOAA-CIRES_20CR': {'REFERENCE': {'obs': {'defaultReference': {'NAM': {'DJF': {'frac': 0.27189980369699523,
                                                                                                          'mean': -1.0545754301626975e-16,
                                                                                                          'mean_glo': 0.11829962806708992,
                                                                                                          'stdv_pc': 1.5307985578653844},
                                                                                                  'JJA': {'frac': 0.17573684682839985,
                                                                                                          'mean': -2.0761953781328107e-17,
                                                                                                          'mean_glo': 0.07893513384786913,
                                                                                                          'stdv_pc': 0.5855094166189564},
                                                                                                  'MAM': {'frac': 0.2251871640537649,
                                                                                                          'mean': -6.327452580976185e-17,
                                                                                                          'mean_glo': 0.10342282763014639,
                                                                                                          'stdv_pc': 0.9736520958870395},
                                                                                                  'SON': {'frac': 0.16145412949052432,
                                                                                                          'mean': 0.0,
                                                                                                          'mean_glo': -0.004980303548678813,
                                                                                                          'stdv_pc': 0.7367245955407979}},
                                                                                          'period': '1900-2005',
                                                                                          'reference_eofs': 1,
                                                                                          'source': '/p/user_pub/PCMDIobs/PCMDIobs2/atmos/mon/psl/20CR/gn/v20200707/psl_mon_20CR_BE_gn_v20200707_187101-201212.nc'}}},
                                               'RESULTS': {'ACCESS-CM2': {'r1i1p1f1': {'defaultReference': {'NAM': {'DJF': {'best_matching_model_eofs__cor': 1,
                                                                                                                            'best_matching_model_eofs__rms': 1,
                                                                                                                            'best_matching_model_eofs__tcor_cbf_vs_eof_pc': 1,
                                                                                                                            'cbf': {'bias': -0.0004679979809497632,
                                                                                                                                    'bias_glo': -0.1546726224086802,
                                                                                                                                    'cor': 0.9387929104999739,
                                                                                                                                    'cor_glo': 0.9177753415756336,
                                                                                                                                    'frac': 0.34589085842731826,
                                                                                                                                    'frac_cbf_regrid': 0.34767570870499576,
                                                                                                                                    'mean': 4.2183017206507925e-17,
                                                                                                                                    'mean_glo': -0.03637298744927969,
                                                                                                                                    'rms': 0.6160834947511294,
                                                                                                                                    'rms_glo': 0.43662363775361884,
                                                                                                                                    'rmsc': 0.34987737701711547,
                                                                                                                                    'rmsc_glo': 0.40552352502311667,
                                                                                                                                    'stdv_pc': 1.6482016095666854,
                                                                                                                                    'stdv_pc_ratio_to_obs': 1.0766939915758826},
                                                                                                                            'eof1': {'bias': -0.0005288599734277785,
                                                                                                                                     'bias_glo': -0.2468624604049871,
                                                                                                                                     'cor': 0.8989251028672672,
                                                                                                                                     'cor_glo': 0.8692881001006173,
                                                                                                                                     'frac': 0.35868976254366153,
                                                                                                                                     'mean': 4.2183017206507925e-17,
                                                                                                                                     'mean_glo': -0.12856282511119227,
                                                                                                                                     'rms': 0.786417821748164,
                                                                                                                                     'rms_glo': 0.5733797167004322,
                                                                                                                                     'rmsc': 0.4496107152724878,
                                                                                                                                     'rmsc_glo': 0.5112961665959065,
                                                                                                                                     'stdv_pc': 1.7905677820869015,
                                                                                                                                     'stdv_pc_ratio_to_obs': 1.1696952370949127,
                                                                                                                                     'tcor_cbf_vs_eof_pc': 0.9751487775175111},
                                                                                                                            'eof2': {'bias': -0.00016220979922122324,
                                                                                                                                     'bias_glo': 0.16806521666845517,
                                                                                                                                     'cor': 0.012680906216872574,
                                                                                                                                     'cor_glo': 0.04413914597069611,
                                                                                                                                     'frac': 0.10889601231449621,
                                                                                                                                     'mean': -1.4764056022277774e-16,
                                                                                                                                     'mean_glo': 0.286364845133805,
                                                                                                                                     'rms': 1.80995677261788,
                                                                                                                                     'rms_glo': 1.0704007477033581,
                                                                                                                                     'rmsc': 1.4052182056852014,
                                                                                                                                     'rmsc_glo': 1.3826502468174964,
                                                                                                                                     'stdv_pc': 0.9865912590512657,
                                                                                                                                     'stdv_pc_ratio_to_obs': 0.6444945051601131,
                                                                                                                                     'tcor_cbf_vs_eof_pc': 0.008220194842670149},
                                                                                                                            'eof3': {'bias': 0.0001807045893250997,
                                                                                                                                     'bias_glo': 0.30685346358207977,
                                                                                                                                     'cor': 0.36235084056848066,
                                                                                                                                     'cor_glo': 0.3431798185054186,
                                                                                                                                     'frac': 0.10345856295126206,
                                                                                                                                     'mean': -1.3709480592115076e-16,
                                                                                                                                     'mean_glo': 0.42515309133906015,
                                                                                                                                     'rms': 1.4831199706138347,
                                                                                                                                     'rms_glo': 0.9547428601899245,
                                                                                                                                     'rmsc': 1.1292910666492564,
                                                                                                                                     'rmsc_glo': 1.1461415232782755,
                                                                                                                                     'stdv_pc': 0.9616443758833492,
                                                                                                                                     'stdv_pc_ratio_to_obs': 0.6281978585244489,
                                                                                                                                     'tcor_cbf_vs_eof_pc': 0.2116097584732888},
                                                                                                                            'period': '1900-2005'},
                                                                                                                    'JJA': {'best_matching_model_eofs__cor': 1,
                                                                                                                            'best_matching_model_eofs__rms': 1,
                                                                                                                            'best_matching_model_eofs__tcor_cbf_vs_eof_pc': 1,
                                                                                                                            'cbf': {'bias': -9.64966551537453e-05,
                                                                                                                                    'bias_glo': -0.014339745613795654,
                                                                                                                                    'cor': 0.9245160250604104,
                                                                                                                                    'cor_glo': 0.6733148955763217,
                                                                                                                                    'frac': 0.1782619447492495,
                                                                                                                                    'frac_cbf_regrid': 0.17989504534343234,
                                                                                                                                    'mean': -1.977328931555059e-17,
                                                                                                                                    'mean_glo': 0.0645953883957433,
                                                                                                                                    'rms': 0.22561723179340737,
                                                                                                                                    'rms_glo': 0.3073335801205711,
                                                                                                                                    'rmsc': 0.3885459302569328,
                                                                                                                                    'rmsc_glo': 0.8083131842883716,
                                                                                                                                    'stdv_pc': 0.5311351609228446,
                                                                                                                                    'stdv_pc_ratio_to_obs': 0.9071334223621924},
                                                                                                                            'eof1': {'bias': -5.316778214860327e-05,
                                                                                                                                     'bias_glo': -0.03884896274724878,
                                                                                                                                     'cor': 0.8562551347078728,
                                                                                                                                     'cor_glo': 0.6676761279024896,
                                                                                                                                     'frac': 0.18820405052501,
                                                                                                                                     'mean': 0.0,
                                                                                                                                     'mean_glo': 0.04008617147480184,
                                                                                                                                     'rms': 0.3152432191817177,
                                                                                                                                     'rms_glo': 0.3125931300780553,
                                                                                                                                     'rmsc': 0.5361806766042674,
                                                                                                                                     'rmsc_glo': 0.8152593097811291,
                                                                                                                                     'stdv_pc': 0.5915448817811628,
                                                                                                                                     'stdv_pc_ratio_to_obs': 1.010308058232536,
                                                                                                                                     'tcor_cbf_vs_eof_pc': 0.9515577126103307},
                                                                                                                            'eof2': {'bias': -3.1826913556774984e-05,
                                                                                                                                     'bias_glo': -0.05581106868249586,
                                                                                                                                     'cor': 0.18482743484866745,
                                                                                                                                     'cor_glo': -0.024495486224905782,
                                                                                                                                     'frac': 0.10810935670759407,
                                                                                                                                     'mean': -2.1091508603253963e-17,
                                                                                                                                     'mean_glo': 0.02312406225973478,
                                                                                                                                     'rms': 0.6677203614973906,
                                                                                                                                     'rms_glo': 0.5165895475455101,
                                                                                                                                     'rmsc': 1.2768497092337145,
                                                                                                                                     'rmsc_glo': 1.4314296680153158,
                                                                                                                                     'stdv_pc': 0.44833728714019727,
                                                                                                                                     'stdv_pc_ratio_to_obs': 0.7657217363456524,
                                                                                                                                     'tcor_cbf_vs_eof_pc': 0.15553279543979723},
                                                                                                                            'eof3': {'bias': -0.00017251605353929702,
                                                                                                                                     'bias_glo': 0.06012524420954772,
                                                                                                                                     'cor': 0.2617485950004945,
                                                                                                                                     'cor_glo': 0.08807259670550957,
                                                                                                                                     'frac': 0.0932422006833027,
                                                                                                                                     'mean': -7.909315726220236e-18,
                                                                                                                                     'mean_glo': 0.13906037858182616,
                                                                                                                                     'rms': 0.6228044131174185,
                                                                                                                                     'rms_glo': 0.5056777033750491,
                                                                                                                                     'rmsc': 1.2151143111675449,
                                                                                                                                     'rmsc_glo': 1.35050171371695,
                                                                                                                                     'stdv_pc': 0.4163700432381536,
                                                                                                                                     'stdv_pc_ratio_to_obs': 0.7111244181903961,
                                                                                                                                     'tcor_cbf_vs_eof_pc': 0.20455533119864894},
                                                                                                                            'period': '1900-2005'},
                                                                                                                    'MAM': {'best_matching_model_eofs__cor': 1,
                                                                                                                            'best_matching_model_eofs__rms': 1,
                                                                                                                            'best_matching_model_eofs__tcor_cbf_vs_eof_pc': 1,
                                                                                                                            'cbf': {'bias': -0.00027236230446188426,
                                                                                                                                    'bias_glo': -0.10803293038348327,
                                                                                                                                    'cor': 0.963058976875575,
                                                                                                                                    'cor_glo': 0.9049939321424605,
                                                                                                                                    'frac': 0.3397791263781191,
                                                                                                                                    'frac_cbf_regrid': 0.34186914605602714,
                                                                                                                                    'mean': 0.0,
                                                                                                                                    'mean_glo': -0.004610098559989385,
                                                                                                                                    'rms': 0.466792505523455,
                                                                                                                                    'rms_glo': 0.3702263836864914,
                                                                                                                                    'rmsc': 0.27181252932798966,
                                                                                                                                    'rmsc_glo': 0.4359038123157964,
                                                                                                                                    'stdv_pc': 1.2749766719670248,
                                                                                                                                    'stdv_pc_ratio_to_obs': 1.3094786909542524},
                                                                                                                            'eof1': {'bias': -0.00027770686146061596,
                                                                                                                                     'bias_glo': -0.11136429452898618,
                                                                                                                                     'cor': 0.9479026530308259,
                                                                                                                                     'cor_glo': 0.893353207536412,
                                                                                                                                     'frac': 0.34432876871407286,
                                                                                                                                     'mean': 0.0,
                                                                                                                                     'mean_glo': -0.007941462518652444,
                                                                                                                                     'rms': 0.5139374890134248,
                                                                                                                                     'rms_glo': 0.3881836133812388,
                                                                                                                                     'rmsc': 0.3227920254339588,
                                                                                                                                     'rmsc_glo': 0.46183718699978094,
                                                                                                                                     'stdv_pc': 1.3350694120709454,
                                                                                                                                     'stdv_pc_ratio_to_obs': 1.3711975948191628,
                                                                                                                                     'tcor_cbf_vs_eof_pc': 0.9908313429492452},
                                                                                                                            'eof2': {'bias': -0.00010262661942470238,
                                                                                                                                     'bias_glo': -0.08286470902864403,
                                                                                                                                     'cor': 0.18055189083361442,
                                                                                                                                     'cor_glo': 0.13204334157144368,
                                                                                                                                     'frac': 0.11572126834070323,
                                                                                                                                     'mean': 5.272877150813491e-18,
                                                                                                                                     'mean_glo': 0.02055811973285869,
                                                                                                                                     'rms': 1.128253367395632,
                                                                                                                                     'rms_glo': 0.7009066426064562,
                                                                                                                                     'rmsc': 1.2801937958210663,
                                                                                                                                     'rmsc_glo': 1.3175406384843966,
                                                                                                                                     'stdv_pc': 0.773969387518349,
                                                                                                                                     'stdv_pc_ratio_to_obs': 0.794913697395402,
                                                                                                                                     'tcor_cbf_vs_eof_pc': 0.1093719341395792},
                                                                                                                            'eof3': {'bias': 0.00019143491909608644,
                                                                                                                                     'bias_glo': 0.05752197067131966,
                                                                                                                                     'cor': 0.09651966137603389,
                                                                                                                                     'cor_glo': 0.13652176757487178,
                                                                                                                                     'frac': 0.08095388823760191,
                                                                                                                                     'mean': 2.1091508603253963e-17,
                                                                                                                                     'mean_glo': -0.16094479441681367,
                                                                                                                                     'rms': 1.1150987397949166,
                                                                                                                                     'rms_glo': 0.67737785247176,
                                                                                                                                     'rmsc': 1.3442323603963047,
                                                                                                                                     'rmsc_glo': 1.314137145674423,
                                                                                                                                     'stdv_pc': 0.6473453720025124,
                                                                                                                                     'stdv_pc_ratio_to_obs': 0.6648631217835078,
                                                                                                                                     'tcor_cbf_vs_eof_pc': -0.0488732186545937},
                                                                                                                            'period': '1900-2005'},
                                                                                                                    'SON': {'best_matching_model_eofs__cor': 2,
                                                                                                                            'best_matching_model_eofs__rms': 2,
                                                                                                                            'best_matching_model_eofs__tcor_cbf_vs_eof_pc': 1,
                                                                                                                            'cbf': {'bias': -9.414079866077112e-05,
                                                                                                                                    'bias_glo': 0.07347783821357413,
                                                                                                                                    'cor': 0.9391525100931266,
                                                                                                                                    'cor_glo': 0.6997597834618426,
                                                                                                                                    'frac': 0.15251650533550662,
                                                                                                                                    'frac_cbf_regrid': 0.1535715899544048,
                                                                                                                                    'mean': 1.0545754301626981e-17,
                                                                                                                                    'mean_glo': 0.06849753542938103,
                                                                                                                                    'rms': 0.2593574558826175,
                                                                                                                                    'rms_glo': 0.37491187726202335,
                                                                                                                                    'rmsc': 0.3488480745194253,
                                                                                                                                    'rmsc_glo': 0.7749067239165186,
                                                                                                                                    'stdv_pc': 0.7031241397159904,
                                                                                                                                    'stdv_pc_ratio_to_obs': 0.9543921079489102},
                                                                                                                            'eof1': {'bias': -0.000261235306882235,
                                                                                                                                     'bias_glo': 0.0384725135555803,
                                                                                                                                     'cor': 0.5258456316182413,
                                                                                                                                     'cor_glo': 0.33613826878929487,
                                                                                                                                     'frac': 0.18809006197888492,
                                                                                                                                     'mean': 1.8455070027847217e-17,
                                                                                                                                     'mean_glo': 0.03349221098121338,
                                                                                                                                     'rms': 0.7679729086947248,
                                                                                                                                     'rms_glo': 0.5717706735211346,
                                                                                                                                     'rmsc': 0.9738114335523326,
                                                                                                                                     'rmsc_glo': 1.1522688521629045,
                                                                                                                                     'stdv_pc': 0.832840388535142,
                                                                                                                                     'stdv_pc_ratio_to_obs': 1.130463667937935,
                                                                                                                                     'tcor_cbf_vs_eof_pc': 0.6217520685426173},
                                                                                                                            'eof2': {'bias': 0.00011932307907779634,
                                                                                                                                     'bias_glo': 0.03531012358340499,
                                                                                                                                     'cor': 0.7280386283374822,
                                                                                                                                     'cor_glo': 0.5825070759447237,
                                                                                                                                     'frac': 0.1383749314156412,
                                                                                                                                     'mean': -4.2183017206507925e-17,
                                                                                                                                     'mean_glo': -0.030329819641642646,
                                                                                                                                     'rms': 0.5349744226616707,
                                                                                                                                     'rms_glo': 0.42367868137783243,
                                                                                                                                     'rmsc': 0.737511186466825,
                                                                                                                                     'rmsc_glo': 0.9137755903464851,
                                                                                                                                     'stdv_pc': 0.7143442653554185,
                                                                                                                                     'stdv_pc_ratio_to_obs': 0.9696218501176128,
                                                                                                                                     'tcor_cbf_vs_eof_pc': -0.7380312771499078},
                                                                                                                            'eof3': {'bias': 1.4389081823266257e-05,
                                                                                                                                     'bias_glo': -0.0466758675064846,
                                                                                                                                     'cor': 0.04032492445415791,
                                                                                                                                     'cor_glo': 0.15252492358246236,
                                                                                                                                     'frac': 0.09055486922561293,
                                                                                                                                     'mean': 0.0,
                                                                                                                                     'mean_glo': -0.05165616997742224,
                                                                                                                                     'rms': 0.9170272374223545,
                                                                                                                                     'rms_glo': 0.562979067347729,
                                                                                                                                     'rmsc': 1.3854061416529664,
                                                                                                                                     'rmsc_glo': 1.301902525512274,
                                                                                                                                     'stdv_pc': 0.5778761319906568,
                                                                                                                                     'stdv_pc_ratio_to_obs': 0.7843855566766611,
                                                                                                                                     'tcor_cbf_vs_eof_pc': 0.0330669528828093},
                                                                                                                            'period': '1900-2005'},
                                                                                                                    'target_model_eofs': 1}}},
                                                                          'r2i1p1f1': {'defaultReference': {'NAM': {'DJF': {'best_matching_model_eofs__cor': 1,
                                                                                                                            'best_matching_model_eofs__rms': 1,
                                                                                                                            'best_matching_model_eofs__tcor_cbf_vs_eof_pc': 1,
                                                                                                                            'cbf': {'bias': -0.0005972433996815442,
                                                                                                                                    'bias_glo': -0.22010287522853245,
                                                                                                                                    'cor': 0.9230587879595257,
                                                                                                                                    'cor_glo': 0.8971897483492022,
                                                                                                                                    'frac': 0.37030294935794617,
                                                                                                                                    'frac_cbf_regrid': 0.37216992294630297,
                                                                                                                                    'mean': 4.2183017206507925e-17,
                                                                                                                                    'mean_glo': -0.10180323910047538,
                                                                                                                                    'rms': 0.7271274926688808,
                                                                                                                                    'rms_glo': 0.5367228448273461,
                                                                                                                                    'rmsc': 0.3922784990474203,
                                                                                                                                    'rmsc_glo': 0.4534539673263949,
                                                                                                                                    'stdv_pc': 1.6980741419197682,
                                                                                                                                    'stdv_pc_ratio_to_obs': 1.1092734136669429},
                                                                                                                            'eof1': {'bias': -0.0006696165024854332,
                                                                                                                                     'bias_glo': -0.2844959588869824,
                                                                                                                                     'cor': 0.8774218300683472,
                                                                                                                                     'cor_glo': 0.8441864050112113,
                                                                                                                                     'frac': 0.3868913550855607,
                                                                                                                                     'mean': 8.436603441301585e-17,
                                                                                                                                     'mean_glo': -0.16619632195194248,
                                                                                                                                     'rms': 0.9102301763174021,
                                                                                                                                     'rms_glo': 0.6697090142186473,
                                                                                                                                     'rmsc': 0.4951326452866512,
                                                                                                                                     'rmsc_glo': 0.5582357847374917,
                                                                                                                                     'stdv_pc': 1.8831459199145446,
                                                                                                                                     'stdv_pc_ratio_to_obs': 1.230172258942084,
                                                                                                                                     'tcor_cbf_vs_eof_pc': 0.9716006883025139},
                                                                                                                            'eof2': {'bias': 0.00018124088102262225,
                                                                                                                                     'bias_glo': 0.39407462034144836,
                                                                                                                                     'cor': 0.2230602147821391,
                                                                                                                                     'cor_glo': 0.2286663207731337,
                                                                                                                                     'frac': 0.10789412728120477,
                                                                                                                                     'mean': -1.726867266891418e-16,
                                                                                                                                     'mean_glo': 0.5123742472924115,
                                                                                                                                     'rms': 1.6282319192840604,
                                                                                                                                     'rms_glo': 1.0750768207823973,
                                                                                                                                     'rmsc': 1.246547080560372,
                                                                                                                                     'rmsc_glo': 1.242041588048851,
                                                                                                                                     'stdv_pc': 0.9944623923570594,
                                                                                                                                     'stdv_pc_ratio_to_obs': 0.6496363530311808,
                                                                                                                                     'tcor_cbf_vs_eof_pc': 0.13010396745583572},
                                                                                                                            'eof3': {'bias': 4.1318673213669246e-05,
                                                                                                                                     'bias_glo': -0.24286103590987274,
                                                                                                                                     'cor': 0.3238652908501411,
                                                                                                                                     'cor_glo': 0.2844464255891925,
                                                                                                                                     'frac': 0.09200453687918149,
                                                                                                                                     'mean': 2.1091508603253963e-17,
                                                                                                                                     'mean_glo': -0.12456140689571106,
                                                                                                                                     'rms': 1.5080488110877597,
                                                                                                                                     'rms_glo': 0.9399260571466058,
                                                                                                                                     'rmsc': 1.1628712025876302,
                                                                                                                                     'rmsc_glo': 1.1962889016212155,
                                                                                                                                     'stdv_pc': 0.9183200839169074,
                                                                                                                                     'stdv_pc_ratio_to_obs': 0.5998960994563877,
                                                                                                                                     'tcor_cbf_vs_eof_pc': 0.1743934672048597},
                                                                                                                            'period': '1900-2005'},
                                                                                                                    'JJA': {'best_matching_model_eofs__cor': 1,
                                                                                                                            'best_matching_model_eofs__rms': 1,
                                                                                                                            'best_matching_model_eofs__tcor_cbf_vs_eof_pc': 1,
                                                                                                                            'cbf': {'bias': -0.0001705848253140594,
                                                                                                                                    'bias_glo': -0.0388107219398397,
                                                                                                                                    'cor': 0.9148933644550051,
                                                                                                                                    'cor_glo': 0.7347145874356049,
                                                                                                                                    'frac': 0.1630479622915759,
                                                                                                                                    'frac_cbf_regrid': 0.16454049923907238,
                                                                                                                                    'mean': 0.0,
                                                                                                                                    'mean_glo': 0.040124413043421694,
                                                                                                                                    'rms': 0.23669889011212797,
                                                                                                                                    'rms_glo': 0.28237473350493547,
                                                                                                                                    'rmsc': 0.4125690999510899,
                                                                                                                                    'rmsc_glo': 0.7284029201235884,
                                                                                                                                    'stdv_pc': 0.5015417456685592,
                                                                                                                                    'stdv_pc_ratio_to_obs': 0.8565904004836143},
                                                                                                                            'eof1': {'bias': -0.0001367314210772304,
                                                                                                                                     'bias_glo': -0.08026375244711491,
                                                                                                                                     'cor': 0.7958166142034486,
                                                                                                                                     'cor_glo': 0.6868049908651273,
                                                                                                                                     'frac': 0.17721065475119194,
                                                                                                                                     'mean': -2.1091508603253963e-17,
                                                                                                                                     'mean_glo': -0.0013286170829957683,
                                                                                                                                     'rms': 0.3699238247982348,
                                                                                                                                     'rms_glo': 0.32186245847508704,
                                                                                                                                     'rmsc': 0.6390358046753704,
                                                                                                                                     'rmsc_glo': 0.7914480445452762,
                                                                                                                                     'stdv_pc': 0.5725594544893715,
                                                                                                                                     'stdv_pc_ratio_to_obs': 0.977882572402738,
                                                                                                                                     'tcor_cbf_vs_eof_pc': 0.9068238903645919},
                                                                                                                            'eof2': {'bias': -5.272022146475216e-05,
                                                                                                                                     'bias_glo': 0.017967862978789287,
                                                                                                                                     'cor': 0.3724980439390982,
                                                                                                                                     'cor_glo': 0.2002216864212516,
                                                                                                                                     'frac': 0.11465237048021441,
                                                                                                                                     'mean': 1.0545754301626981e-17,
                                                                                                                                     'mean_glo': 0.09690299562379498,
                                                                                                                                     'rms': 0.5944881035765792,
                                                                                                                                     'rms_glo': 0.4592999272472069,
                                                                                                                                     'rmsc': 1.1202695681428634,
                                                                                                                                     'rmsc_glo': 1.2647357935276953,
                                                                                                                                     'stdv_pc': 0.46053982808469174,
                                                                                                                                     'stdv_pc_ratio_to_obs': 0.7865626324920516,
                                                                                                                                     'tcor_cbf_vs_eof_pc': 0.341103311665427},
                                                                                                                            'eof3': {'bias': -0.00021123681064118193,
                                                                                                                                     'bias_glo': -0.049588316707292954,
                                                                                                                                     'cor': 0.13691763325540537,
                                                                                                                                     'cor_glo': 0.044080084872155985,
                                                                                                                                     'frac': 0.08316553230927455,
                                                                                                                                     'mean': 1.1204863945478668e-17,
                                                                                                                                     'mean_glo': 0.029346818242626162,
                                                                                                                                     'rms': 0.657911348627431,
                                                                                                                                     'rms_glo': 0.47482577294099504,
                                                                                                                                     'rmsc': 1.313835887569646,
                                                                                                                                     'rmsc_glo': 1.3826929571239739,
                                                                                                                                     'stdv_pc': 0.392235918522037,
                                                                                                                                     'stdv_pc_ratio_to_obs': 0.6699053975715991,
                                                                                                                                     'tcor_cbf_vs_eof_pc': 0.10666808899355623},
                                                                                                                            'period': '1900-2005'},
                                                                                                                    'MAM': {'best_matching_model_eofs__cor': 1,
                                                                                                                            'best_matching_model_eofs__rms': 1,
                                                                                                                            'best_matching_model_eofs__tcor_cbf_vs_eof_pc': 1,
                                                                                                                            'cbf': {'bias': -0.00023161763244675752,
                                                                                                                                    'bias_glo': -0.10564580628919715,
                                                                                                                                    'cor': 0.969823492658737,
                                                                                                                                    'cor_glo': 0.8647188777014383,
                                                                                                                                    'frac': 0.2727907925318105,
                                                                                                                                    'frac_cbf_regrid': 0.27453489181328317,
                                                                                                                                    'mean': -4.2183017206507925e-17,
                                                                                                                                    'mean_glo': -0.002222973822880352,
                                                                                                                                    'rms': 0.3101606927808788,
                                                                                                                                    'rms_glo': 0.3659362846288246,
                                                                                                                                    'rmsc': 0.24566851105598575,
                                                                                                                                    'rmsc_glo': 0.5201559726399408,
                                                                                                                                    'stdv_pc': 1.109372435907678,
                                                                                                                                    'stdv_pc_ratio_to_obs': 1.1393930548642135},
                                                                                                                            'eof1': {'bias': -0.00022761660630426538,
                                                                                                                                     'bias_glo': -0.09404600532139329,
                                                                                                                                     'cor': 0.9606117376919306,
                                                                                                                                     'cor_glo': 0.8606747086326623,
                                                                                                                                     'frac': 0.2749854518550539,
                                                                                                                                     'mean': 0.0,
                                                                                                                                     'mean_glo': 0.009376827152357416,
                                                                                                                                     'rms': 0.34448727294112425,
                                                                                                                                     'rms_glo': 0.36731625615260777,
                                                                                                                                     'rmsc': 0.2806715581297886,
                                                                                                                                     'rmsc_glo': 0.5278736453867819,
                                                                                                                                     'stdv_pc': 1.1505629939684128,
                                                                                                                                     'stdv_pc_ratio_to_obs': 1.181698266586896,
                                                                                                                                     'tcor_cbf_vs_eof_pc': 0.9945100271033621},
                                                                                                                            'eof2': {'bias': -8.222427321612529e-05,
                                                                                                                                     'bias_glo': -0.29770415570692005,
                                                                                                                                     'cor': 0.010641263061420178,
                                                                                                                                     'cor_glo': -0.014206540915515677,
                                                                                                                                     'frac': 0.1219106868226211,
                                                                                                                                     'mean': 3.1637262904880944e-17,
                                                                                                                                     'mean_glo': 0.19428132730725875,
                                                                                                                                     'rms': 1.2313685668049514,
                                                                                                                                     'rms_glo': 0.8165375467144115,
                                                                                                                                     'rmsc': 1.4066689043968625,
                                                                                                                                     'rmsc_glo': 1.4242236742464396,
                                                                                                                                     'stdv_pc': 0.7660840696954225,
                                                                                                                                     'stdv_pc_ratio_to_obs': 0.7868149957583017,
                                                                                                                                     'tcor_cbf_vs_eof_pc': -0.007330979213135013},
                                                                                                                            'eof3': {'bias': -0.00013838860312540932,
                                                                                                                                     'bias_glo': -0.3144383703736995,
                                                                                                                                     'cor': 0.10480580057524058,
                                                                                                                                     'cor_glo': 0.08121965790098191,
                                                                                                                                     'frac': 0.11424227049846128,
                                                                                                                                     'mean': -2.1091508603253963e-17,
                                                                                                                                     'mean_glo': 0.21101554092319258,
                                                                                                                                     'rms': 1.1595654149751387,
                                                                                                                                     'rms_glo': 0.7938458094100832,
                                                                                                                                     'rmsc': 1.338053939492506,
                                                                                                                                     'rmsc_glo': 1.3555665357266689,
                                                                                                                                     'stdv_pc': 0.7415986925043215,
                                                                                                                                     'stdv_pc_ratio_to_obs': 0.7616670221704733,
                                                                                                                                     'tcor_cbf_vs_eof_pc': -0.06991148765112795},
                                                                                                                            'period': '1900-2005'},
                                                                                                                    'SON': {'best_matching_model_eofs__cor': 1,
                                                                                                                            'best_matching_model_eofs__rms': 2,
                                                                                                                            'best_matching_model_eofs__tcor_cbf_vs_eof_pc': 1,
                                                                                                                            'cbf': {'bias': -0.0001394094960156694,
                                                                                                                                    'bias_glo': -0.003700185736679017,
                                                                                                                                    'cor': 0.9046055976201616,
                                                                                                                                    'cor_glo': 0.8219668311042493,
                                                                                                                                    'frac': 0.16033308268152513,
                                                                                                                                    'frac_cbf_regrid': 0.1614540653099822,
                                                                                                                                    'mean': -2.1091508603253963e-17,
                                                                                                                                    'mean_glo': -0.008680487682023286,
                                                                                                                                    'rms': 0.33348172800735065,
                                                                                                                                    'rms_glo': 0.28865425621285973,
                                                                                                                                    'rmsc': 0.43679377871948566,
                                                                                                                                    'rmsc_glo': 0.5967129461200119,
                                                                                                                                    'stdv_pc': 0.7043960952759022,
                                                                                                                                    'stdv_pc_ratio_to_obs': 0.9561186086896355},
                                                                                                                            'eof1': {'bias': -0.00016511522150783144,
                                                                                                                                     'bias_glo': 0.00988105339355565,
                                                                                                                                     'cor': 0.5972041524520159,
                                                                                                                                     'cor_glo': 0.5576817524870464,
                                                                                                                                     'frac': 0.2062448800228677,
                                                                                                                                     'mean': -2.1091508603253963e-17,
                                                                                                                                     'mean_glo': 0.004900751235799177,
                                                                                                                                     'rms': 0.7386235628285913,
                                                                                                                                     'rms_glo': 0.47461305433556916,
                                                                                                                                     'rmsc': 0.8975476229370462,
                                                                                                                                     'rmsc_glo': 0.9405511500626434,
                                                                                                                                     'stdv_pc': 0.8848127336064808,
                                                                                                                                     'stdv_pc_ratio_to_obs': 1.2010088151827993,
                                                                                                                                     'tcor_cbf_vs_eof_pc': 0.7487326299423249},
                                                                                                                            'eof2': {'bias': 4.553000573019416e-05,
                                                                                                                                     'bias_glo': -0.06590554907103223,
                                                                                                                                     'cor': 0.4661481458993408,
                                                                                                                                     'cor_glo': 0.4283745989951852,
                                                                                                                                     'frac': 0.11921516207199935,
                                                                                                                                     'mean': 0.0,
                                                                                                                                     'mean_glo': 0.07088585436523974,
                                                                                                                                     'rms': 0.7295158027601191,
                                                                                                                                     'rms_glo': 0.48285525386628536,
                                                                                                                                     'rmsc': 1.0332975022098358,
                                                                                                                                     'rmsc_glo': 1.0692290725053937,
                                                                                                                                     'stdv_pc': 0.6727063431334843,
                                                                                                                                     'stdv_pc_ratio_to_obs': 0.9131042280998904,
                                                                                                                                     'tcor_cbf_vs_eof_pc': -0.44411081392795104},
                                                                                                                            'eof3': {'bias': -5.770051753156163e-05,
                                                                                                                                     'bias_glo': 0.005492463251491426,
                                                                                                                                     'cor': 0.3347632224373862,
                                                                                                                                     'cor_glo': 0.27990819420829016,
                                                                                                                                     'frac': 0.10722955689751426,
                                                                                                                                     'mean': -2.1091508603253963e-17,
                                                                                                                                     'mean_glo': 0.0005121608132884693,
                                                                                                                                     'rms': 0.7961796258452648,
                                                                                                                                     'rms_glo': 0.5307983090046876,
                                                                                                                                     'rmsc': 1.1534615426643133,
                                                                                                                                     'rmsc_glo': 1.2000765208602528,
                                                                                                                                     'stdv_pc': 0.6379946423670984,
                                                                                                                                     'stdv_pc_ratio_to_obs': 0.8659879773645589,
                                                                                                                                     'tcor_cbf_vs_eof_pc': 0.30247402588871525},
                                                                                                                            'period': '1900-2005'},
                                                                                                                    'target_model_eofs': 1}}},
                                                                          'r3i1p1f1': {'defaultReference': {'NAM': {'DJF': {'best_matching_model_eofs__cor': 1,
                                                                                                                            'best_matching_model_eofs__rms': 1,
                                                                                                                            'best_matching_model_eofs__tcor_cbf_vs_eof_pc': 1,
                                                                                                                            'cbf': {'bias': -0.0006096113011505349,
                                                                                                                                    'bias_glo': -0.15190187765285448,
                                                                                                                                    'cor': 0.9386676558725215,
                                                                                                                                    'cor_glo': 0.9144139828364777,
                                                                                                                                    'frac': 0.33711429813688126,
                                                                                                                                    'frac_cbf_regrid': 0.33880565530066076,
                                                                                                                                    'mean': -4.2183017206507925e-17,
                                                                                                                                    'mean_glo': -0.03360224285400991,
                                                                                                                                    'rms': 0.6126463128553287,
                                                                                                                                    'rms_glo': 0.4392894851575695,
                                                                                                                                    'rmsc': 0.35023518957391975,
                                                                                                                                    'rmsc_glo': 0.41372942047269773,
                                                                                                                                    'stdv_pc': 1.640682560638105,
                                                                                                                                    'stdv_pc_ratio_to_obs': 1.0717821441679092},
                                                                                                                            'eof1': {'bias': -0.0006941376363357255,
                                                                                                                                     'bias_glo': -0.2410677459957661,
                                                                                                                                     'cor': 0.8969133125878844,
                                                                                                                                     'cor_glo': 0.8655994395220766,
                                                                                                                                     'frac': 0.3500463567027828,
                                                                                                                                     'mean': 8.436603441301585e-17,
                                                                                                                                     'mean_glo': -0.12276811015433971,
                                                                                                                                     'rms': 0.7901284568517247,
                                                                                                                                     'rms_glo': 0.5741331505933376,
                                                                                                                                     'rmsc': 0.45406319694567915,
                                                                                                                                     'rmsc_glo': 0.5184603233672644,
                                                                                                                                     'stdv_pc': 1.7838038273718697,
                                                                                                                                     'stdv_pc_ratio_to_obs': 1.1652766578636495,
                                                                                                                                     'tcor_cbf_vs_eof_pc': 0.9736898504090596},
                                                                                                                            'eof2': {'bias': 3.475844164171415e-05,
                                                                                                                                     'bias_glo': -0.014287029356216549,
                                                                                                                                     'cor': 0.19840841844532933,
                                                                                                                                     'cor_glo': 0.1921585367973448,
                                                                                                                                     'frac': 0.13604824371444743,
                                                                                                                                     'mean': -4.2183017206507925e-17,
                                                                                                                                     'mean_glo': 0.10401259899352679,
                                                                                                                                     'rms': 1.7032281970757697,
                                                                                                                                     'rms_glo': 1.001202657870787,
                                                                                                                                     'rmsc': 1.2661687079343265,
                                                                                                                                     'rmsc_glo': 1.271095186099718,
                                                                                                                                     'stdv_pc': 1.1120665566860275,
                                                                                                                                     'stdv_pc_ratio_to_obs': 0.7264617221986046,
                                                                                                                                     'tcor_cbf_vs_eof_pc': 0.13455526037560317},
                                                                                                                            'eof3': {'bias': 0.00015528413670907635,
                                                                                                                                     'bias_glo': 0.39849337217026937,
                                                                                                                                     'cor': 0.20076476181282935,
                                                                                                                                     'cor_glo': 0.16212721492242577,
                                                                                                                                     'frac': 0.10071024532750078,
                                                                                                                                     'mean': -1.7005028811373506e-16,
                                                                                                                                     'mean_glo': 0.5167929981539007,
                                                                                                                                     'rms': 1.6336237309593393,
                                                                                                                                     'rms_glo': 1.1199485673044254,
                                                                                                                                     'rmsc': 1.2643063003523383,
                                                                                                                                     'rmsc_glo': 1.294505919246823,
                                                                                                                                     'stdv_pc': 0.9567999356671467,
                                                                                                                                     'stdv_pc_ratio_to_obs': 0.6250332094650993,
                                                                                                                                     'tcor_cbf_vs_eof_pc': 0.11723086885276629},
                                                                                                                            'period': '1900-2005'},
                                                                                                                    'JJA': {'best_matching_model_eofs__cor': 1,
                                                                                                                            'best_matching_model_eofs__rms': 1,
                                                                                                                            'best_matching_model_eofs__tcor_cbf_vs_eof_pc': 1,
                                                                                                                            'cbf': {'bias': -5.4059382655072164e-05,
                                                                                                                                    'bias_glo': -0.011930056879538437,
                                                                                                                                    'cor': 0.9144057856432083,
                                                                                                                                    'cor_glo': 0.8293496516840755,
                                                                                                                                    'frac': 0.23095688964747382,
                                                                                                                                    'frac_cbf_regrid': 0.23294933862235076,
                                                                                                                                    'mean': -1.0545754301626981e-17,
                                                                                                                                    'mean_glo': 0.06700507891545199,
                                                                                                                                    'rms': 0.26778676710776905,
                                                                                                                                    'rms_glo': 0.23930984924795645,
                                                                                                                                    'rmsc': 0.4137492372138033,
                                                                                                                                    'rmsc_glo': 0.5842094699319396,
                                                                                                                                    'stdv_pc': 0.6035353060687179,
                                                                                                                                    'stdv_pc_ratio_to_obs': 1.030786677273019},
                                                                                                                            'eof1': {'bias': -1.4367424498343084e-05,
                                                                                                                                     'bias_glo': -0.02746845657452445,
                                                                                                                                     'cor': 0.863038999139831,
                                                                                                                                     'cor_glo': 0.7993522756473306,
                                                                                                                                     'frac': 0.24125249041834224,
                                                                                                                                     'mean': -4.2183017206507925e-17,
                                                                                                                                     'mean_glo': 0.0514666796676276,
                                                                                                                                     'rms': 0.3407727788416275,
                                                                                                                                     'rms_glo': 0.2663969846780735,
                                                                                                                                     'rmsc': 0.5233755786411,
                                                                                                                                     'rmsc_glo': 0.6334788516875777,
                                                                                                                                     'stdv_pc': 0.6757943152944627,
                                                                                                                                     'stdv_pc_ratio_to_obs': 1.1541988841048183,
                                                                                                                                     'tcor_cbf_vs_eof_pc': 0.9646341133122582},
                                                                                                                            'eof2': {'bias': -8.221654153882095e-05,
                                                                                                                                     'bias_glo': 0.025522425936421705,
                                                                                                                                     'cor': 0.2825516514943843,
                                                                                                                                     'cor_glo': 0.04574680614661757,
                                                                                                                                     'frac': 0.11428226775931975,
                                                                                                                                     'mean': 1.0545754301626981e-17,
                                                                                                                                     'mean_glo': 0.10445755744175858,
                                                                                                                                     'rms': 0.6360374538538581,
                                                                                                                                     'rms_glo': 0.5081190678469297,
                                                                                                                                     'rmsc': 1.1978717275812427,
                                                                                                                                     'rmsc_glo': 1.381487020272478,
                                                                                                                                     'stdv_pc': 0.46512325797798,
                                                                                                                                     'stdv_pc_ratio_to_obs': 0.7943907386901644,
                                                                                                                                     'tcor_cbf_vs_eof_pc': 0.21718869839509472},
                                                                                                                            'eof3': {'bias': -0.00019130990725199165,
                                                                                                                                     'bias_glo': -0.09052156674127956,
                                                                                                                                     'cor': 0.13603492398830216,
                                                                                                                                     'cor_glo': 0.2300420663782458,
                                                                                                                                     'frac': 0.06963820922799481,
                                                                                                                                     'mean': 2.4716611644438237e-18,
                                                                                                                                     'mean_glo': -0.011586431137262748,
                                                                                                                                     'rms': 0.6450099313220621,
                                                                                                                                     'rms_glo': 0.4318088967820696,
                                                                                                                                     'rmsc': 1.3145075776652535,
                                                                                                                                     'rmsc_glo': 1.2409334739140978,
                                                                                                                                     'stdv_pc': 0.36308008537130454,
                                                                                                                                     'stdv_pc_ratio_to_obs': 0.6201097284957816,
                                                                                                                                     'tcor_cbf_vs_eof_pc': 0.08152930748454858},
                                                                                                                            'period': '1900-2005'},
                                                                                                                    'MAM': {'best_matching_model_eofs__cor': 1,
                                                                                                                            'best_matching_model_eofs__rms': 1,
                                                                                                                            'best_matching_model_eofs__tcor_cbf_vs_eof_pc': 1,
                                                                                                                            'cbf': {'bias': -0.00031940295818288177,
                                                                                                                                    'bias_glo': -0.1651006646565651,
                                                                                                                                    'cor': 0.9774856888147454,
                                                                                                                                    'cor_glo': 0.8774112858550807,
                                                                                                                                    'frac': 0.3570214359305979,
                                                                                                                                    'frac_cbf_regrid': 0.35914342340020344,
                                                                                                                                    'mean': 0.0,
                                                                                                                                    'mean_glo': -0.06167783165206953,
                                                                                                                                    'rms': 0.4925137653070402,
                                                                                                                                    'rms_glo': 0.4642121820580232,
                                                                                                                                    'rmsc': 0.21219948675500394,
                                                                                                                                    'rmsc_glo': 0.4951539391283945,
                                                                                                                                    'stdv_pc': 1.3678450405200144,
                                                                                                                                    'stdv_pc_ratio_to_obs': 1.4048601613432035},
                                                                                                                            'eof1': {'bias': -0.000329399504762545,
                                                                                                                                     'bias_glo': -0.16937552471989212,
                                                                                                                                     'cor': 0.9756681908381823,
                                                                                                                                     'cor_glo': 0.8742614230080374,
                                                                                                                                     'frac': 0.357641899475538,
                                                                                                                                     'mean': 0.0,
                                                                                                                                     'mean_glo': -0.06595269169237986,
                                                                                                                                     'rms': 0.4986199113306673,
                                                                                                                                     'rms_glo': 0.4704528068492172,
                                                                                                                                     'rmsc': 0.2205983168829882,
                                                                                                                                     'rmsc_glo': 0.5014749849475346,
                                                                                                                                     'stdv_pc': 1.4031201877437816,
                                                                                                                                     'stdv_pc_ratio_to_obs': 1.4410898858749726,
                                                                                                                                     'tcor_cbf_vs_eof_pc': 0.9990119558587542},
                                                                                                                            'eof2': {'bias': 0.00019857699336439826,
                                                                                                                                     'bias_glo': 0.14142985705202804,
                                                                                                                                     'cor': 0.02986440836343593,
                                                                                                                                     'cor_glo': 0.0808996345384406,
                                                                                                                                     'frac': 0.11219073049661255,
                                                                                                                                     'mean': 1.0545754301626981e-17,
                                                                                                                                     'mean_glo': 0.24485268158236087,
                                                                                                                                     'rms': 1.231821686252131,
                                                                                                                                     'rms_glo': 0.7659918522615498,
                                                                                                                                     'rmsc': 1.3929361730042142,
                                                                                                                                     'rmsc_glo': 1.3558026229158286,
                                                                                                                                     'stdv_pc': 0.7858672033303219,
                                                                                                                                     'stdv_pc_ratio_to_obs': 0.8071334788370815,
                                                                                                                                     'tcor_cbf_vs_eof_pc': 0.0171218960687936},
                                                                                                                            'eof3': {'bias': -9.382520655447603e-05,
                                                                                                                                     'bias_glo': -0.19074538473960195,
                                                                                                                                     'cor': 0.0037967905274475145,
                                                                                                                                     'cor_glo': -0.021026237863009684,
                                                                                                                                     'frac': 0.10054756157658952,
                                                                                                                                     'mean': 0.0,
                                                                                                                                     'mean_glo': -0.08732255571869606,
                                                                                                                                     'rms': 1.2220998812358461,
                                                                                                                                     'rms_glo': 0.767431698833648,
                                                                                                                                     'rmsc': 1.4115262891387963,
                                                                                                                                     'rmsc_glo': 1.429004033966841,
                                                                                                                                     'stdv_pc': 0.7439717556628787,
                                                                                                                                     'stdv_pc_ratio_to_obs': 0.7641043025590039,
                                                                                                                                     'tcor_cbf_vs_eof_pc': 0.0020604515018157465},
                                                                                                                            'period': '1900-2005'},
                                                                                                                    'SON': {'best_matching_model_eofs__cor': 1,
                                                                                                                            'best_matching_model_eofs__rms': 3,
                                                                                                                            'best_matching_model_eofs__tcor_cbf_vs_eof_pc': 1,
                                                                                                                            'cbf': {'bias': -0.00012106847223248311,
                                                                                                                                    'bias_glo': 0.0007461729360867973,
                                                                                                                                    'cor': 0.8507769930862997,
                                                                                                                                    'cor_glo': 0.7450155910215629,
                                                                                                                                    'frac': 0.15046702355896427,
                                                                                                                                    'frac_cbf_regrid': 0.15148847763263365,
                                                                                                                                    'mean': -2.1091508603253963e-17,
                                                                                                                                    'mean_glo': -0.004234128256564582,
                                                                                                                                    'rms': 0.4063835213296174,
                                                                                                                                    'rms_glo': 0.3329687048756969,
                                                                                                                                    'rmsc': 0.5463021381030276,
                                                                                                                                    'rmsc_glo': 0.7141209985433621,
                                                                                                                                    'stdv_pc': 0.6383135519894843,
                                                                                                                                    'stdv_pc_ratio_to_obs': 0.8664208523144604},
                                                                                                                            'eof1': {'bias': -0.00018870267258503255,
                                                                                                                                     'bias_glo': 0.04216814896023905,
                                                                                                                                     'cor': 0.546226500166788,
                                                                                                                                     'cor_glo': 0.48118972888074113,
                                                                                                                                     'frac': 0.1960149692154388,
                                                                                                                                     'mean': 5.272877150813491e-18,
                                                                                                                                     'mean_glo': 0.037187848758052255,
                                                                                                                                     'rms': 0.7660798412246915,
                                                                                                                                     'rms_glo': 0.5030253650914729,
                                                                                                                                     'rmsc': 0.9526526049751044,
                                                                                                                                     'rmsc_glo': 1.0186366055620277,
                                                                                                                                     'stdv_pc': 0.8578173149716612,
                                                                                                                                     'stdv_pc_ratio_to_obs': 1.1643663319560742,
                                                                                                                                     'tcor_cbf_vs_eof_pc': 0.7328095505165224},
                                                                                                                            'eof2': {'bias': -5.731684037825762e-07,
                                                                                                                                     'bias_glo': 0.14969538884878342,
                                                                                                                                     'cor': 0.0922617250717498,
                                                                                                                                     'cor_glo': 0.08556966848817496,
                                                                                                                                     'frac': 0.13866446250111641,
                                                                                                                                     'mean': -2.1091508603253963e-17,
                                                                                                                                     'mean_glo': 0.14471508624053203,
                                                                                                                                     'rms': 0.9815010679082591,
                                                                                                                                     'rms_glo': 0.6388495873376692,
                                                                                                                                     'rmsc': 1.347396231157863,
                                                                                                                                     'rmsc_glo': 1.352353738259557,
                                                                                                                                     'stdv_pc': 0.721494085224891,
                                                                                                                                     'stdv_pc_ratio_to_obs': 0.9793267247922857,
                                                                                                                                     'tcor_cbf_vs_eof_pc': 0.10407533938272269},
                                                                                                                            'eof3': {'bias': 4.27587340491621e-05,
                                                                                                                                     'bias_glo': -0.09495640132380007,
                                                                                                                                     'cor': 0.44721256096090695,
                                                                                                                                     'cor_glo': 0.4103311736141805,
                                                                                                                                     'frac': 0.1309478282770949,
                                                                                                                                     'mean': -2.1091508603253963e-17,
                                                                                                                                     'mean_glo': 0.09993670484771466,
                                                                                                                                     'rms': 0.7557843290186222,
                                                                                                                                     'rms_glo': 0.502027606419784,
                                                                                                                                     'rmsc': 1.051463205217369,
                                                                                                                                     'rmsc_glo': 1.0859731351634165,
                                                                                                                                     'stdv_pc': 0.7011312734622515,
                                                                                                                                     'stdv_pc_ratio_to_obs': 0.9516870723551466,
                                                                                                                                     'tcor_cbf_vs_eof_pc': -0.4901551376111575},
                                                                                                                            'period': '1900-2005'},
                                                                                                                    'target_model_eofs': 1}}},
                                                                          'r4i1p1f1': {'defaultReference': {'NAM': {'DJF': {'best_matching_model_eofs__cor': 1,
                                                                                                                            'best_matching_model_eofs__rms': 1,
                                                                                                                            'best_matching_model_eofs__tcor_cbf_vs_eof_pc': 1,
                                                                                                                            'cbf': {'bias': -0.000526339985482531,
                                                                                                                                    'bias_glo': -0.175103944200367,
                                                                                                                                    'cor': 0.966757641864969,
                                                                                                                                    'cor_glo': 0.9476841099438388,
                                                                                                                                    'frac': 0.34190228062142897,
                                                                                                                                    'frac_cbf_regrid': 0.34368189725331405,
                                                                                                                                    'mean': 0.0,
                                                                                                                                    'mean_glo': -0.05680430868618369,
                                                                                                                                    'rms': 0.44843860746988345,
                                                                                                                                    'rms_glo': 0.36701567416041947,
                                                                                                                                    'rmsc': 0.25784629797314335,
                                                                                                                                    'rmsc_glo': 0.3234683561971748,
                                                                                                                                    'stdv_pc': 1.6422783234245404,
                                                                                                                                    'stdv_pc_ratio_to_obs': 1.0728245822981493},
                                                                                                                            'eof1': {'bias': -0.0005693428092685652,
                                                                                                                                     'bias_glo': -0.2151314566014932,
                                                                                                                                     'cor': 0.956571878962936,
                                                                                                                                     'cor_glo': 0.9327532744307374,
                                                                                                                                     'frac': 0.3450839778043106,
                                                                                                                                     'mean': 8.436603441301585e-17,
                                                                                                                                     'mean_glo': -0.09683182105452126,
                                                                                                                                     'rms': 0.5080708855244035,
                                                                                                                                     'rms_glo': 0.4241786081808626,
                                                                                                                                     'rmsc': 0.294713833722975,
                                                                                                                                     'rmsc_glo': 0.36673349243948394,
                                                                                                                                     'stdv_pc': 1.7092819358011337,
                                                                                                                                     'stdv_pc_ratio_to_obs': 1.1165949477928923,
                                                                                                                                     'tcor_cbf_vs_eof_pc': 0.9940720127158743},
                                                                                                                            'eof2': {'bias': 0.0002564812251372543,
                                                                                                                                     'bias_glo': -0.029191307696882454,
                                                                                                                                     'cor': 0.11397887169845891,
                                                                                                                                     'cor_glo': 0.10010551371406798,
                                                                                                                                     'frac': 0.10458112588498227,
                                                                                                                                     'mean': -2.1091508603253963e-17,
                                                                                                                                     'mean_glo': 0.08910831825480217,
                                                                                                                                     'rms': 1.7022707958730214,
                                                                                                                                     'rms_glo': 1.004946746292279,
                                                                                                                                     'rmsc': 1.331180788868723,
                                                                                                                                     'rmsc_glo': 1.3415621450089714,
                                                                                                                                     'stdv_pc': 0.9409747323317412,
                                                                                                                                     'stdv_pc_ratio_to_obs': 0.6146953349916134,
                                                                                                                                     'tcor_cbf_vs_eof_pc': 0.06483393183565407},
                                                                                                                            'eof3': {'bias': 8.903830010950488e-05,
                                                                                                                                     'bias_glo': 0.3541686719770276,
                                                                                                                                     'cor': 0.09877251232227459,
                                                                                                                                     'cor_glo': 0.09242792580524006,
                                                                                                                                     'frac': 0.09058855052948532,
                                                                                                                                     'mean': -1.687320688260317e-16,
                                                                                                                                     'mean_glo': 0.47246829756580144,
                                                                                                                                     'rms': 1.6862896423435156,
                                                                                                                                     'rms_glo': 1.1089388526967545,
                                                                                                                                     'rmsc': 1.3425553977762463,
                                                                                                                                     'rmsc_glo': 1.347272862469814,
                                                                                                                                     'stdv_pc': 0.8757657580225597,
                                                                                                                                     'stdv_pc_ratio_to_obs': 0.5720973236633875,
                                                                                                                                     'tcor_cbf_vs_eof_pc': 0.05224215621183032},
                                                                                                                            'period': '1900-2005'},
                                                                                                                    'JJA': {'best_matching_model_eofs__cor': 1,
                                                                                                                            'best_matching_model_eofs__rms': 1,
                                                                                                                            'best_matching_model_eofs__tcor_cbf_vs_eof_pc': 1,
                                                                                                                            'cbf': {'bias': -0.00014368353185127228,
                                                                                                                                    'bias_glo': -0.03919447975141896,
                                                                                                                                    'cor': 0.9142103226747272,
                                                                                                                                    'cor_glo': 0.7524459619534625,
                                                                                                                                    'frac': 0.1557761731479799,
                                                                                                                                    'frac_cbf_regrid': 0.15721038743535498,
                                                                                                                                    'mean': 2.6364385754067453e-17,
                                                                                                                                    'mean_glo': 0.039740656561976895,
                                                                                                                                    'rms': 0.23756797898875823,
                                                                                                                                    'rms_glo': 0.29019461749886716,
                                                                                                                                    'rmsc': 0.41422137269367815,
                                                                                                                                    'rmsc_glo': 0.7036391562508147,
                                                                                                                                    'stdv_pc': 0.47851750151858913,
                                                                                                                                    'stdv_pc_ratio_to_obs': 0.8172669609342995},
                                                                                                                            'eof1': {'bias': -8.086095531453018e-05,
                                                                                                                                     'bias_glo': -0.029971466918975544,
                                                                                                                                     'cor': 0.7939370914255569,
                                                                                                                                     'cor_glo': 0.6923440234549324,
                                                                                                                                     'frac': 0.16887525715302149,
                                                                                                                                     'mean': 1.0545754301626981e-17,
                                                                                                                                     'mean_glo': 0.04896367075847677,
                                                                                                                                     'rms': 0.3648992033810888,
                                                                                                                                     'rms_glo': 0.33752151509690187,
                                                                                                                                     'rmsc': 0.6419702687561061,
                                                                                                                                     'rmsc_glo': 0.7844182170318914,
                                                                                                                                     'stdv_pc': 0.5460370932733393,
                                                                                                                                     'stdv_pc_ratio_to_obs': 0.9325846481282037,
                                                                                                                                     'tcor_cbf_vs_eof_pc': 0.9042419374800785},
                                                                                                                            'eof2': {'bias': -0.00017879525259527546,
                                                                                                                                     'bias_glo': -0.08922508685359559,
                                                                                                                                     'cor': 0.36962806836627876,
                                                                                                                                     'cor_glo': 0.15805357665004627,
                                                                                                                                     'frac': 0.11474140901009798,
                                                                                                                                     'mean': 2.1091508603253963e-17,
                                                                                                                                     'mean_glo': -0.010289955656122658,
                                                                                                                                     'rms': 0.591612841998544,
                                                                                                                                     'rms_glo': 0.47406301935252215,
                                                                                                                                     'rmsc': 1.1228285306559183,
                                                                                                                                     'rmsc_glo': 1.2976489539894995,
                                                                                                                                     'stdv_pc': 0.4500898546748058,
                                                                                                                                     'stdv_pc_ratio_to_obs': 0.7687149717828018,
                                                                                                                                     'tcor_cbf_vs_eof_pc': 0.34670991312667815},
                                                                                                                            'eof3': {'bias': 0.00019276586538379873,
                                                                                                                                     'bias_glo': -0.09833204631796308,
                                                                                                                                     'cor': 0.038759532852370215,
                                                                                                                                     'cor_glo': -0.060750058711006645,
                                                                                                                                     'frac': 0.08609461473750075,
                                                                                                                                     'mean': 5.272877150813491e-18,
                                                                                                                                     'mean_glo': 0.019396913121906903,
                                                                                                                                     'rms': 0.6899980894985666,
                                                                                                                                     'rms_glo': 0.5098473493819488,
                                                                                                                                     'rmsc': 1.386535596349448,
                                                                                                                                     'rmsc_glo': 1.4565370060599587,
                                                                                                                                     'stdv_pc': 0.38987656216765787,
                                                                                                                                     'stdv_pc_ratio_to_obs': 0.6658758187340744,
                                                                                                                                     'tcor_cbf_vs_eof_pc': -0.031465651528462826},
                                                                                                                            'period': '1900-2005'},
                                                                                                                    'MAM': {'best_matching_model_eofs__cor': 1,
                                                                                                                            'best_matching_model_eofs__rms': 1,
                                                                                                                            'best_matching_model_eofs__tcor_cbf_vs_eof_pc': 1,
                                                                                                                            'cbf': {'bias': -0.0004230170862454794,
                                                                                                                                    'bias_glo': -0.14032558092807562,
                                                                                                                                    'cor': 0.9617080487566775,
                                                                                                                                    'cor_glo': 0.866934564098922,
                                                                                                                                    'frac': 0.3551272951631351,
                                                                                                                                    'frac_cbf_regrid': 0.357274735082726,
                                                                                                                                    'mean': -2.1091508603253963e-17,
                                                                                                                                    'mean_glo': -0.03690274885021987,
                                                                                                                                    'rms': 0.5049018506895919,
                                                                                                                                    'rms_glo': 0.45092021690381556,
                                                                                                                                    'rmsc': 0.2767379742731191,
                                                                                                                                    'rmsc_glo': 0.5158787312272648,
                                                                                                                                    'stdv_pc': 1.312720063795069,
                                                                                                                                    'stdv_pc_ratio_to_obs': 1.348243453016063},
                                                                                                                            'eof1': {'bias': -0.0004320663725045849,
                                                                                                                                     'bias_glo': -0.1417030028763922,
                                                                                                                                     'cor': 0.9520872916393388,
                                                                                                                                     'cor_glo': 0.8547182488329456,
                                                                                                                                     'frac': 0.3582448494535261,
                                                                                                                                     'mean': -4.2183017206507925e-17,
                                                                                                                                     'mean_glo': -0.03828017072894302,
                                                                                                                                     'rms': 0.534605645411619,
                                                                                                                                     'rms_glo': 0.46737003248413206,
                                                                                                                                     'rmsc': 0.3095568135014377,
                                                                                                                                     'rmsc_glo': 0.5390394253332377,
                                                                                                                                     'stdv_pc': 1.3733282320965974,
                                                                                                                                     'stdv_pc_ratio_to_obs': 1.4104917330306115,
                                                                                                                                     'tcor_cbf_vs_eof_pc': 0.9943585032305652},
                                                                                                                            'eof2': {'bias': 3.6478210436017826e-05,
                                                                                                                                     'bias_glo': -0.021290477368727148,
                                                                                                                                     'cor': 0.13387574915903144,
                                                                                                                                     'cor_glo': 0.1708914840285708,
                                                                                                                                     'frac': 0.10865652488034179,
                                                                                                                                     'mean': 5.272877150813491e-18,
                                                                                                                                     'mean_glo': 0.0821323482561265,
                                                                                                                                     'rms': 1.149308389395165,
                                                                                                                                     'rms_glo': 0.6786779876599197,
                                                                                                                                     'rmsc': 1.3161491132835854,
                                                                                                                                     'rmsc_glo': 1.2877177616139617,
                                                                                                                                     'stdv_pc': 0.756331652575674,
                                                                                                                                     'stdv_pc_ratio_to_obs': 0.7767986694329692,
                                                                                                                                     'tcor_cbf_vs_eof_pc': 0.07697404346958577},
                                                                                                                            'eof3': {'bias': -0.000184837295485231,
                                                                                                                                     'bias_glo': -0.2709131446752753,
                                                                                                                                     'cor': 0.036669429462137484,
                                                                                                                                     'cor_glo': 0.015472446766253275,
                                                                                                                                     'frac': 0.07469811275564021,
                                                                                                                                     'mean': -3.6910140055694435e-17,
                                                                                                                                     'mean_glo': 0.16749031576637377,
                                                                                                                                     'rms': 1.1378946110995136,
                                                                                                                                     'rms_glo': 0.7538784199693495,
                                                                                                                                     'rmsc': 1.388042173136865,
                                                                                                                                     'rmsc_glo': 1.4032302584687468,
                                                                                                                                     'stdv_pc': 0.6271034431378998,
                                                                                                                                     'stdv_pc_ratio_to_obs': 0.644073428062188,
                                                                                                                                     'tcor_cbf_vs_eof_pc': -0.017477888985725665},
                                                                                                                            'period': '1900-2005'},
                                                                                                                    'SON': {'best_matching_model_eofs__cor': 1,
                                                                                                                            'best_matching_model_eofs__rms': 2,
                                                                                                                            'best_matching_model_eofs__tcor_cbf_vs_eof_pc': 1,
                                                                                                                            'cbf': {'bias': -0.00011553353987358679,
                                                                                                                                    'bias_glo': 0.021550183481126688,
                                                                                                                                    'cor': 0.915139427165921,
                                                                                                                                    'cor_glo': 0.8237022276069665,
                                                                                                                                    'frac': 0.19965774281660886,
                                                                                                                                    'frac_cbf_regrid': 0.20099318949239406,
                                                                                                                                    'mean': -6.327452580976189e-17,
                                                                                                                                    'mean_glo': 0.016569880968223254,
                                                                                                                                    'rms': 0.3677864115930721,
                                                                                                                                    'rms_glo': 0.30346426951428146,
                                                                                                                                    'rmsc': 0.41197226179381036,
                                                                                                                                    'rmsc_glo': 0.5937975779457155,
                                                                                                                                    'stdv_pc': 0.8155101389394191,
                                                                                                                                    'stdv_pc_ratio_to_obs': 1.106940292037879},
                                                                                                                            'eof1': {'bias': -0.00018616587524510452,
                                                                                                                                     'bias_glo': 0.06339952117129666,
                                                                                                                                     'cor': 0.6540596465394513,
                                                                                                                                     'cor_glo': 0.5163292622084521,
                                                                                                                                     'frac': 0.24022031310745393,
                                                                                                                                     'mean': 5.272877150813491e-18,
                                                                                                                                     'mean_glo': 0.058419219085291005,
                                                                                                                                     'rms': 0.7458152243580904,
                                                                                                                                     'rms_glo': 0.5329317994614388,
                                                                                                                                     'rmsc': 0.8317936851438175,
                                                                                                                                     'rmsc_glo': 0.9835352016804253,
                                                                                                                                     'stdv_pc': 0.9790230470850385,
                                                                                                                                     'stdv_pc_ratio_to_obs': 1.3288860627306458,
                                                                                                                                     'tcor_cbf_vs_eof_pc': 0.7839883255056069},
                                                                                                                            'eof2': {'bias': 5.960310051402359e-05,
                                                                                                                                     'bias_glo': -0.060745777850201535,
                                                                                                                                     'cor': 0.6043506064959814,
                                                                                                                                     'cor_glo': 0.6066322960176236,
                                                                                                                                     'frac': 0.1488689057219557,
                                                                                                                                     'mean': 0.0,
                                                                                                                                     'mean_glo': 0.06572608191507799,
                                                                                                                                     'rms': 0.6703929183832618,
                                                                                                                                     'rms_glo': 0.4318300274950295,
                                                                                                                                     'rmsc': 0.8895497511599385,
                                                                                                                                     'rmsc_glo': 0.8869810668411684,
                                                                                                                                     'stdv_pc': 0.7707083234530492,
                                                                                                                                     'stdv_pc_ratio_to_obs': 1.0461281299931424,
                                                                                                                                     'tcor_cbf_vs_eof_pc': -0.5699766622126486},
                                                                                                                            'eof3': {'bias': 8.992021521471896e-05,
                                                                                                                                     'bias_glo': -0.036331885684729115,
                                                                                                                                     'cor': 0.20789556406504725,
                                                                                                                                     'cor_glo': 0.17504550797329088,
                                                                                                                                     'frac': 0.08072957107244219,
                                                                                                                                     'mean': 1.0545754301626981e-17,
                                                                                                                                     'mean_glo': 0.04131218920215151,
                                                                                                                                     'rms': 0.8304864209694583,
                                                                                                                                     'rms_glo': 0.5668136165270905,
                                                                                                                                     'rmsc': 1.2586535718879648,
                                                                                                                                     'rmsc_glo': 1.2844878283884975,
                                                                                                                                     'stdv_pc': 0.5675503211626599,
                                                                                                                                     'stdv_pc_ratio_to_obs': 0.7703697210570872,
                                                                                                                                     'tcor_cbf_vs_eof_pc': -0.14427871331011888},
                                                                                                                            'period': '1900-2005'},
                                                                                                                    'target_model_eofs': 1}}},
                                                                          'r5i1p1f1': {'defaultReference': {'NAM': {'DJF': {'best_matching_model_eofs__cor': 1,
                                                                                                                            'best_matching_model_eofs__rms': 1,
                                                                                                                            'best_matching_model_eofs__tcor_cbf_vs_eof_pc': 1,
                                                                                                                            'cbf': {'bias': -0.00046022648210048534,
                                                                                                                                    'bias_glo': -0.09143014020304607,
                                                                                                                                    'cor': 0.9636905225369599,
                                                                                                                                    'cor_glo': 0.9444843727983666,
                                                                                                                                    'frac': 0.33077120396356136,
                                                                                                                                    'frac_cbf_regrid': 0.3324778887256462,
                                                                                                                                    'mean': 0.0,
                                                                                                                                    'mean_glo': 0.0268694952124612,
                                                                                                                                    'rms': 0.4509100258774445,
                                                                                                                                    'rms_glo': 0.34158208349689007,
                                                                                                                                    'rmsc': 0.26947904744024825,
                                                                                                                                    'rmsc_glo': 0.33321353267041803,
                                                                                                                                    'stdv_pc': 1.6051021545132973,
                                                                                                                                    'stdv_pc_ratio_to_obs': 1.0485391080793316},
                                                                                                                            'eof1': {'bias': -0.0005205094654255605,
                                                                                                                                     'bias_glo': -0.13292644798805442,
                                                                                                                                     'cor': 0.9376251160383258,
                                                                                                                                     'cor_glo': 0.9152825219280779,
                                                                                                                                     'frac': 0.33826805883543015,
                                                                                                                                     'mean': 0.0,
                                                                                                                                     'mean_glo': -0.014626811975094979,
                                                                                                                                     'rms': 0.5879429030761747,
                                                                                                                                     'rms_glo': 0.4276029457932798,
                                                                                                                                     'rmsc': 0.3531993327362359,
                                                                                                                                     'rmsc_glo': 0.41162479174551236,
                                                                                                                                     'stdv_pc': 1.686738685274515,
                                                                                                                                     'stdv_pc_ratio_to_obs': 1.101868483353277,
                                                                                                                                     'tcor_cbf_vs_eof_pc': 0.9839858951275281},
                                                                                                                            'eof2': {'bias': 0.00029329225842026426,
                                                                                                                                     'bias_glo': 0.3404993299273795,
                                                                                                                                     'cor': 0.1860256824613557,
                                                                                                                                     'cor_glo': 0.17895407780163425,
                                                                                                                                     'frac': 0.11137098017849006,
                                                                                                                                     'mean': -2.214608403341666e-16,
                                                                                                                                     'mean_glo': 0.45879895513025165,
                                                                                                                                     'rms': 1.651093035515132,
                                                                                                                                     'rms_glo': 1.074883388292682,
                                                                                                                                     'rmsc': 1.2759109283225556,
                                                                                                                                     'rmsc_glo': 1.2814413351300087,
                                                                                                                                     'stdv_pc': 0.9678394735277387,
                                                                                                                                     'stdv_pc_ratio_to_obs': 0.6322448297033533,
                                                                                                                                     'tcor_cbf_vs_eof_pc': 0.1114857196446863},
                                                                                                                            'eof3': {'bias': 3.6410564815698334e-05,
                                                                                                                                     'bias_glo': -0.2508783483001241,
                                                                                                                                     'cor': 0.2029836349772244,
                                                                                                                                     'cor_glo': 0.17507738947586562,
                                                                                                                                     'frac': 0.10789250562392314,
                                                                                                                                     'mean': 5.2728771508134906e-17,
                                                                                                                                     'mean_glo': -0.13257872026466586,
                                                                                                                                     'rms': 1.629869371095663,
                                                                                                                                     'rms_glo': 1.0003678624875123,
                                                                                                                                     'rmsc': 1.2625500929771485,
                                                                                                                                     'rmsc_glo': 1.2844630225163574,
                                                                                                                                     'stdv_pc': 0.9526052034744806,
                                                                                                                                     'stdv_pc_ratio_to_obs': 0.6222929846516428,
                                                                                                                                     'tcor_cbf_vs_eof_pc': 0.1197868990364356},
                                                                                                                            'period': '1900-2005'},
                                                                                                                    'JJA': {'best_matching_model_eofs__cor': 1,
                                                                                                                            'best_matching_model_eofs__rms': 1,
                                                                                                                            'best_matching_model_eofs__tcor_cbf_vs_eof_pc': 1,
                                                                                                                            'cbf': {'bias': -9.204075519278588e-05,
                                                                                                                                    'bias_glo': 0.014896336301130339,
                                                                                                                                    'cor': 0.9161521721142569,
                                                                                                                                    'cor_glo': 0.7182232637774709,
                                                                                                                                    'frac': 0.165610215364965,
                                                                                                                                    'frac_cbf_regrid': 0.1671069174741353,
                                                                                                                                    'mean': -2.6364385754067453e-17,
                                                                                                                                    'mean_glo': 0.09383147120187539,
                                                                                                                                    'rms': 0.23522945207157575,
                                                                                                                                    'rms_glo': 0.2986403654972446,
                                                                                                                                    'rmsc': 0.40950660223098045,
                                                                                                                                    'rmsc_glo': 0.7507019828787581,
                                                                                                                                    'stdv_pc': 0.5060233067733138,
                                                                                                                                    'stdv_pc_ratio_to_obs': 0.8642445235046128},
                                                                                                                            'eof1': {'bias': -3.430641787672342e-06,
                                                                                                                                     'bias_glo': -0.03648744174058796,
                                                                                                                                     'cor': 0.7245709836896267,
                                                                                                                                     'cor_glo': 0.6212495244786909,
                                                                                                                                     'frac': 0.1869834465799262,
                                                                                                                                     'mean': 0.0,
                                                                                                                                     'mean_glo': 0.042447693751732775,
                                                                                                                                     'rms': 0.4350260677783214,
                                                                                                                                     'rms_glo': 0.3538429409701696,
                                                                                                                                     'rmsc': 0.7421980947056049,
                                                                                                                                     'rmsc_glo': 0.8703452935893891,
                                                                                                                                     'stdv_pc': 0.5880036422086758,
                                                                                                                                     'stdv_pc_ratio_to_obs': 1.0042599239549765,
                                                                                                                                     'tcor_cbf_vs_eof_pc': 0.840163655938942},
                                                                                                                            'eof2': {'bias': -0.0001470154419837025,
                                                                                                                                     'bias_glo': 0.048345801877290054,
                                                                                                                                     'cor': 0.5590802140345644,
                                                                                                                                     'cor_glo': 0.33400958674218256,
                                                                                                                                     'frac': 0.12051351116303731,
                                                                                                                                     'mean': 1.0545754301626981e-17,
                                                                                                                                     'mean_glo': 0.1272809343927311,
                                                                                                                                     'rms': 0.5062204138798241,
                                                                                                                                     'rms_glo': 0.4339076867110102,
                                                                                                                                     'rmsc': 0.9390631411214093,
                                                                                                                                     'rmsc_glo': 1.1541147245580223,
                                                                                                                                     'stdv_pc': 0.4720590257702579,
                                                                                                                                     'stdv_pc_ratio_to_obs': 0.8062364368043445,
                                                                                                                                     'tcor_cbf_vs_eof_pc': 0.5202209132448905},
                                                                                                                            'eof3': {'bias': -8.646355737403716e-05,
                                                                                                                                     'bias_glo': -0.04715822488903301,
                                                                                                                                     'cor': 0.041093716827485964,
                                                                                                                                     'cor_glo': -0.0075719625875313905,
                                                                                                                                     'frac': 0.0818851309409722,
                                                                                                                                     'mean': 2.6364385754067453e-18,
                                                                                                                                     'mean_glo': 0.03177690946554793,
                                                                                                                                     'rms': 0.6889662004476766,
                                                                                                                                     'rms_glo': 0.4800196682683459,
                                                                                                                                     'rmsc': 1.384851096613633,
                                                                                                                                     'rmsc_glo': 1.4195576851123342,
                                                                                                                                     'stdv_pc': 0.3891176762910876,
                                                                                                                                     'stdv_pc_ratio_to_obs': 0.6645797065708363,
                                                                                                                                     'tcor_cbf_vs_eof_pc': 0.03150695087897059},
                                                                                                                            'period': '1900-2005'},
                                                                                                                    'MAM': {'best_matching_model_eofs__cor': 1,
                                                                                                                            'best_matching_model_eofs__rms': 1,
                                                                                                                            'best_matching_model_eofs__tcor_cbf_vs_eof_pc': 1,
                                                                                                                            'cbf': {'bias': -0.00037257243054747625,
                                                                                                                                    'bias_glo': -0.14607629080657508,
                                                                                                                                    'cor': 0.9654962738743188,
                                                                                                                                    'cor_glo': 0.9131410891790228,
                                                                                                                                    'frac': 0.35994461446789144,
                                                                                                                                    'frac_cbf_regrid': 0.3621450891011076,
                                                                                                                                    'mean': 3.1637262904880944e-17,
                                                                                                                                    'mean_glo': -0.04265345968491084,
                                                                                                                                    'rms': 0.5225728914239407,
                                                                                                                                    'rms_glo': 0.3963154864522389,
                                                                                                                                    'rmsc': 0.2626926922890355,
                                                                                                                                    'rmsc_glo': 0.41679470724146794,
                                                                                                                                    'stdv_pc': 1.3487934935253398,
                                                                                                                                    'stdv_pc_ratio_to_obs': 1.3852930622991473},
                                                                                                                            'eof1': {'bias': -0.00037930817268819016,
                                                                                                                                     'bias_glo': -0.1473009934654535,
                                                                                                                                     'cor': 0.9577309833610474,
                                                                                                                                     'cor_glo': 0.9050350538958367,
                                                                                                                                     'frac': 0.3625799757543611,
                                                                                                                                     'mean': 2.1091508603253963e-17,
                                                                                                                                     'mean_glo': -0.04387816246943568,
                                                                                                                                     'rms': 0.5467989480026024,
                                                                                                                                     'rms_glo': 0.4081518814209976,
                                                                                                                                     'rmsc': 0.290754245766781,
                                                                                                                                     'rmsc_glo': 0.4358094655610219,
                                                                                                                                     'stdv_pc': 1.4045596023440248,
                                                                                                                                     'stdv_pc_ratio_to_obs': 1.4425682523328929,
                                                                                                                                     'tcor_cbf_vs_eof_pc': 0.9955923468795757},
                                                                                                                            'eof2': {'bias': 9.386315213321578e-06,
                                                                                                                                     'bias_glo': -0.1536470229949941,
                                                                                                                                     'cor': 0.04933936891086028,
                                                                                                                                     'cor_glo': 0.05055902389707268,
                                                                                                                                     'frac': 0.12165156238458107,
                                                                                                                                     'mean': -2.1091508603253963e-17,
                                                                                                                                     'mean_glo': 0.05022419745744134,
                                                                                                                                     'rms': 1.2364085431664222,
                                                                                                                                     'rms_glo': 0.7562101937038813,
                                                                                                                                     'rmsc': 1.3788840483072977,
                                                                                                                                     'rmsc_glo': 1.37799928542631,
                                                                                                                                     'stdv_pc': 0.813574093317545,
                                                                                                                                     'stdv_pc_ratio_to_obs': 0.8355901422636425,
                                                                                                                                     'tcor_cbf_vs_eof_pc': -0.029688403334269926},
                                                                                                                            'eof3': {'bias': 0.000130554343232087,
                                                                                                                                     'bias_glo': 0.06739488254725189,
                                                                                                                                     'cor': 0.0639066736445357,
                                                                                                                                     'cor_glo': 0.11396437763842827,
                                                                                                                                     'frac': 0.07674329616569828,
                                                                                                                                     'mean': 3.1637262904880944e-17,
                                                                                                                                     'mean_glo': -0.1708177071111361,
                                                                                                                                     'rms': 1.132663289836144,
                                                                                                                                     'rms_glo': 0.677988778150234,
                                                                                                                                     'rmsc': 1.3682787033807386,
                                                                                                                                     'rmsc_glo': 1.331191649691949,
                                                                                                                                     'stdv_pc': 0.6461874061534578,
                                                                                                                                     'stdv_pc_ratio_to_obs': 0.6636738203338975,
                                                                                                                                     'tcor_cbf_vs_eof_pc': -0.030526745770718823},
                                                                                                                            'period': '1900-2005'},
                                                                                                                    'SON': {'best_matching_model_eofs__cor': 2,
                                                                                                                            'best_matching_model_eofs__rms': 2,
                                                                                                                            'best_matching_model_eofs__tcor_cbf_vs_eof_pc': 2,
                                                                                                                            'cbf': {'bias': -8.133284056798563e-05,
                                                                                                                                    'bias_glo': 0.015843756451133083,
                                                                                                                                    'cor': 0.8887844535687374,
                                                                                                                                    'cor_glo': 0.7909368309562451,
                                                                                                                                    'frac': 0.14587901002306827,
                                                                                                                                    'frac_cbf_regrid': 0.14689120920961984,
                                                                                                                                    'mean': 0.0,
                                                                                                                                    'mean_glo': 0.01086345594156621,
                                                                                                                                    'rms': 0.34576734920160895,
                                                                                                                                    'rms_glo': 0.30266603343766146,
                                                                                                                                    'rmsc': 0.47162600176520614,
                                                                                                                                    'rmsc_glo': 0.6466268904142803,
                                                                                                                                    'stdv_pc': 0.6481260745486521,
                                                                                                                                    'stdv_pc_ratio_to_obs': 0.8797399713157269},
                                                                                                                            'eof1': {'bias': -0.00018038366086286573,
                                                                                                                                     'bias_glo': 0.05585821790474026,
                                                                                                                                     'cor': 0.3864192556740018,
                                                                                                                                     'cor_glo': 0.38378997766722406,
                                                                                                                                     'frac': 0.19839674763316537,
                                                                                                                                     'mean': -1.977328931555059e-17,
                                                                                                                                     'mean_glo': 0.05087791679685578,
                                                                                                                                     'rms': 0.8842052665119332,
                                                                                                                                     'rms_glo': 0.5475113771081928,
                                                                                                                                     'rmsc': 1.1077732165069918,
                                                                                                                                     'rmsc_glo': 1.1101441978353976,
                                                                                                                                     'stdv_pc': 0.851955437817207,
                                                                                                                                     'stdv_pc_ratio_to_obs': 1.156409658336197,
                                                                                                                                     'tcor_cbf_vs_eof_pc': 0.5070523722375057},
                                                                                                                            'eof2': {'bias': 2.596734556832193e-05,
                                                                                                                                     'bias_glo': -0.056479735109839536,
                                                                                                                                     'cor': 0.7120090199087128,
                                                                                                                                     'cor_glo': 0.5799052200505509,
                                                                                                                                     'frac': 0.14266850032473205,
                                                                                                                                     'mean': 0.0,
                                                                                                                                     'mean_glo': -0.06146003689518519,
                                                                                                                                     'rms': 0.5533460173655452,
                                                                                                                                     'rms_glo': 0.4281353167275865,
                                                                                                                                     'rmsc': 0.7589347668911087,
                                                                                                                                     'rmsc_glo': 0.9166185436944474,
                                                                                                                                     'stdv_pc': 0.722459744405185,
                                                                                                                                     'stdv_pc_ratio_to_obs': 0.9806374712858043,
                                                                                                                                     'tcor_cbf_vs_eof_pc': 0.7920528152255544},
                                                                                                                            'eof3': {'bias': 7.769423673511859e-05,
                                                                                                                                     'bias_glo': 0.132213277232413,
                                                                                                                                     'cor': 0.009102694480425604,
                                                                                                                                     'cor_glo': 0.08474381917537703,
                                                                                                                                     'frac': 0.10372717434329826,
                                                                                                                                     'mean': -6.591096438516863e-18,
                                                                                                                                     'mean_glo': 0.12723297389196864,
                                                                                                                                     'rms': 0.95514321564072,
                                                                                                                                     'rms_glo': 0.6029811121411833,
                                                                                                                                     'rmsc': 1.407762259680207,
                                                                                                                                     'rmsc_glo': 1.3529643013135035,
                                                                                                                                     'stdv_pc': 0.6160215125219172,
                                                                                                                                     'stdv_pc_ratio_to_obs': 0.836162544661241,
                                                                                                                                     'tcor_cbf_vs_eof_pc': 0.008632362645977028},
                                                                                                                            'period': '1900-2005'},
                                                                                                                    'target_model_eofs': 1}}}}},
                                               'provenance': {'commandLine': '../variability_modes_driver.py '
                                                                             '-p '
                                                                             '../../../sample_setups/pcmdi_parameter_files/variability_modes/myParam_NAM_cmip6.py '
                                                                             '--case_id '
                                                                             'v20220825 '
                                                                             '--mip '
                                                                             'cmip6 '
                                                                             '--exp '
                                                                             'historical '
                                                                             '--modnames '
                                                                             'UKESM1-1-LL '
                                                                             '--realization '
                                                                             'r1i1p1f2 '
                                                                             '--parallel '
                                                                             'True '
                                                                             '--no_nc_out_obs '
                                                                             '--no_plot_obs',
                                                              'conda': {'Platform': 'linux-64',
                                                                        'PythonVersion': '3.7.3.final.0',
                                                                        'Version': '4.14.0',
                                                                        'buildVersion': '3.18.8'},
                                                              'date': '2022-08-26 '
                                                                      '00:02:21',
                                                              'history': '',
                                                              'openGL': {'GLX': {'client': {},
                                                                                 'server': {}}},
                                                              'osAccess': False,
                                                              'packages': {'PMP': '2.0',
                                                                           'PMPObs': 'See '
                                                                                     "'References' "
                                                                                     'key '
                                                                                     'below, '
                                                                                     'for '
                                                                                     'detailed '
                                                                                     'obs '
                                                                                     'provenance '
                                                                                     'information.',
                                                                           'blas': '0.3.21',
                                                                           'cdat_info': '8.2.1',
                                                                           'cdms': '3.1.5',
                                                                           'cdp': '1.7.0',
                                                                           'cdtime': '3.1.4',
                                                                           'cdutil': '8.2.1',
                                                                           'clapack': None,
                                                                           'esmf': '8.2.0',
                                                                           'esmpy': '8.2.0',
                                                                           'genutil': '8.2.1',
                                                                           'lapack': '3.9.0',
                                                                           'matplotlib': None,
                                                                           'mesalib': None,
                                                                           'numpy': '1.23.2',
                                                                           'python': '3.10.6',
                                                                           'scipy': '1.9.0',
                                                                           'uvcdat': None,
                                                                           'vcs': None,
                                                                           'vtk': None},
                                                              'platform': {'Name': 'gates.llnl.gov',
                                                                           'OS': 'Linux',
                                                                           'Version': '3.10.0-1160.71.1.el7.x86_64'},
                                                              'script': '#!/usr/bin/env '
                                                                        'python\n'
                                                                        '\n'
                                                                        '"""\n'
                                                                        '# '
                                                                        'Modes '
                                                                        'of '
                                                                        'Variability '
                                                                        'Metrics\n'
                                                                        '- '
                                                                        'Calculate '
                                                                        'metrics '
                                                                        'for '
                                                                        'modes '
                                                                        'of '
                                                                        'varibility '
                                                                        'from '
                                                                        'archive '
                                                                        'of '
                                                                        'CMIP '
                                                                        'models\n'
                                                                        '- '
                                                                        'Author: '
                                                                        'Jiwoo '
                                                                        'Lee '
                                                                        '(lee1043@llnl.gov), '
                                                                        'PCMDI, '
                                                                        'LLNL\n'
                                                                        '\n'
                                                                        '## '
                                                                        'EOF1 '
                                                                        'based '
                                                                        'variability '
                                                                        'modes\n'
                                                                        '- '
                                                                        'NAM: '
                                                                        'Northern '
                                                                        'Annular '
                                                                        'Mode\n'
                                                                        '- '
                                                                        'NAO: '
                                                                        'Northern '
                                                                        'Atlantic '
                                                                        'Oscillation\n'
                                                                        '- '
                                                                        'SAM: '
                                                                        'Southern '
                                                                        'Annular '
                                                                        'Mode\n'
                                                                        '- '
                                                                        'PNA: '
                                                                        'Pacific '
                                                                        'North '
                                                                        'American '
                                                                        'Pattern\n'
                                                                        '- '
                                                                        'PDO: '
                                                                        'Pacific '
                                                                        'Decadal '
                                                                        'Oscillation\n'
                                                                        '\n'
                                                                        '## '
                                                                        'EOF2 '
                                                                        'based '
                                                                        'variability '
                                                                        'modes\n'
                                                                        '- '
                                                                        'NPO: '
                                                                        'North '
                                                                        'Pacific '
                                                                        'Oscillation '
                                                                        '(2nd '
                                                                        'EOFs '
                                                                        'of '
                                                                        'PNA '
                                                                        'domain)\n'
                                                                        '- '
                                                                        'NPGO: '
                                                                        'North '
                                                                        'Pacific '
                                                                        'Gyre '
                                                                        'Oscillation '
                                                                        '(2nd '
                                                                        'EOFs '
                                                                        'of '
                                                                        'PDO '
                                                                        'domain)\n'
                                                                        '\n'
                                                                        '## '
                                                                        'Reference:\n'
                                                                        'Lee, '
                                                                        'J., '
                                                                        'K. '
                                                                        'Sperber, '
                                                                        'P. '
                                                                        'Gleckler, '
                                                                        'C. '
                                                                        'Bonfils, '
                                                                        'and '
                                                                        'K. '
                                                                        'Taylor, '
                                                                        '2019:\n'
                                                                        'Quantifying '
                                                                        'the '
                                                                        'Agreement '
                                                                        'Between '
                                                                        'Observed '
                                                                        'and '
                                                                        'Simulated '
                                                                        'Extratropical '
                                                                        'Modes '
                                                                        'of\n'
                                                                        'Interannual '
                                                                        'Variability. '
                                                                        'Climate '
                                                                        'Dynamics.\n'
                                                                        'https://doi.org/10.1007/s00382-018-4355-4\n'
                                                                        '\n'
                                                                        '## '
                                                                        'Auspices:\n'
                                                                        'This '
                                                                        'work '
                                                                        'was '
                                                                        'performed '
                                                                        'under '
                                                                        'the '
                                                                        'auspices '
                                                                        'of '
                                                                        'the '
                                                                        'U.S. '
                                                                        'Department '
                                                                        'of\n'
                                                                        'Energy '
                                                                        'by '
                                                                        'Lawrence '
                                                                        'Livermore '
                                                                        'National '
                                                                        'Laboratory '
                                                                        'under '
                                                                        'Contract\n'
                                                                        'DE-AC52-07NA27344. '
                                                                        'Lawrence '
                                                                        'Livermore '
                                                                        'National '
                                                                        'Laboratory '
                                                                        'is '
                                                                        'operated '
                                                                        'by\n'
                                                                        'Lawrence '
                                                                        'Livermore '
                                                                        'National '
                                                                        'Security, '
                                                                        'LLC, '
                                                                        'for '
                                                                        'the '
                                                                        'U.S. '
                                                                        'Department '
                                                                        'of '
                                                                        'Energy,\n'
                                                                        'National '
                                                                        'Nuclear '
                                                                        'Security '
                                                                        'Administration '
                                                                        'under '
                                                                        'Contract '
                                                                        'DE-AC52-07NA27344.\n'
                                                                        '\n'
                                                                        '## '
                                                                        'Disclaimer:\n'
                                                                        'This '
                                                                        'document '
                                                                        'was '
                                                                        'prepared '
                                                                        'as an '
                                                                        'account '
                                                                        'of '
                                                                        'work '
                                                                        'sponsored '
                                                                        'by '
                                                                        'an\n'
                                                                        'agency '
                                                                        'of '
                                                                        'the '
                                                                        'United '
                                                                        'States '
                                                                        'government. '
                                                                        'Neither '
                                                                        'the '
                                                                        'United '
                                                                        'States '
                                                                        'government\n'
                                                                        'nor '
                                                                        'Lawrence '
                                                                        'Livermore '
                                                                        'National '
                                                                        'Security, '
                                                                        'LLC, '
                                                                        'nor '
                                                                        'any '
                                                                        'of '
                                                                        'their '
                                                                        'employees\n'
                                                                        'makes '
                                                                        'any '
                                                                        'warranty, '
                                                                        'expressed '
                                                                        'or '
                                                                        'implied, '
                                                                        'or '
                                                                        'assumes '
                                                                        'any '
                                                                        'legal '
                                                                        'liability '
                                                                        'or\n'
                                                                        'responsibility '
                                                                        'for '
                                                                        'the '
                                                                        'accuracy, '
                                                                        'completeness, '
                                                                        'or '
                                                                        'usefulness '
                                                                        'of '
                                                                        'any\n'
                                                                        'information, '
                                                                        'apparatus, '
                                                                        'product, '
                                                                        'or '
                                                                        'process '
                                                                        'disclosed, '
                                                                        'or '
                                                                        'represents '
                                                                        'that '
                                                                        'its\n'
                                                                        'use '
                                                                        'would '
                                                                        'not '
                                                                        'infringe '
                                                                        'privately '
                                                                        'owned '
                                                                        'rights. '
                                                                        'Reference '
                                                                        'herein '
                                                                        'to '
                                                                        'any '
                                                                        'specific\n'
                                                                        'commercial '
                                                                        'product, '
                                                                        'process, '
                                                                        'or '
                                                                        'service '
                                                                        'by '
                                                                        'trade '
                                                                        'name, '
                                                                        'trademark, '
                                                                        'manufacturer,\n'
                                                                        'or '
                                                                        'otherwise '
                                                                        'does '
                                                                        'not '
                                                                        'necessarily '
                                                                        'constitute '
                                                                        'or '
                                                                        'imply '
                                                                        'its '
                                                                        'endorsement,\n'
                                                                        'recommendation, '
                                                                        'or '
                                                                        'favoring '
                                                                        'by '
                                                                        'the '
                                                                        'United '
                                                                        'States '
                                                                        'government '
                                                                        'or '
                                                                        'Lawrence\n'
                                                                        'Livermore '
                                                                        'National '
                                                                        'Security, '
                                                                        'LLC. '
                                                                        'The '
                                                                        'views '
                                                                        'and '
                                                                        'opinions '
                                                                        'of '
                                                                        'authors '
                                                                        'expressed\n'
                                                                        'herein '
                                                                        'do '
                                                                        'not '
                                                                        'necessarily '
                                                                        'state '
                                                                        'or '
                                                                        'reflect '
                                                                        'those '
                                                                        'of '
                                                                        'the '
                                                                        'United '
                                                                        'States\n'
                                                                        'government '
                                                                        'or '
                                                                        'Lawrence '
                                                                        'Livermore '
                                                                        'National '
                                                                        'Security, '
                                                                        'LLC, '
                                                                        'and '
                                                                        'shall '
                                                                        'not '
                                                                        'be '
                                                                        'used\n'
                                                                        'for '
                                                                        'advertising '
                                                                        'or '
                                                                        'product '
                                                                        'endorsement '
                                                                        'purposes.\n'
                                                                        '"""\n'
                                                                        '\n'
                                                                        'from '
                                                                        '__future__ '
                                                                        'import '
                                                                        'print_function\n'
                                                                        '\n'
                                                                        'import '
                                                                        'glob\n'
                                                                        'import '
                                                                        'json\n'
                                                                        'import '
                                                                        'os\n'
                                                                        'import '
                                                                        'sys\n'
                                                                        'from '
                                                                        'argparse '
                                                                        'import '
                                                                        'RawTextHelpFormatter\n'
                                                                        'from '
                                                                        'shutil '
                                                                        'import '
                                                                        'copyfile\n'
                                                                        '\n'
                                                                        'import '
                                                                        'cdtime\n'
                                                                        'import '
                                                                        'cdutil\n'
                                                                        'import '
                                                                        'MV2\n'
                                                                        'from '
                                                                        'genutil '
                                                                        'import '
                                                                        'StringConstructor\n'
                                                                        '\n'
                                                                        'import '
                                                                        'pcmdi_metrics\n'
                                                                        'from '
                                                                        'pcmdi_metrics '
                                                                        'import '
                                                                        'resources\n'
                                                                        'from '
                                                                        'pcmdi_metrics.variability_mode.lib '
                                                                        'import '
                                                                        '(\n'
                                                                        '    '
                                                                        'AddParserArgument,\n'
                                                                        '    '
                                                                        'VariabilityModeCheck,\n'
                                                                        '    '
                                                                        'YearCheck,\n'
                                                                        '    '
                                                                        'adjust_timeseries,\n'
                                                                        '    '
                                                                        'calc_stats_save_dict,\n'
                                                                        '    '
                                                                        'calcSTD,\n'
                                                                        '    '
                                                                        'calcTCOR,\n'
                                                                        '    '
                                                                        'debug_print,\n'
                                                                        '    '
                                                                        'eof_analysis_get_variance_mode,\n'
                                                                        '    '
                                                                        'gain_pcs_fraction,\n'
                                                                        '    '
                                                                        'gain_pseudo_pcs,\n'
                                                                        '    '
                                                                        'get_domain_range,\n'
                                                                        '    '
                                                                        'linear_regression_on_globe_for_teleconnection,\n'
                                                                        '    '
                                                                        'plot_map,\n'
                                                                        '    '
                                                                        'read_data_in,\n'
                                                                        '    '
                                                                        'sort_human,\n'
                                                                        '    '
                                                                        'tree,\n'
                                                                        '    '
                                                                        'variability_metrics_to_json,\n'
                                                                        '    '
                                                                        'write_nc_output,\n'
                                                                        ')\n'
                                                                        '\n'
                                                                        '# To '
                                                                        'avoid '
                                                                        'below '
                                                                        'error\n'
                                                                        '# '
                                                                        'OpenBLAS '
                                                                        'blas_thread_init: '
                                                                        'pthread_create '
                                                                        'failed '
                                                                        'for '
                                                                        'thread '
                                                                        'XX of '
                                                                        '96: '
                                                                        'Resource '
                                                                        'temporarily '
                                                                        'unavailable\n'
                                                                        'os.environ["OPENBLAS_NUM_THREADS"] '
                                                                        '= '
                                                                        '"1"\n'
                                                                        '\n'
                                                                        '# '
                                                                        'Must '
                                                                        'be '
                                                                        'done '
                                                                        'before '
                                                                        'any '
                                                                        'CDAT '
                                                                        'library '
                                                                        'is '
                                                                        'called.\n'
                                                                        '# '
                                                                        'https://github.com/CDAT/cdat/issues/2213\n'
                                                                        'if '
                                                                        '"UVCDAT_ANONYMOUS_LOG" '
                                                                        'not '
                                                                        'in '
                                                                        'os.environ:\n'
                                                                        '    '
                                                                        'os.environ["UVCDAT_ANONYMOUS_LOG"] '
                                                                        '= '
                                                                        '"no"\n'
                                                                        '\n'
                                                                        'regions_specs '
                                                                        '= {}\n'
                                                                        'egg_pth '
                                                                        '= '
                                                                        'resources.resource_path()\n'
                                                                        'exec(\n'
                                                                        '    '
                                                                        'compile(\n'
                                                                        '        '
                                                                        'open(os.path.join(egg_pth, '
                                                                        '"default_regions.py")).read(),\n'
                                                                        '        '
                                                                        'os.path.join(egg_pth, '
                                                                        '"default_regions.py"),\n'
                                                                        '        '
                                                                        '"exec",\n'
                                                                        '    '
                                                                        ')\n'
                                                                        ')\n'
                                                                        '\n'
                                                                        '# '
                                                                        '=================================================\n'
                                                                        '# '
                                                                        'Collect '
                                                                        'user '
                                                                        'defined '
                                                                        'options\n'
                                                                        '# '
                                                                        '-------------------------------------------------\n'
                                                                        'P = '
                                                                        'pcmdi_metrics.driver.pmp_parser.PMPParser(\n'
                                                                        '    '
                                                                        'description="Runs '
                                                                        'PCMDI '
                                                                        'Modes '
                                                                        'of '
                                                                        'Variability '
                                                                        'Computations",\n'
                                                                        '    '
                                                                        'formatter_class=RawTextHelpFormatter,\n'
                                                                        ')\n'
                                                                        'P = '
                                                                        'AddParserArgument(P)\n'
                                                                        'param '
                                                                        '= '
                                                                        'P.get_parameter()\n'
                                                                        '\n'
                                                                        '# '
                                                                        'Pre-defined '
                                                                        'options\n'
                                                                        'mip = '
                                                                        'param.mip\n'
                                                                        'exp = '
                                                                        'param.exp\n'
                                                                        'fq = '
                                                                        'param.frequency\n'
                                                                        'realm '
                                                                        '= '
                                                                        'param.realm\n'
                                                                        'print("mip:", '
                                                                        'mip)\n'
                                                                        'print("exp:", '
                                                                        'exp)\n'
                                                                        'print("fq:", '
                                                                        'fq)\n'
                                                                        'print("realm:", '
                                                                        'realm)\n'
                                                                        '\n'
                                                                        '# '
                                                                        'On/off '
                                                                        'switches\n'
                                                                        'obs_compare '
                                                                        '= '
                                                                        'True  '
                                                                        '# '
                                                                        'Statistics '
                                                                        'against '
                                                                        'observation\n'
                                                                        'CBF = '
                                                                        'param.CBF  '
                                                                        '# '
                                                                        'Conduct '
                                                                        'CBF '
                                                                        'analysis\n'
                                                                        'ConvEOF '
                                                                        '= '
                                                                        'param.ConvEOF  '
                                                                        '# '
                                                                        'Conduct '
                                                                        'conventional '
                                                                        'EOF '
                                                                        'analysis\n'
                                                                        '\n'
                                                                        'EofScaling '
                                                                        '= '
                                                                        'param.EofScaling  '
                                                                        '# If '
                                                                        'True, '
                                                                        'consider '
                                                                        'EOF '
                                                                        'with '
                                                                        'unit '
                                                                        'variance\n'
                                                                        'RmDomainMean '
                                                                        '= '
                                                                        'param.RemoveDomainMean  '
                                                                        '# If '
                                                                        'True, '
                                                                        'remove '
                                                                        'Domain '
                                                                        'Mean '
                                                                        'of '
                                                                        'each '
                                                                        'time '
                                                                        'step\n'
                                                                        'LandMask '
                                                                        '= '
                                                                        'param.landmask  '
                                                                        '# If '
                                                                        'True, '
                                                                        'maskout '
                                                                        'land '
                                                                        'region '
                                                                        'thus '
                                                                        'consider '
                                                                        'only '
                                                                        'over '
                                                                        'ocean\n'
                                                                        '\n'
                                                                        'print("EofScaling:", '
                                                                        'EofScaling)\n'
                                                                        'print("RmDomainMean:", '
                                                                        'RmDomainMean)\n'
                                                                        'print("LandMask:", '
                                                                        'LandMask)\n'
                                                                        '\n'
                                                                        'nc_out_obs '
                                                                        '= '
                                                                        'param.nc_out_obs  '
                                                                        '# '
                                                                        'Record '
                                                                        'NetCDF '
                                                                        'output\n'
                                                                        'plot_obs '
                                                                        '= '
                                                                        'param.plot_obs  '
                                                                        '# '
                                                                        'Generate '
                                                                        'plots\n'
                                                                        'nc_out_model '
                                                                        '= '
                                                                        'param.nc_out  '
                                                                        '# '
                                                                        'Record '
                                                                        'NetCDF '
                                                                        'output\n'
                                                                        'plot_model '
                                                                        '= '
                                                                        'param.plot  '
                                                                        '# '
                                                                        'Generate '
                                                                        'plots\n'
                                                                        'update_json '
                                                                        '= '
                                                                        'param.update_json\n'
                                                                        '\n'
                                                                        'print("nc_out_obs, '
                                                                        'plot_obs:", '
                                                                        'nc_out_obs, '
                                                                        'plot_obs)\n'
                                                                        'print("nc_out_model, '
                                                                        'plot_model:", '
                                                                        'nc_out_model, '
                                                                        'plot_model)\n'
                                                                        '\n'
                                                                        'cmec '
                                                                        '= '
                                                                        'False\n'
                                                                        'if '
                                                                        'hasattr(param, '
                                                                        '"cmec"):\n'
                                                                        '    '
                                                                        'cmec '
                                                                        '= '
                                                                        'param.cmec  '
                                                                        '# '
                                                                        'Generate '
                                                                        'CMEC '
                                                                        'compliant '
                                                                        'json\n'
                                                                        'print("CMEC:" '
                                                                        '+ '
                                                                        'str(cmec))\n'
                                                                        '\n'
                                                                        '# '
                                                                        'Check '
                                                                        'given '
                                                                        'mode '
                                                                        'of '
                                                                        'variability\n'
                                                                        'mode '
                                                                        '= '
                                                                        'VariabilityModeCheck(param.variability_mode, '
                                                                        'P)\n'
                                                                        'print("mode:", '
                                                                        'mode)\n'
                                                                        '\n'
                                                                        '# '
                                                                        'Variables\n'
                                                                        'var = '
                                                                        'param.varModel\n'
                                                                        '\n'
                                                                        '# '
                                                                        'Check '
                                                                        'dependency '
                                                                        'for '
                                                                        'given '
                                                                        'season '
                                                                        'option\n'
                                                                        'seasons '
                                                                        '= '
                                                                        'param.seasons\n'
                                                                        'print("seasons:", '
                                                                        'seasons)\n'
                                                                        '\n'
                                                                        '# '
                                                                        'Observation '
                                                                        'information\n'
                                                                        'obs_name '
                                                                        '= '
                                                                        'param.reference_data_name\n'
                                                                        'obs_path '
                                                                        '= '
                                                                        'param.reference_data_path\n'
                                                                        'obs_var '
                                                                        '= '
                                                                        'param.varOBS\n'
                                                                        '\n'
                                                                        '# '
                                                                        'Path '
                                                                        'to '
                                                                        'model '
                                                                        'data '
                                                                        'as '
                                                                        'string '
                                                                        'template\n'
                                                                        'modpath '
                                                                        '= '
                                                                        'StringConstructor(param.modpath)\n'
                                                                        'if '
                                                                        'LandMask:\n'
                                                                        '    '
                                                                        'modpath_lf '
                                                                        '= '
                                                                        'StringConstructor(param.modpath_lf)\n'
                                                                        '\n'
                                                                        '# '
                                                                        'Check '
                                                                        'given '
                                                                        'model '
                                                                        'option\n'
                                                                        'models '
                                                                        '= '
                                                                        'param.modnames\n'
                                                                        '\n'
                                                                        '# '
                                                                        'Include '
                                                                        'all '
                                                                        'models '
                                                                        'if '
                                                                        'conditioned\n'
                                                                        'if '
                                                                        '("all" '
                                                                        'in '
                                                                        '[m.lower() '
                                                                        'for m '
                                                                        'in '
                                                                        'models]) '
                                                                        'or '
                                                                        '(models '
                                                                        '== '
                                                                        '"all"):\n'
                                                                        '    '
                                                                        'model_index_path '
                                                                        '= '
                                                                        'param.modpath.split("/")[-1].split(".").index("%(model)")\n'
                                                                        '    '
                                                                        'models '
                                                                        '= [\n'
                                                                        '        '
                                                                        'p.split("/")[-1].split(".")[model_index_path]\n'
                                                                        '        '
                                                                        'for p '
                                                                        'in '
                                                                        'glob.glob(\n'
                                                                        '            '
                                                                        'modpath(mip=mip, '
                                                                        'exp=exp, '
                                                                        'model="*", '
                                                                        'realization="*", '
                                                                        'variable=var)\n'
                                                                        '        '
                                                                        ')\n'
                                                                        '    '
                                                                        ']\n'
                                                                        '    # '
                                                                        'remove '
                                                                        'duplicates\n'
                                                                        '    '
                                                                        'models '
                                                                        '= '
                                                                        'sorted(list(dict.fromkeys(models)), '
                                                                        'key=lambda '
                                                                        's: '
                                                                        's.lower())\n'
                                                                        '\n'
                                                                        'print("models:", '
                                                                        'models)\n'
                                                                        'print("number '
                                                                        'of '
                                                                        'models:", '
                                                                        'len(models))\n'
                                                                        '\n'
                                                                        '# '
                                                                        'Realizations\n'
                                                                        'realization '
                                                                        '= '
                                                                        'param.realization\n'
                                                                        'print("realization: '
                                                                        '", '
                                                                        'realization)\n'
                                                                        '\n'
                                                                        '# EOF '
                                                                        'ordinal '
                                                                        'number\n'
                                                                        'eofn_obs '
                                                                        '= '
                                                                        'int(param.eofn_obs)\n'
                                                                        'eofn_mod '
                                                                        '= '
                                                                        'int(param.eofn_mod)\n'
                                                                        '\n'
                                                                        '# '
                                                                        'case '
                                                                        'id\n'
                                                                        'case_id '
                                                                        '= '
                                                                        'param.case_id\n'
                                                                        '\n'
                                                                        '# '
                                                                        'Output\n'
                                                                        'outdir_template '
                                                                        '= '
                                                                        'param.process_templated_argument("results_dir")\n'
                                                                        'outdir '
                                                                        '= '
                                                                        'StringConstructor(\n'
                                                                        '    '
                                                                        'str(\n'
                                                                        '        '
                                                                        'outdir_template(\n'
                                                                        '            '
                                                                        'output_type="%(output_type)",\n'
                                                                        '            '
                                                                        'mip=mip,\n'
                                                                        '            '
                                                                        'exp=exp,\n'
                                                                        '            '
                                                                        'variability_mode=mode,\n'
                                                                        '            '
                                                                        'reference_data_name=obs_name,\n'
                                                                        '            '
                                                                        'case_id=case_id,\n'
                                                                        '        '
                                                                        ')\n'
                                                                        '    '
                                                                        ')\n'
                                                                        ')\n'
                                                                        '\n'
                                                                        '# '
                                                                        'Debug\n'
                                                                        'debug '
                                                                        '= '
                                                                        'param.debug\n'
                                                                        '\n'
                                                                        '# '
                                                                        'Year\n'
                                                                        'msyear '
                                                                        '= '
                                                                        'param.msyear\n'
                                                                        'meyear '
                                                                        '= '
                                                                        'param.meyear\n'
                                                                        'YearCheck(msyear, '
                                                                        'meyear, '
                                                                        'P)\n'
                                                                        '\n'
                                                                        'osyear '
                                                                        '= '
                                                                        'param.osyear\n'
                                                                        'oeyear '
                                                                        '= '
                                                                        'param.oeyear\n'
                                                                        'YearCheck(osyear, '
                                                                        'oeyear, '
                                                                        'P)\n'
                                                                        '\n'
                                                                        '# '
                                                                        'Units '
                                                                        'adjustment\n'
                                                                        'ObsUnitsAdjust '
                                                                        '= '
                                                                        'param.ObsUnitsAdjust\n'
                                                                        'ModUnitsAdjust '
                                                                        '= '
                                                                        'param.ModUnitsAdjust\n'
                                                                        '\n'
                                                                        '# '
                                                                        'lon1g '
                                                                        'and '
                                                                        'lon2g '
                                                                        'is '
                                                                        'for '
                                                                        'global '
                                                                        'map '
                                                                        'plotting\n'
                                                                        'if '
                                                                        'mode '
                                                                        'in '
                                                                        '["PDO", '
                                                                        '"NPGO"]:\n'
                                                                        '    '
                                                                        'lon1g '
                                                                        '= 0\n'
                                                                        '    '
                                                                        'lon2g '
                                                                        '= '
                                                                        '360\n'
                                                                        'else:\n'
                                                                        '    '
                                                                        'lon1g '
                                                                        '= '
                                                                        '-180\n'
                                                                        '    '
                                                                        'lon2g '
                                                                        '= '
                                                                        '180\n'
                                                                        '\n'
                                                                        '# '
                                                                        'parallel\n'
                                                                        'parallel '
                                                                        '= '
                                                                        'param.parallel\n'
                                                                        'print("parallel:", '
                                                                        'parallel)\n'
                                                                        '\n'
                                                                        '# '
                                                                        '=================================================\n'
                                                                        '# '
                                                                        'Time '
                                                                        'period '
                                                                        'adjustment\n'
                                                                        '# '
                                                                        '-------------------------------------------------\n'
                                                                        'start_time '
                                                                        '= '
                                                                        'cdtime.comptime(msyear, '
                                                                        '1, 1, '
                                                                        '0, '
                                                                        '0)\n'
                                                                        'end_time '
                                                                        '= '
                                                                        'cdtime.comptime(meyear, '
                                                                        '12, '
                                                                        '31, '
                                                                        '23, '
                                                                        '59)\n'
                                                                        '\n'
                                                                        'try:\n'
                                                                        '    # '
                                                                        'osyear '
                                                                        'and '
                                                                        'oeyear '
                                                                        'variables '
                                                                        'were '
                                                                        'defined.\n'
                                                                        '    '
                                                                        'start_time_obs '
                                                                        '= '
                                                                        'cdtime.comptime(osyear, '
                                                                        '1, 1, '
                                                                        '0, '
                                                                        '0)\n'
                                                                        '    '
                                                                        'end_time_obs '
                                                                        '= '
                                                                        'cdtime.comptime(oeyear, '
                                                                        '12, '
                                                                        '31, '
                                                                        '23, '
                                                                        '59)\n'
                                                                        'except '
                                                                        'NameError:\n'
                                                                        '    # '
                                                                        'osyear, '
                                                                        'oeyear '
                                                                        'variables '
                                                                        'were '
                                                                        'NOT '
                                                                        'defined\n'
                                                                        '    '
                                                                        'start_time_obs '
                                                                        '= '
                                                                        'start_time\n'
                                                                        '    '
                                                                        'end_time_obs '
                                                                        '= '
                                                                        'end_time\n'
                                                                        '\n'
                                                                        '# '
                                                                        '=================================================\n'
                                                                        '# '
                                                                        'Region '
                                                                        'control\n'
                                                                        '# '
                                                                        '-------------------------------------------------\n'
                                                                        'region_subdomain '
                                                                        '= '
                                                                        'get_domain_range(mode, '
                                                                        'regions_specs)\n'
                                                                        '\n'
                                                                        '# '
                                                                        '=================================================\n'
                                                                        '# '
                                                                        'Create '
                                                                        'output '
                                                                        'directories\n'
                                                                        '# '
                                                                        '-------------------------------------------------\n'
                                                                        'for '
                                                                        'output_type '
                                                                        'in '
                                                                        '["graphics", '
                                                                        '"diagnostic_results", '
                                                                        '"metrics_results"]:\n'
                                                                        '    '
                                                                        'if '
                                                                        'not '
                                                                        'os.path.exists(outdir(output_type=output_type)):\n'
                                                                        '        '
                                                                        'os.makedirs(outdir(output_type=output_type))\n'
                                                                        '    '
                                                                        'print(outdir(output_type=output_type))\n'
                                                                        '\n'
                                                                        '# '
                                                                        '=================================================\n'
                                                                        '# Set '
                                                                        'dictionary '
                                                                        'for '
                                                                        '.json '
                                                                        'record\n'
                                                                        '# '
                                                                        '-------------------------------------------------\n'
                                                                        'result_dict '
                                                                        '= '
                                                                        'tree()\n'
                                                                        '\n'
                                                                        '# Set '
                                                                        'metrics '
                                                                        'output '
                                                                        'JSON '
                                                                        'file\n'
                                                                        'json_filename '
                                                                        '= '
                                                                        '"_".join(\n'
                                                                        '    '
                                                                        '[\n'
                                                                        '        '
                                                                        '"var",\n'
                                                                        '        '
                                                                        '"mode",\n'
                                                                        '        '
                                                                        'mode,\n'
                                                                        '        '
                                                                        '"EOF" '
                                                                        '+ '
                                                                        'str(eofn_mod),\n'
                                                                        '        '
                                                                        '"stat",\n'
                                                                        '        '
                                                                        'mip,\n'
                                                                        '        '
                                                                        'exp,\n'
                                                                        '        '
                                                                        'fq,\n'
                                                                        '        '
                                                                        'realm,\n'
                                                                        '        '
                                                                        'str(msyear) '
                                                                        '+ "-" '
                                                                        '+ '
                                                                        'str(meyear),\n'
                                                                        '    '
                                                                        ']\n'
                                                                        ')\n'
                                                                        '\n'
                                                                        'json_file '
                                                                        '= '
                                                                        'os.path.join(outdir(output_type="metrics_results"), '
                                                                        'json_filename '
                                                                        '+ '
                                                                        '".json")\n'
                                                                        'json_file_org '
                                                                        '= '
                                                                        'os.path.join(\n'
                                                                        '    '
                                                                        'outdir(output_type="metrics_results"),\n'
                                                                        '    '
                                                                        '"_".join([json_filename, '
                                                                        '"org", '
                                                                        'str(os.getpid())]) '
                                                                        '+ '
                                                                        '".json",\n'
                                                                        ')\n'
                                                                        '\n'
                                                                        '# '
                                                                        'Archive '
                                                                        'if '
                                                                        'there '
                                                                        'is '
                                                                        'pre-existing '
                                                                        'JSON: '
                                                                        'preventing '
                                                                        'overwriting\n'
                                                                        'if '
                                                                        'os.path.isfile(json_file) '
                                                                        'and '
                                                                        'os.stat(json_file).st_size '
                                                                        '> 0:\n'
                                                                        '    '
                                                                        'copyfile(json_file, '
                                                                        'json_file_org)\n'
                                                                        '    '
                                                                        'if '
                                                                        'update_json:\n'
                                                                        '        '
                                                                        'fj = '
                                                                        'open(json_file)\n'
                                                                        '        '
                                                                        'result_dict '
                                                                        '= '
                                                                        'json.loads(fj.read())\n'
                                                                        '        '
                                                                        'fj.close()\n'
                                                                        '\n'
                                                                        'if '
                                                                        '"REF" '
                                                                        'not '
                                                                        'in '
                                                                        'list(result_dict.keys()):\n'
                                                                        '    '
                                                                        'result_dict["REF"] '
                                                                        '= {}\n'
                                                                        'if '
                                                                        '"RESULTS" '
                                                                        'not '
                                                                        'in '
                                                                        'list(result_dict.keys()):\n'
                                                                        '    '
                                                                        'result_dict["RESULTS"] '
                                                                        '= {}\n'
                                                                        '\n'
                                                                        '# '
                                                                        '=================================================\n'
                                                                        '# '
                                                                        'Observation\n'
                                                                        '# '
                                                                        '-------------------------------------------------\n'
                                                                        'if '
                                                                        'obs_compare:\n'
                                                                        '\n'
                                                                        '    '
                                                                        'obs_lf_path '
                                                                        '= '
                                                                        'None\n'
                                                                        '\n'
                                                                        '    # '
                                                                        'read '
                                                                        'data '
                                                                        'in\n'
                                                                        '    '
                                                                        'obs_timeseries, '
                                                                        'osyear, '
                                                                        'oeyear '
                                                                        '= '
                                                                        'read_data_in(\n'
                                                                        '        '
                                                                        'obs_name,\n'
                                                                        '        '
                                                                        'obs_path,\n'
                                                                        '        '
                                                                        'obs_lf_path,\n'
                                                                        '        '
                                                                        'obs_var,\n'
                                                                        '        '
                                                                        'var,\n'
                                                                        '        '
                                                                        'start_time_obs,\n'
                                                                        '        '
                                                                        'end_time_obs,\n'
                                                                        '        '
                                                                        'ObsUnitsAdjust,\n'
                                                                        '        '
                                                                        'LandMask,\n'
                                                                        '        '
                                                                        'debug=debug,\n'
                                                                        '    '
                                                                        ')\n'
                                                                        '\n'
                                                                        '    # '
                                                                        'Save '
                                                                        'global '
                                                                        'grid '
                                                                        'information '
                                                                        'for '
                                                                        'regrid '
                                                                        'below\n'
                                                                        '    '
                                                                        'ref_grid_global '
                                                                        '= '
                                                                        'obs_timeseries.getGrid()\n'
                                                                        '\n'
                                                                        '    # '
                                                                        'Declare '
                                                                        'dictionary '
                                                                        'variables '
                                                                        'to '
                                                                        'keep '
                                                                        'information '
                                                                        'from '
                                                                        'observation\n'
                                                                        '    '
                                                                        'eof_obs '
                                                                        '= {}\n'
                                                                        '    '
                                                                        'pc_obs '
                                                                        '= {}\n'
                                                                        '    '
                                                                        'frac_obs '
                                                                        '= {}\n'
                                                                        '    '
                                                                        'solver_obs '
                                                                        '= {}\n'
                                                                        '    '
                                                                        'reverse_sign_obs '
                                                                        '= {}\n'
                                                                        '    '
                                                                        'eof_lr_obs '
                                                                        '= {}\n'
                                                                        '    '
                                                                        'stdv_pc_obs '
                                                                        '= {}\n'
                                                                        '\n'
                                                                        '    # '
                                                                        'Dictonary '
                                                                        'for '
                                                                        'json '
                                                                        'archive\n'
                                                                        '    '
                                                                        'if '
                                                                        '"obs" '
                                                                        'not '
                                                                        'in '
                                                                        'list(result_dict["REF"].keys()):\n'
                                                                        '        '
                                                                        'result_dict["REF"]["obs"] '
                                                                        '= {}\n'
                                                                        '    '
                                                                        'if '
                                                                        '"defaultReference" '
                                                                        'not '
                                                                        'in '
                                                                        'list(result_dict["REF"]["obs"].keys()):\n'
                                                                        '        '
                                                                        'result_dict["REF"]["obs"]["defaultReference"] '
                                                                        '= {}\n'
                                                                        '    '
                                                                        'if '
                                                                        '"source" '
                                                                        'not '
                                                                        'in '
                                                                        'list(result_dict["REF"]["obs"]["defaultReference"].keys()):\n'
                                                                        '        '
                                                                        'result_dict["REF"]["obs"]["defaultReference"]["source"] '
                                                                        '= {}\n'
                                                                        '    '
                                                                        'if '
                                                                        'mode '
                                                                        'not '
                                                                        'in '
                                                                        'list(result_dict["REF"]["obs"]["defaultReference"].keys()):\n'
                                                                        '        '
                                                                        'result_dict["REF"]["obs"]["defaultReference"][mode] '
                                                                        '= {}\n'
                                                                        '\n'
                                                                        '    '
                                                                        'result_dict["REF"]["obs"]["defaultReference"]["source"] '
                                                                        '= '
                                                                        'obs_path\n'
                                                                        '    '
                                                                        'result_dict["REF"]["obs"]["defaultReference"]["reference_eofs"] '
                                                                        '= '
                                                                        'eofn_obs\n'
                                                                        '    '
                                                                        'result_dict["REF"]["obs"]["defaultReference"]["period"] '
                                                                        '= (\n'
                                                                        '        '
                                                                        'str(osyear) '
                                                                        '+ "-" '
                                                                        '+ '
                                                                        'str(oeyear)\n'
                                                                        '    '
                                                                        ')\n'
                                                                        '\n'
                                                                        '    # '
                                                                        '-------------------------------------------------\n'
                                                                        '    # '
                                                                        'Season '
                                                                        'loop\n'
                                                                        '    # '
                                                                        '- - - '
                                                                        '- - - '
                                                                        '- - - '
                                                                        '- - - '
                                                                        '- - - '
                                                                        '- - - '
                                                                        '- - - '
                                                                        '- - - '
                                                                        '-\n'
                                                                        '    '
                                                                        'debug_print("obs '
                                                                        'season '
                                                                        'loop '
                                                                        'starts", '
                                                                        'debug)\n'
                                                                        '\n'
                                                                        '    '
                                                                        'for '
                                                                        'season '
                                                                        'in '
                                                                        'seasons:\n'
                                                                        '        '
                                                                        'debug_print("season: '
                                                                        '" + '
                                                                        'season, '
                                                                        'debug)\n'
                                                                        '\n'
                                                                        '        '
                                                                        'if '
                                                                        'season '
                                                                        'not '
                                                                        'in '
                                                                        'list(\n'
                                                                        '            '
                                                                        'result_dict["REF"]["obs"]["defaultReference"][mode].keys()\n'
                                                                        '        '
                                                                        '):\n'
                                                                        '            '
                                                                        'result_dict["REF"]["obs"]["defaultReference"][mode][season] '
                                                                        '= {}\n'
                                                                        '\n'
                                                                        '        '
                                                                        'dict_head_obs '
                                                                        '= '
                                                                        'result_dict["REF"]["obs"]["defaultReference"][mode][season]\n'
                                                                        '\n'
                                                                        '        '
                                                                        '# '
                                                                        'Time '
                                                                        'series '
                                                                        'adjustment '
                                                                        '(remove '
                                                                        'annual '
                                                                        'cycle, '
                                                                        'seasonal '
                                                                        'mean '
                                                                        '(if '
                                                                        'needed),\n'
                                                                        '        '
                                                                        '# and '
                                                                        'subtracting '
                                                                        'domain '
                                                                        '(or '
                                                                        'global) '
                                                                        'mean '
                                                                        'of '
                                                                        'each '
                                                                        'time '
                                                                        'step)\n'
                                                                        '        '
                                                                        'debug_print("time '
                                                                        'series '
                                                                        'adjustment", '
                                                                        'debug)\n'
                                                                        '        '
                                                                        'obs_timeseries_season '
                                                                        '= '
                                                                        'adjust_timeseries(\n'
                                                                        '            '
                                                                        'obs_timeseries, '
                                                                        'mode, '
                                                                        'season, '
                                                                        'region_subdomain, '
                                                                        'RmDomainMean\n'
                                                                        '        '
                                                                        ')\n'
                                                                        '\n'
                                                                        '        '
                                                                        '# '
                                                                        'Extract '
                                                                        'subdomain\n'
                                                                        '        '
                                                                        'obs_timeseries_season_subdomain '
                                                                        '= '
                                                                        'obs_timeseries_season(region_subdomain)\n'
                                                                        '\n'
                                                                        '        '
                                                                        '# EOF '
                                                                        'analysis\n'
                                                                        '        '
                                                                        'debug_print("EOF '
                                                                        'analysis", '
                                                                        'debug)\n'
                                                                        '        '
                                                                        '(\n'
                                                                        '            '
                                                                        'eof_obs[season],\n'
                                                                        '            '
                                                                        'pc_obs[season],\n'
                                                                        '            '
                                                                        'frac_obs[season],\n'
                                                                        '            '
                                                                        'reverse_sign_obs[season],\n'
                                                                        '            '
                                                                        'solver_obs[season],\n'
                                                                        '        '
                                                                        ') = '
                                                                        'eof_analysis_get_variance_mode(\n'
                                                                        '            '
                                                                        'mode,\n'
                                                                        '            '
                                                                        'obs_timeseries_season_subdomain,\n'
                                                                        '            '
                                                                        'eofn=eofn_obs,\n'
                                                                        '            '
                                                                        'debug=debug,\n'
                                                                        '            '
                                                                        'EofScaling=EofScaling,\n'
                                                                        '        '
                                                                        ')\n'
                                                                        '\n'
                                                                        '        '
                                                                        '# '
                                                                        'Calculate '
                                                                        'stdv '
                                                                        'of pc '
                                                                        'time '
                                                                        'series\n'
                                                                        '        '
                                                                        'debug_print("calculate '
                                                                        'stdv '
                                                                        'of pc '
                                                                        'time '
                                                                        'series", '
                                                                        'debug)\n'
                                                                        '        '
                                                                        'stdv_pc_obs[season] '
                                                                        '= '
                                                                        'calcSTD(pc_obs[season])\n'
                                                                        '\n'
                                                                        '        '
                                                                        '# '
                                                                        'Linear '
                                                                        'regression '
                                                                        'to '
                                                                        'have '
                                                                        'extended '
                                                                        'global '
                                                                        'map; '
                                                                        'teleconnection '
                                                                        'purpose\n'
                                                                        '        '
                                                                        '(\n'
                                                                        '            '
                                                                        'eof_lr_obs[season],\n'
                                                                        '            '
                                                                        'slope_obs,\n'
                                                                        '            '
                                                                        'intercept_obs,\n'
                                                                        '        '
                                                                        ') = '
                                                                        'linear_regression_on_globe_for_teleconnection(\n'
                                                                        '            '
                                                                        'pc_obs[season],\n'
                                                                        '            '
                                                                        'obs_timeseries_season,\n'
                                                                        '            '
                                                                        'stdv_pc_obs[season],\n'
                                                                        '            '
                                                                        'RmDomainMean,\n'
                                                                        '            '
                                                                        'EofScaling,\n'
                                                                        '            '
                                                                        'debug=debug,\n'
                                                                        '        '
                                                                        ')\n'
                                                                        '\n'
                                                                        '        '
                                                                        '# - - '
                                                                        '- - - '
                                                                        '- - - '
                                                                        '- - - '
                                                                        '- - - '
                                                                        '- - - '
                                                                        '- - - '
                                                                        '- - - '
                                                                        '- -\n'
                                                                        '        '
                                                                        '# '
                                                                        'Record '
                                                                        'results\n'
                                                                        '        '
                                                                        '# . . '
                                                                        '. . . '
                                                                        '. . . '
                                                                        '. . . '
                                                                        '. . . '
                                                                        '. . . '
                                                                        '. . . '
                                                                        '. . . '
                                                                        '. .\n'
                                                                        '        '
                                                                        'debug_print("record '
                                                                        'results", '
                                                                        'debug)\n'
                                                                        '\n'
                                                                        '        '
                                                                        '# Set '
                                                                        'output '
                                                                        'file '
                                                                        'name '
                                                                        'for '
                                                                        'NetCDF '
                                                                        'and '
                                                                        'plot\n'
                                                                        '        '
                                                                        'output_filename_obs '
                                                                        '= '
                                                                        '"_".join(\n'
                                                                        '            '
                                                                        '[\n'
                                                                        '                '
                                                                        'mode,\n'
                                                                        '                '
                                                                        'var,\n'
                                                                        '                '
                                                                        '"EOF" '
                                                                        '+ '
                                                                        'str(eofn_obs),\n'
                                                                        '                '
                                                                        'season,\n'
                                                                        '                '
                                                                        '"obs",\n'
                                                                        '                '
                                                                        'str(osyear) '
                                                                        '+ "-" '
                                                                        '+ '
                                                                        'str(oeyear),\n'
                                                                        '            '
                                                                        ']\n'
                                                                        '        '
                                                                        ')\n'
                                                                        '        '
                                                                        'if '
                                                                        'EofScaling:\n'
                                                                        '            '
                                                                        'output_filename_obs '
                                                                        '+= '
                                                                        '"_EOFscaled"\n'
                                                                        '\n'
                                                                        '        '
                                                                        '# '
                                                                        'Save '
                                                                        'global '
                                                                        'map, '
                                                                        'pc '
                                                                        'timeseries, '
                                                                        'and '
                                                                        'fraction '
                                                                        'in '
                                                                        'NetCDF '
                                                                        'output\n'
                                                                        '        '
                                                                        'if '
                                                                        'nc_out_obs:\n'
                                                                        '            '
                                                                        'output_nc_file_obs '
                                                                        '= '
                                                                        'os.path.join(\n'
                                                                        '                '
                                                                        'outdir(output_type="diagnostic_results"), '
                                                                        'output_filename_obs\n'
                                                                        '            '
                                                                        ')\n'
                                                                        '            '
                                                                        'write_nc_output(\n'
                                                                        '                '
                                                                        'output_nc_file_obs,\n'
                                                                        '                '
                                                                        'eof_lr_obs[season],\n'
                                                                        '                '
                                                                        'pc_obs[season],\n'
                                                                        '                '
                                                                        'frac_obs[season],\n'
                                                                        '                '
                                                                        'slope_obs,\n'
                                                                        '                '
                                                                        'intercept_obs,\n'
                                                                        '            '
                                                                        ')\n'
                                                                        '\n'
                                                                        '        '
                                                                        '# '
                                                                        'Plotting\n'
                                                                        '        '
                                                                        'if '
                                                                        'plot_obs:\n'
                                                                        '            '
                                                                        'output_img_file_obs '
                                                                        '= '
                                                                        'os.path.join(\n'
                                                                        '                '
                                                                        'outdir(output_type="graphics"), '
                                                                        'output_filename_obs\n'
                                                                        '            '
                                                                        ')\n'
                                                                        '            '
                                                                        '# '
                                                                        'plot_map(mode, '
                                                                        "'[REF] "
                                                                        "'+obs_name, "
                                                                        'osyear, '
                                                                        'oeyear, '
                                                                        'season,\n'
                                                                        '            '
                                                                        '#          '
                                                                        'eof_obs[season], '
                                                                        'frac_obs[season],\n'
                                                                        '            '
                                                                        '#          '
                                                                        "output_img_file_obs+'_org_eof')\n"
                                                                        '            '
                                                                        'plot_map(\n'
                                                                        '                '
                                                                        'mode,\n'
                                                                        '                '
                                                                        '"[REF] '
                                                                        '" + '
                                                                        'obs_name,\n'
                                                                        '                '
                                                                        'osyear,\n'
                                                                        '                '
                                                                        'oeyear,\n'
                                                                        '                '
                                                                        'season,\n'
                                                                        '                '
                                                                        'eof_lr_obs[season](region_subdomain),\n'
                                                                        '                '
                                                                        'frac_obs[season],\n'
                                                                        '                '
                                                                        'output_img_file_obs,\n'
                                                                        '            '
                                                                        ')\n'
                                                                        '            '
                                                                        'plot_map(\n'
                                                                        '                '
                                                                        'mode '
                                                                        '+ '
                                                                        '"_teleconnection",\n'
                                                                        '                '
                                                                        '"[REF] '
                                                                        '" + '
                                                                        'obs_name,\n'
                                                                        '                '
                                                                        'osyear,\n'
                                                                        '                '
                                                                        'oeyear,\n'
                                                                        '                '
                                                                        'season,\n'
                                                                        '                '
                                                                        'eof_lr_obs[season](longitude=(lon1g, '
                                                                        'lon2g)),\n'
                                                                        '                '
                                                                        'frac_obs[season],\n'
                                                                        '                '
                                                                        'output_img_file_obs '
                                                                        '+ '
                                                                        '"_teleconnection",\n'
                                                                        '            '
                                                                        ')\n'
                                                                        '            '
                                                                        'debug_print("obs '
                                                                        'plotting '
                                                                        'end", '
                                                                        'debug)\n'
                                                                        '\n'
                                                                        '        '
                                                                        '# '
                                                                        'Save '
                                                                        'stdv '
                                                                        'of PC '
                                                                        'time '
                                                                        'series '
                                                                        'in '
                                                                        'dictionary\n'
                                                                        '        '
                                                                        'dict_head_obs["stdv_pc"] '
                                                                        '= '
                                                                        'stdv_pc_obs[season]\n'
                                                                        '        '
                                                                        'dict_head_obs["frac"] '
                                                                        '= '
                                                                        'float(frac_obs[season])\n'
                                                                        '\n'
                                                                        '        '
                                                                        '# '
                                                                        'Mean\n'
                                                                        '        '
                                                                        'mean_obs '
                                                                        '= '
                                                                        'cdutil.averager(eof_obs[season], '
                                                                        'axis="yx", '
                                                                        'weights="weighted")\n'
                                                                        '        '
                                                                        'mean_glo_obs '
                                                                        '= '
                                                                        'cdutil.averager(\n'
                                                                        '            '
                                                                        'eof_lr_obs[season], '
                                                                        'axis="yx", '
                                                                        'weights="weighted"\n'
                                                                        '        '
                                                                        ')\n'
                                                                        '        '
                                                                        'dict_head_obs["mean"] '
                                                                        '= '
                                                                        'float(mean_obs)\n'
                                                                        '        '
                                                                        'dict_head_obs["mean_glo"] '
                                                                        '= '
                                                                        'float(mean_glo_obs)\n'
                                                                        '        '
                                                                        'debug_print("obs '
                                                                        'mean '
                                                                        'end", '
                                                                        'debug)\n'
                                                                        '\n'
                                                                        '        '
                                                                        '# '
                                                                        'North '
                                                                        'test '
                                                                        '-- '
                                                                        'make '
                                                                        'this '
                                                                        'available '
                                                                        'as '
                                                                        'option '
                                                                        'later...\n'
                                                                        '        '
                                                                        '# '
                                                                        "execfile('../north_test.py')\n"
                                                                        '\n'
                                                                        '    '
                                                                        'debug_print("obs '
                                                                        'end", '
                                                                        'debug)\n'
                                                                        '\n'
                                                                        '# '
                                                                        '=================================================\n'
                                                                        '# '
                                                                        'Model\n'
                                                                        '# '
                                                                        '-------------------------------------------------\n'
                                                                        'for '
                                                                        'model '
                                                                        'in '
                                                                        'models:\n'
                                                                        '    '
                                                                        'print(" '
                                                                        '----- '
                                                                        '", '
                                                                        'model, '
                                                                        '" '
                                                                        '---------------------")\n'
                                                                        '\n'
                                                                        '    '
                                                                        'if '
                                                                        'model '
                                                                        'not '
                                                                        'in '
                                                                        'list(result_dict["RESULTS"].keys()):\n'
                                                                        '        '
                                                                        'result_dict["RESULTS"][model] '
                                                                        '= {}\n'
                                                                        '\n'
                                                                        '    '
                                                                        'model_path_list '
                                                                        '= '
                                                                        'glob.glob(\n'
                                                                        '        '
                                                                        'modpath(mip=mip, '
                                                                        'exp=exp, '
                                                                        'model=model, '
                                                                        'realization=realization, '
                                                                        'variable=var)\n'
                                                                        '    '
                                                                        ')\n'
                                                                        '\n'
                                                                        '    '
                                                                        'model_path_list '
                                                                        '= '
                                                                        'sort_human(model_path_list)\n'
                                                                        '\n'
                                                                        '    '
                                                                        'debug_print("model_path_list: '
                                                                        '" + '
                                                                        'str(model_path_list), '
                                                                        'debug)\n'
                                                                        '\n'
                                                                        '    # '
                                                                        'Find '
                                                                        'where '
                                                                        'run '
                                                                        'can '
                                                                        'be '
                                                                        'gripped '
                                                                        'from '
                                                                        'given '
                                                                        'filename '
                                                                        'template '
                                                                        'for '
                                                                        'modpath\n'
                                                                        '    '
                                                                        'if '
                                                                        'realization '
                                                                        '== '
                                                                        '"*":\n'
                                                                        '        '
                                                                        'run_in_modpath '
                                                                        '= (\n'
                                                                        '            '
                                                                        'modpath(\n'
                                                                        '                '
                                                                        'mip=mip, '
                                                                        'exp=exp, '
                                                                        'model=model, '
                                                                        'realization=realization, '
                                                                        'variable=var\n'
                                                                        '            '
                                                                        ')\n'
                                                                        '            '
                                                                        '.split("/")[-1]\n'
                                                                        '            '
                                                                        '.split(".")\n'
                                                                        '            '
                                                                        '.index(realization)\n'
                                                                        '        '
                                                                        ')\n'
                                                                        '\n'
                                                                        '    # '
                                                                        '-------------------------------------------------\n'
                                                                        '    # '
                                                                        'Run\n'
                                                                        '    # '
                                                                        '-------------------------------------------------\n'
                                                                        '    '
                                                                        'for '
                                                                        'model_path '
                                                                        'in '
                                                                        'model_path_list:\n'
                                                                        '\n'
                                                                        '        '
                                                                        'try:\n'
                                                                        '            '
                                                                        'if '
                                                                        'realization '
                                                                        '== '
                                                                        '"*":\n'
                                                                        '                '
                                                                        'run = '
                                                                        '(model_path.split("/")[-1]).split(".")[run_in_modpath]\n'
                                                                        '            '
                                                                        'else:\n'
                                                                        '                '
                                                                        'run = '
                                                                        'realization\n'
                                                                        '            '
                                                                        'print(" '
                                                                        '--- '
                                                                        '", '
                                                                        'run, '
                                                                        '" '
                                                                        '---")\n'
                                                                        '\n'
                                                                        '            '
                                                                        'if '
                                                                        'run '
                                                                        'not '
                                                                        'in '
                                                                        'list(result_dict["RESULTS"][model].keys()):\n'
                                                                        '                '
                                                                        'result_dict["RESULTS"][model][run] '
                                                                        '= {}\n'
                                                                        '            '
                                                                        'if '
                                                                        '"defaultReference" '
                                                                        'not '
                                                                        'in '
                                                                        'list(\n'
                                                                        '                '
                                                                        'result_dict["RESULTS"][model][run].keys()\n'
                                                                        '            '
                                                                        '):\n'
                                                                        '                '
                                                                        'result_dict["RESULTS"][model][run]["defaultReference"] '
                                                                        '= {}\n'
                                                                        '            '
                                                                        'if '
                                                                        'mode '
                                                                        'not '
                                                                        'in '
                                                                        'list(\n'
                                                                        '                '
                                                                        'result_dict["RESULTS"][model][run]["defaultReference"].keys()\n'
                                                                        '            '
                                                                        '):\n'
                                                                        '                '
                                                                        'result_dict["RESULTS"][model][run]["defaultReference"][mode] '
                                                                        '= {}\n'
                                                                        '            '
                                                                        'result_dict["RESULTS"][model][run]["defaultReference"][mode][\n'
                                                                        '                '
                                                                        '"target_model_eofs"\n'
                                                                        '            '
                                                                        '] = '
                                                                        'eofn_mod\n'
                                                                        '\n'
                                                                        '            '
                                                                        'if '
                                                                        'LandMask:\n'
                                                                        '                '
                                                                        'model_lf_path '
                                                                        '= '
                                                                        'modpath_lf(mip=mip, '
                                                                        'exp=exp, '
                                                                        'model=model)\n'
                                                                        '            '
                                                                        'else:\n'
                                                                        '                '
                                                                        'model_lf_path '
                                                                        '= '
                                                                        'None\n'
                                                                        '\n'
                                                                        '            '
                                                                        '# '
                                                                        'read '
                                                                        'data '
                                                                        'in\n'
                                                                        '            '
                                                                        'model_timeseries, '
                                                                        'msyear, '
                                                                        'meyear '
                                                                        '= '
                                                                        'read_data_in(\n'
                                                                        '                '
                                                                        'model,\n'
                                                                        '                '
                                                                        'model_path,\n'
                                                                        '                '
                                                                        'model_lf_path,\n'
                                                                        '                '
                                                                        'var,\n'
                                                                        '                '
                                                                        'var,\n'
                                                                        '                '
                                                                        'start_time,\n'
                                                                        '                '
                                                                        'end_time,\n'
                                                                        '                '
                                                                        'ModUnitsAdjust,\n'
                                                                        '                '
                                                                        'LandMask,\n'
                                                                        '                '
                                                                        'debug=debug,\n'
                                                                        '            '
                                                                        ')\n'
                                                                        '\n'
                                                                        '            '
                                                                        'debug_print("msyear: '
                                                                        '" + '
                                                                        'str(msyear) '
                                                                        '+ " '
                                                                        'meyear: '
                                                                        '" + '
                                                                        'str(meyear), '
                                                                        'debug)\n'
                                                                        '\n'
                                                                        '            '
                                                                        '# '
                                                                        '-------------------------------------------------\n'
                                                                        '            '
                                                                        '# '
                                                                        'Season '
                                                                        'loop\n'
                                                                        '            '
                                                                        '# - - '
                                                                        '- - - '
                                                                        '- - - '
                                                                        '- - - '
                                                                        '- - - '
                                                                        '- - - '
                                                                        '- - - '
                                                                        '- - - '
                                                                        '- -\n'
                                                                        '            '
                                                                        'for '
                                                                        'season '
                                                                        'in '
                                                                        'seasons:\n'
                                                                        '                '
                                                                        'debug_print("season: '
                                                                        '" + '
                                                                        'season, '
                                                                        'debug)\n'
                                                                        '\n'
                                                                        '                '
                                                                        'if '
                                                                        'season '
                                                                        'not '
                                                                        'in '
                                                                        'list(\n'
                                                                        '                    '
                                                                        'result_dict["RESULTS"][model][run]["defaultReference"][mode].keys()\n'
                                                                        '                '
                                                                        '):\n'
                                                                        '                    '
                                                                        'result_dict["RESULTS"][model][run]["defaultReference"][mode][\n'
                                                                        '                        '
                                                                        'season\n'
                                                                        '                    '
                                                                        '] = '
                                                                        '{}\n'
                                                                        '                '
                                                                        'result_dict["RESULTS"][model][run]["defaultReference"][mode][season][\n'
                                                                        '                    '
                                                                        '"period"\n'
                                                                        '                '
                                                                        '] = '
                                                                        '(str(msyear) '
                                                                        '+ "-" '
                                                                        '+ '
                                                                        'str(meyear))\n'
                                                                        '\n'
                                                                        '                '
                                                                        '# '
                                                                        'Time '
                                                                        'series '
                                                                        'adjustment '
                                                                        '(remove '
                                                                        'annual '
                                                                        'cycle, '
                                                                        'seasonal '
                                                                        'mean '
                                                                        '(if '
                                                                        'needed),\n'
                                                                        '                '
                                                                        '# and '
                                                                        'subtracting '
                                                                        'domain '
                                                                        '(or '
                                                                        'global) '
                                                                        'mean '
                                                                        'of '
                                                                        'each '
                                                                        'time '
                                                                        'step)\n'
                                                                        '                '
                                                                        'debug_print("time '
                                                                        'series '
                                                                        'adjustment", '
                                                                        'debug)\n'
                                                                        '                '
                                                                        'model_timeseries_season '
                                                                        '= '
                                                                        'adjust_timeseries(\n'
                                                                        '                    '
                                                                        'model_timeseries, '
                                                                        'mode, '
                                                                        'season, '
                                                                        'region_subdomain, '
                                                                        'RmDomainMean\n'
                                                                        '                '
                                                                        ')\n'
                                                                        '\n'
                                                                        '                '
                                                                        '# '
                                                                        'Extract '
                                                                        'subdomain\n'
                                                                        '                '
                                                                        'debug_print("extract '
                                                                        'subdomain", '
                                                                        'debug)\n'
                                                                        '                '
                                                                        'model_timeseries_season_subdomain '
                                                                        '= '
                                                                        'model_timeseries_season(\n'
                                                                        '                    '
                                                                        'region_subdomain\n'
                                                                        '                '
                                                                        ')\n'
                                                                        '\n'
                                                                        '                '
                                                                        '# '
                                                                        '-------------------------------------------------\n'
                                                                        '                '
                                                                        '# '
                                                                        'Common '
                                                                        'Basis '
                                                                        'Function '
                                                                        'Approach\n'
                                                                        '                '
                                                                        '# - - '
                                                                        '- - - '
                                                                        '- - - '
                                                                        '- - - '
                                                                        '- - - '
                                                                        '- - - '
                                                                        '- - - '
                                                                        '- - - '
                                                                        '- -\n'
                                                                        '                '
                                                                        'if '
                                                                        'CBF '
                                                                        'and '
                                                                        'obs_compare:\n'
                                                                        '\n'
                                                                        '                    '
                                                                        'if '
                                                                        '"cbf" '
                                                                        'not '
                                                                        'in '
                                                                        'list(\n'
                                                                        '                        '
                                                                        'result_dict["RESULTS"][model][run]["defaultReference"][mode][\n'
                                                                        '                            '
                                                                        'season\n'
                                                                        '                        '
                                                                        '].keys()\n'
                                                                        '                    '
                                                                        '):\n'
                                                                        '                        '
                                                                        'result_dict["RESULTS"][model][run]["defaultReference"][mode][\n'
                                                                        '                            '
                                                                        'season\n'
                                                                        '                        '
                                                                        ']["cbf"] '
                                                                        '= {}\n'
                                                                        '                    '
                                                                        'dict_head '
                                                                        '= '
                                                                        'result_dict["RESULTS"][model][run]["defaultReference"][\n'
                                                                        '                        '
                                                                        'mode\n'
                                                                        '                    '
                                                                        '][season]["cbf"]\n'
                                                                        '                    '
                                                                        'debug_print("CBF '
                                                                        'approach '
                                                                        'start", '
                                                                        'debug)\n'
                                                                        '\n'
                                                                        '                    '
                                                                        '# '
                                                                        'Regrid '
                                                                        '(interpolation, '
                                                                        'model '
                                                                        'grid '
                                                                        'to '
                                                                        'ref '
                                                                        'grid)\n'
                                                                        '                    '
                                                                        'model_timeseries_season_regrid '
                                                                        '= '
                                                                        'model_timeseries_season.regrid(\n'
                                                                        '                        '
                                                                        'ref_grid_global, '
                                                                        'regridTool="regrid2", '
                                                                        'mkCyclic=True\n'
                                                                        '                    '
                                                                        ')\n'
                                                                        '                    '
                                                                        'model_timeseries_season_regrid_subdomain '
                                                                        '= (\n'
                                                                        '                        '
                                                                        'model_timeseries_season_regrid(region_subdomain)\n'
                                                                        '                    '
                                                                        ')\n'
                                                                        '\n'
                                                                        '                    '
                                                                        '# '
                                                                        'Matching '
                                                                        "model's "
                                                                        'missing '
                                                                        'value '
                                                                        'location '
                                                                        'to '
                                                                        'that '
                                                                        'of '
                                                                        'observation\n'
                                                                        '                    '
                                                                        '# '
                                                                        'Save '
                                                                        'axes '
                                                                        'for '
                                                                        'preserving\n'
                                                                        '                    '
                                                                        'axes '
                                                                        '= '
                                                                        'model_timeseries_season_regrid_subdomain.getAxisList()\n'
                                                                        '                    '
                                                                        '# 1) '
                                                                        'Replace '
                                                                        "model's "
                                                                        'masked '
                                                                        'grid '
                                                                        'to 0, '
                                                                        'so '
                                                                        'theoritically '
                                                                        "won't "
                                                                        'affect '
                                                                        'to '
                                                                        'result\n'
                                                                        '                    '
                                                                        'model_timeseries_season_regrid_subdomain '
                                                                        '= '
                                                                        'MV2.array(\n'
                                                                        '                        '
                                                                        'model_timeseries_season_regrid_subdomain.filled(0.0)\n'
                                                                        '                    '
                                                                        ')\n'
                                                                        '                    '
                                                                        '# 2) '
                                                                        'Give '
                                                                        "obs's "
                                                                        'mask '
                                                                        'to '
                                                                        'model '
                                                                        'field, '
                                                                        'so '
                                                                        'enable '
                                                                        'projecField '
                                                                        'functionality '
                                                                        'below\n'
                                                                        '                    '
                                                                        'model_timeseries_season_regrid_subdomain.mask '
                                                                        '= '
                                                                        'eof_obs[season].mask\n'
                                                                        '                    '
                                                                        '# '
                                                                        'Preserve '
                                                                        'axes\n'
                                                                        '                    '
                                                                        'model_timeseries_season_regrid_subdomain.setAxisList(axes)\n'
                                                                        '\n'
                                                                        '                    '
                                                                        '# CBF '
                                                                        'PC '
                                                                        'time '
                                                                        'series\n'
                                                                        '                    '
                                                                        'cbf_pc '
                                                                        '= '
                                                                        'gain_pseudo_pcs(\n'
                                                                        '                        '
                                                                        'solver_obs[season],\n'
                                                                        '                        '
                                                                        'model_timeseries_season_regrid_subdomain,\n'
                                                                        '                        '
                                                                        'eofn_obs,\n'
                                                                        '                        '
                                                                        'reverse_sign_obs[season],\n'
                                                                        '                        '
                                                                        'EofScaling=EofScaling,\n'
                                                                        '                    '
                                                                        ')\n'
                                                                        '\n'
                                                                        '                    '
                                                                        '# '
                                                                        'Calculate '
                                                                        'stdv '
                                                                        'of '
                                                                        'cbf '
                                                                        'pc '
                                                                        'time '
                                                                        'series\n'
                                                                        '                    '
                                                                        'stdv_cbf_pc '
                                                                        '= '
                                                                        'calcSTD(cbf_pc)\n'
                                                                        '\n'
                                                                        '                    '
                                                                        '# '
                                                                        'Linear '
                                                                        'regression '
                                                                        'to '
                                                                        'have '
                                                                        'extended '
                                                                        'global '
                                                                        'map; '
                                                                        'teleconnection '
                                                                        'purpose\n'
                                                                        '                    '
                                                                        '(\n'
                                                                        '                        '
                                                                        'eof_lr_cbf,\n'
                                                                        '                        '
                                                                        'slope_cbf,\n'
                                                                        '                        '
                                                                        'intercept_cbf,\n'
                                                                        '                    '
                                                                        ') = '
                                                                        'linear_regression_on_globe_for_teleconnection(\n'
                                                                        '                        '
                                                                        'cbf_pc,\n'
                                                                        '                        '
                                                                        'model_timeseries_season,\n'
                                                                        '                        '
                                                                        'stdv_cbf_pc,\n'
                                                                        '                        '
                                                                        '# '
                                                                        'cbf_pc, '
                                                                        'model_timeseries_season_regrid, '
                                                                        'stdv_cbf_pc,\n'
                                                                        '                        '
                                                                        'RmDomainMean,\n'
                                                                        '                        '
                                                                        'EofScaling,\n'
                                                                        '                        '
                                                                        'debug=debug,\n'
                                                                        '                    '
                                                                        ')\n'
                                                                        '\n'
                                                                        '                    '
                                                                        '# '
                                                                        'Extract '
                                                                        'subdomain '
                                                                        'for '
                                                                        'statistics\n'
                                                                        '                    '
                                                                        'eof_lr_cbf_subdomain '
                                                                        '= '
                                                                        'eof_lr_cbf(region_subdomain)\n'
                                                                        '\n'
                                                                        '                    '
                                                                        '# '
                                                                        'Calculate '
                                                                        'fraction '
                                                                        'of '
                                                                        'variance '
                                                                        'explained '
                                                                        'by '
                                                                        'cbf '
                                                                        'pc\n'
                                                                        '                    '
                                                                        'frac_cbf '
                                                                        '= '
                                                                        'gain_pcs_fraction(\n'
                                                                        '                        '
                                                                        '# '
                                                                        'model_timeseries_season_regrid_subdomain,  '
                                                                        '# '
                                                                        'regridded '
                                                                        'model '
                                                                        'anomaly '
                                                                        'space\n'
                                                                        '                        '
                                                                        'model_timeseries_season_subdomain,  '
                                                                        '# '
                                                                        'native '
                                                                        'grid '
                                                                        'model '
                                                                        'anomaly '
                                                                        'space\n'
                                                                        '                        '
                                                                        'eof_lr_cbf_subdomain,\n'
                                                                        '                        '
                                                                        'cbf_pc '
                                                                        '/ '
                                                                        'stdv_cbf_pc,\n'
                                                                        '                        '
                                                                        'debug=debug,\n'
                                                                        '                    '
                                                                        ')\n'
                                                                        '\n'
                                                                        '                    '
                                                                        '# '
                                                                        'SENSITIVITY '
                                                                        'TEST '
                                                                        '---\n'
                                                                        '                    '
                                                                        '# '
                                                                        'Calculate '
                                                                        'fraction '
                                                                        'of '
                                                                        'variance '
                                                                        'explained '
                                                                        'by '
                                                                        'cbf '
                                                                        'pc '
                                                                        '(on '
                                                                        'regrid '
                                                                        'domain)\n'
                                                                        '                    '
                                                                        'frac_cbf_regrid '
                                                                        '= '
                                                                        'gain_pcs_fraction(\n'
                                                                        '                        '
                                                                        'model_timeseries_season_regrid_subdomain,\n'
                                                                        '                        '
                                                                        'eof_lr_cbf_subdomain,\n'
                                                                        '                        '
                                                                        'cbf_pc '
                                                                        '/ '
                                                                        'stdv_cbf_pc,\n'
                                                                        '                        '
                                                                        'debug=debug,\n'
                                                                        '                    '
                                                                        ')\n'
                                                                        '                    '
                                                                        'dict_head["frac_cbf_regrid"] '
                                                                        '= '
                                                                        'float(frac_cbf_regrid)\n'
                                                                        '\n'
                                                                        '                    '
                                                                        '# - - '
                                                                        '- - - '
                                                                        '- - - '
                                                                        '- - - '
                                                                        '- - - '
                                                                        '- - - '
                                                                        '- - - '
                                                                        '- - - '
                                                                        '- -\n'
                                                                        '                    '
                                                                        '# '
                                                                        'Record '
                                                                        'results\n'
                                                                        '                    '
                                                                        '# - - '
                                                                        '- - - '
                                                                        '- - - '
                                                                        '- - - '
                                                                        '- - - '
                                                                        '- - - '
                                                                        '- - - '
                                                                        '- - - '
                                                                        '- -\n'
                                                                        '                    '
                                                                        '# '
                                                                        'Metrics '
                                                                        'results '
                                                                        '-- '
                                                                        'statistics '
                                                                        'to '
                                                                        'JSON\n'
                                                                        '                    '
                                                                        'dict_head, '
                                                                        'eof_lr_cbf '
                                                                        '= '
                                                                        'calc_stats_save_dict(\n'
                                                                        '                        '
                                                                        'dict_head,\n'
                                                                        '                        '
                                                                        'eof_lr_cbf_subdomain,\n'
                                                                        '                        '
                                                                        'eof_lr_cbf,\n'
                                                                        '                        '
                                                                        'slope_cbf,\n'
                                                                        '                        '
                                                                        'cbf_pc,\n'
                                                                        '                        '
                                                                        'stdv_cbf_pc,\n'
                                                                        '                        '
                                                                        'frac_cbf,\n'
                                                                        '                        '
                                                                        'region_subdomain,\n'
                                                                        '                        '
                                                                        'eof_obs[season],\n'
                                                                        '                        '
                                                                        'eof_lr_obs[season],\n'
                                                                        '                        '
                                                                        'stdv_pc_obs[season],\n'
                                                                        '                        '
                                                                        'obs_compare=obs_compare,\n'
                                                                        '                        '
                                                                        'method="cbf",\n'
                                                                        '                        '
                                                                        'debug=debug,\n'
                                                                        '                    '
                                                                        ')\n'
                                                                        '\n'
                                                                        '                    '
                                                                        '# Set '
                                                                        'output '
                                                                        'file '
                                                                        'name '
                                                                        'for '
                                                                        'NetCDF '
                                                                        'and '
                                                                        'plot '
                                                                        'images\n'
                                                                        '                    '
                                                                        'output_filename '
                                                                        '= '
                                                                        '"_".join(\n'
                                                                        '                        '
                                                                        '[\n'
                                                                        '                            '
                                                                        'mode,\n'
                                                                        '                            '
                                                                        'var,\n'
                                                                        '                            '
                                                                        '"EOF" '
                                                                        '+ '
                                                                        'str(eofn_mod),\n'
                                                                        '                            '
                                                                        'season,\n'
                                                                        '                            '
                                                                        'mip,\n'
                                                                        '                            '
                                                                        'model,\n'
                                                                        '                            '
                                                                        'exp,\n'
                                                                        '                            '
                                                                        'run,\n'
                                                                        '                            '
                                                                        'fq,\n'
                                                                        '                            '
                                                                        'realm,\n'
                                                                        '                            '
                                                                        'str(msyear) '
                                                                        '+ "-" '
                                                                        '+ '
                                                                        'str(meyear),\n'
                                                                        '                        '
                                                                        ']\n'
                                                                        '                    '
                                                                        ')\n'
                                                                        '                    '
                                                                        'if '
                                                                        'EofScaling:\n'
                                                                        '                        '
                                                                        'output_filename '
                                                                        '+= '
                                                                        '"_EOFscaled"\n'
                                                                        '\n'
                                                                        '                    '
                                                                        '# '
                                                                        'Diagnostics '
                                                                        'results '
                                                                        '-- '
                                                                        'data '
                                                                        'to '
                                                                        'NetCDF\n'
                                                                        '                    '
                                                                        '# '
                                                                        'Save '
                                                                        'global '
                                                                        'map, '
                                                                        'pc '
                                                                        'timeseries, '
                                                                        'and '
                                                                        'fraction '
                                                                        'in '
                                                                        'NetCDF '
                                                                        'output\n'
                                                                        '                    '
                                                                        'output_nc_file '
                                                                        '= '
                                                                        'os.path.join(\n'
                                                                        '                        '
                                                                        'outdir(output_type="diagnostic_results"), '
                                                                        'output_filename\n'
                                                                        '                    '
                                                                        ')\n'
                                                                        '                    '
                                                                        'if '
                                                                        'nc_out_model:\n'
                                                                        '                        '
                                                                        'write_nc_output(\n'
                                                                        '                            '
                                                                        'output_nc_file '
                                                                        '+ '
                                                                        '"_cbf",\n'
                                                                        '                            '
                                                                        'eof_lr_cbf,\n'
                                                                        '                            '
                                                                        'cbf_pc,\n'
                                                                        '                            '
                                                                        'frac_cbf,\n'
                                                                        '                            '
                                                                        'slope_cbf,\n'
                                                                        '                            '
                                                                        'intercept_cbf,\n'
                                                                        '                        '
                                                                        ')\n'
                                                                        '\n'
                                                                        '                    '
                                                                        '# '
                                                                        'Graphics '
                                                                        '-- '
                                                                        'plot '
                                                                        'map '
                                                                        'image '
                                                                        'to '
                                                                        'PNG\n'
                                                                        '                    '
                                                                        'output_img_file '
                                                                        '= '
                                                                        'os.path.join(\n'
                                                                        '                        '
                                                                        'outdir(output_type="graphics"), '
                                                                        'output_filename\n'
                                                                        '                    '
                                                                        ')\n'
                                                                        '                    '
                                                                        'if '
                                                                        'plot_model:\n'
                                                                        '                        '
                                                                        'plot_map(\n'
                                                                        '                            '
                                                                        'mode,\n'
                                                                        '                            '
                                                                        'mip.upper() '
                                                                        '+ " " '
                                                                        '+ '
                                                                        'model '
                                                                        '+ " '
                                                                        '(" + '
                                                                        'run + '
                                                                        '")" + '
                                                                        '" - '
                                                                        'CBF",\n'
                                                                        '                            '
                                                                        'msyear,\n'
                                                                        '                            '
                                                                        'meyear,\n'
                                                                        '                            '
                                                                        'season,\n'
                                                                        '                            '
                                                                        'eof_lr_cbf(region_subdomain),\n'
                                                                        '                            '
                                                                        'frac_cbf,\n'
                                                                        '                            '
                                                                        'output_img_file '
                                                                        '+ '
                                                                        '"_cbf",\n'
                                                                        '                        '
                                                                        ')\n'
                                                                        '                        '
                                                                        'plot_map(\n'
                                                                        '                            '
                                                                        'mode '
                                                                        '+ '
                                                                        '"_teleconnection",\n'
                                                                        '                            '
                                                                        'mip.upper() '
                                                                        '+ " " '
                                                                        '+ '
                                                                        'model '
                                                                        '+ " '
                                                                        '(" + '
                                                                        'run + '
                                                                        '")" + '
                                                                        '" - '
                                                                        'CBF",\n'
                                                                        '                            '
                                                                        'msyear,\n'
                                                                        '                            '
                                                                        'meyear,\n'
                                                                        '                            '
                                                                        'season,\n'
                                                                        '                            '
                                                                        'eof_lr_cbf(longitude=(lon1g, '
                                                                        'lon2g)),\n'
                                                                        '                            '
                                                                        'frac_cbf,\n'
                                                                        '                            '
                                                                        'output_img_file '
                                                                        '+ '
                                                                        '"_cbf_teleconnection",\n'
                                                                        '                        '
                                                                        ')\n'
                                                                        '\n'
                                                                        '                    '
                                                                        'debug_print("cbf '
                                                                        'pcs '
                                                                        'end", '
                                                                        'debug)\n'
                                                                        '\n'
                                                                        '                '
                                                                        '# '
                                                                        '-------------------------------------------------\n'
                                                                        '                '
                                                                        '# '
                                                                        'Conventional '
                                                                        'EOF '
                                                                        'approach '
                                                                        'as '
                                                                        'supplementary\n'
                                                                        '                '
                                                                        '# - - '
                                                                        '- - - '
                                                                        '- - - '
                                                                        '- - - '
                                                                        '- - - '
                                                                        '- - - '
                                                                        '- - - '
                                                                        '- - - '
                                                                        '- -\n'
                                                                        '                '
                                                                        'if '
                                                                        'ConvEOF:\n'
                                                                        '\n'
                                                                        '                    '
                                                                        'eofn_mod_max '
                                                                        '= 3\n'
                                                                        '\n'
                                                                        '                    '
                                                                        '# EOF '
                                                                        'analysis\n'
                                                                        '                    '
                                                                        'debug_print("conventional '
                                                                        'EOF '
                                                                        'analysis '
                                                                        'start", '
                                                                        'debug)\n'
                                                                        '                    '
                                                                        '(\n'
                                                                        '                        '
                                                                        'eof_list,\n'
                                                                        '                        '
                                                                        'pc_list,\n'
                                                                        '                        '
                                                                        'frac_list,\n'
                                                                        '                        '
                                                                        'reverse_sign_list,\n'
                                                                        '                        '
                                                                        'solver,\n'
                                                                        '                    '
                                                                        ') = '
                                                                        'eof_analysis_get_variance_mode(\n'
                                                                        '                        '
                                                                        'mode,\n'
                                                                        '                        '
                                                                        'model_timeseries_season_subdomain,\n'
                                                                        '                        '
                                                                        'eofn=eofn_mod,\n'
                                                                        '                        '
                                                                        'eofn_max=eofn_mod_max,\n'
                                                                        '                        '
                                                                        'debug=debug,\n'
                                                                        '                        '
                                                                        'EofScaling=EofScaling,\n'
                                                                        '                        '
                                                                        'save_multiple_eofs=True,\n'
                                                                        '                    '
                                                                        ')\n'
                                                                        '                    '
                                                                        'debug_print("conventional '
                                                                        'EOF '
                                                                        'analysis '
                                                                        'done", '
                                                                        'debug)\n'
                                                                        '\n'
                                                                        '                    '
                                                                        '# '
                                                                        '-------------------------------------------------\n'
                                                                        '                    '
                                                                        '# For '
                                                                        'multiple '
                                                                        'EOFs '
                                                                        '(e.g., '
                                                                        'EOF1, '
                                                                        'EOF2, '
                                                                        'EOF3, '
                                                                        '...)\n'
                                                                        '                    '
                                                                        '# - - '
                                                                        '- - - '
                                                                        '- - - '
                                                                        '- - - '
                                                                        '- - - '
                                                                        '- - - '
                                                                        '- - - '
                                                                        '- - - '
                                                                        '- -\n'
                                                                        '                    '
                                                                        'rms_list '
                                                                        '= []\n'
                                                                        '                    '
                                                                        'cor_list '
                                                                        '= []\n'
                                                                        '                    '
                                                                        'tcor_list '
                                                                        '= []\n'
                                                                        '\n'
                                                                        '                    '
                                                                        'for n '
                                                                        'in '
                                                                        'range(0, '
                                                                        'eofn_mod_max):\n'
                                                                        '                        '
                                                                        'eofs '
                                                                        '= '
                                                                        '"eof" '
                                                                        '+ '
                                                                        'str(n '
                                                                        '+ 1)\n'
                                                                        '                        '
                                                                        'if '
                                                                        'eofs '
                                                                        'not '
                                                                        'in '
                                                                        'list(\n'
                                                                        '                            '
                                                                        'result_dict["RESULTS"][model][run]["defaultReference"][\n'
                                                                        '                                '
                                                                        'mode\n'
                                                                        '                            '
                                                                        '][season].keys()\n'
                                                                        '                        '
                                                                        '):\n'
                                                                        '                            '
                                                                        'result_dict["RESULTS"][model][run]["defaultReference"][\n'
                                                                        '                                '
                                                                        'mode\n'
                                                                        '                            '
                                                                        '][season][eofs] '
                                                                        '= {}\n'
                                                                        '                            '
                                                                        'dict_head '
                                                                        '= '
                                                                        'result_dict["RESULTS"][model][run][\n'
                                                                        '                                '
                                                                        '"defaultReference"\n'
                                                                        '                            '
                                                                        '][mode][season][eofs]\n'
                                                                        '\n'
                                                                        '                        '
                                                                        '# '
                                                                        'Component '
                                                                        'for '
                                                                        'each '
                                                                        'EOFs\n'
                                                                        '                        '
                                                                        'eof = '
                                                                        'eof_list[n]\n'
                                                                        '                        '
                                                                        'pc = '
                                                                        'pc_list[n]\n'
                                                                        '                        '
                                                                        'frac '
                                                                        '= '
                                                                        'frac_list[n]\n'
                                                                        '\n'
                                                                        '                        '
                                                                        '# '
                                                                        'Calculate '
                                                                        'stdv '
                                                                        'of pc '
                                                                        'time '
                                                                        'series\n'
                                                                        '                        '
                                                                        'stdv_pc '
                                                                        '= '
                                                                        'calcSTD(pc)\n'
                                                                        '\n'
                                                                        '                        '
                                                                        '# '
                                                                        'Linear '
                                                                        'regression '
                                                                        'to '
                                                                        'have '
                                                                        'extended '
                                                                        'global '
                                                                        'map:\n'
                                                                        '                        '
                                                                        '(\n'
                                                                        '                            '
                                                                        'eof_lr,\n'
                                                                        '                            '
                                                                        'slope,\n'
                                                                        '                            '
                                                                        'intercept,\n'
                                                                        '                        '
                                                                        ') = '
                                                                        'linear_regression_on_globe_for_teleconnection(\n'
                                                                        '                            '
                                                                        'pc,\n'
                                                                        '                            '
                                                                        'model_timeseries_season,\n'
                                                                        '                            '
                                                                        'stdv_pc,\n'
                                                                        '                            '
                                                                        'RmDomainMean,\n'
                                                                        '                            '
                                                                        'EofScaling,\n'
                                                                        '                            '
                                                                        'debug=debug,\n'
                                                                        '                        '
                                                                        ')\n'
                                                                        '\n'
                                                                        '                        '
                                                                        '# - - '
                                                                        '- - - '
                                                                        '- - - '
                                                                        '- - - '
                                                                        '- - - '
                                                                        '- - - '
                                                                        '- - - '
                                                                        '- - - '
                                                                        '- -\n'
                                                                        '                        '
                                                                        '# '
                                                                        'Record '
                                                                        'results\n'
                                                                        '                        '
                                                                        '# - - '
                                                                        '- - - '
                                                                        '- - - '
                                                                        '- - - '
                                                                        '- - - '
                                                                        '- - - '
                                                                        '- - - '
                                                                        '- - - '
                                                                        '- -\n'
                                                                        '                        '
                                                                        '# '
                                                                        'Metrics '
                                                                        'results '
                                                                        '-- '
                                                                        'statistics '
                                                                        'to '
                                                                        'JSON\n'
                                                                        '                        '
                                                                        'if '
                                                                        'obs_compare:\n'
                                                                        '                            '
                                                                        'dict_head, '
                                                                        'eof_lr '
                                                                        '= '
                                                                        'calc_stats_save_dict(\n'
                                                                        '                                '
                                                                        'dict_head,\n'
                                                                        '                                '
                                                                        'eof,\n'
                                                                        '                                '
                                                                        'eof_lr,\n'
                                                                        '                                '
                                                                        'slope,\n'
                                                                        '                                '
                                                                        'pc,\n'
                                                                        '                                '
                                                                        'stdv_pc,\n'
                                                                        '                                '
                                                                        'frac,\n'
                                                                        '                                '
                                                                        'region_subdomain,\n'
                                                                        '                                '
                                                                        'eof_obs=eof_obs[season],\n'
                                                                        '                                '
                                                                        'eof_lr_obs=eof_lr_obs[season],\n'
                                                                        '                                '
                                                                        'stdv_pc_obs=stdv_pc_obs[season],\n'
                                                                        '                                '
                                                                        'obs_compare=obs_compare,\n'
                                                                        '                                '
                                                                        'method="eof",\n'
                                                                        '                                '
                                                                        'debug=debug,\n'
                                                                        '                            '
                                                                        ')\n'
                                                                        '                        '
                                                                        'else:\n'
                                                                        '                            '
                                                                        'dict_head, '
                                                                        'eof_lr '
                                                                        '= '
                                                                        'calc_stats_save_dict(\n'
                                                                        '                                '
                                                                        'dict_head,\n'
                                                                        '                                '
                                                                        'eof,\n'
                                                                        '                                '
                                                                        'eof_lr,\n'
                                                                        '                                '
                                                                        'slope,\n'
                                                                        '                                '
                                                                        'pc,\n'
                                                                        '                                '
                                                                        'stdv_pc,\n'
                                                                        '                                '
                                                                        'frac,\n'
                                                                        '                                '
                                                                        'region_subdomain,\n'
                                                                        '                                '
                                                                        'obs_compare=obs_compare,\n'
                                                                        '                                '
                                                                        'method="eof",\n'
                                                                        '                                '
                                                                        'debug=debug,\n'
                                                                        '                            '
                                                                        ')\n'
                                                                        '\n'
                                                                        '                        '
                                                                        '# '
                                                                        'Temporal '
                                                                        'correlation '
                                                                        'between '
                                                                        'CBF '
                                                                        'PC '
                                                                        'timeseries '
                                                                        'and '
                                                                        'usual '
                                                                        'model '
                                                                        'PC '
                                                                        'timeseries\n'
                                                                        '                        '
                                                                        'if '
                                                                        'CBF:\n'
                                                                        '                            '
                                                                        'tc = '
                                                                        'calcTCOR(cbf_pc, '
                                                                        'pc)\n'
                                                                        '                            '
                                                                        'debug_print("cbf '
                                                                        'tc '
                                                                        'end", '
                                                                        'debug)\n'
                                                                        '                            '
                                                                        'dict_head["tcor_cbf_vs_eof_pc"] '
                                                                        '= tc\n'
                                                                        '\n'
                                                                        '                        '
                                                                        '# Set '
                                                                        'output '
                                                                        'file '
                                                                        'name '
                                                                        'for '
                                                                        'NetCDF '
                                                                        'and '
                                                                        'plot '
                                                                        'images\n'
                                                                        '                        '
                                                                        'output_filename '
                                                                        '= '
                                                                        '"_".join(\n'
                                                                        '                            '
                                                                        '[\n'
                                                                        '                                '
                                                                        'mode,\n'
                                                                        '                                '
                                                                        'var,\n'
                                                                        '                                '
                                                                        '"EOF" '
                                                                        '+ '
                                                                        'str(n '
                                                                        '+ '
                                                                        '1),\n'
                                                                        '                                '
                                                                        'season,\n'
                                                                        '                                '
                                                                        'mip,\n'
                                                                        '                                '
                                                                        'model,\n'
                                                                        '                                '
                                                                        'exp,\n'
                                                                        '                                '
                                                                        'run,\n'
                                                                        '                                '
                                                                        'fq,\n'
                                                                        '                                '
                                                                        'realm,\n'
                                                                        '                                '
                                                                        'str(msyear) '
                                                                        '+ "-" '
                                                                        '+ '
                                                                        'str(meyear),\n'
                                                                        '                            '
                                                                        ']\n'
                                                                        '                        '
                                                                        ')\n'
                                                                        '                        '
                                                                        'if '
                                                                        'EofScaling:\n'
                                                                        '                            '
                                                                        'output_filename '
                                                                        '+= '
                                                                        '"_EOFscaled"\n'
                                                                        '\n'
                                                                        '                        '
                                                                        '# '
                                                                        'Diagnostics '
                                                                        'results '
                                                                        '-- '
                                                                        'data '
                                                                        'to '
                                                                        'NetCDF\n'
                                                                        '                        '
                                                                        '# '
                                                                        'Save '
                                                                        'global '
                                                                        'map, '
                                                                        'pc '
                                                                        'timeseries, '
                                                                        'and '
                                                                        'fraction '
                                                                        'in '
                                                                        'NetCDF '
                                                                        'output\n'
                                                                        '                        '
                                                                        'output_nc_file '
                                                                        '= '
                                                                        'os.path.join(\n'
                                                                        '                            '
                                                                        'outdir(output_type="diagnostic_results"), '
                                                                        'output_filename\n'
                                                                        '                        '
                                                                        ')\n'
                                                                        '                        '
                                                                        'if '
                                                                        'nc_out_model:\n'
                                                                        '                            '
                                                                        'write_nc_output(\n'
                                                                        '                                '
                                                                        'output_nc_file, '
                                                                        'eof_lr, '
                                                                        'pc, '
                                                                        'frac, '
                                                                        'slope, '
                                                                        'intercept\n'
                                                                        '                            '
                                                                        ')\n'
                                                                        '\n'
                                                                        '                        '
                                                                        '# '
                                                                        'Graphics '
                                                                        '-- '
                                                                        'plot '
                                                                        'map '
                                                                        'image '
                                                                        'to '
                                                                        'PNG\n'
                                                                        '                        '
                                                                        'output_img_file '
                                                                        '= '
                                                                        'os.path.join(\n'
                                                                        '                            '
                                                                        'outdir(output_type="graphics"), '
                                                                        'output_filename\n'
                                                                        '                        '
                                                                        ')\n'
                                                                        '                        '
                                                                        'if '
                                                                        'plot_model:\n'
                                                                        '                            '
                                                                        '# '
                                                                        'plot_map(mode,\n'
                                                                        '                            '
                                                                        '#          '
                                                                        "mip.upper()+' "
                                                                        "'+model+' "
                                                                        "('+run+')',\n"
                                                                        '                            '
                                                                        '#          '
                                                                        'msyear, '
                                                                        'meyear, '
                                                                        'season,\n'
                                                                        '                            '
                                                                        '#          '
                                                                        'eof, '
                                                                        'frac,\n'
                                                                        '                            '
                                                                        '#          '
                                                                        "output_img_file+'_org_eof')\n"
                                                                        '                            '
                                                                        'plot_map(\n'
                                                                        '                                '
                                                                        'mode,\n'
                                                                        '                                '
                                                                        'mip.upper()\n'
                                                                        '                                '
                                                                        '+ " '
                                                                        '"\n'
                                                                        '                                '
                                                                        '+ '
                                                                        'model\n'
                                                                        '                                '
                                                                        '+ " '
                                                                        '("\n'
                                                                        '                                '
                                                                        '+ '
                                                                        'run\n'
                                                                        '                                '
                                                                        '+ ") '
                                                                        '- '
                                                                        'EOF"\n'
                                                                        '                                '
                                                                        '+ '
                                                                        'str(n '
                                                                        '+ '
                                                                        '1),\n'
                                                                        '                                '
                                                                        'msyear,\n'
                                                                        '                                '
                                                                        'meyear,\n'
                                                                        '                                '
                                                                        'season,\n'
                                                                        '                                '
                                                                        'eof_lr(region_subdomain),\n'
                                                                        '                                '
                                                                        'frac,\n'
                                                                        '                                '
                                                                        'output_img_file,\n'
                                                                        '                            '
                                                                        ')\n'
                                                                        '                            '
                                                                        'plot_map(\n'
                                                                        '                                '
                                                                        'mode '
                                                                        '+ '
                                                                        '"_teleconnection",\n'
                                                                        '                                '
                                                                        'mip.upper()\n'
                                                                        '                                '
                                                                        '+ " '
                                                                        '"\n'
                                                                        '                                '
                                                                        '+ '
                                                                        'model\n'
                                                                        '                                '
                                                                        '+ " '
                                                                        '("\n'
                                                                        '                                '
                                                                        '+ '
                                                                        'run\n'
                                                                        '                                '
                                                                        '+ ") '
                                                                        '- '
                                                                        'EOF"\n'
                                                                        '                                '
                                                                        '+ '
                                                                        'str(n '
                                                                        '+ '
                                                                        '1),\n'
                                                                        '                                '
                                                                        'msyear,\n'
                                                                        '                                '
                                                                        'meyear,\n'
                                                                        '                                '
                                                                        'season,\n'
                                                                        '                                '
                                                                        'eof_lr(longitude=(lon1g, '
                                                                        'lon2g)),\n'
                                                                        '                                '
                                                                        'frac,\n'
                                                                        '                                '
                                                                        'output_img_file '
                                                                        '+ '
                                                                        '"_teleconnection",\n'
                                                                        '                            '
                                                                        ')\n'
                                                                        '\n'
                                                                        '                        '
                                                                        '# - - '
                                                                        '- - - '
                                                                        '- - - '
                                                                        '- - - '
                                                                        '- - - '
                                                                        '- - - '
                                                                        '- - - '
                                                                        '- - - '
                                                                        '- -\n'
                                                                        '                        '
                                                                        '# EOF '
                                                                        'swap '
                                                                        'diagnosis\n'
                                                                        '                        '
                                                                        '# - - '
                                                                        '- - - '
                                                                        '- - - '
                                                                        '- - - '
                                                                        '- - - '
                                                                        '- - - '
                                                                        '- - - '
                                                                        '- - - '
                                                                        '- -\n'
                                                                        '                        '
                                                                        'rms_list.append(dict_head["rms"])\n'
                                                                        '                        '
                                                                        'cor_list.append(dict_head["cor"])\n'
                                                                        '                        '
                                                                        'if '
                                                                        'CBF:\n'
                                                                        '                            '
                                                                        'tcor_list.append(dict_head["tcor_cbf_vs_eof_pc"])\n'
                                                                        '\n'
                                                                        '                    '
                                                                        '# '
                                                                        'Find '
                                                                        'best '
                                                                        'matching '
                                                                        'eofs '
                                                                        'with '
                                                                        'different '
                                                                        'criteria\n'
                                                                        '                    '
                                                                        'best_matching_eofs_rms '
                                                                        '= '
                                                                        'rms_list.index(min(rms_list)) '
                                                                        '+ 1\n'
                                                                        '                    '
                                                                        'best_matching_eofs_cor '
                                                                        '= '
                                                                        'cor_list.index(max(cor_list)) '
                                                                        '+ 1\n'
                                                                        '                    '
                                                                        'if '
                                                                        'CBF:\n'
                                                                        '                        '
                                                                        'best_matching_eofs_tcor '
                                                                        '= '
                                                                        'tcor_list.index(max(tcor_list)) '
                                                                        '+ 1\n'
                                                                        '\n'
                                                                        '                    '
                                                                        '# '
                                                                        'Save '
                                                                        'the '
                                                                        'best '
                                                                        'matching '
                                                                        'information '
                                                                        'to '
                                                                        'JSON\n'
                                                                        '                    '
                                                                        'dict_head '
                                                                        '= '
                                                                        'result_dict["RESULTS"][model][run]["defaultReference"][\n'
                                                                        '                        '
                                                                        'mode\n'
                                                                        '                    '
                                                                        '][season]\n'
                                                                        '                    '
                                                                        'dict_head["best_matching_model_eofs__rms"] '
                                                                        '= '
                                                                        'best_matching_eofs_rms\n'
                                                                        '                    '
                                                                        'dict_head["best_matching_model_eofs__cor"] '
                                                                        '= '
                                                                        'best_matching_eofs_cor\n'
                                                                        '                    '
                                                                        'if '
                                                                        'CBF:\n'
                                                                        '                        '
                                                                        'dict_head[\n'
                                                                        '                            '
                                                                        '"best_matching_model_eofs__tcor_cbf_vs_eof_pc"\n'
                                                                        '                        '
                                                                        '] = '
                                                                        'best_matching_eofs_tcor\n'
                                                                        '\n'
                                                                        '                    '
                                                                        'debug_print("conventional '
                                                                        'eof '
                                                                        'end", '
                                                                        'debug)\n'
                                                                        '\n'
                                                                        '            '
                                                                        '# '
                                                                        '=================================================================\n'
                                                                        '            '
                                                                        '# '
                                                                        'Dictionary '
                                                                        'to '
                                                                        'JSON: '
                                                                        'individual '
                                                                        'JSON '
                                                                        'during '
                                                                        'model_realization '
                                                                        'loop\n'
                                                                        '            '
                                                                        '# '
                                                                        '-----------------------------------------------------------------\n'
                                                                        '            '
                                                                        'json_filename_tmp '
                                                                        '= '
                                                                        '"_".join(\n'
                                                                        '                '
                                                                        '[\n'
                                                                        '                    '
                                                                        '"var",\n'
                                                                        '                    '
                                                                        '"mode",\n'
                                                                        '                    '
                                                                        'mode,\n'
                                                                        '                    '
                                                                        '"EOF" '
                                                                        '+ '
                                                                        'str(eofn_mod),\n'
                                                                        '                    '
                                                                        '"stat",\n'
                                                                        '                    '
                                                                        'mip,\n'
                                                                        '                    '
                                                                        'exp,\n'
                                                                        '                    '
                                                                        'fq,\n'
                                                                        '                    '
                                                                        'realm,\n'
                                                                        '                    '
                                                                        'model,\n'
                                                                        '                    '
                                                                        'run,\n'
                                                                        '                    '
                                                                        'str(msyear) '
                                                                        '+ "-" '
                                                                        '+ '
                                                                        'str(meyear),\n'
                                                                        '                '
                                                                        ']\n'
                                                                        '            '
                                                                        ')\n'
                                                                        '            '
                                                                        'variability_metrics_to_json(\n'
                                                                        '                '
                                                                        'outdir,\n'
                                                                        '                '
                                                                        'json_filename_tmp,\n'
                                                                        '                '
                                                                        'result_dict,\n'
                                                                        '                '
                                                                        'model=model,\n'
                                                                        '                '
                                                                        'run=run,\n'
                                                                        '                '
                                                                        'cmec_flag=cmec,\n'
                                                                        '            '
                                                                        ')\n'
                                                                        '\n'
                                                                        '        '
                                                                        'except '
                                                                        'Exception '
                                                                        'as '
                                                                        'err:\n'
                                                                        '            '
                                                                        'if '
                                                                        'debug:\n'
                                                                        '                '
                                                                        'raise\n'
                                                                        '            '
                                                                        'else:\n'
                                                                        '                '
                                                                        'print("warning: '
                                                                        'failed '
                                                                        'for '
                                                                        '", '
                                                                        'model, '
                                                                        'run, '
                                                                        'err)\n'
                                                                        '                '
                                                                        'pass\n'
                                                                        '\n'
                                                                        '# '
                                                                        '========================================================================\n'
                                                                        '# '
                                                                        'Dictionary '
                                                                        'to '
                                                                        'JSON: '
                                                                        'collective '
                                                                        'JSON '
                                                                        'at '
                                                                        'the '
                                                                        'end '
                                                                        'of '
                                                                        'model_realization '
                                                                        'loop\n'
                                                                        '# '
                                                                        '------------------------------------------------------------------------\n'
                                                                        'if '
                                                                        'not '
                                                                        'parallel '
                                                                        'and '
                                                                        '(len(models) '
                                                                        '> '
                                                                        '1):\n'
                                                                        '    '
                                                                        'json_filename_all '
                                                                        '= '
                                                                        '"_".join(\n'
                                                                        '        '
                                                                        '[\n'
                                                                        '            '
                                                                        '"var",\n'
                                                                        '            '
                                                                        '"mode",\n'
                                                                        '            '
                                                                        'mode,\n'
                                                                        '            '
                                                                        '"EOF" '
                                                                        '+ '
                                                                        'str(eofn_mod),\n'
                                                                        '            '
                                                                        '"stat",\n'
                                                                        '            '
                                                                        'mip,\n'
                                                                        '            '
                                                                        'exp,\n'
                                                                        '            '
                                                                        'fq,\n'
                                                                        '            '
                                                                        'realm,\n'
                                                                        '            '
                                                                        '"allModels",\n'
                                                                        '            '
                                                                        '"allRuns",\n'
                                                                        '            '
                                                                        'str(msyear) '
                                                                        '+ "-" '
                                                                        '+ '
                                                                        'str(meyear),\n'
                                                                        '        '
                                                                        ']\n'
                                                                        '    '
                                                                        ')\n'
                                                                        '    '
                                                                        'variability_metrics_to_json(outdir, '
                                                                        'json_filename_all, '
                                                                        'result_dict, '
                                                                        'cmec_flag=cmec)\n'
                                                                        '\n'
                                                                        'if '
                                                                        'not '
                                                                        'debug:\n'
                                                                        '    '
                                                                        'sys.exit(0)\n',
                                                              'userId': 'lee1043'}},
                       'NAO/NOAA-CIRES_20CR': {'REFERENCE': {'obs': {'defaultReference': {'NAO': {'DJF': {'frac': 0.4192754912791216,
                                                                                                          'mean': 4.577496285633595e-17,
                                                                                                          'mean_glo': -0.26042941988597373,
                                                                                                          'stdv_pc': 1.9439721208058844},
                                                                                                  'JJA': {'frac': 0.3267863319428903,
                                                                                                          'mean': -1.0626330663077989e-17,
                                                                                                          'mean_glo': 0.023684244698652265,
                                                                                                          'stdv_pc': 0.7769567097893356},
                                                                                                  'MAM': {'frac': 0.3414128649058611,
                                                                                                          'mean': 2.95435347006454e-17,
                                                                                                          'mean_glo': -0.09740860738206879,
                                                                                                          'stdv_pc': 1.2229281155932044},
                                                                                                  'SON': {'frac': 0.26968600852799873,
                                                                                                          'mean': 3.6199587973122815e-18,
                                                                                                          'mean_glo': 0.1221006829584182,
                                                                                                          'stdv_pc': 0.9641863285355637}},
                                                                                          'period': '1900-2005',
                                                                                          'reference_eofs': 1,
                                                                                          'source': '/p/user_pub/PCMDIobs/PCMDIobs2/atmos/mon/psl/20CR/gn/v20200707/psl_mon_20CR_BE_gn_v20200707_187101-201212.nc'}}},
                                               'RESULTS': {'ACCESS-CM2': {'r1i1p1f1': {'defaultReference': {'NAO': {'DJF': {'best_matching_model_eofs__cor': 1,
                                                                                                                            'best_matching_model_eofs__rms': 1,
                                                                                                                            'best_matching_model_eofs__tcor_cbf_vs_eof_pc': 1,
                                                                                                                            'cbf': {'bias': -0.0009918807438288148,
                                                                                                                                    'bias_glo': -0.19245571344791207,
                                                                                                                                    'cor': 0.9639056261521024,
                                                                                                                                    'cor_glo': 0.90748892991888,
                                                                                                                                    'frac': 0.4229096596330967,
                                                                                                                                    'frac_cbf_regrid': 0.42543689209266156,
                                                                                                                                    'mean': 4.951169451807768e-17,
                                                                                                                                    'mean_glo': -0.4528851267439428,
                                                                                                                                    'rms': 0.5409879294457107,
                                                                                                                                    'rms_glo': 0.44196519241200244,
                                                                                                                                    'rmsc': 0.26867964760818985,
                                                                                                                                    'rmsc_glo': 0.43014200389415475,
                                                                                                                                    'stdv_pc': 1.9579280399002008,
                                                                                                                                    'stdv_pc_ratio_to_obs': 1.007179073683696},
                                                                                                                            'eof1': {'bias': -0.0010226424027812472,
                                                                                                                                     'bias_glo': -0.21953724201377933,
                                                                                                                                     'cor': 0.9475351100930727,
                                                                                                                                     'cor_glo': 0.8886738679036746,
                                                                                                                                     'frac': 0.4293358398927169,
                                                                                                                                     'mean': 1.4479835189249132e-17,
                                                                                                                                     'mean_glo': -0.4799666550564975,
                                                                                                                                     'rms': 0.6537443284569668,
                                                                                                                                     'rms_glo': 0.4869180329387341,
                                                                                                                                     'rmsc': 0.32392866217901706,
                                                                                                                                     'rmsc_glo': 0.4718604346686587,
                                                                                                                                     'stdv_pc': 2.0510489413652078,
                                                                                                                                     'stdv_pc_ratio_to_obs': 1.0550814589434205,
                                                                                                                                     'tcor_cbf_vs_eof_pc': 0.9903949767226543},
                                                                                                                            'eof2': {'bias': -0.0002733662878281541,
                                                                                                                                     'bias_glo': 0.7658254465011007,
                                                                                                                                     'cor': 0.0660201421529164,
                                                                                                                                     'cor_glo': 0.18204702538067558,
                                                                                                                                     'frac': 0.2055445150179382,
                                                                                                                                     'mean': 3.1295127667086835e-17,
                                                                                                                                     'mean_glo': 0.5053960288002686,
                                                                                                                                     'rms': 2.328635886230772,
                                                                                                                                     'rms_glo': 1.198320640637556,
                                                                                                                                     'rmsc': 1.3667332405203343,
                                                                                                                                     'rmsc_glo': 1.2790254030045487,
                                                                                                                                     'stdv_pc': 1.4191568493048596,
                                                                                                                                     'stdv_pc_ratio_to_obs': 0.7300294248646634,
                                                                                                                                     'tcor_cbf_vs_eof_pc': 0.04845325335755726},
                                                                                                                            'eof3': {'bias': 0.00023281122989233738,
                                                                                                                                     'bias_glo': 0.5462751536140471,
                                                                                                                                     'cor': 0.04970995232050437,
                                                                                                                                     'cor_glo': 0.016700390833021366,
                                                                                                                                     'frac': 0.11138081128445218,
                                                                                                                                     'mean': -2.00849326818617e-17,
                                                                                                                                     'mean_glo': -0.2858457340695273,
                                                                                                                                     'rms': 2.159418608578858,
                                                                                                                                     'rms_glo': 1.089923035186653,
                                                                                                                                     'rmsc': 1.3786152883618537,
                                                                                                                                     'rmsc_glo': 1.4023548861547066,
                                                                                                                                     'stdv_pc': 1.044678459610747,
                                                                                                                                     'stdv_pc_ratio_to_obs': 0.5373937457383235,
                                                                                                                                     'tcor_cbf_vs_eof_pc': -0.025769749771114476},
                                                                                                                            'period': '1900-2005'},
                                                                                                                    'JJA': {'best_matching_model_eofs__cor': 1,
                                                                                                                            'best_matching_model_eofs__rms': 1,
                                                                                                                            'best_matching_model_eofs__tcor_cbf_vs_eof_pc': 1,
                                                                                                                            'cbf': {'bias': -0.00022730851901575232,
                                                                                                                                    'bias_glo': 0.005606401874450915,
                                                                                                                                    'cor': 0.9700990264888929,
                                                                                                                                    'cor_glo': 0.6588490096834974,
                                                                                                                                    'frac': 0.34397707521302473,
                                                                                                                                    'frac_cbf_regrid': 0.34729029808439904,
                                                                                                                                    'mean': 5.283972115431639e-18,
                                                                                                                                    'mean_glo': 0.029290646757896815,
                                                                                                                                    'rms': 0.18889464009902038,
                                                                                                                                    'rms_glo': 0.2965680492632476,
                                                                                                                                    'rmsc': 0.24454436469324523,
                                                                                                                                    'rmsc_glo': 0.8260157351458767,
                                                                                                                                    'stdv_pc': 0.7418457663062187,
                                                                                                                                    'stdv_pc_ratio_to_obs': 0.9548096527892308},
                                                                                                                            'eof1': {'bias': -0.00025946547163837295,
                                                                                                                                     'bias_glo': 0.013429699469778466,
                                                                                                                                     'cor': 0.9446095225181579,
                                                                                                                                     'cor_glo': 0.6359247182644087,
                                                                                                                                     'frac': 0.35105573944557467,
                                                                                                                                     'mean': 9.750534179857278e-18,
                                                                                                                                     'mean_glo': 0.037113944624474954,
                                                                                                                                     'rms': 0.2579167431874484,
                                                                                                                                     'rms_glo': 0.31043978720358567,
                                                                                                                                     'rmsc': 0.33283772839932785,
                                                                                                                                     'rmsc_glo': 0.853317405239789,
                                                                                                                                     'stdv_pc': 0.7744007804334642,
                                                                                                                                     'stdv_pc_ratio_to_obs': 0.9967103323471337,
                                                                                                                                     'tcor_cbf_vs_eof_pc': 0.9838151396270833},
                                                                                                                            'eof2': {'bias': 0.00014926798416467737,
                                                                                                                                     'bias_glo': -0.05832130705309925,
                                                                                                                                     'cor': 0.258070862875583,
                                                                                                                                     'cor_glo': 0.14459097440359972,
                                                                                                                                     'frac': 0.1394977945601315,
                                                                                                                                     'mean': -4.087050255029997e-17,
                                                                                                                                     'mean_glo': -0.03463706337083968,
                                                                                                                                     'rms': 0.8031011614926388,
                                                                                                                                     'rms_glo': 0.4267033064336645,
                                                                                                                                     'rmsc': 1.2181371971269448,
                                                                                                                                     'rmsc_glo': 1.307982460924534,
                                                                                                                                     'stdv_pc': 0.488159127269191,
                                                                                                                                     'stdv_pc_ratio_to_obs': 0.6282964303140527,
                                                                                                                                     'tcor_cbf_vs_eof_pc': 0.16907376500969978},
                                                                                                                            'eof3': {'bias': -5.6641518665598286e-05,
                                                                                                                                     'bias_glo': -0.05014255436878211,
                                                                                                                                     'cor': 0.0634088251325459,
                                                                                                                                     'cor_glo': -0.006961418060982717,
                                                                                                                                     'frac': 0.10054059899737225,
                                                                                                                                     'mean': -9.34182915435428e-18,
                                                                                                                                     'mean_glo': 0.026458310402639608,
                                                                                                                                     'rms': 0.8564360819560272,
                                                                                                                                     'rms_glo': 0.44881754520904144,
                                                                                                                                     'rmsc': 1.3686425399304274,
                                                                                                                                     'rmsc_glo': 1.4191275027193677,
                                                                                                                                     'stdv_pc': 0.41442741532463306,
                                                                                                                                     'stdv_pc_ratio_to_obs': 0.53339833494327,
                                                                                                                                     'tcor_cbf_vs_eof_pc': -0.035294547935157856},
                                                                                                                            'period': '1900-2005'},
                                                                                                                    'MAM': {'best_matching_model_eofs__cor': 1,
                                                                                                                            'best_matching_model_eofs__rms': 1,
                                                                                                                            'best_matching_model_eofs__tcor_cbf_vs_eof_pc': 1,
                                                                                                                            'cbf': {'bias': -0.00062359109458392,
                                                                                                                                    'bias_glo': -0.12042979631228518,
                                                                                                                                    'cor': 0.9745901635476139,
                                                                                                                                    'cor_glo': 0.8989226902753699,
                                                                                                                                    'frac': 0.4487280972329801,
                                                                                                                                    'frac_cbf_regrid': 0.4518465926422117,
                                                                                                                                    'mean': -4.1395980440232396e-17,
                                                                                                                                    'mean_glo': -0.21783839887405693,
                                                                                                                                    'rms': 0.4196873596037071,
                                                                                                                                    'rms_glo': 0.34361182865098544,
                                                                                                                                    'rmsc': 0.22543219442992146,
                                                                                                                                    'rmsc_glo': 0.4496160760767498,
                                                                                                                                    'stdv_pc': 1.471450552557162,
                                                                                                                                    'stdv_pc_ratio_to_obs': 1.2032191702808364},
                                                                                                                            'eof1': {'bias': -0.0006455764733549261,
                                                                                                                                     'bias_glo': -0.11264270776502597,
                                                                                                                                     'cor': 0.9700679401016948,
                                                                                                                                     'cor_glo': 0.8946505889765178,
                                                                                                                                     'frac': 0.4506549277352683,
                                                                                                                                     'mean': -2.04936377073647e-17,
                                                                                                                                     'mean_glo': -0.21005130993209814,
                                                                                                                                     'rms': 0.44154298234074807,
                                                                                                                                     'rms_glo': 0.34808878648549096,
                                                                                                                                     'rmsc': 0.24467146015978192,
                                                                                                                                     'rmsc_glo': 0.4590194119374393,
                                                                                                                                     'stdv_pc': 1.5160623103039086,
                                                                                                                                     'stdv_pc_ratio_to_obs': 1.2396986306660502,
                                                                                                                                     'tcor_cbf_vs_eof_pc': 0.9975123715354545},
                                                                                                                            'eof2': {'bias': 0.0003062065939469839,
                                                                                                                                     'bias_glo': -0.139085078122699,
                                                                                                                                     'cor': 0.04627727382311937,
                                                                                                                                     'cor_glo': -0.05780873313646827,
                                                                                                                                     'frac': 0.1587540755394228,
                                                                                                                                     'mean': -5.3481971908678245e-17,
                                                                                                                                     'mean_glo': -0.23649368605655344,
                                                                                                                                     'rms': 1.482413421283601,
                                                                                                                                     'rms_glo': 0.6718148019567407,
                                                                                                                                     'rmsc': 1.3811029719404044,
                                                                                                                                     'rmsc_glo': 1.4545162418567408,
                                                                                                                                     'stdv_pc': 0.8998237064116059,
                                                                                                                                     'stdv_pc_ratio_to_obs': 0.7357944387231047,
                                                                                                                                     'tcor_cbf_vs_eof_pc': 0.028190460635616976},
                                                                                                                            'eof3': {'bias': 0.0001451315301648241,
                                                                                                                                     'bias_glo': -0.04257239373305727,
                                                                                                                                     'cor': 0.05229067963293424,
                                                                                                                                     'cor_glo': -0.09876732131047941,
                                                                                                                                     'frac': 0.08160717210345293,
                                                                                                                                     'mean': 1.716561107112599e-17,
                                                                                                                                     'mean_glo': 0.13998100084044604,
                                                                                                                                     'rms': 1.3517255939897888,
                                                                                                                                     'rms_glo': 0.6459261625421828,
                                                                                                                                     'rmsc': 1.3767420238132275,
                                                                                                                                     'rmsc_glo': 1.4824083730745419,
                                                                                                                                     'stdv_pc': 0.6451477001566884,
                                                                                                                                     'stdv_pc_ratio_to_obs': 0.527543436061855,
                                                                                                                                     'tcor_cbf_vs_eof_pc': -0.022862344293990953},
                                                                                                                            'period': '1900-2005'},
                                                                                                                    'SON': {'best_matching_model_eofs__cor': 1,
                                                                                                                            'best_matching_model_eofs__rms': 1,
                                                                                                                            'best_matching_model_eofs__tcor_cbf_vs_eof_pc': 1,
                                                                                                                            'cbf': {'bias': -0.000206951906058192,
                                                                                                                                    'bias_glo': -0.19661582948751904,
                                                                                                                                    'cor': 0.9244904613945811,
                                                                                                                                    'cor_glo': 0.7552969335290902,
                                                                                                                                    'frac': 0.31195292941175395,
                                                                                                                                    'frac_cbf_regrid': 0.3143810865069726,
                                                                                                                                    'mean': 6.626860056370067e-17,
                                                                                                                                    'mean_glo': -0.07451514508216496,
                                                                                                                                    'rms': 0.41871730686573094,
                                                                                                                                    'rms_glo': 0.3471819094935028,
                                                                                                                                    'rmsc': 0.3886117272998417,
                                                                                                                                    'rmsc_glo': 0.6995756747847711,
                                                                                                                                    'stdv_pc': 1.009500051248923,
                                                                                                                                    'stdv_pc_ratio_to_obs': 1.046996852550464},
                                                                                                                            'eof1': {'bias': -0.0003102371432878076,
                                                                                                                                     'bias_glo': -0.22912577480035803,
                                                                                                                                     'cor': 0.8488106714949132,
                                                                                                                                     'cor_glo': 0.6688876937110514,
                                                                                                                                     'frac': 0.3333104417858663,
                                                                                                                                     'mean': 4.2592902300634043e-17,
                                                                                                                                     'mean_glo': -0.10702509074721167,
                                                                                                                                     'rms': 0.5968190287919058,
                                                                                                                                     'rms_glo': 0.4149089556315754,
                                                                                                                                     'rmsc': 0.5498896864858713,
                                                                                                                                     'rmsc_glo': 0.8137718394107049,
                                                                                                                                     'stdv_pc': 1.1317445152717664,
                                                                                                                                     'stdv_pc_ratio_to_obs': 1.1737819566376713,
                                                                                                                                     'tcor_cbf_vs_eof_pc': 0.9491130263712008},
                                                                                                                            'eof2': {'bias': 0.00016668435644403618,
                                                                                                                                     'bias_glo': -0.31099175331851,
                                                                                                                                     'cor': 0.11350514432644947,
                                                                                                                                     'cor_glo': 0.05439189028151171,
                                                                                                                                     'frac': 0.17180247276491276,
                                                                                                                                     'mean': 8.407646238918852e-18,
                                                                                                                                     'mean_glo': -0.18889106789729815,
                                                                                                                                     'rms': 1.1867753713980267,
                                                                                                                                     'rms_glo': 0.6079486334462231,
                                                                                                                                     'rmsc': 1.331536602696945,
                                                                                                                                     'rmsc_glo': 1.3752149509480636,
                                                                                                                                     'stdv_pc': 0.8125285765896126,
                                                                                                                                     'stdv_pc_ratio_to_obs': 0.8427090828218923,
                                                                                                                                     'tcor_cbf_vs_eof_pc': 0.09107183541592319},
                                                                                                                            'eof3': {'bias': 0.0002859794249006231,
                                                                                                                                     'bias_glo': -0.035919027809540774,
                                                                                                                                     'cor': 0.31928999452412,
                                                                                                                                     'cor_glo': 0.24821065330260644,
                                                                                                                                     'frac': 0.13688092542331393,
                                                                                                                                     'mean': -6.539280408047995e-18,
                                                                                                                                     'mean_glo': -0.08618165595625418,
                                                                                                                                     'rms': 1.0037823177318685,
                                                                                                                                     'rms_glo': 0.42713355771957495,
                                                                                                                                     'rmsc': 1.1667990473650323,
                                                                                                                                     'rmsc_glo': 1.2262049777409263,
                                                                                                                                     'stdv_pc': 0.7252628048430161,
                                                                                                                                     'stdv_pc_ratio_to_obs': 0.752201917179813,
                                                                                                                                     'tcor_cbf_vs_eof_pc': -0.22880864512747992},
                                                                                                                            'period': '1900-2005'},
                                                                                                                    'target_model_eofs': 1}}},
                                                                          'r2i1p1f1': {'defaultReference': {'NAO': {'DJF': {'best_matching_model_eofs__cor': 1,
                                                                                                                            'best_matching_model_eofs__rms': 1,
                                                                                                                            'best_matching_model_eofs__tcor_cbf_vs_eof_pc': 1,
                                                                                                                            'cbf': {'bias': -0.0009790679713709443,
                                                                                                                                    'bias_glo': -0.13778034047000187,
                                                                                                                                    'cor': 0.9705365510323798,
                                                                                                                                    'cor_glo': 0.8735483745964774,
                                                                                                                                    'frac': 0.4305901204929705,
                                                                                                                                    'frac_cbf_regrid': 0.4331104071618461,
                                                                                                                                    'mean': -4.624205431405368e-17,
                                                                                                                                    'mean_glo': -0.3982097521944623,
                                                                                                                                    'rms': 0.49256673871681106,
                                                                                                                                    'rms_glo': 0.5080384399698253,
                                                                                                                                    'rmsc': 0.2427486174973853,
                                                                                                                                    'rmsc_glo': 0.5028948665687791,
                                                                                                                                    'stdv_pc': 1.978983652786573,
                                                                                                                                    'stdv_pc_ratio_to_obs': 1.0180103056036494},
                                                                                                                            'eof1': {'bias': -0.0010471101126684405,
                                                                                                                                     'bias_glo': -0.08326465501294267,
                                                                                                                                     'cor': 0.9449567365021878,
                                                                                                                                     'cor_glo': 0.8437035146717815,
                                                                                                                                     'frac': 0.4396727859475696,
                                                                                                                                     'mean': -4.0636956821441114e-17,
                                                                                                                                     'mean_glo': -0.3436940665430996,
                                                                                                                                     'rms': 0.6743497473994419,
                                                                                                                                     'rms_glo': 0.5580851903156782,
                                                                                                                                     'rmsc': 0.33179289389386146,
                                                                                                                                     'rmsc_glo': 0.5591001643671829,
                                                                                                                                     'stdv_pc': 2.064857687524093,
                                                                                                                                     'stdv_pc_ratio_to_obs': 1.0621848252988808,
                                                                                                                                     'tcor_cbf_vs_eof_pc': 0.9839153046910929},
                                                                                                                            'eof2': {'bias': 0.00030464746677465843,
                                                                                                                                     'bias_glo': -0.22156414788649254,
                                                                                                                                     'cor': 0.20714425001899064,
                                                                                                                                     'cor_glo': 0.03007873880363691,
                                                                                                                                     'frac': 0.18638063763586,
                                                                                                                                     'mean': -8.407646238918852e-18,
                                                                                                                                     'mean_glo': -0.4819935686337058,
                                                                                                                                     'rms': 2.1205485534090887,
                                                                                                                                     'rms_glo': 1.0124522151543234,
                                                                                                                                     'rmsc': 1.2592503693865926,
                                                                                                                                     'rmsc_glo': 1.3927823292560202,
                                                                                                                                     'stdv_pc': 1.3443914099778007,
                                                                                                                                     'stdv_pc_ratio_to_obs': 0.6915692851708571,
                                                                                                                                     'tcor_cbf_vs_eof_pc': 0.14014302582905586},
                                                                                                                            'eof3': {'bias': 9.484007737142014e-05,
                                                                                                                                     'bias_glo': 0.3715510526145326,
                                                                                                                                     'cor': 0.18667887383927806,
                                                                                                                                     'cor_glo': 0.3319726372463261,
                                                                                                                                     'frac': 0.11472635225746425,
                                                                                                                                     'mean': 3.783440807513483e-17,
                                                                                                                                     'mean_glo': 0.11112163192409452,
                                                                                                                                     'rms': 2.0301321589198866,
                                                                                                                                     'rms_glo': 0.899743329001498,
                                                                                                                                     'rmsc': 1.2753988691441003,
                                                                                                                                     'rmsc_glo': 1.1558783089353009,
                                                                                                                                     'stdv_pc': 1.0547679500625398,
                                                                                                                                     'stdv_pc_ratio_to_obs': 0.5425838872757496,
                                                                                                                                     'tcor_cbf_vs_eof_pc': 0.0989946892699471},
                                                                                                                            'period': '1900-2005'},
                                                                                                                    'JJA': {'best_matching_model_eofs__cor': 1,
                                                                                                                            'best_matching_model_eofs__rms': 1,
                                                                                                                            'best_matching_model_eofs__tcor_cbf_vs_eof_pc': 1,
                                                                                                                            'cbf': {'bias': -0.00025472732397991804,
                                                                                                                                    'bias_glo': -0.08153954988736455,
                                                                                                                                    'cor': 0.9440516741417072,
                                                                                                                                    'cor_glo': 0.6607527946306231,
                                                                                                                                    'frac': 0.2904791528108115,
                                                                                                                                    'frac_cbf_regrid': 0.29335494567123827,
                                                                                                                                    'mean': -2.271232213152384e-17,
                                                                                                                                    'mean_glo': -0.0578553042065061,
                                                                                                                                    'rms': 0.2598070747056521,
                                                                                                                                    'rms_glo': 0.3056138297554812,
                                                                                                                                    'rmsc': 0.3345095686912296,
                                                                                                                                    'rmsc_glo': 0.8237077222574966,
                                                                                                                                    'stdv_pc': 0.6519379199985571,
                                                                                                                                    'stdv_pc_ratio_to_obs': 0.8390916917048362},
                                                                                                                            'eof1': {'bias': -0.0002543422691197644,
                                                                                                                                     'bias_glo': -0.06886276147158507,
                                                                                                                                     'cor': 0.9091193020589302,
                                                                                                                                     'cor_glo': 0.6604448771668416,
                                                                                                                                     'frac': 0.29916518588132746,
                                                                                                                                     'mean': -1.004246634093085e-17,
                                                                                                                                     'mean_glo': -0.04517851565218319,
                                                                                                                                     'rms': 0.3236749161103313,
                                                                                                                                     'rms_glo': 0.30567838904454053,
                                                                                                                                     'rmsc': 0.42633484811031763,
                                                                                                                                     'rmsc_glo': 0.8240814423990479,
                                                                                                                                     'stdv_pc': 0.7025796309414142,
                                                                                                                                     'stdv_pc_ratio_to_obs': 0.9042712703155777,
                                                                                                                                     'tcor_cbf_vs_eof_pc': 0.9775059255695127},
                                                                                                                            'eof2': {'bias': -8.742759864599787e-05,
                                                                                                                                     'bias_glo': 0.003593067465054625,
                                                                                                                                     'cor': 0.10432454761680209,
                                                                                                                                     'cor_glo': -0.059001511083030776,
                                                                                                                                     'frac': 0.15017657138841933,
                                                                                                                                     'mean': -7.473463323483423e-18,
                                                                                                                                     'mean_glo': -0.027277311016285503,
                                                                                                                                     'rms': 0.8771600976539162,
                                                                                                                                     'rms_glo': 0.44674116957131826,
                                                                                                                                     'rmsc': 1.3384135747361765,
                                                                                                                                     'rmsc_glo': 1.455336073614478,
                                                                                                                                     'stdv_pc': 0.4977842148684347,
                                                                                                                                     'stdv_pc_ratio_to_obs': 0.6406846206443139,
                                                                                                                                     'tcor_cbf_vs_eof_pc': -0.07939787823535173},
                                                                                                                            'eof3': {'bias': -6.200714966291055e-05,
                                                                                                                                     'bias_glo': -0.14055246862671794,
                                                                                                                                     'cor': 0.23702085404596135,
                                                                                                                                     'cor_glo': 0.06429683881283657,
                                                                                                                                     'frac': 0.11940124835689324,
                                                                                                                                     'mean': -2.615712163219198e-17,
                                                                                                                                     'mean_glo': -0.11686822325977712,
                                                                                                                                     'rms': 0.7975326605186843,
                                                                                                                                     'rms_glo': 0.44059936980015546,
                                                                                                                                     'rmsc': 1.2352968271432896,
                                                                                                                                     'rmsc_glo': 1.3679935297166508,
                                                                                                                                     'stdv_pc': 0.44385841903064377,
                                                                                                                                     'stdv_pc_ratio_to_obs': 0.5712781850497073,
                                                                                                                                     'tcor_cbf_vs_eof_pc': 0.16057203540587592},
                                                                                                                            'period': '1900-2005'},
                                                                                                                    'MAM': {'best_matching_model_eofs__cor': 1,
                                                                                                                            'best_matching_model_eofs__rms': 1,
                                                                                                                            'best_matching_model_eofs__tcor_cbf_vs_eof_pc': 1,
                                                                                                                            'cbf': {'bias': -0.00047501166246624756,
                                                                                                                                    'bias_glo': -0.22220587890918986,
                                                                                                                                    'cor': 0.9657610777147956,
                                                                                                                                    'cor_glo': 0.887199056893282,
                                                                                                                                    'frac': 0.4173746253990264,
                                                                                                                                    'frac_cbf_regrid': 0.42032962881773456,
                                                                                                                                    'mean': -1.3382170263612504e-16,
                                                                                                                                    'mean_glo': -0.3196144810526136,
                                                                                                                                    'rms': 0.4412417246366344,
                                                                                                                                    'rms_glo': 0.3799758614186148,
                                                                                                                                    'rmsc': 0.2616827186622569,
                                                                                                                                    'rmsc_glo': 0.47497568073045515,
                                                                                                                                    'stdv_pc': 1.4367701494553375,
                                                                                                                                    'stdv_pc_ratio_to_obs': 1.1748606734406504},
                                                                                                                            'eof1': {'bias': -0.00045732663936052316,
                                                                                                                                     'bias_glo': -0.24766179694827534,
                                                                                                                                     'cor': 0.9524939473272885,
                                                                                                                                     'cor_glo': 0.8802999279489442,
                                                                                                                                     'frac': 0.42250270438951815,
                                                                                                                                     'mean': -1.0789812673279193e-16,
                                                                                                                                     'mean_glo': -0.34507039958144153,
                                                                                                                                     'rms': 0.4988637030840849,
                                                                                                                                     'rms_glo': 0.3972406853639823,
                                                                                                                                     'rmsc': 0.30824034186224475,
                                                                                                                                     'rmsc_glo': 0.4892853501969485,
                                                                                                                                     'stdv_pc': 1.5001775211621582,
                                                                                                                                     'stdv_pc_ratio_to_obs': 1.2267094868732074,
                                                                                                                                     'tcor_cbf_vs_eof_pc': 0.9922316040385535},
                                                                                                                            'eof2': {'bias': -0.00010204723533088274,
                                                                                                                                     'bias_glo': 0.23523856936248472,
                                                                                                                                     'cor': 0.10027364310746986,
                                                                                                                                     'cor_glo': 0.09675390271482223,
                                                                                                                                     'frac': 0.1414736719651336,
                                                                                                                                     'mean': -7.123144730195138e-17,
                                                                                                                                     'mean_glo': -0.1378299630999576,
                                                                                                                                     'rms': 1.42542168852841,
                                                                                                                                     'rms_glo': 0.6742734934262894,
                                                                                                                                     'rmsc': 1.341436821164339,
                                                                                                                                     'rmsc_glo': 1.3440581070063269,
                                                                                                                                     'stdv_pc': 0.8680919321265552,
                                                                                                                                     'stdv_pc_ratio_to_obs': 0.7098470638280083,
                                                                                                                                     'tcor_cbf_vs_eof_pc': -0.060378358146303976},
                                                                                                                            'eof3': {'bias': -0.0001469176814155901,
                                                                                                                                     'bias_glo': 0.3139598850248016,
                                                                                                                                     'cor': 0.08430887700815028,
                                                                                                                                     'cor_glo': 0.21101482670005187,
                                                                                                                                     'frac': 0.11689170656318178,
                                                                                                                                     'mean': 2.0201705546291127e-17,
                                                                                                                                     'mean_glo': 0.21655127869733834,
                                                                                                                                     'rms': 1.3973071017355103,
                                                                                                                                     'rms_glo': 0.6778763375894823,
                                                                                                                                     'rmsc': 1.3532856952033152,
                                                                                                                                     'rmsc_glo': 1.2561728947301398,
                                                                                                                                     'stdv_pc': 0.7890776757122224,
                                                                                                                                     'stdv_pc_ratio_to_obs': 0.6452363517126806,
                                                                                                                                     'tcor_cbf_vs_eof_pc': 0.04617343781649819},
                                                                                                                            'period': '1900-2005'},
                                                                                                                    'SON': {'best_matching_model_eofs__cor': 1,
                                                                                                                            'best_matching_model_eofs__rms': 1,
                                                                                                                            'best_matching_model_eofs__tcor_cbf_vs_eof_pc': 1,
                                                                                                                            'cbf': {'bias': -0.00027455626643700307,
                                                                                                                                    'bias_glo': -0.18688607008732458,
                                                                                                                                    'cor': 0.9239269345101313,
                                                                                                                                    'cor_glo': 0.7208898515786965,
                                                                                                                                    'frac': 0.2659235049096145,
                                                                                                                                    'frac_cbf_regrid': 0.267972978741766,
                                                                                                                                    'mean': 4.834396587378339e-17,
                                                                                                                                    'mean_glo': -0.06478538553439536,
                                                                                                                                    'rms': 0.39087801881416456,
                                                                                                                                    'rms_glo': 0.3541373053419303,
                                                                                                                                    'rmsc': 0.3900591353779774,
                                                                                                                                    'rmsc_glo': 0.7471414123173408,
                                                                                                                                    'stdv_pc': 0.9425456829810388,
                                                                                                                                    'stdv_pc_ratio_to_obs': 0.9775555357776194},
                                                                                                                            'eof1': {'bias': -0.00020651484222053342,
                                                                                                                                     'bias_glo': -0.25301077238370595,
                                                                                                                                     'cor': 0.7514569028178085,
                                                                                                                                     'cor_glo': 0.6080987503103283,
                                                                                                                                     'frac': 0.30378597737771396,
                                                                                                                                     'mean': 8.547773676234165e-17,
                                                                                                                                     'mean_glo': -0.1309100875118031,
                                                                                                                                     'rms': 0.7337778501286469,
                                                                                                                                     'rms_glo': 0.45531865873051103,
                                                                                                                                     'rmsc': 0.7050433922705753,
                                                                                                                                     'rmsc_glo': 0.8853261958246122,
                                                                                                                                     'stdv_pc': 1.0930986585095885,
                                                                                                                                     'stdv_pc_ratio_to_obs': 1.1337006407981545,
                                                                                                                                     'tcor_cbf_vs_eof_pc': 0.8692147670021289},
                                                                                                                            'eof2': {'bias': 0.00022808529351551012,
                                                                                                                                     'bias_glo': -0.28504853344150033,
                                                                                                                                     'cor': 0.16916958736213358,
                                                                                                                                     'cor_glo': 0.08137821812030623,
                                                                                                                                     'frac': 0.18528541679432037,
                                                                                                                                     'mean': 1.167728644294285e-17,
                                                                                                                                     'mean_glo': -0.16294784971422593,
                                                                                                                                     'rms': 1.1732578927604755,
                                                                                                                                     'rms_glo': 0.5951947604334171,
                                                                                                                                     'rmsc': 1.2890542543276056,
                                                                                                                                     'rmsc_glo': 1.355449556580915,
                                                                                                                                     'stdv_pc': 0.8536819897199679,
                                                                                                                                     'stdv_pc_ratio_to_obs': 0.8853910955329213,
                                                                                                                                     'tcor_cbf_vs_eof_pc': 0.1527770001940107},
                                                                                                                            'eof3': {'bias': -0.0003065277138239476,
                                                                                                                                     'bias_glo': 0.024640066993459178,
                                                                                                                                     'cor': 0.56767286732774,
                                                                                                                                     'cor_glo': 0.352111465318969,
                                                                                                                                     'frac': 0.14967900581013355,
                                                                                                                                     'mean': 1.3662425138243133e-17,
                                                                                                                                     'mean_glo': 0.14674074998782866,
                                                                                                                                     'rms': 0.8230174580699396,
                                                                                                                                     'rms_glo': 0.40243952550073164,
                                                                                                                                     'rmsc': 0.9298678683513556,
                                                                                                                                     'rmsc_glo': 1.138322037656849,
                                                                                                                                     'stdv_pc': 0.7672836512823726,
                                                                                                                                     'stdv_pc_ratio_to_obs': 0.7957835830837251,
                                                                                                                                     'tcor_cbf_vs_eof_pc': 0.46061849960171186},
                                                                                                                            'period': '1900-2005'},
                                                                                                                    'target_model_eofs': 1}}},
                                                                          'r3i1p1f1': {'defaultReference': {'NAO': {'DJF': {'best_matching_model_eofs__cor': 1,
                                                                                                                            'best_matching_model_eofs__rms': 1,
                                                                                                                            'best_matching_model_eofs__tcor_cbf_vs_eof_pc': 1,
                                                                                                                            'cbf': {'bias': -0.0011428687552308716,
                                                                                                                                    'bias_glo': -0.18103699688102387,
                                                                                                                                    'cor': 0.9597999940458538,
                                                                                                                                    'cor_glo': 0.9126251298703413,
                                                                                                                                    'frac': 0.49268564127487796,
                                                                                                                                    'frac_cbf_regrid': 0.49546920095969915,
                                                                                                                                    'mean': -1.0929940110594507e-16,
                                                                                                                                    'mean_glo': -0.44146640979504315,
                                                                                                                                    'rms': 0.6680634544654027,
                                                                                                                                    'rms_glo': 0.4350184632930113,
                                                                                                                                    'rmsc': 0.2835489515690094,
                                                                                                                                    'rmsc_glo': 0.41803080257078357,
                                                                                                                                    'stdv_pc': 2.160784388131494,
                                                                                                                                    'stdv_pc_ratio_to_obs': 1.1115305435737057},
                                                                                                                            'eof1': {'bias': -0.0012014810160117882,
                                                                                                                                     'bias_glo': -0.17322920220565818,
                                                                                                                                     'cor': 0.9429502150971016,
                                                                                                                                     'cor_glo': 0.8909175622941975,
                                                                                                                                     'frac': 0.5005023527897716,
                                                                                                                                     'mean': -3.316349349795769e-17,
                                                                                                                                     'mean_glo': -0.43365861496311603,
                                                                                                                                     'rms': 0.7801082902002537,
                                                                                                                                     'rms_glo': 0.47261779856108727,
                                                                                                                                     'rmsc': 0.33778629092120566,
                                                                                                                                     'rmsc_glo': 0.46708123870144685,
                                                                                                                                     'stdv_pc': 2.273752055785891,
                                                                                                                                     'stdv_pc_ratio_to_obs': 1.1696423171147612,
                                                                                                                                     'tcor_cbf_vs_eof_pc': 0.9902119343362782},
                                                                                                                            'eof2': {'bias': -0.00015637798908394113,
                                                                                                                                     'bias_glo': -0.2466575032028971,
                                                                                                                                     'cor': 0.13219414028028317,
                                                                                                                                     'cor_glo': 0.14311478241466868,
                                                                                                                                     'frac': 0.1396707460678519,
                                                                                                                                     'mean': 4.472400707647111e-17,
                                                                                                                                     'mean_glo': -0.5070869225912402,
                                                                                                                                     'rms': 2.1442006703782104,
                                                                                                                                     'rms_glo': 0.9471959426889918,
                                                                                                                                     'rmsc': 1.3174261790814508,
                                                                                                                                     'rmsc_glo': 1.3091105819690259,
                                                                                                                                     'stdv_pc': 1.201137620331402,
                                                                                                                                     'stdv_pc_ratio_to_obs': 0.6178780073417224,
                                                                                                                                     'tcor_cbf_vs_eof_pc': 0.0734773465221337},
                                                                                                                            'eof3': {'bias': -1.916002789939098e-05,
                                                                                                                                     'bias_glo': 0.6333864009967556,
                                                                                                                                     'cor': 0.0254745168804897,
                                                                                                                                     'cor_glo': 0.2616630800323949,
                                                                                                                                     'frac': 0.11346762222940997,
                                                                                                                                     'mean': -1.0229302924017936e-16,
                                                                                                                                     'mean_glo': 0.3729569832885725,
                                                                                                                                     'rms': 2.1996353318578943,
                                                                                                                                     'rms_glo': 1.062895747306801,
                                                                                                                                     'rmsc': 1.396084150934019,
                                                                                                                                     'rmsc_glo': 1.2151846868672058,
                                                                                                                                     'stdv_pc': 1.0826199357845838,
                                                                                                                                     'stdv_pc_ratio_to_obs': 0.5569112458957373,
                                                                                                                                     'tcor_cbf_vs_eof_pc': 0.012946925654648755},
                                                                                                                            'period': '1900-2005'},
                                                                                                                    'JJA': {'best_matching_model_eofs__cor': 1,
                                                                                                                            'best_matching_model_eofs__rms': 1,
                                                                                                                            'best_matching_model_eofs__tcor_cbf_vs_eof_pc': 1,
                                                                                                                            'cbf': {'bias': -0.00017097414374299587,
                                                                                                                                    'bias_glo': 0.007872501521814772,
                                                                                                                                    'cor': 0.9383309860166711,
                                                                                                                                    'cor_glo': 0.8082815281182817,
                                                                                                                                    'frac': 0.3714592662558057,
                                                                                                                                    'frac_cbf_regrid': 0.37481266066718183,
                                                                                                                                    'mean': 3.7870899595269025e-17,
                                                                                                                                    'mean_glo': 0.03155674844869065,
                                                                                                                                    'rms': 0.27722259092234486,
                                                                                                                                    'rms_glo': 0.23640271459396617,
                                                                                                                                    'rmsc': 0.3511951398547268,
                                                                                                                                    'rmsc_glo': 0.6192228653103016,
                                                                                                                                    'stdv_pc': 0.748368505217699,
                                                                                                                                    'stdv_pc_ratio_to_obs': 0.9632048939002175},
                                                                                                                            'eof1': {'bias': -0.00017780632532898556,
                                                                                                                                     'bias_glo': 0.020330571883938674,
                                                                                                                                     'cor': 0.8956526197611536,
                                                                                                                                     'cor_glo': 0.7859997188171887,
                                                                                                                                     'frac': 0.38602678750021824,
                                                                                                                                     'mean': 3.0360944751651406e-17,
                                                                                                                                     'mean_glo': 0.044014818955159234,
                                                                                                                                     'rms': 0.36491011448177724,
                                                                                                                                     'rms_glo': 0.2535794329296392,
                                                                                                                                     'rmsc': 0.4568312075471839,
                                                                                                                                     'rmsc_glo': 0.6542175283735948,
                                                                                                                                     'stdv_pc': 0.8148464727278315,
                                                                                                                                     'stdv_pc_ratio_to_obs': 1.0487668906917211,
                                                                                                                                     'tcor_cbf_vs_eof_pc': 0.9731822551334592},
                                                                                                                            'eof2': {'bias': -6.940356640569039e-05,
                                                                                                                                     'bias_glo': -0.04692028085047219,
                                                                                                                                     'cor': 0.2930927336059459,
                                                                                                                                     'cor_glo': 0.19411939938439968,
                                                                                                                                     'frac': 0.12709906821809303,
                                                                                                                                     'mean': -2.8025487463062836e-18,
                                                                                                                                     'mean_glo': -0.02323603603955739,
                                                                                                                                     'rms': 0.7801815572869241,
                                                                                                                                     'rms_glo': 0.40171939663818634,
                                                                                                                                     'rmsc': 1.1890393403657011,
                                                                                                                                     'rmsc_glo': 1.2695515773283355,
                                                                                                                                     'stdv_pc': 0.46756097108101363,
                                                                                                                                     'stdv_pc_ratio_to_obs': 0.6017850997229798,
                                                                                                                                     'tcor_cbf_vs_eof_pc': 0.18258818745726157},
                                                                                                                            'eof3': {'bias': 6.57261688123737e-05,
                                                                                                                                     'bias_glo': -0.0855335836698831,
                                                                                                                                     'cor': 0.21848410282833824,
                                                                                                                                     'cor_glo': 0.17758672939823766,
                                                                                                                                     'frac': 0.0978499777176811,
                                                                                                                                     'mean': -1.0918262824151564e-17,
                                                                                                                                     'mean_glo': -0.06184933910289231,
                                                                                                                                     'rms': 0.7948862647584356,
                                                                                                                                     'rms_glo': 0.402912058138919,
                                                                                                                                     'rmsc': 1.2502126839911627,
                                                                                                                                     'rmsc_glo': 1.2825078994073713,
                                                                                                                                     'stdv_pc': 0.41024890840945444,
                                                                                                                                     'stdv_pc_ratio_to_obs': 0.5280202915303859,
                                                                                                                                     'tcor_cbf_vs_eof_pc': 0.11925930006522353},
                                                                                                                            'period': '1900-2005'},
                                                                                                                    'MAM': {'best_matching_model_eofs__cor': 1,
                                                                                                                            'best_matching_model_eofs__rms': 1,
                                                                                                                            'best_matching_model_eofs__tcor_cbf_vs_eof_pc': 1,
                                                                                                                            'cbf': {'bias': -0.0007452578504956017,
                                                                                                                                    'bias_glo': -0.23871304788185865,
                                                                                                                                    'cor': 0.9847267000630857,
                                                                                                                                    'cor_glo': 0.9002347544900662,
                                                                                                                                    'frac': 0.5241604434834599,
                                                                                                                                    'frac_cbf_regrid': 0.5276177769667574,
                                                                                                                                    'mean': -8.594482822005937e-17,
                                                                                                                                    'mean_glo': -0.3361216496914667,
                                                                                                                                    'rms': 0.5713495531374768,
                                                                                                                                    'rms_glo': 0.45377728330730377,
                                                                                                                                    'rmsc': 0.1747758578558968,
                                                                                                                                    'rmsc_glo': 0.4466883629128466,
                                                                                                                                    'stdv_pc': 1.7079522509927343,
                                                                                                                                    'stdv_pc_ratio_to_obs': 1.3966088678599557},
                                                                                                                            'eof1': {'bias': -0.0007443939536290479,
                                                                                                                                     'bias_glo': -0.24671794631483862,
                                                                                                                                     'cor': 0.9821878043045331,
                                                                                                                                     'cor_glo': 0.8986479305723658,
                                                                                                                                     'frac': 0.5254175735419635,
                                                                                                                                     'mean': -5.067942316237196e-17,
                                                                                                                                     'mean_glo': -0.3441265481274086,
                                                                                                                                     'rms': 0.5825886132977948,
                                                                                                                                     'rms_glo': 0.458457200955292,
                                                                                                                                     'rmsc': 0.18874424991963237,
                                                                                                                                     'rmsc_glo': 0.45022677112314113,
                                                                                                                                     'stdv_pc': 1.740342757130002,
                                                                                                                                     'stdv_pc_ratio_to_obs': 1.4230948940819927,
                                                                                                                                     'tcor_cbf_vs_eof_pc': 0.9986048881880039},
                                                                                                                            'eof2': {'bias': -8.12592710153807e-06,
                                                                                                                                     'bias_glo': 0.3528025692055385,
                                                                                                                                     'cor': 0.0702888315173603,
                                                                                                                                     'cor_glo': 0.20476316738529424,
                                                                                                                                     'frac': 0.10836169311370521,
                                                                                                                                     'mean': 2.8842897514068835e-17,
                                                                                                                                     'mean_glo': 0.25539396152442273,
                                                                                                                                     'rms': 1.4074702447911651,
                                                                                                                                     'rms_glo': 0.6645402914472252,
                                                                                                                                     'rmsc': 1.3636063737843966,
                                                                                                                                     'rmsc_glo': 1.2611397951762442,
                                                                                                                                     'stdv_pc': 0.7903516858395507,
                                                                                                                                     'stdv_pc_ratio_to_obs': 0.6462781219615478,
                                                                                                                                     'tcor_cbf_vs_eof_pc': 0.032427643804961485},
                                                                                                                            'eof3': {'bias': -0.00010005587778678322,
                                                                                                                                     'bias_glo': 0.05898296284892755,
                                                                                                                                     'cor': 0.048347051536032894,
                                                                                                                                     'cor_glo': 0.015509318463528507,
                                                                                                                                     'frac': 0.0881536661976754,
                                                                                                                                     'mean': 1.938429549528513e-17,
                                                                                                                                     'mean_glo': 0.03842564511811967,
                                                                                                                                     'rms': 1.3845190627514343,
                                                                                                                                     'rms_glo': 0.6260351914741616,
                                                                                                                                     'rmsc': 1.379603503218814,
                                                                                                                                     'rmsc_glo': 1.4032039803030265,
                                                                                                                                     'stdv_pc': 0.7128574329019525,
                                                                                                                                     'stdv_pc_ratio_to_obs': 0.5829103312063175,
                                                                                                                                     'tcor_cbf_vs_eof_pc': -0.02012400654308592},
                                                                                                                            'period': '1900-2005'},
                                                                                                                    'SON': {'best_matching_model_eofs__cor': 1,
                                                                                                                            'best_matching_model_eofs__rms': 1,
                                                                                                                            'best_matching_model_eofs__tcor_cbf_vs_eof_pc': 1,
                                                                                                                            'cbf': {'bias': -0.00028126764106772536,
                                                                                                                                    'bias_glo': -0.21444355405209936,
                                                                                                                                    'cor': 0.940458706589034,
                                                                                                                                    'cor_glo': 0.7530527984020502,
                                                                                                                                    'frac': 0.31282803720751406,
                                                                                                                                    'frac_cbf_regrid': 0.31517471141388037,
                                                                                                                                    'mean': -3.433122214225198e-17,
                                                                                                                                    'mean_glo': -0.09234286772674037,
                                                                                                                                    'rms': 0.3797438332726433,
                                                                                                                                    'rms_glo': 0.3670046847169684,
                                                                                                                                    'rmsc': 0.34508345448713956,
                                                                                                                                    'rmsc_glo': 0.7027761989013309,
                                                                                                                                    'stdv_pc': 1.0331865277029904,
                                                                                                                                    'stdv_pc_ratio_to_obs': 1.0715631378762922},
                                                                                                                            'eof1': {'bias': -0.00031648622651077183,
                                                                                                                                     'bias_glo': -0.23616252928408543,
                                                                                                                                     'cor': 0.8781391272509622,
                                                                                                                                     'cor_glo': 0.6989598661896843,
                                                                                                                                     'frac': 0.328529366408353,
                                                                                                                                     'mean': -3.876859099057026e-17,
                                                                                                                                     'mean_glo': -0.11406184298277183,
                                                                                                                                     'rms': 0.5392174409237734,
                                                                                                                                     'rms_glo': 0.4140650205596882,
                                                                                                                                     'rmsc': 0.49368181690733615,
                                                                                                                                     'rmsc_glo': 0.7759383138767181,
                                                                                                                                     'stdv_pc': 1.1285926496984806,
                                                                                                                                     'stdv_pc_ratio_to_obs': 1.170513018383721,
                                                                                                                                     'tcor_cbf_vs_eof_pc': 0.9569777274592782},
                                                                                                                            'eof2': {'bias': 8.537990011441716e-06,
                                                                                                                                     'bias_glo': -0.34485664838184327,
                                                                                                                                     'cor': 0.19362554910842225,
                                                                                                                                     'cor_glo': 0.10233019792759682,
                                                                                                                                     'frac': 0.21254697879666878,
                                                                                                                                     'mean': 5.138006034894853e-18,
                                                                                                                                     'mean_glo': 0.22275596421037652,
                                                                                                                                     'rms': 1.1881099935543442,
                                                                                                                                     'rms_glo': 0.6214638486284516,
                                                                                                                                     'rmsc': 1.2699405261981163,
                                                                                                                                     'rmsc_glo': 1.339902827938629,
                                                                                                                                     'stdv_pc': 0.9077736817590848,
                                                                                                                                     'stdv_pc_ratio_to_obs': 0.9414919657052593,
                                                                                                                                     'tcor_cbf_vs_eof_pc': -0.1697115961569958},
                                                                                                                            'eof3': {'bias': -0.00010608729511053421,
                                                                                                                                     'bias_glo': 0.060142671271962836,
                                                                                                                                     'cor': 0.30665942779393346,
                                                                                                                                     'cor_glo': 0.15557254108454097,
                                                                                                                                     'frac': 0.12195375654225123,
                                                                                                                                     'mean': -5.021233170465425e-18,
                                                                                                                                     'mean_glo': -0.1822433533680067,
                                                                                                                                     'rms': 0.9969937966564412,
                                                                                                                                     'rms_glo': 0.4415029985428547,
                                                                                                                                     'rmsc': 1.1775742626391283,
                                                                                                                                     'rmsc_glo': 1.2995595181512607,
                                                                                                                                     'stdv_pc': 0.6876187501597503,
                                                                                                                                     'stdv_pc_ratio_to_obs': 0.7131596142875486,
                                                                                                                                     'tcor_cbf_vs_eof_pc': -0.20338818339136452},
                                                                                                                            'period': '1900-2005'},
                                                                                                                    'target_model_eofs': 1}}},
                                                                          'r4i1p1f1': {'defaultReference': {'NAO': {'DJF': {'best_matching_model_eofs__cor': 1,
                                                                                                                            'best_matching_model_eofs__rms': 1,
                                                                                                                            'best_matching_model_eofs__tcor_cbf_vs_eof_pc': 1,
                                                                                                                            'cbf': {'bias': -0.0009577879257621238,
                                                                                                                                    'bias_glo': -0.2793423304184916,
                                                                                                                                    'cor': 0.9821465409718539,
                                                                                                                                    'cor_glo': 0.9343558583407695,
                                                                                                                                    'frac': 0.44027467595049824,
                                                                                                                                    'frac_cbf_regrid': 0.44282878590981717,
                                                                                                                                    'mean': 3.643313370198169e-17,
                                                                                                                                    'mean_glo': -0.5397717426145088,
                                                                                                                                    'rms': 0.39375600997094007,
                                                                                                                                    'rms_glo': 0.4441275126346325,
                                                                                                                                    'rmsc': 0.1889627445821698,
                                                                                                                                    'rmsc_glo': 0.36233725417193136,
                                                                                                                                    'stdv_pc': 2.0185516991542705,
                                                                                                                                    'stdv_pc_ratio_to_obs': 1.0383645308233478},
                                                                                                                            'eof1': {'bias': -0.0009684358152785503,
                                                                                                                                     'bias_glo': -0.2842844478368221,
                                                                                                                                     'cor': 0.9740267197984989,
                                                                                                                                     'cor_glo': 0.9255925662471822,
                                                                                                                                     'frac': 0.44348044768555583,
                                                                                                                                     'mean': 6.585989553819767e-17,
                                                                                                                                     'mean_glo': -0.5447138602938522,
                                                                                                                                     'rms': 0.47178593200686336,
                                                                                                                                     'rms_glo': 0.4597346633019108,
                                                                                                                                     'rmsc': 0.2279178817807241,
                                                                                                                                     'rmsc_glo': 0.385765301979935,
                                                                                                                                     'stdv_pc': 2.0671450094365893,
                                                                                                                                     'stdv_pc_ratio_to_obs': 1.0633614480950697,
                                                                                                                                     'tcor_cbf_vs_eof_pc': 0.9953045148722908},
                                                                                                                            'eof2': {'bias': -0.0004668760399465934,
                                                                                                                                     'bias_glo': 0.5465248207302683,
                                                                                                                                     'cor': 0.03520886910384072,
                                                                                                                                     'cor_glo': 0.13836386066557346,
                                                                                                                                     'frac': 0.1735178913695456,
                                                                                                                                     'mean': -5.4182609095254816e-17,
                                                                                                                                     'mean_glo': 0.28609540131594347,
                                                                                                                                     'rms': 2.295488860714282,
                                                                                                                                     'rms_glo': 1.056172258177485,
                                                                                                                                     'rmsc': 1.3890940520169535,
                                                                                                                                     'rmsc_glo': 1.3127346611831539,
                                                                                                                                     'stdv_pc': 1.293021765219829,
                                                                                                                                     'stdv_pc_ratio_to_obs': 0.6651441918229772,
                                                                                                                                     'tcor_cbf_vs_eof_pc': 0.022227772733655792},
                                                                                                                            'eof3': {'bias': -2.102451194581508e-05,
                                                                                                                                     'bias_glo': -0.22669155532804758,
                                                                                                                                     'cor': 0.09245192692633108,
                                                                                                                                     'cor_glo': 0.17893860952548601,
                                                                                                                                     'frac': 0.14309840747822136,
                                                                                                                                     'mean': 3.549895078654626e-17,
                                                                                                                                     'mean_glo': -0.48712097519665737,
                                                                                                                                     'rms': 2.1750731260830416,
                                                                                                                                     'rms_glo': 0.9162318823210857,
                                                                                                                                     'rmsc': 1.3472550789499627,
                                                                                                                                     'rmsc_glo': 1.2814534009349987,
                                                                                                                                     'stdv_pc': 1.1742244116629983,
                                                                                                                                     'stdv_pc_ratio_to_obs': 0.6040335656543351,
                                                                                                                                     'tcor_cbf_vs_eof_pc': 0.053377072467040536},
                                                                                                                            'period': '1900-2005'},
                                                                                                                    'JJA': {'best_matching_model_eofs__cor': 1,
                                                                                                                            'best_matching_model_eofs__rms': 1,
                                                                                                                            'best_matching_model_eofs__tcor_cbf_vs_eof_pc': 1,
                                                                                                                            'cbf': {'bias': -0.000339440062828224,
                                                                                                                                    'bias_glo': -0.1430231743592047,
                                                                                                                                    'cor': 0.9555867334095778,
                                                                                                                                    'cor_glo': 0.7440595870222135,
                                                                                                                                    'frac': 0.2830518343677754,
                                                                                                                                    'frac_cbf_regrid': 0.28594360200255226,
                                                                                                                                    'mean': -2.475584725903884e-17,
                                                                                                                                    'mean_glo': -0.11933892790750315,
                                                                                                                                    'rms': 0.24564245020030487,
                                                                                                                                    'rms_glo': 0.2949816556665315,
                                                                                                                                    'rmsc': 0.29803779837487787,
                                                                                                                                    'rmsc_glo': 0.7154584641423017,
                                                                                                                                    'stdv_pc': 0.6244885678023433,
                                                                                                                                    'stdv_pc_ratio_to_obs': 0.8037623717435524},
                                                                                                                            'eof1': {'bias': -0.0003686776033291722,
                                                                                                                                     'bias_glo': -0.13270250982053342,
                                                                                                                                     'cor': 0.9127808881217266,
                                                                                                                                     'cor_glo': 0.7186821857517942,
                                                                                                                                     'frac': 0.29321755326460036,
                                                                                                                                     'mean': -2.860935178520998e-17,
                                                                                                                                     'mean_glo': -0.10901826277883817,
                                                                                                                                     'rms': 0.3203845502184153,
                                                                                                                                     'rms_glo': 0.3081047441891656,
                                                                                                                                     'rmsc': 0.4176580141636246,
                                                                                                                                     'rmsc_glo': 0.75009041151259,
                                                                                                                                     'stdv_pc': 0.6668339599572888,
                                                                                                                                     'stdv_pc_ratio_to_obs': 0.8582639824786306,
                                                                                                                                     'tcor_cbf_vs_eof_pc': 0.9722637113027082},
                                                                                                                            'eof2': {'bias': 7.64737108728623e-05,
                                                                                                                                     'bias_glo': -0.20940941401952554,
                                                                                                                                     'cor': 0.10267043566428642,
                                                                                                                                     'cor_glo': 0.00032714743920448654,
                                                                                                                                     'frac': 0.13524613032313934,
                                                                                                                                     'mean': -2.4405528665750555e-17,
                                                                                                                                     'mean_glo': -0.18572517030556773,
                                                                                                                                     'rms': 0.8573517734309951,
                                                                                                                                     'rms_glo': 0.4968448437041675,
                                                                                                                                     'rmsc': 1.3396488891277742,
                                                                                                                                     'rmsc_glo': 1.413982235750926,
                                                                                                                                     'stdv_pc': 0.4528820943762222,
                                                                                                                                     'stdv_pc_ratio_to_obs': 0.5828923139089909,
                                                                                                                                     'tcor_cbf_vs_eof_pc': 0.07413488569812975},
                                                                                                                            'eof3': {'bias': 4.276376032333258e-05,
                                                                                                                                     'bias_glo': -0.012681769962223392,
                                                                                                                                     'cor': 0.25091542617055607,
                                                                                                                                     'cor_glo': 0.04784202968995453,
                                                                                                                                     'frac': 0.12360081770342395,
                                                                                                                                     'mean': 4.203823119459426e-18,
                                                                                                                                     'mean_glo': -0.011002472478757,
                                                                                                                                     'rms': 0.788433382880231,
                                                                                                                                     'rms_glo': 0.42271732659700184,
                                                                                                                                     'rmsc': 1.2239972017283307,
                                                                                                                                     'rmsc_glo': 1.3799695404330847,
                                                                                                                                     'stdv_pc': 0.4329456678133854,
                                                                                                                                     'stdv_pc_ratio_to_obs': 0.5572326776491504,
                                                                                                                                     'tcor_cbf_vs_eof_pc': -0.17338698865304683},
                                                                                                                            'period': '1900-2005'},
                                                                                                                    'MAM': {'best_matching_model_eofs__cor': 1,
                                                                                                                            'best_matching_model_eofs__rms': 1,
                                                                                                                            'best_matching_model_eofs__tcor_cbf_vs_eof_pc': 1,
                                                                                                                            'cbf': {'bias': -0.0008012471414664261,
                                                                                                                                    'bias_glo': -0.17854679341861684,
                                                                                                                                    'cor': 0.9704889883847597,
                                                                                                                                    'cor_glo': 0.88674124971984,
                                                                                                                                    'frac': 0.4659520995034378,
                                                                                                                                    'frac_cbf_regrid': 0.46908488286674677,
                                                                                                                                    'mean': -6.539280408047995e-17,
                                                                                                                                    'mean_glo': -0.2759553967992271,
                                                                                                                                    'rms': 0.503463417867287,
                                                                                                                                    'rms_glo': 0.4102132136405452,
                                                                                                                                    'rmsc': 0.242944478975592,
                                                                                                                                    'rmsc_glo': 0.4759385427375869,
                                                                                                                                    'stdv_pc': 1.5478237387018992,
                                                                                                                                    'stdv_pc_ratio_to_obs': 1.2656702540125166},
                                                                                                                            'eof1': {'bias': -0.000796414955349351,
                                                                                                                                     'bias_glo': -0.17613739075062407,
                                                                                                                                     'cor': 0.9627779184827293,
                                                                                                                                     'cor_glo': 0.8811945904479066,
                                                                                                                                     'frac': 0.4692810415158967,
                                                                                                                                     'mean': -4.951169451807768e-17,
                                                                                                                                     'mean_glo': -0.27354599377490424,
                                                                                                                                     'rms': 0.5369546086346955,
                                                                                                                                     'rms_glo': 0.41523868361767247,
                                                                                                                                     'rmsc': 0.2728445778681033,
                                                                                                                                     'rmsc_glo': 0.4874534054455351,
                                                                                                                                     'stdv_pc': 1.6038119005367868,
                                                                                                                                     'stdv_pc_ratio_to_obs': 1.311452308673783,
                                                                                                                                     'tcor_cbf_vs_eof_pc': 0.9955802231578514},
                                                                                                                            'eof2': {'bias': -0.00018092089067663338,
                                                                                                                                     'bias_glo': 0.08450409239149606,
                                                                                                                                     'cor': 0.1429980984862777,
                                                                                                                                     'cor_glo': 0.2661610990376763,
                                                                                                                                     'frac': 0.11784255676683851,
                                                                                                                                     'mean': 9.34182915435428e-18,
                                                                                                                                     'mean_glo': 0.012904516099655667,
                                                                                                                                     'rms': 1.3629993813090482,
                                                                                                                                     'rms_glo': 0.55020383169423,
                                                                                                                                     'rmsc': 1.309199656381692,
                                                                                                                                     'rmsc_glo': 1.2114775360536445,
                                                                                                                                     'stdv_pc': 0.803688964838637,
                                                                                                                                     'stdv_pc_ratio_to_obs': 0.6571841423801043,
                                                                                                                                     'tcor_cbf_vs_eof_pc': -0.07405804959216844},
                                                                                                                            'eof3': {'bias': -4.0130403110125545e-05,
                                                                                                                                     'bias_glo': 0.23637698199303767,
                                                                                                                                     'cor': 0.0423136781676804,
                                                                                                                                     'cor_glo': 0.08010976949441938,
                                                                                                                                     'frac': 0.10621837226623916,
                                                                                                                                     'mean': 3.2112537718092836e-17,
                                                                                                                                     'mean_glo': -0.13896837689663757,
                                                                                                                                     'rms': 1.4122945006171688,
                                                                                                                                     'rms_glo': 0.6745898461080686,
                                                                                                                                     'rmsc': 1.3839698709777193,
                                                                                                                                     'rmsc_glo': 1.3563850510738142,
                                                                                                                                     'stdv_pc': 0.7630214515245948,
                                                                                                                                     'stdv_pc_ratio_to_obs': 0.6239299283380011,
                                                                                                                                     'tcor_cbf_vs_eof_pc': -0.020778016649434763},
                                                                                                                            'period': '1900-2005'},
                                                                                                                    'SON': {'best_matching_model_eofs__cor': 1,
                                                                                                                            'best_matching_model_eofs__rms': 1,
                                                                                                                            'best_matching_model_eofs__tcor_cbf_vs_eof_pc': 1,
                                                                                                                            'cbf': {'bias': -0.00032099886496391225,
                                                                                                                                    'bias_glo': -0.13969474328757017,
                                                                                                                                    'cor': 0.9305171140985801,
                                                                                                                                    'cor_glo': 0.6648570966011743,
                                                                                                                                    'frac': 0.30301982040478787,
                                                                                                                                    'frac_cbf_regrid': 0.305264323990083,
                                                                                                                                    'mean': -3.152867339594569e-18,
                                                                                                                                    'mean_glo': -0.017594059185911542,
                                                                                                                                    'rms': 0.4149865922916922,
                                                                                                                                    'rms_glo': 0.40274654792284764,
                                                                                                                                    'rmsc': 0.37278113400721097,
                                                                                                                                    'rmsc_glo': 0.8187098499247407,
                                                                                                                                    'stdv_pc': 1.0376790023172113,
                                                                                                                                    'stdv_pc_ratio_to_obs': 1.0762224806622913},
                                                                                                                            'eof1': {'bias': -0.00038274145784516643,
                                                                                                                                     'bias_glo': -0.12104797675961255,
                                                                                                                                     'cor': 0.7575300324848012,
                                                                                                                                     'cor_glo': 0.5597836469915576,
                                                                                                                                     'frac': 0.3439225897341635,
                                                                                                                                     'mean': -1.6348201020119988e-18,
                                                                                                                                     'mean_glo': 0.0010527073600691264,
                                                                                                                                     'rms': 0.7782919015029092,
                                                                                                                                     'rms_glo': 0.47573778421590557,
                                                                                                                                     'rmsc': 0.6963762731684049,
                                                                                                                                     'rmsc_glo': 0.9383137712507913,
                                                                                                                                     'stdv_pc': 1.1906707339919618,
                                                                                                                                     'stdv_pc_ratio_to_obs': 1.2348969268215924,
                                                                                                                                     'tcor_cbf_vs_eof_pc': 0.867403071380177},
                                                                                                                            'eof2': {'bias': -0.00010242387119895338,
                                                                                                                                     'bias_glo': -0.20863893284137736,
                                                                                                                                     'cor': 0.5643628993662031,
                                                                                                                                     'cor_glo': 0.3120681457524903,
                                                                                                                                     'frac': 0.1878475713333212,
                                                                                                                                     'mean': -5.138006034894853e-18,
                                                                                                                                     'mean_glo': -0.08653824927569911,
                                                                                                                                     'rms': 0.8629636060494174,
                                                                                                                                     'rms_glo': 0.5077981848243941,
                                                                                                                                     'rmsc': 0.9334207259416845,
                                                                                                                                     'rmsc_glo': 1.1729721882076265,
                                                                                                                                     'stdv_pc': 0.879962409265201,
                                                                                                                                     'stdv_pc_ratio_to_obs': 0.9126476731958182,
                                                                                                                                     'tcor_cbf_vs_eof_pc': 0.4772704570810442},
                                                                                                                            'eof3': {'bias': 0.00024411734290927332,
                                                                                                                                     'bias_glo': -0.25213037084763446,
                                                                                                                                     'cor': 0.003705682291942319,
                                                                                                                                     'cor_glo': -0.0205729882784756,
                                                                                                                                     'frac': 0.13922929806926132,
                                                                                                                                     'mean': -5.067942316237196e-17,
                                                                                                                                     'mean_glo': -0.13002968773361173,
                                                                                                                                     'rms': 1.222128863473582,
                                                                                                                                     'rms_glo': 0.5669401934439421,
                                                                                                                                     'rmsc': 1.4115908370496608,
                                                                                                                                     'rmsc_glo': 1.4286867828093772,
                                                                                                                                     'stdv_pc': 0.757576762149095,
                                                                                                                                     'stdv_pc_ratio_to_obs': 0.7857161419201267,
                                                                                                                                     'tcor_cbf_vs_eof_pc': 0.0026945654359457586},
                                                                                                                            'period': '1900-2005'},
                                                                                                                    'target_model_eofs': 1}}},
                                                                          'r5i1p1f1': {'defaultReference': {'NAO': {'DJF': {'best_matching_model_eofs__cor': 1,
                                                                                                                            'best_matching_model_eofs__rms': 1,
                                                                                                                            'best_matching_model_eofs__tcor_cbf_vs_eof_pc': 1,
                                                                                                                            'cbf': {'bias': -0.000791654521021418,
                                                                                                                                    'bias_glo': -0.08849624674616574,
                                                                                                                                    'cor': 0.9863365834490918,
                                                                                                                                    'cor_glo': 0.935781720505048,
                                                                                                                                    'frac': 0.4447524120743221,
                                                                                                                                    'frac_cbf_regrid': 0.4474800105365573,
                                                                                                                                    'mean': 2.33545728858857e-17,
                                                                                                                                    'mean_glo': -0.34892565905804335,
                                                                                                                                    'rms': 0.32488456595750936,
                                                                                                                                    'rms_glo': 0.3302969327631102,
                                                                                                                                    'rmsc': 0.1653083110018864,
                                                                                                                                    'rmsc_glo': 0.35838048233967906,
                                                                                                                                    'stdv_pc': 1.945109963756048,
                                                                                                                                    'stdv_pc_ratio_to_obs': 1.00058531855369},
                                                                                                                            'eof1': {'bias': -0.00080088847992125,
                                                                                                                                     'bias_glo': -0.10634933678244907,
                                                                                                                                     'cor': 0.9798788889379075,
                                                                                                                                     'cor_glo': 0.9247209019507514,
                                                                                                                                     'frac': 0.4471973889527812,
                                                                                                                                     'mean': 2.8025487463062835e-17,
                                                                                                                                     'mean_glo': -0.3667787494127895,
                                                                                                                                     'rms': 0.3950287227336955,
                                                                                                                                     'rms_glo': 0.35808421996593837,
                                                                                                                                     'rmsc': 0.20060464092412733,
                                                                                                                                     'rmsc_glo': 0.38801828038567265,
                                                                                                                                     'stdv_pc': 1.9818081932073743,
                                                                                                                                     'stdv_pc_ratio_to_obs': 1.0194632793323213,
                                                                                                                                     'tcor_cbf_vs_eof_pc': 0.9962329813825853},
                                                                                                                            'eof2': {'bias': 0.000292493069316562,
                                                                                                                                     'bias_glo': -0.16970971654496525,
                                                                                                                                     'cor': 0.011309169807374968,
                                                                                                                                     'cor_glo': -0.07677553042726076,
                                                                                                                                     'frac': 0.15444503793299763,
                                                                                                                                     'mean': -8.874737696636565e-17,
                                                                                                                                     'mean_glo': 0.430139138486569,
                                                                                                                                     'rms': 2.25287215968915,
                                                                                                                                     'rms_glo': 1.0122861987068488,
                                                                                                                                     'rmsc': 1.4061940502157926,
                                                                                                                                     'rmsc_glo': 1.4674982270240753,
                                                                                                                                     'stdv_pc': 1.1646594899990907,
                                                                                                                                     'stdv_pc_ratio_to_obs': 0.5991132678982426,
                                                                                                                                     'tcor_cbf_vs_eof_pc': -0.0074791520248425085},
                                                                                                                            'eof3': {'bias': 7.150774034374723e-06,
                                                                                                                                     'bias_glo': 0.47324675012439943,
                                                                                                                                     'cor': 0.14929790958000755,
                                                                                                                                     'cor_glo': 0.3829746161402332,
                                                                                                                                     'frac': 0.12483821594457581,
                                                                                                                                     'mean': -2.7091304547627408e-17,
                                                                                                                                     'mean_glo': 0.2128173292781172,
                                                                                                                                     'rms': 2.064690023576776,
                                                                                                                                     'rms_glo': 0.9197509857986687,
                                                                                                                                     'rmsc': 1.3043788690291998,
                                                                                                                                     'rmsc_glo': 1.110878388880015,
                                                                                                                                     'stdv_pc': 1.0470942307533189,
                                                                                                                                     'stdv_pc_ratio_to_obs': 0.5386364441889424,
                                                                                                                                     'tcor_cbf_vs_eof_pc': 0.07940180582610352},
                                                                                                                            'period': '1900-2005'},
                                                                                                                    'JJA': {'best_matching_model_eofs__cor': 1,
                                                                                                                            'best_matching_model_eofs__rms': 1,
                                                                                                                            'best_matching_model_eofs__tcor_cbf_vs_eof_pc': 1,
                                                                                                                            'cbf': {'bias': -0.0002986395009470908,
                                                                                                                                    'bias_glo': -0.05601357235392736,
                                                                                                                                    'cor': 0.9561352296725507,
                                                                                                                                    'cor_glo': 0.7388018670802573,
                                                                                                                                    'frac': 0.30147151615499357,
                                                                                                                                    'frac_cbf_regrid': 0.30443064447431756,
                                                                                                                                    'mean': 1.9501068359714557e-17,
                                                                                                                                    'mean_glo': -0.032329326839590944,
                                                                                                                                    'rms': 0.23092883762336197,
                                                                                                                                    'rms_glo': 0.2696990057962329,
                                                                                                                                    'rmsc': 0.29619172364430985,
                                                                                                                                    'rmsc_glo': 0.7227698587094481,
                                                                                                                                    'stdv_pc': 0.6728829641085691,
                                                                                                                                    'stdv_pc_ratio_to_obs': 0.866049492372638},
                                                                                                                            'eof1': {'bias': -0.0003515128202406834,
                                                                                                                                     'bias_glo': -0.06609237990298732,
                                                                                                                                     'cor': 0.9193729464079641,
                                                                                                                                     'cor_glo': 0.711452562434165,
                                                                                                                                     'frac': 0.31078458252858526,
                                                                                                                                     'mean': -7.006371865765709e-19,
                                                                                                                                     'mean_glo': -0.04240813427738175,
                                                                                                                                     'rms': 0.30564516380048806,
                                                                                                                                     'rms_glo': 0.29116744842614495,
                                                                                                                                     'rmsc': 0.4015645820659089,
                                                                                                                                     'rmsc_glo': 0.7596676195092428,
                                                                                                                                     'stdv_pc': 0.7163066761658438,
                                                                                                                                     'stdv_pc_ratio_to_obs': 0.921938979534733,
                                                                                                                                     'tcor_cbf_vs_eof_pc': 0.9765036683851308},
                                                                                                                            'eof2': {'bias': -6.778093156507369e-05,
                                                                                                                                     'bias_glo': 0.09001747100626535,
                                                                                                                                     'cor': 0.12010697114158293,
                                                                                                                                     'cor_glo': 0.03970102328424271,
                                                                                                                                     'frac': 0.14536077583823195,
                                                                                                                                     'mean': -3.736731661741712e-17,
                                                                                                                                     'mean_glo': -0.11370171447752796,
                                                                                                                                     'rms': 0.866618614731522,
                                                                                                                                     'rms_glo': 0.45130603421114185,
                                                                                                                                     'rmsc': 1.3265692819670238,
                                                                                                                                     'rmsc_glo': 1.3858564335085155,
                                                                                                                                     'stdv_pc': 0.48988357894823986,
                                                                                                                                     'stdv_pc_ratio_to_obs': 0.630515925502551,
                                                                                                                                     'tcor_cbf_vs_eof_pc': -0.08717397111983773},
                                                                                                                            'eof3': {'bias': 0.00015410994616953845,
                                                                                                                                     'bias_glo': -0.11427068633642448,
                                                                                                                                     'cor': 0.2270805420089087,
                                                                                                                                     'cor_glo': 0.12302321777498063,
                                                                                                                                     'frac': 0.12817380036641188,
                                                                                                                                     'mean': -1.4684187702000632e-17,
                                                                                                                                     'mean_glo': -0.09058644188126692,
                                                                                                                                     'rms': 0.8072134970503853,
                                                                                                                                     'rms_glo': 0.4183310491708757,
                                                                                                                                     'rmsc': 1.2433177065816177,
                                                                                                                                     'rmsc_glo': 1.3243690987217496,
                                                                                                                                     'stdv_pc': 0.4600117199535335,
                                                                                                                                     'stdv_pc_ratio_to_obs': 0.5920686624590208,
                                                                                                                                     'tcor_cbf_vs_eof_pc': 0.15443080424320055},
                                                                                                                            'period': '1900-2005'},
                                                                                                                    'MAM': {'best_matching_model_eofs__cor': 1,
                                                                                                                            'best_matching_model_eofs__rms': 1,
                                                                                                                            'best_matching_model_eofs__tcor_cbf_vs_eof_pc': 1,
                                                                                                                            'cbf': {'bias': -0.0008033946163934859,
                                                                                                                                    'bias_glo': -0.224362239768102,
                                                                                                                                    'cor': 0.9706921199782229,
                                                                                                                                    'cor_glo': 0.9185812850277748,
                                                                                                                                    'frac': 0.491060076157965,
                                                                                                                                    'frac_cbf_regrid': 0.4943103446260862,
                                                                                                                                    'mean': -6.726116991135081e-17,
                                                                                                                                    'mean_glo': -0.32177084409604145,
                                                                                                                                    'rms': 0.5817090344132458,
                                                                                                                                    'rms_glo': 0.41103569621058944,
                                                                                                                                    'rmsc': 0.24210691790513278,
                                                                                                                                    'rmsc_glo': 0.4035311961836098,
                                                                                                                                    'stdv_pc': 1.6395854358971298,
                                                                                                                                    'stdv_pc_ratio_to_obs': 1.3407046702019914},
                                                                                                                            'eof1': {'bias': -0.0007995927620392812,
                                                                                                                                     'bias_glo': -0.2363401441059763,
                                                                                                                                     'cor': 0.962306292257429,
                                                                                                                                     'cor_glo': 0.9110388515662962,
                                                                                                                                     'frac': 0.4949747959353766,
                                                                                                                                     'mean': -6.67940784536331e-17,
                                                                                                                                     'mean_glo': -0.3337487480696099,
                                                                                                                                     'rms': 0.61637133060873,
                                                                                                                                     'rms_glo': 0.42686681995607145,
                                                                                                                                     'rmsc': 0.27456769017652155,
                                                                                                                                     'rmsc_glo': 0.4218083706048548,
                                                                                                                                     'stdv_pc': 1.6993046046861233,
                                                                                                                                     'stdv_pc_ratio_to_obs': 1.389537604883541,
                                                                                                                                     'tcor_cbf_vs_eof_pc': 0.9952791925195965},
                                                                                                                            'eof2': {'bias': 3.6965482288656246e-05,
                                                                                                                                     'bias_glo': -0.1563802596272038,
                                                                                                                                     'cor': 0.05927936519034734,
                                                                                                                                     'cor_glo': -0.149230011204767,
                                                                                                                                     'frac': 0.11329635671627987,
                                                                                                                                     'mean': 4.986201311136596e-17,
                                                                                                                                     'mean_glo': 0.2537888669516208,
                                                                                                                                     'rms': 1.4267311926323012,
                                                                                                                                     'rms_glo': 0.7046465943579326,
                                                                                                                                     'rmsc': 1.3716563849733803,
                                                                                                                                     'rmsc_glo': 1.5160672628731222,
                                                                                                                                     'stdv_pc': 0.812994605337957,
                                                                                                                                     'stdv_pc_ratio_to_obs': 0.6647934534922346,
                                                                                                                                     'tcor_cbf_vs_eof_pc': -0.0293186870938962},
                                                                                                                            'eof3': {'bias': -0.00019163099634381334,
                                                                                                                                     'bias_glo': 0.12055301591454147,
                                                                                                                                     'cor': 0.10638648473891633,
                                                                                                                                     'cor_glo': 0.1409369598351522,
                                                                                                                                     'frac': 0.10501734502743286,
                                                                                                                                     'mean': -1.4479835189249132e-17,
                                                                                                                                     'mean_glo': -0.02314440631544921,
                                                                                                                                     'rms': 1.3789496535858403,
                                                                                                                                     'rms_glo': 0.6001089763998458,
                                                                                                                                     'rmsc': 1.3368721074530974,
                                                                                                                                     'rmsc_glo': 1.3107730731709915,
                                                                                                                                     'stdv_pc': 0.7827268088118913,
                                                                                                                                     'stdv_pc_ratio_to_obs': 0.6400431871927442,
                                                                                                                                     'tcor_cbf_vs_eof_pc': -0.05063668487759471},
                                                                                                                            'period': '1900-2005'},
                                                                                                                    'SON': {'best_matching_model_eofs__cor': 1,
                                                                                                                            'best_matching_model_eofs__rms': 1,
                                                                                                                            'best_matching_model_eofs__tcor_cbf_vs_eof_pc': 1,
                                                                                                                            'cbf': {'bias': -0.000311280190188407,
                                                                                                                                    'bias_glo': -0.22381418186973484,
                                                                                                                                    'cor': 0.9021202525969098,
                                                                                                                                    'cor_glo': 0.648534496130221,
                                                                                                                                    'frac': 0.2629178486113129,
                                                                                                                                    'frac_cbf_regrid': 0.26497547015367434,
                                                                                                                                    'mean': 1.3195333680525419e-17,
                                                                                                                                    'mean_glo': -0.10171349662462364,
                                                                                                                                    'rms': 0.43279903438133793,
                                                                                                                                    'rms_glo': 0.41266551036168386,
                                                                                                                                    'rmsc': 0.44244717366844466,
                                                                                                                                    'rmsc_glo': 0.8384098100924556,
                                                                                                                                    'stdv_pc': 0.8922982941179296,
                                                                                                                                    'stdv_pc_ratio_to_obs': 0.9254417613172136},
                                                                                                                            'eof1': {'bias': -0.00032332983456708094,
                                                                                                                                     'bias_glo': -0.21087950369584263,
                                                                                                                                     'cor': 0.7021094410616725,
                                                                                                                                     'cor_glo': 0.5182975964260734,
                                                                                                                                     'frac': 0.309796244576999,
                                                                                                                                     'mean': 1.4363062324819703e-17,
                                                                                                                                     'mean_glo': -0.08877881879502987,
                                                                                                                                     'rms': 0.7929621221075269,
                                                                                                                                     'rms_glo': 0.47738124267921855,
                                                                                                                                     'rmsc': 0.771868564924652,
                                                                                                                                     'rmsc_glo': 0.9815318593681917,
                                                                                                                                     'stdv_pc': 1.0761689272869828,
                                                                                                                                     'stdv_pc_ratio_to_obs': 1.1161420727895008,
                                                                                                                                     'tcor_cbf_vs_eof_pc': 0.8448612207958272},
                                                                                                                            'eof2': {'bias': 0.00017144824326363,
                                                                                                                                     'bias_glo': -0.24420826258081313,
                                                                                                                                     'cor': 0.3435138760198711,
                                                                                                                                     'cor_glo': 0.2620816985506469,
                                                                                                                                     'frac': 0.20422278803664545,
                                                                                                                                     'mean': 4.624205431405368e-17,
                                                                                                                                     'mean_glo': -0.12210757726875458,
                                                                                                                                     'rms': 1.0543497504989552,
                                                                                                                                     'rms_glo': 0.5121692655058644,
                                                                                                                                     'rmsc': 1.145849988503003,
                                                                                                                                     'rmsc_glo': 1.2148401761150218,
                                                                                                                                     'stdv_pc': 0.8737646578379146,
                                                                                                                                     'stdv_pc_ratio_to_obs': 0.9062197129106939,
                                                                                                                                     'tcor_cbf_vs_eof_pc': 0.335431229795664},
                                                                                                                            'eof3': {'bias': -0.0002738965013775265,
                                                                                                                                     'bias_glo': -0.11846027087956917,
                                                                                                                                     'cor': 0.571891885064811,
                                                                                                                                     'cor_glo': 0.33588211617878355,
                                                                                                                                     'frac': 0.11070743872601625,
                                                                                                                                     'mean': -5.240182291270603e-18,
                                                                                                                                     'mean_glo': 0.0036404121941214563,
                                                                                                                                     'rms': 0.7959936948487132,
                                                                                                                                     'rms_glo': 0.40720871623061405,
                                                                                                                                     'rmsc': 0.925319513824805,
                                                                                                                                     'rmsc_glo': 1.1524911365123307,
                                                                                                                                     'stdv_pc': 0.6433255137852264,
                                                                                                                                     'stdv_pc_ratio_to_obs': 0.6672211529511409,
                                                                                                                                     'tcor_cbf_vs_eof_pc': 0.4107498184740465},
                                                                                                                            'period': '1900-2005'},
                                                                                                                    'target_model_eofs': 1}}}}},
                                               'provenance': {'commandLine': '../variability_modes_driver.py '
                                                                             '-p '
                                                                             '../../../sample_setups/pcmdi_parameter_files/variability_modes/myParam_NAO_cmip6.py '
                                                                             '--case_id '
                                                                             'v20220825 '
                                                                             '--mip '
                                                                             'cmip6 '
                                                                             '--exp '
                                                                             'historical '
                                                                             '--modnames '
                                                                             'UKESM1-1-LL '
                                                                             '--realization '
                                                                             'r1i1p1f2 '
                                                                             '--parallel '
                                                                             'True '
                                                                             '--no_nc_out_obs '
                                                                             '--no_plot_obs',
                                                              'conda': {'Platform': 'linux-64',
                                                                        'PythonVersion': '3.7.3.final.0',
                                                                        'Version': '4.14.0',
                                                                        'buildVersion': '3.18.8'},
                                                              'date': '2022-08-25 '
                                                                      '23:41:12',
                                                              'history': '',
                                                              'openGL': {'GLX': {'client': {},
                                                                                 'server': {}}},
                                                              'osAccess': False,
                                                              'packages': {'PMP': '2.0',
                                                                           'PMPObs': 'See '
                                                                                     "'References' "
                                                                                     'key '
                                                                                     'below, '
                                                                                     'for '
                                                                                     'detailed '
                                                                                     'obs '
                                                                                     'provenance '
                                                                                     'information.',
                                                                           'blas': '0.3.21',
                                                                           'cdat_info': '8.2.1',
                                                                           'cdms': '3.1.5',
                                                                           'cdp': '1.7.0',
                                                                           'cdtime': '3.1.4',
                                                                           'cdutil': '8.2.1',
                                                                           'clapack': None,
                                                                           'esmf': '8.2.0',
                                                                           'esmpy': '8.2.0',
                                                                           'genutil': '8.2.1',
                                                                           'lapack': '3.9.0',
                                                                           'matplotlib': None,
                                                                           'mesalib': None,
                                                                           'numpy': '1.23.2',
                                                                           'python': '3.10.6',
                                                                           'scipy': '1.9.0',
                                                                           'uvcdat': None,
                                                                           'vcs': None,
                                                                           'vtk': None},
                                                              'platform': {'Name': 'gates.llnl.gov',
                                                                           'OS': 'Linux',
                                                                           'Version': '3.10.0-1160.71.1.el7.x86_64'},
                                                              'script': '#!/usr/bin/env '
                                                                        'python\n'
                                                                        '\n'
                                                                        '"""\n'
                                                                        '# '
                                                                        'Modes '
                                                                        'of '
                                                                        'Variability '
                                                                        'Metrics\n'
                                                                        '- '
                                                                        'Calculate '
                                                                        'metrics '
                                                                        'for '
                                                                        'modes '
                                                                        'of '
                                                                        'varibility '
                                                                        'from '
                                                                        'archive '
                                                                        'of '
                                                                        'CMIP '
                                                                        'models\n'
                                                                        '- '
                                                                        'Author: '
                                                                        'Jiwoo '
                                                                        'Lee '
                                                                        '(lee1043@llnl.gov), '
                                                                        'PCMDI, '
                                                                        'LLNL\n'
                                                                        '\n'
                                                                        '## '
                                                                        'EOF1 '
                                                                        'based '
                                                                        'variability '
                                                                        'modes\n'
                                                                        '- '
                                                                        'NAM: '
                                                                        'Northern '
                                                                        'Annular '
                                                                        'Mode\n'
                                                                        '- '
                                                                        'NAO: '
                                                                        'Northern '
                                                                        'Atlantic '
                                                                        'Oscillation\n'
                                                                        '- '
                                                                        'SAM: '
                                                                        'Southern '
                                                                        'Annular '
                                                                        'Mode\n'
                                                                        '- '
                                                                        'PNA: '
                                                                        'Pacific '
                                                                        'North '
                                                                        'American '
                                                                        'Pattern\n'
                                                                        '- '
                                                                        'PDO: '
                                                                        'Pacific '
                                                                        'Decadal '
                                                                        'Oscillation\n'
                                                                        '\n'
                                                                        '## '
                                                                        'EOF2 '
                                                                        'based '
                                                                        'variability '
                                                                        'modes\n'
                                                                        '- '
                                                                        'NPO: '
                                                                        'North '
                                                                        'Pacific '
                                                                        'Oscillation '
                                                                        '(2nd '
                                                                        'EOFs '
                                                                        'of '
                                                                        'PNA '
                                                                        'domain)\n'
                                                                        '- '
                                                                        'NPGO: '
                                                                        'North '
                                                                        'Pacific '
                                                                        'Gyre '
                                                                        'Oscillation '
                                                                        '(2nd '
                                                                        'EOFs '
                                                                        'of '
                                                                        'PDO '
                                                                        'domain)\n'
                                                                        '\n'
                                                                        '## '
                                                                        'Reference:\n'
                                                                        'Lee, '
                                                                        'J., '
                                                                        'K. '
                                                                        'Sperber, '
                                                                        'P. '
                                                                        'Gleckler, '
                                                                        'C. '
                                                                        'Bonfils, '
                                                                        'and '
                                                                        'K. '
                                                                        'Taylor, '
                                                                        '2019:\n'
                                                                        'Quantifying '
                                                                        'the '
                                                                        'Agreement '
                                                                        'Between '
                                                                        'Observed '
                                                                        'and '
                                                                        'Simulated '
                                                                        'Extratropical '
                                                                        'Modes '
                                                                        'of\n'
                                                                        'Interannual '
                                                                        'Variability. '
                                                                        'Climate '
                                                                        'Dynamics.\n'
                                                                        'https://doi.org/10.1007/s00382-018-4355-4\n'
                                                                        '\n'
                                                                        '## '
                                                                        'Auspices:\n'
                                                                        'This '
                                                                        'work '
                                                                        'was '
                                                                        'performed '
                                                                        'under '
                                                                        'the '
                                                                        'auspices '
                                                                        'of '
                                                                        'the '
                                                                        'U.S. '
                                                                        'Department '
                                                                        'of\n'
                                                                        'Energy '
                                                                        'by '
                                                                        'Lawrence '
                                                                        'Livermore '
                                                                        'National '
                                                                        'Laboratory '
                                                                        'under '
                                                                        'Contract\n'
                                                                        'DE-AC52-07NA27344. '
                                                                        'Lawrence '
                                                                        'Livermore '
                                                                        'National '
                                                                        'Laboratory '
                                                                        'is '
                                                                        'operated '
                                                                        'by\n'
                                                                        'Lawrence '
                                                                        'Livermore '
                                                                        'National '
                                                                        'Security, '
                                                                        'LLC, '
                                                                        'for '
                                                                        'the '
                                                                        'U.S. '
                                                                        'Department '
                                                                        'of '
                                                                        'Energy,\n'
                                                                        'National '
                                                                        'Nuclear '
                                                                        'Security '
                                                                        'Administration '
                                                                        'under '
                                                                        'Contract '
                                                                        'DE-AC52-07NA27344.\n'
                                                                        '\n'
                                                                        '## '
                                                                        'Disclaimer:\n'
                                                                        'This '
                                                                        'document '
                                                                        'was '
                                                                        'prepared '
                                                                        'as an '
                                                                        'account '
                                                                        'of '
                                                                        'work '
                                                                        'sponsored '
                                                                        'by '
                                                                        'an\n'
                                                                        'agency '
                                                                        'of '
                                                                        'the '
                                                                        'United '
                                                                        'States '
                                                                        'government. '
                                                                        'Neither '
                                                                        'the '
                                                                        'United '
                                                                        'States '
                                                                        'government\n'
                                                                        'nor '
                                                                        'Lawrence '
                                                                        'Livermore '
                                                                        'National '
                                                                        'Security, '
                                                                        'LLC, '
                                                                        'nor '
                                                                        'any '
                                                                        'of '
                                                                        'their '
                                                                        'employees\n'
                                                                        'makes '
                                                                        'any '
                                                                        'warranty, '
                                                                        'expressed '
                                                                        'or '
                                                                        'implied, '
                                                                        'or '
                                                                        'assumes '
                                                                        'any '
                                                                        'legal '
                                                                        'liability '
                                                                        'or\n'
                                                                        'responsibility '
                                                                        'for '
                                                                        'the '
                                                                        'accuracy, '
                                                                        'completeness, '
                                                                        'or '
                                                                        'usefulness '
                                                                        'of '
                                                                        'any\n'
                                                                        'information, '
                                                                        'apparatus, '
                                                                        'product, '
                                                                        'or '
                                                                        'process '
                                                                        'disclosed, '
                                                                        'or '
                                                                        'represents '
                                                                        'that '
                                                                        'its\n'
                                                                        'use '
                                                                        'would '
                                                                        'not '
                                                                        'infringe '
                                                                        'privately '
                                                                        'owned '
                                                                        'rights. '
                                                                        'Reference '
                                                                        'herein '
                                                                        'to '
                                                                        'any '
                                                                        'specific\n'
                                                                        'commercial '
                                                                        'product, '
                                                                        'process, '
                                                                        'or '
                                                                        'service '
                                                                        'by '
                                                                        'trade '
                                                                        'name, '
                                                                        'trademark, '
                                                                        'manufacturer,\n'
                                                                        'or '
                                                                        'otherwise '
                                                                        'does '
                                                                        'not '
                                                                        'necessarily '
                                                                        'constitute '
                                                                        'or '
                                                                        'imply '
                                                                        'its '
                                                                        'endorsement,\n'
                                                                        'recommendation, '
                                                                        'or '
                                                                        'favoring '
                                                                        'by '
                                                                        'the '
                                                                        'United '
                                                                        'States '
                                                                        'government '
                                                                        'or '
                                                                        'Lawrence\n'
                                                                        'Livermore '
                                                                        'National '
                                                                        'Security, '
                                                                        'LLC. '
                                                                        'The '
                                                                        'views '
                                                                        'and '
                                                                        'opinions '
                                                                        'of '
                                                                        'authors '
                                                                        'expressed\n'
                                                                        'herein '
                                                                        'do '
                                                                        'not '
                                                                        'necessarily '
                                                                        'state '
                                                                        'or '
                                                                        'reflect '
                                                                        'those '
                                                                        'of '
                                                                        'the '
                                                                        'United '
                                                                        'States\n'
                                                                        'government '
                                                                        'or '
                                                                        'Lawrence '
                                                                        'Livermore '
                                                                        'National '
                                                                        'Security, '
                                                                        'LLC, '
                                                                        'and '
                                                                        'shall '
                                                                        'not '
                                                                        'be '
                                                                        'used\n'
                                                                        'for '
                                                                        'advertising '
                                                                        'or '
                                                                        'product '
                                                                        'endorsement '
                                                                        'purposes.\n'
                                                                        '"""\n'
                                                                        '\n'
                                                                        'from '
                                                                        '__future__ '
                                                                        'import '
                                                                        'print_function\n'
                                                                        '\n'
                                                                        'import '
                                                                        'glob\n'
                                                                        'import '
                                                                        'json\n'
                                                                        'import '
                                                                        'os\n'
                                                                        'import '
                                                                        'sys\n'
                                                                        'from '
                                                                        'argparse '
                                                                        'import '
                                                                        'RawTextHelpFormatter\n'
                                                                        'from '
                                                                        'shutil '
                                                                        'import '
                                                                        'copyfile\n'
                                                                        '\n'
                                                                        'import '
                                                                        'cdtime\n'
                                                                        'import '
                                                                        'cdutil\n'
                                                                        'import '
                                                                        'MV2\n'
                                                                        'from '
                                                                        'genutil '
                                                                        'import '
                                                                        'StringConstructor\n'
                                                                        '\n'
                                                                        'import '
                                                                        'pcmdi_metrics\n'
                                                                        'from '
                                                                        'pcmdi_metrics '
                                                                        'import '
                                                                        'resources\n'
                                                                        'from '
                                                                        'pcmdi_metrics.variability_mode.lib '
                                                                        'import '
                                                                        '(\n'
                                                                        '    '
                                                                        'AddParserArgument,\n'
                                                                        '    '
                                                                        'VariabilityModeCheck,\n'
                                                                        '    '
                                                                        'YearCheck,\n'
                                                                        '    '
                                                                        'adjust_timeseries,\n'
                                                                        '    '
                                                                        'calc_stats_save_dict,\n'
                                                                        '    '
                                                                        'calcSTD,\n'
                                                                        '    '
                                                                        'calcTCOR,\n'
                                                                        '    '
                                                                        'debug_print,\n'
                                                                        '    '
                                                                        'eof_analysis_get_variance_mode,\n'
                                                                        '    '
                                                                        'gain_pcs_fraction,\n'
                                                                        '    '
                                                                        'gain_pseudo_pcs,\n'
                                                                        '    '
                                                                        'get_domain_range,\n'
                                                                        '    '
                                                                        'linear_regression_on_globe_for_teleconnection,\n'
                                                                        '    '
                                                                        'plot_map,\n'
                                                                        '    '
                                                                        'read_data_in,\n'
                                                                        '    '
                                                                        'sort_human,\n'
                                                                        '    '
                                                                        'tree,\n'
                                                                        '    '
                                                                        'variability_metrics_to_json,\n'
                                                                        '    '
                                                                        'write_nc_output,\n'
                                                                        ')\n'
                                                                        '\n'
                                                                        '# To '
                                                                        'avoid '
                                                                        'below '
                                                                        'error\n'
                                                                        '# '
                                                                        'OpenBLAS '
                                                                        'blas_thread_init: '
                                                                        'pthread_create '
                                                                        'failed '
                                                                        'for '
                                                                        'thread '
                                                                        'XX of '
                                                                        '96: '
                                                                        'Resource '
                                                                        'temporarily '
                                                                        'unavailable\n'
                                                                        'os.environ["OPENBLAS_NUM_THREADS"] '
                                                                        '= '
                                                                        '"1"\n'
                                                                        '\n'
                                                                        '# '
                                                                        'Must '
                                                                        'be '
                                                                        'done '
                                                                        'before '
                                                                        'any '
                                                                        'CDAT '
                                                                        'library '
                                                                        'is '
                                                                        'called.\n'
                                                                        '# '
                                                                        'https://github.com/CDAT/cdat/issues/2213\n'
                                                                        'if '
                                                                        '"UVCDAT_ANONYMOUS_LOG" '
                                                                        'not '
                                                                        'in '
                                                                        'os.environ:\n'
                                                                        '    '
                                                                        'os.environ["UVCDAT_ANONYMOUS_LOG"] '
                                                                        '= '
                                                                        '"no"\n'
                                                                        '\n'
                                                                        'regions_specs '
                                                                        '= {}\n'
                                                                        'egg_pth '
                                                                        '= '
                                                                        'resources.resource_path()\n'
                                                                        'exec(\n'
                                                                        '    '
                                                                        'compile(\n'
                                                                        '        '
                                                                        'open(os.path.join(egg_pth, '
                                                                        '"default_regions.py")).read(),\n'
                                                                        '        '
                                                                        'os.path.join(egg_pth, '
                                                                        '"default_regions.py"),\n'
                                                                        '        '
                                                                        '"exec",\n'
                                                                        '    '
                                                                        ')\n'
                                                                        ')\n'
                                                                        '\n'
                                                                        '# '
                                                                        '=================================================\n'
                                                                        '# '
                                                                        'Collect '
                                                                        'user '
                                                                        'defined '
                                                                        'options\n'
                                                                        '# '
                                                                        '-------------------------------------------------\n'
                                                                        'P = '
                                                                        'pcmdi_metrics.driver.pmp_parser.PMPParser(\n'
                                                                        '    '
                                                                        'description="Runs '
                                                                        'PCMDI '
                                                                        'Modes '
                                                                        'of '
                                                                        'Variability '
                                                                        'Computations",\n'
                                                                        '    '
                                                                        'formatter_class=RawTextHelpFormatter,\n'
                                                                        ')\n'
                                                                        'P = '
                                                                        'AddParserArgument(P)\n'
                                                                        'param '
                                                                        '= '
                                                                        'P.get_parameter()\n'
                                                                        '\n'
                                                                        '# '
                                                                        'Pre-defined '
                                                                        'options\n'
                                                                        'mip = '
                                                                        'param.mip\n'
                                                                        'exp = '
                                                                        'param.exp\n'
                                                                        'fq = '
                                                                        'param.frequency\n'
                                                                        'realm '
                                                                        '= '
                                                                        'param.realm\n'
                                                                        'print("mip:", '
                                                                        'mip)\n'
                                                                        'print("exp:", '
                                                                        'exp)\n'
                                                                        'print("fq:", '
                                                                        'fq)\n'
                                                                        'print("realm:", '
                                                                        'realm)\n'
                                                                        '\n'
                                                                        '# '
                                                                        'On/off '
                                                                        'switches\n'
                                                                        'obs_compare '
                                                                        '= '
                                                                        'True  '
                                                                        '# '
                                                                        'Statistics '
                                                                        'against '
                                                                        'observation\n'
                                                                        'CBF = '
                                                                        'param.CBF  '
                                                                        '# '
                                                                        'Conduct '
                                                                        'CBF '
                                                                        'analysis\n'
                                                                        'ConvEOF '
                                                                        '= '
                                                                        'param.ConvEOF  '
                                                                        '# '
                                                                        'Conduct '
                                                                        'conventional '
                                                                        'EOF '
                                                                        'analysis\n'
                                                                        '\n'
                                                                        'EofScaling '
                                                                        '= '
                                                                        'param.EofScaling  '
                                                                        '# If '
                                                                        'True, '
                                                                        'consider '
                                                                        'EOF '
                                                                        'with '
                                                                        'unit '
                                                                        'variance\n'
                                                                        'RmDomainMean '
                                                                        '= '
                                                                        'param.RemoveDomainMean  '
                                                                        '# If '
                                                                        'True, '
                                                                        'remove '
                                                                        'Domain '
                                                                        'Mean '
                                                                        'of '
                                                                        'each '
                                                                        'time '
                                                                        'step\n'
                                                                        'LandMask '
                                                                        '= '
                                                                        'param.landmask  '
                                                                        '# If '
                                                                        'True, '
                                                                        'maskout '
                                                                        'land '
                                                                        'region '
                                                                        'thus '
                                                                        'consider '
                                                                        'only '
                                                                        'over '
                                                                        'ocean\n'
                                                                        '\n'
                                                                        'print("EofScaling:", '
                                                                        'EofScaling)\n'
                                                                        'print("RmDomainMean:", '
                                                                        'RmDomainMean)\n'
                                                                        'print("LandMask:", '
                                                                        'LandMask)\n'
                                                                        '\n'
                                                                        'nc_out_obs '
                                                                        '= '
                                                                        'param.nc_out_obs  '
                                                                        '# '
                                                                        'Record '
                                                                        'NetCDF '
                                                                        'output\n'
                                                                        'plot_obs '
                                                                        '= '
                                                                        'param.plot_obs  '
                                                                        '# '
                                                                        'Generate '
                                                                        'plots\n'
                                                                        'nc_out_model '
                                                                        '= '
                                                                        'param.nc_out  '
                                                                        '# '
                                                                        'Record '
                                                                        'NetCDF '
                                                                        'output\n'
                                                                        'plot_model '
                                                                        '= '
                                                                        'param.plot  '
                                                                        '# '
                                                                        'Generate '
                                                                        'plots\n'
                                                                        'update_json '
                                                                        '= '
                                                                        'param.update_json\n'
                                                                        '\n'
                                                                        'print("nc_out_obs, '
                                                                        'plot_obs:", '
                                                                        'nc_out_obs, '
                                                                        'plot_obs)\n'
                                                                        'print("nc_out_model, '
                                                                        'plot_model:", '
                                                                        'nc_out_model, '
                                                                        'plot_model)\n'
                                                                        '\n'
                                                                        'cmec '
                                                                        '= '
                                                                        'False\n'
                                                                        'if '
                                                                        'hasattr(param, '
                                                                        '"cmec"):\n'
                                                                        '    '
                                                                        'cmec '
                                                                        '= '
                                                                        'param.cmec  '
                                                                        '# '
                                                                        'Generate '
                                                                        'CMEC '
                                                                        'compliant '
                                                                        'json\n'
                                                                        'print("CMEC:" '
                                                                        '+ '
                                                                        'str(cmec))\n'
                                                                        '\n'
                                                                        '# '
                                                                        'Check '
                                                                        'given '
                                                                        'mode '
                                                                        'of '
                                                                        'variability\n'
                                                                        'mode '
                                                                        '= '
                                                                        'VariabilityModeCheck(param.variability_mode, '
                                                                        'P)\n'
                                                                        'print("mode:", '
                                                                        'mode)\n'
                                                                        '\n'
                                                                        '# '
                                                                        'Variables\n'
                                                                        'var = '
                                                                        'param.varModel\n'
                                                                        '\n'
                                                                        '# '
                                                                        'Check '
                                                                        'dependency '
                                                                        'for '
                                                                        'given '
                                                                        'season '
                                                                        'option\n'
                                                                        'seasons '
                                                                        '= '
                                                                        'param.seasons\n'
                                                                        'print("seasons:", '
                                                                        'seasons)\n'
                                                                        '\n'
                                                                        '# '
                                                                        'Observation '
                                                                        'information\n'
                                                                        'obs_name '
                                                                        '= '
                                                                        'param.reference_data_name\n'
                                                                        'obs_path '
                                                                        '= '
                                                                        'param.reference_data_path\n'
                                                                        'obs_var '
                                                                        '= '
                                                                        'param.varOBS\n'
                                                                        '\n'
                                                                        '# '
                                                                        'Path '
                                                                        'to '
                                                                        'model '
                                                                        'data '
                                                                        'as '
                                                                        'string '
                                                                        'template\n'
                                                                        'modpath '
                                                                        '= '
                                                                        'StringConstructor(param.modpath)\n'
                                                                        'if '
                                                                        'LandMask:\n'
                                                                        '    '
                                                                        'modpath_lf '
                                                                        '= '
                                                                        'StringConstructor(param.modpath_lf)\n'
                                                                        '\n'
                                                                        '# '
                                                                        'Check '
                                                                        'given '
                                                                        'model '
                                                                        'option\n'
                                                                        'models '
                                                                        '= '
                                                                        'param.modnames\n'
                                                                        '\n'
                                                                        '# '
                                                                        'Include '
                                                                        'all '
                                                                        'models '
                                                                        'if '
                                                                        'conditioned\n'
                                                                        'if '
                                                                        '("all" '
                                                                        'in '
                                                                        '[m.lower() '
                                                                        'for m '
                                                                        'in '
                                                                        'models]) '
                                                                        'or '
                                                                        '(models '
                                                                        '== '
                                                                        '"all"):\n'
                                                                        '    '
                                                                        'model_index_path '
                                                                        '= '
                                                                        'param.modpath.split("/")[-1].split(".").index("%(model)")\n'
                                                                        '    '
                                                                        'models '
                                                                        '= [\n'
                                                                        '        '
                                                                        'p.split("/")[-1].split(".")[model_index_path]\n'
                                                                        '        '
                                                                        'for p '
                                                                        'in '
                                                                        'glob.glob(\n'
                                                                        '            '
                                                                        'modpath(mip=mip, '
                                                                        'exp=exp, '
                                                                        'model="*", '
                                                                        'realization="*", '
                                                                        'variable=var)\n'
                                                                        '        '
                                                                        ')\n'
                                                                        '    '
                                                                        ']\n'
                                                                        '    # '
                                                                        'remove '
                                                                        'duplicates\n'
                                                                        '    '
                                                                        'models '
                                                                        '= '
                                                                        'sorted(list(dict.fromkeys(models)), '
                                                                        'key=lambda '
                                                                        's: '
                                                                        's.lower())\n'
                                                                        '\n'
                                                                        'print("models:", '
                                                                        'models)\n'
                                                                        'print("number '
                                                                        'of '
                                                                        'models:", '
                                                                        'len(models))\n'
                                                                        '\n'
                                                                        '# '
                                                                        'Realizations\n'
                                                                        'realization '
                                                                        '= '
                                                                        'param.realization\n'
                                                                        'print("realization: '
                                                                        '", '
                                                                        'realization)\n'
                                                                        '\n'
                                                                        '# EOF '
                                                                        'ordinal '
                                                                        'number\n'
                                                                        'eofn_obs '
                                                                        '= '
                                                                        'int(param.eofn_obs)\n'
                                                                        'eofn_mod '
                                                                        '= '
                                                                        'int(param.eofn_mod)\n'
                                                                        '\n'
                                                                        '# '
                                                                        'case '
                                                                        'id\n'
                                                                        'case_id '
                                                                        '= '
                                                                        'param.case_id\n'
                                                                        '\n'
                                                                        '# '
                                                                        'Output\n'
                                                                        'outdir_template '
                                                                        '= '
                                                                        'param.process_templated_argument("results_dir")\n'
                                                                        'outdir '
                                                                        '= '
                                                                        'StringConstructor(\n'
                                                                        '    '
                                                                        'str(\n'
                                                                        '        '
                                                                        'outdir_template(\n'
                                                                        '            '
                                                                        'output_type="%(output_type)",\n'
                                                                        '            '
                                                                        'mip=mip,\n'
                                                                        '            '
                                                                        'exp=exp,\n'
                                                                        '            '
                                                                        'variability_mode=mode,\n'
                                                                        '            '
                                                                        'reference_data_name=obs_name,\n'
                                                                        '            '
                                                                        'case_id=case_id,\n'
                                                                        '        '
                                                                        ')\n'
                                                                        '    '
                                                                        ')\n'
                                                                        ')\n'
                                                                        '\n'
                                                                        '# '
                                                                        'Debug\n'
                                                                        'debug '
                                                                        '= '
                                                                        'param.debug\n'
                                                                        '\n'
                                                                        '# '
                                                                        'Year\n'
                                                                        'msyear '
                                                                        '= '
                                                                        'param.msyear\n'
                                                                        'meyear '
                                                                        '= '
                                                                        'param.meyear\n'
                                                                        'YearCheck(msyear, '
                                                                        'meyear, '
                                                                        'P)\n'
                                                                        '\n'
                                                                        'osyear '
                                                                        '= '
                                                                        'param.osyear\n'
                                                                        'oeyear '
                                                                        '= '
                                                                        'param.oeyear\n'
                                                                        'YearCheck(osyear, '
                                                                        'oeyear, '
                                                                        'P)\n'
                                                                        '\n'
                                                                        '# '
                                                                        'Units '
                                                                        'adjustment\n'
                                                                        'ObsUnitsAdjust '
                                                                        '= '
                                                                        'param.ObsUnitsAdjust\n'
                                                                        'ModUnitsAdjust '
                                                                        '= '
                                                                        'param.ModUnitsAdjust\n'
                                                                        '\n'
                                                                        '# '
                                                                        'lon1g '
                                                                        'and '
                                                                        'lon2g '
                                                                        'is '
                                                                        'for '
                                                                        'global '
                                                                        'map '
                                                                        'plotting\n'
                                                                        'if '
                                                                        'mode '
                                                                        'in '
                                                                        '["PDO", '
                                                                        '"NPGO"]:\n'
                                                                        '    '
                                                                        'lon1g '
                                                                        '= 0\n'
                                                                        '    '
                                                                        'lon2g '
                                                                        '= '
                                                                        '360\n'
                                                                        'else:\n'
                                                                        '    '
                                                                        'lon1g '
                                                                        '= '
                                                                        '-180\n'
                                                                        '    '
                                                                        'lon2g '
                                                                        '= '
                                                                        '180\n'
                                                                        '\n'
                                                                        '# '
                                                                        'parallel\n'
                                                                        'parallel '
                                                                        '= '
                                                                        'param.parallel\n'
                                                                        'print("parallel:", '
                                                                        'parallel)\n'
                                                                        '\n'
                                                                        '# '
                                                                        '=================================================\n'
                                                                        '# '
                                                                        'Time '
                                                                        'period '
                                                                        'adjustment\n'
                                                                        '# '
                                                                        '-------------------------------------------------\n'
                                                                        'start_time '
                                                                        '= '
                                                                        'cdtime.comptime(msyear, '
                                                                        '1, 1, '
                                                                        '0, '
                                                                        '0)\n'
                                                                        'end_time '
                                                                        '= '
                                                                        'cdtime.comptime(meyear, '
                                                                        '12, '
                                                                        '31, '
                                                                        '23, '
                                                                        '59)\n'
                                                                        '\n'
                                                                        'try:\n'
                                                                        '    # '
                                                                        'osyear '
                                                                        'and '
                                                                        'oeyear '
                                                                        'variables '
                                                                        'were '
                                                                        'defined.\n'
                                                                        '    '
                                                                        'start_time_obs '
                                                                        '= '
                                                                        'cdtime.comptime(osyear, '
                                                                        '1, 1, '
                                                                        '0, '
                                                                        '0)\n'
                                                                        '    '
                                                                        'end_time_obs '
                                                                        '= '
                                                                        'cdtime.comptime(oeyear, '
                                                                        '12, '
                                                                        '31, '
                                                                        '23, '
                                                                        '59)\n'
                                                                        'except '
                                                                        'NameError:\n'
                                                                        '    # '
                                                                        'osyear, '
                                                                        'oeyear '
                                                                        'variables '
                                                                        'were '
                                                                        'NOT '
                                                                        'defined\n'
                                                                        '    '
                                                                        'start_time_obs '
                                                                        '= '
                                                                        'start_time\n'
                                                                        '    '
                                                                        'end_time_obs '
                                                                        '= '
                                                                        'end_time\n'
                                                                        '\n'
                                                                        '# '
                                                                        '=================================================\n'
                                                                        '# '
                                                                        'Region '
                                                                        'control\n'
                                                                        '# '
                                                                        '-------------------------------------------------\n'
                                                                        'region_subdomain '
                                                                        '= '
                                                                        'get_domain_range(mode, '
                                                                        'regions_specs)\n'
                                                                        '\n'
                                                                        '# '
                                                                        '=================================================\n'
                                                                        '# '
                                                                        'Create '
                                                                        'output '
                                                                        'directories\n'
                                                                        '# '
                                                                        '-------------------------------------------------\n'
                                                                        'for '
                                                                        'output_type '
                                                                        'in '
                                                                        '["graphics", '
                                                                        '"diagnostic_results", '
                                                                        '"metrics_results"]:\n'
                                                                        '    '
                                                                        'if '
                                                                        'not '
                                                                        'os.path.exists(outdir(output_type=output_type)):\n'
                                                                        '        '
                                                                        'os.makedirs(outdir(output_type=output_type))\n'
                                                                        '    '
                                                                        'print(outdir(output_type=output_type))\n'
                                                                        '\n'
                                                                        '# '
                                                                        '=================================================\n'
                                                                        '# Set '
                                                                        'dictionary '
                                                                        'for '
                                                                        '.json '
                                                                        'record\n'
                                                                        '# '
                                                                        '-------------------------------------------------\n'
                                                                        'result_dict '
                                                                        '= '
                                                                        'tree()\n'
                                                                        '\n'
                                                                        '# Set '
                                                                        'metrics '
                                                                        'output '
                                                                        'JSON '
                                                                        'file\n'
                                                                        'json_filename '
                                                                        '= '
                                                                        '"_".join(\n'
                                                                        '    '
                                                                        '[\n'
                                                                        '        '
                                                                        '"var",\n'
                                                                        '        '
                                                                        '"mode",\n'
                                                                        '        '
                                                                        'mode,\n'
                                                                        '        '
                                                                        '"EOF" '
                                                                        '+ '
                                                                        'str(eofn_mod),\n'
                                                                        '        '
                                                                        '"stat",\n'
                                                                        '        '
                                                                        'mip,\n'
                                                                        '        '
                                                                        'exp,\n'
                                                                        '        '
                                                                        'fq,\n'
                                                                        '        '
                                                                        'realm,\n'
                                                                        '        '
                                                                        'str(msyear) '
                                                                        '+ "-" '
                                                                        '+ '
                                                                        'str(meyear),\n'
                                                                        '    '
                                                                        ']\n'
                                                                        ')\n'
                                                                        '\n'
                                                                        'json_file '
                                                                        '= '
                                                                        'os.path.join(outdir(output_type="metrics_results"), '
                                                                        'json_filename '
                                                                        '+ '
                                                                        '".json")\n'
                                                                        'json_file_org '
                                                                        '= '
                                                                        'os.path.join(\n'
                                                                        '    '
                                                                        'outdir(output_type="metrics_results"),\n'
                                                                        '    '
                                                                        '"_".join([json_filename, '
                                                                        '"org", '
                                                                        'str(os.getpid())]) '
                                                                        '+ '
                                                                        '".json",\n'
                                                                        ')\n'
                                                                        '\n'
                                                                        '# '
                                                                        'Archive '
                                                                        'if '
                                                                        'there '
                                                                        'is '
                                                                        'pre-existing '
                                                                        'JSON: '
                                                                        'preventing '
                                                                        'overwriting\n'
                                                                        'if '
                                                                        'os.path.isfile(json_file) '
                                                                        'and '
                                                                        'os.stat(json_file).st_size '
                                                                        '> 0:\n'
                                                                        '    '
                                                                        'copyfile(json_file, '
                                                                        'json_file_org)\n'
                                                                        '    '
                                                                        'if '
                                                                        'update_json:\n'
                                                                        '        '
                                                                        'fj = '
                                                                        'open(json_file)\n'
                                                                        '        '
                                                                        'result_dict '
                                                                        '= '
                                                                        'json.loads(fj.read())\n'
                                                                        '        '
                                                                        'fj.close()\n'
                                                                        '\n'
                                                                        'if '
                                                                        '"REF" '
                                                                        'not '
                                                                        'in '
                                                                        'list(result_dict.keys()):\n'
                                                                        '    '
                                                                        'result_dict["REF"] '
                                                                        '= {}\n'
                                                                        'if '
                                                                        '"RESULTS" '
                                                                        'not '
                                                                        'in '
                                                                        'list(result_dict.keys()):\n'
                                                                        '    '
                                                                        'result_dict["RESULTS"] '
                                                                        '= {}\n'
                                                                        '\n'
                                                                        '# '
                                                                        '=================================================\n'
                                                                        '# '
                                                                        'Observation\n'
                                                                        '# '
                                                                        '-------------------------------------------------\n'
                                                                        'if '
                                                                        'obs_compare:\n'
                                                                        '\n'
                                                                        '    '
                                                                        'obs_lf_path '
                                                                        '= '
                                                                        'None\n'
                                                                        '\n'
                                                                        '    # '
                                                                        'read '
                                                                        'data '
                                                                        'in\n'
                                                                        '    '
                                                                        'obs_timeseries, '
                                                                        'osyear, '
                                                                        'oeyear '
                                                                        '= '
                                                                        'read_data_in(\n'
                                                                        '        '
                                                                        'obs_name,\n'
                                                                        '        '
                                                                        'obs_path,\n'
                                                                        '        '
                                                                        'obs_lf_path,\n'
                                                                        '        '
                                                                        'obs_var,\n'
                                                                        '        '
                                                                        'var,\n'
                                                                        '        '
                                                                        'start_time_obs,\n'
                                                                        '        '
                                                                        'end_time_obs,\n'
                                                                        '        '
                                                                        'ObsUnitsAdjust,\n'
                                                                        '        '
                                                                        'LandMask,\n'
                                                                        '        '
                                                                        'debug=debug,\n'
                                                                        '    '
                                                                        ')\n'
                                                                        '\n'
                                                                        '    # '
                                                                        'Save '
                                                                        'global '
                                                                        'grid '
                                                                        'information '
                                                                        'for '
                                                                        'regrid '
                                                                        'below\n'
                                                                        '    '
                                                                        'ref_grid_global '
                                                                        '= '
                                                                        'obs_timeseries.getGrid()\n'
                                                                        '\n'
                                                                        '    # '
                                                                        'Declare '
                                                                        'dictionary '
                                                                        'variables '
                                                                        'to '
                                                                        'keep '
                                                                        'information '
                                                                        'from '
                                                                        'observation\n'
                                                                        '    '
                                                                        'eof_obs '
                                                                        '= {}\n'
                                                                        '    '
                                                                        'pc_obs '
                                                                        '= {}\n'
                                                                        '    '
                                                                        'frac_obs '
                                                                        '= {}\n'
                                                                        '    '
                                                                        'solver_obs '
                                                                        '= {}\n'
                                                                        '    '
                                                                        'reverse_sign_obs '
                                                                        '= {}\n'
                                                                        '    '
                                                                        'eof_lr_obs '
                                                                        '= {}\n'
                                                                        '    '
                                                                        'stdv_pc_obs '
                                                                        '= {}\n'
                                                                        '\n'
                                                                        '    # '
                                                                        'Dictonary '
                                                                        'for '
                                                                        'json '
                                                                        'archive\n'
                                                                        '    '
                                                                        'if '
                                                                        '"obs" '
                                                                        'not '
                                                                        'in '
                                                                        'list(result_dict["REF"].keys()):\n'
                                                                        '        '
                                                                        'result_dict["REF"]["obs"] '
                                                                        '= {}\n'
                                                                        '    '
                                                                        'if '
                                                                        '"defaultReference" '
                                                                        'not '
                                                                        'in '
                                                                        'list(result_dict["REF"]["obs"].keys()):\n'
                                                                        '        '
                                                                        'result_dict["REF"]["obs"]["defaultReference"] '
                                                                        '= {}\n'
                                                                        '    '
                                                                        'if '
                                                                        '"source" '
                                                                        'not '
                                                                        'in '
                                                                        'list(result_dict["REF"]["obs"]["defaultReference"].keys()):\n'
                                                                        '        '
                                                                        'result_dict["REF"]["obs"]["defaultReference"]["source"] '
                                                                        '= {}\n'
                                                                        '    '
                                                                        'if '
                                                                        'mode '
                                                                        'not '
                                                                        'in '
                                                                        'list(result_dict["REF"]["obs"]["defaultReference"].keys()):\n'
                                                                        '        '
                                                                        'result_dict["REF"]["obs"]["defaultReference"][mode] '
                                                                        '= {}\n'
                                                                        '\n'
                                                                        '    '
                                                                        'result_dict["REF"]["obs"]["defaultReference"]["source"] '
                                                                        '= '
                                                                        'obs_path\n'
                                                                        '    '
                                                                        'result_dict["REF"]["obs"]["defaultReference"]["reference_eofs"] '
                                                                        '= '
                                                                        'eofn_obs\n'
                                                                        '    '
                                                                        'result_dict["REF"]["obs"]["defaultReference"]["period"] '
                                                                        '= (\n'
                                                                        '        '
                                                                        'str(osyear) '
                                                                        '+ "-" '
                                                                        '+ '
                                                                        'str(oeyear)\n'
                                                                        '    '
                                                                        ')\n'
                                                                        '\n'
                                                                        '    # '
                                                                        '-------------------------------------------------\n'
                                                                        '    # '
                                                                        'Season '
                                                                        'loop\n'
                                                                        '    # '
                                                                        '- - - '
                                                                        '- - - '
                                                                        '- - - '
                                                                        '- - - '
                                                                        '- - - '
                                                                        '- - - '
                                                                        '- - - '
                                                                        '- - - '
                                                                        '-\n'
                                                                        '    '
                                                                        'debug_print("obs '
                                                                        'season '
                                                                        'loop '
                                                                        'starts", '
                                                                        'debug)\n'
                                                                        '\n'
                                                                        '    '
                                                                        'for '
                                                                        'season '
                                                                        'in '
                                                                        'seasons:\n'
                                                                        '        '
                                                                        'debug_print("season: '
                                                                        '" + '
                                                                        'season, '
                                                                        'debug)\n'
                                                                        '\n'
                                                                        '        '
                                                                        'if '
                                                                        'season '
                                                                        'not '
                                                                        'in '
                                                                        'list(\n'
                                                                        '            '
                                                                        'result_dict["REF"]["obs"]["defaultReference"][mode].keys()\n'
                                                                        '        '
                                                                        '):\n'
                                                                        '            '
                                                                        'result_dict["REF"]["obs"]["defaultReference"][mode][season] '
                                                                        '= {}\n'
                                                                        '\n'
                                                                        '        '
                                                                        'dict_head_obs '
                                                                        '= '
                                                                        'result_dict["REF"]["obs"]["defaultReference"][mode][season]\n'
                                                                        '\n'
                                                                        '        '
                                                                        '# '
                                                                        'Time '
                                                                        'series '
                                                                        'adjustment '
                                                                        '(remove '
                                                                        'annual '
                                                                        'cycle, '
                                                                        'seasonal '
                                                                        'mean '
                                                                        '(if '
                                                                        'needed),\n'
                                                                        '        '
                                                                        '# and '
                                                                        'subtracting '
                                                                        'domain '
                                                                        '(or '
                                                                        'global) '
                                                                        'mean '
                                                                        'of '
                                                                        'each '
                                                                        'time '
                                                                        'step)\n'
                                                                        '        '
                                                                        'debug_print("time '
                                                                        'series '
                                                                        'adjustment", '
                                                                        'debug)\n'
                                                                        '        '
                                                                        'obs_timeseries_season '
                                                                        '= '
                                                                        'adjust_timeseries(\n'
                                                                        '            '
                                                                        'obs_timeseries, '
                                                                        'mode, '
                                                                        'season, '
                                                                        'region_subdomain, '
                                                                        'RmDomainMean\n'
                                                                        '        '
                                                                        ')\n'
                                                                        '\n'
                                                                        '        '
                                                                        '# '
                                                                        'Extract '
                                                                        'subdomain\n'
                                                                        '        '
                                                                        'obs_timeseries_season_subdomain '
                                                                        '= '
                                                                        'obs_timeseries_season(region_subdomain)\n'
                                                                        '\n'
                                                                        '        '
                                                                        '# EOF '
                                                                        'analysis\n'
                                                                        '        '
                                                                        'debug_print("EOF '
                                                                        'analysis", '
                                                                        'debug)\n'
                                                                        '        '
                                                                        '(\n'
                                                                        '            '
                                                                        'eof_obs[season],\n'
                                                                        '            '
                                                                        'pc_obs[season],\n'
                                                                        '            '
                                                                        'frac_obs[season],\n'
                                                                        '            '
                                                                        'reverse_sign_obs[season],\n'
                                                                        '            '
                                                                        'solver_obs[season],\n'
                                                                        '        '
                                                                        ') = '
                                                                        'eof_analysis_get_variance_mode(\n'
                                                                        '            '
                                                                        'mode,\n'
                                                                        '            '
                                                                        'obs_timeseries_season_subdomain,\n'
                                                                        '            '
                                                                        'eofn=eofn_obs,\n'
                                                                        '            '
                                                                        'debug=debug,\n'
                                                                        '            '
                                                                        'EofScaling=EofScaling,\n'
                                                                        '        '
                                                                        ')\n'
                                                                        '\n'
                                                                        '        '
                                                                        '# '
                                                                        'Calculate '
                                                                        'stdv '
                                                                        'of pc '
                                                                        'time '
                                                                        'series\n'
                                                                        '        '
                                                                        'debug_print("calculate '
                                                                        'stdv '
                                                                        'of pc '
                                                                        'time '
                                                                        'series", '
                                                                        'debug)\n'
                                                                        '        '
                                                                        'stdv_pc_obs[season] '
                                                                        '= '
                                                                        'calcSTD(pc_obs[season])\n'
                                                                        '\n'
                                                                        '        '
                                                                        '# '
                                                                        'Linear '
                                                                        'regression '
                                                                        'to '
                                                                        'have '
                                                                        'extended '
                                                                        'global '
                                                                        'map; '
                                                                        'teleconnection '
                                                                        'purpose\n'
                                                                        '        '
                                                                        '(\n'
                                                                        '            '
                                                                        'eof_lr_obs[season],\n'
                                                                        '            '
                                                                        'slope_obs,\n'
                                                                        '            '
                                                                        'intercept_obs,\n'
                                                                        '        '
                                                                        ') = '
                                                                        'linear_regression_on_globe_for_teleconnection(\n'
                                                                        '            '
                                                                        'pc_obs[season],\n'
                                                                        '            '
                                                                        'obs_timeseries_season,\n'
                                                                        '            '
                                                                        'stdv_pc_obs[season],\n'
                                                                        '            '
                                                                        'RmDomainMean,\n'
                                                                        '            '
                                                                        'EofScaling,\n'
                                                                        '            '
                                                                        'debug=debug,\n'
                                                                        '        '
                                                                        ')\n'
                                                                        '\n'
                                                                        '        '
                                                                        '# - - '
                                                                        '- - - '
                                                                        '- - - '
                                                                        '- - - '
                                                                        '- - - '
                                                                        '- - - '
                                                                        '- - - '
                                                                        '- - - '
                                                                        '- -\n'
                                                                        '        '
                                                                        '# '
                                                                        'Record '
                                                                        'results\n'
                                                                        '        '
                                                                        '# . . '
                                                                        '. . . '
                                                                        '. . . '
                                                                        '. . . '
                                                                        '. . . '
                                                                        '. . . '
                                                                        '. . . '
                                                                        '. . . '
                                                                        '. .\n'
                                                                        '        '
                                                                        'debug_print("record '
                                                                        'results", '
                                                                        'debug)\n'
                                                                        '\n'
                                                                        '        '
                                                                        '# Set '
                                                                        'output '
                                                                        'file '
                                                                        'name '
                                                                        'for '
                                                                        'NetCDF '
                                                                        'and '
                                                                        'plot\n'
                                                                        '        '
                                                                        'output_filename_obs '
                                                                        '= '
                                                                        '"_".join(\n'
                                                                        '            '
                                                                        '[\n'
                                                                        '                '
                                                                        'mode,\n'
                                                                        '                '
                                                                        'var,\n'
                                                                        '                '
                                                                        '"EOF" '
                                                                        '+ '
                                                                        'str(eofn_obs),\n'
                                                                        '                '
                                                                        'season,\n'
                                                                        '                '
                                                                        '"obs",\n'
                                                                        '                '
                                                                        'str(osyear) '
                                                                        '+ "-" '
                                                                        '+ '
                                                                        'str(oeyear),\n'
                                                                        '            '
                                                                        ']\n'
                                                                        '        '
                                                                        ')\n'
                                                                        '        '
                                                                        'if '
                                                                        'EofScaling:\n'
                                                                        '            '
                                                                        'output_filename_obs '
                                                                        '+= '
                                                                        '"_EOFscaled"\n'
                                                                        '\n'
                                                                        '        '
                                                                        '# '
                                                                        'Save '
                                                                        'global '
                                                                        'map, '
                                                                        'pc '
                                                                        'timeseries, '
                                                                        'and '
                                                                        'fraction '
                                                                        'in '
                                                                        'NetCDF '
                                                                        'output\n'
                                                                        '        '
                                                                        'if '
                                                                        'nc_out_obs:\n'
                                                                        '            '
                                                                        'output_nc_file_obs '
                                                                        '= '
                                                                        'os.path.join(\n'
                                                                        '                '
                                                                        'outdir(output_type="diagnostic_results"), '
                                                                        'output_filename_obs\n'
                                                                        '            '
                                                                        ')\n'
                                                                        '            '
                                                                        'write_nc_output(\n'
                                                                        '                '
                                                                        'output_nc_file_obs,\n'
                                                                        '                '
                                                                        'eof_lr_obs[season],\n'
                                                                        '                '
                                                                        'pc_obs[season],\n'
                                                                        '                '
                                                                        'frac_obs[season],\n'
                                                                        '                '
                                                                        'slope_obs,\n'
                                                                        '                '
                                                                        'intercept_obs,\n'
                                                                        '            '
                                                                        ')\n'
                                                                        '\n'
                                                                        '        '
                                                                        '# '
                                                                        'Plotting\n'
                                                                        '        '
                                                                        'if '
                                                                        'plot_obs:\n'
                                                                        '            '
                                                                        'output_img_file_obs '
                                                                        '= '
                                                                        'os.path.join(\n'
                                                                        '                '
                                                                        'outdir(output_type="graphics"), '
                                                                        'output_filename_obs\n'
                                                                        '            '
                                                                        ')\n'
                                                                        '            '
                                                                        '# '
                                                                        'plot_map(mode, '
                                                                        "'[REF] "
                                                                        "'+obs_name, "
                                                                        'osyear, '
                                                                        'oeyear, '
                                                                        'season,\n'
                                                                        '            '
                                                                        '#          '
                                                                        'eof_obs[season], '
                                                                        'frac_obs[season],\n'
                                                                        '            '
                                                                        '#          '
                                                                        "output_img_file_obs+'_org_eof')\n"
                                                                        '            '
                                                                        'plot_map(\n'
                                                                        '                '
                                                                        'mode,\n'
                                                                        '                '
                                                                        '"[REF] '
                                                                        '" + '
                                                                        'obs_name,\n'
                                                                        '                '
                                                                        'osyear,\n'
                                                                        '                '
                                                                        'oeyear,\n'
                                                                        '                '
                                                                        'season,\n'
                                                                        '                '
                                                                        'eof_lr_obs[season](region_subdomain),\n'
                                                                        '                '
                                                                        'frac_obs[season],\n'
                                                                        '                '
                                                                        'output_img_file_obs,\n'
                                                                        '            '
                                                                        ')\n'
                                                                        '            '
                                                                        'plot_map(\n'
                                                                        '                '
                                                                        'mode '
                                                                        '+ '
                                                                        '"_teleconnection",\n'
                                                                        '                '
                                                                        '"[REF] '
                                                                        '" + '
                                                                        'obs_name,\n'
                                                                        '                '
                                                                        'osyear,\n'
                                                                        '                '
                                                                        'oeyear,\n'
                                                                        '                '
                                                                        'season,\n'
                                                                        '                '
                                                                        'eof_lr_obs[season](longitude=(lon1g, '
                                                                        'lon2g)),\n'
                                                                        '                '
                                                                        'frac_obs[season],\n'
                                                                        '                '
                                                                        'output_img_file_obs '
                                                                        '+ '
                                                                        '"_teleconnection",\n'
                                                                        '            '
                                                                        ')\n'
                                                                        '            '
                                                                        'debug_print("obs '
                                                                        'plotting '
                                                                        'end", '
                                                                        'debug)\n'
                                                                        '\n'
                                                                        '        '
                                                                        '# '
                                                                        'Save '
                                                                        'stdv '
                                                                        'of PC '
                                                                        'time '
                                                                        'series '
                                                                        'in '
                                                                        'dictionary\n'
                                                                        '        '
                                                                        'dict_head_obs["stdv_pc"] '
                                                                        '= '
                                                                        'stdv_pc_obs[season]\n'
                                                                        '        '
                                                                        'dict_head_obs["frac"] '
                                                                        '= '
                                                                        'float(frac_obs[season])\n'
                                                                        '\n'
                                                                        '        '
                                                                        '# '
                                                                        'Mean\n'
                                                                        '        '
                                                                        'mean_obs '
                                                                        '= '
                                                                        'cdutil.averager(eof_obs[season], '
                                                                        'axis="yx", '
                                                                        'weights="weighted")\n'
                                                                        '        '
                                                                        'mean_glo_obs '
                                                                        '= '
                                                                        'cdutil.averager(\n'
                                                                        '            '
                                                                        'eof_lr_obs[season], '
                                                                        'axis="yx", '
                                                                        'weights="weighted"\n'
                                                                        '        '
                                                                        ')\n'
                                                                        '        '
                                                                        'dict_head_obs["mean"] '
                                                                        '= '
                                                                        'float(mean_obs)\n'
                                                                        '        '
                                                                        'dict_head_obs["mean_glo"] '
                                                                        '= '
                                                                        'float(mean_glo_obs)\n'
                                                                        '        '
                                                                        'debug_print("obs '
                                                                        'mean '
                                                                        'end", '
                                                                        'debug)\n'
                                                                        '\n'
                                                                        '        '
                                                                        '# '
                                                                        'North '
                                                                        'test '
                                                                        '-- '
                                                                        'make '
                                                                        'this '
                                                                        'available '
                                                                        'as '
                                                                        'option '
                                                                        'later...\n'
                                                                        '        '
                                                                        '# '
                                                                        "execfile('../north_test.py')\n"
                                                                        '\n'
                                                                        '    '
                                                                        'debug_print("obs '
                                                                        'end", '
                                                                        'debug)\n'
                                                                        '\n'
                                                                        '# '
                                                                        '=================================================\n'
                                                                        '# '
                                                                        'Model\n'
                                                                        '# '
                                                                        '-------------------------------------------------\n'
                                                                        'for '
                                                                        'model '
                                                                        'in '
                                                                        'models:\n'
                                                                        '    '
                                                                        'print(" '
                                                                        '----- '
                                                                        '", '
                                                                        'model, '
                                                                        '" '
                                                                        '---------------------")\n'
                                                                        '\n'
                                                                        '    '
                                                                        'if '
                                                                        'model '
                                                                        'not '
                                                                        'in '
                                                                        'list(result_dict["RESULTS"].keys()):\n'
                                                                        '        '
                                                                        'result_dict["RESULTS"][model] '
                                                                        '= {}\n'
                                                                        '\n'
                                                                        '    '
                                                                        'model_path_list '
                                                                        '= '
                                                                        'glob.glob(\n'
                                                                        '        '
                                                                        'modpath(mip=mip, '
                                                                        'exp=exp, '
                                                                        'model=model, '
                                                                        'realization=realization, '
                                                                        'variable=var)\n'
                                                                        '    '
                                                                        ')\n'
                                                                        '\n'
                                                                        '    '
                                                                        'model_path_list '
                                                                        '= '
                                                                        'sort_human(model_path_list)\n'
                                                                        '\n'
                                                                        '    '
                                                                        'debug_print("model_path_list: '
                                                                        '" + '
                                                                        'str(model_path_list), '
                                                                        'debug)\n'
                                                                        '\n'
                                                                        '    # '
                                                                        'Find '
                                                                        'where '
                                                                        'run '
                                                                        'can '
                                                                        'be '
                                                                        'gripped '
                                                                        'from '
                                                                        'given '
                                                                        'filename '
                                                                        'template '
                                                                        'for '
                                                                        'modpath\n'
                                                                        '    '
                                                                        'if '
                                                                        'realization '
                                                                        '== '
                                                                        '"*":\n'
                                                                        '        '
                                                                        'run_in_modpath '
                                                                        '= (\n'
                                                                        '            '
                                                                        'modpath(\n'
                                                                        '                '
                                                                        'mip=mip, '
                                                                        'exp=exp, '
                                                                        'model=model, '
                                                                        'realization=realization, '
                                                                        'variable=var\n'
                                                                        '            '
                                                                        ')\n'
                                                                        '            '
                                                                        '.split("/")[-1]\n'
                                                                        '            '
                                                                        '.split(".")\n'
                                                                        '            '
                                                                        '.index(realization)\n'
                                                                        '        '
                                                                        ')\n'
                                                                        '\n'
                                                                        '    # '
                                                                        '-------------------------------------------------\n'
                                                                        '    # '
                                                                        'Run\n'
                                                                        '    # '
                                                                        '-------------------------------------------------\n'
                                                                        '    '
                                                                        'for '
                                                                        'model_path '
                                                                        'in '
                                                                        'model_path_list:\n'
                                                                        '\n'
                                                                        '        '
                                                                        'try:\n'
                                                                        '            '
                                                                        'if '
                                                                        'realization '
                                                                        '== '
                                                                        '"*":\n'
                                                                        '                '
                                                                        'run = '
                                                                        '(model_path.split("/")[-1]).split(".")[run_in_modpath]\n'
                                                                        '            '
                                                                        'else:\n'
                                                                        '                '
                                                                        'run = '
                                                                        'realization\n'
                                                                        '            '
                                                                        'print(" '
                                                                        '--- '
                                                                        '", '
                                                                        'run, '
                                                                        '" '
                                                                        '---")\n'
                                                                        '\n'
                                                                        '            '
                                                                        'if '
                                                                        'run '
                                                                        'not '
                                                                        'in '
                                                                        'list(result_dict["RESULTS"][model].keys()):\n'
                                                                        '                '
                                                                        'result_dict["RESULTS"][model][run] '
                                                                        '= {}\n'
                                                                        '            '
                                                                        'if '
                                                                        '"defaultReference" '
                                                                        'not '
                                                                        'in '
                                                                        'list(\n'
                                                                        '                '
                                                                        'result_dict["RESULTS"][model][run].keys()\n'
                                                                        '            '
                                                                        '):\n'
                                                                        '                '
                                                                        'result_dict["RESULTS"][model][run]["defaultReference"] '
                                                                        '= {}\n'
                                                                        '            '
                                                                        'if '
                                                                        'mode '
                                                                        'not '
                                                                        'in '
                                                                        'list(\n'
                                                                        '                '
                                                                        'result_dict["RESULTS"][model][run]["defaultReference"].keys()\n'
                                                                        '            '
                                                                        '):\n'
                                                                        '                '
                                                                        'result_dict["RESULTS"][model][run]["defaultReference"][mode] '
                                                                        '= {}\n'
                                                                        '            '
                                                                        'result_dict["RESULTS"][model][run]["defaultReference"][mode][\n'
                                                                        '                '
                                                                        '"target_model_eofs"\n'
                                                                        '            '
                                                                        '] = '
                                                                        'eofn_mod\n'
                                                                        '\n'
                                                                        '            '
                                                                        'if '
                                                                        'LandMask:\n'
                                                                        '                '
                                                                        'model_lf_path '
                                                                        '= '
                                                                        'modpath_lf(mip=mip, '
                                                                        'exp=exp, '
                                                                        'model=model)\n'
                                                                        '            '
                                                                        'else:\n'
                                                                        '                '
                                                                        'model_lf_path '
                                                                        '= '
                                                                        'None\n'
                                                                        '\n'
                                                                        '            '
                                                                        '# '
                                                                        'read '
                                                                        'data '
                                                                        'in\n'
                                                                        '            '
                                                                        'model_timeseries, '
                                                                        'msyear, '
                                                                        'meyear '
                                                                        '= '
                                                                        'read_data_in(\n'
                                                                        '                '
                                                                        'model,\n'
                                                                        '                '
                                                                        'model_path,\n'
                                                                        '                '
                                                                        'model_lf_path,\n'
                                                                        '                '
                                                                        'var,\n'
                                                                        '                '
                                                                        'var,\n'
                                                                        '                '
                                                                        'start_time,\n'
                                                                        '                '
                                                                        'end_time,\n'
                                                                        '                '
                                                                        'ModUnitsAdjust,\n'
                                                                        '                '
                                                                        'LandMask,\n'
                                                                        '                '
                                                                        'debug=debug,\n'
                                                                        '            '
                                                                        ')\n'
                                                                        '\n'
                                                                        '            '
                                                                        'debug_print("msyear: '
                                                                        '" + '
                                                                        'str(msyear) '
                                                                        '+ " '
                                                                        'meyear: '
                                                                        '" + '
                                                                        'str(meyear), '
                                                                        'debug)\n'
                                                                        '\n'
                                                                        '            '
                                                                        '# '
                                                                        '-------------------------------------------------\n'
                                                                        '            '
                                                                        '# '
                                                                        'Season '
                                                                        'loop\n'
                                                                        '            '
                                                                        '# - - '
                                                                        '- - - '
                                                                        '- - - '
                                                                        '- - - '
                                                                        '- - - '
                                                                        '- - - '
                                                                        '- - - '
                                                                        '- - - '
                                                                        '- -\n'
                                                                        '            '
                                                                        'for '
                                                                        'season '
                                                                        'in '
                                                                        'seasons:\n'
                                                                        '                '
                                                                        'debug_print("season: '
                                                                        '" + '
                                                                        'season, '
                                                                        'debug)\n'
                                                                        '\n'
                                                                        '                '
                                                                        'if '
                                                                        'season '
                                                                        'not '
                                                                        'in '
                                                                        'list(\n'
                                                                        '                    '
                                                                        'result_dict["RESULTS"][model][run]["defaultReference"][mode].keys()\n'
                                                                        '                '
                                                                        '):\n'
                                                                        '                    '
                                                                        'result_dict["RESULTS"][model][run]["defaultReference"][mode][\n'
                                                                        '                        '
                                                                        'season\n'
                                                                        '                    '
                                                                        '] = '
                                                                        '{}\n'
                                                                        '                '
                                                                        'result_dict["RESULTS"][model][run]["defaultReference"][mode][season][\n'
                                                                        '                    '
                                                                        '"period"\n'
                                                                        '                '
                                                                        '] = '
                                                                        '(str(msyear) '
                                                                        '+ "-" '
                                                                        '+ '
                                                                        'str(meyear))\n'
                                                                        '\n'
                                                                        '                '
                                                                        '# '
                                                                        'Time '
                                                                        'series '
                                                                        'adjustment '
                                                                        '(remove '
                                                                        'annual '
                                                                        'cycle, '
                                                                        'seasonal '
                                                                        'mean '
                                                                        '(if '
                                                                        'needed),\n'
                                                                        '                '
                                                                        '# and '
                                                                        'subtracting '
                                                                        'domain '
                                                                        '(or '
                                                                        'global) '
                                                                        'mean '
                                                                        'of '
                                                                        'each '
                                                                        'time '
                                                                        'step)\n'
                                                                        '                '
                                                                        'debug_print("time '
                                                                        'series '
                                                                        'adjustment", '
                                                                        'debug)\n'
                                                                        '                '
                                                                        'model_timeseries_season '
                                                                        '= '
                                                                        'adjust_timeseries(\n'
                                                                        '                    '
                                                                        'model_timeseries, '
                                                                        'mode, '
                                                                        'season, '
                                                                        'region_subdomain, '
                                                                        'RmDomainMean\n'
                                                                        '                '
                                                                        ')\n'
                                                                        '\n'
                                                                        '                '
                                                                        '# '
                                                                        'Extract '
                                                                        'subdomain\n'
                                                                        '                '
                                                                        'debug_print("extract '
                                                                        'subdomain", '
                                                                        'debug)\n'
                                                                        '                '
                                                                        'model_timeseries_season_subdomain '
                                                                        '= '
                                                                        'model_timeseries_season(\n'
                                                                        '                    '
                                                                        'region_subdomain\n'
                                                                        '                '
                                                                        ')\n'
                                                                        '\n'
                                                                        '                '
                                                                        '# '
                                                                        '-------------------------------------------------\n'
                                                                        '                '
                                                                        '# '
                                                                        'Common '
                                                                        'Basis '
                                                                        'Function '
                                                                        'Approach\n'
                                                                        '                '
                                                                        '# - - '
                                                                        '- - - '
                                                                        '- - - '
                                                                        '- - - '
                                                                        '- - - '
                                                                        '- - - '
                                                                        '- - - '
                                                                        '- - - '
                                                                        '- -\n'
                                                                        '                '
                                                                        'if '
                                                                        'CBF '
                                                                        'and '
                                                                        'obs_compare:\n'
                                                                        '\n'
                                                                        '                    '
                                                                        'if '
                                                                        '"cbf" '
                                                                        'not '
                                                                        'in '
                                                                        'list(\n'
                                                                        '                        '
                                                                        'result_dict["RESULTS"][model][run]["defaultReference"][mode][\n'
                                                                        '                            '
                                                                        'season\n'
                                                                        '                        '
                                                                        '].keys()\n'
                                                                        '                    '
                                                                        '):\n'
                                                                        '                        '
                                                                        'result_dict["RESULTS"][model][run]["defaultReference"][mode][\n'
                                                                        '                            '
                                                                        'season\n'
                                                                        '                        '
                                                                        ']["cbf"] '
                                                                        '= {}\n'
                                                                        '                    '
                                                                        'dict_head '
                                                                        '= '
                                                                        'result_dict["RESULTS"][model][run]["defaultReference"][\n'
                                                                        '                        '
                                                                        'mode\n'
                                                                        '                    '
                                                                        '][season]["cbf"]\n'
                                                                        '                    '
                                                                        'debug_print("CBF '
                                                                        'approach '
                                                                        'start", '
                                                                        'debug)\n'
                                                                        '\n'
                                                                        '                    '
                                                                        '# '
                                                                        'Regrid '
                                                                        '(interpolation, '
                                                                        'model '
                                                                        'grid '
                                                                        'to '
                                                                        'ref '
                                                                        'grid)\n'
                                                                        '                    '
                                                                        'model_timeseries_season_regrid '
                                                                        '= '
                                                                        'model_timeseries_season.regrid(\n'
                                                                        '                        '
                                                                        'ref_grid_global, '
                                                                        'regridTool="regrid2", '
                                                                        'mkCyclic=True\n'
                                                                        '                    '
                                                                        ')\n'
                                                                        '                    '
                                                                        'model_timeseries_season_regrid_subdomain '
                                                                        '= (\n'
                                                                        '                        '
                                                                        'model_timeseries_season_regrid(region_subdomain)\n'
                                                                        '                    '
                                                                        ')\n'
                                                                        '\n'
                                                                        '                    '
                                                                        '# '
                                                                        'Matching '
                                                                        "model's "
                                                                        'missing '
                                                                        'value '
                                                                        'location '
                                                                        'to '
                                                                        'that '
                                                                        'of '
                                                                        'observation\n'
                                                                        '                    '
                                                                        '# '
                                                                        'Save '
                                                                        'axes '
                                                                        'for '
                                                                        'preserving\n'
                                                                        '                    '
                                                                        'axes '
                                                                        '= '
                                                                        'model_timeseries_season_regrid_subdomain.getAxisList()\n'
                                                                        '                    '
                                                                        '# 1) '
                                                                        'Replace '
                                                                        "model's "
                                                                        'masked '
                                                                        'grid '
                                                                        'to 0, '
                                                                        'so '
                                                                        'theoritically '
                                                                        "won't "
                                                                        'affect '
                                                                        'to '
                                                                        'result\n'
                                                                        '                    '
                                                                        'model_timeseries_season_regrid_subdomain '
                                                                        '= '
                                                                        'MV2.array(\n'
                                                                        '                        '
                                                                        'model_timeseries_season_regrid_subdomain.filled(0.0)\n'
                                                                        '                    '
                                                                        ')\n'
                                                                        '                    '
                                                                        '# 2) '
                                                                        'Give '
                                                                        "obs's "
                                                                        'mask '
                                                                        'to '
                                                                        'model '
                                                                        'field, '
                                                                        'so '
                                                                        'enable '
                                                                        'projecField '
                                                                        'functionality '
                                                                        'below\n'
                                                                        '                    '
                                                                        'model_timeseries_season_regrid_subdomain.mask '
                                                                        '= '
                                                                        'eof_obs[season].mask\n'
                                                                        '                    '
                                                                        '# '
                                                                        'Preserve '
                                                                        'axes\n'
                                                                        '                    '
                                                                        'model_timeseries_season_regrid_subdomain.setAxisList(axes)\n'
                                                                        '\n'
                                                                        '                    '
                                                                        '# CBF '
                                                                        'PC '
                                                                        'time '
                                                                        'series\n'
                                                                        '                    '
                                                                        'cbf_pc '
                                                                        '= '
                                                                        'gain_pseudo_pcs(\n'
                                                                        '                        '
                                                                        'solver_obs[season],\n'
                                                                        '                        '
                                                                        'model_timeseries_season_regrid_subdomain,\n'
                                                                        '                        '
                                                                        'eofn_obs,\n'
                                                                        '                        '
                                                                        'reverse_sign_obs[season],\n'
                                                                        '                        '
                                                                        'EofScaling=EofScaling,\n'
                                                                        '                    '
                                                                        ')\n'
                                                                        '\n'
                                                                        '                    '
                                                                        '# '
                                                                        'Calculate '
                                                                        'stdv '
                                                                        'of '
                                                                        'cbf '
                                                                        'pc '
                                                                        'time '
                                                                        'series\n'
                                                                        '                    '
                                                                        'stdv_cbf_pc '
                                                                        '= '
                                                                        'calcSTD(cbf_pc)\n'
                                                                        '\n'
                                                                        '                    '
                                                                        '# '
                                                                        'Linear '
                                                                        'regression '
                                                                        'to '
                                                                        'have '
                                                                        'extended '
                                                                        'global '
                                                                        'map; '
                                                                        'teleconnection '
                                                                        'purpose\n'
                                                                        '                    '
                                                                        '(\n'
                                                                        '                        '
                                                                        'eof_lr_cbf,\n'
                                                                        '                        '
                                                                        'slope_cbf,\n'
                                                                        '                        '
                                                                        'intercept_cbf,\n'
                                                                        '                    '
                                                                        ') = '
                                                                        'linear_regression_on_globe_for_teleconnection(\n'
                                                                        '                        '
                                                                        'cbf_pc,\n'
                                                                        '                        '
                                                                        'model_timeseries_season,\n'
                                                                        '                        '
                                                                        'stdv_cbf_pc,\n'
                                                                        '                        '
                                                                        '# '
                                                                        'cbf_pc, '
                                                                        'model_timeseries_season_regrid, '
                                                                        'stdv_cbf_pc,\n'
                                                                        '                        '
                                                                        'RmDomainMean,\n'
                                                                        '                        '
                                                                        'EofScaling,\n'
                                                                        '                        '
                                                                        'debug=debug,\n'
                                                                        '                    '
                                                                        ')\n'
                                                                        '\n'
                                                                        '                    '
                                                                        '# '
                                                                        'Extract '
                                                                        'subdomain '
                                                                        'for '
                                                                        'statistics\n'
                                                                        '                    '
                                                                        'eof_lr_cbf_subdomain '
                                                                        '= '
                                                                        'eof_lr_cbf(region_subdomain)\n'
                                                                        '\n'
                                                                        '                    '
                                                                        '# '
                                                                        'Calculate '
                                                                        'fraction '
                                                                        'of '
                                                                        'variance '
                                                                        'explained '
                                                                        'by '
                                                                        'cbf '
                                                                        'pc\n'
                                                                        '                    '
                                                                        'frac_cbf '
                                                                        '= '
                                                                        'gain_pcs_fraction(\n'
                                                                        '                        '
                                                                        '# '
                                                                        'model_timeseries_season_regrid_subdomain,  '
                                                                        '# '
                                                                        'regridded '
                                                                        'model '
                                                                        'anomaly '
                                                                        'space\n'
                                                                        '                        '
                                                                        'model_timeseries_season_subdomain,  '
                                                                        '# '
                                                                        'native '
                                                                        'grid '
                                                                        'model '
                                                                        'anomaly '
                                                                        'space\n'
                                                                        '                        '
                                                                        'eof_lr_cbf_subdomain,\n'
                                                                        '                        '
                                                                        'cbf_pc '
                                                                        '/ '
                                                                        'stdv_cbf_pc,\n'
                                                                        '                        '
                                                                        'debug=debug,\n'
                                                                        '                    '
                                                                        ')\n'
                                                                        '\n'
                                                                        '                    '
                                                                        '# '
                                                                        'SENSITIVITY '
                                                                        'TEST '
                                                                        '---\n'
                                                                        '                    '
                                                                        '# '
                                                                        'Calculate '
                                                                        'fraction '
                                                                        'of '
                                                                        'variance '
                                                                        'explained '
                                                                        'by '
                                                                        'cbf '
                                                                        'pc '
                                                                        '(on '
                                                                        'regrid '
                                                                        'domain)\n'
                                                                        '                    '
                                                                        'frac_cbf_regrid '
                                                                        '= '
                                                                        'gain_pcs_fraction(\n'
                                                                        '                        '
                                                                        'model_timeseries_season_regrid_subdomain,\n'
                                                                        '                        '
                                                                        'eof_lr_cbf_subdomain,\n'
                                                                        '                        '
                                                                        'cbf_pc '
                                                                        '/ '
                                                                        'stdv_cbf_pc,\n'
                                                                        '                        '
                                                                        'debug=debug,\n'
                                                                        '                    '
                                                                        ')\n'
                                                                        '                    '
                                                                        'dict_head["frac_cbf_regrid"] '
                                                                        '= '
                                                                        'float(frac_cbf_regrid)\n'
                                                                        '\n'
                                                                        '                    '
                                                                        '# - - '
                                                                        '- - - '
                                                                        '- - - '
                                                                        '- - - '
                                                                        '- - - '
                                                                        '- - - '
                                                                        '- - - '
                                                                        '- - - '
                                                                        '- -\n'
                                                                        '                    '
                                                                        '# '
                                                                        'Record '
                                                                        'results\n'
                                                                        '                    '
                                                                        '# - - '
                                                                        '- - - '
                                                                        '- - - '
                                                                        '- - - '
                                                                        '- - - '
                                                                        '- - - '
                                                                        '- - - '
                                                                        '- - - '
                                                                        '- -\n'
                                                                        '                    '
                                                                        '# '
                                                                        'Metrics '
                                                                        'results '
                                                                        '-- '
                                                                        'statistics '
                                                                        'to '
                                                                        'JSON\n'
                                                                        '                    '
                                                                        'dict_head, '
                                                                        'eof_lr_cbf '
                                                                        '= '
                                                                        'calc_stats_save_dict(\n'
                                                                        '                        '
                                                                        'dict_head,\n'
                                                                        '                        '
                                                                        'eof_lr_cbf_subdomain,\n'
                                                                        '                        '
                                                                        'eof_lr_cbf,\n'
                                                                        '                        '
                                                                        'slope_cbf,\n'
                                                                        '                        '
                                                                        'cbf_pc,\n'
                                                                        '                        '
                                                                        'stdv_cbf_pc,\n'
                                                                        '                        '
                                                                        'frac_cbf,\n'
                                                                        '                        '
                                                                        'region_subdomain,\n'
                                                                        '                        '
                                                                        'eof_obs[season],\n'
                                                                        '                        '
                                                                        'eof_lr_obs[season],\n'
                                                                        '                        '
                                                                        'stdv_pc_obs[season],\n'
                                                                        '                        '
                                                                        'obs_compare=obs_compare,\n'
                                                                        '                        '
                                                                        'method="cbf",\n'
                                                                        '                        '
                                                                        'debug=debug,\n'
                                                                        '                    '
                                                                        ')\n'
                                                                        '\n'
                                                                        '                    '
                                                                        '# Set '
                                                                        'output '
                                                                        'file '
                                                                        'name '
                                                                        'for '
                                                                        'NetCDF '
                                                                        'and '
                                                                        'plot '
                                                                        'images\n'
                                                                        '                    '
                                                                        'output_filename '
                                                                        '= '
                                                                        '"_".join(\n'
                                                                        '                        '
                                                                        '[\n'
                                                                        '                            '
                                                                        'mode,\n'
                                                                        '                            '
                                                                        'var,\n'
                                                                        '                            '
                                                                        '"EOF" '
                                                                        '+ '
                                                                        'str(eofn_mod),\n'
                                                                        '                            '
                                                                        'season,\n'
                                                                        '                            '
                                                                        'mip,\n'
                                                                        '                            '
                                                                        'model,\n'
                                                                        '                            '
                                                                        'exp,\n'
                                                                        '                            '
                                                                        'run,\n'
                                                                        '                            '
                                                                        'fq,\n'
                                                                        '                            '
                                                                        'realm,\n'
                                                                        '                            '
                                                                        'str(msyear) '
                                                                        '+ "-" '
                                                                        '+ '
                                                                        'str(meyear),\n'
                                                                        '                        '
                                                                        ']\n'
                                                                        '                    '
                                                                        ')\n'
                                                                        '                    '
                                                                        'if '
                                                                        'EofScaling:\n'
                                                                        '                        '
                                                                        'output_filename '
                                                                        '+= '
                                                                        '"_EOFscaled"\n'
                                                                        '\n'
                                                                        '                    '
                                                                        '# '
                                                                        'Diagnostics '
                                                                        'results '
                                                                        '-- '
                                                                        'data '
                                                                        'to '
                                                                        'NetCDF\n'
                                                                        '                    '
                                                                        '# '
                                                                        'Save '
                                                                        'global '
                                                                        'map, '
                                                                        'pc '
                                                                        'timeseries, '
                                                                        'and '
                                                                        'fraction '
                                                                        'in '
                                                                        'NetCDF '
                                                                        'output\n'
                                                                        '                    '
                                                                        'output_nc_file '
                                                                        '= '
                                                                        'os.path.join(\n'
                                                                        '                        '
                                                                        'outdir(output_type="diagnostic_results"), '
                                                                        'output_filename\n'
                                                                        '                    '
                                                                        ')\n'
                                                                        '                    '
                                                                        'if '
                                                                        'nc_out_model:\n'
                                                                        '                        '
                                                                        'write_nc_output(\n'
                                                                        '                            '
                                                                        'output_nc_file '
                                                                        '+ '
                                                                        '"_cbf",\n'
                                                                        '                            '
                                                                        'eof_lr_cbf,\n'
                                                                        '                            '
                                                                        'cbf_pc,\n'
                                                                        '                            '
                                                                        'frac_cbf,\n'
                                                                        '                            '
                                                                        'slope_cbf,\n'
                                                                        '                            '
                                                                        'intercept_cbf,\n'
                                                                        '                        '
                                                                        ')\n'
                                                                        '\n'
                                                                        '                    '
                                                                        '# '
                                                                        'Graphics '
                                                                        '-- '
                                                                        'plot '
                                                                        'map '
                                                                        'image '
                                                                        'to '
                                                                        'PNG\n'
                                                                        '                    '
                                                                        'output_img_file '
                                                                        '= '
                                                                        'os.path.join(\n'
                                                                        '                        '
                                                                        'outdir(output_type="graphics"), '
                                                                        'output_filename\n'
                                                                        '                    '
                                                                        ')\n'
                                                                        '                    '
                                                                        'if '
                                                                        'plot_model:\n'
                                                                        '                        '
                                                                        'plot_map(\n'
                                                                        '                            '
                                                                        'mode,\n'
                                                                        '                            '
                                                                        'mip.upper() '
                                                                        '+ " " '
                                                                        '+ '
                                                                        'model '
                                                                        '+ " '
                                                                        '(" + '
                                                                        'run + '
                                                                        '")" + '
                                                                        '" - '
                                                                        'CBF",\n'
                                                                        '                            '
                                                                        'msyear,\n'
                                                                        '                            '
                                                                        'meyear,\n'
                                                                        '                            '
                                                                        'season,\n'
                                                                        '                            '
                                                                        'eof_lr_cbf(region_subdomain),\n'
                                                                        '                            '
                                                                        'frac_cbf,\n'
                                                                        '                            '
                                                                        'output_img_file '
                                                                        '+ '
                                                                        '"_cbf",\n'
                                                                        '                        '
                                                                        ')\n'
                                                                        '                        '
                                                                        'plot_map(\n'
                                                                        '                            '
                                                                        'mode '
                                                                        '+ '
                                                                        '"_teleconnection",\n'
                                                                        '                            '
                                                                        'mip.upper() '
                                                                        '+ " " '
                                                                        '+ '
                                                                        'model '
                                                                        '+ " '
                                                                        '(" + '
                                                                        'run + '
                                                                        '")" + '
                                                                        '" - '
                                                                        'CBF",\n'
                                                                        '                            '
                                                                        'msyear,\n'
                                                                        '                            '
                                                                        'meyear,\n'
                                                                        '                            '
                                                                        'season,\n'
                                                                        '                            '
                                                                        'eof_lr_cbf(longitude=(lon1g, '
                                                                        'lon2g)),\n'
                                                                        '                            '
                                                                        'frac_cbf,\n'
                                                                        '                            '
                                                                        'output_img_file '
                                                                        '+ '
                                                                        '"_cbf_teleconnection",\n'
                                                                        '                        '
                                                                        ')\n'
                                                                        '\n'
                                                                        '                    '
                                                                        'debug_print("cbf '
                                                                        'pcs '
                                                                        'end", '
                                                                        'debug)\n'
                                                                        '\n'
                                                                        '                '
                                                                        '# '
                                                                        '-------------------------------------------------\n'
                                                                        '                '
                                                                        '# '
                                                                        'Conventional '
                                                                        'EOF '
                                                                        'approach '
                                                                        'as '
                                                                        'supplementary\n'
                                                                        '                '
                                                                        '# - - '
                                                                        '- - - '
                                                                        '- - - '
                                                                        '- - - '
                                                                        '- - - '
                                                                        '- - - '
                                                                        '- - - '
                                                                        '- - - '
                                                                        '- -\n'
                                                                        '                '
                                                                        'if '
                                                                        'ConvEOF:\n'
                                                                        '\n'
                                                                        '                    '
                                                                        'eofn_mod_max '
                                                                        '= 3\n'
                                                                        '\n'
                                                                        '                    '
                                                                        '# EOF '
                                                                        'analysis\n'
                                                                        '                    '
                                                                        'debug_print("conventional '
                                                                        'EOF '
                                                                        'analysis '
                                                                        'start", '
                                                                        'debug)\n'
                                                                        '                    '
                                                                        '(\n'
                                                                        '                        '
                                                                        'eof_list,\n'
                                                                        '                        '
                                                                        'pc_list,\n'
                                                                        '                        '
                                                                        'frac_list,\n'
                                                                        '                        '
                                                                        'reverse_sign_list,\n'
                                                                        '                        '
                                                                        'solver,\n'
                                                                        '                    '
                                                                        ') = '
                                                                        'eof_analysis_get_variance_mode(\n'
                                                                        '                        '
                                                                        'mode,\n'
                                                                        '                        '
                                                                        'model_timeseries_season_subdomain,\n'
                                                                        '                        '
                                                                        'eofn=eofn_mod,\n'
                                                                        '                        '
                                                                        'eofn_max=eofn_mod_max,\n'
                                                                        '                        '
                                                                        'debug=debug,\n'
                                                                        '                        '
                                                                        'EofScaling=EofScaling,\n'
                                                                        '                        '
                                                                        'save_multiple_eofs=True,\n'
                                                                        '                    '
                                                                        ')\n'
                                                                        '                    '
                                                                        'debug_print("conventional '
                                                                        'EOF '
                                                                        'analysis '
                                                                        'done", '
                                                                        'debug)\n'
                                                                        '\n'
                                                                        '                    '
                                                                        '# '
                                                                        '-------------------------------------------------\n'
                                                                        '                    '
                                                                        '# For '
                                                                        'multiple '
                                                                        'EOFs '
                                                                        '(e.g., '
                                                                        'EOF1, '
                                                                        'EOF2, '
                                                                        'EOF3, '
                                                                        '...)\n'
                                                                        '                    '
                                                                        '# - - '
                                                                        '- - - '
                                                                        '- - - '
                                                                        '- - - '
                                                                        '- - - '
                                                                        '- - - '
                                                                        '- - - '
                                                                        '- - - '
                                                                        '- -\n'
                                                                        '                    '
                                                                        'rms_list '
                                                                        '= []\n'
                                                                        '                    '
                                                                        'cor_list '
                                                                        '= []\n'
                                                                        '                    '
                                                                        'tcor_list '
                                                                        '= []\n'
                                                                        '\n'
                                                                        '                    '
                                                                        'for n '
                                                                        'in '
                                                                        'range(0, '
                                                                        'eofn_mod_max):\n'
                                                                        '                        '
                                                                        'eofs '
                                                                        '= '
                                                                        '"eof" '
                                                                        '+ '
                                                                        'str(n '
                                                                        '+ 1)\n'
                                                                        '                        '
                                                                        'if '
                                                                        'eofs '
                                                                        'not '
                                                                        'in '
                                                                        'list(\n'
                                                                        '                            '
                                                                        'result_dict["RESULTS"][model][run]["defaultReference"][\n'
                                                                        '                                '
                                                                        'mode\n'
                                                                        '                            '
                                                                        '][season].keys()\n'
                                                                        '                        '
                                                                        '):\n'
                                                                        '                            '
                                                                        'result_dict["RESULTS"][model][run]["defaultReference"][\n'
                                                                        '                                '
                                                                        'mode\n'
                                                                        '                            '
                                                                        '][season][eofs] '
                                                                        '= {}\n'
                                                                        '                            '
                                                                        'dict_head '
                                                                        '= '
                                                                        'result_dict["RESULTS"][model][run][\n'
                                                                        '                                '
                                                                        '"defaultReference"\n'
                                                                        '                            '
                                                                        '][mode][season][eofs]\n'
                                                                        '\n'
                                                                        '                        '
                                                                        '# '
                                                                        'Component '
                                                                        'for '
                                                                        'each '
                                                                        'EOFs\n'
                                                                        '                        '
                                                                        'eof = '
                                                                        'eof_list[n]\n'
                                                                        '                        '
                                                                        'pc = '
                                                                        'pc_list[n]\n'
                                                                        '                        '
                                                                        'frac '
                                                                        '= '
                                                                        'frac_list[n]\n'
                                                                        '\n'
                                                                        '                        '
                                                                        '# '
                                                                        'Calculate '
                                                                        'stdv '
                                                                        'of pc '
                                                                        'time '
                                                                        'series\n'
                                                                        '                        '
                                                                        'stdv_pc '
                                                                        '= '
                                                                        'calcSTD(pc)\n'
                                                                        '\n'
                                                                        '                        '
                                                                        '# '
                                                                        'Linear '
                                                                        'regression '
                                                                        'to '
                                                                        'have '
                                                                        'extended '
                                                                        'global '
                                                                        'map:\n'
                                                                        '                        '
                                                                        '(\n'
                                                                        '                            '
                                                                        'eof_lr,\n'
                                                                        '                            '
                                                                        'slope,\n'
                                                                        '                            '
                                                                        'intercept,\n'
                                                                        '                        '
                                                                        ') = '
                                                                        'linear_regression_on_globe_for_teleconnection(\n'
                                                                        '                            '
                                                                        'pc,\n'
                                                                        '                            '
                                                                        'model_timeseries_season,\n'
                                                                        '                            '
                                                                        'stdv_pc,\n'
                                                                        '                            '
                                                                        'RmDomainMean,\n'
                                                                        '                            '
                                                                        'EofScaling,\n'
                                                                        '                            '
                                                                        'debug=debug,\n'
                                                                        '                        '
                                                                        ')\n'
                                                                        '\n'
                                                                        '                        '
                                                                        '# - - '
                                                                        '- - - '
                                                                        '- - - '
                                                                        '- - - '
                                                                        '- - - '
                                                                        '- - - '
                                                                        '- - - '
                                                                        '- - - '
                                                                        '- -\n'
                                                                        '                        '
                                                                        '# '
                                                                        'Record '
                                                                        'results\n'
                                                                        '                        '
                                                                        '# - - '
                                                                        '- - - '
                                                                        '- - - '
                                                                        '- - - '
                                                                        '- - - '
                                                                        '- - - '
                                                                        '- - - '
                                                                        '- - - '
                                                                        '- -\n'
                                                                        '                        '
                                                                        '# '
                                                                        'Metrics '
                                                                        'results '
                                                                        '-- '
                                                                        'statistics '
                                                                        'to '
                                                                        'JSON\n'
                                                                        '                        '
                                                                        'if '
                                                                        'obs_compare:\n'
                                                                        '                            '
                                                                        'dict_head, '
                                                                        'eof_lr '
                                                                        '= '
                                                                        'calc_stats_save_dict(\n'
                                                                        '                                '
                                                                        'dict_head,\n'
                                                                        '                                '
                                                                        'eof,\n'
                                                                        '                                '
                                                                        'eof_lr,\n'
                                                                        '                                '
                                                                        'slope,\n'
                                                                        '                                '
                                                                        'pc,\n'
                                                                        '                                '
                                                                        'stdv_pc,\n'
                                                                        '                                '
                                                                        'frac,\n'
                                                                        '                                '
                                                                        'region_subdomain,\n'
                                                                        '                                '
                                                                        'eof_obs=eof_obs[season],\n'
                                                                        '                                '
                                                                        'eof_lr_obs=eof_lr_obs[season],\n'
                                                                        '                                '
                                                                        'stdv_pc_obs=stdv_pc_obs[season],\n'
                                                                        '                                '
                                                                        'obs_compare=obs_compare,\n'
                                                                        '                                '
                                                                        'method="eof",\n'
                                                                        '                                '
                                                                        'debug=debug,\n'
                                                                        '                            '
                                                                        ')\n'
                                                                        '                        '
                                                                        'else:\n'
                                                                        '                            '
                                                                        'dict_head, '
                                                                        'eof_lr '
                                                                        '= '
                                                                        'calc_stats_save_dict(\n'
                                                                        '                                '
                                                                        'dict_head,\n'
                                                                        '                                '
                                                                        'eof,\n'
                                                                        '                                '
                                                                        'eof_lr,\n'
                                                                        '                                '
                                                                        'slope,\n'
                                                                        '                                '
                                                                        'pc,\n'
                                                                        '                                '
                                                                        'stdv_pc,\n'
                                                                        '                                '
                                                                        'frac,\n'
                                                                        '                                '
                                                                        'region_subdomain,\n'
                                                                        '                                '
                                                                        'obs_compare=obs_compare,\n'
                                                                        '                                '
                                                                        'method="eof",\n'
                                                                        '                                '
                                                                        'debug=debug,\n'
                                                                        '                            '
                                                                        ')\n'
                                                                        '\n'
                                                                        '                        '
                                                                        '# '
                                                                        'Temporal '
                                                                        'correlation '
                                                                        'between '
                                                                        'CBF '
                                                                        'PC '
                                                                        'timeseries '
                                                                        'and '
                                                                        'usual '
                                                                        'model '
                                                                        'PC '
                                                                        'timeseries\n'
                                                                        '                        '
                                                                        'if '
                                                                        'CBF:\n'
                                                                        '                            '
                                                                        'tc = '
                                                                        'calcTCOR(cbf_pc, '
                                                                        'pc)\n'
                                                                        '                            '
                                                                        'debug_print("cbf '
                                                                        'tc '
                                                                        'end", '
                                                                        'debug)\n'
                                                                        '                            '
                                                                        'dict_head["tcor_cbf_vs_eof_pc"] '
                                                                        '= tc\n'
                                                                        '\n'
                                                                        '                        '
                                                                        '# Set '
                                                                        'output '
                                                                        'file '
                                                                        'name '
                                                                        'for '
                                                                        'NetCDF '
                                                                        'and '
                                                                        'plot '
                                                                        'images\n'
                                                                        '                        '
                                                                        'output_filename '
                                                                        '= '
                                                                        '"_".join(\n'
                                                                        '                            '
                                                                        '[\n'
                                                                        '                                '
                                                                        'mode,\n'
                                                                        '                                '
                                                                        'var,\n'
                                                                        '                                '
                                                                        '"EOF" '
                                                                        '+ '
                                                                        'str(n '
                                                                        '+ '
                                                                        '1),\n'
                                                                        '                                '
                                                                        'season,\n'
                                                                        '                                '
                                                                        'mip,\n'
                                                                        '                                '
                                                                        'model,\n'
                                                                        '                                '
                                                                        'exp,\n'
                                                                        '                                '
                                                                        'run,\n'
                                                                        '                                '
                                                                        'fq,\n'
                                                                        '                                '
                                                                        'realm,\n'
                                                                        '                                '
                                                                        'str(msyear) '
                                                                        '+ "-" '
                                                                        '+ '
                                                                        'str(meyear),\n'
                                                                        '                            '
                                                                        ']\n'
                                                                        '                        '
                                                                        ')\n'
                                                                        '                        '
                                                                        'if '
                                                                        'EofScaling:\n'
                                                                        '                            '
                                                                        'output_filename '
                                                                        '+= '
                                                                        '"_EOFscaled"\n'
                                                                        '\n'
                                                                        '                        '
                                                                        '# '
                                                                        'Diagnostics '
                                                                        'results '
                                                                        '-- '
                                                                        'data '
                                                                        'to '
                                                                        'NetCDF\n'
                                                                        '                        '
                                                                        '# '
                                                                        'Save '
                                                                        'global '
                                                                        'map, '
                                                                        'pc '
                                                                        'timeseries, '
                                                                        'and '
                                                                        'fraction '
                                                                        'in '
                                                                        'NetCDF '
                                                                        'output\n'
                                                                        '                        '
                                                                        'output_nc_file '
                                                                        '= '
                                                                        'os.path.join(\n'
                                                                        '                            '
                                                                        'outdir(output_type="diagnostic_results"), '
                                                                        'output_filename\n'
                                                                        '                        '
                                                                        ')\n'
                                                                        '                        '
                                                                        'if '
                                                                        'nc_out_model:\n'
                                                                        '                            '
                                                                        'write_nc_output(\n'
                                                                        '                                '
                                                                        'output_nc_file, '
                                                                        'eof_lr, '
                                                                        'pc, '
                                                                        'frac, '
                                                                        'slope, '
                                                                        'intercept\n'
                                                                        '                            '
                                                                        ')\n'
                                                                        '\n'
                                                                        '                        '
                                                                        '# '
                                                                        'Graphics '
                                                                        '-- '
                                                                        'plot '
                                                                        'map '
                                                                        'image '
                                                                        'to '
                                                                        'PNG\n'
                                                                        '                        '
                                                                        'output_img_file '
                                                                        '= '
                                                                        'os.path.join(\n'
                                                                        '                            '
                                                                        'outdir(output_type="graphics"), '
                                                                        'output_filename\n'
                                                                        '                        '
                                                                        ')\n'
                                                                        '                        '
                                                                        'if '
                                                                        'plot_model:\n'
                                                                        '                            '
                                                                        '# '
                                                                        'plot_map(mode,\n'
                                                                        '                            '
                                                                        '#          '
                                                                        "mip.upper()+' "
                                                                        "'+model+' "
                                                                        "('+run+')',\n"
                                                                        '                            '
                                                                        '#          '
                                                                        'msyear, '
                                                                        'meyear, '
                                                                        'season,\n'
                                                                        '                            '
                                                                        '#          '
                                                                        'eof, '
                                                                        'frac,\n'
                                                                        '                            '
                                                                        '#          '
                                                                        "output_img_file+'_org_eof')\n"
                                                                        '                            '
                                                                        'plot_map(\n'
                                                                        '                                '
                                                                        'mode,\n'
                                                                        '                                '
                                                                        'mip.upper()\n'
                                                                        '                                '
                                                                        '+ " '
                                                                        '"\n'
                                                                        '                                '
                                                                        '+ '
                                                                        'model\n'
                                                                        '                                '
                                                                        '+ " '
                                                                        '("\n'
                                                                        '                                '
                                                                        '+ '
                                                                        'run\n'
                                                                        '                                '
                                                                        '+ ") '
                                                                        '- '
                                                                        'EOF"\n'
                                                                        '                                '
                                                                        '+ '
                                                                        'str(n '
                                                                        '+ '
                                                                        '1),\n'
                                                                        '                                '
                                                                        'msyear,\n'
                                                                        '                                '
                                                                        'meyear,\n'
                                                                        '                                '
                                                                        'season,\n'
                                                                        '                                '
                                                                        'eof_lr(region_subdomain),\n'
                                                                        '                                '
                                                                        'frac,\n'
                                                                        '                                '
                                                                        'output_img_file,\n'
                                                                        '                            '
                                                                        ')\n'
                                                                        '                            '
                                                                        'plot_map(\n'
                                                                        '                                '
                                                                        'mode '
                                                                        '+ '
                                                                        '"_teleconnection",\n'
                                                                        '                                '
                                                                        'mip.upper()\n'
                                                                        '                                '
                                                                        '+ " '
                                                                        '"\n'
                                                                        '                                '
                                                                        '+ '
                                                                        'model\n'
                                                                        '                                '
                                                                        '+ " '
                                                                        '("\n'
                                                                        '                                '
                                                                        '+ '
                                                                        'run\n'
                                                                        '                                '
                                                                        '+ ") '
                                                                        '- '
                                                                        'EOF"\n'
                                                                        '                                '
                                                                        '+ '
                                                                        'str(n '
                                                                        '+ '
                                                                        '1),\n'
                                                                        '                                '
                                                                        'msyear,\n'
                                                                        '                                '
                                                                        'meyear,\n'
                                                                        '                                '
                                                                        'season,\n'
                                                                        '                                '
                                                                        'eof_lr(longitude=(lon1g, '
                                                                        'lon2g)),\n'
                                                                        '                                '
                                                                        'frac,\n'
                                                                        '                                '
                                                                        'output_img_file '
                                                                        '+ '
                                                                        '"_teleconnection",\n'
                                                                        '                            '
                                                                        ')\n'
                                                                        '\n'
                                                                        '                        '
                                                                        '# - - '
                                                                        '- - - '
                                                                        '- - - '
                                                                        '- - - '
                                                                        '- - - '
                                                                        '- - - '
                                                                        '- - - '
                                                                        '- - - '
                                                                        '- -\n'
                                                                        '                        '
                                                                        '# EOF '
                                                                        'swap '
                                                                        'diagnosis\n'
                                                                        '                        '
                                                                        '# - - '
                                                                        '- - - '
                                                                        '- - - '
                                                                        '- - - '
                                                                        '- - - '
                                                                        '- - - '
                                                                        '- - - '
                                                                        '- - - '
                                                                        '- -\n'
                                                                        '                        '
                                                                        'rms_list.append(dict_head["rms"])\n'
                                                                        '                        '
                                                                        'cor_list.append(dict_head["cor"])\n'
                                                                        '                        '
                                                                        'if '
                                                                        'CBF:\n'
                                                                        '                            '
                                                                        'tcor_list.append(dict_head["tcor_cbf_vs_eof_pc"])\n'
                                                                        '\n'
                                                                        '                    '
                                                                        '# '
                                                                        'Find '
                                                                        'best '
                                                                        'matching '
                                                                        'eofs '
                                                                        'with '
                                                                        'different '
                                                                        'criteria\n'
                                                                        '                    '
                                                                        'best_matching_eofs_rms '
                                                                        '= '
                                                                        'rms_list.index(min(rms_list)) '
                                                                        '+ 1\n'
                                                                        '                    '
                                                                        'best_matching_eofs_cor '
                                                                        '= '
                                                                        'cor_list.index(max(cor_list)) '
                                                                        '+ 1\n'
                                                                        '                    '
                                                                        'if '
                                                                        'CBF:\n'
                                                                        '                        '
                                                                        'best_matching_eofs_tcor '
                                                                        '= '
                                                                        'tcor_list.index(max(tcor_list)) '
                                                                        '+ 1\n'
                                                                        '\n'
                                                                        '                    '
                                                                        '# '
                                                                        'Save '
                                                                        'the '
                                                                        'best '
                                                                        'matching '
                                                                        'information '
                                                                        'to '
                                                                        'JSON\n'
                                                                        '                    '
                                                                        'dict_head '
                                                                        '= '
                                                                        'result_dict["RESULTS"][model][run]["defaultReference"][\n'
                                                                        '                        '
                                                                        'mode\n'
                                                                        '                    '
                                                                        '][season]\n'
                                                                        '                    '
                                                                        'dict_head["best_matching_model_eofs__rms"] '
                                                                        '= '
                                                                        'best_matching_eofs_rms\n'
                                                                        '                    '
                                                                        'dict_head["best_matching_model_eofs__cor"] '
                                                                        '= '
                                                                        'best_matching_eofs_cor\n'
                                                                        '                    '
                                                                        'if '
                                                                        'CBF:\n'
                                                                        '                        '
                                                                        'dict_head[\n'
                                                                        '                            '
                                                                        '"best_matching_model_eofs__tcor_cbf_vs_eof_pc"\n'
                                                                        '                        '
                                                                        '] = '
                                                                        'best_matching_eofs_tcor\n'
                                                                        '\n'
                                                                        '                    '
                                                                        'debug_print("conventional '
                                                                        'eof '
                                                                        'end", '
                                                                        'debug)\n'
                                                                        '\n'
                                                                        '            '
                                                                        '# '
                                                                        '=================================================================\n'
                                                                        '            '
                                                                        '# '
                                                                        'Dictionary '
                                                                        'to '
                                                                        'JSON: '
                                                                        'individual '
                                                                        'JSON '
                                                                        'during '
                                                                        'model_realization '
                                                                        'loop\n'
                                                                        '            '
                                                                        '# '
                                                                        '-----------------------------------------------------------------\n'
                                                                        '            '
                                                                        'json_filename_tmp '
                                                                        '= '
                                                                        '"_".join(\n'
                                                                        '                '
                                                                        '[\n'
                                                                        '                    '
                                                                        '"var",\n'
                                                                        '                    '
                                                                        '"mode",\n'
                                                                        '                    '
                                                                        'mode,\n'
                                                                        '                    '
                                                                        '"EOF" '
                                                                        '+ '
                                                                        'str(eofn_mod),\n'
                                                                        '                    '
                                                                        '"stat",\n'
                                                                        '                    '
                                                                        'mip,\n'
                                                                        '                    '
                                                                        'exp,\n'
                                                                        '                    '
                                                                        'fq,\n'
                                                                        '                    '
                                                                        'realm,\n'
                                                                        '                    '
                                                                        'model,\n'
                                                                        '                    '
                                                                        'run,\n'
                                                                        '                    '
                                                                        'str(msyear) '
                                                                        '+ "-" '
                                                                        '+ '
                                                                        'str(meyear),\n'
                                                                        '                '
                                                                        ']\n'
                                                                        '            '
                                                                        ')\n'
                                                                        '            '
                                                                        'variability_metrics_to_json(\n'
                                                                        '                '
                                                                        'outdir,\n'
                                                                        '                '
                                                                        'json_filename_tmp,\n'
                                                                        '                '
                                                                        'result_dict,\n'
                                                                        '                '
                                                                        'model=model,\n'
                                                                        '                '
                                                                        'run=run,\n'
                                                                        '                '
                                                                        'cmec_flag=cmec,\n'
                                                                        '            '
                                                                        ')\n'
                                                                        '\n'
                                                                        '        '
                                                                        'except '
                                                                        'Exception '
                                                                        'as '
                                                                        'err:\n'
                                                                        '            '
                                                                        'if '
                                                                        'debug:\n'
                                                                        '                '
                                                                        'raise\n'
                                                                        '            '
                                                                        'else:\n'
                                                                        '                '
                                                                        'print("warning: '
                                                                        'failed '
                                                                        'for '
                                                                        '", '
                                                                        'model, '
                                                                        'run, '
                                                                        'err)\n'
                                                                        '                '
                                                                        'pass\n'
                                                                        '\n'
                                                                        '# '
                                                                        '========================================================================\n'
                                                                        '# '
                                                                        'Dictionary '
                                                                        'to '
                                                                        'JSON: '
                                                                        'collective '
                                                                        'JSON '
                                                                        'at '
                                                                        'the '
                                                                        'end '
                                                                        'of '
                                                                        'model_realization '
                                                                        'loop\n'
                                                                        '# '
                                                                        '------------------------------------------------------------------------\n'
                                                                        'if '
                                                                        'not '
                                                                        'parallel '
                                                                        'and '
                                                                        '(len(models) '
                                                                        '> '
                                                                        '1):\n'
                                                                        '    '
                                                                        'json_filename_all '
                                                                        '= '
                                                                        '"_".join(\n'
                                                                        '        '
                                                                        '[\n'
                                                                        '            '
                                                                        '"var",\n'
                                                                        '            '
                                                                        '"mode",\n'
                                                                        '            '
                                                                        'mode,\n'
                                                                        '            '
                                                                        '"EOF" '
                                                                        '+ '
                                                                        'str(eofn_mod),\n'
                                                                        '            '
                                                                        '"stat",\n'
                                                                        '            '
                                                                        'mip,\n'
                                                                        '            '
                                                                        'exp,\n'
                                                                        '            '
                                                                        'fq,\n'
                                                                        '            '
                                                                        'realm,\n'
                                                                        '            '
                                                                        '"allModels",\n'
                                                                        '            '
                                                                        '"allRuns",\n'
                                                                        '            '
                                                                        'str(msyear) '
                                                                        '+ "-" '
                                                                        '+ '
                                                                        'str(meyear),\n'
                                                                        '        '
                                                                        ']\n'
                                                                        '    '
                                                                        ')\n'
                                                                        '    '
                                                                        'variability_metrics_to_json(outdir, '
                                                                        'json_filename_all, '
                                                                        'result_dict, '
                                                                        'cmec_flag=cmec)\n'
                                                                        '\n'
                                                                        'if '
                                                                        'not '
                                                                        'debug:\n'
                                                                        '    '
                                                                        'sys.exit(0)\n',
                                                              'userId': 'lee1043'}},
                       'NPGO/HadISSTv1.1': {'REFERENCE': {'obs': {'defaultReference': {'NPGO': {'monthly': {'frac': 0.10864783520347371,
                                                                                                            'mean': -0.0005166642401717772,
                                                                                                            'mean_glo': 0.02991194230715663,
                                                                                                            'stdv_pc': 0.1527654859586641}},
                                                                                       'period': '1900-2005',
                                                                                       'reference_eofs': 2,
                                                                                       'source': '/p/user_pub/PCMDIobs/obs4MIPs/MOHC/HadISST-1-1/mon/ts/gn/v20210727/ts_mon_HadISST-1-1_PCMDI_gn_187001-201907.nc'}}},
                                            'RESULTS': {'ACCESS-CM2': {'r1i1p1f1': {'defaultReference': {'NPGO': {'monthly': {'best_matching_model_eofs__cor': 2,
                                                                                                                              'best_matching_model_eofs__rms': 2,
                                                                                                                              'best_matching_model_eofs__tcor_cbf_vs_eof_pc': 3,
                                                                                                                              'cbf': {'bias': 0.0013041670308541913,
                                                                                                                                      'bias_glo': 0.014118964075963986,
                                                                                                                                      'cor': 0.8870757799158737,
                                                                                                                                      'cor_glo': 0.601707018065057,
                                                                                                                                      'frac': 0.11043554670729401,
                                                                                                                                      'frac_cbf_regrid': 0.10999507284201072,
                                                                                                                                      'mean': -4.9601916777630476e-18,
                                                                                                                                      'mean_glo': 0.04387671300981631,
                                                                                                                                      'rms': 0.12721806381567696,
                                                                                                                                      'rms_glo': 0.09396673741648223,
                                                                                                                                      'rmsc': 0.4916038083717246,
                                                                                                                                      'rmsc_glo': 0.909367405901711,
                                                                                                                                      'stdv_pc': 0.18527398980372242,
                                                                                                                                      'stdv_pc_ratio_to_obs': 1.212800055202617},
                                                                                                                              'eof1': {'bias': -0.0010698471582354329,
                                                                                                                                       'bias_glo': -0.08555085257795161,
                                                                                                                                       'cor': 0.2504191400676947,
                                                                                                                                       'cor_glo': 0.10730036663807523,
                                                                                                                                       'frac': 0.1748020209379785,
                                                                                                                                       'mean': -2.170083859021333e-18,
                                                                                                                                       'mean_glo': 0.05588241014883989,
                                                                                                                                       'rms': 0.3316160847932076,
                                                                                                                                       'rms_glo': 0.18122929996601964,
                                                                                                                                       'rmsc': 1.2537471452898463,
                                                                                                                                       'rmsc_glo': 1.358299058738726,
                                                                                                                                       'stdv_pc': 0.2653297163273523,
                                                                                                                                       'stdv_pc_ratio_to_obs': 1.7368433364532765,
                                                                                                                                       'tcor_cbf_vs_eof_pc': -0.34917123647205833},
                                                                                                                              'eof2': {'bias': 0.0015915210823270977,
                                                                                                                                       'bias_glo': 0.023886487653710067,
                                                                                                                                       'cor': 0.7403847548381498,
                                                                                                                                       'cor_glo': 0.507525077279744,
                                                                                                                                       'frac': 0.11137147056128785,
                                                                                                                                       'mean': 9.300359395805715e-18,
                                                                                                                                       'mean_glo': -0.053618640264151196,
                                                                                                                                       'rms': 0.1761023496861639,
                                                                                                                                       'rms_glo': 0.10654059575557091,
                                                                                                                                       'rmsc': 0.7415068510557096,
                                                                                                                                       'rmsc_glo': 1.0112699708862487,
                                                                                                                                       'stdv_pc': 0.2117871690137596,
                                                                                                                                       'stdv_pc_ratio_to_obs': 1.3863548280209435,
                                                                                                                                       'tcor_cbf_vs_eof_pc': -0.837097805404746},
                                                                                                                              'eof3': {'bias': 0.0011466280294058946,
                                                                                                                                       'bias_glo': -0.010944958411290347,
                                                                                                                                       'cor': 0.2826869909424774,
                                                                                                                                       'cor_glo': 0.2230996099203917,
                                                                                                                                       'frac': 0.08152001527750757,
                                                                                                                                       'mean': 2.170083859021333e-18,
                                                                                                                                       'mean_glo': -0.01920215570818396,
                                                                                                                                       'rms': 0.24909227777341253,
                                                                                                                                       'rms_glo': 0.125211848518804,
                                                                                                                                       'rmsc': 1.2322558679334525,
                                                                                                                                       'rmsc_glo': 1.2681020176273747,
                                                                                                                                       'stdv_pc': 0.18119440959717048,
                                                                                                                                       'stdv_pc_ratio_to_obs': 1.1860951998424487,
                                                                                                                                       'tcor_cbf_vs_eof_pc': -0.2719234847482477},
                                                                                                                              'period': '1900-2005'},
                                                                                                                  'target_model_eofs': 2}}},
                                                                       'r2i1p1f1': {'defaultReference': {'NPGO': {'monthly': {'best_matching_model_eofs__cor': 2,
                                                                                                                              'best_matching_model_eofs__rms': 2,
                                                                                                                              'best_matching_model_eofs__tcor_cbf_vs_eof_pc': 1,
                                                                                                                              'cbf': {'bias': 0.001249767530375733,
                                                                                                                                      'bias_glo': 0.015058909569675993,
                                                                                                                                      'cor': 0.8787456463514071,
                                                                                                                                      'cor_glo': 0.6223348418985668,
                                                                                                                                      'frac': 0.12482419417285133,
                                                                                                                                      'frac_cbf_regrid': 0.12458974498711815,
                                                                                                                                      'mean': -1.0230395335386286e-17,
                                                                                                                                      'mean_glo': 0.04480477073727671,
                                                                                                                                      'rms': 0.14200051651607812,
                                                                                                                                      'rms_glo': 0.0937754571960696,
                                                                                                                                      'rmsc': 0.5088921995582114,
                                                                                                                                      'rmsc_glo': 0.8852827752023876,
                                                                                                                                      'stdv_pc': 0.1944950855550238,
                                                                                                                                      'stdv_pc_ratio_to_obs': 1.273161174688706},
                                                                                                                              'eof1': {'bias': -0.000988299720174003,
                                                                                                                                       'bias_glo': -0.0631829711278515,
                                                                                                                                       'cor': 0.4374910531471698,
                                                                                                                                       'cor_glo': 0.2748217211404729,
                                                                                                                                       'frac': 0.1626431156258114,
                                                                                                                                       'mean': 4.030155738182476e-18,
                                                                                                                                       'mean_glo': -0.03327009622860789,
                                                                                                                                       'rms': 0.28604071754899496,
                                                                                                                                       'rms_glo': 0.15089765823849932,
                                                                                                                                       'rmsc': 1.0878685330478164,
                                                                                                                                       'rmsc_glo': 1.2244816304881314,
                                                                                                                                       'stdv_pc': 0.2550174539239933,
                                                                                                                                       'stdv_pc_ratio_to_obs': 1.6693394605702818,
                                                                                                                                       'tcor_cbf_vs_eof_pc': 0.5617296859577097},
                                                                                                                              'eof2': {'bias': 0.0021486103399769325,
                                                                                                                                       'bias_glo': 0.039441952368209784,
                                                                                                                                       'cor': 0.6848419122157507,
                                                                                                                                       'cor_glo': 0.5032060182543028,
                                                                                                                                       'frac': 0.11915479486781415,
                                                                                                                                       'mean': 1.984076671105219e-17,
                                                                                                                                       'mean_glo': -0.06908020547230274,
                                                                                                                                       'rms': 0.19590340979704238,
                                                                                                                                       'rms_glo': 0.11224089045192848,
                                                                                                                                       'rmsc': 0.8147222266999303,
                                                                                                                                       'rmsc_glo': 1.0148910916246372,
                                                                                                                                       'stdv_pc': 0.21827692378193683,
                                                                                                                                       'stdv_pc_ratio_to_obs': 1.4288366407645186,
                                                                                                                                       'tcor_cbf_vs_eof_pc': -0.7566057402536618},
                                                                                                                              'eof3': {'bias': 0.0010167494373210636,
                                                                                                                                       'bias_glo': -0.007412105368841744,
                                                                                                                                       'cor': 0.1421132993471818,
                                                                                                                                       'cor_glo': 0.1365992999455503,
                                                                                                                                       'frac': 0.08484932468070225,
                                                                                                                                       'mean': 2.3250898489514287e-18,
                                                                                                                                       'mean_glo': -0.022838232273815918,
                                                                                                                                       'rms': 0.27581442241459586,
                                                                                                                                       'rms_glo': 0.14205973917819012,
                                                                                                                                       'rmsc': 1.3472961586045986,
                                                                                                                                       'rmsc_glo': 1.3365586254450723,
                                                                                                                                       'stdv_pc': 0.18419433027008983,
                                                                                                                                       'stdv_pc_ratio_to_obs': 1.2057326241866562,
                                                                                                                                       'tcor_cbf_vs_eof_pc': -0.13340802173192898},
                                                                                                                              'period': '1900-2005'},
                                                                                                                  'target_model_eofs': 2}}},
                                                                       'r3i1p1f1': {'defaultReference': {'NPGO': {'monthly': {'best_matching_model_eofs__cor': 2,
                                                                                                                              'best_matching_model_eofs__rms': 2,
                                                                                                                              'best_matching_model_eofs__tcor_cbf_vs_eof_pc': 1,
                                                                                                                              'cbf': {'bias': 0.001514584186385006,
                                                                                                                                      'bias_glo': 0.04334047881313241,
                                                                                                                                      'cor': 0.9156001494898705,
                                                                                                                                      'cor_glo': 0.6095199996601252,
                                                                                                                                      'frac': 0.1060804043457721,
                                                                                                                                      'frac_cbf_regrid': 0.10606943954136258,
                                                                                                                                      'mean': -1.2090467214547429e-17,
                                                                                                                                      'mean_glo': 0.07342249331294115,
                                                                                                                                      'rms': 0.11361207605626865,
                                                                                                                                      'rms_glo': 0.10291971475297991,
                                                                                                                                      'rmsc': 0.4251022505489938,
                                                                                                                                      'rmsc_glo': 0.8999582980800654,
                                                                                                                                      'stdv_pc': 0.18933390820421878,
                                                                                                                                      'stdv_pc_ratio_to_obs': 1.2393762047498706},
                                                                                                                              'eof1': {'bias': -0.0018809397156471259,
                                                                                                                                       'bias_glo': -0.09375019807450348,
                                                                                                                                       'cor': 0.16566584355120603,
                                                                                                                                       'cor_glo': 0.06677050434456992,
                                                                                                                                       'frac': 0.1888242319025678,
                                                                                                                                       'mean': 8.680335436085333e-18,
                                                                                                                                       'mean_glo': -0.06358909351561297,
                                                                                                                                       'rms': 0.3602158580392383,
                                                                                                                                       'rms_glo': 0.19089919803137229,
                                                                                                                                       'rmsc': 1.319474041322599,
                                                                                                                                       'rmsc_glo': 1.38880788805751,
                                                                                                                                       'stdv_pc': 0.2784208705973327,
                                                                                                                                       'stdv_pc_ratio_to_obs': 1.8225377862684833,
                                                                                                                                       'tcor_cbf_vs_eof_pc': 0.23694411710591537},
                                                                                                                              'eof2': {'bias': 0.0020595261001389096,
                                                                                                                                       'bias_glo': 0.04930250670001046,
                                                                                                                                       'cor': 0.7836429308067475,
                                                                                                                                       'cor_glo': 0.5088417668250149,
                                                                                                                                       'frac': 0.10879974680987631,
                                                                                                                                       'mean': 1.8445712801681332e-17,
                                                                                                                                       'mean_glo': -0.07898771138140204,
                                                                                                                                       'rms': 0.1631933891696143,
                                                                                                                                       'rms_glo': 0.11738253516566387,
                                                                                                                                       'rmsc': 0.6773625677458385,
                                                                                                                                       'rmsc_glo': 1.009832929454302,
                                                                                                                                       'stdv_pc': 0.21134251248973926,
                                                                                                                                       'stdv_pc_ratio_to_obs': 1.3834441147716126,
                                                                                                                                       'tcor_cbf_vs_eof_pc': -0.8660379680130186},
                                                                                                                              'eof3': {'bias': 0.0009064048744730866,
                                                                                                                                       'bias_glo': 0.01368375834927536,
                                                                                                                                       'cor': 0.4045267261472803,
                                                                                                                                       'cor_glo': 0.28291975296583316,
                                                                                                                                       'frac': 0.08216036702788475,
                                                                                                                                       'mean': 4.340167718042666e-18,
                                                                                                                                       'mean_glo': -0.044302147691122326,
                                                                                                                                       'rms': 0.22930000209045798,
                                                                                                                                       'rms_glo': 0.13034256644152378,
                                                                                                                                       'rmsc': 1.120402580831908,
                                                                                                                                       'rmsc_glo': 1.2161155575380753,
                                                                                                                                       'stdv_pc': 0.18365557199320437,
                                                                                                                                       'stdv_pc_ratio_to_obs': 1.2022059226316253,
                                                                                                                                       'tcor_cbf_vs_eof_pc': -0.385963424658558},
                                                                                                                              'period': '1900-2005'},
                                                                                                                  'target_model_eofs': 2}}},
                                                                       'r4i1p1f1': {'defaultReference': {'NPGO': {'monthly': {'best_matching_model_eofs__cor': 2,
                                                                                                                              'best_matching_model_eofs__rms': 2,
                                                                                                                              'best_matching_model_eofs__tcor_cbf_vs_eof_pc': 1,
                                                                                                                              'cbf': {'bias': 0.0018633998968035788,
                                                                                                                                      'bias_glo': 0.040817921029169466,
                                                                                                                                      'cor': 0.890302982779212,
                                                                                                                                      'cor_glo': 0.5793695682499573,
                                                                                                                                      'frac': 0.13123494778680597,
                                                                                                                                      'frac_cbf_regrid': 0.13052027868530003,
                                                                                                                                      'mean': -2.3250898489514287e-17,
                                                                                                                                      'mean_glo': 0.0705621700860484,
                                                                                                                                      'rms': 0.14326088993137862,
                                                                                                                                      'rms_glo': 0.10933565252553144,
                                                                                                                                      'rmsc': 0.4839455633584897,
                                                                                                                                      'rmsc_glo': 0.9346481149040894,
                                                                                                                                      'stdv_pc': 0.20211076471619485,
                                                                                                                                      'stdv_pc_ratio_to_obs': 1.3230132673481154},
                                                                                                                              'eof1': {'bias': 0.0004913100823371621,
                                                                                                                                       'bias_glo': -0.016404270166965638,
                                                                                                                                       'cor': 0.5743639608143988,
                                                                                                                                       'cor_glo': 0.34944583738433876,
                                                                                                                                       'frac': 0.15720693802296104,
                                                                                                                                       'mean': 8.680335436085333e-18,
                                                                                                                                       'mean_glo': 0.013197047404255235,
                                                                                                                                       'rms': 0.25368796991494136,
                                                                                                                                       'rms_glo': 0.13210017414145714,
                                                                                                                                       'rmsc': 0.948397341482534,
                                                                                                                                       'rmsc_glo': 1.1604439962957915,
                                                                                                                                       'stdv_pc': 0.25096811466494584,
                                                                                                                                       'stdv_pc_ratio_to_obs': 1.6428325618841275,
                                                                                                                                       'tcor_cbf_vs_eof_pc': 0.7037026178360142},
                                                                                                                              'eof2': {'bias': 0.002096212162426797,
                                                                                                                                       'bias_glo': 0.050283775901834527,
                                                                                                                                       'cor': 0.6235793317299985,
                                                                                                                                       'cor_glo': 0.43175625458320505,
                                                                                                                                       'frac': 0.1168284287613367,
                                                                                                                                       'mean': -8.370323456225143e-18,
                                                                                                                                       'mean_glo': 0.0803863536232126,
                                                                                                                                       'rms': 0.2096731413120631,
                                                                                                                                       'rms_glo': 0.13044102670166893,
                                                                                                                                       'rmsc': 0.8893043228033174,
                                                                                                                                       'rmsc_glo': 1.0843915440407994,
                                                                                                                                       'stdv_pc': 0.21635003094325078,
                                                                                                                                       'stdv_pc_ratio_to_obs': 1.4162232364566407,
                                                                                                                                       'tcor_cbf_vs_eof_pc': 0.6571326349784468},
                                                                                                                              'eof3': {'bias': 0.0005975749222757871,
                                                                                                                                       'bias_glo': -0.03679208582464372,
                                                                                                                                       'cor': 0.008124045196162276,
                                                                                                                                       'cor_glo': -0.0428445908359719,
                                                                                                                                       'frac': 0.08868939175410026,
                                                                                                                                       'mean': -8.525329446155238e-18,
                                                                                                                                       'mean_glo': -0.007547124386691835,
                                                                                                                                       'rms': 0.2995129405469957,
                                                                                                                                       'rms_glo': 0.15266710572171135,
                                                                                                                                       'rmsc': 1.4488760942824996,
                                                                                                                                       'rmsc_glo': 1.4664047540597582,
                                                                                                                                       'stdv_pc': 0.18850311528607333,
                                                                                                                                       'stdv_pc_ratio_to_obs': 1.2339378499216718,
                                                                                                                                       'tcor_cbf_vs_eof_pc': 0.007524971260614091},
                                                                                                                              'period': '1900-2005'},
                                                                                                                  'target_model_eofs': 2}}},
                                                                       'r5i1p1f1': {'defaultReference': {'NPGO': {'monthly': {'best_matching_model_eofs__cor': 2,
                                                                                                                              'best_matching_model_eofs__rms': 2,
                                                                                                                              'best_matching_model_eofs__tcor_cbf_vs_eof_pc': 1,
                                                                                                                              'cbf': {'bias': 0.0015734882106204758,
                                                                                                                                      'bias_glo': 0.020933260088290582,
                                                                                                                                      'cor': 0.8637967537068352,
                                                                                                                                      'cor_glo': 0.5717424973193886,
                                                                                                                                      'frac': 0.12576468385925554,
                                                                                                                                      'frac_cbf_regrid': 0.1248140713785778,
                                                                                                                                      'mean': -8.680335436085333e-18,
                                                                                                                                      'mean_glo': 0.05058699697687224,
                                                                                                                                      'rms': 0.15566787237556398,
                                                                                                                                      'rms_glo': 0.10390433197863291,
                                                                                                                                      'rmsc': 0.5387938613046653,
                                                                                                                                      'rmsc_glo': 0.9425361519248545,
                                                                                                                                      'stdv_pc': 0.19851685002150674,
                                                                                                                                      'stdv_pc_ratio_to_obs': 1.2994875693009758},
                                                                                                                              'eof1': {'bias': -0.0004841742911570442,
                                                                                                                                       'bias_glo': -0.0684718166608749,
                                                                                                                                       'cor': 0.3826494893123588,
                                                                                                                                       'cor_glo': 0.22040258913954522,
                                                                                                                                       'frac': 0.1907282775048135,
                                                                                                                                       'mean': 7.440287516644572e-18,
                                                                                                                                       'mean_glo': -0.03908754726471023,
                                                                                                                                       'rms': 0.32924477338627006,
                                                                                                                                       'rms_glo': 0.16894153495532907,
                                                                                                                                       'rmsc': 1.1415712079019322,
                                                                                                                                       'rmsc_glo': 1.2696268896621528,
                                                                                                                                       'stdv_pc': 0.2867805716707198,
                                                                                                                                       'stdv_pc_ratio_to_obs': 1.877260232382058,
                                                                                                                                       'tcor_cbf_vs_eof_pc': 0.541279879860817},
                                                                                                                              'eof2': {'bias': 0.0019319511392701053,
                                                                                                                                       'bias_glo': 0.038633000611643445,
                                                                                                                                       'cor': 0.71291500288962,
                                                                                                                                       'cor_glo': 0.49067147791244126,
                                                                                                                                       'frac': 0.10870538581190156,
                                                                                                                                       'mean': 8.060311476364952e-18,
                                                                                                                                       'mean_glo': -0.06863714741713056,
                                                                                                                                       'rms': 0.1873736671698979,
                                                                                                                                       'rms_glo': 0.11481941379073753,
                                                                                                                                       'rmsc': 0.7788813404436283,
                                                                                                                                       'rmsc_glo': 1.0283762097729745,
                                                                                                                                       'stdv_pc': 0.21650489193928782,
                                                                                                                                       'stdv_pc_ratio_to_obs': 1.4172369536262306,
                                                                                                                                       'tcor_cbf_vs_eof_pc': -0.7672954562975948},
                                                                                                                              'eof3': {'bias': 0.0016130310627448133,
                                                                                                                                       'bias_glo': 0.02829804127754675,
                                                                                                                                       'cor': 0.1386891504770647,
                                                                                                                                       'cor_glo': 0.11747126940906308,
                                                                                                                                       'frac': 0.07925655937199633,
                                                                                                                                       'mean': 8.060311476364952e-18,
                                                                                                                                       'mean_glo': -0.058583669214479786,
                                                                                                                                       'rms': 0.2770327941597175,
                                                                                                                                       'rms_glo': 0.142694283083831,
                                                                                                                                       'rmsc': 1.3495218726004152,
                                                                                                                                       'rmsc_glo': 1.3511253236960925,
                                                                                                                                       'stdv_pc': 0.18486716890556057,
                                                                                                                                       'stdv_pc_ratio_to_obs': 1.2101370132490703,
                                                                                                                                       'tcor_cbf_vs_eof_pc': -0.1279774008878522},
                                                                                                                              'period': '1900-2005'},
                                                                                                                  'target_model_eofs': 2}}}}},
                                            'provenance': {'commandLine': '../variability_modes_driver.py '
                                                                          '-p '
                                                                          '../../../sample_setups/pcmdi_parameter_files/variability_modes/myParam_NPGO_cmip6.py '
                                                                          '--case_id '
                                                                          'v20220825 '
                                                                          '--mip '
                                                                          'cmip6 '
                                                                          '--exp '
                                                                          'historical '
                                                                          '--modnames '
                                                                          'UKESM1-0-LL '
                                                                          '--realization '
                                                                          'r9i1p1f2 '
                                                                          '--parallel '
                                                                          'True '
                                                                          '--no_nc_out_obs '
                                                                          '--no_plot_obs',
                                                           'conda': {'Platform': 'linux-64',
                                                                     'PythonVersion': '3.7.3.final.0',
                                                                     'Version': '4.14.0',
                                                                     'buildVersion': '3.18.8'},
                                                           'date': '2022-08-25 '
                                                                   '21:55:11',
                                                           'history': '',
                                                           'openGL': {'GLX': {'client': {},
                                                                              'server': {}}},
                                                           'osAccess': False,
                                                           'packages': {'PMP': '2.0',
                                                                        'PMPObs': 'See '
                                                                                  "'References' "
                                                                                  'key '
                                                                                  'below, '
                                                                                  'for '
                                                                                  'detailed '
                                                                                  'obs '
                                                                                  'provenance '
                                                                                  'information.',
                                                                        'blas': '0.3.21',
                                                                        'cdat_info': '8.2.1',
                                                                        'cdms': '3.1.5',
                                                                        'cdp': '1.7.0',
                                                                        'cdtime': '3.1.4',
                                                                        'cdutil': '8.2.1',
                                                                        'clapack': None,
                                                                        'esmf': '8.2.0',
                                                                        'esmpy': '8.2.0',
                                                                        'genutil': '8.2.1',
                                                                        'lapack': '3.9.0',
                                                                        'matplotlib': None,
                                                                        'mesalib': None,
                                                                        'numpy': '1.23.2',
                                                                        'python': '3.10.6',
                                                                        'scipy': '1.9.0',
                                                                        'uvcdat': None,
                                                                        'vcs': None,
                                                                        'vtk': None},
                                                           'platform': {'Name': 'gates.llnl.gov',
                                                                        'OS': 'Linux',
                                                                        'Version': '3.10.0-1160.71.1.el7.x86_64'},
                                                           'script': '#!/usr/bin/env '
                                                                     'python\n'
                                                                     '\n'
                                                                     '"""\n'
                                                                     '# Modes '
                                                                     'of '
                                                                     'Variability '
                                                                     'Metrics\n'
                                                                     '- '
                                                                     'Calculate '
                                                                     'metrics '
                                                                     'for '
                                                                     'modes of '
                                                                     'varibility '
                                                                     'from '
                                                                     'archive '
                                                                     'of CMIP '
                                                                     'models\n'
                                                                     '- '
                                                                     'Author: '
                                                                     'Jiwoo '
                                                                     'Lee '
                                                                     '(lee1043@llnl.gov), '
                                                                     'PCMDI, '
                                                                     'LLNL\n'
                                                                     '\n'
                                                                     '## EOF1 '
                                                                     'based '
                                                                     'variability '
                                                                     'modes\n'
                                                                     '- NAM: '
                                                                     'Northern '
                                                                     'Annular '
                                                                     'Mode\n'
                                                                     '- NAO: '
                                                                     'Northern '
                                                                     'Atlantic '
                                                                     'Oscillation\n'
                                                                     '- SAM: '
                                                                     'Southern '
                                                                     'Annular '
                                                                     'Mode\n'
                                                                     '- PNA: '
                                                                     'Pacific '
                                                                     'North '
                                                                     'American '
                                                                     'Pattern\n'
                                                                     '- PDO: '
                                                                     'Pacific '
                                                                     'Decadal '
                                                                     'Oscillation\n'
                                                                     '\n'
                                                                     '## EOF2 '
                                                                     'based '
                                                                     'variability '
                                                                     'modes\n'
                                                                     '- NPO: '
                                                                     'North '
                                                                     'Pacific '
                                                                     'Oscillation '
                                                                     '(2nd '
                                                                     'EOFs of '
                                                                     'PNA '
                                                                     'domain)\n'
                                                                     '- NPGO: '
                                                                     'North '
                                                                     'Pacific '
                                                                     'Gyre '
                                                                     'Oscillation '
                                                                     '(2nd '
                                                                     'EOFs of '
                                                                     'PDO '
                                                                     'domain)\n'
                                                                     '\n'
                                                                     '## '
                                                                     'Reference:\n'
                                                                     'Lee, J., '
                                                                     'K. '
                                                                     'Sperber, '
                                                                     'P. '
                                                                     'Gleckler, '
                                                                     'C. '
                                                                     'Bonfils, '
                                                                     'and K. '
                                                                     'Taylor, '
                                                                     '2019:\n'
                                                                     'Quantifying '
                                                                     'the '
                                                                     'Agreement '
                                                                     'Between '
                                                                     'Observed '
                                                                     'and '
                                                                     'Simulated '
                                                                     'Extratropical '
                                                                     'Modes '
                                                                     'of\n'
                                                                     'Interannual '
                                                                     'Variability. '
                                                                     'Climate '
                                                                     'Dynamics.\n'
                                                                     'https://doi.org/10.1007/s00382-018-4355-4\n'
                                                                     '\n'
                                                                     '## '
                                                                     'Auspices:\n'
                                                                     'This '
                                                                     'work was '
                                                                     'performed '
                                                                     'under '
                                                                     'the '
                                                                     'auspices '
                                                                     'of the '
                                                                     'U.S. '
                                                                     'Department '
                                                                     'of\n'
                                                                     'Energy '
                                                                     'by '
                                                                     'Lawrence '
                                                                     'Livermore '
                                                                     'National '
                                                                     'Laboratory '
                                                                     'under '
                                                                     'Contract\n'
                                                                     'DE-AC52-07NA27344. '
                                                                     'Lawrence '
                                                                     'Livermore '
                                                                     'National '
                                                                     'Laboratory '
                                                                     'is '
                                                                     'operated '
                                                                     'by\n'
                                                                     'Lawrence '
                                                                     'Livermore '
                                                                     'National '
                                                                     'Security, '
                                                                     'LLC, for '
                                                                     'the U.S. '
                                                                     'Department '
                                                                     'of '
                                                                     'Energy,\n'
                                                                     'National '
                                                                     'Nuclear '
                                                                     'Security '
                                                                     'Administration '
                                                                     'under '
                                                                     'Contract '
                                                                     'DE-AC52-07NA27344.\n'
                                                                     '\n'
                                                                     '## '
                                                                     'Disclaimer:\n'
                                                                     'This '
                                                                     'document '
                                                                     'was '
                                                                     'prepared '
                                                                     'as an '
                                                                     'account '
                                                                     'of work '
                                                                     'sponsored '
                                                                     'by an\n'
                                                                     'agency '
                                                                     'of the '
                                                                     'United '
                                                                     'States '
                                                                     'government. '
                                                                     'Neither '
                                                                     'the '
                                                                     'United '
                                                                     'States '
                                                                     'government\n'
                                                                     'nor '
                                                                     'Lawrence '
                                                                     'Livermore '
                                                                     'National '
                                                                     'Security, '
                                                                     'LLC, nor '
                                                                     'any of '
                                                                     'their '
                                                                     'employees\n'
                                                                     'makes '
                                                                     'any '
                                                                     'warranty, '
                                                                     'expressed '
                                                                     'or '
                                                                     'implied, '
                                                                     'or '
                                                                     'assumes '
                                                                     'any '
                                                                     'legal '
                                                                     'liability '
                                                                     'or\n'
                                                                     'responsibility '
                                                                     'for the '
                                                                     'accuracy, '
                                                                     'completeness, '
                                                                     'or '
                                                                     'usefulness '
                                                                     'of any\n'
                                                                     'information, '
                                                                     'apparatus, '
                                                                     'product, '
                                                                     'or '
                                                                     'process '
                                                                     'disclosed, '
                                                                     'or '
                                                                     'represents '
                                                                     'that '
                                                                     'its\n'
                                                                     'use '
                                                                     'would '
                                                                     'not '
                                                                     'infringe '
                                                                     'privately '
                                                                     'owned '
                                                                     'rights. '
                                                                     'Reference '
                                                                     'herein '
                                                                     'to any '
                                                                     'specific\n'
                                                                     'commercial '
                                                                     'product, '
                                                                     'process, '
                                                                     'or '
                                                                     'service '
                                                                     'by trade '
                                                                     'name, '
                                                                     'trademark, '
                                                                     'manufacturer,\n'
                                                                     'or '
                                                                     'otherwise '
                                                                     'does not '
                                                                     'necessarily '
                                                                     'constitute '
                                                                     'or imply '
                                                                     'its '
                                                                     'endorsement,\n'
                                                                     'recommendation, '
                                                                     'or '
                                                                     'favoring '
                                                                     'by the '
                                                                     'United '
                                                                     'States '
                                                                     'government '
                                                                     'or '
                                                                     'Lawrence\n'
                                                                     'Livermore '
                                                                     'National '
                                                                     'Security, '
                                                                     'LLC. The '
                                                                     'views '
                                                                     'and '
                                                                     'opinions '
                                                                     'of '
                                                                     'authors '
                                                                     'expressed\n'
                                                                     'herein '
                                                                     'do not '
                                                                     'necessarily '
                                                                     'state or '
                                                                     'reflect '
                                                                     'those of '
                                                                     'the '
                                                                     'United '
                                                                     'States\n'
                                                                     'government '
                                                                     'or '
                                                                     'Lawrence '
                                                                     'Livermore '
                                                                     'National '
                                                                     'Security, '
                                                                     'LLC, and '
                                                                     'shall '
                                                                     'not be '
                                                                     'used\n'
                                                                     'for '
                                                                     'advertising '
                                                                     'or '
                                                                     'product '
                                                                     'endorsement '
                                                                     'purposes.\n'
                                                                     '"""\n'
                                                                     '\n'
                                                                     'from '
                                                                     '__future__ '
                                                                     'import '
                                                                     'print_function\n'
                                                                     '\n'
                                                                     'import '
                                                                     'glob\n'
                                                                     'import '
                                                                     'json\n'
                                                                     'import '
                                                                     'os\n'
                                                                     'import '
                                                                     'sys\n'
                                                                     'from '
                                                                     'argparse '
                                                                     'import '
                                                                     'RawTextHelpFormatter\n'
                                                                     'from '
                                                                     'shutil '
                                                                     'import '
                                                                     'copyfile\n'
                                                                     '\n'
                                                                     'import '
                                                                     'cdtime\n'
                                                                     'import '
                                                                     'cdutil\n'
                                                                     'import '
                                                                     'MV2\n'
                                                                     'from '
                                                                     'genutil '
                                                                     'import '
                                                                     'StringConstructor\n'
                                                                     '\n'
                                                                     'import '
                                                                     'pcmdi_metrics\n'
                                                                     'from '
                                                                     'pcmdi_metrics '
                                                                     'import '
                                                                     'resources\n'
                                                                     'from '
                                                                     'pcmdi_metrics.variability_mode.lib '
                                                                     'import '
                                                                     '(\n'
                                                                     '    '
                                                                     'AddParserArgument,\n'
                                                                     '    '
                                                                     'VariabilityModeCheck,\n'
                                                                     '    '
                                                                     'YearCheck,\n'
                                                                     '    '
                                                                     'adjust_timeseries,\n'
                                                                     '    '
                                                                     'calc_stats_save_dict,\n'
                                                                     '    '
                                                                     'calcSTD,\n'
                                                                     '    '
                                                                     'calcTCOR,\n'
                                                                     '    '
                                                                     'debug_print,\n'
                                                                     '    '
                                                                     'eof_analysis_get_variance_mode,\n'
                                                                     '    '
                                                                     'gain_pcs_fraction,\n'
                                                                     '    '
                                                                     'gain_pseudo_pcs,\n'
                                                                     '    '
                                                                     'get_domain_range,\n'
                                                                     '    '
                                                                     'linear_regression_on_globe_for_teleconnection,\n'
                                                                     '    '
                                                                     'plot_map,\n'
                                                                     '    '
                                                                     'read_data_in,\n'
                                                                     '    '
                                                                     'sort_human,\n'
                                                                     '    '
                                                                     'tree,\n'
                                                                     '    '
                                                                     'variability_metrics_to_json,\n'
                                                                     '    '
                                                                     'write_nc_output,\n'
                                                                     ')\n'
                                                                     '\n'
                                                                     '# To '
                                                                     'avoid '
                                                                     'below '
                                                                     'error\n'
                                                                     '# '
                                                                     'OpenBLAS '
                                                                     'blas_thread_init: '
                                                                     'pthread_create '
                                                                     'failed '
                                                                     'for '
                                                                     'thread '
                                                                     'XX of '
                                                                     '96: '
                                                                     'Resource '
                                                                     'temporarily '
                                                                     'unavailable\n'
                                                                     'os.environ["OPENBLAS_NUM_THREADS"] '
                                                                     '= "1"\n'
                                                                     '\n'
                                                                     '# Must '
                                                                     'be done '
                                                                     'before '
                                                                     'any CDAT '
                                                                     'library '
                                                                     'is '
                                                                     'called.\n'
                                                                     '# '
                                                                     'https://github.com/CDAT/cdat/issues/2213\n'
                                                                     'if '
                                                                     '"UVCDAT_ANONYMOUS_LOG" '
                                                                     'not in '
                                                                     'os.environ:\n'
                                                                     '    '
                                                                     'os.environ["UVCDAT_ANONYMOUS_LOG"] '
                                                                     '= "no"\n'
                                                                     '\n'
                                                                     'regions_specs '
                                                                     '= {}\n'
                                                                     'egg_pth '
                                                                     '= '
                                                                     'resources.resource_path()\n'
                                                                     'exec(\n'
                                                                     '    '
                                                                     'compile(\n'
                                                                     '        '
                                                                     'open(os.path.join(egg_pth, '
                                                                     '"default_regions.py")).read(),\n'
                                                                     '        '
                                                                     'os.path.join(egg_pth, '
                                                                     '"default_regions.py"),\n'
                                                                     '        '
                                                                     '"exec",\n'
                                                                     '    )\n'
                                                                     ')\n'
                                                                     '\n'
                                                                     '# '
                                                                     '=================================================\n'
                                                                     '# '
                                                                     'Collect '
                                                                     'user '
                                                                     'defined '
                                                                     'options\n'
                                                                     '# '
                                                                     '-------------------------------------------------\n'
                                                                     'P = '
                                                                     'pcmdi_metrics.driver.pmp_parser.PMPParser(\n'
                                                                     '    '
                                                                     'description="Runs '
                                                                     'PCMDI '
                                                                     'Modes of '
                                                                     'Variability '
                                                                     'Computations",\n'
                                                                     '    '
                                                                     'formatter_class=RawTextHelpFormatter,\n'
                                                                     ')\n'
                                                                     'P = '
                                                                     'AddParserArgument(P)\n'
                                                                     'param = '
                                                                     'P.get_parameter()\n'
                                                                     '\n'
                                                                     '# '
                                                                     'Pre-defined '
                                                                     'options\n'
                                                                     'mip = '
                                                                     'param.mip\n'
                                                                     'exp = '
                                                                     'param.exp\n'
                                                                     'fq = '
                                                                     'param.frequency\n'
                                                                     'realm = '
                                                                     'param.realm\n'
                                                                     'print("mip:", '
                                                                     'mip)\n'
                                                                     'print("exp:", '
                                                                     'exp)\n'
                                                                     'print("fq:", '
                                                                     'fq)\n'
                                                                     'print("realm:", '
                                                                     'realm)\n'
                                                                     '\n'
                                                                     '# On/off '
                                                                     'switches\n'
                                                                     'obs_compare '
                                                                     '= True  '
                                                                     '# '
                                                                     'Statistics '
                                                                     'against '
                                                                     'observation\n'
                                                                     'CBF = '
                                                                     'param.CBF  '
                                                                     '# '
                                                                     'Conduct '
                                                                     'CBF '
                                                                     'analysis\n'
                                                                     'ConvEOF '
                                                                     '= '
                                                                     'param.ConvEOF  '
                                                                     '# '
                                                                     'Conduct '
                                                                     'conventional '
                                                                     'EOF '
                                                                     'analysis\n'
                                                                     '\n'
                                                                     'EofScaling '
                                                                     '= '
                                                                     'param.EofScaling  '
                                                                     '# If '
                                                                     'True, '
                                                                     'consider '
                                                                     'EOF with '
                                                                     'unit '
                                                                     'variance\n'
                                                                     'RmDomainMean '
                                                                     '= '
                                                                     'param.RemoveDomainMean  '
                                                                     '# If '
                                                                     'True, '
                                                                     'remove '
                                                                     'Domain '
                                                                     'Mean of '
                                                                     'each '
                                                                     'time '
                                                                     'step\n'
                                                                     'LandMask '
                                                                     '= '
                                                                     'param.landmask  '
                                                                     '# If '
                                                                     'True, '
                                                                     'maskout '
                                                                     'land '
                                                                     'region '
                                                                     'thus '
                                                                     'consider '
                                                                     'only '
                                                                     'over '
                                                                     'ocean\n'
                                                                     '\n'
                                                                     'print("EofScaling:", '
                                                                     'EofScaling)\n'
                                                                     'print("RmDomainMean:", '
                                                                     'RmDomainMean)\n'
                                                                     'print("LandMask:", '
                                                                     'LandMask)\n'
                                                                     '\n'
                                                                     'nc_out_obs '
                                                                     '= '
                                                                     'param.nc_out_obs  '
                                                                     '# Record '
                                                                     'NetCDF '
                                                                     'output\n'
                                                                     'plot_obs '
                                                                     '= '
                                                                     'param.plot_obs  '
                                                                     '# '
                                                                     'Generate '
                                                                     'plots\n'
                                                                     'nc_out_model '
                                                                     '= '
                                                                     'param.nc_out  '
                                                                     '# Record '
                                                                     'NetCDF '
                                                                     'output\n'
                                                                     'plot_model '
                                                                     '= '
                                                                     'param.plot  '
                                                                     '# '
                                                                     'Generate '
                                                                     'plots\n'
                                                                     'update_json '
                                                                     '= '
                                                                     'param.update_json\n'
                                                                     '\n'
                                                                     'print("nc_out_obs, '
                                                                     'plot_obs:", '
                                                                     'nc_out_obs, '
                                                                     'plot_obs)\n'
                                                                     'print("nc_out_model, '
                                                                     'plot_model:", '
                                                                     'nc_out_model, '
                                                                     'plot_model)\n'
                                                                     '\n'
                                                                     'cmec = '
                                                                     'False\n'
                                                                     'if '
                                                                     'hasattr(param, '
                                                                     '"cmec"):\n'
                                                                     '    cmec '
                                                                     '= '
                                                                     'param.cmec  '
                                                                     '# '
                                                                     'Generate '
                                                                     'CMEC '
                                                                     'compliant '
                                                                     'json\n'
                                                                     'print("CMEC:" '
                                                                     '+ '
                                                                     'str(cmec))\n'
                                                                     '\n'
                                                                     '# Check '
                                                                     'given '
                                                                     'mode of '
                                                                     'variability\n'
                                                                     'mode = '
                                                                     'VariabilityModeCheck(param.variability_mode, '
                                                                     'P)\n'
                                                                     'print("mode:", '
                                                                     'mode)\n'
                                                                     '\n'
                                                                     '# '
                                                                     'Variables\n'
                                                                     'var = '
                                                                     'param.varModel\n'
                                                                     '\n'
                                                                     '# Check '
                                                                     'dependency '
                                                                     'for '
                                                                     'given '
                                                                     'season '
                                                                     'option\n'
                                                                     'seasons '
                                                                     '= '
                                                                     'param.seasons\n'
                                                                     'print("seasons:", '
                                                                     'seasons)\n'
                                                                     '\n'
                                                                     '# '
                                                                     'Observation '
                                                                     'information\n'
                                                                     'obs_name '
                                                                     '= '
                                                                     'param.reference_data_name\n'
                                                                     'obs_path '
                                                                     '= '
                                                                     'param.reference_data_path\n'
                                                                     'obs_var '
                                                                     '= '
                                                                     'param.varOBS\n'
                                                                     '\n'
                                                                     '# Path '
                                                                     'to model '
                                                                     'data as '
                                                                     'string '
                                                                     'template\n'
                                                                     'modpath '
                                                                     '= '
                                                                     'StringConstructor(param.modpath)\n'
                                                                     'if '
                                                                     'LandMask:\n'
                                                                     '    '
                                                                     'modpath_lf '
                                                                     '= '
                                                                     'StringConstructor(param.modpath_lf)\n'
                                                                     '\n'
                                                                     '# Check '
                                                                     'given '
                                                                     'model '
                                                                     'option\n'
                                                                     'models = '
                                                                     'param.modnames\n'
                                                                     '\n'
                                                                     '# '
                                                                     'Include '
                                                                     'all '
                                                                     'models '
                                                                     'if '
                                                                     'conditioned\n'
                                                                     'if '
                                                                     '("all" '
                                                                     'in '
                                                                     '[m.lower() '
                                                                     'for m in '
                                                                     'models]) '
                                                                     'or '
                                                                     '(models '
                                                                     '== '
                                                                     '"all"):\n'
                                                                     '    '
                                                                     'model_index_path '
                                                                     '= '
                                                                     'param.modpath.split("/")[-1].split(".").index("%(model)")\n'
                                                                     '    '
                                                                     'models = '
                                                                     '[\n'
                                                                     '        '
                                                                     'p.split("/")[-1].split(".")[model_index_path]\n'
                                                                     '        '
                                                                     'for p in '
                                                                     'glob.glob(\n'
                                                                     '            '
                                                                     'modpath(mip=mip, '
                                                                     'exp=exp, '
                                                                     'model="*", '
                                                                     'realization="*", '
                                                                     'variable=var)\n'
                                                                     '        '
                                                                     ')\n'
                                                                     '    ]\n'
                                                                     '    # '
                                                                     'remove '
                                                                     'duplicates\n'
                                                                     '    '
                                                                     'models = '
                                                                     'sorted(list(dict.fromkeys(models)), '
                                                                     'key=lambda '
                                                                     's: '
                                                                     's.lower())\n'
                                                                     '\n'
                                                                     'print("models:", '
                                                                     'models)\n'
                                                                     'print("number '
                                                                     'of '
                                                                     'models:", '
                                                                     'len(models))\n'
                                                                     '\n'
                                                                     '# '
                                                                     'Realizations\n'
                                                                     'realization '
                                                                     '= '
                                                                     'param.realization\n'
                                                                     'print("realization: '
                                                                     '", '
                                                                     'realization)\n'
                                                                     '\n'
                                                                     '# EOF '
                                                                     'ordinal '
                                                                     'number\n'
                                                                     'eofn_obs '
                                                                     '= '
                                                                     'int(param.eofn_obs)\n'
                                                                     'eofn_mod '
                                                                     '= '
                                                                     'int(param.eofn_mod)\n'
                                                                     '\n'
                                                                     '# case '
                                                                     'id\n'
                                                                     'case_id '
                                                                     '= '
                                                                     'param.case_id\n'
                                                                     '\n'
                                                                     '# '
                                                                     'Output\n'
                                                                     'outdir_template '
                                                                     '= '
                                                                     'param.process_templated_argument("results_dir")\n'
                                                                     'outdir = '
                                                                     'StringConstructor(\n'
                                                                     '    '
                                                                     'str(\n'
                                                                     '        '
                                                                     'outdir_template(\n'
                                                                     '            '
                                                                     'output_type="%(output_type)",\n'
                                                                     '            '
                                                                     'mip=mip,\n'
                                                                     '            '
                                                                     'exp=exp,\n'
                                                                     '            '
                                                                     'variability_mode=mode,\n'
                                                                     '            '
                                                                     'reference_data_name=obs_name,\n'
                                                                     '            '
                                                                     'case_id=case_id,\n'
                                                                     '        '
                                                                     ')\n'
                                                                     '    )\n'
                                                                     ')\n'
                                                                     '\n'
                                                                     '# Debug\n'
                                                                     'debug = '
                                                                     'param.debug\n'
                                                                     '\n'
                                                                     '# Year\n'
                                                                     'msyear = '
                                                                     'param.msyear\n'
                                                                     'meyear = '
                                                                     'param.meyear\n'
                                                                     'YearCheck(msyear, '
                                                                     'meyear, '
                                                                     'P)\n'
                                                                     '\n'
                                                                     'osyear = '
                                                                     'param.osyear\n'
                                                                     'oeyear = '
                                                                     'param.oeyear\n'
                                                                     'YearCheck(osyear, '
                                                                     'oeyear, '
                                                                     'P)\n'
                                                                     '\n'
                                                                     '# Units '
                                                                     'adjustment\n'
                                                                     'ObsUnitsAdjust '
                                                                     '= '
                                                                     'param.ObsUnitsAdjust\n'
                                                                     'ModUnitsAdjust '
                                                                     '= '
                                                                     'param.ModUnitsAdjust\n'
                                                                     '\n'
                                                                     '# lon1g '
                                                                     'and '
                                                                     'lon2g is '
                                                                     'for '
                                                                     'global '
                                                                     'map '
                                                                     'plotting\n'
                                                                     'if mode '
                                                                     'in '
                                                                     '["PDO", '
                                                                     '"NPGO"]:\n'
                                                                     '    '
                                                                     'lon1g = '
                                                                     '0\n'
                                                                     '    '
                                                                     'lon2g = '
                                                                     '360\n'
                                                                     'else:\n'
                                                                     '    '
                                                                     'lon1g = '
                                                                     '-180\n'
                                                                     '    '
                                                                     'lon2g = '
                                                                     '180\n'
                                                                     '\n'
                                                                     '# '
                                                                     'parallel\n'
                                                                     'parallel '
                                                                     '= '
                                                                     'param.parallel\n'
                                                                     'print("parallel:", '
                                                                     'parallel)\n'
                                                                     '\n'
                                                                     '# '
                                                                     '=================================================\n'
                                                                     '# Time '
                                                                     'period '
                                                                     'adjustment\n'
                                                                     '# '
                                                                     '-------------------------------------------------\n'
                                                                     'start_time '
                                                                     '= '
                                                                     'cdtime.comptime(msyear, '
                                                                     '1, 1, 0, '
                                                                     '0)\n'
                                                                     'end_time '
                                                                     '= '
                                                                     'cdtime.comptime(meyear, '
                                                                     '12, 31, '
                                                                     '23, 59)\n'
                                                                     '\n'
                                                                     'try:\n'
                                                                     '    # '
                                                                     'osyear '
                                                                     'and '
                                                                     'oeyear '
                                                                     'variables '
                                                                     'were '
                                                                     'defined.\n'
                                                                     '    '
                                                                     'start_time_obs '
                                                                     '= '
                                                                     'cdtime.comptime(osyear, '
                                                                     '1, 1, 0, '
                                                                     '0)\n'
                                                                     '    '
                                                                     'end_time_obs '
                                                                     '= '
                                                                     'cdtime.comptime(oeyear, '
                                                                     '12, 31, '
                                                                     '23, 59)\n'
                                                                     'except '
                                                                     'NameError:\n'
                                                                     '    # '
                                                                     'osyear, '
                                                                     'oeyear '
                                                                     'variables '
                                                                     'were NOT '
                                                                     'defined\n'
                                                                     '    '
                                                                     'start_time_obs '
                                                                     '= '
                                                                     'start_time\n'
                                                                     '    '
                                                                     'end_time_obs '
                                                                     '= '
                                                                     'end_time\n'
                                                                     '\n'
                                                                     '# '
                                                                     '=================================================\n'
                                                                     '# Region '
                                                                     'control\n'
                                                                     '# '
                                                                     '-------------------------------------------------\n'
                                                                     'region_subdomain '
                                                                     '= '
                                                                     'get_domain_range(mode, '
                                                                     'regions_specs)\n'
                                                                     '\n'
                                                                     '# '
                                                                     '=================================================\n'
                                                                     '# Create '
                                                                     'output '
                                                                     'directories\n'
                                                                     '# '
                                                                     '-------------------------------------------------\n'
                                                                     'for '
                                                                     'output_type '
                                                                     'in '
                                                                     '["graphics", '
                                                                     '"diagnostic_results", '
                                                                     '"metrics_results"]:\n'
                                                                     '    if '
                                                                     'not '
                                                                     'os.path.exists(outdir(output_type=output_type)):\n'
                                                                     '        '
                                                                     'os.makedirs(outdir(output_type=output_type))\n'
                                                                     '    '
                                                                     'print(outdir(output_type=output_type))\n'
                                                                     '\n'
                                                                     '# '
                                                                     '=================================================\n'
                                                                     '# Set '
                                                                     'dictionary '
                                                                     'for '
                                                                     '.json '
                                                                     'record\n'
                                                                     '# '
                                                                     '-------------------------------------------------\n'
                                                                     'result_dict '
                                                                     '= '
                                                                     'tree()\n'
                                                                     '\n'
                                                                     '# Set '
                                                                     'metrics '
                                                                     'output '
                                                                     'JSON '
                                                                     'file\n'
                                                                     'json_filename '
                                                                     '= '
                                                                     '"_".join(\n'
                                                                     '    [\n'
                                                                     '        '
                                                                     '"var",\n'
                                                                     '        '
                                                                     '"mode",\n'
                                                                     '        '
                                                                     'mode,\n'
                                                                     '        '
                                                                     '"EOF" + '
                                                                     'str(eofn_mod),\n'
                                                                     '        '
                                                                     '"stat",\n'
                                                                     '        '
                                                                     'mip,\n'
                                                                     '        '
                                                                     'exp,\n'
                                                                     '        '
                                                                     'fq,\n'
                                                                     '        '
                                                                     'realm,\n'
                                                                     '        '
                                                                     'str(msyear) '
                                                                     '+ "-" + '
                                                                     'str(meyear),\n'
                                                                     '    ]\n'
                                                                     ')\n'
                                                                     '\n'
                                                                     'json_file '
                                                                     '= '
                                                                     'os.path.join(outdir(output_type="metrics_results"), '
                                                                     'json_filename '
                                                                     '+ '
                                                                     '".json")\n'
                                                                     'json_file_org '
                                                                     '= '
                                                                     'os.path.join(\n'
                                                                     '    '
                                                                     'outdir(output_type="metrics_results"),\n'
                                                                     '    '
                                                                     '"_".join([json_filename, '
                                                                     '"org", '
                                                                     'str(os.getpid())]) '
                                                                     '+ '
                                                                     '".json",\n'
                                                                     ')\n'
                                                                     '\n'
                                                                     '# '
                                                                     'Archive '
                                                                     'if there '
                                                                     'is '
                                                                     'pre-existing '
                                                                     'JSON: '
                                                                     'preventing '
                                                                     'overwriting\n'
                                                                     'if '
                                                                     'os.path.isfile(json_file) '
                                                                     'and '
                                                                     'os.stat(json_file).st_size '
                                                                     '> 0:\n'
                                                                     '    '
                                                                     'copyfile(json_file, '
                                                                     'json_file_org)\n'
                                                                     '    if '
                                                                     'update_json:\n'
                                                                     '        '
                                                                     'fj = '
                                                                     'open(json_file)\n'
                                                                     '        '
                                                                     'result_dict '
                                                                     '= '
                                                                     'json.loads(fj.read())\n'
                                                                     '        '
                                                                     'fj.close()\n'
                                                                     '\n'
                                                                     'if "REF" '
                                                                     'not in '
                                                                     'list(result_dict.keys()):\n'
                                                                     '    '
                                                                     'result_dict["REF"] '
                                                                     '= {}\n'
                                                                     'if '
                                                                     '"RESULTS" '
                                                                     'not in '
                                                                     'list(result_dict.keys()):\n'
                                                                     '    '
                                                                     'result_dict["RESULTS"] '
                                                                     '= {}\n'
                                                                     '\n'
                                                                     '# '
                                                                     '=================================================\n'
                                                                     '# '
                                                                     'Observation\n'
                                                                     '# '
                                                                     '-------------------------------------------------\n'
                                                                     'if '
                                                                     'obs_compare:\n'
                                                                     '\n'
                                                                     '    '
                                                                     'obs_lf_path '
                                                                     '= None\n'
                                                                     '\n'
                                                                     '    # '
                                                                     'read '
                                                                     'data in\n'
                                                                     '    '
                                                                     'obs_timeseries, '
                                                                     'osyear, '
                                                                     'oeyear = '
                                                                     'read_data_in(\n'
                                                                     '        '
                                                                     'obs_name,\n'
                                                                     '        '
                                                                     'obs_path,\n'
                                                                     '        '
                                                                     'obs_lf_path,\n'
                                                                     '        '
                                                                     'obs_var,\n'
                                                                     '        '
                                                                     'var,\n'
                                                                     '        '
                                                                     'start_time_obs,\n'
                                                                     '        '
                                                                     'end_time_obs,\n'
                                                                     '        '
                                                                     'ObsUnitsAdjust,\n'
                                                                     '        '
                                                                     'LandMask,\n'
                                                                     '        '
                                                                     'debug=debug,\n'
                                                                     '    )\n'
                                                                     '\n'
                                                                     '    # '
                                                                     'Save '
                                                                     'global '
                                                                     'grid '
                                                                     'information '
                                                                     'for '
                                                                     'regrid '
                                                                     'below\n'
                                                                     '    '
                                                                     'ref_grid_global '
                                                                     '= '
                                                                     'obs_timeseries.getGrid()\n'
                                                                     '\n'
                                                                     '    # '
                                                                     'Declare '
                                                                     'dictionary '
                                                                     'variables '
                                                                     'to keep '
                                                                     'information '
                                                                     'from '
                                                                     'observation\n'
                                                                     '    '
                                                                     'eof_obs '
                                                                     '= {}\n'
                                                                     '    '
                                                                     'pc_obs = '
                                                                     '{}\n'
                                                                     '    '
                                                                     'frac_obs '
                                                                     '= {}\n'
                                                                     '    '
                                                                     'solver_obs '
                                                                     '= {}\n'
                                                                     '    '
                                                                     'reverse_sign_obs '
                                                                     '= {}\n'
                                                                     '    '
                                                                     'eof_lr_obs '
                                                                     '= {}\n'
                                                                     '    '
                                                                     'stdv_pc_obs '
                                                                     '= {}\n'
                                                                     '\n'
                                                                     '    # '
                                                                     'Dictonary '
                                                                     'for json '
                                                                     'archive\n'
                                                                     '    if '
                                                                     '"obs" '
                                                                     'not in '
                                                                     'list(result_dict["REF"].keys()):\n'
                                                                     '        '
                                                                     'result_dict["REF"]["obs"] '
                                                                     '= {}\n'
                                                                     '    if '
                                                                     '"defaultReference" '
                                                                     'not in '
                                                                     'list(result_dict["REF"]["obs"].keys()):\n'
                                                                     '        '
                                                                     'result_dict["REF"]["obs"]["defaultReference"] '
                                                                     '= {}\n'
                                                                     '    if '
                                                                     '"source" '
                                                                     'not in '
                                                                     'list(result_dict["REF"]["obs"]["defaultReference"].keys()):\n'
                                                                     '        '
                                                                     'result_dict["REF"]["obs"]["defaultReference"]["source"] '
                                                                     '= {}\n'
                                                                     '    if '
                                                                     'mode not '
                                                                     'in '
                                                                     'list(result_dict["REF"]["obs"]["defaultReference"].keys()):\n'
                                                                     '        '
                                                                     'result_dict["REF"]["obs"]["defaultReference"][mode] '
                                                                     '= {}\n'
                                                                     '\n'
                                                                     '    '
                                                                     'result_dict["REF"]["obs"]["defaultReference"]["source"] '
                                                                     '= '
                                                                     'obs_path\n'
                                                                     '    '
                                                                     'result_dict["REF"]["obs"]["defaultReference"]["reference_eofs"] '
                                                                     '= '
                                                                     'eofn_obs\n'
                                                                     '    '
                                                                     'result_dict["REF"]["obs"]["defaultReference"]["period"] '
                                                                     '= (\n'
                                                                     '        '
                                                                     'str(osyear) '
                                                                     '+ "-" + '
                                                                     'str(oeyear)\n'
                                                                     '    )\n'
                                                                     '\n'
                                                                     '    # '
                                                                     '-------------------------------------------------\n'
                                                                     '    # '
                                                                     'Season '
                                                                     'loop\n'
                                                                     '    # - '
                                                                     '- - - - '
                                                                     '- - - - '
                                                                     '- - - - '
                                                                     '- - - - '
                                                                     '- - - - '
                                                                     '- - - -\n'
                                                                     '    '
                                                                     'debug_print("obs '
                                                                     'season '
                                                                     'loop '
                                                                     'starts", '
                                                                     'debug)\n'
                                                                     '\n'
                                                                     '    for '
                                                                     'season '
                                                                     'in '
                                                                     'seasons:\n'
                                                                     '        '
                                                                     'debug_print("season: '
                                                                     '" + '
                                                                     'season, '
                                                                     'debug)\n'
                                                                     '\n'
                                                                     '        '
                                                                     'if '
                                                                     'season '
                                                                     'not in '
                                                                     'list(\n'
                                                                     '            '
                                                                     'result_dict["REF"]["obs"]["defaultReference"][mode].keys()\n'
                                                                     '        '
                                                                     '):\n'
                                                                     '            '
                                                                     'result_dict["REF"]["obs"]["defaultReference"][mode][season] '
                                                                     '= {}\n'
                                                                     '\n'
                                                                     '        '
                                                                     'dict_head_obs '
                                                                     '= '
                                                                     'result_dict["REF"]["obs"]["defaultReference"][mode][season]\n'
                                                                     '\n'
                                                                     '        '
                                                                     '# Time '
                                                                     'series '
                                                                     'adjustment '
                                                                     '(remove '
                                                                     'annual '
                                                                     'cycle, '
                                                                     'seasonal '
                                                                     'mean (if '
                                                                     'needed),\n'
                                                                     '        '
                                                                     '# and '
                                                                     'subtracting '
                                                                     'domain '
                                                                     '(or '
                                                                     'global) '
                                                                     'mean of '
                                                                     'each '
                                                                     'time '
                                                                     'step)\n'
                                                                     '        '
                                                                     'debug_print("time '
                                                                     'series '
                                                                     'adjustment", '
                                                                     'debug)\n'
                                                                     '        '
                                                                     'obs_timeseries_season '
                                                                     '= '
                                                                     'adjust_timeseries(\n'
                                                                     '            '
                                                                     'obs_timeseries, '
                                                                     'mode, '
                                                                     'season, '
                                                                     'region_subdomain, '
                                                                     'RmDomainMean\n'
                                                                     '        '
                                                                     ')\n'
                                                                     '\n'
                                                                     '        '
                                                                     '# '
                                                                     'Extract '
                                                                     'subdomain\n'
                                                                     '        '
                                                                     'obs_timeseries_season_subdomain '
                                                                     '= '
                                                                     'obs_timeseries_season(region_subdomain)\n'
                                                                     '\n'
                                                                     '        '
                                                                     '# EOF '
                                                                     'analysis\n'
                                                                     '        '
                                                                     'debug_print("EOF '
                                                                     'analysis", '
                                                                     'debug)\n'
                                                                     '        '
                                                                     '(\n'
                                                                     '            '
                                                                     'eof_obs[season],\n'
                                                                     '            '
                                                                     'pc_obs[season],\n'
                                                                     '            '
                                                                     'frac_obs[season],\n'
                                                                     '            '
                                                                     'reverse_sign_obs[season],\n'
                                                                     '            '
                                                                     'solver_obs[season],\n'
                                                                     '        '
                                                                     ') = '
                                                                     'eof_analysis_get_variance_mode(\n'
                                                                     '            '
                                                                     'mode,\n'
                                                                     '            '
                                                                     'obs_timeseries_season_subdomain,\n'
                                                                     '            '
                                                                     'eofn=eofn_obs,\n'
                                                                     '            '
                                                                     'debug=debug,\n'
                                                                     '            '
                                                                     'EofScaling=EofScaling,\n'
                                                                     '        '
                                                                     ')\n'
                                                                     '\n'
                                                                     '        '
                                                                     '# '
                                                                     'Calculate '
                                                                     'stdv of '
                                                                     'pc time '
                                                                     'series\n'
                                                                     '        '
                                                                     'debug_print("calculate '
                                                                     'stdv of '
                                                                     'pc time '
                                                                     'series", '
                                                                     'debug)\n'
                                                                     '        '
                                                                     'stdv_pc_obs[season] '
                                                                     '= '
                                                                     'calcSTD(pc_obs[season])\n'
                                                                     '\n'
                                                                     '        '
                                                                     '# Linear '
                                                                     'regression '
                                                                     'to have '
                                                                     'extended '
                                                                     'global '
                                                                     'map; '
                                                                     'teleconnection '
                                                                     'purpose\n'
                                                                     '        '
                                                                     '(\n'
                                                                     '            '
                                                                     'eof_lr_obs[season],\n'
                                                                     '            '
                                                                     'slope_obs,\n'
                                                                     '            '
                                                                     'intercept_obs,\n'
                                                                     '        '
                                                                     ') = '
                                                                     'linear_regression_on_globe_for_teleconnection(\n'
                                                                     '            '
                                                                     'pc_obs[season],\n'
                                                                     '            '
                                                                     'obs_timeseries_season,\n'
                                                                     '            '
                                                                     'stdv_pc_obs[season],\n'
                                                                     '            '
                                                                     'RmDomainMean,\n'
                                                                     '            '
                                                                     'EofScaling,\n'
                                                                     '            '
                                                                     'debug=debug,\n'
                                                                     '        '
                                                                     ')\n'
                                                                     '\n'
                                                                     '        '
                                                                     '# - - - '
                                                                     '- - - - '
                                                                     '- - - - '
                                                                     '- - - - '
                                                                     '- - - - '
                                                                     '- - - - '
                                                                     '- -\n'
                                                                     '        '
                                                                     '# Record '
                                                                     'results\n'
                                                                     '        '
                                                                     '# . . . '
                                                                     '. . . . '
                                                                     '. . . . '
                                                                     '. . . . '
                                                                     '. . . . '
                                                                     '. . . . '
                                                                     '. .\n'
                                                                     '        '
                                                                     'debug_print("record '
                                                                     'results", '
                                                                     'debug)\n'
                                                                     '\n'
                                                                     '        '
                                                                     '# Set '
                                                                     'output '
                                                                     'file '
                                                                     'name for '
                                                                     'NetCDF '
                                                                     'and '
                                                                     'plot\n'
                                                                     '        '
                                                                     'output_filename_obs '
                                                                     '= '
                                                                     '"_".join(\n'
                                                                     '            '
                                                                     '[\n'
                                                                     '                '
                                                                     'mode,\n'
                                                                     '                '
                                                                     'var,\n'
                                                                     '                '
                                                                     '"EOF" + '
                                                                     'str(eofn_obs),\n'
                                                                     '                '
                                                                     'season,\n'
                                                                     '                '
                                                                     '"obs",\n'
                                                                     '                '
                                                                     'str(osyear) '
                                                                     '+ "-" + '
                                                                     'str(oeyear),\n'
                                                                     '            '
                                                                     ']\n'
                                                                     '        '
                                                                     ')\n'
                                                                     '        '
                                                                     'if '
                                                                     'EofScaling:\n'
                                                                     '            '
                                                                     'output_filename_obs '
                                                                     '+= '
                                                                     '"_EOFscaled"\n'
                                                                     '\n'
                                                                     '        '
                                                                     '# Save '
                                                                     'global '
                                                                     'map, pc '
                                                                     'timeseries, '
                                                                     'and '
                                                                     'fraction '
                                                                     'in '
                                                                     'NetCDF '
                                                                     'output\n'
                                                                     '        '
                                                                     'if '
                                                                     'nc_out_obs:\n'
                                                                     '            '
                                                                     'output_nc_file_obs '
                                                                     '= '
                                                                     'os.path.join(\n'
                                                                     '                '
                                                                     'outdir(output_type="diagnostic_results"), '
                                                                     'output_filename_obs\n'
                                                                     '            '
                                                                     ')\n'
                                                                     '            '
                                                                     'write_nc_output(\n'
                                                                     '                '
                                                                     'output_nc_file_obs,\n'
                                                                     '                '
                                                                     'eof_lr_obs[season],\n'
                                                                     '                '
                                                                     'pc_obs[season],\n'
                                                                     '                '
                                                                     'frac_obs[season],\n'
                                                                     '                '
                                                                     'slope_obs,\n'
                                                                     '                '
                                                                     'intercept_obs,\n'
                                                                     '            '
                                                                     ')\n'
                                                                     '\n'
                                                                     '        '
                                                                     '# '
                                                                     'Plotting\n'
                                                                     '        '
                                                                     'if '
                                                                     'plot_obs:\n'
                                                                     '            '
                                                                     'output_img_file_obs '
                                                                     '= '
                                                                     'os.path.join(\n'
                                                                     '                '
                                                                     'outdir(output_type="graphics"), '
                                                                     'output_filename_obs\n'
                                                                     '            '
                                                                     ')\n'
                                                                     '            '
                                                                     '# '
                                                                     'plot_map(mode, '
                                                                     "'[REF] "
                                                                     "'+obs_name, "
                                                                     'osyear, '
                                                                     'oeyear, '
                                                                     'season,\n'
                                                                     '            '
                                                                     '#          '
                                                                     'eof_obs[season], '
                                                                     'frac_obs[season],\n'
                                                                     '            '
                                                                     '#          '
                                                                     "output_img_file_obs+'_org_eof')\n"
                                                                     '            '
                                                                     'plot_map(\n'
                                                                     '                '
                                                                     'mode,\n'
                                                                     '                '
                                                                     '"[REF] " '
                                                                     '+ '
                                                                     'obs_name,\n'
                                                                     '                '
                                                                     'osyear,\n'
                                                                     '                '
                                                                     'oeyear,\n'
                                                                     '                '
                                                                     'season,\n'
                                                                     '                '
                                                                     'eof_lr_obs[season](region_subdomain),\n'
                                                                     '                '
                                                                     'frac_obs[season],\n'
                                                                     '                '
                                                                     'output_img_file_obs,\n'
                                                                     '            '
                                                                     ')\n'
                                                                     '            '
                                                                     'plot_map(\n'
                                                                     '                '
                                                                     'mode + '
                                                                     '"_teleconnection",\n'
                                                                     '                '
                                                                     '"[REF] " '
                                                                     '+ '
                                                                     'obs_name,\n'
                                                                     '                '
                                                                     'osyear,\n'
                                                                     '                '
                                                                     'oeyear,\n'
                                                                     '                '
                                                                     'season,\n'
                                                                     '                '
                                                                     'eof_lr_obs[season](longitude=(lon1g, '
                                                                     'lon2g)),\n'
                                                                     '                '
                                                                     'frac_obs[season],\n'
                                                                     '                '
                                                                     'output_img_file_obs '
                                                                     '+ '
                                                                     '"_teleconnection",\n'
                                                                     '            '
                                                                     ')\n'
                                                                     '            '
                                                                     'debug_print("obs '
                                                                     'plotting '
                                                                     'end", '
                                                                     'debug)\n'
                                                                     '\n'
                                                                     '        '
                                                                     '# Save '
                                                                     'stdv of '
                                                                     'PC time '
                                                                     'series '
                                                                     'in '
                                                                     'dictionary\n'
                                                                     '        '
                                                                     'dict_head_obs["stdv_pc"] '
                                                                     '= '
                                                                     'stdv_pc_obs[season]\n'
                                                                     '        '
                                                                     'dict_head_obs["frac"] '
                                                                     '= '
                                                                     'float(frac_obs[season])\n'
                                                                     '\n'
                                                                     '        '
                                                                     '# Mean\n'
                                                                     '        '
                                                                     'mean_obs '
                                                                     '= '
                                                                     'cdutil.averager(eof_obs[season], '
                                                                     'axis="yx", '
                                                                     'weights="weighted")\n'
                                                                     '        '
                                                                     'mean_glo_obs '
                                                                     '= '
                                                                     'cdutil.averager(\n'
                                                                     '            '
                                                                     'eof_lr_obs[season], '
                                                                     'axis="yx", '
                                                                     'weights="weighted"\n'
                                                                     '        '
                                                                     ')\n'
                                                                     '        '
                                                                     'dict_head_obs["mean"] '
                                                                     '= '
                                                                     'float(mean_obs)\n'
                                                                     '        '
                                                                     'dict_head_obs["mean_glo"] '
                                                                     '= '
                                                                     'float(mean_glo_obs)\n'
                                                                     '        '
                                                                     'debug_print("obs '
                                                                     'mean '
                                                                     'end", '
                                                                     'debug)\n'
                                                                     '\n'
                                                                     '        '
                                                                     '# North '
                                                                     'test -- '
                                                                     'make '
                                                                     'this '
                                                                     'available '
                                                                     'as '
                                                                     'option '
                                                                     'later...\n'
                                                                     '        '
                                                                     '# '
                                                                     "execfile('../north_test.py')\n"
                                                                     '\n'
                                                                     '    '
                                                                     'debug_print("obs '
                                                                     'end", '
                                                                     'debug)\n'
                                                                     '\n'
                                                                     '# '
                                                                     '=================================================\n'
                                                                     '# Model\n'
                                                                     '# '
                                                                     '-------------------------------------------------\n'
                                                                     'for '
                                                                     'model in '
                                                                     'models:\n'
                                                                     '    '
                                                                     'print(" '
                                                                     '----- ", '
                                                                     'model, " '
                                                                     '---------------------")\n'
                                                                     '\n'
                                                                     '    if '
                                                                     'model '
                                                                     'not in '
                                                                     'list(result_dict["RESULTS"].keys()):\n'
                                                                     '        '
                                                                     'result_dict["RESULTS"][model] '
                                                                     '= {}\n'
                                                                     '\n'
                                                                     '    '
                                                                     'model_path_list '
                                                                     '= '
                                                                     'glob.glob(\n'
                                                                     '        '
                                                                     'modpath(mip=mip, '
                                                                     'exp=exp, '
                                                                     'model=model, '
                                                                     'realization=realization, '
                                                                     'variable=var)\n'
                                                                     '    )\n'
                                                                     '\n'
                                                                     '    '
                                                                     'model_path_list '
                                                                     '= '
                                                                     'sort_human(model_path_list)\n'
                                                                     '\n'
                                                                     '    '
                                                                     'debug_print("model_path_list: '
                                                                     '" + '
                                                                     'str(model_path_list), '
                                                                     'debug)\n'
                                                                     '\n'
                                                                     '    # '
                                                                     'Find '
                                                                     'where '
                                                                     'run can '
                                                                     'be '
                                                                     'gripped '
                                                                     'from '
                                                                     'given '
                                                                     'filename '
                                                                     'template '
                                                                     'for '
                                                                     'modpath\n'
                                                                     '    if '
                                                                     'realization '
                                                                     '== "*":\n'
                                                                     '        '
                                                                     'run_in_modpath '
                                                                     '= (\n'
                                                                     '            '
                                                                     'modpath(\n'
                                                                     '                '
                                                                     'mip=mip, '
                                                                     'exp=exp, '
                                                                     'model=model, '
                                                                     'realization=realization, '
                                                                     'variable=var\n'
                                                                     '            '
                                                                     ')\n'
                                                                     '            '
                                                                     '.split("/")[-1]\n'
                                                                     '            '
                                                                     '.split(".")\n'
                                                                     '            '
                                                                     '.index(realization)\n'
                                                                     '        '
                                                                     ')\n'
                                                                     '\n'
                                                                     '    # '
                                                                     '-------------------------------------------------\n'
                                                                     '    # '
                                                                     'Run\n'
                                                                     '    # '
                                                                     '-------------------------------------------------\n'
                                                                     '    for '
                                                                     'model_path '
                                                                     'in '
                                                                     'model_path_list:\n'
                                                                     '\n'
                                                                     '        '
                                                                     'try:\n'
                                                                     '            '
                                                                     'if '
                                                                     'realization '
                                                                     '== "*":\n'
                                                                     '                '
                                                                     'run = '
                                                                     '(model_path.split("/")[-1]).split(".")[run_in_modpath]\n'
                                                                     '            '
                                                                     'else:\n'
                                                                     '                '
                                                                     'run = '
                                                                     'realization\n'
                                                                     '            '
                                                                     'print(" '
                                                                     '--- ", '
                                                                     'run, " '
                                                                     '---")\n'
                                                                     '\n'
                                                                     '            '
                                                                     'if run '
                                                                     'not in '
                                                                     'list(result_dict["RESULTS"][model].keys()):\n'
                                                                     '                '
                                                                     'result_dict["RESULTS"][model][run] '
                                                                     '= {}\n'
                                                                     '            '
                                                                     'if '
                                                                     '"defaultReference" '
                                                                     'not in '
                                                                     'list(\n'
                                                                     '                '
                                                                     'result_dict["RESULTS"][model][run].keys()\n'
                                                                     '            '
                                                                     '):\n'
                                                                     '                '
                                                                     'result_dict["RESULTS"][model][run]["defaultReference"] '
                                                                     '= {}\n'
                                                                     '            '
                                                                     'if mode '
                                                                     'not in '
                                                                     'list(\n'
                                                                     '                '
                                                                     'result_dict["RESULTS"][model][run]["defaultReference"].keys()\n'
                                                                     '            '
                                                                     '):\n'
                                                                     '                '
                                                                     'result_dict["RESULTS"][model][run]["defaultReference"][mode] '
                                                                     '= {}\n'
                                                                     '            '
                                                                     'result_dict["RESULTS"][model][run]["defaultReference"][mode][\n'
                                                                     '                '
                                                                     '"target_model_eofs"\n'
                                                                     '            '
                                                                     '] = '
                                                                     'eofn_mod\n'
                                                                     '\n'
                                                                     '            '
                                                                     'if '
                                                                     'LandMask:\n'
                                                                     '                '
                                                                     'model_lf_path '
                                                                     '= '
                                                                     'modpath_lf(mip=mip, '
                                                                     'exp=exp, '
                                                                     'model=model)\n'
                                                                     '            '
                                                                     'else:\n'
                                                                     '                '
                                                                     'model_lf_path '
                                                                     '= None\n'
                                                                     '\n'
                                                                     '            '
                                                                     '# read '
                                                                     'data in\n'
                                                                     '            '
                                                                     'model_timeseries, '
                                                                     'msyear, '
                                                                     'meyear = '
                                                                     'read_data_in(\n'
                                                                     '                '
                                                                     'model,\n'
                                                                     '                '
                                                                     'model_path,\n'
                                                                     '                '
                                                                     'model_lf_path,\n'
                                                                     '                '
                                                                     'var,\n'
                                                                     '                '
                                                                     'var,\n'
                                                                     '                '
                                                                     'start_time,\n'
                                                                     '                '
                                                                     'end_time,\n'
                                                                     '                '
                                                                     'ModUnitsAdjust,\n'
                                                                     '                '
                                                                     'LandMask,\n'
                                                                     '                '
                                                                     'debug=debug,\n'
                                                                     '            '
                                                                     ')\n'
                                                                     '\n'
                                                                     '            '
                                                                     'debug_print("msyear: '
                                                                     '" + '
                                                                     'str(msyear) '
                                                                     '+ " '
                                                                     'meyear: '
                                                                     '" + '
                                                                     'str(meyear), '
                                                                     'debug)\n'
                                                                     '\n'
                                                                     '            '
                                                                     '# '
                                                                     '-------------------------------------------------\n'
                                                                     '            '
                                                                     '# Season '
                                                                     'loop\n'
                                                                     '            '
                                                                     '# - - - '
                                                                     '- - - - '
                                                                     '- - - - '
                                                                     '- - - - '
                                                                     '- - - - '
                                                                     '- - - - '
                                                                     '- -\n'
                                                                     '            '
                                                                     'for '
                                                                     'season '
                                                                     'in '
                                                                     'seasons:\n'
                                                                     '                '
                                                                     'debug_print("season: '
                                                                     '" + '
                                                                     'season, '
                                                                     'debug)\n'
                                                                     '\n'
                                                                     '                '
                                                                     'if '
                                                                     'season '
                                                                     'not in '
                                                                     'list(\n'
                                                                     '                    '
                                                                     'result_dict["RESULTS"][model][run]["defaultReference"][mode].keys()\n'
                                                                     '                '
                                                                     '):\n'
                                                                     '                    '
                                                                     'result_dict["RESULTS"][model][run]["defaultReference"][mode][\n'
                                                                     '                        '
                                                                     'season\n'
                                                                     '                    '
                                                                     '] = {}\n'
                                                                     '                '
                                                                     'result_dict["RESULTS"][model][run]["defaultReference"][mode][season][\n'
                                                                     '                    '
                                                                     '"period"\n'
                                                                     '                '
                                                                     '] = '
                                                                     '(str(msyear) '
                                                                     '+ "-" + '
                                                                     'str(meyear))\n'
                                                                     '\n'
                                                                     '                '
                                                                     '# Time '
                                                                     'series '
                                                                     'adjustment '
                                                                     '(remove '
                                                                     'annual '
                                                                     'cycle, '
                                                                     'seasonal '
                                                                     'mean (if '
                                                                     'needed),\n'
                                                                     '                '
                                                                     '# and '
                                                                     'subtracting '
                                                                     'domain '
                                                                     '(or '
                                                                     'global) '
                                                                     'mean of '
                                                                     'each '
                                                                     'time '
                                                                     'step)\n'
                                                                     '                '
                                                                     'debug_print("time '
                                                                     'series '
                                                                     'adjustment", '
                                                                     'debug)\n'
                                                                     '                '
                                                                     'model_timeseries_season '
                                                                     '= '
                                                                     'adjust_timeseries(\n'
                                                                     '                    '
                                                                     'model_timeseries, '
                                                                     'mode, '
                                                                     'season, '
                                                                     'region_subdomain, '
                                                                     'RmDomainMean\n'
                                                                     '                '
                                                                     ')\n'
                                                                     '\n'
                                                                     '                '
                                                                     '# '
                                                                     'Extract '
                                                                     'subdomain\n'
                                                                     '                '
                                                                     'debug_print("extract '
                                                                     'subdomain", '
                                                                     'debug)\n'
                                                                     '                '
                                                                     'model_timeseries_season_subdomain '
                                                                     '= '
                                                                     'model_timeseries_season(\n'
                                                                     '                    '
                                                                     'region_subdomain\n'
                                                                     '                '
                                                                     ')\n'
                                                                     '\n'
                                                                     '                '
                                                                     '# '
                                                                     '-------------------------------------------------\n'
                                                                     '                '
                                                                     '# Common '
                                                                     'Basis '
                                                                     'Function '
                                                                     'Approach\n'
                                                                     '                '
                                                                     '# - - - '
                                                                     '- - - - '
                                                                     '- - - - '
                                                                     '- - - - '
                                                                     '- - - - '
                                                                     '- - - - '
                                                                     '- -\n'
                                                                     '                '
                                                                     'if CBF '
                                                                     'and '
                                                                     'obs_compare:\n'
                                                                     '\n'
                                                                     '                    '
                                                                     'if "cbf" '
                                                                     'not in '
                                                                     'list(\n'
                                                                     '                        '
                                                                     'result_dict["RESULTS"][model][run]["defaultReference"][mode][\n'
                                                                     '                            '
                                                                     'season\n'
                                                                     '                        '
                                                                     '].keys()\n'
                                                                     '                    '
                                                                     '):\n'
                                                                     '                        '
                                                                     'result_dict["RESULTS"][model][run]["defaultReference"][mode][\n'
                                                                     '                            '
                                                                     'season\n'
                                                                     '                        '
                                                                     ']["cbf"] '
                                                                     '= {}\n'
                                                                     '                    '
                                                                     'dict_head '
                                                                     '= '
                                                                     'result_dict["RESULTS"][model][run]["defaultReference"][\n'
                                                                     '                        '
                                                                     'mode\n'
                                                                     '                    '
                                                                     '][season]["cbf"]\n'
                                                                     '                    '
                                                                     'debug_print("CBF '
                                                                     'approach '
                                                                     'start", '
                                                                     'debug)\n'
                                                                     '\n'
                                                                     '                    '
                                                                     '# Regrid '
                                                                     '(interpolation, '
                                                                     'model '
                                                                     'grid to '
                                                                     'ref '
                                                                     'grid)\n'
                                                                     '                    '
                                                                     'model_timeseries_season_regrid '
                                                                     '= '
                                                                     'model_timeseries_season.regrid(\n'
                                                                     '                        '
                                                                     'ref_grid_global, '
                                                                     'regridTool="regrid2", '
                                                                     'mkCyclic=True\n'
                                                                     '                    '
                                                                     ')\n'
                                                                     '                    '
                                                                     'model_timeseries_season_regrid_subdomain '
                                                                     '= (\n'
                                                                     '                        '
                                                                     'model_timeseries_season_regrid(region_subdomain)\n'
                                                                     '                    '
                                                                     ')\n'
                                                                     '\n'
                                                                     '                    '
                                                                     '# '
                                                                     'Matching '
                                                                     "model's "
                                                                     'missing '
                                                                     'value '
                                                                     'location '
                                                                     'to that '
                                                                     'of '
                                                                     'observation\n'
                                                                     '                    '
                                                                     '# Save '
                                                                     'axes for '
                                                                     'preserving\n'
                                                                     '                    '
                                                                     'axes = '
                                                                     'model_timeseries_season_regrid_subdomain.getAxisList()\n'
                                                                     '                    '
                                                                     '# 1) '
                                                                     'Replace '
                                                                     "model's "
                                                                     'masked '
                                                                     'grid to '
                                                                     '0, so '
                                                                     'theoritically '
                                                                     "won't "
                                                                     'affect '
                                                                     'to '
                                                                     'result\n'
                                                                     '                    '
                                                                     'model_timeseries_season_regrid_subdomain '
                                                                     '= '
                                                                     'MV2.array(\n'
                                                                     '                        '
                                                                     'model_timeseries_season_regrid_subdomain.filled(0.0)\n'
                                                                     '                    '
                                                                     ')\n'
                                                                     '                    '
                                                                     '# 2) '
                                                                     'Give '
                                                                     "obs's "
                                                                     'mask to '
                                                                     'model '
                                                                     'field, '
                                                                     'so '
                                                                     'enable '
                                                                     'projecField '
                                                                     'functionality '
                                                                     'below\n'
                                                                     '                    '
                                                                     'model_timeseries_season_regrid_subdomain.mask '
                                                                     '= '
                                                                     'eof_obs[season].mask\n'
                                                                     '                    '
                                                                     '# '
                                                                     'Preserve '
                                                                     'axes\n'
                                                                     '                    '
                                                                     'model_timeseries_season_regrid_subdomain.setAxisList(axes)\n'
                                                                     '\n'
                                                                     '                    '
                                                                     '# CBF PC '
                                                                     'time '
                                                                     'series\n'
                                                                     '                    '
                                                                     'cbf_pc = '
                                                                     'gain_pseudo_pcs(\n'
                                                                     '                        '
                                                                     'solver_obs[season],\n'
                                                                     '                        '
                                                                     'model_timeseries_season_regrid_subdomain,\n'
                                                                     '                        '
                                                                     'eofn_obs,\n'
                                                                     '                        '
                                                                     'reverse_sign_obs[season],\n'
                                                                     '                        '
                                                                     'EofScaling=EofScaling,\n'
                                                                     '                    '
                                                                     ')\n'
                                                                     '\n'
                                                                     '                    '
                                                                     '# '
                                                                     'Calculate '
                                                                     'stdv of '
                                                                     'cbf pc '
                                                                     'time '
                                                                     'series\n'
                                                                     '                    '
                                                                     'stdv_cbf_pc '
                                                                     '= '
                                                                     'calcSTD(cbf_pc)\n'
                                                                     '\n'
                                                                     '                    '
                                                                     '# Linear '
                                                                     'regression '
                                                                     'to have '
                                                                     'extended '
                                                                     'global '
                                                                     'map; '
                                                                     'teleconnection '
                                                                     'purpose\n'
                                                                     '                    '
                                                                     '(\n'
                                                                     '                        '
                                                                     'eof_lr_cbf,\n'
                                                                     '                        '
                                                                     'slope_cbf,\n'
                                                                     '                        '
                                                                     'intercept_cbf,\n'
                                                                     '                    '
                                                                     ') = '
                                                                     'linear_regression_on_globe_for_teleconnection(\n'
                                                                     '                        '
                                                                     'cbf_pc,\n'
                                                                     '                        '
                                                                     'model_timeseries_season,\n'
                                                                     '                        '
                                                                     'stdv_cbf_pc,\n'
                                                                     '                        '
                                                                     '# '
                                                                     'cbf_pc, '
                                                                     'model_timeseries_season_regrid, '
                                                                     'stdv_cbf_pc,\n'
                                                                     '                        '
                                                                     'RmDomainMean,\n'
                                                                     '                        '
                                                                     'EofScaling,\n'
                                                                     '                        '
                                                                     'debug=debug,\n'
                                                                     '                    '
                                                                     ')\n'
                                                                     '\n'
                                                                     '                    '
                                                                     '# '
                                                                     'Extract '
                                                                     'subdomain '
                                                                     'for '
                                                                     'statistics\n'
                                                                     '                    '
                                                                     'eof_lr_cbf_subdomain '
                                                                     '= '
                                                                     'eof_lr_cbf(region_subdomain)\n'
                                                                     '\n'
                                                                     '                    '
                                                                     '# '
                                                                     'Calculate '
                                                                     'fraction '
                                                                     'of '
                                                                     'variance '
                                                                     'explained '
                                                                     'by cbf '
                                                                     'pc\n'
                                                                     '                    '
                                                                     'frac_cbf '
                                                                     '= '
                                                                     'gain_pcs_fraction(\n'
                                                                     '                        '
                                                                     '# '
                                                                     'model_timeseries_season_regrid_subdomain,  '
                                                                     '# '
                                                                     'regridded '
                                                                     'model '
                                                                     'anomaly '
                                                                     'space\n'
                                                                     '                        '
                                                                     'model_timeseries_season_subdomain,  '
                                                                     '# native '
                                                                     'grid '
                                                                     'model '
                                                                     'anomaly '
                                                                     'space\n'
                                                                     '                        '
                                                                     'eof_lr_cbf_subdomain,\n'
                                                                     '                        '
                                                                     'cbf_pc / '
                                                                     'stdv_cbf_pc,\n'
                                                                     '                        '
                                                                     'debug=debug,\n'
                                                                     '                    '
                                                                     ')\n'
                                                                     '\n'
                                                                     '                    '
                                                                     '# '
                                                                     'SENSITIVITY '
                                                                     'TEST '
                                                                     '---\n'
                                                                     '                    '
                                                                     '# '
                                                                     'Calculate '
                                                                     'fraction '
                                                                     'of '
                                                                     'variance '
                                                                     'explained '
                                                                     'by cbf '
                                                                     'pc (on '
                                                                     'regrid '
                                                                     'domain)\n'
                                                                     '                    '
                                                                     'frac_cbf_regrid '
                                                                     '= '
                                                                     'gain_pcs_fraction(\n'
                                                                     '                        '
                                                                     'model_timeseries_season_regrid_subdomain,\n'
                                                                     '                        '
                                                                     'eof_lr_cbf_subdomain,\n'
                                                                     '                        '
                                                                     'cbf_pc / '
                                                                     'stdv_cbf_pc,\n'
                                                                     '                        '
                                                                     'debug=debug,\n'
                                                                     '                    '
                                                                     ')\n'
                                                                     '                    '
                                                                     'dict_head["frac_cbf_regrid"] '
                                                                     '= '
                                                                     'float(frac_cbf_regrid)\n'
                                                                     '\n'
                                                                     '                    '
                                                                     '# - - - '
                                                                     '- - - - '
                                                                     '- - - - '
                                                                     '- - - - '
                                                                     '- - - - '
                                                                     '- - - - '
                                                                     '- -\n'
                                                                     '                    '
                                                                     '# Record '
                                                                     'results\n'
                                                                     '                    '
                                                                     '# - - - '
                                                                     '- - - - '
                                                                     '- - - - '
                                                                     '- - - - '
                                                                     '- - - - '
                                                                     '- - - - '
                                                                     '- -\n'
                                                                     '                    '
                                                                     '# '
                                                                     'Metrics '
                                                                     'results '
                                                                     '-- '
                                                                     'statistics '
                                                                     'to JSON\n'
                                                                     '                    '
                                                                     'dict_head, '
                                                                     'eof_lr_cbf '
                                                                     '= '
                                                                     'calc_stats_save_dict(\n'
                                                                     '                        '
                                                                     'dict_head,\n'
                                                                     '                        '
                                                                     'eof_lr_cbf_subdomain,\n'
                                                                     '                        '
                                                                     'eof_lr_cbf,\n'
                                                                     '                        '
                                                                     'slope_cbf,\n'
                                                                     '                        '
                                                                     'cbf_pc,\n'
                                                                     '                        '
                                                                     'stdv_cbf_pc,\n'
                                                                     '                        '
                                                                     'frac_cbf,\n'
                                                                     '                        '
                                                                     'region_subdomain,\n'
                                                                     '                        '
                                                                     'eof_obs[season],\n'
                                                                     '                        '
                                                                     'eof_lr_obs[season],\n'
                                                                     '                        '
                                                                     'stdv_pc_obs[season],\n'
                                                                     '                        '
                                                                     'obs_compare=obs_compare,\n'
                                                                     '                        '
                                                                     'method="cbf",\n'
                                                                     '                        '
                                                                     'debug=debug,\n'
                                                                     '                    '
                                                                     ')\n'
                                                                     '\n'
                                                                     '                    '
                                                                     '# Set '
                                                                     'output '
                                                                     'file '
                                                                     'name for '
                                                                     'NetCDF '
                                                                     'and plot '
                                                                     'images\n'
                                                                     '                    '
                                                                     'output_filename '
                                                                     '= '
                                                                     '"_".join(\n'
                                                                     '                        '
                                                                     '[\n'
                                                                     '                            '
                                                                     'mode,\n'
                                                                     '                            '
                                                                     'var,\n'
                                                                     '                            '
                                                                     '"EOF" + '
                                                                     'str(eofn_mod),\n'
                                                                     '                            '
                                                                     'season,\n'
                                                                     '                            '
                                                                     'mip,\n'
                                                                     '                            '
                                                                     'model,\n'
                                                                     '                            '
                                                                     'exp,\n'
                                                                     '                            '
                                                                     'run,\n'
                                                                     '                            '
                                                                     'fq,\n'
                                                                     '                            '
                                                                     'realm,\n'
                                                                     '                            '
                                                                     'str(msyear) '
                                                                     '+ "-" + '
                                                                     'str(meyear),\n'
                                                                     '                        '
                                                                     ']\n'
                                                                     '                    '
                                                                     ')\n'
                                                                     '                    '
                                                                     'if '
                                                                     'EofScaling:\n'
                                                                     '                        '
                                                                     'output_filename '
                                                                     '+= '
                                                                     '"_EOFscaled"\n'
                                                                     '\n'
                                                                     '                    '
                                                                     '# '
                                                                     'Diagnostics '
                                                                     'results '
                                                                     '-- data '
                                                                     'to '
                                                                     'NetCDF\n'
                                                                     '                    '
                                                                     '# Save '
                                                                     'global '
                                                                     'map, pc '
                                                                     'timeseries, '
                                                                     'and '
                                                                     'fraction '
                                                                     'in '
                                                                     'NetCDF '
                                                                     'output\n'
                                                                     '                    '
                                                                     'output_nc_file '
                                                                     '= '
                                                                     'os.path.join(\n'
                                                                     '                        '
                                                                     'outdir(output_type="diagnostic_results"), '
                                                                     'output_filename\n'
                                                                     '                    '
                                                                     ')\n'
                                                                     '                    '
                                                                     'if '
                                                                     'nc_out_model:\n'
                                                                     '                        '
                                                                     'write_nc_output(\n'
                                                                     '                            '
                                                                     'output_nc_file '
                                                                     '+ '
                                                                     '"_cbf",\n'
                                                                     '                            '
                                                                     'eof_lr_cbf,\n'
                                                                     '                            '
                                                                     'cbf_pc,\n'
                                                                     '                            '
                                                                     'frac_cbf,\n'
                                                                     '                            '
                                                                     'slope_cbf,\n'
                                                                     '                            '
                                                                     'intercept_cbf,\n'
                                                                     '                        '
                                                                     ')\n'
                                                                     '\n'
                                                                     '                    '
                                                                     '# '
                                                                     'Graphics '
                                                                     '-- plot '
                                                                     'map '
                                                                     'image to '
                                                                     'PNG\n'
                                                                     '                    '
                                                                     'output_img_file '
                                                                     '= '
                                                                     'os.path.join(\n'
                                                                     '                        '
                                                                     'outdir(output_type="graphics"), '
                                                                     'output_filename\n'
                                                                     '                    '
                                                                     ')\n'
                                                                     '                    '
                                                                     'if '
                                                                     'plot_model:\n'
                                                                     '                        '
                                                                     'plot_map(\n'
                                                                     '                            '
                                                                     'mode,\n'
                                                                     '                            '
                                                                     'mip.upper() '
                                                                     '+ " " + '
                                                                     'model + '
                                                                     '" (" + '
                                                                     'run + '
                                                                     '")" + " '
                                                                     '- CBF",\n'
                                                                     '                            '
                                                                     'msyear,\n'
                                                                     '                            '
                                                                     'meyear,\n'
                                                                     '                            '
                                                                     'season,\n'
                                                                     '                            '
                                                                     'eof_lr_cbf(region_subdomain),\n'
                                                                     '                            '
                                                                     'frac_cbf,\n'
                                                                     '                            '
                                                                     'output_img_file '
                                                                     '+ '
                                                                     '"_cbf",\n'
                                                                     '                        '
                                                                     ')\n'
                                                                     '                        '
                                                                     'plot_map(\n'
                                                                     '                            '
                                                                     'mode + '
                                                                     '"_teleconnection",\n'
                                                                     '                            '
                                                                     'mip.upper() '
                                                                     '+ " " + '
                                                                     'model + '
                                                                     '" (" + '
                                                                     'run + '
                                                                     '")" + " '
                                                                     '- CBF",\n'
                                                                     '                            '
                                                                     'msyear,\n'
                                                                     '                            '
                                                                     'meyear,\n'
                                                                     '                            '
                                                                     'season,\n'
                                                                     '                            '
                                                                     'eof_lr_cbf(longitude=(lon1g, '
                                                                     'lon2g)),\n'
                                                                     '                            '
                                                                     'frac_cbf,\n'
                                                                     '                            '
                                                                     'output_img_file '
                                                                     '+ '
                                                                     '"_cbf_teleconnection",\n'
                                                                     '                        '
                                                                     ')\n'
                                                                     '\n'
                                                                     '                    '
                                                                     'debug_print("cbf '
                                                                     'pcs '
                                                                     'end", '
                                                                     'debug)\n'
                                                                     '\n'
                                                                     '                '
                                                                     '# '
                                                                     '-------------------------------------------------\n'
                                                                     '                '
                                                                     '# '
                                                                     'Conventional '
                                                                     'EOF '
                                                                     'approach '
                                                                     'as '
                                                                     'supplementary\n'
                                                                     '                '
                                                                     '# - - - '
                                                                     '- - - - '
                                                                     '- - - - '
                                                                     '- - - - '
                                                                     '- - - - '
                                                                     '- - - - '
                                                                     '- -\n'
                                                                     '                '
                                                                     'if '
                                                                     'ConvEOF:\n'
                                                                     '\n'
                                                                     '                    '
                                                                     'eofn_mod_max '
                                                                     '= 3\n'
                                                                     '\n'
                                                                     '                    '
                                                                     '# EOF '
                                                                     'analysis\n'
                                                                     '                    '
                                                                     'debug_print("conventional '
                                                                     'EOF '
                                                                     'analysis '
                                                                     'start", '
                                                                     'debug)\n'
                                                                     '                    '
                                                                     '(\n'
                                                                     '                        '
                                                                     'eof_list,\n'
                                                                     '                        '
                                                                     'pc_list,\n'
                                                                     '                        '
                                                                     'frac_list,\n'
                                                                     '                        '
                                                                     'reverse_sign_list,\n'
                                                                     '                        '
                                                                     'solver,\n'
                                                                     '                    '
                                                                     ') = '
                                                                     'eof_analysis_get_variance_mode(\n'
                                                                     '                        '
                                                                     'mode,\n'
                                                                     '                        '
                                                                     'model_timeseries_season_subdomain,\n'
                                                                     '                        '
                                                                     'eofn=eofn_mod,\n'
                                                                     '                        '
                                                                     'eofn_max=eofn_mod_max,\n'
                                                                     '                        '
                                                                     'debug=debug,\n'
                                                                     '                        '
                                                                     'EofScaling=EofScaling,\n'
                                                                     '                        '
                                                                     'save_multiple_eofs=True,\n'
                                                                     '                    '
                                                                     ')\n'
                                                                     '                    '
                                                                     'debug_print("conventional '
                                                                     'EOF '
                                                                     'analysis '
                                                                     'done", '
                                                                     'debug)\n'
                                                                     '\n'
                                                                     '                    '
                                                                     '# '
                                                                     '-------------------------------------------------\n'
                                                                     '                    '
                                                                     '# For '
                                                                     'multiple '
                                                                     'EOFs '
                                                                     '(e.g., '
                                                                     'EOF1, '
                                                                     'EOF2, '
                                                                     'EOF3, '
                                                                     '...)\n'
                                                                     '                    '
                                                                     '# - - - '
                                                                     '- - - - '
                                                                     '- - - - '
                                                                     '- - - - '
                                                                     '- - - - '
                                                                     '- - - - '
                                                                     '- -\n'
                                                                     '                    '
                                                                     'rms_list '
                                                                     '= []\n'
                                                                     '                    '
                                                                     'cor_list '
                                                                     '= []\n'
                                                                     '                    '
                                                                     'tcor_list '
                                                                     '= []\n'
                                                                     '\n'
                                                                     '                    '
                                                                     'for n in '
                                                                     'range(0, '
                                                                     'eofn_mod_max):\n'
                                                                     '                        '
                                                                     'eofs = '
                                                                     '"eof" + '
                                                                     'str(n + '
                                                                     '1)\n'
                                                                     '                        '
                                                                     'if eofs '
                                                                     'not in '
                                                                     'list(\n'
                                                                     '                            '
                                                                     'result_dict["RESULTS"][model][run]["defaultReference"][\n'
                                                                     '                                '
                                                                     'mode\n'
                                                                     '                            '
                                                                     '][season].keys()\n'
                                                                     '                        '
                                                                     '):\n'
                                                                     '                            '
                                                                     'result_dict["RESULTS"][model][run]["defaultReference"][\n'
                                                                     '                                '
                                                                     'mode\n'
                                                                     '                            '
                                                                     '][season][eofs] '
                                                                     '= {}\n'
                                                                     '                            '
                                                                     'dict_head '
                                                                     '= '
                                                                     'result_dict["RESULTS"][model][run][\n'
                                                                     '                                '
                                                                     '"defaultReference"\n'
                                                                     '                            '
                                                                     '][mode][season][eofs]\n'
                                                                     '\n'
                                                                     '                        '
                                                                     '# '
                                                                     'Component '
                                                                     'for each '
                                                                     'EOFs\n'
                                                                     '                        '
                                                                     'eof = '
                                                                     'eof_list[n]\n'
                                                                     '                        '
                                                                     'pc = '
                                                                     'pc_list[n]\n'
                                                                     '                        '
                                                                     'frac = '
                                                                     'frac_list[n]\n'
                                                                     '\n'
                                                                     '                        '
                                                                     '# '
                                                                     'Calculate '
                                                                     'stdv of '
                                                                     'pc time '
                                                                     'series\n'
                                                                     '                        '
                                                                     'stdv_pc '
                                                                     '= '
                                                                     'calcSTD(pc)\n'
                                                                     '\n'
                                                                     '                        '
                                                                     '# Linear '
                                                                     'regression '
                                                                     'to have '
                                                                     'extended '
                                                                     'global '
                                                                     'map:\n'
                                                                     '                        '
                                                                     '(\n'
                                                                     '                            '
                                                                     'eof_lr,\n'
                                                                     '                            '
                                                                     'slope,\n'
                                                                     '                            '
                                                                     'intercept,\n'
                                                                     '                        '
                                                                     ') = '
                                                                     'linear_regression_on_globe_for_teleconnection(\n'
                                                                     '                            '
                                                                     'pc,\n'
                                                                     '                            '
                                                                     'model_timeseries_season,\n'
                                                                     '                            '
                                                                     'stdv_pc,\n'
                                                                     '                            '
                                                                     'RmDomainMean,\n'
                                                                     '                            '
                                                                     'EofScaling,\n'
                                                                     '                            '
                                                                     'debug=debug,\n'
                                                                     '                        '
                                                                     ')\n'
                                                                     '\n'
                                                                     '                        '
                                                                     '# - - - '
                                                                     '- - - - '
                                                                     '- - - - '
                                                                     '- - - - '
                                                                     '- - - - '
                                                                     '- - - - '
                                                                     '- -\n'
                                                                     '                        '
                                                                     '# Record '
                                                                     'results\n'
                                                                     '                        '
                                                                     '# - - - '
                                                                     '- - - - '
                                                                     '- - - - '
                                                                     '- - - - '
                                                                     '- - - - '
                                                                     '- - - - '
                                                                     '- -\n'
                                                                     '                        '
                                                                     '# '
                                                                     'Metrics '
                                                                     'results '
                                                                     '-- '
                                                                     'statistics '
                                                                     'to JSON\n'
                                                                     '                        '
                                                                     'if '
                                                                     'obs_compare:\n'
                                                                     '                            '
                                                                     'dict_head, '
                                                                     'eof_lr = '
                                                                     'calc_stats_save_dict(\n'
                                                                     '                                '
                                                                     'dict_head,\n'
                                                                     '                                '
                                                                     'eof,\n'
                                                                     '                                '
                                                                     'eof_lr,\n'
                                                                     '                                '
                                                                     'slope,\n'
                                                                     '                                '
                                                                     'pc,\n'
                                                                     '                                '
                                                                     'stdv_pc,\n'
                                                                     '                                '
                                                                     'frac,\n'
                                                                     '                                '
                                                                     'region_subdomain,\n'
                                                                     '                                '
                                                                     'eof_obs=eof_obs[season],\n'
                                                                     '                                '
                                                                     'eof_lr_obs=eof_lr_obs[season],\n'
                                                                     '                                '
                                                                     'stdv_pc_obs=stdv_pc_obs[season],\n'
                                                                     '                                '
                                                                     'obs_compare=obs_compare,\n'
                                                                     '                                '
                                                                     'method="eof",\n'
                                                                     '                                '
                                                                     'debug=debug,\n'
                                                                     '                            '
                                                                     ')\n'
                                                                     '                        '
                                                                     'else:\n'
                                                                     '                            '
                                                                     'dict_head, '
                                                                     'eof_lr = '
                                                                     'calc_stats_save_dict(\n'
                                                                     '                                '
                                                                     'dict_head,\n'
                                                                     '                                '
                                                                     'eof,\n'
                                                                     '                                '
                                                                     'eof_lr,\n'
                                                                     '                                '
                                                                     'slope,\n'
                                                                     '                                '
                                                                     'pc,\n'
                                                                     '                                '
                                                                     'stdv_pc,\n'
                                                                     '                                '
                                                                     'frac,\n'
                                                                     '                                '
                                                                     'region_subdomain,\n'
                                                                     '                                '
                                                                     'obs_compare=obs_compare,\n'
                                                                     '                                '
                                                                     'method="eof",\n'
                                                                     '                                '
                                                                     'debug=debug,\n'
                                                                     '                            '
                                                                     ')\n'
                                                                     '\n'
                                                                     '                        '
                                                                     '# '
                                                                     'Temporal '
                                                                     'correlation '
                                                                     'between '
                                                                     'CBF PC '
                                                                     'timeseries '
                                                                     'and '
                                                                     'usual '
                                                                     'model PC '
                                                                     'timeseries\n'
                                                                     '                        '
                                                                     'if CBF:\n'
                                                                     '                            '
                                                                     'tc = '
                                                                     'calcTCOR(cbf_pc, '
                                                                     'pc)\n'
                                                                     '                            '
                                                                     'debug_print("cbf '
                                                                     'tc end", '
                                                                     'debug)\n'
                                                                     '                            '
                                                                     'dict_head["tcor_cbf_vs_eof_pc"] '
                                                                     '= tc\n'
                                                                     '\n'
                                                                     '                        '
                                                                     '# Set '
                                                                     'output '
                                                                     'file '
                                                                     'name for '
                                                                     'NetCDF '
                                                                     'and plot '
                                                                     'images\n'
                                                                     '                        '
                                                                     'output_filename '
                                                                     '= '
                                                                     '"_".join(\n'
                                                                     '                            '
                                                                     '[\n'
                                                                     '                                '
                                                                     'mode,\n'
                                                                     '                                '
                                                                     'var,\n'
                                                                     '                                '
                                                                     '"EOF" + '
                                                                     'str(n + '
                                                                     '1),\n'
                                                                     '                                '
                                                                     'season,\n'
                                                                     '                                '
                                                                     'mip,\n'
                                                                     '                                '
                                                                     'model,\n'
                                                                     '                                '
                                                                     'exp,\n'
                                                                     '                                '
                                                                     'run,\n'
                                                                     '                                '
                                                                     'fq,\n'
                                                                     '                                '
                                                                     'realm,\n'
                                                                     '                                '
                                                                     'str(msyear) '
                                                                     '+ "-" + '
                                                                     'str(meyear),\n'
                                                                     '                            '
                                                                     ']\n'
                                                                     '                        '
                                                                     ')\n'
                                                                     '                        '
                                                                     'if '
                                                                     'EofScaling:\n'
                                                                     '                            '
                                                                     'output_filename '
                                                                     '+= '
                                                                     '"_EOFscaled"\n'
                                                                     '\n'
                                                                     '                        '
                                                                     '# '
                                                                     'Diagnostics '
                                                                     'results '
                                                                     '-- data '
                                                                     'to '
                                                                     'NetCDF\n'
                                                                     '                        '
                                                                     '# Save '
                                                                     'global '
                                                                     'map, pc '
                                                                     'timeseries, '
                                                                     'and '
                                                                     'fraction '
                                                                     'in '
                                                                     'NetCDF '
                                                                     'output\n'
                                                                     '                        '
                                                                     'output_nc_file '
                                                                     '= '
                                                                     'os.path.join(\n'
                                                                     '                            '
                                                                     'outdir(output_type="diagnostic_results"), '
                                                                     'output_filename\n'
                                                                     '                        '
                                                                     ')\n'
                                                                     '                        '
                                                                     'if '
                                                                     'nc_out_model:\n'
                                                                     '                            '
                                                                     'write_nc_output(\n'
                                                                     '                                '
                                                                     'output_nc_file, '
                                                                     'eof_lr, '
                                                                     'pc, '
                                                                     'frac, '
                                                                     'slope, '
                                                                     'intercept\n'
                                                                     '                            '
                                                                     ')\n'
                                                                     '\n'
                                                                     '                        '
                                                                     '# '
                                                                     'Graphics '
                                                                     '-- plot '
                                                                     'map '
                                                                     'image to '
                                                                     'PNG\n'
                                                                     '                        '
                                                                     'output_img_file '
                                                                     '= '
                                                                     'os.path.join(\n'
                                                                     '                            '
                                                                     'outdir(output_type="graphics"), '
                                                                     'output_filename\n'
                                                                     '                        '
                                                                     ')\n'
                                                                     '                        '
                                                                     'if '
                                                                     'plot_model:\n'
                                                                     '                            '
                                                                     '# '
                                                                     'plot_map(mode,\n'
                                                                     '                            '
                                                                     '#          '
                                                                     "mip.upper()+' "
                                                                     "'+model+' "
                                                                     "('+run+')',\n"
                                                                     '                            '
                                                                     '#          '
                                                                     'msyear, '
                                                                     'meyear, '
                                                                     'season,\n'
                                                                     '                            '
                                                                     '#          '
                                                                     'eof, '
                                                                     'frac,\n'
                                                                     '                            '
                                                                     '#          '
                                                                     "output_img_file+'_org_eof')\n"
                                                                     '                            '
                                                                     'plot_map(\n'
                                                                     '                                '
                                                                     'mode,\n'
                                                                     '                                '
                                                                     'mip.upper()\n'
                                                                     '                                '
                                                                     '+ " "\n'
                                                                     '                                '
                                                                     '+ model\n'
                                                                     '                                '
                                                                     '+ " ("\n'
                                                                     '                                '
                                                                     '+ run\n'
                                                                     '                                '
                                                                     '+ ") - '
                                                                     'EOF"\n'
                                                                     '                                '
                                                                     '+ str(n '
                                                                     '+ 1),\n'
                                                                     '                                '
                                                                     'msyear,\n'
                                                                     '                                '
                                                                     'meyear,\n'
                                                                     '                                '
                                                                     'season,\n'
                                                                     '                                '
                                                                     'eof_lr(region_subdomain),\n'
                                                                     '                                '
                                                                     'frac,\n'
                                                                     '                                '
                                                                     'output_img_file,\n'
                                                                     '                            '
                                                                     ')\n'
                                                                     '                            '
                                                                     'plot_map(\n'
                                                                     '                                '
                                                                     'mode + '
                                                                     '"_teleconnection",\n'
                                                                     '                                '
                                                                     'mip.upper()\n'
                                                                     '                                '
                                                                     '+ " "\n'
                                                                     '                                '
                                                                     '+ model\n'
                                                                     '                                '
                                                                     '+ " ("\n'
                                                                     '                                '
                                                                     '+ run\n'
                                                                     '                                '
                                                                     '+ ") - '
                                                                     'EOF"\n'
                                                                     '                                '
                                                                     '+ str(n '
                                                                     '+ 1),\n'
                                                                     '                                '
                                                                     'msyear,\n'
                                                                     '                                '
                                                                     'meyear,\n'
                                                                     '                                '
                                                                     'season,\n'
                                                                     '                                '
                                                                     'eof_lr(longitude=(lon1g, '
                                                                     'lon2g)),\n'
                                                                     '                                '
                                                                     'frac,\n'
                                                                     '                                '
                                                                     'output_img_file '
                                                                     '+ '
                                                                     '"_teleconnection",\n'
                                                                     '                            '
                                                                     ')\n'
                                                                     '\n'
                                                                     '                        '
                                                                     '# - - - '
                                                                     '- - - - '
                                                                     '- - - - '
                                                                     '- - - - '
                                                                     '- - - - '
                                                                     '- - - - '
                                                                     '- -\n'
                                                                     '                        '
                                                                     '# EOF '
                                                                     'swap '
                                                                     'diagnosis\n'
                                                                     '                        '
                                                                     '# - - - '
                                                                     '- - - - '
                                                                     '- - - - '
                                                                     '- - - - '
                                                                     '- - - - '
                                                                     '- - - - '
                                                                     '- -\n'
                                                                     '                        '
                                                                     'rms_list.append(dict_head["rms"])\n'
                                                                     '                        '
                                                                     'cor_list.append(dict_head["cor"])\n'
                                                                     '                        '
                                                                     'if CBF:\n'
                                                                     '                            '
                                                                     'tcor_list.append(dict_head["tcor_cbf_vs_eof_pc"])\n'
                                                                     '\n'
                                                                     '                    '
                                                                     '# Find '
                                                                     'best '
                                                                     'matching '
                                                                     'eofs '
                                                                     'with '
                                                                     'different '
                                                                     'criteria\n'
                                                                     '                    '
                                                                     'best_matching_eofs_rms '
                                                                     '= '
                                                                     'rms_list.index(min(rms_list)) '
                                                                     '+ 1\n'
                                                                     '                    '
                                                                     'best_matching_eofs_cor '
                                                                     '= '
                                                                     'cor_list.index(max(cor_list)) '
                                                                     '+ 1\n'
                                                                     '                    '
                                                                     'if CBF:\n'
                                                                     '                        '
                                                                     'best_matching_eofs_tcor '
                                                                     '= '
                                                                     'tcor_list.index(max(tcor_list)) '
                                                                     '+ 1\n'
                                                                     '\n'
                                                                     '                    '
                                                                     '# Save '
                                                                     'the best '
                                                                     'matching '
                                                                     'information '
                                                                     'to JSON\n'
                                                                     '                    '
                                                                     'dict_head '
                                                                     '= '
                                                                     'result_dict["RESULTS"][model][run]["defaultReference"][\n'
                                                                     '                        '
                                                                     'mode\n'
                                                                     '                    '
                                                                     '][season]\n'
                                                                     '                    '
                                                                     'dict_head["best_matching_model_eofs__rms"] '
                                                                     '= '
                                                                     'best_matching_eofs_rms\n'
                                                                     '                    '
                                                                     'dict_head["best_matching_model_eofs__cor"] '
                                                                     '= '
                                                                     'best_matching_eofs_cor\n'
                                                                     '                    '
                                                                     'if CBF:\n'
                                                                     '                        '
                                                                     'dict_head[\n'
                                                                     '                            '
                                                                     '"best_matching_model_eofs__tcor_cbf_vs_eof_pc"\n'
                                                                     '                        '
                                                                     '] = '
                                                                     'best_matching_eofs_tcor\n'
                                                                     '\n'
                                                                     '                    '
                                                                     'debug_print("conventional '
                                                                     'eof '
                                                                     'end", '
                                                                     'debug)\n'
                                                                     '\n'
                                                                     '            '
                                                                     '# '
                                                                     '=================================================================\n'
                                                                     '            '
                                                                     '# '
                                                                     'Dictionary '
                                                                     'to JSON: '
                                                                     'individual '
                                                                     'JSON '
                                                                     'during '
                                                                     'model_realization '
                                                                     'loop\n'
                                                                     '            '
                                                                     '# '
                                                                     '-----------------------------------------------------------------\n'
                                                                     '            '
                                                                     'json_filename_tmp '
                                                                     '= '
                                                                     '"_".join(\n'
                                                                     '                '
                                                                     '[\n'
                                                                     '                    '
                                                                     '"var",\n'
                                                                     '                    '
                                                                     '"mode",\n'
                                                                     '                    '
                                                                     'mode,\n'
                                                                     '                    '
                                                                     '"EOF" + '
                                                                     'str(eofn_mod),\n'
                                                                     '                    '
                                                                     '"stat",\n'
                                                                     '                    '
                                                                     'mip,\n'
                                                                     '                    '
                                                                     'exp,\n'
                                                                     '                    '
                                                                     'fq,\n'
                                                                     '                    '
                                                                     'realm,\n'
                                                                     '                    '
                                                                     'model,\n'
                                                                     '                    '
                                                                     'run,\n'
                                                                     '                    '
                                                                     'str(msyear) '
                                                                     '+ "-" + '
                                                                     'str(meyear),\n'
                                                                     '                '
                                                                     ']\n'
                                                                     '            '
                                                                     ')\n'
                                                                     '            '
                                                                     'variability_metrics_to_json(\n'
                                                                     '                '
                                                                     'outdir,\n'
                                                                     '                '
                                                                     'json_filename_tmp,\n'
                                                                     '                '
                                                                     'result_dict,\n'
                                                                     '                '
                                                                     'model=model,\n'
                                                                     '                '
                                                                     'run=run,\n'
                                                                     '                '
                                                                     'cmec_flag=cmec,\n'
                                                                     '            '
                                                                     ')\n'
                                                                     '\n'
                                                                     '        '
                                                                     'except '
                                                                     'Exception '
                                                                     'as err:\n'
                                                                     '            '
                                                                     'if '
                                                                     'debug:\n'
                                                                     '                '
                                                                     'raise\n'
                                                                     '            '
                                                                     'else:\n'
                                                                     '                '
                                                                     'print("warning: '
                                                                     'failed '
                                                                     'for ", '
                                                                     'model, '
                                                                     'run, '
                                                                     'err)\n'
                                                                     '                '
                                                                     'pass\n'
                                                                     '\n'
                                                                     '# '
                                                                     '========================================================================\n'
                                                                     '# '
                                                                     'Dictionary '
                                                                     'to JSON: '
                                                                     'collective '
                                                                     'JSON at '
                                                                     'the end '
                                                                     'of '
                                                                     'model_realization '
                                                                     'loop\n'
                                                                     '# '
                                                                     '------------------------------------------------------------------------\n'
                                                                     'if not '
                                                                     'parallel '
                                                                     'and '
                                                                     '(len(models) '
                                                                     '> 1):\n'
                                                                     '    '
                                                                     'json_filename_all '
                                                                     '= '
                                                                     '"_".join(\n'
                                                                     '        '
                                                                     '[\n'
                                                                     '            '
                                                                     '"var",\n'
                                                                     '            '
                                                                     '"mode",\n'
                                                                     '            '
                                                                     'mode,\n'
                                                                     '            '
                                                                     '"EOF" + '
                                                                     'str(eofn_mod),\n'
                                                                     '            '
                                                                     '"stat",\n'
                                                                     '            '
                                                                     'mip,\n'
                                                                     '            '
                                                                     'exp,\n'
                                                                     '            '
                                                                     'fq,\n'
                                                                     '            '
                                                                     'realm,\n'
                                                                     '            '
                                                                     '"allModels",\n'
                                                                     '            '
                                                                     '"allRuns",\n'
                                                                     '            '
                                                                     'str(msyear) '
                                                                     '+ "-" + '
                                                                     'str(meyear),\n'
                                                                     '        '
                                                                     ']\n'
                                                                     '    )\n'
                                                                     '    '
                                                                     'variability_metrics_to_json(outdir, '
                                                                     'json_filename_all, '
                                                                     'result_dict, '
                                                                     'cmec_flag=cmec)\n'
                                                                     '\n'
                                                                     'if not '
                                                                     'debug:\n'
                                                                     '    '
                                                                     'sys.exit(0)\n',
                                                           'userId': 'lee1043'}},
                       'NPO/NOAA-CIRES_20CR': {'REFERENCE': {'obs': {'defaultReference': {'NPO': {'DJF': {'frac': 0.23120573727347218,
                                                                                                          'mean': 2.2871556026281312e-17,
                                                                                                          'mean_glo': 0.0002865224622218001,
                                                                                                          'stdv_pc': 1.4079058876416255},
                                                                                                  'JJA': {'frac': 0.12944665355964682,
                                                                                                          'mean': 3.5550353388676385e-17,
                                                                                                          'mean_glo': -0.1423806966920594,
                                                                                                          'stdv_pc': 0.4855729436488268},
                                                                                                  'MAM': {'frac': 0.18046441665585447,
                                                                                                          'mean': 5.121239718928207e-17,
                                                                                                          'mean_glo': -0.07572250094638952,
                                                                                                          'stdv_pc': 0.8618037172800476},
                                                                                                  'SON': {'frac': 0.1882575127149583,
                                                                                                          'mean': 6.737164872958952e-17,
                                                                                                          'mean_glo': -0.18811898007946085,
                                                                                                          'stdv_pc': 0.774618514517952}},
                                                                                          'period': '1900-2005',
                                                                                          'reference_eofs': 2,
                                                                                          'source': '/p/user_pub/PCMDIobs/PCMDIobs2/atmos/mon/psl/20CR/gn/v20200707/psl_mon_20CR_BE_gn_v20200707_187101-201212.nc'}}},
                                               'RESULTS': {'ACCESS-CM2': {'r1i1p1f1': {'defaultReference': {'NPO': {'DJF': {'best_matching_model_eofs__cor': 2,
                                                                                                                            'best_matching_model_eofs__rms': 2,
                                                                                                                            'best_matching_model_eofs__tcor_cbf_vs_eof_pc': 2,
                                                                                                                            'cbf': {'bias': -0.00137712690039683,
                                                                                                                                    'bias_glo': -0.4899849454382255,
                                                                                                                                    'cor': 0.8339769584067129,
                                                                                                                                    'cor_glo': 0.7635264254282261,
                                                                                                                                    'frac': 0.2820242543881464,
                                                                                                                                    'frac_cbf_regrid': 0.28361682992407966,
                                                                                                                                    'mean': 1.7302829341621524e-16,
                                                                                                                                    'mean_glo': -0.48969841883490345,
                                                                                                                                    'rms': 0.8692239288636365,
                                                                                                                                    'rms_glo': 0.6672831053793271,
                                                                                                                                    'rmsc': 0.5762343971085333,
                                                                                                                                    'rmsc_glo': 0.6877115213568331,
                                                                                                                                    'stdv_pc': 1.3043711677757222,
                                                                                                                                    'stdv_pc_ratio_to_obs': 0.9264619029050772},
                                                                                                                            'eof1': {'bias': -0.0011900415829528383,
                                                                                                                                     'bias_glo': -1.0364459109096498,
                                                                                                                                     'cor': 0.3733034123323083,
                                                                                                                                     'cor_glo': 0.36130023795299265,
                                                                                                                                     'frac': 0.5131565943819583,
                                                                                                                                     'mean': 4.415204728551699e-16,
                                                                                                                                     'mean_glo': -1.036159382045753,
                                                                                                                                     'rms': 2.0525661987168333,
                                                                                                                                     'rms_glo': 1.3954665592590967,
                                                                                                                                     'rmsc': 1.1195504542016725,
                                                                                                                                     'rmsc_glo': 1.130220997769356,
                                                                                                                                     'stdv_pc': 2.113422457947885,
                                                                                                                                     'stdv_pc_ratio_to_obs': 1.501110604408414,
                                                                                                                                     'tcor_cbf_vs_eof_pc': 0.603532496433396},
                                                                                                                            'eof2': {'bias': -0.0009121430452179203,
                                                                                                                                     'bias_glo': 0.14454246066514334,
                                                                                                                                     'cor': 0.8903178764959871,
                                                                                                                                     'cor_glo': 0.8426011527744046,
                                                                                                                                     'frac': 0.15221882366371853,
                                                                                                                                     'mean': -2.622770826926826e-17,
                                                                                                                                     'mean_glo': 0.1448289836911887,
                                                                                                                                     'rms': 0.64960767793572,
                                                                                                                                     'rms_glo': 0.3281360403392713,
                                                                                                                                     'rmsc': 0.4683633746445911,
                                                                                                                                     'rmsc_glo': 0.561068336987466,
                                                                                                                                     'stdv_pc': 1.1510535846180188,
                                                                                                                                     'stdv_pc_ratio_to_obs': 0.8175642951150247,
                                                                                                                                     'tcor_cbf_vs_eof_pc': 0.7839219379305513},
                                                                                                                            'eof3': {'bias': 0.0005213547134216483,
                                                                                                                                     'bias_glo': 0.38644244546984485,
                                                                                                                                     'cor': 0.17159619805779527,
                                                                                                                                     'cor_glo': 0.39508332808357915,
                                                                                                                                     'frac': 0.09782824614051087,
                                                                                                                                     'mean': -1.4170420581500385e-16,
                                                                                                                                     'mean_glo': 0.3867289681604125,
                                                                                                                                     'rms': 1.54417981092848,
                                                                                                                                     'rms_glo': 0.6984807017421594,
                                                                                                                                     'rmsc': 1.2871703905952865,
                                                                                                                                     'rmsc_glo': 1.0999242766489086,
                                                                                                                                     'stdv_pc': 0.9227700593615468,
                                                                                                                                     'stdv_pc_ratio_to_obs': 0.6554202716683523,
                                                                                                                                     'tcor_cbf_vs_eof_pc': 0.12103576512757011},
                                                                                                                            'period': '1900-2005'},
                                                                                                                    'JJA': {'best_matching_model_eofs__cor': 1,
                                                                                                                            'best_matching_model_eofs__rms': 1,
                                                                                                                            'best_matching_model_eofs__tcor_cbf_vs_eof_pc': 1,
                                                                                                                            'cbf': {'bias': 0.00026040247692300447,
                                                                                                                                    'bias_glo': -0.08021989195008081,
                                                                                                                                    'cor': 0.9348414135538433,
                                                                                                                                    'cor_glo': 0.5660367841124079,
                                                                                                                                    'frac': 0.24066026579541838,
                                                                                                                                    'frac_cbf_regrid': 0.24301249555060334,
                                                                                                                                    'mean': -7.159791451705458e-17,
                                                                                                                                    'mean_glo': -0.22260058797123877,
                                                                                                                                    'rms': 0.2965314385370548,
                                                                                                                                    'rms_glo': 0.26907177180654623,
                                                                                                                                    'rmsc': 0.3609946908458072,
                                                                                                                                    'rmsc_glo': 0.9316257033751058,
                                                                                                                                    'stdv_pc': 0.6498942241873239,
                                                                                                                                    'stdv_pc_ratio_to_obs': 1.3384069946395871},
                                                                                                                            'eof1': {'bias': 0.00010275917565681803,
                                                                                                                                     'bias_glo': -0.09281725926016787,
                                                                                                                                     'cor': 0.7737164591023061,
                                                                                                                                     'cor_glo': 0.5355515328620459,
                                                                                                                                     'frac': 0.26593563766372025,
                                                                                                                                     'mean': -6.36425906818263e-17,
                                                                                                                                     'mean_glo': -0.23519795429078227,
                                                                                                                                     'rms': 0.46998740337736356,
                                                                                                                                     'rms_glo': 0.2895803523900075,
                                                                                                                                     'rmsc': 0.6727310548141375,
                                                                                                                                     'rmsc_glo': 0.9637930061093356,
                                                                                                                                     'stdv_pc': 0.7331743830407498,
                                                                                                                                     'stdv_pc_ratio_to_obs': 1.509916054076917,
                                                                                                                                     'tcor_cbf_vs_eof_pc': 0.8702973273715485},
                                                                                                                            'eof2': {'bias': 0.00026831711239284727,
                                                                                                                                     'bias_glo': 0.12402437504357886,
                                                                                                                                     'cor': 0.49504443053049463,
                                                                                                                                     'cor_glo': 0.11992954989426106,
                                                                                                                                     'frac': 0.174272940634427,
                                                                                                                                     'mean': 4.9720773970176795e-18,
                                                                                                                                     'mean_glo': -0.018356323646548822,
                                                                                                                                     'rms': 0.5488097806241564,
                                                                                                                                     'rms_glo': 0.34625068852810487,
                                                                                                                                     'rmsc': 1.0049433708093287,
                                                                                                                                     'rmsc_glo': 1.326703003108523,
                                                                                                                                     'stdv_pc': 0.5935181329431121,
                                                                                                                                     'stdv_pc_ratio_to_obs': 1.222304785936246,
                                                                                                                                     'tcor_cbf_vs_eof_pc': 0.4504645105320618},
                                                                                                                            'eof3': {'bias': 0.0003656614671067193,
                                                                                                                                     'bias_glo': 0.08892882003616384,
                                                                                                                                     'cor': 0.20070902744763489,
                                                                                                                                     'cor_glo': 0.08169036337995554,
                                                                                                                                     'frac': 0.13279109172726597,
                                                                                                                                     'mean': -1.4916232191053038e-18,
                                                                                                                                     'mean_glo': 0.05345187517120216,
                                                                                                                                     'rms': 0.6339541450605289,
                                                                                                                                     'rms_glo': 0.34790107646873186,
                                                                                                                                     'rmsc': 1.2643503714204392,
                                                                                                                                     'rmsc_glo': 1.3552192466280675,
                                                                                                                                     'stdv_pc': 0.51808793994365,
                                                                                                                                     'stdv_pc_ratio_to_obs': 1.0669621252998365,
                                                                                                                                     'tcor_cbf_vs_eof_pc': -0.159519595260144},
                                                                                                                            'period': '1900-2005'},
                                                                                                                    'MAM': {'best_matching_model_eofs__cor': 2,
                                                                                                                            'best_matching_model_eofs__rms': 2,
                                                                                                                            'best_matching_model_eofs__tcor_cbf_vs_eof_pc': 2,
                                                                                                                            'cbf': {'bias': -0.0006507810821297103,
                                                                                                                                    'bias_glo': -0.18017726191062453,
                                                                                                                                    'cor': 0.8611695256621072,
                                                                                                                                    'cor_glo': 0.6839759277833086,
                                                                                                                                    'frac': 0.21670779276923735,
                                                                                                                                    'frac_cbf_regrid': 0.2180650423973891,
                                                                                                                                    'mean': -1.0590524855647657e-16,
                                                                                                                                    'mean_glo': -0.2558997589992222,
                                                                                                                                    'rms': 0.6006837588861215,
                                                                                                                                    'rms_glo': 0.38586917266846604,
                                                                                                                                    'rmsc': 0.5269354266688623,
                                                                                                                                    'rmsc_glo': 0.7950145480265958,
                                                                                                                                    'stdv_pc': 0.993059217620349,
                                                                                                                                    'stdv_pc_ratio_to_obs': 1.152303242267925},
                                                                                                                            'eof1': {'bias': -0.0004321824921817874,
                                                                                                                                     'bias_glo': -0.3759172402437614,
                                                                                                                                     'cor': 0.2644395329207416,
                                                                                                                                     'cor_glo': 0.2378636159902518,
                                                                                                                                     'frac': 0.4937550542893723,
                                                                                                                                     'mean': -1.6656459280009225e-16,
                                                                                                                                     'mean_glo': -0.4516397377474903,
                                                                                                                                     'rms': 1.7260968187507473,
                                                                                                                                     'rms_glo': 0.8159872535200466,
                                                                                                                                     'rmsc': 1.2128977549212796,
                                                                                                                                     'rmsc_glo': 1.2346143972754946,
                                                                                                                                     'stdv_pc': 1.7444689640898603,
                                                                                                                                     'stdv_pc_ratio_to_obs': 2.024206822402213,
                                                                                                                                     'tcor_cbf_vs_eof_pc': 0.4635325469863348},
                                                                                                                            'eof2': {'bias': -0.0005167203179413954,
                                                                                                                                     'bias_glo': 0.03327828581067923,
                                                                                                                                     'cor': 0.940072831982797,
                                                                                                                                     'cor_glo': 0.7267092872459017,
                                                                                                                                     'frac': 0.14162418543439906,
                                                                                                                                     'mean': 2.9832464382106077e-18,
                                                                                                                                     'mean_glo': -0.04244421275980786,
                                                                                                                                     'rms': 0.3179213000731202,
                                                                                                                                     'rms_glo': 0.26576815726280545,
                                                                                                                                     'rmsc': 0.34619985434835987,
                                                                                                                                     'rmsc_glo': 0.7393114411942192,
                                                                                                                                     'stdv_pc': 0.9342781296790775,
                                                                                                                                     'stdv_pc_ratio_to_obs': 1.084096193768771,
                                                                                                                                     'tcor_cbf_vs_eof_pc': 0.881800658061188},
                                                                                                                            'eof3': {'bias': -5.692167523684406e-05,
                                                                                                                                     'bias_glo': -0.17392868385681678,
                                                                                                                                     'cor': 0.07650591484322816,
                                                                                                                                     'cor_glo': 0.025729606456266953,
                                                                                                                                     'frac': 0.10550907023329859,
                                                                                                                                     'mean': 9.546388602273945e-17,
                                                                                                                                     'mean_glo': 0.24965118404298867,
                                                                                                                                     'rms': 1.1329860175105873,
                                                                                                                                     'rms_glo': 0.5365325510280358,
                                                                                                                                     'rmsc': 1.3590394316514531,
                                                                                                                                     'rmsc_glo': 1.3959014061270814,
                                                                                                                                     'stdv_pc': 0.8064034333204343,
                                                                                                                                     'stdv_pc_ratio_to_obs': 0.9357158911608516,
                                                                                                                                     'tcor_cbf_vs_eof_pc': -0.06196968258570635},
                                                                                                                            'period': '1900-2005'},
                                                                                                                    'SON': {'best_matching_model_eofs__cor': 2,
                                                                                                                            'best_matching_model_eofs__rms': 2,
                                                                                                                            'best_matching_model_eofs__tcor_cbf_vs_eof_pc': 1,
                                                                                                                            'cbf': {'bias': 0.000467949328499641,
                                                                                                                                    'bias_glo': -0.01857527184170432,
                                                                                                                                    'cor': 0.9833524767280244,
                                                                                                                                    'cor_glo': 0.7779534863008348,
                                                                                                                                    'frac': 0.23011383994028298,
                                                                                                                                    'frac_cbf_regrid': 0.23175616103217153,
                                                                                                                                    'mean': 5.767609780540508e-17,
                                                                                                                                    'mean_glo': -0.20669425264727845,
                                                                                                                                    'rms': 0.24133990480528061,
                                                                                                                                    'rms_glo': 0.25191376871531185,
                                                                                                                                    'rmsc': 0.18246930120114335,
                                                                                                                                    'rmsc_glo': 0.6664030406221676,
                                                                                                                                    'stdv_pc': 0.941821632816691,
                                                                                                                                    'stdv_pc_ratio_to_obs': 1.215852210042759},
                                                                                                                            'eof1': {'bias': -0.0002041780185890656,
                                                                                                                                     'bias_glo': -0.1004872762564879,
                                                                                                                                     'cor': 0.0379250695101955,
                                                                                                                                     'cor_glo': 0.10215230096667195,
                                                                                                                                     'frac': 0.29391947556943704,
                                                                                                                                     'mean': 4.8477754620922375e-17,
                                                                                                                                     'mean_glo': -0.2886062557742488,
                                                                                                                                     'rms': 1.306998288890131,
                                                                                                                                     'rms_glo': 0.5378874531496877,
                                                                                                                                     'rmsc': 1.3871373223106072,
                                                                                                                                     'rmsc_glo': 1.3400356205911157,
                                                                                                                                     'stdv_pc': 1.0848917460137928,
                                                                                                                                     'stdv_pc_ratio_to_obs': 1.4005497230968265,
                                                                                                                                     'tcor_cbf_vs_eof_pc': 0.04359000265082106},
                                                                                                                            'eof2': {'bias': 0.00048324861961877104,
                                                                                                                                     'bias_glo': -0.0006217469828810884,
                                                                                                                                     'cor': 0.9789797061098069,
                                                                                                                                     'cor_glo': 0.7695718975217535,
                                                                                                                                     'frac': 0.23073290631159155,
                                                                                                                                     'mean': -7.756440739347579e-17,
                                                                                                                                     'mean_glo': 0.18874072794464938,
                                                                                                                                     'rms': 0.2554760843843622,
                                                                                                                                     'rms_glo': 0.2570826356198451,
                                                                                                                                     'rmsc': 0.2050380187314977,
                                                                                                                                     'rmsc_glo': 0.67886389562377,
                                                                                                                                     'stdv_pc': 0.9612292797343108,
                                                                                                                                     'stdv_pc_ratio_to_obs': 1.2409066678873373,
                                                                                                                                     'tcor_cbf_vs_eof_pc': -0.9969420531281443},
                                                                                                                            'eof3': {'bias': 2.9816103326142287e-05,
                                                                                                                                     'bias_glo': 0.32237382134785675,
                                                                                                                                     'cor': 0.0301878661408772,
                                                                                                                                     'cor_glo': 0.045878572052558735,
                                                                                                                                     'frac': 0.12135413345949131,
                                                                                                                                     'mean': -4.574311205256265e-17,
                                                                                                                                     'mean_glo': 0.13425484207178268,
                                                                                                                                     'rms': 1.025393975375227,
                                                                                                                                     'rms_glo': 0.5431298036576837,
                                                                                                                                     'rmsc': 1.3927039450565035,
                                                                                                                                     'rmsc_glo': 1.3813916242079491,
                                                                                                                                     'stdv_pc': 0.6971071059863624,
                                                                                                                                     'stdv_pc_ratio_to_obs': 0.8999360238893525,
                                                                                                                                     'tcor_cbf_vs_eof_pc': 0.022297515813332513},
                                                                                                                            'period': '1900-2005'},
                                                                                                                    'target_model_eofs': 2}}},
                                                                          'r2i1p1f1': {'defaultReference': {'NPO': {'DJF': {'best_matching_model_eofs__cor': 2,
                                                                                                                            'best_matching_model_eofs__rms': 2,
                                                                                                                            'best_matching_model_eofs__tcor_cbf_vs_eof_pc': 1,
                                                                                                                            'cbf': {'bias': -0.0013107239998593045,
                                                                                                                                    'bias_glo': -0.51077078687615,
                                                                                                                                    'cor': 0.8568982501518151,
                                                                                                                                    'cor_glo': 0.7148364272197375,
                                                                                                                                    'frac': 0.31112080713125234,
                                                                                                                                    'frac_cbf_regrid': 0.31280107099257715,
                                                                                                                                    'mean': 2.386597150568486e-16,
                                                                                                                                    'mean_glo': -0.5104842559112834,
                                                                                                                                    'rms': 0.8791976701566154,
                                                                                                                                    'rms_glo': 0.8014047854551156,
                                                                                                                                    'rmsc': 0.5349799037149222,
                                                                                                                                    'rmsc_glo': 0.7552000818475272,
                                                                                                                                    'stdv_pc': 1.4590271760802553,
                                                                                                                                    'stdv_pc_ratio_to_obs': 1.0363101602794367},
                                                                                                                            'eof1': {'bias': -0.0014336543185649708,
                                                                                                                                     'bias_glo': -1.1351242481462847,
                                                                                                                                     'cor': 0.45255827386762526,
                                                                                                                                     'cor_glo': 0.42844922073356534,
                                                                                                                                     'frac': 0.4929928254197525,
                                                                                                                                     'mean': 4.932300777841538e-16,
                                                                                                                                     'mean_glo': -1.1348377179103206,
                                                                                                                                     'rms': 1.961372481075468,
                                                                                                                                     'rms_glo': 1.500539524795875,
                                                                                                                                     'rmsc': 1.046366777873213,
                                                                                                                                     'rmsc_glo': 1.0691593040731395,
                                                                                                                                     'stdv_pc': 2.1470715226219395,
                                                                                                                                     'stdv_pc_ratio_to_obs': 1.525010685350912,
                                                                                                                                     'tcor_cbf_vs_eof_pc': 0.6645812650281497},
                                                                                                                            'eof2': {'bias': -0.0004168142002717337,
                                                                                                                                     'bias_glo': 0.3617894742820859,
                                                                                                                                     'cor': 0.8581924830056509,
                                                                                                                                     'cor_glo': 0.7389627902162242,
                                                                                                                                     'frac': 0.16967554461154366,
                                                                                                                                     'mean': 1.3064133360663951e-16,
                                                                                                                                     'mean_glo': -0.36207599985027045,
                                                                                                                                     'rms': 0.72431066559744,
                                                                                                                                     'rms_glo': 0.5449312320703181,
                                                                                                                                     'rmsc': 0.5325551811833249,
                                                                                                                                     'rmsc_glo': 0.7225471664709245,
                                                                                                                                     'stdv_pc': 1.2596092411612467,
                                                                                                                                     'stdv_pc_ratio_to_obs': 0.8946686367447546,
                                                                                                                                     'tcor_cbf_vs_eof_pc': -0.7393888631266071},
                                                                                                                            'eof3': {'bias': 0.0006022412749059285,
                                                                                                                                     'bias_glo': 0.3451862016745264,
                                                                                                                                     'cor': 0.013156251244698818,
                                                                                                                                     'cor_glo': 0.2871017780237413,
                                                                                                                                     'frac': 0.11050690422771911,
                                                                                                                                     'mean': -1.5115115286933744e-16,
                                                                                                                                     'mean_glo': 0.3454727225210131,
                                                                                                                                     'rms': 1.724063089489662,
                                                                                                                                     'rms_glo': 0.7202070911567408,
                                                                                                                                     'rmsc': 1.4048799151053013,
                                                                                                                                     'rmsc_glo': 1.1940671475831706,
                                                                                                                                     'stdv_pc': 1.0165316816565317,
                                                                                                                                     'stdv_pc_ratio_to_obs': 0.7220167843458043,
                                                                                                                                     'tcor_cbf_vs_eof_pc': 0.008681807135575512},
                                                                                                                            'period': '1900-2005'},
                                                                                                                    'JJA': {'best_matching_model_eofs__cor': 2,
                                                                                                                            'best_matching_model_eofs__rms': 2,
                                                                                                                            'best_matching_model_eofs__tcor_cbf_vs_eof_pc': 2,
                                                                                                                            'cbf': {'bias': 0.00034323434310588755,
                                                                                                                                    'bias_glo': -0.037015880303365195,
                                                                                                                                    'cor': 0.9256591269179426,
                                                                                                                                    'cor_glo': 0.6526061010626594,
                                                                                                                                    'frac': 0.19464449591190938,
                                                                                                                                    'frac_cbf_regrid': 0.1964947656935754,
                                                                                                                                    'mean': -9.35993569988578e-17,
                                                                                                                                    'mean_glo': -0.17939657696877484,
                                                                                                                                    'rms': 0.2583348144280279,
                                                                                                                                    'rms_glo': 0.22948010804749622,
                                                                                                                                    'rmsc': 0.3855927187017398,
                                                                                                                                    'rmsc_glo': 0.8335393033095037,
                                                                                                                                    'stdv_pc': 0.5841728880727612,
                                                                                                                                    'stdv_pc_ratio_to_obs': 1.2030589754095593},
                                                                                                                            'eof1': {'bias': -0.00013799314719803872,
                                                                                                                                     'bias_glo': -0.08141862217063969,
                                                                                                                                     'cor': 0.3687233711576994,
                                                                                                                                     'cor_glo': 0.3347186461704362,
                                                                                                                                     'frac': 0.23783587241167026,
                                                                                                                                     'mean': -9.844713246095005e-17,
                                                                                                                                     'mean_glo': -0.22379931717817508,
                                                                                                                                     'rms': 0.6880923102625045,
                                                                                                                                     'rms_glo': 0.3493317276003961,
                                                                                                                                     'rmsc': 1.1236339252395406,
                                                                                                                                     'rmsc_glo': 1.1535002089082733,
                                                                                                                                     'stdv_pc': 0.7000960554906126,
                                                                                                                                     'stdv_pc_ratio_to_obs': 1.4417937915357408,
                                                                                                                                     'tcor_cbf_vs_eof_pc': 0.44083036060770375},
                                                                                                                            'eof2': {'bias': 0.00048681135333161004,
                                                                                                                                     'bias_glo': 0.07404958943562241,
                                                                                                                                     'cor': 0.8188300996230269,
                                                                                                                                     'cor_glo': 0.5438241681474053,
                                                                                                                                     'frac': 0.19090517127229967,
                                                                                                                                     'mean': -4.947217010032591e-17,
                                                                                                                                     'mean_glo': -0.06833110818791877,
                                                                                                                                     'rms': 0.3596475046421783,
                                                                                                                                     'rms_glo': 0.24713850159719006,
                                                                                                                                     'rmsc': 0.6019466635752493,
                                                                                                                                     'rmsc_glo': 0.9551709992551936,
                                                                                                                                     'stdv_pc': 0.6272314086582035,
                                                                                                                                     'stdv_pc_ratio_to_obs': 1.2917346752166365,
                                                                                                                                     'tcor_cbf_vs_eof_pc': 0.8758788747851591},
                                                                                                                            'eof3': {'bias': -0.00019161035497375906,
                                                                                                                                     'bias_glo': 0.17644171901665667,
                                                                                                                                     'cor': 0.04577501499167382,
                                                                                                                                     'cor_glo': 0.05995183552062717,
                                                                                                                                     'frac': 0.14224044964085292,
                                                                                                                                     'mean': 2.2871556026281324e-17,
                                                                                                                                     'mean_glo': 0.03406102171825671,
                                                                                                                                     'rms': 0.7093175061017709,
                                                                                                                                     'rms_glo': 0.3929628307316746,
                                                                                                                                     'rmsc': 1.3814666164029936,
                                                                                                                                     'rmsc_glo': 1.3711660118574585,
                                                                                                                                     'stdv_pc': 0.541415281229449,
                                                                                                                                     'stdv_pc_ratio_to_obs': 1.115002984229303,
                                                                                                                                     'tcor_cbf_vs_eof_pc': 0.04229518377642119},
                                                                                                                            'period': '1900-2005'},
                                                                                                                    'MAM': {'best_matching_model_eofs__cor': 2,
                                                                                                                            'best_matching_model_eofs__rms': 2,
                                                                                                                            'best_matching_model_eofs__tcor_cbf_vs_eof_pc': 2,
                                                                                                                            'cbf': {'bias': -0.0005392451918442676,
                                                                                                                                    'bias_glo': 0.013003673240377003,
                                                                                                                                    'cor': 0.9906479412980905,
                                                                                                                                    'cor_glo': 0.8421129278339368,
                                                                                                                                    'frac': 0.15009278576164475,
                                                                                                                                    'frac_cbf_regrid': 0.15112213189873155,
                                                                                                                                    'mean': -7.681859578392314e-17,
                                                                                                                                    'mean_glo': -0.06271882562830206,
                                                                                                                                    'rms': 0.11769011178125788,
                                                                                                                                    'rms_glo': 0.18786440120630737,
                                                                                                                                    'rmsc': 0.1367629908667572,
                                                                                                                                    'rmsc_glo': 0.561937856644145,
                                                                                                                                    'stdv_pc': 0.8409090197458484,
                                                                                                                                    'stdv_pc_ratio_to_obs': 0.9757546908707412},
                                                                                                                            'eof1': {'bias': 0.00026946522455847,
                                                                                                                                     'bias_glo': 0.48891324851732887,
                                                                                                                                     'cor': 0.004494956896182326,
                                                                                                                                     'cor_glo': -0.08425452818217029,
                                                                                                                                     'frac': 0.37265494901608825,
                                                                                                                                     'mean': -1.193298575284243e-16,
                                                                                                                                     'mean_glo': -0.41319074362294284,
                                                                                                                                     'rms': 1.5880752248415262,
                                                                                                                                     'rms_glo': 0.8660829943335282,
                                                                                                                                     'rmsc': 1.4110315779035807,
                                                                                                                                     'rmsc_glo': 1.4725858266779916,
                                                                                                                                     'stdv_pc': 1.3410891011576118,
                                                                                                                                     'stdv_pc_ratio_to_obs': 1.556142163543045,
                                                                                                                                     'tcor_cbf_vs_eof_pc': -0.0071508893166215655},
                                                                                                                            'eof2': {'bias': -0.0005306423455906185,
                                                                                                                                     'bias_glo': 0.0038886029459085786,
                                                                                                                                     'cor': 0.9839825107198128,
                                                                                                                                     'cor_glo': 0.8406277486908954,
                                                                                                                                     'frac': 0.15077627982612463,
                                                                                                                                     'mean': -8.005044609198464e-17,
                                                                                                                                     'mean_glo': -0.07183389584998634,
                                                                                                                                     'rms': 0.15365466967975017,
                                                                                                                                     'rms_glo': 0.18828738485923108,
                                                                                                                                     'rmsc': 0.17898319039169008,
                                                                                                                                     'rmsc_glo': 0.5645746369729323,
                                                                                                                                     'stdv_pc': 0.8530425574772453,
                                                                                                                                     'stdv_pc_ratio_to_obs': 0.9898339266504286,
                                                                                                                                     'tcor_cbf_vs_eof_pc': 0.9954762801773143},
                                                                                                                            'eof3': {'bias': 0.00020548470860974507,
                                                                                                                                     'bias_glo': 0.348309741734524,
                                                                                                                                     'cor': 0.026581144054290344,
                                                                                                                                     'cor_glo': -0.014343504934773555,
                                                                                                                                     'frac': 0.13054888623832064,
                                                                                                                                     'mean': 7.395965128063798e-17,
                                                                                                                                     'mean_glo': 0.2725872397482733,
                                                                                                                                     'rms': 1.1547734338895759,
                                                                                                                                     'rms_glo': 0.6473227556779281,
                                                                                                                                     'rmsc': 1.395291264221458,
                                                                                                                                     'rmsc_glo': 1.4243198509567423,
                                                                                                                                     'stdv_pc': 0.7937628554139229,
                                                                                                                                     'stdv_pc_ratio_to_obs': 0.9210483077505519,
                                                                                                                                     'tcor_cbf_vs_eof_pc': 0.025031383731579943},
                                                                                                                            'period': '1900-2005'},
                                                                                                                    'SON': {'best_matching_model_eofs__cor': 2,
                                                                                                                            'best_matching_model_eofs__rms': 2,
                                                                                                                            'best_matching_model_eofs__tcor_cbf_vs_eof_pc': 1,
                                                                                                                            'cbf': {'bias': 0.00036967203477312533,
                                                                                                                                    'bias_glo': -0.05759958379491756,
                                                                                                                                    'cor': 0.9590066489819588,
                                                                                                                                    'cor_glo': 0.734824915440888,
                                                                                                                                    'frac': 0.24045153207153125,
                                                                                                                                    'frac_cbf_regrid': 0.2422510642661951,
                                                                                                                                    'mean': 7.110070677735281e-17,
                                                                                                                                    'mean_glo': -0.24571856641930226,
                                                                                                                                    'rms': 0.3391009857292368,
                                                                                                                                    'rms_glo': 0.27039806697461855,
                                                                                                                                    'rmsc': 0.2863332068262567,
                                                                                                                                    'rmsc_glo': 0.728251437726714,
                                                                                                                                    'stdv_pc': 0.9602790840788296,
                                                                                                                                    'stdv_pc_ratio_to_obs': 1.2396800051654004},
                                                                                                                            'eof1': {'bias': 2.3570113580982862e-05,
                                                                                                                                     'bias_glo': -0.21562964592731432,
                                                                                                                                     'cor': 0.39284045381347,
                                                                                                                                     'cor_glo': 0.21700178512222132,
                                                                                                                                     'frac': 0.3120250103230232,
                                                                                                                                     'mean': 1.3722933615768795e-16,
                                                                                                                                     'mean_glo': -0.4037486261113,
                                                                                                                                     'rms': 1.0985477563077348,
                                                                                                                                     'rms_glo': 0.557815763626135,
                                                                                                                                     'rmsc': 1.1019614486002172,
                                                                                                                                     'rmsc_glo': 1.2513978026242656,
                                                                                                                                     'stdv_pc': 1.1437324450139421,
                                                                                                                                     'stdv_pc_ratio_to_obs': 1.4765105966072745,
                                                                                                                                     'tcor_cbf_vs_eof_pc': 0.46660242586733836},
                                                                                                                            'eof2': {'bias': 0.00037725004212822705,
                                                                                                                                     'bias_glo': 0.1338373959257352,
                                                                                                                                     'cor': 0.844145453743433,
                                                                                                                                     'cor_glo': 0.6677959235779408,
                                                                                                                                     'frac': 0.2281771586371874,
                                                                                                                                     'mean': -5.4692851367194474e-18,
                                                                                                                                     'mean_glo': 0.05428158726947267,
                                                                                                                                     'rms': 0.5255286969885776,
                                                                                                                                     'rms_glo': 0.3259806324138093,
                                                                                                                                     'rmsc': 0.5583091367518418,
                                                                                                                                     'rmsc_glo': 0.8151123727596776,
                                                                                                                                     'stdv_pc': 0.9780607300845838,
                                                                                                                                     'stdv_pc_ratio_to_obs': 1.2626353640581838,
                                                                                                                                     'tcor_cbf_vs_eof_pc': -0.8579174524135849},
                                                                                                                            'eof3': {'bias': 0.00019939059247771123,
                                                                                                                                     'bias_glo': 0.09790416072209987,
                                                                                                                                     'cor': 0.2973168468011389,
                                                                                                                                     'cor_glo': 0.20917626375970585,
                                                                                                                                     'frac': 0.1022903555806546,
                                                                                                                                     'mean': -3.8782203696737895e-17,
                                                                                                                                     'mean_glo': 0.09021481788588913,
                                                                                                                                     'rms': 0.8517614944950692,
                                                                                                                                     'rms_glo': 0.389757638324625,
                                                                                                                                     'rmsc': 1.1854814795969157,
                                                                                                                                     'rmsc_glo': 1.2576356604867216,
                                                                                                                                     'stdv_pc': 0.6548579168325707,
                                                                                                                                     'stdv_pc_ratio_to_obs': 0.8453940934268672,
                                                                                                                                     'tcor_cbf_vs_eof_pc': -0.2021185104070318},
                                                                                                                            'period': '1900-2005'},
                                                                                                                    'target_model_eofs': 2}}},
                                                                          'r3i1p1f1': {'defaultReference': {'NPO': {'DJF': {'best_matching_model_eofs__cor': 2,
                                                                                                                            'best_matching_model_eofs__rms': 2,
                                                                                                                            'best_matching_model_eofs__tcor_cbf_vs_eof_pc': 2,
                                                                                                                            'cbf': {'bias': -0.0012203208911855431,
                                                                                                                                    'bias_glo': -0.385252029632417,
                                                                                                                                    'cor': 0.8567916032719717,
                                                                                                                                    'cor_glo': 0.7703860074448102,
                                                                                                                                    'frac': 0.28148428170087547,
                                                                                                                                    'frac_cbf_regrid': 0.28302412288608103,
                                                                                                                                    'mean': 1.6358134636188164e-16,
                                                                                                                                    'mean_glo': -0.3849655030445411,
                                                                                                                                    'rms': 0.7994059672666132,
                                                                                                                                    'rms_glo': 0.601823816865405,
                                                                                                                                    'rmsc': 0.5351792090775291,
                                                                                                                                    'rmsc_glo': 0.6776636139522841,
                                                                                                                                    'stdv_pc': 1.320225461705884,
                                                                                                                                    'stdv_pc_ratio_to_obs': 0.9377228075360815},
                                                                                                                            'eof1': {'bias': -0.0013712898017869475,
                                                                                                                                     'bias_glo': -1.059420419288261,
                                                                                                                                     'cor': 0.38653138088273353,
                                                                                                                                     'cor_glo': 0.3687801819053032,
                                                                                                                                     'frac': 0.4941083626022973,
                                                                                                                                     'mean': 4.952189087429609e-16,
                                                                                                                                     'mean_glo': -1.0591338906404753,
                                                                                                                                     'rms': 1.9816271698672514,
                                                                                                                                     'rms_glo': 1.3858128301013148,
                                                                                                                                     'rmsc': 1.1076719901896734,
                                                                                                                                     'rmsc_glo': 1.1235833854694652,
                                                                                                                                     'stdv_pc': 2.0449391707026243,
                                                                                                                                     'stdv_pc_ratio_to_obs': 1.4524686547963013,
                                                                                                                                     'tcor_cbf_vs_eof_pc': 0.5979019838256856},
                                                                                                                            'eof2': {'bias': -0.0003316159151777768,
                                                                                                                                     'bias_glo': 0.40297222381155656,
                                                                                                                                     'cor': 0.8705770119533645,
                                                                                                                                     'cor_glo': 0.7819626036738677,
                                                                                                                                     'frac': 0.16702731293656753,
                                                                                                                                     'mean': -2.2672672930400615e-16,
                                                                                                                                     'mean_glo': 0.4032587465570751,
                                                                                                                                     'rms': 0.6938355720952045,
                                                                                                                                     'rms_glo': 0.5482129328228503,
                                                                                                                                     'rmsc': 0.5087690722866307,
                                                                                                                                     'rmsc_glo': 0.6603596067595667,
                                                                                                                                     'stdv_pc': 1.188948488206385,
                                                                                                                                     'stdv_pc_ratio_to_obs': 0.8444800882237841,
                                                                                                                                     'tcor_cbf_vs_eof_pc': 0.7827871146381685},
                                                                                                                            'eof3': {'bias': -0.0009246185732878418,
                                                                                                                                     'bias_glo': -0.4021830788406371,
                                                                                                                                     'cor': 0.2076582130852579,
                                                                                                                                     'cor_glo': 0.052605855724000505,
                                                                                                                                     'frac': 0.09601168505364996,
                                                                                                                                     'mean': 1.7899478629263645e-16,
                                                                                                                                     'mean_glo': -0.40189655364678484,
                                                                                                                                     'rms': 1.5048023072330146,
                                                                                                                                     'rms_glo': 0.8121886497445283,
                                                                                                                                     'rmsc': 1.2588421585307497,
                                                                                                                                     'rmsc_glo': 1.3765130949751814,
                                                                                                                                     'stdv_pc': 0.9014286097826059,
                                                                                                                                     'stdv_pc_ratio_to_obs': 0.64026197893993,
                                                                                                                                     'tcor_cbf_vs_eof_pc': 0.14167112366981605},
                                                                                                                            'period': '1900-2005'},
                                                                                                                    'JJA': {'best_matching_model_eofs__cor': 2,
                                                                                                                            'best_matching_model_eofs__rms': 2,
                                                                                                                            'best_matching_model_eofs__tcor_cbf_vs_eof_pc': 1,
                                                                                                                            'cbf': {'bias': 0.0002635065352911956,
                                                                                                                                    'bias_glo': -0.056907326019421084,
                                                                                                                                    'cor': 0.9329017164116216,
                                                                                                                                    'cor_glo': 0.6069075237124506,
                                                                                                                                    'frac': 0.22115198898143426,
                                                                                                                                    'frac_cbf_regrid': 0.22311068736976794,
                                                                                                                                    'mean': -6.936047968839662e-17,
                                                                                                                                    'mean_glo': -0.1992880215665432,
                                                                                                                                    'rms': 0.3042989240945671,
                                                                                                                                    'rms_glo': 0.26062438145245154,
                                                                                                                                    'rmsc': 0.3663284918703407,
                                                                                                                                    'rmsc_glo': 0.8866707050123017,
                                                                                                                                    'stdv_pc': 0.6549217600608791,
                                                                                                                                    'stdv_pc_ratio_to_obs': 1.3487608167363785},
                                                                                                                            'eof1': {'bias': -6.553368450687704e-05,
                                                                                                                                     'bias_glo': -0.10387114996795868,
                                                                                                                                     'cor': 0.5882909207870425,
                                                                                                                                     'cor_glo': 0.37660017420287456,
                                                                                                                                     'frac': 0.2756451515316136,
                                                                                                                                     'mean': -1.1212034530274867e-16,
                                                                                                                                     'mean_glo': -0.24625184384671558,
                                                                                                                                     'rms': 0.6348760129487051,
                                                                                                                                     'rms_glo': 0.3897884464860314,
                                                                                                                                     'rmsc': 0.907423893312714,
                                                                                                                                     'rmsc_glo': 1.1166018287481376,
                                                                                                                                     'stdv_pc': 0.7863595763839719,
                                                                                                                                     'stdv_pc_ratio_to_obs': 1.6194468548327483,
                                                                                                                                     'tcor_cbf_vs_eof_pc': 0.7047255397152565},
                                                                                                                            'eof2': {'bias': 0.00038498549566394746,
                                                                                                                                     'bias_glo': 0.04406933243160731,
                                                                                                                                     'cor': 0.6554250248393719,
                                                                                                                                     'cor_glo': 0.28296207112339156,
                                                                                                                                     'frac': 0.1789764418234779,
                                                                                                                                     'mean': 9.198343184482707e-18,
                                                                                                                                     'mean_glo': 0.09831136409510048,
                                                                                                                                     'rms': 0.4825752741065882,
                                                                                                                                     'rms_glo': 0.3202806509167985,
                                                                                                                                     'rmsc': 0.8301505439773951,
                                                                                                                                     'rmsc_glo': 1.19752905887661,
                                                                                                                                     'stdv_pc': 0.6336419706933643,
                                                                                                                                     'stdv_pc_ratio_to_obs': 1.304936732948661,
                                                                                                                                     'tcor_cbf_vs_eof_pc': -0.6324060224483756},
                                                                                                                            'eof3': {'bias': 0.00024601466193802774,
                                                                                                                                     'bias_glo': 0.3185462024510528,
                                                                                                                                     'cor': 0.35392523766950423,
                                                                                                                                     'cor_glo': 0.27541310296729526,
                                                                                                                                     'frac': 0.13601173353757615,
                                                                                                                                     'mean': 6.165375972301923e-17,
                                                                                                                                     'mean_glo': 0.1761655031522136,
                                                                                                                                     'rms': 0.5912524958587874,
                                                                                                                                     'rms_glo': 0.4424721132549104,
                                                                                                                                     'rmsc': 1.1367275371578351,
                                                                                                                                     'rmsc_glo': 1.2038163436129752,
                                                                                                                                     'stdv_pc': 0.5523752219806376,
                                                                                                                                     'stdv_pc_ratio_to_obs': 1.137574136297271,
                                                                                                                                     'tcor_cbf_vs_eof_pc': 0.2974678171641974},
                                                                                                                            'period': '1900-2005'},
                                                                                                                    'MAM': {'best_matching_model_eofs__cor': 2,
                                                                                                                            'best_matching_model_eofs__rms': 2,
                                                                                                                            'best_matching_model_eofs__tcor_cbf_vs_eof_pc': 1,
                                                                                                                            'cbf': {'bias': -0.0006327199004244516,
                                                                                                                                    'bias_glo': -0.11932036524868009,
                                                                                                                                    'cor': 0.9491163184726804,
                                                                                                                                    'cor_glo': 0.796430909382616,
                                                                                                                                    'frac': 0.1844099969616523,
                                                                                                                                    'frac_cbf_regrid': 0.1855814657198229,
                                                                                                                                    'mean': -3.6793372737930826e-17,
                                                                                                                                    'mean_glo': -0.1950428622520523,
                                                                                                                                    'rms': 0.355026615971423,
                                                                                                                                    'rms_glo': 0.283995758668047,
                                                                                                                                    'rmsc': 0.31900997753096905,
                                                                                                                                    'rmsc_glo': 0.6380738007688108,
                                                                                                                                    'stdv_pc': 0.9935595500969745,
                                                                                                                                    'stdv_pc_ratio_to_obs': 1.1528838065734546},
                                                                                                                            'eof1': {'bias': -0.0005158210581433231,
                                                                                                                                     'bias_glo': -0.41504496676666525,
                                                                                                                                     'cor': 0.15455297281594904,
                                                                                                                                     'cor_glo': 0.1860212476064055,
                                                                                                                                     'frac': 0.4461909496473187,
                                                                                                                                     'mean': -1.889389410866718e-16,
                                                                                                                                     'mean_glo': -0.4907674625609734,
                                                                                                                                     'rms': 1.7211858826931297,
                                                                                                                                     'rms_glo': 0.8804503921916462,
                                                                                                                                     'rmsc': 1.3003438041630335,
                                                                                                                                     'rmsc_glo': 1.2759143876538426,
                                                                                                                                     'stdv_pc': 1.6325756742422708,
                                                                                                                                     'stdv_pc_ratio_to_obs': 1.8943706571548204,
                                                                                                                                     'tcor_cbf_vs_eof_pc': 0.2534030211367156},
                                                                                                                            'eof2': {'bias': -0.000515106399024964,
                                                                                                                                     'bias_glo': -0.02933395298187473,
                                                                                                                                     'cor': 0.9519434140020628,
                                                                                                                                     'cor_glo': 0.7871280394282814,
                                                                                                                                     'frac': 0.16854310975433945,
                                                                                                                                     'mean': 3.281571082031668e-17,
                                                                                                                                     'mean_glo': 0.10505645121512677,
                                                                                                                                     'rms': 0.3193636193673188,
                                                                                                                                     'rms_glo': 0.24680134255225422,
                                                                                                                                     'rmsc': 0.310021240852401,
                                                                                                                                     'rmsc_glo': 0.6524905588401211,
                                                                                                                                     'stdv_pc': 1.003386940022244,
                                                                                                                                     'stdv_pc_ratio_to_obs': 1.1642870875389693,
                                                                                                                                     'tcor_cbf_vs_eof_pc': -0.9582845914382903},
                                                                                                                            'eof3': {'bias': 7.573921731503694e-05,
                                                                                                                                     'bias_glo': 0.42421981165332734,
                                                                                                                                     'cor': 0.04895225346098069,
                                                                                                                                     'cor_glo': -0.05182996710639408,
                                                                                                                                     'frac': 0.09304683605403855,
                                                                                                                                     'mean': 1.8098361725144354e-16,
                                                                                                                                     'mean_glo': 0.3484973087366579,
                                                                                                                                     'rms': 1.1106674681578754,
                                                                                                                                     'rms_glo': 0.664463837738178,
                                                                                                                                     'rmsc': 1.3791647990489209,
                                                                                                                                     'rmsc_glo': 1.450399934748077,
                                                                                                                                     'stdv_pc': 0.7455276371777111,
                                                                                                                                     'stdv_pc_ratio_to_obs': 0.8650782332787827,
                                                                                                                                     'tcor_cbf_vs_eof_pc': 0.03666060926627945},
                                                                                                                            'period': '1900-2005'},
                                                                                                                    'SON': {'best_matching_model_eofs__cor': 1,
                                                                                                                            'best_matching_model_eofs__rms': 2,
                                                                                                                            'best_matching_model_eofs__tcor_cbf_vs_eof_pc': 1,
                                                                                                                            'cbf': {'bias': 0.00021027822200986418,
                                                                                                                                    'bias_glo': -0.15419950609246713,
                                                                                                                                    'cor': 0.9360107727774687,
                                                                                                                                    'cor_glo': 0.7894162664970881,
                                                                                                                                    'frac': 0.2725798278936348,
                                                                                                                                    'frac_cbf_regrid': 0.27463607024161774,
                                                                                                                                    'mean': 1.2430193492544198e-16,
                                                                                                                                    'mean_glo': -0.3423184872294431,
                                                                                                                                    'rms': 0.4122679287484002,
                                                                                                                                    'rms_glo': 0.29604833476571957,
                                                                                                                                    'rmsc': 0.357740755504355,
                                                                                                                                    'rmsc_glo': 0.6489741607362985,
                                                                                                                                    'stdv_pc': 0.9681091847483492,
                                                                                                                                    'stdv_pc_ratio_to_obs': 1.2497883365863094},
                                                                                                                            'eof1': {'bias': 3.9348740850343925e-05,
                                                                                                                                     'bias_glo': -0.28860100784262616,
                                                                                                                                     'cor': 0.6599486134752551,
                                                                                                                                     'cor_glo': 0.5555211282112488,
                                                                                                                                     'frac': 0.3266971555068352,
                                                                                                                                     'mean': 1.3822375163709148e-16,
                                                                                                                                     'mean_glo': -0.4767199877473647,
                                                                                                                                     'rms': 0.85103945236256,
                                                                                                                                     'rms_glo': 0.46765289377637553,
                                                                                                                                     'rmsc': 0.8246834315164836,
                                                                                                                                     'rmsc_glo': 0.9428455523889735,
                                                                                                                                     'stdv_pc': 1.135329559404261,
                                                                                                                                     'stdv_pc_ratio_to_obs': 1.4656628238621183,
                                                                                                                                     'tcor_cbf_vs_eof_pc': 0.7717732463075114},
                                                                                                                            'eof2': {'bias': 0.00032494557256319124,
                                                                                                                                     'bias_glo': 0.24602753445098668,
                                                                                                                                     'cor': 0.6340668947932653,
                                                                                                                                     'cor_glo': 0.513823608643897,
                                                                                                                                     'frac': 0.20819105115877246,
                                                                                                                                     'mean': 2.386597150568486e-17,
                                                                                                                                     'mean_glo': -0.05790855198715705,
                                                                                                                                     'rms': 0.7277517221651705,
                                                                                                                                     'rms_glo': 0.43953220771266094,
                                                                                                                                     'rmsc': 0.8554917829089514,
                                                                                                                                     'rmsc_glo': 0.9860794842071157,
                                                                                                                                     'stdv_pc': 0.9063173577684016,
                                                                                                                                     'stdv_pc_ratio_to_obs': 1.1700176806804137,
                                                                                                                                     'tcor_cbf_vs_eof_pc': -0.5923873790671084},
                                                                                                                            'eof3': {'bias': 3.114648807881655e-05,
                                                                                                                                     'bias_glo': 0.24620802595205227,
                                                                                                                                     'cor': 0.33961492837751334,
                                                                                                                                     'cor_glo': 0.23865866991851034,
                                                                                                                                     'frac': 0.09674535927672367,
                                                                                                                                     'mean': -1.690506314986011e-17,
                                                                                                                                     'mean_glo': 0.05808904712277312,
                                                                                                                                     'rms': 0.8098014438522206,
                                                                                                                                     'rms_glo': 0.45961786595693155,
                                                                                                                                     'rmsc': 1.1492476283359605,
                                                                                                                                     'rmsc_glo': 1.2339702617569426,
                                                                                                                                     'stdv_pc': 0.6178233807090908,
                                                                                                                                     'stdv_pc_ratio_to_obs': 0.7975840612247237,
                                                                                                                                     'tcor_cbf_vs_eof_pc': 0.21628950056071922},
                                                                                                                            'period': '1900-2005'},
                                                                                                                    'target_model_eofs': 2}}},
                                                                          'r4i1p1f1': {'defaultReference': {'NPO': {'DJF': {'best_matching_model_eofs__cor': 2,
                                                                                                                            'best_matching_model_eofs__rms': 2,
                                                                                                                            'best_matching_model_eofs__tcor_cbf_vs_eof_pc': 2,
                                                                                                                            'cbf': {'bias': -0.001094056388778338,
                                                                                                                                    'bias_glo': -0.262613685974216,
                                                                                                                                    'cor': 0.938070087706011,
                                                                                                                                    'cor_glo': 0.8190064619773638,
                                                                                                                                    'frac': 0.25372403183606745,
                                                                                                                                    'frac_cbf_regrid': 0.2552126573946409,
                                                                                                                                    'mean': 9.248063958452884e-17,
                                                                                                                                    'mean_glo': -0.26232715952720453,
                                                                                                                                    'rms': 0.4959508317674772,
                                                                                                                                    'rms_glo': 0.4808603851343847,
                                                                                                                                    'rmsc': 0.35193724537114485,
                                                                                                                                    'rmsc_glo': 0.601653626052094,
                                                                                                                                    'stdv_pc': 1.3231066480933196,
                                                                                                                                    'stdv_pc_ratio_to_obs': 0.9397692414722744},
                                                                                                                            'eof1': {'bias': -0.001027218815461196,
                                                                                                                                     'bias_glo': -0.7490108440016843,
                                                                                                                                     'cor': 0.4275973433798274,
                                                                                                                                     'cor_glo': 0.3964431101206156,
                                                                                                                                     'frac': 0.38902175552987434,
                                                                                                                                     'mean': 3.182129534091315e-16,
                                                                                                                                     'mean_glo': -0.7487243141150146,
                                                                                                                                     'rms': 1.7121069498720292,
                                                                                                                                     'rms_glo': 1.1328179454150655,
                                                                                                                                     'rmsc': 1.0699557593047795,
                                                                                                                                     'rmsc_glo': 1.0986873033267914,
                                                                                                                                     'stdv_pc': 1.749568398417257,
                                                                                                                                     'stdv_pc_ratio_to_obs': 1.2426742538508369,
                                                                                                                                     'tcor_cbf_vs_eof_pc': 0.5641826477021883},
                                                                                                                            'eof2': {'bias': -0.0005312897872703126,
                                                                                                                                     'bias_glo': 0.2593666456013754,
                                                                                                                                     'cor': 0.8746519684220592,
                                                                                                                                     'cor_glo': 0.7425941848774815,
                                                                                                                                     'frac': 0.19263875968078978,
                                                                                                                                     'mean': -1.0441362533737126e-16,
                                                                                                                                     'mean_glo': 0.2596531674448245,
                                                                                                                                     'rms': 0.6824882245370342,
                                                                                                                                     'rms_glo': 0.5028339694280306,
                                                                                                                                     'rmsc': 0.5006955696226685,
                                                                                                                                     'rmsc_glo': 0.7175037673230064,
                                                                                                                                     'stdv_pc': 1.2311637439697003,
                                                                                                                                     'stdv_pc_ratio_to_obs': 0.8744645183862503,
                                                                                                                                     'tcor_cbf_vs_eof_pc': 0.8120873808200001},
                                                                                                                            'eof3': {'bias': -0.0005742719186922335,
                                                                                                                                     'bias_glo': -0.2802032946677655,
                                                                                                                                     'cor': 0.18591328227537232,
                                                                                                                                     'cor_glo': -0.09888856227516142,
                                                                                                                                     'frac': 0.13296730449894337,
                                                                                                                                     'mean': -1.1336336465200308e-16,
                                                                                                                                     'mean_glo': 0.27991676999390824,
                                                                                                                                     'rms': 1.5770650134215074,
                                                                                                                                     'rms_glo': 0.7986430662661554,
                                                                                                                                     'rmsc': 1.2759989697553036,
                                                                                                                                     'rmsc_glo': 1.4824901548773597,
                                                                                                                                     'stdv_pc': 1.0228605134569018,
                                                                                                                                     'stdv_pc_ratio_to_obs': 0.7265119937599587,
                                                                                                                                     'tcor_cbf_vs_eof_pc': -0.1436685073014752},
                                                                                                                            'period': '1900-2005'},
                                                                                                                    'JJA': {'best_matching_model_eofs__cor': 2,
                                                                                                                            'best_matching_model_eofs__rms': 2,
                                                                                                                            'best_matching_model_eofs__tcor_cbf_vs_eof_pc': 2,
                                                                                                                            'cbf': {'bias': 0.000520133611190548,
                                                                                                                                    'bias_glo': 0.03106167397785145,
                                                                                                                                    'cor': 0.9331114769882201,
                                                                                                                                    'cor_glo': 0.5951024794323417,
                                                                                                                                    'frac': 0.21386379619140425,
                                                                                                                                    'frac_cbf_regrid': 0.21589540770023055,
                                                                                                                                    'mean': -4.8602056555847816e-17,
                                                                                                                                    'mean_glo': -0.11131902087756677,
                                                                                                                                    'rms': 0.26982818707066974,
                                                                                                                                    'rms_glo': 0.228891974935786,
                                                                                                                                    'rmsc': 0.3657554580363115,
                                                                                                                                    'rmsc_glo': 0.8998861180882416,
                                                                                                                                    'stdv_pc': 0.6147444927707786,
                                                                                                                                    'stdv_pc_ratio_to_obs': 1.2660188357104396},
                                                                                                                            'eof1': {'bias': -0.0001466817150826428,
                                                                                                                                     'bias_glo': -0.0009204106233607345,
                                                                                                                                     'cor': 0.2644863422363976,
                                                                                                                                     'cor_glo': 0.08378161001443134,
                                                                                                                                     'frac': 0.2535219205554203,
                                                                                                                                     'mean': -2.933525664240431e-17,
                                                                                                                                     'mean_glo': -0.14330110313906486,
                                                                                                                                     'rms': 0.7532179366777123,
                                                                                                                                     'rms_glo': 0.43961701643602025,
                                                                                                                                     'rmsc': 1.2128591715618402,
                                                                                                                                     'rmsc_glo': 1.3536752720021323,
                                                                                                                                     'stdv_pc': 0.7200508232312187,
                                                                                                                                     'stdv_pc_ratio_to_obs': 1.482889095550533,
                                                                                                                                     'tcor_cbf_vs_eof_pc': 0.3090763371032333},
                                                                                                                            'eof2': {'bias': 0.0006469307536945453,
                                                                                                                                     'bias_glo': 0.10961625755226109,
                                                                                                                                     'cor': 0.8668547409784078,
                                                                                                                                     'cor_glo': 0.5872187551616184,
                                                                                                                                     'frac': 0.2159557316215525,
                                                                                                                                     'mean': -1.566204380060569e-17,
                                                                                                                                     'mean_glo': -0.032764438650572464,
                                                                                                                                     'rms': 0.3416824941913525,
                                                                                                                                     'rms_glo': 0.2523469138124671,
                                                                                                                                     'rmsc': 0.5160334507764222,
                                                                                                                                     'rmsc_glo': 0.9086047138640929,
                                                                                                                                     'stdv_pc': 0.6645654524680026,
                                                                                                                                     'stdv_pc_ratio_to_obs': 1.368621256930299,
                                                                                                                                     'tcor_cbf_vs_eof_pc': 0.9335517237393376},
                                                                                                                            'eof3': {'bias': -0.0001602913490011301,
                                                                                                                                     'bias_glo': 0.22925269603241397,
                                                                                                                                     'cor': 0.04813445902064353,
                                                                                                                                     'cor_glo': -0.1627795084010417,
                                                                                                                                     'frac': 0.12389345996111922,
                                                                                                                                     'mean': 3.9279411436439665e-17,
                                                                                                                                     'mean_glo': 0.08687199883203907,
                                                                                                                                     'rms': 0.6810318147368423,
                                                                                                                                     'rms_glo': 0.43269034275200685,
                                                                                                                                     'rmsc': 1.3797576278474633,
                                                                                                                                     'rmsc_glo': 1.5249783368276706,
                                                                                                                                     'stdv_pc': 0.5033610234459148,
                                                                                                                                     'stdv_pc_ratio_to_obs': 1.0366331774242195,
                                                                                                                                     'tcor_cbf_vs_eof_pc': 0.03926446703710157},
                                                                                                                            'period': '1900-2005'},
                                                                                                                    'MAM': {'best_matching_model_eofs__cor': 2,
                                                                                                                            'best_matching_model_eofs__rms': 2,
                                                                                                                            'best_matching_model_eofs__tcor_cbf_vs_eof_pc': 1,
                                                                                                                            'cbf': {'bias': -0.0006951299800230683,
                                                                                                                                    'bias_glo': -0.16560945802167729,
                                                                                                                                    'cor': 0.8859019991073277,
                                                                                                                                    'cor_glo': 0.7398613855133205,
                                                                                                                                    'frac': 0.2319148331402704,
                                                                                                                                    'frac_cbf_regrid': 0.23337307008334987,
                                                                                                                                    'mean': -4.2386959809575716e-17,
                                                                                                                                    'mean_glo': -0.24133195394297616,
                                                                                                                                    'rms': 0.5567066452043312,
                                                                                                                                    'rms_glo': 0.35552572859837545,
                                                                                                                                    'rmsc': 0.47769865145795787,
                                                                                                                                    'rmsc_glo': 0.721302460073307,
                                                                                                                                    'stdv_pc': 1.019594861141421,
                                                                                                                                    'stdv_pc_ratio_to_obs': 1.1830940627169497},
                                                                                                                            'eof1': {'bias': -0.000624922088117201,
                                                                                                                                     'bias_glo': -0.4708852561449024,
                                                                                                                                     'cor': 0.29268404635022244,
                                                                                                                                     'cor_glo': 0.25882172689185834,
                                                                                                                                     'frac': 0.4735056416553138,
                                                                                                                                     'mean': -3.281571082031668e-16,
                                                                                                                                     'mean_glo': -0.5466077520316239,
                                                                                                                                     'rms': 1.6179015960853425,
                                                                                                                                     'rms_glo': 0.8855620744470787,
                                                                                                                                     'rmsc': 1.1893829878867648,
                                                                                                                                     'rmsc_glo': 1.2175206471069446,
                                                                                                                                     'stdv_pc': 1.647870968731283,
                                                                                                                                     'stdv_pc_ratio_to_obs': 1.9121186596086575,
                                                                                                                                     'tcor_cbf_vs_eof_pc': 0.4720815833795711},
                                                                                                                            'eof2': {'bias': -0.0004142608830383206,
                                                                                                                                     'bias_glo': 0.09807710903981554,
                                                                                                                                     'cor': 0.9238830058258499,
                                                                                                                                     'cor_glo': 0.7437495176607414,
                                                                                                                                     'frac': 0.16403055544808287,
                                                                                                                                     'mean': -4.151684626509762e-17,
                                                                                                                                     'mean_glo': -0.022354610984093092,
                                                                                                                                     'rms': 0.37141181773455867,
                                                                                                                                     'rms_glo': 0.27842079837983286,
                                                                                                                                     'rmsc': 0.3901717436367216,
                                                                                                                                     'rmsc_glo': 0.7158917250726389,
                                                                                                                                     'stdv_pc': 0.969891161095053,
                                                                                                                                     'stdv_pc_ratio_to_obs': 1.1254200250564501,
                                                                                                                                     'tcor_cbf_vs_eof_pc': -0.8762623641893735},
                                                                                                                            'eof3': {'bias': 0.00023331047218547624,
                                                                                                                                     'bias_glo': 0.41948292857170777,
                                                                                                                                     'cor': 0.04566475432822384,
                                                                                                                                     'cor_glo': 0.006107793711065725,
                                                                                                                                     'frac': 0.09556424436174646,
                                                                                                                                     'mean': 1.3126284328126673e-16,
                                                                                                                                     'mean_glo': 0.34376042637814147,
                                                                                                                                     'rms': 1.109082458873222,
                                                                                                                                     'rms_glo': 0.6591363275064763,
                                                                                                                                     'rmsc': 1.3815463829913428,
                                                                                                                                     'rmsc_glo': 1.409888073918377,
                                                                                                                                     'stdv_pc': 0.7403010047208098,
                                                                                                                                     'stdv_pc_ratio_to_obs': 0.8590134735752657,
                                                                                                                                     'tcor_cbf_vs_eof_pc': 0.03307857963765936},
                                                                                                                            'period': '1900-2005'},
                                                                                                                    'SON': {'best_matching_model_eofs__cor': 2,
                                                                                                                            'best_matching_model_eofs__rms': 2,
                                                                                                                            'best_matching_model_eofs__tcor_cbf_vs_eof_pc': 1,
                                                                                                                            'cbf': {'bias': 0.00032802942141276154,
                                                                                                                                    'bias_glo': -0.01810090950557605,
                                                                                                                                    'cor': 0.9639192297804382,
                                                                                                                                    'cor_glo': 0.7189671279816156,
                                                                                                                                    'frac': 0.2085271418805593,
                                                                                                                                    'frac_cbf_regrid': 0.21007998503128636,
                                                                                                                                    'mean': 1.0441362533737126e-16,
                                                                                                                                    'mean_glo': -0.20621989131583812,
                                                                                                                                    'rms': 0.27524460172541004,
                                                                                                                                    'rms_glo': 0.2835690331335213,
                                                                                                                                    'rmsc': 0.26862900666106015,
                                                                                                                                    'rmsc_glo': 0.7497104311297977,
                                                                                                                                    'stdv_pc': 0.8954727914632772,
                                                                                                                                    'stdv_pc_ratio_to_obs': 1.1560178006079975},
                                                                                                                            'eof1': {'bias': -0.00010655259570638365,
                                                                                                                                     'bias_glo': -0.1579032651029808,
                                                                                                                                     'cor': 0.2194311313535644,
                                                                                                                                     'cor_glo': 0.09472963554972788,
                                                                                                                                     'frac': 0.3084519535823402,
                                                                                                                                     'mean': 1.2281031170633667e-16,
                                                                                                                                     'mean_glo': -0.3460222433669565,
                                                                                                                                     'rms': 1.2219354111355958,
                                                                                                                                     'rms_glo': 0.5825820413957895,
                                                                                                                                     'rmsc': 1.2494549816459262,
                                                                                                                                     'rmsc_glo': 1.3455633459671845,
                                                                                                                                     'stdv_pc': 1.1328152119088544,
                                                                                                                                     'stdv_pc_ratio_to_obs': 1.4624169067451342,
                                                                                                                                     'tcor_cbf_vs_eof_pc': 0.27694381953265895},
                                                                                                                            'eof2': {'bias': 0.0003834629094007381,
                                                                                                                                     'bias_glo': 0.06945950579587433,
                                                                                                                                     'cor': 0.9062212137263153,
                                                                                                                                     'cor_glo': 0.6571619261409737,
                                                                                                                                     'frac': 0.20626932201940645,
                                                                                                                                     'mean': -6.36425906818263e-17,
                                                                                                                                     'mean_glo': 0.11865947617310181,
                                                                                                                                     'rms': 0.39579109729158174,
                                                                                                                                     'rms_glo': 0.33013374042147,
                                                                                                                                     'rmsc': 0.4330791730232581,
                                                                                                                                     'rmsc_glo': 0.828055652716296,
                                                                                                                                     'stdv_pc': 0.9263660496407892,
                                                                                                                                     'stdv_pc_ratio_to_obs': 1.1958997006639716,
                                                                                                                                     'tcor_cbf_vs_eof_pc': -0.9352998438729615},
                                                                                                                            'eof3': {'bias': 0.0002341184301053901,
                                                                                                                                     'bias_glo': 0.30667616100978645,
                                                                                                                                     'cor': 0.19558318031985436,
                                                                                                                                     'cor_glo': 0.1969766272820764,
                                                                                                                                     'frac': 0.1072438624755597,
                                                                                                                                     'mean': 6.960908355824751e-18,
                                                                                                                                     'mean_glo': -0.11855718066657996,
                                                                                                                                     'rms': 0.9175221389179266,
                                                                                                                                     'rms_glo': 0.5000315096913339,
                                                                                                                                     'rmsc': 1.2683980756472804,
                                                                                                                                     'rmsc_glo': 1.2672989675495523,
                                                                                                                                     'stdv_pc': 0.6679616567190378,
                                                                                                                                     'stdv_pc_ratio_to_obs': 0.8623104718000613,
                                                                                                                                     'tcor_cbf_vs_eof_pc': -0.14547560666521997},
                                                                                                                            'period': '1900-2005'},
                                                                                                                    'target_model_eofs': 2}}},
                                                                          'r5i1p1f1': {'defaultReference': {'NPO': {'DJF': {'best_matching_model_eofs__cor': 2,
                                                                                                                            'best_matching_model_eofs__rms': 2,
                                                                                                                            'best_matching_model_eofs__tcor_cbf_vs_eof_pc': 2,
                                                                                                                            'cbf': {'bias': -0.0012636430613991933,
                                                                                                                                    'bias_glo': -0.3785252041027507,
                                                                                                                                    'cor': 0.9141984250024476,
                                                                                                                                    'cor_glo': 0.8364430567440202,
                                                                                                                                    'frac': 0.28073663183461295,
                                                                                                                                    'frac_cbf_regrid': 0.2823026460226583,
                                                                                                                                    'mean': 2.1727978224967259e-16,
                                                                                                                                    'mean_glo': -0.3782386767331262,
                                                                                                                                    'rms': 0.6168656368516169,
                                                                                                                                    'rms_glo': 0.5233635312894195,
                                                                                                                                    'rmsc': 0.41425010162511394,
                                                                                                                                    'rmsc_glo': 0.571938719632064,
                                                                                                                                    'stdv_pc': 1.3909956884246792,
                                                                                                                                    'stdv_pc_ratio_to_obs': 0.9879891125071772},
                                                                                                                            'eof1': {'bias': -0.0013358154885805937,
                                                                                                                                     'bias_glo': -0.8910867076835863,
                                                                                                                                     'cor': 0.46472486480334163,
                                                                                                                                     'cor_glo': 0.42903158081364623,
                                                                                                                                     'frac': 0.4234227625555971,
                                                                                                                                     'mean': 4.216321632670992e-16,
                                                                                                                                     'mean_glo': -0.8908001776813548,
                                                                                                                                     'rms': 1.7409595326937894,
                                                                                                                                     'rms_glo': 1.2185865111155965,
                                                                                                                                     'rmsc': 1.0346739961887879,
                                                                                                                                     'rmsc_glo': 1.0686144530734643,
                                                                                                                                     'stdv_pc': 1.8720639964341308,
                                                                                                                                     'stdv_pc_ratio_to_obs': 1.3296797839023273,
                                                                                                                                     'tcor_cbf_vs_eof_pc': 0.624623047656308},
                                                                                                                            'eof2': {'bias': -0.0004814680051035186,
                                                                                                                                     'bias_glo': 0.24007085568171238,
                                                                                                                                     'cor': 0.8522583265249061,
                                                                                                                                     'cor_glo': 0.7950026544480125,
                                                                                                                                     'frac': 0.19199422086219725,
                                                                                                                                     'mean': -9.745271698154651e-17,
                                                                                                                                     'mean_glo': 0.24035737814857003,
                                                                                                                                     'rms': 0.7387627233246801,
                                                                                                                                     'rms_glo': 0.41800273302729896,
                                                                                                                                     'rmsc': 0.5435837849480843,
                                                                                                                                     'rmsc_glo': 0.6403082685062759,
                                                                                                                                     'stdv_pc': 1.2606010616148033,
                                                                                                                                     'stdv_pc_ratio_to_obs': 0.8953731017677811,
                                                                                                                                     'tcor_cbf_vs_eof_pc': 0.7705498339818813},
                                                                                                                            'eof3': {'bias': -0.0005987316271141683,
                                                                                                                                     'bias_glo': -0.13825261357726745,
                                                                                                                                     'cor': 0.13169768030225143,
                                                                                                                                     'cor_glo': -0.21687962517926623,
                                                                                                                                     'frac': 0.12330718274816944,
                                                                                                                                     'mean': -5.767609780540508e-17,
                                                                                                                                     'mean_glo': 0.1379660906482988,
                                                                                                                                     'rms': 1.6193114561466777,
                                                                                                                                     'rms_glo': 0.8247787611660797,
                                                                                                                                     'rmsc': 1.3178029813481054,
                                                                                                                                     'rmsc_glo': 1.5600510315151432,
                                                                                                                                     'stdv_pc': 1.0102474851670369,
                                                                                                                                     'stdv_pc_ratio_to_obs': 0.7175532782658479,
                                                                                                                                     'tcor_cbf_vs_eof_pc': -0.09528502644478307},
                                                                                                                            'period': '1900-2005'},
                                                                                                                    'JJA': {'best_matching_model_eofs__cor': 2,
                                                                                                                            'best_matching_model_eofs__rms': 2,
                                                                                                                            'best_matching_model_eofs__tcor_cbf_vs_eof_pc': 1,
                                                                                                                            'cbf': {'bias': 0.00035470889196803455,
                                                                                                                                    'bias_glo': -0.03933208235583893,
                                                                                                                                    'cor': 0.9343322833065063,
                                                                                                                                    'cor_glo': 0.6627198529119409,
                                                                                                                                    'frac': 0.23381688824317373,
                                                                                                                                    'frac_cbf_regrid': 0.23596237169256337,
                                                                                                                                    'mean': -9.558818795766489e-17,
                                                                                                                                    'mean_glo': -0.1817127777116496,
                                                                                                                                    'rms': 0.31454387735036426,
                                                                                                                                    'rms_glo': 0.24013079272374338,
                                                                                                                                    'rmsc': 0.36240230729669526,
                                                                                                                                    'rmsc_glo': 0.8213161855409831,
                                                                                                                                    'stdv_pc': 0.6693016983340925,
                                                                                                                                    'stdv_pc_ratio_to_obs': 1.378375189739033},
                                                                                                                            'eof1': {'bias': 0.00012808866818797272,
                                                                                                                                     'bias_glo': -0.03942046384846176,
                                                                                                                                     'cor': 0.5971442522456227,
                                                                                                                                     'cor_glo': 0.5731084234089523,
                                                                                                                                     'frac': 0.2877367377070291,
                                                                                                                                     'mean': -6.165375972301923e-17,
                                                                                                                                     'mean_glo': -0.18180115863130633,
                                                                                                                                     'rms': 0.637927890839514,
                                                                                                                                     'rms_glo': 0.29455066106721556,
                                                                                                                                     'rmsc': 0.8976143421837717,
                                                                                                                                     'rmsc_glo': 0.9240038592354934,
                                                                                                                                     'stdv_pc': 0.7974148218419476,
                                                                                                                                     'stdv_pc_ratio_to_obs': 1.6422142795885457,
                                                                                                                                     'tcor_cbf_vs_eof_pc': 0.709447926423379},
                                                                                                                            'eof2': {'bias': 0.00045318912696623386,
                                                                                                                                     'bias_glo': 0.0590838051006423,
                                                                                                                                     'cor': 0.7005050503828074,
                                                                                                                                     'cor_glo': 0.26643175233980054,
                                                                                                                                     'frac': 0.18778008461986054,
                                                                                                                                     'mean': 6.550711970570792e-17,
                                                                                                                                     'mean_glo': 0.08329689147825901,
                                                                                                                                     'rms': 0.45974738027243606,
                                                                                                                                     'rms_glo': 0.3234329193358198,
                                                                                                                                     'rmsc': 0.7739443675120292,
                                                                                                                                     'rmsc_glo': 1.2112541059712958,
                                                                                                                                     'stdv_pc': 0.6441861916372448,
                                                                                                                                     'stdv_pc_ratio_to_obs': 1.3266517421595247,
                                                                                                                                     'tcor_cbf_vs_eof_pc': -0.6722254852867962},
                                                                                                                            'eof3': {'bias': 5.2707210172267904e-05,
                                                                                                                                     'bias_glo': 0.2682962650206805,
                                                                                                                                     'cor': 0.17805058270307506,
                                                                                                                                     'cor_glo': 0.1983092302776917,
                                                                                                                                     'frac': 0.1278827200124786,
                                                                                                                                     'mean': 5.668168232600154e-17,
                                                                                                                                     'mean_glo': 0.12591556696704043,
                                                                                                                                     'rms': 0.6518431203284493,
                                                                                                                                     'rms_glo': 0.41913213940413296,
                                                                                                                                     'rmsc': 1.2821461723659724,
                                                                                                                                     'rmsc_glo': 1.2662470576412952,
                                                                                                                                     'stdv_pc': 0.5316093106292759,
                                                                                                                                     'stdv_pc_ratio_to_obs': 1.0948083446217365,
                                                                                                                                     'tcor_cbf_vs_eof_pc': 0.14095163015116863},
                                                                                                                            'period': '1900-2005'},
                                                                                                                    'MAM': {'best_matching_model_eofs__cor': 2,
                                                                                                                            'best_matching_model_eofs__rms': 2,
                                                                                                                            'best_matching_model_eofs__tcor_cbf_vs_eof_pc': 1,
                                                                                                                            'cbf': {'bias': -0.0006193178909362156,
                                                                                                                                    'bias_glo': -0.13930447446907912,
                                                                                                                                    'cor': 0.8571185704371549,
                                                                                                                                    'cor_glo': 0.7250124003483225,
                                                                                                                                    'frac': 0.26536323776186155,
                                                                                                                                    'frac_cbf_regrid': 0.2670690164193508,
                                                                                                                                    'mean': -1.0441362533737126e-16,
                                                                                                                                    'mean_glo': -0.2150269717720291,
                                                                                                                                    'rms': 0.6733954313569539,
                                                                                                                                    'rms_glo': 0.37512428260227365,
                                                                                                                                    'rmsc': 0.5345679137352258,
                                                                                                                                    'rmsc_glo': 0.7416031388480343,
                                                                                                                                    'stdv_pc': 1.0671241501650859,
                                                                                                                                    'stdv_pc_ratio_to_obs': 1.2382450072657536},
                                                                                                                            'eof1': {'bias': -0.0006236563420046732,
                                                                                                                                     'bias_glo': -0.3790114514399877,
                                                                                                                                     'cor': 0.3942785437860529,
                                                                                                                                     'cor_glo': 0.35982737979888024,
                                                                                                                                     'frac': 0.4594006492080996,
                                                                                                                                     'mean': -1.998775113601107e-16,
                                                                                                                                     'mean_glo': -0.45473394832674174,
                                                                                                                                     'rms': 1.5210162368716909,
                                                                                                                                     'rms_glo': 0.786714412687944,
                                                                                                                                     'rmsc': 1.1006556848538716,
                                                                                                                                     'rmsc_glo': 1.1315234039775262,
                                                                                                                                     'stdv_pc': 1.6417115716748776,
                                                                                                                                     'stdv_pc_ratio_to_obs': 1.9049715599467472,
                                                                                                                                     'tcor_cbf_vs_eof_pc': 0.6053317329661987},
                                                                                                                            'eof2': {'bias': -0.0002244658282222496,
                                                                                                                                     'bias_glo': 0.1859662149059753,
                                                                                                                                     'cor': 0.8612281833779442,
                                                                                                                                     'cor_glo': 0.5960263800813433,
                                                                                                                                     'frac': 0.1567486349718683,
                                                                                                                                     'mean': -2.2622952156430442e-17,
                                                                                                                                     'mean_glo': -0.11024371484525876,
                                                                                                                                     'rms': 0.4873297956876274,
                                                                                                                                     'rms_glo': 0.386297098325797,
                                                                                                                                     'rmsc': 0.5268240972710972,
                                                                                                                                     'rmsc_glo': 0.8988588494275389,
                                                                                                                                     'stdv_pc': 0.9589654064791157,
                                                                                                                                     'stdv_pc_ratio_to_obs': 1.1127422489029424,
                                                                                                                                     'tcor_cbf_vs_eof_pc': -0.7714570306027472},
                                                                                                                            'eof3': {'bias': -0.00021488137778538855,
                                                                                                                                     'bias_glo': 0.13562866831579629,
                                                                                                                                     'cor': 0.2268993300847307,
                                                                                                                                     'cor_glo': 0.18951000051353004,
                                                                                                                                     'frac': 0.11048230753233552,
                                                                                                                                     'mean': -9.944154794035359e-18,
                                                                                                                                     'mean_glo': 0.05990616730611654,
                                                                                                                                     'rms': 1.0358692535937688,
                                                                                                                                     'rms_glo': 0.5106024318449734,
                                                                                                                                     'rmsc': 1.243463426072834,
                                                                                                                                     'rmsc_glo': 1.2731771324930052,
                                                                                                                                     'stdv_pc': 0.8050955482177808,
                                                                                                                                     'stdv_pc_ratio_to_obs': 0.9341982774903266,
                                                                                                                                     'tcor_cbf_vs_eof_pc': 0.17066099708139157},
                                                                                                                            'period': '1900-2005'},
                                                                                                                    'SON': {'best_matching_model_eofs__cor': 2,
                                                                                                                            'best_matching_model_eofs__rms': 2,
                                                                                                                            'best_matching_model_eofs__tcor_cbf_vs_eof_pc': 1,
                                                                                                                            'cbf': {'bias': 0.00019006398323262466,
                                                                                                                                    'bias_glo': -0.1644963540884281,
                                                                                                                                    'cor': 0.9697078666317167,
                                                                                                                                    'cor_glo': 0.8229233620839056,
                                                                                                                                    'frac': 0.22874172096322481,
                                                                                                                                    'frac_cbf_regrid': 0.2304443358890409,
                                                                                                                                    'mean': 1.3524050519888087e-16,
                                                                                                                                    'mean_glo': -0.35261533551484,
                                                                                                                                    'rms': 0.26286566283634333,
                                                                                                                                    'rms_glo': 0.2828005107210163,
                                                                                                                                    'rmsc': 0.2461387193557723,
                                                                                                                                    'rmsc_glo': 0.5951077968817761,
                                                                                                                                    'stdv_pc': 0.9053448882764242,
                                                                                                                                    'stdv_pc_ratio_to_obs': 1.1687622633701489},
                                                                                                                            'eof1': {'bias': -3.8265290941288314e-05,
                                                                                                                                     'bias_glo': -0.24436607628046053,
                                                                                                                                     'cor': 0.4744766735357681,
                                                                                                                                     'cor_glo': 0.45195196389082287,
                                                                                                                                     'frac': 0.2890946070308296,
                                                                                                                                     'mean': 1.3325167424007381e-16,
                                                                                                                                     'mean_glo': -0.4324850549467124,
                                                                                                                                     'rms': 0.9643155669187716,
                                                                                                                                     'rms_glo': 0.467270016981661,
                                                                                                                                     'rmsc': 1.0252056538207204,
                                                                                                                                     'rmsc_glo': 1.046946056969488,
                                                                                                                                     'stdv_pc': 1.0520946596648868,
                                                                                                                                     'stdv_pc_ratio_to_obs': 1.358210060754369,
                                                                                                                                     'tcor_cbf_vs_eof_pc': 0.549981301370419},
                                                                                                                            'eof2': {'bias': 0.00026199717731410327,
                                                                                                                                     'bias_glo': 0.047198502519337215,
                                                                                                                                     'cor': 0.8444757464886453,
                                                                                                                                     'cor_glo': 0.6856908445939938,
                                                                                                                                     'frac': 0.20514516549665224,
                                                                                                                                     'mean': -2.883804890270254e-17,
                                                                                                                                     'mean_glo': 0.1409204799747022,
                                                                                                                                     'rms': 0.4745496608324089,
                                                                                                                                     'rms_glo': 0.2971985440896915,
                                                                                                                                     'rmsc': 0.557717224446595,
                                                                                                                                     'rmsc_glo': 0.7928545372503552,
                                                                                                                                     'stdv_pc': 0.8862688075532544,
                                                                                                                                     'stdv_pc_ratio_to_obs': 1.1441358435704094,
                                                                                                                                     'tcor_cbf_vs_eof_pc': -0.8250494583924171},
                                                                                                                            'eof3': {'bias': -0.00011549505482400923,
                                                                                                                                     'bias_glo': 0.05002616318549993,
                                                                                                                                     'cor': 0.09718283944935642,
                                                                                                                                     'cor_glo': 0.1313144744003926,
                                                                                                                                     'frac': 0.14254378932888373,
                                                                                                                                     'mean': -2.883804890270254e-17,
                                                                                                                                     'mean_glo': 0.1380928166524696,
                                                                                                                                     'rms': 1.0158909291452087,
                                                                                                                                     'rms_glo': 0.4159302040141421,
                                                                                                                                     'rmsc': 1.3437389095491143,
                                                                                                                                     'rmsc_glo': 1.3180937296857207,
                                                                                                                                     'stdv_pc': 0.7387695231777617,
                                                                                                                                     'stdv_pc_ratio_to_obs': 0.9537204563687722,
                                                                                                                                     'tcor_cbf_vs_eof_pc': -0.07909538108292401},
                                                                                                                            'period': '1900-2005'},
                                                                                                                    'target_model_eofs': 2}}}}},
                                               'provenance': {'commandLine': '../variability_modes_driver.py '
                                                                             '-p '
                                                                             '../../../sample_setups/pcmdi_parameter_files/variability_modes/myParam_NPO_cmip6.py '
                                                                             '--case_id '
                                                                             'v20220825 '
                                                                             '--mip '
                                                                             'cmip6 '
                                                                             '--exp '
                                                                             'historical '
                                                                             '--modnames '
                                                                             'UKESM1-1-LL '
                                                                             '--realization '
                                                                             'r1i1p1f2 '
                                                                             '--parallel '
                                                                             'True '
                                                                             '--no_nc_out_obs '
                                                                             '--no_plot_obs',
                                                              'conda': {'Platform': 'linux-64',
                                                                        'PythonVersion': '3.7.3.final.0',
                                                                        'Version': '4.14.0',
                                                                        'buildVersion': '3.18.8'},
                                                              'date': '2022-08-25 '
                                                                      '23:38:23',
                                                              'history': '',
                                                              'openGL': {'GLX': {'client': {},
                                                                                 'server': {}}},
                                                              'osAccess': False,
                                                              'packages': {'PMP': '2.0',
                                                                           'PMPObs': 'See '
                                                                                     "'References' "
                                                                                     'key '
                                                                                     'below, '
                                                                                     'for '
                                                                                     'detailed '
                                                                                     'obs '
                                                                                     'provenance '
                                                                                     'information.',
                                                                           'blas': '0.3.21',
                                                                           'cdat_info': '8.2.1',
                                                                           'cdms': '3.1.5',
                                                                           'cdp': '1.7.0',
                                                                           'cdtime': '3.1.4',
                                                                           'cdutil': '8.2.1',
                                                                           'clapack': None,
                                                                           'esmf': '8.2.0',
                                                                           'esmpy': '8.2.0',
                                                                           'genutil': '8.2.1',
                                                                           'lapack': '3.9.0',
                                                                           'matplotlib': None,
                                                                           'mesalib': None,
                                                                           'numpy': '1.23.2',
                                                                           'python': '3.10.6',
                                                                           'scipy': '1.9.0',
                                                                           'uvcdat': None,
                                                                           'vcs': None,
                                                                           'vtk': None},
                                                              'platform': {'Name': 'gates.llnl.gov',
                                                                           'OS': 'Linux',
                                                                           'Version': '3.10.0-1160.71.1.el7.x86_64'},
                                                              'script': '#!/usr/bin/env '
                                                                        'python\n'
                                                                        '\n'
                                                                        '"""\n'
                                                                        '# '
                                                                        'Modes '
                                                                        'of '
                                                                        'Variability '
                                                                        'Metrics\n'
                                                                        '- '
                                                                        'Calculate '
                                                                        'metrics '
                                                                        'for '
                                                                        'modes '
                                                                        'of '
                                                                        'varibility '
                                                                        'from '
                                                                        'archive '
                                                                        'of '
                                                                        'CMIP '
                                                                        'models\n'
                                                                        '- '
                                                                        'Author: '
                                                                        'Jiwoo '
                                                                        'Lee '
                                                                        '(lee1043@llnl.gov), '
                                                                        'PCMDI, '
                                                                        'LLNL\n'
                                                                        '\n'
                                                                        '## '
                                                                        'EOF1 '
                                                                        'based '
                                                                        'variability '
                                                                        'modes\n'
                                                                        '- '
                                                                        'NAM: '
                                                                        'Northern '
                                                                        'Annular '
                                                                        'Mode\n'
                                                                        '- '
                                                                        'NAO: '
                                                                        'Northern '
                                                                        'Atlantic '
                                                                        'Oscillation\n'
                                                                        '- '
                                                                        'SAM: '
                                                                        'Southern '
                                                                        'Annular '
                                                                        'Mode\n'
                                                                        '- '
                                                                        'PNA: '
                                                                        'Pacific '
                                                                        'North '
                                                                        'American '
                                                                        'Pattern\n'
                                                                        '- '
                                                                        'PDO: '
                                                                        'Pacific '
                                                                        'Decadal '
                                                                        'Oscillation\n'
                                                                        '\n'
                                                                        '## '
                                                                        'EOF2 '
                                                                        'based '
                                                                        'variability '
                                                                        'modes\n'
                                                                        '- '
                                                                        'NPO: '
                                                                        'North '
                                                                        'Pacific '
                                                                        'Oscillation '
                                                                        '(2nd '
                                                                        'EOFs '
                                                                        'of '
                                                                        'PNA '
                                                                        'domain)\n'
                                                                        '- '
                                                                        'NPGO: '
                                                                        'North '
                                                                        'Pacific '
                                                                        'Gyre '
                                                                        'Oscillation '
                                                                        '(2nd '
                                                                        'EOFs '
                                                                        'of '
                                                                        'PDO '
                                                                        'domain)\n'
                                                                        '\n'
                                                                        '## '
                                                                        'Reference:\n'
                                                                        'Lee, '
                                                                        'J., '
                                                                        'K. '
                                                                        'Sperber, '
                                                                        'P. '
                                                                        'Gleckler, '
                                                                        'C. '
                                                                        'Bonfils, '
                                                                        'and '
                                                                        'K. '
                                                                        'Taylor, '
                                                                        '2019:\n'
                                                                        'Quantifying '
                                                                        'the '
                                                                        'Agreement '
                                                                        'Between '
                                                                        'Observed '
                                                                        'and '
                                                                        'Simulated '
                                                                        'Extratropical '
                                                                        'Modes '
                                                                        'of\n'
                                                                        'Interannual '
                                                                        'Variability. '
                                                                        'Climate '
                                                                        'Dynamics.\n'
                                                                        'https://doi.org/10.1007/s00382-018-4355-4\n'
                                                                        '\n'
                                                                        '## '
                                                                        'Auspices:\n'
                                                                        'This '
                                                                        'work '
                                                                        'was '
                                                                        'performed '
                                                                        'under '
                                                                        'the '
                                                                        'auspices '
                                                                        'of '
                                                                        'the '
                                                                        'U.S. '
                                                                        'Department '
                                                                        'of\n'
                                                                        'Energy '
                                                                        'by '
                                                                        'Lawrence '
                                                                        'Livermore '
                                                                        'National '
                                                                        'Laboratory '
                                                                        'under '
                                                                        'Contract\n'
                                                                        'DE-AC52-07NA27344. '
                                                                        'Lawrence '
                                                                        'Livermore '
                                                                        'National '
                                                                        'Laboratory '
                                                                        'is '
                                                                        'operated '
                                                                        'by\n'
                                                                        'Lawrence '
                                                                        'Livermore '
                                                                        'National '
                                                                        'Security, '
                                                                        'LLC, '
                                                                        'for '
                                                                        'the '
                                                                        'U.S. '
                                                                        'Department '
                                                                        'of '
                                                                        'Energy,\n'
                                                                        'National '
                                                                        'Nuclear '
                                                                        'Security '
                                                                        'Administration '
                                                                        'under '
                                                                        'Contract '
                                                                        'DE-AC52-07NA27344.\n'
                                                                        '\n'
                                                                        '## '
                                                                        'Disclaimer:\n'
                                                                        'This '
                                                                        'document '
                                                                        'was '
                                                                        'prepared '
                                                                        'as an '
                                                                        'account '
                                                                        'of '
                                                                        'work '
                                                                        'sponsored '
                                                                        'by '
                                                                        'an\n'
                                                                        'agency '
                                                                        'of '
                                                                        'the '
                                                                        'United '
                                                                        'States '
                                                                        'government. '
                                                                        'Neither '
                                                                        'the '
                                                                        'United '
                                                                        'States '
                                                                        'government\n'
                                                                        'nor '
                                                                        'Lawrence '
                                                                        'Livermore '
                                                                        'National '
                                                                        'Security, '
                                                                        'LLC, '
                                                                        'nor '
                                                                        'any '
                                                                        'of '
                                                                        'their '
                                                                        'employees\n'
                                                                        'makes '
                                                                        'any '
                                                                        'warranty, '
                                                                        'expressed '
                                                                        'or '
                                                                        'implied, '
                                                                        'or '
                                                                        'assumes '
                                                                        'any '
                                                                        'legal '
                                                                        'liability '
                                                                        'or\n'
                                                                        'responsibility '
                                                                        'for '
                                                                        'the '
                                                                        'accuracy, '
                                                                        'completeness, '
                                                                        'or '
                                                                        'usefulness '
                                                                        'of '
                                                                        'any\n'
                                                                        'information, '
                                                                        'apparatus, '
                                                                        'product, '
                                                                        'or '
                                                                        'process '
                                                                        'disclosed, '
                                                                        'or '
                                                                        'represents '
                                                                        'that '
                                                                        'its\n'
                                                                        'use '
                                                                        'would '
                                                                        'not '
                                                                        'infringe '
                                                                        'privately '
                                                                        'owned '
                                                                        'rights. '
                                                                        'Reference '
                                                                        'herein '
                                                                        'to '
                                                                        'any '
                                                                        'specific\n'
                                                                        'commercial '
                                                                        'product, '
                                                                        'process, '
                                                                        'or '
                                                                        'service '
                                                                        'by '
                                                                        'trade '
                                                                        'name, '
                                                                        'trademark, '
                                                                        'manufacturer,\n'
                                                                        'or '
                                                                        'otherwise '
                                                                        'does '
                                                                        'not '
                                                                        'necessarily '
                                                                        'constitute '
                                                                        'or '
                                                                        'imply '
                                                                        'its '
                                                                        'endorsement,\n'
                                                                        'recommendation, '
                                                                        'or '
                                                                        'favoring '
                                                                        'by '
                                                                        'the '
                                                                        'United '
                                                                        'States '
                                                                        'government '
                                                                        'or '
                                                                        'Lawrence\n'
                                                                        'Livermore '
                                                                        'National '
                                                                        'Security, '
                                                                        'LLC. '
                                                                        'The '
                                                                        'views '
                                                                        'and '
                                                                        'opinions '
                                                                        'of '
                                                                        'authors '
                                                                        'expressed\n'
                                                                        'herein '
                                                                        'do '
                                                                        'not '
                                                                        'necessarily '
                                                                        'state '
                                                                        'or '
                                                                        'reflect '
                                                                        'those '
                                                                        'of '
                                                                        'the '
                                                                        'United '
                                                                        'States\n'
                                                                        'government '
                                                                        'or '
                                                                        'Lawrence '
                                                                        'Livermore '
                                                                        'National '
                                                                        'Security, '
                                                                        'LLC, '
                                                                        'and '
                                                                        'shall '
                                                                        'not '
                                                                        'be '
                                                                        'used\n'
                                                                        'for '
                                                                        'advertising '
                                                                        'or '
                                                                        'product '
                                                                        'endorsement '
                                                                        'purposes.\n'
                                                                        '"""\n'
                                                                        '\n'
                                                                        'from '
                                                                        '__future__ '
                                                                        'import '
                                                                        'print_function\n'
                                                                        '\n'
                                                                        'import '
                                                                        'glob\n'
                                                                        'import '
                                                                        'json\n'
                                                                        'import '
                                                                        'os\n'
                                                                        'import '
                                                                        'sys\n'
                                                                        'from '
                                                                        'argparse '
                                                                        'import '
                                                                        'RawTextHelpFormatter\n'
                                                                        'from '
                                                                        'shutil '
                                                                        'import '
                                                                        'copyfile\n'
                                                                        '\n'
                                                                        'import '
                                                                        'cdtime\n'
                                                                        'import '
                                                                        'cdutil\n'
                                                                        'import '
                                                                        'MV2\n'
                                                                        'from '
                                                                        'genutil '
                                                                        'import '
                                                                        'StringConstructor\n'
                                                                        '\n'
                                                                        'import '
                                                                        'pcmdi_metrics\n'
                                                                        'from '
                                                                        'pcmdi_metrics '
                                                                        'import '
                                                                        'resources\n'
                                                                        'from '
                                                                        'pcmdi_metrics.variability_mode.lib '
                                                                        'import '
                                                                        '(\n'
                                                                        '    '
                                                                        'AddParserArgument,\n'
                                                                        '    '
                                                                        'VariabilityModeCheck,\n'
                                                                        '    '
                                                                        'YearCheck,\n'
                                                                        '    '
                                                                        'adjust_timeseries,\n'
                                                                        '    '
                                                                        'calc_stats_save_dict,\n'
                                                                        '    '
                                                                        'calcSTD,\n'
                                                                        '    '
                                                                        'calcTCOR,\n'
                                                                        '    '
                                                                        'debug_print,\n'
                                                                        '    '
                                                                        'eof_analysis_get_variance_mode,\n'
                                                                        '    '
                                                                        'gain_pcs_fraction,\n'
                                                                        '    '
                                                                        'gain_pseudo_pcs,\n'
                                                                        '    '
                                                                        'get_domain_range,\n'
                                                                        '    '
                                                                        'linear_regression_on_globe_for_teleconnection,\n'
                                                                        '    '
                                                                        'plot_map,\n'
                                                                        '    '
                                                                        'read_data_in,\n'
                                                                        '    '
                                                                        'sort_human,\n'
                                                                        '    '
                                                                        'tree,\n'
                                                                        '    '
                                                                        'variability_metrics_to_json,\n'
                                                                        '    '
                                                                        'write_nc_output,\n'
                                                                        ')\n'
                                                                        '\n'
                                                                        '# To '
                                                                        'avoid '
                                                                        'below '
                                                                        'error\n'
                                                                        '# '
                                                                        'OpenBLAS '
                                                                        'blas_thread_init: '
                                                                        'pthread_create '
                                                                        'failed '
                                                                        'for '
                                                                        'thread '
                                                                        'XX of '
                                                                        '96: '
                                                                        'Resource '
                                                                        'temporarily '
                                                                        'unavailable\n'
                                                                        'os.environ["OPENBLAS_NUM_THREADS"] '
                                                                        '= '
                                                                        '"1"\n'
                                                                        '\n'
                                                                        '# '
                                                                        'Must '
                                                                        'be '
                                                                        'done '
                                                                        'before '
                                                                        'any '
                                                                        'CDAT '
                                                                        'library '
                                                                        'is '
                                                                        'called.\n'
                                                                        '# '
                                                                        'https://github.com/CDAT/cdat/issues/2213\n'
                                                                        'if '
                                                                        '"UVCDAT_ANONYMOUS_LOG" '
                                                                        'not '
                                                                        'in '
                                                                        'os.environ:\n'
                                                                        '    '
                                                                        'os.environ["UVCDAT_ANONYMOUS_LOG"] '
                                                                        '= '
                                                                        '"no"\n'
                                                                        '\n'
                                                                        'regions_specs '
                                                                        '= {}\n'
                                                                        'egg_pth '
                                                                        '= '
                                                                        'resources.resource_path()\n'
                                                                        'exec(\n'
                                                                        '    '
                                                                        'compile(\n'
                                                                        '        '
                                                                        'open(os.path.join(egg_pth, '
                                                                        '"default_regions.py")).read(),\n'
                                                                        '        '
                                                                        'os.path.join(egg_pth, '
                                                                        '"default_regions.py"),\n'
                                                                        '        '
                                                                        '"exec",\n'
                                                                        '    '
                                                                        ')\n'
                                                                        ')\n'
                                                                        '\n'
                                                                        '# '
                                                                        '=================================================\n'
                                                                        '# '
                                                                        'Collect '
                                                                        'user '
                                                                        'defined '
                                                                        'options\n'
                                                                        '# '
                                                                        '-------------------------------------------------\n'
                                                                        'P = '
                                                                        'pcmdi_metrics.driver.pmp_parser.PMPParser(\n'
                                                                        '    '
                                                                        'description="Runs '
                                                                        'PCMDI '
                                                                        'Modes '
                                                                        'of '
                                                                        'Variability '
                                                                        'Computations",\n'
                                                                        '    '
                                                                        'formatter_class=RawTextHelpFormatter,\n'
                                                                        ')\n'
                                                                        'P = '
                                                                        'AddParserArgument(P)\n'
                                                                        'param '
                                                                        '= '
                                                                        'P.get_parameter()\n'
                                                                        '\n'
                                                                        '# '
                                                                        'Pre-defined '
                                                                        'options\n'
                                                                        'mip = '
                                                                        'param.mip\n'
                                                                        'exp = '
                                                                        'param.exp\n'
                                                                        'fq = '
                                                                        'param.frequency\n'
                                                                        'realm '
                                                                        '= '
                                                                        'param.realm\n'
                                                                        'print("mip:", '
                                                                        'mip)\n'
                                                                        'print("exp:", '
                                                                        'exp)\n'
                                                                        'print("fq:", '
                                                                        'fq)\n'
                                                                        'print("realm:", '
                                                                        'realm)\n'
                                                                        '\n'
                                                                        '# '
                                                                        'On/off '
                                                                        'switches\n'
                                                                        'obs_compare '
                                                                        '= '
                                                                        'True  '
                                                                        '# '
                                                                        'Statistics '
                                                                        'against '
                                                                        'observation\n'
                                                                        'CBF = '
                                                                        'param.CBF  '
                                                                        '# '
                                                                        'Conduct '
                                                                        'CBF '
                                                                        'analysis\n'
                                                                        'ConvEOF '
                                                                        '= '
                                                                        'param.ConvEOF  '
                                                                        '# '
                                                                        'Conduct '
                                                                        'conventional '
                                                                        'EOF '
                                                                        'analysis\n'
                                                                        '\n'
                                                                        'EofScaling '
                                                                        '= '
                                                                        'param.EofScaling  '
                                                                        '# If '
                                                                        'True, '
                                                                        'consider '
                                                                        'EOF '
                                                                        'with '
                                                                        'unit '
                                                                        'variance\n'
                                                                        'RmDomainMean '
                                                                        '= '
                                                                        'param.RemoveDomainMean  '
                                                                        '# If '
                                                                        'True, '
                                                                        'remove '
                                                                        'Domain '
                                                                        'Mean '
                                                                        'of '
                                                                        'each '
                                                                        'time '
                                                                        'step\n'
                                                                        'LandMask '
                                                                        '= '
                                                                        'param.landmask  '
                                                                        '# If '
                                                                        'True, '
                                                                        'maskout '
                                                                        'land '
                                                                        'region '
                                                                        'thus '
                                                                        'consider '
                                                                        'only '
                                                                        'over '
                                                                        'ocean\n'
                                                                        '\n'
                                                                        'print("EofScaling:", '
                                                                        'EofScaling)\n'
                                                                        'print("RmDomainMean:", '
                                                                        'RmDomainMean)\n'
                                                                        'print("LandMask:", '
                                                                        'LandMask)\n'
                                                                        '\n'
                                                                        'nc_out_obs '
                                                                        '= '
                                                                        'param.nc_out_obs  '
                                                                        '# '
                                                                        'Record '
                                                                        'NetCDF '
                                                                        'output\n'
                                                                        'plot_obs '
                                                                        '= '
                                                                        'param.plot_obs  '
                                                                        '# '
                                                                        'Generate '
                                                                        'plots\n'
                                                                        'nc_out_model '
                                                                        '= '
                                                                        'param.nc_out  '
                                                                        '# '
                                                                        'Record '
                                                                        'NetCDF '
                                                                        'output\n'
                                                                        'plot_model '
                                                                        '= '
                                                                        'param.plot  '
                                                                        '# '
                                                                        'Generate '
                                                                        'plots\n'
                                                                        'update_json '
                                                                        '= '
                                                                        'param.update_json\n'
                                                                        '\n'
                                                                        'print("nc_out_obs, '
                                                                        'plot_obs:", '
                                                                        'nc_out_obs, '
                                                                        'plot_obs)\n'
                                                                        'print("nc_out_model, '
                                                                        'plot_model:", '
                                                                        'nc_out_model, '
                                                                        'plot_model)\n'
                                                                        '\n'
                                                                        'cmec '
                                                                        '= '
                                                                        'False\n'
                                                                        'if '
                                                                        'hasattr(param, '
                                                                        '"cmec"):\n'
                                                                        '    '
                                                                        'cmec '
                                                                        '= '
                                                                        'param.cmec  '
                                                                        '# '
                                                                        'Generate '
                                                                        'CMEC '
                                                                        'compliant '
                                                                        'json\n'
                                                                        'print("CMEC:" '
                                                                        '+ '
                                                                        'str(cmec))\n'
                                                                        '\n'
                                                                        '# '
                                                                        'Check '
                                                                        'given '
                                                                        'mode '
                                                                        'of '
                                                                        'variability\n'
                                                                        'mode '
                                                                        '= '
                                                                        'VariabilityModeCheck(param.variability_mode, '
                                                                        'P)\n'
                                                                        'print("mode:", '
                                                                        'mode)\n'
                                                                        '\n'
                                                                        '# '
                                                                        'Variables\n'
                                                                        'var = '
                                                                        'param.varModel\n'
                                                                        '\n'
                                                                        '# '
                                                                        'Check '
                                                                        'dependency '
                                                                        'for '
                                                                        'given '
                                                                        'season '
                                                                        'option\n'
                                                                        'seasons '
                                                                        '= '
                                                                        'param.seasons\n'
                                                                        'print("seasons:", '
                                                                        'seasons)\n'
                                                                        '\n'
                                                                        '# '
                                                                        'Observation '
                                                                        'information\n'
                                                                        'obs_name '
                                                                        '= '
                                                                        'param.reference_data_name\n'
                                                                        'obs_path '
                                                                        '= '
                                                                        'param.reference_data_path\n'
                                                                        'obs_var '
                                                                        '= '
                                                                        'param.varOBS\n'
                                                                        '\n'
                                                                        '# '
                                                                        'Path '
                                                                        'to '
                                                                        'model '
                                                                        'data '
                                                                        'as '
                                                                        'string '
                                                                        'template\n'
                                                                        'modpath '
                                                                        '= '
                                                                        'StringConstructor(param.modpath)\n'
                                                                        'if '
                                                                        'LandMask:\n'
                                                                        '    '
                                                                        'modpath_lf '
                                                                        '= '
                                                                        'StringConstructor(param.modpath_lf)\n'
                                                                        '\n'
                                                                        '# '
                                                                        'Check '
                                                                        'given '
                                                                        'model '
                                                                        'option\n'
                                                                        'models '
                                                                        '= '
                                                                        'param.modnames\n'
                                                                        '\n'
                                                                        '# '
                                                                        'Include '
                                                                        'all '
                                                                        'models '
                                                                        'if '
                                                                        'conditioned\n'
                                                                        'if '
                                                                        '("all" '
                                                                        'in '
                                                                        '[m.lower() '
                                                                        'for m '
                                                                        'in '
                                                                        'models]) '
                                                                        'or '
                                                                        '(models '
                                                                        '== '
                                                                        '"all"):\n'
                                                                        '    '
                                                                        'model_index_path '
                                                                        '= '
                                                                        'param.modpath.split("/")[-1].split(".").index("%(model)")\n'
                                                                        '    '
                                                                        'models '
                                                                        '= [\n'
                                                                        '        '
                                                                        'p.split("/")[-1].split(".")[model_index_path]\n'
                                                                        '        '
                                                                        'for p '
                                                                        'in '
                                                                        'glob.glob(\n'
                                                                        '            '
                                                                        'modpath(mip=mip, '
                                                                        'exp=exp, '
                                                                        'model="*", '
                                                                        'realization="*", '
                                                                        'variable=var)\n'
                                                                        '        '
                                                                        ')\n'
                                                                        '    '
                                                                        ']\n'
                                                                        '    # '
                                                                        'remove '
                                                                        'duplicates\n'
                                                                        '    '
                                                                        'models '
                                                                        '= '
                                                                        'sorted(list(dict.fromkeys(models)), '
                                                                        'key=lambda '
                                                                        's: '
                                                                        's.lower())\n'
                                                                        '\n'
                                                                        'print("models:", '
                                                                        'models)\n'
                                                                        'print("number '
                                                                        'of '
                                                                        'models:", '
                                                                        'len(models))\n'
                                                                        '\n'
                                                                        '# '
                                                                        'Realizations\n'
                                                                        'realization '
                                                                        '= '
                                                                        'param.realization\n'
                                                                        'print("realization: '
                                                                        '", '
                                                                        'realization)\n'
                                                                        '\n'
                                                                        '# EOF '
                                                                        'ordinal '
                                                                        'number\n'
                                                                        'eofn_obs '
                                                                        '= '
                                                                        'int(param.eofn_obs)\n'
                                                                        'eofn_mod '
                                                                        '= '
                                                                        'int(param.eofn_mod)\n'
                                                                        '\n'
                                                                        '# '
                                                                        'case '
                                                                        'id\n'
                                                                        'case_id '
                                                                        '= '
                                                                        'param.case_id\n'
                                                                        '\n'
                                                                        '# '
                                                                        'Output\n'
                                                                        'outdir_template '
                                                                        '= '
                                                                        'param.process_templated_argument("results_dir")\n'
                                                                        'outdir '
                                                                        '= '
                                                                        'StringConstructor(\n'
                                                                        '    '
                                                                        'str(\n'
                                                                        '        '
                                                                        'outdir_template(\n'
                                                                        '            '
                                                                        'output_type="%(output_type)",\n'
                                                                        '            '
                                                                        'mip=mip,\n'
                                                                        '            '
                                                                        'exp=exp,\n'
                                                                        '            '
                                                                        'variability_mode=mode,\n'
                                                                        '            '
                                                                        'reference_data_name=obs_name,\n'
                                                                        '            '
                                                                        'case_id=case_id,\n'
                                                                        '        '
                                                                        ')\n'
                                                                        '    '
                                                                        ')\n'
                                                                        ')\n'
                                                                        '\n'
                                                                        '# '
                                                                        'Debug\n'
                                                                        'debug '
                                                                        '= '
                                                                        'param.debug\n'
                                                                        '\n'
                                                                        '# '
                                                                        'Year\n'
                                                                        'msyear '
                                                                        '= '
                                                                        'param.msyear\n'
                                                                        'meyear '
                                                                        '= '
                                                                        'param.meyear\n'
                                                                        'YearCheck(msyear, '
                                                                        'meyear, '
                                                                        'P)\n'
                                                                        '\n'
                                                                        'osyear '
                                                                        '= '
                                                                        'param.osyear\n'
                                                                        'oeyear '
                                                                        '= '
                                                                        'param.oeyear\n'
                                                                        'YearCheck(osyear, '
                                                                        'oeyear, '
                                                                        'P)\n'
                                                                        '\n'
                                                                        '# '
                                                                        'Units '
                                                                        'adjustment\n'
                                                                        'ObsUnitsAdjust '
                                                                        '= '
                                                                        'param.ObsUnitsAdjust\n'
                                                                        'ModUnitsAdjust '
                                                                        '= '
                                                                        'param.ModUnitsAdjust\n'
                                                                        '\n'
                                                                        '# '
                                                                        'lon1g '
                                                                        'and '
                                                                        'lon2g '
                                                                        'is '
                                                                        'for '
                                                                        'global '
                                                                        'map '
                                                                        'plotting\n'
                                                                        'if '
                                                                        'mode '
                                                                        'in '
                                                                        '["PDO", '
                                                                        '"NPGO"]:\n'
                                                                        '    '
                                                                        'lon1g '
                                                                        '= 0\n'
                                                                        '    '
                                                                        'lon2g '
                                                                        '= '
                                                                        '360\n'
                                                                        'else:\n'
                                                                        '    '
                                                                        'lon1g '
                                                                        '= '
                                                                        '-180\n'
                                                                        '    '
                                                                        'lon2g '
                                                                        '= '
                                                                        '180\n'
                                                                        '\n'
                                                                        '# '
                                                                        'parallel\n'
                                                                        'parallel '
                                                                        '= '
                                                                        'param.parallel\n'
                                                                        'print("parallel:", '
                                                                        'parallel)\n'
                                                                        '\n'
                                                                        '# '
                                                                        '=================================================\n'
                                                                        '# '
                                                                        'Time '
                                                                        'period '
                                                                        'adjustment\n'
                                                                        '# '
                                                                        '-------------------------------------------------\n'
                                                                        'start_time '
                                                                        '= '
                                                                        'cdtime.comptime(msyear, '
                                                                        '1, 1, '
                                                                        '0, '
                                                                        '0)\n'
                                                                        'end_time '
                                                                        '= '
                                                                        'cdtime.comptime(meyear, '
                                                                        '12, '
                                                                        '31, '
                                                                        '23, '
                                                                        '59)\n'
                                                                        '\n'
                                                                        'try:\n'
                                                                        '    # '
                                                                        'osyear '
                                                                        'and '
                                                                        'oeyear '
                                                                        'variables '
                                                                        'were '
                                                                        'defined.\n'
                                                                        '    '
                                                                        'start_time_obs '
                                                                        '= '
                                                                        'cdtime.comptime(osyear, '
                                                                        '1, 1, '
                                                                        '0, '
                                                                        '0)\n'
                                                                        '    '
                                                                        'end_time_obs '
                                                                        '= '
                                                                        'cdtime.comptime(oeyear, '
                                                                        '12, '
                                                                        '31, '
                                                                        '23, '
                                                                        '59)\n'
                                                                        'except '
                                                                        'NameError:\n'
                                                                        '    # '
                                                                        'osyear, '
                                                                        'oeyear '
                                                                        'variables '
                                                                        'were '
                                                                        'NOT '
                                                                        'defined\n'
                                                                        '    '
                                                                        'start_time_obs '
                                                                        '= '
                                                                        'start_time\n'
                                                                        '    '
                                                                        'end_time_obs '
                                                                        '= '
                                                                        'end_time\n'
                                                                        '\n'
                                                                        '# '
                                                                        '=================================================\n'
                                                                        '# '
                                                                        'Region '
                                                                        'control\n'
                                                                        '# '
                                                                        '-------------------------------------------------\n'
                                                                        'region_subdomain '
                                                                        '= '
                                                                        'get_domain_range(mode, '
                                                                        'regions_specs)\n'
                                                                        '\n'
                                                                        '# '
                                                                        '=================================================\n'
                                                                        '# '
                                                                        'Create '
                                                                        'output '
                                                                        'directories\n'
                                                                        '# '
                                                                        '-------------------------------------------------\n'
                                                                        'for '
                                                                        'output_type '
                                                                        'in '
                                                                        '["graphics", '
                                                                        '"diagnostic_results", '
                                                                        '"metrics_results"]:\n'
                                                                        '    '
                                                                        'if '
                                                                        'not '
                                                                        'os.path.exists(outdir(output_type=output_type)):\n'
                                                                        '        '
                                                                        'os.makedirs(outdir(output_type=output_type))\n'
                                                                        '    '
                                                                        'print(outdir(output_type=output_type))\n'
                                                                        '\n'
                                                                        '# '
                                                                        '=================================================\n'
                                                                        '# Set '
                                                                        'dictionary '
                                                                        'for '
                                                                        '.json '
                                                                        'record\n'
                                                                        '# '
                                                                        '-------------------------------------------------\n'
                                                                        'result_dict '
                                                                        '= '
                                                                        'tree()\n'
                                                                        '\n'
                                                                        '# Set '
                                                                        'metrics '
                                                                        'output '
                                                                        'JSON '
                                                                        'file\n'
                                                                        'json_filename '
                                                                        '= '
                                                                        '"_".join(\n'
                                                                        '    '
                                                                        '[\n'
                                                                        '        '
                                                                        '"var",\n'
                                                                        '        '
                                                                        '"mode",\n'
                                                                        '        '
                                                                        'mode,\n'
                                                                        '        '
                                                                        '"EOF" '
                                                                        '+ '
                                                                        'str(eofn_mod),\n'
                                                                        '        '
                                                                        '"stat",\n'
                                                                        '        '
                                                                        'mip,\n'
                                                                        '        '
                                                                        'exp,\n'
                                                                        '        '
                                                                        'fq,\n'
                                                                        '        '
                                                                        'realm,\n'
                                                                        '        '
                                                                        'str(msyear) '
                                                                        '+ "-" '
                                                                        '+ '
                                                                        'str(meyear),\n'
                                                                        '    '
                                                                        ']\n'
                                                                        ')\n'
                                                                        '\n'
                                                                        'json_file '
                                                                        '= '
                                                                        'os.path.join(outdir(output_type="metrics_results"), '
                                                                        'json_filename '
                                                                        '+ '
                                                                        '".json")\n'
                                                                        'json_file_org '
                                                                        '= '
                                                                        'os.path.join(\n'
                                                                        '    '
                                                                        'outdir(output_type="metrics_results"),\n'
                                                                        '    '
                                                                        '"_".join([json_filename, '
                                                                        '"org", '
                                                                        'str(os.getpid())]) '
                                                                        '+ '
                                                                        '".json",\n'
                                                                        ')\n'
                                                                        '\n'
                                                                        '# '
                                                                        'Archive '
                                                                        'if '
                                                                        'there '
                                                                        'is '
                                                                        'pre-existing '
                                                                        'JSON: '
                                                                        'preventing '
                                                                        'overwriting\n'
                                                                        'if '
                                                                        'os.path.isfile(json_file) '
                                                                        'and '
                                                                        'os.stat(json_file).st_size '
                                                                        '> 0:\n'
                                                                        '    '
                                                                        'copyfile(json_file, '
                                                                        'json_file_org)\n'
                                                                        '    '
                                                                        'if '
                                                                        'update_json:\n'
                                                                        '        '
                                                                        'fj = '
                                                                        'open(json_file)\n'
                                                                        '        '
                                                                        'result_dict '
                                                                        '= '
                                                                        'json.loads(fj.read())\n'
                                                                        '        '
                                                                        'fj.close()\n'
                                                                        '\n'
                                                                        'if '
                                                                        '"REF" '
                                                                        'not '
                                                                        'in '
                                                                        'list(result_dict.keys()):\n'
                                                                        '    '
                                                                        'result_dict["REF"] '
                                                                        '= {}\n'
                                                                        'if '
                                                                        '"RESULTS" '
                                                                        'not '
                                                                        'in '
                                                                        'list(result_dict.keys()):\n'
                                                                        '    '
                                                                        'result_dict["RESULTS"] '
                                                                        '= {}\n'
                                                                        '\n'
                                                                        '# '
                                                                        '=================================================\n'
                                                                        '# '
                                                                        'Observation\n'
                                                                        '# '
                                                                        '-------------------------------------------------\n'
                                                                        'if '
                                                                        'obs_compare:\n'
                                                                        '\n'
                                                                        '    '
                                                                        'obs_lf_path '
                                                                        '= '
                                                                        'None\n'
                                                                        '\n'
                                                                        '    # '
                                                                        'read '
                                                                        'data '
                                                                        'in\n'
                                                                        '    '
                                                                        'obs_timeseries, '
                                                                        'osyear, '
                                                                        'oeyear '
                                                                        '= '
                                                                        'read_data_in(\n'
                                                                        '        '
                                                                        'obs_name,\n'
                                                                        '        '
                                                                        'obs_path,\n'
                                                                        '        '
                                                                        'obs_lf_path,\n'
                                                                        '        '
                                                                        'obs_var,\n'
                                                                        '        '
                                                                        'var,\n'
                                                                        '        '
                                                                        'start_time_obs,\n'
                                                                        '        '
                                                                        'end_time_obs,\n'
                                                                        '        '
                                                                        'ObsUnitsAdjust,\n'
                                                                        '        '
                                                                        'LandMask,\n'
                                                                        '        '
                                                                        'debug=debug,\n'
                                                                        '    '
                                                                        ')\n'
                                                                        '\n'
                                                                        '    # '
                                                                        'Save '
                                                                        'global '
                                                                        'grid '
                                                                        'information '
                                                                        'for '
                                                                        'regrid '
                                                                        'below\n'
                                                                        '    '
                                                                        'ref_grid_global '
                                                                        '= '
                                                                        'obs_timeseries.getGrid()\n'
                                                                        '\n'
                                                                        '    # '
                                                                        'Declare '
                                                                        'dictionary '
                                                                        'variables '
                                                                        'to '
                                                                        'keep '
                                                                        'information '
                                                                        'from '
                                                                        'observation\n'
                                                                        '    '
                                                                        'eof_obs '
                                                                        '= {}\n'
                                                                        '    '
                                                                        'pc_obs '
                                                                        '= {}\n'
                                                                        '    '
                                                                        'frac_obs '
                                                                        '= {}\n'
                                                                        '    '
                                                                        'solver_obs '
                                                                        '= {}\n'
                                                                        '    '
                                                                        'reverse_sign_obs '
                                                                        '= {}\n'
                                                                        '    '
                                                                        'eof_lr_obs '
                                                                        '= {}\n'
                                                                        '    '
                                                                        'stdv_pc_obs '
                                                                        '= {}\n'
                                                                        '\n'
                                                                        '    # '
                                                                        'Dictonary '
                                                                        'for '
                                                                        'json '
                                                                        'archive\n'
                                                                        '    '
                                                                        'if '
                                                                        '"obs" '
                                                                        'not '
                                                                        'in '
                                                                        'list(result_dict["REF"].keys()):\n'
                                                                        '        '
                                                                        'result_dict["REF"]["obs"] '
                                                                        '= {}\n'
                                                                        '    '
                                                                        'if '
                                                                        '"defaultReference" '
                                                                        'not '
                                                                        'in '
                                                                        'list(result_dict["REF"]["obs"].keys()):\n'
                                                                        '        '
                                                                        'result_dict["REF"]["obs"]["defaultReference"] '
                                                                        '= {}\n'
                                                                        '    '
                                                                        'if '
                                                                        '"source" '
                                                                        'not '
                                                                        'in '
                                                                        'list(result_dict["REF"]["obs"]["defaultReference"].keys()):\n'
                                                                        '        '
                                                                        'result_dict["REF"]["obs"]["defaultReference"]["source"] '
                                                                        '= {}\n'
                                                                        '    '
                                                                        'if '
                                                                        'mode '
                                                                        'not '
                                                                        'in '
                                                                        'list(result_dict["REF"]["obs"]["defaultReference"].keys()):\n'
                                                                        '        '
                                                                        'result_dict["REF"]["obs"]["defaultReference"][mode] '
                                                                        '= {}\n'
                                                                        '\n'
                                                                        '    '
                                                                        'result_dict["REF"]["obs"]["defaultReference"]["source"] '
                                                                        '= '
                                                                        'obs_path\n'
                                                                        '    '
                                                                        'result_dict["REF"]["obs"]["defaultReference"]["reference_eofs"] '
                                                                        '= '
                                                                        'eofn_obs\n'
                                                                        '    '
                                                                        'result_dict["REF"]["obs"]["defaultReference"]["period"] '
                                                                        '= (\n'
                                                                        '        '
                                                                        'str(osyear) '
                                                                        '+ "-" '
                                                                        '+ '
                                                                        'str(oeyear)\n'
                                                                        '    '
                                                                        ')\n'
                                                                        '\n'
                                                                        '    # '
                                                                        '-------------------------------------------------\n'
                                                                        '    # '
                                                                        'Season '
                                                                        'loop\n'
                                                                        '    # '
                                                                        '- - - '
                                                                        '- - - '
                                                                        '- - - '
                                                                        '- - - '
                                                                        '- - - '
                                                                        '- - - '
                                                                        '- - - '
                                                                        '- - - '
                                                                        '-\n'
                                                                        '    '
                                                                        'debug_print("obs '
                                                                        'season '
                                                                        'loop '
                                                                        'starts", '
                                                                        'debug)\n'
                                                                        '\n'
                                                                        '    '
                                                                        'for '
                                                                        'season '
                                                                        'in '
                                                                        'seasons:\n'
                                                                        '        '
                                                                        'debug_print("season: '
                                                                        '" + '
                                                                        'season, '
                                                                        'debug)\n'
                                                                        '\n'
                                                                        '        '
                                                                        'if '
                                                                        'season '
                                                                        'not '
                                                                        'in '
                                                                        'list(\n'
                                                                        '            '
                                                                        'result_dict["REF"]["obs"]["defaultReference"][mode].keys()\n'
                                                                        '        '
                                                                        '):\n'
                                                                        '            '
                                                                        'result_dict["REF"]["obs"]["defaultReference"][mode][season] '
                                                                        '= {}\n'
                                                                        '\n'
                                                                        '        '
                                                                        'dict_head_obs '
                                                                        '= '
                                                                        'result_dict["REF"]["obs"]["defaultReference"][mode][season]\n'
                                                                        '\n'
                                                                        '        '
                                                                        '# '
                                                                        'Time '
                                                                        'series '
                                                                        'adjustment '
                                                                        '(remove '
                                                                        'annual '
                                                                        'cycle, '
                                                                        'seasonal '
                                                                        'mean '
                                                                        '(if '
                                                                        'needed),\n'
                                                                        '        '
                                                                        '# and '
                                                                        'subtracting '
                                                                        'domain '
                                                                        '(or '
                                                                        'global) '
                                                                        'mean '
                                                                        'of '
                                                                        'each '
                                                                        'time '
                                                                        'step)\n'
                                                                        '        '
                                                                        'debug_print("time '
                                                                        'series '
                                                                        'adjustment", '
                                                                        'debug)\n'
                                                                        '        '
                                                                        'obs_timeseries_season '
                                                                        '= '
                                                                        'adjust_timeseries(\n'
                                                                        '            '
                                                                        'obs_timeseries, '
                                                                        'mode, '
                                                                        'season, '
                                                                        'region_subdomain, '
                                                                        'RmDomainMean\n'
                                                                        '        '
                                                                        ')\n'
                                                                        '\n'
                                                                        '        '
                                                                        '# '
                                                                        'Extract '
                                                                        'subdomain\n'
                                                                        '        '
                                                                        'obs_timeseries_season_subdomain '
                                                                        '= '
                                                                        'obs_timeseries_season(region_subdomain)\n'
                                                                        '\n'
                                                                        '        '
                                                                        '# EOF '
                                                                        'analysis\n'
                                                                        '        '
                                                                        'debug_print("EOF '
                                                                        'analysis", '
                                                                        'debug)\n'
                                                                        '        '
                                                                        '(\n'
                                                                        '            '
                                                                        'eof_obs[season],\n'
                                                                        '            '
                                                                        'pc_obs[season],\n'
                                                                        '            '
                                                                        'frac_obs[season],\n'
                                                                        '            '
                                                                        'reverse_sign_obs[season],\n'
                                                                        '            '
                                                                        'solver_obs[season],\n'
                                                                        '        '
                                                                        ') = '
                                                                        'eof_analysis_get_variance_mode(\n'
                                                                        '            '
                                                                        'mode,\n'
                                                                        '            '
                                                                        'obs_timeseries_season_subdomain,\n'
                                                                        '            '
                                                                        'eofn=eofn_obs,\n'
                                                                        '            '
                                                                        'debug=debug,\n'
                                                                        '            '
                                                                        'EofScaling=EofScaling,\n'
                                                                        '        '
                                                                        ')\n'
                                                                        '\n'
                                                                        '        '
                                                                        '# '
                                                                        'Calculate '
                                                                        'stdv '
                                                                        'of pc '
                                                                        'time '
                                                                        'series\n'
                                                                        '        '
                                                                        'debug_print("calculate '
                                                                        'stdv '
                                                                        'of pc '
                                                                        'time '
                                                                        'series", '
                                                                        'debug)\n'
                                                                        '        '
                                                                        'stdv_pc_obs[season] '
                                                                        '= '
                                                                        'calcSTD(pc_obs[season])\n'
                                                                        '\n'
                                                                        '        '
                                                                        '# '
                                                                        'Linear '
                                                                        'regression '
                                                                        'to '
                                                                        'have '
                                                                        'extended '
                                                                        'global '
                                                                        'map; '
                                                                        'teleconnection '
                                                                        'purpose\n'
                                                                        '        '
                                                                        '(\n'
                                                                        '            '
                                                                        'eof_lr_obs[season],\n'
                                                                        '            '
                                                                        'slope_obs,\n'
                                                                        '            '
                                                                        'intercept_obs,\n'
                                                                        '        '
                                                                        ') = '
                                                                        'linear_regression_on_globe_for_teleconnection(\n'
                                                                        '            '
                                                                        'pc_obs[season],\n'
                                                                        '            '
                                                                        'obs_timeseries_season,\n'
                                                                        '            '
                                                                        'stdv_pc_obs[season],\n'
                                                                        '            '
                                                                        'RmDomainMean,\n'
                                                                        '            '
                                                                        'EofScaling,\n'
                                                                        '            '
                                                                        'debug=debug,\n'
                                                                        '        '
                                                                        ')\n'
                                                                        '\n'
                                                                        '        '
                                                                        '# - - '
                                                                        '- - - '
                                                                        '- - - '
                                                                        '- - - '
                                                                        '- - - '
                                                                        '- - - '
                                                                        '- - - '
                                                                        '- - - '
                                                                        '- -\n'
                                                                        '        '
                                                                        '# '
                                                                        'Record '
                                                                        'results\n'
                                                                        '        '
                                                                        '# . . '
                                                                        '. . . '
                                                                        '. . . '
                                                                        '. . . '
                                                                        '. . . '
                                                                        '. . . '
                                                                        '. . . '
                                                                        '. . . '
                                                                        '. .\n'
                                                                        '        '
                                                                        'debug_print("record '
                                                                        'results", '
                                                                        'debug)\n'
                                                                        '\n'
                                                                        '        '
                                                                        '# Set '
                                                                        'output '
                                                                        'file '
                                                                        'name '
                                                                        'for '
                                                                        'NetCDF '
                                                                        'and '
                                                                        'plot\n'
                                                                        '        '
                                                                        'output_filename_obs '
                                                                        '= '
                                                                        '"_".join(\n'
                                                                        '            '
                                                                        '[\n'
                                                                        '                '
                                                                        'mode,\n'
                                                                        '                '
                                                                        'var,\n'
                                                                        '                '
                                                                        '"EOF" '
                                                                        '+ '
                                                                        'str(eofn_obs),\n'
                                                                        '                '
                                                                        'season,\n'
                                                                        '                '
                                                                        '"obs",\n'
                                                                        '                '
                                                                        'str(osyear) '
                                                                        '+ "-" '
                                                                        '+ '
                                                                        'str(oeyear),\n'
                                                                        '            '
                                                                        ']\n'
                                                                        '        '
                                                                        ')\n'
                                                                        '        '
                                                                        'if '
                                                                        'EofScaling:\n'
                                                                        '            '
                                                                        'output_filename_obs '
                                                                        '+= '
                                                                        '"_EOFscaled"\n'
                                                                        '\n'
                                                                        '        '
                                                                        '# '
                                                                        'Save '
                                                                        'global '
                                                                        'map, '
                                                                        'pc '
                                                                        'timeseries, '
                                                                        'and '
                                                                        'fraction '
                                                                        'in '
                                                                        'NetCDF '
                                                                        'output\n'
                                                                        '        '
                                                                        'if '
                                                                        'nc_out_obs:\n'
                                                                        '            '
                                                                        'output_nc_file_obs '
                                                                        '= '
                                                                        'os.path.join(\n'
                                                                        '                '
                                                                        'outdir(output_type="diagnostic_results"), '
                                                                        'output_filename_obs\n'
                                                                        '            '
                                                                        ')\n'
                                                                        '            '
                                                                        'write_nc_output(\n'
                                                                        '                '
                                                                        'output_nc_file_obs,\n'
                                                                        '                '
                                                                        'eof_lr_obs[season],\n'
                                                                        '                '
                                                                        'pc_obs[season],\n'
                                                                        '                '
                                                                        'frac_obs[season],\n'
                                                                        '                '
                                                                        'slope_obs,\n'
                                                                        '                '
                                                                        'intercept_obs,\n'
                                                                        '            '
                                                                        ')\n'
                                                                        '\n'
                                                                        '        '
                                                                        '# '
                                                                        'Plotting\n'
                                                                        '        '
                                                                        'if '
                                                                        'plot_obs:\n'
                                                                        '            '
                                                                        'output_img_file_obs '
                                                                        '= '
                                                                        'os.path.join(\n'
                                                                        '                '
                                                                        'outdir(output_type="graphics"), '
                                                                        'output_filename_obs\n'
                                                                        '            '
                                                                        ')\n'
                                                                        '            '
                                                                        '# '
                                                                        'plot_map(mode, '
                                                                        "'[REF] "
                                                                        "'+obs_name, "
                                                                        'osyear, '
                                                                        'oeyear, '
                                                                        'season,\n'
                                                                        '            '
                                                                        '#          '
                                                                        'eof_obs[season], '
                                                                        'frac_obs[season],\n'
                                                                        '            '
                                                                        '#          '
                                                                        "output_img_file_obs+'_org_eof')\n"
                                                                        '            '
                                                                        'plot_map(\n'
                                                                        '                '
                                                                        'mode,\n'
                                                                        '                '
                                                                        '"[REF] '
                                                                        '" + '
                                                                        'obs_name,\n'
                                                                        '                '
                                                                        'osyear,\n'
                                                                        '                '
                                                                        'oeyear,\n'
                                                                        '                '
                                                                        'season,\n'
                                                                        '                '
                                                                        'eof_lr_obs[season](region_subdomain),\n'
                                                                        '                '
                                                                        'frac_obs[season],\n'
                                                                        '                '
                                                                        'output_img_file_obs,\n'
                                                                        '            '
                                                                        ')\n'
                                                                        '            '
                                                                        'plot_map(\n'
                                                                        '                '
                                                                        'mode '
                                                                        '+ '
                                                                        '"_teleconnection",\n'
                                                                        '                '
                                                                        '"[REF] '
                                                                        '" + '
                                                                        'obs_name,\n'
                                                                        '                '
                                                                        'osyear,\n'
                                                                        '                '
                                                                        'oeyear,\n'
                                                                        '                '
                                                                        'season,\n'
                                                                        '                '
                                                                        'eof_lr_obs[season](longitude=(lon1g, '
                                                                        'lon2g)),\n'
                                                                        '                '
                                                                        'frac_obs[season],\n'
                                                                        '                '
                                                                        'output_img_file_obs '
                                                                        '+ '
                                                                        '"_teleconnection",\n'
                                                                        '            '
                                                                        ')\n'
                                                                        '            '
                                                                        'debug_print("obs '
                                                                        'plotting '
                                                                        'end", '
                                                                        'debug)\n'
                                                                        '\n'
                                                                        '        '
                                                                        '# '
                                                                        'Save '
                                                                        'stdv '
                                                                        'of PC '
                                                                        'time '
                                                                        'series '
                                                                        'in '
                                                                        'dictionary\n'
                                                                        '        '
                                                                        'dict_head_obs["stdv_pc"] '
                                                                        '= '
                                                                        'stdv_pc_obs[season]\n'
                                                                        '        '
                                                                        'dict_head_obs["frac"] '
                                                                        '= '
                                                                        'float(frac_obs[season])\n'
                                                                        '\n'
                                                                        '        '
                                                                        '# '
                                                                        'Mean\n'
                                                                        '        '
                                                                        'mean_obs '
                                                                        '= '
                                                                        'cdutil.averager(eof_obs[season], '
                                                                        'axis="yx", '
                                                                        'weights="weighted")\n'
                                                                        '        '
                                                                        'mean_glo_obs '
                                                                        '= '
                                                                        'cdutil.averager(\n'
                                                                        '            '
                                                                        'eof_lr_obs[season], '
                                                                        'axis="yx", '
                                                                        'weights="weighted"\n'
                                                                        '        '
                                                                        ')\n'
                                                                        '        '
                                                                        'dict_head_obs["mean"] '
                                                                        '= '
                                                                        'float(mean_obs)\n'
                                                                        '        '
                                                                        'dict_head_obs["mean_glo"] '
                                                                        '= '
                                                                        'float(mean_glo_obs)\n'
                                                                        '        '
                                                                        'debug_print("obs '
                                                                        'mean '
                                                                        'end", '
                                                                        'debug)\n'
                                                                        '\n'
                                                                        '        '
                                                                        '# '
                                                                        'North '
                                                                        'test '
                                                                        '-- '
                                                                        'make '
                                                                        'this '
                                                                        'available '
                                                                        'as '
                                                                        'option '
                                                                        'later...\n'
                                                                        '        '
                                                                        '# '
                                                                        "execfile('../north_test.py')\n"
                                                                        '\n'
                                                                        '    '
                                                                        'debug_print("obs '
                                                                        'end", '
                                                                        'debug)\n'
                                                                        '\n'
                                                                        '# '
                                                                        '=================================================\n'
                                                                        '# '
                                                                        'Model\n'
                                                                        '# '
                                                                        '-------------------------------------------------\n'
                                                                        'for '
                                                                        'model '
                                                                        'in '
                                                                        'models:\n'
                                                                        '    '
                                                                        'print(" '
                                                                        '----- '
                                                                        '", '
                                                                        'model, '
                                                                        '" '
                                                                        '---------------------")\n'
                                                                        '\n'
                                                                        '    '
                                                                        'if '
                                                                        'model '
                                                                        'not '
                                                                        'in '
                                                                        'list(result_dict["RESULTS"].keys()):\n'
                                                                        '        '
                                                                        'result_dict["RESULTS"][model] '
                                                                        '= {}\n'
                                                                        '\n'
                                                                        '    '
                                                                        'model_path_list '
                                                                        '= '
                                                                        'glob.glob(\n'
                                                                        '        '
                                                                        'modpath(mip=mip, '
                                                                        'exp=exp, '
                                                                        'model=model, '
                                                                        'realization=realization, '
                                                                        'variable=var)\n'
                                                                        '    '
                                                                        ')\n'
                                                                        '\n'
                                                                        '    '
                                                                        'model_path_list '
                                                                        '= '
                                                                        'sort_human(model_path_list)\n'
                                                                        '\n'
                                                                        '    '
                                                                        'debug_print("model_path_list: '
                                                                        '" + '
                                                                        'str(model_path_list), '
                                                                        'debug)\n'
                                                                        '\n'
                                                                        '    # '
                                                                        'Find '
                                                                        'where '
                                                                        'run '
                                                                        'can '
                                                                        'be '
                                                                        'gripped '
                                                                        'from '
                                                                        'given '
                                                                        'filename '
                                                                        'template '
                                                                        'for '
                                                                        'modpath\n'
                                                                        '    '
                                                                        'if '
                                                                        'realization '
                                                                        '== '
                                                                        '"*":\n'
                                                                        '        '
                                                                        'run_in_modpath '
                                                                        '= (\n'
                                                                        '            '
                                                                        'modpath(\n'
                                                                        '                '
                                                                        'mip=mip, '
                                                                        'exp=exp, '
                                                                        'model=model, '
                                                                        'realization=realization, '
                                                                        'variable=var\n'
                                                                        '            '
                                                                        ')\n'
                                                                        '            '
                                                                        '.split("/")[-1]\n'
                                                                        '            '
                                                                        '.split(".")\n'
                                                                        '            '
                                                                        '.index(realization)\n'
                                                                        '        '
                                                                        ')\n'
                                                                        '\n'
                                                                        '    # '
                                                                        '-------------------------------------------------\n'
                                                                        '    # '
                                                                        'Run\n'
                                                                        '    # '
                                                                        '-------------------------------------------------\n'
                                                                        '    '
                                                                        'for '
                                                                        'model_path '
                                                                        'in '
                                                                        'model_path_list:\n'
                                                                        '\n'
                                                                        '        '
                                                                        'try:\n'
                                                                        '            '
                                                                        'if '
                                                                        'realization '
                                                                        '== '
                                                                        '"*":\n'
                                                                        '                '
                                                                        'run = '
                                                                        '(model_path.split("/")[-1]).split(".")[run_in_modpath]\n'
                                                                        '            '
                                                                        'else:\n'
                                                                        '                '
                                                                        'run = '
                                                                        'realization\n'
                                                                        '            '
                                                                        'print(" '
                                                                        '--- '
                                                                        '", '
                                                                        'run, '
                                                                        '" '
                                                                        '---")\n'
                                                                        '\n'
                                                                        '            '
                                                                        'if '
                                                                        'run '
                                                                        'not '
                                                                        'in '
                                                                        'list(result_dict["RESULTS"][model].keys()):\n'
                                                                        '                '
                                                                        'result_dict["RESULTS"][model][run] '
                                                                        '= {}\n'
                                                                        '            '
                                                                        'if '
                                                                        '"defaultReference" '
                                                                        'not '
                                                                        'in '
                                                                        'list(\n'
                                                                        '                '
                                                                        'result_dict["RESULTS"][model][run].keys()\n'
                                                                        '            '
                                                                        '):\n'
                                                                        '                '
                                                                        'result_dict["RESULTS"][model][run]["defaultReference"] '
                                                                        '= {}\n'
                                                                        '            '
                                                                        'if '
                                                                        'mode '
                                                                        'not '
                                                                        'in '
                                                                        'list(\n'
                                                                        '                '
                                                                        'result_dict["RESULTS"][model][run]["defaultReference"].keys()\n'
                                                                        '            '
                                                                        '):\n'
                                                                        '                '
                                                                        'result_dict["RESULTS"][model][run]["defaultReference"][mode] '
                                                                        '= {}\n'
                                                                        '            '
                                                                        'result_dict["RESULTS"][model][run]["defaultReference"][mode][\n'
                                                                        '                '
                                                                        '"target_model_eofs"\n'
                                                                        '            '
                                                                        '] = '
                                                                        'eofn_mod\n'
                                                                        '\n'
                                                                        '            '
                                                                        'if '
                                                                        'LandMask:\n'
                                                                        '                '
                                                                        'model_lf_path '
                                                                        '= '
                                                                        'modpath_lf(mip=mip, '
                                                                        'exp=exp, '
                                                                        'model=model)\n'
                                                                        '            '
                                                                        'else:\n'
                                                                        '                '
                                                                        'model_lf_path '
                                                                        '= '
                                                                        'None\n'
                                                                        '\n'
                                                                        '            '
                                                                        '# '
                                                                        'read '
                                                                        'data '
                                                                        'in\n'
                                                                        '            '
                                                                        'model_timeseries, '
                                                                        'msyear, '
                                                                        'meyear '
                                                                        '= '
                                                                        'read_data_in(\n'
                                                                        '                '
                                                                        'model,\n'
                                                                        '                '
                                                                        'model_path,\n'
                                                                        '                '
                                                                        'model_lf_path,\n'
                                                                        '                '
                                                                        'var,\n'
                                                                        '                '
                                                                        'var,\n'
                                                                        '                '
                                                                        'start_time,\n'
                                                                        '                '
                                                                        'end_time,\n'
                                                                        '                '
                                                                        'ModUnitsAdjust,\n'
                                                                        '                '
                                                                        'LandMask,\n'
                                                                        '                '
                                                                        'debug=debug,\n'
                                                                        '            '
                                                                        ')\n'
                                                                        '\n'
                                                                        '            '
                                                                        'debug_print("msyear: '
                                                                        '" + '
                                                                        'str(msyear) '
                                                                        '+ " '
                                                                        'meyear: '
                                                                        '" + '
                                                                        'str(meyear), '
                                                                        'debug)\n'
                                                                        '\n'
                                                                        '            '
                                                                        '# '
                                                                        '-------------------------------------------------\n'
                                                                        '            '
                                                                        '# '
                                                                        'Season '
                                                                        'loop\n'
                                                                        '            '
                                                                        '# - - '
                                                                        '- - - '
                                                                        '- - - '
                                                                        '- - - '
                                                                        '- - - '
                                                                        '- - - '
                                                                        '- - - '
                                                                        '- - - '
                                                                        '- -\n'
                                                                        '            '
                                                                        'for '
                                                                        'season '
                                                                        'in '
                                                                        'seasons:\n'
                                                                        '                '
                                                                        'debug_print("season: '
                                                                        '" + '
                                                                        'season, '
                                                                        'debug)\n'
                                                                        '\n'
                                                                        '                '
                                                                        'if '
                                                                        'season '
                                                                        'not '
                                                                        'in '
                                                                        'list(\n'
                                                                        '                    '
                                                                        'result_dict["RESULTS"][model][run]["defaultReference"][mode].keys()\n'
                                                                        '                '
                                                                        '):\n'
                                                                        '                    '
                                                                        'result_dict["RESULTS"][model][run]["defaultReference"][mode][\n'
                                                                        '                        '
                                                                        'season\n'
                                                                        '                    '
                                                                        '] = '
                                                                        '{}\n'
                                                                        '                '
                                                                        'result_dict["RESULTS"][model][run]["defaultReference"][mode][season][\n'
                                                                        '                    '
                                                                        '"period"\n'
                                                                        '                '
                                                                        '] = '
                                                                        '(str(msyear) '
                                                                        '+ "-" '
                                                                        '+ '
                                                                        'str(meyear))\n'
                                                                        '\n'
                                                                        '                '
                                                                        '# '
                                                                        'Time '
                                                                        'series '
                                                                        'adjustment '
                                                                        '(remove '
                                                                        'annual '
                                                                        'cycle, '
                                                                        'seasonal '
                                                                        'mean '
                                                                        '(if '
                                                                        'needed),\n'
                                                                        '                '
                                                                        '# and '
                                                                        'subtracting '
                                                                        'domain '
                                                                        '(or '
                                                                        'global) '
                                                                        'mean '
                                                                        'of '
                                                                        'each '
                                                                        'time '
                                                                        'step)\n'
                                                                        '                '
                                                                        'debug_print("time '
                                                                        'series '
                                                                        'adjustment", '
                                                                        'debug)\n'
                                                                        '                '
                                                                        'model_timeseries_season '
                                                                        '= '
                                                                        'adjust_timeseries(\n'
                                                                        '                    '
                                                                        'model_timeseries, '
                                                                        'mode, '
                                                                        'season, '
                                                                        'region_subdomain, '
                                                                        'RmDomainMean\n'
                                                                        '                '
                                                                        ')\n'
                                                                        '\n'
                                                                        '                '
                                                                        '# '
                                                                        'Extract '
                                                                        'subdomain\n'
                                                                        '                '
                                                                        'debug_print("extract '
                                                                        'subdomain", '
                                                                        'debug)\n'
                                                                        '                '
                                                                        'model_timeseries_season_subdomain '
                                                                        '= '
                                                                        'model_timeseries_season(\n'
                                                                        '                    '
                                                                        'region_subdomain\n'
                                                                        '                '
                                                                        ')\n'
                                                                        '\n'
                                                                        '                '
                                                                        '# '
                                                                        '-------------------------------------------------\n'
                                                                        '                '
                                                                        '# '
                                                                        'Common '
                                                                        'Basis '
                                                                        'Function '
                                                                        'Approach\n'
                                                                        '                '
                                                                        '# - - '
                                                                        '- - - '
                                                                        '- - - '
                                                                        '- - - '
                                                                        '- - - '
                                                                        '- - - '
                                                                        '- - - '
                                                                        '- - - '
                                                                        '- -\n'
                                                                        '                '
                                                                        'if '
                                                                        'CBF '
                                                                        'and '
                                                                        'obs_compare:\n'
                                                                        '\n'
                                                                        '                    '
                                                                        'if '
                                                                        '"cbf" '
                                                                        'not '
                                                                        'in '
                                                                        'list(\n'
                                                                        '                        '
                                                                        'result_dict["RESULTS"][model][run]["defaultReference"][mode][\n'
                                                                        '                            '
                                                                        'season\n'
                                                                        '                        '
                                                                        '].keys()\n'
                                                                        '                    '
                                                                        '):\n'
                                                                        '                        '
                                                                        'result_dict["RESULTS"][model][run]["defaultReference"][mode][\n'
                                                                        '                            '
                                                                        'season\n'
                                                                        '                        '
                                                                        ']["cbf"] '
                                                                        '= {}\n'
                                                                        '                    '
                                                                        'dict_head '
                                                                        '= '
                                                                        'result_dict["RESULTS"][model][run]["defaultReference"][\n'
                                                                        '                        '
                                                                        'mode\n'
                                                                        '                    '
                                                                        '][season]["cbf"]\n'
                                                                        '                    '
                                                                        'debug_print("CBF '
                                                                        'approach '
                                                                        'start", '
                                                                        'debug)\n'
                                                                        '\n'
                                                                        '                    '
                                                                        '# '
                                                                        'Regrid '
                                                                        '(interpolation, '
                                                                        'model '
                                                                        'grid '
                                                                        'to '
                                                                        'ref '
                                                                        'grid)\n'
                                                                        '                    '
                                                                        'model_timeseries_season_regrid '
                                                                        '= '
                                                                        'model_timeseries_season.regrid(\n'
                                                                        '                        '
                                                                        'ref_grid_global, '
                                                                        'regridTool="regrid2", '
                                                                        'mkCyclic=True\n'
                                                                        '                    '
                                                                        ')\n'
                                                                        '                    '
                                                                        'model_timeseries_season_regrid_subdomain '
                                                                        '= (\n'
                                                                        '                        '
                                                                        'model_timeseries_season_regrid(region_subdomain)\n'
                                                                        '                    '
                                                                        ')\n'
                                                                        '\n'
                                                                        '                    '
                                                                        '# '
                                                                        'Matching '
                                                                        "model's "
                                                                        'missing '
                                                                        'value '
                                                                        'location '
                                                                        'to '
                                                                        'that '
                                                                        'of '
                                                                        'observation\n'
                                                                        '                    '
                                                                        '# '
                                                                        'Save '
                                                                        'axes '
                                                                        'for '
                                                                        'preserving\n'
                                                                        '                    '
                                                                        'axes '
                                                                        '= '
                                                                        'model_timeseries_season_regrid_subdomain.getAxisList()\n'
                                                                        '                    '
                                                                        '# 1) '
                                                                        'Replace '
                                                                        "model's "
                                                                        'masked '
                                                                        'grid '
                                                                        'to 0, '
                                                                        'so '
                                                                        'theoritically '
                                                                        "won't "
                                                                        'affect '
                                                                        'to '
                                                                        'result\n'
                                                                        '                    '
                                                                        'model_timeseries_season_regrid_subdomain '
                                                                        '= '
                                                                        'MV2.array(\n'
                                                                        '                        '
                                                                        'model_timeseries_season_regrid_subdomain.filled(0.0)\n'
                                                                        '                    '
                                                                        ')\n'
                                                                        '                    '
                                                                        '# 2) '
                                                                        'Give '
                                                                        "obs's "
                                                                        'mask '
                                                                        'to '
                                                                        'model '
                                                                        'field, '
                                                                        'so '
                                                                        'enable '
                                                                        'projecField '
                                                                        'functionality '
                                                                        'below\n'
                                                                        '                    '
                                                                        'model_timeseries_season_regrid_subdomain.mask '
                                                                        '= '
                                                                        'eof_obs[season].mask\n'
                                                                        '                    '
                                                                        '# '
                                                                        'Preserve '
                                                                        'axes\n'
                                                                        '                    '
                                                                        'model_timeseries_season_regrid_subdomain.setAxisList(axes)\n'
                                                                        '\n'
                                                                        '                    '
                                                                        '# CBF '
                                                                        'PC '
                                                                        'time '
                                                                        'series\n'
                                                                        '                    '
                                                                        'cbf_pc '
                                                                        '= '
                                                                        'gain_pseudo_pcs(\n'
                                                                        '                        '
                                                                        'solver_obs[season],\n'
                                                                        '                        '
                                                                        'model_timeseries_season_regrid_subdomain,\n'
                                                                        '                        '
                                                                        'eofn_obs,\n'
                                                                        '                        '
                                                                        'reverse_sign_obs[season],\n'
                                                                        '                        '
                                                                        'EofScaling=EofScaling,\n'
                                                                        '                    '
                                                                        ')\n'
                                                                        '\n'
                                                                        '                    '
                                                                        '# '
                                                                        'Calculate '
                                                                        'stdv '
                                                                        'of '
                                                                        'cbf '
                                                                        'pc '
                                                                        'time '
                                                                        'series\n'
                                                                        '                    '
                                                                        'stdv_cbf_pc '
                                                                        '= '
                                                                        'calcSTD(cbf_pc)\n'
                                                                        '\n'
                                                                        '                    '
                                                                        '# '
                                                                        'Linear '
                                                                        'regression '
                                                                        'to '
                                                                        'have '
                                                                        'extended '
                                                                        'global '
                                                                        'map; '
                                                                        'teleconnection '
                                                                        'purpose\n'
                                                                        '                    '
                                                                        '(\n'
                                                                        '                        '
                                                                        'eof_lr_cbf,\n'
                                                                        '                        '
                                                                        'slope_cbf,\n'
                                                                        '                        '
                                                                        'intercept_cbf,\n'
                                                                        '                    '
                                                                        ') = '
                                                                        'linear_regression_on_globe_for_teleconnection(\n'
                                                                        '                        '
                                                                        'cbf_pc,\n'
                                                                        '                        '
                                                                        'model_timeseries_season,\n'
                                                                        '                        '
                                                                        'stdv_cbf_pc,\n'
                                                                        '                        '
                                                                        '# '
                                                                        'cbf_pc, '
                                                                        'model_timeseries_season_regrid, '
                                                                        'stdv_cbf_pc,\n'
                                                                        '                        '
                                                                        'RmDomainMean,\n'
                                                                        '                        '
                                                                        'EofScaling,\n'
                                                                        '                        '
                                                                        'debug=debug,\n'
                                                                        '                    '
                                                                        ')\n'
                                                                        '\n'
                                                                        '                    '
                                                                        '# '
                                                                        'Extract '
                                                                        'subdomain '
                                                                        'for '
                                                                        'statistics\n'
                                                                        '                    '
                                                                        'eof_lr_cbf_subdomain '
                                                                        '= '
                                                                        'eof_lr_cbf(region_subdomain)\n'
                                                                        '\n'
                                                                        '                    '
                                                                        '# '
                                                                        'Calculate '
                                                                        'fraction '
                                                                        'of '
                                                                        'variance '
                                                                        'explained '
                                                                        'by '
                                                                        'cbf '
                                                                        'pc\n'
                                                                        '                    '
                                                                        'frac_cbf '
                                                                        '= '
                                                                        'gain_pcs_fraction(\n'
                                                                        '                        '
                                                                        '# '
                                                                        'model_timeseries_season_regrid_subdomain,  '
                                                                        '# '
                                                                        'regridded '
                                                                        'model '
                                                                        'anomaly '
                                                                        'space\n'
                                                                        '                        '
                                                                        'model_timeseries_season_subdomain,  '
                                                                        '# '
                                                                        'native '
                                                                        'grid '
                                                                        'model '
                                                                        'anomaly '
                                                                        'space\n'
                                                                        '                        '
                                                                        'eof_lr_cbf_subdomain,\n'
                                                                        '                        '
                                                                        'cbf_pc '
                                                                        '/ '
                                                                        'stdv_cbf_pc,\n'
                                                                        '                        '
                                                                        'debug=debug,\n'
                                                                        '                    '
                                                                        ')\n'
                                                                        '\n'
                                                                        '                    '
                                                                        '# '
                                                                        'SENSITIVITY '
                                                                        'TEST '
                                                                        '---\n'
                                                                        '                    '
                                                                        '# '
                                                                        'Calculate '
                                                                        'fraction '
                                                                        'of '
                                                                        'variance '
                                                                        'explained '
                                                                        'by '
                                                                        'cbf '
                                                                        'pc '
                                                                        '(on '
                                                                        'regrid '
                                                                        'domain)\n'
                                                                        '                    '
                                                                        'frac_cbf_regrid '
                                                                        '= '
                                                                        'gain_pcs_fraction(\n'
                                                                        '                        '
                                                                        'model_timeseries_season_regrid_subdomain,\n'
                                                                        '                        '
                                                                        'eof_lr_cbf_subdomain,\n'
                                                                        '                        '
                                                                        'cbf_pc '
                                                                        '/ '
                                                                        'stdv_cbf_pc,\n'
                                                                        '                        '
                                                                        'debug=debug,\n'
                                                                        '                    '
                                                                        ')\n'
                                                                        '                    '
                                                                        'dict_head["frac_cbf_regrid"] '
                                                                        '= '
                                                                        'float(frac_cbf_regrid)\n'
                                                                        '\n'
                                                                        '                    '
                                                                        '# - - '
                                                                        '- - - '
                                                                        '- - - '
                                                                        '- - - '
                                                                        '- - - '
                                                                        '- - - '
                                                                        '- - - '
                                                                        '- - - '
                                                                        '- -\n'
                                                                        '                    '
                                                                        '# '
                                                                        'Record '
                                                                        'results\n'
                                                                        '                    '
                                                                        '# - - '
                                                                        '- - - '
                                                                        '- - - '
                                                                        '- - - '
                                                                        '- - - '
                                                                        '- - - '
                                                                        '- - - '
                                                                        '- - - '
                                                                        '- -\n'
                                                                        '                    '
                                                                        '# '
                                                                        'Metrics '
                                                                        'results '
                                                                        '-- '
                                                                        'statistics '
                                                                        'to '
                                                                        'JSON\n'
                                                                        '                    '
                                                                        'dict_head, '
                                                                        'eof_lr_cbf '
                                                                        '= '
                                                                        'calc_stats_save_dict(\n'
                                                                        '                        '
                                                                        'dict_head,\n'
                                                                        '                        '
                                                                        'eof_lr_cbf_subdomain,\n'
                                                                        '                        '
                                                                        'eof_lr_cbf,\n'
                                                                        '                        '
                                                                        'slope_cbf,\n'
                                                                        '                        '
                                                                        'cbf_pc,\n'
                                                                        '                        '
                                                                        'stdv_cbf_pc,\n'
                                                                        '                        '
                                                                        'frac_cbf,\n'
                                                                        '                        '
                                                                        'region_subdomain,\n'
                                                                        '                        '
                                                                        'eof_obs[season],\n'
                                                                        '                        '
                                                                        'eof_lr_obs[season],\n'
                                                                        '                        '
                                                                        'stdv_pc_obs[season],\n'
                                                                        '                        '
                                                                        'obs_compare=obs_compare,\n'
                                                                        '                        '
                                                                        'method="cbf",\n'
                                                                        '                        '
                                                                        'debug=debug,\n'
                                                                        '                    '
                                                                        ')\n'
                                                                        '\n'
                                                                        '                    '
                                                                        '# Set '
                                                                        'output '
                                                                        'file '
                                                                        'name '
                                                                        'for '
                                                                        'NetCDF '
                                                                        'and '
                                                                        'plot '
                                                                        'images\n'
                                                                        '                    '
                                                                        'output_filename '
                                                                        '= '
                                                                        '"_".join(\n'
                                                                        '                        '
                                                                        '[\n'
                                                                        '                            '
                                                                        'mode,\n'
                                                                        '                            '
                                                                        'var,\n'
                                                                        '                            '
                                                                        '"EOF" '
                                                                        '+ '
                                                                        'str(eofn_mod),\n'
                                                                        '                            '
                                                                        'season,\n'
                                                                        '                            '
                                                                        'mip,\n'
                                                                        '                            '
                                                                        'model,\n'
                                                                        '                            '
                                                                        'exp,\n'
                                                                        '                            '
                                                                        'run,\n'
                                                                        '                            '
                                                                        'fq,\n'
                                                                        '                            '
                                                                        'realm,\n'
                                                                        '                            '
                                                                        'str(msyear) '
                                                                        '+ "-" '
                                                                        '+ '
                                                                        'str(meyear),\n'
                                                                        '                        '
                                                                        ']\n'
                                                                        '                    '
                                                                        ')\n'
                                                                        '                    '
                                                                        'if '
                                                                        'EofScaling:\n'
                                                                        '                        '
                                                                        'output_filename '
                                                                        '+= '
                                                                        '"_EOFscaled"\n'
                                                                        '\n'
                                                                        '                    '
                                                                        '# '
                                                                        'Diagnostics '
                                                                        'results '
                                                                        '-- '
                                                                        'data '
                                                                        'to '
                                                                        'NetCDF\n'
                                                                        '                    '
                                                                        '# '
                                                                        'Save '
                                                                        'global '
                                                                        'map, '
                                                                        'pc '
                                                                        'timeseries, '
                                                                        'and '
                                                                        'fraction '
                                                                        'in '
                                                                        'NetCDF '
                                                                        'output\n'
                                                                        '                    '
                                                                        'output_nc_file '
                                                                        '= '
                                                                        'os.path.join(\n'
                                                                        '                        '
                                                                        'outdir(output_type="diagnostic_results"), '
                                                                        'output_filename\n'
                                                                        '                    '
                                                                        ')\n'
                                                                        '                    '
                                                                        'if '
                                                                        'nc_out_model:\n'
                                                                        '                        '
                                                                        'write_nc_output(\n'
                                                                        '                            '
                                                                        'output_nc_file '
                                                                        '+ '
                                                                        '"_cbf",\n'
                                                                        '                            '
                                                                        'eof_lr_cbf,\n'
                                                                        '                            '
                                                                        'cbf_pc,\n'
                                                                        '                            '
                                                                        'frac_cbf,\n'
                                                                        '                            '
                                                                        'slope_cbf,\n'
                                                                        '                            '
                                                                        'intercept_cbf,\n'
                                                                        '                        '
                                                                        ')\n'
                                                                        '\n'
                                                                        '                    '
                                                                        '# '
                                                                        'Graphics '
                                                                        '-- '
                                                                        'plot '
                                                                        'map '
                                                                        'image '
                                                                        'to '
                                                                        'PNG\n'
                                                                        '                    '
                                                                        'output_img_file '
                                                                        '= '
                                                                        'os.path.join(\n'
                                                                        '                        '
                                                                        'outdir(output_type="graphics"), '
                                                                        'output_filename\n'
                                                                        '                    '
                                                                        ')\n'
                                                                        '                    '
                                                                        'if '
                                                                        'plot_model:\n'
                                                                        '                        '
                                                                        'plot_map(\n'
                                                                        '                            '
                                                                        'mode,\n'
                                                                        '                            '
                                                                        'mip.upper() '
                                                                        '+ " " '
                                                                        '+ '
                                                                        'model '
                                                                        '+ " '
                                                                        '(" + '
                                                                        'run + '
                                                                        '")" + '
                                                                        '" - '
                                                                        'CBF",\n'
                                                                        '                            '
                                                                        'msyear,\n'
                                                                        '                            '
                                                                        'meyear,\n'
                                                                        '                            '
                                                                        'season,\n'
                                                                        '                            '
                                                                        'eof_lr_cbf(region_subdomain),\n'
                                                                        '                            '
                                                                        'frac_cbf,\n'
                                                                        '                            '
                                                                        'output_img_file '
                                                                        '+ '
                                                                        '"_cbf",\n'
                                                                        '                        '
                                                                        ')\n'
                                                                        '                        '
                                                                        'plot_map(\n'
                                                                        '                            '
                                                                        'mode '
                                                                        '+ '
                                                                        '"_teleconnection",\n'
                                                                        '                            '
                                                                        'mip.upper() '
                                                                        '+ " " '
                                                                        '+ '
                                                                        'model '
                                                                        '+ " '
                                                                        '(" + '
                                                                        'run + '
                                                                        '")" + '
                                                                        '" - '
                                                                        'CBF",\n'
                                                                        '                            '
                                                                        'msyear,\n'
                                                                        '                            '
                                                                        'meyear,\n'
                                                                        '                            '
                                                                        'season,\n'
                                                                        '                            '
                                                                        'eof_lr_cbf(longitude=(lon1g, '
                                                                        'lon2g)),\n'
                                                                        '                            '
                                                                        'frac_cbf,\n'
                                                                        '                            '
                                                                        'output_img_file '
                                                                        '+ '
                                                                        '"_cbf_teleconnection",\n'
                                                                        '                        '
                                                                        ')\n'
                                                                        '\n'
                                                                        '                    '
                                                                        'debug_print("cbf '
                                                                        'pcs '
                                                                        'end", '
                                                                        'debug)\n'
                                                                        '\n'
                                                                        '                '
                                                                        '# '
                                                                        '-------------------------------------------------\n'
                                                                        '                '
                                                                        '# '
                                                                        'Conventional '
                                                                        'EOF '
                                                                        'approach '
                                                                        'as '
                                                                        'supplementary\n'
                                                                        '                '
                                                                        '# - - '
                                                                        '- - - '
                                                                        '- - - '
                                                                        '- - - '
                                                                        '- - - '
                                                                        '- - - '
                                                                        '- - - '
                                                                        '- - - '
                                                                        '- -\n'
                                                                        '                '
                                                                        'if '
                                                                        'ConvEOF:\n'
                                                                        '\n'
                                                                        '                    '
                                                                        'eofn_mod_max '
                                                                        '= 3\n'
                                                                        '\n'
                                                                        '                    '
                                                                        '# EOF '
                                                                        'analysis\n'
                                                                        '                    '
                                                                        'debug_print("conventional '
                                                                        'EOF '
                                                                        'analysis '
                                                                        'start", '
                                                                        'debug)\n'
                                                                        '                    '
                                                                        '(\n'
                                                                        '                        '
                                                                        'eof_list,\n'
                                                                        '                        '
                                                                        'pc_list,\n'
                                                                        '                        '
                                                                        'frac_list,\n'
                                                                        '                        '
                                                                        'reverse_sign_list,\n'
                                                                        '                        '
                                                                        'solver,\n'
                                                                        '                    '
                                                                        ') = '
                                                                        'eof_analysis_get_variance_mode(\n'
                                                                        '                        '
                                                                        'mode,\n'
                                                                        '                        '
                                                                        'model_timeseries_season_subdomain,\n'
                                                                        '                        '
                                                                        'eofn=eofn_mod,\n'
                                                                        '                        '
                                                                        'eofn_max=eofn_mod_max,\n'
                                                                        '                        '
                                                                        'debug=debug,\n'
                                                                        '                        '
                                                                        'EofScaling=EofScaling,\n'
                                                                        '                        '
                                                                        'save_multiple_eofs=True,\n'
                                                                        '                    '
                                                                        ')\n'
                                                                        '                    '
                                                                        'debug_print("conventional '
                                                                        'EOF '
                                                                        'analysis '
                                                                        'done", '
                                                                        'debug)\n'
                                                                        '\n'
                                                                        '                    '
                                                                        '# '
                                                                        '-------------------------------------------------\n'
                                                                        '                    '
                                                                        '# For '
                                                                        'multiple '
                                                                        'EOFs '
                                                                        '(e.g., '
                                                                        'EOF1, '
                                                                        'EOF2, '
                                                                        'EOF3, '
                                                                        '...)\n'
                                                                        '                    '
                                                                        '# - - '
                                                                        '- - - '
                                                                        '- - - '
                                                                        '- - - '
                                                                        '- - - '
                                                                        '- - - '
                                                                        '- - - '
                                                                        '- - - '
                                                                        '- -\n'
                                                                        '                    '
                                                                        'rms_list '
                                                                        '= []\n'
                                                                        '                    '
                                                                        'cor_list '
                                                                        '= []\n'
                                                                        '                    '
                                                                        'tcor_list '
                                                                        '= []\n'
                                                                        '\n'
                                                                        '                    '
                                                                        'for n '
                                                                        'in '
                                                                        'range(0, '
                                                                        'eofn_mod_max):\n'
                                                                        '                        '
                                                                        'eofs '
                                                                        '= '
                                                                        '"eof" '
                                                                        '+ '
                                                                        'str(n '
                                                                        '+ 1)\n'
                                                                        '                        '
                                                                        'if '
                                                                        'eofs '
                                                                        'not '
                                                                        'in '
                                                                        'list(\n'
                                                                        '                            '
                                                                        'result_dict["RESULTS"][model][run]["defaultReference"][\n'
                                                                        '                                '
                                                                        'mode\n'
                                                                        '                            '
                                                                        '][season].keys()\n'
                                                                        '                        '
                                                                        '):\n'
                                                                        '                            '
                                                                        'result_dict["RESULTS"][model][run]["defaultReference"][\n'
                                                                        '                                '
                                                                        'mode\n'
                                                                        '                            '
                                                                        '][season][eofs] '
                                                                        '= {}\n'
                                                                        '                            '
                                                                        'dict_head '
                                                                        '= '
                                                                        'result_dict["RESULTS"][model][run][\n'
                                                                        '                                '
                                                                        '"defaultReference"\n'
                                                                        '                            '
                                                                        '][mode][season][eofs]\n'
                                                                        '\n'
                                                                        '                        '
                                                                        '# '
                                                                        'Component '
                                                                        'for '
                                                                        'each '
                                                                        'EOFs\n'
                                                                        '                        '
                                                                        'eof = '
                                                                        'eof_list[n]\n'
                                                                        '                        '
                                                                        'pc = '
                                                                        'pc_list[n]\n'
                                                                        '                        '
                                                                        'frac '
                                                                        '= '
                                                                        'frac_list[n]\n'
                                                                        '\n'
                                                                        '                        '
                                                                        '# '
                                                                        'Calculate '
                                                                        'stdv '
                                                                        'of pc '
                                                                        'time '
                                                                        'series\n'
                                                                        '                        '
                                                                        'stdv_pc '
                                                                        '= '
                                                                        'calcSTD(pc)\n'
                                                                        '\n'
                                                                        '                        '
                                                                        '# '
                                                                        'Linear '
                                                                        'regression '
                                                                        'to '
                                                                        'have '
                                                                        'extended '
                                                                        'global '
                                                                        'map:\n'
                                                                        '                        '
                                                                        '(\n'
                                                                        '                            '
                                                                        'eof_lr,\n'
                                                                        '                            '
                                                                        'slope,\n'
                                                                        '                            '
                                                                        'intercept,\n'
                                                                        '                        '
                                                                        ') = '
                                                                        'linear_regression_on_globe_for_teleconnection(\n'
                                                                        '                            '
                                                                        'pc,\n'
                                                                        '                            '
                                                                        'model_timeseries_season,\n'
                                                                        '                            '
                                                                        'stdv_pc,\n'
                                                                        '                            '
                                                                        'RmDomainMean,\n'
                                                                        '                            '
                                                                        'EofScaling,\n'
                                                                        '                            '
                                                                        'debug=debug,\n'
                                                                        '                        '
                                                                        ')\n'
                                                                        '\n'
                                                                        '                        '
                                                                        '# - - '
                                                                        '- - - '
                                                                        '- - - '
                                                                        '- - - '
                                                                        '- - - '
                                                                        '- - - '
                                                                        '- - - '
                                                                        '- - - '
                                                                        '- -\n'
                                                                        '                        '
                                                                        '# '
                                                                        'Record '
                                                                        'results\n'
                                                                        '                        '
                                                                        '# - - '
                                                                        '- - - '
                                                                        '- - - '
                                                                        '- - - '
                                                                        '- - - '
                                                                        '- - - '
                                                                        '- - - '
                                                                        '- - - '
                                                                        '- -\n'
                                                                        '                        '
                                                                        '# '
                                                                        'Metrics '
                                                                        'results '
                                                                        '-- '
                                                                        'statistics '
                                                                        'to '
                                                                        'JSON\n'
                                                                        '                        '
                                                                        'if '
                                                                        'obs_compare:\n'
                                                                        '                            '
                                                                        'dict_head, '
                                                                        'eof_lr '
                                                                        '= '
                                                                        'calc_stats_save_dict(\n'
                                                                        '                                '
                                                                        'dict_head,\n'
                                                                        '                                '
                                                                        'eof,\n'
                                                                        '                                '
                                                                        'eof_lr,\n'
                                                                        '                                '
                                                                        'slope,\n'
                                                                        '                                '
                                                                        'pc,\n'
                                                                        '                                '
                                                                        'stdv_pc,\n'
                                                                        '                                '
                                                                        'frac,\n'
                                                                        '                                '
                                                                        'region_subdomain,\n'
                                                                        '                                '
                                                                        'eof_obs=eof_obs[season],\n'
                                                                        '                                '
                                                                        'eof_lr_obs=eof_lr_obs[season],\n'
                                                                        '                                '
                                                                        'stdv_pc_obs=stdv_pc_obs[season],\n'
                                                                        '                                '
                                                                        'obs_compare=obs_compare,\n'
                                                                        '                                '
                                                                        'method="eof",\n'
                                                                        '                                '
                                                                        'debug=debug,\n'
                                                                        '                            '
                                                                        ')\n'
                                                                        '                        '
                                                                        'else:\n'
                                                                        '                            '
                                                                        'dict_head, '
                                                                        'eof_lr '
                                                                        '= '
                                                                        'calc_stats_save_dict(\n'
                                                                        '                                '
                                                                        'dict_head,\n'
                                                                        '                                '
                                                                        'eof,\n'
                                                                        '                                '
                                                                        'eof_lr,\n'
                                                                        '                                '
                                                                        'slope,\n'
                                                                        '                                '
                                                                        'pc,\n'
                                                                        '                                '
                                                                        'stdv_pc,\n'
                                                                        '                                '
                                                                        'frac,\n'
                                                                        '                                '
                                                                        'region_subdomain,\n'
                                                                        '                                '
                                                                        'obs_compare=obs_compare,\n'
                                                                        '                                '
                                                                        'method="eof",\n'
                                                                        '                                '
                                                                        'debug=debug,\n'
                                                                        '                            '
                                                                        ')\n'
                                                                        '\n'
                                                                        '                        '
                                                                        '# '
                                                                        'Temporal '
                                                                        'correlation '
                                                                        'between '
                                                                        'CBF '
                                                                        'PC '
                                                                        'timeseries '
                                                                        'and '
                                                                        'usual '
                                                                        'model '
                                                                        'PC '
                                                                        'timeseries\n'
                                                                        '                        '
                                                                        'if '
                                                                        'CBF:\n'
                                                                        '                            '
                                                                        'tc = '
                                                                        'calcTCOR(cbf_pc, '
                                                                        'pc)\n'
                                                                        '                            '
                                                                        'debug_print("cbf '
                                                                        'tc '
                                                                        'end", '
                                                                        'debug)\n'
                                                                        '                            '
                                                                        'dict_head["tcor_cbf_vs_eof_pc"] '
                                                                        '= tc\n'
                                                                        '\n'
                                                                        '                        '
                                                                        '# Set '
                                                                        'output '
                                                                        'file '
                                                                        'name '
                                                                        'for '
                                                                        'NetCDF '
                                                                        'and '
                                                                        'plot '
                                                                        'images\n'
                                                                        '                        '
                                                                        'output_filename '
                                                                        '= '
                                                                        '"_".join(\n'
                                                                        '                            '
                                                                        '[\n'
                                                                        '                                '
                                                                        'mode,\n'
                                                                        '                                '
                                                                        'var,\n'
                                                                        '                                '
                                                                        '"EOF" '
                                                                        '+ '
                                                                        'str(n '
                                                                        '+ '
                                                                        '1),\n'
                                                                        '                                '
                                                                        'season,\n'
                                                                        '                                '
                                                                        'mip,\n'
                                                                        '                                '
                                                                        'model,\n'
                                                                        '                                '
                                                                        'exp,\n'
                                                                        '                                '
                                                                        'run,\n'
                                                                        '                                '
                                                                        'fq,\n'
                                                                        '                                '
                                                                        'realm,\n'
                                                                        '                                '
                                                                        'str(msyear) '
                                                                        '+ "-" '
                                                                        '+ '
                                                                        'str(meyear),\n'
                                                                        '                            '
                                                                        ']\n'
                                                                        '                        '
                                                                        ')\n'
                                                                        '                        '
                                                                        'if '
                                                                        'EofScaling:\n'
                                                                        '                            '
                                                                        'output_filename '
                                                                        '+= '
                                                                        '"_EOFscaled"\n'
                                                                        '\n'
                                                                        '                        '
                                                                        '# '
                                                                        'Diagnostics '
                                                                        'results '
                                                                        '-- '
                                                                        'data '
                                                                        'to '
                                                                        'NetCDF\n'
                                                                        '                        '
                                                                        '# '
                                                                        'Save '
                                                                        'global '
                                                                        'map, '
                                                                        'pc '
                                                                        'timeseries, '
                                                                        'and '
                                                                        'fraction '
                                                                        'in '
                                                                        'NetCDF '
                                                                        'output\n'
                                                                        '                        '
                                                                        'output_nc_file '
                                                                        '= '
                                                                        'os.path.join(\n'
                                                                        '                            '
                                                                        'outdir(output_type="diagnostic_results"), '
                                                                        'output_filename\n'
                                                                        '                        '
                                                                        ')\n'
                                                                        '                        '
                                                                        'if '
                                                                        'nc_out_model:\n'
                                                                        '                            '
                                                                        'write_nc_output(\n'
                                                                        '                                '
                                                                        'output_nc_file, '
                                                                        'eof_lr, '
                                                                        'pc, '
                                                                        'frac, '
                                                                        'slope, '
                                                                        'intercept\n'
                                                                        '                            '
                                                                        ')\n'
                                                                        '\n'
                                                                        '                        '
                                                                        '# '
                                                                        'Graphics '
                                                                        '-- '
                                                                        'plot '
                                                                        'map '
                                                                        'image '
                                                                        'to '
                                                                        'PNG\n'
                                                                        '                        '
                                                                        'output_img_file '
                                                                        '= '
                                                                        'os.path.join(\n'
                                                                        '                            '
                                                                        'outdir(output_type="graphics"), '
                                                                        'output_filename\n'
                                                                        '                        '
                                                                        ')\n'
                                                                        '                        '
                                                                        'if '
                                                                        'plot_model:\n'
                                                                        '                            '
                                                                        '# '
                                                                        'plot_map(mode,\n'
                                                                        '                            '
                                                                        '#          '
                                                                        "mip.upper()+' "
                                                                        "'+model+' "
                                                                        "('+run+')',\n"
                                                                        '                            '
                                                                        '#          '
                                                                        'msyear, '
                                                                        'meyear, '
                                                                        'season,\n'
                                                                        '                            '
                                                                        '#          '
                                                                        'eof, '
                                                                        'frac,\n'
                                                                        '                            '
                                                                        '#          '
                                                                        "output_img_file+'_org_eof')\n"
                                                                        '                            '
                                                                        'plot_map(\n'
                                                                        '                                '
                                                                        'mode,\n'
                                                                        '                                '
                                                                        'mip.upper()\n'
                                                                        '                                '
                                                                        '+ " '
                                                                        '"\n'
                                                                        '                                '
                                                                        '+ '
                                                                        'model\n'
                                                                        '                                '
                                                                        '+ " '
                                                                        '("\n'
                                                                        '                                '
                                                                        '+ '
                                                                        'run\n'
                                                                        '                                '
                                                                        '+ ") '
                                                                        '- '
                                                                        'EOF"\n'
                                                                        '                                '
                                                                        '+ '
                                                                        'str(n '
                                                                        '+ '
                                                                        '1),\n'
                                                                        '                                '
                                                                        'msyear,\n'
                                                                        '                                '
                                                                        'meyear,\n'
                                                                        '                                '
                                                                        'season,\n'
                                                                        '                                '
                                                                        'eof_lr(region_subdomain),\n'
                                                                        '                                '
                                                                        'frac,\n'
                                                                        '                                '
                                                                        'output_img_file,\n'
                                                                        '                            '
                                                                        ')\n'
                                                                        '                            '
                                                                        'plot_map(\n'
                                                                        '                                '
                                                                        'mode '
                                                                        '+ '
                                                                        '"_teleconnection",\n'
                                                                        '                                '
                                                                        'mip.upper()\n'
                                                                        '                                '
                                                                        '+ " '
                                                                        '"\n'
                                                                        '                                '
                                                                        '+ '
                                                                        'model\n'
                                                                        '                                '
                                                                        '+ " '
                                                                        '("\n'
                                                                        '                                '
                                                                        '+ '
                                                                        'run\n'
                                                                        '                                '
                                                                        '+ ") '
                                                                        '- '
                                                                        'EOF"\n'
                                                                        '                                '
                                                                        '+ '
                                                                        'str(n '
                                                                        '+ '
                                                                        '1),\n'
                                                                        '                                '
                                                                        'msyear,\n'
                                                                        '                                '
                                                                        'meyear,\n'
                                                                        '                                '
                                                                        'season,\n'
                                                                        '                                '
                                                                        'eof_lr(longitude=(lon1g, '
                                                                        'lon2g)),\n'
                                                                        '                                '
                                                                        'frac,\n'
                                                                        '                                '
                                                                        'output_img_file '
                                                                        '+ '
                                                                        '"_teleconnection",\n'
                                                                        '                            '
                                                                        ')\n'
                                                                        '\n'
                                                                        '                        '
                                                                        '# - - '
                                                                        '- - - '
                                                                        '- - - '
                                                                        '- - - '
                                                                        '- - - '
                                                                        '- - - '
                                                                        '- - - '
                                                                        '- - - '
                                                                        '- -\n'
                                                                        '                        '
                                                                        '# EOF '
                                                                        'swap '
                                                                        'diagnosis\n'
                                                                        '                        '
                                                                        '# - - '
                                                                        '- - - '
                                                                        '- - - '
                                                                        '- - - '
                                                                        '- - - '
                                                                        '- - - '
                                                                        '- - - '
                                                                        '- - - '
                                                                        '- -\n'
                                                                        '                        '
                                                                        'rms_list.append(dict_head["rms"])\n'
                                                                        '                        '
                                                                        'cor_list.append(dict_head["cor"])\n'
                                                                        '                        '
                                                                        'if '
                                                                        'CBF:\n'
                                                                        '                            '
                                                                        'tcor_list.append(dict_head["tcor_cbf_vs_eof_pc"])\n'
                                                                        '\n'
                                                                        '                    '
                                                                        '# '
                                                                        'Find '
                                                                        'best '
                                                                        'matching '
                                                                        'eofs '
                                                                        'with '
                                                                        'different '
                                                                        'criteria\n'
                                                                        '                    '
                                                                        'best_matching_eofs_rms '
                                                                        '= '
                                                                        'rms_list.index(min(rms_list)) '
                                                                        '+ 1\n'
                                                                        '                    '
                                                                        'best_matching_eofs_cor '
                                                                        '= '
                                                                        'cor_list.index(max(cor_list)) '
                                                                        '+ 1\n'
                                                                        '                    '
                                                                        'if '
                                                                        'CBF:\n'
                                                                        '                        '
                                                                        'best_matching_eofs_tcor '
                                                                        '= '
                                                                        'tcor_list.index(max(tcor_list)) '
                                                                        '+ 1\n'
                                                                        '\n'
                                                                        '                    '
                                                                        '# '
                                                                        'Save '
                                                                        'the '
                                                                        'best '
                                                                        'matching '
                                                                        'information '
                                                                        'to '
                                                                        'JSON\n'
                                                                        '                    '
                                                                        'dict_head '
                                                                        '= '
                                                                        'result_dict["RESULTS"][model][run]["defaultReference"][\n'
                                                                        '                        '
                                                                        'mode\n'
                                                                        '                    '
                                                                        '][season]\n'
                                                                        '                    '
                                                                        'dict_head["best_matching_model_eofs__rms"] '
                                                                        '= '
                                                                        'best_matching_eofs_rms\n'
                                                                        '                    '
                                                                        'dict_head["best_matching_model_eofs__cor"] '
                                                                        '= '
                                                                        'best_matching_eofs_cor\n'
                                                                        '                    '
                                                                        'if '
                                                                        'CBF:\n'
                                                                        '                        '
                                                                        'dict_head[\n'
                                                                        '                            '
                                                                        '"best_matching_model_eofs__tcor_cbf_vs_eof_pc"\n'
                                                                        '                        '
                                                                        '] = '
                                                                        'best_matching_eofs_tcor\n'
                                                                        '\n'
                                                                        '                    '
                                                                        'debug_print("conventional '
                                                                        'eof '
                                                                        'end", '
                                                                        'debug)\n'
                                                                        '\n'
                                                                        '            '
                                                                        '# '
                                                                        '=================================================================\n'
                                                                        '            '
                                                                        '# '
                                                                        'Dictionary '
                                                                        'to '
                                                                        'JSON: '
                                                                        'individual '
                                                                        'JSON '
                                                                        'during '
                                                                        'model_realization '
                                                                        'loop\n'
                                                                        '            '
                                                                        '# '
                                                                        '-----------------------------------------------------------------\n'
                                                                        '            '
                                                                        'json_filename_tmp '
                                                                        '= '
                                                                        '"_".join(\n'
                                                                        '                '
                                                                        '[\n'
                                                                        '                    '
                                                                        '"var",\n'
                                                                        '                    '
                                                                        '"mode",\n'
                                                                        '                    '
                                                                        'mode,\n'
                                                                        '                    '
                                                                        '"EOF" '
                                                                        '+ '
                                                                        'str(eofn_mod),\n'
                                                                        '                    '
                                                                        '"stat",\n'
                                                                        '                    '
                                                                        'mip,\n'
                                                                        '                    '
                                                                        'exp,\n'
                                                                        '                    '
                                                                        'fq,\n'
                                                                        '                    '
                                                                        'realm,\n'
                                                                        '                    '
                                                                        'model,\n'
                                                                        '                    '
                                                                        'run,\n'
                                                                        '                    '
                                                                        'str(msyear) '
                                                                        '+ "-" '
                                                                        '+ '
                                                                        'str(meyear),\n'
                                                                        '                '
                                                                        ']\n'
                                                                        '            '
                                                                        ')\n'
                                                                        '            '
                                                                        'variability_metrics_to_json(\n'
                                                                        '                '
                                                                        'outdir,\n'
                                                                        '                '
                                                                        'json_filename_tmp,\n'
                                                                        '                '
                                                                        'result_dict,\n'
                                                                        '                '
                                                                        'model=model,\n'
                                                                        '                '
                                                                        'run=run,\n'
                                                                        '                '
                                                                        'cmec_flag=cmec,\n'
                                                                        '            '
                                                                        ')\n'
                                                                        '\n'
                                                                        '        '
                                                                        'except '
                                                                        'Exception '
                                                                        'as '
                                                                        'err:\n'
                                                                        '            '
                                                                        'if '
                                                                        'debug:\n'
                                                                        '                '
                                                                        'raise\n'
                                                                        '            '
                                                                        'else:\n'
                                                                        '                '
                                                                        'print("warning: '
                                                                        'failed '
                                                                        'for '
                                                                        '", '
                                                                        'model, '
                                                                        'run, '
                                                                        'err)\n'
                                                                        '                '
                                                                        'pass\n'
                                                                        '\n'
                                                                        '# '
                                                                        '========================================================================\n'
                                                                        '# '
                                                                        'Dictionary '
                                                                        'to '
                                                                        'JSON: '
                                                                        'collective '
                                                                        'JSON '
                                                                        'at '
                                                                        'the '
                                                                        'end '
                                                                        'of '
                                                                        'model_realization '
                                                                        'loop\n'
                                                                        '# '
                                                                        '------------------------------------------------------------------------\n'
                                                                        'if '
                                                                        'not '
                                                                        'parallel '
                                                                        'and '
                                                                        '(len(models) '
                                                                        '> '
                                                                        '1):\n'
                                                                        '    '
                                                                        'json_filename_all '
                                                                        '= '
                                                                        '"_".join(\n'
                                                                        '        '
                                                                        '[\n'
                                                                        '            '
                                                                        '"var",\n'
                                                                        '            '
                                                                        '"mode",\n'
                                                                        '            '
                                                                        'mode,\n'
                                                                        '            '
                                                                        '"EOF" '
                                                                        '+ '
                                                                        'str(eofn_mod),\n'
                                                                        '            '
                                                                        '"stat",\n'
                                                                        '            '
                                                                        'mip,\n'
                                                                        '            '
                                                                        'exp,\n'
                                                                        '            '
                                                                        'fq,\n'
                                                                        '            '
                                                                        'realm,\n'
                                                                        '            '
                                                                        '"allModels",\n'
                                                                        '            '
                                                                        '"allRuns",\n'
                                                                        '            '
                                                                        'str(msyear) '
                                                                        '+ "-" '
                                                                        '+ '
                                                                        'str(meyear),\n'
                                                                        '        '
                                                                        ']\n'
                                                                        '    '
                                                                        ')\n'
                                                                        '    '
                                                                        'variability_metrics_to_json(outdir, '
                                                                        'json_filename_all, '
                                                                        'result_dict, '
                                                                        'cmec_flag=cmec)\n'
                                                                        '\n'
                                                                        'if '
                                                                        'not '
                                                                        'debug:\n'
                                                                        '    '
                                                                        'sys.exit(0)\n',
                                                              'userId': 'lee1043'}},
                       'PDO/HadISSTv1.1': {'REFERENCE': {'obs': {'defaultReference': {'PDO': {'monthly': {'frac': 0.2598156282974704,
                                                                                                          'mean': -0.004676136991651986,
                                                                                                          'mean_glo': 0.07081278701358912,
                                                                                                          'stdv_pc': 0.2362366865950313}},
                                                                                      'period': '1900-2005',
                                                                                      'reference_eofs': 1,
                                                                                      'source': '/p/user_pub/PCMDIobs/obs4MIPs/MOHC/HadISST-1-1/mon/ts/gn/v20210727/ts_mon_HadISST-1-1_PCMDI_gn_187001-201907.nc'}}},
                                           'RESULTS': {'ACCESS-CM2': {'r1i1p1f1': {'defaultReference': {'PDO': {'monthly': {'best_matching_model_eofs__cor': 1,
                                                                                                                            'best_matching_model_eofs__rms': 1,
                                                                                                                            'best_matching_model_eofs__tcor_cbf_vs_eof_pc': 1,
                                                                                                                            'cbf': {'bias': 0.006436299186630859,
                                                                                                                                    'bias_glo': -0.009322896209287009,
                                                                                                                                    'cor': 0.9171146489006299,
                                                                                                                                    'cor_glo': 0.7348678281654322,
                                                                                                                                    'frac': 0.16048597435645703,
                                                                                                                                    'frac_cbf_regrid': 0.15984587359582147,
                                                                                                                                    'mean': -1.5500598993009522e-17,
                                                                                                                                    'mean_glo': 0.06180416992184317,
                                                                                                                                    'rms': 0.12434963196343207,
                                                                                                                                    'rms_glo': 0.10746472195409064,
                                                                                                                                    'rmsc': 0.4182446954752465,
                                                                                                                                    'rmsc_glo': 0.7412572754922163,
                                                                                                                                    'stdv_pc': 0.2279195127071449,
                                                                                                                                    'stdv_pc_ratio_to_obs': 0.964793047143672},
                                                                                                                            'eof1': {'bias': 0.006262648390059189,
                                                                                                                                     'bias_glo': -0.015173876742794148,
                                                                                                                                     'cor': 0.8147662881621608,
                                                                                                                                     'cor_glo': 0.637192911620006,
                                                                                                                                     'frac': 0.1748020209379785,
                                                                                                                                     'mean': -2.170083859021333e-18,
                                                                                                                                     'mean_glo': 0.05588241014883989,
                                                                                                                                     'rms': 0.1899493396245279,
                                                                                                                                     'rms_glo': 0.1257388012827244,
                                                                                                                                     'rmsc': 0.6240132273595652,
                                                                                                                                     'rmsc_glo': 0.8672957738820078,
                                                                                                                                     'stdv_pc': 0.2653297163273523,
                                                                                                                                     'stdv_pc_ratio_to_obs': 1.1231520393874883,
                                                                                                                                     'tcor_cbf_vs_eof_pc': 0.9229319061042099},
                                                                                                                            'eof2': {'bias': 0.005750993833807292,
                                                                                                                                     'bias_glo': -0.01701435705272241,
                                                                                                                                     'cor': 0.1410887432041416,
                                                                                                                                     'cor_glo': -0.023085142427115363,
                                                                                                                                     'frac': 0.11137147056128785,
                                                                                                                                     'mean': 9.300359395805715e-18,
                                                                                                                                     'mean_glo': -0.053618640264151196,
                                                                                                                                     'rms': 0.36564430702154144,
                                                                                                                                     'rms_glo': 0.19154623276751406,
                                                                                                                                     'rmsc': 1.345761634634668,
                                                                                                                                     'rmsc_glo': 1.4586440790836004,
                                                                                                                                     'stdv_pc': 0.2117871690137596,
                                                                                                                                     'stdv_pc_ratio_to_obs': 0.8965041461863023,
                                                                                                                                     'tcor_cbf_vs_eof_pc': -0.12982008393523492},
                                                                                                                            'eof3': {'bias': 0.005306100780886089,
                                                                                                                                     'bias_glo': -0.05184580311772283,
                                                                                                                                     'cor': 0.4297516775534116,
                                                                                                                                     'cor_glo': 0.48795213567870743,
                                                                                                                                     'frac': 0.08152001527750757,
                                                                                                                                     'mean': 2.170083859021333e-18,
                                                                                                                                     'mean_glo': -0.01920215570818396,
                                                                                                                                     'rms': 0.28302885519276244,
                                                                                                                                     'rms_glo': 0.14762100098971598,
                                                                                                                                     'rmsc': 1.0982658530710576,
                                                                                                                                     'rmsc_glo': 1.030864843576753,
                                                                                                                                     'stdv_pc': 0.18119440959717048,
                                                                                                                                     'stdv_pc_ratio_to_obs': 0.7670036868904404,
                                                                                                                                     'tcor_cbf_vs_eof_pc': -0.335748071122326},
                                                                                                                            'period': '1900-2005'},
                                                                                                                'target_model_eofs': 1}}},
                                                                      'r2i1p1f1': {'defaultReference': {'PDO': {'monthly': {'best_matching_model_eofs__cor': 1,
                                                                                                                            'best_matching_model_eofs__rms': 1,
                                                                                                                            'best_matching_model_eofs__tcor_cbf_vs_eof_pc': 1,
                                                                                                                            'cbf': {'bias': 0.006629702622067817,
                                                                                                                                    'bias_glo': -0.013600260049372266,
                                                                                                                                    'cor': 0.9237115794697746,
                                                                                                                                    'cor_glo': 0.7642874062075861,
                                                                                                                                    'frac': 0.14576015180078988,
                                                                                                                                    'frac_cbf_regrid': 0.1454863799641,
                                                                                                                                    'mean': -1.2090467214547429e-17,
                                                                                                                                    'mean_glo': 0.057278796293191325,
                                                                                                                                    'rms': 0.11533825566926889,
                                                                                                                                    'rms_glo': 0.10224737882455998,
                                                                                                                                    'rmsc': 0.40139674295828504,
                                                                                                                                    'rmsc_glo': 0.6992817020616505,
                                                                                                                                    'stdv_pc': 0.2182198538642628,
                                                                                                                                    'stdv_pc_ratio_to_obs': 0.9237339763334309},
                                                                                                                            'eof1': {'bias': 0.00618119445795824,
                                                                                                                                     'bias_glo': -0.03752787259546251,
                                                                                                                                     'cor': 0.7575618578925315,
                                                                                                                                     'cor_glo': 0.6130199454928633,
                                                                                                                                     'frac': 0.1626431156258114,
                                                                                                                                     'mean': -4.030155738182476e-18,
                                                                                                                                     'mean_glo': 0.03328374638922367,
                                                                                                                                     'rms': 0.21196247641394983,
                                                                                                                                     'rms_glo': 0.13194128504150363,
                                                                                                                                     'rmsc': 0.7146106523550216,
                                                                                                                                     'rmsc_glo': 0.8957925139500574,
                                                                                                                                     'stdv_pc': 0.2550174539239933,
                                                                                                                                     'stdv_pc_ratio_to_obs': 1.079499791500026,
                                                                                                                                     'tcor_cbf_vs_eof_pc': 0.8662041296278781},
                                                                                                                            'eof2': {'bias': 0.006308083091457127,
                                                                                                                                     'bias_glo': -0.0014588923382226893,
                                                                                                                                     'cor': 0.35753734829447914,
                                                                                                                                     'cor_glo': 0.2081131878781956,
                                                                                                                                     'frac': 0.11915479486781415,
                                                                                                                                     'mean': 1.984076671105219e-17,
                                                                                                                                     'mean_glo': -0.06908020547230274,
                                                                                                                                     'rms': 0.3200305063850647,
                                                                                                                                     'rms_glo': 0.17051700465890268,
                                                                                                                                     'rmsc': 1.1615913924410868,
                                                                                                                                     'rmsc_glo': 1.2824378253212811,
                                                                                                                                     'stdv_pc': 0.21827692378193683,
                                                                                                                                     'stdv_pc_ratio_to_obs': 0.9239755557362604,
                                                                                                                                     'tcor_cbf_vs_eof_pc': -0.3518133087552251},
                                                                                                                            'eof3': {'bias': 0.005176222188801258,
                                                                                                                                     'bias_glo': -0.048312950075274225,
                                                                                                                                     'cor': 0.3194658901402263,
                                                                                                                                     'cor_glo': 0.4947328648052661,
                                                                                                                                     'frac': 0.08484932468070225,
                                                                                                                                     'mean': 2.3250898489514287e-18,
                                                                                                                                     'mean_glo': -0.022838232273815918,
                                                                                                                                     'rms': 0.30977715282526597,
                                                                                                                                     'rms_glo': 0.14831515716958613,
                                                                                                                                     'rmsc': 1.199448977419747,
                                                                                                                                     'rmsc_glo': 1.0238532799072357,
                                                                                                                                     'stdv_pc': 0.18419433027008983,
                                                                                                                                     'stdv_pc_ratio_to_obs': 0.7797024794283748,
                                                                                                                                     'tcor_cbf_vs_eof_pc': -0.2667444171987744},
                                                                                                                            'period': '1900-2005'},
                                                                                                                'target_model_eofs': 1}}},
                                                                      'r3i1p1f1': {'defaultReference': {'PDO': {'monthly': {'best_matching_model_eofs__cor': 1,
                                                                                                                            'best_matching_model_eofs__rms': 1,
                                                                                                                            'best_matching_model_eofs__tcor_cbf_vs_eof_pc': 1,
                                                                                                                            'cbf': {'bias': 0.006921368905606155,
                                                                                                                                    'bias_glo': -0.0031622286925270526,
                                                                                                                                    'cor': 0.9215791970979681,
                                                                                                                                    'cor_glo': 0.7729239272098252,
                                                                                                                                    'frac': 0.17965068864583655,
                                                                                                                                    'frac_cbf_regrid': 0.17963211938532905,
                                                                                                                                    'mean': -2.0770802650632762e-17,
                                                                                                                                    'mean_glo': 0.06766193609873003,
                                                                                                                                    'rms': 0.12923384285142422,
                                                                                                                                    'rms_glo': 0.10146529420988577,
                                                                                                                                    'rmsc': 0.4062245802433233,
                                                                                                                                    'rmsc_glo': 0.686592888742505,
                                                                                                                                    'stdv_pc': 0.2442344436091441,
                                                                                                                                    'stdv_pc_ratio_to_obs': 1.0338548475657505},
                                                                                                                            'eof1': {'bias': 0.007074331049700023,
                                                                                                                                     'bias_glo': -0.006975856429384378,
                                                                                                                                     'cor': 0.8679333357127726,
                                                                                                                                     'cor_glo': 0.7047992953611343,
                                                                                                                                     'frac': 0.1888242319025678,
                                                                                                                                     'mean': -8.680335436085333e-18,
                                                                                                                                     'mean_glo': 0.06358751769975321,
                                                                                                                                     'rms': 0.16823429411161292,
                                                                                                                                     'rms_glo': 0.11450683152085579,
                                                                                                                                     'rmsc': 0.5258478496105798,
                                                                                                                                     'rmsc_glo': 0.7824831656724339,
                                                                                                                                     'stdv_pc': 0.2784208705973327,
                                                                                                                                     'stdv_pc_ratio_to_obs': 1.1785674554207393,
                                                                                                                                     'tcor_cbf_vs_eof_pc': 0.9616597368796563},
                                                                                                                            'eof2': {'bias': 0.003133275131684846,
                                                                                                                                     'bias_glo': -0.15002723602075624,
                                                                                                                                     'cor': 0.019729032269009236,
                                                                                                                                     'cor_glo': 0.10771287644395815,
                                                                                                                                     'frac': 0.10879974680987631,
                                                                                                                                     'mean': 1.8445712801681332e-17,
                                                                                                                                     'mean_glo': -0.07898771138140204,
                                                                                                                                     'rms': 0.39041731360339715,
                                                                                                                                     'rms_glo': 0.2357860212389886,
                                                                                                                                     'rmsc': 1.4378311249017222,
                                                                                                                                     'rmsc_glo': 1.3621692323616474,
                                                                                                                                     'stdv_pc': 0.21134251248973926,
                                                                                                                                     'stdv_pc_ratio_to_obs': 0.8946218960987762,
                                                                                                                                     'tcor_cbf_vs_eof_pc': 0.016443369399091693},
                                                                                                                            'eof3': {'bias': 0.005065877625953281,
                                                                                                                                     'bias_glo': -0.027217086357157118,
                                                                                                                                     'cor': 0.29668172893709727,
                                                                                                                                     'cor_glo': 0.49975938064127945,
                                                                                                                                     'frac': 0.08216036702788475,
                                                                                                                                     'mean': 4.340167718042666e-18,
                                                                                                                                     'mean_glo': -0.044302147691122326,
                                                                                                                                     'rms': 0.31370984117256706,
                                                                                                                                     'rms_glo': 0.14211616015433468,
                                                                                                                                     'rmsc': 1.2166966246711675,
                                                                                                                                     'rmsc_glo': 1.0170285549261013,
                                                                                                                                     'stdv_pc': 0.18365557199320437,
                                                                                                                                     'stdv_pc_ratio_to_obs': 0.7774218925955217,
                                                                                                                                     'tcor_cbf_vs_eof_pc': -0.21940609258554764},
                                                                                                                            'period': '1900-2005'},
                                                                                                                'target_model_eofs': 1}}},
                                                                      'r4i1p1f1': {'defaultReference': {'PDO': {'monthly': {'best_matching_model_eofs__cor': 1,
                                                                                                                            'best_matching_model_eofs__rms': 1,
                                                                                                                            'best_matching_model_eofs__tcor_cbf_vs_eof_pc': 1,
                                                                                                                            'cbf': {'bias': 0.0057087573795153,
                                                                                                                                    'bias_glo': -0.034792598917508286,
                                                                                                                                    'cor': 0.9393279667000208,
                                                                                                                                    'cor_glo': 0.8053225926057347,
                                                                                                                                    'frac': 0.140031928169969,
                                                                                                                                    'frac_cbf_regrid': 0.1392693531548903,
                                                                                                                                    'mean': -4.340167718042666e-18,
                                                                                                                                    'mean_glo': 0.03642330675575862,
                                                                                                                                    'rms': 0.10216993129776938,
                                                                                                                                    'rms_glo': 0.09902013176381348,
                                                                                                                                    'rmsc': 0.35930468017569617,
                                                                                                                                    'rmsc_glo': 0.6352263625747882,
                                                                                                                                    'stdv_pc': 0.21875535346602218,
                                                                                                                                    'stdv_pc_ratio_to_obs': 0.926000769055077},
                                                                                                                            'eof1': {'bias': 0.00470123231353234,
                                                                                                                                     'bias_glo': -0.08436910687688387,
                                                                                                                                     'cor': 0.7020239787472099,
                                                                                                                                     'cor_glo': 0.597395319725116,
                                                                                                                                     'frac': 0.15720693802296104,
                                                                                                                                     'mean': -8.680335436085333e-18,
                                                                                                                                     'mean_glo': -0.013246034322162113,
                                                                                                                                     'rms': 0.23371139874486954,
                                                                                                                                     'rms_glo': 0.15386470199741803,
                                                                                                                                     'rmsc': 0.7935279147011797,
                                                                                                                                     'rmsc_glo': 0.9141715046605828,
                                                                                                                                     'stdv_pc': 0.25096811466494584,
                                                                                                                                     'stdv_pc_ratio_to_obs': 1.0623587651953816,
                                                                                                                                     'tcor_cbf_vs_eof_pc': 0.7934783901567372},
                                                                                                                            'eof2': {'bias': 0.006255684913906991,
                                                                                                                                     'bias_glo': 0.009382931195402053,
                                                                                                                                     'cor': 0.5888878634238884,
                                                                                                                                     'cor_glo': 0.5221315685037033,
                                                                                                                                     'frac': 0.1168284287613367,
                                                                                                                                     'mean': -8.370323456225143e-18,
                                                                                                                                     'mean_glo': 0.0803863536232126,
                                                                                                                                     'rms': 0.25563060454705266,
                                                                                                                                     'rms_glo': 0.1393505455924046,
                                                                                                                                     'rmsc': 0.9287196494266424,
                                                                                                                                     'rmsc_glo': 0.9956252569980435,
                                                                                                                                     'stdv_pc': 0.21635003094325078,
                                                                                                                                     'stdv_pc_ratio_to_obs': 0.9158189359222125,
                                                                                                                                     'tcor_cbf_vs_eof_pc': 0.5728569777152352},
                                                                                                                            'eof3': {'bias': 0.004595226309547969,
                                                                                                                                     'bias_glo': -0.06393264349610205,
                                                                                                                                     'cor': 0.1733772930777978,
                                                                                                                                     'cor_glo': 0.37921198455492344,
                                                                                                                                     'frac': 0.08868939175410026,
                                                                                                                                     'mean': -8.525329446155238e-18,
                                                                                                                                     'mean_glo': -0.007547124386691835,
                                                                                                                                     'rms': 0.342282992556787,
                                                                                                                                     'rms_glo': 0.1629593248134226,
                                                                                                                                     'rmsc': 1.322008186975118,
                                                                                                                                     'rmsc_glo': 1.1328712984178666,
                                                                                                                                     'stdv_pc': 0.18850311528607333,
                                                                                                                                     'stdv_pc_ratio_to_obs': 0.7979417507206015,
                                                                                                                                     'tcor_cbf_vs_eof_pc': -0.14715348032728637},
                                                                                                                            'period': '1900-2005'},
                                                                                                                'target_model_eofs': 1}}},
                                                                      'r5i1p1f1': {'defaultReference': {'PDO': {'monthly': {'best_matching_model_eofs__cor': 1,
                                                                                                                            'best_matching_model_eofs__rms': 1,
                                                                                                                            'best_matching_model_eofs__tcor_cbf_vs_eof_pc': 1,
                                                                                                                            'cbf': {'bias': 0.006268492101318119,
                                                                                                                                    'bias_glo': -0.0068069594606150335,
                                                                                                                                    'cor': 0.9074051855009615,
                                                                                                                                    'cor_glo': 0.7591511151631094,
                                                                                                                                    'frac': 0.16847140618022965,
                                                                                                                                    'frac_cbf_regrid': 0.16719798810738276,
                                                                                                                                    'mean': -8.835341426015429e-18,
                                                                                                                                    'mean_glo': 0.06457000201010714,
                                                                                                                                    'rms': 0.13923952948002133,
                                                                                                                                    'rms_glo': 0.10373229685734998,
                                                                                                                                    'rmsc': 0.4433674279242072,
                                                                                                                                    'rmsc_glo': 0.7067000062757975,
                                                                                                                                    'stdv_pc': 0.24005780611348693,
                                                                                                                                    'stdv_pc_ratio_to_obs': 1.0161749623800218},
                                                                                                                            'eof1': {'bias': 0.005676476800611998,
                                                                                                                                     'bias_glo': -0.032278905874797564,
                                                                                                                                     'cor': 0.7557461946533934,
                                                                                                                                     'cor_glo': 0.6253984002350329,
                                                                                                                                     'frac': 0.1907282775048135,
                                                                                                                                     'mean': -7.440287516644572e-18,
                                                                                                                                     'mean_glo': 0.03906115263270226,
                                                                                                                                     'rms': 0.2317392281837409,
                                                                                                                                     'rms_glo': 0.1321303293333717,
                                                                                                                                     'rmsc': 0.7186619096438679,
                                                                                                                                     'rmsc_glo': 0.8814205181256387,
                                                                                                                                     'stdv_pc': 0.2867805716707198,
                                                                                                                                     'stdv_pc_ratio_to_obs': 1.2139544276725034,
                                                                                                                                     'tcor_cbf_vs_eof_pc': 0.8830254225832019},
                                                                                                                            'eof2': {'bias': 0.006090925243876879,
                                                                                                                                     'bias_glo': -0.0022938372660884637,
                                                                                                                                     'cor': 0.39443979820169206,
                                                                                                                                     'cor_glo': 0.3440049270224594,
                                                                                                                                     'frac': 0.10870538581190156,
                                                                                                                                     'mean': -8.060311476364952e-18,
                                                                                                                                     'mean_glo': 0.06861075278512258,
                                                                                                                                     'rms': 0.3100486388438745,
                                                                                                                                     'rms_glo': 0.1574133844954579,
                                                                                                                                     'rmsc': 1.129379836513501,
                                                                                                                                     'rmsc_glo': 1.168191414142415,
                                                                                                                                     'stdv_pc': 0.21650489193928782,
                                                                                                                                     'stdv_pc_ratio_to_obs': 0.9164744691430222,
                                                                                                                                     'tcor_cbf_vs_eof_pc': 0.3510341985861876},
                                                                                                                            'eof3': {'bias': 0.005772503814225008,
                                                                                                                                     'bias_glo': -0.012602803428885728,
                                                                                                                                     'cor': 0.2778617445508622,
                                                                                                                                     'cor_glo': 0.45102680772030856,
                                                                                                                                     'frac': 0.07925655937199633,
                                                                                                                                     'mean': 8.060311476364952e-18,
                                                                                                                                     'mean_glo': -0.058583669214479786,
                                                                                                                                     'rms': 0.31908701099534265,
                                                                                                                                     'rms_glo': 0.1447755314138477,
                                                                                                                                     'rmsc': 1.235076516784705,
                                                                                                                                     'rmsc_glo': 1.067050726245745,
                                                                                                                                     'stdv_pc': 0.18486716890556057,
                                                                                                                                     'stdv_pc_ratio_to_obs': 0.782550634154758,
                                                                                                                                     'tcor_cbf_vs_eof_pc': -0.2118221098635416},
                                                                                                                            'period': '1900-2005'},
                                                                                                                'target_model_eofs': 1}}}}},
                                           'provenance': {'commandLine': '../variability_modes_driver.py '
                                                                         '-p '
                                                                         '../../../sample_setups/pcmdi_parameter_files/variability_modes/myParam_PDO_cmip6.py '
                                                                         '--case_id '
                                                                         'v20220825 '
                                                                         '--mip '
                                                                         'cmip6 '
                                                                         '--exp '
                                                                         'historical '
                                                                         '--modnames '
                                                                         'UKESM1-0-LL '
                                                                         '--realization '
                                                                         'r9i1p1f2 '
                                                                         '--parallel '
                                                                         'True '
                                                                         '--no_nc_out_obs '
                                                                         '--no_plot_obs',
                                                          'conda': {'Platform': 'linux-64',
                                                                    'PythonVersion': '3.7.3.final.0',
                                                                    'Version': '4.14.0',
                                                                    'buildVersion': '3.18.8'},
                                                          'date': '2022-08-25 '
                                                                  '21:55:11',
                                                          'history': '',
                                                          'openGL': {'GLX': {'client': {},
                                                                             'server': {}}},
                                                          'osAccess': False,
                                                          'packages': {'PMP': '2.0',
                                                                       'PMPObs': 'See '
                                                                                 "'References' "
                                                                                 'key '
                                                                                 'below, '
                                                                                 'for '
                                                                                 'detailed '
                                                                                 'obs '
                                                                                 'provenance '
                                                                                 'information.',
                                                                       'blas': '0.3.21',
                                                                       'cdat_info': '8.2.1',
                                                                       'cdms': '3.1.5',
                                                                       'cdp': '1.7.0',
                                                                       'cdtime': '3.1.4',
                                                                       'cdutil': '8.2.1',
                                                                       'clapack': None,
                                                                       'esmf': '8.2.0',
                                                                       'esmpy': '8.2.0',
                                                                       'genutil': '8.2.1',
                                                                       'lapack': '3.9.0',
                                                                       'matplotlib': None,
                                                                       'mesalib': None,
                                                                       'numpy': '1.23.2',
                                                                       'python': '3.10.6',
                                                                       'scipy': '1.9.0',
                                                                       'uvcdat': None,
                                                                       'vcs': None,
                                                                       'vtk': None},
                                                          'platform': {'Name': 'gates.llnl.gov',
                                                                       'OS': 'Linux',
                                                                       'Version': '3.10.0-1160.71.1.el7.x86_64'},
                                                          'script': '#!/usr/bin/env '
                                                                    'python\n'
                                                                    '\n'
                                                                    '"""\n'
                                                                    '# Modes '
                                                                    'of '
                                                                    'Variability '
                                                                    'Metrics\n'
                                                                    '- '
                                                                    'Calculate '
                                                                    'metrics '
                                                                    'for modes '
                                                                    'of '
                                                                    'varibility '
                                                                    'from '
                                                                    'archive '
                                                                    'of CMIP '
                                                                    'models\n'
                                                                    '- Author: '
                                                                    'Jiwoo Lee '
                                                                    '(lee1043@llnl.gov), '
                                                                    'PCMDI, '
                                                                    'LLNL\n'
                                                                    '\n'
                                                                    '## EOF1 '
                                                                    'based '
                                                                    'variability '
                                                                    'modes\n'
                                                                    '- NAM: '
                                                                    'Northern '
                                                                    'Annular '
                                                                    'Mode\n'
                                                                    '- NAO: '
                                                                    'Northern '
                                                                    'Atlantic '
                                                                    'Oscillation\n'
                                                                    '- SAM: '
                                                                    'Southern '
                                                                    'Annular '
                                                                    'Mode\n'
                                                                    '- PNA: '
                                                                    'Pacific '
                                                                    'North '
                                                                    'American '
                                                                    'Pattern\n'
                                                                    '- PDO: '
                                                                    'Pacific '
                                                                    'Decadal '
                                                                    'Oscillation\n'
                                                                    '\n'
                                                                    '## EOF2 '
                                                                    'based '
                                                                    'variability '
                                                                    'modes\n'
                                                                    '- NPO: '
                                                                    'North '
                                                                    'Pacific '
                                                                    'Oscillation '
                                                                    '(2nd EOFs '
                                                                    'of PNA '
                                                                    'domain)\n'
                                                                    '- NPGO: '
                                                                    'North '
                                                                    'Pacific '
                                                                    'Gyre '
                                                                    'Oscillation '
                                                                    '(2nd EOFs '
                                                                    'of PDO '
                                                                    'domain)\n'
                                                                    '\n'
                                                                    '## '
                                                                    'Reference:\n'
                                                                    'Lee, J., '
                                                                    'K. '
                                                                    'Sperber, '
                                                                    'P. '
                                                                    'Gleckler, '
                                                                    'C. '
                                                                    'Bonfils, '
                                                                    'and K. '
                                                                    'Taylor, '
                                                                    '2019:\n'
                                                                    'Quantifying '
                                                                    'the '
                                                                    'Agreement '
                                                                    'Between '
                                                                    'Observed '
                                                                    'and '
                                                                    'Simulated '
                                                                    'Extratropical '
                                                                    'Modes of\n'
                                                                    'Interannual '
                                                                    'Variability. '
                                                                    'Climate '
                                                                    'Dynamics.\n'
                                                                    'https://doi.org/10.1007/s00382-018-4355-4\n'
                                                                    '\n'
                                                                    '## '
                                                                    'Auspices:\n'
                                                                    'This work '
                                                                    'was '
                                                                    'performed '
                                                                    'under the '
                                                                    'auspices '
                                                                    'of the '
                                                                    'U.S. '
                                                                    'Department '
                                                                    'of\n'
                                                                    'Energy by '
                                                                    'Lawrence '
                                                                    'Livermore '
                                                                    'National '
                                                                    'Laboratory '
                                                                    'under '
                                                                    'Contract\n'
                                                                    'DE-AC52-07NA27344. '
                                                                    'Lawrence '
                                                                    'Livermore '
                                                                    'National '
                                                                    'Laboratory '
                                                                    'is '
                                                                    'operated '
                                                                    'by\n'
                                                                    'Lawrence '
                                                                    'Livermore '
                                                                    'National '
                                                                    'Security, '
                                                                    'LLC, for '
                                                                    'the U.S. '
                                                                    'Department '
                                                                    'of '
                                                                    'Energy,\n'
                                                                    'National '
                                                                    'Nuclear '
                                                                    'Security '
                                                                    'Administration '
                                                                    'under '
                                                                    'Contract '
                                                                    'DE-AC52-07NA27344.\n'
                                                                    '\n'
                                                                    '## '
                                                                    'Disclaimer:\n'
                                                                    'This '
                                                                    'document '
                                                                    'was '
                                                                    'prepared '
                                                                    'as an '
                                                                    'account '
                                                                    'of work '
                                                                    'sponsored '
                                                                    'by an\n'
                                                                    'agency of '
                                                                    'the '
                                                                    'United '
                                                                    'States '
                                                                    'government. '
                                                                    'Neither '
                                                                    'the '
                                                                    'United '
                                                                    'States '
                                                                    'government\n'
                                                                    'nor '
                                                                    'Lawrence '
                                                                    'Livermore '
                                                                    'National '
                                                                    'Security, '
                                                                    'LLC, nor '
                                                                    'any of '
                                                                    'their '
                                                                    'employees\n'
                                                                    'makes any '
                                                                    'warranty, '
                                                                    'expressed '
                                                                    'or '
                                                                    'implied, '
                                                                    'or '
                                                                    'assumes '
                                                                    'any legal '
                                                                    'liability '
                                                                    'or\n'
                                                                    'responsibility '
                                                                    'for the '
                                                                    'accuracy, '
                                                                    'completeness, '
                                                                    'or '
                                                                    'usefulness '
                                                                    'of any\n'
                                                                    'information, '
                                                                    'apparatus, '
                                                                    'product, '
                                                                    'or '
                                                                    'process '
                                                                    'disclosed, '
                                                                    'or '
                                                                    'represents '
                                                                    'that its\n'
                                                                    'use would '
                                                                    'not '
                                                                    'infringe '
                                                                    'privately '
                                                                    'owned '
                                                                    'rights. '
                                                                    'Reference '
                                                                    'herein to '
                                                                    'any '
                                                                    'specific\n'
                                                                    'commercial '
                                                                    'product, '
                                                                    'process, '
                                                                    'or '
                                                                    'service '
                                                                    'by trade '
                                                                    'name, '
                                                                    'trademark, '
                                                                    'manufacturer,\n'
                                                                    'or '
                                                                    'otherwise '
                                                                    'does not '
                                                                    'necessarily '
                                                                    'constitute '
                                                                    'or imply '
                                                                    'its '
                                                                    'endorsement,\n'
                                                                    'recommendation, '
                                                                    'or '
                                                                    'favoring '
                                                                    'by the '
                                                                    'United '
                                                                    'States '
                                                                    'government '
                                                                    'or '
                                                                    'Lawrence\n'
                                                                    'Livermore '
                                                                    'National '
                                                                    'Security, '
                                                                    'LLC. The '
                                                                    'views and '
                                                                    'opinions '
                                                                    'of '
                                                                    'authors '
                                                                    'expressed\n'
                                                                    'herein do '
                                                                    'not '
                                                                    'necessarily '
                                                                    'state or '
                                                                    'reflect '
                                                                    'those of '
                                                                    'the '
                                                                    'United '
                                                                    'States\n'
                                                                    'government '
                                                                    'or '
                                                                    'Lawrence '
                                                                    'Livermore '
                                                                    'National '
                                                                    'Security, '
                                                                    'LLC, and '
                                                                    'shall not '
                                                                    'be used\n'
                                                                    'for '
                                                                    'advertising '
                                                                    'or '
                                                                    'product '
                                                                    'endorsement '
                                                                    'purposes.\n'
                                                                    '"""\n'
                                                                    '\n'
                                                                    'from '
                                                                    '__future__ '
                                                                    'import '
                                                                    'print_function\n'
                                                                    '\n'
                                                                    'import '
                                                                    'glob\n'
                                                                    'import '
                                                                    'json\n'
                                                                    'import '
                                                                    'os\n'
                                                                    'import '
                                                                    'sys\n'
                                                                    'from '
                                                                    'argparse '
                                                                    'import '
                                                                    'RawTextHelpFormatter\n'
                                                                    'from '
                                                                    'shutil '
                                                                    'import '
                                                                    'copyfile\n'
                                                                    '\n'
                                                                    'import '
                                                                    'cdtime\n'
                                                                    'import '
                                                                    'cdutil\n'
                                                                    'import '
                                                                    'MV2\n'
                                                                    'from '
                                                                    'genutil '
                                                                    'import '
                                                                    'StringConstructor\n'
                                                                    '\n'
                                                                    'import '
                                                                    'pcmdi_metrics\n'
                                                                    'from '
                                                                    'pcmdi_metrics '
                                                                    'import '
                                                                    'resources\n'
                                                                    'from '
                                                                    'pcmdi_metrics.variability_mode.lib '
                                                                    'import (\n'
                                                                    '    '
                                                                    'AddParserArgument,\n'
                                                                    '    '
                                                                    'VariabilityModeCheck,\n'
                                                                    '    '
                                                                    'YearCheck,\n'
                                                                    '    '
                                                                    'adjust_timeseries,\n'
                                                                    '    '
                                                                    'calc_stats_save_dict,\n'
                                                                    '    '
                                                                    'calcSTD,\n'
                                                                    '    '
                                                                    'calcTCOR,\n'
                                                                    '    '
                                                                    'debug_print,\n'
                                                                    '    '
                                                                    'eof_analysis_get_variance_mode,\n'
                                                                    '    '
                                                                    'gain_pcs_fraction,\n'
                                                                    '    '
                                                                    'gain_pseudo_pcs,\n'
                                                                    '    '
                                                                    'get_domain_range,\n'
                                                                    '    '
                                                                    'linear_regression_on_globe_for_teleconnection,\n'
                                                                    '    '
                                                                    'plot_map,\n'
                                                                    '    '
                                                                    'read_data_in,\n'
                                                                    '    '
                                                                    'sort_human,\n'
                                                                    '    '
                                                                    'tree,\n'
                                                                    '    '
                                                                    'variability_metrics_to_json,\n'
                                                                    '    '
                                                                    'write_nc_output,\n'
                                                                    ')\n'
                                                                    '\n'
                                                                    '# To '
                                                                    'avoid '
                                                                    'below '
                                                                    'error\n'
                                                                    '# '
                                                                    'OpenBLAS '
                                                                    'blas_thread_init: '
                                                                    'pthread_create '
                                                                    'failed '
                                                                    'for '
                                                                    'thread XX '
                                                                    'of 96: '
                                                                    'Resource '
                                                                    'temporarily '
                                                                    'unavailable\n'
                                                                    'os.environ["OPENBLAS_NUM_THREADS"] '
                                                                    '= "1"\n'
                                                                    '\n'
                                                                    '# Must be '
                                                                    'done '
                                                                    'before '
                                                                    'any CDAT '
                                                                    'library '
                                                                    'is '
                                                                    'called.\n'
                                                                    '# '
                                                                    'https://github.com/CDAT/cdat/issues/2213\n'
                                                                    'if '
                                                                    '"UVCDAT_ANONYMOUS_LOG" '
                                                                    'not in '
                                                                    'os.environ:\n'
                                                                    '    '
                                                                    'os.environ["UVCDAT_ANONYMOUS_LOG"] '
                                                                    '= "no"\n'
                                                                    '\n'
                                                                    'regions_specs '
                                                                    '= {}\n'
                                                                    'egg_pth = '
                                                                    'resources.resource_path()\n'
                                                                    'exec(\n'
                                                                    '    '
                                                                    'compile(\n'
                                                                    '        '
                                                                    'open(os.path.join(egg_pth, '
                                                                    '"default_regions.py")).read(),\n'
                                                                    '        '
                                                                    'os.path.join(egg_pth, '
                                                                    '"default_regions.py"),\n'
                                                                    '        '
                                                                    '"exec",\n'
                                                                    '    )\n'
                                                                    ')\n'
                                                                    '\n'
                                                                    '# '
                                                                    '=================================================\n'
                                                                    '# Collect '
                                                                    'user '
                                                                    'defined '
                                                                    'options\n'
                                                                    '# '
                                                                    '-------------------------------------------------\n'
                                                                    'P = '
                                                                    'pcmdi_metrics.driver.pmp_parser.PMPParser(\n'
                                                                    '    '
                                                                    'description="Runs '
                                                                    'PCMDI '
                                                                    'Modes of '
                                                                    'Variability '
                                                                    'Computations",\n'
                                                                    '    '
                                                                    'formatter_class=RawTextHelpFormatter,\n'
                                                                    ')\n'
                                                                    'P = '
                                                                    'AddParserArgument(P)\n'
                                                                    'param = '
                                                                    'P.get_parameter()\n'
                                                                    '\n'
                                                                    '# '
                                                                    'Pre-defined '
                                                                    'options\n'
                                                                    'mip = '
                                                                    'param.mip\n'
                                                                    'exp = '
                                                                    'param.exp\n'
                                                                    'fq = '
                                                                    'param.frequency\n'
                                                                    'realm = '
                                                                    'param.realm\n'
                                                                    'print("mip:", '
                                                                    'mip)\n'
                                                                    'print("exp:", '
                                                                    'exp)\n'
                                                                    'print("fq:", '
                                                                    'fq)\n'
                                                                    'print("realm:", '
                                                                    'realm)\n'
                                                                    '\n'
                                                                    '# On/off '
                                                                    'switches\n'
                                                                    'obs_compare '
                                                                    '= True  # '
                                                                    'Statistics '
                                                                    'against '
                                                                    'observation\n'
                                                                    'CBF = '
                                                                    'param.CBF  '
                                                                    '# Conduct '
                                                                    'CBF '
                                                                    'analysis\n'
                                                                    'ConvEOF = '
                                                                    'param.ConvEOF  '
                                                                    '# Conduct '
                                                                    'conventional '
                                                                    'EOF '
                                                                    'analysis\n'
                                                                    '\n'
                                                                    'EofScaling '
                                                                    '= '
                                                                    'param.EofScaling  '
                                                                    '# If '
                                                                    'True, '
                                                                    'consider '
                                                                    'EOF with '
                                                                    'unit '
                                                                    'variance\n'
                                                                    'RmDomainMean '
                                                                    '= '
                                                                    'param.RemoveDomainMean  '
                                                                    '# If '
                                                                    'True, '
                                                                    'remove '
                                                                    'Domain '
                                                                    'Mean of '
                                                                    'each time '
                                                                    'step\n'
                                                                    'LandMask '
                                                                    '= '
                                                                    'param.landmask  '
                                                                    '# If '
                                                                    'True, '
                                                                    'maskout '
                                                                    'land '
                                                                    'region '
                                                                    'thus '
                                                                    'consider '
                                                                    'only over '
                                                                    'ocean\n'
                                                                    '\n'
                                                                    'print("EofScaling:", '
                                                                    'EofScaling)\n'
                                                                    'print("RmDomainMean:", '
                                                                    'RmDomainMean)\n'
                                                                    'print("LandMask:", '
                                                                    'LandMask)\n'
                                                                    '\n'
                                                                    'nc_out_obs '
                                                                    '= '
                                                                    'param.nc_out_obs  '
                                                                    '# Record '
                                                                    'NetCDF '
                                                                    'output\n'
                                                                    'plot_obs '
                                                                    '= '
                                                                    'param.plot_obs  '
                                                                    '# '
                                                                    'Generate '
                                                                    'plots\n'
                                                                    'nc_out_model '
                                                                    '= '
                                                                    'param.nc_out  '
                                                                    '# Record '
                                                                    'NetCDF '
                                                                    'output\n'
                                                                    'plot_model '
                                                                    '= '
                                                                    'param.plot  '
                                                                    '# '
                                                                    'Generate '
                                                                    'plots\n'
                                                                    'update_json '
                                                                    '= '
                                                                    'param.update_json\n'
                                                                    '\n'
                                                                    'print("nc_out_obs, '
                                                                    'plot_obs:", '
                                                                    'nc_out_obs, '
                                                                    'plot_obs)\n'
                                                                    'print("nc_out_model, '
                                                                    'plot_model:", '
                                                                    'nc_out_model, '
                                                                    'plot_model)\n'
                                                                    '\n'
                                                                    'cmec = '
                                                                    'False\n'
                                                                    'if '
                                                                    'hasattr(param, '
                                                                    '"cmec"):\n'
                                                                    '    cmec '
                                                                    '= '
                                                                    'param.cmec  '
                                                                    '# '
                                                                    'Generate '
                                                                    'CMEC '
                                                                    'compliant '
                                                                    'json\n'
                                                                    'print("CMEC:" '
                                                                    '+ '
                                                                    'str(cmec))\n'
                                                                    '\n'
                                                                    '# Check '
                                                                    'given '
                                                                    'mode of '
                                                                    'variability\n'
                                                                    'mode = '
                                                                    'VariabilityModeCheck(param.variability_mode, '
                                                                    'P)\n'
                                                                    'print("mode:", '
                                                                    'mode)\n'
                                                                    '\n'
                                                                    '# '
                                                                    'Variables\n'
                                                                    'var = '
                                                                    'param.varModel\n'
                                                                    '\n'
                                                                    '# Check '
                                                                    'dependency '
                                                                    'for given '
                                                                    'season '
                                                                    'option\n'
                                                                    'seasons = '
                                                                    'param.seasons\n'
                                                                    'print("seasons:", '
                                                                    'seasons)\n'
                                                                    '\n'
                                                                    '# '
                                                                    'Observation '
                                                                    'information\n'
                                                                    'obs_name '
                                                                    '= '
                                                                    'param.reference_data_name\n'
                                                                    'obs_path '
                                                                    '= '
                                                                    'param.reference_data_path\n'
                                                                    'obs_var = '
                                                                    'param.varOBS\n'
                                                                    '\n'
                                                                    '# Path to '
                                                                    'model '
                                                                    'data as '
                                                                    'string '
                                                                    'template\n'
                                                                    'modpath = '
                                                                    'StringConstructor(param.modpath)\n'
                                                                    'if '
                                                                    'LandMask:\n'
                                                                    '    '
                                                                    'modpath_lf '
                                                                    '= '
                                                                    'StringConstructor(param.modpath_lf)\n'
                                                                    '\n'
                                                                    '# Check '
                                                                    'given '
                                                                    'model '
                                                                    'option\n'
                                                                    'models = '
                                                                    'param.modnames\n'
                                                                    '\n'
                                                                    '# Include '
                                                                    'all '
                                                                    'models if '
                                                                    'conditioned\n'
                                                                    'if ("all" '
                                                                    'in '
                                                                    '[m.lower() '
                                                                    'for m in '
                                                                    'models]) '
                                                                    'or '
                                                                    '(models '
                                                                    '== '
                                                                    '"all"):\n'
                                                                    '    '
                                                                    'model_index_path '
                                                                    '= '
                                                                    'param.modpath.split("/")[-1].split(".").index("%(model)")\n'
                                                                    '    '
                                                                    'models = '
                                                                    '[\n'
                                                                    '        '
                                                                    'p.split("/")[-1].split(".")[model_index_path]\n'
                                                                    '        '
                                                                    'for p in '
                                                                    'glob.glob(\n'
                                                                    '            '
                                                                    'modpath(mip=mip, '
                                                                    'exp=exp, '
                                                                    'model="*", '
                                                                    'realization="*", '
                                                                    'variable=var)\n'
                                                                    '        '
                                                                    ')\n'
                                                                    '    ]\n'
                                                                    '    # '
                                                                    'remove '
                                                                    'duplicates\n'
                                                                    '    '
                                                                    'models = '
                                                                    'sorted(list(dict.fromkeys(models)), '
                                                                    'key=lambda '
                                                                    's: '
                                                                    's.lower())\n'
                                                                    '\n'
                                                                    'print("models:", '
                                                                    'models)\n'
                                                                    'print("number '
                                                                    'of '
                                                                    'models:", '
                                                                    'len(models))\n'
                                                                    '\n'
                                                                    '# '
                                                                    'Realizations\n'
                                                                    'realization '
                                                                    '= '
                                                                    'param.realization\n'
                                                                    'print("realization: '
                                                                    '", '
                                                                    'realization)\n'
                                                                    '\n'
                                                                    '# EOF '
                                                                    'ordinal '
                                                                    'number\n'
                                                                    'eofn_obs '
                                                                    '= '
                                                                    'int(param.eofn_obs)\n'
                                                                    'eofn_mod '
                                                                    '= '
                                                                    'int(param.eofn_mod)\n'
                                                                    '\n'
                                                                    '# case '
                                                                    'id\n'
                                                                    'case_id = '
                                                                    'param.case_id\n'
                                                                    '\n'
                                                                    '# Output\n'
                                                                    'outdir_template '
                                                                    '= '
                                                                    'param.process_templated_argument("results_dir")\n'
                                                                    'outdir = '
                                                                    'StringConstructor(\n'
                                                                    '    str(\n'
                                                                    '        '
                                                                    'outdir_template(\n'
                                                                    '            '
                                                                    'output_type="%(output_type)",\n'
                                                                    '            '
                                                                    'mip=mip,\n'
                                                                    '            '
                                                                    'exp=exp,\n'
                                                                    '            '
                                                                    'variability_mode=mode,\n'
                                                                    '            '
                                                                    'reference_data_name=obs_name,\n'
                                                                    '            '
                                                                    'case_id=case_id,\n'
                                                                    '        '
                                                                    ')\n'
                                                                    '    )\n'
                                                                    ')\n'
                                                                    '\n'
                                                                    '# Debug\n'
                                                                    'debug = '
                                                                    'param.debug\n'
                                                                    '\n'
                                                                    '# Year\n'
                                                                    'msyear = '
                                                                    'param.msyear\n'
                                                                    'meyear = '
                                                                    'param.meyear\n'
                                                                    'YearCheck(msyear, '
                                                                    'meyear, '
                                                                    'P)\n'
                                                                    '\n'
                                                                    'osyear = '
                                                                    'param.osyear\n'
                                                                    'oeyear = '
                                                                    'param.oeyear\n'
                                                                    'YearCheck(osyear, '
                                                                    'oeyear, '
                                                                    'P)\n'
                                                                    '\n'
                                                                    '# Units '
                                                                    'adjustment\n'
                                                                    'ObsUnitsAdjust '
                                                                    '= '
                                                                    'param.ObsUnitsAdjust\n'
                                                                    'ModUnitsAdjust '
                                                                    '= '
                                                                    'param.ModUnitsAdjust\n'
                                                                    '\n'
                                                                    '# lon1g '
                                                                    'and lon2g '
                                                                    'is for '
                                                                    'global '
                                                                    'map '
                                                                    'plotting\n'
                                                                    'if mode '
                                                                    'in '
                                                                    '["PDO", '
                                                                    '"NPGO"]:\n'
                                                                    '    lon1g '
                                                                    '= 0\n'
                                                                    '    lon2g '
                                                                    '= 360\n'
                                                                    'else:\n'
                                                                    '    lon1g '
                                                                    '= -180\n'
                                                                    '    lon2g '
                                                                    '= 180\n'
                                                                    '\n'
                                                                    '# '
                                                                    'parallel\n'
                                                                    'parallel '
                                                                    '= '
                                                                    'param.parallel\n'
                                                                    'print("parallel:", '
                                                                    'parallel)\n'
                                                                    '\n'
                                                                    '# '
                                                                    '=================================================\n'
                                                                    '# Time '
                                                                    'period '
                                                                    'adjustment\n'
                                                                    '# '
                                                                    '-------------------------------------------------\n'
                                                                    'start_time '
                                                                    '= '
                                                                    'cdtime.comptime(msyear, '
                                                                    '1, 1, 0, '
                                                                    '0)\n'
                                                                    'end_time '
                                                                    '= '
                                                                    'cdtime.comptime(meyear, '
                                                                    '12, 31, '
                                                                    '23, 59)\n'
                                                                    '\n'
                                                                    'try:\n'
                                                                    '    # '
                                                                    'osyear '
                                                                    'and '
                                                                    'oeyear '
                                                                    'variables '
                                                                    'were '
                                                                    'defined.\n'
                                                                    '    '
                                                                    'start_time_obs '
                                                                    '= '
                                                                    'cdtime.comptime(osyear, '
                                                                    '1, 1, 0, '
                                                                    '0)\n'
                                                                    '    '
                                                                    'end_time_obs '
                                                                    '= '
                                                                    'cdtime.comptime(oeyear, '
                                                                    '12, 31, '
                                                                    '23, 59)\n'
                                                                    'except '
                                                                    'NameError:\n'
                                                                    '    # '
                                                                    'osyear, '
                                                                    'oeyear '
                                                                    'variables '
                                                                    'were NOT '
                                                                    'defined\n'
                                                                    '    '
                                                                    'start_time_obs '
                                                                    '= '
                                                                    'start_time\n'
                                                                    '    '
                                                                    'end_time_obs '
                                                                    '= '
                                                                    'end_time\n'
                                                                    '\n'
                                                                    '# '
                                                                    '=================================================\n'
                                                                    '# Region '
                                                                    'control\n'
                                                                    '# '
                                                                    '-------------------------------------------------\n'
                                                                    'region_subdomain '
                                                                    '= '
                                                                    'get_domain_range(mode, '
                                                                    'regions_specs)\n'
                                                                    '\n'
                                                                    '# '
                                                                    '=================================================\n'
                                                                    '# Create '
                                                                    'output '
                                                                    'directories\n'
                                                                    '# '
                                                                    '-------------------------------------------------\n'
                                                                    'for '
                                                                    'output_type '
                                                                    'in '
                                                                    '["graphics", '
                                                                    '"diagnostic_results", '
                                                                    '"metrics_results"]:\n'
                                                                    '    if '
                                                                    'not '
                                                                    'os.path.exists(outdir(output_type=output_type)):\n'
                                                                    '        '
                                                                    'os.makedirs(outdir(output_type=output_type))\n'
                                                                    '    '
                                                                    'print(outdir(output_type=output_type))\n'
                                                                    '\n'
                                                                    '# '
                                                                    '=================================================\n'
                                                                    '# Set '
                                                                    'dictionary '
                                                                    'for .json '
                                                                    'record\n'
                                                                    '# '
                                                                    '-------------------------------------------------\n'
                                                                    'result_dict '
                                                                    '= tree()\n'
                                                                    '\n'
                                                                    '# Set '
                                                                    'metrics '
                                                                    'output '
                                                                    'JSON '
                                                                    'file\n'
                                                                    'json_filename '
                                                                    '= '
                                                                    '"_".join(\n'
                                                                    '    [\n'
                                                                    '        '
                                                                    '"var",\n'
                                                                    '        '
                                                                    '"mode",\n'
                                                                    '        '
                                                                    'mode,\n'
                                                                    '        '
                                                                    '"EOF" + '
                                                                    'str(eofn_mod),\n'
                                                                    '        '
                                                                    '"stat",\n'
                                                                    '        '
                                                                    'mip,\n'
                                                                    '        '
                                                                    'exp,\n'
                                                                    '        '
                                                                    'fq,\n'
                                                                    '        '
                                                                    'realm,\n'
                                                                    '        '
                                                                    'str(msyear) '
                                                                    '+ "-" + '
                                                                    'str(meyear),\n'
                                                                    '    ]\n'
                                                                    ')\n'
                                                                    '\n'
                                                                    'json_file '
                                                                    '= '
                                                                    'os.path.join(outdir(output_type="metrics_results"), '
                                                                    'json_filename '
                                                                    '+ '
                                                                    '".json")\n'
                                                                    'json_file_org '
                                                                    '= '
                                                                    'os.path.join(\n'
                                                                    '    '
                                                                    'outdir(output_type="metrics_results"),\n'
                                                                    '    '
                                                                    '"_".join([json_filename, '
                                                                    '"org", '
                                                                    'str(os.getpid())]) '
                                                                    '+ '
                                                                    '".json",\n'
                                                                    ')\n'
                                                                    '\n'
                                                                    '# Archive '
                                                                    'if there '
                                                                    'is '
                                                                    'pre-existing '
                                                                    'JSON: '
                                                                    'preventing '
                                                                    'overwriting\n'
                                                                    'if '
                                                                    'os.path.isfile(json_file) '
                                                                    'and '
                                                                    'os.stat(json_file).st_size '
                                                                    '> 0:\n'
                                                                    '    '
                                                                    'copyfile(json_file, '
                                                                    'json_file_org)\n'
                                                                    '    if '
                                                                    'update_json:\n'
                                                                    '        '
                                                                    'fj = '
                                                                    'open(json_file)\n'
                                                                    '        '
                                                                    'result_dict '
                                                                    '= '
                                                                    'json.loads(fj.read())\n'
                                                                    '        '
                                                                    'fj.close()\n'
                                                                    '\n'
                                                                    'if "REF" '
                                                                    'not in '
                                                                    'list(result_dict.keys()):\n'
                                                                    '    '
                                                                    'result_dict["REF"] '
                                                                    '= {}\n'
                                                                    'if '
                                                                    '"RESULTS" '
                                                                    'not in '
                                                                    'list(result_dict.keys()):\n'
                                                                    '    '
                                                                    'result_dict["RESULTS"] '
                                                                    '= {}\n'
                                                                    '\n'
                                                                    '# '
                                                                    '=================================================\n'
                                                                    '# '
                                                                    'Observation\n'
                                                                    '# '
                                                                    '-------------------------------------------------\n'
                                                                    'if '
                                                                    'obs_compare:\n'
                                                                    '\n'
                                                                    '    '
                                                                    'obs_lf_path '
                                                                    '= None\n'
                                                                    '\n'
                                                                    '    # '
                                                                    'read data '
                                                                    'in\n'
                                                                    '    '
                                                                    'obs_timeseries, '
                                                                    'osyear, '
                                                                    'oeyear = '
                                                                    'read_data_in(\n'
                                                                    '        '
                                                                    'obs_name,\n'
                                                                    '        '
                                                                    'obs_path,\n'
                                                                    '        '
                                                                    'obs_lf_path,\n'
                                                                    '        '
                                                                    'obs_var,\n'
                                                                    '        '
                                                                    'var,\n'
                                                                    '        '
                                                                    'start_time_obs,\n'
                                                                    '        '
                                                                    'end_time_obs,\n'
                                                                    '        '
                                                                    'ObsUnitsAdjust,\n'
                                                                    '        '
                                                                    'LandMask,\n'
                                                                    '        '
                                                                    'debug=debug,\n'
                                                                    '    )\n'
                                                                    '\n'
                                                                    '    # '
                                                                    'Save '
                                                                    'global '
                                                                    'grid '
                                                                    'information '
                                                                    'for '
                                                                    'regrid '
                                                                    'below\n'
                                                                    '    '
                                                                    'ref_grid_global '
                                                                    '= '
                                                                    'obs_timeseries.getGrid()\n'
                                                                    '\n'
                                                                    '    # '
                                                                    'Declare '
                                                                    'dictionary '
                                                                    'variables '
                                                                    'to keep '
                                                                    'information '
                                                                    'from '
                                                                    'observation\n'
                                                                    '    '
                                                                    'eof_obs = '
                                                                    '{}\n'
                                                                    '    '
                                                                    'pc_obs = '
                                                                    '{}\n'
                                                                    '    '
                                                                    'frac_obs '
                                                                    '= {}\n'
                                                                    '    '
                                                                    'solver_obs '
                                                                    '= {}\n'
                                                                    '    '
                                                                    'reverse_sign_obs '
                                                                    '= {}\n'
                                                                    '    '
                                                                    'eof_lr_obs '
                                                                    '= {}\n'
                                                                    '    '
                                                                    'stdv_pc_obs '
                                                                    '= {}\n'
                                                                    '\n'
                                                                    '    # '
                                                                    'Dictonary '
                                                                    'for json '
                                                                    'archive\n'
                                                                    '    if '
                                                                    '"obs" not '
                                                                    'in '
                                                                    'list(result_dict["REF"].keys()):\n'
                                                                    '        '
                                                                    'result_dict["REF"]["obs"] '
                                                                    '= {}\n'
                                                                    '    if '
                                                                    '"defaultReference" '
                                                                    'not in '
                                                                    'list(result_dict["REF"]["obs"].keys()):\n'
                                                                    '        '
                                                                    'result_dict["REF"]["obs"]["defaultReference"] '
                                                                    '= {}\n'
                                                                    '    if '
                                                                    '"source" '
                                                                    'not in '
                                                                    'list(result_dict["REF"]["obs"]["defaultReference"].keys()):\n'
                                                                    '        '
                                                                    'result_dict["REF"]["obs"]["defaultReference"]["source"] '
                                                                    '= {}\n'
                                                                    '    if '
                                                                    'mode not '
                                                                    'in '
                                                                    'list(result_dict["REF"]["obs"]["defaultReference"].keys()):\n'
                                                                    '        '
                                                                    'result_dict["REF"]["obs"]["defaultReference"][mode] '
                                                                    '= {}\n'
                                                                    '\n'
                                                                    '    '
                                                                    'result_dict["REF"]["obs"]["defaultReference"]["source"] '
                                                                    '= '
                                                                    'obs_path\n'
                                                                    '    '
                                                                    'result_dict["REF"]["obs"]["defaultReference"]["reference_eofs"] '
                                                                    '= '
                                                                    'eofn_obs\n'
                                                                    '    '
                                                                    'result_dict["REF"]["obs"]["defaultReference"]["period"] '
                                                                    '= (\n'
                                                                    '        '
                                                                    'str(osyear) '
                                                                    '+ "-" + '
                                                                    'str(oeyear)\n'
                                                                    '    )\n'
                                                                    '\n'
                                                                    '    # '
                                                                    '-------------------------------------------------\n'
                                                                    '    # '
                                                                    'Season '
                                                                    'loop\n'
                                                                    '    # - - '
                                                                    '- - - - - '
                                                                    '- - - - - '
                                                                    '- - - - - '
                                                                    '- - - - - '
                                                                    '- - -\n'
                                                                    '    '
                                                                    'debug_print("obs '
                                                                    'season '
                                                                    'loop '
                                                                    'starts", '
                                                                    'debug)\n'
                                                                    '\n'
                                                                    '    for '
                                                                    'season in '
                                                                    'seasons:\n'
                                                                    '        '
                                                                    'debug_print("season: '
                                                                    '" + '
                                                                    'season, '
                                                                    'debug)\n'
                                                                    '\n'
                                                                    '        '
                                                                    'if season '
                                                                    'not in '
                                                                    'list(\n'
                                                                    '            '
                                                                    'result_dict["REF"]["obs"]["defaultReference"][mode].keys()\n'
                                                                    '        '
                                                                    '):\n'
                                                                    '            '
                                                                    'result_dict["REF"]["obs"]["defaultReference"][mode][season] '
                                                                    '= {}\n'
                                                                    '\n'
                                                                    '        '
                                                                    'dict_head_obs '
                                                                    '= '
                                                                    'result_dict["REF"]["obs"]["defaultReference"][mode][season]\n'
                                                                    '\n'
                                                                    '        # '
                                                                    'Time '
                                                                    'series '
                                                                    'adjustment '
                                                                    '(remove '
                                                                    'annual '
                                                                    'cycle, '
                                                                    'seasonal '
                                                                    'mean (if '
                                                                    'needed),\n'
                                                                    '        # '
                                                                    'and '
                                                                    'subtracting '
                                                                    'domain '
                                                                    '(or '
                                                                    'global) '
                                                                    'mean of '
                                                                    'each time '
                                                                    'step)\n'
                                                                    '        '
                                                                    'debug_print("time '
                                                                    'series '
                                                                    'adjustment", '
                                                                    'debug)\n'
                                                                    '        '
                                                                    'obs_timeseries_season '
                                                                    '= '
                                                                    'adjust_timeseries(\n'
                                                                    '            '
                                                                    'obs_timeseries, '
                                                                    'mode, '
                                                                    'season, '
                                                                    'region_subdomain, '
                                                                    'RmDomainMean\n'
                                                                    '        '
                                                                    ')\n'
                                                                    '\n'
                                                                    '        # '
                                                                    'Extract '
                                                                    'subdomain\n'
                                                                    '        '
                                                                    'obs_timeseries_season_subdomain '
                                                                    '= '
                                                                    'obs_timeseries_season(region_subdomain)\n'
                                                                    '\n'
                                                                    '        # '
                                                                    'EOF '
                                                                    'analysis\n'
                                                                    '        '
                                                                    'debug_print("EOF '
                                                                    'analysis", '
                                                                    'debug)\n'
                                                                    '        '
                                                                    '(\n'
                                                                    '            '
                                                                    'eof_obs[season],\n'
                                                                    '            '
                                                                    'pc_obs[season],\n'
                                                                    '            '
                                                                    'frac_obs[season],\n'
                                                                    '            '
                                                                    'reverse_sign_obs[season],\n'
                                                                    '            '
                                                                    'solver_obs[season],\n'
                                                                    '        ) '
                                                                    '= '
                                                                    'eof_analysis_get_variance_mode(\n'
                                                                    '            '
                                                                    'mode,\n'
                                                                    '            '
                                                                    'obs_timeseries_season_subdomain,\n'
                                                                    '            '
                                                                    'eofn=eofn_obs,\n'
                                                                    '            '
                                                                    'debug=debug,\n'
                                                                    '            '
                                                                    'EofScaling=EofScaling,\n'
                                                                    '        '
                                                                    ')\n'
                                                                    '\n'
                                                                    '        # '
                                                                    'Calculate '
                                                                    'stdv of '
                                                                    'pc time '
                                                                    'series\n'
                                                                    '        '
                                                                    'debug_print("calculate '
                                                                    'stdv of '
                                                                    'pc time '
                                                                    'series", '
                                                                    'debug)\n'
                                                                    '        '
                                                                    'stdv_pc_obs[season] '
                                                                    '= '
                                                                    'calcSTD(pc_obs[season])\n'
                                                                    '\n'
                                                                    '        # '
                                                                    'Linear '
                                                                    'regression '
                                                                    'to have '
                                                                    'extended '
                                                                    'global '
                                                                    'map; '
                                                                    'teleconnection '
                                                                    'purpose\n'
                                                                    '        '
                                                                    '(\n'
                                                                    '            '
                                                                    'eof_lr_obs[season],\n'
                                                                    '            '
                                                                    'slope_obs,\n'
                                                                    '            '
                                                                    'intercept_obs,\n'
                                                                    '        ) '
                                                                    '= '
                                                                    'linear_regression_on_globe_for_teleconnection(\n'
                                                                    '            '
                                                                    'pc_obs[season],\n'
                                                                    '            '
                                                                    'obs_timeseries_season,\n'
                                                                    '            '
                                                                    'stdv_pc_obs[season],\n'
                                                                    '            '
                                                                    'RmDomainMean,\n'
                                                                    '            '
                                                                    'EofScaling,\n'
                                                                    '            '
                                                                    'debug=debug,\n'
                                                                    '        '
                                                                    ')\n'
                                                                    '\n'
                                                                    '        # '
                                                                    '- - - - - '
                                                                    '- - - - - '
                                                                    '- - - - - '
                                                                    '- - - - - '
                                                                    '- - - - '
                                                                    '-\n'
                                                                    '        # '
                                                                    'Record '
                                                                    'results\n'
                                                                    '        # '
                                                                    '. . . . . '
                                                                    '. . . . . '
                                                                    '. . . . . '
                                                                    '. . . . . '
                                                                    '. . . . '
                                                                    '.\n'
                                                                    '        '
                                                                    'debug_print("record '
                                                                    'results", '
                                                                    'debug)\n'
                                                                    '\n'
                                                                    '        # '
                                                                    'Set '
                                                                    'output '
                                                                    'file name '
                                                                    'for '
                                                                    'NetCDF '
                                                                    'and plot\n'
                                                                    '        '
                                                                    'output_filename_obs '
                                                                    '= '
                                                                    '"_".join(\n'
                                                                    '            '
                                                                    '[\n'
                                                                    '                '
                                                                    'mode,\n'
                                                                    '                '
                                                                    'var,\n'
                                                                    '                '
                                                                    '"EOF" + '
                                                                    'str(eofn_obs),\n'
                                                                    '                '
                                                                    'season,\n'
                                                                    '                '
                                                                    '"obs",\n'
                                                                    '                '
                                                                    'str(osyear) '
                                                                    '+ "-" + '
                                                                    'str(oeyear),\n'
                                                                    '            '
                                                                    ']\n'
                                                                    '        '
                                                                    ')\n'
                                                                    '        '
                                                                    'if '
                                                                    'EofScaling:\n'
                                                                    '            '
                                                                    'output_filename_obs '
                                                                    '+= '
                                                                    '"_EOFscaled"\n'
                                                                    '\n'
                                                                    '        # '
                                                                    'Save '
                                                                    'global '
                                                                    'map, pc '
                                                                    'timeseries, '
                                                                    'and '
                                                                    'fraction '
                                                                    'in NetCDF '
                                                                    'output\n'
                                                                    '        '
                                                                    'if '
                                                                    'nc_out_obs:\n'
                                                                    '            '
                                                                    'output_nc_file_obs '
                                                                    '= '
                                                                    'os.path.join(\n'
                                                                    '                '
                                                                    'outdir(output_type="diagnostic_results"), '
                                                                    'output_filename_obs\n'
                                                                    '            '
                                                                    ')\n'
                                                                    '            '
                                                                    'write_nc_output(\n'
                                                                    '                '
                                                                    'output_nc_file_obs,\n'
                                                                    '                '
                                                                    'eof_lr_obs[season],\n'
                                                                    '                '
                                                                    'pc_obs[season],\n'
                                                                    '                '
                                                                    'frac_obs[season],\n'
                                                                    '                '
                                                                    'slope_obs,\n'
                                                                    '                '
                                                                    'intercept_obs,\n'
                                                                    '            '
                                                                    ')\n'
                                                                    '\n'
                                                                    '        # '
                                                                    'Plotting\n'
                                                                    '        '
                                                                    'if '
                                                                    'plot_obs:\n'
                                                                    '            '
                                                                    'output_img_file_obs '
                                                                    '= '
                                                                    'os.path.join(\n'
                                                                    '                '
                                                                    'outdir(output_type="graphics"), '
                                                                    'output_filename_obs\n'
                                                                    '            '
                                                                    ')\n'
                                                                    '            '
                                                                    '# '
                                                                    'plot_map(mode, '
                                                                    "'[REF] "
                                                                    "'+obs_name, "
                                                                    'osyear, '
                                                                    'oeyear, '
                                                                    'season,\n'
                                                                    '            '
                                                                    '#          '
                                                                    'eof_obs[season], '
                                                                    'frac_obs[season],\n'
                                                                    '            '
                                                                    '#          '
                                                                    "output_img_file_obs+'_org_eof')\n"
                                                                    '            '
                                                                    'plot_map(\n'
                                                                    '                '
                                                                    'mode,\n'
                                                                    '                '
                                                                    '"[REF] " '
                                                                    '+ '
                                                                    'obs_name,\n'
                                                                    '                '
                                                                    'osyear,\n'
                                                                    '                '
                                                                    'oeyear,\n'
                                                                    '                '
                                                                    'season,\n'
                                                                    '                '
                                                                    'eof_lr_obs[season](region_subdomain),\n'
                                                                    '                '
                                                                    'frac_obs[season],\n'
                                                                    '                '
                                                                    'output_img_file_obs,\n'
                                                                    '            '
                                                                    ')\n'
                                                                    '            '
                                                                    'plot_map(\n'
                                                                    '                '
                                                                    'mode + '
                                                                    '"_teleconnection",\n'
                                                                    '                '
                                                                    '"[REF] " '
                                                                    '+ '
                                                                    'obs_name,\n'
                                                                    '                '
                                                                    'osyear,\n'
                                                                    '                '
                                                                    'oeyear,\n'
                                                                    '                '
                                                                    'season,\n'
                                                                    '                '
                                                                    'eof_lr_obs[season](longitude=(lon1g, '
                                                                    'lon2g)),\n'
                                                                    '                '
                                                                    'frac_obs[season],\n'
                                                                    '                '
                                                                    'output_img_file_obs '
                                                                    '+ '
                                                                    '"_teleconnection",\n'
                                                                    '            '
                                                                    ')\n'
                                                                    '            '
                                                                    'debug_print("obs '
                                                                    'plotting '
                                                                    'end", '
                                                                    'debug)\n'
                                                                    '\n'
                                                                    '        # '
                                                                    'Save stdv '
                                                                    'of PC '
                                                                    'time '
                                                                    'series in '
                                                                    'dictionary\n'
                                                                    '        '
                                                                    'dict_head_obs["stdv_pc"] '
                                                                    '= '
                                                                    'stdv_pc_obs[season]\n'
                                                                    '        '
                                                                    'dict_head_obs["frac"] '
                                                                    '= '
                                                                    'float(frac_obs[season])\n'
                                                                    '\n'
                                                                    '        # '
                                                                    'Mean\n'
                                                                    '        '
                                                                    'mean_obs '
                                                                    '= '
                                                                    'cdutil.averager(eof_obs[season], '
                                                                    'axis="yx", '
                                                                    'weights="weighted")\n'
                                                                    '        '
                                                                    'mean_glo_obs '
                                                                    '= '
                                                                    'cdutil.averager(\n'
                                                                    '            '
                                                                    'eof_lr_obs[season], '
                                                                    'axis="yx", '
                                                                    'weights="weighted"\n'
                                                                    '        '
                                                                    ')\n'
                                                                    '        '
                                                                    'dict_head_obs["mean"] '
                                                                    '= '
                                                                    'float(mean_obs)\n'
                                                                    '        '
                                                                    'dict_head_obs["mean_glo"] '
                                                                    '= '
                                                                    'float(mean_glo_obs)\n'
                                                                    '        '
                                                                    'debug_print("obs '
                                                                    'mean '
                                                                    'end", '
                                                                    'debug)\n'
                                                                    '\n'
                                                                    '        # '
                                                                    'North '
                                                                    'test -- '
                                                                    'make this '
                                                                    'available '
                                                                    'as option '
                                                                    'later...\n'
                                                                    '        # '
                                                                    "execfile('../north_test.py')\n"
                                                                    '\n'
                                                                    '    '
                                                                    'debug_print("obs '
                                                                    'end", '
                                                                    'debug)\n'
                                                                    '\n'
                                                                    '# '
                                                                    '=================================================\n'
                                                                    '# Model\n'
                                                                    '# '
                                                                    '-------------------------------------------------\n'
                                                                    'for model '
                                                                    'in '
                                                                    'models:\n'
                                                                    '    '
                                                                    'print(" '
                                                                    '----- ", '
                                                                    'model, " '
                                                                    '---------------------")\n'
                                                                    '\n'
                                                                    '    if '
                                                                    'model not '
                                                                    'in '
                                                                    'list(result_dict["RESULTS"].keys()):\n'
                                                                    '        '
                                                                    'result_dict["RESULTS"][model] '
                                                                    '= {}\n'
                                                                    '\n'
                                                                    '    '
                                                                    'model_path_list '
                                                                    '= '
                                                                    'glob.glob(\n'
                                                                    '        '
                                                                    'modpath(mip=mip, '
                                                                    'exp=exp, '
                                                                    'model=model, '
                                                                    'realization=realization, '
                                                                    'variable=var)\n'
                                                                    '    )\n'
                                                                    '\n'
                                                                    '    '
                                                                    'model_path_list '
                                                                    '= '
                                                                    'sort_human(model_path_list)\n'
                                                                    '\n'
                                                                    '    '
                                                                    'debug_print("model_path_list: '
                                                                    '" + '
                                                                    'str(model_path_list), '
                                                                    'debug)\n'
                                                                    '\n'
                                                                    '    # '
                                                                    'Find '
                                                                    'where run '
                                                                    'can be '
                                                                    'gripped '
                                                                    'from '
                                                                    'given '
                                                                    'filename '
                                                                    'template '
                                                                    'for '
                                                                    'modpath\n'
                                                                    '    if '
                                                                    'realization '
                                                                    '== "*":\n'
                                                                    '        '
                                                                    'run_in_modpath '
                                                                    '= (\n'
                                                                    '            '
                                                                    'modpath(\n'
                                                                    '                '
                                                                    'mip=mip, '
                                                                    'exp=exp, '
                                                                    'model=model, '
                                                                    'realization=realization, '
                                                                    'variable=var\n'
                                                                    '            '
                                                                    ')\n'
                                                                    '            '
                                                                    '.split("/")[-1]\n'
                                                                    '            '
                                                                    '.split(".")\n'
                                                                    '            '
                                                                    '.index(realization)\n'
                                                                    '        '
                                                                    ')\n'
                                                                    '\n'
                                                                    '    # '
                                                                    '-------------------------------------------------\n'
                                                                    '    # '
                                                                    'Run\n'
                                                                    '    # '
                                                                    '-------------------------------------------------\n'
                                                                    '    for '
                                                                    'model_path '
                                                                    'in '
                                                                    'model_path_list:\n'
                                                                    '\n'
                                                                    '        '
                                                                    'try:\n'
                                                                    '            '
                                                                    'if '
                                                                    'realization '
                                                                    '== "*":\n'
                                                                    '                '
                                                                    'run = '
                                                                    '(model_path.split("/")[-1]).split(".")[run_in_modpath]\n'
                                                                    '            '
                                                                    'else:\n'
                                                                    '                '
                                                                    'run = '
                                                                    'realization\n'
                                                                    '            '
                                                                    'print(" '
                                                                    '--- ", '
                                                                    'run, " '
                                                                    '---")\n'
                                                                    '\n'
                                                                    '            '
                                                                    'if run '
                                                                    'not in '
                                                                    'list(result_dict["RESULTS"][model].keys()):\n'
                                                                    '                '
                                                                    'result_dict["RESULTS"][model][run] '
                                                                    '= {}\n'
                                                                    '            '
                                                                    'if '
                                                                    '"defaultReference" '
                                                                    'not in '
                                                                    'list(\n'
                                                                    '                '
                                                                    'result_dict["RESULTS"][model][run].keys()\n'
                                                                    '            '
                                                                    '):\n'
                                                                    '                '
                                                                    'result_dict["RESULTS"][model][run]["defaultReference"] '
                                                                    '= {}\n'
                                                                    '            '
                                                                    'if mode '
                                                                    'not in '
                                                                    'list(\n'
                                                                    '                '
                                                                    'result_dict["RESULTS"][model][run]["defaultReference"].keys()\n'
                                                                    '            '
                                                                    '):\n'
                                                                    '                '
                                                                    'result_dict["RESULTS"][model][run]["defaultReference"][mode] '
                                                                    '= {}\n'
                                                                    '            '
                                                                    'result_dict["RESULTS"][model][run]["defaultReference"][mode][\n'
                                                                    '                '
                                                                    '"target_model_eofs"\n'
                                                                    '            '
                                                                    '] = '
                                                                    'eofn_mod\n'
                                                                    '\n'
                                                                    '            '
                                                                    'if '
                                                                    'LandMask:\n'
                                                                    '                '
                                                                    'model_lf_path '
                                                                    '= '
                                                                    'modpath_lf(mip=mip, '
                                                                    'exp=exp, '
                                                                    'model=model)\n'
                                                                    '            '
                                                                    'else:\n'
                                                                    '                '
                                                                    'model_lf_path '
                                                                    '= None\n'
                                                                    '\n'
                                                                    '            '
                                                                    '# read '
                                                                    'data in\n'
                                                                    '            '
                                                                    'model_timeseries, '
                                                                    'msyear, '
                                                                    'meyear = '
                                                                    'read_data_in(\n'
                                                                    '                '
                                                                    'model,\n'
                                                                    '                '
                                                                    'model_path,\n'
                                                                    '                '
                                                                    'model_lf_path,\n'
                                                                    '                '
                                                                    'var,\n'
                                                                    '                '
                                                                    'var,\n'
                                                                    '                '
                                                                    'start_time,\n'
                                                                    '                '
                                                                    'end_time,\n'
                                                                    '                '
                                                                    'ModUnitsAdjust,\n'
                                                                    '                '
                                                                    'LandMask,\n'
                                                                    '                '
                                                                    'debug=debug,\n'
                                                                    '            '
                                                                    ')\n'
                                                                    '\n'
                                                                    '            '
                                                                    'debug_print("msyear: '
                                                                    '" + '
                                                                    'str(msyear) '
                                                                    '+ " '
                                                                    'meyear: " '
                                                                    '+ '
                                                                    'str(meyear), '
                                                                    'debug)\n'
                                                                    '\n'
                                                                    '            '
                                                                    '# '
                                                                    '-------------------------------------------------\n'
                                                                    '            '
                                                                    '# Season '
                                                                    'loop\n'
                                                                    '            '
                                                                    '# - - - - '
                                                                    '- - - - - '
                                                                    '- - - - - '
                                                                    '- - - - - '
                                                                    '- - - - - '
                                                                    '-\n'
                                                                    '            '
                                                                    'for '
                                                                    'season in '
                                                                    'seasons:\n'
                                                                    '                '
                                                                    'debug_print("season: '
                                                                    '" + '
                                                                    'season, '
                                                                    'debug)\n'
                                                                    '\n'
                                                                    '                '
                                                                    'if season '
                                                                    'not in '
                                                                    'list(\n'
                                                                    '                    '
                                                                    'result_dict["RESULTS"][model][run]["defaultReference"][mode].keys()\n'
                                                                    '                '
                                                                    '):\n'
                                                                    '                    '
                                                                    'result_dict["RESULTS"][model][run]["defaultReference"][mode][\n'
                                                                    '                        '
                                                                    'season\n'
                                                                    '                    '
                                                                    '] = {}\n'
                                                                    '                '
                                                                    'result_dict["RESULTS"][model][run]["defaultReference"][mode][season][\n'
                                                                    '                    '
                                                                    '"period"\n'
                                                                    '                '
                                                                    '] = '
                                                                    '(str(msyear) '
                                                                    '+ "-" + '
                                                                    'str(meyear))\n'
                                                                    '\n'
                                                                    '                '
                                                                    '# Time '
                                                                    'series '
                                                                    'adjustment '
                                                                    '(remove '
                                                                    'annual '
                                                                    'cycle, '
                                                                    'seasonal '
                                                                    'mean (if '
                                                                    'needed),\n'
                                                                    '                '
                                                                    '# and '
                                                                    'subtracting '
                                                                    'domain '
                                                                    '(or '
                                                                    'global) '
                                                                    'mean of '
                                                                    'each time '
                                                                    'step)\n'
                                                                    '                '
                                                                    'debug_print("time '
                                                                    'series '
                                                                    'adjustment", '
                                                                    'debug)\n'
                                                                    '                '
                                                                    'model_timeseries_season '
                                                                    '= '
                                                                    'adjust_timeseries(\n'
                                                                    '                    '
                                                                    'model_timeseries, '
                                                                    'mode, '
                                                                    'season, '
                                                                    'region_subdomain, '
                                                                    'RmDomainMean\n'
                                                                    '                '
                                                                    ')\n'
                                                                    '\n'
                                                                    '                '
                                                                    '# Extract '
                                                                    'subdomain\n'
                                                                    '                '
                                                                    'debug_print("extract '
                                                                    'subdomain", '
                                                                    'debug)\n'
                                                                    '                '
                                                                    'model_timeseries_season_subdomain '
                                                                    '= '
                                                                    'model_timeseries_season(\n'
                                                                    '                    '
                                                                    'region_subdomain\n'
                                                                    '                '
                                                                    ')\n'
                                                                    '\n'
                                                                    '                '
                                                                    '# '
                                                                    '-------------------------------------------------\n'
                                                                    '                '
                                                                    '# Common '
                                                                    'Basis '
                                                                    'Function '
                                                                    'Approach\n'
                                                                    '                '
                                                                    '# - - - - '
                                                                    '- - - - - '
                                                                    '- - - - - '
                                                                    '- - - - - '
                                                                    '- - - - - '
                                                                    '-\n'
                                                                    '                '
                                                                    'if CBF '
                                                                    'and '
                                                                    'obs_compare:\n'
                                                                    '\n'
                                                                    '                    '
                                                                    'if "cbf" '
                                                                    'not in '
                                                                    'list(\n'
                                                                    '                        '
                                                                    'result_dict["RESULTS"][model][run]["defaultReference"][mode][\n'
                                                                    '                            '
                                                                    'season\n'
                                                                    '                        '
                                                                    '].keys()\n'
                                                                    '                    '
                                                                    '):\n'
                                                                    '                        '
                                                                    'result_dict["RESULTS"][model][run]["defaultReference"][mode][\n'
                                                                    '                            '
                                                                    'season\n'
                                                                    '                        '
                                                                    ']["cbf"] '
                                                                    '= {}\n'
                                                                    '                    '
                                                                    'dict_head '
                                                                    '= '
                                                                    'result_dict["RESULTS"][model][run]["defaultReference"][\n'
                                                                    '                        '
                                                                    'mode\n'
                                                                    '                    '
                                                                    '][season]["cbf"]\n'
                                                                    '                    '
                                                                    'debug_print("CBF '
                                                                    'approach '
                                                                    'start", '
                                                                    'debug)\n'
                                                                    '\n'
                                                                    '                    '
                                                                    '# Regrid '
                                                                    '(interpolation, '
                                                                    'model '
                                                                    'grid to '
                                                                    'ref '
                                                                    'grid)\n'
                                                                    '                    '
                                                                    'model_timeseries_season_regrid '
                                                                    '= '
                                                                    'model_timeseries_season.regrid(\n'
                                                                    '                        '
                                                                    'ref_grid_global, '
                                                                    'regridTool="regrid2", '
                                                                    'mkCyclic=True\n'
                                                                    '                    '
                                                                    ')\n'
                                                                    '                    '
                                                                    'model_timeseries_season_regrid_subdomain '
                                                                    '= (\n'
                                                                    '                        '
                                                                    'model_timeseries_season_regrid(region_subdomain)\n'
                                                                    '                    '
                                                                    ')\n'
                                                                    '\n'
                                                                    '                    '
                                                                    '# '
                                                                    'Matching '
                                                                    "model's "
                                                                    'missing '
                                                                    'value '
                                                                    'location '
                                                                    'to that '
                                                                    'of '
                                                                    'observation\n'
                                                                    '                    '
                                                                    '# Save '
                                                                    'axes for '
                                                                    'preserving\n'
                                                                    '                    '
                                                                    'axes = '
                                                                    'model_timeseries_season_regrid_subdomain.getAxisList()\n'
                                                                    '                    '
                                                                    '# 1) '
                                                                    'Replace '
                                                                    "model's "
                                                                    'masked '
                                                                    'grid to '
                                                                    '0, so '
                                                                    'theoritically '
                                                                    "won't "
                                                                    'affect to '
                                                                    'result\n'
                                                                    '                    '
                                                                    'model_timeseries_season_regrid_subdomain '
                                                                    '= '
                                                                    'MV2.array(\n'
                                                                    '                        '
                                                                    'model_timeseries_season_regrid_subdomain.filled(0.0)\n'
                                                                    '                    '
                                                                    ')\n'
                                                                    '                    '
                                                                    '# 2) Give '
                                                                    "obs's "
                                                                    'mask to '
                                                                    'model '
                                                                    'field, so '
                                                                    'enable '
                                                                    'projecField '
                                                                    'functionality '
                                                                    'below\n'
                                                                    '                    '
                                                                    'model_timeseries_season_regrid_subdomain.mask '
                                                                    '= '
                                                                    'eof_obs[season].mask\n'
                                                                    '                    '
                                                                    '# '
                                                                    'Preserve '
                                                                    'axes\n'
                                                                    '                    '
                                                                    'model_timeseries_season_regrid_subdomain.setAxisList(axes)\n'
                                                                    '\n'
                                                                    '                    '
                                                                    '# CBF PC '
                                                                    'time '
                                                                    'series\n'
                                                                    '                    '
                                                                    'cbf_pc = '
                                                                    'gain_pseudo_pcs(\n'
                                                                    '                        '
                                                                    'solver_obs[season],\n'
                                                                    '                        '
                                                                    'model_timeseries_season_regrid_subdomain,\n'
                                                                    '                        '
                                                                    'eofn_obs,\n'
                                                                    '                        '
                                                                    'reverse_sign_obs[season],\n'
                                                                    '                        '
                                                                    'EofScaling=EofScaling,\n'
                                                                    '                    '
                                                                    ')\n'
                                                                    '\n'
                                                                    '                    '
                                                                    '# '
                                                                    'Calculate '
                                                                    'stdv of '
                                                                    'cbf pc '
                                                                    'time '
                                                                    'series\n'
                                                                    '                    '
                                                                    'stdv_cbf_pc '
                                                                    '= '
                                                                    'calcSTD(cbf_pc)\n'
                                                                    '\n'
                                                                    '                    '
                                                                    '# Linear '
                                                                    'regression '
                                                                    'to have '
                                                                    'extended '
                                                                    'global '
                                                                    'map; '
                                                                    'teleconnection '
                                                                    'purpose\n'
                                                                    '                    '
                                                                    '(\n'
                                                                    '                        '
                                                                    'eof_lr_cbf,\n'
                                                                    '                        '
                                                                    'slope_cbf,\n'
                                                                    '                        '
                                                                    'intercept_cbf,\n'
                                                                    '                    '
                                                                    ') = '
                                                                    'linear_regression_on_globe_for_teleconnection(\n'
                                                                    '                        '
                                                                    'cbf_pc,\n'
                                                                    '                        '
                                                                    'model_timeseries_season,\n'
                                                                    '                        '
                                                                    'stdv_cbf_pc,\n'
                                                                    '                        '
                                                                    '# cbf_pc, '
                                                                    'model_timeseries_season_regrid, '
                                                                    'stdv_cbf_pc,\n'
                                                                    '                        '
                                                                    'RmDomainMean,\n'
                                                                    '                        '
                                                                    'EofScaling,\n'
                                                                    '                        '
                                                                    'debug=debug,\n'
                                                                    '                    '
                                                                    ')\n'
                                                                    '\n'
                                                                    '                    '
                                                                    '# Extract '
                                                                    'subdomain '
                                                                    'for '
                                                                    'statistics\n'
                                                                    '                    '
                                                                    'eof_lr_cbf_subdomain '
                                                                    '= '
                                                                    'eof_lr_cbf(region_subdomain)\n'
                                                                    '\n'
                                                                    '                    '
                                                                    '# '
                                                                    'Calculate '
                                                                    'fraction '
                                                                    'of '
                                                                    'variance '
                                                                    'explained '
                                                                    'by cbf '
                                                                    'pc\n'
                                                                    '                    '
                                                                    'frac_cbf '
                                                                    '= '
                                                                    'gain_pcs_fraction(\n'
                                                                    '                        '
                                                                    '# '
                                                                    'model_timeseries_season_regrid_subdomain,  '
                                                                    '# '
                                                                    'regridded '
                                                                    'model '
                                                                    'anomaly '
                                                                    'space\n'
                                                                    '                        '
                                                                    'model_timeseries_season_subdomain,  '
                                                                    '# native '
                                                                    'grid '
                                                                    'model '
                                                                    'anomaly '
                                                                    'space\n'
                                                                    '                        '
                                                                    'eof_lr_cbf_subdomain,\n'
                                                                    '                        '
                                                                    'cbf_pc / '
                                                                    'stdv_cbf_pc,\n'
                                                                    '                        '
                                                                    'debug=debug,\n'
                                                                    '                    '
                                                                    ')\n'
                                                                    '\n'
                                                                    '                    '
                                                                    '# '
                                                                    'SENSITIVITY '
                                                                    'TEST ---\n'
                                                                    '                    '
                                                                    '# '
                                                                    'Calculate '
                                                                    'fraction '
                                                                    'of '
                                                                    'variance '
                                                                    'explained '
                                                                    'by cbf pc '
                                                                    '(on '
                                                                    'regrid '
                                                                    'domain)\n'
                                                                    '                    '
                                                                    'frac_cbf_regrid '
                                                                    '= '
                                                                    'gain_pcs_fraction(\n'
                                                                    '                        '
                                                                    'model_timeseries_season_regrid_subdomain,\n'
                                                                    '                        '
                                                                    'eof_lr_cbf_subdomain,\n'
                                                                    '                        '
                                                                    'cbf_pc / '
                                                                    'stdv_cbf_pc,\n'
                                                                    '                        '
                                                                    'debug=debug,\n'
                                                                    '                    '
                                                                    ')\n'
                                                                    '                    '
                                                                    'dict_head["frac_cbf_regrid"] '
                                                                    '= '
                                                                    'float(frac_cbf_regrid)\n'
                                                                    '\n'
                                                                    '                    '
                                                                    '# - - - - '
                                                                    '- - - - - '
                                                                    '- - - - - '
                                                                    '- - - - - '
                                                                    '- - - - - '
                                                                    '-\n'
                                                                    '                    '
                                                                    '# Record '
                                                                    'results\n'
                                                                    '                    '
                                                                    '# - - - - '
                                                                    '- - - - - '
                                                                    '- - - - - '
                                                                    '- - - - - '
                                                                    '- - - - - '
                                                                    '-\n'
                                                                    '                    '
                                                                    '# Metrics '
                                                                    'results '
                                                                    '-- '
                                                                    'statistics '
                                                                    'to JSON\n'
                                                                    '                    '
                                                                    'dict_head, '
                                                                    'eof_lr_cbf '
                                                                    '= '
                                                                    'calc_stats_save_dict(\n'
                                                                    '                        '
                                                                    'dict_head,\n'
                                                                    '                        '
                                                                    'eof_lr_cbf_subdomain,\n'
                                                                    '                        '
                                                                    'eof_lr_cbf,\n'
                                                                    '                        '
                                                                    'slope_cbf,\n'
                                                                    '                        '
                                                                    'cbf_pc,\n'
                                                                    '                        '
                                                                    'stdv_cbf_pc,\n'
                                                                    '                        '
                                                                    'frac_cbf,\n'
                                                                    '                        '
                                                                    'region_subdomain,\n'
                                                                    '                        '
                                                                    'eof_obs[season],\n'
                                                                    '                        '
                                                                    'eof_lr_obs[season],\n'
                                                                    '                        '
                                                                    'stdv_pc_obs[season],\n'
                                                                    '                        '
                                                                    'obs_compare=obs_compare,\n'
                                                                    '                        '
                                                                    'method="cbf",\n'
                                                                    '                        '
                                                                    'debug=debug,\n'
                                                                    '                    '
                                                                    ')\n'
                                                                    '\n'
                                                                    '                    '
                                                                    '# Set '
                                                                    'output '
                                                                    'file name '
                                                                    'for '
                                                                    'NetCDF '
                                                                    'and plot '
                                                                    'images\n'
                                                                    '                    '
                                                                    'output_filename '
                                                                    '= '
                                                                    '"_".join(\n'
                                                                    '                        '
                                                                    '[\n'
                                                                    '                            '
                                                                    'mode,\n'
                                                                    '                            '
                                                                    'var,\n'
                                                                    '                            '
                                                                    '"EOF" + '
                                                                    'str(eofn_mod),\n'
                                                                    '                            '
                                                                    'season,\n'
                                                                    '                            '
                                                                    'mip,\n'
                                                                    '                            '
                                                                    'model,\n'
                                                                    '                            '
                                                                    'exp,\n'
                                                                    '                            '
                                                                    'run,\n'
                                                                    '                            '
                                                                    'fq,\n'
                                                                    '                            '
                                                                    'realm,\n'
                                                                    '                            '
                                                                    'str(msyear) '
                                                                    '+ "-" + '
                                                                    'str(meyear),\n'
                                                                    '                        '
                                                                    ']\n'
                                                                    '                    '
                                                                    ')\n'
                                                                    '                    '
                                                                    'if '
                                                                    'EofScaling:\n'
                                                                    '                        '
                                                                    'output_filename '
                                                                    '+= '
                                                                    '"_EOFscaled"\n'
                                                                    '\n'
                                                                    '                    '
                                                                    '# '
                                                                    'Diagnostics '
                                                                    'results '
                                                                    '-- data '
                                                                    'to '
                                                                    'NetCDF\n'
                                                                    '                    '
                                                                    '# Save '
                                                                    'global '
                                                                    'map, pc '
                                                                    'timeseries, '
                                                                    'and '
                                                                    'fraction '
                                                                    'in NetCDF '
                                                                    'output\n'
                                                                    '                    '
                                                                    'output_nc_file '
                                                                    '= '
                                                                    'os.path.join(\n'
                                                                    '                        '
                                                                    'outdir(output_type="diagnostic_results"), '
                                                                    'output_filename\n'
                                                                    '                    '
                                                                    ')\n'
                                                                    '                    '
                                                                    'if '
                                                                    'nc_out_model:\n'
                                                                    '                        '
                                                                    'write_nc_output(\n'
                                                                    '                            '
                                                                    'output_nc_file '
                                                                    '+ '
                                                                    '"_cbf",\n'
                                                                    '                            '
                                                                    'eof_lr_cbf,\n'
                                                                    '                            '
                                                                    'cbf_pc,\n'
                                                                    '                            '
                                                                    'frac_cbf,\n'
                                                                    '                            '
                                                                    'slope_cbf,\n'
                                                                    '                            '
                                                                    'intercept_cbf,\n'
                                                                    '                        '
                                                                    ')\n'
                                                                    '\n'
                                                                    '                    '
                                                                    '# '
                                                                    'Graphics '
                                                                    '-- plot '
                                                                    'map image '
                                                                    'to PNG\n'
                                                                    '                    '
                                                                    'output_img_file '
                                                                    '= '
                                                                    'os.path.join(\n'
                                                                    '                        '
                                                                    'outdir(output_type="graphics"), '
                                                                    'output_filename\n'
                                                                    '                    '
                                                                    ')\n'
                                                                    '                    '
                                                                    'if '
                                                                    'plot_model:\n'
                                                                    '                        '
                                                                    'plot_map(\n'
                                                                    '                            '
                                                                    'mode,\n'
                                                                    '                            '
                                                                    'mip.upper() '
                                                                    '+ " " + '
                                                                    'model + " '
                                                                    '(" + run '
                                                                    '+ ")" + " '
                                                                    '- CBF",\n'
                                                                    '                            '
                                                                    'msyear,\n'
                                                                    '                            '
                                                                    'meyear,\n'
                                                                    '                            '
                                                                    'season,\n'
                                                                    '                            '
                                                                    'eof_lr_cbf(region_subdomain),\n'
                                                                    '                            '
                                                                    'frac_cbf,\n'
                                                                    '                            '
                                                                    'output_img_file '
                                                                    '+ '
                                                                    '"_cbf",\n'
                                                                    '                        '
                                                                    ')\n'
                                                                    '                        '
                                                                    'plot_map(\n'
                                                                    '                            '
                                                                    'mode + '
                                                                    '"_teleconnection",\n'
                                                                    '                            '
                                                                    'mip.upper() '
                                                                    '+ " " + '
                                                                    'model + " '
                                                                    '(" + run '
                                                                    '+ ")" + " '
                                                                    '- CBF",\n'
                                                                    '                            '
                                                                    'msyear,\n'
                                                                    '                            '
                                                                    'meyear,\n'
                                                                    '                            '
                                                                    'season,\n'
                                                                    '                            '
                                                                    'eof_lr_cbf(longitude=(lon1g, '
                                                                    'lon2g)),\n'
                                                                    '                            '
                                                                    'frac_cbf,\n'
                                                                    '                            '
                                                                    'output_img_file '
                                                                    '+ '
                                                                    '"_cbf_teleconnection",\n'
                                                                    '                        '
                                                                    ')\n'
                                                                    '\n'
                                                                    '                    '
                                                                    'debug_print("cbf '
                                                                    'pcs end", '
                                                                    'debug)\n'
                                                                    '\n'
                                                                    '                '
                                                                    '# '
                                                                    '-------------------------------------------------\n'
                                                                    '                '
                                                                    '# '
                                                                    'Conventional '
                                                                    'EOF '
                                                                    'approach '
                                                                    'as '
                                                                    'supplementary\n'
                                                                    '                '
                                                                    '# - - - - '
                                                                    '- - - - - '
                                                                    '- - - - - '
                                                                    '- - - - - '
                                                                    '- - - - - '
                                                                    '-\n'
                                                                    '                '
                                                                    'if '
                                                                    'ConvEOF:\n'
                                                                    '\n'
                                                                    '                    '
                                                                    'eofn_mod_max '
                                                                    '= 3\n'
                                                                    '\n'
                                                                    '                    '
                                                                    '# EOF '
                                                                    'analysis\n'
                                                                    '                    '
                                                                    'debug_print("conventional '
                                                                    'EOF '
                                                                    'analysis '
                                                                    'start", '
                                                                    'debug)\n'
                                                                    '                    '
                                                                    '(\n'
                                                                    '                        '
                                                                    'eof_list,\n'
                                                                    '                        '
                                                                    'pc_list,\n'
                                                                    '                        '
                                                                    'frac_list,\n'
                                                                    '                        '
                                                                    'reverse_sign_list,\n'
                                                                    '                        '
                                                                    'solver,\n'
                                                                    '                    '
                                                                    ') = '
                                                                    'eof_analysis_get_variance_mode(\n'
                                                                    '                        '
                                                                    'mode,\n'
                                                                    '                        '
                                                                    'model_timeseries_season_subdomain,\n'
                                                                    '                        '
                                                                    'eofn=eofn_mod,\n'
                                                                    '                        '
                                                                    'eofn_max=eofn_mod_max,\n'
                                                                    '                        '
                                                                    'debug=debug,\n'
                                                                    '                        '
                                                                    'EofScaling=EofScaling,\n'
                                                                    '                        '
                                                                    'save_multiple_eofs=True,\n'
                                                                    '                    '
                                                                    ')\n'
                                                                    '                    '
                                                                    'debug_print("conventional '
                                                                    'EOF '
                                                                    'analysis '
                                                                    'done", '
                                                                    'debug)\n'
                                                                    '\n'
                                                                    '                    '
                                                                    '# '
                                                                    '-------------------------------------------------\n'
                                                                    '                    '
                                                                    '# For '
                                                                    'multiple '
                                                                    'EOFs '
                                                                    '(e.g., '
                                                                    'EOF1, '
                                                                    'EOF2, '
                                                                    'EOF3, '
                                                                    '...)\n'
                                                                    '                    '
                                                                    '# - - - - '
                                                                    '- - - - - '
                                                                    '- - - - - '
                                                                    '- - - - - '
                                                                    '- - - - - '
                                                                    '-\n'
                                                                    '                    '
                                                                    'rms_list '
                                                                    '= []\n'
                                                                    '                    '
                                                                    'cor_list '
                                                                    '= []\n'
                                                                    '                    '
                                                                    'tcor_list '
                                                                    '= []\n'
                                                                    '\n'
                                                                    '                    '
                                                                    'for n in '
                                                                    'range(0, '
                                                                    'eofn_mod_max):\n'
                                                                    '                        '
                                                                    'eofs = '
                                                                    '"eof" + '
                                                                    'str(n + '
                                                                    '1)\n'
                                                                    '                        '
                                                                    'if eofs '
                                                                    'not in '
                                                                    'list(\n'
                                                                    '                            '
                                                                    'result_dict["RESULTS"][model][run]["defaultReference"][\n'
                                                                    '                                '
                                                                    'mode\n'
                                                                    '                            '
                                                                    '][season].keys()\n'
                                                                    '                        '
                                                                    '):\n'
                                                                    '                            '
                                                                    'result_dict["RESULTS"][model][run]["defaultReference"][\n'
                                                                    '                                '
                                                                    'mode\n'
                                                                    '                            '
                                                                    '][season][eofs] '
                                                                    '= {}\n'
                                                                    '                            '
                                                                    'dict_head '
                                                                    '= '
                                                                    'result_dict["RESULTS"][model][run][\n'
                                                                    '                                '
                                                                    '"defaultReference"\n'
                                                                    '                            '
                                                                    '][mode][season][eofs]\n'
                                                                    '\n'
                                                                    '                        '
                                                                    '# '
                                                                    'Component '
                                                                    'for each '
                                                                    'EOFs\n'
                                                                    '                        '
                                                                    'eof = '
                                                                    'eof_list[n]\n'
                                                                    '                        '
                                                                    'pc = '
                                                                    'pc_list[n]\n'
                                                                    '                        '
                                                                    'frac = '
                                                                    'frac_list[n]\n'
                                                                    '\n'
                                                                    '                        '
                                                                    '# '
                                                                    'Calculate '
                                                                    'stdv of '
                                                                    'pc time '
                                                                    'series\n'
                                                                    '                        '
                                                                    'stdv_pc = '
                                                                    'calcSTD(pc)\n'
                                                                    '\n'
                                                                    '                        '
                                                                    '# Linear '
                                                                    'regression '
                                                                    'to have '
                                                                    'extended '
                                                                    'global '
                                                                    'map:\n'
                                                                    '                        '
                                                                    '(\n'
                                                                    '                            '
                                                                    'eof_lr,\n'
                                                                    '                            '
                                                                    'slope,\n'
                                                                    '                            '
                                                                    'intercept,\n'
                                                                    '                        '
                                                                    ') = '
                                                                    'linear_regression_on_globe_for_teleconnection(\n'
                                                                    '                            '
                                                                    'pc,\n'
                                                                    '                            '
                                                                    'model_timeseries_season,\n'
                                                                    '                            '
                                                                    'stdv_pc,\n'
                                                                    '                            '
                                                                    'RmDomainMean,\n'
                                                                    '                            '
                                                                    'EofScaling,\n'
                                                                    '                            '
                                                                    'debug=debug,\n'
                                                                    '                        '
                                                                    ')\n'
                                                                    '\n'
                                                                    '                        '
                                                                    '# - - - - '
                                                                    '- - - - - '
                                                                    '- - - - - '
                                                                    '- - - - - '
                                                                    '- - - - - '
                                                                    '-\n'
                                                                    '                        '
                                                                    '# Record '
                                                                    'results\n'
                                                                    '                        '
                                                                    '# - - - - '
                                                                    '- - - - - '
                                                                    '- - - - - '
                                                                    '- - - - - '
                                                                    '- - - - - '
                                                                    '-\n'
                                                                    '                        '
                                                                    '# Metrics '
                                                                    'results '
                                                                    '-- '
                                                                    'statistics '
                                                                    'to JSON\n'
                                                                    '                        '
                                                                    'if '
                                                                    'obs_compare:\n'
                                                                    '                            '
                                                                    'dict_head, '
                                                                    'eof_lr = '
                                                                    'calc_stats_save_dict(\n'
                                                                    '                                '
                                                                    'dict_head,\n'
                                                                    '                                '
                                                                    'eof,\n'
                                                                    '                                '
                                                                    'eof_lr,\n'
                                                                    '                                '
                                                                    'slope,\n'
                                                                    '                                '
                                                                    'pc,\n'
                                                                    '                                '
                                                                    'stdv_pc,\n'
                                                                    '                                '
                                                                    'frac,\n'
                                                                    '                                '
                                                                    'region_subdomain,\n'
                                                                    '                                '
                                                                    'eof_obs=eof_obs[season],\n'
                                                                    '                                '
                                                                    'eof_lr_obs=eof_lr_obs[season],\n'
                                                                    '                                '
                                                                    'stdv_pc_obs=stdv_pc_obs[season],\n'
                                                                    '                                '
                                                                    'obs_compare=obs_compare,\n'
                                                                    '                                '
                                                                    'method="eof",\n'
                                                                    '                                '
                                                                    'debug=debug,\n'
                                                                    '                            '
                                                                    ')\n'
                                                                    '                        '
                                                                    'else:\n'
                                                                    '                            '
                                                                    'dict_head, '
                                                                    'eof_lr = '
                                                                    'calc_stats_save_dict(\n'
                                                                    '                                '
                                                                    'dict_head,\n'
                                                                    '                                '
                                                                    'eof,\n'
                                                                    '                                '
                                                                    'eof_lr,\n'
                                                                    '                                '
                                                                    'slope,\n'
                                                                    '                                '
                                                                    'pc,\n'
                                                                    '                                '
                                                                    'stdv_pc,\n'
                                                                    '                                '
                                                                    'frac,\n'
                                                                    '                                '
                                                                    'region_subdomain,\n'
                                                                    '                                '
                                                                    'obs_compare=obs_compare,\n'
                                                                    '                                '
                                                                    'method="eof",\n'
                                                                    '                                '
                                                                    'debug=debug,\n'
                                                                    '                            '
                                                                    ')\n'
                                                                    '\n'
                                                                    '                        '
                                                                    '# '
                                                                    'Temporal '
                                                                    'correlation '
                                                                    'between '
                                                                    'CBF PC '
                                                                    'timeseries '
                                                                    'and usual '
                                                                    'model PC '
                                                                    'timeseries\n'
                                                                    '                        '
                                                                    'if CBF:\n'
                                                                    '                            '
                                                                    'tc = '
                                                                    'calcTCOR(cbf_pc, '
                                                                    'pc)\n'
                                                                    '                            '
                                                                    'debug_print("cbf '
                                                                    'tc end", '
                                                                    'debug)\n'
                                                                    '                            '
                                                                    'dict_head["tcor_cbf_vs_eof_pc"] '
                                                                    '= tc\n'
                                                                    '\n'
                                                                    '                        '
                                                                    '# Set '
                                                                    'output '
                                                                    'file name '
                                                                    'for '
                                                                    'NetCDF '
                                                                    'and plot '
                                                                    'images\n'
                                                                    '                        '
                                                                    'output_filename '
                                                                    '= '
                                                                    '"_".join(\n'
                                                                    '                            '
                                                                    '[\n'
                                                                    '                                '
                                                                    'mode,\n'
                                                                    '                                '
                                                                    'var,\n'
                                                                    '                                '
                                                                    '"EOF" + '
                                                                    'str(n + '
                                                                    '1),\n'
                                                                    '                                '
                                                                    'season,\n'
                                                                    '                                '
                                                                    'mip,\n'
                                                                    '                                '
                                                                    'model,\n'
                                                                    '                                '
                                                                    'exp,\n'
                                                                    '                                '
                                                                    'run,\n'
                                                                    '                                '
                                                                    'fq,\n'
                                                                    '                                '
                                                                    'realm,\n'
                                                                    '                                '
                                                                    'str(msyear) '
                                                                    '+ "-" + '
                                                                    'str(meyear),\n'
                                                                    '                            '
                                                                    ']\n'
                                                                    '                        '
                                                                    ')\n'
                                                                    '                        '
                                                                    'if '
                                                                    'EofScaling:\n'
                                                                    '                            '
                                                                    'output_filename '
                                                                    '+= '
                                                                    '"_EOFscaled"\n'
                                                                    '\n'
                                                                    '                        '
                                                                    '# '
                                                                    'Diagnostics '
                                                                    'results '
                                                                    '-- data '
                                                                    'to '
                                                                    'NetCDF\n'
                                                                    '                        '
                                                                    '# Save '
                                                                    'global '
                                                                    'map, pc '
                                                                    'timeseries, '
                                                                    'and '
                                                                    'fraction '
                                                                    'in NetCDF '
                                                                    'output\n'
                                                                    '                        '
                                                                    'output_nc_file '
                                                                    '= '
                                                                    'os.path.join(\n'
                                                                    '                            '
                                                                    'outdir(output_type="diagnostic_results"), '
                                                                    'output_filename\n'
                                                                    '                        '
                                                                    ')\n'
                                                                    '                        '
                                                                    'if '
                                                                    'nc_out_model:\n'
                                                                    '                            '
                                                                    'write_nc_output(\n'
                                                                    '                                '
                                                                    'output_nc_file, '
                                                                    'eof_lr, '
                                                                    'pc, frac, '
                                                                    'slope, '
                                                                    'intercept\n'
                                                                    '                            '
                                                                    ')\n'
                                                                    '\n'
                                                                    '                        '
                                                                    '# '
                                                                    'Graphics '
                                                                    '-- plot '
                                                                    'map image '
                                                                    'to PNG\n'
                                                                    '                        '
                                                                    'output_img_file '
                                                                    '= '
                                                                    'os.path.join(\n'
                                                                    '                            '
                                                                    'outdir(output_type="graphics"), '
                                                                    'output_filename\n'
                                                                    '                        '
                                                                    ')\n'
                                                                    '                        '
                                                                    'if '
                                                                    'plot_model:\n'
                                                                    '                            '
                                                                    '# '
                                                                    'plot_map(mode,\n'
                                                                    '                            '
                                                                    '#          '
                                                                    "mip.upper()+' "
                                                                    "'+model+' "
                                                                    "('+run+')',\n"
                                                                    '                            '
                                                                    '#          '
                                                                    'msyear, '
                                                                    'meyear, '
                                                                    'season,\n'
                                                                    '                            '
                                                                    '#          '
                                                                    'eof, '
                                                                    'frac,\n'
                                                                    '                            '
                                                                    '#          '
                                                                    "output_img_file+'_org_eof')\n"
                                                                    '                            '
                                                                    'plot_map(\n'
                                                                    '                                '
                                                                    'mode,\n'
                                                                    '                                '
                                                                    'mip.upper()\n'
                                                                    '                                '
                                                                    '+ " "\n'
                                                                    '                                '
                                                                    '+ model\n'
                                                                    '                                '
                                                                    '+ " ("\n'
                                                                    '                                '
                                                                    '+ run\n'
                                                                    '                                '
                                                                    '+ ") - '
                                                                    'EOF"\n'
                                                                    '                                '
                                                                    '+ str(n + '
                                                                    '1),\n'
                                                                    '                                '
                                                                    'msyear,\n'
                                                                    '                                '
                                                                    'meyear,\n'
                                                                    '                                '
                                                                    'season,\n'
                                                                    '                                '
                                                                    'eof_lr(region_subdomain),\n'
                                                                    '                                '
                                                                    'frac,\n'
                                                                    '                                '
                                                                    'output_img_file,\n'
                                                                    '                            '
                                                                    ')\n'
                                                                    '                            '
                                                                    'plot_map(\n'
                                                                    '                                '
                                                                    'mode + '
                                                                    '"_teleconnection",\n'
                                                                    '                                '
                                                                    'mip.upper()\n'
                                                                    '                                '
                                                                    '+ " "\n'
                                                                    '                                '
                                                                    '+ model\n'
                                                                    '                                '
                                                                    '+ " ("\n'
                                                                    '                                '
                                                                    '+ run\n'
                                                                    '                                '
                                                                    '+ ") - '
                                                                    'EOF"\n'
                                                                    '                                '
                                                                    '+ str(n + '
                                                                    '1),\n'
                                                                    '                                '
                                                                    'msyear,\n'
                                                                    '                                '
                                                                    'meyear,\n'
                                                                    '                                '
                                                                    'season,\n'
                                                                    '                                '
                                                                    'eof_lr(longitude=(lon1g, '
                                                                    'lon2g)),\n'
                                                                    '                                '
                                                                    'frac,\n'
                                                                    '                                '
                                                                    'output_img_file '
                                                                    '+ '
                                                                    '"_teleconnection",\n'
                                                                    '                            '
                                                                    ')\n'
                                                                    '\n'
                                                                    '                        '
                                                                    '# - - - - '
                                                                    '- - - - - '
                                                                    '- - - - - '
                                                                    '- - - - - '
                                                                    '- - - - - '
                                                                    '-\n'
                                                                    '                        '
                                                                    '# EOF '
                                                                    'swap '
                                                                    'diagnosis\n'
                                                                    '                        '
                                                                    '# - - - - '
                                                                    '- - - - - '
                                                                    '- - - - - '
                                                                    '- - - - - '
                                                                    '- - - - - '
                                                                    '-\n'
                                                                    '                        '
                                                                    'rms_list.append(dict_head["rms"])\n'
                                                                    '                        '
                                                                    'cor_list.append(dict_head["cor"])\n'
                                                                    '                        '
                                                                    'if CBF:\n'
                                                                    '                            '
                                                                    'tcor_list.append(dict_head["tcor_cbf_vs_eof_pc"])\n'
                                                                    '\n'
                                                                    '                    '
                                                                    '# Find '
                                                                    'best '
                                                                    'matching '
                                                                    'eofs with '
                                                                    'different '
                                                                    'criteria\n'
                                                                    '                    '
                                                                    'best_matching_eofs_rms '
                                                                    '= '
                                                                    'rms_list.index(min(rms_list)) '
                                                                    '+ 1\n'
                                                                    '                    '
                                                                    'best_matching_eofs_cor '
                                                                    '= '
                                                                    'cor_list.index(max(cor_list)) '
                                                                    '+ 1\n'
                                                                    '                    '
                                                                    'if CBF:\n'
                                                                    '                        '
                                                                    'best_matching_eofs_tcor '
                                                                    '= '
                                                                    'tcor_list.index(max(tcor_list)) '
                                                                    '+ 1\n'
                                                                    '\n'
                                                                    '                    '
                                                                    '# Save '
                                                                    'the best '
                                                                    'matching '
                                                                    'information '
                                                                    'to JSON\n'
                                                                    '                    '
                                                                    'dict_head '
                                                                    '= '
                                                                    'result_dict["RESULTS"][model][run]["defaultReference"][\n'
                                                                    '                        '
                                                                    'mode\n'
                                                                    '                    '
                                                                    '][season]\n'
                                                                    '                    '
                                                                    'dict_head["best_matching_model_eofs__rms"] '
                                                                    '= '
                                                                    'best_matching_eofs_rms\n'
                                                                    '                    '
                                                                    'dict_head["best_matching_model_eofs__cor"] '
                                                                    '= '
                                                                    'best_matching_eofs_cor\n'
                                                                    '                    '
                                                                    'if CBF:\n'
                                                                    '                        '
                                                                    'dict_head[\n'
                                                                    '                            '
                                                                    '"best_matching_model_eofs__tcor_cbf_vs_eof_pc"\n'
                                                                    '                        '
                                                                    '] = '
                                                                    'best_matching_eofs_tcor\n'
                                                                    '\n'
                                                                    '                    '
                                                                    'debug_print("conventional '
                                                                    'eof end", '
                                                                    'debug)\n'
                                                                    '\n'
                                                                    '            '
                                                                    '# '
                                                                    '=================================================================\n'
                                                                    '            '
                                                                    '# '
                                                                    'Dictionary '
                                                                    'to JSON: '
                                                                    'individual '
                                                                    'JSON '
                                                                    'during '
                                                                    'model_realization '
                                                                    'loop\n'
                                                                    '            '
                                                                    '# '
                                                                    '-----------------------------------------------------------------\n'
                                                                    '            '
                                                                    'json_filename_tmp '
                                                                    '= '
                                                                    '"_".join(\n'
                                                                    '                '
                                                                    '[\n'
                                                                    '                    '
                                                                    '"var",\n'
                                                                    '                    '
                                                                    '"mode",\n'
                                                                    '                    '
                                                                    'mode,\n'
                                                                    '                    '
                                                                    '"EOF" + '
                                                                    'str(eofn_mod),\n'
                                                                    '                    '
                                                                    '"stat",\n'
                                                                    '                    '
                                                                    'mip,\n'
                                                                    '                    '
                                                                    'exp,\n'
                                                                    '                    '
                                                                    'fq,\n'
                                                                    '                    '
                                                                    'realm,\n'
                                                                    '                    '
                                                                    'model,\n'
                                                                    '                    '
                                                                    'run,\n'
                                                                    '                    '
                                                                    'str(msyear) '
                                                                    '+ "-" + '
                                                                    'str(meyear),\n'
                                                                    '                '
                                                                    ']\n'
                                                                    '            '
                                                                    ')\n'
                                                                    '            '
                                                                    'variability_metrics_to_json(\n'
                                                                    '                '
                                                                    'outdir,\n'
                                                                    '                '
                                                                    'json_filename_tmp,\n'
                                                                    '                '
                                                                    'result_dict,\n'
                                                                    '                '
                                                                    'model=model,\n'
                                                                    '                '
                                                                    'run=run,\n'
                                                                    '                '
                                                                    'cmec_flag=cmec,\n'
                                                                    '            '
                                                                    ')\n'
                                                                    '\n'
                                                                    '        '
                                                                    'except '
                                                                    'Exception '
                                                                    'as err:\n'
                                                                    '            '
                                                                    'if '
                                                                    'debug:\n'
                                                                    '                '
                                                                    'raise\n'
                                                                    '            '
                                                                    'else:\n'
                                                                    '                '
                                                                    'print("warning: '
                                                                    'failed '
                                                                    'for ", '
                                                                    'model, '
                                                                    'run, '
                                                                    'err)\n'
                                                                    '                '
                                                                    'pass\n'
                                                                    '\n'
                                                                    '# '
                                                                    '========================================================================\n'
                                                                    '# '
                                                                    'Dictionary '
                                                                    'to JSON: '
                                                                    'collective '
                                                                    'JSON at '
                                                                    'the end '
                                                                    'of '
                                                                    'model_realization '
                                                                    'loop\n'
                                                                    '# '
                                                                    '------------------------------------------------------------------------\n'
                                                                    'if not '
                                                                    'parallel '
                                                                    'and '
                                                                    '(len(models) '
                                                                    '> 1):\n'
                                                                    '    '
                                                                    'json_filename_all '
                                                                    '= '
                                                                    '"_".join(\n'
                                                                    '        '
                                                                    '[\n'
                                                                    '            '
                                                                    '"var",\n'
                                                                    '            '
                                                                    '"mode",\n'
                                                                    '            '
                                                                    'mode,\n'
                                                                    '            '
                                                                    '"EOF" + '
                                                                    'str(eofn_mod),\n'
                                                                    '            '
                                                                    '"stat",\n'
                                                                    '            '
                                                                    'mip,\n'
                                                                    '            '
                                                                    'exp,\n'
                                                                    '            '
                                                                    'fq,\n'
                                                                    '            '
                                                                    'realm,\n'
                                                                    '            '
                                                                    '"allModels",\n'
                                                                    '            '
                                                                    '"allRuns",\n'
                                                                    '            '
                                                                    'str(msyear) '
                                                                    '+ "-" + '
                                                                    'str(meyear),\n'
                                                                    '        '
                                                                    ']\n'
                                                                    '    )\n'
                                                                    '    '
                                                                    'variability_metrics_to_json(outdir, '
                                                                    'json_filename_all, '
                                                                    'result_dict, '
                                                                    'cmec_flag=cmec)\n'
                                                                    '\n'
                                                                    'if not '
                                                                    'debug:\n'
                                                                    '    '
                                                                    'sys.exit(0)\n',
                                                          'userId': 'lee1043'}},
                       'PNA/NOAA-CIRES_20CR': {'REFERENCE': {'obs': {'defaultReference': {'PNA': {'DJF': {'frac': 0.3576562710671882,
                                                                                                          'mean': -2.8340841163000756e-16,
                                                                                                          'mean_glo': 0.9089312843129954,
                                                                                                          'stdv_pc': 1.7510850646590324},
                                                                                                  'JJA': {'frac': 0.239030187660174,
                                                                                                          'mean': 1.8396686368965404e-17,
                                                                                                          'mean_glo': 0.04748907189413813,
                                                                                                          'stdv_pc': 0.659835142406803},
                                                                                                  'MAM': {'frac': 0.30818927337290675,
                                                                                                          'mean': -9.496667828303762e-17,
                                                                                                          'mean_glo': 0.2828107540561372,
                                                                                                          'stdv_pc': 1.1262150624379095},
                                                                                                  'SON': {'frac': 0.2871290139084551,
                                                                                                          'mean': -3.5798957258527274e-17,
                                                                                                          'mean_glo': 0.3389526226172416,
                                                                                                          'stdv_pc': 0.9566437853848864}},
                                                                                          'period': '1900-2005',
                                                                                          'reference_eofs': 1,
                                                                                          'source': '/p/user_pub/PCMDIobs/PCMDIobs2/atmos/mon/psl/20CR/gn/v20200707/psl_mon_20CR_BE_gn_v20200707_187101-201212.nc'}}},
                                               'RESULTS': {'ACCESS-CM2': {'r1i1p1f1': {'defaultReference': {'PNA': {'DJF': {'best_matching_model_eofs__cor': 1,
                                                                                                                            'best_matching_model_eofs__rms': 1,
                                                                                                                            'best_matching_model_eofs__tcor_cbf_vs_eof_pc': 1,
                                                                                                                            'cbf': {'bias': 0.0009247537067828936,
                                                                                                                                    'bias_glo': 0.1158568827327423,
                                                                                                                                    'cor': 0.9522460184979401,
                                                                                                                                    'cor_glo': 0.8928954422747744,
                                                                                                                                    'frac': 0.4933883175382462,
                                                                                                                                    'frac_cbf_regrid': 0.49617445437577246,
                                                                                                                                    'mean': -3.937885298438002e-16,
                                                                                                                                    'mean_glo': 1.0247881612327712,
                                                                                                                                    'rms': 0.6683919221912452,
                                                                                                                                    'rms_glo': 0.46417624416270026,
                                                                                                                                    'rmsc': 0.30904363062881485,
                                                                                                                                    'rmsc_glo': 0.4628273063148854,
                                                                                                                                    'stdv_pc': 1.9697842908734555,
                                                                                                                                    'stdv_pc_ratio_to_obs': 1.1248935477940405},
                                                                                                                            'eof1': {'bias': 0.0011883704402168808,
                                                                                                                                     'bias_glo': 0.1262608413836258,
                                                                                                                                     'cor': 0.9080723203360133,
                                                                                                                                     'cor_glo': 0.8650268221574653,
                                                                                                                                     'frac': 0.5131565943819583,
                                                                                                                                     'mean': -4.415204728551699e-16,
                                                                                                                                     'mean_glo': 1.0351921192350841,
                                                                                                                                     'rms': 0.899309289312026,
                                                                                                                                     'rms_glo': 0.5218301599991366,
                                                                                                                                     'rmsc': 0.428783584766594,
                                                                                                                                     'rmsc_glo': 0.5195636172544129,
                                                                                                                                     'stdv_pc': 2.113422457947885,
                                                                                                                                     'stdv_pc_ratio_to_obs': 1.2069216399600815,
                                                                                                                                     'tcor_cbf_vs_eof_pc': 0.9724988972900389},
                                                                                                                            'eof2': {'bias': -0.0009104773047076428,
                                                                                                                                     'bias_glo': -0.7631350385091604,
                                                                                                                                     'cor': 0.3923966798513515,
                                                                                                                                     'cor_glo': 0.28340841167643527,
                                                                                                                                     'frac': 0.15221882366371853,
                                                                                                                                     'mean': 2.622770826926826e-17,
                                                                                                                                     'mean_glo': -0.14579624650185796,
                                                                                                                                     'rms': 1.6751757438387238,
                                                                                                                                     'rms_glo': 1.0666519465257354,
                                                                                                                                     'rmsc': 1.102364087886567,
                                                                                                                                     'rmsc_glo': 1.1971562883701965,
                                                                                                                                     'stdv_pc': 1.1510535846180188,
                                                                                                                                     'stdv_pc_ratio_to_obs': 0.6573373320628199,
                                                                                                                                     'tcor_cbf_vs_eof_pc': -0.22910406259807178},
                                                                                                                            'eof3': {'bias': -0.0005230228766509773,
                                                                                                                                     'bias_glo': -1.2966275152189959,
                                                                                                                                     'cor': 0.07497009390442569,
                                                                                                                                     'cor_glo': 0.06138881935725983,
                                                                                                                                     'frac': 0.09782824614051087,
                                                                                                                                     'mean': 1.4170420581500385e-16,
                                                                                                                                     'mean_glo': -0.3876962309710817,
                                                                                                                                     'rms': 1.9165748110674623,
                                                                                                                                     'rms_glo': 1.5591434651175073,
                                                                                                                                     'rmsc': 1.360169037725263,
                                                                                                                                     'rmsc_glo': 1.3701176761024034,
                                                                                                                                     'stdv_pc': 0.9227700593615468,
                                                                                                                                     'stdv_pc_ratio_to_obs': 0.5269704356374181,
                                                                                                                                     'tcor_cbf_vs_eof_pc': 0.03457447333393525},
                                                                                                                            'period': '1900-2005'},
                                                                                                                    'JJA': {'best_matching_model_eofs__cor': 3,
                                                                                                                            'best_matching_model_eofs__rms': 3,
                                                                                                                            'best_matching_model_eofs__tcor_cbf_vs_eof_pc': 1,
                                                                                                                            'cbf': {'bias': 0.00025822306493577244,
                                                                                                                                    'bias_glo': 0.055434480129618054,
                                                                                                                                    'cor': 0.9097618796460607,
                                                                                                                                    'cor_glo': 0.63710861105367,
                                                                                                                                    'frac': 0.19696227034442423,
                                                                                                                                    'frac_cbf_regrid': 0.19888739292925003,
                                                                                                                                    'mean': 4.723473527166795e-17,
                                                                                                                                    'mean_glo': 0.10292355057985325,
                                                                                                                                    'rms': 0.2754971966066098,
                                                                                                                                    'rms_glo': 0.30619663877095277,
                                                                                                                                    'rmsc': 0.42482495933625747,
                                                                                                                                    'rmsc_glo': 0.8519288423729691,
                                                                                                                                    'stdv_pc': 0.5729227669821918,
                                                                                                                                    'stdv_pc_ratio_to_obs': 0.8682816815309485},
                                                                                                                            'eof1': {'bias': -0.0001027591756568757,
                                                                                                                                     'bias_glo': 0.18770888405808916,
                                                                                                                                     'cor': 0.49135305560336623,
                                                                                                                                     'cor_glo': 0.4705389831073979,
                                                                                                                                     'frac': 0.26593563766372025,
                                                                                                                                     'mean': 6.36425906818263e-17,
                                                                                                                                     'mean_glo': 0.23519795429078122,
                                                                                                                                     'rms': 0.7041027494565306,
                                                                                                                                     'rms_glo': 0.4135863765618718,
                                                                                                                                     'rmsc': 1.0086098690045575,
                                                                                                                                     'rmsc_glo': 1.0290393872884376,
                                                                                                                                     'stdv_pc': 0.7331743830407498,
                                                                                                                                     'stdv_pc_ratio_to_obs': 1.1111478245405904,
                                                                                                                                     'tcor_cbf_vs_eof_pc': 0.6269401339010325},
                                                                                                                            'eof2': {'bias': 0.00026831711239290093,
                                                                                                                                     'bias_glo': -0.06584539354261869,
                                                                                                                                     'cor': 0.5541790092806618,
                                                                                                                                     'cor_glo': 0.23461875242065108,
                                                                                                                                     'frac': 0.174272940634427,
                                                                                                                                     'mean': -4.9720773970176795e-18,
                                                                                                                                     'mean_glo': 0.01835632364654776,
                                                                                                                                     'rms': 0.593811500016253,
                                                                                                                                     'rms_glo': 0.4211961625623038,
                                                                                                                                     'rmsc': 0.9442679760645561,
                                                                                                                                     'rmsc_glo': 1.2372398548611274,
                                                                                                                                     'stdv_pc': 0.5935181329431121,
                                                                                                                                     'stdv_pc_ratio_to_obs': 0.8994945779611038,
                                                                                                                                     'tcor_cbf_vs_eof_pc': -0.5720224487559514},
                                                                                                                            'eof3': {'bias': 0.00036566146710677295,
                                                                                                                                     'bias_glo': -0.10094094855003369,
                                                                                                                                     'cor': 0.5686303083037423,
                                                                                                                                     'cor_glo': 0.3358591725229735,
                                                                                                                                     'frac': 0.13279109172726597,
                                                                                                                                     'mean': 1.4916232191053038e-18,
                                                                                                                                     'mean_glo': -0.05345187517120323,
                                                                                                                                     'rms': 0.5608720078098164,
                                                                                                                                     'rms_glo': 0.40567962427083953,
                                                                                                                                     'rmsc': 0.92883763090385,
                                                                                                                                     'rmsc_glo': 1.1525110034253243,
                                                                                                                                     'stdv_pc': 0.51808793994365,
                                                                                                                                     'stdv_pc_ratio_to_obs': 0.7851778522342439,
                                                                                                                                     'tcor_cbf_vs_eof_pc': 0.5126532570476464},
                                                                                                                            'period': '1900-2005'},
                                                                                                                    'MAM': {'best_matching_model_eofs__cor': 1,
                                                                                                                            'best_matching_model_eofs__rms': 1,
                                                                                                                            'best_matching_model_eofs__tcor_cbf_vs_eof_pc': 1,
                                                                                                                            'cbf': {'bias': 0.0003817360461883687,
                                                                                                                                    'bias_glo': 0.18372244169768465,
                                                                                                                                    'cor': 0.9631803700917603,
                                                                                                                                    'cor_glo': 0.9002686118809603,
                                                                                                                                    'frac': 0.4853901681529347,
                                                                                                                                    'frac_cbf_regrid': 0.4884301863120214,
                                                                                                                                    'mean': 9.993875568005535e-17,
                                                                                                                                    'mean_glo': 0.4665331925332031,
                                                                                                                                    'rms': 0.7089572592357996,
                                                                                                                                    'rms_glo': 0.38740650182611003,
                                                                                                                                    'rmsc': 0.27136555658105727,
                                                                                                                                    'rmsc_glo': 0.4466125501716285,
                                                                                                                                    'stdv_pc': 1.6622501194346306,
                                                                                                                                    'stdv_pc_ratio_to_obs': 1.4759615413386231},
                                                                                                                            'eof1': {'bias': 0.00043218249218187417,
                                                                                                                                     'bias_glo': 0.16882898713401373,
                                                                                                                                     'cor': 0.9439941403788785,
                                                                                                                                     'cor_glo': 0.8872122266509411,
                                                                                                                                     'frac': 0.4937550542893723,
                                                                                                                                     'mean': 1.6656459280009225e-16,
                                                                                                                                     'mean_glo': 0.4516397377474913,
                                                                                                                                     'rms': 0.7727920278221057,
                                                                                                                                     'rms_glo': 0.39598144132640056,
                                                                                                                                     'rmsc': 0.3346815248623117,
                                                                                                                                     'rmsc_glo': 0.4749479280322138,
                                                                                                                                     'stdv_pc': 1.7444689640898603,
                                                                                                                                     'stdv_pc_ratio_to_obs': 1.548966109824194,
                                                                                                                                     'tcor_cbf_vs_eof_pc': 0.9885574705592044},
                                                                                                                            'eof2': {'bias': -0.0005167203179412953,
                                                                                                                                     'bias_glo': -0.3252549691918474,
                                                                                                                                     'cor': 0.2420390965485462,
                                                                                                                                     'cor_glo': 0.1598043321323043,
                                                                                                                                     'frac': 0.14162418543439906,
                                                                                                                                     'mean': 2.9832464382106077e-18,
                                                                                                                                     'mean_glo': -0.04244421275980786,
                                                                                                                                     'rms': 1.2760190830897808,
                                                                                                                                     'rms_glo': 0.6713049219293123,
                                                                                                                                     'rmsc': 1.2312277651546004,
                                                                                                                                     'rmsc_glo': 1.296299066569335,
                                                                                                                                     'stdv_pc': 0.9342781296790775,
                                                                                                                                     'stdv_pc_ratio_to_obs': 0.8295734632217159,
                                                                                                                                     'tcor_cbf_vs_eof_pc': 0.13563545203445482},
                                                                                                                            'eof3': {'bias': 5.692167523693088e-05,
                                                                                                                                     'bias_glo': -0.0331595692529309,
                                                                                                                                     'cor': 0.040117250629815186,
                                                                                                                                     'cor_glo': -0.14276646650823624,
                                                                                                                                     'frac': 0.10550907023329859,
                                                                                                                                     'mean': -9.546388602273945e-17,
                                                                                                                                     'mean_glo': -0.24965118404298772,
                                                                                                                                     'rms': 1.3574599667849196,
                                                                                                                                     'rms_glo': 0.6915502317783971,
                                                                                                                                     'rmsc': 1.3855560221249563,
                                                                                                                                     'rmsc_glo': 1.5117978954985616,
                                                                                                                                     'stdv_pc': 0.8064034333204343,
                                                                                                                                     'stdv_pc_ratio_to_obs': 0.7160297000244507,
                                                                                                                                     'tcor_cbf_vs_eof_pc': -0.019413071878395197},
                                                                                                                            'period': '1900-2005'},
                                                                                                                    'SON': {'best_matching_model_eofs__cor': 1,
                                                                                                                            'best_matching_model_eofs__rms': 1,
                                                                                                                            'best_matching_model_eofs__tcor_cbf_vs_eof_pc': 1,
                                                                                                                            'cbf': {'bias': 0.00021547345594054242,
                                                                                                                                    'bias_glo': -0.04776374642845427,
                                                                                                                                    'cor': 0.9889014211163942,
                                                                                                                                    'cor_glo': 0.6208536965575161,
                                                                                                                                    'frac': 0.2924649104287764,
                                                                                                                                    'frac_cbf_regrid': 0.2945522307357998,
                                                                                                                                    'mean': -6.264817520242276e-17,
                                                                                                                                    'mean_glo': 0.29118887552499956,
                                                                                                                                    'rms': 0.19518183071462006,
                                                                                                                                    'rms_glo': 0.39702990115588027,
                                                                                                                                    'rmsc': 0.14898711258793126,
                                                                                                                                    'rmsc_glo': 0.8707999725117741,
                                                                                                                                    'stdv_pc': 1.0678125633392168,
                                                                                                                                    'stdv_pc_ratio_to_obs': 1.1162070769211174},
                                                                                                                            'eof1': {'bias': 0.00020417801858905272,
                                                                                                                                     'bias_glo': -0.05034636628129263,
                                                                                                                                     'cor': 0.9826464089560616,
                                                                                                                                     'cor_glo': 0.6092263029974778,
                                                                                                                                     'frac': 0.29391947556943704,
                                                                                                                                     'mean': -4.8477754620922375e-17,
                                                                                                                                     'mean_glo': 0.28860625577424903,
                                                                                                                                     'rms': 0.2275573023778543,
                                                                                                                                     'rms_glo': 0.40526790900503246,
                                                                                                                                     'rmsc': 0.1862986308740817,
                                                                                                                                     'rmsc_glo': 0.8840517063989938,
                                                                                                                                     'stdv_pc': 1.0848917460137928,
                                                                                                                                     'stdv_pc_ratio_to_obs': 1.1340603081190859,
                                                                                                                                     'tcor_cbf_vs_eof_pc': 0.9961652925225228},
                                                                                                                            'eof2': {'bias': 0.0004832486196189092,
                                                                                                                                     'bias_glo': -0.5276933496795833,
                                                                                                                                     'cor': 0.02427269205219506,
                                                                                                                                     'cor_glo': -0.13313172296873907,
                                                                                                                                     'frac': 0.23073290631159155,
                                                                                                                                     'mean': 7.756440739347579e-17,
                                                                                                                                     'mean_glo': -0.18874072794464916,
                                                                                                                                     'rms': 1.3380968895305099,
                                                                                                                                     'rms_glo': 0.8356639752980262,
                                                                                                                                     'rmsc': 1.396944738913558,
                                                                                                                                     'rmsc_glo': 1.5054113608421942,
                                                                                                                                     'stdv_pc': 0.9612292797343108,
                                                                                                                                     'stdv_pc_ratio_to_obs': 1.004793314313519,
                                                                                                                                     'tcor_cbf_vs_eof_pc': 0.021801569445789228},
                                                                                                                            'eof3': {'bias': 2.9816103326280448e-05,
                                                                                                                                     'bias_glo': -0.20469778134884545,
                                                                                                                                     'cor': 0.09966640519777312,
                                                                                                                                     'cor_glo': -0.00023574133124466254,
                                                                                                                                     'frac': 0.12135413345949131,
                                                                                                                                     'mean': 4.574311205256265e-17,
                                                                                                                                     'mean_glo': -0.13425484207178254,
                                                                                                                                     'rms': 1.1253649432042956,
                                                                                                                                     'rms_glo': 0.5889556673191577,
                                                                                                                                     'rmsc': 1.3418894107779882,
                                                                                                                                     'rmsc_glo': 1.414380228197317,
                                                                                                                                     'stdv_pc': 0.6971071059863624,
                                                                                                                                     'stdv_pc_ratio_to_obs': 0.7287008149077092,
                                                                                                                                     'tcor_cbf_vs_eof_pc': -0.0649301732983287},
                                                                                                                            'period': '1900-2005'},
                                                                                                                    'target_model_eofs': 1}}},
                                                                          'r2i1p1f1': {'defaultReference': {'PNA': {'DJF': {'best_matching_model_eofs__cor': 1,
                                                                                                                            'best_matching_model_eofs__rms': 1,
                                                                                                                            'best_matching_model_eofs__tcor_cbf_vs_eof_pc': 1,
                                                                                                                            'cbf': {'bias': 0.001169660948506842,
                                                                                                                                    'bias_glo': 0.23884103973680648,
                                                                                                                                    'cor': 0.9363478540266679,
                                                                                                                                    'cor_glo': 0.8653419412177901,
                                                                                                                                    'frac': 0.464875262650321,
                                                                                                                                    'frac_cbf_regrid': 0.4673859050951565,
                                                                                                                                    'mean': -5.5687266846598e-16,
                                                                                                                                    'mean_glo': 1.147772316607102,
                                                                                                                                    'rms': 0.7569592763390193,
                                                                                                                                    'rms_glo': 0.5851280252613377,
                                                                                                                                    'rmsc': 0.3567972657988897,
                                                                                                                                    'rmsc_glo': 0.518956749165,
                                                                                                                                    'stdv_pc': 1.948798893070134,
                                                                                                                                    'stdv_pc_ratio_to_obs': 1.112909322568861},
                                                                                                                            'eof1': {'bias': 0.0014310183243112754,
                                                                                                                                     'bias_glo': 0.2251630776324548,
                                                                                                                                     'cor': 0.8702796194504424,
                                                                                                                                     'cor_glo': 0.8037851138763638,
                                                                                                                                     'frac': 0.4929928254197525,
                                                                                                                                     'mean': -4.932300777841538e-16,
                                                                                                                                     'mean_glo': 1.1340943531902692,
                                                                                                                                     'rms': 1.0615927443062667,
                                                                                                                                     'rms_glo': 0.6951068258481783,
                                                                                                                                     'rmsc': 0.5093532679562176,
                                                                                                                                     'rmsc_glo': 0.6264421424151548,
                                                                                                                                     'stdv_pc': 2.1470715226219395,
                                                                                                                                     'stdv_pc_ratio_to_obs': 1.226137762210891,
                                                                                                                                     'tcor_cbf_vs_eof_pc': 0.9570949953036808},
                                                                                                                            'eof2': {'bias': -0.00041681420027142244,
                                                                                                                                     'bias_glo': -0.5468552875686872,
                                                                                                                                     'cor': 0.4231899984191284,
                                                                                                                                     'cor_glo': 0.3315348795684314,
                                                                                                                                     'frac': 0.16967554461154366,
                                                                                                                                     'mean': 1.3064133360663951e-16,
                                                                                                                                     'mean_glo': -0.36207599985027045,
                                                                                                                                     'rms': 1.6681163691939216,
                                                                                                                                     'rms_glo': 0.9424033151137168,
                                                                                                                                     'rmsc': 1.0740670170287918,
                                                                                                                                     'rmsc_glo': 1.156256982601752,
                                                                                                                                     'stdv_pc': 1.2596092411612467,
                                                                                                                                     'stdv_pc_ratio_to_obs': 0.719330697624627,
                                                                                                                                     'tcor_cbf_vs_eof_pc': -0.27264397741520535},
                                                                                                                            'eof3': {'bias': -0.0006048769600679743,
                                                                                                                                     'bias_glo': -1.2551473732113132,
                                                                                                                                     'cor': 0.11460081309391441,
                                                                                                                                     'cor_glo': 0.0413569430149711,
                                                                                                                                     'frac': 0.11050690422771911,
                                                                                                                                     'mean': 1.5115115286933744e-16,
                                                                                                                                     'mean_glo': -0.3462160872410645,
                                                                                                                                     'rms': 1.9202381529266348,
                                                                                                                                     'rms_glo': 1.5299102429898024,
                                                                                                                                     'rmsc': 1.3307135000503107,
                                                                                                                                     'rmsc_glo': 1.384661019873646,
                                                                                                                                     'stdv_pc': 1.0165316816565317,
                                                                                                                                     'stdv_pc_ratio_to_obs': 0.5805153057224371,
                                                                                                                                     'tcor_cbf_vs_eof_pc': 0.059781058289044266},
                                                                                                                            'period': '1900-2005'},
                                                                                                                    'JJA': {'best_matching_model_eofs__cor': 1,
                                                                                                                            'best_matching_model_eofs__rms': 1,
                                                                                                                            'best_matching_model_eofs__tcor_cbf_vs_eof_pc': 1,
                                                                                                                            'cbf': {'bias': 0.0003060421223766306,
                                                                                                                                    'bias_glo': 0.06668995204525022,
                                                                                                                                    'cor': 0.9120943193474408,
                                                                                                                                    'cor_glo': 0.6726472041794312,
                                                                                                                                    'frac': 0.20181756802240539,
                                                                                                                                    'frac_cbf_regrid': 0.20373602426115864,
                                                                                                                                    'mean': 5.245541653853652e-17,
                                                                                                                                    'mean_glo': 0.11417902293443002,
                                                                                                                                    'rms': 0.27375153127868246,
                                                                                                                                    'rms_glo': 0.2993115688308274,
                                                                                                                                    'rmsc': 0.41929865860219545,
                                                                                                                                    'rmsc_glo': 0.8091387856830312,
                                                                                                                                    'stdv_pc': 0.5871811857499828,
                                                                                                                                    'stdv_pc_ratio_to_obs': 0.8898907439336909},
                                                                                                                            'eof1': {'bias': 0.00013799314719798106,
                                                                                                                                     'bias_glo': 0.17631024696856099,
                                                                                                                                     'cor': 0.6594832986558996,
                                                                                                                                     'cor_glo': 0.5511885231012188,
                                                                                                                                     'frac': 0.23783587241167026,
                                                                                                                                     'mean': 9.844713246095005e-17,
                                                                                                                                     'mean_glo': 0.2237993171781751,
                                                                                                                                     'rms': 0.5615459766870956,
                                                                                                                                     'rms_glo': 0.3906165420002763,
                                                                                                                                     'rmsc': 0.8252474544031728,
                                                                                                                                     'rmsc_glo': 0.9474296635669345,
                                                                                                                                     'stdv_pc': 0.7000960554906126,
                                                                                                                                     'stdv_pc_ratio_to_obs': 1.0610166244510024,
                                                                                                                                     'tcor_cbf_vs_eof_pc': 0.784411405997786},
                                                                                                                            'eof2': {'bias': 0.0004868113533316637,
                                                                                                                                     'bias_glo': -0.11582017915057513,
                                                                                                                                     'cor': 0.2798294444465632,
                                                                                                                                     'cor_glo': 0.19908278081263242,
                                                                                                                                     'frac': 0.19090517127229967,
                                                                                                                                     'mean': 4.947217010032591e-17,
                                                                                                                                     'mean_glo': 0.06833110818791871,
                                                                                                                                     'rms': 0.7714233938120972,
                                                                                                                                     'rms_glo': 0.44038997422232756,
                                                                                                                                     'rmsc': 1.200142101350169,
                                                                                                                                     'rmsc_glo': 1.2656359608517536,
                                                                                                                                     'stdv_pc': 0.6272314086582035,
                                                                                                                                     'stdv_pc_ratio_to_obs': 0.9505880610879943,
                                                                                                                                     'tcor_cbf_vs_eof_pc': -0.2977919316285628},
                                                                                                                            'eof3': {'bias': 0.0001916103549737014,
                                                                                                                                     'bias_glo': -0.08155009421873538,
                                                                                                                                     'cor': 0.5492173261690485,
                                                                                                                                     'cor_glo': 0.4661828369061976,
                                                                                                                                     'frac': 0.14224044964085292,
                                                                                                                                     'mean': -2.2871556026281324e-17,
                                                                                                                                     'mean_glo': -0.034061021718256784,
                                                                                                                                     'rms': 0.5792359536384524,
                                                                                                                                     'rms_glo': 0.368807004100267,
                                                                                                                                     'rmsc': 0.9495079622682161,
                                                                                                                                     'rmsc_glo': 1.03326389175408,
                                                                                                                                     'stdv_pc': 0.541415281229449,
                                                                                                                                     'stdv_pc_ratio_to_obs': 0.8205311394215716,
                                                                                                                                     'tcor_cbf_vs_eof_pc': 0.5048657051348043},
                                                                                                                            'period': '1900-2005'},
                                                                                                                    'MAM': {'best_matching_model_eofs__cor': 1,
                                                                                                                            'best_matching_model_eofs__rms': 1,
                                                                                                                            'best_matching_model_eofs__tcor_cbf_vs_eof_pc': 1,
                                                                                                                            'cbf': {'bias': 0.0002866307561285774,
                                                                                                                                    'bias_glo': 0.14555884850058842,
                                                                                                                                    'cor': 0.976452423939868,
                                                                                                                                    'cor_glo': 0.8457260506373601,
                                                                                                                                    'frac': 0.3694987549297157,
                                                                                                                                    'frac_cbf_regrid': 0.37203280154704804,
                                                                                                                                    'mean': 1.0938570273438894e-16,
                                                                                                                                    'mean_glo': 0.42836959843341715,
                                                                                                                                    'rms': 0.33621287477772843,
                                                                                                                                    'rms_glo': 0.35602642952842756,
                                                                                                                                    'rmsc': 0.21701416910337476,
                                                                                                                                    'rmsc_glo': 0.5554708740546106,
                                                                                                                                    'stdv_pc': 1.3007255551791579,
                                                                                                                                    'stdv_pc_ratio_to_obs': 1.1549530800657974},
                                                                                                                            'eof1': {'bias': 0.0002694652245585701,
                                                                                                                                     'bias_glo': 0.13037999351480228,
                                                                                                                                     'cor': 0.9671032986694209,
                                                                                                                                     'cor_glo': 0.8362609387260251,
                                                                                                                                     'frac': 0.37265494901608825,
                                                                                                                                     'mean': 1.193298575284243e-16,
                                                                                                                                     'mean_glo': 0.4131907436229433,
                                                                                                                                     'rms': 0.37931970556894856,
                                                                                                                                     'rms_glo': 0.3557645746963102,
                                                                                                                                     'rmsc': 0.25650224807580757,
                                                                                                                                     'rmsc_glo': 0.572257034293693,
                                                                                                                                     'stdv_pc': 1.3410891011576118,
                                                                                                                                     'stdv_pc_ratio_to_obs': 1.190793078414851,
                                                                                                                                     'tcor_cbf_vs_eof_pc': 0.9946498812330418},
                                                                                                                            'eof2': {'bias': -0.0005306423455905184,
                                                                                                                                     'bias_glo': -0.35464465205661805,
                                                                                                                                     'cor': 0.00780117115485679,
                                                                                                                                     'cor_glo': -0.026151515704318597,
                                                                                                                                     'frac': 0.15077627982612463,
                                                                                                                                     'mean': -8.005044609198464e-17,
                                                                                                                                     'mean_glo': -0.07183389584998634,
                                                                                                                                     'rms': 1.4061138458888693,
                                                                                                                                     'rms_glo': 0.7156491321141393,
                                                                                                                                     'rmsc': 1.4086865168715637,
                                                                                                                                     'rmsc_glo': 1.4325861678859952,
                                                                                                                                     'stdv_pc': 0.8530425574772453,
                                                                                                                                     'stdv_pc_ratio_to_obs': 0.7574419717231187,
                                                                                                                                     'tcor_cbf_vs_eof_pc': 0.005102304836416654},
                                                                                                                            'eof3': {'bias': 0.0002054847086098452,
                                                                                                                                     'bias_glo': -0.010223513268002637,
                                                                                                                                     'cor': 0.0492835987942576,
                                                                                                                                     'cor_glo': 0.008116968608321283,
                                                                                                                                     'frac': 0.13054888623832064,
                                                                                                                                     'mean': -7.395965128063798e-17,
                                                                                                                                     'mean_glo': -0.2725872397482727,
                                                                                                                                     'rms': 1.3444447717709258,
                                                                                                                                     'rms_glo': 0.6673890989706425,
                                                                                                                                     'rmsc': 1.378924512499436,
                                                                                                                                     'rmsc_glo': 1.4084623116552313,
                                                                                                                                     'stdv_pc': 0.7937628554139229,
                                                                                                                                     'stdv_pc_ratio_to_obs': 0.7048057532596574,
                                                                                                                                     'tcor_cbf_vs_eof_pc': -0.0300038465093943},
                                                                                                                            'period': '1900-2005'},
                                                                                                                    'SON': {'best_matching_model_eofs__cor': 1,
                                                                                                                            'best_matching_model_eofs__rms': 1,
                                                                                                                            'best_matching_model_eofs__tcor_cbf_vs_eof_pc': 1,
                                                                                                                            'cbf': {'bias': 9.963640353551854e-05,
                                                                                                                                    'bias_glo': 0.019242821079886063,
                                                                                                                                    'cor': 0.9747745320788567,
                                                                                                                                    'cor_glo': 0.8251832517209076,
                                                                                                                                    'frac': 0.2943091960479807,
                                                                                                                                    'frac_cbf_regrid': 0.2965117974159621,
                                                                                                                                    'mean': -1.2927401232245965e-16,
                                                                                                                                    'mean_glo': 0.3581954424036898,
                                                                                                                                    'rms': 0.2764641205290826,
                                                                                                                                    'rms_glo': 0.27552246183442186,
                                                                                                                                    'rmsc': 0.22461286311669149,
                                                                                                                                    'rmsc_glo': 0.5912981515021206,
                                                                                                                                    'stdv_pc': 1.080182482996397,
                                                                                                                                    'stdv_pc_ratio_to_obs': 1.1291376157968844},
                                                                                                                            'eof1': {'bias': -2.357011358099573e-05,
                                                                                                                                     'bias_glo': 0.06479600338953379,
                                                                                                                                     'cor': 0.8572908899997567,
                                                                                                                                     'cor_glo': 0.7371594087111212,
                                                                                                                                     'frac': 0.3120250103230232,
                                                                                                                                     'mean': -1.3722933615768795e-16,
                                                                                                                                     'mean_glo': 0.40374862611129947,
                                                                                                                                     'rms': 0.5875923518878159,
                                                                                                                                     'rms_glo': 0.3451230066165805,
                                                                                                                                     'rmsc': 0.5342454564216841,
                                                                                                                                     'rmsc_glo': 0.7250387520832844,
                                                                                                                                     'stdv_pc': 1.1437324450139421,
                                                                                                                                     'stdv_pc_ratio_to_obs': 1.1955677363793091,
                                                                                                                                     'tcor_cbf_vs_eof_pc': 0.9052308170381613},
                                                                                                                            'eof2': {'bias': 0.00037725004212836523,
                                                                                                                                     'bias_glo': -0.393234206770967,
                                                                                                                                     'cor': 0.44448394644569655,
                                                                                                                                     'cor_glo': 0.39635556274526107,
                                                                                                                                     'frac': 0.2281771586371874,
                                                                                                                                     'mean': 5.4692851367194474e-18,
                                                                                                                                     'mean_glo': -0.054281587269473235,
                                                                                                                                     'rms': 1.0186600727364918,
                                                                                                                                     'rms_glo': 0.6121500869313304,
                                                                                                                                     'rmsc': 1.0540550770129076,
                                                                                                                                     'rmsc_glo': 1.098767004880793,
                                                                                                                                     'stdv_pc': 0.9780607300845838,
                                                                                                                                     'stdv_pc_ratio_to_obs': 1.0223875856686622,
                                                                                                                                     'tcor_cbf_vs_eof_pc': 0.4015916152875441},
                                                                                                                            'eof3': {'bias': -0.0001993905924777241,
                                                                                                                                     'bias_glo': -0.2487378032598804,
                                                                                                                                     'cor': 0.18952469482079928,
                                                                                                                                     'cor_glo': 0.2772659946644128,
                                                                                                                                     'frac': 0.1022903555806546,
                                                                                                                                     'mean': 3.8782203696737895e-17,
                                                                                                                                     'mean_glo': -0.09021481788588966,
                                                                                                                                     'rms': 1.051002128939544,
                                                                                                                                     'rms_glo': 0.5258472193096501,
                                                                                                                                     'rmsc': 1.2731656074486022,
                                                                                                                                     'rmsc_glo': 1.2022761693980781,
                                                                                                                                     'stdv_pc': 0.6548579168325707,
                                                                                                                                     'stdv_pc_ratio_to_obs': 0.6845368431145996,
                                                                                                                                     'tcor_cbf_vs_eof_pc': -0.11453882056896901},
                                                                                                                            'period': '1900-2005'},
                                                                                                                    'target_model_eofs': 1}}},
                                                                          'r3i1p1f1': {'defaultReference': {'PNA': {'DJF': {'best_matching_model_eofs__cor': 1,
                                                                                                                            'best_matching_model_eofs__rms': 1,
                                                                                                                            'best_matching_model_eofs__tcor_cbf_vs_eof_pc': 1,
                                                                                                                            'cbf': {'bias': 0.001151536528511007,
                                                                                                                                    'bias_glo': 0.15778600257670805,
                                                                                                                                    'cor': 0.9454217467269339,
                                                                                                                                    'cor_glo': 0.9044829674802891,
                                                                                                                                    'frac': 0.4748994753685098,
                                                                                                                                    'frac_cbf_regrid': 0.4774973816053562,
                                                                                                                                    'mean': -4.912412468253467e-16,
                                                                                                                                    'mean_glo': 1.0667172811633137,
                                                                                                                                    'rms': 0.6672308165911076,
                                                                                                                                    'rms_glo': 0.4241925539090511,
                                                                                                                                    'rmsc': 0.33038841692675597,
                                                                                                                                    'rmsc_glo': 0.43707443710454935,
                                                                                                                                    'stdv_pc': 1.892147696705515,
                                                                                                                                    'stdv_pc_ratio_to_obs': 1.0805572698285506},
                                                                                                                            'eof1': {'bias': 0.0013712073334042946,
                                                                                                                                     'bias_glo': 0.15003556326808687,
                                                                                                                                     'cor': 0.9007149938115045,
                                                                                                                                     'cor_glo': 0.8711282102710046,
                                                                                                                                     'frac': 0.4941083626022973,
                                                                                                                                     'mean': -4.952189087429609e-16,
                                                                                                                                     'mean_glo': 1.0589668411813733,
                                                                                                                                     'rms': 0.8914175631690544,
                                                                                                                                     'rms_glo': 0.49109992831725124,
                                                                                                                                     'rmsc': 0.4456119585880929,
                                                                                                                                     'rmsc_glo': 0.5076845230615012,
                                                                                                                                     'stdv_pc': 2.0449391707026243,
                                                                                                                                     'stdv_pc_ratio_to_obs': 1.1678125820237126,
                                                                                                                                     'tcor_cbf_vs_eof_pc': 0.9718738791178583},
                                                                                                                            'eof2': {'bias': -0.00033153478199203257,
                                                                                                                                     'bias_glo': -0.505505488596015,
                                                                                                                                     'cor': 0.32158184336305945,
                                                                                                                                     'cor_glo': 0.19349125395033676,
                                                                                                                                     'frac': 0.16702731293656753,
                                                                                                                                     'mean': 2.2672672930400615e-16,
                                                                                                                                     'mean_glo': -0.40342579601617706,
                                                                                                                                     'rms': 1.7716556534099057,
                                                                                                                                     'rms_glo': 0.9796626957562881,
                                                                                                                                     'rmsc': 1.1648331943978432,
                                                                                                                                     'rmsc_glo': 1.2700462371877435,
                                                                                                                                     'stdv_pc': 1.188948488206385,
                                                                                                                                     'stdv_pc_ratio_to_obs': 0.6789781445813968,
                                                                                                                                     'tcor_cbf_vs_eof_pc': -0.20193902579948075},
                                                                                                                            'eof3': {'bias': -0.0009246185732875306,
                                                                                                                                     'bias_glo': -1.3108278406914102,
                                                                                                                                     'cor': 0.24632917111865804,
                                                                                                                                     'cor_glo': -0.0422447719480512,
                                                                                                                                     'frac': 0.09601168505364996,
                                                                                                                                     'mean': 1.7899478629263645e-16,
                                                                                                                                     'mean_glo': -0.40189655364678484,
                                                                                                                                     'rms': 1.7603161144759027,
                                                                                                                                     'rms_glo': 1.5839981778768886,
                                                                                                                                     'rmsc': 1.2277384350868301,
                                                                                                                                     'rmsc_glo': 1.443776147319274,
                                                                                                                                     'stdv_pc': 0.9014286097826059,
                                                                                                                                     'stdv_pc_ratio_to_obs': 0.5147828783281468,
                                                                                                                                     'tcor_cbf_vs_eof_pc': 0.11684837195871095},
                                                                                                                            'period': '1900-2005'},
                                                                                                                    'JJA': {'best_matching_model_eofs__cor': 1,
                                                                                                                            'best_matching_model_eofs__rms': 1,
                                                                                                                            'best_matching_model_eofs__tcor_cbf_vs_eof_pc': 1,
                                                                                                                            'cbf': {'bias': 0.0002802521477700091,
                                                                                                                                    'bias_glo': 0.08364860832414583,
                                                                                                                                    'cor': 0.9163406731009616,
                                                                                                                                    'cor_glo': 0.7696853810313347,
                                                                                                                                    'frac': 0.24017324633905934,
                                                                                                                                    'frac_cbf_regrid': 0.24230041215245238,
                                                                                                                                    'mean': 9.993875568005535e-17,
                                                                                                                                    'mean_glo': 0.13113767789015182,
                                                                                                                                    'rms': 0.2936432892512969,
                                                                                                                                    'rms_glo': 0.27246998254325905,
                                                                                                                                    'rmsc': 0.4090460258395435,
                                                                                                                                    'rmsc_glo': 0.6786967227185885,
                                                                                                                                    'stdv_pc': 0.671491999877616,
                                                                                                                                    'stdv_pc_ratio_to_obs': 1.0176663180264902},
                                                                                                                            'eof1': {'bias': 6.553368450681936e-05,
                                                                                                                                     'bias_glo': 0.19876277476587997,
                                                                                                                                     'cor': 0.699841875180233,
                                                                                                                                     'cor_glo': 0.694360626035251,
                                                                                                                                     'frac': 0.2756451515316136,
                                                                                                                                     'mean': 1.1212034530274867e-16,
                                                                                                                                     'mean_glo': 0.24625184384671467,
                                                                                                                                     'rms': 0.5712423368115312,
                                                                                                                                     'rms_glo': 0.3662845724783982,
                                                                                                                                     'rmsc': 0.7748007594220069,
                                                                                                                                     'rmsc_glo': 0.7818431775407101,
                                                                                                                                     'stdv_pc': 0.7863595763839719,
                                                                                                                                     'stdv_pc_ratio_to_obs': 1.1917515843664535,
                                                                                                                                     'tcor_cbf_vs_eof_pc': 0.8176668073251477},
                                                                                                                            'eof2': {'bias': 0.0003849854956640011,
                                                                                                                                     'bias_glo': -0.1458004361545876,
                                                                                                                                     'cor': 0.5853288968184671,
                                                                                                                                     'cor_glo': 0.377890857446016,
                                                                                                                                     'frac': 0.1789764418234779,
                                                                                                                                     'mean': -9.198343184482707e-18,
                                                                                                                                     'mean_glo': -0.09831136409510138,
                                                                                                                                     'rms': 0.588714401054058,
                                                                                                                                     'rms_glo': 0.41693164010291056,
                                                                                                                                     'rmsc': 0.9106822527922782,
                                                                                                                                     'rmsc_glo': 1.1154453253985597,
                                                                                                                                     'stdv_pc': 0.6336419706933643,
                                                                                                                                     'stdv_pc_ratio_to_obs': 0.9603034606221533,
                                                                                                                                     'tcor_cbf_vs_eof_pc': 0.5508349963752802},
                                                                                                                            'eof3': {'bias': -0.0002460146619380854,
                                                                                                                                     'bias_glo': -0.22365457765313154,
                                                                                                                                     'cor': 0.02173836685681353,
                                                                                                                                     'cor_glo': -0.07764931256332208,
                                                                                                                                     'frac': 0.13601173353757615,
                                                                                                                                     'mean': -6.165375972301923e-17,
                                                                                                                                     'mean_glo': -0.1761655031522145,
                                                                                                                                     'rms': 0.8500509801233641,
                                                                                                                                     'rms_glo': 0.5467297536525584,
                                                                                                                                     'rmsc': 1.398757738298434,
                                                                                                                                     'rmsc_glo': 1.4680935369967734,
                                                                                                                                     'stdv_pc': 0.5523752219806376,
                                                                                                                                     'stdv_pc_ratio_to_obs': 0.8371412592027208,
                                                                                                                                     'tcor_cbf_vs_eof_pc': 0.01781984303798043},
                                                                                                                            'period': '1900-2005'},
                                                                                                                    'MAM': {'best_matching_model_eofs__cor': 1,
                                                                                                                            'best_matching_model_eofs__rms': 1,
                                                                                                                            'best_matching_model_eofs__tcor_cbf_vs_eof_pc': 1,
                                                                                                                            'cbf': {'bias': 0.0004799440676005511,
                                                                                                                                    'bias_glo': 0.22176570700313508,
                                                                                                                                    'cor': 0.9783224947043081,
                                                                                                                                    'cor_glo': 0.8599771312547887,
                                                                                                                                    'frac': 0.44232866782301766,
                                                                                                                                    'frac_cbf_regrid': 0.44513857088540765,
                                                                                                                                    'mean': 1.889389410866718e-16,
                                                                                                                                    'mean_glo': 0.5045764562563486,
                                                                                                                                    'rms': 0.5699496282569451,
                                                                                                                                    'rms_glo': 0.46967388750653083,
                                                                                                                                    'rmsc': 0.20821866459623936,
                                                                                                                                    'rmsc_glo': 0.5291934812709153,
                                                                                                                                    'stdv_pc': 1.5866906256948679,
                                                                                                                                    'stdv_pc_ratio_to_obs': 1.408870009481289},
                                                                                                                            'eof1': {'bias': 0.00051582105814341,
                                                                                                                                     'bias_glo': 0.20795671365691754,
                                                                                                                                     'cor': 0.9680127208622263,
                                                                                                                                     'cor_glo': 0.8520485355031956,
                                                                                                                                     'frac': 0.4461909496473187,
                                                                                                                                     'mean': 1.889389410866718e-16,
                                                                                                                                     'mean_glo': 0.49076746256097276,
                                                                                                                                     'rms': 0.6084325488272153,
                                                                                                                                     'rms_glo': 0.4708064170799139,
                                                                                                                                     'rmsc': 0.2529319285135182,
                                                                                                                                     'rmsc_glo': 0.5439696067637394,
                                                                                                                                     'stdv_pc': 1.6325756742422708,
                                                                                                                                     'stdv_pc_ratio_to_obs': 1.449612714918096,
                                                                                                                                     'tcor_cbf_vs_eof_pc': 0.9938414725018302},
                                                                                                                            'eof2': {'bias': -0.0005151063990248639,
                                                                                                                                     'bias_glo': -0.38786720798440133,
                                                                                                                                     'cor': 0.14292848201265146,
                                                                                                                                     'cor_glo': 0.15996213165322473,
                                                                                                                                     'frac': 0.16854310975433945,
                                                                                                                                     'mean': -3.281571082031668e-17,
                                                                                                                                     'mean_glo': -0.10505645121512758,
                                                                                                                                     'rms': 1.395250098924887,
                                                                                                                                     'rms_glo': 0.7137751285268773,
                                                                                                                                     'rmsc': 1.3092528276849584,
                                                                                                                                     'rmsc_glo': 1.2961773644192511,
                                                                                                                                     'stdv_pc': 1.003386940022244,
                                                                                                                                     'stdv_pc_ratio_to_obs': 0.8909372405748327,
                                                                                                                                     'tcor_cbf_vs_eof_pc': 0.09009564721084552},
                                                                                                                            'eof3': {'bias': 7.573921731513706e-05,
                                                                                                                                     'bias_glo': 0.0656865566508007,
                                                                                                                                     'cor': 0.07270972852035794,
                                                                                                                                     'cor_glo': -0.12425738531344402,
                                                                                                                                     'frac': 0.09304683605403855,
                                                                                                                                     'mean': -1.8098361725144354e-16,
                                                                                                                                     'mean_glo': -0.3484973087366588,
                                                                                                                                     'rms': 1.303900872051639,
                                                                                                                                     'rms_glo': 0.6750604008834014,
                                                                                                                                     'rmsc': 1.3618298677458562,
                                                                                                                                     'rmsc_glo': 1.4995048547094896,
                                                                                                                                     'stdv_pc': 0.7455276371777111,
                                                                                                                                     'stdv_pc_ratio_to_obs': 0.6619762619440313,
                                                                                                                                     'tcor_cbf_vs_eof_pc': -0.034097390320060816},
                                                                                                                            'period': '1900-2005'},
                                                                                                                    'SON': {'best_matching_model_eofs__cor': 2,
                                                                                                                            'best_matching_model_eofs__rms': 2,
                                                                                                                            'best_matching_model_eofs__tcor_cbf_vs_eof_pc': 1,
                                                                                                                            'cbf': {'bias': 0.00016368671981600624,
                                                                                                                                    'bias_glo': 0.0484739930052559,
                                                                                                                                    'cor': 0.9543715936852024,
                                                                                                                                    'cor_glo': 0.6719485863240694,
                                                                                                                                    'frac': 0.27693041559075954,
                                                                                                                                    'frac_cbf_regrid': 0.27901947717826797,
                                                                                                                                    'mean': -9.944154794035358e-17,
                                                                                                                                    'mean_glo': 0.387426614243509,
                                                                                                                                    'rms': 0.3137296049360524,
                                                                                                                                    'rms_glo': 0.360973203717459,
                                                                                                                                    'rmsc': 0.30208741845912773,
                                                                                                                                    'rmsc_glo': 0.8100017418703999,
                                                                                                                                    'stdv_pc': 0.995095969114558,
                                                                                                                                    'stdv_pc_ratio_to_obs': 1.0401948816446878},
                                                                                                                            'eof1': {'bias': -3.9348740850356794e-05,
                                                                                                                                     'bias_glo': 0.13776736530484562,
                                                                                                                                     'cor': 0.6772180164239631,
                                                                                                                                     'cor_glo': 0.5636251046433345,
                                                                                                                                     'frac': 0.3266971555068352,
                                                                                                                                     'mean': -1.3822375163709148e-16,
                                                                                                                                     'mean_glo': 0.476719987747365,
                                                                                                                                     'rms': 0.8543942961589787,
                                                                                                                                     'rms_glo': 0.43784825197374627,
                                                                                                                                     'rmsc': 0.8034699481963556,
                                                                                                                                     'rmsc_glo': 0.9342107824513346,
                                                                                                                                     'stdv_pc': 1.135329559404261,
                                                                                                                                     'stdv_pc_ratio_to_obs': 1.186784022171308,
                                                                                                                                     'tcor_cbf_vs_eof_pc': 0.7704908320754265},
                                                                                                                            'eof2': {'bias': 0.0003249455725633294,
                                                                                                                                     'bias_glo': -0.2810440682457155,
                                                                                                                                     'cor': 0.6918993724672213,
                                                                                                                                     'cor_glo': 0.37982213665224224,
                                                                                                                                     'frac': 0.20819105115877246,
                                                                                                                                     'mean': -2.386597150568486e-17,
                                                                                                                                     'mean_glo': 0.057908551987157365,
                                                                                                                                     'rms': 0.7320482915076758,
                                                                                                                                     'rms_glo': 0.5569858103475426,
                                                                                                                                     'rmsc': 0.7849848690316846,
                                                                                                                                     'rmsc_glo': 1.113712561897577,
                                                                                                                                     'stdv_pc': 0.9063173577684016,
                                                                                                                                     'stdv_pc_ratio_to_obs': 0.9473927198552416,
                                                                                                                                     'tcor_cbf_vs_eof_pc': 0.6288875929291644},
                                                                                                                            'eof3': {'bias': -3.114648807882942e-05,
                                                                                                                                     'bias_glo': -0.3970416684898328,
                                                                                                                                     'cor': 0.052788389503798244,
                                                                                                                                     'cor_glo': 0.21945421371436336,
                                                                                                                                     'frac': 0.09674535927672367,
                                                                                                                                     'mean': 1.690506314986011e-17,
                                                                                                                                     'mean_glo': -0.05808904712277281,
                                                                                                                                     'rms': 1.1104222817840665,
                                                                                                                                     'rms_glo': 0.6314877884514595,
                                                                                                                                     'rmsc': 1.3763804590290123,
                                                                                                                                     'rmsc_glo': 1.2494364765055392,
                                                                                                                                     'stdv_pc': 0.6178233807090908,
                                                                                                                                     'stdv_pc_ratio_to_obs': 0.6458238585227646,
                                                                                                                                     'tcor_cbf_vs_eof_pc': 0.032707431648033095},
                                                                                                                            'period': '1900-2005'},
                                                                                                                    'target_model_eofs': 1}}},
                                                                          'r4i1p1f1': {'defaultReference': {'PNA': {'DJF': {'best_matching_model_eofs__cor': 1,
                                                                                                                            'best_matching_model_eofs__rms': 1,
                                                                                                                            'best_matching_model_eofs__tcor_cbf_vs_eof_pc': 1,
                                                                                                                            'cbf': {'bias': 0.0007205917856967532,
                                                                                                                                    'bias_glo': -0.1445110732330187,
                                                                                                                                    'cor': 0.9525421320438605,
                                                                                                                                    'cor_glo': 0.839000541495342,
                                                                                                                                    'frac': 0.365132472978782,
                                                                                                                                    'frac_cbf_regrid': 0.3672747435694233,
                                                                                                                                    'mean': -4.1367683943187093e-16,
                                                                                                                                    'mean_glo': 0.7644202043723929,
                                                                                                                                    'rms': 0.5335809304387168,
                                                                                                                                    'rms_glo': 0.48761125716743,
                                                                                                                                    'rmsc': 0.3080839719570193,
                                                                                                                                    'rmsc_glo': 0.5674494890894407,
                                                                                                                                    'stdv_pc': 1.6116477492016659,
                                                                                                                                    'stdv_pc_ratio_to_obs': 0.9203709070041566},
                                                                                                                            'eof1': {'bias': 0.0010240597322659383,
                                                                                                                                     'bias_glo': -0.15990483884143702,
                                                                                                                                     'cor': 0.8701106239957683,
                                                                                                                                     'cor_glo': 0.7902796582093883,
                                                                                                                                     'frac': 0.38902175552987434,
                                                                                                                                     'mean': -3.182129534091315e-16,
                                                                                                                                     'mean_glo': 0.7490264379585689,
                                                                                                                                     'rms': 0.891227127751644,
                                                                                                                                     'rms_glo': 0.5755235895609025,
                                                                                                                                     'rmsc': 0.509684955602842,
                                                                                                                                     'rmsc_glo': 0.6476424022103132,
                                                                                                                                     'stdv_pc': 1.749568398417257,
                                                                                                                                     'stdv_pc_ratio_to_obs': 0.9991338706083529,
                                                                                                                                     'tcor_cbf_vs_eof_pc': 0.942742949491228},
                                                                                                                            'eof2': {'bias': -0.0005281297770325614,
                                                                                                                                     'bias_glo': -0.6495802403590201,
                                                                                                                                     'cor': 0.38824618707020003,
                                                                                                                                     'cor_glo': 0.21794812881308542,
                                                                                                                                     'frac': 0.19263875968078978,
                                                                                                                                     'mean': 1.0441362533737126e-16,
                                                                                                                                     'mean_glo': -0.25935104360127026,
                                                                                                                                     'rms': 1.7044416848991883,
                                                                                                                                     'rms_glo': 1.0750912639093186,
                                                                                                                                     'rmsc': 1.1061227672222382,
                                                                                                                                     'rmsc_glo': 1.2506413373280072,
                                                                                                                                     'stdv_pc': 1.2311637439697003,
                                                                                                                                     'stdv_pc_ratio_to_obs': 0.7030861999896219,
                                                                                                                                     'tcor_cbf_vs_eof_pc': -0.2958657406085448},
                                                                                                                            'eof3': {'bias': -0.0005774331803789988,
                                                                                                                                     'bias_glo': -1.188545932601433,
                                                                                                                                     'cor': 0.19880118844634526,
                                                                                                                                     'cor_glo': 0.13081810994899778,
                                                                                                                                     'frac': 0.13296730449894337,
                                                                                                                                     'mean': 1.1336336465200308e-16,
                                                                                                                                     'mean_glo': -0.279614646150354,
                                                                                                                                     'rms': 1.8431009596916763,
                                                                                                                                     'rms_glo': 1.4390030421995432,
                                                                                                                                     'rmsc': 1.2658584258021055,
                                                                                                                                     'rmsc_glo': 1.3184702345560722,
                                                                                                                                     'stdv_pc': 1.0228605134569018,
                                                                                                                                     'stdv_pc_ratio_to_obs': 0.5841295400780949,
                                                                                                                                     'tcor_cbf_vs_eof_pc': 0.1259456084467248},
                                                                                                                            'period': '1900-2005'},
                                                                                                                    'JJA': {'best_matching_model_eofs__cor': 1,
                                                                                                                            'best_matching_model_eofs__rms': 1,
                                                                                                                            'best_matching_model_eofs__tcor_cbf_vs_eof_pc': 1,
                                                                                                                            'cbf': {'bias': 0.00036289448702673464,
                                                                                                                                    'bias_glo': 0.038578075133327554,
                                                                                                                                    'cor': 0.9185218299384096,
                                                                                                                                    'cor_glo': 0.7456257700857348,
                                                                                                                                    'frac': 0.23806143603387597,
                                                                                                                                    'frac_cbf_regrid': 0.24032291442277204,
                                                                                                                                    'mean': 6.712304485973867e-18,
                                                                                                                                    'mean_glo': 0.08606714368420429,
                                                                                                                                    'rms': 0.2760887003640414,
                                                                                                                                    'rms_glo': 0.2799634219359145,
                                                                                                                                    'rmsc': 0.4036785136420166,
                                                                                                                                    'rmsc_glo': 0.7132660475313363,
                                                                                                                                    'stdv_pc': 0.6396988055064664,
                                                                                                                                    'stdv_pc_ratio_to_obs': 0.9694827759144692},
                                                                                                                            'eof1': {'bias': 0.00014668171508258515,
                                                                                                                                     'bias_glo': 0.09581203542128203,
                                                                                                                                     'cor': 0.8139096663069971,
                                                                                                                                     'cor_glo': 0.6968182220374991,
                                                                                                                                     'frac': 0.2535219205554203,
                                                                                                                                     'mean': 2.933525664240431e-17,
                                                                                                                                     'mean_glo': 0.1433011031390646,
                                                                                                                                     'rms': 0.4240843350465343,
                                                                                                                                     'rms_glo': 0.3219986790558641,
                                                                                                                                     'rmsc': 0.6100661450909096,
                                                                                                                                     'rmsc_glo': 0.7786934806911183,
                                                                                                                                     'stdv_pc': 0.7200508232312187,
                                                                                                                                     'stdv_pc_ratio_to_obs': 1.0912586750150561,
                                                                                                                                     'tcor_cbf_vs_eof_pc': 0.9140244496896227},
                                                                                                                            'eof2': {'bias': 0.0006469307536945991,
                                                                                                                                     'bias_glo': -0.08025351103393644,
                                                                                                                                     'cor': 0.2742279747258632,
                                                                                                                                     'cor_glo': 0.25911586400909614,
                                                                                                                                     'frac': 0.2159557316215525,
                                                                                                                                     'mean': 1.566204380060569e-17,
                                                                                                                                     'mean_glo': 0.032764438650572165,
                                                                                                                                     'rms': 0.7963023482686727,
                                                                                                                                     'rms_glo': 0.41925097318822496,
                                                                                                                                     'rmsc': 1.20480043716445,
                                                                                                                                     'rmsc_glo': 1.2172790721063818,
                                                                                                                                     'stdv_pc': 0.6645654524680026,
                                                                                                                                     'stdv_pc_ratio_to_obs': 1.0071689271413242,
                                                                                                                                     'tcor_cbf_vs_eof_pc': -0.2838068769984457},
                                                                                                                            'eof3': {'bias': 0.00016029134900107244,
                                                                                                                                     'bias_glo': -0.13436107123435037,
                                                                                                                                     'cor': 0.32993524331477586,
                                                                                                                                     'cor_glo': 0.42321980750290816,
                                                                                                                                     'frac': 0.12389345996111922,
                                                                                                                                     'mean': -3.9279411436439665e-17,
                                                                                                                                     'mean_glo': -0.08687199883203935,
                                                                                                                                     'rms': 0.6844759139498292,
                                                                                                                                     'rms_glo': 0.38870101457518874,
                                                                                                                                     'rmsc': 1.15763963987775,
                                                                                                                                     'rmsc_glo': 1.0740392628830573,
                                                                                                                                     'stdv_pc': 0.5033610234459148,
                                                                                                                                     'stdv_pc_ratio_to_obs': 0.7628587674337322,
                                                                                                                                     'tcor_cbf_vs_eof_pc': 0.25863744285964957},
                                                                                                                            'period': '1900-2005'},
                                                                                                                    'MAM': {'best_matching_model_eofs__cor': 1,
                                                                                                                            'best_matching_model_eofs__rms': 1,
                                                                                                                            'best_matching_model_eofs__tcor_cbf_vs_eof_pc': 1,
                                                                                                                            'cbf': {'bias': 0.0005396795785577292,
                                                                                                                                    'bias_glo': 0.2695593597509784,
                                                                                                                                    'cor': 0.971351203542328,
                                                                                                                                    'cor_glo': 0.854945739915012,
                                                                                                                                    'frac': 0.4631253979665978,
                                                                                                                                    'frac_cbf_regrid': 0.4660374435457816,
                                                                                                                                    'mean': 3.564979493661676e-16,
                                                                                                                                    'mean_glo': 0.5523701098858964,
                                                                                                                                    'rms': 0.5957807270662088,
                                                                                                                                    'rms_glo': 0.4937307176868593,
                                                                                                                                    'rmsc': 0.2393691639822367,
                                                                                                                                    'rmsc_glo': 0.538617228946273,
                                                                                                                                    'stdv_pc': 1.5796402562404155,
                                                                                                                                    'stdv_pc_ratio_to_obs': 1.4026097758104743},
                                                                                                                            'eof1': {'bias': 0.0006249220881172879,
                                                                                                                                     'bias_glo': 0.2637970030351547,
                                                                                                                                     'cor': 0.9445115803877576,
                                                                                                                                     'cor_glo': 0.8354127449289619,
                                                                                                                                     'frac': 0.4735056416553138,
                                                                                                                                     'mean': 3.281571082031668e-16,
                                                                                                                                     'mean_glo': 0.5466077520316235,
                                                                                                                                     'rms': 0.688627106183279,
                                                                                                                                     'rms_glo': 0.5096415579891219,
                                                                                                                                     'rmsc': 0.3331318642891171,
                                                                                                                                     'rmsc_glo': 0.5737373139323382,
                                                                                                                                     'stdv_pc': 1.647870968731283,
                                                                                                                                     'stdv_pc_ratio_to_obs': 1.4631938638470603,
                                                                                                                                     'tcor_cbf_vs_eof_pc': 0.9833197080255338},
                                                                                                                            'eof2': {'bias': -0.00041426088303822046,
                                                                                                                                     'bias_glo': -0.26045614596271105,
                                                                                                                                     'cor': 0.2905838430222388,
                                                                                                                                     'cor_glo': 0.33790310344785546,
                                                                                                                                     'frac': 0.16403055544808287,
                                                                                                                                     'mean': 4.151684626509762e-17,
                                                                                                                                     'mean_glo': 0.022354610984092645,
                                                                                                                                     'rms': 1.253228289335915,
                                                                                                                                     'rms_glo': 0.5902017958803816,
                                                                                                                                     'rmsc': 1.1911474793496633,
                                                                                                                                     'rmsc_glo': 1.1507361946653365,
                                                                                                                                     'stdv_pc': 0.969891161095053,
                                                                                                                                     'stdv_pc_ratio_to_obs': 0.8611953377674925,
                                                                                                                                     'tcor_cbf_vs_eof_pc': 0.17789268543460154},
                                                                                                                            'eof3': {'bias': 0.00023331047218557637,
                                                                                                                                     'bias_glo': 0.06094967356918113,
                                                                                                                                     'cor': 0.048978678357931196,
                                                                                                                                     'cor_glo': -0.08437637968100516,
                                                                                                                                     'frac': 0.09556424436174646,
                                                                                                                                     'mean': -1.3126284328126673e-16,
                                                                                                                                     'mean_glo': -0.3437604263781419,
                                                                                                                                     'rms': 1.3161953311332901,
                                                                                                                                     'rms_glo': 0.6727319376896616,
                                                                                                                                     'rmsc': 1.379145586889962,
                                                                                                                                     'rmsc_glo': 1.4726685701775544,
                                                                                                                                     'stdv_pc': 0.7403010047208098,
                                                                                                                                     'stdv_pc_ratio_to_obs': 0.6573353788381108,
                                                                                                                                     'tcor_cbf_vs_eof_pc': -0.02290035910022811},
                                                                                                                            'period': '1900-2005'},
                                                                                                                    'SON': {'best_matching_model_eofs__cor': 1,
                                                                                                                            'best_matching_model_eofs__rms': 1,
                                                                                                                            'best_matching_model_eofs__tcor_cbf_vs_eof_pc': 1,
                                                                                                                            'cbf': {'bias': 0.00015743301390917544,
                                                                                                                                    'bias_glo': -0.009035573680558184,
                                                                                                                                    'cor': 0.980996198712814,
                                                                                                                                    'cor_glo': 0.7619034212462739,
                                                                                                                                    'frac': 0.30314602165326976,
                                                                                                                                    'frac_cbf_regrid': 0.30540346506878485,
                                                                                                                                    'mean': -1.0043596341975712e-16,
                                                                                                                                    'mean_glo': 0.329917046966772,
                                                                                                                                    'rms': 0.2600059777838634,
                                                                                                                                    'rms_glo': 0.32780807361170655,
                                                                                                                                    'rmsc': 0.19495537815120065,
                                                                                                                                    'rmsc_glo': 0.6900675077163089,
                                                                                                                                    'stdv_pc': 1.0992416526528463,
                                                                                                                                    'stdv_pc_ratio_to_obs': 1.1490605693012355},
                                                                                                                            'eof1': {'bias': 0.0001065525957063708,
                                                                                                                                     'bias_glo': 0.007069622565200273,
                                                                                                                                     'cor': 0.9540467758342662,
                                                                                                                                     'cor_glo': 0.7619631584237659,
                                                                                                                                     'frac': 0.3084519535823402,
                                                                                                                                     'mean': -1.2281031170633667e-16,
                                                                                                                                     'mean_glo': 0.3460222433669568,
                                                                                                                                     'rms': 0.35983356506849473,
                                                                                                                                     'rms_glo': 0.3282579800917463,
                                                                                                                                     'rmsc': 0.30316076456622415,
                                                                                                                                     'rmsc_glo': 0.6899809264832308,
                                                                                                                                     'stdv_pc': 1.1328152119088544,
                                                                                                                                     'stdv_pc_ratio_to_obs': 1.184155721508282,
                                                                                                                                     'tcor_cbf_vs_eof_pc': 0.9808945606060137},
                                                                                                                            'eof2': {'bias': 0.00038346290940087627,
                                                                                                                                     'bias_glo': -0.4576120969008278,
                                                                                                                                     'cor': 0.1923414571681929,
                                                                                                                                     'cor_glo': -0.0360144741897746,
                                                                                                                                     'frac': 0.20626932201940645,
                                                                                                                                     'mean': 6.36425906818263e-17,
                                                                                                                                     'mean_glo': -0.1186594761731015,
                                                                                                                                     'rms': 1.1954969676995,
                                                                                                                                     'rms_glo': 0.7826216734633058,
                                                                                                                                     'rmsc': 1.2709512303434674,
                                                                                                                                     'rmsc_glo': 1.439454407009601,
                                                                                                                                     'stdv_pc': 0.9263660496407892,
                                                                                                                                     'stdv_pc_ratio_to_obs': 0.9683500418790516,
                                                                                                                                     'tcor_cbf_vs_eof_pc': 0.16171442485631707},
                                                                                                                            'eof3': {'bias': -0.00023411843010540296,
                                                                                                                                     'bias_glo': -0.457509803547567,
                                                                                                                                     'cor': 0.023535348179413197,
                                                                                                                                     'cor_glo': -0.12414867770841043,
                                                                                                                                     'frac': 0.1072438624755597,
                                                                                                                                     'mean': -6.960908355824751e-18,
                                                                                                                                     'mean_glo': 0.11855718066658022,
                                                                                                                                     'rms': 1.1527385505059826,
                                                                                                                                     'rms_glo': 0.7362358101488292,
                                                                                                                                     'rmsc': 1.397472491513702,
                                                                                                                                     'rmsc_glo': 1.4994323141577701,
                                                                                                                                     'stdv_pc': 0.6679616567190378,
                                                                                                                                     'stdv_pc_ratio_to_obs': 0.6982344598102385,
                                                                                                                                     'tcor_cbf_vs_eof_pc': -0.01426062283931826},
                                                                                                                            'period': '1900-2005'},
                                                                                                                    'target_model_eofs': 1}}},
                                                                          'r5i1p1f1': {'defaultReference': {'PNA': {'DJF': {'best_matching_model_eofs__cor': 1,
                                                                                                                            'best_matching_model_eofs__rms': 1,
                                                                                                                            'best_matching_model_eofs__tcor_cbf_vs_eof_pc': 1,
                                                                                                                            'cbf': {'bias': 0.0009854020800322812,
                                                                                                                                    'bias_glo': -0.017074869049971464,
                                                                                                                                    'cor': 0.9376381374452334,
                                                                                                                                    'cor_glo': 0.8403020206609755,
                                                                                                                                    'frac': 0.3903871488854998,
                                                                                                                                    'frac_cbf_regrid': 0.3925648191453091,
                                                                                                                                    'mean': -4.3754281093755576e-16,
                                                                                                                                    'mean_glo': 0.891856409009705,
                                                                                                                                    'rms': 0.6275553978868587,
                                                                                                                                    'rms_glo': 0.4757698733812014,
                                                                                                                                    'rmsc': 0.35316246107808313,
                                                                                                                                    'rmsc_glo': 0.5651512683442937,
                                                                                                                                    'stdv_pc': 1.6826463759676382,
                                                                                                                                    'stdv_pc_ratio_to_obs': 0.960916411159774},
                                                                                                                            'eof1': {'bias': 0.0013336845740943564,
                                                                                                                                     'bias_glo': -0.020114004801052077,
                                                                                                                                     'cor': 0.8379064901685686,
                                                                                                                                     'cor_glo': 0.7839914586232437,
                                                                                                                                     'frac': 0.4234227625555971,
                                                                                                                                     'mean': -4.216321632670992e-16,
                                                                                                                                     'mean_glo': 0.8888172721349654,
                                                                                                                                     'rms': 1.036615397925299,
                                                                                                                                     'rms_glo': 0.5608313496728,
                                                                                                                                     'rmsc': 0.5693742429069009,
                                                                                                                                     'rmsc_glo': 0.657280067153574,
                                                                                                                                     'stdv_pc': 1.8720639964341308,
                                                                                                                                     'stdv_pc_ratio_to_obs': 1.0690879810562801,
                                                                                                                                     'tcor_cbf_vs_eof_pc': 0.9308090843556196},
                                                                                                                            'eof2': {'bias': -0.00047933534725778747,
                                                                                                                                     'bias_glo': -0.6665910009318691,
                                                                                                                                     'cor': 0.439017343909378,
                                                                                                                                     'cor_glo': 0.36071297546692316,
                                                                                                                                     'frac': 0.19199422086219725,
                                                                                                                                     'mean': 9.745271698154651e-17,
                                                                                                                                     'mean_glo': -0.24234028369495944,
                                                                                                                                     'rms': 1.6478015762066556,
                                                                                                                                     'rms_glo': 0.9875020197999844,
                                                                                                                                     'rmsc': 1.0592286297965512,
                                                                                                                                     'rmsc_glo': 1.1307404756502697,
                                                                                                                                     'stdv_pc': 1.2606010616148033,
                                                                                                                                     'stdv_pc_ratio_to_obs': 0.7198971009785096,
                                                                                                                                     'tcor_cbf_vs_eof_pc': -0.3280710160858757},
                                                                                                                            'eof3': {'bias': -0.0006008672365744965,
                                                                                                                                     'bias_glo': -1.0488802812743452,
                                                                                                                                     'cor': 0.24338585906453095,
                                                                                                                                     'cor_glo': 0.23340824247995698,
                                                                                                                                     'frac': 0.12330718274816944,
                                                                                                                                     'mean': 5.767609780540508e-17,
                                                                                                                                     'mean_glo': -0.13994899619468806,
                                                                                                                                     'rms': 1.7953552848812093,
                                                                                                                                     'rms_glo': 1.3082016002856456,
                                                                                                                                     'rmsc': 1.2301334612167016,
                                                                                                                                     'rmsc_glo': 1.2382178810693065,
                                                                                                                                     'stdv_pc': 1.0102474851670369,
                                                                                                                                     'stdv_pc_ratio_to_obs': 0.5769265614539121,
                                                                                                                                     'tcor_cbf_vs_eof_pc': 0.14612518291407284},
                                                                                                                            'period': '1900-2005'},
                                                                                                                    'JJA': {'best_matching_model_eofs__cor': 1,
                                                                                                                            'best_matching_model_eofs__rms': 2,
                                                                                                                            'best_matching_model_eofs__tcor_cbf_vs_eof_pc': 1,
                                                                                                                            'cbf': {'bias': 0.00018604758348611495,
                                                                                                                                    'bias_glo': -0.01391438806391921,
                                                                                                                                    'cor': 0.9014438759538023,
                                                                                                                                    'cor_glo': 0.4773521938251018,
                                                                                                                                    'frac': 0.23611189216241943,
                                                                                                                                    'frac_cbf_regrid': 0.23827843436835153,
                                                                                                                                    'mean': 2.0385517327772485e-17,
                                                                                                                                    'mean_glo': 0.03357468266799911,
                                                                                                                                    'rms': 0.3122577841077058,
                                                                                                                                    'rms_glo': 0.37869020236014983,
                                                                                                                                    'rmsc': 0.4439732530760855,
                                                                                                                                    'rmsc_glo': 1.022396976046895,
                                                                                                                                    'stdv_pc': 0.6499029833803065,
                                                                                                                                    'stdv_pc_ratio_to_obs': 0.9849475143287032},
                                                                                                                            'eof1': {'bias': -0.00012808866818803038,
                                                                                                                                     'bias_glo': 0.13431208864638305,
                                                                                                                                     'cor': 0.6144146564911723,
                                                                                                                                     'cor_glo': 0.43978612817809926,
                                                                                                                                     'frac': 0.2877367377070291,
                                                                                                                                     'mean': 6.165375972301923e-17,
                                                                                                                                     'mean_glo': 0.1818011586313061,
                                                                                                                                     'rms': 0.650337448828706,
                                                                                                                                     'rms_glo': 0.4163404237280543,
                                                                                                                                     'rmsc': 0.8781632438800757,
                                                                                                                                     'rmsc_glo': 1.0585025820049212,
                                                                                                                                     'stdv_pc': 0.7974148218419476,
                                                                                                                                     'stdv_pc_ratio_to_obs': 1.2085061412966145,
                                                                                                                                     'tcor_cbf_vs_eof_pc': 0.7517548426841003},
                                                                                                                            'eof2': {'bias': 0.00045318912696628753,
                                                                                                                                     'bias_glo': -0.13078596348555524,
                                                                                                                                     'cor': 0.6040168959077831,
                                                                                                                                     'cor_glo': 0.31630499492466124,
                                                                                                                                     'frac': 0.18778008461986054,
                                                                                                                                     'mean': -6.550711970570792e-17,
                                                                                                                                     'mean_glo': -0.08329689147825924,
                                                                                                                                     'rms': 0.5796065026744714,
                                                                                                                                     'rms_glo': 0.4276033801875088,
                                                                                                                                     'rmsc': 0.8899248288377454,
                                                                                                                                     'rmsc_glo': 1.16935453306869,
                                                                                                                                     'stdv_pc': 0.6441861916372448,
                                                                                                                                     'stdv_pc_ratio_to_obs': 0.9762835445343554,
                                                                                                                                     'tcor_cbf_vs_eof_pc': 0.59693381399618},
                                                                                                                            'eof3': {'bias': -5.2707210172325577e-05,
                                                                                                                                     'bias_glo': -0.17340464022275917,
                                                                                                                                     'cor': 0.1565892446645626,
                                                                                                                                     'cor_glo': 0.006794476648892141,
                                                                                                                                     'frac': 0.1278827200124786,
                                                                                                                                     'mean': -5.668168232600154e-17,
                                                                                                                                     'mean_glo': -0.1259155669670406,
                                                                                                                                     'rms': 0.7788629433933231,
                                                                                                                                     'rms_glo': 0.5100139756843933,
                                                                                                                                     'rmsc': 1.2987769117154622,
                                                                                                                                     'rmsc_glo': 1.4094009907652536,
                                                                                                                                     'stdv_pc': 0.5316093106292759,
                                                                                                                                     'stdv_pc_ratio_to_obs': 0.8056698961049379,
                                                                                                                                     'tcor_cbf_vs_eof_pc': 0.12766211800114954},
                                                                                                                            'period': '1900-2005'},
                                                                                                                    'MAM': {'best_matching_model_eofs__cor': 1,
                                                                                                                            'best_matching_model_eofs__rms': 1,
                                                                                                                            'best_matching_model_eofs__tcor_cbf_vs_eof_pc': 1,
                                                                                                                            'cbf': {'bias': 0.0005575766826305511,
                                                                                                                                    'bias_glo': 0.2069519432600438,
                                                                                                                                    'cor': 0.9501359931259348,
                                                                                                                                    'cor_glo': 0.8639094114156735,
                                                                                                                                    'frac': 0.4382705284400284,
                                                                                                                                    'frac_cbf_regrid': 0.4410877706470686,
                                                                                                                                    'mean': 2.595424401243229e-16,
                                                                                                                                    'mean_glo': 0.48976269343188467,
                                                                                                                                    'rms': 0.6358227806455335,
                                                                                                                                    'rms_glo': 0.44256761520266097,
                                                                                                                                    'rmsc': 0.3157974313153444,
                                                                                                                                    'rmsc_glo': 0.5217098680957017,
                                                                                                                                    'stdv_pc': 1.5203016866178245,
                                                                                                                                    'stdv_pc_ratio_to_obs': 1.34992128708245},
                                                                                                                            'eof1': {'bias': 0.00062365634200476,
                                                                                                                                     'bias_glo': 0.17192319833024006,
                                                                                                                                     'cor': 0.8953922819939096,
                                                                                                                                     'cor_glo': 0.8313597043509635,
                                                                                                                                     'frac': 0.4594006492080996,
                                                                                                                                     'mean': 1.998775113601107e-16,
                                                                                                                                     'mean_glo': 0.45473394832674086,
                                                                                                                                     'rms': 0.8051747307500564,
                                                                                                                                     'rms_glo': 0.45273944093396845,
                                                                                                                                     'rmsc': 0.45740074831259114,
                                                                                                                                     'rmsc_glo': 0.5807586302913328,
                                                                                                                                     'stdv_pc': 1.6417115716748776,
                                                                                                                                     'stdv_pc_ratio_to_obs': 1.4577247511865776,
                                                                                                                                     'tcor_cbf_vs_eof_pc': 0.9649144540739212},
                                                                                                                            'eof2': {'bias': -0.00022446582822214947,
                                                                                                                                     'bias_glo': -0.17256704009655133,
                                                                                                                                     'cor': 0.40846745229559506,
                                                                                                                                     'cor_glo': 0.48829677579195496,
                                                                                                                                     'frac': 0.1567486349718683,
                                                                                                                                     'mean': 2.2622952156430442e-17,
                                                                                                                                     'mean_glo': 0.11024371484525795,
                                                                                                                                     'rms': 1.141326441557289,
                                                                                                                                     'rms_glo': 0.5071275131135623,
                                                                                                                                     'rmsc': 1.0876879533091708,
                                                                                                                                     'rmsc_glo': 1.011635524454275,
                                                                                                                                     'stdv_pc': 0.9589654064791157,
                                                                                                                                     'stdv_pc_ratio_to_obs': 0.851494033833334,
                                                                                                                                     'tcor_cbf_vs_eof_pc': 0.25682431311851195},
                                                                                                                            'eof3': {'bias': -0.00021488137778528842,
                                                                                                                                     'bias_glo': -0.2229045866867303,
                                                                                                                                     'cor': 0.0397861702317295,
                                                                                                                                     'cor_glo': -0.3029359693613706,
                                                                                                                                     'frac': 0.11048230753233552,
                                                                                                                                     'mean': 9.944154794035359e-18,
                                                                                                                                     'mean_glo': -0.059906167306117336,
                                                                                                                                     'rms': 1.3567051572225415,
                                                                                                                                     'rms_glo': 0.7978235158164442,
                                                                                                                                     'rmsc': 1.3857949396621334,
                                                                                                                                     'rmsc_glo': 1.6142713414452332,
                                                                                                                                     'stdv_pc': 0.8050955482177808,
                                                                                                                                     'stdv_pc_ratio_to_obs': 0.7148683897682885,
                                                                                                                                     'tcor_cbf_vs_eof_pc': -0.02100479318292718},
                                                                                                                            'period': '1900-2005'},
                                                                                                                    'SON': {'best_matching_model_eofs__cor': 1,
                                                                                                                            'best_matching_model_eofs__rms': 1,
                                                                                                                            'best_matching_model_eofs__tcor_cbf_vs_eof_pc': 1,
                                                                                                                            'cbf': {'bias': 0.00012630343310821132,
                                                                                                                                    'bias_glo': -0.017959312222206147,
                                                                                                                                    'cor': 0.9735551716412663,
                                                                                                                                    'cor_glo': 0.6704663800231369,
                                                                                                                                    'frac': 0.2734717231500107,
                                                                                                                                    'frac_cbf_regrid': 0.27550728113944595,
                                                                                                                                    'mean': -7.408395321556342e-17,
                                                                                                                                    'mean_glo': 0.3209933078579783,
                                                                                                                                    'rms': 0.23616042254639005,
                                                                                                                                    'rms_glo': 0.35520310431108976,
                                                                                                                                    'rmsc': 0.2299775103546858,
                                                                                                                                    'rmsc_glo': 0.8118295507748042,
                                                                                                                                    'stdv_pc': 0.9938417965746689,
                                                                                                                                    'stdv_pc_ratio_to_obs': 1.0388838685392354},
                                                                                                                            'eof1': {'bias': 3.8265290941275446e-05,
                                                                                                                                     'bias_glo': 0.09353243374268,
                                                                                                                                     'cor': 0.8626123602252584,
                                                                                                                                     'cor_glo': 0.5886184227330912,
                                                                                                                                     'frac': 0.2890946070308296,
                                                                                                                                     'mean': -1.3325167424007381e-16,
                                                                                                                                     'mean_glo': 0.4324850549467128,
                                                                                                                                     'rms': 0.5333457850697171,
                                                                                                                                     'rms_glo': 0.41044424520882195,
                                                                                                                                     'rmsc': 0.5241901179309848,
                                                                                                                                     'rmsc_glo': 0.90706291623948,
                                                                                                                                     'stdv_pc': 1.0520946596648868,
                                                                                                                                     'stdv_pc_ratio_to_obs': 1.099776819478943,
                                                                                                                                     'tcor_cbf_vs_eof_pc': 0.9108472017092744},
                                                                                                                            'eof2': {'bias': 0.00026199717731424145,
                                                                                                                                     'bias_glo': -0.47987310017736495,
                                                                                                                                     'cor': 0.449202698765516,
                                                                                                                                     'cor_glo': 0.2481245415741601,
                                                                                                                                     'frac': 0.20514516549665224,
                                                                                                                                     'mean': 2.883804890270254e-17,
                                                                                                                                     'mean_glo': -0.14092047997470167,
                                                                                                                                     'rms': 0.9681618404194458,
                                                                                                                                     'rms_glo': 0.7120440709666622,
                                                                                                                                     'rmsc': 1.0495687592021605,
                                                                                                                                     'rmsc_glo': 1.2262752314014127,
                                                                                                                                     'stdv_pc': 0.8862688075532544,
                                                                                                                                     'stdv_pc_ratio_to_obs': 0.9264355459087439,
                                                                                                                                     'tcor_cbf_vs_eof_pc': 0.39979002549439924},
                                                                                                                            'eof3': {'bias': -0.00011549505482387106,
                                                                                                                                     'bias_glo': -0.47704543951120226,
                                                                                                                                     'cor': 0.07532439110962147,
                                                                                                                                     'cor_glo': 0.02425611071952837,
                                                                                                                                     'frac': 0.14254378932888373,
                                                                                                                                     'mean': 2.883804890270254e-17,
                                                                                                                                     'mean_glo': -0.1380928166524691,
                                                                                                                                     'rms': 1.1627186403581364,
                                                                                                                                     'rms_glo': 0.7222999674919598,
                                                                                                                                     'rmsc': 1.3599085038755643,
                                                                                                                                     'rmsc_glo': 1.3969566266279523,
                                                                                                                                     'stdv_pc': 0.7387695231777617,
                                                                                                                                     'stdv_pc_ratio_to_obs': 0.7722514215471882,
                                                                                                                                     'tcor_cbf_vs_eof_pc': 0.055846246986894034},
                                                                                                                            'period': '1900-2005'},
                                                                                                                    'target_model_eofs': 1}}}}},
                                               'provenance': {'commandLine': '../variability_modes_driver.py '
                                                                             '-p '
                                                                             '../../../sample_setups/pcmdi_parameter_files/variability_modes/myParam_PNA_cmip6.py '
                                                                             '--case_id '
                                                                             'v20220825 '
                                                                             '--mip '
                                                                             'cmip6 '
                                                                             '--exp '
                                                                             'historical '
                                                                             '--modnames '
                                                                             'UKESM1-1-LL '
                                                                             '--realization '
                                                                             'r1i1p1f2 '
                                                                             '--parallel '
                                                                             'True '
                                                                             '--no_nc_out_obs '
                                                                             '--no_plot_obs',
                                                              'conda': {'Platform': 'linux-64',
                                                                        'PythonVersion': '3.7.3.final.0',
                                                                        'Version': '4.14.0',
                                                                        'buildVersion': '3.18.8'},
                                                              'date': '2022-08-25 '
                                                                      '23:34:50',
                                                              'history': '',
                                                              'openGL': {'GLX': {'client': {},
                                                                                 'server': {}}},
                                                              'osAccess': False,
                                                              'packages': {'PMP': '2.0',
                                                                           'PMPObs': 'See '
                                                                                     "'References' "
                                                                                     'key '
                                                                                     'below, '
                                                                                     'for '
                                                                                     'detailed '
                                                                                     'obs '
                                                                                     'provenance '
                                                                                     'information.',
                                                                           'blas': '0.3.21',
                                                                           'cdat_info': '8.2.1',
                                                                           'cdms': '3.1.5',
                                                                           'cdp': '1.7.0',
                                                                           'cdtime': '3.1.4',
                                                                           'cdutil': '8.2.1',
                                                                           'clapack': None,
                                                                           'esmf': '8.2.0',
                                                                           'esmpy': '8.2.0',
                                                                           'genutil': '8.2.1',
                                                                           'lapack': '3.9.0',
                                                                           'matplotlib': None,
                                                                           'mesalib': None,
                                                                           'numpy': '1.23.2',
                                                                           'python': '3.10.6',
                                                                           'scipy': '1.9.0',
                                                                           'uvcdat': None,
                                                                           'vcs': None,
                                                                           'vtk': None},
                                                              'platform': {'Name': 'gates.llnl.gov',
                                                                           'OS': 'Linux',
                                                                           'Version': '3.10.0-1160.71.1.el7.x86_64'},
                                                              'script': '#!/usr/bin/env '
                                                                        'python\n'
                                                                        '\n'
                                                                        '"""\n'
                                                                        '# '
                                                                        'Modes '
                                                                        'of '
                                                                        'Variability '
                                                                        'Metrics\n'
                                                                        '- '
                                                                        'Calculate '
                                                                        'metrics '
                                                                        'for '
                                                                        'modes '
                                                                        'of '
                                                                        'varibility '
                                                                        'from '
                                                                        'archive '
                                                                        'of '
                                                                        'CMIP '
                                                                        'models\n'
                                                                        '- '
                                                                        'Author: '
                                                                        'Jiwoo '
                                                                        'Lee '
                                                                        '(lee1043@llnl.gov), '
                                                                        'PCMDI, '
                                                                        'LLNL\n'
                                                                        '\n'
                                                                        '## '
                                                                        'EOF1 '
                                                                        'based '
                                                                        'variability '
                                                                        'modes\n'
                                                                        '- '
                                                                        'NAM: '
                                                                        'Northern '
                                                                        'Annular '
                                                                        'Mode\n'
                                                                        '- '
                                                                        'NAO: '
                                                                        'Northern '
                                                                        'Atlantic '
                                                                        'Oscillation\n'
                                                                        '- '
                                                                        'SAM: '
                                                                        'Southern '
                                                                        'Annular '
                                                                        'Mode\n'
                                                                        '- '
                                                                        'PNA: '
                                                                        'Pacific '
                                                                        'North '
                                                                        'American '
                                                                        'Pattern\n'
                                                                        '- '
                                                                        'PDO: '
                                                                        'Pacific '
                                                                        'Decadal '
                                                                        'Oscillation\n'
                                                                        '\n'
                                                                        '## '
                                                                        'EOF2 '
                                                                        'based '
                                                                        'variability '
                                                                        'modes\n'
                                                                        '- '
                                                                        'NPO: '
                                                                        'North '
                                                                        'Pacific '
                                                                        'Oscillation '
                                                                        '(2nd '
                                                                        'EOFs '
                                                                        'of '
                                                                        'PNA '
                                                                        'domain)\n'
                                                                        '- '
                                                                        'NPGO: '
                                                                        'North '
                                                                        'Pacific '
                                                                        'Gyre '
                                                                        'Oscillation '
                                                                        '(2nd '
                                                                        'EOFs '
                                                                        'of '
                                                                        'PDO '
                                                                        'domain)\n'
                                                                        '\n'
                                                                        '## '
                                                                        'Reference:\n'
                                                                        'Lee, '
                                                                        'J., '
                                                                        'K. '
                                                                        'Sperber, '
                                                                        'P. '
                                                                        'Gleckler, '
                                                                        'C. '
                                                                        'Bonfils, '
                                                                        'and '
                                                                        'K. '
                                                                        'Taylor, '
                                                                        '2019:\n'
                                                                        'Quantifying '
                                                                        'the '
                                                                        'Agreement '
                                                                        'Between '
                                                                        'Observed '
                                                                        'and '
                                                                        'Simulated '
                                                                        'Extratropical '
                                                                        'Modes '
                                                                        'of\n'
                                                                        'Interannual '
                                                                        'Variability. '
                                                                        'Climate '
                                                                        'Dynamics.\n'
                                                                        'https://doi.org/10.1007/s00382-018-4355-4\n'
                                                                        '\n'
                                                                        '## '
                                                                        'Auspices:\n'
                                                                        'This '
                                                                        'work '
                                                                        'was '
                                                                        'performed '
                                                                        'under '
                                                                        'the '
                                                                        'auspices '
                                                                        'of '
                                                                        'the '
                                                                        'U.S. '
                                                                        'Department '
                                                                        'of\n'
                                                                        'Energy '
                                                                        'by '
                                                                        'Lawrence '
                                                                        'Livermore '
                                                                        'National '
                                                                        'Laboratory '
                                                                        'under '
                                                                        'Contract\n'
                                                                        'DE-AC52-07NA27344. '
                                                                        'Lawrence '
                                                                        'Livermore '
                                                                        'National '
                                                                        'Laboratory '
                                                                        'is '
                                                                        'operated '
                                                                        'by\n'
                                                                        'Lawrence '
                                                                        'Livermore '
                                                                        'National '
                                                                        'Security, '
                                                                        'LLC, '
                                                                        'for '
                                                                        'the '
                                                                        'U.S. '
                                                                        'Department '
                                                                        'of '
                                                                        'Energy,\n'
                                                                        'National '
                                                                        'Nuclear '
                                                                        'Security '
                                                                        'Administration '
                                                                        'under '
                                                                        'Contract '
                                                                        'DE-AC52-07NA27344.\n'
                                                                        '\n'
                                                                        '## '
                                                                        'Disclaimer:\n'
                                                                        'This '
                                                                        'document '
                                                                        'was '
                                                                        'prepared '
                                                                        'as an '
                                                                        'account '
                                                                        'of '
                                                                        'work '
                                                                        'sponsored '
                                                                        'by '
                                                                        'an\n'
                                                                        'agency '
                                                                        'of '
                                                                        'the '
                                                                        'United '
                                                                        'States '
                                                                        'government. '
                                                                        'Neither '
                                                                        'the '
                                                                        'United '
                                                                        'States '
                                                                        'government\n'
                                                                        'nor '
                                                                        'Lawrence '
                                                                        'Livermore '
                                                                        'National '
                                                                        'Security, '
                                                                        'LLC, '
                                                                        'nor '
                                                                        'any '
                                                                        'of '
                                                                        'their '
                                                                        'employees\n'
                                                                        'makes '
                                                                        'any '
                                                                        'warranty, '
                                                                        'expressed '
                                                                        'or '
                                                                        'implied, '
                                                                        'or '
                                                                        'assumes '
                                                                        'any '
                                                                        'legal '
                                                                        'liability '
                                                                        'or\n'
                                                                        'responsibility '
                                                                        'for '
                                                                        'the '
                                                                        'accuracy, '
                                                                        'completeness, '
                                                                        'or '
                                                                        'usefulness '
                                                                        'of '
                                                                        'any\n'
                                                                        'information, '
                                                                        'apparatus, '
                                                                        'product, '
                                                                        'or '
                                                                        'process '
                                                                        'disclosed, '
                                                                        'or '
                                                                        'represents '
                                                                        'that '
                                                                        'its\n'
                                                                        'use '
                                                                        'would '
                                                                        'not '
                                                                        'infringe '
                                                                        'privately '
                                                                        'owned '
                                                                        'rights. '
                                                                        'Reference '
                                                                        'herein '
                                                                        'to '
                                                                        'any '
                                                                        'specific\n'
                                                                        'commercial '
                                                                        'product, '
                                                                        'process, '
                                                                        'or '
                                                                        'service '
                                                                        'by '
                                                                        'trade '
                                                                        'name, '
                                                                        'trademark, '
                                                                        'manufacturer,\n'
                                                                        'or '
                                                                        'otherwise '
                                                                        'does '
                                                                        'not '
                                                                        'necessarily '
                                                                        'constitute '
                                                                        'or '
                                                                        'imply '
                                                                        'its '
                                                                        'endorsement,\n'
                                                                        'recommendation, '
                                                                        'or '
                                                                        'favoring '
                                                                        'by '
                                                                        'the '
                                                                        'United '
                                                                        'States '
                                                                        'government '
                                                                        'or '
                                                                        'Lawrence\n'
                                                                        'Livermore '
                                                                        'National '
                                                                        'Security, '
                                                                        'LLC. '
                                                                        'The '
                                                                        'views '
                                                                        'and '
                                                                        'opinions '
                                                                        'of '
                                                                        'authors '
                                                                        'expressed\n'
                                                                        'herein '
                                                                        'do '
                                                                        'not '
                                                                        'necessarily '
                                                                        'state '
                                                                        'or '
                                                                        'reflect '
                                                                        'those '
                                                                        'of '
                                                                        'the '
                                                                        'United '
                                                                        'States\n'
                                                                        'government '
                                                                        'or '
                                                                        'Lawrence '
                                                                        'Livermore '
                                                                        'National '
                                                                        'Security, '
                                                                        'LLC, '
                                                                        'and '
                                                                        'shall '
                                                                        'not '
                                                                        'be '
                                                                        'used\n'
                                                                        'for '
                                                                        'advertising '
                                                                        'or '
                                                                        'product '
                                                                        'endorsement '
                                                                        'purposes.\n'
                                                                        '"""\n'
                                                                        '\n'
                                                                        'from '
                                                                        '__future__ '
                                                                        'import '
                                                                        'print_function\n'
                                                                        '\n'
                                                                        'import '
                                                                        'glob\n'
                                                                        'import '
                                                                        'json\n'
                                                                        'import '
                                                                        'os\n'
                                                                        'import '
                                                                        'sys\n'
                                                                        'from '
                                                                        'argparse '
                                                                        'import '
                                                                        'RawTextHelpFormatter\n'
                                                                        'from '
                                                                        'shutil '
                                                                        'import '
                                                                        'copyfile\n'
                                                                        '\n'
                                                                        'import '
                                                                        'cdtime\n'
                                                                        'import '
                                                                        'cdutil\n'
                                                                        'import '
                                                                        'MV2\n'
                                                                        'from '
                                                                        'genutil '
                                                                        'import '
                                                                        'StringConstructor\n'
                                                                        '\n'
                                                                        'import '
                                                                        'pcmdi_metrics\n'
                                                                        'from '
                                                                        'pcmdi_metrics '
                                                                        'import '
                                                                        'resources\n'
                                                                        'from '
                                                                        'pcmdi_metrics.variability_mode.lib '
                                                                        'import '
                                                                        '(\n'
                                                                        '    '
                                                                        'AddParserArgument,\n'
                                                                        '    '
                                                                        'VariabilityModeCheck,\n'
                                                                        '    '
                                                                        'YearCheck,\n'
                                                                        '    '
                                                                        'adjust_timeseries,\n'
                                                                        '    '
                                                                        'calc_stats_save_dict,\n'
                                                                        '    '
                                                                        'calcSTD,\n'
                                                                        '    '
                                                                        'calcTCOR,\n'
                                                                        '    '
                                                                        'debug_print,\n'
                                                                        '    '
                                                                        'eof_analysis_get_variance_mode,\n'
                                                                        '    '
                                                                        'gain_pcs_fraction,\n'
                                                                        '    '
                                                                        'gain_pseudo_pcs,\n'
                                                                        '    '
                                                                        'get_domain_range,\n'
                                                                        '    '
                                                                        'linear_regression_on_globe_for_teleconnection,\n'
                                                                        '    '
                                                                        'plot_map,\n'
                                                                        '    '
                                                                        'read_data_in,\n'
                                                                        '    '
                                                                        'sort_human,\n'
                                                                        '    '
                                                                        'tree,\n'
                                                                        '    '
                                                                        'variability_metrics_to_json,\n'
                                                                        '    '
                                                                        'write_nc_output,\n'
                                                                        ')\n'
                                                                        '\n'
                                                                        '# To '
                                                                        'avoid '
                                                                        'below '
                                                                        'error\n'
                                                                        '# '
                                                                        'OpenBLAS '
                                                                        'blas_thread_init: '
                                                                        'pthread_create '
                                                                        'failed '
                                                                        'for '
                                                                        'thread '
                                                                        'XX of '
                                                                        '96: '
                                                                        'Resource '
                                                                        'temporarily '
                                                                        'unavailable\n'
                                                                        'os.environ["OPENBLAS_NUM_THREADS"] '
                                                                        '= '
                                                                        '"1"\n'
                                                                        '\n'
                                                                        '# '
                                                                        'Must '
                                                                        'be '
                                                                        'done '
                                                                        'before '
                                                                        'any '
                                                                        'CDAT '
                                                                        'library '
                                                                        'is '
                                                                        'called.\n'
                                                                        '# '
                                                                        'https://github.com/CDAT/cdat/issues/2213\n'
                                                                        'if '
                                                                        '"UVCDAT_ANONYMOUS_LOG" '
                                                                        'not '
                                                                        'in '
                                                                        'os.environ:\n'
                                                                        '    '
                                                                        'os.environ["UVCDAT_ANONYMOUS_LOG"] '
                                                                        '= '
                                                                        '"no"\n'
                                                                        '\n'
                                                                        'regions_specs '
                                                                        '= {}\n'
                                                                        'egg_pth '
                                                                        '= '
                                                                        'resources.resource_path()\n'
                                                                        'exec(\n'
                                                                        '    '
                                                                        'compile(\n'
                                                                        '        '
                                                                        'open(os.path.join(egg_pth, '
                                                                        '"default_regions.py")).read(),\n'
                                                                        '        '
                                                                        'os.path.join(egg_pth, '
                                                                        '"default_regions.py"),\n'
                                                                        '        '
                                                                        '"exec",\n'
                                                                        '    '
                                                                        ')\n'
                                                                        ')\n'
                                                                        '\n'
                                                                        '# '
                                                                        '=================================================\n'
                                                                        '# '
                                                                        'Collect '
                                                                        'user '
                                                                        'defined '
                                                                        'options\n'
                                                                        '# '
                                                                        '-------------------------------------------------\n'
                                                                        'P = '
                                                                        'pcmdi_metrics.driver.pmp_parser.PMPParser(\n'
                                                                        '    '
                                                                        'description="Runs '
                                                                        'PCMDI '
                                                                        'Modes '
                                                                        'of '
                                                                        'Variability '
                                                                        'Computations",\n'
                                                                        '    '
                                                                        'formatter_class=RawTextHelpFormatter,\n'
                                                                        ')\n'
                                                                        'P = '
                                                                        'AddParserArgument(P)\n'
                                                                        'param '
                                                                        '= '
                                                                        'P.get_parameter()\n'
                                                                        '\n'
                                                                        '# '
                                                                        'Pre-defined '
                                                                        'options\n'
                                                                        'mip = '
                                                                        'param.mip\n'
                                                                        'exp = '
                                                                        'param.exp\n'
                                                                        'fq = '
                                                                        'param.frequency\n'
                                                                        'realm '
                                                                        '= '
                                                                        'param.realm\n'
                                                                        'print("mip:", '
                                                                        'mip)\n'
                                                                        'print("exp:", '
                                                                        'exp)\n'
                                                                        'print("fq:", '
                                                                        'fq)\n'
                                                                        'print("realm:", '
                                                                        'realm)\n'
                                                                        '\n'
                                                                        '# '
                                                                        'On/off '
                                                                        'switches\n'
                                                                        'obs_compare '
                                                                        '= '
                                                                        'True  '
                                                                        '# '
                                                                        'Statistics '
                                                                        'against '
                                                                        'observation\n'
                                                                        'CBF = '
                                                                        'param.CBF  '
                                                                        '# '
                                                                        'Conduct '
                                                                        'CBF '
                                                                        'analysis\n'
                                                                        'ConvEOF '
                                                                        '= '
                                                                        'param.ConvEOF  '
                                                                        '# '
                                                                        'Conduct '
                                                                        'conventional '
                                                                        'EOF '
                                                                        'analysis\n'
                                                                        '\n'
                                                                        'EofScaling '
                                                                        '= '
                                                                        'param.EofScaling  '
                                                                        '# If '
                                                                        'True, '
                                                                        'consider '
                                                                        'EOF '
                                                                        'with '
                                                                        'unit '
                                                                        'variance\n'
                                                                        'RmDomainMean '
                                                                        '= '
                                                                        'param.RemoveDomainMean  '
                                                                        '# If '
                                                                        'True, '
                                                                        'remove '
                                                                        'Domain '
                                                                        'Mean '
                                                                        'of '
                                                                        'each '
                                                                        'time '
                                                                        'step\n'
                                                                        'LandMask '
                                                                        '= '
                                                                        'param.landmask  '
                                                                        '# If '
                                                                        'True, '
                                                                        'maskout '
                                                                        'land '
                                                                        'region '
                                                                        'thus '
                                                                        'consider '
                                                                        'only '
                                                                        'over '
                                                                        'ocean\n'
                                                                        '\n'
                                                                        'print("EofScaling:", '
                                                                        'EofScaling)\n'
                                                                        'print("RmDomainMean:", '
                                                                        'RmDomainMean)\n'
                                                                        'print("LandMask:", '
                                                                        'LandMask)\n'
                                                                        '\n'
                                                                        'nc_out_obs '
                                                                        '= '
                                                                        'param.nc_out_obs  '
                                                                        '# '
                                                                        'Record '
                                                                        'NetCDF '
                                                                        'output\n'
                                                                        'plot_obs '
                                                                        '= '
                                                                        'param.plot_obs  '
                                                                        '# '
                                                                        'Generate '
                                                                        'plots\n'
                                                                        'nc_out_model '
                                                                        '= '
                                                                        'param.nc_out  '
                                                                        '# '
                                                                        'Record '
                                                                        'NetCDF '
                                                                        'output\n'
                                                                        'plot_model '
                                                                        '= '
                                                                        'param.plot  '
                                                                        '# '
                                                                        'Generate '
                                                                        'plots\n'
                                                                        'update_json '
                                                                        '= '
                                                                        'param.update_json\n'
                                                                        '\n'
                                                                        'print("nc_out_obs, '
                                                                        'plot_obs:", '
                                                                        'nc_out_obs, '
                                                                        'plot_obs)\n'
                                                                        'print("nc_out_model, '
                                                                        'plot_model:", '
                                                                        'nc_out_model, '
                                                                        'plot_model)\n'
                                                                        '\n'
                                                                        'cmec '
                                                                        '= '
                                                                        'False\n'
                                                                        'if '
                                                                        'hasattr(param, '
                                                                        '"cmec"):\n'
                                                                        '    '
                                                                        'cmec '
                                                                        '= '
                                                                        'param.cmec  '
                                                                        '# '
                                                                        'Generate '
                                                                        'CMEC '
                                                                        'compliant '
                                                                        'json\n'
                                                                        'print("CMEC:" '
                                                                        '+ '
                                                                        'str(cmec))\n'
                                                                        '\n'
                                                                        '# '
                                                                        'Check '
                                                                        'given '
                                                                        'mode '
                                                                        'of '
                                                                        'variability\n'
                                                                        'mode '
                                                                        '= '
                                                                        'VariabilityModeCheck(param.variability_mode, '
                                                                        'P)\n'
                                                                        'print("mode:", '
                                                                        'mode)\n'
                                                                        '\n'
                                                                        '# '
                                                                        'Variables\n'
                                                                        'var = '
                                                                        'param.varModel\n'
                                                                        '\n'
                                                                        '# '
                                                                        'Check '
                                                                        'dependency '
                                                                        'for '
                                                                        'given '
                                                                        'season '
                                                                        'option\n'
                                                                        'seasons '
                                                                        '= '
                                                                        'param.seasons\n'
                                                                        'print("seasons:", '
                                                                        'seasons)\n'
                                                                        '\n'
                                                                        '# '
                                                                        'Observation '
                                                                        'information\n'
                                                                        'obs_name '
                                                                        '= '
                                                                        'param.reference_data_name\n'
                                                                        'obs_path '
                                                                        '= '
                                                                        'param.reference_data_path\n'
                                                                        'obs_var '
                                                                        '= '
                                                                        'param.varOBS\n'
                                                                        '\n'
                                                                        '# '
                                                                        'Path '
                                                                        'to '
                                                                        'model '
                                                                        'data '
                                                                        'as '
                                                                        'string '
                                                                        'template\n'
                                                                        'modpath '
                                                                        '= '
                                                                        'StringConstructor(param.modpath)\n'
                                                                        'if '
                                                                        'LandMask:\n'
                                                                        '    '
                                                                        'modpath_lf '
                                                                        '= '
                                                                        'StringConstructor(param.modpath_lf)\n'
                                                                        '\n'
                                                                        '# '
                                                                        'Check '
                                                                        'given '
                                                                        'model '
                                                                        'option\n'
                                                                        'models '
                                                                        '= '
                                                                        'param.modnames\n'
                                                                        '\n'
                                                                        '# '
                                                                        'Include '
                                                                        'all '
                                                                        'models '
                                                                        'if '
                                                                        'conditioned\n'
                                                                        'if '
                                                                        '("all" '
                                                                        'in '
                                                                        '[m.lower() '
                                                                        'for m '
                                                                        'in '
                                                                        'models]) '
                                                                        'or '
                                                                        '(models '
                                                                        '== '
                                                                        '"all"):\n'
                                                                        '    '
                                                                        'model_index_path '
                                                                        '= '
                                                                        'param.modpath.split("/")[-1].split(".").index("%(model)")\n'
                                                                        '    '
                                                                        'models '
                                                                        '= [\n'
                                                                        '        '
                                                                        'p.split("/")[-1].split(".")[model_index_path]\n'
                                                                        '        '
                                                                        'for p '
                                                                        'in '
                                                                        'glob.glob(\n'
                                                                        '            '
                                                                        'modpath(mip=mip, '
                                                                        'exp=exp, '
                                                                        'model="*", '
                                                                        'realization="*", '
                                                                        'variable=var)\n'
                                                                        '        '
                                                                        ')\n'
                                                                        '    '
                                                                        ']\n'
                                                                        '    # '
                                                                        'remove '
                                                                        'duplicates\n'
                                                                        '    '
                                                                        'models '
                                                                        '= '
                                                                        'sorted(list(dict.fromkeys(models)), '
                                                                        'key=lambda '
                                                                        's: '
                                                                        's.lower())\n'
                                                                        '\n'
                                                                        'print("models:", '
                                                                        'models)\n'
                                                                        'print("number '
                                                                        'of '
                                                                        'models:", '
                                                                        'len(models))\n'
                                                                        '\n'
                                                                        '# '
                                                                        'Realizations\n'
                                                                        'realization '
                                                                        '= '
                                                                        'param.realization\n'
                                                                        'print("realization: '
                                                                        '", '
                                                                        'realization)\n'
                                                                        '\n'
                                                                        '# EOF '
                                                                        'ordinal '
                                                                        'number\n'
                                                                        'eofn_obs '
                                                                        '= '
                                                                        'int(param.eofn_obs)\n'
                                                                        'eofn_mod '
                                                                        '= '
                                                                        'int(param.eofn_mod)\n'
                                                                        '\n'
                                                                        '# '
                                                                        'case '
                                                                        'id\n'
                                                                        'case_id '
                                                                        '= '
                                                                        'param.case_id\n'
                                                                        '\n'
                                                                        '# '
                                                                        'Output\n'
                                                                        'outdir_template '
                                                                        '= '
                                                                        'param.process_templated_argument("results_dir")\n'
                                                                        'outdir '
                                                                        '= '
                                                                        'StringConstructor(\n'
                                                                        '    '
                                                                        'str(\n'
                                                                        '        '
                                                                        'outdir_template(\n'
                                                                        '            '
                                                                        'output_type="%(output_type)",\n'
                                                                        '            '
                                                                        'mip=mip,\n'
                                                                        '            '
                                                                        'exp=exp,\n'
                                                                        '            '
                                                                        'variability_mode=mode,\n'
                                                                        '            '
                                                                        'reference_data_name=obs_name,\n'
                                                                        '            '
                                                                        'case_id=case_id,\n'
                                                                        '        '
                                                                        ')\n'
                                                                        '    '
                                                                        ')\n'
                                                                        ')\n'
                                                                        '\n'
                                                                        '# '
                                                                        'Debug\n'
                                                                        'debug '
                                                                        '= '
                                                                        'param.debug\n'
                                                                        '\n'
                                                                        '# '
                                                                        'Year\n'
                                                                        'msyear '
                                                                        '= '
                                                                        'param.msyear\n'
                                                                        'meyear '
                                                                        '= '
                                                                        'param.meyear\n'
                                                                        'YearCheck(msyear, '
                                                                        'meyear, '
                                                                        'P)\n'
                                                                        '\n'
                                                                        'osyear '
                                                                        '= '
                                                                        'param.osyear\n'
                                                                        'oeyear '
                                                                        '= '
                                                                        'param.oeyear\n'
                                                                        'YearCheck(osyear, '
                                                                        'oeyear, '
                                                                        'P)\n'
                                                                        '\n'
                                                                        '# '
                                                                        'Units '
                                                                        'adjustment\n'
                                                                        'ObsUnitsAdjust '
                                                                        '= '
                                                                        'param.ObsUnitsAdjust\n'
                                                                        'ModUnitsAdjust '
                                                                        '= '
                                                                        'param.ModUnitsAdjust\n'
                                                                        '\n'
                                                                        '# '
                                                                        'lon1g '
                                                                        'and '
                                                                        'lon2g '
                                                                        'is '
                                                                        'for '
                                                                        'global '
                                                                        'map '
                                                                        'plotting\n'
                                                                        'if '
                                                                        'mode '
                                                                        'in '
                                                                        '["PDO", '
                                                                        '"NPGO"]:\n'
                                                                        '    '
                                                                        'lon1g '
                                                                        '= 0\n'
                                                                        '    '
                                                                        'lon2g '
                                                                        '= '
                                                                        '360\n'
                                                                        'else:\n'
                                                                        '    '
                                                                        'lon1g '
                                                                        '= '
                                                                        '-180\n'
                                                                        '    '
                                                                        'lon2g '
                                                                        '= '
                                                                        '180\n'
                                                                        '\n'
                                                                        '# '
                                                                        'parallel\n'
                                                                        'parallel '
                                                                        '= '
                                                                        'param.parallel\n'
                                                                        'print("parallel:", '
                                                                        'parallel)\n'
                                                                        '\n'
                                                                        '# '
                                                                        '=================================================\n'
                                                                        '# '
                                                                        'Time '
                                                                        'period '
                                                                        'adjustment\n'
                                                                        '# '
                                                                        '-------------------------------------------------\n'
                                                                        'start_time '
                                                                        '= '
                                                                        'cdtime.comptime(msyear, '
                                                                        '1, 1, '
                                                                        '0, '
                                                                        '0)\n'
                                                                        'end_time '
                                                                        '= '
                                                                        'cdtime.comptime(meyear, '
                                                                        '12, '
                                                                        '31, '
                                                                        '23, '
                                                                        '59)\n'
                                                                        '\n'
                                                                        'try:\n'
                                                                        '    # '
                                                                        'osyear '
                                                                        'and '
                                                                        'oeyear '
                                                                        'variables '
                                                                        'were '
                                                                        'defined.\n'
                                                                        '    '
                                                                        'start_time_obs '
                                                                        '= '
                                                                        'cdtime.comptime(osyear, '
                                                                        '1, 1, '
                                                                        '0, '
                                                                        '0)\n'
                                                                        '    '
                                                                        'end_time_obs '
                                                                        '= '
                                                                        'cdtime.comptime(oeyear, '
                                                                        '12, '
                                                                        '31, '
                                                                        '23, '
                                                                        '59)\n'
                                                                        'except '
                                                                        'NameError:\n'
                                                                        '    # '
                                                                        'osyear, '
                                                                        'oeyear '
                                                                        'variables '
                                                                        'were '
                                                                        'NOT '
                                                                        'defined\n'
                                                                        '    '
                                                                        'start_time_obs '
                                                                        '= '
                                                                        'start_time\n'
                                                                        '    '
                                                                        'end_time_obs '
                                                                        '= '
                                                                        'end_time\n'
                                                                        '\n'
                                                                        '# '
                                                                        '=================================================\n'
                                                                        '# '
                                                                        'Region '
                                                                        'control\n'
                                                                        '# '
                                                                        '-------------------------------------------------\n'
                                                                        'region_subdomain '
                                                                        '= '
                                                                        'get_domain_range(mode, '
                                                                        'regions_specs)\n'
                                                                        '\n'
                                                                        '# '
                                                                        '=================================================\n'
                                                                        '# '
                                                                        'Create '
                                                                        'output '
                                                                        'directories\n'
                                                                        '# '
                                                                        '-------------------------------------------------\n'
                                                                        'for '
                                                                        'output_type '
                                                                        'in '
                                                                        '["graphics", '
                                                                        '"diagnostic_results", '
                                                                        '"metrics_results"]:\n'
                                                                        '    '
                                                                        'if '
                                                                        'not '
                                                                        'os.path.exists(outdir(output_type=output_type)):\n'
                                                                        '        '
                                                                        'os.makedirs(outdir(output_type=output_type))\n'
                                                                        '    '
                                                                        'print(outdir(output_type=output_type))\n'
                                                                        '\n'
                                                                        '# '
                                                                        '=================================================\n'
                                                                        '# Set '
                                                                        'dictionary '
                                                                        'for '
                                                                        '.json '
                                                                        'record\n'
                                                                        '# '
                                                                        '-------------------------------------------------\n'
                                                                        'result_dict '
                                                                        '= '
                                                                        'tree()\n'
                                                                        '\n'
                                                                        '# Set '
                                                                        'metrics '
                                                                        'output '
                                                                        'JSON '
                                                                        'file\n'
                                                                        'json_filename '
                                                                        '= '
                                                                        '"_".join(\n'
                                                                        '    '
                                                                        '[\n'
                                                                        '        '
                                                                        '"var",\n'
                                                                        '        '
                                                                        '"mode",\n'
                                                                        '        '
                                                                        'mode,\n'
                                                                        '        '
                                                                        '"EOF" '
                                                                        '+ '
                                                                        'str(eofn_mod),\n'
                                                                        '        '
                                                                        '"stat",\n'
                                                                        '        '
                                                                        'mip,\n'
                                                                        '        '
                                                                        'exp,\n'
                                                                        '        '
                                                                        'fq,\n'
                                                                        '        '
                                                                        'realm,\n'
                                                                        '        '
                                                                        'str(msyear) '
                                                                        '+ "-" '
                                                                        '+ '
                                                                        'str(meyear),\n'
                                                                        '    '
                                                                        ']\n'
                                                                        ')\n'
                                                                        '\n'
                                                                        'json_file '
                                                                        '= '
                                                                        'os.path.join(outdir(output_type="metrics_results"), '
                                                                        'json_filename '
                                                                        '+ '
                                                                        '".json")\n'
                                                                        'json_file_org '
                                                                        '= '
                                                                        'os.path.join(\n'
                                                                        '    '
                                                                        'outdir(output_type="metrics_results"),\n'
                                                                        '    '
                                                                        '"_".join([json_filename, '
                                                                        '"org", '
                                                                        'str(os.getpid())]) '
                                                                        '+ '
                                                                        '".json",\n'
                                                                        ')\n'
                                                                        '\n'
                                                                        '# '
                                                                        'Archive '
                                                                        'if '
                                                                        'there '
                                                                        'is '
                                                                        'pre-existing '
                                                                        'JSON: '
                                                                        'preventing '
                                                                        'overwriting\n'
                                                                        'if '
                                                                        'os.path.isfile(json_file) '
                                                                        'and '
                                                                        'os.stat(json_file).st_size '
                                                                        '> 0:\n'
                                                                        '    '
                                                                        'copyfile(json_file, '
                                                                        'json_file_org)\n'
                                                                        '    '
                                                                        'if '
                                                                        'update_json:\n'
                                                                        '        '
                                                                        'fj = '
                                                                        'open(json_file)\n'
                                                                        '        '
                                                                        'result_dict '
                                                                        '= '
                                                                        'json.loads(fj.read())\n'
                                                                        '        '
                                                                        'fj.close()\n'
                                                                        '\n'
                                                                        'if '
                                                                        '"REF" '
                                                                        'not '
                                                                        'in '
                                                                        'list(result_dict.keys()):\n'
                                                                        '    '
                                                                        'result_dict["REF"] '
                                                                        '= {}\n'
                                                                        'if '
                                                                        '"RESULTS" '
                                                                        'not '
                                                                        'in '
                                                                        'list(result_dict.keys()):\n'
                                                                        '    '
                                                                        'result_dict["RESULTS"] '
                                                                        '= {}\n'
                                                                        '\n'
                                                                        '# '
                                                                        '=================================================\n'
                                                                        '# '
                                                                        'Observation\n'
                                                                        '# '
                                                                        '-------------------------------------------------\n'
                                                                        'if '
                                                                        'obs_compare:\n'
                                                                        '\n'
                                                                        '    '
                                                                        'obs_lf_path '
                                                                        '= '
                                                                        'None\n'
                                                                        '\n'
                                                                        '    # '
                                                                        'read '
                                                                        'data '
                                                                        'in\n'
                                                                        '    '
                                                                        'obs_timeseries, '
                                                                        'osyear, '
                                                                        'oeyear '
                                                                        '= '
                                                                        'read_data_in(\n'
                                                                        '        '
                                                                        'obs_name,\n'
                                                                        '        '
                                                                        'obs_path,\n'
                                                                        '        '
                                                                        'obs_lf_path,\n'
                                                                        '        '
                                                                        'obs_var,\n'
                                                                        '        '
                                                                        'var,\n'
                                                                        '        '
                                                                        'start_time_obs,\n'
                                                                        '        '
                                                                        'end_time_obs,\n'
                                                                        '        '
                                                                        'ObsUnitsAdjust,\n'
                                                                        '        '
                                                                        'LandMask,\n'
                                                                        '        '
                                                                        'debug=debug,\n'
                                                                        '    '
                                                                        ')\n'
                                                                        '\n'
                                                                        '    # '
                                                                        'Save '
                                                                        'global '
                                                                        'grid '
                                                                        'information '
                                                                        'for '
                                                                        'regrid '
                                                                        'below\n'
                                                                        '    '
                                                                        'ref_grid_global '
                                                                        '= '
                                                                        'obs_timeseries.getGrid()\n'
                                                                        '\n'
                                                                        '    # '
                                                                        'Declare '
                                                                        'dictionary '
                                                                        'variables '
                                                                        'to '
                                                                        'keep '
                                                                        'information '
                                                                        'from '
                                                                        'observation\n'
                                                                        '    '
                                                                        'eof_obs '
                                                                        '= {}\n'
                                                                        '    '
                                                                        'pc_obs '
                                                                        '= {}\n'
                                                                        '    '
                                                                        'frac_obs '
                                                                        '= {}\n'
                                                                        '    '
                                                                        'solver_obs '
                                                                        '= {}\n'
                                                                        '    '
                                                                        'reverse_sign_obs '
                                                                        '= {}\n'
                                                                        '    '
                                                                        'eof_lr_obs '
                                                                        '= {}\n'
                                                                        '    '
                                                                        'stdv_pc_obs '
                                                                        '= {}\n'
                                                                        '\n'
                                                                        '    # '
                                                                        'Dictonary '
                                                                        'for '
                                                                        'json '
                                                                        'archive\n'
                                                                        '    '
                                                                        'if '
                                                                        '"obs" '
                                                                        'not '
                                                                        'in '
                                                                        'list(result_dict["REF"].keys()):\n'
                                                                        '        '
                                                                        'result_dict["REF"]["obs"] '
                                                                        '= {}\n'
                                                                        '    '
                                                                        'if '
                                                                        '"defaultReference" '
                                                                        'not '
                                                                        'in '
                                                                        'list(result_dict["REF"]["obs"].keys()):\n'
                                                                        '        '
                                                                        'result_dict["REF"]["obs"]["defaultReference"] '
                                                                        '= {}\n'
                                                                        '    '
                                                                        'if '
                                                                        '"source" '
                                                                        'not '
                                                                        'in '
                                                                        'list(result_dict["REF"]["obs"]["defaultReference"].keys()):\n'
                                                                        '        '
                                                                        'result_dict["REF"]["obs"]["defaultReference"]["source"] '
                                                                        '= {}\n'
                                                                        '    '
                                                                        'if '
                                                                        'mode '
                                                                        'not '
                                                                        'in '
                                                                        'list(result_dict["REF"]["obs"]["defaultReference"].keys()):\n'
                                                                        '        '
                                                                        'result_dict["REF"]["obs"]["defaultReference"][mode] '
                                                                        '= {}\n'
                                                                        '\n'
                                                                        '    '
                                                                        'result_dict["REF"]["obs"]["defaultReference"]["source"] '
                                                                        '= '
                                                                        'obs_path\n'
                                                                        '    '
                                                                        'result_dict["REF"]["obs"]["defaultReference"]["reference_eofs"] '
                                                                        '= '
                                                                        'eofn_obs\n'
                                                                        '    '
                                                                        'result_dict["REF"]["obs"]["defaultReference"]["period"] '
                                                                        '= (\n'
                                                                        '        '
                                                                        'str(osyear) '
                                                                        '+ "-" '
                                                                        '+ '
                                                                        'str(oeyear)\n'
                                                                        '    '
                                                                        ')\n'
                                                                        '\n'
                                                                        '    # '
                                                                        '-------------------------------------------------\n'
                                                                        '    # '
                                                                        'Season '
                                                                        'loop\n'
                                                                        '    # '
                                                                        '- - - '
                                                                        '- - - '
                                                                        '- - - '
                                                                        '- - - '
                                                                        '- - - '
                                                                        '- - - '
                                                                        '- - - '
                                                                        '- - - '
                                                                        '-\n'
                                                                        '    '
                                                                        'debug_print("obs '
                                                                        'season '
                                                                        'loop '
                                                                        'starts", '
                                                                        'debug)\n'
                                                                        '\n'
                                                                        '    '
                                                                        'for '
                                                                        'season '
                                                                        'in '
                                                                        'seasons:\n'
                                                                        '        '
                                                                        'debug_print("season: '
                                                                        '" + '
                                                                        'season, '
                                                                        'debug)\n'
                                                                        '\n'
                                                                        '        '
                                                                        'if '
                                                                        'season '
                                                                        'not '
                                                                        'in '
                                                                        'list(\n'
                                                                        '            '
                                                                        'result_dict["REF"]["obs"]["defaultReference"][mode].keys()\n'
                                                                        '        '
                                                                        '):\n'
                                                                        '            '
                                                                        'result_dict["REF"]["obs"]["defaultReference"][mode][season] '
                                                                        '= {}\n'
                                                                        '\n'
                                                                        '        '
                                                                        'dict_head_obs '
                                                                        '= '
                                                                        'result_dict["REF"]["obs"]["defaultReference"][mode][season]\n'
                                                                        '\n'
                                                                        '        '
                                                                        '# '
                                                                        'Time '
                                                                        'series '
                                                                        'adjustment '
                                                                        '(remove '
                                                                        'annual '
                                                                        'cycle, '
                                                                        'seasonal '
                                                                        'mean '
                                                                        '(if '
                                                                        'needed),\n'
                                                                        '        '
                                                                        '# and '
                                                                        'subtracting '
                                                                        'domain '
                                                                        '(or '
                                                                        'global) '
                                                                        'mean '
                                                                        'of '
                                                                        'each '
                                                                        'time '
                                                                        'step)\n'
                                                                        '        '
                                                                        'debug_print("time '
                                                                        'series '
                                                                        'adjustment", '
                                                                        'debug)\n'
                                                                        '        '
                                                                        'obs_timeseries_season '
                                                                        '= '
                                                                        'adjust_timeseries(\n'
                                                                        '            '
                                                                        'obs_timeseries, '
                                                                        'mode, '
                                                                        'season, '
                                                                        'region_subdomain, '
                                                                        'RmDomainMean\n'
                                                                        '        '
                                                                        ')\n'
                                                                        '\n'
                                                                        '        '
                                                                        '# '
                                                                        'Extract '
                                                                        'subdomain\n'
                                                                        '        '
                                                                        'obs_timeseries_season_subdomain '
                                                                        '= '
                                                                        'obs_timeseries_season(region_subdomain)\n'
                                                                        '\n'
                                                                        '        '
                                                                        '# EOF '
                                                                        'analysis\n'
                                                                        '        '
                                                                        'debug_print("EOF '
                                                                        'analysis", '
                                                                        'debug)\n'
                                                                        '        '
                                                                        '(\n'
                                                                        '            '
                                                                        'eof_obs[season],\n'
                                                                        '            '
                                                                        'pc_obs[season],\n'
                                                                        '            '
                                                                        'frac_obs[season],\n'
                                                                        '            '
                                                                        'reverse_sign_obs[season],\n'
                                                                        '            '
                                                                        'solver_obs[season],\n'
                                                                        '        '
                                                                        ') = '
                                                                        'eof_analysis_get_variance_mode(\n'
                                                                        '            '
                                                                        'mode,\n'
                                                                        '            '
                                                                        'obs_timeseries_season_subdomain,\n'
                                                                        '            '
                                                                        'eofn=eofn_obs,\n'
                                                                        '            '
                                                                        'debug=debug,\n'
                                                                        '            '
                                                                        'EofScaling=EofScaling,\n'
                                                                        '        '
                                                                        ')\n'
                                                                        '\n'
                                                                        '        '
                                                                        '# '
                                                                        'Calculate '
                                                                        'stdv '
                                                                        'of pc '
                                                                        'time '
                                                                        'series\n'
                                                                        '        '
                                                                        'debug_print("calculate '
                                                                        'stdv '
                                                                        'of pc '
                                                                        'time '
                                                                        'series", '
                                                                        'debug)\n'
                                                                        '        '
                                                                        'stdv_pc_obs[season] '
                                                                        '= '
                                                                        'calcSTD(pc_obs[season])\n'
                                                                        '\n'
                                                                        '        '
                                                                        '# '
                                                                        'Linear '
                                                                        'regression '
                                                                        'to '
                                                                        'have '
                                                                        'extended '
                                                                        'global '
                                                                        'map; '
                                                                        'teleconnection '
                                                                        'purpose\n'
                                                                        '        '
                                                                        '(\n'
                                                                        '            '
                                                                        'eof_lr_obs[season],\n'
                                                                        '            '
                                                                        'slope_obs,\n'
                                                                        '            '
                                                                        'intercept_obs,\n'
                                                                        '        '
                                                                        ') = '
                                                                        'linear_regression_on_globe_for_teleconnection(\n'
                                                                        '            '
                                                                        'pc_obs[season],\n'
                                                                        '            '
                                                                        'obs_timeseries_season,\n'
                                                                        '            '
                                                                        'stdv_pc_obs[season],\n'
                                                                        '            '
                                                                        'RmDomainMean,\n'
                                                                        '            '
                                                                        'EofScaling,\n'
                                                                        '            '
                                                                        'debug=debug,\n'
                                                                        '        '
                                                                        ')\n'
                                                                        '\n'
                                                                        '        '
                                                                        '# - - '
                                                                        '- - - '
                                                                        '- - - '
                                                                        '- - - '
                                                                        '- - - '
                                                                        '- - - '
                                                                        '- - - '
                                                                        '- - - '
                                                                        '- -\n'
                                                                        '        '
                                                                        '# '
                                                                        'Record '
                                                                        'results\n'
                                                                        '        '
                                                                        '# . . '
                                                                        '. . . '
                                                                        '. . . '
                                                                        '. . . '
                                                                        '. . . '
                                                                        '. . . '
                                                                        '. . . '
                                                                        '. . . '
                                                                        '. .\n'
                                                                        '        '
                                                                        'debug_print("record '
                                                                        'results", '
                                                                        'debug)\n'
                                                                        '\n'
                                                                        '        '
                                                                        '# Set '
                                                                        'output '
                                                                        'file '
                                                                        'name '
                                                                        'for '
                                                                        'NetCDF '
                                                                        'and '
                                                                        'plot\n'
                                                                        '        '
                                                                        'output_filename_obs '
                                                                        '= '
                                                                        '"_".join(\n'
                                                                        '            '
                                                                        '[\n'
                                                                        '                '
                                                                        'mode,\n'
                                                                        '                '
                                                                        'var,\n'
                                                                        '                '
                                                                        '"EOF" '
                                                                        '+ '
                                                                        'str(eofn_obs),\n'
                                                                        '                '
                                                                        'season,\n'
                                                                        '                '
                                                                        '"obs",\n'
                                                                        '                '
                                                                        'str(osyear) '
                                                                        '+ "-" '
                                                                        '+ '
                                                                        'str(oeyear),\n'
                                                                        '            '
                                                                        ']\n'
                                                                        '        '
                                                                        ')\n'
                                                                        '        '
                                                                        'if '
                                                                        'EofScaling:\n'
                                                                        '            '
                                                                        'output_filename_obs '
                                                                        '+= '
                                                                        '"_EOFscaled"\n'
                                                                        '\n'
                                                                        '        '
                                                                        '# '
                                                                        'Save '
                                                                        'global '
                                                                        'map, '
                                                                        'pc '
                                                                        'timeseries, '
                                                                        'and '
                                                                        'fraction '
                                                                        'in '
                                                                        'NetCDF '
                                                                        'output\n'
                                                                        '        '
                                                                        'if '
                                                                        'nc_out_obs:\n'
                                                                        '            '
                                                                        'output_nc_file_obs '
                                                                        '= '
                                                                        'os.path.join(\n'
                                                                        '                '
                                                                        'outdir(output_type="diagnostic_results"), '
                                                                        'output_filename_obs\n'
                                                                        '            '
                                                                        ')\n'
                                                                        '            '
                                                                        'write_nc_output(\n'
                                                                        '                '
                                                                        'output_nc_file_obs,\n'
                                                                        '                '
                                                                        'eof_lr_obs[season],\n'
                                                                        '                '
                                                                        'pc_obs[season],\n'
                                                                        '                '
                                                                        'frac_obs[season],\n'
                                                                        '                '
                                                                        'slope_obs,\n'
                                                                        '                '
                                                                        'intercept_obs,\n'
                                                                        '            '
                                                                        ')\n'
                                                                        '\n'
                                                                        '        '
                                                                        '# '
                                                                        'Plotting\n'
                                                                        '        '
                                                                        'if '
                                                                        'plot_obs:\n'
                                                                        '            '
                                                                        'output_img_file_obs '
                                                                        '= '
                                                                        'os.path.join(\n'
                                                                        '                '
                                                                        'outdir(output_type="graphics"), '
                                                                        'output_filename_obs\n'
                                                                        '            '
                                                                        ')\n'
                                                                        '            '
                                                                        '# '
                                                                        'plot_map(mode, '
                                                                        "'[REF] "
                                                                        "'+obs_name, "
                                                                        'osyear, '
                                                                        'oeyear, '
                                                                        'season,\n'
                                                                        '            '
                                                                        '#          '
                                                                        'eof_obs[season], '
                                                                        'frac_obs[season],\n'
                                                                        '            '
                                                                        '#          '
                                                                        "output_img_file_obs+'_org_eof')\n"
                                                                        '            '
                                                                        'plot_map(\n'
                                                                        '                '
                                                                        'mode,\n'
                                                                        '                '
                                                                        '"[REF] '
                                                                        '" + '
                                                                        'obs_name,\n'
                                                                        '                '
                                                                        'osyear,\n'
                                                                        '                '
                                                                        'oeyear,\n'
                                                                        '                '
                                                                        'season,\n'
                                                                        '                '
                                                                        'eof_lr_obs[season](region_subdomain),\n'
                                                                        '                '
                                                                        'frac_obs[season],\n'
                                                                        '                '
                                                                        'output_img_file_obs,\n'
                                                                        '            '
                                                                        ')\n'
                                                                        '            '
                                                                        'plot_map(\n'
                                                                        '                '
                                                                        'mode '
                                                                        '+ '
                                                                        '"_teleconnection",\n'
                                                                        '                '
                                                                        '"[REF] '
                                                                        '" + '
                                                                        'obs_name,\n'
                                                                        '                '
                                                                        'osyear,\n'
                                                                        '                '
                                                                        'oeyear,\n'
                                                                        '                '
                                                                        'season,\n'
                                                                        '                '
                                                                        'eof_lr_obs[season](longitude=(lon1g, '
                                                                        'lon2g)),\n'
                                                                        '                '
                                                                        'frac_obs[season],\n'
                                                                        '                '
                                                                        'output_img_file_obs '
                                                                        '+ '
                                                                        '"_teleconnection",\n'
                                                                        '            '
                                                                        ')\n'
                                                                        '            '
                                                                        'debug_print("obs '
                                                                        'plotting '
                                                                        'end", '
                                                                        'debug)\n'
                                                                        '\n'
                                                                        '        '
                                                                        '# '
                                                                        'Save '
                                                                        'stdv '
                                                                        'of PC '
                                                                        'time '
                                                                        'series '
                                                                        'in '
                                                                        'dictionary\n'
                                                                        '        '
                                                                        'dict_head_obs["stdv_pc"] '
                                                                        '= '
                                                                        'stdv_pc_obs[season]\n'
                                                                        '        '
                                                                        'dict_head_obs["frac"] '
                                                                        '= '
                                                                        'float(frac_obs[season])\n'
                                                                        '\n'
                                                                        '        '
                                                                        '# '
                                                                        'Mean\n'
                                                                        '        '
                                                                        'mean_obs '
                                                                        '= '
                                                                        'cdutil.averager(eof_obs[season], '
                                                                        'axis="yx", '
                                                                        'weights="weighted")\n'
                                                                        '        '
                                                                        'mean_glo_obs '
                                                                        '= '
                                                                        'cdutil.averager(\n'
                                                                        '            '
                                                                        'eof_lr_obs[season], '
                                                                        'axis="yx", '
                                                                        'weights="weighted"\n'
                                                                        '        '
                                                                        ')\n'
                                                                        '        '
                                                                        'dict_head_obs["mean"] '
                                                                        '= '
                                                                        'float(mean_obs)\n'
                                                                        '        '
                                                                        'dict_head_obs["mean_glo"] '
                                                                        '= '
                                                                        'float(mean_glo_obs)\n'
                                                                        '        '
                                                                        'debug_print("obs '
                                                                        'mean '
                                                                        'end", '
                                                                        'debug)\n'
                                                                        '\n'
                                                                        '        '
                                                                        '# '
                                                                        'North '
                                                                        'test '
                                                                        '-- '
                                                                        'make '
                                                                        'this '
                                                                        'available '
                                                                        'as '
                                                                        'option '
                                                                        'later...\n'
                                                                        '        '
                                                                        '# '
                                                                        "execfile('../north_test.py')\n"
                                                                        '\n'
                                                                        '    '
                                                                        'debug_print("obs '
                                                                        'end", '
                                                                        'debug)\n'
                                                                        '\n'
                                                                        '# '
                                                                        '=================================================\n'
                                                                        '# '
                                                                        'Model\n'
                                                                        '# '
                                                                        '-------------------------------------------------\n'
                                                                        'for '
                                                                        'model '
                                                                        'in '
                                                                        'models:\n'
                                                                        '    '
                                                                        'print(" '
                                                                        '----- '
                                                                        '", '
                                                                        'model, '
                                                                        '" '
                                                                        '---------------------")\n'
                                                                        '\n'
                                                                        '    '
                                                                        'if '
                                                                        'model '
                                                                        'not '
                                                                        'in '
                                                                        'list(result_dict["RESULTS"].keys()):\n'
                                                                        '        '
                                                                        'result_dict["RESULTS"][model] '
                                                                        '= {}\n'
                                                                        '\n'
                                                                        '    '
                                                                        'model_path_list '
                                                                        '= '
                                                                        'glob.glob(\n'
                                                                        '        '
                                                                        'modpath(mip=mip, '
                                                                        'exp=exp, '
                                                                        'model=model, '
                                                                        'realization=realization, '
                                                                        'variable=var)\n'
                                                                        '    '
                                                                        ')\n'
                                                                        '\n'
                                                                        '    '
                                                                        'model_path_list '
                                                                        '= '
                                                                        'sort_human(model_path_list)\n'
                                                                        '\n'
                                                                        '    '
                                                                        'debug_print("model_path_list: '
                                                                        '" + '
                                                                        'str(model_path_list), '
                                                                        'debug)\n'
                                                                        '\n'
                                                                        '    # '
                                                                        'Find '
                                                                        'where '
                                                                        'run '
                                                                        'can '
                                                                        'be '
                                                                        'gripped '
                                                                        'from '
                                                                        'given '
                                                                        'filename '
                                                                        'template '
                                                                        'for '
                                                                        'modpath\n'
                                                                        '    '
                                                                        'if '
                                                                        'realization '
                                                                        '== '
                                                                        '"*":\n'
                                                                        '        '
                                                                        'run_in_modpath '
                                                                        '= (\n'
                                                                        '            '
                                                                        'modpath(\n'
                                                                        '                '
                                                                        'mip=mip, '
                                                                        'exp=exp, '
                                                                        'model=model, '
                                                                        'realization=realization, '
                                                                        'variable=var\n'
                                                                        '            '
                                                                        ')\n'
                                                                        '            '
                                                                        '.split("/")[-1]\n'
                                                                        '            '
                                                                        '.split(".")\n'
                                                                        '            '
                                                                        '.index(realization)\n'
                                                                        '        '
                                                                        ')\n'
                                                                        '\n'
                                                                        '    # '
                                                                        '-------------------------------------------------\n'
                                                                        '    # '
                                                                        'Run\n'
                                                                        '    # '
                                                                        '-------------------------------------------------\n'
                                                                        '    '
                                                                        'for '
                                                                        'model_path '
                                                                        'in '
                                                                        'model_path_list:\n'
                                                                        '\n'
                                                                        '        '
                                                                        'try:\n'
                                                                        '            '
                                                                        'if '
                                                                        'realization '
                                                                        '== '
                                                                        '"*":\n'
                                                                        '                '
                                                                        'run = '
                                                                        '(model_path.split("/")[-1]).split(".")[run_in_modpath]\n'
                                                                        '            '
                                                                        'else:\n'
                                                                        '                '
                                                                        'run = '
                                                                        'realization\n'
                                                                        '            '
                                                                        'print(" '
                                                                        '--- '
                                                                        '", '
                                                                        'run, '
                                                                        '" '
                                                                        '---")\n'
                                                                        '\n'
                                                                        '            '
                                                                        'if '
                                                                        'run '
                                                                        'not '
                                                                        'in '
                                                                        'list(result_dict["RESULTS"][model].keys()):\n'
                                                                        '                '
                                                                        'result_dict["RESULTS"][model][run] '
                                                                        '= {}\n'
                                                                        '            '
                                                                        'if '
                                                                        '"defaultReference" '
                                                                        'not '
                                                                        'in '
                                                                        'list(\n'
                                                                        '                '
                                                                        'result_dict["RESULTS"][model][run].keys()\n'
                                                                        '            '
                                                                        '):\n'
                                                                        '                '
                                                                        'result_dict["RESULTS"][model][run]["defaultReference"] '
                                                                        '= {}\n'
                                                                        '            '
                                                                        'if '
                                                                        'mode '
                                                                        'not '
                                                                        'in '
                                                                        'list(\n'
                                                                        '                '
                                                                        'result_dict["RESULTS"][model][run]["defaultReference"].keys()\n'
                                                                        '            '
                                                                        '):\n'
                                                                        '                '
                                                                        'result_dict["RESULTS"][model][run]["defaultReference"][mode] '
                                                                        '= {}\n'
                                                                        '            '
                                                                        'result_dict["RESULTS"][model][run]["defaultReference"][mode][\n'
                                                                        '                '
                                                                        '"target_model_eofs"\n'
                                                                        '            '
                                                                        '] = '
                                                                        'eofn_mod\n'
                                                                        '\n'
                                                                        '            '
                                                                        'if '
                                                                        'LandMask:\n'
                                                                        '                '
                                                                        'model_lf_path '
                                                                        '= '
                                                                        'modpath_lf(mip=mip, '
                                                                        'exp=exp, '
                                                                        'model=model)\n'
                                                                        '            '
                                                                        'else:\n'
                                                                        '                '
                                                                        'model_lf_path '
                                                                        '= '
                                                                        'None\n'
                                                                        '\n'
                                                                        '            '
                                                                        '# '
                                                                        'read '
                                                                        'data '
                                                                        'in\n'
                                                                        '            '
                                                                        'model_timeseries, '
                                                                        'msyear, '
                                                                        'meyear '
                                                                        '= '
                                                                        'read_data_in(\n'
                                                                        '                '
                                                                        'model,\n'
                                                                        '                '
                                                                        'model_path,\n'
                                                                        '                '
                                                                        'model_lf_path,\n'
                                                                        '                '
                                                                        'var,\n'
                                                                        '                '
                                                                        'var,\n'
                                                                        '                '
                                                                        'start_time,\n'
                                                                        '                '
                                                                        'end_time,\n'
                                                                        '                '
                                                                        'ModUnitsAdjust,\n'
                                                                        '                '
                                                                        'LandMask,\n'
                                                                        '                '
                                                                        'debug=debug,\n'
                                                                        '            '
                                                                        ')\n'
                                                                        '\n'
                                                                        '            '
                                                                        'debug_print("msyear: '
                                                                        '" + '
                                                                        'str(msyear) '
                                                                        '+ " '
                                                                        'meyear: '
                                                                        '" + '
                                                                        'str(meyear), '
                                                                        'debug)\n'
                                                                        '\n'
                                                                        '            '
                                                                        '# '
                                                                        '-------------------------------------------------\n'
                                                                        '            '
                                                                        '# '
                                                                        'Season '
                                                                        'loop\n'
                                                                        '            '
                                                                        '# - - '
                                                                        '- - - '
                                                                        '- - - '
                                                                        '- - - '
                                                                        '- - - '
                                                                        '- - - '
                                                                        '- - - '
                                                                        '- - - '
                                                                        '- -\n'
                                                                        '            '
                                                                        'for '
                                                                        'season '
                                                                        'in '
                                                                        'seasons:\n'
                                                                        '                '
                                                                        'debug_print("season: '
                                                                        '" + '
                                                                        'season, '
                                                                        'debug)\n'
                                                                        '\n'
                                                                        '                '
                                                                        'if '
                                                                        'season '
                                                                        'not '
                                                                        'in '
                                                                        'list(\n'
                                                                        '                    '
                                                                        'result_dict["RESULTS"][model][run]["defaultReference"][mode].keys()\n'
                                                                        '                '
                                                                        '):\n'
                                                                        '                    '
                                                                        'result_dict["RESULTS"][model][run]["defaultReference"][mode][\n'
                                                                        '                        '
                                                                        'season\n'
                                                                        '                    '
                                                                        '] = '
                                                                        '{}\n'
                                                                        '                '
                                                                        'result_dict["RESULTS"][model][run]["defaultReference"][mode][season][\n'
                                                                        '                    '
                                                                        '"period"\n'
                                                                        '                '
                                                                        '] = '
                                                                        '(str(msyear) '
                                                                        '+ "-" '
                                                                        '+ '
                                                                        'str(meyear))\n'
                                                                        '\n'
                                                                        '                '
                                                                        '# '
                                                                        'Time '
                                                                        'series '
                                                                        'adjustment '
                                                                        '(remove '
                                                                        'annual '
                                                                        'cycle, '
                                                                        'seasonal '
                                                                        'mean '
                                                                        '(if '
                                                                        'needed),\n'
                                                                        '                '
                                                                        '# and '
                                                                        'subtracting '
                                                                        'domain '
                                                                        '(or '
                                                                        'global) '
                                                                        'mean '
                                                                        'of '
                                                                        'each '
                                                                        'time '
                                                                        'step)\n'
                                                                        '                '
                                                                        'debug_print("time '
                                                                        'series '
                                                                        'adjustment", '
                                                                        'debug)\n'
                                                                        '                '
                                                                        'model_timeseries_season '
                                                                        '= '
                                                                        'adjust_timeseries(\n'
                                                                        '                    '
                                                                        'model_timeseries, '
                                                                        'mode, '
                                                                        'season, '
                                                                        'region_subdomain, '
                                                                        'RmDomainMean\n'
                                                                        '                '
                                                                        ')\n'
                                                                        '\n'
                                                                        '                '
                                                                        '# '
                                                                        'Extract '
                                                                        'subdomain\n'
                                                                        '                '
                                                                        'debug_print("extract '
                                                                        'subdomain", '
                                                                        'debug)\n'
                                                                        '                '
                                                                        'model_timeseries_season_subdomain '
                                                                        '= '
                                                                        'model_timeseries_season(\n'
                                                                        '                    '
                                                                        'region_subdomain\n'
                                                                        '                '
                                                                        ')\n'
                                                                        '\n'
                                                                        '                '
                                                                        '# '
                                                                        '-------------------------------------------------\n'
                                                                        '                '
                                                                        '# '
                                                                        'Common '
                                                                        'Basis '
                                                                        'Function '
                                                                        'Approach\n'
                                                                        '                '
                                                                        '# - - '
                                                                        '- - - '
                                                                        '- - - '
                                                                        '- - - '
                                                                        '- - - '
                                                                        '- - - '
                                                                        '- - - '
                                                                        '- - - '
                                                                        '- -\n'
                                                                        '                '
                                                                        'if '
                                                                        'CBF '
                                                                        'and '
                                                                        'obs_compare:\n'
                                                                        '\n'
                                                                        '                    '
                                                                        'if '
                                                                        '"cbf" '
                                                                        'not '
                                                                        'in '
                                                                        'list(\n'
                                                                        '                        '
                                                                        'result_dict["RESULTS"][model][run]["defaultReference"][mode][\n'
                                                                        '                            '
                                                                        'season\n'
                                                                        '                        '
                                                                        '].keys()\n'
                                                                        '                    '
                                                                        '):\n'
                                                                        '                        '
                                                                        'result_dict["RESULTS"][model][run]["defaultReference"][mode][\n'
                                                                        '                            '
                                                                        'season\n'
                                                                        '                        '
                                                                        ']["cbf"] '
                                                                        '= {}\n'
                                                                        '                    '
                                                                        'dict_head '
                                                                        '= '
                                                                        'result_dict["RESULTS"][model][run]["defaultReference"][\n'
                                                                        '                        '
                                                                        'mode\n'
                                                                        '                    '
                                                                        '][season]["cbf"]\n'
                                                                        '                    '
                                                                        'debug_print("CBF '
                                                                        'approach '
                                                                        'start", '
                                                                        'debug)\n'
                                                                        '\n'
                                                                        '                    '
                                                                        '# '
                                                                        'Regrid '
                                                                        '(interpolation, '
                                                                        'model '
                                                                        'grid '
                                                                        'to '
                                                                        'ref '
                                                                        'grid)\n'
                                                                        '                    '
                                                                        'model_timeseries_season_regrid '
                                                                        '= '
                                                                        'model_timeseries_season.regrid(\n'
                                                                        '                        '
                                                                        'ref_grid_global, '
                                                                        'regridTool="regrid2", '
                                                                        'mkCyclic=True\n'
                                                                        '                    '
                                                                        ')\n'
                                                                        '                    '
                                                                        'model_timeseries_season_regrid_subdomain '
                                                                        '= (\n'
                                                                        '                        '
                                                                        'model_timeseries_season_regrid(region_subdomain)\n'
                                                                        '                    '
                                                                        ')\n'
                                                                        '\n'
                                                                        '                    '
                                                                        '# '
                                                                        'Matching '
                                                                        "model's "
                                                                        'missing '
                                                                        'value '
                                                                        'location '
                                                                        'to '
                                                                        'that '
                                                                        'of '
                                                                        'observation\n'
                                                                        '                    '
                                                                        '# '
                                                                        'Save '
                                                                        'axes '
                                                                        'for '
                                                                        'preserving\n'
                                                                        '                    '
                                                                        'axes '
                                                                        '= '
                                                                        'model_timeseries_season_regrid_subdomain.getAxisList()\n'
                                                                        '                    '
                                                                        '# 1) '
                                                                        'Replace '
                                                                        "model's "
                                                                        'masked '
                                                                        'grid '
                                                                        'to 0, '
                                                                        'so '
                                                                        'theoritically '
                                                                        "won't "
                                                                        'affect '
                                                                        'to '
                                                                        'result\n'
                                                                        '                    '
                                                                        'model_timeseries_season_regrid_subdomain '
                                                                        '= '
                                                                        'MV2.array(\n'
                                                                        '                        '
                                                                        'model_timeseries_season_regrid_subdomain.filled(0.0)\n'
                                                                        '                    '
                                                                        ')\n'
                                                                        '                    '
                                                                        '# 2) '
                                                                        'Give '
                                                                        "obs's "
                                                                        'mask '
                                                                        'to '
                                                                        'model '
                                                                        'field, '
                                                                        'so '
                                                                        'enable '
                                                                        'projecField '
                                                                        'functionality '
                                                                        'below\n'
                                                                        '                    '
                                                                        'model_timeseries_season_regrid_subdomain.mask '
                                                                        '= '
                                                                        'eof_obs[season].mask\n'
                                                                        '                    '
                                                                        '# '
                                                                        'Preserve '
                                                                        'axes\n'
                                                                        '                    '
                                                                        'model_timeseries_season_regrid_subdomain.setAxisList(axes)\n'
                                                                        '\n'
                                                                        '                    '
                                                                        '# CBF '
                                                                        'PC '
                                                                        'time '
                                                                        'series\n'
                                                                        '                    '
                                                                        'cbf_pc '
                                                                        '= '
                                                                        'gain_pseudo_pcs(\n'
                                                                        '                        '
                                                                        'solver_obs[season],\n'
                                                                        '                        '
                                                                        'model_timeseries_season_regrid_subdomain,\n'
                                                                        '                        '
                                                                        'eofn_obs,\n'
                                                                        '                        '
                                                                        'reverse_sign_obs[season],\n'
                                                                        '                        '
                                                                        'EofScaling=EofScaling,\n'
                                                                        '                    '
                                                                        ')\n'
                                                                        '\n'
                                                                        '                    '
                                                                        '# '
                                                                        'Calculate '
                                                                        'stdv '
                                                                        'of '
                                                                        'cbf '
                                                                        'pc '
                                                                        'time '
                                                                        'series\n'
                                                                        '                    '
                                                                        'stdv_cbf_pc '
                                                                        '= '
                                                                        'calcSTD(cbf_pc)\n'
                                                                        '\n'
                                                                        '                    '
                                                                        '# '
                                                                        'Linear '
                                                                        'regression '
                                                                        'to '
                                                                        'have '
                                                                        'extended '
                                                                        'global '
                                                                        'map; '
                                                                        'teleconnection '
                                                                        'purpose\n'
                                                                        '                    '
                                                                        '(\n'
                                                                        '                        '
                                                                        'eof_lr_cbf,\n'
                                                                        '                        '
                                                                        'slope_cbf,\n'
                                                                        '                        '
                                                                        'intercept_cbf,\n'
                                                                        '                    '
                                                                        ') = '
                                                                        'linear_regression_on_globe_for_teleconnection(\n'
                                                                        '                        '
                                                                        'cbf_pc,\n'
                                                                        '                        '
                                                                        'model_timeseries_season,\n'
                                                                        '                        '
                                                                        'stdv_cbf_pc,\n'
                                                                        '                        '
                                                                        '# '
                                                                        'cbf_pc, '
                                                                        'model_timeseries_season_regrid, '
                                                                        'stdv_cbf_pc,\n'
                                                                        '                        '
                                                                        'RmDomainMean,\n'
                                                                        '                        '
                                                                        'EofScaling,\n'
                                                                        '                        '
                                                                        'debug=debug,\n'
                                                                        '                    '
                                                                        ')\n'
                                                                        '\n'
                                                                        '                    '
                                                                        '# '
                                                                        'Extract '
                                                                        'subdomain '
                                                                        'for '
                                                                        'statistics\n'
                                                                        '                    '
                                                                        'eof_lr_cbf_subdomain '
                                                                        '= '
                                                                        'eof_lr_cbf(region_subdomain)\n'
                                                                        '\n'
                                                                        '                    '
                                                                        '# '
                                                                        'Calculate '
                                                                        'fraction '
                                                                        'of '
                                                                        'variance '
                                                                        'explained '
                                                                        'by '
                                                                        'cbf '
                                                                        'pc\n'
                                                                        '                    '
                                                                        'frac_cbf '
                                                                        '= '
                                                                        'gain_pcs_fraction(\n'
                                                                        '                        '
                                                                        '# '
                                                                        'model_timeseries_season_regrid_subdomain,  '
                                                                        '# '
                                                                        'regridded '
                                                                        'model '
                                                                        'anomaly '
                                                                        'space\n'
                                                                        '                        '
                                                                        'model_timeseries_season_subdomain,  '
                                                                        '# '
                                                                        'native '
                                                                        'grid '
                                                                        'model '
                                                                        'anomaly '
                                                                        'space\n'
                                                                        '                        '
                                                                        'eof_lr_cbf_subdomain,\n'
                                                                        '                        '
                                                                        'cbf_pc '
                                                                        '/ '
                                                                        'stdv_cbf_pc,\n'
                                                                        '                        '
                                                                        'debug=debug,\n'
                                                                        '                    '
                                                                        ')\n'
                                                                        '\n'
                                                                        '                    '
                                                                        '# '
                                                                        'SENSITIVITY '
                                                                        'TEST '
                                                                        '---\n'
                                                                        '                    '
                                                                        '# '
                                                                        'Calculate '
                                                                        'fraction '
                                                                        'of '
                                                                        'variance '
                                                                        'explained '
                                                                        'by '
                                                                        'cbf '
                                                                        'pc '
                                                                        '(on '
                                                                        'regrid '
                                                                        'domain)\n'
                                                                        '                    '
                                                                        'frac_cbf_regrid '
                                                                        '= '
                                                                        'gain_pcs_fraction(\n'
                                                                        '                        '
                                                                        'model_timeseries_season_regrid_subdomain,\n'
                                                                        '                        '
                                                                        'eof_lr_cbf_subdomain,\n'
                                                                        '                        '
                                                                        'cbf_pc '
                                                                        '/ '
                                                                        'stdv_cbf_pc,\n'
                                                                        '                        '
                                                                        'debug=debug,\n'
                                                                        '                    '
                                                                        ')\n'
                                                                        '                    '
                                                                        'dict_head["frac_cbf_regrid"] '
                                                                        '= '
                                                                        'float(frac_cbf_regrid)\n'
                                                                        '\n'
                                                                        '                    '
                                                                        '# - - '
                                                                        '- - - '
                                                                        '- - - '
                                                                        '- - - '
                                                                        '- - - '
                                                                        '- - - '
                                                                        '- - - '
                                                                        '- - - '
                                                                        '- -\n'
                                                                        '                    '
                                                                        '# '
                                                                        'Record '
                                                                        'results\n'
                                                                        '                    '
                                                                        '# - - '
                                                                        '- - - '
                                                                        '- - - '
                                                                        '- - - '
                                                                        '- - - '
                                                                        '- - - '
                                                                        '- - - '
                                                                        '- - - '
                                                                        '- -\n'
                                                                        '                    '
                                                                        '# '
                                                                        'Metrics '
                                                                        'results '
                                                                        '-- '
                                                                        'statistics '
                                                                        'to '
                                                                        'JSON\n'
                                                                        '                    '
                                                                        'dict_head, '
                                                                        'eof_lr_cbf '
                                                                        '= '
                                                                        'calc_stats_save_dict(\n'
                                                                        '                        '
                                                                        'dict_head,\n'
                                                                        '                        '
                                                                        'eof_lr_cbf_subdomain,\n'
                                                                        '                        '
                                                                        'eof_lr_cbf,\n'
                                                                        '                        '
                                                                        'slope_cbf,\n'
                                                                        '                        '
                                                                        'cbf_pc,\n'
                                                                        '                        '
                                                                        'stdv_cbf_pc,\n'
                                                                        '                        '
                                                                        'frac_cbf,\n'
                                                                        '                        '
                                                                        'region_subdomain,\n'
                                                                        '                        '
                                                                        'eof_obs[season],\n'
                                                                        '                        '
                                                                        'eof_lr_obs[season],\n'
                                                                        '                        '
                                                                        'stdv_pc_obs[season],\n'
                                                                        '                        '
                                                                        'obs_compare=obs_compare,\n'
                                                                        '                        '
                                                                        'method="cbf",\n'
                                                                        '                        '
                                                                        'debug=debug,\n'
                                                                        '                    '
                                                                        ')\n'
                                                                        '\n'
                                                                        '                    '
                                                                        '# Set '
                                                                        'output '
                                                                        'file '
                                                                        'name '
                                                                        'for '
                                                                        'NetCDF '
                                                                        'and '
                                                                        'plot '
                                                                        'images\n'
                                                                        '                    '
                                                                        'output_filename '
                                                                        '= '
                                                                        '"_".join(\n'
                                                                        '                        '
                                                                        '[\n'
                                                                        '                            '
                                                                        'mode,\n'
                                                                        '                            '
                                                                        'var,\n'
                                                                        '                            '
                                                                        '"EOF" '
                                                                        '+ '
                                                                        'str(eofn_mod),\n'
                                                                        '                            '
                                                                        'season,\n'
                                                                        '                            '
                                                                        'mip,\n'
                                                                        '                            '
                                                                        'model,\n'
                                                                        '                            '
                                                                        'exp,\n'
                                                                        '                            '
                                                                        'run,\n'
                                                                        '                            '
                                                                        'fq,\n'
                                                                        '                            '
                                                                        'realm,\n'
                                                                        '                            '
                                                                        'str(msyear) '
                                                                        '+ "-" '
                                                                        '+ '
                                                                        'str(meyear),\n'
                                                                        '                        '
                                                                        ']\n'
                                                                        '                    '
                                                                        ')\n'
                                                                        '                    '
                                                                        'if '
                                                                        'EofScaling:\n'
                                                                        '                        '
                                                                        'output_filename '
                                                                        '+= '
                                                                        '"_EOFscaled"\n'
                                                                        '\n'
                                                                        '                    '
                                                                        '# '
                                                                        'Diagnostics '
                                                                        'results '
                                                                        '-- '
                                                                        'data '
                                                                        'to '
                                                                        'NetCDF\n'
                                                                        '                    '
                                                                        '# '
                                                                        'Save '
                                                                        'global '
                                                                        'map, '
                                                                        'pc '
                                                                        'timeseries, '
                                                                        'and '
                                                                        'fraction '
                                                                        'in '
                                                                        'NetCDF '
                                                                        'output\n'
                                                                        '                    '
                                                                        'output_nc_file '
                                                                        '= '
                                                                        'os.path.join(\n'
                                                                        '                        '
                                                                        'outdir(output_type="diagnostic_results"), '
                                                                        'output_filename\n'
                                                                        '                    '
                                                                        ')\n'
                                                                        '                    '
                                                                        'if '
                                                                        'nc_out_model:\n'
                                                                        '                        '
                                                                        'write_nc_output(\n'
                                                                        '                            '
                                                                        'output_nc_file '
                                                                        '+ '
                                                                        '"_cbf",\n'
                                                                        '                            '
                                                                        'eof_lr_cbf,\n'
                                                                        '                            '
                                                                        'cbf_pc,\n'
                                                                        '                            '
                                                                        'frac_cbf,\n'
                                                                        '                            '
                                                                        'slope_cbf,\n'
                                                                        '                            '
                                                                        'intercept_cbf,\n'
                                                                        '                        '
                                                                        ')\n'
                                                                        '\n'
                                                                        '                    '
                                                                        '# '
                                                                        'Graphics '
                                                                        '-- '
                                                                        'plot '
                                                                        'map '
                                                                        'image '
                                                                        'to '
                                                                        'PNG\n'
                                                                        '                    '
                                                                        'output_img_file '
                                                                        '= '
                                                                        'os.path.join(\n'
                                                                        '                        '
                                                                        'outdir(output_type="graphics"), '
                                                                        'output_filename\n'
                                                                        '                    '
                                                                        ')\n'
                                                                        '                    '
                                                                        'if '
                                                                        'plot_model:\n'
                                                                        '                        '
                                                                        'plot_map(\n'
                                                                        '                            '
                                                                        'mode,\n'
                                                                        '                            '
                                                                        'mip.upper() '
                                                                        '+ " " '
                                                                        '+ '
                                                                        'model '
                                                                        '+ " '
                                                                        '(" + '
                                                                        'run + '
                                                                        '")" + '
                                                                        '" - '
                                                                        'CBF",\n'
                                                                        '                            '
                                                                        'msyear,\n'
                                                                        '                            '
                                                                        'meyear,\n'
                                                                        '                            '
                                                                        'season,\n'
                                                                        '                            '
                                                                        'eof_lr_cbf(region_subdomain),\n'
                                                                        '                            '
                                                                        'frac_cbf,\n'
                                                                        '                            '
                                                                        'output_img_file '
                                                                        '+ '
                                                                        '"_cbf",\n'
                                                                        '                        '
                                                                        ')\n'
                                                                        '                        '
                                                                        'plot_map(\n'
                                                                        '                            '
                                                                        'mode '
                                                                        '+ '
                                                                        '"_teleconnection",\n'
                                                                        '                            '
                                                                        'mip.upper() '
                                                                        '+ " " '
                                                                        '+ '
                                                                        'model '
                                                                        '+ " '
                                                                        '(" + '
                                                                        'run + '
                                                                        '")" + '
                                                                        '" - '
                                                                        'CBF",\n'
                                                                        '                            '
                                                                        'msyear,\n'
                                                                        '                            '
                                                                        'meyear,\n'
                                                                        '                            '
                                                                        'season,\n'
                                                                        '                            '
                                                                        'eof_lr_cbf(longitude=(lon1g, '
                                                                        'lon2g)),\n'
                                                                        '                            '
                                                                        'frac_cbf,\n'
                                                                        '                            '
                                                                        'output_img_file '
                                                                        '+ '
                                                                        '"_cbf_teleconnection",\n'
                                                                        '                        '
                                                                        ')\n'
                                                                        '\n'
                                                                        '                    '
                                                                        'debug_print("cbf '
                                                                        'pcs '
                                                                        'end", '
                                                                        'debug)\n'
                                                                        '\n'
                                                                        '                '
                                                                        '# '
                                                                        '-------------------------------------------------\n'
                                                                        '                '
                                                                        '# '
                                                                        'Conventional '
                                                                        'EOF '
                                                                        'approach '
                                                                        'as '
                                                                        'supplementary\n'
                                                                        '                '
                                                                        '# - - '
                                                                        '- - - '
                                                                        '- - - '
                                                                        '- - - '
                                                                        '- - - '
                                                                        '- - - '
                                                                        '- - - '
                                                                        '- - - '
                                                                        '- -\n'
                                                                        '                '
                                                                        'if '
                                                                        'ConvEOF:\n'
                                                                        '\n'
                                                                        '                    '
                                                                        'eofn_mod_max '
                                                                        '= 3\n'
                                                                        '\n'
                                                                        '                    '
                                                                        '# EOF '
                                                                        'analysis\n'
                                                                        '                    '
                                                                        'debug_print("conventional '
                                                                        'EOF '
                                                                        'analysis '
                                                                        'start", '
                                                                        'debug)\n'
                                                                        '                    '
                                                                        '(\n'
                                                                        '                        '
                                                                        'eof_list,\n'
                                                                        '                        '
                                                                        'pc_list,\n'
                                                                        '                        '
                                                                        'frac_list,\n'
                                                                        '                        '
                                                                        'reverse_sign_list,\n'
                                                                        '                        '
                                                                        'solver,\n'
                                                                        '                    '
                                                                        ') = '
                                                                        'eof_analysis_get_variance_mode(\n'
                                                                        '                        '
                                                                        'mode,\n'
                                                                        '                        '
                                                                        'model_timeseries_season_subdomain,\n'
                                                                        '                        '
                                                                        'eofn=eofn_mod,\n'
                                                                        '                        '
                                                                        'eofn_max=eofn_mod_max,\n'
                                                                        '                        '
                                                                        'debug=debug,\n'
                                                                        '                        '
                                                                        'EofScaling=EofScaling,\n'
                                                                        '                        '
                                                                        'save_multiple_eofs=True,\n'
                                                                        '                    '
                                                                        ')\n'
                                                                        '                    '
                                                                        'debug_print("conventional '
                                                                        'EOF '
                                                                        'analysis '
                                                                        'done", '
                                                                        'debug)\n'
                                                                        '\n'
                                                                        '                    '
                                                                        '# '
                                                                        '-------------------------------------------------\n'
                                                                        '                    '
                                                                        '# For '
                                                                        'multiple '
                                                                        'EOFs '
                                                                        '(e.g., '
                                                                        'EOF1, '
                                                                        'EOF2, '
                                                                        'EOF3, '
                                                                        '...)\n'
                                                                        '                    '
                                                                        '# - - '
                                                                        '- - - '
                                                                        '- - - '
                                                                        '- - - '
                                                                        '- - - '
                                                                        '- - - '
                                                                        '- - - '
                                                                        '- - - '
                                                                        '- -\n'
                                                                        '                    '
                                                                        'rms_list '
                                                                        '= []\n'
                                                                        '                    '
                                                                        'cor_list '
                                                                        '= []\n'
                                                                        '                    '
                                                                        'tcor_list '
                                                                        '= []\n'
                                                                        '\n'
                                                                        '                    '
                                                                        'for n '
                                                                        'in '
                                                                        'range(0, '
                                                                        'eofn_mod_max):\n'
                                                                        '                        '
                                                                        'eofs '
                                                                        '= '
                                                                        '"eof" '
                                                                        '+ '
                                                                        'str(n '
                                                                        '+ 1)\n'
                                                                        '                        '
                                                                        'if '
                                                                        'eofs '
                                                                        'not '
                                                                        'in '
                                                                        'list(\n'
                                                                        '                            '
                                                                        'result_dict["RESULTS"][model][run]["defaultReference"][\n'
                                                                        '                                '
                                                                        'mode\n'
                                                                        '                            '
                                                                        '][season].keys()\n'
                                                                        '                        '
                                                                        '):\n'
                                                                        '                            '
                                                                        'result_dict["RESULTS"][model][run]["defaultReference"][\n'
                                                                        '                                '
                                                                        'mode\n'
                                                                        '                            '
                                                                        '][season][eofs] '
                                                                        '= {}\n'
                                                                        '                            '
                                                                        'dict_head '
                                                                        '= '
                                                                        'result_dict["RESULTS"][model][run][\n'
                                                                        '                                '
                                                                        '"defaultReference"\n'
                                                                        '                            '
                                                                        '][mode][season][eofs]\n'
                                                                        '\n'
                                                                        '                        '
                                                                        '# '
                                                                        'Component '
                                                                        'for '
                                                                        'each '
                                                                        'EOFs\n'
                                                                        '                        '
                                                                        'eof = '
                                                                        'eof_list[n]\n'
                                                                        '                        '
                                                                        'pc = '
                                                                        'pc_list[n]\n'
                                                                        '                        '
                                                                        'frac '
                                                                        '= '
                                                                        'frac_list[n]\n'
                                                                        '\n'
                                                                        '                        '
                                                                        '# '
                                                                        'Calculate '
                                                                        'stdv '
                                                                        'of pc '
                                                                        'time '
                                                                        'series\n'
                                                                        '                        '
                                                                        'stdv_pc '
                                                                        '= '
                                                                        'calcSTD(pc)\n'
                                                                        '\n'
                                                                        '                        '
                                                                        '# '
                                                                        'Linear '
                                                                        'regression '
                                                                        'to '
                                                                        'have '
                                                                        'extended '
                                                                        'global '
                                                                        'map:\n'
                                                                        '                        '
                                                                        '(\n'
                                                                        '                            '
                                                                        'eof_lr,\n'
                                                                        '                            '
                                                                        'slope,\n'
                                                                        '                            '
                                                                        'intercept,\n'
                                                                        '                        '
                                                                        ') = '
                                                                        'linear_regression_on_globe_for_teleconnection(\n'
                                                                        '                            '
                                                                        'pc,\n'
                                                                        '                            '
                                                                        'model_timeseries_season,\n'
                                                                        '                            '
                                                                        'stdv_pc,\n'
                                                                        '                            '
                                                                        'RmDomainMean,\n'
                                                                        '                            '
                                                                        'EofScaling,\n'
                                                                        '                            '
                                                                        'debug=debug,\n'
                                                                        '                        '
                                                                        ')\n'
                                                                        '\n'
                                                                        '                        '
                                                                        '# - - '
                                                                        '- - - '
                                                                        '- - - '
                                                                        '- - - '
                                                                        '- - - '
                                                                        '- - - '
                                                                        '- - - '
                                                                        '- - - '
                                                                        '- -\n'
                                                                        '                        '
                                                                        '# '
                                                                        'Record '
                                                                        'results\n'
                                                                        '                        '
                                                                        '# - - '
                                                                        '- - - '
                                                                        '- - - '
                                                                        '- - - '
                                                                        '- - - '
                                                                        '- - - '
                                                                        '- - - '
                                                                        '- - - '
                                                                        '- -\n'
                                                                        '                        '
                                                                        '# '
                                                                        'Metrics '
                                                                        'results '
                                                                        '-- '
                                                                        'statistics '
                                                                        'to '
                                                                        'JSON\n'
                                                                        '                        '
                                                                        'if '
                                                                        'obs_compare:\n'
                                                                        '                            '
                                                                        'dict_head, '
                                                                        'eof_lr '
                                                                        '= '
                                                                        'calc_stats_save_dict(\n'
                                                                        '                                '
                                                                        'dict_head,\n'
                                                                        '                                '
                                                                        'eof,\n'
                                                                        '                                '
                                                                        'eof_lr,\n'
                                                                        '                                '
                                                                        'slope,\n'
                                                                        '                                '
                                                                        'pc,\n'
                                                                        '                                '
                                                                        'stdv_pc,\n'
                                                                        '                                '
                                                                        'frac,\n'
                                                                        '                                '
                                                                        'region_subdomain,\n'
                                                                        '                                '
                                                                        'eof_obs=eof_obs[season],\n'
                                                                        '                                '
                                                                        'eof_lr_obs=eof_lr_obs[season],\n'
                                                                        '                                '
                                                                        'stdv_pc_obs=stdv_pc_obs[season],\n'
                                                                        '                                '
                                                                        'obs_compare=obs_compare,\n'
                                                                        '                                '
                                                                        'method="eof",\n'
                                                                        '                                '
                                                                        'debug=debug,\n'
                                                                        '                            '
                                                                        ')\n'
                                                                        '                        '
                                                                        'else:\n'
                                                                        '                            '
                                                                        'dict_head, '
                                                                        'eof_lr '
                                                                        '= '
                                                                        'calc_stats_save_dict(\n'
                                                                        '                                '
                                                                        'dict_head,\n'
                                                                        '                                '
                                                                        'eof,\n'
                                                                        '                                '
                                                                        'eof_lr,\n'
                                                                        '                                '
                                                                        'slope,\n'
                                                                        '                                '
                                                                        'pc,\n'
                                                                        '                                '
                                                                        'stdv_pc,\n'
                                                                        '                                '
                                                                        'frac,\n'
                                                                        '                                '
                                                                        'region_subdomain,\n'
                                                                        '                                '
                                                                        'obs_compare=obs_compare,\n'
                                                                        '                                '
                                                                        'method="eof",\n'
                                                                        '                                '
                                                                        'debug=debug,\n'
                                                                        '                            '
                                                                        ')\n'
                                                                        '\n'
                                                                        '                        '
                                                                        '# '
                                                                        'Temporal '
                                                                        'correlation '
                                                                        'between '
                                                                        'CBF '
                                                                        'PC '
                                                                        'timeseries '
                                                                        'and '
                                                                        'usual '
                                                                        'model '
                                                                        'PC '
                                                                        'timeseries\n'
                                                                        '                        '
                                                                        'if '
                                                                        'CBF:\n'
                                                                        '                            '
                                                                        'tc = '
                                                                        'calcTCOR(cbf_pc, '
                                                                        'pc)\n'
                                                                        '                            '
                                                                        'debug_print("cbf '
                                                                        'tc '
                                                                        'end", '
                                                                        'debug)\n'
                                                                        '                            '
                                                                        'dict_head["tcor_cbf_vs_eof_pc"] '
                                                                        '= tc\n'
                                                                        '\n'
                                                                        '                        '
                                                                        '# Set '
                                                                        'output '
                                                                        'file '
                                                                        'name '
                                                                        'for '
                                                                        'NetCDF '
                                                                        'and '
                                                                        'plot '
                                                                        'images\n'
                                                                        '                        '
                                                                        'output_filename '
                                                                        '= '
                                                                        '"_".join(\n'
                                                                        '                            '
                                                                        '[\n'
                                                                        '                                '
                                                                        'mode,\n'
                                                                        '                                '
                                                                        'var,\n'
                                                                        '                                '
                                                                        '"EOF" '
                                                                        '+ '
                                                                        'str(n '
                                                                        '+ '
                                                                        '1),\n'
                                                                        '                                '
                                                                        'season,\n'
                                                                        '                                '
                                                                        'mip,\n'
                                                                        '                                '
                                                                        'model,\n'
                                                                        '                                '
                                                                        'exp,\n'
                                                                        '                                '
                                                                        'run,\n'
                                                                        '                                '
                                                                        'fq,\n'
                                                                        '                                '
                                                                        'realm,\n'
                                                                        '                                '
                                                                        'str(msyear) '
                                                                        '+ "-" '
                                                                        '+ '
                                                                        'str(meyear),\n'
                                                                        '                            '
                                                                        ']\n'
                                                                        '                        '
                                                                        ')\n'
                                                                        '                        '
                                                                        'if '
                                                                        'EofScaling:\n'
                                                                        '                            '
                                                                        'output_filename '
                                                                        '+= '
                                                                        '"_EOFscaled"\n'
                                                                        '\n'
                                                                        '                        '
                                                                        '# '
                                                                        'Diagnostics '
                                                                        'results '
                                                                        '-- '
                                                                        'data '
                                                                        'to '
                                                                        'NetCDF\n'
                                                                        '                        '
                                                                        '# '
                                                                        'Save '
                                                                        'global '
                                                                        'map, '
                                                                        'pc '
                                                                        'timeseries, '
                                                                        'and '
                                                                        'fraction '
                                                                        'in '
                                                                        'NetCDF '
                                                                        'output\n'
                                                                        '                        '
                                                                        'output_nc_file '
                                                                        '= '
                                                                        'os.path.join(\n'
                                                                        '                            '
                                                                        'outdir(output_type="diagnostic_results"), '
                                                                        'output_filename\n'
                                                                        '                        '
                                                                        ')\n'
                                                                        '                        '
                                                                        'if '
                                                                        'nc_out_model:\n'
                                                                        '                            '
                                                                        'write_nc_output(\n'
                                                                        '                                '
                                                                        'output_nc_file, '
                                                                        'eof_lr, '
                                                                        'pc, '
                                                                        'frac, '
                                                                        'slope, '
                                                                        'intercept\n'
                                                                        '                            '
                                                                        ')\n'
                                                                        '\n'
                                                                        '                        '
                                                                        '# '
                                                                        'Graphics '
                                                                        '-- '
                                                                        'plot '
                                                                        'map '
                                                                        'image '
                                                                        'to '
                                                                        'PNG\n'
                                                                        '                        '
                                                                        'output_img_file '
                                                                        '= '
                                                                        'os.path.join(\n'
                                                                        '                            '
                                                                        'outdir(output_type="graphics"), '
                                                                        'output_filename\n'
                                                                        '                        '
                                                                        ')\n'
                                                                        '                        '
                                                                        'if '
                                                                        'plot_model:\n'
                                                                        '                            '
                                                                        '# '
                                                                        'plot_map(mode,\n'
                                                                        '                            '
                                                                        '#          '
                                                                        "mip.upper()+' "
                                                                        "'+model+' "
                                                                        "('+run+')',\n"
                                                                        '                            '
                                                                        '#          '
                                                                        'msyear, '
                                                                        'meyear, '
                                                                        'season,\n'
                                                                        '                            '
                                                                        '#          '
                                                                        'eof, '
                                                                        'frac,\n'
                                                                        '                            '
                                                                        '#          '
                                                                        "output_img_file+'_org_eof')\n"
                                                                        '                            '
                                                                        'plot_map(\n'
                                                                        '                                '
                                                                        'mode,\n'
                                                                        '                                '
                                                                        'mip.upper()\n'
                                                                        '                                '
                                                                        '+ " '
                                                                        '"\n'
                                                                        '                                '
                                                                        '+ '
                                                                        'model\n'
                                                                        '                                '
                                                                        '+ " '
                                                                        '("\n'
                                                                        '                                '
                                                                        '+ '
                                                                        'run\n'
                                                                        '                                '
                                                                        '+ ") '
                                                                        '- '
                                                                        'EOF"\n'
                                                                        '                                '
                                                                        '+ '
                                                                        'str(n '
                                                                        '+ '
                                                                        '1),\n'
                                                                        '                                '
                                                                        'msyear,\n'
                                                                        '                                '
                                                                        'meyear,\n'
                                                                        '                                '
                                                                        'season,\n'
                                                                        '                                '
                                                                        'eof_lr(region_subdomain),\n'
                                                                        '                                '
                                                                        'frac,\n'
                                                                        '                                '
                                                                        'output_img_file,\n'
                                                                        '                            '
                                                                        ')\n'
                                                                        '                            '
                                                                        'plot_map(\n'
                                                                        '                                '
                                                                        'mode '
                                                                        '+ '
                                                                        '"_teleconnection",\n'
                                                                        '                                '
                                                                        'mip.upper()\n'
                                                                        '                                '
                                                                        '+ " '
                                                                        '"\n'
                                                                        '                                '
                                                                        '+ '
                                                                        'model\n'
                                                                        '                                '
                                                                        '+ " '
                                                                        '("\n'
                                                                        '                                '
                                                                        '+ '
                                                                        'run\n'
                                                                        '                                '
                                                                        '+ ") '
                                                                        '- '
                                                                        'EOF"\n'
                                                                        '                                '
                                                                        '+ '
                                                                        'str(n '
                                                                        '+ '
                                                                        '1),\n'
                                                                        '                                '
                                                                        'msyear,\n'
                                                                        '                                '
                                                                        'meyear,\n'
                                                                        '                                '
                                                                        'season,\n'
                                                                        '                                '
                                                                        'eof_lr(longitude=(lon1g, '
                                                                        'lon2g)),\n'
                                                                        '                                '
                                                                        'frac,\n'
                                                                        '                                '
                                                                        'output_img_file '
                                                                        '+ '
                                                                        '"_teleconnection",\n'
                                                                        '                            '
                                                                        ')\n'
                                                                        '\n'
                                                                        '                        '
                                                                        '# - - '
                                                                        '- - - '
                                                                        '- - - '
                                                                        '- - - '
                                                                        '- - - '
                                                                        '- - - '
                                                                        '- - - '
                                                                        '- - - '
                                                                        '- -\n'
                                                                        '                        '
                                                                        '# EOF '
                                                                        'swap '
                                                                        'diagnosis\n'
                                                                        '                        '
                                                                        '# - - '
                                                                        '- - - '
                                                                        '- - - '
                                                                        '- - - '
                                                                        '- - - '
                                                                        '- - - '
                                                                        '- - - '
                                                                        '- - - '
                                                                        '- -\n'
                                                                        '                        '
                                                                        'rms_list.append(dict_head["rms"])\n'
                                                                        '                        '
                                                                        'cor_list.append(dict_head["cor"])\n'
                                                                        '                        '
                                                                        'if '
                                                                        'CBF:\n'
                                                                        '                            '
                                                                        'tcor_list.append(dict_head["tcor_cbf_vs_eof_pc"])\n'
                                                                        '\n'
                                                                        '                    '
                                                                        '# '
                                                                        'Find '
                                                                        'best '
                                                                        'matching '
                                                                        'eofs '
                                                                        'with '
                                                                        'different '
                                                                        'criteria\n'
                                                                        '                    '
                                                                        'best_matching_eofs_rms '
                                                                        '= '
                                                                        'rms_list.index(min(rms_list)) '
                                                                        '+ 1\n'
                                                                        '                    '
                                                                        'best_matching_eofs_cor '
                                                                        '= '
                                                                        'cor_list.index(max(cor_list)) '
                                                                        '+ 1\n'
                                                                        '                    '
                                                                        'if '
                                                                        'CBF:\n'
                                                                        '                        '
                                                                        'best_matching_eofs_tcor '
                                                                        '= '
                                                                        'tcor_list.index(max(tcor_list)) '
                                                                        '+ 1\n'
                                                                        '\n'
                                                                        '                    '
                                                                        '# '
                                                                        'Save '
                                                                        'the '
                                                                        'best '
                                                                        'matching '
                                                                        'information '
                                                                        'to '
                                                                        'JSON\n'
                                                                        '                    '
                                                                        'dict_head '
                                                                        '= '
                                                                        'result_dict["RESULTS"][model][run]["defaultReference"][\n'
                                                                        '                        '
                                                                        'mode\n'
                                                                        '                    '
                                                                        '][season]\n'
                                                                        '                    '
                                                                        'dict_head["best_matching_model_eofs__rms"] '
                                                                        '= '
                                                                        'best_matching_eofs_rms\n'
                                                                        '                    '
                                                                        'dict_head["best_matching_model_eofs__cor"] '
                                                                        '= '
                                                                        'best_matching_eofs_cor\n'
                                                                        '                    '
                                                                        'if '
                                                                        'CBF:\n'
                                                                        '                        '
                                                                        'dict_head[\n'
                                                                        '                            '
                                                                        '"best_matching_model_eofs__tcor_cbf_vs_eof_pc"\n'
                                                                        '                        '
                                                                        '] = '
                                                                        'best_matching_eofs_tcor\n'
                                                                        '\n'
                                                                        '                    '
                                                                        'debug_print("conventional '
                                                                        'eof '
                                                                        'end", '
                                                                        'debug)\n'
                                                                        '\n'
                                                                        '            '
                                                                        '# '
                                                                        '=================================================================\n'
                                                                        '            '
                                                                        '# '
                                                                        'Dictionary '
                                                                        'to '
                                                                        'JSON: '
                                                                        'individual '
                                                                        'JSON '
                                                                        'during '
                                                                        'model_realization '
                                                                        'loop\n'
                                                                        '            '
                                                                        '# '
                                                                        '-----------------------------------------------------------------\n'
                                                                        '            '
                                                                        'json_filename_tmp '
                                                                        '= '
                                                                        '"_".join(\n'
                                                                        '                '
                                                                        '[\n'
                                                                        '                    '
                                                                        '"var",\n'
                                                                        '                    '
                                                                        '"mode",\n'
                                                                        '                    '
                                                                        'mode,\n'
                                                                        '                    '
                                                                        '"EOF" '
                                                                        '+ '
                                                                        'str(eofn_mod),\n'
                                                                        '                    '
                                                                        '"stat",\n'
                                                                        '                    '
                                                                        'mip,\n'
                                                                        '                    '
                                                                        'exp,\n'
                                                                        '                    '
                                                                        'fq,\n'
                                                                        '                    '
                                                                        'realm,\n'
                                                                        '                    '
                                                                        'model,\n'
                                                                        '                    '
                                                                        'run,\n'
                                                                        '                    '
                                                                        'str(msyear) '
                                                                        '+ "-" '
                                                                        '+ '
                                                                        'str(meyear),\n'
                                                                        '                '
                                                                        ']\n'
                                                                        '            '
                                                                        ')\n'
                                                                        '            '
                                                                        'variability_metrics_to_json(\n'
                                                                        '                '
                                                                        'outdir,\n'
                                                                        '                '
                                                                        'json_filename_tmp,\n'
                                                                        '                '
                                                                        'result_dict,\n'
                                                                        '                '
                                                                        'model=model,\n'
                                                                        '                '
                                                                        'run=run,\n'
                                                                        '                '
                                                                        'cmec_flag=cmec,\n'
                                                                        '            '
                                                                        ')\n'
                                                                        '\n'
                                                                        '        '
                                                                        'except '
                                                                        'Exception '
                                                                        'as '
                                                                        'err:\n'
                                                                        '            '
                                                                        'if '
                                                                        'debug:\n'
                                                                        '                '
                                                                        'raise\n'
                                                                        '            '
                                                                        'else:\n'
                                                                        '                '
                                                                        'print("warning: '
                                                                        'failed '
                                                                        'for '
                                                                        '", '
                                                                        'model, '
                                                                        'run, '
                                                                        'err)\n'
                                                                        '                '
                                                                        'pass\n'
                                                                        '\n'
                                                                        '# '
                                                                        '========================================================================\n'
                                                                        '# '
                                                                        'Dictionary '
                                                                        'to '
                                                                        'JSON: '
                                                                        'collective '
                                                                        'JSON '
                                                                        'at '
                                                                        'the '
                                                                        'end '
                                                                        'of '
                                                                        'model_realization '
                                                                        'loop\n'
                                                                        '# '
                                                                        '------------------------------------------------------------------------\n'
                                                                        'if '
                                                                        'not '
                                                                        'parallel '
                                                                        'and '
                                                                        '(len(models) '
                                                                        '> '
                                                                        '1):\n'
                                                                        '    '
                                                                        'json_filename_all '
                                                                        '= '
                                                                        '"_".join(\n'
                                                                        '        '
                                                                        '[\n'
                                                                        '            '
                                                                        '"var",\n'
                                                                        '            '
                                                                        '"mode",\n'
                                                                        '            '
                                                                        'mode,\n'
                                                                        '            '
                                                                        '"EOF" '
                                                                        '+ '
                                                                        'str(eofn_mod),\n'
                                                                        '            '
                                                                        '"stat",\n'
                                                                        '            '
                                                                        'mip,\n'
                                                                        '            '
                                                                        'exp,\n'
                                                                        '            '
                                                                        'fq,\n'
                                                                        '            '
                                                                        'realm,\n'
                                                                        '            '
                                                                        '"allModels",\n'
                                                                        '            '
                                                                        '"allRuns",\n'
                                                                        '            '
                                                                        'str(msyear) '
                                                                        '+ "-" '
                                                                        '+ '
                                                                        'str(meyear),\n'
                                                                        '        '
                                                                        ']\n'
                                                                        '    '
                                                                        ')\n'
                                                                        '    '
                                                                        'variability_metrics_to_json(outdir, '
                                                                        'json_filename_all, '
                                                                        'result_dict, '
                                                                        'cmec_flag=cmec)\n'
                                                                        '\n'
                                                                        'if '
                                                                        'not '
                                                                        'debug:\n'
                                                                        '    '
                                                                        'sys.exit(0)\n',
                                                              'userId': 'lee1043'}},
                       'SAM/NOAA-CIRES_20CR': {'REFERENCE': {'obs': {'defaultReference': {'SAM': {'DJF': {'frac': 0.4562539179110453,
                                                                                                          'mean': -2.5046166466364068e-17,
                                                                                                          'mean_glo': 0.1171373412546364,
                                                                                                          'stdv_pc': 1.457243904117931},
                                                                                                  'JJA': {'frac': 0.3221616120884556,
                                                                                                          'mean': -1.4236768307196417e-16,
                                                                                                          'mean_glo': 0.37232875174489327,
                                                                                                          'stdv_pc': 1.4654713731391797},
                                                                                                  'MAM': {'frac': 0.31958172221154224,
                                                                                                          'mean': -8.43660344130158e-17,
                                                                                                          'mean_glo': 0.14632469671857307,
                                                                                                          'stdv_pc': 1.2077052600411469},
                                                                                                  'SON': {'frac': 0.2598473319054579,
                                                                                                          'mean': -4.21830172065079e-17,
                                                                                                          'mean_glo': 0.13852773013772313,
                                                                                                          'stdv_pc': 1.1640631996976736}},
                                                                                          'period': '1955-2005',
                                                                                          'reference_eofs': 1,
                                                                                          'source': '/p/user_pub/PCMDIobs/PCMDIobs2/atmos/mon/psl/20CR/gn/v20200707/psl_mon_20CR_BE_gn_v20200707_187101-201212.nc'}}},
                                               'RESULTS': {'ACCESS-CM2': {'r1i1p1f1': {'defaultReference': {'SAM': {'DJF': {'best_matching_model_eofs__cor': 1,
                                                                                                                            'best_matching_model_eofs__rms': 1,
                                                                                                                            'best_matching_model_eofs__tcor_cbf_vs_eof_pc': 1,
                                                                                                                            'cbf': {'bias': -5.269298038545022e-05,
                                                                                                                                    'bias_glo': 0.11950691960372894,
                                                                                                                                    'cor': 0.9697851236865513,
                                                                                                                                    'cor_glo': 0.8802280790963456,
                                                                                                                                    'frac': 0.5828026733430571,
                                                                                                                                    'frac_cbf_regrid': 0.5860654300158945,
                                                                                                                                    'mean': -1.0018466586545632e-16,
                                                                                                                                    'mean_glo': 0.23664427009217112,
                                                                                                                                    'rms': 0.48190094457590754,
                                                                                                                                    'rms_glo': 0.5002463272582047,
                                                                                                                                    'rmsc': 0.24582463421962192,
                                                                                                                                    'rmsc_glo': 0.48943217546326345,
                                                                                                                                    'stdv_pc': 1.686015665328439,
                                                                                                                                    'stdv_pc_ratio_to_obs': 1.156989341704595},
                                                                                                                            'eof1': {'bias': -4.923065600757851e-05,
                                                                                                                                     'bias_glo': 0.11385160939419825,
                                                                                                                                     'cor': 0.966148682396041,
                                                                                                                                     'cor_glo': 0.8801447518510086,
                                                                                                                                     'frac': 0.5848870375404941,
                                                                                                                                     'mean': -1.0545754301626981e-16,
                                                                                                                                     'mean_glo': 0.23098895996527186,
                                                                                                                                     'rms': 0.5025550487593716,
                                                                                                                                     'rms_glo': 0.4994161418087064,
                                                                                                                                     'rmsc': 0.260197307096292,
                                                                                                                                     'rmsc_glo': 0.48960239233231684,
                                                                                                                                     'stdv_pc': 1.7450456060564956,
                                                                                                                                     'stdv_pc_ratio_to_obs': 1.1974972762797527,
                                                                                                                                     'tcor_cbf_vs_eof_pc': 0.9980301482967994},
                                                                                                                            'eof2': {'bias': -4.2708941869053716e-05,
                                                                                                                                     'bias_glo': -0.035814149966833936,
                                                                                                                                     'cor': 0.1207548734331059,
                                                                                                                                     'cor_glo': 0.1326204289245116,
                                                                                                                                     'frac': 0.06762072588079603,
                                                                                                                                     'mean': 3.1637262904880944e-17,
                                                                                                                                     'mean_glo': -0.08132319292075393,
                                                                                                                                     'rms': 1.505265042722903,
                                                                                                                                     'rms_glo': 0.9880068470137726,
                                                                                                                                     'rmsc': 1.3260808012270338,
                                                                                                                                     'rmsc_glo': 1.3171025572648725,
                                                                                                                                     'stdv_pc': 0.5933496595604119,
                                                                                                                                     'stdv_pc_ratio_to_obs': 0.4071725109871474,
                                                                                                                                     'tcor_cbf_vs_eof_pc': -0.042278308768686705},
                                                                                                                            'eof3': {'bias': 1.0961610021641047e-05,
                                                                                                                                     'bias_glo': -0.10741978933060499,
                                                                                                                                     'cor': 0.12234164950539358,
                                                                                                                                     'cor_glo': -0.13394580215719515,
                                                                                                                                     'frac': 0.047768615436169164,
                                                                                                                                     'mean': 0.0,
                                                                                                                                     'mean_glo': 0.009717550169868978,
                                                                                                                                     'rms': 1.4811177556708754,
                                                                                                                                     'rms_glo': 1.0814558392757128,
                                                                                                                                     'rmsc': 1.3248836699856539,
                                                                                                                                     'rmsc_glo': 1.5059520562414093,
                                                                                                                                     'stdv_pc': 0.49870314847599734,
                                                                                                                                     'stdv_pc_ratio_to_obs': 0.34222352693790276,
                                                                                                                                     'tcor_cbf_vs_eof_pc': 0.036237953189162585},
                                                                                                                            'period': '1900-2005'},
                                                                                                                    'JJA': {'best_matching_model_eofs__cor': 1,
                                                                                                                            'best_matching_model_eofs__rms': 1,
                                                                                                                            'best_matching_model_eofs__tcor_cbf_vs_eof_pc': 1,
                                                                                                                            'cbf': {'bias': -0.00028355015540367434,
                                                                                                                                    'bias_glo': -0.11148591176836914,
                                                                                                                                    'cor': 0.9364523138600597,
                                                                                                                                    'cor_glo': 0.926237501919874,
                                                                                                                                    'frac': 0.32356230260872354,
                                                                                                                                    'frac_cbf_regrid': 0.3252988508609704,
                                                                                                                                    'mean': -3.6910140055694435e-17,
                                                                                                                                    'mean_glo': 0.2608428462148998,
                                                                                                                                    'rms': 0.5232378326112745,
                                                                                                                                    'rms_glo': 0.3548302237797872,
                                                                                                                                    'rmsc': 0.35650436851915973,
                                                                                                                                    'rmsc_glo': 0.38408983370742783,
                                                                                                                                    'stdv_pc': 1.3764070510832067,
                                                                                                                                    'stdv_pc_ratio_to_obs': 0.9392247957289068},
                                                                                                                            'eof1': {'bias': -0.0002940060708703811,
                                                                                                                                     'bias_glo': -0.11878735477589863,
                                                                                                                                     'cor': 0.9235216096924618,
                                                                                                                                     'cor_glo': 0.9134039306582976,
                                                                                                                                     'frac': 0.32772317091806025,
                                                                                                                                     'mean': -5.80016486589484e-17,
                                                                                                                                     'mean_glo': 0.253541403513882,
                                                                                                                                     'rms': 0.5759830178780829,
                                                                                                                                     'rms_glo': 0.384402231349771,
                                                                                                                                     'rmsc': 0.3910968877640621,
                                                                                                                                     'rmsc_glo': 0.41616358816466587,
                                                                                                                                     'stdv_pc': 1.481426950965458,
                                                                                                                                     'stdv_pc_ratio_to_obs': 1.0108876762239989,
                                                                                                                                     'tcor_cbf_vs_eof_pc': 0.9924910539258363},
                                                                                                                            'eof2': {'bias': -0.00018942105198781228,
                                                                                                                                     'bias_glo': -0.4172067267262394,
                                                                                                                                     'cor': 0.02212117068066837,
                                                                                                                                     'cor_glo': 0.0026534362774738823,
                                                                                                                                     'frac': 0.13824225535176857,
                                                                                                                                     'mean': 0.0,
                                                                                                                                     'mean_glo': 0.044877975259985776,
                                                                                                                                     'rms': 1.733973566481088,
                                                                                                                                     'rms_glo': 1.1273637464374442,
                                                                                                                                     'rmsc': 1.3984840398473215,
                                                                                                                                     'rmsc_glo': 1.4123360176553426,
                                                                                                                                     'stdv_pc': 0.9621595003434875,
                                                                                                                                     'stdv_pc_ratio_to_obs': 0.6565529139490797,
                                                                                                                                     'tcor_cbf_vs_eof_pc': -0.015426209786497136},
                                                                                                                            'eof3': {'bias': 0.00015423203655238446,
                                                                                                                                     'bias_glo': -0.36143313014327344,
                                                                                                                                     'cor': 0.10882000978769023,
                                                                                                                                     'cor_glo': 0.11179747126002094,
                                                                                                                                     'frac': 0.09014524229209943,
                                                                                                                                     'mean': -1.0545754301626981e-17,
                                                                                                                                     'mean_glo': 0.010895619012246031,
                                                                                                                                     'rms': 1.5814784333720524,
                                                                                                                                     'rms_glo': 1.0161642890551983,
                                                                                                                                     'rmsc': 1.3350505475300825,
                                                                                                                                     'rmsc_glo': 1.3328184890174612,
                                                                                                                                     'stdv_pc': 0.776958947423836,
                                                                                                                                     'stdv_pc_ratio_to_obs': 0.5301768165962298,
                                                                                                                                     'tcor_cbf_vs_eof_pc': 0.06127382963964344},
                                                                                                                            'period': '1900-2005'},
                                                                                                                    'MAM': {'best_matching_model_eofs__cor': 1,
                                                                                                                            'best_matching_model_eofs__rms': 1,
                                                                                                                            'best_matching_model_eofs__tcor_cbf_vs_eof_pc': 1,
                                                                                                                            'cbf': {'bias': 9.856457863310874e-06,
                                                                                                                                    'bias_glo': -0.03201947240234709,
                                                                                                                                    'cor': 0.935434381679582,
                                                                                                                                    'cor_glo': 0.9038170430442503,
                                                                                                                                    'frac': 0.2906027355534385,
                                                                                                                                    'frac_cbf_regrid': 0.2924833975006437,
                                                                                                                                    'mean': -1.0545754301626981e-17,
                                                                                                                                    'mean_glo': 0.11430523040196522,
                                                                                                                                    'rms': 0.43262013425876333,
                                                                                                                                    'rms_glo': 0.3119241005748371,
                                                                                                                                    'rmsc': 0.3593483501402096,
                                                                                                                                    'rmsc_glo': 0.43859538784807184,
                                                                                                                                    'stdv_pc': 0.9913346914160917,
                                                                                                                                    'stdv_pc_ratio_to_obs': 0.8208415780041536},
                                                                                                                            'eof1': {'bias': 1.3310153733886777e-05,
                                                                                                                                     'bias_glo': -0.049763930260813646,
                                                                                                                                     'cor': 0.9170830115966025,
                                                                                                                                     'cor_glo': 0.8738109604415747,
                                                                                                                                     'frac': 0.2958408890571067,
                                                                                                                                     'mean': -1.0545754301626981e-17,
                                                                                                                                     'mean_glo': 0.09656077311431631,
                                                                                                                                     'rms': 0.48303367915162043,
                                                                                                                                     'rms_glo': 0.35485983518203396,
                                                                                                                                     'rmsc': 0.40722718176398304,
                                                                                                                                     'rmsc_glo': 0.5023724448881325,
                                                                                                                                     'stdv_pc': 1.0714329814357924,
                                                                                                                                     'stdv_pc_ratio_to_obs': 0.887164291558429,
                                                                                                                                     'tcor_cbf_vs_eof_pc': 0.9891163884196988},
                                                                                                                            'eof2': {'bias': -1.9147894046915526e-05,
                                                                                                                                     'bias_glo': -0.06606709319414929,
                                                                                                                                     'cor': 0.08875556880296649,
                                                                                                                                     'cor_glo': 0.13318795445884346,
                                                                                                                                     'frac': 0.11100042781332697,
                                                                                                                                     'mean': 0.0,
                                                                                                                                     'mean_glo': -0.08025760494185828,
                                                                                                                                     'rms': 1.3217261440783337,
                                                                                                                                     'rms_glo': 0.7779605855823802,
                                                                                                                                     'rmsc': 1.3499958668122258,
                                                                                                                                     'rmsc_glo': 1.3166716028177714,
                                                                                                                                     'stdv_pc': 0.6562937036928822,
                                                                                                                                     'stdv_pc_ratio_to_obs': 0.5434220793826153,
                                                                                                                                     'tcor_cbf_vs_eof_pc': -0.058626923708344186},
                                                                                                                            'eof3': {'bias': 1.306740616623957e-05,
                                                                                                                                     'bias_glo': -0.09900748874103554,
                                                                                                                                     'cor': 0.008489567422180244,
                                                                                                                                     'cor_glo': -0.04356162823096277,
                                                                                                                                     'frac': 0.08166972957004552,
                                                                                                                                     'mean': 2.6364385754067453e-17,
                                                                                                                                     'mean_glo': 0.04731720958432068,
                                                                                                                                     'rms': 1.3276015093335092,
                                                                                                                                     'rms_glo': 0.8499228677532302,
                                                                                                                                     'rmsc': 1.4081977195907027,
                                                                                                                                     'rmsc_glo': 1.4446879177499754,
                                                                                                                                     'stdv_pc': 0.5629456534007524,
                                                                                                                                     'stdv_pc_ratio_to_obs': 0.46612834441209,
                                                                                                                                     'tcor_cbf_vs_eof_pc': 0.00481015361533838},
                                                                                                                            'period': '1900-2005'},
                                                                                                                    'SON': {'best_matching_model_eofs__cor': 1,
                                                                                                                            'best_matching_model_eofs__rms': 1,
                                                                                                                            'best_matching_model_eofs__tcor_cbf_vs_eof_pc': 1,
                                                                                                                            'cbf': {'bias': -0.000162940338431094,
                                                                                                                                    'bias_glo': 0.06063641551009927,
                                                                                                                                    'cor': 0.9705251692856602,
                                                                                                                                    'cor_glo': 0.9133048372294851,
                                                                                                                                    'frac': 0.39907391943200277,
                                                                                                                                    'frac_cbf_regrid': 0.4011070470650319,
                                                                                                                                    'mean': -2.1091508603253963e-17,
                                                                                                                                    'mean_glo': 0.19916415299465545,
                                                                                                                                    'rms': 0.5286340166081225,
                                                                                                                                    'rms_glo': 0.40640869646909916,
                                                                                                                                    'rmsc': 0.24279550479889184,
                                                                                                                                    'rmsc_glo': 0.4164016377145264,
                                                                                                                                    'stdv_pc': 1.5313004021740473,
                                                                                                                                    'stdv_pc_ratio_to_obs': 1.3154787494113303},
                                                                                                                            'eof1': {'bias': -0.00015223928957334792,
                                                                                                                                     'bias_glo': 0.06117405612445259,
                                                                                                                                     'cor': 0.9621389051623103,
                                                                                                                                     'cor_glo': 0.9041135150719032,
                                                                                                                                     'frac': 0.4021390052288023,
                                                                                                                                     'mean': -3.1637262904880944e-17,
                                                                                                                                     'mean_glo': 0.19970179414184888,
                                                                                                                                     'rms': 0.5619968721160521,
                                                                                                                                     'rms_glo': 0.4229029907300569,
                                                                                                                                     'rmsc': 0.2751766662815087,
                                                                                                                                     'rmsc_glo': 0.4379189086200226,
                                                                                                                                     'stdv_pc': 1.5865152536013243,
                                                                                                                                     'stdv_pc_ratio_to_obs': 1.3629116134015478,
                                                                                                                                     'tcor_cbf_vs_eof_pc': 0.9951636308745293},
                                                                                                                            'eof2': {'bias': -0.00013799557019459263,
                                                                                                                                     'bias_glo': -0.10063181157790646,
                                                                                                                                     'cor': 0.14838017076977972,
                                                                                                                                     'cor_glo': 0.17635952706502078,
                                                                                                                                     'frac': 0.10403074726389928,
                                                                                                                                     'mean': -1.8455070027847217e-17,
                                                                                                                                     'mean_glo': -0.03789591887856539,
                                                                                                                                     'rms': 1.3134291884719855,
                                                                                                                                     'rms_glo': 0.7968956716455383,
                                                                                                                                     'rmsc': 1.305082258997213,
                                                                                                                                     'rmsc_glo': 1.2834644223527172,
                                                                                                                                     'stdv_pc': 0.8069321357178891,
                                                                                                                                     'stdv_pc_ratio_to_obs': 0.6932030287766702,
                                                                                                                                     'tcor_cbf_vs_eof_pc': -0.07801171238977422},
                                                                                                                            'eof3': {'bias': -4.352665445383969e-06,
                                                                                                                                     'bias_glo': -0.11790496226080023,
                                                                                                                                     'cor': 0.029611347983321226,
                                                                                                                                     'cor_glo': 0.0034690132418639264,
                                                                                                                                     'frac': 0.0983771633976373,
                                                                                                                                     'mean': 2.1091508603253963e-17,
                                                                                                                                     'mean_glo': -0.020622768407231446,
                                                                                                                                     'rms': 1.3834507204023014,
                                                                                                                                     'rms_glo': 0.8551045909043932,
                                                                                                                                     'rmsc': 1.3931178187099829,
                                                                                                                                     'rmsc_glo': 1.4117584732942536,
                                                                                                                                     'stdv_pc': 0.7846993635168551,
                                                                                                                                     'stdv_pc_ratio_to_obs': 0.6741037460171015,
                                                                                                                                     'tcor_cbf_vs_eof_pc': -0.015138369902150743},
                                                                                                                            'period': '1900-2005'},
                                                                                                                    'target_model_eofs': 1}}},
                                                                          'r2i1p1f1': {'defaultReference': {'SAM': {'DJF': {'best_matching_model_eofs__cor': 1,
                                                                                                                            'best_matching_model_eofs__rms': 1,
                                                                                                                            'best_matching_model_eofs__tcor_cbf_vs_eof_pc': 1,
                                                                                                                            'cbf': {'bias': -3.977938344981557e-05,
                                                                                                                                    'bias_glo': 0.21763488375236864,
                                                                                                                                    'cor': 0.9773637104712682,
                                                                                                                                    'cor_glo': 0.915178846095655,
                                                                                                                                    'frac': 0.6010060030787019,
                                                                                                                                    'frac_cbf_regrid': 0.6041173055138346,
                                                                                                                                    'mean': -1.0545754301626981e-16,
                                                                                                                                    'mean_glo': 0.3347722355914064,
                                                                                                                                    'rms': 0.5737721133508568,
                                                                                                                                    'rms_glo': 0.5281655811792338,
                                                                                                                                    'rmsc': 0.2127735405554008,
                                                                                                                                    'rmsc_glo': 0.4118765732193537,
                                                                                                                                    'stdv_pc': 1.8649680623132638,
                                                                                                                                    'stdv_pc_ratio_to_obs': 1.2797912944038892},
                                                                                                                            'eof1': {'bias': -3.3635357119556995e-05,
                                                                                                                                     'bias_glo': 0.21251631019689307,
                                                                                                                                     'cor': 0.974698689397545,
                                                                                                                                     'cor_glo': 0.9130500809381811,
                                                                                                                                     'frac': 0.6026010332711602,
                                                                                                                                     'mean': -1.2654905161952378e-16,
                                                                                                                                     'mean_glo': 0.32965366240690724,
                                                                                                                                     'rms': 0.5898145578138093,
                                                                                                                                     'rms_glo': 0.5298414083211863,
                                                                                                                                     'rmsc': 0.2249502599194964,
                                                                                                                                     'rmsc_glo': 0.4170129993757467,
                                                                                                                                     'stdv_pc': 1.914191264044287,
                                                                                                                                     'stdv_pc_ratio_to_obs': 1.3135695806550285,
                                                                                                                                     'tcor_cbf_vs_eof_pc': 0.9985565468372065},
                                                                                                                            'eof2': {'bias': -9.976379876821416e-05,
                                                                                                                                     'bias_glo': -0.01796693181243901,
                                                                                                                                     'cor': 0.11955692556236167,
                                                                                                                                     'cor_glo': 0.10736936983185438,
                                                                                                                                     'frac': 0.07405874053976022,
                                                                                                                                     'mean': 4.2183017206507925e-17,
                                                                                                                                     'mean_glo': -0.0991704121895437,
                                                                                                                                     'rms': 1.5291331829892416,
                                                                                                                                     'rms_glo': 1.030653038156919,
                                                                                                                                     'rmsc': 1.326983847760217,
                                                                                                                                     'rmsc_glo': 1.3361367145219516,
                                                                                                                                     'stdv_pc': 0.6710556772083546,
                                                                                                                                     'stdv_pc_ratio_to_obs': 0.46049647235583685,
                                                                                                                                     'tcor_cbf_vs_eof_pc': -0.04367153244489825},
                                                                                                                            'eof3': {'bias': -7.840956563094369e-06,
                                                                                                                                     'bias_glo': -0.03285162834631636,
                                                                                                                                     'cor': 0.07826619232203601,
                                                                                                                                     'cor_glo': 0.16392278693591378,
                                                                                                                                     'frac': 0.0460154347803512,
                                                                                                                                     'mean': -4.2183017206507925e-17,
                                                                                                                                     'mean_glo': 0.08428571201829485,
                                                                                                                                     'rms': 1.510550023740754,
                                                                                                                                     'rms_glo': 0.9348205739403244,
                                                                                                                                     'rmsc': 1.3577435849784103,
                                                                                                                                     'rmsc_glo': 1.2931181159798453,
                                                                                                                                     'stdv_pc': 0.5289591801760333,
                                                                                                                                     'stdv_pc_ratio_to_obs': 0.3629860304656495,
                                                                                                                                     'tcor_cbf_vs_eof_pc': 0.021382386935038317},
                                                                                                                            'period': '1900-2005'},
                                                                                                                    'JJA': {'best_matching_model_eofs__cor': 1,
                                                                                                                            'best_matching_model_eofs__rms': 1,
                                                                                                                            'best_matching_model_eofs__tcor_cbf_vs_eof_pc': 1,
                                                                                                                            'cbf': {'bias': -0.00035174348022506047,
                                                                                                                                    'bias_glo': -0.07657439253291964,
                                                                                                                                    'cor': 0.9452140712270732,
                                                                                                                                    'cor_glo': 0.9377118414725034,
                                                                                                                                    'frac': 0.3305270121249063,
                                                                                                                                    'frac_cbf_regrid': 0.33221949400961365,
                                                                                                                                    'mean': -2.3727947178660708e-17,
                                                                                                                                    'mean_glo': 0.29575436649609843,
                                                                                                                                    'rms': 0.5121887962125765,
                                                                                                                                    'rms_glo': 0.3311313332590484,
                                                                                                                                    'rmsc': 0.3310163905263822,
                                                                                                                                    'rmsc_glo': 0.35295370584900015,
                                                                                                                                    'stdv_pc': 1.4822104916072063,
                                                                                                                                    'stdv_pc_ratio_to_obs': 1.0114223442196415},
                                                                                                                            'eof1': {'bias': -0.00032884986927602435,
                                                                                                                                     'bias_glo': -0.07731247473833097,
                                                                                                                                     'cor': 0.9212938810173146,
                                                                                                                                     'cor_glo': 0.9154786805137464,
                                                                                                                                     'frac': 0.337719770630973,
                                                                                                                                     'mean': -5.1410552220431534e-17,
                                                                                                                                     'mean_glo': 0.29501628408190683,
                                                                                                                                     'rms': 0.6164114216458467,
                                                                                                                                     'rms_glo': 0.3853062630973712,
                                                                                                                                     'rmsc': 0.3967521087242909,
                                                                                                                                     'rmsc_glo': 0.41114795039896895,
                                                                                                                                     'stdv_pc': 1.5872975563300022,
                                                                                                                                     'stdv_pc_ratio_to_obs': 1.083131056275674,
                                                                                                                                     'tcor_cbf_vs_eof_pc': 0.9852414982702601},
                                                                                                                            'eof2': {'bias': -0.00021972896371135858,
                                                                                                                                     'bias_glo': -0.4177922683926618,
                                                                                                                                     'cor': 0.22878076729404676,
                                                                                                                                     'cor_glo': 0.19338477756846814,
                                                                                                                                     'frac': 0.11250205019542389,
                                                                                                                                     'mean': -1.0545754301626981e-17,
                                                                                                                                     'mean_glo': 0.04546351576528928,
                                                                                                                                     'rms': 1.539510662184708,
                                                                                                                                     'rms_glo': 1.0306329383807635,
                                                                                                                                     'rmsc': 1.2419494776131426,
                                                                                                                                     'rmsc_glo': 1.2701300780878115,
                                                                                                                                     'stdv_pc': 0.9161367889741772,
                                                                                                                                     'stdv_pc_ratio_to_obs': 0.6251481985702148,
                                                                                                                                     'tcor_cbf_vs_eof_pc': -0.1410725161843164},
                                                                                                                            'eof3': {'bias': -0.00021550109771266565,
                                                                                                                                     'bias_glo': -0.3354748538529991,
                                                                                                                                     'cor': 0.0699374370920332,
                                                                                                                                     'cor_glo': 0.07926466736468207,
                                                                                                                                     'frac': 0.09275365984589841,
                                                                                                                                     'mean': 4.2183017206507925e-17,
                                                                                                                                     'mean_glo': -0.03685389908813711,
                                                                                                                                     'rms': 1.6327824586651554,
                                                                                                                                     'rms_glo': 1.036100415905059,
                                                                                                                                     'rmsc': 1.3638640196612637,
                                                                                                                                     'rmsc_glo': 1.357007981555851,
                                                                                                                                     'stdv_pc': 0.831851170932602,
                                                                                                                                     'stdv_pc_ratio_to_obs': 0.5676338590979756,
                                                                                                                                     'tcor_cbf_vs_eof_pc': -0.039150457037895284},
                                                                                                                            'period': '1900-2005'},
                                                                                                                    'MAM': {'best_matching_model_eofs__cor': 1,
                                                                                                                            'best_matching_model_eofs__rms': 1,
                                                                                                                            'best_matching_model_eofs__tcor_cbf_vs_eof_pc': 1,
                                                                                                                            'cbf': {'bias': -2.669561076554198e-06,
                                                                                                                                    'bias_glo': -0.04113243356566698,
                                                                                                                                    'cor': 0.9692748599904878,
                                                                                                                                    'cor_glo': 0.8789429843577946,
                                                                                                                                    'frac': 0.36808462728835256,
                                                                                                                                    'frac_cbf_regrid': 0.37031606406199624,
                                                                                                                                    'mean': 0.0,
                                                                                                                                    'mean_glo': 0.10519226995305661,
                                                                                                                                    'rms': 0.3133887716777194,
                                                                                                                                    'rms_glo': 0.3677727715107242,
                                                                                                                                    'rmsc': 0.24789166701481094,
                                                                                                                                    'rmsc_glo': 0.4920508414727867,
                                                                                                                                    'stdv_pc': 1.2313699203542128,
                                                                                                                                    'stdv_pc_ratio_to_obs': 1.0195947315094576},
                                                                                                                            'eof1': {'bias': 9.477992254666298e-06,
                                                                                                                                     'bias_glo': -0.04575174687254442,
                                                                                                                                     'cor': 0.9610184238516781,
                                                                                                                                     'cor_glo': 0.8649012606714919,
                                                                                                                                     'frac': 0.3708587817411,
                                                                                                                                     'mean': -2.1091508603253963e-17,
                                                                                                                                     'mean_glo': 0.10057295664255902,
                                                                                                                                     'rms': 0.35299832351805643,
                                                                                                                                     'rms_glo': 0.3908384156882473,
                                                                                                                                     'rmsc': 0.2792188297697809,
                                                                                                                                     'rmsc_glo': 0.5198052288832623,
                                                                                                                                     'stdv_pc': 1.2775761071639227,
                                                                                                                                     'stdv_pc_ratio_to_obs': 1.0578542210873498,
                                                                                                                                     'tcor_cbf_vs_eof_pc': 0.9951705849420839},
                                                                                                                            'eof2': {'bias': -6.11485233952723e-05,
                                                                                                                                     'bias_glo': -0.1336552604755493,
                                                                                                                                     'cor': 0.14814851600712906,
                                                                                                                                     'cor_glo': 0.14579036380058882,
                                                                                                                                     'frac': 0.10409999288038643,
                                                                                                                                     'mean': -1.0545754301626981e-17,
                                                                                                                                     'mean_glo': -0.01266943694444575,
                                                                                                                                     'rms': 1.2934097536187863,
                                                                                                                                     'rms_glo': 0.7889660648356129,
                                                                                                                                     'rmsc': 1.3052596942345596,
                                                                                                                                     'rmsc_glo': 1.3070651635591317,
                                                                                                                                     'stdv_pc': 0.6768740234549614,
                                                                                                                                     'stdv_pc_ratio_to_obs': 0.5604629257240298,
                                                                                                                                     'tcor_cbf_vs_eof_pc': -0.08124371283448206},
                                                                                                                            'eof3': {'bias': -7.218390546106291e-05,
                                                                                                                                     'bias_glo': -0.08804757047955741,
                                                                                                                                     'cor': 0.041704556658262844,
                                                                                                                                     'cor_glo': 0.10013553008142861,
                                                                                                                                     'frac': 0.06581187877955454,
                                                                                                                                     'mean': -1.5818631452440472e-17,
                                                                                                                                     'mean_glo': 0.058277127186069665,
                                                                                                                                     'rms': 1.3011104729153449,
                                                                                                                                     'rms_glo': 0.7726959623219125,
                                                                                                                                     'rmsc': 1.3844099176157412,
                                                                                                                                     'rmsc_glo': 1.341539744744795,
                                                                                                                                     'stdv_pc': 0.538188783179859,
                                                                                                                                     'stdv_pc_ratio_to_obs': 0.44562924497118006,
                                                                                                                                     'tcor_cbf_vs_eof_pc': 0.018189480161234818},
                                                                                                                            'period': '1900-2005'},
                                                                                                                    'SON': {'best_matching_model_eofs__cor': 1,
                                                                                                                            'best_matching_model_eofs__rms': 1,
                                                                                                                            'best_matching_model_eofs__tcor_cbf_vs_eof_pc': 1,
                                                                                                                            'cbf': {'bias': -0.00016290578517135857,
                                                                                                                                    'bias_glo': 0.05209001946171765,
                                                                                                                                    'cor': 0.975176766218942,
                                                                                                                                    'cor_glo': 0.9444432732279271,
                                                                                                                                    'frac': 0.30011620819469037,
                                                                                                                                    'frac_cbf_regrid': 0.30172238249098843,
                                                                                                                                    'mean': 0.0,
                                                                                                                                    'mean_glo': 0.19061775527304617,
                                                                                                                                    'rms': 0.281806604685579,
                                                                                                                                    'rms_glo': 0.24814997261603045,
                                                                                                                                    'rmsc': 0.22281486647153792,
                                                                                                                                    'rmsc_glo': 0.33333683890241117,
                                                                                                                                    'stdv_pc': 1.2180768753401474,
                                                                                                                                    'stdv_pc_ratio_to_obs': 1.0464009820570757},
                                                                                                                            'eof1': {'bias': -0.00016221019778192341,
                                                                                                                                     'bias_glo': 0.0557553979704023,
                                                                                                                                     'cor': 0.968908472654283,
                                                                                                                                     'cor_glo': 0.9385820566669394,
                                                                                                                                     'frac': 0.301865111512992,
                                                                                                                                     'mean': 1.0545754301626981e-17,
                                                                                                                                     'mean_glo': 0.1942831337789094,
                                                                                                                                     'rms': 0.3139137379483143,
                                                                                                                                     'rms_glo': 0.2618893505665724,
                                                                                                                                     'rmsc': 0.24936530196423806,
                                                                                                                                     'rmsc_glo': 0.3504795122736195,
                                                                                                                                     'stdv_pc': 1.2548076122523977,
                                                                                                                                     'stdv_pc_ratio_to_obs': 1.0779548847333134,
                                                                                                                                     'tcor_cbf_vs_eof_pc': 0.9964766337594333},
                                                                                                                            'eof2': {'bias': 0.00015579864956787,
                                                                                                                                     'bias_glo': -0.22558328762952928,
                                                                                                                                     'cor': 0.006620747895630436,
                                                                                                                                     'cor_glo': -0.05433980235271095,
                                                                                                                                     'frac': 0.14308421270521562,
                                                                                                                                     'mean': 1.0545754301626981e-17,
                                                                                                                                     'mean_glo': -0.08705555734832619,
                                                                                                                                     'rms': 1.4438472593044078,
                                                                                                                                     'rms_glo': 0.9335085608476669,
                                                                                                                                     'rmsc': 1.4095242066928106,
                                                                                                                                     'rmsc_glo': 1.4521293475512889,
                                                                                                                                     'stdv_pc': 0.8639061047125601,
                                                                                                                                     'stdv_pc_ratio_to_obs': 0.7421470801043542,
                                                                                                                                     'tcor_cbf_vs_eof_pc': 0.004684992779494905},
                                                                                                                            'eof3': {'bias': 4.2663866397142575e-05,
                                                                                                                                     'bias_glo': -0.17575629624879438,
                                                                                                                                     'cor': 0.027282976716345133,
                                                                                                                                     'cor_glo': 0.04288983482049369,
                                                                                                                                     'frac': 0.1044996866923662,
                                                                                                                                     'mean': 5.272877150813491e-18,
                                                                                                                                     'mean_glo': 0.03722856411478338,
                                                                                                                                     'rms': 1.3606141709425272,
                                                                                                                                     'rms_glo': 0.8365912013646536,
                                                                                                                                     'rmsc': 1.3947881812485756,
                                                                                                                                     'rmsc_glo': 1.3835535226247637,
                                                                                                                                     'stdv_pc': 0.7382920263080853,
                                                                                                                                     'stdv_pc_ratio_to_obs': 0.6342370641901848,
                                                                                                                                     'tcor_cbf_vs_eof_pc': -0.016505584017468176},
                                                                                                                            'period': '1900-2005'},
                                                                                                                    'target_model_eofs': 1}}},
                                                                          'r3i1p1f1': {'defaultReference': {'SAM': {'DJF': {'best_matching_model_eofs__cor': 1,
                                                                                                                            'best_matching_model_eofs__rms': 1,
                                                                                                                            'best_matching_model_eofs__tcor_cbf_vs_eof_pc': 1,
                                                                                                                            'cbf': {'bias': -2.140013738748462e-05,
                                                                                                                                    'bias_glo': 0.15263196405441012,
                                                                                                                                    'cor': 0.9621189233978467,
                                                                                                                                    'cor_glo': 0.8488455611440742,
                                                                                                                                    'frac': 0.6112312241337716,
                                                                                                                                    'frac_cbf_regrid': 0.614554667609233,
                                                                                                                                    'mean': -1.160032973178968e-16,
                                                                                                                                    'mean_glo': 0.26976931525498793,
                                                                                                                                    'rms': 0.6094339829239013,
                                                                                                                                    'rms_glo': 0.6037521819109274,
                                                                                                                                    'rmsc': 0.27524925267688555,
                                                                                                                                    'rmsc_glo': 0.5498262317953793,
                                                                                                                                    'stdv_pc': 1.7935628481804446,
                                                                                                                                    'stdv_pc_ratio_to_obs': 1.230791114042153},
                                                                                                                            'eof1': {'bias': -1.9474806127309213e-05,
                                                                                                                                     'bias_glo': 0.14841634064534173,
                                                                                                                                     'cor': 0.9583481500238333,
                                                                                                                                     'cor_glo': 0.8462441791275519,
                                                                                                                                     'frac': 0.613532807204669,
                                                                                                                                     'mean': -9.491178871464283e-17,
                                                                                                                                     'mean_glo': 0.2655536914591872,
                                                                                                                                     'rms': 0.6285436940981807,
                                                                                                                                     'rms_glo': 0.6079264828551063,
                                                                                                                                     'rmsc': 0.2886237975661997,
                                                                                                                                     'rmsc_glo': 0.5545373320875485,
                                                                                                                                     'stdv_pc': 1.8713003695617692,
                                                                                                                                     'stdv_pc_ratio_to_obs': 1.2841366941208556,
                                                                                                                                     'tcor_cbf_vs_eof_pc': 0.9979587214651189},
                                                                                                                            'eof2': {'bias': 2.7117875628307673e-05,
                                                                                                                                     'bias_glo': -0.12893264233148943,
                                                                                                                                     'cor': 0.15675665449823561,
                                                                                                                                     'cor_glo': 0.162819307211018,
                                                                                                                                     'frac': 0.05814278337448655,
                                                                                                                                     'mean': 1.3182192877033727e-17,
                                                                                                                                     'mean_glo': -0.011795300328799616,
                                                                                                                                     'rms': 1.480282647179063,
                                                                                                                                     'rms_glo': 0.9587315428324144,
                                                                                                                                     'rmsc': 1.2986480056163219,
                                                                                                                                     'rmsc_glo': 1.2939711775869034,
                                                                                                                                     'stdv_pc': 0.5760663630546345,
                                                                                                                                     'stdv_pc_ratio_to_obs': 0.3953122476112379,
                                                                                                                                     'tcor_cbf_vs_eof_pc': 0.050296417667979376},
                                                                                                                            'eof3': {'bias': 0.00012629269650664185,
                                                                                                                                     'bias_glo': -0.13704941842182275,
                                                                                                                                     'cor': 0.00752731811840126,
                                                                                                                                     'cor_glo': 0.06037194452789647,
                                                                                                                                     'frac': 0.04491170432586338,
                                                                                                                                     'mean': -1.0545754301626981e-17,
                                                                                                                                     'mean_glo': -0.01991207833516348,
                                                                                                                                     'rms': 1.5385235622591111,
                                                                                                                                     'rms_glo': 0.977590622389407,
                                                                                                                                     'rmsc': 1.4088808634325531,
                                                                                                                                     'rmsc_glo': 1.3708596241663271,
                                                                                                                                     'stdv_pc': 0.5062958599978237,
                                                                                                                                     'stdv_pc_ratio_to_obs': 0.3474338500007549,
                                                                                                                                     'tcor_cbf_vs_eof_pc': 0.0021907500088488253},
                                                                                                                            'period': '1900-2005'},
                                                                                                                    'JJA': {'best_matching_model_eofs__cor': 1,
                                                                                                                            'best_matching_model_eofs__rms': 1,
                                                                                                                            'best_matching_model_eofs__tcor_cbf_vs_eof_pc': 1,
                                                                                                                            'cbf': {'bias': -0.00023372710024560333,
                                                                                                                                    'bias_glo': -0.12038228354494046,
                                                                                                                                    'cor': 0.907090469535461,
                                                                                                                                    'cor_glo': 0.8962369206364421,
                                                                                                                                    'frac': 0.28536966397363234,
                                                                                                                                    'frac_cbf_regrid': 0.28687979652772605,
                                                                                                                                    'mean': 3.954657863110118e-18,
                                                                                                                                    'mean_glo': 0.2519464754230252,
                                                                                                                                    'rms': 0.6189634219380588,
                                                                                                                                    'rms_glo': 0.41130189387510396,
                                                                                                                                    'rmsc': 0.43106734599334084,
                                                                                                                                    'rmsc_glo': 0.4555503957335476,
                                                                                                                                    'stdv_pc': 1.2519549255967577,
                                                                                                                                    'stdv_pc_ratio_to_obs': 0.8543018639217432},
                                                                                                                            'eof1': {'bias': -0.00016969608012104272,
                                                                                                                                     'bias_glo': -0.1318796882869407,
                                                                                                                                     'cor': 0.8440260033903262,
                                                                                                                                     'cor_glo': 0.8364315849388051,
                                                                                                                                     'frac': 0.3016810497203115,
                                                                                                                                     'mean': 1.1863973589330354e-17,
                                                                                                                                     'mean_glo': 0.2404490707598704,
                                                                                                                                     'rms': 0.8067616541898729,
                                                                                                                                     'rms_glo': 0.5117945660024598,
                                                                                                                                     'rmsc': 0.55852304304005,
                                                                                                                                     'rmsc_glo': 0.5719587741609556,
                                                                                                                                     'stdv_pc': 1.4211111654472133,
                                                                                                                                     'stdv_pc_ratio_to_obs': 0.9697297344014693,
                                                                                                                                     'tcor_cbf_vs_eof_pc': 0.956656444188046},
                                                                                                                            'eof2': {'bias': -0.00030336174616814174,
                                                                                                                                     'bias_glo': -0.33101487430138965,
                                                                                                                                     'cor': 0.32171039689965125,
                                                                                                                                     'cor_glo': 0.3107065114915141,
                                                                                                                                     'frac': 0.13403588045859777,
                                                                                                                                     'mean': 5.272877150813491e-18,
                                                                                                                                     'mean_glo': 0.04131387915329415,
                                                                                                                                     'rms': 1.46610598950858,
                                                                                                                                     'rms_glo': 0.9482376110136843,
                                                                                                                                     'rmsc': 1.1647228109327954,
                                                                                                                                     'rmsc_glo': 1.1741324315552037,
                                                                                                                                     'stdv_pc': 0.9472499087535319,
                                                                                                                                     'stdv_pc_ratio_to_obs': 0.6463789918491769,
                                                                                                                                     'tcor_cbf_vs_eof_pc': 0.24280336738350888},
                                                                                                                            'eof3': {'bias': -4.394195373645299e-06,
                                                                                                                                     'bias_glo': -0.33618008774802566,
                                                                                                                                     'cor': 0.06132828461014626,
                                                                                                                                     'cor_glo': 0.07461152973843815,
                                                                                                                                     'frac': 0.09328595348944742,
                                                                                                                                     'mean': 0.0,
                                                                                                                                     'mean_glo': -0.036148665214051814,
                                                                                                                                     'rms': 1.621063544754578,
                                                                                                                                     'rms_glo': 1.0250706804556518,
                                                                                                                                     'rmsc': 1.3701618185722266,
                                                                                                                                     'rmsc_glo': 1.3604326277050909,
                                                                                                                                     'stdv_pc': 0.7902457408203805,
                                                                                                                                     'stdv_pc_ratio_to_obs': 0.5392433829175377,
                                                                                                                                     'tcor_cbf_vs_eof_pc': -0.03863392317222958},
                                                                                                                            'period': '1900-2005'},
                                                                                                                    'MAM': {'best_matching_model_eofs__cor': 1,
                                                                                                                            'best_matching_model_eofs__rms': 1,
                                                                                                                            'best_matching_model_eofs__tcor_cbf_vs_eof_pc': 1,
                                                                                                                            'cbf': {'bias': -5.404873222055087e-06,
                                                                                                                                    'bias_glo': 0.027354460566513195,
                                                                                                                                    'cor': 0.9480364458363624,
                                                                                                                                    'cor_glo': 0.8701669313264025,
                                                                                                                                    'frac': 0.3849164460708014,
                                                                                                                                    'frac_cbf_regrid': 0.3872062955700556,
                                                                                                                                    'mean': -1.0545754301626981e-17,
                                                                                                                                    'mean_glo': 0.17367916421066004,
                                                                                                                                    'rms': 0.4212172726726477,
                                                                                                                                    'rms_glo': 0.39403620899649633,
                                                                                                                                    'rmsc': 0.3223772809907716,
                                                                                                                                    'rmsc_glo': 0.5095744592485825,
                                                                                                                                    'stdv_pc': 1.2490526026573234,
                                                                                                                                    'stdv_pc_ratio_to_obs': 1.0342362859417933},
                                                                                                                            'eof1': {'bias': 8.08491044039072e-06,
                                                                                                                                     'bias_glo': 0.02194926448303927,
                                                                                                                                     'cor': 0.9333744628689462,
                                                                                                                                     'cor_glo': 0.8498312651466907,
                                                                                                                                     'frac': 0.3903340988889396,
                                                                                                                                     'mean': -3.1637262904880944e-17,
                                                                                                                                     'mean_glo': 0.16827396902012867,
                                                                                                                                     'rms': 0.4771444415600026,
                                                                                                                                     'rms_glo': 0.42610723071838025,
                                                                                                                                     'rmsc': 0.365035724260356,
                                                                                                                                     'rmsc_glo': 0.5480305305050449,
                                                                                                                                     'stdv_pc': 1.3291991787743518,
                                                                                                                                     'stdv_pc_ratio_to_obs': 1.1005989811860766,
                                                                                                                                     'tcor_cbf_vs_eof_pc': 0.9914049472376667},
                                                                                                                            'eof2': {'bias': -0.00016186547378994607,
                                                                                                                                     'bias_glo': -0.13184365887547517,
                                                                                                                                     'cor': 0.16219731457202954,
                                                                                                                                     'cor_glo': 0.18962853909499858,
                                                                                                                                     'frac': 0.09516430372145863,
                                                                                                                                     'mean': 1.0545754301626981e-17,
                                                                                                                                     'mean_glo': 0.01448103693984559,
                                                                                                                                     'rms': 1.277023393024006,
                                                                                                                                     'rms_glo': 0.7857796646396497,
                                                                                                                                     'rmsc': 1.2944517478306132,
                                                                                                                                     'rmsc_glo': 1.273083999763764,
                                                                                                                                     'stdv_pc': 0.6563097489791898,
                                                                                                                                     'stdv_pc_ratio_to_obs': 0.543435365145987,
                                                                                                                                     'tcor_cbf_vs_eof_pc': 0.0850308367627958},
                                                                                                                            'eof3': {'bias': -1.2068591643442719e-05,
                                                                                                                                     'bias_glo': -0.1355377897786424,
                                                                                                                                     'cor': 0.16364729866665204,
                                                                                                                                     'cor_glo': 0.14050286057953013,
                                                                                                                                     'frac': 0.07762621270170644,
                                                                                                                                     'mean': -1.0545754301626981e-17,
                                                                                                                                     'mean_glo': -0.010786908343130834,
                                                                                                                                     'rms': 1.2548477304165675,
                                                                                                                                     'rms_glo': 0.776148979387269,
                                                                                                                                     'rmsc': 1.2933311312809035,
                                                                                                                                     'rmsc_glo': 1.311104188146245,
                                                                                                                                     'stdv_pc': 0.5927560798335022,
                                                                                                                                     'stdv_pc_ratio_to_obs': 0.49081187227197043,
                                                                                                                                     'tcor_cbf_vs_eof_pc': -0.07750062637278385},
                                                                                                                            'period': '1900-2005'},
                                                                                                                    'SON': {'best_matching_model_eofs__cor': 1,
                                                                                                                            'best_matching_model_eofs__rms': 1,
                                                                                                                            'best_matching_model_eofs__tcor_cbf_vs_eof_pc': 1,
                                                                                                                            'cbf': {'bias': -0.00011940371765658772,
                                                                                                                                    'bias_glo': 0.002854816845933833,
                                                                                                                                    'cor': 0.9799199814582082,
                                                                                                                                    'cor_glo': 0.9434093301325334,
                                                                                                                                    'frac': 0.3072560614446117,
                                                                                                                                    'frac_cbf_regrid': 0.3089464747127062,
                                                                                                                                    'mean': 0.0,
                                                                                                                                    'mean_glo': 0.1413825539236527,
                                                                                                                                    'rms': 0.26877338907084897,
                                                                                                                                    'rms_glo': 0.24783799116892397,
                                                                                                                                    'rmsc': 0.20039969698819535,
                                                                                                                                    'rmsc_glo': 0.336424342704014,
                                                                                                                                    'stdv_pc': 1.25058694008756,
                                                                                                                                    'stdv_pc_ratio_to_obs': 1.0743290745831997},
                                                                                                                            'eof1': {'bias': -0.0001141584862737834,
                                                                                                                                     'bias_glo': -0.003997454508495479,
                                                                                                                                     'cor': 0.97525226406553,
                                                                                                                                     'cor_glo': 0.9389273727057128,
                                                                                                                                     'frac': 0.3085576330577569,
                                                                                                                                     'mean': 2.1091508603253963e-17,
                                                                                                                                     'mean_glo': 0.13453028271289375,
                                                                                                                                     'rms': 0.2947398041085717,
                                                                                                                                     'rms_glo': 0.2573805374728415,
                                                                                                                                     'rmsc': 0.22247578213163982,
                                                                                                                                     'rmsc_glo': 0.3494928550899461,
                                                                                                                                     'stdv_pc': 1.2812119165870912,
                                                                                                                                     'stdv_pc_ratio_to_obs': 1.1006377634133981,
                                                                                                                                     'tcor_cbf_vs_eof_pc': 0.9973294274726111},
                                                                                                                            'eof2': {'bias': -0.00016621196027571668,
                                                                                                                                     'bias_glo': -0.04037158543454135,
                                                                                                                                     'cor': 0.03622060295406271,
                                                                                                                                     'cor_glo': 0.05581175653876126,
                                                                                                                                     'frac': 0.13089585626829273,
                                                                                                                                     'mean': -4.2183017206507925e-17,
                                                                                                                                     'mean_glo': -0.09815614499563417,
                                                                                                                                     'rms': 1.4063561583995923,
                                                                                                                                     'rms_glo': 0.8450136642153242,
                                                                                                                                     'rmsc': 1.3883655001403699,
                                                                                                                                     'rmsc_glo': 1.374182100788763,
                                                                                                                                     'stdv_pc': 0.8344796906774776,
                                                                                                                                     'stdv_pc_ratio_to_obs': 0.7168680282086108,
                                                                                                                                     'tcor_cbf_vs_eof_pc': -0.024110495339657406},
                                                                                                                            'eof3': {'bias': -0.00012973414053345765,
                                                                                                                                     'bias_glo': -0.09611104734896216,
                                                                                                                                     'cor': 0.06709761629910918,
                                                                                                                                     'cor_glo': 0.04774381889058819,
                                                                                                                                     'frac': 0.08593905519471377,
                                                                                                                                     'mean': 1.5818631452440472e-17,
                                                                                                                                     'mean_glo': 0.04241668249228995,
                                                                                                                                     'rms': 1.3056527474391877,
                                                                                                                                     'rms_glo': 0.8018019672696582,
                                                                                                                                     'rmsc': 1.365944630108261,
                                                                                                                                     'rmsc_glo': 1.380040700805872,
                                                                                                                                     'stdv_pc': 0.676157873589659,
                                                                                                                                     'stdv_pc_ratio_to_obs': 0.5808601060193882,
                                                                                                                                     'tcor_cbf_vs_eof_pc': 0.036193400624622216},
                                                                                                                            'period': '1900-2005'},
                                                                                                                    'target_model_eofs': 1}}},
                                                                          'r4i1p1f1': {'defaultReference': {'SAM': {'DJF': {'best_matching_model_eofs__cor': 1,
                                                                                                                            'best_matching_model_eofs__rms': 1,
                                                                                                                            'best_matching_model_eofs__tcor_cbf_vs_eof_pc': 1,
                                                                                                                            'cbf': {'bias': -3.96766576083456e-05,
                                                                                                                                    'bias_glo': 0.2614024776316195,
                                                                                                                                    'cor': 0.978829394640695,
                                                                                                                                    'cor_glo': 0.887570993162891,
                                                                                                                                    'frac': 0.6482843985798291,
                                                                                                                                    'frac_cbf_regrid': 0.6515836265537615,
                                                                                                                                    'mean': -1.160032973178968e-16,
                                                                                                                                    'mean_glo': 0.3785398308984373,
                                                                                                                                    'rms': 0.7330934335594719,
                                                                                                                                    'rms_glo': 0.6615105294375333,
                                                                                                                                    'rmsc': 0.20576980983912146,
                                                                                                                                    'rmsc_glo': 0.4741919621212487,
                                                                                                                                    'stdv_pc': 2.0516924306520687,
                                                                                                                                    'stdv_pc_ratio_to_obs': 1.4079265830890246},
                                                                                                                            'eof1': {'bias': -3.802503232773772e-05,
                                                                                                                                     'bias_glo': 0.2551818792254905,
                                                                                                                                     'cor': 0.9770540551062679,
                                                                                                                                     'cor_glo': 0.8883169975095869,
                                                                                                                                     'frac': 0.6494108824200293,
                                                                                                                                     'mean': -1.160032973178968e-16,
                                                                                                                                     'mean_glo': 0.372319232846089,
                                                                                                                                     'rms': 0.7422397701385751,
                                                                                                                                     'rms_glo': 0.6577566869522455,
                                                                                                                                     'rmsc': 0.21422392834977486,
                                                                                                                                     'rmsc_glo': 0.47261612916350315,
                                                                                                                                     'stdv_pc': 2.1018024634809165,
                                                                                                                                     'stdv_pc_ratio_to_obs': 1.4423134367154113,
                                                                                                                                     'tcor_cbf_vs_eof_pc': 0.999050205959295},
                                                                                                                            'eof2': {'bias': -3.076237285298392e-05,
                                                                                                                                     'bias_glo': 0.01086586819202559,
                                                                                                                                     'cor': 0.10856825033243217,
                                                                                                                                     'cor_glo': 0.01908265113555422,
                                                                                                                                     'frac': 0.06660574306470825,
                                                                                                                                     'mean': 5.80016486589484e-17,
                                                                                                                                     'mean_glo': -0.12800321012104482,
                                                                                                                                     'rms': 1.5369121047771839,
                                                                                                                                     'rms_glo': 1.029073196696914,
                                                                                                                                     'rmsc': 1.3352390968756163,
                                                                                                                                     'rmsc_glo': 1.400655120674396,
                                                                                                                                     'stdv_pc': 0.6731129633042471,
                                                                                                                                     'stdv_pc_ratio_to_obs': 0.4619082374626106,
                                                                                                                                     'tcor_cbf_vs_eof_pc': -0.03561144691289177},
                                                                                                                            'eof3': {'bias': -0.00012791391197546398,
                                                                                                                                     'bias_glo': -0.10265926888823429,
                                                                                                                                     'cor': 0.048867535073974525,
                                                                                                                                     'cor_glo': -0.10604648865687241,
                                                                                                                                     'frac': 0.03976259441592972,
                                                                                                                                     'mean': -1.3182192877033727e-17,
                                                                                                                                     'mean_glo': 0.014478070724071295,
                                                                                                                                     'rms': 1.5227360789490223,
                                                                                                                                     'rms_glo': 1.0548749896013525,
                                                                                                                                     'rmsc': 1.3792261666485655,
                                                                                                                                     'rmsc_glo': 1.4873106495297859,
                                                                                                                                     'stdv_pc': 0.5200791849364305,
                                                                                                                                     'stdv_pc_ratio_to_obs': 0.3568923386584582,
                                                                                                                                     'tcor_cbf_vs_eof_pc': 0.01228150428053904},
                                                                                                                            'period': '1900-2005'},
                                                                                                                    'JJA': {'best_matching_model_eofs__cor': 1,
                                                                                                                            'best_matching_model_eofs__rms': 1,
                                                                                                                            'best_matching_model_eofs__tcor_cbf_vs_eof_pc': 1,
                                                                                                                            'cbf': {'bias': -0.0003131315702691969,
                                                                                                                                    'bias_glo': -0.12342646681973679,
                                                                                                                                    'cor': 0.9312843951274761,
                                                                                                                                    'cor_glo': 0.9165552881035869,
                                                                                                                                    'frac': 0.3143307195127041,
                                                                                                                                    'frac_cbf_regrid': 0.3159788411848156,
                                                                                                                                    'mean': 1.5818631452440472e-17,
                                                                                                                                    'mean_glo': 0.24890229108050466,
                                                                                                                                    'rms': 0.5409243206180973,
                                                                                                                                    'rms_glo': 0.3782144294603945,
                                                                                                                                    'rmsc': 0.37071715389476856,
                                                                                                                                    'rmsc_glo': 0.40852102479222857,
                                                                                                                                    'stdv_pc': 1.3521318350131355,
                                                                                                                                    'stdv_pc_ratio_to_obs': 0.9226600121957619},
                                                                                                                            'eof1': {'bias': -0.0002914718652490168,
                                                                                                                                     'bias_glo': -0.13332690237681416,
                                                                                                                                     'cor': 0.9095129799530093,
                                                                                                                                     'cor_glo': 0.8944736795607362,
                                                                                                                                     'frac': 0.32081877364743133,
                                                                                                                                     'mean': 2.1091508603253963e-17,
                                                                                                                                     'mean_glo': 0.2390018555382939,
                                                                                                                                     'rms': 0.6237065025472412,
                                                                                                                                     'rms_glo': 0.4247740522440494,
                                                                                                                                     'rmsc': 0.425410448949787,
                                                                                                                                     'rmsc_glo': 0.45940466929390555,
                                                                                                                                     'stdv_pc': 1.4687832397287404,
                                                                                                                                     'stdv_pc_ratio_to_obs': 1.002259932640285,
                                                                                                                                     'tcor_cbf_vs_eof_pc': 0.9866310357618633},
                                                                                                                            'eof2': {'bias': -0.00031470996085819426,
                                                                                                                                     'bias_glo': -0.41341987108355566,
                                                                                                                                     'cor': 0.1563466937698056,
                                                                                                                                     'cor_glo': 0.12667151634975013,
                                                                                                                                     'frac': 0.11938454455032185,
                                                                                                                                     'mean': 2.6364385754067453e-18,
                                                                                                                                     'mean_glo': 0.04109111837513678,
                                                                                                                                     'rms': 1.5926894930782203,
                                                                                                                                     'rms_glo': 1.0569303548249283,
                                                                                                                                     'rmsc': 1.2989636845699328,
                                                                                                                                     'rmsc_glo': 1.321611520557922,
                                                                                                                                     'stdv_pc': 0.8959873424140231,
                                                                                                                                     'stdv_pc_ratio_to_obs': 0.6113987341115593,
                                                                                                                                     'tcor_cbf_vs_eof_pc': -0.10332837689907878},
                                                                                                                            'eof3': {'bias': 0.00010581800434566553,
                                                                                                                                     'bias_glo': -0.24978366741504154,
                                                                                                                                     'cor': 0.06871366037573597,
                                                                                                                                     'cor_glo': 0.11699997335093401,
                                                                                                                                     'frac': 0.08081856854484999,
                                                                                                                                     'mean': 2.8012159863696666e-17,
                                                                                                                                     'mean_glo': 0.1225450851373727,
                                                                                                                                     'rms': 1.5939555570311592,
                                                                                                                                     'rms_glo': 0.9738978086123239,
                                                                                                                                     'rmsc': 1.3647610099886638,
                                                                                                                                     'rmsc_glo': 1.3289093734866724,
                                                                                                                                     'stdv_pc': 0.7371967262916507,
                                                                                                                                     'stdv_pc_ratio_to_obs': 0.5030440988502592,
                                                                                                                                     'tcor_cbf_vs_eof_pc': 0.03738737335817933},
                                                                                                                            'period': '1900-2005'},
                                                                                                                    'MAM': {'best_matching_model_eofs__cor': 1,
                                                                                                                            'best_matching_model_eofs__rms': 1,
                                                                                                                            'best_matching_model_eofs__tcor_cbf_vs_eof_pc': 1,
                                                                                                                            'cbf': {'bias': 3.6050780875614504e-05,
                                                                                                                                    'bias_glo': 0.006605698116597503,
                                                                                                                                    'cor': 0.9593251551927081,
                                                                                                                                    'cor_glo': 0.8687234580435471,
                                                                                                                                    'frac': 0.36477533031310494,
                                                                                                                                    'frac_cbf_regrid': 0.36703628017258916,
                                                                                                                                    'mean': 0.0,
                                                                                                                                    'mean_glo': 0.15293040180601847,
                                                                                                                                    'rms': 0.3565736407636071,
                                                                                                                                    'rms_glo': 0.3810968772137663,
                                                                                                                                    'rmsc': 0.28521866502035953,
                                                                                                                                    'rmsc_glo': 0.5123993301854509,
                                                                                                                                    'stdv_pc': 1.2116368156302895,
                                                                                                                                    'stdv_pc_ratio_to_obs': 1.0032553932811459},
                                                                                                                            'eof1': {'bias': 4.880942162609543e-05,
                                                                                                                                     'bias_glo': 0.0030620571028853183,
                                                                                                                                     'cor': 0.951204719605671,
                                                                                                                                     'cor_glo': 0.8555995460255299,
                                                                                                                                     'frac': 0.3676600396427526,
                                                                                                                                     'mean': 5.2728771508134906e-17,
                                                                                                                                     'mean_glo': 0.14938676099314077,
                                                                                                                                     'rms': 0.3912373500455564,
                                                                                                                                     'rms_glo': 0.4015126570727212,
                                                                                                                                     'rmsc': 0.3123948651073278,
                                                                                                                                     'rmsc_glo': 0.5374020061282901,
                                                                                                                                     'stdv_pc': 1.2703481128699763,
                                                                                                                                     'stdv_pc_ratio_to_obs': 1.0518693218465367,
                                                                                                                                     'tcor_cbf_vs_eof_pc': 0.9954001382335045},
                                                                                                                            'eof2': {'bias': -0.0001221017507383795,
                                                                                                                                     'bias_glo': -0.16943281558332005,
                                                                                                                                     'cor': 0.03660138812224749,
                                                                                                                                     'cor_glo': 0.023675470968168872,
                                                                                                                                     'frac': 0.09195665413570962,
                                                                                                                                     'mean': -1.0545754301626981e-17,
                                                                                                                                     'mean_glo': 0.023108117352750538,
                                                                                                                                     'rms': 1.34310498736715,
                                                                                                                                     'rms_glo': 0.8292586458028871,
                                                                                                                                     'rmsc': 1.3880911894961658,
                                                                                                                                     'rmsc_glo': 1.3973721996022757,
                                                                                                                                     'stdv_pc': 0.6353179303024942,
                                                                                                                                     'stdv_pc_ratio_to_obs': 0.5260537908734857,
                                                                                                                                     'tcor_cbf_vs_eof_pc': -0.0191385175397008},
                                                                                                                            'eof3': {'bias': -0.0001342115485411754,
                                                                                                                                     'bias_glo': -0.15684458320341413,
                                                                                                                                     'cor': 0.10291246257614838,
                                                                                                                                     'cor_glo': 0.16274315994243127,
                                                                                                                                     'frac': 0.07459166186289931,
                                                                                                                                     'mean': 0.0,
                                                                                                                                     'mean_glo': -0.010519886164476138,
                                                                                                                                     'rms': 1.281621262178914,
                                                                                                                                     'rms_glo': 0.7915906632409008,
                                                                                                                                     'rmsc': 1.3394682185009916,
                                                                                                                                     'rmsc_glo': 1.2940300399510425,
                                                                                                                                     'stdv_pc': 0.572195810254363,
                                                                                                                                     'stdv_pc_ratio_to_obs': 0.47378762781480976,
                                                                                                                                     'tcor_cbf_vs_eof_pc': 0.048489062761443956},
                                                                                                                            'period': '1900-2005'},
                                                                                                                    'SON': {'best_matching_model_eofs__cor': 1,
                                                                                                                            'best_matching_model_eofs__rms': 1,
                                                                                                                            'best_matching_model_eofs__tcor_cbf_vs_eof_pc': 1,
                                                                                                                            'cbf': {'bias': -0.00014876641330496907,
                                                                                                                                    'bias_glo': 0.09565934793321798,
                                                                                                                                    'cor': 0.9656059366147267,
                                                                                                                                    'cor_glo': 0.9125991471630923,
                                                                                                                                    'frac': 0.3732263261928642,
                                                                                                                                    'frac_cbf_regrid': 0.37512402696779024,
                                                                                                                                    'mean': 4.2183017206507925e-17,
                                                                                                                                    'mean_glo': 0.23418708537654603,
                                                                                                                                    'rms': 0.48522640903421305,
                                                                                                                                    'rms_glo': 0.38946634140609077,
                                                                                                                                    'rmsc': 0.26227490787877716,
                                                                                                                                    'rmsc_glo': 0.4180929418389037,
                                                                                                                                    'stdv_pc': 1.451580388784701,
                                                                                                                                    'stdv_pc_ratio_to_obs': 1.2469944837717577},
                                                                                                                            'eof1': {'bias': -0.0001302546136987757,
                                                                                                                                     'bias_glo': 0.09401639762684944,
                                                                                                                                     'cor': 0.9542953842706209,
                                                                                                                                     'cor_glo': 0.902659900613409,
                                                                                                                                     'frac': 0.37701302961191135,
                                                                                                                                     'mean': 0.0,
                                                                                                                                     'mean_glo': 0.23254413511626099,
                                                                                                                                     'rms': 0.5301537519427766,
                                                                                                                                     'rms_glo': 0.406677108863854,
                                                                                                                                     'rmsc': 0.30233959369160673,
                                                                                                                                     'rmsc_glo': 0.44122578149635533,
                                                                                                                                     'stdv_pc': 1.5133414776191407,
                                                                                                                                     'stdv_pc_ratio_to_obs': 1.3000509577247872,
                                                                                                                                     'tcor_cbf_vs_eof_pc': 0.9932917074389804},
                                                                                                                            'eof2': {'bias': -0.00022771855185304925,
                                                                                                                                     'bias_glo': -0.0551893228234637,
                                                                                                                                     'cor': 0.16132632493445734,
                                                                                                                                     'cor_glo': 0.15770899694566207,
                                                                                                                                     'frac': 0.11989456987202786,
                                                                                                                                     'mean': 1.0545754301626981e-17,
                                                                                                                                     'mean_glo': -0.08333840787397548,
                                                                                                                                     'rms': 1.3266797750938781,
                                                                                                                                     'rms_glo': 0.8229761467362623,
                                                                                                                                     'rmsc': 1.2951244478066717,
                                                                                                                                     'rmsc_glo': 1.2979144442816333,
                                                                                                                                     'stdv_pc': 0.8534115425760441,
                                                                                                                                     'stdv_pc_ratio_to_obs': 0.7331316227483947,
                                                                                                                                     'tcor_cbf_vs_eof_pc': -0.09461735368819592},
                                                                                                                            'eof3': {'bias': -3.439289571410073e-07,
                                                                                                                                     'bias_glo': -0.08919000859250939,
                                                                                                                                     'cor': 8.568662053329748e-05,
                                                                                                                                     'cor_glo': 0.029980707844596943,
                                                                                                                                     'frac': 0.10254358247980765,
                                                                                                                                     'mean': -5.272877150813491e-18,
                                                                                                                                     'mean_glo': 0.04933772184748944,
                                                                                                                                     'rms': 1.405413999818856,
                                                                                                                                     'rms_glo': 0.8458747674335267,
                                                                                                                                     'rmsc': 1.4141529875887668,
                                                                                                                                     'rmsc_glo': 1.3928526696108035,
                                                                                                                                     'stdv_pc': 0.7892471066861514,
                                                                                                                                     'stdv_pc_ratio_to_obs': 0.6780105297471236,
                                                                                                                                     'tcor_cbf_vs_eof_pc': 4.648930287785686e-05},
                                                                                                                            'period': '1900-2005'},
                                                                                                                    'target_model_eofs': 1}}},
                                                                          'r5i1p1f1': {'defaultReference': {'SAM': {'DJF': {'best_matching_model_eofs__cor': 1,
                                                                                                                            'best_matching_model_eofs__rms': 1,
                                                                                                                            'best_matching_model_eofs__tcor_cbf_vs_eof_pc': 1,
                                                                                                                            'cbf': {'bias': -9.240892887407065e-05,
                                                                                                                                    'bias_glo': 0.04100542353302808,
                                                                                                                                    'cor': 0.958207675442509,
                                                                                                                                    'cor_glo': 0.9121888731858934,
                                                                                                                                    'frac': 0.5441926740587435,
                                                                                                                                    'frac_cbf_regrid': 0.5472829218144795,
                                                                                                                                    'mean': -8.963891156382934e-17,
                                                                                                                                    'mean_glo': 0.15814277469227794,
                                                                                                                                    'rms': 0.47203036021885303,
                                                                                                                                    'rms_glo': 0.40478342698409986,
                                                                                                                                    'rmsc': 0.2891100908832638,
                                                                                                                                    'rmsc_glo': 0.41907308836495927,
                                                                                                                                    'stdv_pc': 1.5501476053653804,
                                                                                                                                    'stdv_pc_ratio_to_obs': 1.0637530210179085},
                                                                                                                            'eof1': {'bias': -9.17191578098868e-05,
                                                                                                                                     'bias_glo': 0.031099683398425754,
                                                                                                                                     'cor': 0.9513239178950491,
                                                                                                                                     'cor_glo': 0.9090342546806052,
                                                                                                                                     'frac': 0.5479279871947939,
                                                                                                                                     'mean': -6.854740296057538e-17,
                                                                                                                                     'mean_glo': 0.14823703463246282,
                                                                                                                                     'rms': 0.5079584005069444,
                                                                                                                                     'rms_glo': 0.41113466046365743,
                                                                                                                                     'rmsc': 0.3120130835811447,
                                                                                                                                     'rmsc_glo': 0.4265342744385489,
                                                                                                                                     'stdv_pc': 1.6265099084074623,
                                                                                                                                     'stdv_pc_ratio_to_obs': 1.1161548892475814,
                                                                                                                                     'tcor_cbf_vs_eof_pc': 0.996186817461331},
                                                                                                                            'eof2': {'bias': -3.1203744401054495e-06,
                                                                                                                                     'bias_glo': -0.034649845946845934,
                                                                                                                                     'cor': 0.16425789053990436,
                                                                                                                                     'cor_glo': 0.11756592015163209,
                                                                                                                                     'frac': 0.07568959736946049,
                                                                                                                                     'mean': 1.3182192877033727e-17,
                                                                                                                                     'mean_glo': -0.08248749684531334,
                                                                                                                                     'rms': 1.4827195130092643,
                                                                                                                                     'rms_glo': 0.9868912082703443,
                                                                                                                                     'rmsc': 1.2928589380245687,
                                                                                                                                     'rmsc_glo': 1.3284834059445183,
                                                                                                                                     'stdv_pc': 0.6045233338936996,
                                                                                                                                     'stdv_pc_ratio_to_obs': 0.4148401871405441,
                                                                                                                                     'tcor_cbf_vs_eof_pc': -0.06412271512581413},
                                                                                                                            'eof3': {'bias': 3.7420716357906775e-05,
                                                                                                                                     'bias_glo': -0.08674916225315805,
                                                                                                                                     'cor': 0.14638726067036364,
                                                                                                                                     'cor_glo': 0.17639135299518094,
                                                                                                                                     'frac': 0.05106961672902427,
                                                                                                                                     'mean': 0.0,
                                                                                                                                     'mean_glo': 0.030388177961661596,
                                                                                                                                     'rms': 1.4688846741321906,
                                                                                                                                     'rms_glo': 0.9297956832361075,
                                                                                                                                     'rmsc': 1.30660837730496,
                                                                                                                                     'rmsc_glo': 1.2834396320893149,
                                                                                                                                     'stdv_pc': 0.4965651888372657,
                                                                                                                                     'stdv_pc_ratio_to_obs': 0.34075640147408015,
                                                                                                                                     'tcor_cbf_vs_eof_pc': 0.0465500551190225},
                                                                                                                            'period': '1900-2005'},
                                                                                                                    'JJA': {'best_matching_model_eofs__cor': 1,
                                                                                                                            'best_matching_model_eofs__rms': 1,
                                                                                                                            'best_matching_model_eofs__tcor_cbf_vs_eof_pc': 1,
                                                                                                                            'cbf': {'bias': -0.00018709374423410018,
                                                                                                                                    'bias_glo': -0.016392753906529223,
                                                                                                                                    'cor': 0.9378289178727863,
                                                                                                                                    'cor_glo': 0.933481079559081,
                                                                                                                                    'frac': 0.32347600750823585,
                                                                                                                                    'frac_cbf_regrid': 0.3251438293838066,
                                                                                                                                    'mean': -2.175061824710565e-17,
                                                                                                                                    'mean_glo': 0.35593600432820977,
                                                                                                                                    'rms': 0.5295489962888297,
                                                                                                                                    'rms_glo': 0.32903527088430196,
                                                                                                                                    'rmsc': 0.3526218470055733,
                                                                                                                                    'rmsc_glo': 0.36474353028846745,
                                                                                                                                    'stdv_pc': 1.4270192917064377,
                                                                                                                                    'stdv_pc_ratio_to_obs': 0.9737612879121794},
                                                                                                                            'eof1': {'bias': -0.00015099529084207597,
                                                                                                                                     'bias_glo': -0.013190665650435862,
                                                                                                                                     'cor': 0.9045428910330919,
                                                                                                                                     'cor_glo': 0.9025808390115496,
                                                                                                                                     'frac': 0.3330584476343481,
                                                                                                                                     'mean': -1.3182192877033727e-18,
                                                                                                                                     'mean_glo': 0.3591380928212164,
                                                                                                                                     'rms': 0.6619137583401927,
                                                                                                                                     'rms_glo': 0.40159750689144597,
                                                                                                                                     'rmsc': 0.4369373035628124,
                                                                                                                                     'rmsc_glo': 0.441404944174371,
                                                                                                                                     'stdv_pc': 1.5461438570599293,
                                                                                                                                     'stdv_pc_ratio_to_obs': 1.055048829611691,
                                                                                                                                     'tcor_cbf_vs_eof_pc': 0.9786697800132079},
                                                                                                                            'eof2': {'bias': -0.00015785131604092764,
                                                                                                                                     'bias_glo': -0.3111228562465947,
                                                                                                                                     'cor': 0.240872324662607,
                                                                                                                                     'cor_glo': 0.24514059691856335,
                                                                                                                                     'frac': 0.12197000892171352,
                                                                                                                                     'mean': 2.1091508603253963e-17,
                                                                                                                                     'mean_glo': -0.06120589581491077,
                                                                                                                                     'rms': 1.5362046431863425,
                                                                                                                                     'rms_glo': 0.9712527121803262,
                                                                                                                                     'rmsc': 1.2321750511684784,
                                                                                                                                     'rmsc_glo': 1.2287061427009274,
                                                                                                                                     'stdv_pc': 0.9356559858715958,
                                                                                                                                     'stdv_pc_ratio_to_obs': 0.6384675968574748,
                                                                                                                                     'tcor_cbf_vs_eof_pc': -0.1575592182006285},
                                                                                                                            'eof3': {'bias': -6.920510828213574e-05,
                                                                                                                                     'bias_glo': -0.4845841504297924,
                                                                                                                                     'cor': 0.19119450864004756,
                                                                                                                                     'cor_glo': 0.1275849814445869,
                                                                                                                                     'frac': 0.10226741309805895,
                                                                                                                                     'mean': 4.2183017206507925e-17,
                                                                                                                                     'mean_glo': -0.11225539960513098,
                                                                                                                                     'rms': 1.5489248397524877,
                                                                                                                                     'rms_glo': 1.0803152775051426,
                                                                                                                                     'rmsc': 1.2718533837424806,
                                                                                                                                     'rmsc_glo': 1.320920116207884,
                                                                                                                                     'stdv_pc': 0.8567582749919143,
                                                                                                                                     'stdv_pc_ratio_to_obs': 0.5846298267544157,
                                                                                                                                     'tcor_cbf_vs_eof_pc': 0.11451495310846545},
                                                                                                                            'period': '1900-2005'},
                                                                                                                    'MAM': {'best_matching_model_eofs__cor': 1,
                                                                                                                            'best_matching_model_eofs__rms': 1,
                                                                                                                            'best_matching_model_eofs__tcor_cbf_vs_eof_pc': 1,
                                                                                                                            'cbf': {'bias': -2.379683907613817e-05,
                                                                                                                                    'bias_glo': 0.005716528863886239,
                                                                                                                                    'cor': 0.9527830027265906,
                                                                                                                                    'cor_glo': 0.9004634999287824,
                                                                                                                                    'frac': 0.2833330797516862,
                                                                                                                                    'frac_cbf_regrid': 0.2851525188023648,
                                                                                                                                    'mean': -2.1091508603253963e-17,
                                                                                                                                    'mean_glo': 0.15204123094943,
                                                                                                                                    'rms': 0.37924604296015435,
                                                                                                                                    'rms_glo': 0.31510302320763683,
                                                                                                                                    'rmsc': 0.30730114351158094,
                                                                                                                                    'rmsc_glo': 0.4461759782046221,
                                                                                                                                    'stdv_pc': 1.0042569085997344,
                                                                                                                                    'stdv_pc_ratio_to_obs': 0.8315413883065468},
                                                                                                                            'eof1': {'bias': -1.9574615883627096e-05,
                                                                                                                                     'bias_glo': -0.015043737592762618,
                                                                                                                                     'cor': 0.9350150611890627,
                                                                                                                                     'cor_glo': 0.8782968705200143,
                                                                                                                                     'frac': 0.2878792741676403,
                                                                                                                                     'mean': -1.5818631452440472e-17,
                                                                                                                                     'mean_glo': 0.13128096448339635,
                                                                                                                                     'rms': 0.43344925566505127,
                                                                                                                                     'rms_glo': 0.3457857346902501,
                                                                                                                                     'rmsc': 0.36051336093210484,
                                                                                                                                     'rmsc_glo': 0.49336220256300845,
                                                                                                                                     'stdv_pc': 1.0644716264006349,
                                                                                                                                     'stdv_pc_ratio_to_obs': 0.8814001740493935,
                                                                                                                                     'tcor_cbf_vs_eof_pc': 0.9891165664281077},
                                                                                                                            'eof2': {'bias': -9.317368221531802e-05,
                                                                                                                                     'bias_glo': -0.03812940900244391,
                                                                                                                                     'cor': 0.13457702198372776,
                                                                                                                                     'cor_glo': 0.14619449736855444,
                                                                                                                                     'frac': 0.11784127560922726,
                                                                                                                                     'mean': -2.1091508603253963e-17,
                                                                                                                                     'mean_glo': -0.10819528874054722,
                                                                                                                                     'rms': 1.303512897654332,
                                                                                                                                     'rms_glo': 0.7771655012547655,
                                                                                                                                     'rmsc': 1.3156162269917537,
                                                                                                                                     'rmsc_glo': 1.3067559119935868,
                                                                                                                                     'stdv_pc': 0.6810478210093222,
                                                                                                                                     'stdv_pc_ratio_to_obs': 0.5639188993729469,
                                                                                                                                     'tcor_cbf_vs_eof_pc': -0.09102518991820086},
                                                                                                                            'eof3': {'bias': -2.6265634155473102e-05,
                                                                                                                                     'bias_glo': -0.07068515443910287,
                                                                                                                                     'cor': 0.09240788737369432,
                                                                                                                                     'cor_glo': 0.1054866624147846,
                                                                                                                                     'frac': 0.08363408506147721,
                                                                                                                                     'mean': -2.6364385754067453e-18,
                                                                                                                                     'mean_glo': 0.07563954292030786,
                                                                                                                                     'rms': 1.2878018115721794,
                                                                                                                                     'rms_glo': 0.7797399402380097,
                                                                                                                                     'rmsc': 1.3472877383369468,
                                                                                                                                     'rmsc_glo': 1.3375450148545949,
                                                                                                                                     'stdv_pc': 0.5737471553928823,
                                                                                                                                     'stdv_pc_ratio_to_obs': 0.47507216733769514,
                                                                                                                                     'tcor_cbf_vs_eof_pc': 0.05267017647825307},
                                                                                                                            'period': '1900-2005'},
                                                                                                                    'SON': {'best_matching_model_eofs__cor': 1,
                                                                                                                            'best_matching_model_eofs__rms': 1,
                                                                                                                            'best_matching_model_eofs__tcor_cbf_vs_eof_pc': 1,
                                                                                                                            'cbf': {'bias': -8.080972145275612e-05,
                                                                                                                                    'bias_glo': 0.06425178164151399,
                                                                                                                                    'cor': 0.9692798863715423,
                                                                                                                                    'cor_glo': 0.9311160151956055,
                                                                                                                                    'frac': 0.34410842968672695,
                                                                                                                                    'frac_cbf_regrid': 0.3459362246036242,
                                                                                                                                    'mean': 0.0,
                                                                                                                                    'mean_glo': 0.20277951939928957,
                                                                                                                                    'rms': 0.39364135290534075,
                                                                                                                                    'rms_glo': 0.3129297060606539,
                                                                                                                                    'rmsc': 0.24787138754925514,
                                                                                                                                    'rmsc_glo': 0.3711710831983757,
                                                                                                                                    'stdv_pc': 1.3554872377604215,
                                                                                                                                    'stdv_pc_ratio_to_obs': 1.16444471237684},
                                                                                                                            'eof1': {'bias': -7.621793318669127e-05,
                                                                                                                                     'bias_glo': 0.06999270271157881,
                                                                                                                                     'cor': 0.9601689394375579,
                                                                                                                                     'cor_glo': 0.9243975042406755,
                                                                                                                                     'frac': 0.3469914260898887,
                                                                                                                                     'mean': -1.0545754301626981e-17,
                                                                                                                                     'mean_glo': 0.20852044001133305,
                                                                                                                                     'rms': 0.43351276880033673,
                                                                                                                                     'rms_glo': 0.328429154196576,
                                                                                                                                     'rmsc': 0.28224479994184654,
                                                                                                                                     'rmsc_glo': 0.3888508573442525,
                                                                                                                                     'stdv_pc': 1.406669755772823,
                                                                                                                                     'stdv_pc_ratio_to_obs': 1.2084135604820754,
                                                                                                                                     'tcor_cbf_vs_eof_pc': 0.9947413589417688},
                                                                                                                            'eof2': {'bias': 6.731231494403894e-05,
                                                                                                                                     'bias_glo': -0.18657501393263787,
                                                                                                                                     'cor': 0.044395034475909714,
                                                                                                                                     'cor_glo': -0.0071774289999853675,
                                                                                                                                     'frac': 0.15190610925773598,
                                                                                                                                     'mean': 1.8455070027847217e-17,
                                                                                                                                     'mean_glo': -0.04804728487659318,
                                                                                                                                     'rms': 1.4564779882890135,
                                                                                                                                     'rms_glo': 0.9293527434722935,
                                                                                                                                     'rmsc': 1.382465161827652,
                                                                                                                                     'rmsc_glo': 1.4192796801139316,
                                                                                                                                     'stdv_pc': 0.9307228969911362,
                                                                                                                                     'stdv_pc_ratio_to_obs': 0.7995467060833641,
                                                                                                                                     'tcor_cbf_vs_eof_pc': 0.03041292520461218},
                                                                                                                            'eof3': {'bias': -3.330810300246097e-05,
                                                                                                                                     'bias_glo': -0.2703972588175583,
                                                                                                                                     'cor': 0.07172630781069732,
                                                                                                                                     'cor_glo': 0.03307604515631633,
                                                                                                                                     'frac': 0.08358521842378842,
                                                                                                                                     'mean': 0.0,
                                                                                                                                     'mean_glo': 0.1318695264910995,
                                                                                                                                     'rms': 1.3094241903812285,
                                                                                                                                     'rms_glo': 0.8493230610359993,
                                                                                                                                     'rmsc': 1.362551812289312,
                                                                                                                                     'rmsc_glo': 1.3906285995761767,
                                                                                                                                     'stdv_pc': 0.6903948115435637,
                                                                                                                                     'stdv_pc_ratio_to_obs': 0.5930904883195952,
                                                                                                                                     'tcor_cbf_vs_eof_pc': -0.03645364562366645},
                                                                                                                            'period': '1900-2005'},
                                                                                                                    'target_model_eofs': 1}}}}},
                                               'provenance': {'commandLine': '../variability_modes_driver.py '
                                                                             '-p '
                                                                             '../../../sample_setups/pcmdi_parameter_files/variability_modes/myParam_SAM_cmip6.py '
                                                                             '--case_id '
                                                                             'v20220825 '
                                                                             '--mip '
                                                                             'cmip6 '
                                                                             '--exp '
                                                                             'historical '
                                                                             '--modnames '
                                                                             'UKESM1-1-LL '
                                                                             '--realization '
                                                                             'r1i1p1f2 '
                                                                             '--parallel '
                                                                             'True '
                                                                             '--no_nc_out_obs '
                                                                             '--no_plot_obs',
                                                              'conda': {'Platform': 'linux-64',
                                                                        'PythonVersion': '3.7.3.final.0',
                                                                        'Version': '4.14.0',
                                                                        'buildVersion': '3.18.8'},
                                                              'date': '2022-08-25 '
                                                                      '23:15:56',
                                                              'history': '',
                                                              'openGL': {'GLX': {'client': {},
                                                                                 'server': {}}},
                                                              'osAccess': False,
                                                              'packages': {'PMP': '2.0',
                                                                           'PMPObs': 'See '
                                                                                     "'References' "
                                                                                     'key '
                                                                                     'below, '
                                                                                     'for '
                                                                                     'detailed '
                                                                                     'obs '
                                                                                     'provenance '
                                                                                     'information.',
                                                                           'blas': '0.3.21',
                                                                           'cdat_info': '8.2.1',
                                                                           'cdms': '3.1.5',
                                                                           'cdp': '1.7.0',
                                                                           'cdtime': '3.1.4',
                                                                           'cdutil': '8.2.1',
                                                                           'clapack': None,
                                                                           'esmf': '8.2.0',
                                                                           'esmpy': '8.2.0',
                                                                           'genutil': '8.2.1',
                                                                           'lapack': '3.9.0',
                                                                           'matplotlib': None,
                                                                           'mesalib': None,
                                                                           'numpy': '1.23.2',
                                                                           'python': '3.10.6',
                                                                           'scipy': '1.9.0',
                                                                           'uvcdat': None,
                                                                           'vcs': None,
                                                                           'vtk': None},
                                                              'platform': {'Name': 'gates.llnl.gov',
                                                                           'OS': 'Linux',
                                                                           'Version': '3.10.0-1160.71.1.el7.x86_64'},
                                                              'script': '#!/usr/bin/env '
                                                                        'python\n'
                                                                        '\n'
                                                                        '"""\n'
                                                                        '# '
                                                                        'Modes '
                                                                        'of '
                                                                        'Variability '
                                                                        'Metrics\n'
                                                                        '- '
                                                                        'Calculate '
                                                                        'metrics '
                                                                        'for '
                                                                        'modes '
                                                                        'of '
                                                                        'varibility '
                                                                        'from '
                                                                        'archive '
                                                                        'of '
                                                                        'CMIP '
                                                                        'models\n'
                                                                        '- '
                                                                        'Author: '
                                                                        'Jiwoo '
                                                                        'Lee '
                                                                        '(lee1043@llnl.gov), '
                                                                        'PCMDI, '
                                                                        'LLNL\n'
                                                                        '\n'
                                                                        '## '
                                                                        'EOF1 '
                                                                        'based '
                                                                        'variability '
                                                                        'modes\n'
                                                                        '- '
                                                                        'NAM: '
                                                                        'Northern '
                                                                        'Annular '
                                                                        'Mode\n'
                                                                        '- '
                                                                        'NAO: '
                                                                        'Northern '
                                                                        'Atlantic '
                                                                        'Oscillation\n'
                                                                        '- '
                                                                        'SAM: '
                                                                        'Southern '
                                                                        'Annular '
                                                                        'Mode\n'
                                                                        '- '
                                                                        'PNA: '
                                                                        'Pacific '
                                                                        'North '
                                                                        'American '
                                                                        'Pattern\n'
                                                                        '- '
                                                                        'PDO: '
                                                                        'Pacific '
                                                                        'Decadal '
                                                                        'Oscillation\n'
                                                                        '\n'
                                                                        '## '
                                                                        'EOF2 '
                                                                        'based '
                                                                        'variability '
                                                                        'modes\n'
                                                                        '- '
                                                                        'NPO: '
                                                                        'North '
                                                                        'Pacific '
                                                                        'Oscillation '
                                                                        '(2nd '
                                                                        'EOFs '
                                                                        'of '
                                                                        'PNA '
                                                                        'domain)\n'
                                                                        '- '
                                                                        'NPGO: '
                                                                        'North '
                                                                        'Pacific '
                                                                        'Gyre '
                                                                        'Oscillation '
                                                                        '(2nd '
                                                                        'EOFs '
                                                                        'of '
                                                                        'PDO '
                                                                        'domain)\n'
                                                                        '\n'
                                                                        '## '
                                                                        'Reference:\n'
                                                                        'Lee, '
                                                                        'J., '
                                                                        'K. '
                                                                        'Sperber, '
                                                                        'P. '
                                                                        'Gleckler, '
                                                                        'C. '
                                                                        'Bonfils, '
                                                                        'and '
                                                                        'K. '
                                                                        'Taylor, '
                                                                        '2019:\n'
                                                                        'Quantifying '
                                                                        'the '
                                                                        'Agreement '
                                                                        'Between '
                                                                        'Observed '
                                                                        'and '
                                                                        'Simulated '
                                                                        'Extratropical '
                                                                        'Modes '
                                                                        'of\n'
                                                                        'Interannual '
                                                                        'Variability. '
                                                                        'Climate '
                                                                        'Dynamics.\n'
                                                                        'https://doi.org/10.1007/s00382-018-4355-4\n'
                                                                        '\n'
                                                                        '## '
                                                                        'Auspices:\n'
                                                                        'This '
                                                                        'work '
                                                                        'was '
                                                                        'performed '
                                                                        'under '
                                                                        'the '
                                                                        'auspices '
                                                                        'of '
                                                                        'the '
                                                                        'U.S. '
                                                                        'Department '
                                                                        'of\n'
                                                                        'Energy '
                                                                        'by '
                                                                        'Lawrence '
                                                                        'Livermore '
                                                                        'National '
                                                                        'Laboratory '
                                                                        'under '
                                                                        'Contract\n'
                                                                        'DE-AC52-07NA27344. '
                                                                        'Lawrence '
                                                                        'Livermore '
                                                                        'National '
                                                                        'Laboratory '
                                                                        'is '
                                                                        'operated '
                                                                        'by\n'
                                                                        'Lawrence '
                                                                        'Livermore '
                                                                        'National '
                                                                        'Security, '
                                                                        'LLC, '
                                                                        'for '
                                                                        'the '
                                                                        'U.S. '
                                                                        'Department '
                                                                        'of '
                                                                        'Energy,\n'
                                                                        'National '
                                                                        'Nuclear '
                                                                        'Security '
                                                                        'Administration '
                                                                        'under '
                                                                        'Contract '
                                                                        'DE-AC52-07NA27344.\n'
                                                                        '\n'
                                                                        '## '
                                                                        'Disclaimer:\n'
                                                                        'This '
                                                                        'document '
                                                                        'was '
                                                                        'prepared '
                                                                        'as an '
                                                                        'account '
                                                                        'of '
                                                                        'work '
                                                                        'sponsored '
                                                                        'by '
                                                                        'an\n'
                                                                        'agency '
                                                                        'of '
                                                                        'the '
                                                                        'United '
                                                                        'States '
                                                                        'government. '
                                                                        'Neither '
                                                                        'the '
                                                                        'United '
                                                                        'States '
                                                                        'government\n'
                                                                        'nor '
                                                                        'Lawrence '
                                                                        'Livermore '
                                                                        'National '
                                                                        'Security, '
                                                                        'LLC, '
                                                                        'nor '
                                                                        'any '
                                                                        'of '
                                                                        'their '
                                                                        'employees\n'
                                                                        'makes '
                                                                        'any '
                                                                        'warranty, '
                                                                        'expressed '
                                                                        'or '
                                                                        'implied, '
                                                                        'or '
                                                                        'assumes '
                                                                        'any '
                                                                        'legal '
                                                                        'liability '
                                                                        'or\n'
                                                                        'responsibility '
                                                                        'for '
                                                                        'the '
                                                                        'accuracy, '
                                                                        'completeness, '
                                                                        'or '
                                                                        'usefulness '
                                                                        'of '
                                                                        'any\n'
                                                                        'information, '
                                                                        'apparatus, '
                                                                        'product, '
                                                                        'or '
                                                                        'process '
                                                                        'disclosed, '
                                                                        'or '
                                                                        'represents '
                                                                        'that '
                                                                        'its\n'
                                                                        'use '
                                                                        'would '
                                                                        'not '
                                                                        'infringe '
                                                                        'privately '
                                                                        'owned '
                                                                        'rights. '
                                                                        'Reference '
                                                                        'herein '
                                                                        'to '
                                                                        'any '
                                                                        'specific\n'
                                                                        'commercial '
                                                                        'product, '
                                                                        'process, '
                                                                        'or '
                                                                        'service '
                                                                        'by '
                                                                        'trade '
                                                                        'name, '
                                                                        'trademark, '
                                                                        'manufacturer,\n'
                                                                        'or '
                                                                        'otherwise '
                                                                        'does '
                                                                        'not '
                                                                        'necessarily '
                                                                        'constitute '
                                                                        'or '
                                                                        'imply '
                                                                        'its '
                                                                        'endorsement,\n'
                                                                        'recommendation, '
                                                                        'or '
                                                                        'favoring '
                                                                        'by '
                                                                        'the '
                                                                        'United '
                                                                        'States '
                                                                        'government '
                                                                        'or '
                                                                        'Lawrence\n'
                                                                        'Livermore '
                                                                        'National '
                                                                        'Security, '
                                                                        'LLC. '
                                                                        'The '
                                                                        'views '
                                                                        'and '
                                                                        'opinions '
                                                                        'of '
                                                                        'authors '
                                                                        'expressed\n'
                                                                        'herein '
                                                                        'do '
                                                                        'not '
                                                                        'necessarily '
                                                                        'state '
                                                                        'or '
                                                                        'reflect '
                                                                        'those '
                                                                        'of '
                                                                        'the '
                                                                        'United '
                                                                        'States\n'
                                                                        'government '
                                                                        'or '
                                                                        'Lawrence '
                                                                        'Livermore '
                                                                        'National '
                                                                        'Security, '
                                                                        'LLC, '
                                                                        'and '
                                                                        'shall '
                                                                        'not '
                                                                        'be '
                                                                        'used\n'
                                                                        'for '
                                                                        'advertising '
                                                                        'or '
                                                                        'product '
                                                                        'endorsement '
                                                                        'purposes.\n'
                                                                        '"""\n'
                                                                        '\n'
                                                                        'from '
                                                                        '__future__ '
                                                                        'import '
                                                                        'print_function\n'
                                                                        '\n'
                                                                        'import '
                                                                        'glob\n'
                                                                        'import '
                                                                        'json\n'
                                                                        'import '
                                                                        'os\n'
                                                                        'import '
                                                                        'sys\n'
                                                                        'from '
                                                                        'argparse '
                                                                        'import '
                                                                        'RawTextHelpFormatter\n'
                                                                        'from '
                                                                        'shutil '
                                                                        'import '
                                                                        'copyfile\n'
                                                                        '\n'
                                                                        'import '
                                                                        'cdtime\n'
                                                                        'import '
                                                                        'cdutil\n'
                                                                        'import '
                                                                        'MV2\n'
                                                                        'from '
                                                                        'genutil '
                                                                        'import '
                                                                        'StringConstructor\n'
                                                                        '\n'
                                                                        'import '
                                                                        'pcmdi_metrics\n'
                                                                        'from '
                                                                        'pcmdi_metrics '
                                                                        'import '
                                                                        'resources\n'
                                                                        'from '
                                                                        'pcmdi_metrics.variability_mode.lib '
                                                                        'import '
                                                                        '(\n'
                                                                        '    '
                                                                        'AddParserArgument,\n'
                                                                        '    '
                                                                        'VariabilityModeCheck,\n'
                                                                        '    '
                                                                        'YearCheck,\n'
                                                                        '    '
                                                                        'adjust_timeseries,\n'
                                                                        '    '
                                                                        'calc_stats_save_dict,\n'
                                                                        '    '
                                                                        'calcSTD,\n'
                                                                        '    '
                                                                        'calcTCOR,\n'
                                                                        '    '
                                                                        'debug_print,\n'
                                                                        '    '
                                                                        'eof_analysis_get_variance_mode,\n'
                                                                        '    '
                                                                        'gain_pcs_fraction,\n'
                                                                        '    '
                                                                        'gain_pseudo_pcs,\n'
                                                                        '    '
                                                                        'get_domain_range,\n'
                                                                        '    '
                                                                        'linear_regression_on_globe_for_teleconnection,\n'
                                                                        '    '
                                                                        'plot_map,\n'
                                                                        '    '
                                                                        'read_data_in,\n'
                                                                        '    '
                                                                        'sort_human,\n'
                                                                        '    '
                                                                        'tree,\n'
                                                                        '    '
                                                                        'variability_metrics_to_json,\n'
                                                                        '    '
                                                                        'write_nc_output,\n'
                                                                        ')\n'
                                                                        '\n'
                                                                        '# To '
                                                                        'avoid '
                                                                        'below '
                                                                        'error\n'
                                                                        '# '
                                                                        'OpenBLAS '
                                                                        'blas_thread_init: '
                                                                        'pthread_create '
                                                                        'failed '
                                                                        'for '
                                                                        'thread '
                                                                        'XX of '
                                                                        '96: '
                                                                        'Resource '
                                                                        'temporarily '
                                                                        'unavailable\n'
                                                                        'os.environ["OPENBLAS_NUM_THREADS"] '
                                                                        '= '
                                                                        '"1"\n'
                                                                        '\n'
                                                                        '# '
                                                                        'Must '
                                                                        'be '
                                                                        'done '
                                                                        'before '
                                                                        'any '
                                                                        'CDAT '
                                                                        'library '
                                                                        'is '
                                                                        'called.\n'
                                                                        '# '
                                                                        'https://github.com/CDAT/cdat/issues/2213\n'
                                                                        'if '
                                                                        '"UVCDAT_ANONYMOUS_LOG" '
                                                                        'not '
                                                                        'in '
                                                                        'os.environ:\n'
                                                                        '    '
                                                                        'os.environ["UVCDAT_ANONYMOUS_LOG"] '
                                                                        '= '
                                                                        '"no"\n'
                                                                        '\n'
                                                                        'regions_specs '
                                                                        '= {}\n'
                                                                        'egg_pth '
                                                                        '= '
                                                                        'resources.resource_path()\n'
                                                                        'exec(\n'
                                                                        '    '
                                                                        'compile(\n'
                                                                        '        '
                                                                        'open(os.path.join(egg_pth, '
                                                                        '"default_regions.py")).read(),\n'
                                                                        '        '
                                                                        'os.path.join(egg_pth, '
                                                                        '"default_regions.py"),\n'
                                                                        '        '
                                                                        '"exec",\n'
                                                                        '    '
                                                                        ')\n'
                                                                        ')\n'
                                                                        '\n'
                                                                        '# '
                                                                        '=================================================\n'
                                                                        '# '
                                                                        'Collect '
                                                                        'user '
                                                                        'defined '
                                                                        'options\n'
                                                                        '# '
                                                                        '-------------------------------------------------\n'
                                                                        'P = '
                                                                        'pcmdi_metrics.driver.pmp_parser.PMPParser(\n'
                                                                        '    '
                                                                        'description="Runs '
                                                                        'PCMDI '
                                                                        'Modes '
                                                                        'of '
                                                                        'Variability '
                                                                        'Computations",\n'
                                                                        '    '
                                                                        'formatter_class=RawTextHelpFormatter,\n'
                                                                        ')\n'
                                                                        'P = '
                                                                        'AddParserArgument(P)\n'
                                                                        'param '
                                                                        '= '
                                                                        'P.get_parameter()\n'
                                                                        '\n'
                                                                        '# '
                                                                        'Pre-defined '
                                                                        'options\n'
                                                                        'mip = '
                                                                        'param.mip\n'
                                                                        'exp = '
                                                                        'param.exp\n'
                                                                        'fq = '
                                                                        'param.frequency\n'
                                                                        'realm '
                                                                        '= '
                                                                        'param.realm\n'
                                                                        'print("mip:", '
                                                                        'mip)\n'
                                                                        'print("exp:", '
                                                                        'exp)\n'
                                                                        'print("fq:", '
                                                                        'fq)\n'
                                                                        'print("realm:", '
                                                                        'realm)\n'
                                                                        '\n'
                                                                        '# '
                                                                        'On/off '
                                                                        'switches\n'
                                                                        'obs_compare '
                                                                        '= '
                                                                        'True  '
                                                                        '# '
                                                                        'Statistics '
                                                                        'against '
                                                                        'observation\n'
                                                                        'CBF = '
                                                                        'param.CBF  '
                                                                        '# '
                                                                        'Conduct '
                                                                        'CBF '
                                                                        'analysis\n'
                                                                        'ConvEOF '
                                                                        '= '
                                                                        'param.ConvEOF  '
                                                                        '# '
                                                                        'Conduct '
                                                                        'conventional '
                                                                        'EOF '
                                                                        'analysis\n'
                                                                        '\n'
                                                                        'EofScaling '
                                                                        '= '
                                                                        'param.EofScaling  '
                                                                        '# If '
                                                                        'True, '
                                                                        'consider '
                                                                        'EOF '
                                                                        'with '
                                                                        'unit '
                                                                        'variance\n'
                                                                        'RmDomainMean '
                                                                        '= '
                                                                        'param.RemoveDomainMean  '
                                                                        '# If '
                                                                        'True, '
                                                                        'remove '
                                                                        'Domain '
                                                                        'Mean '
                                                                        'of '
                                                                        'each '
                                                                        'time '
                                                                        'step\n'
                                                                        'LandMask '
                                                                        '= '
                                                                        'param.landmask  '
                                                                        '# If '
                                                                        'True, '
                                                                        'maskout '
                                                                        'land '
                                                                        'region '
                                                                        'thus '
                                                                        'consider '
                                                                        'only '
                                                                        'over '
                                                                        'ocean\n'
                                                                        '\n'
                                                                        'print("EofScaling:", '
                                                                        'EofScaling)\n'
                                                                        'print("RmDomainMean:", '
                                                                        'RmDomainMean)\n'
                                                                        'print("LandMask:", '
                                                                        'LandMask)\n'
                                                                        '\n'
                                                                        'nc_out_obs '
                                                                        '= '
                                                                        'param.nc_out_obs  '
                                                                        '# '
                                                                        'Record '
                                                                        'NetCDF '
                                                                        'output\n'
                                                                        'plot_obs '
                                                                        '= '
                                                                        'param.plot_obs  '
                                                                        '# '
                                                                        'Generate '
                                                                        'plots\n'
                                                                        'nc_out_model '
                                                                        '= '
                                                                        'param.nc_out  '
                                                                        '# '
                                                                        'Record '
                                                                        'NetCDF '
                                                                        'output\n'
                                                                        'plot_model '
                                                                        '= '
                                                                        'param.plot  '
                                                                        '# '
                                                                        'Generate '
                                                                        'plots\n'
                                                                        'update_json '
                                                                        '= '
                                                                        'param.update_json\n'
                                                                        '\n'
                                                                        'print("nc_out_obs, '
                                                                        'plot_obs:", '
                                                                        'nc_out_obs, '
                                                                        'plot_obs)\n'
                                                                        'print("nc_out_model, '
                                                                        'plot_model:", '
                                                                        'nc_out_model, '
                                                                        'plot_model)\n'
                                                                        '\n'
                                                                        'cmec '
                                                                        '= '
                                                                        'False\n'
                                                                        'if '
                                                                        'hasattr(param, '
                                                                        '"cmec"):\n'
                                                                        '    '
                                                                        'cmec '
                                                                        '= '
                                                                        'param.cmec  '
                                                                        '# '
                                                                        'Generate '
                                                                        'CMEC '
                                                                        'compliant '
                                                                        'json\n'
                                                                        'print("CMEC:" '
                                                                        '+ '
                                                                        'str(cmec))\n'
                                                                        '\n'
                                                                        '# '
                                                                        'Check '
                                                                        'given '
                                                                        'mode '
                                                                        'of '
                                                                        'variability\n'
                                                                        'mode '
                                                                        '= '
                                                                        'VariabilityModeCheck(param.variability_mode, '
                                                                        'P)\n'
                                                                        'print("mode:", '
                                                                        'mode)\n'
                                                                        '\n'
                                                                        '# '
                                                                        'Variables\n'
                                                                        'var = '
                                                                        'param.varModel\n'
                                                                        '\n'
                                                                        '# '
                                                                        'Check '
                                                                        'dependency '
                                                                        'for '
                                                                        'given '
                                                                        'season '
                                                                        'option\n'
                                                                        'seasons '
                                                                        '= '
                                                                        'param.seasons\n'
                                                                        'print("seasons:", '
                                                                        'seasons)\n'
                                                                        '\n'
                                                                        '# '
                                                                        'Observation '
                                                                        'information\n'
                                                                        'obs_name '
                                                                        '= '
                                                                        'param.reference_data_name\n'
                                                                        'obs_path '
                                                                        '= '
                                                                        'param.reference_data_path\n'
                                                                        'obs_var '
                                                                        '= '
                                                                        'param.varOBS\n'
                                                                        '\n'
                                                                        '# '
                                                                        'Path '
                                                                        'to '
                                                                        'model '
                                                                        'data '
                                                                        'as '
                                                                        'string '
                                                                        'template\n'
                                                                        'modpath '
                                                                        '= '
                                                                        'StringConstructor(param.modpath)\n'
                                                                        'if '
                                                                        'LandMask:\n'
                                                                        '    '
                                                                        'modpath_lf '
                                                                        '= '
                                                                        'StringConstructor(param.modpath_lf)\n'
                                                                        '\n'
                                                                        '# '
                                                                        'Check '
                                                                        'given '
                                                                        'model '
                                                                        'option\n'
                                                                        'models '
                                                                        '= '
                                                                        'param.modnames\n'
                                                                        '\n'
                                                                        '# '
                                                                        'Include '
                                                                        'all '
                                                                        'models '
                                                                        'if '
                                                                        'conditioned\n'
                                                                        'if '
                                                                        '("all" '
                                                                        'in '
                                                                        '[m.lower() '
                                                                        'for m '
                                                                        'in '
                                                                        'models]) '
                                                                        'or '
                                                                        '(models '
                                                                        '== '
                                                                        '"all"):\n'
                                                                        '    '
                                                                        'model_index_path '
                                                                        '= '
                                                                        'param.modpath.split("/")[-1].split(".").index("%(model)")\n'
                                                                        '    '
                                                                        'models '
                                                                        '= [\n'
                                                                        '        '
                                                                        'p.split("/")[-1].split(".")[model_index_path]\n'
                                                                        '        '
                                                                        'for p '
                                                                        'in '
                                                                        'glob.glob(\n'
                                                                        '            '
                                                                        'modpath(mip=mip, '
                                                                        'exp=exp, '
                                                                        'model="*", '
                                                                        'realization="*", '
                                                                        'variable=var)\n'
                                                                        '        '
                                                                        ')\n'
                                                                        '    '
                                                                        ']\n'
                                                                        '    # '
                                                                        'remove '
                                                                        'duplicates\n'
                                                                        '    '
                                                                        'models '
                                                                        '= '
                                                                        'sorted(list(dict.fromkeys(models)), '
                                                                        'key=lambda '
                                                                        's: '
                                                                        's.lower())\n'
                                                                        '\n'
                                                                        'print("models:", '
                                                                        'models)\n'
                                                                        'print("number '
                                                                        'of '
                                                                        'models:", '
                                                                        'len(models))\n'
                                                                        '\n'
                                                                        '# '
                                                                        'Realizations\n'
                                                                        'realization '
                                                                        '= '
                                                                        'param.realization\n'
                                                                        'print("realization: '
                                                                        '", '
                                                                        'realization)\n'
                                                                        '\n'
                                                                        '# EOF '
                                                                        'ordinal '
                                                                        'number\n'
                                                                        'eofn_obs '
                                                                        '= '
                                                                        'int(param.eofn_obs)\n'
                                                                        'eofn_mod '
                                                                        '= '
                                                                        'int(param.eofn_mod)\n'
                                                                        '\n'
                                                                        '# '
                                                                        'case '
                                                                        'id\n'
                                                                        'case_id '
                                                                        '= '
                                                                        'param.case_id\n'
                                                                        '\n'
                                                                        '# '
                                                                        'Output\n'
                                                                        'outdir_template '
                                                                        '= '
                                                                        'param.process_templated_argument("results_dir")\n'
                                                                        'outdir '
                                                                        '= '
                                                                        'StringConstructor(\n'
                                                                        '    '
                                                                        'str(\n'
                                                                        '        '
                                                                        'outdir_template(\n'
                                                                        '            '
                                                                        'output_type="%(output_type)",\n'
                                                                        '            '
                                                                        'mip=mip,\n'
                                                                        '            '
                                                                        'exp=exp,\n'
                                                                        '            '
                                                                        'variability_mode=mode,\n'
                                                                        '            '
                                                                        'reference_data_name=obs_name,\n'
                                                                        '            '
                                                                        'case_id=case_id,\n'
                                                                        '        '
                                                                        ')\n'
                                                                        '    '
                                                                        ')\n'
                                                                        ')\n'
                                                                        '\n'
                                                                        '# '
                                                                        'Debug\n'
                                                                        'debug '
                                                                        '= '
                                                                        'param.debug\n'
                                                                        '\n'
                                                                        '# '
                                                                        'Year\n'
                                                                        'msyear '
                                                                        '= '
                                                                        'param.msyear\n'
                                                                        'meyear '
                                                                        '= '
                                                                        'param.meyear\n'
                                                                        'YearCheck(msyear, '
                                                                        'meyear, '
                                                                        'P)\n'
                                                                        '\n'
                                                                        'osyear '
                                                                        '= '
                                                                        'param.osyear\n'
                                                                        'oeyear '
                                                                        '= '
                                                                        'param.oeyear\n'
                                                                        'YearCheck(osyear, '
                                                                        'oeyear, '
                                                                        'P)\n'
                                                                        '\n'
                                                                        '# '
                                                                        'Units '
                                                                        'adjustment\n'
                                                                        'ObsUnitsAdjust '
                                                                        '= '
                                                                        'param.ObsUnitsAdjust\n'
                                                                        'ModUnitsAdjust '
                                                                        '= '
                                                                        'param.ModUnitsAdjust\n'
                                                                        '\n'
                                                                        '# '
                                                                        'lon1g '
                                                                        'and '
                                                                        'lon2g '
                                                                        'is '
                                                                        'for '
                                                                        'global '
                                                                        'map '
                                                                        'plotting\n'
                                                                        'if '
                                                                        'mode '
                                                                        'in '
                                                                        '["PDO", '
                                                                        '"NPGO"]:\n'
                                                                        '    '
                                                                        'lon1g '
                                                                        '= 0\n'
                                                                        '    '
                                                                        'lon2g '
                                                                        '= '
                                                                        '360\n'
                                                                        'else:\n'
                                                                        '    '
                                                                        'lon1g '
                                                                        '= '
                                                                        '-180\n'
                                                                        '    '
                                                                        'lon2g '
                                                                        '= '
                                                                        '180\n'
                                                                        '\n'
                                                                        '# '
                                                                        'parallel\n'
                                                                        'parallel '
                                                                        '= '
                                                                        'param.parallel\n'
                                                                        'print("parallel:", '
                                                                        'parallel)\n'
                                                                        '\n'
                                                                        '# '
                                                                        '=================================================\n'
                                                                        '# '
                                                                        'Time '
                                                                        'period '
                                                                        'adjustment\n'
                                                                        '# '
                                                                        '-------------------------------------------------\n'
                                                                        'start_time '
                                                                        '= '
                                                                        'cdtime.comptime(msyear, '
                                                                        '1, 1, '
                                                                        '0, '
                                                                        '0)\n'
                                                                        'end_time '
                                                                        '= '
                                                                        'cdtime.comptime(meyear, '
                                                                        '12, '
                                                                        '31, '
                                                                        '23, '
                                                                        '59)\n'
                                                                        '\n'
                                                                        'try:\n'
                                                                        '    # '
                                                                        'osyear '
                                                                        'and '
                                                                        'oeyear '
                                                                        'variables '
                                                                        'were '
                                                                        'defined.\n'
                                                                        '    '
                                                                        'start_time_obs '
                                                                        '= '
                                                                        'cdtime.comptime(osyear, '
                                                                        '1, 1, '
                                                                        '0, '
                                                                        '0)\n'
                                                                        '    '
                                                                        'end_time_obs '
                                                                        '= '
                                                                        'cdtime.comptime(oeyear, '
                                                                        '12, '
                                                                        '31, '
                                                                        '23, '
                                                                        '59)\n'
                                                                        'except '
                                                                        'NameError:\n'
                                                                        '    # '
                                                                        'osyear, '
                                                                        'oeyear '
                                                                        'variables '
                                                                        'were '
                                                                        'NOT '
                                                                        'defined\n'
                                                                        '    '
                                                                        'start_time_obs '
                                                                        '= '
                                                                        'start_time\n'
                                                                        '    '
                                                                        'end_time_obs '
                                                                        '= '
                                                                        'end_time\n'
                                                                        '\n'
                                                                        '# '
                                                                        '=================================================\n'
                                                                        '# '
                                                                        'Region '
                                                                        'control\n'
                                                                        '# '
                                                                        '-------------------------------------------------\n'
                                                                        'region_subdomain '
                                                                        '= '
                                                                        'get_domain_range(mode, '
                                                                        'regions_specs)\n'
                                                                        '\n'
                                                                        '# '
                                                                        '=================================================\n'
                                                                        '# '
                                                                        'Create '
                                                                        'output '
                                                                        'directories\n'
                                                                        '# '
                                                                        '-------------------------------------------------\n'
                                                                        'for '
                                                                        'output_type '
                                                                        'in '
                                                                        '["graphics", '
                                                                        '"diagnostic_results", '
                                                                        '"metrics_results"]:\n'
                                                                        '    '
                                                                        'if '
                                                                        'not '
                                                                        'os.path.exists(outdir(output_type=output_type)):\n'
                                                                        '        '
                                                                        'os.makedirs(outdir(output_type=output_type))\n'
                                                                        '    '
                                                                        'print(outdir(output_type=output_type))\n'
                                                                        '\n'
                                                                        '# '
                                                                        '=================================================\n'
                                                                        '# Set '
                                                                        'dictionary '
                                                                        'for '
                                                                        '.json '
                                                                        'record\n'
                                                                        '# '
                                                                        '-------------------------------------------------\n'
                                                                        'result_dict '
                                                                        '= '
                                                                        'tree()\n'
                                                                        '\n'
                                                                        '# Set '
                                                                        'metrics '
                                                                        'output '
                                                                        'JSON '
                                                                        'file\n'
                                                                        'json_filename '
                                                                        '= '
                                                                        '"_".join(\n'
                                                                        '    '
                                                                        '[\n'
                                                                        '        '
                                                                        '"var",\n'
                                                                        '        '
                                                                        '"mode",\n'
                                                                        '        '
                                                                        'mode,\n'
                                                                        '        '
                                                                        '"EOF" '
                                                                        '+ '
                                                                        'str(eofn_mod),\n'
                                                                        '        '
                                                                        '"stat",\n'
                                                                        '        '
                                                                        'mip,\n'
                                                                        '        '
                                                                        'exp,\n'
                                                                        '        '
                                                                        'fq,\n'
                                                                        '        '
                                                                        'realm,\n'
                                                                        '        '
                                                                        'str(msyear) '
                                                                        '+ "-" '
                                                                        '+ '
                                                                        'str(meyear),\n'
                                                                        '    '
                                                                        ']\n'
                                                                        ')\n'
                                                                        '\n'
                                                                        'json_file '
                                                                        '= '
                                                                        'os.path.join(outdir(output_type="metrics_results"), '
                                                                        'json_filename '
                                                                        '+ '
                                                                        '".json")\n'
                                                                        'json_file_org '
                                                                        '= '
                                                                        'os.path.join(\n'
                                                                        '    '
                                                                        'outdir(output_type="metrics_results"),\n'
                                                                        '    '
                                                                        '"_".join([json_filename, '
                                                                        '"org", '
                                                                        'str(os.getpid())]) '
                                                                        '+ '
                                                                        '".json",\n'
                                                                        ')\n'
                                                                        '\n'
                                                                        '# '
                                                                        'Archive '
                                                                        'if '
                                                                        'there '
                                                                        'is '
                                                                        'pre-existing '
                                                                        'JSON: '
                                                                        'preventing '
                                                                        'overwriting\n'
                                                                        'if '
                                                                        'os.path.isfile(json_file) '
                                                                        'and '
                                                                        'os.stat(json_file).st_size '
                                                                        '> 0:\n'
                                                                        '    '
                                                                        'copyfile(json_file, '
                                                                        'json_file_org)\n'
                                                                        '    '
                                                                        'if '
                                                                        'update_json:\n'
                                                                        '        '
                                                                        'fj = '
                                                                        'open(json_file)\n'
                                                                        '        '
                                                                        'result_dict '
                                                                        '= '
                                                                        'json.loads(fj.read())\n'
                                                                        '        '
                                                                        'fj.close()\n'
                                                                        '\n'
                                                                        'if '
                                                                        '"REF" '
                                                                        'not '
                                                                        'in '
                                                                        'list(result_dict.keys()):\n'
                                                                        '    '
                                                                        'result_dict["REF"] '
                                                                        '= {}\n'
                                                                        'if '
                                                                        '"RESULTS" '
                                                                        'not '
                                                                        'in '
                                                                        'list(result_dict.keys()):\n'
                                                                        '    '
                                                                        'result_dict["RESULTS"] '
                                                                        '= {}\n'
                                                                        '\n'
                                                                        '# '
                                                                        '=================================================\n'
                                                                        '# '
                                                                        'Observation\n'
                                                                        '# '
                                                                        '-------------------------------------------------\n'
                                                                        'if '
                                                                        'obs_compare:\n'
                                                                        '\n'
                                                                        '    '
                                                                        'obs_lf_path '
                                                                        '= '
                                                                        'None\n'
                                                                        '\n'
                                                                        '    # '
                                                                        'read '
                                                                        'data '
                                                                        'in\n'
                                                                        '    '
                                                                        'obs_timeseries, '
                                                                        'osyear, '
                                                                        'oeyear '
                                                                        '= '
                                                                        'read_data_in(\n'
                                                                        '        '
                                                                        'obs_name,\n'
                                                                        '        '
                                                                        'obs_path,\n'
                                                                        '        '
                                                                        'obs_lf_path,\n'
                                                                        '        '
                                                                        'obs_var,\n'
                                                                        '        '
                                                                        'var,\n'
                                                                        '        '
                                                                        'start_time_obs,\n'
                                                                        '        '
                                                                        'end_time_obs,\n'
                                                                        '        '
                                                                        'ObsUnitsAdjust,\n'
                                                                        '        '
                                                                        'LandMask,\n'
                                                                        '        '
                                                                        'debug=debug,\n'
                                                                        '    '
                                                                        ')\n'
                                                                        '\n'
                                                                        '    # '
                                                                        'Save '
                                                                        'global '
                                                                        'grid '
                                                                        'information '
                                                                        'for '
                                                                        'regrid '
                                                                        'below\n'
                                                                        '    '
                                                                        'ref_grid_global '
                                                                        '= '
                                                                        'obs_timeseries.getGrid()\n'
                                                                        '\n'
                                                                        '    # '
                                                                        'Declare '
                                                                        'dictionary '
                                                                        'variables '
                                                                        'to '
                                                                        'keep '
                                                                        'information '
                                                                        'from '
                                                                        'observation\n'
                                                                        '    '
                                                                        'eof_obs '
                                                                        '= {}\n'
                                                                        '    '
                                                                        'pc_obs '
                                                                        '= {}\n'
                                                                        '    '
                                                                        'frac_obs '
                                                                        '= {}\n'
                                                                        '    '
                                                                        'solver_obs '
                                                                        '= {}\n'
                                                                        '    '
                                                                        'reverse_sign_obs '
                                                                        '= {}\n'
                                                                        '    '
                                                                        'eof_lr_obs '
                                                                        '= {}\n'
                                                                        '    '
                                                                        'stdv_pc_obs '
                                                                        '= {}\n'
                                                                        '\n'
                                                                        '    # '
                                                                        'Dictonary '
                                                                        'for '
                                                                        'json '
                                                                        'archive\n'
                                                                        '    '
                                                                        'if '
                                                                        '"obs" '
                                                                        'not '
                                                                        'in '
                                                                        'list(result_dict["REF"].keys()):\n'
                                                                        '        '
                                                                        'result_dict["REF"]["obs"] '
                                                                        '= {}\n'
                                                                        '    '
                                                                        'if '
                                                                        '"defaultReference" '
                                                                        'not '
                                                                        'in '
                                                                        'list(result_dict["REF"]["obs"].keys()):\n'
                                                                        '        '
                                                                        'result_dict["REF"]["obs"]["defaultReference"] '
                                                                        '= {}\n'
                                                                        '    '
                                                                        'if '
                                                                        '"source" '
                                                                        'not '
                                                                        'in '
                                                                        'list(result_dict["REF"]["obs"]["defaultReference"].keys()):\n'
                                                                        '        '
                                                                        'result_dict["REF"]["obs"]["defaultReference"]["source"] '
                                                                        '= {}\n'
                                                                        '    '
                                                                        'if '
                                                                        'mode '
                                                                        'not '
                                                                        'in '
                                                                        'list(result_dict["REF"]["obs"]["defaultReference"].keys()):\n'
                                                                        '        '
                                                                        'result_dict["REF"]["obs"]["defaultReference"][mode] '
                                                                        '= {}\n'
                                                                        '\n'
                                                                        '    '
                                                                        'result_dict["REF"]["obs"]["defaultReference"]["source"] '
                                                                        '= '
                                                                        'obs_path\n'
                                                                        '    '
                                                                        'result_dict["REF"]["obs"]["defaultReference"]["reference_eofs"] '
                                                                        '= '
                                                                        'eofn_obs\n'
                                                                        '    '
                                                                        'result_dict["REF"]["obs"]["defaultReference"]["period"] '
                                                                        '= (\n'
                                                                        '        '
                                                                        'str(osyear) '
                                                                        '+ "-" '
                                                                        '+ '
                                                                        'str(oeyear)\n'
                                                                        '    '
                                                                        ')\n'
                                                                        '\n'
                                                                        '    # '
                                                                        '-------------------------------------------------\n'
                                                                        '    # '
                                                                        'Season '
                                                                        'loop\n'
                                                                        '    # '
                                                                        '- - - '
                                                                        '- - - '
                                                                        '- - - '
                                                                        '- - - '
                                                                        '- - - '
                                                                        '- - - '
                                                                        '- - - '
                                                                        '- - - '
                                                                        '-\n'
                                                                        '    '
                                                                        'debug_print("obs '
                                                                        'season '
                                                                        'loop '
                                                                        'starts", '
                                                                        'debug)\n'
                                                                        '\n'
                                                                        '    '
                                                                        'for '
                                                                        'season '
                                                                        'in '
                                                                        'seasons:\n'
                                                                        '        '
                                                                        'debug_print("season: '
                                                                        '" + '
                                                                        'season, '
                                                                        'debug)\n'
                                                                        '\n'
                                                                        '        '
                                                                        'if '
                                                                        'season '
                                                                        'not '
                                                                        'in '
                                                                        'list(\n'
                                                                        '            '
                                                                        'result_dict["REF"]["obs"]["defaultReference"][mode].keys()\n'
                                                                        '        '
                                                                        '):\n'
                                                                        '            '
                                                                        'result_dict["REF"]["obs"]["defaultReference"][mode][season] '
                                                                        '= {}\n'
                                                                        '\n'
                                                                        '        '
                                                                        'dict_head_obs '
                                                                        '= '
                                                                        'result_dict["REF"]["obs"]["defaultReference"][mode][season]\n'
                                                                        '\n'
                                                                        '        '
                                                                        '# '
                                                                        'Time '
                                                                        'series '
                                                                        'adjustment '
                                                                        '(remove '
                                                                        'annual '
                                                                        'cycle, '
                                                                        'seasonal '
                                                                        'mean '
                                                                        '(if '
                                                                        'needed),\n'
                                                                        '        '
                                                                        '# and '
                                                                        'subtracting '
                                                                        'domain '
                                                                        '(or '
                                                                        'global) '
                                                                        'mean '
                                                                        'of '
                                                                        'each '
                                                                        'time '
                                                                        'step)\n'
                                                                        '        '
                                                                        'debug_print("time '
                                                                        'series '
                                                                        'adjustment", '
                                                                        'debug)\n'
                                                                        '        '
                                                                        'obs_timeseries_season '
                                                                        '= '
                                                                        'adjust_timeseries(\n'
                                                                        '            '
                                                                        'obs_timeseries, '
                                                                        'mode, '
                                                                        'season, '
                                                                        'region_subdomain, '
                                                                        'RmDomainMean\n'
                                                                        '        '
                                                                        ')\n'
                                                                        '\n'
                                                                        '        '
                                                                        '# '
                                                                        'Extract '
                                                                        'subdomain\n'
                                                                        '        '
                                                                        'obs_timeseries_season_subdomain '
                                                                        '= '
                                                                        'obs_timeseries_season(region_subdomain)\n'
                                                                        '\n'
                                                                        '        '
                                                                        '# EOF '
                                                                        'analysis\n'
                                                                        '        '
                                                                        'debug_print("EOF '
                                                                        'analysis", '
                                                                        'debug)\n'
                                                                        '        '
                                                                        '(\n'
                                                                        '            '
                                                                        'eof_obs[season],\n'
                                                                        '            '
                                                                        'pc_obs[season],\n'
                                                                        '            '
                                                                        'frac_obs[season],\n'
                                                                        '            '
                                                                        'reverse_sign_obs[season],\n'
                                                                        '            '
                                                                        'solver_obs[season],\n'
                                                                        '        '
                                                                        ') = '
                                                                        'eof_analysis_get_variance_mode(\n'
                                                                        '            '
                                                                        'mode,\n'
                                                                        '            '
                                                                        'obs_timeseries_season_subdomain,\n'
                                                                        '            '
                                                                        'eofn=eofn_obs,\n'
                                                                        '            '
                                                                        'debug=debug,\n'
                                                                        '            '
                                                                        'EofScaling=EofScaling,\n'
                                                                        '        '
                                                                        ')\n'
                                                                        '\n'
                                                                        '        '
                                                                        '# '
                                                                        'Calculate '
                                                                        'stdv '
                                                                        'of pc '
                                                                        'time '
                                                                        'series\n'
                                                                        '        '
                                                                        'debug_print("calculate '
                                                                        'stdv '
                                                                        'of pc '
                                                                        'time '
                                                                        'series", '
                                                                        'debug)\n'
                                                                        '        '
                                                                        'stdv_pc_obs[season] '
                                                                        '= '
                                                                        'calcSTD(pc_obs[season])\n'
                                                                        '\n'
                                                                        '        '
                                                                        '# '
                                                                        'Linear '
                                                                        'regression '
                                                                        'to '
                                                                        'have '
                                                                        'extended '
                                                                        'global '
                                                                        'map; '
                                                                        'teleconnection '
                                                                        'purpose\n'
                                                                        '        '
                                                                        '(\n'
                                                                        '            '
                                                                        'eof_lr_obs[season],\n'
                                                                        '            '
                                                                        'slope_obs,\n'
                                                                        '            '
                                                                        'intercept_obs,\n'
                                                                        '        '
                                                                        ') = '
                                                                        'linear_regression_on_globe_for_teleconnection(\n'
                                                                        '            '
                                                                        'pc_obs[season],\n'
                                                                        '            '
                                                                        'obs_timeseries_season,\n'
                                                                        '            '
                                                                        'stdv_pc_obs[season],\n'
                                                                        '            '
                                                                        'RmDomainMean,\n'
                                                                        '            '
                                                                        'EofScaling,\n'
                                                                        '            '
                                                                        'debug=debug,\n'
                                                                        '        '
                                                                        ')\n'
                                                                        '\n'
                                                                        '        '
                                                                        '# - - '
                                                                        '- - - '
                                                                        '- - - '
                                                                        '- - - '
                                                                        '- - - '
                                                                        '- - - '
                                                                        '- - - '
                                                                        '- - - '
                                                                        '- -\n'
                                                                        '        '
                                                                        '# '
                                                                        'Record '
                                                                        'results\n'
                                                                        '        '
                                                                        '# . . '
                                                                        '. . . '
                                                                        '. . . '
                                                                        '. . . '
                                                                        '. . . '
                                                                        '. . . '
                                                                        '. . . '
                                                                        '. . . '
                                                                        '. .\n'
                                                                        '        '
                                                                        'debug_print("record '
                                                                        'results", '
                                                                        'debug)\n'
                                                                        '\n'
                                                                        '        '
                                                                        '# Set '
                                                                        'output '
                                                                        'file '
                                                                        'name '
                                                                        'for '
                                                                        'NetCDF '
                                                                        'and '
                                                                        'plot\n'
                                                                        '        '
                                                                        'output_filename_obs '
                                                                        '= '
                                                                        '"_".join(\n'
                                                                        '            '
                                                                        '[\n'
                                                                        '                '
                                                                        'mode,\n'
                                                                        '                '
                                                                        'var,\n'
                                                                        '                '
                                                                        '"EOF" '
                                                                        '+ '
                                                                        'str(eofn_obs),\n'
                                                                        '                '
                                                                        'season,\n'
                                                                        '                '
                                                                        '"obs",\n'
                                                                        '                '
                                                                        'str(osyear) '
                                                                        '+ "-" '
                                                                        '+ '
                                                                        'str(oeyear),\n'
                                                                        '            '
                                                                        ']\n'
                                                                        '        '
                                                                        ')\n'
                                                                        '        '
                                                                        'if '
                                                                        'EofScaling:\n'
                                                                        '            '
                                                                        'output_filename_obs '
                                                                        '+= '
                                                                        '"_EOFscaled"\n'
                                                                        '\n'
                                                                        '        '
                                                                        '# '
                                                                        'Save '
                                                                        'global '
                                                                        'map, '
                                                                        'pc '
                                                                        'timeseries, '
                                                                        'and '
                                                                        'fraction '
                                                                        'in '
                                                                        'NetCDF '
                                                                        'output\n'
                                                                        '        '
                                                                        'if '
                                                                        'nc_out_obs:\n'
                                                                        '            '
                                                                        'output_nc_file_obs '
                                                                        '= '
                                                                        'os.path.join(\n'
                                                                        '                '
                                                                        'outdir(output_type="diagnostic_results"), '
                                                                        'output_filename_obs\n'
                                                                        '            '
                                                                        ')\n'
                                                                        '            '
                                                                        'write_nc_output(\n'
                                                                        '                '
                                                                        'output_nc_file_obs,\n'
                                                                        '                '
                                                                        'eof_lr_obs[season],\n'
                                                                        '                '
                                                                        'pc_obs[season],\n'
                                                                        '                '
                                                                        'frac_obs[season],\n'
                                                                        '                '
                                                                        'slope_obs,\n'
                                                                        '                '
                                                                        'intercept_obs,\n'
                                                                        '            '
                                                                        ')\n'
                                                                        '\n'
                                                                        '        '
                                                                        '# '
                                                                        'Plotting\n'
                                                                        '        '
                                                                        'if '
                                                                        'plot_obs:\n'
                                                                        '            '
                                                                        'output_img_file_obs '
                                                                        '= '
                                                                        'os.path.join(\n'
                                                                        '                '
                                                                        'outdir(output_type="graphics"), '
                                                                        'output_filename_obs\n'
                                                                        '            '
                                                                        ')\n'
                                                                        '            '
                                                                        '# '
                                                                        'plot_map(mode, '
                                                                        "'[REF] "
                                                                        "'+obs_name, "
                                                                        'osyear, '
                                                                        'oeyear, '
                                                                        'season,\n'
                                                                        '            '
                                                                        '#          '
                                                                        'eof_obs[season], '
                                                                        'frac_obs[season],\n'
                                                                        '            '
                                                                        '#          '
                                                                        "output_img_file_obs+'_org_eof')\n"
                                                                        '            '
                                                                        'plot_map(\n'
                                                                        '                '
                                                                        'mode,\n'
                                                                        '                '
                                                                        '"[REF] '
                                                                        '" + '
                                                                        'obs_name,\n'
                                                                        '                '
                                                                        'osyear,\n'
                                                                        '                '
                                                                        'oeyear,\n'
                                                                        '                '
                                                                        'season,\n'
                                                                        '                '
                                                                        'eof_lr_obs[season](region_subdomain),\n'
                                                                        '                '
                                                                        'frac_obs[season],\n'
                                                                        '                '
                                                                        'output_img_file_obs,\n'
                                                                        '            '
                                                                        ')\n'
                                                                        '            '
                                                                        'plot_map(\n'
                                                                        '                '
                                                                        'mode '
                                                                        '+ '
                                                                        '"_teleconnection",\n'
                                                                        '                '
                                                                        '"[REF] '
                                                                        '" + '
                                                                        'obs_name,\n'
                                                                        '                '
                                                                        'osyear,\n'
                                                                        '                '
                                                                        'oeyear,\n'
                                                                        '                '
                                                                        'season,\n'
                                                                        '                '
                                                                        'eof_lr_obs[season](longitude=(lon1g, '
                                                                        'lon2g)),\n'
                                                                        '                '
                                                                        'frac_obs[season],\n'
                                                                        '                '
                                                                        'output_img_file_obs '
                                                                        '+ '
                                                                        '"_teleconnection",\n'
                                                                        '            '
                                                                        ')\n'
                                                                        '            '
                                                                        'debug_print("obs '
                                                                        'plotting '
                                                                        'end", '
                                                                        'debug)\n'
                                                                        '\n'
                                                                        '        '
                                                                        '# '
                                                                        'Save '
                                                                        'stdv '
                                                                        'of PC '
                                                                        'time '
                                                                        'series '
                                                                        'in '
                                                                        'dictionary\n'
                                                                        '        '
                                                                        'dict_head_obs["stdv_pc"] '
                                                                        '= '
                                                                        'stdv_pc_obs[season]\n'
                                                                        '        '
                                                                        'dict_head_obs["frac"] '
                                                                        '= '
                                                                        'float(frac_obs[season])\n'
                                                                        '\n'
                                                                        '        '
                                                                        '# '
                                                                        'Mean\n'
                                                                        '        '
                                                                        'mean_obs '
                                                                        '= '
                                                                        'cdutil.averager(eof_obs[season], '
                                                                        'axis="yx", '
                                                                        'weights="weighted")\n'
                                                                        '        '
                                                                        'mean_glo_obs '
                                                                        '= '
                                                                        'cdutil.averager(\n'
                                                                        '            '
                                                                        'eof_lr_obs[season], '
                                                                        'axis="yx", '
                                                                        'weights="weighted"\n'
                                                                        '        '
                                                                        ')\n'
                                                                        '        '
                                                                        'dict_head_obs["mean"] '
                                                                        '= '
                                                                        'float(mean_obs)\n'
                                                                        '        '
                                                                        'dict_head_obs["mean_glo"] '
                                                                        '= '
                                                                        'float(mean_glo_obs)\n'
                                                                        '        '
                                                                        'debug_print("obs '
                                                                        'mean '
                                                                        'end", '
                                                                        'debug)\n'
                                                                        '\n'
                                                                        '        '
                                                                        '# '
                                                                        'North '
                                                                        'test '
                                                                        '-- '
                                                                        'make '
                                                                        'this '
                                                                        'available '
                                                                        'as '
                                                                        'option '
                                                                        'later...\n'
                                                                        '        '
                                                                        '# '
                                                                        "execfile('../north_test.py')\n"
                                                                        '\n'
                                                                        '    '
                                                                        'debug_print("obs '
                                                                        'end", '
                                                                        'debug)\n'
                                                                        '\n'
                                                                        '# '
                                                                        '=================================================\n'
                                                                        '# '
                                                                        'Model\n'
                                                                        '# '
                                                                        '-------------------------------------------------\n'
                                                                        'for '
                                                                        'model '
                                                                        'in '
                                                                        'models:\n'
                                                                        '    '
                                                                        'print(" '
                                                                        '----- '
                                                                        '", '
                                                                        'model, '
                                                                        '" '
                                                                        '---------------------")\n'
                                                                        '\n'
                                                                        '    '
                                                                        'if '
                                                                        'model '
                                                                        'not '
                                                                        'in '
                                                                        'list(result_dict["RESULTS"].keys()):\n'
                                                                        '        '
                                                                        'result_dict["RESULTS"][model] '
                                                                        '= {}\n'
                                                                        '\n'
                                                                        '    '
                                                                        'model_path_list '
                                                                        '= '
                                                                        'glob.glob(\n'
                                                                        '        '
                                                                        'modpath(mip=mip, '
                                                                        'exp=exp, '
                                                                        'model=model, '
                                                                        'realization=realization, '
                                                                        'variable=var)\n'
                                                                        '    '
                                                                        ')\n'
                                                                        '\n'
                                                                        '    '
                                                                        'model_path_list '
                                                                        '= '
                                                                        'sort_human(model_path_list)\n'
                                                                        '\n'
                                                                        '    '
                                                                        'debug_print("model_path_list: '
                                                                        '" + '
                                                                        'str(model_path_list), '
                                                                        'debug)\n'
                                                                        '\n'
                                                                        '    # '
                                                                        'Find '
                                                                        'where '
                                                                        'run '
                                                                        'can '
                                                                        'be '
                                                                        'gripped '
                                                                        'from '
                                                                        'given '
                                                                        'filename '
                                                                        'template '
                                                                        'for '
                                                                        'modpath\n'
                                                                        '    '
                                                                        'if '
                                                                        'realization '
                                                                        '== '
                                                                        '"*":\n'
                                                                        '        '
                                                                        'run_in_modpath '
                                                                        '= (\n'
                                                                        '            '
                                                                        'modpath(\n'
                                                                        '                '
                                                                        'mip=mip, '
                                                                        'exp=exp, '
                                                                        'model=model, '
                                                                        'realization=realization, '
                                                                        'variable=var\n'
                                                                        '            '
                                                                        ')\n'
                                                                        '            '
                                                                        '.split("/")[-1]\n'
                                                                        '            '
                                                                        '.split(".")\n'
                                                                        '            '
                                                                        '.index(realization)\n'
                                                                        '        '
                                                                        ')\n'
                                                                        '\n'
                                                                        '    # '
                                                                        '-------------------------------------------------\n'
                                                                        '    # '
                                                                        'Run\n'
                                                                        '    # '
                                                                        '-------------------------------------------------\n'
                                                                        '    '
                                                                        'for '
                                                                        'model_path '
                                                                        'in '
                                                                        'model_path_list:\n'
                                                                        '\n'
                                                                        '        '
                                                                        'try:\n'
                                                                        '            '
                                                                        'if '
                                                                        'realization '
                                                                        '== '
                                                                        '"*":\n'
                                                                        '                '
                                                                        'run = '
                                                                        '(model_path.split("/")[-1]).split(".")[run_in_modpath]\n'
                                                                        '            '
                                                                        'else:\n'
                                                                        '                '
                                                                        'run = '
                                                                        'realization\n'
                                                                        '            '
                                                                        'print(" '
                                                                        '--- '
                                                                        '", '
                                                                        'run, '
                                                                        '" '
                                                                        '---")\n'
                                                                        '\n'
                                                                        '            '
                                                                        'if '
                                                                        'run '
                                                                        'not '
                                                                        'in '
                                                                        'list(result_dict["RESULTS"][model].keys()):\n'
                                                                        '                '
                                                                        'result_dict["RESULTS"][model][run] '
                                                                        '= {}\n'
                                                                        '            '
                                                                        'if '
                                                                        '"defaultReference" '
                                                                        'not '
                                                                        'in '
                                                                        'list(\n'
                                                                        '                '
                                                                        'result_dict["RESULTS"][model][run].keys()\n'
                                                                        '            '
                                                                        '):\n'
                                                                        '                '
                                                                        'result_dict["RESULTS"][model][run]["defaultReference"] '
                                                                        '= {}\n'
                                                                        '            '
                                                                        'if '
                                                                        'mode '
                                                                        'not '
                                                                        'in '
                                                                        'list(\n'
                                                                        '                '
                                                                        'result_dict["RESULTS"][model][run]["defaultReference"].keys()\n'
                                                                        '            '
                                                                        '):\n'
                                                                        '                '
                                                                        'result_dict["RESULTS"][model][run]["defaultReference"][mode] '
                                                                        '= {}\n'
                                                                        '            '
                                                                        'result_dict["RESULTS"][model][run]["defaultReference"][mode][\n'
                                                                        '                '
                                                                        '"target_model_eofs"\n'
                                                                        '            '
                                                                        '] = '
                                                                        'eofn_mod\n'
                                                                        '\n'
                                                                        '            '
                                                                        'if '
                                                                        'LandMask:\n'
                                                                        '                '
                                                                        'model_lf_path '
                                                                        '= '
                                                                        'modpath_lf(mip=mip, '
                                                                        'exp=exp, '
                                                                        'model=model)\n'
                                                                        '            '
                                                                        'else:\n'
                                                                        '                '
                                                                        'model_lf_path '
                                                                        '= '
                                                                        'None\n'
                                                                        '\n'
                                                                        '            '
                                                                        '# '
                                                                        'read '
                                                                        'data '
                                                                        'in\n'
                                                                        '            '
                                                                        'model_timeseries, '
                                                                        'msyear, '
                                                                        'meyear '
                                                                        '= '
                                                                        'read_data_in(\n'
                                                                        '                '
                                                                        'model,\n'
                                                                        '                '
                                                                        'model_path,\n'
                                                                        '                '
                                                                        'model_lf_path,\n'
                                                                        '                '
                                                                        'var,\n'
                                                                        '                '
                                                                        'var,\n'
                                                                        '                '
                                                                        'start_time,\n'
                                                                        '                '
                                                                        'end_time,\n'
                                                                        '                '
                                                                        'ModUnitsAdjust,\n'
                                                                        '                '
                                                                        'LandMask,\n'
                                                                        '                '
                                                                        'debug=debug,\n'
                                                                        '            '
                                                                        ')\n'
                                                                        '\n'
                                                                        '            '
                                                                        'debug_print("msyear: '
                                                                        '" + '
                                                                        'str(msyear) '
                                                                        '+ " '
                                                                        'meyear: '
                                                                        '" + '
                                                                        'str(meyear), '
                                                                        'debug)\n'
                                                                        '\n'
                                                                        '            '
                                                                        '# '
                                                                        '-------------------------------------------------\n'
                                                                        '            '
                                                                        '# '
                                                                        'Season '
                                                                        'loop\n'
                                                                        '            '
                                                                        '# - - '
                                                                        '- - - '
                                                                        '- - - '
                                                                        '- - - '
                                                                        '- - - '
                                                                        '- - - '
                                                                        '- - - '
                                                                        '- - - '
                                                                        '- -\n'
                                                                        '            '
                                                                        'for '
                                                                        'season '
                                                                        'in '
                                                                        'seasons:\n'
                                                                        '                '
                                                                        'debug_print("season: '
                                                                        '" + '
                                                                        'season, '
                                                                        'debug)\n'
                                                                        '\n'
                                                                        '                '
                                                                        'if '
                                                                        'season '
                                                                        'not '
                                                                        'in '
                                                                        'list(\n'
                                                                        '                    '
                                                                        'result_dict["RESULTS"][model][run]["defaultReference"][mode].keys()\n'
                                                                        '                '
                                                                        '):\n'
                                                                        '                    '
                                                                        'result_dict["RESULTS"][model][run]["defaultReference"][mode][\n'
                                                                        '                        '
                                                                        'season\n'
                                                                        '                    '
                                                                        '] = '
                                                                        '{}\n'
                                                                        '                '
                                                                        'result_dict["RESULTS"][model][run]["defaultReference"][mode][season][\n'
                                                                        '                    '
                                                                        '"period"\n'
                                                                        '                '
                                                                        '] = '
                                                                        '(str(msyear) '
                                                                        '+ "-" '
                                                                        '+ '
                                                                        'str(meyear))\n'
                                                                        '\n'
                                                                        '                '
                                                                        '# '
                                                                        'Time '
                                                                        'series '
                                                                        'adjustment '
                                                                        '(remove '
                                                                        'annual '
                                                                        'cycle, '
                                                                        'seasonal '
                                                                        'mean '
                                                                        '(if '
                                                                        'needed),\n'
                                                                        '                '
                                                                        '# and '
                                                                        'subtracting '
                                                                        'domain '
                                                                        '(or '
                                                                        'global) '
                                                                        'mean '
                                                                        'of '
                                                                        'each '
                                                                        'time '
                                                                        'step)\n'
                                                                        '                '
                                                                        'debug_print("time '
                                                                        'series '
                                                                        'adjustment", '
                                                                        'debug)\n'
                                                                        '                '
                                                                        'model_timeseries_season '
                                                                        '= '
                                                                        'adjust_timeseries(\n'
                                                                        '                    '
                                                                        'model_timeseries, '
                                                                        'mode, '
                                                                        'season, '
                                                                        'region_subdomain, '
                                                                        'RmDomainMean\n'
                                                                        '                '
                                                                        ')\n'
                                                                        '\n'
                                                                        '                '
                                                                        '# '
                                                                        'Extract '
                                                                        'subdomain\n'
                                                                        '                '
                                                                        'debug_print("extract '
                                                                        'subdomain", '
                                                                        'debug)\n'
                                                                        '                '
                                                                        'model_timeseries_season_subdomain '
                                                                        '= '
                                                                        'model_timeseries_season(\n'
                                                                        '                    '
                                                                        'region_subdomain\n'
                                                                        '                '
                                                                        ')\n'
                                                                        '\n'
                                                                        '                '
                                                                        '# '
                                                                        '-------------------------------------------------\n'
                                                                        '                '
                                                                        '# '
                                                                        'Common '
                                                                        'Basis '
                                                                        'Function '
                                                                        'Approach\n'
                                                                        '                '
                                                                        '# - - '
                                                                        '- - - '
                                                                        '- - - '
                                                                        '- - - '
                                                                        '- - - '
                                                                        '- - - '
                                                                        '- - - '
                                                                        '- - - '
                                                                        '- -\n'
                                                                        '                '
                                                                        'if '
                                                                        'CBF '
                                                                        'and '
                                                                        'obs_compare:\n'
                                                                        '\n'
                                                                        '                    '
                                                                        'if '
                                                                        '"cbf" '
                                                                        'not '
                                                                        'in '
                                                                        'list(\n'
                                                                        '                        '
                                                                        'result_dict["RESULTS"][model][run]["defaultReference"][mode][\n'
                                                                        '                            '
                                                                        'season\n'
                                                                        '                        '
                                                                        '].keys()\n'
                                                                        '                    '
                                                                        '):\n'
                                                                        '                        '
                                                                        'result_dict["RESULTS"][model][run]["defaultReference"][mode][\n'
                                                                        '                            '
                                                                        'season\n'
                                                                        '                        '
                                                                        ']["cbf"] '
                                                                        '= {}\n'
                                                                        '                    '
                                                                        'dict_head '
                                                                        '= '
                                                                        'result_dict["RESULTS"][model][run]["defaultReference"][\n'
                                                                        '                        '
                                                                        'mode\n'
                                                                        '                    '
                                                                        '][season]["cbf"]\n'
                                                                        '                    '
                                                                        'debug_print("CBF '
                                                                        'approach '
                                                                        'start", '
                                                                        'debug)\n'
                                                                        '\n'
                                                                        '                    '
                                                                        '# '
                                                                        'Regrid '
                                                                        '(interpolation, '
                                                                        'model '
                                                                        'grid '
                                                                        'to '
                                                                        'ref '
                                                                        'grid)\n'
                                                                        '                    '
                                                                        'model_timeseries_season_regrid '
                                                                        '= '
                                                                        'model_timeseries_season.regrid(\n'
                                                                        '                        '
                                                                        'ref_grid_global, '
                                                                        'regridTool="regrid2", '
                                                                        'mkCyclic=True\n'
                                                                        '                    '
                                                                        ')\n'
                                                                        '                    '
                                                                        'model_timeseries_season_regrid_subdomain '
                                                                        '= (\n'
                                                                        '                        '
                                                                        'model_timeseries_season_regrid(region_subdomain)\n'
                                                                        '                    '
                                                                        ')\n'
                                                                        '\n'
                                                                        '                    '
                                                                        '# '
                                                                        'Matching '
                                                                        "model's "
                                                                        'missing '
                                                                        'value '
                                                                        'location '
                                                                        'to '
                                                                        'that '
                                                                        'of '
                                                                        'observation\n'
                                                                        '                    '
                                                                        '# '
                                                                        'Save '
                                                                        'axes '
                                                                        'for '
                                                                        'preserving\n'
                                                                        '                    '
                                                                        'axes '
                                                                        '= '
                                                                        'model_timeseries_season_regrid_subdomain.getAxisList()\n'
                                                                        '                    '
                                                                        '# 1) '
                                                                        'Replace '
                                                                        "model's "
                                                                        'masked '
                                                                        'grid '
                                                                        'to 0, '
                                                                        'so '
                                                                        'theoritically '
                                                                        "won't "
                                                                        'affect '
                                                                        'to '
                                                                        'result\n'
                                                                        '                    '
                                                                        'model_timeseries_season_regrid_subdomain '
                                                                        '= '
                                                                        'MV2.array(\n'
                                                                        '                        '
                                                                        'model_timeseries_season_regrid_subdomain.filled(0.0)\n'
                                                                        '                    '
                                                                        ')\n'
                                                                        '                    '
                                                                        '# 2) '
                                                                        'Give '
                                                                        "obs's "
                                                                        'mask '
                                                                        'to '
                                                                        'model '
                                                                        'field, '
                                                                        'so '
                                                                        'enable '
                                                                        'projecField '
                                                                        'functionality '
                                                                        'below\n'
                                                                        '                    '
                                                                        'model_timeseries_season_regrid_subdomain.mask '
                                                                        '= '
                                                                        'eof_obs[season].mask\n'
                                                                        '                    '
                                                                        '# '
                                                                        'Preserve '
                                                                        'axes\n'
                                                                        '                    '
                                                                        'model_timeseries_season_regrid_subdomain.setAxisList(axes)\n'
                                                                        '\n'
                                                                        '                    '
                                                                        '# CBF '
                                                                        'PC '
                                                                        'time '
                                                                        'series\n'
                                                                        '                    '
                                                                        'cbf_pc '
                                                                        '= '
                                                                        'gain_pseudo_pcs(\n'
                                                                        '                        '
                                                                        'solver_obs[season],\n'
                                                                        '                        '
                                                                        'model_timeseries_season_regrid_subdomain,\n'
                                                                        '                        '
                                                                        'eofn_obs,\n'
                                                                        '                        '
                                                                        'reverse_sign_obs[season],\n'
                                                                        '                        '
                                                                        'EofScaling=EofScaling,\n'
                                                                        '                    '
                                                                        ')\n'
                                                                        '\n'
                                                                        '                    '
                                                                        '# '
                                                                        'Calculate '
                                                                        'stdv '
                                                                        'of '
                                                                        'cbf '
                                                                        'pc '
                                                                        'time '
                                                                        'series\n'
                                                                        '                    '
                                                                        'stdv_cbf_pc '
                                                                        '= '
                                                                        'calcSTD(cbf_pc)\n'
                                                                        '\n'
                                                                        '                    '
                                                                        '# '
                                                                        'Linear '
                                                                        'regression '
                                                                        'to '
                                                                        'have '
                                                                        'extended '
                                                                        'global '
                                                                        'map; '
                                                                        'teleconnection '
                                                                        'purpose\n'
                                                                        '                    '
                                                                        '(\n'
                                                                        '                        '
                                                                        'eof_lr_cbf,\n'
                                                                        '                        '
                                                                        'slope_cbf,\n'
                                                                        '                        '
                                                                        'intercept_cbf,\n'
                                                                        '                    '
                                                                        ') = '
                                                                        'linear_regression_on_globe_for_teleconnection(\n'
                                                                        '                        '
                                                                        'cbf_pc,\n'
                                                                        '                        '
                                                                        'model_timeseries_season,\n'
                                                                        '                        '
                                                                        'stdv_cbf_pc,\n'
                                                                        '                        '
                                                                        '# '
                                                                        'cbf_pc, '
                                                                        'model_timeseries_season_regrid, '
                                                                        'stdv_cbf_pc,\n'
                                                                        '                        '
                                                                        'RmDomainMean,\n'
                                                                        '                        '
                                                                        'EofScaling,\n'
                                                                        '                        '
                                                                        'debug=debug,\n'
                                                                        '                    '
                                                                        ')\n'
                                                                        '\n'
                                                                        '                    '
                                                                        '# '
                                                                        'Extract '
                                                                        'subdomain '
                                                                        'for '
                                                                        'statistics\n'
                                                                        '                    '
                                                                        'eof_lr_cbf_subdomain '
                                                                        '= '
                                                                        'eof_lr_cbf(region_subdomain)\n'
                                                                        '\n'
                                                                        '                    '
                                                                        '# '
                                                                        'Calculate '
                                                                        'fraction '
                                                                        'of '
                                                                        'variance '
                                                                        'explained '
                                                                        'by '
                                                                        'cbf '
                                                                        'pc\n'
                                                                        '                    '
                                                                        'frac_cbf '
                                                                        '= '
                                                                        'gain_pcs_fraction(\n'
                                                                        '                        '
                                                                        '# '
                                                                        'model_timeseries_season_regrid_subdomain,  '
                                                                        '# '
                                                                        'regridded '
                                                                        'model '
                                                                        'anomaly '
                                                                        'space\n'
                                                                        '                        '
                                                                        'model_timeseries_season_subdomain,  '
                                                                        '# '
                                                                        'native '
                                                                        'grid '
                                                                        'model '
                                                                        'anomaly '
                                                                        'space\n'
                                                                        '                        '
                                                                        'eof_lr_cbf_subdomain,\n'
                                                                        '                        '
                                                                        'cbf_pc '
                                                                        '/ '
                                                                        'stdv_cbf_pc,\n'
                                                                        '                        '
                                                                        'debug=debug,\n'
                                                                        '                    '
                                                                        ')\n'
                                                                        '\n'
                                                                        '                    '
                                                                        '# '
                                                                        'SENSITIVITY '
                                                                        'TEST '
                                                                        '---\n'
                                                                        '                    '
                                                                        '# '
                                                                        'Calculate '
                                                                        'fraction '
                                                                        'of '
                                                                        'variance '
                                                                        'explained '
                                                                        'by '
                                                                        'cbf '
                                                                        'pc '
                                                                        '(on '
                                                                        'regrid '
                                                                        'domain)\n'
                                                                        '                    '
                                                                        'frac_cbf_regrid '
                                                                        '= '
                                                                        'gain_pcs_fraction(\n'
                                                                        '                        '
                                                                        'model_timeseries_season_regrid_subdomain,\n'
                                                                        '                        '
                                                                        'eof_lr_cbf_subdomain,\n'
                                                                        '                        '
                                                                        'cbf_pc '
                                                                        '/ '
                                                                        'stdv_cbf_pc,\n'
                                                                        '                        '
                                                                        'debug=debug,\n'
                                                                        '                    '
                                                                        ')\n'
                                                                        '                    '
                                                                        'dict_head["frac_cbf_regrid"] '
                                                                        '= '
                                                                        'float(frac_cbf_regrid)\n'
                                                                        '\n'
                                                                        '                    '
                                                                        '# - - '
                                                                        '- - - '
                                                                        '- - - '
                                                                        '- - - '
                                                                        '- - - '
                                                                        '- - - '
                                                                        '- - - '
                                                                        '- - - '
                                                                        '- -\n'
                                                                        '                    '
                                                                        '# '
                                                                        'Record '
                                                                        'results\n'
                                                                        '                    '
                                                                        '# - - '
                                                                        '- - - '
                                                                        '- - - '
                                                                        '- - - '
                                                                        '- - - '
                                                                        '- - - '
                                                                        '- - - '
                                                                        '- - - '
                                                                        '- -\n'
                                                                        '                    '
                                                                        '# '
                                                                        'Metrics '
                                                                        'results '
                                                                        '-- '
                                                                        'statistics '
                                                                        'to '
                                                                        'JSON\n'
                                                                        '                    '
                                                                        'dict_head, '
                                                                        'eof_lr_cbf '
                                                                        '= '
                                                                        'calc_stats_save_dict(\n'
                                                                        '                        '
                                                                        'dict_head,\n'
                                                                        '                        '
                                                                        'eof_lr_cbf_subdomain,\n'
                                                                        '                        '
                                                                        'eof_lr_cbf,\n'
                                                                        '                        '
                                                                        'slope_cbf,\n'
                                                                        '                        '
                                                                        'cbf_pc,\n'
                                                                        '                        '
                                                                        'stdv_cbf_pc,\n'
                                                                        '                        '
                                                                        'frac_cbf,\n'
                                                                        '                        '
                                                                        'region_subdomain,\n'
                                                                        '                        '
                                                                        'eof_obs[season],\n'
                                                                        '                        '
                                                                        'eof_lr_obs[season],\n'
                                                                        '                        '
                                                                        'stdv_pc_obs[season],\n'
                                                                        '                        '
                                                                        'obs_compare=obs_compare,\n'
                                                                        '                        '
                                                                        'method="cbf",\n'
                                                                        '                        '
                                                                        'debug=debug,\n'
                                                                        '                    '
                                                                        ')\n'
                                                                        '\n'
                                                                        '                    '
                                                                        '# Set '
                                                                        'output '
                                                                        'file '
                                                                        'name '
                                                                        'for '
                                                                        'NetCDF '
                                                                        'and '
                                                                        'plot '
                                                                        'images\n'
                                                                        '                    '
                                                                        'output_filename '
                                                                        '= '
                                                                        '"_".join(\n'
                                                                        '                        '
                                                                        '[\n'
                                                                        '                            '
                                                                        'mode,\n'
                                                                        '                            '
                                                                        'var,\n'
                                                                        '                            '
                                                                        '"EOF" '
                                                                        '+ '
                                                                        'str(eofn_mod),\n'
                                                                        '                            '
                                                                        'season,\n'
                                                                        '                            '
                                                                        'mip,\n'
                                                                        '                            '
                                                                        'model,\n'
                                                                        '                            '
                                                                        'exp,\n'
                                                                        '                            '
                                                                        'run,\n'
                                                                        '                            '
                                                                        'fq,\n'
                                                                        '                            '
                                                                        'realm,\n'
                                                                        '                            '
                                                                        'str(msyear) '
                                                                        '+ "-" '
                                                                        '+ '
                                                                        'str(meyear),\n'
                                                                        '                        '
                                                                        ']\n'
                                                                        '                    '
                                                                        ')\n'
                                                                        '                    '
                                                                        'if '
                                                                        'EofScaling:\n'
                                                                        '                        '
                                                                        'output_filename '
                                                                        '+= '
                                                                        '"_EOFscaled"\n'
                                                                        '\n'
                                                                        '                    '
                                                                        '# '
                                                                        'Diagnostics '
                                                                        'results '
                                                                        '-- '
                                                                        'data '
                                                                        'to '
                                                                        'NetCDF\n'
                                                                        '                    '
                                                                        '# '
                                                                        'Save '
                                                                        'global '
                                                                        'map, '
                                                                        'pc '
                                                                        'timeseries, '
                                                                        'and '
                                                                        'fraction '
                                                                        'in '
                                                                        'NetCDF '
                                                                        'output\n'
                                                                        '                    '
                                                                        'output_nc_file '
                                                                        '= '
                                                                        'os.path.join(\n'
                                                                        '                        '
                                                                        'outdir(output_type="diagnostic_results"), '
                                                                        'output_filename\n'
                                                                        '                    '
                                                                        ')\n'
                                                                        '                    '
                                                                        'if '
                                                                        'nc_out_model:\n'
                                                                        '                        '
                                                                        'write_nc_output(\n'
                                                                        '                            '
                                                                        'output_nc_file '
                                                                        '+ '
                                                                        '"_cbf",\n'
                                                                        '                            '
                                                                        'eof_lr_cbf,\n'
                                                                        '                            '
                                                                        'cbf_pc,\n'
                                                                        '                            '
                                                                        'frac_cbf,\n'
                                                                        '                            '
                                                                        'slope_cbf,\n'
                                                                        '                            '
                                                                        'intercept_cbf,\n'
                                                                        '                        '
                                                                        ')\n'
                                                                        '\n'
                                                                        '                    '
                                                                        '# '
                                                                        'Graphics '
                                                                        '-- '
                                                                        'plot '
                                                                        'map '
                                                                        'image '
                                                                        'to '
                                                                        'PNG\n'
                                                                        '                    '
                                                                        'output_img_file '
                                                                        '= '
                                                                        'os.path.join(\n'
                                                                        '                        '
                                                                        'outdir(output_type="graphics"), '
                                                                        'output_filename\n'
                                                                        '                    '
                                                                        ')\n'
                                                                        '                    '
                                                                        'if '
                                                                        'plot_model:\n'
                                                                        '                        '
                                                                        'plot_map(\n'
                                                                        '                            '
                                                                        'mode,\n'
                                                                        '                            '
                                                                        'mip.upper() '
                                                                        '+ " " '
                                                                        '+ '
                                                                        'model '
                                                                        '+ " '
                                                                        '(" + '
                                                                        'run + '
                                                                        '")" + '
                                                                        '" - '
                                                                        'CBF",\n'
                                                                        '                            '
                                                                        'msyear,\n'
                                                                        '                            '
                                                                        'meyear,\n'
                                                                        '                            '
                                                                        'season,\n'
                                                                        '                            '
                                                                        'eof_lr_cbf(region_subdomain),\n'
                                                                        '                            '
                                                                        'frac_cbf,\n'
                                                                        '                            '
                                                                        'output_img_file '
                                                                        '+ '
                                                                        '"_cbf",\n'
                                                                        '                        '
                                                                        ')\n'
                                                                        '                        '
                                                                        'plot_map(\n'
                                                                        '                            '
                                                                        'mode '
                                                                        '+ '
                                                                        '"_teleconnection",\n'
                                                                        '                            '
                                                                        'mip.upper() '
                                                                        '+ " " '
                                                                        '+ '
                                                                        'model '
                                                                        '+ " '
                                                                        '(" + '
                                                                        'run + '
                                                                        '")" + '
                                                                        '" - '
                                                                        'CBF",\n'
                                                                        '                            '
                                                                        'msyear,\n'
                                                                        '                            '
                                                                        'meyear,\n'
                                                                        '                            '
                                                                        'season,\n'
                                                                        '                            '
                                                                        'eof_lr_cbf(longitude=(lon1g, '
                                                                        'lon2g)),\n'
                                                                        '                            '
                                                                        'frac_cbf,\n'
                                                                        '                            '
                                                                        'output_img_file '
                                                                        '+ '
                                                                        '"_cbf_teleconnection",\n'
                                                                        '                        '
                                                                        ')\n'
                                                                        '\n'
                                                                        '                    '
                                                                        'debug_print("cbf '
                                                                        'pcs '
                                                                        'end", '
                                                                        'debug)\n'
                                                                        '\n'
                                                                        '                '
                                                                        '# '
                                                                        '-------------------------------------------------\n'
                                                                        '                '
                                                                        '# '
                                                                        'Conventional '
                                                                        'EOF '
                                                                        'approach '
                                                                        'as '
                                                                        'supplementary\n'
                                                                        '                '
                                                                        '# - - '
                                                                        '- - - '
                                                                        '- - - '
                                                                        '- - - '
                                                                        '- - - '
                                                                        '- - - '
                                                                        '- - - '
                                                                        '- - - '
                                                                        '- -\n'
                                                                        '                '
                                                                        'if '
                                                                        'ConvEOF:\n'
                                                                        '\n'
                                                                        '                    '
                                                                        'eofn_mod_max '
                                                                        '= 3\n'
                                                                        '\n'
                                                                        '                    '
                                                                        '# EOF '
                                                                        'analysis\n'
                                                                        '                    '
                                                                        'debug_print("conventional '
                                                                        'EOF '
                                                                        'analysis '
                                                                        'start", '
                                                                        'debug)\n'
                                                                        '                    '
                                                                        '(\n'
                                                                        '                        '
                                                                        'eof_list,\n'
                                                                        '                        '
                                                                        'pc_list,\n'
                                                                        '                        '
                                                                        'frac_list,\n'
                                                                        '                        '
                                                                        'reverse_sign_list,\n'
                                                                        '                        '
                                                                        'solver,\n'
                                                                        '                    '
                                                                        ') = '
                                                                        'eof_analysis_get_variance_mode(\n'
                                                                        '                        '
                                                                        'mode,\n'
                                                                        '                        '
                                                                        'model_timeseries_season_subdomain,\n'
                                                                        '                        '
                                                                        'eofn=eofn_mod,\n'
                                                                        '                        '
                                                                        'eofn_max=eofn_mod_max,\n'
                                                                        '                        '
                                                                        'debug=debug,\n'
                                                                        '                        '
                                                                        'EofScaling=EofScaling,\n'
                                                                        '                        '
                                                                        'save_multiple_eofs=True,\n'
                                                                        '                    '
                                                                        ')\n'
                                                                        '                    '
                                                                        'debug_print("conventional '
                                                                        'EOF '
                                                                        'analysis '
                                                                        'done", '
                                                                        'debug)\n'
                                                                        '\n'
                                                                        '                    '
                                                                        '# '
                                                                        '-------------------------------------------------\n'
                                                                        '                    '
                                                                        '# For '
                                                                        'multiple '
                                                                        'EOFs '
                                                                        '(e.g., '
                                                                        'EOF1, '
                                                                        'EOF2, '
                                                                        'EOF3, '
                                                                        '...)\n'
                                                                        '                    '
                                                                        '# - - '
                                                                        '- - - '
                                                                        '- - - '
                                                                        '- - - '
                                                                        '- - - '
                                                                        '- - - '
                                                                        '- - - '
                                                                        '- - - '
                                                                        '- -\n'
                                                                        '                    '
                                                                        'rms_list '
                                                                        '= []\n'
                                                                        '                    '
                                                                        'cor_list '
                                                                        '= []\n'
                                                                        '                    '
                                                                        'tcor_list '
                                                                        '= []\n'
                                                                        '\n'
                                                                        '                    '
                                                                        'for n '
                                                                        'in '
                                                                        'range(0, '
                                                                        'eofn_mod_max):\n'
                                                                        '                        '
                                                                        'eofs '
                                                                        '= '
                                                                        '"eof" '
                                                                        '+ '
                                                                        'str(n '
                                                                        '+ 1)\n'
                                                                        '                        '
                                                                        'if '
                                                                        'eofs '
                                                                        'not '
                                                                        'in '
                                                                        'list(\n'
                                                                        '                            '
                                                                        'result_dict["RESULTS"][model][run]["defaultReference"][\n'
                                                                        '                                '
                                                                        'mode\n'
                                                                        '                            '
                                                                        '][season].keys()\n'
                                                                        '                        '
                                                                        '):\n'
                                                                        '                            '
                                                                        'result_dict["RESULTS"][model][run]["defaultReference"][\n'
                                                                        '                                '
                                                                        'mode\n'
                                                                        '                            '
                                                                        '][season][eofs] '
                                                                        '= {}\n'
                                                                        '                            '
                                                                        'dict_head '
                                                                        '= '
                                                                        'result_dict["RESULTS"][model][run][\n'
                                                                        '                                '
                                                                        '"defaultReference"\n'
                                                                        '                            '
                                                                        '][mode][season][eofs]\n'
                                                                        '\n'
                                                                        '                        '
                                                                        '# '
                                                                        'Component '
                                                                        'for '
                                                                        'each '
                                                                        'EOFs\n'
                                                                        '                        '
                                                                        'eof = '
                                                                        'eof_list[n]\n'
                                                                        '                        '
                                                                        'pc = '
                                                                        'pc_list[n]\n'
                                                                        '                        '
                                                                        'frac '
                                                                        '= '
                                                                        'frac_list[n]\n'
                                                                        '\n'
                                                                        '                        '
                                                                        '# '
                                                                        'Calculate '
                                                                        'stdv '
                                                                        'of pc '
                                                                        'time '
                                                                        'series\n'
                                                                        '                        '
                                                                        'stdv_pc '
                                                                        '= '
                                                                        'calcSTD(pc)\n'
                                                                        '\n'
                                                                        '                        '
                                                                        '# '
                                                                        'Linear '
                                                                        'regression '
                                                                        'to '
                                                                        'have '
                                                                        'extended '
                                                                        'global '
                                                                        'map:\n'
                                                                        '                        '
                                                                        '(\n'
                                                                        '                            '
                                                                        'eof_lr,\n'
                                                                        '                            '
                                                                        'slope,\n'
                                                                        '                            '
                                                                        'intercept,\n'
                                                                        '                        '
                                                                        ') = '
                                                                        'linear_regression_on_globe_for_teleconnection(\n'
                                                                        '                            '
                                                                        'pc,\n'
                                                                        '                            '
                                                                        'model_timeseries_season,\n'
                                                                        '                            '
                                                                        'stdv_pc,\n'
                                                                        '                            '
                                                                        'RmDomainMean,\n'
                                                                        '                            '
                                                                        'EofScaling,\n'
                                                                        '                            '
                                                                        'debug=debug,\n'
                                                                        '                        '
                                                                        ')\n'
                                                                        '\n'
                                                                        '                        '
                                                                        '# - - '
                                                                        '- - - '
                                                                        '- - - '
                                                                        '- - - '
                                                                        '- - - '
                                                                        '- - - '
                                                                        '- - - '
                                                                        '- - - '
                                                                        '- -\n'
                                                                        '                        '
                                                                        '# '
                                                                        'Record '
                                                                        'results\n'
                                                                        '                        '
                                                                        '# - - '
                                                                        '- - - '
                                                                        '- - - '
                                                                        '- - - '
                                                                        '- - - '
                                                                        '- - - '
                                                                        '- - - '
                                                                        '- - - '
                                                                        '- -\n'
                                                                        '                        '
                                                                        '# '
                                                                        'Metrics '
                                                                        'results '
                                                                        '-- '
                                                                        'statistics '
                                                                        'to '
                                                                        'JSON\n'
                                                                        '                        '
                                                                        'if '
                                                                        'obs_compare:\n'
                                                                        '                            '
                                                                        'dict_head, '
                                                                        'eof_lr '
                                                                        '= '
                                                                        'calc_stats_save_dict(\n'
                                                                        '                                '
                                                                        'dict_head,\n'
                                                                        '                                '
                                                                        'eof,\n'
                                                                        '                                '
                                                                        'eof_lr,\n'
                                                                        '                                '
                                                                        'slope,\n'
                                                                        '                                '
                                                                        'pc,\n'
                                                                        '                                '
                                                                        'stdv_pc,\n'
                                                                        '                                '
                                                                        'frac,\n'
                                                                        '                                '
                                                                        'region_subdomain,\n'
                                                                        '                                '
                                                                        'eof_obs=eof_obs[season],\n'
                                                                        '                                '
                                                                        'eof_lr_obs=eof_lr_obs[season],\n'
                                                                        '                                '
                                                                        'stdv_pc_obs=stdv_pc_obs[season],\n'
                                                                        '                                '
                                                                        'obs_compare=obs_compare,\n'
                                                                        '                                '
                                                                        'method="eof",\n'
                                                                        '                                '
                                                                        'debug=debug,\n'
                                                                        '                            '
                                                                        ')\n'
                                                                        '                        '
                                                                        'else:\n'
                                                                        '                            '
                                                                        'dict_head, '
                                                                        'eof_lr '
                                                                        '= '
                                                                        'calc_stats_save_dict(\n'
                                                                        '                                '
                                                                        'dict_head,\n'
                                                                        '                                '
                                                                        'eof,\n'
                                                                        '                                '
                                                                        'eof_lr,\n'
                                                                        '                                '
                                                                        'slope,\n'
                                                                        '                                '
                                                                        'pc,\n'
                                                                        '                                '
                                                                        'stdv_pc,\n'
                                                                        '                                '
                                                                        'frac,\n'
                                                                        '                                '
                                                                        'region_subdomain,\n'
                                                                        '                                '
                                                                        'obs_compare=obs_compare,\n'
                                                                        '                                '
                                                                        'method="eof",\n'
                                                                        '                                '
                                                                        'debug=debug,\n'
                                                                        '                            '
                                                                        ')\n'
                                                                        '\n'
                                                                        '                        '
                                                                        '# '
                                                                        'Temporal '
                                                                        'correlation '
                                                                        'between '
                                                                        'CBF '
                                                                        'PC '
                                                                        'timeseries '
                                                                        'and '
                                                                        'usual '
                                                                        'model '
                                                                        'PC '
                                                                        'timeseries\n'
                                                                        '                        '
                                                                        'if '
                                                                        'CBF:\n'
                                                                        '                            '
                                                                        'tc = '
                                                                        'calcTCOR(cbf_pc, '
                                                                        'pc)\n'
                                                                        '                            '
                                                                        'debug_print("cbf '
                                                                        'tc '
                                                                        'end", '
                                                                        'debug)\n'
                                                                        '                            '
                                                                        'dict_head["tcor_cbf_vs_eof_pc"] '
                                                                        '= tc\n'
                                                                        '\n'
                                                                        '                        '
                                                                        '# Set '
                                                                        'output '
                                                                        'file '
                                                                        'name '
                                                                        'for '
                                                                        'NetCDF '
                                                                        'and '
                                                                        'plot '
                                                                        'images\n'
                                                                        '                        '
                                                                        'output_filename '
                                                                        '= '
                                                                        '"_".join(\n'
                                                                        '                            '
                                                                        '[\n'
                                                                        '                                '
                                                                        'mode,\n'
                                                                        '                                '
                                                                        'var,\n'
                                                                        '                                '
                                                                        '"EOF" '
                                                                        '+ '
                                                                        'str(n '
                                                                        '+ '
                                                                        '1),\n'
                                                                        '                                '
                                                                        'season,\n'
                                                                        '                                '
                                                                        'mip,\n'
                                                                        '                                '
                                                                        'model,\n'
                                                                        '                                '
                                                                        'exp,\n'
                                                                        '                                '
                                                                        'run,\n'
                                                                        '                                '
                                                                        'fq,\n'
                                                                        '                                '
                                                                        'realm,\n'
                                                                        '                                '
                                                                        'str(msyear) '
                                                                        '+ "-" '
                                                                        '+ '
                                                                        'str(meyear),\n'
                                                                        '                            '
                                                                        ']\n'
                                                                        '                        '
                                                                        ')\n'
                                                                        '                        '
                                                                        'if '
                                                                        'EofScaling:\n'
                                                                        '                            '
                                                                        'output_filename '
                                                                        '+= '
                                                                        '"_EOFscaled"\n'
                                                                        '\n'
                                                                        '                        '
                                                                        '# '
                                                                        'Diagnostics '
                                                                        'results '
                                                                        '-- '
                                                                        'data '
                                                                        'to '
                                                                        'NetCDF\n'
                                                                        '                        '
                                                                        '# '
                                                                        'Save '
                                                                        'global '
                                                                        'map, '
                                                                        'pc '
                                                                        'timeseries, '
                                                                        'and '
                                                                        'fraction '
                                                                        'in '
                                                                        'NetCDF '
                                                                        'output\n'
                                                                        '                        '
                                                                        'output_nc_file '
                                                                        '= '
                                                                        'os.path.join(\n'
                                                                        '                            '
                                                                        'outdir(output_type="diagnostic_results"), '
                                                                        'output_filename\n'
                                                                        '                        '
                                                                        ')\n'
                                                                        '                        '
                                                                        'if '
                                                                        'nc_out_model:\n'
                                                                        '                            '
                                                                        'write_nc_output(\n'
                                                                        '                                '
                                                                        'output_nc_file, '
                                                                        'eof_lr, '
                                                                        'pc, '
                                                                        'frac, '
                                                                        'slope, '
                                                                        'intercept\n'
                                                                        '                            '
                                                                        ')\n'
                                                                        '\n'
                                                                        '                        '
                                                                        '# '
                                                                        'Graphics '
                                                                        '-- '
                                                                        'plot '
                                                                        'map '
                                                                        'image '
                                                                        'to '
                                                                        'PNG\n'
                                                                        '                        '
                                                                        'output_img_file '
                                                                        '= '
                                                                        'os.path.join(\n'
                                                                        '                            '
                                                                        'outdir(output_type="graphics"), '
                                                                        'output_filename\n'
                                                                        '                        '
                                                                        ')\n'
                                                                        '                        '
                                                                        'if '
                                                                        'plot_model:\n'
                                                                        '                            '
                                                                        '# '
                                                                        'plot_map(mode,\n'
                                                                        '                            '
                                                                        '#          '
                                                                        "mip.upper()+' "
                                                                        "'+model+' "
                                                                        "('+run+')',\n"
                                                                        '                            '
                                                                        '#          '
                                                                        'msyear, '
                                                                        'meyear, '
                                                                        'season,\n'
                                                                        '                            '
                                                                        '#          '
                                                                        'eof, '
                                                                        'frac,\n'
                                                                        '                            '
                                                                        '#          '
                                                                        "output_img_file+'_org_eof')\n"
                                                                        '                            '
                                                                        'plot_map(\n'
                                                                        '                                '
                                                                        'mode,\n'
                                                                        '                                '
                                                                        'mip.upper()\n'
                                                                        '                                '
                                                                        '+ " '
                                                                        '"\n'
                                                                        '                                '
                                                                        '+ '
                                                                        'model\n'
                                                                        '                                '
                                                                        '+ " '
                                                                        '("\n'
                                                                        '                                '
                                                                        '+ '
                                                                        'run\n'
                                                                        '                                '
                                                                        '+ ") '
                                                                        '- '
                                                                        'EOF"\n'
                                                                        '                                '
                                                                        '+ '
                                                                        'str(n '
                                                                        '+ '
                                                                        '1),\n'
                                                                        '                                '
                                                                        'msyear,\n'
                                                                        '                                '
                                                                        'meyear,\n'
                                                                        '                                '
                                                                        'season,\n'
                                                                        '                                '
                                                                        'eof_lr(region_subdomain),\n'
                                                                        '                                '
                                                                        'frac,\n'
                                                                        '                                '
                                                                        'output_img_file,\n'
                                                                        '                            '
                                                                        ')\n'
                                                                        '                            '
                                                                        'plot_map(\n'
                                                                        '                                '
                                                                        'mode '
                                                                        '+ '
                                                                        '"_teleconnection",\n'
                                                                        '                                '
                                                                        'mip.upper()\n'
                                                                        '                                '
                                                                        '+ " '
                                                                        '"\n'
                                                                        '                                '
                                                                        '+ '
                                                                        'model\n'
                                                                        '                                '
                                                                        '+ " '
                                                                        '("\n'
                                                                        '                                '
                                                                        '+ '
                                                                        'run\n'
                                                                        '                                '
                                                                        '+ ") '
                                                                        '- '
                                                                        'EOF"\n'
                                                                        '                                '
                                                                        '+ '
                                                                        'str(n '
                                                                        '+ '
                                                                        '1),\n'
                                                                        '                                '
                                                                        'msyear,\n'
                                                                        '                                '
                                                                        'meyear,\n'
                                                                        '                                '
                                                                        'season,\n'
                                                                        '                                '
                                                                        'eof_lr(longitude=(lon1g, '
                                                                        'lon2g)),\n'
                                                                        '                                '
                                                                        'frac,\n'
                                                                        '                                '
                                                                        'output_img_file '
                                                                        '+ '
                                                                        '"_teleconnection",\n'
                                                                        '                            '
                                                                        ')\n'
                                                                        '\n'
                                                                        '                        '
                                                                        '# - - '
                                                                        '- - - '
                                                                        '- - - '
                                                                        '- - - '
                                                                        '- - - '
                                                                        '- - - '
                                                                        '- - - '
                                                                        '- - - '
                                                                        '- -\n'
                                                                        '                        '
                                                                        '# EOF '
                                                                        'swap '
                                                                        'diagnosis\n'
                                                                        '                        '
                                                                        '# - - '
                                                                        '- - - '
                                                                        '- - - '
                                                                        '- - - '
                                                                        '- - - '
                                                                        '- - - '
                                                                        '- - - '
                                                                        '- - - '
                                                                        '- -\n'
                                                                        '                        '
                                                                        'rms_list.append(dict_head["rms"])\n'
                                                                        '                        '
                                                                        'cor_list.append(dict_head["cor"])\n'
                                                                        '                        '
                                                                        'if '
                                                                        'CBF:\n'
                                                                        '                            '
                                                                        'tcor_list.append(dict_head["tcor_cbf_vs_eof_pc"])\n'
                                                                        '\n'
                                                                        '                    '
                                                                        '# '
                                                                        'Find '
                                                                        'best '
                                                                        'matching '
                                                                        'eofs '
                                                                        'with '
                                                                        'different '
                                                                        'criteria\n'
                                                                        '                    '
                                                                        'best_matching_eofs_rms '
                                                                        '= '
                                                                        'rms_list.index(min(rms_list)) '
                                                                        '+ 1\n'
                                                                        '                    '
                                                                        'best_matching_eofs_cor '
                                                                        '= '
                                                                        'cor_list.index(max(cor_list)) '
                                                                        '+ 1\n'
                                                                        '                    '
                                                                        'if '
                                                                        'CBF:\n'
                                                                        '                        '
                                                                        'best_matching_eofs_tcor '
                                                                        '= '
                                                                        'tcor_list.index(max(tcor_list)) '
                                                                        '+ 1\n'
                                                                        '\n'
                                                                        '                    '
                                                                        '# '
                                                                        'Save '
                                                                        'the '
                                                                        'best '
                                                                        'matching '
                                                                        'information '
                                                                        'to '
                                                                        'JSON\n'
                                                                        '                    '
                                                                        'dict_head '
                                                                        '= '
                                                                        'result_dict["RESULTS"][model][run]["defaultReference"][\n'
                                                                        '                        '
                                                                        'mode\n'
                                                                        '                    '
                                                                        '][season]\n'
                                                                        '                    '
                                                                        'dict_head["best_matching_model_eofs__rms"] '
                                                                        '= '
                                                                        'best_matching_eofs_rms\n'
                                                                        '                    '
                                                                        'dict_head["best_matching_model_eofs__cor"] '
                                                                        '= '
                                                                        'best_matching_eofs_cor\n'
                                                                        '                    '
                                                                        'if '
                                                                        'CBF:\n'
                                                                        '                        '
                                                                        'dict_head[\n'
                                                                        '                            '
                                                                        '"best_matching_model_eofs__tcor_cbf_vs_eof_pc"\n'
                                                                        '                        '
                                                                        '] = '
                                                                        'best_matching_eofs_tcor\n'
                                                                        '\n'
                                                                        '                    '
                                                                        'debug_print("conventional '
                                                                        'eof '
                                                                        'end", '
                                                                        'debug)\n'
                                                                        '\n'
                                                                        '            '
                                                                        '# '
                                                                        '=================================================================\n'
                                                                        '            '
                                                                        '# '
                                                                        'Dictionary '
                                                                        'to '
                                                                        'JSON: '
                                                                        'individual '
                                                                        'JSON '
                                                                        'during '
                                                                        'model_realization '
                                                                        'loop\n'
                                                                        '            '
                                                                        '# '
                                                                        '-----------------------------------------------------------------\n'
                                                                        '            '
                                                                        'json_filename_tmp '
                                                                        '= '
                                                                        '"_".join(\n'
                                                                        '                '
                                                                        '[\n'
                                                                        '                    '
                                                                        '"var",\n'
                                                                        '                    '
                                                                        '"mode",\n'
                                                                        '                    '
                                                                        'mode,\n'
                                                                        '                    '
                                                                        '"EOF" '
                                                                        '+ '
                                                                        'str(eofn_mod),\n'
                                                                        '                    '
                                                                        '"stat",\n'
                                                                        '                    '
                                                                        'mip,\n'
                                                                        '                    '
                                                                        'exp,\n'
                                                                        '                    '
                                                                        'fq,\n'
                                                                        '                    '
                                                                        'realm,\n'
                                                                        '                    '
                                                                        'model,\n'
                                                                        '                    '
                                                                        'run,\n'
                                                                        '                    '
                                                                        'str(msyear) '
                                                                        '+ "-" '
                                                                        '+ '
                                                                        'str(meyear),\n'
                                                                        '                '
                                                                        ']\n'
                                                                        '            '
                                                                        ')\n'
                                                                        '            '
                                                                        'variability_metrics_to_json(\n'
                                                                        '                '
                                                                        'outdir,\n'
                                                                        '                '
                                                                        'json_filename_tmp,\n'
                                                                        '                '
                                                                        'result_dict,\n'
                                                                        '                '
                                                                        'model=model,\n'
                                                                        '                '
                                                                        'run=run,\n'
                                                                        '                '
                                                                        'cmec_flag=cmec,\n'
                                                                        '            '
                                                                        ')\n'
                                                                        '\n'
                                                                        '        '
                                                                        'except '
                                                                        'Exception '
                                                                        'as '
                                                                        'err:\n'
                                                                        '            '
                                                                        'if '
                                                                        'debug:\n'
                                                                        '                '
                                                                        'raise\n'
                                                                        '            '
                                                                        'else:\n'
                                                                        '                '
                                                                        'print("warning: '
                                                                        'failed '
                                                                        'for '
                                                                        '", '
                                                                        'model, '
                                                                        'run, '
                                                                        'err)\n'
                                                                        '                '
                                                                        'pass\n'
                                                                        '\n'
                                                                        '# '
                                                                        '========================================================================\n'
                                                                        '# '
                                                                        'Dictionary '
                                                                        'to '
                                                                        'JSON: '
                                                                        'collective '
                                                                        'JSON '
                                                                        'at '
                                                                        'the '
                                                                        'end '
                                                                        'of '
                                                                        'model_realization '
                                                                        'loop\n'
                                                                        '# '
                                                                        '------------------------------------------------------------------------\n'
                                                                        'if '
                                                                        'not '
                                                                        'parallel '
                                                                        'and '
                                                                        '(len(models) '
                                                                        '> '
                                                                        '1):\n'
                                                                        '    '
                                                                        'json_filename_all '
                                                                        '= '
                                                                        '"_".join(\n'
                                                                        '        '
                                                                        '[\n'
                                                                        '            '
                                                                        '"var",\n'
                                                                        '            '
                                                                        '"mode",\n'
                                                                        '            '
                                                                        'mode,\n'
                                                                        '            '
                                                                        '"EOF" '
                                                                        '+ '
                                                                        'str(eofn_mod),\n'
                                                                        '            '
                                                                        '"stat",\n'
                                                                        '            '
                                                                        'mip,\n'
                                                                        '            '
                                                                        'exp,\n'
                                                                        '            '
                                                                        'fq,\n'
                                                                        '            '
                                                                        'realm,\n'
                                                                        '            '
                                                                        '"allModels",\n'
                                                                        '            '
                                                                        '"allRuns",\n'
                                                                        '            '
                                                                        'str(msyear) '
                                                                        '+ "-" '
                                                                        '+ '
                                                                        'str(meyear),\n'
                                                                        '        '
                                                                        ']\n'
                                                                        '    '
                                                                        ')\n'
                                                                        '    '
                                                                        'variability_metrics_to_json(outdir, '
                                                                        'json_filename_all, '
                                                                        'result_dict, '
                                                                        'cmec_flag=cmec)\n'
                                                                        '\n'
                                                                        'if '
                                                                        'not '
                                                                        'debug:\n'
                                                                        '    '
                                                                        'sys.exit(0)\n',
                                                              'userId': 'lee1043'}}}}

Load dictionary from remote JSON

Usage examples

[16]:
url = "https://raw.githubusercontent.com/PCMDI/pcmdi_metrics_results_archive/main/metrics_results/enso_metric/cmip5/historical/v20210104/ENSO_perf/cmip5_historical_ENSO_perf_v20210104_allModels_allRuns.json"
json_data = load_json_from_url(url)
[17]:
json_data
[17]:
{'DISCLAIMER': 'USER-NOTICE: The results in this file were produced with the PMP v1.1 (https://github.com/PCMDI/pcmdi_metrics). They are for research purposes only. They are subject to ongoing quality control and change as the PMP software advances, interpolation methods are modified, observational data sets are updated, problems with model data are corrected, etc. Use of these results for research (presentation, publications, etc.) should reference: Gleckler, P. J., C. Doutriaux, P. J. Durack, K. E. Taylor, Y. Zhang, and D. N. Williams, E. Mason, and J. Servonnat (2016), A more powerful reality test for climate models, Eos, 97, doi:10.1029/2016EO051663. If any problems are uncovered in using these results please contact the PMP development team at pcmdi-metrics@llnl.gov\n',
 'REFERENCE': 'MC for ENSO Performance...',
 'RESULTS': {'model': {'ACCESS1-0': {'r1i1p1': {'metadata': {'description_of_the_collection': 'Describe which science question this collection is about',
      'metrics': {'BiasPrLatRmse': {'diagnostic': {'ACCESS1-0_r1i1p1': {'keyerror': None,
          'name': 'ACCESS1-0_r1i1p1',
          'nyears': 156,
          'time_period': ['1850-1-16 12:0:0.0', '2005-12-16 12:0:0.0']},
         'ERA-Interim': {'name': 'ERA-Interim',
          'nyears': 40,
          'time_period': ['1979-1-16 12:0:0.0', '2019-3-16 12:0:0.0']},
         'GPCPv2.3': {'name': 'GPCPv2.3',
          'nyears': 41,
          'time_period': ['1979-1-1 0:0:0.0', '2019-7-1 0:0:0.0']},
         'method': 'Meridional root mean square error of nino3_LatExt pr, time series are linearly detrended, observations and model regridded to generic_1x1deg',
         'name': 'pr Meridional RMSE',
         'ref': 'Using CDAT regridding and rms (uncentered and biased) calculation',
         'time_frequency': 'monthly',
         'units': 'mm/day'},
        'metric': {'datasets': "ACCESS1-0_r1i1p1; ERA-Interim's pr & GPCPv2.3's precip; 's ",
         'method': 'The metric is the statistical value between the model and the observations',
         'name': 'BiasPrLatRmse',
         'units': 'mm/day'}},
       'BiasPrLonRmse': {'diagnostic': {'ACCESS1-0_r1i1p1': {'keyerror': None,
          'name': 'ACCESS1-0_r1i1p1',
          'nyears': 156,
          'time_period': ['1850-1-16 12:0:0.0', '2005-12-16 12:0:0.0']},
         'ERA-Interim': {'name': 'ERA-Interim',
          'nyears': 40,
          'time_period': ['1979-1-16 12:0:0.0', '2019-3-16 12:0:0.0']},
         'GPCPv2.3': {'name': 'GPCPv2.3',
          'nyears': 41,
          'time_period': ['1979-1-1 0:0:0.0', '2019-7-1 0:0:0.0']},
         'method': 'Zonal root mean square error of equatorial_pacific pr, time series are linearly detrended, observations and model regridded to generic_1x1deg',
         'name': 'pr Zonal RMSE',
         'ref': 'Using CDAT regridding and rms (uncentered and biased) calculation',
         'time_frequency': 'monthly',
         'units': 'mm/day'},
        'metric': {'datasets': "ACCESS1-0_r1i1p1; ERA-Interim's pr & GPCPv2.3's precip; 's ",
         'method': 'The metric is the statistical value between the model and the observations',
         'name': 'BiasPrLonRmse',
         'units': 'mm/day'}},
       'BiasSstLonRmse': {'diagnostic': {'ACCESS1-0_r1i1p1': {'keyerror': None,
          'name': 'ACCESS1-0_r1i1p1',
          'nyears': 156,
          'time_period': ['1850-1-16 12:0:0.0', '2005-12-16 12:0:0.0']},
         'ERA-Interim': {'name': 'ERA-Interim',
          'nyears': 40,
          'time_period': ['1979-1-16 12:0:0.0', '2019-3-16 12:0:0.0']},
         'HadISST': {'name': 'HadISST',
          'nyears': 151,
          'time_period': ['1870-1-16 11:59:59.5', '2020-10-16 12:0:0.0']},
         'Tropflux': {'name': 'Tropflux',
          'nyears': 40,
          'time_period': ['1979-1-15 0:0:0.0', '2018-12-15 12:0:0.0']},
         'method': 'Zonal root mean square error of equatorial_pacific sst, time series are linearly detrended, observations and model regridded to generic_1x1deg',
         'name': 'sst Zonal RMSE',
         'ref': 'Using CDAT regridding and rms (uncentered and biased) calculation',
         'time_frequency': 'monthly',
         'units': 'C'},
        'metric': {'datasets': "ACCESS1-0_r1i1p1; ERA-Interim's ts & HadISST's sst & Tropflux's sst; 's ",
         'method': 'The metric is the statistical value between the model and the observations',
         'name': 'BiasSstLonRmse',
         'units': 'C'}},
       'BiasTauxLonRmse': {'diagnostic': {'ACCESS1-0_r1i1p1': {'keyerror': None,
          'name': 'ACCESS1-0_r1i1p1',
          'nyears': 156,
          'time_period': ['1850-1-16 12:0:0.0', '2005-12-16 12:0:0.0']},
         'ERA-Interim': {'name': 'ERA-Interim',
          'nyears': 40,
          'time_period': ['1979-1-16 12:0:0.0', '2019-3-16 12:0:0.0']},
         'Tropflux': {'name': 'Tropflux',
          'nyears': 40,
          'time_period': ['1979-1-15 0:0:0.0', '2018-12-15 12:0:0.0']},
         'method': 'Zonal root mean square error of equatorial_pacific taux, time series are linearly detrended, observations and model regridded to generic_1x1deg',
         'name': 'taux Zonal RMSE',
         'ref': 'Using CDAT regridding and rms (uncentered and biased) calculation',
         'time_frequency': 'monthly',
         'units': '1e-3 N/m2'},
        'metric': {'datasets': "ACCESS1-0_r1i1p1; ERA-Interim's tauu & Tropflux's taux; 's ",
         'method': 'The metric is the statistical value between the model and the observations',
         'name': 'BiasTauxLonRmse',
         'units': '1e-3 N/m2'}},
       'EnsoAmpl': {'diagnostic': {'ACCESS1-0_r1i1p1': {'keyerror': None,
          'name': 'ACCESS1-0_r1i1p1',
          'nyears': 156,
          'time_period': ['1850-1-16 12:0:0.0', '2005-12-16 12:0:0.0']},
         'ERA-Interim': {'keyerror': None,
          'name': 'ERA-Interim',
          'nyears': 40,
          'time_period': ['1979-1-16 12:0:0.0', '2019-3-16 12:0:0.0']},
         'HadISST': {'keyerror': None,
          'name': 'HadISST',
          'nyears': 151,
          'time_period': ['1870-1-16 11:59:59.5', '2020-10-16 12:0:0.0']},
         'Tropflux': {'keyerror': None,
          'name': 'Tropflux',
          'nyears': 40,
          'time_period': ['1979-1-15 0:0:0.0', '2018-12-15 12:0:0.0']},
         'method': 'Standard deviation of nino3.4 sstA, time series are linearly detrended',
         'name': 'ENSO amplitude',
         'ref': 'Using CDAT regression calculation',
         'time_frequency': 'monthly',
         'units': 'C'},
        'metric': {'datasets': "ACCESS1-0_r1i1p1; ERA-Interim's ts & HadISST's sst & Tropflux's sst; 's ",
         'method': 'The metric is the absolute value of the relative difference between model and observations values (M = 100 * abs[[model-obs] / obs])',
         'name': 'EnsoAmpl',
         'units': '%'}},
       'EnsoDuration': {'diagnostic': {'ACCESS1-0_r1i1p1': {'keyerror': None,
          'name': 'ACCESS1-0_r1i1p1',
          'nyears': 156,
          'time_period': ['1850-1-16 12:0:0.0', '2005-12-16 12:0:0.0']},
         'ERA-Interim': {'keyerror': None,
          'name': 'ERA-Interim',
          'nyears': 40,
          'time_period': ['1979-1-16 12:0:0.0', '2019-3-16 12:0:0.0']},
         'HadISST': {'keyerror': None,
          'name': 'HadISST',
          'nyears': 151,
          'time_period': ['1870-1-16 11:59:59.5', '2020-10-16 12:0:0.0']},
         'Tropflux': {'keyerror': None,
          'name': 'Tropflux',
          'nyears': 40,
          'time_period': ['1979-1-15 0:0:0.0', '2018-12-15 12:0:0.0']},
         'method': 'nino3.4 SSTA during DEC regressed against nino3.4 SSTA during 6 years (centered on ENSO), the duration is the number of consecutive months during which the regression is above 0.25, time series are linearly detrended, smoothing using a triangle shaped window of 5 points',
         'name': 'ENSO Duration based on life cyle SSTA pattern',
         'ref': 'Using CDAT',
         'time_frequency': 'monthly',
         'units': 'months'},
        'metric': {'datasets': "ACCESS1-0_r1i1p1; ERA-Interim's ts & HadISST's sst & Tropflux's sst; 's ",
         'method': 'The metric is the absolute value of the relative difference between model and observations values (M = 100 * abs[[model-obs] / obs])',
         'name': 'EnsoDuration',
         'units': '%'}},
       'EnsoSeasonality': {'diagnostic': {'ACCESS1-0_r1i1p1': {'keyerror': None,
          'name': 'ACCESS1-0_r1i1p1',
          'nyears': 156,
          'time_period': ['1850-1-16 12:0:0.0', '2005-12-16 12:0:0.0']},
         'ERA-Interim': {'keyerror': None,
          'name': 'ERA-Interim',
          'nyears': 40,
          'time_period': ['1979-1-16 12:0:0.0', '2019-3-16 12:0:0.0']},
         'HadISST': {'keyerror': None,
          'name': 'HadISST',
          'nyears': 151,
          'time_period': ['1870-1-16 11:59:59.5', '2020-10-16 12:0:0.0']},
         'Tropflux': {'keyerror': None,
          'name': 'Tropflux',
          'nyears': 40,
          'time_period': ['1979-1-15 0:0:0.0', '2018-12-15 12:0:0.0']},
         'method': 'Ratio between NDJ and MAM standard deviation nino3.4 sstA, time series are linearly detrended',
         'name': 'ENSO seasonality',
         'ref': 'Using CDAT std dev calculation',
         'time_frequency': 'monthly',
         'units': 'C/C'},
        'metric': {'datasets': "ACCESS1-0_r1i1p1; ERA-Interim's ts & HadISST's sst & Tropflux's sst; 's ",
         'method': 'The metric is the absolute value of the relative difference between model and observations values (M = 100 * abs[[model-obs] / obs])',
         'name': 'EnsoSeasonality',
         'units': '%'}},
       'EnsoSstDiversity_2': {'diagnostic': {'ACCESS1-0_r1i1p1': {'keyerror': None,
          'name': 'ACCESS1-0_r1i1p1',
          'nyears': 156,
          'time_period': ['1850-1-16 12:0:0.0', '2005-12-16 12:0:0.0']},
         'ERA-Interim': {'keyerror': None,
          'name': 'ERA-Interim',
          'nyears': 40,
          'time_period': ['1979-1-16 12:0:0.0', '2019-3-16 12:0:0.0']},
         'HadISST': {'keyerror': None,
          'name': 'HadISST',
          'nyears': 151,
          'time_period': ['1870-1-16 11:59:59.5', '2020-10-16 12:0:0.0']},
         'Tropflux': {'keyerror': None,
          'name': 'Tropflux',
          'nyears': 40,
          'time_period': ['1979-1-15 0:0:0.0', '2018-12-15 12:0:0.0']},
         'method': 'Nino (Nina) events = nino3.4 sstA > 0.75 (< -0.75) during DEC, zonal SSTA (meridional averaged [-5.0 ; 5.0]), the zonal SSTA maximum (minimum) is located for each event, the diversity is the interquartile range (IQR = Q3 - Q1), time series are linearly detrended, smoothing using a triangle shaped window of 5 points',
         'name': 'ENSO Diversity (interquartile range)',
         'ref': 'Using CDAT regridding',
         'time_frequency': 'monthly',
         'units': 'long'},
        'metric': {'datasets': "ACCESS1-0_r1i1p1; ERA-Interim's ts & HadISST's sst & Tropflux's sst; 's ",
         'method': 'The metric is the absolute value of the relative difference between model and observations values (M = 100 * abs[[model-obs] / obs])',
         'name': 'EnsoSstDiversity',
         'units': '%'}},
       'EnsoSstLonRmse': {'diagnostic': {'ACCESS1-0_r1i1p1': {'keyerror': None,
          'name': 'ACCESS1-0_r1i1p1',
          'nyears': 156,
          'time_period': ['1850-1-16 12:0:0.0', '2005-12-16 12:0:0.0']},
         'ERA-Interim': {'name': 'ERA-Interim',
          'nyears': 40,
          'time_period': ['1979-1-16 12:0:0.0', '2019-3-16 12:0:0.0']},
         'HadISST': {'name': 'HadISST',
          'nyears': 151,
          'time_period': ['1870-1-16 11:59:59.5', '2020-10-16 12:0:0.0']},
         'Tropflux': {'name': 'Tropflux',
          'nyears': 40,
          'time_period': ['1979-1-15 0:0:0.0', '2018-12-15 12:0:0.0']},
         'method': 'nino3.4 SSTA during DEC regressed against equatorial_pacific SSTA, time series are linearly detrended, smoothing using a triangle shaped window of 5 points, observations and model regridded to generic_1x1deg',
         'name': 'ENSO Zonal SSTA pattern',
         'ref': 'Using CDAT regridding and rms (uncentered and biased) calculation',
         'time_frequency': 'monthly',
         'units': 'C/C'},
        'metric': {'datasets': "ACCESS1-0_r1i1p1; ERA-Interim's ts & HadISST's sst & Tropflux's sst; 's ",
         'method': 'The metric is the statistical value between the model and the observations',
         'name': 'EnsoSstLonRmse',
         'units': 'C/C'}},
       'EnsoSstSkew': {'diagnostic': {'ACCESS1-0_r1i1p1': {'keyerror': None,
          'name': 'ACCESS1-0_r1i1p1',
          'nyears': 156,
          'time_period': ['1850-1-16 12:0:0.0', '2005-12-16 12:0:0.0']},
         'ERA-Interim': {'keyerror': None,
          'name': 'ERA-Interim',
          'nyears': 40,
          'time_period': ['1979-1-16 12:0:0.0', '2019-3-16 12:0:0.0']},
         'HadISST': {'keyerror': None,
          'name': 'HadISST',
          'nyears': 151,
          'time_period': ['1870-1-16 11:59:59.5', '2020-10-16 12:0:0.0']},
         'Tropflux': {'keyerror': None,
          'name': 'Tropflux',
          'nyears': 40,
          'time_period': ['1979-1-15 0:0:0.0', '2018-12-15 12:0:0.0']},
         'method': 'Standard deviation of nino3.4 sstA, time series are linearly detrended',
         'name': 'ENSO skewness',
         'ref': 'Using CDAT regression calculation',
         'time_frequency': 'monthly',
         'units': 'C'},
        'metric': {'datasets': "ACCESS1-0_r1i1p1; ERA-Interim's ts & HadISST's sst & Tropflux's sst; 's ",
         'method': 'The metric is the absolute value of the relative difference between model and observations values (M = 100 * abs[[model-obs] / obs])',
         'name': 'EnsoSstSkew',
         'units': '%'}},
       'EnsoSstTsRmse': {'diagnostic': {'ACCESS1-0_r1i1p1': {'keyerror': None,
          'name': 'ACCESS1-0_r1i1p1',
          'nyears': 156,
          'time_period': ['1850-1-16 12:0:0.0', '2005-12-16 12:0:0.0']},
         'ERA-Interim': {'name': 'ERA-Interim',
          'nyears': 40,
          'time_period': ['1979-1-16 12:0:0.0', '2019-3-16 12:0:0.0']},
         'HadISST': {'name': 'HadISST',
          'nyears': 151,
          'time_period': ['1870-1-16 11:59:59.5', '2020-10-16 12:0:0.0']},
         'Tropflux': {'name': 'Tropflux',
          'nyears': 40,
          'time_period': ['1979-1-15 0:0:0.0', '2018-12-15 12:0:0.0']},
         'method': 'nino3.4 SSTA during DEC regressed against nino3.4 SSTA during 6 years (centered on ENSO), time series are linearly detrended, smoothing using a triangle shaped window of 5 points',
         'name': 'ENSO life cyle SSTA pattern',
         'ref': 'Using CDAT regridding and rms (uncentered and biased) calculation',
         'time_frequency': 'monthly',
         'units': 'C/C'},
        'metric': {'datasets': "ACCESS1-0_r1i1p1; ERA-Interim's ts & HadISST's sst & Tropflux's sst; 's ",
         'method': 'The metric is the statistical value between the model and the observations',
         'name': 'EnsoSstTsRmse',
         'units': 'C/C'}},
       'SeasonalPrLatRmse': {'diagnostic': {'ACCESS1-0_r1i1p1': {'keyerror': None,
          'name': 'ACCESS1-0_r1i1p1',
          'nyears': 156,
          'time_period': ['1850-1-16 12:0:0.0', '2005-12-16 12:0:0.0']},
         'ERA-Interim': {'name': 'ERA-Interim',
          'nyears': 40,
          'time_period': ['1979-1-16 12:0:0.0', '2019-3-16 12:0:0.0']},
         'GPCPv2.3': {'name': 'GPCPv2.3',
          'nyears': 41,
          'time_period': ['1979-1-1 0:0:0.0', '2019-7-1 0:0:0.0']},
         'method': 'Meridional root mean square error of nino3_LatExt climatological pr STD, time series are linearly detrended, observations and model regridded to generic_1x1deg',
         'name': 'pr meridional seasonality RMSE',
         'ref': 'Using CDAT regridding and rms (uncentered and biased) calculation',
         'time_frequency': 'monthly',
         'units': 'mm/day'},
        'metric': {'datasets': "ACCESS1-0_r1i1p1; ERA-Interim's pr & GPCPv2.3's precip; 's ",
         'method': 'The metric is the statistical value between the model and the observations',
         'name': 'SeasonalPrLatRmse',
         'units': 'mm/day'}},
       'SeasonalPrLonRmse': {'diagnostic': {'ACCESS1-0_r1i1p1': {'keyerror': None,
          'name': 'ACCESS1-0_r1i1p1',
          'nyears': 156,
          'time_period': ['1850-1-16 12:0:0.0', '2005-12-16 12:0:0.0']},
         'ERA-Interim': {'name': 'ERA-Interim',
          'nyears': 40,
          'time_period': ['1979-1-16 12:0:0.0', '2019-3-16 12:0:0.0']},
         'GPCPv2.3': {'name': 'GPCPv2.3',
          'nyears': 41,
          'time_period': ['1979-1-1 0:0:0.0', '2019-7-1 0:0:0.0']},
         'method': 'Zonal root mean square error of equatorial_pacific climatological pr STD, time series are linearly detrended, observations and model regridded to generic_1x1deg',
         'name': 'pr zonal seasonality RMSE',
         'ref': 'Using CDAT regridding and rms (uncentered and biased) calculation',
         'time_frequency': 'monthly',
         'units': 'mm/day'},
        'metric': {'datasets': "ACCESS1-0_r1i1p1; ERA-Interim's pr & GPCPv2.3's precip; 's ",
         'method': 'The metric is the statistical value between the model and the observations',
         'name': 'SeasonalPrLonRmse',
         'units': 'mm/day'}},
       'SeasonalSstLonRmse': {'diagnostic': {'ACCESS1-0_r1i1p1': {'keyerror': None,
          'name': 'ACCESS1-0_r1i1p1',
          'nyears': 156,
          'time_period': ['1850-1-16 12:0:0.0', '2005-12-16 12:0:0.0']},
         'ERA-Interim': {'name': 'ERA-Interim',
          'nyears': 40,
          'time_period': ['1979-1-16 12:0:0.0', '2019-3-16 12:0:0.0']},
         'HadISST': {'name': 'HadISST',
          'nyears': 151,
          'time_period': ['1870-1-16 11:59:59.5', '2020-10-16 12:0:0.0']},
         'Tropflux': {'name': 'Tropflux',
          'nyears': 40,
          'time_period': ['1979-1-15 0:0:0.0', '2018-12-15 12:0:0.0']},
         'method': 'Zonal root mean square error of equatorial_pacific climatological sst STD, time series are linearly detrended, observations and model regridded to generic_1x1deg',
         'name': 'sst zonal seasonality RMSE',
         'ref': 'Using CDAT regridding and rms (uncentered and biased) calculation',
         'time_frequency': 'monthly',
         'units': 'C'},
        'metric': {'datasets': "ACCESS1-0_r1i1p1; ERA-Interim's ts & HadISST's sst & Tropflux's sst; 's ",
         'method': 'The metric is the statistical value between the model and the observations',
         'name': 'SeasonalSstLonRmse',
         'units': 'C'}},
       'SeasonalTauxLonRmse': {'diagnostic': {'ACCESS1-0_r1i1p1': {'keyerror': None,
          'name': 'ACCESS1-0_r1i1p1',
          'nyears': 156,
          'time_period': ['1850-1-16 12:0:0.0', '2005-12-16 12:0:0.0']},
         'ERA-Interim': {'name': 'ERA-Interim',
          'nyears': 40,
          'time_period': ['1979-1-16 12:0:0.0', '2019-3-16 12:0:0.0']},
         'Tropflux': {'name': 'Tropflux',
          'nyears': 40,
          'time_period': ['1979-1-15 0:0:0.0', '2018-12-15 12:0:0.0']},
         'method': 'Zonal root mean square error of equatorial_pacific climatological taux STD, time series are linearly detrended, observations and model regridded to generic_1x1deg',
         'name': 'taux zonal seasonality RMSE',
         'ref': 'Using CDAT regridding and rms (uncentered and biased) calculation',
         'time_frequency': 'monthly',
         'units': '1e-3 N/m2'},
        'metric': {'datasets': "ACCESS1-0_r1i1p1; ERA-Interim's tauu & Tropflux's taux; 's ",
         'method': 'The metric is the statistical value between the model and the observations',
         'name': 'SeasonalTauxLonRmse',
         'units': '1e-3 N/m2'}}},
      'name': 'Metrics Collection for ENSO performance'},
     'value': {'BiasPrLatRmse': {'diagnostic': {'ACCESS1-0_r1i1p1': {'value': None,
         'value_error': None},
        'ERA-Interim': {'value': None, 'value_error': None},
        'GPCPv2.3': {'value': None, 'value_error': None}},
       'metric': {'ERA-Interim': {'value': 1.0889669420569574,
         'value_error': None},
        'GPCPv2.3': {'value': 1.942498664900333, 'value_error': None}}},
      'BiasPrLonRmse': {'diagnostic': {'ACCESS1-0_r1i1p1': {'value': None,
         'value_error': None},
        'ERA-Interim': {'value': None, 'value_error': None},
        'GPCPv2.3': {'value': None, 'value_error': None}},
       'metric': {'ERA-Interim': {'value': 0.5583900778200923,
         'value_error': None},
        'GPCPv2.3': {'value': 1.4018762045511155, 'value_error': None}}},
      'BiasSstLonRmse': {'diagnostic': {'ACCESS1-0_r1i1p1': {'value': None,
         'value_error': None},
        'ERA-Interim': {'value': None, 'value_error': None},
        'HadISST': {'value': None, 'value_error': None},
        'Tropflux': {'value': None, 'value_error': None}},
       'metric': {'ERA-Interim': {'value': 0.6410299222206866,
         'value_error': None},
        'HadISST': {'value': 0.4977522285851384, 'value_error': None},
        'Tropflux': {'value': 0.6843057377081816, 'value_error': None}}},
      'BiasTauxLonRmse': {'diagnostic': {'ACCESS1-0_r1i1p1': {'value': None,
         'value_error': None},
        'ERA-Interim': {'value': None, 'value_error': None},
        'Tropflux': {'value': None, 'value_error': None}},
       'metric': {'ERA-Interim': {'value': 5.875566240338603,
         'value_error': None},
        'Tropflux': {'value': 5.991165811567937, 'value_error': None}}},
      'EnsoAmpl': {'diagnostic': {'ACCESS1-0_r1i1p1': {'value': 0.6631712431799373,
         'value_error': 0.05309619341351392},
        'ERA-Interim': {'value': 0.8989844997845644,
         'value_error': 0.14214193002531866},
        'HadISST': {'value': 0.7665787872085695,
         'value_error': 0.06238329697691264},
        'Tropflux': {'value': 0.9039789553693535,
         'value_error': 0.14293162279134272}},
       'metric': {'ERA-Interim': {'value': 26.23107035339744,
         'value_error': 17.57013316804312},
        'HadISST': {'value': 13.489486763021702,
         'value_error': 13.966510108146199},
        'Tropflux': {'value': 26.638641393042768,
         'value_error': 17.473058729301606}}},
      'EnsoDuration': {'diagnostic': {'ACCESS1-0_r1i1p1': {'value': 12.0,
         'value_error': None},
        'ERA-Interim': {'value': 13.0, 'value_error': None},
        'HadISST': {'value': 13.0, 'value_error': None},
        'Tropflux': {'value': 13.0, 'value_error': None}},
       'metric': {'ERA-Interim': {'value': 7.6923076923076925,
         'value_error': None},
        'HadISST': {'value': 7.6923076923076925, 'value_error': None},
        'Tropflux': {'value': 7.6923076923076925, 'value_error': None}}},
      'EnsoSeasonality': {'diagnostic': {'ACCESS1-0_r1i1p1': {'value': 1.6578289001548534,
         'value_error': 0.2658925622150123},
        'ERA-Interim': {'value': 2.0466846866656914,
         'value_error': 0.6513411033995022},
        'HadISST': {'value': 1.6639865947361325,
         'value_error': 0.2712772451657809},
        'Tropflux': {'value': 2.0532132553583624,
         'value_error': 0.6534187683977347}},
       'metric': {'ERA-Interim': {'value': 18.999301115812486,
         'value_error': 38.76920628068375},
        'HadISST': {'value': 0.3700567420890543,
         'value_error': 32.221769654960866},
        'Tropflux': {'value': 19.2568577166379,
         'value_error': 38.645932467940106}}},
      'EnsoSstDiversity_2': {'diagnostic': {'ACCESS1-0_r1i1p1': {'value': 10.0,
         'value_error': None},
        'ERA-Interim': {'value': 33.25, 'value_error': None},
        'HadISST': {'value': 49.0, 'value_error': None},
        'Tropflux': {'value': 32.0, 'value_error': None}},
       'metric': {'ERA-Interim': {'value': 69.92481203007519,
         'value_error': None},
        'HadISST': {'value': 79.59183673469387, 'value_error': None},
        'Tropflux': {'value': 68.75, 'value_error': None}}},
      'EnsoSstLonRmse': {'diagnostic': {'ACCESS1-0_r1i1p1': {'value': None,
         'value_error': None},
        'ERA-Interim': {'value': None, 'value_error': None},
        'HadISST': {'value': None, 'value_error': None},
        'Tropflux': {'value': None, 'value_error': None}},
       'metric': {'ERA-Interim': {'value': 0.16212545625183172,
         'value_error': None},
        'HadISST': {'value': 0.1455960395442026, 'value_error': None},
        'Tropflux': {'value': 0.16019423631632693, 'value_error': None}}},
      'EnsoSstSkew': {'diagnostic': {'ACCESS1-0_r1i1p1': {'value': -0.3337880808044643,
         'value_error': -0.026724434570681056},
        'ERA-Interim': {'value': 0.39098111106809963,
         'value_error': 0.061819541653923164},
        'HadISST': {'value': 0.38989908235027515,
         'value_error': 0.03172953733021198},
        'Tropflux': {'value': 0.39744741059612115,
         'value_error': 0.06284195338099416}},
       'metric': {'ERA-Interim': {'value': 185.3719198588922,
         'value_error': -20.333709705673133},
        'HadISST': {'value': 185.60883980347452,
         'value_error': -13.820941313648582},
        'Tropflux': {'value': 183.982955205023,
         'value_error': -20.002888938026135}}},
      'EnsoSstTsRmse': {'diagnostic': {'ACCESS1-0_r1i1p1': {'value': None,
         'value_error': None},
        'ERA-Interim': {'value': None, 'value_error': None},
        'HadISST': {'value': None, 'value_error': None},
        'Tropflux': {'value': None, 'value_error': None}},
       'metric': {'ERA-Interim': {'value': 0.10601628603226086,
         'value_error': None},
        'HadISST': {'value': 0.07572287463897424, 'value_error': None},
        'Tropflux': {'value': 0.10376934721294129, 'value_error': None}}},
      'SeasonalPrLatRmse': {'diagnostic': {'ACCESS1-0_r1i1p1': {'value': None,
         'value_error': None},
        'ERA-Interim': {'value': None, 'value_error': None},
        'GPCPv2.3': {'value': None, 'value_error': None}},
       'metric': {'ERA-Interim': {'value': 1.1489899987227346,
         'value_error': None},
        'GPCPv2.3': {'value': 1.5571217504386006, 'value_error': None}}},
      'SeasonalPrLonRmse': {'diagnostic': {'ACCESS1-0_r1i1p1': {'value': None,
         'value_error': None},
        'ERA-Interim': {'value': None, 'value_error': None},
        'GPCPv2.3': {'value': None, 'value_error': None}},
       'metric': {'ERA-Interim': {'value': 1.207558416822313,
         'value_error': None},
        'GPCPv2.3': {'value': 1.4114280679640976, 'value_error': None}}},
      'SeasonalSstLonRmse': {'diagnostic': {'ACCESS1-0_r1i1p1': {'value': None,
         'value_error': None},
        'ERA-Interim': {'value': None, 'value_error': None},
        'HadISST': {'value': None, 'value_error': None},
        'Tropflux': {'value': None, 'value_error': None}},
       'metric': {'ERA-Interim': {'value': 0.28914994750737416,
         'value_error': None},
        'HadISST': {'value': 0.30785834901792974, 'value_error': None},
        'Tropflux': {'value': 0.29129989795013433, 'value_error': None}}},
      'SeasonalTauxLonRmse': {'diagnostic': {'ACCESS1-0_r1i1p1': {'value': None,
         'value_error': None},
        'ERA-Interim': {'value': None, 'value_error': None},
        'Tropflux': {'value': None, 'value_error': None}},
       'metric': {'ERA-Interim': {'value': 4.231386861156252,
         'value_error': None},
        'Tropflux': {'value': 3.8841622478188085, 'value_error': None}}}}},
    'r2i1p1': {'metadata': {'description_of_the_collection': 'Describe which science question this collection is about',
      'metrics': {'BiasPrLatRmse': {'diagnostic': {'ACCESS1-0_r2i1p1': {'keyerror': None,
          'name': 'ACCESS1-0_r2i1p1',
          'nyears': 156,
          'time_period': ['1850-1-16 12:0:0.0', '2005-12-16 12:0:0.0']},
         'ERA-Interim': {'name': 'ERA-Interim',
          'nyears': 40,
          'time_period': ['1979-1-16 12:0:0.0', '2019-3-16 12:0:0.0']},
         'GPCPv2.3': {'name': 'GPCPv2.3',
          'nyears': 41,
          'time_period': ['1979-1-1 0:0:0.0', '2019-7-1 0:0:0.0']},
         'method': 'Meridional root mean square error of nino3_LatExt pr, time series are linearly detrended, observations and model regridded to generic_1x1deg',
         'name': 'pr Meridional RMSE',
         'ref': 'Using CDAT regridding and rms (uncentered and biased) calculation',
         'time_frequency': 'monthly',
         'units': 'mm/day'},
        'metric': {'datasets': "ACCESS1-0_r2i1p1; ERA-Interim's pr & GPCPv2.3's precip; 's ",
         'method': 'The metric is the statistical value between the model and the observations',
         'name': 'BiasPrLatRmse',
         'units': 'mm/day'}},
       'BiasPrLonRmse': {'diagnostic': {'ACCESS1-0_r2i1p1': {'keyerror': None,
          'name': 'ACCESS1-0_r2i1p1',
          'nyears': 156,
          'time_period': ['1850-1-16 12:0:0.0', '2005-12-16 12:0:0.0']},
         'ERA-Interim': {'name': 'ERA-Interim',
          'nyears': 40,
          'time_period': ['1979-1-16 12:0:0.0', '2019-3-16 12:0:0.0']},
         'GPCPv2.3': {'name': 'GPCPv2.3',
          'nyears': 41,
          'time_period': ['1979-1-1 0:0:0.0', '2019-7-1 0:0:0.0']},
         'method': 'Zonal root mean square error of equatorial_pacific pr, time series are linearly detrended, observations and model regridded to generic_1x1deg',
         'name': 'pr Zonal RMSE',
         'ref': 'Using CDAT regridding and rms (uncentered and biased) calculation',
         'time_frequency': 'monthly',
         'units': 'mm/day'},
        'metric': {'datasets': "ACCESS1-0_r2i1p1; ERA-Interim's pr & GPCPv2.3's precip; 's ",
         'method': 'The metric is the statistical value between the model and the observations',
         'name': 'BiasPrLonRmse',
         'units': 'mm/day'}},
       'BiasSstLonRmse': {'diagnostic': {'ACCESS1-0_r2i1p1': {'keyerror': None,
          'name': 'ACCESS1-0_r2i1p1',
          'nyears': 156,
          'time_period': ['1850-1-16 12:0:0.0', '2005-12-16 12:0:0.0']},
         'ERA-Interim': {'name': 'ERA-Interim',
          'nyears': 40,
          'time_period': ['1979-1-16 12:0:0.0', '2019-3-16 12:0:0.0']},
         'HadISST': {'name': 'HadISST',
          'nyears': 151,
          'time_period': ['1870-1-16 11:59:59.5', '2020-10-16 12:0:0.0']},
         'Tropflux': {'name': 'Tropflux',
          'nyears': 40,
          'time_period': ['1979-1-15 0:0:0.0', '2018-12-15 12:0:0.0']},
         'method': 'Zonal root mean square error of equatorial_pacific sst, time series are linearly detrended, observations and model regridded to generic_1x1deg',
         'name': 'sst Zonal RMSE',
         'ref': 'Using CDAT regridding and rms (uncentered and biased) calculation',
         'time_frequency': 'monthly',
         'units': 'C'},
        'metric': {'datasets': "ACCESS1-0_r2i1p1; ERA-Interim's ts & HadISST's sst & Tropflux's sst; 's ",
         'method': 'The metric is the statistical value between the model and the observations',
         'name': 'BiasSstLonRmse',
         'units': 'C'}},
       'BiasTauxLonRmse': {'diagnostic': {'ACCESS1-0_r2i1p1': {'keyerror': None,
          'name': 'ACCESS1-0_r2i1p1',
          'nyears': 156,
          'time_period': ['1850-1-16 12:0:0.0', '2005-12-16 12:0:0.0']},
         'ERA-Interim': {'name': 'ERA-Interim',
          'nyears': 40,
          'time_period': ['1979-1-16 12:0:0.0', '2019-3-16 12:0:0.0']},
         'Tropflux': {'name': 'Tropflux',
          'nyears': 40,
          'time_period': ['1979-1-15 0:0:0.0', '2018-12-15 12:0:0.0']},
         'method': 'Zonal root mean square error of equatorial_pacific taux, time series are linearly detrended, observations and model regridded to generic_1x1deg',
         'name': 'taux Zonal RMSE',
         'ref': 'Using CDAT regridding and rms (uncentered and biased) calculation',
         'time_frequency': 'monthly',
         'units': '1e-3 N/m2'},
        'metric': {'datasets': "ACCESS1-0_r2i1p1; ERA-Interim's tauu & Tropflux's taux; 's ",
         'method': 'The metric is the statistical value between the model and the observations',
         'name': 'BiasTauxLonRmse',
         'units': '1e-3 N/m2'}},
       'EnsoAmpl': {'diagnostic': {'ACCESS1-0_r2i1p1': {'keyerror': None,
          'name': 'ACCESS1-0_r2i1p1',
          'nyears': 156,
          'time_period': ['1850-1-16 12:0:0.0', '2005-12-16 12:0:0.0']},
         'ERA-Interim': {'keyerror': None,
          'name': 'ERA-Interim',
          'nyears': 40,
          'time_period': ['1979-1-16 12:0:0.0', '2019-3-16 12:0:0.0']},
         'HadISST': {'keyerror': None,
          'name': 'HadISST',
          'nyears': 151,
          'time_period': ['1870-1-16 11:59:59.5', '2020-10-16 12:0:0.0']},
         'Tropflux': {'keyerror': None,
          'name': 'Tropflux',
          'nyears': 40,
          'time_period': ['1979-1-15 0:0:0.0', '2018-12-15 12:0:0.0']},
         'method': 'Standard deviation of nino3.4 sstA, time series are linearly detrended',
         'name': 'ENSO amplitude',
         'ref': 'Using CDAT regression calculation',
         'time_frequency': 'monthly',
         'units': 'C'},
        'metric': {'datasets': "ACCESS1-0_r2i1p1; ERA-Interim's ts & HadISST's sst & Tropflux's sst; 's ",
         'method': 'The metric is the absolute value of the relative difference between model and observations values (M = 100 * abs[[model-obs] / obs])',
         'name': 'EnsoAmpl',
         'units': '%'}},
       'EnsoDuration': {'diagnostic': {'ACCESS1-0_r2i1p1': {'keyerror': None,
          'name': 'ACCESS1-0_r2i1p1',
          'nyears': 156,
          'time_period': ['1850-1-16 12:0:0.0', '2005-12-16 12:0:0.0']},
         'ERA-Interim': {'keyerror': None,
          'name': 'ERA-Interim',
          'nyears': 40,
          'time_period': ['1979-1-16 12:0:0.0', '2019-3-16 12:0:0.0']},
         'HadISST': {'keyerror': None,
          'name': 'HadISST',
          'nyears': 151,
          'time_period': ['1870-1-16 11:59:59.5', '2020-10-16 12:0:0.0']},
         'Tropflux': {'keyerror': None,
          'name': 'Tropflux',
          'nyears': 40,
          'time_period': ['1979-1-15 0:0:0.0', '2018-12-15 12:0:0.0']},
         'method': 'nino3.4 SSTA during DEC regressed against nino3.4 SSTA during 6 years (centered on ENSO), the duration is the number of consecutive months during which the regression is above 0.25, time series are linearly detrended, smoothing using a triangle shaped window of 5 points',
         'name': 'ENSO Duration based on life cyle SSTA pattern',
         'ref': 'Using CDAT',
         'time_frequency': 'monthly',
         'units': 'months'},
        'metric': {'datasets': "ACCESS1-0_r2i1p1; ERA-Interim's ts & HadISST's sst & Tropflux's sst; 's ",
         'method': 'The metric is the absolute value of the relative difference between model and observations values (M = 100 * abs[[model-obs] / obs])',
         'name': 'EnsoDuration',
         'units': '%'}},
       'EnsoSeasonality': {'diagnostic': {'ACCESS1-0_r2i1p1': {'keyerror': None,
          'name': 'ACCESS1-0_r2i1p1',
          'nyears': 156,
          'time_period': ['1850-1-16 12:0:0.0', '2005-12-16 12:0:0.0']},
         'ERA-Interim': {'keyerror': None,
          'name': 'ERA-Interim',
          'nyears': 40,
          'time_period': ['1979-1-16 12:0:0.0', '2019-3-16 12:0:0.0']},
         'HadISST': {'keyerror': None,
          'name': 'HadISST',
          'nyears': 151,
          'time_period': ['1870-1-16 11:59:59.5', '2020-10-16 12:0:0.0']},
         'Tropflux': {'keyerror': None,
          'name': 'Tropflux',
          'nyears': 40,
          'time_period': ['1979-1-15 0:0:0.0', '2018-12-15 12:0:0.0']},
         'method': 'Ratio between NDJ and MAM standard deviation nino3.4 sstA, time series are linearly detrended',
         'name': 'ENSO seasonality',
         'ref': 'Using CDAT std dev calculation',
         'time_frequency': 'monthly',
         'units': 'C/C'},
        'metric': {'datasets': "ACCESS1-0_r2i1p1; ERA-Interim's ts & HadISST's sst & Tropflux's sst; 's ",
         'method': 'The metric is the absolute value of the relative difference between model and observations values (M = 100 * abs[[model-obs] / obs])',
         'name': 'EnsoSeasonality',
         'units': '%'}},
       'EnsoSstDiversity_2': {'diagnostic': {'ACCESS1-0_r2i1p1': {'keyerror': None,
          'name': 'ACCESS1-0_r2i1p1',
          'nyears': 156,
          'time_period': ['1850-1-16 12:0:0.0', '2005-12-16 12:0:0.0']},
         'ERA-Interim': {'keyerror': None,
          'name': 'ERA-Interim',
          'nyears': 40,
          'time_period': ['1979-1-16 12:0:0.0', '2019-3-16 12:0:0.0']},
         'HadISST': {'keyerror': None,
          'name': 'HadISST',
          'nyears': 151,
          'time_period': ['1870-1-16 11:59:59.5', '2020-10-16 12:0:0.0']},
         'Tropflux': {'keyerror': None,
          'name': 'Tropflux',
          'nyears': 40,
          'time_period': ['1979-1-15 0:0:0.0', '2018-12-15 12:0:0.0']},
         'method': 'Nino (Nina) events = nino3.4 sstA > 0.75 (< -0.75) during DEC, zonal SSTA (meridional averaged [-5.0 ; 5.0]), the zonal SSTA maximum (minimum) is located for each event, the diversity is the interquartile range (IQR = Q3 - Q1), time series are linearly detrended, smoothing using a triangle shaped window of 5 points',
         'name': 'ENSO Diversity (interquartile range)',
         'ref': 'Using CDAT regridding',
         'time_frequency': 'monthly',
         'units': 'long'},
        'metric': {'datasets': "ACCESS1-0_r2i1p1; ERA-Interim's ts & HadISST's sst & Tropflux's sst; 's ",
         'method': 'The metric is the absolute value of the relative difference between model and observations values (M = 100 * abs[[model-obs] / obs])',
         'name': 'EnsoSstDiversity',
         'units': '%'}},
       'EnsoSstLonRmse': {'diagnostic': {'ACCESS1-0_r2i1p1': {'keyerror': None,
          'name': 'ACCESS1-0_r2i1p1',
          'nyears': 156,
          'time_period': ['1850-1-16 12:0:0.0', '2005-12-16 12:0:0.0']},
         'ERA-Interim': {'name': 'ERA-Interim',
          'nyears': 40,
          'time_period': ['1979-1-16 12:0:0.0', '2019-3-16 12:0:0.0']},
         'HadISST': {'name': 'HadISST',
          'nyears': 151,
          'time_period': ['1870-1-16 11:59:59.5', '2020-10-16 12:0:0.0']},
         'Tropflux': {'name': 'Tropflux',
          'nyears': 40,
          'time_period': ['1979-1-15 0:0:0.0', '2018-12-15 12:0:0.0']},
         'method': 'nino3.4 SSTA during DEC regressed against equatorial_pacific SSTA, time series are linearly detrended, smoothing using a triangle shaped window of 5 points, observations and model regridded to generic_1x1deg',
         'name': 'ENSO Zonal SSTA pattern',
         'ref': 'Using CDAT regridding and rms (uncentered and biased) calculation',
         'time_frequency': 'monthly',
         'units': 'C/C'},
        'metric': {'datasets': "ACCESS1-0_r2i1p1; ERA-Interim's ts & HadISST's sst & Tropflux's sst; 's ",
         'method': 'The metric is the statistical value between the model and the observations',
         'name': 'EnsoSstLonRmse',
         'units': 'C/C'}},
       'EnsoSstSkew': {'diagnostic': {'ACCESS1-0_r2i1p1': {'keyerror': None,
          'name': 'ACCESS1-0_r2i1p1',
          'nyears': 156,
          'time_period': ['1850-1-16 12:0:0.0', '2005-12-16 12:0:0.0']},
         'ERA-Interim': {'keyerror': None,
          'name': 'ERA-Interim',
          'nyears': 40,
          'time_period': ['1979-1-16 12:0:0.0', '2019-3-16 12:0:0.0']},
         'HadISST': {'keyerror': None,
          'name': 'HadISST',
          'nyears': 151,
          'time_period': ['1870-1-16 11:59:59.5', '2020-10-16 12:0:0.0']},
         'Tropflux': {'keyerror': None,
          'name': 'Tropflux',
          'nyears': 40,
          'time_period': ['1979-1-15 0:0:0.0', '2018-12-15 12:0:0.0']},
         'method': 'Standard deviation of nino3.4 sstA, time series are linearly detrended',
         'name': 'ENSO skewness',
         'ref': 'Using CDAT regression calculation',
         'time_frequency': 'monthly',
         'units': 'C'},
        'metric': {'datasets': "ACCESS1-0_r2i1p1; ERA-Interim's ts & HadISST's sst & Tropflux's sst; 's ",
         'method': 'The metric is the absolute value of the relative difference between model and observations values (M = 100 * abs[[model-obs] / obs])',
         'name': 'EnsoSstSkew',
         'units': '%'}},
       'EnsoSstTsRmse': {'diagnostic': {'ACCESS1-0_r2i1p1': {'keyerror': None,
          'name': 'ACCESS1-0_r2i1p1',
          'nyears': 156,
          'time_period': ['1850-1-16 12:0:0.0', '2005-12-16 12:0:0.0']},
         'ERA-Interim': {'name': 'ERA-Interim',
          'nyears': 40,
          'time_period': ['1979-1-16 12:0:0.0', '2019-3-16 12:0:0.0']},
         'HadISST': {'name': 'HadISST',
          'nyears': 151,
          'time_period': ['1870-1-16 11:59:59.5', '2020-10-16 12:0:0.0']},
         'Tropflux': {'name': 'Tropflux',
          'nyears': 40,
          'time_period': ['1979-1-15 0:0:0.0', '2018-12-15 12:0:0.0']},
         'method': 'nino3.4 SSTA during DEC regressed against nino3.4 SSTA during 6 years (centered on ENSO), time series are linearly detrended, smoothing using a triangle shaped window of 5 points',
         'name': 'ENSO life cyle SSTA pattern',
         'ref': 'Using CDAT regridding and rms (uncentered and biased) calculation',
         'time_frequency': 'monthly',
         'units': 'C/C'},
        'metric': {'datasets': "ACCESS1-0_r2i1p1; ERA-Interim's ts & HadISST's sst & Tropflux's sst; 's ",
         'method': 'The metric is the statistical value between the model and the observations',
         'name': 'EnsoSstTsRmse',
         'units': 'C/C'}},
       'SeasonalPrLatRmse': {'diagnostic': {'ACCESS1-0_r2i1p1': {'keyerror': None,
          'name': 'ACCESS1-0_r2i1p1',
          'nyears': 156,
          'time_period': ['1850-1-16 12:0:0.0', '2005-12-16 12:0:0.0']},
         'ERA-Interim': {'name': 'ERA-Interim',
          'nyears': 40,
          'time_period': ['1979-1-16 12:0:0.0', '2019-3-16 12:0:0.0']},
         'GPCPv2.3': {'name': 'GPCPv2.3',
          'nyears': 41,
          'time_period': ['1979-1-1 0:0:0.0', '2019-7-1 0:0:0.0']},
         'method': 'Meridional root mean square error of nino3_LatExt climatological pr STD, time series are linearly detrended, observations and model regridded to generic_1x1deg',
         'name': 'pr meridional seasonality RMSE',
         'ref': 'Using CDAT regridding and rms (uncentered and biased) calculation',
         'time_frequency': 'monthly',
         'units': 'mm/day'},
        'metric': {'datasets': "ACCESS1-0_r2i1p1; ERA-Interim's pr & GPCPv2.3's precip; 's ",
         'method': 'The metric is the statistical value between the model and the observations',
         'name': 'SeasonalPrLatRmse',
         'units': 'mm/day'}},
       'SeasonalPrLonRmse': {'diagnostic': {'ACCESS1-0_r2i1p1': {'keyerror': None,
          'name': 'ACCESS1-0_r2i1p1',
          'nyears': 156,
          'time_period': ['1850-1-16 12:0:0.0', '2005-12-16 12:0:0.0']},
         'ERA-Interim': {'name': 'ERA-Interim',
          'nyears': 40,
          'time_period': ['1979-1-16 12:0:0.0', '2019-3-16 12:0:0.0']},
         'GPCPv2.3': {'name': 'GPCPv2.3',
          'nyears': 41,
          'time_period': ['1979-1-1 0:0:0.0', '2019-7-1 0:0:0.0']},
         'method': 'Zonal root mean square error of equatorial_pacific climatological pr STD, time series are linearly detrended, observations and model regridded to generic_1x1deg',
         'name': 'pr zonal seasonality RMSE',
         'ref': 'Using CDAT regridding and rms (uncentered and biased) calculation',
         'time_frequency': 'monthly',
         'units': 'mm/day'},
        'metric': {'datasets': "ACCESS1-0_r2i1p1; ERA-Interim's pr & GPCPv2.3's precip; 's ",
         'method': 'The metric is the statistical value between the model and the observations',
         'name': 'SeasonalPrLonRmse',
         'units': 'mm/day'}},
       'SeasonalSstLonRmse': {'diagnostic': {'ACCESS1-0_r2i1p1': {'keyerror': None,
          'name': 'ACCESS1-0_r2i1p1',
          'nyears': 156,
          'time_period': ['1850-1-16 12:0:0.0', '2005-12-16 12:0:0.0']},
         'ERA-Interim': {'name': 'ERA-Interim',
          'nyears': 40,
          'time_period': ['1979-1-16 12:0:0.0', '2019-3-16 12:0:0.0']},
         'HadISST': {'name': 'HadISST',
          'nyears': 151,
          'time_period': ['1870-1-16 11:59:59.5', '2020-10-16 12:0:0.0']},
         'Tropflux': {'name': 'Tropflux',
          'nyears': 40,
          'time_period': ['1979-1-15 0:0:0.0', '2018-12-15 12:0:0.0']},
         'method': 'Zonal root mean square error of equatorial_pacific climatological sst STD, time series are linearly detrended, observations and model regridded to generic_1x1deg',
         'name': 'sst zonal seasonality RMSE',
         'ref': 'Using CDAT regridding and rms (uncentered and biased) calculation',
         'time_frequency': 'monthly',
         'units': 'C'},
        'metric': {'datasets': "ACCESS1-0_r2i1p1; ERA-Interim's ts & HadISST's sst & Tropflux's sst; 's ",
         'method': 'The metric is the statistical value between the model and the observations',
         'name': 'SeasonalSstLonRmse',
         'units': 'C'}},
       'SeasonalTauxLonRmse': {'diagnostic': {'ACCESS1-0_r2i1p1': {'keyerror': None,
          'name': 'ACCESS1-0_r2i1p1',
          'nyears': 156,
          'time_period': ['1850-1-16 12:0:0.0', '2005-12-16 12:0:0.0']},
         'ERA-Interim': {'name': 'ERA-Interim',
          'nyears': 40,
          'time_period': ['1979-1-16 12:0:0.0', '2019-3-16 12:0:0.0']},
         'Tropflux': {'name': 'Tropflux',
          'nyears': 40,
          'time_period': ['1979-1-15 0:0:0.0', '2018-12-15 12:0:0.0']},
         'method': 'Zonal root mean square error of equatorial_pacific climatological taux STD, time series are linearly detrended, observations and model regridded to generic_1x1deg',
         'name': 'taux zonal seasonality RMSE',
         'ref': 'Using CDAT regridding and rms (uncentered and biased) calculation',
         'time_frequency': 'monthly',
         'units': '1e-3 N/m2'},
        'metric': {'datasets': "ACCESS1-0_r2i1p1; ERA-Interim's tauu & Tropflux's taux; 's ",
         'method': 'The metric is the statistical value between the model and the observations',
         'name': 'SeasonalTauxLonRmse',
         'units': '1e-3 N/m2'}}},
      'name': 'Metrics Collection for ENSO performance'},
     'value': {'BiasPrLatRmse': {'diagnostic': {'ACCESS1-0_r2i1p1': {'value': None,
         'value_error': None},
        'ERA-Interim': {'value': None, 'value_error': None},
        'GPCPv2.3': {'value': None, 'value_error': None}},
       'metric': {'ERA-Interim': {'value': 1.1038352764425874,
         'value_error': None},
        'GPCPv2.3': {'value': 1.9410679210267212, 'value_error': None}}},
      'BiasPrLonRmse': {'diagnostic': {'ACCESS1-0_r2i1p1': {'value': None,
         'value_error': None},
        'ERA-Interim': {'value': None, 'value_error': None},
        'GPCPv2.3': {'value': None, 'value_error': None}},
       'metric': {'ERA-Interim': {'value': 0.5213014940563446,
         'value_error': None},
        'GPCPv2.3': {'value': 1.345655306892618, 'value_error': None}}},
      'BiasSstLonRmse': {'diagnostic': {'ACCESS1-0_r2i1p1': {'value': None,
         'value_error': None},
        'ERA-Interim': {'value': None, 'value_error': None},
        'HadISST': {'value': None, 'value_error': None},
        'Tropflux': {'value': None, 'value_error': None}},
       'metric': {'ERA-Interim': {'value': 0.6452754179898839,
         'value_error': None},
        'HadISST': {'value': 0.500244791519785, 'value_error': None},
        'Tropflux': {'value': 0.6886707956983943, 'value_error': None}}},
      'BiasTauxLonRmse': {'diagnostic': {'ACCESS1-0_r2i1p1': {'value': None,
         'value_error': None},
        'ERA-Interim': {'value': None, 'value_error': None},
        'Tropflux': {'value': None, 'value_error': None}},
       'metric': {'ERA-Interim': {'value': 5.861006398881714,
         'value_error': None},
        'Tropflux': {'value': 5.983097397774121, 'value_error': None}}},
      'EnsoAmpl': {'diagnostic': {'ACCESS1-0_r2i1p1': {'value': 0.6382166880857756,
         'value_error': 0.0510982299953862},
        'ERA-Interim': {'value': 0.8989844997845644,
         'value_error': 0.14214193002531866},
        'HadISST': {'value': 0.7665787872085695,
         'value_error': 0.06238329697691264},
        'Tropflux': {'value': 0.9039789553693535,
         'value_error': 0.14293162279134272}},
       'metric': {'ERA-Interim': {'value': 29.006930793721146,
         'value_error': 16.908984391369277},
        'HadISST': {'value': 16.744801873557375,
         'value_error': 13.44096252213253},
        'Tropflux': {'value': 29.3991652908547,
         'value_error': 16.815562779035297}}},
      'EnsoDuration': {'diagnostic': {'ACCESS1-0_r2i1p1': {'value': 13.0,
         'value_error': None},
        'ERA-Interim': {'value': 13.0, 'value_error': None},
        'HadISST': {'value': 13.0, 'value_error': None},
        'Tropflux': {'value': 13.0, 'value_error': None}},
       'metric': {'ERA-Interim': {'value': 0.0, 'value_error': None},
        'HadISST': {'value': 0.0, 'value_error': None},
        'Tropflux': {'value': 0.0, 'value_error': None}}},
      'EnsoSeasonality': {'diagnostic': {'ACCESS1-0_r2i1p1': {'value': 1.505678169870083,
         'value_error': 0.2414897136975784},
        'ERA-Interim': {'value': 2.0466846866656914,
         'value_error': 0.6513411033995022},
        'HadISST': {'value': 1.6639865947361325,
         'value_error': 0.2712772451657809},
        'Tropflux': {'value': 2.0532132553583624,
         'value_error': 0.6534187683977347}},
       'metric': {'ERA-Interim': {'value': 26.433310432247215,
         'value_error': 35.211080923105555},
        'HadISST': {'value': 9.513804099554864,
         'value_error': 29.26454904937725},
        'Tropflux': {'value': 26.66722923492495,
         'value_error': 35.09912082351542}}},
      'EnsoSstDiversity_2': {'diagnostic': {'ACCESS1-0_r2i1p1': {'value': 13.25,
         'value_error': None},
        'ERA-Interim': {'value': 33.25, 'value_error': None},
        'HadISST': {'value': 49.0, 'value_error': None},
        'Tropflux': {'value': 32.0, 'value_error': None}},
       'metric': {'ERA-Interim': {'value': 60.150375939849624,
         'value_error': None},
        'HadISST': {'value': 72.95918367346938, 'value_error': None},
        'Tropflux': {'value': 58.59375, 'value_error': None}}},
      'EnsoSstLonRmse': {'diagnostic': {'ACCESS1-0_r2i1p1': {'value': None,
         'value_error': None},
        'ERA-Interim': {'value': None, 'value_error': None},
        'HadISST': {'value': None, 'value_error': None},
        'Tropflux': {'value': None, 'value_error': None}},
       'metric': {'ERA-Interim': {'value': 0.17615616065044265,
         'value_error': None},
        'HadISST': {'value': 0.15900144737120767, 'value_error': None},
        'Tropflux': {'value': 0.17444989925127824, 'value_error': None}}},
      'EnsoSstSkew': {'diagnostic': {'ACCESS1-0_r2i1p1': {'value': -0.3608750186672228,
         'value_error': -0.028893125246779373},
        'ERA-Interim': {'value': 0.39098111106809963,
         'value_error': 0.061819541653923164},
        'HadISST': {'value': 0.38989908235027515,
         'value_error': 0.03172953733021198},
        'Tropflux': {'value': 0.39744741059612115,
         'value_error': 0.06284195338099416}},
       'metric': {'ERA-Interim': {'value': 192.29986013425773,
         'value_error': -21.983792386844687},
        'HadISST': {'value': 192.5560061572605,
         'value_error': -14.942512154840298},
        'Tropflux': {'value': 190.79818085264552,
         'value_error': -21.62612547910974}}},
      'EnsoSstTsRmse': {'diagnostic': {'ACCESS1-0_r2i1p1': {'value': None,
         'value_error': None},
        'ERA-Interim': {'value': None, 'value_error': None},
        'HadISST': {'value': None, 'value_error': None},
        'Tropflux': {'value': None, 'value_error': None}},
       'metric': {'ERA-Interim': {'value': 0.13038831372373275,
         'value_error': None},
        'HadISST': {'value': 0.10579917879545155, 'value_error': None},
        'Tropflux': {'value': 0.1301831320827185, 'value_error': None}}},
      'SeasonalPrLatRmse': {'diagnostic': {'ACCESS1-0_r2i1p1': {'value': None,
         'value_error': None},
        'ERA-Interim': {'value': None, 'value_error': None},
        'GPCPv2.3': {'value': None, 'value_error': None}},
       'metric': {'ERA-Interim': {'value': 1.150780609667345,
         'value_error': None},
        'GPCPv2.3': {'value': 1.550059653557043, 'value_error': None}}},
      'SeasonalPrLonRmse': {'diagnostic': {'ACCESS1-0_r2i1p1': {'value': None,
         'value_error': None},
        'ERA-Interim': {'value': None, 'value_error': None},
        'GPCPv2.3': {'value': None, 'value_error': None}},
       'metric': {'ERA-Interim': {'value': 1.1971069811038972,
         'value_error': None},
        'GPCPv2.3': {'value': 1.4059223735646575, 'value_error': None}}},
      'SeasonalSstLonRmse': {'diagnostic': {'ACCESS1-0_r2i1p1': {'value': None,
         'value_error': None},
        'ERA-Interim': {'value': None, 'value_error': None},
        'HadISST': {'value': None, 'value_error': None},
        'Tropflux': {'value': None, 'value_error': None}},
       'metric': {'ERA-Interim': {'value': 0.2933263103451321,
         'value_error': None},
        'HadISST': {'value': 0.3114345133049723, 'value_error': None},
        'Tropflux': {'value': 0.29581441010978604, 'value_error': None}}},
      'SeasonalTauxLonRmse': {'diagnostic': {'ACCESS1-0_r2i1p1': {'value': None,
         'value_error': None},
        'ERA-Interim': {'value': None, 'value_error': None},
        'Tropflux': {'value': None, 'value_error': None}},
       'metric': {'ERA-Interim': {'value': 4.035541714101402,
         'value_error': None},
        'Tropflux': {'value': 3.6861616009416527, 'value_error': None}}}}},
    'r3i1p1': {'metadata': {'description_of_the_collection': 'Describe which science question this collection is about',
      'metrics': {'BiasPrLatRmse': {'diagnostic': {'ACCESS1-0_r3i1p1': {'keyerror': None,
          'name': 'ACCESS1-0_r3i1p1',
          'nyears': 171,
          'time_period': ['1850-1-16 12:0:0.0', '2020-12-16 12:0:0.0']},
         'ERA-Interim': {'name': 'ERA-Interim',
          'nyears': 40,
          'time_period': ['1979-1-16 12:0:0.0', '2019-3-16 12:0:0.0']},
         'GPCPv2.3': {'name': 'GPCPv2.3',
          'nyears': 41,
          'time_period': ['1979-1-1 0:0:0.0', '2019-7-1 0:0:0.0']},
         'method': 'Meridional root mean square error of nino3_LatExt pr, time series are linearly detrended, observations and model regridded to generic_1x1deg',
         'name': 'pr Meridional RMSE',
         'ref': 'Using CDAT regridding and rms (uncentered and biased) calculation',
         'time_frequency': 'monthly',
         'units': 'mm/day'},
        'metric': {'datasets': "ACCESS1-0_r3i1p1; ERA-Interim's pr & GPCPv2.3's precip; 's ",
         'method': 'The metric is the statistical value between the model and the observations',
         'name': 'BiasPrLatRmse',
         'units': 'mm/day'}},
       'BiasPrLonRmse': {'diagnostic': {'ACCESS1-0_r3i1p1': {'keyerror': None,
          'name': 'ACCESS1-0_r3i1p1',
          'nyears': 171,
          'time_period': ['1850-1-16 12:0:0.0', '2020-12-16 12:0:0.0']},
         'ERA-Interim': {'name': 'ERA-Interim',
          'nyears': 40,
          'time_period': ['1979-1-16 12:0:0.0', '2019-3-16 12:0:0.0']},
         'GPCPv2.3': {'name': 'GPCPv2.3',
          'nyears': 41,
          'time_period': ['1979-1-1 0:0:0.0', '2019-7-1 0:0:0.0']},
         'method': 'Zonal root mean square error of equatorial_pacific pr, time series are linearly detrended, observations and model regridded to generic_1x1deg',
         'name': 'pr Zonal RMSE',
         'ref': 'Using CDAT regridding and rms (uncentered and biased) calculation',
         'time_frequency': 'monthly',
         'units': 'mm/day'},
        'metric': {'datasets': "ACCESS1-0_r3i1p1; ERA-Interim's pr & GPCPv2.3's precip; 's ",
         'method': 'The metric is the statistical value between the model and the observations',
         'name': 'BiasPrLonRmse',
         'units': 'mm/day'}},
       'BiasSstLonRmse': {'diagnostic': {'ACCESS1-0_r3i1p1': {'keyerror': None,
          'name': 'ACCESS1-0_r3i1p1',
          'nyears': 171,
          'time_period': ['1850-1-16 12:0:0.0', '2020-12-16 12:0:0.0']},
         'ERA-Interim': {'name': 'ERA-Interim',
          'nyears': 40,
          'time_period': ['1979-1-16 12:0:0.0', '2019-3-16 12:0:0.0']},
         'HadISST': {'name': 'HadISST',
          'nyears': 151,
          'time_period': ['1870-1-16 11:59:59.5', '2020-10-16 12:0:0.0']},
         'Tropflux': {'name': 'Tropflux',
          'nyears': 40,
          'time_period': ['1979-1-15 0:0:0.0', '2018-12-15 12:0:0.0']},
         'method': 'Zonal root mean square error of equatorial_pacific sst, time series are linearly detrended, observations and model regridded to generic_1x1deg',
         'name': 'sst Zonal RMSE',
         'ref': 'Using CDAT regridding and rms (uncentered and biased) calculation',
         'time_frequency': 'monthly',
         'units': 'C'},
        'metric': {'datasets': "ACCESS1-0_r3i1p1; ERA-Interim's ts & HadISST's sst & Tropflux's sst; 's ",
         'method': 'The metric is the statistical value between the model and the observations',
         'name': 'BiasSstLonRmse',
         'units': 'C'}},
       'BiasTauxLonRmse': {'diagnostic': {'ACCESS1-0_r3i1p1': {'keyerror': None,
          'name': 'ACCESS1-0_r3i1p1',
          'nyears': 171,
          'time_period': ['1850-1-16 12:0:0.0', '2020-12-16 12:0:0.0']},
         'ERA-Interim': {'name': 'ERA-Interim',
          'nyears': 40,
          'time_period': ['1979-1-16 12:0:0.0', '2019-3-16 12:0:0.0']},
         'Tropflux': {'name': 'Tropflux',
          'nyears': 40,
          'time_period': ['1979-1-15 0:0:0.0', '2018-12-15 12:0:0.0']},
         'method': 'Zonal root mean square error of equatorial_pacific taux, time series are linearly detrended, observations and model regridded to generic_1x1deg',
         'name': 'taux Zonal RMSE',
         'ref': 'Using CDAT regridding and rms (uncentered and biased) calculation',
         'time_frequency': 'monthly',
         'units': '1e-3 N/m2'},
        'metric': {'datasets': "ACCESS1-0_r3i1p1; ERA-Interim's tauu & Tropflux's taux; 's ",
         'method': 'The metric is the statistical value between the model and the observations',
         'name': 'BiasTauxLonRmse',
         'units': '1e-3 N/m2'}},
       'EnsoAmpl': {'diagnostic': {'ACCESS1-0_r3i1p1': {'keyerror': None,
          'name': 'ACCESS1-0_r3i1p1',
          'nyears': 171,
          'time_period': ['1850-1-16 12:0:0.0', '2020-12-16 12:0:0.0']},
         'ERA-Interim': {'keyerror': None,
          'name': 'ERA-Interim',
          'nyears': 40,
          'time_period': ['1979-1-16 12:0:0.0', '2019-3-16 12:0:0.0']},
         'HadISST': {'keyerror': None,
          'name': 'HadISST',
          'nyears': 151,
          'time_period': ['1870-1-16 11:59:59.5', '2020-10-16 12:0:0.0']},
         'Tropflux': {'keyerror': None,
          'name': 'Tropflux',
          'nyears': 40,
          'time_period': ['1979-1-15 0:0:0.0', '2018-12-15 12:0:0.0']},
         'method': 'Standard deviation of nino3.4 sstA, time series are linearly detrended',
         'name': 'ENSO amplitude',
         'ref': 'Using CDAT regression calculation',
         'time_frequency': 'monthly',
         'units': 'C'},
        'metric': {'datasets': "ACCESS1-0_r3i1p1; ERA-Interim's ts & HadISST's sst & Tropflux's sst; 's ",
         'method': 'The metric is the absolute value of the relative difference between model and observations values (M = 100 * abs[[model-obs] / obs])',
         'name': 'EnsoAmpl',
         'units': '%'}},
       'EnsoDuration': {'diagnostic': {'ACCESS1-0_r3i1p1': {'keyerror': None,
          'name': 'ACCESS1-0_r3i1p1',
          'nyears': 171,
          'time_period': ['1850-1-16 12:0:0.0', '2020-12-16 12:0:0.0']},
         'ERA-Interim': {'keyerror': None,
          'name': 'ERA-Interim',
          'nyears': 40,
          'time_period': ['1979-1-16 12:0:0.0', '2019-3-16 12:0:0.0']},
         'HadISST': {'keyerror': None,
          'name': 'HadISST',
          'nyears': 151,
          'time_period': ['1870-1-16 11:59:59.5', '2020-10-16 12:0:0.0']},
         'Tropflux': {'keyerror': None,
          'name': 'Tropflux',
          'nyears': 40,
          'time_period': ['1979-1-15 0:0:0.0', '2018-12-15 12:0:0.0']},
         'method': 'nino3.4 SSTA during DEC regressed against nino3.4 SSTA during 6 years (centered on ENSO), the duration is the number of consecutive months during which the regression is above 0.25, time series are linearly detrended, smoothing using a triangle shaped window of 5 points',
         'name': 'ENSO Duration based on life cyle SSTA pattern',
         'ref': 'Using CDAT',
         'time_frequency': 'monthly',
         'units': 'months'},
        'metric': {'datasets': "ACCESS1-0_r3i1p1; ERA-Interim's ts & HadISST's sst & Tropflux's sst; 's ",
         'method': 'The metric is the absolute value of the relative difference between model and observations values (M = 100 * abs[[model-obs] / obs])',
         'name': 'EnsoDuration',
         'units': '%'}},
       'EnsoSeasonality': {'diagnostic': {'ACCESS1-0_r3i1p1': {'keyerror': None,
          'name': 'ACCESS1-0_r3i1p1',
          'nyears': 171,
          'time_period': ['1850-1-16 12:0:0.0', '2020-12-16 12:0:0.0']},
         'ERA-Interim': {'keyerror': None,
          'name': 'ERA-Interim',
          'nyears': 40,
          'time_period': ['1979-1-16 12:0:0.0', '2019-3-16 12:0:0.0']},
         'HadISST': {'keyerror': None,
          'name': 'HadISST',
          'nyears': 151,
          'time_period': ['1870-1-16 11:59:59.5', '2020-10-16 12:0:0.0']},
         'Tropflux': {'keyerror': None,
          'name': 'Tropflux',
          'nyears': 40,
          'time_period': ['1979-1-15 0:0:0.0', '2018-12-15 12:0:0.0']},
         'method': 'Ratio between NDJ and MAM standard deviation nino3.4 sstA, time series are linearly detrended',
         'name': 'ENSO seasonality',
         'ref': 'Using CDAT std dev calculation',
         'time_frequency': 'monthly',
         'units': 'C/C'},
        'metric': {'datasets': "ACCESS1-0_r3i1p1; ERA-Interim's ts & HadISST's sst & Tropflux's sst; 's ",
         'method': 'The metric is the absolute value of the relative difference between model and observations values (M = 100 * abs[[model-obs] / obs])',
         'name': 'EnsoSeasonality',
         'units': '%'}},
       'EnsoSstDiversity_2': {'diagnostic': {'ACCESS1-0_r3i1p1': {'keyerror': None,
          'name': 'ACCESS1-0_r3i1p1',
          'nyears': 171,
          'time_period': ['1850-1-16 12:0:0.0', '2020-12-16 12:0:0.0']},
         'ERA-Interim': {'keyerror': None,
          'name': 'ERA-Interim',
          'nyears': 40,
          'time_period': ['1979-1-16 12:0:0.0', '2019-3-16 12:0:0.0']},
         'HadISST': {'keyerror': None,
          'name': 'HadISST',
          'nyears': 151,
          'time_period': ['1870-1-16 11:59:59.5', '2020-10-16 12:0:0.0']},
         'Tropflux': {'keyerror': None,
          'name': 'Tropflux',
          'nyears': 40,
          'time_period': ['1979-1-15 0:0:0.0', '2018-12-15 12:0:0.0']},
         'method': 'Nino (Nina) events = nino3.4 sstA > 0.75 (< -0.75) during DEC, zonal SSTA (meridional averaged [-5.0 ; 5.0]), the zonal SSTA maximum (minimum) is located for each event, the diversity is the interquartile range (IQR = Q3 - Q1), time series are linearly detrended, smoothing using a triangle shaped window of 5 points',
         'name': 'ENSO Diversity (interquartile range)',
         'ref': 'Using CDAT regridding',
         'time_frequency': 'monthly',
         'units': 'long'},
        'metric': {'datasets': "ACCESS1-0_r3i1p1; ERA-Interim's ts & HadISST's sst & Tropflux's sst; 's ",
         'method': 'The metric is the absolute value of the relative difference between model and observations values (M = 100 * abs[[model-obs] / obs])',
         'name': 'EnsoSstDiversity',
         'units': '%'}},
       'EnsoSstLonRmse': {'diagnostic': {'ACCESS1-0_r3i1p1': {'keyerror': None,
          'name': 'ACCESS1-0_r3i1p1',
          'nyears': 171,
          'time_period': ['1850-1-16 12:0:0.0', '2020-12-16 12:0:0.0']},
         'ERA-Interim': {'name': 'ERA-Interim',
          'nyears': 40,
          'time_period': ['1979-1-16 12:0:0.0', '2019-3-16 12:0:0.0']},
         'HadISST': {'name': 'HadISST',
          'nyears': 151,
          'time_period': ['1870-1-16 11:59:59.5', '2020-10-16 12:0:0.0']},
         'Tropflux': {'name': 'Tropflux',
          'nyears': 40,
          'time_period': ['1979-1-15 0:0:0.0', '2018-12-15 12:0:0.0']},
         'method': 'nino3.4 SSTA during DEC regressed against equatorial_pacific SSTA, time series are linearly detrended, smoothing using a triangle shaped window of 5 points, observations and model regridded to generic_1x1deg',
         'name': 'ENSO Zonal SSTA pattern',
         'ref': 'Using CDAT regridding and rms (uncentered and biased) calculation',
         'time_frequency': 'monthly',
         'units': 'C/C'},
        'metric': {'datasets': "ACCESS1-0_r3i1p1; ERA-Interim's ts & HadISST's sst & Tropflux's sst; 's ",
         'method': 'The metric is the statistical value between the model and the observations',
         'name': 'EnsoSstLonRmse',
         'units': 'C/C'}},
       'EnsoSstSkew': {'diagnostic': {'ACCESS1-0_r3i1p1': {'keyerror': None,
          'name': 'ACCESS1-0_r3i1p1',
          'nyears': 171,
          'time_period': ['1850-1-16 12:0:0.0', '2020-12-16 12:0:0.0']},
         'ERA-Interim': {'keyerror': None,
          'name': 'ERA-Interim',
          'nyears': 40,
          'time_period': ['1979-1-16 12:0:0.0', '2019-3-16 12:0:0.0']},
         'HadISST': {'keyerror': None,
          'name': 'HadISST',
          'nyears': 151,
          'time_period': ['1870-1-16 11:59:59.5', '2020-10-16 12:0:0.0']},
         'Tropflux': {'keyerror': None,
          'name': 'Tropflux',
          'nyears': 40,
          'time_period': ['1979-1-15 0:0:0.0', '2018-12-15 12:0:0.0']},
         'method': 'Standard deviation of nino3.4 sstA, time series are linearly detrended',
         'name': 'ENSO skewness',
         'ref': 'Using CDAT regression calculation',
         'time_frequency': 'monthly',
         'units': 'C'},
        'metric': {'datasets': "ACCESS1-0_r3i1p1; ERA-Interim's ts & HadISST's sst & Tropflux's sst; 's ",
         'method': 'The metric is the absolute value of the relative difference between model and observations values (M = 100 * abs[[model-obs] / obs])',
         'name': 'EnsoSstSkew',
         'units': '%'}},
       'EnsoSstTsRmse': {'diagnostic': {'ACCESS1-0_r3i1p1': {'keyerror': None,
          'name': 'ACCESS1-0_r3i1p1',
          'nyears': 171,
          'time_period': ['1850-1-16 12:0:0.0', '2020-12-16 12:0:0.0']},
         'ERA-Interim': {'name': 'ERA-Interim',
          'nyears': 40,
          'time_period': ['1979-1-16 12:0:0.0', '2019-3-16 12:0:0.0']},
         'HadISST': {'name': 'HadISST',
          'nyears': 151,
          'time_period': ['1870-1-16 11:59:59.5', '2020-10-16 12:0:0.0']},
         'Tropflux': {'name': 'Tropflux',
          'nyears': 40,
          'time_period': ['1979-1-15 0:0:0.0', '2018-12-15 12:0:0.0']},
         'method': 'nino3.4 SSTA during DEC regressed against nino3.4 SSTA during 6 years (centered on ENSO), time series are linearly detrended, smoothing using a triangle shaped window of 5 points',
         'name': 'ENSO life cyle SSTA pattern',
         'ref': 'Using CDAT regridding and rms (uncentered and biased) calculation',
         'time_frequency': 'monthly',
         'units': 'C/C'},
        'metric': {'datasets': "ACCESS1-0_r3i1p1; ERA-Interim's ts & HadISST's sst & Tropflux's sst; 's ",
         'method': 'The metric is the statistical value between the model and the observations',
         'name': 'EnsoSstTsRmse',
         'units': 'C/C'}},
       'SeasonalPrLatRmse': {'diagnostic': {'ACCESS1-0_r3i1p1': {'keyerror': None,
          'name': 'ACCESS1-0_r3i1p1',
          'nyears': 171,
          'time_period': ['1850-1-16 12:0:0.0', '2020-12-16 12:0:0.0']},
         'ERA-Interim': {'name': 'ERA-Interim',
          'nyears': 40,
          'time_period': ['1979-1-16 12:0:0.0', '2019-3-16 12:0:0.0']},
         'GPCPv2.3': {'name': 'GPCPv2.3',
          'nyears': 41,
          'time_period': ['1979-1-1 0:0:0.0', '2019-7-1 0:0:0.0']},
         'method': 'Meridional root mean square error of nino3_LatExt climatological pr STD, time series are linearly detrended, observations and model regridded to generic_1x1deg',
         'name': 'pr meridional seasonality RMSE',
         'ref': 'Using CDAT regridding and rms (uncentered and biased) calculation',
         'time_frequency': 'monthly',
         'units': 'mm/day'},
        'metric': {'datasets': "ACCESS1-0_r3i1p1; ERA-Interim's pr & GPCPv2.3's precip; 's ",
         'method': 'The metric is the statistical value between the model and the observations',
         'name': 'SeasonalPrLatRmse',
         'units': 'mm/day'}},
       'SeasonalPrLonRmse': {'diagnostic': {'ACCESS1-0_r3i1p1': {'keyerror': None,
          'name': 'ACCESS1-0_r3i1p1',
          'nyears': 171,
          'time_period': ['1850-1-16 12:0:0.0', '2020-12-16 12:0:0.0']},
         'ERA-Interim': {'name': 'ERA-Interim',
          'nyears': 40,
          'time_period': ['1979-1-16 12:0:0.0', '2019-3-16 12:0:0.0']},
         'GPCPv2.3': {'name': 'GPCPv2.3',
          'nyears': 41,
          'time_period': ['1979-1-1 0:0:0.0', '2019-7-1 0:0:0.0']},
         'method': 'Zonal root mean square error of equatorial_pacific climatological pr STD, time series are linearly detrended, observations and model regridded to generic_1x1deg',
         'name': 'pr zonal seasonality RMSE',
         'ref': 'Using CDAT regridding and rms (uncentered and biased) calculation',
         'time_frequency': 'monthly',
         'units': 'mm/day'},
        'metric': {'datasets': "ACCESS1-0_r3i1p1; ERA-Interim's pr & GPCPv2.3's precip; 's ",
         'method': 'The metric is the statistical value between the model and the observations',
         'name': 'SeasonalPrLonRmse',
         'units': 'mm/day'}},
       'SeasonalSstLonRmse': {'diagnostic': {'ACCESS1-0_r3i1p1': {'keyerror': None,
          'name': 'ACCESS1-0_r3i1p1',
          'nyears': 171,
          'time_period': ['1850-1-16 12:0:0.0', '2020-12-16 12:0:0.0']},
         'ERA-Interim': {'name': 'ERA-Interim',
          'nyears': 40,
          'time_period': ['1979-1-16 12:0:0.0', '2019-3-16 12:0:0.0']},
         'HadISST': {'name': 'HadISST',
          'nyears': 151,
          'time_period': ['1870-1-16 11:59:59.5', '2020-10-16 12:0:0.0']},
         'Tropflux': {'name': 'Tropflux',
          'nyears': 40,
          'time_period': ['1979-1-15 0:0:0.0', '2018-12-15 12:0:0.0']},
         'method': 'Zonal root mean square error of equatorial_pacific climatological sst STD, time series are linearly detrended, observations and model regridded to generic_1x1deg',
         'name': 'sst zonal seasonality RMSE',
         'ref': 'Using CDAT regridding and rms (uncentered and biased) calculation',
         'time_frequency': 'monthly',
         'units': 'C'},
        'metric': {'datasets': "ACCESS1-0_r3i1p1; ERA-Interim's ts & HadISST's sst & Tropflux's sst; 's ",
         'method': 'The metric is the statistical value between the model and the observations',
         'name': 'SeasonalSstLonRmse',
         'units': 'C'}},
       'SeasonalTauxLonRmse': {'diagnostic': {'ACCESS1-0_r3i1p1': {'keyerror': None,
          'name': 'ACCESS1-0_r3i1p1',
          'nyears': 171,
          'time_period': ['1850-1-16 12:0:0.0', '2020-12-16 12:0:0.0']},
         'ERA-Interim': {'name': 'ERA-Interim',
          'nyears': 40,
          'time_period': ['1979-1-16 12:0:0.0', '2019-3-16 12:0:0.0']},
         'Tropflux': {'name': 'Tropflux',
          'nyears': 40,
          'time_period': ['1979-1-15 0:0:0.0', '2018-12-15 12:0:0.0']},
         'method': 'Zonal root mean square error of equatorial_pacific climatological taux STD, time series are linearly detrended, observations and model regridded to generic_1x1deg',
         'name': 'taux zonal seasonality RMSE',
         'ref': 'Using CDAT regridding and rms (uncentered and biased) calculation',
         'time_frequency': 'monthly',
         'units': '1e-3 N/m2'},
        'metric': {'datasets': "ACCESS1-0_r3i1p1; ERA-Interim's tauu & Tropflux's taux; 's ",
         'method': 'The metric is the statistical value between the model and the observations',
         'name': 'SeasonalTauxLonRmse',
         'units': '1e-3 N/m2'}}},
      'name': 'Metrics Collection for ENSO performance'},
     'value': {'BiasPrLatRmse': {'diagnostic': {'ACCESS1-0_r3i1p1': {'value': None,
         'value_error': None},
        'ERA-Interim': {'value': None, 'value_error': None},
        'GPCPv2.3': {'value': None, 'value_error': None}},
       'metric': {'ERA-Interim': {'value': 1.10686138895125,
         'value_error': None},
        'GPCPv2.3': {'value': 1.9528760222410133, 'value_error': None}}},
      'BiasPrLonRmse': {'diagnostic': {'ACCESS1-0_r3i1p1': {'value': None,
         'value_error': None},
        'ERA-Interim': {'value': None, 'value_error': None},
        'GPCPv2.3': {'value': None, 'value_error': None}},
       'metric': {'ERA-Interim': {'value': 0.6117609156571908,
         'value_error': None},
        'GPCPv2.3': {'value': 1.4823304668585255, 'value_error': None}}},
      'BiasSstLonRmse': {'diagnostic': {'ACCESS1-0_r3i1p1': {'value': None,
         'value_error': None},
        'ERA-Interim': {'value': None, 'value_error': None},
        'HadISST': {'value': None, 'value_error': None},
        'Tropflux': {'value': None, 'value_error': None}},
       'metric': {'ERA-Interim': {'value': 0.5539343287369926,
         'value_error': None},
        'HadISST': {'value': 0.4398602867066415, 'value_error': None},
        'Tropflux': {'value': 0.594150067495504, 'value_error': None}}},
      'BiasTauxLonRmse': {'diagnostic': {'ACCESS1-0_r3i1p1': {'value': None,
         'value_error': None},
        'ERA-Interim': {'value': None, 'value_error': None},
        'Tropflux': {'value': None, 'value_error': None}},
       'metric': {'ERA-Interim': {'value': 5.868830612217869,
         'value_error': None},
        'Tropflux': {'value': 5.959821528352877, 'value_error': None}}},
      'EnsoAmpl': {'diagnostic': {'ACCESS1-0_r3i1p1': {'value': 0.6187045752673538,
         'value_error': 0.04731352139467806},
        'ERA-Interim': {'value': 0.8989844997845644,
         'value_error': 0.14214193002531866},
        'HadISST': {'value': 0.7665787872085695,
         'value_error': 0.06238329697691264},
        'Tropflux': {'value': 0.9039789553693535,
         'value_error': 0.14293162279134272}},
       'metric': {'ERA-Interim': {'value': 31.1773923337252,
         'value_error': 16.14480608509442},
        'HadISST': {'value': 19.29015182897076,
         'value_error': 12.740110644655047},
        'Tropflux': {'value': 31.557635098423333,
         'value_error': 16.055606534111412}}},
      'EnsoDuration': {'diagnostic': {'ACCESS1-0_r3i1p1': {'value': 13.0,
         'value_error': None},
        'ERA-Interim': {'value': 13.0, 'value_error': None},
        'HadISST': {'value': 13.0, 'value_error': None},
        'Tropflux': {'value': 13.0, 'value_error': None}},
       'metric': {'ERA-Interim': {'value': 0.0, 'value_error': None},
        'HadISST': {'value': 0.0, 'value_error': None},
        'Tropflux': {'value': 0.0, 'value_error': None}}},
      'EnsoSeasonality': {'diagnostic': {'ACCESS1-0_r3i1p1': {'value': 1.4492085054615167,
         'value_error': 0.22197296279351864},
        'ERA-Interim': {'value': 2.0466846866656914,
         'value_error': 0.6513411033995022},
        'HadISST': {'value': 1.6639865947361325,
         'value_error': 0.2712772451657809},
        'Tropflux': {'value': 2.0532132553583624,
         'value_error': 0.6534187683977347}},
       'metric': {'ERA-Interim': {'value': 29.192390263960938,
         'value_error': 33.37944695584852},
        'HadISST': {'value': 12.90744107879513,
         'value_error': 27.538398375860268},
        'Tropflux': {'value': 29.417536065508422,
         'value_error': 33.273310872903444}}},
      'EnsoSstDiversity_2': {'diagnostic': {'ACCESS1-0_r3i1p1': {'value': 16.0,
         'value_error': None},
        'ERA-Interim': {'value': 33.25, 'value_error': None},
        'HadISST': {'value': 49.0, 'value_error': None},
        'Tropflux': {'value': 32.0, 'value_error': None}},
       'metric': {'ERA-Interim': {'value': 51.8796992481203,
         'value_error': None},
        'HadISST': {'value': 67.3469387755102, 'value_error': None},
        'Tropflux': {'value': 50.0, 'value_error': None}}},
      'EnsoSstLonRmse': {'diagnostic': {'ACCESS1-0_r3i1p1': {'value': None,
         'value_error': None},
        'ERA-Interim': {'value': None, 'value_error': None},
        'HadISST': {'value': None, 'value_error': None},
        'Tropflux': {'value': None, 'value_error': None}},
       'metric': {'ERA-Interim': {'value': 0.14808294998201088,
         'value_error': None},
        'HadISST': {'value': 0.13271032711104766, 'value_error': None},
        'Tropflux': {'value': 0.14605727181265188, 'value_error': None}}},
      'EnsoSstSkew': {'diagnostic': {'ACCESS1-0_r3i1p1': {'value': -0.5689351769109168,
         'value_error': -0.04350756037859862},
        'ERA-Interim': {'value': 0.39098111106809963,
         'value_error': 0.061819541653923164},
        'HadISST': {'value': 0.38989908235027515,
         'value_error': 0.03172953733021198},
        'Tropflux': {'value': 0.39744741059612115,
         'value_error': 0.06284195338099416}},
       'metric': {'ERA-Interim': {'value': 245.51474759398846,
         'value_error': -34.13569264649697},
        'HadISST': {'value': 245.9185729500641,
         'value_error': -23.033357224939987},
        'Tropflux': {'value': 243.14728483388168,
         'value_error': -33.580319514444966}}},
      'EnsoSstTsRmse': {'diagnostic': {'ACCESS1-0_r3i1p1': {'value': None,
         'value_error': None},
        'ERA-Interim': {'value': None, 'value_error': None},
        'HadISST': {'value': None, 'value_error': None},
        'Tropflux': {'value': None, 'value_error': None}},
       'metric': {'ERA-Interim': {'value': 0.12643247560494073,
         'value_error': None},
        'HadISST': {'value': 0.10727364210692163, 'value_error': None},
        'Tropflux': {'value': 0.12814726397905396, 'value_error': None}}},
      'SeasonalPrLatRmse': {'diagnostic': {'ACCESS1-0_r3i1p1': {'value': None,
         'value_error': None},
        'ERA-Interim': {'value': None, 'value_error': None},
        'GPCPv2.3': {'value': None, 'value_error': None}},
       'metric': {'ERA-Interim': {'value': 1.232920787383002,
         'value_error': None},
        'GPCPv2.3': {'value': 1.6539934939454077, 'value_error': None}}},
      'SeasonalPrLonRmse': {'diagnostic': {'ACCESS1-0_r3i1p1': {'value': None,
         'value_error': None},
        'ERA-Interim': {'value': None, 'value_error': None},
        'GPCPv2.3': {'value': None, 'value_error': None}},
       'metric': {'ERA-Interim': {'value': 1.2617076061502304,
         'value_error': None},
        'GPCPv2.3': {'value': 1.4742314621397006, 'value_error': None}}},
      'SeasonalSstLonRmse': {'diagnostic': {'ACCESS1-0_r3i1p1': {'value': None,
         'value_error': None},
        'ERA-Interim': {'value': None, 'value_error': None},
        'HadISST': {'value': None, 'value_error': None},
        'Tropflux': {'value': None, 'value_error': None}},
       'metric': {'ERA-Interim': {'value': 0.2944719918775654,
         'value_error': None},
        'HadISST': {'value': 0.31387311066471457, 'value_error': None},
        'Tropflux': {'value': 0.29621592092902843, 'value_error': None}}},
      'SeasonalTauxLonRmse': {'diagnostic': {'ACCESS1-0_r3i1p1': {'value': None,
         'value_error': None},
        'ERA-Interim': {'value': None, 'value_error': None},
        'Tropflux': {'value': None, 'value_error': None}},
       'metric': {'ERA-Interim': {'value': 4.399485627465052,
         'value_error': None},
        'Tropflux': {'value': 4.047163646529721, 'value_error': None}}}}}},
   'ACCESS1-3': {'r1i1p1': {'metadata': {'description_of_the_collection': 'Describe which science question this collection is about',
      'metrics': {'BiasPrLatRmse': {'diagnostic': {'ACCESS1-3_r1i1p1': {'keyerror': None,
          'name': 'ACCESS1-3_r1i1p1',
          'nyears': 156,
          'time_period': ['1850-1-16 12:0:0.0', '2005-12-16 12:0:0.0']},
         'ERA-Interim': {'name': 'ERA-Interim',
          'nyears': 40,
          'time_period': ['1979-1-16 12:0:0.0', '2019-3-16 12:0:0.0']},
         'GPCPv2.3': {'name': 'GPCPv2.3',
          'nyears': 41,
          'time_period': ['1979-1-1 0:0:0.0', '2019-7-1 0:0:0.0']},
         'method': 'Meridional root mean square error of nino3_LatExt pr, time series are linearly detrended, observations and model regridded to generic_1x1deg',
         'name': 'pr Meridional RMSE',
         'ref': 'Using CDAT regridding and rms (uncentered and biased) calculation',
         'time_frequency': 'monthly',
         'units': 'mm/day'},
        'metric': {'datasets': "ACCESS1-3_r1i1p1; ERA-Interim's pr & GPCPv2.3's precip; 's ",
         'method': 'The metric is the statistical value between the model and the observations',
         'name': 'BiasPrLatRmse',
         'units': 'mm/day'}},
       'BiasPrLonRmse': {'diagnostic': {'ACCESS1-3_r1i1p1': {'keyerror': None,
          'name': 'ACCESS1-3_r1i1p1',
          'nyears': 156,
          'time_period': ['1850-1-16 12:0:0.0', '2005-12-16 12:0:0.0']},
         'ERA-Interim': {'name': 'ERA-Interim',
          'nyears': 40,
          'time_period': ['1979-1-16 12:0:0.0', '2019-3-16 12:0:0.0']},
         'GPCPv2.3': {'name': 'GPCPv2.3',
          'nyears': 41,
          'time_period': ['1979-1-1 0:0:0.0', '2019-7-1 0:0:0.0']},
         'method': 'Zonal root mean square error of equatorial_pacific pr, time series are linearly detrended, observations and model regridded to generic_1x1deg',
         'name': 'pr Zonal RMSE',
         'ref': 'Using CDAT regridding and rms (uncentered and biased) calculation',
         'time_frequency': 'monthly',
         'units': 'mm/day'},
        'metric': {'datasets': "ACCESS1-3_r1i1p1; ERA-Interim's pr & GPCPv2.3's precip; 's ",
         'method': 'The metric is the statistical value between the model and the observations',
         'name': 'BiasPrLonRmse',
         'units': 'mm/day'}},
       'BiasSstLonRmse': {'diagnostic': {'ACCESS1-3_r1i1p1': {'keyerror': None,
          'name': 'ACCESS1-3_r1i1p1',
          'nyears': 156,
          'time_period': ['1850-1-16 12:0:0.0', '2005-12-16 12:0:0.0']},
         'ERA-Interim': {'name': 'ERA-Interim',
          'nyears': 40,
          'time_period': ['1979-1-16 12:0:0.0', '2019-3-16 12:0:0.0']},
         'HadISST': {'name': 'HadISST',
          'nyears': 151,
          'time_period': ['1870-1-16 11:59:59.5', '2020-10-16 12:0:0.0']},
         'Tropflux': {'name': 'Tropflux',
          'nyears': 40,
          'time_period': ['1979-1-15 0:0:0.0', '2018-12-15 12:0:0.0']},
         'method': 'Zonal root mean square error of equatorial_pacific sst, time series are linearly detrended, observations and model regridded to generic_1x1deg',
         'name': 'sst Zonal RMSE',
         'ref': 'Using CDAT regridding and rms (uncentered and biased) calculation',
         'time_frequency': 'monthly',
         'units': 'C'},
        'metric': {'datasets': "ACCESS1-3_r1i1p1; ERA-Interim's ts & HadISST's sst & Tropflux's sst; 's ",
         'method': 'The metric is the statistical value between the model and the observations',
         'name': 'BiasSstLonRmse',
         'units': 'C'}},
       'BiasTauxLonRmse': {'diagnostic': {'ACCESS1-3_r1i1p1': {'keyerror': None,
          'name': 'ACCESS1-3_r1i1p1',
          'nyears': 156,
          'time_period': ['1850-1-16 12:0:0.0', '2005-12-16 12:0:0.0']},
         'ERA-Interim': {'name': 'ERA-Interim',
          'nyears': 40,
          'time_period': ['1979-1-16 12:0:0.0', '2019-3-16 12:0:0.0']},
         'Tropflux': {'name': 'Tropflux',
          'nyears': 40,
          'time_period': ['1979-1-15 0:0:0.0', '2018-12-15 12:0:0.0']},
         'method': 'Zonal root mean square error of equatorial_pacific taux, time series are linearly detrended, observations and model regridded to generic_1x1deg',
         'name': 'taux Zonal RMSE',
         'ref': 'Using CDAT regridding and rms (uncentered and biased) calculation',
         'time_frequency': 'monthly',
         'units': '1e-3 N/m2'},
        'metric': {'datasets': "ACCESS1-3_r1i1p1; ERA-Interim's tauu & Tropflux's taux; 's ",
         'method': 'The metric is the statistical value between the model and the observations',
         'name': 'BiasTauxLonRmse',
         'units': '1e-3 N/m2'}},
       'EnsoAmpl': {'diagnostic': {'ACCESS1-3_r1i1p1': {'keyerror': None,
          'name': 'ACCESS1-3_r1i1p1',
          'nyears': 156,
          'time_period': ['1850-1-16 12:0:0.0', '2005-12-16 12:0:0.0']},
         'ERA-Interim': {'keyerror': None,
          'name': 'ERA-Interim',
          'nyears': 40,
          'time_period': ['1979-1-16 12:0:0.0', '2019-3-16 12:0:0.0']},
         'HadISST': {'keyerror': None,
          'name': 'HadISST',
          'nyears': 151,
          'time_period': ['1870-1-16 11:59:59.5', '2020-10-16 12:0:0.0']},
         'Tropflux': {'keyerror': None,
          'name': 'Tropflux',
          'nyears': 40,
          'time_period': ['1979-1-15 0:0:0.0', '2018-12-15 12:0:0.0']},
         'method': 'Standard deviation of nino3.4 sstA, time series are linearly detrended',
         'name': 'ENSO amplitude',
         'ref': 'Using CDAT regression calculation',
         'time_frequency': 'monthly',
         'units': 'C'},
        'metric': {'datasets': "ACCESS1-3_r1i1p1; ERA-Interim's ts & HadISST's sst & Tropflux's sst; 's ",
         'method': 'The metric is the absolute value of the relative difference between model and observations values (M = 100 * abs[[model-obs] / obs])',
         'name': 'EnsoAmpl',
         'units': '%'}},
       'EnsoDuration': {'diagnostic': {'ACCESS1-3_r1i1p1': {'keyerror': None,
          'name': 'ACCESS1-3_r1i1p1',
          'nyears': 156,
          'time_period': ['1850-1-16 12:0:0.0', '2005-12-16 12:0:0.0']},
         'ERA-Interim': {'keyerror': None,
          'name': 'ERA-Interim',
          'nyears': 40,
          'time_period': ['1979-1-16 12:0:0.0', '2019-3-16 12:0:0.0']},
         'HadISST': {'keyerror': None,
          'name': 'HadISST',
          'nyears': 151,
          'time_period': ['1870-1-16 11:59:59.5', '2020-10-16 12:0:0.0']},
         'Tropflux': {'keyerror': None,
          'name': 'Tropflux',
          'nyears': 40,
          'time_period': ['1979-1-15 0:0:0.0', '2018-12-15 12:0:0.0']},
         'method': 'nino3.4 SSTA during DEC regressed against nino3.4 SSTA during 6 years (centered on ENSO), the duration is the number of consecutive months during which the regression is above 0.25, time series are linearly detrended, smoothing using a triangle shaped window of 5 points',
         'name': 'ENSO Duration based on life cyle SSTA pattern',
         'ref': 'Using CDAT',
         'time_frequency': 'monthly',
         'units': 'months'},
        'metric': {'datasets': "ACCESS1-3_r1i1p1; ERA-Interim's ts & HadISST's sst & Tropflux's sst; 's ",
         'method': 'The metric is the absolute value of the relative difference between model and observations values (M = 100 * abs[[model-obs] / obs])',
         'name': 'EnsoDuration',
         'units': '%'}},
       'EnsoSeasonality': {'diagnostic': {'ACCESS1-3_r1i1p1': {'keyerror': None,
          'name': 'ACCESS1-3_r1i1p1',
          'nyears': 156,
          'time_period': ['1850-1-16 12:0:0.0', '2005-12-16 12:0:0.0']},
         'ERA-Interim': {'keyerror': None,
          'name': 'ERA-Interim',
          'nyears': 40,
          'time_period': ['1979-1-16 12:0:0.0', '2019-3-16 12:0:0.0']},
         'HadISST': {'keyerror': None,
          'name': 'HadISST',
          'nyears': 151,
          'time_period': ['1870-1-16 11:59:59.5', '2020-10-16 12:0:0.0']},
         'Tropflux': {'keyerror': None,
          'name': 'Tropflux',
          'nyears': 40,
          'time_period': ['1979-1-15 0:0:0.0', '2018-12-15 12:0:0.0']},
         'method': 'Ratio between NDJ and MAM standard deviation nino3.4 sstA, time series are linearly detrended',
         'name': 'ENSO seasonality',
         'ref': 'Using CDAT std dev calculation',
         'time_frequency': 'monthly',
         'units': 'C/C'},
        'metric': {'datasets': "ACCESS1-3_r1i1p1; ERA-Interim's ts & HadISST's sst & Tropflux's sst; 's ",
         'method': 'The metric is the absolute value of the relative difference between model and observations values (M = 100 * abs[[model-obs] / obs])',
         'name': 'EnsoSeasonality',
         'units': '%'}},
       'EnsoSstDiversity_2': {'diagnostic': {'ACCESS1-3_r1i1p1': {'keyerror': None,
          'name': 'ACCESS1-3_r1i1p1',
          'nyears': 156,
          'time_period': ['1850-1-16 12:0:0.0', '2005-12-16 12:0:0.0']},
         'ERA-Interim': {'keyerror': None,
          'name': 'ERA-Interim',
          'nyears': 40,
          'time_period': ['1979-1-16 12:0:0.0', '2019-3-16 12:0:0.0']},
         'HadISST': {'keyerror': None,
          'name': 'HadISST',
          'nyears': 151,
          'time_period': ['1870-1-16 11:59:59.5', '2020-10-16 12:0:0.0']},
         'Tropflux': {'keyerror': None,
          'name': 'Tropflux',
          'nyears': 40,
          'time_period': ['1979-1-15 0:0:0.0', '2018-12-15 12:0:0.0']},
         'method': 'Nino (Nina) events = nino3.4 sstA > 0.75 (< -0.75) during DEC, zonal SSTA (meridional averaged [-5.0 ; 5.0]), the zonal SSTA maximum (minimum) is located for each event, the diversity is the interquartile range (IQR = Q3 - Q1), time series are linearly detrended, smoothing using a triangle shaped window of 5 points',
         'name': 'ENSO Diversity (interquartile range)',
         'ref': 'Using CDAT regridding',
         'time_frequency': 'monthly',
         'units': 'long'},
        'metric': {'datasets': "ACCESS1-3_r1i1p1; ERA-Interim's ts & HadISST's sst & Tropflux's sst; 's ",
         'method': 'The metric is the absolute value of the relative difference between model and observations values (M = 100 * abs[[model-obs] / obs])',
         'name': 'EnsoSstDiversity',
         'units': '%'}},
       'EnsoSstLonRmse': {'diagnostic': {'ACCESS1-3_r1i1p1': {'keyerror': None,
          'name': 'ACCESS1-3_r1i1p1',
          'nyears': 156,
          'time_period': ['1850-1-16 12:0:0.0', '2005-12-16 12:0:0.0']},
         'ERA-Interim': {'name': 'ERA-Interim',
          'nyears': 40,
          'time_period': ['1979-1-16 12:0:0.0', '2019-3-16 12:0:0.0']},
         'HadISST': {'name': 'HadISST',
          'nyears': 151,
          'time_period': ['1870-1-16 11:59:59.5', '2020-10-16 12:0:0.0']},
         'Tropflux': {'name': 'Tropflux',
          'nyears': 40,
          'time_period': ['1979-1-15 0:0:0.0', '2018-12-15 12:0:0.0']},
         'method': 'nino3.4 SSTA during DEC regressed against equatorial_pacific SSTA, time series are linearly detrended, smoothing using a triangle shaped window of 5 points, observations and model regridded to generic_1x1deg',
         'name': 'ENSO Zonal SSTA pattern',
         'ref': 'Using CDAT regridding and rms (uncentered and biased) calculation',
         'time_frequency': 'monthly',
         'units': 'C/C'},
        'metric': {'datasets': "ACCESS1-3_r1i1p1; ERA-Interim's ts & HadISST's sst & Tropflux's sst; 's ",
         'method': 'The metric is the statistical value between the model and the observations',
         'name': 'EnsoSstLonRmse',
         'units': 'C/C'}},
       'EnsoSstSkew': {'diagnostic': {'ACCESS1-3_r1i1p1': {'keyerror': None,
          'name': 'ACCESS1-3_r1i1p1',
          'nyears': 156,
          'time_period': ['1850-1-16 12:0:0.0', '2005-12-16 12:0:0.0']},
         'ERA-Interim': {'keyerror': None,
          'name': 'ERA-Interim',
          'nyears': 40,
          'time_period': ['1979-1-16 12:0:0.0', '2019-3-16 12:0:0.0']},
         'HadISST': {'keyerror': None,
          'name': 'HadISST',
          'nyears': 151,
          'time_period': ['1870-1-16 11:59:59.5', '2020-10-16 12:0:0.0']},
         'Tropflux': {'keyerror': None,
          'name': 'Tropflux',
          'nyears': 40,
          'time_period': ['1979-1-15 0:0:0.0', '2018-12-15 12:0:0.0']},
         'method': 'Standard deviation of nino3.4 sstA, time series are linearly detrended',
         'name': 'ENSO skewness',
         'ref': 'Using CDAT regression calculation',
         'time_frequency': 'monthly',
         'units': 'C'},
        'metric': {'datasets': "ACCESS1-3_r1i1p1; ERA-Interim's ts & HadISST's sst & Tropflux's sst; 's ",
         'method': 'The metric is the absolute value of the relative difference between model and observations values (M = 100 * abs[[model-obs] / obs])',
         'name': 'EnsoSstSkew',
         'units': '%'}},
       'EnsoSstTsRmse': {'diagnostic': {'ACCESS1-3_r1i1p1': {'keyerror': None,
          'name': 'ACCESS1-3_r1i1p1',
          'nyears': 156,
          'time_period': ['1850-1-16 12:0:0.0', '2005-12-16 12:0:0.0']},
         'ERA-Interim': {'name': 'ERA-Interim',
          'nyears': 40,
          'time_period': ['1979-1-16 12:0:0.0', '2019-3-16 12:0:0.0']},
         'HadISST': {'name': 'HadISST',
          'nyears': 151,
          'time_period': ['1870-1-16 11:59:59.5', '2020-10-16 12:0:0.0']},
         'Tropflux': {'name': 'Tropflux',
          'nyears': 40,
          'time_period': ['1979-1-15 0:0:0.0', '2018-12-15 12:0:0.0']},
         'method': 'nino3.4 SSTA during DEC regressed against nino3.4 SSTA during 6 years (centered on ENSO), time series are linearly detrended, smoothing using a triangle shaped window of 5 points',
         'name': 'ENSO life cyle SSTA pattern',
         'ref': 'Using CDAT regridding and rms (uncentered and biased) calculation',
         'time_frequency': 'monthly',
         'units': 'C/C'},
        'metric': {'datasets': "ACCESS1-3_r1i1p1; ERA-Interim's ts & HadISST's sst & Tropflux's sst; 's ",
         'method': 'The metric is the statistical value between the model and the observations',
         'name': 'EnsoSstTsRmse',
         'units': 'C/C'}},
       'SeasonalPrLatRmse': {'diagnostic': {'ACCESS1-3_r1i1p1': {'keyerror': None,
          'name': 'ACCESS1-3_r1i1p1',
          'nyears': 156,
          'time_period': ['1850-1-16 12:0:0.0', '2005-12-16 12:0:0.0']},
         'ERA-Interim': {'name': 'ERA-Interim',
          'nyears': 40,
          'time_period': ['1979-1-16 12:0:0.0', '2019-3-16 12:0:0.0']},
         'GPCPv2.3': {'name': 'GPCPv2.3',
          'nyears': 41,
          'time_period': ['1979-1-1 0:0:0.0', '2019-7-1 0:0:0.0']},
         'method': 'Meridional root mean square error of nino3_LatExt climatological pr STD, time series are linearly detrended, observations and model regridded to generic_1x1deg',
         'name': 'pr meridional seasonality RMSE',
         'ref': 'Using CDAT regridding and rms (uncentered and biased) calculation',
         'time_frequency': 'monthly',
         'units': 'mm/day'},
        'metric': {'datasets': "ACCESS1-3_r1i1p1; ERA-Interim's pr & GPCPv2.3's precip; 's ",
         'method': 'The metric is the statistical value between the model and the observations',
         'name': 'SeasonalPrLatRmse',
         'units': 'mm/day'}},
       'SeasonalPrLonRmse': {'diagnostic': {'ACCESS1-3_r1i1p1': {'keyerror': None,
          'name': 'ACCESS1-3_r1i1p1',
          'nyears': 156,
          'time_period': ['1850-1-16 12:0:0.0', '2005-12-16 12:0:0.0']},
         'ERA-Interim': {'name': 'ERA-Interim',
          'nyears': 40,
          'time_period': ['1979-1-16 12:0:0.0', '2019-3-16 12:0:0.0']},
         'GPCPv2.3': {'name': 'GPCPv2.3',
          'nyears': 41,
          'time_period': ['1979-1-1 0:0:0.0', '2019-7-1 0:0:0.0']},
         'method': 'Zonal root mean square error of equatorial_pacific climatological pr STD, time series are linearly detrended, observations and model regridded to generic_1x1deg',
         'name': 'pr zonal seasonality RMSE',
         'ref': 'Using CDAT regridding and rms (uncentered and biased) calculation',
         'time_frequency': 'monthly',
         'units': 'mm/day'},
        'metric': {'datasets': "ACCESS1-3_r1i1p1; ERA-Interim's pr & GPCPv2.3's precip; 's ",
         'method': 'The metric is the statistical value between the model and the observations',
         'name': 'SeasonalPrLonRmse',
         'units': 'mm/day'}},
       'SeasonalSstLonRmse': {'diagnostic': {'ACCESS1-3_r1i1p1': {'keyerror': None,
          'name': 'ACCESS1-3_r1i1p1',
          'nyears': 156,
          'time_period': ['1850-1-16 12:0:0.0', '2005-12-16 12:0:0.0']},
         'ERA-Interim': {'name': 'ERA-Interim',
          'nyears': 40,
          'time_period': ['1979-1-16 12:0:0.0', '2019-3-16 12:0:0.0']},
         'HadISST': {'name': 'HadISST',
          'nyears': 151,
          'time_period': ['1870-1-16 11:59:59.5', '2020-10-16 12:0:0.0']},
         'Tropflux': {'name': 'Tropflux',
          'nyears': 40,
          'time_period': ['1979-1-15 0:0:0.0', '2018-12-15 12:0:0.0']},
         'method': 'Zonal root mean square error of equatorial_pacific climatological sst STD, time series are linearly detrended, observations and model regridded to generic_1x1deg',
         'name': 'sst zonal seasonality RMSE',
         'ref': 'Using CDAT regridding and rms (uncentered and biased) calculation',
         'time_frequency': 'monthly',
         'units': 'C'},
        'metric': {'datasets': "ACCESS1-3_r1i1p1; ERA-Interim's ts & HadISST's sst & Tropflux's sst; 's ",
         'method': 'The metric is the statistical value between the model and the observations',
         'name': 'SeasonalSstLonRmse',
         'units': 'C'}},
       'SeasonalTauxLonRmse': {'diagnostic': {'ACCESS1-3_r1i1p1': {'keyerror': None,
          'name': 'ACCESS1-3_r1i1p1',
          'nyears': 156,
          'time_period': ['1850-1-16 12:0:0.0', '2005-12-16 12:0:0.0']},
         'ERA-Interim': {'name': 'ERA-Interim',
          'nyears': 40,
          'time_period': ['1979-1-16 12:0:0.0', '2019-3-16 12:0:0.0']},
         'Tropflux': {'name': 'Tropflux',
          'nyears': 40,
          'time_period': ['1979-1-15 0:0:0.0', '2018-12-15 12:0:0.0']},
         'method': 'Zonal root mean square error of equatorial_pacific climatological taux STD, time series are linearly detrended, observations and model regridded to generic_1x1deg',
         'name': 'taux zonal seasonality RMSE',
         'ref': 'Using CDAT regridding and rms (uncentered and biased) calculation',
         'time_frequency': 'monthly',
         'units': '1e-3 N/m2'},
        'metric': {'datasets': "ACCESS1-3_r1i1p1; ERA-Interim's tauu & Tropflux's taux; 's ",
         'method': 'The metric is the statistical value between the model and the observations',
         'name': 'SeasonalTauxLonRmse',
         'units': '1e-3 N/m2'}}},
      'name': 'Metrics Collection for ENSO performance'},
     'value': {'BiasPrLatRmse': {'diagnostic': {'ACCESS1-3_r1i1p1': {'value': None,
         'value_error': None},
        'ERA-Interim': {'value': None, 'value_error': None},
        'GPCPv2.3': {'value': None, 'value_error': None}},
       'metric': {'ERA-Interim': {'value': 0.9107871420709011,
         'value_error': None},
        'GPCPv2.3': {'value': 1.728007918250075, 'value_error': None}}},
      'BiasPrLonRmse': {'diagnostic': {'ACCESS1-3_r1i1p1': {'value': None,
         'value_error': None},
        'ERA-Interim': {'value': None, 'value_error': None},
        'GPCPv2.3': {'value': None, 'value_error': None}},
       'metric': {'ERA-Interim': {'value': 1.3705518964847636,
         'value_error': None},
        'GPCPv2.3': {'value': 0.8605742744825455, 'value_error': None}}},
      'BiasSstLonRmse': {'diagnostic': {'ACCESS1-3_r1i1p1': {'value': None,
         'value_error': None},
        'ERA-Interim': {'value': None, 'value_error': None},
        'HadISST': {'value': None, 'value_error': None},
        'Tropflux': {'value': None, 'value_error': None}},
       'metric': {'ERA-Interim': {'value': 0.6128484551635742,
         'value_error': None},
        'HadISST': {'value': 0.5039427963116134, 'value_error': None},
        'Tropflux': {'value': 0.6523802448706411, 'value_error': None}}},
      'BiasTauxLonRmse': {'diagnostic': {'ACCESS1-3_r1i1p1': {'value': None,
         'value_error': None},
        'ERA-Interim': {'value': None, 'value_error': None},
        'Tropflux': {'value': None, 'value_error': None}},
       'metric': {'ERA-Interim': {'value': 7.120794771689747,
         'value_error': None},
        'Tropflux': {'value': 7.311951875912468, 'value_error': None}}},
      'EnsoAmpl': {'diagnostic': {'ACCESS1-3_r1i1p1': {'value': 0.6591704259926121,
         'value_error': 0.052775871678554895},
        'ERA-Interim': {'value': 0.8989844997845644,
         'value_error': 0.14214193002531866},
        'HadISST': {'value': 0.7665787872085695,
         'value_error': 0.06238329697691264},
        'Tropflux': {'value': 0.9039789553693535,
         'value_error': 0.14293162279134272}},
       'metric': {'ERA-Interim': {'value': 26.676107747065952,
         'value_error': 17.464135069535065},
        'HadISST': {'value': 14.01139230672893,
         'value_error': 13.882252151755198},
        'Tropflux': {'value': 27.081219968966636,
         'value_error': 17.367646266987755}}},
      'EnsoDuration': {'diagnostic': {'ACCESS1-3_r1i1p1': {'value': 18.0,
         'value_error': None},
        'ERA-Interim': {'value': 13.0, 'value_error': None},
        'HadISST': {'value': 13.0, 'value_error': None},
        'Tropflux': {'value': 13.0, 'value_error': None}},
       'metric': {'ERA-Interim': {'value': 38.46153846153847,
         'value_error': None},
        'HadISST': {'value': 38.46153846153847, 'value_error': None},
        'Tropflux': {'value': 38.46153846153847, 'value_error': None}}},
      'EnsoSeasonality': {'diagnostic': {'ACCESS1-3_r1i1p1': {'value': 1.0334523144346077,
         'value_error': 0.16575129302329406},
        'ERA-Interim': {'value': 2.0466846866656914,
         'value_error': 0.6513411033995022},
        'HadISST': {'value': 1.6639865947361325,
         'value_error': 0.2712772451657809},
        'Tropflux': {'value': 2.0532132553583624,
         'value_error': 0.6534187683977347}},
       'metric': {'ERA-Interim': {'value': 49.50603181977032,
         'value_error': 24.167829355503983},
        'HadISST': {'value': 37.892990382023605,
         'value_error': 20.08630831685205},
        'Tropflux': {'value': 49.66658666665233,
         'value_error': 24.090983302767665}}},
      'EnsoSstDiversity_2': {'diagnostic': {'ACCESS1-3_r1i1p1': {'value': 35.5,
         'value_error': None},
        'ERA-Interim': {'value': 33.25, 'value_error': None},
        'HadISST': {'value': 49.0, 'value_error': None},
        'Tropflux': {'value': 32.0, 'value_error': None}},
       'metric': {'ERA-Interim': {'value': 6.7669172932330826,
         'value_error': None},
        'HadISST': {'value': 27.55102040816326, 'value_error': None},
        'Tropflux': {'value': 10.9375, 'value_error': None}}},
      'EnsoSstLonRmse': {'diagnostic': {'ACCESS1-3_r1i1p1': {'value': None,
         'value_error': None},
        'ERA-Interim': {'value': None, 'value_error': None},
        'HadISST': {'value': None, 'value_error': None},
        'Tropflux': {'value': None, 'value_error': None}},
       'metric': {'ERA-Interim': {'value': 0.21925359895388835,
         'value_error': None},
        'HadISST': {'value': 0.214754688079866, 'value_error': None},
        'Tropflux': {'value': 0.2179700449502751, 'value_error': None}}},
      'EnsoSstSkew': {'diagnostic': {'ACCESS1-3_r1i1p1': {'value': 0.08201445815258669,
         'value_error': 0.0065664118846491416},
        'ERA-Interim': {'value': 0.39098111106809963,
         'value_error': 0.061819541653923164},
        'HadISST': {'value': 0.38989908235027515,
         'value_error': 0.03172953733021198},
        'Tropflux': {'value': 0.39744741059612115,
         'value_error': 0.06284195338099416}},
       'metric': {'ERA-Interim': {'value': 79.02342189152414,
         'value_error': 4.99615857978974},
        'HadISST': {'value': 78.96520872575252,
         'value_error': 3.395918183374591},
        'Tropflux': {'value': 79.36470185336589,
         'value_error': 4.914873214719781}}},
      'EnsoSstTsRmse': {'diagnostic': {'ACCESS1-3_r1i1p1': {'value': None,
         'value_error': None},
        'ERA-Interim': {'value': None, 'value_error': None},
        'HadISST': {'value': None, 'value_error': None},
        'Tropflux': {'value': None, 'value_error': None}},
       'metric': {'ERA-Interim': {'value': 0.15841754859234353,
         'value_error': None},
        'HadISST': {'value': 0.12974274015469492, 'value_error': None},
        'Tropflux': {'value': 0.15540989176196593, 'value_error': None}}},
      'SeasonalPrLatRmse': {'diagnostic': {'ACCESS1-3_r1i1p1': {'value': None,
         'value_error': None},
        'ERA-Interim': {'value': None, 'value_error': None},
        'GPCPv2.3': {'value': None, 'value_error': None}},
       'metric': {'ERA-Interim': {'value': 1.151869385536187,
         'value_error': None},
        'GPCPv2.3': {'value': 1.5076223309541772, 'value_error': None}}},
      'SeasonalPrLonRmse': {'diagnostic': {'ACCESS1-3_r1i1p1': {'value': None,
         'value_error': None},
        'ERA-Interim': {'value': None, 'value_error': None},
        'GPCPv2.3': {'value': None, 'value_error': None}},
       'metric': {'ERA-Interim': {'value': 0.6069410137244964,
         'value_error': None},
        'GPCPv2.3': {'value': 0.7415854270014426, 'value_error': None}}},
      'SeasonalSstLonRmse': {'diagnostic': {'ACCESS1-3_r1i1p1': {'value': None,
         'value_error': None},
        'ERA-Interim': {'value': None, 'value_error': None},
        'HadISST': {'value': None, 'value_error': None},
        'Tropflux': {'value': None, 'value_error': None}},
       'metric': {'ERA-Interim': {'value': 0.24255193766308267,
         'value_error': None},
        'HadISST': {'value': 0.2570697479126406, 'value_error': None},
        'Tropflux': {'value': 0.24682259501634465, 'value_error': None}}},
      'SeasonalTauxLonRmse': {'diagnostic': {'ACCESS1-3_r1i1p1': {'value': None,
         'value_error': None},
        'ERA-Interim': {'value': None, 'value_error': None},
        'Tropflux': {'value': None, 'value_error': None}},
       'metric': {'ERA-Interim': {'value': 3.4921024277714734,
         'value_error': None},
        'Tropflux': {'value': 3.102081356651636, 'value_error': None}}}}},
    'r2i1p1': {'metadata': {'description_of_the_collection': 'Describe which science question this collection is about',
      'metrics': {'BiasPrLatRmse': {'diagnostic': {'ACCESS1-3_r2i1p1': {'keyerror': None,
          'name': 'ACCESS1-3_r2i1p1',
          'nyears': 156,
          'time_period': ['1850-1-16 12:0:0.0', '2005-12-16 12:0:0.0']},
         'ERA-Interim': {'name': 'ERA-Interim',
          'nyears': 40,
          'time_period': ['1979-1-16 12:0:0.0', '2019-3-16 12:0:0.0']},
         'GPCPv2.3': {'name': 'GPCPv2.3',
          'nyears': 41,
          'time_period': ['1979-1-1 0:0:0.0', '2019-7-1 0:0:0.0']},
         'method': 'Meridional root mean square error of nino3_LatExt pr, time series are linearly detrended, observations and model regridded to generic_1x1deg',
         'name': 'pr Meridional RMSE',
         'ref': 'Using CDAT regridding and rms (uncentered and biased) calculation',
         'time_frequency': 'monthly',
         'units': 'mm/day'},
        'metric': {'datasets': "ACCESS1-3_r2i1p1; ERA-Interim's pr & GPCPv2.3's precip; 's ",
         'method': 'The metric is the statistical value between the model and the observations',
         'name': 'BiasPrLatRmse',
         'units': 'mm/day'}},
       'BiasPrLonRmse': {'diagnostic': {'ACCESS1-3_r2i1p1': {'keyerror': None,
          'name': 'ACCESS1-3_r2i1p1',
          'nyears': 156,
          'time_period': ['1850-1-16 12:0:0.0', '2005-12-16 12:0:0.0']},
         'ERA-Interim': {'name': 'ERA-Interim',
          'nyears': 40,
          'time_period': ['1979-1-16 12:0:0.0', '2019-3-16 12:0:0.0']},
         'GPCPv2.3': {'name': 'GPCPv2.3',
          'nyears': 41,
          'time_period': ['1979-1-1 0:0:0.0', '2019-7-1 0:0:0.0']},
         'method': 'Zonal root mean square error of equatorial_pacific pr, time series are linearly detrended, observations and model regridded to generic_1x1deg',
         'name': 'pr Zonal RMSE',
         'ref': 'Using CDAT regridding and rms (uncentered and biased) calculation',
         'time_frequency': 'monthly',
         'units': 'mm/day'},
        'metric': {'datasets': "ACCESS1-3_r2i1p1; ERA-Interim's pr & GPCPv2.3's precip; 's ",
         'method': 'The metric is the statistical value between the model and the observations',
         'name': 'BiasPrLonRmse',
         'units': 'mm/day'}},
       'BiasSstLonRmse': {'diagnostic': {'ACCESS1-3_r2i1p1': {'keyerror': None,
          'name': 'ACCESS1-3_r2i1p1',
          'nyears': 156,
          'time_period': ['1850-1-16 12:0:0.0', '2005-12-16 12:0:0.0']},
         'ERA-Interim': {'name': 'ERA-Interim',
          'nyears': 40,
          'time_period': ['1979-1-16 12:0:0.0', '2019-3-16 12:0:0.0']},
         'HadISST': {'name': 'HadISST',
          'nyears': 151,
          'time_period': ['1870-1-16 11:59:59.5', '2020-10-16 12:0:0.0']},
         'Tropflux': {'name': 'Tropflux',
          'nyears': 40,
          'time_period': ['1979-1-15 0:0:0.0', '2018-12-15 12:0:0.0']},
         'method': 'Zonal root mean square error of equatorial_pacific sst, time series are linearly detrended, observations and model regridded to generic_1x1deg',
         'name': 'sst Zonal RMSE',
         'ref': 'Using CDAT regridding and rms (uncentered and biased) calculation',
         'time_frequency': 'monthly',
         'units': 'C'},
        'metric': {'datasets': "ACCESS1-3_r2i1p1; ERA-Interim's ts & HadISST's sst & Tropflux's sst; 's ",
         'method': 'The metric is the statistical value between the model and the observations',
         'name': 'BiasSstLonRmse',
         'units': 'C'}},
       'BiasTauxLonRmse': {'diagnostic': {'ACCESS1-3_r2i1p1': {'keyerror': None,
          'name': 'ACCESS1-3_r2i1p1',
          'nyears': 156,
          'time_period': ['1850-1-16 12:0:0.0', '2005-12-16 12:0:0.0']},
         'ERA-Interim': {'name': 'ERA-Interim',
          'nyears': 40,
          'time_period': ['1979-1-16 12:0:0.0', '2019-3-16 12:0:0.0']},
         'Tropflux': {'name': 'Tropflux',
          'nyears': 40,
          'time_period': ['1979-1-15 0:0:0.0', '2018-12-15 12:0:0.0']},
         'method': 'Zonal root mean square error of equatorial_pacific taux, time series are linearly detrended, observations and model regridded to generic_1x1deg',
         'name': 'taux Zonal RMSE',
         'ref': 'Using CDAT regridding and rms (uncentered and biased) calculation',
         'time_frequency': 'monthly',
         'units': '1e-3 N/m2'},
        'metric': {'datasets': "ACCESS1-3_r2i1p1; ERA-Interim's tauu & Tropflux's taux; 's ",
         'method': 'The metric is the statistical value between the model and the observations',
         'name': 'BiasTauxLonRmse',
         'units': '1e-3 N/m2'}},
       'EnsoAmpl': {'diagnostic': {'ACCESS1-3_r2i1p1': {'keyerror': None,
          'name': 'ACCESS1-3_r2i1p1',
          'nyears': 156,
          'time_period': ['1850-1-16 12:0:0.0', '2005-12-16 12:0:0.0']},
         'ERA-Interim': {'keyerror': None,
          'name': 'ERA-Interim',
          'nyears': 40,
          'time_period': ['1979-1-16 12:0:0.0', '2019-3-16 12:0:0.0']},
         'HadISST': {'keyerror': None,
          'name': 'HadISST',
          'nyears': 151,
          'time_period': ['1870-1-16 11:59:59.5', '2020-10-16 12:0:0.0']},
         'Tropflux': {'keyerror': None,
          'name': 'Tropflux',
          'nyears': 40,
          'time_period': ['1979-1-15 0:0:0.0', '2018-12-15 12:0:0.0']},
         'method': 'Standard deviation of nino3.4 sstA, time series are linearly detrended',
         'name': 'ENSO amplitude',
         'ref': 'Using CDAT regression calculation',
         'time_frequency': 'monthly',
         'units': 'C'},
        'metric': {'datasets': "ACCESS1-3_r2i1p1; ERA-Interim's ts & HadISST's sst & Tropflux's sst; 's ",
         'method': 'The metric is the absolute value of the relative difference between model and observations values (M = 100 * abs[[model-obs] / obs])',
         'name': 'EnsoAmpl',
         'units': '%'}},
       'EnsoDuration': {'diagnostic': {'ACCESS1-3_r2i1p1': {'keyerror': None,
          'name': 'ACCESS1-3_r2i1p1',
          'nyears': 156,
          'time_period': ['1850-1-16 12:0:0.0', '2005-12-16 12:0:0.0']},
         'ERA-Interim': {'keyerror': None,
          'name': 'ERA-Interim',
          'nyears': 40,
          'time_period': ['1979-1-16 12:0:0.0', '2019-3-16 12:0:0.0']},
         'HadISST': {'keyerror': None,
          'name': 'HadISST',
          'nyears': 151,
          'time_period': ['1870-1-16 11:59:59.5', '2020-10-16 12:0:0.0']},
         'Tropflux': {'keyerror': None,
          'name': 'Tropflux',
          'nyears': 40,
          'time_period': ['1979-1-15 0:0:0.0', '2018-12-15 12:0:0.0']},
         'method': 'nino3.4 SSTA during DEC regressed against nino3.4 SSTA during 6 years (centered on ENSO), the duration is the number of consecutive months during which the regression is above 0.25, time series are linearly detrended, smoothing using a triangle shaped window of 5 points',
         'name': 'ENSO Duration based on life cyle SSTA pattern',
         'ref': 'Using CDAT',
         'time_frequency': 'monthly',
         'units': 'months'},
        'metric': {'datasets': "ACCESS1-3_r2i1p1; ERA-Interim's ts & HadISST's sst & Tropflux's sst; 's ",
         'method': 'The metric is the absolute value of the relative difference between model and observations values (M = 100 * abs[[model-obs] / obs])',
         'name': 'EnsoDuration',
         'units': '%'}},
       'EnsoSeasonality': {'diagnostic': {'ACCESS1-3_r2i1p1': {'keyerror': None,
          'name': 'ACCESS1-3_r2i1p1',
          'nyears': 156,
          'time_period': ['1850-1-16 12:0:0.0', '2005-12-16 12:0:0.0']},
         'ERA-Interim': {'keyerror': None,
          'name': 'ERA-Interim',
          'nyears': 40,
          'time_period': ['1979-1-16 12:0:0.0', '2019-3-16 12:0:0.0']},
         'HadISST': {'keyerror': None,
          'name': 'HadISST',
          'nyears': 151,
          'time_period': ['1870-1-16 11:59:59.5', '2020-10-16 12:0:0.0']},
         'Tropflux': {'keyerror': None,
          'name': 'Tropflux',
          'nyears': 40,
          'time_period': ['1979-1-15 0:0:0.0', '2018-12-15 12:0:0.0']},
         'method': 'Ratio between NDJ and MAM standard deviation nino3.4 sstA, time series are linearly detrended',
         'name': 'ENSO seasonality',
         'ref': 'Using CDAT std dev calculation',
         'time_frequency': 'monthly',
         'units': 'C/C'},
        'metric': {'datasets': "ACCESS1-3_r2i1p1; ERA-Interim's ts & HadISST's sst & Tropflux's sst; 's ",
         'method': 'The metric is the absolute value of the relative difference between model and observations values (M = 100 * abs[[model-obs] / obs])',
         'name': 'EnsoSeasonality',
         'units': '%'}},
       'EnsoSstDiversity_2': {'diagnostic': {'ACCESS1-3_r2i1p1': {'keyerror': None,
          'name': 'ACCESS1-3_r2i1p1',
          'nyears': 156,
          'time_period': ['1850-1-16 12:0:0.0', '2005-12-16 12:0:0.0']},
         'ERA-Interim': {'keyerror': None,
          'name': 'ERA-Interim',
          'nyears': 40,
          'time_period': ['1979-1-16 12:0:0.0', '2019-3-16 12:0:0.0']},
         'HadISST': {'keyerror': None,
          'name': 'HadISST',
          'nyears': 151,
          'time_period': ['1870-1-16 11:59:59.5', '2020-10-16 12:0:0.0']},
         'Tropflux': {'keyerror': None,
          'name': 'Tropflux',
          'nyears': 40,
          'time_period': ['1979-1-15 0:0:0.0', '2018-12-15 12:0:0.0']},
         'method': 'Nino (Nina) events = nino3.4 sstA > 0.75 (< -0.75) during DEC, zonal SSTA (meridional averaged [-5.0 ; 5.0]), the zonal SSTA maximum (minimum) is located for each event, the diversity is the interquartile range (IQR = Q3 - Q1), time series are linearly detrended, smoothing using a triangle shaped window of 5 points',
         'name': 'ENSO Diversity (interquartile range)',
         'ref': 'Using CDAT regridding',
         'time_frequency': 'monthly',
         'units': 'long'},
        'metric': {'datasets': "ACCESS1-3_r2i1p1; ERA-Interim's ts & HadISST's sst & Tropflux's sst; 's ",
         'method': 'The metric is the absolute value of the relative difference between model and observations values (M = 100 * abs[[model-obs] / obs])',
         'name': 'EnsoSstDiversity',
         'units': '%'}},
       'EnsoSstLonRmse': {'diagnostic': {'ACCESS1-3_r2i1p1': {'keyerror': None,
          'name': 'ACCESS1-3_r2i1p1',
          'nyears': 156,
          'time_period': ['1850-1-16 12:0:0.0', '2005-12-16 12:0:0.0']},
         'ERA-Interim': {'name': 'ERA-Interim',
          'nyears': 40,
          'time_period': ['1979-1-16 12:0:0.0', '2019-3-16 12:0:0.0']},
         'HadISST': {'name': 'HadISST',
          'nyears': 151,
          'time_period': ['1870-1-16 11:59:59.5', '2020-10-16 12:0:0.0']},
         'Tropflux': {'name': 'Tropflux',
          'nyears': 40,
          'time_period': ['1979-1-15 0:0:0.0', '2018-12-15 12:0:0.0']},
         'method': 'nino3.4 SSTA during DEC regressed against equatorial_pacific SSTA, time series are linearly detrended, smoothing using a triangle shaped window of 5 points, observations and model regridded to generic_1x1deg',
         'name': 'ENSO Zonal SSTA pattern',
         'ref': 'Using CDAT regridding and rms (uncentered and biased) calculation',
         'time_frequency': 'monthly',
         'units': 'C/C'},
        'metric': {'datasets': "ACCESS1-3_r2i1p1; ERA-Interim's ts & HadISST's sst & Tropflux's sst; 's ",
         'method': 'The metric is the statistical value between the model and the observations',
         'name': 'EnsoSstLonRmse',
         'units': 'C/C'}},
       'EnsoSstSkew': {'diagnostic': {'ACCESS1-3_r2i1p1': {'keyerror': None,
          'name': 'ACCESS1-3_r2i1p1',
          'nyears': 156,
          'time_period': ['1850-1-16 12:0:0.0', '2005-12-16 12:0:0.0']},
         'ERA-Interim': {'keyerror': None,
          'name': 'ERA-Interim',
          'nyears': 40,
          'time_period': ['1979-1-16 12:0:0.0', '2019-3-16 12:0:0.0']},
         'HadISST': {'keyerror': None,
          'name': 'HadISST',
          'nyears': 151,
          'time_period': ['1870-1-16 11:59:59.5', '2020-10-16 12:0:0.0']},
         'Tropflux': {'keyerror': None,
          'name': 'Tropflux',
          'nyears': 40,
          'time_period': ['1979-1-15 0:0:0.0', '2018-12-15 12:0:0.0']},
         'method': 'Standard deviation of nino3.4 sstA, time series are linearly detrended',
         'name': 'ENSO skewness',
         'ref': 'Using CDAT regression calculation',
         'time_frequency': 'monthly',
         'units': 'C'},
        'metric': {'datasets': "ACCESS1-3_r2i1p1; ERA-Interim's ts & HadISST's sst & Tropflux's sst; 's ",
         'method': 'The metric is the absolute value of the relative difference between model and observations values (M = 100 * abs[[model-obs] / obs])',
         'name': 'EnsoSstSkew',
         'units': '%'}},
       'EnsoSstTsRmse': {'diagnostic': {'ACCESS1-3_r2i1p1': {'keyerror': None,
          'name': 'ACCESS1-3_r2i1p1',
          'nyears': 156,
          'time_period': ['1850-1-16 12:0:0.0', '2005-12-16 12:0:0.0']},
         'ERA-Interim': {'name': 'ERA-Interim',
          'nyears': 40,
          'time_period': ['1979-1-16 12:0:0.0', '2019-3-16 12:0:0.0']},
         'HadISST': {'name': 'HadISST',
          'nyears': 151,
          'time_period': ['1870-1-16 11:59:59.5', '2020-10-16 12:0:0.0']},
         'Tropflux': {'name': 'Tropflux',
          'nyears': 40,
          'time_period': ['1979-1-15 0:0:0.0', '2018-12-15 12:0:0.0']},
         'method': 'nino3.4 SSTA during DEC regressed against nino3.4 SSTA during 6 years (centered on ENSO), time series are linearly detrended, smoothing using a triangle shaped window of 5 points',
         'name': 'ENSO life cyle SSTA pattern',
         'ref': 'Using CDAT regridding and rms (uncentered and biased) calculation',
         'time_frequency': 'monthly',
         'units': 'C/C'},
        'metric': {'datasets': "ACCESS1-3_r2i1p1; ERA-Interim's ts & HadISST's sst & Tropflux's sst; 's ",
         'method': 'The metric is the statistical value between the model and the observations',
         'name': 'EnsoSstTsRmse',
         'units': 'C/C'}},
       'SeasonalPrLatRmse': {'diagnostic': {'ACCESS1-3_r2i1p1': {'keyerror': None,
          'name': 'ACCESS1-3_r2i1p1',
          'nyears': 156,
          'time_period': ['1850-1-16 12:0:0.0', '2005-12-16 12:0:0.0']},
         'ERA-Interim': {'name': 'ERA-Interim',
          'nyears': 40,
          'time_period': ['1979-1-16 12:0:0.0', '2019-3-16 12:0:0.0']},
         'GPCPv2.3': {'name': 'GPCPv2.3',
          'nyears': 41,
          'time_period': ['1979-1-1 0:0:0.0', '2019-7-1 0:0:0.0']},
         'method': 'Meridional root mean square error of nino3_LatExt climatological pr STD, time series are linearly detrended, observations and model regridded to generic_1x1deg',
         'name': 'pr meridional seasonality RMSE',
         'ref': 'Using CDAT regridding and rms (uncentered and biased) calculation',
         'time_frequency': 'monthly',
         'units': 'mm/day'},
        'metric': {'datasets': "ACCESS1-3_r2i1p1; ERA-Interim's pr & GPCPv2.3's precip; 's ",
         'method': 'The metric is the statistical value between the model and the observations',
         'name': 'SeasonalPrLatRmse',
         'units': 'mm/day'}},
       'SeasonalPrLonRmse': {'diagnostic': {'ACCESS1-3_r2i1p1': {'keyerror': None,
          'name': 'ACCESS1-3_r2i1p1',
          'nyears': 156,
          'time_period': ['1850-1-16 12:0:0.0', '2005-12-16 12:0:0.0']},
         'ERA-Interim': {'name': 'ERA-Interim',
          'nyears': 40,
          'time_period': ['1979-1-16 12:0:0.0', '2019-3-16 12:0:0.0']},
         'GPCPv2.3': {'name': 'GPCPv2.3',
          'nyears': 41,
          'time_period': ['1979-1-1 0:0:0.0', '2019-7-1 0:0:0.0']},
         'method': 'Zonal root mean square error of equatorial_pacific climatological pr STD, time series are linearly detrended, observations and model regridded to generic_1x1deg',
         'name': 'pr zonal seasonality RMSE',
         'ref': 'Using CDAT regridding and rms (uncentered and biased) calculation',
         'time_frequency': 'monthly',
         'units': 'mm/day'},
        'metric': {'datasets': "ACCESS1-3_r2i1p1; ERA-Interim's pr & GPCPv2.3's precip; 's ",
         'method': 'The metric is the statistical value between the model and the observations',
         'name': 'SeasonalPrLonRmse',
         'units': 'mm/day'}},
       'SeasonalSstLonRmse': {'diagnostic': {'ACCESS1-3_r2i1p1': {'keyerror': None,
          'name': 'ACCESS1-3_r2i1p1',
          'nyears': 156,
          'time_period': ['1850-1-16 12:0:0.0', '2005-12-16 12:0:0.0']},
         'ERA-Interim': {'name': 'ERA-Interim',
          'nyears': 40,
          'time_period': ['1979-1-16 12:0:0.0', '2019-3-16 12:0:0.0']},
         'HadISST': {'name': 'HadISST',
          'nyears': 151,
          'time_period': ['1870-1-16 11:59:59.5', '2020-10-16 12:0:0.0']},
         'Tropflux': {'name': 'Tropflux',
          'nyears': 40,
          'time_period': ['1979-1-15 0:0:0.0', '2018-12-15 12:0:0.0']},
         'method': 'Zonal root mean square error of equatorial_pacific climatological sst STD, time series are linearly detrended, observations and model regridded to generic_1x1deg',
         'name': 'sst zonal seasonality RMSE',
         'ref': 'Using CDAT regridding and rms (uncentered and biased) calculation',
         'time_frequency': 'monthly',
         'units': 'C'},
        'metric': {'datasets': "ACCESS1-3_r2i1p1; ERA-Interim's ts & HadISST's sst & Tropflux's sst; 's ",
         'method': 'The metric is the statistical value between the model and the observations',
         'name': 'SeasonalSstLonRmse',
         'units': 'C'}},
       'SeasonalTauxLonRmse': {'diagnostic': {'ACCESS1-3_r2i1p1': {'keyerror': None,
          'name': 'ACCESS1-3_r2i1p1',
          'nyears': 156,
          'time_period': ['1850-1-16 12:0:0.0', '2005-12-16 12:0:0.0']},
         'ERA-Interim': {'name': 'ERA-Interim',
          'nyears': 40,
          'time_period': ['1979-1-16 12:0:0.0', '2019-3-16 12:0:0.0']},
         'Tropflux': {'name': 'Tropflux',
          'nyears': 40,
          'time_period': ['1979-1-15 0:0:0.0', '2018-12-15 12:0:0.0']},
         'method': 'Zonal root mean square error of equatorial_pacific climatological taux STD, time series are linearly detrended, observations and model regridded to generic_1x1deg',
         'name': 'taux zonal seasonality RMSE',
         'ref': 'Using CDAT regridding and rms (uncentered and biased) calculation',
         'time_frequency': 'monthly',
         'units': '1e-3 N/m2'},
        'metric': {'datasets': "ACCESS1-3_r2i1p1; ERA-Interim's tauu & Tropflux's taux; 's ",
         'method': 'The metric is the statistical value between the model and the observations',
         'name': 'SeasonalTauxLonRmse',
         'units': '1e-3 N/m2'}}},
      'name': 'Metrics Collection for ENSO performance'},
     'value': {'BiasPrLatRmse': {'diagnostic': {'ACCESS1-3_r2i1p1': {'value': None,
         'value_error': None},
        'ERA-Interim': {'value': None, 'value_error': None},
        'GPCPv2.3': {'value': None, 'value_error': None}},
       'metric': {'ERA-Interim': {'value': 0.9495119516960886,
         'value_error': None},
        'GPCPv2.3': {'value': 1.7695441896741835, 'value_error': None}}},
      'BiasPrLonRmse': {'diagnostic': {'ACCESS1-3_r2i1p1': {'value': None,
         'value_error': None},
        'ERA-Interim': {'value': None, 'value_error': None},
        'GPCPv2.3': {'value': None, 'value_error': None}},
       'metric': {'ERA-Interim': {'value': 1.2349285256091422,
         'value_error': None},
        'GPCPv2.3': {'value': 0.8361593578621309, 'value_error': None}}},
      'BiasSstLonRmse': {'diagnostic': {'ACCESS1-3_r2i1p1': {'value': None,
         'value_error': None},
        'ERA-Interim': {'value': None, 'value_error': None},
        'HadISST': {'value': None, 'value_error': None},
        'Tropflux': {'value': None, 'value_error': None}},
       'metric': {'ERA-Interim': {'value': 0.5462503814795701,
         'value_error': None},
        'HadISST': {'value': 0.4723779287845717, 'value_error': None},
        'Tropflux': {'value': 0.5822194551911266, 'value_error': None}}},
      'BiasTauxLonRmse': {'diagnostic': {'ACCESS1-3_r2i1p1': {'value': None,
         'value_error': None},
        'ERA-Interim': {'value': None, 'value_error': None},
        'Tropflux': {'value': None, 'value_error': None}},
       'metric': {'ERA-Interim': {'value': 7.184206240117672,
         'value_error': None},
        'Tropflux': {'value': 7.338571667211002, 'value_error': None}}},
      'EnsoAmpl': {'diagnostic': {'ACCESS1-3_r2i1p1': {'value': 0.6192250865650893,
         'value_error': 0.04957768495073151},
        'ERA-Interim': {'value': 0.8989844997845644,
         'value_error': 0.14214193002531866},
        'HadISST': {'value': 0.7665787872085695,
         'value_error': 0.06238329697691264},
        'Tropflux': {'value': 0.9039789553693535,
         'value_error': 0.14293162279134272}},
       'metric': {'ERA-Interim': {'value': 31.119492414665384,
         'value_error': 16.40581877430658},
        'HadISST': {'value': 19.222251267877628,
         'value_error': 13.04099585087477},
        'Tropflux': {'value': 31.50005507461372,
         'value_error': 16.31517713634179}}},
      'EnsoDuration': {'diagnostic': {'ACCESS1-3_r2i1p1': {'value': 15.0,
         'value_error': None},
        'ERA-Interim': {'value': 13.0, 'value_error': None},
        'HadISST': {'value': 13.0, 'value_error': None},
        'Tropflux': {'value': 13.0, 'value_error': None}},
       'metric': {'ERA-Interim': {'value': 15.384615384615385,
         'value_error': None},
        'HadISST': {'value': 15.384615384615385, 'value_error': None},
        'Tropflux': {'value': 15.384615384615385, 'value_error': None}}},
      'EnsoSeasonality': {'diagnostic': {'ACCESS1-3_r2i1p1': {'value': 1.1380478083150416,
         'value_error': 0.18252694692908336},
        'ERA-Interim': {'value': 2.0466846866656914,
         'value_error': 0.6513411033995022},
        'HadISST': {'value': 1.6639865947361325,
         'value_error': 0.2712772451657809},
        'Tropflux': {'value': 2.0532132553583624,
         'value_error': 0.6534187683977347}},
       'metric': {'ERA-Interim': {'value': 44.3955477983731,
         'value_error': 26.613850339878038},
        'HadISST': {'value': 31.607152851161757,
         'value_error': 22.119239405486944},
        'Tropflux': {'value': 44.57235236792732,
         'value_error': 26.529226714121222}}},
      'EnsoSstDiversity_2': {'diagnostic': {'ACCESS1-3_r2i1p1': {'value': 26.0,
         'value_error': None},
        'ERA-Interim': {'value': 33.25, 'value_error': None},
        'HadISST': {'value': 49.0, 'value_error': None},
        'Tropflux': {'value': 32.0, 'value_error': None}},
       'metric': {'ERA-Interim': {'value': 21.804511278195488,
         'value_error': None},
        'HadISST': {'value': 46.93877551020408, 'value_error': None},
        'Tropflux': {'value': 18.75, 'value_error': None}}},
      'EnsoSstLonRmse': {'diagnostic': {'ACCESS1-3_r2i1p1': {'value': None,
         'value_error': None},
        'ERA-Interim': {'value': None, 'value_error': None},
        'HadISST': {'value': None, 'value_error': None},
        'Tropflux': {'value': None, 'value_error': None}},
       'metric': {'ERA-Interim': {'value': 0.2077117606465408,
         'value_error': None},
        'HadISST': {'value': 0.20128736282299983, 'value_error': None},
        'Tropflux': {'value': 0.2063754698073488, 'value_error': None}}},
      'EnsoSstSkew': {'diagnostic': {'ACCESS1-3_r2i1p1': {'value': 0.011419249875227251,
         'value_error': 0.0009142717001795556},
        'ERA-Interim': {'value': 0.39098111106809963,
         'value_error': 0.061819541653923164},
        'HadISST': {'value': 0.38989908235027515,
         'value_error': 0.03172953733021198},
        'Tropflux': {'value': 0.39744741059612115,
         'value_error': 0.06284195338099416}},
       'metric': {'ERA-Interim': {'value': 97.07933463996979,
         'value_error': 0.695638117034614},
        'HadISST': {'value': 97.07122935340267,
         'value_error': 0.47282929333794843},
        'Tropflux': {'value': 97.12685261728092,
         'value_error': 0.6843203821395568}}},
      'EnsoSstTsRmse': {'diagnostic': {'ACCESS1-3_r2i1p1': {'value': None,
         'value_error': None},
        'ERA-Interim': {'value': None, 'value_error': None},
        'HadISST': {'value': None, 'value_error': None},
        'Tropflux': {'value': None, 'value_error': None}},
       'metric': {'ERA-Interim': {'value': 0.13696100126612337,
         'value_error': None},
        'HadISST': {'value': 0.11332078352954107, 'value_error': None},
        'Tropflux': {'value': 0.137808391694131, 'value_error': None}}},
      'SeasonalPrLatRmse': {'diagnostic': {'ACCESS1-3_r2i1p1': {'value': None,
         'value_error': None},
        'ERA-Interim': {'value': None, 'value_error': None},
        'GPCPv2.3': {'value': None, 'value_error': None}},
       'metric': {'ERA-Interim': {'value': 1.1941598419280277,
         'value_error': None},
        'GPCPv2.3': {'value': 1.5595903579789974, 'value_error': None}}},
      'SeasonalPrLonRmse': {'diagnostic': {'ACCESS1-3_r2i1p1': {'value': None,
         'value_error': None},
        'ERA-Interim': {'value': None, 'value_error': None},
        'GPCPv2.3': {'value': None, 'value_error': None}},
       'metric': {'ERA-Interim': {'value': 0.6534802560577654,
         'value_error': None},
        'GPCPv2.3': {'value': 0.8031489153627462, 'value_error': None}}},
      'SeasonalSstLonRmse': {'diagnostic': {'ACCESS1-3_r2i1p1': {'value': None,
         'value_error': None},
        'ERA-Interim': {'value': None, 'value_error': None},
        'HadISST': {'value': None, 'value_error': None},
        'Tropflux': {'value': None, 'value_error': None}},
       'metric': {'ERA-Interim': {'value': 0.24209693340280616,
         'value_error': None},
        'HadISST': {'value': 0.25737165004739543, 'value_error': None},
        'Tropflux': {'value': 0.2458176759601055, 'value_error': None}}},
      'SeasonalTauxLonRmse': {'diagnostic': {'ACCESS1-3_r2i1p1': {'value': None,
         'value_error': None},
        'ERA-Interim': {'value': None, 'value_error': None},
        'Tropflux': {'value': None, 'value_error': None}},
       'metric': {'ERA-Interim': {'value': 3.610861974173862,
         'value_error': None},
        'Tropflux': {'value': 3.2078106811568006, 'value_error': None}}}}},
    'r3i1p1': {'metadata': {'description_of_the_collection': 'Describe which science question this collection is about',
      'metrics': {'BiasPrLatRmse': {'diagnostic': {'ACCESS1-3_r3i1p1': {'keyerror': None,
          'name': 'ACCESS1-3_r3i1p1',
          'nyears': 156,
          'time_period': ['1850-1-16 12:0:0.0', '2005-12-16 12:0:0.0']},
         'ERA-Interim': {'name': 'ERA-Interim',
          'nyears': 40,
          'time_period': ['1979-1-16 12:0:0.0', '2019-3-16 12:0:0.0']},
         'GPCPv2.3': {'name': 'GPCPv2.3',
          'nyears': 41,
          'time_period': ['1979-1-1 0:0:0.0', '2019-7-1 0:0:0.0']},
         'method': 'Meridional root mean square error of nino3_LatExt pr, time series are linearly detrended, observations and model regridded to generic_1x1deg',
         'name': 'pr Meridional RMSE',
         'ref': 'Using CDAT regridding and rms (uncentered and biased) calculation',
         'time_frequency': 'monthly',
         'units': 'mm/day'},
        'metric': {'datasets': "ACCESS1-3_r3i1p1; ERA-Interim's pr & GPCPv2.3's precip; 's ",
         'method': 'The metric is the statistical value between the model and the observations',
         'name': 'BiasPrLatRmse',
         'units': 'mm/day'}},
       'BiasPrLonRmse': {'diagnostic': {'ACCESS1-3_r3i1p1': {'keyerror': None,
          'name': 'ACCESS1-3_r3i1p1',
          'nyears': 156,
          'time_period': ['1850-1-16 12:0:0.0', '2005-12-16 12:0:0.0']},
         'ERA-Interim': {'name': 'ERA-Interim',
          'nyears': 40,
          'time_period': ['1979-1-16 12:0:0.0', '2019-3-16 12:0:0.0']},
         'GPCPv2.3': {'name': 'GPCPv2.3',
          'nyears': 41,
          'time_period': ['1979-1-1 0:0:0.0', '2019-7-1 0:0:0.0']},
         'method': 'Zonal root mean square error of equatorial_pacific pr, time series are linearly detrended, observations and model regridded to generic_1x1deg',
         'name': 'pr Zonal RMSE',
         'ref': 'Using CDAT regridding and rms (uncentered and biased) calculation',
         'time_frequency': 'monthly',
         'units': 'mm/day'},
        'metric': {'datasets': "ACCESS1-3_r3i1p1; ERA-Interim's pr & GPCPv2.3's precip; 's ",
         'method': 'The metric is the statistical value between the model and the observations',
         'name': 'BiasPrLonRmse',
         'units': 'mm/day'}},
       'BiasSstLonRmse': {'diagnostic': {'ACCESS1-3_r3i1p1': {'keyerror': None,
          'name': 'ACCESS1-3_r3i1p1',
          'nyears': 156,
          'time_period': ['1850-1-16 12:0:0.0', '2005-12-16 12:0:0.0']},
         'ERA-Interim': {'name': 'ERA-Interim',
          'nyears': 40,
          'time_period': ['1979-1-16 12:0:0.0', '2019-3-16 12:0:0.0']},
         'HadISST': {'name': 'HadISST',
          'nyears': 151,
          'time_period': ['1870-1-16 11:59:59.5', '2020-10-16 12:0:0.0']},
         'Tropflux': {'name': 'Tropflux',
          'nyears': 40,
          'time_period': ['1979-1-15 0:0:0.0', '2018-12-15 12:0:0.0']},
         'method': 'Zonal root mean square error of equatorial_pacific sst, time series are linearly detrended, observations and model regridded to generic_1x1deg',
         'name': 'sst Zonal RMSE',
         'ref': 'Using CDAT regridding and rms (uncentered and biased) calculation',
         'time_frequency': 'monthly',
         'units': 'C'},
        'metric': {'datasets': "ACCESS1-3_r3i1p1; ERA-Interim's ts & HadISST's sst & Tropflux's sst; 's ",
         'method': 'The metric is the statistical value between the model and the observations',
         'name': 'BiasSstLonRmse',
         'units': 'C'}},
       'BiasTauxLonRmse': {'diagnostic': {'ACCESS1-3_r3i1p1': {'keyerror': None,
          'name': 'ACCESS1-3_r3i1p1',
          'nyears': 156,
          'time_period': ['1850-1-16 12:0:0.0', '2005-12-16 12:0:0.0']},
         'ERA-Interim': {'name': 'ERA-Interim',
          'nyears': 40,
          'time_period': ['1979-1-16 12:0:0.0', '2019-3-16 12:0:0.0']},
         'Tropflux': {'name': 'Tropflux',
          'nyears': 40,
          'time_period': ['1979-1-15 0:0:0.0', '2018-12-15 12:0:0.0']},
         'method': 'Zonal root mean square error of equatorial_pacific taux, time series are linearly detrended, observations and model regridded to generic_1x1deg',
         'name': 'taux Zonal RMSE',
         'ref': 'Using CDAT regridding and rms (uncentered and biased) calculation',
         'time_frequency': 'monthly',
         'units': '1e-3 N/m2'},
        'metric': {'datasets': "ACCESS1-3_r3i1p1; ERA-Interim's tauu & Tropflux's taux; 's ",
         'method': 'The metric is the statistical value between the model and the observations',
         'name': 'BiasTauxLonRmse',
         'units': '1e-3 N/m2'}},
       'EnsoAmpl': {'diagnostic': {'ACCESS1-3_r3i1p1': {'keyerror': None,
          'name': 'ACCESS1-3_r3i1p1',
          'nyears': 156,
          'time_period': ['1850-1-16 12:0:0.0', '2005-12-16 12:0:0.0']},
         'ERA-Interim': {'keyerror': None,
          'name': 'ERA-Interim',
          'nyears': 40,
          'time_period': ['1979-1-16 12:0:0.0', '2019-3-16 12:0:0.0']},
         'HadISST': {'keyerror': None,
          'name': 'HadISST',
          'nyears': 151,
          'time_period': ['1870-1-16 11:59:59.5', '2020-10-16 12:0:0.0']},
         'Tropflux': {'keyerror': None,
          'name': 'Tropflux',
          'nyears': 40,
          'time_period': ['1979-1-15 0:0:0.0', '2018-12-15 12:0:0.0']},
         'method': 'Standard deviation of nino3.4 sstA, time series are linearly detrended',
         'name': 'ENSO amplitude',
         'ref': 'Using CDAT regression calculation',
         'time_frequency': 'monthly',
         'units': 'C'},
        'metric': {'datasets': "ACCESS1-3_r3i1p1; ERA-Interim's ts & HadISST's sst & Tropflux's sst; 's ",
         'method': 'The metric is the absolute value of the relative difference between model and observations values (M = 100 * abs[[model-obs] / obs])',
         'name': 'EnsoAmpl',
         'units': '%'}},
       'EnsoDuration': {'diagnostic': {'ACCESS1-3_r3i1p1': {'keyerror': None,
          'name': 'ACCESS1-3_r3i1p1',
          'nyears': 156,
          'time_period': ['1850-1-16 12:0:0.0', '2005-12-16 12:0:0.0']},
         'ERA-Interim': {'keyerror': None,
          'name': 'ERA-Interim',
          'nyears': 40,
          'time_period': ['1979-1-16 12:0:0.0', '2019-3-16 12:0:0.0']},
         'HadISST': {'keyerror': None,
          'name': 'HadISST',
          'nyears': 151,
          'time_period': ['1870-1-16 11:59:59.5', '2020-10-16 12:0:0.0']},
         'Tropflux': {'keyerror': None,
          'name': 'Tropflux',
          'nyears': 40,
          'time_period': ['1979-1-15 0:0:0.0', '2018-12-15 12:0:0.0']},
         'method': 'nino3.4 SSTA during DEC regressed against nino3.4 SSTA during 6 years (centered on ENSO), the duration is the number of consecutive months during which the regression is above 0.25, time series are linearly detrended, smoothing using a triangle shaped window of 5 points',
         'name': 'ENSO Duration based on life cyle SSTA pattern',
         'ref': 'Using CDAT',
         'time_frequency': 'monthly',
         'units': 'months'},
        'metric': {'datasets': "ACCESS1-3_r3i1p1; ERA-Interim's ts & HadISST's sst & Tropflux's sst; 's ",
         'method': 'The metric is the absolute value of the relative difference between model and observations values (M = 100 * abs[[model-obs] / obs])',
         'name': 'EnsoDuration',
         'units': '%'}},
       'EnsoSeasonality': {'diagnostic': {'ACCESS1-3_r3i1p1': {'keyerror': None,
          'name': 'ACCESS1-3_r3i1p1',
          'nyears': 156,
          'time_period': ['1850-1-16 12:0:0.0', '2005-12-16 12:0:0.0']},
         'ERA-Interim': {'keyerror': None,
          'name': 'ERA-Interim',
          'nyears': 40,
          'time_period': ['1979-1-16 12:0:0.0', '2019-3-16 12:0:0.0']},
         'HadISST': {'keyerror': None,
          'name': 'HadISST',
          'nyears': 151,
          'time_period': ['1870-1-16 11:59:59.5', '2020-10-16 12:0:0.0']},
         'Tropflux': {'keyerror': None,
          'name': 'Tropflux',
          'nyears': 40,
          'time_period': ['1979-1-15 0:0:0.0', '2018-12-15 12:0:0.0']},
         'method': 'Ratio between NDJ and MAM standard deviation nino3.4 sstA, time series are linearly detrended',
         'name': 'ENSO seasonality',
         'ref': 'Using CDAT std dev calculation',
         'time_frequency': 'monthly',
         'units': 'C/C'},
        'metric': {'datasets': "ACCESS1-3_r3i1p1; ERA-Interim's ts & HadISST's sst & Tropflux's sst; 's ",
         'method': 'The metric is the absolute value of the relative difference between model and observations values (M = 100 * abs[[model-obs] / obs])',
         'name': 'EnsoSeasonality',
         'units': '%'}},
       'EnsoSstDiversity_2': {'diagnostic': {'ACCESS1-3_r3i1p1': {'keyerror': None,
          'name': 'ACCESS1-3_r3i1p1',
          'nyears': 156,
          'time_period': ['1850-1-16 12:0:0.0', '2005-12-16 12:0:0.0']},
         'ERA-Interim': {'keyerror': None,
          'name': 'ERA-Interim',
          'nyears': 40,
          'time_period': ['1979-1-16 12:0:0.0', '2019-3-16 12:0:0.0']},
         'HadISST': {'keyerror': None,
          'name': 'HadISST',
          'nyears': 151,
          'time_period': ['1870-1-16 11:59:59.5', '2020-10-16 12:0:0.0']},
         'Tropflux': {'keyerror': None,
          'name': 'Tropflux',
          'nyears': 40,
          'time_period': ['1979-1-15 0:0:0.0', '2018-12-15 12:0:0.0']},
         'method': 'Nino (Nina) events = nino3.4 sstA > 0.75 (< -0.75) during DEC, zonal SSTA (meridional averaged [-5.0 ; 5.0]), the zonal SSTA maximum (minimum) is located for each event, the diversity is the interquartile range (IQR = Q3 - Q1), time series are linearly detrended, smoothing using a triangle shaped window of 5 points',
         'name': 'ENSO Diversity (interquartile range)',
         'ref': 'Using CDAT regridding',
         'time_frequency': 'monthly',
         'units': 'long'},
        'metric': {'datasets': "ACCESS1-3_r3i1p1; ERA-Interim's ts & HadISST's sst & Tropflux's sst; 's ",
         'method': 'The metric is the absolute value of the relative difference between model and observations values (M = 100 * abs[[model-obs] / obs])',
         'name': 'EnsoSstDiversity',
         'units': '%'}},
       'EnsoSstLonRmse': {'diagnostic': {'ACCESS1-3_r3i1p1': {'keyerror': None,
          'name': 'ACCESS1-3_r3i1p1',
          'nyears': 156,
          'time_period': ['1850-1-16 12:0:0.0', '2005-12-16 12:0:0.0']},
         'ERA-Interim': {'name': 'ERA-Interim',
          'nyears': 40,
          'time_period': ['1979-1-16 12:0:0.0', '2019-3-16 12:0:0.0']},
         'HadISST': {'name': 'HadISST',
          'nyears': 151,
          'time_period': ['1870-1-16 11:59:59.5', '2020-10-16 12:0:0.0']},
         'Tropflux': {'name': 'Tropflux',
          'nyears': 40,
          'time_period': ['1979-1-15 0:0:0.0', '2018-12-15 12:0:0.0']},
         'method': 'nino3.4 SSTA during DEC regressed against equatorial_pacific SSTA, time series are linearly detrended, smoothing using a triangle shaped window of 5 points, observations and model regridded to generic_1x1deg',
         'name': 'ENSO Zonal SSTA pattern',
         'ref': 'Using CDAT regridding and rms (uncentered and biased) calculation',
         'time_frequency': 'monthly',
         'units': 'C/C'},
        'metric': {'datasets': "ACCESS1-3_r3i1p1; ERA-Interim's ts & HadISST's sst & Tropflux's sst; 's ",
         'method': 'The metric is the statistical value between the model and the observations',
         'name': 'EnsoSstLonRmse',
         'units': 'C/C'}},
       'EnsoSstSkew': {'diagnostic': {'ACCESS1-3_r3i1p1': {'keyerror': None,
          'name': 'ACCESS1-3_r3i1p1',
          'nyears': 156,
          'time_period': ['1850-1-16 12:0:0.0', '2005-12-16 12:0:0.0']},
         'ERA-Interim': {'keyerror': None,
          'name': 'ERA-Interim',
          'nyears': 40,
          'time_period': ['1979-1-16 12:0:0.0', '2019-3-16 12:0:0.0']},
         'HadISST': {'keyerror': None,
          'name': 'HadISST',
          'nyears': 151,
          'time_period': ['1870-1-16 11:59:59.5', '2020-10-16 12:0:0.0']},
         'Tropflux': {'keyerror': None,
          'name': 'Tropflux',
          'nyears': 40,
          'time_period': ['1979-1-15 0:0:0.0', '2018-12-15 12:0:0.0']},
         'method': 'Standard deviation of nino3.4 sstA, time series are linearly detrended',
         'name': 'ENSO skewness',
         'ref': 'Using CDAT regression calculation',
         'time_frequency': 'monthly',
         'units': 'C'},
        'metric': {'datasets': "ACCESS1-3_r3i1p1; ERA-Interim's ts & HadISST's sst & Tropflux's sst; 's ",
         'method': 'The metric is the absolute value of the relative difference between model and observations values (M = 100 * abs[[model-obs] / obs])',
         'name': 'EnsoSstSkew',
         'units': '%'}},
       'EnsoSstTsRmse': {'diagnostic': {'ACCESS1-3_r3i1p1': {'keyerror': None,
          'name': 'ACCESS1-3_r3i1p1',
          'nyears': 156,
          'time_period': ['1850-1-16 12:0:0.0', '2005-12-16 12:0:0.0']},
         'ERA-Interim': {'name': 'ERA-Interim',
          'nyears': 40,
          'time_period': ['1979-1-16 12:0:0.0', '2019-3-16 12:0:0.0']},
         'HadISST': {'name': 'HadISST',
          'nyears': 151,
          'time_period': ['1870-1-16 11:59:59.5', '2020-10-16 12:0:0.0']},
         'Tropflux': {'name': 'Tropflux',
          'nyears': 40,
          'time_period': ['1979-1-15 0:0:0.0', '2018-12-15 12:0:0.0']},
         'method': 'nino3.4 SSTA during DEC regressed against nino3.4 SSTA during 6 years (centered on ENSO), time series are linearly detrended, smoothing using a triangle shaped window of 5 points',
         'name': 'ENSO life cyle SSTA pattern',
         'ref': 'Using CDAT regridding and rms (uncentered and biased) calculation',
         'time_frequency': 'monthly',
         'units': 'C/C'},
        'metric': {'datasets': "ACCESS1-3_r3i1p1; ERA-Interim's ts & HadISST's sst & Tropflux's sst; 's ",
         'method': 'The metric is the statistical value between the model and the observations',
         'name': 'EnsoSstTsRmse',
         'units': 'C/C'}},
       'SeasonalPrLatRmse': {'diagnostic': {'ACCESS1-3_r3i1p1': {'keyerror': None,
          'name': 'ACCESS1-3_r3i1p1',
          'nyears': 156,
          'time_period': ['1850-1-16 12:0:0.0', '2005-12-16 12:0:0.0']},
         'ERA-Interim': {'name': 'ERA-Interim',
          'nyears': 40,
          'time_period': ['1979-1-16 12:0:0.0', '2019-3-16 12:0:0.0']},
         'GPCPv2.3': {'name': 'GPCPv2.3',
          'nyears': 41,
          'time_period': ['1979-1-1 0:0:0.0', '2019-7-1 0:0:0.0']},
         'method': 'Meridional root mean square error of nino3_LatExt climatological pr STD, time series are linearly detrended, observations and model regridded to generic_1x1deg',
         'name': 'pr meridional seasonality RMSE',
         'ref': 'Using CDAT regridding and rms (uncentered and biased) calculation',
         'time_frequency': 'monthly',
         'units': 'mm/day'},
        'metric': {'datasets': "ACCESS1-3_r3i1p1; ERA-Interim's pr & GPCPv2.3's precip; 's ",
         'method': 'The metric is the statistical value between the model and the observations',
         'name': 'SeasonalPrLatRmse',
         'units': 'mm/day'}},
       'SeasonalPrLonRmse': {'diagnostic': {'ACCESS1-3_r3i1p1': {'keyerror': None,
          'name': 'ACCESS1-3_r3i1p1',
          'nyears': 156,
          'time_period': ['1850-1-16 12:0:0.0', '2005-12-16 12:0:0.0']},
         'ERA-Interim': {'name': 'ERA-Interim',
          'nyears': 40,
          'time_period': ['1979-1-16 12:0:0.0', '2019-3-16 12:0:0.0']},
         'GPCPv2.3': {'name': 'GPCPv2.3',
          'nyears': 41,
          'time_period': ['1979-1-1 0:0:0.0', '2019-7-1 0:0:0.0']},
         'method': 'Zonal root mean square error of equatorial_pacific climatological pr STD, time series are linearly detrended, observations and model regridded to generic_1x1deg',
         'name': 'pr zonal seasonality RMSE',
         'ref': 'Using CDAT regridding and rms (uncentered and biased) calculation',
         'time_frequency': 'monthly',
         'units': 'mm/day'},
        'metric': {'datasets': "ACCESS1-3_r3i1p1; ERA-Interim's pr & GPCPv2.3's precip; 's ",
         'method': 'The metric is the statistical value between the model and the observations',
         'name': 'SeasonalPrLonRmse',
         'units': 'mm/day'}},
       'SeasonalSstLonRmse': {'diagnostic': {'ACCESS1-3_r3i1p1': {'keyerror': None,
          'name': 'ACCESS1-3_r3i1p1',
          'nyears': 156,
          'time_period': ['1850-1-16 12:0:0.0', '2005-12-16 12:0:0.0']},
         'ERA-Interim': {'name': 'ERA-Interim',
          'nyears': 40,
          'time_period': ['1979-1-16 12:0:0.0', '2019-3-16 12:0:0.0']},
         'HadISST': {'name': 'HadISST',
          'nyears': 151,
          'time_period': ['1870-1-16 11:59:59.5', '2020-10-16 12:0:0.0']},
         'Tropflux': {'name': 'Tropflux',
          'nyears': 40,
          'time_period': ['1979-1-15 0:0:0.0', '2018-12-15 12:0:0.0']},
         'method': 'Zonal root mean square error of equatorial_pacific climatological sst STD, time series are linearly detrended, observations and model regridded to generic_1x1deg',
         'name': 'sst zonal seasonality RMSE',
         'ref': 'Using CDAT regridding and rms (uncentered and biased) calculation',
         'time_frequency': 'monthly',
         'units': 'C'},
        'metric': {'datasets': "ACCESS1-3_r3i1p1; ERA-Interim's ts & HadISST's sst & Tropflux's sst; 's ",
         'method': 'The metric is the statistical value between the model and the observations',
         'name': 'SeasonalSstLonRmse',
         'units': 'C'}},
       'SeasonalTauxLonRmse': {'diagnostic': {'ACCESS1-3_r3i1p1': {'keyerror': None,
          'name': 'ACCESS1-3_r3i1p1',
          'nyears': 156,
          'time_period': ['1850-1-16 12:0:0.0', '2005-12-16 12:0:0.0']},
         'ERA-Interim': {'name': 'ERA-Interim',
          'nyears': 40,
          'time_period': ['1979-1-16 12:0:0.0', '2019-3-16 12:0:0.0']},
         'Tropflux': {'name': 'Tropflux',
          'nyears': 40,
          'time_period': ['1979-1-15 0:0:0.0', '2018-12-15 12:0:0.0']},
         'method': 'Zonal root mean square error of equatorial_pacific climatological taux STD, time series are linearly detrended, observations and model regridded to generic_1x1deg',
         'name': 'taux zonal seasonality RMSE',
         'ref': 'Using CDAT regridding and rms (uncentered and biased) calculation',
         'time_frequency': 'monthly',
         'units': '1e-3 N/m2'},
        'metric': {'datasets': "ACCESS1-3_r3i1p1; ERA-Interim's tauu & Tropflux's taux; 's ",
         'method': 'The metric is the statistical value between the model and the observations',
         'name': 'SeasonalTauxLonRmse',
         'units': '1e-3 N/m2'}}},
      'name': 'Metrics Collection for ENSO performance'},
     'value': {'BiasPrLatRmse': {'diagnostic': {'ACCESS1-3_r3i1p1': {'value': None,
         'value_error': None},
        'ERA-Interim': {'value': None, 'value_error': None},
        'GPCPv2.3': {'value': None, 'value_error': None}},
       'metric': {'ERA-Interim': {'value': 0.9248077135258252,
         'value_error': None},
        'GPCPv2.3': {'value': 1.7488022227444946, 'value_error': None}}},
      'BiasPrLonRmse': {'diagnostic': {'ACCESS1-3_r3i1p1': {'value': None,
         'value_error': None},
        'ERA-Interim': {'value': None, 'value_error': None},
        'GPCPv2.3': {'value': None, 'value_error': None}},
       'metric': {'ERA-Interim': {'value': 1.2603677124277861,
         'value_error': None},
        'GPCPv2.3': {'value': 0.8369974217757904, 'value_error': None}}},
      'BiasSstLonRmse': {'diagnostic': {'ACCESS1-3_r3i1p1': {'value': None,
         'value_error': None},
        'ERA-Interim': {'value': None, 'value_error': None},
        'HadISST': {'value': None, 'value_error': None},
        'Tropflux': {'value': None, 'value_error': None}},
       'metric': {'ERA-Interim': {'value': 0.5267402957372758,
         'value_error': None},
        'HadISST': {'value': 0.4735648787989841, 'value_error': None},
        'Tropflux': {'value': 0.5598225574393072, 'value_error': None}}},
      'BiasTauxLonRmse': {'diagnostic': {'ACCESS1-3_r3i1p1': {'value': None,
         'value_error': None},
        'ERA-Interim': {'value': None, 'value_error': None},
        'Tropflux': {'value': None, 'value_error': None}},
       'metric': {'ERA-Interim': {'value': 6.84409384183028,
         'value_error': None},
        'Tropflux': {'value': 7.016411768045127, 'value_error': None}}},
      'EnsoAmpl': {'diagnostic': {'ACCESS1-3_r3i1p1': {'value': 0.6934749618600298,
         'value_error': 0.05552243267634989},
        'ERA-Interim': {'value': 0.8989844997845644,
         'value_error': 0.14214193002531866},
        'HadISST': {'value': 0.7665787872085695,
         'value_error': 0.06238329697691264},
        'Tropflux': {'value': 0.9039789553693535,
         'value_error': 0.14293162279134272}},
       'metric': {'ERA-Interim': {'value': 22.8601870192182,
         'value_error': 18.373003283675796},
        'HadISST': {'value': 9.536374677773308,
         'value_error': 14.604712077264292},
        'Tropflux': {'value': 23.286382084338968,
         'value_error': 18.27149301254121}}},
      'EnsoDuration': {'diagnostic': {'ACCESS1-3_r3i1p1': {'value': 17.0,
         'value_error': None},
        'ERA-Interim': {'value': 13.0, 'value_error': None},
        'HadISST': {'value': 13.0, 'value_error': None},
        'Tropflux': {'value': 13.0, 'value_error': None}},
       'metric': {'ERA-Interim': {'value': 30.76923076923077,
         'value_error': None},
        'HadISST': {'value': 30.76923076923077, 'value_error': None},
        'Tropflux': {'value': 30.76923076923077, 'value_error': None}}},
      'EnsoSeasonality': {'diagnostic': {'ACCESS1-3_r3i1p1': {'value': 1.0181503979152642,
         'value_error': 0.16329707969057414},
        'ERA-Interim': {'value': 2.0466846866656914,
         'value_error': 0.6513411033995022},
        'HadISST': {'value': 1.6639865947361325,
         'value_error': 0.2712772451657809},
        'Tropflux': {'value': 2.0532132553583624,
         'value_error': 0.6534187683977347}},
       'metric': {'ERA-Interim': {'value': 50.25367588136108,
         'value_error': 23.809985938747992},
        'HadISST': {'value': 38.81258411960237,
         'value_error': 19.788898355353812},
        'Tropflux': {'value': 50.41185345661725,
         'value_error': 23.73427771488621}}},
      'EnsoSstDiversity_2': {'diagnostic': {'ACCESS1-3_r3i1p1': {'value': 23.0,
         'value_error': None},
        'ERA-Interim': {'value': 33.25, 'value_error': None},
        'HadISST': {'value': 49.0, 'value_error': None},
        'Tropflux': {'value': 32.0, 'value_error': None}},
       'metric': {'ERA-Interim': {'value': 30.82706766917293,
         'value_error': None},
        'HadISST': {'value': 53.06122448979592, 'value_error': None},
        'Tropflux': {'value': 28.125, 'value_error': None}}},
      'EnsoSstLonRmse': {'diagnostic': {'ACCESS1-3_r3i1p1': {'value': None,
         'value_error': None},
        'ERA-Interim': {'value': None, 'value_error': None},
        'HadISST': {'value': None, 'value_error': None},
        'Tropflux': {'value': None, 'value_error': None}},
       'metric': {'ERA-Interim': {'value': 0.22323076184324586,
         'value_error': None},
        'HadISST': {'value': 0.2194264804757086, 'value_error': None},
        'Tropflux': {'value': 0.2219798413654614, 'value_error': None}}},
      'EnsoSstSkew': {'diagnostic': {'ACCESS1-3_r3i1p1': {'value': -0.3469555707759648,
         'value_error': -0.02777867750037274},
        'ERA-Interim': {'value': 0.39098111106809963,
         'value_error': 0.061819541653923164},
        'HadISST': {'value': 0.38989908235027515,
         'value_error': 0.03172953733021198},
        'Tropflux': {'value': 0.39744741059612115,
         'value_error': 0.06284195338099416}},
       'metric': {'ERA-Interim': {'value': 188.7397270492521,
         'value_error': -21.135847151646523},
        'HadISST': {'value': 188.98599316637245,
         'value_error': -14.366158823229977},
        'Tropflux': {'value': 187.29596961157077,
         'value_error': -20.791975950533306}}},
      'EnsoSstTsRmse': {'diagnostic': {'ACCESS1-3_r3i1p1': {'value': None,
         'value_error': None},
        'ERA-Interim': {'value': None, 'value_error': None},
        'HadISST': {'value': None, 'value_error': None},
        'Tropflux': {'value': None, 'value_error': None}},
       'metric': {'ERA-Interim': {'value': 0.14477833009302135,
         'value_error': None},
        'HadISST': {'value': 0.11261624701816798, 'value_error': None},
        'Tropflux': {'value': 0.14291075928724745, 'value_error': None}}},
      'SeasonalPrLatRmse': {'diagnostic': {'ACCESS1-3_r3i1p1': {'value': None,
         'value_error': None},
        'ERA-Interim': {'value': None, 'value_error': None},
        'GPCPv2.3': {'value': None, 'value_error': None}},
       'metric': {'ERA-Interim': {'value': 1.1958860051449434,
         'value_error': None},
        'GPCPv2.3': {'value': 1.5548480855904452, 'value_error': None}}},
      'SeasonalPrLonRmse': {'diagnostic': {'ACCESS1-3_r3i1p1': {'value': None,
         'value_error': None},
        'ERA-Interim': {'value': None, 'value_error': None},
        'GPCPv2.3': {'value': None, 'value_error': None}},
       'metric': {'ERA-Interim': {'value': 0.5988644270110819,
         'value_error': None},
        'GPCPv2.3': {'value': 0.7457963536765899, 'value_error': None}}},
      'SeasonalSstLonRmse': {'diagnostic': {'ACCESS1-3_r3i1p1': {'value': None,
         'value_error': None},
        'ERA-Interim': {'value': None, 'value_error': None},
        'HadISST': {'value': None, 'value_error': None},
        'Tropflux': {'value': None, 'value_error': None}},
       'metric': {'ERA-Interim': {'value': 0.24068617429186429,
         'value_error': None},
        'HadISST': {'value': 0.25372335679478264, 'value_error': None},
        'Tropflux': {'value': 0.24543567702415445, 'value_error': None}}},
      'SeasonalTauxLonRmse': {'diagnostic': {'ACCESS1-3_r3i1p1': {'value': None,
         'value_error': None},
        'ERA-Interim': {'value': None, 'value_error': None},
        'Tropflux': {'value': None, 'value_error': None}},
       'metric': {'ERA-Interim': {'value': 3.2245120268391583,
         'value_error': None},
        'Tropflux': {'value': 2.85126838352652, 'value_error': None}}}}}},
   'BCC-CSM1-1': {'r1i1p1': {'metadata': {'description_of_the_collection': 'Describe which science question this collection is about',
      'metrics': {'BiasPrLatRmse': {'diagnostic': {'BCC-CSM1-1_r1i1p1': {'keyerror': None,
          'name': 'BCC-CSM1-1_r1i1p1',
          'nyears': 163,
          'time_period': ['1850-1-16 12:0:0.0', '2012-12-16 12:0:0.0']},
         'ERA-Interim': {'name': 'ERA-Interim',
          'nyears': 40,
          'time_period': ['1979-1-16 12:0:0.0', '2019-3-16 12:0:0.0']},
         'GPCPv2.3': {'name': 'GPCPv2.3',
          'nyears': 41,
          'time_period': ['1979-1-1 0:0:0.0', '2019-7-1 0:0:0.0']},
         'method': 'Meridional root mean square error of nino3_LatExt pr, time series are linearly detrended, observations and model regridded to generic_1x1deg',
         'name': 'pr Meridional RMSE',
         'ref': 'Using CDAT regridding and rms (uncentered and biased) calculation',
         'time_frequency': 'monthly',
         'units': 'mm/day'},
        'metric': {'datasets': "BCC-CSM1-1_r1i1p1; ERA-Interim's pr & GPCPv2.3's precip; 's ",
         'method': 'The metric is the statistical value between the model and the observations',
         'name': 'BiasPrLatRmse',
         'units': 'mm/day'}},
       'BiasPrLonRmse': {'diagnostic': {'BCC-CSM1-1_r1i1p1': {'keyerror': None,
          'name': 'BCC-CSM1-1_r1i1p1',
          'nyears': 163,
          'time_period': ['1850-1-16 12:0:0.0', '2012-12-16 12:0:0.0']},
         'ERA-Interim': {'name': 'ERA-Interim',
          'nyears': 40,
          'time_period': ['1979-1-16 12:0:0.0', '2019-3-16 12:0:0.0']},
         'GPCPv2.3': {'name': 'GPCPv2.3',
          'nyears': 41,
          'time_period': ['1979-1-1 0:0:0.0', '2019-7-1 0:0:0.0']},
         'method': 'Zonal root mean square error of equatorial_pacific pr, time series are linearly detrended, observations and model regridded to generic_1x1deg',
         'name': 'pr Zonal RMSE',
         'ref': 'Using CDAT regridding and rms (uncentered and biased) calculation',
         'time_frequency': 'monthly',
         'units': 'mm/day'},
        'metric': {'datasets': "BCC-CSM1-1_r1i1p1; ERA-Interim's pr & GPCPv2.3's precip; 's ",
         'method': 'The metric is the statistical value between the model and the observations',
         'name': 'BiasPrLonRmse',
         'units': 'mm/day'}},
       'BiasSstLonRmse': {'diagnostic': {'BCC-CSM1-1_r1i1p1': {'keyerror': None,
          'name': 'BCC-CSM1-1_r1i1p1',
          'nyears': 163,
          'time_period': ['1850-1-16 12:0:0.0', '2012-12-16 12:0:0.0']},
         'ERA-Interim': {'name': 'ERA-Interim',
          'nyears': 40,
          'time_period': ['1979-1-16 12:0:0.0', '2019-3-16 12:0:0.0']},
         'HadISST': {'name': 'HadISST',
          'nyears': 151,
          'time_period': ['1870-1-16 11:59:59.5', '2020-10-16 12:0:0.0']},
         'Tropflux': {'name': 'Tropflux',
          'nyears': 40,
          'time_period': ['1979-1-15 0:0:0.0', '2018-12-15 12:0:0.0']},
         'method': 'Zonal root mean square error of equatorial_pacific sst, time series are linearly detrended, observations and model regridded to generic_1x1deg',
         'name': 'sst Zonal RMSE',
         'ref': 'Using CDAT regridding and rms (uncentered and biased) calculation',
         'time_frequency': 'monthly',
         'units': 'C'},
        'metric': {'datasets': "BCC-CSM1-1_r1i1p1; ERA-Interim's ts & HadISST's sst & Tropflux's sst; 's ",
         'method': 'The metric is the statistical value between the model and the observations',
         'name': 'BiasSstLonRmse',
         'units': 'C'}},
       'BiasTauxLonRmse': {'diagnostic': {'BCC-CSM1-1_r1i1p1': {'keyerror': None,
          'name': 'BCC-CSM1-1_r1i1p1',
          'nyears': 163,
          'time_period': ['1850-1-16 12:0:0.0', '2012-12-16 12:0:0.0']},
         'ERA-Interim': {'name': 'ERA-Interim',
          'nyears': 40,
          'time_period': ['1979-1-16 12:0:0.0', '2019-3-16 12:0:0.0']},
         'Tropflux': {'name': 'Tropflux',
          'nyears': 40,
          'time_period': ['1979-1-15 0:0:0.0', '2018-12-15 12:0:0.0']},
         'method': 'Zonal root mean square error of equatorial_pacific taux, time series are linearly detrended, observations and model regridded to generic_1x1deg',
         'name': 'taux Zonal RMSE',
         'ref': 'Using CDAT regridding and rms (uncentered and biased) calculation',
         'time_frequency': 'monthly',
         'units': '1e-3 N/m2'},
        'metric': {'datasets': "BCC-CSM1-1_r1i1p1; ERA-Interim's tauu & Tropflux's taux; 's ",
         'method': 'The metric is the statistical value between the model and the observations',
         'name': 'BiasTauxLonRmse',
         'units': '1e-3 N/m2'}},
       'EnsoAmpl': {'diagnostic': {'BCC-CSM1-1_r1i1p1': {'keyerror': None,
          'name': 'BCC-CSM1-1_r1i1p1',
          'nyears': 163,
          'time_period': ['1850-1-16 12:0:0.0', '2012-12-16 12:0:0.0']},
         'ERA-Interim': {'keyerror': None,
          'name': 'ERA-Interim',
          'nyears': 40,
          'time_period': ['1979-1-16 12:0:0.0', '2019-3-16 12:0:0.0']},
         'HadISST': {'keyerror': None,
          'name': 'HadISST',
          'nyears': 151,
          'time_period': ['1870-1-16 11:59:59.5', '2020-10-16 12:0:0.0']},
         'Tropflux': {'keyerror': None,
          'name': 'Tropflux',
          'nyears': 40,
          'time_period': ['1979-1-15 0:0:0.0', '2018-12-15 12:0:0.0']},
         'method': 'Standard deviation of nino3.4 sstA, time series are linearly detrended',
         'name': 'ENSO amplitude',
         'ref': 'Using CDAT regression calculation',
         'time_frequency': 'monthly',
         'units': 'C'},
        'metric': {'datasets': "BCC-CSM1-1_r1i1p1; ERA-Interim's ts & HadISST's sst & Tropflux's sst; 's ",
         'method': 'The metric is the absolute value of the relative difference between model and observations values (M = 100 * abs[[model-obs] / obs])',
         'name': 'EnsoAmpl',
         'units': '%'}},
       'EnsoDuration': {'diagnostic': {'BCC-CSM1-1_r1i1p1': {'keyerror': None,
          'name': 'BCC-CSM1-1_r1i1p1',
          'nyears': 163,
          'time_period': ['1850-1-16 12:0:0.0', '2012-12-16 12:0:0.0']},
         'ERA-Interim': {'keyerror': None,
          'name': 'ERA-Interim',
          'nyears': 40,
          'time_period': ['1979-1-16 12:0:0.0', '2019-3-16 12:0:0.0']},
         'HadISST': {'keyerror': None,
          'name': 'HadISST',
          'nyears': 151,
          'time_period': ['1870-1-16 11:59:59.5', '2020-10-16 12:0:0.0']},
         'Tropflux': {'keyerror': None,
          'name': 'Tropflux',
          'nyears': 40,
          'time_period': ['1979-1-15 0:0:0.0', '2018-12-15 12:0:0.0']},
         'method': 'nino3.4 SSTA during DEC regressed against nino3.4 SSTA during 6 years (centered on ENSO), the duration is the number of consecutive months during which the regression is above 0.25, time series are linearly detrended, smoothing using a triangle shaped window of 5 points',
         'name': 'ENSO Duration based on life cyle SSTA pattern',
         'ref': 'Using CDAT',
         'time_frequency': 'monthly',
         'units': 'months'},
        'metric': {'datasets': "BCC-CSM1-1_r1i1p1; ERA-Interim's ts & HadISST's sst & Tropflux's sst; 's ",
         'method': 'The metric is the absolute value of the relative difference between model and observations values (M = 100 * abs[[model-obs] / obs])',
         'name': 'EnsoDuration',
         'units': '%'}},
       'EnsoSeasonality': {'diagnostic': {'BCC-CSM1-1_r1i1p1': {'keyerror': None,
          'name': 'BCC-CSM1-1_r1i1p1',
          'nyears': 163,
          'time_period': ['1850-1-16 12:0:0.0', '2012-12-16 12:0:0.0']},
         'ERA-Interim': {'keyerror': None,
          'name': 'ERA-Interim',
          'nyears': 40,
          'time_period': ['1979-1-16 12:0:0.0', '2019-3-16 12:0:0.0']},
         'HadISST': {'keyerror': None,
          'name': 'HadISST',
          'nyears': 151,
          'time_period': ['1870-1-16 11:59:59.5', '2020-10-16 12:0:0.0']},
         'Tropflux': {'keyerror': None,
          'name': 'Tropflux',
          'nyears': 40,
          'time_period': ['1979-1-15 0:0:0.0', '2018-12-15 12:0:0.0']},
         'method': 'Ratio between NDJ and MAM standard deviation nino3.4 sstA, time series are linearly detrended',
         'name': 'ENSO seasonality',
         'ref': 'Using CDAT std dev calculation',
         'time_frequency': 'monthly',
         'units': 'C/C'},
        'metric': {'datasets': "BCC-CSM1-1_r1i1p1; ERA-Interim's ts & HadISST's sst & Tropflux's sst; 's ",
         'method': 'The metric is the absolute value of the relative difference between model and observations values (M = 100 * abs[[model-obs] / obs])',
         'name': 'EnsoSeasonality',
         'units': '%'}},
       'EnsoSstDiversity_2': {'diagnostic': {'BCC-CSM1-1_r1i1p1': {'keyerror': None,
          'name': 'BCC-CSM1-1_r1i1p1',
          'nyears': 163,
          'time_period': ['1850-1-16 12:0:0.0', '2012-12-16 12:0:0.0']},
         'ERA-Interim': {'keyerror': None,
          'name': 'ERA-Interim',
          'nyears': 40,
          'time_period': ['1979-1-16 12:0:0.0', '2019-3-16 12:0:0.0']},
         'HadISST': {'keyerror': None,
          'name': 'HadISST',
          'nyears': 151,
          'time_period': ['1870-1-16 11:59:59.5', '2020-10-16 12:0:0.0']},
         'Tropflux': {'keyerror': None,
          'name': 'Tropflux',
          'nyears': 40,
          'time_period': ['1979-1-15 0:0:0.0', '2018-12-15 12:0:0.0']},
         'method': 'Nino (Nina) events = nino3.4 sstA > 0.75 (< -0.75) during DEC, zonal SSTA (meridional averaged [-5.0 ; 5.0]), the zonal SSTA maximum (minimum) is located for each event, the diversity is the interquartile range (IQR = Q3 - Q1), time series are linearly detrended, smoothing using a triangle shaped window of 5 points',
         'name': 'ENSO Diversity (interquartile range)',
         'ref': 'Using CDAT regridding',
         'time_frequency': 'monthly',
         'units': 'long'},
        'metric': {'datasets': "BCC-CSM1-1_r1i1p1; ERA-Interim's ts & HadISST's sst & Tropflux's sst; 's ",
         'method': 'The metric is the absolute value of the relative difference between model and observations values (M = 100 * abs[[model-obs] / obs])',
         'name': 'EnsoSstDiversity',
         'units': '%'}},
       'EnsoSstLonRmse': {'diagnostic': {'BCC-CSM1-1_r1i1p1': {'keyerror': None,
          'name': 'BCC-CSM1-1_r1i1p1',
          'nyears': 163,
          'time_period': ['1850-1-16 12:0:0.0', '2012-12-16 12:0:0.0']},
         'ERA-Interim': {'name': 'ERA-Interim',
          'nyears': 40,
          'time_period': ['1979-1-16 12:0:0.0', '2019-3-16 12:0:0.0']},
         'HadISST': {'name': 'HadISST',
          'nyears': 151,
          'time_period': ['1870-1-16 11:59:59.5', '2020-10-16 12:0:0.0']},
         'Tropflux': {'name': 'Tropflux',
          'nyears': 40,
          'time_period': ['1979-1-15 0:0:0.0', '2018-12-15 12:0:0.0']},
         'method': 'nino3.4 SSTA during DEC regressed against equatorial_pacific SSTA, time series are linearly detrended, smoothing using a triangle shaped window of 5 points, observations and model regridded to generic_1x1deg',
         'name': 'ENSO Zonal SSTA pattern',
         'ref': 'Using CDAT regridding and rms (uncentered and biased) calculation',
         'time_frequency': 'monthly',
         'units': 'C/C'},
        'metric': {'datasets': "BCC-CSM1-1_r1i1p1; ERA-Interim's ts & HadISST's sst & Tropflux's sst; 's ",
         'method': 'The metric is the statistical value between the model and the observations',
         'name': 'EnsoSstLonRmse',
         'units': 'C/C'}},
       'EnsoSstSkew': {'diagnostic': {'BCC-CSM1-1_r1i1p1': {'keyerror': None,
          'name': 'BCC-CSM1-1_r1i1p1',
          'nyears': 163,
          'time_period': ['1850-1-16 12:0:0.0', '2012-12-16 12:0:0.0']},
         'ERA-Interim': {'keyerror': None,
          'name': 'ERA-Interim',
          'nyears': 40,
          'time_period': ['1979-1-16 12:0:0.0', '2019-3-16 12:0:0.0']},
         'HadISST': {'keyerror': None,
          'name': 'HadISST',
          'nyears': 151,
          'time_period': ['1870-1-16 11:59:59.5', '2020-10-16 12:0:0.0']},
         'Tropflux': {'keyerror': None,
          'name': 'Tropflux',
          'nyears': 40,
          'time_period': ['1979-1-15 0:0:0.0', '2018-12-15 12:0:0.0']},
         'method': 'Standard deviation of nino3.4 sstA, time series are linearly detrended',
         'name': 'ENSO skewness',
         'ref': 'Using CDAT regression calculation',
         'time_frequency': 'monthly',
         'units': 'C'},
        'metric': {'datasets': "BCC-CSM1-1_r1i1p1; ERA-Interim's ts & HadISST's sst & Tropflux's sst; 's ",
         'method': 'The metric is the absolute value of the relative difference between model and observations values (M = 100 * abs[[model-obs] / obs])',
         'name': 'EnsoSstSkew',
         'units': '%'}},
       'EnsoSstTsRmse': {'diagnostic': {'BCC-CSM1-1_r1i1p1': {'keyerror': None,
          'name': 'BCC-CSM1-1_r1i1p1',
          'nyears': 163,
          'time_period': ['1850-1-16 12:0:0.0', '2012-12-16 12:0:0.0']},
         'ERA-Interim': {'name': 'ERA-Interim',
          'nyears': 40,
          'time_period': ['1979-1-16 12:0:0.0', '2019-3-16 12:0:0.0']},
         'HadISST': {'name': 'HadISST',
          'nyears': 151,
          'time_period': ['1870-1-16 11:59:59.5', '2020-10-16 12:0:0.0']},
         'Tropflux': {'name': 'Tropflux',
          'nyears': 40,
          'time_period': ['1979-1-15 0:0:0.0', '2018-12-15 12:0:0.0']},
         'method': 'nino3.4 SSTA during DEC regressed against nino3.4 SSTA during 6 years (centered on ENSO), time series are linearly detrended, smoothing using a triangle shaped window of 5 points',
         'name': 'ENSO life cyle SSTA pattern',
         'ref': 'Using CDAT regridding and rms (uncentered and biased) calculation',
         'time_frequency': 'monthly',
         'units': 'C/C'},
        'metric': {'datasets': "BCC-CSM1-1_r1i1p1; ERA-Interim's ts & HadISST's sst & Tropflux's sst; 's ",
         'method': 'The metric is the statistical value between the model and the observations',
         'name': 'EnsoSstTsRmse',
         'units': 'C/C'}},
       'SeasonalPrLatRmse': {'diagnostic': {'BCC-CSM1-1_r1i1p1': {'keyerror': None,
          'name': 'BCC-CSM1-1_r1i1p1',
          'nyears': 163,
          'time_period': ['1850-1-16 12:0:0.0', '2012-12-16 12:0:0.0']},
         'ERA-Interim': {'name': 'ERA-Interim',
          'nyears': 40,
          'time_period': ['1979-1-16 12:0:0.0', '2019-3-16 12:0:0.0']},
         'GPCPv2.3': {'name': 'GPCPv2.3',
          'nyears': 41,
          'time_period': ['1979-1-1 0:0:0.0', '2019-7-1 0:0:0.0']},
         'method': 'Meridional root mean square error of nino3_LatExt climatological pr STD, time series are linearly detrended, observations and model regridded to generic_1x1deg',
         'name': 'pr meridional seasonality RMSE',
         'ref': 'Using CDAT regridding and rms (uncentered and biased) calculation',
         'time_frequency': 'monthly',
         'units': 'mm/day'},
        'metric': {'datasets': "BCC-CSM1-1_r1i1p1; ERA-Interim's pr & GPCPv2.3's precip; 's ",
         'method': 'The metric is the statistical value between the model and the observations',
         'name': 'SeasonalPrLatRmse',
         'units': 'mm/day'}},
       'SeasonalPrLonRmse': {'diagnostic': {'BCC-CSM1-1_r1i1p1': {'keyerror': None,
          'name': 'BCC-CSM1-1_r1i1p1',
          'nyears': 163,
          'time_period': ['1850-1-16 12:0:0.0', '2012-12-16 12:0:0.0']},
         'ERA-Interim': {'name': 'ERA-Interim',
          'nyears': 40,
          'time_period': ['1979-1-16 12:0:0.0', '2019-3-16 12:0:0.0']},
         'GPCPv2.3': {'name': 'GPCPv2.3',
          'nyears': 41,
          'time_period': ['1979-1-1 0:0:0.0', '2019-7-1 0:0:0.0']},
         'method': 'Zonal root mean square error of equatorial_pacific climatological pr STD, time series are linearly detrended, observations and model regridded to generic_1x1deg',
         'name': 'pr zonal seasonality RMSE',
         'ref': 'Using CDAT regridding and rms (uncentered and biased) calculation',
         'time_frequency': 'monthly',
         'units': 'mm/day'},
        'metric': {'datasets': "BCC-CSM1-1_r1i1p1; ERA-Interim's pr & GPCPv2.3's precip; 's ",
         'method': 'The metric is the statistical value between the model and the observations',
         'name': 'SeasonalPrLonRmse',
         'units': 'mm/day'}},
       'SeasonalSstLonRmse': {'diagnostic': {'BCC-CSM1-1_r1i1p1': {'keyerror': None,
          'name': 'BCC-CSM1-1_r1i1p1',
          'nyears': 163,
          'time_period': ['1850-1-16 12:0:0.0', '2012-12-16 12:0:0.0']},
         'ERA-Interim': {'name': 'ERA-Interim',
          'nyears': 40,
          'time_period': ['1979-1-16 12:0:0.0', '2019-3-16 12:0:0.0']},
         'HadISST': {'name': 'HadISST',
          'nyears': 151,
          'time_period': ['1870-1-16 11:59:59.5', '2020-10-16 12:0:0.0']},
         'Tropflux': {'name': 'Tropflux',
          'nyears': 40,
          'time_period': ['1979-1-15 0:0:0.0', '2018-12-15 12:0:0.0']},
         'method': 'Zonal root mean square error of equatorial_pacific climatological sst STD, time series are linearly detrended, observations and model regridded to generic_1x1deg',
         'name': 'sst zonal seasonality RMSE',
         'ref': 'Using CDAT regridding and rms (uncentered and biased) calculation',
         'time_frequency': 'monthly',
         'units': 'C'},
        'metric': {'datasets': "BCC-CSM1-1_r1i1p1; ERA-Interim's ts & HadISST's sst & Tropflux's sst; 's ",
         'method': 'The metric is the statistical value between the model and the observations',
         'name': 'SeasonalSstLonRmse',
         'units': 'C'}},
       'SeasonalTauxLonRmse': {'diagnostic': {'BCC-CSM1-1_r1i1p1': {'keyerror': None,
          'name': 'BCC-CSM1-1_r1i1p1',
          'nyears': 163,
          'time_period': ['1850-1-16 12:0:0.0', '2012-12-16 12:0:0.0']},
         'ERA-Interim': {'name': 'ERA-Interim',
          'nyears': 40,
          'time_period': ['1979-1-16 12:0:0.0', '2019-3-16 12:0:0.0']},
         'Tropflux': {'name': 'Tropflux',
          'nyears': 40,
          'time_period': ['1979-1-15 0:0:0.0', '2018-12-15 12:0:0.0']},
         'method': 'Zonal root mean square error of equatorial_pacific climatological taux STD, time series are linearly detrended, observations and model regridded to generic_1x1deg',
         'name': 'taux zonal seasonality RMSE',
         'ref': 'Using CDAT regridding and rms (uncentered and biased) calculation',
         'time_frequency': 'monthly',
         'units': '1e-3 N/m2'},
        'metric': {'datasets': "BCC-CSM1-1_r1i1p1; ERA-Interim's tauu & Tropflux's taux; 's ",
         'method': 'The metric is the statistical value between the model and the observations',
         'name': 'SeasonalTauxLonRmse',
         'units': '1e-3 N/m2'}}},
      'name': 'Metrics Collection for ENSO performance'},
     'value': {'BiasPrLatRmse': {'diagnostic': {'BCC-CSM1-1_r1i1p1': {'value': None,
         'value_error': None},
        'ERA-Interim': {'value': None, 'value_error': None},
        'GPCPv2.3': {'value': None, 'value_error': None}},
       'metric': {'ERA-Interim': {'value': 2.276702651909622,
         'value_error': None},
        'GPCPv2.3': {'value': 1.8141163731575745, 'value_error': None}}},
      'BiasPrLonRmse': {'diagnostic': {'BCC-CSM1-1_r1i1p1': {'value': None,
         'value_error': None},
        'ERA-Interim': {'value': None, 'value_error': None},
        'GPCPv2.3': {'value': None, 'value_error': None}},
       'metric': {'ERA-Interim': {'value': 1.3415100905569088,
         'value_error': None},
        'GPCPv2.3': {'value': 0.5797789808307442, 'value_error': None}}},
      'BiasSstLonRmse': {'diagnostic': {'BCC-CSM1-1_r1i1p1': {'value': None,
         'value_error': None},
        'ERA-Interim': {'value': None, 'value_error': None},
        'HadISST': {'value': None, 'value_error': None},
        'Tropflux': {'value': None, 'value_error': None}},
       'metric': {'ERA-Interim': {'value': 0.9702647848312935,
         'value_error': None},
        'HadISST': {'value': 0.7929711815579906, 'value_error': None},
        'Tropflux': {'value': 1.0172856132875816, 'value_error': None}}},
      'BiasTauxLonRmse': {'diagnostic': {'BCC-CSM1-1_r1i1p1': {'value': None,
         'value_error': None},
        'ERA-Interim': {'value': None, 'value_error': None},
        'Tropflux': {'value': None, 'value_error': None}},
       'metric': {'ERA-Interim': {'value': 7.874120675472972,
         'value_error': None},
        'Tropflux': {'value': 8.134235696528192, 'value_error': None}}},
      'EnsoAmpl': {'diagnostic': {'BCC-CSM1-1_r1i1p1': {'value': 0.7323037767880102,
         'value_error': 0.05735845857348575},
        'ERA-Interim': {'value': 0.8989844997845644,
         'value_error': 0.14214193002531866},
        'HadISST': {'value': 0.7665787872085695,
         'value_error': 0.06238329697691264},
        'Tropflux': {'value': 0.9039789553693535,
         'value_error': 0.14293162279134272}},
       'metric': {'ERA-Interim': {'value': 18.541000766586983,
         'value_error': 19.260159914287932},
        'HadISST': {'value': 4.471166042223638,
         'value_error': 15.25642200272976},
        'Tropflux': {'value': 18.991059201284077,
         'value_error': 19.153748130389108}}},
      'EnsoDuration': {'diagnostic': {'BCC-CSM1-1_r1i1p1': {'value': 11.0,
         'value_error': None},
        'ERA-Interim': {'value': 13.0, 'value_error': None},
        'HadISST': {'value': 13.0, 'value_error': None},
        'Tropflux': {'value': 13.0, 'value_error': None}},
       'metric': {'ERA-Interim': {'value': 15.384615384615385,
         'value_error': None},
        'HadISST': {'value': 15.384615384615385, 'value_error': None},
        'Tropflux': {'value': 15.384615384615385, 'value_error': None}}},
      'EnsoSeasonality': {'diagnostic': {'BCC-CSM1-1_r1i1p1': {'value': 1.753434087420725,
         'value_error': 0.2751023498536092},
        'ERA-Interim': {'value': 2.0466846866656914,
         'value_error': 0.6513411033995022},
        'HadISST': {'value': 1.6639865947361325,
         'value_error': 0.2712772451657809},
        'Tropflux': {'value': 2.0532132553583624,
         'value_error': 0.6534187683977347}},
       'metric': {'ERA-Interim': {'value': 14.328079022407145,
         'value_error': 40.705771176207314},
        'HadISST': {'value': 5.375493586760336,
         'value_error': 33.71193540321589},
        'Tropflux': {'value': 14.600488631918301,
         'value_error': 40.57633969965783}}},
      'EnsoSstDiversity_2': {'diagnostic': {'BCC-CSM1-1_r1i1p1': {'value': 15.0,
         'value_error': None},
        'ERA-Interim': {'value': 33.25, 'value_error': None},
        'HadISST': {'value': 49.0, 'value_error': None},
        'Tropflux': {'value': 32.0, 'value_error': None}},
       'metric': {'ERA-Interim': {'value': 54.88721804511278,
         'value_error': None},
        'HadISST': {'value': 69.38775510204081, 'value_error': None},
        'Tropflux': {'value': 53.125, 'value_error': None}}},
      'EnsoSstLonRmse': {'diagnostic': {'BCC-CSM1-1_r1i1p1': {'value': None,
         'value_error': None},
        'ERA-Interim': {'value': None, 'value_error': None},
        'HadISST': {'value': None, 'value_error': None},
        'Tropflux': {'value': None, 'value_error': None}},
       'metric': {'ERA-Interim': {'value': 0.10574802405746656,
         'value_error': None},
        'HadISST': {'value': 0.13210196179085845, 'value_error': None},
        'Tropflux': {'value': 0.10769022982754567, 'value_error': None}}},
      'EnsoSstSkew': {'diagnostic': {'BCC-CSM1-1_r1i1p1': {'value': -0.12450828493139014,
         'value_error': -0.009752241528258945},
        'ERA-Interim': {'value': 0.39098111106809963,
         'value_error': 0.061819541653923164},
        'HadISST': {'value': 0.38989908235027515,
         'value_error': 0.03172953733021198},
        'Tropflux': {'value': 0.39744741059612115,
         'value_error': 0.06284195338099416}},
       'metric': {'ERA-Interim': {'value': 131.84508954697398,
         'value_error': -7.529450679869836},
        'HadISST': {'value': 131.9334644700536,
         'value_error': -5.099930458479712},
        'Tropflux': {'value': 131.326983548501,
         'value_error': -7.406949734890779}}},
      'EnsoSstTsRmse': {'diagnostic': {'BCC-CSM1-1_r1i1p1': {'value': None,
         'value_error': None},
        'ERA-Interim': {'value': None, 'value_error': None},
        'HadISST': {'value': None, 'value_error': None},
        'Tropflux': {'value': None, 'value_error': None}},
       'metric': {'ERA-Interim': {'value': 0.29538085335098035,
         'value_error': None},
        'HadISST': {'value': 0.2899595522336866, 'value_error': None},
        'Tropflux': {'value': 0.2958324916017902, 'value_error': None}}},
      'SeasonalPrLatRmse': {'diagnostic': {'BCC-CSM1-1_r1i1p1': {'value': None,
         'value_error': None},
        'ERA-Interim': {'value': None, 'value_error': None},
        'GPCPv2.3': {'value': None, 'value_error': None}},
       'metric': {'ERA-Interim': {'value': 1.344591839483092,
         'value_error': None},
        'GPCPv2.3': {'value': 1.2121116472259865, 'value_error': None}}},
      'SeasonalPrLonRmse': {'diagnostic': {'BCC-CSM1-1_r1i1p1': {'value': None,
         'value_error': None},
        'ERA-Interim': {'value': None, 'value_error': None},
        'GPCPv2.3': {'value': None, 'value_error': None}},
       'metric': {'ERA-Interim': {'value': 0.9478284171471159,
         'value_error': None},
        'GPCPv2.3': {'value': 0.7192197880614583, 'value_error': None}}},
      'SeasonalSstLonRmse': {'diagnostic': {'BCC-CSM1-1_r1i1p1': {'value': None,
         'value_error': None},
        'ERA-Interim': {'value': None, 'value_error': None},
        'HadISST': {'value': None, 'value_error': None},
        'Tropflux': {'value': None, 'value_error': None}},
       'metric': {'ERA-Interim': {'value': 0.2297360319302135,
         'value_error': None},
        'HadISST': {'value': 0.23256497957111982, 'value_error': None},
        'Tropflux': {'value': 0.23785523976797376, 'value_error': None}}},
      'SeasonalTauxLonRmse': {'diagnostic': {'BCC-CSM1-1_r1i1p1': {'value': None,
         'value_error': None},
        'ERA-Interim': {'value': None, 'value_error': None},
        'Tropflux': {'value': None, 'value_error': None}},
       'metric': {'ERA-Interim': {'value': 3.5825241079131263,
         'value_error': None},
        'Tropflux': {'value': 3.3265977091693286, 'value_error': None}}}}},
    'r2i1p1': {'metadata': {'description_of_the_collection': 'Describe which science question this collection is about',
      'metrics': {'BiasPrLatRmse': {'diagnostic': {'BCC-CSM1-1_r2i1p1': {'keyerror': None,
          'name': 'BCC-CSM1-1_r2i1p1',
          'nyears': 163,
          'time_period': ['1850-1-16 12:0:0.0', '2012-12-16 12:0:0.0']},
         'ERA-Interim': {'name': 'ERA-Interim',
          'nyears': 40,
          'time_period': ['1979-1-16 12:0:0.0', '2019-3-16 12:0:0.0']},
         'GPCPv2.3': {'name': 'GPCPv2.3',
          'nyears': 41,
          'time_period': ['1979-1-1 0:0:0.0', '2019-7-1 0:0:0.0']},
         'method': 'Meridional root mean square error of nino3_LatExt pr, time series are linearly detrended, observations and model regridded to generic_1x1deg',
         'name': 'pr Meridional RMSE',
         'ref': 'Using CDAT regridding and rms (uncentered and biased) calculation',
         'time_frequency': 'monthly',
         'units': 'mm/day'},
        'metric': {'datasets': "BCC-CSM1-1_r2i1p1; ERA-Interim's pr & GPCPv2.3's precip; 's ",
         'method': 'The metric is the statistical value between the model and the observations',
         'name': 'BiasPrLatRmse',
         'units': 'mm/day'}},
       'BiasPrLonRmse': {'diagnostic': {'BCC-CSM1-1_r2i1p1': {'keyerror': None,
          'name': 'BCC-CSM1-1_r2i1p1',
          'nyears': 163,
          'time_period': ['1850-1-16 12:0:0.0', '2012-12-16 12:0:0.0']},
         'ERA-Interim': {'name': 'ERA-Interim',
          'nyears': 40,
          'time_period': ['1979-1-16 12:0:0.0', '2019-3-16 12:0:0.0']},
         'GPCPv2.3': {'name': 'GPCPv2.3',
          'nyears': 41,
          'time_period': ['1979-1-1 0:0:0.0', '2019-7-1 0:0:0.0']},
         'method': 'Zonal root mean square error of equatorial_pacific pr, time series are linearly detrended, observations and model regridded to generic_1x1deg',
         'name': 'pr Zonal RMSE',
         'ref': 'Using CDAT regridding and rms (uncentered and biased) calculation',
         'time_frequency': 'monthly',
         'units': 'mm/day'},
        'metric': {'datasets': "BCC-CSM1-1_r2i1p1; ERA-Interim's pr & GPCPv2.3's precip; 's ",
         'method': 'The metric is the statistical value between the model and the observations',
         'name': 'BiasPrLonRmse',
         'units': 'mm/day'}},
       'BiasSstLonRmse': {'diagnostic': {'BCC-CSM1-1_r2i1p1': {'keyerror': None,
          'name': 'BCC-CSM1-1_r2i1p1',
          'nyears': 163,
          'time_period': ['1850-1-16 12:0:0.0', '2012-12-16 12:0:0.0']},
         'ERA-Interim': {'name': 'ERA-Interim',
          'nyears': 40,
          'time_period': ['1979-1-16 12:0:0.0', '2019-3-16 12:0:0.0']},
         'HadISST': {'name': 'HadISST',
          'nyears': 151,
          'time_period': ['1870-1-16 11:59:59.5', '2020-10-16 12:0:0.0']},
         'Tropflux': {'name': 'Tropflux',
          'nyears': 40,
          'time_period': ['1979-1-15 0:0:0.0', '2018-12-15 12:0:0.0']},
         'method': 'Zonal root mean square error of equatorial_pacific sst, time series are linearly detrended, observations and model regridded to generic_1x1deg',
         'name': 'sst Zonal RMSE',
         'ref': 'Using CDAT regridding and rms (uncentered and biased) calculation',
         'time_frequency': 'monthly',
         'units': 'C'},
        'metric': {'datasets': "BCC-CSM1-1_r2i1p1; ERA-Interim's ts & HadISST's sst & Tropflux's sst; 's ",
         'method': 'The metric is the statistical value between the model and the observations',
         'name': 'BiasSstLonRmse',
         'units': 'C'}},
       'BiasTauxLonRmse': {'diagnostic': {'BCC-CSM1-1_r2i1p1': {'keyerror': None,
          'name': 'BCC-CSM1-1_r2i1p1',
          'nyears': 163,
          'time_period': ['1850-1-16 12:0:0.0', '2012-12-16 12:0:0.0']},
         'ERA-Interim': {'name': 'ERA-Interim',
          'nyears': 40,
          'time_period': ['1979-1-16 12:0:0.0', '2019-3-16 12:0:0.0']},
         'Tropflux': {'name': 'Tropflux',
          'nyears': 40,
          'time_period': ['1979-1-15 0:0:0.0', '2018-12-15 12:0:0.0']},
         'method': 'Zonal root mean square error of equatorial_pacific taux, time series are linearly detrended, observations and model regridded to generic_1x1deg',
         'name': 'taux Zonal RMSE',
         'ref': 'Using CDAT regridding and rms (uncentered and biased) calculation',
         'time_frequency': 'monthly',
         'units': '1e-3 N/m2'},
        'metric': {'datasets': "BCC-CSM1-1_r2i1p1; ERA-Interim's tauu & Tropflux's taux; 's ",
         'method': 'The metric is the statistical value between the model and the observations',
         'name': 'BiasTauxLonRmse',
         'units': '1e-3 N/m2'}},
       'EnsoAmpl': {'diagnostic': {'BCC-CSM1-1_r2i1p1': {'keyerror': None,
          'name': 'BCC-CSM1-1_r2i1p1',
          'nyears': 163,
          'time_period': ['1850-1-16 12:0:0.0', '2012-12-16 12:0:0.0']},
         'ERA-Interim': {'keyerror': None,
          'name': 'ERA-Interim',
          'nyears': 40,
          'time_period': ['1979-1-16 12:0:0.0', '2019-3-16 12:0:0.0']},
         'HadISST': {'keyerror': None,
          'name': 'HadISST',
          'nyears': 151,
          'time_period': ['1870-1-16 11:59:59.5', '2020-10-16 12:0:0.0']},
         'Tropflux': {'keyerror': None,
          'name': 'Tropflux',
          'nyears': 40,
          'time_period': ['1979-1-15 0:0:0.0', '2018-12-15 12:0:0.0']},
         'method': 'Standard deviation of nino3.4 sstA, time series are linearly detrended',
         'name': 'ENSO amplitude',
         'ref': 'Using CDAT regression calculation',
         'time_frequency': 'monthly',
         'units': 'C'},
        'metric': {'datasets': "BCC-CSM1-1_r2i1p1; ERA-Interim's ts & HadISST's sst & Tropflux's sst; 's ",
         'method': 'The metric is the absolute value of the relative difference between model and observations values (M = 100 * abs[[model-obs] / obs])',
         'name': 'EnsoAmpl',
         'units': '%'}},
       'EnsoDuration': {'diagnostic': {'BCC-CSM1-1_r2i1p1': {'keyerror': None,
          'name': 'BCC-CSM1-1_r2i1p1',
          'nyears': 163,
          'time_period': ['1850-1-16 12:0:0.0', '2012-12-16 12:0:0.0']},
         'ERA-Interim': {'keyerror': None,
          'name': 'ERA-Interim',
          'nyears': 40,
          'time_period': ['1979-1-16 12:0:0.0', '2019-3-16 12:0:0.0']},
         'HadISST': {'keyerror': None,
          'name': 'HadISST',
          'nyears': 151,
          'time_period': ['1870-1-16 11:59:59.5', '2020-10-16 12:0:0.0']},
         'Tropflux': {'keyerror': None,
          'name': 'Tropflux',
          'nyears': 40,
          'time_period': ['1979-1-15 0:0:0.0', '2018-12-15 12:0:0.0']},
         'method': 'nino3.4 SSTA during DEC regressed against nino3.4 SSTA during 6 years (centered on ENSO), the duration is the number of consecutive months during which the regression is above 0.25, time series are linearly detrended, smoothing using a triangle shaped window of 5 points',
         'name': 'ENSO Duration based on life cyle SSTA pattern',
         'ref': 'Using CDAT',
         'time_frequency': 'monthly',
         'units': 'months'},
        'metric': {'datasets': "BCC-CSM1-1_r2i1p1; ERA-Interim's ts & HadISST's sst & Tropflux's sst; 's ",
         'method': 'The metric is the absolute value of the relative difference between model and observations values (M = 100 * abs[[model-obs] / obs])',
         'name': 'EnsoDuration',
         'units': '%'}},
       'EnsoSeasonality': {'diagnostic': {'BCC-CSM1-1_r2i1p1': {'keyerror': None,
          'name': 'BCC-CSM1-1_r2i1p1',
          'nyears': 163,
          'time_period': ['1850-1-16 12:0:0.0', '2012-12-16 12:0:0.0']},
         'ERA-Interim': {'keyerror': None,
          'name': 'ERA-Interim',
          'nyears': 40,
          'time_period': ['1979-1-16 12:0:0.0', '2019-3-16 12:0:0.0']},
         'HadISST': {'keyerror': None,
          'name': 'HadISST',
          'nyears': 151,
          'time_period': ['1870-1-16 11:59:59.5', '2020-10-16 12:0:0.0']},
         'Tropflux': {'keyerror': None,
          'name': 'Tropflux',
          'nyears': 40,
          'time_period': ['1979-1-15 0:0:0.0', '2018-12-15 12:0:0.0']},
         'method': 'Ratio between NDJ and MAM standard deviation nino3.4 sstA, time series are linearly detrended',
         'name': 'ENSO seasonality',
         'ref': 'Using CDAT std dev calculation',
         'time_frequency': 'monthly',
         'units': 'C/C'},
        'metric': {'datasets': "BCC-CSM1-1_r2i1p1; ERA-Interim's ts & HadISST's sst & Tropflux's sst; 's ",
         'method': 'The metric is the absolute value of the relative difference between model and observations values (M = 100 * abs[[model-obs] / obs])',
         'name': 'EnsoSeasonality',
         'units': '%'}},
       'EnsoSstDiversity_2': {'diagnostic': {'BCC-CSM1-1_r2i1p1': {'keyerror': None,
          'name': 'BCC-CSM1-1_r2i1p1',
          'nyears': 163,
          'time_period': ['1850-1-16 12:0:0.0', '2012-12-16 12:0:0.0']},
         'ERA-Interim': {'keyerror': None,
          'name': 'ERA-Interim',
          'nyears': 40,
          'time_period': ['1979-1-16 12:0:0.0', '2019-3-16 12:0:0.0']},
         'HadISST': {'keyerror': None,
          'name': 'HadISST',
          'nyears': 151,
          'time_period': ['1870-1-16 11:59:59.5', '2020-10-16 12:0:0.0']},
         'Tropflux': {'keyerror': None,
          'name': 'Tropflux',
          'nyears': 40,
          'time_period': ['1979-1-15 0:0:0.0', '2018-12-15 12:0:0.0']},
         'method': 'Nino (Nina) events = nino3.4 sstA > 0.75 (< -0.75) during DEC, zonal SSTA (meridional averaged [-5.0 ; 5.0]), the zonal SSTA maximum (minimum) is located for each event, the diversity is the interquartile range (IQR = Q3 - Q1), time series are linearly detrended, smoothing using a triangle shaped window of 5 points',
         'name': 'ENSO Diversity (interquartile range)',
         'ref': 'Using CDAT regridding',
         'time_frequency': 'monthly',
         'units': 'long'},
        'metric': {'datasets': "BCC-CSM1-1_r2i1p1; ERA-Interim's ts & HadISST's sst & Tropflux's sst; 's ",
         'method': 'The metric is the absolute value of the relative difference between model and observations values (M = 100 * abs[[model-obs] / obs])',
         'name': 'EnsoSstDiversity',
         'units': '%'}},
       'EnsoSstLonRmse': {'diagnostic': {'BCC-CSM1-1_r2i1p1': {'keyerror': None,
          'name': 'BCC-CSM1-1_r2i1p1',
          'nyears': 163,
          'time_period': ['1850-1-16 12:0:0.0', '2012-12-16 12:0:0.0']},
         'ERA-Interim': {'name': 'ERA-Interim',
          'nyears': 40,
          'time_period': ['1979-1-16 12:0:0.0', '2019-3-16 12:0:0.0']},
         'HadISST': {'name': 'HadISST',
          'nyears': 151,
          'time_period': ['1870-1-16 11:59:59.5', '2020-10-16 12:0:0.0']},
         'Tropflux': {'name': 'Tropflux',
          'nyears': 40,
          'time_period': ['1979-1-15 0:0:0.0', '2018-12-15 12:0:0.0']},
         'method': 'nino3.4 SSTA during DEC regressed against equatorial_pacific SSTA, time series are linearly detrended, smoothing using a triangle shaped window of 5 points, observations and model regridded to generic_1x1deg',
         'name': 'ENSO Zonal SSTA pattern',
         'ref': 'Using CDAT regridding and rms (uncentered and biased) calculation',
         'time_frequency': 'monthly',
         'units': 'C/C'},
        'metric': {'datasets': "BCC-CSM1-1_r2i1p1; ERA-Interim's ts & HadISST's sst & Tropflux's sst; 's ",
         'method': 'The metric is the statistical value between the model and the observations',
         'name': 'EnsoSstLonRmse',
         'units': 'C/C'}},
       'EnsoSstSkew': {'diagnostic': {'BCC-CSM1-1_r2i1p1': {'keyerror': None,
          'name': 'BCC-CSM1-1_r2i1p1',
          'nyears': 163,
          'time_period': ['1850-1-16 12:0:0.0', '2012-12-16 12:0:0.0']},
         'ERA-Interim': {'keyerror': None,
          'name': 'ERA-Interim',
          'nyears': 40,
          'time_period': ['1979-1-16 12:0:0.0', '2019-3-16 12:0:0.0']},
         'HadISST': {'keyerror': None,
          'name': 'HadISST',
          'nyears': 151,
          'time_period': ['1870-1-16 11:59:59.5', '2020-10-16 12:0:0.0']},
         'Tropflux': {'keyerror': None,
          'name': 'Tropflux',
          'nyears': 40,
          'time_period': ['1979-1-15 0:0:0.0', '2018-12-15 12:0:0.0']},
         'method': 'Standard deviation of nino3.4 sstA, time series are linearly detrended',
         'name': 'ENSO skewness',
         'ref': 'Using CDAT regression calculation',
         'time_frequency': 'monthly',
         'units': 'C'},
        'metric': {'datasets': "BCC-CSM1-1_r2i1p1; ERA-Interim's ts & HadISST's sst & Tropflux's sst; 's ",
         'method': 'The metric is the absolute value of the relative difference between model and observations values (M = 100 * abs[[model-obs] / obs])',
         'name': 'EnsoSstSkew',
         'units': '%'}},
       'EnsoSstTsRmse': {'diagnostic': {'BCC-CSM1-1_r2i1p1': {'keyerror': None,
          'name': 'BCC-CSM1-1_r2i1p1',
          'nyears': 163,
          'time_period': ['1850-1-16 12:0:0.0', '2012-12-16 12:0:0.0']},
         'ERA-Interim': {'name': 'ERA-Interim',
          'nyears': 40,
          'time_period': ['1979-1-16 12:0:0.0', '2019-3-16 12:0:0.0']},
         'HadISST': {'name': 'HadISST',
          'nyears': 151,
          'time_period': ['1870-1-16 11:59:59.5', '2020-10-16 12:0:0.0']},
         'Tropflux': {'name': 'Tropflux',
          'nyears': 40,
          'time_period': ['1979-1-15 0:0:0.0', '2018-12-15 12:0:0.0']},
         'method': 'nino3.4 SSTA during DEC regressed against nino3.4 SSTA during 6 years (centered on ENSO), time series are linearly detrended, smoothing using a triangle shaped window of 5 points',
         'name': 'ENSO life cyle SSTA pattern',
         'ref': 'Using CDAT regridding and rms (uncentered and biased) calculation',
         'time_frequency': 'monthly',
         'units': 'C/C'},
        'metric': {'datasets': "BCC-CSM1-1_r2i1p1; ERA-Interim's ts & HadISST's sst & Tropflux's sst; 's ",
         'method': 'The metric is the statistical value between the model and the observations',
         'name': 'EnsoSstTsRmse',
         'units': 'C/C'}},
       'SeasonalPrLatRmse': {'diagnostic': {'BCC-CSM1-1_r2i1p1': {'keyerror': None,
          'name': 'BCC-CSM1-1_r2i1p1',
          'nyears': 163,
          'time_period': ['1850-1-16 12:0:0.0', '2012-12-16 12:0:0.0']},
         'ERA-Interim': {'name': 'ERA-Interim',
          'nyears': 40,
          'time_period': ['1979-1-16 12:0:0.0', '2019-3-16 12:0:0.0']},
         'GPCPv2.3': {'name': 'GPCPv2.3',
          'nyears': 41,
          'time_period': ['1979-1-1 0:0:0.0', '2019-7-1 0:0:0.0']},
         'method': 'Meridional root mean square error of nino3_LatExt climatological pr STD, time series are linearly detrended, observations and model regridded to generic_1x1deg',
         'name': 'pr meridional seasonality RMSE',
         'ref': 'Using CDAT regridding and rms (uncentered and biased) calculation',
         'time_frequency': 'monthly',
         'units': 'mm/day'},
        'metric': {'datasets': "BCC-CSM1-1_r2i1p1; ERA-Interim's pr & GPCPv2.3's precip; 's ",
         'method': 'The metric is the statistical value between the model and the observations',
         'name': 'SeasonalPrLatRmse',
         'units': 'mm/day'}},
       'SeasonalPrLonRmse': {'diagnostic': {'BCC-CSM1-1_r2i1p1': {'keyerror': None,
          'name': 'BCC-CSM1-1_r2i1p1',
          'nyears': 163,
          'time_period': ['1850-1-16 12:0:0.0', '2012-12-16 12:0:0.0']},
         'ERA-Interim': {'name': 'ERA-Interim',
          'nyears': 40,
          'time_period': ['1979-1-16 12:0:0.0', '2019-3-16 12:0:0.0']},
         'GPCPv2.3': {'name': 'GPCPv2.3',
          'nyears': 41,
          'time_period': ['1979-1-1 0:0:0.0', '2019-7-1 0:0:0.0']},
         'method': 'Zonal root mean square error of equatorial_pacific climatological pr STD, time series are linearly detrended, observations and model regridded to generic_1x1deg',
         'name': 'pr zonal seasonality RMSE',
         'ref': 'Using CDAT regridding and rms (uncentered and biased) calculation',
         'time_frequency': 'monthly',
         'units': 'mm/day'},
        'metric': {'datasets': "BCC-CSM1-1_r2i1p1; ERA-Interim's pr & GPCPv2.3's precip; 's ",
         'method': 'The metric is the statistical value between the model and the observations',
         'name': 'SeasonalPrLonRmse',
         'units': 'mm/day'}},
       'SeasonalSstLonRmse': {'diagnostic': {'BCC-CSM1-1_r2i1p1': {'keyerror': None,
          'name': 'BCC-CSM1-1_r2i1p1',
          'nyears': 163,
          'time_period': ['1850-1-16 12:0:0.0', '2012-12-16 12:0:0.0']},
         'ERA-Interim': {'name': 'ERA-Interim',
          'nyears': 40,
          'time_period': ['1979-1-16 12:0:0.0', '2019-3-16 12:0:0.0']},
         'HadISST': {'name': 'HadISST',
          'nyears': 151,
          'time_period': ['1870-1-16 11:59:59.5', '2020-10-16 12:0:0.0']},
         'Tropflux': {'name': 'Tropflux',
          'nyears': 40,
          'time_period': ['1979-1-15 0:0:0.0', '2018-12-15 12:0:0.0']},
         'method': 'Zonal root mean square error of equatorial_pacific climatological sst STD, time series are linearly detrended, observations and model regridded to generic_1x1deg',
         'name': 'sst zonal seasonality RMSE',
         'ref': 'Using CDAT regridding and rms (uncentered and biased) calculation',
         'time_frequency': 'monthly',
         'units': 'C'},
        'metric': {'datasets': "BCC-CSM1-1_r2i1p1; ERA-Interim's ts & HadISST's sst & Tropflux's sst; 's ",
         'method': 'The metric is the statistical value between the model and the observations',
         'name': 'SeasonalSstLonRmse',
         'units': 'C'}},
       'SeasonalTauxLonRmse': {'diagnostic': {'BCC-CSM1-1_r2i1p1': {'keyerror': None,
          'name': 'BCC-CSM1-1_r2i1p1',
          'nyears': 163,
          'time_period': ['1850-1-16 12:0:0.0', '2012-12-16 12:0:0.0']},
         'ERA-Interim': {'name': 'ERA-Interim',
          'nyears': 40,
          'time_period': ['1979-1-16 12:0:0.0', '2019-3-16 12:0:0.0']},
         'Tropflux': {'name': 'Tropflux',
          'nyears': 40,
          'time_period': ['1979-1-15 0:0:0.0', '2018-12-15 12:0:0.0']},
         'method': 'Zonal root mean square error of equatorial_pacific climatological taux STD, time series are linearly detrended, observations and model regridded to generic_1x1deg',
         'name': 'taux zonal seasonality RMSE',
         'ref': 'Using CDAT regridding and rms (uncentered and biased) calculation',
         'time_frequency': 'monthly',
         'units': '1e-3 N/m2'},
        'metric': {'datasets': "BCC-CSM1-1_r2i1p1; ERA-Interim's tauu & Tropflux's taux; 's ",
         'method': 'The metric is the statistical value between the model and the observations',
         'name': 'SeasonalTauxLonRmse',
         'units': '1e-3 N/m2'}}},
      'name': 'Metrics Collection for ENSO performance'},
     'value': {'BiasPrLatRmse': {'diagnostic': {'BCC-CSM1-1_r2i1p1': {'value': None,
         'value_error': None},
        'ERA-Interim': {'value': None, 'value_error': None},
        'GPCPv2.3': {'value': None, 'value_error': None}},
       'metric': {'ERA-Interim': {'value': 2.3133147011564037,
         'value_error': None},
        'GPCPv2.3': {'value': 1.8341500678400728, 'value_error': None}}},
      'BiasPrLonRmse': {'diagnostic': {'BCC-CSM1-1_r2i1p1': {'value': None,
         'value_error': None},
        'ERA-Interim': {'value': None, 'value_error': None},
        'GPCPv2.3': {'value': None, 'value_error': None}},
       'metric': {'ERA-Interim': {'value': 1.3566235979797434,
         'value_error': None},
        'GPCPv2.3': {'value': 0.6269206023838659, 'value_error': None}}},
      'BiasSstLonRmse': {'diagnostic': {'BCC-CSM1-1_r2i1p1': {'value': None,
         'value_error': None},
        'ERA-Interim': {'value': None, 'value_error': None},
        'HadISST': {'value': None, 'value_error': None},
        'Tropflux': {'value': None, 'value_error': None}},
       'metric': {'ERA-Interim': {'value': 0.9941208166064649,
         'value_error': None},
        'HadISST': {'value': 0.8154983170057336, 'value_error': None},
        'Tropflux': {'value': 1.0413445070796736, 'value_error': None}}},
      'BiasTauxLonRmse': {'diagnostic': {'BCC-CSM1-1_r2i1p1': {'value': None,
         'value_error': None},
        'ERA-Interim': {'value': None, 'value_error': None},
        'Tropflux': {'value': None, 'value_error': None}},
       'metric': {'ERA-Interim': {'value': 8.011005975968729,
         'value_error': None},
        'Tropflux': {'value': 8.273109938728947, 'value_error': None}}},
      'EnsoAmpl': {'diagnostic': {'BCC-CSM1-1_r2i1p1': {'value': 0.6993850055298376,
         'value_error': 0.05478006141461307},
        'ERA-Interim': {'value': 0.8989844997845644,
         'value_error': 0.14214193002531866},
        'HadISST': {'value': 0.7665787872085695,
         'value_error': 0.06238329697691264},
        'Tropflux': {'value': 0.9039789553693535,
         'value_error': 0.14293162279134272}},
       'metric': {'ERA-Interim': {'value': 22.20277371885271,
         'value_error': 18.39437058107546},
        'HadISST': {'value': 8.765411044494495,
         'value_error': 14.570610073247664},
        'Tropflux': {'value': 22.63260097199072,
         'value_error': 18.292742256287966}}},
      'EnsoDuration': {'diagnostic': {'BCC-CSM1-1_r2i1p1': {'value': 11.0,
         'value_error': None},
        'ERA-Interim': {'value': 13.0, 'value_error': None},
        'HadISST': {'value': 13.0, 'value_error': None},
        'Tropflux': {'value': 13.0, 'value_error': None}},
       'metric': {'ERA-Interim': {'value': 15.384615384615385,
         'value_error': None},
        'HadISST': {'value': 15.384615384615385, 'value_error': None},
        'Tropflux': {'value': 15.384615384615385, 'value_error': None}}},
      'EnsoSeasonality': {'diagnostic': {'BCC-CSM1-1_r2i1p1': {'value': 1.6549251570743164,
         'value_error': 0.25964694242524883},
        'ERA-Interim': {'value': 2.0466846866656914,
         'value_error': 0.6513411033995022},
        'HadISST': {'value': 1.6639865947361325,
         'value_error': 0.2712772451657809},
        'Tropflux': {'value': 2.0532132553583624,
         'value_error': 0.6534187683977347}},
       'metric': {'ERA-Interim': {'value': 19.141176564407722,
         'value_error': 38.41889765968276},
        'HadISST': {'value': 0.54456193880895,
         'value_error': 31.817979582291333},
        'Tropflux': {'value': 19.39828204618374,
         'value_error': 38.29673771754653}}},
      'EnsoSstDiversity_2': {'diagnostic': {'BCC-CSM1-1_r2i1p1': {'value': 11.5,
         'value_error': None},
        'ERA-Interim': {'value': 33.25, 'value_error': None},
        'HadISST': {'value': 49.0, 'value_error': None},
        'Tropflux': {'value': 32.0, 'value_error': None}},
       'metric': {'ERA-Interim': {'value': 65.41353383458647,
         'value_error': None},
        'HadISST': {'value': 76.53061224489795, 'value_error': None},
        'Tropflux': {'value': 64.0625, 'value_error': None}}},
      'EnsoSstLonRmse': {'diagnostic': {'BCC-CSM1-1_r2i1p1': {'value': None,
         'value_error': None},
        'ERA-Interim': {'value': None, 'value_error': None},
        'HadISST': {'value': None, 'value_error': None},
        'Tropflux': {'value': None, 'value_error': None}},
       'metric': {'ERA-Interim': {'value': 0.1152951502070794,
         'value_error': None},
        'HadISST': {'value': 0.14142744496370552, 'value_error': None},
        'Tropflux': {'value': 0.1175334629085968, 'value_error': None}}},
      'EnsoSstSkew': {'diagnostic': {'BCC-CSM1-1_r2i1p1': {'value': -0.1890737928160853,
         'value_error': -0.01480940240420568},
        'ERA-Interim': {'value': 0.39098111106809963,
         'value_error': 0.061819541653923164},
        'HadISST': {'value': 0.38989908235027515,
         'value_error': 0.03172953733021198},
        'Tropflux': {'value': 0.39744741059612115,
         'value_error': 0.06284195338099416}},
       'metric': {'ERA-Interim': {'value': 148.35880493038783,
         'value_error': -11.433952356255839},
        'HadISST': {'value': 148.4930079025491,
         'value_error': -7.744570535321325},
        'Tropflux': {'value': 147.57202783948156,
         'value_error': -11.247926837524231}}},
      'EnsoSstTsRmse': {'diagnostic': {'BCC-CSM1-1_r2i1p1': {'value': None,
         'value_error': None},
        'ERA-Interim': {'value': None, 'value_error': None},
        'HadISST': {'value': None, 'value_error': None},
        'Tropflux': {'value': None, 'value_error': None}},
       'metric': {'ERA-Interim': {'value': 0.1857452264301395,
         'value_error': None},
        'HadISST': {'value': 0.18128748613457202, 'value_error': None},
        'Tropflux': {'value': 0.18630836529055697, 'value_error': None}}},
      'SeasonalPrLatRmse': {'diagnostic': {'BCC-CSM1-1_r2i1p1': {'value': None,
         'value_error': None},
        'ERA-Interim': {'value': None, 'value_error': None},
        'GPCPv2.3': {'value': None, 'value_error': None}},
       'metric': {'ERA-Interim': {'value': 1.3477400019467243,
         'value_error': None},
        'GPCPv2.3': {'value': 1.2151298068864804, 'value_error': None}}},
      'SeasonalPrLonRmse': {'diagnostic': {'BCC-CSM1-1_r2i1p1': {'value': None,
         'value_error': None},
        'ERA-Interim': {'value': None, 'value_error': None},
        'GPCPv2.3': {'value': None, 'value_error': None}},
       'metric': {'ERA-Interim': {'value': 0.9355564118075479,
         'value_error': None},
        'GPCPv2.3': {'value': 0.7284579593858195, 'value_error': None}}},
      'SeasonalSstLonRmse': {'diagnostic': {'BCC-CSM1-1_r2i1p1': {'value': None,
         'value_error': None},
        'ERA-Interim': {'value': None, 'value_error': None},
        'HadISST': {'value': None, 'value_error': None},
        'Tropflux': {'value': None, 'value_error': None}},
       'metric': {'ERA-Interim': {'value': 0.2283663213442194,
         'value_error': None},
        'HadISST': {'value': 0.23191416317952995, 'value_error': None},
        'Tropflux': {'value': 0.23647265516424223, 'value_error': None}}},
      'SeasonalTauxLonRmse': {'diagnostic': {'BCC-CSM1-1_r2i1p1': {'value': None,
         'value_error': None},
        'ERA-Interim': {'value': None, 'value_error': None},
        'Tropflux': {'value': None, 'value_error': None}},
       'metric': {'ERA-Interim': {'value': 3.6745673162528254,
         'value_error': None},
        'Tropflux': {'value': 3.402865501720456, 'value_error': None}}}}},
    'r3i1p1': {'metadata': {'description_of_the_collection': 'Describe which science question this collection is about',
      'metrics': {'BiasPrLatRmse': {'diagnostic': {'BCC-CSM1-1_r3i1p1': {'keyerror': None,
          'name': 'BCC-CSM1-1_r3i1p1',
          'nyears': 163,
          'time_period': ['1850-1-16 12:0:0.0', '2012-12-16 12:0:0.0']},
         'ERA-Interim': {'name': 'ERA-Interim',
          'nyears': 40,
          'time_period': ['1979-1-16 12:0:0.0', '2019-3-16 12:0:0.0']},
         'GPCPv2.3': {'name': 'GPCPv2.3',
          'nyears': 41,
          'time_period': ['1979-1-1 0:0:0.0', '2019-7-1 0:0:0.0']},
         'method': 'Meridional root mean square error of nino3_LatExt pr, time series are linearly detrended, observations and model regridded to generic_1x1deg',
         'name': 'pr Meridional RMSE',
         'ref': 'Using CDAT regridding and rms (uncentered and biased) calculation',
         'time_frequency': 'monthly',
         'units': 'mm/day'},
        'metric': {'datasets': "BCC-CSM1-1_r3i1p1; ERA-Interim's pr & GPCPv2.3's precip; 's ",
         'method': 'The metric is the statistical value between the model and the observations',
         'name': 'BiasPrLatRmse',
         'units': 'mm/day'}},
       'BiasPrLonRmse': {'diagnostic': {'BCC-CSM1-1_r3i1p1': {'keyerror': None,
          'name': 'BCC-CSM1-1_r3i1p1',
          'nyears': 163,
          'time_period': ['1850-1-16 12:0:0.0', '2012-12-16 12:0:0.0']},
         'ERA-Interim': {'name': 'ERA-Interim',
          'nyears': 40,
          'time_period': ['1979-1-16 12:0:0.0', '2019-3-16 12:0:0.0']},
         'GPCPv2.3': {'name': 'GPCPv2.3',
          'nyears': 41,
          'time_period': ['1979-1-1 0:0:0.0', '2019-7-1 0:0:0.0']},
         'method': 'Zonal root mean square error of equatorial_pacific pr, time series are linearly detrended, observations and model regridded to generic_1x1deg',
         'name': 'pr Zonal RMSE',
         'ref': 'Using CDAT regridding and rms (uncentered and biased) calculation',
         'time_frequency': 'monthly',
         'units': 'mm/day'},
        'metric': {'datasets': "BCC-CSM1-1_r3i1p1; ERA-Interim's pr & GPCPv2.3's precip; 's ",
         'method': 'The metric is the statistical value between the model and the observations',
         'name': 'BiasPrLonRmse',
         'units': 'mm/day'}},
       'BiasSstLonRmse': {'diagnostic': {'BCC-CSM1-1_r3i1p1': {'keyerror': None,
          'name': 'BCC-CSM1-1_r3i1p1',
          'nyears': 163,
          'time_period': ['1850-1-16 12:0:0.0', '2012-12-16 12:0:0.0']},
         'ERA-Interim': {'name': 'ERA-Interim',
          'nyears': 40,
          'time_period': ['1979-1-16 12:0:0.0', '2019-3-16 12:0:0.0']},
         'HadISST': {'name': 'HadISST',
          'nyears': 151,
          'time_period': ['1870-1-16 11:59:59.5', '2020-10-16 12:0:0.0']},
         'Tropflux': {'name': 'Tropflux',
          'nyears': 40,
          'time_period': ['1979-1-15 0:0:0.0', '2018-12-15 12:0:0.0']},
         'method': 'Zonal root mean square error of equatorial_pacific sst, time series are linearly detrended, observations and model regridded to generic_1x1deg',
         'name': 'sst Zonal RMSE',
         'ref': 'Using CDAT regridding and rms (uncentered and biased) calculation',
         'time_frequency': 'monthly',
         'units': 'C'},
        'metric': {'datasets': "BCC-CSM1-1_r3i1p1; ERA-Interim's ts & HadISST's sst & Tropflux's sst; 's ",
         'method': 'The metric is the statistical value between the model and the observations',
         'name': 'BiasSstLonRmse',
         'units': 'C'}},
       'BiasTauxLonRmse': {'diagnostic': {'BCC-CSM1-1_r3i1p1': {'keyerror': None,
          'name': 'BCC-CSM1-1_r3i1p1',
          'nyears': 163,
          'time_period': ['1850-1-16 12:0:0.0', '2012-12-16 12:0:0.0']},
         'ERA-Interim': {'name': 'ERA-Interim',
          'nyears': 40,
          'time_period': ['1979-1-16 12:0:0.0', '2019-3-16 12:0:0.0']},
         'Tropflux': {'name': 'Tropflux',
          'nyears': 40,
          'time_period': ['1979-1-15 0:0:0.0', '2018-12-15 12:0:0.0']},
         'method': 'Zonal root mean square error of equatorial_pacific taux, time series are linearly detrended, observations and model regridded to generic_1x1deg',
         'name': 'taux Zonal RMSE',
         'ref': 'Using CDAT regridding and rms (uncentered and biased) calculation',
         'time_frequency': 'monthly',
         'units': '1e-3 N/m2'},
        'metric': {'datasets': "BCC-CSM1-1_r3i1p1; ERA-Interim's tauu & Tropflux's taux; 's ",
         'method': 'The metric is the statistical value between the model and the observations',
         'name': 'BiasTauxLonRmse',
         'units': '1e-3 N/m2'}},
       'EnsoAmpl': {'diagnostic': {'BCC-CSM1-1_r3i1p1': {'keyerror': None,
          'name': 'BCC-CSM1-1_r3i1p1',
          'nyears': 163,
          'time_period': ['1850-1-16 12:0:0.0', '2012-12-16 12:0:0.0']},
         'ERA-Interim': {'keyerror': None,
          'name': 'ERA-Interim',
          'nyears': 40,
          'time_period': ['1979-1-16 12:0:0.0', '2019-3-16 12:0:0.0']},
         'HadISST': {'keyerror': None,
          'name': 'HadISST',
          'nyears': 151,
          'time_period': ['1870-1-16 11:59:59.5', '2020-10-16 12:0:0.0']},
         'Tropflux': {'keyerror': None,
          'name': 'Tropflux',
          'nyears': 40,
          'time_period': ['1979-1-15 0:0:0.0', '2018-12-15 12:0:0.0']},
         'method': 'Standard deviation of nino3.4 sstA, time series are linearly detrended',
         'name': 'ENSO amplitude',
         'ref': 'Using CDAT regression calculation',
         'time_frequency': 'monthly',
         'units': 'C'},
        'metric': {'datasets': "BCC-CSM1-1_r3i1p1; ERA-Interim's ts & HadISST's sst & Tropflux's sst; 's ",
         'method': 'The metric is the absolute value of the relative difference between model and observations values (M = 100 * abs[[model-obs] / obs])',
         'name': 'EnsoAmpl',
         'units': '%'}},
       'EnsoDuration': {'diagnostic': {'BCC-CSM1-1_r3i1p1': {'keyerror': None,
          'name': 'BCC-CSM1-1_r3i1p1',
          'nyears': 163,
          'time_period': ['1850-1-16 12:0:0.0', '2012-12-16 12:0:0.0']},
         'ERA-Interim': {'keyerror': None,
          'name': 'ERA-Interim',
          'nyears': 40,
          'time_period': ['1979-1-16 12:0:0.0', '2019-3-16 12:0:0.0']},
         'HadISST': {'keyerror': None,
          'name': 'HadISST',
          'nyears': 151,
          'time_period': ['1870-1-16 11:59:59.5', '2020-10-16 12:0:0.0']},
         'Tropflux': {'keyerror': None,
          'name': 'Tropflux',
          'nyears': 40,
          'time_period': ['1979-1-15 0:0:0.0', '2018-12-15 12:0:0.0']},
         'method': 'nino3.4 SSTA during DEC regressed against nino3.4 SSTA during 6 years (centered on ENSO), the duration is the number of consecutive months during which the regression is above 0.25, time series are linearly detrended, smoothing using a triangle shaped window of 5 points',
         'name': 'ENSO Duration based on life cyle SSTA pattern',
         'ref': 'Using CDAT',
         'time_frequency': 'monthly',
         'units': 'months'},
        'metric': {'datasets': "BCC-CSM1-1_r3i1p1; ERA-Interim's ts & HadISST's sst & Tropflux's sst; 's ",
         'method': 'The metric is the absolute value of the relative difference between model and observations values (M = 100 * abs[[model-obs] / obs])',
         'name': 'EnsoDuration',
         'units': '%'}},
       'EnsoSeasonality': {'diagnostic': {'BCC-CSM1-1_r3i1p1': {'keyerror': None,
          'name': 'BCC-CSM1-1_r3i1p1',
          'nyears': 163,
          'time_period': ['1850-1-16 12:0:0.0', '2012-12-16 12:0:0.0']},
         'ERA-Interim': {'keyerror': None,
          'name': 'ERA-Interim',
          'nyears': 40,
          'time_period': ['1979-1-16 12:0:0.0', '2019-3-16 12:0:0.0']},
         'HadISST': {'keyerror': None,
          'name': 'HadISST',
          'nyears': 151,
          'time_period': ['1870-1-16 11:59:59.5', '2020-10-16 12:0:0.0']},
         'Tropflux': {'keyerror': None,
          'name': 'Tropflux',
          'nyears': 40,
          'time_period': ['1979-1-15 0:0:0.0', '2018-12-15 12:0:0.0']},
         'method': 'Ratio between NDJ and MAM standard deviation nino3.4 sstA, time series are linearly detrended',
         'name': 'ENSO seasonality',
         'ref': 'Using CDAT std dev calculation',
         'time_frequency': 'monthly',
         'units': 'C/C'},
        'metric': {'datasets': "BCC-CSM1-1_r3i1p1; ERA-Interim's ts & HadISST's sst & Tropflux's sst; 's ",
         'method': 'The metric is the absolute value of the relative difference between model and observations values (M = 100 * abs[[model-obs] / obs])',
         'name': 'EnsoSeasonality',
         'units': '%'}},
       'EnsoSstDiversity_2': {'diagnostic': {'BCC-CSM1-1_r3i1p1': {'keyerror': None,
          'name': 'BCC-CSM1-1_r3i1p1',
          'nyears': 163,
          'time_period': ['1850-1-16 12:0:0.0', '2012-12-16 12:0:0.0']},
         'ERA-Interim': {'keyerror': None,
          'name': 'ERA-Interim',
          'nyears': 40,
          'time_period': ['1979-1-16 12:0:0.0', '2019-3-16 12:0:0.0']},
         'HadISST': {'keyerror': None,
          'name': 'HadISST',
          'nyears': 151,
          'time_period': ['1870-1-16 11:59:59.5', '2020-10-16 12:0:0.0']},
         'Tropflux': {'keyerror': None,
          'name': 'Tropflux',
          'nyears': 40,
          'time_period': ['1979-1-15 0:0:0.0', '2018-12-15 12:0:0.0']},
         'method': 'Nino (Nina) events = nino3.4 sstA > 0.75 (< -0.75) during DEC, zonal SSTA (meridional averaged [-5.0 ; 5.0]), the zonal SSTA maximum (minimum) is located for each event, the diversity is the interquartile range (IQR = Q3 - Q1), time series are linearly detrended, smoothing using a triangle shaped window of 5 points',
         'name': 'ENSO Diversity (interquartile range)',
         'ref': 'Using CDAT regridding',
         'time_frequency': 'monthly',
         'units': 'long'},
        'metric': {'datasets': "BCC-CSM1-1_r3i1p1; ERA-Interim's ts & HadISST's sst & Tropflux's sst; 's ",
         'method': 'The metric is the absolute value of the relative difference between model and observations values (M = 100 * abs[[model-obs] / obs])',
         'name': 'EnsoSstDiversity',
         'units': '%'}},
       'EnsoSstLonRmse': {'diagnostic': {'BCC-CSM1-1_r3i1p1': {'keyerror': None,
          'name': 'BCC-CSM1-1_r3i1p1',
          'nyears': 163,
          'time_period': ['1850-1-16 12:0:0.0', '2012-12-16 12:0:0.0']},
         'ERA-Interim': {'name': 'ERA-Interim',
          'nyears': 40,
          'time_period': ['1979-1-16 12:0:0.0', '2019-3-16 12:0:0.0']},
         'HadISST': {'name': 'HadISST',
          'nyears': 151,
          'time_period': ['1870-1-16 11:59:59.5', '2020-10-16 12:0:0.0']},
         'Tropflux': {'name': 'Tropflux',
          'nyears': 40,
          'time_period': ['1979-1-15 0:0:0.0', '2018-12-15 12:0:0.0']},
         'method': 'nino3.4 SSTA during DEC regressed against equatorial_pacific SSTA, time series are linearly detrended, smoothing using a triangle shaped window of 5 points, observations and model regridded to generic_1x1deg',
         'name': 'ENSO Zonal SSTA pattern',
         'ref': 'Using CDAT regridding and rms (uncentered and biased) calculation',
         'time_frequency': 'monthly',
         'units': 'C/C'},
        'metric': {'datasets': "BCC-CSM1-1_r3i1p1; ERA-Interim's ts & HadISST's sst & Tropflux's sst; 's ",
         'method': 'The metric is the statistical value between the model and the observations',
         'name': 'EnsoSstLonRmse',
         'units': 'C/C'}},
       'EnsoSstSkew': {'diagnostic': {'BCC-CSM1-1_r3i1p1': {'keyerror': None,
          'name': 'BCC-CSM1-1_r3i1p1',
          'nyears': 163,
          'time_period': ['1850-1-16 12:0:0.0', '2012-12-16 12:0:0.0']},
         'ERA-Interim': {'keyerror': None,
          'name': 'ERA-Interim',
          'nyears': 40,
          'time_period': ['1979-1-16 12:0:0.0', '2019-3-16 12:0:0.0']},
         'HadISST': {'keyerror': None,
          'name': 'HadISST',
          'nyears': 151,
          'time_period': ['1870-1-16 11:59:59.5', '2020-10-16 12:0:0.0']},
         'Tropflux': {'keyerror': None,
          'name': 'Tropflux',
          'nyears': 40,
          'time_period': ['1979-1-15 0:0:0.0', '2018-12-15 12:0:0.0']},
         'method': 'Standard deviation of nino3.4 sstA, time series are linearly detrended',
         'name': 'ENSO skewness',
         'ref': 'Using CDAT regression calculation',
         'time_frequency': 'monthly',
         'units': 'C'},
        'metric': {'datasets': "BCC-CSM1-1_r3i1p1; ERA-Interim's ts & HadISST's sst & Tropflux's sst; 's ",
         'method': 'The metric is the absolute value of the relative difference between model and observations values (M = 100 * abs[[model-obs] / obs])',
         'name': 'EnsoSstSkew',
         'units': '%'}},
       'EnsoSstTsRmse': {'diagnostic': {'BCC-CSM1-1_r3i1p1': {'keyerror': None,
          'name': 'BCC-CSM1-1_r3i1p1',
          'nyears': 163,
          'time_period': ['1850-1-16 12:0:0.0', '2012-12-16 12:0:0.0']},
         'ERA-Interim': {'name': 'ERA-Interim',
          'nyears': 40,
          'time_period': ['1979-1-16 12:0:0.0', '2019-3-16 12:0:0.0']},
         'HadISST': {'name': 'HadISST',
          'nyears': 151,
          'time_period': ['1870-1-16 11:59:59.5', '2020-10-16 12:0:0.0']},
         'Tropflux': {'name': 'Tropflux',
          'nyears': 40,
          'time_period': ['1979-1-15 0:0:0.0', '2018-12-15 12:0:0.0']},
         'method': 'nino3.4 SSTA during DEC regressed against nino3.4 SSTA during 6 years (centered on ENSO), time series are linearly detrended, smoothing using a triangle shaped window of 5 points',
         'name': 'ENSO life cyle SSTA pattern',
         'ref': 'Using CDAT regridding and rms (uncentered and biased) calculation',
         'time_frequency': 'monthly',
         'units': 'C/C'},
        'metric': {'datasets': "BCC-CSM1-1_r3i1p1; ERA-Interim's ts & HadISST's sst & Tropflux's sst; 's ",
         'method': 'The metric is the statistical value between the model and the observations',
         'name': 'EnsoSstTsRmse',
         'units': 'C/C'}},
       'SeasonalPrLatRmse': {'diagnostic': {'BCC-CSM1-1_r3i1p1': {'keyerror': None,
          'name': 'BCC-CSM1-1_r3i1p1',
          'nyears': 163,
          'time_period': ['1850-1-16 12:0:0.0', '2012-12-16 12:0:0.0']},
         'ERA-Interim': {'name': 'ERA-Interim',
          'nyears': 40,
          'time_period': ['1979-1-16 12:0:0.0', '2019-3-16 12:0:0.0']},
         'GPCPv2.3': {'name': 'GPCPv2.3',
          'nyears': 41,
          'time_period': ['1979-1-1 0:0:0.0', '2019-7-1 0:0:0.0']},
         'method': 'Meridional root mean square error of nino3_LatExt climatological pr STD, time series are linearly detrended, observations and model regridded to generic_1x1deg',
         'name': 'pr meridional seasonality RMSE',
         'ref': 'Using CDAT regridding and rms (uncentered and biased) calculation',
         'time_frequency': 'monthly',
         'units': 'mm/day'},
        'metric': {'datasets': "BCC-CSM1-1_r3i1p1; ERA-Interim's pr & GPCPv2.3's precip; 's ",
         'method': 'The metric is the statistical value between the model and the observations',
         'name': 'SeasonalPrLatRmse',
         'units': 'mm/day'}},
       'SeasonalPrLonRmse': {'diagnostic': {'BCC-CSM1-1_r3i1p1': {'keyerror': None,
          'name': 'BCC-CSM1-1_r3i1p1',
          'nyears': 163,
          'time_period': ['1850-1-16 12:0:0.0', '2012-12-16 12:0:0.0']},
         'ERA-Interim': {'name': 'ERA-Interim',
          'nyears': 40,
          'time_period': ['1979-1-16 12:0:0.0', '2019-3-16 12:0:0.0']},
         'GPCPv2.3': {'name': 'GPCPv2.3',
          'nyears': 41,
          'time_period': ['1979-1-1 0:0:0.0', '2019-7-1 0:0:0.0']},
         'method': 'Zonal root mean square error of equatorial_pacific climatological pr STD, time series are linearly detrended, observations and model regridded to generic_1x1deg',
         'name': 'pr zonal seasonality RMSE',
         'ref': 'Using CDAT regridding and rms (uncentered and biased) calculation',
         'time_frequency': 'monthly',
         'units': 'mm/day'},
        'metric': {'datasets': "BCC-CSM1-1_r3i1p1; ERA-Interim's pr & GPCPv2.3's precip; 's ",
         'method': 'The metric is the statistical value between the model and the observations',
         'name': 'SeasonalPrLonRmse',
         'units': 'mm/day'}},
       'SeasonalSstLonRmse': {'diagnostic': {'BCC-CSM1-1_r3i1p1': {'keyerror': None,
          'name': 'BCC-CSM1-1_r3i1p1',
          'nyears': 163,
          'time_period': ['1850-1-16 12:0:0.0', '2012-12-16 12:0:0.0']},
         'ERA-Interim': {'name': 'ERA-Interim',
          'nyears': 40,
          'time_period': ['1979-1-16 12:0:0.0', '2019-3-16 12:0:0.0']},
         'HadISST': {'name': 'HadISST',
          'nyears': 151,
          'time_period': ['1870-1-16 11:59:59.5', '2020-10-16 12:0:0.0']},
         'Tropflux': {'name': 'Tropflux',
          'nyears': 40,
          'time_period': ['1979-1-15 0:0:0.0', '2018-12-15 12:0:0.0']},
         'method': 'Zonal root mean square error of equatorial_pacific climatological sst STD, time series are linearly detrended, observations and model regridded to generic_1x1deg',
         'name': 'sst zonal seasonality RMSE',
         'ref': 'Using CDAT regridding and rms (uncentered and biased) calculation',
         'time_frequency': 'monthly',
         'units': 'C'},
        'metric': {'datasets': "BCC-CSM1-1_r3i1p1; ERA-Interim's ts & HadISST's sst & Tropflux's sst; 's ",
         'method': 'The metric is the statistical value between the model and the observations',
         'name': 'SeasonalSstLonRmse',
         'units': 'C'}},
       'SeasonalTauxLonRmse': {'diagnostic': {'BCC-CSM1-1_r3i1p1': {'keyerror': None,
          'name': 'BCC-CSM1-1_r3i1p1',
          'nyears': 163,
          'time_period': ['1850-1-16 12:0:0.0', '2012-12-16 12:0:0.0']},
         'ERA-Interim': {'name': 'ERA-Interim',
          'nyears': 40,
          'time_period': ['1979-1-16 12:0:0.0', '2019-3-16 12:0:0.0']},
         'Tropflux': {'name': 'Tropflux',
          'nyears': 40,
          'time_period': ['1979-1-15 0:0:0.0', '2018-12-15 12:0:0.0']},
         'method': 'Zonal root mean square error of equatorial_pacific climatological taux STD, time series are linearly detrended, observations and model regridded to generic_1x1deg',
         'name': 'taux zonal seasonality RMSE',
         'ref': 'Using CDAT regridding and rms (uncentered and biased) calculation',
         'time_frequency': 'monthly',
         'units': '1e-3 N/m2'},
        'metric': {'datasets': "BCC-CSM1-1_r3i1p1; ERA-Interim's tauu & Tropflux's taux; 's ",
         'method': 'The metric is the statistical value between the model and the observations',
         'name': 'SeasonalTauxLonRmse',
         'units': '1e-3 N/m2'}}},
      'name': 'Metrics Collection for ENSO performance'},
     'value': {'BiasPrLatRmse': {'diagnostic': {'BCC-CSM1-1_r3i1p1': {'value': None,
         'value_error': None},
        'ERA-Interim': {'value': None, 'value_error': None},
        'GPCPv2.3': {'value': None, 'value_error': None}},
       'metric': {'ERA-Interim': {'value': 2.2996568243264677,
         'value_error': None},
        'GPCPv2.3': {'value': 1.8416447508785367, 'value_error': None}}},
      'BiasPrLonRmse': {'diagnostic': {'BCC-CSM1-1_r3i1p1': {'value': None,
         'value_error': None},
        'ERA-Interim': {'value': None, 'value_error': None},
        'GPCPv2.3': {'value': None, 'value_error': None}},
       'metric': {'ERA-Interim': {'value': 1.3376563258086374,
         'value_error': None},
        'GPCPv2.3': {'value': 0.5653366334925116, 'value_error': None}}},
      'BiasSstLonRmse': {'diagnostic': {'BCC-CSM1-1_r3i1p1': {'value': None,
         'value_error': None},
        'ERA-Interim': {'value': None, 'value_error': None},
        'HadISST': {'value': None, 'value_error': None},
        'Tropflux': {'value': None, 'value_error': None}},
       'metric': {'ERA-Interim': {'value': 0.9661411567381128,
         'value_error': None},
        'HadISST': {'value': 0.7898696546521404, 'value_error': None},
        'Tropflux': {'value': 1.0130691724558445, 'value_error': None}}},
      'BiasTauxLonRmse': {'diagnostic': {'BCC-CSM1-1_r3i1p1': {'value': None,
         'value_error': None},
        'ERA-Interim': {'value': None, 'value_error': None},
        'Tropflux': {'value': None, 'value_error': None}},
       'metric': {'ERA-Interim': {'value': 8.027451956033936,
         'value_error': None},
        'Tropflux': {'value': 8.270436182737035, 'value_error': None}}},
      'EnsoAmpl': {'diagnostic': {'BCC-CSM1-1_r3i1p1': {'value': 0.771612470968727,
         'value_error': 0.06043735312272848},
        'ERA-Interim': {'value': 0.8989844997845644,
         'value_error': 0.14214193002531866},
        'HadISST': {'value': 0.7665787872085695,
         'value_error': 0.06238329697691264},
        'Tropflux': {'value': 0.9039789553693535,
         'value_error': 0.14293162279134272}},
       'metric': {'ERA-Interim': {'value': 14.16843436637242,
         'value_error': 20.29400919916143},
        'HadISST': {'value': 0.6566427148978611,
         'value_error': 16.075358140718393},
        'Tropflux': {'value': 14.642651094299353,
         'value_error': 20.18188543015057}}},
      'EnsoDuration': {'diagnostic': {'BCC-CSM1-1_r3i1p1': {'value': 11.0,
         'value_error': None},
        'ERA-Interim': {'value': 13.0, 'value_error': None},
        'HadISST': {'value': 13.0, 'value_error': None},
        'Tropflux': {'value': 13.0, 'value_error': None}},
       'metric': {'ERA-Interim': {'value': 15.384615384615385,
         'value_error': None},
        'HadISST': {'value': 15.384615384615385, 'value_error': None},
        'Tropflux': {'value': 15.384615384615385, 'value_error': None}}},
      'EnsoSeasonality': {'diagnostic': {'BCC-CSM1-1_r3i1p1': {'value': 1.9621947409552742,
         'value_error': 0.30785553216958045},
        'ERA-Interim': {'value': 2.0466846866656914,
         'value_error': 0.6513411033995022},
        'HadISST': {'value': 1.6639865947361325,
         'value_error': 0.2712772451657809},
        'Tropflux': {'value': 2.0532132553583624,
         'value_error': 0.6534187683977347}},
       'metric': {'ERA-Interim': {'value': 4.128136896751886,
         'value_error': 45.55212579788172},
        'HadISST': {'value': 17.921307008271313,
         'value_error': 37.72561673699345},
        'Tropflux': {'value': 4.432979095841754,
         'value_error': 45.40728444660339}}},
      'EnsoSstDiversity_2': {'diagnostic': {'BCC-CSM1-1_r3i1p1': {'value': 9.5,
         'value_error': None},
        'ERA-Interim': {'value': 33.25, 'value_error': None},
        'HadISST': {'value': 49.0, 'value_error': None},
        'Tropflux': {'value': 32.0, 'value_error': None}},
       'metric': {'ERA-Interim': {'value': 71.42857142857143,
         'value_error': None},
        'HadISST': {'value': 80.61224489795919, 'value_error': None},
        'Tropflux': {'value': 70.3125, 'value_error': None}}},
      'EnsoSstLonRmse': {'diagnostic': {'BCC-CSM1-1_r3i1p1': {'value': None,
         'value_error': None},
        'ERA-Interim': {'value': None, 'value_error': None},
        'HadISST': {'value': None, 'value_error': None},
        'Tropflux': {'value': None, 'value_error': None}},
       'metric': {'ERA-Interim': {'value': 0.11972252486076104,
         'value_error': None},
        'HadISST': {'value': 0.14598948371177253, 'value_error': None},
        'Tropflux': {'value': 0.12160956625593047, 'value_error': None}}},
      'EnsoSstSkew': {'diagnostic': {'BCC-CSM1-1_r3i1p1': {'value': -0.34190702054468136,
         'value_error': -0.026780224676586892},
        'ERA-Interim': {'value': 0.39098111106809963,
         'value_error': 0.061819541653923164},
        'HadISST': {'value': 0.38989908235027515,
         'value_error': 0.03172953733021198},
        'Tropflux': {'value': 0.39744741059612115,
         'value_error': 0.06284195338099416}},
       'metric': {'ERA-Interim': {'value': 187.44847535233725,
         'value_error': -20.67631121664731},
        'HadISST': {'value': 187.6911580513855,
         'value_error': -14.00470682737884},
        'Tropflux': {'value': 186.02572602797028,
         'value_error': -20.33991646882167}}},
      'EnsoSstTsRmse': {'diagnostic': {'BCC-CSM1-1_r3i1p1': {'value': None,
         'value_error': None},
        'ERA-Interim': {'value': None, 'value_error': None},
        'HadISST': {'value': None, 'value_error': None},
        'Tropflux': {'value': None, 'value_error': None}},
       'metric': {'ERA-Interim': {'value': 0.2878272189144481,
         'value_error': None},
        'HadISST': {'value': 0.2810314054343857, 'value_error': None},
        'Tropflux': {'value': 0.2880038894268556, 'value_error': None}}},
      'SeasonalPrLatRmse': {'diagnostic': {'BCC-CSM1-1_r3i1p1': {'value': None,
         'value_error': None},
        'ERA-Interim': {'value': None, 'value_error': None},
        'GPCPv2.3': {'value': None, 'value_error': None}},
       'metric': {'ERA-Interim': {'value': 1.3751864189658647,
         'value_error': None},
        'GPCPv2.3': {'value': 1.241830730475438, 'value_error': None}}},
      'SeasonalPrLonRmse': {'diagnostic': {'BCC-CSM1-1_r3i1p1': {'value': None,
         'value_error': None},
        'ERA-Interim': {'value': None, 'value_error': None},
        'GPCPv2.3': {'value': None, 'value_error': None}},
       'metric': {'ERA-Interim': {'value': 0.95058202083283,
         'value_error': None},
        'GPCPv2.3': {'value': 0.7292632311757616, 'value_error': None}}},
      'SeasonalSstLonRmse': {'diagnostic': {'BCC-CSM1-1_r3i1p1': {'value': None,
         'value_error': None},
        'ERA-Interim': {'value': None, 'value_error': None},
        'HadISST': {'value': None, 'value_error': None},
        'Tropflux': {'value': None, 'value_error': None}},
       'metric': {'ERA-Interim': {'value': 0.23891424608447084,
         'value_error': None},
        'HadISST': {'value': 0.24195389402069192, 'value_error': None},
        'Tropflux': {'value': 0.2471036543473083, 'value_error': None}}},
      'SeasonalTauxLonRmse': {'diagnostic': {'BCC-CSM1-1_r3i1p1': {'value': None,
         'value_error': None},
        'ERA-Interim': {'value': None, 'value_error': None},
        'Tropflux': {'value': None, 'value_error': None}},
       'metric': {'ERA-Interim': {'value': 3.644967118860692,
         'value_error': None},
        'Tropflux': {'value': 3.3839802463464195, 'value_error': None}}}}}},
   'BCC-CSM1-1-M': {'r1i1p1': {'metadata': {'description_of_the_collection': 'Describe which science question this collection is about',
      'metrics': {'BiasPrLatRmse': {'diagnostic': {'BCC-CSM1-1-M_r1i1p1': {'keyerror': None,
          'name': 'BCC-CSM1-1-M_r1i1p1',
          'nyears': 163,
          'time_period': ['1850-1-16 12:0:0.0', '2012-12-16 12:0:0.0']},
         'ERA-Interim': {'name': 'ERA-Interim',
          'nyears': 40,
          'time_period': ['1979-1-16 12:0:0.0', '2019-3-16 12:0:0.0']},
         'GPCPv2.3': {'name': 'GPCPv2.3',
          'nyears': 41,
          'time_period': ['1979-1-1 0:0:0.0', '2019-7-1 0:0:0.0']},
         'method': 'Meridional root mean square error of nino3_LatExt pr, time series are linearly detrended, observations and model regridded to generic_1x1deg',
         'name': 'pr Meridional RMSE',
         'ref': 'Using CDAT regridding and rms (uncentered and biased) calculation',
         'time_frequency': 'monthly',
         'units': 'mm/day'},
        'metric': {'datasets': "BCC-CSM1-1-M_r1i1p1; ERA-Interim's pr & GPCPv2.3's precip; 's ",
         'method': 'The metric is the statistical value between the model and the observations',
         'name': 'BiasPrLatRmse',
         'units': 'mm/day'}},
       'BiasPrLonRmse': {'diagnostic': {'BCC-CSM1-1-M_r1i1p1': {'keyerror': None,
          'name': 'BCC-CSM1-1-M_r1i1p1',
          'nyears': 163,
          'time_period': ['1850-1-16 12:0:0.0', '2012-12-16 12:0:0.0']},
         'ERA-Interim': {'name': 'ERA-Interim',
          'nyears': 40,
          'time_period': ['1979-1-16 12:0:0.0', '2019-3-16 12:0:0.0']},
         'GPCPv2.3': {'name': 'GPCPv2.3',
          'nyears': 41,
          'time_period': ['1979-1-1 0:0:0.0', '2019-7-1 0:0:0.0']},
         'method': 'Zonal root mean square error of equatorial_pacific pr, time series are linearly detrended, observations and model regridded to generic_1x1deg',
         'name': 'pr Zonal RMSE',
         'ref': 'Using CDAT regridding and rms (uncentered and biased) calculation',
         'time_frequency': 'monthly',
         'units': 'mm/day'},
        'metric': {'datasets': "BCC-CSM1-1-M_r1i1p1; ERA-Interim's pr & GPCPv2.3's precip; 's ",
         'method': 'The metric is the statistical value between the model and the observations',
         'name': 'BiasPrLonRmse',
         'units': 'mm/day'}},
       'BiasSstLonRmse': {'diagnostic': {'BCC-CSM1-1-M_r1i1p1': {'keyerror': None,
          'name': 'BCC-CSM1-1-M_r1i1p1',
          'nyears': 163,
          'time_period': ['1850-1-16 12:0:0.0', '2012-12-16 12:0:0.0']},
         'ERA-Interim': {'name': 'ERA-Interim',
          'nyears': 40,
          'time_period': ['1979-1-16 12:0:0.0', '2019-3-16 12:0:0.0']},
         'HadISST': {'name': 'HadISST',
          'nyears': 151,
          'time_period': ['1870-1-16 11:59:59.5', '2020-10-16 12:0:0.0']},
         'Tropflux': {'name': 'Tropflux',
          'nyears': 40,
          'time_period': ['1979-1-15 0:0:0.0', '2018-12-15 12:0:0.0']},
         'method': 'Zonal root mean square error of equatorial_pacific sst, time series are linearly detrended, observations and model regridded to generic_1x1deg',
         'name': 'sst Zonal RMSE',
         'ref': 'Using CDAT regridding and rms (uncentered and biased) calculation',
         'time_frequency': 'monthly',
         'units': 'C'},
        'metric': {'datasets': "BCC-CSM1-1-M_r1i1p1; ERA-Interim's ts & HadISST's sst & Tropflux's sst; 's ",
         'method': 'The metric is the statistical value between the model and the observations',
         'name': 'BiasSstLonRmse',
         'units': 'C'}},
       'BiasTauxLonRmse': {'diagnostic': {'BCC-CSM1-1-M_r1i1p1': {'keyerror': None,
          'name': 'BCC-CSM1-1-M_r1i1p1',
          'nyears': 163,
          'time_period': ['1850-1-16 12:0:0.0', '2012-12-16 12:0:0.0']},
         'ERA-Interim': {'name': 'ERA-Interim',
          'nyears': 40,
          'time_period': ['1979-1-16 12:0:0.0', '2019-3-16 12:0:0.0']},
         'Tropflux': {'name': 'Tropflux',
          'nyears': 40,
          'time_period': ['1979-1-15 0:0:0.0', '2018-12-15 12:0:0.0']},
         'method': 'Zonal root mean square error of equatorial_pacific taux, time series are linearly detrended, observations and model regridded to generic_1x1deg',
         'name': 'taux Zonal RMSE',
         'ref': 'Using CDAT regridding and rms (uncentered and biased) calculation',
         'time_frequency': 'monthly',
         'units': '1e-3 N/m2'},
        'metric': {'datasets': "BCC-CSM1-1-M_r1i1p1; ERA-Interim's tauu & Tropflux's taux; 's ",
         'method': 'The metric is the statistical value between the model and the observations',
         'name': 'BiasTauxLonRmse',
         'units': '1e-3 N/m2'}},
       'EnsoAmpl': {'diagnostic': {'BCC-CSM1-1-M_r1i1p1': {'keyerror': None,
          'name': 'BCC-CSM1-1-M_r1i1p1',
          'nyears': 163,
          'time_period': ['1850-1-16 12:0:0.0', '2012-12-16 12:0:0.0']},
         'ERA-Interim': {'keyerror': None,
          'name': 'ERA-Interim',
          'nyears': 40,
          'time_period': ['1979-1-16 12:0:0.0', '2019-3-16 12:0:0.0']},
         'HadISST': {'keyerror': None,
          'name': 'HadISST',
          'nyears': 151,
          'time_period': ['1870-1-16 11:59:59.5', '2020-10-16 12:0:0.0']},
         'Tropflux': {'keyerror': None,
          'name': 'Tropflux',
          'nyears': 40,
          'time_period': ['1979-1-15 0:0:0.0', '2018-12-15 12:0:0.0']},
         'method': 'Standard deviation of nino3.4 sstA, time series are linearly detrended',
         'name': 'ENSO amplitude',
         'ref': 'Using CDAT regression calculation',
         'time_frequency': 'monthly',
         'units': 'C'},
        'metric': {'datasets': "BCC-CSM1-1-M_r1i1p1; ERA-Interim's ts & HadISST's sst & Tropflux's sst; 's ",
         'method': 'The metric is the absolute value of the relative difference between model and observations values (M = 100 * abs[[model-obs] / obs])',
         'name': 'EnsoAmpl',
         'units': '%'}},
       'EnsoDuration': {'diagnostic': {'BCC-CSM1-1-M_r1i1p1': {'keyerror': None,
          'name': 'BCC-CSM1-1-M_r1i1p1',
          'nyears': 163,
          'time_period': ['1850-1-16 12:0:0.0', '2012-12-16 12:0:0.0']},
         'ERA-Interim': {'keyerror': None,
          'name': 'ERA-Interim',
          'nyears': 40,
          'time_period': ['1979-1-16 12:0:0.0', '2019-3-16 12:0:0.0']},
         'HadISST': {'keyerror': None,
          'name': 'HadISST',
          'nyears': 151,
          'time_period': ['1870-1-16 11:59:59.5', '2020-10-16 12:0:0.0']},
         'Tropflux': {'keyerror': None,
          'name': 'Tropflux',
          'nyears': 40,
          'time_period': ['1979-1-15 0:0:0.0', '2018-12-15 12:0:0.0']},
         'method': 'nino3.4 SSTA during DEC regressed against nino3.4 SSTA during 6 years (centered on ENSO), the duration is the number of consecutive months during which the regression is above 0.25, time series are linearly detrended, smoothing using a triangle shaped window of 5 points',
         'name': 'ENSO Duration based on life cyle SSTA pattern',
         'ref': 'Using CDAT',
         'time_frequency': 'monthly',
         'units': 'months'},
        'metric': {'datasets': "BCC-CSM1-1-M_r1i1p1; ERA-Interim's ts & HadISST's sst & Tropflux's sst; 's ",
         'method': 'The metric is the absolute value of the relative difference between model and observations values (M = 100 * abs[[model-obs] / obs])',
         'name': 'EnsoDuration',
         'units': '%'}},
       'EnsoSeasonality': {'diagnostic': {'BCC-CSM1-1-M_r1i1p1': {'keyerror': None,
          'name': 'BCC-CSM1-1-M_r1i1p1',
          'nyears': 163,
          'time_period': ['1850-1-16 12:0:0.0', '2012-12-16 12:0:0.0']},
         'ERA-Interim': {'keyerror': None,
          'name': 'ERA-Interim',
          'nyears': 40,
          'time_period': ['1979-1-16 12:0:0.0', '2019-3-16 12:0:0.0']},
         'HadISST': {'keyerror': None,
          'name': 'HadISST',
          'nyears': 151,
          'time_period': ['1870-1-16 11:59:59.5', '2020-10-16 12:0:0.0']},
         'Tropflux': {'keyerror': None,
          'name': 'Tropflux',
          'nyears': 40,
          'time_period': ['1979-1-15 0:0:0.0', '2018-12-15 12:0:0.0']},
         'method': 'Ratio between NDJ and MAM standard deviation nino3.4 sstA, time series are linearly detrended',
         'name': 'ENSO seasonality',
         'ref': 'Using CDAT std dev calculation',
         'time_frequency': 'monthly',
         'units': 'C/C'},
        'metric': {'datasets': "BCC-CSM1-1-M_r1i1p1; ERA-Interim's ts & HadISST's sst & Tropflux's sst; 's ",
         'method': 'The metric is the absolute value of the relative difference between model and observations values (M = 100 * abs[[model-obs] / obs])',
         'name': 'EnsoSeasonality',
         'units': '%'}},
       'EnsoSstDiversity_2': {'diagnostic': {'BCC-CSM1-1-M_r1i1p1': {'keyerror': None,
          'name': 'BCC-CSM1-1-M_r1i1p1',
          'nyears': 163,
          'time_period': ['1850-1-16 12:0:0.0', '2012-12-16 12:0:0.0']},
         'ERA-Interim': {'keyerror': None,
          'name': 'ERA-Interim',
          'nyears': 40,
          'time_period': ['1979-1-16 12:0:0.0', '2019-3-16 12:0:0.0']},
         'HadISST': {'keyerror': None,
          'name': 'HadISST',
          'nyears': 151,
          'time_period': ['1870-1-16 11:59:59.5', '2020-10-16 12:0:0.0']},
         'Tropflux': {'keyerror': None,
          'name': 'Tropflux',
          'nyears': 40,
          'time_period': ['1979-1-15 0:0:0.0', '2018-12-15 12:0:0.0']},
         'method': 'Nino (Nina) events = nino3.4 sstA > 0.75 (< -0.75) during DEC, zonal SSTA (meridional averaged [-5.0 ; 5.0]), the zonal SSTA maximum (minimum) is located for each event, the diversity is the interquartile range (IQR = Q3 - Q1), time series are linearly detrended, smoothing using a triangle shaped window of 5 points',
         'name': 'ENSO Diversity (interquartile range)',
         'ref': 'Using CDAT regridding',
         'time_frequency': 'monthly',
         'units': 'long'},
        'metric': {'datasets': "BCC-CSM1-1-M_r1i1p1; ERA-Interim's ts & HadISST's sst & Tropflux's sst; 's ",
         'method': 'The metric is the absolute value of the relative difference between model and observations values (M = 100 * abs[[model-obs] / obs])',
         'name': 'EnsoSstDiversity',
         'units': '%'}},
       'EnsoSstLonRmse': {'diagnostic': {'BCC-CSM1-1-M_r1i1p1': {'keyerror': None,
          'name': 'BCC-CSM1-1-M_r1i1p1',
          'nyears': 163,
          'time_period': ['1850-1-16 12:0:0.0', '2012-12-16 12:0:0.0']},
         'ERA-Interim': {'name': 'ERA-Interim',
          'nyears': 40,
          'time_period': ['1979-1-16 12:0:0.0', '2019-3-16 12:0:0.0']},
         'HadISST': {'name': 'HadISST',
          'nyears': 151,
          'time_period': ['1870-1-16 11:59:59.5', '2020-10-16 12:0:0.0']},
         'Tropflux': {'name': 'Tropflux',
          'nyears': 40,
          'time_period': ['1979-1-15 0:0:0.0', '2018-12-15 12:0:0.0']},
         'method': 'nino3.4 SSTA during DEC regressed against equatorial_pacific SSTA, time series are linearly detrended, smoothing using a triangle shaped window of 5 points, observations and model regridded to generic_1x1deg',
         'name': 'ENSO Zonal SSTA pattern',
         'ref': 'Using CDAT regridding and rms (uncentered and biased) calculation',
         'time_frequency': 'monthly',
         'units': 'C/C'},
        'metric': {'datasets': "BCC-CSM1-1-M_r1i1p1; ERA-Interim's ts & HadISST's sst & Tropflux's sst; 's ",
         'method': 'The metric is the statistical value between the model and the observations',
         'name': 'EnsoSstLonRmse',
         'units': 'C/C'}},
       'EnsoSstSkew': {'diagnostic': {'BCC-CSM1-1-M_r1i1p1': {'keyerror': None,
          'name': 'BCC-CSM1-1-M_r1i1p1',
          'nyears': 163,
          'time_period': ['1850-1-16 12:0:0.0', '2012-12-16 12:0:0.0']},
         'ERA-Interim': {'keyerror': None,
          'name': 'ERA-Interim',
          'nyears': 40,
          'time_period': ['1979-1-16 12:0:0.0', '2019-3-16 12:0:0.0']},
         'HadISST': {'keyerror': None,
          'name': 'HadISST',
          'nyears': 151,
          'time_period': ['1870-1-16 11:59:59.5', '2020-10-16 12:0:0.0']},
         'Tropflux': {'keyerror': None,
          'name': 'Tropflux',
          'nyears': 40,
          'time_period': ['1979-1-15 0:0:0.0', '2018-12-15 12:0:0.0']},
         'method': 'Standard deviation of nino3.4 sstA, time series are linearly detrended',
         'name': 'ENSO skewness',
         'ref': 'Using CDAT regression calculation',
         'time_frequency': 'monthly',
         'units': 'C'},
        'metric': {'datasets': "BCC-CSM1-1-M_r1i1p1; ERA-Interim's ts & HadISST's sst & Tropflux's sst; 's ",
         'method': 'The metric is the absolute value of the relative difference between model and observations values (M = 100 * abs[[model-obs] / obs])',
         'name': 'EnsoSstSkew',
         'units': '%'}},
       'EnsoSstTsRmse': {'diagnostic': {'BCC-CSM1-1-M_r1i1p1': {'keyerror': None,
          'name': 'BCC-CSM1-1-M_r1i1p1',
          'nyears': 163,
          'time_period': ['1850-1-16 12:0:0.0', '2012-12-16 12:0:0.0']},
         'ERA-Interim': {'name': 'ERA-Interim',
          'nyears': 40,
          'time_period': ['1979-1-16 12:0:0.0', '2019-3-16 12:0:0.0']},
         'HadISST': {'name': 'HadISST',
          'nyears': 151,
          'time_period': ['1870-1-16 11:59:59.5', '2020-10-16 12:0:0.0']},
         'Tropflux': {'name': 'Tropflux',
          'nyears': 40,
          'time_period': ['1979-1-15 0:0:0.0', '2018-12-15 12:0:0.0']},
         'method': 'nino3.4 SSTA during DEC regressed against nino3.4 SSTA during 6 years (centered on ENSO), time series are linearly detrended, smoothing using a triangle shaped window of 5 points',
         'name': 'ENSO life cyle SSTA pattern',
         'ref': 'Using CDAT regridding and rms (uncentered and biased) calculation',
         'time_frequency': 'monthly',
         'units': 'C/C'},
        'metric': {'datasets': "BCC-CSM1-1-M_r1i1p1; ERA-Interim's ts & HadISST's sst & Tropflux's sst; 's ",
         'method': 'The metric is the statistical value between the model and the observations',
         'name': 'EnsoSstTsRmse',
         'units': 'C/C'}},
       'SeasonalPrLatRmse': {'diagnostic': {'BCC-CSM1-1-M_r1i1p1': {'keyerror': None,
          'name': 'BCC-CSM1-1-M_r1i1p1',
          'nyears': 163,
          'time_period': ['1850-1-16 12:0:0.0', '2012-12-16 12:0:0.0']},
         'ERA-Interim': {'name': 'ERA-Interim',
          'nyears': 40,
          'time_period': ['1979-1-16 12:0:0.0', '2019-3-16 12:0:0.0']},
         'GPCPv2.3': {'name': 'GPCPv2.3',
          'nyears': 41,
          'time_period': ['1979-1-1 0:0:0.0', '2019-7-1 0:0:0.0']},
         'method': 'Meridional root mean square error of nino3_LatExt climatological pr STD, time series are linearly detrended, observations and model regridded to generic_1x1deg',
         'name': 'pr meridional seasonality RMSE',
         'ref': 'Using CDAT regridding and rms (uncentered and biased) calculation',
         'time_frequency': 'monthly',
         'units': 'mm/day'},
        'metric': {'datasets': "BCC-CSM1-1-M_r1i1p1; ERA-Interim's pr & GPCPv2.3's precip; 's ",
         'method': 'The metric is the statistical value between the model and the observations',
         'name': 'SeasonalPrLatRmse',
         'units': 'mm/day'}},
       'SeasonalPrLonRmse': {'diagnostic': {'BCC-CSM1-1-M_r1i1p1': {'keyerror': None,
          'name': 'BCC-CSM1-1-M_r1i1p1',
          'nyears': 163,
          'time_period': ['1850-1-16 12:0:0.0', '2012-12-16 12:0:0.0']},
         'ERA-Interim': {'name': 'ERA-Interim',
          'nyears': 40,
          'time_period': ['1979-1-16 12:0:0.0', '2019-3-16 12:0:0.0']},
         'GPCPv2.3': {'name': 'GPCPv2.3',
          'nyears': 41,
          'time_period': ['1979-1-1 0:0:0.0', '2019-7-1 0:0:0.0']},
         'method': 'Zonal root mean square error of equatorial_pacific climatological pr STD, time series are linearly detrended, observations and model regridded to generic_1x1deg',
         'name': 'pr zonal seasonality RMSE',
         'ref': 'Using CDAT regridding and rms (uncentered and biased) calculation',
         'time_frequency': 'monthly',
         'units': 'mm/day'},
        'metric': {'datasets': "BCC-CSM1-1-M_r1i1p1; ERA-Interim's pr & GPCPv2.3's precip; 's ",
         'method': 'The metric is the statistical value between the model and the observations',
         'name': 'SeasonalPrLonRmse',
         'units': 'mm/day'}},
       'SeasonalSstLonRmse': {'diagnostic': {'BCC-CSM1-1-M_r1i1p1': {'keyerror': None,
          'name': 'BCC-CSM1-1-M_r1i1p1',
          'nyears': 163,
          'time_period': ['1850-1-16 12:0:0.0', '2012-12-16 12:0:0.0']},
         'ERA-Interim': {'name': 'ERA-Interim',
          'nyears': 40,
          'time_period': ['1979-1-16 12:0:0.0', '2019-3-16 12:0:0.0']},
         'HadISST': {'name': 'HadISST',
          'nyears': 151,
          'time_period': ['1870-1-16 11:59:59.5', '2020-10-16 12:0:0.0']},
         'Tropflux': {'name': 'Tropflux',
          'nyears': 40,
          'time_period': ['1979-1-15 0:0:0.0', '2018-12-15 12:0:0.0']},
         'method': 'Zonal root mean square error of equatorial_pacific climatological sst STD, time series are linearly detrended, observations and model regridded to generic_1x1deg',
         'name': 'sst zonal seasonality RMSE',
         'ref': 'Using CDAT regridding and rms (uncentered and biased) calculation',
         'time_frequency': 'monthly',
         'units': 'C'},
        'metric': {'datasets': "BCC-CSM1-1-M_r1i1p1; ERA-Interim's ts & HadISST's sst & Tropflux's sst; 's ",
         'method': 'The metric is the statistical value between the model and the observations',
         'name': 'SeasonalSstLonRmse',
         'units': 'C'}},
       'SeasonalTauxLonRmse': {'diagnostic': {'BCC-CSM1-1-M_r1i1p1': {'keyerror': None,
          'name': 'BCC-CSM1-1-M_r1i1p1',
          'nyears': 163,
          'time_period': ['1850-1-16 12:0:0.0', '2012-12-16 12:0:0.0']},
         'ERA-Interim': {'name': 'ERA-Interim',
          'nyears': 40,
          'time_period': ['1979-1-16 12:0:0.0', '2019-3-16 12:0:0.0']},
         'Tropflux': {'name': 'Tropflux',
          'nyears': 40,
          'time_period': ['1979-1-15 0:0:0.0', '2018-12-15 12:0:0.0']},
         'method': 'Zonal root mean square error of equatorial_pacific climatological taux STD, time series are linearly detrended, observations and model regridded to generic_1x1deg',
         'name': 'taux zonal seasonality RMSE',
         'ref': 'Using CDAT regridding and rms (uncentered and biased) calculation',
         'time_frequency': 'monthly',
         'units': '1e-3 N/m2'},
        'metric': {'datasets': "BCC-CSM1-1-M_r1i1p1; ERA-Interim's tauu & Tropflux's taux; 's ",
         'method': 'The metric is the statistical value between the model and the observations',
         'name': 'SeasonalTauxLonRmse',
         'units': '1e-3 N/m2'}}},
      'name': 'Metrics Collection for ENSO performance'},
     'value': {'BiasPrLatRmse': {'diagnostic': {'BCC-CSM1-1-M_r1i1p1': {'value': None,
         'value_error': None},
        'ERA-Interim': {'value': None, 'value_error': None},
        'GPCPv2.3': {'value': None, 'value_error': None}},
       'metric': {'ERA-Interim': {'value': 2.780688107722851,
         'value_error': None},
        'GPCPv2.3': {'value': 2.751795754598107, 'value_error': None}}},
      'BiasPrLonRmse': {'diagnostic': {'BCC-CSM1-1-M_r1i1p1': {'value': None,
         'value_error': None},
        'ERA-Interim': {'value': None, 'value_error': None},
        'GPCPv2.3': {'value': None, 'value_error': None}},
       'metric': {'ERA-Interim': {'value': 1.2713483733861755,
         'value_error': None},
        'GPCPv2.3': {'value': 0.34269942569315065, 'value_error': None}}},
      'BiasSstLonRmse': {'diagnostic': {'BCC-CSM1-1-M_r1i1p1': {'value': None,
         'value_error': None},
        'ERA-Interim': {'value': None, 'value_error': None},
        'HadISST': {'value': None, 'value_error': None},
        'Tropflux': {'value': None, 'value_error': None}},
       'metric': {'ERA-Interim': {'value': 0.600408930033341,
         'value_error': None},
        'HadISST': {'value': 0.5278584544618383, 'value_error': None},
        'Tropflux': {'value': 0.6315151545169999, 'value_error': None}}},
      'BiasTauxLonRmse': {'diagnostic': {'BCC-CSM1-1-M_r1i1p1': {'value': None,
         'value_error': None},
        'ERA-Interim': {'value': None, 'value_error': None},
        'Tropflux': {'value': None, 'value_error': None}},
       'metric': {'ERA-Interim': {'value': 6.546526519644041,
         'value_error': None},
        'Tropflux': {'value': 6.549585682328334, 'value_error': None}}},
      'EnsoAmpl': {'diagnostic': {'BCC-CSM1-1-M_r1i1p1': {'value': 1.312158136951983,
         'value_error': 0.102776157280437},
        'ERA-Interim': {'value': 0.8989844997845644,
         'value_error': 0.14214193002531866},
        'HadISST': {'value': 0.7665787872085695,
         'value_error': 0.06238329697691264},
        'Tropflux': {'value': 0.9039789553693535,
         'value_error': 0.14293162279134272}},
       'metric': {'ERA-Interim': {'value': 45.96004016381071,
         'value_error': 34.51078138826157},
        'HadISST': {'value': 71.17068184603616,
         'value_error': 27.336795065376602},
        'Tropflux': {'value': 45.15361548608763,
         'value_error': 34.32011039551748}}},
      'EnsoDuration': {'diagnostic': {'BCC-CSM1-1-M_r1i1p1': {'value': 12.0,
         'value_error': None},
        'ERA-Interim': {'value': 13.0, 'value_error': None},
        'HadISST': {'value': 13.0, 'value_error': None},
        'Tropflux': {'value': 13.0, 'value_error': None}},
       'metric': {'ERA-Interim': {'value': 7.6923076923076925,
         'value_error': None},
        'HadISST': {'value': 7.6923076923076925, 'value_error': None},
        'Tropflux': {'value': 7.6923076923076925, 'value_error': None}}},
      'EnsoSeasonality': {'diagnostic': {'BCC-CSM1-1-M_r1i1p1': {'value': 1.5214821208312443,
         'value_error': 0.23871060207152045},
        'ERA-Interim': {'value': 2.0466846866656914,
         'value_error': 0.6513411033995022},
        'HadISST': {'value': 1.6639865947361325,
         'value_error': 0.2712772451657809},
        'Tropflux': {'value': 2.0532132553583624,
         'value_error': 0.6534187683977347}},
       'metric': {'ERA-Interim': {'value': 25.661137216503466,
         'value_error': 35.32103288259321},
        'HadISST': {'value': 8.564039779868894,
         'value_error': 29.25237244022143},
        'Tropflux': {'value': 25.89751128575834,
         'value_error': 35.208723170551224}}},
      'EnsoSstDiversity_2': {'diagnostic': {'BCC-CSM1-1-M_r1i1p1': {'value': 8.0,
         'value_error': None},
        'ERA-Interim': {'value': 33.25, 'value_error': None},
        'HadISST': {'value': 49.0, 'value_error': None},
        'Tropflux': {'value': 32.0, 'value_error': None}},
       'metric': {'ERA-Interim': {'value': 75.93984962406014,
         'value_error': None},
        'HadISST': {'value': 83.6734693877551, 'value_error': None},
        'Tropflux': {'value': 75.0, 'value_error': None}}},
      'EnsoSstLonRmse': {'diagnostic': {'BCC-CSM1-1-M_r1i1p1': {'value': None,
         'value_error': None},
        'ERA-Interim': {'value': None, 'value_error': None},
        'HadISST': {'value': None, 'value_error': None},
        'Tropflux': {'value': None, 'value_error': None}},
       'metric': {'ERA-Interim': {'value': 0.12866610770126607,
         'value_error': None},
        'HadISST': {'value': 0.13899746346122327, 'value_error': None},
        'Tropflux': {'value': 0.12997275447855933, 'value_error': None}}},
      'EnsoSstSkew': {'diagnostic': {'BCC-CSM1-1-M_r1i1p1': {'value': 0.24874897679638486,
         'value_error': 0.019483523549958037},
        'ERA-Interim': {'value': 0.39098111106809963,
         'value_error': 0.061819541653923164},
        'HadISST': {'value': 0.38989908235027515,
         'value_error': 0.03172953733021198},
        'Tropflux': {'value': 0.39744741059612115,
         'value_error': 0.06284195338099416}},
       'metric': {'ERA-Interim': {'value': 36.37826233680668,
         'value_error': 15.04271907277933},
        'HadISST': {'value': 36.20170242593306,
         'value_error': 10.188900152135302},
        'Tropflux': {'value': 37.413360820921525,
         'value_error': 14.797980461714841}}},
      'EnsoSstTsRmse': {'diagnostic': {'BCC-CSM1-1-M_r1i1p1': {'value': None,
         'value_error': None},
        'ERA-Interim': {'value': None, 'value_error': None},
        'HadISST': {'value': None, 'value_error': None},
        'Tropflux': {'value': None, 'value_error': None}},
       'metric': {'ERA-Interim': {'value': 0.2826988437473747,
         'value_error': None},
        'HadISST': {'value': 0.2816535862306858, 'value_error': None},
        'Tropflux': {'value': 0.2842488661826046, 'value_error': None}}},
      'SeasonalPrLatRmse': {'diagnostic': {'BCC-CSM1-1-M_r1i1p1': {'value': None,
         'value_error': None},
        'ERA-Interim': {'value': None, 'value_error': None},
        'GPCPv2.3': {'value': None, 'value_error': None}},
       'metric': {'ERA-Interim': {'value': 1.3283452004810337,
         'value_error': None},
        'GPCPv2.3': {'value': 1.4053618568641348, 'value_error': None}}},
      'SeasonalPrLonRmse': {'diagnostic': {'BCC-CSM1-1-M_r1i1p1': {'value': None,
         'value_error': None},
        'ERA-Interim': {'value': None, 'value_error': None},
        'GPCPv2.3': {'value': None, 'value_error': None}},
       'metric': {'ERA-Interim': {'value': 0.5262106909915965,
         'value_error': None},
        'GPCPv2.3': {'value': 0.2833454936946764, 'value_error': None}}},
      'SeasonalSstLonRmse': {'diagnostic': {'BCC-CSM1-1-M_r1i1p1': {'value': None,
         'value_error': None},
        'ERA-Interim': {'value': None, 'value_error': None},
        'HadISST': {'value': None, 'value_error': None},
        'Tropflux': {'value': None, 'value_error': None}},
       'metric': {'ERA-Interim': {'value': 0.20599979701714036,
         'value_error': None},
        'HadISST': {'value': 0.22267276930606786, 'value_error': None},
        'Tropflux': {'value': 0.19980458639718712, 'value_error': None}}},
      'SeasonalTauxLonRmse': {'diagnostic': {'BCC-CSM1-1-M_r1i1p1': {'value': None,
         'value_error': None},
        'ERA-Interim': {'value': None, 'value_error': None},
        'Tropflux': {'value': None, 'value_error': None}},
       'metric': {'ERA-Interim': {'value': 1.9484858853592688,
         'value_error': None},
        'Tropflux': {'value': 1.864812325717921, 'value_error': None}}}}},
    'r2i1p1': {'metadata': {'description_of_the_collection': 'Describe which science question this collection is about',
      'metrics': {'BiasPrLatRmse': {'diagnostic': {'BCC-CSM1-1-M_r2i1p1': {'keyerror': None,
          'name': 'BCC-CSM1-1-M_r2i1p1',
          'nyears': 163,
          'time_period': ['1850-1-16 12:0:0.0', '2012-12-16 12:0:0.0']},
         'ERA-Interim': {'name': 'ERA-Interim',
          'nyears': 40,
          'time_period': ['1979-1-16 12:0:0.0', '2019-3-16 12:0:0.0']},
         'GPCPv2.3': {'name': 'GPCPv2.3',
          'nyears': 41,
          'time_period': ['1979-1-1 0:0:0.0', '2019-7-1 0:0:0.0']},
         'method': 'Meridional root mean square error of nino3_LatExt pr, time series are linearly detrended, observations and model regridded to generic_1x1deg',
         'name': 'pr Meridional RMSE',
         'ref': 'Using CDAT regridding and rms (uncentered and biased) calculation',
         'time_frequency': 'monthly',
         'units': 'mm/day'},
        'metric': {'datasets': "BCC-CSM1-1-M_r2i1p1; ERA-Interim's pr & GPCPv2.3's precip; 's ",
         'method': 'The metric is the statistical value between the model and the observations',
         'name': 'BiasPrLatRmse',
         'units': 'mm/day'}},
       'BiasPrLonRmse': {'diagnostic': {'BCC-CSM1-1-M_r2i1p1': {'keyerror': None,
          'name': 'BCC-CSM1-1-M_r2i1p1',
          'nyears': 163,
          'time_period': ['1850-1-16 12:0:0.0', '2012-12-16 12:0:0.0']},
         'ERA-Interim': {'name': 'ERA-Interim',
          'nyears': 40,
          'time_period': ['1979-1-16 12:0:0.0', '2019-3-16 12:0:0.0']},
         'GPCPv2.3': {'name': 'GPCPv2.3',
          'nyears': 41,
          'time_period': ['1979-1-1 0:0:0.0', '2019-7-1 0:0:0.0']},
         'method': 'Zonal root mean square error of equatorial_pacific pr, time series are linearly detrended, observations and model regridded to generic_1x1deg',
         'name': 'pr Zonal RMSE',
         'ref': 'Using CDAT regridding and rms (uncentered and biased) calculation',
         'time_frequency': 'monthly',
         'units': 'mm/day'},
        'metric': {'datasets': "BCC-CSM1-1-M_r2i1p1; ERA-Interim's pr & GPCPv2.3's precip; 's ",
         'method': 'The metric is the statistical value between the model and the observations',
         'name': 'BiasPrLonRmse',
         'units': 'mm/day'}},
       'BiasSstLonRmse': {'diagnostic': {'BCC-CSM1-1-M_r2i1p1': {'keyerror': None,
          'name': 'BCC-CSM1-1-M_r2i1p1',
          'nyears': 163,
          'time_period': ['1850-1-16 12:0:0.0', '2012-12-16 12:0:0.0']},
         'ERA-Interim': {'name': 'ERA-Interim',
          'nyears': 40,
          'time_period': ['1979-1-16 12:0:0.0', '2019-3-16 12:0:0.0']},
         'HadISST': {'name': 'HadISST',
          'nyears': 151,
          'time_period': ['1870-1-16 11:59:59.5', '2020-10-16 12:0:0.0']},
         'Tropflux': {'name': 'Tropflux',
          'nyears': 40,
          'time_period': ['1979-1-15 0:0:0.0', '2018-12-15 12:0:0.0']},
         'method': 'Zonal root mean square error of equatorial_pacific sst, time series are linearly detrended, observations and model regridded to generic_1x1deg',
         'name': 'sst Zonal RMSE',
         'ref': 'Using CDAT regridding and rms (uncentered and biased) calculation',
         'time_frequency': 'monthly',
         'units': 'C'},
        'metric': {'datasets': "BCC-CSM1-1-M_r2i1p1; ERA-Interim's ts & HadISST's sst & Tropflux's sst; 's ",
         'method': 'The metric is the statistical value between the model and the observations',
         'name': 'BiasSstLonRmse',
         'units': 'C'}},
       'BiasTauxLonRmse': {'diagnostic': {'BCC-CSM1-1-M_r2i1p1': {'keyerror': None,
          'name': 'BCC-CSM1-1-M_r2i1p1',
          'nyears': 163,
          'time_period': ['1850-1-16 12:0:0.0', '2012-12-16 12:0:0.0']},
         'ERA-Interim': {'name': 'ERA-Interim',
          'nyears': 40,
          'time_period': ['1979-1-16 12:0:0.0', '2019-3-16 12:0:0.0']},
         'Tropflux': {'name': 'Tropflux',
          'nyears': 40,
          'time_period': ['1979-1-15 0:0:0.0', '2018-12-15 12:0:0.0']},
         'method': 'Zonal root mean square error of equatorial_pacific taux, time series are linearly detrended, observations and model regridded to generic_1x1deg',
         'name': 'taux Zonal RMSE',
         'ref': 'Using CDAT regridding and rms (uncentered and biased) calculation',
         'time_frequency': 'monthly',
         'units': '1e-3 N/m2'},
        'metric': {'datasets': "BCC-CSM1-1-M_r2i1p1; ERA-Interim's tauu & Tropflux's taux; 's ",
         'method': 'The metric is the statistical value between the model and the observations',
         'name': 'BiasTauxLonRmse',
         'units': '1e-3 N/m2'}},
       'EnsoAmpl': {'diagnostic': {'BCC-CSM1-1-M_r2i1p1': {'keyerror': None,
          'name': 'BCC-CSM1-1-M_r2i1p1',
          'nyears': 163,
          'time_period': ['1850-1-16 12:0:0.0', '2012-12-16 12:0:0.0']},
         'ERA-Interim': {'keyerror': None,
          'name': 'ERA-Interim',
          'nyears': 40,
          'time_period': ['1979-1-16 12:0:0.0', '2019-3-16 12:0:0.0']},
         'HadISST': {'keyerror': None,
          'name': 'HadISST',
          'nyears': 151,
          'time_period': ['1870-1-16 11:59:59.5', '2020-10-16 12:0:0.0']},
         'Tropflux': {'keyerror': None,
          'name': 'Tropflux',
          'nyears': 40,
          'time_period': ['1979-1-15 0:0:0.0', '2018-12-15 12:0:0.0']},
         'method': 'Standard deviation of nino3.4 sstA, time series are linearly detrended',
         'name': 'ENSO amplitude',
         'ref': 'Using CDAT regression calculation',
         'time_frequency': 'monthly',
         'units': 'C'},
        'metric': {'datasets': "BCC-CSM1-1-M_r2i1p1; ERA-Interim's ts & HadISST's sst & Tropflux's sst; 's ",
         'method': 'The metric is the absolute value of the relative difference between model and observations values (M = 100 * abs[[model-obs] / obs])',
         'name': 'EnsoAmpl',
         'units': '%'}},
       'EnsoDuration': {'diagnostic': {'BCC-CSM1-1-M_r2i1p1': {'keyerror': None,
          'name': 'BCC-CSM1-1-M_r2i1p1',
          'nyears': 163,
          'time_period': ['1850-1-16 12:0:0.0', '2012-12-16 12:0:0.0']},
         'ERA-Interim': {'keyerror': None,
          'name': 'ERA-Interim',
          'nyears': 40,
          'time_period': ['1979-1-16 12:0:0.0', '2019-3-16 12:0:0.0']},
         'HadISST': {'keyerror': None,
          'name': 'HadISST',
          'nyears': 151,
          'time_period': ['1870-1-16 11:59:59.5', '2020-10-16 12:0:0.0']},
         'Tropflux': {'keyerror': None,
          'name': 'Tropflux',
          'nyears': 40,
          'time_period': ['1979-1-15 0:0:0.0', '2018-12-15 12:0:0.0']},
         'method': 'nino3.4 SSTA during DEC regressed against nino3.4 SSTA during 6 years (centered on ENSO), the duration is the number of consecutive months during which the regression is above 0.25, time series are linearly detrended, smoothing using a triangle shaped window of 5 points',
         'name': 'ENSO Duration based on life cyle SSTA pattern',
         'ref': 'Using CDAT',
         'time_frequency': 'monthly',
         'units': 'months'},
        'metric': {'datasets': "BCC-CSM1-1-M_r2i1p1; ERA-Interim's ts & HadISST's sst & Tropflux's sst; 's ",
         'method': 'The metric is the absolute value of the relative difference between model and observations values (M = 100 * abs[[model-obs] / obs])',
         'name': 'EnsoDuration',
         'units': '%'}},
       'EnsoSeasonality': {'diagnostic': {'BCC-CSM1-1-M_r2i1p1': {'keyerror': None,
          'name': 'BCC-CSM1-1-M_r2i1p1',
          'nyears': 163,
          'time_period': ['1850-1-16 12:0:0.0', '2012-12-16 12:0:0.0']},
         'ERA-Interim': {'keyerror': None,
          'name': 'ERA-Interim',
          'nyears': 40,
          'time_period': ['1979-1-16 12:0:0.0', '2019-3-16 12:0:0.0']},
         'HadISST': {'keyerror': None,
          'name': 'HadISST',
          'nyears': 151,
          'time_period': ['1870-1-16 11:59:59.5', '2020-10-16 12:0:0.0']},
         'Tropflux': {'keyerror': None,
          'name': 'Tropflux',
          'nyears': 40,
          'time_period': ['1979-1-15 0:0:0.0', '2018-12-15 12:0:0.0']},
         'method': 'Ratio between NDJ and MAM standard deviation nino3.4 sstA, time series are linearly detrended',
         'name': 'ENSO seasonality',
         'ref': 'Using CDAT std dev calculation',
         'time_frequency': 'monthly',
         'units': 'C/C'},
        'metric': {'datasets': "BCC-CSM1-1-M_r2i1p1; ERA-Interim's ts & HadISST's sst & Tropflux's sst; 's ",
         'method': 'The metric is the absolute value of the relative difference between model and observations values (M = 100 * abs[[model-obs] / obs])',
         'name': 'EnsoSeasonality',
         'units': '%'}},
       'EnsoSstDiversity_2': {'diagnostic': {'BCC-CSM1-1-M_r2i1p1': {'keyerror': None,
          'name': 'BCC-CSM1-1-M_r2i1p1',
          'nyears': 163,
          'time_period': ['1850-1-16 12:0:0.0', '2012-12-16 12:0:0.0']},
         'ERA-Interim': {'keyerror': None,
          'name': 'ERA-Interim',
          'nyears': 40,
          'time_period': ['1979-1-16 12:0:0.0', '2019-3-16 12:0:0.0']},
         'HadISST': {'keyerror': None,
          'name': 'HadISST',
          'nyears': 151,
          'time_period': ['1870-1-16 11:59:59.5', '2020-10-16 12:0:0.0']},
         'Tropflux': {'keyerror': None,
          'name': 'Tropflux',
          'nyears': 40,
          'time_period': ['1979-1-15 0:0:0.0', '2018-12-15 12:0:0.0']},
         'method': 'Nino (Nina) events = nino3.4 sstA > 0.75 (< -0.75) during DEC, zonal SSTA (meridional averaged [-5.0 ; 5.0]), the zonal SSTA maximum (minimum) is located for each event, the diversity is the interquartile range (IQR = Q3 - Q1), time series are linearly detrended, smoothing using a triangle shaped window of 5 points',
         'name': 'ENSO Diversity (interquartile range)',
         'ref': 'Using CDAT regridding',
         'time_frequency': 'monthly',
         'units': 'long'},
        'metric': {'datasets': "BCC-CSM1-1-M_r2i1p1; ERA-Interim's ts & HadISST's sst & Tropflux's sst; 's ",
         'method': 'The metric is the absolute value of the relative difference between model and observations values (M = 100 * abs[[model-obs] / obs])',
         'name': 'EnsoSstDiversity',
         'units': '%'}},
       'EnsoSstLonRmse': {'diagnostic': {'BCC-CSM1-1-M_r2i1p1': {'keyerror': None,
          'name': 'BCC-CSM1-1-M_r2i1p1',
          'nyears': 163,
          'time_period': ['1850-1-16 12:0:0.0', '2012-12-16 12:0:0.0']},
         'ERA-Interim': {'name': 'ERA-Interim',
          'nyears': 40,
          'time_period': ['1979-1-16 12:0:0.0', '2019-3-16 12:0:0.0']},
         'HadISST': {'name': 'HadISST',
          'nyears': 151,
          'time_period': ['1870-1-16 11:59:59.5', '2020-10-16 12:0:0.0']},
         'Tropflux': {'name': 'Tropflux',
          'nyears': 40,
          'time_period': ['1979-1-15 0:0:0.0', '2018-12-15 12:0:0.0']},
         'method': 'nino3.4 SSTA during DEC regressed against equatorial_pacific SSTA, time series are linearly detrended, smoothing using a triangle shaped window of 5 points, observations and model regridded to generic_1x1deg',
         'name': 'ENSO Zonal SSTA pattern',
         'ref': 'Using CDAT regridding and rms (uncentered and biased) calculation',
         'time_frequency': 'monthly',
         'units': 'C/C'},
        'metric': {'datasets': "BCC-CSM1-1-M_r2i1p1; ERA-Interim's ts & HadISST's sst & Tropflux's sst; 's ",
         'method': 'The metric is the statistical value between the model and the observations',
         'name': 'EnsoSstLonRmse',
         'units': 'C/C'}},
       'EnsoSstSkew': {'diagnostic': {'BCC-CSM1-1-M_r2i1p1': {'keyerror': None,
          'name': 'BCC-CSM1-1-M_r2i1p1',
          'nyears': 163,
          'time_period': ['1850-1-16 12:0:0.0', '2012-12-16 12:0:0.0']},
         'ERA-Interim': {'keyerror': None,
          'name': 'ERA-Interim',
          'nyears': 40,
          'time_period': ['1979-1-16 12:0:0.0', '2019-3-16 12:0:0.0']},
         'HadISST': {'keyerror': None,
          'name': 'HadISST',
          'nyears': 151,
          'time_period': ['1870-1-16 11:59:59.5', '2020-10-16 12:0:0.0']},
         'Tropflux': {'keyerror': None,
          'name': 'Tropflux',
          'nyears': 40,
          'time_period': ['1979-1-15 0:0:0.0', '2018-12-15 12:0:0.0']},
         'method': 'Standard deviation of nino3.4 sstA, time series are linearly detrended',
         'name': 'ENSO skewness',
         'ref': 'Using CDAT regression calculation',
         'time_frequency': 'monthly',
         'units': 'C'},
        'metric': {'datasets': "BCC-CSM1-1-M_r2i1p1; ERA-Interim's ts & HadISST's sst & Tropflux's sst; 's ",
         'method': 'The metric is the absolute value of the relative difference between model and observations values (M = 100 * abs[[model-obs] / obs])',
         'name': 'EnsoSstSkew',
         'units': '%'}},
       'EnsoSstTsRmse': {'diagnostic': {'BCC-CSM1-1-M_r2i1p1': {'keyerror': None,
          'name': 'BCC-CSM1-1-M_r2i1p1',
          'nyears': 163,
          'time_period': ['1850-1-16 12:0:0.0', '2012-12-16 12:0:0.0']},
         'ERA-Interim': {'name': 'ERA-Interim',
          'nyears': 40,
          'time_period': ['1979-1-16 12:0:0.0', '2019-3-16 12:0:0.0']},
         'HadISST': {'name': 'HadISST',
          'nyears': 151,
          'time_period': ['1870-1-16 11:59:59.5', '2020-10-16 12:0:0.0']},
         'Tropflux': {'name': 'Tropflux',
          'nyears': 40,
          'time_period': ['1979-1-15 0:0:0.0', '2018-12-15 12:0:0.0']},
         'method': 'nino3.4 SSTA during DEC regressed against nino3.4 SSTA during 6 years (centered on ENSO), time series are linearly detrended, smoothing using a triangle shaped window of 5 points',
         'name': 'ENSO life cyle SSTA pattern',
         'ref': 'Using CDAT regridding and rms (uncentered and biased) calculation',
         'time_frequency': 'monthly',
         'units': 'C/C'},
        'metric': {'datasets': "BCC-CSM1-1-M_r2i1p1; ERA-Interim's ts & HadISST's sst & Tropflux's sst; 's ",
         'method': 'The metric is the statistical value between the model and the observations',
         'name': 'EnsoSstTsRmse',
         'units': 'C/C'}},
       'SeasonalPrLatRmse': {'diagnostic': {'BCC-CSM1-1-M_r2i1p1': {'keyerror': None,
          'name': 'BCC-CSM1-1-M_r2i1p1',
          'nyears': 163,
          'time_period': ['1850-1-16 12:0:0.0', '2012-12-16 12:0:0.0']},
         'ERA-Interim': {'name': 'ERA-Interim',
          'nyears': 40,
          'time_period': ['1979-1-16 12:0:0.0', '2019-3-16 12:0:0.0']},
         'GPCPv2.3': {'name': 'GPCPv2.3',
          'nyears': 41,
          'time_period': ['1979-1-1 0:0:0.0', '2019-7-1 0:0:0.0']},
         'method': 'Meridional root mean square error of nino3_LatExt climatological pr STD, time series are linearly detrended, observations and model regridded to generic_1x1deg',
         'name': 'pr meridional seasonality RMSE',
         'ref': 'Using CDAT regridding and rms (uncentered and biased) calculation',
         'time_frequency': 'monthly',
         'units': 'mm/day'},
        'metric': {'datasets': "BCC-CSM1-1-M_r2i1p1; ERA-Interim's pr & GPCPv2.3's precip; 's ",
         'method': 'The metric is the statistical value between the model and the observations',
         'name': 'SeasonalPrLatRmse',
         'units': 'mm/day'}},
       'SeasonalPrLonRmse': {'diagnostic': {'BCC-CSM1-1-M_r2i1p1': {'keyerror': None,
          'name': 'BCC-CSM1-1-M_r2i1p1',
          'nyears': 163,
          'time_period': ['1850-1-16 12:0:0.0', '2012-12-16 12:0:0.0']},
         'ERA-Interim': {'name': 'ERA-Interim',
          'nyears': 40,
          'time_period': ['1979-1-16 12:0:0.0', '2019-3-16 12:0:0.0']},
         'GPCPv2.3': {'name': 'GPCPv2.3',
          'nyears': 41,
          'time_period': ['1979-1-1 0:0:0.0', '2019-7-1 0:0:0.0']},
         'method': 'Zonal root mean square error of equatorial_pacific climatological pr STD, time series are linearly detrended, observations and model regridded to generic_1x1deg',
         'name': 'pr zonal seasonality RMSE',
         'ref': 'Using CDAT regridding and rms (uncentered and biased) calculation',
         'time_frequency': 'monthly',
         'units': 'mm/day'},
        'metric': {'datasets': "BCC-CSM1-1-M_r2i1p1; ERA-Interim's pr & GPCPv2.3's precip; 's ",
         'method': 'The metric is the statistical value between the model and the observations',
         'name': 'SeasonalPrLonRmse',
         'units': 'mm/day'}},
       'SeasonalSstLonRmse': {'diagnostic': {'BCC-CSM1-1-M_r2i1p1': {'keyerror': None,
          'name': 'BCC-CSM1-1-M_r2i1p1',
          'nyears': 163,
          'time_period': ['1850-1-16 12:0:0.0', '2012-12-16 12:0:0.0']},
         'ERA-Interim': {'name': 'ERA-Interim',
          'nyears': 40,
          'time_period': ['1979-1-16 12:0:0.0', '2019-3-16 12:0:0.0']},
         'HadISST': {'name': 'HadISST',
          'nyears': 151,
          'time_period': ['1870-1-16 11:59:59.5', '2020-10-16 12:0:0.0']},
         'Tropflux': {'name': 'Tropflux',
          'nyears': 40,
          'time_period': ['1979-1-15 0:0:0.0', '2018-12-15 12:0:0.0']},
         'method': 'Zonal root mean square error of equatorial_pacific climatological sst STD, time series are linearly detrended, observations and model regridded to generic_1x1deg',
         'name': 'sst zonal seasonality RMSE',
         'ref': 'Using CDAT regridding and rms (uncentered and biased) calculation',
         'time_frequency': 'monthly',
         'units': 'C'},
        'metric': {'datasets': "BCC-CSM1-1-M_r2i1p1; ERA-Interim's ts & HadISST's sst & Tropflux's sst; 's ",
         'method': 'The metric is the statistical value between the model and the observations',
         'name': 'SeasonalSstLonRmse',
         'units': 'C'}},
       'SeasonalTauxLonRmse': {'diagnostic': {'BCC-CSM1-1-M_r2i1p1': {'keyerror': None,
          'name': 'BCC-CSM1-1-M_r2i1p1',
          'nyears': 163,
          'time_period': ['1850-1-16 12:0:0.0', '2012-12-16 12:0:0.0']},
         'ERA-Interim': {'name': 'ERA-Interim',
          'nyears': 40,
          'time_period': ['1979-1-16 12:0:0.0', '2019-3-16 12:0:0.0']},
         'Tropflux': {'name': 'Tropflux',
          'nyears': 40,
          'time_period': ['1979-1-15 0:0:0.0', '2018-12-15 12:0:0.0']},
         'method': 'Zonal root mean square error of equatorial_pacific climatological taux STD, time series are linearly detrended, observations and model regridded to generic_1x1deg',
         'name': 'taux zonal seasonality RMSE',
         'ref': 'Using CDAT regridding and rms (uncentered and biased) calculation',
         'time_frequency': 'monthly',
         'units': '1e-3 N/m2'},
        'metric': {'datasets': "BCC-CSM1-1-M_r2i1p1; ERA-Interim's tauu & Tropflux's taux; 's ",
         'method': 'The metric is the statistical value between the model and the observations',
         'name': 'SeasonalTauxLonRmse',
         'units': '1e-3 N/m2'}}},
      'name': 'Metrics Collection for ENSO performance'},
     'value': {'BiasPrLatRmse': {'diagnostic': {'BCC-CSM1-1-M_r2i1p1': {'value': None,
         'value_error': None},
        'ERA-Interim': {'value': None, 'value_error': None},
        'GPCPv2.3': {'value': None, 'value_error': None}},
       'metric': {'ERA-Interim': {'value': 2.7777838657014953,
         'value_error': None},
        'GPCPv2.3': {'value': 2.7330237678295206, 'value_error': None}}},
      'BiasPrLonRmse': {'diagnostic': {'BCC-CSM1-1-M_r2i1p1': {'value': None,
         'value_error': None},
        'ERA-Interim': {'value': None, 'value_error': None},
        'GPCPv2.3': {'value': None, 'value_error': None}},
       'metric': {'ERA-Interim': {'value': 1.233023689835968,
         'value_error': None},
        'GPCPv2.3': {'value': 0.3548696096696779, 'value_error': None}}},
      'BiasSstLonRmse': {'diagnostic': {'BCC-CSM1-1-M_r2i1p1': {'value': None,
         'value_error': None},
        'ERA-Interim': {'value': None, 'value_error': None},
        'HadISST': {'value': None, 'value_error': None},
        'Tropflux': {'value': None, 'value_error': None}},
       'metric': {'ERA-Interim': {'value': 0.6003190305111286,
         'value_error': None},
        'HadISST': {'value': 0.5379191671861073, 'value_error': None},
        'Tropflux': {'value': 0.6290620847164385, 'value_error': None}}},
      'BiasTauxLonRmse': {'diagnostic': {'BCC-CSM1-1-M_r2i1p1': {'value': None,
         'value_error': None},
        'ERA-Interim': {'value': None, 'value_error': None},
        'Tropflux': {'value': None, 'value_error': None}},
       'metric': {'ERA-Interim': {'value': 6.263823227930281,
         'value_error': None},
        'Tropflux': {'value': 6.268029429709042, 'value_error': None}}},
      'EnsoAmpl': {'diagnostic': {'BCC-CSM1-1-M_r2i1p1': {'value': 1.3184571343707698,
         'value_error': 0.1032695328357082},
        'ERA-Interim': {'value': 0.8989844997845644,
         'value_error': 0.14214193002531866},
        'HadISST': {'value': 0.7665787872085695,
         'value_error': 0.06238329697691264},
        'Tropflux': {'value': 0.9039789553693535,
         'value_error': 0.14293162279134272}},
       'metric': {'ERA-Interim': {'value': 46.660719365765395,
         'value_error': 34.67644992832789},
        'HadISST': {'value': 71.99238439297514,
         'value_error': 27.468024980967947},
        'Tropflux': {'value': 45.8504234572658,
         'value_error': 34.4848636220577}}},
      'EnsoDuration': {'diagnostic': {'BCC-CSM1-1-M_r2i1p1': {'value': 12.0,
         'value_error': None},
        'ERA-Interim': {'value': 13.0, 'value_error': None},
        'HadISST': {'value': 13.0, 'value_error': None},
        'Tropflux': {'value': 13.0, 'value_error': None}},
       'metric': {'ERA-Interim': {'value': 7.6923076923076925,
         'value_error': None},
        'HadISST': {'value': 7.6923076923076925, 'value_error': None},
        'Tropflux': {'value': 7.6923076923076925, 'value_error': None}}},
      'EnsoSeasonality': {'diagnostic': {'BCC-CSM1-1-M_r2i1p1': {'value': 1.6679654023827126,
         'value_error': 0.26169287169783656},
        'ERA-Interim': {'value': 2.0466846866656914,
         'value_error': 0.6513411033995022},
        'HadISST': {'value': 1.6639865947361325,
         'value_error': 0.2712772451657809},
        'Tropflux': {'value': 2.0532132553583624,
         'value_error': 0.6534187683977347}},
       'metric': {'ERA-Interim': {'value': 18.50403663790344,
         'value_error': 38.72162545847104},
        'HadISST': {'value': 0.23911296275863553,
         'value_error': 32.06869439993549},
        'Tropflux': {'value': 18.763168023109692,
         'value_error': 38.59850293769157}}},
      'EnsoSstDiversity_2': {'diagnostic': {'BCC-CSM1-1-M_r2i1p1': {'value': 7.0,
         'value_error': None},
        'ERA-Interim': {'value': 33.25, 'value_error': None},
        'HadISST': {'value': 49.0, 'value_error': None},
        'Tropflux': {'value': 32.0, 'value_error': None}},
       'metric': {'ERA-Interim': {'value': 78.94736842105263,
         'value_error': None},
        'HadISST': {'value': 85.71428571428571, 'value_error': None},
        'Tropflux': {'value': 78.125, 'value_error': None}}},
      'EnsoSstLonRmse': {'diagnostic': {'BCC-CSM1-1-M_r2i1p1': {'value': None,
         'value_error': None},
        'ERA-Interim': {'value': None, 'value_error': None},
        'HadISST': {'value': None, 'value_error': None},
        'Tropflux': {'value': None, 'value_error': None}},
       'metric': {'ERA-Interim': {'value': 0.11073988925085478,
         'value_error': None},
        'HadISST': {'value': 0.12680696561284865, 'value_error': None},
        'Tropflux': {'value': 0.11279525935572005, 'value_error': None}}},
      'EnsoSstSkew': {'diagnostic': {'BCC-CSM1-1-M_r2i1p1': {'value': 0.057893872240628745,
         'value_error': 0.004534598042274018},
        'ERA-Interim': {'value': 0.39098111106809963,
         'value_error': 0.061819541653923164},
        'HadISST': {'value': 0.38989908235027515,
         'value_error': 0.03172953733021198},
        'Tropflux': {'value': 0.39744741059612115,
         'value_error': 0.06284195338099416}},
       'metric': {'ERA-Interim': {'value': 85.19266772697236,
         'value_error': 3.5010445766135634},
        'HadISST': {'value': 85.15157514820247,
         'value_error': 2.3713660706354984},
        'Tropflux': {'value': 85.43357669539343,
         'value_error': 3.4440840774637924}}},
      'EnsoSstTsRmse': {'diagnostic': {'BCC-CSM1-1-M_r2i1p1': {'value': None,
         'value_error': None},
        'ERA-Interim': {'value': None, 'value_error': None},
        'HadISST': {'value': None, 'value_error': None},
        'Tropflux': {'value': None, 'value_error': None}},
       'metric': {'ERA-Interim': {'value': 0.27927431185720963,
         'value_error': None},
        'HadISST': {'value': 0.2767563381954998, 'value_error': None},
        'Tropflux': {'value': 0.28013201756878, 'value_error': None}}},
      'SeasonalPrLatRmse': {'diagnostic': {'BCC-CSM1-1-M_r2i1p1': {'value': None,
         'value_error': None},
        'ERA-Interim': {'value': None, 'value_error': None},
        'GPCPv2.3': {'value': None, 'value_error': None}},
       'metric': {'ERA-Interim': {'value': 1.3155297166581075,
         'value_error': None},
        'GPCPv2.3': {'value': 1.3812601124991835, 'value_error': None}}},
      'SeasonalPrLonRmse': {'diagnostic': {'BCC-CSM1-1-M_r2i1p1': {'value': None,
         'value_error': None},
        'ERA-Interim': {'value': None, 'value_error': None},
        'GPCPv2.3': {'value': None, 'value_error': None}},
       'metric': {'ERA-Interim': {'value': 0.5364530684152913,
         'value_error': None},
        'GPCPv2.3': {'value': 0.2605051256294458, 'value_error': None}}},
      'SeasonalSstLonRmse': {'diagnostic': {'BCC-CSM1-1-M_r2i1p1': {'value': None,
         'value_error': None},
        'ERA-Interim': {'value': None, 'value_error': None},
        'HadISST': {'value': None, 'value_error': None},
        'Tropflux': {'value': None, 'value_error': None}},
       'metric': {'ERA-Interim': {'value': 0.19008928763136193,
         'value_error': None},
        'HadISST': {'value': 0.2064215110267346, 'value_error': None},
        'Tropflux': {'value': 0.18402381926659445, 'value_error': None}}},
      'SeasonalTauxLonRmse': {'diagnostic': {'BCC-CSM1-1-M_r2i1p1': {'value': None,
         'value_error': None},
        'ERA-Interim': {'value': None, 'value_error': None},
        'Tropflux': {'value': None, 'value_error': None}},
       'metric': {'ERA-Interim': {'value': 1.99607950935536,
         'value_error': None},
        'Tropflux': {'value': 1.9290907290268442, 'value_error': None}}}}},
    'r3i1p1': {'metadata': {'description_of_the_collection': 'Describe which science question this collection is about',
      'metrics': {'BiasPrLatRmse': {'diagnostic': {'BCC-CSM1-1-M_r3i1p1': {'keyerror': None,
          'name': 'BCC-CSM1-1-M_r3i1p1',
          'nyears': 163,
          'time_period': ['1850-1-16 12:0:0.0', '2012-12-16 12:0:0.0']},
         'ERA-Interim': {'name': 'ERA-Interim',
          'nyears': 40,
          'time_period': ['1979-1-16 12:0:0.0', '2019-3-16 12:0:0.0']},
         'GPCPv2.3': {'name': 'GPCPv2.3',
          'nyears': 41,
          'time_period': ['1979-1-1 0:0:0.0', '2019-7-1 0:0:0.0']},
         'method': 'Meridional root mean square error of nino3_LatExt pr, time series are linearly detrended, observations and model regridded to generic_1x1deg',
         'name': 'pr Meridional RMSE',
         'ref': 'Using CDAT regridding and rms (uncentered and biased) calculation',
         'time_frequency': 'monthly',
         'units': 'mm/day'},
        'metric': {'datasets': "BCC-CSM1-1-M_r3i1p1; ERA-Interim's pr & GPCPv2.3's precip; 's ",
         'method': 'The metric is the statistical value between the model and the observations',
         'name': 'BiasPrLatRmse',
         'units': 'mm/day'}},
       'BiasPrLonRmse': {'diagnostic': {'BCC-CSM1-1-M_r3i1p1': {'keyerror': None,
          'name': 'BCC-CSM1-1-M_r3i1p1',
          'nyears': 163,
          'time_period': ['1850-1-16 12:0:0.0', '2012-12-16 12:0:0.0']},
         'ERA-Interim': {'name': 'ERA-Interim',
          'nyears': 40,
          'time_period': ['1979-1-16 12:0:0.0', '2019-3-16 12:0:0.0']},
         'GPCPv2.3': {'name': 'GPCPv2.3',
          'nyears': 41,
          'time_period': ['1979-1-1 0:0:0.0', '2019-7-1 0:0:0.0']},
         'method': 'Zonal root mean square error of equatorial_pacific pr, time series are linearly detrended, observations and model regridded to generic_1x1deg',
         'name': 'pr Zonal RMSE',
         'ref': 'Using CDAT regridding and rms (uncentered and biased) calculation',
         'time_frequency': 'monthly',
         'units': 'mm/day'},
        'metric': {'datasets': "BCC-CSM1-1-M_r3i1p1; ERA-Interim's pr & GPCPv2.3's precip; 's ",
         'method': 'The metric is the statistical value between the model and the observations',
         'name': 'BiasPrLonRmse',
         'units': 'mm/day'}},
       'BiasSstLonRmse': {'diagnostic': {'BCC-CSM1-1-M_r3i1p1': {'keyerror': None,
          'name': 'BCC-CSM1-1-M_r3i1p1',
          'nyears': 163,
          'time_period': ['1850-1-16 12:0:0.0', '2012-12-16 12:0:0.0']},
         'ERA-Interim': {'name': 'ERA-Interim',
          'nyears': 40,
          'time_period': ['1979-1-16 12:0:0.0', '2019-3-16 12:0:0.0']},
         'HadISST': {'name': 'HadISST',
          'nyears': 151,
          'time_period': ['1870-1-16 11:59:59.5', '2020-10-16 12:0:0.0']},
         'Tropflux': {'name': 'Tropflux',
          'nyears': 40,
          'time_period': ['1979-1-15 0:0:0.0', '2018-12-15 12:0:0.0']},
         'method': 'Zonal root mean square error of equatorial_pacific sst, time series are linearly detrended, observations and model regridded to generic_1x1deg',
         'name': 'sst Zonal RMSE',
         'ref': 'Using CDAT regridding and rms (uncentered and biased) calculation',
         'time_frequency': 'monthly',
         'units': 'C'},
        'metric': {'datasets': "BCC-CSM1-1-M_r3i1p1; ERA-Interim's ts & HadISST's sst & Tropflux's sst; 's ",
         'method': 'The metric is the statistical value between the model and the observations',
         'name': 'BiasSstLonRmse',
         'units': 'C'}},
       'BiasTauxLonRmse': {'diagnostic': {'BCC-CSM1-1-M_r3i1p1': {'keyerror': None,
          'name': 'BCC-CSM1-1-M_r3i1p1',
          'nyears': 163,
          'time_period': ['1850-1-16 12:0:0.0', '2012-12-16 12:0:0.0']},
         'ERA-Interim': {'name': 'ERA-Interim',
          'nyears': 40,
          'time_period': ['1979-1-16 12:0:0.0', '2019-3-16 12:0:0.0']},
         'Tropflux': {'name': 'Tropflux',
          'nyears': 40,
          'time_period': ['1979-1-15 0:0:0.0', '2018-12-15 12:0:0.0']},
         'method': 'Zonal root mean square error of equatorial_pacific taux, time series are linearly detrended, observations and model regridded to generic_1x1deg',
         'name': 'taux Zonal RMSE',
         'ref': 'Using CDAT regridding and rms (uncentered and biased) calculation',
         'time_frequency': 'monthly',
         'units': '1e-3 N/m2'},
        'metric': {'datasets': "BCC-CSM1-1-M_r3i1p1; ERA-Interim's tauu & Tropflux's taux; 's ",
         'method': 'The metric is the statistical value between the model and the observations',
         'name': 'BiasTauxLonRmse',
         'units': '1e-3 N/m2'}},
       'EnsoAmpl': {'diagnostic': {'BCC-CSM1-1-M_r3i1p1': {'keyerror': None,
          'name': 'BCC-CSM1-1-M_r3i1p1',
          'nyears': 163,
          'time_period': ['1850-1-16 12:0:0.0', '2012-12-16 12:0:0.0']},
         'ERA-Interim': {'keyerror': None,
          'name': 'ERA-Interim',
          'nyears': 40,
          'time_period': ['1979-1-16 12:0:0.0', '2019-3-16 12:0:0.0']},
         'HadISST': {'keyerror': None,
          'name': 'HadISST',
          'nyears': 151,
          'time_period': ['1870-1-16 11:59:59.5', '2020-10-16 12:0:0.0']},
         'Tropflux': {'keyerror': None,
          'name': 'Tropflux',
          'nyears': 40,
          'time_period': ['1979-1-15 0:0:0.0', '2018-12-15 12:0:0.0']},
         'method': 'Standard deviation of nino3.4 sstA, time series are linearly detrended',
         'name': 'ENSO amplitude',
         'ref': 'Using CDAT regression calculation',
         'time_frequency': 'monthly',
         'units': 'C'},
        'metric': {'datasets': "BCC-CSM1-1-M_r3i1p1; ERA-Interim's ts & HadISST's sst & Tropflux's sst; 's ",
         'method': 'The metric is the absolute value of the relative difference between model and observations values (M = 100 * abs[[model-obs] / obs])',
         'name': 'EnsoAmpl',
         'units': '%'}},
       'EnsoDuration': {'diagnostic': {'BCC-CSM1-1-M_r3i1p1': {'keyerror': None,
          'name': 'BCC-CSM1-1-M_r3i1p1',
          'nyears': 163,
          'time_period': ['1850-1-16 12:0:0.0', '2012-12-16 12:0:0.0']},
         'ERA-Interim': {'keyerror': None,
          'name': 'ERA-Interim',
          'nyears': 40,
          'time_period': ['1979-1-16 12:0:0.0', '2019-3-16 12:0:0.0']},
         'HadISST': {'keyerror': None,
          'name': 'HadISST',
          'nyears': 151,
          'time_period': ['1870-1-16 11:59:59.5', '2020-10-16 12:0:0.0']},
         'Tropflux': {'keyerror': None,
          'name': 'Tropflux',
          'nyears': 40,
          'time_period': ['1979-1-15 0:0:0.0', '2018-12-15 12:0:0.0']},
         'method': 'nino3.4 SSTA during DEC regressed against nino3.4 SSTA during 6 years (centered on ENSO), the duration is the number of consecutive months during which the regression is above 0.25, time series are linearly detrended, smoothing using a triangle shaped window of 5 points',
         'name': 'ENSO Duration based on life cyle SSTA pattern',
         'ref': 'Using CDAT',
         'time_frequency': 'monthly',
         'units': 'months'},
        'metric': {'datasets': "BCC-CSM1-1-M_r3i1p1; ERA-Interim's ts & HadISST's sst & Tropflux's sst; 's ",
         'method': 'The metric is the absolute value of the relative difference between model and observations values (M = 100 * abs[[model-obs] / obs])',
         'name': 'EnsoDuration',
         'units': '%'}},
       'EnsoSeasonality': {'diagnostic': {'BCC-CSM1-1-M_r3i1p1': {'keyerror': None,
          'name': 'BCC-CSM1-1-M_r3i1p1',
          'nyears': 163,
          'time_period': ['1850-1-16 12:0:0.0', '2012-12-16 12:0:0.0']},
         'ERA-Interim': {'keyerror': None,
          'name': 'ERA-Interim',
          'nyears': 40,
          'time_period': ['1979-1-16 12:0:0.0', '2019-3-16 12:0:0.0']},
         'HadISST': {'keyerror': None,
          'name': 'HadISST',
          'nyears': 151,
          'time_period': ['1870-1-16 11:59:59.5', '2020-10-16 12:0:0.0']},
         'Tropflux': {'keyerror': None,
          'name': 'Tropflux',
          'nyears': 40,
          'time_period': ['1979-1-15 0:0:0.0', '2018-12-15 12:0:0.0']},
         'method': 'Ratio between NDJ and MAM standard deviation nino3.4 sstA, time series are linearly detrended',
         'name': 'ENSO seasonality',
         'ref': 'Using CDAT std dev calculation',
         'time_frequency': 'monthly',
         'units': 'C/C'},
        'metric': {'datasets': "BCC-CSM1-1-M_r3i1p1; ERA-Interim's ts & HadISST's sst & Tropflux's sst; 's ",
         'method': 'The metric is the absolute value of the relative difference between model and observations values (M = 100 * abs[[model-obs] / obs])',
         'name': 'EnsoSeasonality',
         'units': '%'}},
       'EnsoSstDiversity_2': {'diagnostic': {'BCC-CSM1-1-M_r3i1p1': {'keyerror': None,
          'name': 'BCC-CSM1-1-M_r3i1p1',
          'nyears': 163,
          'time_period': ['1850-1-16 12:0:0.0', '2012-12-16 12:0:0.0']},
         'ERA-Interim': {'keyerror': None,
          'name': 'ERA-Interim',
          'nyears': 40,
          'time_period': ['1979-1-16 12:0:0.0', '2019-3-16 12:0:0.0']},
         'HadISST': {'keyerror': None,
          'name': 'HadISST',
          'nyears': 151,
          'time_period': ['1870-1-16 11:59:59.5', '2020-10-16 12:0:0.0']},
         'Tropflux': {'keyerror': None,
          'name': 'Tropflux',
          'nyears': 40,
          'time_period': ['1979-1-15 0:0:0.0', '2018-12-15 12:0:0.0']},
         'method': 'Nino (Nina) events = nino3.4 sstA > 0.75 (< -0.75) during DEC, zonal SSTA (meridional averaged [-5.0 ; 5.0]), the zonal SSTA maximum (minimum) is located for each event, the diversity is the interquartile range (IQR = Q3 - Q1), time series are linearly detrended, smoothing using a triangle shaped window of 5 points',
         'name': 'ENSO Diversity (interquartile range)',
         'ref': 'Using CDAT regridding',
         'time_frequency': 'monthly',
         'units': 'long'},
        'metric': {'datasets': "BCC-CSM1-1-M_r3i1p1; ERA-Interim's ts & HadISST's sst & Tropflux's sst; 's ",
         'method': 'The metric is the absolute value of the relative difference between model and observations values (M = 100 * abs[[model-obs] / obs])',
         'name': 'EnsoSstDiversity',
         'units': '%'}},
       'EnsoSstLonRmse': {'diagnostic': {'BCC-CSM1-1-M_r3i1p1': {'keyerror': None,
          'name': 'BCC-CSM1-1-M_r3i1p1',
          'nyears': 163,
          'time_period': ['1850-1-16 12:0:0.0', '2012-12-16 12:0:0.0']},
         'ERA-Interim': {'name': 'ERA-Interim',
          'nyears': 40,
          'time_period': ['1979-1-16 12:0:0.0', '2019-3-16 12:0:0.0']},
         'HadISST': {'name': 'HadISST',
          'nyears': 151,
          'time_period': ['1870-1-16 11:59:59.5', '2020-10-16 12:0:0.0']},
         'Tropflux': {'name': 'Tropflux',
          'nyears': 40,
          'time_period': ['1979-1-15 0:0:0.0', '2018-12-15 12:0:0.0']},
         'method': 'nino3.4 SSTA during DEC regressed against equatorial_pacific SSTA, time series are linearly detrended, smoothing using a triangle shaped window of 5 points, observations and model regridded to generic_1x1deg',
         'name': 'ENSO Zonal SSTA pattern',
         'ref': 'Using CDAT regridding and rms (uncentered and biased) calculation',
         'time_frequency': 'monthly',
         'units': 'C/C'},
        'metric': {'datasets': "BCC-CSM1-1-M_r3i1p1; ERA-Interim's ts & HadISST's sst & Tropflux's sst; 's ",
         'method': 'The metric is the statistical value between the model and the observations',
         'name': 'EnsoSstLonRmse',
         'units': 'C/C'}},
       'EnsoSstSkew': {'diagnostic': {'BCC-CSM1-1-M_r3i1p1': {'keyerror': None,
          'name': 'BCC-CSM1-1-M_r3i1p1',
          'nyears': 163,
          'time_period': ['1850-1-16 12:0:0.0', '2012-12-16 12:0:0.0']},
         'ERA-Interim': {'keyerror': None,
          'name': 'ERA-Interim',
          'nyears': 40,
          'time_period': ['1979-1-16 12:0:0.0', '2019-3-16 12:0:0.0']},
         'HadISST': {'keyerror': None,
          'name': 'HadISST',
          'nyears': 151,
          'time_period': ['1870-1-16 11:59:59.5', '2020-10-16 12:0:0.0']},
         'Tropflux': {'keyerror': None,
          'name': 'Tropflux',
          'nyears': 40,
          'time_period': ['1979-1-15 0:0:0.0', '2018-12-15 12:0:0.0']},
         'method': 'Standard deviation of nino3.4 sstA, time series are linearly detrended',
         'name': 'ENSO skewness',
         'ref': 'Using CDAT regression calculation',
         'time_frequency': 'monthly',
         'units': 'C'},
        'metric': {'datasets': "BCC-CSM1-1-M_r3i1p1; ERA-Interim's ts & HadISST's sst & Tropflux's sst; 's ",
         'method': 'The metric is the absolute value of the relative difference between model and observations values (M = 100 * abs[[model-obs] / obs])',
         'name': 'EnsoSstSkew',
         'units': '%'}},
       'EnsoSstTsRmse': {'diagnostic': {'BCC-CSM1-1-M_r3i1p1': {'keyerror': None,
          'name': 'BCC-CSM1-1-M_r3i1p1',
          'nyears': 163,
          'time_period': ['1850-1-16 12:0:0.0', '2012-12-16 12:0:0.0']},
         'ERA-Interim': {'name': 'ERA-Interim',
          'nyears': 40,
          'time_period': ['1979-1-16 12:0:0.0', '2019-3-16 12:0:0.0']},
         'HadISST': {'name': 'HadISST',
          'nyears': 151,
          'time_period': ['1870-1-16 11:59:59.5', '2020-10-16 12:0:0.0']},
         'Tropflux': {'name': 'Tropflux',
          'nyears': 40,
          'time_period': ['1979-1-15 0:0:0.0', '2018-12-15 12:0:0.0']},
         'method': 'nino3.4 SSTA during DEC regressed against nino3.4 SSTA during 6 years (centered on ENSO), time series are linearly detrended, smoothing using a triangle shaped window of 5 points',
         'name': 'ENSO life cyle SSTA pattern',
         'ref': 'Using CDAT regridding and rms (uncentered and biased) calculation',
         'time_frequency': 'monthly',
         'units': 'C/C'},
        'metric': {'datasets': "BCC-CSM1-1-M_r3i1p1; ERA-Interim's ts & HadISST's sst & Tropflux's sst; 's ",
         'method': 'The metric is the statistical value between the model and the observations',
         'name': 'EnsoSstTsRmse',
         'units': 'C/C'}},
       'SeasonalPrLatRmse': {'diagnostic': {'BCC-CSM1-1-M_r3i1p1': {'keyerror': None,
          'name': 'BCC-CSM1-1-M_r3i1p1',
          'nyears': 163,
          'time_period': ['1850-1-16 12:0:0.0', '2012-12-16 12:0:0.0']},
         'ERA-Interim': {'name': 'ERA-Interim',
          'nyears': 40,
          'time_period': ['1979-1-16 12:0:0.0', '2019-3-16 12:0:0.0']},
         'GPCPv2.3': {'name': 'GPCPv2.3',
          'nyears': 41,
          'time_period': ['1979-1-1 0:0:0.0', '2019-7-1 0:0:0.0']},
         'method': 'Meridional root mean square error of nino3_LatExt climatological pr STD, time series are linearly detrended, observations and model regridded to generic_1x1deg',
         'name': 'pr meridional seasonality RMSE',
         'ref': 'Using CDAT regridding and rms (uncentered and biased) calculation',
         'time_frequency': 'monthly',
         'units': 'mm/day'},
        'metric': {'datasets': "BCC-CSM1-1-M_r3i1p1; ERA-Interim's pr & GPCPv2.3's precip; 's ",
         'method': 'The metric is the statistical value between the model and the observations',
         'name': 'SeasonalPrLatRmse',
         'units': 'mm/day'}},
       'SeasonalPrLonRmse': {'diagnostic': {'BCC-CSM1-1-M_r3i1p1': {'keyerror': None,
          'name': 'BCC-CSM1-1-M_r3i1p1',
          'nyears': 163,
          'time_period': ['1850-1-16 12:0:0.0', '2012-12-16 12:0:0.0']},
         'ERA-Interim': {'name': 'ERA-Interim',
          'nyears': 40,
          'time_period': ['1979-1-16 12:0:0.0', '2019-3-16 12:0:0.0']},
         'GPCPv2.3': {'name': 'GPCPv2.3',
          'nyears': 41,
          'time_period': ['1979-1-1 0:0:0.0', '2019-7-1 0:0:0.0']},
         'method': 'Zonal root mean square error of equatorial_pacific climatological pr STD, time series are linearly detrended, observations and model regridded to generic_1x1deg',
         'name': 'pr zonal seasonality RMSE',
         'ref': 'Using CDAT regridding and rms (uncentered and biased) calculation',
         'time_frequency': 'monthly',
         'units': 'mm/day'},
        'metric': {'datasets': "BCC-CSM1-1-M_r3i1p1; ERA-Interim's pr & GPCPv2.3's precip; 's ",
         'method': 'The metric is the statistical value between the model and the observations',
         'name': 'SeasonalPrLonRmse',
         'units': 'mm/day'}},
       'SeasonalSstLonRmse': {'diagnostic': {'BCC-CSM1-1-M_r3i1p1': {'keyerror': None,
          'name': 'BCC-CSM1-1-M_r3i1p1',
          'nyears': 163,
          'time_period': ['1850-1-16 12:0:0.0', '2012-12-16 12:0:0.0']},
         'ERA-Interim': {'name': 'ERA-Interim',
          'nyears': 40,
          'time_period': ['1979-1-16 12:0:0.0', '2019-3-16 12:0:0.0']},
         'HadISST': {'name': 'HadISST',
          'nyears': 151,
          'time_period': ['1870-1-16 11:59:59.5', '2020-10-16 12:0:0.0']},
         'Tropflux': {'name': 'Tropflux',
          'nyears': 40,
          'time_period': ['1979-1-15 0:0:0.0', '2018-12-15 12:0:0.0']},
         'method': 'Zonal root mean square error of equatorial_pacific climatological sst STD, time series are linearly detrended, observations and model regridded to generic_1x1deg',
         'name': 'sst zonal seasonality RMSE',
         'ref': 'Using CDAT regridding and rms (uncentered and biased) calculation',
         'time_frequency': 'monthly',
         'units': 'C'},
        'metric': {'datasets': "BCC-CSM1-1-M_r3i1p1; ERA-Interim's ts & HadISST's sst & Tropflux's sst; 's ",
         'method': 'The metric is the statistical value between the model and the observations',
         'name': 'SeasonalSstLonRmse',
         'units': 'C'}},
       'SeasonalTauxLonRmse': {'diagnostic': {'BCC-CSM1-1-M_r3i1p1': {'keyerror': None,
          'name': 'BCC-CSM1-1-M_r3i1p1',
          'nyears': 163,
          'time_period': ['1850-1-16 12:0:0.0', '2012-12-16 12:0:0.0']},
         'ERA-Interim': {'name': 'ERA-Interim',
          'nyears': 40,
          'time_period': ['1979-1-16 12:0:0.0', '2019-3-16 12:0:0.0']},
         'Tropflux': {'name': 'Tropflux',
          'nyears': 40,
          'time_period': ['1979-1-15 0:0:0.0', '2018-12-15 12:0:0.0']},
         'method': 'Zonal root mean square error of equatorial_pacific climatological taux STD, time series are linearly detrended, observations and model regridded to generic_1x1deg',
         'name': 'taux zonal seasonality RMSE',
         'ref': 'Using CDAT regridding and rms (uncentered and biased) calculation',
         'time_frequency': 'monthly',
         'units': '1e-3 N/m2'},
        'metric': {'datasets': "BCC-CSM1-1-M_r3i1p1; ERA-Interim's tauu & Tropflux's taux; 's ",
         'method': 'The metric is the statistical value between the model and the observations',
         'name': 'SeasonalTauxLonRmse',
         'units': '1e-3 N/m2'}}},
      'name': 'Metrics Collection for ENSO performance'},
     'value': {'BiasPrLatRmse': {'diagnostic': {'BCC-CSM1-1-M_r3i1p1': {'value': None,
         'value_error': None},
        'ERA-Interim': {'value': None, 'value_error': None},
        'GPCPv2.3': {'value': None, 'value_error': None}},
       'metric': {'ERA-Interim': {'value': 2.7347312369784347,
         'value_error': None},
        'GPCPv2.3': {'value': 2.70121612036843, 'value_error': None}}},
      'BiasPrLonRmse': {'diagnostic': {'BCC-CSM1-1-M_r3i1p1': {'value': None,
         'value_error': None},
        'ERA-Interim': {'value': None, 'value_error': None},
        'GPCPv2.3': {'value': None, 'value_error': None}},
       'metric': {'ERA-Interim': {'value': 1.2469565909142823,
         'value_error': None},
        'GPCPv2.3': {'value': 0.3270212246356474, 'value_error': None}}},
      'BiasSstLonRmse': {'diagnostic': {'BCC-CSM1-1-M_r3i1p1': {'value': None,
         'value_error': None},
        'ERA-Interim': {'value': None, 'value_error': None},
        'HadISST': {'value': None, 'value_error': None},
        'Tropflux': {'value': None, 'value_error': None}},
       'metric': {'ERA-Interim': {'value': 0.6071403990085729,
         'value_error': None},
        'HadISST': {'value': 0.536849699810774, 'value_error': None},
        'Tropflux': {'value': 0.6374503568997398, 'value_error': None}}},
      'BiasTauxLonRmse': {'diagnostic': {'BCC-CSM1-1-M_r3i1p1': {'value': None,
         'value_error': None},
        'ERA-Interim': {'value': None, 'value_error': None},
        'Tropflux': {'value': None, 'value_error': None}},
       'metric': {'ERA-Interim': {'value': 6.651267339566656,
         'value_error': None},
        'Tropflux': {'value': 6.661901384493073, 'value_error': None}}},
      'EnsoAmpl': {'diagnostic': {'BCC-CSM1-1-M_r3i1p1': {'value': 1.3371681481538449,
         'value_error': 0.10473509254325442},
        'ERA-Interim': {'value': 0.8989844997845644,
         'value_error': 0.14214193002531866},
        'HadISST': {'value': 0.7665787872085695,
         'value_error': 0.06238329697691264},
        'Tropflux': {'value': 0.9039789553693535,
         'value_error': 0.14293162279134272}},
       'metric': {'ERA-Interim': {'value': 48.742069354286784,
         'value_error': 35.168564169771706},
        'HadISST': {'value': 74.43323119115091,
         'value_error': 27.85784015251543},
        'Tropflux': {'value': 47.92027405189938,
         'value_error': 34.97425894763855}}},
      'EnsoDuration': {'diagnostic': {'BCC-CSM1-1-M_r3i1p1': {'value': 11.0,
         'value_error': None},
        'ERA-Interim': {'value': 13.0, 'value_error': None},
        'HadISST': {'value': 13.0, 'value_error': None},
        'Tropflux': {'value': 13.0, 'value_error': None}},
       'metric': {'ERA-Interim': {'value': 15.384615384615385,
         'value_error': None},
        'HadISST': {'value': 15.384615384615385, 'value_error': None},
        'Tropflux': {'value': 15.384615384615385, 'value_error': None}}},
      'EnsoSeasonality': {'diagnostic': {'BCC-CSM1-1-M_r3i1p1': {'value': 1.7599211715097454,
         'value_error': 0.2761201309549294},
        'ERA-Interim': {'value': 2.0466846866656914,
         'value_error': 0.6513411033995022},
        'HadISST': {'value': 1.6639865947361325,
         'value_error': 0.2712772451657809},
        'Tropflux': {'value': 2.0532132553583624,
         'value_error': 0.6534187683977347}},
       'metric': {'ERA-Interim': {'value': 14.011123307084498,
         'value_error': 40.85636808910122},
        'HadISST': {'value': 5.765345530853012,
         'value_error': 33.836657604827685},
        'Tropflux': {'value': 14.284540735512962,
         'value_error': 40.72645776200458}}},
      'EnsoSstDiversity_2': {'diagnostic': {'BCC-CSM1-1-M_r3i1p1': {'value': 8.0,
         'value_error': None},
        'ERA-Interim': {'value': 33.25, 'value_error': None},
        'HadISST': {'value': 49.0, 'value_error': None},
        'Tropflux': {'value': 32.0, 'value_error': None}},
       'metric': {'ERA-Interim': {'value': 75.93984962406014,
         'value_error': None},
        'HadISST': {'value': 83.6734693877551, 'value_error': None},
        'Tropflux': {'value': 75.0, 'value_error': None}}},
      'EnsoSstLonRmse': {'diagnostic': {'BCC-CSM1-1-M_r3i1p1': {'value': None,
         'value_error': None},
        'ERA-Interim': {'value': None, 'value_error': None},
        'HadISST': {'value': None, 'value_error': None},
        'Tropflux': {'value': None, 'value_error': None}},
       'metric': {'ERA-Interim': {'value': 0.12005755198436213,
         'value_error': None},
        'HadISST': {'value': 0.13202972290204107, 'value_error': None},
        'Tropflux': {'value': 0.12164668522324273, 'value_error': None}}},
      'EnsoSstSkew': {'diagnostic': {'BCC-CSM1-1-M_r3i1p1': {'value': 0.2887401516863427,
         'value_error': 0.022615874113943585},
        'ERA-Interim': {'value': 0.39098111106809963,
         'value_error': 0.061819541653923164},
        'HadISST': {'value': 0.38989908235027515,
         'value_error': 0.03172953733021198},
        'Tropflux': {'value': 0.39744741059612115,
         'value_error': 0.06284195338099416}},
       'metric': {'ERA-Interim': {'value': 26.14984624255901,
         'value_error': 17.461125037731083},
        'HadISST': {'value': 25.94490093543075,
         'value_error': 11.82696151491186},
        'Tropflux': {'value': 27.35135668558797,
         'value_error': 17.1770399950814}}},
      'EnsoSstTsRmse': {'diagnostic': {'BCC-CSM1-1-M_r3i1p1': {'value': None,
         'value_error': None},
        'ERA-Interim': {'value': None, 'value_error': None},
        'HadISST': {'value': None, 'value_error': None},
        'Tropflux': {'value': None, 'value_error': None}},
       'metric': {'ERA-Interim': {'value': 0.310091002428269,
         'value_error': None},
        'HadISST': {'value': 0.3063216866582536, 'value_error': None},
        'Tropflux': {'value': 0.31068599253119716, 'value_error': None}}},
      'SeasonalPrLatRmse': {'diagnostic': {'BCC-CSM1-1-M_r3i1p1': {'value': None,
         'value_error': None},
        'ERA-Interim': {'value': None, 'value_error': None},
        'GPCPv2.3': {'value': None, 'value_error': None}},
       'metric': {'ERA-Interim': {'value': 1.3229982127439062,
         'value_error': None},
        'GPCPv2.3': {'value': 1.395505785098484, 'value_error': None}}},
      'SeasonalPrLonRmse': {'diagnostic': {'BCC-CSM1-1-M_r3i1p1': {'value': None,
         'value_error': None},
        'ERA-Interim': {'value': None, 'value_error': None},
        'GPCPv2.3': {'value': None, 'value_error': None}},
       'metric': {'ERA-Interim': {'value': 0.5230555229633508,
         'value_error': None},
        'GPCPv2.3': {'value': 0.2904841181432017, 'value_error': None}}},
      'SeasonalSstLonRmse': {'diagnostic': {'BCC-CSM1-1-M_r3i1p1': {'value': None,
         'value_error': None},
        'ERA-Interim': {'value': None, 'value_error': None},
        'HadISST': {'value': None, 'value_error': None},
        'Tropflux': {'value': None, 'value_error': None}},
       'metric': {'ERA-Interim': {'value': 0.19311035116652037,
         'value_error': None},
        'HadISST': {'value': 0.2091594859123878, 'value_error': None},
        'Tropflux': {'value': 0.18727130592225386, 'value_error': None}}},
      'SeasonalTauxLonRmse': {'diagnostic': {'BCC-CSM1-1-M_r3i1p1': {'value': None,
         'value_error': None},
        'ERA-Interim': {'value': None, 'value_error': None},
        'Tropflux': {'value': None, 'value_error': None}},
       'metric': {'ERA-Interim': {'value': 1.8833384662660486,
         'value_error': None},
        'Tropflux': {'value': 1.815183974862213, 'value_error': None}}}}}},
   'BNU-ESM': {'r1i1p1': {'metadata': {'description_of_the_collection': 'Describe which science question this collection is about',
      'metrics': {'BiasPrLatRmse': {'diagnostic': {'BNU-ESM_r1i1p1': {'keyerror': None,
          'name': 'BNU-ESM_r1i1p1',
          'nyears': 156,
          'time_period': ['1850-1-16 12:0:0.0', '2005-12-16 12:0:0.0']},
         'ERA-Interim': {'name': 'ERA-Interim',
          'nyears': 40,
          'time_period': ['1979-1-16 12:0:0.0', '2019-3-16 12:0:0.0']},
         'GPCPv2.3': {'name': 'GPCPv2.3',
          'nyears': 41,
          'time_period': ['1979-1-1 0:0:0.0', '2019-7-1 0:0:0.0']},
         'method': 'Meridional root mean square error of nino3_LatExt pr, time series are linearly detrended, observations and model regridded to generic_1x1deg',
         'name': 'pr Meridional RMSE',
         'ref': 'Using CDAT regridding and rms (uncentered and biased) calculation',
         'time_frequency': 'monthly',
         'units': 'mm/day'},
        'metric': {'datasets': "BNU-ESM_r1i1p1; ERA-Interim's pr & GPCPv2.3's precip; 's ",
         'method': 'The metric is the statistical value between the model and the observations',
         'name': 'BiasPrLatRmse',
         'units': 'mm/day'}},
       'BiasPrLonRmse': {'diagnostic': {'BNU-ESM_r1i1p1': {'keyerror': None,
          'name': 'BNU-ESM_r1i1p1',
          'nyears': 156,
          'time_period': ['1850-1-16 12:0:0.0', '2005-12-16 12:0:0.0']},
         'ERA-Interim': {'name': 'ERA-Interim',
          'nyears': 40,
          'time_period': ['1979-1-16 12:0:0.0', '2019-3-16 12:0:0.0']},
         'GPCPv2.3': {'name': 'GPCPv2.3',
          'nyears': 41,
          'time_period': ['1979-1-1 0:0:0.0', '2019-7-1 0:0:0.0']},
         'method': 'Zonal root mean square error of equatorial_pacific pr, time series are linearly detrended, observations and model regridded to generic_1x1deg',
         'name': 'pr Zonal RMSE',
         'ref': 'Using CDAT regridding and rms (uncentered and biased) calculation',
         'time_frequency': 'monthly',
         'units': 'mm/day'},
        'metric': {'datasets': "BNU-ESM_r1i1p1; ERA-Interim's pr & GPCPv2.3's precip; 's ",
         'method': 'The metric is the statistical value between the model and the observations',
         'name': 'BiasPrLonRmse',
         'units': 'mm/day'}},
       'BiasSstLonRmse': {'diagnostic': {'BNU-ESM_r1i1p1': {'keyerror': None,
          'name': 'BNU-ESM_r1i1p1',
          'nyears': 156,
          'time_period': ['1850-1-16 12:0:0.0', '2005-12-16 12:0:0.0']},
         'ERA-Interim': {'name': 'ERA-Interim',
          'nyears': 40,
          'time_period': ['1979-1-16 12:0:0.0', '2019-3-16 12:0:0.0']},
         'HadISST': {'name': 'HadISST',
          'nyears': 151,
          'time_period': ['1870-1-16 11:59:59.5', '2020-10-16 12:0:0.0']},
         'Tropflux': {'name': 'Tropflux',
          'nyears': 40,
          'time_period': ['1979-1-15 0:0:0.0', '2018-12-15 12:0:0.0']},
         'method': 'Zonal root mean square error of equatorial_pacific sst, time series are linearly detrended, observations and model regridded to generic_1x1deg',
         'name': 'sst Zonal RMSE',
         'ref': 'Using CDAT regridding and rms (uncentered and biased) calculation',
         'time_frequency': 'monthly',
         'units': 'C'},
        'metric': {'datasets': "BNU-ESM_r1i1p1; ERA-Interim's ts & HadISST's sst & Tropflux's sst; 's ",
         'method': 'The metric is the statistical value between the model and the observations',
         'name': 'BiasSstLonRmse',
         'units': 'C'}},
       'BiasTauxLonRmse': {'diagnostic': {'BNU-ESM_r1i1p1': {'keyerror': None,
          'name': 'BNU-ESM_r1i1p1',
          'nyears': 156,
          'time_period': ['1850-1-16 12:0:0.0', '2005-12-16 12:0:0.0']},
         'ERA-Interim': {'name': 'ERA-Interim',
          'nyears': 40,
          'time_period': ['1979-1-16 12:0:0.0', '2019-3-16 12:0:0.0']},
         'Tropflux': {'name': 'Tropflux',
          'nyears': 40,
          'time_period': ['1979-1-15 0:0:0.0', '2018-12-15 12:0:0.0']},
         'method': 'Zonal root mean square error of equatorial_pacific taux, time series are linearly detrended, observations and model regridded to generic_1x1deg',
         'name': 'taux Zonal RMSE',
         'ref': 'Using CDAT regridding and rms (uncentered and biased) calculation',
         'time_frequency': 'monthly',
         'units': '1e-3 N/m2'},
        'metric': {'datasets': "BNU-ESM_r1i1p1; ERA-Interim's tauu & Tropflux's taux; 's ",
         'method': 'The metric is the statistical value between the model and the observations',
         'name': 'BiasTauxLonRmse',
         'units': '1e-3 N/m2'}},
       'EnsoAmpl': {'diagnostic': {'BNU-ESM_r1i1p1': {'keyerror': None,
          'name': 'BNU-ESM_r1i1p1',
          'nyears': 156,
          'time_period': ['1850-1-16 12:0:0.0', '2005-12-16 12:0:0.0']},
         'ERA-Interim': {'keyerror': None,
          'name': 'ERA-Interim',
          'nyears': 40,
          'time_period': ['1979-1-16 12:0:0.0', '2019-3-16 12:0:0.0']},
         'HadISST': {'keyerror': None,
          'name': 'HadISST',
          'nyears': 151,
          'time_period': ['1870-1-16 11:59:59.5', '2020-10-16 12:0:0.0']},
         'Tropflux': {'keyerror': None,
          'name': 'Tropflux',
          'nyears': 40,
          'time_period': ['1979-1-15 0:0:0.0', '2018-12-15 12:0:0.0']},
         'method': 'Standard deviation of nino3.4 sstA, time series are linearly detrended',
         'name': 'ENSO amplitude',
         'ref': 'Using CDAT regression calculation',
         'time_frequency': 'monthly',
         'units': 'C'},
        'metric': {'datasets': "BNU-ESM_r1i1p1; ERA-Interim's ts & HadISST's sst & Tropflux's sst; 's ",
         'method': 'The metric is the absolute value of the relative difference between model and observations values (M = 100 * abs[[model-obs] / obs])',
         'name': 'EnsoAmpl',
         'units': '%'}},
       'EnsoDuration': {'diagnostic': {'BNU-ESM_r1i1p1': {'keyerror': None,
          'name': 'BNU-ESM_r1i1p1',
          'nyears': 156,
          'time_period': ['1850-1-16 12:0:0.0', '2005-12-16 12:0:0.0']},
         'ERA-Interim': {'keyerror': None,
          'name': 'ERA-Interim',
          'nyears': 40,
          'time_period': ['1979-1-16 12:0:0.0', '2019-3-16 12:0:0.0']},
         'HadISST': {'keyerror': None,
          'name': 'HadISST',
          'nyears': 151,
          'time_period': ['1870-1-16 11:59:59.5', '2020-10-16 12:0:0.0']},
         'Tropflux': {'keyerror': None,
          'name': 'Tropflux',
          'nyears': 40,
          'time_period': ['1979-1-15 0:0:0.0', '2018-12-15 12:0:0.0']},
         'method': 'nino3.4 SSTA during DEC regressed against nino3.4 SSTA during 6 years (centered on ENSO), the duration is the number of consecutive months during which the regression is above 0.25, time series are linearly detrended, smoothing using a triangle shaped window of 5 points',
         'name': 'ENSO Duration based on life cyle SSTA pattern',
         'ref': 'Using CDAT',
         'time_frequency': 'monthly',
         'units': 'months'},
        'metric': {'datasets': "BNU-ESM_r1i1p1; ERA-Interim's ts & HadISST's sst & Tropflux's sst; 's ",
         'method': 'The metric is the absolute value of the relative difference between model and observations values (M = 100 * abs[[model-obs] / obs])',
         'name': 'EnsoDuration',
         'units': '%'}},
       'EnsoSeasonality': {'diagnostic': {'BNU-ESM_r1i1p1': {'keyerror': None,
          'name': 'BNU-ESM_r1i1p1',
          'nyears': 156,
          'time_period': ['1850-1-16 12:0:0.0', '2005-12-16 12:0:0.0']},
         'ERA-Interim': {'keyerror': None,
          'name': 'ERA-Interim',
          'nyears': 40,
          'time_period': ['1979-1-16 12:0:0.0', '2019-3-16 12:0:0.0']},
         'HadISST': {'keyerror': None,
          'name': 'HadISST',
          'nyears': 151,
          'time_period': ['1870-1-16 11:59:59.5', '2020-10-16 12:0:0.0']},
         'Tropflux': {'keyerror': None,
          'name': 'Tropflux',
          'nyears': 40,
          'time_period': ['1979-1-15 0:0:0.0', '2018-12-15 12:0:0.0']},
         'method': 'Ratio between NDJ and MAM standard deviation nino3.4 sstA, time series are linearly detrended',
         'name': 'ENSO seasonality',
         'ref': 'Using CDAT std dev calculation',
         'time_frequency': 'monthly',
         'units': 'C/C'},
        'metric': {'datasets': "BNU-ESM_r1i1p1; ERA-Interim's ts & HadISST's sst & Tropflux's sst; 's ",
         'method': 'The metric is the absolute value of the relative difference between model and observations values (M = 100 * abs[[model-obs] / obs])',
         'name': 'EnsoSeasonality',
         'units': '%'}},
       'EnsoSstDiversity_2': {'diagnostic': {'BNU-ESM_r1i1p1': {'keyerror': None,
          'name': 'BNU-ESM_r1i1p1',
          'nyears': 156,
          'time_period': ['1850-1-16 12:0:0.0', '2005-12-16 12:0:0.0']},
         'ERA-Interim': {'keyerror': None,
          'name': 'ERA-Interim',
          'nyears': 40,
          'time_period': ['1979-1-16 12:0:0.0', '2019-3-16 12:0:0.0']},
         'HadISST': {'keyerror': None,
          'name': 'HadISST',
          'nyears': 151,
          'time_period': ['1870-1-16 11:59:59.5', '2020-10-16 12:0:0.0']},
         'Tropflux': {'keyerror': None,
          'name': 'Tropflux',
          'nyears': 40,
          'time_period': ['1979-1-15 0:0:0.0', '2018-12-15 12:0:0.0']},
         'method': 'Nino (Nina) events = nino3.4 sstA > 0.75 (< -0.75) during DEC, zonal SSTA (meridional averaged [-5.0 ; 5.0]), the zonal SSTA maximum (minimum) is located for each event, the diversity is the interquartile range (IQR = Q3 - Q1), time series are linearly detrended, smoothing using a triangle shaped window of 5 points',
         'name': 'ENSO Diversity (interquartile range)',
         'ref': 'Using CDAT regridding',
         'time_frequency': 'monthly',
         'units': 'long'},
        'metric': {'datasets': "BNU-ESM_r1i1p1; ERA-Interim's ts & HadISST's sst & Tropflux's sst; 's ",
         'method': 'The metric is the absolute value of the relative difference between model and observations values (M = 100 * abs[[model-obs] / obs])',
         'name': 'EnsoSstDiversity',
         'units': '%'}},
       'EnsoSstLonRmse': {'diagnostic': {'BNU-ESM_r1i1p1': {'keyerror': None,
          'name': 'BNU-ESM_r1i1p1',
          'nyears': 156,
          'time_period': ['1850-1-16 12:0:0.0', '2005-12-16 12:0:0.0']},
         'ERA-Interim': {'name': 'ERA-Interim',
          'nyears': 40,
          'time_period': ['1979-1-16 12:0:0.0', '2019-3-16 12:0:0.0']},
         'HadISST': {'name': 'HadISST',
          'nyears': 151,
          'time_period': ['1870-1-16 11:59:59.5', '2020-10-16 12:0:0.0']},
         'Tropflux': {'name': 'Tropflux',
          'nyears': 40,
          'time_period': ['1979-1-15 0:0:0.0', '2018-12-15 12:0:0.0']},
         'method': 'nino3.4 SSTA during DEC regressed against equatorial_pacific SSTA, time series are linearly detrended, smoothing using a triangle shaped window of 5 points, observations and model regridded to generic_1x1deg',
         'name': 'ENSO Zonal SSTA pattern',
         'ref': 'Using CDAT regridding and rms (uncentered and biased) calculation',
         'time_frequency': 'monthly',
         'units': 'C/C'},
        'metric': {'datasets': "BNU-ESM_r1i1p1; ERA-Interim's ts & HadISST's sst & Tropflux's sst; 's ",
         'method': 'The metric is the statistical value between the model and the observations',
         'name': 'EnsoSstLonRmse',
         'units': 'C/C'}},
       'EnsoSstSkew': {'diagnostic': {'BNU-ESM_r1i1p1': {'keyerror': None,
          'name': 'BNU-ESM_r1i1p1',
          'nyears': 156,
          'time_period': ['1850-1-16 12:0:0.0', '2005-12-16 12:0:0.0']},
         'ERA-Interim': {'keyerror': None,
          'name': 'ERA-Interim',
          'nyears': 40,
          'time_period': ['1979-1-16 12:0:0.0', '2019-3-16 12:0:0.0']},
         'HadISST': {'keyerror': None,
          'name': 'HadISST',
          'nyears': 151,
          'time_period': ['1870-1-16 11:59:59.5', '2020-10-16 12:0:0.0']},
         'Tropflux': {'keyerror': None,
          'name': 'Tropflux',
          'nyears': 40,
          'time_period': ['1979-1-15 0:0:0.0', '2018-12-15 12:0:0.0']},
         'method': 'Standard deviation of nino3.4 sstA, time series are linearly detrended',
         'name': 'ENSO skewness',
         'ref': 'Using CDAT regression calculation',
         'time_frequency': 'monthly',
         'units': 'C'},
        'metric': {'datasets': "BNU-ESM_r1i1p1; ERA-Interim's ts & HadISST's sst & Tropflux's sst; 's ",
         'method': 'The metric is the absolute value of the relative difference between model and observations values (M = 100 * abs[[model-obs] / obs])',
         'name': 'EnsoSstSkew',
         'units': '%'}},
       'EnsoSstTsRmse': {'diagnostic': {'BNU-ESM_r1i1p1': {'keyerror': None,
          'name': 'BNU-ESM_r1i1p1',
          'nyears': 156,
          'time_period': ['1850-1-16 12:0:0.0', '2005-12-16 12:0:0.0']},
         'ERA-Interim': {'name': 'ERA-Interim',
          'nyears': 40,
          'time_period': ['1979-1-16 12:0:0.0', '2019-3-16 12:0:0.0']},
         'HadISST': {'name': 'HadISST',
          'nyears': 151,
          'time_period': ['1870-1-16 11:59:59.5', '2020-10-16 12:0:0.0']},
         'Tropflux': {'name': 'Tropflux',
          'nyears': 40,
          'time_period': ['1979-1-15 0:0:0.0', '2018-12-15 12:0:0.0']},
         'method': 'nino3.4 SSTA during DEC regressed against nino3.4 SSTA during 6 years (centered on ENSO), time series are linearly detrended, smoothing using a triangle shaped window of 5 points',
         'name': 'ENSO life cyle SSTA pattern',
         'ref': 'Using CDAT regridding and rms (uncentered and biased) calculation',
         'time_frequency': 'monthly',
         'units': 'C/C'},
        'metric': {'datasets': "BNU-ESM_r1i1p1; ERA-Interim's ts & HadISST's sst & Tropflux's sst; 's ",
         'method': 'The metric is the statistical value between the model and the observations',
         'name': 'EnsoSstTsRmse',
         'units': 'C/C'}},
       'SeasonalPrLatRmse': {'diagnostic': {'BNU-ESM_r1i1p1': {'keyerror': None,
          'name': 'BNU-ESM_r1i1p1',
          'nyears': 156,
          'time_period': ['1850-1-16 12:0:0.0', '2005-12-16 12:0:0.0']},
         'ERA-Interim': {'name': 'ERA-Interim',
          'nyears': 40,
          'time_period': ['1979-1-16 12:0:0.0', '2019-3-16 12:0:0.0']},
         'GPCPv2.3': {'name': 'GPCPv2.3',
          'nyears': 41,
          'time_period': ['1979-1-1 0:0:0.0', '2019-7-1 0:0:0.0']},
         'method': 'Meridional root mean square error of nino3_LatExt climatological pr STD, time series are linearly detrended, observations and model regridded to generic_1x1deg',
         'name': 'pr meridional seasonality RMSE',
         'ref': 'Using CDAT regridding and rms (uncentered and biased) calculation',
         'time_frequency': 'monthly',
         'units': 'mm/day'},
        'metric': {'datasets': "BNU-ESM_r1i1p1; ERA-Interim's pr & GPCPv2.3's precip; 's ",
         'method': 'The metric is the statistical value between the model and the observations',
         'name': 'SeasonalPrLatRmse',
         'units': 'mm/day'}},
       'SeasonalPrLonRmse': {'diagnostic': {'BNU-ESM_r1i1p1': {'keyerror': None,
          'name': 'BNU-ESM_r1i1p1',
          'nyears': 156,
          'time_period': ['1850-1-16 12:0:0.0', '2005-12-16 12:0:0.0']},
         'ERA-Interim': {'name': 'ERA-Interim',
          'nyears': 40,
          'time_period': ['1979-1-16 12:0:0.0', '2019-3-16 12:0:0.0']},
         'GPCPv2.3': {'name': 'GPCPv2.3',
          'nyears': 41,
          'time_period': ['1979-1-1 0:0:0.0', '2019-7-1 0:0:0.0']},
         'method': 'Zonal root mean square error of equatorial_pacific climatological pr STD, time series are linearly detrended, observations and model regridded to generic_1x1deg',
         'name': 'pr zonal seasonality RMSE',
         'ref': 'Using CDAT regridding and rms (uncentered and biased) calculation',
         'time_frequency': 'monthly',
         'units': 'mm/day'},
        'metric': {'datasets': "BNU-ESM_r1i1p1; ERA-Interim's pr & GPCPv2.3's precip; 's ",
         'method': 'The metric is the statistical value between the model and the observations',
         'name': 'SeasonalPrLonRmse',
         'units': 'mm/day'}},
       'SeasonalSstLonRmse': {'diagnostic': {'BNU-ESM_r1i1p1': {'keyerror': None,
          'name': 'BNU-ESM_r1i1p1',
          'nyears': 156,
          'time_period': ['1850-1-16 12:0:0.0', '2005-12-16 12:0:0.0']},
         'ERA-Interim': {'name': 'ERA-Interim',
          'nyears': 40,
          'time_period': ['1979-1-16 12:0:0.0', '2019-3-16 12:0:0.0']},
         'HadISST': {'name': 'HadISST',
          'nyears': 151,
          'time_period': ['1870-1-16 11:59:59.5', '2020-10-16 12:0:0.0']},
         'Tropflux': {'name': 'Tropflux',
          'nyears': 40,
          'time_period': ['1979-1-15 0:0:0.0', '2018-12-15 12:0:0.0']},
         'method': 'Zonal root mean square error of equatorial_pacific climatological sst STD, time series are linearly detrended, observations and model regridded to generic_1x1deg',
         'name': 'sst zonal seasonality RMSE',
         'ref': 'Using CDAT regridding and rms (uncentered and biased) calculation',
         'time_frequency': 'monthly',
         'units': 'C'},
        'metric': {'datasets': "BNU-ESM_r1i1p1; ERA-Interim's ts & HadISST's sst & Tropflux's sst; 's ",
         'method': 'The metric is the statistical value between the model and the observations',
         'name': 'SeasonalSstLonRmse',
         'units': 'C'}},
       'SeasonalTauxLonRmse': {'diagnostic': {'BNU-ESM_r1i1p1': {'keyerror': None,
          'name': 'BNU-ESM_r1i1p1',
          'nyears': 156,
          'time_period': ['1850-1-16 12:0:0.0', '2005-12-16 12:0:0.0']},
         'ERA-Interim': {'name': 'ERA-Interim',
          'nyears': 40,
          'time_period': ['1979-1-16 12:0:0.0', '2019-3-16 12:0:0.0']},
         'Tropflux': {'name': 'Tropflux',
          'nyears': 40,
          'time_period': ['1979-1-15 0:0:0.0', '2018-12-15 12:0:0.0']},
         'method': 'Zonal root mean square error of equatorial_pacific climatological taux STD, time series are linearly detrended, observations and model regridded to generic_1x1deg',
         'name': 'taux zonal seasonality RMSE',
         'ref': 'Using CDAT regridding and rms (uncentered and biased) calculation',
         'time_frequency': 'monthly',
         'units': '1e-3 N/m2'},
        'metric': {'datasets': "BNU-ESM_r1i1p1; ERA-Interim's tauu & Tropflux's taux; 's ",
         'method': 'The metric is the statistical value between the model and the observations',
         'name': 'SeasonalTauxLonRmse',
         'units': '1e-3 N/m2'}}},
      'name': 'Metrics Collection for ENSO performance'},
     'value': {'BiasPrLatRmse': {'diagnostic': {'BNU-ESM_r1i1p1': {'value': None,
         'value_error': None},
        'ERA-Interim': {'value': None, 'value_error': None},
        'GPCPv2.3': {'value': None, 'value_error': None}},
       'metric': {'ERA-Interim': {'value': 2.0031337509964584,
         'value_error': None},
        'GPCPv2.3': {'value': 2.054397405401541, 'value_error': None}}},
      'BiasPrLonRmse': {'diagnostic': {'BNU-ESM_r1i1p1': {'value': None,
         'value_error': None},
        'ERA-Interim': {'value': None, 'value_error': None},
        'GPCPv2.3': {'value': None, 'value_error': None}},
       'metric': {'ERA-Interim': {'value': 1.238129468304096,
         'value_error': None},
        'GPCPv2.3': {'value': 0.4806069061675617, 'value_error': None}}},
      'BiasSstLonRmse': {'diagnostic': {'BNU-ESM_r1i1p1': {'value': None,
         'value_error': None},
        'ERA-Interim': {'value': None, 'value_error': None},
        'HadISST': {'value': None, 'value_error': None},
        'Tropflux': {'value': None, 'value_error': None}},
       'metric': {'ERA-Interim': {'value': 0.6858779522946009,
         'value_error': None},
        'HadISST': {'value': 0.5333042151073559, 'value_error': None},
        'Tropflux': {'value': 0.7305020663640245, 'value_error': None}}},
      'BiasTauxLonRmse': {'diagnostic': {'BNU-ESM_r1i1p1': {'value': None,
         'value_error': None},
        'ERA-Interim': {'value': None, 'value_error': None},
        'Tropflux': {'value': None, 'value_error': None}},
       'metric': {'ERA-Interim': {'value': 11.037494332686933,
         'value_error': None},
        'Tropflux': {'value': 10.799255229399712, 'value_error': None}}},
      'EnsoAmpl': {'diagnostic': {'BNU-ESM_r1i1p1': {'value': 1.405718839897551,
         'value_error': 0.11254758130091186},
        'ERA-Interim': {'value': 0.8989844997845644,
         'value_error': 0.14214193002531866},
        'HadISST': {'value': 0.7665787872085695,
         'value_error': 0.06238329697691264},
        'Tropflux': {'value': 0.9039789553693535,
         'value_error': 0.14293162279134272}},
       'metric': {'ERA-Interim': {'value': 56.367416816910875,
         'value_error': 37.24327233399897},
        'HadISST': {'value': 83.37565079466324,
         'value_error': 29.60470103091263},
        'Tropflux': {'value': 55.50349170719284,
         'value_error': 37.03750441385046}}},
      'EnsoDuration': {'diagnostic': {'BNU-ESM_r1i1p1': {'value': 12.0,
         'value_error': None},
        'ERA-Interim': {'value': 13.0, 'value_error': None},
        'HadISST': {'value': 13.0, 'value_error': None},
        'Tropflux': {'value': 13.0, 'value_error': None}},
       'metric': {'ERA-Interim': {'value': 7.6923076923076925,
         'value_error': None},
        'HadISST': {'value': 7.6923076923076925, 'value_error': None},
        'Tropflux': {'value': 7.6923076923076925, 'value_error': None}}},
      'EnsoSeasonality': {'diagnostic': {'BNU-ESM_r1i1p1': {'value': 1.4401619095162679,
         'value_error': 0.2309818221228842},
        'ERA-Interim': {'value': 2.0466846866656914,
         'value_error': 0.6513411033995022},
        'HadISST': {'value': 1.6639865947361325,
         'value_error': 0.2712772451657809},
        'Tropflux': {'value': 2.0532132553583624,
         'value_error': 0.6534187683977347}},
       'metric': {'ERA-Interim': {'value': 29.634402460768193,
         'value_error': 33.67894849848756},
        'HadISST': {'value': 13.451111080336423,
         'value_error': 27.99116682665337},
        'Tropflux': {'value': 29.85814280334432,
         'value_error': 33.57186009537332}}},
      'EnsoSstDiversity_2': {'diagnostic': {'BNU-ESM_r1i1p1': {'value': 19.0,
         'value_error': None},
        'ERA-Interim': {'value': 33.25, 'value_error': None},
        'HadISST': {'value': 49.0, 'value_error': None},
        'Tropflux': {'value': 32.0, 'value_error': None}},
       'metric': {'ERA-Interim': {'value': 42.857142857142854,
         'value_error': None},
        'HadISST': {'value': 61.224489795918366, 'value_error': None},
        'Tropflux': {'value': 40.625, 'value_error': None}}},
      'EnsoSstLonRmse': {'diagnostic': {'BNU-ESM_r1i1p1': {'value': None,
         'value_error': None},
        'ERA-Interim': {'value': None, 'value_error': None},
        'HadISST': {'value': None, 'value_error': None},
        'Tropflux': {'value': None, 'value_error': None}},
       'metric': {'ERA-Interim': {'value': 0.15034880062081318,
         'value_error': None},
        'HadISST': {'value': 0.17932376255417704, 'value_error': None},
        'Tropflux': {'value': 0.15264254880091654, 'value_error': None}}},
      'EnsoSstSkew': {'diagnostic': {'BNU-ESM_r1i1p1': {'value': -0.05865445309404007,
         'value_error': -0.004696114643197858},
        'ERA-Interim': {'value': 0.39098111106809963,
         'value_error': 0.061819541653923164},
        'HadISST': {'value': 0.38989908235027515,
         'value_error': 0.03172953733021198},
        'Tropflux': {'value': 0.39744741059612115,
         'value_error': 0.06284195338099416}},
       'metric': {'ERA-Interim': {'value': 115.00186362809323,
         'value_error': -3.5731132738017175},
        'HadISST': {'value': 115.04349606069255,
         'value_error': -2.4286659728624995},
        'Tropflux': {'value': 114.75778971765492,
         'value_error': -3.5149802477460255}}},
      'EnsoSstTsRmse': {'diagnostic': {'BNU-ESM_r1i1p1': {'value': None,
         'value_error': None},
        'ERA-Interim': {'value': None, 'value_error': None},
        'HadISST': {'value': None, 'value_error': None},
        'Tropflux': {'value': None, 'value_error': None}},
       'metric': {'ERA-Interim': {'value': 0.1521343947748536,
         'value_error': None},
        'HadISST': {'value': 0.15261224417799274, 'value_error': None},
        'Tropflux': {'value': 0.15416906265054214, 'value_error': None}}},
      'SeasonalPrLatRmse': {'diagnostic': {'BNU-ESM_r1i1p1': {'value': None,
         'value_error': None},
        'ERA-Interim': {'value': None, 'value_error': None},
        'GPCPv2.3': {'value': None, 'value_error': None}},
       'metric': {'ERA-Interim': {'value': 1.416862234472185,
         'value_error': None},
        'GPCPv2.3': {'value': 1.6124292011423593, 'value_error': None}}},
      'SeasonalPrLonRmse': {'diagnostic': {'BNU-ESM_r1i1p1': {'value': None,
         'value_error': None},
        'ERA-Interim': {'value': None, 'value_error': None},
        'GPCPv2.3': {'value': None, 'value_error': None}},
       'metric': {'ERA-Interim': {'value': 0.5273038798051564,
         'value_error': None},
        'GPCPv2.3': {'value': 0.6117639058883786, 'value_error': None}}},
      'SeasonalSstLonRmse': {'diagnostic': {'BNU-ESM_r1i1p1': {'value': None,
         'value_error': None},
        'ERA-Interim': {'value': None, 'value_error': None},
        'HadISST': {'value': None, 'value_error': None},
        'Tropflux': {'value': None, 'value_error': None}},
       'metric': {'ERA-Interim': {'value': 0.10379928368522905,
         'value_error': None},
        'HadISST': {'value': 0.11436747761796162, 'value_error': None},
        'Tropflux': {'value': 0.09965425710627636, 'value_error': None}}},
      'SeasonalTauxLonRmse': {'diagnostic': {'BNU-ESM_r1i1p1': {'value': None,
         'value_error': None},
        'ERA-Interim': {'value': None, 'value_error': None},
        'Tropflux': {'value': None, 'value_error': None}},
       'metric': {'ERA-Interim': {'value': 1.5548554750224184,
         'value_error': None},
        'Tropflux': {'value': 1.7222012976261847, 'value_error': None}}}}}},
   'CCSM4': {'r1i1p1': {'metadata': {'description_of_the_collection': 'Describe which science question this collection is about',
      'metrics': {'BiasPrLatRmse': {'diagnostic': {'CCSM4_r1i1p1': {'keyerror': None,
          'name': 'CCSM4_r1i1p1',
          'nyears': 156,
          'time_period': ['1850-1-16 12:0:0.0', '2005-12-16 12:0:0.0']},
         'ERA-Interim': {'name': 'ERA-Interim',
          'nyears': 40,
          'time_period': ['1979-1-16 12:0:0.0', '2019-3-16 12:0:0.0']},
         'GPCPv2.3': {'name': 'GPCPv2.3',
          'nyears': 41,
          'time_period': ['1979-1-1 0:0:0.0', '2019-7-1 0:0:0.0']},
         'method': 'Meridional root mean square error of nino3_LatExt pr, time series are linearly detrended, observations and model regridded to generic_1x1deg',
         'name': 'pr Meridional RMSE',
         'ref': 'Using CDAT regridding and rms (uncentered and biased) calculation',
         'time_frequency': 'monthly',
         'units': 'mm/day'},
        'metric': {'datasets': "CCSM4_r1i1p1; ERA-Interim's pr & GPCPv2.3's precip; 's ",
         'method': 'The metric is the statistical value between the model and the observations',
         'name': 'BiasPrLatRmse',
         'units': 'mm/day'}},
       'BiasPrLonRmse': {'diagnostic': {'CCSM4_r1i1p1': {'keyerror': None,
          'name': 'CCSM4_r1i1p1',
          'nyears': 156,
          'time_period': ['1850-1-16 12:0:0.0', '2005-12-16 12:0:0.0']},
         'ERA-Interim': {'name': 'ERA-Interim',
          'nyears': 40,
          'time_period': ['1979-1-16 12:0:0.0', '2019-3-16 12:0:0.0']},
         'GPCPv2.3': {'name': 'GPCPv2.3',
          'nyears': 41,
          'time_period': ['1979-1-1 0:0:0.0', '2019-7-1 0:0:0.0']},
         'method': 'Zonal root mean square error of equatorial_pacific pr, time series are linearly detrended, observations and model regridded to generic_1x1deg',
         'name': 'pr Zonal RMSE',
         'ref': 'Using CDAT regridding and rms (uncentered and biased) calculation',
         'time_frequency': 'monthly',
         'units': 'mm/day'},
        'metric': {'datasets': "CCSM4_r1i1p1; ERA-Interim's pr & GPCPv2.3's precip; 's ",
         'method': 'The metric is the statistical value between the model and the observations',
         'name': 'BiasPrLonRmse',
         'units': 'mm/day'}},
       'BiasSstLonRmse': {'diagnostic': {'CCSM4_r1i1p1': {'keyerror': None,
          'name': 'CCSM4_r1i1p1',
          'nyears': 156,
          'time_period': ['1850-1-16 12:0:0.0', '2005-12-16 12:0:0.0']},
         'ERA-Interim': {'name': 'ERA-Interim',
          'nyears': 40,
          'time_period': ['1979-1-16 12:0:0.0', '2019-3-16 12:0:0.0']},
         'HadISST': {'name': 'HadISST',
          'nyears': 151,
          'time_period': ['1870-1-16 11:59:59.5', '2020-10-16 12:0:0.0']},
         'Tropflux': {'name': 'Tropflux',
          'nyears': 40,
          'time_period': ['1979-1-15 0:0:0.0', '2018-12-15 12:0:0.0']},
         'method': 'Zonal root mean square error of equatorial_pacific sst, time series are linearly detrended, observations and model regridded to generic_1x1deg',
         'name': 'sst Zonal RMSE',
         'ref': 'Using CDAT regridding and rms (uncentered and biased) calculation',
         'time_frequency': 'monthly',
         'units': 'C'},
        'metric': {'datasets': "CCSM4_r1i1p1; ERA-Interim's ts & HadISST's sst & Tropflux's sst; 's ",
         'method': 'The metric is the statistical value between the model and the observations',
         'name': 'BiasSstLonRmse',
         'units': 'C'}},
       'BiasTauxLonRmse': {'diagnostic': {'CCSM4_r1i1p1': {'keyerror': None,
          'name': 'CCSM4_r1i1p1',
          'nyears': 156,
          'time_period': ['1850-1-16 12:0:0.0', '2005-12-16 12:0:0.0']},
         'ERA-Interim': {'name': 'ERA-Interim',
          'nyears': 40,
          'time_period': ['1979-1-16 12:0:0.0', '2019-3-16 12:0:0.0']},
         'Tropflux': {'name': 'Tropflux',
          'nyears': 40,
          'time_period': ['1979-1-15 0:0:0.0', '2018-12-15 12:0:0.0']},
         'method': 'Zonal root mean square error of equatorial_pacific taux, time series are linearly detrended, observations and model regridded to generic_1x1deg',
         'name': 'taux Zonal RMSE',
         'ref': 'Using CDAT regridding and rms (uncentered and biased) calculation',
         'time_frequency': 'monthly',
         'units': '1e-3 N/m2'},
        'metric': {'datasets': "CCSM4_r1i1p1; ERA-Interim's tauu & Tropflux's taux; 's ",
         'method': 'The metric is the statistical value between the model and the observations',
         'name': 'BiasTauxLonRmse',
         'units': '1e-3 N/m2'}},
       'EnsoAmpl': {'diagnostic': {'CCSM4_r1i1p1': {'keyerror': None,
          'name': 'CCSM4_r1i1p1',
          'nyears': 156,
          'time_period': ['1850-1-16 12:0:0.0', '2005-12-16 12:0:0.0']},
         'ERA-Interim': {'keyerror': None,
          'name': 'ERA-Interim',
          'nyears': 40,
          'time_period': ['1979-1-16 12:0:0.0', '2019-3-16 12:0:0.0']},
         'HadISST': {'keyerror': None,
          'name': 'HadISST',
          'nyears': 151,
          'time_period': ['1870-1-16 11:59:59.5', '2020-10-16 12:0:0.0']},
         'Tropflux': {'keyerror': None,
          'name': 'Tropflux',
          'nyears': 40,
          'time_period': ['1979-1-15 0:0:0.0', '2018-12-15 12:0:0.0']},
         'method': 'Standard deviation of nino3.4 sstA, time series are linearly detrended',
         'name': 'ENSO amplitude',
         'ref': 'Using CDAT regression calculation',
         'time_frequency': 'monthly',
         'units': 'C'},
        'metric': {'datasets': "CCSM4_r1i1p1; ERA-Interim's ts & HadISST's sst & Tropflux's sst; 's ",
         'method': 'The metric is the absolute value of the relative difference between model and observations values (M = 100 * abs[[model-obs] / obs])',
         'name': 'EnsoAmpl',
         'units': '%'}},
       'EnsoDuration': {'diagnostic': {'CCSM4_r1i1p1': {'keyerror': None,
          'name': 'CCSM4_r1i1p1',
          'nyears': 156,
          'time_period': ['1850-1-16 12:0:0.0', '2005-12-16 12:0:0.0']},
         'ERA-Interim': {'keyerror': None,
          'name': 'ERA-Interim',
          'nyears': 40,
          'time_period': ['1979-1-16 12:0:0.0', '2019-3-16 12:0:0.0']},
         'HadISST': {'keyerror': None,
          'name': 'HadISST',
          'nyears': 151,
          'time_period': ['1870-1-16 11:59:59.5', '2020-10-16 12:0:0.0']},
         'Tropflux': {'keyerror': None,
          'name': 'Tropflux',
          'nyears': 40,
          'time_period': ['1979-1-15 0:0:0.0', '2018-12-15 12:0:0.0']},
         'method': 'nino3.4 SSTA during DEC regressed against nino3.4 SSTA during 6 years (centered on ENSO), the duration is the number of consecutive months during which the regression is above 0.25, time series are linearly detrended, smoothing using a triangle shaped window of 5 points',
         'name': 'ENSO Duration based on life cyle SSTA pattern',
         'ref': 'Using CDAT',
         'time_frequency': 'monthly',
         'units': 'months'},
        'metric': {'datasets': "CCSM4_r1i1p1; ERA-Interim's ts & HadISST's sst & Tropflux's sst; 's ",
         'method': 'The metric is the absolute value of the relative difference between model and observations values (M = 100 * abs[[model-obs] / obs])',
         'name': 'EnsoDuration',
         'units': '%'}},
       'EnsoSeasonality': {'diagnostic': {'CCSM4_r1i1p1': {'keyerror': None,
          'name': 'CCSM4_r1i1p1',
          'nyears': 156,
          'time_period': ['1850-1-16 12:0:0.0', '2005-12-16 12:0:0.0']},
         'ERA-Interim': {'keyerror': None,
          'name': 'ERA-Interim',
          'nyears': 40,
          'time_period': ['1979-1-16 12:0:0.0', '2019-3-16 12:0:0.0']},
         'HadISST': {'keyerror': None,
          'name': 'HadISST',
          'nyears': 151,
          'time_period': ['1870-1-16 11:59:59.5', '2020-10-16 12:0:0.0']},
         'Tropflux': {'keyerror': None,
          'name': 'Tropflux',
          'nyears': 40,
          'time_period': ['1979-1-15 0:0:0.0', '2018-12-15 12:0:0.0']},
         'method': 'Ratio between NDJ and MAM standard deviation nino3.4 sstA, time series are linearly detrended',
         'name': 'ENSO seasonality',
         'ref': 'Using CDAT std dev calculation',
         'time_frequency': 'monthly',
         'units': 'C/C'},
        'metric': {'datasets': "CCSM4_r1i1p1; ERA-Interim's ts & HadISST's sst & Tropflux's sst; 's ",
         'method': 'The metric is the absolute value of the relative difference between model and observations values (M = 100 * abs[[model-obs] / obs])',
         'name': 'EnsoSeasonality',
         'units': '%'}},
       'EnsoSstDiversity_2': {'diagnostic': {'CCSM4_r1i1p1': {'keyerror': None,
          'name': 'CCSM4_r1i1p1',
          'nyears': 156,
          'time_period': ['1850-1-16 12:0:0.0', '2005-12-16 12:0:0.0']},
         'ERA-Interim': {'keyerror': None,
          'name': 'ERA-Interim',
          'nyears': 40,
          'time_period': ['1979-1-16 12:0:0.0', '2019-3-16 12:0:0.0']},
         'HadISST': {'keyerror': None,
          'name': 'HadISST',
          'nyears': 151,
          'time_period': ['1870-1-16 11:59:59.5', '2020-10-16 12:0:0.0']},
         'Tropflux': {'keyerror': None,
          'name': 'Tropflux',
          'nyears': 40,
          'time_period': ['1979-1-15 0:0:0.0', '2018-12-15 12:0:0.0']},
         'method': 'Nino (Nina) events = nino3.4 sstA > 0.75 (< -0.75) during DEC, zonal SSTA (meridional averaged [-5.0 ; 5.0]), the zonal SSTA maximum (minimum) is located for each event, the diversity is the interquartile range (IQR = Q3 - Q1), time series are linearly detrended, smoothing using a triangle shaped window of 5 points',
         'name': 'ENSO Diversity (interquartile range)',
         'ref': 'Using CDAT regridding',
         'time_frequency': 'monthly',
         'units': 'long'},
        'metric': {'datasets': "CCSM4_r1i1p1; ERA-Interim's ts & HadISST's sst & Tropflux's sst; 's ",
         'method': 'The metric is the absolute value of the relative difference between model and observations values (M = 100 * abs[[model-obs] / obs])',
         'name': 'EnsoSstDiversity',
         'units': '%'}},
       'EnsoSstLonRmse': {'diagnostic': {'CCSM4_r1i1p1': {'keyerror': None,
          'name': 'CCSM4_r1i1p1',
          'nyears': 156,
          'time_period': ['1850-1-16 12:0:0.0', '2005-12-16 12:0:0.0']},
         'ERA-Interim': {'name': 'ERA-Interim',
          'nyears': 40,
          'time_period': ['1979-1-16 12:0:0.0', '2019-3-16 12:0:0.0']},
         'HadISST': {'name': 'HadISST',
          'nyears': 151,
          'time_period': ['1870-1-16 11:59:59.5', '2020-10-16 12:0:0.0']},
         'Tropflux': {'name': 'Tropflux',
          'nyears': 40,
          'time_period': ['1979-1-15 0:0:0.0', '2018-12-15 12:0:0.0']},
         'method': 'nino3.4 SSTA during DEC regressed against equatorial_pacific SSTA, time series are linearly detrended, smoothing using a triangle shaped window of 5 points, observations and model regridded to generic_1x1deg',
         'name': 'ENSO Zonal SSTA pattern',
         'ref': 'Using CDAT regridding and rms (uncentered and biased) calculation',
         'time_frequency': 'monthly',
         'units': 'C/C'},
        'metric': {'datasets': "CCSM4_r1i1p1; ERA-Interim's ts & HadISST's sst & Tropflux's sst; 's ",
         'method': 'The metric is the statistical value between the model and the observations',
         'name': 'EnsoSstLonRmse',
         'units': 'C/C'}},
       'EnsoSstSkew': {'diagnostic': {'CCSM4_r1i1p1': {'keyerror': None,
          'name': 'CCSM4_r1i1p1',
          'nyears': 156,
          'time_period': ['1850-1-16 12:0:0.0', '2005-12-16 12:0:0.0']},
         'ERA-Interim': {'keyerror': None,
          'name': 'ERA-Interim',
          'nyears': 40,
          'time_period': ['1979-1-16 12:0:0.0', '2019-3-16 12:0:0.0']},
         'HadISST': {'keyerror': None,
          'name': 'HadISST',
          'nyears': 151,
          'time_period': ['1870-1-16 11:59:59.5', '2020-10-16 12:0:0.0']},
         'Tropflux': {'keyerror': None,
          'name': 'Tropflux',
          'nyears': 40,
          'time_period': ['1979-1-15 0:0:0.0', '2018-12-15 12:0:0.0']},
         'method': 'Standard deviation of nino3.4 sstA, time series are linearly detrended',
         'name': 'ENSO skewness',
         'ref': 'Using CDAT regression calculation',
         'time_frequency': 'monthly',
         'units': 'C'},
        'metric': {'datasets': "CCSM4_r1i1p1; ERA-Interim's ts & HadISST's sst & Tropflux's sst; 's ",
         'method': 'The metric is the absolute value of the relative difference between model and observations values (M = 100 * abs[[model-obs] / obs])',
         'name': 'EnsoSstSkew',
         'units': '%'}},
       'EnsoSstTsRmse': {'diagnostic': {'CCSM4_r1i1p1': {'keyerror': None,
          'name': 'CCSM4_r1i1p1',
          'nyears': 156,
          'time_period': ['1850-1-16 12:0:0.0', '2005-12-16 12:0:0.0']},
         'ERA-Interim': {'name': 'ERA-Interim',
          'nyears': 40,
          'time_period': ['1979-1-16 12:0:0.0', '2019-3-16 12:0:0.0']},
         'HadISST': {'name': 'HadISST',
          'nyears': 151,
          'time_period': ['1870-1-16 11:59:59.5', '2020-10-16 12:0:0.0']},
         'Tropflux': {'name': 'Tropflux',
          'nyears': 40,
          'time_period': ['1979-1-15 0:0:0.0', '2018-12-15 12:0:0.0']},
         'method': 'nino3.4 SSTA during DEC regressed against nino3.4 SSTA during 6 years (centered on ENSO), time series are linearly detrended, smoothing using a triangle shaped window of 5 points',
         'name': 'ENSO life cyle SSTA pattern',
         'ref': 'Using CDAT regridding and rms (uncentered and biased) calculation',
         'time_frequency': 'monthly',
         'units': 'C/C'},
        'metric': {'datasets': "CCSM4_r1i1p1; ERA-Interim's ts & HadISST's sst & Tropflux's sst; 's ",
         'method': 'The metric is the statistical value between the model and the observations',
         'name': 'EnsoSstTsRmse',
         'units': 'C/C'}},
       'SeasonalPrLatRmse': {'diagnostic': {'CCSM4_r1i1p1': {'keyerror': None,
          'name': 'CCSM4_r1i1p1',
          'nyears': 156,
          'time_period': ['1850-1-16 12:0:0.0', '2005-12-16 12:0:0.0']},
         'ERA-Interim': {'name': 'ERA-Interim',
          'nyears': 40,
          'time_period': ['1979-1-16 12:0:0.0', '2019-3-16 12:0:0.0']},
         'GPCPv2.3': {'name': 'GPCPv2.3',
          'nyears': 41,
          'time_period': ['1979-1-1 0:0:0.0', '2019-7-1 0:0:0.0']},
         'method': 'Meridional root mean square error of nino3_LatExt climatological pr STD, time series are linearly detrended, observations and model regridded to generic_1x1deg',
         'name': 'pr meridional seasonality RMSE',
         'ref': 'Using CDAT regridding and rms (uncentered and biased) calculation',
         'time_frequency': 'monthly',
         'units': 'mm/day'},
        'metric': {'datasets': "CCSM4_r1i1p1; ERA-Interim's pr & GPCPv2.3's precip; 's ",
         'method': 'The metric is the statistical value between the model and the observations',
         'name': 'SeasonalPrLatRmse',
         'units': 'mm/day'}},
       'SeasonalPrLonRmse': {'diagnostic': {'CCSM4_r1i1p1': {'keyerror': None,
          'name': 'CCSM4_r1i1p1',
          'nyears': 156,
          'time_period': ['1850-1-16 12:0:0.0', '2005-12-16 12:0:0.0']},
         'ERA-Interim': {'name': 'ERA-Interim',
          'nyears': 40,
          'time_period': ['1979-1-16 12:0:0.0', '2019-3-16 12:0:0.0']},
         'GPCPv2.3': {'name': 'GPCPv2.3',
          'nyears': 41,
          'time_period': ['1979-1-1 0:0:0.0', '2019-7-1 0:0:0.0']},
         'method': 'Zonal root mean square error of equatorial_pacific climatological pr STD, time series are linearly detrended, observations and model regridded to generic_1x1deg',
         'name': 'pr zonal seasonality RMSE',
         'ref': 'Using CDAT regridding and rms (uncentered and biased) calculation',
         'time_frequency': 'monthly',
         'units': 'mm/day'},
        'metric': {'datasets': "CCSM4_r1i1p1; ERA-Interim's pr & GPCPv2.3's precip; 's ",
         'method': 'The metric is the statistical value between the model and the observations',
         'name': 'SeasonalPrLonRmse',
         'units': 'mm/day'}},
       'SeasonalSstLonRmse': {'diagnostic': {'CCSM4_r1i1p1': {'keyerror': None,
          'name': 'CCSM4_r1i1p1',
          'nyears': 156,
          'time_period': ['1850-1-16 12:0:0.0', '2005-12-16 12:0:0.0']},
         'ERA-Interim': {'name': 'ERA-Interim',
          'nyears': 40,
          'time_period': ['1979-1-16 12:0:0.0', '2019-3-16 12:0:0.0']},
         'HadISST': {'name': 'HadISST',
          'nyears': 151,
          'time_period': ['1870-1-16 11:59:59.5', '2020-10-16 12:0:0.0']},
         'Tropflux': {'name': 'Tropflux',
          'nyears': 40,
          'time_period': ['1979-1-15 0:0:0.0', '2018-12-15 12:0:0.0']},
         'method': 'Zonal root mean square error of equatorial_pacific climatological sst STD, time series are linearly detrended, observations and model regridded to generic_1x1deg',
         'name': 'sst zonal seasonality RMSE',
         'ref': 'Using CDAT regridding and rms (uncentered and biased) calculation',
         'time_frequency': 'monthly',
         'units': 'C'},
        'metric': {'datasets': "CCSM4_r1i1p1; ERA-Interim's ts & HadISST's sst & Tropflux's sst; 's ",
         'method': 'The metric is the statistical value between the model and the observations',
         'name': 'SeasonalSstLonRmse',
         'units': 'C'}},
       'SeasonalTauxLonRmse': {'diagnostic': {'CCSM4_r1i1p1': {'keyerror': None,
          'name': 'CCSM4_r1i1p1',
          'nyears': 156,
          'time_period': ['1850-1-16 12:0:0.0', '2005-12-16 12:0:0.0']},
         'ERA-Interim': {'name': 'ERA-Interim',
          'nyears': 40,
          'time_period': ['1979-1-16 12:0:0.0', '2019-3-16 12:0:0.0']},
         'Tropflux': {'name': 'Tropflux',
          'nyears': 40,
          'time_period': ['1979-1-15 0:0:0.0', '2018-12-15 12:0:0.0']},
         'method': 'Zonal root mean square error of equatorial_pacific climatological taux STD, time series are linearly detrended, observations and model regridded to generic_1x1deg',
         'name': 'taux zonal seasonality RMSE',
         'ref': 'Using CDAT regridding and rms (uncentered and biased) calculation',
         'time_frequency': 'monthly',
         'units': '1e-3 N/m2'},
        'metric': {'datasets': "CCSM4_r1i1p1; ERA-Interim's tauu & Tropflux's taux; 's ",
         'method': 'The metric is the statistical value between the model and the observations',
         'name': 'SeasonalTauxLonRmse',
         'units': '1e-3 N/m2'}}},
      'name': 'Metrics Collection for ENSO performance'},
     'value': {'BiasPrLatRmse': {'diagnostic': {'CCSM4_r1i1p1': {'value': None,
         'value_error': None},
        'ERA-Interim': {'value': None, 'value_error': None},
        'GPCPv2.3': {'value': None, 'value_error': None}},
       'metric': {'ERA-Interim': {'value': 1.3348754624608516,
         'value_error': None},
        'GPCPv2.3': {'value': 1.4208887895278357, 'value_error': None}}},
      'BiasPrLonRmse': {'diagnostic': {'CCSM4_r1i1p1': {'value': None,
         'value_error': None},
        'ERA-Interim': {'value': None, 'value_error': None},
        'GPCPv2.3': {'value': None, 'value_error': None}},
       'metric': {'ERA-Interim': {'value': 1.6173120412414144,
         'value_error': None},
        'GPCPv2.3': {'value': 0.69642220474339, 'value_error': None}}},
      'BiasSstLonRmse': {'diagnostic': {'CCSM4_r1i1p1': {'value': None,
         'value_error': None},
        'ERA-Interim': {'value': None, 'value_error': None},
        'HadISST': {'value': None, 'value_error': None},
        'Tropflux': {'value': None, 'value_error': None}},
       'metric': {'ERA-Interim': {'value': 0.39568402604886177,
         'value_error': None},
        'HadISST': {'value': 0.2505450419980529, 'value_error': None},
        'Tropflux': {'value': 0.44407893912620916, 'value_error': None}}},
      'BiasTauxLonRmse': {'diagnostic': {'CCSM4_r1i1p1': {'value': None,
         'value_error': None},
        'ERA-Interim': {'value': None, 'value_error': None},
        'Tropflux': {'value': None, 'value_error': None}},
       'metric': {'ERA-Interim': {'value': 5.313354638607431,
         'value_error': None},
        'Tropflux': {'value': 5.611776902275294, 'value_error': None}}},
      'EnsoAmpl': {'diagnostic': {'CCSM4_r1i1p1': {'value': 1.1442037549863202,
         'value_error': 0.09160961743140386},
        'ERA-Interim': {'value': 0.8989844997845644,
         'value_error': 0.14214193002531866},
        'HadISST': {'value': 0.7665787872085695,
         'value_error': 0.06238329697691264},
        'Tropflux': {'value': 0.9039789553693535,
         'value_error': 0.14293162279134272}},
       'metric': {'ERA-Interim': {'value': 27.277361874484036,
         'value_error': 30.314662394113935},
        'HadISST': {'value': 49.261077149400315,
         'value_error': 24.09714455223943},
        'Tropflux': {'value': 26.57415841266063,
         'value_error': 30.1471748281745}}},
      'EnsoDuration': {'diagnostic': {'CCSM4_r1i1p1': {'value': 15.0,
         'value_error': None},
        'ERA-Interim': {'value': 13.0, 'value_error': None},
        'HadISST': {'value': 13.0, 'value_error': None},
        'Tropflux': {'value': 13.0, 'value_error': None}},
       'metric': {'ERA-Interim': {'value': 15.384615384615385,
         'value_error': None},
        'HadISST': {'value': 15.384615384615385, 'value_error': None},
        'Tropflux': {'value': 15.384615384615385, 'value_error': None}}},
      'EnsoSeasonality': {'diagnostic': {'CCSM4_r1i1p1': {'value': 1.421393172625417,
         'value_error': 0.22797157930410988},
        'ERA-Interim': {'value': 2.0466846866656914,
         'value_error': 0.6513411033995022},
        'HadISST': {'value': 1.6639865947361325,
         'value_error': 0.2712772451657809},
        'Tropflux': {'value': 2.0532132553583624,
         'value_error': 0.6534187683977347}},
       'metric': {'ERA-Interim': {'value': 30.55143364848024,
         'value_error': 33.24003165243589},
        'HadISST': {'value': 14.579049066749539,
         'value_error': 27.62637531122311},
        'Tropflux': {'value': 30.772258121948916,
         'value_error': 33.13433886605671}}},
      'EnsoSstDiversity_2': {'diagnostic': {'CCSM4_r1i1p1': {'value': 34.0,
         'value_error': None},
        'ERA-Interim': {'value': 33.25, 'value_error': None},
        'HadISST': {'value': 49.0, 'value_error': None},
        'Tropflux': {'value': 32.0, 'value_error': None}},
       'metric': {'ERA-Interim': {'value': 2.2556390977443606,
         'value_error': None},
        'HadISST': {'value': 30.612244897959183, 'value_error': None},
        'Tropflux': {'value': 6.25, 'value_error': None}}},
      'EnsoSstLonRmse': {'diagnostic': {'CCSM4_r1i1p1': {'value': None,
         'value_error': None},
        'ERA-Interim': {'value': None, 'value_error': None},
        'HadISST': {'value': None, 'value_error': None},
        'Tropflux': {'value': None, 'value_error': None}},
       'metric': {'ERA-Interim': {'value': 0.1060228407271465,
         'value_error': None},
        'HadISST': {'value': 0.12650936562063525, 'value_error': None},
        'Tropflux': {'value': 0.108069557359399, 'value_error': None}}},
      'EnsoSstSkew': {'diagnostic': {'CCSM4_r1i1p1': {'value': 0.2504174234350832,
         'value_error': 0.02004943984764332},
        'ERA-Interim': {'value': 0.39098111106809963,
         'value_error': 0.061819541653923164},
        'HadISST': {'value': 0.38989908235027515,
         'value_error': 0.03172953733021198},
        'Tropflux': {'value': 0.39744741059612115,
         'value_error': 0.06284195338099416}},
       'metric': {'ERA-Interim': {'value': 35.95152902630469,
         'value_error': 15.254934151931252},
        'HadISST': {'value': 35.773784866178595,
         'value_error': 10.368867890279333},
        'Tropflux': {'value': 36.9935702790242,
         'value_error': 15.006742892215454}}},
      'EnsoSstTsRmse': {'diagnostic': {'CCSM4_r1i1p1': {'value': None,
         'value_error': None},
        'ERA-Interim': {'value': None, 'value_error': None},
        'HadISST': {'value': None, 'value_error': None},
        'Tropflux': {'value': None, 'value_error': None}},
       'metric': {'ERA-Interim': {'value': 0.13538229642648042,
         'value_error': None},
        'HadISST': {'value': 0.14161183302509184, 'value_error': None},
        'Tropflux': {'value': 0.13405984765792123, 'value_error': None}}},
      'SeasonalPrLatRmse': {'diagnostic': {'CCSM4_r1i1p1': {'value': None,
         'value_error': None},
        'ERA-Interim': {'value': None, 'value_error': None},
        'GPCPv2.3': {'value': None, 'value_error': None}},
       'metric': {'ERA-Interim': {'value': 1.2933035425166104,
         'value_error': None},
        'GPCPv2.3': {'value': 1.5756156317947019, 'value_error': None}}},
      'SeasonalPrLonRmse': {'diagnostic': {'CCSM4_r1i1p1': {'value': None,
         'value_error': None},
        'ERA-Interim': {'value': None, 'value_error': None},
        'GPCPv2.3': {'value': None, 'value_error': None}},
       'metric': {'ERA-Interim': {'value': 0.332514734772599,
         'value_error': None},
        'GPCPv2.3': {'value': 0.3746835130969084, 'value_error': None}}},
      'SeasonalSstLonRmse': {'diagnostic': {'CCSM4_r1i1p1': {'value': None,
         'value_error': None},
        'ERA-Interim': {'value': None, 'value_error': None},
        'HadISST': {'value': None, 'value_error': None},
        'Tropflux': {'value': None, 'value_error': None}},
       'metric': {'ERA-Interim': {'value': 0.2025922721005593,
         'value_error': None},
        'HadISST': {'value': 0.20513700529514345, 'value_error': None},
        'Tropflux': {'value': 0.2111573666242317, 'value_error': None}}},
      'SeasonalTauxLonRmse': {'diagnostic': {'CCSM4_r1i1p1': {'value': None,
         'value_error': None},
        'ERA-Interim': {'value': None, 'value_error': None},
        'Tropflux': {'value': None, 'value_error': None}},
       'metric': {'ERA-Interim': {'value': 1.5963288040131582,
         'value_error': None},
        'Tropflux': {'value': 1.7058608295075344, 'value_error': None}}}}},
    'r1i2p1': {'metadata': {'description_of_the_collection': 'Describe which science question this collection is about',
      'metrics': {'BiasPrLatRmse': {'diagnostic': {'CCSM4_r1i2p1': {'keyerror': None,
          'name': 'CCSM4_r1i2p1',
          'nyears': 156,
          'time_period': ['1850-1-16 12:0:0.0', '2005-12-16 12:0:0.0']},
         'ERA-Interim': {'name': 'ERA-Interim',
          'nyears': 40,
          'time_period': ['1979-1-16 12:0:0.0', '2019-3-16 12:0:0.0']},
         'GPCPv2.3': {'name': 'GPCPv2.3',
          'nyears': 41,
          'time_period': ['1979-1-1 0:0:0.0', '2019-7-1 0:0:0.0']},
         'method': 'Meridional root mean square error of nino3_LatExt pr, time series are linearly detrended, observations and model regridded to generic_1x1deg',
         'name': 'pr Meridional RMSE',
         'ref': 'Using CDAT regridding and rms (uncentered and biased) calculation',
         'time_frequency': 'monthly',
         'units': 'mm/day'},
        'metric': {'datasets': "CCSM4_r1i2p1; ERA-Interim's pr & GPCPv2.3's precip; 's ",
         'method': 'The metric is the statistical value between the model and the observations',
         'name': 'BiasPrLatRmse',
         'units': 'mm/day'}},
       'BiasPrLonRmse': {'diagnostic': {'CCSM4_r1i2p1': {'keyerror': None,
          'name': 'CCSM4_r1i2p1',
          'nyears': 156,
          'time_period': ['1850-1-16 12:0:0.0', '2005-12-16 12:0:0.0']},
         'ERA-Interim': {'name': 'ERA-Interim',
          'nyears': 40,
          'time_period': ['1979-1-16 12:0:0.0', '2019-3-16 12:0:0.0']},
         'GPCPv2.3': {'name': 'GPCPv2.3',
          'nyears': 41,
          'time_period': ['1979-1-1 0:0:0.0', '2019-7-1 0:0:0.0']},
         'method': 'Zonal root mean square error of equatorial_pacific pr, time series are linearly detrended, observations and model regridded to generic_1x1deg',
         'name': 'pr Zonal RMSE',
         'ref': 'Using CDAT regridding and rms (uncentered and biased) calculation',
         'time_frequency': 'monthly',
         'units': 'mm/day'},
        'metric': {'datasets': "CCSM4_r1i2p1; ERA-Interim's pr & GPCPv2.3's precip; 's ",
         'method': 'The metric is the statistical value between the model and the observations',
         'name': 'BiasPrLonRmse',
         'units': 'mm/day'}},
       'BiasSstLonRmse': {'diagnostic': {'CCSM4_r1i2p1': {'keyerror': None,
          'name': 'CCSM4_r1i2p1',
          'nyears': 156,
          'time_period': ['1850-1-16 12:0:0.0', '2005-12-16 12:0:0.0']},
         'ERA-Interim': {'name': 'ERA-Interim',
          'nyears': 40,
          'time_period': ['1979-1-16 12:0:0.0', '2019-3-16 12:0:0.0']},
         'HadISST': {'name': 'HadISST',
          'nyears': 151,
          'time_period': ['1870-1-16 11:59:59.5', '2020-10-16 12:0:0.0']},
         'Tropflux': {'name': 'Tropflux',
          'nyears': 40,
          'time_period': ['1979-1-15 0:0:0.0', '2018-12-15 12:0:0.0']},
         'method': 'Zonal root mean square error of equatorial_pacific sst, time series are linearly detrended, observations and model regridded to generic_1x1deg',
         'name': 'sst Zonal RMSE',
         'ref': 'Using CDAT regridding and rms (uncentered and biased) calculation',
         'time_frequency': 'monthly',
         'units': 'C'},
        'metric': {'datasets': "CCSM4_r1i2p1; ERA-Interim's ts & HadISST's sst & Tropflux's sst; 's ",
         'method': 'The metric is the statistical value between the model and the observations',
         'name': 'BiasSstLonRmse',
         'units': 'C'}},
       'BiasTauxLonRmse': {'diagnostic': {'CCSM4_r1i2p1': {'keyerror': None,
          'name': 'CCSM4_r1i2p1',
          'nyears': 156,
          'time_period': ['1850-1-16 12:0:0.0', '2005-12-16 12:0:0.0']},
         'ERA-Interim': {'name': 'ERA-Interim',
          'nyears': 40,
          'time_period': ['1979-1-16 12:0:0.0', '2019-3-16 12:0:0.0']},
         'Tropflux': {'name': 'Tropflux',
          'nyears': 40,
          'time_period': ['1979-1-15 0:0:0.0', '2018-12-15 12:0:0.0']},
         'method': 'Zonal root mean square error of equatorial_pacific taux, time series are linearly detrended, observations and model regridded to generic_1x1deg',
         'name': 'taux Zonal RMSE',
         'ref': 'Using CDAT regridding and rms (uncentered and biased) calculation',
         'time_frequency': 'monthly',
         'units': '1e-3 N/m2'},
        'metric': {'datasets': "CCSM4_r1i2p1; ERA-Interim's tauu & Tropflux's taux; 's ",
         'method': 'The metric is the statistical value between the model and the observations',
         'name': 'BiasTauxLonRmse',
         'units': '1e-3 N/m2'}},
       'EnsoAmpl': {'diagnostic': {'CCSM4_r1i2p1': {'keyerror': None,
          'name': 'CCSM4_r1i2p1',
          'nyears': 156,
          'time_period': ['1850-1-16 12:0:0.0', '2005-12-16 12:0:0.0']},
         'ERA-Interim': {'keyerror': None,
          'name': 'ERA-Interim',
          'nyears': 40,
          'time_period': ['1979-1-16 12:0:0.0', '2019-3-16 12:0:0.0']},
         'HadISST': {'keyerror': None,
          'name': 'HadISST',
          'nyears': 151,
          'time_period': ['1870-1-16 11:59:59.5', '2020-10-16 12:0:0.0']},
         'Tropflux': {'keyerror': None,
          'name': 'Tropflux',
          'nyears': 40,
          'time_period': ['1979-1-15 0:0:0.0', '2018-12-15 12:0:0.0']},
         'method': 'Standard deviation of nino3.4 sstA, time series are linearly detrended',
         'name': 'ENSO amplitude',
         'ref': 'Using CDAT regression calculation',
         'time_frequency': 'monthly',
         'units': 'C'},
        'metric': {'datasets': "CCSM4_r1i2p1; ERA-Interim's ts & HadISST's sst & Tropflux's sst; 's ",
         'method': 'The metric is the absolute value of the relative difference between model and observations values (M = 100 * abs[[model-obs] / obs])',
         'name': 'EnsoAmpl',
         'units': '%'}},
       'EnsoDuration': {'diagnostic': {'CCSM4_r1i2p1': {'keyerror': None,
          'name': 'CCSM4_r1i2p1',
          'nyears': 156,
          'time_period': ['1850-1-16 12:0:0.0', '2005-12-16 12:0:0.0']},
         'ERA-Interim': {'keyerror': None,
          'name': 'ERA-Interim',
          'nyears': 40,
          'time_period': ['1979-1-16 12:0:0.0', '2019-3-16 12:0:0.0']},
         'HadISST': {'keyerror': None,
          'name': 'HadISST',
          'nyears': 151,
          'time_period': ['1870-1-16 11:59:59.5', '2020-10-16 12:0:0.0']},
         'Tropflux': {'keyerror': None,
          'name': 'Tropflux',
          'nyears': 40,
          'time_period': ['1979-1-15 0:0:0.0', '2018-12-15 12:0:0.0']},
         'method': 'nino3.4 SSTA during DEC regressed against nino3.4 SSTA during 6 years (centered on ENSO), the duration is the number of consecutive months during which the regression is above 0.25, time series are linearly detrended, smoothing using a triangle shaped window of 5 points',
         'name': 'ENSO Duration based on life cyle SSTA pattern',
         'ref': 'Using CDAT',
         'time_frequency': 'monthly',
         'units': 'months'},
        'metric': {'datasets': "CCSM4_r1i2p1; ERA-Interim's ts & HadISST's sst & Tropflux's sst; 's ",
         'method': 'The metric is the absolute value of the relative difference between model and observations values (M = 100 * abs[[model-obs] / obs])',
         'name': 'EnsoDuration',
         'units': '%'}},
       'EnsoSeasonality': {'diagnostic': {'CCSM4_r1i2p1': {'keyerror': None,
          'name': 'CCSM4_r1i2p1',
          'nyears': 156,
          'time_period': ['1850-1-16 12:0:0.0', '2005-12-16 12:0:0.0']},
         'ERA-Interim': {'keyerror': None,
          'name': 'ERA-Interim',
          'nyears': 40,
          'time_period': ['1979-1-16 12:0:0.0', '2019-3-16 12:0:0.0']},
         'HadISST': {'keyerror': None,
          'name': 'HadISST',
          'nyears': 151,
          'time_period': ['1870-1-16 11:59:59.5', '2020-10-16 12:0:0.0']},
         'Tropflux': {'keyerror': None,
          'name': 'Tropflux',
          'nyears': 40,
          'time_period': ['1979-1-15 0:0:0.0', '2018-12-15 12:0:0.0']},
         'method': 'Ratio between NDJ and MAM standard deviation nino3.4 sstA, time series are linearly detrended',
         'name': 'ENSO seasonality',
         'ref': 'Using CDAT std dev calculation',
         'time_frequency': 'monthly',
         'units': 'C/C'},
        'metric': {'datasets': "CCSM4_r1i2p1; ERA-Interim's ts & HadISST's sst & Tropflux's sst; 's ",
         'method': 'The metric is the absolute value of the relative difference between model and observations values (M = 100 * abs[[model-obs] / obs])',
         'name': 'EnsoSeasonality',
         'units': '%'}},
       'EnsoSstDiversity_2': {'diagnostic': {'CCSM4_r1i2p1': {'keyerror': None,
          'name': 'CCSM4_r1i2p1',
          'nyears': 156,
          'time_period': ['1850-1-16 12:0:0.0', '2005-12-16 12:0:0.0']},
         'ERA-Interim': {'keyerror': None,
          'name': 'ERA-Interim',
          'nyears': 40,
          'time_period': ['1979-1-16 12:0:0.0', '2019-3-16 12:0:0.0']},
         'HadISST': {'keyerror': None,
          'name': 'HadISST',
          'nyears': 151,
          'time_period': ['1870-1-16 11:59:59.5', '2020-10-16 12:0:0.0']},
         'Tropflux': {'keyerror': None,
          'name': 'Tropflux',
          'nyears': 40,
          'time_period': ['1979-1-15 0:0:0.0', '2018-12-15 12:0:0.0']},
         'method': 'Nino (Nina) events = nino3.4 sstA > 0.75 (< -0.75) during DEC, zonal SSTA (meridional averaged [-5.0 ; 5.0]), the zonal SSTA maximum (minimum) is located for each event, the diversity is the interquartile range (IQR = Q3 - Q1), time series are linearly detrended, smoothing using a triangle shaped window of 5 points',
         'name': 'ENSO Diversity (interquartile range)',
         'ref': 'Using CDAT regridding',
         'time_frequency': 'monthly',
         'units': 'long'},
        'metric': {'datasets': "CCSM4_r1i2p1; ERA-Interim's ts & HadISST's sst & Tropflux's sst; 's ",
         'method': 'The metric is the absolute value of the relative difference between model and observations values (M = 100 * abs[[model-obs] / obs])',
         'name': 'EnsoSstDiversity',
         'units': '%'}},
       'EnsoSstLonRmse': {'diagnostic': {'CCSM4_r1i2p1': {'keyerror': None,
          'name': 'CCSM4_r1i2p1',
          'nyears': 156,
          'time_period': ['1850-1-16 12:0:0.0', '2005-12-16 12:0:0.0']},
         'ERA-Interim': {'name': 'ERA-Interim',
          'nyears': 40,
          'time_period': ['1979-1-16 12:0:0.0', '2019-3-16 12:0:0.0']},
         'HadISST': {'name': 'HadISST',
          'nyears': 151,
          'time_period': ['1870-1-16 11:59:59.5', '2020-10-16 12:0:0.0']},
         'Tropflux': {'name': 'Tropflux',
          'nyears': 40,
          'time_period': ['1979-1-15 0:0:0.0', '2018-12-15 12:0:0.0']},
         'method': 'nino3.4 SSTA during DEC regressed against equatorial_pacific SSTA, time series are linearly detrended, smoothing using a triangle shaped window of 5 points, observations and model regridded to generic_1x1deg',
         'name': 'ENSO Zonal SSTA pattern',
         'ref': 'Using CDAT regridding and rms (uncentered and biased) calculation',
         'time_frequency': 'monthly',
         'units': 'C/C'},
        'metric': {'datasets': "CCSM4_r1i2p1; ERA-Interim's ts & HadISST's sst & Tropflux's sst; 's ",
         'method': 'The metric is the statistical value between the model and the observations',
         'name': 'EnsoSstLonRmse',
         'units': 'C/C'}},
       'EnsoSstSkew': {'diagnostic': {'CCSM4_r1i2p1': {'keyerror': None,
          'name': 'CCSM4_r1i2p1',
          'nyears': 156,
          'time_period': ['1850-1-16 12:0:0.0', '2005-12-16 12:0:0.0']},
         'ERA-Interim': {'keyerror': None,
          'name': 'ERA-Interim',
          'nyears': 40,
          'time_period': ['1979-1-16 12:0:0.0', '2019-3-16 12:0:0.0']},
         'HadISST': {'keyerror': None,
          'name': 'HadISST',
          'nyears': 151,
          'time_period': ['1870-1-16 11:59:59.5', '2020-10-16 12:0:0.0']},
         'Tropflux': {'keyerror': None,
          'name': 'Tropflux',
          'nyears': 40,
          'time_period': ['1979-1-15 0:0:0.0', '2018-12-15 12:0:0.0']},
         'method': 'Standard deviation of nino3.4 sstA, time series are linearly detrended',
         'name': 'ENSO skewness',
         'ref': 'Using CDAT regression calculation',
         'time_frequency': 'monthly',
         'units': 'C'},
        'metric': {'datasets': "CCSM4_r1i2p1; ERA-Interim's ts & HadISST's sst & Tropflux's sst; 's ",
         'method': 'The metric is the absolute value of the relative difference between model and observations values (M = 100 * abs[[model-obs] / obs])',
         'name': 'EnsoSstSkew',
         'units': '%'}},
       'EnsoSstTsRmse': {'diagnostic': {'CCSM4_r1i2p1': {'keyerror': None,
          'name': 'CCSM4_r1i2p1',
          'nyears': 156,
          'time_period': ['1850-1-16 12:0:0.0', '2005-12-16 12:0:0.0']},
         'ERA-Interim': {'name': 'ERA-Interim',
          'nyears': 40,
          'time_period': ['1979-1-16 12:0:0.0', '2019-3-16 12:0:0.0']},
         'HadISST': {'name': 'HadISST',
          'nyears': 151,
          'time_period': ['1870-1-16 11:59:59.5', '2020-10-16 12:0:0.0']},
         'Tropflux': {'name': 'Tropflux',
          'nyears': 40,
          'time_period': ['1979-1-15 0:0:0.0', '2018-12-15 12:0:0.0']},
         'method': 'nino3.4 SSTA during DEC regressed against nino3.4 SSTA during 6 years (centered on ENSO), time series are linearly detrended, smoothing using a triangle shaped window of 5 points',
         'name': 'ENSO life cyle SSTA pattern',
         'ref': 'Using CDAT regridding and rms (uncentered and biased) calculation',
         'time_frequency': 'monthly',
         'units': 'C/C'},
        'metric': {'datasets': "CCSM4_r1i2p1; ERA-Interim's ts & HadISST's sst & Tropflux's sst; 's ",
         'method': 'The metric is the statistical value between the model and the observations',
         'name': 'EnsoSstTsRmse',
         'units': 'C/C'}},
       'SeasonalPrLatRmse': {'diagnostic': {'CCSM4_r1i2p1': {'keyerror': None,
          'name': 'CCSM4_r1i2p1',
          'nyears': 156,
          'time_period': ['1850-1-16 12:0:0.0', '2005-12-16 12:0:0.0']},
         'ERA-Interim': {'name': 'ERA-Interim',
          'nyears': 40,
          'time_period': ['1979-1-16 12:0:0.0', '2019-3-16 12:0:0.0']},
         'GPCPv2.3': {'name': 'GPCPv2.3',
          'nyears': 41,
          'time_period': ['1979-1-1 0:0:0.0', '2019-7-1 0:0:0.0']},
         'method': 'Meridional root mean square error of nino3_LatExt climatological pr STD, time series are linearly detrended, observations and model regridded to generic_1x1deg',
         'name': 'pr meridional seasonality RMSE',
         'ref': 'Using CDAT regridding and rms (uncentered and biased) calculation',
         'time_frequency': 'monthly',
         'units': 'mm/day'},
        'metric': {'datasets': "CCSM4_r1i2p1; ERA-Interim's pr & GPCPv2.3's precip; 's ",
         'method': 'The metric is the statistical value between the model and the observations',
         'name': 'SeasonalPrLatRmse',
         'units': 'mm/day'}},
       'SeasonalPrLonRmse': {'diagnostic': {'CCSM4_r1i2p1': {'keyerror': None,
          'name': 'CCSM4_r1i2p1',
          'nyears': 156,
          'time_period': ['1850-1-16 12:0:0.0', '2005-12-16 12:0:0.0']},
         'ERA-Interim': {'name': 'ERA-Interim',
          'nyears': 40,
          'time_period': ['1979-1-16 12:0:0.0', '2019-3-16 12:0:0.0']},
         'GPCPv2.3': {'name': 'GPCPv2.3',
          'nyears': 41,
          'time_period': ['1979-1-1 0:0:0.0', '2019-7-1 0:0:0.0']},
         'method': 'Zonal root mean square error of equatorial_pacific climatological pr STD, time series are linearly detrended, observations and model regridded to generic_1x1deg',
         'name': 'pr zonal seasonality RMSE',
         'ref': 'Using CDAT regridding and rms (uncentered and biased) calculation',
         'time_frequency': 'monthly',
         'units': 'mm/day'},
        'metric': {'datasets': "CCSM4_r1i2p1; ERA-Interim's pr & GPCPv2.3's precip; 's ",
         'method': 'The metric is the statistical value between the model and the observations',
         'name': 'SeasonalPrLonRmse',
         'units': 'mm/day'}},
       'SeasonalSstLonRmse': {'diagnostic': {'CCSM4_r1i2p1': {'keyerror': None,
          'name': 'CCSM4_r1i2p1',
          'nyears': 156,
          'time_period': ['1850-1-16 12:0:0.0', '2005-12-16 12:0:0.0']},
         'ERA-Interim': {'name': 'ERA-Interim',
          'nyears': 40,
          'time_period': ['1979-1-16 12:0:0.0', '2019-3-16 12:0:0.0']},
         'HadISST': {'name': 'HadISST',
          'nyears': 151,
          'time_period': ['1870-1-16 11:59:59.5', '2020-10-16 12:0:0.0']},
         'Tropflux': {'name': 'Tropflux',
          'nyears': 40,
          'time_period': ['1979-1-15 0:0:0.0', '2018-12-15 12:0:0.0']},
         'method': 'Zonal root mean square error of equatorial_pacific climatological sst STD, time series are linearly detrended, observations and model regridded to generic_1x1deg',
         'name': 'sst zonal seasonality RMSE',
         'ref': 'Using CDAT regridding and rms (uncentered and biased) calculation',
         'time_frequency': 'monthly',
         'units': 'C'},
        'metric': {'datasets': "CCSM4_r1i2p1; ERA-Interim's ts & HadISST's sst & Tropflux's sst; 's ",
         'method': 'The metric is the statistical value between the model and the observations',
         'name': 'SeasonalSstLonRmse',
         'units': 'C'}},
       'SeasonalTauxLonRmse': {'diagnostic': {'CCSM4_r1i2p1': {'keyerror': None,
          'name': 'CCSM4_r1i2p1',
          'nyears': 156,
          'time_period': ['1850-1-16 12:0:0.0', '2005-12-16 12:0:0.0']},
         'ERA-Interim': {'name': 'ERA-Interim',
          'nyears': 40,
          'time_period': ['1979-1-16 12:0:0.0', '2019-3-16 12:0:0.0']},
         'Tropflux': {'name': 'Tropflux',
          'nyears': 40,
          'time_period': ['1979-1-15 0:0:0.0', '2018-12-15 12:0:0.0']},
         'method': 'Zonal root mean square error of equatorial_pacific climatological taux STD, time series are linearly detrended, observations and model regridded to generic_1x1deg',
         'name': 'taux zonal seasonality RMSE',
         'ref': 'Using CDAT regridding and rms (uncentered and biased) calculation',
         'time_frequency': 'monthly',
         'units': '1e-3 N/m2'},
        'metric': {'datasets': "CCSM4_r1i2p1; ERA-Interim's tauu & Tropflux's taux; 's ",
         'method': 'The metric is the statistical value between the model and the observations',
         'name': 'SeasonalTauxLonRmse',
         'units': '1e-3 N/m2'}}},
      'name': 'Metrics Collection for ENSO performance'},
     'value': {'BiasPrLatRmse': {'diagnostic': {'CCSM4_r1i2p1': {'value': None,
         'value_error': None},
        'ERA-Interim': {'value': None, 'value_error': None},
        'GPCPv2.3': {'value': None, 'value_error': None}},
       'metric': {'ERA-Interim': {'value': 1.3453065342349928,
         'value_error': None},
        'GPCPv2.3': {'value': 1.4111485834038684, 'value_error': None}}},
      'BiasPrLonRmse': {'diagnostic': {'CCSM4_r1i2p1': {'value': None,
         'value_error': None},
        'ERA-Interim': {'value': None, 'value_error': None},
        'GPCPv2.3': {'value': None, 'value_error': None}},
       'metric': {'ERA-Interim': {'value': 1.6399935282363962,
         'value_error': None},
        'GPCPv2.3': {'value': 0.716689533952502, 'value_error': None}}},
      'BiasSstLonRmse': {'diagnostic': {'CCSM4_r1i2p1': {'value': None,
         'value_error': None},
        'ERA-Interim': {'value': None, 'value_error': None},
        'HadISST': {'value': None, 'value_error': None},
        'Tropflux': {'value': None, 'value_error': None}},
       'metric': {'ERA-Interim': {'value': 0.454898740158078,
         'value_error': None},
        'HadISST': {'value': 0.2913319220719114, 'value_error': None},
        'Tropflux': {'value': 0.5036638463027653, 'value_error': None}}},
      'BiasTauxLonRmse': {'diagnostic': {'CCSM4_r1i2p1': {'value': None,
         'value_error': None},
        'ERA-Interim': {'value': None, 'value_error': None},
        'Tropflux': {'value': None, 'value_error': None}},
       'metric': {'ERA-Interim': {'value': 5.552460344239443,
         'value_error': None},
        'Tropflux': {'value': 5.820575895270259, 'value_error': None}}},
      'EnsoAmpl': {'diagnostic': {'CCSM4_r1i2p1': {'value': 1.1486935396316083,
         'value_error': 0.09196908789452006},
        'ERA-Interim': {'value': 0.8989844997845644,
         'value_error': 0.14214193002531866},
        'HadISST': {'value': 0.7665787872085695,
         'value_error': 0.06238329697691264},
        'Tropflux': {'value': 0.9039789553693535,
         'value_error': 0.14293162279134272}},
       'metric': {'ERA-Interim': {'value': 27.77679035699558,
         'value_error': 30.433615251199956},
        'HadISST': {'value': 49.84676836864696,
         'value_error': 24.191700254521},
        'Tropflux': {'value': 27.070827568355032,
         'value_error': 30.26547047442849}}},
      'EnsoDuration': {'diagnostic': {'CCSM4_r1i2p1': {'value': 14.0,
         'value_error': None},
        'ERA-Interim': {'value': 13.0, 'value_error': None},
        'HadISST': {'value': 13.0, 'value_error': None},
        'Tropflux': {'value': 13.0, 'value_error': None}},
       'metric': {'ERA-Interim': {'value': 7.6923076923076925,
         'value_error': None},
        'HadISST': {'value': 7.6923076923076925, 'value_error': None},
        'Tropflux': {'value': 7.6923076923076925, 'value_error': None}}},
      'EnsoSeasonality': {'diagnostic': {'CCSM4_r1i2p1': {'value': 1.419448326506585,
         'value_error': 0.2276596531954494},
        'ERA-Interim': {'value': 2.0466846866656914,
         'value_error': 0.6513411033995022},
        'HadISST': {'value': 1.6639865947361325,
         'value_error': 0.2712772451657809},
        'Tropflux': {'value': 2.0532132553583624,
         'value_error': 0.6534187683977347}},
       'metric': {'ERA-Interim': {'value': 30.646457866499894,
         'value_error': 33.19455039658485},
        'HadISST': {'value': 14.695927779894488,
         'value_error': 27.588575039042134},
        'Tropflux': {'value': 30.866980193012722,
         'value_error': 33.08900222621294}}},
      'EnsoSstDiversity_2': {'diagnostic': {'CCSM4_r1i2p1': {'value': 38.5,
         'value_error': None},
        'ERA-Interim': {'value': 33.25, 'value_error': None},
        'HadISST': {'value': 49.0, 'value_error': None},
        'Tropflux': {'value': 32.0, 'value_error': None}},
       'metric': {'ERA-Interim': {'value': 15.789473684210526,
         'value_error': None},
        'HadISST': {'value': 21.428571428571427, 'value_error': None},
        'Tropflux': {'value': 20.3125, 'value_error': None}}},
      'EnsoSstLonRmse': {'diagnostic': {'CCSM4_r1i2p1': {'value': None,
         'value_error': None},
        'ERA-Interim': {'value': None, 'value_error': None},
        'HadISST': {'value': None, 'value_error': None},
        'Tropflux': {'value': None, 'value_error': None}},
       'metric': {'ERA-Interim': {'value': 0.10893956686029498,
         'value_error': None},
        'HadISST': {'value': 0.1295152776427591, 'value_error': None},
        'Tropflux': {'value': 0.11093774758504696, 'value_error': None}}},
      'EnsoSstSkew': {'diagnostic': {'CCSM4_r1i2p1': {'value': 0.19654243108866398,
         'value_error': 0.01573598831729566},
        'ERA-Interim': {'value': 0.39098111106809963,
         'value_error': 0.061819541653923164},
        'HadISST': {'value': 0.38989908235027515,
         'value_error': 0.03172953733021198},
        'Tropflux': {'value': 0.39744741059612115,
         'value_error': 0.06284195338099416}},
       'metric': {'ERA-Interim': {'value': 49.730965122140915,
         'value_error': 11.972976173901497},
        'HadISST': {'value': 49.59146097397188,
         'value_error': 8.138101873414511},
        'Tropflux': {'value': 50.54882083798834,
         'value_error': 11.778180967999441}}},
      'EnsoSstTsRmse': {'diagnostic': {'CCSM4_r1i2p1': {'value': None,
         'value_error': None},
        'ERA-Interim': {'value': None, 'value_error': None},
        'HadISST': {'value': None, 'value_error': None},
        'Tropflux': {'value': None, 'value_error': None}},
       'metric': {'ERA-Interim': {'value': 0.13000281604544192,
         'value_error': None},
        'HadISST': {'value': 0.13682820290760545, 'value_error': None},
        'Tropflux': {'value': 0.13022156234718607, 'value_error': None}}},
      'SeasonalPrLatRmse': {'diagnostic': {'CCSM4_r1i2p1': {'value': None,
         'value_error': None},
        'ERA-Interim': {'value': None, 'value_error': None},
        'GPCPv2.3': {'value': None, 'value_error': None}},
       'metric': {'ERA-Interim': {'value': 1.2490236771070917,
         'value_error': None},
        'GPCPv2.3': {'value': 1.5154959738386062, 'value_error': None}}},
      'SeasonalPrLonRmse': {'diagnostic': {'CCSM4_r1i2p1': {'value': None,
         'value_error': None},
        'ERA-Interim': {'value': None, 'value_error': None},
        'GPCPv2.3': {'value': None, 'value_error': None}},
       'metric': {'ERA-Interim': {'value': 0.35759176120269104,
         'value_error': None},
        'GPCPv2.3': {'value': 0.35578289845702293, 'value_error': None}}},
      'SeasonalSstLonRmse': {'diagnostic': {'CCSM4_r1i2p1': {'value': None,
         'value_error': None},
        'ERA-Interim': {'value': None, 'value_error': None},
        'HadISST': {'value': None, 'value_error': None},
        'Tropflux': {'value': None, 'value_error': None}},
       'metric': {'ERA-Interim': {'value': 0.21077219604409586,
         'value_error': None},
        'HadISST': {'value': 0.21260868265937913, 'value_error': None},
        'Tropflux': {'value': 0.2194647823599543, 'value_error': None}}},
      'SeasonalTauxLonRmse': {'diagnostic': {'CCSM4_r1i2p1': {'value': None,
         'value_error': None},
        'ERA-Interim': {'value': None, 'value_error': None},
        'Tropflux': {'value': None, 'value_error': None}},
       'metric': {'ERA-Interim': {'value': 1.5255776372203644,
         'value_error': None},
        'Tropflux': {'value': 1.6956852305863532, 'value_error': None}}}}},
    'r1i2p2': {'metadata': {'description_of_the_collection': 'Describe which science question this collection is about',
      'metrics': {'BiasPrLatRmse': {'diagnostic': {'CCSM4_r1i2p2': {'keyerror': None,
          'name': 'CCSM4_r1i2p2',
          'nyears': 156,
          'time_period': ['1850-1-16 12:0:0.0', '2005-12-16 12:0:0.0']},
         'ERA-Interim': {'name': 'ERA-Interim',
          'nyears': 40,
          'time_period': ['1979-1-16 12:0:0.0', '2019-3-16 12:0:0.0']},
         'GPCPv2.3': {'name': 'GPCPv2.3',
          'nyears': 41,
          'time_period': ['1979-1-1 0:0:0.0', '2019-7-1 0:0:0.0']},
         'method': 'Meridional root mean square error of nino3_LatExt pr, time series are linearly detrended, observations and model regridded to generic_1x1deg',
         'name': 'pr Meridional RMSE',
         'ref': 'Using CDAT regridding and rms (uncentered and biased) calculation',
         'time_frequency': 'monthly',
         'units': 'mm/day'},
        'metric': {'datasets': "CCSM4_r1i2p2; ERA-Interim's pr & GPCPv2.3's precip; 's ",
         'method': 'The metric is the statistical value between the model and the observations',
         'name': 'BiasPrLatRmse',
         'units': 'mm/day'}},
       'BiasPrLonRmse': {'diagnostic': {'CCSM4_r1i2p2': {'keyerror': None,
          'name': 'CCSM4_r1i2p2',
          'nyears': 156,
          'time_period': ['1850-1-16 12:0:0.0', '2005-12-16 12:0:0.0']},
         'ERA-Interim': {'name': 'ERA-Interim',
          'nyears': 40,
          'time_period': ['1979-1-16 12:0:0.0', '2019-3-16 12:0:0.0']},
         'GPCPv2.3': {'name': 'GPCPv2.3',
          'nyears': 41,
          'time_period': ['1979-1-1 0:0:0.0', '2019-7-1 0:0:0.0']},
         'method': 'Zonal root mean square error of equatorial_pacific pr, time series are linearly detrended, observations and model regridded to generic_1x1deg',
         'name': 'pr Zonal RMSE',
         'ref': 'Using CDAT regridding and rms (uncentered and biased) calculation',
         'time_frequency': 'monthly',
         'units': 'mm/day'},
        'metric': {'datasets': "CCSM4_r1i2p2; ERA-Interim's pr & GPCPv2.3's precip; 's ",
         'method': 'The metric is the statistical value between the model and the observations',
         'name': 'BiasPrLonRmse',
         'units': 'mm/day'}},
       'BiasSstLonRmse': {'diagnostic': {'CCSM4_r1i2p2': {'keyerror': None,
          'name': 'CCSM4_r1i2p2',
          'nyears': 156,
          'time_period': ['1850-1-16 12:0:0.0', '2005-12-16 12:0:0.0']},
         'ERA-Interim': {'name': 'ERA-Interim',
          'nyears': 40,
          'time_period': ['1979-1-16 12:0:0.0', '2019-3-16 12:0:0.0']},
         'HadISST': {'name': 'HadISST',
          'nyears': 151,
          'time_period': ['1870-1-16 11:59:59.5', '2020-10-16 12:0:0.0']},
         'Tropflux': {'name': 'Tropflux',
          'nyears': 40,
          'time_period': ['1979-1-15 0:0:0.0', '2018-12-15 12:0:0.0']},
         'method': 'Zonal root mean square error of equatorial_pacific sst, time series are linearly detrended, observations and model regridded to generic_1x1deg',
         'name': 'sst Zonal RMSE',
         'ref': 'Using CDAT regridding and rms (uncentered and biased) calculation',
         'time_frequency': 'monthly',
         'units': 'C'},
        'metric': {'datasets': "CCSM4_r1i2p2; ERA-Interim's ts & HadISST's sst & Tropflux's sst; 's ",
         'method': 'The metric is the statistical value between the model and the observations',
         'name': 'BiasSstLonRmse',
         'units': 'C'}},
       'BiasTauxLonRmse': {'diagnostic': {'CCSM4_r1i2p2': {'keyerror': None,
          'name': 'CCSM4_r1i2p2',
          'nyears': 156,
          'time_period': ['1850-1-16 12:0:0.0', '2005-12-16 12:0:0.0']},
         'ERA-Interim': {'name': 'ERA-Interim',
          'nyears': 40,
          'time_period': ['1979-1-16 12:0:0.0', '2019-3-16 12:0:0.0']},
         'Tropflux': {'name': 'Tropflux',
          'nyears': 40,
          'time_period': ['1979-1-15 0:0:0.0', '2018-12-15 12:0:0.0']},
         'method': 'Zonal root mean square error of equatorial_pacific taux, time series are linearly detrended, observations and model regridded to generic_1x1deg',
         'name': 'taux Zonal RMSE',
         'ref': 'Using CDAT regridding and rms (uncentered and biased) calculation',
         'time_frequency': 'monthly',
         'units': '1e-3 N/m2'},
        'metric': {'datasets': "CCSM4_r1i2p2; ERA-Interim's tauu & Tropflux's taux; 's ",
         'method': 'The metric is the statistical value between the model and the observations',
         'name': 'BiasTauxLonRmse',
         'units': '1e-3 N/m2'}},
       'EnsoAmpl': {'diagnostic': {'CCSM4_r1i2p2': {'keyerror': None,
          'name': 'CCSM4_r1i2p2',
          'nyears': 156,
          'time_period': ['1850-1-16 12:0:0.0', '2005-12-16 12:0:0.0']},
         'ERA-Interim': {'keyerror': None,
          'name': 'ERA-Interim',
          'nyears': 40,
          'time_period': ['1979-1-16 12:0:0.0', '2019-3-16 12:0:0.0']},
         'HadISST': {'keyerror': None,
          'name': 'HadISST',
          'nyears': 151,
          'time_period': ['1870-1-16 11:59:59.5', '2020-10-16 12:0:0.0']},
         'Tropflux': {'keyerror': None,
          'name': 'Tropflux',
          'nyears': 40,
          'time_period': ['1979-1-15 0:0:0.0', '2018-12-15 12:0:0.0']},
         'method': 'Standard deviation of nino3.4 sstA, time series are linearly detrended',
         'name': 'ENSO amplitude',
         'ref': 'Using CDAT regression calculation',
         'time_frequency': 'monthly',
         'units': 'C'},
        'metric': {'datasets': "CCSM4_r1i2p2; ERA-Interim's ts & HadISST's sst & Tropflux's sst; 's ",
         'method': 'The metric is the absolute value of the relative difference between model and observations values (M = 100 * abs[[model-obs] / obs])',
         'name': 'EnsoAmpl',
         'units': '%'}},
       'EnsoDuration': {'diagnostic': {'CCSM4_r1i2p2': {'keyerror': None,
          'name': 'CCSM4_r1i2p2',
          'nyears': 156,
          'time_period': ['1850-1-16 12:0:0.0', '2005-12-16 12:0:0.0']},
         'ERA-Interim': {'keyerror': None,
          'name': 'ERA-Interim',
          'nyears': 40,
          'time_period': ['1979-1-16 12:0:0.0', '2019-3-16 12:0:0.0']},
         'HadISST': {'keyerror': None,
          'name': 'HadISST',
          'nyears': 151,
          'time_period': ['1870-1-16 11:59:59.5', '2020-10-16 12:0:0.0']},
         'Tropflux': {'keyerror': None,
          'name': 'Tropflux',
          'nyears': 40,
          'time_period': ['1979-1-15 0:0:0.0', '2018-12-15 12:0:0.0']},
         'method': 'nino3.4 SSTA during DEC regressed against nino3.4 SSTA during 6 years (centered on ENSO), the duration is the number of consecutive months during which the regression is above 0.25, time series are linearly detrended, smoothing using a triangle shaped window of 5 points',
         'name': 'ENSO Duration based on life cyle SSTA pattern',
         'ref': 'Using CDAT',
         'time_frequency': 'monthly',
         'units': 'months'},
        'metric': {'datasets': "CCSM4_r1i2p2; ERA-Interim's ts & HadISST's sst & Tropflux's sst; 's ",
         'method': 'The metric is the absolute value of the relative difference between model and observations values (M = 100 * abs[[model-obs] / obs])',
         'name': 'EnsoDuration',
         'units': '%'}},
       'EnsoSeasonality': {'diagnostic': {'CCSM4_r1i2p2': {'keyerror': None,
          'name': 'CCSM4_r1i2p2',
          'nyears': 156,
          'time_period': ['1850-1-16 12:0:0.0', '2005-12-16 12:0:0.0']},
         'ERA-Interim': {'keyerror': None,
          'name': 'ERA-Interim',
          'nyears': 40,
          'time_period': ['1979-1-16 12:0:0.0', '2019-3-16 12:0:0.0']},
         'HadISST': {'keyerror': None,
          'name': 'HadISST',
          'nyears': 151,
          'time_period': ['1870-1-16 11:59:59.5', '2020-10-16 12:0:0.0']},
         'Tropflux': {'keyerror': None,
          'name': 'Tropflux',
          'nyears': 40,
          'time_period': ['1979-1-15 0:0:0.0', '2018-12-15 12:0:0.0']},
         'method': 'Ratio between NDJ and MAM standard deviation nino3.4 sstA, time series are linearly detrended',
         'name': 'ENSO seasonality',
         'ref': 'Using CDAT std dev calculation',
         'time_frequency': 'monthly',
         'units': 'C/C'},
        'metric': {'datasets': "CCSM4_r1i2p2; ERA-Interim's ts & HadISST's sst & Tropflux's sst; 's ",
         'method': 'The metric is the absolute value of the relative difference between model and observations values (M = 100 * abs[[model-obs] / obs])',
         'name': 'EnsoSeasonality',
         'units': '%'}},
       'EnsoSstDiversity_2': {'diagnostic': {'CCSM4_r1i2p2': {'keyerror': None,
          'name': 'CCSM4_r1i2p2',
          'nyears': 156,
          'time_period': ['1850-1-16 12:0:0.0', '2005-12-16 12:0:0.0']},
         'ERA-Interim': {'keyerror': None,
          'name': 'ERA-Interim',
          'nyears': 40,
          'time_period': ['1979-1-16 12:0:0.0', '2019-3-16 12:0:0.0']},
         'HadISST': {'keyerror': None,
          'name': 'HadISST',
          'nyears': 151,
          'time_period': ['1870-1-16 11:59:59.5', '2020-10-16 12:0:0.0']},
         'Tropflux': {'keyerror': None,
          'name': 'Tropflux',
          'nyears': 40,
          'time_period': ['1979-1-15 0:0:0.0', '2018-12-15 12:0:0.0']},
         'method': 'Nino (Nina) events = nino3.4 sstA > 0.75 (< -0.75) during DEC, zonal SSTA (meridional averaged [-5.0 ; 5.0]), the zonal SSTA maximum (minimum) is located for each event, the diversity is the interquartile range (IQR = Q3 - Q1), time series are linearly detrended, smoothing using a triangle shaped window of 5 points',
         'name': 'ENSO Diversity (interquartile range)',
         'ref': 'Using CDAT regridding',
         'time_frequency': 'monthly',
         'units': 'long'},
        'metric': {'datasets': "CCSM4_r1i2p2; ERA-Interim's ts & HadISST's sst & Tropflux's sst; 's ",
         'method': 'The metric is the absolute value of the relative difference between model and observations values (M = 100 * abs[[model-obs] / obs])',
         'name': 'EnsoSstDiversity',
         'units': '%'}},
       'EnsoSstLonRmse': {'diagnostic': {'CCSM4_r1i2p2': {'keyerror': None,
          'name': 'CCSM4_r1i2p2',
          'nyears': 156,
          'time_period': ['1850-1-16 12:0:0.0', '2005-12-16 12:0:0.0']},
         'ERA-Interim': {'name': 'ERA-Interim',
          'nyears': 40,
          'time_period': ['1979-1-16 12:0:0.0', '2019-3-16 12:0:0.0']},
         'HadISST': {'name': 'HadISST',
          'nyears': 151,
          'time_period': ['1870-1-16 11:59:59.5', '2020-10-16 12:0:0.0']},
         'Tropflux': {'name': 'Tropflux',
          'nyears': 40,
          'time_period': ['1979-1-15 0:0:0.0', '2018-12-15 12:0:0.0']},
         'method': 'nino3.4 SSTA during DEC regressed against equatorial_pacific SSTA, time series are linearly detrended, smoothing using a triangle shaped window of 5 points, observations and model regridded to generic_1x1deg',
         'name': 'ENSO Zonal SSTA pattern',
         'ref': 'Using CDAT regridding and rms (uncentered and biased) calculation',
         'time_frequency': 'monthly',
         'units': 'C/C'},
        'metric': {'datasets': "CCSM4_r1i2p2; ERA-Interim's ts & HadISST's sst & Tropflux's sst; 's ",
         'method': 'The metric is the statistical value between the model and the observations',
         'name': 'EnsoSstLonRmse',
         'units': 'C/C'}},
       'EnsoSstSkew': {'diagnostic': {'CCSM4_r1i2p2': {'keyerror': None,
          'name': 'CCSM4_r1i2p2',
          'nyears': 156,
          'time_period': ['1850-1-16 12:0:0.0', '2005-12-16 12:0:0.0']},
         'ERA-Interim': {'keyerror': None,
          'name': 'ERA-Interim',
          'nyears': 40,
          'time_period': ['1979-1-16 12:0:0.0', '2019-3-16 12:0:0.0']},
         'HadISST': {'keyerror': None,
          'name': 'HadISST',
          'nyears': 151,
          'time_period': ['1870-1-16 11:59:59.5', '2020-10-16 12:0:0.0']},
         'Tropflux': {'keyerror': None,
          'name': 'Tropflux',
          'nyears': 40,
          'time_period': ['1979-1-15 0:0:0.0', '2018-12-15 12:0:0.0']},
         'method': 'Standard deviation of nino3.4 sstA, time series are linearly detrended',
         'name': 'ENSO skewness',
         'ref': 'Using CDAT regression calculation',
         'time_frequency': 'monthly',
         'units': 'C'},
        'metric': {'datasets': "CCSM4_r1i2p2; ERA-Interim's ts & HadISST's sst & Tropflux's sst; 's ",
         'method': 'The metric is the absolute value of the relative difference between model and observations values (M = 100 * abs[[model-obs] / obs])',
         'name': 'EnsoSstSkew',
         'units': '%'}},
       'EnsoSstTsRmse': {'diagnostic': {'CCSM4_r1i2p2': {'keyerror': None,
          'name': 'CCSM4_r1i2p2',
          'nyears': 156,
          'time_period': ['1850-1-16 12:0:0.0', '2005-12-16 12:0:0.0']},
         'ERA-Interim': {'name': 'ERA-Interim',
          'nyears': 40,
          'time_period': ['1979-1-16 12:0:0.0', '2019-3-16 12:0:0.0']},
         'HadISST': {'name': 'HadISST',
          'nyears': 151,
          'time_period': ['1870-1-16 11:59:59.5', '2020-10-16 12:0:0.0']},
         'Tropflux': {'name': 'Tropflux',
          'nyears': 40,
          'time_period': ['1979-1-15 0:0:0.0', '2018-12-15 12:0:0.0']},
         'method': 'nino3.4 SSTA during DEC regressed against nino3.4 SSTA during 6 years (centered on ENSO), time series are linearly detrended, smoothing using a triangle shaped window of 5 points',
         'name': 'ENSO life cyle SSTA pattern',
         'ref': 'Using CDAT regridding and rms (uncentered and biased) calculation',
         'time_frequency': 'monthly',
         'units': 'C/C'},
        'metric': {'datasets': "CCSM4_r1i2p2; ERA-Interim's ts & HadISST's sst & Tropflux's sst; 's ",
         'method': 'The metric is the statistical value between the model and the observations',
         'name': 'EnsoSstTsRmse',
         'units': 'C/C'}},
       'SeasonalPrLatRmse': {'diagnostic': {'CCSM4_r1i2p2': {'keyerror': None,
          'name': 'CCSM4_r1i2p2',
          'nyears': 156,
          'time_period': ['1850-1-16 12:0:0.0', '2005-12-16 12:0:0.0']},
         'ERA-Interim': {'name': 'ERA-Interim',
          'nyears': 40,
          'time_period': ['1979-1-16 12:0:0.0', '2019-3-16 12:0:0.0']},
         'GPCPv2.3': {'name': 'GPCPv2.3',
          'nyears': 41,
          'time_period': ['1979-1-1 0:0:0.0', '2019-7-1 0:0:0.0']},
         'method': 'Meridional root mean square error of nino3_LatExt climatological pr STD, time series are linearly detrended, observations and model regridded to generic_1x1deg',
         'name': 'pr meridional seasonality RMSE',
         'ref': 'Using CDAT regridding and rms (uncentered and biased) calculation',
         'time_frequency': 'monthly',
         'units': 'mm/day'},
        'metric': {'datasets': "CCSM4_r1i2p2; ERA-Interim's pr & GPCPv2.3's precip; 's ",
         'method': 'The metric is the statistical value between the model and the observations',
         'name': 'SeasonalPrLatRmse',
         'units': 'mm/day'}},
       'SeasonalPrLonRmse': {'diagnostic': {'CCSM4_r1i2p2': {'keyerror': None,
          'name': 'CCSM4_r1i2p2',
          'nyears': 156,
          'time_period': ['1850-1-16 12:0:0.0', '2005-12-16 12:0:0.0']},
         'ERA-Interim': {'name': 'ERA-Interim',
          'nyears': 40,
          'time_period': ['1979-1-16 12:0:0.0', '2019-3-16 12:0:0.0']},
         'GPCPv2.3': {'name': 'GPCPv2.3',
          'nyears': 41,
          'time_period': ['1979-1-1 0:0:0.0', '2019-7-1 0:0:0.0']},
         'method': 'Zonal root mean square error of equatorial_pacific climatological pr STD, time series are linearly detrended, observations and model regridded to generic_1x1deg',
         'name': 'pr zonal seasonality RMSE',
         'ref': 'Using CDAT regridding and rms (uncentered and biased) calculation',
         'time_frequency': 'monthly',
         'units': 'mm/day'},
        'metric': {'datasets': "CCSM4_r1i2p2; ERA-Interim's pr & GPCPv2.3's precip; 's ",
         'method': 'The metric is the statistical value between the model and the observations',
         'name': 'SeasonalPrLonRmse',
         'units': 'mm/day'}},
       'SeasonalSstLonRmse': {'diagnostic': {'CCSM4_r1i2p2': {'keyerror': None,
          'name': 'CCSM4_r1i2p2',
          'nyears': 156,
          'time_period': ['1850-1-16 12:0:0.0', '2005-12-16 12:0:0.0']},
         'ERA-Interim': {'name': 'ERA-Interim',
          'nyears': 40,
          'time_period': ['1979-1-16 12:0:0.0', '2019-3-16 12:0:0.0']},
         'HadISST': {'name': 'HadISST',
          'nyears': 151,
          'time_period': ['1870-1-16 11:59:59.5', '2020-10-16 12:0:0.0']},
         'Tropflux': {'name': 'Tropflux',
          'nyears': 40,
          'time_period': ['1979-1-15 0:0:0.0', '2018-12-15 12:0:0.0']},
         'method': 'Zonal root mean square error of equatorial_pacific climatological sst STD, time series are linearly detrended, observations and model regridded to generic_1x1deg',
         'name': 'sst zonal seasonality RMSE',
         'ref': 'Using CDAT regridding and rms (uncentered and biased) calculation',
         'time_frequency': 'monthly',
         'units': 'C'},
        'metric': {'datasets': "CCSM4_r1i2p2; ERA-Interim's ts & HadISST's sst & Tropflux's sst; 's ",
         'method': 'The metric is the statistical value between the model and the observations',
         'name': 'SeasonalSstLonRmse',
         'units': 'C'}},
       'SeasonalTauxLonRmse': {'diagnostic': {'CCSM4_r1i2p2': {'keyerror': None,
          'name': 'CCSM4_r1i2p2',
          'nyears': 156,
          'time_period': ['1850-1-16 12:0:0.0', '2005-12-16 12:0:0.0']},
         'ERA-Interim': {'name': 'ERA-Interim',
          'nyears': 40,
          'time_period': ['1979-1-16 12:0:0.0', '2019-3-16 12:0:0.0']},
         'Tropflux': {'name': 'Tropflux',
          'nyears': 40,
          'time_period': ['1979-1-15 0:0:0.0', '2018-12-15 12:0:0.0']},
         'method': 'Zonal root mean square error of equatorial_pacific climatological taux STD, time series are linearly detrended, observations and model regridded to generic_1x1deg',
         'name': 'taux zonal seasonality RMSE',
         'ref': 'Using CDAT regridding and rms (uncentered and biased) calculation',
         'time_frequency': 'monthly',
         'units': '1e-3 N/m2'},
        'metric': {'datasets': "CCSM4_r1i2p2; ERA-Interim's tauu & Tropflux's taux; 's ",
         'method': 'The metric is the statistical value between the model and the observations',
         'name': 'SeasonalTauxLonRmse',
         'units': '1e-3 N/m2'}}},
      'name': 'Metrics Collection for ENSO performance'},
     'value': {'BiasPrLatRmse': {'diagnostic': {'CCSM4_r1i2p2': {'value': None,
         'value_error': None},
        'ERA-Interim': {'value': None, 'value_error': None},
        'GPCPv2.3': {'value': None, 'value_error': None}},
       'metric': {'ERA-Interim': {'value': 1.31114971581617,
         'value_error': None},
        'GPCPv2.3': {'value': 1.356881412896999, 'value_error': None}}},
      'BiasPrLonRmse': {'diagnostic': {'CCSM4_r1i2p2': {'value': None,
         'value_error': None},
        'ERA-Interim': {'value': None, 'value_error': None},
        'GPCPv2.3': {'value': None, 'value_error': None}},
       'metric': {'ERA-Interim': {'value': 1.6497824806308932,
         'value_error': None},
        'GPCPv2.3': {'value': 0.6965941782957846, 'value_error': None}}},
      'BiasSstLonRmse': {'diagnostic': {'CCSM4_r1i2p2': {'value': None,
         'value_error': None},
        'ERA-Interim': {'value': None, 'value_error': None},
        'HadISST': {'value': None, 'value_error': None},
        'Tropflux': {'value': None, 'value_error': None}},
       'metric': {'ERA-Interim': {'value': 0.48860050735628147,
         'value_error': None},
        'HadISST': {'value': 0.3233089475320854, 'value_error': None},
        'Tropflux': {'value': 0.5369394231421579, 'value_error': None}}},
      'BiasTauxLonRmse': {'diagnostic': {'CCSM4_r1i2p2': {'value': None,
         'value_error': None},
        'ERA-Interim': {'value': None, 'value_error': None},
        'Tropflux': {'value': None, 'value_error': None}},
       'metric': {'ERA-Interim': {'value': 5.410974983866879,
         'value_error': None},
        'Tropflux': {'value': 5.762180078151508, 'value_error': None}}},
      'EnsoAmpl': {'diagnostic': {'CCSM4_r1i2p2': {'value': 1.063525045687739,
         'value_error': 0.08515015104572429},
        'ERA-Interim': {'value': 0.8989844997845644,
         'value_error': 0.14214193002531866},
        'HadISST': {'value': 0.7665787872085695,
         'value_error': 0.06238329697691264},
        'Tropflux': {'value': 0.9039789553693535,
         'value_error': 0.14293162279134272}},
       'metric': {'ERA-Interim': {'value': 18.3029346938246,
         'value_error': 28.177151636854976},
        'HadISST': {'value': 38.73656086420987,
         'value_error': 22.39803588231617},
        'Tropflux': {'value': 17.649314662773,
         'value_error': 28.021473751302167}}},
      'EnsoDuration': {'diagnostic': {'CCSM4_r1i2p2': {'value': 13.0,
         'value_error': None},
        'ERA-Interim': {'value': 13.0, 'value_error': None},
        'HadISST': {'value': 13.0, 'value_error': None},
        'Tropflux': {'value': 13.0, 'value_error': None}},
       'metric': {'ERA-Interim': {'value': 0.0, 'value_error': None},
        'HadISST': {'value': 0.0, 'value_error': None},
        'Tropflux': {'value': 0.0, 'value_error': None}}},
      'EnsoSeasonality': {'diagnostic': {'CCSM4_r1i2p2': {'value': 1.541950821060864,
         'value_error': 0.2473073394866736},
        'ERA-Interim': {'value': 2.0466846866656914,
         'value_error': 0.6513411033995022},
        'HadISST': {'value': 1.6639865947361325,
         'value_error': 0.2712772451657809},
        'Tropflux': {'value': 2.0532132553583624,
         'value_error': 0.6534187683977347}},
       'metric': {'ERA-Interim': {'value': 24.661046662107143,
         'value_error': 36.05933606947881},
        'HadISST': {'value': 7.3339397120936844,
         'value_error': 29.969548830316594},
        'Tropflux': {'value': 24.900600702982707,
         'value_error': 35.9446787868379}}},
      'EnsoSstDiversity_2': {'diagnostic': {'CCSM4_r1i2p2': {'value': 38.0,
         'value_error': None},
        'ERA-Interim': {'value': 33.25, 'value_error': None},
        'HadISST': {'value': 49.0, 'value_error': None},
        'Tropflux': {'value': 32.0, 'value_error': None}},
       'metric': {'ERA-Interim': {'value': 14.285714285714285,
         'value_error': None},
        'HadISST': {'value': 22.448979591836736, 'value_error': None},
        'Tropflux': {'value': 18.75, 'value_error': None}}},
      'EnsoSstLonRmse': {'diagnostic': {'CCSM4_r1i2p2': {'value': None,
         'value_error': None},
        'ERA-Interim': {'value': None, 'value_error': None},
        'HadISST': {'value': None, 'value_error': None},
        'Tropflux': {'value': None, 'value_error': None}},
       'metric': {'ERA-Interim': {'value': 0.12439932968805453,
         'value_error': None},
        'HadISST': {'value': 0.14588601691637065, 'value_error': None},
        'Tropflux': {'value': 0.12653087653953046, 'value_error': None}}},
      'EnsoSstSkew': {'diagnostic': {'CCSM4_r1i2p2': {'value': 0.27872539564992915,
         'value_error': 0.02231589151200781},
        'ERA-Interim': {'value': 0.39098111106809963,
         'value_error': 0.061819541653923164},
        'HadISST': {'value': 0.38989908235027515,
         'value_error': 0.03172953733021198},
        'Tropflux': {'value': 0.39744741059612115,
         'value_error': 0.06284195338099416}},
       'metric': {'ERA-Interim': {'value': 28.711288663410183,
         'value_error': 16.97939983083047},
        'HadISST': {'value': 28.51345174505193,
         'value_error': 11.540997289707985},
        'Tropflux': {'value': 29.871125532840658,
         'value_error': 16.70315225144}}},
      'EnsoSstTsRmse': {'diagnostic': {'CCSM4_r1i2p2': {'value': None,
         'value_error': None},
        'ERA-Interim': {'value': None, 'value_error': None},
        'HadISST': {'value': None, 'value_error': None},
        'Tropflux': {'value': None, 'value_error': None}},
       'metric': {'ERA-Interim': {'value': 0.09512225600286646,
         'value_error': None},
        'HadISST': {'value': 0.10654579914815948, 'value_error': None},
        'Tropflux': {'value': 0.09566472805258172, 'value_error': None}}},
      'SeasonalPrLatRmse': {'diagnostic': {'CCSM4_r1i2p2': {'value': None,
         'value_error': None},
        'ERA-Interim': {'value': None, 'value_error': None},
        'GPCPv2.3': {'value': None, 'value_error': None}},
       'metric': {'ERA-Interim': {'value': 1.2796635863138115,
         'value_error': None},
        'GPCPv2.3': {'value': 1.539734321438176, 'value_error': None}}},
      'SeasonalPrLonRmse': {'diagnostic': {'CCSM4_r1i2p2': {'value': None,
         'value_error': None},
        'ERA-Interim': {'value': None, 'value_error': None},
        'GPCPv2.3': {'value': None, 'value_error': None}},
       'metric': {'ERA-Interim': {'value': 0.4065193302094096,
         'value_error': None},
        'GPCPv2.3': {'value': 0.33208772715002305, 'value_error': None}}},
      'SeasonalSstLonRmse': {'diagnostic': {'CCSM4_r1i2p2': {'value': None,
         'value_error': None},
        'ERA-Interim': {'value': None, 'value_error': None},
        'HadISST': {'value': None, 'value_error': None},
        'Tropflux': {'value': None, 'value_error': None}},
       'metric': {'ERA-Interim': {'value': 0.2190396915329077,
         'value_error': None},
        'HadISST': {'value': 0.22139910374876795, 'value_error': None},
        'Tropflux': {'value': 0.22772970184297928, 'value_error': None}}},
      'SeasonalTauxLonRmse': {'diagnostic': {'CCSM4_r1i2p2': {'value': None,
         'value_error': None},
        'ERA-Interim': {'value': None, 'value_error': None},
        'Tropflux': {'value': None, 'value_error': None}},
       'metric': {'ERA-Interim': {'value': 1.5545462756330466,
         'value_error': None},
        'Tropflux': {'value': 1.6761697353487928, 'value_error': None}}}}},
    'r2i1p1': {'metadata': {'description_of_the_collection': 'Describe which science question this collection is about',
      'metrics': {'BiasPrLatRmse': {'diagnostic': {'CCSM4_r2i1p1': {'keyerror': None,
          'name': 'CCSM4_r2i1p1',
          'nyears': 156,
          'time_period': ['1850-1-16 12:0:0.0', '2005-12-16 12:0:0.0']},
         'ERA-Interim': {'name': 'ERA-Interim',
          'nyears': 40,
          'time_period': ['1979-1-16 12:0:0.0', '2019-3-16 12:0:0.0']},
         'GPCPv2.3': {'name': 'GPCPv2.3',
          'nyears': 41,
          'time_period': ['1979-1-1 0:0:0.0', '2019-7-1 0:0:0.0']},
         'method': 'Meridional root mean square error of nino3_LatExt pr, time series are linearly detrended, observations and model regridded to generic_1x1deg',
         'name': 'pr Meridional RMSE',
         'ref': 'Using CDAT regridding and rms (uncentered and biased) calculation',
         'time_frequency': 'monthly',
         'units': 'mm/day'},
        'metric': {'datasets': "CCSM4_r2i1p1; ERA-Interim's pr & GPCPv2.3's precip; 's ",
         'method': 'The metric is the statistical value between the model and the observations',
         'name': 'BiasPrLatRmse',
         'units': 'mm/day'}},
       'BiasPrLonRmse': {'diagnostic': {'CCSM4_r2i1p1': {'keyerror': None,
          'name': 'CCSM4_r2i1p1',
          'nyears': 156,
          'time_period': ['1850-1-16 12:0:0.0', '2005-12-16 12:0:0.0']},
         'ERA-Interim': {'name': 'ERA-Interim',
          'nyears': 40,
          'time_period': ['1979-1-16 12:0:0.0', '2019-3-16 12:0:0.0']},
         'GPCPv2.3': {'name': 'GPCPv2.3',
          'nyears': 41,
          'time_period': ['1979-1-1 0:0:0.0', '2019-7-1 0:0:0.0']},
         'method': 'Zonal root mean square error of equatorial_pacific pr, time series are linearly detrended, observations and model regridded to generic_1x1deg',
         'name': 'pr Zonal RMSE',
         'ref': 'Using CDAT regridding and rms (uncentered and biased) calculation',
         'time_frequency': 'monthly',
         'units': 'mm/day'},
        'metric': {'datasets': "CCSM4_r2i1p1; ERA-Interim's pr & GPCPv2.3's precip; 's ",
         'method': 'The metric is the statistical value between the model and the observations',
         'name': 'BiasPrLonRmse',
         'units': 'mm/day'}},
       'BiasSstLonRmse': {'diagnostic': {'CCSM4_r2i1p1': {'keyerror': None,
          'name': 'CCSM4_r2i1p1',
          'nyears': 156,
          'time_period': ['1850-1-16 12:0:0.0', '2005-12-16 12:0:0.0']},
         'ERA-Interim': {'name': 'ERA-Interim',
          'nyears': 40,
          'time_period': ['1979-1-16 12:0:0.0', '2019-3-16 12:0:0.0']},
         'HadISST': {'name': 'HadISST',
          'nyears': 151,
          'time_period': ['1870-1-16 11:59:59.5', '2020-10-16 12:0:0.0']},
         'Tropflux': {'name': 'Tropflux',
          'nyears': 40,
          'time_period': ['1979-1-15 0:0:0.0', '2018-12-15 12:0:0.0']},
         'method': 'Zonal root mean square error of equatorial_pacific sst, time series are linearly detrended, observations and model regridded to generic_1x1deg',
         'name': 'sst Zonal RMSE',
         'ref': 'Using CDAT regridding and rms (uncentered and biased) calculation',
         'time_frequency': 'monthly',
         'units': 'C'},
        'metric': {'datasets': "CCSM4_r2i1p1; ERA-Interim's ts & HadISST's sst & Tropflux's sst; 's ",
         'method': 'The metric is the statistical value between the model and the observations',
         'name': 'BiasSstLonRmse',
         'units': 'C'}},
       'BiasTauxLonRmse': {'diagnostic': {'CCSM4_r2i1p1': {'keyerror': None,
          'name': 'CCSM4_r2i1p1',
          'nyears': 156,
          'time_period': ['1850-1-16 12:0:0.0', '2005-12-16 12:0:0.0']},
         'ERA-Interim': {'name': 'ERA-Interim',
          'nyears': 40,
          'time_period': ['1979-1-16 12:0:0.0', '2019-3-16 12:0:0.0']},
         'Tropflux': {'name': 'Tropflux',
          'nyears': 40,
          'time_period': ['1979-1-15 0:0:0.0', '2018-12-15 12:0:0.0']},
         'method': 'Zonal root mean square error of equatorial_pacific taux, time series are linearly detrended, observations and model regridded to generic_1x1deg',
         'name': 'taux Zonal RMSE',
         'ref': 'Using CDAT regridding and rms (uncentered and biased) calculation',
         'time_frequency': 'monthly',
         'units': '1e-3 N/m2'},
        'metric': {'datasets': "CCSM4_r2i1p1; ERA-Interim's tauu & Tropflux's taux; 's ",
         'method': 'The metric is the statistical value between the model and the observations',
         'name': 'BiasTauxLonRmse',
         'units': '1e-3 N/m2'}},
       'EnsoAmpl': {'diagnostic': {'CCSM4_r2i1p1': {'keyerror': None,
          'name': 'CCSM4_r2i1p1',
          'nyears': 156,
          'time_period': ['1850-1-16 12:0:0.0', '2005-12-16 12:0:0.0']},
         'ERA-Interim': {'keyerror': None,
          'name': 'ERA-Interim',
          'nyears': 40,
          'time_period': ['1979-1-16 12:0:0.0', '2019-3-16 12:0:0.0']},
         'HadISST': {'keyerror': None,
          'name': 'HadISST',
          'nyears': 151,
          'time_period': ['1870-1-16 11:59:59.5', '2020-10-16 12:0:0.0']},
         'Tropflux': {'keyerror': None,
          'name': 'Tropflux',
          'nyears': 40,
          'time_period': ['1979-1-15 0:0:0.0', '2018-12-15 12:0:0.0']},
         'method': 'Standard deviation of nino3.4 sstA, time series are linearly detrended',
         'name': 'ENSO amplitude',
         'ref': 'Using CDAT regression calculation',
         'time_frequency': 'monthly',
         'units': 'C'},
        'metric': {'datasets': "CCSM4_r2i1p1; ERA-Interim's ts & HadISST's sst & Tropflux's sst; 's ",
         'method': 'The metric is the absolute value of the relative difference between model and observations values (M = 100 * abs[[model-obs] / obs])',
         'name': 'EnsoAmpl',
         'units': '%'}},
       'EnsoDuration': {'diagnostic': {'CCSM4_r2i1p1': {'keyerror': None,
          'name': 'CCSM4_r2i1p1',
          'nyears': 156,
          'time_period': ['1850-1-16 12:0:0.0', '2005-12-16 12:0:0.0']},
         'ERA-Interim': {'keyerror': None,
          'name': 'ERA-Interim',
          'nyears': 40,
          'time_period': ['1979-1-16 12:0:0.0', '2019-3-16 12:0:0.0']},
         'HadISST': {'keyerror': None,
          'name': 'HadISST',
          'nyears': 151,
          'time_period': ['1870-1-16 11:59:59.5', '2020-10-16 12:0:0.0']},
         'Tropflux': {'keyerror': None,
          'name': 'Tropflux',
          'nyears': 40,
          'time_period': ['1979-1-15 0:0:0.0', '2018-12-15 12:0:0.0']},
         'method': 'nino3.4 SSTA during DEC regressed against nino3.4 SSTA during 6 years (centered on ENSO), the duration is the number of consecutive months during which the regression is above 0.25, time series are linearly detrended, smoothing using a triangle shaped window of 5 points',
         'name': 'ENSO Duration based on life cyle SSTA pattern',
         'ref': 'Using CDAT',
         'time_frequency': 'monthly',
         'units': 'months'},
        'metric': {'datasets': "CCSM4_r2i1p1; ERA-Interim's ts & HadISST's sst & Tropflux's sst; 's ",
         'method': 'The metric is the absolute value of the relative difference between model and observations values (M = 100 * abs[[model-obs] / obs])',
         'name': 'EnsoDuration',
         'units': '%'}},
       'EnsoSeasonality': {'diagnostic': {'CCSM4_r2i1p1': {'keyerror': None,
          'name': 'CCSM4_r2i1p1',
          'nyears': 156,
          'time_period': ['1850-1-16 12:0:0.0', '2005-12-16 12:0:0.0']},
         'ERA-Interim': {'keyerror': None,
          'name': 'ERA-Interim',
          'nyears': 40,
          'time_period': ['1979-1-16 12:0:0.0', '2019-3-16 12:0:0.0']},
         'HadISST': {'keyerror': None,
          'name': 'HadISST',
          'nyears': 151,
          'time_period': ['1870-1-16 11:59:59.5', '2020-10-16 12:0:0.0']},
         'Tropflux': {'keyerror': None,
          'name': 'Tropflux',
          'nyears': 40,
          'time_period': ['1979-1-15 0:0:0.0', '2018-12-15 12:0:0.0']},
         'method': 'Ratio between NDJ and MAM standard deviation nino3.4 sstA, time series are linearly detrended',
         'name': 'ENSO seasonality',
         'ref': 'Using CDAT std dev calculation',
         'time_frequency': 'monthly',
         'units': 'C/C'},
        'metric': {'datasets': "CCSM4_r2i1p1; ERA-Interim's ts & HadISST's sst & Tropflux's sst; 's ",
         'method': 'The metric is the absolute value of the relative difference between model and observations values (M = 100 * abs[[model-obs] / obs])',
         'name': 'EnsoSeasonality',
         'units': '%'}},
       'EnsoSstDiversity_2': {'diagnostic': {'CCSM4_r2i1p1': {'keyerror': None,
          'name': 'CCSM4_r2i1p1',
          'nyears': 156,
          'time_period': ['1850-1-16 12:0:0.0', '2005-12-16 12:0:0.0']},
         'ERA-Interim': {'keyerror': None,
          'name': 'ERA-Interim',
          'nyears': 40,
          'time_period': ['1979-1-16 12:0:0.0', '2019-3-16 12:0:0.0']},
         'HadISST': {'keyerror': None,
          'name': 'HadISST',
          'nyears': 151,
          'time_period': ['1870-1-16 11:59:59.5', '2020-10-16 12:0:0.0']},
         'Tropflux': {'keyerror': None,
          'name': 'Tropflux',
          'nyears': 40,
          'time_period': ['1979-1-15 0:0:0.0', '2018-12-15 12:0:0.0']},
         'method': 'Nino (Nina) events = nino3.4 sstA > 0.75 (< -0.75) during DEC, zonal SSTA (meridional averaged [-5.0 ; 5.0]), the zonal SSTA maximum (minimum) is located for each event, the diversity is the interquartile range (IQR = Q3 - Q1), time series are linearly detrended, smoothing using a triangle shaped window of 5 points',
         'name': 'ENSO Diversity (interquartile range)',
         'ref': 'Using CDAT regridding',
         'time_frequency': 'monthly',
         'units': 'long'},
        'metric': {'datasets': "CCSM4_r2i1p1; ERA-Interim's ts & HadISST's sst & Tropflux's sst; 's ",
         'method': 'The metric is the absolute value of the relative difference between model and observations values (M = 100 * abs[[model-obs] / obs])',
         'name': 'EnsoSstDiversity',
         'units': '%'}},
       'EnsoSstLonRmse': {'diagnostic': {'CCSM4_r2i1p1': {'keyerror': None,
          'name': 'CCSM4_r2i1p1',
          'nyears': 156,
          'time_period': ['1850-1-16 12:0:0.0', '2005-12-16 12:0:0.0']},
         'ERA-Interim': {'name': 'ERA-Interim',
          'nyears': 40,
          'time_period': ['1979-1-16 12:0:0.0', '2019-3-16 12:0:0.0']},
         'HadISST': {'name': 'HadISST',
          'nyears': 151,
          'time_period': ['1870-1-16 11:59:59.5', '2020-10-16 12:0:0.0']},
         'Tropflux': {'name': 'Tropflux',
          'nyears': 40,
          'time_period': ['1979-1-15 0:0:0.0', '2018-12-15 12:0:0.0']},
         'method': 'nino3.4 SSTA during DEC regressed against equatorial_pacific SSTA, time series are linearly detrended, smoothing using a triangle shaped window of 5 points, observations and model regridded to generic_1x1deg',
         'name': 'ENSO Zonal SSTA pattern',
         'ref': 'Using CDAT regridding and rms (uncentered and biased) calculation',
         'time_frequency': 'monthly',
         'units': 'C/C'},
        'metric': {'datasets': "CCSM4_r2i1p1; ERA-Interim's ts & HadISST's sst & Tropflux's sst; 's ",
         'method': 'The metric is the statistical value between the model and the observations',
         'name': 'EnsoSstLonRmse',
         'units': 'C/C'}},
       'EnsoSstSkew': {'diagnostic': {'CCSM4_r2i1p1': {'keyerror': None,
          'name': 'CCSM4_r2i1p1',
          'nyears': 156,
          'time_period': ['1850-1-16 12:0:0.0', '2005-12-16 12:0:0.0']},
         'ERA-Interim': {'keyerror': None,
          'name': 'ERA-Interim',
          'nyears': 40,
          'time_period': ['1979-1-16 12:0:0.0', '2019-3-16 12:0:0.0']},
         'HadISST': {'keyerror': None,
          'name': 'HadISST',
          'nyears': 151,
          'time_period': ['1870-1-16 11:59:59.5', '2020-10-16 12:0:0.0']},
         'Tropflux': {'keyerror': None,
          'name': 'Tropflux',
          'nyears': 40,
          'time_period': ['1979-1-15 0:0:0.0', '2018-12-15 12:0:0.0']},
         'method': 'Standard deviation of nino3.4 sstA, time series are linearly detrended',
         'name': 'ENSO skewness',
         'ref': 'Using CDAT regression calculation',
         'time_frequency': 'monthly',
         'units': 'C'},
        'metric': {'datasets': "CCSM4_r2i1p1; ERA-Interim's ts & HadISST's sst & Tropflux's sst; 's ",
         'method': 'The metric is the absolute value of the relative difference between model and observations values (M = 100 * abs[[model-obs] / obs])',
         'name': 'EnsoSstSkew',
         'units': '%'}},
       'EnsoSstTsRmse': {'diagnostic': {'CCSM4_r2i1p1': {'keyerror': None,
          'name': 'CCSM4_r2i1p1',
          'nyears': 156,
          'time_period': ['1850-1-16 12:0:0.0', '2005-12-16 12:0:0.0']},
         'ERA-Interim': {'name': 'ERA-Interim',
          'nyears': 40,
          'time_period': ['1979-1-16 12:0:0.0', '2019-3-16 12:0:0.0']},
         'HadISST': {'name': 'HadISST',
          'nyears': 151,
          'time_period': ['1870-1-16 11:59:59.5', '2020-10-16 12:0:0.0']},
         'Tropflux': {'name': 'Tropflux',
          'nyears': 40,
          'time_period': ['1979-1-15 0:0:0.0', '2018-12-15 12:0:0.0']},
         'method': 'nino3.4 SSTA during DEC regressed against nino3.4 SSTA during 6 years (centered on ENSO), time series are linearly detrended, smoothing using a triangle shaped window of 5 points',
         'name': 'ENSO life cyle SSTA pattern',
         'ref': 'Using CDAT regridding and rms (uncentered and biased) calculation',
         'time_frequency': 'monthly',
         'units': 'C/C'},
        'metric': {'datasets': "CCSM4_r2i1p1; ERA-Interim's ts & HadISST's sst & Tropflux's sst; 's ",
         'method': 'The metric is the statistical value between the model and the observations',
         'name': 'EnsoSstTsRmse',
         'units': 'C/C'}},
       'SeasonalPrLatRmse': {'diagnostic': {'CCSM4_r2i1p1': {'keyerror': None,
          'name': 'CCSM4_r2i1p1',
          'nyears': 156,
          'time_period': ['1850-1-16 12:0:0.0', '2005-12-16 12:0:0.0']},
         'ERA-Interim': {'name': 'ERA-Interim',
          'nyears': 40,
          'time_period': ['1979-1-16 12:0:0.0', '2019-3-16 12:0:0.0']},
         'GPCPv2.3': {'name': 'GPCPv2.3',
          'nyears': 41,
          'time_period': ['1979-1-1 0:0:0.0', '2019-7-1 0:0:0.0']},
         'method': 'Meridional root mean square error of nino3_LatExt climatological pr STD, time series are linearly detrended, observations and model regridded to generic_1x1deg',
         'name': 'pr meridional seasonality RMSE',
         'ref': 'Using CDAT regridding and rms (uncentered and biased) calculation',
         'time_frequency': 'monthly',
         'units': 'mm/day'},
        'metric': {'datasets': "CCSM4_r2i1p1; ERA-Interim's pr & GPCPv2.3's precip; 's ",
         'method': 'The metric is the statistical value between the model and the observations',
         'name': 'SeasonalPrLatRmse',
         'units': 'mm/day'}},
       'SeasonalPrLonRmse': {'diagnostic': {'CCSM4_r2i1p1': {'keyerror': None,
          'name': 'CCSM4_r2i1p1',
          'nyears': 156,
          'time_period': ['1850-1-16 12:0:0.0', '2005-12-16 12:0:0.0']},
         'ERA-Interim': {'name': 'ERA-Interim',
          'nyears': 40,
          'time_period': ['1979-1-16 12:0:0.0', '2019-3-16 12:0:0.0']},
         'GPCPv2.3': {'name': 'GPCPv2.3',
          'nyears': 41,
          'time_period': ['1979-1-1 0:0:0.0', '2019-7-1 0:0:0.0']},
         'method': 'Zonal root mean square error of equatorial_pacific climatological pr STD, time series are linearly detrended, observations and model regridded to generic_1x1deg',
         'name': 'pr zonal seasonality RMSE',
         'ref': 'Using CDAT regridding and rms (uncentered and biased) calculation',
         'time_frequency': 'monthly',
         'units': 'mm/day'},
        'metric': {'datasets': "CCSM4_r2i1p1; ERA-Interim's pr & GPCPv2.3's precip; 's ",
         'method': 'The metric is the statistical value between the model and the observations',
         'name': 'SeasonalPrLonRmse',
         'units': 'mm/day'}},
       'SeasonalSstLonRmse': {'diagnostic': {'CCSM4_r2i1p1': {'keyerror': None,
          'name': 'CCSM4_r2i1p1',
          'nyears': 156,
          'time_period': ['1850-1-16 12:0:0.0', '2005-12-16 12:0:0.0']},
         'ERA-Interim': {'name': 'ERA-Interim',
          'nyears': 40,
          'time_period': ['1979-1-16 12:0:0.0', '2019-3-16 12:0:0.0']},
         'HadISST': {'name': 'HadISST',
          'nyears': 151,
          'time_period': ['1870-1-16 11:59:59.5', '2020-10-16 12:0:0.0']},
         'Tropflux': {'name': 'Tropflux',
          'nyears': 40,
          'time_period': ['1979-1-15 0:0:0.0', '2018-12-15 12:0:0.0']},
         'method': 'Zonal root mean square error of equatorial_pacific climatological sst STD, time series are linearly detrended, observations and model regridded to generic_1x1deg',
         'name': 'sst zonal seasonality RMSE',
         'ref': 'Using CDAT regridding and rms (uncentered and biased) calculation',
         'time_frequency': 'monthly',
         'units': 'C'},
        'metric': {'datasets': "CCSM4_r2i1p1; ERA-Interim's ts & HadISST's sst & Tropflux's sst; 's ",
         'method': 'The metric is the statistical value between the model and the observations',
         'name': 'SeasonalSstLonRmse',
         'units': 'C'}},
       'SeasonalTauxLonRmse': {'diagnostic': {'CCSM4_r2i1p1': {'keyerror': None,
          'name': 'CCSM4_r2i1p1',
          'nyears': 156,
          'time_period': ['1850-1-16 12:0:0.0', '2005-12-16 12:0:0.0']},
         'ERA-Interim': {'name': 'ERA-Interim',
          'nyears': 40,
          'time_period': ['1979-1-16 12:0:0.0', '2019-3-16 12:0:0.0']},
         'Tropflux': {'name': 'Tropflux',
          'nyears': 40,
          'time_period': ['1979-1-15 0:0:0.0', '2018-12-15 12:0:0.0']},
         'method': 'Zonal root mean square error of equatorial_pacific climatological taux STD, time series are linearly detrended, observations and model regridded to generic_1x1deg',
         'name': 'taux zonal seasonality RMSE',
         'ref': 'Using CDAT regridding and rms (uncentered and biased) calculation',
         'time_frequency': 'monthly',
         'units': '1e-3 N/m2'},
        'metric': {'datasets': "CCSM4_r2i1p1; ERA-Interim's tauu & Tropflux's taux; 's ",
         'method': 'The metric is the statistical value between the model and the observations',
         'name': 'SeasonalTauxLonRmse',
         'units': '1e-3 N/m2'}}},
      'name': 'Metrics Collection for ENSO performance'},
     'value': {'BiasPrLatRmse': {'diagnostic': {'CCSM4_r2i1p1': {'value': None,
         'value_error': None},
        'ERA-Interim': {'value': None, 'value_error': None},
        'GPCPv2.3': {'value': None, 'value_error': None}},
       'metric': {'ERA-Interim': {'value': 1.329368781296368,
         'value_error': None},
        'GPCPv2.3': {'value': 1.3853311664163965, 'value_error': None}}},
      'BiasPrLonRmse': {'diagnostic': {'CCSM4_r2i1p1': {'value': None,
         'value_error': None},
        'ERA-Interim': {'value': None, 'value_error': None},
        'GPCPv2.3': {'value': None, 'value_error': None}},
       'metric': {'ERA-Interim': {'value': 1.5957092381976055,
         'value_error': None},
        'GPCPv2.3': {'value': 0.6244351835227812, 'value_error': None}}},
      'BiasSstLonRmse': {'diagnostic': {'CCSM4_r2i1p1': {'value': None,
         'value_error': None},
        'ERA-Interim': {'value': None, 'value_error': None},
        'HadISST': {'value': None, 'value_error': None},
        'Tropflux': {'value': None, 'value_error': None}},
       'metric': {'ERA-Interim': {'value': 0.3903391666865677,
         'value_error': None},
        'HadISST': {'value': 0.2565446431284051, 'value_error': None},
        'Tropflux': {'value': 0.43769700561978336, 'value_error': None}}},
      'BiasTauxLonRmse': {'diagnostic': {'CCSM4_r2i1p1': {'value': None,
         'value_error': None},
        'ERA-Interim': {'value': None, 'value_error': None},
        'Tropflux': {'value': None, 'value_error': None}},
       'metric': {'ERA-Interim': {'value': 5.4322668102796925,
         'value_error': None},
        'Tropflux': {'value': 5.799759845991943, 'value_error': None}}},
      'EnsoAmpl': {'diagnostic': {'CCSM4_r2i1p1': {'value': 0.9847609854294257,
         'value_error': 0.07884397926804612},
        'ERA-Interim': {'value': 0.8989844997845644,
         'value_error': 0.14214193002531866},
        'HadISST': {'value': 0.7665787872085695,
         'value_error': 0.06238329697691264},
        'Tropflux': {'value': 0.9039789553693535,
         'value_error': 0.14293162279134272}},
       'metric': {'ERA-Interim': {'value': 9.541486606878879,
         'value_error': 26.09036780564044},
        'HadISST': {'value': 28.461810039819625,
         'value_error': 20.73925007839389},
        'Tropflux': {'value': 8.936273303737009,
         'value_error': 25.94621933578713}}},
      'EnsoDuration': {'diagnostic': {'CCSM4_r2i1p1': {'value': 13.0,
         'value_error': None},
        'ERA-Interim': {'value': 13.0, 'value_error': None},
        'HadISST': {'value': 13.0, 'value_error': None},
        'Tropflux': {'value': 13.0, 'value_error': None}},
       'metric': {'ERA-Interim': {'value': 0.0, 'value_error': None},
        'HadISST': {'value': 0.0, 'value_error': None},
        'Tropflux': {'value': 0.0, 'value_error': None}}},
      'EnsoSeasonality': {'diagnostic': {'CCSM4_r2i1p1': {'value': 1.5231859309267517,
         'value_error': 0.24429771363386318},
        'ERA-Interim': {'value': 2.0466846866656914,
         'value_error': 0.6513411033995022},
        'HadISST': {'value': 1.6639865947361325,
         'value_error': 0.2712772451657809},
        'Tropflux': {'value': 2.0532132553583624,
         'value_error': 0.6534187683977347}},
       'metric': {'ERA-Interim': {'value': 25.57788989919036,
         'value_error': 35.62050918186948},
        'HadISST': {'value': 8.461646521359649,
         'value_error': 29.604832080930983},
        'Tropflux': {'value': 25.814528668582028,
         'value_error': 35.50724722992422}}},
      'EnsoSstDiversity_2': {'diagnostic': {'CCSM4_r2i1p1': {'value': 38.25,
         'value_error': None},
        'ERA-Interim': {'value': 33.25, 'value_error': None},
        'HadISST': {'value': 49.0, 'value_error': None},
        'Tropflux': {'value': 32.0, 'value_error': None}},
       'metric': {'ERA-Interim': {'value': 15.037593984962406,
         'value_error': None},
        'HadISST': {'value': 21.93877551020408, 'value_error': None},
        'Tropflux': {'value': 19.53125, 'value_error': None}}},
      'EnsoSstLonRmse': {'diagnostic': {'CCSM4_r2i1p1': {'value': None,
         'value_error': None},
        'ERA-Interim': {'value': None, 'value_error': None},
        'HadISST': {'value': None, 'value_error': None},
        'Tropflux': {'value': None, 'value_error': None}},
       'metric': {'ERA-Interim': {'value': 0.12456106988480453,
         'value_error': None},
        'HadISST': {'value': 0.144709275801582, 'value_error': None},
        'Tropflux': {'value': 0.12660202689742858, 'value_error': None}}},
      'EnsoSstSkew': {'diagnostic': {'CCSM4_r2i1p1': {'value': 0.3113630623237867,
         'value_error': 0.024928996166503122},
        'ERA-Interim': {'value': 0.39098111106809963,
         'value_error': 0.061819541653923164},
        'HadISST': {'value': 0.38989908235027515,
         'value_error': 0.03172953733021198},
        'Tropflux': {'value': 0.39744741059612115,
         'value_error': 0.06284195338099416}},
       'metric': {'ERA-Interim': {'value': 20.363656066864408,
         'value_error': 18.967621932761997},
        'HadISST': {'value': 20.142653209923115,
         'value_error': 12.892403471218872},
        'Tropflux': {'value': 21.65930535142216,
         'value_error': 18.65902682940593}}},
      'EnsoSstTsRmse': {'diagnostic': {'CCSM4_r2i1p1': {'value': None,
         'value_error': None},
        'ERA-Interim': {'value': None, 'value_error': None},
        'HadISST': {'value': None, 'value_error': None},
        'Tropflux': {'value': None, 'value_error': None}},
       'metric': {'ERA-Interim': {'value': 0.08676907479403038,
         'value_error': None},
        'HadISST': {'value': 0.09904311772990587, 'value_error': None},
        'Tropflux': {'value': 0.08602567620710229, 'value_error': None}}},
      'SeasonalPrLatRmse': {'diagnostic': {'CCSM4_r2i1p1': {'value': None,
         'value_error': None},
        'ERA-Interim': {'value': None, 'value_error': None},
        'GPCPv2.3': {'value': None, 'value_error': None}},
       'metric': {'ERA-Interim': {'value': 1.3226141317318787,
         'value_error': None},
        'GPCPv2.3': {'value': 1.5941973588701739, 'value_error': None}}},
      'SeasonalPrLonRmse': {'diagnostic': {'CCSM4_r2i1p1': {'value': None,
         'value_error': None},
        'ERA-Interim': {'value': None, 'value_error': None},
        'GPCPv2.3': {'value': None, 'value_error': None}},
       'metric': {'ERA-Interim': {'value': 0.41796568351469054,
         'value_error': None},
        'GPCPv2.3': {'value': 0.3522139289469063, 'value_error': None}}},
      'SeasonalSstLonRmse': {'diagnostic': {'CCSM4_r2i1p1': {'value': None,
         'value_error': None},
        'ERA-Interim': {'value': None, 'value_error': None},
        'HadISST': {'value': None, 'value_error': None},
        'Tropflux': {'value': None, 'value_error': None}},
       'metric': {'ERA-Interim': {'value': 0.20928229913296018,
         'value_error': None},
        'HadISST': {'value': 0.21123113650386335, 'value_error': None},
        'Tropflux': {'value': 0.2181360120635771, 'value_error': None}}},
      'SeasonalTauxLonRmse': {'diagnostic': {'CCSM4_r2i1p1': {'value': None,
         'value_error': None},
        'ERA-Interim': {'value': None, 'value_error': None},
        'Tropflux': {'value': None, 'value_error': None}},
       'metric': {'ERA-Interim': {'value': 1.5498462957133186,
         'value_error': None},
        'Tropflux': {'value': 1.7055017561344854, 'value_error': None}}}}},
    'r3i1p1': {'metadata': {'description_of_the_collection': 'Describe which science question this collection is about',
      'metrics': {'BiasPrLatRmse': {'diagnostic': {'CCSM4_r3i1p1': {'keyerror': None,
          'name': 'CCSM4_r3i1p1',
          'nyears': 156,
          'time_period': ['1850-1-16 12:0:0.0', '2005-12-16 12:0:0.0']},
         'ERA-Interim': {'name': 'ERA-Interim',
          'nyears': 40,
          'time_period': ['1979-1-16 12:0:0.0', '2019-3-16 12:0:0.0']},
         'GPCPv2.3': {'name': 'GPCPv2.3',
          'nyears': 41,
          'time_period': ['1979-1-1 0:0:0.0', '2019-7-1 0:0:0.0']},
         'method': 'Meridional root mean square error of nino3_LatExt pr, time series are linearly detrended, observations and model regridded to generic_1x1deg',
         'name': 'pr Meridional RMSE',
         'ref': 'Using CDAT regridding and rms (uncentered and biased) calculation',
         'time_frequency': 'monthly',
         'units': 'mm/day'},
        'metric': {'datasets': "CCSM4_r3i1p1; ERA-Interim's pr & GPCPv2.3's precip; 's ",
         'method': 'The metric is the statistical value between the model and the observations',
         'name': 'BiasPrLatRmse',
         'units': 'mm/day'}},
       'BiasPrLonRmse': {'diagnostic': {'CCSM4_r3i1p1': {'keyerror': None,
          'name': 'CCSM4_r3i1p1',
          'nyears': 156,
          'time_period': ['1850-1-16 12:0:0.0', '2005-12-16 12:0:0.0']},
         'ERA-Interim': {'name': 'ERA-Interim',
          'nyears': 40,
          'time_period': ['1979-1-16 12:0:0.0', '2019-3-16 12:0:0.0']},
         'GPCPv2.3': {'name': 'GPCPv2.3',
          'nyears': 41,
          'time_period': ['1979-1-1 0:0:0.0', '2019-7-1 0:0:0.0']},
         'method': 'Zonal root mean square error of equatorial_pacific pr, time series are linearly detrended, observations and model regridded to generic_1x1deg',
         'name': 'pr Zonal RMSE',
         'ref': 'Using CDAT regridding and rms (uncentered and biased) calculation',
         'time_frequency': 'monthly',
         'units': 'mm/day'},
        'metric': {'datasets': "CCSM4_r3i1p1; ERA-Interim's pr & GPCPv2.3's precip; 's ",
         'method': 'The metric is the statistical value between the model and the observations',
         'name': 'BiasPrLonRmse',
         'units': 'mm/day'}},
       'BiasSstLonRmse': {'diagnostic': {'CCSM4_r3i1p1': {'keyerror': None,
          'name': 'CCSM4_r3i1p1',
          'nyears': 156,
          'time_period': ['1850-1-16 12:0:0.0', '2005-12-16 12:0:0.0']},
         'ERA-Interim': {'name': 'ERA-Interim',
          'nyears': 40,
          'time_period': ['1979-1-16 12:0:0.0', '2019-3-16 12:0:0.0']},
         'HadISST': {'name': 'HadISST',
          'nyears': 151,
          'time_period': ['1870-1-16 11:59:59.5', '2020-10-16 12:0:0.0']},
         'Tropflux': {'name': 'Tropflux',
          'nyears': 40,
          'time_period': ['1979-1-15 0:0:0.0', '2018-12-15 12:0:0.0']},
         'method': 'Zonal root mean square error of equatorial_pacific sst, time series are linearly detrended, observations and model regridded to generic_1x1deg',
         'name': 'sst Zonal RMSE',
         'ref': 'Using CDAT regridding and rms (uncentered and biased) calculation',
         'time_frequency': 'monthly',
         'units': 'C'},
        'metric': {'datasets': "CCSM4_r3i1p1; ERA-Interim's ts & HadISST's sst & Tropflux's sst; 's ",
         'method': 'The metric is the statistical value between the model and the observations',
         'name': 'BiasSstLonRmse',
         'units': 'C'}},
       'BiasTauxLonRmse': {'diagnostic': {'CCSM4_r3i1p1': {'keyerror': None,
          'name': 'CCSM4_r3i1p1',
          'nyears': 156,
          'time_period': ['1850-1-16 12:0:0.0', '2005-12-16 12:0:0.0']},
         'ERA-Interim': {'name': 'ERA-Interim',
          'nyears': 40,
          'time_period': ['1979-1-16 12:0:0.0', '2019-3-16 12:0:0.0']},
         'Tropflux': {'name': 'Tropflux',
          'nyears': 40,
          'time_period': ['1979-1-15 0:0:0.0', '2018-12-15 12:0:0.0']},
         'method': 'Zonal root mean square error of equatorial_pacific taux, time series are linearly detrended, observations and model regridded to generic_1x1deg',
         'name': 'taux Zonal RMSE',
         'ref': 'Using CDAT regridding and rms (uncentered and biased) calculation',
         'time_frequency': 'monthly',
         'units': '1e-3 N/m2'},
        'metric': {'datasets': "CCSM4_r3i1p1; ERA-Interim's tauu & Tropflux's taux; 's ",
         'method': 'The metric is the statistical value between the model and the observations',
         'name': 'BiasTauxLonRmse',
         'units': '1e-3 N/m2'}},
       'EnsoAmpl': {'diagnostic': {'CCSM4_r3i1p1': {'keyerror': None,
          'name': 'CCSM4_r3i1p1',
          'nyears': 156,
          'time_period': ['1850-1-16 12:0:0.0', '2005-12-16 12:0:0.0']},
         'ERA-Interim': {'keyerror': None,
          'name': 'ERA-Interim',
          'nyears': 40,
          'time_period': ['1979-1-16 12:0:0.0', '2019-3-16 12:0:0.0']},
         'HadISST': {'keyerror': None,
          'name': 'HadISST',
          'nyears': 151,
          'time_period': ['1870-1-16 11:59:59.5', '2020-10-16 12:0:0.0']},
         'Tropflux': {'keyerror': None,
          'name': 'Tropflux',
          'nyears': 40,
          'time_period': ['1979-1-15 0:0:0.0', '2018-12-15 12:0:0.0']},
         'method': 'Standard deviation of nino3.4 sstA, time series are linearly detrended',
         'name': 'ENSO amplitude',
         'ref': 'Using CDAT regression calculation',
         'time_frequency': 'monthly',
         'units': 'C'},
        'metric': {'datasets': "CCSM4_r3i1p1; ERA-Interim's ts & HadISST's sst & Tropflux's sst; 's ",
         'method': 'The metric is the absolute value of the relative difference between model and observations values (M = 100 * abs[[model-obs] / obs])',
         'name': 'EnsoAmpl',
         'units': '%'}},
       'EnsoDuration': {'diagnostic': {'CCSM4_r3i1p1': {'keyerror': None,
          'name': 'CCSM4_r3i1p1',
          'nyears': 156,
          'time_period': ['1850-1-16 12:0:0.0', '2005-12-16 12:0:0.0']},
         'ERA-Interim': {'keyerror': None,
          'name': 'ERA-Interim',
          'nyears': 40,
          'time_period': ['1979-1-16 12:0:0.0', '2019-3-16 12:0:0.0']},
         'HadISST': {'keyerror': None,
          'name': 'HadISST',
          'nyears': 151,
          'time_period': ['1870-1-16 11:59:59.5', '2020-10-16 12:0:0.0']},
         'Tropflux': {'keyerror': None,
          'name': 'Tropflux',
          'nyears': 40,
          'time_period': ['1979-1-15 0:0:0.0', '2018-12-15 12:0:0.0']},
         'method': 'nino3.4 SSTA during DEC regressed against nino3.4 SSTA during 6 years (centered on ENSO), the duration is the number of consecutive months during which the regression is above 0.25, time series are linearly detrended, smoothing using a triangle shaped window of 5 points',
         'name': 'ENSO Duration based on life cyle SSTA pattern',
         'ref': 'Using CDAT',
         'time_frequency': 'monthly',
         'units': 'months'},
        'metric': {'datasets': "CCSM4_r3i1p1; ERA-Interim's ts & HadISST's sst & Tropflux's sst; 's ",
         'method': 'The metric is the absolute value of the relative difference between model and observations values (M = 100 * abs[[model-obs] / obs])',
         'name': 'EnsoDuration',
         'units': '%'}},
       'EnsoSeasonality': {'diagnostic': {'CCSM4_r3i1p1': {'keyerror': None,
          'name': 'CCSM4_r3i1p1',
          'nyears': 156,
          'time_period': ['1850-1-16 12:0:0.0', '2005-12-16 12:0:0.0']},
         'ERA-Interim': {'keyerror': None,
          'name': 'ERA-Interim',
          'nyears': 40,
          'time_period': ['1979-1-16 12:0:0.0', '2019-3-16 12:0:0.0']},
         'HadISST': {'keyerror': None,
          'name': 'HadISST',
          'nyears': 151,
          'time_period': ['1870-1-16 11:59:59.5', '2020-10-16 12:0:0.0']},
         'Tropflux': {'keyerror': None,
          'name': 'Tropflux',
          'nyears': 40,
          'time_period': ['1979-1-15 0:0:0.0', '2018-12-15 12:0:0.0']},
         'method': 'Ratio between NDJ and MAM standard deviation nino3.4 sstA, time series are linearly detrended',
         'name': 'ENSO seasonality',
         'ref': 'Using CDAT std dev calculation',
         'time_frequency': 'monthly',
         'units': 'C/C'},
        'metric': {'datasets': "CCSM4_r3i1p1; ERA-Interim's ts & HadISST's sst & Tropflux's sst; 's ",
         'method': 'The metric is the absolute value of the relative difference between model and observations values (M = 100 * abs[[model-obs] / obs])',
         'name': 'EnsoSeasonality',
         'units': '%'}},
       'EnsoSstDiversity_2': {'diagnostic': {'CCSM4_r3i1p1': {'keyerror': None,
          'name': 'CCSM4_r3i1p1',
          'nyears': 156,
          'time_period': ['1850-1-16 12:0:0.0', '2005-12-16 12:0:0.0']},
         'ERA-Interim': {'keyerror': None,
          'name': 'ERA-Interim',
          'nyears': 40,
          'time_period': ['1979-1-16 12:0:0.0', '2019-3-16 12:0:0.0']},
         'HadISST': {'keyerror': None,
          'name': 'HadISST',
          'nyears': 151,
          'time_period': ['1870-1-16 11:59:59.5', '2020-10-16 12:0:0.0']},
         'Tropflux': {'keyerror': None,
          'name': 'Tropflux',
          'nyears': 40,
          'time_period': ['1979-1-15 0:0:0.0', '2018-12-15 12:0:0.0']},
         'method': 'Nino (Nina) events = nino3.4 sstA > 0.75 (< -0.75) during DEC, zonal SSTA (meridional averaged [-5.0 ; 5.0]), the zonal SSTA maximum (minimum) is located for each event, the diversity is the interquartile range (IQR = Q3 - Q1), time series are linearly detrended, smoothing using a triangle shaped window of 5 points',
         'name': 'ENSO Diversity (interquartile range)',
         'ref': 'Using CDAT regridding',
         'time_frequency': 'monthly',
         'units': 'long'},
        'metric': {'datasets': "CCSM4_r3i1p1; ERA-Interim's ts & HadISST's sst & Tropflux's sst; 's ",
         'method': 'The metric is the absolute value of the relative difference between model and observations values (M = 100 * abs[[model-obs] / obs])',
         'name': 'EnsoSstDiversity',
         'units': '%'}},
       'EnsoSstLonRmse': {'diagnostic': {'CCSM4_r3i1p1': {'keyerror': None,
          'name': 'CCSM4_r3i1p1',
          'nyears': 156,
          'time_period': ['1850-1-16 12:0:0.0', '2005-12-16 12:0:0.0']},
         'ERA-Interim': {'name': 'ERA-Interim',
          'nyears': 40,
          'time_period': ['1979-1-16 12:0:0.0', '2019-3-16 12:0:0.0']},
         'HadISST': {'name': 'HadISST',
          'nyears': 151,
          'time_period': ['1870-1-16 11:59:59.5', '2020-10-16 12:0:0.0']},
         'Tropflux': {'name': 'Tropflux',
          'nyears': 40,
          'time_period': ['1979-1-15 0:0:0.0', '2018-12-15 12:0:0.0']},
         'method': 'nino3.4 SSTA during DEC regressed against equatorial_pacific SSTA, time series are linearly detrended, smoothing using a triangle shaped window of 5 points, observations and model regridded to generic_1x1deg',
         'name': 'ENSO Zonal SSTA pattern',
         'ref': 'Using CDAT regridding and rms (uncentered and biased) calculation',
         'time_frequency': 'monthly',
         'units': 'C/C'},
        'metric': {'datasets': "CCSM4_r3i1p1; ERA-Interim's ts & HadISST's sst & Tropflux's sst; 's ",
         'method': 'The metric is the statistical value between the model and the observations',
         'name': 'EnsoSstLonRmse',
         'units': 'C/C'}},
       'EnsoSstSkew': {'diagnostic': {'CCSM4_r3i1p1': {'keyerror': None,
          'name': 'CCSM4_r3i1p1',
          'nyears': 156,
          'time_period': ['1850-1-16 12:0:0.0', '2005-12-16 12:0:0.0']},
         'ERA-Interim': {'keyerror': None,
          'name': 'ERA-Interim',
          'nyears': 40,
          'time_period': ['1979-1-16 12:0:0.0', '2019-3-16 12:0:0.0']},
         'HadISST': {'keyerror': None,
          'name': 'HadISST',
          'nyears': 151,
          'time_period': ['1870-1-16 11:59:59.5', '2020-10-16 12:0:0.0']},
         'Tropflux': {'keyerror': None,
          'name': 'Tropflux',
          'nyears': 40,
          'time_period': ['1979-1-15 0:0:0.0', '2018-12-15 12:0:0.0']},
         'method': 'Standard deviation of nino3.4 sstA, time series are linearly detrended',
         'name': 'ENSO skewness',
         'ref': 'Using CDAT regression calculation',
         'time_frequency': 'monthly',
         'units': 'C'},
        'metric': {'datasets': "CCSM4_r3i1p1; ERA-Interim's ts & HadISST's sst & Tropflux's sst; 's ",
         'method': 'The metric is the absolute value of the relative difference between model and observations values (M = 100 * abs[[model-obs] / obs])',
         'name': 'EnsoSstSkew',
         'units': '%'}},
       'EnsoSstTsRmse': {'diagnostic': {'CCSM4_r3i1p1': {'keyerror': None,
          'name': 'CCSM4_r3i1p1',
          'nyears': 156,
          'time_period': ['1850-1-16 12:0:0.0', '2005-12-16 12:0:0.0']},
         'ERA-Interim': {'name': 'ERA-Interim',
          'nyears': 40,
          'time_period': ['1979-1-16 12:0:0.0', '2019-3-16 12:0:0.0']},
         'HadISST': {'name': 'HadISST',
          'nyears': 151,
          'time_period': ['1870-1-16 11:59:59.5', '2020-10-16 12:0:0.0']},
         'Tropflux': {'name': 'Tropflux',
          'nyears': 40,
          'time_period': ['1979-1-15 0:0:0.0', '2018-12-15 12:0:0.0']},
         'method': 'nino3.4 SSTA during DEC regressed against nino3.4 SSTA during 6 years (centered on ENSO), time series are linearly detrended, smoothing using a triangle shaped window of 5 points',
         'name': 'ENSO life cyle SSTA pattern',
         'ref': 'Using CDAT regridding and rms (uncentered and biased) calculation',
         'time_frequency': 'monthly',
         'units': 'C/C'},
        'metric': {'datasets': "CCSM4_r3i1p1; ERA-Interim's ts & HadISST's sst & Tropflux's sst; 's ",
         'method': 'The metric is the statistical value between the model and the observations',
         'name': 'EnsoSstTsRmse',
         'units': 'C/C'}},
       'SeasonalPrLatRmse': {'diagnostic': {'CCSM4_r3i1p1': {'keyerror': None,
          'name': 'CCSM4_r3i1p1',
          'nyears': 156,
          'time_period': ['1850-1-16 12:0:0.0', '2005-12-16 12:0:0.0']},
         'ERA-Interim': {'name': 'ERA-Interim',
          'nyears': 40,
          'time_period': ['1979-1-16 12:0:0.0', '2019-3-16 12:0:0.0']},
         'GPCPv2.3': {'name': 'GPCPv2.3',
          'nyears': 41,
          'time_period': ['1979-1-1 0:0:0.0', '2019-7-1 0:0:0.0']},
         'method': 'Meridional root mean square error of nino3_LatExt climatological pr STD, time series are linearly detrended, observations and model regridded to generic_1x1deg',
         'name': 'pr meridional seasonality RMSE',
         'ref': 'Using CDAT regridding and rms (uncentered and biased) calculation',
         'time_frequency': 'monthly',
         'units': 'mm/day'},
        'metric': {'datasets': "CCSM4_r3i1p1; ERA-Interim's pr & GPCPv2.3's precip; 's ",
         'method': 'The metric is the statistical value between the model and the observations',
         'name': 'SeasonalPrLatRmse',
         'units': 'mm/day'}},
       'SeasonalPrLonRmse': {'diagnostic': {'CCSM4_r3i1p1': {'keyerror': None,
          'name': 'CCSM4_r3i1p1',
          'nyears': 156,
          'time_period': ['1850-1-16 12:0:0.0', '2005-12-16 12:0:0.0']},
         'ERA-Interim': {'name': 'ERA-Interim',
          'nyears': 40,
          'time_period': ['1979-1-16 12:0:0.0', '2019-3-16 12:0:0.0']},
         'GPCPv2.3': {'name': 'GPCPv2.3',
          'nyears': 41,
          'time_period': ['1979-1-1 0:0:0.0', '2019-7-1 0:0:0.0']},
         'method': 'Zonal root mean square error of equatorial_pacific climatological pr STD, time series are linearly detrended, observations and model regridded to generic_1x1deg',
         'name': 'pr zonal seasonality RMSE',
         'ref': 'Using CDAT regridding and rms (uncentered and biased) calculation',
         'time_frequency': 'monthly',
         'units': 'mm/day'},
        'metric': {'datasets': "CCSM4_r3i1p1; ERA-Interim's pr & GPCPv2.3's precip; 's ",
         'method': 'The metric is the statistical value between the model and the observations',
         'name': 'SeasonalPrLonRmse',
         'units': 'mm/day'}},
       'SeasonalSstLonRmse': {'diagnostic': {'CCSM4_r3i1p1': {'keyerror': None,
          'name': 'CCSM4_r3i1p1',
          'nyears': 156,
          'time_period': ['1850-1-16 12:0:0.0', '2005-12-16 12:0:0.0']},
         'ERA-Interim': {'name': 'ERA-Interim',
          'nyears': 40,
          'time_period': ['1979-1-16 12:0:0.0', '2019-3-16 12:0:0.0']},
         'HadISST': {'name': 'HadISST',
          'nyears': 151,
          'time_period': ['1870-1-16 11:59:59.5', '2020-10-16 12:0:0.0']},
         'Tropflux': {'name': 'Tropflux',
          'nyears': 40,
          'time_period': ['1979-1-15 0:0:0.0', '2018-12-15 12:0:0.0']},
         'method': 'Zonal root mean square error of equatorial_pacific climatological sst STD, time series are linearly detrended, observations and model regridded to generic_1x1deg',
         'name': 'sst zonal seasonality RMSE',
         'ref': 'Using CDAT regridding and rms (uncentered and biased) calculation',
         'time_frequency': 'monthly',
         'units': 'C'},
        'metric': {'datasets': "CCSM4_r3i1p1; ERA-Interim's ts & HadISST's sst & Tropflux's sst; 's ",
         'method': 'The metric is the statistical value between the model and the observations',
         'name': 'SeasonalSstLonRmse',
         'units': 'C'}},
       'SeasonalTauxLonRmse': {'diagnostic': {'CCSM4_r3i1p1': {'keyerror': None,
          'name': 'CCSM4_r3i1p1',
          'nyears': 156,
          'time_period': ['1850-1-16 12:0:0.0', '2005-12-16 12:0:0.0']},
         'ERA-Interim': {'name': 'ERA-Interim',
          'nyears': 40,
          'time_period': ['1979-1-16 12:0:0.0', '2019-3-16 12:0:0.0']},
         'Tropflux': {'name': 'Tropflux',
          'nyears': 40,
          'time_period': ['1979-1-15 0:0:0.0', '2018-12-15 12:0:0.0']},
         'method': 'Zonal root mean square error of equatorial_pacific climatological taux STD, time series are linearly detrended, observations and model regridded to generic_1x1deg',
         'name': 'taux zonal seasonality RMSE',
         'ref': 'Using CDAT regridding and rms (uncentered and biased) calculation',
         'time_frequency': 'monthly',
         'units': '1e-3 N/m2'},
        'metric': {'datasets': "CCSM4_r3i1p1; ERA-Interim's tauu & Tropflux's taux; 's ",
         'method': 'The metric is the statistical value between the model and the observations',
         'name': 'SeasonalTauxLonRmse',
         'units': '1e-3 N/m2'}}},
      'name': 'Metrics Collection for ENSO performance'},
     'value': {'BiasPrLatRmse': {'diagnostic': {'CCSM4_r3i1p1': {'value': None,
         'value_error': None},
        'ERA-Interim': {'value': None, 'value_error': None},
        'GPCPv2.3': {'value': None, 'value_error': None}},
       'metric': {'ERA-Interim': {'value': 1.3110428625742987,
         'value_error': None},
        'GPCPv2.3': {'value': 1.3978225928404995, 'value_error': None}}},
      'BiasPrLonRmse': {'diagnostic': {'CCSM4_r3i1p1': {'value': None,
         'value_error': None},
        'ERA-Interim': {'value': None, 'value_error': None},
        'GPCPv2.3': {'value': None, 'value_error': None}},
       'metric': {'ERA-Interim': {'value': 1.5836880283146393,
         'value_error': None},
        'GPCPv2.3': {'value': 0.6464882816829174, 'value_error': None}}},
      'BiasSstLonRmse': {'diagnostic': {'CCSM4_r3i1p1': {'value': None,
         'value_error': None},
        'ERA-Interim': {'value': None, 'value_error': None},
        'HadISST': {'value': None, 'value_error': None},
        'Tropflux': {'value': None, 'value_error': None}},
       'metric': {'ERA-Interim': {'value': 0.3700964595990826,
         'value_error': None},
        'HadISST': {'value': 0.2382847146612674, 'value_error': None},
        'Tropflux': {'value': 0.4181506475935778, 'value_error': None}}},
      'BiasTauxLonRmse': {'diagnostic': {'CCSM4_r3i1p1': {'value': None,
         'value_error': None},
        'ERA-Interim': {'value': None, 'value_error': None},
        'Tropflux': {'value': None, 'value_error': None}},
       'metric': {'ERA-Interim': {'value': 5.36960402639509,
         'value_error': None},
        'Tropflux': {'value': 5.674215766047146, 'value_error': None}}},
      'EnsoAmpl': {'diagnostic': {'CCSM4_r3i1p1': {'value': 1.066530051670549,
         'value_error': 0.08539074407582459},
        'ERA-Interim': {'value': 0.8989844997845644,
         'value_error': 0.14214193002531866},
        'HadISST': {'value': 0.7665787872085695,
         'value_error': 0.06238329697691264},
        'Tropflux': {'value': 0.9039789553693535,
         'value_error': 0.14293162279134272}},
       'metric': {'ERA-Interim': {'value': 18.637201411830315,
         'value_error': 28.256766601815713},
        'HadISST': {'value': 39.12856309972078,
         'value_error': 22.461321868953206},
        'Tropflux': {'value': 17.981734567568477,
         'value_error': 28.100648846060146}}},
      'EnsoDuration': {'diagnostic': {'CCSM4_r3i1p1': {'value': 14.0,
         'value_error': None},
        'ERA-Interim': {'value': 13.0, 'value_error': None},
        'HadISST': {'value': 13.0, 'value_error': None},
        'Tropflux': {'value': 13.0, 'value_error': None}},
       'metric': {'ERA-Interim': {'value': 7.6923076923076925,
         'value_error': None},
        'HadISST': {'value': 7.6923076923076925, 'value_error': None},
        'Tropflux': {'value': 7.6923076923076925, 'value_error': None}}},
      'EnsoSeasonality': {'diagnostic': {'CCSM4_r3i1p1': {'value': 1.4234673642108422,
         'value_error': 0.228304250616042},
        'ERA-Interim': {'value': 2.0466846866656914,
         'value_error': 0.6513411033995022},
        'HadISST': {'value': 1.6639865947361325,
         'value_error': 0.2712772451657809},
        'Tropflux': {'value': 2.0532132553583624,
         'value_error': 0.6534187683977347}},
       'metric': {'ERA-Interim': {'value': 30.450089675031922,
         'value_error': 33.28853772048278},
        'HadISST': {'value': 14.45439712592341,
         'value_error': 27.66668955805497},
        'Tropflux': {'value': 30.671236390279688,
         'value_error': 33.18269070015034}}},
      'EnsoSstDiversity_2': {'diagnostic': {'CCSM4_r3i1p1': {'value': 35.25,
         'value_error': None},
        'ERA-Interim': {'value': 33.25, 'value_error': None},
        'HadISST': {'value': 49.0, 'value_error': None},
        'Tropflux': {'value': 32.0, 'value_error': None}},
       'metric': {'ERA-Interim': {'value': 6.015037593984962,
         'value_error': None},
        'HadISST': {'value': 28.061224489795915, 'value_error': None},
        'Tropflux': {'value': 10.15625, 'value_error': None}}},
      'EnsoSstLonRmse': {'diagnostic': {'CCSM4_r3i1p1': {'value': None,
         'value_error': None},
        'ERA-Interim': {'value': None, 'value_error': None},
        'HadISST': {'value': None, 'value_error': None},
        'Tropflux': {'value': None, 'value_error': None}},
       'metric': {'ERA-Interim': {'value': 0.1425117155059529,
         'value_error': None},
        'HadISST': {'value': 0.16399332816876988, 'value_error': None},
        'Tropflux': {'value': 0.14468615978775204, 'value_error': None}}},
      'EnsoSstSkew': {'diagnostic': {'CCSM4_r3i1p1': {'value': 0.19717460483302968,
         'value_error': 0.015786602724580327},
        'ERA-Interim': {'value': 0.39098111106809963,
         'value_error': 0.061819541653923164},
        'HadISST': {'value': 0.38989908235027515,
         'value_error': 0.03172953733021198},
        'Tropflux': {'value': 0.39744741059612115,
         'value_error': 0.06284195338099416}},
       'metric': {'ERA-Interim': {'value': 49.56927604651302,
         'value_error': 12.011486948074442},
        'HadISST': {'value': 49.42932318678987,
         'value_error': 8.164277871670201},
        'Tropflux': {'value': 50.38976237452584,
         'value_error': 11.81606518833351}}},
      'EnsoSstTsRmse': {'diagnostic': {'CCSM4_r3i1p1': {'value': None,
         'value_error': None},
        'ERA-Interim': {'value': None, 'value_error': None},
        'HadISST': {'value': None, 'value_error': None},
        'Tropflux': {'value': None, 'value_error': None}},
       'metric': {'ERA-Interim': {'value': 0.14492781700592755,
         'value_error': None},
        'HadISST': {'value': 0.15826743583929878, 'value_error': None},
        'Tropflux': {'value': 0.14622657969162361, 'value_error': None}}},
      'SeasonalPrLatRmse': {'diagnostic': {'CCSM4_r3i1p1': {'value': None,
         'value_error': None},
        'ERA-Interim': {'value': None, 'value_error': None},
        'GPCPv2.3': {'value': None, 'value_error': None}},
       'metric': {'ERA-Interim': {'value': 1.3110819991310134,
         'value_error': None},
        'GPCPv2.3': {'value': 1.5865881607124575, 'value_error': None}}},
      'SeasonalPrLonRmse': {'diagnostic': {'CCSM4_r3i1p1': {'value': None,
         'value_error': None},
        'ERA-Interim': {'value': None, 'value_error': None},
        'GPCPv2.3': {'value': None, 'value_error': None}},
       'metric': {'ERA-Interim': {'value': 0.37895160142602374,
         'value_error': None},
        'GPCPv2.3': {'value': 0.352811134223505, 'value_error': None}}},
      'SeasonalSstLonRmse': {'diagnostic': {'CCSM4_r3i1p1': {'value': None,
         'value_error': None},
        'ERA-Interim': {'value': None, 'value_error': None},
        'HadISST': {'value': None, 'value_error': None},
        'Tropflux': {'value': None, 'value_error': None}},
       'metric': {'ERA-Interim': {'value': 0.2139007274671339,
         'value_error': None},
        'HadISST': {'value': 0.2156243809655798, 'value_error': None},
        'Tropflux': {'value': 0.22266255384750783, 'value_error': None}}},
      'SeasonalTauxLonRmse': {'diagnostic': {'CCSM4_r3i1p1': {'value': None,
         'value_error': None},
        'ERA-Interim': {'value': None, 'value_error': None},
        'Tropflux': {'value': None, 'value_error': None}},
       'metric': {'ERA-Interim': {'value': 1.630314876829397,
         'value_error': None},
        'Tropflux': {'value': 1.7813385269089885, 'value_error': None}}}}},
    'r4i1p1': {'metadata': {'description_of_the_collection': 'Describe which science question this collection is about',
      'metrics': {'BiasPrLatRmse': {'diagnostic': {'CCSM4_r4i1p1': {'keyerror': None,
          'name': 'CCSM4_r4i1p1',
          'nyears': 156,
          'time_period': ['1850-1-16 12:0:0.0', '2005-12-16 12:0:0.0']},
         'ERA-Interim': {'name': 'ERA-Interim',
          'nyears': 40,
          'time_period': ['1979-1-16 12:0:0.0', '2019-3-16 12:0:0.0']},
         'GPCPv2.3': {'name': 'GPCPv2.3',
          'nyears': 41,
          'time_period': ['1979-1-1 0:0:0.0', '2019-7-1 0:0:0.0']},
         'method': 'Meridional root mean square error of nino3_LatExt pr, time series are linearly detrended, observations and model regridded to generic_1x1deg',
         'name': 'pr Meridional RMSE',
         'ref': 'Using CDAT regridding and rms (uncentered and biased) calculation',
         'time_frequency': 'monthly',
         'units': 'mm/day'},
        'metric': {'datasets': "CCSM4_r4i1p1; ERA-Interim's pr & GPCPv2.3's precip; 's ",
         'method': 'The metric is the statistical value between the model and the observations',
         'name': 'BiasPrLatRmse',
         'units': 'mm/day'}},
       'BiasPrLonRmse': {'diagnostic': {'CCSM4_r4i1p1': {'keyerror': None,
          'name': 'CCSM4_r4i1p1',
          'nyears': 156,
          'time_period': ['1850-1-16 12:0:0.0', '2005-12-16 12:0:0.0']},
         'ERA-Interim': {'name': 'ERA-Interim',
          'nyears': 40,
          'time_period': ['1979-1-16 12:0:0.0', '2019-3-16 12:0:0.0']},
         'GPCPv2.3': {'name': 'GPCPv2.3',
          'nyears': 41,
          'time_period': ['1979-1-1 0:0:0.0', '2019-7-1 0:0:0.0']},
         'method': 'Zonal root mean square error of equatorial_pacific pr, time series are linearly detrended, observations and model regridded to generic_1x1deg',
         'name': 'pr Zonal RMSE',
         'ref': 'Using CDAT regridding and rms (uncentered and biased) calculation',
         'time_frequency': 'monthly',
         'units': 'mm/day'},
        'metric': {'datasets': "CCSM4_r4i1p1; ERA-Interim's pr & GPCPv2.3's precip; 's ",
         'method': 'The metric is the statistical value between the model and the observations',
         'name': 'BiasPrLonRmse',
         'units': 'mm/day'}},
       'BiasSstLonRmse': {'diagnostic': {'CCSM4_r4i1p1': {'keyerror': None,
          'name': 'CCSM4_r4i1p1',
          'nyears': 156,
          'time_period': ['1850-1-16 12:0:0.0', '2005-12-16 12:0:0.0']},
         'ERA-Interim': {'name': 'ERA-Interim',
          'nyears': 40,
          'time_period': ['1979-1-16 12:0:0.0', '2019-3-16 12:0:0.0']},
         'HadISST': {'name': 'HadISST',
          'nyears': 151,
          'time_period': ['1870-1-16 11:59:59.5', '2020-10-16 12:0:0.0']},
         'Tropflux': {'name': 'Tropflux',
          'nyears': 40,
          'time_period': ['1979-1-15 0:0:0.0', '2018-12-15 12:0:0.0']},
         'method': 'Zonal root mean square error of equatorial_pacific sst, time series are linearly detrended, observations and model regridded to generic_1x1deg',
         'name': 'sst Zonal RMSE',
         'ref': 'Using CDAT regridding and rms (uncentered and biased) calculation',
         'time_frequency': 'monthly',
         'units': 'C'},
        'metric': {'datasets': "CCSM4_r4i1p1; ERA-Interim's ts & HadISST's sst & Tropflux's sst; 's ",
         'method': 'The metric is the statistical value between the model and the observations',
         'name': 'BiasSstLonRmse',
         'units': 'C'}},
       'BiasTauxLonRmse': {'diagnostic': {'CCSM4_r4i1p1': {'keyerror': None,
          'name': 'CCSM4_r4i1p1',
          'nyears': 156,
          'time_period': ['1850-1-16 12:0:0.0', '2005-12-16 12:0:0.0']},
         'ERA-Interim': {'name': 'ERA-Interim',
          'nyears': 40,
          'time_period': ['1979-1-16 12:0:0.0', '2019-3-16 12:0:0.0']},
         'Tropflux': {'name': 'Tropflux',
          'nyears': 40,
          'time_period': ['1979-1-15 0:0:0.0', '2018-12-15 12:0:0.0']},
         'method': 'Zonal root mean square error of equatorial_pacific taux, time series are linearly detrended, observations and model regridded to generic_1x1deg',
         'name': 'taux Zonal RMSE',
         'ref': 'Using CDAT regridding and rms (uncentered and biased) calculation',
         'time_frequency': 'monthly',
         'units': '1e-3 N/m2'},
        'metric': {'datasets': "CCSM4_r4i1p1; ERA-Interim's tauu & Tropflux's taux; 's ",
         'method': 'The metric is the statistical value between the model and the observations',
         'name': 'BiasTauxLonRmse',
         'units': '1e-3 N/m2'}},
       'EnsoAmpl': {'diagnostic': {'CCSM4_r4i1p1': {'keyerror': None,
          'name': 'CCSM4_r4i1p1',
          'nyears': 156,
          'time_period': ['1850-1-16 12:0:0.0', '2005-12-16 12:0:0.0']},
         'ERA-Interim': {'keyerror': None,
          'name': 'ERA-Interim',
          'nyears': 40,
          'time_period': ['1979-1-16 12:0:0.0', '2019-3-16 12:0:0.0']},
         'HadISST': {'keyerror': None,
          'name': 'HadISST',
          'nyears': 151,
          'time_period': ['1870-1-16 11:59:59.5', '2020-10-16 12:0:0.0']},
         'Tropflux': {'keyerror': None,
          'name': 'Tropflux',
          'nyears': 40,
          'time_period': ['1979-1-15 0:0:0.0', '2018-12-15 12:0:0.0']},
         'method': 'Standard deviation of nino3.4 sstA, time series are linearly detrended',
         'name': 'ENSO amplitude',
         'ref': 'Using CDAT regression calculation',
         'time_frequency': 'monthly',
         'units': 'C'},
        'metric': {'datasets': "CCSM4_r4i1p1; ERA-Interim's ts & HadISST's sst & Tropflux's sst; 's ",
         'method': 'The metric is the absolute value of the relative difference between model and observations values (M = 100 * abs[[model-obs] / obs])',
         'name': 'EnsoAmpl',
         'units': '%'}},
       'EnsoDuration': {'diagnostic': {'CCSM4_r4i1p1': {'keyerror': None,
          'name': 'CCSM4_r4i1p1',
          'nyears': 156,
          'time_period': ['1850-1-16 12:0:0.0', '2005-12-16 12:0:0.0']},
         'ERA-Interim': {'keyerror': None,
          'name': 'ERA-Interim',
          'nyears': 40,
          'time_period': ['1979-1-16 12:0:0.0', '2019-3-16 12:0:0.0']},
         'HadISST': {'keyerror': None,
          'name': 'HadISST',
          'nyears': 151,
          'time_period': ['1870-1-16 11:59:59.5', '2020-10-16 12:0:0.0']},
         'Tropflux': {'keyerror': None,
          'name': 'Tropflux',
          'nyears': 40,
          'time_period': ['1979-1-15 0:0:0.0', '2018-12-15 12:0:0.0']},
         'method': 'nino3.4 SSTA during DEC regressed against nino3.4 SSTA during 6 years (centered on ENSO), the duration is the number of consecutive months during which the regression is above 0.25, time series are linearly detrended, smoothing using a triangle shaped window of 5 points',
         'name': 'ENSO Duration based on life cyle SSTA pattern',
         'ref': 'Using CDAT',
         'time_frequency': 'monthly',
         'units': 'months'},
        'metric': {'datasets': "CCSM4_r4i1p1; ERA-Interim's ts & HadISST's sst & Tropflux's sst; 's ",
         'method': 'The metric is the absolute value of the relative difference between model and observations values (M = 100 * abs[[model-obs] / obs])',
         'name': 'EnsoDuration',
         'units': '%'}},
       'EnsoSeasonality': {'diagnostic': {'CCSM4_r4i1p1': {'keyerror': None,
          'name': 'CCSM4_r4i1p1',
          'nyears': 156,
          'time_period': ['1850-1-16 12:0:0.0', '2005-12-16 12:0:0.0']},
         'ERA-Interim': {'keyerror': None,
          'name': 'ERA-Interim',
          'nyears': 40,
          'time_period': ['1979-1-16 12:0:0.0', '2019-3-16 12:0:0.0']},
         'HadISST': {'keyerror': None,
          'name': 'HadISST',
          'nyears': 151,
          'time_period': ['1870-1-16 11:59:59.5', '2020-10-16 12:0:0.0']},
         'Tropflux': {'keyerror': None,
          'name': 'Tropflux',
          'nyears': 40,
          'time_period': ['1979-1-15 0:0:0.0', '2018-12-15 12:0:0.0']},
         'method': 'Ratio between NDJ and MAM standard deviation nino3.4 sstA, time series are linearly detrended',
         'name': 'ENSO seasonality',
         'ref': 'Using CDAT std dev calculation',
         'time_frequency': 'monthly',
         'units': 'C/C'},
        'metric': {'datasets': "CCSM4_r4i1p1; ERA-Interim's ts & HadISST's sst & Tropflux's sst; 's ",
         'method': 'The metric is the absolute value of the relative difference between model and observations values (M = 100 * abs[[model-obs] / obs])',
         'name': 'EnsoSeasonality',
         'units': '%'}},
       'EnsoSstDiversity_2': {'diagnostic': {'CCSM4_r4i1p1': {'keyerror': None,
          'name': 'CCSM4_r4i1p1',
          'nyears': 156,
          'time_period': ['1850-1-16 12:0:0.0', '2005-12-16 12:0:0.0']},
         'ERA-Interim': {'keyerror': None,
          'name': 'ERA-Interim',
          'nyears': 40,
          'time_period': ['1979-1-16 12:0:0.0', '2019-3-16 12:0:0.0']},
         'HadISST': {'keyerror': None,
          'name': 'HadISST',
          'nyears': 151,
          'time_period': ['1870-1-16 11:59:59.5', '2020-10-16 12:0:0.0']},
         'Tropflux': {'keyerror': None,
          'name': 'Tropflux',
          'nyears': 40,
          'time_period': ['1979-1-15 0:0:0.0', '2018-12-15 12:0:0.0']},
         'method': 'Nino (Nina) events = nino3.4 sstA > 0.75 (< -0.75) during DEC, zonal SSTA (meridional averaged [-5.0 ; 5.0]), the zonal SSTA maximum (minimum) is located for each event, the diversity is the interquartile range (IQR = Q3 - Q1), time series are linearly detrended, smoothing using a triangle shaped window of 5 points',
         'name': 'ENSO Diversity (interquartile range)',
         'ref': 'Using CDAT regridding',
         'time_frequency': 'monthly',
         'units': 'long'},
        'metric': {'datasets': "CCSM4_r4i1p1; ERA-Interim's ts & HadISST's sst & Tropflux's sst; 's ",
         'method': 'The metric is the absolute value of the relative difference between model and observations values (M = 100 * abs[[model-obs] / obs])',
         'name': 'EnsoSstDiversity',
         'units': '%'}},
       'EnsoSstLonRmse': {'diagnostic': {'CCSM4_r4i1p1': {'keyerror': None,
          'name': 'CCSM4_r4i1p1',
          'nyears': 156,
          'time_period': ['1850-1-16 12:0:0.0', '2005-12-16 12:0:0.0']},
         'ERA-Interim': {'name': 'ERA-Interim',
          'nyears': 40,
          'time_period': ['1979-1-16 12:0:0.0', '2019-3-16 12:0:0.0']},
         'HadISST': {'name': 'HadISST',
          'nyears': 151,
          'time_period': ['1870-1-16 11:59:59.5', '2020-10-16 12:0:0.0']},
         'Tropflux': {'name': 'Tropflux',
          'nyears': 40,
          'time_period': ['1979-1-15 0:0:0.0', '2018-12-15 12:0:0.0']},
         'method': 'nino3.4 SSTA during DEC regressed against equatorial_pacific SSTA, time series are linearly detrended, smoothing using a triangle shaped window of 5 points, observations and model regridded to generic_1x1deg',
         'name': 'ENSO Zonal SSTA pattern',
         'ref': 'Using CDAT regridding and rms (uncentered and biased) calculation',
         'time_frequency': 'monthly',
         'units': 'C/C'},
        'metric': {'datasets': "CCSM4_r4i1p1; ERA-Interim's ts & HadISST's sst & Tropflux's sst; 's ",
         'method': 'The metric is the statistical value between the model and the observations',
         'name': 'EnsoSstLonRmse',
         'units': 'C/C'}},
       'EnsoSstSkew': {'diagnostic': {'CCSM4_r4i1p1': {'keyerror': None,
          'name': 'CCSM4_r4i1p1',
          'nyears': 156,
          'time_period': ['1850-1-16 12:0:0.0', '2005-12-16 12:0:0.0']},
         'ERA-Interim': {'keyerror': None,
          'name': 'ERA-Interim',
          'nyears': 40,
          'time_period': ['1979-1-16 12:0:0.0', '2019-3-16 12:0:0.0']},
         'HadISST': {'keyerror': None,
          'name': 'HadISST',
          'nyears': 151,
          'time_period': ['1870-1-16 11:59:59.5', '2020-10-16 12:0:0.0']},
         'Tropflux': {'keyerror': None,
          'name': 'Tropflux',
          'nyears': 40,
          'time_period': ['1979-1-15 0:0:0.0', '2018-12-15 12:0:0.0']},
         'method': 'Standard deviation of nino3.4 sstA, time series are linearly detrended',
         'name': 'ENSO skewness',
         'ref': 'Using CDAT regression calculation',
         'time_frequency': 'monthly',
         'units': 'C'},
        'metric': {'datasets': "CCSM4_r4i1p1; ERA-Interim's ts & HadISST's sst & Tropflux's sst; 's ",
         'method': 'The metric is the absolute value of the relative difference between model and observations values (M = 100 * abs[[model-obs] / obs])',
         'name': 'EnsoSstSkew',
         'units': '%'}},
       'EnsoSstTsRmse': {'diagnostic': {'CCSM4_r4i1p1': {'keyerror': None,
          'name': 'CCSM4_r4i1p1',
          'nyears': 156,
          'time_period': ['1850-1-16 12:0:0.0', '2005-12-16 12:0:0.0']},
         'ERA-Interim': {'name': 'ERA-Interim',
          'nyears': 40,
          'time_period': ['1979-1-16 12:0:0.0', '2019-3-16 12:0:0.0']},
         'HadISST': {'name': 'HadISST',
          'nyears': 151,
          'time_period': ['1870-1-16 11:59:59.5', '2020-10-16 12:0:0.0']},
         'Tropflux': {'name': 'Tropflux',
          'nyears': 40,
          'time_period': ['1979-1-15 0:0:0.0', '2018-12-15 12:0:0.0']},
         'method': 'nino3.4 SSTA during DEC regressed against nino3.4 SSTA during 6 years (centered on ENSO), time series are linearly detrended, smoothing using a triangle shaped window of 5 points',
         'name': 'ENSO life cyle SSTA pattern',
         'ref': 'Using CDAT regridding and rms (uncentered and biased) calculation',
         'time_frequency': 'monthly',
         'units': 'C/C'},
        'metric': {'datasets': "CCSM4_r4i1p1; ERA-Interim's ts & HadISST's sst & Tropflux's sst; 's ",
         'method': 'The metric is the statistical value between the model and the observations',
         'name': 'EnsoSstTsRmse',
         'units': 'C/C'}},
       'SeasonalPrLatRmse': {'diagnostic': {'CCSM4_r4i1p1': {'keyerror': None,
          'name': 'CCSM4_r4i1p1',
          'nyears': 156,
          'time_period': ['1850-1-16 12:0:0.0', '2005-12-16 12:0:0.0']},
         'ERA-Interim': {'name': 'ERA-Interim',
          'nyears': 40,
          'time_period': ['1979-1-16 12:0:0.0', '2019-3-16 12:0:0.0']},
         'GPCPv2.3': {'name': 'GPCPv2.3',
          'nyears': 41,
          'time_period': ['1979-1-1 0:0:0.0', '2019-7-1 0:0:0.0']},
         'method': 'Meridional root mean square error of nino3_LatExt climatological pr STD, time series are linearly detrended, observations and model regridded to generic_1x1deg',
         'name': 'pr meridional seasonality RMSE',
         'ref': 'Using CDAT regridding and rms (uncentered and biased) calculation',
         'time_frequency': 'monthly',
         'units': 'mm/day'},
        'metric': {'datasets': "CCSM4_r4i1p1; ERA-Interim's pr & GPCPv2.3's precip; 's ",
         'method': 'The metric is the statistical value between the model and the observations',
         'name': 'SeasonalPrLatRmse',
         'units': 'mm/day'}},
       'SeasonalPrLonRmse': {'diagnostic': {'CCSM4_r4i1p1': {'keyerror': None,
          'name': 'CCSM4_r4i1p1',
          'nyears': 156,
          'time_period': ['1850-1-16 12:0:0.0', '2005-12-16 12:0:0.0']},
         'ERA-Interim': {'name': 'ERA-Interim',
          'nyears': 40,
          'time_period': ['1979-1-16 12:0:0.0', '2019-3-16 12:0:0.0']},
         'GPCPv2.3': {'name': 'GPCPv2.3',
          'nyears': 41,
          'time_period': ['1979-1-1 0:0:0.0', '2019-7-1 0:0:0.0']},
         'method': 'Zonal root mean square error of equatorial_pacific climatological pr STD, time series are linearly detrended, observations and model regridded to generic_1x1deg',
         'name': 'pr zonal seasonality RMSE',
         'ref': 'Using CDAT regridding and rms (uncentered and biased) calculation',
         'time_frequency': 'monthly',
         'units': 'mm/day'},
        'metric': {'datasets': "CCSM4_r4i1p1; ERA-Interim's pr & GPCPv2.3's precip; 's ",
         'method': 'The metric is the statistical value between the model and the observations',
         'name': 'SeasonalPrLonRmse',
         'units': 'mm/day'}},
       'SeasonalSstLonRmse': {'diagnostic': {'CCSM4_r4i1p1': {'keyerror': None,
          'name': 'CCSM4_r4i1p1',
          'nyears': 156,
          'time_period': ['1850-1-16 12:0:0.0', '2005-12-16 12:0:0.0']},
         'ERA-Interim': {'name': 'ERA-Interim',
          'nyears': 40,
          'time_period': ['1979-1-16 12:0:0.0', '2019-3-16 12:0:0.0']},
         'HadISST': {'name': 'HadISST',
          'nyears': 151,
          'time_period': ['1870-1-16 11:59:59.5', '2020-10-16 12:0:0.0']},
         'Tropflux': {'name': 'Tropflux',
          'nyears': 40,
          'time_period': ['1979-1-15 0:0:0.0', '2018-12-15 12:0:0.0']},
         'method': 'Zonal root mean square error of equatorial_pacific climatological sst STD, time series are linearly detrended, observations and model regridded to generic_1x1deg',
         'name': 'sst zonal seasonality RMSE',
         'ref': 'Using CDAT regridding and rms (uncentered and biased) calculation',
         'time_frequency': 'monthly',
         'units': 'C'},
        'metric': {'datasets': "CCSM4_r4i1p1; ERA-Interim's ts & HadISST's sst & Tropflux's sst; 's ",
         'method': 'The metric is the statistical value between the model and the observations',
         'name': 'SeasonalSstLonRmse',
         'units': 'C'}},
       'SeasonalTauxLonRmse': {'diagnostic': {'CCSM4_r4i1p1': {'keyerror': None,
          'name': 'CCSM4_r4i1p1',
          'nyears': 156,
          'time_period': ['1850-1-16 12:0:0.0', '2005-12-16 12:0:0.0']},
         'ERA-Interim': {'name': 'ERA-Interim',
          'nyears': 40,
          'time_period': ['1979-1-16 12:0:0.0', '2019-3-16 12:0:0.0']},
         'Tropflux': {'name': 'Tropflux',
          'nyears': 40,
          'time_period': ['1979-1-15 0:0:0.0', '2018-12-15 12:0:0.0']},
         'method': 'Zonal root mean square error of equatorial_pacific climatological taux STD, time series are linearly detrended, observations and model regridded to generic_1x1deg',
         'name': 'taux zonal seasonality RMSE',
         'ref': 'Using CDAT regridding and rms (uncentered and biased) calculation',
         'time_frequency': 'monthly',
         'units': '1e-3 N/m2'},
        'metric': {'datasets': "CCSM4_r4i1p1; ERA-Interim's tauu & Tropflux's taux; 's ",
         'method': 'The metric is the statistical value between the model and the observations',
         'name': 'SeasonalTauxLonRmse',
         'units': '1e-3 N/m2'}}},
      'name': 'Metrics Collection for ENSO performance'},
     'value': {'BiasPrLatRmse': {'diagnostic': {'CCSM4_r4i1p1': {'value': None,
         'value_error': None},
        'ERA-Interim': {'value': None, 'value_error': None},
        'GPCPv2.3': {'value': None, 'value_error': None}},
       'metric': {'ERA-Interim': {'value': 1.329264803328015,
         'value_error': None},
        'GPCPv2.3': {'value': 1.3807235509116127, 'value_error': None}}},
      'BiasPrLonRmse': {'diagnostic': {'CCSM4_r4i1p1': {'value': None,
         'value_error': None},
        'ERA-Interim': {'value': None, 'value_error': None},
        'GPCPv2.3': {'value': None, 'value_error': None}},
       'metric': {'ERA-Interim': {'value': 1.4931014555308098,
         'value_error': None},
        'GPCPv2.3': {'value': 0.5152190659816651, 'value_error': None}}},
      'BiasSstLonRmse': {'diagnostic': {'CCSM4_r4i1p1': {'value': None,
         'value_error': None},
        'ERA-Interim': {'value': None, 'value_error': None},
        'HadISST': {'value': None, 'value_error': None},
        'Tropflux': {'value': None, 'value_error': None}},
       'metric': {'ERA-Interim': {'value': 0.37038587624953884,
         'value_error': None},
        'HadISST': {'value': 0.2520765586777242, 'value_error': None},
        'Tropflux': {'value': 0.41617043532174125, 'value_error': None}}},
      'BiasTauxLonRmse': {'diagnostic': {'CCSM4_r4i1p1': {'value': None,
         'value_error': None},
        'ERA-Interim': {'value': None, 'value_error': None},
        'Tropflux': {'value': None, 'value_error': None}},
       'metric': {'ERA-Interim': {'value': 5.713195003676942,
         'value_error': None},
        'Tropflux': {'value': 6.067543889626098, 'value_error': None}}},
      'EnsoAmpl': {'diagnostic': {'CCSM4_r4i1p1': {'value': 0.9353287701184664,
         'value_error': 0.07488623457992638},
        'ERA-Interim': {'value': 0.8989844997845644,
         'value_error': 0.14214193002531866},
        'HadISST': {'value': 0.7665787872085695,
         'value_error': 0.06238329697691264},
        'Tropflux': {'value': 0.9039789553693535,
         'value_error': 0.14293162279134272}},
       'metric': {'ERA-Interim': {'value': 4.0428139019762455,
         'value_error': 24.780705158568637},
        'HadISST': {'value': 22.01339062934227,
         'value_error': 19.698198401457333},
        'Tropflux': {'value': 3.467980594338483,
         'value_error': 24.6437925340666}}},
      'EnsoDuration': {'diagnostic': {'CCSM4_r4i1p1': {'value': 14.0,
         'value_error': None},
        'ERA-Interim': {'value': 13.0, 'value_error': None},
        'HadISST': {'value': 13.0, 'value_error': None},
        'Tropflux': {'value': 13.0, 'value_error': None}},
       'metric': {'ERA-Interim': {'value': 7.6923076923076925,
         'value_error': None},
        'HadISST': {'value': 7.6923076923076925, 'value_error': None},
        'Tropflux': {'value': 7.6923076923076925, 'value_error': None}}},
      'EnsoSeasonality': {'diagnostic': {'CCSM4_r4i1p1': {'value': 1.4778298733718112,
         'value_error': 0.23702323654269403},
        'ERA-Interim': {'value': 2.0466846866656914,
         'value_error': 0.6513411033995022},
        'HadISST': {'value': 1.6639865947361325,
         'value_error': 0.2712772451657809},
        'Tropflux': {'value': 2.0532132553583624,
         'value_error': 0.6534187683977347}},
       'metric': {'ERA-Interim': {'value': 27.793964404972254,
         'value_error': 34.55983377003307},
        'HadISST': {'value': 11.187393092781573,
         'value_error': 28.72328607889426},
        'Tropflux': {'value': 28.02355675841014,
         'value_error': 34.44994443039134}}},
      'EnsoSstDiversity_2': {'diagnostic': {'CCSM4_r4i1p1': {'value': 38.5,
         'value_error': None},
        'ERA-Interim': {'value': 33.25, 'value_error': None},
        'HadISST': {'value': 49.0, 'value_error': None},
        'Tropflux': {'value': 32.0, 'value_error': None}},
       'metric': {'ERA-Interim': {'value': 15.789473684210526,
         'value_error': None},
        'HadISST': {'value': 21.428571428571427, 'value_error': None},
        'Tropflux': {'value': 20.3125, 'value_error': None}}},
      'EnsoSstLonRmse': {'diagnostic': {'CCSM4_r4i1p1': {'value': None,
         'value_error': None},
        'ERA-Interim': {'value': None, 'value_error': None},
        'HadISST': {'value': None, 'value_error': None},
        'Tropflux': {'value': None, 'value_error': None}},
       'metric': {'ERA-Interim': {'value': 0.14974306785971686,
         'value_error': None},
        'HadISST': {'value': 0.1718668167176778, 'value_error': None},
        'Tropflux': {'value': 0.15203045711161578, 'value_error': None}}},
      'EnsoSstSkew': {'diagnostic': {'CCSM4_r4i1p1': {'value': 0.013691942609947189,
         'value_error': 0.0010962327460680248},
        'ERA-Interim': {'value': 0.39098111106809963,
         'value_error': 0.061819541653923164},
        'HadISST': {'value': 0.38989908235027515,
         'value_error': 0.03172953733021198},
        'Tropflux': {'value': 0.39744741059612115,
         'value_error': 0.06284195338099416}},
       'metric': {'ERA-Interim': {'value': 96.49805521997138,
         'value_error': 0.8340860634280602},
        'HadISST': {'value': 96.48833679540525,
         'value_error': 0.5669331715675615},
        'Tropflux': {'value': 96.55503036504604,
         'value_error': 0.8205158396085497}}},
      'EnsoSstTsRmse': {'diagnostic': {'CCSM4_r4i1p1': {'value': None,
         'value_error': None},
        'ERA-Interim': {'value': None, 'value_error': None},
        'HadISST': {'value': None, 'value_error': None},
        'Tropflux': {'value': None, 'value_error': None}},
       'metric': {'ERA-Interim': {'value': 0.08366705951706803,
         'value_error': None},
        'HadISST': {'value': 0.06665112849736267, 'value_error': None},
        'Tropflux': {'value': 0.07946062199734603, 'value_error': None}}},
      'SeasonalPrLatRmse': {'diagnostic': {'CCSM4_r4i1p1': {'value': None,
         'value_error': None},
        'ERA-Interim': {'value': None, 'value_error': None},
        'GPCPv2.3': {'value': None, 'value_error': None}},
       'metric': {'ERA-Interim': {'value': 1.3357135612488062,
         'value_error': None},
        'GPCPv2.3': {'value': 1.6120639553443352, 'value_error': None}}},
      'SeasonalPrLonRmse': {'diagnostic': {'CCSM4_r4i1p1': {'value': None,
         'value_error': None},
        'ERA-Interim': {'value': None, 'value_error': None},
        'GPCPv2.3': {'value': None, 'value_error': None}},
       'metric': {'ERA-Interim': {'value': 0.4532542094398217,
         'value_error': None},
        'GPCPv2.3': {'value': 0.3978374227652189, 'value_error': None}}},
      'SeasonalSstLonRmse': {'diagnostic': {'CCSM4_r4i1p1': {'value': None,
         'value_error': None},
        'ERA-Interim': {'value': None, 'value_error': None},
        'HadISST': {'value': None, 'value_error': None},
        'Tropflux': {'value': None, 'value_error': None}},
       'metric': {'ERA-Interim': {'value': 0.19295430086430593,
         'value_error': None},
        'HadISST': {'value': 0.19539712921524688, 'value_error': None},
        'Tropflux': {'value': 0.2016194135921754, 'value_error': None}}},
      'SeasonalTauxLonRmse': {'diagnostic': {'CCSM4_r4i1p1': {'value': None,
         'value_error': None},
        'ERA-Interim': {'value': None, 'value_error': None},
        'Tropflux': {'value': None, 'value_error': None}},
       'metric': {'ERA-Interim': {'value': 1.592449415742742,
         'value_error': None},
        'Tropflux': {'value': 1.7291725843207841, 'value_error': None}}}}},
    'r5i1p1': {'metadata': {'description_of_the_collection': 'Describe which science question this collection is about',
      'metrics': {'BiasPrLatRmse': {'diagnostic': {'CCSM4_r5i1p1': {'keyerror': None,
          'name': 'CCSM4_r5i1p1',
          'nyears': 156,
          'time_period': ['1850-1-16 12:0:0.0', '2005-12-16 12:0:0.0']},
         'ERA-Interim': {'name': 'ERA-Interim',
          'nyears': 40,
          'time_period': ['1979-1-16 12:0:0.0', '2019-3-16 12:0:0.0']},
         'GPCPv2.3': {'name': 'GPCPv2.3',
          'nyears': 41,
          'time_period': ['1979-1-1 0:0:0.0', '2019-7-1 0:0:0.0']},
         'method': 'Meridional root mean square error of nino3_LatExt pr, time series are linearly detrended, observations and model regridded to generic_1x1deg',
         'name': 'pr Meridional RMSE',
         'ref': 'Using CDAT regridding and rms (uncentered and biased) calculation',
         'time_frequency': 'monthly',
         'units': 'mm/day'},
        'metric': {'datasets': "CCSM4_r5i1p1; ERA-Interim's pr & GPCPv2.3's precip; 's ",
         'method': 'The metric is the statistical value between the model and the observations',
         'name': 'BiasPrLatRmse',
         'units': 'mm/day'}},
       'BiasPrLonRmse': {'diagnostic': {'CCSM4_r5i1p1': {'keyerror': None,
          'name': 'CCSM4_r5i1p1',
          'nyears': 156,
          'time_period': ['1850-1-16 12:0:0.0', '2005-12-16 12:0:0.0']},
         'ERA-Interim': {'name': 'ERA-Interim',
          'nyears': 40,
          'time_period': ['1979-1-16 12:0:0.0', '2019-3-16 12:0:0.0']},
         'GPCPv2.3': {'name': 'GPCPv2.3',
          'nyears': 41,
          'time_period': ['1979-1-1 0:0:0.0', '2019-7-1 0:0:0.0']},
         'method': 'Zonal root mean square error of equatorial_pacific pr, time series are linearly detrended, observations and model regridded to generic_1x1deg',
         'name': 'pr Zonal RMSE',
         'ref': 'Using CDAT regridding and rms (uncentered and biased) calculation',
         'time_frequency': 'monthly',
         'units': 'mm/day'},
        'metric': {'datasets': "CCSM4_r5i1p1; ERA-Interim's pr & GPCPv2.3's precip; 's ",
         'method': 'The metric is the statistical value between the model and the observations',
         'name': 'BiasPrLonRmse',
         'units': 'mm/day'}},
       'BiasSstLonRmse': {'diagnostic': {'CCSM4_r5i1p1': {'keyerror': None,
          'name': 'CCSM4_r5i1p1',
          'nyears': 156,
          'time_period': ['1850-1-16 12:0:0.0', '2005-12-16 12:0:0.0']},
         'ERA-Interim': {'name': 'ERA-Interim',
          'nyears': 40,
          'time_period': ['1979-1-16 12:0:0.0', '2019-3-16 12:0:0.0']},
         'HadISST': {'name': 'HadISST',
          'nyears': 151,
          'time_period': ['1870-1-16 11:59:59.5', '2020-10-16 12:0:0.0']},
         'Tropflux': {'name': 'Tropflux',
          'nyears': 40,
          'time_period': ['1979-1-15 0:0:0.0', '2018-12-15 12:0:0.0']},
         'method': 'Zonal root mean square error of equatorial_pacific sst, time series are linearly detrended, observations and model regridded to generic_1x1deg',
         'name': 'sst Zonal RMSE',
         'ref': 'Using CDAT regridding and rms (uncentered and biased) calculation',
         'time_frequency': 'monthly',
         'units': 'C'},
        'metric': {'datasets': "CCSM4_r5i1p1; ERA-Interim's ts & HadISST's sst & Tropflux's sst; 's ",
         'method': 'The metric is the statistical value between the model and the observations',
         'name': 'BiasSstLonRmse',
         'units': 'C'}},
       'BiasTauxLonRmse': {'diagnostic': {'CCSM4_r5i1p1': {'keyerror': None,
          'name': 'CCSM4_r5i1p1',
          'nyears': 156,
          'time_period': ['1850-1-16 12:0:0.0', '2005-12-16 12:0:0.0']},
         'ERA-Interim': {'name': 'ERA-Interim',
          'nyears': 40,
          'time_period': ['1979-1-16 12:0:0.0', '2019-3-16 12:0:0.0']},
         'Tropflux': {'name': 'Tropflux',
          'nyears': 40,
          'time_period': ['1979-1-15 0:0:0.0', '2018-12-15 12:0:0.0']},
         'method': 'Zonal root mean square error of equatorial_pacific taux, time series are linearly detrended, observations and model regridded to generic_1x1deg',
         'name': 'taux Zonal RMSE',
         'ref': 'Using CDAT regridding and rms (uncentered and biased) calculation',
         'time_frequency': 'monthly',
         'units': '1e-3 N/m2'},
        'metric': {'datasets': "CCSM4_r5i1p1; ERA-Interim's tauu & Tropflux's taux; 's ",
         'method': 'The metric is the statistical value between the model and the observations',
         'name': 'BiasTauxLonRmse',
         'units': '1e-3 N/m2'}},
       'EnsoAmpl': {'diagnostic': {'CCSM4_r5i1p1': {'keyerror': None,
          'name': 'CCSM4_r5i1p1',
          'nyears': 156,
          'time_period': ['1850-1-16 12:0:0.0', '2005-12-16 12:0:0.0']},
         'ERA-Interim': {'keyerror': None,
          'name': 'ERA-Interim',
          'nyears': 40,
          'time_period': ['1979-1-16 12:0:0.0', '2019-3-16 12:0:0.0']},
         'HadISST': {'keyerror': None,
          'name': 'HadISST',
          'nyears': 151,
          'time_period': ['1870-1-16 11:59:59.5', '2020-10-16 12:0:0.0']},
         'Tropflux': {'keyerror': None,
          'name': 'Tropflux',
          'nyears': 40,
          'time_period': ['1979-1-15 0:0:0.0', '2018-12-15 12:0:0.0']},
         'method': 'Standard deviation of nino3.4 sstA, time series are linearly detrended',
         'name': 'ENSO amplitude',
         'ref': 'Using CDAT regression calculation',
         'time_frequency': 'monthly',
         'units': 'C'},
        'metric': {'datasets': "CCSM4_r5i1p1; ERA-Interim's ts & HadISST's sst & Tropflux's sst; 's ",
         'method': 'The metric is the absolute value of the relative difference between model and observations values (M = 100 * abs[[model-obs] / obs])',
         'name': 'EnsoAmpl',
         'units': '%'}},
       'EnsoDuration': {'diagnostic': {'CCSM4_r5i1p1': {'keyerror': None,
          'name': 'CCSM4_r5i1p1',
          'nyears': 156,
          'time_period': ['1850-1-16 12:0:0.0', '2005-12-16 12:0:0.0']},
         'ERA-Interim': {'keyerror': None,
          'name': 'ERA-Interim',
          'nyears': 40,
          'time_period': ['1979-1-16 12:0:0.0', '2019-3-16 12:0:0.0']},
         'HadISST': {'keyerror': None,
          'name': 'HadISST',
          'nyears': 151,
          'time_period': ['1870-1-16 11:59:59.5', '2020-10-16 12:0:0.0']},
         'Tropflux': {'keyerror': None,
          'name': 'Tropflux',
          'nyears': 40,
          'time_period': ['1979-1-15 0:0:0.0', '2018-12-15 12:0:0.0']},
         'method': 'nino3.4 SSTA during DEC regressed against nino3.4 SSTA during 6 years (centered on ENSO), the duration is the number of consecutive months during which the regression is above 0.25, time series are linearly detrended, smoothing using a triangle shaped window of 5 points',
         'name': 'ENSO Duration based on life cyle SSTA pattern',
         'ref': 'Using CDAT',
         'time_frequency': 'monthly',
         'units': 'months'},
        'metric': {'datasets': "CCSM4_r5i1p1; ERA-Interim's ts & HadISST's sst & Tropflux's sst; 's ",
         'method': 'The metric is the absolute value of the relative difference between model and observations values (M = 100 * abs[[model-obs] / obs])',
         'name': 'EnsoDuration',
         'units': '%'}},
       'EnsoSeasonality': {'diagnostic': {'CCSM4_r5i1p1': {'keyerror': None,
          'name': 'CCSM4_r5i1p1',
          'nyears': 156,
          'time_period': ['1850-1-16 12:0:0.0', '2005-12-16 12:0:0.0']},
         'ERA-Interim': {'keyerror': None,
          'name': 'ERA-Interim',
          'nyears': 40,
          'time_period': ['1979-1-16 12:0:0.0', '2019-3-16 12:0:0.0']},
         'HadISST': {'keyerror': None,
          'name': 'HadISST',
          'nyears': 151,
          'time_period': ['1870-1-16 11:59:59.5', '2020-10-16 12:0:0.0']},
         'Tropflux': {'keyerror': None,
          'name': 'Tropflux',
          'nyears': 40,
          'time_period': ['1979-1-15 0:0:0.0', '2018-12-15 12:0:0.0']},
         'method': 'Ratio between NDJ and MAM standard deviation nino3.4 sstA, time series are linearly detrended',
         'name': 'ENSO seasonality',
         'ref': 'Using CDAT std dev calculation',
         'time_frequency': 'monthly',
         'units': 'C/C'},
        'metric': {'datasets': "CCSM4_r5i1p1; ERA-Interim's ts & HadISST's sst & Tropflux's sst; 's ",
         'method': 'The metric is the absolute value of the relative difference between model and observations values (M = 100 * abs[[model-obs] / obs])',
         'name': 'EnsoSeasonality',
         'units': '%'}},
       'EnsoSstDiversity_2': {'diagnostic': {'CCSM4_r5i1p1': {'keyerror': None,
          'name': 'CCSM4_r5i1p1',
          'nyears': 156,
          'time_period': ['1850-1-16 12:0:0.0', '2005-12-16 12:0:0.0']},
         'ERA-Interim': {'keyerror': None,
          'name': 'ERA-Interim',
          'nyears': 40,
          'time_period': ['1979-1-16 12:0:0.0', '2019-3-16 12:0:0.0']},
         'HadISST': {'keyerror': None,
          'name': 'HadISST',
          'nyears': 151,
          'time_period': ['1870-1-16 11:59:59.5', '2020-10-16 12:0:0.0']},
         'Tropflux': {'keyerror': None,
          'name': 'Tropflux',
          'nyears': 40,
          'time_period': ['1979-1-15 0:0:0.0', '2018-12-15 12:0:0.0']},
         'method': 'Nino (Nina) events = nino3.4 sstA > 0.75 (< -0.75) during DEC, zonal SSTA (meridional averaged [-5.0 ; 5.0]), the zonal SSTA maximum (minimum) is located for each event, the diversity is the interquartile range (IQR = Q3 - Q1), time series are linearly detrended, smoothing using a triangle shaped window of 5 points',
         'name': 'ENSO Diversity (interquartile range)',
         'ref': 'Using CDAT regridding',
         'time_frequency': 'monthly',
         'units': 'long'},
        'metric': {'datasets': "CCSM4_r5i1p1; ERA-Interim's ts & HadISST's sst & Tropflux's sst; 's ",
         'method': 'The metric is the absolute value of the relative difference between model and observations values (M = 100 * abs[[model-obs] / obs])',
         'name': 'EnsoSstDiversity',
         'units': '%'}},
       'EnsoSstLonRmse': {'diagnostic': {'CCSM4_r5i1p1': {'keyerror': None,
          'name': 'CCSM4_r5i1p1',
          'nyears': 156,
          'time_period': ['1850-1-16 12:0:0.0', '2005-12-16 12:0:0.0']},
         'ERA-Interim': {'name': 'ERA-Interim',
          'nyears': 40,
          'time_period': ['1979-1-16 12:0:0.0', '2019-3-16 12:0:0.0']},
         'HadISST': {'name': 'HadISST',
          'nyears': 151,
          'time_period': ['1870-1-16 11:59:59.5', '2020-10-16 12:0:0.0']},
         'Tropflux': {'name': 'Tropflux',
          'nyears': 40,
          'time_period': ['1979-1-15 0:0:0.0', '2018-12-15 12:0:0.0']},
         'method': 'nino3.4 SSTA during DEC regressed against equatorial_pacific SSTA, time series are linearly detrended, smoothing using a triangle shaped window of 5 points, observations and model regridded to generic_1x1deg',
         'name': 'ENSO Zonal SSTA pattern',
         'ref': 'Using CDAT regridding and rms (uncentered and biased) calculation',
         'time_frequency': 'monthly',
         'units': 'C/C'},
        'metric': {'datasets': "CCSM4_r5i1p1; ERA-Interim's ts & HadISST's sst & Tropflux's sst; 's ",
         'method': 'The metric is the statistical value between the model and the observations',
         'name': 'EnsoSstLonRmse',
         'units': 'C/C'}},
       'EnsoSstSkew': {'diagnostic': {'CCSM4_r5i1p1': {'keyerror': None,
          'name': 'CCSM4_r5i1p1',
          'nyears': 156,
          'time_period': ['1850-1-16 12:0:0.0', '2005-12-16 12:0:0.0']},
         'ERA-Interim': {'keyerror': None,
          'name': 'ERA-Interim',
          'nyears': 40,
          'time_period': ['1979-1-16 12:0:0.0', '2019-3-16 12:0:0.0']},
         'HadISST': {'keyerror': None,
          'name': 'HadISST',
          'nyears': 151,
          'time_period': ['1870-1-16 11:59:59.5', '2020-10-16 12:0:0.0']},
         'Tropflux': {'keyerror': None,
          'name': 'Tropflux',
          'nyears': 40,
          'time_period': ['1979-1-15 0:0:0.0', '2018-12-15 12:0:0.0']},
         'method': 'Standard deviation of nino3.4 sstA, time series are linearly detrended',
         'name': 'ENSO skewness',
         'ref': 'Using CDAT regression calculation',
         'time_frequency': 'monthly',
         'units': 'C'},
        'metric': {'datasets': "CCSM4_r5i1p1; ERA-Interim's ts & HadISST's sst & Tropflux's sst; 's ",
         'method': 'The metric is the absolute value of the relative difference between model and observations values (M = 100 * abs[[model-obs] / obs])',
         'name': 'EnsoSstSkew',
         'units': '%'}},
       'EnsoSstTsRmse': {'diagnostic': {'CCSM4_r5i1p1': {'keyerror': None,
          'name': 'CCSM4_r5i1p1',
          'nyears': 156,
          'time_period': ['1850-1-16 12:0:0.0', '2005-12-16 12:0:0.0']},
         'ERA-Interim': {'name': 'ERA-Interim',
          'nyears': 40,
          'time_period': ['1979-1-16 12:0:0.0', '2019-3-16 12:0:0.0']},
         'HadISST': {'name': 'HadISST',
          'nyears': 151,
          'time_period': ['1870-1-16 11:59:59.5', '2020-10-16 12:0:0.0']},
         'Tropflux': {'name': 'Tropflux',
          'nyears': 40,
          'time_period': ['1979-1-15 0:0:0.0', '2018-12-15 12:0:0.0']},
         'method': 'nino3.4 SSTA during DEC regressed against nino3.4 SSTA during 6 years (centered on ENSO), time series are linearly detrended, smoothing using a triangle shaped window of 5 points',
         'name': 'ENSO life cyle SSTA pattern',
         'ref': 'Using CDAT regridding and rms (uncentered and biased) calculation',
         'time_frequency': 'monthly',
         'units': 'C/C'},
        'metric': {'datasets': "CCSM4_r5i1p1; ERA-Interim's ts & HadISST's sst & Tropflux's sst; 's ",
         'method': 'The metric is the statistical value between the model and the observations',
         'name': 'EnsoSstTsRmse',
         'units': 'C/C'}},
       'SeasonalPrLatRmse': {'diagnostic': {'CCSM4_r5i1p1': {'keyerror': None,
          'name': 'CCSM4_r5i1p1',
          'nyears': 156,
          'time_period': ['1850-1-16 12:0:0.0', '2005-12-16 12:0:0.0']},
         'ERA-Interim': {'name': 'ERA-Interim',
          'nyears': 40,
          'time_period': ['1979-1-16 12:0:0.0', '2019-3-16 12:0:0.0']},
         'GPCPv2.3': {'name': 'GPCPv2.3',
          'nyears': 41,
          'time_period': ['1979-1-1 0:0:0.0', '2019-7-1 0:0:0.0']},
         'method': 'Meridional root mean square error of nino3_LatExt climatological pr STD, time series are linearly detrended, observations and model regridded to generic_1x1deg',
         'name': 'pr meridional seasonality RMSE',
         'ref': 'Using CDAT regridding and rms (uncentered and biased) calculation',
         'time_frequency': 'monthly',
         'units': 'mm/day'},
        'metric': {'datasets': "CCSM4_r5i1p1; ERA-Interim's pr & GPCPv2.3's precip; 's ",
         'method': 'The metric is the statistical value between the model and the observations',
         'name': 'SeasonalPrLatRmse',
         'units': 'mm/day'}},
       'SeasonalPrLonRmse': {'diagnostic': {'CCSM4_r5i1p1': {'keyerror': None,
          'name': 'CCSM4_r5i1p1',
          'nyears': 156,
          'time_period': ['1850-1-16 12:0:0.0', '2005-12-16 12:0:0.0']},
         'ERA-Interim': {'name': 'ERA-Interim',
          'nyears': 40,
          'time_period': ['1979-1-16 12:0:0.0', '2019-3-16 12:0:0.0']},
         'GPCPv2.3': {'name': 'GPCPv2.3',
          'nyears': 41,
          'time_period': ['1979-1-1 0:0:0.0', '2019-7-1 0:0:0.0']},
         'method': 'Zonal root mean square error of equatorial_pacific climatological pr STD, time series are linearly detrended, observations and model regridded to generic_1x1deg',
         'name': 'pr zonal seasonality RMSE',
         'ref': 'Using CDAT regridding and rms (uncentered and biased) calculation',
         'time_frequency': 'monthly',
         'units': 'mm/day'},
        'metric': {'datasets': "CCSM4_r5i1p1; ERA-Interim's pr & GPCPv2.3's precip; 's ",
         'method': 'The metric is the statistical value between the model and the observations',
         'name': 'SeasonalPrLonRmse',
         'units': 'mm/day'}},
       'SeasonalSstLonRmse': {'diagnostic': {'CCSM4_r5i1p1': {'keyerror': None,
          'name': 'CCSM4_r5i1p1',
          'nyears': 156,
          'time_period': ['1850-1-16 12:0:0.0', '2005-12-16 12:0:0.0']},
         'ERA-Interim': {'name': 'ERA-Interim',
          'nyears': 40,
          'time_period': ['1979-1-16 12:0:0.0', '2019-3-16 12:0:0.0']},
         'HadISST': {'name': 'HadISST',
          'nyears': 151,
          'time_period': ['1870-1-16 11:59:59.5', '2020-10-16 12:0:0.0']},
         'Tropflux': {'name': 'Tropflux',
          'nyears': 40,
          'time_period': ['1979-1-15 0:0:0.0', '2018-12-15 12:0:0.0']},
         'method': 'Zonal root mean square error of equatorial_pacific climatological sst STD, time series are linearly detrended, observations and model regridded to generic_1x1deg',
         'name': 'sst zonal seasonality RMSE',
         'ref': 'Using CDAT regridding and rms (uncentered and biased) calculation',
         'time_frequency': 'monthly',
         'units': 'C'},
        'metric': {'datasets': "CCSM4_r5i1p1; ERA-Interim's ts & HadISST's sst & Tropflux's sst; 's ",
         'method': 'The metric is the statistical value between the model and the observations',
         'name': 'SeasonalSstLonRmse',
         'units': 'C'}},
       'SeasonalTauxLonRmse': {'diagnostic': {'CCSM4_r5i1p1': {'keyerror': None,
          'name': 'CCSM4_r5i1p1',
          'nyears': 156,
          'time_period': ['1850-1-16 12:0:0.0', '2005-12-16 12:0:0.0']},
         'ERA-Interim': {'name': 'ERA-Interim',
          'nyears': 40,
          'time_period': ['1979-1-16 12:0:0.0', '2019-3-16 12:0:0.0']},
         'Tropflux': {'name': 'Tropflux',
          'nyears': 40,
          'time_period': ['1979-1-15 0:0:0.0', '2018-12-15 12:0:0.0']},
         'method': 'Zonal root mean square error of equatorial_pacific climatological taux STD, time series are linearly detrended, observations and model regridded to generic_1x1deg',
         'name': 'taux zonal seasonality RMSE',
         'ref': 'Using CDAT regridding and rms (uncentered and biased) calculation',
         'time_frequency': 'monthly',
         'units': '1e-3 N/m2'},
        'metric': {'datasets': "CCSM4_r5i1p1; ERA-Interim's tauu & Tropflux's taux; 's ",
         'method': 'The metric is the statistical value between the model and the observations',
         'name': 'SeasonalTauxLonRmse',
         'units': '1e-3 N/m2'}}},
      'name': 'Metrics Collection for ENSO performance'},
     'value': {'BiasPrLatRmse': {'diagnostic': {'CCSM4_r5i1p1': {'value': None,
         'value_error': None},
        'ERA-Interim': {'value': None, 'value_error': None},
        'GPCPv2.3': {'value': None, 'value_error': None}},
       'metric': {'ERA-Interim': {'value': 1.3856698199161777,
         'value_error': None},
        'GPCPv2.3': {'value': 1.4529878361950073, 'value_error': None}}},
      'BiasPrLonRmse': {'diagnostic': {'CCSM4_r5i1p1': {'value': None,
         'value_error': None},
        'ERA-Interim': {'value': None, 'value_error': None},
        'GPCPv2.3': {'value': None, 'value_error': None}},
       'metric': {'ERA-Interim': {'value': 1.6531177625866311,
         'value_error': None},
        'GPCPv2.3': {'value': 0.7236832076644217, 'value_error': None}}},
      'BiasSstLonRmse': {'diagnostic': {'CCSM4_r5i1p1': {'value': None,
         'value_error': None},
        'ERA-Interim': {'value': None, 'value_error': None},
        'HadISST': {'value': None, 'value_error': None},
        'Tropflux': {'value': None, 'value_error': None}},
       'metric': {'ERA-Interim': {'value': 0.3912823558770787,
         'value_error': None},
        'HadISST': {'value': 0.24258941629823105, 'value_error': None},
        'Tropflux': {'value': 0.43951151233474983, 'value_error': None}}},
      'BiasTauxLonRmse': {'diagnostic': {'CCSM4_r5i1p1': {'value': None,
         'value_error': None},
        'ERA-Interim': {'value': None, 'value_error': None},
        'Tropflux': {'value': None, 'value_error': None}},
       'metric': {'ERA-Interim': {'value': 5.566591658180531,
         'value_error': None},
        'Tropflux': {'value': 5.843076622155677, 'value_error': None}}},
      'EnsoAmpl': {'diagnostic': {'CCSM4_r5i1p1': {'value': 1.1464367213282234,
         'value_error': 0.09178839782032279},
        'ERA-Interim': {'value': 0.8989844997845644,
         'value_error': 0.14214193002531866},
        'HadISST': {'value': 0.7665787872085695,
         'value_error': 0.06238329697691264},
        'Tropflux': {'value': 0.9039789553693535,
         'value_error': 0.14293162279134272}},
       'metric': {'ERA-Interim': {'value': 27.525749509914714,
         'value_error': 30.373822854387917},
        'HadISST': {'value': 49.5523670179909,
         'value_error': 24.1441712400008},
        'Tropflux': {'value': 26.82117371413862,
         'value_error': 30.20600842874732}}},
      'EnsoDuration': {'diagnostic': {'CCSM4_r5i1p1': {'value': 14.0,
         'value_error': None},
        'ERA-Interim': {'value': 13.0, 'value_error': None},
        'HadISST': {'value': 13.0, 'value_error': None},
        'Tropflux': {'value': 13.0, 'value_error': None}},
       'metric': {'ERA-Interim': {'value': 7.6923076923076925,
         'value_error': None},
        'HadISST': {'value': 7.6923076923076925, 'value_error': None},
        'Tropflux': {'value': 7.6923076923076925, 'value_error': None}}},
      'EnsoSeasonality': {'diagnostic': {'CCSM4_r5i1p1': {'value': 1.4575592167680285,
         'value_error': 0.23377210681413332},
        'ERA-Interim': {'value': 2.0466846866656914,
         'value_error': 0.6513411033995022},
        'HadISST': {'value': 1.6639865947361325,
         'value_error': 0.2712772451657809},
        'Tropflux': {'value': 2.0532132553583624,
         'value_error': 0.6534187683977347}},
       'metric': {'ERA-Interim': {'value': 28.784378645907736,
         'value_error': 34.085793736563055},
        'HadISST': {'value': 12.40559140446912,
         'value_error': 28.32930306425331},
        'Tropflux': {'value': 29.010821795340984,
         'value_error': 33.97741169428244}}},
      'EnsoSstDiversity_2': {'diagnostic': {'CCSM4_r5i1p1': {'value': 30.0,
         'value_error': None},
        'ERA-Interim': {'value': 33.25, 'value_error': None},
        'HadISST': {'value': 49.0, 'value_error': None},
        'Tropflux': {'value': 32.0, 'value_error': None}},
       'metric': {'ERA-Interim': {'value': 9.774436090225564,
         'value_error': None},
        'HadISST': {'value': 38.775510204081634, 'value_error': None},
        'Tropflux': {'value': 6.25, 'value_error': None}}},
      'EnsoSstLonRmse': {'diagnostic': {'CCSM4_r5i1p1': {'value': None,
         'value_error': None},
        'ERA-Interim': {'value': None, 'value_error': None},
        'HadISST': {'value': None, 'value_error': None},
        'Tropflux': {'value': None, 'value_error': None}},
       'metric': {'ERA-Interim': {'value': 0.10671371264670343,
         'value_error': None},
        'HadISST': {'value': 0.12807647264969876, 'value_error': None},
        'Tropflux': {'value': 0.10882463237085656, 'value_error': None}}},
      'EnsoSstSkew': {'diagnostic': {'CCSM4_r5i1p1': {'value': 0.16279884428346003,
         'value_error': 0.01303433918835616},
        'ERA-Interim': {'value': 0.39098111106809963,
         'value_error': 0.061819541653923164},
        'HadISST': {'value': 0.38989908235027515,
         'value_error': 0.03172953733021198},
        'Tropflux': {'value': 0.39744741059612115,
         'value_error': 0.06284195338099416}},
       'metric': {'ERA-Interim': {'value': 58.36145540670267,
         'value_error': 9.917383604893198},
        'HadISST': {'value': 58.2459021698323,
         'value_error': 6.740903591730114},
        'Tropflux': {'value': 59.03889673371322,
         'value_error': 9.756032011666449}}},
      'EnsoSstTsRmse': {'diagnostic': {'CCSM4_r5i1p1': {'value': None,
         'value_error': None},
        'ERA-Interim': {'value': None, 'value_error': None},
        'HadISST': {'value': None, 'value_error': None},
        'Tropflux': {'value': None, 'value_error': None}},
       'metric': {'ERA-Interim': {'value': 0.13435604825596462,
         'value_error': None},
        'HadISST': {'value': 0.14778257556042165, 'value_error': None},
        'Tropflux': {'value': 0.13485731834560458, 'value_error': None}}},
      'SeasonalPrLatRmse': {'diagnostic': {'CCSM4_r5i1p1': {'value': None,
         'value_error': None},
        'ERA-Interim': {'value': None, 'value_error': None},
        'GPCPv2.3': {'value': None, 'value_error': None}},
       'metric': {'ERA-Interim': {'value': 1.3041987162238182,
         'value_error': None},
        'GPCPv2.3': {'value': 1.5796696382253237, 'value_error': None}}},
      'SeasonalPrLonRmse': {'diagnostic': {'CCSM4_r5i1p1': {'value': None,
         'value_error': None},
        'ERA-Interim': {'value': None, 'value_error': None},
        'GPCPv2.3': {'value': None, 'value_error': None}},
       'metric': {'ERA-Interim': {'value': 0.344335995025295,
         'value_error': None},
        'GPCPv2.3': {'value': 0.36394419743300815, 'value_error': None}}},
      'SeasonalSstLonRmse': {'diagnostic': {'CCSM4_r5i1p1': {'value': None,
         'value_error': None},
        'ERA-Interim': {'value': None, 'value_error': None},
        'HadISST': {'value': None, 'value_error': None},
        'Tropflux': {'value': None, 'value_error': None}},
       'metric': {'ERA-Interim': {'value': 0.20826598282309558,
         'value_error': None},
        'HadISST': {'value': 0.20937046872093895, 'value_error': None},
        'Tropflux': {'value': 0.21721057256151613, 'value_error': None}}},
      'SeasonalTauxLonRmse': {'diagnostic': {'CCSM4_r5i1p1': {'value': None,
         'value_error': None},
        'ERA-Interim': {'value': None, 'value_error': None},
        'Tropflux': {'value': None, 'value_error': None}},
       'metric': {'ERA-Interim': {'value': 1.525962614699487,
         'value_error': None},
        'Tropflux': {'value': 1.662001547746111, 'value_error': None}}}}},
    'r6i1p1': {'metadata': {'description_of_the_collection': 'Describe which science question this collection is about',
      'metrics': {'BiasPrLatRmse': {'diagnostic': {'CCSM4_r6i1p1': {'keyerror': None,
          'name': 'CCSM4_r6i1p1',
          'nyears': 156,
          'time_period': ['1850-1-16 12:0:0.0', '2005-12-16 12:0:0.0']},
         'ERA-Interim': {'name': 'ERA-Interim',
          'nyears': 40,
          'time_period': ['1979-1-16 12:0:0.0', '2019-3-16 12:0:0.0']},
         'GPCPv2.3': {'name': 'GPCPv2.3',
          'nyears': 41,
          'time_period': ['1979-1-1 0:0:0.0', '2019-7-1 0:0:0.0']},
         'method': 'Meridional root mean square error of nino3_LatExt pr, time series are linearly detrended, observations and model regridded to generic_1x1deg',
         'name': 'pr Meridional RMSE',
         'ref': 'Using CDAT regridding and rms (uncentered and biased) calculation',
         'time_frequency': 'monthly',
         'units': 'mm/day'},
        'metric': {'datasets': "CCSM4_r6i1p1; ERA-Interim's pr & GPCPv2.3's precip; 's ",
         'method': 'The metric is the statistical value between the model and the observations',
         'name': 'BiasPrLatRmse',
         'units': 'mm/day'}},
       'BiasPrLonRmse': {'diagnostic': {'CCSM4_r6i1p1': {'keyerror': None,
          'name': 'CCSM4_r6i1p1',
          'nyears': 156,
          'time_period': ['1850-1-16 12:0:0.0', '2005-12-16 12:0:0.0']},
         'ERA-Interim': {'name': 'ERA-Interim',
          'nyears': 40,
          'time_period': ['1979-1-16 12:0:0.0', '2019-3-16 12:0:0.0']},
         'GPCPv2.3': {'name': 'GPCPv2.3',
          'nyears': 41,
          'time_period': ['1979-1-1 0:0:0.0', '2019-7-1 0:0:0.0']},
         'method': 'Zonal root mean square error of equatorial_pacific pr, time series are linearly detrended, observations and model regridded to generic_1x1deg',
         'name': 'pr Zonal RMSE',
         'ref': 'Using CDAT regridding and rms (uncentered and biased) calculation',
         'time_frequency': 'monthly',
         'units': 'mm/day'},
        'metric': {'datasets': "CCSM4_r6i1p1; ERA-Interim's pr & GPCPv2.3's precip; 's ",
         'method': 'The metric is the statistical value between the model and the observations',
         'name': 'BiasPrLonRmse',
         'units': 'mm/day'}},
       'BiasSstLonRmse': {'diagnostic': {'CCSM4_r6i1p1': {'keyerror': None,
          'name': 'CCSM4_r6i1p1',
          'nyears': 156,
          'time_period': ['1850-1-16 12:0:0.0', '2005-12-16 12:0:0.0']},
         'ERA-Interim': {'name': 'ERA-Interim',
          'nyears': 40,
          'time_period': ['1979-1-16 12:0:0.0', '2019-3-16 12:0:0.0']},
         'HadISST': {'name': 'HadISST',
          'nyears': 151,
          'time_period': ['1870-1-16 11:59:59.5', '2020-10-16 12:0:0.0']},
         'Tropflux': {'name': 'Tropflux',
          'nyears': 40,
          'time_period': ['1979-1-15 0:0:0.0', '2018-12-15 12:0:0.0']},
         'method': 'Zonal root mean square error of equatorial_pacific sst, time series are linearly detrended, observations and model regridded to generic_1x1deg',
         'name': 'sst Zonal RMSE',
         'ref': 'Using CDAT regridding and rms (uncentered and biased) calculation',
         'time_frequency': 'monthly',
         'units': 'C'},
        'metric': {'datasets': "CCSM4_r6i1p1; ERA-Interim's ts & HadISST's sst & Tropflux's sst; 's ",
         'method': 'The metric is the statistical value between the model and the observations',
         'name': 'BiasSstLonRmse',
         'units': 'C'}},
       'BiasTauxLonRmse': {'diagnostic': {'CCSM4_r6i1p1': {'keyerror': None,
          'name': 'CCSM4_r6i1p1',
          'nyears': 156,
          'time_period': ['1850-1-16 12:0:0.0', '2005-12-16 12:0:0.0']},
         'ERA-Interim': {'name': 'ERA-Interim',
          'nyears': 40,
          'time_period': ['1979-1-16 12:0:0.0', '2019-3-16 12:0:0.0']},
         'Tropflux': {'name': 'Tropflux',
          'nyears': 40,
          'time_period': ['1979-1-15 0:0:0.0', '2018-12-15 12:0:0.0']},
         'method': 'Zonal root mean square error of equatorial_pacific taux, time series are linearly detrended, observations and model regridded to generic_1x1deg',
         'name': 'taux Zonal RMSE',
         'ref': 'Using CDAT regridding and rms (uncentered and biased) calculation',
         'time_frequency': 'monthly',
         'units': '1e-3 N/m2'},
        'metric': {'datasets': "CCSM4_r6i1p1; ERA-Interim's tauu & Tropflux's taux; 's ",
         'method': 'The metric is the statistical value between the model and the observations',
         'name': 'BiasTauxLonRmse',
         'units': '1e-3 N/m2'}},
       'EnsoAmpl': {'diagnostic': {'CCSM4_r6i1p1': {'keyerror': None,
          'name': 'CCSM4_r6i1p1',
          'nyears': 156,
          'time_period': ['1850-1-16 12:0:0.0', '2005-12-16 12:0:0.0']},
         'ERA-Interim': {'keyerror': None,
          'name': 'ERA-Interim',
          'nyears': 40,
          'time_period': ['1979-1-16 12:0:0.0', '2019-3-16 12:0:0.0']},
         'HadISST': {'keyerror': None,
          'name': 'HadISST',
          'nyears': 151,
          'time_period': ['1870-1-16 11:59:59.5', '2020-10-16 12:0:0.0']},
         'Tropflux': {'keyerror': None,
          'name': 'Tropflux',
          'nyears': 40,
          'time_period': ['1979-1-15 0:0:0.0', '2018-12-15 12:0:0.0']},
         'method': 'Standard deviation of nino3.4 sstA, time series are linearly detrended',
         'name': 'ENSO amplitude',
         'ref': 'Using CDAT regression calculation',
         'time_frequency': 'monthly',
         'units': 'C'},
        'metric': {'datasets': "CCSM4_r6i1p1; ERA-Interim's ts & HadISST's sst & Tropflux's sst; 's ",
         'method': 'The metric is the absolute value of the relative difference between model and observations values (M = 100 * abs[[model-obs] / obs])',
         'name': 'EnsoAmpl',
         'units': '%'}},
       'EnsoDuration': {'diagnostic': {'CCSM4_r6i1p1': {'keyerror': None,
          'name': 'CCSM4_r6i1p1',
          'nyears': 156,
          'time_period': ['1850-1-16 12:0:0.0', '2005-12-16 12:0:0.0']},
         'ERA-Interim': {'keyerror': None,
          'name': 'ERA-Interim',
          'nyears': 40,
          'time_period': ['1979-1-16 12:0:0.0', '2019-3-16 12:0:0.0']},
         'HadISST': {'keyerror': None,
          'name': 'HadISST',
          'nyears': 151,
          'time_period': ['1870-1-16 11:59:59.5', '2020-10-16 12:0:0.0']},
         'Tropflux': {'keyerror': None,
          'name': 'Tropflux',
          'nyears': 40,
          'time_period': ['1979-1-15 0:0:0.0', '2018-12-15 12:0:0.0']},
         'method': 'nino3.4 SSTA during DEC regressed against nino3.4 SSTA during 6 years (centered on ENSO), the duration is the number of consecutive months during which the regression is above 0.25, time series are linearly detrended, smoothing using a triangle shaped window of 5 points',
         'name': 'ENSO Duration based on life cyle SSTA pattern',
         'ref': 'Using CDAT',
         'time_frequency': 'monthly',
         'units': 'months'},
        'metric': {'datasets': "CCSM4_r6i1p1; ERA-Interim's ts & HadISST's sst & Tropflux's sst; 's ",
         'method': 'The metric is the absolute value of the relative difference between model and observations values (M = 100 * abs[[model-obs] / obs])',
         'name': 'EnsoDuration',
         'units': '%'}},
       'EnsoSeasonality': {'diagnostic': {'CCSM4_r6i1p1': {'keyerror': None,
          'name': 'CCSM4_r6i1p1',
          'nyears': 156,
          'time_period': ['1850-1-16 12:0:0.0', '2005-12-16 12:0:0.0']},
         'ERA-Interim': {'keyerror': None,
          'name': 'ERA-Interim',
          'nyears': 40,
          'time_period': ['1979-1-16 12:0:0.0', '2019-3-16 12:0:0.0']},
         'HadISST': {'keyerror': None,
          'name': 'HadISST',
          'nyears': 151,
          'time_period': ['1870-1-16 11:59:59.5', '2020-10-16 12:0:0.0']},
         'Tropflux': {'keyerror': None,
          'name': 'Tropflux',
          'nyears': 40,
          'time_period': ['1979-1-15 0:0:0.0', '2018-12-15 12:0:0.0']},
         'method': 'Ratio between NDJ and MAM standard deviation nino3.4 sstA, time series are linearly detrended',
         'name': 'ENSO seasonality',
         'ref': 'Using CDAT std dev calculation',
         'time_frequency': 'monthly',
         'units': 'C/C'},
        'metric': {'datasets': "CCSM4_r6i1p1; ERA-Interim's ts & HadISST's sst & Tropflux's sst; 's ",
         'method': 'The metric is the absolute value of the relative difference between model and observations values (M = 100 * abs[[model-obs] / obs])',
         'name': 'EnsoSeasonality',
         'units': '%'}},
       'EnsoSstDiversity_2': {'diagnostic': {'CCSM4_r6i1p1': {'keyerror': None,
          'name': 'CCSM4_r6i1p1',
          'nyears': 156,
          'time_period': ['1850-1-16 12:0:0.0', '2005-12-16 12:0:0.0']},
         'ERA-Interim': {'keyerror': None,
          'name': 'ERA-Interim',
          'nyears': 40,
          'time_period': ['1979-1-16 12:0:0.0', '2019-3-16 12:0:0.0']},
         'HadISST': {'keyerror': None,
          'name': 'HadISST',
          'nyears': 151,
          'time_period': ['1870-1-16 11:59:59.5', '2020-10-16 12:0:0.0']},
         'Tropflux': {'keyerror': None,
          'name': 'Tropflux',
          'nyears': 40,
          'time_period': ['1979-1-15 0:0:0.0', '2018-12-15 12:0:0.0']},
         'method': 'Nino (Nina) events = nino3.4 sstA > 0.75 (< -0.75) during DEC, zonal SSTA (meridional averaged [-5.0 ; 5.0]), the zonal SSTA maximum (minimum) is located for each event, the diversity is the interquartile range (IQR = Q3 - Q1), time series are linearly detrended, smoothing using a triangle shaped window of 5 points',
         'name': 'ENSO Diversity (interquartile range)',
         'ref': 'Using CDAT regridding',
         'time_frequency': 'monthly',
         'units': 'long'},
        'metric': {'datasets': "CCSM4_r6i1p1; ERA-Interim's ts & HadISST's sst & Tropflux's sst; 's ",
         'method': 'The metric is the absolute value of the relative difference between model and observations values (M = 100 * abs[[model-obs] / obs])',
         'name': 'EnsoSstDiversity',
         'units': '%'}},
       'EnsoSstLonRmse': {'diagnostic': {'CCSM4_r6i1p1': {'keyerror': None,
          'name': 'CCSM4_r6i1p1',
          'nyears': 156,
          'time_period': ['1850-1-16 12:0:0.0', '2005-12-16 12:0:0.0']},
         'ERA-Interim': {'name': 'ERA-Interim',
          'nyears': 40,
          'time_period': ['1979-1-16 12:0:0.0', '2019-3-16 12:0:0.0']},
         'HadISST': {'name': 'HadISST',
          'nyears': 151,
          'time_period': ['1870-1-16 11:59:59.5', '2020-10-16 12:0:0.0']},
         'Tropflux': {'name': 'Tropflux',
          'nyears': 40,
          'time_period': ['1979-1-15 0:0:0.0', '2018-12-15 12:0:0.0']},
         'method': 'nino3.4 SSTA during DEC regressed against equatorial_pacific SSTA, time series are linearly detrended, smoothing using a triangle shaped window of 5 points, observations and model regridded to generic_1x1deg',
         'name': 'ENSO Zonal SSTA pattern',
         'ref': 'Using CDAT regridding and rms (uncentered and biased) calculation',
         'time_frequency': 'monthly',
         'units': 'C/C'},
        'metric': {'datasets': "CCSM4_r6i1p1; ERA-Interim's ts & HadISST's sst & Tropflux's sst; 's ",
         'method': 'The metric is the statistical value between the model and the observations',
         'name': 'EnsoSstLonRmse',
         'units': 'C/C'}},
       'EnsoSstSkew': {'diagnostic': {'CCSM4_r6i1p1': {'keyerror': None,
          'name': 'CCSM4_r6i1p1',
          'nyears': 156,
          'time_period': ['1850-1-16 12:0:0.0', '2005-12-16 12:0:0.0']},
         'ERA-Interim': {'keyerror': None,
          'name': 'ERA-Interim',
          'nyears': 40,
          'time_period': ['1979-1-16 12:0:0.0', '2019-3-16 12:0:0.0']},
         'HadISST': {'keyerror': None,
          'name': 'HadISST',
          'nyears': 151,
          'time_period': ['1870-1-16 11:59:59.5', '2020-10-16 12:0:0.0']},
         'Tropflux': {'keyerror': None,
          'name': 'Tropflux',
          'nyears': 40,
          'time_period': ['1979-1-15 0:0:0.0', '2018-12-15 12:0:0.0']},
         'method': 'Standard deviation of nino3.4 sstA, time series are linearly detrended',
         'name': 'ENSO skewness',
         'ref': 'Using CDAT regression calculation',
         'time_frequency': 'monthly',
         'units': 'C'},
        'metric': {'datasets': "CCSM4_r6i1p1; ERA-Interim's ts & HadISST's sst & Tropflux's sst; 's ",
         'method': 'The metric is the absolute value of the relative difference between model and observations values (M = 100 * abs[[model-obs] / obs])',
         'name': 'EnsoSstSkew',
         'units': '%'}},
       'EnsoSstTsRmse': {'diagnostic': {'CCSM4_r6i1p1': {'keyerror': None,
          'name': 'CCSM4_r6i1p1',
          'nyears': 156,
          'time_period': ['1850-1-16 12:0:0.0', '2005-12-16 12:0:0.0']},
         'ERA-Interim': {'name': 'ERA-Interim',
          'nyears': 40,
          'time_period': ['1979-1-16 12:0:0.0', '2019-3-16 12:0:0.0']},
         'HadISST': {'name': 'HadISST',
          'nyears': 151,
          'time_period': ['1870-1-16 11:59:59.5', '2020-10-16 12:0:0.0']},
         'Tropflux': {'name': 'Tropflux',
          'nyears': 40,
          'time_period': ['1979-1-15 0:0:0.0', '2018-12-15 12:0:0.0']},
         'method': 'nino3.4 SSTA during DEC regressed against nino3.4 SSTA during 6 years (centered on ENSO), time series are linearly detrended, smoothing using a triangle shaped window of 5 points',
         'name': 'ENSO life cyle SSTA pattern',
         'ref': 'Using CDAT regridding and rms (uncentered and biased) calculation',
         'time_frequency': 'monthly',
         'units': 'C/C'},
        'metric': {'datasets': "CCSM4_r6i1p1; ERA-Interim's ts & HadISST's sst & Tropflux's sst; 's ",
         'method': 'The metric is the statistical value between the model and the observations',
         'name': 'EnsoSstTsRmse',
         'units': 'C/C'}},
       'SeasonalPrLatRmse': {'diagnostic': {'CCSM4_r6i1p1': {'keyerror': None,
          'name': 'CCSM4_r6i1p1',
          'nyears': 156,
          'time_period': ['1850-1-16 12:0:0.0', '2005-12-16 12:0:0.0']},
         'ERA-Interim': {'name': 'ERA-Interim',
          'nyears': 40,
          'time_period': ['1979-1-16 12:0:0.0', '2019-3-16 12:0:0.0']},
         'GPCPv2.3': {'name': 'GPCPv2.3',
          'nyears': 41,
          'time_period': ['1979-1-1 0:0:0.0', '2019-7-1 0:0:0.0']},
         'method': 'Meridional root mean square error of nino3_LatExt climatological pr STD, time series are linearly detrended, observations and model regridded to generic_1x1deg',
         'name': 'pr meridional seasonality RMSE',
         'ref': 'Using CDAT regridding and rms (uncentered and biased) calculation',
         'time_frequency': 'monthly',
         'units': 'mm/day'},
        'metric': {'datasets': "CCSM4_r6i1p1; ERA-Interim's pr & GPCPv2.3's precip; 's ",
         'method': 'The metric is the statistical value between the model and the observations',
         'name': 'SeasonalPrLatRmse',
         'units': 'mm/day'}},
       'SeasonalPrLonRmse': {'diagnostic': {'CCSM4_r6i1p1': {'keyerror': None,
          'name': 'CCSM4_r6i1p1',
          'nyears': 156,
          'time_period': ['1850-1-16 12:0:0.0', '2005-12-16 12:0:0.0']},
         'ERA-Interim': {'name': 'ERA-Interim',
          'nyears': 40,
          'time_period': ['1979-1-16 12:0:0.0', '2019-3-16 12:0:0.0']},
         'GPCPv2.3': {'name': 'GPCPv2.3',
          'nyears': 41,
          'time_period': ['1979-1-1 0:0:0.0', '2019-7-1 0:0:0.0']},
         'method': 'Zonal root mean square error of equatorial_pacific climatological pr STD, time series are linearly detrended, observations and model regridded to generic_1x1deg',
         'name': 'pr zonal seasonality RMSE',
         'ref': 'Using CDAT regridding and rms (uncentered and biased) calculation',
         'time_frequency': 'monthly',
         'units': 'mm/day'},
        'metric': {'datasets': "CCSM4_r6i1p1; ERA-Interim's pr & GPCPv2.3's precip; 's ",
         'method': 'The metric is the statistical value between the model and the observations',
         'name': 'SeasonalPrLonRmse',
         'units': 'mm/day'}},
       'SeasonalSstLonRmse': {'diagnostic': {'CCSM4_r6i1p1': {'keyerror': None,
          'name': 'CCSM4_r6i1p1',
          'nyears': 156,
          'time_period': ['1850-1-16 12:0:0.0', '2005-12-16 12:0:0.0']},
         'ERA-Interim': {'name': 'ERA-Interim',
          'nyears': 40,
          'time_period': ['1979-1-16 12:0:0.0', '2019-3-16 12:0:0.0']},
         'HadISST': {'name': 'HadISST',
          'nyears': 151,
          'time_period': ['1870-1-16 11:59:59.5', '2020-10-16 12:0:0.0']},
         'Tropflux': {'name': 'Tropflux',
          'nyears': 40,
          'time_period': ['1979-1-15 0:0:0.0', '2018-12-15 12:0:0.0']},
         'method': 'Zonal root mean square error of equatorial_pacific climatological sst STD, time series are linearly detrended, observations and model regridded to generic_1x1deg',
         'name': 'sst zonal seasonality RMSE',
         'ref': 'Using CDAT regridding and rms (uncentered and biased) calculation',
         'time_frequency': 'monthly',
         'units': 'C'},
        'metric': {'datasets': "CCSM4_r6i1p1; ERA-Interim's ts & HadISST's sst & Tropflux's sst; 's ",
         'method': 'The metric is the statistical value between the model and the observations',
         'name': 'SeasonalSstLonRmse',
         'units': 'C'}},
       'SeasonalTauxLonRmse': {'diagnostic': {'CCSM4_r6i1p1': {'keyerror': None,
          'name': 'CCSM4_r6i1p1',
          'nyears': 156,
          'time_period': ['1850-1-16 12:0:0.0', '2005-12-16 12:0:0.0']},
         'ERA-Interim': {'name': 'ERA-Interim',
          'nyears': 40,
          'time_period': ['1979-1-16 12:0:0.0', '2019-3-16 12:0:0.0']},
         'Tropflux': {'name': 'Tropflux',
          'nyears': 40,
          'time_period': ['1979-1-15 0:0:0.0', '2018-12-15 12:0:0.0']},
         'method': 'Zonal root mean square error of equatorial_pacific climatological taux STD, time series are linearly detrended, observations and model regridded to generic_1x1deg',
         'name': 'taux zonal seasonality RMSE',
         'ref': 'Using CDAT regridding and rms (uncentered and biased) calculation',
         'time_frequency': 'monthly',
         'units': '1e-3 N/m2'},
        'metric': {'datasets': "CCSM4_r6i1p1; ERA-Interim's tauu & Tropflux's taux; 's ",
         'method': 'The metric is the statistical value between the model and the observations',
         'name': 'SeasonalTauxLonRmse',
         'units': '1e-3 N/m2'}}},
      'name': 'Metrics Collection for ENSO performance'},
     'value': {'BiasPrLatRmse': {'diagnostic': {'CCSM4_r6i1p1': {'value': None,
         'value_error': None},
        'ERA-Interim': {'value': None, 'value_error': None},
        'GPCPv2.3': {'value': None, 'value_error': None}},
       'metric': {'ERA-Interim': {'value': 1.359649455091757,
         'value_error': None},
        'GPCPv2.3': {'value': 1.4390935399042255, 'value_error': None}}},
      'BiasPrLonRmse': {'diagnostic': {'CCSM4_r6i1p1': {'value': None,
         'value_error': None},
        'ERA-Interim': {'value': None, 'value_error': None},
        'GPCPv2.3': {'value': None, 'value_error': None}},
       'metric': {'ERA-Interim': {'value': 1.5786596850945231,
         'value_error': None},
        'GPCPv2.3': {'value': 0.6657213962415829, 'value_error': None}}},
      'BiasSstLonRmse': {'diagnostic': {'CCSM4_r6i1p1': {'value': None,
         'value_error': None},
        'ERA-Interim': {'value': None, 'value_error': None},
        'HadISST': {'value': None, 'value_error': None},
        'Tropflux': {'value': None, 'value_error': None}},
       'metric': {'ERA-Interim': {'value': 0.3822096740525966,
         'value_error': None},
        'HadISST': {'value': 0.2385134937894553, 'value_error': None},
        'Tropflux': {'value': 0.4304261899549294, 'value_error': None}}},
      'BiasTauxLonRmse': {'diagnostic': {'CCSM4_r6i1p1': {'value': None,
         'value_error': None},
        'ERA-Interim': {'value': None, 'value_error': None},
        'Tropflux': {'value': None, 'value_error': None}},
       'metric': {'ERA-Interim': {'value': 5.435947940855175,
         'value_error': None},
        'Tropflux': {'value': 5.710006525416257, 'value_error': None}}},
      'EnsoAmpl': {'diagnostic': {'CCSM4_r6i1p1': {'value': 1.115440113924664,
         'value_error': 0.08930668306144625},
        'ERA-Interim': {'value': 0.8989844997845644,
         'value_error': 0.14214193002531866},
        'HadISST': {'value': 0.7665787872085695,
         'value_error': 0.06238329697691264},
        'Tropflux': {'value': 0.9039789553693535,
         'value_error': 0.14293162279134272}},
       'metric': {'ERA-Interim': {'value': 24.077791573933883,
         'value_error': 29.55259526733719},
        'HadISST': {'value': 45.508867782063575,
         'value_error': 23.491376905095372},
        'Tropflux': {'value': 23.39226563840862,
         'value_error': 29.389318098547722}}},
      'EnsoDuration': {'diagnostic': {'CCSM4_r6i1p1': {'value': 13.0,
         'value_error': None},
        'ERA-Interim': {'value': 13.0, 'value_error': None},
        'HadISST': {'value': 13.0, 'value_error': None},
        'Tropflux': {'value': 13.0, 'value_error': None}},
       'metric': {'ERA-Interim': {'value': 0.0, 'value_error': None},
        'HadISST': {'value': 0.0, 'value_error': None},
        'Tropflux': {'value': 0.0, 'value_error': None}}},
      'EnsoSeasonality': {'diagnostic': {'CCSM4_r6i1p1': {'value': 1.4546999250384651,
         'value_error': 0.2333135164227952},
        'ERA-Interim': {'value': 2.0466846866656914,
         'value_error': 0.6513411033995022},
        'HadISST': {'value': 1.6639865947361325,
         'value_error': 0.2712772451657809},
        'Tropflux': {'value': 2.0532132553583624,
         'value_error': 0.6534187683977347}},
       'metric': {'ERA-Interim': {'value': 28.92408222351262,
         'value_error': 34.018927686110125},
        'HadISST': {'value': 12.577425224441493,
         'value_error': 28.273729512918962},
        'Tropflux': {'value': 29.15008115975923,
         'value_error': 33.9107582567193}}},
      'EnsoSstDiversity_2': {'diagnostic': {'CCSM4_r6i1p1': {'value': 27.5,
         'value_error': None},
        'ERA-Interim': {'value': 33.25, 'value_error': None},
        'HadISST': {'value': 49.0, 'value_error': None},
        'Tropflux': {'value': 32.0, 'value_error': None}},
       'metric': {'ERA-Interim': {'value': 17.293233082706767,
         'value_error': None},
        'HadISST': {'value': 43.87755102040816, 'value_error': None},
        'Tropflux': {'value': 14.0625, 'value_error': None}}},
      'EnsoSstLonRmse': {'diagnostic': {'CCSM4_r6i1p1': {'value': None,
         'value_error': None},
        'ERA-Interim': {'value': None, 'value_error': None},
        'HadISST': {'value': None, 'value_error': None},
        'Tropflux': {'value': None, 'value_error': None}},
       'metric': {'ERA-Interim': {'value': 0.11282892307445538,
         'value_error': None},
        'HadISST': {'value': 0.1346171924329988, 'value_error': None},
        'Tropflux': {'value': 0.11497941487029303, 'value_error': None}}},
      'EnsoSstSkew': {'diagnostic': {'CCSM4_r6i1p1': {'value': 0.22271979926486726,
         'value_error': 0.0178318551360614},
        'ERA-Interim': {'value': 0.39098111106809963,
         'value_error': 0.061819541653923164},
        'HadISST': {'value': 0.38989908235027515,
         'value_error': 0.03172953733021198},
        'Tropflux': {'value': 0.39744741059612115,
         'value_error': 0.06284195338099416}},
       'metric': {'ERA-Interim': {'value': 43.035662603640525,
         'value_error': 13.567649668744652},
        'HadISST': {'value': 42.877577981888756,
         'value_error': 9.222010766857057},
        'Tropflux': {'value': 43.962448030340525,
         'value_error': 13.346909806538033}}},
      'EnsoSstTsRmse': {'diagnostic': {'CCSM4_r6i1p1': {'value': None,
         'value_error': None},
        'ERA-Interim': {'value': None, 'value_error': None},
        'HadISST': {'value': None, 'value_error': None},
        'Tropflux': {'value': None, 'value_error': None}},
       'metric': {'ERA-Interim': {'value': 0.0982082580361651,
         'value_error': None},
        'HadISST': {'value': 0.1023909128588462, 'value_error': None},
        'Tropflux': {'value': 0.09767167628488198, 'value_error': None}}},
      'SeasonalPrLatRmse': {'diagnostic': {'CCSM4_r6i1p1': {'value': None,
         'value_error': None},
        'ERA-Interim': {'value': None, 'value_error': None},
        'GPCPv2.3': {'value': None, 'value_error': None}},
       'metric': {'ERA-Interim': {'value': 1.2859678666873833,
         'value_error': None},
        'GPCPv2.3': {'value': 1.5630598325200815, 'value_error': None}}},
      'SeasonalPrLonRmse': {'diagnostic': {'CCSM4_r6i1p1': {'value': None,
         'value_error': None},
        'ERA-Interim': {'value': None, 'value_error': None},
        'GPCPv2.3': {'value': None, 'value_error': None}},
       'metric': {'ERA-Interim': {'value': 0.3342940750796701,
         'value_error': None},
        'GPCPv2.3': {'value': 0.380011932313065, 'value_error': None}}},
      'SeasonalSstLonRmse': {'diagnostic': {'CCSM4_r6i1p1': {'value': None,
         'value_error': None},
        'ERA-Interim': {'value': None, 'value_error': None},
        'HadISST': {'value': None, 'value_error': None},
        'Tropflux': {'value': None, 'value_error': None}},
       'metric': {'ERA-Interim': {'value': 0.19698117966357842,
         'value_error': None},
        'HadISST': {'value': 0.19763579409716256, 'value_error': None},
        'Tropflux': {'value': 0.20585676316813692, 'value_error': None}}},
      'SeasonalTauxLonRmse': {'diagnostic': {'CCSM4_r6i1p1': {'value': None,
         'value_error': None},
        'ERA-Interim': {'value': None, 'value_error': None},
        'Tropflux': {'value': None, 'value_error': None}},
       'metric': {'ERA-Interim': {'value': 1.4661565740107017,
         'value_error': None},
        'Tropflux': {'value': 1.6544641648030276, 'value_error': None}}}}}},
   'CESM1-BGC': {'r1i1p1': {'metadata': {'description_of_the_collection': 'Describe which science question this collection is about',
      'metrics': {'BiasPrLatRmse': {'diagnostic': {'CESM1-BGC_r1i1p1': {'keyerror': None,
          'name': 'CESM1-BGC_r1i1p1',
          'nyears': 156,
          'time_period': ['1850-1-16 12:0:0.0', '2005-12-16 12:0:0.0']},
         'ERA-Interim': {'name': 'ERA-Interim',
          'nyears': 40,
          'time_period': ['1979-1-16 12:0:0.0', '2019-3-16 12:0:0.0']},
         'GPCPv2.3': {'name': 'GPCPv2.3',
          'nyears': 41,
          'time_period': ['1979-1-1 0:0:0.0', '2019-7-1 0:0:0.0']},
         'method': 'Meridional root mean square error of nino3_LatExt pr, time series are linearly detrended, observations and model regridded to generic_1x1deg',
         'name': 'pr Meridional RMSE',
         'ref': 'Using CDAT regridding and rms (uncentered and biased) calculation',
         'time_frequency': 'monthly',
         'units': 'mm/day'},
        'metric': {'datasets': "CESM1-BGC_r1i1p1; ERA-Interim's pr & GPCPv2.3's precip; 's ",
         'method': 'The metric is the statistical value between the model and the observations',
         'name': 'BiasPrLatRmse',
         'units': 'mm/day'}},
       'BiasPrLonRmse': {'diagnostic': {'CESM1-BGC_r1i1p1': {'keyerror': None,
          'name': 'CESM1-BGC_r1i1p1',
          'nyears': 156,
          'time_period': ['1850-1-16 12:0:0.0', '2005-12-16 12:0:0.0']},
         'ERA-Interim': {'name': 'ERA-Interim',
          'nyears': 40,
          'time_period': ['1979-1-16 12:0:0.0', '2019-3-16 12:0:0.0']},
         'GPCPv2.3': {'name': 'GPCPv2.3',
          'nyears': 41,
          'time_period': ['1979-1-1 0:0:0.0', '2019-7-1 0:0:0.0']},
         'method': 'Zonal root mean square error of equatorial_pacific pr, time series are linearly detrended, observations and model regridded to generic_1x1deg',
         'name': 'pr Zonal RMSE',
         'ref': 'Using CDAT regridding and rms (uncentered and biased) calculation',
         'time_frequency': 'monthly',
         'units': 'mm/day'},
        'metric': {'datasets': "CESM1-BGC_r1i1p1; ERA-Interim's pr & GPCPv2.3's precip; 's ",
         'method': 'The metric is the statistical value between the model and the observations',
         'name': 'BiasPrLonRmse',
         'units': 'mm/day'}},
       'BiasSstLonRmse': {'diagnostic': {'CESM1-BGC_r1i1p1': {'keyerror': None,
          'name': 'CESM1-BGC_r1i1p1',
          'nyears': 156,
          'time_period': ['1850-1-16 12:0:0.0', '2005-12-16 12:0:0.0']},
         'ERA-Interim': {'name': 'ERA-Interim',
          'nyears': 40,
          'time_period': ['1979-1-16 12:0:0.0', '2019-3-16 12:0:0.0']},
         'HadISST': {'name': 'HadISST',
          'nyears': 151,
          'time_period': ['1870-1-16 11:59:59.5', '2020-10-16 12:0:0.0']},
         'Tropflux': {'name': 'Tropflux',
          'nyears': 40,
          'time_period': ['1979-1-15 0:0:0.0', '2018-12-15 12:0:0.0']},
         'method': 'Zonal root mean square error of equatorial_pacific sst, time series are linearly detrended, observations and model regridded to generic_1x1deg',
         'name': 'sst Zonal RMSE',
         'ref': 'Using CDAT regridding and rms (uncentered and biased) calculation',
         'time_frequency': 'monthly',
         'units': 'C'},
        'metric': {'datasets': "CESM1-BGC_r1i1p1; ERA-Interim's ts & HadISST's sst & Tropflux's sst; 's ",
         'method': 'The metric is the statistical value between the model and the observations',
         'name': 'BiasSstLonRmse',
         'units': 'C'}},
       'BiasTauxLonRmse': {'diagnostic': {'CESM1-BGC_r1i1p1': {'keyerror': None,
          'name': 'CESM1-BGC_r1i1p1',
          'nyears': 156,
          'time_period': ['1850-1-16 12:0:0.0', '2005-12-16 12:0:0.0']},
         'ERA-Interim': {'name': 'ERA-Interim',
          'nyears': 40,
          'time_period': ['1979-1-16 12:0:0.0', '2019-3-16 12:0:0.0']},
         'Tropflux': {'name': 'Tropflux',
          'nyears': 40,
          'time_period': ['1979-1-15 0:0:0.0', '2018-12-15 12:0:0.0']},
         'method': 'Zonal root mean square error of equatorial_pacific taux, time series are linearly detrended, observations and model regridded to generic_1x1deg',
         'name': 'taux Zonal RMSE',
         'ref': 'Using CDAT regridding and rms (uncentered and biased) calculation',
         'time_frequency': 'monthly',
         'units': '1e-3 N/m2'},
        'metric': {'datasets': "CESM1-BGC_r1i1p1; ERA-Interim's tauu & Tropflux's taux; 's ",
         'method': 'The metric is the statistical value between the model and the observations',
         'name': 'BiasTauxLonRmse',
         'units': '1e-3 N/m2'}},
       'EnsoAmpl': {'diagnostic': {'CESM1-BGC_r1i1p1': {'keyerror': None,
          'name': 'CESM1-BGC_r1i1p1',
          'nyears': 156,
          'time_period': ['1850-1-16 12:0:0.0', '2005-12-16 12:0:0.0']},
         'ERA-Interim': {'keyerror': None,
          'name': 'ERA-Interim',
          'nyears': 40,
          'time_period': ['1979-1-16 12:0:0.0', '2019-3-16 12:0:0.0']},
         'HadISST': {'keyerror': None,
          'name': 'HadISST',
          'nyears': 151,
          'time_period': ['1870-1-16 11:59:59.5', '2020-10-16 12:0:0.0']},
         'Tropflux': {'keyerror': None,
          'name': 'Tropflux',
          'nyears': 40,
          'time_period': ['1979-1-15 0:0:0.0', '2018-12-15 12:0:0.0']},
         'method': 'Standard deviation of nino3.4 sstA, time series are linearly detrended',
         'name': 'ENSO amplitude',
         'ref': 'Using CDAT regression calculation',
         'time_frequency': 'monthly',
         'units': 'C'},
        'metric': {'datasets': "CESM1-BGC_r1i1p1; ERA-Interim's ts & HadISST's sst & Tropflux's sst; 's ",
         'method': 'The metric is the absolute value of the relative difference between model and observations values (M = 100 * abs[[model-obs] / obs])',
         'name': 'EnsoAmpl',
         'units': '%'}},
       'EnsoDuration': {'diagnostic': {'CESM1-BGC_r1i1p1': {'keyerror': None,
          'name': 'CESM1-BGC_r1i1p1',
          'nyears': 156,
          'time_period': ['1850-1-16 12:0:0.0', '2005-12-16 12:0:0.0']},
         'ERA-Interim': {'keyerror': None,
          'name': 'ERA-Interim',
          'nyears': 40,
          'time_period': ['1979-1-16 12:0:0.0', '2019-3-16 12:0:0.0']},
         'HadISST': {'keyerror': None,
          'name': 'HadISST',
          'nyears': 151,
          'time_period': ['1870-1-16 11:59:59.5', '2020-10-16 12:0:0.0']},
         'Tropflux': {'keyerror': None,
          'name': 'Tropflux',
          'nyears': 40,
          'time_period': ['1979-1-15 0:0:0.0', '2018-12-15 12:0:0.0']},
         'method': 'nino3.4 SSTA during DEC regressed against nino3.4 SSTA during 6 years (centered on ENSO), the duration is the number of consecutive months during which the regression is above 0.25, time series are linearly detrended, smoothing using a triangle shaped window of 5 points',
         'name': 'ENSO Duration based on life cyle SSTA pattern',
         'ref': 'Using CDAT',
         'time_frequency': 'monthly',
         'units': 'months'},
        'metric': {'datasets': "CESM1-BGC_r1i1p1; ERA-Interim's ts & HadISST's sst & Tropflux's sst; 's ",
         'method': 'The metric is the absolute value of the relative difference between model and observations values (M = 100 * abs[[model-obs] / obs])',
         'name': 'EnsoDuration',
         'units': '%'}},
       'EnsoSeasonality': {'diagnostic': {'CESM1-BGC_r1i1p1': {'keyerror': None,
          'name': 'CESM1-BGC_r1i1p1',
          'nyears': 156,
          'time_period': ['1850-1-16 12:0:0.0', '2005-12-16 12:0:0.0']},
         'ERA-Interim': {'keyerror': None,
          'name': 'ERA-Interim',
          'nyears': 40,
          'time_period': ['1979-1-16 12:0:0.0', '2019-3-16 12:0:0.0']},
         'HadISST': {'keyerror': None,
          'name': 'HadISST',
          'nyears': 151,
          'time_period': ['1870-1-16 11:59:59.5', '2020-10-16 12:0:0.0']},
         'Tropflux': {'keyerror': None,
          'name': 'Tropflux',
          'nyears': 40,
          'time_period': ['1979-1-15 0:0:0.0', '2018-12-15 12:0:0.0']},
         'method': 'Ratio between NDJ and MAM standard deviation nino3.4 sstA, time series are linearly detrended',
         'name': 'ENSO seasonality',
         'ref': 'Using CDAT std dev calculation',
         'time_frequency': 'monthly',
         'units': 'C/C'},
        'metric': {'datasets': "CESM1-BGC_r1i1p1; ERA-Interim's ts & HadISST's sst & Tropflux's sst; 's ",
         'method': 'The metric is the absolute value of the relative difference between model and observations values (M = 100 * abs[[model-obs] / obs])',
         'name': 'EnsoSeasonality',
         'units': '%'}},
       'EnsoSstDiversity_2': {'diagnostic': {'CESM1-BGC_r1i1p1': {'keyerror': None,
          'name': 'CESM1-BGC_r1i1p1',
          'nyears': 156,
          'time_period': ['1850-1-16 12:0:0.0', '2005-12-16 12:0:0.0']},
         'ERA-Interim': {'keyerror': None,
          'name': 'ERA-Interim',
          'nyears': 40,
          'time_period': ['1979-1-16 12:0:0.0', '2019-3-16 12:0:0.0']},
         'HadISST': {'keyerror': None,
          'name': 'HadISST',
          'nyears': 151,
          'time_period': ['1870-1-16 11:59:59.5', '2020-10-16 12:0:0.0']},
         'Tropflux': {'keyerror': None,
          'name': 'Tropflux',
          'nyears': 40,
          'time_period': ['1979-1-15 0:0:0.0', '2018-12-15 12:0:0.0']},
         'method': 'Nino (Nina) events = nino3.4 sstA > 0.75 (< -0.75) during DEC, zonal SSTA (meridional averaged [-5.0 ; 5.0]), the zonal SSTA maximum (minimum) is located for each event, the diversity is the interquartile range (IQR = Q3 - Q1), time series are linearly detrended, smoothing using a triangle shaped window of 5 points',
         'name': 'ENSO Diversity (interquartile range)',
         'ref': 'Using CDAT regridding',
         'time_frequency': 'monthly',
         'units': 'long'},
        'metric': {'datasets': "CESM1-BGC_r1i1p1; ERA-Interim's ts & HadISST's sst & Tropflux's sst; 's ",
         'method': 'The metric is the absolute value of the relative difference between model and observations values (M = 100 * abs[[model-obs] / obs])',
         'name': 'EnsoSstDiversity',
         'units': '%'}},
       'EnsoSstLonRmse': {'diagnostic': {'CESM1-BGC_r1i1p1': {'keyerror': None,
          'name': 'CESM1-BGC_r1i1p1',
          'nyears': 156,
          'time_period': ['1850-1-16 12:0:0.0', '2005-12-16 12:0:0.0']},
         'ERA-Interim': {'name': 'ERA-Interim',
          'nyears': 40,
          'time_period': ['1979-1-16 12:0:0.0', '2019-3-16 12:0:0.0']},
         'HadISST': {'name': 'HadISST',
          'nyears': 151,
          'time_period': ['1870-1-16 11:59:59.5', '2020-10-16 12:0:0.0']},
         'Tropflux': {'name': 'Tropflux',
          'nyears': 40,
          'time_period': ['1979-1-15 0:0:0.0', '2018-12-15 12:0:0.0']},
         'method': 'nino3.4 SSTA during DEC regressed against equatorial_pacific SSTA, time series are linearly detrended, smoothing using a triangle shaped window of 5 points, observations and model regridded to generic_1x1deg',
         'name': 'ENSO Zonal SSTA pattern',
         'ref': 'Using CDAT regridding and rms (uncentered and biased) calculation',
         'time_frequency': 'monthly',
         'units': 'C/C'},
        'metric': {'datasets': "CESM1-BGC_r1i1p1; ERA-Interim's ts & HadISST's sst & Tropflux's sst; 's ",
         'method': 'The metric is the statistical value between the model and the observations',
         'name': 'EnsoSstLonRmse',
         'units': 'C/C'}},
       'EnsoSstSkew': {'diagnostic': {'CESM1-BGC_r1i1p1': {'keyerror': None,
          'name': 'CESM1-BGC_r1i1p1',
          'nyears': 156,
          'time_period': ['1850-1-16 12:0:0.0', '2005-12-16 12:0:0.0']},
         'ERA-Interim': {'keyerror': None,
          'name': 'ERA-Interim',
          'nyears': 40,
          'time_period': ['1979-1-16 12:0:0.0', '2019-3-16 12:0:0.0']},
         'HadISST': {'keyerror': None,
          'name': 'HadISST',
          'nyears': 151,
          'time_period': ['1870-1-16 11:59:59.5', '2020-10-16 12:0:0.0']},
         'Tropflux': {'keyerror': None,
          'name': 'Tropflux',
          'nyears': 40,
          'time_period': ['1979-1-15 0:0:0.0', '2018-12-15 12:0:0.0']},
         'method': 'Standard deviation of nino3.4 sstA, time series are linearly detrended',
         'name': 'ENSO skewness',
         'ref': 'Using CDAT regression calculation',
         'time_frequency': 'monthly',
         'units': 'C'},
        'metric': {'datasets': "CESM1-BGC_r1i1p1; ERA-Interim's ts & HadISST's sst & Tropflux's sst; 's ",
         'method': 'The metric is the absolute value of the relative difference between model and observations values (M = 100 * abs[[model-obs] / obs])',
         'name': 'EnsoSstSkew',
         'units': '%'}},
       'EnsoSstTsRmse': {'diagnostic': {'CESM1-BGC_r1i1p1': {'keyerror': None,
          'name': 'CESM1-BGC_r1i1p1',
          'nyears': 156,
          'time_period': ['1850-1-16 12:0:0.0', '2005-12-16 12:0:0.0']},
         'ERA-Interim': {'name': 'ERA-Interim',
          'nyears': 40,
          'time_period': ['1979-1-16 12:0:0.0', '2019-3-16 12:0:0.0']},
         'HadISST': {'name': 'HadISST',
          'nyears': 151,
          'time_period': ['1870-1-16 11:59:59.5', '2020-10-16 12:0:0.0']},
         'Tropflux': {'name': 'Tropflux',
          'nyears': 40,
          'time_period': ['1979-1-15 0:0:0.0', '2018-12-15 12:0:0.0']},
         'method': 'nino3.4 SSTA during DEC regressed against nino3.4 SSTA during 6 years (centered on ENSO), time series are linearly detrended, smoothing using a triangle shaped window of 5 points',
         'name': 'ENSO life cyle SSTA pattern',
         'ref': 'Using CDAT regridding and rms (uncentered and biased) calculation',
         'time_frequency': 'monthly',
         'units': 'C/C'},
        'metric': {'datasets': "CESM1-BGC_r1i1p1; ERA-Interim's ts & HadISST's sst & Tropflux's sst; 's ",
         'method': 'The metric is the statistical value between the model and the observations',
         'name': 'EnsoSstTsRmse',
         'units': 'C/C'}},
       'SeasonalPrLatRmse': {'diagnostic': {'CESM1-BGC_r1i1p1': {'keyerror': None,
          'name': 'CESM1-BGC_r1i1p1',
          'nyears': 156,
          'time_period': ['1850-1-16 12:0:0.0', '2005-12-16 12:0:0.0']},
         'ERA-Interim': {'name': 'ERA-Interim',
          'nyears': 40,
          'time_period': ['1979-1-16 12:0:0.0', '2019-3-16 12:0:0.0']},
         'GPCPv2.3': {'name': 'GPCPv2.3',
          'nyears': 41,
          'time_period': ['1979-1-1 0:0:0.0', '2019-7-1 0:0:0.0']},
         'method': 'Meridional root mean square error of nino3_LatExt climatological pr STD, time series are linearly detrended, observations and model regridded to generic_1x1deg',
         'name': 'pr meridional seasonality RMSE',
         'ref': 'Using CDAT regridding and rms (uncentered and biased) calculation',
         'time_frequency': 'monthly',
         'units': 'mm/day'},
        'metric': {'datasets': "CESM1-BGC_r1i1p1; ERA-Interim's pr & GPCPv2.3's precip; 's ",
         'method': 'The metric is the statistical value between the model and the observations',
         'name': 'SeasonalPrLatRmse',
         'units': 'mm/day'}},
       'SeasonalPrLonRmse': {'diagnostic': {'CESM1-BGC_r1i1p1': {'keyerror': None,
          'name': 'CESM1-BGC_r1i1p1',
          'nyears': 156,
          'time_period': ['1850-1-16 12:0:0.0', '2005-12-16 12:0:0.0']},
         'ERA-Interim': {'name': 'ERA-Interim',
          'nyears': 40,
          'time_period': ['1979-1-16 12:0:0.0', '2019-3-16 12:0:0.0']},
         'GPCPv2.3': {'name': 'GPCPv2.3',
          'nyears': 41,
          'time_period': ['1979-1-1 0:0:0.0', '2019-7-1 0:0:0.0']},
         'method': 'Zonal root mean square error of equatorial_pacific climatological pr STD, time series are linearly detrended, observations and model regridded to generic_1x1deg',
         'name': 'pr zonal seasonality RMSE',
         'ref': 'Using CDAT regridding and rms (uncentered and biased) calculation',
         'time_frequency': 'monthly',
         'units': 'mm/day'},
        'metric': {'datasets': "CESM1-BGC_r1i1p1; ERA-Interim's pr & GPCPv2.3's precip; 's ",
         'method': 'The metric is the statistical value between the model and the observations',
         'name': 'SeasonalPrLonRmse',
         'units': 'mm/day'}},
       'SeasonalSstLonRmse': {'diagnostic': {'CESM1-BGC_r1i1p1': {'keyerror': None,
          'name': 'CESM1-BGC_r1i1p1',
          'nyears': 156,
          'time_period': ['1850-1-16 12:0:0.0', '2005-12-16 12:0:0.0']},
         'ERA-Interim': {'name': 'ERA-Interim',
          'nyears': 40,
          'time_period': ['1979-1-16 12:0:0.0', '2019-3-16 12:0:0.0']},
         'HadISST': {'name': 'HadISST',
          'nyears': 151,
          'time_period': ['1870-1-16 11:59:59.5', '2020-10-16 12:0:0.0']},
         'Tropflux': {'name': 'Tropflux',
          'nyears': 40,
          'time_period': ['1979-1-15 0:0:0.0', '2018-12-15 12:0:0.0']},
         'method': 'Zonal root mean square error of equatorial_pacific climatological sst STD, time series are linearly detrended, observations and model regridded to generic_1x1deg',
         'name': 'sst zonal seasonality RMSE',
         'ref': 'Using CDAT regridding and rms (uncentered and biased) calculation',
         'time_frequency': 'monthly',
         'units': 'C'},
        'metric': {'datasets': "CESM1-BGC_r1i1p1; ERA-Interim's ts & HadISST's sst & Tropflux's sst; 's ",
         'method': 'The metric is the statistical value between the model and the observations',
         'name': 'SeasonalSstLonRmse',
         'units': 'C'}},
       'SeasonalTauxLonRmse': {'diagnostic': {'CESM1-BGC_r1i1p1': {'keyerror': None,
          'name': 'CESM1-BGC_r1i1p1',
          'nyears': 156,
          'time_period': ['1850-1-16 12:0:0.0', '2005-12-16 12:0:0.0']},
         'ERA-Interim': {'name': 'ERA-Interim',
          'nyears': 40,
          'time_period': ['1979-1-16 12:0:0.0', '2019-3-16 12:0:0.0']},
         'Tropflux': {'name': 'Tropflux',
          'nyears': 40,
          'time_period': ['1979-1-15 0:0:0.0', '2018-12-15 12:0:0.0']},
         'method': 'Zonal root mean square error of equatorial_pacific climatological taux STD, time series are linearly detrended, observations and model regridded to generic_1x1deg',
         'name': 'taux zonal seasonality RMSE',
         'ref': 'Using CDAT regridding and rms (uncentered and biased) calculation',
         'time_frequency': 'monthly',
         'units': '1e-3 N/m2'},
        'metric': {'datasets': "CESM1-BGC_r1i1p1; ERA-Interim's tauu & Tropflux's taux; 's ",
         'method': 'The metric is the statistical value between the model and the observations',
         'name': 'SeasonalTauxLonRmse',
         'units': '1e-3 N/m2'}}},
      'name': 'Metrics Collection for ENSO performance'},
     'value': {'BiasPrLatRmse': {'diagnostic': {'CESM1-BGC_r1i1p1': {'value': None,
         'value_error': None},
        'ERA-Interim': {'value': None, 'value_error': None},
        'GPCPv2.3': {'value': None, 'value_error': None}},
       'metric': {'ERA-Interim': {'value': 1.4485311550802424,
         'value_error': None},
        'GPCPv2.3': {'value': 1.44562851894086, 'value_error': None}}},
      'BiasPrLonRmse': {'diagnostic': {'CESM1-BGC_r1i1p1': {'value': None,
         'value_error': None},
        'ERA-Interim': {'value': None, 'value_error': None},
        'GPCPv2.3': {'value': None, 'value_error': None}},
       'metric': {'ERA-Interim': {'value': 1.5776677798155143,
         'value_error': None},
        'GPCPv2.3': {'value': 0.5687391928919707, 'value_error': None}}},
      'BiasSstLonRmse': {'diagnostic': {'CESM1-BGC_r1i1p1': {'value': None,
         'value_error': None},
        'ERA-Interim': {'value': None, 'value_error': None},
        'HadISST': {'value': None, 'value_error': None},
        'Tropflux': {'value': None, 'value_error': None}},
       'metric': {'ERA-Interim': {'value': 0.3662307523347744,
         'value_error': None},
        'HadISST': {'value': 0.2412451492454894, 'value_error': None},
        'Tropflux': {'value': 0.41175932859836434, 'value_error': None}}},
      'BiasTauxLonRmse': {'diagnostic': {'CESM1-BGC_r1i1p1': {'value': None,
         'value_error': None},
        'ERA-Interim': {'value': None, 'value_error': None},
        'Tropflux': {'value': None, 'value_error': None}},
       'metric': {'ERA-Interim': {'value': 5.960517863572848,
         'value_error': None},
        'Tropflux': {'value': 6.312574829922901, 'value_error': None}}},
      'EnsoAmpl': {'diagnostic': {'CESM1-BGC_r1i1p1': {'value': 0.9318009358848852,
         'value_error': 0.07460378178854951},
        'ERA-Interim': {'value': 0.8989844997845644,
         'value_error': 0.14214193002531866},
        'HadISST': {'value': 0.7665787872085695,
         'value_error': 0.06238329697691264},
        'Tropflux': {'value': 0.9039789553693535,
         'value_error': 0.14293162279134272}},
       'metric': {'ERA-Interim': {'value': 3.650389534879083,
         'value_error': 24.68723832339408},
        'HadISST': {'value': 21.55318558682766,
         'value_error': 19.62390155431584},
        'Tropflux': {'value': 3.0777243596521635,
         'value_error': 24.550842100246474}}},
      'EnsoDuration': {'diagnostic': {'CESM1-BGC_r1i1p1': {'value': 15.0,
         'value_error': None},
        'ERA-Interim': {'value': 13.0, 'value_error': None},
        'HadISST': {'value': 13.0, 'value_error': None},
        'Tropflux': {'value': 13.0, 'value_error': None}},
       'metric': {'ERA-Interim': {'value': 15.384615384615385,
         'value_error': None},
        'HadISST': {'value': 15.384615384615385, 'value_error': None},
        'Tropflux': {'value': 15.384615384615385, 'value_error': None}}},
      'EnsoSeasonality': {'diagnostic': {'CESM1-BGC_r1i1p1': {'value': 1.3463979366308163,
         'value_error': 0.215943392649467},
        'ERA-Interim': {'value': 2.0466846866656914,
         'value_error': 0.6513411033995022},
        'HadISST': {'value': 1.6639865947361325,
         'value_error': 0.2712772451657809},
        'Tropflux': {'value': 2.0532132553583624,
         'value_error': 0.6534187683977347}},
       'metric': {'ERA-Interim': {'value': 34.215663731560475,
         'value_error': 31.486228365455155},
        'HadISST': {'value': 19.086010615108233,
         'value_error': 26.168758533513586},
        'Tropflux': {'value': 34.42483711241093,
         'value_error': 31.386112118776673}}},
      'EnsoSstDiversity_2': {'diagnostic': {'CESM1-BGC_r1i1p1': {'value': 42.0,
         'value_error': None},
        'ERA-Interim': {'value': 33.25, 'value_error': None},
        'HadISST': {'value': 49.0, 'value_error': None},
        'Tropflux': {'value': 32.0, 'value_error': None}},
       'metric': {'ERA-Interim': {'value': 26.31578947368421,
         'value_error': None},
        'HadISST': {'value': 14.285714285714285, 'value_error': None},
        'Tropflux': {'value': 31.25, 'value_error': None}}},
      'EnsoSstLonRmse': {'diagnostic': {'CESM1-BGC_r1i1p1': {'value': None,
         'value_error': None},
        'ERA-Interim': {'value': None, 'value_error': None},
        'HadISST': {'value': None, 'value_error': None},
        'Tropflux': {'value': None, 'value_error': None}},
       'metric': {'ERA-Interim': {'value': 0.1486286806122117,
         'value_error': None},
        'HadISST': {'value': 0.16931495576996286, 'value_error': None},
        'Tropflux': {'value': 0.1507140447879472, 'value_error': None}}},
      'EnsoSstSkew': {'diagnostic': {'CESM1-BGC_r1i1p1': {'value': 0.21679795096627305,
         'value_error': 0.017357727818477553},
        'ERA-Interim': {'value': 0.39098111106809963,
         'value_error': 0.061819541653923164},
        'HadISST': {'value': 0.38989908235027515,
         'value_error': 0.03172953733021198},
        'Tropflux': {'value': 0.39744741059612115,
         'value_error': 0.06284195338099416}},
       'metric': {'ERA-Interim': {'value': 44.550274980288755,
         'value_error': 13.206902382818683},
        'HadISST': {'value': 44.396393636159566,
         'value_error': 8.976808728468075},
        'Tropflux': {'value': 45.45241831086448,
         'value_error': 12.992031724794876}}},
      'EnsoSstTsRmse': {'diagnostic': {'CESM1-BGC_r1i1p1': {'value': None,
         'value_error': None},
        'ERA-Interim': {'value': None, 'value_error': None},
        'HadISST': {'value': None, 'value_error': None},
        'Tropflux': {'value': None, 'value_error': None}},
       'metric': {'ERA-Interim': {'value': 0.1371459234577554,
         'value_error': None},
        'HadISST': {'value': 0.13301977430529827, 'value_error': None},
        'Tropflux': {'value': 0.13405957526860807, 'value_error': None}}},
      'SeasonalPrLatRmse': {'diagnostic': {'CESM1-BGC_r1i1p1': {'value': None,
         'value_error': None},
        'ERA-Interim': {'value': None, 'value_error': None},
        'GPCPv2.3': {'value': None, 'value_error': None}},
       'metric': {'ERA-Interim': {'value': 1.3462216561215763,
         'value_error': None},
        'GPCPv2.3': {'value': 1.6094914267021792, 'value_error': None}}},
      'SeasonalPrLonRmse': {'diagnostic': {'CESM1-BGC_r1i1p1': {'value': None,
         'value_error': None},
        'ERA-Interim': {'value': None, 'value_error': None},
        'GPCPv2.3': {'value': None, 'value_error': None}},
       'metric': {'ERA-Interim': {'value': 0.47694982237274913,
         'value_error': None},
        'GPCPv2.3': {'value': 0.34926036040882036, 'value_error': None}}},
      'SeasonalSstLonRmse': {'diagnostic': {'CESM1-BGC_r1i1p1': {'value': None,
         'value_error': None},
        'ERA-Interim': {'value': None, 'value_error': None},
        'HadISST': {'value': None, 'value_error': None},
        'Tropflux': {'value': None, 'value_error': None}},
       'metric': {'ERA-Interim': {'value': 0.19350648189094052,
         'value_error': None},
        'HadISST': {'value': 0.19066623268343252, 'value_error': None},
        'Tropflux': {'value': 0.20353617073294764, 'value_error': None}}},
      'SeasonalTauxLonRmse': {'diagnostic': {'CESM1-BGC_r1i1p1': {'value': None,
         'value_error': None},
        'ERA-Interim': {'value': None, 'value_error': None},
        'Tropflux': {'value': None, 'value_error': None}},
       'metric': {'ERA-Interim': {'value': 1.5922995707994436,
         'value_error': None},
        'Tropflux': {'value': 1.8578148273000956, 'value_error': None}}}}}},
   'CESM1-CAM5': {'r1i1p1': {'metadata': {'description_of_the_collection': 'Describe which science question this collection is about',
      'metrics': {'BiasPrLatRmse': {'diagnostic': {'CESM1-CAM5_r1i1p1': {'keyerror': None,
          'name': 'CESM1-CAM5_r1i1p1',
          'nyears': 156,
          'time_period': ['1850-1-16 12:0:0.0', '2005-12-16 12:0:0.0']},
         'ERA-Interim': {'name': 'ERA-Interim',
          'nyears': 40,
          'time_period': ['1979-1-16 12:0:0.0', '2019-3-16 12:0:0.0']},
         'GPCPv2.3': {'name': 'GPCPv2.3',
          'nyears': 41,
          'time_period': ['1979-1-1 0:0:0.0', '2019-7-1 0:0:0.0']},
         'method': 'Meridional root mean square error of nino3_LatExt pr, time series are linearly detrended, observations and model regridded to generic_1x1deg',
         'name': 'pr Meridional RMSE',
         'ref': 'Using CDAT regridding and rms (uncentered and biased) calculation',
         'time_frequency': 'monthly',
         'units': 'mm/day'},
        'metric': {'datasets': "CESM1-CAM5_r1i1p1; ERA-Interim's pr & GPCPv2.3's precip; 's ",
         'method': 'The metric is the statistical value between the model and the observations',
         'name': 'BiasPrLatRmse',
         'units': 'mm/day'}},
       'BiasPrLonRmse': {'diagnostic': {'CESM1-CAM5_r1i1p1': {'keyerror': None,
          'name': 'CESM1-CAM5_r1i1p1',
          'nyears': 156,
          'time_period': ['1850-1-16 12:0:0.0', '2005-12-16 12:0:0.0']},
         'ERA-Interim': {'name': 'ERA-Interim',
          'nyears': 40,
          'time_period': ['1979-1-16 12:0:0.0', '2019-3-16 12:0:0.0']},
         'GPCPv2.3': {'name': 'GPCPv2.3',
          'nyears': 41,
          'time_period': ['1979-1-1 0:0:0.0', '2019-7-1 0:0:0.0']},
         'method': 'Zonal root mean square error of equatorial_pacific pr, time series are linearly detrended, observations and model regridded to generic_1x1deg',
         'name': 'pr Zonal RMSE',
         'ref': 'Using CDAT regridding and rms (uncentered and biased) calculation',
         'time_frequency': 'monthly',
         'units': 'mm/day'},
        'metric': {'datasets': "CESM1-CAM5_r1i1p1; ERA-Interim's pr & GPCPv2.3's precip; 's ",
         'method': 'The metric is the statistical value between the model and the observations',
         'name': 'BiasPrLonRmse',
         'units': 'mm/day'}},
       'BiasSstLonRmse': {'diagnostic': {'CESM1-CAM5_r1i1p1': {'keyerror': None,
          'name': 'CESM1-CAM5_r1i1p1',
          'nyears': 156,
          'time_period': ['1850-1-16 12:0:0.0', '2005-12-16 12:0:0.0']},
         'ERA-Interim': {'name': 'ERA-Interim',
          'nyears': 40,
          'time_period': ['1979-1-16 12:0:0.0', '2019-3-16 12:0:0.0']},
         'HadISST': {'name': 'HadISST',
          'nyears': 151,
          'time_period': ['1870-1-16 11:59:59.5', '2020-10-16 12:0:0.0']},
         'Tropflux': {'name': 'Tropflux',
          'nyears': 40,
          'time_period': ['1979-1-15 0:0:0.0', '2018-12-15 12:0:0.0']},
         'method': 'Zonal root mean square error of equatorial_pacific sst, time series are linearly detrended, observations and model regridded to generic_1x1deg',
         'name': 'sst Zonal RMSE',
         'ref': 'Using CDAT regridding and rms (uncentered and biased) calculation',
         'time_frequency': 'monthly',
         'units': 'C'},
        'metric': {'datasets': "CESM1-CAM5_r1i1p1; ERA-Interim's ts & HadISST's sst & Tropflux's sst; 's ",
         'method': 'The metric is the statistical value between the model and the observations',
         'name': 'BiasSstLonRmse',
         'units': 'C'}},
       'BiasTauxLonRmse': {'diagnostic': {'CESM1-CAM5_r1i1p1': {'keyerror': None,
          'name': 'CESM1-CAM5_r1i1p1',
          'nyears': 156,
          'time_period': ['1850-1-16 12:0:0.0', '2005-12-16 12:0:0.0']},
         'ERA-Interim': {'name': 'ERA-Interim',
          'nyears': 40,
          'time_period': ['1979-1-16 12:0:0.0', '2019-3-16 12:0:0.0']},
         'Tropflux': {'name': 'Tropflux',
          'nyears': 40,
          'time_period': ['1979-1-15 0:0:0.0', '2018-12-15 12:0:0.0']},
         'method': 'Zonal root mean square error of equatorial_pacific taux, time series are linearly detrended, observations and model regridded to generic_1x1deg',
         'name': 'taux Zonal RMSE',
         'ref': 'Using CDAT regridding and rms (uncentered and biased) calculation',
         'time_frequency': 'monthly',
         'units': '1e-3 N/m2'},
        'metric': {'datasets': "CESM1-CAM5_r1i1p1; ERA-Interim's tauu & Tropflux's taux; 's ",
         'method': 'The metric is the statistical value between the model and the observations',
         'name': 'BiasTauxLonRmse',
         'units': '1e-3 N/m2'}},
       'EnsoAmpl': {'diagnostic': {'CESM1-CAM5_r1i1p1': {'keyerror': None,
          'name': 'CESM1-CAM5_r1i1p1',
          'nyears': 156,
          'time_period': ['1850-1-16 12:0:0.0', '2005-12-16 12:0:0.0']},
         'ERA-Interim': {'keyerror': None,
          'name': 'ERA-Interim',
          'nyears': 40,
          'time_period': ['1979-1-16 12:0:0.0', '2019-3-16 12:0:0.0']},
         'HadISST': {'keyerror': None,
          'name': 'HadISST',
          'nyears': 151,
          'time_period': ['1870-1-16 11:59:59.5', '2020-10-16 12:0:0.0']},
         'Tropflux': {'keyerror': None,
          'name': 'Tropflux',
          'nyears': 40,
          'time_period': ['1979-1-15 0:0:0.0', '2018-12-15 12:0:0.0']},
         'method': 'Standard deviation of nino3.4 sstA, time series are linearly detrended',
         'name': 'ENSO amplitude',
         'ref': 'Using CDAT regression calculation',
         'time_frequency': 'monthly',
         'units': 'C'},
        'metric': {'datasets': "CESM1-CAM5_r1i1p1; ERA-Interim's ts & HadISST's sst & Tropflux's sst; 's ",
         'method': 'The metric is the absolute value of the relative difference between model and observations values (M = 100 * abs[[model-obs] / obs])',
         'name': 'EnsoAmpl',
         'units': '%'}},
       'EnsoDuration': {'diagnostic': {'CESM1-CAM5_r1i1p1': {'keyerror': None,
          'name': 'CESM1-CAM5_r1i1p1',
          'nyears': 156,
          'time_period': ['1850-1-16 12:0:0.0', '2005-12-16 12:0:0.0']},
         'ERA-Interim': {'keyerror': None,
          'name': 'ERA-Interim',
          'nyears': 40,
          'time_period': ['1979-1-16 12:0:0.0', '2019-3-16 12:0:0.0']},
         'HadISST': {'keyerror': None,
          'name': 'HadISST',
          'nyears': 151,
          'time_period': ['1870-1-16 11:59:59.5', '2020-10-16 12:0:0.0']},
         'Tropflux': {'keyerror': None,
          'name': 'Tropflux',
          'nyears': 40,
          'time_period': ['1979-1-15 0:0:0.0', '2018-12-15 12:0:0.0']},
         'method': 'nino3.4 SSTA during DEC regressed against nino3.4 SSTA during 6 years (centered on ENSO), the duration is the number of consecutive months during which the regression is above 0.25, time series are linearly detrended, smoothing using a triangle shaped window of 5 points',
         'name': 'ENSO Duration based on life cyle SSTA pattern',
         'ref': 'Using CDAT',
         'time_frequency': 'monthly',
         'units': 'months'},
        'metric': {'datasets': "CESM1-CAM5_r1i1p1; ERA-Interim's ts & HadISST's sst & Tropflux's sst; 's ",
         'method': 'The metric is the absolute value of the relative difference between model and observations values (M = 100 * abs[[model-obs] / obs])',
         'name': 'EnsoDuration',
         'units': '%'}},
       'EnsoSeasonality': {'diagnostic': {'CESM1-CAM5_r1i1p1': {'keyerror': None,
          'name': 'CESM1-CAM5_r1i1p1',
          'nyears': 156,
          'time_period': ['1850-1-16 12:0:0.0', '2005-12-16 12:0:0.0']},
         'ERA-Interim': {'keyerror': None,
          'name': 'ERA-Interim',
          'nyears': 40,
          'time_period': ['1979-1-16 12:0:0.0', '2019-3-16 12:0:0.0']},
         'HadISST': {'keyerror': None,
          'name': 'HadISST',
          'nyears': 151,
          'time_period': ['1870-1-16 11:59:59.5', '2020-10-16 12:0:0.0']},
         'Tropflux': {'keyerror': None,
          'name': 'Tropflux',
          'nyears': 40,
          'time_period': ['1979-1-15 0:0:0.0', '2018-12-15 12:0:0.0']},
         'method': 'Ratio between NDJ and MAM standard deviation nino3.4 sstA, time series are linearly detrended',
         'name': 'ENSO seasonality',
         'ref': 'Using CDAT std dev calculation',
         'time_frequency': 'monthly',
         'units': 'C/C'},
        'metric': {'datasets': "CESM1-CAM5_r1i1p1; ERA-Interim's ts & HadISST's sst & Tropflux's sst; 's ",
         'method': 'The metric is the absolute value of the relative difference between model and observations values (M = 100 * abs[[model-obs] / obs])',
         'name': 'EnsoSeasonality',
         'units': '%'}},
       'EnsoSstDiversity_2': {'diagnostic': {'CESM1-CAM5_r1i1p1': {'keyerror': None,
          'name': 'CESM1-CAM5_r1i1p1',
          'nyears': 156,
          'time_period': ['1850-1-16 12:0:0.0', '2005-12-16 12:0:0.0']},
         'ERA-Interim': {'keyerror': None,
          'name': 'ERA-Interim',
          'nyears': 40,
          'time_period': ['1979-1-16 12:0:0.0', '2019-3-16 12:0:0.0']},
         'HadISST': {'keyerror': None,
          'name': 'HadISST',
          'nyears': 151,
          'time_period': ['1870-1-16 11:59:59.5', '2020-10-16 12:0:0.0']},
         'Tropflux': {'keyerror': None,
          'name': 'Tropflux',
          'nyears': 40,
          'time_period': ['1979-1-15 0:0:0.0', '2018-12-15 12:0:0.0']},
         'method': 'Nino (Nina) events = nino3.4 sstA > 0.75 (< -0.75) during DEC, zonal SSTA (meridional averaged [-5.0 ; 5.0]), the zonal SSTA maximum (minimum) is located for each event, the diversity is the interquartile range (IQR = Q3 - Q1), time series are linearly detrended, smoothing using a triangle shaped window of 5 points',
         'name': 'ENSO Diversity (interquartile range)',
         'ref': 'Using CDAT regridding',
         'time_frequency': 'monthly',
         'units': 'long'},
        'metric': {'datasets': "CESM1-CAM5_r1i1p1; ERA-Interim's ts & HadISST's sst & Tropflux's sst; 's ",
         'method': 'The metric is the absolute value of the relative difference between model and observations values (M = 100 * abs[[model-obs] / obs])',
         'name': 'EnsoSstDiversity',
         'units': '%'}},
       'EnsoSstLonRmse': {'diagnostic': {'CESM1-CAM5_r1i1p1': {'keyerror': None,
          'name': 'CESM1-CAM5_r1i1p1',
          'nyears': 156,
          'time_period': ['1850-1-16 12:0:0.0', '2005-12-16 12:0:0.0']},
         'ERA-Interim': {'name': 'ERA-Interim',
          'nyears': 40,
          'time_period': ['1979-1-16 12:0:0.0', '2019-3-16 12:0:0.0']},
         'HadISST': {'name': 'HadISST',
          'nyears': 151,
          'time_period': ['1870-1-16 11:59:59.5', '2020-10-16 12:0:0.0']},
         'Tropflux': {'name': 'Tropflux',
          'nyears': 40,
          'time_period': ['1979-1-15 0:0:0.0', '2018-12-15 12:0:0.0']},
         'method': 'nino3.4 SSTA during DEC regressed against equatorial_pacific SSTA, time series are linearly detrended, smoothing using a triangle shaped window of 5 points, observations and model regridded to generic_1x1deg',
         'name': 'ENSO Zonal SSTA pattern',
         'ref': 'Using CDAT regridding and rms (uncentered and biased) calculation',
         'time_frequency': 'monthly',
         'units': 'C/C'},
        'metric': {'datasets': "CESM1-CAM5_r1i1p1; ERA-Interim's ts & HadISST's sst & Tropflux's sst; 's ",
         'method': 'The metric is the statistical value between the model and the observations',
         'name': 'EnsoSstLonRmse',
         'units': 'C/C'}},
       'EnsoSstSkew': {'diagnostic': {'CESM1-CAM5_r1i1p1': {'keyerror': None,
          'name': 'CESM1-CAM5_r1i1p1',
          'nyears': 156,
          'time_period': ['1850-1-16 12:0:0.0', '2005-12-16 12:0:0.0']},
         'ERA-Interim': {'keyerror': None,
          'name': 'ERA-Interim',
          'nyears': 40,
          'time_period': ['1979-1-16 12:0:0.0', '2019-3-16 12:0:0.0']},
         'HadISST': {'keyerror': None,
          'name': 'HadISST',
          'nyears': 151,
          'time_period': ['1870-1-16 11:59:59.5', '2020-10-16 12:0:0.0']},
         'Tropflux': {'keyerror': None,
          'name': 'Tropflux',
          'nyears': 40,
          'time_period': ['1979-1-15 0:0:0.0', '2018-12-15 12:0:0.0']},
         'method': 'Standard deviation of nino3.4 sstA, time series are linearly detrended',
         'name': 'ENSO skewness',
         'ref': 'Using CDAT regression calculation',
         'time_frequency': 'monthly',
         'units': 'C'},
        'metric': {'datasets': "CESM1-CAM5_r1i1p1; ERA-Interim's ts & HadISST's sst & Tropflux's sst; 's ",
         'method': 'The metric is the absolute value of the relative difference between model and observations values (M = 100 * abs[[model-obs] / obs])',
         'name': 'EnsoSstSkew',
         'units': '%'}},
       'EnsoSstTsRmse': {'diagnostic': {'CESM1-CAM5_r1i1p1': {'keyerror': None,
          'name': 'CESM1-CAM5_r1i1p1',
          'nyears': 156,
          'time_period': ['1850-1-16 12:0:0.0', '2005-12-16 12:0:0.0']},
         'ERA-Interim': {'name': 'ERA-Interim',
          'nyears': 40,
          'time_period': ['1979-1-16 12:0:0.0', '2019-3-16 12:0:0.0']},
         'HadISST': {'name': 'HadISST',
          'nyears': 151,
          'time_period': ['1870-1-16 11:59:59.5', '2020-10-16 12:0:0.0']},
         'Tropflux': {'name': 'Tropflux',
          'nyears': 40,
          'time_period': ['1979-1-15 0:0:0.0', '2018-12-15 12:0:0.0']},
         'method': 'nino3.4 SSTA during DEC regressed against nino3.4 SSTA during 6 years (centered on ENSO), time series are linearly detrended, smoothing using a triangle shaped window of 5 points',
         'name': 'ENSO life cyle SSTA pattern',
         'ref': 'Using CDAT regridding and rms (uncentered and biased) calculation',
         'time_frequency': 'monthly',
         'units': 'C/C'},
        'metric': {'datasets': "CESM1-CAM5_r1i1p1; ERA-Interim's ts & HadISST's sst & Tropflux's sst; 's ",
         'method': 'The metric is the statistical value between the model and the observations',
         'name': 'EnsoSstTsRmse',
         'units': 'C/C'}},
       'SeasonalPrLatRmse': {'diagnostic': {'CESM1-CAM5_r1i1p1': {'keyerror': None,
          'name': 'CESM1-CAM5_r1i1p1',
          'nyears': 156,
          'time_period': ['1850-1-16 12:0:0.0', '2005-12-16 12:0:0.0']},
         'ERA-Interim': {'name': 'ERA-Interim',
          'nyears': 40,
          'time_period': ['1979-1-16 12:0:0.0', '2019-3-16 12:0:0.0']},
         'GPCPv2.3': {'name': 'GPCPv2.3',
          'nyears': 41,
          'time_period': ['1979-1-1 0:0:0.0', '2019-7-1 0:0:0.0']},
         'method': 'Meridional root mean square error of nino3_LatExt climatological pr STD, time series are linearly detrended, observations and model regridded to generic_1x1deg',
         'name': 'pr meridional seasonality RMSE',
         'ref': 'Using CDAT regridding and rms (uncentered and biased) calculation',
         'time_frequency': 'monthly',
         'units': 'mm/day'},
        'metric': {'datasets': "CESM1-CAM5_r1i1p1; ERA-Interim's pr & GPCPv2.3's precip; 's ",
         'method': 'The metric is the statistical value between the model and the observations',
         'name': 'SeasonalPrLatRmse',
         'units': 'mm/day'}},
       'SeasonalPrLonRmse': {'diagnostic': {'CESM1-CAM5_r1i1p1': {'keyerror': None,
          'name': 'CESM1-CAM5_r1i1p1',
          'nyears': 156,
          'time_period': ['1850-1-16 12:0:0.0', '2005-12-16 12:0:0.0']},
         'ERA-Interim': {'name': 'ERA-Interim',
          'nyears': 40,
          'time_period': ['1979-1-16 12:0:0.0', '2019-3-16 12:0:0.0']},
         'GPCPv2.3': {'name': 'GPCPv2.3',
          'nyears': 41,
          'time_period': ['1979-1-1 0:0:0.0', '2019-7-1 0:0:0.0']},
         'method': 'Zonal root mean square error of equatorial_pacific climatological pr STD, time series are linearly detrended, observations and model regridded to generic_1x1deg',
         'name': 'pr zonal seasonality RMSE',
         'ref': 'Using CDAT regridding and rms (uncentered and biased) calculation',
         'time_frequency': 'monthly',
         'units': 'mm/day'},
        'metric': {'datasets': "CESM1-CAM5_r1i1p1; ERA-Interim's pr & GPCPv2.3's precip; 's ",
         'method': 'The metric is the statistical value between the model and the observations',
         'name': 'SeasonalPrLonRmse',
         'units': 'mm/day'}},
       'SeasonalSstLonRmse': {'diagnostic': {'CESM1-CAM5_r1i1p1': {'keyerror': None,
          'name': 'CESM1-CAM5_r1i1p1',
          'nyears': 156,
          'time_period': ['1850-1-16 12:0:0.0', '2005-12-16 12:0:0.0']},
         'ERA-Interim': {'name': 'ERA-Interim',
          'nyears': 40,
          'time_period': ['1979-1-16 12:0:0.0', '2019-3-16 12:0:0.0']},
         'HadISST': {'name': 'HadISST',
          'nyears': 151,
          'time_period': ['1870-1-16 11:59:59.5', '2020-10-16 12:0:0.0']},
         'Tropflux': {'name': 'Tropflux',
          'nyears': 40,
          'time_period': ['1979-1-15 0:0:0.0', '2018-12-15 12:0:0.0']},
         'method': 'Zonal root mean square error of equatorial_pacific climatological sst STD, time series are linearly detrended, observations and model regridded to generic_1x1deg',
         'name': 'sst zonal seasonality RMSE',
         'ref': 'Using CDAT regridding and rms (uncentered and biased) calculation',
         'time_frequency': 'monthly',
         'units': 'C'},
        'metric': {'datasets': "CESM1-CAM5_r1i1p1; ERA-Interim's ts & HadISST's sst & Tropflux's sst; 's ",
         'method': 'The metric is the statistical value between the model and the observations',
         'name': 'SeasonalSstLonRmse',
         'units': 'C'}},
       'SeasonalTauxLonRmse': {'diagnostic': {'CESM1-CAM5_r1i1p1': {'keyerror': None,
          'name': 'CESM1-CAM5_r1i1p1',
          'nyears': 156,
          'time_period': ['1850-1-16 12:0:0.0', '2005-12-16 12:0:0.0']},
         'ERA-Interim': {'name': 'ERA-Interim',
          'nyears': 40,
          'time_period': ['1979-1-16 12:0:0.0', '2019-3-16 12:0:0.0']},
         'Tropflux': {'name': 'Tropflux',
          'nyears': 40,
          'time_period': ['1979-1-15 0:0:0.0', '2018-12-15 12:0:0.0']},
         'method': 'Zonal root mean square error of equatorial_pacific climatological taux STD, time series are linearly detrended, observations and model regridded to generic_1x1deg',
         'name': 'taux zonal seasonality RMSE',
         'ref': 'Using CDAT regridding and rms (uncentered and biased) calculation',
         'time_frequency': 'monthly',
         'units': '1e-3 N/m2'},
        'metric': {'datasets': "CESM1-CAM5_r1i1p1; ERA-Interim's tauu & Tropflux's taux; 's ",
         'method': 'The metric is the statistical value between the model and the observations',
         'name': 'SeasonalTauxLonRmse',
         'units': '1e-3 N/m2'}}},
      'name': 'Metrics Collection for ENSO performance'},
     'value': {'BiasPrLatRmse': {'diagnostic': {'CESM1-CAM5_r1i1p1': {'value': None,
         'value_error': None},
        'ERA-Interim': {'value': None, 'value_error': None},
        'GPCPv2.3': {'value': None, 'value_error': None}},
       'metric': {'ERA-Interim': {'value': 1.1628270818985167,
         'value_error': None},
        'GPCPv2.3': {'value': 1.6401876887172417, 'value_error': None}}},
      'BiasPrLonRmse': {'diagnostic': {'CESM1-CAM5_r1i1p1': {'value': None,
         'value_error': None},
        'ERA-Interim': {'value': None, 'value_error': None},
        'GPCPv2.3': {'value': None, 'value_error': None}},
       'metric': {'ERA-Interim': {'value': 1.862376985515493,
         'value_error': None},
        'GPCPv2.3': {'value': 0.870701070048136, 'value_error': None}}},
      'BiasSstLonRmse': {'diagnostic': {'CESM1-CAM5_r1i1p1': {'value': None,
         'value_error': None},
        'ERA-Interim': {'value': None, 'value_error': None},
        'HadISST': {'value': None, 'value_error': None},
        'Tropflux': {'value': None, 'value_error': None}},
       'metric': {'ERA-Interim': {'value': 1.0820387577214499,
         'value_error': None},
        'HadISST': {'value': 0.894723018257139, 'value_error': None},
        'Tropflux': {'value': 1.1299887851954642, 'value_error': None}}},
      'BiasTauxLonRmse': {'diagnostic': {'CESM1-CAM5_r1i1p1': {'value': None,
         'value_error': None},
        'ERA-Interim': {'value': None, 'value_error': None},
        'Tropflux': {'value': None, 'value_error': None}},
       'metric': {'ERA-Interim': {'value': 5.548367498387752,
         'value_error': None},
        'Tropflux': {'value': 5.59111460980597, 'value_error': None}}},
      'EnsoAmpl': {'diagnostic': {'CESM1-CAM5_r1i1p1': {'value': 1.0076913377964924,
         'value_error': 0.08067987676336538},
        'ERA-Interim': {'value': 0.8989844997845644,
         'value_error': 0.14214193002531866},
        'HadISST': {'value': 0.7665787872085695,
         'value_error': 0.06238329697691264},
        'Tropflux': {'value': 0.9039789553693535,
         'value_error': 0.14293162279134272}},
       'metric': {'ERA-Interim': {'value': 12.092181571315068,
         'value_error': 26.697887128625013},
        'HadISST': {'value': 31.453068440089954,
         'value_error': 21.22216757732274},
        'Tropflux': {'value': 11.472875757905616,
         'value_error': 26.550382133426147}}},
      'EnsoDuration': {'diagnostic': {'CESM1-CAM5_r1i1p1': {'value': 13.0,
         'value_error': None},
        'ERA-Interim': {'value': 13.0, 'value_error': None},
        'HadISST': {'value': 13.0, 'value_error': None},
        'Tropflux': {'value': 13.0, 'value_error': None}},
       'metric': {'ERA-Interim': {'value': 0.0, 'value_error': None},
        'HadISST': {'value': 0.0, 'value_error': None},
        'Tropflux': {'value': 0.0, 'value_error': None}}},
      'EnsoSeasonality': {'diagnostic': {'CESM1-CAM5_r1i1p1': {'value': 1.5825976045686596,
         'value_error': 0.25382651490440045},
        'ERA-Interim': {'value': 2.0466846866656914,
         'value_error': 0.6513411033995022},
        'HadISST': {'value': 1.6639865947361325,
         'value_error': 0.2712772451657809},
        'Tropflux': {'value': 2.0532132553583624,
         'value_error': 0.6534187683977347}},
       'metric': {'ERA-Interim': {'value': 22.67506495360985,
         'value_error': 37.00988261521271},
        'HadISST': {'value': 4.891204678267208,
         'value_error': 30.75956479353265},
        'Tropflux': {'value': 22.920933788125325,
         'value_error': 36.89220289522719}}},
      'EnsoSstDiversity_2': {'diagnostic': {'CESM1-CAM5_r1i1p1': {'value': 48.0,
         'value_error': None},
        'ERA-Interim': {'value': 33.25, 'value_error': None},
        'HadISST': {'value': 49.0, 'value_error': None},
        'Tropflux': {'value': 32.0, 'value_error': None}},
       'metric': {'ERA-Interim': {'value': 44.3609022556391,
         'value_error': None},
        'HadISST': {'value': 2.0408163265306123, 'value_error': None},
        'Tropflux': {'value': 50.0, 'value_error': None}}},
      'EnsoSstLonRmse': {'diagnostic': {'CESM1-CAM5_r1i1p1': {'value': None,
         'value_error': None},
        'ERA-Interim': {'value': None, 'value_error': None},
        'HadISST': {'value': None, 'value_error': None},
        'Tropflux': {'value': None, 'value_error': None}},
       'metric': {'ERA-Interim': {'value': 0.20513760030398917,
         'value_error': None},
        'HadISST': {'value': 0.22578902843757742, 'value_error': None},
        'Tropflux': {'value': 0.20743917709933027, 'value_error': None}}},
      'EnsoSstSkew': {'diagnostic': {'CESM1-CAM5_r1i1p1': {'value': 0.5462752665558787,
         'value_error': 0.043737024951487354},
        'ERA-Interim': {'value': 0.39098111106809963,
         'value_error': 0.061819541653923164},
        'HadISST': {'value': 0.38989908235027515,
         'value_error': 0.03172953733021198},
        'Tropflux': {'value': 0.39744741059612115,
         'value_error': 0.06284195338099416}},
       'metric': {'ERA-Interim': {'value': 39.71909411775406,
         'value_error': 33.27800879757443},
        'HadISST': {'value': 40.10683566193142,
         'value_error': 22.61925705067164},
        'Tropflux': {'value': 37.44592416303189,
         'value_error': 32.73658981522781}}},
      'EnsoSstTsRmse': {'diagnostic': {'CESM1-CAM5_r1i1p1': {'value': None,
         'value_error': None},
        'ERA-Interim': {'value': None, 'value_error': None},
        'HadISST': {'value': None, 'value_error': None},
        'Tropflux': {'value': None, 'value_error': None}},
       'metric': {'ERA-Interim': {'value': 0.09098052940529824,
         'value_error': None},
        'HadISST': {'value': 0.09894059040988966, 'value_error': None},
        'Tropflux': {'value': 0.0878137267125927, 'value_error': None}}},
      'SeasonalPrLatRmse': {'diagnostic': {'CESM1-CAM5_r1i1p1': {'value': None,
         'value_error': None},
        'ERA-Interim': {'value': None, 'value_error': None},
        'GPCPv2.3': {'value': None, 'value_error': None}},
       'metric': {'ERA-Interim': {'value': 1.1224841362152684,
         'value_error': None},
        'GPCPv2.3': {'value': 1.4594524812645753, 'value_error': None}}},
      'SeasonalPrLonRmse': {'diagnostic': {'CESM1-CAM5_r1i1p1': {'value': None,
         'value_error': None},
        'ERA-Interim': {'value': None, 'value_error': None},
        'GPCPv2.3': {'value': None, 'value_error': None}},
       'metric': {'ERA-Interim': {'value': 0.3358576788910401,
         'value_error': None},
        'GPCPv2.3': {'value': 0.4346835827266837, 'value_error': None}}},
      'SeasonalSstLonRmse': {'diagnostic': {'CESM1-CAM5_r1i1p1': {'value': None,
         'value_error': None},
        'ERA-Interim': {'value': None, 'value_error': None},
        'HadISST': {'value': None, 'value_error': None},
        'Tropflux': {'value': None, 'value_error': None}},
       'metric': {'ERA-Interim': {'value': 0.23433460371952902,
         'value_error': None},
        'HadISST': {'value': 0.2591049909311961, 'value_error': None},
        'Tropflux': {'value': 0.2256114676545575, 'value_error': None}}},
      'SeasonalTauxLonRmse': {'diagnostic': {'CESM1-CAM5_r1i1p1': {'value': None,
         'value_error': None},
        'ERA-Interim': {'value': None, 'value_error': None},
        'Tropflux': {'value': None, 'value_error': None}},
       'metric': {'ERA-Interim': {'value': 3.004901485303239,
         'value_error': None},
        'Tropflux': {'value': 3.0374116615883167, 'value_error': None}}}}},
    'r2i1p1': {'metadata': {'description_of_the_collection': 'Describe which science question this collection is about',
      'metrics': {'BiasPrLatRmse': {'diagnostic': {'CESM1-CAM5_r2i1p1': {'keyerror': None,
          'name': 'CESM1-CAM5_r2i1p1',
          'nyears': 156,
          'time_period': ['1850-1-16 12:0:0.0', '2005-12-16 12:0:0.0']},
         'ERA-Interim': {'name': 'ERA-Interim',
          'nyears': 40,
          'time_period': ['1979-1-16 12:0:0.0', '2019-3-16 12:0:0.0']},
         'GPCPv2.3': {'name': 'GPCPv2.3',
          'nyears': 41,
          'time_period': ['1979-1-1 0:0:0.0', '2019-7-1 0:0:0.0']},
         'method': 'Meridional root mean square error of nino3_LatExt pr, time series are linearly detrended, observations and model regridded to generic_1x1deg',
         'name': 'pr Meridional RMSE',
         'ref': 'Using CDAT regridding and rms (uncentered and biased) calculation',
         'time_frequency': 'monthly',
         'units': 'mm/day'},
        'metric': {'datasets': "CESM1-CAM5_r2i1p1; ERA-Interim's pr & GPCPv2.3's precip; 's ",
         'method': 'The metric is the statistical value between the model and the observations',
         'name': 'BiasPrLatRmse',
         'units': 'mm/day'}},
       'BiasPrLonRmse': {'diagnostic': {'CESM1-CAM5_r2i1p1': {'keyerror': None,
          'name': 'CESM1-CAM5_r2i1p1',
          'nyears': 156,
          'time_period': ['1850-1-16 12:0:0.0', '2005-12-16 12:0:0.0']},
         'ERA-Interim': {'name': 'ERA-Interim',
          'nyears': 40,
          'time_period': ['1979-1-16 12:0:0.0', '2019-3-16 12:0:0.0']},
         'GPCPv2.3': {'name': 'GPCPv2.3',
          'nyears': 41,
          'time_period': ['1979-1-1 0:0:0.0', '2019-7-1 0:0:0.0']},
         'method': 'Zonal root mean square error of equatorial_pacific pr, time series are linearly detrended, observations and model regridded to generic_1x1deg',
         'name': 'pr Zonal RMSE',
         'ref': 'Using CDAT regridding and rms (uncentered and biased) calculation',
         'time_frequency': 'monthly',
         'units': 'mm/day'},
        'metric': {'datasets': "CESM1-CAM5_r2i1p1; ERA-Interim's pr & GPCPv2.3's precip; 's ",
         'method': 'The metric is the statistical value between the model and the observations',
         'name': 'BiasPrLonRmse',
         'units': 'mm/day'}},
       'BiasSstLonRmse': {'diagnostic': {'CESM1-CAM5_r2i1p1': {'keyerror': None,
          'name': 'CESM1-CAM5_r2i1p1',
          'nyears': 156,
          'time_period': ['1850-1-16 12:0:0.0', '2005-12-16 12:0:0.0']},
         'ERA-Interim': {'name': 'ERA-Interim',
          'nyears': 40,
          'time_period': ['1979-1-16 12:0:0.0', '2019-3-16 12:0:0.0']},
         'HadISST': {'name': 'HadISST',
          'nyears': 151,
          'time_period': ['1870-1-16 11:59:59.5', '2020-10-16 12:0:0.0']},
         'Tropflux': {'name': 'Tropflux',
          'nyears': 40,
          'time_period': ['1979-1-15 0:0:0.0', '2018-12-15 12:0:0.0']},
         'method': 'Zonal root mean square error of equatorial_pacific sst, time series are linearly detrended, observations and model regridded to generic_1x1deg',
         'name': 'sst Zonal RMSE',
         'ref': 'Using CDAT regridding and rms (uncentered and biased) calculation',
         'time_frequency': 'monthly',
         'units': 'C'},
        'metric': {'datasets': "CESM1-CAM5_r2i1p1; ERA-Interim's ts & HadISST's sst & Tropflux's sst; 's ",
         'method': 'The metric is the statistical value between the model and the observations',
         'name': 'BiasSstLonRmse',
         'units': 'C'}},
       'BiasTauxLonRmse': {'diagnostic': {'CESM1-CAM5_r2i1p1': {'keyerror': None,
          'name': 'CESM1-CAM5_r2i1p1',
          'nyears': 156,
          'time_period': ['1850-1-16 12:0:0.0', '2005-12-16 12:0:0.0']},
         'ERA-Interim': {'name': 'ERA-Interim',
          'nyears': 40,
          'time_period': ['1979-1-16 12:0:0.0', '2019-3-16 12:0:0.0']},
         'Tropflux': {'name': 'Tropflux',
          'nyears': 40,
          'time_period': ['1979-1-15 0:0:0.0', '2018-12-15 12:0:0.0']},
         'method': 'Zonal root mean square error of equatorial_pacific taux, time series are linearly detrended, observations and model regridded to generic_1x1deg',
         'name': 'taux Zonal RMSE',
         'ref': 'Using CDAT regridding and rms (uncentered and biased) calculation',
         'time_frequency': 'monthly',
         'units': '1e-3 N/m2'},
        'metric': {'datasets': "CESM1-CAM5_r2i1p1; ERA-Interim's tauu & Tropflux's taux; 's ",
         'method': 'The metric is the statistical value between the model and the observations',
         'name': 'BiasTauxLonRmse',
         'units': '1e-3 N/m2'}},
       'EnsoAmpl': {'diagnostic': {'CESM1-CAM5_r2i1p1': {'keyerror': None,
          'name': 'CESM1-CAM5_r2i1p1',
          'nyears': 156,
          'time_period': ['1850-1-16 12:0:0.0', '2005-12-16 12:0:0.0']},
         'ERA-Interim': {'keyerror': None,
          'name': 'ERA-Interim',
          'nyears': 40,
          'time_period': ['1979-1-16 12:0:0.0', '2019-3-16 12:0:0.0']},
         'HadISST': {'keyerror': None,
          'name': 'HadISST',
          'nyears': 151,
          'time_period': ['1870-1-16 11:59:59.5', '2020-10-16 12:0:0.0']},
         'Tropflux': {'keyerror': None,
          'name': 'Tropflux',
          'nyears': 40,
          'time_period': ['1979-1-15 0:0:0.0', '2018-12-15 12:0:0.0']},
         'method': 'Standard deviation of nino3.4 sstA, time series are linearly detrended',
         'name': 'ENSO amplitude',
         'ref': 'Using CDAT regression calculation',
         'time_frequency': 'monthly',
         'units': 'C'},
        'metric': {'datasets': "CESM1-CAM5_r2i1p1; ERA-Interim's ts & HadISST's sst & Tropflux's sst; 's ",
         'method': 'The metric is the absolute value of the relative difference between model and observations values (M = 100 * abs[[model-obs] / obs])',
         'name': 'EnsoAmpl',
         'units': '%'}},
       'EnsoDuration': {'diagnostic': {'CESM1-CAM5_r2i1p1': {'keyerror': None,
          'name': 'CESM1-CAM5_r2i1p1',
          'nyears': 156,
          'time_period': ['1850-1-16 12:0:0.0', '2005-12-16 12:0:0.0']},
         'ERA-Interim': {'keyerror': None,
          'name': 'ERA-Interim',
          'nyears': 40,
          'time_period': ['1979-1-16 12:0:0.0', '2019-3-16 12:0:0.0']},
         'HadISST': {'keyerror': None,
          'name': 'HadISST',
          'nyears': 151,
          'time_period': ['1870-1-16 11:59:59.5', '2020-10-16 12:0:0.0']},
         'Tropflux': {'keyerror': None,
          'name': 'Tropflux',
          'nyears': 40,
          'time_period': ['1979-1-15 0:0:0.0', '2018-12-15 12:0:0.0']},
         'method': 'nino3.4 SSTA during DEC regressed against nino3.4 SSTA during 6 years (centered on ENSO), the duration is the number of consecutive months during which the regression is above 0.25, time series are linearly detrended, smoothing using a triangle shaped window of 5 points',
         'name': 'ENSO Duration based on life cyle SSTA pattern',
         'ref': 'Using CDAT',
         'time_frequency': 'monthly',
         'units': 'months'},
        'metric': {'datasets': "CESM1-CAM5_r2i1p1; ERA-Interim's ts & HadISST's sst & Tropflux's sst; 's ",
         'method': 'The metric is the absolute value of the relative difference between model and observations values (M = 100 * abs[[model-obs] / obs])',
         'name': 'EnsoDuration',
         'units': '%'}},
       'EnsoSeasonality': {'diagnostic': {'CESM1-CAM5_r2i1p1': {'keyerror': None,
          'name': 'CESM1-CAM5_r2i1p1',
          'nyears': 156,
          'time_period': ['1850-1-16 12:0:0.0', '2005-12-16 12:0:0.0']},
         'ERA-Interim': {'keyerror': None,
          'name': 'ERA-Interim',
          'nyears': 40,
          'time_period': ['1979-1-16 12:0:0.0', '2019-3-16 12:0:0.0']},
         'HadISST': {'keyerror': None,
          'name': 'HadISST',
          'nyears': 151,
          'time_period': ['1870-1-16 11:59:59.5', '2020-10-16 12:0:0.0']},
         'Tropflux': {'keyerror': None,
          'name': 'Tropflux',
          'nyears': 40,
          'time_period': ['1979-1-15 0:0:0.0', '2018-12-15 12:0:0.0']},
         'method': 'Ratio between NDJ and MAM standard deviation nino3.4 sstA, time series are linearly detrended',
         'name': 'ENSO seasonality',
         'ref': 'Using CDAT std dev calculation',
         'time_frequency': 'monthly',
         'units': 'C/C'},
        'metric': {'datasets': "CESM1-CAM5_r2i1p1; ERA-Interim's ts & HadISST's sst & Tropflux's sst; 's ",
         'method': 'The metric is the absolute value of the relative difference between model and observations values (M = 100 * abs[[model-obs] / obs])',
         'name': 'EnsoSeasonality',
         'units': '%'}},
       'EnsoSstDiversity_2': {'diagnostic': {'CESM1-CAM5_r2i1p1': {'keyerror': None,
          'name': 'CESM1-CAM5_r2i1p1',
          'nyears': 156,
          'time_period': ['1850-1-16 12:0:0.0', '2005-12-16 12:0:0.0']},
         'ERA-Interim': {'keyerror': None,
          'name': 'ERA-Interim',
          'nyears': 40,
          'time_period': ['1979-1-16 12:0:0.0', '2019-3-16 12:0:0.0']},
         'HadISST': {'keyerror': None,
          'name': 'HadISST',
          'nyears': 151,
          'time_period': ['1870-1-16 11:59:59.5', '2020-10-16 12:0:0.0']},
         'Tropflux': {'keyerror': None,
          'name': 'Tropflux',
          'nyears': 40,
          'time_period': ['1979-1-15 0:0:0.0', '2018-12-15 12:0:0.0']},
         'method': 'Nino (Nina) events = nino3.4 sstA > 0.75 (< -0.75) during DEC, zonal SSTA (meridional averaged [-5.0 ; 5.0]), the zonal SSTA maximum (minimum) is located for each event, the diversity is the interquartile range (IQR = Q3 - Q1), time series are linearly detrended, smoothing using a triangle shaped window of 5 points',
         'name': 'ENSO Diversity (interquartile range)',
         'ref': 'Using CDAT regridding',
         'time_frequency': 'monthly',
         'units': 'long'},
        'metric': {'datasets': "CESM1-CAM5_r2i1p1; ERA-Interim's ts & HadISST's sst & Tropflux's sst; 's ",
         'method': 'The metric is the absolute value of the relative difference between model and observations values (M = 100 * abs[[model-obs] / obs])',
         'name': 'EnsoSstDiversity',
         'units': '%'}},
       'EnsoSstLonRmse': {'diagnostic': {'CESM1-CAM5_r2i1p1': {'keyerror': None,
          'name': 'CESM1-CAM5_r2i1p1',
          'nyears': 156,
          'time_period': ['1850-1-16 12:0:0.0', '2005-12-16 12:0:0.0']},
         'ERA-Interim': {'name': 'ERA-Interim',
          'nyears': 40,
          'time_period': ['1979-1-16 12:0:0.0', '2019-3-16 12:0:0.0']},
         'HadISST': {'name': 'HadISST',
          'nyears': 151,
          'time_period': ['1870-1-16 11:59:59.5', '2020-10-16 12:0:0.0']},
         'Tropflux': {'name': 'Tropflux',
          'nyears': 40,
          'time_period': ['1979-1-15 0:0:0.0', '2018-12-15 12:0:0.0']},
         'method': 'nino3.4 SSTA during DEC regressed against equatorial_pacific SSTA, time series are linearly detrended, smoothing using a triangle shaped window of 5 points, observations and model regridded to generic_1x1deg',
         'name': 'ENSO Zonal SSTA pattern',
         'ref': 'Using CDAT regridding and rms (uncentered and biased) calculation',
         'time_frequency': 'monthly',
         'units': 'C/C'},
        'metric': {'datasets': "CESM1-CAM5_r2i1p1; ERA-Interim's ts & HadISST's sst & Tropflux's sst; 's ",
         'method': 'The metric is the statistical value between the model and the observations',
         'name': 'EnsoSstLonRmse',
         'units': 'C/C'}},
       'EnsoSstSkew': {'diagnostic': {'CESM1-CAM5_r2i1p1': {'keyerror': None,
          'name': 'CESM1-CAM5_r2i1p1',
          'nyears': 156,
          'time_period': ['1850-1-16 12:0:0.0', '2005-12-16 12:0:0.0']},
         'ERA-Interim': {'keyerror': None,
          'name': 'ERA-Interim',
          'nyears': 40,
          'time_period': ['1979-1-16 12:0:0.0', '2019-3-16 12:0:0.0']},
         'HadISST': {'keyerror': None,
          'name': 'HadISST',
          'nyears': 151,
          'time_period': ['1870-1-16 11:59:59.5', '2020-10-16 12:0:0.0']},
         'Tropflux': {'keyerror': None,
          'name': 'Tropflux',
          'nyears': 40,
          'time_period': ['1979-1-15 0:0:0.0', '2018-12-15 12:0:0.0']},
         'method': 'Standard deviation of nino3.4 sstA, time series are linearly detrended',
         'name': 'ENSO skewness',
         'ref': 'Using CDAT regression calculation',
         'time_frequency': 'monthly',
         'units': 'C'},
        'metric': {'datasets': "CESM1-CAM5_r2i1p1; ERA-Interim's ts & HadISST's sst & Tropflux's sst; 's ",
         'method': 'The metric is the absolute value of the relative difference between model and observations values (M = 100 * abs[[model-obs] / obs])',
         'name': 'EnsoSstSkew',
         'units': '%'}},
       'EnsoSstTsRmse': {'diagnostic': {'CESM1-CAM5_r2i1p1': {'keyerror': None,
          'name': 'CESM1-CAM5_r2i1p1',
          'nyears': 156,
          'time_period': ['1850-1-16 12:0:0.0', '2005-12-16 12:0:0.0']},
         'ERA-Interim': {'name': 'ERA-Interim',
          'nyears': 40,
          'time_period': ['1979-1-16 12:0:0.0', '2019-3-16 12:0:0.0']},
         'HadISST': {'name': 'HadISST',
          'nyears': 151,
          'time_period': ['1870-1-16 11:59:59.5', '2020-10-16 12:0:0.0']},
         'Tropflux': {'name': 'Tropflux',
          'nyears': 40,
          'time_period': ['1979-1-15 0:0:0.0', '2018-12-15 12:0:0.0']},
         'method': 'nino3.4 SSTA during DEC regressed against nino3.4 SSTA during 6 years (centered on ENSO), time series are linearly detrended, smoothing using a triangle shaped window of 5 points',
         'name': 'ENSO life cyle SSTA pattern',
         'ref': 'Using CDAT regridding and rms (uncentered and biased) calculation',
         'time_frequency': 'monthly',
         'units': 'C/C'},
        'metric': {'datasets': "CESM1-CAM5_r2i1p1; ERA-Interim's ts & HadISST's sst & Tropflux's sst; 's ",
         'method': 'The metric is the statistical value between the model and the observations',
         'name': 'EnsoSstTsRmse',
         'units': 'C/C'}},
       'SeasonalPrLatRmse': {'diagnostic': {'CESM1-CAM5_r2i1p1': {'keyerror': None,
          'name': 'CESM1-CAM5_r2i1p1',
          'nyears': 156,
          'time_period': ['1850-1-16 12:0:0.0', '2005-12-16 12:0:0.0']},
         'ERA-Interim': {'name': 'ERA-Interim',
          'nyears': 40,
          'time_period': ['1979-1-16 12:0:0.0', '2019-3-16 12:0:0.0']},
         'GPCPv2.3': {'name': 'GPCPv2.3',
          'nyears': 41,
          'time_period': ['1979-1-1 0:0:0.0', '2019-7-1 0:0:0.0']},
         'method': 'Meridional root mean square error of nino3_LatExt climatological pr STD, time series are linearly detrended, observations and model regridded to generic_1x1deg',
         'name': 'pr meridional seasonality RMSE',
         'ref': 'Using CDAT regridding and rms (uncentered and biased) calculation',
         'time_frequency': 'monthly',
         'units': 'mm/day'},
        'metric': {'datasets': "CESM1-CAM5_r2i1p1; ERA-Interim's pr & GPCPv2.3's precip; 's ",
         'method': 'The metric is the statistical value between the model and the observations',
         'name': 'SeasonalPrLatRmse',
         'units': 'mm/day'}},
       'SeasonalPrLonRmse': {'diagnostic': {'CESM1-CAM5_r2i1p1': {'keyerror': None,
          'name': 'CESM1-CAM5_r2i1p1',
          'nyears': 156,
          'time_period': ['1850-1-16 12:0:0.0', '2005-12-16 12:0:0.0']},
         'ERA-Interim': {'name': 'ERA-Interim',
          'nyears': 40,
          'time_period': ['1979-1-16 12:0:0.0', '2019-3-16 12:0:0.0']},
         'GPCPv2.3': {'name': 'GPCPv2.3',
          'nyears': 41,
          'time_period': ['1979-1-1 0:0:0.0', '2019-7-1 0:0:0.0']},
         'method': 'Zonal root mean square error of equatorial_pacific climatological pr STD, time series are linearly detrended, observations and model regridded to generic_1x1deg',
         'name': 'pr zonal seasonality RMSE',
         'ref': 'Using CDAT regridding and rms (uncentered and biased) calculation',
         'time_frequency': 'monthly',
         'units': 'mm/day'},
        'metric': {'datasets': "CESM1-CAM5_r2i1p1; ERA-Interim's pr & GPCPv2.3's precip; 's ",
         'method': 'The metric is the statistical value between the model and the observations',
         'name': 'SeasonalPrLonRmse',
         'units': 'mm/day'}},
       'SeasonalSstLonRmse': {'diagnostic': {'CESM1-CAM5_r2i1p1': {'keyerror': None,
          'name': 'CESM1-CAM5_r2i1p1',
          'nyears': 156,
          'time_period': ['1850-1-16 12:0:0.0', '2005-12-16 12:0:0.0']},
         'ERA-Interim': {'name': 'ERA-Interim',
          'nyears': 40,
          'time_period': ['1979-1-16 12:0:0.0', '2019-3-16 12:0:0.0']},
         'HadISST': {'name': 'HadISST',
          'nyears': 151,
          'time_period': ['1870-1-16 11:59:59.5', '2020-10-16 12:0:0.0']},
         'Tropflux': {'name': 'Tropflux',
          'nyears': 40,
          'time_period': ['1979-1-15 0:0:0.0', '2018-12-15 12:0:0.0']},
         'method': 'Zonal root mean square error of equatorial_pacific climatological sst STD, time series are linearly detrended, observations and model regridded to generic_1x1deg',
         'name': 'sst zonal seasonality RMSE',
         'ref': 'Using CDAT regridding and rms (uncentered and biased) calculation',
         'time_frequency': 'monthly',
         'units': 'C'},
        'metric': {'datasets': "CESM1-CAM5_r2i1p1; ERA-Interim's ts & HadISST's sst & Tropflux's sst; 's ",
         'method': 'The metric is the statistical value between the model and the observations',
         'name': 'SeasonalSstLonRmse',
         'units': 'C'}},
       'SeasonalTauxLonRmse': {'diagnostic': {'CESM1-CAM5_r2i1p1': {'keyerror': None,
          'name': 'CESM1-CAM5_r2i1p1',
          'nyears': 156,
          'time_period': ['1850-1-16 12:0:0.0', '2005-12-16 12:0:0.0']},
         'ERA-Interim': {'name': 'ERA-Interim',
          'nyears': 40,
          'time_period': ['1979-1-16 12:0:0.0', '2019-3-16 12:0:0.0']},
         'Tropflux': {'name': 'Tropflux',
          'nyears': 40,
          'time_period': ['1979-1-15 0:0:0.0', '2018-12-15 12:0:0.0']},
         'method': 'Zonal root mean square error of equatorial_pacific climatological taux STD, time series are linearly detrended, observations and model regridded to generic_1x1deg',
         'name': 'taux zonal seasonality RMSE',
         'ref': 'Using CDAT regridding and rms (uncentered and biased) calculation',
         'time_frequency': 'monthly',
         'units': '1e-3 N/m2'},
        'metric': {'datasets': "CESM1-CAM5_r2i1p1; ERA-Interim's tauu & Tropflux's taux; 's ",
         'method': 'The metric is the statistical value between the model and the observations',
         'name': 'SeasonalTauxLonRmse',
         'units': '1e-3 N/m2'}}},
      'name': 'Metrics Collection for ENSO performance'},
     'value': {'BiasPrLatRmse': {'diagnostic': {'CESM1-CAM5_r2i1p1': {'value': None,
         'value_error': None},
        'ERA-Interim': {'value': None, 'value_error': None},
        'GPCPv2.3': {'value': None, 'value_error': None}},
       'metric': {'ERA-Interim': {'value': 1.150807132862054,
         'value_error': None},
        'GPCPv2.3': {'value': 1.6333602370524256, 'value_error': None}}},
      'BiasPrLonRmse': {'diagnostic': {'CESM1-CAM5_r2i1p1': {'value': None,
         'value_error': None},
        'ERA-Interim': {'value': None, 'value_error': None},
        'GPCPv2.3': {'value': None, 'value_error': None}},
       'metric': {'ERA-Interim': {'value': 1.9227765685241254,
         'value_error': None},
        'GPCPv2.3': {'value': 0.9444034776108766, 'value_error': None}}},
      'BiasSstLonRmse': {'diagnostic': {'CESM1-CAM5_r2i1p1': {'value': None,
         'value_error': None},
        'ERA-Interim': {'value': None, 'value_error': None},
        'HadISST': {'value': None, 'value_error': None},
        'Tropflux': {'value': None, 'value_error': None}},
       'metric': {'ERA-Interim': {'value': 1.0591605566787574,
         'value_error': None},
        'HadISST': {'value': 0.8737274901128684, 'value_error': None},
        'Tropflux': {'value': 1.1070393178866462, 'value_error': None}}},
      'BiasTauxLonRmse': {'diagnostic': {'CESM1-CAM5_r2i1p1': {'value': None,
         'value_error': None},
        'ERA-Interim': {'value': None, 'value_error': None},
        'Tropflux': {'value': None, 'value_error': None}},
       'metric': {'ERA-Interim': {'value': 5.66381592602734,
         'value_error': None},
        'Tropflux': {'value': 5.72181774590748, 'value_error': None}}},
      'EnsoAmpl': {'diagnostic': {'CESM1-CAM5_r2i1p1': {'value': 0.9442432036292067,
         'value_error': 0.0755999604700729},
        'ERA-Interim': {'value': 0.8989844997845644,
         'value_error': 0.14214193002531866},
        'HadISST': {'value': 0.7665787872085695,
         'value_error': 0.06238329697691264},
        'Tropflux': {'value': 0.9039789553693535,
         'value_error': 0.14293162279134272}},
       'metric': {'ERA-Interim': {'value': 5.034425382805622,
         'value_error': 25.016885158096862},
        'HadISST': {'value': 23.176276122587055,
         'value_error': 19.885938034344836},
        'Tropflux': {'value': 4.454113452608173,
         'value_error': 24.878667646450438}}},
      'EnsoDuration': {'diagnostic': {'CESM1-CAM5_r2i1p1': {'value': 13.0,
         'value_error': None},
        'ERA-Interim': {'value': 13.0, 'value_error': None},
        'HadISST': {'value': 13.0, 'value_error': None},
        'Tropflux': {'value': 13.0, 'value_error': None}},
       'metric': {'ERA-Interim': {'value': 0.0, 'value_error': None},
        'HadISST': {'value': 0.0, 'value_error': None},
        'Tropflux': {'value': 0.0, 'value_error': None}}},
      'EnsoSeasonality': {'diagnostic': {'CESM1-CAM5_r2i1p1': {'value': 1.546797349817112,
         'value_error': 0.24808465489523424},
        'ERA-Interim': {'value': 2.0466846866656914,
         'value_error': 0.6513411033995022},
        'HadISST': {'value': 1.6639865947361325,
         'value_error': 0.2712772451657809},
        'Tropflux': {'value': 2.0532132553583624,
         'value_error': 0.6534187683977347}},
       'metric': {'ERA-Interim': {'value': 24.424247667722536,
         'value_error': 36.172674709599455},
        'HadISST': {'value': 7.042679627933178,
         'value_error': 30.063746568813844},
        'Tropflux': {'value': 24.664554654497493,
         'value_error': 36.0576570459335}}},
      'EnsoSstDiversity_2': {'diagnostic': {'CESM1-CAM5_r2i1p1': {'value': 41.75,
         'value_error': None},
        'ERA-Interim': {'value': 33.25, 'value_error': None},
        'HadISST': {'value': 49.0, 'value_error': None},
        'Tropflux': {'value': 32.0, 'value_error': None}},
       'metric': {'ERA-Interim': {'value': 25.563909774436087,
         'value_error': None},
        'HadISST': {'value': 14.795918367346939, 'value_error': None},
        'Tropflux': {'value': 30.46875, 'value_error': None}}},
      'EnsoSstLonRmse': {'diagnostic': {'CESM1-CAM5_r2i1p1': {'value': None,
         'value_error': None},
        'ERA-Interim': {'value': None, 'value_error': None},
        'HadISST': {'value': None, 'value_error': None},
        'Tropflux': {'value': None, 'value_error': None}},
       'metric': {'ERA-Interim': {'value': 0.16378704610665498,
         'value_error': None},
        'HadISST': {'value': 0.1827940829741964, 'value_error': None},
        'Tropflux': {'value': 0.16586793812515968, 'value_error': None}}},
      'EnsoSstSkew': {'diagnostic': {'CESM1-CAM5_r2i1p1': {'value': 0.8627084550711711,
         'value_error': 0.0690719560912928},
        'ERA-Interim': {'value': 0.39098111106809963,
         'value_error': 0.061819541653923164},
        'HadISST': {'value': 0.38989908235027515,
         'value_error': 0.03172953733021198},
        'Tropflux': {'value': 0.39744741059612115,
         'value_error': 0.06284195338099416}},
       'metric': {'ERA-Interim': {'value': 120.65220816278968,
         'value_error': 52.55449279006228},
        'HadISST': {'value': 121.26455129641376,
         'value_error': 35.721595868822945},
        'Tropflux': {'value': 117.06229102794174,
         'value_error': 51.699453650634794}}},
      'EnsoSstTsRmse': {'diagnostic': {'CESM1-CAM5_r2i1p1': {'value': None,
         'value_error': None},
        'ERA-Interim': {'value': None, 'value_error': None},
        'HadISST': {'value': None, 'value_error': None},
        'Tropflux': {'value': None, 'value_error': None}},
       'metric': {'ERA-Interim': {'value': 0.06851316926429511,
         'value_error': None},
        'HadISST': {'value': 0.06960734227829767, 'value_error': None},
        'Tropflux': {'value': 0.06627678745748232, 'value_error': None}}},
      'SeasonalPrLatRmse': {'diagnostic': {'CESM1-CAM5_r2i1p1': {'value': None,
         'value_error': None},
        'ERA-Interim': {'value': None, 'value_error': None},
        'GPCPv2.3': {'value': None, 'value_error': None}},
       'metric': {'ERA-Interim': {'value': 1.1150786016724001,
         'value_error': None},
        'GPCPv2.3': {'value': 1.4469129418781546, 'value_error': None}}},
      'SeasonalPrLonRmse': {'diagnostic': {'CESM1-CAM5_r2i1p1': {'value': None,
         'value_error': None},
        'ERA-Interim': {'value': None, 'value_error': None},
        'GPCPv2.3': {'value': None, 'value_error': None}},
       'metric': {'ERA-Interim': {'value': 0.3564543061534498,
         'value_error': None},
        'GPCPv2.3': {'value': 0.43336323485077904, 'value_error': None}}},
      'SeasonalSstLonRmse': {'diagnostic': {'CESM1-CAM5_r2i1p1': {'value': None,
         'value_error': None},
        'ERA-Interim': {'value': None, 'value_error': None},
        'HadISST': {'value': None, 'value_error': None},
        'Tropflux': {'value': None, 'value_error': None}},
       'metric': {'ERA-Interim': {'value': 0.251094798239275,
         'value_error': None},
        'HadISST': {'value': 0.27652499068936554, 'value_error': None},
        'Tropflux': {'value': 0.24219973756428295, 'value_error': None}}},
      'SeasonalTauxLonRmse': {'diagnostic': {'CESM1-CAM5_r2i1p1': {'value': None,
         'value_error': None},
        'ERA-Interim': {'value': None, 'value_error': None},
        'Tropflux': {'value': None, 'value_error': None}},
       'metric': {'ERA-Interim': {'value': 3.0624906575226643,
         'value_error': None},
        'Tropflux': {'value': 3.076523981602271, 'value_error': None}}}}},
    'r3i1p1': {'metadata': {'description_of_the_collection': 'Describe which science question this collection is about',
      'metrics': {'BiasPrLatRmse': {'diagnostic': {'CESM1-CAM5_r3i1p1': {'keyerror': None,
          'name': 'CESM1-CAM5_r3i1p1',
          'nyears': 156,
          'time_period': ['1850-1-16 12:0:0.0', '2005-12-16 12:0:0.0']},
         'ERA-Interim': {'name': 'ERA-Interim',
          'nyears': 40,
          'time_period': ['1979-1-16 12:0:0.0', '2019-3-16 12:0:0.0']},
         'GPCPv2.3': {'name': 'GPCPv2.3',
          'nyears': 41,
          'time_period': ['1979-1-1 0:0:0.0', '2019-7-1 0:0:0.0']},
         'method': 'Meridional root mean square error of nino3_LatExt pr, time series are linearly detrended, observations and model regridded to generic_1x1deg',
         'name': 'pr Meridional RMSE',
         'ref': 'Using CDAT regridding and rms (uncentered and biased) calculation',
         'time_frequency': 'monthly',
         'units': 'mm/day'},
        'metric': {'datasets': "CESM1-CAM5_r3i1p1; ERA-Interim's pr & GPCPv2.3's precip; 's ",
         'method': 'The metric is the statistical value between the model and the observations',
         'name': 'BiasPrLatRmse',
         'units': 'mm/day'}},
       'BiasPrLonRmse': {'diagnostic': {'CESM1-CAM5_r3i1p1': {'keyerror': None,
          'name': 'CESM1-CAM5_r3i1p1',
          'nyears': 156,
          'time_period': ['1850-1-16 12:0:0.0', '2005-12-16 12:0:0.0']},
         'ERA-Interim': {'name': 'ERA-Interim',
          'nyears': 40,
          'time_period': ['1979-1-16 12:0:0.0', '2019-3-16 12:0:0.0']},
         'GPCPv2.3': {'name': 'GPCPv2.3',
          'nyears': 41,
          'time_period': ['1979-1-1 0:0:0.0', '2019-7-1 0:0:0.0']},
         'method': 'Zonal root mean square error of equatorial_pacific pr, time series are linearly detrended, observations and model regridded to generic_1x1deg',
         'name': 'pr Zonal RMSE',
         'ref': 'Using CDAT regridding and rms (uncentered and biased) calculation',
         'time_frequency': 'monthly',
         'units': 'mm/day'},
        'metric': {'datasets': "CESM1-CAM5_r3i1p1; ERA-Interim's pr & GPCPv2.3's precip; 's ",
         'method': 'The metric is the statistical value between the model and the observations',
         'name': 'BiasPrLonRmse',
         'units': 'mm/day'}},
       'BiasSstLonRmse': {'diagnostic': {'CESM1-CAM5_r3i1p1': {'keyerror': None,
          'name': 'CESM1-CAM5_r3i1p1',
          'nyears': 156,
          'time_period': ['1850-1-16 12:0:0.0', '2005-12-16 12:0:0.0']},
         'ERA-Interim': {'name': 'ERA-Interim',
          'nyears': 40,
          'time_period': ['1979-1-16 12:0:0.0', '2019-3-16 12:0:0.0']},
         'HadISST': {'name': 'HadISST',
          'nyears': 151,
          'time_period': ['1870-1-16 11:59:59.5', '2020-10-16 12:0:0.0']},
         'Tropflux': {'name': 'Tropflux',
          'nyears': 40,
          'time_period': ['1979-1-15 0:0:0.0', '2018-12-15 12:0:0.0']},
         'method': 'Zonal root mean square error of equatorial_pacific sst, time series are linearly detrended, observations and model regridded to generic_1x1deg',
         'name': 'sst Zonal RMSE',
         'ref': 'Using CDAT regridding and rms (uncentered and biased) calculation',
         'time_frequency': 'monthly',
         'units': 'C'},
        'metric': {'datasets': "CESM1-CAM5_r3i1p1; ERA-Interim's ts & HadISST's sst & Tropflux's sst; 's ",
         'method': 'The metric is the statistical value between the model and the observations',
         'name': 'BiasSstLonRmse',
         'units': 'C'}},
       'BiasTauxLonRmse': {'diagnostic': {'CESM1-CAM5_r3i1p1': {'keyerror': None,
          'name': 'CESM1-CAM5_r3i1p1',
          'nyears': 156,
          'time_period': ['1850-1-16 12:0:0.0', '2005-12-16 12:0:0.0']},
         'ERA-Interim': {'name': 'ERA-Interim',
          'nyears': 40,
          'time_period': ['1979-1-16 12:0:0.0', '2019-3-16 12:0:0.0']},
         'Tropflux': {'name': 'Tropflux',
          'nyears': 40,
          'time_period': ['1979-1-15 0:0:0.0', '2018-12-15 12:0:0.0']},
         'method': 'Zonal root mean square error of equatorial_pacific taux, time series are linearly detrended, observations and model regridded to generic_1x1deg',
         'name': 'taux Zonal RMSE',
         'ref': 'Using CDAT regridding and rms (uncentered and biased) calculation',
         'time_frequency': 'monthly',
         'units': '1e-3 N/m2'},
        'metric': {'datasets': "CESM1-CAM5_r3i1p1; ERA-Interim's tauu & Tropflux's taux; 's ",
         'method': 'The metric is the statistical value between the model and the observations',
         'name': 'BiasTauxLonRmse',
         'units': '1e-3 N/m2'}},
       'EnsoAmpl': {'diagnostic': {'CESM1-CAM5_r3i1p1': {'keyerror': None,
          'name': 'CESM1-CAM5_r3i1p1',
          'nyears': 156,
          'time_period': ['1850-1-16 12:0:0.0', '2005-12-16 12:0:0.0']},
         'ERA-Interim': {'keyerror': None,
          'name': 'ERA-Interim',
          'nyears': 40,
          'time_period': ['1979-1-16 12:0:0.0', '2019-3-16 12:0:0.0']},
         'HadISST': {'keyerror': None,
          'name': 'HadISST',
          'nyears': 151,
          'time_period': ['1870-1-16 11:59:59.5', '2020-10-16 12:0:0.0']},
         'Tropflux': {'keyerror': None,
          'name': 'Tropflux',
          'nyears': 40,
          'time_period': ['1979-1-15 0:0:0.0', '2018-12-15 12:0:0.0']},
         'method': 'Standard deviation of nino3.4 sstA, time series are linearly detrended',
         'name': 'ENSO amplitude',
         'ref': 'Using CDAT regression calculation',
         'time_frequency': 'monthly',
         'units': 'C'},
        'metric': {'datasets': "CESM1-CAM5_r3i1p1; ERA-Interim's ts & HadISST's sst & Tropflux's sst; 's ",
         'method': 'The metric is the absolute value of the relative difference between model and observations values (M = 100 * abs[[model-obs] / obs])',
         'name': 'EnsoAmpl',
         'units': '%'}},
       'EnsoDuration': {'diagnostic': {'CESM1-CAM5_r3i1p1': {'keyerror': None,
          'name': 'CESM1-CAM5_r3i1p1',
          'nyears': 156,
          'time_period': ['1850-1-16 12:0:0.0', '2005-12-16 12:0:0.0']},
         'ERA-Interim': {'keyerror': None,
          'name': 'ERA-Interim',
          'nyears': 40,
          'time_period': ['1979-1-16 12:0:0.0', '2019-3-16 12:0:0.0']},
         'HadISST': {'keyerror': None,
          'name': 'HadISST',
          'nyears': 151,
          'time_period': ['1870-1-16 11:59:59.5', '2020-10-16 12:0:0.0']},
         'Tropflux': {'keyerror': None,
          'name': 'Tropflux',
          'nyears': 40,
          'time_period': ['1979-1-15 0:0:0.0', '2018-12-15 12:0:0.0']},
         'method': 'nino3.4 SSTA during DEC regressed against nino3.4 SSTA during 6 years (centered on ENSO), the duration is the number of consecutive months during which the regression is above 0.25, time series are linearly detrended, smoothing using a triangle shaped window of 5 points',
         'name': 'ENSO Duration based on life cyle SSTA pattern',
         'ref': 'Using CDAT',
         'time_frequency': 'monthly',
         'units': 'months'},
        'metric': {'datasets': "CESM1-CAM5_r3i1p1; ERA-Interim's ts & HadISST's sst & Tropflux's sst; 's ",
         'method': 'The metric is the absolute value of the relative difference between model and observations values (M = 100 * abs[[model-obs] / obs])',
         'name': 'EnsoDuration',
         'units': '%'}},
       'EnsoSeasonality': {'diagnostic': {'CESM1-CAM5_r3i1p1': {'keyerror': None,
          'name': 'CESM1-CAM5_r3i1p1',
          'nyears': 156,
          'time_period': ['1850-1-16 12:0:0.0', '2005-12-16 12:0:0.0']},
         'ERA-Interim': {'keyerror': None,
          'name': 'ERA-Interim',
          'nyears': 40,
          'time_period': ['1979-1-16 12:0:0.0', '2019-3-16 12:0:0.0']},
         'HadISST': {'keyerror': None,
          'name': 'HadISST',
          'nyears': 151,
          'time_period': ['1870-1-16 11:59:59.5', '2020-10-16 12:0:0.0']},
         'Tropflux': {'keyerror': None,
          'name': 'Tropflux',
          'nyears': 40,
          'time_period': ['1979-1-15 0:0:0.0', '2018-12-15 12:0:0.0']},
         'method': 'Ratio between NDJ and MAM standard deviation nino3.4 sstA, time series are linearly detrended',
         'name': 'ENSO seasonality',
         'ref': 'Using CDAT std dev calculation',
         'time_frequency': 'monthly',
         'units': 'C/C'},
        'metric': {'datasets': "CESM1-CAM5_r3i1p1; ERA-Interim's ts & HadISST's sst & Tropflux's sst; 's ",
         'method': 'The metric is the absolute value of the relative difference between model and observations values (M = 100 * abs[[model-obs] / obs])',
         'name': 'EnsoSeasonality',
         'units': '%'}},
       'EnsoSstDiversity_2': {'diagnostic': {'CESM1-CAM5_r3i1p1': {'keyerror': None,
          'name': 'CESM1-CAM5_r3i1p1',
          'nyears': 156,
          'time_period': ['1850-1-16 12:0:0.0', '2005-12-16 12:0:0.0']},
         'ERA-Interim': {'keyerror': None,
          'name': 'ERA-Interim',
          'nyears': 40,
          'time_period': ['1979-1-16 12:0:0.0', '2019-3-16 12:0:0.0']},
         'HadISST': {'keyerror': None,
          'name': 'HadISST',
          'nyears': 151,
          'time_period': ['1870-1-16 11:59:59.5', '2020-10-16 12:0:0.0']},
         'Tropflux': {'keyerror': None,
          'name': 'Tropflux',
          'nyears': 40,
          'time_period': ['1979-1-15 0:0:0.0', '2018-12-15 12:0:0.0']},
         'method': 'Nino (Nina) events = nino3.4 sstA > 0.75 (< -0.75) during DEC, zonal SSTA (meridional averaged [-5.0 ; 5.0]), the zonal SSTA maximum (minimum) is located for each event, the diversity is the interquartile range (IQR = Q3 - Q1), time series are linearly detrended, smoothing using a triangle shaped window of 5 points',
         'name': 'ENSO Diversity (interquartile range)',
         'ref': 'Using CDAT regridding',
         'time_frequency': 'monthly',
         'units': 'long'},
        'metric': {'datasets': "CESM1-CAM5_r3i1p1; ERA-Interim's ts & HadISST's sst & Tropflux's sst; 's ",
         'method': 'The metric is the absolute value of the relative difference between model and observations values (M = 100 * abs[[model-obs] / obs])',
         'name': 'EnsoSstDiversity',
         'units': '%'}},
       'EnsoSstLonRmse': {'diagnostic': {'CESM1-CAM5_r3i1p1': {'keyerror': None,
          'name': 'CESM1-CAM5_r3i1p1',
          'nyears': 156,
          'time_period': ['1850-1-16 12:0:0.0', '2005-12-16 12:0:0.0']},
         'ERA-Interim': {'name': 'ERA-Interim',
          'nyears': 40,
          'time_period': ['1979-1-16 12:0:0.0', '2019-3-16 12:0:0.0']},
         'HadISST': {'name': 'HadISST',
          'nyears': 151,
          'time_period': ['1870-1-16 11:59:59.5', '2020-10-16 12:0:0.0']},
         'Tropflux': {'name': 'Tropflux',
          'nyears': 40,
          'time_period': ['1979-1-15 0:0:0.0', '2018-12-15 12:0:0.0']},
         'method': 'nino3.4 SSTA during DEC regressed against equatorial_pacific SSTA, time series are linearly detrended, smoothing using a triangle shaped window of 5 points, observations and model regridded to generic_1x1deg',
         'name': 'ENSO Zonal SSTA pattern',
         'ref': 'Using CDAT regridding and rms (uncentered and biased) calculation',
         'time_frequency': 'monthly',
         'units': 'C/C'},
        'metric': {'datasets': "CESM1-CAM5_r3i1p1; ERA-Interim's ts & HadISST's sst & Tropflux's sst; 's ",
         'method': 'The metric is the statistical value between the model and the observations',
         'name': 'EnsoSstLonRmse',
         'units': 'C/C'}},
       'EnsoSstSkew': {'diagnostic': {'CESM1-CAM5_r3i1p1': {'keyerror': None,
          'name': 'CESM1-CAM5_r3i1p1',
          'nyears': 156,
          'time_period': ['1850-1-16 12:0:0.0', '2005-12-16 12:0:0.0']},
         'ERA-Interim': {'keyerror': None,
          'name': 'ERA-Interim',
          'nyears': 40,
          'time_period': ['1979-1-16 12:0:0.0', '2019-3-16 12:0:0.0']},
         'HadISST': {'keyerror': None,
          'name': 'HadISST',
          'nyears': 151,
          'time_period': ['1870-1-16 11:59:59.5', '2020-10-16 12:0:0.0']},
         'Tropflux': {'keyerror': None,
          'name': 'Tropflux',
          'nyears': 40,
          'time_period': ['1979-1-15 0:0:0.0', '2018-12-15 12:0:0.0']},
         'method': 'Standard deviation of nino3.4 sstA, time series are linearly detrended',
         'name': 'ENSO skewness',
         'ref': 'Using CDAT regression calculation',
         'time_frequency': 'monthly',
         'units': 'C'},
        'metric': {'datasets': "CESM1-CAM5_r3i1p1; ERA-Interim's ts & HadISST's sst & Tropflux's sst; 's ",
         'method': 'The metric is the absolute value of the relative difference between model and observations values (M = 100 * abs[[model-obs] / obs])',
         'name': 'EnsoSstSkew',
         'units': '%'}},
       'EnsoSstTsRmse': {'diagnostic': {'CESM1-CAM5_r3i1p1': {'keyerror': None,
          'name': 'CESM1-CAM5_r3i1p1',
          'nyears': 156,
          'time_period': ['1850-1-16 12:0:0.0', '2005-12-16 12:0:0.0']},
         'ERA-Interim': {'name': 'ERA-Interim',
          'nyears': 40,
          'time_period': ['1979-1-16 12:0:0.0', '2019-3-16 12:0:0.0']},
         'HadISST': {'name': 'HadISST',
          'nyears': 151,
          'time_period': ['1870-1-16 11:59:59.5', '2020-10-16 12:0:0.0']},
         'Tropflux': {'name': 'Tropflux',
          'nyears': 40,
          'time_period': ['1979-1-15 0:0:0.0', '2018-12-15 12:0:0.0']},
         'method': 'nino3.4 SSTA during DEC regressed against nino3.4 SSTA during 6 years (centered on ENSO), time series are linearly detrended, smoothing using a triangle shaped window of 5 points',
         'name': 'ENSO life cyle SSTA pattern',
         'ref': 'Using CDAT regridding and rms (uncentered and biased) calculation',
         'time_frequency': 'monthly',
         'units': 'C/C'},
        'metric': {'datasets': "CESM1-CAM5_r3i1p1; ERA-Interim's ts & HadISST's sst & Tropflux's sst; 's ",
         'method': 'The metric is the statistical value between the model and the observations',
         'name': 'EnsoSstTsRmse',
         'units': 'C/C'}},
       'SeasonalPrLatRmse': {'diagnostic': {'CESM1-CAM5_r3i1p1': {'keyerror': None,
          'name': 'CESM1-CAM5_r3i1p1',
          'nyears': 156,
          'time_period': ['1850-1-16 12:0:0.0', '2005-12-16 12:0:0.0']},
         'ERA-Interim': {'name': 'ERA-Interim',
          'nyears': 40,
          'time_period': ['1979-1-16 12:0:0.0', '2019-3-16 12:0:0.0']},
         'GPCPv2.3': {'name': 'GPCPv2.3',
          'nyears': 41,
          'time_period': ['1979-1-1 0:0:0.0', '2019-7-1 0:0:0.0']},
         'method': 'Meridional root mean square error of nino3_LatExt climatological pr STD, time series are linearly detrended, observations and model regridded to generic_1x1deg',
         'name': 'pr meridional seasonality RMSE',
         'ref': 'Using CDAT regridding and rms (uncentered and biased) calculation',
         'time_frequency': 'monthly',
         'units': 'mm/day'},
        'metric': {'datasets': "CESM1-CAM5_r3i1p1; ERA-Interim's pr & GPCPv2.3's precip; 's ",
         'method': 'The metric is the statistical value between the model and the observations',
         'name': 'SeasonalPrLatRmse',
         'units': 'mm/day'}},
       'SeasonalPrLonRmse': {'diagnostic': {'CESM1-CAM5_r3i1p1': {'keyerror': None,
          'name': 'CESM1-CAM5_r3i1p1',
          'nyears': 156,
          'time_period': ['1850-1-16 12:0:0.0', '2005-12-16 12:0:0.0']},
         'ERA-Interim': {'name': 'ERA-Interim',
          'nyears': 40,
          'time_period': ['1979-1-16 12:0:0.0', '2019-3-16 12:0:0.0']},
         'GPCPv2.3': {'name': 'GPCPv2.3',
          'nyears': 41,
          'time_period': ['1979-1-1 0:0:0.0', '2019-7-1 0:0:0.0']},
         'method': 'Zonal root mean square error of equatorial_pacific climatological pr STD, time series are linearly detrended, observations and model regridded to generic_1x1deg',
         'name': 'pr zonal seasonality RMSE',
         'ref': 'Using CDAT regridding and rms (uncentered and biased) calculation',
         'time_frequency': 'monthly',
         'units': 'mm/day'},
        'metric': {'datasets': "CESM1-CAM5_r3i1p1; ERA-Interim's pr & GPCPv2.3's precip; 's ",
         'method': 'The metric is the statistical value between the model and the observations',
         'name': 'SeasonalPrLonRmse',
         'units': 'mm/day'}},
       'SeasonalSstLonRmse': {'diagnostic': {'CESM1-CAM5_r3i1p1': {'keyerror': None,
          'name': 'CESM1-CAM5_r3i1p1',
          'nyears': 156,
          'time_period': ['1850-1-16 12:0:0.0', '2005-12-16 12:0:0.0']},
         'ERA-Interim': {'name': 'ERA-Interim',
          'nyears': 40,
          'time_period': ['1979-1-16 12:0:0.0', '2019-3-16 12:0:0.0']},
         'HadISST': {'name': 'HadISST',
          'nyears': 151,
          'time_period': ['1870-1-16 11:59:59.5', '2020-10-16 12:0:0.0']},
         'Tropflux': {'name': 'Tropflux',
          'nyears': 40,
          'time_period': ['1979-1-15 0:0:0.0', '2018-12-15 12:0:0.0']},
         'method': 'Zonal root mean square error of equatorial_pacific climatological sst STD, time series are linearly detrended, observations and model regridded to generic_1x1deg',
         'name': 'sst zonal seasonality RMSE',
         'ref': 'Using CDAT regridding and rms (uncentered and biased) calculation',
         'time_frequency': 'monthly',
         'units': 'C'},
        'metric': {'datasets': "CESM1-CAM5_r3i1p1; ERA-Interim's ts & HadISST's sst & Tropflux's sst; 's ",
         'method': 'The metric is the statistical value between the model and the observations',
         'name': 'SeasonalSstLonRmse',
         'units': 'C'}},
       'SeasonalTauxLonRmse': {'diagnostic': {'CESM1-CAM5_r3i1p1': {'keyerror': None,
          'name': 'CESM1-CAM5_r3i1p1',
          'nyears': 156,
          'time_period': ['1850-1-16 12:0:0.0', '2005-12-16 12:0:0.0']},
         'ERA-Interim': {'name': 'ERA-Interim',
          'nyears': 40,
          'time_period': ['1979-1-16 12:0:0.0', '2019-3-16 12:0:0.0']},
         'Tropflux': {'name': 'Tropflux',
          'nyears': 40,
          'time_period': ['1979-1-15 0:0:0.0', '2018-12-15 12:0:0.0']},
         'method': 'Zonal root mean square error of equatorial_pacific climatological taux STD, time series are linearly detrended, observations and model regridded to generic_1x1deg',
         'name': 'taux zonal seasonality RMSE',
         'ref': 'Using CDAT regridding and rms (uncentered and biased) calculation',
         'time_frequency': 'monthly',
         'units': '1e-3 N/m2'},
        'metric': {'datasets': "CESM1-CAM5_r3i1p1; ERA-Interim's tauu & Tropflux's taux; 's ",
         'method': 'The metric is the statistical value between the model and the observations',
         'name': 'SeasonalTauxLonRmse',
         'units': '1e-3 N/m2'}}},
      'name': 'Metrics Collection for ENSO performance'},
     'value': {'BiasPrLatRmse': {'diagnostic': {'CESM1-CAM5_r3i1p1': {'value': None,
         'value_error': None},
        'ERA-Interim': {'value': None, 'value_error': None},
        'GPCPv2.3': {'value': None, 'value_error': None}},
       'metric': {'ERA-Interim': {'value': 1.1626052908400413,
         'value_error': None},
        'GPCPv2.3': {'value': 1.6469739420103926, 'value_error': None}}},
      'BiasPrLonRmse': {'diagnostic': {'CESM1-CAM5_r3i1p1': {'value': None,
         'value_error': None},
        'ERA-Interim': {'value': None, 'value_error': None},
        'GPCPv2.3': {'value': None, 'value_error': None}},
       'metric': {'ERA-Interim': {'value': 1.8349956953318936,
         'value_error': None},
        'GPCPv2.3': {'value': 0.8538038151209277, 'value_error': None}}},
      'BiasSstLonRmse': {'diagnostic': {'CESM1-CAM5_r3i1p1': {'value': None,
         'value_error': None},
        'ERA-Interim': {'value': None, 'value_error': None},
        'HadISST': {'value': None, 'value_error': None},
        'Tropflux': {'value': None, 'value_error': None}},
       'metric': {'ERA-Interim': {'value': 1.0760285211390308,
         'value_error': None},
        'HadISST': {'value': 0.8877062786298223, 'value_error': None},
        'Tropflux': {'value': 1.1240892886457496, 'value_error': None}}},
      'BiasTauxLonRmse': {'diagnostic': {'CESM1-CAM5_r3i1p1': {'value': None,
         'value_error': None},
        'ERA-Interim': {'value': None, 'value_error': None},
        'Tropflux': {'value': None, 'value_error': None}},
       'metric': {'ERA-Interim': {'value': 5.608607792735975,
         'value_error': None},
        'Tropflux': {'value': 5.611235688016729, 'value_error': None}}},
      'EnsoAmpl': {'diagnostic': {'CESM1-CAM5_r3i1p1': {'value': 1.0906233198867472,
         'value_error': 0.0873197493551199},
        'ERA-Interim': {'value': 0.8989844997845644,
         'value_error': 0.14214193002531866},
        'HadISST': {'value': 0.7665787872085695,
         'value_error': 0.06238329697691264},
        'Tropflux': {'value': 0.9039789553693535,
         'value_error': 0.14293162279134272}},
       'metric': {'ERA-Interim': {'value': 21.317255208305344,
         'value_error': 28.89509634751176},
        'HadISST': {'value': 42.271523564871636,
         'value_error': 22.968730592628077},
        'Tropflux': {'value': 20.646981150256245,
         'value_error': 28.73545183978439}}},
      'EnsoDuration': {'diagnostic': {'CESM1-CAM5_r3i1p1': {'value': 14.0,
         'value_error': None},
        'ERA-Interim': {'value': 13.0, 'value_error': None},
        'HadISST': {'value': 13.0, 'value_error': None},
        'Tropflux': {'value': 13.0, 'value_error': None}},
       'metric': {'ERA-Interim': {'value': 7.6923076923076925,
         'value_error': None},
        'HadISST': {'value': 7.6923076923076925, 'value_error': None},
        'Tropflux': {'value': 7.6923076923076925, 'value_error': None}}},
      'EnsoSeasonality': {'diagnostic': {'CESM1-CAM5_r3i1p1': {'value': 1.4714511760909985,
         'value_error': 0.23600018273814832},
        'ERA-Interim': {'value': 2.0466846866656914,
         'value_error': 0.6513411033995022},
        'HadISST': {'value': 1.6639865947361325,
         'value_error': 0.2712772451657809},
        'Tropflux': {'value': 2.0532132553583624,
         'value_error': 0.6534187683977347}},
       'metric': {'ERA-Interim': {'value': 28.10562439453344,
         'value_error': 34.41066455802407},
        'HadISST': {'value': 11.570731354098763,
         'value_error': 28.599308921503724},
        'Tropflux': {'value': 28.33422576778683,
         'value_error': 34.301249529292264}}},
      'EnsoSstDiversity_2': {'diagnostic': {'CESM1-CAM5_r3i1p1': {'value': 48.5,
         'value_error': None},
        'ERA-Interim': {'value': 33.25, 'value_error': None},
        'HadISST': {'value': 49.0, 'value_error': None},
        'Tropflux': {'value': 32.0, 'value_error': None}},
       'metric': {'ERA-Interim': {'value': 45.86466165413533,
         'value_error': None},
        'HadISST': {'value': 1.0204081632653061, 'value_error': None},
        'Tropflux': {'value': 51.5625, 'value_error': None}}},
      'EnsoSstLonRmse': {'diagnostic': {'CESM1-CAM5_r3i1p1': {'value': None,
         'value_error': None},
        'ERA-Interim': {'value': None, 'value_error': None},
        'HadISST': {'value': None, 'value_error': None},
        'Tropflux': {'value': None, 'value_error': None}},
       'metric': {'ERA-Interim': {'value': 0.205289744500677,
         'value_error': None},
        'HadISST': {'value': 0.22494976767670877, 'value_error': None},
        'Tropflux': {'value': 0.2073414566483469, 'value_error': None}}},
      'EnsoSstSkew': {'diagnostic': {'CESM1-CAM5_r3i1p1': {'value': 0.4528252045214126,
         'value_error': 0.036255031998212395},
        'ERA-Interim': {'value': 0.39098111106809963,
         'value_error': 0.061819541653923164},
        'HadISST': {'value': 0.38989908235027515,
         'value_error': 0.03172953733021198},
        'Tropflux': {'value': 0.39744741059612115,
         'value_error': 0.06284195338099416}},
       'metric': {'ERA-Interim': {'value': 15.817667836782329,
         'value_error': 27.585215847010318},
        'HadISST': {'value': 16.13907932068593,
         'value_error': 18.749832414470248},
        'Tropflux': {'value': 13.93336387378439,
         'value_error': 27.136416173251334}}},
      'EnsoSstTsRmse': {'diagnostic': {'CESM1-CAM5_r3i1p1': {'value': None,
         'value_error': None},
        'ERA-Interim': {'value': None, 'value_error': None},
        'HadISST': {'value': None, 'value_error': None},
        'Tropflux': {'value': None, 'value_error': None}},
       'metric': {'ERA-Interim': {'value': 0.13738249990248663,
         'value_error': None},
        'HadISST': {'value': 0.13213562127400896, 'value_error': None},
        'Tropflux': {'value': 0.1323602748143438, 'value_error': None}}},
      'SeasonalPrLatRmse': {'diagnostic': {'CESM1-CAM5_r3i1p1': {'value': None,
         'value_error': None},
        'ERA-Interim': {'value': None, 'value_error': None},
        'GPCPv2.3': {'value': None, 'value_error': None}},
       'metric': {'ERA-Interim': {'value': 1.1067417638395454,
         'value_error': None},
        'GPCPv2.3': {'value': 1.4375954621553453, 'value_error': None}}},
      'SeasonalPrLonRmse': {'diagnostic': {'CESM1-CAM5_r3i1p1': {'value': None,
         'value_error': None},
        'ERA-Interim': {'value': None, 'value_error': None},
        'GPCPv2.3': {'value': None, 'value_error': None}},
       'metric': {'ERA-Interim': {'value': 0.33661548914271094,
         'value_error': None},
        'GPCPv2.3': {'value': 0.45694474439320343, 'value_error': None}}},
      'SeasonalSstLonRmse': {'diagnostic': {'CESM1-CAM5_r3i1p1': {'value': None,
         'value_error': None},
        'ERA-Interim': {'value': None, 'value_error': None},
        'HadISST': {'value': None, 'value_error': None},
        'Tropflux': {'value': None, 'value_error': None}},
       'metric': {'ERA-Interim': {'value': 0.23521571460678276,
         'value_error': None},
        'HadISST': {'value': 0.25961485015699515, 'value_error': None},
        'Tropflux': {'value': 0.22657331048616985, 'value_error': None}}},
      'SeasonalTauxLonRmse': {'diagnostic': {'CESM1-CAM5_r3i1p1': {'value': None,
         'value_error': None},
        'ERA-Interim': {'value': None, 'value_error': None},
        'Tropflux': {'value': None, 'value_error': None}},
       'metric': {'ERA-Interim': {'value': 2.986855811267612,
         'value_error': None},
        'Tropflux': {'value': 2.9907710535818026, 'value_error': None}}}}}},
   'CESM1-FASTCHEM': {'r1i1p1': {'metadata': {'description_of_the_collection': 'Describe which science question this collection is about',
      'metrics': {'BiasPrLatRmse': {'diagnostic': {'CESM1-FASTCHEM_r1i1p1': {'keyerror': None,
          'name': 'CESM1-FASTCHEM_r1i1p1',
          'nyears': 156,
          'time_period': ['1850-1-16 12:0:0.0', '2005-12-16 12:0:0.0']},
         'ERA-Interim': {'name': 'ERA-Interim',
          'nyears': 40,
          'time_period': ['1979-1-16 12:0:0.0', '2019-3-16 12:0:0.0']},
         'GPCPv2.3': {'name': 'GPCPv2.3',
          'nyears': 41,
          'time_period': ['1979-1-1 0:0:0.0', '2019-7-1 0:0:0.0']},
         'method': 'Meridional root mean square error of nino3_LatExt pr, time series are linearly detrended, observations and model regridded to generic_1x1deg',
         'name': 'pr Meridional RMSE',
         'ref': 'Using CDAT regridding and rms (uncentered and biased) calculation',
         'time_frequency': 'monthly',
         'units': 'mm/day'},
        'metric': {'datasets': "CESM1-FASTCHEM_r1i1p1; ERA-Interim's pr & GPCPv2.3's precip; 's ",
         'method': 'The metric is the statistical value between the model and the observations',
         'name': 'BiasPrLatRmse',
         'units': 'mm/day'}},
       'BiasPrLonRmse': {'diagnostic': {'CESM1-FASTCHEM_r1i1p1': {'keyerror': None,
          'name': 'CESM1-FASTCHEM_r1i1p1',
          'nyears': 156,
          'time_period': ['1850-1-16 12:0:0.0', '2005-12-16 12:0:0.0']},
         'ERA-Interim': {'name': 'ERA-Interim',
          'nyears': 40,
          'time_period': ['1979-1-16 12:0:0.0', '2019-3-16 12:0:0.0']},
         'GPCPv2.3': {'name': 'GPCPv2.3',
          'nyears': 41,
          'time_period': ['1979-1-1 0:0:0.0', '2019-7-1 0:0:0.0']},
         'method': 'Zonal root mean square error of equatorial_pacific pr, time series are linearly detrended, observations and model regridded to generic_1x1deg',
         'name': 'pr Zonal RMSE',
         'ref': 'Using CDAT regridding and rms (uncentered and biased) calculation',
         'time_frequency': 'monthly',
         'units': 'mm/day'},
        'metric': {'datasets': "CESM1-FASTCHEM_r1i1p1; ERA-Interim's pr & GPCPv2.3's precip; 's ",
         'method': 'The metric is the statistical value between the model and the observations',
         'name': 'BiasPrLonRmse',
         'units': 'mm/day'}},
       'BiasSstLonRmse': {'diagnostic': {'CESM1-FASTCHEM_r1i1p1': {'keyerror': None,
          'name': 'CESM1-FASTCHEM_r1i1p1',
          'nyears': 156,
          'time_period': ['1850-1-16 12:0:0.0', '2005-12-16 12:0:0.0']},
         'ERA-Interim': {'name': 'ERA-Interim',
          'nyears': 40,
          'time_period': ['1979-1-16 12:0:0.0', '2019-3-16 12:0:0.0']},
         'HadISST': {'name': 'HadISST',
          'nyears': 151,
          'time_period': ['1870-1-16 11:59:59.5', '2020-10-16 12:0:0.0']},
         'Tropflux': {'name': 'Tropflux',
          'nyears': 40,
          'time_period': ['1979-1-15 0:0:0.0', '2018-12-15 12:0:0.0']},
         'method': 'Zonal root mean square error of equatorial_pacific sst, time series are linearly detrended, observations and model regridded to generic_1x1deg',
         'name': 'sst Zonal RMSE',
         'ref': 'Using CDAT regridding and rms (uncentered and biased) calculation',
         'time_frequency': 'monthly',
         'units': 'C'},
        'metric': {'datasets': "CESM1-FASTCHEM_r1i1p1; ERA-Interim's ts & HadISST's sst & Tropflux's sst; 's ",
         'method': 'The metric is the statistical value between the model and the observations',
         'name': 'BiasSstLonRmse',
         'units': 'C'}},
       'BiasTauxLonRmse': {'diagnostic': {'CESM1-FASTCHEM_r1i1p1': {'keyerror': None,
          'name': 'CESM1-FASTCHEM_r1i1p1',
          'nyears': 156,
          'time_period': ['1850-1-16 12:0:0.0', '2005-12-16 12:0:0.0']},
         'ERA-Interim': {'name': 'ERA-Interim',
          'nyears': 40,
          'time_period': ['1979-1-16 12:0:0.0', '2019-3-16 12:0:0.0']},
         'Tropflux': {'name': 'Tropflux',
          'nyears': 40,
          'time_period': ['1979-1-15 0:0:0.0', '2018-12-15 12:0:0.0']},
         'method': 'Zonal root mean square error of equatorial_pacific taux, time series are linearly detrended, observations and model regridded to generic_1x1deg',
         'name': 'taux Zonal RMSE',
         'ref': 'Using CDAT regridding and rms (uncentered and biased) calculation',
         'time_frequency': 'monthly',
         'units': '1e-3 N/m2'},
        'metric': {'datasets': "CESM1-FASTCHEM_r1i1p1; ERA-Interim's tauu & Tropflux's taux; 's ",
         'method': 'The metric is the statistical value between the model and the observations',
         'name': 'BiasTauxLonRmse',
         'units': '1e-3 N/m2'}},
       'EnsoAmpl': {'diagnostic': {'CESM1-FASTCHEM_r1i1p1': {'keyerror': None,
          'name': 'CESM1-FASTCHEM_r1i1p1',
          'nyears': 156,
          'time_period': ['1850-1-16 12:0:0.0', '2005-12-16 12:0:0.0']},
         'ERA-Interim': {'keyerror': None,
          'name': 'ERA-Interim',
          'nyears': 40,
          'time_period': ['1979-1-16 12:0:0.0', '2019-3-16 12:0:0.0']},
         'HadISST': {'keyerror': None,
          'name': 'HadISST',
          'nyears': 151,
          'time_period': ['1870-1-16 11:59:59.5', '2020-10-16 12:0:0.0']},
         'Tropflux': {'keyerror': None,
          'name': 'Tropflux',
          'nyears': 40,
          'time_period': ['1979-1-15 0:0:0.0', '2018-12-15 12:0:0.0']},
         'method': 'Standard deviation of nino3.4 sstA, time series are linearly detrended',
         'name': 'ENSO amplitude',
         'ref': 'Using CDAT regression calculation',
         'time_frequency': 'monthly',
         'units': 'C'},
        'metric': {'datasets': "CESM1-FASTCHEM_r1i1p1; ERA-Interim's ts & HadISST's sst & Tropflux's sst; 's ",
         'method': 'The metric is the absolute value of the relative difference between model and observations values (M = 100 * abs[[model-obs] / obs])',
         'name': 'EnsoAmpl',
         'units': '%'}},
       'EnsoDuration': {'diagnostic': {'CESM1-FASTCHEM_r1i1p1': {'keyerror': None,
          'name': 'CESM1-FASTCHEM_r1i1p1',
          'nyears': 156,
          'time_period': ['1850-1-16 12:0:0.0', '2005-12-16 12:0:0.0']},
         'ERA-Interim': {'keyerror': None,
          'name': 'ERA-Interim',
          'nyears': 40,
          'time_period': ['1979-1-16 12:0:0.0', '2019-3-16 12:0:0.0']},
         'HadISST': {'keyerror': None,
          'name': 'HadISST',
          'nyears': 151,
          'time_period': ['1870-1-16 11:59:59.5', '2020-10-16 12:0:0.0']},
         'Tropflux': {'keyerror': None,
          'name': 'Tropflux',
          'nyears': 40,
          'time_period': ['1979-1-15 0:0:0.0', '2018-12-15 12:0:0.0']},
         'method': 'nino3.4 SSTA during DEC regressed against nino3.4 SSTA during 6 years (centered on ENSO), the duration is the number of consecutive months during which the regression is above 0.25, time series are linearly detrended, smoothing using a triangle shaped window of 5 points',
         'name': 'ENSO Duration based on life cyle SSTA pattern',
         'ref': 'Using CDAT',
         'time_frequency': 'monthly',
         'units': 'months'},
        'metric': {'datasets': "CESM1-FASTCHEM_r1i1p1; ERA-Interim's ts & HadISST's sst & Tropflux's sst; 's ",
         'method': 'The metric is the absolute value of the relative difference between model and observations values (M = 100 * abs[[model-obs] / obs])',
         'name': 'EnsoDuration',
         'units': '%'}},
       'EnsoSeasonality': {'diagnostic': {'CESM1-FASTCHEM_r1i1p1': {'keyerror': None,
          'name': 'CESM1-FASTCHEM_r1i1p1',
          'nyears': 156,
          'time_period': ['1850-1-16 12:0:0.0', '2005-12-16 12:0:0.0']},
         'ERA-Interim': {'keyerror': None,
          'name': 'ERA-Interim',
          'nyears': 40,
          'time_period': ['1979-1-16 12:0:0.0', '2019-3-16 12:0:0.0']},
         'HadISST': {'keyerror': None,
          'name': 'HadISST',
          'nyears': 151,
          'time_period': ['1870-1-16 11:59:59.5', '2020-10-16 12:0:0.0']},
         'Tropflux': {'keyerror': None,
          'name': 'Tropflux',
          'nyears': 40,
          'time_period': ['1979-1-15 0:0:0.0', '2018-12-15 12:0:0.0']},
         'method': 'Ratio between NDJ and MAM standard deviation nino3.4 sstA, time series are linearly detrended',
         'name': 'ENSO seasonality',
         'ref': 'Using CDAT std dev calculation',
         'time_frequency': 'monthly',
         'units': 'C/C'},
        'metric': {'datasets': "CESM1-FASTCHEM_r1i1p1; ERA-Interim's ts & HadISST's sst & Tropflux's sst; 's ",
         'method': 'The metric is the absolute value of the relative difference between model and observations values (M = 100 * abs[[model-obs] / obs])',
         'name': 'EnsoSeasonality',
         'units': '%'}},
       'EnsoSstDiversity_2': {'diagnostic': {'CESM1-FASTCHEM_r1i1p1': {'keyerror': None,
          'name': 'CESM1-FASTCHEM_r1i1p1',
          'nyears': 156,
          'time_period': ['1850-1-16 12:0:0.0', '2005-12-16 12:0:0.0']},
         'ERA-Interim': {'keyerror': None,
          'name': 'ERA-Interim',
          'nyears': 40,
          'time_period': ['1979-1-16 12:0:0.0', '2019-3-16 12:0:0.0']},
         'HadISST': {'keyerror': None,
          'name': 'HadISST',
          'nyears': 151,
          'time_period': ['1870-1-16 11:59:59.5', '2020-10-16 12:0:0.0']},
         'Tropflux': {'keyerror': None,
          'name': 'Tropflux',
          'nyears': 40,
          'time_period': ['1979-1-15 0:0:0.0', '2018-12-15 12:0:0.0']},
         'method': 'Nino (Nina) events = nino3.4 sstA > 0.75 (< -0.75) during DEC, zonal SSTA (meridional averaged [-5.0 ; 5.0]), the zonal SSTA maximum (minimum) is located for each event, the diversity is the interquartile range (IQR = Q3 - Q1), time series are linearly detrended, smoothing using a triangle shaped window of 5 points',
         'name': 'ENSO Diversity (interquartile range)',
         'ref': 'Using CDAT regridding',
         'time_frequency': 'monthly',
         'units': 'long'},
        'metric': {'datasets': "CESM1-FASTCHEM_r1i1p1; ERA-Interim's ts & HadISST's sst & Tropflux's sst; 's ",
         'method': 'The metric is the absolute value of the relative difference between model and observations values (M = 100 * abs[[model-obs] / obs])',
         'name': 'EnsoSstDiversity',
         'units': '%'}},
       'EnsoSstLonRmse': {'diagnostic': {'CESM1-FASTCHEM_r1i1p1': {'keyerror': None,
          'name': 'CESM1-FASTCHEM_r1i1p1',
          'nyears': 156,
          'time_period': ['1850-1-16 12:0:0.0', '2005-12-16 12:0:0.0']},
         'ERA-Interim': {'name': 'ERA-Interim',
          'nyears': 40,
          'time_period': ['1979-1-16 12:0:0.0', '2019-3-16 12:0:0.0']},
         'HadISST': {'name': 'HadISST',
          'nyears': 151,
          'time_period': ['1870-1-16 11:59:59.5', '2020-10-16 12:0:0.0']},
         'Tropflux': {'name': 'Tropflux',
          'nyears': 40,
          'time_period': ['1979-1-15 0:0:0.0', '2018-12-15 12:0:0.0']},
         'method': 'nino3.4 SSTA during DEC regressed against equatorial_pacific SSTA, time series are linearly detrended, smoothing using a triangle shaped window of 5 points, observations and model regridded to generic_1x1deg',
         'name': 'ENSO Zonal SSTA pattern',
         'ref': 'Using CDAT regridding and rms (uncentered and biased) calculation',
         'time_frequency': 'monthly',
         'units': 'C/C'},
        'metric': {'datasets': "CESM1-FASTCHEM_r1i1p1; ERA-Interim's ts & HadISST's sst & Tropflux's sst; 's ",
         'method': 'The metric is the statistical value between the model and the observations',
         'name': 'EnsoSstLonRmse',
         'units': 'C/C'}},
       'EnsoSstSkew': {'diagnostic': {'CESM1-FASTCHEM_r1i1p1': {'keyerror': None,
          'name': 'CESM1-FASTCHEM_r1i1p1',
          'nyears': 156,
          'time_period': ['1850-1-16 12:0:0.0', '2005-12-16 12:0:0.0']},
         'ERA-Interim': {'keyerror': None,
          'name': 'ERA-Interim',
          'nyears': 40,
          'time_period': ['1979-1-16 12:0:0.0', '2019-3-16 12:0:0.0']},
         'HadISST': {'keyerror': None,
          'name': 'HadISST',
          'nyears': 151,
          'time_period': ['1870-1-16 11:59:59.5', '2020-10-16 12:0:0.0']},
         'Tropflux': {'keyerror': None,
          'name': 'Tropflux',
          'nyears': 40,
          'time_period': ['1979-1-15 0:0:0.0', '2018-12-15 12:0:0.0']},
         'method': 'Standard deviation of nino3.4 sstA, time series are linearly detrended',
         'name': 'ENSO skewness',
         'ref': 'Using CDAT regression calculation',
         'time_frequency': 'monthly',
         'units': 'C'},
        'metric': {'datasets': "CESM1-FASTCHEM_r1i1p1; ERA-Interim's ts & HadISST's sst & Tropflux's sst; 's ",
         'method': 'The metric is the absolute value of the relative difference between model and observations values (M = 100 * abs[[model-obs] / obs])',
         'name': 'EnsoSstSkew',
         'units': '%'}},
       'EnsoSstTsRmse': {'diagnostic': {'CESM1-FASTCHEM_r1i1p1': {'keyerror': None,
          'name': 'CESM1-FASTCHEM_r1i1p1',
          'nyears': 156,
          'time_period': ['1850-1-16 12:0:0.0', '2005-12-16 12:0:0.0']},
         'ERA-Interim': {'name': 'ERA-Interim',
          'nyears': 40,
          'time_period': ['1979-1-16 12:0:0.0', '2019-3-16 12:0:0.0']},
         'HadISST': {'name': 'HadISST',
          'nyears': 151,
          'time_period': ['1870-1-16 11:59:59.5', '2020-10-16 12:0:0.0']},
         'Tropflux': {'name': 'Tropflux',
          'nyears': 40,
          'time_period': ['1979-1-15 0:0:0.0', '2018-12-15 12:0:0.0']},
         'method': 'nino3.4 SSTA during DEC regressed against nino3.4 SSTA during 6 years (centered on ENSO), time series are linearly detrended, smoothing using a triangle shaped window of 5 points',
         'name': 'ENSO life cyle SSTA pattern',
         'ref': 'Using CDAT regridding and rms (uncentered and biased) calculation',
         'time_frequency': 'monthly',
         'units': 'C/C'},
        'metric': {'datasets': "CESM1-FASTCHEM_r1i1p1; ERA-Interim's ts & HadISST's sst & Tropflux's sst; 's ",
         'method': 'The metric is the statistical value between the model and the observations',
         'name': 'EnsoSstTsRmse',
         'units': 'C/C'}},
       'SeasonalPrLatRmse': {'diagnostic': {'CESM1-FASTCHEM_r1i1p1': {'keyerror': None,
          'name': 'CESM1-FASTCHEM_r1i1p1',
          'nyears': 156,
          'time_period': ['1850-1-16 12:0:0.0', '2005-12-16 12:0:0.0']},
         'ERA-Interim': {'name': 'ERA-Interim',
          'nyears': 40,
          'time_period': ['1979-1-16 12:0:0.0', '2019-3-16 12:0:0.0']},
         'GPCPv2.3': {'name': 'GPCPv2.3',
          'nyears': 41,
          'time_period': ['1979-1-1 0:0:0.0', '2019-7-1 0:0:0.0']},
         'method': 'Meridional root mean square error of nino3_LatExt climatological pr STD, time series are linearly detrended, observations and model regridded to generic_1x1deg',
         'name': 'pr meridional seasonality RMSE',
         'ref': 'Using CDAT regridding and rms (uncentered and biased) calculation',
         'time_frequency': 'monthly',
         'units': 'mm/day'},
        'metric': {'datasets': "CESM1-FASTCHEM_r1i1p1; ERA-Interim's pr & GPCPv2.3's precip; 's ",
         'method': 'The metric is the statistical value between the model and the observations',
         'name': 'SeasonalPrLatRmse',
         'units': 'mm/day'}},
       'SeasonalPrLonRmse': {'diagnostic': {'CESM1-FASTCHEM_r1i1p1': {'keyerror': None,
          'name': 'CESM1-FASTCHEM_r1i1p1',
          'nyears': 156,
          'time_period': ['1850-1-16 12:0:0.0', '2005-12-16 12:0:0.0']},
         'ERA-Interim': {'name': 'ERA-Interim',
          'nyears': 40,
          'time_period': ['1979-1-16 12:0:0.0', '2019-3-16 12:0:0.0']},
         'GPCPv2.3': {'name': 'GPCPv2.3',
          'nyears': 41,
          'time_period': ['1979-1-1 0:0:0.0', '2019-7-1 0:0:0.0']},
         'method': 'Zonal root mean square error of equatorial_pacific climatological pr STD, time series are linearly detrended, observations and model regridded to generic_1x1deg',
         'name': 'pr zonal seasonality RMSE',
         'ref': 'Using CDAT regridding and rms (uncentered and biased) calculation',
         'time_frequency': 'monthly',
         'units': 'mm/day'},
        'metric': {'datasets': "CESM1-FASTCHEM_r1i1p1; ERA-Interim's pr & GPCPv2.3's precip; 's ",
         'method': 'The metric is the statistical value between the model and the observations',
         'name': 'SeasonalPrLonRmse',
         'units': 'mm/day'}},
       'SeasonalSstLonRmse': {'diagnostic': {'CESM1-FASTCHEM_r1i1p1': {'keyerror': None,
          'name': 'CESM1-FASTCHEM_r1i1p1',
          'nyears': 156,
          'time_period': ['1850-1-16 12:0:0.0', '2005-12-16 12:0:0.0']},
         'ERA-Interim': {'name': 'ERA-Interim',
          'nyears': 40,
          'time_period': ['1979-1-16 12:0:0.0', '2019-3-16 12:0:0.0']},
         'HadISST': {'name': 'HadISST',
          'nyears': 151,
          'time_period': ['1870-1-16 11:59:59.5', '2020-10-16 12:0:0.0']},
         'Tropflux': {'name': 'Tropflux',
          'nyears': 40,
          'time_period': ['1979-1-15 0:0:0.0', '2018-12-15 12:0:0.0']},
         'method': 'Zonal root mean square error of equatorial_pacific climatological sst STD, time series are linearly detrended, observations and model regridded to generic_1x1deg',
         'name': 'sst zonal seasonality RMSE',
         'ref': 'Using CDAT regridding and rms (uncentered and biased) calculation',
         'time_frequency': 'monthly',
         'units': 'C'},
        'metric': {'datasets': "CESM1-FASTCHEM_r1i1p1; ERA-Interim's ts & HadISST's sst & Tropflux's sst; 's ",
         'method': 'The metric is the statistical value between the model and the observations',
         'name': 'SeasonalSstLonRmse',
         'units': 'C'}},
       'SeasonalTauxLonRmse': {'diagnostic': {'CESM1-FASTCHEM_r1i1p1': {'keyerror': None,
          'name': 'CESM1-FASTCHEM_r1i1p1',
          'nyears': 156,
          'time_period': ['1850-1-16 12:0:0.0', '2005-12-16 12:0:0.0']},
         'ERA-Interim': {'name': 'ERA-Interim',
          'nyears': 40,
          'time_period': ['1979-1-16 12:0:0.0', '2019-3-16 12:0:0.0']},
         'Tropflux': {'name': 'Tropflux',
          'nyears': 40,
          'time_period': ['1979-1-15 0:0:0.0', '2018-12-15 12:0:0.0']},
         'method': 'Zonal root mean square error of equatorial_pacific climatological taux STD, time series are linearly detrended, observations and model regridded to generic_1x1deg',
         'name': 'taux zonal seasonality RMSE',
         'ref': 'Using CDAT regridding and rms (uncentered and biased) calculation',
         'time_frequency': 'monthly',
         'units': '1e-3 N/m2'},
        'metric': {'datasets': "CESM1-FASTCHEM_r1i1p1; ERA-Interim's tauu & Tropflux's taux; 's ",
         'method': 'The metric is the statistical value between the model and the observations',
         'name': 'SeasonalTauxLonRmse',
         'units': '1e-3 N/m2'}}},
      'name': 'Metrics Collection for ENSO performance'},
     'value': {'BiasPrLatRmse': {'diagnostic': {'CESM1-FASTCHEM_r1i1p1': {'value': None,
         'value_error': None},
        'ERA-Interim': {'value': None, 'value_error': None},
        'GPCPv2.3': {'value': None, 'value_error': None}},
       'metric': {'ERA-Interim': {'value': 1.3125317822337106,
         'value_error': None},
        'GPCPv2.3': {'value': 1.385976739580019, 'value_error': None}}},
      'BiasPrLonRmse': {'diagnostic': {'CESM1-FASTCHEM_r1i1p1': {'value': None,
         'value_error': None},
        'ERA-Interim': {'value': None, 'value_error': None},
        'GPCPv2.3': {'value': None, 'value_error': None}},
       'metric': {'ERA-Interim': {'value': 1.4955107323729973,
         'value_error': None},
        'GPCPv2.3': {'value': 0.517301495171631, 'value_error': None}}},
      'BiasSstLonRmse': {'diagnostic': {'CESM1-FASTCHEM_r1i1p1': {'value': None,
         'value_error': None},
        'ERA-Interim': {'value': None, 'value_error': None},
        'HadISST': {'value': None, 'value_error': None},
        'Tropflux': {'value': None, 'value_error': None}},
       'metric': {'ERA-Interim': {'value': 0.3252599213443148,
         'value_error': None},
        'HadISST': {'value': 0.2238201737967203, 'value_error': None},
        'Tropflux': {'value': 0.3702887071732048, 'value_error': None}}},
      'BiasTauxLonRmse': {'diagnostic': {'CESM1-FASTCHEM_r1i1p1': {'value': None,
         'value_error': None},
        'ERA-Interim': {'value': None, 'value_error': None},
        'Tropflux': {'value': None, 'value_error': None}},
       'metric': {'ERA-Interim': {'value': 5.9462014312196825,
         'value_error': None},
        'Tropflux': {'value': 6.235115044805253, 'value_error': None}}},
      'EnsoAmpl': {'diagnostic': {'CESM1-FASTCHEM_r1i1p1': {'value': 0.9413164660893526,
         'value_error': 0.07536563393060847},
        'ERA-Interim': {'value': 0.8989844997845644,
         'value_error': 0.14214193002531866},
        'HadISST': {'value': 0.7665787872085695,
         'value_error': 0.06238329697691264},
        'Tropflux': {'value': 0.9039789553693535,
         'value_error': 0.14293162279134272}},
       'metric': {'ERA-Interim': {'value': 4.708864982091767,
         'value_error': 24.939343846027047},
        'HadISST': {'value': 22.794483984754553,
         'value_error': 19.824300395718865},
        'Tropflux': {'value': 4.130351762972572,
         'value_error': 24.801554747715706}}},
      'EnsoDuration': {'diagnostic': {'CESM1-FASTCHEM_r1i1p1': {'value': 13.0,
         'value_error': None},
        'ERA-Interim': {'value': 13.0, 'value_error': None},
        'HadISST': {'value': 13.0, 'value_error': None},
        'Tropflux': {'value': 13.0, 'value_error': None}},
       'metric': {'ERA-Interim': {'value': 0.0, 'value_error': None},
        'HadISST': {'value': 0.0, 'value_error': None},
        'Tropflux': {'value': 0.0, 'value_error': None}}},
      'EnsoSeasonality': {'diagnostic': {'CESM1-FASTCHEM_r1i1p1': {'value': 1.5660494332182608,
         'value_error': 0.25117241973214255},
        'ERA-Interim': {'value': 2.0466846866656914,
         'value_error': 0.6513411033995022},
        'HadISST': {'value': 1.6639865947361325,
         'value_error': 0.2712772451657809},
        'Tropflux': {'value': 2.0532132553583624,
         'value_error': 0.6534187683977347}},
       'metric': {'ERA-Interim': {'value': 23.483600408934816,
         'value_error': 36.62289486961859},
        'HadISST': {'value': 5.885694141268134,
         'value_error': 30.437932467414093},
        'Tropflux': {'value': 23.72689835645315,
         'value_error': 36.50644564825456}}},
      'EnsoSstDiversity_2': {'diagnostic': {'CESM1-FASTCHEM_r1i1p1': {'value': 41.0,
         'value_error': None},
        'ERA-Interim': {'value': 33.25, 'value_error': None},
        'HadISST': {'value': 49.0, 'value_error': None},
        'Tropflux': {'value': 32.0, 'value_error': None}},
       'metric': {'ERA-Interim': {'value': 23.308270676691727,
         'value_error': None},
        'HadISST': {'value': 16.3265306122449, 'value_error': None},
        'Tropflux': {'value': 28.125, 'value_error': None}}},
      'EnsoSstLonRmse': {'diagnostic': {'CESM1-FASTCHEM_r1i1p1': {'value': None,
         'value_error': None},
        'ERA-Interim': {'value': None, 'value_error': None},
        'HadISST': {'value': None, 'value_error': None},
        'Tropflux': {'value': None, 'value_error': None}},
       'metric': {'ERA-Interim': {'value': 0.1388074149248283,
         'value_error': None},
        'HadISST': {'value': 0.1605886355811759, 'value_error': None},
        'Tropflux': {'value': 0.1410870818913125, 'value_error': None}}},
      'EnsoSstSkew': {'diagnostic': {'CESM1-FASTCHEM_r1i1p1': {'value': 0.1361807560272184,
         'value_error': 0.010903186523209738},
        'ERA-Interim': {'value': 0.39098111106809963,
         'value_error': 0.061819541653923164},
        'HadISST': {'value': 0.38989908235027515,
         'value_error': 0.03172953733021198},
        'Tropflux': {'value': 0.39744741059612115,
         'value_error': 0.06284195338099416}},
       'metric': {'ERA-Interim': {'value': 65.16947950370448,
         'value_error': 8.295862314444639},
        'HadISST': {'value': 65.0728195597862,
         'value_error': 5.638746094720672},
        'Tropflux': {'value': 65.73615718794987,
         'value_error': 8.160892179683996}}},
      'EnsoSstTsRmse': {'diagnostic': {'CESM1-FASTCHEM_r1i1p1': {'value': None,
         'value_error': None},
        'ERA-Interim': {'value': None, 'value_error': None},
        'HadISST': {'value': None, 'value_error': None},
        'Tropflux': {'value': None, 'value_error': None}},
       'metric': {'ERA-Interim': {'value': 0.0965354339526479,
         'value_error': None},
        'HadISST': {'value': 0.11304951261808976, 'value_error': None},
        'Tropflux': {'value': 0.0998994934595478, 'value_error': None}}},
      'SeasonalPrLatRmse': {'diagnostic': {'CESM1-FASTCHEM_r1i1p1': {'value': None,
         'value_error': None},
        'ERA-Interim': {'value': None, 'value_error': None},
        'GPCPv2.3': {'value': None, 'value_error': None}},
       'metric': {'ERA-Interim': {'value': 1.301233552472251,
         'value_error': None},
        'GPCPv2.3': {'value': 1.5808837537267193, 'value_error': None}}},
      'SeasonalPrLonRmse': {'diagnostic': {'CESM1-FASTCHEM_r1i1p1': {'value': None,
         'value_error': None},
        'ERA-Interim': {'value': None, 'value_error': None},
        'GPCPv2.3': {'value': None, 'value_error': None}},
       'metric': {'ERA-Interim': {'value': 0.4297374040762737,
         'value_error': None},
        'GPCPv2.3': {'value': 0.3932194530045997, 'value_error': None}}},
      'SeasonalSstLonRmse': {'diagnostic': {'CESM1-FASTCHEM_r1i1p1': {'value': None,
         'value_error': None},
        'ERA-Interim': {'value': None, 'value_error': None},
        'HadISST': {'value': None, 'value_error': None},
        'Tropflux': {'value': None, 'value_error': None}},
       'metric': {'ERA-Interim': {'value': 0.19330767034122598,
         'value_error': None},
        'HadISST': {'value': 0.19583057631216325, 'value_error': None},
        'Tropflux': {'value': 0.20184254987821496, 'value_error': None}}},
      'SeasonalTauxLonRmse': {'diagnostic': {'CESM1-FASTCHEM_r1i1p1': {'value': None,
         'value_error': None},
        'ERA-Interim': {'value': None, 'value_error': None},
        'Tropflux': {'value': None, 'value_error': None}},
       'metric': {'ERA-Interim': {'value': 1.533026919554631,
         'value_error': None},
        'Tropflux': {'value': 1.6770147912622382, 'value_error': None}}}}},
    'r2i1p1': {'metadata': {'description_of_the_collection': 'Describe which science question this collection is about',
      'metrics': {'BiasPrLatRmse': {'diagnostic': {'CESM1-FASTCHEM_r2i1p1': {'keyerror': None,
          'name': 'CESM1-FASTCHEM_r2i1p1',
          'nyears': 156,
          'time_period': ['1850-1-16 12:0:0.0', '2005-12-16 12:0:0.0']},
         'ERA-Interim': {'name': 'ERA-Interim',
          'nyears': 40,
          'time_period': ['1979-1-16 12:0:0.0', '2019-3-16 12:0:0.0']},
         'GPCPv2.3': {'name': 'GPCPv2.3',
          'nyears': 41,
          'time_period': ['1979-1-1 0:0:0.0', '2019-7-1 0:0:0.0']},
         'method': 'Meridional root mean square error of nino3_LatExt pr, time series are linearly detrended, observations and model regridded to generic_1x1deg',
         'name': 'pr Meridional RMSE',
         'ref': 'Using CDAT regridding and rms (uncentered and biased) calculation',
         'time_frequency': 'monthly',
         'units': 'mm/day'},
        'metric': {'datasets': "CESM1-FASTCHEM_r2i1p1; ERA-Interim's pr & GPCPv2.3's precip; 's ",
         'method': 'The metric is the statistical value between the model and the observations',
         'name': 'BiasPrLatRmse',
         'units': 'mm/day'}},
       'BiasPrLonRmse': {'diagnostic': {'CESM1-FASTCHEM_r2i1p1': {'keyerror': None,
          'name': 'CESM1-FASTCHEM_r2i1p1',
          'nyears': 156,
          'time_period': ['1850-1-16 12:0:0.0', '2005-12-16 12:0:0.0']},
         'ERA-Interim': {'name': 'ERA-Interim',
          'nyears': 40,
          'time_period': ['1979-1-16 12:0:0.0', '2019-3-16 12:0:0.0']},
         'GPCPv2.3': {'name': 'GPCPv2.3',
          'nyears': 41,
          'time_period': ['1979-1-1 0:0:0.0', '2019-7-1 0:0:0.0']},
         'method': 'Zonal root mean square error of equatorial_pacific pr, time series are linearly detrended, observations and model regridded to generic_1x1deg',
         'name': 'pr Zonal RMSE',
         'ref': 'Using CDAT regridding and rms (uncentered and biased) calculation',
         'time_frequency': 'monthly',
         'units': 'mm/day'},
        'metric': {'datasets': "CESM1-FASTCHEM_r2i1p1; ERA-Interim's pr & GPCPv2.3's precip; 's ",
         'method': 'The metric is the statistical value between the model and the observations',
         'name': 'BiasPrLonRmse',
         'units': 'mm/day'}},
       'BiasSstLonRmse': {'diagnostic': {'CESM1-FASTCHEM_r2i1p1': {'keyerror': None,
          'name': 'CESM1-FASTCHEM_r2i1p1',
          'nyears': 156,
          'time_period': ['1850-1-16 12:0:0.0', '2005-12-16 12:0:0.0']},
         'ERA-Interim': {'name': 'ERA-Interim',
          'nyears': 40,
          'time_period': ['1979-1-16 12:0:0.0', '2019-3-16 12:0:0.0']},
         'HadISST': {'name': 'HadISST',
          'nyears': 151,
          'time_period': ['1870-1-16 11:59:59.5', '2020-10-16 12:0:0.0']},
         'Tropflux': {'name': 'Tropflux',
          'nyears': 40,
          'time_period': ['1979-1-15 0:0:0.0', '2018-12-15 12:0:0.0']},
         'method': 'Zonal root mean square error of equatorial_pacific sst, time series are linearly detrended, observations and model regridded to generic_1x1deg',
         'name': 'sst Zonal RMSE',
         'ref': 'Using CDAT regridding and rms (uncentered and biased) calculation',
         'time_frequency': 'monthly',
         'units': 'C'},
        'metric': {'datasets': "CESM1-FASTCHEM_r2i1p1; ERA-Interim's ts & HadISST's sst & Tropflux's sst; 's ",
         'method': 'The metric is the statistical value between the model and the observations',
         'name': 'BiasSstLonRmse',
         'units': 'C'}},
       'BiasTauxLonRmse': {'diagnostic': {'CESM1-FASTCHEM_r2i1p1': {'keyerror': None,
          'name': 'CESM1-FASTCHEM_r2i1p1',
          'nyears': 156,
          'time_period': ['1850-1-16 12:0:0.0', '2005-12-16 12:0:0.0']},
         'ERA-Interim': {'name': 'ERA-Interim',
          'nyears': 40,
          'time_period': ['1979-1-16 12:0:0.0', '2019-3-16 12:0:0.0']},
         'Tropflux': {'name': 'Tropflux',
          'nyears': 40,
          'time_period': ['1979-1-15 0:0:0.0', '2018-12-15 12:0:0.0']},
         'method': 'Zonal root mean square error of equatorial_pacific taux, time series are linearly detrended, observations and model regridded to generic_1x1deg',
         'name': 'taux Zonal RMSE',
         'ref': 'Using CDAT regridding and rms (uncentered and biased) calculation',
         'time_frequency': 'monthly',
         'units': '1e-3 N/m2'},
        'metric': {'datasets': "CESM1-FASTCHEM_r2i1p1; ERA-Interim's tauu & Tropflux's taux; 's ",
         'method': 'The metric is the statistical value between the model and the observations',
         'name': 'BiasTauxLonRmse',
         'units': '1e-3 N/m2'}},
       'EnsoAmpl': {'diagnostic': {'CESM1-FASTCHEM_r2i1p1': {'keyerror': None,
          'name': 'CESM1-FASTCHEM_r2i1p1',
          'nyears': 156,
          'time_period': ['1850-1-16 12:0:0.0', '2005-12-16 12:0:0.0']},
         'ERA-Interim': {'keyerror': None,
          'name': 'ERA-Interim',
          'nyears': 40,
          'time_period': ['1979-1-16 12:0:0.0', '2019-3-16 12:0:0.0']},
         'HadISST': {'keyerror': None,
          'name': 'HadISST',
          'nyears': 151,
          'time_period': ['1870-1-16 11:59:59.5', '2020-10-16 12:0:0.0']},
         'Tropflux': {'keyerror': None,
          'name': 'Tropflux',
          'nyears': 40,
          'time_period': ['1979-1-15 0:0:0.0', '2018-12-15 12:0:0.0']},
         'method': 'Standard deviation of nino3.4 sstA, time series are linearly detrended',
         'name': 'ENSO amplitude',
         'ref': 'Using CDAT regression calculation',
         'time_frequency': 'monthly',
         'units': 'C'},
        'metric': {'datasets': "CESM1-FASTCHEM_r2i1p1; ERA-Interim's ts & HadISST's sst & Tropflux's sst; 's ",
         'method': 'The metric is the absolute value of the relative difference between model and observations values (M = 100 * abs[[model-obs] / obs])',
         'name': 'EnsoAmpl',
         'units': '%'}},
       'EnsoDuration': {'diagnostic': {'CESM1-FASTCHEM_r2i1p1': {'keyerror': None,
          'name': 'CESM1-FASTCHEM_r2i1p1',
          'nyears': 156,
          'time_period': ['1850-1-16 12:0:0.0', '2005-12-16 12:0:0.0']},
         'ERA-Interim': {'keyerror': None,
          'name': 'ERA-Interim',
          'nyears': 40,
          'time_period': ['1979-1-16 12:0:0.0', '2019-3-16 12:0:0.0']},
         'HadISST': {'keyerror': None,
          'name': 'HadISST',
          'nyears': 151,
          'time_period': ['1870-1-16 11:59:59.5', '2020-10-16 12:0:0.0']},
         'Tropflux': {'keyerror': None,
          'name': 'Tropflux',
          'nyears': 40,
          'time_period': ['1979-1-15 0:0:0.0', '2018-12-15 12:0:0.0']},
         'method': 'nino3.4 SSTA during DEC regressed against nino3.4 SSTA during 6 years (centered on ENSO), the duration is the number of consecutive months during which the regression is above 0.25, time series are linearly detrended, smoothing using a triangle shaped window of 5 points',
         'name': 'ENSO Duration based on life cyle SSTA pattern',
         'ref': 'Using CDAT',
         'time_frequency': 'monthly',
         'units': 'months'},
        'metric': {'datasets': "CESM1-FASTCHEM_r2i1p1; ERA-Interim's ts & HadISST's sst & Tropflux's sst; 's ",
         'method': 'The metric is the absolute value of the relative difference between model and observations values (M = 100 * abs[[model-obs] / obs])',
         'name': 'EnsoDuration',
         'units': '%'}},
       'EnsoSeasonality': {'diagnostic': {'CESM1-FASTCHEM_r2i1p1': {'keyerror': None,
          'name': 'CESM1-FASTCHEM_r2i1p1',
          'nyears': 156,
          'time_period': ['1850-1-16 12:0:0.0', '2005-12-16 12:0:0.0']},
         'ERA-Interim': {'keyerror': None,
          'name': 'ERA-Interim',
          'nyears': 40,
          'time_period': ['1979-1-16 12:0:0.0', '2019-3-16 12:0:0.0']},
         'HadISST': {'keyerror': None,
          'name': 'HadISST',
          'nyears': 151,
          'time_period': ['1870-1-16 11:59:59.5', '2020-10-16 12:0:0.0']},
         'Tropflux': {'keyerror': None,
          'name': 'Tropflux',
          'nyears': 40,
          'time_period': ['1979-1-15 0:0:0.0', '2018-12-15 12:0:0.0']},
         'method': 'Ratio between NDJ and MAM standard deviation nino3.4 sstA, time series are linearly detrended',
         'name': 'ENSO seasonality',
         'ref': 'Using CDAT std dev calculation',
         'time_frequency': 'monthly',
         'units': 'C/C'},
        'metric': {'datasets': "CESM1-FASTCHEM_r2i1p1; ERA-Interim's ts & HadISST's sst & Tropflux's sst; 's ",
         'method': 'The metric is the absolute value of the relative difference between model and observations values (M = 100 * abs[[model-obs] / obs])',
         'name': 'EnsoSeasonality',
         'units': '%'}},
       'EnsoSstDiversity_2': {'diagnostic': {'CESM1-FASTCHEM_r2i1p1': {'keyerror': None,
          'name': 'CESM1-FASTCHEM_r2i1p1',
          'nyears': 156,
          'time_period': ['1850-1-16 12:0:0.0', '2005-12-16 12:0:0.0']},
         'ERA-Interim': {'keyerror': None,
          'name': 'ERA-Interim',
          'nyears': 40,
          'time_period': ['1979-1-16 12:0:0.0', '2019-3-16 12:0:0.0']},
         'HadISST': {'keyerror': None,
          'name': 'HadISST',
          'nyears': 151,
          'time_period': ['1870-1-16 11:59:59.5', '2020-10-16 12:0:0.0']},
         'Tropflux': {'keyerror': None,
          'name': 'Tropflux',
          'nyears': 40,
          'time_period': ['1979-1-15 0:0:0.0', '2018-12-15 12:0:0.0']},
         'method': 'Nino (Nina) events = nino3.4 sstA > 0.75 (< -0.75) during DEC, zonal SSTA (meridional averaged [-5.0 ; 5.0]), the zonal SSTA maximum (minimum) is located for each event, the diversity is the interquartile range (IQR = Q3 - Q1), time series are linearly detrended, smoothing using a triangle shaped window of 5 points',
         'name': 'ENSO Diversity (interquartile range)',
         'ref': 'Using CDAT regridding',
         'time_frequency': 'monthly',
         'units': 'long'},
        'metric': {'datasets': "CESM1-FASTCHEM_r2i1p1; ERA-Interim's ts & HadISST's sst & Tropflux's sst; 's ",
         'method': 'The metric is the absolute value of the relative difference between model and observations values (M = 100 * abs[[model-obs] / obs])',
         'name': 'EnsoSstDiversity',
         'units': '%'}},
       'EnsoSstLonRmse': {'diagnostic': {'CESM1-FASTCHEM_r2i1p1': {'keyerror': None,
          'name': 'CESM1-FASTCHEM_r2i1p1',
          'nyears': 156,
          'time_period': ['1850-1-16 12:0:0.0', '2005-12-16 12:0:0.0']},
         'ERA-Interim': {'name': 'ERA-Interim',
          'nyears': 40,
          'time_period': ['1979-1-16 12:0:0.0', '2019-3-16 12:0:0.0']},
         'HadISST': {'name': 'HadISST',
          'nyears': 151,
          'time_period': ['1870-1-16 11:59:59.5', '2020-10-16 12:0:0.0']},
         'Tropflux': {'name': 'Tropflux',
          'nyears': 40,
          'time_period': ['1979-1-15 0:0:0.0', '2018-12-15 12:0:0.0']},
         'method': 'nino3.4 SSTA during DEC regressed against equatorial_pacific SSTA, time series are linearly detrended, smoothing using a triangle shaped window of 5 points, observations and model regridded to generic_1x1deg',
         'name': 'ENSO Zonal SSTA pattern',
         'ref': 'Using CDAT regridding and rms (uncentered and biased) calculation',
         'time_frequency': 'monthly',
         'units': 'C/C'},
        'metric': {'datasets': "CESM1-FASTCHEM_r2i1p1; ERA-Interim's ts & HadISST's sst & Tropflux's sst; 's ",
         'method': 'The metric is the statistical value between the model and the observations',
         'name': 'EnsoSstLonRmse',
         'units': 'C/C'}},
       'EnsoSstSkew': {'diagnostic': {'CESM1-FASTCHEM_r2i1p1': {'keyerror': None,
          'name': 'CESM1-FASTCHEM_r2i1p1',
          'nyears': 156,
          'time_period': ['1850-1-16 12:0:0.0', '2005-12-16 12:0:0.0']},
         'ERA-Interim': {'keyerror': None,
          'name': 'ERA-Interim',
          'nyears': 40,
          'time_period': ['1979-1-16 12:0:0.0', '2019-3-16 12:0:0.0']},
         'HadISST': {'keyerror': None,
          'name': 'HadISST',
          'nyears': 151,
          'time_period': ['1870-1-16 11:59:59.5', '2020-10-16 12:0:0.0']},
         'Tropflux': {'keyerror': None,
          'name': 'Tropflux',
          'nyears': 40,
          'time_period': ['1979-1-15 0:0:0.0', '2018-12-15 12:0:0.0']},
         'method': 'Standard deviation of nino3.4 sstA, time series are linearly detrended',
         'name': 'ENSO skewness',
         'ref': 'Using CDAT regression calculation',
         'time_frequency': 'monthly',
         'units': 'C'},
        'metric': {'datasets': "CESM1-FASTCHEM_r2i1p1; ERA-Interim's ts & HadISST's sst & Tropflux's sst; 's ",
         'method': 'The metric is the absolute value of the relative difference between model and observations values (M = 100 * abs[[model-obs] / obs])',
         'name': 'EnsoSstSkew',
         'units': '%'}},
       'EnsoSstTsRmse': {'diagnostic': {'CESM1-FASTCHEM_r2i1p1': {'keyerror': None,
          'name': 'CESM1-FASTCHEM_r2i1p1',
          'nyears': 156,
          'time_period': ['1850-1-16 12:0:0.0', '2005-12-16 12:0:0.0']},
         'ERA-Interim': {'name': 'ERA-Interim',
          'nyears': 40,
          'time_period': ['1979-1-16 12:0:0.0', '2019-3-16 12:0:0.0']},
         'HadISST': {'name': 'HadISST',
          'nyears': 151,
          'time_period': ['1870-1-16 11:59:59.5', '2020-10-16 12:0:0.0']},
         'Tropflux': {'name': 'Tropflux',
          'nyears': 40,
          'time_period': ['1979-1-15 0:0:0.0', '2018-12-15 12:0:0.0']},
         'method': 'nino3.4 SSTA during DEC regressed against nino3.4 SSTA during 6 years (centered on ENSO), time series are linearly detrended, smoothing using a triangle shaped window of 5 points',
         'name': 'ENSO life cyle SSTA pattern',
         'ref': 'Using CDAT regridding and rms (uncentered and biased) calculation',
         'time_frequency': 'monthly',
         'units': 'C/C'},
        'metric': {'datasets': "CESM1-FASTCHEM_r2i1p1; ERA-Interim's ts & HadISST's sst & Tropflux's sst; 's ",
         'method': 'The metric is the statistical value between the model and the observations',
         'name': 'EnsoSstTsRmse',
         'units': 'C/C'}},
       'SeasonalPrLatRmse': {'diagnostic': {'CESM1-FASTCHEM_r2i1p1': {'keyerror': None,
          'name': 'CESM1-FASTCHEM_r2i1p1',
          'nyears': 156,
          'time_period': ['1850-1-16 12:0:0.0', '2005-12-16 12:0:0.0']},
         'ERA-Interim': {'name': 'ERA-Interim',
          'nyears': 40,
          'time_period': ['1979-1-16 12:0:0.0', '2019-3-16 12:0:0.0']},
         'GPCPv2.3': {'name': 'GPCPv2.3',
          'nyears': 41,
          'time_period': ['1979-1-1 0:0:0.0', '2019-7-1 0:0:0.0']},
         'method': 'Meridional root mean square error of nino3_LatExt climatological pr STD, time series are linearly detrended, observations and model regridded to generic_1x1deg',
         'name': 'pr meridional seasonality RMSE',
         'ref': 'Using CDAT regridding and rms (uncentered and biased) calculation',
         'time_frequency': 'monthly',
         'units': 'mm/day'},
        'metric': {'datasets': "CESM1-FASTCHEM_r2i1p1; ERA-Interim's pr & GPCPv2.3's precip; 's ",
         'method': 'The metric is the statistical value between the model and the observations',
         'name': 'SeasonalPrLatRmse',
         'units': 'mm/day'}},
       'SeasonalPrLonRmse': {'diagnostic': {'CESM1-FASTCHEM_r2i1p1': {'keyerror': None,
          'name': 'CESM1-FASTCHEM_r2i1p1',
          'nyears': 156,
          'time_period': ['1850-1-16 12:0:0.0', '2005-12-16 12:0:0.0']},
         'ERA-Interim': {'name': 'ERA-Interim',
          'nyears': 40,
          'time_period': ['1979-1-16 12:0:0.0', '2019-3-16 12:0:0.0']},
         'GPCPv2.3': {'name': 'GPCPv2.3',
          'nyears': 41,
          'time_period': ['1979-1-1 0:0:0.0', '2019-7-1 0:0:0.0']},
         'method': 'Zonal root mean square error of equatorial_pacific climatological pr STD, time series are linearly detrended, observations and model regridded to generic_1x1deg',
         'name': 'pr zonal seasonality RMSE',
         'ref': 'Using CDAT regridding and rms (uncentered and biased) calculation',
         'time_frequency': 'monthly',
         'units': 'mm/day'},
        'metric': {'datasets': "CESM1-FASTCHEM_r2i1p1; ERA-Interim's pr & GPCPv2.3's precip; 's ",
         'method': 'The metric is the statistical value between the model and the observations',
         'name': 'SeasonalPrLonRmse',
         'units': 'mm/day'}},
       'SeasonalSstLonRmse': {'diagnostic': {'CESM1-FASTCHEM_r2i1p1': {'keyerror': None,
          'name': 'CESM1-FASTCHEM_r2i1p1',
          'nyears': 156,
          'time_period': ['1850-1-16 12:0:0.0', '2005-12-16 12:0:0.0']},
         'ERA-Interim': {'name': 'ERA-Interim',
          'nyears': 40,
          'time_period': ['1979-1-16 12:0:0.0', '2019-3-16 12:0:0.0']},
         'HadISST': {'name': 'HadISST',
          'nyears': 151,
          'time_period': ['1870-1-16 11:59:59.5', '2020-10-16 12:0:0.0']},
         'Tropflux': {'name': 'Tropflux',
          'nyears': 40,
          'time_period': ['1979-1-15 0:0:0.0', '2018-12-15 12:0:0.0']},
         'method': 'Zonal root mean square error of equatorial_pacific climatological sst STD, time series are linearly detrended, observations and model regridded to generic_1x1deg',
         'name': 'sst zonal seasonality RMSE',
         'ref': 'Using CDAT regridding and rms (uncentered and biased) calculation',
         'time_frequency': 'monthly',
         'units': 'C'},
        'metric': {'datasets': "CESM1-FASTCHEM_r2i1p1; ERA-Interim's ts & HadISST's sst & Tropflux's sst; 's ",
         'method': 'The metric is the statistical value between the model and the observations',
         'name': 'SeasonalSstLonRmse',
         'units': 'C'}},
       'SeasonalTauxLonRmse': {'diagnostic': {'CESM1-FASTCHEM_r2i1p1': {'keyerror': None,
          'name': 'CESM1-FASTCHEM_r2i1p1',
          'nyears': 156,
          'time_period': ['1850-1-16 12:0:0.0', '2005-12-16 12:0:0.0']},
         'ERA-Interim': {'name': 'ERA-Interim',
          'nyears': 40,
          'time_period': ['1979-1-16 12:0:0.0', '2019-3-16 12:0:0.0']},
         'Tropflux': {'name': 'Tropflux',
          'nyears': 40,
          'time_period': ['1979-1-15 0:0:0.0', '2018-12-15 12:0:0.0']},
         'method': 'Zonal root mean square error of equatorial_pacific climatological taux STD, time series are linearly detrended, observations and model regridded to generic_1x1deg',
         'name': 'taux zonal seasonality RMSE',
         'ref': 'Using CDAT regridding and rms (uncentered and biased) calculation',
         'time_frequency': 'monthly',
         'units': '1e-3 N/m2'},
        'metric': {'datasets': "CESM1-FASTCHEM_r2i1p1; ERA-Interim's tauu & Tropflux's taux; 's ",
         'method': 'The metric is the statistical value between the model and the observations',
         'name': 'SeasonalTauxLonRmse',
         'units': '1e-3 N/m2'}}},
      'name': 'Metrics Collection for ENSO performance'},
     'value': {'BiasPrLatRmse': {'diagnostic': {'CESM1-FASTCHEM_r2i1p1': {'value': None,
         'value_error': None},
        'ERA-Interim': {'value': None, 'value_error': None},
        'GPCPv2.3': {'value': None, 'value_error': None}},
       'metric': {'ERA-Interim': {'value': 1.2875208129278142,
         'value_error': None},
        'GPCPv2.3': {'value': 1.4018514711684857, 'value_error': None}}},
      'BiasPrLonRmse': {'diagnostic': {'CESM1-FASTCHEM_r2i1p1': {'value': None,
         'value_error': None},
        'ERA-Interim': {'value': None, 'value_error': None},
        'GPCPv2.3': {'value': None, 'value_error': None}},
       'metric': {'ERA-Interim': {'value': 1.4823045614654373,
         'value_error': None},
        'GPCPv2.3': {'value': 0.5616745086610696, 'value_error': None}}},
      'BiasSstLonRmse': {'diagnostic': {'CESM1-FASTCHEM_r2i1p1': {'value': None,
         'value_error': None},
        'ERA-Interim': {'value': None, 'value_error': None},
        'HadISST': {'value': None, 'value_error': None},
        'Tropflux': {'value': None, 'value_error': None}},
       'metric': {'ERA-Interim': {'value': 0.3256528891800055,
         'value_error': None},
        'HadISST': {'value': 0.21155256384523494, 'value_error': None},
        'Tropflux': {'value': 0.37236351998033096, 'value_error': None}}},
      'BiasTauxLonRmse': {'diagnostic': {'CESM1-FASTCHEM_r2i1p1': {'value': None,
         'value_error': None},
        'ERA-Interim': {'value': None, 'value_error': None},
        'Tropflux': {'value': None, 'value_error': None}},
       'metric': {'ERA-Interim': {'value': 5.740618342545036,
         'value_error': None},
        'Tropflux': {'value': 5.99577057039031, 'value_error': None}}},
      'EnsoAmpl': {'diagnostic': {'CESM1-FASTCHEM_r2i1p1': {'value': 1.0461106004179757,
         'value_error': 0.08375587956043083},
        'ERA-Interim': {'value': 0.8989844997845644,
         'value_error': 0.14214193002531866},
        'HadISST': {'value': 0.7665787872085695,
         'value_error': 0.06238329697691264},
        'Tropflux': {'value': 0.9039789553693535,
         'value_error': 0.14293162279134272}},
       'metric': {'ERA-Interim': {'value': 16.36581060837746,
         'value_error': 27.71577137408879},
        'HadISST': {'value': 36.46485108560036,
         'value_error': 22.031284415950317},
        'Tropflux': {'value': 15.722893127589362,
         'value_error': 27.562642600123578}}},
      'EnsoDuration': {'diagnostic': {'CESM1-FASTCHEM_r2i1p1': {'value': 14.0,
         'value_error': None},
        'ERA-Interim': {'value': 13.0, 'value_error': None},
        'HadISST': {'value': 13.0, 'value_error': None},
        'Tropflux': {'value': 13.0, 'value_error': None}},
       'metric': {'ERA-Interim': {'value': 7.6923076923076925,
         'value_error': None},
        'HadISST': {'value': 7.6923076923076925, 'value_error': None},
        'Tropflux': {'value': 7.6923076923076925, 'value_error': None}}},
      'EnsoSeasonality': {'diagnostic': {'CESM1-FASTCHEM_r2i1p1': {'value': 1.4671142997509485,
         'value_error': 0.23530460844700293},
        'ERA-Interim': {'value': 2.0466846866656914,
         'value_error': 0.6513411033995022},
        'HadISST': {'value': 1.6639865947361325,
         'value_error': 0.2712772451657809},
        'Tropflux': {'value': 2.0532132553583624,
         'value_error': 0.6534187683977347}},
       'metric': {'ERA-Interim': {'value': 28.31752202431027,
         'value_error': 34.30924440940347},
        'HadISST': {'value': 11.831363041503536,
         'value_error': 28.515016851050568},
        'Tropflux': {'value': 28.545449630127084,
         'value_error': 34.20015186466372}}},
      'EnsoSstDiversity_2': {'diagnostic': {'CESM1-FASTCHEM_r2i1p1': {'value': 31.5,
         'value_error': None},
        'ERA-Interim': {'value': 33.25, 'value_error': None},
        'HadISST': {'value': 49.0, 'value_error': None},
        'Tropflux': {'value': 32.0, 'value_error': None}},
       'metric': {'ERA-Interim': {'value': 5.263157894736842,
         'value_error': None},
        'HadISST': {'value': 35.714285714285715, 'value_error': None},
        'Tropflux': {'value': 1.5625, 'value_error': None}}},
      'EnsoSstLonRmse': {'diagnostic': {'CESM1-FASTCHEM_r2i1p1': {'value': None,
         'value_error': None},
        'ERA-Interim': {'value': None, 'value_error': None},
        'HadISST': {'value': None, 'value_error': None},
        'Tropflux': {'value': None, 'value_error': None}},
       'metric': {'ERA-Interim': {'value': 0.12123934631410288,
         'value_error': None},
        'HadISST': {'value': 0.14452488590579468, 'value_error': None},
        'Tropflux': {'value': 0.12368811066431441, 'value_error': None}}},
      'EnsoSstSkew': {'diagnostic': {'CESM1-FASTCHEM_r2i1p1': {'value': 0.19814729924026026,
         'value_error': 0.01586448060440351},
        'ERA-Interim': {'value': 0.39098111106809963,
         'value_error': 0.061819541653923164},
        'HadISST': {'value': 0.38989908235027515,
         'value_error': 0.03172953733021198},
        'Tropflux': {'value': 0.39744741059612115,
         'value_error': 0.06284195338099416}},
       'metric': {'ERA-Interim': {'value': 49.32049307984403,
         'value_error': 12.070741567536258},
        'HadISST': {'value': 49.17984980989263,
         'value_error': 8.204553582792203},
        'Tropflux': {'value': 50.1450270004114,
         'value_error': 11.874355760458137}}},
      'EnsoSstTsRmse': {'diagnostic': {'CESM1-FASTCHEM_r2i1p1': {'value': None,
         'value_error': None},
        'ERA-Interim': {'value': None, 'value_error': None},
        'HadISST': {'value': None, 'value_error': None},
        'Tropflux': {'value': None, 'value_error': None}},
       'metric': {'ERA-Interim': {'value': 0.1008459847257217,
         'value_error': None},
        'HadISST': {'value': 0.10821054449636473, 'value_error': None},
        'Tropflux': {'value': 0.10091159717064506, 'value_error': None}}},
      'SeasonalPrLatRmse': {'diagnostic': {'CESM1-FASTCHEM_r2i1p1': {'value': None,
         'value_error': None},
        'ERA-Interim': {'value': None, 'value_error': None},
        'GPCPv2.3': {'value': None, 'value_error': None}},
       'metric': {'ERA-Interim': {'value': 1.3118928190282237,
         'value_error': None},
        'GPCPv2.3': {'value': 1.6040994971293112, 'value_error': None}}},
      'SeasonalPrLonRmse': {'diagnostic': {'CESM1-FASTCHEM_r2i1p1': {'value': None,
         'value_error': None},
        'ERA-Interim': {'value': None, 'value_error': None},
        'GPCPv2.3': {'value': None, 'value_error': None}},
       'metric': {'ERA-Interim': {'value': 0.34877773074437984,
         'value_error': None},
        'GPCPv2.3': {'value': 0.3945127208934276, 'value_error': None}}},
      'SeasonalSstLonRmse': {'diagnostic': {'CESM1-FASTCHEM_r2i1p1': {'value': None,
         'value_error': None},
        'ERA-Interim': {'value': None, 'value_error': None},
        'HadISST': {'value': None, 'value_error': None},
        'Tropflux': {'value': None, 'value_error': None}},
       'metric': {'ERA-Interim': {'value': 0.20377662412969746,
         'value_error': None},
        'HadISST': {'value': 0.2059118447890375, 'value_error': None},
        'Tropflux': {'value': 0.21238258059912057, 'value_error': None}}},
      'SeasonalTauxLonRmse': {'diagnostic': {'CESM1-FASTCHEM_r2i1p1': {'value': None,
         'value_error': None},
        'ERA-Interim': {'value': None, 'value_error': None},
        'Tropflux': {'value': None, 'value_error': None}},
       'metric': {'ERA-Interim': {'value': 1.4680021820819977,
         'value_error': None},
        'Tropflux': {'value': 1.581650716589518, 'value_error': None}}}}},
    'r3i1p1': {'metadata': {'description_of_the_collection': 'Describe which science question this collection is about',
      'metrics': {'BiasPrLatRmse': {'diagnostic': {'CESM1-FASTCHEM_r3i1p1': {'keyerror': None,
          'name': 'CESM1-FASTCHEM_r3i1p1',
          'nyears': 156,
          'time_period': ['1850-1-16 12:0:0.0', '2005-12-16 12:0:0.0']},
         'ERA-Interim': {'name': 'ERA-Interim',
          'nyears': 40,
          'time_period': ['1979-1-16 12:0:0.0', '2019-3-16 12:0:0.0']},
         'GPCPv2.3': {'name': 'GPCPv2.3',
          'nyears': 41,
          'time_period': ['1979-1-1 0:0:0.0', '2019-7-1 0:0:0.0']},
         'method': 'Meridional root mean square error of nino3_LatExt pr, time series are linearly detrended, observations and model regridded to generic_1x1deg',
         'name': 'pr Meridional RMSE',
         'ref': 'Using CDAT regridding and rms (uncentered and biased) calculation',
         'time_frequency': 'monthly',
         'units': 'mm/day'},
        'metric': {'datasets': "CESM1-FASTCHEM_r3i1p1; ERA-Interim's pr & GPCPv2.3's precip; 's ",
         'method': 'The metric is the statistical value between the model and the observations',
         'name': 'BiasPrLatRmse',
         'units': 'mm/day'}},
       'BiasPrLonRmse': {'diagnostic': {'CESM1-FASTCHEM_r3i1p1': {'keyerror': None,
          'name': 'CESM1-FASTCHEM_r3i1p1',
          'nyears': 156,
          'time_period': ['1850-1-16 12:0:0.0', '2005-12-16 12:0:0.0']},
         'ERA-Interim': {'name': 'ERA-Interim',
          'nyears': 40,
          'time_period': ['1979-1-16 12:0:0.0', '2019-3-16 12:0:0.0']},
         'GPCPv2.3': {'name': 'GPCPv2.3',
          'nyears': 41,
          'time_period': ['1979-1-1 0:0:0.0', '2019-7-1 0:0:0.0']},
         'method': 'Zonal root mean square error of equatorial_pacific pr, time series are linearly detrended, observations and model regridded to generic_1x1deg',
         'name': 'pr Zonal RMSE',
         'ref': 'Using CDAT regridding and rms (uncentered and biased) calculation',
         'time_frequency': 'monthly',
         'units': 'mm/day'},
        'metric': {'datasets': "CESM1-FASTCHEM_r3i1p1; ERA-Interim's pr & GPCPv2.3's precip; 's ",
         'method': 'The metric is the statistical value between the model and the observations',
         'name': 'BiasPrLonRmse',
         'units': 'mm/day'}},
       'BiasSstLonRmse': {'diagnostic': {'CESM1-FASTCHEM_r3i1p1': {'keyerror': None,
          'name': 'CESM1-FASTCHEM_r3i1p1',
          'nyears': 156,
          'time_period': ['1850-1-16 12:0:0.0', '2005-12-16 12:0:0.0']},
         'ERA-Interim': {'name': 'ERA-Interim',
          'nyears': 40,
          'time_period': ['1979-1-16 12:0:0.0', '2019-3-16 12:0:0.0']},
         'HadISST': {'name': 'HadISST',
          'nyears': 151,
          'time_period': ['1870-1-16 11:59:59.5', '2020-10-16 12:0:0.0']},
         'Tropflux': {'name': 'Tropflux',
          'nyears': 40,
          'time_period': ['1979-1-15 0:0:0.0', '2018-12-15 12:0:0.0']},
         'method': 'Zonal root mean square error of equatorial_pacific sst, time series are linearly detrended, observations and model regridded to generic_1x1deg',
         'name': 'sst Zonal RMSE',
         'ref': 'Using CDAT regridding and rms (uncentered and biased) calculation',
         'time_frequency': 'monthly',
         'units': 'C'},
        'metric': {'datasets': "CESM1-FASTCHEM_r3i1p1; ERA-Interim's ts & HadISST's sst & Tropflux's sst; 's ",
         'method': 'The metric is the statistical value between the model and the observations',
         'name': 'BiasSstLonRmse',
         'units': 'C'}},
       'BiasTauxLonRmse': {'diagnostic': {'CESM1-FASTCHEM_r3i1p1': {'keyerror': None,
          'name': 'CESM1-FASTCHEM_r3i1p1',
          'nyears': 156,
          'time_period': ['1850-1-16 12:0:0.0', '2005-12-16 12:0:0.0']},
         'ERA-Interim': {'name': 'ERA-Interim',
          'nyears': 40,
          'time_period': ['1979-1-16 12:0:0.0', '2019-3-16 12:0:0.0']},
         'Tropflux': {'name': 'Tropflux',
          'nyears': 40,
          'time_period': ['1979-1-15 0:0:0.0', '2018-12-15 12:0:0.0']},
         'method': 'Zonal root mean square error of equatorial_pacific taux, time series are linearly detrended, observations and model regridded to generic_1x1deg',
         'name': 'taux Zonal RMSE',
         'ref': 'Using CDAT regridding and rms (uncentered and biased) calculation',
         'time_frequency': 'monthly',
         'units': '1e-3 N/m2'},
        'metric': {'datasets': "CESM1-FASTCHEM_r3i1p1; ERA-Interim's tauu & Tropflux's taux; 's ",
         'method': 'The metric is the statistical value between the model and the observations',
         'name': 'BiasTauxLonRmse',
         'units': '1e-3 N/m2'}},
       'EnsoAmpl': {'diagnostic': {'CESM1-FASTCHEM_r3i1p1': {'keyerror': None,
          'name': 'CESM1-FASTCHEM_r3i1p1',
          'nyears': 156,
          'time_period': ['1850-1-16 12:0:0.0', '2005-12-16 12:0:0.0']},
         'ERA-Interim': {'keyerror': None,
          'name': 'ERA-Interim',
          'nyears': 40,
          'time_period': ['1979-1-16 12:0:0.0', '2019-3-16 12:0:0.0']},
         'HadISST': {'keyerror': None,
          'name': 'HadISST',
          'nyears': 151,
          'time_period': ['1870-1-16 11:59:59.5', '2020-10-16 12:0:0.0']},
         'Tropflux': {'keyerror': None,
          'name': 'Tropflux',
          'nyears': 40,
          'time_period': ['1979-1-15 0:0:0.0', '2018-12-15 12:0:0.0']},
         'method': 'Standard deviation of nino3.4 sstA, time series are linearly detrended',
         'name': 'ENSO amplitude',
         'ref': 'Using CDAT regression calculation',
         'time_frequency': 'monthly',
         'units': 'C'},
        'metric': {'datasets': "CESM1-FASTCHEM_r3i1p1; ERA-Interim's ts & HadISST's sst & Tropflux's sst; 's ",
         'method': 'The metric is the absolute value of the relative difference between model and observations values (M = 100 * abs[[model-obs] / obs])',
         'name': 'EnsoAmpl',
         'units': '%'}},
       'EnsoDuration': {'diagnostic': {'CESM1-FASTCHEM_r3i1p1': {'keyerror': None,
          'name': 'CESM1-FASTCHEM_r3i1p1',
          'nyears': 156,
          'time_period': ['1850-1-16 12:0:0.0', '2005-12-16 12:0:0.0']},
         'ERA-Interim': {'keyerror': None,
          'name': 'ERA-Interim',
          'nyears': 40,
          'time_period': ['1979-1-16 12:0:0.0', '2019-3-16 12:0:0.0']},
         'HadISST': {'keyerror': None,
          'name': 'HadISST',
          'nyears': 151,
          'time_period': ['1870-1-16 11:59:59.5', '2020-10-16 12:0:0.0']},
         'Tropflux': {'keyerror': None,
          'name': 'Tropflux',
          'nyears': 40,
          'time_period': ['1979-1-15 0:0:0.0', '2018-12-15 12:0:0.0']},
         'method': 'nino3.4 SSTA during DEC regressed against nino3.4 SSTA during 6 years (centered on ENSO), the duration is the number of consecutive months during which the regression is above 0.25, time series are linearly detrended, smoothing using a triangle shaped window of 5 points',
         'name': 'ENSO Duration based on life cyle SSTA pattern',
         'ref': 'Using CDAT',
         'time_frequency': 'monthly',
         'units': 'months'},
        'metric': {'datasets': "CESM1-FASTCHEM_r3i1p1; ERA-Interim's ts & HadISST's sst & Tropflux's sst; 's ",
         'method': 'The metric is the absolute value of the relative difference between model and observations values (M = 100 * abs[[model-obs] / obs])',
         'name': 'EnsoDuration',
         'units': '%'}},
       'EnsoSeasonality': {'diagnostic': {'CESM1-FASTCHEM_r3i1p1': {'keyerror': None,
          'name': 'CESM1-FASTCHEM_r3i1p1',
          'nyears': 156,
          'time_period': ['1850-1-16 12:0:0.0', '2005-12-16 12:0:0.0']},
         'ERA-Interim': {'keyerror': None,
          'name': 'ERA-Interim',
          'nyears': 40,
          'time_period': ['1979-1-16 12:0:0.0', '2019-3-16 12:0:0.0']},
         'HadISST': {'keyerror': None,
          'name': 'HadISST',
          'nyears': 151,
          'time_period': ['1870-1-16 11:59:59.5', '2020-10-16 12:0:0.0']},
         'Tropflux': {'keyerror': None,
          'name': 'Tropflux',
          'nyears': 40,
          'time_period': ['1979-1-15 0:0:0.0', '2018-12-15 12:0:0.0']},
         'method': 'Ratio between NDJ and MAM standard deviation nino3.4 sstA, time series are linearly detrended',
         'name': 'ENSO seasonality',
         'ref': 'Using CDAT std dev calculation',
         'time_frequency': 'monthly',
         'units': 'C/C'},
        'metric': {'datasets': "CESM1-FASTCHEM_r3i1p1; ERA-Interim's ts & HadISST's sst & Tropflux's sst; 's ",
         'method': 'The metric is the absolute value of the relative difference between model and observations values (M = 100 * abs[[model-obs] / obs])',
         'name': 'EnsoSeasonality',
         'units': '%'}},
       'EnsoSstDiversity_2': {'diagnostic': {'CESM1-FASTCHEM_r3i1p1': {'keyerror': None,
          'name': 'CESM1-FASTCHEM_r3i1p1',
          'nyears': 156,
          'time_period': ['1850-1-16 12:0:0.0', '2005-12-16 12:0:0.0']},
         'ERA-Interim': {'keyerror': None,
          'name': 'ERA-Interim',
          'nyears': 40,
          'time_period': ['1979-1-16 12:0:0.0', '2019-3-16 12:0:0.0']},
         'HadISST': {'keyerror': None,
          'name': 'HadISST',
          'nyears': 151,
          'time_period': ['1870-1-16 11:59:59.5', '2020-10-16 12:0:0.0']},
         'Tropflux': {'keyerror': None,
          'name': 'Tropflux',
          'nyears': 40,
          'time_period': ['1979-1-15 0:0:0.0', '2018-12-15 12:0:0.0']},
         'method': 'Nino (Nina) events = nino3.4 sstA > 0.75 (< -0.75) during DEC, zonal SSTA (meridional averaged [-5.0 ; 5.0]), the zonal SSTA maximum (minimum) is located for each event, the diversity is the interquartile range (IQR = Q3 - Q1), time series are linearly detrended, smoothing using a triangle shaped window of 5 points',
         'name': 'ENSO Diversity (interquartile range)',
         'ref': 'Using CDAT regridding',
         'time_frequency': 'monthly',
         'units': 'long'},
        'metric': {'datasets': "CESM1-FASTCHEM_r3i1p1; ERA-Interim's ts & HadISST's sst & Tropflux's sst; 's ",
         'method': 'The metric is the absolute value of the relative difference between model and observations values (M = 100 * abs[[model-obs] / obs])',
         'name': 'EnsoSstDiversity',
         'units': '%'}},
       'EnsoSstLonRmse': {'diagnostic': {'CESM1-FASTCHEM_r3i1p1': {'keyerror': None,
          'name': 'CESM1-FASTCHEM_r3i1p1',
          'nyears': 156,
          'time_period': ['1850-1-16 12:0:0.0', '2005-12-16 12:0:0.0']},
         'ERA-Interim': {'name': 'ERA-Interim',
          'nyears': 40,
          'time_period': ['1979-1-16 12:0:0.0', '2019-3-16 12:0:0.0']},
         'HadISST': {'name': 'HadISST',
          'nyears': 151,
          'time_period': ['1870-1-16 11:59:59.5', '2020-10-16 12:0:0.0']},
         'Tropflux': {'name': 'Tropflux',
          'nyears': 40,
          'time_period': ['1979-1-15 0:0:0.0', '2018-12-15 12:0:0.0']},
         'method': 'nino3.4 SSTA during DEC regressed against equatorial_pacific SSTA, time series are linearly detrended, smoothing using a triangle shaped window of 5 points, observations and model regridded to generic_1x1deg',
         'name': 'ENSO Zonal SSTA pattern',
         'ref': 'Using CDAT regridding and rms (uncentered and biased) calculation',
         'time_frequency': 'monthly',
         'units': 'C/C'},
        'metric': {'datasets': "CESM1-FASTCHEM_r3i1p1; ERA-Interim's ts & HadISST's sst & Tropflux's sst; 's ",
         'method': 'The metric is the statistical value between the model and the observations',
         'name': 'EnsoSstLonRmse',
         'units': 'C/C'}},
       'EnsoSstSkew': {'diagnostic': {'CESM1-FASTCHEM_r3i1p1': {'keyerror': None,
          'name': 'CESM1-FASTCHEM_r3i1p1',
          'nyears': 156,
          'time_period': ['1850-1-16 12:0:0.0', '2005-12-16 12:0:0.0']},
         'ERA-Interim': {'keyerror': None,
          'name': 'ERA-Interim',
          'nyears': 40,
          'time_period': ['1979-1-16 12:0:0.0', '2019-3-16 12:0:0.0']},
         'HadISST': {'keyerror': None,
          'name': 'HadISST',
          'nyears': 151,
          'time_period': ['1870-1-16 11:59:59.5', '2020-10-16 12:0:0.0']},
         'Tropflux': {'keyerror': None,
          'name': 'Tropflux',
          'nyears': 40,
          'time_period': ['1979-1-15 0:0:0.0', '2018-12-15 12:0:0.0']},
         'method': 'Standard deviation of nino3.4 sstA, time series are linearly detrended',
         'name': 'ENSO skewness',
         'ref': 'Using CDAT regression calculation',
         'time_frequency': 'monthly',
         'units': 'C'},
        'metric': {'datasets': "CESM1-FASTCHEM_r3i1p1; ERA-Interim's ts & HadISST's sst & Tropflux's sst; 's ",
         'method': 'The metric is the absolute value of the relative difference between model and observations values (M = 100 * abs[[model-obs] / obs])',
         'name': 'EnsoSstSkew',
         'units': '%'}},
       'EnsoSstTsRmse': {'diagnostic': {'CESM1-FASTCHEM_r3i1p1': {'keyerror': None,
          'name': 'CESM1-FASTCHEM_r3i1p1',
          'nyears': 156,
          'time_period': ['1850-1-16 12:0:0.0', '2005-12-16 12:0:0.0']},
         'ERA-Interim': {'name': 'ERA-Interim',
          'nyears': 40,
          'time_period': ['1979-1-16 12:0:0.0', '2019-3-16 12:0:0.0']},
         'HadISST': {'name': 'HadISST',
          'nyears': 151,
          'time_period': ['1870-1-16 11:59:59.5', '2020-10-16 12:0:0.0']},
         'Tropflux': {'name': 'Tropflux',
          'nyears': 40,
          'time_period': ['1979-1-15 0:0:0.0', '2018-12-15 12:0:0.0']},
         'method': 'nino3.4 SSTA during DEC regressed against nino3.4 SSTA during 6 years (centered on ENSO), time series are linearly detrended, smoothing using a triangle shaped window of 5 points',
         'name': 'ENSO life cyle SSTA pattern',
         'ref': 'Using CDAT regridding and rms (uncentered and biased) calculation',
         'time_frequency': 'monthly',
         'units': 'C/C'},
        'metric': {'datasets': "CESM1-FASTCHEM_r3i1p1; ERA-Interim's ts & HadISST's sst & Tropflux's sst; 's ",
         'method': 'The metric is the statistical value between the model and the observations',
         'name': 'EnsoSstTsRmse',
         'units': 'C/C'}},
       'SeasonalPrLatRmse': {'diagnostic': {'CESM1-FASTCHEM_r3i1p1': {'keyerror': None,
          'name': 'CESM1-FASTCHEM_r3i1p1',
          'nyears': 156,
          'time_period': ['1850-1-16 12:0:0.0', '2005-12-16 12:0:0.0']},
         'ERA-Interim': {'name': 'ERA-Interim',
          'nyears': 40,
          'time_period': ['1979-1-16 12:0:0.0', '2019-3-16 12:0:0.0']},
         'GPCPv2.3': {'name': 'GPCPv2.3',
          'nyears': 41,
          'time_period': ['1979-1-1 0:0:0.0', '2019-7-1 0:0:0.0']},
         'method': 'Meridional root mean square error of nino3_LatExt climatological pr STD, time series are linearly detrended, observations and model regridded to generic_1x1deg',
         'name': 'pr meridional seasonality RMSE',
         'ref': 'Using CDAT regridding and rms (uncentered and biased) calculation',
         'time_frequency': 'monthly',
         'units': 'mm/day'},
        'metric': {'datasets': "CESM1-FASTCHEM_r3i1p1; ERA-Interim's pr & GPCPv2.3's precip; 's ",
         'method': 'The metric is the statistical value between the model and the observations',
         'name': 'SeasonalPrLatRmse',
         'units': 'mm/day'}},
       'SeasonalPrLonRmse': {'diagnostic': {'CESM1-FASTCHEM_r3i1p1': {'keyerror': None,
          'name': 'CESM1-FASTCHEM_r3i1p1',
          'nyears': 156,
          'time_period': ['1850-1-16 12:0:0.0', '2005-12-16 12:0:0.0']},
         'ERA-Interim': {'name': 'ERA-Interim',
          'nyears': 40,
          'time_period': ['1979-1-16 12:0:0.0', '2019-3-16 12:0:0.0']},
         'GPCPv2.3': {'name': 'GPCPv2.3',
          'nyears': 41,
          'time_period': ['1979-1-1 0:0:0.0', '2019-7-1 0:0:0.0']},
         'method': 'Zonal root mean square error of equatorial_pacific climatological pr STD, time series are linearly detrended, observations and model regridded to generic_1x1deg',
         'name': 'pr zonal seasonality RMSE',
         'ref': 'Using CDAT regridding and rms (uncentered and biased) calculation',
         'time_frequency': 'monthly',
         'units': 'mm/day'},
        'metric': {'datasets': "CESM1-FASTCHEM_r3i1p1; ERA-Interim's pr & GPCPv2.3's precip; 's ",
         'method': 'The metric is the statistical value between the model and the observations',
         'name': 'SeasonalPrLonRmse',
         'units': 'mm/day'}},
       'SeasonalSstLonRmse': {'diagnostic': {'CESM1-FASTCHEM_r3i1p1': {'keyerror': None,
          'name': 'CESM1-FASTCHEM_r3i1p1',
          'nyears': 156,
          'time_period': ['1850-1-16 12:0:0.0', '2005-12-16 12:0:0.0']},
         'ERA-Interim': {'name': 'ERA-Interim',
          'nyears': 40,
          'time_period': ['1979-1-16 12:0:0.0', '2019-3-16 12:0:0.0']},
         'HadISST': {'name': 'HadISST',
          'nyears': 151,
          'time_period': ['1870-1-16 11:59:59.5', '2020-10-16 12:0:0.0']},
         'Tropflux': {'name': 'Tropflux',
          'nyears': 40,
          'time_period': ['1979-1-15 0:0:0.0', '2018-12-15 12:0:0.0']},
         'method': 'Zonal root mean square error of equatorial_pacific climatological sst STD, time series are linearly detrended, observations and model regridded to generic_1x1deg',
         'name': 'sst zonal seasonality RMSE',
         'ref': 'Using CDAT regridding and rms (uncentered and biased) calculation',
         'time_frequency': 'monthly',
         'units': 'C'},
        'metric': {'datasets': "CESM1-FASTCHEM_r3i1p1; ERA-Interim's ts & HadISST's sst & Tropflux's sst; 's ",
         'method': 'The metric is the statistical value between the model and the observations',
         'name': 'SeasonalSstLonRmse',
         'units': 'C'}},
       'SeasonalTauxLonRmse': {'diagnostic': {'CESM1-FASTCHEM_r3i1p1': {'keyerror': None,
          'name': 'CESM1-FASTCHEM_r3i1p1',
          'nyears': 156,
          'time_period': ['1850-1-16 12:0:0.0', '2005-12-16 12:0:0.0']},
         'ERA-Interim': {'name': 'ERA-Interim',
          'nyears': 40,
          'time_period': ['1979-1-16 12:0:0.0', '2019-3-16 12:0:0.0']},
         'Tropflux': {'name': 'Tropflux',
          'nyears': 40,
          'time_period': ['1979-1-15 0:0:0.0', '2018-12-15 12:0:0.0']},
         'method': 'Zonal root mean square error of equatorial_pacific climatological taux STD, time series are linearly detrended, observations and model regridded to generic_1x1deg',
         'name': 'taux zonal seasonality RMSE',
         'ref': 'Using CDAT regridding and rms (uncentered and biased) calculation',
         'time_frequency': 'monthly',
         'units': '1e-3 N/m2'},
        'metric': {'datasets': "CESM1-FASTCHEM_r3i1p1; ERA-Interim's tauu & Tropflux's taux; 's ",
         'method': 'The metric is the statistical value between the model and the observations',
         'name': 'SeasonalTauxLonRmse',
         'units': '1e-3 N/m2'}}},
      'name': 'Metrics Collection for ENSO performance'},
     'value': {'BiasPrLatRmse': {'diagnostic': {'CESM1-FASTCHEM_r3i1p1': {'value': None,
         'value_error': None},
        'ERA-Interim': {'value': None, 'value_error': None},
        'GPCPv2.3': {'value': None, 'value_error': None}},
       'metric': {'ERA-Interim': {'value': 1.3573243483868578,
         'value_error': None},
        'GPCPv2.3': {'value': 1.4669357895567536, 'value_error': None}}},
      'BiasPrLonRmse': {'diagnostic': {'CESM1-FASTCHEM_r3i1p1': {'value': None,
         'value_error': None},
        'ERA-Interim': {'value': None, 'value_error': None},
        'GPCPv2.3': {'value': None, 'value_error': None}},
       'metric': {'ERA-Interim': {'value': 1.5236255250541135,
         'value_error': None},
        'GPCPv2.3': {'value': 0.6293961409239661, 'value_error': None}}},
      'BiasSstLonRmse': {'diagnostic': {'CESM1-FASTCHEM_r3i1p1': {'value': None,
         'value_error': None},
        'ERA-Interim': {'value': None, 'value_error': None},
        'HadISST': {'value': None, 'value_error': None},
        'Tropflux': {'value': None, 'value_error': None}},
       'metric': {'ERA-Interim': {'value': 0.32048651758016006,
         'value_error': None},
        'HadISST': {'value': 0.20326100610814518, 'value_error': None},
        'Tropflux': {'value': 0.36781234466942814, 'value_error': None}}},
      'BiasTauxLonRmse': {'diagnostic': {'CESM1-FASTCHEM_r3i1p1': {'value': None,
         'value_error': None},
        'ERA-Interim': {'value': None, 'value_error': None},
        'Tropflux': {'value': None, 'value_error': None}},
       'metric': {'ERA-Interim': {'value': 5.814081912873389,
         'value_error': None},
        'Tropflux': {'value': 6.037570861932816, 'value_error': None}}},
      'EnsoAmpl': {'diagnostic': {'CESM1-FASTCHEM_r3i1p1': {'value': 1.1700395004464879,
         'value_error': 0.09367813254276126},
        'ERA-Interim': {'value': 0.8989844997845644,
         'value_error': 0.14214193002531866},
        'HadISST': {'value': 0.7665787872085695,
         'value_error': 0.06238329697691264},
        'Tropflux': {'value': 0.9039789553693535,
         'value_error': 0.14293162279134272}},
       'metric': {'ERA-Interim': {'value': 30.151242955454734,
         'value_error': 30.999157527006243},
        'HadISST': {'value': 52.63134331007067,
         'value_error': 24.64125017176344},
        'Tropflux': {'value': 29.43216139013166,
         'value_error': 30.827888146768007}}},
      'EnsoDuration': {'diagnostic': {'CESM1-FASTCHEM_r3i1p1': {'value': 15.0,
         'value_error': None},
        'ERA-Interim': {'value': 13.0, 'value_error': None},
        'HadISST': {'value': 13.0, 'value_error': None},
        'Tropflux': {'value': 13.0, 'value_error': None}},
       'metric': {'ERA-Interim': {'value': 15.384615384615385,
         'value_error': None},
        'HadISST': {'value': 15.384615384615385, 'value_error': None},
        'Tropflux': {'value': 15.384615384615385, 'value_error': None}}},
      'EnsoSeasonality': {'diagnostic': {'CESM1-FASTCHEM_r3i1p1': {'value': 1.452156379835357,
         'value_error': 0.23290556735694104},
        'ERA-Interim': {'value': 2.0466846866656914,
         'value_error': 0.6513411033995022},
        'HadISST': {'value': 1.6639865947361325,
         'value_error': 0.2712772451657809},
        'Tropflux': {'value': 2.0532132553583624,
         'value_error': 0.6534187683977347}},
       'metric': {'ERA-Interim': {'value': 29.048358582234584,
         'value_error': 33.959445535295686},
        'HadISST': {'value': 12.730283739717665,
         'value_error': 28.22429285052643},
        'Tropflux': {'value': 29.273962358970774,
         'value_error': 33.851465240329425}}},
      'EnsoSstDiversity_2': {'diagnostic': {'CESM1-FASTCHEM_r3i1p1': {'value': 34.0,
         'value_error': None},
        'ERA-Interim': {'value': 33.25, 'value_error': None},
        'HadISST': {'value': 49.0, 'value_error': None},
        'Tropflux': {'value': 32.0, 'value_error': None}},
       'metric': {'ERA-Interim': {'value': 2.2556390977443606,
         'value_error': None},
        'HadISST': {'value': 30.612244897959183, 'value_error': None},
        'Tropflux': {'value': 6.25, 'value_error': None}}},
      'EnsoSstLonRmse': {'diagnostic': {'CESM1-FASTCHEM_r3i1p1': {'value': None,
         'value_error': None},
        'ERA-Interim': {'value': None, 'value_error': None},
        'HadISST': {'value': None, 'value_error': None},
        'Tropflux': {'value': None, 'value_error': None}},
       'metric': {'ERA-Interim': {'value': 0.1353136317146382,
         'value_error': None},
        'HadISST': {'value': 0.15659656932427646, 'value_error': None},
        'Tropflux': {'value': 0.13741618543845324, 'value_error': None}}},
      'EnsoSstSkew': {'diagnostic': {'CESM1-FASTCHEM_r3i1p1': {'value': 0.04849621035108394,
         'value_error': 0.0038828043150311137},
        'ERA-Interim': {'value': 0.39098111106809963,
         'value_error': 0.061819541653923164},
        'HadISST': {'value': 0.38989908235027515,
         'value_error': 0.03172953733021198},
        'Tropflux': {'value': 0.39744741059612115,
         'value_error': 0.06284195338099416}},
       'metric': {'ERA-Interim': {'value': 87.5962779330695,
         'value_error': 2.954293217204093},
        'HadISST': {'value': 87.56185573488573,
         'value_error': 2.0080503641151086},
        'Tropflux': {'value': 87.79808119057923,
         'value_error': 2.906228129027042}}},
      'EnsoSstTsRmse': {'diagnostic': {'CESM1-FASTCHEM_r3i1p1': {'value': None,
         'value_error': None},
        'ERA-Interim': {'value': None, 'value_error': None},
        'HadISST': {'value': None, 'value_error': None},
        'Tropflux': {'value': None, 'value_error': None}},
       'metric': {'ERA-Interim': {'value': 0.1311966080432691,
         'value_error': None},
        'HadISST': {'value': 0.13042986229935843, 'value_error': None},
        'Tropflux': {'value': 0.12863766576540836, 'value_error': None}}},
      'SeasonalPrLatRmse': {'diagnostic': {'CESM1-FASTCHEM_r3i1p1': {'value': None,
         'value_error': None},
        'ERA-Interim': {'value': None, 'value_error': None},
        'GPCPv2.3': {'value': None, 'value_error': None}},
       'metric': {'ERA-Interim': {'value': 1.3036522827326702,
         'value_error': None},
        'GPCPv2.3': {'value': 1.586408685240943, 'value_error': None}}},
      'SeasonalPrLonRmse': {'diagnostic': {'CESM1-FASTCHEM_r3i1p1': {'value': None,
         'value_error': None},
        'ERA-Interim': {'value': None, 'value_error': None},
        'GPCPv2.3': {'value': None, 'value_error': None}},
       'metric': {'ERA-Interim': {'value': 0.3414491040152393,
         'value_error': None},
        'GPCPv2.3': {'value': 0.3803877646251331, 'value_error': None}}},
      'SeasonalSstLonRmse': {'diagnostic': {'CESM1-FASTCHEM_r3i1p1': {'value': None,
         'value_error': None},
        'ERA-Interim': {'value': None, 'value_error': None},
        'HadISST': {'value': None, 'value_error': None},
        'Tropflux': {'value': None, 'value_error': None}},
       'metric': {'ERA-Interim': {'value': 0.2037561878559243,
         'value_error': None},
        'HadISST': {'value': 0.20546024486536307, 'value_error': None},
        'Tropflux': {'value': 0.2124465938439825, 'value_error': None}}},
      'SeasonalTauxLonRmse': {'diagnostic': {'CESM1-FASTCHEM_r3i1p1': {'value': None,
         'value_error': None},
        'ERA-Interim': {'value': None, 'value_error': None},
        'Tropflux': {'value': None, 'value_error': None}},
       'metric': {'ERA-Interim': {'value': 1.4779730763190055,
         'value_error': None},
        'Tropflux': {'value': 1.6053517814859262, 'value_error': None}}}}}},
   'CESM1-WACCM': {'r1i1p1': {'metadata': {'description_of_the_collection': 'Describe which science question this collection is about',
      'metrics': {'BiasPrLatRmse': {'diagnostic': {'CESM1-WACCM_r1i1p1': {'keyerror': None,
          'name': 'CESM1-WACCM_r1i1p1',
          'nyears': 156,
          'time_period': ['1850-1-16 12:0:0.0', '2005-12-16 12:0:0.0']},
         'ERA-Interim': {'name': 'ERA-Interim',
          'nyears': 40,
          'time_period': ['1979-1-16 12:0:0.0', '2019-3-16 12:0:0.0']},
         'GPCPv2.3': {'name': 'GPCPv2.3',
          'nyears': 41,
          'time_period': ['1979-1-1 0:0:0.0', '2019-7-1 0:0:0.0']},
         'method': 'Meridional root mean square error of nino3_LatExt pr, time series are linearly detrended, observations and model regridded to generic_1x1deg',
         'name': 'pr Meridional RMSE',
         'ref': 'Using CDAT regridding and rms (uncentered and biased) calculation',
         'time_frequency': 'monthly',
         'units': 'mm/day'},
        'metric': {'datasets': "CESM1-WACCM_r1i1p1; ERA-Interim's pr & GPCPv2.3's precip; 's ",
         'method': 'The metric is the statistical value between the model and the observations',
         'name': 'BiasPrLatRmse',
         'units': 'mm/day'}},
       'BiasPrLonRmse': {'diagnostic': {'CESM1-WACCM_r1i1p1': {'keyerror': None,
          'name': 'CESM1-WACCM_r1i1p1',
          'nyears': 156,
          'time_period': ['1850-1-16 12:0:0.0', '2005-12-16 12:0:0.0']},
         'ERA-Interim': {'name': 'ERA-Interim',
          'nyears': 40,
          'time_period': ['1979-1-16 12:0:0.0', '2019-3-16 12:0:0.0']},
         'GPCPv2.3': {'name': 'GPCPv2.3',
          'nyears': 41,
          'time_period': ['1979-1-1 0:0:0.0', '2019-7-1 0:0:0.0']},
         'method': 'Zonal root mean square error of equatorial_pacific pr, time series are linearly detrended, observations and model regridded to generic_1x1deg',
         'name': 'pr Zonal RMSE',
         'ref': 'Using CDAT regridding and rms (uncentered and biased) calculation',
         'time_frequency': 'monthly',
         'units': 'mm/day'},
        'metric': {'datasets': "CESM1-WACCM_r1i1p1; ERA-Interim's pr & GPCPv2.3's precip; 's ",
         'method': 'The metric is the statistical value between the model and the observations',
         'name': 'BiasPrLonRmse',
         'units': 'mm/day'}},
       'BiasSstLonRmse': {'diagnostic': {'CESM1-WACCM_r1i1p1': {'keyerror': None,
          'name': 'CESM1-WACCM_r1i1p1',
          'nyears': 156,
          'time_period': ['1850-1-16 12:0:0.0', '2005-12-16 12:0:0.0']},
         'ERA-Interim': {'name': 'ERA-Interim',
          'nyears': 40,
          'time_period': ['1979-1-16 12:0:0.0', '2019-3-16 12:0:0.0']},
         'HadISST': {'name': 'HadISST',
          'nyears': 151,
          'time_period': ['1870-1-16 11:59:59.5', '2020-10-16 12:0:0.0']},
         'Tropflux': {'name': 'Tropflux',
          'nyears': 40,
          'time_period': ['1979-1-15 0:0:0.0', '2018-12-15 12:0:0.0']},
         'method': 'Zonal root mean square error of equatorial_pacific sst, time series are linearly detrended, observations and model regridded to generic_1x1deg',
         'name': 'sst Zonal RMSE',
         'ref': 'Using CDAT regridding and rms (uncentered and biased) calculation',
         'time_frequency': 'monthly',
         'units': 'C'},
        'metric': {'datasets': "CESM1-WACCM_r1i1p1; ERA-Interim's ts & HadISST's sst & Tropflux's sst; 's ",
         'method': 'The metric is the statistical value between the model and the observations',
         'name': 'BiasSstLonRmse',
         'units': 'C'}},
       'BiasTauxLonRmse': {'diagnostic': {'CESM1-WACCM_r1i1p1': {'keyerror': None,
          'name': 'CESM1-WACCM_r1i1p1',
          'nyears': 156,
          'time_period': ['1850-1-16 12:0:0.0', '2005-12-16 12:0:0.0']},
         'ERA-Interim': {'name': 'ERA-Interim',
          'nyears': 40,
          'time_period': ['1979-1-16 12:0:0.0', '2019-3-16 12:0:0.0']},
         'Tropflux': {'name': 'Tropflux',
          'nyears': 40,
          'time_period': ['1979-1-15 0:0:0.0', '2018-12-15 12:0:0.0']},
         'method': 'Zonal root mean square error of equatorial_pacific taux, time series are linearly detrended, observations and model regridded to generic_1x1deg',
         'name': 'taux Zonal RMSE',
         'ref': 'Using CDAT regridding and rms (uncentered and biased) calculation',
         'time_frequency': 'monthly',
         'units': '1e-3 N/m2'},
        'metric': {'datasets': "CESM1-WACCM_r1i1p1; ERA-Interim's tauu & Tropflux's taux; 's ",
         'method': 'The metric is the statistical value between the model and the observations',
         'name': 'BiasTauxLonRmse',
         'units': '1e-3 N/m2'}},
       'EnsoAmpl': {'diagnostic': {'CESM1-WACCM_r1i1p1': {'keyerror': None,
          'name': 'CESM1-WACCM_r1i1p1',
          'nyears': 156,
          'time_period': ['1850-1-16 12:0:0.0', '2005-12-16 12:0:0.0']},
         'ERA-Interim': {'keyerror': None,
          'name': 'ERA-Interim',
          'nyears': 40,
          'time_period': ['1979-1-16 12:0:0.0', '2019-3-16 12:0:0.0']},
         'HadISST': {'keyerror': None,
          'name': 'HadISST',
          'nyears': 151,
          'time_period': ['1870-1-16 11:59:59.5', '2020-10-16 12:0:0.0']},
         'Tropflux': {'keyerror': None,
          'name': 'Tropflux',
          'nyears': 40,
          'time_period': ['1979-1-15 0:0:0.0', '2018-12-15 12:0:0.0']},
         'method': 'Standard deviation of nino3.4 sstA, time series are linearly detrended',
         'name': 'ENSO amplitude',
         'ref': 'Using CDAT regression calculation',
         'time_frequency': 'monthly',
         'units': 'C'},
        'metric': {'datasets': "CESM1-WACCM_r1i1p1; ERA-Interim's ts & HadISST's sst & Tropflux's sst; 's ",
         'method': 'The metric is the absolute value of the relative difference between model and observations values (M = 100 * abs[[model-obs] / obs])',
         'name': 'EnsoAmpl',
         'units': '%'}},
       'EnsoDuration': {'diagnostic': {'CESM1-WACCM_r1i1p1': {'keyerror': None,
          'name': 'CESM1-WACCM_r1i1p1',
          'nyears': 156,
          'time_period': ['1850-1-16 12:0:0.0', '2005-12-16 12:0:0.0']},
         'ERA-Interim': {'keyerror': None,
          'name': 'ERA-Interim',
          'nyears': 40,
          'time_period': ['1979-1-16 12:0:0.0', '2019-3-16 12:0:0.0']},
         'HadISST': {'keyerror': None,
          'name': 'HadISST',
          'nyears': 151,
          'time_period': ['1870-1-16 11:59:59.5', '2020-10-16 12:0:0.0']},
         'Tropflux': {'keyerror': None,
          'name': 'Tropflux',
          'nyears': 40,
          'time_period': ['1979-1-15 0:0:0.0', '2018-12-15 12:0:0.0']},
         'method': 'nino3.4 SSTA during DEC regressed against nino3.4 SSTA during 6 years (centered on ENSO), the duration is the number of consecutive months during which the regression is above 0.25, time series are linearly detrended, smoothing using a triangle shaped window of 5 points',
         'name': 'ENSO Duration based on life cyle SSTA pattern',
         'ref': 'Using CDAT',
         'time_frequency': 'monthly',
         'units': 'months'},
        'metric': {'datasets': "CESM1-WACCM_r1i1p1; ERA-Interim's ts & HadISST's sst & Tropflux's sst; 's ",
         'method': 'The metric is the absolute value of the relative difference between model and observations values (M = 100 * abs[[model-obs] / obs])',
         'name': 'EnsoDuration',
         'units': '%'}},
       'EnsoSeasonality': {'diagnostic': {'CESM1-WACCM_r1i1p1': {'keyerror': None,
          'name': 'CESM1-WACCM_r1i1p1',
          'nyears': 156,
          'time_period': ['1850-1-16 12:0:0.0', '2005-12-16 12:0:0.0']},
         'ERA-Interim': {'keyerror': None,
          'name': 'ERA-Interim',
          'nyears': 40,
          'time_period': ['1979-1-16 12:0:0.0', '2019-3-16 12:0:0.0']},
         'HadISST': {'keyerror': None,
          'name': 'HadISST',
          'nyears': 151,
          'time_period': ['1870-1-16 11:59:59.5', '2020-10-16 12:0:0.0']},
         'Tropflux': {'keyerror': None,
          'name': 'Tropflux',
          'nyears': 40,
          'time_period': ['1979-1-15 0:0:0.0', '2018-12-15 12:0:0.0']},
         'method': 'Ratio between NDJ and MAM standard deviation nino3.4 sstA, time series are linearly detrended',
         'name': 'ENSO seasonality',
         'ref': 'Using CDAT std dev calculation',
         'time_frequency': 'monthly',
         'units': 'C/C'},
        'metric': {'datasets': "CESM1-WACCM_r1i1p1; ERA-Interim's ts & HadISST's sst & Tropflux's sst; 's ",
         'method': 'The metric is the absolute value of the relative difference between model and observations values (M = 100 * abs[[model-obs] / obs])',
         'name': 'EnsoSeasonality',
         'units': '%'}},
       'EnsoSstDiversity_2': {'diagnostic': {'CESM1-WACCM_r1i1p1': {'keyerror': None,
          'name': 'CESM1-WACCM_r1i1p1',
          'nyears': 156,
          'time_period': ['1850-1-16 12:0:0.0', '2005-12-16 12:0:0.0']},
         'ERA-Interim': {'keyerror': None,
          'name': 'ERA-Interim',
          'nyears': 40,
          'time_period': ['1979-1-16 12:0:0.0', '2019-3-16 12:0:0.0']},
         'HadISST': {'keyerror': None,
          'name': 'HadISST',
          'nyears': 151,
          'time_period': ['1870-1-16 11:59:59.5', '2020-10-16 12:0:0.0']},
         'Tropflux': {'keyerror': None,
          'name': 'Tropflux',
          'nyears': 40,
          'time_period': ['1979-1-15 0:0:0.0', '2018-12-15 12:0:0.0']},
         'method': 'Nino (Nina) events = nino3.4 sstA > 0.75 (< -0.75) during DEC, zonal SSTA (meridional averaged [-5.0 ; 5.0]), the zonal SSTA maximum (minimum) is located for each event, the diversity is the interquartile range (IQR = Q3 - Q1), time series are linearly detrended, smoothing using a triangle shaped window of 5 points',
         'name': 'ENSO Diversity (interquartile range)',
         'ref': 'Using CDAT regridding',
         'time_frequency': 'monthly',
         'units': 'long'},
        'metric': {'datasets': "CESM1-WACCM_r1i1p1; ERA-Interim's ts & HadISST's sst & Tropflux's sst; 's ",
         'method': 'The metric is the absolute value of the relative difference between model and observations values (M = 100 * abs[[model-obs] / obs])',
         'name': 'EnsoSstDiversity',
         'units': '%'}},
       'EnsoSstLonRmse': {'diagnostic': {'CESM1-WACCM_r1i1p1': {'keyerror': None,
          'name': 'CESM1-WACCM_r1i1p1',
          'nyears': 156,
          'time_period': ['1850-1-16 12:0:0.0', '2005-12-16 12:0:0.0']},
         'ERA-Interim': {'name': 'ERA-Interim',
          'nyears': 40,
          'time_period': ['1979-1-16 12:0:0.0', '2019-3-16 12:0:0.0']},
         'HadISST': {'name': 'HadISST',
          'nyears': 151,
          'time_period': ['1870-1-16 11:59:59.5', '2020-10-16 12:0:0.0']},
         'Tropflux': {'name': 'Tropflux',
          'nyears': 40,
          'time_period': ['1979-1-15 0:0:0.0', '2018-12-15 12:0:0.0']},
         'method': 'nino3.4 SSTA during DEC regressed against equatorial_pacific SSTA, time series are linearly detrended, smoothing using a triangle shaped window of 5 points, observations and model regridded to generic_1x1deg',
         'name': 'ENSO Zonal SSTA pattern',
         'ref': 'Using CDAT regridding and rms (uncentered and biased) calculation',
         'time_frequency': 'monthly',
         'units': 'C/C'},
        'metric': {'datasets': "CESM1-WACCM_r1i1p1; ERA-Interim's ts & HadISST's sst & Tropflux's sst; 's ",
         'method': 'The metric is the statistical value between the model and the observations',
         'name': 'EnsoSstLonRmse',
         'units': 'C/C'}},
       'EnsoSstSkew': {'diagnostic': {'CESM1-WACCM_r1i1p1': {'keyerror': None,
          'name': 'CESM1-WACCM_r1i1p1',
          'nyears': 156,
          'time_period': ['1850-1-16 12:0:0.0', '2005-12-16 12:0:0.0']},
         'ERA-Interim': {'keyerror': None,
          'name': 'ERA-Interim',
          'nyears': 40,
          'time_period': ['1979-1-16 12:0:0.0', '2019-3-16 12:0:0.0']},
         'HadISST': {'keyerror': None,
          'name': 'HadISST',
          'nyears': 151,
          'time_period': ['1870-1-16 11:59:59.5', '2020-10-16 12:0:0.0']},
         'Tropflux': {'keyerror': None,
          'name': 'Tropflux',
          'nyears': 40,
          'time_period': ['1979-1-15 0:0:0.0', '2018-12-15 12:0:0.0']},
         'method': 'Standard deviation of nino3.4 sstA, time series are linearly detrended',
         'name': 'ENSO skewness',
         'ref': 'Using CDAT regression calculation',
         'time_frequency': 'monthly',
         'units': 'C'},
        'metric': {'datasets': "CESM1-WACCM_r1i1p1; ERA-Interim's ts & HadISST's sst & Tropflux's sst; 's ",
         'method': 'The metric is the absolute value of the relative difference between model and observations values (M = 100 * abs[[model-obs] / obs])',
         'name': 'EnsoSstSkew',
         'units': '%'}},
       'EnsoSstTsRmse': {'diagnostic': {'CESM1-WACCM_r1i1p1': {'keyerror': None,
          'name': 'CESM1-WACCM_r1i1p1',
          'nyears': 156,
          'time_period': ['1850-1-16 12:0:0.0', '2005-12-16 12:0:0.0']},
         'ERA-Interim': {'name': 'ERA-Interim',
          'nyears': 40,
          'time_period': ['1979-1-16 12:0:0.0', '2019-3-16 12:0:0.0']},
         'HadISST': {'name': 'HadISST',
          'nyears': 151,
          'time_period': ['1870-1-16 11:59:59.5', '2020-10-16 12:0:0.0']},
         'Tropflux': {'name': 'Tropflux',
          'nyears': 40,
          'time_period': ['1979-1-15 0:0:0.0', '2018-12-15 12:0:0.0']},
         'method': 'nino3.4 SSTA during DEC regressed against nino3.4 SSTA during 6 years (centered on ENSO), time series are linearly detrended, smoothing using a triangle shaped window of 5 points',
         'name': 'ENSO life cyle SSTA pattern',
         'ref': 'Using CDAT regridding and rms (uncentered and biased) calculation',
         'time_frequency': 'monthly',
         'units': 'C/C'},
        'metric': {'datasets': "CESM1-WACCM_r1i1p1; ERA-Interim's ts & HadISST's sst & Tropflux's sst; 's ",
         'method': 'The metric is the statistical value between the model and the observations',
         'name': 'EnsoSstTsRmse',
         'units': 'C/C'}},
       'SeasonalPrLatRmse': {'diagnostic': {'CESM1-WACCM_r1i1p1': {'keyerror': None,
          'name': 'CESM1-WACCM_r1i1p1',
          'nyears': 156,
          'time_period': ['1850-1-16 12:0:0.0', '2005-12-16 12:0:0.0']},
         'ERA-Interim': {'name': 'ERA-Interim',
          'nyears': 40,
          'time_period': ['1979-1-16 12:0:0.0', '2019-3-16 12:0:0.0']},
         'GPCPv2.3': {'name': 'GPCPv2.3',
          'nyears': 41,
          'time_period': ['1979-1-1 0:0:0.0', '2019-7-1 0:0:0.0']},
         'method': 'Meridional root mean square error of nino3_LatExt climatological pr STD, time series are linearly detrended, observations and model regridded to generic_1x1deg',
         'name': 'pr meridional seasonality RMSE',
         'ref': 'Using CDAT regridding and rms (uncentered and biased) calculation',
         'time_frequency': 'monthly',
         'units': 'mm/day'},
        'metric': {'datasets': "CESM1-WACCM_r1i1p1; ERA-Interim's pr & GPCPv2.3's precip; 's ",
         'method': 'The metric is the statistical value between the model and the observations',
         'name': 'SeasonalPrLatRmse',
         'units': 'mm/day'}},
       'SeasonalPrLonRmse': {'diagnostic': {'CESM1-WACCM_r1i1p1': {'keyerror': None,
          'name': 'CESM1-WACCM_r1i1p1',
          'nyears': 156,
          'time_period': ['1850-1-16 12:0:0.0', '2005-12-16 12:0:0.0']},
         'ERA-Interim': {'name': 'ERA-Interim',
          'nyears': 40,
          'time_period': ['1979-1-16 12:0:0.0', '2019-3-16 12:0:0.0']},
         'GPCPv2.3': {'name': 'GPCPv2.3',
          'nyears': 41,
          'time_period': ['1979-1-1 0:0:0.0', '2019-7-1 0:0:0.0']},
         'method': 'Zonal root mean square error of equatorial_pacific climatological pr STD, time series are linearly detrended, observations and model regridded to generic_1x1deg',
         'name': 'pr zonal seasonality RMSE',
         'ref': 'Using CDAT regridding and rms (uncentered and biased) calculation',
         'time_frequency': 'monthly',
         'units': 'mm/day'},
        'metric': {'datasets': "CESM1-WACCM_r1i1p1; ERA-Interim's pr & GPCPv2.3's precip; 's ",
         'method': 'The metric is the statistical value between the model and the observations',
         'name': 'SeasonalPrLonRmse',
         'units': 'mm/day'}},
       'SeasonalSstLonRmse': {'diagnostic': {'CESM1-WACCM_r1i1p1': {'keyerror': None,
          'name': 'CESM1-WACCM_r1i1p1',
          'nyears': 156,
          'time_period': ['1850-1-16 12:0:0.0', '2005-12-16 12:0:0.0']},
         'ERA-Interim': {'name': 'ERA-Interim',
          'nyears': 40,
          'time_period': ['1979-1-16 12:0:0.0', '2019-3-16 12:0:0.0']},
         'HadISST': {'name': 'HadISST',
          'nyears': 151,
          'time_period': ['1870-1-16 11:59:59.5', '2020-10-16 12:0:0.0']},
         'Tropflux': {'name': 'Tropflux',
          'nyears': 40,
          'time_period': ['1979-1-15 0:0:0.0', '2018-12-15 12:0:0.0']},
         'method': 'Zonal root mean square error of equatorial_pacific climatological sst STD, time series are linearly detrended, observations and model regridded to generic_1x1deg',
         'name': 'sst zonal seasonality RMSE',
         'ref': 'Using CDAT regridding and rms (uncentered and biased) calculation',
         'time_frequency': 'monthly',
         'units': 'C'},
        'metric': {'datasets': "CESM1-WACCM_r1i1p1; ERA-Interim's ts & HadISST's sst & Tropflux's sst; 's ",
         'method': 'The metric is the statistical value between the model and the observations',
         'name': 'SeasonalSstLonRmse',
         'units': 'C'}},
       'SeasonalTauxLonRmse': {'diagnostic': {'CESM1-WACCM_r1i1p1': {'keyerror': None,
          'name': 'CESM1-WACCM_r1i1p1',
          'nyears': 156,
          'time_period': ['1850-1-16 12:0:0.0', '2005-12-16 12:0:0.0']},
         'ERA-Interim': {'name': 'ERA-Interim',
          'nyears': 40,
          'time_period': ['1979-1-16 12:0:0.0', '2019-3-16 12:0:0.0']},
         'Tropflux': {'name': 'Tropflux',
          'nyears': 40,
          'time_period': ['1979-1-15 0:0:0.0', '2018-12-15 12:0:0.0']},
         'method': 'Zonal root mean square error of equatorial_pacific climatological taux STD, time series are linearly detrended, observations and model regridded to generic_1x1deg',
         'name': 'taux zonal seasonality RMSE',
         'ref': 'Using CDAT regridding and rms (uncentered and biased) calculation',
         'time_frequency': 'monthly',
         'units': '1e-3 N/m2'},
        'metric': {'datasets': "CESM1-WACCM_r1i1p1; ERA-Interim's tauu & Tropflux's taux; 's ",
         'method': 'The metric is the statistical value between the model and the observations',
         'name': 'SeasonalTauxLonRmse',
         'units': '1e-3 N/m2'}}},
      'name': 'Metrics Collection for ENSO performance'},
     'value': {'BiasPrLatRmse': {'diagnostic': {'CESM1-WACCM_r1i1p1': {'value': None,
         'value_error': None},
        'ERA-Interim': {'value': None, 'value_error': None},
        'GPCPv2.3': {'value': None, 'value_error': None}},
       'metric': {'ERA-Interim': {'value': 1.6141773929126815,
         'value_error': None},
        'GPCPv2.3': {'value': 1.6120839070315434, 'value_error': None}}},
      'BiasPrLonRmse': {'diagnostic': {'CESM1-WACCM_r1i1p1': {'value': None,
         'value_error': None},
        'ERA-Interim': {'value': None, 'value_error': None},
        'GPCPv2.3': {'value': None, 'value_error': None}},
       'metric': {'ERA-Interim': {'value': 1.865912100083203,
         'value_error': None},
        'GPCPv2.3': {'value': 0.8843067070012708, 'value_error': None}}},
      'BiasSstLonRmse': {'diagnostic': {'CESM1-WACCM_r1i1p1': {'value': None,
         'value_error': None},
        'ERA-Interim': {'value': None, 'value_error': None},
        'HadISST': {'value': None, 'value_error': None},
        'Tropflux': {'value': None, 'value_error': None}},
       'metric': {'ERA-Interim': {'value': 0.6407187816134237,
         'value_error': None},
        'HadISST': {'value': 0.4396512640665915, 'value_error': None},
        'Tropflux': {'value': 0.6907192592914236, 'value_error': None}}},
      'BiasTauxLonRmse': {'diagnostic': {'CESM1-WACCM_r1i1p1': {'value': None,
         'value_error': None},
        'ERA-Interim': {'value': None, 'value_error': None},
        'Tropflux': {'value': None, 'value_error': None}},
       'metric': {'ERA-Interim': {'value': 6.433034860026156,
         'value_error': None},
        'Tropflux': {'value': 6.493288316239419, 'value_error': None}}},
      'EnsoAmpl': {'diagnostic': {'CESM1-WACCM_r1i1p1': {'value': 1.0495467443822926,
         'value_error': 0.0840309912550381},
        'ERA-Interim': {'value': 0.8989844997845644,
         'value_error': 0.14214193002531866},
        'HadISST': {'value': 0.7665787872085695,
         'value_error': 0.06238329697691264},
        'Tropflux': {'value': 0.9039789553693535,
         'value_error': 0.14293162279134272}},
       'metric': {'ERA-Interim': {'value': 16.74803565954801,
         'value_error': 27.806808957003454},
        'HadISST': {'value': 36.91309515674526,
         'value_error': 22.1036502489146},
        'Tropflux': {'value': 16.103006397252035,
         'value_error': 27.653177203226914}}},
      'EnsoDuration': {'diagnostic': {'CESM1-WACCM_r1i1p1': {'value': 13.0,
         'value_error': None},
        'ERA-Interim': {'value': 13.0, 'value_error': None},
        'HadISST': {'value': 13.0, 'value_error': None},
        'Tropflux': {'value': 13.0, 'value_error': None}},
       'metric': {'ERA-Interim': {'value': 0.0, 'value_error': None},
        'HadISST': {'value': 0.0, 'value_error': None},
        'Tropflux': {'value': 0.0, 'value_error': None}}},
      'EnsoSeasonality': {'diagnostic': {'CESM1-WACCM_r1i1p1': {'value': 1.5650028139360084,
         'value_error': 0.2510045566416899},
        'ERA-Interim': {'value': 2.0466846866656914,
         'value_error': 0.6513411033995022},
        'HadISST': {'value': 1.6639865947361325,
         'value_error': 0.2712772451657809},
        'Tropflux': {'value': 2.0532132553583624,
         'value_error': 0.6534187683977347}},
       'metric': {'ERA-Interim': {'value': 23.53473770864059,
         'value_error': 36.59841912375169},
        'HadISST': {'value': 5.948592441384455,
         'value_error': 30.41759024426548},
        'Tropflux': {'value': 23.77787305572129,
         'value_error': 36.48204772751751}}},
      'EnsoSstDiversity_2': {'diagnostic': {'CESM1-WACCM_r1i1p1': {'value': 31.5,
         'value_error': None},
        'ERA-Interim': {'value': 33.25, 'value_error': None},
        'HadISST': {'value': 49.0, 'value_error': None},
        'Tropflux': {'value': 32.0, 'value_error': None}},
       'metric': {'ERA-Interim': {'value': 5.263157894736842,
         'value_error': None},
        'HadISST': {'value': 35.714285714285715, 'value_error': None},
        'Tropflux': {'value': 1.5625, 'value_error': None}}},
      'EnsoSstLonRmse': {'diagnostic': {'CESM1-WACCM_r1i1p1': {'value': None,
         'value_error': None},
        'ERA-Interim': {'value': None, 'value_error': None},
        'HadISST': {'value': None, 'value_error': None},
        'Tropflux': {'value': None, 'value_error': None}},
       'metric': {'ERA-Interim': {'value': 0.14644938277763006,
         'value_error': None},
        'HadISST': {'value': 0.16256506514648122, 'value_error': None},
        'Tropflux': {'value': 0.14616245206260317, 'value_error': None}}},
      'EnsoSstSkew': {'diagnostic': {'CESM1-WACCM_r1i1p1': {'value': 0.32454281065209234,
         'value_error': 0.025984220550216756},
        'ERA-Interim': {'value': 0.39098111106809963,
         'value_error': 0.061819541653923164},
        'HadISST': {'value': 0.38989908235027515,
         'value_error': 0.03172953733021198},
        'Tropflux': {'value': 0.39744741059612115,
         'value_error': 0.06284195338099416}},
       'metric': {'ERA-Interim': {'value': 16.99271359542362,
         'value_error': 19.770506133586977},
        'HadISST': {'value': 16.76235586506676,
         'value_error': 13.43812855443681},
        'Tropflux': {'value': 18.343206673476896,
         'value_error': 19.448848447382378}}},
      'EnsoSstTsRmse': {'diagnostic': {'CESM1-WACCM_r1i1p1': {'value': None,
         'value_error': None},
        'ERA-Interim': {'value': None, 'value_error': None},
        'HadISST': {'value': None, 'value_error': None},
        'Tropflux': {'value': None, 'value_error': None}},
       'metric': {'ERA-Interim': {'value': 0.06470039922864781,
         'value_error': None},
        'HadISST': {'value': 0.03854520781493399, 'value_error': None},
        'Tropflux': {'value': 0.06294393179276718, 'value_error': None}}},
      'SeasonalPrLatRmse': {'diagnostic': {'CESM1-WACCM_r1i1p1': {'value': None,
         'value_error': None},
        'ERA-Interim': {'value': None, 'value_error': None},
        'GPCPv2.3': {'value': None, 'value_error': None}},
       'metric': {'ERA-Interim': {'value': 1.2020328279027799,
         'value_error': None},
        'GPCPv2.3': {'value': 1.2493829854385226, 'value_error': None}}},
      'SeasonalPrLonRmse': {'diagnostic': {'CESM1-WACCM_r1i1p1': {'value': None,
         'value_error': None},
        'ERA-Interim': {'value': None, 'value_error': None},
        'GPCPv2.3': {'value': None, 'value_error': None}},
       'metric': {'ERA-Interim': {'value': 0.6940914483336361,
         'value_error': None},
        'GPCPv2.3': {'value': 0.36339164330018836, 'value_error': None}}},
      'SeasonalSstLonRmse': {'diagnostic': {'CESM1-WACCM_r1i1p1': {'value': None,
         'value_error': None},
        'ERA-Interim': {'value': None, 'value_error': None},
        'HadISST': {'value': None, 'value_error': None},
        'Tropflux': {'value': None, 'value_error': None}},
       'metric': {'ERA-Interim': {'value': 0.14930643716521624,
         'value_error': None},
        'HadISST': {'value': 0.16863631656929096, 'value_error': None},
        'Tropflux': {'value': 0.15290685124144188, 'value_error': None}}},
      'SeasonalTauxLonRmse': {'diagnostic': {'CESM1-WACCM_r1i1p1': {'value': None,
         'value_error': None},
        'ERA-Interim': {'value': None, 'value_error': None},
        'Tropflux': {'value': None, 'value_error': None}},
       'metric': {'ERA-Interim': {'value': 2.3515296308762297,
         'value_error': None},
        'Tropflux': {'value': 2.3164535381005944, 'value_error': None}}}}},
    'r2i1p1': {'metadata': {'description_of_the_collection': 'Describe which science question this collection is about',
      'metrics': {'BiasPrLatRmse': {'diagnostic': {'CESM1-WACCM_r2i1p1': {'keyerror': None,
          'name': 'CESM1-WACCM_r2i1p1',
          'nyears': 51,
          'time_period': ['1955-1-16 12:0:0.0', '2005-12-16 12:0:0.0']},
         'ERA-Interim': {'name': 'ERA-Interim',
          'nyears': 40,
          'time_period': ['1979-1-16 12:0:0.0', '2019-3-16 12:0:0.0']},
         'GPCPv2.3': {'name': 'GPCPv2.3',
          'nyears': 41,
          'time_period': ['1979-1-1 0:0:0.0', '2019-7-1 0:0:0.0']},
         'method': 'Meridional root mean square error of nino3_LatExt pr, time series are linearly detrended, observations and model regridded to generic_1x1deg',
         'name': 'pr Meridional RMSE',
         'ref': 'Using CDAT regridding and rms (uncentered and biased) calculation',
         'time_frequency': 'monthly',
         'units': 'mm/day'},
        'metric': {'datasets': "CESM1-WACCM_r2i1p1; ERA-Interim's pr & GPCPv2.3's precip; 's ",
         'method': 'The metric is the statistical value between the model and the observations',
         'name': 'BiasPrLatRmse',
         'units': 'mm/day'}},
       'BiasPrLonRmse': {'diagnostic': {'CESM1-WACCM_r2i1p1': {'keyerror': None,
          'name': 'CESM1-WACCM_r2i1p1',
          'nyears': 51,
          'time_period': ['1955-1-16 12:0:0.0', '2005-12-16 12:0:0.0']},
         'ERA-Interim': {'name': 'ERA-Interim',
          'nyears': 40,
          'time_period': ['1979-1-16 12:0:0.0', '2019-3-16 12:0:0.0']},
         'GPCPv2.3': {'name': 'GPCPv2.3',
          'nyears': 41,
          'time_period': ['1979-1-1 0:0:0.0', '2019-7-1 0:0:0.0']},
         'method': 'Zonal root mean square error of equatorial_pacific pr, time series are linearly detrended, observations and model regridded to generic_1x1deg',
         'name': 'pr Zonal RMSE',
         'ref': 'Using CDAT regridding and rms (uncentered and biased) calculation',
         'time_frequency': 'monthly',
         'units': 'mm/day'},
        'metric': {'datasets': "CESM1-WACCM_r2i1p1; ERA-Interim's pr & GPCPv2.3's precip; 's ",
         'method': 'The metric is the statistical value between the model and the observations',
         'name': 'BiasPrLonRmse',
         'units': 'mm/day'}},
       'BiasSstLonRmse': {'diagnostic': {'CESM1-WACCM_r2i1p1': {'keyerror': None,
          'name': 'CESM1-WACCM_r2i1p1',
          'nyears': 51,
          'time_period': ['1955-1-16 12:0:0.0', '2005-12-16 12:0:0.0']},
         'ERA-Interim': {'name': 'ERA-Interim',
          'nyears': 40,
          'time_period': ['1979-1-16 12:0:0.0', '2019-3-16 12:0:0.0']},
         'HadISST': {'name': 'HadISST',
          'nyears': 151,
          'time_period': ['1870-1-16 11:59:59.5', '2020-10-16 12:0:0.0']},
         'Tropflux': {'name': 'Tropflux',
          'nyears': 40,
          'time_period': ['1979-1-15 0:0:0.0', '2018-12-15 12:0:0.0']},
         'method': 'Zonal root mean square error of equatorial_pacific sst, time series are linearly detrended, observations and model regridded to generic_1x1deg',
         'name': 'sst Zonal RMSE',
         'ref': 'Using CDAT regridding and rms (uncentered and biased) calculation',
         'time_frequency': 'monthly',
         'units': 'C'},
        'metric': {'datasets': "CESM1-WACCM_r2i1p1; ERA-Interim's ts & HadISST's sst & Tropflux's sst; 's ",
         'method': 'The metric is the statistical value between the model and the observations',
         'name': 'BiasSstLonRmse',
         'units': 'C'}},
       'BiasTauxLonRmse': {'diagnostic': {'CESM1-WACCM_r2i1p1': {'keyerror': None,
          'name': 'CESM1-WACCM_r2i1p1',
          'nyears': 51,
          'time_period': ['1955-1-16 12:0:0.0', '2005-12-16 12:0:0.0']},
         'ERA-Interim': {'name': 'ERA-Interim',
          'nyears': 40,
          'time_period': ['1979-1-16 12:0:0.0', '2019-3-16 12:0:0.0']},
         'Tropflux': {'name': 'Tropflux',
          'nyears': 40,
          'time_period': ['1979-1-15 0:0:0.0', '2018-12-15 12:0:0.0']},
         'method': 'Zonal root mean square error of equatorial_pacific taux, time series are linearly detrended, observations and model regridded to generic_1x1deg',
         'name': 'taux Zonal RMSE',
         'ref': 'Using CDAT regridding and rms (uncentered and biased) calculation',
         'time_frequency': 'monthly',
         'units': '1e-3 N/m2'},
        'metric': {'datasets': "CESM1-WACCM_r2i1p1; ERA-Interim's tauu & Tropflux's taux; 's ",
         'method': 'The metric is the statistical value between the model and the observations',
         'name': 'BiasTauxLonRmse',
         'units': '1e-3 N/m2'}},
       'EnsoAmpl': {'diagnostic': {'CESM1-WACCM_r2i1p1': {'keyerror': None,
          'name': 'CESM1-WACCM_r2i1p1',
          'nyears': 51,
          'time_period': ['1955-1-16 12:0:0.0', '2005-12-16 12:0:0.0']},
         'ERA-Interim': {'keyerror': None,
          'name': 'ERA-Interim',
          'nyears': 40,
          'time_period': ['1979-1-16 12:0:0.0', '2019-3-16 12:0:0.0']},
         'HadISST': {'keyerror': None,
          'name': 'HadISST',
          'nyears': 151,
          'time_period': ['1870-1-16 11:59:59.5', '2020-10-16 12:0:0.0']},
         'Tropflux': {'keyerror': None,
          'name': 'Tropflux',
          'nyears': 40,
          'time_period': ['1979-1-15 0:0:0.0', '2018-12-15 12:0:0.0']},
         'method': 'Standard deviation of nino3.4 sstA, time series are linearly detrended',
         'name': 'ENSO amplitude',
         'ref': 'Using CDAT regression calculation',
         'time_frequency': 'monthly',
         'units': 'C'},
        'metric': {'datasets': "CESM1-WACCM_r2i1p1; ERA-Interim's ts & HadISST's sst & Tropflux's sst; 's ",
         'method': 'The metric is the absolute value of the relative difference between model and observations values (M = 100 * abs[[model-obs] / obs])',
         'name': 'EnsoAmpl',
         'units': '%'}},
       'EnsoDuration': {'diagnostic': {'CESM1-WACCM_r2i1p1': {'keyerror': None,
          'name': 'CESM1-WACCM_r2i1p1',
          'nyears': 51,
          'time_period': ['1955-1-16 12:0:0.0', '2005-12-16 12:0:0.0']},
         'ERA-Interim': {'keyerror': None,
          'name': 'ERA-Interim',
          'nyears': 40,
          'time_period': ['1979-1-16 12:0:0.0', '2019-3-16 12:0:0.0']},
         'HadISST': {'keyerror': None,
          'name': 'HadISST',
          'nyears': 151,
          'time_period': ['1870-1-16 11:59:59.5', '2020-10-16 12:0:0.0']},
         'Tropflux': {'keyerror': None,
          'name': 'Tropflux',
          'nyears': 40,
          'time_period': ['1979-1-15 0:0:0.0', '2018-12-15 12:0:0.0']},
         'method': 'nino3.4 SSTA during DEC regressed against nino3.4 SSTA during 6 years (centered on ENSO), the duration is the number of consecutive months during which the regression is above 0.25, time series are linearly detrended, smoothing using a triangle shaped window of 5 points',
         'name': 'ENSO Duration based on life cyle SSTA pattern',
         'ref': 'Using CDAT',
         'time_frequency': 'monthly',
         'units': 'months'},
        'metric': {'datasets': "CESM1-WACCM_r2i1p1; ERA-Interim's ts & HadISST's sst & Tropflux's sst; 's ",
         'method': 'The metric is the absolute value of the relative difference between model and observations values (M = 100 * abs[[model-obs] / obs])',
         'name': 'EnsoDuration',
         'units': '%'}},
       'EnsoSeasonality': {'diagnostic': {'CESM1-WACCM_r2i1p1': {'keyerror': None,
          'name': 'CESM1-WACCM_r2i1p1',
          'nyears': 51,
          'time_period': ['1955-1-16 12:0:0.0', '2005-12-16 12:0:0.0']},
         'ERA-Interim': {'keyerror': None,
          'name': 'ERA-Interim',
          'nyears': 40,
          'time_period': ['1979-1-16 12:0:0.0', '2019-3-16 12:0:0.0']},
         'HadISST': {'keyerror': None,
          'name': 'HadISST',
          'nyears': 151,
          'time_period': ['1870-1-16 11:59:59.5', '2020-10-16 12:0:0.0']},
         'Tropflux': {'keyerror': None,
          'name': 'Tropflux',
          'nyears': 40,
          'time_period': ['1979-1-15 0:0:0.0', '2018-12-15 12:0:0.0']},
         'method': 'Ratio between NDJ and MAM standard deviation nino3.4 sstA, time series are linearly detrended',
         'name': 'ENSO seasonality',
         'ref': 'Using CDAT std dev calculation',
         'time_frequency': 'monthly',
         'units': 'C/C'},
        'metric': {'datasets': "CESM1-WACCM_r2i1p1; ERA-Interim's ts & HadISST's sst & Tropflux's sst; 's ",
         'method': 'The metric is the absolute value of the relative difference between model and observations values (M = 100 * abs[[model-obs] / obs])',
         'name': 'EnsoSeasonality',
         'units': '%'}},
       'EnsoSstDiversity_2': {'diagnostic': {'CESM1-WACCM_r2i1p1': {'keyerror': None,
          'name': 'CESM1-WACCM_r2i1p1',
          'nyears': 51,
          'time_period': ['1955-1-16 12:0:0.0', '2005-12-16 12:0:0.0']},
         'ERA-Interim': {'keyerror': None,
          'name': 'ERA-Interim',
          'nyears': 40,
          'time_period': ['1979-1-16 12:0:0.0', '2019-3-16 12:0:0.0']},
         'HadISST': {'keyerror': None,
          'name': 'HadISST',
          'nyears': 151,
          'time_period': ['1870-1-16 11:59:59.5', '2020-10-16 12:0:0.0']},
         'Tropflux': {'keyerror': None,
          'name': 'Tropflux',
          'nyears': 40,
          'time_period': ['1979-1-15 0:0:0.0', '2018-12-15 12:0:0.0']},
         'method': 'Nino (Nina) events = nino3.4 sstA > 0.75 (< -0.75) during DEC, zonal SSTA (meridional averaged [-5.0 ; 5.0]), the zonal SSTA maximum (minimum) is located for each event, the diversity is the interquartile range (IQR = Q3 - Q1), time series are linearly detrended, smoothing using a triangle shaped window of 5 points',
         'name': 'ENSO Diversity (interquartile range)',
         'ref': 'Using CDAT regridding',
         'time_frequency': 'monthly',
         'units': 'long'},
        'metric': {'datasets': "CESM1-WACCM_r2i1p1; ERA-Interim's ts & HadISST's sst & Tropflux's sst; 's ",
         'method': 'The metric is the absolute value of the relative difference between model and observations values (M = 100 * abs[[model-obs] / obs])',
         'name': 'EnsoSstDiversity',
         'units': '%'}},
       'EnsoSstLonRmse': {'diagnostic': {'CESM1-WACCM_r2i1p1': {'keyerror': None,
          'name': 'CESM1-WACCM_r2i1p1',
          'nyears': 51,
          'time_period': ['1955-1-16 12:0:0.0', '2005-12-16 12:0:0.0']},
         'ERA-Interim': {'name': 'ERA-Interim',
          'nyears': 40,
          'time_period': ['1979-1-16 12:0:0.0', '2019-3-16 12:0:0.0']},
         'HadISST': {'name': 'HadISST',
          'nyears': 151,
          'time_period': ['1870-1-16 11:59:59.5', '2020-10-16 12:0:0.0']},
         'Tropflux': {'name': 'Tropflux',
          'nyears': 40,
          'time_period': ['1979-1-15 0:0:0.0', '2018-12-15 12:0:0.0']},
         'method': 'nino3.4 SSTA during DEC regressed against equatorial_pacific SSTA, time series are linearly detrended, smoothing using a triangle shaped window of 5 points, observations and model regridded to generic_1x1deg',
         'name': 'ENSO Zonal SSTA pattern',
         'ref': 'Using CDAT regridding and rms (uncentered and biased) calculation',
         'time_frequency': 'monthly',
         'units': 'C/C'},
        'metric': {'datasets': "CESM1-WACCM_r2i1p1; ERA-Interim's ts & HadISST's sst & Tropflux's sst; 's ",
         'method': 'The metric is the statistical value between the model and the observations',
         'name': 'EnsoSstLonRmse',
         'units': 'C/C'}},
       'EnsoSstSkew': {'diagnostic': {'CESM1-WACCM_r2i1p1': {'keyerror': None,
          'name': 'CESM1-WACCM_r2i1p1',
          'nyears': 51,
          'time_period': ['1955-1-16 12:0:0.0', '2005-12-16 12:0:0.0']},
         'ERA-Interim': {'keyerror': None,
          'name': 'ERA-Interim',
          'nyears': 40,
          'time_period': ['1979-1-16 12:0:0.0', '2019-3-16 12:0:0.0']},
         'HadISST': {'keyerror': None,
          'name': 'HadISST',
          'nyears': 151,
          'time_period': ['1870-1-16 11:59:59.5', '2020-10-16 12:0:0.0']},
         'Tropflux': {'keyerror': None,
          'name': 'Tropflux',
          'nyears': 40,
          'time_period': ['1979-1-15 0:0:0.0', '2018-12-15 12:0:0.0']},
         'method': 'Standard deviation of nino3.4 sstA, time series are linearly detrended',
         'name': 'ENSO skewness',
         'ref': 'Using CDAT regression calculation',
         'time_frequency': 'monthly',
         'units': 'C'},
        'metric': {'datasets': "CESM1-WACCM_r2i1p1; ERA-Interim's ts & HadISST's sst & Tropflux's sst; 's ",
         'method': 'The metric is the absolute value of the relative difference between model and observations values (M = 100 * abs[[model-obs] / obs])',
         'name': 'EnsoSstSkew',
         'units': '%'}},
       'EnsoSstTsRmse': {'diagnostic': {'CESM1-WACCM_r2i1p1': {'keyerror': None,
          'name': 'CESM1-WACCM_r2i1p1',
          'nyears': 51,
          'time_period': ['1955-1-16 12:0:0.0', '2005-12-16 12:0:0.0']},
         'ERA-Interim': {'name': 'ERA-Interim',
          'nyears': 40,
          'time_period': ['1979-1-16 12:0:0.0', '2019-3-16 12:0:0.0']},
         'HadISST': {'name': 'HadISST',
          'nyears': 151,
          'time_period': ['1870-1-16 11:59:59.5', '2020-10-16 12:0:0.0']},
         'Tropflux': {'name': 'Tropflux',
          'nyears': 40,
          'time_period': ['1979-1-15 0:0:0.0', '2018-12-15 12:0:0.0']},
         'method': 'nino3.4 SSTA during DEC regressed against nino3.4 SSTA during 6 years (centered on ENSO), time series are linearly detrended, smoothing using a triangle shaped window of 5 points',
         'name': 'ENSO life cyle SSTA pattern',
         'ref': 'Using CDAT regridding and rms (uncentered and biased) calculation',
         'time_frequency': 'monthly',
         'units': 'C/C'},
        'metric': {'datasets': "CESM1-WACCM_r2i1p1; ERA-Interim's ts & HadISST's sst & Tropflux's sst; 's ",
         'method': 'The metric is the statistical value between the model and the observations',
         'name': 'EnsoSstTsRmse',
         'units': 'C/C'}},
       'SeasonalPrLatRmse': {'diagnostic': {'CESM1-WACCM_r2i1p1': {'keyerror': None,
          'name': 'CESM1-WACCM_r2i1p1',
          'nyears': 51,
          'time_period': ['1955-1-16 12:0:0.0', '2005-12-16 12:0:0.0']},
         'ERA-Interim': {'name': 'ERA-Interim',
          'nyears': 40,
          'time_period': ['1979-1-16 12:0:0.0', '2019-3-16 12:0:0.0']},
         'GPCPv2.3': {'name': 'GPCPv2.3',
          'nyears': 41,
          'time_period': ['1979-1-1 0:0:0.0', '2019-7-1 0:0:0.0']},
         'method': 'Meridional root mean square error of nino3_LatExt climatological pr STD, time series are linearly detrended, observations and model regridded to generic_1x1deg',
         'name': 'pr meridional seasonality RMSE',
         'ref': 'Using CDAT regridding and rms (uncentered and biased) calculation',
         'time_frequency': 'monthly',
         'units': 'mm/day'},
        'metric': {'datasets': "CESM1-WACCM_r2i1p1; ERA-Interim's pr & GPCPv2.3's precip; 's ",
         'method': 'The metric is the statistical value between the model and the observations',
         'name': 'SeasonalPrLatRmse',
         'units': 'mm/day'}},
       'SeasonalPrLonRmse': {'diagnostic': {'CESM1-WACCM_r2i1p1': {'keyerror': None,
          'name': 'CESM1-WACCM_r2i1p1',
          'nyears': 51,
          'time_period': ['1955-1-16 12:0:0.0', '2005-12-16 12:0:0.0']},
         'ERA-Interim': {'name': 'ERA-Interim',
          'nyears': 40,
          'time_period': ['1979-1-16 12:0:0.0', '2019-3-16 12:0:0.0']},
         'GPCPv2.3': {'name': 'GPCPv2.3',
          'nyears': 41,
          'time_period': ['1979-1-1 0:0:0.0', '2019-7-1 0:0:0.0']},
         'method': 'Zonal root mean square error of equatorial_pacific climatological pr STD, time series are linearly detrended, observations and model regridded to generic_1x1deg',
         'name': 'pr zonal seasonality RMSE',
         'ref': 'Using CDAT regridding and rms (uncentered and biased) calculation',
         'time_frequency': 'monthly',
         'units': 'mm/day'},
        'metric': {'datasets': "CESM1-WACCM_r2i1p1; ERA-Interim's pr & GPCPv2.3's precip; 's ",
         'method': 'The metric is the statistical value between the model and the observations',
         'name': 'SeasonalPrLonRmse',
         'units': 'mm/day'}},
       'SeasonalSstLonRmse': {'diagnostic': {'CESM1-WACCM_r2i1p1': {'keyerror': None,
          'name': 'CESM1-WACCM_r2i1p1',
          'nyears': 51,
          'time_period': ['1955-1-16 12:0:0.0', '2005-12-16 12:0:0.0']},
         'ERA-Interim': {'name': 'ERA-Interim',
          'nyears': 40,
          'time_period': ['1979-1-16 12:0:0.0', '2019-3-16 12:0:0.0']},
         'HadISST': {'name': 'HadISST',
          'nyears': 151,
          'time_period': ['1870-1-16 11:59:59.5', '2020-10-16 12:0:0.0']},
         'Tropflux': {'name': 'Tropflux',
          'nyears': 40,
          'time_period': ['1979-1-15 0:0:0.0', '2018-12-15 12:0:0.0']},
         'method': 'Zonal root mean square error of equatorial_pacific climatological sst STD, time series are linearly detrended, observations and model regridded to generic_1x1deg',
         'name': 'sst zonal seasonality RMSE',
         'ref': 'Using CDAT regridding and rms (uncentered and biased) calculation',
         'time_frequency': 'monthly',
         'units': 'C'},
        'metric': {'datasets': "CESM1-WACCM_r2i1p1; ERA-Interim's ts & HadISST's sst & Tropflux's sst; 's ",
         'method': 'The metric is the statistical value between the model and the observations',
         'name': 'SeasonalSstLonRmse',
         'units': 'C'}},
       'SeasonalTauxLonRmse': {'diagnostic': {'CESM1-WACCM_r2i1p1': {'keyerror': None,
          'name': 'CESM1-WACCM_r2i1p1',
          'nyears': 51,
          'time_period': ['1955-1-16 12:0:0.0', '2005-12-16 12:0:0.0']},
         'ERA-Interim': {'name': 'ERA-Interim',
          'nyears': 40,
          'time_period': ['1979-1-16 12:0:0.0', '2019-3-16 12:0:0.0']},
         'Tropflux': {'name': 'Tropflux',
          'nyears': 40,
          'time_period': ['1979-1-15 0:0:0.0', '2018-12-15 12:0:0.0']},
         'method': 'Zonal root mean square error of equatorial_pacific climatological taux STD, time series are linearly detrended, observations and model regridded to generic_1x1deg',
         'name': 'taux zonal seasonality RMSE',
         'ref': 'Using CDAT regridding and rms (uncentered and biased) calculation',
         'time_frequency': 'monthly',
         'units': '1e-3 N/m2'},
        'metric': {'datasets': "CESM1-WACCM_r2i1p1; ERA-Interim's tauu & Tropflux's taux; 's ",
         'method': 'The metric is the statistical value between the model and the observations',
         'name': 'SeasonalTauxLonRmse',
         'units': '1e-3 N/m2'}}},
      'name': 'Metrics Collection for ENSO performance'},
     'value': {'BiasPrLatRmse': {'diagnostic': {'CESM1-WACCM_r2i1p1': {'value': None,
         'value_error': None},
        'ERA-Interim': {'value': None, 'value_error': None},
        'GPCPv2.3': {'value': None, 'value_error': None}},
       'metric': {'ERA-Interim': {'value': 1.499697537088838,
         'value_error': None},
        'GPCPv2.3': {'value': 1.5987203517927087, 'value_error': None}}},
      'BiasPrLonRmse': {'diagnostic': {'CESM1-WACCM_r2i1p1': {'value': None,
         'value_error': None},
        'ERA-Interim': {'value': None, 'value_error': None},
        'GPCPv2.3': {'value': None, 'value_error': None}},
       'metric': {'ERA-Interim': {'value': 1.7549366830473916,
         'value_error': None},
        'GPCPv2.3': {'value': 0.8342343172523758, 'value_error': None}}},
      'BiasSstLonRmse': {'diagnostic': {'CESM1-WACCM_r2i1p1': {'value': None,
         'value_error': None},
        'ERA-Interim': {'value': None, 'value_error': None},
        'HadISST': {'value': None, 'value_error': None},
        'Tropflux': {'value': None, 'value_error': None}},
       'metric': {'ERA-Interim': {'value': 0.4092434308868775,
         'value_error': None},
        'HadISST': {'value': 0.293909995232964, 'value_error': None},
        'Tropflux': {'value': 0.45582545906905714, 'value_error': None}}},
      'BiasTauxLonRmse': {'diagnostic': {'CESM1-WACCM_r2i1p1': {'value': None,
         'value_error': None},
        'ERA-Interim': {'value': None, 'value_error': None},
        'Tropflux': {'value': None, 'value_error': None}},
       'metric': {'ERA-Interim': {'value': 6.739429771309716,
         'value_error': None},
        'Tropflux': {'value': 6.724126975782613, 'value_error': None}}},
      'EnsoAmpl': {'diagnostic': {'CESM1-WACCM_r2i1p1': {'value': 1.2358443659005571,
         'value_error': 0.17305282525287746},
        'ERA-Interim': {'value': 0.8989844997845644,
         'value_error': 0.14214193002531866},
        'HadISST': {'value': 0.7665787872085695,
         'value_error': 0.06238329697691264},
        'Tropflux': {'value': 0.9039789553693535,
         'value_error': 0.14293162279134272}},
       'metric': {'ERA-Interim': {'value': 37.471153973924906,
         'value_error': 40.98590986026902},
        'HadISST': {'value': 61.21557060048291,
         'value_error': 35.69423234759478},
        'Tropflux': {'value': 36.71163012811598,
         'value_error': 40.75946398430762}}},
      'EnsoDuration': {'diagnostic': {'CESM1-WACCM_r2i1p1': {'value': 12.0,
         'value_error': None},
        'ERA-Interim': {'value': 13.0, 'value_error': None},
        'HadISST': {'value': 13.0, 'value_error': None},
        'Tropflux': {'value': 13.0, 'value_error': None}},
       'metric': {'ERA-Interim': {'value': 7.6923076923076925,
         'value_error': None},
        'HadISST': {'value': 7.6923076923076925, 'value_error': None},
        'Tropflux': {'value': 7.6923076923076925, 'value_error': None}}},
      'EnsoSeasonality': {'diagnostic': {'CESM1-WACCM_r2i1p1': {'value': 1.6116418305734659,
         'value_error': 0.4535955692423266},
        'ERA-Interim': {'value': 2.0466846866656914,
         'value_error': 0.6513411033995022},
        'HadISST': {'value': 1.6639865947361325,
         'value_error': 0.2712772451657809},
        'Tropflux': {'value': 2.0532132553583624,
         'value_error': 0.6534187683977347}},
       'metric': {'ERA-Interim': {'value': 21.255978457578895,
         'value_error': 47.222112634868296},
        'HadISST': {'value': 3.145744342427665,
         'value_error': 43.04957312048569},
        'Tropflux': {'value': 21.506359538275326,
         'value_error': 47.07196125368797}}},
      'EnsoSstDiversity_2': {'diagnostic': {'CESM1-WACCM_r2i1p1': {'value': 17.5,
         'value_error': None},
        'ERA-Interim': {'value': 33.25, 'value_error': None},
        'HadISST': {'value': 49.0, 'value_error': None},
        'Tropflux': {'value': 32.0, 'value_error': None}},
       'metric': {'ERA-Interim': {'value': 47.368421052631575,
         'value_error': None},
        'HadISST': {'value': 64.28571428571429, 'value_error': None},
        'Tropflux': {'value': 45.3125, 'value_error': None}}},
      'EnsoSstLonRmse': {'diagnostic': {'CESM1-WACCM_r2i1p1': {'value': None,
         'value_error': None},
        'ERA-Interim': {'value': None, 'value_error': None},
        'HadISST': {'value': None, 'value_error': None},
        'Tropflux': {'value': None, 'value_error': None}},
       'metric': {'ERA-Interim': {'value': 0.10626622921153701,
         'value_error': None},
        'HadISST': {'value': 0.1168082874783333, 'value_error': None},
        'Tropflux': {'value': 0.10427147364890162, 'value_error': None}}},
      'EnsoSstSkew': {'diagnostic': {'CESM1-WACCM_r2i1p1': {'value': 0.367837424602116,
         'value_error': 0.05150754198304977},
        'ERA-Interim': {'value': 0.39098111106809963,
         'value_error': 0.061819541653923164},
        'HadISST': {'value': 0.38989908235027515,
         'value_error': 0.03172953733021198},
        'Tropflux': {'value': 0.39744741059612115,
         'value_error': 0.06284195338099416}},
       'metric': {'ERA-Interim': {'value': 5.919387359342931,
         'value_error': 28.04937179781183},
        'HadISST': {'value': 5.658299479745772,
         'value_error': 20.887899139607487},
        'Tropflux': {'value': 7.450038723259992,
         'value_error': 27.593020505082432}}},
      'EnsoSstTsRmse': {'diagnostic': {'CESM1-WACCM_r2i1p1': {'value': None,
         'value_error': None},
        'ERA-Interim': {'value': None, 'value_error': None},
        'HadISST': {'value': None, 'value_error': None},
        'Tropflux': {'value': None, 'value_error': None}},
       'metric': {'ERA-Interim': {'value': 0.09783021382401647,
         'value_error': None},
        'HadISST': {'value': 0.09651575167344903, 'value_error': None},
        'Tropflux': {'value': 0.10051001444491907, 'value_error': None}}},
      'SeasonalPrLatRmse': {'diagnostic': {'CESM1-WACCM_r2i1p1': {'value': None,
         'value_error': None},
        'ERA-Interim': {'value': None, 'value_error': None},
        'GPCPv2.3': {'value': None, 'value_error': None}},
       'metric': {'ERA-Interim': {'value': 1.174497728978548,
         'value_error': None},
        'GPCPv2.3': {'value': 1.2782700665921358, 'value_error': None}}},
      'SeasonalPrLonRmse': {'diagnostic': {'CESM1-WACCM_r2i1p1': {'value': None,
         'value_error': None},
        'ERA-Interim': {'value': None, 'value_error': None},
        'GPCPv2.3': {'value': None, 'value_error': None}},
       'metric': {'ERA-Interim': {'value': 0.5326834862234044,
         'value_error': None},
        'GPCPv2.3': {'value': 0.24534527670807513, 'value_error': None}}},
      'SeasonalSstLonRmse': {'diagnostic': {'CESM1-WACCM_r2i1p1': {'value': None,
         'value_error': None},
        'ERA-Interim': {'value': None, 'value_error': None},
        'HadISST': {'value': None, 'value_error': None},
        'Tropflux': {'value': None, 'value_error': None}},
       'metric': {'ERA-Interim': {'value': 0.15099148069332816,
         'value_error': None},
        'HadISST': {'value': 0.1704296889257615, 'value_error': None},
        'Tropflux': {'value': 0.15447418446341213, 'value_error': None}}},
      'SeasonalTauxLonRmse': {'diagnostic': {'CESM1-WACCM_r2i1p1': {'value': None,
         'value_error': None},
        'ERA-Interim': {'value': None, 'value_error': None},
        'Tropflux': {'value': None, 'value_error': None}},
       'metric': {'ERA-Interim': {'value': 2.3680545539374505,
         'value_error': None},
        'Tropflux': {'value': 2.316365013053664, 'value_error': None}}}}},
    'r3i1p1': {'metadata': {'description_of_the_collection': 'Describe which science question this collection is about',
      'metrics': {'BiasPrLatRmse': {'diagnostic': {'CESM1-WACCM_r3i1p1': {'keyerror': None,
          'name': 'CESM1-WACCM_r3i1p1',
          'nyears': 51,
          'time_period': ['1955-1-16 12:0:0.0', '2005-12-16 12:0:0.0']},
         'ERA-Interim': {'name': 'ERA-Interim',
          'nyears': 40,
          'time_period': ['1979-1-16 12:0:0.0', '2019-3-16 12:0:0.0']},
         'GPCPv2.3': {'name': 'GPCPv2.3',
          'nyears': 41,
          'time_period': ['1979-1-1 0:0:0.0', '2019-7-1 0:0:0.0']},
         'method': 'Meridional root mean square error of nino3_LatExt pr, time series are linearly detrended, observations and model regridded to generic_1x1deg',
         'name': 'pr Meridional RMSE',
         'ref': 'Using CDAT regridding and rms (uncentered and biased) calculation',
         'time_frequency': 'monthly',
         'units': 'mm/day'},
        'metric': {'datasets': "CESM1-WACCM_r3i1p1; ERA-Interim's pr & GPCPv2.3's precip; 's ",
         'method': 'The metric is the statistical value between the model and the observations',
         'name': 'BiasPrLatRmse',
         'units': 'mm/day'}},
       'BiasPrLonRmse': {'diagnostic': {'CESM1-WACCM_r3i1p1': {'keyerror': None,
          'name': 'CESM1-WACCM_r3i1p1',
          'nyears': 51,
          'time_period': ['1955-1-16 12:0:0.0', '2005-12-16 12:0:0.0']},
         'ERA-Interim': {'name': 'ERA-Interim',
          'nyears': 40,
          'time_period': ['1979-1-16 12:0:0.0', '2019-3-16 12:0:0.0']},
         'GPCPv2.3': {'name': 'GPCPv2.3',
          'nyears': 41,
          'time_period': ['1979-1-1 0:0:0.0', '2019-7-1 0:0:0.0']},
         'method': 'Zonal root mean square error of equatorial_pacific pr, time series are linearly detrended, observations and model regridded to generic_1x1deg',
         'name': 'pr Zonal RMSE',
         'ref': 'Using CDAT regridding and rms (uncentered and biased) calculation',
         'time_frequency': 'monthly',
         'units': 'mm/day'},
        'metric': {'datasets': "CESM1-WACCM_r3i1p1; ERA-Interim's pr & GPCPv2.3's precip; 's ",
         'method': 'The metric is the statistical value between the model and the observations',
         'name': 'BiasPrLonRmse',
         'units': 'mm/day'}},
       'BiasSstLonRmse': {'diagnostic': {'CESM1-WACCM_r3i1p1': {'keyerror': None,
          'name': 'CESM1-WACCM_r3i1p1',
          'nyears': 51,
          'time_period': ['1955-1-16 12:0:0.0', '2005-12-16 12:0:0.0']},
         'ERA-Interim': {'name': 'ERA-Interim',
          'nyears': 40,
          'time_period': ['1979-1-16 12:0:0.0', '2019-3-16 12:0:0.0']},
         'HadISST': {'name': 'HadISST',
          'nyears': 151,
          'time_period': ['1870-1-16 11:59:59.5', '2020-10-16 12:0:0.0']},
         'Tropflux': {'name': 'Tropflux',
          'nyears': 40,
          'time_period': ['1979-1-15 0:0:0.0', '2018-12-15 12:0:0.0']},
         'method': 'Zonal root mean square error of equatorial_pacific sst, time series are linearly detrended, observations and model regridded to generic_1x1deg',
         'name': 'sst Zonal RMSE',
         'ref': 'Using CDAT regridding and rms (uncentered and biased) calculation',
         'time_frequency': 'monthly',
         'units': 'C'},
        'metric': {'datasets': "CESM1-WACCM_r3i1p1; ERA-Interim's ts & HadISST's sst & Tropflux's sst; 's ",
         'method': 'The metric is the statistical value between the model and the observations',
         'name': 'BiasSstLonRmse',
         'units': 'C'}},
       'BiasTauxLonRmse': {'diagnostic': {'CESM1-WACCM_r3i1p1': {'keyerror': None,
          'name': 'CESM1-WACCM_r3i1p1',
          'nyears': 51,
          'time_period': ['1955-1-16 12:0:0.0', '2005-12-16 12:0:0.0']},
         'ERA-Interim': {'name': 'ERA-Interim',
          'nyears': 40,
          'time_period': ['1979-1-16 12:0:0.0', '2019-3-16 12:0:0.0']},
         'Tropflux': {'name': 'Tropflux',
          'nyears': 40,
          'time_period': ['1979-1-15 0:0:0.0', '2018-12-15 12:0:0.0']},
         'method': 'Zonal root mean square error of equatorial_pacific taux, time series are linearly detrended, observations and model regridded to generic_1x1deg',
         'name': 'taux Zonal RMSE',
         'ref': 'Using CDAT regridding and rms (uncentered and biased) calculation',
         'time_frequency': 'monthly',
         'units': '1e-3 N/m2'},
        'metric': {'datasets': "CESM1-WACCM_r3i1p1; ERA-Interim's tauu & Tropflux's taux; 's ",
         'method': 'The metric is the statistical value between the model and the observations',
         'name': 'BiasTauxLonRmse',
         'units': '1e-3 N/m2'}},
       'EnsoAmpl': {'diagnostic': {'CESM1-WACCM_r3i1p1': {'keyerror': None,
          'name': 'CESM1-WACCM_r3i1p1',
          'nyears': 51,
          'time_period': ['1955-1-16 12:0:0.0', '2005-12-16 12:0:0.0']},
         'ERA-Interim': {'keyerror': None,
          'name': 'ERA-Interim',
          'nyears': 40,
          'time_period': ['1979-1-16 12:0:0.0', '2019-3-16 12:0:0.0']},
         'HadISST': {'keyerror': None,
          'name': 'HadISST',
          'nyears': 151,
          'time_period': ['1870-1-16 11:59:59.5', '2020-10-16 12:0:0.0']},
         'Tropflux': {'keyerror': None,
          'name': 'Tropflux',
          'nyears': 40,
          'time_period': ['1979-1-15 0:0:0.0', '2018-12-15 12:0:0.0']},
         'method': 'Standard deviation of nino3.4 sstA, time series are linearly detrended',
         'name': 'ENSO amplitude',
         'ref': 'Using CDAT regression calculation',
         'time_frequency': 'monthly',
         'units': 'C'},
        'metric': {'datasets': "CESM1-WACCM_r3i1p1; ERA-Interim's ts & HadISST's sst & Tropflux's sst; 's ",
         'method': 'The metric is the absolute value of the relative difference between model and observations values (M = 100 * abs[[model-obs] / obs])',
         'name': 'EnsoAmpl',
         'units': '%'}},
       'EnsoDuration': {'diagnostic': {'CESM1-WACCM_r3i1p1': {'keyerror': None,
          'name': 'CESM1-WACCM_r3i1p1',
          'nyears': 51,
          'time_period': ['1955-1-16 12:0:0.0', '2005-12-16 12:0:0.0']},
         'ERA-Interim': {'keyerror': None,
          'name': 'ERA-Interim',
          'nyears': 40,
          'time_period': ['1979-1-16 12:0:0.0', '2019-3-16 12:0:0.0']},
         'HadISST': {'keyerror': None,
          'name': 'HadISST',
          'nyears': 151,
          'time_period': ['1870-1-16 11:59:59.5', '2020-10-16 12:0:0.0']},
         'Tropflux': {'keyerror': None,
          'name': 'Tropflux',
          'nyears': 40,
          'time_period': ['1979-1-15 0:0:0.0', '2018-12-15 12:0:0.0']},
         'method': 'nino3.4 SSTA during DEC regressed against nino3.4 SSTA during 6 years (centered on ENSO), the duration is the number of consecutive months during which the regression is above 0.25, time series are linearly detrended, smoothing using a triangle shaped window of 5 points',
         'name': 'ENSO Duration based on life cyle SSTA pattern',
         'ref': 'Using CDAT',
         'time_frequency': 'monthly',
         'units': 'months'},
        'metric': {'datasets': "CESM1-WACCM_r3i1p1; ERA-Interim's ts & HadISST's sst & Tropflux's sst; 's ",
         'method': 'The metric is the absolute value of the relative difference between model and observations values (M = 100 * abs[[model-obs] / obs])',
         'name': 'EnsoDuration',
         'units': '%'}},
       'EnsoSeasonality': {'diagnostic': {'CESM1-WACCM_r3i1p1': {'keyerror': None,
          'name': 'CESM1-WACCM_r3i1p1',
          'nyears': 51,
          'time_period': ['1955-1-16 12:0:0.0', '2005-12-16 12:0:0.0']},
         'ERA-Interim': {'keyerror': None,
          'name': 'ERA-Interim',
          'nyears': 40,
          'time_period': ['1979-1-16 12:0:0.0', '2019-3-16 12:0:0.0']},
         'HadISST': {'keyerror': None,
          'name': 'HadISST',
          'nyears': 151,
          'time_period': ['1870-1-16 11:59:59.5', '2020-10-16 12:0:0.0']},
         'Tropflux': {'keyerror': None,
          'name': 'Tropflux',
          'nyears': 40,
          'time_period': ['1979-1-15 0:0:0.0', '2018-12-15 12:0:0.0']},
         'method': 'Ratio between NDJ and MAM standard deviation nino3.4 sstA, time series are linearly detrended',
         'name': 'ENSO seasonality',
         'ref': 'Using CDAT std dev calculation',
         'time_frequency': 'monthly',
         'units': 'C/C'},
        'metric': {'datasets': "CESM1-WACCM_r3i1p1; ERA-Interim's ts & HadISST's sst & Tropflux's sst; 's ",
         'method': 'The metric is the absolute value of the relative difference between model and observations values (M = 100 * abs[[model-obs] / obs])',
         'name': 'EnsoSeasonality',
         'units': '%'}},
       'EnsoSstDiversity_2': {'diagnostic': {'CESM1-WACCM_r3i1p1': {'keyerror': None,
          'name': 'CESM1-WACCM_r3i1p1',
          'nyears': 51,
          'time_period': ['1955-1-16 12:0:0.0', '2005-12-16 12:0:0.0']},
         'ERA-Interim': {'keyerror': None,
          'name': 'ERA-Interim',
          'nyears': 40,
          'time_period': ['1979-1-16 12:0:0.0', '2019-3-16 12:0:0.0']},
         'HadISST': {'keyerror': None,
          'name': 'HadISST',
          'nyears': 151,
          'time_period': ['1870-1-16 11:59:59.5', '2020-10-16 12:0:0.0']},
         'Tropflux': {'keyerror': None,
          'name': 'Tropflux',
          'nyears': 40,
          'time_period': ['1979-1-15 0:0:0.0', '2018-12-15 12:0:0.0']},
         'method': 'Nino (Nina) events = nino3.4 sstA > 0.75 (< -0.75) during DEC, zonal SSTA (meridional averaged [-5.0 ; 5.0]), the zonal SSTA maximum (minimum) is located for each event, the diversity is the interquartile range (IQR = Q3 - Q1), time series are linearly detrended, smoothing using a triangle shaped window of 5 points',
         'name': 'ENSO Diversity (interquartile range)',
         'ref': 'Using CDAT regridding',
         'time_frequency': 'monthly',
         'units': 'long'},
        'metric': {'datasets': "CESM1-WACCM_r3i1p1; ERA-Interim's ts & HadISST's sst & Tropflux's sst; 's ",
         'method': 'The metric is the absolute value of the relative difference between model and observations values (M = 100 * abs[[model-obs] / obs])',
         'name': 'EnsoSstDiversity',
         'units': '%'}},
       'EnsoSstLonRmse': {'diagnostic': {'CESM1-WACCM_r3i1p1': {'keyerror': None,
          'name': 'CESM1-WACCM_r3i1p1',
          'nyears': 51,
          'time_period': ['1955-1-16 12:0:0.0', '2005-12-16 12:0:0.0']},
         'ERA-Interim': {'name': 'ERA-Interim',
          'nyears': 40,
          'time_period': ['1979-1-16 12:0:0.0', '2019-3-16 12:0:0.0']},
         'HadISST': {'name': 'HadISST',
          'nyears': 151,
          'time_period': ['1870-1-16 11:59:59.5', '2020-10-16 12:0:0.0']},
         'Tropflux': {'name': 'Tropflux',
          'nyears': 40,
          'time_period': ['1979-1-15 0:0:0.0', '2018-12-15 12:0:0.0']},
         'method': 'nino3.4 SSTA during DEC regressed against equatorial_pacific SSTA, time series are linearly detrended, smoothing using a triangle shaped window of 5 points, observations and model regridded to generic_1x1deg',
         'name': 'ENSO Zonal SSTA pattern',
         'ref': 'Using CDAT regridding and rms (uncentered and biased) calculation',
         'time_frequency': 'monthly',
         'units': 'C/C'},
        'metric': {'datasets': "CESM1-WACCM_r3i1p1; ERA-Interim's ts & HadISST's sst & Tropflux's sst; 's ",
         'method': 'The metric is the statistical value between the model and the observations',
         'name': 'EnsoSstLonRmse',
         'units': 'C/C'}},
       'EnsoSstSkew': {'diagnostic': {'CESM1-WACCM_r3i1p1': {'keyerror': None,
          'name': 'CESM1-WACCM_r3i1p1',
          'nyears': 51,
          'time_period': ['1955-1-16 12:0:0.0', '2005-12-16 12:0:0.0']},
         'ERA-Interim': {'keyerror': None,
          'name': 'ERA-Interim',
          'nyears': 40,
          'time_period': ['1979-1-16 12:0:0.0', '2019-3-16 12:0:0.0']},
         'HadISST': {'keyerror': None,
          'name': 'HadISST',
          'nyears': 151,
          'time_period': ['1870-1-16 11:59:59.5', '2020-10-16 12:0:0.0']},
         'Tropflux': {'keyerror': None,
          'name': 'Tropflux',
          'nyears': 40,
          'time_period': ['1979-1-15 0:0:0.0', '2018-12-15 12:0:0.0']},
         'method': 'Standard deviation of nino3.4 sstA, time series are linearly detrended',
         'name': 'ENSO skewness',
         'ref': 'Using CDAT regression calculation',
         'time_frequency': 'monthly',
         'units': 'C'},
        'metric': {'datasets': "CESM1-WACCM_r3i1p1; ERA-Interim's ts & HadISST's sst & Tropflux's sst; 's ",
         'method': 'The metric is the absolute value of the relative difference between model and observations values (M = 100 * abs[[model-obs] / obs])',
         'name': 'EnsoSstSkew',
         'units': '%'}},
       'EnsoSstTsRmse': {'diagnostic': {'CESM1-WACCM_r3i1p1': {'keyerror': None,
          'name': 'CESM1-WACCM_r3i1p1',
          'nyears': 51,
          'time_period': ['1955-1-16 12:0:0.0', '2005-12-16 12:0:0.0']},
         'ERA-Interim': {'name': 'ERA-Interim',
          'nyears': 40,
          'time_period': ['1979-1-16 12:0:0.0', '2019-3-16 12:0:0.0']},
         'HadISST': {'name': 'HadISST',
          'nyears': 151,
          'time_period': ['1870-1-16 11:59:59.5', '2020-10-16 12:0:0.0']},
         'Tropflux': {'name': 'Tropflux',
          'nyears': 40,
          'time_period': ['1979-1-15 0:0:0.0', '2018-12-15 12:0:0.0']},
         'method': 'nino3.4 SSTA during DEC regressed against nino3.4 SSTA during 6 years (centered on ENSO), time series are linearly detrended, smoothing using a triangle shaped window of 5 points',
         'name': 'ENSO life cyle SSTA pattern',
         'ref': 'Using CDAT regridding and rms (uncentered and biased) calculation',
         'time_frequency': 'monthly',
         'units': 'C/C'},
        'metric': {'datasets': "CESM1-WACCM_r3i1p1; ERA-Interim's ts & HadISST's sst & Tropflux's sst; 's ",
         'method': 'The metric is the statistical value between the model and the observations',
         'name': 'EnsoSstTsRmse',
         'units': 'C/C'}},
       'SeasonalPrLatRmse': {'diagnostic': {'CESM1-WACCM_r3i1p1': {'keyerror': None,
          'name': 'CESM1-WACCM_r3i1p1',
          'nyears': 51,
          'time_period': ['1955-1-16 12:0:0.0', '2005-12-16 12:0:0.0']},
         'ERA-Interim': {'name': 'ERA-Interim',
          'nyears': 40,
          'time_period': ['1979-1-16 12:0:0.0', '2019-3-16 12:0:0.0']},
         'GPCPv2.3': {'name': 'GPCPv2.3',
          'nyears': 41,
          'time_period': ['1979-1-1 0:0:0.0', '2019-7-1 0:0:0.0']},
         'method': 'Meridional root mean square error of nino3_LatExt climatological pr STD, time series are linearly detrended, observations and model regridded to generic_1x1deg',
         'name': 'pr meridional seasonality RMSE',
         'ref': 'Using CDAT regridding and rms (uncentered and biased) calculation',
         'time_frequency': 'monthly',
         'units': 'mm/day'},
        'metric': {'datasets': "CESM1-WACCM_r3i1p1; ERA-Interim's pr & GPCPv2.3's precip; 's ",
         'method': 'The metric is the statistical value between the model and the observations',
         'name': 'SeasonalPrLatRmse',
         'units': 'mm/day'}},
       'SeasonalPrLonRmse': {'diagnostic': {'CESM1-WACCM_r3i1p1': {'keyerror': None,
          'name': 'CESM1-WACCM_r3i1p1',
          'nyears': 51,
          'time_period': ['1955-1-16 12:0:0.0', '2005-12-16 12:0:0.0']},
         'ERA-Interim': {'name': 'ERA-Interim',
          'nyears': 40,
          'time_period': ['1979-1-16 12:0:0.0', '2019-3-16 12:0:0.0']},
         'GPCPv2.3': {'name': 'GPCPv2.3',
          'nyears': 41,
          'time_period': ['1979-1-1 0:0:0.0', '2019-7-1 0:0:0.0']},
         'method': 'Zonal root mean square error of equatorial_pacific climatological pr STD, time series are linearly detrended, observations and model regridded to generic_1x1deg',
         'name': 'pr zonal seasonality RMSE',
         'ref': 'Using CDAT regridding and rms (uncentered and biased) calculation',
         'time_frequency': 'monthly',
         'units': 'mm/day'},
        'metric': {'datasets': "CESM1-WACCM_r3i1p1; ERA-Interim's pr & GPCPv2.3's precip; 's ",
         'method': 'The metric is the statistical value between the model and the observations',
         'name': 'SeasonalPrLonRmse',
         'units': 'mm/day'}},
       'SeasonalSstLonRmse': {'diagnostic': {'CESM1-WACCM_r3i1p1': {'keyerror': None,
          'name': 'CESM1-WACCM_r3i1p1',
          'nyears': 51,
          'time_period': ['1955-1-16 12:0:0.0', '2005-12-16 12:0:0.0']},
         'ERA-Interim': {'name': 'ERA-Interim',
          'nyears': 40,
          'time_period': ['1979-1-16 12:0:0.0', '2019-3-16 12:0:0.0']},
         'HadISST': {'name': 'HadISST',
          'nyears': 151,
          'time_period': ['1870-1-16 11:59:59.5', '2020-10-16 12:0:0.0']},
         'Tropflux': {'name': 'Tropflux',
          'nyears': 40,
          'time_period': ['1979-1-15 0:0:0.0', '2018-12-15 12:0:0.0']},
         'method': 'Zonal root mean square error of equatorial_pacific climatological sst STD, time series are linearly detrended, observations and model regridded to generic_1x1deg',
         'name': 'sst zonal seasonality RMSE',
         'ref': 'Using CDAT regridding and rms (uncentered and biased) calculation',
         'time_frequency': 'monthly',
         'units': 'C'},
        'metric': {'datasets': "CESM1-WACCM_r3i1p1; ERA-Interim's ts & HadISST's sst & Tropflux's sst; 's ",
         'method': 'The metric is the statistical value between the model and the observations',
         'name': 'SeasonalSstLonRmse',
         'units': 'C'}},
       'SeasonalTauxLonRmse': {'diagnostic': {'CESM1-WACCM_r3i1p1': {'keyerror': None,
          'name': 'CESM1-WACCM_r3i1p1',
          'nyears': 51,
          'time_period': ['1955-1-16 12:0:0.0', '2005-12-16 12:0:0.0']},
         'ERA-Interim': {'name': 'ERA-Interim',
          'nyears': 40,
          'time_period': ['1979-1-16 12:0:0.0', '2019-3-16 12:0:0.0']},
         'Tropflux': {'name': 'Tropflux',
          'nyears': 40,
          'time_period': ['1979-1-15 0:0:0.0', '2018-12-15 12:0:0.0']},
         'method': 'Zonal root mean square error of equatorial_pacific climatological taux STD, time series are linearly detrended, observations and model regridded to generic_1x1deg',
         'name': 'taux zonal seasonality RMSE',
         'ref': 'Using CDAT regridding and rms (uncentered and biased) calculation',
         'time_frequency': 'monthly',
         'units': '1e-3 N/m2'},
        'metric': {'datasets': "CESM1-WACCM_r3i1p1; ERA-Interim's tauu & Tropflux's taux; 's ",
         'method': 'The metric is the statistical value between the model and the observations',
         'name': 'SeasonalTauxLonRmse',
         'units': '1e-3 N/m2'}}},
      'name': 'Metrics Collection for ENSO performance'},
     'value': {'BiasPrLatRmse': {'diagnostic': {'CESM1-WACCM_r3i1p1': {'value': None,
         'value_error': None},
        'ERA-Interim': {'value': None, 'value_error': None},
        'GPCPv2.3': {'value': None, 'value_error': None}},
       'metric': {'ERA-Interim': {'value': 1.5308199731160224,
         'value_error': None},
        'GPCPv2.3': {'value': 1.576303410285562, 'value_error': None}}},
      'BiasPrLonRmse': {'diagnostic': {'CESM1-WACCM_r3i1p1': {'value': None,
         'value_error': None},
        'ERA-Interim': {'value': None, 'value_error': None},
        'GPCPv2.3': {'value': None, 'value_error': None}},
       'metric': {'ERA-Interim': {'value': 1.8751503125360287,
         'value_error': None},
        'GPCPv2.3': {'value': 0.9077078327927308, 'value_error': None}}},
      'BiasSstLonRmse': {'diagnostic': {'CESM1-WACCM_r3i1p1': {'value': None,
         'value_error': None},
        'ERA-Interim': {'value': None, 'value_error': None},
        'HadISST': {'value': None, 'value_error': None},
        'Tropflux': {'value': None, 'value_error': None}},
       'metric': {'ERA-Interim': {'value': 0.4367645956831243,
         'value_error': None},
        'HadISST': {'value': 0.28616163352847684, 'value_error': None},
        'Tropflux': {'value': 0.4857982252895094, 'value_error': None}}},
      'BiasTauxLonRmse': {'diagnostic': {'CESM1-WACCM_r3i1p1': {'value': None,
         'value_error': None},
        'ERA-Interim': {'value': None, 'value_error': None},
        'Tropflux': {'value': None, 'value_error': None}},
       'metric': {'ERA-Interim': {'value': 6.233096958189007,
         'value_error': None},
        'Tropflux': {'value': 6.291528401841891, 'value_error': None}}},
      'EnsoAmpl': {'diagnostic': {'CESM1-WACCM_r3i1p1': {'value': 1.141930180545983,
         'value_error': 0.15990220891690493},
        'ERA-Interim': {'value': 0.8989844997845644,
         'value_error': 0.14214193002531866},
        'HadISST': {'value': 0.7665787872085695,
         'value_error': 0.06238329697691264},
        'Tropflux': {'value': 0.9039789553693535,
         'value_error': 0.14293162279134272}},
       'metric': {'ERA-Interim': {'value': 27.024457131311923,
         'value_error': 37.87131190461277},
        'HadISST': {'value': 48.96448996511149,
         'value_error': 32.98175912258758},
        'Tropflux': {'value': 26.32265096032085,
         'value_error': 37.662074085389406}}},
      'EnsoDuration': {'diagnostic': {'CESM1-WACCM_r3i1p1': {'value': 14.0,
         'value_error': None},
        'ERA-Interim': {'value': 13.0, 'value_error': None},
        'HadISST': {'value': 13.0, 'value_error': None},
        'Tropflux': {'value': 13.0, 'value_error': None}},
       'metric': {'ERA-Interim': {'value': 7.6923076923076925,
         'value_error': None},
        'HadISST': {'value': 7.6923076923076925, 'value_error': None},
        'Tropflux': {'value': 7.6923076923076925, 'value_error': None}}},
      'EnsoSeasonality': {'diagnostic': {'CESM1-WACCM_r3i1p1': {'value': 1.4190925847208922,
         'value_error': 0.3994027063351872},
        'ERA-Interim': {'value': 2.0466846866656914,
         'value_error': 0.6513411033995022},
        'HadISST': {'value': 1.6639865947361325,
         'value_error': 0.2712772451657809},
        'Tropflux': {'value': 2.0532132553583624,
         'value_error': 0.6534187683977347}},
       'metric': {'ERA-Interim': {'value': 30.66383923393819,
         'value_error': 41.580299421212885},
        'HadISST': {'value': 14.717306665206312,
         'value_error': 37.90626976276926},
        'Tropflux': {'value': 30.88430629320053,
         'value_error': 41.44808722146948}}},
      'EnsoSstDiversity_2': {'diagnostic': {'CESM1-WACCM_r3i1p1': {'value': 22.0,
         'value_error': None},
        'ERA-Interim': {'value': 33.25, 'value_error': None},
        'HadISST': {'value': 49.0, 'value_error': None},
        'Tropflux': {'value': 32.0, 'value_error': None}},
       'metric': {'ERA-Interim': {'value': 33.83458646616541,
         'value_error': None},
        'HadISST': {'value': 55.10204081632652, 'value_error': None},
        'Tropflux': {'value': 31.25, 'value_error': None}}},
      'EnsoSstLonRmse': {'diagnostic': {'CESM1-WACCM_r3i1p1': {'value': None,
         'value_error': None},
        'ERA-Interim': {'value': None, 'value_error': None},
        'HadISST': {'value': None, 'value_error': None},
        'Tropflux': {'value': None, 'value_error': None}},
       'metric': {'ERA-Interim': {'value': 0.12140113146311766,
         'value_error': None},
        'HadISST': {'value': 0.13133638332786987, 'value_error': None},
        'Tropflux': {'value': 0.11988967458746143, 'value_error': None}}},
      'EnsoSstSkew': {'diagnostic': {'CESM1-WACCM_r3i1p1': {'value': 0.5391587826571417,
         'value_error': 0.07549733054835818},
        'ERA-Interim': {'value': 0.39098111106809963,
         'value_error': 0.061819541653923164},
        'HadISST': {'value': 0.38989908235027515,
         'value_error': 0.03172953733021198},
        'Tropflux': {'value': 0.39744741059612115,
         'value_error': 0.06284195338099416}},
       'metric': {'ERA-Interim': {'value': 37.89893357872038,
         'value_error': 41.11344888074988},
        'HadISST': {'value': 38.28162390307334,
         'value_error': 30.616499353098042},
        'Tropflux': {'value': 35.65537685815371,
         'value_error': 40.444550636591785}}},
      'EnsoSstTsRmse': {'diagnostic': {'CESM1-WACCM_r3i1p1': {'value': None,
         'value_error': None},
        'ERA-Interim': {'value': None, 'value_error': None},
        'HadISST': {'value': None, 'value_error': None},
        'Tropflux': {'value': None, 'value_error': None}},
       'metric': {'ERA-Interim': {'value': 0.10695319614301474,
         'value_error': None},
        'HadISST': {'value': 0.10676999912708521, 'value_error': None},
        'Tropflux': {'value': 0.10942579946648617, 'value_error': None}}},
      'SeasonalPrLatRmse': {'diagnostic': {'CESM1-WACCM_r3i1p1': {'value': None,
         'value_error': None},
        'ERA-Interim': {'value': None, 'value_error': None},
        'GPCPv2.3': {'value': None, 'value_error': None}},
       'metric': {'ERA-Interim': {'value': 1.2075862524410002,
         'value_error': None},
        'GPCPv2.3': {'value': 1.2902106401651665, 'value_error': None}}},
      'SeasonalPrLonRmse': {'diagnostic': {'CESM1-WACCM_r3i1p1': {'value': None,
         'value_error': None},
        'ERA-Interim': {'value': None, 'value_error': None},
        'GPCPv2.3': {'value': None, 'value_error': None}},
       'metric': {'ERA-Interim': {'value': 0.5950045852126716,
         'value_error': None},
        'GPCPv2.3': {'value': 0.2864873877876307, 'value_error': None}}},
      'SeasonalSstLonRmse': {'diagnostic': {'CESM1-WACCM_r3i1p1': {'value': None,
         'value_error': None},
        'ERA-Interim': {'value': None, 'value_error': None},
        'HadISST': {'value': None, 'value_error': None},
        'Tropflux': {'value': None, 'value_error': None}},
       'metric': {'ERA-Interim': {'value': 0.16075972310390169,
         'value_error': None},
        'HadISST': {'value': 0.1815353643182361, 'value_error': None},
        'Tropflux': {'value': 0.16358939181673665, 'value_error': None}}},
      'SeasonalTauxLonRmse': {'diagnostic': {'CESM1-WACCM_r3i1p1': {'value': None,
         'value_error': None},
        'ERA-Interim': {'value': None, 'value_error': None},
        'Tropflux': {'value': None, 'value_error': None}},
       'metric': {'ERA-Interim': {'value': 2.427929663746014,
         'value_error': None},
        'Tropflux': {'value': 2.373415152644087, 'value_error': None}}}}},
    'r4i1p1': {'metadata': {'description_of_the_collection': 'Describe which science question this collection is about',
      'metrics': {'BiasPrLatRmse': {'diagnostic': {'CESM1-WACCM_r4i1p1': {'keyerror': None,
          'name': 'CESM1-WACCM_r4i1p1',
          'nyears': 51,
          'time_period': ['1955-1-16 12:0:0.0', '2005-12-16 12:0:0.0']},
         'ERA-Interim': {'name': 'ERA-Interim',
          'nyears': 40,
          'time_period': ['1979-1-16 12:0:0.0', '2019-3-16 12:0:0.0']},
         'GPCPv2.3': {'name': 'GPCPv2.3',
          'nyears': 41,
          'time_period': ['1979-1-1 0:0:0.0', '2019-7-1 0:0:0.0']},
         'method': 'Meridional root mean square error of nino3_LatExt pr, time series are linearly detrended, observations and model regridded to generic_1x1deg',
         'name': 'pr Meridional RMSE',
         'ref': 'Using CDAT regridding and rms (uncentered and biased) calculation',
         'time_frequency': 'monthly',
         'units': 'mm/day'},
        'metric': {'datasets': "CESM1-WACCM_r4i1p1; ERA-Interim's pr & GPCPv2.3's precip; 's ",
         'method': 'The metric is the statistical value between the model and the observations',
         'name': 'BiasPrLatRmse',
         'units': 'mm/day'}},
       'BiasPrLonRmse': {'diagnostic': {'CESM1-WACCM_r4i1p1': {'keyerror': None,
          'name': 'CESM1-WACCM_r4i1p1',
          'nyears': 51,
          'time_period': ['1955-1-16 12:0:0.0', '2005-12-16 12:0:0.0']},
         'ERA-Interim': {'name': 'ERA-Interim',
          'nyears': 40,
          'time_period': ['1979-1-16 12:0:0.0', '2019-3-16 12:0:0.0']},
         'GPCPv2.3': {'name': 'GPCPv2.3',
          'nyears': 41,
          'time_period': ['1979-1-1 0:0:0.0', '2019-7-1 0:0:0.0']},
         'method': 'Zonal root mean square error of equatorial_pacific pr, time series are linearly detrended, observations and model regridded to generic_1x1deg',
         'name': 'pr Zonal RMSE',
         'ref': 'Using CDAT regridding and rms (uncentered and biased) calculation',
         'time_frequency': 'monthly',
         'units': 'mm/day'},
        'metric': {'datasets': "CESM1-WACCM_r4i1p1; ERA-Interim's pr & GPCPv2.3's precip; 's ",
         'method': 'The metric is the statistical value between the model and the observations',
         'name': 'BiasPrLonRmse',
         'units': 'mm/day'}},
       'BiasSstLonRmse': {'diagnostic': {'CESM1-WACCM_r4i1p1': {'keyerror': None,
          'name': 'CESM1-WACCM_r4i1p1',
          'nyears': 51,
          'time_period': ['1955-1-16 12:0:0.0', '2005-12-16 12:0:0.0']},
         'ERA-Interim': {'name': 'ERA-Interim',
          'nyears': 40,
          'time_period': ['1979-1-16 12:0:0.0', '2019-3-16 12:0:0.0']},
         'HadISST': {'name': 'HadISST',
          'nyears': 151,
          'time_period': ['1870-1-16 11:59:59.5', '2020-10-16 12:0:0.0']},
         'Tropflux': {'name': 'Tropflux',
          'nyears': 40,
          'time_period': ['1979-1-15 0:0:0.0', '2018-12-15 12:0:0.0']},
         'method': 'Zonal root mean square error of equatorial_pacific sst, time series are linearly detrended, observations and model regridded to generic_1x1deg',
         'name': 'sst Zonal RMSE',
         'ref': 'Using CDAT regridding and rms (uncentered and biased) calculation',
         'time_frequency': 'monthly',
         'units': 'C'},
        'metric': {'datasets': "CESM1-WACCM_r4i1p1; ERA-Interim's ts & HadISST's sst & Tropflux's sst; 's ",
         'method': 'The metric is the statistical value between the model and the observations',
         'name': 'BiasSstLonRmse',
         'units': 'C'}},
       'BiasTauxLonRmse': {'diagnostic': {'CESM1-WACCM_r4i1p1': {'keyerror': None,
          'name': 'CESM1-WACCM_r4i1p1',
          'nyears': 51,
          'time_period': ['1955-1-16 12:0:0.0', '2005-12-16 12:0:0.0']},
         'ERA-Interim': {'name': 'ERA-Interim',
          'nyears': 40,
          'time_period': ['1979-1-16 12:0:0.0', '2019-3-16 12:0:0.0']},
         'Tropflux': {'name': 'Tropflux',
          'nyears': 40,
          'time_period': ['1979-1-15 0:0:0.0', '2018-12-15 12:0:0.0']},
         'method': 'Zonal root mean square error of equatorial_pacific taux, time series are linearly detrended, observations and model regridded to generic_1x1deg',
         'name': 'taux Zonal RMSE',
         'ref': 'Using CDAT regridding and rms (uncentered and biased) calculation',
         'time_frequency': 'monthly',
         'units': '1e-3 N/m2'},
        'metric': {'datasets': "CESM1-WACCM_r4i1p1; ERA-Interim's tauu & Tropflux's taux; 's ",
         'method': 'The metric is the statistical value between the model and the observations',
         'name': 'BiasTauxLonRmse',
         'units': '1e-3 N/m2'}},
       'EnsoAmpl': {'diagnostic': {'CESM1-WACCM_r4i1p1': {'keyerror': None,
          'name': 'CESM1-WACCM_r4i1p1',
          'nyears': 51,
          'time_period': ['1955-1-16 12:0:0.0', '2005-12-16 12:0:0.0']},
         'ERA-Interim': {'keyerror': None,
          'name': 'ERA-Interim',
          'nyears': 40,
          'time_period': ['1979-1-16 12:0:0.0', '2019-3-16 12:0:0.0']},
         'HadISST': {'keyerror': None,
          'name': 'HadISST',
          'nyears': 151,
          'time_period': ['1870-1-16 11:59:59.5', '2020-10-16 12:0:0.0']},
         'Tropflux': {'keyerror': None,
          'name': 'Tropflux',
          'nyears': 40,
          'time_period': ['1979-1-15 0:0:0.0', '2018-12-15 12:0:0.0']},
         'method': 'Standard deviation of nino3.4 sstA, time series are linearly detrended',
         'name': 'ENSO amplitude',
         'ref': 'Using CDAT regression calculation',
         'time_frequency': 'monthly',
         'units': 'C'},
        'metric': {'datasets': "CESM1-WACCM_r4i1p1; ERA-Interim's ts & HadISST's sst & Tropflux's sst; 's ",
         'method': 'The metric is the absolute value of the relative difference between model and observations values (M = 100 * abs[[model-obs] / obs])',
         'name': 'EnsoAmpl',
         'units': '%'}},
       'EnsoDuration': {'diagnostic': {'CESM1-WACCM_r4i1p1': {'keyerror': None,
          'name': 'CESM1-WACCM_r4i1p1',
          'nyears': 51,
          'time_period': ['1955-1-16 12:0:0.0', '2005-12-16 12:0:0.0']},
         'ERA-Interim': {'keyerror': None,
          'name': 'ERA-Interim',
          'nyears': 40,
          'time_period': ['1979-1-16 12:0:0.0', '2019-3-16 12:0:0.0']},
         'HadISST': {'keyerror': None,
          'name': 'HadISST',
          'nyears': 151,
          'time_period': ['1870-1-16 11:59:59.5', '2020-10-16 12:0:0.0']},
         'Tropflux': {'keyerror': None,
          'name': 'Tropflux',
          'nyears': 40,
          'time_period': ['1979-1-15 0:0:0.0', '2018-12-15 12:0:0.0']},
         'method': 'nino3.4 SSTA during DEC regressed against nino3.4 SSTA during 6 years (centered on ENSO), the duration is the number of consecutive months during which the regression is above 0.25, time series are linearly detrended, smoothing using a triangle shaped window of 5 points',
         'name': 'ENSO Duration based on life cyle SSTA pattern',
         'ref': 'Using CDAT',
         'time_frequency': 'monthly',
         'units': 'months'},
        'metric': {'datasets': "CESM1-WACCM_r4i1p1; ERA-Interim's ts & HadISST's sst & Tropflux's sst; 's ",
         'method': 'The metric is the absolute value of the relative difference between model and observations values (M = 100 * abs[[model-obs] / obs])',
         'name': 'EnsoDuration',
         'units': '%'}},
       'EnsoSeasonality': {'diagnostic': {'CESM1-WACCM_r4i1p1': {'keyerror': None,
          'name': 'CESM1-WACCM_r4i1p1',
          'nyears': 51,
          'time_period': ['1955-1-16 12:0:0.0', '2005-12-16 12:0:0.0']},
         'ERA-Interim': {'keyerror': None,
          'name': 'ERA-Interim',
          'nyears': 40,
          'time_period': ['1979-1-16 12:0:0.0', '2019-3-16 12:0:0.0']},
         'HadISST': {'keyerror': None,
          'name': 'HadISST',
          'nyears': 151,
          'time_period': ['1870-1-16 11:59:59.5', '2020-10-16 12:0:0.0']},
         'Tropflux': {'keyerror': None,
          'name': 'Tropflux',
          'nyears': 40,
          'time_period': ['1979-1-15 0:0:0.0', '2018-12-15 12:0:0.0']},
         'method': 'Ratio between NDJ and MAM standard deviation nino3.4 sstA, time series are linearly detrended',
         'name': 'ENSO seasonality',
         'ref': 'Using CDAT std dev calculation',
         'time_frequency': 'monthly',
         'units': 'C/C'},
        'metric': {'datasets': "CESM1-WACCM_r4i1p1; ERA-Interim's ts & HadISST's sst & Tropflux's sst; 's ",
         'method': 'The metric is the absolute value of the relative difference between model and observations values (M = 100 * abs[[model-obs] / obs])',
         'name': 'EnsoSeasonality',
         'units': '%'}},
       'EnsoSstDiversity_2': {'diagnostic': {'CESM1-WACCM_r4i1p1': {'keyerror': None,
          'name': 'CESM1-WACCM_r4i1p1',
          'nyears': 51,
          'time_period': ['1955-1-16 12:0:0.0', '2005-12-16 12:0:0.0']},
         'ERA-Interim': {'keyerror': None,
          'name': 'ERA-Interim',
          'nyears': 40,
          'time_period': ['1979-1-16 12:0:0.0', '2019-3-16 12:0:0.0']},
         'HadISST': {'keyerror': None,
          'name': 'HadISST',
          'nyears': 151,
          'time_period': ['1870-1-16 11:59:59.5', '2020-10-16 12:0:0.0']},
         'Tropflux': {'keyerror': None,
          'name': 'Tropflux',
          'nyears': 40,
          'time_period': ['1979-1-15 0:0:0.0', '2018-12-15 12:0:0.0']},
         'method': 'Nino (Nina) events = nino3.4 sstA > 0.75 (< -0.75) during DEC, zonal SSTA (meridional averaged [-5.0 ; 5.0]), the zonal SSTA maximum (minimum) is located for each event, the diversity is the interquartile range (IQR = Q3 - Q1), time series are linearly detrended, smoothing using a triangle shaped window of 5 points',
         'name': 'ENSO Diversity (interquartile range)',
         'ref': 'Using CDAT regridding',
         'time_frequency': 'monthly',
         'units': 'long'},
        'metric': {'datasets': "CESM1-WACCM_r4i1p1; ERA-Interim's ts & HadISST's sst & Tropflux's sst; 's ",
         'method': 'The metric is the absolute value of the relative difference between model and observations values (M = 100 * abs[[model-obs] / obs])',
         'name': 'EnsoSstDiversity',
         'units': '%'}},
       'EnsoSstLonRmse': {'diagnostic': {'CESM1-WACCM_r4i1p1': {'keyerror': None,
          'name': 'CESM1-WACCM_r4i1p1',
          'nyears': 51,
          'time_period': ['1955-1-16 12:0:0.0', '2005-12-16 12:0:0.0']},
         'ERA-Interim': {'name': 'ERA-Interim',
          'nyears': 40,
          'time_period': ['1979-1-16 12:0:0.0', '2019-3-16 12:0:0.0']},
         'HadISST': {'name': 'HadISST',
          'nyears': 151,
          'time_period': ['1870-1-16 11:59:59.5', '2020-10-16 12:0:0.0']},
         'Tropflux': {'name': 'Tropflux',
          'nyears': 40,
          'time_period': ['1979-1-15 0:0:0.0', '2018-12-15 12:0:0.0']},
         'method': 'nino3.4 SSTA during DEC regressed against equatorial_pacific SSTA, time series are linearly detrended, smoothing using a triangle shaped window of 5 points, observations and model regridded to generic_1x1deg',
         'name': 'ENSO Zonal SSTA pattern',
         'ref': 'Using CDAT regridding and rms (uncentered and biased) calculation',
         'time_frequency': 'monthly',
         'units': 'C/C'},
        'metric': {'datasets': "CESM1-WACCM_r4i1p1; ERA-Interim's ts & HadISST's sst & Tropflux's sst; 's ",
         'method': 'The metric is the statistical value between the model and the observations',
         'name': 'EnsoSstLonRmse',
         'units': 'C/C'}},
       'EnsoSstSkew': {'diagnostic': {'CESM1-WACCM_r4i1p1': {'keyerror': None,
          'name': 'CESM1-WACCM_r4i1p1',
          'nyears': 51,
          'time_period': ['1955-1-16 12:0:0.0', '2005-12-16 12:0:0.0']},
         'ERA-Interim': {'keyerror': None,
          'name': 'ERA-Interim',
          'nyears': 40,
          'time_period': ['1979-1-16 12:0:0.0', '2019-3-16 12:0:0.0']},
         'HadISST': {'keyerror': None,
          'name': 'HadISST',
          'nyears': 151,
          'time_period': ['1870-1-16 11:59:59.5', '2020-10-16 12:0:0.0']},
         'Tropflux': {'keyerror': None,
          'name': 'Tropflux',
          'nyears': 40,
          'time_period': ['1979-1-15 0:0:0.0', '2018-12-15 12:0:0.0']},
         'method': 'Standard deviation of nino3.4 sstA, time series are linearly detrended',
         'name': 'ENSO skewness',
         'ref': 'Using CDAT regression calculation',
         'time_frequency': 'monthly',
         'units': 'C'},
        'metric': {'datasets': "CESM1-WACCM_r4i1p1; ERA-Interim's ts & HadISST's sst & Tropflux's sst; 's ",
         'method': 'The metric is the absolute value of the relative difference between model and observations values (M = 100 * abs[[model-obs] / obs])',
         'name': 'EnsoSstSkew',
         'units': '%'}},
       'EnsoSstTsRmse': {'diagnostic': {'CESM1-WACCM_r4i1p1': {'keyerror': None,
          'name': 'CESM1-WACCM_r4i1p1',
          'nyears': 51,
          'time_period': ['1955-1-16 12:0:0.0', '2005-12-16 12:0:0.0']},
         'ERA-Interim': {'name': 'ERA-Interim',
          'nyears': 40,
          'time_period': ['1979-1-16 12:0:0.0', '2019-3-16 12:0:0.0']},
         'HadISST': {'name': 'HadISST',
          'nyears': 151,
          'time_period': ['1870-1-16 11:59:59.5', '2020-10-16 12:0:0.0']},
         'Tropflux': {'name': 'Tropflux',
          'nyears': 40,
          'time_period': ['1979-1-15 0:0:0.0', '2018-12-15 12:0:0.0']},
         'method': 'nino3.4 SSTA during DEC regressed against nino3.4 SSTA during 6 years (centered on ENSO), time series are linearly detrended, smoothing using a triangle shaped window of 5 points',
         'name': 'ENSO life cyle SSTA pattern',
         'ref': 'Using CDAT regridding and rms (uncentered and biased) calculation',
         'time_frequency': 'monthly',
         'units': 'C/C'},
        'metric': {'datasets': "CESM1-WACCM_r4i1p1; ERA-Interim's ts & HadISST's sst & Tropflux's sst; 's ",
         'method': 'The metric is the statistical value between the model and the observations',
         'name': 'EnsoSstTsRmse',
         'units': 'C/C'}},
       'SeasonalPrLatRmse': {'diagnostic': {'CESM1-WACCM_r4i1p1': {'keyerror': None,
          'name': 'CESM1-WACCM_r4i1p1',
          'nyears': 51,
          'time_period': ['1955-1-16 12:0:0.0', '2005-12-16 12:0:0.0']},
         'ERA-Interim': {'name': 'ERA-Interim',
          'nyears': 40,
          'time_period': ['1979-1-16 12:0:0.0', '2019-3-16 12:0:0.0']},
         'GPCPv2.3': {'name': 'GPCPv2.3',
          'nyears': 41,
          'time_period': ['1979-1-1 0:0:0.0', '2019-7-1 0:0:0.0']},
         'method': 'Meridional root mean square error of nino3_LatExt climatological pr STD, time series are linearly detrended, observations and model regridded to generic_1x1deg',
         'name': 'pr meridional seasonality RMSE',
         'ref': 'Using CDAT regridding and rms (uncentered and biased) calculation',
         'time_frequency': 'monthly',
         'units': 'mm/day'},
        'metric': {'datasets': "CESM1-WACCM_r4i1p1; ERA-Interim's pr & GPCPv2.3's precip; 's ",
         'method': 'The metric is the statistical value between the model and the observations',
         'name': 'SeasonalPrLatRmse',
         'units': 'mm/day'}},
       'SeasonalPrLonRmse': {'diagnostic': {'CESM1-WACCM_r4i1p1': {'keyerror': None,
          'name': 'CESM1-WACCM_r4i1p1',
          'nyears': 51,
          'time_period': ['1955-1-16 12:0:0.0', '2005-12-16 12:0:0.0']},
         'ERA-Interim': {'name': 'ERA-Interim',
          'nyears': 40,
          'time_period': ['1979-1-16 12:0:0.0', '2019-3-16 12:0:0.0']},
         'GPCPv2.3': {'name': 'GPCPv2.3',
          'nyears': 41,
          'time_period': ['1979-1-1 0:0:0.0', '2019-7-1 0:0:0.0']},
         'method': 'Zonal root mean square error of equatorial_pacific climatological pr STD, time series are linearly detrended, observations and model regridded to generic_1x1deg',
         'name': 'pr zonal seasonality RMSE',
         'ref': 'Using CDAT regridding and rms (uncentered and biased) calculation',
         'time_frequency': 'monthly',
         'units': 'mm/day'},
        'metric': {'datasets': "CESM1-WACCM_r4i1p1; ERA-Interim's pr & GPCPv2.3's precip; 's ",
         'method': 'The metric is the statistical value between the model and the observations',
         'name': 'SeasonalPrLonRmse',
         'units': 'mm/day'}},
       'SeasonalSstLonRmse': {'diagnostic': {'CESM1-WACCM_r4i1p1': {'keyerror': None,
          'name': 'CESM1-WACCM_r4i1p1',
          'nyears': 51,
          'time_period': ['1955-1-16 12:0:0.0', '2005-12-16 12:0:0.0']},
         'ERA-Interim': {'name': 'ERA-Interim',
          'nyears': 40,
          'time_period': ['1979-1-16 12:0:0.0', '2019-3-16 12:0:0.0']},
         'HadISST': {'name': 'HadISST',
          'nyears': 151,
          'time_period': ['1870-1-16 11:59:59.5', '2020-10-16 12:0:0.0']},
         'Tropflux': {'name': 'Tropflux',
          'nyears': 40,
          'time_period': ['1979-1-15 0:0:0.0', '2018-12-15 12:0:0.0']},
         'method': 'Zonal root mean square error of equatorial_pacific climatological sst STD, time series are linearly detrended, observations and model regridded to generic_1x1deg',
         'name': 'sst zonal seasonality RMSE',
         'ref': 'Using CDAT regridding and rms (uncentered and biased) calculation',
         'time_frequency': 'monthly',
         'units': 'C'},
        'metric': {'datasets': "CESM1-WACCM_r4i1p1; ERA-Interim's ts & HadISST's sst & Tropflux's sst; 's ",
         'method': 'The metric is the statistical value between the model and the observations',
         'name': 'SeasonalSstLonRmse',
         'units': 'C'}},
       'SeasonalTauxLonRmse': {'diagnostic': {'CESM1-WACCM_r4i1p1': {'keyerror': None,
          'name': 'CESM1-WACCM_r4i1p1',
          'nyears': 51,
          'time_period': ['1955-1-16 12:0:0.0', '2005-12-16 12:0:0.0']},
         'ERA-Interim': {'name': 'ERA-Interim',
          'nyears': 40,
          'time_period': ['1979-1-16 12:0:0.0', '2019-3-16 12:0:0.0']},
         'Tropflux': {'name': 'Tropflux',
          'nyears': 40,
          'time_period': ['1979-1-15 0:0:0.0', '2018-12-15 12:0:0.0']},
         'method': 'Zonal root mean square error of equatorial_pacific climatological taux STD, time series are linearly detrended, observations and model regridded to generic_1x1deg',
         'name': 'taux zonal seasonality RMSE',
         'ref': 'Using CDAT regridding and rms (uncentered and biased) calculation',
         'time_frequency': 'monthly',
         'units': '1e-3 N/m2'},
        'metric': {'datasets': "CESM1-WACCM_r4i1p1; ERA-Interim's tauu & Tropflux's taux; 's ",
         'method': 'The metric is the statistical value between the model and the observations',
         'name': 'SeasonalTauxLonRmse',
         'units': '1e-3 N/m2'}}},
      'name': 'Metrics Collection for ENSO performance'},
     'value': {'BiasPrLatRmse': {'diagnostic': {'CESM1-WACCM_r4i1p1': {'value': None,
         'value_error': None},
        'ERA-Interim': {'value': None, 'value_error': None},
        'GPCPv2.3': {'value': None, 'value_error': None}},
       'metric': {'ERA-Interim': {'value': 1.5445222741003195,
         'value_error': None},
        'GPCPv2.3': {'value': 1.6591886753020026, 'value_error': None}}},
      'BiasPrLonRmse': {'diagnostic': {'CESM1-WACCM_r4i1p1': {'value': None,
         'value_error': None},
        'ERA-Interim': {'value': None, 'value_error': None},
        'GPCPv2.3': {'value': None, 'value_error': None}},
       'metric': {'ERA-Interim': {'value': 1.7885614492745099,
         'value_error': None},
        'GPCPv2.3': {'value': 0.8651474834934925, 'value_error': None}}},
      'BiasSstLonRmse': {'diagnostic': {'CESM1-WACCM_r4i1p1': {'value': None,
         'value_error': None},
        'ERA-Interim': {'value': None, 'value_error': None},
        'HadISST': {'value': None, 'value_error': None},
        'Tropflux': {'value': None, 'value_error': None}},
       'metric': {'ERA-Interim': {'value': 0.4180530926407542,
         'value_error': None},
        'HadISST': {'value': 0.29413665486007246, 'value_error': None},
        'Tropflux': {'value': 0.4646027114842067, 'value_error': None}}},
      'BiasTauxLonRmse': {'diagnostic': {'CESM1-WACCM_r4i1p1': {'value': None,
         'value_error': None},
        'ERA-Interim': {'value': None, 'value_error': None},
        'Tropflux': {'value': None, 'value_error': None}},
       'metric': {'ERA-Interim': {'value': 7.5969219450057786,
         'value_error': None},
        'Tropflux': {'value': 7.554326591105699, 'value_error': None}}},
      'EnsoAmpl': {'diagnostic': {'CESM1-WACCM_r4i1p1': {'value': 1.2267790071625275,
         'value_error': 0.17178342112333425},
        'ERA-Interim': {'value': 0.8989844997845644,
         'value_error': 0.14214193002531866},
        'HadISST': {'value': 0.7665787872085695,
         'value_error': 0.06238329697691264},
        'Tropflux': {'value': 0.9039789553693535,
         'value_error': 0.14293162279134272}},
       'metric': {'ERA-Interim': {'value': 36.462754080467114,
         'value_error': 40.685263608734644},
        'HadISST': {'value': 60.03299695126412,
         'value_error': 35.43240243596692},
        'Tropflux': {'value': 35.708801612674975,
         'value_error': 40.46047879395292}}},
      'EnsoDuration': {'diagnostic': {'CESM1-WACCM_r4i1p1': {'value': 13.0,
         'value_error': None},
        'ERA-Interim': {'value': 13.0, 'value_error': None},
        'HadISST': {'value': 13.0, 'value_error': None},
        'Tropflux': {'value': 13.0, 'value_error': None}},
       'metric': {'ERA-Interim': {'value': 0.0, 'value_error': None},
        'HadISST': {'value': 0.0, 'value_error': None},
        'Tropflux': {'value': 0.0, 'value_error': None}}},
      'EnsoSeasonality': {'diagnostic': {'CESM1-WACCM_r4i1p1': {'value': 1.6673950962698272,
         'value_error': 0.46928729044917866},
        'ERA-Interim': {'value': 2.0466846866656914,
         'value_error': 0.6513411033995022},
        'HadISST': {'value': 1.6639865947361325,
         'value_error': 0.2712772451657809},
        'Tropflux': {'value': 2.0532132553583624,
         'value_error': 0.6534187683977347}},
       'metric': {'ERA-Interim': {'value': 18.53190151208758,
         'value_error': 48.85571815597747},
        'HadISST': {'value': 0.20483948275046993,
         'value_error': 44.5388334777},
        'Tropflux': {'value': 18.790944295807964,
         'value_error': 48.70037242597173}}},
      'EnsoSstDiversity_2': {'diagnostic': {'CESM1-WACCM_r4i1p1': {'value': 22.5,
         'value_error': None},
        'ERA-Interim': {'value': 33.25, 'value_error': None},
        'HadISST': {'value': 49.0, 'value_error': None},
        'Tropflux': {'value': 32.0, 'value_error': None}},
       'metric': {'ERA-Interim': {'value': 32.33082706766917,
         'value_error': None},
        'HadISST': {'value': 54.08163265306123, 'value_error': None},
        'Tropflux': {'value': 29.6875, 'value_error': None}}},
      'EnsoSstLonRmse': {'diagnostic': {'CESM1-WACCM_r4i1p1': {'value': None,
         'value_error': None},
        'ERA-Interim': {'value': None, 'value_error': None},
        'HadISST': {'value': None, 'value_error': None},
        'Tropflux': {'value': None, 'value_error': None}},
       'metric': {'ERA-Interim': {'value': 0.10594643285851656,
         'value_error': None},
        'HadISST': {'value': 0.11201029769330018, 'value_error': None},
        'Tropflux': {'value': 0.10368044888861061, 'value_error': None}}},
      'EnsoSstSkew': {'diagnostic': {'CESM1-WACCM_r4i1p1': {'value': 0.37082615674086633,
         'value_error': 0.051926048192088424},
        'ERA-Interim': {'value': 0.39098111106809963,
         'value_error': 0.061819541653923164},
        'HadISST': {'value': 0.38989908235027515,
         'value_error': 0.03172953733021198},
        'Tropflux': {'value': 0.39744741059612115,
         'value_error': 0.06284195338099416}},
       'metric': {'ERA-Interim': {'value': 5.154968809662722,
         'value_error': 28.27727699004331},
        'HadISST': {'value': 4.8917595533795595,
         'value_error': 21.057616333384196},
        'Tropflux': {'value': 6.698056936721838,
         'value_error': 27.817217777227704}}},
      'EnsoSstTsRmse': {'diagnostic': {'CESM1-WACCM_r4i1p1': {'value': None,
         'value_error': None},
        'ERA-Interim': {'value': None, 'value_error': None},
        'HadISST': {'value': None, 'value_error': None},
        'Tropflux': {'value': None, 'value_error': None}},
       'metric': {'ERA-Interim': {'value': 0.1112762781583933,
         'value_error': None},
        'HadISST': {'value': 0.1310091487007761, 'value_error': None},
        'Tropflux': {'value': 0.11105565220259263, 'value_error': None}}},
      'SeasonalPrLatRmse': {'diagnostic': {'CESM1-WACCM_r4i1p1': {'value': None,
         'value_error': None},
        'ERA-Interim': {'value': None, 'value_error': None},
        'GPCPv2.3': {'value': None, 'value_error': None}},
       'metric': {'ERA-Interim': {'value': 1.1717976762824132,
         'value_error': None},
        'GPCPv2.3': {'value': 1.2505784433800873, 'value_error': None}}},
      'SeasonalPrLonRmse': {'diagnostic': {'CESM1-WACCM_r4i1p1': {'value': None,
         'value_error': None},
        'ERA-Interim': {'value': None, 'value_error': None},
        'GPCPv2.3': {'value': None, 'value_error': None}},
       'metric': {'ERA-Interim': {'value': 0.5947312989394321,
         'value_error': None},
        'GPCPv2.3': {'value': 0.28294683515304103, 'value_error': None}}},
      'SeasonalSstLonRmse': {'diagnostic': {'CESM1-WACCM_r4i1p1': {'value': None,
         'value_error': None},
        'ERA-Interim': {'value': None, 'value_error': None},
        'HadISST': {'value': None, 'value_error': None},
        'Tropflux': {'value': None, 'value_error': None}},
       'metric': {'ERA-Interim': {'value': 0.15819741813681992,
         'value_error': None},
        'HadISST': {'value': 0.17227648746271207, 'value_error': None},
        'Tropflux': {'value': 0.1642547281404068, 'value_error': None}}},
      'SeasonalTauxLonRmse': {'diagnostic': {'CESM1-WACCM_r4i1p1': {'value': None,
         'value_error': None},
        'ERA-Interim': {'value': None, 'value_error': None},
        'Tropflux': {'value': None, 'value_error': None}},
       'metric': {'ERA-Interim': {'value': 2.271908750618941,
         'value_error': None},
        'Tropflux': {'value': 2.224010859934307, 'value_error': None}}}}},
    'r5i1p1': {'metadata': {'description_of_the_collection': 'Describe which science question this collection is about',
      'metrics': {'BiasPrLatRmse': {'diagnostic': {'CESM1-WACCM_r5i1p1': {'keyerror': None,
          'name': 'CESM1-WACCM_r5i1p1',
          'nyears': 51,
          'time_period': ['1955-1-16 12:0:0.0', '2005-12-16 12:0:0.0']},
         'ERA-Interim': {'name': 'ERA-Interim',
          'nyears': 40,
          'time_period': ['1979-1-16 12:0:0.0', '2019-3-16 12:0:0.0']},
         'GPCPv2.3': {'name': 'GPCPv2.3',
          'nyears': 41,
          'time_period': ['1979-1-1 0:0:0.0', '2019-7-1 0:0:0.0']},
         'method': 'Meridional root mean square error of nino3_LatExt pr, time series are linearly detrended, observations and model regridded to generic_1x1deg',
         'name': 'pr Meridional RMSE',
         'ref': 'Using CDAT regridding and rms (uncentered and biased) calculation',
         'time_frequency': 'monthly',
         'units': 'mm/day'},
        'metric': {'datasets': "CESM1-WACCM_r5i1p1; ERA-Interim's pr & GPCPv2.3's precip; 's ",
         'method': 'The metric is the statistical value between the model and the observations',
         'name': 'BiasPrLatRmse',
         'units': 'mm/day'}},
       'BiasPrLonRmse': {'diagnostic': {'CESM1-WACCM_r5i1p1': {'keyerror': None,
          'name': 'CESM1-WACCM_r5i1p1',
          'nyears': 51,
          'time_period': ['1955-1-16 12:0:0.0', '2005-12-16 12:0:0.0']},
         'ERA-Interim': {'name': 'ERA-Interim',
          'nyears': 40,
          'time_period': ['1979-1-16 12:0:0.0', '2019-3-16 12:0:0.0']},
         'GPCPv2.3': {'name': 'GPCPv2.3',
          'nyears': 41,
          'time_period': ['1979-1-1 0:0:0.0', '2019-7-1 0:0:0.0']},
         'method': 'Zonal root mean square error of equatorial_pacific pr, time series are linearly detrended, observations and model regridded to generic_1x1deg',
         'name': 'pr Zonal RMSE',
         'ref': 'Using CDAT regridding and rms (uncentered and biased) calculation',
         'time_frequency': 'monthly',
         'units': 'mm/day'},
        'metric': {'datasets': "CESM1-WACCM_r5i1p1; ERA-Interim's pr & GPCPv2.3's precip; 's ",
         'method': 'The metric is the statistical value between the model and the observations',
         'name': 'BiasPrLonRmse',
         'units': 'mm/day'}},
       'BiasSstLonRmse': {'diagnostic': {'CESM1-WACCM_r5i1p1': {'keyerror': None,
          'name': 'CESM1-WACCM_r5i1p1',
          'nyears': 51,
          'time_period': ['1955-1-16 12:0:0.0', '2005-12-16 12:0:0.0']},
         'ERA-Interim': {'name': 'ERA-Interim',
          'nyears': 40,
          'time_period': ['1979-1-16 12:0:0.0', '2019-3-16 12:0:0.0']},
         'HadISST': {'name': 'HadISST',
          'nyears': 151,
          'time_period': ['1870-1-16 11:59:59.5', '2020-10-16 12:0:0.0']},
         'Tropflux': {'name': 'Tropflux',
          'nyears': 40,
          'time_period': ['1979-1-15 0:0:0.0', '2018-12-15 12:0:0.0']},
         'method': 'Zonal root mean square error of equatorial_pacific sst, time series are linearly detrended, observations and model regridded to generic_1x1deg',
         'name': 'sst Zonal RMSE',
         'ref': 'Using CDAT regridding and rms (uncentered and biased) calculation',
         'time_frequency': 'monthly',
         'units': 'C'},
        'metric': {'datasets': "CESM1-WACCM_r5i1p1; ERA-Interim's ts & HadISST's sst & Tropflux's sst; 's ",
         'method': 'The metric is the statistical value between the model and the observations',
         'name': 'BiasSstLonRmse',
         'units': 'C'}},
       'BiasTauxLonRmse': {'diagnostic': {'CESM1-WACCM_r5i1p1': {'keyerror': None,
          'name': 'CESM1-WACCM_r5i1p1',
          'nyears': 51,
          'time_period': ['1955-1-16 12:0:0.0', '2005-12-16 12:0:0.0']},
         'ERA-Interim': {'name': 'ERA-Interim',
          'nyears': 40,
          'time_period': ['1979-1-16 12:0:0.0', '2019-3-16 12:0:0.0']},
         'Tropflux': {'name': 'Tropflux',
          'nyears': 40,
          'time_period': ['1979-1-15 0:0:0.0', '2018-12-15 12:0:0.0']},
         'method': 'Zonal root mean square error of equatorial_pacific taux, time series are linearly detrended, observations and model regridded to generic_1x1deg',
         'name': 'taux Zonal RMSE',
         'ref': 'Using CDAT regridding and rms (uncentered and biased) calculation',
         'time_frequency': 'monthly',
         'units': '1e-3 N/m2'},
        'metric': {'datasets': "CESM1-WACCM_r5i1p1; ERA-Interim's tauu & Tropflux's taux; 's ",
         'method': 'The metric is the statistical value between the model and the observations',
         'name': 'BiasTauxLonRmse',
         'units': '1e-3 N/m2'}},
       'EnsoAmpl': {'diagnostic': {'CESM1-WACCM_r5i1p1': {'keyerror': None,
          'name': 'CESM1-WACCM_r5i1p1',
          'nyears': 51,
          'time_period': ['1955-1-16 12:0:0.0', '2005-12-16 12:0:0.0']},
         'ERA-Interim': {'keyerror': None,
          'name': 'ERA-Interim',
          'nyears': 40,
          'time_period': ['1979-1-16 12:0:0.0', '2019-3-16 12:0:0.0']},
         'HadISST': {'keyerror': None,
          'name': 'HadISST',
          'nyears': 151,
          'time_period': ['1870-1-16 11:59:59.5', '2020-10-16 12:0:0.0']},
         'Tropflux': {'keyerror': None,
          'name': 'Tropflux',
          'nyears': 40,
          'time_period': ['1979-1-15 0:0:0.0', '2018-12-15 12:0:0.0']},
         'method': 'Standard deviation of nino3.4 sstA, time series are linearly detrended',
         'name': 'ENSO amplitude',
         'ref': 'Using CDAT regression calculation',
         'time_frequency': 'monthly',
         'units': 'C'},
        'metric': {'datasets': "CESM1-WACCM_r5i1p1; ERA-Interim's ts & HadISST's sst & Tropflux's sst; 's ",
         'method': 'The metric is the absolute value of the relative difference between model and observations values (M = 100 * abs[[model-obs] / obs])',
         'name': 'EnsoAmpl',
         'units': '%'}},
       'EnsoDuration': {'diagnostic': {'CESM1-WACCM_r5i1p1': {'keyerror': None,
          'name': 'CESM1-WACCM_r5i1p1',
          'nyears': 51,
          'time_period': ['1955-1-16 12:0:0.0', '2005-12-16 12:0:0.0']},
         'ERA-Interim': {'keyerror': None,
          'name': 'ERA-Interim',
          'nyears': 40,
          'time_period': ['1979-1-16 12:0:0.0', '2019-3-16 12:0:0.0']},
         'HadISST': {'keyerror': None,
          'name': 'HadISST',
          'nyears': 151,
          'time_period': ['1870-1-16 11:59:59.5', '2020-10-16 12:0:0.0']},
         'Tropflux': {'keyerror': None,
          'name': 'Tropflux',
          'nyears': 40,
          'time_period': ['1979-1-15 0:0:0.0', '2018-12-15 12:0:0.0']},
         'method': 'nino3.4 SSTA during DEC regressed against nino3.4 SSTA during 6 years (centered on ENSO), the duration is the number of consecutive months during which the regression is above 0.25, time series are linearly detrended, smoothing using a triangle shaped window of 5 points',
         'name': 'ENSO Duration based on life cyle SSTA pattern',
         'ref': 'Using CDAT',
         'time_frequency': 'monthly',
         'units': 'months'},
        'metric': {'datasets': "CESM1-WACCM_r5i1p1; ERA-Interim's ts & HadISST's sst & Tropflux's sst; 's ",
         'method': 'The metric is the absolute value of the relative difference between model and observations values (M = 100 * abs[[model-obs] / obs])',
         'name': 'EnsoDuration',
         'units': '%'}},
       'EnsoSeasonality': {'diagnostic': {'CESM1-WACCM_r5i1p1': {'keyerror': None,
          'name': 'CESM1-WACCM_r5i1p1',
          'nyears': 51,
          'time_period': ['1955-1-16 12:0:0.0', '2005-12-16 12:0:0.0']},
         'ERA-Interim': {'keyerror': None,
          'name': 'ERA-Interim',
          'nyears': 40,
          'time_period': ['1979-1-16 12:0:0.0', '2019-3-16 12:0:0.0']},
         'HadISST': {'keyerror': None,
          'name': 'HadISST',
          'nyears': 151,
          'time_period': ['1870-1-16 11:59:59.5', '2020-10-16 12:0:0.0']},
         'Tropflux': {'keyerror': None,
          'name': 'Tropflux',
          'nyears': 40,
          'time_period': ['1979-1-15 0:0:0.0', '2018-12-15 12:0:0.0']},
         'method': 'Ratio between NDJ and MAM standard deviation nino3.4 sstA, time series are linearly detrended',
         'name': 'ENSO seasonality',
         'ref': 'Using CDAT std dev calculation',
         'time_frequency': 'monthly',
         'units': 'C/C'},
        'metric': {'datasets': "CESM1-WACCM_r5i1p1; ERA-Interim's ts & HadISST's sst & Tropflux's sst; 's ",
         'method': 'The metric is the absolute value of the relative difference between model and observations values (M = 100 * abs[[model-obs] / obs])',
         'name': 'EnsoSeasonality',
         'units': '%'}},
       'EnsoSstDiversity_2': {'diagnostic': {'CESM1-WACCM_r5i1p1': {'keyerror': None,
          'name': 'CESM1-WACCM_r5i1p1',
          'nyears': 51,
          'time_period': ['1955-1-16 12:0:0.0', '2005-12-16 12:0:0.0']},
         'ERA-Interim': {'keyerror': None,
          'name': 'ERA-Interim',
          'nyears': 40,
          'time_period': ['1979-1-16 12:0:0.0', '2019-3-16 12:0:0.0']},
         'HadISST': {'keyerror': None,
          'name': 'HadISST',
          'nyears': 151,
          'time_period': ['1870-1-16 11:59:59.5', '2020-10-16 12:0:0.0']},
         'Tropflux': {'keyerror': None,
          'name': 'Tropflux',
          'nyears': 40,
          'time_period': ['1979-1-15 0:0:0.0', '2018-12-15 12:0:0.0']},
         'method': 'Nino (Nina) events = nino3.4 sstA > 0.75 (< -0.75) during DEC, zonal SSTA (meridional averaged [-5.0 ; 5.0]), the zonal SSTA maximum (minimum) is located for each event, the diversity is the interquartile range (IQR = Q3 - Q1), time series are linearly detrended, smoothing using a triangle shaped window of 5 points',
         'name': 'ENSO Diversity (interquartile range)',
         'ref': 'Using CDAT regridding',
         'time_frequency': 'monthly',
         'units': 'long'},
        'metric': {'datasets': "CESM1-WACCM_r5i1p1; ERA-Interim's ts & HadISST's sst & Tropflux's sst; 's ",
         'method': 'The metric is the absolute value of the relative difference between model and observations values (M = 100 * abs[[model-obs] / obs])',
         'name': 'EnsoSstDiversity',
         'units': '%'}},
       'EnsoSstLonRmse': {'diagnostic': {'CESM1-WACCM_r5i1p1': {'keyerror': None,
          'name': 'CESM1-WACCM_r5i1p1',
          'nyears': 51,
          'time_period': ['1955-1-16 12:0:0.0', '2005-12-16 12:0:0.0']},
         'ERA-Interim': {'name': 'ERA-Interim',
          'nyears': 40,
          'time_period': ['1979-1-16 12:0:0.0', '2019-3-16 12:0:0.0']},
         'HadISST': {'name': 'HadISST',
          'nyears': 151,
          'time_period': ['1870-1-16 11:59:59.5', '2020-10-16 12:0:0.0']},
         'Tropflux': {'name': 'Tropflux',
          'nyears': 40,
          'time_period': ['1979-1-15 0:0:0.0', '2018-12-15 12:0:0.0']},
         'method': 'nino3.4 SSTA during DEC regressed against equatorial_pacific SSTA, time series are linearly detrended, smoothing using a triangle shaped window of 5 points, observations and model regridded to generic_1x1deg',
         'name': 'ENSO Zonal SSTA pattern',
         'ref': 'Using CDAT regridding and rms (uncentered and biased) calculation',
         'time_frequency': 'monthly',
         'units': 'C/C'},
        'metric': {'datasets': "CESM1-WACCM_r5i1p1; ERA-Interim's ts & HadISST's sst & Tropflux's sst; 's ",
         'method': 'The metric is the statistical value between the model and the observations',
         'name': 'EnsoSstLonRmse',
         'units': 'C/C'}},
       'EnsoSstSkew': {'diagnostic': {'CESM1-WACCM_r5i1p1': {'keyerror': None,
          'name': 'CESM1-WACCM_r5i1p1',
          'nyears': 51,
          'time_period': ['1955-1-16 12:0:0.0', '2005-12-16 12:0:0.0']},
         'ERA-Interim': {'keyerror': None,
          'name': 'ERA-Interim',
          'nyears': 40,
          'time_period': ['1979-1-16 12:0:0.0', '2019-3-16 12:0:0.0']},
         'HadISST': {'keyerror': None,
          'name': 'HadISST',
          'nyears': 151,
          'time_period': ['1870-1-16 11:59:59.5', '2020-10-16 12:0:0.0']},
         'Tropflux': {'keyerror': None,
          'name': 'Tropflux',
          'nyears': 40,
          'time_period': ['1979-1-15 0:0:0.0', '2018-12-15 12:0:0.0']},
         'method': 'Standard deviation of nino3.4 sstA, time series are linearly detrended',
         'name': 'ENSO skewness',
         'ref': 'Using CDAT regression calculation',
         'time_frequency': 'monthly',
         'units': 'C'},
        'metric': {'datasets': "CESM1-WACCM_r5i1p1; ERA-Interim's ts & HadISST's sst & Tropflux's sst; 's ",
         'method': 'The metric is the absolute value of the relative difference between model and observations values (M = 100 * abs[[model-obs] / obs])',
         'name': 'EnsoSstSkew',
         'units': '%'}},
       'EnsoSstTsRmse': {'diagnostic': {'CESM1-WACCM_r5i1p1': {'keyerror': None,
          'name': 'CESM1-WACCM_r5i1p1',
          'nyears': 51,
          'time_period': ['1955-1-16 12:0:0.0', '2005-12-16 12:0:0.0']},
         'ERA-Interim': {'name': 'ERA-Interim',
          'nyears': 40,
          'time_period': ['1979-1-16 12:0:0.0', '2019-3-16 12:0:0.0']},
         'HadISST': {'name': 'HadISST',
          'nyears': 151,
          'time_period': ['1870-1-16 11:59:59.5', '2020-10-16 12:0:0.0']},
         'Tropflux': {'name': 'Tropflux',
          'nyears': 40,
          'time_period': ['1979-1-15 0:0:0.0', '2018-12-15 12:0:0.0']},
         'method': 'nino3.4 SSTA during DEC regressed against nino3.4 SSTA during 6 years (centered on ENSO), time series are linearly detrended, smoothing using a triangle shaped window of 5 points',
         'name': 'ENSO life cyle SSTA pattern',
         'ref': 'Using CDAT regridding and rms (uncentered and biased) calculation',
         'time_frequency': 'monthly',
         'units': 'C/C'},
        'metric': {'datasets': "CESM1-WACCM_r5i1p1; ERA-Interim's ts & HadISST's sst & Tropflux's sst; 's ",
         'method': 'The metric is the statistical value between the model and the observations',
         'name': 'EnsoSstTsRmse',
         'units': 'C/C'}},
       'SeasonalPrLatRmse': {'diagnostic': {'CESM1-WACCM_r5i1p1': {'keyerror': None,
          'name': 'CESM1-WACCM_r5i1p1',
          'nyears': 51,
          'time_period': ['1955-1-16 12:0:0.0', '2005-12-16 12:0:0.0']},
         'ERA-Interim': {'name': 'ERA-Interim',
          'nyears': 40,
          'time_period': ['1979-1-16 12:0:0.0', '2019-3-16 12:0:0.0']},
         'GPCPv2.3': {'name': 'GPCPv2.3',
          'nyears': 41,
          'time_period': ['1979-1-1 0:0:0.0', '2019-7-1 0:0:0.0']},
         'method': 'Meridional root mean square error of nino3_LatExt climatological pr STD, time series are linearly detrended, observations and model regridded to generic_1x1deg',
         'name': 'pr meridional seasonality RMSE',
         'ref': 'Using CDAT regridding and rms (uncentered and biased) calculation',
         'time_frequency': 'monthly',
         'units': 'mm/day'},
        'metric': {'datasets': "CESM1-WACCM_r5i1p1; ERA-Interim's pr & GPCPv2.3's precip; 's ",
         'method': 'The metric is the statistical value between the model and the observations',
         'name': 'SeasonalPrLatRmse',
         'units': 'mm/day'}},
       'SeasonalPrLonRmse': {'diagnostic': {'CESM1-WACCM_r5i1p1': {'keyerror': None,
          'name': 'CESM1-WACCM_r5i1p1',
          'nyears': 51,
          'time_period': ['1955-1-16 12:0:0.0', '2005-12-16 12:0:0.0']},
         'ERA-Interim': {'name': 'ERA-Interim',
          'nyears': 40,
          'time_period': ['1979-1-16 12:0:0.0', '2019-3-16 12:0:0.0']},
         'GPCPv2.3': {'name': 'GPCPv2.3',
          'nyears': 41,
          'time_period': ['1979-1-1 0:0:0.0', '2019-7-1 0:0:0.0']},
         'method': 'Zonal root mean square error of equatorial_pacific climatological pr STD, time series are linearly detrended, observations and model regridded to generic_1x1deg',
         'name': 'pr zonal seasonality RMSE',
         'ref': 'Using CDAT regridding and rms (uncentered and biased) calculation',
         'time_frequency': 'monthly',
         'units': 'mm/day'},
        'metric': {'datasets': "CESM1-WACCM_r5i1p1; ERA-Interim's pr & GPCPv2.3's precip; 's ",
         'method': 'The metric is the statistical value between the model and the observations',
         'name': 'SeasonalPrLonRmse',
         'units': 'mm/day'}},
       'SeasonalSstLonRmse': {'diagnostic': {'CESM1-WACCM_r5i1p1': {'keyerror': None,
          'name': 'CESM1-WACCM_r5i1p1',
          'nyears': 51,
          'time_period': ['1955-1-16 12:0:0.0', '2005-12-16 12:0:0.0']},
         'ERA-Interim': {'name': 'ERA-Interim',
          'nyears': 40,
          'time_period': ['1979-1-16 12:0:0.0', '2019-3-16 12:0:0.0']},
         'HadISST': {'name': 'HadISST',
          'nyears': 151,
          'time_period': ['1870-1-16 11:59:59.5', '2020-10-16 12:0:0.0']},
         'Tropflux': {'name': 'Tropflux',
          'nyears': 40,
          'time_period': ['1979-1-15 0:0:0.0', '2018-12-15 12:0:0.0']},
         'method': 'Zonal root mean square error of equatorial_pacific climatological sst STD, time series are linearly detrended, observations and model regridded to generic_1x1deg',
         'name': 'sst zonal seasonality RMSE',
         'ref': 'Using CDAT regridding and rms (uncentered and biased) calculation',
         'time_frequency': 'monthly',
         'units': 'C'},
        'metric': {'datasets': "CESM1-WACCM_r5i1p1; ERA-Interim's ts & HadISST's sst & Tropflux's sst; 's ",
         'method': 'The metric is the statistical value between the model and the observations',
         'name': 'SeasonalSstLonRmse',
         'units': 'C'}},
       'SeasonalTauxLonRmse': {'diagnostic': {'CESM1-WACCM_r5i1p1': {'keyerror': None,
          'name': 'CESM1-WACCM_r5i1p1',
          'nyears': 51,
          'time_period': ['1955-1-16 12:0:0.0', '2005-12-16 12:0:0.0']},
         'ERA-Interim': {'name': 'ERA-Interim',
          'nyears': 40,
          'time_period': ['1979-1-16 12:0:0.0', '2019-3-16 12:0:0.0']},
         'Tropflux': {'name': 'Tropflux',
          'nyears': 40,
          'time_period': ['1979-1-15 0:0:0.0', '2018-12-15 12:0:0.0']},
         'method': 'Zonal root mean square error of equatorial_pacific climatological taux STD, time series are linearly detrended, observations and model regridded to generic_1x1deg',
         'name': 'taux zonal seasonality RMSE',
         'ref': 'Using CDAT regridding and rms (uncentered and biased) calculation',
         'time_frequency': 'monthly',
         'units': '1e-3 N/m2'},
        'metric': {'datasets': "CESM1-WACCM_r5i1p1; ERA-Interim's tauu & Tropflux's taux; 's ",
         'method': 'The metric is the statistical value between the model and the observations',
         'name': 'SeasonalTauxLonRmse',
         'units': '1e-3 N/m2'}}},
      'name': 'Metrics Collection for ENSO performance'},
     'value': {'BiasPrLatRmse': {'diagnostic': {'CESM1-WACCM_r5i1p1': {'value': None,
         'value_error': None},
        'ERA-Interim': {'value': None, 'value_error': None},
        'GPCPv2.3': {'value': None, 'value_error': None}},
       'metric': {'ERA-Interim': {'value': 1.529047755465619,
         'value_error': None},
        'GPCPv2.3': {'value': 1.5656653701562622, 'value_error': None}}},
      'BiasPrLonRmse': {'diagnostic': {'CESM1-WACCM_r5i1p1': {'value': None,
         'value_error': None},
        'ERA-Interim': {'value': None, 'value_error': None},
        'GPCPv2.3': {'value': None, 'value_error': None}},
       'metric': {'ERA-Interim': {'value': 1.8098290161499953,
         'value_error': None},
        'GPCPv2.3': {'value': 0.8410447638898261, 'value_error': None}}},
      'BiasSstLonRmse': {'diagnostic': {'CESM1-WACCM_r5i1p1': {'value': None,
         'value_error': None},
        'ERA-Interim': {'value': None, 'value_error': None},
        'HadISST': {'value': None, 'value_error': None},
        'Tropflux': {'value': None, 'value_error': None}},
       'metric': {'ERA-Interim': {'value': 0.4136856615185079,
         'value_error': None},
        'HadISST': {'value': 0.26677998462855274, 'value_error': None},
        'Tropflux': {'value': 0.46287795029891776, 'value_error': None}}},
      'BiasTauxLonRmse': {'diagnostic': {'CESM1-WACCM_r5i1p1': {'value': None,
         'value_error': None},
        'ERA-Interim': {'value': None, 'value_error': None},
        'Tropflux': {'value': None, 'value_error': None}},
       'metric': {'ERA-Interim': {'value': 5.884498621793761,
         'value_error': None},
        'Tropflux': {'value': 5.967871435992923, 'value_error': None}}},
      'EnsoAmpl': {'diagnostic': {'CESM1-WACCM_r5i1p1': {'value': 1.0403448352999638,
         'value_error': 0.14567741533919393},
        'ERA-Interim': {'value': 0.8989844997845644,
         'value_error': 0.14214193002531866},
        'HadISST': {'value': 0.7665787872085695,
         'value_error': 0.06238329697691264},
        'Tropflux': {'value': 0.9039789553693535,
         'value_error': 0.14293162279134272}},
       'metric': {'ERA-Interim': {'value': 15.724446366903482,
         'value_error': 34.50230532234488},
        'HadISST': {'value': 35.71270855123577,
         'value_error': 30.047723886136296},
        'Tropflux': {'value': 15.085072403581906,
         'value_error': 34.3116811596011}}},
      'EnsoDuration': {'diagnostic': {'CESM1-WACCM_r5i1p1': {'value': 13.0,
         'value_error': None},
        'ERA-Interim': {'value': 13.0, 'value_error': None},
        'HadISST': {'value': 13.0, 'value_error': None},
        'Tropflux': {'value': 13.0, 'value_error': None}},
       'metric': {'ERA-Interim': {'value': 0.0, 'value_error': None},
        'HadISST': {'value': 0.0, 'value_error': None},
        'Tropflux': {'value': 0.0, 'value_error': None}}},
      'EnsoSeasonality': {'diagnostic': {'CESM1-WACCM_r5i1p1': {'value': 1.6787629859427564,
         'value_error': 0.47248677577492354},
        'ERA-Interim': {'value': 2.0466846866656914,
         'value_error': 0.6513411033995022},
        'HadISST': {'value': 1.6639865947361325,
         'value_error': 0.2712772451657809},
        'Tropflux': {'value': 2.0532132553583624,
         'value_error': 0.6534187683977347}},
       'metric': {'ERA-Interim': {'value': 17.976472053559263,
         'value_error': 49.18880442637094},
        'HadISST': {'value': 0.888011433106951,
         'value_error': 44.84248829008859},
        'Tropflux': {'value': 18.23728092726785,
         'value_error': 49.03239958738509}}},
      'EnsoSstDiversity_2': {'diagnostic': {'CESM1-WACCM_r5i1p1': {'value': 16.5,
         'value_error': None},
        'ERA-Interim': {'value': 33.25, 'value_error': None},
        'HadISST': {'value': 49.0, 'value_error': None},
        'Tropflux': {'value': 32.0, 'value_error': None}},
       'metric': {'ERA-Interim': {'value': 50.37593984962406,
         'value_error': None},
        'HadISST': {'value': 66.3265306122449, 'value_error': None},
        'Tropflux': {'value': 48.4375, 'value_error': None}}},
      'EnsoSstLonRmse': {'diagnostic': {'CESM1-WACCM_r5i1p1': {'value': None,
         'value_error': None},
        'ERA-Interim': {'value': None, 'value_error': None},
        'HadISST': {'value': None, 'value_error': None},
        'Tropflux': {'value': None, 'value_error': None}},
       'metric': {'ERA-Interim': {'value': 0.11975850515089737,
         'value_error': None},
        'HadISST': {'value': 0.13810949979494608, 'value_error': None},
        'Tropflux': {'value': 0.11927162832416574, 'value_error': None}}},
      'EnsoSstSkew': {'diagnostic': {'CESM1-WACCM_r5i1p1': {'value': 0.16160706392280233,
         'value_error': 0.022629515304934157},
        'ERA-Interim': {'value': 0.39098111106809963,
         'value_error': 0.061819541653923164},
        'HadISST': {'value': 0.38989908235027515,
         'value_error': 0.03172953733021198},
        'Tropflux': {'value': 0.39744741059612115,
         'value_error': 0.06284195338099416}},
       'metric': {'ERA-Interim': {'value': 58.66627329353151,
         'value_error': 12.323315459340972},
        'HadISST': {'value': 58.55156597223823,
         'value_error': 9.1769673929154},
        'Tropflux': {'value': 59.338755363782084,
         'value_error': 12.122820382976329}}},
      'EnsoSstTsRmse': {'diagnostic': {'CESM1-WACCM_r5i1p1': {'value': None,
         'value_error': None},
        'ERA-Interim': {'value': None, 'value_error': None},
        'HadISST': {'value': None, 'value_error': None},
        'Tropflux': {'value': None, 'value_error': None}},
       'metric': {'ERA-Interim': {'value': 0.0782185121296504,
         'value_error': None},
        'HadISST': {'value': 0.08988408373568677, 'value_error': None},
        'Tropflux': {'value': 0.07669455111321322, 'value_error': None}}},
      'SeasonalPrLatRmse': {'diagnostic': {'CESM1-WACCM_r5i1p1': {'value': None,
         'value_error': None},
        'ERA-Interim': {'value': None, 'value_error': None},
        'GPCPv2.3': {'value': None, 'value_error': None}},
       'metric': {'ERA-Interim': {'value': 1.2364964711516766,
         'value_error': None},
        'GPCPv2.3': {'value': 1.3151386471853532, 'value_error': None}}},
      'SeasonalPrLonRmse': {'diagnostic': {'CESM1-WACCM_r5i1p1': {'value': None,
         'value_error': None},
        'ERA-Interim': {'value': None, 'value_error': None},
        'GPCPv2.3': {'value': None, 'value_error': None}},
       'metric': {'ERA-Interim': {'value': 0.6483134697806969,
         'value_error': None},
        'GPCPv2.3': {'value': 0.3286039493051741, 'value_error': None}}},
      'SeasonalSstLonRmse': {'diagnostic': {'CESM1-WACCM_r5i1p1': {'value': None,
         'value_error': None},
        'ERA-Interim': {'value': None, 'value_error': None},
        'HadISST': {'value': None, 'value_error': None},
        'Tropflux': {'value': None, 'value_error': None}},
       'metric': {'ERA-Interim': {'value': 0.15692101232717906,
         'value_error': None},
        'HadISST': {'value': 0.17808060121794736, 'value_error': None},
        'Tropflux': {'value': 0.1593134393820109, 'value_error': None}}},
      'SeasonalTauxLonRmse': {'diagnostic': {'CESM1-WACCM_r5i1p1': {'value': None,
         'value_error': None},
        'ERA-Interim': {'value': None, 'value_error': None},
        'Tropflux': {'value': None, 'value_error': None}},
       'metric': {'ERA-Interim': {'value': 2.3340413463344616,
         'value_error': None},
        'Tropflux': {'value': 2.3073300901350176, 'value_error': None}}}}},
    'r6i1p1': {'metadata': {'description_of_the_collection': 'Describe which science question this collection is about',
      'metrics': {'BiasPrLatRmse': {'diagnostic': {'CESM1-WACCM_r6i1p1': {'keyerror': None,
          'name': 'CESM1-WACCM_r6i1p1',
          'nyears': 51,
          'time_period': ['1955-1-16 12:0:0.0', '2005-12-16 12:0:0.0']},
         'ERA-Interim': {'name': 'ERA-Interim',
          'nyears': 40,
          'time_period': ['1979-1-16 12:0:0.0', '2019-3-16 12:0:0.0']},
         'GPCPv2.3': {'name': 'GPCPv2.3',
          'nyears': 41,
          'time_period': ['1979-1-1 0:0:0.0', '2019-7-1 0:0:0.0']},
         'method': 'Meridional root mean square error of nino3_LatExt pr, time series are linearly detrended, observations and model regridded to generic_1x1deg',
         'name': 'pr Meridional RMSE',
         'ref': 'Using CDAT regridding and rms (uncentered and biased) calculation',
         'time_frequency': 'monthly',
         'units': 'mm/day'},
        'metric': {'datasets': "CESM1-WACCM_r6i1p1; ERA-Interim's pr & GPCPv2.3's precip; 's ",
         'method': 'The metric is the statistical value between the model and the observations',
         'name': 'BiasPrLatRmse',
         'units': 'mm/day'}},
       'BiasPrLonRmse': {'diagnostic': {'CESM1-WACCM_r6i1p1': {'keyerror': None,
          'name': 'CESM1-WACCM_r6i1p1',
          'nyears': 51,
          'time_period': ['1955-1-16 12:0:0.0', '2005-12-16 12:0:0.0']},
         'ERA-Interim': {'name': 'ERA-Interim',
          'nyears': 40,
          'time_period': ['1979-1-16 12:0:0.0', '2019-3-16 12:0:0.0']},
         'GPCPv2.3': {'name': 'GPCPv2.3',
          'nyears': 41,
          'time_period': ['1979-1-1 0:0:0.0', '2019-7-1 0:0:0.0']},
         'method': 'Zonal root mean square error of equatorial_pacific pr, time series are linearly detrended, observations and model regridded to generic_1x1deg',
         'name': 'pr Zonal RMSE',
         'ref': 'Using CDAT regridding and rms (uncentered and biased) calculation',
         'time_frequency': 'monthly',
         'units': 'mm/day'},
        'metric': {'datasets': "CESM1-WACCM_r6i1p1; ERA-Interim's pr & GPCPv2.3's precip; 's ",
         'method': 'The metric is the statistical value between the model and the observations',
         'name': 'BiasPrLonRmse',
         'units': 'mm/day'}},
       'BiasSstLonRmse': {'diagnostic': {'CESM1-WACCM_r6i1p1': {'keyerror': None,
          'name': 'CESM1-WACCM_r6i1p1',
          'nyears': 51,
          'time_period': ['1955-1-16 12:0:0.0', '2005-12-16 12:0:0.0']},
         'ERA-Interim': {'name': 'ERA-Interim',
          'nyears': 40,
          'time_period': ['1979-1-16 12:0:0.0', '2019-3-16 12:0:0.0']},
         'HadISST': {'name': 'HadISST',
          'nyears': 151,
          'time_period': ['1870-1-16 11:59:59.5', '2020-10-16 12:0:0.0']},
         'Tropflux': {'name': 'Tropflux',
          'nyears': 40,
          'time_period': ['1979-1-15 0:0:0.0', '2018-12-15 12:0:0.0']},
         'method': 'Zonal root mean square error of equatorial_pacific sst, time series are linearly detrended, observations and model regridded to generic_1x1deg',
         'name': 'sst Zonal RMSE',
         'ref': 'Using CDAT regridding and rms (uncentered and biased) calculation',
         'time_frequency': 'monthly',
         'units': 'C'},
        'metric': {'datasets': "CESM1-WACCM_r6i1p1; ERA-Interim's ts & HadISST's sst & Tropflux's sst; 's ",
         'method': 'The metric is the statistical value between the model and the observations',
         'name': 'BiasSstLonRmse',
         'units': 'C'}},
       'BiasTauxLonRmse': {'diagnostic': {'CESM1-WACCM_r6i1p1': {'keyerror': None,
          'name': 'CESM1-WACCM_r6i1p1',
          'nyears': 51,
          'time_period': ['1955-1-16 12:0:0.0', '2005-12-16 12:0:0.0']},
         'ERA-Interim': {'name': 'ERA-Interim',
          'nyears': 40,
          'time_period': ['1979-1-16 12:0:0.0', '2019-3-16 12:0:0.0']},
         'Tropflux': {'name': 'Tropflux',
          'nyears': 40,
          'time_period': ['1979-1-15 0:0:0.0', '2018-12-15 12:0:0.0']},
         'method': 'Zonal root mean square error of equatorial_pacific taux, time series are linearly detrended, observations and model regridded to generic_1x1deg',
         'name': 'taux Zonal RMSE',
         'ref': 'Using CDAT regridding and rms (uncentered and biased) calculation',
         'time_frequency': 'monthly',
         'units': '1e-3 N/m2'},
        'metric': {'datasets': "CESM1-WACCM_r6i1p1; ERA-Interim's tauu & Tropflux's taux; 's ",
         'method': 'The metric is the statistical value between the model and the observations',
         'name': 'BiasTauxLonRmse',
         'units': '1e-3 N/m2'}},
       'EnsoAmpl': {'diagnostic': {'CESM1-WACCM_r6i1p1': {'keyerror': None,
          'name': 'CESM1-WACCM_r6i1p1',
          'nyears': 51,
          'time_period': ['1955-1-16 12:0:0.0', '2005-12-16 12:0:0.0']},
         'ERA-Interim': {'keyerror': None,
          'name': 'ERA-Interim',
          'nyears': 40,
          'time_period': ['1979-1-16 12:0:0.0', '2019-3-16 12:0:0.0']},
         'HadISST': {'keyerror': None,
          'name': 'HadISST',
          'nyears': 151,
          'time_period': ['1870-1-16 11:59:59.5', '2020-10-16 12:0:0.0']},
         'Tropflux': {'keyerror': None,
          'name': 'Tropflux',
          'nyears': 40,
          'time_period': ['1979-1-15 0:0:0.0', '2018-12-15 12:0:0.0']},
         'method': 'Standard deviation of nino3.4 sstA, time series are linearly detrended',
         'name': 'ENSO amplitude',
         'ref': 'Using CDAT regression calculation',
         'time_frequency': 'monthly',
         'units': 'C'},
        'metric': {'datasets': "CESM1-WACCM_r6i1p1; ERA-Interim's ts & HadISST's sst & Tropflux's sst; 's ",
         'method': 'The metric is the absolute value of the relative difference between model and observations values (M = 100 * abs[[model-obs] / obs])',
         'name': 'EnsoAmpl',
         'units': '%'}},
       'EnsoDuration': {'diagnostic': {'CESM1-WACCM_r6i1p1': {'keyerror': None,
          'name': 'CESM1-WACCM_r6i1p1',
          'nyears': 51,
          'time_period': ['1955-1-16 12:0:0.0', '2005-12-16 12:0:0.0']},
         'ERA-Interim': {'keyerror': None,
          'name': 'ERA-Interim',
          'nyears': 40,
          'time_period': ['1979-1-16 12:0:0.0', '2019-3-16 12:0:0.0']},
         'HadISST': {'keyerror': None,
          'name': 'HadISST',
          'nyears': 151,
          'time_period': ['1870-1-16 11:59:59.5', '2020-10-16 12:0:0.0']},
         'Tropflux': {'keyerror': None,
          'name': 'Tropflux',
          'nyears': 40,
          'time_period': ['1979-1-15 0:0:0.0', '2018-12-15 12:0:0.0']},
         'method': 'nino3.4 SSTA during DEC regressed against nino3.4 SSTA during 6 years (centered on ENSO), the duration is the number of consecutive months during which the regression is above 0.25, time series are linearly detrended, smoothing using a triangle shaped window of 5 points',
         'name': 'ENSO Duration based on life cyle SSTA pattern',
         'ref': 'Using CDAT',
         'time_frequency': 'monthly',
         'units': 'months'},
        'metric': {'datasets': "CESM1-WACCM_r6i1p1; ERA-Interim's ts & HadISST's sst & Tropflux's sst; 's ",
         'method': 'The metric is the absolute value of the relative difference between model and observations values (M = 100 * abs[[model-obs] / obs])',
         'name': 'EnsoDuration',
         'units': '%'}},
       'EnsoSeasonality': {'diagnostic': {'CESM1-WACCM_r6i1p1': {'keyerror': None,
          'name': 'CESM1-WACCM_r6i1p1',
          'nyears': 51,
          'time_period': ['1955-1-16 12:0:0.0', '2005-12-16 12:0:0.0']},
         'ERA-Interim': {'keyerror': None,
          'name': 'ERA-Interim',
          'nyears': 40,
          'time_period': ['1979-1-16 12:0:0.0', '2019-3-16 12:0:0.0']},
         'HadISST': {'keyerror': None,
          'name': 'HadISST',
          'nyears': 151,
          'time_period': ['1870-1-16 11:59:59.5', '2020-10-16 12:0:0.0']},
         'Tropflux': {'keyerror': None,
          'name': 'Tropflux',
          'nyears': 40,
          'time_period': ['1979-1-15 0:0:0.0', '2018-12-15 12:0:0.0']},
         'method': 'Ratio between NDJ and MAM standard deviation nino3.4 sstA, time series are linearly detrended',
         'name': 'ENSO seasonality',
         'ref': 'Using CDAT std dev calculation',
         'time_frequency': 'monthly',
         'units': 'C/C'},
        'metric': {'datasets': "CESM1-WACCM_r6i1p1; ERA-Interim's ts & HadISST's sst & Tropflux's sst; 's ",
         'method': 'The metric is the absolute value of the relative difference between model and observations values (M = 100 * abs[[model-obs] / obs])',
         'name': 'EnsoSeasonality',
         'units': '%'}},
       'EnsoSstDiversity_2': {'diagnostic': {'CESM1-WACCM_r6i1p1': {'keyerror': None,
          'name': 'CESM1-WACCM_r6i1p1',
          'nyears': 51,
          'time_period': ['1955-1-16 12:0:0.0', '2005-12-16 12:0:0.0']},
         'ERA-Interim': {'keyerror': None,
          'name': 'ERA-Interim',
          'nyears': 40,
          'time_period': ['1979-1-16 12:0:0.0', '2019-3-16 12:0:0.0']},
         'HadISST': {'keyerror': None,
          'name': 'HadISST',
          'nyears': 151,
          'time_period': ['1870-1-16 11:59:59.5', '2020-10-16 12:0:0.0']},
         'Tropflux': {'keyerror': None,
          'name': 'Tropflux',
          'nyears': 40,
          'time_period': ['1979-1-15 0:0:0.0', '2018-12-15 12:0:0.0']},
         'method': 'Nino (Nina) events = nino3.4 sstA > 0.75 (< -0.75) during DEC, zonal SSTA (meridional averaged [-5.0 ; 5.0]), the zonal SSTA maximum (minimum) is located for each event, the diversity is the interquartile range (IQR = Q3 - Q1), time series are linearly detrended, smoothing using a triangle shaped window of 5 points',
         'name': 'ENSO Diversity (interquartile range)',
         'ref': 'Using CDAT regridding',
         'time_frequency': 'monthly',
         'units': 'long'},
        'metric': {'datasets': "CESM1-WACCM_r6i1p1; ERA-Interim's ts & HadISST's sst & Tropflux's sst; 's ",
         'method': 'The metric is the absolute value of the relative difference between model and observations values (M = 100 * abs[[model-obs] / obs])',
         'name': 'EnsoSstDiversity',
         'units': '%'}},
       'EnsoSstLonRmse': {'diagnostic': {'CESM1-WACCM_r6i1p1': {'keyerror': None,
          'name': 'CESM1-WACCM_r6i1p1',
          'nyears': 51,
          'time_period': ['1955-1-16 12:0:0.0', '2005-12-16 12:0:0.0']},
         'ERA-Interim': {'name': 'ERA-Interim',
          'nyears': 40,
          'time_period': ['1979-1-16 12:0:0.0', '2019-3-16 12:0:0.0']},
         'HadISST': {'name': 'HadISST',
          'nyears': 151,
          'time_period': ['1870-1-16 11:59:59.5', '2020-10-16 12:0:0.0']},
         'Tropflux': {'name': 'Tropflux',
          'nyears': 40,
          'time_period': ['1979-1-15 0:0:0.0', '2018-12-15 12:0:0.0']},
         'method': 'nino3.4 SSTA during DEC regressed against equatorial_pacific SSTA, time series are linearly detrended, smoothing using a triangle shaped window of 5 points, observations and model regridded to generic_1x1deg',
         'name': 'ENSO Zonal SSTA pattern',
         'ref': 'Using CDAT regridding and rms (uncentered and biased) calculation',
         'time_frequency': 'monthly',
         'units': 'C/C'},
        'metric': {'datasets': "CESM1-WACCM_r6i1p1; ERA-Interim's ts & HadISST's sst & Tropflux's sst; 's ",
         'method': 'The metric is the statistical value between the model and the observations',
         'name': 'EnsoSstLonRmse',
         'units': 'C/C'}},
       'EnsoSstSkew': {'diagnostic': {'CESM1-WACCM_r6i1p1': {'keyerror': None,
          'name': 'CESM1-WACCM_r6i1p1',
          'nyears': 51,
          'time_period': ['1955-1-16 12:0:0.0', '2005-12-16 12:0:0.0']},
         'ERA-Interim': {'keyerror': None,
          'name': 'ERA-Interim',
          'nyears': 40,
          'time_period': ['1979-1-16 12:0:0.0', '2019-3-16 12:0:0.0']},
         'HadISST': {'keyerror': None,
          'name': 'HadISST',
          'nyears': 151,
          'time_period': ['1870-1-16 11:59:59.5', '2020-10-16 12:0:0.0']},
         'Tropflux': {'keyerror': None,
          'name': 'Tropflux',
          'nyears': 40,
          'time_period': ['1979-1-15 0:0:0.0', '2018-12-15 12:0:0.0']},
         'method': 'Standard deviation of nino3.4 sstA, time series are linearly detrended',
         'name': 'ENSO skewness',
         'ref': 'Using CDAT regression calculation',
         'time_frequency': 'monthly',
         'units': 'C'},
        'metric': {'datasets': "CESM1-WACCM_r6i1p1; ERA-Interim's ts & HadISST's sst & Tropflux's sst; 's ",
         'method': 'The metric is the absolute value of the relative difference between model and observations values (M = 100 * abs[[model-obs] / obs])',
         'name': 'EnsoSstSkew',
         'units': '%'}},
       'EnsoSstTsRmse': {'diagnostic': {'CESM1-WACCM_r6i1p1': {'keyerror': None,
          'name': 'CESM1-WACCM_r6i1p1',
          'nyears': 51,
          'time_period': ['1955-1-16 12:0:0.0', '2005-12-16 12:0:0.0']},
         'ERA-Interim': {'name': 'ERA-Interim',
          'nyears': 40,
          'time_period': ['1979-1-16 12:0:0.0', '2019-3-16 12:0:0.0']},
         'HadISST': {'name': 'HadISST',
          'nyears': 151,
          'time_period': ['1870-1-16 11:59:59.5', '2020-10-16 12:0:0.0']},
         'Tropflux': {'name': 'Tropflux',
          'nyears': 40,
          'time_period': ['1979-1-15 0:0:0.0', '2018-12-15 12:0:0.0']},
         'method': 'nino3.4 SSTA during DEC regressed against nino3.4 SSTA during 6 years (centered on ENSO), time series are linearly detrended, smoothing using a triangle shaped window of 5 points',
         'name': 'ENSO life cyle SSTA pattern',
         'ref': 'Using CDAT regridding and rms (uncentered and biased) calculation',
         'time_frequency': 'monthly',
         'units': 'C/C'},
        'metric': {'datasets': "CESM1-WACCM_r6i1p1; ERA-Interim's ts & HadISST's sst & Tropflux's sst; 's ",
         'method': 'The metric is the statistical value between the model and the observations',
         'name': 'EnsoSstTsRmse',
         'units': 'C/C'}},
       'SeasonalPrLatRmse': {'diagnostic': {'CESM1-WACCM_r6i1p1': {'keyerror': None,
          'name': 'CESM1-WACCM_r6i1p1',
          'nyears': 51,
          'time_period': ['1955-1-16 12:0:0.0', '2005-12-16 12:0:0.0']},
         'ERA-Interim': {'name': 'ERA-Interim',
          'nyears': 40,
          'time_period': ['1979-1-16 12:0:0.0', '2019-3-16 12:0:0.0']},
         'GPCPv2.3': {'name': 'GPCPv2.3',
          'nyears': 41,
          'time_period': ['1979-1-1 0:0:0.0', '2019-7-1 0:0:0.0']},
         'method': 'Meridional root mean square error of nino3_LatExt climatological pr STD, time series are linearly detrended, observations and model regridded to generic_1x1deg',
         'name': 'pr meridional seasonality RMSE',
         'ref': 'Using CDAT regridding and rms (uncentered and biased) calculation',
         'time_frequency': 'monthly',
         'units': 'mm/day'},
        'metric': {'datasets': "CESM1-WACCM_r6i1p1; ERA-Interim's pr & GPCPv2.3's precip; 's ",
         'method': 'The metric is the statistical value between the model and the observations',
         'name': 'SeasonalPrLatRmse',
         'units': 'mm/day'}},
       'SeasonalPrLonRmse': {'diagnostic': {'CESM1-WACCM_r6i1p1': {'keyerror': None,
          'name': 'CESM1-WACCM_r6i1p1',
          'nyears': 51,
          'time_period': ['1955-1-16 12:0:0.0', '2005-12-16 12:0:0.0']},
         'ERA-Interim': {'name': 'ERA-Interim',
          'nyears': 40,
          'time_period': ['1979-1-16 12:0:0.0', '2019-3-16 12:0:0.0']},
         'GPCPv2.3': {'name': 'GPCPv2.3',
          'nyears': 41,
          'time_period': ['1979-1-1 0:0:0.0', '2019-7-1 0:0:0.0']},
         'method': 'Zonal root mean square error of equatorial_pacific climatological pr STD, time series are linearly detrended, observations and model regridded to generic_1x1deg',
         'name': 'pr zonal seasonality RMSE',
         'ref': 'Using CDAT regridding and rms (uncentered and biased) calculation',
         'time_frequency': 'monthly',
         'units': 'mm/day'},
        'metric': {'datasets': "CESM1-WACCM_r6i1p1; ERA-Interim's pr & GPCPv2.3's precip; 's ",
         'method': 'The metric is the statistical value between the model and the observations',
         'name': 'SeasonalPrLonRmse',
         'units': 'mm/day'}},
       'SeasonalSstLonRmse': {'diagnostic': {'CESM1-WACCM_r6i1p1': {'keyerror': None,
          'name': 'CESM1-WACCM_r6i1p1',
          'nyears': 51,
          'time_period': ['1955-1-16 12:0:0.0', '2005-12-16 12:0:0.0']},
         'ERA-Interim': {'name': 'ERA-Interim',
          'nyears': 40,
          'time_period': ['1979-1-16 12:0:0.0', '2019-3-16 12:0:0.0']},
         'HadISST': {'name': 'HadISST',
          'nyears': 151,
          'time_period': ['1870-1-16 11:59:59.5', '2020-10-16 12:0:0.0']},
         'Tropflux': {'name': 'Tropflux',
          'nyears': 40,
          'time_period': ['1979-1-15 0:0:0.0', '2018-12-15 12:0:0.0']},
         'method': 'Zonal root mean square error of equatorial_pacific climatological sst STD, time series are linearly detrended, observations and model regridded to generic_1x1deg',
         'name': 'sst zonal seasonality RMSE',
         'ref': 'Using CDAT regridding and rms (uncentered and biased) calculation',
         'time_frequency': 'monthly',
         'units': 'C'},
        'metric': {'datasets': "CESM1-WACCM_r6i1p1; ERA-Interim's ts & HadISST's sst & Tropflux's sst; 's ",
         'method': 'The metric is the statistical value between the model and the observations',
         'name': 'SeasonalSstLonRmse',
         'units': 'C'}},
       'SeasonalTauxLonRmse': {'diagnostic': {'CESM1-WACCM_r6i1p1': {'keyerror': None,
          'name': 'CESM1-WACCM_r6i1p1',
          'nyears': 51,
          'time_period': ['1955-1-16 12:0:0.0', '2005-12-16 12:0:0.0']},
         'ERA-Interim': {'name': 'ERA-Interim',
          'nyears': 40,
          'time_period': ['1979-1-16 12:0:0.0', '2019-3-16 12:0:0.0']},
         'Tropflux': {'name': 'Tropflux',
          'nyears': 40,
          'time_period': ['1979-1-15 0:0:0.0', '2018-12-15 12:0:0.0']},
         'method': 'Zonal root mean square error of equatorial_pacific climatological taux STD, time series are linearly detrended, observations and model regridded to generic_1x1deg',
         'name': 'taux zonal seasonality RMSE',
         'ref': 'Using CDAT regridding and rms (uncentered and biased) calculation',
         'time_frequency': 'monthly',
         'units': '1e-3 N/m2'},
        'metric': {'datasets': "CESM1-WACCM_r6i1p1; ERA-Interim's tauu & Tropflux's taux; 's ",
         'method': 'The metric is the statistical value between the model and the observations',
         'name': 'SeasonalTauxLonRmse',
         'units': '1e-3 N/m2'}}},
      'name': 'Metrics Collection for ENSO performance'},
     'value': {'BiasPrLatRmse': {'diagnostic': {'CESM1-WACCM_r6i1p1': {'value': None,
         'value_error': None},
        'ERA-Interim': {'value': None, 'value_error': None},
        'GPCPv2.3': {'value': None, 'value_error': None}},
       'metric': {'ERA-Interim': {'value': 1.5232276001617249,
         'value_error': None},
        'GPCPv2.3': {'value': 1.5409261358324, 'value_error': None}}},
      'BiasPrLonRmse': {'diagnostic': {'CESM1-WACCM_r6i1p1': {'value': None,
         'value_error': None},
        'ERA-Interim': {'value': None, 'value_error': None},
        'GPCPv2.3': {'value': None, 'value_error': None}},
       'metric': {'ERA-Interim': {'value': 1.822951205469627,
         'value_error': None},
        'GPCPv2.3': {'value': 0.8378355583486604, 'value_error': None}}},
      'BiasSstLonRmse': {'diagnostic': {'CESM1-WACCM_r6i1p1': {'value': None,
         'value_error': None},
        'ERA-Interim': {'value': None, 'value_error': None},
        'HadISST': {'value': None, 'value_error': None},
        'Tropflux': {'value': None, 'value_error': None}},
       'metric': {'ERA-Interim': {'value': 0.4527496331083414,
         'value_error': None},
        'HadISST': {'value': 0.29216523928788957, 'value_error': None},
        'Tropflux': {'value': 0.5020249905198529, 'value_error': None}}},
      'BiasTauxLonRmse': {'diagnostic': {'CESM1-WACCM_r6i1p1': {'value': None,
         'value_error': None},
        'ERA-Interim': {'value': None, 'value_error': None},
        'Tropflux': {'value': None, 'value_error': None}},
       'metric': {'ERA-Interim': {'value': 6.008727793084806,
         'value_error': None},
        'Tropflux': {'value': 6.121477343786555, 'value_error': None}}},
      'EnsoAmpl': {'diagnostic': {'CESM1-WACCM_r6i1p1': {'value': 1.068322008540984,
         'value_error': 0.14959500318887411},
        'ERA-Interim': {'value': 0.8989844997845644,
         'value_error': 0.14214193002531866},
        'HadISST': {'value': 0.7665787872085695,
         'value_error': 0.06238329697691264},
        'Tropflux': {'value': 0.9039789553693535,
         'value_error': 0.14293162279134272}},
       'metric': {'ERA-Interim': {'value': 18.836532642887622,
         'value_error': 35.4301486109017},
        'HadISST': {'value': 39.36232339942333,
         'value_error': 30.855773629006777},
        'Tropflux': {'value': 18.179964499779988,
         'value_error': 35.23439814287523}}},
      'EnsoDuration': {'diagnostic': {'CESM1-WACCM_r6i1p1': {'value': 12.0,
         'value_error': None},
        'ERA-Interim': {'value': 13.0, 'value_error': None},
        'HadISST': {'value': 13.0, 'value_error': None},
        'Tropflux': {'value': 13.0, 'value_error': None}},
       'metric': {'ERA-Interim': {'value': 7.6923076923076925,
         'value_error': None},
        'HadISST': {'value': 7.6923076923076925, 'value_error': None},
        'Tropflux': {'value': 7.6923076923076925, 'value_error': None}}},
      'EnsoSeasonality': {'diagnostic': {'CESM1-WACCM_r6i1p1': {'value': 1.8011727483294266,
         'value_error': 0.5069389256243987},
        'ERA-Interim': {'value': 2.0466846866656914,
         'value_error': 0.6513411033995022},
        'HadISST': {'value': 1.6639865947361325,
         'value_error': 0.2712772451657809},
        'Tropflux': {'value': 2.0532132553583624,
         'value_error': 0.6534187683977347}},
       'metric': {'ERA-Interim': {'value': 11.99559169694257,
         'value_error': 52.77548694935681},
        'HadISST': {'value': 8.24442660940117,
         'value_error': 48.11225202825809},
        'Tropflux': {'value': 12.275417878351135,
         'value_error': 52.60767759446448}}},
      'EnsoSstDiversity_2': {'diagnostic': {'CESM1-WACCM_r6i1p1': {'value': 12.0,
         'value_error': None},
        'ERA-Interim': {'value': 33.25, 'value_error': None},
        'HadISST': {'value': 49.0, 'value_error': None},
        'Tropflux': {'value': 32.0, 'value_error': None}},
       'metric': {'ERA-Interim': {'value': 63.90977443609023,
         'value_error': None},
        'HadISST': {'value': 75.51020408163265, 'value_error': None},
        'Tropflux': {'value': 62.5, 'value_error': None}}},
      'EnsoSstLonRmse': {'diagnostic': {'CESM1-WACCM_r6i1p1': {'value': None,
         'value_error': None},
        'ERA-Interim': {'value': None, 'value_error': None},
        'HadISST': {'value': None, 'value_error': None},
        'Tropflux': {'value': None, 'value_error': None}},
       'metric': {'ERA-Interim': {'value': 0.15663528330719068,
         'value_error': None},
        'HadISST': {'value': 0.1730517351162373, 'value_error': None},
        'Tropflux': {'value': 0.15651187285268492, 'value_error': None}}},
      'EnsoSstSkew': {'diagnostic': {'CESM1-WACCM_r6i1p1': {'value': 0.00400989646363735,
         'value_error': 0.0005614978157045727},
        'ERA-Interim': {'value': 0.39098111106809963,
         'value_error': 0.061819541653923164},
        'HadISST': {'value': 0.38989908235027515,
         'value_error': 0.03172953733021198},
        'Tropflux': {'value': 0.39744741059612115,
         'value_error': 0.06284195338099416}},
       'metric': {'ERA-Interim': {'value': 98.97440148638307,
         'value_error': 0.30577388067828576},
        'HadISST': {'value': 98.97155529593297,
         'value_error': 0.22770470672832158},
        'Tropflux': {'value': 98.99108753592758,
         'value_error': 0.30079907030690584}}},
      'EnsoSstTsRmse': {'diagnostic': {'CESM1-WACCM_r6i1p1': {'value': None,
         'value_error': None},
        'ERA-Interim': {'value': None, 'value_error': None},
        'HadISST': {'value': None, 'value_error': None},
        'Tropflux': {'value': None, 'value_error': None}},
       'metric': {'ERA-Interim': {'value': 0.16699110871798495,
         'value_error': None},
        'HadISST': {'value': 0.16475804341918532, 'value_error': None},
        'Tropflux': {'value': 0.16924418566438107, 'value_error': None}}},
      'SeasonalPrLatRmse': {'diagnostic': {'CESM1-WACCM_r6i1p1': {'value': None,
         'value_error': None},
        'ERA-Interim': {'value': None, 'value_error': None},
        'GPCPv2.3': {'value': None, 'value_error': None}},
       'metric': {'ERA-Interim': {'value': 1.2193122455771268,
         'value_error': None},
        'GPCPv2.3': {'value': 1.2893008384843003, 'value_error': None}}},
      'SeasonalPrLonRmse': {'diagnostic': {'CESM1-WACCM_r6i1p1': {'value': None,
         'value_error': None},
        'ERA-Interim': {'value': None, 'value_error': None},
        'GPCPv2.3': {'value': None, 'value_error': None}},
       'metric': {'ERA-Interim': {'value': 0.6599712788529258,
         'value_error': None},
        'GPCPv2.3': {'value': 0.3399090446604427, 'value_error': None}}},
      'SeasonalSstLonRmse': {'diagnostic': {'CESM1-WACCM_r6i1p1': {'value': None,
         'value_error': None},
        'ERA-Interim': {'value': None, 'value_error': None},
        'HadISST': {'value': None, 'value_error': None},
        'Tropflux': {'value': None, 'value_error': None}},
       'metric': {'ERA-Interim': {'value': 0.15269875720515236,
         'value_error': None},
        'HadISST': {'value': 0.17087869843818096, 'value_error': None},
        'Tropflux': {'value': 0.1569156411223494, 'value_error': None}}},
      'SeasonalTauxLonRmse': {'diagnostic': {'CESM1-WACCM_r6i1p1': {'value': None,
         'value_error': None},
        'ERA-Interim': {'value': None, 'value_error': None},
        'Tropflux': {'value': None, 'value_error': None}},
       'metric': {'ERA-Interim': {'value': 2.384812043424532,
         'value_error': None},
        'Tropflux': {'value': 2.3326857407145294, 'value_error': None}}}}},
    'r7i1p1': {'metadata': {'description_of_the_collection': 'Describe which science question this collection is about',
      'metrics': {'BiasPrLatRmse': {'diagnostic': {'CESM1-WACCM_r7i1p1': {'keyerror': None,
          'name': 'CESM1-WACCM_r7i1p1',
          'nyears': 51,
          'time_period': ['1955-1-16 12:0:0.0', '2005-12-16 12:0:0.0']},
         'ERA-Interim': {'name': 'ERA-Interim',
          'nyears': 40,
          'time_period': ['1979-1-16 12:0:0.0', '2019-3-16 12:0:0.0']},
         'GPCPv2.3': {'name': 'GPCPv2.3',
          'nyears': 41,
          'time_period': ['1979-1-1 0:0:0.0', '2019-7-1 0:0:0.0']},
         'method': 'Meridional root mean square error of nino3_LatExt pr, time series are linearly detrended, observations and model regridded to generic_1x1deg',
         'name': 'pr Meridional RMSE',
         'ref': 'Using CDAT regridding and rms (uncentered and biased) calculation',
         'time_frequency': 'monthly',
         'units': 'mm/day'},
        'metric': {'datasets': "CESM1-WACCM_r7i1p1; ERA-Interim's pr & GPCPv2.3's precip; 's ",
         'method': 'The metric is the statistical value between the model and the observations',
         'name': 'BiasPrLatRmse',
         'units': 'mm/day'}},
       'BiasPrLonRmse': {'diagnostic': {'CESM1-WACCM_r7i1p1': {'keyerror': None,
          'name': 'CESM1-WACCM_r7i1p1',
          'nyears': 51,
          'time_period': ['1955-1-16 12:0:0.0', '2005-12-16 12:0:0.0']},
         'ERA-Interim': {'name': 'ERA-Interim',
          'nyears': 40,
          'time_period': ['1979-1-16 12:0:0.0', '2019-3-16 12:0:0.0']},
         'GPCPv2.3': {'name': 'GPCPv2.3',
          'nyears': 41,
          'time_period': ['1979-1-1 0:0:0.0', '2019-7-1 0:0:0.0']},
         'method': 'Zonal root mean square error of equatorial_pacific pr, time series are linearly detrended, observations and model regridded to generic_1x1deg',
         'name': 'pr Zonal RMSE',
         'ref': 'Using CDAT regridding and rms (uncentered and biased) calculation',
         'time_frequency': 'monthly',
         'units': 'mm/day'},
        'metric': {'datasets': "CESM1-WACCM_r7i1p1; ERA-Interim's pr & GPCPv2.3's precip; 's ",
         'method': 'The metric is the statistical value between the model and the observations',
         'name': 'BiasPrLonRmse',
         'units': 'mm/day'}},
       'BiasSstLonRmse': {'diagnostic': {'CESM1-WACCM_r7i1p1': {'keyerror': None,
          'name': 'CESM1-WACCM_r7i1p1',
          'nyears': 51,
          'time_period': ['1955-1-16 12:0:0.0', '2005-12-16 12:0:0.0']},
         'ERA-Interim': {'name': 'ERA-Interim',
          'nyears': 40,
          'time_period': ['1979-1-16 12:0:0.0', '2019-3-16 12:0:0.0']},
         'HadISST': {'name': 'HadISST',
          'nyears': 151,
          'time_period': ['1870-1-16 11:59:59.5', '2020-10-16 12:0:0.0']},
         'Tropflux': {'name': 'Tropflux',
          'nyears': 40,
          'time_period': ['1979-1-15 0:0:0.0', '2018-12-15 12:0:0.0']},
         'method': 'Zonal root mean square error of equatorial_pacific sst, time series are linearly detrended, observations and model regridded to generic_1x1deg',
         'name': 'sst Zonal RMSE',
         'ref': 'Using CDAT regridding and rms (uncentered and biased) calculation',
         'time_frequency': 'monthly',
         'units': 'C'},
        'metric': {'datasets': "CESM1-WACCM_r7i1p1; ERA-Interim's ts & HadISST's sst & Tropflux's sst; 's ",
         'method': 'The metric is the statistical value between the model and the observations',
         'name': 'BiasSstLonRmse',
         'units': 'C'}},
       'BiasTauxLonRmse': {'diagnostic': {'CESM1-WACCM_r7i1p1': {'keyerror': None,
          'name': 'CESM1-WACCM_r7i1p1',
          'nyears': 51,
          'time_period': ['1955-1-16 12:0:0.0', '2005-12-16 12:0:0.0']},
         'ERA-Interim': {'name': 'ERA-Interim',
          'nyears': 40,
          'time_period': ['1979-1-16 12:0:0.0', '2019-3-16 12:0:0.0']},
         'Tropflux': {'name': 'Tropflux',
          'nyears': 40,
          'time_period': ['1979-1-15 0:0:0.0', '2018-12-15 12:0:0.0']},
         'method': 'Zonal root mean square error of equatorial_pacific taux, time series are linearly detrended, observations and model regridded to generic_1x1deg',
         'name': 'taux Zonal RMSE',
         'ref': 'Using CDAT regridding and rms (uncentered and biased) calculation',
         'time_frequency': 'monthly',
         'units': '1e-3 N/m2'},
        'metric': {'datasets': "CESM1-WACCM_r7i1p1; ERA-Interim's tauu & Tropflux's taux; 's ",
         'method': 'The metric is the statistical value between the model and the observations',
         'name': 'BiasTauxLonRmse',
         'units': '1e-3 N/m2'}},
       'EnsoAmpl': {'diagnostic': {'CESM1-WACCM_r7i1p1': {'keyerror': None,
          'name': 'CESM1-WACCM_r7i1p1',
          'nyears': 51,
          'time_period': ['1955-1-16 12:0:0.0', '2005-12-16 12:0:0.0']},
         'ERA-Interim': {'keyerror': None,
          'name': 'ERA-Interim',
          'nyears': 40,
          'time_period': ['1979-1-16 12:0:0.0', '2019-3-16 12:0:0.0']},
         'HadISST': {'keyerror': None,
          'name': 'HadISST',
          'nyears': 151,
          'time_period': ['1870-1-16 11:59:59.5', '2020-10-16 12:0:0.0']},
         'Tropflux': {'keyerror': None,
          'name': 'Tropflux',
          'nyears': 40,
          'time_period': ['1979-1-15 0:0:0.0', '2018-12-15 12:0:0.0']},
         'method': 'Standard deviation of nino3.4 sstA, time series are linearly detrended',
         'name': 'ENSO amplitude',
         'ref': 'Using CDAT regression calculation',
         'time_frequency': 'monthly',
         'units': 'C'},
        'metric': {'datasets': "CESM1-WACCM_r7i1p1; ERA-Interim's ts & HadISST's sst & Tropflux's sst; 's ",
         'method': 'The metric is the absolute value of the relative difference between model and observations values (M = 100 * abs[[model-obs] / obs])',
         'name': 'EnsoAmpl',
         'units': '%'}},
       'EnsoDuration': {'diagnostic': {'CESM1-WACCM_r7i1p1': {'keyerror': None,
          'name': 'CESM1-WACCM_r7i1p1',
          'nyears': 51,
          'time_period': ['1955-1-16 12:0:0.0', '2005-12-16 12:0:0.0']},
         'ERA-Interim': {'keyerror': None,
          'name': 'ERA-Interim',
          'nyears': 40,
          'time_period': ['1979-1-16 12:0:0.0', '2019-3-16 12:0:0.0']},
         'HadISST': {'keyerror': None,
          'name': 'HadISST',
          'nyears': 151,
          'time_period': ['1870-1-16 11:59:59.5', '2020-10-16 12:0:0.0']},
         'Tropflux': {'keyerror': None,
          'name': 'Tropflux',
          'nyears': 40,
          'time_period': ['1979-1-15 0:0:0.0', '2018-12-15 12:0:0.0']},
         'method': 'nino3.4 SSTA during DEC regressed against nino3.4 SSTA during 6 years (centered on ENSO), the duration is the number of consecutive months during which the regression is above 0.25, time series are linearly detrended, smoothing using a triangle shaped window of 5 points',
         'name': 'ENSO Duration based on life cyle SSTA pattern',
         'ref': 'Using CDAT',
         'time_frequency': 'monthly',
         'units': 'months'},
        'metric': {'datasets': "CESM1-WACCM_r7i1p1; ERA-Interim's ts & HadISST's sst & Tropflux's sst; 's ",
         'method': 'The metric is the absolute value of the relative difference between model and observations values (M = 100 * abs[[model-obs] / obs])',
         'name': 'EnsoDuration',
         'units': '%'}},
       'EnsoSeasonality': {'diagnostic': {'CESM1-WACCM_r7i1p1': {'keyerror': None,
          'name': 'CESM1-WACCM_r7i1p1',
          'nyears': 51,
          'time_period': ['1955-1-16 12:0:0.0', '2005-12-16 12:0:0.0']},
         'ERA-Interim': {'keyerror': None,
          'name': 'ERA-Interim',
          'nyears': 40,
          'time_period': ['1979-1-16 12:0:0.0', '2019-3-16 12:0:0.0']},
         'HadISST': {'keyerror': None,
          'name': 'HadISST',
          'nyears': 151,
          'time_period': ['1870-1-16 11:59:59.5', '2020-10-16 12:0:0.0']},
         'Tropflux': {'keyerror': None,
          'name': 'Tropflux',
          'nyears': 40,
          'time_period': ['1979-1-15 0:0:0.0', '2018-12-15 12:0:0.0']},
         'method': 'Ratio between NDJ and MAM standard deviation nino3.4 sstA, time series are linearly detrended',
         'name': 'ENSO seasonality',
         'ref': 'Using CDAT std dev calculation',
         'time_frequency': 'monthly',
         'units': 'C/C'},
        'metric': {'datasets': "CESM1-WACCM_r7i1p1; ERA-Interim's ts & HadISST's sst & Tropflux's sst; 's ",
         'method': 'The metric is the absolute value of the relative difference between model and observations values (M = 100 * abs[[model-obs] / obs])',
         'name': 'EnsoSeasonality',
         'units': '%'}},
       'EnsoSstDiversity_2': {'diagnostic': {'CESM1-WACCM_r7i1p1': {'keyerror': None,
          'name': 'CESM1-WACCM_r7i1p1',
          'nyears': 51,
          'time_period': ['1955-1-16 12:0:0.0', '2005-12-16 12:0:0.0']},
         'ERA-Interim': {'keyerror': None,
          'name': 'ERA-Interim',
          'nyears': 40,
          'time_period': ['1979-1-16 12:0:0.0', '2019-3-16 12:0:0.0']},
         'HadISST': {'keyerror': None,
          'name': 'HadISST',
          'nyears': 151,
          'time_period': ['1870-1-16 11:59:59.5', '2020-10-16 12:0:0.0']},
         'Tropflux': {'keyerror': None,
          'name': 'Tropflux',
          'nyears': 40,
          'time_period': ['1979-1-15 0:0:0.0', '2018-12-15 12:0:0.0']},
         'method': 'Nino (Nina) events = nino3.4 sstA > 0.75 (< -0.75) during DEC, zonal SSTA (meridional averaged [-5.0 ; 5.0]), the zonal SSTA maximum (minimum) is located for each event, the diversity is the interquartile range (IQR = Q3 - Q1), time series are linearly detrended, smoothing using a triangle shaped window of 5 points',
         'name': 'ENSO Diversity (interquartile range)',
         'ref': 'Using CDAT regridding',
         'time_frequency': 'monthly',
         'units': 'long'},
        'metric': {'datasets': "CESM1-WACCM_r7i1p1; ERA-Interim's ts & HadISST's sst & Tropflux's sst; 's ",
         'method': 'The metric is the absolute value of the relative difference between model and observations values (M = 100 * abs[[model-obs] / obs])',
         'name': 'EnsoSstDiversity',
         'units': '%'}},
       'EnsoSstLonRmse': {'diagnostic': {'CESM1-WACCM_r7i1p1': {'keyerror': None,
          'name': 'CESM1-WACCM_r7i1p1',
          'nyears': 51,
          'time_period': ['1955-1-16 12:0:0.0', '2005-12-16 12:0:0.0']},
         'ERA-Interim': {'name': 'ERA-Interim',
          'nyears': 40,
          'time_period': ['1979-1-16 12:0:0.0', '2019-3-16 12:0:0.0']},
         'HadISST': {'name': 'HadISST',
          'nyears': 151,
          'time_period': ['1870-1-16 11:59:59.5', '2020-10-16 12:0:0.0']},
         'Tropflux': {'name': 'Tropflux',
          'nyears': 40,
          'time_period': ['1979-1-15 0:0:0.0', '2018-12-15 12:0:0.0']},
         'method': 'nino3.4 SSTA during DEC regressed against equatorial_pacific SSTA, time series are linearly detrended, smoothing using a triangle shaped window of 5 points, observations and model regridded to generic_1x1deg',
         'name': 'ENSO Zonal SSTA pattern',
         'ref': 'Using CDAT regridding and rms (uncentered and biased) calculation',
         'time_frequency': 'monthly',
         'units': 'C/C'},
        'metric': {'datasets': "CESM1-WACCM_r7i1p1; ERA-Interim's ts & HadISST's sst & Tropflux's sst; 's ",
         'method': 'The metric is the statistical value between the model and the observations',
         'name': 'EnsoSstLonRmse',
         'units': 'C/C'}},
       'EnsoSstSkew': {'diagnostic': {'CESM1-WACCM_r7i1p1': {'keyerror': None,
          'name': 'CESM1-WACCM_r7i1p1',
          'nyears': 51,
          'time_period': ['1955-1-16 12:0:0.0', '2005-12-16 12:0:0.0']},
         'ERA-Interim': {'keyerror': None,
          'name': 'ERA-Interim',
          'nyears': 40,
          'time_period': ['1979-1-16 12:0:0.0', '2019-3-16 12:0:0.0']},
         'HadISST': {'keyerror': None,
          'name': 'HadISST',
          'nyears': 151,
          'time_period': ['1870-1-16 11:59:59.5', '2020-10-16 12:0:0.0']},
         'Tropflux': {'keyerror': None,
          'name': 'Tropflux',
          'nyears': 40,
          'time_period': ['1979-1-15 0:0:0.0', '2018-12-15 12:0:0.0']},
         'method': 'Standard deviation of nino3.4 sstA, time series are linearly detrended',
         'name': 'ENSO skewness',
         'ref': 'Using CDAT regression calculation',
         'time_frequency': 'monthly',
         'units': 'C'},
        'metric': {'datasets': "CESM1-WACCM_r7i1p1; ERA-Interim's ts & HadISST's sst & Tropflux's sst; 's ",
         'method': 'The metric is the absolute value of the relative difference between model and observations values (M = 100 * abs[[model-obs] / obs])',
         'name': 'EnsoSstSkew',
         'units': '%'}},
       'EnsoSstTsRmse': {'diagnostic': {'CESM1-WACCM_r7i1p1': {'keyerror': None,
          'name': 'CESM1-WACCM_r7i1p1',
          'nyears': 51,
          'time_period': ['1955-1-16 12:0:0.0', '2005-12-16 12:0:0.0']},
         'ERA-Interim': {'name': 'ERA-Interim',
          'nyears': 40,
          'time_period': ['1979-1-16 12:0:0.0', '2019-3-16 12:0:0.0']},
         'HadISST': {'name': 'HadISST',
          'nyears': 151,
          'time_period': ['1870-1-16 11:59:59.5', '2020-10-16 12:0:0.0']},
         'Tropflux': {'name': 'Tropflux',
          'nyears': 40,
          'time_period': ['1979-1-15 0:0:0.0', '2018-12-15 12:0:0.0']},
         'method': 'nino3.4 SSTA during DEC regressed against nino3.4 SSTA during 6 years (centered on ENSO), time series are linearly detrended, smoothing using a triangle shaped window of 5 points',
         'name': 'ENSO life cyle SSTA pattern',
         'ref': 'Using CDAT regridding and rms (uncentered and biased) calculation',
         'time_frequency': 'monthly',
         'units': 'C/C'},
        'metric': {'datasets': "CESM1-WACCM_r7i1p1; ERA-Interim's ts & HadISST's sst & Tropflux's sst; 's ",
         'method': 'The metric is the statistical value between the model and the observations',
         'name': 'EnsoSstTsRmse',
         'units': 'C/C'}},
       'SeasonalPrLatRmse': {'diagnostic': {'CESM1-WACCM_r7i1p1': {'keyerror': None,
          'name': 'CESM1-WACCM_r7i1p1',
          'nyears': 51,
          'time_period': ['1955-1-16 12:0:0.0', '2005-12-16 12:0:0.0']},
         'ERA-Interim': {'name': 'ERA-Interim',
          'nyears': 40,
          'time_period': ['1979-1-16 12:0:0.0', '2019-3-16 12:0:0.0']},
         'GPCPv2.3': {'name': 'GPCPv2.3',
          'nyears': 41,
          'time_period': ['1979-1-1 0:0:0.0', '2019-7-1 0:0:0.0']},
         'method': 'Meridional root mean square error of nino3_LatExt climatological pr STD, time series are linearly detrended, observations and model regridded to generic_1x1deg',
         'name': 'pr meridional seasonality RMSE',
         'ref': 'Using CDAT regridding and rms (uncentered and biased) calculation',
         'time_frequency': 'monthly',
         'units': 'mm/day'},
        'metric': {'datasets': "CESM1-WACCM_r7i1p1; ERA-Interim's pr & GPCPv2.3's precip; 's ",
         'method': 'The metric is the statistical value between the model and the observations',
         'name': 'SeasonalPrLatRmse',
         'units': 'mm/day'}},
       'SeasonalPrLonRmse': {'diagnostic': {'CESM1-WACCM_r7i1p1': {'keyerror': None,
          'name': 'CESM1-WACCM_r7i1p1',
          'nyears': 51,
          'time_period': ['1955-1-16 12:0:0.0', '2005-12-16 12:0:0.0']},
         'ERA-Interim': {'name': 'ERA-Interim',
          'nyears': 40,
          'time_period': ['1979-1-16 12:0:0.0', '2019-3-16 12:0:0.0']},
         'GPCPv2.3': {'name': 'GPCPv2.3',
          'nyears': 41,
          'time_period': ['1979-1-1 0:0:0.0', '2019-7-1 0:0:0.0']},
         'method': 'Zonal root mean square error of equatorial_pacific climatological pr STD, time series are linearly detrended, observations and model regridded to generic_1x1deg',
         'name': 'pr zonal seasonality RMSE',
         'ref': 'Using CDAT regridding and rms (uncentered and biased) calculation',
         'time_frequency': 'monthly',
         'units': 'mm/day'},
        'metric': {'datasets': "CESM1-WACCM_r7i1p1; ERA-Interim's pr & GPCPv2.3's precip; 's ",
         'method': 'The metric is the statistical value between the model and the observations',
         'name': 'SeasonalPrLonRmse',
         'units': 'mm/day'}},
       'SeasonalSstLonRmse': {'diagnostic': {'CESM1-WACCM_r7i1p1': {'keyerror': None,
          'name': 'CESM1-WACCM_r7i1p1',
          'nyears': 51,
          'time_period': ['1955-1-16 12:0:0.0', '2005-12-16 12:0:0.0']},
         'ERA-Interim': {'name': 'ERA-Interim',
          'nyears': 40,
          'time_period': ['1979-1-16 12:0:0.0', '2019-3-16 12:0:0.0']},
         'HadISST': {'name': 'HadISST',
          'nyears': 151,
          'time_period': ['1870-1-16 11:59:59.5', '2020-10-16 12:0:0.0']},
         'Tropflux': {'name': 'Tropflux',
          'nyears': 40,
          'time_period': ['1979-1-15 0:0:0.0', '2018-12-15 12:0:0.0']},
         'method': 'Zonal root mean square error of equatorial_pacific climatological sst STD, time series are linearly detrended, observations and model regridded to generic_1x1deg',
         'name': 'sst zonal seasonality RMSE',
         'ref': 'Using CDAT regridding and rms (uncentered and biased) calculation',
         'time_frequency': 'monthly',
         'units': 'C'},
        'metric': {'datasets': "CESM1-WACCM_r7i1p1; ERA-Interim's ts & HadISST's sst & Tropflux's sst; 's ",
         'method': 'The metric is the statistical value between the model and the observations',
         'name': 'SeasonalSstLonRmse',
         'units': 'C'}},
       'SeasonalTauxLonRmse': {'diagnostic': {'CESM1-WACCM_r7i1p1': {'keyerror': None,
          'name': 'CESM1-WACCM_r7i1p1',
          'nyears': 51,
          'time_period': ['1955-1-16 12:0:0.0', '2005-12-16 12:0:0.0']},
         'ERA-Interim': {'name': 'ERA-Interim',
          'nyears': 40,
          'time_period': ['1979-1-16 12:0:0.0', '2019-3-16 12:0:0.0']},
         'Tropflux': {'name': 'Tropflux',
          'nyears': 40,
          'time_period': ['1979-1-15 0:0:0.0', '2018-12-15 12:0:0.0']},
         'method': 'Zonal root mean square error of equatorial_pacific climatological taux STD, time series are linearly detrended, observations and model regridded to generic_1x1deg',
         'name': 'taux zonal seasonality RMSE',
         'ref': 'Using CDAT regridding and rms (uncentered and biased) calculation',
         'time_frequency': 'monthly',
         'units': '1e-3 N/m2'},
        'metric': {'datasets': "CESM1-WACCM_r7i1p1; ERA-Interim's tauu & Tropflux's taux; 's ",
         'method': 'The metric is the statistical value between the model and the observations',
         'name': 'SeasonalTauxLonRmse',
         'units': '1e-3 N/m2'}}},
      'name': 'Metrics Collection for ENSO performance'},
     'value': {'BiasPrLatRmse': {'diagnostic': {'CESM1-WACCM_r7i1p1': {'value': None,
         'value_error': None},
        'ERA-Interim': {'value': None, 'value_error': None},
        'GPCPv2.3': {'value': None, 'value_error': None}},
       'metric': {'ERA-Interim': {'value': 1.5506991388326379,
         'value_error': None},
        'GPCPv2.3': {'value': 1.6002685552516014, 'value_error': None}}},
      'BiasPrLonRmse': {'diagnostic': {'CESM1-WACCM_r7i1p1': {'value': None,
         'value_error': None},
        'ERA-Interim': {'value': None, 'value_error': None},
        'GPCPv2.3': {'value': None, 'value_error': None}},
       'metric': {'ERA-Interim': {'value': 1.8543507137915616,
         'value_error': None},
        'GPCPv2.3': {'value': 0.8953633874639568, 'value_error': None}}},
      'BiasSstLonRmse': {'diagnostic': {'CESM1-WACCM_r7i1p1': {'value': None,
         'value_error': None},
        'ERA-Interim': {'value': None, 'value_error': None},
        'HadISST': {'value': None, 'value_error': None},
        'Tropflux': {'value': None, 'value_error': None}},
       'metric': {'ERA-Interim': {'value': 0.4178805768796968,
         'value_error': None},
        'HadISST': {'value': 0.2703830296284637, 'value_error': None},
        'Tropflux': {'value': 0.46668882478710805, 'value_error': None}}},
      'BiasTauxLonRmse': {'diagnostic': {'CESM1-WACCM_r7i1p1': {'value': None,
         'value_error': None},
        'ERA-Interim': {'value': None, 'value_error': None},
        'Tropflux': {'value': None, 'value_error': None}},
       'metric': {'ERA-Interim': {'value': 6.239439265596192,
         'value_error': None},
        'Tropflux': {'value': 6.299831085389021, 'value_error': None}}},
      'EnsoAmpl': {'diagnostic': {'CESM1-WACCM_r7i1p1': {'value': 1.0997485173321233,
         'value_error': 0.15399559462595047},
        'ERA-Interim': {'value': 0.8989844997845644,
         'value_error': 0.14214193002531866},
        'HadISST': {'value': 0.7665787872085695,
         'value_error': 0.06238329697691264},
        'Tropflux': {'value': 0.9039789553693535,
         'value_error': 0.14293162279134272}},
       'metric': {'ERA-Interim': {'value': 22.332311357500675,
         'value_error': 36.47238668883152},
        'HadISST': {'value': 43.461903157634005,
         'value_error': 31.76344868714182},
        'Tropflux': {'value': 21.656429145829073,
         'value_error': 36.270877887872544}}},
      'EnsoDuration': {'diagnostic': {'CESM1-WACCM_r7i1p1': {'value': 13.0,
         'value_error': None},
        'ERA-Interim': {'value': 13.0, 'value_error': None},
        'HadISST': {'value': 13.0, 'value_error': None},
        'Tropflux': {'value': 13.0, 'value_error': None}},
       'metric': {'ERA-Interim': {'value': 0.0, 'value_error': None},
        'HadISST': {'value': 0.0, 'value_error': None},
        'Tropflux': {'value': 0.0, 'value_error': None}}},
      'EnsoSeasonality': {'diagnostic': {'CESM1-WACCM_r7i1p1': {'value': 1.4897500318802577,
         'value_error': 0.4192891999452828},
        'ERA-Interim': {'value': 2.0466846866656914,
         'value_error': 0.6513411033995022},
        'HadISST': {'value': 1.6639865947361325,
         'value_error': 0.2712772451657809},
        'Tropflux': {'value': 2.0532132553583624,
         'value_error': 0.6534187683977347}},
       'metric': {'ERA-Interim': {'value': 27.21155136469755,
         'value_error': 43.65060677173911},
        'HadISST': {'value': 10.4710316421452,
         'value_error': 39.793645034551346},
        'Tropflux': {'value': 27.442995607378318,
         'value_error': 43.51181164948751}}},
      'EnsoSstDiversity_2': {'diagnostic': {'CESM1-WACCM_r7i1p1': {'value': 27.5,
         'value_error': None},
        'ERA-Interim': {'value': 33.25, 'value_error': None},
        'HadISST': {'value': 49.0, 'value_error': None},
        'Tropflux': {'value': 32.0, 'value_error': None}},
       'metric': {'ERA-Interim': {'value': 17.293233082706767,
         'value_error': None},
        'HadISST': {'value': 43.87755102040816, 'value_error': None},
        'Tropflux': {'value': 14.0625, 'value_error': None}}},
      'EnsoSstLonRmse': {'diagnostic': {'CESM1-WACCM_r7i1p1': {'value': None,
         'value_error': None},
        'ERA-Interim': {'value': None, 'value_error': None},
        'HadISST': {'value': None, 'value_error': None},
        'Tropflux': {'value': None, 'value_error': None}},
       'metric': {'ERA-Interim': {'value': 0.10954538435674577,
         'value_error': None},
        'HadISST': {'value': 0.11968488906005038, 'value_error': None},
        'Tropflux': {'value': 0.10777047549498144, 'value_error': None}}},
      'EnsoSstSkew': {'diagnostic': {'CESM1-WACCM_r7i1p1': {'value': 0.5836331105912387,
         'value_error': 0.08172498211402283},
        'ERA-Interim': {'value': 0.39098111106809963,
         'value_error': 0.061819541653923164},
        'HadISST': {'value': 0.38989908235027515,
         'value_error': 0.03172953733021198},
        'Tropflux': {'value': 0.39744741059612115,
         'value_error': 0.06284195338099416}},
       'metric': {'ERA-Interim': {'value': 49.273991522721836,
         'value_error': 44.504830171086695},
        'HadISST': {'value': 49.688249347280575,
         'value_error': 33.14200441064922},
        'Tropflux': {'value': 46.845367470343405,
         'value_error': 43.78075560258381}}},
      'EnsoSstTsRmse': {'diagnostic': {'CESM1-WACCM_r7i1p1': {'value': None,
         'value_error': None},
        'ERA-Interim': {'value': None, 'value_error': None},
        'HadISST': {'value': None, 'value_error': None},
        'Tropflux': {'value': None, 'value_error': None}},
       'metric': {'ERA-Interim': {'value': 0.10057889472045672,
         'value_error': None},
        'HadISST': {'value': 0.06976768208225444, 'value_error': None},
        'Tropflux': {'value': 0.09481267218414956, 'value_error': None}}},
      'SeasonalPrLatRmse': {'diagnostic': {'CESM1-WACCM_r7i1p1': {'value': None,
         'value_error': None},
        'ERA-Interim': {'value': None, 'value_error': None},
        'GPCPv2.3': {'value': None, 'value_error': None}},
       'metric': {'ERA-Interim': {'value': 1.2301786685568041,
         'value_error': None},
        'GPCPv2.3': {'value': 1.3108884104806142, 'value_error': None}}},
      'SeasonalPrLonRmse': {'diagnostic': {'CESM1-WACCM_r7i1p1': {'value': None,
         'value_error': None},
        'ERA-Interim': {'value': None, 'value_error': None},
        'GPCPv2.3': {'value': None, 'value_error': None}},
       'metric': {'ERA-Interim': {'value': 0.6348017222104968,
         'value_error': None},
        'GPCPv2.3': {'value': 0.3388197739161915, 'value_error': None}}},
      'SeasonalSstLonRmse': {'diagnostic': {'CESM1-WACCM_r7i1p1': {'value': None,
         'value_error': None},
        'ERA-Interim': {'value': None, 'value_error': None},
        'HadISST': {'value': None, 'value_error': None},
        'Tropflux': {'value': None, 'value_error': None}},
       'metric': {'ERA-Interim': {'value': 0.15275236405543766,
         'value_error': None},
        'HadISST': {'value': 0.17137882208223876, 'value_error': None},
        'Tropflux': {'value': 0.15680231220121144, 'value_error': None}}},
      'SeasonalTauxLonRmse': {'diagnostic': {'CESM1-WACCM_r7i1p1': {'value': None,
         'value_error': None},
        'ERA-Interim': {'value': None, 'value_error': None},
        'Tropflux': {'value': None, 'value_error': None}},
       'metric': {'ERA-Interim': {'value': 2.2470734351422554,
         'value_error': None},
        'Tropflux': {'value': 2.20939340132962, 'value_error': None}}}}}},
   'CMCC-CESM': {'r1i1p1': {'metadata': {'description_of_the_collection': 'Describe which science question this collection is about',
      'metrics': {'BiasPrLatRmse': {'diagnostic': {'CMCC-CESM_r1i1p1': {'keyerror': None,
          'name': 'CMCC-CESM_r1i1p1',
          'nyears': 156,
          'time_period': ['1850-1-16 12:0:0.0', '2005-12-16 12:0:0.0']},
         'ERA-Interim': {'name': 'ERA-Interim',
          'nyears': 40,
          'time_period': ['1979-1-16 12:0:0.0', '2019-3-16 12:0:0.0']},
         'GPCPv2.3': {'name': 'GPCPv2.3',
          'nyears': 41,
          'time_period': ['1979-1-1 0:0:0.0', '2019-7-1 0:0:0.0']},
         'method': 'Meridional root mean square error of nino3_LatExt pr, time series are linearly detrended, observations and model regridded to generic_1x1deg',
         'name': 'pr Meridional RMSE',
         'ref': 'Using CDAT regridding and rms (uncentered and biased) calculation',
         'time_frequency': 'monthly',
         'units': 'mm/day'},
        'metric': {'datasets': "CMCC-CESM_r1i1p1; ERA-Interim's pr & GPCPv2.3's precip; 's ",
         'method': 'The metric is the statistical value between the model and the observations',
         'name': 'BiasPrLatRmse',
         'units': 'mm/day'}},
       'BiasPrLonRmse': {'diagnostic': {'CMCC-CESM_r1i1p1': {'keyerror': None,
          'name': 'CMCC-CESM_r1i1p1',
          'nyears': 156,
          'time_period': ['1850-1-16 12:0:0.0', '2005-12-16 12:0:0.0']},
         'ERA-Interim': {'name': 'ERA-Interim',
          'nyears': 40,
          'time_period': ['1979-1-16 12:0:0.0', '2019-3-16 12:0:0.0']},
         'GPCPv2.3': {'name': 'GPCPv2.3',
          'nyears': 41,
          'time_period': ['1979-1-1 0:0:0.0', '2019-7-1 0:0:0.0']},
         'method': 'Zonal root mean square error of equatorial_pacific pr, time series are linearly detrended, observations and model regridded to generic_1x1deg',
         'name': 'pr Zonal RMSE',
         'ref': 'Using CDAT regridding and rms (uncentered and biased) calculation',
         'time_frequency': 'monthly',
         'units': 'mm/day'},
        'metric': {'datasets': "CMCC-CESM_r1i1p1; ERA-Interim's pr & GPCPv2.3's precip; 's ",
         'method': 'The metric is the statistical value between the model and the observations',
         'name': 'BiasPrLonRmse',
         'units': 'mm/day'}},
       'BiasSstLonRmse': {'diagnostic': {'CMCC-CESM_r1i1p1': {'keyerror': None,
          'name': 'CMCC-CESM_r1i1p1',
          'nyears': 156,
          'time_period': ['1850-1-16 12:0:0.0', '2005-12-16 12:0:0.0']},
         'ERA-Interim': {'name': 'ERA-Interim',
          'nyears': 40,
          'time_period': ['1979-1-16 12:0:0.0', '2019-3-16 12:0:0.0']},
         'HadISST': {'name': 'HadISST',
          'nyears': 151,
          'time_period': ['1870-1-16 11:59:59.5', '2020-10-16 12:0:0.0']},
         'Tropflux': {'name': 'Tropflux',
          'nyears': 40,
          'time_period': ['1979-1-15 0:0:0.0', '2018-12-15 12:0:0.0']},
         'method': 'Zonal root mean square error of equatorial_pacific sst, time series are linearly detrended, observations and model regridded to generic_1x1deg',
         'name': 'sst Zonal RMSE',
         'ref': 'Using CDAT regridding and rms (uncentered and biased) calculation',
         'time_frequency': 'monthly',
         'units': 'C'},
        'metric': {'datasets': "CMCC-CESM_r1i1p1; ERA-Interim's ts & HadISST's sst & Tropflux's sst; 's ",
         'method': 'The metric is the statistical value between the model and the observations',
         'name': 'BiasSstLonRmse',
         'units': 'C'}},
       'BiasTauxLonRmse': {'diagnostic': {'CMCC-CESM_r1i1p1': {'keyerror': None,
          'name': 'CMCC-CESM_r1i1p1',
          'nyears': 156,
          'time_period': ['1850-1-16 12:0:0.0', '2005-12-16 12:0:0.0']},
         'ERA-Interim': {'name': 'ERA-Interim',
          'nyears': 40,
          'time_period': ['1979-1-16 12:0:0.0', '2019-3-16 12:0:0.0']},
         'Tropflux': {'name': 'Tropflux',
          'nyears': 40,
          'time_period': ['1979-1-15 0:0:0.0', '2018-12-15 12:0:0.0']},
         'method': 'Zonal root mean square error of equatorial_pacific taux, time series are linearly detrended, observations and model regridded to generic_1x1deg',
         'name': 'taux Zonal RMSE',
         'ref': 'Using CDAT regridding and rms (uncentered and biased) calculation',
         'time_frequency': 'monthly',
         'units': '1e-3 N/m2'},
        'metric': {'datasets': "CMCC-CESM_r1i1p1; ERA-Interim's tauu & Tropflux's taux; 's ",
         'method': 'The metric is the statistical value between the model and the observations',
         'name': 'BiasTauxLonRmse',
         'units': '1e-3 N/m2'}},
       'EnsoAmpl': {'diagnostic': {'CMCC-CESM_r1i1p1': {'keyerror': None,
          'name': 'CMCC-CESM_r1i1p1',
          'nyears': 156,
          'time_period': ['1850-1-16 12:0:0.0', '2005-12-16 12:0:0.0']},
         'ERA-Interim': {'keyerror': None,
          'name': 'ERA-Interim',
          'nyears': 40,
          'time_period': ['1979-1-16 12:0:0.0', '2019-3-16 12:0:0.0']},
         'HadISST': {'keyerror': None,
          'name': 'HadISST',
          'nyears': 151,
          'time_period': ['1870-1-16 11:59:59.5', '2020-10-16 12:0:0.0']},
         'Tropflux': {'keyerror': None,
          'name': 'Tropflux',
          'nyears': 40,
          'time_period': ['1979-1-15 0:0:0.0', '2018-12-15 12:0:0.0']},
         'method': 'Standard deviation of nino3.4 sstA, time series are linearly detrended',
         'name': 'ENSO amplitude',
         'ref': 'Using CDAT regression calculation',
         'time_frequency': 'monthly',
         'units': 'C'},
        'metric': {'datasets': "CMCC-CESM_r1i1p1; ERA-Interim's ts & HadISST's sst & Tropflux's sst; 's ",
         'method': 'The metric is the absolute value of the relative difference between model and observations values (M = 100 * abs[[model-obs] / obs])',
         'name': 'EnsoAmpl',
         'units': '%'}},
       'EnsoDuration': {'diagnostic': {'CMCC-CESM_r1i1p1': {'keyerror': None,
          'name': 'CMCC-CESM_r1i1p1',
          'nyears': 156,
          'time_period': ['1850-1-16 12:0:0.0', '2005-12-16 12:0:0.0']},
         'ERA-Interim': {'keyerror': None,
          'name': 'ERA-Interim',
          'nyears': 40,
          'time_period': ['1979-1-16 12:0:0.0', '2019-3-16 12:0:0.0']},
         'HadISST': {'keyerror': None,
          'name': 'HadISST',
          'nyears': 151,
          'time_period': ['1870-1-16 11:59:59.5', '2020-10-16 12:0:0.0']},
         'Tropflux': {'keyerror': None,
          'name': 'Tropflux',
          'nyears': 40,
          'time_period': ['1979-1-15 0:0:0.0', '2018-12-15 12:0:0.0']},
         'method': 'nino3.4 SSTA during DEC regressed against nino3.4 SSTA during 6 years (centered on ENSO), the duration is the number of consecutive months during which the regression is above 0.25, time series are linearly detrended, smoothing using a triangle shaped window of 5 points',
         'name': 'ENSO Duration based on life cyle SSTA pattern',
         'ref': 'Using CDAT',
         'time_frequency': 'monthly',
         'units': 'months'},
        'metric': {'datasets': "CMCC-CESM_r1i1p1; ERA-Interim's ts & HadISST's sst & Tropflux's sst; 's ",
         'method': 'The metric is the absolute value of the relative difference between model and observations values (M = 100 * abs[[model-obs] / obs])',
         'name': 'EnsoDuration',
         'units': '%'}},
       'EnsoSeasonality': {'diagnostic': {'CMCC-CESM_r1i1p1': {'keyerror': None,
          'name': 'CMCC-CESM_r1i1p1',
          'nyears': 156,
          'time_period': ['1850-1-16 12:0:0.0', '2005-12-16 12:0:0.0']},
         'ERA-Interim': {'keyerror': None,
          'name': 'ERA-Interim',
          'nyears': 40,
          'time_period': ['1979-1-16 12:0:0.0', '2019-3-16 12:0:0.0']},
         'HadISST': {'keyerror': None,
          'name': 'HadISST',
          'nyears': 151,
          'time_period': ['1870-1-16 11:59:59.5', '2020-10-16 12:0:0.0']},
         'Tropflux': {'keyerror': None,
          'name': 'Tropflux',
          'nyears': 40,
          'time_period': ['1979-1-15 0:0:0.0', '2018-12-15 12:0:0.0']},
         'method': 'Ratio between NDJ and MAM standard deviation nino3.4 sstA, time series are linearly detrended',
         'name': 'ENSO seasonality',
         'ref': 'Using CDAT std dev calculation',
         'time_frequency': 'monthly',
         'units': 'C/C'},
        'metric': {'datasets': "CMCC-CESM_r1i1p1; ERA-Interim's ts & HadISST's sst & Tropflux's sst; 's ",
         'method': 'The metric is the absolute value of the relative difference between model and observations values (M = 100 * abs[[model-obs] / obs])',
         'name': 'EnsoSeasonality',
         'units': '%'}},
       'EnsoSstDiversity_2': {'diagnostic': {'CMCC-CESM_r1i1p1': {'keyerror': None,
          'name': 'CMCC-CESM_r1i1p1',
          'nyears': 156,
          'time_period': ['1850-1-16 12:0:0.0', '2005-12-16 12:0:0.0']},
         'ERA-Interim': {'keyerror': None,
          'name': 'ERA-Interim',
          'nyears': 40,
          'time_period': ['1979-1-16 12:0:0.0', '2019-3-16 12:0:0.0']},
         'HadISST': {'keyerror': None,
          'name': 'HadISST',
          'nyears': 151,
          'time_period': ['1870-1-16 11:59:59.5', '2020-10-16 12:0:0.0']},
         'Tropflux': {'keyerror': None,
          'name': 'Tropflux',
          'nyears': 40,
          'time_period': ['1979-1-15 0:0:0.0', '2018-12-15 12:0:0.0']},
         'method': 'Nino (Nina) events = nino3.4 sstA > 0.75 (< -0.75) during DEC, zonal SSTA (meridional averaged [-5.0 ; 5.0]), the zonal SSTA maximum (minimum) is located for each event, the diversity is the interquartile range (IQR = Q3 - Q1), time series are linearly detrended, smoothing using a triangle shaped window of 5 points',
         'name': 'ENSO Diversity (interquartile range)',
         'ref': 'Using CDAT regridding',
         'time_frequency': 'monthly',
         'units': 'long'},
        'metric': {'datasets': "CMCC-CESM_r1i1p1; ERA-Interim's ts & HadISST's sst & Tropflux's sst; 's ",
         'method': 'The metric is the absolute value of the relative difference between model and observations values (M = 100 * abs[[model-obs] / obs])',
         'name': 'EnsoSstDiversity',
         'units': '%'}},
       'EnsoSstLonRmse': {'diagnostic': {'CMCC-CESM_r1i1p1': {'keyerror': None,
          'name': 'CMCC-CESM_r1i1p1',
          'nyears': 156,
          'time_period': ['1850-1-16 12:0:0.0', '2005-12-16 12:0:0.0']},
         'ERA-Interim': {'name': 'ERA-Interim',
          'nyears': 40,
          'time_period': ['1979-1-16 12:0:0.0', '2019-3-16 12:0:0.0']},
         'HadISST': {'name': 'HadISST',
          'nyears': 151,
          'time_period': ['1870-1-16 11:59:59.5', '2020-10-16 12:0:0.0']},
         'Tropflux': {'name': 'Tropflux',
          'nyears': 40,
          'time_period': ['1979-1-15 0:0:0.0', '2018-12-15 12:0:0.0']},
         'method': 'nino3.4 SSTA during DEC regressed against equatorial_pacific SSTA, time series are linearly detrended, smoothing using a triangle shaped window of 5 points, observations and model regridded to generic_1x1deg',
         'name': 'ENSO Zonal SSTA pattern',
         'ref': 'Using CDAT regridding and rms (uncentered and biased) calculation',
         'time_frequency': 'monthly',
         'units': 'C/C'},
        'metric': {'datasets': "CMCC-CESM_r1i1p1; ERA-Interim's ts & HadISST's sst & Tropflux's sst; 's ",
         'method': 'The metric is the statistical value between the model and the observations',
         'name': 'EnsoSstLonRmse',
         'units': 'C/C'}},
       'EnsoSstSkew': {'diagnostic': {'CMCC-CESM_r1i1p1': {'keyerror': None,
          'name': 'CMCC-CESM_r1i1p1',
          'nyears': 156,
          'time_period': ['1850-1-16 12:0:0.0', '2005-12-16 12:0:0.0']},
         'ERA-Interim': {'keyerror': None,
          'name': 'ERA-Interim',
          'nyears': 40,
          'time_period': ['1979-1-16 12:0:0.0', '2019-3-16 12:0:0.0']},
         'HadISST': {'keyerror': None,
          'name': 'HadISST',
          'nyears': 151,
          'time_period': ['1870-1-16 11:59:59.5', '2020-10-16 12:0:0.0']},
         'Tropflux': {'keyerror': None,
          'name': 'Tropflux',
          'nyears': 40,
          'time_period': ['1979-1-15 0:0:0.0', '2018-12-15 12:0:0.0']},
         'method': 'Standard deviation of nino3.4 sstA, time series are linearly detrended',
         'name': 'ENSO skewness',
         'ref': 'Using CDAT regression calculation',
         'time_frequency': 'monthly',
         'units': 'C'},
        'metric': {'datasets': "CMCC-CESM_r1i1p1; ERA-Interim's ts & HadISST's sst & Tropflux's sst; 's ",
         'method': 'The metric is the absolute value of the relative difference between model and observations values (M = 100 * abs[[model-obs] / obs])',
         'name': 'EnsoSstSkew',
         'units': '%'}},
       'EnsoSstTsRmse': {'diagnostic': {'CMCC-CESM_r1i1p1': {'keyerror': None,
          'name': 'CMCC-CESM_r1i1p1',
          'nyears': 156,
          'time_period': ['1850-1-16 12:0:0.0', '2005-12-16 12:0:0.0']},
         'ERA-Interim': {'name': 'ERA-Interim',
          'nyears': 40,
          'time_period': ['1979-1-16 12:0:0.0', '2019-3-16 12:0:0.0']},
         'HadISST': {'name': 'HadISST',
          'nyears': 151,
          'time_period': ['1870-1-16 11:59:59.5', '2020-10-16 12:0:0.0']},
         'Tropflux': {'name': 'Tropflux',
          'nyears': 40,
          'time_period': ['1979-1-15 0:0:0.0', '2018-12-15 12:0:0.0']},
         'method': 'nino3.4 SSTA during DEC regressed against nino3.4 SSTA during 6 years (centered on ENSO), time series are linearly detrended, smoothing using a triangle shaped window of 5 points',
         'name': 'ENSO life cyle SSTA pattern',
         'ref': 'Using CDAT regridding and rms (uncentered and biased) calculation',
         'time_frequency': 'monthly',
         'units': 'C/C'},
        'metric': {'datasets': "CMCC-CESM_r1i1p1; ERA-Interim's ts & HadISST's sst & Tropflux's sst; 's ",
         'method': 'The metric is the statistical value between the model and the observations',
         'name': 'EnsoSstTsRmse',
         'units': 'C/C'}},
       'SeasonalPrLatRmse': {'diagnostic': {'CMCC-CESM_r1i1p1': {'keyerror': None,
          'name': 'CMCC-CESM_r1i1p1',
          'nyears': 156,
          'time_period': ['1850-1-16 12:0:0.0', '2005-12-16 12:0:0.0']},
         'ERA-Interim': {'name': 'ERA-Interim',
          'nyears': 40,
          'time_period': ['1979-1-16 12:0:0.0', '2019-3-16 12:0:0.0']},
         'GPCPv2.3': {'name': 'GPCPv2.3',
          'nyears': 41,
          'time_period': ['1979-1-1 0:0:0.0', '2019-7-1 0:0:0.0']},
         'method': 'Meridional root mean square error of nino3_LatExt climatological pr STD, time series are linearly detrended, observations and model regridded to generic_1x1deg',
         'name': 'pr meridional seasonality RMSE',
         'ref': 'Using CDAT regridding and rms (uncentered and biased) calculation',
         'time_frequency': 'monthly',
         'units': 'mm/day'},
        'metric': {'datasets': "CMCC-CESM_r1i1p1; ERA-Interim's pr & GPCPv2.3's precip; 's ",
         'method': 'The metric is the statistical value between the model and the observations',
         'name': 'SeasonalPrLatRmse',
         'units': 'mm/day'}},
       'SeasonalPrLonRmse': {'diagnostic': {'CMCC-CESM_r1i1p1': {'keyerror': None,
          'name': 'CMCC-CESM_r1i1p1',
          'nyears': 156,
          'time_period': ['1850-1-16 12:0:0.0', '2005-12-16 12:0:0.0']},
         'ERA-Interim': {'name': 'ERA-Interim',
          'nyears': 40,
          'time_period': ['1979-1-16 12:0:0.0', '2019-3-16 12:0:0.0']},
         'GPCPv2.3': {'name': 'GPCPv2.3',
          'nyears': 41,
          'time_period': ['1979-1-1 0:0:0.0', '2019-7-1 0:0:0.0']},
         'method': 'Zonal root mean square error of equatorial_pacific climatological pr STD, time series are linearly detrended, observations and model regridded to generic_1x1deg',
         'name': 'pr zonal seasonality RMSE',
         'ref': 'Using CDAT regridding and rms (uncentered and biased) calculation',
         'time_frequency': 'monthly',
         'units': 'mm/day'},
        'metric': {'datasets': "CMCC-CESM_r1i1p1; ERA-Interim's pr & GPCPv2.3's precip; 's ",
         'method': 'The metric is the statistical value between the model and the observations',
         'name': 'SeasonalPrLonRmse',
         'units': 'mm/day'}},
       'SeasonalSstLonRmse': {'diagnostic': {'CMCC-CESM_r1i1p1': {'keyerror': None,
          'name': 'CMCC-CESM_r1i1p1',
          'nyears': 156,
          'time_period': ['1850-1-16 12:0:0.0', '2005-12-16 12:0:0.0']},
         'ERA-Interim': {'name': 'ERA-Interim',
          'nyears': 40,
          'time_period': ['1979-1-16 12:0:0.0', '2019-3-16 12:0:0.0']},
         'HadISST': {'name': 'HadISST',
          'nyears': 151,
          'time_period': ['1870-1-16 11:59:59.5', '2020-10-16 12:0:0.0']},
         'Tropflux': {'name': 'Tropflux',
          'nyears': 40,
          'time_period': ['1979-1-15 0:0:0.0', '2018-12-15 12:0:0.0']},
         'method': 'Zonal root mean square error of equatorial_pacific climatological sst STD, time series are linearly detrended, observations and model regridded to generic_1x1deg',
         'name': 'sst zonal seasonality RMSE',
         'ref': 'Using CDAT regridding and rms (uncentered and biased) calculation',
         'time_frequency': 'monthly',
         'units': 'C'},
        'metric': {'datasets': "CMCC-CESM_r1i1p1; ERA-Interim's ts & HadISST's sst & Tropflux's sst; 's ",
         'method': 'The metric is the statistical value between the model and the observations',
         'name': 'SeasonalSstLonRmse',
         'units': 'C'}},
       'SeasonalTauxLonRmse': {'diagnostic': {'CMCC-CESM_r1i1p1': {'keyerror': None,
          'name': 'CMCC-CESM_r1i1p1',
          'nyears': 156,
          'time_period': ['1850-1-16 12:0:0.0', '2005-12-16 12:0:0.0']},
         'ERA-Interim': {'name': 'ERA-Interim',
          'nyears': 40,
          'time_period': ['1979-1-16 12:0:0.0', '2019-3-16 12:0:0.0']},
         'Tropflux': {'name': 'Tropflux',
          'nyears': 40,
          'time_period': ['1979-1-15 0:0:0.0', '2018-12-15 12:0:0.0']},
         'method': 'Zonal root mean square error of equatorial_pacific climatological taux STD, time series are linearly detrended, observations and model regridded to generic_1x1deg',
         'name': 'taux zonal seasonality RMSE',
         'ref': 'Using CDAT regridding and rms (uncentered and biased) calculation',
         'time_frequency': 'monthly',
         'units': '1e-3 N/m2'},
        'metric': {'datasets': "CMCC-CESM_r1i1p1; ERA-Interim's tauu & Tropflux's taux; 's ",
         'method': 'The metric is the statistical value between the model and the observations',
         'name': 'SeasonalTauxLonRmse',
         'units': '1e-3 N/m2'}}},
      'name': 'Metrics Collection for ENSO performance'},
     'value': {'BiasPrLatRmse': {'diagnostic': {'CMCC-CESM_r1i1p1': {'value': None,
         'value_error': None},
        'ERA-Interim': {'value': None, 'value_error': None},
        'GPCPv2.3': {'value': None, 'value_error': None}},
       'metric': {'ERA-Interim': {'value': 2.266289439111172,
         'value_error': None},
        'GPCPv2.3': {'value': 1.8569851774558324, 'value_error': None}}},
      'BiasPrLonRmse': {'diagnostic': {'CMCC-CESM_r1i1p1': {'value': None,
         'value_error': None},
        'ERA-Interim': {'value': None, 'value_error': None},
        'GPCPv2.3': {'value': None, 'value_error': None}},
       'metric': {'ERA-Interim': {'value': 1.5721691923087384,
         'value_error': None},
        'GPCPv2.3': {'value': 0.7776093593350174, 'value_error': None}}},
      'BiasSstLonRmse': {'diagnostic': {'CMCC-CESM_r1i1p1': {'value': None,
         'value_error': None},
        'ERA-Interim': {'value': None, 'value_error': None},
        'HadISST': {'value': None, 'value_error': None},
        'Tropflux': {'value': None, 'value_error': None}},
       'metric': {'ERA-Interim': {'value': 0.6522912894845201,
         'value_error': None},
        'HadISST': {'value': 0.5955537502759106, 'value_error': None},
        'Tropflux': {'value': 0.6909960981570102, 'value_error': None}}},
      'BiasTauxLonRmse': {'diagnostic': {'CMCC-CESM_r1i1p1': {'value': None,
         'value_error': None},
        'ERA-Interim': {'value': None, 'value_error': None},
        'Tropflux': {'value': None, 'value_error': None}},
       'metric': {'ERA-Interim': {'value': 7.293877908723839,
         'value_error': None},
        'Tropflux': {'value': 6.932758778474601, 'value_error': None}}},
      'EnsoAmpl': {'diagnostic': {'CMCC-CESM_r1i1p1': {'value': 1.5833757257633487,
         'value_error': 0.12677151587313748},
        'ERA-Interim': {'value': 0.8989844997845644,
         'value_error': 0.14214193002531866},
        'HadISST': {'value': 0.7665787872085695,
         'value_error': 0.06238329697691264},
        'Tropflux': {'value': 0.9039789553693535,
         'value_error': 0.14293162279134272}},
       'metric': {'ERA-Interim': {'value': 76.12936887596994,
         'value_error': 41.9501337592839},
        'HadISST': {'value': 106.55094455836362,
         'value_error': 33.346188192401634},
        'Tropflux': {'value': 75.15625959637556,
         'value_error': 41.71836057629969}}},
      'EnsoDuration': {'diagnostic': {'CMCC-CESM_r1i1p1': {'value': 16.0,
         'value_error': None},
        'ERA-Interim': {'value': 13.0, 'value_error': None},
        'HadISST': {'value': 13.0, 'value_error': None},
        'Tropflux': {'value': 13.0, 'value_error': None}},
       'metric': {'ERA-Interim': {'value': 23.076923076923077,
         'value_error': None},
        'HadISST': {'value': 23.076923076923077, 'value_error': None},
        'Tropflux': {'value': 23.076923076923077, 'value_error': None}}},
      'EnsoSeasonality': {'diagnostic': {'CMCC-CESM_r1i1p1': {'value': 1.0759924078330605,
         'value_error': 0.17257412885968462},
        'ERA-Interim': {'value': 2.0466846866656914,
         'value_error': 0.6513411033995022},
        'HadISST': {'value': 1.6639865947361325,
         'value_error': 0.2712772451657809},
        'Tropflux': {'value': 2.0532132553583624,
         'value_error': 0.6534187683977347}},
       'metric': {'ERA-Interim': {'value': 47.427543927834414,
         'value_error': 25.16265195511611},
        'HadISST': {'value': 35.336473789100054,
         'value_error': 20.913122887678647},
        'Tropflux': {'value': 47.5947077087587,
         'value_error': 25.08264268118899}}},
      'EnsoSstDiversity_2': {'diagnostic': {'CMCC-CESM_r1i1p1': {'value': 33.0,
         'value_error': None},
        'ERA-Interim': {'value': 33.25, 'value_error': None},
        'HadISST': {'value': 49.0, 'value_error': None},
        'Tropflux': {'value': 32.0, 'value_error': None}},
       'metric': {'ERA-Interim': {'value': 0.7518796992481203,
         'value_error': None},
        'HadISST': {'value': 32.6530612244898, 'value_error': None},
        'Tropflux': {'value': 3.125, 'value_error': None}}},
      'EnsoSstLonRmse': {'diagnostic': {'CMCC-CESM_r1i1p1': {'value': None,
         'value_error': None},
        'ERA-Interim': {'value': None, 'value_error': None},
        'HadISST': {'value': None, 'value_error': None},
        'Tropflux': {'value': None, 'value_error': None}},
       'metric': {'ERA-Interim': {'value': 0.2365344825960915,
         'value_error': None},
        'HadISST': {'value': 0.2429666690140071, 'value_error': None},
        'Tropflux': {'value': 0.24249067110477376, 'value_error': None}}},
      'EnsoSstSkew': {'diagnostic': {'CMCC-CESM_r1i1p1': {'value': 0.5119893976275091,
         'value_error': 0.04099195850493584},
        'ERA-Interim': {'value': 0.39098111106809963,
         'value_error': 0.061819541653923164},
        'HadISST': {'value': 0.38989908235027515,
         'value_error': 0.03172953733021198},
        'Tropflux': {'value': 0.39744741059612115,
         'value_error': 0.06284195338099416}},
       'metric': {'ERA-Interim': {'value': 30.94990605270766,
         'value_error': 31.189381474166115},
        'HadISST': {'value': 31.31331177834144,
         'value_error': 21.19960485337213},
        'Tropflux': {'value': 28.819407040440726,
         'value_error': 30.681943565832054}}},
      'EnsoSstTsRmse': {'diagnostic': {'CMCC-CESM_r1i1p1': {'value': None,
         'value_error': None},
        'ERA-Interim': {'value': None, 'value_error': None},
        'HadISST': {'value': None, 'value_error': None},
        'Tropflux': {'value': None, 'value_error': None}},
       'metric': {'ERA-Interim': {'value': 0.22559615432647281,
         'value_error': None},
        'HadISST': {'value': 0.2277181541447665, 'value_error': None},
        'Tropflux': {'value': 0.22694233072047126, 'value_error': None}}},
      'SeasonalPrLatRmse': {'diagnostic': {'CMCC-CESM_r1i1p1': {'value': None,
         'value_error': None},
        'ERA-Interim': {'value': None, 'value_error': None},
        'GPCPv2.3': {'value': None, 'value_error': None}},
       'metric': {'ERA-Interim': {'value': 1.3149405335838724,
         'value_error': None},
        'GPCPv2.3': {'value': 0.9049764863882265, 'value_error': None}}},
      'SeasonalPrLonRmse': {'diagnostic': {'CMCC-CESM_r1i1p1': {'value': None,
         'value_error': None},
        'ERA-Interim': {'value': None, 'value_error': None},
        'GPCPv2.3': {'value': None, 'value_error': None}},
       'metric': {'ERA-Interim': {'value': 0.7549334880825154,
         'value_error': None},
        'GPCPv2.3': {'value': 0.557180794868068, 'value_error': None}}},
      'SeasonalSstLonRmse': {'diagnostic': {'CMCC-CESM_r1i1p1': {'value': None,
         'value_error': None},
        'ERA-Interim': {'value': None, 'value_error': None},
        'HadISST': {'value': None, 'value_error': None},
        'Tropflux': {'value': None, 'value_error': None}},
       'metric': {'ERA-Interim': {'value': 0.19416106023563937,
         'value_error': None},
        'HadISST': {'value': 0.20401580968219135, 'value_error': None},
        'Tropflux': {'value': 0.1987083364846413, 'value_error': None}}},
      'SeasonalTauxLonRmse': {'diagnostic': {'CMCC-CESM_r1i1p1': {'value': None,
         'value_error': None},
        'ERA-Interim': {'value': None, 'value_error': None},
        'Tropflux': {'value': None, 'value_error': None}},
       'metric': {'ERA-Interim': {'value': 3.3402398198644625,
         'value_error': None},
        'Tropflux': {'value': 3.1478877166514523, 'value_error': None}}}}}},
   'CMCC-CM': {'r1i1p1': {'metadata': {'description_of_the_collection': 'Describe which science question this collection is about',
      'metrics': {'BiasPrLatRmse': {'diagnostic': {'CMCC-CM_r1i1p1': {'keyerror': None,
          'name': 'CMCC-CM_r1i1p1',
          'nyears': 156,
          'time_period': ['1850-1-16 12:0:0.0', '2005-12-16 12:0:0.0']},
         'ERA-Interim': {'name': 'ERA-Interim',
          'nyears': 40,
          'time_period': ['1979-1-16 12:0:0.0', '2019-3-16 12:0:0.0']},
         'GPCPv2.3': {'name': 'GPCPv2.3',
          'nyears': 41,
          'time_period': ['1979-1-1 0:0:0.0', '2019-7-1 0:0:0.0']},
         'method': 'Meridional root mean square error of nino3_LatExt pr, time series are linearly detrended, observations and model regridded to generic_1x1deg',
         'name': 'pr Meridional RMSE',
         'ref': 'Using CDAT regridding and rms (uncentered and biased) calculation',
         'time_frequency': 'monthly',
         'units': 'mm/day'},
        'metric': {'datasets': "CMCC-CM_r1i1p1; ERA-Interim's pr & GPCPv2.3's precip; 's ",
         'method': 'The metric is the statistical value between the model and the observations',
         'name': 'BiasPrLatRmse',
         'units': 'mm/day'}},
       'BiasPrLonRmse': {'diagnostic': {'CMCC-CM_r1i1p1': {'keyerror': None,
          'name': 'CMCC-CM_r1i1p1',
          'nyears': 156,
          'time_period': ['1850-1-16 12:0:0.0', '2005-12-16 12:0:0.0']},
         'ERA-Interim': {'name': 'ERA-Interim',
          'nyears': 40,
          'time_period': ['1979-1-16 12:0:0.0', '2019-3-16 12:0:0.0']},
         'GPCPv2.3': {'name': 'GPCPv2.3',
          'nyears': 41,
          'time_period': ['1979-1-1 0:0:0.0', '2019-7-1 0:0:0.0']},
         'method': 'Zonal root mean square error of equatorial_pacific pr, time series are linearly detrended, observations and model regridded to generic_1x1deg',
         'name': 'pr Zonal RMSE',
         'ref': 'Using CDAT regridding and rms (uncentered and biased) calculation',
         'time_frequency': 'monthly',
         'units': 'mm/day'},
        'metric': {'datasets': "CMCC-CM_r1i1p1; ERA-Interim's pr & GPCPv2.3's precip; 's ",
         'method': 'The metric is the statistical value between the model and the observations',
         'name': 'BiasPrLonRmse',
         'units': 'mm/day'}},
       'BiasSstLonRmse': {'diagnostic': {'CMCC-CM_r1i1p1': {'keyerror': None,
          'name': 'CMCC-CM_r1i1p1',
          'nyears': 156,
          'time_period': ['1850-1-16 12:0:0.0', '2005-12-16 12:0:0.0']},
         'ERA-Interim': {'name': 'ERA-Interim',
          'nyears': 40,
          'time_period': ['1979-1-16 12:0:0.0', '2019-3-16 12:0:0.0']},
         'HadISST': {'name': 'HadISST',
          'nyears': 151,
          'time_period': ['1870-1-16 11:59:59.5', '2020-10-16 12:0:0.0']},
         'Tropflux': {'name': 'Tropflux',
          'nyears': 40,
          'time_period': ['1979-1-15 0:0:0.0', '2018-12-15 12:0:0.0']},
         'method': 'Zonal root mean square error of equatorial_pacific sst, time series are linearly detrended, observations and model regridded to generic_1x1deg',
         'name': 'sst Zonal RMSE',
         'ref': 'Using CDAT regridding and rms (uncentered and biased) calculation',
         'time_frequency': 'monthly',
         'units': 'C'},
        'metric': {'datasets': "CMCC-CM_r1i1p1; ERA-Interim's ts & HadISST's sst & Tropflux's sst; 's ",
         'method': 'The metric is the statistical value between the model and the observations',
         'name': 'BiasSstLonRmse',
         'units': 'C'}},
       'BiasTauxLonRmse': {'diagnostic': {'CMCC-CM_r1i1p1': {'keyerror': None,
          'name': 'CMCC-CM_r1i1p1',
          'nyears': 156,
          'time_period': ['1850-1-16 12:0:0.0', '2005-12-16 12:0:0.0']},
         'ERA-Interim': {'name': 'ERA-Interim',
          'nyears': 40,
          'time_period': ['1979-1-16 12:0:0.0', '2019-3-16 12:0:0.0']},
         'Tropflux': {'name': 'Tropflux',
          'nyears': 40,
          'time_period': ['1979-1-15 0:0:0.0', '2018-12-15 12:0:0.0']},
         'method': 'Zonal root mean square error of equatorial_pacific taux, time series are linearly detrended, observations and model regridded to generic_1x1deg',
         'name': 'taux Zonal RMSE',
         'ref': 'Using CDAT regridding and rms (uncentered and biased) calculation',
         'time_frequency': 'monthly',
         'units': '1e-3 N/m2'},
        'metric': {'datasets': "CMCC-CM_r1i1p1; ERA-Interim's tauu & Tropflux's taux; 's ",
         'method': 'The metric is the statistical value between the model and the observations',
         'name': 'BiasTauxLonRmse',
         'units': '1e-3 N/m2'}},
       'EnsoAmpl': {'diagnostic': {'CMCC-CM_r1i1p1': {'keyerror': None,
          'name': 'CMCC-CM_r1i1p1',
          'nyears': 156,
          'time_period': ['1850-1-16 12:0:0.0', '2005-12-16 12:0:0.0']},
         'ERA-Interim': {'keyerror': None,
          'name': 'ERA-Interim',
          'nyears': 40,
          'time_period': ['1979-1-16 12:0:0.0', '2019-3-16 12:0:0.0']},
         'HadISST': {'keyerror': None,
          'name': 'HadISST',
          'nyears': 151,
          'time_period': ['1870-1-16 11:59:59.5', '2020-10-16 12:0:0.0']},
         'Tropflux': {'keyerror': None,
          'name': 'Tropflux',
          'nyears': 40,
          'time_period': ['1979-1-15 0:0:0.0', '2018-12-15 12:0:0.0']},
         'method': 'Standard deviation of nino3.4 sstA, time series are linearly detrended',
         'name': 'ENSO amplitude',
         'ref': 'Using CDAT regression calculation',
         'time_frequency': 'monthly',
         'units': 'C'},
        'metric': {'datasets': "CMCC-CM_r1i1p1; ERA-Interim's ts & HadISST's sst & Tropflux's sst; 's ",
         'method': 'The metric is the absolute value of the relative difference between model and observations values (M = 100 * abs[[model-obs] / obs])',
         'name': 'EnsoAmpl',
         'units': '%'}},
       'EnsoDuration': {'diagnostic': {'CMCC-CM_r1i1p1': {'keyerror': None,
          'name': 'CMCC-CM_r1i1p1',
          'nyears': 156,
          'time_period': ['1850-1-16 12:0:0.0', '2005-12-16 12:0:0.0']},
         'ERA-Interim': {'keyerror': None,
          'name': 'ERA-Interim',
          'nyears': 40,
          'time_period': ['1979-1-16 12:0:0.0', '2019-3-16 12:0:0.0']},
         'HadISST': {'keyerror': None,
          'name': 'HadISST',
          'nyears': 151,
          'time_period': ['1870-1-16 11:59:59.5', '2020-10-16 12:0:0.0']},
         'Tropflux': {'keyerror': None,
          'name': 'Tropflux',
          'nyears': 40,
          'time_period': ['1979-1-15 0:0:0.0', '2018-12-15 12:0:0.0']},
         'method': 'nino3.4 SSTA during DEC regressed against nino3.4 SSTA during 6 years (centered on ENSO), the duration is the number of consecutive months during which the regression is above 0.25, time series are linearly detrended, smoothing using a triangle shaped window of 5 points',
         'name': 'ENSO Duration based on life cyle SSTA pattern',
         'ref': 'Using CDAT',
         'time_frequency': 'monthly',
         'units': 'months'},
        'metric': {'datasets': "CMCC-CM_r1i1p1; ERA-Interim's ts & HadISST's sst & Tropflux's sst; 's ",
         'method': 'The metric is the absolute value of the relative difference between model and observations values (M = 100 * abs[[model-obs] / obs])',
         'name': 'EnsoDuration',
         'units': '%'}},
       'EnsoSeasonality': {'diagnostic': {'CMCC-CM_r1i1p1': {'keyerror': None,
          'name': 'CMCC-CM_r1i1p1',
          'nyears': 156,
          'time_period': ['1850-1-16 12:0:0.0', '2005-12-16 12:0:0.0']},
         'ERA-Interim': {'keyerror': None,
          'name': 'ERA-Interim',
          'nyears': 40,
          'time_period': ['1979-1-16 12:0:0.0', '2019-3-16 12:0:0.0']},
         'HadISST': {'keyerror': None,
          'name': 'HadISST',
          'nyears': 151,
          'time_period': ['1870-1-16 11:59:59.5', '2020-10-16 12:0:0.0']},
         'Tropflux': {'keyerror': None,
          'name': 'Tropflux',
          'nyears': 40,
          'time_period': ['1979-1-15 0:0:0.0', '2018-12-15 12:0:0.0']},
         'method': 'Ratio between NDJ and MAM standard deviation nino3.4 sstA, time series are linearly detrended',
         'name': 'ENSO seasonality',
         'ref': 'Using CDAT std dev calculation',
         'time_frequency': 'monthly',
         'units': 'C/C'},
        'metric': {'datasets': "CMCC-CM_r1i1p1; ERA-Interim's ts & HadISST's sst & Tropflux's sst; 's ",
         'method': 'The metric is the absolute value of the relative difference between model and observations values (M = 100 * abs[[model-obs] / obs])',
         'name': 'EnsoSeasonality',
         'units': '%'}},
       'EnsoSstDiversity_2': {'diagnostic': {'CMCC-CM_r1i1p1': {'keyerror': None,
          'name': 'CMCC-CM_r1i1p1',
          'nyears': 156,
          'time_period': ['1850-1-16 12:0:0.0', '2005-12-16 12:0:0.0']},
         'ERA-Interim': {'keyerror': None,
          'name': 'ERA-Interim',
          'nyears': 40,
          'time_period': ['1979-1-16 12:0:0.0', '2019-3-16 12:0:0.0']},
         'HadISST': {'keyerror': None,
          'name': 'HadISST',
          'nyears': 151,
          'time_period': ['1870-1-16 11:59:59.5', '2020-10-16 12:0:0.0']},
         'Tropflux': {'keyerror': None,
          'name': 'Tropflux',
          'nyears': 40,
          'time_period': ['1979-1-15 0:0:0.0', '2018-12-15 12:0:0.0']},
         'method': 'Nino (Nina) events = nino3.4 sstA > 0.75 (< -0.75) during DEC, zonal SSTA (meridional averaged [-5.0 ; 5.0]), the zonal SSTA maximum (minimum) is located for each event, the diversity is the interquartile range (IQR = Q3 - Q1), time series are linearly detrended, smoothing using a triangle shaped window of 5 points',
         'name': 'ENSO Diversity (interquartile range)',
         'ref': 'Using CDAT regridding',
         'time_frequency': 'monthly',
         'units': 'long'},
        'metric': {'datasets': "CMCC-CM_r1i1p1; ERA-Interim's ts & HadISST's sst & Tropflux's sst; 's ",
         'method': 'The metric is the absolute value of the relative difference between model and observations values (M = 100 * abs[[model-obs] / obs])',
         'name': 'EnsoSstDiversity',
         'units': '%'}},
       'EnsoSstLonRmse': {'diagnostic': {'CMCC-CM_r1i1p1': {'keyerror': None,
          'name': 'CMCC-CM_r1i1p1',
          'nyears': 156,
          'time_period': ['1850-1-16 12:0:0.0', '2005-12-16 12:0:0.0']},
         'ERA-Interim': {'name': 'ERA-Interim',
          'nyears': 40,
          'time_period': ['1979-1-16 12:0:0.0', '2019-3-16 12:0:0.0']},
         'HadISST': {'name': 'HadISST',
          'nyears': 151,
          'time_period': ['1870-1-16 11:59:59.5', '2020-10-16 12:0:0.0']},
         'Tropflux': {'name': 'Tropflux',
          'nyears': 40,
          'time_period': ['1979-1-15 0:0:0.0', '2018-12-15 12:0:0.0']},
         'method': 'nino3.4 SSTA during DEC regressed against equatorial_pacific SSTA, time series are linearly detrended, smoothing using a triangle shaped window of 5 points, observations and model regridded to generic_1x1deg',
         'name': 'ENSO Zonal SSTA pattern',
         'ref': 'Using CDAT regridding and rms (uncentered and biased) calculation',
         'time_frequency': 'monthly',
         'units': 'C/C'},
        'metric': {'datasets': "CMCC-CM_r1i1p1; ERA-Interim's ts & HadISST's sst & Tropflux's sst; 's ",
         'method': 'The metric is the statistical value between the model and the observations',
         'name': 'EnsoSstLonRmse',
         'units': 'C/C'}},
       'EnsoSstSkew': {'diagnostic': {'CMCC-CM_r1i1p1': {'keyerror': None,
          'name': 'CMCC-CM_r1i1p1',
          'nyears': 156,
          'time_period': ['1850-1-16 12:0:0.0', '2005-12-16 12:0:0.0']},
         'ERA-Interim': {'keyerror': None,
          'name': 'ERA-Interim',
          'nyears': 40,
          'time_period': ['1979-1-16 12:0:0.0', '2019-3-16 12:0:0.0']},
         'HadISST': {'keyerror': None,
          'name': 'HadISST',
          'nyears': 151,
          'time_period': ['1870-1-16 11:59:59.5', '2020-10-16 12:0:0.0']},
         'Tropflux': {'keyerror': None,
          'name': 'Tropflux',
          'nyears': 40,
          'time_period': ['1979-1-15 0:0:0.0', '2018-12-15 12:0:0.0']},
         'method': 'Standard deviation of nino3.4 sstA, time series are linearly detrended',
         'name': 'ENSO skewness',
         'ref': 'Using CDAT regression calculation',
         'time_frequency': 'monthly',
         'units': 'C'},
        'metric': {'datasets': "CMCC-CM_r1i1p1; ERA-Interim's ts & HadISST's sst & Tropflux's sst; 's ",
         'method': 'The metric is the absolute value of the relative difference between model and observations values (M = 100 * abs[[model-obs] / obs])',
         'name': 'EnsoSstSkew',
         'units': '%'}},
       'EnsoSstTsRmse': {'diagnostic': {'CMCC-CM_r1i1p1': {'keyerror': None,
          'name': 'CMCC-CM_r1i1p1',
          'nyears': 156,
          'time_period': ['1850-1-16 12:0:0.0', '2005-12-16 12:0:0.0']},
         'ERA-Interim': {'name': 'ERA-Interim',
          'nyears': 40,
          'time_period': ['1979-1-16 12:0:0.0', '2019-3-16 12:0:0.0']},
         'HadISST': {'name': 'HadISST',
          'nyears': 151,
          'time_period': ['1870-1-16 11:59:59.5', '2020-10-16 12:0:0.0']},
         'Tropflux': {'name': 'Tropflux',
          'nyears': 40,
          'time_period': ['1979-1-15 0:0:0.0', '2018-12-15 12:0:0.0']},
         'method': 'nino3.4 SSTA during DEC regressed against nino3.4 SSTA during 6 years (centered on ENSO), time series are linearly detrended, smoothing using a triangle shaped window of 5 points',
         'name': 'ENSO life cyle SSTA pattern',
         'ref': 'Using CDAT regridding and rms (uncentered and biased) calculation',
         'time_frequency': 'monthly',
         'units': 'C/C'},
        'metric': {'datasets': "CMCC-CM_r1i1p1; ERA-Interim's ts & HadISST's sst & Tropflux's sst; 's ",
         'method': 'The metric is the statistical value between the model and the observations',
         'name': 'EnsoSstTsRmse',
         'units': 'C/C'}},
       'SeasonalPrLatRmse': {'diagnostic': {'CMCC-CM_r1i1p1': {'keyerror': None,
          'name': 'CMCC-CM_r1i1p1',
          'nyears': 156,
          'time_period': ['1850-1-16 12:0:0.0', '2005-12-16 12:0:0.0']},
         'ERA-Interim': {'name': 'ERA-Interim',
          'nyears': 40,
          'time_period': ['1979-1-16 12:0:0.0', '2019-3-16 12:0:0.0']},
         'GPCPv2.3': {'name': 'GPCPv2.3',
          'nyears': 41,
          'time_period': ['1979-1-1 0:0:0.0', '2019-7-1 0:0:0.0']},
         'method': 'Meridional root mean square error of nino3_LatExt climatological pr STD, time series are linearly detrended, observations and model regridded to generic_1x1deg',
         'name': 'pr meridional seasonality RMSE',
         'ref': 'Using CDAT regridding and rms (uncentered and biased) calculation',
         'time_frequency': 'monthly',
         'units': 'mm/day'},
        'metric': {'datasets': "CMCC-CM_r1i1p1; ERA-Interim's pr & GPCPv2.3's precip; 's ",
         'method': 'The metric is the statistical value between the model and the observations',
         'name': 'SeasonalPrLatRmse',
         'units': 'mm/day'}},
       'SeasonalPrLonRmse': {'diagnostic': {'CMCC-CM_r1i1p1': {'keyerror': None,
          'name': 'CMCC-CM_r1i1p1',
          'nyears': 156,
          'time_period': ['1850-1-16 12:0:0.0', '2005-12-16 12:0:0.0']},
         'ERA-Interim': {'name': 'ERA-Interim',
          'nyears': 40,
          'time_period': ['1979-1-16 12:0:0.0', '2019-3-16 12:0:0.0']},
         'GPCPv2.3': {'name': 'GPCPv2.3',
          'nyears': 41,
          'time_period': ['1979-1-1 0:0:0.0', '2019-7-1 0:0:0.0']},
         'method': 'Zonal root mean square error of equatorial_pacific climatological pr STD, time series are linearly detrended, observations and model regridded to generic_1x1deg',
         'name': 'pr zonal seasonality RMSE',
         'ref': 'Using CDAT regridding and rms (uncentered and biased) calculation',
         'time_frequency': 'monthly',
         'units': 'mm/day'},
        'metric': {'datasets': "CMCC-CM_r1i1p1; ERA-Interim's pr & GPCPv2.3's precip; 's ",
         'method': 'The metric is the statistical value between the model and the observations',
         'name': 'SeasonalPrLonRmse',
         'units': 'mm/day'}},
       'SeasonalSstLonRmse': {'diagnostic': {'CMCC-CM_r1i1p1': {'keyerror': None,
          'name': 'CMCC-CM_r1i1p1',
          'nyears': 156,
          'time_period': ['1850-1-16 12:0:0.0', '2005-12-16 12:0:0.0']},
         'ERA-Interim': {'name': 'ERA-Interim',
          'nyears': 40,
          'time_period': ['1979-1-16 12:0:0.0', '2019-3-16 12:0:0.0']},
         'HadISST': {'name': 'HadISST',
          'nyears': 151,
          'time_period': ['1870-1-16 11:59:59.5', '2020-10-16 12:0:0.0']},
         'Tropflux': {'name': 'Tropflux',
          'nyears': 40,
          'time_period': ['1979-1-15 0:0:0.0', '2018-12-15 12:0:0.0']},
         'method': 'Zonal root mean square error of equatorial_pacific climatological sst STD, time series are linearly detrended, observations and model regridded to generic_1x1deg',
         'name': 'sst zonal seasonality RMSE',
         'ref': 'Using CDAT regridding and rms (uncentered and biased) calculation',
         'time_frequency': 'monthly',
         'units': 'C'},
        'metric': {'datasets': "CMCC-CM_r1i1p1; ERA-Interim's ts & HadISST's sst & Tropflux's sst; 's ",
         'method': 'The metric is the statistical value between the model and the observations',
         'name': 'SeasonalSstLonRmse',
         'units': 'C'}},
       'SeasonalTauxLonRmse': {'diagnostic': {'CMCC-CM_r1i1p1': {'keyerror': None,
          'name': 'CMCC-CM_r1i1p1',
          'nyears': 156,
          'time_period': ['1850-1-16 12:0:0.0', '2005-12-16 12:0:0.0']},
         'ERA-Interim': {'name': 'ERA-Interim',
          'nyears': 40,
          'time_period': ['1979-1-16 12:0:0.0', '2019-3-16 12:0:0.0']},
         'Tropflux': {'name': 'Tropflux',
          'nyears': 40,
          'time_period': ['1979-1-15 0:0:0.0', '2018-12-15 12:0:0.0']},
         'method': 'Zonal root mean square error of equatorial_pacific climatological taux STD, time series are linearly detrended, observations and model regridded to generic_1x1deg',
         'name': 'taux zonal seasonality RMSE',
         'ref': 'Using CDAT regridding and rms (uncentered and biased) calculation',
         'time_frequency': 'monthly',
         'units': '1e-3 N/m2'},
        'metric': {'datasets': "CMCC-CM_r1i1p1; ERA-Interim's tauu & Tropflux's taux; 's ",
         'method': 'The metric is the statistical value between the model and the observations',
         'name': 'SeasonalTauxLonRmse',
         'units': '1e-3 N/m2'}}},
      'name': 'Metrics Collection for ENSO performance'},
     'value': {'BiasPrLatRmse': {'diagnostic': {'CMCC-CM_r1i1p1': {'value': None,
         'value_error': None},
        'ERA-Interim': {'value': None, 'value_error': None},
        'GPCPv2.3': {'value': None, 'value_error': None}},
       'metric': {'ERA-Interim': {'value': 1.794313839575357,
         'value_error': None},
        'GPCPv2.3': {'value': 1.5226887738548718, 'value_error': None}}},
      'BiasPrLonRmse': {'diagnostic': {'CMCC-CM_r1i1p1': {'value': None,
         'value_error': None},
        'ERA-Interim': {'value': None, 'value_error': None},
        'GPCPv2.3': {'value': None, 'value_error': None}},
       'metric': {'ERA-Interim': {'value': 1.6570349111924554,
         'value_error': None},
        'GPCPv2.3': {'value': 1.6917847320856454, 'value_error': None}}},
      'BiasSstLonRmse': {'diagnostic': {'CMCC-CM_r1i1p1': {'value': None,
         'value_error': None},
        'ERA-Interim': {'value': None, 'value_error': None},
        'HadISST': {'value': None, 'value_error': None},
        'Tropflux': {'value': None, 'value_error': None}},
       'metric': {'ERA-Interim': {'value': 0.28805626601671697,
         'value_error': None},
        'HadISST': {'value': 0.35305223611814474, 'value_error': None},
        'Tropflux': {'value': 0.29655926504915847, 'value_error': None}}},
      'BiasTauxLonRmse': {'diagnostic': {'CMCC-CM_r1i1p1': {'value': None,
         'value_error': None},
        'ERA-Interim': {'value': None, 'value_error': None},
        'Tropflux': {'value': None, 'value_error': None}},
       'metric': {'ERA-Interim': {'value': 12.537743136545268,
         'value_error': None},
        'Tropflux': {'value': 12.21983656023157, 'value_error': None}}},
      'EnsoAmpl': {'diagnostic': {'CMCC-CM_r1i1p1': {'value': 0.6896586577646219,
         'value_error': 0.05521688381177166},
        'ERA-Interim': {'value': 0.8989844997845644,
         'value_error': 0.14214193002531866},
        'HadISST': {'value': 0.7665787872085695,
         'value_error': 0.06238329697691264},
        'Tropflux': {'value': 0.9039789553693535,
         'value_error': 0.14293162279134272}},
       'metric': {'ERA-Interim': {'value': 23.28469979961902,
         'value_error': 18.271893695683797},
        'HadISST': {'value': 10.034210537451168,
         'value_error': 14.524340001013375},
        'Tropflux': {'value': 23.708549444844458,
         'value_error': 18.170942051875016}}},
      'EnsoDuration': {'diagnostic': {'CMCC-CM_r1i1p1': {'value': 15.0,
         'value_error': None},
        'ERA-Interim': {'value': 13.0, 'value_error': None},
        'HadISST': {'value': 13.0, 'value_error': None},
        'Tropflux': {'value': 13.0, 'value_error': None}},
       'metric': {'ERA-Interim': {'value': 15.384615384615385,
         'value_error': None},
        'HadISST': {'value': 15.384615384615385, 'value_error': None},
        'Tropflux': {'value': 15.384615384615385, 'value_error': None}}},
      'EnsoSeasonality': {'diagnostic': {'CMCC-CM_r1i1p1': {'value': 1.1994837192542982,
         'value_error': 0.19238040754261618},
        'ERA-Interim': {'value': 2.0466846866656914,
         'value_error': 0.6513411033995022},
        'HadISST': {'value': 1.6639865947361325,
         'value_error': 0.2712772451657809},
        'Tropflux': {'value': 2.0532132553583624,
         'value_error': 0.6534187683977347}},
       'metric': {'ERA-Interim': {'value': 41.39381962111569,
         'value_error': 28.050561633801845},
        'HadISST': {'value': 27.915061152009645,
         'value_error': 23.31331544713547},
        'Tropflux': {'value': 41.580168736786014,
         'value_error': 27.961369720581743}}},
      'EnsoSstDiversity_2': {'diagnostic': {'CMCC-CM_r1i1p1': {'value': 12.0,
         'value_error': None},
        'ERA-Interim': {'value': 33.25, 'value_error': None},
        'HadISST': {'value': 49.0, 'value_error': None},
        'Tropflux': {'value': 32.0, 'value_error': None}},
       'metric': {'ERA-Interim': {'value': 63.90977443609023,
         'value_error': None},
        'HadISST': {'value': 75.51020408163265, 'value_error': None},
        'Tropflux': {'value': 62.5, 'value_error': None}}},
      'EnsoSstLonRmse': {'diagnostic': {'CMCC-CM_r1i1p1': {'value': None,
         'value_error': None},
        'ERA-Interim': {'value': None, 'value_error': None},
        'HadISST': {'value': None, 'value_error': None},
        'Tropflux': {'value': None, 'value_error': None}},
       'metric': {'ERA-Interim': {'value': 0.22416465729429,
         'value_error': None},
        'HadISST': {'value': 0.24286757066299722, 'value_error': None},
        'Tropflux': {'value': 0.22521550219966296, 'value_error': None}}},
      'EnsoSstSkew': {'diagnostic': {'CMCC-CM_r1i1p1': {'value': 0.09929962732097122,
         'value_error': 0.007950332998220157},
        'ERA-Interim': {'value': 0.39098111106809963,
         'value_error': 0.061819541653923164},
        'HadISST': {'value': 0.38989908235027515,
         'value_error': 0.03172953733021198},
        'Tropflux': {'value': 0.39744741059612115,
         'value_error': 0.06284195338099416}},
       'metric': {'ERA-Interim': {'value': 74.60244893936179,
         'value_error': 6.049136898357312},
        'HadISST': {'value': 74.53196690733347,
         'value_error': 4.111633699929177},
        'Tropflux': {'value': 75.01565624190776,
         'value_error': 5.950720026016601}}},
      'EnsoSstTsRmse': {'diagnostic': {'CMCC-CM_r1i1p1': {'value': None,
         'value_error': None},
        'ERA-Interim': {'value': None, 'value_error': None},
        'HadISST': {'value': None, 'value_error': None},
        'Tropflux': {'value': None, 'value_error': None}},
       'metric': {'ERA-Interim': {'value': 0.1419127308267677,
         'value_error': None},
        'HadISST': {'value': 0.10191081369894583, 'value_error': None},
        'Tropflux': {'value': 0.13767509535413938, 'value_error': None}}},
      'SeasonalPrLatRmse': {'diagnostic': {'CMCC-CM_r1i1p1': {'value': None,
         'value_error': None},
        'ERA-Interim': {'value': None, 'value_error': None},
        'GPCPv2.3': {'value': None, 'value_error': None}},
       'metric': {'ERA-Interim': {'value': 1.1395376159007269,
         'value_error': None},
        'GPCPv2.3': {'value': 0.9009787259713443, 'value_error': None}}},
      'SeasonalPrLonRmse': {'diagnostic': {'CMCC-CM_r1i1p1': {'value': None,
         'value_error': None},
        'ERA-Interim': {'value': None, 'value_error': None},
        'GPCPv2.3': {'value': None, 'value_error': None}},
       'metric': {'ERA-Interim': {'value': 1.5466052774835333,
         'value_error': None},
        'GPCPv2.3': {'value': 1.337118944792206, 'value_error': None}}},
      'SeasonalSstLonRmse': {'diagnostic': {'CMCC-CM_r1i1p1': {'value': None,
         'value_error': None},
        'ERA-Interim': {'value': None, 'value_error': None},
        'HadISST': {'value': None, 'value_error': None},
        'Tropflux': {'value': None, 'value_error': None}},
       'metric': {'ERA-Interim': {'value': 0.2522599070399602,
         'value_error': None},
        'HadISST': {'value': 0.2555574281572348, 'value_error': None},
        'Tropflux': {'value': 0.25975884684664274, 'value_error': None}}},
      'SeasonalTauxLonRmse': {'diagnostic': {'CMCC-CM_r1i1p1': {'value': None,
         'value_error': None},
        'ERA-Interim': {'value': None, 'value_error': None},
        'Tropflux': {'value': None, 'value_error': None}},
       'metric': {'ERA-Interim': {'value': 3.184292229174057,
         'value_error': None},
        'Tropflux': {'value': 2.894092376800855, 'value_error': None}}}}}},
   'CMCC-CMS': {'r1i1p1': {'metadata': {'description_of_the_collection': 'Describe which science question this collection is about',
      'metrics': {'BiasPrLatRmse': {'diagnostic': {'CMCC-CMS_r1i1p1': {'keyerror': None,
          'name': 'CMCC-CMS_r1i1p1',
          'nyears': 156,
          'time_period': ['1850-1-16 12:0:0.0', '2005-12-16 12:0:0.0']},
         'ERA-Interim': {'name': 'ERA-Interim',
          'nyears': 40,
          'time_period': ['1979-1-16 12:0:0.0', '2019-3-16 12:0:0.0']},
         'GPCPv2.3': {'name': 'GPCPv2.3',
          'nyears': 41,
          'time_period': ['1979-1-1 0:0:0.0', '2019-7-1 0:0:0.0']},
         'method': 'Meridional root mean square error of nino3_LatExt pr, time series are linearly detrended, observations and model regridded to generic_1x1deg',
         'name': 'pr Meridional RMSE',
         'ref': 'Using CDAT regridding and rms (uncentered and biased) calculation',
         'time_frequency': 'monthly',
         'units': 'mm/day'},
        'metric': {'datasets': "CMCC-CMS_r1i1p1; ERA-Interim's pr & GPCPv2.3's precip; 's ",
         'method': 'The metric is the statistical value between the model and the observations',
         'name': 'BiasPrLatRmse',
         'units': 'mm/day'}},
       'BiasPrLonRmse': {'diagnostic': {'CMCC-CMS_r1i1p1': {'keyerror': None,
          'name': 'CMCC-CMS_r1i1p1',
          'nyears': 156,
          'time_period': ['1850-1-16 12:0:0.0', '2005-12-16 12:0:0.0']},
         'ERA-Interim': {'name': 'ERA-Interim',
          'nyears': 40,
          'time_period': ['1979-1-16 12:0:0.0', '2019-3-16 12:0:0.0']},
         'GPCPv2.3': {'name': 'GPCPv2.3',
          'nyears': 41,
          'time_period': ['1979-1-1 0:0:0.0', '2019-7-1 0:0:0.0']},
         'method': 'Zonal root mean square error of equatorial_pacific pr, time series are linearly detrended, observations and model regridded to generic_1x1deg',
         'name': 'pr Zonal RMSE',
         'ref': 'Using CDAT regridding and rms (uncentered and biased) calculation',
         'time_frequency': 'monthly',
         'units': 'mm/day'},
        'metric': {'datasets': "CMCC-CMS_r1i1p1; ERA-Interim's pr & GPCPv2.3's precip; 's ",
         'method': 'The metric is the statistical value between the model and the observations',
         'name': 'BiasPrLonRmse',
         'units': 'mm/day'}},
       'BiasSstLonRmse': {'diagnostic': {'CMCC-CMS_r1i1p1': {'keyerror': None,
          'name': 'CMCC-CMS_r1i1p1',
          'nyears': 156,
          'time_period': ['1850-1-16 12:0:0.0', '2005-12-16 12:0:0.0']},
         'ERA-Interim': {'name': 'ERA-Interim',
          'nyears': 40,
          'time_period': ['1979-1-16 12:0:0.0', '2019-3-16 12:0:0.0']},
         'HadISST': {'name': 'HadISST',
          'nyears': 151,
          'time_period': ['1870-1-16 11:59:59.5', '2020-10-16 12:0:0.0']},
         'Tropflux': {'name': 'Tropflux',
          'nyears': 40,
          'time_period': ['1979-1-15 0:0:0.0', '2018-12-15 12:0:0.0']},
         'method': 'Zonal root mean square error of equatorial_pacific sst, time series are linearly detrended, observations and model regridded to generic_1x1deg',
         'name': 'sst Zonal RMSE',
         'ref': 'Using CDAT regridding and rms (uncentered and biased) calculation',
         'time_frequency': 'monthly',
         'units': 'C'},
        'metric': {'datasets': "CMCC-CMS_r1i1p1; ERA-Interim's ts & HadISST's sst & Tropflux's sst; 's ",
         'method': 'The metric is the statistical value between the model and the observations',
         'name': 'BiasSstLonRmse',
         'units': 'C'}},
       'BiasTauxLonRmse': {'diagnostic': {'CMCC-CMS_r1i1p1': {'keyerror': None,
          'name': 'CMCC-CMS_r1i1p1',
          'nyears': 156,
          'time_period': ['1850-1-16 12:0:0.0', '2005-12-16 12:0:0.0']},
         'ERA-Interim': {'name': 'ERA-Interim',
          'nyears': 40,
          'time_period': ['1979-1-16 12:0:0.0', '2019-3-16 12:0:0.0']},
         'Tropflux': {'name': 'Tropflux',
          'nyears': 40,
          'time_period': ['1979-1-15 0:0:0.0', '2018-12-15 12:0:0.0']},
         'method': 'Zonal root mean square error of equatorial_pacific taux, time series are linearly detrended, observations and model regridded to generic_1x1deg',
         'name': 'taux Zonal RMSE',
         'ref': 'Using CDAT regridding and rms (uncentered and biased) calculation',
         'time_frequency': 'monthly',
         'units': '1e-3 N/m2'},
        'metric': {'datasets': "CMCC-CMS_r1i1p1; ERA-Interim's tauu & Tropflux's taux; 's ",
         'method': 'The metric is the statistical value between the model and the observations',
         'name': 'BiasTauxLonRmse',
         'units': '1e-3 N/m2'}},
       'EnsoAmpl': {'diagnostic': {'CMCC-CMS_r1i1p1': {'keyerror': None,
          'name': 'CMCC-CMS_r1i1p1',
          'nyears': 156,
          'time_period': ['1850-1-16 12:0:0.0', '2005-12-16 12:0:0.0']},
         'ERA-Interim': {'keyerror': None,
          'name': 'ERA-Interim',
          'nyears': 40,
          'time_period': ['1979-1-16 12:0:0.0', '2019-3-16 12:0:0.0']},
         'HadISST': {'keyerror': None,
          'name': 'HadISST',
          'nyears': 151,
          'time_period': ['1870-1-16 11:59:59.5', '2020-10-16 12:0:0.0']},
         'Tropflux': {'keyerror': None,
          'name': 'Tropflux',
          'nyears': 40,
          'time_period': ['1979-1-15 0:0:0.0', '2018-12-15 12:0:0.0']},
         'method': 'Standard deviation of nino3.4 sstA, time series are linearly detrended',
         'name': 'ENSO amplitude',
         'ref': 'Using CDAT regression calculation',
         'time_frequency': 'monthly',
         'units': 'C'},
        'metric': {'datasets': "CMCC-CMS_r1i1p1; ERA-Interim's ts & HadISST's sst & Tropflux's sst; 's ",
         'method': 'The metric is the absolute value of the relative difference between model and observations values (M = 100 * abs[[model-obs] / obs])',
         'name': 'EnsoAmpl',
         'units': '%'}},
       'EnsoDuration': {'diagnostic': {'CMCC-CMS_r1i1p1': {'keyerror': None,
          'name': 'CMCC-CMS_r1i1p1',
          'nyears': 156,
          'time_period': ['1850-1-16 12:0:0.0', '2005-12-16 12:0:0.0']},
         'ERA-Interim': {'keyerror': None,
          'name': 'ERA-Interim',
          'nyears': 40,
          'time_period': ['1979-1-16 12:0:0.0', '2019-3-16 12:0:0.0']},
         'HadISST': {'keyerror': None,
          'name': 'HadISST',
          'nyears': 151,
          'time_period': ['1870-1-16 11:59:59.5', '2020-10-16 12:0:0.0']},
         'Tropflux': {'keyerror': None,
          'name': 'Tropflux',
          'nyears': 40,
          'time_period': ['1979-1-15 0:0:0.0', '2018-12-15 12:0:0.0']},
         'method': 'nino3.4 SSTA during DEC regressed against nino3.4 SSTA during 6 years (centered on ENSO), the duration is the number of consecutive months during which the regression is above 0.25, time series are linearly detrended, smoothing using a triangle shaped window of 5 points',
         'name': 'ENSO Duration based on life cyle SSTA pattern',
         'ref': 'Using CDAT',
         'time_frequency': 'monthly',
         'units': 'months'},
        'metric': {'datasets': "CMCC-CMS_r1i1p1; ERA-Interim's ts & HadISST's sst & Tropflux's sst; 's ",
         'method': 'The metric is the absolute value of the relative difference between model and observations values (M = 100 * abs[[model-obs] / obs])',
         'name': 'EnsoDuration',
         'units': '%'}},
       'EnsoSeasonality': {'diagnostic': {'CMCC-CMS_r1i1p1': {'keyerror': None,
          'name': 'CMCC-CMS_r1i1p1',
          'nyears': 156,
          'time_period': ['1850-1-16 12:0:0.0', '2005-12-16 12:0:0.0']},
         'ERA-Interim': {'keyerror': None,
          'name': 'ERA-Interim',
          'nyears': 40,
          'time_period': ['1979-1-16 12:0:0.0', '2019-3-16 12:0:0.0']},
         'HadISST': {'keyerror': None,
          'name': 'HadISST',
          'nyears': 151,
          'time_period': ['1870-1-16 11:59:59.5', '2020-10-16 12:0:0.0']},
         'Tropflux': {'keyerror': None,
          'name': 'Tropflux',
          'nyears': 40,
          'time_period': ['1979-1-15 0:0:0.0', '2018-12-15 12:0:0.0']},
         'method': 'Ratio between NDJ and MAM standard deviation nino3.4 sstA, time series are linearly detrended',
         'name': 'ENSO seasonality',
         'ref': 'Using CDAT std dev calculation',
         'time_frequency': 'monthly',
         'units': 'C/C'},
        'metric': {'datasets': "CMCC-CMS_r1i1p1; ERA-Interim's ts & HadISST's sst & Tropflux's sst; 's ",
         'method': 'The metric is the absolute value of the relative difference between model and observations values (M = 100 * abs[[model-obs] / obs])',
         'name': 'EnsoSeasonality',
         'units': '%'}},
       'EnsoSstDiversity_2': {'diagnostic': {'CMCC-CMS_r1i1p1': {'keyerror': None,
          'name': 'CMCC-CMS_r1i1p1',
          'nyears': 156,
          'time_period': ['1850-1-16 12:0:0.0', '2005-12-16 12:0:0.0']},
         'ERA-Interim': {'keyerror': None,
          'name': 'ERA-Interim',
          'nyears': 40,
          'time_period': ['1979-1-16 12:0:0.0', '2019-3-16 12:0:0.0']},
         'HadISST': {'keyerror': None,
          'name': 'HadISST',
          'nyears': 151,
          'time_period': ['1870-1-16 11:59:59.5', '2020-10-16 12:0:0.0']},
         'Tropflux': {'keyerror': None,
          'name': 'Tropflux',
          'nyears': 40,
          'time_period': ['1979-1-15 0:0:0.0', '2018-12-15 12:0:0.0']},
         'method': 'Nino (Nina) events = nino3.4 sstA > 0.75 (< -0.75) during DEC, zonal SSTA (meridional averaged [-5.0 ; 5.0]), the zonal SSTA maximum (minimum) is located for each event, the diversity is the interquartile range (IQR = Q3 - Q1), time series are linearly detrended, smoothing using a triangle shaped window of 5 points',
         'name': 'ENSO Diversity (interquartile range)',
         'ref': 'Using CDAT regridding',
         'time_frequency': 'monthly',
         'units': 'long'},
        'metric': {'datasets': "CMCC-CMS_r1i1p1; ERA-Interim's ts & HadISST's sst & Tropflux's sst; 's ",
         'method': 'The metric is the absolute value of the relative difference between model and observations values (M = 100 * abs[[model-obs] / obs])',
         'name': 'EnsoSstDiversity',
         'units': '%'}},
       'EnsoSstLonRmse': {'diagnostic': {'CMCC-CMS_r1i1p1': {'keyerror': None,
          'name': 'CMCC-CMS_r1i1p1',
          'nyears': 156,
          'time_period': ['1850-1-16 12:0:0.0', '2005-12-16 12:0:0.0']},
         'ERA-Interim': {'name': 'ERA-Interim',
          'nyears': 40,
          'time_period': ['1979-1-16 12:0:0.0', '2019-3-16 12:0:0.0']},
         'HadISST': {'name': 'HadISST',
          'nyears': 151,
          'time_period': ['1870-1-16 11:59:59.5', '2020-10-16 12:0:0.0']},
         'Tropflux': {'name': 'Tropflux',
          'nyears': 40,
          'time_period': ['1979-1-15 0:0:0.0', '2018-12-15 12:0:0.0']},
         'method': 'nino3.4 SSTA during DEC regressed against equatorial_pacific SSTA, time series are linearly detrended, smoothing using a triangle shaped window of 5 points, observations and model regridded to generic_1x1deg',
         'name': 'ENSO Zonal SSTA pattern',
         'ref': 'Using CDAT regridding and rms (uncentered and biased) calculation',
         'time_frequency': 'monthly',
         'units': 'C/C'},
        'metric': {'datasets': "CMCC-CMS_r1i1p1; ERA-Interim's ts & HadISST's sst & Tropflux's sst; 's ",
         'method': 'The metric is the statistical value between the model and the observations',
         'name': 'EnsoSstLonRmse',
         'units': 'C/C'}},
       'EnsoSstSkew': {'diagnostic': {'CMCC-CMS_r1i1p1': {'keyerror': None,
          'name': 'CMCC-CMS_r1i1p1',
          'nyears': 156,
          'time_period': ['1850-1-16 12:0:0.0', '2005-12-16 12:0:0.0']},
         'ERA-Interim': {'keyerror': None,
          'name': 'ERA-Interim',
          'nyears': 40,
          'time_period': ['1979-1-16 12:0:0.0', '2019-3-16 12:0:0.0']},
         'HadISST': {'keyerror': None,
          'name': 'HadISST',
          'nyears': 151,
          'time_period': ['1870-1-16 11:59:59.5', '2020-10-16 12:0:0.0']},
         'Tropflux': {'keyerror': None,
          'name': 'Tropflux',
          'nyears': 40,
          'time_period': ['1979-1-15 0:0:0.0', '2018-12-15 12:0:0.0']},
         'method': 'Standard deviation of nino3.4 sstA, time series are linearly detrended',
         'name': 'ENSO skewness',
         'ref': 'Using CDAT regression calculation',
         'time_frequency': 'monthly',
         'units': 'C'},
        'metric': {'datasets': "CMCC-CMS_r1i1p1; ERA-Interim's ts & HadISST's sst & Tropflux's sst; 's ",
         'method': 'The metric is the absolute value of the relative difference between model and observations values (M = 100 * abs[[model-obs] / obs])',
         'name': 'EnsoSstSkew',
         'units': '%'}},
       'EnsoSstTsRmse': {'diagnostic': {'CMCC-CMS_r1i1p1': {'keyerror': None,
          'name': 'CMCC-CMS_r1i1p1',
          'nyears': 156,
          'time_period': ['1850-1-16 12:0:0.0', '2005-12-16 12:0:0.0']},
         'ERA-Interim': {'name': 'ERA-Interim',
          'nyears': 40,
          'time_period': ['1979-1-16 12:0:0.0', '2019-3-16 12:0:0.0']},
         'HadISST': {'name': 'HadISST',
          'nyears': 151,
          'time_period': ['1870-1-16 11:59:59.5', '2020-10-16 12:0:0.0']},
         'Tropflux': {'name': 'Tropflux',
          'nyears': 40,
          'time_period': ['1979-1-15 0:0:0.0', '2018-12-15 12:0:0.0']},
         'method': 'nino3.4 SSTA during DEC regressed against nino3.4 SSTA during 6 years (centered on ENSO), time series are linearly detrended, smoothing using a triangle shaped window of 5 points',
         'name': 'ENSO life cyle SSTA pattern',
         'ref': 'Using CDAT regridding and rms (uncentered and biased) calculation',
         'time_frequency': 'monthly',
         'units': 'C/C'},
        'metric': {'datasets': "CMCC-CMS_r1i1p1; ERA-Interim's ts & HadISST's sst & Tropflux's sst; 's ",
         'method': 'The metric is the statistical value between the model and the observations',
         'name': 'EnsoSstTsRmse',
         'units': 'C/C'}},
       'SeasonalPrLatRmse': {'diagnostic': {'CMCC-CMS_r1i1p1': {'keyerror': None,
          'name': 'CMCC-CMS_r1i1p1',
          'nyears': 156,
          'time_period': ['1850-1-16 12:0:0.0', '2005-12-16 12:0:0.0']},
         'ERA-Interim': {'name': 'ERA-Interim',
          'nyears': 40,
          'time_period': ['1979-1-16 12:0:0.0', '2019-3-16 12:0:0.0']},
         'GPCPv2.3': {'name': 'GPCPv2.3',
          'nyears': 41,
          'time_period': ['1979-1-1 0:0:0.0', '2019-7-1 0:0:0.0']},
         'method': 'Meridional root mean square error of nino3_LatExt climatological pr STD, time series are linearly detrended, observations and model regridded to generic_1x1deg',
         'name': 'pr meridional seasonality RMSE',
         'ref': 'Using CDAT regridding and rms (uncentered and biased) calculation',
         'time_frequency': 'monthly',
         'units': 'mm/day'},
        'metric': {'datasets': "CMCC-CMS_r1i1p1; ERA-Interim's pr & GPCPv2.3's precip; 's ",
         'method': 'The metric is the statistical value between the model and the observations',
         'name': 'SeasonalPrLatRmse',
         'units': 'mm/day'}},
       'SeasonalPrLonRmse': {'diagnostic': {'CMCC-CMS_r1i1p1': {'keyerror': None,
          'name': 'CMCC-CMS_r1i1p1',
          'nyears': 156,
          'time_period': ['1850-1-16 12:0:0.0', '2005-12-16 12:0:0.0']},
         'ERA-Interim': {'name': 'ERA-Interim',
          'nyears': 40,
          'time_period': ['1979-1-16 12:0:0.0', '2019-3-16 12:0:0.0']},
         'GPCPv2.3': {'name': 'GPCPv2.3',
          'nyears': 41,
          'time_period': ['1979-1-1 0:0:0.0', '2019-7-1 0:0:0.0']},
         'method': 'Zonal root mean square error of equatorial_pacific climatological pr STD, time series are linearly detrended, observations and model regridded to generic_1x1deg',
         'name': 'pr zonal seasonality RMSE',
         'ref': 'Using CDAT regridding and rms (uncentered and biased) calculation',
         'time_frequency': 'monthly',
         'units': 'mm/day'},
        'metric': {'datasets': "CMCC-CMS_r1i1p1; ERA-Interim's pr & GPCPv2.3's precip; 's ",
         'method': 'The metric is the statistical value between the model and the observations',
         'name': 'SeasonalPrLonRmse',
         'units': 'mm/day'}},
       'SeasonalSstLonRmse': {'diagnostic': {'CMCC-CMS_r1i1p1': {'keyerror': None,
          'name': 'CMCC-CMS_r1i1p1',
          'nyears': 156,
          'time_period': ['1850-1-16 12:0:0.0', '2005-12-16 12:0:0.0']},
         'ERA-Interim': {'name': 'ERA-Interim',
          'nyears': 40,
          'time_period': ['1979-1-16 12:0:0.0', '2019-3-16 12:0:0.0']},
         'HadISST': {'name': 'HadISST',
          'nyears': 151,
          'time_period': ['1870-1-16 11:59:59.5', '2020-10-16 12:0:0.0']},
         'Tropflux': {'name': 'Tropflux',
          'nyears': 40,
          'time_period': ['1979-1-15 0:0:0.0', '2018-12-15 12:0:0.0']},
         'method': 'Zonal root mean square error of equatorial_pacific climatological sst STD, time series are linearly detrended, observations and model regridded to generic_1x1deg',
         'name': 'sst zonal seasonality RMSE',
         'ref': 'Using CDAT regridding and rms (uncentered and biased) calculation',
         'time_frequency': 'monthly',
         'units': 'C'},
        'metric': {'datasets': "CMCC-CMS_r1i1p1; ERA-Interim's ts & HadISST's sst & Tropflux's sst; 's ",
         'method': 'The metric is the statistical value between the model and the observations',
         'name': 'SeasonalSstLonRmse',
         'units': 'C'}},
       'SeasonalTauxLonRmse': {'diagnostic': {'CMCC-CMS_r1i1p1': {'keyerror': None,
          'name': 'CMCC-CMS_r1i1p1',
          'nyears': 156,
          'time_period': ['1850-1-16 12:0:0.0', '2005-12-16 12:0:0.0']},
         'ERA-Interim': {'name': 'ERA-Interim',
          'nyears': 40,
          'time_period': ['1979-1-16 12:0:0.0', '2019-3-16 12:0:0.0']},
         'Tropflux': {'name': 'Tropflux',
          'nyears': 40,
          'time_period': ['1979-1-15 0:0:0.0', '2018-12-15 12:0:0.0']},
         'method': 'Zonal root mean square error of equatorial_pacific climatological taux STD, time series are linearly detrended, observations and model regridded to generic_1x1deg',
         'name': 'taux zonal seasonality RMSE',
         'ref': 'Using CDAT regridding and rms (uncentered and biased) calculation',
         'time_frequency': 'monthly',
         'units': '1e-3 N/m2'},
        'metric': {'datasets': "CMCC-CMS_r1i1p1; ERA-Interim's tauu & Tropflux's taux; 's ",
         'method': 'The metric is the statistical value between the model and the observations',
         'name': 'SeasonalTauxLonRmse',
         'units': '1e-3 N/m2'}}},
      'name': 'Metrics Collection for ENSO performance'},
     'value': {'BiasPrLatRmse': {'diagnostic': {'CMCC-CMS_r1i1p1': {'value': None,
         'value_error': None},
        'ERA-Interim': {'value': None, 'value_error': None},
        'GPCPv2.3': {'value': None, 'value_error': None}},
       'metric': {'ERA-Interim': {'value': 1.8643469097126824,
         'value_error': None},
        'GPCPv2.3': {'value': 1.5727663588546843, 'value_error': None}}},
      'BiasPrLonRmse': {'diagnostic': {'CMCC-CMS_r1i1p1': {'value': None,
         'value_error': None},
        'ERA-Interim': {'value': None, 'value_error': None},
        'GPCPv2.3': {'value': None, 'value_error': None}},
       'metric': {'ERA-Interim': {'value': 1.5860238552380699,
         'value_error': None},
        'GPCPv2.3': {'value': 1.0386825785330056, 'value_error': None}}},
      'BiasSstLonRmse': {'diagnostic': {'CMCC-CMS_r1i1p1': {'value': None,
         'value_error': None},
        'ERA-Interim': {'value': None, 'value_error': None},
        'HadISST': {'value': None, 'value_error': None},
        'Tropflux': {'value': None, 'value_error': None}},
       'metric': {'ERA-Interim': {'value': 0.2279858319558705,
         'value_error': None},
        'HadISST': {'value': 0.3141430777245235, 'value_error': None},
        'Tropflux': {'value': 0.24955663334575562, 'value_error': None}}},
      'BiasTauxLonRmse': {'diagnostic': {'CMCC-CMS_r1i1p1': {'value': None,
         'value_error': None},
        'ERA-Interim': {'value': None, 'value_error': None},
        'Tropflux': {'value': None, 'value_error': None}},
       'metric': {'ERA-Interim': {'value': 4.474226246261977,
         'value_error': None},
        'Tropflux': {'value': 4.212789267032081, 'value_error': None}}},
      'EnsoAmpl': {'diagnostic': {'CMCC-CMS_r1i1p1': {'value': 0.9067222295714813,
         'value_error': 0.07259587831765683},
        'ERA-Interim': {'value': 0.8989844997845644,
         'value_error': 0.14214193002531866},
        'HadISST': {'value': 0.7665787872085695,
         'value_error': 0.06238329697691264},
        'Tropflux': {'value': 0.9039789553693535,
         'value_error': 0.14293162279134272}},
       'metric': {'ERA-Interim': {'value': 0.8607189321697079,
         'value_error': 24.02280027041718},
        'HadISST': {'value': 18.281674982584896,
         'value_error': 19.09573932046224},
        'Tropflux': {'value': 0.30346660017178917,
         'value_error': 23.890075046826283}}},
      'EnsoDuration': {'diagnostic': {'CMCC-CMS_r1i1p1': {'value': 14.0,
         'value_error': None},
        'ERA-Interim': {'value': 13.0, 'value_error': None},
        'HadISST': {'value': 13.0, 'value_error': None},
        'Tropflux': {'value': 13.0, 'value_error': None}},
       'metric': {'ERA-Interim': {'value': 7.6923076923076925,
         'value_error': None},
        'HadISST': {'value': 7.6923076923076925, 'value_error': None},
        'Tropflux': {'value': 7.6923076923076925, 'value_error': None}}},
      'EnsoSeasonality': {'diagnostic': {'CMCC-CMS_r1i1p1': {'value': 1.231204859833289,
         'value_error': 0.1974680347061568},
        'ERA-Interim': {'value': 2.0466846866656914,
         'value_error': 0.6513411033995022},
        'HadISST': {'value': 1.6639865947361325,
         'value_error': 0.2712772451657809},
        'Tropflux': {'value': 2.0532132553583624,
         'value_error': 0.6534187683977347}},
       'metric': {'ERA-Interim': {'value': 39.84394040495424,
         'value_error': 28.792377295508903},
        'HadISST': {'value': 26.00872725008173,
         'value_error': 23.929851499096802},
        'Tropflux': {'value': 40.03521764628401,
         'value_error': 28.700826643130988}}},
      'EnsoSstDiversity_2': {'diagnostic': {'CMCC-CMS_r1i1p1': {'value': 16.0,
         'value_error': None},
        'ERA-Interim': {'value': 33.25, 'value_error': None},
        'HadISST': {'value': 49.0, 'value_error': None},
        'Tropflux': {'value': 32.0, 'value_error': None}},
       'metric': {'ERA-Interim': {'value': 51.8796992481203,
         'value_error': None},
        'HadISST': {'value': 67.3469387755102, 'value_error': None},
        'Tropflux': {'value': 50.0, 'value_error': None}}},
      'EnsoSstLonRmse': {'diagnostic': {'CMCC-CMS_r1i1p1': {'value': None,
         'value_error': None},
        'ERA-Interim': {'value': None, 'value_error': None},
        'HadISST': {'value': None, 'value_error': None},
        'Tropflux': {'value': None, 'value_error': None}},
       'metric': {'ERA-Interim': {'value': 0.13747009167323185,
         'value_error': None},
        'HadISST': {'value': 0.16139402721507679, 'value_error': None},
        'Tropflux': {'value': 0.13893028817510408, 'value_error': None}}},
      'EnsoSstSkew': {'diagnostic': {'CMCC-CMS_r1i1p1': {'value': 0.18759310240447552,
         'value_error': 0.015019468577298658},
        'ERA-Interim': {'value': 0.39098111106809963,
         'value_error': 0.061819541653923164},
        'HadISST': {'value': 0.38989908235027515,
         'value_error': 0.03172953733021198},
        'Tropflux': {'value': 0.39744741059612115,
         'value_error': 0.06284195338099416}},
       'metric': {'ERA-Interim': {'value': 52.019906564795335,
         'value_error': 11.427800770734413},
        'HadISST': {'value': 51.88675457411136,
         'value_error': 7.767542965970545},
        'Tropflux': {'value': 52.8005221815109,
         'value_error': 11.241875335670466}}},
      'EnsoSstTsRmse': {'diagnostic': {'CMCC-CMS_r1i1p1': {'value': None,
         'value_error': None},
        'ERA-Interim': {'value': None, 'value_error': None},
        'HadISST': {'value': None, 'value_error': None},
        'Tropflux': {'value': None, 'value_error': None}},
       'metric': {'ERA-Interim': {'value': 0.14683978156855543,
         'value_error': None},
        'HadISST': {'value': 0.15034197083660594, 'value_error': None},
        'Tropflux': {'value': 0.14871852509890268, 'value_error': None}}},
      'SeasonalPrLatRmse': {'diagnostic': {'CMCC-CMS_r1i1p1': {'value': None,
         'value_error': None},
        'ERA-Interim': {'value': None, 'value_error': None},
        'GPCPv2.3': {'value': None, 'value_error': None}},
       'metric': {'ERA-Interim': {'value': 1.1562622358501051,
         'value_error': None},
        'GPCPv2.3': {'value': 0.9398978306235167, 'value_error': None}}},
      'SeasonalPrLonRmse': {'diagnostic': {'CMCC-CMS_r1i1p1': {'value': None,
         'value_error': None},
        'ERA-Interim': {'value': None, 'value_error': None},
        'GPCPv2.3': {'value': None, 'value_error': None}},
       'metric': {'ERA-Interim': {'value': 1.1132593148456569,
         'value_error': None},
        'GPCPv2.3': {'value': 0.7875028986036792, 'value_error': None}}},
      'SeasonalSstLonRmse': {'diagnostic': {'CMCC-CMS_r1i1p1': {'value': None,
         'value_error': None},
        'ERA-Interim': {'value': None, 'value_error': None},
        'HadISST': {'value': None, 'value_error': None},
        'Tropflux': {'value': None, 'value_error': None}},
       'metric': {'ERA-Interim': {'value': 0.1945714640588451,
         'value_error': None},
        'HadISST': {'value': 0.2008177642036725, 'value_error': None},
        'Tropflux': {'value': 0.19948056790143612, 'value_error': None}}},
      'SeasonalTauxLonRmse': {'diagnostic': {'CMCC-CMS_r1i1p1': {'value': None,
         'value_error': None},
        'ERA-Interim': {'value': None, 'value_error': None},
        'Tropflux': {'value': None, 'value_error': None}},
       'metric': {'ERA-Interim': {'value': 3.055333690012454,
         'value_error': None},
        'Tropflux': {'value': 2.812870464891856, 'value_error': None}}}}}},
   'CNRM-CM5': {'r10i1p1': {'metadata': {'description_of_the_collection': 'Describe which science question this collection is about',
      'metrics': {'BiasPrLatRmse': {'diagnostic': {'CNRM-CM5_r10i1p1': {'keyerror': None,
          'name': 'CNRM-CM5_r10i1p1',
          'nyears': 156,
          'time_period': ['1850-1-16 12:0:0.0', '2005-12-16 12:0:0.0']},
         'ERA-Interim': {'name': 'ERA-Interim',
          'nyears': 40,
          'time_period': ['1979-1-16 12:0:0.0', '2019-3-16 12:0:0.0']},
         'GPCPv2.3': {'name': 'GPCPv2.3',
          'nyears': 41,
          'time_period': ['1979-1-1 0:0:0.0', '2019-7-1 0:0:0.0']},
         'method': 'Meridional root mean square error of nino3_LatExt pr, time series are linearly detrended, observations and model regridded to generic_1x1deg',
         'name': 'pr Meridional RMSE',
         'ref': 'Using CDAT regridding and rms (uncentered and biased) calculation',
         'time_frequency': 'monthly',
         'units': 'mm/day'},
        'metric': {'datasets': "CNRM-CM5_r10i1p1; ERA-Interim's pr & GPCPv2.3's precip; 's ",
         'method': 'The metric is the statistical value between the model and the observations',
         'name': 'BiasPrLatRmse',
         'units': 'mm/day'}},
       'BiasPrLonRmse': {'diagnostic': {'CNRM-CM5_r10i1p1': {'keyerror': None,
          'name': 'CNRM-CM5_r10i1p1',
          'nyears': 156,
          'time_period': ['1850-1-16 12:0:0.0', '2005-12-16 12:0:0.0']},
         'ERA-Interim': {'name': 'ERA-Interim',
          'nyears': 40,
          'time_period': ['1979-1-16 12:0:0.0', '2019-3-16 12:0:0.0']},
         'GPCPv2.3': {'name': 'GPCPv2.3',
          'nyears': 41,
          'time_period': ['1979-1-1 0:0:0.0', '2019-7-1 0:0:0.0']},
         'method': 'Zonal root mean square error of equatorial_pacific pr, time series are linearly detrended, observations and model regridded to generic_1x1deg',
         'name': 'pr Zonal RMSE',
         'ref': 'Using CDAT regridding and rms (uncentered and biased) calculation',
         'time_frequency': 'monthly',
         'units': 'mm/day'},
        'metric': {'datasets': "CNRM-CM5_r10i1p1; ERA-Interim's pr & GPCPv2.3's precip; 's ",
         'method': 'The metric is the statistical value between the model and the observations',
         'name': 'BiasPrLonRmse',
         'units': 'mm/day'}},
       'BiasSstLonRmse': {'diagnostic': {'CNRM-CM5_r10i1p1': {'keyerror': None,
          'name': 'CNRM-CM5_r10i1p1',
          'nyears': 156,
          'time_period': ['1850-1-16 12:0:0.0', '2005-12-16 12:0:0.0']},
         'ERA-Interim': {'name': 'ERA-Interim',
          'nyears': 40,
          'time_period': ['1979-1-16 12:0:0.0', '2019-3-16 12:0:0.0']},
         'HadISST': {'name': 'HadISST',
          'nyears': 151,
          'time_period': ['1870-1-16 11:59:59.5', '2020-10-16 12:0:0.0']},
         'Tropflux': {'name': 'Tropflux',
          'nyears': 40,
          'time_period': ['1979-1-15 0:0:0.0', '2018-12-15 12:0:0.0']},
         'method': 'Zonal root mean square error of equatorial_pacific sst, time series are linearly detrended, observations and model regridded to generic_1x1deg',
         'name': 'sst Zonal RMSE',
         'ref': 'Using CDAT regridding and rms (uncentered and biased) calculation',
         'time_frequency': 'monthly',
         'units': 'C'},
        'metric': {'datasets': "CNRM-CM5_r10i1p1; ERA-Interim's ts & HadISST's sst & Tropflux's sst; 's ",
         'method': 'The metric is the statistical value between the model and the observations',
         'name': 'BiasSstLonRmse',
         'units': 'C'}},
       'BiasTauxLonRmse': {'diagnostic': {'CNRM-CM5_r10i1p1': {'keyerror': None,
          'name': 'CNRM-CM5_r10i1p1',
          'nyears': 156,
          'time_period': ['1850-1-16 12:0:0.0', '2005-12-16 12:0:0.0']},
         'ERA-Interim': {'name': 'ERA-Interim',
          'nyears': 40,
          'time_period': ['1979-1-16 12:0:0.0', '2019-3-16 12:0:0.0']},
         'Tropflux': {'name': 'Tropflux',
          'nyears': 40,
          'time_period': ['1979-1-15 0:0:0.0', '2018-12-15 12:0:0.0']},
         'method': 'Zonal root mean square error of equatorial_pacific taux, time series are linearly detrended, observations and model regridded to generic_1x1deg',
         'name': 'taux Zonal RMSE',
         'ref': 'Using CDAT regridding and rms (uncentered and biased) calculation',
         'time_frequency': 'monthly',
         'units': '1e-3 N/m2'},
        'metric': {'datasets': "CNRM-CM5_r10i1p1; ERA-Interim's tauu & Tropflux's taux; 's ",
         'method': 'The metric is the statistical value between the model and the observations',
         'name': 'BiasTauxLonRmse',
         'units': '1e-3 N/m2'}},
       'EnsoAmpl': {'diagnostic': {'CNRM-CM5_r10i1p1': {'keyerror': None,
          'name': 'CNRM-CM5_r10i1p1',
          'nyears': 156,
          'time_period': ['1850-1-16 12:0:0.0', '2005-12-16 12:0:0.0']},
         'ERA-Interim': {'keyerror': None,
          'name': 'ERA-Interim',
          'nyears': 40,
          'time_period': ['1979-1-16 12:0:0.0', '2019-3-16 12:0:0.0']},
         'HadISST': {'keyerror': None,
          'name': 'HadISST',
          'nyears': 151,
          'time_period': ['1870-1-16 11:59:59.5', '2020-10-16 12:0:0.0']},
         'Tropflux': {'keyerror': None,
          'name': 'Tropflux',
          'nyears': 40,
          'time_period': ['1979-1-15 0:0:0.0', '2018-12-15 12:0:0.0']},
         'method': 'Standard deviation of nino3.4 sstA, time series are linearly detrended',
         'name': 'ENSO amplitude',
         'ref': 'Using CDAT regression calculation',
         'time_frequency': 'monthly',
         'units': 'C'},
        'metric': {'datasets': "CNRM-CM5_r10i1p1; ERA-Interim's ts & HadISST's sst & Tropflux's sst; 's ",
         'method': 'The metric is the absolute value of the relative difference between model and observations values (M = 100 * abs[[model-obs] / obs])',
         'name': 'EnsoAmpl',
         'units': '%'}},
       'EnsoDuration': {'diagnostic': {'CNRM-CM5_r10i1p1': {'keyerror': None,
          'name': 'CNRM-CM5_r10i1p1',
          'nyears': 156,
          'time_period': ['1850-1-16 12:0:0.0', '2005-12-16 12:0:0.0']},
         'ERA-Interim': {'keyerror': None,
          'name': 'ERA-Interim',
          'nyears': 40,
          'time_period': ['1979-1-16 12:0:0.0', '2019-3-16 12:0:0.0']},
         'HadISST': {'keyerror': None,
          'name': 'HadISST',
          'nyears': 151,
          'time_period': ['1870-1-16 11:59:59.5', '2020-10-16 12:0:0.0']},
         'Tropflux': {'keyerror': None,
          'name': 'Tropflux',
          'nyears': 40,
          'time_period': ['1979-1-15 0:0:0.0', '2018-12-15 12:0:0.0']},
         'method': 'nino3.4 SSTA during DEC regressed against nino3.4 SSTA during 6 years (centered on ENSO), the duration is the number of consecutive months during which the regression is above 0.25, time series are linearly detrended, smoothing using a triangle shaped window of 5 points',
         'name': 'ENSO Duration based on life cyle SSTA pattern',
         'ref': 'Using CDAT',
         'time_frequency': 'monthly',
         'units': 'months'},
        'metric': {'datasets': "CNRM-CM5_r10i1p1; ERA-Interim's ts & HadISST's sst & Tropflux's sst; 's ",
         'method': 'The metric is the absolute value of the relative difference between model and observations values (M = 100 * abs[[model-obs] / obs])',
         'name': 'EnsoDuration',
         'units': '%'}},
       'EnsoSeasonality': {'diagnostic': {'CNRM-CM5_r10i1p1': {'keyerror': None,
          'name': 'CNRM-CM5_r10i1p1',
          'nyears': 156,
          'time_period': ['1850-1-16 12:0:0.0', '2005-12-16 12:0:0.0']},
         'ERA-Interim': {'keyerror': None,
          'name': 'ERA-Interim',
          'nyears': 40,
          'time_period': ['1979-1-16 12:0:0.0', '2019-3-16 12:0:0.0']},
         'HadISST': {'keyerror': None,
          'name': 'HadISST',
          'nyears': 151,
          'time_period': ['1870-1-16 11:59:59.5', '2020-10-16 12:0:0.0']},
         'Tropflux': {'keyerror': None,
          'name': 'Tropflux',
          'nyears': 40,
          'time_period': ['1979-1-15 0:0:0.0', '2018-12-15 12:0:0.0']},
         'method': 'Ratio between NDJ and MAM standard deviation nino3.4 sstA, time series are linearly detrended',
         'name': 'ENSO seasonality',
         'ref': 'Using CDAT std dev calculation',
         'time_frequency': 'monthly',
         'units': 'C/C'},
        'metric': {'datasets': "CNRM-CM5_r10i1p1; ERA-Interim's ts & HadISST's sst & Tropflux's sst; 's ",
         'method': 'The metric is the absolute value of the relative difference between model and observations values (M = 100 * abs[[model-obs] / obs])',
         'name': 'EnsoSeasonality',
         'units': '%'}},
       'EnsoSstDiversity_2': {'diagnostic': {'CNRM-CM5_r10i1p1': {'keyerror': None,
          'name': 'CNRM-CM5_r10i1p1',
          'nyears': 156,
          'time_period': ['1850-1-16 12:0:0.0', '2005-12-16 12:0:0.0']},
         'ERA-Interim': {'keyerror': None,
          'name': 'ERA-Interim',
          'nyears': 40,
          'time_period': ['1979-1-16 12:0:0.0', '2019-3-16 12:0:0.0']},
         'HadISST': {'keyerror': None,
          'name': 'HadISST',
          'nyears': 151,
          'time_period': ['1870-1-16 11:59:59.5', '2020-10-16 12:0:0.0']},
         'Tropflux': {'keyerror': None,
          'name': 'Tropflux',
          'nyears': 40,
          'time_period': ['1979-1-15 0:0:0.0', '2018-12-15 12:0:0.0']},
         'method': 'Nino (Nina) events = nino3.4 sstA > 0.75 (< -0.75) during DEC, zonal SSTA (meridional averaged [-5.0 ; 5.0]), the zonal SSTA maximum (minimum) is located for each event, the diversity is the interquartile range (IQR = Q3 - Q1), time series are linearly detrended, smoothing using a triangle shaped window of 5 points',
         'name': 'ENSO Diversity (interquartile range)',
         'ref': 'Using CDAT regridding',
         'time_frequency': 'monthly',
         'units': 'long'},
        'metric': {'datasets': "CNRM-CM5_r10i1p1; ERA-Interim's ts & HadISST's sst & Tropflux's sst; 's ",
         'method': 'The metric is the absolute value of the relative difference between model and observations values (M = 100 * abs[[model-obs] / obs])',
         'name': 'EnsoSstDiversity',
         'units': '%'}},
       'EnsoSstLonRmse': {'diagnostic': {'CNRM-CM5_r10i1p1': {'keyerror': None,
          'name': 'CNRM-CM5_r10i1p1',
          'nyears': 156,
          'time_period': ['1850-1-16 12:0:0.0', '2005-12-16 12:0:0.0']},
         'ERA-Interim': {'name': 'ERA-Interim',
          'nyears': 40,
          'time_period': ['1979-1-16 12:0:0.0', '2019-3-16 12:0:0.0']},
         'HadISST': {'name': 'HadISST',
          'nyears': 151,
          'time_period': ['1870-1-16 11:59:59.5', '2020-10-16 12:0:0.0']},
         'Tropflux': {'name': 'Tropflux',
          'nyears': 40,
          'time_period': ['1979-1-15 0:0:0.0', '2018-12-15 12:0:0.0']},
         'method': 'nino3.4 SSTA during DEC regressed against equatorial_pacific SSTA, time series are linearly detrended, smoothing using a triangle shaped window of 5 points, observations and model regridded to generic_1x1deg',
         'name': 'ENSO Zonal SSTA pattern',
         'ref': 'Using CDAT regridding and rms (uncentered and biased) calculation',
         'time_frequency': 'monthly',
         'units': 'C/C'},
        'metric': {'datasets': "CNRM-CM5_r10i1p1; ERA-Interim's ts & HadISST's sst & Tropflux's sst; 's ",
         'method': 'The metric is the statistical value between the model and the observations',
         'name': 'EnsoSstLonRmse',
         'units': 'C/C'}},
       'EnsoSstSkew': {'diagnostic': {'CNRM-CM5_r10i1p1': {'keyerror': None,
          'name': 'CNRM-CM5_r10i1p1',
          'nyears': 156,
          'time_period': ['1850-1-16 12:0:0.0', '2005-12-16 12:0:0.0']},
         'ERA-Interim': {'keyerror': None,
          'name': 'ERA-Interim',
          'nyears': 40,
          'time_period': ['1979-1-16 12:0:0.0', '2019-3-16 12:0:0.0']},
         'HadISST': {'keyerror': None,
          'name': 'HadISST',
          'nyears': 151,
          'time_period': ['1870-1-16 11:59:59.5', '2020-10-16 12:0:0.0']},
         'Tropflux': {'keyerror': None,
          'name': 'Tropflux',
          'nyears': 40,
          'time_period': ['1979-1-15 0:0:0.0', '2018-12-15 12:0:0.0']},
         'method': 'Standard deviation of nino3.4 sstA, time series are linearly detrended',
         'name': 'ENSO skewness',
         'ref': 'Using CDAT regression calculation',
         'time_frequency': 'monthly',
         'units': 'C'},
        'metric': {'datasets': "CNRM-CM5_r10i1p1; ERA-Interim's ts & HadISST's sst & Tropflux's sst; 's ",
         'method': 'The metric is the absolute value of the relative difference between model and observations values (M = 100 * abs[[model-obs] / obs])',
         'name': 'EnsoSstSkew',
         'units': '%'}},
       'EnsoSstTsRmse': {'diagnostic': {'CNRM-CM5_r10i1p1': {'keyerror': None,
          'name': 'CNRM-CM5_r10i1p1',
          'nyears': 156,
          'time_period': ['1850-1-16 12:0:0.0', '2005-12-16 12:0:0.0']},
         'ERA-Interim': {'name': 'ERA-Interim',
          'nyears': 40,
          'time_period': ['1979-1-16 12:0:0.0', '2019-3-16 12:0:0.0']},
         'HadISST': {'name': 'HadISST',
          'nyears': 151,
          'time_period': ['1870-1-16 11:59:59.5', '2020-10-16 12:0:0.0']},
         'Tropflux': {'name': 'Tropflux',
          'nyears': 40,
          'time_period': ['1979-1-15 0:0:0.0', '2018-12-15 12:0:0.0']},
         'method': 'nino3.4 SSTA during DEC regressed against nino3.4 SSTA during 6 years (centered on ENSO), time series are linearly detrended, smoothing using a triangle shaped window of 5 points',
         'name': 'ENSO life cyle SSTA pattern',
         'ref': 'Using CDAT regridding and rms (uncentered and biased) calculation',
         'time_frequency': 'monthly',
         'units': 'C/C'},
        'metric': {'datasets': "CNRM-CM5_r10i1p1; ERA-Interim's ts & HadISST's sst & Tropflux's sst; 's ",
         'method': 'The metric is the statistical value between the model and the observations',
         'name': 'EnsoSstTsRmse',
         'units': 'C/C'}},
       'SeasonalPrLatRmse': {'diagnostic': {'CNRM-CM5_r10i1p1': {'keyerror': None,
          'name': 'CNRM-CM5_r10i1p1',
          'nyears': 156,
          'time_period': ['1850-1-16 12:0:0.0', '2005-12-16 12:0:0.0']},
         'ERA-Interim': {'name': 'ERA-Interim',
          'nyears': 40,
          'time_period': ['1979-1-16 12:0:0.0', '2019-3-16 12:0:0.0']},
         'GPCPv2.3': {'name': 'GPCPv2.3',
          'nyears': 41,
          'time_period': ['1979-1-1 0:0:0.0', '2019-7-1 0:0:0.0']},
         'method': 'Meridional root mean square error of nino3_LatExt climatological pr STD, time series are linearly detrended, observations and model regridded to generic_1x1deg',
         'name': 'pr meridional seasonality RMSE',
         'ref': 'Using CDAT regridding and rms (uncentered and biased) calculation',
         'time_frequency': 'monthly',
         'units': 'mm/day'},
        'metric': {'datasets': "CNRM-CM5_r10i1p1; ERA-Interim's pr & GPCPv2.3's precip; 's ",
         'method': 'The metric is the statistical value between the model and the observations',
         'name': 'SeasonalPrLatRmse',
         'units': 'mm/day'}},
       'SeasonalPrLonRmse': {'diagnostic': {'CNRM-CM5_r10i1p1': {'keyerror': None,
          'name': 'CNRM-CM5_r10i1p1',
          'nyears': 156,
          'time_period': ['1850-1-16 12:0:0.0', '2005-12-16 12:0:0.0']},
         'ERA-Interim': {'name': 'ERA-Interim',
          'nyears': 40,
          'time_period': ['1979-1-16 12:0:0.0', '2019-3-16 12:0:0.0']},
         'GPCPv2.3': {'name': 'GPCPv2.3',
          'nyears': 41,
          'time_period': ['1979-1-1 0:0:0.0', '2019-7-1 0:0:0.0']},
         'method': 'Zonal root mean square error of equatorial_pacific climatological pr STD, time series are linearly detrended, observations and model regridded to generic_1x1deg',
         'name': 'pr zonal seasonality RMSE',
         'ref': 'Using CDAT regridding and rms (uncentered and biased) calculation',
         'time_frequency': 'monthly',
         'units': 'mm/day'},
        'metric': {'datasets': "CNRM-CM5_r10i1p1; ERA-Interim's pr & GPCPv2.3's precip; 's ",
         'method': 'The metric is the statistical value between the model and the observations',
         'name': 'SeasonalPrLonRmse',
         'units': 'mm/day'}},
       'SeasonalSstLonRmse': {'diagnostic': {'CNRM-CM5_r10i1p1': {'keyerror': None,
          'name': 'CNRM-CM5_r10i1p1',
          'nyears': 156,
          'time_period': ['1850-1-16 12:0:0.0', '2005-12-16 12:0:0.0']},
         'ERA-Interim': {'name': 'ERA-Interim',
          'nyears': 40,
          'time_period': ['1979-1-16 12:0:0.0', '2019-3-16 12:0:0.0']},
         'HadISST': {'name': 'HadISST',
          'nyears': 151,
          'time_period': ['1870-1-16 11:59:59.5', '2020-10-16 12:0:0.0']},
         'Tropflux': {'name': 'Tropflux',
          'nyears': 40,
          'time_period': ['1979-1-15 0:0:0.0', '2018-12-15 12:0:0.0']},
         'method': 'Zonal root mean square error of equatorial_pacific climatological sst STD, time series are linearly detrended, observations and model regridded to generic_1x1deg',
         'name': 'sst zonal seasonality RMSE',
         'ref': 'Using CDAT regridding and rms (uncentered and biased) calculation',
         'time_frequency': 'monthly',
         'units': 'C'},
        'metric': {'datasets': "CNRM-CM5_r10i1p1; ERA-Interim's ts & HadISST's sst & Tropflux's sst; 's ",
         'method': 'The metric is the statistical value between the model and the observations',
         'name': 'SeasonalSstLonRmse',
         'units': 'C'}},
       'SeasonalTauxLonRmse': {'diagnostic': {'CNRM-CM5_r10i1p1': {'keyerror': None,
          'name': 'CNRM-CM5_r10i1p1',
          'nyears': 156,
          'time_period': ['1850-1-16 12:0:0.0', '2005-12-16 12:0:0.0']},
         'ERA-Interim': {'name': 'ERA-Interim',
          'nyears': 40,
          'time_period': ['1979-1-16 12:0:0.0', '2019-3-16 12:0:0.0']},
         'Tropflux': {'name': 'Tropflux',
          'nyears': 40,
          'time_period': ['1979-1-15 0:0:0.0', '2018-12-15 12:0:0.0']},
         'method': 'Zonal root mean square error of equatorial_pacific climatological taux STD, time series are linearly detrended, observations and model regridded to generic_1x1deg',
         'name': 'taux zonal seasonality RMSE',
         'ref': 'Using CDAT regridding and rms (uncentered and biased) calculation',
         'time_frequency': 'monthly',
         'units': '1e-3 N/m2'},
        'metric': {'datasets': "CNRM-CM5_r10i1p1; ERA-Interim's tauu & Tropflux's taux; 's ",
         'method': 'The metric is the statistical value between the model and the observations',
         'name': 'SeasonalTauxLonRmse',
         'units': '1e-3 N/m2'}}},
      'name': 'Metrics Collection for ENSO performance'},
     'value': {'BiasPrLatRmse': {'diagnostic': {'CNRM-CM5_r10i1p1': {'value': None,
         'value_error': None},
        'ERA-Interim': {'value': None, 'value_error': None},
        'GPCPv2.3': {'value': None, 'value_error': None}},
       'metric': {'ERA-Interim': {'value': 1.6327526926915785,
         'value_error': None},
        'GPCPv2.3': {'value': 1.8251856205463148, 'value_error': None}}},
      'BiasPrLonRmse': {'diagnostic': {'CNRM-CM5_r10i1p1': {'value': None,
         'value_error': None},
        'ERA-Interim': {'value': None, 'value_error': None},
        'GPCPv2.3': {'value': None, 'value_error': None}},
       'metric': {'ERA-Interim': {'value': 1.046767574816917,
         'value_error': None},
        'GPCPv2.3': {'value': 0.5259991472697271, 'value_error': None}}},
      'BiasSstLonRmse': {'diagnostic': {'CNRM-CM5_r10i1p1': {'value': None,
         'value_error': None},
        'ERA-Interim': {'value': None, 'value_error': None},
        'HadISST': {'value': None, 'value_error': None},
        'Tropflux': {'value': None, 'value_error': None}},
       'metric': {'ERA-Interim': {'value': 0.948739957544449,
         'value_error': None},
        'HadISST': {'value': 0.8063245203886426, 'value_error': None},
        'Tropflux': {'value': 0.992217835256582, 'value_error': None}}},
      'BiasTauxLonRmse': {'diagnostic': {'CNRM-CM5_r10i1p1': {'value': None,
         'value_error': None},
        'ERA-Interim': {'value': None, 'value_error': None},
        'Tropflux': {'value': None, 'value_error': None}},
       'metric': {'ERA-Interim': {'value': 9.02148868583172,
         'value_error': None},
        'Tropflux': {'value': 8.745625504957925, 'value_error': None}}},
      'EnsoAmpl': {'diagnostic': {'CNRM-CM5_r10i1p1': {'value': 0.8070603664101351,
         'value_error': 0.06461654324125604},
        'ERA-Interim': {'value': 0.8989844997845644,
         'value_error': 0.14214193002531866},
        'HadISST': {'value': 0.7665787872085695,
         'value_error': 0.06238329697691264},
        'Tropflux': {'value': 0.9039789553693535,
         'value_error': 0.14293162279134272}},
       'metric': {'ERA-Interim': {'value': 10.225330180493467,
         'value_error': 21.38234770929033},
        'HadISST': {'value': 5.280811297815292,
         'value_error': 16.996841888533094},
        'Tropflux': {'value': 10.721332436286499,
         'value_error': 21.264210903894305}}},
      'EnsoDuration': {'diagnostic': {'CNRM-CM5_r10i1p1': {'value': 11.0,
         'value_error': None},
        'ERA-Interim': {'value': 13.0, 'value_error': None},
        'HadISST': {'value': 13.0, 'value_error': None},
        'Tropflux': {'value': 13.0, 'value_error': None}},
       'metric': {'ERA-Interim': {'value': 15.384615384615385,
         'value_error': None},
        'HadISST': {'value': 15.384615384615385, 'value_error': None},
        'Tropflux': {'value': 15.384615384615385, 'value_error': None}}},
      'EnsoSeasonality': {'diagnostic': {'CNRM-CM5_r10i1p1': {'value': 1.870275195396393,
         'value_error': 0.2999659758040646},
        'ERA-Interim': {'value': 2.0466846866656914,
         'value_error': 0.6513411033995022},
        'HadISST': {'value': 1.6639865947361325,
         'value_error': 0.2712772451657809},
        'Tropflux': {'value': 2.0532132553583624,
         'value_error': 0.6534187683977347}},
       'metric': {'ERA-Interim': {'value': 8.619280361973676,
         'value_error': 43.737375337826464},
        'HadISST': {'value': 12.397251354838755,
         'value_error': 36.35090239518712},
        'Tropflux': {'value': 8.909842145454098,
         'value_error': 43.59830431898078}}},
      'EnsoSstDiversity_2': {'diagnostic': {'CNRM-CM5_r10i1p1': {'value': 30.75,
         'value_error': None},
        'ERA-Interim': {'value': 33.25, 'value_error': None},
        'HadISST': {'value': 49.0, 'value_error': None},
        'Tropflux': {'value': 32.0, 'value_error': None}},
       'metric': {'ERA-Interim': {'value': 7.518796992481203,
         'value_error': None},
        'HadISST': {'value': 37.244897959183675, 'value_error': None},
        'Tropflux': {'value': 3.90625, 'value_error': None}}},
      'EnsoSstLonRmse': {'diagnostic': {'CNRM-CM5_r10i1p1': {'value': None,
         'value_error': None},
        'ERA-Interim': {'value': None, 'value_error': None},
        'HadISST': {'value': None, 'value_error': None},
        'Tropflux': {'value': None, 'value_error': None}},
       'metric': {'ERA-Interim': {'value': 0.07207700769892798,
         'value_error': None},
        'HadISST': {'value': 0.08462221051570018, 'value_error': None},
        'Tropflux': {'value': 0.06945097796871978, 'value_error': None}}},
      'EnsoSstSkew': {'diagnostic': {'CNRM-CM5_r10i1p1': {'value': 0.1487809659720711,
         'value_error': 0.011912010701222619},
        'ERA-Interim': {'value': 0.39098111106809963,
         'value_error': 0.061819541653923164},
        'HadISST': {'value': 0.38989908235027515,
         'value_error': 0.03172953733021198},
        'Tropflux': {'value': 0.39744741059612115,
         'value_error': 0.06284195338099416}},
       'metric': {'ERA-Interim': {'value': 61.946763728399915,
         'value_error': 9.06344218317955},
        'HadISST': {'value': 61.84116026248808,
         'value_error': 6.160474617104538},
        'Tropflux': {'value': 62.56587362113686,
         'value_error': 8.915983851966775}}},
      'EnsoSstTsRmse': {'diagnostic': {'CNRM-CM5_r10i1p1': {'value': None,
         'value_error': None},
        'ERA-Interim': {'value': None, 'value_error': None},
        'HadISST': {'value': None, 'value_error': None},
        'Tropflux': {'value': None, 'value_error': None}},
       'metric': {'ERA-Interim': {'value': 0.21651756318496246,
         'value_error': None},
        'HadISST': {'value': 0.21868079561600035, 'value_error': None},
        'Tropflux': {'value': 0.21845515534715126, 'value_error': None}}},
      'SeasonalPrLatRmse': {'diagnostic': {'CNRM-CM5_r10i1p1': {'value': None,
         'value_error': None},
        'ERA-Interim': {'value': None, 'value_error': None},
        'GPCPv2.3': {'value': None, 'value_error': None}},
       'metric': {'ERA-Interim': {'value': 0.9125054299883032,
         'value_error': None},
        'GPCPv2.3': {'value': 0.9725046255209019, 'value_error': None}}},
      'SeasonalPrLonRmse': {'diagnostic': {'CNRM-CM5_r10i1p1': {'value': None,
         'value_error': None},
        'ERA-Interim': {'value': None, 'value_error': None},
        'GPCPv2.3': {'value': None, 'value_error': None}},
       'metric': {'ERA-Interim': {'value': 0.3105167981832129,
         'value_error': None},
        'GPCPv2.3': {'value': 0.3279126271711382, 'value_error': None}}},
      'SeasonalSstLonRmse': {'diagnostic': {'CNRM-CM5_r10i1p1': {'value': None,
         'value_error': None},
        'ERA-Interim': {'value': None, 'value_error': None},
        'HadISST': {'value': None, 'value_error': None},
        'Tropflux': {'value': None, 'value_error': None}},
       'metric': {'ERA-Interim': {'value': 0.21056196101117403,
         'value_error': None},
        'HadISST': {'value': 0.2169178976876737, 'value_error': None},
        'Tropflux': {'value': 0.20633625518804052, 'value_error': None}}},
      'SeasonalTauxLonRmse': {'diagnostic': {'CNRM-CM5_r10i1p1': {'value': None,
         'value_error': None},
        'ERA-Interim': {'value': None, 'value_error': None},
        'Tropflux': {'value': None, 'value_error': None}},
       'metric': {'ERA-Interim': {'value': 2.3825457014095948,
         'value_error': None},
        'Tropflux': {'value': 2.1723026432316934, 'value_error': None}}}}},
    'r1i1p1': {'metadata': {'description_of_the_collection': 'Describe which science question this collection is about',
      'metrics': {'BiasPrLatRmse': {'diagnostic': {'CNRM-CM5_r1i1p1': {'keyerror': None,
          'name': 'CNRM-CM5_r1i1p1',
          'nyears': 156,
          'time_period': ['1850-1-16 12:0:0.0', '2005-12-16 12:0:0.0']},
         'ERA-Interim': {'name': 'ERA-Interim',
          'nyears': 40,
          'time_period': ['1979-1-16 12:0:0.0', '2019-3-16 12:0:0.0']},
         'GPCPv2.3': {'name': 'GPCPv2.3',
          'nyears': 41,
          'time_period': ['1979-1-1 0:0:0.0', '2019-7-1 0:0:0.0']},
         'method': 'Meridional root mean square error of nino3_LatExt pr, time series are linearly detrended, observations and model regridded to generic_1x1deg',
         'name': 'pr Meridional RMSE',
         'ref': 'Using CDAT regridding and rms (uncentered and biased) calculation',
         'time_frequency': 'monthly',
         'units': 'mm/day'},
        'metric': {'datasets': "CNRM-CM5_r1i1p1; ERA-Interim's pr & GPCPv2.3's precip; 's ",
         'method': 'The metric is the statistical value between the model and the observations',
         'name': 'BiasPrLatRmse',
         'units': 'mm/day'}},
       'BiasPrLonRmse': {'diagnostic': {'CNRM-CM5_r1i1p1': {'keyerror': None,
          'name': 'CNRM-CM5_r1i1p1',
          'nyears': 156,
          'time_period': ['1850-1-16 12:0:0.0', '2005-12-16 12:0:0.0']},
         'ERA-Interim': {'name': 'ERA-Interim',
          'nyears': 40,
          'time_period': ['1979-1-16 12:0:0.0', '2019-3-16 12:0:0.0']},
         'GPCPv2.3': {'name': 'GPCPv2.3',
          'nyears': 41,
          'time_period': ['1979-1-1 0:0:0.0', '2019-7-1 0:0:0.0']},
         'method': 'Zonal root mean square error of equatorial_pacific pr, time series are linearly detrended, observations and model regridded to generic_1x1deg',
         'name': 'pr Zonal RMSE',
         'ref': 'Using CDAT regridding and rms (uncentered and biased) calculation',
         'time_frequency': 'monthly',
         'units': 'mm/day'},
        'metric': {'datasets': "CNRM-CM5_r1i1p1; ERA-Interim's pr & GPCPv2.3's precip; 's ",
         'method': 'The metric is the statistical value between the model and the observations',
         'name': 'BiasPrLonRmse',
         'units': 'mm/day'}},
       'BiasSstLonRmse': {'diagnostic': {'CNRM-CM5_r1i1p1': {'keyerror': None,
          'name': 'CNRM-CM5_r1i1p1',
          'nyears': 156,
          'time_period': ['1850-1-16 12:0:0.0', '2005-12-16 12:0:0.0']},
         'ERA-Interim': {'name': 'ERA-Interim',
          'nyears': 40,
          'time_period': ['1979-1-16 12:0:0.0', '2019-3-16 12:0:0.0']},
         'HadISST': {'name': 'HadISST',
          'nyears': 151,
          'time_period': ['1870-1-16 11:59:59.5', '2020-10-16 12:0:0.0']},
         'Tropflux': {'name': 'Tropflux',
          'nyears': 40,
          'time_period': ['1979-1-15 0:0:0.0', '2018-12-15 12:0:0.0']},
         'method': 'Zonal root mean square error of equatorial_pacific sst, time series are linearly detrended, observations and model regridded to generic_1x1deg',
         'name': 'sst Zonal RMSE',
         'ref': 'Using CDAT regridding and rms (uncentered and biased) calculation',
         'time_frequency': 'monthly',
         'units': 'C'},
        'metric': {'datasets': "CNRM-CM5_r1i1p1; ERA-Interim's ts & HadISST's sst & Tropflux's sst; 's ",
         'method': 'The metric is the statistical value between the model and the observations',
         'name': 'BiasSstLonRmse',
         'units': 'C'}},
       'BiasTauxLonRmse': {'diagnostic': {'CNRM-CM5_r1i1p1': {'keyerror': None,
          'name': 'CNRM-CM5_r1i1p1',
          'nyears': 156,
          'time_period': ['1850-1-16 12:0:0.0', '2005-12-16 12:0:0.0']},
         'ERA-Interim': {'name': 'ERA-Interim',
          'nyears': 40,
          'time_period': ['1979-1-16 12:0:0.0', '2019-3-16 12:0:0.0']},
         'Tropflux': {'name': 'Tropflux',
          'nyears': 40,
          'time_period': ['1979-1-15 0:0:0.0', '2018-12-15 12:0:0.0']},
         'method': 'Zonal root mean square error of equatorial_pacific taux, time series are linearly detrended, observations and model regridded to generic_1x1deg',
         'name': 'taux Zonal RMSE',
         'ref': 'Using CDAT regridding and rms (uncentered and biased) calculation',
         'time_frequency': 'monthly',
         'units': '1e-3 N/m2'},
        'metric': {'datasets': "CNRM-CM5_r1i1p1; ERA-Interim's tauu & Tropflux's taux; 's ",
         'method': 'The metric is the statistical value between the model and the observations',
         'name': 'BiasTauxLonRmse',
         'units': '1e-3 N/m2'}},
       'EnsoAmpl': {'diagnostic': {'CNRM-CM5_r1i1p1': {'keyerror': None,
          'name': 'CNRM-CM5_r1i1p1',
          'nyears': 156,
          'time_period': ['1850-1-16 12:0:0.0', '2005-12-16 12:0:0.0']},
         'ERA-Interim': {'keyerror': None,
          'name': 'ERA-Interim',
          'nyears': 40,
          'time_period': ['1979-1-16 12:0:0.0', '2019-3-16 12:0:0.0']},
         'HadISST': {'keyerror': None,
          'name': 'HadISST',
          'nyears': 151,
          'time_period': ['1870-1-16 11:59:59.5', '2020-10-16 12:0:0.0']},
         'Tropflux': {'keyerror': None,
          'name': 'Tropflux',
          'nyears': 40,
          'time_period': ['1979-1-15 0:0:0.0', '2018-12-15 12:0:0.0']},
         'method': 'Standard deviation of nino3.4 sstA, time series are linearly detrended',
         'name': 'ENSO amplitude',
         'ref': 'Using CDAT regression calculation',
         'time_frequency': 'monthly',
         'units': 'C'},
        'metric': {'datasets': "CNRM-CM5_r1i1p1; ERA-Interim's ts & HadISST's sst & Tropflux's sst; 's ",
         'method': 'The metric is the absolute value of the relative difference between model and observations values (M = 100 * abs[[model-obs] / obs])',
         'name': 'EnsoAmpl',
         'units': '%'}},
       'EnsoDuration': {'diagnostic': {'CNRM-CM5_r1i1p1': {'keyerror': None,
          'name': 'CNRM-CM5_r1i1p1',
          'nyears': 156,
          'time_period': ['1850-1-16 12:0:0.0', '2005-12-16 12:0:0.0']},
         'ERA-Interim': {'keyerror': None,
          'name': 'ERA-Interim',
          'nyears': 40,
          'time_period': ['1979-1-16 12:0:0.0', '2019-3-16 12:0:0.0']},
         'HadISST': {'keyerror': None,
          'name': 'HadISST',
          'nyears': 151,
          'time_period': ['1870-1-16 11:59:59.5', '2020-10-16 12:0:0.0']},
         'Tropflux': {'keyerror': None,
          'name': 'Tropflux',
          'nyears': 40,
          'time_period': ['1979-1-15 0:0:0.0', '2018-12-15 12:0:0.0']},
         'method': 'nino3.4 SSTA during DEC regressed against nino3.4 SSTA during 6 years (centered on ENSO), the duration is the number of consecutive months during which the regression is above 0.25, time series are linearly detrended, smoothing using a triangle shaped window of 5 points',
         'name': 'ENSO Duration based on life cyle SSTA pattern',
         'ref': 'Using CDAT',
         'time_frequency': 'monthly',
         'units': 'months'},
        'metric': {'datasets': "CNRM-CM5_r1i1p1; ERA-Interim's ts & HadISST's sst & Tropflux's sst; 's ",
         'method': 'The metric is the absolute value of the relative difference between model and observations values (M = 100 * abs[[model-obs] / obs])',
         'name': 'EnsoDuration',
         'units': '%'}},
       'EnsoSeasonality': {'diagnostic': {'CNRM-CM5_r1i1p1': {'keyerror': None,
          'name': 'CNRM-CM5_r1i1p1',
          'nyears': 156,
          'time_period': ['1850-1-16 12:0:0.0', '2005-12-16 12:0:0.0']},
         'ERA-Interim': {'keyerror': None,
          'name': 'ERA-Interim',
          'nyears': 40,
          'time_period': ['1979-1-16 12:0:0.0', '2019-3-16 12:0:0.0']},
         'HadISST': {'keyerror': None,
          'name': 'HadISST',
          'nyears': 151,
          'time_period': ['1870-1-16 11:59:59.5', '2020-10-16 12:0:0.0']},
         'Tropflux': {'keyerror': None,
          'name': 'Tropflux',
          'nyears': 40,
          'time_period': ['1979-1-15 0:0:0.0', '2018-12-15 12:0:0.0']},
         'method': 'Ratio between NDJ and MAM standard deviation nino3.4 sstA, time series are linearly detrended',
         'name': 'ENSO seasonality',
         'ref': 'Using CDAT std dev calculation',
         'time_frequency': 'monthly',
         'units': 'C/C'},
        'metric': {'datasets': "CNRM-CM5_r1i1p1; ERA-Interim's ts & HadISST's sst & Tropflux's sst; 's ",
         'method': 'The metric is the absolute value of the relative difference between model and observations values (M = 100 * abs[[model-obs] / obs])',
         'name': 'EnsoSeasonality',
         'units': '%'}},
       'EnsoSstDiversity_2': {'diagnostic': {'CNRM-CM5_r1i1p1': {'keyerror': None,
          'name': 'CNRM-CM5_r1i1p1',
          'nyears': 156,
          'time_period': ['1850-1-16 12:0:0.0', '2005-12-16 12:0:0.0']},
         'ERA-Interim': {'keyerror': None,
          'name': 'ERA-Interim',
          'nyears': 40,
          'time_period': ['1979-1-16 12:0:0.0', '2019-3-16 12:0:0.0']},
         'HadISST': {'keyerror': None,
          'name': 'HadISST',
          'nyears': 151,
          'time_period': ['1870-1-16 11:59:59.5', '2020-10-16 12:0:0.0']},
         'Tropflux': {'keyerror': None,
          'name': 'Tropflux',
          'nyears': 40,
          'time_period': ['1979-1-15 0:0:0.0', '2018-12-15 12:0:0.0']},
         'method': 'Nino (Nina) events = nino3.4 sstA > 0.75 (< -0.75) during DEC, zonal SSTA (meridional averaged [-5.0 ; 5.0]), the zonal SSTA maximum (minimum) is located for each event, the diversity is the interquartile range (IQR = Q3 - Q1), time series are linearly detrended, smoothing using a triangle shaped window of 5 points',
         'name': 'ENSO Diversity (interquartile range)',
         'ref': 'Using CDAT regridding',
         'time_frequency': 'monthly',
         'units': 'long'},
        'metric': {'datasets': "CNRM-CM5_r1i1p1; ERA-Interim's ts & HadISST's sst & Tropflux's sst; 's ",
         'method': 'The metric is the absolute value of the relative difference between model and observations values (M = 100 * abs[[model-obs] / obs])',
         'name': 'EnsoSstDiversity',
         'units': '%'}},
       'EnsoSstLonRmse': {'diagnostic': {'CNRM-CM5_r1i1p1': {'keyerror': None,
          'name': 'CNRM-CM5_r1i1p1',
          'nyears': 156,
          'time_period': ['1850-1-16 12:0:0.0', '2005-12-16 12:0:0.0']},
         'ERA-Interim': {'name': 'ERA-Interim',
          'nyears': 40,
          'time_period': ['1979-1-16 12:0:0.0', '2019-3-16 12:0:0.0']},
         'HadISST': {'name': 'HadISST',
          'nyears': 151,
          'time_period': ['1870-1-16 11:59:59.5', '2020-10-16 12:0:0.0']},
         'Tropflux': {'name': 'Tropflux',
          'nyears': 40,
          'time_period': ['1979-1-15 0:0:0.0', '2018-12-15 12:0:0.0']},
         'method': 'nino3.4 SSTA during DEC regressed against equatorial_pacific SSTA, time series are linearly detrended, smoothing using a triangle shaped window of 5 points, observations and model regridded to generic_1x1deg',
         'name': 'ENSO Zonal SSTA pattern',
         'ref': 'Using CDAT regridding and rms (uncentered and biased) calculation',
         'time_frequency': 'monthly',
         'units': 'C/C'},
        'metric': {'datasets': "CNRM-CM5_r1i1p1; ERA-Interim's ts & HadISST's sst & Tropflux's sst; 's ",
         'method': 'The metric is the statistical value between the model and the observations',
         'name': 'EnsoSstLonRmse',
         'units': 'C/C'}},
       'EnsoSstSkew': {'diagnostic': {'CNRM-CM5_r1i1p1': {'keyerror': None,
          'name': 'CNRM-CM5_r1i1p1',
          'nyears': 156,
          'time_period': ['1850-1-16 12:0:0.0', '2005-12-16 12:0:0.0']},
         'ERA-Interim': {'keyerror': None,
          'name': 'ERA-Interim',
          'nyears': 40,
          'time_period': ['1979-1-16 12:0:0.0', '2019-3-16 12:0:0.0']},
         'HadISST': {'keyerror': None,
          'name': 'HadISST',
          'nyears': 151,
          'time_period': ['1870-1-16 11:59:59.5', '2020-10-16 12:0:0.0']},
         'Tropflux': {'keyerror': None,
          'name': 'Tropflux',
          'nyears': 40,
          'time_period': ['1979-1-15 0:0:0.0', '2018-12-15 12:0:0.0']},
         'method': 'Standard deviation of nino3.4 sstA, time series are linearly detrended',
         'name': 'ENSO skewness',
         'ref': 'Using CDAT regression calculation',
         'time_frequency': 'monthly',
         'units': 'C'},
        'metric': {'datasets': "CNRM-CM5_r1i1p1; ERA-Interim's ts & HadISST's sst & Tropflux's sst; 's ",
         'method': 'The metric is the absolute value of the relative difference between model and observations values (M = 100 * abs[[model-obs] / obs])',
         'name': 'EnsoSstSkew',
         'units': '%'}},
       'EnsoSstTsRmse': {'diagnostic': {'CNRM-CM5_r1i1p1': {'keyerror': None,
          'name': 'CNRM-CM5_r1i1p1',
          'nyears': 156,
          'time_period': ['1850-1-16 12:0:0.0', '2005-12-16 12:0:0.0']},
         'ERA-Interim': {'name': 'ERA-Interim',
          'nyears': 40,
          'time_period': ['1979-1-16 12:0:0.0', '2019-3-16 12:0:0.0']},
         'HadISST': {'name': 'HadISST',
          'nyears': 151,
          'time_period': ['1870-1-16 11:59:59.5', '2020-10-16 12:0:0.0']},
         'Tropflux': {'name': 'Tropflux',
          'nyears': 40,
          'time_period': ['1979-1-15 0:0:0.0', '2018-12-15 12:0:0.0']},
         'method': 'nino3.4 SSTA during DEC regressed against nino3.4 SSTA during 6 years (centered on ENSO), time series are linearly detrended, smoothing using a triangle shaped window of 5 points',
         'name': 'ENSO life cyle SSTA pattern',
         'ref': 'Using CDAT regridding and rms (uncentered and biased) calculation',
         'time_frequency': 'monthly',
         'units': 'C/C'},
        'metric': {'datasets': "CNRM-CM5_r1i1p1; ERA-Interim's ts & HadISST's sst & Tropflux's sst; 's ",
         'method': 'The metric is the statistical value between the model and the observations',
         'name': 'EnsoSstTsRmse',
         'units': 'C/C'}},
       'SeasonalPrLatRmse': {'diagnostic': {'CNRM-CM5_r1i1p1': {'keyerror': None,
          'name': 'CNRM-CM5_r1i1p1',
          'nyears': 156,
          'time_period': ['1850-1-16 12:0:0.0', '2005-12-16 12:0:0.0']},
         'ERA-Interim': {'name': 'ERA-Interim',
          'nyears': 40,
          'time_period': ['1979-1-16 12:0:0.0', '2019-3-16 12:0:0.0']},
         'GPCPv2.3': {'name': 'GPCPv2.3',
          'nyears': 41,
          'time_period': ['1979-1-1 0:0:0.0', '2019-7-1 0:0:0.0']},
         'method': 'Meridional root mean square error of nino3_LatExt climatological pr STD, time series are linearly detrended, observations and model regridded to generic_1x1deg',
         'name': 'pr meridional seasonality RMSE',
         'ref': 'Using CDAT regridding and rms (uncentered and biased) calculation',
         'time_frequency': 'monthly',
         'units': 'mm/day'},
        'metric': {'datasets': "CNRM-CM5_r1i1p1; ERA-Interim's pr & GPCPv2.3's precip; 's ",
         'method': 'The metric is the statistical value between the model and the observations',
         'name': 'SeasonalPrLatRmse',
         'units': 'mm/day'}},
       'SeasonalPrLonRmse': {'diagnostic': {'CNRM-CM5_r1i1p1': {'keyerror': None,
          'name': 'CNRM-CM5_r1i1p1',
          'nyears': 156,
          'time_period': ['1850-1-16 12:0:0.0', '2005-12-16 12:0:0.0']},
         'ERA-Interim': {'name': 'ERA-Interim',
          'nyears': 40,
          'time_period': ['1979-1-16 12:0:0.0', '2019-3-16 12:0:0.0']},
         'GPCPv2.3': {'name': 'GPCPv2.3',
          'nyears': 41,
          'time_period': ['1979-1-1 0:0:0.0', '2019-7-1 0:0:0.0']},
         'method': 'Zonal root mean square error of equatorial_pacific climatological pr STD, time series are linearly detrended, observations and model regridded to generic_1x1deg',
         'name': 'pr zonal seasonality RMSE',
         'ref': 'Using CDAT regridding and rms (uncentered and biased) calculation',
         'time_frequency': 'monthly',
         'units': 'mm/day'},
        'metric': {'datasets': "CNRM-CM5_r1i1p1; ERA-Interim's pr & GPCPv2.3's precip; 's ",
         'method': 'The metric is the statistical value between the model and the observations',
         'name': 'SeasonalPrLonRmse',
         'units': 'mm/day'}},
       'SeasonalSstLonRmse': {'diagnostic': {'CNRM-CM5_r1i1p1': {'keyerror': None,
          'name': 'CNRM-CM5_r1i1p1',
          'nyears': 156,
          'time_period': ['1850-1-16 12:0:0.0', '2005-12-16 12:0:0.0']},
         'ERA-Interim': {'name': 'ERA-Interim',
          'nyears': 40,
          'time_period': ['1979-1-16 12:0:0.0', '2019-3-16 12:0:0.0']},
         'HadISST': {'name': 'HadISST',
          'nyears': 151,
          'time_period': ['1870-1-16 11:59:59.5', '2020-10-16 12:0:0.0']},
         'Tropflux': {'name': 'Tropflux',
          'nyears': 40,
          'time_period': ['1979-1-15 0:0:0.0', '2018-12-15 12:0:0.0']},
         'method': 'Zonal root mean square error of equatorial_pacific climatological sst STD, time series are linearly detrended, observations and model regridded to generic_1x1deg',
         'name': 'sst zonal seasonality RMSE',
         'ref': 'Using CDAT regridding and rms (uncentered and biased) calculation',
         'time_frequency': 'monthly',
         'units': 'C'},
        'metric': {'datasets': "CNRM-CM5_r1i1p1; ERA-Interim's ts & HadISST's sst & Tropflux's sst; 's ",
         'method': 'The metric is the statistical value between the model and the observations',
         'name': 'SeasonalSstLonRmse',
         'units': 'C'}},
       'SeasonalTauxLonRmse': {'diagnostic': {'CNRM-CM5_r1i1p1': {'keyerror': None,
          'name': 'CNRM-CM5_r1i1p1',
          'nyears': 156,
          'time_period': ['1850-1-16 12:0:0.0', '2005-12-16 12:0:0.0']},
         'ERA-Interim': {'name': 'ERA-Interim',
          'nyears': 40,
          'time_period': ['1979-1-16 12:0:0.0', '2019-3-16 12:0:0.0']},
         'Tropflux': {'name': 'Tropflux',
          'nyears': 40,
          'time_period': ['1979-1-15 0:0:0.0', '2018-12-15 12:0:0.0']},
         'method': 'Zonal root mean square error of equatorial_pacific climatological taux STD, time series are linearly detrended, observations and model regridded to generic_1x1deg',
         'name': 'taux zonal seasonality RMSE',
         'ref': 'Using CDAT regridding and rms (uncentered and biased) calculation',
         'time_frequency': 'monthly',
         'units': '1e-3 N/m2'},
        'metric': {'datasets': "CNRM-CM5_r1i1p1; ERA-Interim's tauu & Tropflux's taux; 's ",
         'method': 'The metric is the statistical value between the model and the observations',
         'name': 'SeasonalTauxLonRmse',
         'units': '1e-3 N/m2'}}},
      'name': 'Metrics Collection for ENSO performance'},
     'value': {'BiasPrLatRmse': {'diagnostic': {'CNRM-CM5_r1i1p1': {'value': None,
         'value_error': None},
        'ERA-Interim': {'value': None, 'value_error': None},
        'GPCPv2.3': {'value': None, 'value_error': None}},
       'metric': {'ERA-Interim': {'value': 1.6290348255113536,
         'value_error': None},
        'GPCPv2.3': {'value': 1.8393549854238036, 'value_error': None}}},
      'BiasPrLonRmse': {'diagnostic': {'CNRM-CM5_r1i1p1': {'value': None,
         'value_error': None},
        'ERA-Interim': {'value': None, 'value_error': None},
        'GPCPv2.3': {'value': None, 'value_error': None}},
       'metric': {'ERA-Interim': {'value': 1.0737834031253808,
         'value_error': None},
        'GPCPv2.3': {'value': 0.6088406630868743, 'value_error': None}}},
      'BiasSstLonRmse': {'diagnostic': {'CNRM-CM5_r1i1p1': {'value': None,
         'value_error': None},
        'ERA-Interim': {'value': None, 'value_error': None},
        'HadISST': {'value': None, 'value_error': None},
        'Tropflux': {'value': None, 'value_error': None}},
       'metric': {'ERA-Interim': {'value': 0.9389352952216332,
         'value_error': None},
        'HadISST': {'value': 0.8026619793401767, 'value_error': None},
        'Tropflux': {'value': 0.9816133743163603, 'value_error': None}}},
      'BiasTauxLonRmse': {'diagnostic': {'CNRM-CM5_r1i1p1': {'value': None,
         'value_error': None},
        'ERA-Interim': {'value': None, 'value_error': None},
        'Tropflux': {'value': None, 'value_error': None}},
       'metric': {'ERA-Interim': {'value': 9.279794895939528,
         'value_error': None},
        'Tropflux': {'value': 8.985043429621603, 'value_error': None}}},
      'EnsoAmpl': {'diagnostic': {'CNRM-CM5_r1i1p1': {'value': 0.8763227560779431,
         'value_error': 0.07016197253407336},
        'ERA-Interim': {'value': 0.8989844997845644,
         'value_error': 0.14214193002531866},
        'HadISST': {'value': 0.7665787872085695,
         'value_error': 0.06238329697691264},
        'Tropflux': {'value': 0.9039789553693535,
         'value_error': 0.14293162279134272}},
       'metric': {'ERA-Interim': {'value': 2.520815844105439,
         'value_error': 23.21739321603599},
        'HadISST': {'value': 14.316071707253567,
         'value_error': 18.455520737108156},
        'Tropflux': {'value': 3.0593853017419463,
         'value_error': 23.089117841345768}}},
      'EnsoDuration': {'diagnostic': {'CNRM-CM5_r1i1p1': {'value': 11.0,
         'value_error': None},
        'ERA-Interim': {'value': 13.0, 'value_error': None},
        'HadISST': {'value': 13.0, 'value_error': None},
        'Tropflux': {'value': 13.0, 'value_error': None}},
       'metric': {'ERA-Interim': {'value': 15.384615384615385,
         'value_error': None},
        'HadISST': {'value': 15.384615384615385, 'value_error': None},
        'Tropflux': {'value': 15.384615384615385, 'value_error': None}}},
      'EnsoSeasonality': {'diagnostic': {'CNRM-CM5_r1i1p1': {'value': 2.130428262344567,
         'value_error': 0.3416908881472397},
        'ERA-Interim': {'value': 2.0466846866656914,
         'value_error': 0.6513411033995022},
        'HadISST': {'value': 1.6639865947361325,
         'value_error': 0.2712772451657809},
        'Tropflux': {'value': 2.0532132553583624,
         'value_error': 0.6534187683977347}},
       'metric': {'ERA-Interim': {'value': 4.091669626712491,
         'value_error': 49.82119250142169},
        'HadISST': {'value': 28.031576040575068,
         'value_error': 41.40726991143243},
        'Tropflux': {'value': 3.7606910429149676,
         'value_error': 49.66277686839015}}},
      'EnsoSstDiversity_2': {'diagnostic': {'CNRM-CM5_r1i1p1': {'value': 31.0,
         'value_error': None},
        'ERA-Interim': {'value': 33.25, 'value_error': None},
        'HadISST': {'value': 49.0, 'value_error': None},
        'Tropflux': {'value': 32.0, 'value_error': None}},
       'metric': {'ERA-Interim': {'value': 6.7669172932330826,
         'value_error': None},
        'HadISST': {'value': 36.734693877551024, 'value_error': None},
        'Tropflux': {'value': 3.125, 'value_error': None}}},
      'EnsoSstLonRmse': {'diagnostic': {'CNRM-CM5_r1i1p1': {'value': None,
         'value_error': None},
        'ERA-Interim': {'value': None, 'value_error': None},
        'HadISST': {'value': None, 'value_error': None},
        'Tropflux': {'value': None, 'value_error': None}},
       'metric': {'ERA-Interim': {'value': 0.08694435742833558,
         'value_error': None},
        'HadISST': {'value': 0.09552839161211654, 'value_error': None},
        'Tropflux': {'value': 0.08418179539380312, 'value_error': None}}},
      'EnsoSstSkew': {'diagnostic': {'CNRM-CM5_r1i1p1': {'value': 0.20055649169535805,
         'value_error': 0.016057370374401487},
        'ERA-Interim': {'value': 0.39098111106809963,
         'value_error': 0.061819541653923164},
        'HadISST': {'value': 0.38989908235027515,
         'value_error': 0.03172953733021198},
        'Tropflux': {'value': 0.39744741059612115,
         'value_error': 0.06284195338099416}},
       'metric': {'ERA-Interim': {'value': 48.70430155884797,
         'value_error': 12.217504806921532},
        'HadISST': {'value': 48.56194826455546,
         'value_error': 8.304309414261505},
        'Tropflux': {'value': 49.538860652143,
         'value_error': 12.018731224655381}}},
      'EnsoSstTsRmse': {'diagnostic': {'CNRM-CM5_r1i1p1': {'value': None,
         'value_error': None},
        'ERA-Interim': {'value': None, 'value_error': None},
        'HadISST': {'value': None, 'value_error': None},
        'Tropflux': {'value': None, 'value_error': None}},
       'metric': {'ERA-Interim': {'value': 0.19777785174897639,
         'value_error': None},
        'HadISST': {'value': 0.20941185529550774, 'value_error': None},
        'Tropflux': {'value': 0.20107738356306637, 'value_error': None}}},
      'SeasonalPrLatRmse': {'diagnostic': {'CNRM-CM5_r1i1p1': {'value': None,
         'value_error': None},
        'ERA-Interim': {'value': None, 'value_error': None},
        'GPCPv2.3': {'value': None, 'value_error': None}},
       'metric': {'ERA-Interim': {'value': 0.9045568844723757,
         'value_error': None},
        'GPCPv2.3': {'value': 0.956241146263163, 'value_error': None}}},
      'SeasonalPrLonRmse': {'diagnostic': {'CNRM-CM5_r1i1p1': {'value': None,
         'value_error': None},
        'ERA-Interim': {'value': None, 'value_error': None},
        'GPCPv2.3': {'value': None, 'value_error': None}},
       'metric': {'ERA-Interim': {'value': 0.3134097862257685,
         'value_error': None},
        'GPCPv2.3': {'value': 0.31137109274298225, 'value_error': None}}},
      'SeasonalSstLonRmse': {'diagnostic': {'CNRM-CM5_r1i1p1': {'value': None,
         'value_error': None},
        'ERA-Interim': {'value': None, 'value_error': None},
        'HadISST': {'value': None, 'value_error': None},
        'Tropflux': {'value': None, 'value_error': None}},
       'metric': {'ERA-Interim': {'value': 0.20570278702396436,
         'value_error': None},
        'HadISST': {'value': 0.2122795542516941, 'value_error': None},
        'Tropflux': {'value': 0.20186147599743406, 'value_error': None}}},
      'SeasonalTauxLonRmse': {'diagnostic': {'CNRM-CM5_r1i1p1': {'value': None,
         'value_error': None},
        'ERA-Interim': {'value': None, 'value_error': None},
        'Tropflux': {'value': None, 'value_error': None}},
       'metric': {'ERA-Interim': {'value': 2.5095376902792084,
         'value_error': None},
        'Tropflux': {'value': 2.282804953403897, 'value_error': None}}}}},
    'r2i1p1': {'metadata': {'description_of_the_collection': 'Describe which science question this collection is about',
      'metrics': {'BiasPrLatRmse': {'diagnostic': {'CNRM-CM5_r2i1p1': {'keyerror': None,
          'name': 'CNRM-CM5_r2i1p1',
          'nyears': 156,
          'time_period': ['1850-1-16 12:0:0.0', '2005-12-16 12:0:0.0']},
         'ERA-Interim': {'name': 'ERA-Interim',
          'nyears': 40,
          'time_period': ['1979-1-16 12:0:0.0', '2019-3-16 12:0:0.0']},
         'GPCPv2.3': {'name': 'GPCPv2.3',
          'nyears': 41,
          'time_period': ['1979-1-1 0:0:0.0', '2019-7-1 0:0:0.0']},
         'method': 'Meridional root mean square error of nino3_LatExt pr, time series are linearly detrended, observations and model regridded to generic_1x1deg',
         'name': 'pr Meridional RMSE',
         'ref': 'Using CDAT regridding and rms (uncentered and biased) calculation',
         'time_frequency': 'monthly',
         'units': 'mm/day'},
        'metric': {'datasets': "CNRM-CM5_r2i1p1; ERA-Interim's pr & GPCPv2.3's precip; 's ",
         'method': 'The metric is the statistical value between the model and the observations',
         'name': 'BiasPrLatRmse',
         'units': 'mm/day'}},
       'BiasPrLonRmse': {'diagnostic': {'CNRM-CM5_r2i1p1': {'keyerror': None,
          'name': 'CNRM-CM5_r2i1p1',
          'nyears': 156,
          'time_period': ['1850-1-16 12:0:0.0', '2005-12-16 12:0:0.0']},
         'ERA-Interim': {'name': 'ERA-Interim',
          'nyears': 40,
          'time_period': ['1979-1-16 12:0:0.0', '2019-3-16 12:0:0.0']},
         'GPCPv2.3': {'name': 'GPCPv2.3',
          'nyears': 41,
          'time_period': ['1979-1-1 0:0:0.0', '2019-7-1 0:0:0.0']},
         'method': 'Zonal root mean square error of equatorial_pacific pr, time series are linearly detrended, observations and model regridded to generic_1x1deg',
         'name': 'pr Zonal RMSE',
         'ref': 'Using CDAT regridding and rms (uncentered and biased) calculation',
         'time_frequency': 'monthly',
         'units': 'mm/day'},
        'metric': {'datasets': "CNRM-CM5_r2i1p1; ERA-Interim's pr & GPCPv2.3's precip; 's ",
         'method': 'The metric is the statistical value between the model and the observations',
         'name': 'BiasPrLonRmse',
         'units': 'mm/day'}},
       'BiasSstLonRmse': {'diagnostic': {'CNRM-CM5_r2i1p1': {'keyerror': None,
          'name': 'CNRM-CM5_r2i1p1',
          'nyears': 156,
          'time_period': ['1850-1-16 12:0:0.0', '2005-12-16 12:0:0.0']},
         'ERA-Interim': {'name': 'ERA-Interim',
          'nyears': 40,
          'time_period': ['1979-1-16 12:0:0.0', '2019-3-16 12:0:0.0']},
         'HadISST': {'name': 'HadISST',
          'nyears': 151,
          'time_period': ['1870-1-16 11:59:59.5', '2020-10-16 12:0:0.0']},
         'Tropflux': {'name': 'Tropflux',
          'nyears': 40,
          'time_period': ['1979-1-15 0:0:0.0', '2018-12-15 12:0:0.0']},
         'method': 'Zonal root mean square error of equatorial_pacific sst, time series are linearly detrended, observations and model regridded to generic_1x1deg',
         'name': 'sst Zonal RMSE',
         'ref': 'Using CDAT regridding and rms (uncentered and biased) calculation',
         'time_frequency': 'monthly',
         'units': 'C'},
        'metric': {'datasets': "CNRM-CM5_r2i1p1; ERA-Interim's ts & HadISST's sst & Tropflux's sst; 's ",
         'method': 'The metric is the statistical value between the model and the observations',
         'name': 'BiasSstLonRmse',
         'units': 'C'}},
       'BiasTauxLonRmse': {'diagnostic': {'CNRM-CM5_r2i1p1': {'keyerror': None,
          'name': 'CNRM-CM5_r2i1p1',
          'nyears': 156,
          'time_period': ['1850-1-16 12:0:0.0', '2005-12-16 12:0:0.0']},
         'ERA-Interim': {'name': 'ERA-Interim',
          'nyears': 40,
          'time_period': ['1979-1-16 12:0:0.0', '2019-3-16 12:0:0.0']},
         'Tropflux': {'name': 'Tropflux',
          'nyears': 40,
          'time_period': ['1979-1-15 0:0:0.0', '2018-12-15 12:0:0.0']},
         'method': 'Zonal root mean square error of equatorial_pacific taux, time series are linearly detrended, observations and model regridded to generic_1x1deg',
         'name': 'taux Zonal RMSE',
         'ref': 'Using CDAT regridding and rms (uncentered and biased) calculation',
         'time_frequency': 'monthly',
         'units': '1e-3 N/m2'},
        'metric': {'datasets': "CNRM-CM5_r2i1p1; ERA-Interim's tauu & Tropflux's taux; 's ",
         'method': 'The metric is the statistical value between the model and the observations',
         'name': 'BiasTauxLonRmse',
         'units': '1e-3 N/m2'}},
       'EnsoAmpl': {'diagnostic': {'CNRM-CM5_r2i1p1': {'keyerror': None,
          'name': 'CNRM-CM5_r2i1p1',
          'nyears': 156,
          'time_period': ['1850-1-16 12:0:0.0', '2005-12-16 12:0:0.0']},
         'ERA-Interim': {'keyerror': None,
          'name': 'ERA-Interim',
          'nyears': 40,
          'time_period': ['1979-1-16 12:0:0.0', '2019-3-16 12:0:0.0']},
         'HadISST': {'keyerror': None,
          'name': 'HadISST',
          'nyears': 151,
          'time_period': ['1870-1-16 11:59:59.5', '2020-10-16 12:0:0.0']},
         'Tropflux': {'keyerror': None,
          'name': 'Tropflux',
          'nyears': 40,
          'time_period': ['1979-1-15 0:0:0.0', '2018-12-15 12:0:0.0']},
         'method': 'Standard deviation of nino3.4 sstA, time series are linearly detrended',
         'name': 'ENSO amplitude',
         'ref': 'Using CDAT regression calculation',
         'time_frequency': 'monthly',
         'units': 'C'},
        'metric': {'datasets': "CNRM-CM5_r2i1p1; ERA-Interim's ts & HadISST's sst & Tropflux's sst; 's ",
         'method': 'The metric is the absolute value of the relative difference between model and observations values (M = 100 * abs[[model-obs] / obs])',
         'name': 'EnsoAmpl',
         'units': '%'}},
       'EnsoDuration': {'diagnostic': {'CNRM-CM5_r2i1p1': {'keyerror': None,
          'name': 'CNRM-CM5_r2i1p1',
          'nyears': 156,
          'time_period': ['1850-1-16 12:0:0.0', '2005-12-16 12:0:0.0']},
         'ERA-Interim': {'keyerror': None,
          'name': 'ERA-Interim',
          'nyears': 40,
          'time_period': ['1979-1-16 12:0:0.0', '2019-3-16 12:0:0.0']},
         'HadISST': {'keyerror': None,
          'name': 'HadISST',
          'nyears': 151,
          'time_period': ['1870-1-16 11:59:59.5', '2020-10-16 12:0:0.0']},
         'Tropflux': {'keyerror': None,
          'name': 'Tropflux',
          'nyears': 40,
          'time_period': ['1979-1-15 0:0:0.0', '2018-12-15 12:0:0.0']},
         'method': 'nino3.4 SSTA during DEC regressed against nino3.4 SSTA during 6 years (centered on ENSO), the duration is the number of consecutive months during which the regression is above 0.25, time series are linearly detrended, smoothing using a triangle shaped window of 5 points',
         'name': 'ENSO Duration based on life cyle SSTA pattern',
         'ref': 'Using CDAT',
         'time_frequency': 'monthly',
         'units': 'months'},
        'metric': {'datasets': "CNRM-CM5_r2i1p1; ERA-Interim's ts & HadISST's sst & Tropflux's sst; 's ",
         'method': 'The metric is the absolute value of the relative difference between model and observations values (M = 100 * abs[[model-obs] / obs])',
         'name': 'EnsoDuration',
         'units': '%'}},
       'EnsoSeasonality': {'diagnostic': {'CNRM-CM5_r2i1p1': {'keyerror': None,
          'name': 'CNRM-CM5_r2i1p1',
          'nyears': 156,
          'time_period': ['1850-1-16 12:0:0.0', '2005-12-16 12:0:0.0']},
         'ERA-Interim': {'keyerror': None,
          'name': 'ERA-Interim',
          'nyears': 40,
          'time_period': ['1979-1-16 12:0:0.0', '2019-3-16 12:0:0.0']},
         'HadISST': {'keyerror': None,
          'name': 'HadISST',
          'nyears': 151,
          'time_period': ['1870-1-16 11:59:59.5', '2020-10-16 12:0:0.0']},
         'Tropflux': {'keyerror': None,
          'name': 'Tropflux',
          'nyears': 40,
          'time_period': ['1979-1-15 0:0:0.0', '2018-12-15 12:0:0.0']},
         'method': 'Ratio between NDJ and MAM standard deviation nino3.4 sstA, time series are linearly detrended',
         'name': 'ENSO seasonality',
         'ref': 'Using CDAT std dev calculation',
         'time_frequency': 'monthly',
         'units': 'C/C'},
        'metric': {'datasets': "CNRM-CM5_r2i1p1; ERA-Interim's ts & HadISST's sst & Tropflux's sst; 's ",
         'method': 'The metric is the absolute value of the relative difference between model and observations values (M = 100 * abs[[model-obs] / obs])',
         'name': 'EnsoSeasonality',
         'units': '%'}},
       'EnsoSstDiversity_2': {'diagnostic': {'CNRM-CM5_r2i1p1': {'keyerror': None,
          'name': 'CNRM-CM5_r2i1p1',
          'nyears': 156,
          'time_period': ['1850-1-16 12:0:0.0', '2005-12-16 12:0:0.0']},
         'ERA-Interim': {'keyerror': None,
          'name': 'ERA-Interim',
          'nyears': 40,
          'time_period': ['1979-1-16 12:0:0.0', '2019-3-16 12:0:0.0']},
         'HadISST': {'keyerror': None,
          'name': 'HadISST',
          'nyears': 151,
          'time_period': ['1870-1-16 11:59:59.5', '2020-10-16 12:0:0.0']},
         'Tropflux': {'keyerror': None,
          'name': 'Tropflux',
          'nyears': 40,
          'time_period': ['1979-1-15 0:0:0.0', '2018-12-15 12:0:0.0']},
         'method': 'Nino (Nina) events = nino3.4 sstA > 0.75 (< -0.75) during DEC, zonal SSTA (meridional averaged [-5.0 ; 5.0]), the zonal SSTA maximum (minimum) is located for each event, the diversity is the interquartile range (IQR = Q3 - Q1), time series are linearly detrended, smoothing using a triangle shaped window of 5 points',
         'name': 'ENSO Diversity (interquartile range)',
         'ref': 'Using CDAT regridding',
         'time_frequency': 'monthly',
         'units': 'long'},
        'metric': {'datasets': "CNRM-CM5_r2i1p1; ERA-Interim's ts & HadISST's sst & Tropflux's sst; 's ",
         'method': 'The metric is the absolute value of the relative difference between model and observations values (M = 100 * abs[[model-obs] / obs])',
         'name': 'EnsoSstDiversity',
         'units': '%'}},
       'EnsoSstLonRmse': {'diagnostic': {'CNRM-CM5_r2i1p1': {'keyerror': None,
          'name': 'CNRM-CM5_r2i1p1',
          'nyears': 156,
          'time_period': ['1850-1-16 12:0:0.0', '2005-12-16 12:0:0.0']},
         'ERA-Interim': {'name': 'ERA-Interim',
          'nyears': 40,
          'time_period': ['1979-1-16 12:0:0.0', '2019-3-16 12:0:0.0']},
         'HadISST': {'name': 'HadISST',
          'nyears': 151,
          'time_period': ['1870-1-16 11:59:59.5', '2020-10-16 12:0:0.0']},
         'Tropflux': {'name': 'Tropflux',
          'nyears': 40,
          'time_period': ['1979-1-15 0:0:0.0', '2018-12-15 12:0:0.0']},
         'method': 'nino3.4 SSTA during DEC regressed against equatorial_pacific SSTA, time series are linearly detrended, smoothing using a triangle shaped window of 5 points, observations and model regridded to generic_1x1deg',
         'name': 'ENSO Zonal SSTA pattern',
         'ref': 'Using CDAT regridding and rms (uncentered and biased) calculation',
         'time_frequency': 'monthly',
         'units': 'C/C'},
        'metric': {'datasets': "CNRM-CM5_r2i1p1; ERA-Interim's ts & HadISST's sst & Tropflux's sst; 's ",
         'method': 'The metric is the statistical value between the model and the observations',
         'name': 'EnsoSstLonRmse',
         'units': 'C/C'}},
       'EnsoSstSkew': {'diagnostic': {'CNRM-CM5_r2i1p1': {'keyerror': None,
          'name': 'CNRM-CM5_r2i1p1',
          'nyears': 156,
          'time_period': ['1850-1-16 12:0:0.0', '2005-12-16 12:0:0.0']},
         'ERA-Interim': {'keyerror': None,
          'name': 'ERA-Interim',
          'nyears': 40,
          'time_period': ['1979-1-16 12:0:0.0', '2019-3-16 12:0:0.0']},
         'HadISST': {'keyerror': None,
          'name': 'HadISST',
          'nyears': 151,
          'time_period': ['1870-1-16 11:59:59.5', '2020-10-16 12:0:0.0']},
         'Tropflux': {'keyerror': None,
          'name': 'Tropflux',
          'nyears': 40,
          'time_period': ['1979-1-15 0:0:0.0', '2018-12-15 12:0:0.0']},
         'method': 'Standard deviation of nino3.4 sstA, time series are linearly detrended',
         'name': 'ENSO skewness',
         'ref': 'Using CDAT regression calculation',
         'time_frequency': 'monthly',
         'units': 'C'},
        'metric': {'datasets': "CNRM-CM5_r2i1p1; ERA-Interim's ts & HadISST's sst & Tropflux's sst; 's ",
         'method': 'The metric is the absolute value of the relative difference between model and observations values (M = 100 * abs[[model-obs] / obs])',
         'name': 'EnsoSstSkew',
         'units': '%'}},
       'EnsoSstTsRmse': {'diagnostic': {'CNRM-CM5_r2i1p1': {'keyerror': None,
          'name': 'CNRM-CM5_r2i1p1',
          'nyears': 156,
          'time_period': ['1850-1-16 12:0:0.0', '2005-12-16 12:0:0.0']},
         'ERA-Interim': {'name': 'ERA-Interim',
          'nyears': 40,
          'time_period': ['1979-1-16 12:0:0.0', '2019-3-16 12:0:0.0']},
         'HadISST': {'name': 'HadISST',
          'nyears': 151,
          'time_period': ['1870-1-16 11:59:59.5', '2020-10-16 12:0:0.0']},
         'Tropflux': {'name': 'Tropflux',
          'nyears': 40,
          'time_period': ['1979-1-15 0:0:0.0', '2018-12-15 12:0:0.0']},
         'method': 'nino3.4 SSTA during DEC regressed against nino3.4 SSTA during 6 years (centered on ENSO), time series are linearly detrended, smoothing using a triangle shaped window of 5 points',
         'name': 'ENSO life cyle SSTA pattern',
         'ref': 'Using CDAT regridding and rms (uncentered and biased) calculation',
         'time_frequency': 'monthly',
         'units': 'C/C'},
        'metric': {'datasets': "CNRM-CM5_r2i1p1; ERA-Interim's ts & HadISST's sst & Tropflux's sst; 's ",
         'method': 'The metric is the statistical value between the model and the observations',
         'name': 'EnsoSstTsRmse',
         'units': 'C/C'}},
       'SeasonalPrLatRmse': {'diagnostic': {'CNRM-CM5_r2i1p1': {'keyerror': None,
          'name': 'CNRM-CM5_r2i1p1',
          'nyears': 156,
          'time_period': ['1850-1-16 12:0:0.0', '2005-12-16 12:0:0.0']},
         'ERA-Interim': {'name': 'ERA-Interim',
          'nyears': 40,
          'time_period': ['1979-1-16 12:0:0.0', '2019-3-16 12:0:0.0']},
         'GPCPv2.3': {'name': 'GPCPv2.3',
          'nyears': 41,
          'time_period': ['1979-1-1 0:0:0.0', '2019-7-1 0:0:0.0']},
         'method': 'Meridional root mean square error of nino3_LatExt climatological pr STD, time series are linearly detrended, observations and model regridded to generic_1x1deg',
         'name': 'pr meridional seasonality RMSE',
         'ref': 'Using CDAT regridding and rms (uncentered and biased) calculation',
         'time_frequency': 'monthly',
         'units': 'mm/day'},
        'metric': {'datasets': "CNRM-CM5_r2i1p1; ERA-Interim's pr & GPCPv2.3's precip; 's ",
         'method': 'The metric is the statistical value between the model and the observations',
         'name': 'SeasonalPrLatRmse',
         'units': 'mm/day'}},
       'SeasonalPrLonRmse': {'diagnostic': {'CNRM-CM5_r2i1p1': {'keyerror': None,
          'name': 'CNRM-CM5_r2i1p1',
          'nyears': 156,
          'time_period': ['1850-1-16 12:0:0.0', '2005-12-16 12:0:0.0']},
         'ERA-Interim': {'name': 'ERA-Interim',
          'nyears': 40,
          'time_period': ['1979-1-16 12:0:0.0', '2019-3-16 12:0:0.0']},
         'GPCPv2.3': {'name': 'GPCPv2.3',
          'nyears': 41,
          'time_period': ['1979-1-1 0:0:0.0', '2019-7-1 0:0:0.0']},
         'method': 'Zonal root mean square error of equatorial_pacific climatological pr STD, time series are linearly detrended, observations and model regridded to generic_1x1deg',
         'name': 'pr zonal seasonality RMSE',
         'ref': 'Using CDAT regridding and rms (uncentered and biased) calculation',
         'time_frequency': 'monthly',
         'units': 'mm/day'},
        'metric': {'datasets': "CNRM-CM5_r2i1p1; ERA-Interim's pr & GPCPv2.3's precip; 's ",
         'method': 'The metric is the statistical value between the model and the observations',
         'name': 'SeasonalPrLonRmse',
         'units': 'mm/day'}},
       'SeasonalSstLonRmse': {'diagnostic': {'CNRM-CM5_r2i1p1': {'keyerror': None,
          'name': 'CNRM-CM5_r2i1p1',
          'nyears': 156,
          'time_period': ['1850-1-16 12:0:0.0', '2005-12-16 12:0:0.0']},
         'ERA-Interim': {'name': 'ERA-Interim',
          'nyears': 40,
          'time_period': ['1979-1-16 12:0:0.0', '2019-3-16 12:0:0.0']},
         'HadISST': {'name': 'HadISST',
          'nyears': 151,
          'time_period': ['1870-1-16 11:59:59.5', '2020-10-16 12:0:0.0']},
         'Tropflux': {'name': 'Tropflux',
          'nyears': 40,
          'time_period': ['1979-1-15 0:0:0.0', '2018-12-15 12:0:0.0']},
         'method': 'Zonal root mean square error of equatorial_pacific climatological sst STD, time series are linearly detrended, observations and model regridded to generic_1x1deg',
         'name': 'sst zonal seasonality RMSE',
         'ref': 'Using CDAT regridding and rms (uncentered and biased) calculation',
         'time_frequency': 'monthly',
         'units': 'C'},
        'metric': {'datasets': "CNRM-CM5_r2i1p1; ERA-Interim's ts & HadISST's sst & Tropflux's sst; 's ",
         'method': 'The metric is the statistical value between the model and the observations',
         'name': 'SeasonalSstLonRmse',
         'units': 'C'}},
       'SeasonalTauxLonRmse': {'diagnostic': {'CNRM-CM5_r2i1p1': {'keyerror': None,
          'name': 'CNRM-CM5_r2i1p1',
          'nyears': 156,
          'time_period': ['1850-1-16 12:0:0.0', '2005-12-16 12:0:0.0']},
         'ERA-Interim': {'name': 'ERA-Interim',
          'nyears': 40,
          'time_period': ['1979-1-16 12:0:0.0', '2019-3-16 12:0:0.0']},
         'Tropflux': {'name': 'Tropflux',
          'nyears': 40,
          'time_period': ['1979-1-15 0:0:0.0', '2018-12-15 12:0:0.0']},
         'method': 'Zonal root mean square error of equatorial_pacific climatological taux STD, time series are linearly detrended, observations and model regridded to generic_1x1deg',
         'name': 'taux zonal seasonality RMSE',
         'ref': 'Using CDAT regridding and rms (uncentered and biased) calculation',
         'time_frequency': 'monthly',
         'units': '1e-3 N/m2'},
        'metric': {'datasets': "CNRM-CM5_r2i1p1; ERA-Interim's tauu & Tropflux's taux; 's ",
         'method': 'The metric is the statistical value between the model and the observations',
         'name': 'SeasonalTauxLonRmse',
         'units': '1e-3 N/m2'}}},
      'name': 'Metrics Collection for ENSO performance'},
     'value': {'BiasPrLatRmse': {'diagnostic': {'CNRM-CM5_r2i1p1': {'value': None,
         'value_error': None},
        'ERA-Interim': {'value': None, 'value_error': None},
        'GPCPv2.3': {'value': None, 'value_error': None}},
       'metric': {'ERA-Interim': {'value': 1.616337255429204,
         'value_error': None},
        'GPCPv2.3': {'value': 1.8137278728548867, 'value_error': None}}},
      'BiasPrLonRmse': {'diagnostic': {'CNRM-CM5_r2i1p1': {'value': None,
         'value_error': None},
        'ERA-Interim': {'value': None, 'value_error': None},
        'GPCPv2.3': {'value': None, 'value_error': None}},
       'metric': {'ERA-Interim': {'value': 1.0682358974372694,
         'value_error': None},
        'GPCPv2.3': {'value': 0.5808347212176553, 'value_error': None}}},
      'BiasSstLonRmse': {'diagnostic': {'CNRM-CM5_r2i1p1': {'value': None,
         'value_error': None},
        'ERA-Interim': {'value': None, 'value_error': None},
        'HadISST': {'value': None, 'value_error': None},
        'Tropflux': {'value': None, 'value_error': None}},
       'metric': {'ERA-Interim': {'value': 0.9529456369841307,
         'value_error': None},
        'HadISST': {'value': 0.8123101960998825, 'value_error': None},
        'Tropflux': {'value': 0.9960416114199253, 'value_error': None}}},
      'BiasTauxLonRmse': {'diagnostic': {'CNRM-CM5_r2i1p1': {'value': None,
         'value_error': None},
        'ERA-Interim': {'value': None, 'value_error': None},
        'Tropflux': {'value': None, 'value_error': None}},
       'metric': {'ERA-Interim': {'value': 9.003271630217473,
         'value_error': None},
        'Tropflux': {'value': 8.73510748662379, 'value_error': None}}},
      'EnsoAmpl': {'diagnostic': {'CNRM-CM5_r2i1p1': {'value': 0.9005362468330464,
         'value_error': 0.07210060331996898},
        'ERA-Interim': {'value': 0.8989844997845644,
         'value_error': 0.14214193002531866},
        'HadISST': {'value': 0.7665787872085695,
         'value_error': 0.06238329697691264},
        'Tropflux': {'value': 0.9039789553693535,
         'value_error': 0.14293162279134272}},
       'metric': {'ERA-Interim': {'value': 0.17261110162120813,
         'value_error': 23.858908151138376},
        'HadISST': {'value': 17.47471517080083,
         'value_error': 18.965461369882096},
        'Tropflux': {'value': 0.380839456035829,
         'value_error': 23.727088426404034}}},
      'EnsoDuration': {'diagnostic': {'CNRM-CM5_r2i1p1': {'value': 11.0,
         'value_error': None},
        'ERA-Interim': {'value': 13.0, 'value_error': None},
        'HadISST': {'value': 13.0, 'value_error': None},
        'Tropflux': {'value': 13.0, 'value_error': None}},
       'metric': {'ERA-Interim': {'value': 15.384615384615385,
         'value_error': None},
        'HadISST': {'value': 15.384615384615385, 'value_error': None},
        'Tropflux': {'value': 15.384615384615385, 'value_error': None}}},
      'EnsoSeasonality': {'diagnostic': {'CNRM-CM5_r2i1p1': {'value': 2.145982047866135,
         'value_error': 0.34418549774421686},
        'ERA-Interim': {'value': 2.0466846866656914,
         'value_error': 0.6513411033995022},
        'HadISST': {'value': 1.6639865947361325,
         'value_error': 0.2712772451657809},
        'Tropflux': {'value': 2.0532132553583624,
         'value_error': 0.6534187683977347}},
       'metric': {'ERA-Interim': {'value': 4.851619882992906,
         'value_error': 50.18492600810313},
        'HadISST': {'value': 28.96630625840079,
         'value_error': 41.70957523032982},
        'Tropflux': {'value': 4.518224897763047,
         'value_error': 50.02535381757423}}},
      'EnsoSstDiversity_2': {'diagnostic': {'CNRM-CM5_r2i1p1': {'value': 31.25,
         'value_error': None},
        'ERA-Interim': {'value': 33.25, 'value_error': None},
        'HadISST': {'value': 49.0, 'value_error': None},
        'Tropflux': {'value': 32.0, 'value_error': None}},
       'metric': {'ERA-Interim': {'value': 6.015037593984962,
         'value_error': None},
        'HadISST': {'value': 36.224489795918366, 'value_error': None},
        'Tropflux': {'value': 2.34375, 'value_error': None}}},
      'EnsoSstLonRmse': {'diagnostic': {'CNRM-CM5_r2i1p1': {'value': None,
         'value_error': None},
        'ERA-Interim': {'value': None, 'value_error': None},
        'HadISST': {'value': None, 'value_error': None},
        'Tropflux': {'value': None, 'value_error': None}},
       'metric': {'ERA-Interim': {'value': 0.0763946982350786,
         'value_error': None},
        'HadISST': {'value': 0.09624659623227642, 'value_error': None},
        'Tropflux': {'value': 0.07467484860486504, 'value_error': None}}},
      'EnsoSstSkew': {'diagnostic': {'CNRM-CM5_r2i1p1': {'value': 0.1835117829497327,
         'value_error': 0.014692701502610282},
        'ERA-Interim': {'value': 0.39098111106809963,
         'value_error': 0.061819541653923164},
        'HadISST': {'value': 0.38989908235027515,
         'value_error': 0.03172953733021198},
        'Tropflux': {'value': 0.39744741059612115,
         'value_error': 0.06284195338099416}},
       'metric': {'ERA-Interim': {'value': 53.063772710551916,
         'value_error': 11.179174861717991},
        'HadISST': {'value': 52.93351760575048,
         'value_error': 7.598550482685031},
        'Tropflux': {'value': 53.82740507115442,
         'value_error': 10.997294463947696}}},
      'EnsoSstTsRmse': {'diagnostic': {'CNRM-CM5_r2i1p1': {'value': None,
         'value_error': None},
        'ERA-Interim': {'value': None, 'value_error': None},
        'HadISST': {'value': None, 'value_error': None},
        'Tropflux': {'value': None, 'value_error': None}},
       'metric': {'ERA-Interim': {'value': 0.17241890994994039,
         'value_error': None},
        'HadISST': {'value': 0.18195685090591932, 'value_error': None},
        'Tropflux': {'value': 0.17440131160560168, 'value_error': None}}},
      'SeasonalPrLatRmse': {'diagnostic': {'CNRM-CM5_r2i1p1': {'value': None,
         'value_error': None},
        'ERA-Interim': {'value': None, 'value_error': None},
        'GPCPv2.3': {'value': None, 'value_error': None}},
       'metric': {'ERA-Interim': {'value': 0.9197798194302927,
         'value_error': None},
        'GPCPv2.3': {'value': 0.9746418775812541, 'value_error': None}}},
      'SeasonalPrLonRmse': {'diagnostic': {'CNRM-CM5_r2i1p1': {'value': None,
         'value_error': None},
        'ERA-Interim': {'value': None, 'value_error': None},
        'GPCPv2.3': {'value': None, 'value_error': None}},
       'metric': {'ERA-Interim': {'value': 0.31243768002704225,
         'value_error': None},
        'GPCPv2.3': {'value': 0.2936118425426857, 'value_error': None}}},
      'SeasonalSstLonRmse': {'diagnostic': {'CNRM-CM5_r2i1p1': {'value': None,
         'value_error': None},
        'ERA-Interim': {'value': None, 'value_error': None},
        'HadISST': {'value': None, 'value_error': None},
        'Tropflux': {'value': None, 'value_error': None}},
       'metric': {'ERA-Interim': {'value': 0.2029331975673081,
         'value_error': None},
        'HadISST': {'value': 0.2093319407075398, 'value_error': None},
        'Tropflux': {'value': 0.19929762797179693, 'value_error': None}}},
      'SeasonalTauxLonRmse': {'diagnostic': {'CNRM-CM5_r2i1p1': {'value': None,
         'value_error': None},
        'ERA-Interim': {'value': None, 'value_error': None},
        'Tropflux': {'value': None, 'value_error': None}},
       'metric': {'ERA-Interim': {'value': 2.40943823322712,
         'value_error': None},
        'Tropflux': {'value': 2.1787161912621045, 'value_error': None}}}}},
    'r3i1p1': {'metadata': {'description_of_the_collection': 'Describe which science question this collection is about',
      'metrics': {'BiasPrLatRmse': {'diagnostic': {'CNRM-CM5_r3i1p1': {'keyerror': None,
          'name': 'CNRM-CM5_r3i1p1',
          'nyears': 156,
          'time_period': ['1850-1-16 12:0:0.0', '2005-12-16 12:0:0.0']},
         'ERA-Interim': {'name': 'ERA-Interim',
          'nyears': 40,
          'time_period': ['1979-1-16 12:0:0.0', '2019-3-16 12:0:0.0']},
         'GPCPv2.3': {'name': 'GPCPv2.3',
          'nyears': 41,
          'time_period': ['1979-1-1 0:0:0.0', '2019-7-1 0:0:0.0']},
         'method': 'Meridional root mean square error of nino3_LatExt pr, time series are linearly detrended, observations and model regridded to generic_1x1deg',
         'name': 'pr Meridional RMSE',
         'ref': 'Using CDAT regridding and rms (uncentered and biased) calculation',
         'time_frequency': 'monthly',
         'units': 'mm/day'},
        'metric': {'datasets': "CNRM-CM5_r3i1p1; ERA-Interim's pr & GPCPv2.3's precip; 's ",
         'method': 'The metric is the statistical value between the model and the observations',
         'name': 'BiasPrLatRmse',
         'units': 'mm/day'}},
       'BiasPrLonRmse': {'diagnostic': {'CNRM-CM5_r3i1p1': {'keyerror': None,
          'name': 'CNRM-CM5_r3i1p1',
          'nyears': 156,
          'time_period': ['1850-1-16 12:0:0.0', '2005-12-16 12:0:0.0']},
         'ERA-Interim': {'name': 'ERA-Interim',
          'nyears': 40,
          'time_period': ['1979-1-16 12:0:0.0', '2019-3-16 12:0:0.0']},
         'GPCPv2.3': {'name': 'GPCPv2.3',
          'nyears': 41,
          'time_period': ['1979-1-1 0:0:0.0', '2019-7-1 0:0:0.0']},
         'method': 'Zonal root mean square error of equatorial_pacific pr, time series are linearly detrended, observations and model regridded to generic_1x1deg',
         'name': 'pr Zonal RMSE',
         'ref': 'Using CDAT regridding and rms (uncentered and biased) calculation',
         'time_frequency': 'monthly',
         'units': 'mm/day'},
        'metric': {'datasets': "CNRM-CM5_r3i1p1; ERA-Interim's pr & GPCPv2.3's precip; 's ",
         'method': 'The metric is the statistical value between the model and the observations',
         'name': 'BiasPrLonRmse',
         'units': 'mm/day'}},
       'BiasSstLonRmse': {'diagnostic': {'CNRM-CM5_r3i1p1': {'keyerror': None,
          'name': 'CNRM-CM5_r3i1p1',
          'nyears': 156,
          'time_period': ['1850-1-16 12:0:0.0', '2005-12-16 12:0:0.0']},
         'ERA-Interim': {'name': 'ERA-Interim',
          'nyears': 40,
          'time_period': ['1979-1-16 12:0:0.0', '2019-3-16 12:0:0.0']},
         'HadISST': {'name': 'HadISST',
          'nyears': 151,
          'time_period': ['1870-1-16 11:59:59.5', '2020-10-16 12:0:0.0']},
         'Tropflux': {'name': 'Tropflux',
          'nyears': 40,
          'time_period': ['1979-1-15 0:0:0.0', '2018-12-15 12:0:0.0']},
         'method': 'Zonal root mean square error of equatorial_pacific sst, time series are linearly detrended, observations and model regridded to generic_1x1deg',
         'name': 'sst Zonal RMSE',
         'ref': 'Using CDAT regridding and rms (uncentered and biased) calculation',
         'time_frequency': 'monthly',
         'units': 'C'},
        'metric': {'datasets': "CNRM-CM5_r3i1p1; ERA-Interim's ts & HadISST's sst & Tropflux's sst; 's ",
         'method': 'The metric is the statistical value between the model and the observations',
         'name': 'BiasSstLonRmse',
         'units': 'C'}},
       'BiasTauxLonRmse': {'diagnostic': {'CNRM-CM5_r3i1p1': {'keyerror': None,
          'name': 'CNRM-CM5_r3i1p1',
          'nyears': 156,
          'time_period': ['1850-1-16 12:0:0.0', '2005-12-16 12:0:0.0']},
         'ERA-Interim': {'name': 'ERA-Interim',
          'nyears': 40,
          'time_period': ['1979-1-16 12:0:0.0', '2019-3-16 12:0:0.0']},
         'Tropflux': {'name': 'Tropflux',
          'nyears': 40,
          'time_period': ['1979-1-15 0:0:0.0', '2018-12-15 12:0:0.0']},
         'method': 'Zonal root mean square error of equatorial_pacific taux, time series are linearly detrended, observations and model regridded to generic_1x1deg',
         'name': 'taux Zonal RMSE',
         'ref': 'Using CDAT regridding and rms (uncentered and biased) calculation',
         'time_frequency': 'monthly',
         'units': '1e-3 N/m2'},
        'metric': {'datasets': "CNRM-CM5_r3i1p1; ERA-Interim's tauu & Tropflux's taux; 's ",
         'method': 'The metric is the statistical value between the model and the observations',
         'name': 'BiasTauxLonRmse',
         'units': '1e-3 N/m2'}},
       'EnsoAmpl': {'diagnostic': {'CNRM-CM5_r3i1p1': {'keyerror': None,
          'name': 'CNRM-CM5_r3i1p1',
          'nyears': 156,
          'time_period': ['1850-1-16 12:0:0.0', '2005-12-16 12:0:0.0']},
         'ERA-Interim': {'keyerror': None,
          'name': 'ERA-Interim',
          'nyears': 40,
          'time_period': ['1979-1-16 12:0:0.0', '2019-3-16 12:0:0.0']},
         'HadISST': {'keyerror': None,
          'name': 'HadISST',
          'nyears': 151,
          'time_period': ['1870-1-16 11:59:59.5', '2020-10-16 12:0:0.0']},
         'Tropflux': {'keyerror': None,
          'name': 'Tropflux',
          'nyears': 40,
          'time_period': ['1979-1-15 0:0:0.0', '2018-12-15 12:0:0.0']},
         'method': 'Standard deviation of nino3.4 sstA, time series are linearly detrended',
         'name': 'ENSO amplitude',
         'ref': 'Using CDAT regression calculation',
         'time_frequency': 'monthly',
         'units': 'C'},
        'metric': {'datasets': "CNRM-CM5_r3i1p1; ERA-Interim's ts & HadISST's sst & Tropflux's sst; 's ",
         'method': 'The metric is the absolute value of the relative difference between model and observations values (M = 100 * abs[[model-obs] / obs])',
         'name': 'EnsoAmpl',
         'units': '%'}},
       'EnsoDuration': {'diagnostic': {'CNRM-CM5_r3i1p1': {'keyerror': None,
          'name': 'CNRM-CM5_r3i1p1',
          'nyears': 156,
          'time_period': ['1850-1-16 12:0:0.0', '2005-12-16 12:0:0.0']},
         'ERA-Interim': {'keyerror': None,
          'name': 'ERA-Interim',
          'nyears': 40,
          'time_period': ['1979-1-16 12:0:0.0', '2019-3-16 12:0:0.0']},
         'HadISST': {'keyerror': None,
          'name': 'HadISST',
          'nyears': 151,
          'time_period': ['1870-1-16 11:59:59.5', '2020-10-16 12:0:0.0']},
         'Tropflux': {'keyerror': None,
          'name': 'Tropflux',
          'nyears': 40,
          'time_period': ['1979-1-15 0:0:0.0', '2018-12-15 12:0:0.0']},
         'method': 'nino3.4 SSTA during DEC regressed against nino3.4 SSTA during 6 years (centered on ENSO), the duration is the number of consecutive months during which the regression is above 0.25, time series are linearly detrended, smoothing using a triangle shaped window of 5 points',
         'name': 'ENSO Duration based on life cyle SSTA pattern',
         'ref': 'Using CDAT',
         'time_frequency': 'monthly',
         'units': 'months'},
        'metric': {'datasets': "CNRM-CM5_r3i1p1; ERA-Interim's ts & HadISST's sst & Tropflux's sst; 's ",
         'method': 'The metric is the absolute value of the relative difference between model and observations values (M = 100 * abs[[model-obs] / obs])',
         'name': 'EnsoDuration',
         'units': '%'}},
       'EnsoSeasonality': {'diagnostic': {'CNRM-CM5_r3i1p1': {'keyerror': None,
          'name': 'CNRM-CM5_r3i1p1',
          'nyears': 156,
          'time_period': ['1850-1-16 12:0:0.0', '2005-12-16 12:0:0.0']},
         'ERA-Interim': {'keyerror': None,
          'name': 'ERA-Interim',
          'nyears': 40,
          'time_period': ['1979-1-16 12:0:0.0', '2019-3-16 12:0:0.0']},
         'HadISST': {'keyerror': None,
          'name': 'HadISST',
          'nyears': 151,
          'time_period': ['1870-1-16 11:59:59.5', '2020-10-16 12:0:0.0']},
         'Tropflux': {'keyerror': None,
          'name': 'Tropflux',
          'nyears': 40,
          'time_period': ['1979-1-15 0:0:0.0', '2018-12-15 12:0:0.0']},
         'method': 'Ratio between NDJ and MAM standard deviation nino3.4 sstA, time series are linearly detrended',
         'name': 'ENSO seasonality',
         'ref': 'Using CDAT std dev calculation',
         'time_frequency': 'monthly',
         'units': 'C/C'},
        'metric': {'datasets': "CNRM-CM5_r3i1p1; ERA-Interim's ts & HadISST's sst & Tropflux's sst; 's ",
         'method': 'The metric is the absolute value of the relative difference between model and observations values (M = 100 * abs[[model-obs] / obs])',
         'name': 'EnsoSeasonality',
         'units': '%'}},
       'EnsoSstDiversity_2': {'diagnostic': {'CNRM-CM5_r3i1p1': {'keyerror': None,
          'name': 'CNRM-CM5_r3i1p1',
          'nyears': 156,
          'time_period': ['1850-1-16 12:0:0.0', '2005-12-16 12:0:0.0']},
         'ERA-Interim': {'keyerror': None,
          'name': 'ERA-Interim',
          'nyears': 40,
          'time_period': ['1979-1-16 12:0:0.0', '2019-3-16 12:0:0.0']},
         'HadISST': {'keyerror': None,
          'name': 'HadISST',
          'nyears': 151,
          'time_period': ['1870-1-16 11:59:59.5', '2020-10-16 12:0:0.0']},
         'Tropflux': {'keyerror': None,
          'name': 'Tropflux',
          'nyears': 40,
          'time_period': ['1979-1-15 0:0:0.0', '2018-12-15 12:0:0.0']},
         'method': 'Nino (Nina) events = nino3.4 sstA > 0.75 (< -0.75) during DEC, zonal SSTA (meridional averaged [-5.0 ; 5.0]), the zonal SSTA maximum (minimum) is located for each event, the diversity is the interquartile range (IQR = Q3 - Q1), time series are linearly detrended, smoothing using a triangle shaped window of 5 points',
         'name': 'ENSO Diversity (interquartile range)',
         'ref': 'Using CDAT regridding',
         'time_frequency': 'monthly',
         'units': 'long'},
        'metric': {'datasets': "CNRM-CM5_r3i1p1; ERA-Interim's ts & HadISST's sst & Tropflux's sst; 's ",
         'method': 'The metric is the absolute value of the relative difference between model and observations values (M = 100 * abs[[model-obs] / obs])',
         'name': 'EnsoSstDiversity',
         'units': '%'}},
       'EnsoSstLonRmse': {'diagnostic': {'CNRM-CM5_r3i1p1': {'keyerror': None,
          'name': 'CNRM-CM5_r3i1p1',
          'nyears': 156,
          'time_period': ['1850-1-16 12:0:0.0', '2005-12-16 12:0:0.0']},
         'ERA-Interim': {'name': 'ERA-Interim',
          'nyears': 40,
          'time_period': ['1979-1-16 12:0:0.0', '2019-3-16 12:0:0.0']},
         'HadISST': {'name': 'HadISST',
          'nyears': 151,
          'time_period': ['1870-1-16 11:59:59.5', '2020-10-16 12:0:0.0']},
         'Tropflux': {'name': 'Tropflux',
          'nyears': 40,
          'time_period': ['1979-1-15 0:0:0.0', '2018-12-15 12:0:0.0']},
         'method': 'nino3.4 SSTA during DEC regressed against equatorial_pacific SSTA, time series are linearly detrended, smoothing using a triangle shaped window of 5 points, observations and model regridded to generic_1x1deg',
         'name': 'ENSO Zonal SSTA pattern',
         'ref': 'Using CDAT regridding and rms (uncentered and biased) calculation',
         'time_frequency': 'monthly',
         'units': 'C/C'},
        'metric': {'datasets': "CNRM-CM5_r3i1p1; ERA-Interim's ts & HadISST's sst & Tropflux's sst; 's ",
         'method': 'The metric is the statistical value between the model and the observations',
         'name': 'EnsoSstLonRmse',
         'units': 'C/C'}},
       'EnsoSstSkew': {'diagnostic': {'CNRM-CM5_r3i1p1': {'keyerror': None,
          'name': 'CNRM-CM5_r3i1p1',
          'nyears': 156,
          'time_period': ['1850-1-16 12:0:0.0', '2005-12-16 12:0:0.0']},
         'ERA-Interim': {'keyerror': None,
          'name': 'ERA-Interim',
          'nyears': 40,
          'time_period': ['1979-1-16 12:0:0.0', '2019-3-16 12:0:0.0']},
         'HadISST': {'keyerror': None,
          'name': 'HadISST',
          'nyears': 151,
          'time_period': ['1870-1-16 11:59:59.5', '2020-10-16 12:0:0.0']},
         'Tropflux': {'keyerror': None,
          'name': 'Tropflux',
          'nyears': 40,
          'time_period': ['1979-1-15 0:0:0.0', '2018-12-15 12:0:0.0']},
         'method': 'Standard deviation of nino3.4 sstA, time series are linearly detrended',
         'name': 'ENSO skewness',
         'ref': 'Using CDAT regression calculation',
         'time_frequency': 'monthly',
         'units': 'C'},
        'metric': {'datasets': "CNRM-CM5_r3i1p1; ERA-Interim's ts & HadISST's sst & Tropflux's sst; 's ",
         'method': 'The metric is the absolute value of the relative difference between model and observations values (M = 100 * abs[[model-obs] / obs])',
         'name': 'EnsoSstSkew',
         'units': '%'}},
       'EnsoSstTsRmse': {'diagnostic': {'CNRM-CM5_r3i1p1': {'keyerror': None,
          'name': 'CNRM-CM5_r3i1p1',
          'nyears': 156,
          'time_period': ['1850-1-16 12:0:0.0', '2005-12-16 12:0:0.0']},
         'ERA-Interim': {'name': 'ERA-Interim',
          'nyears': 40,
          'time_period': ['1979-1-16 12:0:0.0', '2019-3-16 12:0:0.0']},
         'HadISST': {'name': 'HadISST',
          'nyears': 151,
          'time_period': ['1870-1-16 11:59:59.5', '2020-10-16 12:0:0.0']},
         'Tropflux': {'name': 'Tropflux',
          'nyears': 40,
          'time_period': ['1979-1-15 0:0:0.0', '2018-12-15 12:0:0.0']},
         'method': 'nino3.4 SSTA during DEC regressed against nino3.4 SSTA during 6 years (centered on ENSO), time series are linearly detrended, smoothing using a triangle shaped window of 5 points',
         'name': 'ENSO life cyle SSTA pattern',
         'ref': 'Using CDAT regridding and rms (uncentered and biased) calculation',
         'time_frequency': 'monthly',
         'units': 'C/C'},
        'metric': {'datasets': "CNRM-CM5_r3i1p1; ERA-Interim's ts & HadISST's sst & Tropflux's sst; 's ",
         'method': 'The metric is the statistical value between the model and the observations',
         'name': 'EnsoSstTsRmse',
         'units': 'C/C'}},
       'SeasonalPrLatRmse': {'diagnostic': {'CNRM-CM5_r3i1p1': {'keyerror': None,
          'name': 'CNRM-CM5_r3i1p1',
          'nyears': 156,
          'time_period': ['1850-1-16 12:0:0.0', '2005-12-16 12:0:0.0']},
         'ERA-Interim': {'name': 'ERA-Interim',
          'nyears': 40,
          'time_period': ['1979-1-16 12:0:0.0', '2019-3-16 12:0:0.0']},
         'GPCPv2.3': {'name': 'GPCPv2.3',
          'nyears': 41,
          'time_period': ['1979-1-1 0:0:0.0', '2019-7-1 0:0:0.0']},
         'method': 'Meridional root mean square error of nino3_LatExt climatological pr STD, time series are linearly detrended, observations and model regridded to generic_1x1deg',
         'name': 'pr meridional seasonality RMSE',
         'ref': 'Using CDAT regridding and rms (uncentered and biased) calculation',
         'time_frequency': 'monthly',
         'units': 'mm/day'},
        'metric': {'datasets': "CNRM-CM5_r3i1p1; ERA-Interim's pr & GPCPv2.3's precip; 's ",
         'method': 'The metric is the statistical value between the model and the observations',
         'name': 'SeasonalPrLatRmse',
         'units': 'mm/day'}},
       'SeasonalPrLonRmse': {'diagnostic': {'CNRM-CM5_r3i1p1': {'keyerror': None,
          'name': 'CNRM-CM5_r3i1p1',
          'nyears': 156,
          'time_period': ['1850-1-16 12:0:0.0', '2005-12-16 12:0:0.0']},
         'ERA-Interim': {'name': 'ERA-Interim',
          'nyears': 40,
          'time_period': ['1979-1-16 12:0:0.0', '2019-3-16 12:0:0.0']},
         'GPCPv2.3': {'name': 'GPCPv2.3',
          'nyears': 41,
          'time_period': ['1979-1-1 0:0:0.0', '2019-7-1 0:0:0.0']},
         'method': 'Zonal root mean square error of equatorial_pacific climatological pr STD, time series are linearly detrended, observations and model regridded to generic_1x1deg',
         'name': 'pr zonal seasonality RMSE',
         'ref': 'Using CDAT regridding and rms (uncentered and biased) calculation',
         'time_frequency': 'monthly',
         'units': 'mm/day'},
        'metric': {'datasets': "CNRM-CM5_r3i1p1; ERA-Interim's pr & GPCPv2.3's precip; 's ",
         'method': 'The metric is the statistical value between the model and the observations',
         'name': 'SeasonalPrLonRmse',
         'units': 'mm/day'}},
       'SeasonalSstLonRmse': {'diagnostic': {'CNRM-CM5_r3i1p1': {'keyerror': None,
          'name': 'CNRM-CM5_r3i1p1',
          'nyears': 156,
          'time_period': ['1850-1-16 12:0:0.0', '2005-12-16 12:0:0.0']},
         'ERA-Interim': {'name': 'ERA-Interim',
          'nyears': 40,
          'time_period': ['1979-1-16 12:0:0.0', '2019-3-16 12:0:0.0']},
         'HadISST': {'name': 'HadISST',
          'nyears': 151,
          'time_period': ['1870-1-16 11:59:59.5', '2020-10-16 12:0:0.0']},
         'Tropflux': {'name': 'Tropflux',
          'nyears': 40,
          'time_period': ['1979-1-15 0:0:0.0', '2018-12-15 12:0:0.0']},
         'method': 'Zonal root mean square error of equatorial_pacific climatological sst STD, time series are linearly detrended, observations and model regridded to generic_1x1deg',
         'name': 'sst zonal seasonality RMSE',
         'ref': 'Using CDAT regridding and rms (uncentered and biased) calculation',
         'time_frequency': 'monthly',
         'units': 'C'},
        'metric': {'datasets': "CNRM-CM5_r3i1p1; ERA-Interim's ts & HadISST's sst & Tropflux's sst; 's ",
         'method': 'The metric is the statistical value between the model and the observations',
         'name': 'SeasonalSstLonRmse',
         'units': 'C'}},
       'SeasonalTauxLonRmse': {'diagnostic': {'CNRM-CM5_r3i1p1': {'keyerror': None,
          'name': 'CNRM-CM5_r3i1p1',
          'nyears': 156,
          'time_period': ['1850-1-16 12:0:0.0', '2005-12-16 12:0:0.0']},
         'ERA-Interim': {'name': 'ERA-Interim',
          'nyears': 40,
          'time_period': ['1979-1-16 12:0:0.0', '2019-3-16 12:0:0.0']},
         'Tropflux': {'name': 'Tropflux',
          'nyears': 40,
          'time_period': ['1979-1-15 0:0:0.0', '2018-12-15 12:0:0.0']},
         'method': 'Zonal root mean square error of equatorial_pacific climatological taux STD, time series are linearly detrended, observations and model regridded to generic_1x1deg',
         'name': 'taux zonal seasonality RMSE',
         'ref': 'Using CDAT regridding and rms (uncentered and biased) calculation',
         'time_frequency': 'monthly',
         'units': '1e-3 N/m2'},
        'metric': {'datasets': "CNRM-CM5_r3i1p1; ERA-Interim's tauu & Tropflux's taux; 's ",
         'method': 'The metric is the statistical value between the model and the observations',
         'name': 'SeasonalTauxLonRmse',
         'units': '1e-3 N/m2'}}},
      'name': 'Metrics Collection for ENSO performance'},
     'value': {'BiasPrLatRmse': {'diagnostic': {'CNRM-CM5_r3i1p1': {'value': None,
         'value_error': None},
        'ERA-Interim': {'value': None, 'value_error': None},
        'GPCPv2.3': {'value': None, 'value_error': None}},
       'metric': {'ERA-Interim': {'value': 1.6085914444456495,
         'value_error': None},
        'GPCPv2.3': {'value': 1.8029320619812175, 'value_error': None}}},
      'BiasPrLonRmse': {'diagnostic': {'CNRM-CM5_r3i1p1': {'value': None,
         'value_error': None},
        'ERA-Interim': {'value': None, 'value_error': None},
        'GPCPv2.3': {'value': None, 'value_error': None}},
       'metric': {'ERA-Interim': {'value': 0.9955265188110903,
         'value_error': None},
        'GPCPv2.3': {'value': 0.5222866116961783, 'value_error': None}}},
      'BiasSstLonRmse': {'diagnostic': {'CNRM-CM5_r3i1p1': {'value': None,
         'value_error': None},
        'ERA-Interim': {'value': None, 'value_error': None},
        'HadISST': {'value': None, 'value_error': None},
        'Tropflux': {'value': None, 'value_error': None}},
       'metric': {'ERA-Interim': {'value': 0.9284319668399101,
         'value_error': None},
        'HadISST': {'value': 0.788856437362303, 'value_error': None},
        'Tropflux': {'value': 0.9715830490165797, 'value_error': None}}},
      'BiasTauxLonRmse': {'diagnostic': {'CNRM-CM5_r3i1p1': {'value': None,
         'value_error': None},
        'ERA-Interim': {'value': None, 'value_error': None},
        'Tropflux': {'value': None, 'value_error': None}},
       'metric': {'ERA-Interim': {'value': 8.823501954002632,
         'value_error': None},
        'Tropflux': {'value': 8.546110851607816, 'value_error': None}}},
      'EnsoAmpl': {'diagnostic': {'CNRM-CM5_r3i1p1': {'value': 0.8154330121146953,
         'value_error': 0.0652868913908237},
        'ERA-Interim': {'value': 0.8989844997845644,
         'value_error': 0.14214193002531866},
        'HadISST': {'value': 0.7665787872085695,
         'value_error': 0.06238329697691264},
        'Tropflux': {'value': 0.9039789553693535,
         'value_error': 0.14293162279134272}},
       'metric': {'ERA-Interim': {'value': 9.29398534567522,
         'value_error': 21.604173522020954},
        'HadISST': {'value': 6.373020715068862,
         'value_error': 17.173171369141986},
        'Tropflux': {'value': 9.795133252685012,
         'value_error': 21.484811135915702}}},
      'EnsoDuration': {'diagnostic': {'CNRM-CM5_r3i1p1': {'value': 11.0,
         'value_error': None},
        'ERA-Interim': {'value': 13.0, 'value_error': None},
        'HadISST': {'value': 13.0, 'value_error': None},
        'Tropflux': {'value': 13.0, 'value_error': None}},
       'metric': {'ERA-Interim': {'value': 15.384615384615385,
         'value_error': None},
        'HadISST': {'value': 15.384615384615385, 'value_error': None},
        'Tropflux': {'value': 15.384615384615385, 'value_error': None}}},
      'EnsoSeasonality': {'diagnostic': {'CNRM-CM5_r3i1p1': {'value': 2.0349723154145565,
         'value_error': 0.3263810897081426},
        'ERA-Interim': {'value': 2.0466846866656914,
         'value_error': 0.6513411033995022},
        'HadISST': {'value': 1.6639865947361325,
         'value_error': 0.2712772451657809},
        'Tropflux': {'value': 2.0532132553583624,
         'value_error': 0.6534187683977347}},
       'metric': {'ERA-Interim': {'value': 0.5722606578063486,
         'value_error': 47.58890465983447},
        'HadISST': {'value': 22.29499455416305,
         'value_error': 39.55197619934449},
        'Tropflux': {'value': 0.8884094185638893,
         'value_error': 47.43758699603609}}},
      'EnsoSstDiversity_2': {'diagnostic': {'CNRM-CM5_r3i1p1': {'value': 28.5,
         'value_error': None},
        'ERA-Interim': {'value': 33.25, 'value_error': None},
        'HadISST': {'value': 49.0, 'value_error': None},
        'Tropflux': {'value': 32.0, 'value_error': None}},
       'metric': {'ERA-Interim': {'value': 14.285714285714285,
         'value_error': None},
        'HadISST': {'value': 41.83673469387755, 'value_error': None},
        'Tropflux': {'value': 10.9375, 'value_error': None}}},
      'EnsoSstLonRmse': {'diagnostic': {'CNRM-CM5_r3i1p1': {'value': None,
         'value_error': None},
        'ERA-Interim': {'value': None, 'value_error': None},
        'HadISST': {'value': None, 'value_error': None},
        'Tropflux': {'value': None, 'value_error': None}},
       'metric': {'ERA-Interim': {'value': 0.08029645936505095,
         'value_error': None},
        'HadISST': {'value': 0.09699340221980993, 'value_error': None},
        'Tropflux': {'value': 0.0786285658546775, 'value_error': None}}},
      'EnsoSstSkew': {'diagnostic': {'CNRM-CM5_r3i1p1': {'value': -0.02540053968996388,
         'value_error': -0.0020336707631033782},
        'ERA-Interim': {'value': 0.39098111106809963,
         'value_error': 0.061819541653923164},
        'HadISST': {'value': 0.38989908235027515,
         'value_error': 0.03172953733021198},
        'Tropflux': {'value': 0.39744741059612115,
         'value_error': 0.06284195338099416}},
       'metric': {'ERA-Interim': {'value': 106.49661555786507,
         'value_error': -1.547350639898122},
        'HadISST': {'value': 106.51464464518658,
         'value_error': -1.051743272389782},
        'Tropflux': {'value': 106.39091839895653,
         'value_error': -1.5221759062209066}}},
      'EnsoSstTsRmse': {'diagnostic': {'CNRM-CM5_r3i1p1': {'value': None,
         'value_error': None},
        'ERA-Interim': {'value': None, 'value_error': None},
        'HadISST': {'value': None, 'value_error': None},
        'Tropflux': {'value': None, 'value_error': None}},
       'metric': {'ERA-Interim': {'value': 0.1729594485363155,
         'value_error': None},
        'HadISST': {'value': 0.17956946406933033, 'value_error': None},
        'Tropflux': {'value': 0.1758175780214782, 'value_error': None}}},
      'SeasonalPrLatRmse': {'diagnostic': {'CNRM-CM5_r3i1p1': {'value': None,
         'value_error': None},
        'ERA-Interim': {'value': None, 'value_error': None},
        'GPCPv2.3': {'value': None, 'value_error': None}},
       'metric': {'ERA-Interim': {'value': 0.8976600446210503,
         'value_error': None},
        'GPCPv2.3': {'value': 0.9623606329443285, 'value_error': None}}},
      'SeasonalPrLonRmse': {'diagnostic': {'CNRM-CM5_r3i1p1': {'value': None,
         'value_error': None},
        'ERA-Interim': {'value': None, 'value_error': None},
        'GPCPv2.3': {'value': None, 'value_error': None}},
       'metric': {'ERA-Interim': {'value': 0.3001256540667008,
         'value_error': None},
        'GPCPv2.3': {'value': 0.34302008210932844, 'value_error': None}}},
      'SeasonalSstLonRmse': {'diagnostic': {'CNRM-CM5_r3i1p1': {'value': None,
         'value_error': None},
        'ERA-Interim': {'value': None, 'value_error': None},
        'HadISST': {'value': None, 'value_error': None},
        'Tropflux': {'value': None, 'value_error': None}},
       'metric': {'ERA-Interim': {'value': 0.2021306389229976,
         'value_error': None},
        'HadISST': {'value': 0.2095025037908731, 'value_error': None},
        'Tropflux': {'value': 0.19813072578788266, 'value_error': None}}},
      'SeasonalTauxLonRmse': {'diagnostic': {'CNRM-CM5_r3i1p1': {'value': None,
         'value_error': None},
        'ERA-Interim': {'value': None, 'value_error': None},
        'Tropflux': {'value': None, 'value_error': None}},
       'metric': {'ERA-Interim': {'value': 2.4169841202309725,
         'value_error': None},
        'Tropflux': {'value': 2.19117354759193, 'value_error': None}}}}},
    'r4i1p1': {'metadata': {'description_of_the_collection': 'Describe which science question this collection is about',
      'metrics': {'BiasPrLatRmse': {'diagnostic': {'CNRM-CM5_r4i1p1': {'keyerror': None,
          'name': 'CNRM-CM5_r4i1p1',
          'nyears': 156,
          'time_period': ['1850-1-16 12:0:0.0', '2005-12-16 12:0:0.0']},
         'ERA-Interim': {'name': 'ERA-Interim',
          'nyears': 40,
          'time_period': ['1979-1-16 12:0:0.0', '2019-3-16 12:0:0.0']},
         'GPCPv2.3': {'name': 'GPCPv2.3',
          'nyears': 41,
          'time_period': ['1979-1-1 0:0:0.0', '2019-7-1 0:0:0.0']},
         'method': 'Meridional root mean square error of nino3_LatExt pr, time series are linearly detrended, observations and model regridded to generic_1x1deg',
         'name': 'pr Meridional RMSE',
         'ref': 'Using CDAT regridding and rms (uncentered and biased) calculation',
         'time_frequency': 'monthly',
         'units': 'mm/day'},
        'metric': {'datasets': "CNRM-CM5_r4i1p1; ERA-Interim's pr & GPCPv2.3's precip; 's ",
         'method': 'The metric is the statistical value between the model and the observations',
         'name': 'BiasPrLatRmse',
         'units': 'mm/day'}},
       'BiasPrLonRmse': {'diagnostic': {'CNRM-CM5_r4i1p1': {'keyerror': None,
          'name': 'CNRM-CM5_r4i1p1',
          'nyears': 156,
          'time_period': ['1850-1-16 12:0:0.0', '2005-12-16 12:0:0.0']},
         'ERA-Interim': {'name': 'ERA-Interim',
          'nyears': 40,
          'time_period': ['1979-1-16 12:0:0.0', '2019-3-16 12:0:0.0']},
         'GPCPv2.3': {'name': 'GPCPv2.3',
          'nyears': 41,
          'time_period': ['1979-1-1 0:0:0.0', '2019-7-1 0:0:0.0']},
         'method': 'Zonal root mean square error of equatorial_pacific pr, time series are linearly detrended, observations and model regridded to generic_1x1deg',
         'name': 'pr Zonal RMSE',
         'ref': 'Using CDAT regridding and rms (uncentered and biased) calculation',
         'time_frequency': 'monthly',
         'units': 'mm/day'},
        'metric': {'datasets': "CNRM-CM5_r4i1p1; ERA-Interim's pr & GPCPv2.3's precip; 's ",
         'method': 'The metric is the statistical value between the model and the observations',
         'name': 'BiasPrLonRmse',
         'units': 'mm/day'}},
       'BiasSstLonRmse': {'diagnostic': {'CNRM-CM5_r4i1p1': {'keyerror': None,
          'name': 'CNRM-CM5_r4i1p1',
          'nyears': 156,
          'time_period': ['1850-1-16 12:0:0.0', '2005-12-16 12:0:0.0']},
         'ERA-Interim': {'name': 'ERA-Interim',
          'nyears': 40,
          'time_period': ['1979-1-16 12:0:0.0', '2019-3-16 12:0:0.0']},
         'HadISST': {'name': 'HadISST',
          'nyears': 151,
          'time_period': ['1870-1-16 11:59:59.5', '2020-10-16 12:0:0.0']},
         'Tropflux': {'name': 'Tropflux',
          'nyears': 40,
          'time_period': ['1979-1-15 0:0:0.0', '2018-12-15 12:0:0.0']},
         'method': 'Zonal root mean square error of equatorial_pacific sst, time series are linearly detrended, observations and model regridded to generic_1x1deg',
         'name': 'sst Zonal RMSE',
         'ref': 'Using CDAT regridding and rms (uncentered and biased) calculation',
         'time_frequency': 'monthly',
         'units': 'C'},
        'metric': {'datasets': "CNRM-CM5_r4i1p1; ERA-Interim's ts & HadISST's sst & Tropflux's sst; 's ",
         'method': 'The metric is the statistical value between the model and the observations',
         'name': 'BiasSstLonRmse',
         'units': 'C'}},
       'BiasTauxLonRmse': {'diagnostic': {'CNRM-CM5_r4i1p1': {'keyerror': None,
          'name': 'CNRM-CM5_r4i1p1',
          'nyears': 156,
          'time_period': ['1850-1-16 12:0:0.0', '2005-12-16 12:0:0.0']},
         'ERA-Interim': {'name': 'ERA-Interim',
          'nyears': 40,
          'time_period': ['1979-1-16 12:0:0.0', '2019-3-16 12:0:0.0']},
         'Tropflux': {'name': 'Tropflux',
          'nyears': 40,
          'time_period': ['1979-1-15 0:0:0.0', '2018-12-15 12:0:0.0']},
         'method': 'Zonal root mean square error of equatorial_pacific taux, time series are linearly detrended, observations and model regridded to generic_1x1deg',
         'name': 'taux Zonal RMSE',
         'ref': 'Using CDAT regridding and rms (uncentered and biased) calculation',
         'time_frequency': 'monthly',
         'units': '1e-3 N/m2'},
        'metric': {'datasets': "CNRM-CM5_r4i1p1; ERA-Interim's tauu & Tropflux's taux; 's ",
         'method': 'The metric is the statistical value between the model and the observations',
         'name': 'BiasTauxLonRmse',
         'units': '1e-3 N/m2'}},
       'EnsoAmpl': {'diagnostic': {'CNRM-CM5_r4i1p1': {'keyerror': None,
          'name': 'CNRM-CM5_r4i1p1',
          'nyears': 156,
          'time_period': ['1850-1-16 12:0:0.0', '2005-12-16 12:0:0.0']},
         'ERA-Interim': {'keyerror': None,
          'name': 'ERA-Interim',
          'nyears': 40,
          'time_period': ['1979-1-16 12:0:0.0', '2019-3-16 12:0:0.0']},
         'HadISST': {'keyerror': None,
          'name': 'HadISST',
          'nyears': 151,
          'time_period': ['1870-1-16 11:59:59.5', '2020-10-16 12:0:0.0']},
         'Tropflux': {'keyerror': None,
          'name': 'Tropflux',
          'nyears': 40,
          'time_period': ['1979-1-15 0:0:0.0', '2018-12-15 12:0:0.0']},
         'method': 'Standard deviation of nino3.4 sstA, time series are linearly detrended',
         'name': 'ENSO amplitude',
         'ref': 'Using CDAT regression calculation',
         'time_frequency': 'monthly',
         'units': 'C'},
        'metric': {'datasets': "CNRM-CM5_r4i1p1; ERA-Interim's ts & HadISST's sst & Tropflux's sst; 's ",
         'method': 'The metric is the absolute value of the relative difference between model and observations values (M = 100 * abs[[model-obs] / obs])',
         'name': 'EnsoAmpl',
         'units': '%'}},
       'EnsoDuration': {'diagnostic': {'CNRM-CM5_r4i1p1': {'keyerror': None,
          'name': 'CNRM-CM5_r4i1p1',
          'nyears': 156,
          'time_period': ['1850-1-16 12:0:0.0', '2005-12-16 12:0:0.0']},
         'ERA-Interim': {'keyerror': None,
          'name': 'ERA-Interim',
          'nyears': 40,
          'time_period': ['1979-1-16 12:0:0.0', '2019-3-16 12:0:0.0']},
         'HadISST': {'keyerror': None,
          'name': 'HadISST',
          'nyears': 151,
          'time_period': ['1870-1-16 11:59:59.5', '2020-10-16 12:0:0.0']},
         'Tropflux': {'keyerror': None,
          'name': 'Tropflux',
          'nyears': 40,
          'time_period': ['1979-1-15 0:0:0.0', '2018-12-15 12:0:0.0']},
         'method': 'nino3.4 SSTA during DEC regressed against nino3.4 SSTA during 6 years (centered on ENSO), the duration is the number of consecutive months during which the regression is above 0.25, time series are linearly detrended, smoothing using a triangle shaped window of 5 points',
         'name': 'ENSO Duration based on life cyle SSTA pattern',
         'ref': 'Using CDAT',
         'time_frequency': 'monthly',
         'units': 'months'},
        'metric': {'datasets': "CNRM-CM5_r4i1p1; ERA-Interim's ts & HadISST's sst & Tropflux's sst; 's ",
         'method': 'The metric is the absolute value of the relative difference between model and observations values (M = 100 * abs[[model-obs] / obs])',
         'name': 'EnsoDuration',
         'units': '%'}},
       'EnsoSeasonality': {'diagnostic': {'CNRM-CM5_r4i1p1': {'keyerror': None,
          'name': 'CNRM-CM5_r4i1p1',
          'nyears': 156,
          'time_period': ['1850-1-16 12:0:0.0', '2005-12-16 12:0:0.0']},
         'ERA-Interim': {'keyerror': None,
          'name': 'ERA-Interim',
          'nyears': 40,
          'time_period': ['1979-1-16 12:0:0.0', '2019-3-16 12:0:0.0']},
         'HadISST': {'keyerror': None,
          'name': 'HadISST',
          'nyears': 151,
          'time_period': ['1870-1-16 11:59:59.5', '2020-10-16 12:0:0.0']},
         'Tropflux': {'keyerror': None,
          'name': 'Tropflux',
          'nyears': 40,
          'time_period': ['1979-1-15 0:0:0.0', '2018-12-15 12:0:0.0']},
         'method': 'Ratio between NDJ and MAM standard deviation nino3.4 sstA, time series are linearly detrended',
         'name': 'ENSO seasonality',
         'ref': 'Using CDAT std dev calculation',
         'time_frequency': 'monthly',
         'units': 'C/C'},
        'metric': {'datasets': "CNRM-CM5_r4i1p1; ERA-Interim's ts & HadISST's sst & Tropflux's sst; 's ",
         'method': 'The metric is the absolute value of the relative difference between model and observations values (M = 100 * abs[[model-obs] / obs])',
         'name': 'EnsoSeasonality',
         'units': '%'}},
       'EnsoSstDiversity_2': {'diagnostic': {'CNRM-CM5_r4i1p1': {'keyerror': None,
          'name': 'CNRM-CM5_r4i1p1',
          'nyears': 156,
          'time_period': ['1850-1-16 12:0:0.0', '2005-12-16 12:0:0.0']},
         'ERA-Interim': {'keyerror': None,
          'name': 'ERA-Interim',
          'nyears': 40,
          'time_period': ['1979-1-16 12:0:0.0', '2019-3-16 12:0:0.0']},
         'HadISST': {'keyerror': None,
          'name': 'HadISST',
          'nyears': 151,
          'time_period': ['1870-1-16 11:59:59.5', '2020-10-16 12:0:0.0']},
         'Tropflux': {'keyerror': None,
          'name': 'Tropflux',
          'nyears': 40,
          'time_period': ['1979-1-15 0:0:0.0', '2018-12-15 12:0:0.0']},
         'method': 'Nino (Nina) events = nino3.4 sstA > 0.75 (< -0.75) during DEC, zonal SSTA (meridional averaged [-5.0 ; 5.0]), the zonal SSTA maximum (minimum) is located for each event, the diversity is the interquartile range (IQR = Q3 - Q1), time series are linearly detrended, smoothing using a triangle shaped window of 5 points',
         'name': 'ENSO Diversity (interquartile range)',
         'ref': 'Using CDAT regridding',
         'time_frequency': 'monthly',
         'units': 'long'},
        'metric': {'datasets': "CNRM-CM5_r4i1p1; ERA-Interim's ts & HadISST's sst & Tropflux's sst; 's ",
         'method': 'The metric is the absolute value of the relative difference between model and observations values (M = 100 * abs[[model-obs] / obs])',
         'name': 'EnsoSstDiversity',
         'units': '%'}},
       'EnsoSstLonRmse': {'diagnostic': {'CNRM-CM5_r4i1p1': {'keyerror': None,
          'name': 'CNRM-CM5_r4i1p1',
          'nyears': 156,
          'time_period': ['1850-1-16 12:0:0.0', '2005-12-16 12:0:0.0']},
         'ERA-Interim': {'name': 'ERA-Interim',
          'nyears': 40,
          'time_period': ['1979-1-16 12:0:0.0', '2019-3-16 12:0:0.0']},
         'HadISST': {'name': 'HadISST',
          'nyears': 151,
          'time_period': ['1870-1-16 11:59:59.5', '2020-10-16 12:0:0.0']},
         'Tropflux': {'name': 'Tropflux',
          'nyears': 40,
          'time_period': ['1979-1-15 0:0:0.0', '2018-12-15 12:0:0.0']},
         'method': 'nino3.4 SSTA during DEC regressed against equatorial_pacific SSTA, time series are linearly detrended, smoothing using a triangle shaped window of 5 points, observations and model regridded to generic_1x1deg',
         'name': 'ENSO Zonal SSTA pattern',
         'ref': 'Using CDAT regridding and rms (uncentered and biased) calculation',
         'time_frequency': 'monthly',
         'units': 'C/C'},
        'metric': {'datasets': "CNRM-CM5_r4i1p1; ERA-Interim's ts & HadISST's sst & Tropflux's sst; 's ",
         'method': 'The metric is the statistical value between the model and the observations',
         'name': 'EnsoSstLonRmse',
         'units': 'C/C'}},
       'EnsoSstSkew': {'diagnostic': {'CNRM-CM5_r4i1p1': {'keyerror': None,
          'name': 'CNRM-CM5_r4i1p1',
          'nyears': 156,
          'time_period': ['1850-1-16 12:0:0.0', '2005-12-16 12:0:0.0']},
         'ERA-Interim': {'keyerror': None,
          'name': 'ERA-Interim',
          'nyears': 40,
          'time_period': ['1979-1-16 12:0:0.0', '2019-3-16 12:0:0.0']},
         'HadISST': {'keyerror': None,
          'name': 'HadISST',
          'nyears': 151,
          'time_period': ['1870-1-16 11:59:59.5', '2020-10-16 12:0:0.0']},
         'Tropflux': {'keyerror': None,
          'name': 'Tropflux',
          'nyears': 40,
          'time_period': ['1979-1-15 0:0:0.0', '2018-12-15 12:0:0.0']},
         'method': 'Standard deviation of nino3.4 sstA, time series are linearly detrended',
         'name': 'ENSO skewness',
         'ref': 'Using CDAT regression calculation',
         'time_frequency': 'monthly',
         'units': 'C'},
        'metric': {'datasets': "CNRM-CM5_r4i1p1; ERA-Interim's ts & HadISST's sst & Tropflux's sst; 's ",
         'method': 'The metric is the absolute value of the relative difference between model and observations values (M = 100 * abs[[model-obs] / obs])',
         'name': 'EnsoSstSkew',
         'units': '%'}},
       'EnsoSstTsRmse': {'diagnostic': {'CNRM-CM5_r4i1p1': {'keyerror': None,
          'name': 'CNRM-CM5_r4i1p1',
          'nyears': 156,
          'time_period': ['1850-1-16 12:0:0.0', '2005-12-16 12:0:0.0']},
         'ERA-Interim': {'name': 'ERA-Interim',
          'nyears': 40,
          'time_period': ['1979-1-16 12:0:0.0', '2019-3-16 12:0:0.0']},
         'HadISST': {'name': 'HadISST',
          'nyears': 151,
          'time_period': ['1870-1-16 11:59:59.5', '2020-10-16 12:0:0.0']},
         'Tropflux': {'name': 'Tropflux',
          'nyears': 40,
          'time_period': ['1979-1-15 0:0:0.0', '2018-12-15 12:0:0.0']},
         'method': 'nino3.4 SSTA during DEC regressed against nino3.4 SSTA during 6 years (centered on ENSO), time series are linearly detrended, smoothing using a triangle shaped window of 5 points',
         'name': 'ENSO life cyle SSTA pattern',
         'ref': 'Using CDAT regridding and rms (uncentered and biased) calculation',
         'time_frequency': 'monthly',
         'units': 'C/C'},
        'metric': {'datasets': "CNRM-CM5_r4i1p1; ERA-Interim's ts & HadISST's sst & Tropflux's sst; 's ",
         'method': 'The metric is the statistical value between the model and the observations',
         'name': 'EnsoSstTsRmse',
         'units': 'C/C'}},
       'SeasonalPrLatRmse': {'diagnostic': {'CNRM-CM5_r4i1p1': {'keyerror': None,
          'name': 'CNRM-CM5_r4i1p1',
          'nyears': 156,
          'time_period': ['1850-1-16 12:0:0.0', '2005-12-16 12:0:0.0']},
         'ERA-Interim': {'name': 'ERA-Interim',
          'nyears': 40,
          'time_period': ['1979-1-16 12:0:0.0', '2019-3-16 12:0:0.0']},
         'GPCPv2.3': {'name': 'GPCPv2.3',
          'nyears': 41,
          'time_period': ['1979-1-1 0:0:0.0', '2019-7-1 0:0:0.0']},
         'method': 'Meridional root mean square error of nino3_LatExt climatological pr STD, time series are linearly detrended, observations and model regridded to generic_1x1deg',
         'name': 'pr meridional seasonality RMSE',
         'ref': 'Using CDAT regridding and rms (uncentered and biased) calculation',
         'time_frequency': 'monthly',
         'units': 'mm/day'},
        'metric': {'datasets': "CNRM-CM5_r4i1p1; ERA-Interim's pr & GPCPv2.3's precip; 's ",
         'method': 'The metric is the statistical value between the model and the observations',
         'name': 'SeasonalPrLatRmse',
         'units': 'mm/day'}},
       'SeasonalPrLonRmse': {'diagnostic': {'CNRM-CM5_r4i1p1': {'keyerror': None,
          'name': 'CNRM-CM5_r4i1p1',
          'nyears': 156,
          'time_period': ['1850-1-16 12:0:0.0', '2005-12-16 12:0:0.0']},
         'ERA-Interim': {'name': 'ERA-Interim',
          'nyears': 40,
          'time_period': ['1979-1-16 12:0:0.0', '2019-3-16 12:0:0.0']},
         'GPCPv2.3': {'name': 'GPCPv2.3',
          'nyears': 41,
          'time_period': ['1979-1-1 0:0:0.0', '2019-7-1 0:0:0.0']},
         'method': 'Zonal root mean square error of equatorial_pacific climatological pr STD, time series are linearly detrended, observations and model regridded to generic_1x1deg',
         'name': 'pr zonal seasonality RMSE',
         'ref': 'Using CDAT regridding and rms (uncentered and biased) calculation',
         'time_frequency': 'monthly',
         'units': 'mm/day'},
        'metric': {'datasets': "CNRM-CM5_r4i1p1; ERA-Interim's pr & GPCPv2.3's precip; 's ",
         'method': 'The metric is the statistical value between the model and the observations',
         'name': 'SeasonalPrLonRmse',
         'units': 'mm/day'}},
       'SeasonalSstLonRmse': {'diagnostic': {'CNRM-CM5_r4i1p1': {'keyerror': None,
          'name': 'CNRM-CM5_r4i1p1',
          'nyears': 156,
          'time_period': ['1850-1-16 12:0:0.0', '2005-12-16 12:0:0.0']},
         'ERA-Interim': {'name': 'ERA-Interim',
          'nyears': 40,
          'time_period': ['1979-1-16 12:0:0.0', '2019-3-16 12:0:0.0']},
         'HadISST': {'name': 'HadISST',
          'nyears': 151,
          'time_period': ['1870-1-16 11:59:59.5', '2020-10-16 12:0:0.0']},
         'Tropflux': {'name': 'Tropflux',
          'nyears': 40,
          'time_period': ['1979-1-15 0:0:0.0', '2018-12-15 12:0:0.0']},
         'method': 'Zonal root mean square error of equatorial_pacific climatological sst STD, time series are linearly detrended, observations and model regridded to generic_1x1deg',
         'name': 'sst zonal seasonality RMSE',
         'ref': 'Using CDAT regridding and rms (uncentered and biased) calculation',
         'time_frequency': 'monthly',
         'units': 'C'},
        'metric': {'datasets': "CNRM-CM5_r4i1p1; ERA-Interim's ts & HadISST's sst & Tropflux's sst; 's ",
         'method': 'The metric is the statistical value between the model and the observations',
         'name': 'SeasonalSstLonRmse',
         'units': 'C'}},
       'SeasonalTauxLonRmse': {'diagnostic': {'CNRM-CM5_r4i1p1': {'keyerror': None,
          'name': 'CNRM-CM5_r4i1p1',
          'nyears': 156,
          'time_period': ['1850-1-16 12:0:0.0', '2005-12-16 12:0:0.0']},
         'ERA-Interim': {'name': 'ERA-Interim',
          'nyears': 40,
          'time_period': ['1979-1-16 12:0:0.0', '2019-3-16 12:0:0.0']},
         'Tropflux': {'name': 'Tropflux',
          'nyears': 40,
          'time_period': ['1979-1-15 0:0:0.0', '2018-12-15 12:0:0.0']},
         'method': 'Zonal root mean square error of equatorial_pacific climatological taux STD, time series are linearly detrended, observations and model regridded to generic_1x1deg',
         'name': 'taux zonal seasonality RMSE',
         'ref': 'Using CDAT regridding and rms (uncentered and biased) calculation',
         'time_frequency': 'monthly',
         'units': '1e-3 N/m2'},
        'metric': {'datasets': "CNRM-CM5_r4i1p1; ERA-Interim's tauu & Tropflux's taux; 's ",
         'method': 'The metric is the statistical value between the model and the observations',
         'name': 'SeasonalTauxLonRmse',
         'units': '1e-3 N/m2'}}},
      'name': 'Metrics Collection for ENSO performance'},
     'value': {'BiasPrLatRmse': {'diagnostic': {'CNRM-CM5_r4i1p1': {'value': None,
         'value_error': None},
        'ERA-Interim': {'value': None, 'value_error': None},
        'GPCPv2.3': {'value': None, 'value_error': None}},
       'metric': {'ERA-Interim': {'value': 1.613071787092603,
         'value_error': None},
        'GPCPv2.3': {'value': 1.8076246599265753, 'value_error': None}}},
      'BiasPrLonRmse': {'diagnostic': {'CNRM-CM5_r4i1p1': {'value': None,
         'value_error': None},
        'ERA-Interim': {'value': None, 'value_error': None},
        'GPCPv2.3': {'value': None, 'value_error': None}},
       'metric': {'ERA-Interim': {'value': 0.9761826204073191,
         'value_error': None},
        'GPCPv2.3': {'value': 0.5013226161227439, 'value_error': None}}},
      'BiasSstLonRmse': {'diagnostic': {'CNRM-CM5_r4i1p1': {'value': None,
         'value_error': None},
        'ERA-Interim': {'value': None, 'value_error': None},
        'HadISST': {'value': None, 'value_error': None},
        'Tropflux': {'value': None, 'value_error': None}},
       'metric': {'ERA-Interim': {'value': 0.9281951962636964,
         'value_error': None},
        'HadISST': {'value': 0.7889755515060173, 'value_error': None},
        'Tropflux': {'value': 0.9715521793899784, 'value_error': None}}},
      'BiasTauxLonRmse': {'diagnostic': {'CNRM-CM5_r4i1p1': {'value': None,
         'value_error': None},
        'ERA-Interim': {'value': None, 'value_error': None},
        'Tropflux': {'value': None, 'value_error': None}},
       'metric': {'ERA-Interim': {'value': 8.760185587540803,
         'value_error': None},
        'Tropflux': {'value': 8.479800241121154, 'value_error': None}}},
      'EnsoAmpl': {'diagnostic': {'CNRM-CM5_r4i1p1': {'value': 0.8010689432025278,
         'value_error': 0.06413684547280649},
        'ERA-Interim': {'value': 0.8989844997845644,
         'value_error': 0.14214193002531866},
        'HadISST': {'value': 0.7665787872085695,
         'value_error': 0.06238329697691264},
        'Tropflux': {'value': 0.9039789553693535,
         'value_error': 0.14293162279134272}},
       'metric': {'ERA-Interim': {'value': 10.891795865835446,
         'value_error': 21.223610272004915},
        'HadISST': {'value': 4.499231725358738,
         'value_error': 16.870661397970835},
        'Tropflux': {'value': 11.384115919466078,
         'value_error': 21.10635048600791}}},
      'EnsoDuration': {'diagnostic': {'CNRM-CM5_r4i1p1': {'value': 11.0,
         'value_error': None},
        'ERA-Interim': {'value': 13.0, 'value_error': None},
        'HadISST': {'value': 13.0, 'value_error': None},
        'Tropflux': {'value': 13.0, 'value_error': None}},
       'metric': {'ERA-Interim': {'value': 15.384615384615385,
         'value_error': None},
        'HadISST': {'value': 15.384615384615385, 'value_error': None},
        'Tropflux': {'value': 15.384615384615385, 'value_error': None}}},
      'EnsoSeasonality': {'diagnostic': {'CNRM-CM5_r4i1p1': {'value': 1.8962220034260986,
         'value_error': 0.3041274808108086},
        'ERA-Interim': {'value': 2.0466846866656914,
         'value_error': 0.6513411033995022},
        'HadISST': {'value': 1.6639865947361325,
         'value_error': 0.2712772451657809},
        'Tropflux': {'value': 2.0532132553583624,
         'value_error': 0.6534187683977347}},
       'metric': {'ERA-Interim': {'value': 7.351532173952771,
         'value_error': 44.344155176647575},
        'HadISST': {'value': 13.95656728393253,
         'value_error': 36.855207798197384},
        'Tropflux': {'value': 7.64612499566505,
         'value_error': 44.20315478984719}}},
      'EnsoSstDiversity_2': {'diagnostic': {'CNRM-CM5_r4i1p1': {'value': 33.0,
         'value_error': None},
        'ERA-Interim': {'value': 33.25, 'value_error': None},
        'HadISST': {'value': 49.0, 'value_error': None},
        'Tropflux': {'value': 32.0, 'value_error': None}},
       'metric': {'ERA-Interim': {'value': 0.7518796992481203,
         'value_error': None},
        'HadISST': {'value': 32.6530612244898, 'value_error': None},
        'Tropflux': {'value': 3.125, 'value_error': None}}},
      'EnsoSstLonRmse': {'diagnostic': {'CNRM-CM5_r4i1p1': {'value': None,
         'value_error': None},
        'ERA-Interim': {'value': None, 'value_error': None},
        'HadISST': {'value': None, 'value_error': None},
        'Tropflux': {'value': None, 'value_error': None}},
       'metric': {'ERA-Interim': {'value': 0.08393892589562683,
         'value_error': None},
        'HadISST': {'value': 0.1039044054161176, 'value_error': None},
        'Tropflux': {'value': 0.0827280094185649, 'value_error': None}}},
      'EnsoSstSkew': {'diagnostic': {'CNRM-CM5_r4i1p1': {'value': -0.08755544572372777,
         'value_error': -0.0070100459396610195},
        'ERA-Interim': {'value': 0.39098111106809963,
         'value_error': 0.061819541653923164},
        'HadISST': {'value': 0.38989908235027515,
         'value_error': 0.03172953733021198},
        'Tropflux': {'value': 0.39744741059612115,
         'value_error': 0.06284195338099416}},
       'metric': {'ERA-Interim': {'value': 122.39377894357604,
         'value_error': -5.3337045834780135},
        'HadISST': {'value': 122.4559250552609,
         'value_error': -3.625350174642307},
        'Tropflux': {'value': 122.02944172976385,
         'value_error': -5.246927489172579}}},
      'EnsoSstTsRmse': {'diagnostic': {'CNRM-CM5_r4i1p1': {'value': None,
         'value_error': None},
        'ERA-Interim': {'value': None, 'value_error': None},
        'HadISST': {'value': None, 'value_error': None},
        'Tropflux': {'value': None, 'value_error': None}},
       'metric': {'ERA-Interim': {'value': 0.25553014559140164,
         'value_error': None},
        'HadISST': {'value': 0.25342711405931906, 'value_error': None},
        'Tropflux': {'value': 0.2567353727106157, 'value_error': None}}},
      'SeasonalPrLatRmse': {'diagnostic': {'CNRM-CM5_r4i1p1': {'value': None,
         'value_error': None},
        'ERA-Interim': {'value': None, 'value_error': None},
        'GPCPv2.3': {'value': None, 'value_error': None}},
       'metric': {'ERA-Interim': {'value': 0.9233304219448546,
         'value_error': None},
        'GPCPv2.3': {'value': 0.9872408397041962, 'value_error': None}}},
      'SeasonalPrLonRmse': {'diagnostic': {'CNRM-CM5_r4i1p1': {'value': None,
         'value_error': None},
        'ERA-Interim': {'value': None, 'value_error': None},
        'GPCPv2.3': {'value': None, 'value_error': None}},
       'metric': {'ERA-Interim': {'value': 0.31625131914790744,
         'value_error': None},
        'GPCPv2.3': {'value': 0.3644611528557881, 'value_error': None}}},
      'SeasonalSstLonRmse': {'diagnostic': {'CNRM-CM5_r4i1p1': {'value': None,
         'value_error': None},
        'ERA-Interim': {'value': None, 'value_error': None},
        'HadISST': {'value': None, 'value_error': None},
        'Tropflux': {'value': None, 'value_error': None}},
       'metric': {'ERA-Interim': {'value': 0.2148529891000889,
         'value_error': None},
        'HadISST': {'value': 0.22155713275462494, 'value_error': None},
        'Tropflux': {'value': 0.21086168298829927, 'value_error': None}}},
      'SeasonalTauxLonRmse': {'diagnostic': {'CNRM-CM5_r4i1p1': {'value': None,
         'value_error': None},
        'ERA-Interim': {'value': None, 'value_error': None},
        'Tropflux': {'value': None, 'value_error': None}},
       'metric': {'ERA-Interim': {'value': 2.2449332018773096,
         'value_error': None},
        'Tropflux': {'value': 2.0431614759152157, 'value_error': None}}}}},
    'r5i1p1': {'metadata': {'description_of_the_collection': 'Describe which science question this collection is about',
      'metrics': {'BiasPrLatRmse': {'diagnostic': {'CNRM-CM5_r5i1p1': {'keyerror': None,
          'name': 'CNRM-CM5_r5i1p1',
          'nyears': 156,
          'time_period': ['1850-1-16 12:0:0.0', '2005-12-16 12:0:0.0']},
         'ERA-Interim': {'name': 'ERA-Interim',
          'nyears': 40,
          'time_period': ['1979-1-16 12:0:0.0', '2019-3-16 12:0:0.0']},
         'GPCPv2.3': {'name': 'GPCPv2.3',
          'nyears': 41,
          'time_period': ['1979-1-1 0:0:0.0', '2019-7-1 0:0:0.0']},
         'method': 'Meridional root mean square error of nino3_LatExt pr, time series are linearly detrended, observations and model regridded to generic_1x1deg',
         'name': 'pr Meridional RMSE',
         'ref': 'Using CDAT regridding and rms (uncentered and biased) calculation',
         'time_frequency': 'monthly',
         'units': 'mm/day'},
        'metric': {'datasets': "CNRM-CM5_r5i1p1; ERA-Interim's pr & GPCPv2.3's precip; 's ",
         'method': 'The metric is the statistical value between the model and the observations',
         'name': 'BiasPrLatRmse',
         'units': 'mm/day'}},
       'BiasPrLonRmse': {'diagnostic': {'CNRM-CM5_r5i1p1': {'keyerror': None,
          'name': 'CNRM-CM5_r5i1p1',
          'nyears': 156,
          'time_period': ['1850-1-16 12:0:0.0', '2005-12-16 12:0:0.0']},
         'ERA-Interim': {'name': 'ERA-Interim',
          'nyears': 40,
          'time_period': ['1979-1-16 12:0:0.0', '2019-3-16 12:0:0.0']},
         'GPCPv2.3': {'name': 'GPCPv2.3',
          'nyears': 41,
          'time_period': ['1979-1-1 0:0:0.0', '2019-7-1 0:0:0.0']},
         'method': 'Zonal root mean square error of equatorial_pacific pr, time series are linearly detrended, observations and model regridded to generic_1x1deg',
         'name': 'pr Zonal RMSE',
         'ref': 'Using CDAT regridding and rms (uncentered and biased) calculation',
         'time_frequency': 'monthly',
         'units': 'mm/day'},
        'metric': {'datasets': "CNRM-CM5_r5i1p1; ERA-Interim's pr & GPCPv2.3's precip; 's ",
         'method': 'The metric is the statistical value between the model and the observations',
         'name': 'BiasPrLonRmse',
         'units': 'mm/day'}},
       'BiasSstLonRmse': {'diagnostic': {'CNRM-CM5_r5i1p1': {'keyerror': None,
          'name': 'CNRM-CM5_r5i1p1',
          'nyears': 156,
          'time_period': ['1850-1-16 12:0:0.0', '2005-12-16 12:0:0.0']},
         'ERA-Interim': {'name': 'ERA-Interim',
          'nyears': 40,
          'time_period': ['1979-1-16 12:0:0.0', '2019-3-16 12:0:0.0']},
         'HadISST': {'name': 'HadISST',
          'nyears': 151,
          'time_period': ['1870-1-16 11:59:59.5', '2020-10-16 12:0:0.0']},
         'Tropflux': {'name': 'Tropflux',
          'nyears': 40,
          'time_period': ['1979-1-15 0:0:0.0', '2018-12-15 12:0:0.0']},
         'method': 'Zonal root mean square error of equatorial_pacific sst, time series are linearly detrended, observations and model regridded to generic_1x1deg',
         'name': 'sst Zonal RMSE',
         'ref': 'Using CDAT regridding and rms (uncentered and biased) calculation',
         'time_frequency': 'monthly',
         'units': 'C'},
        'metric': {'datasets': "CNRM-CM5_r5i1p1; ERA-Interim's ts & HadISST's sst & Tropflux's sst; 's ",
         'method': 'The metric is the statistical value between the model and the observations',
         'name': 'BiasSstLonRmse',
         'units': 'C'}},
       'BiasTauxLonRmse': {'diagnostic': {'CNRM-CM5_r5i1p1': {'keyerror': None,
          'name': 'CNRM-CM5_r5i1p1',
          'nyears': 156,
          'time_period': ['1850-1-16 12:0:0.0', '2005-12-16 12:0:0.0']},
         'ERA-Interim': {'name': 'ERA-Interim',
          'nyears': 40,
          'time_period': ['1979-1-16 12:0:0.0', '2019-3-16 12:0:0.0']},
         'Tropflux': {'name': 'Tropflux',
          'nyears': 40,
          'time_period': ['1979-1-15 0:0:0.0', '2018-12-15 12:0:0.0']},
         'method': 'Zonal root mean square error of equatorial_pacific taux, time series are linearly detrended, observations and model regridded to generic_1x1deg',
         'name': 'taux Zonal RMSE',
         'ref': 'Using CDAT regridding and rms (uncentered and biased) calculation',
         'time_frequency': 'monthly',
         'units': '1e-3 N/m2'},
        'metric': {'datasets': "CNRM-CM5_r5i1p1; ERA-Interim's tauu & Tropflux's taux; 's ",
         'method': 'The metric is the statistical value between the model and the observations',
         'name': 'BiasTauxLonRmse',
         'units': '1e-3 N/m2'}},
       'EnsoAmpl': {'diagnostic': {'CNRM-CM5_r5i1p1': {'keyerror': None,
          'name': 'CNRM-CM5_r5i1p1',
          'nyears': 156,
          'time_period': ['1850-1-16 12:0:0.0', '2005-12-16 12:0:0.0']},
         'ERA-Interim': {'keyerror': None,
          'name': 'ERA-Interim',
          'nyears': 40,
          'time_period': ['1979-1-16 12:0:0.0', '2019-3-16 12:0:0.0']},
         'HadISST': {'keyerror': None,
          'name': 'HadISST',
          'nyears': 151,
          'time_period': ['1870-1-16 11:59:59.5', '2020-10-16 12:0:0.0']},
         'Tropflux': {'keyerror': None,
          'name': 'Tropflux',
          'nyears': 40,
          'time_period': ['1979-1-15 0:0:0.0', '2018-12-15 12:0:0.0']},
         'method': 'Standard deviation of nino3.4 sstA, time series are linearly detrended',
         'name': 'ENSO amplitude',
         'ref': 'Using CDAT regression calculation',
         'time_frequency': 'monthly',
         'units': 'C'},
        'metric': {'datasets': "CNRM-CM5_r5i1p1; ERA-Interim's ts & HadISST's sst & Tropflux's sst; 's ",
         'method': 'The metric is the absolute value of the relative difference between model and observations values (M = 100 * abs[[model-obs] / obs])',
         'name': 'EnsoAmpl',
         'units': '%'}},
       'EnsoDuration': {'diagnostic': {'CNRM-CM5_r5i1p1': {'keyerror': None,
          'name': 'CNRM-CM5_r5i1p1',
          'nyears': 156,
          'time_period': ['1850-1-16 12:0:0.0', '2005-12-16 12:0:0.0']},
         'ERA-Interim': {'keyerror': None,
          'name': 'ERA-Interim',
          'nyears': 40,
          'time_period': ['1979-1-16 12:0:0.0', '2019-3-16 12:0:0.0']},
         'HadISST': {'keyerror': None,
          'name': 'HadISST',
          'nyears': 151,
          'time_period': ['1870-1-16 11:59:59.5', '2020-10-16 12:0:0.0']},
         'Tropflux': {'keyerror': None,
          'name': 'Tropflux',
          'nyears': 40,
          'time_period': ['1979-1-15 0:0:0.0', '2018-12-15 12:0:0.0']},
         'method': 'nino3.4 SSTA during DEC regressed against nino3.4 SSTA during 6 years (centered on ENSO), the duration is the number of consecutive months during which the regression is above 0.25, time series are linearly detrended, smoothing using a triangle shaped window of 5 points',
         'name': 'ENSO Duration based on life cyle SSTA pattern',
         'ref': 'Using CDAT',
         'time_frequency': 'monthly',
         'units': 'months'},
        'metric': {'datasets': "CNRM-CM5_r5i1p1; ERA-Interim's ts & HadISST's sst & Tropflux's sst; 's ",
         'method': 'The metric is the absolute value of the relative difference between model and observations values (M = 100 * abs[[model-obs] / obs])',
         'name': 'EnsoDuration',
         'units': '%'}},
       'EnsoSeasonality': {'diagnostic': {'CNRM-CM5_r5i1p1': {'keyerror': None,
          'name': 'CNRM-CM5_r5i1p1',
          'nyears': 156,
          'time_period': ['1850-1-16 12:0:0.0', '2005-12-16 12:0:0.0']},
         'ERA-Interim': {'keyerror': None,
          'name': 'ERA-Interim',
          'nyears': 40,
          'time_period': ['1979-1-16 12:0:0.0', '2019-3-16 12:0:0.0']},
         'HadISST': {'keyerror': None,
          'name': 'HadISST',
          'nyears': 151,
          'time_period': ['1870-1-16 11:59:59.5', '2020-10-16 12:0:0.0']},
         'Tropflux': {'keyerror': None,
          'name': 'Tropflux',
          'nyears': 40,
          'time_period': ['1979-1-15 0:0:0.0', '2018-12-15 12:0:0.0']},
         'method': 'Ratio between NDJ and MAM standard deviation nino3.4 sstA, time series are linearly detrended',
         'name': 'ENSO seasonality',
         'ref': 'Using CDAT std dev calculation',
         'time_frequency': 'monthly',
         'units': 'C/C'},
        'metric': {'datasets': "CNRM-CM5_r5i1p1; ERA-Interim's ts & HadISST's sst & Tropflux's sst; 's ",
         'method': 'The metric is the absolute value of the relative difference between model and observations values (M = 100 * abs[[model-obs] / obs])',
         'name': 'EnsoSeasonality',
         'units': '%'}},
       'EnsoSstDiversity_2': {'diagnostic': {'CNRM-CM5_r5i1p1': {'keyerror': None,
          'name': 'CNRM-CM5_r5i1p1',
          'nyears': 156,
          'time_period': ['1850-1-16 12:0:0.0', '2005-12-16 12:0:0.0']},
         'ERA-Interim': {'keyerror': None,
          'name': 'ERA-Interim',
          'nyears': 40,
          'time_period': ['1979-1-16 12:0:0.0', '2019-3-16 12:0:0.0']},
         'HadISST': {'keyerror': None,
          'name': 'HadISST',
          'nyears': 151,
          'time_period': ['1870-1-16 11:59:59.5', '2020-10-16 12:0:0.0']},
         'Tropflux': {'keyerror': None,
          'name': 'Tropflux',
          'nyears': 40,
          'time_period': ['1979-1-15 0:0:0.0', '2018-12-15 12:0:0.0']},
         'method': 'Nino (Nina) events = nino3.4 sstA > 0.75 (< -0.75) during DEC, zonal SSTA (meridional averaged [-5.0 ; 5.0]), the zonal SSTA maximum (minimum) is located for each event, the diversity is the interquartile range (IQR = Q3 - Q1), time series are linearly detrended, smoothing using a triangle shaped window of 5 points',
         'name': 'ENSO Diversity (interquartile range)',
         'ref': 'Using CDAT regridding',
         'time_frequency': 'monthly',
         'units': 'long'},
        'metric': {'datasets': "CNRM-CM5_r5i1p1; ERA-Interim's ts & HadISST's sst & Tropflux's sst; 's ",
         'method': 'The metric is the absolute value of the relative difference between model and observations values (M = 100 * abs[[model-obs] / obs])',
         'name': 'EnsoSstDiversity',
         'units': '%'}},
       'EnsoSstLonRmse': {'diagnostic': {'CNRM-CM5_r5i1p1': {'keyerror': None,
          'name': 'CNRM-CM5_r5i1p1',
          'nyears': 156,
          'time_period': ['1850-1-16 12:0:0.0', '2005-12-16 12:0:0.0']},
         'ERA-Interim': {'name': 'ERA-Interim',
          'nyears': 40,
          'time_period': ['1979-1-16 12:0:0.0', '2019-3-16 12:0:0.0']},
         'HadISST': {'name': 'HadISST',
          'nyears': 151,
          'time_period': ['1870-1-16 11:59:59.5', '2020-10-16 12:0:0.0']},
         'Tropflux': {'name': 'Tropflux',
          'nyears': 40,
          'time_period': ['1979-1-15 0:0:0.0', '2018-12-15 12:0:0.0']},
         'method': 'nino3.4 SSTA during DEC regressed against equatorial_pacific SSTA, time series are linearly detrended, smoothing using a triangle shaped window of 5 points, observations and model regridded to generic_1x1deg',
         'name': 'ENSO Zonal SSTA pattern',
         'ref': 'Using CDAT regridding and rms (uncentered and biased) calculation',
         'time_frequency': 'monthly',
         'units': 'C/C'},
        'metric': {'datasets': "CNRM-CM5_r5i1p1; ERA-Interim's ts & HadISST's sst & Tropflux's sst; 's ",
         'method': 'The metric is the statistical value between the model and the observations',
         'name': 'EnsoSstLonRmse',
         'units': 'C/C'}},
       'EnsoSstSkew': {'diagnostic': {'CNRM-CM5_r5i1p1': {'keyerror': None,
          'name': 'CNRM-CM5_r5i1p1',
          'nyears': 156,
          'time_period': ['1850-1-16 12:0:0.0', '2005-12-16 12:0:0.0']},
         'ERA-Interim': {'keyerror': None,
          'name': 'ERA-Interim',
          'nyears': 40,
          'time_period': ['1979-1-16 12:0:0.0', '2019-3-16 12:0:0.0']},
         'HadISST': {'keyerror': None,
          'name': 'HadISST',
          'nyears': 151,
          'time_period': ['1870-1-16 11:59:59.5', '2020-10-16 12:0:0.0']},
         'Tropflux': {'keyerror': None,
          'name': 'Tropflux',
          'nyears': 40,
          'time_period': ['1979-1-15 0:0:0.0', '2018-12-15 12:0:0.0']},
         'method': 'Standard deviation of nino3.4 sstA, time series are linearly detrended',
         'name': 'ENSO skewness',
         'ref': 'Using CDAT regression calculation',
         'time_frequency': 'monthly',
         'units': 'C'},
        'metric': {'datasets': "CNRM-CM5_r5i1p1; ERA-Interim's ts & HadISST's sst & Tropflux's sst; 's ",
         'method': 'The metric is the absolute value of the relative difference between model and observations values (M = 100 * abs[[model-obs] / obs])',
         'name': 'EnsoSstSkew',
         'units': '%'}},
       'EnsoSstTsRmse': {'diagnostic': {'CNRM-CM5_r5i1p1': {'keyerror': None,
          'name': 'CNRM-CM5_r5i1p1',
          'nyears': 156,
          'time_period': ['1850-1-16 12:0:0.0', '2005-12-16 12:0:0.0']},
         'ERA-Interim': {'name': 'ERA-Interim',
          'nyears': 40,
          'time_period': ['1979-1-16 12:0:0.0', '2019-3-16 12:0:0.0']},
         'HadISST': {'name': 'HadISST',
          'nyears': 151,
          'time_period': ['1870-1-16 11:59:59.5', '2020-10-16 12:0:0.0']},
         'Tropflux': {'name': 'Tropflux',
          'nyears': 40,
          'time_period': ['1979-1-15 0:0:0.0', '2018-12-15 12:0:0.0']},
         'method': 'nino3.4 SSTA during DEC regressed against nino3.4 SSTA during 6 years (centered on ENSO), time series are linearly detrended, smoothing using a triangle shaped window of 5 points',
         'name': 'ENSO life cyle SSTA pattern',
         'ref': 'Using CDAT regridding and rms (uncentered and biased) calculation',
         'time_frequency': 'monthly',
         'units': 'C/C'},
        'metric': {'datasets': "CNRM-CM5_r5i1p1; ERA-Interim's ts & HadISST's sst & Tropflux's sst; 's ",
         'method': 'The metric is the statistical value between the model and the observations',
         'name': 'EnsoSstTsRmse',
         'units': 'C/C'}},
       'SeasonalPrLatRmse': {'diagnostic': {'CNRM-CM5_r5i1p1': {'keyerror': None,
          'name': 'CNRM-CM5_r5i1p1',
          'nyears': 156,
          'time_period': ['1850-1-16 12:0:0.0', '2005-12-16 12:0:0.0']},
         'ERA-Interim': {'name': 'ERA-Interim',
          'nyears': 40,
          'time_period': ['1979-1-16 12:0:0.0', '2019-3-16 12:0:0.0']},
         'GPCPv2.3': {'name': 'GPCPv2.3',
          'nyears': 41,
          'time_period': ['1979-1-1 0:0:0.0', '2019-7-1 0:0:0.0']},
         'method': 'Meridional root mean square error of nino3_LatExt climatological pr STD, time series are linearly detrended, observations and model regridded to generic_1x1deg',
         'name': 'pr meridional seasonality RMSE',
         'ref': 'Using CDAT regridding and rms (uncentered and biased) calculation',
         'time_frequency': 'monthly',
         'units': 'mm/day'},
        'metric': {'datasets': "CNRM-CM5_r5i1p1; ERA-Interim's pr & GPCPv2.3's precip; 's ",
         'method': 'The metric is the statistical value between the model and the observations',
         'name': 'SeasonalPrLatRmse',
         'units': 'mm/day'}},
       'SeasonalPrLonRmse': {'diagnostic': {'CNRM-CM5_r5i1p1': {'keyerror': None,
          'name': 'CNRM-CM5_r5i1p1',
          'nyears': 156,
          'time_period': ['1850-1-16 12:0:0.0', '2005-12-16 12:0:0.0']},
         'ERA-Interim': {'name': 'ERA-Interim',
          'nyears': 40,
          'time_period': ['1979-1-16 12:0:0.0', '2019-3-16 12:0:0.0']},
         'GPCPv2.3': {'name': 'GPCPv2.3',
          'nyears': 41,
          'time_period': ['1979-1-1 0:0:0.0', '2019-7-1 0:0:0.0']},
         'method': 'Zonal root mean square error of equatorial_pacific climatological pr STD, time series are linearly detrended, observations and model regridded to generic_1x1deg',
         'name': 'pr zonal seasonality RMSE',
         'ref': 'Using CDAT regridding and rms (uncentered and biased) calculation',
         'time_frequency': 'monthly',
         'units': 'mm/day'},
        'metric': {'datasets': "CNRM-CM5_r5i1p1; ERA-Interim's pr & GPCPv2.3's precip; 's ",
         'method': 'The metric is the statistical value between the model and the observations',
         'name': 'SeasonalPrLonRmse',
         'units': 'mm/day'}},
       'SeasonalSstLonRmse': {'diagnostic': {'CNRM-CM5_r5i1p1': {'keyerror': None,
          'name': 'CNRM-CM5_r5i1p1',
          'nyears': 156,
          'time_period': ['1850-1-16 12:0:0.0', '2005-12-16 12:0:0.0']},
         'ERA-Interim': {'name': 'ERA-Interim',
          'nyears': 40,
          'time_period': ['1979-1-16 12:0:0.0', '2019-3-16 12:0:0.0']},
         'HadISST': {'name': 'HadISST',
          'nyears': 151,
          'time_period': ['1870-1-16 11:59:59.5', '2020-10-16 12:0:0.0']},
         'Tropflux': {'name': 'Tropflux',
          'nyears': 40,
          'time_period': ['1979-1-15 0:0:0.0', '2018-12-15 12:0:0.0']},
         'method': 'Zonal root mean square error of equatorial_pacific climatological sst STD, time series are linearly detrended, observations and model regridded to generic_1x1deg',
         'name': 'sst zonal seasonality RMSE',
         'ref': 'Using CDAT regridding and rms (uncentered and biased) calculation',
         'time_frequency': 'monthly',
         'units': 'C'},
        'metric': {'datasets': "CNRM-CM5_r5i1p1; ERA-Interim's ts & HadISST's sst & Tropflux's sst; 's ",
         'method': 'The metric is the statistical value between the model and the observations',
         'name': 'SeasonalSstLonRmse',
         'units': 'C'}},
       'SeasonalTauxLonRmse': {'diagnostic': {'CNRM-CM5_r5i1p1': {'keyerror': None,
          'name': 'CNRM-CM5_r5i1p1',
          'nyears': 156,
          'time_period': ['1850-1-16 12:0:0.0', '2005-12-16 12:0:0.0']},
         'ERA-Interim': {'name': 'ERA-Interim',
          'nyears': 40,
          'time_period': ['1979-1-16 12:0:0.0', '2019-3-16 12:0:0.0']},
         'Tropflux': {'name': 'Tropflux',
          'nyears': 40,
          'time_period': ['1979-1-15 0:0:0.0', '2018-12-15 12:0:0.0']},
         'method': 'Zonal root mean square error of equatorial_pacific climatological taux STD, time series are linearly detrended, observations and model regridded to generic_1x1deg',
         'name': 'taux zonal seasonality RMSE',
         'ref': 'Using CDAT regridding and rms (uncentered and biased) calculation',
         'time_frequency': 'monthly',
         'units': '1e-3 N/m2'},
        'metric': {'datasets': "CNRM-CM5_r5i1p1; ERA-Interim's tauu & Tropflux's taux; 's ",
         'method': 'The metric is the statistical value between the model and the observations',
         'name': 'SeasonalTauxLonRmse',
         'units': '1e-3 N/m2'}}},
      'name': 'Metrics Collection for ENSO performance'},
     'value': {'BiasPrLatRmse': {'diagnostic': {'CNRM-CM5_r5i1p1': {'value': None,
         'value_error': None},
        'ERA-Interim': {'value': None, 'value_error': None},
        'GPCPv2.3': {'value': None, 'value_error': None}},
       'metric': {'ERA-Interim': {'value': 1.6298136922511874,
         'value_error': None},
        'GPCPv2.3': {'value': 1.8356127529967345, 'value_error': None}}},
      'BiasPrLonRmse': {'diagnostic': {'CNRM-CM5_r5i1p1': {'value': None,
         'value_error': None},
        'ERA-Interim': {'value': None, 'value_error': None},
        'GPCPv2.3': {'value': None, 'value_error': None}},
       'metric': {'ERA-Interim': {'value': 1.0360940403934027,
         'value_error': None},
        'GPCPv2.3': {'value': 0.5726206643173734, 'value_error': None}}},
      'BiasSstLonRmse': {'diagnostic': {'CNRM-CM5_r5i1p1': {'value': None,
         'value_error': None},
        'ERA-Interim': {'value': None, 'value_error': None},
        'HadISST': {'value': None, 'value_error': None},
        'Tropflux': {'value': None, 'value_error': None}},
       'metric': {'ERA-Interim': {'value': 0.925740748237872,
         'value_error': None},
        'HadISST': {'value': 0.7896216622978829, 'value_error': None},
        'Tropflux': {'value': 0.9682318853075853, 'value_error': None}}},
      'BiasTauxLonRmse': {'diagnostic': {'CNRM-CM5_r5i1p1': {'value': None,
         'value_error': None},
        'ERA-Interim': {'value': None, 'value_error': None},
        'Tropflux': {'value': None, 'value_error': None}},
       'metric': {'ERA-Interim': {'value': 9.213777274540618,
         'value_error': None},
        'Tropflux': {'value': 8.936288290444702, 'value_error': None}}},
      'EnsoAmpl': {'diagnostic': {'CNRM-CM5_r5i1p1': {'value': 0.884577067263232,
         'value_error': 0.07082284633958986},
        'ERA-Interim': {'value': 0.8989844997845644,
         'value_error': 0.14214193002531866},
        'HadISST': {'value': 0.7665787872085695,
         'value_error': 0.06238329697691264},
        'Tropflux': {'value': 0.9039789553693535,
         'value_error': 0.14293162279134272}},
       'metric': {'ERA-Interim': {'value': 1.60263414161034,
         'value_error': 23.436083860763848},
        'HadISST': {'value': 15.392844417772512,
         'value_error': 18.62935807066371},
        'Tropflux': {'value': 2.146276524567331,
         'value_error': 23.306600227070014}}},
      'EnsoDuration': {'diagnostic': {'CNRM-CM5_r5i1p1': {'value': 11.0,
         'value_error': None},
        'ERA-Interim': {'value': 13.0, 'value_error': None},
        'HadISST': {'value': 13.0, 'value_error': None},
        'Tropflux': {'value': 13.0, 'value_error': None}},
       'metric': {'ERA-Interim': {'value': 15.384615384615385,
         'value_error': None},
        'HadISST': {'value': 15.384615384615385, 'value_error': None},
        'Tropflux': {'value': 15.384615384615385, 'value_error': None}}},
      'EnsoSeasonality': {'diagnostic': {'CNRM-CM5_r5i1p1': {'value': 2.0697188347365647,
         'value_error': 0.3319539452963877},
        'ERA-Interim': {'value': 2.0466846866656914,
         'value_error': 0.6513411033995022},
        'HadISST': {'value': 1.6639865947361325,
         'value_error': 0.2712772451657809},
        'Tropflux': {'value': 2.0532132553583624,
         'value_error': 0.6534187683977347}},
       'metric': {'ERA-Interim': {'value': 1.1254370651689822,
         'value_error': 48.40147040471013},
        'HadISST': {'value': 24.38314354718533,
         'value_error': 40.22731389058681},
        'Tropflux': {'value': 0.8038901626573346,
         'value_error': 48.247569038868654}}},
      'EnsoSstDiversity_2': {'diagnostic': {'CNRM-CM5_r5i1p1': {'value': 38.0,
         'value_error': None},
        'ERA-Interim': {'value': 33.25, 'value_error': None},
        'HadISST': {'value': 49.0, 'value_error': None},
        'Tropflux': {'value': 32.0, 'value_error': None}},
       'metric': {'ERA-Interim': {'value': 14.285714285714285,
         'value_error': None},
        'HadISST': {'value': 22.448979591836736, 'value_error': None},
        'Tropflux': {'value': 18.75, 'value_error': None}}},
      'EnsoSstLonRmse': {'diagnostic': {'CNRM-CM5_r5i1p1': {'value': None,
         'value_error': None},
        'ERA-Interim': {'value': None, 'value_error': None},
        'HadISST': {'value': None, 'value_error': None},
        'Tropflux': {'value': None, 'value_error': None}},
       'metric': {'ERA-Interim': {'value': 0.06972954091274113,
         'value_error': None},
        'HadISST': {'value': 0.09009986805581008, 'value_error': None},
        'Tropflux': {'value': 0.06796851653033027, 'value_error': None}}},
      'EnsoSstSkew': {'diagnostic': {'CNRM-CM5_r5i1p1': {'value': -0.08385880995902635,
         'value_error': -0.006714078209515272},
        'ERA-Interim': {'value': 0.39098111106809963,
         'value_error': 0.061819541653923164},
        'HadISST': {'value': 0.38989908235027515,
         'value_error': 0.03172953733021198},
        'Tropflux': {'value': 0.39744741059612115,
         'value_error': 0.06284195338099416}},
       'metric': {'ERA-Interim': {'value': 121.4483021263961,
         'value_error': -5.108512844018985},
        'HadISST': {'value': 121.50782439741414,
         'value_error': -3.4722860333502084},
        'Tropflux': {'value': 121.09934741636602,
         'value_error': -5.025399523082698}}},
      'EnsoSstTsRmse': {'diagnostic': {'CNRM-CM5_r5i1p1': {'value': None,
         'value_error': None},
        'ERA-Interim': {'value': None, 'value_error': None},
        'HadISST': {'value': None, 'value_error': None},
        'Tropflux': {'value': None, 'value_error': None}},
       'metric': {'ERA-Interim': {'value': 0.15994643988601334,
         'value_error': None},
        'HadISST': {'value': 0.1697542380374311, 'value_error': None},
        'Tropflux': {'value': 0.162754779610357, 'value_error': None}}},
      'SeasonalPrLatRmse': {'diagnostic': {'CNRM-CM5_r5i1p1': {'value': None,
         'value_error': None},
        'ERA-Interim': {'value': None, 'value_error': None},
        'GPCPv2.3': {'value': None, 'value_error': None}},
       'metric': {'ERA-Interim': {'value': 0.9141952020796642,
         'value_error': None},
        'GPCPv2.3': {'value': 0.9701840401763726, 'value_error': None}}},
      'SeasonalPrLonRmse': {'diagnostic': {'CNRM-CM5_r5i1p1': {'value': None,
         'value_error': None},
        'ERA-Interim': {'value': None, 'value_error': None},
        'GPCPv2.3': {'value': None, 'value_error': None}},
       'metric': {'ERA-Interim': {'value': 0.30133640288333075,
         'value_error': None},
        'GPCPv2.3': {'value': 0.2905302760656057, 'value_error': None}}},
      'SeasonalSstLonRmse': {'diagnostic': {'CNRM-CM5_r5i1p1': {'value': None,
         'value_error': None},
        'ERA-Interim': {'value': None, 'value_error': None},
        'HadISST': {'value': None, 'value_error': None},
        'Tropflux': {'value': None, 'value_error': None}},
       'metric': {'ERA-Interim': {'value': 0.19464147470573123,
         'value_error': None},
        'HadISST': {'value': 0.20132336210401264, 'value_error': None},
        'Tropflux': {'value': 0.19120996436718224, 'value_error': None}}},
      'SeasonalTauxLonRmse': {'diagnostic': {'CNRM-CM5_r5i1p1': {'value': None,
         'value_error': None},
        'ERA-Interim': {'value': None, 'value_error': None},
        'Tropflux': {'value': None, 'value_error': None}},
       'metric': {'ERA-Interim': {'value': 2.4898943709667694,
         'value_error': None},
        'Tropflux': {'value': 2.27176732862808, 'value_error': None}}}}},
    'r6i1p1': {'metadata': {'description_of_the_collection': 'Describe which science question this collection is about',
      'metrics': {'BiasPrLatRmse': {'diagnostic': {'CNRM-CM5_r6i1p1': {'keyerror': None,
          'name': 'CNRM-CM5_r6i1p1',
          'nyears': 156,
          'time_period': ['1850-1-16 12:0:0.0', '2005-12-16 12:0:0.0']},
         'ERA-Interim': {'name': 'ERA-Interim',
          'nyears': 40,
          'time_period': ['1979-1-16 12:0:0.0', '2019-3-16 12:0:0.0']},
         'GPCPv2.3': {'name': 'GPCPv2.3',
          'nyears': 41,
          'time_period': ['1979-1-1 0:0:0.0', '2019-7-1 0:0:0.0']},
         'method': 'Meridional root mean square error of nino3_LatExt pr, time series are linearly detrended, observations and model regridded to generic_1x1deg',
         'name': 'pr Meridional RMSE',
         'ref': 'Using CDAT regridding and rms (uncentered and biased) calculation',
         'time_frequency': 'monthly',
         'units': 'mm/day'},
        'metric': {'datasets': "CNRM-CM5_r6i1p1; ERA-Interim's pr & GPCPv2.3's precip; 's ",
         'method': 'The metric is the statistical value between the model and the observations',
         'name': 'BiasPrLatRmse',
         'units': 'mm/day'}},
       'BiasPrLonRmse': {'diagnostic': {'CNRM-CM5_r6i1p1': {'keyerror': None,
          'name': 'CNRM-CM5_r6i1p1',
          'nyears': 156,
          'time_period': ['1850-1-16 12:0:0.0', '2005-12-16 12:0:0.0']},
         'ERA-Interim': {'name': 'ERA-Interim',
          'nyears': 40,
          'time_period': ['1979-1-16 12:0:0.0', '2019-3-16 12:0:0.0']},
         'GPCPv2.3': {'name': 'GPCPv2.3',
          'nyears': 41,
          'time_period': ['1979-1-1 0:0:0.0', '2019-7-1 0:0:0.0']},
         'method': 'Zonal root mean square error of equatorial_pacific pr, time series are linearly detrended, observations and model regridded to generic_1x1deg',
         'name': 'pr Zonal RMSE',
         'ref': 'Using CDAT regridding and rms (uncentered and biased) calculation',
         'time_frequency': 'monthly',
         'units': 'mm/day'},
        'metric': {'datasets': "CNRM-CM5_r6i1p1; ERA-Interim's pr & GPCPv2.3's precip; 's ",
         'method': 'The metric is the statistical value between the model and the observations',
         'name': 'BiasPrLonRmse',
         'units': 'mm/day'}},
       'BiasSstLonRmse': {'diagnostic': {'CNRM-CM5_r6i1p1': {'keyerror': None,
          'name': 'CNRM-CM5_r6i1p1',
          'nyears': 156,
          'time_period': ['1850-1-16 12:0:0.0', '2005-12-16 12:0:0.0']},
         'ERA-Interim': {'name': 'ERA-Interim',
          'nyears': 40,
          'time_period': ['1979-1-16 12:0:0.0', '2019-3-16 12:0:0.0']},
         'HadISST': {'name': 'HadISST',
          'nyears': 151,
          'time_period': ['1870-1-16 11:59:59.5', '2020-10-16 12:0:0.0']},
         'Tropflux': {'name': 'Tropflux',
          'nyears': 40,
          'time_period': ['1979-1-15 0:0:0.0', '2018-12-15 12:0:0.0']},
         'method': 'Zonal root mean square error of equatorial_pacific sst, time series are linearly detrended, observations and model regridded to generic_1x1deg',
         'name': 'sst Zonal RMSE',
         'ref': 'Using CDAT regridding and rms (uncentered and biased) calculation',
         'time_frequency': 'monthly',
         'units': 'C'},
        'metric': {'datasets': "CNRM-CM5_r6i1p1; ERA-Interim's ts & HadISST's sst & Tropflux's sst; 's ",
         'method': 'The metric is the statistical value between the model and the observations',
         'name': 'BiasSstLonRmse',
         'units': 'C'}},
       'BiasTauxLonRmse': {'diagnostic': {'CNRM-CM5_r6i1p1': {'keyerror': None,
          'name': 'CNRM-CM5_r6i1p1',
          'nyears': 156,
          'time_period': ['1850-1-16 12:0:0.0', '2005-12-16 12:0:0.0']},
         'ERA-Interim': {'name': 'ERA-Interim',
          'nyears': 40,
          'time_period': ['1979-1-16 12:0:0.0', '2019-3-16 12:0:0.0']},
         'Tropflux': {'name': 'Tropflux',
          'nyears': 40,
          'time_period': ['1979-1-15 0:0:0.0', '2018-12-15 12:0:0.0']},
         'method': 'Zonal root mean square error of equatorial_pacific taux, time series are linearly detrended, observations and model regridded to generic_1x1deg',
         'name': 'taux Zonal RMSE',
         'ref': 'Using CDAT regridding and rms (uncentered and biased) calculation',
         'time_frequency': 'monthly',
         'units': '1e-3 N/m2'},
        'metric': {'datasets': "CNRM-CM5_r6i1p1; ERA-Interim's tauu & Tropflux's taux; 's ",
         'method': 'The metric is the statistical value between the model and the observations',
         'name': 'BiasTauxLonRmse',
         'units': '1e-3 N/m2'}},
       'EnsoAmpl': {'diagnostic': {'CNRM-CM5_r6i1p1': {'keyerror': None,
          'name': 'CNRM-CM5_r6i1p1',
          'nyears': 156,
          'time_period': ['1850-1-16 12:0:0.0', '2005-12-16 12:0:0.0']},
         'ERA-Interim': {'keyerror': None,
          'name': 'ERA-Interim',
          'nyears': 40,
          'time_period': ['1979-1-16 12:0:0.0', '2019-3-16 12:0:0.0']},
         'HadISST': {'keyerror': None,
          'name': 'HadISST',
          'nyears': 151,
          'time_period': ['1870-1-16 11:59:59.5', '2020-10-16 12:0:0.0']},
         'Tropflux': {'keyerror': None,
          'name': 'Tropflux',
          'nyears': 40,
          'time_period': ['1979-1-15 0:0:0.0', '2018-12-15 12:0:0.0']},
         'method': 'Standard deviation of nino3.4 sstA, time series are linearly detrended',
         'name': 'ENSO amplitude',
         'ref': 'Using CDAT regression calculation',
         'time_frequency': 'monthly',
         'units': 'C'},
        'metric': {'datasets': "CNRM-CM5_r6i1p1; ERA-Interim's ts & HadISST's sst & Tropflux's sst; 's ",
         'method': 'The metric is the absolute value of the relative difference between model and observations values (M = 100 * abs[[model-obs] / obs])',
         'name': 'EnsoAmpl',
         'units': '%'}},
       'EnsoDuration': {'diagnostic': {'CNRM-CM5_r6i1p1': {'keyerror': None,
          'name': 'CNRM-CM5_r6i1p1',
          'nyears': 156,
          'time_period': ['1850-1-16 12:0:0.0', '2005-12-16 12:0:0.0']},
         'ERA-Interim': {'keyerror': None,
          'name': 'ERA-Interim',
          'nyears': 40,
          'time_period': ['1979-1-16 12:0:0.0', '2019-3-16 12:0:0.0']},
         'HadISST': {'keyerror': None,
          'name': 'HadISST',
          'nyears': 151,
          'time_period': ['1870-1-16 11:59:59.5', '2020-10-16 12:0:0.0']},
         'Tropflux': {'keyerror': None,
          'name': 'Tropflux',
          'nyears': 40,
          'time_period': ['1979-1-15 0:0:0.0', '2018-12-15 12:0:0.0']},
         'method': 'nino3.4 SSTA during DEC regressed against nino3.4 SSTA during 6 years (centered on ENSO), the duration is the number of consecutive months during which the regression is above 0.25, time series are linearly detrended, smoothing using a triangle shaped window of 5 points',
         'name': 'ENSO Duration based on life cyle SSTA pattern',
         'ref': 'Using CDAT',
         'time_frequency': 'monthly',
         'units': 'months'},
        'metric': {'datasets': "CNRM-CM5_r6i1p1; ERA-Interim's ts & HadISST's sst & Tropflux's sst; 's ",
         'method': 'The metric is the absolute value of the relative difference between model and observations values (M = 100 * abs[[model-obs] / obs])',
         'name': 'EnsoDuration',
         'units': '%'}},
       'EnsoSeasonality': {'diagnostic': {'CNRM-CM5_r6i1p1': {'keyerror': None,
          'name': 'CNRM-CM5_r6i1p1',
          'nyears': 156,
          'time_period': ['1850-1-16 12:0:0.0', '2005-12-16 12:0:0.0']},
         'ERA-Interim': {'keyerror': None,
          'name': 'ERA-Interim',
          'nyears': 40,
          'time_period': ['1979-1-16 12:0:0.0', '2019-3-16 12:0:0.0']},
         'HadISST': {'keyerror': None,
          'name': 'HadISST',
          'nyears': 151,
          'time_period': ['1870-1-16 11:59:59.5', '2020-10-16 12:0:0.0']},
         'Tropflux': {'keyerror': None,
          'name': 'Tropflux',
          'nyears': 40,
          'time_period': ['1979-1-15 0:0:0.0', '2018-12-15 12:0:0.0']},
         'method': 'Ratio between NDJ and MAM standard deviation nino3.4 sstA, time series are linearly detrended',
         'name': 'ENSO seasonality',
         'ref': 'Using CDAT std dev calculation',
         'time_frequency': 'monthly',
         'units': 'C/C'},
        'metric': {'datasets': "CNRM-CM5_r6i1p1; ERA-Interim's ts & HadISST's sst & Tropflux's sst; 's ",
         'method': 'The metric is the absolute value of the relative difference between model and observations values (M = 100 * abs[[model-obs] / obs])',
         'name': 'EnsoSeasonality',
         'units': '%'}},
       'EnsoSstDiversity_2': {'diagnostic': {'CNRM-CM5_r6i1p1': {'keyerror': None,
          'name': 'CNRM-CM5_r6i1p1',
          'nyears': 156,
          'time_period': ['1850-1-16 12:0:0.0', '2005-12-16 12:0:0.0']},
         'ERA-Interim': {'keyerror': None,
          'name': 'ERA-Interim',
          'nyears': 40,
          'time_period': ['1979-1-16 12:0:0.0', '2019-3-16 12:0:0.0']},
         'HadISST': {'keyerror': None,
          'name': 'HadISST',
          'nyears': 151,
          'time_period': ['1870-1-16 11:59:59.5', '2020-10-16 12:0:0.0']},
         'Tropflux': {'keyerror': None,
          'name': 'Tropflux',
          'nyears': 40,
          'time_period': ['1979-1-15 0:0:0.0', '2018-12-15 12:0:0.0']},
         'method': 'Nino (Nina) events = nino3.4 sstA > 0.75 (< -0.75) during DEC, zonal SSTA (meridional averaged [-5.0 ; 5.0]), the zonal SSTA maximum (minimum) is located for each event, the diversity is the interquartile range (IQR = Q3 - Q1), time series are linearly detrended, smoothing using a triangle shaped window of 5 points',
         'name': 'ENSO Diversity (interquartile range)',
         'ref': 'Using CDAT regridding',
         'time_frequency': 'monthly',
         'units': 'long'},
        'metric': {'datasets': "CNRM-CM5_r6i1p1; ERA-Interim's ts & HadISST's sst & Tropflux's sst; 's ",
         'method': 'The metric is the absolute value of the relative difference between model and observations values (M = 100 * abs[[model-obs] / obs])',
         'name': 'EnsoSstDiversity',
         'units': '%'}},
       'EnsoSstLonRmse': {'diagnostic': {'CNRM-CM5_r6i1p1': {'keyerror': None,
          'name': 'CNRM-CM5_r6i1p1',
          'nyears': 156,
          'time_period': ['1850-1-16 12:0:0.0', '2005-12-16 12:0:0.0']},
         'ERA-Interim': {'name': 'ERA-Interim',
          'nyears': 40,
          'time_period': ['1979-1-16 12:0:0.0', '2019-3-16 12:0:0.0']},
         'HadISST': {'name': 'HadISST',
          'nyears': 151,
          'time_period': ['1870-1-16 11:59:59.5', '2020-10-16 12:0:0.0']},
         'Tropflux': {'name': 'Tropflux',
          'nyears': 40,
          'time_period': ['1979-1-15 0:0:0.0', '2018-12-15 12:0:0.0']},
         'method': 'nino3.4 SSTA during DEC regressed against equatorial_pacific SSTA, time series are linearly detrended, smoothing using a triangle shaped window of 5 points, observations and model regridded to generic_1x1deg',
         'name': 'ENSO Zonal SSTA pattern',
         'ref': 'Using CDAT regridding and rms (uncentered and biased) calculation',
         'time_frequency': 'monthly',
         'units': 'C/C'},
        'metric': {'datasets': "CNRM-CM5_r6i1p1; ERA-Interim's ts & HadISST's sst & Tropflux's sst; 's ",
         'method': 'The metric is the statistical value between the model and the observations',
         'name': 'EnsoSstLonRmse',
         'units': 'C/C'}},
       'EnsoSstSkew': {'diagnostic': {'CNRM-CM5_r6i1p1': {'keyerror': None,
          'name': 'CNRM-CM5_r6i1p1',
          'nyears': 156,
          'time_period': ['1850-1-16 12:0:0.0', '2005-12-16 12:0:0.0']},
         'ERA-Interim': {'keyerror': None,
          'name': 'ERA-Interim',
          'nyears': 40,
          'time_period': ['1979-1-16 12:0:0.0', '2019-3-16 12:0:0.0']},
         'HadISST': {'keyerror': None,
          'name': 'HadISST',
          'nyears': 151,
          'time_period': ['1870-1-16 11:59:59.5', '2020-10-16 12:0:0.0']},
         'Tropflux': {'keyerror': None,
          'name': 'Tropflux',
          'nyears': 40,
          'time_period': ['1979-1-15 0:0:0.0', '2018-12-15 12:0:0.0']},
         'method': 'Standard deviation of nino3.4 sstA, time series are linearly detrended',
         'name': 'ENSO skewness',
         'ref': 'Using CDAT regression calculation',
         'time_frequency': 'monthly',
         'units': 'C'},
        'metric': {'datasets': "CNRM-CM5_r6i1p1; ERA-Interim's ts & HadISST's sst & Tropflux's sst; 's ",
         'method': 'The metric is the absolute value of the relative difference between model and observations values (M = 100 * abs[[model-obs] / obs])',
         'name': 'EnsoSstSkew',
         'units': '%'}},
       'EnsoSstTsRmse': {'diagnostic': {'CNRM-CM5_r6i1p1': {'keyerror': None,
          'name': 'CNRM-CM5_r6i1p1',
          'nyears': 156,
          'time_period': ['1850-1-16 12:0:0.0', '2005-12-16 12:0:0.0']},
         'ERA-Interim': {'name': 'ERA-Interim',
          'nyears': 40,
          'time_period': ['1979-1-16 12:0:0.0', '2019-3-16 12:0:0.0']},
         'HadISST': {'name': 'HadISST',
          'nyears': 151,
          'time_period': ['1870-1-16 11:59:59.5', '2020-10-16 12:0:0.0']},
         'Tropflux': {'name': 'Tropflux',
          'nyears': 40,
          'time_period': ['1979-1-15 0:0:0.0', '2018-12-15 12:0:0.0']},
         'method': 'nino3.4 SSTA during DEC regressed against nino3.4 SSTA during 6 years (centered on ENSO), time series are linearly detrended, smoothing using a triangle shaped window of 5 points',
         'name': 'ENSO life cyle SSTA pattern',
         'ref': 'Using CDAT regridding and rms (uncentered and biased) calculation',
         'time_frequency': 'monthly',
         'units': 'C/C'},
        'metric': {'datasets': "CNRM-CM5_r6i1p1; ERA-Interim's ts & HadISST's sst & Tropflux's sst; 's ",
         'method': 'The metric is the statistical value between the model and the observations',
         'name': 'EnsoSstTsRmse',
         'units': 'C/C'}},
       'SeasonalPrLatRmse': {'diagnostic': {'CNRM-CM5_r6i1p1': {'keyerror': None,
          'name': 'CNRM-CM5_r6i1p1',
          'nyears': 156,
          'time_period': ['1850-1-16 12:0:0.0', '2005-12-16 12:0:0.0']},
         'ERA-Interim': {'name': 'ERA-Interim',
          'nyears': 40,
          'time_period': ['1979-1-16 12:0:0.0', '2019-3-16 12:0:0.0']},
         'GPCPv2.3': {'name': 'GPCPv2.3',
          'nyears': 41,
          'time_period': ['1979-1-1 0:0:0.0', '2019-7-1 0:0:0.0']},
         'method': 'Meridional root mean square error of nino3_LatExt climatological pr STD, time series are linearly detrended, observations and model regridded to generic_1x1deg',
         'name': 'pr meridional seasonality RMSE',
         'ref': 'Using CDAT regridding and rms (uncentered and biased) calculation',
         'time_frequency': 'monthly',
         'units': 'mm/day'},
        'metric': {'datasets': "CNRM-CM5_r6i1p1; ERA-Interim's pr & GPCPv2.3's precip; 's ",
         'method': 'The metric is the statistical value between the model and the observations',
         'name': 'SeasonalPrLatRmse',
         'units': 'mm/day'}},
       'SeasonalPrLonRmse': {'diagnostic': {'CNRM-CM5_r6i1p1': {'keyerror': None,
          'name': 'CNRM-CM5_r6i1p1',
          'nyears': 156,
          'time_period': ['1850-1-16 12:0:0.0', '2005-12-16 12:0:0.0']},
         'ERA-Interim': {'name': 'ERA-Interim',
          'nyears': 40,
          'time_period': ['1979-1-16 12:0:0.0', '2019-3-16 12:0:0.0']},
         'GPCPv2.3': {'name': 'GPCPv2.3',
          'nyears': 41,
          'time_period': ['1979-1-1 0:0:0.0', '2019-7-1 0:0:0.0']},
         'method': 'Zonal root mean square error of equatorial_pacific climatological pr STD, time series are linearly detrended, observations and model regridded to generic_1x1deg',
         'name': 'pr zonal seasonality RMSE',
         'ref': 'Using CDAT regridding and rms (uncentered and biased) calculation',
         'time_frequency': 'monthly',
         'units': 'mm/day'},
        'metric': {'datasets': "CNRM-CM5_r6i1p1; ERA-Interim's pr & GPCPv2.3's precip; 's ",
         'method': 'The metric is the statistical value between the model and the observations',
         'name': 'SeasonalPrLonRmse',
         'units': 'mm/day'}},
       'SeasonalSstLonRmse': {'diagnostic': {'CNRM-CM5_r6i1p1': {'keyerror': None,
          'name': 'CNRM-CM5_r6i1p1',
          'nyears': 156,
          'time_period': ['1850-1-16 12:0:0.0', '2005-12-16 12:0:0.0']},
         'ERA-Interim': {'name': 'ERA-Interim',
          'nyears': 40,
          'time_period': ['1979-1-16 12:0:0.0', '2019-3-16 12:0:0.0']},
         'HadISST': {'name': 'HadISST',
          'nyears': 151,
          'time_period': ['1870-1-16 11:59:59.5', '2020-10-16 12:0:0.0']},
         'Tropflux': {'name': 'Tropflux',
          'nyears': 40,
          'time_period': ['1979-1-15 0:0:0.0', '2018-12-15 12:0:0.0']},
         'method': 'Zonal root mean square error of equatorial_pacific climatological sst STD, time series are linearly detrended, observations and model regridded to generic_1x1deg',
         'name': 'sst zonal seasonality RMSE',
         'ref': 'Using CDAT regridding and rms (uncentered and biased) calculation',
         'time_frequency': 'monthly',
         'units': 'C'},
        'metric': {'datasets': "CNRM-CM5_r6i1p1; ERA-Interim's ts & HadISST's sst & Tropflux's sst; 's ",
         'method': 'The metric is the statistical value between the model and the observations',
         'name': 'SeasonalSstLonRmse',
         'units': 'C'}},
       'SeasonalTauxLonRmse': {'diagnostic': {'CNRM-CM5_r6i1p1': {'keyerror': None,
          'name': 'CNRM-CM5_r6i1p1',
          'nyears': 156,
          'time_period': ['1850-1-16 12:0:0.0', '2005-12-16 12:0:0.0']},
         'ERA-Interim': {'name': 'ERA-Interim',
          'nyears': 40,
          'time_period': ['1979-1-16 12:0:0.0', '2019-3-16 12:0:0.0']},
         'Tropflux': {'name': 'Tropflux',
          'nyears': 40,
          'time_period': ['1979-1-15 0:0:0.0', '2018-12-15 12:0:0.0']},
         'method': 'Zonal root mean square error of equatorial_pacific climatological taux STD, time series are linearly detrended, observations and model regridded to generic_1x1deg',
         'name': 'taux zonal seasonality RMSE',
         'ref': 'Using CDAT regridding and rms (uncentered and biased) calculation',
         'time_frequency': 'monthly',
         'units': '1e-3 N/m2'},
        'metric': {'datasets': "CNRM-CM5_r6i1p1; ERA-Interim's tauu & Tropflux's taux; 's ",
         'method': 'The metric is the statistical value between the model and the observations',
         'name': 'SeasonalTauxLonRmse',
         'units': '1e-3 N/m2'}}},
      'name': 'Metrics Collection for ENSO performance'},
     'value': {'BiasPrLatRmse': {'diagnostic': {'CNRM-CM5_r6i1p1': {'value': None,
         'value_error': None},
        'ERA-Interim': {'value': None, 'value_error': None},
        'GPCPv2.3': {'value': None, 'value_error': None}},
       'metric': {'ERA-Interim': {'value': 1.6142804219657014,
         'value_error': None},
        'GPCPv2.3': {'value': 1.8113129174936315, 'value_error': None}}},
      'BiasPrLonRmse': {'diagnostic': {'CNRM-CM5_r6i1p1': {'value': None,
         'value_error': None},
        'ERA-Interim': {'value': None, 'value_error': None},
        'GPCPv2.3': {'value': None, 'value_error': None}},
       'metric': {'ERA-Interim': {'value': 1.0846143538189332,
         'value_error': None},
        'GPCPv2.3': {'value': 0.5694715454598199, 'value_error': None}}},
      'BiasSstLonRmse': {'diagnostic': {'CNRM-CM5_r6i1p1': {'value': None,
         'value_error': None},
        'ERA-Interim': {'value': None, 'value_error': None},
        'HadISST': {'value': None, 'value_error': None},
        'Tropflux': {'value': None, 'value_error': None}},
       'metric': {'ERA-Interim': {'value': 0.9495285792059064,
         'value_error': None},
        'HadISST': {'value': 0.8096341590840441, 'value_error': None},
        'Tropflux': {'value': 0.9926616337446056, 'value_error': None}}},
      'BiasTauxLonRmse': {'diagnostic': {'CNRM-CM5_r6i1p1': {'value': None,
         'value_error': None},
        'ERA-Interim': {'value': None, 'value_error': None},
        'Tropflux': {'value': None, 'value_error': None}},
       'metric': {'ERA-Interim': {'value': 9.073752788487056,
         'value_error': None},
        'Tropflux': {'value': 8.803118750241032, 'value_error': None}}},
      'EnsoAmpl': {'diagnostic': {'CNRM-CM5_r6i1p1': {'value': 0.8351427654098207,
         'value_error': 0.06686493459437479},
        'ERA-Interim': {'value': 0.8989844997845644,
         'value_error': 0.14214193002531866},
        'HadISST': {'value': 0.7665787872085695,
         'value_error': 0.06238329697691264},
        'Tropflux': {'value': 0.9039789553693535,
         'value_error': 0.14293162279134272}},
       'metric': {'ERA-Interim': {'value': 7.1015389464493515,
         'value_error': 22.126365932602702},
        'HadISST': {'value': 8.94415281838426,
         'value_error': 17.588262450753835},
        'Tropflux': {'value': 7.614800051557312,
         'value_error': 22.004118449686437}}},
      'EnsoDuration': {'diagnostic': {'CNRM-CM5_r6i1p1': {'value': 11.0,
         'value_error': None},
        'ERA-Interim': {'value': 13.0, 'value_error': None},
        'HadISST': {'value': 13.0, 'value_error': None},
        'Tropflux': {'value': 13.0, 'value_error': None}},
       'metric': {'ERA-Interim': {'value': 15.384615384615385,
         'value_error': None},
        'HadISST': {'value': 15.384615384615385, 'value_error': None},
        'Tropflux': {'value': 15.384615384615385, 'value_error': None}}},
      'EnsoSeasonality': {'diagnostic': {'CNRM-CM5_r6i1p1': {'value': 1.910319118959289,
         'value_error': 0.3063884609207651},
        'ERA-Interim': {'value': 2.0466846866656914,
         'value_error': 0.6513411033995022},
        'HadISST': {'value': 1.6639865947361325,
         'value_error': 0.2712772451657809},
        'Tropflux': {'value': 2.0532132553583624,
         'value_error': 0.6534187683977347}},
       'metric': {'ERA-Interim': {'value': 6.662754091767755,
         'value_error': 44.67382368466903},
        'HadISST': {'value': 14.803756532799397,
         'value_error': 37.12920109718464},
        'Tropflux': {'value': 6.959537009911476,
         'value_error': 44.53177505629178}}},
      'EnsoSstDiversity_2': {'diagnostic': {'CNRM-CM5_r6i1p1': {'value': 27.0,
         'value_error': None},
        'ERA-Interim': {'value': 33.25, 'value_error': None},
        'HadISST': {'value': 49.0, 'value_error': None},
        'Tropflux': {'value': 32.0, 'value_error': None}},
       'metric': {'ERA-Interim': {'value': 18.796992481203006,
         'value_error': None},
        'HadISST': {'value': 44.89795918367347, 'value_error': None},
        'Tropflux': {'value': 15.625, 'value_error': None}}},
      'EnsoSstLonRmse': {'diagnostic': {'CNRM-CM5_r6i1p1': {'value': None,
         'value_error': None},
        'ERA-Interim': {'value': None, 'value_error': None},
        'HadISST': {'value': None, 'value_error': None},
        'Tropflux': {'value': None, 'value_error': None}},
       'metric': {'ERA-Interim': {'value': 0.08248648521413164,
         'value_error': None},
        'HadISST': {'value': 0.09051977637845364, 'value_error': None},
        'Tropflux': {'value': 0.07977413467836339, 'value_error': None}}},
      'EnsoSstSkew': {'diagnostic': {'CNRM-CM5_r6i1p1': {'value': 0.3156882108193165,
         'value_error': 0.02527528518826414},
        'ERA-Interim': {'value': 0.39098111106809963,
         'value_error': 0.061819541653923164},
        'HadISST': {'value': 0.38989908235027515,
         'value_error': 0.03172953733021198},
        'Tropflux': {'value': 0.39744741059612115,
         'value_error': 0.06284195338099416}},
       'metric': {'ERA-Interim': {'value': 19.257426539889526,
         'value_error': 19.231101424690138},
        'HadISST': {'value': 19.03335372928361,
         'value_error': 13.071492021611276},
        'Tropflux': {'value': 20.57107370612282,
         'value_error': 18.918219622593877}}},
      'EnsoSstTsRmse': {'diagnostic': {'CNRM-CM5_r6i1p1': {'value': None,
         'value_error': None},
        'ERA-Interim': {'value': None, 'value_error': None},
        'HadISST': {'value': None, 'value_error': None},
        'Tropflux': {'value': None, 'value_error': None}},
       'metric': {'ERA-Interim': {'value': 0.17151699594358305,
         'value_error': None},
        'HadISST': {'value': 0.1742597713036354, 'value_error': None},
        'Tropflux': {'value': 0.17294435544054346, 'value_error': None}}},
      'SeasonalPrLatRmse': {'diagnostic': {'CNRM-CM5_r6i1p1': {'value': None,
         'value_error': None},
        'ERA-Interim': {'value': None, 'value_error': None},
        'GPCPv2.3': {'value': None, 'value_error': None}},
       'metric': {'ERA-Interim': {'value': 0.9218142807317379,
         'value_error': None},
        'GPCPv2.3': {'value': 0.9748424320523957, 'value_error': None}}},
      'SeasonalPrLonRmse': {'diagnostic': {'CNRM-CM5_r6i1p1': {'value': None,
         'value_error': None},
        'ERA-Interim': {'value': None, 'value_error': None},
        'GPCPv2.3': {'value': None, 'value_error': None}},
       'metric': {'ERA-Interim': {'value': 0.298802391816,
         'value_error': None},
        'GPCPv2.3': {'value': 0.31200313338594254, 'value_error': None}}},
      'SeasonalSstLonRmse': {'diagnostic': {'CNRM-CM5_r6i1p1': {'value': None,
         'value_error': None},
        'ERA-Interim': {'value': None, 'value_error': None},
        'HadISST': {'value': None, 'value_error': None},
        'Tropflux': {'value': None, 'value_error': None}},
       'metric': {'ERA-Interim': {'value': 0.20234029210602528,
         'value_error': None},
        'HadISST': {'value': 0.20973990006097046, 'value_error': None},
        'Tropflux': {'value': 0.1985077644023716, 'value_error': None}}},
      'SeasonalTauxLonRmse': {'diagnostic': {'CNRM-CM5_r6i1p1': {'value': None,
         'value_error': None},
        'ERA-Interim': {'value': None, 'value_error': None},
        'Tropflux': {'value': None, 'value_error': None}},
       'metric': {'ERA-Interim': {'value': 2.4162640390840027,
         'value_error': None},
        'Tropflux': {'value': 2.193306687517343, 'value_error': None}}}}},
    'r7i1p1': {'metadata': {'description_of_the_collection': 'Describe which science question this collection is about',
      'metrics': {'BiasPrLatRmse': {'diagnostic': {'CNRM-CM5_r7i1p1': {'keyerror': None,
          'name': 'CNRM-CM5_r7i1p1',
          'nyears': 156,
          'time_period': ['1850-1-16 12:0:0.0', '2005-12-16 12:0:0.0']},
         'ERA-Interim': {'name': 'ERA-Interim',
          'nyears': 40,
          'time_period': ['1979-1-16 12:0:0.0', '2019-3-16 12:0:0.0']},
         'GPCPv2.3': {'name': 'GPCPv2.3',
          'nyears': 41,
          'time_period': ['1979-1-1 0:0:0.0', '2019-7-1 0:0:0.0']},
         'method': 'Meridional root mean square error of nino3_LatExt pr, time series are linearly detrended, observations and model regridded to generic_1x1deg',
         'name': 'pr Meridional RMSE',
         'ref': 'Using CDAT regridding and rms (uncentered and biased) calculation',
         'time_frequency': 'monthly',
         'units': 'mm/day'},
        'metric': {'datasets': "CNRM-CM5_r7i1p1; ERA-Interim's pr & GPCPv2.3's precip; 's ",
         'method': 'The metric is the statistical value between the model and the observations',
         'name': 'BiasPrLatRmse',
         'units': 'mm/day'}},
       'BiasPrLonRmse': {'diagnostic': {'CNRM-CM5_r7i1p1': {'keyerror': None,
          'name': 'CNRM-CM5_r7i1p1',
          'nyears': 156,
          'time_period': ['1850-1-16 12:0:0.0', '2005-12-16 12:0:0.0']},
         'ERA-Interim': {'name': 'ERA-Interim',
          'nyears': 40,
          'time_period': ['1979-1-16 12:0:0.0', '2019-3-16 12:0:0.0']},
         'GPCPv2.3': {'name': 'GPCPv2.3',
          'nyears': 41,
          'time_period': ['1979-1-1 0:0:0.0', '2019-7-1 0:0:0.0']},
         'method': 'Zonal root mean square error of equatorial_pacific pr, time series are linearly detrended, observations and model regridded to generic_1x1deg',
         'name': 'pr Zonal RMSE',
         'ref': 'Using CDAT regridding and rms (uncentered and biased) calculation',
         'time_frequency': 'monthly',
         'units': 'mm/day'},
        'metric': {'datasets': "CNRM-CM5_r7i1p1; ERA-Interim's pr & GPCPv2.3's precip; 's ",
         'method': 'The metric is the statistical value between the model and the observations',
         'name': 'BiasPrLonRmse',
         'units': 'mm/day'}},
       'BiasSstLonRmse': {'diagnostic': {'CNRM-CM5_r7i1p1': {'keyerror': None,
          'name': 'CNRM-CM5_r7i1p1',
          'nyears': 156,
          'time_period': ['1850-1-16 12:0:0.0', '2005-12-16 12:0:0.0']},
         'ERA-Interim': {'name': 'ERA-Interim',
          'nyears': 40,
          'time_period': ['1979-1-16 12:0:0.0', '2019-3-16 12:0:0.0']},
         'HadISST': {'name': 'HadISST',
          'nyears': 151,
          'time_period': ['1870-1-16 11:59:59.5', '2020-10-16 12:0:0.0']},
         'Tropflux': {'name': 'Tropflux',
          'nyears': 40,
          'time_period': ['1979-1-15 0:0:0.0', '2018-12-15 12:0:0.0']},
         'method': 'Zonal root mean square error of equatorial_pacific sst, time series are linearly detrended, observations and model regridded to generic_1x1deg',
         'name': 'sst Zonal RMSE',
         'ref': 'Using CDAT regridding and rms (uncentered and biased) calculation',
         'time_frequency': 'monthly',
         'units': 'C'},
        'metric': {'datasets': "CNRM-CM5_r7i1p1; ERA-Interim's ts & HadISST's sst & Tropflux's sst; 's ",
         'method': 'The metric is the statistical value between the model and the observations',
         'name': 'BiasSstLonRmse',
         'units': 'C'}},
       'BiasTauxLonRmse': {'diagnostic': {'CNRM-CM5_r7i1p1': {'keyerror': None,
          'name': 'CNRM-CM5_r7i1p1',
          'nyears': 156,
          'time_period': ['1850-1-16 12:0:0.0', '2005-12-16 12:0:0.0']},
         'ERA-Interim': {'name': 'ERA-Interim',
          'nyears': 40,
          'time_period': ['1979-1-16 12:0:0.0', '2019-3-16 12:0:0.0']},
         'Tropflux': {'name': 'Tropflux',
          'nyears': 40,
          'time_period': ['1979-1-15 0:0:0.0', '2018-12-15 12:0:0.0']},
         'method': 'Zonal root mean square error of equatorial_pacific taux, time series are linearly detrended, observations and model regridded to generic_1x1deg',
         'name': 'taux Zonal RMSE',
         'ref': 'Using CDAT regridding and rms (uncentered and biased) calculation',
         'time_frequency': 'monthly',
         'units': '1e-3 N/m2'},
        'metric': {'datasets': "CNRM-CM5_r7i1p1; ERA-Interim's tauu & Tropflux's taux; 's ",
         'method': 'The metric is the statistical value between the model and the observations',
         'name': 'BiasTauxLonRmse',
         'units': '1e-3 N/m2'}},
       'EnsoAmpl': {'diagnostic': {'CNRM-CM5_r7i1p1': {'keyerror': None,
          'name': 'CNRM-CM5_r7i1p1',
          'nyears': 156,
          'time_period': ['1850-1-16 12:0:0.0', '2005-12-16 12:0:0.0']},
         'ERA-Interim': {'keyerror': None,
          'name': 'ERA-Interim',
          'nyears': 40,
          'time_period': ['1979-1-16 12:0:0.0', '2019-3-16 12:0:0.0']},
         'HadISST': {'keyerror': None,
          'name': 'HadISST',
          'nyears': 151,
          'time_period': ['1870-1-16 11:59:59.5', '2020-10-16 12:0:0.0']},
         'Tropflux': {'keyerror': None,
          'name': 'Tropflux',
          'nyears': 40,
          'time_period': ['1979-1-15 0:0:0.0', '2018-12-15 12:0:0.0']},
         'method': 'Standard deviation of nino3.4 sstA, time series are linearly detrended',
         'name': 'ENSO amplitude',
         'ref': 'Using CDAT regression calculation',
         'time_frequency': 'monthly',
         'units': 'C'},
        'metric': {'datasets': "CNRM-CM5_r7i1p1; ERA-Interim's ts & HadISST's sst & Tropflux's sst; 's ",
         'method': 'The metric is the absolute value of the relative difference between model and observations values (M = 100 * abs[[model-obs] / obs])',
         'name': 'EnsoAmpl',
         'units': '%'}},
       'EnsoDuration': {'diagnostic': {'CNRM-CM5_r7i1p1': {'keyerror': None,
          'name': 'CNRM-CM5_r7i1p1',
          'nyears': 156,
          'time_period': ['1850-1-16 12:0:0.0', '2005-12-16 12:0:0.0']},
         'ERA-Interim': {'keyerror': None,
          'name': 'ERA-Interim',
          'nyears': 40,
          'time_period': ['1979-1-16 12:0:0.0', '2019-3-16 12:0:0.0']},
         'HadISST': {'keyerror': None,
          'name': 'HadISST',
          'nyears': 151,
          'time_period': ['1870-1-16 11:59:59.5', '2020-10-16 12:0:0.0']},
         'Tropflux': {'keyerror': None,
          'name': 'Tropflux',
          'nyears': 40,
          'time_period': ['1979-1-15 0:0:0.0', '2018-12-15 12:0:0.0']},
         'method': 'nino3.4 SSTA during DEC regressed against nino3.4 SSTA during 6 years (centered on ENSO), the duration is the number of consecutive months during which the regression is above 0.25, time series are linearly detrended, smoothing using a triangle shaped window of 5 points',
         'name': 'ENSO Duration based on life cyle SSTA pattern',
         'ref': 'Using CDAT',
         'time_frequency': 'monthly',
         'units': 'months'},
        'metric': {'datasets': "CNRM-CM5_r7i1p1; ERA-Interim's ts & HadISST's sst & Tropflux's sst; 's ",
         'method': 'The metric is the absolute value of the relative difference between model and observations values (M = 100 * abs[[model-obs] / obs])',
         'name': 'EnsoDuration',
         'units': '%'}},
       'EnsoSeasonality': {'diagnostic': {'CNRM-CM5_r7i1p1': {'keyerror': None,
          'name': 'CNRM-CM5_r7i1p1',
          'nyears': 156,
          'time_period': ['1850-1-16 12:0:0.0', '2005-12-16 12:0:0.0']},
         'ERA-Interim': {'keyerror': None,
          'name': 'ERA-Interim',
          'nyears': 40,
          'time_period': ['1979-1-16 12:0:0.0', '2019-3-16 12:0:0.0']},
         'HadISST': {'keyerror': None,
          'name': 'HadISST',
          'nyears': 151,
          'time_period': ['1870-1-16 11:59:59.5', '2020-10-16 12:0:0.0']},
         'Tropflux': {'keyerror': None,
          'name': 'Tropflux',
          'nyears': 40,
          'time_period': ['1979-1-15 0:0:0.0', '2018-12-15 12:0:0.0']},
         'method': 'Ratio between NDJ and MAM standard deviation nino3.4 sstA, time series are linearly detrended',
         'name': 'ENSO seasonality',
         'ref': 'Using CDAT std dev calculation',
         'time_frequency': 'monthly',
         'units': 'C/C'},
        'metric': {'datasets': "CNRM-CM5_r7i1p1; ERA-Interim's ts & HadISST's sst & Tropflux's sst; 's ",
         'method': 'The metric is the absolute value of the relative difference between model and observations values (M = 100 * abs[[model-obs] / obs])',
         'name': 'EnsoSeasonality',
         'units': '%'}},
       'EnsoSstDiversity_2': {'diagnostic': {'CNRM-CM5_r7i1p1': {'keyerror': None,
          'name': 'CNRM-CM5_r7i1p1',
          'nyears': 156,
          'time_period': ['1850-1-16 12:0:0.0', '2005-12-16 12:0:0.0']},
         'ERA-Interim': {'keyerror': None,
          'name': 'ERA-Interim',
          'nyears': 40,
          'time_period': ['1979-1-16 12:0:0.0', '2019-3-16 12:0:0.0']},
         'HadISST': {'keyerror': None,
          'name': 'HadISST',
          'nyears': 151,
          'time_period': ['1870-1-16 11:59:59.5', '2020-10-16 12:0:0.0']},
         'Tropflux': {'keyerror': None,
          'name': 'Tropflux',
          'nyears': 40,
          'time_period': ['1979-1-15 0:0:0.0', '2018-12-15 12:0:0.0']},
         'method': 'Nino (Nina) events = nino3.4 sstA > 0.75 (< -0.75) during DEC, zonal SSTA (meridional averaged [-5.0 ; 5.0]), the zonal SSTA maximum (minimum) is located for each event, the diversity is the interquartile range (IQR = Q3 - Q1), time series are linearly detrended, smoothing using a triangle shaped window of 5 points',
         'name': 'ENSO Diversity (interquartile range)',
         'ref': 'Using CDAT regridding',
         'time_frequency': 'monthly',
         'units': 'long'},
        'metric': {'datasets': "CNRM-CM5_r7i1p1; ERA-Interim's ts & HadISST's sst & Tropflux's sst; 's ",
         'method': 'The metric is the absolute value of the relative difference between model and observations values (M = 100 * abs[[model-obs] / obs])',
         'name': 'EnsoSstDiversity',
         'units': '%'}},
       'EnsoSstLonRmse': {'diagnostic': {'CNRM-CM5_r7i1p1': {'keyerror': None,
          'name': 'CNRM-CM5_r7i1p1',
          'nyears': 156,
          'time_period': ['1850-1-16 12:0:0.0', '2005-12-16 12:0:0.0']},
         'ERA-Interim': {'name': 'ERA-Interim',
          'nyears': 40,
          'time_period': ['1979-1-16 12:0:0.0', '2019-3-16 12:0:0.0']},
         'HadISST': {'name': 'HadISST',
          'nyears': 151,
          'time_period': ['1870-1-16 11:59:59.5', '2020-10-16 12:0:0.0']},
         'Tropflux': {'name': 'Tropflux',
          'nyears': 40,
          'time_period': ['1979-1-15 0:0:0.0', '2018-12-15 12:0:0.0']},
         'method': 'nino3.4 SSTA during DEC regressed against equatorial_pacific SSTA, time series are linearly detrended, smoothing using a triangle shaped window of 5 points, observations and model regridded to generic_1x1deg',
         'name': 'ENSO Zonal SSTA pattern',
         'ref': 'Using CDAT regridding and rms (uncentered and biased) calculation',
         'time_frequency': 'monthly',
         'units': 'C/C'},
        'metric': {'datasets': "CNRM-CM5_r7i1p1; ERA-Interim's ts & HadISST's sst & Tropflux's sst; 's ",
         'method': 'The metric is the statistical value between the model and the observations',
         'name': 'EnsoSstLonRmse',
         'units': 'C/C'}},
       'EnsoSstSkew': {'diagnostic': {'CNRM-CM5_r7i1p1': {'keyerror': None,
          'name': 'CNRM-CM5_r7i1p1',
          'nyears': 156,
          'time_period': ['1850-1-16 12:0:0.0', '2005-12-16 12:0:0.0']},
         'ERA-Interim': {'keyerror': None,
          'name': 'ERA-Interim',
          'nyears': 40,
          'time_period': ['1979-1-16 12:0:0.0', '2019-3-16 12:0:0.0']},
         'HadISST': {'keyerror': None,
          'name': 'HadISST',
          'nyears': 151,
          'time_period': ['1870-1-16 11:59:59.5', '2020-10-16 12:0:0.0']},
         'Tropflux': {'keyerror': None,
          'name': 'Tropflux',
          'nyears': 40,
          'time_period': ['1979-1-15 0:0:0.0', '2018-12-15 12:0:0.0']},
         'method': 'Standard deviation of nino3.4 sstA, time series are linearly detrended',
         'name': 'ENSO skewness',
         'ref': 'Using CDAT regression calculation',
         'time_frequency': 'monthly',
         'units': 'C'},
        'metric': {'datasets': "CNRM-CM5_r7i1p1; ERA-Interim's ts & HadISST's sst & Tropflux's sst; 's ",
         'method': 'The metric is the absolute value of the relative difference between model and observations values (M = 100 * abs[[model-obs] / obs])',
         'name': 'EnsoSstSkew',
         'units': '%'}},
       'EnsoSstTsRmse': {'diagnostic': {'CNRM-CM5_r7i1p1': {'keyerror': None,
          'name': 'CNRM-CM5_r7i1p1',
          'nyears': 156,
          'time_period': ['1850-1-16 12:0:0.0', '2005-12-16 12:0:0.0']},
         'ERA-Interim': {'name': 'ERA-Interim',
          'nyears': 40,
          'time_period': ['1979-1-16 12:0:0.0', '2019-3-16 12:0:0.0']},
         'HadISST': {'name': 'HadISST',
          'nyears': 151,
          'time_period': ['1870-1-16 11:59:59.5', '2020-10-16 12:0:0.0']},
         'Tropflux': {'name': 'Tropflux',
          'nyears': 40,
          'time_period': ['1979-1-15 0:0:0.0', '2018-12-15 12:0:0.0']},
         'method': 'nino3.4 SSTA during DEC regressed against nino3.4 SSTA during 6 years (centered on ENSO), time series are linearly detrended, smoothing using a triangle shaped window of 5 points',
         'name': 'ENSO life cyle SSTA pattern',
         'ref': 'Using CDAT regridding and rms (uncentered and biased) calculation',
         'time_frequency': 'monthly',
         'units': 'C/C'},
        'metric': {'datasets': "CNRM-CM5_r7i1p1; ERA-Interim's ts & HadISST's sst & Tropflux's sst; 's ",
         'method': 'The metric is the statistical value between the model and the observations',
         'name': 'EnsoSstTsRmse',
         'units': 'C/C'}},
       'SeasonalPrLatRmse': {'diagnostic': {'CNRM-CM5_r7i1p1': {'keyerror': None,
          'name': 'CNRM-CM5_r7i1p1',
          'nyears': 156,
          'time_period': ['1850-1-16 12:0:0.0', '2005-12-16 12:0:0.0']},
         'ERA-Interim': {'name': 'ERA-Interim',
          'nyears': 40,
          'time_period': ['1979-1-16 12:0:0.0', '2019-3-16 12:0:0.0']},
         'GPCPv2.3': {'name': 'GPCPv2.3',
          'nyears': 41,
          'time_period': ['1979-1-1 0:0:0.0', '2019-7-1 0:0:0.0']},
         'method': 'Meridional root mean square error of nino3_LatExt climatological pr STD, time series are linearly detrended, observations and model regridded to generic_1x1deg',
         'name': 'pr meridional seasonality RMSE',
         'ref': 'Using CDAT regridding and rms (uncentered and biased) calculation',
         'time_frequency': 'monthly',
         'units': 'mm/day'},
        'metric': {'datasets': "CNRM-CM5_r7i1p1; ERA-Interim's pr & GPCPv2.3's precip; 's ",
         'method': 'The metric is the statistical value between the model and the observations',
         'name': 'SeasonalPrLatRmse',
         'units': 'mm/day'}},
       'SeasonalPrLonRmse': {'diagnostic': {'CNRM-CM5_r7i1p1': {'keyerror': None,
          'name': 'CNRM-CM5_r7i1p1',
          'nyears': 156,
          'time_period': ['1850-1-16 12:0:0.0', '2005-12-16 12:0:0.0']},
         'ERA-Interim': {'name': 'ERA-Interim',
          'nyears': 40,
          'time_period': ['1979-1-16 12:0:0.0', '2019-3-16 12:0:0.0']},
         'GPCPv2.3': {'name': 'GPCPv2.3',
          'nyears': 41,
          'time_period': ['1979-1-1 0:0:0.0', '2019-7-1 0:0:0.0']},
         'method': 'Zonal root mean square error of equatorial_pacific climatological pr STD, time series are linearly detrended, observations and model regridded to generic_1x1deg',
         'name': 'pr zonal seasonality RMSE',
         'ref': 'Using CDAT regridding and rms (uncentered and biased) calculation',
         'time_frequency': 'monthly',
         'units': 'mm/day'},
        'metric': {'datasets': "CNRM-CM5_r7i1p1; ERA-Interim's pr & GPCPv2.3's precip; 's ",
         'method': 'The metric is the statistical value between the model and the observations',
         'name': 'SeasonalPrLonRmse',
         'units': 'mm/day'}},
       'SeasonalSstLonRmse': {'diagnostic': {'CNRM-CM5_r7i1p1': {'keyerror': None,
          'name': 'CNRM-CM5_r7i1p1',
          'nyears': 156,
          'time_period': ['1850-1-16 12:0:0.0', '2005-12-16 12:0:0.0']},
         'ERA-Interim': {'name': 'ERA-Interim',
          'nyears': 40,
          'time_period': ['1979-1-16 12:0:0.0', '2019-3-16 12:0:0.0']},
         'HadISST': {'name': 'HadISST',
          'nyears': 151,
          'time_period': ['1870-1-16 11:59:59.5', '2020-10-16 12:0:0.0']},
         'Tropflux': {'name': 'Tropflux',
          'nyears': 40,
          'time_period': ['1979-1-15 0:0:0.0', '2018-12-15 12:0:0.0']},
         'method': 'Zonal root mean square error of equatorial_pacific climatological sst STD, time series are linearly detrended, observations and model regridded to generic_1x1deg',
         'name': 'sst zonal seasonality RMSE',
         'ref': 'Using CDAT regridding and rms (uncentered and biased) calculation',
         'time_frequency': 'monthly',
         'units': 'C'},
        'metric': {'datasets': "CNRM-CM5_r7i1p1; ERA-Interim's ts & HadISST's sst & Tropflux's sst; 's ",
         'method': 'The metric is the statistical value between the model and the observations',
         'name': 'SeasonalSstLonRmse',
         'units': 'C'}},
       'SeasonalTauxLonRmse': {'diagnostic': {'CNRM-CM5_r7i1p1': {'keyerror': None,
          'name': 'CNRM-CM5_r7i1p1',
          'nyears': 156,
          'time_period': ['1850-1-16 12:0:0.0', '2005-12-16 12:0:0.0']},
         'ERA-Interim': {'name': 'ERA-Interim',
          'nyears': 40,
          'time_period': ['1979-1-16 12:0:0.0', '2019-3-16 12:0:0.0']},
         'Tropflux': {'name': 'Tropflux',
          'nyears': 40,
          'time_period': ['1979-1-15 0:0:0.0', '2018-12-15 12:0:0.0']},
         'method': 'Zonal root mean square error of equatorial_pacific climatological taux STD, time series are linearly detrended, observations and model regridded to generic_1x1deg',
         'name': 'taux zonal seasonality RMSE',
         'ref': 'Using CDAT regridding and rms (uncentered and biased) calculation',
         'time_frequency': 'monthly',
         'units': '1e-3 N/m2'},
        'metric': {'datasets': "CNRM-CM5_r7i1p1; ERA-Interim's tauu & Tropflux's taux; 's ",
         'method': 'The metric is the statistical value between the model and the observations',
         'name': 'SeasonalTauxLonRmse',
         'units': '1e-3 N/m2'}}},
      'name': 'Metrics Collection for ENSO performance'},
     'value': {'BiasPrLatRmse': {'diagnostic': {'CNRM-CM5_r7i1p1': {'value': None,
         'value_error': None},
        'ERA-Interim': {'value': None, 'value_error': None},
        'GPCPv2.3': {'value': None, 'value_error': None}},
       'metric': {'ERA-Interim': {'value': 1.6286879553043083,
         'value_error': None},
        'GPCPv2.3': {'value': 1.8320878878341564, 'value_error': None}}},
      'BiasPrLonRmse': {'diagnostic': {'CNRM-CM5_r7i1p1': {'value': None,
         'value_error': None},
        'ERA-Interim': {'value': None, 'value_error': None},
        'GPCPv2.3': {'value': None, 'value_error': None}},
       'metric': {'ERA-Interim': {'value': 1.0174549561402786,
         'value_error': None},
        'GPCPv2.3': {'value': 0.5624629356137915, 'value_error': None}}},
      'BiasSstLonRmse': {'diagnostic': {'CNRM-CM5_r7i1p1': {'value': None,
         'value_error': None},
        'ERA-Interim': {'value': None, 'value_error': None},
        'HadISST': {'value': None, 'value_error': None},
        'Tropflux': {'value': None, 'value_error': None}},
       'metric': {'ERA-Interim': {'value': 0.9270870073761847,
         'value_error': None},
        'HadISST': {'value': 0.788230133175401, 'value_error': None},
        'Tropflux': {'value': 0.969919462798235, 'value_error': None}}},
      'BiasTauxLonRmse': {'diagnostic': {'CNRM-CM5_r7i1p1': {'value': None,
         'value_error': None},
        'ERA-Interim': {'value': None, 'value_error': None},
        'Tropflux': {'value': None, 'value_error': None}},
       'metric': {'ERA-Interim': {'value': 9.310529491386033,
         'value_error': None},
        'Tropflux': {'value': 9.016023136568297, 'value_error': None}}},
      'EnsoAmpl': {'diagnostic': {'CNRM-CM5_r7i1p1': {'value': 0.8543060147213272,
         'value_error': 0.06839922246095385},
        'ERA-Interim': {'value': 0.8989844997845644,
         'value_error': 0.14214193002531866},
        'HadISST': {'value': 0.7665787872085695,
         'value_error': 0.06238329697691264},
        'Tropflux': {'value': 0.9039789553693535,
         'value_error': 0.14293162279134272}},
       'metric': {'ERA-Interim': {'value': 4.969883804886973,
         'value_error': 22.634079205453745},
        'HadISST': {'value': 11.44399362160917,
         'value_error': 17.991844056510317},
        'Tropflux': {'value': 5.49492223828713,
         'value_error': 22.509026622511637}}},
      'EnsoDuration': {'diagnostic': {'CNRM-CM5_r7i1p1': {'value': 11.0,
         'value_error': None},
        'ERA-Interim': {'value': 13.0, 'value_error': None},
        'HadISST': {'value': 13.0, 'value_error': None},
        'Tropflux': {'value': 13.0, 'value_error': None}},
       'metric': {'ERA-Interim': {'value': 15.384615384615385,
         'value_error': None},
        'HadISST': {'value': 15.384615384615385, 'value_error': None},
        'Tropflux': {'value': 15.384615384615385, 'value_error': None}}},
      'EnsoSeasonality': {'diagnostic': {'CNRM-CM5_r7i1p1': {'value': 2.044532041864374,
         'value_error': 0.3279143360881394},
        'ERA-Interim': {'value': 2.0466846866656914,
         'value_error': 0.6513411033995022},
        'HadISST': {'value': 1.6639865947361325,
         'value_error': 0.2712772451657809},
        'Tropflux': {'value': 2.0532132553583624,
         'value_error': 0.6534187683977347}},
       'metric': {'ERA-Interim': {'value': 0.10517715871633915,
         'value_error': 47.81246392260595},
        'HadISST': {'value': 22.869501973877778,
         'value_error': 39.73778023714458},
        'Tropflux': {'value': 0.42281109725610216,
         'value_error': 47.6604354110668}}},
      'EnsoSstDiversity_2': {'diagnostic': {'CNRM-CM5_r7i1p1': {'value': 33.0,
         'value_error': None},
        'ERA-Interim': {'value': 33.25, 'value_error': None},
        'HadISST': {'value': 49.0, 'value_error': None},
        'Tropflux': {'value': 32.0, 'value_error': None}},
       'metric': {'ERA-Interim': {'value': 0.7518796992481203,
         'value_error': None},
        'HadISST': {'value': 32.6530612244898, 'value_error': None},
        'Tropflux': {'value': 3.125, 'value_error': None}}},
      'EnsoSstLonRmse': {'diagnostic': {'CNRM-CM5_r7i1p1': {'value': None,
         'value_error': None},
        'ERA-Interim': {'value': None, 'value_error': None},
        'HadISST': {'value': None, 'value_error': None},
        'Tropflux': {'value': None, 'value_error': None}},
       'metric': {'ERA-Interim': {'value': 0.0678180470672231,
         'value_error': None},
        'HadISST': {'value': 0.09609661240550325, 'value_error': None},
        'Tropflux': {'value': 0.06719078483753517, 'value_error': None}}},
      'EnsoSstSkew': {'diagnostic': {'CNRM-CM5_r7i1p1': {'value': -0.026239413714572456,
         'value_error': -0.0021008344375211853},
        'ERA-Interim': {'value': 0.39098111106809963,
         'value_error': 0.061819541653923164},
        'HadISST': {'value': 0.38989908235027515,
         'value_error': 0.03172953733021198},
        'Tropflux': {'value': 0.39744741059612115,
         'value_error': 0.06284195338099416}},
       'metric': {'ERA-Interim': {'value': 106.71117170926505,
         'value_error': -1.5984531863249156},
        'HadISST': {'value': 106.7297962222439,
         'value_error': -1.0864779718305655},
        'Tropflux': {'value': 106.60198381346015,
         'value_error': -1.5724470360551377}}},
      'EnsoSstTsRmse': {'diagnostic': {'CNRM-CM5_r7i1p1': {'value': None,
         'value_error': None},
        'ERA-Interim': {'value': None, 'value_error': None},
        'HadISST': {'value': None, 'value_error': None},
        'Tropflux': {'value': None, 'value_error': None}},
       'metric': {'ERA-Interim': {'value': 0.2451488305613013,
         'value_error': None},
        'HadISST': {'value': 0.2463469447633226, 'value_error': None},
        'Tropflux': {'value': 0.24671262701864552, 'value_error': None}}},
      'SeasonalPrLatRmse': {'diagnostic': {'CNRM-CM5_r7i1p1': {'value': None,
         'value_error': None},
        'ERA-Interim': {'value': None, 'value_error': None},
        'GPCPv2.3': {'value': None, 'value_error': None}},
       'metric': {'ERA-Interim': {'value': 0.9205999530675656,
         'value_error': None},
        'GPCPv2.3': {'value': 0.9867261892960254, 'value_error': None}}},
      'SeasonalPrLonRmse': {'diagnostic': {'CNRM-CM5_r7i1p1': {'value': None,
         'value_error': None},
        'ERA-Interim': {'value': None, 'value_error': None},
        'GPCPv2.3': {'value': None, 'value_error': None}},
       'metric': {'ERA-Interim': {'value': 0.2809559730449365,
         'value_error': None},
        'GPCPv2.3': {'value': 0.32191978697368984, 'value_error': None}}},
      'SeasonalSstLonRmse': {'diagnostic': {'CNRM-CM5_r7i1p1': {'value': None,
         'value_error': None},
        'ERA-Interim': {'value': None, 'value_error': None},
        'HadISST': {'value': None, 'value_error': None},
        'Tropflux': {'value': None, 'value_error': None}},
       'metric': {'ERA-Interim': {'value': 0.19872399870334453,
         'value_error': None},
        'HadISST': {'value': 0.20556325575385948, 'value_error': None},
        'Tropflux': {'value': 0.19497069944820736, 'value_error': None}}},
      'SeasonalTauxLonRmse': {'diagnostic': {'CNRM-CM5_r7i1p1': {'value': None,
         'value_error': None},
        'ERA-Interim': {'value': None, 'value_error': None},
        'Tropflux': {'value': None, 'value_error': None}},
       'metric': {'ERA-Interim': {'value': 2.4476001410905264,
         'value_error': None},
        'Tropflux': {'value': 2.2229732111987044, 'value_error': None}}}}},
    'r8i1p1': {'metadata': {'description_of_the_collection': 'Describe which science question this collection is about',
      'metrics': {'BiasPrLatRmse': {'diagnostic': {'CNRM-CM5_r8i1p1': {'keyerror': None,
          'name': 'CNRM-CM5_r8i1p1',
          'nyears': 156,
          'time_period': ['1850-1-16 12:0:0.0', '2005-12-16 12:0:0.0']},
         'ERA-Interim': {'name': 'ERA-Interim',
          'nyears': 40,
          'time_period': ['1979-1-16 12:0:0.0', '2019-3-16 12:0:0.0']},
         'GPCPv2.3': {'name': 'GPCPv2.3',
          'nyears': 41,
          'time_period': ['1979-1-1 0:0:0.0', '2019-7-1 0:0:0.0']},
         'method': 'Meridional root mean square error of nino3_LatExt pr, time series are linearly detrended, observations and model regridded to generic_1x1deg',
         'name': 'pr Meridional RMSE',
         'ref': 'Using CDAT regridding and rms (uncentered and biased) calculation',
         'time_frequency': 'monthly',
         'units': 'mm/day'},
        'metric': {'datasets': "CNRM-CM5_r8i1p1; ERA-Interim's pr & GPCPv2.3's precip; 's ",
         'method': 'The metric is the statistical value between the model and the observations',
         'name': 'BiasPrLatRmse',
         'units': 'mm/day'}},
       'BiasPrLonRmse': {'diagnostic': {'CNRM-CM5_r8i1p1': {'keyerror': None,
          'name': 'CNRM-CM5_r8i1p1',
          'nyears': 156,
          'time_period': ['1850-1-16 12:0:0.0', '2005-12-16 12:0:0.0']},
         'ERA-Interim': {'name': 'ERA-Interim',
          'nyears': 40,
          'time_period': ['1979-1-16 12:0:0.0', '2019-3-16 12:0:0.0']},
         'GPCPv2.3': {'name': 'GPCPv2.3',
          'nyears': 41,
          'time_period': ['1979-1-1 0:0:0.0', '2019-7-1 0:0:0.0']},
         'method': 'Zonal root mean square error of equatorial_pacific pr, time series are linearly detrended, observations and model regridded to generic_1x1deg',
         'name': 'pr Zonal RMSE',
         'ref': 'Using CDAT regridding and rms (uncentered and biased) calculation',
         'time_frequency': 'monthly',
         'units': 'mm/day'},
        'metric': {'datasets': "CNRM-CM5_r8i1p1; ERA-Interim's pr & GPCPv2.3's precip; 's ",
         'method': 'The metric is the statistical value between the model and the observations',
         'name': 'BiasPrLonRmse',
         'units': 'mm/day'}},
       'BiasSstLonRmse': {'diagnostic': {'CNRM-CM5_r8i1p1': {'keyerror': None,
          'name': 'CNRM-CM5_r8i1p1',
          'nyears': 156,
          'time_period': ['1850-1-16 12:0:0.0', '2005-12-16 12:0:0.0']},
         'ERA-Interim': {'name': 'ERA-Interim',
          'nyears': 40,
          'time_period': ['1979-1-16 12:0:0.0', '2019-3-16 12:0:0.0']},
         'HadISST': {'name': 'HadISST',
          'nyears': 151,
          'time_period': ['1870-1-16 11:59:59.5', '2020-10-16 12:0:0.0']},
         'Tropflux': {'name': 'Tropflux',
          'nyears': 40,
          'time_period': ['1979-1-15 0:0:0.0', '2018-12-15 12:0:0.0']},
         'method': 'Zonal root mean square error of equatorial_pacific sst, time series are linearly detrended, observations and model regridded to generic_1x1deg',
         'name': 'sst Zonal RMSE',
         'ref': 'Using CDAT regridding and rms (uncentered and biased) calculation',
         'time_frequency': 'monthly',
         'units': 'C'},
        'metric': {'datasets': "CNRM-CM5_r8i1p1; ERA-Interim's ts & HadISST's sst & Tropflux's sst; 's ",
         'method': 'The metric is the statistical value between the model and the observations',
         'name': 'BiasSstLonRmse',
         'units': 'C'}},
       'BiasTauxLonRmse': {'diagnostic': {'CNRM-CM5_r8i1p1': {'keyerror': None,
          'name': 'CNRM-CM5_r8i1p1',
          'nyears': 156,
          'time_period': ['1850-1-16 12:0:0.0', '2005-12-16 12:0:0.0']},
         'ERA-Interim': {'name': 'ERA-Interim',
          'nyears': 40,
          'time_period': ['1979-1-16 12:0:0.0', '2019-3-16 12:0:0.0']},
         'Tropflux': {'name': 'Tropflux',
          'nyears': 40,
          'time_period': ['1979-1-15 0:0:0.0', '2018-12-15 12:0:0.0']},
         'method': 'Zonal root mean square error of equatorial_pacific taux, time series are linearly detrended, observations and model regridded to generic_1x1deg',
         'name': 'taux Zonal RMSE',
         'ref': 'Using CDAT regridding and rms (uncentered and biased) calculation',
         'time_frequency': 'monthly',
         'units': '1e-3 N/m2'},
        'metric': {'datasets': "CNRM-CM5_r8i1p1; ERA-Interim's tauu & Tropflux's taux; 's ",
         'method': 'The metric is the statistical value between the model and the observations',
         'name': 'BiasTauxLonRmse',
         'units': '1e-3 N/m2'}},
       'EnsoAmpl': {'diagnostic': {'CNRM-CM5_r8i1p1': {'keyerror': None,
          'name': 'CNRM-CM5_r8i1p1',
          'nyears': 156,
          'time_period': ['1850-1-16 12:0:0.0', '2005-12-16 12:0:0.0']},
         'ERA-Interim': {'keyerror': None,
          'name': 'ERA-Interim',
          'nyears': 40,
          'time_period': ['1979-1-16 12:0:0.0', '2019-3-16 12:0:0.0']},
         'HadISST': {'keyerror': None,
          'name': 'HadISST',
          'nyears': 151,
          'time_period': ['1870-1-16 11:59:59.5', '2020-10-16 12:0:0.0']},
         'Tropflux': {'keyerror': None,
          'name': 'Tropflux',
          'nyears': 40,
          'time_period': ['1979-1-15 0:0:0.0', '2018-12-15 12:0:0.0']},
         'method': 'Standard deviation of nino3.4 sstA, time series are linearly detrended',
         'name': 'ENSO amplitude',
         'ref': 'Using CDAT regression calculation',
         'time_frequency': 'monthly',
         'units': 'C'},
        'metric': {'datasets': "CNRM-CM5_r8i1p1; ERA-Interim's ts & HadISST's sst & Tropflux's sst; 's ",
         'method': 'The metric is the absolute value of the relative difference between model and observations values (M = 100 * abs[[model-obs] / obs])',
         'name': 'EnsoAmpl',
         'units': '%'}},
       'EnsoDuration': {'diagnostic': {'CNRM-CM5_r8i1p1': {'keyerror': None,
          'name': 'CNRM-CM5_r8i1p1',
          'nyears': 156,
          'time_period': ['1850-1-16 12:0:0.0', '2005-12-16 12:0:0.0']},
         'ERA-Interim': {'keyerror': None,
          'name': 'ERA-Interim',
          'nyears': 40,
          'time_period': ['1979-1-16 12:0:0.0', '2019-3-16 12:0:0.0']},
         'HadISST': {'keyerror': None,
          'name': 'HadISST',
          'nyears': 151,
          'time_period': ['1870-1-16 11:59:59.5', '2020-10-16 12:0:0.0']},
         'Tropflux': {'keyerror': None,
          'name': 'Tropflux',
          'nyears': 40,
          'time_period': ['1979-1-15 0:0:0.0', '2018-12-15 12:0:0.0']},
         'method': 'nino3.4 SSTA during DEC regressed against nino3.4 SSTA during 6 years (centered on ENSO), the duration is the number of consecutive months during which the regression is above 0.25, time series are linearly detrended, smoothing using a triangle shaped window of 5 points',
         'name': 'ENSO Duration based on life cyle SSTA pattern',
         'ref': 'Using CDAT',
         'time_frequency': 'monthly',
         'units': 'months'},
        'metric': {'datasets': "CNRM-CM5_r8i1p1; ERA-Interim's ts & HadISST's sst & Tropflux's sst; 's ",
         'method': 'The metric is the absolute value of the relative difference between model and observations values (M = 100 * abs[[model-obs] / obs])',
         'name': 'EnsoDuration',
         'units': '%'}},
       'EnsoSeasonality': {'diagnostic': {'CNRM-CM5_r8i1p1': {'keyerror': None,
          'name': 'CNRM-CM5_r8i1p1',
          'nyears': 156,
          'time_period': ['1850-1-16 12:0:0.0', '2005-12-16 12:0:0.0']},
         'ERA-Interim': {'keyerror': None,
          'name': 'ERA-Interim',
          'nyears': 40,
          'time_period': ['1979-1-16 12:0:0.0', '2019-3-16 12:0:0.0']},
         'HadISST': {'keyerror': None,
          'name': 'HadISST',
          'nyears': 151,
          'time_period': ['1870-1-16 11:59:59.5', '2020-10-16 12:0:0.0']},
         'Tropflux': {'keyerror': None,
          'name': 'Tropflux',
          'nyears': 40,
          'time_period': ['1979-1-15 0:0:0.0', '2018-12-15 12:0:0.0']},
         'method': 'Ratio between NDJ and MAM standard deviation nino3.4 sstA, time series are linearly detrended',
         'name': 'ENSO seasonality',
         'ref': 'Using CDAT std dev calculation',
         'time_frequency': 'monthly',
         'units': 'C/C'},
        'metric': {'datasets': "CNRM-CM5_r8i1p1; ERA-Interim's ts & HadISST's sst & Tropflux's sst; 's ",
         'method': 'The metric is the absolute value of the relative difference between model and observations values (M = 100 * abs[[model-obs] / obs])',
         'name': 'EnsoSeasonality',
         'units': '%'}},
       'EnsoSstDiversity_2': {'diagnostic': {'CNRM-CM5_r8i1p1': {'keyerror': None,
          'name': 'CNRM-CM5_r8i1p1',
          'nyears': 156,
          'time_period': ['1850-1-16 12:0:0.0', '2005-12-16 12:0:0.0']},
         'ERA-Interim': {'keyerror': None,
          'name': 'ERA-Interim',
          'nyears': 40,
          'time_period': ['1979-1-16 12:0:0.0', '2019-3-16 12:0:0.0']},
         'HadISST': {'keyerror': None,
          'name': 'HadISST',
          'nyears': 151,
          'time_period': ['1870-1-16 11:59:59.5', '2020-10-16 12:0:0.0']},
         'Tropflux': {'keyerror': None,
          'name': 'Tropflux',
          'nyears': 40,
          'time_period': ['1979-1-15 0:0:0.0', '2018-12-15 12:0:0.0']},
         'method': 'Nino (Nina) events = nino3.4 sstA > 0.75 (< -0.75) during DEC, zonal SSTA (meridional averaged [-5.0 ; 5.0]), the zonal SSTA maximum (minimum) is located for each event, the diversity is the interquartile range (IQR = Q3 - Q1), time series are linearly detrended, smoothing using a triangle shaped window of 5 points',
         'name': 'ENSO Diversity (interquartile range)',
         'ref': 'Using CDAT regridding',
         'time_frequency': 'monthly',
         'units': 'long'},
        'metric': {'datasets': "CNRM-CM5_r8i1p1; ERA-Interim's ts & HadISST's sst & Tropflux's sst; 's ",
         'method': 'The metric is the absolute value of the relative difference between model and observations values (M = 100 * abs[[model-obs] / obs])',
         'name': 'EnsoSstDiversity',
         'units': '%'}},
       'EnsoSstLonRmse': {'diagnostic': {'CNRM-CM5_r8i1p1': {'keyerror': None,
          'name': 'CNRM-CM5_r8i1p1',
          'nyears': 156,
          'time_period': ['1850-1-16 12:0:0.0', '2005-12-16 12:0:0.0']},
         'ERA-Interim': {'name': 'ERA-Interim',
          'nyears': 40,
          'time_period': ['1979-1-16 12:0:0.0', '2019-3-16 12:0:0.0']},
         'HadISST': {'name': 'HadISST',
          'nyears': 151,
          'time_period': ['1870-1-16 11:59:59.5', '2020-10-16 12:0:0.0']},
         'Tropflux': {'name': 'Tropflux',
          'nyears': 40,
          'time_period': ['1979-1-15 0:0:0.0', '2018-12-15 12:0:0.0']},
         'method': 'nino3.4 SSTA during DEC regressed against equatorial_pacific SSTA, time series are linearly detrended, smoothing using a triangle shaped window of 5 points, observations and model regridded to generic_1x1deg',
         'name': 'ENSO Zonal SSTA pattern',
         'ref': 'Using CDAT regridding and rms (uncentered and biased) calculation',
         'time_frequency': 'monthly',
         'units': 'C/C'},
        'metric': {'datasets': "CNRM-CM5_r8i1p1; ERA-Interim's ts & HadISST's sst & Tropflux's sst; 's ",
         'method': 'The metric is the statistical value between the model and the observations',
         'name': 'EnsoSstLonRmse',
         'units': 'C/C'}},
       'EnsoSstSkew': {'diagnostic': {'CNRM-CM5_r8i1p1': {'keyerror': None,
          'name': 'CNRM-CM5_r8i1p1',
          'nyears': 156,
          'time_period': ['1850-1-16 12:0:0.0', '2005-12-16 12:0:0.0']},
         'ERA-Interim': {'keyerror': None,
          'name': 'ERA-Interim',
          'nyears': 40,
          'time_period': ['1979-1-16 12:0:0.0', '2019-3-16 12:0:0.0']},
         'HadISST': {'keyerror': None,
          'name': 'HadISST',
          'nyears': 151,
          'time_period': ['1870-1-16 11:59:59.5', '2020-10-16 12:0:0.0']},
         'Tropflux': {'keyerror': None,
          'name': 'Tropflux',
          'nyears': 40,
          'time_period': ['1979-1-15 0:0:0.0', '2018-12-15 12:0:0.0']},
         'method': 'Standard deviation of nino3.4 sstA, time series are linearly detrended',
         'name': 'ENSO skewness',
         'ref': 'Using CDAT regression calculation',
         'time_frequency': 'monthly',
         'units': 'C'},
        'metric': {'datasets': "CNRM-CM5_r8i1p1; ERA-Interim's ts & HadISST's sst & Tropflux's sst; 's ",
         'method': 'The metric is the absolute value of the relative difference between model and observations values (M = 100 * abs[[model-obs] / obs])',
         'name': 'EnsoSstSkew',
         'units': '%'}},
       'EnsoSstTsRmse': {'diagnostic': {'CNRM-CM5_r8i1p1': {'keyerror': None,
          'name': 'CNRM-CM5_r8i1p1',
          'nyears': 156,
          'time_period': ['1850-1-16 12:0:0.0', '2005-12-16 12:0:0.0']},
         'ERA-Interim': {'name': 'ERA-Interim',
          'nyears': 40,
          'time_period': ['1979-1-16 12:0:0.0', '2019-3-16 12:0:0.0']},
         'HadISST': {'name': 'HadISST',
          'nyears': 151,
          'time_period': ['1870-1-16 11:59:59.5', '2020-10-16 12:0:0.0']},
         'Tropflux': {'name': 'Tropflux',
          'nyears': 40,
          'time_period': ['1979-1-15 0:0:0.0', '2018-12-15 12:0:0.0']},
         'method': 'nino3.4 SSTA during DEC regressed against nino3.4 SSTA during 6 years (centered on ENSO), time series are linearly detrended, smoothing using a triangle shaped window of 5 points',
         'name': 'ENSO life cyle SSTA pattern',
         'ref': 'Using CDAT regridding and rms (uncentered and biased) calculation',
         'time_frequency': 'monthly',
         'units': 'C/C'},
        'metric': {'datasets': "CNRM-CM5_r8i1p1; ERA-Interim's ts & HadISST's sst & Tropflux's sst; 's ",
         'method': 'The metric is the statistical value between the model and the observations',
         'name': 'EnsoSstTsRmse',
         'units': 'C/C'}},
       'SeasonalPrLatRmse': {'diagnostic': {'CNRM-CM5_r8i1p1': {'keyerror': None,
          'name': 'CNRM-CM5_r8i1p1',
          'nyears': 156,
          'time_period': ['1850-1-16 12:0:0.0', '2005-12-16 12:0:0.0']},
         'ERA-Interim': {'name': 'ERA-Interim',
          'nyears': 40,
          'time_period': ['1979-1-16 12:0:0.0', '2019-3-16 12:0:0.0']},
         'GPCPv2.3': {'name': 'GPCPv2.3',
          'nyears': 41,
          'time_period': ['1979-1-1 0:0:0.0', '2019-7-1 0:0:0.0']},
         'method': 'Meridional root mean square error of nino3_LatExt climatological pr STD, time series are linearly detrended, observations and model regridded to generic_1x1deg',
         'name': 'pr meridional seasonality RMSE',
         'ref': 'Using CDAT regridding and rms (uncentered and biased) calculation',
         'time_frequency': 'monthly',
         'units': 'mm/day'},
        'metric': {'datasets': "CNRM-CM5_r8i1p1; ERA-Interim's pr & GPCPv2.3's precip; 's ",
         'method': 'The metric is the statistical value between the model and the observations',
         'name': 'SeasonalPrLatRmse',
         'units': 'mm/day'}},
       'SeasonalPrLonRmse': {'diagnostic': {'CNRM-CM5_r8i1p1': {'keyerror': None,
          'name': 'CNRM-CM5_r8i1p1',
          'nyears': 156,
          'time_period': ['1850-1-16 12:0:0.0', '2005-12-16 12:0:0.0']},
         'ERA-Interim': {'name': 'ERA-Interim',
          'nyears': 40,
          'time_period': ['1979-1-16 12:0:0.0', '2019-3-16 12:0:0.0']},
         'GPCPv2.3': {'name': 'GPCPv2.3',
          'nyears': 41,
          'time_period': ['1979-1-1 0:0:0.0', '2019-7-1 0:0:0.0']},
         'method': 'Zonal root mean square error of equatorial_pacific climatological pr STD, time series are linearly detrended, observations and model regridded to generic_1x1deg',
         'name': 'pr zonal seasonality RMSE',
         'ref': 'Using CDAT regridding and rms (uncentered and biased) calculation',
         'time_frequency': 'monthly',
         'units': 'mm/day'},
        'metric': {'datasets': "CNRM-CM5_r8i1p1; ERA-Interim's pr & GPCPv2.3's precip; 's ",
         'method': 'The metric is the statistical value between the model and the observations',
         'name': 'SeasonalPrLonRmse',
         'units': 'mm/day'}},
       'SeasonalSstLonRmse': {'diagnostic': {'CNRM-CM5_r8i1p1': {'keyerror': None,
          'name': 'CNRM-CM5_r8i1p1',
          'nyears': 156,
          'time_period': ['1850-1-16 12:0:0.0', '2005-12-16 12:0:0.0']},
         'ERA-Interim': {'name': 'ERA-Interim',
          'nyears': 40,
          'time_period': ['1979-1-16 12:0:0.0', '2019-3-16 12:0:0.0']},
         'HadISST': {'name': 'HadISST',
          'nyears': 151,
          'time_period': ['1870-1-16 11:59:59.5', '2020-10-16 12:0:0.0']},
         'Tropflux': {'name': 'Tropflux',
          'nyears': 40,
          'time_period': ['1979-1-15 0:0:0.0', '2018-12-15 12:0:0.0']},
         'method': 'Zonal root mean square error of equatorial_pacific climatological sst STD, time series are linearly detrended, observations and model regridded to generic_1x1deg',
         'name': 'sst zonal seasonality RMSE',
         'ref': 'Using CDAT regridding and rms (uncentered and biased) calculation',
         'time_frequency': 'monthly',
         'units': 'C'},
        'metric': {'datasets': "CNRM-CM5_r8i1p1; ERA-Interim's ts & HadISST's sst & Tropflux's sst; 's ",
         'method': 'The metric is the statistical value between the model and the observations',
         'name': 'SeasonalSstLonRmse',
         'units': 'C'}},
       'SeasonalTauxLonRmse': {'diagnostic': {'CNRM-CM5_r8i1p1': {'keyerror': None,
          'name': 'CNRM-CM5_r8i1p1',
          'nyears': 156,
          'time_period': ['1850-1-16 12:0:0.0', '2005-12-16 12:0:0.0']},
         'ERA-Interim': {'name': 'ERA-Interim',
          'nyears': 40,
          'time_period': ['1979-1-16 12:0:0.0', '2019-3-16 12:0:0.0']},
         'Tropflux': {'name': 'Tropflux',
          'nyears': 40,
          'time_period': ['1979-1-15 0:0:0.0', '2018-12-15 12:0:0.0']},
         'method': 'Zonal root mean square error of equatorial_pacific climatological taux STD, time series are linearly detrended, observations and model regridded to generic_1x1deg',
         'name': 'taux zonal seasonality RMSE',
         'ref': 'Using CDAT regridding and rms (uncentered and biased) calculation',
         'time_frequency': 'monthly',
         'units': '1e-3 N/m2'},
        'metric': {'datasets': "CNRM-CM5_r8i1p1; ERA-Interim's tauu & Tropflux's taux; 's ",
         'method': 'The metric is the statistical value between the model and the observations',
         'name': 'SeasonalTauxLonRmse',
         'units': '1e-3 N/m2'}}},
      'name': 'Metrics Collection for ENSO performance'},
     'value': {'BiasPrLatRmse': {'diagnostic': {'CNRM-CM5_r8i1p1': {'value': None,
         'value_error': None},
        'ERA-Interim': {'value': None, 'value_error': None},
        'GPCPv2.3': {'value': None, 'value_error': None}},
       'metric': {'ERA-Interim': {'value': 1.5791593840744211,
         'value_error': None},
        'GPCPv2.3': {'value': 1.7802071390271414, 'value_error': None}}},
      'BiasPrLonRmse': {'diagnostic': {'CNRM-CM5_r8i1p1': {'value': None,
         'value_error': None},
        'ERA-Interim': {'value': None, 'value_error': None},
        'GPCPv2.3': {'value': None, 'value_error': None}},
       'metric': {'ERA-Interim': {'value': 0.9730322684966817,
         'value_error': None},
        'GPCPv2.3': {'value': 0.5225638385489614, 'value_error': None}}},
      'BiasSstLonRmse': {'diagnostic': {'CNRM-CM5_r8i1p1': {'value': None,
         'value_error': None},
        'ERA-Interim': {'value': None, 'value_error': None},
        'HadISST': {'value': None, 'value_error': None},
        'Tropflux': {'value': None, 'value_error': None}},
       'metric': {'ERA-Interim': {'value': 0.9360606133488433,
         'value_error': None},
        'HadISST': {'value': 0.7956340906512755, 'value_error': None},
        'Tropflux': {'value': 0.9793962087164375, 'value_error': None}}},
      'BiasTauxLonRmse': {'diagnostic': {'CNRM-CM5_r8i1p1': {'value': None,
         'value_error': None},
        'ERA-Interim': {'value': None, 'value_error': None},
        'Tropflux': {'value': None, 'value_error': None}},
       'metric': {'ERA-Interim': {'value': 8.986529906939293,
         'value_error': None},
        'Tropflux': {'value': 8.695506711614549, 'value_error': None}}},
      'EnsoAmpl': {'diagnostic': {'CNRM-CM5_r8i1p1': {'value': 0.8230192970802105,
         'value_error': 0.06589428029370732},
        'ERA-Interim': {'value': 0.8989844997845644,
         'value_error': 0.14214193002531866},
        'HadISST': {'value': 0.7665787872085695,
         'value_error': 0.06238329697691264},
        'Tropflux': {'value': 0.9039789553693535,
         'value_error': 0.14293162279134272}},
       'metric': {'ERA-Interim': {'value': 8.450112624028385,
         'value_error': 21.8051654052873},
        'HadISST': {'value': 7.362649581938498,
         'value_error': 17.33293994587654},
        'Tropflux': {'value': 8.955922901552942,
         'value_error': 21.684692545284502}}},
      'EnsoDuration': {'diagnostic': {'CNRM-CM5_r8i1p1': {'value': 11.0,
         'value_error': None},
        'ERA-Interim': {'value': 13.0, 'value_error': None},
        'HadISST': {'value': 13.0, 'value_error': None},
        'Tropflux': {'value': 13.0, 'value_error': None}},
       'metric': {'ERA-Interim': {'value': 15.384615384615385,
         'value_error': None},
        'HadISST': {'value': 15.384615384615385, 'value_error': None},
        'Tropflux': {'value': 15.384615384615385, 'value_error': None}}},
      'EnsoSeasonality': {'diagnostic': {'CNRM-CM5_r8i1p1': {'value': 2.1128914982028633,
         'value_error': 0.33887823652187443},
        'ERA-Interim': {'value': 2.0466846866656914,
         'value_error': 0.6513411033995022},
        'HadISST': {'value': 1.6639865947361325,
         'value_error': 0.2712772451657809},
        'Tropflux': {'value': 2.0532132553583624,
         'value_error': 0.6534187683977347}},
       'metric': {'ERA-Interim': {'value': 3.2348320172869998,
         'value_error': 49.411085990163556},
        'HadISST': {'value': 26.97767547447797,
         'value_error': 41.06642317229392},
        'Tropflux': {'value': 2.9065779060580224,
         'value_error': 49.253974366115536}}},
      'EnsoSstDiversity_2': {'diagnostic': {'CNRM-CM5_r8i1p1': {'value': 35.5,
         'value_error': None},
        'ERA-Interim': {'value': 33.25, 'value_error': None},
        'HadISST': {'value': 49.0, 'value_error': None},
        'Tropflux': {'value': 32.0, 'value_error': None}},
       'metric': {'ERA-Interim': {'value': 6.7669172932330826,
         'value_error': None},
        'HadISST': {'value': 27.55102040816326, 'value_error': None},
        'Tropflux': {'value': 10.9375, 'value_error': None}}},
      'EnsoSstLonRmse': {'diagnostic': {'CNRM-CM5_r8i1p1': {'value': None,
         'value_error': None},
        'ERA-Interim': {'value': None, 'value_error': None},
        'HadISST': {'value': None, 'value_error': None},
        'Tropflux': {'value': None, 'value_error': None}},
       'metric': {'ERA-Interim': {'value': 0.0774587997093171,
         'value_error': None},
        'HadISST': {'value': 0.09885745000602252, 'value_error': None},
        'Tropflux': {'value': 0.07602267935898231, 'value_error': None}}},
      'EnsoSstSkew': {'diagnostic': {'CNRM-CM5_r8i1p1': {'value': 0.06824905862819845,
         'value_error': 0.005464297878534285},
        'ERA-Interim': {'value': 0.39098111106809963,
         'value_error': 0.061819541653923164},
        'HadISST': {'value': 0.38989908235027515,
         'value_error': 0.03172953733021198},
        'Tropflux': {'value': 0.39744741059612115,
         'value_error': 0.06284195338099416}},
       'metric': {'ERA-Interim': {'value': 82.5441545138197,
         'value_error': 4.1575976664194085},
        'HadISST': {'value': 82.49571191170814,
         'value_error': 2.8259434301510167},
        'Tropflux': {'value': 82.82815366042178,
         'value_error': 4.089955329065271}}},
      'EnsoSstTsRmse': {'diagnostic': {'CNRM-CM5_r8i1p1': {'value': None,
         'value_error': None},
        'ERA-Interim': {'value': None, 'value_error': None},
        'HadISST': {'value': None, 'value_error': None},
        'Tropflux': {'value': None, 'value_error': None}},
       'metric': {'ERA-Interim': {'value': 0.20450536208574668,
         'value_error': None},
        'HadISST': {'value': 0.2134818198537224, 'value_error': None},
        'Tropflux': {'value': 0.20717291432001853, 'value_error': None}}},
      'SeasonalPrLatRmse': {'diagnostic': {'CNRM-CM5_r8i1p1': {'value': None,
         'value_error': None},
        'ERA-Interim': {'value': None, 'value_error': None},
        'GPCPv2.3': {'value': None, 'value_error': None}},
       'metric': {'ERA-Interim': {'value': 0.890662319729005,
         'value_error': None},
        'GPCPv2.3': {'value': 0.9520207987999401, 'value_error': None}}},
      'SeasonalPrLonRmse': {'diagnostic': {'CNRM-CM5_r8i1p1': {'value': None,
         'value_error': None},
        'ERA-Interim': {'value': None, 'value_error': None},
        'GPCPv2.3': {'value': None, 'value_error': None}},
       'metric': {'ERA-Interim': {'value': 0.31871218047616756,
         'value_error': None},
        'GPCPv2.3': {'value': 0.3547534728451012, 'value_error': None}}},
      'SeasonalSstLonRmse': {'diagnostic': {'CNRM-CM5_r8i1p1': {'value': None,
         'value_error': None},
        'ERA-Interim': {'value': None, 'value_error': None},
        'HadISST': {'value': None, 'value_error': None},
        'Tropflux': {'value': None, 'value_error': None}},
       'metric': {'ERA-Interim': {'value': 0.22180580199790714,
         'value_error': None},
        'HadISST': {'value': 0.22862159759000478, 'value_error': None},
        'Tropflux': {'value': 0.21756443122945984, 'value_error': None}}},
      'SeasonalTauxLonRmse': {'diagnostic': {'CNRM-CM5_r8i1p1': {'value': None,
         'value_error': None},
        'ERA-Interim': {'value': None, 'value_error': None},
        'Tropflux': {'value': None, 'value_error': None}},
       'metric': {'ERA-Interim': {'value': 2.4027309712696185,
         'value_error': None},
        'Tropflux': {'value': 2.1884989606386216, 'value_error': None}}}}},
    'r9i1p1': {'metadata': {'description_of_the_collection': 'Describe which science question this collection is about',
      'metrics': {'BiasPrLatRmse': {'diagnostic': {'CNRM-CM5_r9i1p1': {'keyerror': None,
          'name': 'CNRM-CM5_r9i1p1',
          'nyears': 156,
          'time_period': ['1850-1-16 12:0:0.0', '2005-12-16 12:0:0.0']},
         'ERA-Interim': {'name': 'ERA-Interim',
          'nyears': 40,
          'time_period': ['1979-1-16 12:0:0.0', '2019-3-16 12:0:0.0']},
         'GPCPv2.3': {'name': 'GPCPv2.3',
          'nyears': 41,
          'time_period': ['1979-1-1 0:0:0.0', '2019-7-1 0:0:0.0']},
         'method': 'Meridional root mean square error of nino3_LatExt pr, time series are linearly detrended, observations and model regridded to generic_1x1deg',
         'name': 'pr Meridional RMSE',
         'ref': 'Using CDAT regridding and rms (uncentered and biased) calculation',
         'time_frequency': 'monthly',
         'units': 'mm/day'},
        'metric': {'datasets': "CNRM-CM5_r9i1p1; ERA-Interim's pr & GPCPv2.3's precip; 's ",
         'method': 'The metric is the statistical value between the model and the observations',
         'name': 'BiasPrLatRmse',
         'units': 'mm/day'}},
       'BiasPrLonRmse': {'diagnostic': {'CNRM-CM5_r9i1p1': {'keyerror': None,
          'name': 'CNRM-CM5_r9i1p1',
          'nyears': 156,
          'time_period': ['1850-1-16 12:0:0.0', '2005-12-16 12:0:0.0']},
         'ERA-Interim': {'name': 'ERA-Interim',
          'nyears': 40,
          'time_period': ['1979-1-16 12:0:0.0', '2019-3-16 12:0:0.0']},
         'GPCPv2.3': {'name': 'GPCPv2.3',
          'nyears': 41,
          'time_period': ['1979-1-1 0:0:0.0', '2019-7-1 0:0:0.0']},
         'method': 'Zonal root mean square error of equatorial_pacific pr, time series are linearly detrended, observations and model regridded to generic_1x1deg',
         'name': 'pr Zonal RMSE',
         'ref': 'Using CDAT regridding and rms (uncentered and biased) calculation',
         'time_frequency': 'monthly',
         'units': 'mm/day'},
        'metric': {'datasets': "CNRM-CM5_r9i1p1; ERA-Interim's pr & GPCPv2.3's precip; 's ",
         'method': 'The metric is the statistical value between the model and the observations',
         'name': 'BiasPrLonRmse',
         'units': 'mm/day'}},
       'BiasSstLonRmse': {'diagnostic': {'CNRM-CM5_r9i1p1': {'keyerror': None,
          'name': 'CNRM-CM5_r9i1p1',
          'nyears': 156,
          'time_period': ['1850-1-16 12:0:0.0', '2005-12-16 12:0:0.0']},
         'ERA-Interim': {'name': 'ERA-Interim',
          'nyears': 40,
          'time_period': ['1979-1-16 12:0:0.0', '2019-3-16 12:0:0.0']},
         'HadISST': {'name': 'HadISST',
          'nyears': 151,
          'time_period': ['1870-1-16 11:59:59.5', '2020-10-16 12:0:0.0']},
         'Tropflux': {'name': 'Tropflux',
          'nyears': 40,
          'time_period': ['1979-1-15 0:0:0.0', '2018-12-15 12:0:0.0']},
         'method': 'Zonal root mean square error of equatorial_pacific sst, time series are linearly detrended, observations and model regridded to generic_1x1deg',
         'name': 'sst Zonal RMSE',
         'ref': 'Using CDAT regridding and rms (uncentered and biased) calculation',
         'time_frequency': 'monthly',
         'units': 'C'},
        'metric': {'datasets': "CNRM-CM5_r9i1p1; ERA-Interim's ts & HadISST's sst & Tropflux's sst; 's ",
         'method': 'The metric is the statistical value between the model and the observations',
         'name': 'BiasSstLonRmse',
         'units': 'C'}},
       'BiasTauxLonRmse': {'diagnostic': {'CNRM-CM5_r9i1p1': {'keyerror': None,
          'name': 'CNRM-CM5_r9i1p1',
          'nyears': 156,
          'time_period': ['1850-1-16 12:0:0.0', '2005-12-16 12:0:0.0']},
         'ERA-Interim': {'name': 'ERA-Interim',
          'nyears': 40,
          'time_period': ['1979-1-16 12:0:0.0', '2019-3-16 12:0:0.0']},
         'Tropflux': {'name': 'Tropflux',
          'nyears': 40,
          'time_period': ['1979-1-15 0:0:0.0', '2018-12-15 12:0:0.0']},
         'method': 'Zonal root mean square error of equatorial_pacific taux, time series are linearly detrended, observations and model regridded to generic_1x1deg',
         'name': 'taux Zonal RMSE',
         'ref': 'Using CDAT regridding and rms (uncentered and biased) calculation',
         'time_frequency': 'monthly',
         'units': '1e-3 N/m2'},
        'metric': {'datasets': "CNRM-CM5_r9i1p1; ERA-Interim's tauu & Tropflux's taux; 's ",
         'method': 'The metric is the statistical value between the model and the observations',
         'name': 'BiasTauxLonRmse',
         'units': '1e-3 N/m2'}},
       'EnsoAmpl': {'diagnostic': {'CNRM-CM5_r9i1p1': {'keyerror': None,
          'name': 'CNRM-CM5_r9i1p1',
          'nyears': 156,
          'time_period': ['1850-1-16 12:0:0.0', '2005-12-16 12:0:0.0']},
         'ERA-Interim': {'keyerror': None,
          'name': 'ERA-Interim',
          'nyears': 40,
          'time_period': ['1979-1-16 12:0:0.0', '2019-3-16 12:0:0.0']},
         'HadISST': {'keyerror': None,
          'name': 'HadISST',
          'nyears': 151,
          'time_period': ['1870-1-16 11:59:59.5', '2020-10-16 12:0:0.0']},
         'Tropflux': {'keyerror': None,
          'name': 'Tropflux',
          'nyears': 40,
          'time_period': ['1979-1-15 0:0:0.0', '2018-12-15 12:0:0.0']},
         'method': 'Standard deviation of nino3.4 sstA, time series are linearly detrended',
         'name': 'ENSO amplitude',
         'ref': 'Using CDAT regression calculation',
         'time_frequency': 'monthly',
         'units': 'C'},
        'metric': {'datasets': "CNRM-CM5_r9i1p1; ERA-Interim's ts & HadISST's sst & Tropflux's sst; 's ",
         'method': 'The metric is the absolute value of the relative difference between model and observations values (M = 100 * abs[[model-obs] / obs])',
         'name': 'EnsoAmpl',
         'units': '%'}},
       'EnsoDuration': {'diagnostic': {'CNRM-CM5_r9i1p1': {'keyerror': None,
          'name': 'CNRM-CM5_r9i1p1',
          'nyears': 156,
          'time_period': ['1850-1-16 12:0:0.0', '2005-12-16 12:0:0.0']},
         'ERA-Interim': {'keyerror': None,
          'name': 'ERA-Interim',
          'nyears': 40,
          'time_period': ['1979-1-16 12:0:0.0', '2019-3-16 12:0:0.0']},
         'HadISST': {'keyerror': None,
          'name': 'HadISST',
          'nyears': 151,
          'time_period': ['1870-1-16 11:59:59.5', '2020-10-16 12:0:0.0']},
         'Tropflux': {'keyerror': None,
          'name': 'Tropflux',
          'nyears': 40,
          'time_period': ['1979-1-15 0:0:0.0', '2018-12-15 12:0:0.0']},
         'method': 'nino3.4 SSTA during DEC regressed against nino3.4 SSTA during 6 years (centered on ENSO), the duration is the number of consecutive months during which the regression is above 0.25, time series are linearly detrended, smoothing using a triangle shaped window of 5 points',
         'name': 'ENSO Duration based on life cyle SSTA pattern',
         'ref': 'Using CDAT',
         'time_frequency': 'monthly',
         'units': 'months'},
        'metric': {'datasets': "CNRM-CM5_r9i1p1; ERA-Interim's ts & HadISST's sst & Tropflux's sst; 's ",
         'method': 'The metric is the absolute value of the relative difference between model and observations values (M = 100 * abs[[model-obs] / obs])',
         'name': 'EnsoDuration',
         'units': '%'}},
       'EnsoSeasonality': {'diagnostic': {'CNRM-CM5_r9i1p1': {'keyerror': None,
          'name': 'CNRM-CM5_r9i1p1',
          'nyears': 156,
          'time_period': ['1850-1-16 12:0:0.0', '2005-12-16 12:0:0.0']},
         'ERA-Interim': {'keyerror': None,
          'name': 'ERA-Interim',
          'nyears': 40,
          'time_period': ['1979-1-16 12:0:0.0', '2019-3-16 12:0:0.0']},
         'HadISST': {'keyerror': None,
          'name': 'HadISST',
          'nyears': 151,
          'time_period': ['1870-1-16 11:59:59.5', '2020-10-16 12:0:0.0']},
         'Tropflux': {'keyerror': None,
          'name': 'Tropflux',
          'nyears': 40,
          'time_period': ['1979-1-15 0:0:0.0', '2018-12-15 12:0:0.0']},
         'method': 'Ratio between NDJ and MAM standard deviation nino3.4 sstA, time series are linearly detrended',
         'name': 'ENSO seasonality',
         'ref': 'Using CDAT std dev calculation',
         'time_frequency': 'monthly',
         'units': 'C/C'},
        'metric': {'datasets': "CNRM-CM5_r9i1p1; ERA-Interim's ts & HadISST's sst & Tropflux's sst; 's ",
         'method': 'The metric is the absolute value of the relative difference between model and observations values (M = 100 * abs[[model-obs] / obs])',
         'name': 'EnsoSeasonality',
         'units': '%'}},
       'EnsoSstDiversity_2': {'diagnostic': {'CNRM-CM5_r9i1p1': {'keyerror': None,
          'name': 'CNRM-CM5_r9i1p1',
          'nyears': 156,
          'time_period': ['1850-1-16 12:0:0.0', '2005-12-16 12:0:0.0']},
         'ERA-Interim': {'keyerror': None,
          'name': 'ERA-Interim',
          'nyears': 40,
          'time_period': ['1979-1-16 12:0:0.0', '2019-3-16 12:0:0.0']},
         'HadISST': {'keyerror': None,
          'name': 'HadISST',
          'nyears': 151,
          'time_period': ['1870-1-16 11:59:59.5', '2020-10-16 12:0:0.0']},
         'Tropflux': {'keyerror': None,
          'name': 'Tropflux',
          'nyears': 40,
          'time_period': ['1979-1-15 0:0:0.0', '2018-12-15 12:0:0.0']},
         'method': 'Nino (Nina) events = nino3.4 sstA > 0.75 (< -0.75) during DEC, zonal SSTA (meridional averaged [-5.0 ; 5.0]), the zonal SSTA maximum (minimum) is located for each event, the diversity is the interquartile range (IQR = Q3 - Q1), time series are linearly detrended, smoothing using a triangle shaped window of 5 points',
         'name': 'ENSO Diversity (interquartile range)',
         'ref': 'Using CDAT regridding',
         'time_frequency': 'monthly',
         'units': 'long'},
        'metric': {'datasets': "CNRM-CM5_r9i1p1; ERA-Interim's ts & HadISST's sst & Tropflux's sst; 's ",
         'method': 'The metric is the absolute value of the relative difference between model and observations values (M = 100 * abs[[model-obs] / obs])',
         'name': 'EnsoSstDiversity',
         'units': '%'}},
       'EnsoSstLonRmse': {'diagnostic': {'CNRM-CM5_r9i1p1': {'keyerror': None,
          'name': 'CNRM-CM5_r9i1p1',
          'nyears': 156,
          'time_period': ['1850-1-16 12:0:0.0', '2005-12-16 12:0:0.0']},
         'ERA-Interim': {'name': 'ERA-Interim',
          'nyears': 40,
          'time_period': ['1979-1-16 12:0:0.0', '2019-3-16 12:0:0.0']},
         'HadISST': {'name': 'HadISST',
          'nyears': 151,
          'time_period': ['1870-1-16 11:59:59.5', '2020-10-16 12:0:0.0']},
         'Tropflux': {'name': 'Tropflux',
          'nyears': 40,
          'time_period': ['1979-1-15 0:0:0.0', '2018-12-15 12:0:0.0']},
         'method': 'nino3.4 SSTA during DEC regressed against equatorial_pacific SSTA, time series are linearly detrended, smoothing using a triangle shaped window of 5 points, observations and model regridded to generic_1x1deg',
         'name': 'ENSO Zonal SSTA pattern',
         'ref': 'Using CDAT regridding and rms (uncentered and biased) calculation',
         'time_frequency': 'monthly',
         'units': 'C/C'},
        'metric': {'datasets': "CNRM-CM5_r9i1p1; ERA-Interim's ts & HadISST's sst & Tropflux's sst; 's ",
         'method': 'The metric is the statistical value between the model and the observations',
         'name': 'EnsoSstLonRmse',
         'units': 'C/C'}},
       'EnsoSstSkew': {'diagnostic': {'CNRM-CM5_r9i1p1': {'keyerror': None,
          'name': 'CNRM-CM5_r9i1p1',
          'nyears': 156,
          'time_period': ['1850-1-16 12:0:0.0', '2005-12-16 12:0:0.0']},
         'ERA-Interim': {'keyerror': None,
          'name': 'ERA-Interim',
          'nyears': 40,
          'time_period': ['1979-1-16 12:0:0.0', '2019-3-16 12:0:0.0']},
         'HadISST': {'keyerror': None,
          'name': 'HadISST',
          'nyears': 151,
          'time_period': ['1870-1-16 11:59:59.5', '2020-10-16 12:0:0.0']},
         'Tropflux': {'keyerror': None,
          'name': 'Tropflux',
          'nyears': 40,
          'time_period': ['1979-1-15 0:0:0.0', '2018-12-15 12:0:0.0']},
         'method': 'Standard deviation of nino3.4 sstA, time series are linearly detrended',
         'name': 'ENSO skewness',
         'ref': 'Using CDAT regression calculation',
         'time_frequency': 'monthly',
         'units': 'C'},
        'metric': {'datasets': "CNRM-CM5_r9i1p1; ERA-Interim's ts & HadISST's sst & Tropflux's sst; 's ",
         'method': 'The metric is the absolute value of the relative difference between model and observations values (M = 100 * abs[[model-obs] / obs])',
         'name': 'EnsoSstSkew',
         'units': '%'}},
       'EnsoSstTsRmse': {'diagnostic': {'CNRM-CM5_r9i1p1': {'keyerror': None,
          'name': 'CNRM-CM5_r9i1p1',
          'nyears': 156,
          'time_period': ['1850-1-16 12:0:0.0', '2005-12-16 12:0:0.0']},
         'ERA-Interim': {'name': 'ERA-Interim',
          'nyears': 40,
          'time_period': ['1979-1-16 12:0:0.0', '2019-3-16 12:0:0.0']},
         'HadISST': {'name': 'HadISST',
          'nyears': 151,
          'time_period': ['1870-1-16 11:59:59.5', '2020-10-16 12:0:0.0']},
         'Tropflux': {'name': 'Tropflux',
          'nyears': 40,
          'time_period': ['1979-1-15 0:0:0.0', '2018-12-15 12:0:0.0']},
         'method': 'nino3.4 SSTA during DEC regressed against nino3.4 SSTA during 6 years (centered on ENSO), time series are linearly detrended, smoothing using a triangle shaped window of 5 points',
         'name': 'ENSO life cyle SSTA pattern',
         'ref': 'Using CDAT regridding and rms (uncentered and biased) calculation',
         'time_frequency': 'monthly',
         'units': 'C/C'},
        'metric': {'datasets': "CNRM-CM5_r9i1p1; ERA-Interim's ts & HadISST's sst & Tropflux's sst; 's ",
         'method': 'The metric is the statistical value between the model and the observations',
         'name': 'EnsoSstTsRmse',
         'units': 'C/C'}},
       'SeasonalPrLatRmse': {'diagnostic': {'CNRM-CM5_r9i1p1': {'keyerror': None,
          'name': 'CNRM-CM5_r9i1p1',
          'nyears': 156,
          'time_period': ['1850-1-16 12:0:0.0', '2005-12-16 12:0:0.0']},
         'ERA-Interim': {'name': 'ERA-Interim',
          'nyears': 40,
          'time_period': ['1979-1-16 12:0:0.0', '2019-3-16 12:0:0.0']},
         'GPCPv2.3': {'name': 'GPCPv2.3',
          'nyears': 41,
          'time_period': ['1979-1-1 0:0:0.0', '2019-7-1 0:0:0.0']},
         'method': 'Meridional root mean square error of nino3_LatExt climatological pr STD, time series are linearly detrended, observations and model regridded to generic_1x1deg',
         'name': 'pr meridional seasonality RMSE',
         'ref': 'Using CDAT regridding and rms (uncentered and biased) calculation',
         'time_frequency': 'monthly',
         'units': 'mm/day'},
        'metric': {'datasets': "CNRM-CM5_r9i1p1; ERA-Interim's pr & GPCPv2.3's precip; 's ",
         'method': 'The metric is the statistical value between the model and the observations',
         'name': 'SeasonalPrLatRmse',
         'units': 'mm/day'}},
       'SeasonalPrLonRmse': {'diagnostic': {'CNRM-CM5_r9i1p1': {'keyerror': None,
          'name': 'CNRM-CM5_r9i1p1',
          'nyears': 156,
          'time_period': ['1850-1-16 12:0:0.0', '2005-12-16 12:0:0.0']},
         'ERA-Interim': {'name': 'ERA-Interim',
          'nyears': 40,
          'time_period': ['1979-1-16 12:0:0.0', '2019-3-16 12:0:0.0']},
         'GPCPv2.3': {'name': 'GPCPv2.3',
          'nyears': 41,
          'time_period': ['1979-1-1 0:0:0.0', '2019-7-1 0:0:0.0']},
         'method': 'Zonal root mean square error of equatorial_pacific climatological pr STD, time series are linearly detrended, observations and model regridded to generic_1x1deg',
         'name': 'pr zonal seasonality RMSE',
         'ref': 'Using CDAT regridding and rms (uncentered and biased) calculation',
         'time_frequency': 'monthly',
         'units': 'mm/day'},
        'metric': {'datasets': "CNRM-CM5_r9i1p1; ERA-Interim's pr & GPCPv2.3's precip; 's ",
         'method': 'The metric is the statistical value between the model and the observations',
         'name': 'SeasonalPrLonRmse',
         'units': 'mm/day'}},
       'SeasonalSstLonRmse': {'diagnostic': {'CNRM-CM5_r9i1p1': {'keyerror': None,
          'name': 'CNRM-CM5_r9i1p1',
          'nyears': 156,
          'time_period': ['1850-1-16 12:0:0.0', '2005-12-16 12:0:0.0']},
         'ERA-Interim': {'name': 'ERA-Interim',
          'nyears': 40,
          'time_period': ['1979-1-16 12:0:0.0', '2019-3-16 12:0:0.0']},
         'HadISST': {'name': 'HadISST',
          'nyears': 151,
          'time_period': ['1870-1-16 11:59:59.5', '2020-10-16 12:0:0.0']},
         'Tropflux': {'name': 'Tropflux',
          'nyears': 40,
          'time_period': ['1979-1-15 0:0:0.0', '2018-12-15 12:0:0.0']},
         'method': 'Zonal root mean square error of equatorial_pacific climatological sst STD, time series are linearly detrended, observations and model regridded to generic_1x1deg',
         'name': 'sst zonal seasonality RMSE',
         'ref': 'Using CDAT regridding and rms (uncentered and biased) calculation',
         'time_frequency': 'monthly',
         'units': 'C'},
        'metric': {'datasets': "CNRM-CM5_r9i1p1; ERA-Interim's ts & HadISST's sst & Tropflux's sst; 's ",
         'method': 'The metric is the statistical value between the model and the observations',
         'name': 'SeasonalSstLonRmse',
         'units': 'C'}},
       'SeasonalTauxLonRmse': {'diagnostic': {'CNRM-CM5_r9i1p1': {'keyerror': None,
          'name': 'CNRM-CM5_r9i1p1',
          'nyears': 156,
          'time_period': ['1850-1-16 12:0:0.0', '2005-12-16 12:0:0.0']},
         'ERA-Interim': {'name': 'ERA-Interim',
          'nyears': 40,
          'time_period': ['1979-1-16 12:0:0.0', '2019-3-16 12:0:0.0']},
         'Tropflux': {'name': 'Tropflux',
          'nyears': 40,
          'time_period': ['1979-1-15 0:0:0.0', '2018-12-15 12:0:0.0']},
         'method': 'Zonal root mean square error of equatorial_pacific climatological taux STD, time series are linearly detrended, observations and model regridded to generic_1x1deg',
         'name': 'taux zonal seasonality RMSE',
         'ref': 'Using CDAT regridding and rms (uncentered and biased) calculation',
         'time_frequency': 'monthly',
         'units': '1e-3 N/m2'},
        'metric': {'datasets': "CNRM-CM5_r9i1p1; ERA-Interim's tauu & Tropflux's taux; 's ",
         'method': 'The metric is the statistical value between the model and the observations',
         'name': 'SeasonalTauxLonRmse',
         'units': '1e-3 N/m2'}}},
      'name': 'Metrics Collection for ENSO performance'},
     'value': {'BiasPrLatRmse': {'diagnostic': {'CNRM-CM5_r9i1p1': {'value': None,
         'value_error': None},
        'ERA-Interim': {'value': None, 'value_error': None},
        'GPCPv2.3': {'value': None, 'value_error': None}},
       'metric': {'ERA-Interim': {'value': 1.6390593484462643,
         'value_error': None},
        'GPCPv2.3': {'value': 1.8437662380381334, 'value_error': None}}},
      'BiasPrLonRmse': {'diagnostic': {'CNRM-CM5_r9i1p1': {'value': None,
         'value_error': None},
        'ERA-Interim': {'value': None, 'value_error': None},
        'GPCPv2.3': {'value': None, 'value_error': None}},
       'metric': {'ERA-Interim': {'value': 1.0412655054267332,
         'value_error': None},
        'GPCPv2.3': {'value': 0.5692339698621006, 'value_error': None}}},
      'BiasSstLonRmse': {'diagnostic': {'CNRM-CM5_r9i1p1': {'value': None,
         'value_error': None},
        'ERA-Interim': {'value': None, 'value_error': None},
        'HadISST': {'value': None, 'value_error': None},
        'Tropflux': {'value': None, 'value_error': None}},
       'metric': {'ERA-Interim': {'value': 0.9005652203779269,
         'value_error': None},
        'HadISST': {'value': 0.7704715060992173, 'value_error': None},
        'Tropflux': {'value': 0.9423865280342631, 'value_error': None}}},
      'BiasTauxLonRmse': {'diagnostic': {'CNRM-CM5_r9i1p1': {'value': None,
         'value_error': None},
        'ERA-Interim': {'value': None, 'value_error': None},
        'Tropflux': {'value': None, 'value_error': None}},
       'metric': {'ERA-Interim': {'value': 9.327180627785003,
         'value_error': None},
        'Tropflux': {'value': 9.0476866379755, 'value_error': None}}},
      'EnsoAmpl': {'diagnostic': {'CNRM-CM5_r9i1p1': {'value': 0.8223377357455437,
         'value_error': 0.06583971171459475},
        'ERA-Interim': {'value': 0.8989844997845644,
         'value_error': 0.14214193002531866},
        'HadISST': {'value': 0.7665787872085695,
         'value_error': 0.06238329697691264},
        'Tropflux': {'value': 0.9039789553693535,
         'value_error': 0.14293162279134272}},
       'metric': {'ERA-Interim': {'value': 8.525927205350992,
         'value_error': 21.787108042976378},
        'HadISST': {'value': 7.273740086131989,
         'value_error': 17.31858613701067},
        'Tropflux': {'value': 9.03131860967408,
         'value_error': 21.666734949338167}}},
      'EnsoDuration': {'diagnostic': {'CNRM-CM5_r9i1p1': {'value': 11.0,
         'value_error': None},
        'ERA-Interim': {'value': 13.0, 'value_error': None},
        'HadISST': {'value': 13.0, 'value_error': None},
        'Tropflux': {'value': 13.0, 'value_error': None}},
       'metric': {'ERA-Interim': {'value': 15.384615384615385,
         'value_error': None},
        'HadISST': {'value': 15.384615384615385, 'value_error': None},
        'Tropflux': {'value': 15.384615384615385, 'value_error': None}}},
      'EnsoSeasonality': {'diagnostic': {'CNRM-CM5_r9i1p1': {'value': 2.183957892998788,
         'value_error': 0.35027629201355215},
        'ERA-Interim': {'value': 2.0466846866656914,
         'value_error': 0.6513411033995022},
        'HadISST': {'value': 1.6639865947361325,
         'value_error': 0.2712772451657809},
        'Tropflux': {'value': 2.0532132553583624,
         'value_error': 0.6534187683977347}},
       'metric': {'ERA-Interim': {'value': 6.70710086548467,
         'value_error': 51.07301124626831},
        'HadISST': {'value': 31.248526875609254,
         'value_error': 42.44767850154346},
        'Tropflux': {'value': 6.367806037644439,
         'value_error': 50.910615225595514}}},
      'EnsoSstDiversity_2': {'diagnostic': {'CNRM-CM5_r9i1p1': {'value': 16.25,
         'value_error': None},
        'ERA-Interim': {'value': 33.25, 'value_error': None},
        'HadISST': {'value': 49.0, 'value_error': None},
        'Tropflux': {'value': 32.0, 'value_error': None}},
       'metric': {'ERA-Interim': {'value': 51.127819548872175,
         'value_error': None},
        'HadISST': {'value': 66.83673469387756, 'value_error': None},
        'Tropflux': {'value': 49.21875, 'value_error': None}}},
      'EnsoSstLonRmse': {'diagnostic': {'CNRM-CM5_r9i1p1': {'value': None,
         'value_error': None},
        'ERA-Interim': {'value': None, 'value_error': None},
        'HadISST': {'value': None, 'value_error': None},
        'Tropflux': {'value': None, 'value_error': None}},
       'metric': {'ERA-Interim': {'value': 0.09400374740933934,
         'value_error': None},
        'HadISST': {'value': 0.09891452397583499, 'value_error': None},
        'Tropflux': {'value': 0.09119203983763835, 'value_error': None}}},
      'EnsoSstSkew': {'diagnostic': {'CNRM-CM5_r9i1p1': {'value': 0.1633490049865521,
         'value_error': 0.013078387297197281},
        'ERA-Interim': {'value': 0.39098111106809963,
         'value_error': 0.061819541653923164},
        'HadISST': {'value': 0.38989908235027515,
         'value_error': 0.03172953733021198},
        'Tropflux': {'value': 0.39744741059612115,
         'value_error': 0.06284195338099416}},
       'metric': {'ERA-Interim': {'value': 58.2207425467926,
         'value_error': 9.950898306799816},
        'HadISST': {'value': 58.1047988105282,
         'value_error': 6.763683730470197},
        'Tropflux': {'value': 58.900473211902636,
         'value_error': 9.789001443694982}}},
      'EnsoSstTsRmse': {'diagnostic': {'CNRM-CM5_r9i1p1': {'value': None,
         'value_error': None},
        'ERA-Interim': {'value': None, 'value_error': None},
        'HadISST': {'value': None, 'value_error': None},
        'Tropflux': {'value': None, 'value_error': None}},
       'metric': {'ERA-Interim': {'value': 0.17655106589947478,
         'value_error': None},
        'HadISST': {'value': 0.18881867497618, 'value_error': None},
        'Tropflux': {'value': 0.17988215000096422, 'value_error': None}}},
      'SeasonalPrLatRmse': {'diagnostic': {'CNRM-CM5_r9i1p1': {'value': None,
         'value_error': None},
        'ERA-Interim': {'value': None, 'value_error': None},
        'GPCPv2.3': {'value': None, 'value_error': None}},
       'metric': {'ERA-Interim': {'value': 0.9286384278053891,
         'value_error': None},
        'GPCPv2.3': {'value': 0.9812327328921392, 'value_error': None}}},
      'SeasonalPrLonRmse': {'diagnostic': {'CNRM-CM5_r9i1p1': {'value': None,
         'value_error': None},
        'ERA-Interim': {'value': None, 'value_error': None},
        'GPCPv2.3': {'value': None, 'value_error': None}},
       'metric': {'ERA-Interim': {'value': 0.308133663190084,
         'value_error': None},
        'GPCPv2.3': {'value': 0.3050293527764556, 'value_error': None}}},
      'SeasonalSstLonRmse': {'diagnostic': {'CNRM-CM5_r9i1p1': {'value': None,
         'value_error': None},
        'ERA-Interim': {'value': None, 'value_error': None},
        'HadISST': {'value': None, 'value_error': None},
        'Tropflux': {'value': None, 'value_error': None}},
       'metric': {'ERA-Interim': {'value': 0.1922932334631617,
         'value_error': None},
        'HadISST': {'value': 0.1997049902271164, 'value_error': None},
        'Tropflux': {'value': 0.18862155861423666, 'value_error': None}}},
      'SeasonalTauxLonRmse': {'diagnostic': {'CNRM-CM5_r9i1p1': {'value': None,
         'value_error': None},
        'ERA-Interim': {'value': None, 'value_error': None},
        'Tropflux': {'value': None, 'value_error': None}},
       'metric': {'ERA-Interim': {'value': 2.6679600756932946,
         'value_error': None},
        'Tropflux': {'value': 2.41250279982442, 'value_error': None}}}}}},
   'CNRM-CM5-2': {'r1i1p1': {'metadata': {'description_of_the_collection': 'Describe which science question this collection is about',
      'metrics': {'BiasPrLatRmse': {'diagnostic': {'CNRM-CM5-2_r1i1p1': {'keyerror': None,
          'name': 'CNRM-CM5-2_r1i1p1',
          'nyears': 156,
          'time_period': ['1850-1-16 12:0:0.0', '2005-12-16 12:0:0.0']},
         'ERA-Interim': {'name': 'ERA-Interim',
          'nyears': 40,
          'time_period': ['1979-1-16 12:0:0.0', '2019-3-16 12:0:0.0']},
         'GPCPv2.3': {'name': 'GPCPv2.3',
          'nyears': 41,
          'time_period': ['1979-1-1 0:0:0.0', '2019-7-1 0:0:0.0']},
         'method': 'Meridional root mean square error of nino3_LatExt pr, time series are linearly detrended, observations and model regridded to generic_1x1deg',
         'name': 'pr Meridional RMSE',
         'ref': 'Using CDAT regridding and rms (uncentered and biased) calculation',
         'time_frequency': 'monthly',
         'units': 'mm/day'},
        'metric': {'datasets': "CNRM-CM5-2_r1i1p1; ERA-Interim's pr & GPCPv2.3's precip; 's ",
         'method': 'The metric is the statistical value between the model and the observations',
         'name': 'BiasPrLatRmse',
         'units': 'mm/day'}},
       'BiasPrLonRmse': {'diagnostic': {'CNRM-CM5-2_r1i1p1': {'keyerror': None,
          'name': 'CNRM-CM5-2_r1i1p1',
          'nyears': 156,
          'time_period': ['1850-1-16 12:0:0.0', '2005-12-16 12:0:0.0']},
         'ERA-Interim': {'name': 'ERA-Interim',
          'nyears': 40,
          'time_period': ['1979-1-16 12:0:0.0', '2019-3-16 12:0:0.0']},
         'GPCPv2.3': {'name': 'GPCPv2.3',
          'nyears': 41,
          'time_period': ['1979-1-1 0:0:0.0', '2019-7-1 0:0:0.0']},
         'method': 'Zonal root mean square error of equatorial_pacific pr, time series are linearly detrended, observations and model regridded to generic_1x1deg',
         'name': 'pr Zonal RMSE',
         'ref': 'Using CDAT regridding and rms (uncentered and biased) calculation',
         'time_frequency': 'monthly',
         'units': 'mm/day'},
        'metric': {'datasets': "CNRM-CM5-2_r1i1p1; ERA-Interim's pr & GPCPv2.3's precip; 's ",
         'method': 'The metric is the statistical value between the model and the observations',
         'name': 'BiasPrLonRmse',
         'units': 'mm/day'}},
       'BiasSstLonRmse': {'diagnostic': {'CNRM-CM5-2_r1i1p1': {'keyerror': None,
          'name': 'CNRM-CM5-2_r1i1p1',
          'nyears': 156,
          'time_period': ['1850-1-16 12:0:0.0', '2005-12-16 12:0:0.0']},
         'ERA-Interim': {'name': 'ERA-Interim',
          'nyears': 40,
          'time_period': ['1979-1-16 12:0:0.0', '2019-3-16 12:0:0.0']},
         'HadISST': {'name': 'HadISST',
          'nyears': 151,
          'time_period': ['1870-1-16 11:59:59.5', '2020-10-16 12:0:0.0']},
         'Tropflux': {'name': 'Tropflux',
          'nyears': 40,
          'time_period': ['1979-1-15 0:0:0.0', '2018-12-15 12:0:0.0']},
         'method': 'Zonal root mean square error of equatorial_pacific sst, time series are linearly detrended, observations and model regridded to generic_1x1deg',
         'name': 'sst Zonal RMSE',
         'ref': 'Using CDAT regridding and rms (uncentered and biased) calculation',
         'time_frequency': 'monthly',
         'units': 'C'},
        'metric': {'datasets': "CNRM-CM5-2_r1i1p1; ERA-Interim's ts & HadISST's sst & Tropflux's sst; 's ",
         'method': 'The metric is the statistical value between the model and the observations',
         'name': 'BiasSstLonRmse',
         'units': 'C'}},
       'BiasTauxLonRmse': {'diagnostic': {'CNRM-CM5-2_r1i1p1': {'keyerror': None,
          'name': 'CNRM-CM5-2_r1i1p1',
          'nyears': 156,
          'time_period': ['1850-1-16 12:0:0.0', '2005-12-16 12:0:0.0']},
         'ERA-Interim': {'name': 'ERA-Interim',
          'nyears': 40,
          'time_period': ['1979-1-16 12:0:0.0', '2019-3-16 12:0:0.0']},
         'Tropflux': {'name': 'Tropflux',
          'nyears': 40,
          'time_period': ['1979-1-15 0:0:0.0', '2018-12-15 12:0:0.0']},
         'method': 'Zonal root mean square error of equatorial_pacific taux, time series are linearly detrended, observations and model regridded to generic_1x1deg',
         'name': 'taux Zonal RMSE',
         'ref': 'Using CDAT regridding and rms (uncentered and biased) calculation',
         'time_frequency': 'monthly',
         'units': '1e-3 N/m2'},
        'metric': {'datasets': "CNRM-CM5-2_r1i1p1; ERA-Interim's tauu & Tropflux's taux; 's ",
         'method': 'The metric is the statistical value between the model and the observations',
         'name': 'BiasTauxLonRmse',
         'units': '1e-3 N/m2'}},
       'EnsoAmpl': {'diagnostic': {'CNRM-CM5-2_r1i1p1': {'keyerror': None,
          'name': 'CNRM-CM5-2_r1i1p1',
          'nyears': 156,
          'time_period': ['1850-1-16 12:0:0.0', '2005-12-16 12:0:0.0']},
         'ERA-Interim': {'keyerror': None,
          'name': 'ERA-Interim',
          'nyears': 40,
          'time_period': ['1979-1-16 12:0:0.0', '2019-3-16 12:0:0.0']},
         'HadISST': {'keyerror': None,
          'name': 'HadISST',
          'nyears': 151,
          'time_period': ['1870-1-16 11:59:59.5', '2020-10-16 12:0:0.0']},
         'Tropflux': {'keyerror': None,
          'name': 'Tropflux',
          'nyears': 40,
          'time_period': ['1979-1-15 0:0:0.0', '2018-12-15 12:0:0.0']},
         'method': 'Standard deviation of nino3.4 sstA, time series are linearly detrended',
         'name': 'ENSO amplitude',
         'ref': 'Using CDAT regression calculation',
         'time_frequency': 'monthly',
         'units': 'C'},
        'metric': {'datasets': "CNRM-CM5-2_r1i1p1; ERA-Interim's ts & HadISST's sst & Tropflux's sst; 's ",
         'method': 'The metric is the absolute value of the relative difference between model and observations values (M = 100 * abs[[model-obs] / obs])',
         'name': 'EnsoAmpl',
         'units': '%'}},
       'EnsoDuration': {'diagnostic': {'CNRM-CM5-2_r1i1p1': {'keyerror': None,
          'name': 'CNRM-CM5-2_r1i1p1',
          'nyears': 156,
          'time_period': ['1850-1-16 12:0:0.0', '2005-12-16 12:0:0.0']},
         'ERA-Interim': {'keyerror': None,
          'name': 'ERA-Interim',
          'nyears': 40,
          'time_period': ['1979-1-16 12:0:0.0', '2019-3-16 12:0:0.0']},
         'HadISST': {'keyerror': None,
          'name': 'HadISST',
          'nyears': 151,
          'time_period': ['1870-1-16 11:59:59.5', '2020-10-16 12:0:0.0']},
         'Tropflux': {'keyerror': None,
          'name': 'Tropflux',
          'nyears': 40,
          'time_period': ['1979-1-15 0:0:0.0', '2018-12-15 12:0:0.0']},
         'method': 'nino3.4 SSTA during DEC regressed against nino3.4 SSTA during 6 years (centered on ENSO), the duration is the number of consecutive months during which the regression is above 0.25, time series are linearly detrended, smoothing using a triangle shaped window of 5 points',
         'name': 'ENSO Duration based on life cyle SSTA pattern',
         'ref': 'Using CDAT',
         'time_frequency': 'monthly',
         'units': 'months'},
        'metric': {'datasets': "CNRM-CM5-2_r1i1p1; ERA-Interim's ts & HadISST's sst & Tropflux's sst; 's ",
         'method': 'The metric is the absolute value of the relative difference between model and observations values (M = 100 * abs[[model-obs] / obs])',
         'name': 'EnsoDuration',
         'units': '%'}},
       'EnsoSeasonality': {'diagnostic': {'CNRM-CM5-2_r1i1p1': {'keyerror': None,
          'name': 'CNRM-CM5-2_r1i1p1',
          'nyears': 156,
          'time_period': ['1850-1-16 12:0:0.0', '2005-12-16 12:0:0.0']},
         'ERA-Interim': {'keyerror': None,
          'name': 'ERA-Interim',
          'nyears': 40,
          'time_period': ['1979-1-16 12:0:0.0', '2019-3-16 12:0:0.0']},
         'HadISST': {'keyerror': None,
          'name': 'HadISST',
          'nyears': 151,
          'time_period': ['1870-1-16 11:59:59.5', '2020-10-16 12:0:0.0']},
         'Tropflux': {'keyerror': None,
          'name': 'Tropflux',
          'nyears': 40,
          'time_period': ['1979-1-15 0:0:0.0', '2018-12-15 12:0:0.0']},
         'method': 'Ratio between NDJ and MAM standard deviation nino3.4 sstA, time series are linearly detrended',
         'name': 'ENSO seasonality',
         'ref': 'Using CDAT std dev calculation',
         'time_frequency': 'monthly',
         'units': 'C/C'},
        'metric': {'datasets': "CNRM-CM5-2_r1i1p1; ERA-Interim's ts & HadISST's sst & Tropflux's sst; 's ",
         'method': 'The metric is the absolute value of the relative difference between model and observations values (M = 100 * abs[[model-obs] / obs])',
         'name': 'EnsoSeasonality',
         'units': '%'}},
       'EnsoSstDiversity_2': {'diagnostic': {'CNRM-CM5-2_r1i1p1': {'keyerror': None,
          'name': 'CNRM-CM5-2_r1i1p1',
          'nyears': 156,
          'time_period': ['1850-1-16 12:0:0.0', '2005-12-16 12:0:0.0']},
         'ERA-Interim': {'keyerror': None,
          'name': 'ERA-Interim',
          'nyears': 40,
          'time_period': ['1979-1-16 12:0:0.0', '2019-3-16 12:0:0.0']},
         'HadISST': {'keyerror': None,
          'name': 'HadISST',
          'nyears': 151,
          'time_period': ['1870-1-16 11:59:59.5', '2020-10-16 12:0:0.0']},
         'Tropflux': {'keyerror': None,
          'name': 'Tropflux',
          'nyears': 40,
          'time_period': ['1979-1-15 0:0:0.0', '2018-12-15 12:0:0.0']},
         'method': 'Nino (Nina) events = nino3.4 sstA > 0.75 (< -0.75) during DEC, zonal SSTA (meridional averaged [-5.0 ; 5.0]), the zonal SSTA maximum (minimum) is located for each event, the diversity is the interquartile range (IQR = Q3 - Q1), time series are linearly detrended, smoothing using a triangle shaped window of 5 points',
         'name': 'ENSO Diversity (interquartile range)',
         'ref': 'Using CDAT regridding',
         'time_frequency': 'monthly',
         'units': 'long'},
        'metric': {'datasets': "CNRM-CM5-2_r1i1p1; ERA-Interim's ts & HadISST's sst & Tropflux's sst; 's ",
         'method': 'The metric is the absolute value of the relative difference between model and observations values (M = 100 * abs[[model-obs] / obs])',
         'name': 'EnsoSstDiversity',
         'units': '%'}},
       'EnsoSstLonRmse': {'diagnostic': {'CNRM-CM5-2_r1i1p1': {'keyerror': None,
          'name': 'CNRM-CM5-2_r1i1p1',
          'nyears': 156,
          'time_period': ['1850-1-16 12:0:0.0', '2005-12-16 12:0:0.0']},
         'ERA-Interim': {'name': 'ERA-Interim',
          'nyears': 40,
          'time_period': ['1979-1-16 12:0:0.0', '2019-3-16 12:0:0.0']},
         'HadISST': {'name': 'HadISST',
          'nyears': 151,
          'time_period': ['1870-1-16 11:59:59.5', '2020-10-16 12:0:0.0']},
         'Tropflux': {'name': 'Tropflux',
          'nyears': 40,
          'time_period': ['1979-1-15 0:0:0.0', '2018-12-15 12:0:0.0']},
         'method': 'nino3.4 SSTA during DEC regressed against equatorial_pacific SSTA, time series are linearly detrended, smoothing using a triangle shaped window of 5 points, observations and model regridded to generic_1x1deg',
         'name': 'ENSO Zonal SSTA pattern',
         'ref': 'Using CDAT regridding and rms (uncentered and biased) calculation',
         'time_frequency': 'monthly',
         'units': 'C/C'},
        'metric': {'datasets': "CNRM-CM5-2_r1i1p1; ERA-Interim's ts & HadISST's sst & Tropflux's sst; 's ",
         'method': 'The metric is the statistical value between the model and the observations',
         'name': 'EnsoSstLonRmse',
         'units': 'C/C'}},
       'EnsoSstSkew': {'diagnostic': {'CNRM-CM5-2_r1i1p1': {'keyerror': None,
          'name': 'CNRM-CM5-2_r1i1p1',
          'nyears': 156,
          'time_period': ['1850-1-16 12:0:0.0', '2005-12-16 12:0:0.0']},
         'ERA-Interim': {'keyerror': None,
          'name': 'ERA-Interim',
          'nyears': 40,
          'time_period': ['1979-1-16 12:0:0.0', '2019-3-16 12:0:0.0']},
         'HadISST': {'keyerror': None,
          'name': 'HadISST',
          'nyears': 151,
          'time_period': ['1870-1-16 11:59:59.5', '2020-10-16 12:0:0.0']},
         'Tropflux': {'keyerror': None,
          'name': 'Tropflux',
          'nyears': 40,
          'time_period': ['1979-1-15 0:0:0.0', '2018-12-15 12:0:0.0']},
         'method': 'Standard deviation of nino3.4 sstA, time series are linearly detrended',
         'name': 'ENSO skewness',
         'ref': 'Using CDAT regression calculation',
         'time_frequency': 'monthly',
         'units': 'C'},
        'metric': {'datasets': "CNRM-CM5-2_r1i1p1; ERA-Interim's ts & HadISST's sst & Tropflux's sst; 's ",
         'method': 'The metric is the absolute value of the relative difference between model and observations values (M = 100 * abs[[model-obs] / obs])',
         'name': 'EnsoSstSkew',
         'units': '%'}},
       'EnsoSstTsRmse': {'diagnostic': {'CNRM-CM5-2_r1i1p1': {'keyerror': None,
          'name': 'CNRM-CM5-2_r1i1p1',
          'nyears': 156,
          'time_period': ['1850-1-16 12:0:0.0', '2005-12-16 12:0:0.0']},
         'ERA-Interim': {'name': 'ERA-Interim',
          'nyears': 40,
          'time_period': ['1979-1-16 12:0:0.0', '2019-3-16 12:0:0.0']},
         'HadISST': {'name': 'HadISST',
          'nyears': 151,
          'time_period': ['1870-1-16 11:59:59.5', '2020-10-16 12:0:0.0']},
         'Tropflux': {'name': 'Tropflux',
          'nyears': 40,
          'time_period': ['1979-1-15 0:0:0.0', '2018-12-15 12:0:0.0']},
         'method': 'nino3.4 SSTA during DEC regressed against nino3.4 SSTA during 6 years (centered on ENSO), time series are linearly detrended, smoothing using a triangle shaped window of 5 points',
         'name': 'ENSO life cyle SSTA pattern',
         'ref': 'Using CDAT regridding and rms (uncentered and biased) calculation',
         'time_frequency': 'monthly',
         'units': 'C/C'},
        'metric': {'datasets': "CNRM-CM5-2_r1i1p1; ERA-Interim's ts & HadISST's sst & Tropflux's sst; 's ",
         'method': 'The metric is the statistical value between the model and the observations',
         'name': 'EnsoSstTsRmse',
         'units': 'C/C'}},
       'SeasonalPrLatRmse': {'diagnostic': {'CNRM-CM5-2_r1i1p1': {'keyerror': None,
          'name': 'CNRM-CM5-2_r1i1p1',
          'nyears': 156,
          'time_period': ['1850-1-16 12:0:0.0', '2005-12-16 12:0:0.0']},
         'ERA-Interim': {'name': 'ERA-Interim',
          'nyears': 40,
          'time_period': ['1979-1-16 12:0:0.0', '2019-3-16 12:0:0.0']},
         'GPCPv2.3': {'name': 'GPCPv2.3',
          'nyears': 41,
          'time_period': ['1979-1-1 0:0:0.0', '2019-7-1 0:0:0.0']},
         'method': 'Meridional root mean square error of nino3_LatExt climatological pr STD, time series are linearly detrended, observations and model regridded to generic_1x1deg',
         'name': 'pr meridional seasonality RMSE',
         'ref': 'Using CDAT regridding and rms (uncentered and biased) calculation',
         'time_frequency': 'monthly',
         'units': 'mm/day'},
        'metric': {'datasets': "CNRM-CM5-2_r1i1p1; ERA-Interim's pr & GPCPv2.3's precip; 's ",
         'method': 'The metric is the statistical value between the model and the observations',
         'name': 'SeasonalPrLatRmse',
         'units': 'mm/day'}},
       'SeasonalPrLonRmse': {'diagnostic': {'CNRM-CM5-2_r1i1p1': {'keyerror': None,
          'name': 'CNRM-CM5-2_r1i1p1',
          'nyears': 156,
          'time_period': ['1850-1-16 12:0:0.0', '2005-12-16 12:0:0.0']},
         'ERA-Interim': {'name': 'ERA-Interim',
          'nyears': 40,
          'time_period': ['1979-1-16 12:0:0.0', '2019-3-16 12:0:0.0']},
         'GPCPv2.3': {'name': 'GPCPv2.3',
          'nyears': 41,
          'time_period': ['1979-1-1 0:0:0.0', '2019-7-1 0:0:0.0']},
         'method': 'Zonal root mean square error of equatorial_pacific climatological pr STD, time series are linearly detrended, observations and model regridded to generic_1x1deg',
         'name': 'pr zonal seasonality RMSE',
         'ref': 'Using CDAT regridding and rms (uncentered and biased) calculation',
         'time_frequency': 'monthly',
         'units': 'mm/day'},
        'metric': {'datasets': "CNRM-CM5-2_r1i1p1; ERA-Interim's pr & GPCPv2.3's precip; 's ",
         'method': 'The metric is the statistical value between the model and the observations',
         'name': 'SeasonalPrLonRmse',
         'units': 'mm/day'}},
       'SeasonalSstLonRmse': {'diagnostic': {'CNRM-CM5-2_r1i1p1': {'keyerror': None,
          'name': 'CNRM-CM5-2_r1i1p1',
          'nyears': 156,
          'time_period': ['1850-1-16 12:0:0.0', '2005-12-16 12:0:0.0']},
         'ERA-Interim': {'name': 'ERA-Interim',
          'nyears': 40,
          'time_period': ['1979-1-16 12:0:0.0', '2019-3-16 12:0:0.0']},
         'HadISST': {'name': 'HadISST',
          'nyears': 151,
          'time_period': ['1870-1-16 11:59:59.5', '2020-10-16 12:0:0.0']},
         'Tropflux': {'name': 'Tropflux',
          'nyears': 40,
          'time_period': ['1979-1-15 0:0:0.0', '2018-12-15 12:0:0.0']},
         'method': 'Zonal root mean square error of equatorial_pacific climatological sst STD, time series are linearly detrended, observations and model regridded to generic_1x1deg',
         'name': 'sst zonal seasonality RMSE',
         'ref': 'Using CDAT regridding and rms (uncentered and biased) calculation',
         'time_frequency': 'monthly',
         'units': 'C'},
        'metric': {'datasets': "CNRM-CM5-2_r1i1p1; ERA-Interim's ts & HadISST's sst & Tropflux's sst; 's ",
         'method': 'The metric is the statistical value between the model and the observations',
         'name': 'SeasonalSstLonRmse',
         'units': 'C'}},
       'SeasonalTauxLonRmse': {'diagnostic': {'CNRM-CM5-2_r1i1p1': {'keyerror': None,
          'name': 'CNRM-CM5-2_r1i1p1',
          'nyears': 156,
          'time_period': ['1850-1-16 12:0:0.0', '2005-12-16 12:0:0.0']},
         'ERA-Interim': {'name': 'ERA-Interim',
          'nyears': 40,
          'time_period': ['1979-1-16 12:0:0.0', '2019-3-16 12:0:0.0']},
         'Tropflux': {'name': 'Tropflux',
          'nyears': 40,
          'time_period': ['1979-1-15 0:0:0.0', '2018-12-15 12:0:0.0']},
         'method': 'Zonal root mean square error of equatorial_pacific climatological taux STD, time series are linearly detrended, observations and model regridded to generic_1x1deg',
         'name': 'taux zonal seasonality RMSE',
         'ref': 'Using CDAT regridding and rms (uncentered and biased) calculation',
         'time_frequency': 'monthly',
         'units': '1e-3 N/m2'},
        'metric': {'datasets': "CNRM-CM5-2_r1i1p1; ERA-Interim's tauu & Tropflux's taux; 's ",
         'method': 'The metric is the statistical value between the model and the observations',
         'name': 'SeasonalTauxLonRmse',
         'units': '1e-3 N/m2'}}},
      'name': 'Metrics Collection for ENSO performance'},
     'value': {'BiasPrLatRmse': {'diagnostic': {'CNRM-CM5-2_r1i1p1': {'value': None,
         'value_error': None},
        'ERA-Interim': {'value': None, 'value_error': None},
        'GPCPv2.3': {'value': None, 'value_error': None}},
       'metric': {'ERA-Interim': {'value': 1.546830743500996,
         'value_error': None},
        'GPCPv2.3': {'value': 1.6856487222018874, 'value_error': None}}},
      'BiasPrLonRmse': {'diagnostic': {'CNRM-CM5-2_r1i1p1': {'value': None,
         'value_error': None},
        'ERA-Interim': {'value': None, 'value_error': None},
        'GPCPv2.3': {'value': None, 'value_error': None}},
       'metric': {'ERA-Interim': {'value': 1.1899388877905694,
         'value_error': None},
        'GPCPv2.3': {'value': 0.46131160529063586, 'value_error': None}}},
      'BiasSstLonRmse': {'diagnostic': {'CNRM-CM5-2_r1i1p1': {'value': None,
         'value_error': None},
        'ERA-Interim': {'value': None, 'value_error': None},
        'HadISST': {'value': None, 'value_error': None},
        'Tropflux': {'value': None, 'value_error': None}},
       'metric': {'ERA-Interim': {'value': 1.123183134209089,
         'value_error': None},
        'HadISST': {'value': 0.9518632076280573, 'value_error': None},
        'Tropflux': {'value': 1.1698740404005803, 'value_error': None}}},
      'BiasTauxLonRmse': {'diagnostic': {'CNRM-CM5-2_r1i1p1': {'value': None,
         'value_error': None},
        'ERA-Interim': {'value': None, 'value_error': None},
        'Tropflux': {'value': None, 'value_error': None}},
       'metric': {'ERA-Interim': {'value': 7.983768153163314,
         'value_error': None},
        'Tropflux': {'value': 7.777150791809402, 'value_error': None}}},
      'EnsoAmpl': {'diagnostic': {'CNRM-CM5-2_r1i1p1': {'value': 0.8082962797594796,
         'value_error': 0.06471549550270284},
        'ERA-Interim': {'value': 0.8989844997845644,
         'value_error': 0.14214193002531866},
        'HadISST': {'value': 0.7665787872085695,
         'value_error': 0.06238329697691264},
        'Tropflux': {'value': 0.9039789553693535,
         'value_error': 0.14293162279134272}},
       'metric': {'ERA-Interim': {'value': 10.08785135303419,
         'value_error': 21.415092135945528},
        'HadISST': {'value': 5.442035867287785,
         'value_error': 17.02287045425263},
        'Tropflux': {'value': 10.584613175068796,
         'value_error': 21.296774418611673}}},
      'EnsoDuration': {'diagnostic': {'CNRM-CM5-2_r1i1p1': {'value': 11.0,
         'value_error': None},
        'ERA-Interim': {'value': 13.0, 'value_error': None},
        'HadISST': {'value': 13.0, 'value_error': None},
        'Tropflux': {'value': 13.0, 'value_error': None}},
       'metric': {'ERA-Interim': {'value': 15.384615384615385,
         'value_error': None},
        'HadISST': {'value': 15.384615384615385, 'value_error': None},
        'Tropflux': {'value': 15.384615384615385, 'value_error': None}}},
      'EnsoSeasonality': {'diagnostic': {'CNRM-CM5-2_r1i1p1': {'value': 2.006342202206911,
         'value_error': 0.32178922009085237},
        'ERA-Interim': {'value': 2.0466846866656914,
         'value_error': 0.6513411033995022},
        'HadISST': {'value': 1.6639865947361325,
         'value_error': 0.2712772451657809},
        'Tropflux': {'value': 2.0532132553583624,
         'value_error': 0.6534187683977347}},
       'metric': {'ERA-Interim': {'value': 1.9711138076917722,
         'value_error': 46.91937430921574},
        'HadISST': {'value': 20.574421005180486,
         'value_error': 38.99551774160736},
        'Tropflux': {'value': 2.282814657909016,
         'value_error': 46.77018554015074}}},
      'EnsoSstDiversity_2': {'diagnostic': {'CNRM-CM5-2_r1i1p1': {'value': 29.5,
         'value_error': None},
        'ERA-Interim': {'value': 33.25, 'value_error': None},
        'HadISST': {'value': 49.0, 'value_error': None},
        'Tropflux': {'value': 32.0, 'value_error': None}},
       'metric': {'ERA-Interim': {'value': 11.278195488721805,
         'value_error': None},
        'HadISST': {'value': 39.795918367346935, 'value_error': None},
        'Tropflux': {'value': 7.8125, 'value_error': None}}},
      'EnsoSstLonRmse': {'diagnostic': {'CNRM-CM5-2_r1i1p1': {'value': None,
         'value_error': None},
        'ERA-Interim': {'value': None, 'value_error': None},
        'HadISST': {'value': None, 'value_error': None},
        'Tropflux': {'value': None, 'value_error': None}},
       'metric': {'ERA-Interim': {'value': 0.11677306822396072,
         'value_error': None},
        'HadISST': {'value': 0.1318314773401999, 'value_error': None},
        'Tropflux': {'value': 0.11583316546012414, 'value_error': None}}},
      'EnsoSstSkew': {'diagnostic': {'CNRM-CM5-2_r1i1p1': {'value': 0.06814084451954626,
         'value_error': 0.0054556338158172155},
        'ERA-Interim': {'value': 0.39098111106809963,
         'value_error': 0.061819541653923164},
        'HadISST': {'value': 0.38989908235027515,
         'value_error': 0.03172953733021198},
        'Tropflux': {'value': 0.39744741059612115,
         'value_error': 0.06284195338099416}},
       'metric': {'ERA-Interim': {'value': 82.57183209352593,
         'value_error': 4.151005476949704},
        'HadISST': {'value': 82.52346630086954,
         'value_error': 2.821462680444836},
        'Tropflux': {'value': 82.85538093773374,
         'value_error': 4.083470391701179}}},
      'EnsoSstTsRmse': {'diagnostic': {'CNRM-CM5-2_r1i1p1': {'value': None,
         'value_error': None},
        'ERA-Interim': {'value': None, 'value_error': None},
        'HadISST': {'value': None, 'value_error': None},
        'Tropflux': {'value': None, 'value_error': None}},
       'metric': {'ERA-Interim': {'value': 0.18613035958377797,
         'value_error': None},
        'HadISST': {'value': 0.19011475399837208, 'value_error': None},
        'Tropflux': {'value': 0.18737082430262175, 'value_error': None}}},
      'SeasonalPrLatRmse': {'diagnostic': {'CNRM-CM5-2_r1i1p1': {'value': None,
         'value_error': None},
        'ERA-Interim': {'value': None, 'value_error': None},
        'GPCPv2.3': {'value': None, 'value_error': None}},
       'metric': {'ERA-Interim': {'value': 0.9205097825840353,
         'value_error': None},
        'GPCPv2.3': {'value': 0.9691612679670483, 'value_error': None}}},
      'SeasonalPrLonRmse': {'diagnostic': {'CNRM-CM5-2_r1i1p1': {'value': None,
         'value_error': None},
        'ERA-Interim': {'value': None, 'value_error': None},
        'GPCPv2.3': {'value': None, 'value_error': None}},
       'metric': {'ERA-Interim': {'value': 0.3572071094349826,
         'value_error': None},
        'GPCPv2.3': {'value': 0.2915896240405753, 'value_error': None}}},
      'SeasonalSstLonRmse': {'diagnostic': {'CNRM-CM5-2_r1i1p1': {'value': None,
         'value_error': None},
        'ERA-Interim': {'value': None, 'value_error': None},
        'HadISST': {'value': None, 'value_error': None},
        'Tropflux': {'value': None, 'value_error': None}},
       'metric': {'ERA-Interim': {'value': 0.20941387154419366,
         'value_error': None},
        'HadISST': {'value': 0.2180980256716583, 'value_error': None},
        'Tropflux': {'value': 0.20495642063495542, 'value_error': None}}},
      'SeasonalTauxLonRmse': {'diagnostic': {'CNRM-CM5-2_r1i1p1': {'value': None,
         'value_error': None},
        'ERA-Interim': {'value': None, 'value_error': None},
        'Tropflux': {'value': None, 'value_error': None}},
       'metric': {'ERA-Interim': {'value': 2.2632346539414,
         'value_error': None},
        'Tropflux': {'value': 2.0776427816291942, 'value_error': None}}}}}},
   'CSIRO-Mk3-6-0': {'r10i1p1': {'metadata': {'description_of_the_collection': 'Describe which science question this collection is about',
      'metrics': {'BiasPrLatRmse': {'diagnostic': {'CSIRO-Mk3-6-0_r10i1p1': {'keyerror': None,
          'name': 'CSIRO-Mk3-6-0_r10i1p1',
          'nyears': 156,
          'time_period': ['1850-1-16 12:0:0.0', '2005-12-16 12:0:0.0']},
         'ERA-Interim': {'name': 'ERA-Interim',
          'nyears': 40,
          'time_period': ['1979-1-16 12:0:0.0', '2019-3-16 12:0:0.0']},
         'GPCPv2.3': {'name': 'GPCPv2.3',
          'nyears': 41,
          'time_period': ['1979-1-1 0:0:0.0', '2019-7-1 0:0:0.0']},
         'method': 'Meridional root mean square error of nino3_LatExt pr, time series are linearly detrended, observations and model regridded to generic_1x1deg',
         'name': 'pr Meridional RMSE',
         'ref': 'Using CDAT regridding and rms (uncentered and biased) calculation',
         'time_frequency': 'monthly',
         'units': 'mm/day'},
        'metric': {'datasets': "CSIRO-Mk3-6-0_r10i1p1; ERA-Interim's pr & GPCPv2.3's precip; 's ",
         'method': 'The metric is the statistical value between the model and the observations',
         'name': 'BiasPrLatRmse',
         'units': 'mm/day'}},
       'BiasPrLonRmse': {'diagnostic': {'CSIRO-Mk3-6-0_r10i1p1': {'keyerror': None,
          'name': 'CSIRO-Mk3-6-0_r10i1p1',
          'nyears': 156,
          'time_period': ['1850-1-16 12:0:0.0', '2005-12-16 12:0:0.0']},
         'ERA-Interim': {'name': 'ERA-Interim',
          'nyears': 40,
          'time_period': ['1979-1-16 12:0:0.0', '2019-3-16 12:0:0.0']},
         'GPCPv2.3': {'name': 'GPCPv2.3',
          'nyears': 41,
          'time_period': ['1979-1-1 0:0:0.0', '2019-7-1 0:0:0.0']},
         'method': 'Zonal root mean square error of equatorial_pacific pr, time series are linearly detrended, observations and model regridded to generic_1x1deg',
         'name': 'pr Zonal RMSE',
         'ref': 'Using CDAT regridding and rms (uncentered and biased) calculation',
         'time_frequency': 'monthly',
         'units': 'mm/day'},
        'metric': {'datasets': "CSIRO-Mk3-6-0_r10i1p1; ERA-Interim's pr & GPCPv2.3's precip; 's ",
         'method': 'The metric is the statistical value between the model and the observations',
         'name': 'BiasPrLonRmse',
         'units': 'mm/day'}},
       'BiasSstLonRmse': {'diagnostic': {'CSIRO-Mk3-6-0_r10i1p1': {'keyerror': None,
          'name': 'CSIRO-Mk3-6-0_r10i1p1',
          'nyears': 156,
          'time_period': ['1850-1-16 12:0:0.0', '2005-12-16 12:0:0.0']},
         'ERA-Interim': {'name': 'ERA-Interim',
          'nyears': 40,
          'time_period': ['1979-1-16 12:0:0.0', '2019-3-16 12:0:0.0']},
         'HadISST': {'name': 'HadISST',
          'nyears': 151,
          'time_period': ['1870-1-16 11:59:59.5', '2020-10-16 12:0:0.0']},
         'Tropflux': {'name': 'Tropflux',
          'nyears': 40,
          'time_period': ['1979-1-15 0:0:0.0', '2018-12-15 12:0:0.0']},
         'method': 'Zonal root mean square error of equatorial_pacific sst, time series are linearly detrended, observations and model regridded to generic_1x1deg',
         'name': 'sst Zonal RMSE',
         'ref': 'Using CDAT regridding and rms (uncentered and biased) calculation',
         'time_frequency': 'monthly',
         'units': 'C'},
        'metric': {'datasets': "CSIRO-Mk3-6-0_r10i1p1; ERA-Interim's ts & HadISST's sst & Tropflux's sst; 's ",
         'method': 'The metric is the statistical value between the model and the observations',
         'name': 'BiasSstLonRmse',
         'units': 'C'}},
       'BiasTauxLonRmse': {'diagnostic': {'CSIRO-Mk3-6-0_r10i1p1': {'keyerror': None,
          'name': 'CSIRO-Mk3-6-0_r10i1p1',
          'nyears': 156,
          'time_period': ['1850-1-16 12:0:0.0', '2005-12-16 12:0:0.0']},
         'ERA-Interim': {'name': 'ERA-Interim',
          'nyears': 40,
          'time_period': ['1979-1-16 12:0:0.0', '2019-3-16 12:0:0.0']},
         'Tropflux': {'name': 'Tropflux',
          'nyears': 40,
          'time_period': ['1979-1-15 0:0:0.0', '2018-12-15 12:0:0.0']},
         'method': 'Zonal root mean square error of equatorial_pacific taux, time series are linearly detrended, observations and model regridded to generic_1x1deg',
         'name': 'taux Zonal RMSE',
         'ref': 'Using CDAT regridding and rms (uncentered and biased) calculation',
         'time_frequency': 'monthly',
         'units': '1e-3 N/m2'},
        'metric': {'datasets': "CSIRO-Mk3-6-0_r10i1p1; ERA-Interim's tauu & Tropflux's taux; 's ",
         'method': 'The metric is the statistical value between the model and the observations',
         'name': 'BiasTauxLonRmse',
         'units': '1e-3 N/m2'}},
       'EnsoAmpl': {'diagnostic': {'CSIRO-Mk3-6-0_r10i1p1': {'keyerror': None,
          'name': 'CSIRO-Mk3-6-0_r10i1p1',
          'nyears': 156,
          'time_period': ['1850-1-16 12:0:0.0', '2005-12-16 12:0:0.0']},
         'ERA-Interim': {'keyerror': None,
          'name': 'ERA-Interim',
          'nyears': 40,
          'time_period': ['1979-1-16 12:0:0.0', '2019-3-16 12:0:0.0']},
         'HadISST': {'keyerror': None,
          'name': 'HadISST',
          'nyears': 151,
          'time_period': ['1870-1-16 11:59:59.5', '2020-10-16 12:0:0.0']},
         'Tropflux': {'keyerror': None,
          'name': 'Tropflux',
          'nyears': 40,
          'time_period': ['1979-1-15 0:0:0.0', '2018-12-15 12:0:0.0']},
         'method': 'Standard deviation of nino3.4 sstA, time series are linearly detrended',
         'name': 'ENSO amplitude',
         'ref': 'Using CDAT regression calculation',
         'time_frequency': 'monthly',
         'units': 'C'},
        'metric': {'datasets': "CSIRO-Mk3-6-0_r10i1p1; ERA-Interim's ts & HadISST's sst & Tropflux's sst; 's ",
         'method': 'The metric is the absolute value of the relative difference between model and observations values (M = 100 * abs[[model-obs] / obs])',
         'name': 'EnsoAmpl',
         'units': '%'}},
       'EnsoDuration': {'diagnostic': {'CSIRO-Mk3-6-0_r10i1p1': {'keyerror': None,
          'name': 'CSIRO-Mk3-6-0_r10i1p1',
          'nyears': 156,
          'time_period': ['1850-1-16 12:0:0.0', '2005-12-16 12:0:0.0']},
         'ERA-Interim': {'keyerror': None,
          'name': 'ERA-Interim',
          'nyears': 40,
          'time_period': ['1979-1-16 12:0:0.0', '2019-3-16 12:0:0.0']},
         'HadISST': {'keyerror': None,
          'name': 'HadISST',
          'nyears': 151,
          'time_period': ['1870-1-16 11:59:59.5', '2020-10-16 12:0:0.0']},
         'Tropflux': {'keyerror': None,
          'name': 'Tropflux',
          'nyears': 40,
          'time_period': ['1979-1-15 0:0:0.0', '2018-12-15 12:0:0.0']},
         'method': 'nino3.4 SSTA during DEC regressed against nino3.4 SSTA during 6 years (centered on ENSO), the duration is the number of consecutive months during which the regression is above 0.25, time series are linearly detrended, smoothing using a triangle shaped window of 5 points',
         'name': 'ENSO Duration based on life cyle SSTA pattern',
         'ref': 'Using CDAT',
         'time_frequency': 'monthly',
         'units': 'months'},
        'metric': {'datasets': "CSIRO-Mk3-6-0_r10i1p1; ERA-Interim's ts & HadISST's sst & Tropflux's sst; 's ",
         'method': 'The metric is the absolute value of the relative difference between model and observations values (M = 100 * abs[[model-obs] / obs])',
         'name': 'EnsoDuration',
         'units': '%'}},
       'EnsoSeasonality': {'diagnostic': {'CSIRO-Mk3-6-0_r10i1p1': {'keyerror': None,
          'name': 'CSIRO-Mk3-6-0_r10i1p1',
          'nyears': 156,
          'time_period': ['1850-1-16 12:0:0.0', '2005-12-16 12:0:0.0']},
         'ERA-Interim': {'keyerror': None,
          'name': 'ERA-Interim',
          'nyears': 40,
          'time_period': ['1979-1-16 12:0:0.0', '2019-3-16 12:0:0.0']},
         'HadISST': {'keyerror': None,
          'name': 'HadISST',
          'nyears': 151,
          'time_period': ['1870-1-16 11:59:59.5', '2020-10-16 12:0:0.0']},
         'Tropflux': {'keyerror': None,
          'name': 'Tropflux',
          'nyears': 40,
          'time_period': ['1979-1-15 0:0:0.0', '2018-12-15 12:0:0.0']},
         'method': 'Ratio between NDJ and MAM standard deviation nino3.4 sstA, time series are linearly detrended',
         'name': 'ENSO seasonality',
         'ref': 'Using CDAT std dev calculation',
         'time_frequency': 'monthly',
         'units': 'C/C'},
        'metric': {'datasets': "CSIRO-Mk3-6-0_r10i1p1; ERA-Interim's ts & HadISST's sst & Tropflux's sst; 's ",
         'method': 'The metric is the absolute value of the relative difference between model and observations values (M = 100 * abs[[model-obs] / obs])',
         'name': 'EnsoSeasonality',
         'units': '%'}},
       'EnsoSstDiversity_2': {'diagnostic': {'CSIRO-Mk3-6-0_r10i1p1': {'keyerror': None,
          'name': 'CSIRO-Mk3-6-0_r10i1p1',
          'nyears': 156,
          'time_period': ['1850-1-16 12:0:0.0', '2005-12-16 12:0:0.0']},
         'ERA-Interim': {'keyerror': None,
          'name': 'ERA-Interim',
          'nyears': 40,
          'time_period': ['1979-1-16 12:0:0.0', '2019-3-16 12:0:0.0']},
         'HadISST': {'keyerror': None,
          'name': 'HadISST',
          'nyears': 151,
          'time_period': ['1870-1-16 11:59:59.5', '2020-10-16 12:0:0.0']},
         'Tropflux': {'keyerror': None,
          'name': 'Tropflux',
          'nyears': 40,
          'time_period': ['1979-1-15 0:0:0.0', '2018-12-15 12:0:0.0']},
         'method': 'Nino (Nina) events = nino3.4 sstA > 0.75 (< -0.75) during DEC, zonal SSTA (meridional averaged [-5.0 ; 5.0]), the zonal SSTA maximum (minimum) is located for each event, the diversity is the interquartile range (IQR = Q3 - Q1), time series are linearly detrended, smoothing using a triangle shaped window of 5 points',
         'name': 'ENSO Diversity (interquartile range)',
         'ref': 'Using CDAT regridding',
         'time_frequency': 'monthly',
         'units': 'long'},
        'metric': {'datasets': "CSIRO-Mk3-6-0_r10i1p1; ERA-Interim's ts & HadISST's sst & Tropflux's sst; 's ",
         'method': 'The metric is the absolute value of the relative difference between model and observations values (M = 100 * abs[[model-obs] / obs])',
         'name': 'EnsoSstDiversity',
         'units': '%'}},
       'EnsoSstLonRmse': {'diagnostic': {'CSIRO-Mk3-6-0_r10i1p1': {'keyerror': None,
          'name': 'CSIRO-Mk3-6-0_r10i1p1',
          'nyears': 156,
          'time_period': ['1850-1-16 12:0:0.0', '2005-12-16 12:0:0.0']},
         'ERA-Interim': {'name': 'ERA-Interim',
          'nyears': 40,
          'time_period': ['1979-1-16 12:0:0.0', '2019-3-16 12:0:0.0']},
         'HadISST': {'name': 'HadISST',
          'nyears': 151,
          'time_period': ['1870-1-16 11:59:59.5', '2020-10-16 12:0:0.0']},
         'Tropflux': {'name': 'Tropflux',
          'nyears': 40,
          'time_period': ['1979-1-15 0:0:0.0', '2018-12-15 12:0:0.0']},
         'method': 'nino3.4 SSTA during DEC regressed against equatorial_pacific SSTA, time series are linearly detrended, smoothing using a triangle shaped window of 5 points, observations and model regridded to generic_1x1deg',
         'name': 'ENSO Zonal SSTA pattern',
         'ref': 'Using CDAT regridding and rms (uncentered and biased) calculation',
         'time_frequency': 'monthly',
         'units': 'C/C'},
        'metric': {'datasets': "CSIRO-Mk3-6-0_r10i1p1; ERA-Interim's ts & HadISST's sst & Tropflux's sst; 's ",
         'method': 'The metric is the statistical value between the model and the observations',
         'name': 'EnsoSstLonRmse',
         'units': 'C/C'}},
       'EnsoSstSkew': {'diagnostic': {'CSIRO-Mk3-6-0_r10i1p1': {'keyerror': None,
          'name': 'CSIRO-Mk3-6-0_r10i1p1',
          'nyears': 156,
          'time_period': ['1850-1-16 12:0:0.0', '2005-12-16 12:0:0.0']},
         'ERA-Interim': {'keyerror': None,
          'name': 'ERA-Interim',
          'nyears': 40,
          'time_period': ['1979-1-16 12:0:0.0', '2019-3-16 12:0:0.0']},
         'HadISST': {'keyerror': None,
          'name': 'HadISST',
          'nyears': 151,
          'time_period': ['1870-1-16 11:59:59.5', '2020-10-16 12:0:0.0']},
         'Tropflux': {'keyerror': None,
          'name': 'Tropflux',
          'nyears': 40,
          'time_period': ['1979-1-15 0:0:0.0', '2018-12-15 12:0:0.0']},
         'method': 'Standard deviation of nino3.4 sstA, time series are linearly detrended',
         'name': 'ENSO skewness',
         'ref': 'Using CDAT regression calculation',
         'time_frequency': 'monthly',
         'units': 'C'},
        'metric': {'datasets': "CSIRO-Mk3-6-0_r10i1p1; ERA-Interim's ts & HadISST's sst & Tropflux's sst; 's ",
         'method': 'The metric is the absolute value of the relative difference between model and observations values (M = 100 * abs[[model-obs] / obs])',
         'name': 'EnsoSstSkew',
         'units': '%'}},
       'EnsoSstTsRmse': {'diagnostic': {'CSIRO-Mk3-6-0_r10i1p1': {'keyerror': None,
          'name': 'CSIRO-Mk3-6-0_r10i1p1',
          'nyears': 156,
          'time_period': ['1850-1-16 12:0:0.0', '2005-12-16 12:0:0.0']},
         'ERA-Interim': {'name': 'ERA-Interim',
          'nyears': 40,
          'time_period': ['1979-1-16 12:0:0.0', '2019-3-16 12:0:0.0']},
         'HadISST': {'name': 'HadISST',
          'nyears': 151,
          'time_period': ['1870-1-16 11:59:59.5', '2020-10-16 12:0:0.0']},
         'Tropflux': {'name': 'Tropflux',
          'nyears': 40,
          'time_period': ['1979-1-15 0:0:0.0', '2018-12-15 12:0:0.0']},
         'method': 'nino3.4 SSTA during DEC regressed against nino3.4 SSTA during 6 years (centered on ENSO), time series are linearly detrended, smoothing using a triangle shaped window of 5 points',
         'name': 'ENSO life cyle SSTA pattern',
         'ref': 'Using CDAT regridding and rms (uncentered and biased) calculation',
         'time_frequency': 'monthly',
         'units': 'C/C'},
        'metric': {'datasets': "CSIRO-Mk3-6-0_r10i1p1; ERA-Interim's ts & HadISST's sst & Tropflux's sst; 's ",
         'method': 'The metric is the statistical value between the model and the observations',
         'name': 'EnsoSstTsRmse',
         'units': 'C/C'}},
       'SeasonalPrLatRmse': {'diagnostic': {'CSIRO-Mk3-6-0_r10i1p1': {'keyerror': None,
          'name': 'CSIRO-Mk3-6-0_r10i1p1',
          'nyears': 156,
          'time_period': ['1850-1-16 12:0:0.0', '2005-12-16 12:0:0.0']},
         'ERA-Interim': {'name': 'ERA-Interim',
          'nyears': 40,
          'time_period': ['1979-1-16 12:0:0.0', '2019-3-16 12:0:0.0']},
         'GPCPv2.3': {'name': 'GPCPv2.3',
          'nyears': 41,
          'time_period': ['1979-1-1 0:0:0.0', '2019-7-1 0:0:0.0']},
         'method': 'Meridional root mean square error of nino3_LatExt climatological pr STD, time series are linearly detrended, observations and model regridded to generic_1x1deg',
         'name': 'pr meridional seasonality RMSE',
         'ref': 'Using CDAT regridding and rms (uncentered and biased) calculation',
         'time_frequency': 'monthly',
         'units': 'mm/day'},
        'metric': {'datasets': "CSIRO-Mk3-6-0_r10i1p1; ERA-Interim's pr & GPCPv2.3's precip; 's ",
         'method': 'The metric is the statistical value between the model and the observations',
         'name': 'SeasonalPrLatRmse',
         'units': 'mm/day'}},
       'SeasonalPrLonRmse': {'diagnostic': {'CSIRO-Mk3-6-0_r10i1p1': {'keyerror': None,
          'name': 'CSIRO-Mk3-6-0_r10i1p1',
          'nyears': 156,
          'time_period': ['1850-1-16 12:0:0.0', '2005-12-16 12:0:0.0']},
         'ERA-Interim': {'name': 'ERA-Interim',
          'nyears': 40,
          'time_period': ['1979-1-16 12:0:0.0', '2019-3-16 12:0:0.0']},
         'GPCPv2.3': {'name': 'GPCPv2.3',
          'nyears': 41,
          'time_period': ['1979-1-1 0:0:0.0', '2019-7-1 0:0:0.0']},
         'method': 'Zonal root mean square error of equatorial_pacific climatological pr STD, time series are linearly detrended, observations and model regridded to generic_1x1deg',
         'name': 'pr zonal seasonality RMSE',
         'ref': 'Using CDAT regridding and rms (uncentered and biased) calculation',
         'time_frequency': 'monthly',
         'units': 'mm/day'},
        'metric': {'datasets': "CSIRO-Mk3-6-0_r10i1p1; ERA-Interim's pr & GPCPv2.3's precip; 's ",
         'method': 'The metric is the statistical value between the model and the observations',
         'name': 'SeasonalPrLonRmse',
         'units': 'mm/day'}},
       'SeasonalSstLonRmse': {'diagnostic': {'CSIRO-Mk3-6-0_r10i1p1': {'keyerror': None,
          'name': 'CSIRO-Mk3-6-0_r10i1p1',
          'nyears': 156,
          'time_period': ['1850-1-16 12:0:0.0', '2005-12-16 12:0:0.0']},
         'ERA-Interim': {'name': 'ERA-Interim',
          'nyears': 40,
          'time_period': ['1979-1-16 12:0:0.0', '2019-3-16 12:0:0.0']},
         'HadISST': {'name': 'HadISST',
          'nyears': 151,
          'time_period': ['1870-1-16 11:59:59.5', '2020-10-16 12:0:0.0']},
         'Tropflux': {'name': 'Tropflux',
          'nyears': 40,
          'time_period': ['1979-1-15 0:0:0.0', '2018-12-15 12:0:0.0']},
         'method': 'Zonal root mean square error of equatorial_pacific climatological sst STD, time series are linearly detrended, observations and model regridded to generic_1x1deg',
         'name': 'sst zonal seasonality RMSE',
         'ref': 'Using CDAT regridding and rms (uncentered and biased) calculation',
         'time_frequency': 'monthly',
         'units': 'C'},
        'metric': {'datasets': "CSIRO-Mk3-6-0_r10i1p1; ERA-Interim's ts & HadISST's sst & Tropflux's sst; 's ",
         'method': 'The metric is the statistical value between the model and the observations',
         'name': 'SeasonalSstLonRmse',
         'units': 'C'}},
       'SeasonalTauxLonRmse': {'diagnostic': {'CSIRO-Mk3-6-0_r10i1p1': {'keyerror': None,
          'name': 'CSIRO-Mk3-6-0_r10i1p1',
          'nyears': 156,
          'time_period': ['1850-1-16 12:0:0.0', '2005-12-16 12:0:0.0']},
         'ERA-Interim': {'name': 'ERA-Interim',
          'nyears': 40,
          'time_period': ['1979-1-16 12:0:0.0', '2019-3-16 12:0:0.0']},
         'Tropflux': {'name': 'Tropflux',
          'nyears': 40,
          'time_period': ['1979-1-15 0:0:0.0', '2018-12-15 12:0:0.0']},
         'method': 'Zonal root mean square error of equatorial_pacific climatological taux STD, time series are linearly detrended, observations and model regridded to generic_1x1deg',
         'name': 'taux zonal seasonality RMSE',
         'ref': 'Using CDAT regridding and rms (uncentered and biased) calculation',
         'time_frequency': 'monthly',
         'units': '1e-3 N/m2'},
        'metric': {'datasets': "CSIRO-Mk3-6-0_r10i1p1; ERA-Interim's tauu & Tropflux's taux; 's ",
         'method': 'The metric is the statistical value between the model and the observations',
         'name': 'SeasonalTauxLonRmse',
         'units': '1e-3 N/m2'}}},
      'name': 'Metrics Collection for ENSO performance'},
     'value': {'BiasPrLatRmse': {'diagnostic': {'CSIRO-Mk3-6-0_r10i1p1': {'value': None,
         'value_error': None},
        'ERA-Interim': {'value': None, 'value_error': None},
        'GPCPv2.3': {'value': None, 'value_error': None}},
       'metric': {'ERA-Interim': {'value': 1.103062955641847,
         'value_error': None},
        'GPCPv2.3': {'value': 1.1568624198108393, 'value_error': None}}},
      'BiasPrLonRmse': {'diagnostic': {'CSIRO-Mk3-6-0_r10i1p1': {'value': None,
         'value_error': None},
        'ERA-Interim': {'value': None, 'value_error': None},
        'GPCPv2.3': {'value': None, 'value_error': None}},
       'metric': {'ERA-Interim': {'value': 3.999960758987316,
         'value_error': None},
        'GPCPv2.3': {'value': 2.885963741847579, 'value_error': None}}},
      'BiasSstLonRmse': {'diagnostic': {'CSIRO-Mk3-6-0_r10i1p1': {'value': None,
         'value_error': None},
        'ERA-Interim': {'value': None, 'value_error': None},
        'HadISST': {'value': None, 'value_error': None},
        'Tropflux': {'value': None, 'value_error': None}},
       'metric': {'ERA-Interim': {'value': 2.736449971602806,
         'value_error': None},
        'HadISST': {'value': 2.5394959913847375, 'value_error': None},
        'Tropflux': {'value': 2.7840662390760706, 'value_error': None}}},
      'BiasTauxLonRmse': {'diagnostic': {'CSIRO-Mk3-6-0_r10i1p1': {'value': None,
         'value_error': None},
        'ERA-Interim': {'value': None, 'value_error': None},
        'Tropflux': {'value': None, 'value_error': None}},
       'metric': {'ERA-Interim': {'value': 8.647767632540104,
         'value_error': None},
        'Tropflux': {'value': 8.824095304559902, 'value_error': None}}},
      'EnsoAmpl': {'diagnostic': {'CSIRO-Mk3-6-0_r10i1p1': {'value': 0.7150174688994879,
         'value_error': 0.057247213616630654},
        'ERA-Interim': {'value': 0.8989844997845644,
         'value_error': 0.14214193002531866},
        'HadISST': {'value': 0.7665787872085695,
         'value_error': 0.06238329697691264},
        'Tropflux': {'value': 0.9039789553693535,
         'value_error': 0.14293162279134272}},
       'metric': {'ERA-Interim': {'value': 20.46387128244847,
         'value_error': 18.943752877162144},
        'HadISST': {'value': 6.726160333347822,
         'value_error': 15.058401294665671},
        'Tropflux': {'value': 20.903305917410265,
         'value_error': 18.83908923229272}}},
      'EnsoDuration': {'diagnostic': {'CSIRO-Mk3-6-0_r10i1p1': {'value': 16.0,
         'value_error': None},
        'ERA-Interim': {'value': 13.0, 'value_error': None},
        'HadISST': {'value': 13.0, 'value_error': None},
        'Tropflux': {'value': 13.0, 'value_error': None}},
       'metric': {'ERA-Interim': {'value': 23.076923076923077,
         'value_error': None},
        'HadISST': {'value': 23.076923076923077, 'value_error': None},
        'Tropflux': {'value': 23.076923076923077, 'value_error': None}}},
      'EnsoSeasonality': {'diagnostic': {'CSIRO-Mk3-6-0_r10i1p1': {'value': 0.8887573971141307,
         'value_error': 0.1425442525969646},
        'ERA-Interim': {'value': 2.0466846866656914,
         'value_error': 0.6513411033995022},
        'HadISST': {'value': 1.6639865947361325,
         'value_error': 0.2712772451657809},
        'Tropflux': {'value': 2.0532132553583624,
         'value_error': 0.6534187683977347}},
       'metric': {'ERA-Interim': {'value': 56.57575380787995,
         'value_error': 20.784062130285466},
        'HadISST': {'value': 46.58866844687136,
         'value_error': 17.27399982367249},
        'Tropflux': {'value': 56.7138291750893,
         'value_error': 20.7179753869936}}},
      'EnsoSstDiversity_2': {'diagnostic': {'CSIRO-Mk3-6-0_r10i1p1': {'value': 43.75,
         'value_error': None},
        'ERA-Interim': {'value': 33.25, 'value_error': None},
        'HadISST': {'value': 49.0, 'value_error': None},
        'Tropflux': {'value': 32.0, 'value_error': None}},
       'metric': {'ERA-Interim': {'value': 31.57894736842105,
         'value_error': None},
        'HadISST': {'value': 10.714285714285714, 'value_error': None},
        'Tropflux': {'value': 36.71875, 'value_error': None}}},
      'EnsoSstLonRmse': {'diagnostic': {'CSIRO-Mk3-6-0_r10i1p1': {'value': None,
         'value_error': None},
        'ERA-Interim': {'value': None, 'value_error': None},
        'HadISST': {'value': None, 'value_error': None},
        'Tropflux': {'value': None, 'value_error': None}},
       'metric': {'ERA-Interim': {'value': 0.6061410050847337,
         'value_error': None},
        'HadISST': {'value': 0.6135012813602986, 'value_error': None},
        'Tropflux': {'value': 0.6055744065107667, 'value_error': None}}},
      'EnsoSstSkew': {'diagnostic': {'CSIRO-Mk3-6-0_r10i1p1': {'value': 0.3201032241932767,
         'value_error': 0.02562876915856265},
        'ERA-Interim': {'value': 0.39098111106809963,
         'value_error': 0.061819541653923164},
        'HadISST': {'value': 0.38989908235027515,
         'value_error': 0.03172953733021198},
        'Tropflux': {'value': 0.39744741059612115,
         'value_error': 0.06284195338099416}},
       'metric': {'ERA-Interim': {'value': 18.128212557684837,
         'value_error': 19.500055307274586},
        'HadISST': {'value': 17.901006008086902,
         'value_error': 13.254301547324157},
        'Tropflux': {'value': 19.46023155285825,
         'value_error': 19.182797740441533}}},
      'EnsoSstTsRmse': {'diagnostic': {'CSIRO-Mk3-6-0_r10i1p1': {'value': None,
         'value_error': None},
        'ERA-Interim': {'value': None, 'value_error': None},
        'HadISST': {'value': None, 'value_error': None},
        'Tropflux': {'value': None, 'value_error': None}},
       'metric': {'ERA-Interim': {'value': 0.15605316254467175,
         'value_error': None},
        'HadISST': {'value': 0.11608296023415784, 'value_error': None},
        'Tropflux': {'value': 0.15252657059887686, 'value_error': None}}},
      'SeasonalPrLatRmse': {'diagnostic': {'CSIRO-Mk3-6-0_r10i1p1': {'value': None,
         'value_error': None},
        'ERA-Interim': {'value': None, 'value_error': None},
        'GPCPv2.3': {'value': None, 'value_error': None}},
       'metric': {'ERA-Interim': {'value': 0.8319476240372634,
         'value_error': None},
        'GPCPv2.3': {'value': 0.791325697453209, 'value_error': None}}},
      'SeasonalPrLonRmse': {'diagnostic': {'CSIRO-Mk3-6-0_r10i1p1': {'value': None,
         'value_error': None},
        'ERA-Interim': {'value': None, 'value_error': None},
        'GPCPv2.3': {'value': None, 'value_error': None}},
       'metric': {'ERA-Interim': {'value': 0.9435473006305822,
         'value_error': None},
        'GPCPv2.3': {'value': 0.6667267515125673, 'value_error': None}}},
      'SeasonalSstLonRmse': {'diagnostic': {'CSIRO-Mk3-6-0_r10i1p1': {'value': None,
         'value_error': None},
        'ERA-Interim': {'value': None, 'value_error': None},
        'HadISST': {'value': None, 'value_error': None},
        'Tropflux': {'value': None, 'value_error': None}},
       'metric': {'ERA-Interim': {'value': 0.186962241839423,
         'value_error': None},
        'HadISST': {'value': 0.20427004683234695, 'value_error': None},
        'Tropflux': {'value': 0.1867189599012703, 'value_error': None}}},
      'SeasonalTauxLonRmse': {'diagnostic': {'CSIRO-Mk3-6-0_r10i1p1': {'value': None,
         'value_error': None},
        'ERA-Interim': {'value': None, 'value_error': None},
        'Tropflux': {'value': None, 'value_error': None}},
       'metric': {'ERA-Interim': {'value': 2.4871952450868946,
         'value_error': None},
        'Tropflux': {'value': 2.665453995412361, 'value_error': None}}}}},
    'r1i1p1': {'metadata': {'description_of_the_collection': 'Describe which science question this collection is about',
      'metrics': {'BiasPrLatRmse': {'diagnostic': {'CSIRO-Mk3-6-0_r1i1p1': {'keyerror': None,
          'name': 'CSIRO-Mk3-6-0_r1i1p1',
          'nyears': 156,
          'time_period': ['1850-1-16 12:0:0.0', '2005-12-16 12:0:0.0']},
         'ERA-Interim': {'name': 'ERA-Interim',
          'nyears': 40,
          'time_period': ['1979-1-16 12:0:0.0', '2019-3-16 12:0:0.0']},
         'GPCPv2.3': {'name': 'GPCPv2.3',
          'nyears': 41,
          'time_period': ['1979-1-1 0:0:0.0', '2019-7-1 0:0:0.0']},
         'method': 'Meridional root mean square error of nino3_LatExt pr, time series are linearly detrended, observations and model regridded to generic_1x1deg',
         'name': 'pr Meridional RMSE',
         'ref': 'Using CDAT regridding and rms (uncentered and biased) calculation',
         'time_frequency': 'monthly',
         'units': 'mm/day'},
        'metric': {'datasets': "CSIRO-Mk3-6-0_r1i1p1; ERA-Interim's pr & GPCPv2.3's precip; 's ",
         'method': 'The metric is the statistical value between the model and the observations',
         'name': 'BiasPrLatRmse',
         'units': 'mm/day'}},
       'BiasPrLonRmse': {'diagnostic': {'CSIRO-Mk3-6-0_r1i1p1': {'keyerror': None,
          'name': 'CSIRO-Mk3-6-0_r1i1p1',
          'nyears': 156,
          'time_period': ['1850-1-16 12:0:0.0', '2005-12-16 12:0:0.0']},
         'ERA-Interim': {'name': 'ERA-Interim',
          'nyears': 40,
          'time_period': ['1979-1-16 12:0:0.0', '2019-3-16 12:0:0.0']},
         'GPCPv2.3': {'name': 'GPCPv2.3',
          'nyears': 41,
          'time_period': ['1979-1-1 0:0:0.0', '2019-7-1 0:0:0.0']},
         'method': 'Zonal root mean square error of equatorial_pacific pr, time series are linearly detrended, observations and model regridded to generic_1x1deg',
         'name': 'pr Zonal RMSE',
         'ref': 'Using CDAT regridding and rms (uncentered and biased) calculation',
         'time_frequency': 'monthly',
         'units': 'mm/day'},
        'metric': {'datasets': "CSIRO-Mk3-6-0_r1i1p1; ERA-Interim's pr & GPCPv2.3's precip; 's ",
         'method': 'The metric is the statistical value between the model and the observations',
         'name': 'BiasPrLonRmse',
         'units': 'mm/day'}},
       'BiasSstLonRmse': {'diagnostic': {'CSIRO-Mk3-6-0_r1i1p1': {'keyerror': None,
          'name': 'CSIRO-Mk3-6-0_r1i1p1',
          'nyears': 156,
          'time_period': ['1850-1-16 12:0:0.0', '2005-12-16 12:0:0.0']},
         'ERA-Interim': {'name': 'ERA-Interim',
          'nyears': 40,
          'time_period': ['1979-1-16 12:0:0.0', '2019-3-16 12:0:0.0']},
         'HadISST': {'name': 'HadISST',
          'nyears': 151,
          'time_period': ['1870-1-16 11:59:59.5', '2020-10-16 12:0:0.0']},
         'Tropflux': {'name': 'Tropflux',
          'nyears': 40,
          'time_period': ['1979-1-15 0:0:0.0', '2018-12-15 12:0:0.0']},
         'method': 'Zonal root mean square error of equatorial_pacific sst, time series are linearly detrended, observations and model regridded to generic_1x1deg',
         'name': 'sst Zonal RMSE',
         'ref': 'Using CDAT regridding and rms (uncentered and biased) calculation',
         'time_frequency': 'monthly',
         'units': 'C'},
        'metric': {'datasets': "CSIRO-Mk3-6-0_r1i1p1; ERA-Interim's ts & HadISST's sst & Tropflux's sst; 's ",
         'method': 'The metric is the statistical value between the model and the observations',
         'name': 'BiasSstLonRmse',
         'units': 'C'}},
       'BiasTauxLonRmse': {'diagnostic': {'CSIRO-Mk3-6-0_r1i1p1': {'keyerror': None,
          'name': 'CSIRO-Mk3-6-0_r1i1p1',
          'nyears': 156,
          'time_period': ['1850-1-16 12:0:0.0', '2005-12-16 12:0:0.0']},
         'ERA-Interim': {'name': 'ERA-Interim',
          'nyears': 40,
          'time_period': ['1979-1-16 12:0:0.0', '2019-3-16 12:0:0.0']},
         'Tropflux': {'name': 'Tropflux',
          'nyears': 40,
          'time_period': ['1979-1-15 0:0:0.0', '2018-12-15 12:0:0.0']},
         'method': 'Zonal root mean square error of equatorial_pacific taux, time series are linearly detrended, observations and model regridded to generic_1x1deg',
         'name': 'taux Zonal RMSE',
         'ref': 'Using CDAT regridding and rms (uncentered and biased) calculation',
         'time_frequency': 'monthly',
         'units': '1e-3 N/m2'},
        'metric': {'datasets': "CSIRO-Mk3-6-0_r1i1p1; ERA-Interim's tauu & Tropflux's taux; 's ",
         'method': 'The metric is the statistical value between the model and the observations',
         'name': 'BiasTauxLonRmse',
         'units': '1e-3 N/m2'}},
       'EnsoAmpl': {'diagnostic': {'CSIRO-Mk3-6-0_r1i1p1': {'keyerror': None,
          'name': 'CSIRO-Mk3-6-0_r1i1p1',
          'nyears': 156,
          'time_period': ['1850-1-16 12:0:0.0', '2005-12-16 12:0:0.0']},
         'ERA-Interim': {'keyerror': None,
          'name': 'ERA-Interim',
          'nyears': 40,
          'time_period': ['1979-1-16 12:0:0.0', '2019-3-16 12:0:0.0']},
         'HadISST': {'keyerror': None,
          'name': 'HadISST',
          'nyears': 151,
          'time_period': ['1870-1-16 11:59:59.5', '2020-10-16 12:0:0.0']},
         'Tropflux': {'keyerror': None,
          'name': 'Tropflux',
          'nyears': 40,
          'time_period': ['1979-1-15 0:0:0.0', '2018-12-15 12:0:0.0']},
         'method': 'Standard deviation of nino3.4 sstA, time series are linearly detrended',
         'name': 'ENSO amplitude',
         'ref': 'Using CDAT regression calculation',
         'time_frequency': 'monthly',
         'units': 'C'},
        'metric': {'datasets': "CSIRO-Mk3-6-0_r1i1p1; ERA-Interim's ts & HadISST's sst & Tropflux's sst; 's ",
         'method': 'The metric is the absolute value of the relative difference between model and observations values (M = 100 * abs[[model-obs] / obs])',
         'name': 'EnsoAmpl',
         'units': '%'}},
       'EnsoDuration': {'diagnostic': {'CSIRO-Mk3-6-0_r1i1p1': {'keyerror': None,
          'name': 'CSIRO-Mk3-6-0_r1i1p1',
          'nyears': 156,
          'time_period': ['1850-1-16 12:0:0.0', '2005-12-16 12:0:0.0']},
         'ERA-Interim': {'keyerror': None,
          'name': 'ERA-Interim',
          'nyears': 40,
          'time_period': ['1979-1-16 12:0:0.0', '2019-3-16 12:0:0.0']},
         'HadISST': {'keyerror': None,
          'name': 'HadISST',
          'nyears': 151,
          'time_period': ['1870-1-16 11:59:59.5', '2020-10-16 12:0:0.0']},
         'Tropflux': {'keyerror': None,
          'name': 'Tropflux',
          'nyears': 40,
          'time_period': ['1979-1-15 0:0:0.0', '2018-12-15 12:0:0.0']},
         'method': 'nino3.4 SSTA during DEC regressed against nino3.4 SSTA during 6 years (centered on ENSO), the duration is the number of consecutive months during which the regression is above 0.25, time series are linearly detrended, smoothing using a triangle shaped window of 5 points',
         'name': 'ENSO Duration based on life cyle SSTA pattern',
         'ref': 'Using CDAT',
         'time_frequency': 'monthly',
         'units': 'months'},
        'metric': {'datasets': "CSIRO-Mk3-6-0_r1i1p1; ERA-Interim's ts & HadISST's sst & Tropflux's sst; 's ",
         'method': 'The metric is the absolute value of the relative difference between model and observations values (M = 100 * abs[[model-obs] / obs])',
         'name': 'EnsoDuration',
         'units': '%'}},
       'EnsoSeasonality': {'diagnostic': {'CSIRO-Mk3-6-0_r1i1p1': {'keyerror': None,
          'name': 'CSIRO-Mk3-6-0_r1i1p1',
          'nyears': 156,
          'time_period': ['1850-1-16 12:0:0.0', '2005-12-16 12:0:0.0']},
         'ERA-Interim': {'keyerror': None,
          'name': 'ERA-Interim',
          'nyears': 40,
          'time_period': ['1979-1-16 12:0:0.0', '2019-3-16 12:0:0.0']},
         'HadISST': {'keyerror': None,
          'name': 'HadISST',
          'nyears': 151,
          'time_period': ['1870-1-16 11:59:59.5', '2020-10-16 12:0:0.0']},
         'Tropflux': {'keyerror': None,
          'name': 'Tropflux',
          'nyears': 40,
          'time_period': ['1979-1-15 0:0:0.0', '2018-12-15 12:0:0.0']},
         'method': 'Ratio between NDJ and MAM standard deviation nino3.4 sstA, time series are linearly detrended',
         'name': 'ENSO seasonality',
         'ref': 'Using CDAT std dev calculation',
         'time_frequency': 'monthly',
         'units': 'C/C'},
        'metric': {'datasets': "CSIRO-Mk3-6-0_r1i1p1; ERA-Interim's ts & HadISST's sst & Tropflux's sst; 's ",
         'method': 'The metric is the absolute value of the relative difference between model and observations values (M = 100 * abs[[model-obs] / obs])',
         'name': 'EnsoSeasonality',
         'units': '%'}},
       'EnsoSstDiversity_2': {'diagnostic': {'CSIRO-Mk3-6-0_r1i1p1': {'keyerror': None,
          'name': 'CSIRO-Mk3-6-0_r1i1p1',
          'nyears': 156,
          'time_period': ['1850-1-16 12:0:0.0', '2005-12-16 12:0:0.0']},
         'ERA-Interim': {'keyerror': None,
          'name': 'ERA-Interim',
          'nyears': 40,
          'time_period': ['1979-1-16 12:0:0.0', '2019-3-16 12:0:0.0']},
         'HadISST': {'keyerror': None,
          'name': 'HadISST',
          'nyears': 151,
          'time_period': ['1870-1-16 11:59:59.5', '2020-10-16 12:0:0.0']},
         'Tropflux': {'keyerror': None,
          'name': 'Tropflux',
          'nyears': 40,
          'time_period': ['1979-1-15 0:0:0.0', '2018-12-15 12:0:0.0']},
         'method': 'Nino (Nina) events = nino3.4 sstA > 0.75 (< -0.75) during DEC, zonal SSTA (meridional averaged [-5.0 ; 5.0]), the zonal SSTA maximum (minimum) is located for each event, the diversity is the interquartile range (IQR = Q3 - Q1), time series are linearly detrended, smoothing using a triangle shaped window of 5 points',
         'name': 'ENSO Diversity (interquartile range)',
         'ref': 'Using CDAT regridding',
         'time_frequency': 'monthly',
         'units': 'long'},
        'metric': {'datasets': "CSIRO-Mk3-6-0_r1i1p1; ERA-Interim's ts & HadISST's sst & Tropflux's sst; 's ",
         'method': 'The metric is the absolute value of the relative difference between model and observations values (M = 100 * abs[[model-obs] / obs])',
         'name': 'EnsoSstDiversity',
         'units': '%'}},
       'EnsoSstLonRmse': {'diagnostic': {'CSIRO-Mk3-6-0_r1i1p1': {'keyerror': None,
          'name': 'CSIRO-Mk3-6-0_r1i1p1',
          'nyears': 156,
          'time_period': ['1850-1-16 12:0:0.0', '2005-12-16 12:0:0.0']},
         'ERA-Interim': {'name': 'ERA-Interim',
          'nyears': 40,
          'time_period': ['1979-1-16 12:0:0.0', '2019-3-16 12:0:0.0']},
         'HadISST': {'name': 'HadISST',
          'nyears': 151,
          'time_period': ['1870-1-16 11:59:59.5', '2020-10-16 12:0:0.0']},
         'Tropflux': {'name': 'Tropflux',
          'nyears': 40,
          'time_period': ['1979-1-15 0:0:0.0', '2018-12-15 12:0:0.0']},
         'method': 'nino3.4 SSTA during DEC regressed against equatorial_pacific SSTA, time series are linearly detrended, smoothing using a triangle shaped window of 5 points, observations and model regridded to generic_1x1deg',
         'name': 'ENSO Zonal SSTA pattern',
         'ref': 'Using CDAT regridding and rms (uncentered and biased) calculation',
         'time_frequency': 'monthly',
         'units': 'C/C'},
        'metric': {'datasets': "CSIRO-Mk3-6-0_r1i1p1; ERA-Interim's ts & HadISST's sst & Tropflux's sst; 's ",
         'method': 'The metric is the statistical value between the model and the observations',
         'name': 'EnsoSstLonRmse',
         'units': 'C/C'}},
       'EnsoSstSkew': {'diagnostic': {'CSIRO-Mk3-6-0_r1i1p1': {'keyerror': None,
          'name': 'CSIRO-Mk3-6-0_r1i1p1',
          'nyears': 156,
          'time_period': ['1850-1-16 12:0:0.0', '2005-12-16 12:0:0.0']},
         'ERA-Interim': {'keyerror': None,
          'name': 'ERA-Interim',
          'nyears': 40,
          'time_period': ['1979-1-16 12:0:0.0', '2019-3-16 12:0:0.0']},
         'HadISST': {'keyerror': None,
          'name': 'HadISST',
          'nyears': 151,
          'time_period': ['1870-1-16 11:59:59.5', '2020-10-16 12:0:0.0']},
         'Tropflux': {'keyerror': None,
          'name': 'Tropflux',
          'nyears': 40,
          'time_period': ['1979-1-15 0:0:0.0', '2018-12-15 12:0:0.0']},
         'method': 'Standard deviation of nino3.4 sstA, time series are linearly detrended',
         'name': 'ENSO skewness',
         'ref': 'Using CDAT regression calculation',
         'time_frequency': 'monthly',
         'units': 'C'},
        'metric': {'datasets': "CSIRO-Mk3-6-0_r1i1p1; ERA-Interim's ts & HadISST's sst & Tropflux's sst; 's ",
         'method': 'The metric is the absolute value of the relative difference between model and observations values (M = 100 * abs[[model-obs] / obs])',
         'name': 'EnsoSstSkew',
         'units': '%'}},
       'EnsoSstTsRmse': {'diagnostic': {'CSIRO-Mk3-6-0_r1i1p1': {'keyerror': None,
          'name': 'CSIRO-Mk3-6-0_r1i1p1',
          'nyears': 156,
          'time_period': ['1850-1-16 12:0:0.0', '2005-12-16 12:0:0.0']},
         'ERA-Interim': {'name': 'ERA-Interim',
          'nyears': 40,
          'time_period': ['1979-1-16 12:0:0.0', '2019-3-16 12:0:0.0']},
         'HadISST': {'name': 'HadISST',
          'nyears': 151,
          'time_period': ['1870-1-16 11:59:59.5', '2020-10-16 12:0:0.0']},
         'Tropflux': {'name': 'Tropflux',
          'nyears': 40,
          'time_period': ['1979-1-15 0:0:0.0', '2018-12-15 12:0:0.0']},
         'method': 'nino3.4 SSTA during DEC regressed against nino3.4 SSTA during 6 years (centered on ENSO), time series are linearly detrended, smoothing using a triangle shaped window of 5 points',
         'name': 'ENSO life cyle SSTA pattern',
         'ref': 'Using CDAT regridding and rms (uncentered and biased) calculation',
         'time_frequency': 'monthly',
         'units': 'C/C'},
        'metric': {'datasets': "CSIRO-Mk3-6-0_r1i1p1; ERA-Interim's ts & HadISST's sst & Tropflux's sst; 's ",
         'method': 'The metric is the statistical value between the model and the observations',
         'name': 'EnsoSstTsRmse',
         'units': 'C/C'}},
       'SeasonalPrLatRmse': {'diagnostic': {'CSIRO-Mk3-6-0_r1i1p1': {'keyerror': None,
          'name': 'CSIRO-Mk3-6-0_r1i1p1',
          'nyears': 156,
          'time_period': ['1850-1-16 12:0:0.0', '2005-12-16 12:0:0.0']},
         'ERA-Interim': {'name': 'ERA-Interim',
          'nyears': 40,
          'time_period': ['1979-1-16 12:0:0.0', '2019-3-16 12:0:0.0']},
         'GPCPv2.3': {'name': 'GPCPv2.3',
          'nyears': 41,
          'time_period': ['1979-1-1 0:0:0.0', '2019-7-1 0:0:0.0']},
         'method': 'Meridional root mean square error of nino3_LatExt climatological pr STD, time series are linearly detrended, observations and model regridded to generic_1x1deg',
         'name': 'pr meridional seasonality RMSE',
         'ref': 'Using CDAT regridding and rms (uncentered and biased) calculation',
         'time_frequency': 'monthly',
         'units': 'mm/day'},
        'metric': {'datasets': "CSIRO-Mk3-6-0_r1i1p1; ERA-Interim's pr & GPCPv2.3's precip; 's ",
         'method': 'The metric is the statistical value between the model and the observations',
         'name': 'SeasonalPrLatRmse',
         'units': 'mm/day'}},
       'SeasonalPrLonRmse': {'diagnostic': {'CSIRO-Mk3-6-0_r1i1p1': {'keyerror': None,
          'name': 'CSIRO-Mk3-6-0_r1i1p1',
          'nyears': 156,
          'time_period': ['1850-1-16 12:0:0.0', '2005-12-16 12:0:0.0']},
         'ERA-Interim': {'name': 'ERA-Interim',
          'nyears': 40,
          'time_period': ['1979-1-16 12:0:0.0', '2019-3-16 12:0:0.0']},
         'GPCPv2.3': {'name': 'GPCPv2.3',
          'nyears': 41,
          'time_period': ['1979-1-1 0:0:0.0', '2019-7-1 0:0:0.0']},
         'method': 'Zonal root mean square error of equatorial_pacific climatological pr STD, time series are linearly detrended, observations and model regridded to generic_1x1deg',
         'name': 'pr zonal seasonality RMSE',
         'ref': 'Using CDAT regridding and rms (uncentered and biased) calculation',
         'time_frequency': 'monthly',
         'units': 'mm/day'},
        'metric': {'datasets': "CSIRO-Mk3-6-0_r1i1p1; ERA-Interim's pr & GPCPv2.3's precip; 's ",
         'method': 'The metric is the statistical value between the model and the observations',
         'name': 'SeasonalPrLonRmse',
         'units': 'mm/day'}},
       'SeasonalSstLonRmse': {'diagnostic': {'CSIRO-Mk3-6-0_r1i1p1': {'keyerror': None,
          'name': 'CSIRO-Mk3-6-0_r1i1p1',
          'nyears': 156,
          'time_period': ['1850-1-16 12:0:0.0', '2005-12-16 12:0:0.0']},
         'ERA-Interim': {'name': 'ERA-Interim',
          'nyears': 40,
          'time_period': ['1979-1-16 12:0:0.0', '2019-3-16 12:0:0.0']},
         'HadISST': {'name': 'HadISST',
          'nyears': 151,
          'time_period': ['1870-1-16 11:59:59.5', '2020-10-16 12:0:0.0']},
         'Tropflux': {'name': 'Tropflux',
          'nyears': 40,
          'time_period': ['1979-1-15 0:0:0.0', '2018-12-15 12:0:0.0']},
         'method': 'Zonal root mean square error of equatorial_pacific climatological sst STD, time series are linearly detrended, observations and model regridded to generic_1x1deg',
         'name': 'sst zonal seasonality RMSE',
         'ref': 'Using CDAT regridding and rms (uncentered and biased) calculation',
         'time_frequency': 'monthly',
         'units': 'C'},
        'metric': {'datasets': "CSIRO-Mk3-6-0_r1i1p1; ERA-Interim's ts & HadISST's sst & Tropflux's sst; 's ",
         'method': 'The metric is the statistical value between the model and the observations',
         'name': 'SeasonalSstLonRmse',
         'units': 'C'}},
       'SeasonalTauxLonRmse': {'diagnostic': {'CSIRO-Mk3-6-0_r1i1p1': {'keyerror': None,
          'name': 'CSIRO-Mk3-6-0_r1i1p1',
          'nyears': 156,
          'time_period': ['1850-1-16 12:0:0.0', '2005-12-16 12:0:0.0']},
         'ERA-Interim': {'name': 'ERA-Interim',
          'nyears': 40,
          'time_period': ['1979-1-16 12:0:0.0', '2019-3-16 12:0:0.0']},
         'Tropflux': {'name': 'Tropflux',
          'nyears': 40,
          'time_period': ['1979-1-15 0:0:0.0', '2018-12-15 12:0:0.0']},
         'method': 'Zonal root mean square error of equatorial_pacific climatological taux STD, time series are linearly detrended, observations and model regridded to generic_1x1deg',
         'name': 'taux zonal seasonality RMSE',
         'ref': 'Using CDAT regridding and rms (uncentered and biased) calculation',
         'time_frequency': 'monthly',
         'units': '1e-3 N/m2'},
        'metric': {'datasets': "CSIRO-Mk3-6-0_r1i1p1; ERA-Interim's tauu & Tropflux's taux; 's ",
         'method': 'The metric is the statistical value between the model and the observations',
         'name': 'SeasonalTauxLonRmse',
         'units': '1e-3 N/m2'}}},
      'name': 'Metrics Collection for ENSO performance'},
     'value': {'BiasPrLatRmse': {'diagnostic': {'CSIRO-Mk3-6-0_r1i1p1': {'value': None,
         'value_error': None},
        'ERA-Interim': {'value': None, 'value_error': None},
        'GPCPv2.3': {'value': None, 'value_error': None}},
       'metric': {'ERA-Interim': {'value': 1.0999288319356701,
         'value_error': None},
        'GPCPv2.3': {'value': 1.1778570558781354, 'value_error': None}}},
      'BiasPrLonRmse': {'diagnostic': {'CSIRO-Mk3-6-0_r1i1p1': {'value': None,
         'value_error': None},
        'ERA-Interim': {'value': None, 'value_error': None},
        'GPCPv2.3': {'value': None, 'value_error': None}},
       'metric': {'ERA-Interim': {'value': 3.9834835477576234,
         'value_error': None},
        'GPCPv2.3': {'value': 2.8786756716011133, 'value_error': None}}},
      'BiasSstLonRmse': {'diagnostic': {'CSIRO-Mk3-6-0_r1i1p1': {'value': None,
         'value_error': None},
        'ERA-Interim': {'value': None, 'value_error': None},
        'HadISST': {'value': None, 'value_error': None},
        'Tropflux': {'value': None, 'value_error': None}},
       'metric': {'ERA-Interim': {'value': 2.7469656428573876,
         'value_error': None},
        'HadISST': {'value': 2.5493675503111612, 'value_error': None},
        'Tropflux': {'value': 2.794557533567746, 'value_error': None}}},
      'BiasTauxLonRmse': {'diagnostic': {'CSIRO-Mk3-6-0_r1i1p1': {'value': None,
         'value_error': None},
        'ERA-Interim': {'value': None, 'value_error': None},
        'Tropflux': {'value': None, 'value_error': None}},
       'metric': {'ERA-Interim': {'value': 9.18271509008928,
         'value_error': None},
        'Tropflux': {'value': 9.333742722076048, 'value_error': None}}},
      'EnsoAmpl': {'diagnostic': {'CSIRO-Mk3-6-0_r1i1p1': {'value': 0.7753500154422521,
         'value_error': 0.06207768326275682},
        'ERA-Interim': {'value': 0.8989844997845644,
         'value_error': 0.14214193002531866},
        'HadISST': {'value': 0.7665787872085695,
         'value_error': 0.06238329697691264},
        'Tropflux': {'value': 0.9039789553693535,
         'value_error': 0.14293162279134272}},
       'metric': {'ERA-Interim': {'value': 13.752682540348632,
         'value_error': 20.542210120332904},
        'HadISST': {'value': 1.144204402736249,
         'value_error': 16.329015981001042},
        'Tropflux': {'value': 14.229196284170719,
         'value_error': 20.428715048959816}}},
      'EnsoDuration': {'diagnostic': {'CSIRO-Mk3-6-0_r1i1p1': {'value': 16.0,
         'value_error': None},
        'ERA-Interim': {'value': 13.0, 'value_error': None},
        'HadISST': {'value': 13.0, 'value_error': None},
        'Tropflux': {'value': 13.0, 'value_error': None}},
       'metric': {'ERA-Interim': {'value': 23.076923076923077,
         'value_error': None},
        'HadISST': {'value': 23.076923076923077, 'value_error': None},
        'Tropflux': {'value': 23.076923076923077, 'value_error': None}}},
      'EnsoSeasonality': {'diagnostic': {'CSIRO-Mk3-6-0_r1i1p1': {'value': 0.8840003945137872,
         'value_error': 0.14178129593132155},
        'ERA-Interim': {'value': 2.0466846866656914,
         'value_error': 0.6513411033995022},
        'HadISST': {'value': 1.6639865947361325,
         'value_error': 0.2712772451657809},
        'Tropflux': {'value': 2.0532132553583624,
         'value_error': 0.6534187683977347}},
       'metric': {'ERA-Interim': {'value': 56.80817859863231,
         'value_error': 20.672817106704787},
        'HadISST': {'value': 46.87454831005006,
         'value_error': 17.181542126728015},
        'Tropflux': {'value': 56.94551492852621,
         'value_error': 20.607084087399585}}},
      'EnsoSstDiversity_2': {'diagnostic': {'CSIRO-Mk3-6-0_r1i1p1': {'value': 46.0,
         'value_error': None},
        'ERA-Interim': {'value': 33.25, 'value_error': None},
        'HadISST': {'value': 49.0, 'value_error': None},
        'Tropflux': {'value': 32.0, 'value_error': None}},
       'metric': {'ERA-Interim': {'value': 38.34586466165413,
         'value_error': None},
        'HadISST': {'value': 6.122448979591836, 'value_error': None},
        'Tropflux': {'value': 43.75, 'value_error': None}}},
      'EnsoSstLonRmse': {'diagnostic': {'CSIRO-Mk3-6-0_r1i1p1': {'value': None,
         'value_error': None},
        'ERA-Interim': {'value': None, 'value_error': None},
        'HadISST': {'value': None, 'value_error': None},
        'Tropflux': {'value': None, 'value_error': None}},
       'metric': {'ERA-Interim': {'value': 0.5679695008683221,
         'value_error': None},
        'HadISST': {'value': 0.5768122060615655, 'value_error': None},
        'Tropflux': {'value': 0.5676603507985688, 'value_error': None}}},
      'EnsoSstSkew': {'diagnostic': {'CSIRO-Mk3-6-0_r1i1p1': {'value': -0.1484329865830473,
         'value_error': -0.011884150052659316},
        'ERA-Interim': {'value': 0.39098111106809963,
         'value_error': 0.061819541653923164},
        'HadISST': {'value': 0.38989908235027515,
         'value_error': 0.03172953733021198},
        'Tropflux': {'value': 0.39744741059612115,
         'value_error': 0.06284195338099416}},
       'metric': {'ERA-Interim': {'value': 137.96423468580142,
         'value_error': -9.042243967045184},
        'HadISST': {'value': 138.06959115889862,
         'value_error': -6.146066065719282},
        'Tropflux': {'value': 137.34657281083213,
         'value_error': -8.89513052175022}}},
      'EnsoSstTsRmse': {'diagnostic': {'CSIRO-Mk3-6-0_r1i1p1': {'value': None,
         'value_error': None},
        'ERA-Interim': {'value': None, 'value_error': None},
        'HadISST': {'value': None, 'value_error': None},
        'Tropflux': {'value': None, 'value_error': None}},
       'metric': {'ERA-Interim': {'value': 0.1758680575810676,
         'value_error': None},
        'HadISST': {'value': 0.13820258864686386, 'value_error': None},
        'Tropflux': {'value': 0.17109046685130652, 'value_error': None}}},
      'SeasonalPrLatRmse': {'diagnostic': {'CSIRO-Mk3-6-0_r1i1p1': {'value': None,
         'value_error': None},
        'ERA-Interim': {'value': None, 'value_error': None},
        'GPCPv2.3': {'value': None, 'value_error': None}},
       'metric': {'ERA-Interim': {'value': 0.8340454022462553,
         'value_error': None},
        'GPCPv2.3': {'value': 0.8062524167561979, 'value_error': None}}},
      'SeasonalPrLonRmse': {'diagnostic': {'CSIRO-Mk3-6-0_r1i1p1': {'value': None,
         'value_error': None},
        'ERA-Interim': {'value': None, 'value_error': None},
        'GPCPv2.3': {'value': None, 'value_error': None}},
       'metric': {'ERA-Interim': {'value': 0.9245837325645694,
         'value_error': None},
        'GPCPv2.3': {'value': 0.6532167273351532, 'value_error': None}}},
      'SeasonalSstLonRmse': {'diagnostic': {'CSIRO-Mk3-6-0_r1i1p1': {'value': None,
         'value_error': None},
        'ERA-Interim': {'value': None, 'value_error': None},
        'HadISST': {'value': None, 'value_error': None},
        'Tropflux': {'value': None, 'value_error': None}},
       'metric': {'ERA-Interim': {'value': 0.19083134212122738,
         'value_error': None},
        'HadISST': {'value': 0.20906964051973037, 'value_error': None},
        'Tropflux': {'value': 0.1897895761131959, 'value_error': None}}},
      'SeasonalTauxLonRmse': {'diagnostic': {'CSIRO-Mk3-6-0_r1i1p1': {'value': None,
         'value_error': None},
        'ERA-Interim': {'value': None, 'value_error': None},
        'Tropflux': {'value': None, 'value_error': None}},
       'metric': {'ERA-Interim': {'value': 2.5335940977014926,
         'value_error': None},
        'Tropflux': {'value': 2.710900663913964, 'value_error': None}}}}},
    'r2i1p1': {'metadata': {'description_of_the_collection': 'Describe which science question this collection is about',
      'metrics': {'BiasPrLatRmse': {'diagnostic': {'CSIRO-Mk3-6-0_r2i1p1': {'keyerror': None,
          'name': 'CSIRO-Mk3-6-0_r2i1p1',
          'nyears': 156,
          'time_period': ['1850-1-16 12:0:0.0', '2005-12-16 12:0:0.0']},
         'ERA-Interim': {'name': 'ERA-Interim',
          'nyears': 40,
          'time_period': ['1979-1-16 12:0:0.0', '2019-3-16 12:0:0.0']},
         'GPCPv2.3': {'name': 'GPCPv2.3',
          'nyears': 41,
          'time_period': ['1979-1-1 0:0:0.0', '2019-7-1 0:0:0.0']},
         'method': 'Meridional root mean square error of nino3_LatExt pr, time series are linearly detrended, observations and model regridded to generic_1x1deg',
         'name': 'pr Meridional RMSE',
         'ref': 'Using CDAT regridding and rms (uncentered and biased) calculation',
         'time_frequency': 'monthly',
         'units': 'mm/day'},
        'metric': {'datasets': "CSIRO-Mk3-6-0_r2i1p1; ERA-Interim's pr & GPCPv2.3's precip; 's ",
         'method': 'The metric is the statistical value between the model and the observations',
         'name': 'BiasPrLatRmse',
         'units': 'mm/day'}},
       'BiasPrLonRmse': {'diagnostic': {'CSIRO-Mk3-6-0_r2i1p1': {'keyerror': None,
          'name': 'CSIRO-Mk3-6-0_r2i1p1',
          'nyears': 156,
          'time_period': ['1850-1-16 12:0:0.0', '2005-12-16 12:0:0.0']},
         'ERA-Interim': {'name': 'ERA-Interim',
          'nyears': 40,
          'time_period': ['1979-1-16 12:0:0.0', '2019-3-16 12:0:0.0']},
         'GPCPv2.3': {'name': 'GPCPv2.3',
          'nyears': 41,
          'time_period': ['1979-1-1 0:0:0.0', '2019-7-1 0:0:0.0']},
         'method': 'Zonal root mean square error of equatorial_pacific pr, time series are linearly detrended, observations and model regridded to generic_1x1deg',
         'name': 'pr Zonal RMSE',
         'ref': 'Using CDAT regridding and rms (uncentered and biased) calculation',
         'time_frequency': 'monthly',
         'units': 'mm/day'},
        'metric': {'datasets': "CSIRO-Mk3-6-0_r2i1p1; ERA-Interim's pr & GPCPv2.3's precip; 's ",
         'method': 'The metric is the statistical value between the model and the observations',
         'name': 'BiasPrLonRmse',
         'units': 'mm/day'}},
       'BiasSstLonRmse': {'diagnostic': {'CSIRO-Mk3-6-0_r2i1p1': {'keyerror': None,
          'name': 'CSIRO-Mk3-6-0_r2i1p1',
          'nyears': 156,
          'time_period': ['1850-1-16 12:0:0.0', '2005-12-16 12:0:0.0']},
         'ERA-Interim': {'name': 'ERA-Interim',
          'nyears': 40,
          'time_period': ['1979-1-16 12:0:0.0', '2019-3-16 12:0:0.0']},
         'HadISST': {'name': 'HadISST',
          'nyears': 151,
          'time_period': ['1870-1-16 11:59:59.5', '2020-10-16 12:0:0.0']},
         'Tropflux': {'name': 'Tropflux',
          'nyears': 40,
          'time_period': ['1979-1-15 0:0:0.0', '2018-12-15 12:0:0.0']},
         'method': 'Zonal root mean square error of equatorial_pacific sst, time series are linearly detrended, observations and model regridded to generic_1x1deg',
         'name': 'sst Zonal RMSE',
         'ref': 'Using CDAT regridding and rms (uncentered and biased) calculation',
         'time_frequency': 'monthly',
         'units': 'C'},
        'metric': {'datasets': "CSIRO-Mk3-6-0_r2i1p1; ERA-Interim's ts & HadISST's sst & Tropflux's sst; 's ",
         'method': 'The metric is the statistical value between the model and the observations',
         'name': 'BiasSstLonRmse',
         'units': 'C'}},
       'BiasTauxLonRmse': {'diagnostic': {'CSIRO-Mk3-6-0_r2i1p1': {'keyerror': None,
          'name': 'CSIRO-Mk3-6-0_r2i1p1',
          'nyears': 156,
          'time_period': ['1850-1-16 12:0:0.0', '2005-12-16 12:0:0.0']},
         'ERA-Interim': {'name': 'ERA-Interim',
          'nyears': 40,
          'time_period': ['1979-1-16 12:0:0.0', '2019-3-16 12:0:0.0']},
         'Tropflux': {'name': 'Tropflux',
          'nyears': 40,
          'time_period': ['1979-1-15 0:0:0.0', '2018-12-15 12:0:0.0']},
         'method': 'Zonal root mean square error of equatorial_pacific taux, time series are linearly detrended, observations and model regridded to generic_1x1deg',
         'name': 'taux Zonal RMSE',
         'ref': 'Using CDAT regridding and rms (uncentered and biased) calculation',
         'time_frequency': 'monthly',
         'units': '1e-3 N/m2'},
        'metric': {'datasets': "CSIRO-Mk3-6-0_r2i1p1; ERA-Interim's tauu & Tropflux's taux; 's ",
         'method': 'The metric is the statistical value between the model and the observations',
         'name': 'BiasTauxLonRmse',
         'units': '1e-3 N/m2'}},
       'EnsoAmpl': {'diagnostic': {'CSIRO-Mk3-6-0_r2i1p1': {'keyerror': None,
          'name': 'CSIRO-Mk3-6-0_r2i1p1',
          'nyears': 156,
          'time_period': ['1850-1-16 12:0:0.0', '2005-12-16 12:0:0.0']},
         'ERA-Interim': {'keyerror': None,
          'name': 'ERA-Interim',
          'nyears': 40,
          'time_period': ['1979-1-16 12:0:0.0', '2019-3-16 12:0:0.0']},
         'HadISST': {'keyerror': None,
          'name': 'HadISST',
          'nyears': 151,
          'time_period': ['1870-1-16 11:59:59.5', '2020-10-16 12:0:0.0']},
         'Tropflux': {'keyerror': None,
          'name': 'Tropflux',
          'nyears': 40,
          'time_period': ['1979-1-15 0:0:0.0', '2018-12-15 12:0:0.0']},
         'method': 'Standard deviation of nino3.4 sstA, time series are linearly detrended',
         'name': 'ENSO amplitude',
         'ref': 'Using CDAT regression calculation',
         'time_frequency': 'monthly',
         'units': 'C'},
        'metric': {'datasets': "CSIRO-Mk3-6-0_r2i1p1; ERA-Interim's ts & HadISST's sst & Tropflux's sst; 's ",
         'method': 'The metric is the absolute value of the relative difference between model and observations values (M = 100 * abs[[model-obs] / obs])',
         'name': 'EnsoAmpl',
         'units': '%'}},
       'EnsoDuration': {'diagnostic': {'CSIRO-Mk3-6-0_r2i1p1': {'keyerror': None,
          'name': 'CSIRO-Mk3-6-0_r2i1p1',
          'nyears': 156,
          'time_period': ['1850-1-16 12:0:0.0', '2005-12-16 12:0:0.0']},
         'ERA-Interim': {'keyerror': None,
          'name': 'ERA-Interim',
          'nyears': 40,
          'time_period': ['1979-1-16 12:0:0.0', '2019-3-16 12:0:0.0']},
         'HadISST': {'keyerror': None,
          'name': 'HadISST',
          'nyears': 151,
          'time_period': ['1870-1-16 11:59:59.5', '2020-10-16 12:0:0.0']},
         'Tropflux': {'keyerror': None,
          'name': 'Tropflux',
          'nyears': 40,
          'time_period': ['1979-1-15 0:0:0.0', '2018-12-15 12:0:0.0']},
         'method': 'nino3.4 SSTA during DEC regressed against nino3.4 SSTA during 6 years (centered on ENSO), the duration is the number of consecutive months during which the regression is above 0.25, time series are linearly detrended, smoothing using a triangle shaped window of 5 points',
         'name': 'ENSO Duration based on life cyle SSTA pattern',
         'ref': 'Using CDAT',
         'time_frequency': 'monthly',
         'units': 'months'},
        'metric': {'datasets': "CSIRO-Mk3-6-0_r2i1p1; ERA-Interim's ts & HadISST's sst & Tropflux's sst; 's ",
         'method': 'The metric is the absolute value of the relative difference between model and observations values (M = 100 * abs[[model-obs] / obs])',
         'name': 'EnsoDuration',
         'units': '%'}},
       'EnsoSeasonality': {'diagnostic': {'CSIRO-Mk3-6-0_r2i1p1': {'keyerror': None,
          'name': 'CSIRO-Mk3-6-0_r2i1p1',
          'nyears': 156,
          'time_period': ['1850-1-16 12:0:0.0', '2005-12-16 12:0:0.0']},
         'ERA-Interim': {'keyerror': None,
          'name': 'ERA-Interim',
          'nyears': 40,
          'time_period': ['1979-1-16 12:0:0.0', '2019-3-16 12:0:0.0']},
         'HadISST': {'keyerror': None,
          'name': 'HadISST',
          'nyears': 151,
          'time_period': ['1870-1-16 11:59:59.5', '2020-10-16 12:0:0.0']},
         'Tropflux': {'keyerror': None,
          'name': 'Tropflux',
          'nyears': 40,
          'time_period': ['1979-1-15 0:0:0.0', '2018-12-15 12:0:0.0']},
         'method': 'Ratio between NDJ and MAM standard deviation nino3.4 sstA, time series are linearly detrended',
         'name': 'ENSO seasonality',
         'ref': 'Using CDAT std dev calculation',
         'time_frequency': 'monthly',
         'units': 'C/C'},
        'metric': {'datasets': "CSIRO-Mk3-6-0_r2i1p1; ERA-Interim's ts & HadISST's sst & Tropflux's sst; 's ",
         'method': 'The metric is the absolute value of the relative difference between model and observations values (M = 100 * abs[[model-obs] / obs])',
         'name': 'EnsoSeasonality',
         'units': '%'}},
       'EnsoSstDiversity_2': {'diagnostic': {'CSIRO-Mk3-6-0_r2i1p1': {'keyerror': None,
          'name': 'CSIRO-Mk3-6-0_r2i1p1',
          'nyears': 156,
          'time_period': ['1850-1-16 12:0:0.0', '2005-12-16 12:0:0.0']},
         'ERA-Interim': {'keyerror': None,
          'name': 'ERA-Interim',
          'nyears': 40,
          'time_period': ['1979-1-16 12:0:0.0', '2019-3-16 12:0:0.0']},
         'HadISST': {'keyerror': None,
          'name': 'HadISST',
          'nyears': 151,
          'time_period': ['1870-1-16 11:59:59.5', '2020-10-16 12:0:0.0']},
         'Tropflux': {'keyerror': None,
          'name': 'Tropflux',
          'nyears': 40,
          'time_period': ['1979-1-15 0:0:0.0', '2018-12-15 12:0:0.0']},
         'method': 'Nino (Nina) events = nino3.4 sstA > 0.75 (< -0.75) during DEC, zonal SSTA (meridional averaged [-5.0 ; 5.0]), the zonal SSTA maximum (minimum) is located for each event, the diversity is the interquartile range (IQR = Q3 - Q1), time series are linearly detrended, smoothing using a triangle shaped window of 5 points',
         'name': 'ENSO Diversity (interquartile range)',
         'ref': 'Using CDAT regridding',
         'time_frequency': 'monthly',
         'units': 'long'},
        'metric': {'datasets': "CSIRO-Mk3-6-0_r2i1p1; ERA-Interim's ts & HadISST's sst & Tropflux's sst; 's ",
         'method': 'The metric is the absolute value of the relative difference between model and observations values (M = 100 * abs[[model-obs] / obs])',
         'name': 'EnsoSstDiversity',
         'units': '%'}},
       'EnsoSstLonRmse': {'diagnostic': {'CSIRO-Mk3-6-0_r2i1p1': {'keyerror': None,
          'name': 'CSIRO-Mk3-6-0_r2i1p1',
          'nyears': 156,
          'time_period': ['1850-1-16 12:0:0.0', '2005-12-16 12:0:0.0']},
         'ERA-Interim': {'name': 'ERA-Interim',
          'nyears': 40,
          'time_period': ['1979-1-16 12:0:0.0', '2019-3-16 12:0:0.0']},
         'HadISST': {'name': 'HadISST',
          'nyears': 151,
          'time_period': ['1870-1-16 11:59:59.5', '2020-10-16 12:0:0.0']},
         'Tropflux': {'name': 'Tropflux',
          'nyears': 40,
          'time_period': ['1979-1-15 0:0:0.0', '2018-12-15 12:0:0.0']},
         'method': 'nino3.4 SSTA during DEC regressed against equatorial_pacific SSTA, time series are linearly detrended, smoothing using a triangle shaped window of 5 points, observations and model regridded to generic_1x1deg',
         'name': 'ENSO Zonal SSTA pattern',
         'ref': 'Using CDAT regridding and rms (uncentered and biased) calculation',
         'time_frequency': 'monthly',
         'units': 'C/C'},
        'metric': {'datasets': "CSIRO-Mk3-6-0_r2i1p1; ERA-Interim's ts & HadISST's sst & Tropflux's sst; 's ",
         'method': 'The metric is the statistical value between the model and the observations',
         'name': 'EnsoSstLonRmse',
         'units': 'C/C'}},
       'EnsoSstSkew': {'diagnostic': {'CSIRO-Mk3-6-0_r2i1p1': {'keyerror': None,
          'name': 'CSIRO-Mk3-6-0_r2i1p1',
          'nyears': 156,
          'time_period': ['1850-1-16 12:0:0.0', '2005-12-16 12:0:0.0']},
         'ERA-Interim': {'keyerror': None,
          'name': 'ERA-Interim',
          'nyears': 40,
          'time_period': ['1979-1-16 12:0:0.0', '2019-3-16 12:0:0.0']},
         'HadISST': {'keyerror': None,
          'name': 'HadISST',
          'nyears': 151,
          'time_period': ['1870-1-16 11:59:59.5', '2020-10-16 12:0:0.0']},
         'Tropflux': {'keyerror': None,
          'name': 'Tropflux',
          'nyears': 40,
          'time_period': ['1979-1-15 0:0:0.0', '2018-12-15 12:0:0.0']},
         'method': 'Standard deviation of nino3.4 sstA, time series are linearly detrended',
         'name': 'ENSO skewness',
         'ref': 'Using CDAT regression calculation',
         'time_frequency': 'monthly',
         'units': 'C'},
        'metric': {'datasets': "CSIRO-Mk3-6-0_r2i1p1; ERA-Interim's ts & HadISST's sst & Tropflux's sst; 's ",
         'method': 'The metric is the absolute value of the relative difference between model and observations values (M = 100 * abs[[model-obs] / obs])',
         'name': 'EnsoSstSkew',
         'units': '%'}},
       'EnsoSstTsRmse': {'diagnostic': {'CSIRO-Mk3-6-0_r2i1p1': {'keyerror': None,
          'name': 'CSIRO-Mk3-6-0_r2i1p1',
          'nyears': 156,
          'time_period': ['1850-1-16 12:0:0.0', '2005-12-16 12:0:0.0']},
         'ERA-Interim': {'name': 'ERA-Interim',
          'nyears': 40,
          'time_period': ['1979-1-16 12:0:0.0', '2019-3-16 12:0:0.0']},
         'HadISST': {'name': 'HadISST',
          'nyears': 151,
          'time_period': ['1870-1-16 11:59:59.5', '2020-10-16 12:0:0.0']},
         'Tropflux': {'name': 'Tropflux',
          'nyears': 40,
          'time_period': ['1979-1-15 0:0:0.0', '2018-12-15 12:0:0.0']},
         'method': 'nino3.4 SSTA during DEC regressed against nino3.4 SSTA during 6 years (centered on ENSO), time series are linearly detrended, smoothing using a triangle shaped window of 5 points',
         'name': 'ENSO life cyle SSTA pattern',
         'ref': 'Using CDAT regridding and rms (uncentered and biased) calculation',
         'time_frequency': 'monthly',
         'units': 'C/C'},
        'metric': {'datasets': "CSIRO-Mk3-6-0_r2i1p1; ERA-Interim's ts & HadISST's sst & Tropflux's sst; 's ",
         'method': 'The metric is the statistical value between the model and the observations',
         'name': 'EnsoSstTsRmse',
         'units': 'C/C'}},
       'SeasonalPrLatRmse': {'diagnostic': {'CSIRO-Mk3-6-0_r2i1p1': {'keyerror': None,
          'name': 'CSIRO-Mk3-6-0_r2i1p1',
          'nyears': 156,
          'time_period': ['1850-1-16 12:0:0.0', '2005-12-16 12:0:0.0']},
         'ERA-Interim': {'name': 'ERA-Interim',
          'nyears': 40,
          'time_period': ['1979-1-16 12:0:0.0', '2019-3-16 12:0:0.0']},
         'GPCPv2.3': {'name': 'GPCPv2.3',
          'nyears': 41,
          'time_period': ['1979-1-1 0:0:0.0', '2019-7-1 0:0:0.0']},
         'method': 'Meridional root mean square error of nino3_LatExt climatological pr STD, time series are linearly detrended, observations and model regridded to generic_1x1deg',
         'name': 'pr meridional seasonality RMSE',
         'ref': 'Using CDAT regridding and rms (uncentered and biased) calculation',
         'time_frequency': 'monthly',
         'units': 'mm/day'},
        'metric': {'datasets': "CSIRO-Mk3-6-0_r2i1p1; ERA-Interim's pr & GPCPv2.3's precip; 's ",
         'method': 'The metric is the statistical value between the model and the observations',
         'name': 'SeasonalPrLatRmse',
         'units': 'mm/day'}},
       'SeasonalPrLonRmse': {'diagnostic': {'CSIRO-Mk3-6-0_r2i1p1': {'keyerror': None,
          'name': 'CSIRO-Mk3-6-0_r2i1p1',
          'nyears': 156,
          'time_period': ['1850-1-16 12:0:0.0', '2005-12-16 12:0:0.0']},
         'ERA-Interim': {'name': 'ERA-Interim',
          'nyears': 40,
          'time_period': ['1979-1-16 12:0:0.0', '2019-3-16 12:0:0.0']},
         'GPCPv2.3': {'name': 'GPCPv2.3',
          'nyears': 41,
          'time_period': ['1979-1-1 0:0:0.0', '2019-7-1 0:0:0.0']},
         'method': 'Zonal root mean square error of equatorial_pacific climatological pr STD, time series are linearly detrended, observations and model regridded to generic_1x1deg',
         'name': 'pr zonal seasonality RMSE',
         'ref': 'Using CDAT regridding and rms (uncentered and biased) calculation',
         'time_frequency': 'monthly',
         'units': 'mm/day'},
        'metric': {'datasets': "CSIRO-Mk3-6-0_r2i1p1; ERA-Interim's pr & GPCPv2.3's precip; 's ",
         'method': 'The metric is the statistical value between the model and the observations',
         'name': 'SeasonalPrLonRmse',
         'units': 'mm/day'}},
       'SeasonalSstLonRmse': {'diagnostic': {'CSIRO-Mk3-6-0_r2i1p1': {'keyerror': None,
          'name': 'CSIRO-Mk3-6-0_r2i1p1',
          'nyears': 156,
          'time_period': ['1850-1-16 12:0:0.0', '2005-12-16 12:0:0.0']},
         'ERA-Interim': {'name': 'ERA-Interim',
          'nyears': 40,
          'time_period': ['1979-1-16 12:0:0.0', '2019-3-16 12:0:0.0']},
         'HadISST': {'name': 'HadISST',
          'nyears': 151,
          'time_period': ['1870-1-16 11:59:59.5', '2020-10-16 12:0:0.0']},
         'Tropflux': {'name': 'Tropflux',
          'nyears': 40,
          'time_period': ['1979-1-15 0:0:0.0', '2018-12-15 12:0:0.0']},
         'method': 'Zonal root mean square error of equatorial_pacific climatological sst STD, time series are linearly detrended, observations and model regridded to generic_1x1deg',
         'name': 'sst zonal seasonality RMSE',
         'ref': 'Using CDAT regridding and rms (uncentered and biased) calculation',
         'time_frequency': 'monthly',
         'units': 'C'},
        'metric': {'datasets': "CSIRO-Mk3-6-0_r2i1p1; ERA-Interim's ts & HadISST's sst & Tropflux's sst; 's ",
         'method': 'The metric is the statistical value between the model and the observations',
         'name': 'SeasonalSstLonRmse',
         'units': 'C'}},
       'SeasonalTauxLonRmse': {'diagnostic': {'CSIRO-Mk3-6-0_r2i1p1': {'keyerror': None,
          'name': 'CSIRO-Mk3-6-0_r2i1p1',
          'nyears': 156,
          'time_period': ['1850-1-16 12:0:0.0', '2005-12-16 12:0:0.0']},
         'ERA-Interim': {'name': 'ERA-Interim',
          'nyears': 40,
          'time_period': ['1979-1-16 12:0:0.0', '2019-3-16 12:0:0.0']},
         'Tropflux': {'name': 'Tropflux',
          'nyears': 40,
          'time_period': ['1979-1-15 0:0:0.0', '2018-12-15 12:0:0.0']},
         'method': 'Zonal root mean square error of equatorial_pacific climatological taux STD, time series are linearly detrended, observations and model regridded to generic_1x1deg',
         'name': 'taux zonal seasonality RMSE',
         'ref': 'Using CDAT regridding and rms (uncentered and biased) calculation',
         'time_frequency': 'monthly',
         'units': '1e-3 N/m2'},
        'metric': {'datasets': "CSIRO-Mk3-6-0_r2i1p1; ERA-Interim's tauu & Tropflux's taux; 's ",
         'method': 'The metric is the statistical value between the model and the observations',
         'name': 'SeasonalTauxLonRmse',
         'units': '1e-3 N/m2'}}},
      'name': 'Metrics Collection for ENSO performance'},
     'value': {'BiasPrLatRmse': {'diagnostic': {'CSIRO-Mk3-6-0_r2i1p1': {'value': None,
         'value_error': None},
        'ERA-Interim': {'value': None, 'value_error': None},
        'GPCPv2.3': {'value': None, 'value_error': None}},
       'metric': {'ERA-Interim': {'value': 1.0920747080145772,
         'value_error': None},
        'GPCPv2.3': {'value': 1.1354501961830117, 'value_error': None}}},
      'BiasPrLonRmse': {'diagnostic': {'CSIRO-Mk3-6-0_r2i1p1': {'value': None,
         'value_error': None},
        'ERA-Interim': {'value': None, 'value_error': None},
        'GPCPv2.3': {'value': None, 'value_error': None}},
       'metric': {'ERA-Interim': {'value': 4.065497485056934,
         'value_error': None},
        'GPCPv2.3': {'value': 2.955845597485687, 'value_error': None}}},
      'BiasSstLonRmse': {'diagnostic': {'CSIRO-Mk3-6-0_r2i1p1': {'value': None,
         'value_error': None},
        'ERA-Interim': {'value': None, 'value_error': None},
        'HadISST': {'value': None, 'value_error': None},
        'Tropflux': {'value': None, 'value_error': None}},
       'metric': {'ERA-Interim': {'value': 2.750864452057514,
         'value_error': None},
        'HadISST': {'value': 2.5531521808473694, 'value_error': None},
        'Tropflux': {'value': 2.7984830917478956, 'value_error': None}}},
      'BiasTauxLonRmse': {'diagnostic': {'CSIRO-Mk3-6-0_r2i1p1': {'value': None,
         'value_error': None},
        'ERA-Interim': {'value': None, 'value_error': None},
        'Tropflux': {'value': None, 'value_error': None}},
       'metric': {'ERA-Interim': {'value': 9.037441184457306,
         'value_error': None},
        'Tropflux': {'value': 9.21360395967189, 'value_error': None}}},
      'EnsoAmpl': {'diagnostic': {'CSIRO-Mk3-6-0_r2i1p1': {'value': 0.6589717670781621,
         'value_error': 0.05275996623595099},
        'ERA-Interim': {'value': 0.8989844997845644,
         'value_error': 0.14214193002531866},
        'HadISST': {'value': 0.7665787872085695,
         'value_error': 0.06238329697691264},
        'Tropflux': {'value': 0.9039789553693535,
         'value_error': 0.14293162279134272}},
       'metric': {'ERA-Interim': {'value': 26.698205893863552,
         'value_error': 17.458871778013},
        'HadISST': {'value': 14.037307309565547,
         'value_error': 13.87806835795341},
        'Tropflux': {'value': 27.103196024191163,
         'value_error': 17.36241205498749}}},
      'EnsoDuration': {'diagnostic': {'CSIRO-Mk3-6-0_r2i1p1': {'value': 15.0,
         'value_error': None},
        'ERA-Interim': {'value': 13.0, 'value_error': None},
        'HadISST': {'value': 13.0, 'value_error': None},
        'Tropflux': {'value': 13.0, 'value_error': None}},
       'metric': {'ERA-Interim': {'value': 15.384615384615385,
         'value_error': None},
        'HadISST': {'value': 15.384615384615385, 'value_error': None},
        'Tropflux': {'value': 15.384615384615385, 'value_error': None}}},
      'EnsoSeasonality': {'diagnostic': {'CSIRO-Mk3-6-0_r2i1p1': {'value': 0.8011751988417978,
         'value_error': 0.12849729328718382},
        'ERA-Interim': {'value': 2.0466846866656914,
         'value_error': 0.6513411033995022},
        'HadISST': {'value': 1.6639865947361325,
         'value_error': 0.2712772451657809},
        'Tropflux': {'value': 2.0532132553583624,
         'value_error': 0.6534187683977347}},
       'metric': {'ERA-Interim': {'value': 60.854976633112265,
         'value_error': 18.73590606845143},
        'HadISST': {'value': 51.85206411059793,
         'value_error': 15.571741274347758},
        'Tropflux': {'value': 60.97944542531395,
         'value_error': 18.676331813576493}}},
      'EnsoSstDiversity_2': {'diagnostic': {'CSIRO-Mk3-6-0_r2i1p1': {'value': 49.0,
         'value_error': None},
        'ERA-Interim': {'value': 33.25, 'value_error': None},
        'HadISST': {'value': 49.0, 'value_error': None},
        'Tropflux': {'value': 32.0, 'value_error': None}},
       'metric': {'ERA-Interim': {'value': 47.368421052631575,
         'value_error': None},
        'HadISST': {'value': 0.0, 'value_error': None},
        'Tropflux': {'value': 53.125, 'value_error': None}}},
      'EnsoSstLonRmse': {'diagnostic': {'CSIRO-Mk3-6-0_r2i1p1': {'value': None,
         'value_error': None},
        'ERA-Interim': {'value': None, 'value_error': None},
        'HadISST': {'value': None, 'value_error': None},
        'Tropflux': {'value': None, 'value_error': None}},
       'metric': {'ERA-Interim': {'value': 0.5677142419565733,
         'value_error': None},
        'HadISST': {'value': 0.5753864483556388, 'value_error': None},
        'Tropflux': {'value': 0.5672755553432187, 'value_error': None}}},
      'EnsoSstSkew': {'diagnostic': {'CSIRO-Mk3-6-0_r2i1p1': {'value': 0.2543244758591833,
         'value_error': 0.020362254393388735},
        'ERA-Interim': {'value': 0.39098111106809963,
         'value_error': 0.061819541653923164},
        'HadISST': {'value': 0.38989908235027515,
         'value_error': 0.03172953733021198},
        'Tropflux': {'value': 0.39744741059612115,
         'value_error': 0.06284195338099416}},
       'metric': {'ERA-Interim': {'value': 34.95223460683092,
         'value_error': 15.49294405811192},
        'HadISST': {'value': 34.77171725408043,
         'value_error': 10.530644614399293},
        'Tropflux': {'value': 36.010533952723826,
         'value_error': 15.240880478932045}}},
      'EnsoSstTsRmse': {'diagnostic': {'CSIRO-Mk3-6-0_r2i1p1': {'value': None,
         'value_error': None},
        'ERA-Interim': {'value': None, 'value_error': None},
        'HadISST': {'value': None, 'value_error': None},
        'Tropflux': {'value': None, 'value_error': None}},
       'metric': {'ERA-Interim': {'value': 0.22517959003780477,
         'value_error': None},
        'HadISST': {'value': 0.18482107077502874, 'value_error': None},
        'Tropflux': {'value': 0.22252507450684342, 'value_error': None}}},
      'SeasonalPrLatRmse': {'diagnostic': {'CSIRO-Mk3-6-0_r2i1p1': {'value': None,
         'value_error': None},
        'ERA-Interim': {'value': None, 'value_error': None},
        'GPCPv2.3': {'value': None, 'value_error': None}},
       'metric': {'ERA-Interim': {'value': 0.8379886429863843,
         'value_error': None},
        'GPCPv2.3': {'value': 0.808806831534962, 'value_error': None}}},
      'SeasonalPrLonRmse': {'diagnostic': {'CSIRO-Mk3-6-0_r2i1p1': {'value': None,
         'value_error': None},
        'ERA-Interim': {'value': None, 'value_error': None},
        'GPCPv2.3': {'value': None, 'value_error': None}},
       'metric': {'ERA-Interim': {'value': 0.9184314945226436,
         'value_error': None},
        'GPCPv2.3': {'value': 0.6414188147010228, 'value_error': None}}},
      'SeasonalSstLonRmse': {'diagnostic': {'CSIRO-Mk3-6-0_r2i1p1': {'value': None,
         'value_error': None},
        'ERA-Interim': {'value': None, 'value_error': None},
        'HadISST': {'value': None, 'value_error': None},
        'Tropflux': {'value': None, 'value_error': None}},
       'metric': {'ERA-Interim': {'value': 0.1815207430654919,
         'value_error': None},
        'HadISST': {'value': 0.1986021038583455, 'value_error': None},
        'Tropflux': {'value': 0.1816540658364887, 'value_error': None}}},
      'SeasonalTauxLonRmse': {'diagnostic': {'CSIRO-Mk3-6-0_r2i1p1': {'value': None,
         'value_error': None},
        'ERA-Interim': {'value': None, 'value_error': None},
        'Tropflux': {'value': None, 'value_error': None}},
       'metric': {'ERA-Interim': {'value': 2.6430869727834647,
         'value_error': None},
        'Tropflux': {'value': 2.8467097450033694, 'value_error': None}}}}},
    'r3i1p1': {'metadata': {'description_of_the_collection': 'Describe which science question this collection is about',
      'metrics': {'BiasPrLatRmse': {'diagnostic': {'CSIRO-Mk3-6-0_r3i1p1': {'keyerror': None,
          'name': 'CSIRO-Mk3-6-0_r3i1p1',
          'nyears': 156,
          'time_period': ['1850-1-16 12:0:0.0', '2005-12-16 12:0:0.0']},
         'ERA-Interim': {'name': 'ERA-Interim',
          'nyears': 40,
          'time_period': ['1979-1-16 12:0:0.0', '2019-3-16 12:0:0.0']},
         'GPCPv2.3': {'name': 'GPCPv2.3',
          'nyears': 41,
          'time_period': ['1979-1-1 0:0:0.0', '2019-7-1 0:0:0.0']},
         'method': 'Meridional root mean square error of nino3_LatExt pr, time series are linearly detrended, observations and model regridded to generic_1x1deg',
         'name': 'pr Meridional RMSE',
         'ref': 'Using CDAT regridding and rms (uncentered and biased) calculation',
         'time_frequency': 'monthly',
         'units': 'mm/day'},
        'metric': {'datasets': "CSIRO-Mk3-6-0_r3i1p1; ERA-Interim's pr & GPCPv2.3's precip; 's ",
         'method': 'The metric is the statistical value between the model and the observations',
         'name': 'BiasPrLatRmse',
         'units': 'mm/day'}},
       'BiasPrLonRmse': {'diagnostic': {'CSIRO-Mk3-6-0_r3i1p1': {'keyerror': None,
          'name': 'CSIRO-Mk3-6-0_r3i1p1',
          'nyears': 156,
          'time_period': ['1850-1-16 12:0:0.0', '2005-12-16 12:0:0.0']},
         'ERA-Interim': {'name': 'ERA-Interim',
          'nyears': 40,
          'time_period': ['1979-1-16 12:0:0.0', '2019-3-16 12:0:0.0']},
         'GPCPv2.3': {'name': 'GPCPv2.3',
          'nyears': 41,
          'time_period': ['1979-1-1 0:0:0.0', '2019-7-1 0:0:0.0']},
         'method': 'Zonal root mean square error of equatorial_pacific pr, time series are linearly detrended, observations and model regridded to generic_1x1deg',
         'name': 'pr Zonal RMSE',
         'ref': 'Using CDAT regridding and rms (uncentered and biased) calculation',
         'time_frequency': 'monthly',
         'units': 'mm/day'},
        'metric': {'datasets': "CSIRO-Mk3-6-0_r3i1p1; ERA-Interim's pr & GPCPv2.3's precip; 's ",
         'method': 'The metric is the statistical value between the model and the observations',
         'name': 'BiasPrLonRmse',
         'units': 'mm/day'}},
       'BiasSstLonRmse': {'diagnostic': {'CSIRO-Mk3-6-0_r3i1p1': {'keyerror': None,
          'name': 'CSIRO-Mk3-6-0_r3i1p1',
          'nyears': 156,
          'time_period': ['1850-1-16 12:0:0.0', '2005-12-16 12:0:0.0']},
         'ERA-Interim': {'name': 'ERA-Interim',
          'nyears': 40,
          'time_period': ['1979-1-16 12:0:0.0', '2019-3-16 12:0:0.0']},
         'HadISST': {'name': 'HadISST',
          'nyears': 151,
          'time_period': ['1870-1-16 11:59:59.5', '2020-10-16 12:0:0.0']},
         'Tropflux': {'name': 'Tropflux',
          'nyears': 40,
          'time_period': ['1979-1-15 0:0:0.0', '2018-12-15 12:0:0.0']},
         'method': 'Zonal root mean square error of equatorial_pacific sst, time series are linearly detrended, observations and model regridded to generic_1x1deg',
         'name': 'sst Zonal RMSE',
         'ref': 'Using CDAT regridding and rms (uncentered and biased) calculation',
         'time_frequency': 'monthly',
         'units': 'C'},
        'metric': {'datasets': "CSIRO-Mk3-6-0_r3i1p1; ERA-Interim's ts & HadISST's sst & Tropflux's sst; 's ",
         'method': 'The metric is the statistical value between the model and the observations',
         'name': 'BiasSstLonRmse',
         'units': 'C'}},
       'BiasTauxLonRmse': {'diagnostic': {'CSIRO-Mk3-6-0_r3i1p1': {'keyerror': None,
          'name': 'CSIRO-Mk3-6-0_r3i1p1',
          'nyears': 156,
          'time_period': ['1850-1-16 12:0:0.0', '2005-12-16 12:0:0.0']},
         'ERA-Interim': {'name': 'ERA-Interim',
          'nyears': 40,
          'time_period': ['1979-1-16 12:0:0.0', '2019-3-16 12:0:0.0']},
         'Tropflux': {'name': 'Tropflux',
          'nyears': 40,
          'time_period': ['1979-1-15 0:0:0.0', '2018-12-15 12:0:0.0']},
         'method': 'Zonal root mean square error of equatorial_pacific taux, time series are linearly detrended, observations and model regridded to generic_1x1deg',
         'name': 'taux Zonal RMSE',
         'ref': 'Using CDAT regridding and rms (uncentered and biased) calculation',
         'time_frequency': 'monthly',
         'units': '1e-3 N/m2'},
        'metric': {'datasets': "CSIRO-Mk3-6-0_r3i1p1; ERA-Interim's tauu & Tropflux's taux; 's ",
         'method': 'The metric is the statistical value between the model and the observations',
         'name': 'BiasTauxLonRmse',
         'units': '1e-3 N/m2'}},
       'EnsoAmpl': {'diagnostic': {'CSIRO-Mk3-6-0_r3i1p1': {'keyerror': None,
          'name': 'CSIRO-Mk3-6-0_r3i1p1',
          'nyears': 156,
          'time_period': ['1850-1-16 12:0:0.0', '2005-12-16 12:0:0.0']},
         'ERA-Interim': {'keyerror': None,
          'name': 'ERA-Interim',
          'nyears': 40,
          'time_period': ['1979-1-16 12:0:0.0', '2019-3-16 12:0:0.0']},
         'HadISST': {'keyerror': None,
          'name': 'HadISST',
          'nyears': 151,
          'time_period': ['1870-1-16 11:59:59.5', '2020-10-16 12:0:0.0']},
         'Tropflux': {'keyerror': None,
          'name': 'Tropflux',
          'nyears': 40,
          'time_period': ['1979-1-15 0:0:0.0', '2018-12-15 12:0:0.0']},
         'method': 'Standard deviation of nino3.4 sstA, time series are linearly detrended',
         'name': 'ENSO amplitude',
         'ref': 'Using CDAT regression calculation',
         'time_frequency': 'monthly',
         'units': 'C'},
        'metric': {'datasets': "CSIRO-Mk3-6-0_r3i1p1; ERA-Interim's ts & HadISST's sst & Tropflux's sst; 's ",
         'method': 'The metric is the absolute value of the relative difference between model and observations values (M = 100 * abs[[model-obs] / obs])',
         'name': 'EnsoAmpl',
         'units': '%'}},
       'EnsoDuration': {'diagnostic': {'CSIRO-Mk3-6-0_r3i1p1': {'keyerror': None,
          'name': 'CSIRO-Mk3-6-0_r3i1p1',
          'nyears': 156,
          'time_period': ['1850-1-16 12:0:0.0', '2005-12-16 12:0:0.0']},
         'ERA-Interim': {'keyerror': None,
          'name': 'ERA-Interim',
          'nyears': 40,
          'time_period': ['1979-1-16 12:0:0.0', '2019-3-16 12:0:0.0']},
         'HadISST': {'keyerror': None,
          'name': 'HadISST',
          'nyears': 151,
          'time_period': ['1870-1-16 11:59:59.5', '2020-10-16 12:0:0.0']},
         'Tropflux': {'keyerror': None,
          'name': 'Tropflux',
          'nyears': 40,
          'time_period': ['1979-1-15 0:0:0.0', '2018-12-15 12:0:0.0']},
         'method': 'nino3.4 SSTA during DEC regressed against nino3.4 SSTA during 6 years (centered on ENSO), the duration is the number of consecutive months during which the regression is above 0.25, time series are linearly detrended, smoothing using a triangle shaped window of 5 points',
         'name': 'ENSO Duration based on life cyle SSTA pattern',
         'ref': 'Using CDAT',
         'time_frequency': 'monthly',
         'units': 'months'},
        'metric': {'datasets': "CSIRO-Mk3-6-0_r3i1p1; ERA-Interim's ts & HadISST's sst & Tropflux's sst; 's ",
         'method': 'The metric is the absolute value of the relative difference between model and observations values (M = 100 * abs[[model-obs] / obs])',
         'name': 'EnsoDuration',
         'units': '%'}},
       'EnsoSeasonality': {'diagnostic': {'CSIRO-Mk3-6-0_r3i1p1': {'keyerror': None,
          'name': 'CSIRO-Mk3-6-0_r3i1p1',
          'nyears': 156,
          'time_period': ['1850-1-16 12:0:0.0', '2005-12-16 12:0:0.0']},
         'ERA-Interim': {'keyerror': None,
          'name': 'ERA-Interim',
          'nyears': 40,
          'time_period': ['1979-1-16 12:0:0.0', '2019-3-16 12:0:0.0']},
         'HadISST': {'keyerror': None,
          'name': 'HadISST',
          'nyears': 151,
          'time_period': ['1870-1-16 11:59:59.5', '2020-10-16 12:0:0.0']},
         'Tropflux': {'keyerror': None,
          'name': 'Tropflux',
          'nyears': 40,
          'time_period': ['1979-1-15 0:0:0.0', '2018-12-15 12:0:0.0']},
         'method': 'Ratio between NDJ and MAM standard deviation nino3.4 sstA, time series are linearly detrended',
         'name': 'ENSO seasonality',
         'ref': 'Using CDAT std dev calculation',
         'time_frequency': 'monthly',
         'units': 'C/C'},
        'metric': {'datasets': "CSIRO-Mk3-6-0_r3i1p1; ERA-Interim's ts & HadISST's sst & Tropflux's sst; 's ",
         'method': 'The metric is the absolute value of the relative difference between model and observations values (M = 100 * abs[[model-obs] / obs])',
         'name': 'EnsoSeasonality',
         'units': '%'}},
       'EnsoSstDiversity_2': {'diagnostic': {'CSIRO-Mk3-6-0_r3i1p1': {'keyerror': None,
          'name': 'CSIRO-Mk3-6-0_r3i1p1',
          'nyears': 156,
          'time_period': ['1850-1-16 12:0:0.0', '2005-12-16 12:0:0.0']},
         'ERA-Interim': {'keyerror': None,
          'name': 'ERA-Interim',
          'nyears': 40,
          'time_period': ['1979-1-16 12:0:0.0', '2019-3-16 12:0:0.0']},
         'HadISST': {'keyerror': None,
          'name': 'HadISST',
          'nyears': 151,
          'time_period': ['1870-1-16 11:59:59.5', '2020-10-16 12:0:0.0']},
         'Tropflux': {'keyerror': None,
          'name': 'Tropflux',
          'nyears': 40,
          'time_period': ['1979-1-15 0:0:0.0', '2018-12-15 12:0:0.0']},
         'method': 'Nino (Nina) events = nino3.4 sstA > 0.75 (< -0.75) during DEC, zonal SSTA (meridional averaged [-5.0 ; 5.0]), the zonal SSTA maximum (minimum) is located for each event, the diversity is the interquartile range (IQR = Q3 - Q1), time series are linearly detrended, smoothing using a triangle shaped window of 5 points',
         'name': 'ENSO Diversity (interquartile range)',
         'ref': 'Using CDAT regridding',
         'time_frequency': 'monthly',
         'units': 'long'},
        'metric': {'datasets': "CSIRO-Mk3-6-0_r3i1p1; ERA-Interim's ts & HadISST's sst & Tropflux's sst; 's ",
         'method': 'The metric is the absolute value of the relative difference between model and observations values (M = 100 * abs[[model-obs] / obs])',
         'name': 'EnsoSstDiversity',
         'units': '%'}},
       'EnsoSstLonRmse': {'diagnostic': {'CSIRO-Mk3-6-0_r3i1p1': {'keyerror': None,
          'name': 'CSIRO-Mk3-6-0_r3i1p1',
          'nyears': 156,
          'time_period': ['1850-1-16 12:0:0.0', '2005-12-16 12:0:0.0']},
         'ERA-Interim': {'name': 'ERA-Interim',
          'nyears': 40,
          'time_period': ['1979-1-16 12:0:0.0', '2019-3-16 12:0:0.0']},
         'HadISST': {'name': 'HadISST',
          'nyears': 151,
          'time_period': ['1870-1-16 11:59:59.5', '2020-10-16 12:0:0.0']},
         'Tropflux': {'name': 'Tropflux',
          'nyears': 40,
          'time_period': ['1979-1-15 0:0:0.0', '2018-12-15 12:0:0.0']},
         'method': 'nino3.4 SSTA during DEC regressed against equatorial_pacific SSTA, time series are linearly detrended, smoothing using a triangle shaped window of 5 points, observations and model regridded to generic_1x1deg',
         'name': 'ENSO Zonal SSTA pattern',
         'ref': 'Using CDAT regridding and rms (uncentered and biased) calculation',
         'time_frequency': 'monthly',
         'units': 'C/C'},
        'metric': {'datasets': "CSIRO-Mk3-6-0_r3i1p1; ERA-Interim's ts & HadISST's sst & Tropflux's sst; 's ",
         'method': 'The metric is the statistical value between the model and the observations',
         'name': 'EnsoSstLonRmse',
         'units': 'C/C'}},
       'EnsoSstSkew': {'diagnostic': {'CSIRO-Mk3-6-0_r3i1p1': {'keyerror': None,
          'name': 'CSIRO-Mk3-6-0_r3i1p1',
          'nyears': 156,
          'time_period': ['1850-1-16 12:0:0.0', '2005-12-16 12:0:0.0']},
         'ERA-Interim': {'keyerror': None,
          'name': 'ERA-Interim',
          'nyears': 40,
          'time_period': ['1979-1-16 12:0:0.0', '2019-3-16 12:0:0.0']},
         'HadISST': {'keyerror': None,
          'name': 'HadISST',
          'nyears': 151,
          'time_period': ['1870-1-16 11:59:59.5', '2020-10-16 12:0:0.0']},
         'Tropflux': {'keyerror': None,
          'name': 'Tropflux',
          'nyears': 40,
          'time_period': ['1979-1-15 0:0:0.0', '2018-12-15 12:0:0.0']},
         'method': 'Standard deviation of nino3.4 sstA, time series are linearly detrended',
         'name': 'ENSO skewness',
         'ref': 'Using CDAT regression calculation',
         'time_frequency': 'monthly',
         'units': 'C'},
        'metric': {'datasets': "CSIRO-Mk3-6-0_r3i1p1; ERA-Interim's ts & HadISST's sst & Tropflux's sst; 's ",
         'method': 'The metric is the absolute value of the relative difference between model and observations values (M = 100 * abs[[model-obs] / obs])',
         'name': 'EnsoSstSkew',
         'units': '%'}},
       'EnsoSstTsRmse': {'diagnostic': {'CSIRO-Mk3-6-0_r3i1p1': {'keyerror': None,
          'name': 'CSIRO-Mk3-6-0_r3i1p1',
          'nyears': 156,
          'time_period': ['1850-1-16 12:0:0.0', '2005-12-16 12:0:0.0']},
         'ERA-Interim': {'name': 'ERA-Interim',
          'nyears': 40,
          'time_period': ['1979-1-16 12:0:0.0', '2019-3-16 12:0:0.0']},
         'HadISST': {'name': 'HadISST',
          'nyears': 151,
          'time_period': ['1870-1-16 11:59:59.5', '2020-10-16 12:0:0.0']},
         'Tropflux': {'name': 'Tropflux',
          'nyears': 40,
          'time_period': ['1979-1-15 0:0:0.0', '2018-12-15 12:0:0.0']},
         'method': 'nino3.4 SSTA during DEC regressed against nino3.4 SSTA during 6 years (centered on ENSO), time series are linearly detrended, smoothing using a triangle shaped window of 5 points',
         'name': 'ENSO life cyle SSTA pattern',
         'ref': 'Using CDAT regridding and rms (uncentered and biased) calculation',
         'time_frequency': 'monthly',
         'units': 'C/C'},
        'metric': {'datasets': "CSIRO-Mk3-6-0_r3i1p1; ERA-Interim's ts & HadISST's sst & Tropflux's sst; 's ",
         'method': 'The metric is the statistical value between the model and the observations',
         'name': 'EnsoSstTsRmse',
         'units': 'C/C'}},
       'SeasonalPrLatRmse': {'diagnostic': {'CSIRO-Mk3-6-0_r3i1p1': {'keyerror': None,
          'name': 'CSIRO-Mk3-6-0_r3i1p1',
          'nyears': 156,
          'time_period': ['1850-1-16 12:0:0.0', '2005-12-16 12:0:0.0']},
         'ERA-Interim': {'name': 'ERA-Interim',
          'nyears': 40,
          'time_period': ['1979-1-16 12:0:0.0', '2019-3-16 12:0:0.0']},
         'GPCPv2.3': {'name': 'GPCPv2.3',
          'nyears': 41,
          'time_period': ['1979-1-1 0:0:0.0', '2019-7-1 0:0:0.0']},
         'method': 'Meridional root mean square error of nino3_LatExt climatological pr STD, time series are linearly detrended, observations and model regridded to generic_1x1deg',
         'name': 'pr meridional seasonality RMSE',
         'ref': 'Using CDAT regridding and rms (uncentered and biased) calculation',
         'time_frequency': 'monthly',
         'units': 'mm/day'},
        'metric': {'datasets': "CSIRO-Mk3-6-0_r3i1p1; ERA-Interim's pr & GPCPv2.3's precip; 's ",
         'method': 'The metric is the statistical value between the model and the observations',
         'name': 'SeasonalPrLatRmse',
         'units': 'mm/day'}},
       'SeasonalPrLonRmse': {'diagnostic': {'CSIRO-Mk3-6-0_r3i1p1': {'keyerror': None,
          'name': 'CSIRO-Mk3-6-0_r3i1p1',
          'nyears': 156,
          'time_period': ['1850-1-16 12:0:0.0', '2005-12-16 12:0:0.0']},
         'ERA-Interim': {'name': 'ERA-Interim',
          'nyears': 40,
          'time_period': ['1979-1-16 12:0:0.0', '2019-3-16 12:0:0.0']},
         'GPCPv2.3': {'name': 'GPCPv2.3',
          'nyears': 41,
          'time_period': ['1979-1-1 0:0:0.0', '2019-7-1 0:0:0.0']},
         'method': 'Zonal root mean square error of equatorial_pacific climatological pr STD, time series are linearly detrended, observations and model regridded to generic_1x1deg',
         'name': 'pr zonal seasonality RMSE',
         'ref': 'Using CDAT regridding and rms (uncentered and biased) calculation',
         'time_frequency': 'monthly',
         'units': 'mm/day'},
        'metric': {'datasets': "CSIRO-Mk3-6-0_r3i1p1; ERA-Interim's pr & GPCPv2.3's precip; 's ",
         'method': 'The metric is the statistical value between the model and the observations',
         'name': 'SeasonalPrLonRmse',
         'units': 'mm/day'}},
       'SeasonalSstLonRmse': {'diagnostic': {'CSIRO-Mk3-6-0_r3i1p1': {'keyerror': None,
          'name': 'CSIRO-Mk3-6-0_r3i1p1',
          'nyears': 156,
          'time_period': ['1850-1-16 12:0:0.0', '2005-12-16 12:0:0.0']},
         'ERA-Interim': {'name': 'ERA-Interim',
          'nyears': 40,
          'time_period': ['1979-1-16 12:0:0.0', '2019-3-16 12:0:0.0']},
         'HadISST': {'name': 'HadISST',
          'nyears': 151,
          'time_period': ['1870-1-16 11:59:59.5', '2020-10-16 12:0:0.0']},
         'Tropflux': {'name': 'Tropflux',
          'nyears': 40,
          'time_period': ['1979-1-15 0:0:0.0', '2018-12-15 12:0:0.0']},
         'method': 'Zonal root mean square error of equatorial_pacific climatological sst STD, time series are linearly detrended, observations and model regridded to generic_1x1deg',
         'name': 'sst zonal seasonality RMSE',
         'ref': 'Using CDAT regridding and rms (uncentered and biased) calculation',
         'time_frequency': 'monthly',
         'units': 'C'},
        'metric': {'datasets': "CSIRO-Mk3-6-0_r3i1p1; ERA-Interim's ts & HadISST's sst & Tropflux's sst; 's ",
         'method': 'The metric is the statistical value between the model and the observations',
         'name': 'SeasonalSstLonRmse',
         'units': 'C'}},
       'SeasonalTauxLonRmse': {'diagnostic': {'CSIRO-Mk3-6-0_r3i1p1': {'keyerror': None,
          'name': 'CSIRO-Mk3-6-0_r3i1p1',
          'nyears': 156,
          'time_period': ['1850-1-16 12:0:0.0', '2005-12-16 12:0:0.0']},
         'ERA-Interim': {'name': 'ERA-Interim',
          'nyears': 40,
          'time_period': ['1979-1-16 12:0:0.0', '2019-3-16 12:0:0.0']},
         'Tropflux': {'name': 'Tropflux',
          'nyears': 40,
          'time_period': ['1979-1-15 0:0:0.0', '2018-12-15 12:0:0.0']},
         'method': 'Zonal root mean square error of equatorial_pacific climatological taux STD, time series are linearly detrended, observations and model regridded to generic_1x1deg',
         'name': 'taux zonal seasonality RMSE',
         'ref': 'Using CDAT regridding and rms (uncentered and biased) calculation',
         'time_frequency': 'monthly',
         'units': '1e-3 N/m2'},
        'metric': {'datasets': "CSIRO-Mk3-6-0_r3i1p1; ERA-Interim's tauu & Tropflux's taux; 's ",
         'method': 'The metric is the statistical value between the model and the observations',
         'name': 'SeasonalTauxLonRmse',
         'units': '1e-3 N/m2'}}},
      'name': 'Metrics Collection for ENSO performance'},
     'value': {'BiasPrLatRmse': {'diagnostic': {'CSIRO-Mk3-6-0_r3i1p1': {'value': None,
         'value_error': None},
        'ERA-Interim': {'value': None, 'value_error': None},
        'GPCPv2.3': {'value': None, 'value_error': None}},
       'metric': {'ERA-Interim': {'value': 1.1231114831605487,
         'value_error': None},
        'GPCPv2.3': {'value': 1.1282689916350699, 'value_error': None}}},
      'BiasPrLonRmse': {'diagnostic': {'CSIRO-Mk3-6-0_r3i1p1': {'value': None,
         'value_error': None},
        'ERA-Interim': {'value': None, 'value_error': None},
        'GPCPv2.3': {'value': None, 'value_error': None}},
       'metric': {'ERA-Interim': {'value': 4.115728189734087,
         'value_error': None},
        'GPCPv2.3': {'value': 2.997395840968898, 'value_error': None}}},
      'BiasSstLonRmse': {'diagnostic': {'CSIRO-Mk3-6-0_r3i1p1': {'value': None,
         'value_error': None},
        'ERA-Interim': {'value': None, 'value_error': None},
        'HadISST': {'value': None, 'value_error': None},
        'Tropflux': {'value': None, 'value_error': None}},
       'metric': {'ERA-Interim': {'value': 2.812199255962905,
         'value_error': None},
        'HadISST': {'value': 2.6143379012743466, 'value_error': None},
        'Tropflux': {'value': 2.8597210225179466, 'value_error': None}}},
      'BiasTauxLonRmse': {'diagnostic': {'CSIRO-Mk3-6-0_r3i1p1': {'value': None,
         'value_error': None},
        'ERA-Interim': {'value': None, 'value_error': None},
        'Tropflux': {'value': None, 'value_error': None}},
       'metric': {'ERA-Interim': {'value': 9.301464688669377,
         'value_error': None},
        'Tropflux': {'value': 9.503139757144217, 'value_error': None}}},
      'EnsoAmpl': {'diagnostic': {'CSIRO-Mk3-6-0_r3i1p1': {'value': 0.7114046008631784,
         'value_error': 0.05695795267233282},
        'ERA-Interim': {'value': 0.8989844997845644,
         'value_error': 0.14214193002531866},
        'HadISST': {'value': 0.7665787872085695,
         'value_error': 0.06238329697691264},
        'Tropflux': {'value': 0.9039789553693535,
         'value_error': 0.14293162279134272}},
       'metric': {'ERA-Interim': {'value': 20.865754522612825,
         'value_error': 18.848033146897393},
        'HadISST': {'value': 7.19745801293344,
         'value_error': 14.982313619774096},
        'Tropflux': {'value': 21.302968765184566,
         'value_error': 18.743898350557632}}},
      'EnsoDuration': {'diagnostic': {'CSIRO-Mk3-6-0_r3i1p1': {'value': 15.0,
         'value_error': None},
        'ERA-Interim': {'value': 13.0, 'value_error': None},
        'HadISST': {'value': 13.0, 'value_error': None},
        'Tropflux': {'value': 13.0, 'value_error': None}},
       'metric': {'ERA-Interim': {'value': 15.384615384615385,
         'value_error': None},
        'HadISST': {'value': 15.384615384615385, 'value_error': None},
        'Tropflux': {'value': 15.384615384615385, 'value_error': None}}},
      'EnsoSeasonality': {'diagnostic': {'CSIRO-Mk3-6-0_r3i1p1': {'value': 0.8465231657324173,
         'value_error': 0.135770472748986},
        'ERA-Interim': {'value': 2.0466846866656914,
         'value_error': 0.6513411033995022},
        'HadISST': {'value': 1.6639865947361325,
         'value_error': 0.2712772451657809},
        'Tropflux': {'value': 2.0532132553583624,
         'value_error': 0.6534187683977347}},
       'metric': {'ERA-Interim': {'value': 58.639297433181525,
         'value_error': 19.79639227582049},
        'HadISST': {'value': 49.126803760900785,
         'value_error': 16.45313002522178},
        'Tropflux': {'value': 58.77081138438942,
         'value_error': 19.73344601025237}}},
      'EnsoSstDiversity_2': {'diagnostic': {'CSIRO-Mk3-6-0_r3i1p1': {'value': 48.0,
         'value_error': None},
        'ERA-Interim': {'value': 33.25, 'value_error': None},
        'HadISST': {'value': 49.0, 'value_error': None},
        'Tropflux': {'value': 32.0, 'value_error': None}},
       'metric': {'ERA-Interim': {'value': 44.3609022556391,
         'value_error': None},
        'HadISST': {'value': 2.0408163265306123, 'value_error': None},
        'Tropflux': {'value': 50.0, 'value_error': None}}},
      'EnsoSstLonRmse': {'diagnostic': {'CSIRO-Mk3-6-0_r3i1p1': {'value': None,
         'value_error': None},
        'ERA-Interim': {'value': None, 'value_error': None},
        'HadISST': {'value': None, 'value_error': None},
        'Tropflux': {'value': None, 'value_error': None}},
       'metric': {'ERA-Interim': {'value': 0.5610430632468513,
         'value_error': None},
        'HadISST': {'value': 0.5686163786896763, 'value_error': None},
        'Tropflux': {'value': 0.5606345801947923, 'value_error': None}}},
      'EnsoSstSkew': {'diagnostic': {'CSIRO-Mk3-6-0_r3i1p1': {'value': 0.11216285906589919,
         'value_error': 0.008980215773861308},
        'ERA-Interim': {'value': 0.39098111106809963,
         'value_error': 0.061819541653923164},
        'HadISST': {'value': 0.38989908235027515,
         'value_error': 0.03172953733021198},
        'Tropflux': {'value': 0.39744741059612115,
         'value_error': 0.06284195338099416}},
       'metric': {'ERA-Interim': {'value': 71.31246091160575,
         'value_error': 6.832739534939732},
        'HadISST': {'value': 71.23284866694428,
         'value_error': 4.644252991253292},
        'Tropflux': {'value': 71.779194913443,
         'value_error': 6.721573782561056}}},
      'EnsoSstTsRmse': {'diagnostic': {'CSIRO-Mk3-6-0_r3i1p1': {'value': None,
         'value_error': None},
        'ERA-Interim': {'value': None, 'value_error': None},
        'HadISST': {'value': None, 'value_error': None},
        'Tropflux': {'value': None, 'value_error': None}},
       'metric': {'ERA-Interim': {'value': 0.1579483421000817,
         'value_error': None},
        'HadISST': {'value': 0.12302078956545606, 'value_error': None},
        'Tropflux': {'value': 0.1559117811526407, 'value_error': None}}},
      'SeasonalPrLatRmse': {'diagnostic': {'CSIRO-Mk3-6-0_r3i1p1': {'value': None,
         'value_error': None},
        'ERA-Interim': {'value': None, 'value_error': None},
        'GPCPv2.3': {'value': None, 'value_error': None}},
       'metric': {'ERA-Interim': {'value': 0.8100448583928331,
         'value_error': None},
        'GPCPv2.3': {'value': 0.7886528269824027, 'value_error': None}}},
      'SeasonalPrLonRmse': {'diagnostic': {'CSIRO-Mk3-6-0_r3i1p1': {'value': None,
         'value_error': None},
        'ERA-Interim': {'value': None, 'value_error': None},
        'GPCPv2.3': {'value': None, 'value_error': None}},
       'metric': {'ERA-Interim': {'value': 0.9045386219725519,
         'value_error': None},
        'GPCPv2.3': {'value': 0.6365329130779693, 'value_error': None}}},
      'SeasonalSstLonRmse': {'diagnostic': {'CSIRO-Mk3-6-0_r3i1p1': {'value': None,
         'value_error': None},
        'ERA-Interim': {'value': None, 'value_error': None},
        'HadISST': {'value': None, 'value_error': None},
        'Tropflux': {'value': None, 'value_error': None}},
       'metric': {'ERA-Interim': {'value': 0.17836043092158507,
         'value_error': None},
        'HadISST': {'value': 0.19619329069167812, 'value_error': None},
        'Tropflux': {'value': 0.17780781438631177, 'value_error': None}}},
      'SeasonalTauxLonRmse': {'diagnostic': {'CSIRO-Mk3-6-0_r3i1p1': {'value': None,
         'value_error': None},
        'ERA-Interim': {'value': None, 'value_error': None},
        'Tropflux': {'value': None, 'value_error': None}},
       'metric': {'ERA-Interim': {'value': 2.6080183078774417,
         'value_error': None},
        'Tropflux': {'value': 2.807210597011223, 'value_error': None}}}}},
    'r4i1p1': {'metadata': {'description_of_the_collection': 'Describe which science question this collection is about',
      'metrics': {'BiasPrLatRmse': {'diagnostic': {'CSIRO-Mk3-6-0_r4i1p1': {'keyerror': None,
          'name': 'CSIRO-Mk3-6-0_r4i1p1',
          'nyears': 156,
          'time_period': ['1850-1-16 12:0:0.0', '2005-12-16 12:0:0.0']},
         'ERA-Interim': {'name': 'ERA-Interim',
          'nyears': 40,
          'time_period': ['1979-1-16 12:0:0.0', '2019-3-16 12:0:0.0']},
         'GPCPv2.3': {'name': 'GPCPv2.3',
          'nyears': 41,
          'time_period': ['1979-1-1 0:0:0.0', '2019-7-1 0:0:0.0']},
         'method': 'Meridional root mean square error of nino3_LatExt pr, time series are linearly detrended, observations and model regridded to generic_1x1deg',
         'name': 'pr Meridional RMSE',
         'ref': 'Using CDAT regridding and rms (uncentered and biased) calculation',
         'time_frequency': 'monthly',
         'units': 'mm/day'},
        'metric': {'datasets': "CSIRO-Mk3-6-0_r4i1p1; ERA-Interim's pr & GPCPv2.3's precip; 's ",
         'method': 'The metric is the statistical value between the model and the observations',
         'name': 'BiasPrLatRmse',
         'units': 'mm/day'}},
       'BiasPrLonRmse': {'diagnostic': {'CSIRO-Mk3-6-0_r4i1p1': {'keyerror': None,
          'name': 'CSIRO-Mk3-6-0_r4i1p1',
          'nyears': 156,
          'time_period': ['1850-1-16 12:0:0.0', '2005-12-16 12:0:0.0']},
         'ERA-Interim': {'name': 'ERA-Interim',
          'nyears': 40,
          'time_period': ['1979-1-16 12:0:0.0', '2019-3-16 12:0:0.0']},
         'GPCPv2.3': {'name': 'GPCPv2.3',
          'nyears': 41,
          'time_period': ['1979-1-1 0:0:0.0', '2019-7-1 0:0:0.0']},
         'method': 'Zonal root mean square error of equatorial_pacific pr, time series are linearly detrended, observations and model regridded to generic_1x1deg',
         'name': 'pr Zonal RMSE',
         'ref': 'Using CDAT regridding and rms (uncentered and biased) calculation',
         'time_frequency': 'monthly',
         'units': 'mm/day'},
        'metric': {'datasets': "CSIRO-Mk3-6-0_r4i1p1; ERA-Interim's pr & GPCPv2.3's precip; 's ",
         'method': 'The metric is the statistical value between the model and the observations',
         'name': 'BiasPrLonRmse',
         'units': 'mm/day'}},
       'BiasSstLonRmse': {'diagnostic': {'CSIRO-Mk3-6-0_r4i1p1': {'keyerror': None,
          'name': 'CSIRO-Mk3-6-0_r4i1p1',
          'nyears': 156,
          'time_period': ['1850-1-16 12:0:0.0', '2005-12-16 12:0:0.0']},
         'ERA-Interim': {'name': 'ERA-Interim',
          'nyears': 40,
          'time_period': ['1979-1-16 12:0:0.0', '2019-3-16 12:0:0.0']},
         'HadISST': {'name': 'HadISST',
          'nyears': 151,
          'time_period': ['1870-1-16 11:59:59.5', '2020-10-16 12:0:0.0']},
         'Tropflux': {'name': 'Tropflux',
          'nyears': 40,
          'time_period': ['1979-1-15 0:0:0.0', '2018-12-15 12:0:0.0']},
         'method': 'Zonal root mean square error of equatorial_pacific sst, time series are linearly detrended, observations and model regridded to generic_1x1deg',
         'name': 'sst Zonal RMSE',
         'ref': 'Using CDAT regridding and rms (uncentered and biased) calculation',
         'time_frequency': 'monthly',
         'units': 'C'},
        'metric': {'datasets': "CSIRO-Mk3-6-0_r4i1p1; ERA-Interim's ts & HadISST's sst & Tropflux's sst; 's ",
         'method': 'The metric is the statistical value between the model and the observations',
         'name': 'BiasSstLonRmse',
         'units': 'C'}},
       'BiasTauxLonRmse': {'diagnostic': {'CSIRO-Mk3-6-0_r4i1p1': {'keyerror': None,
          'name': 'CSIRO-Mk3-6-0_r4i1p1',
          'nyears': 156,
          'time_period': ['1850-1-16 12:0:0.0', '2005-12-16 12:0:0.0']},
         'ERA-Interim': {'name': 'ERA-Interim',
          'nyears': 40,
          'time_period': ['1979-1-16 12:0:0.0', '2019-3-16 12:0:0.0']},
         'Tropflux': {'name': 'Tropflux',
          'nyears': 40,
          'time_period': ['1979-1-15 0:0:0.0', '2018-12-15 12:0:0.0']},
         'method': 'Zonal root mean square error of equatorial_pacific taux, time series are linearly detrended, observations and model regridded to generic_1x1deg',
         'name': 'taux Zonal RMSE',
         'ref': 'Using CDAT regridding and rms (uncentered and biased) calculation',
         'time_frequency': 'monthly',
         'units': '1e-3 N/m2'},
        'metric': {'datasets': "CSIRO-Mk3-6-0_r4i1p1; ERA-Interim's tauu & Tropflux's taux; 's ",
         'method': 'The metric is the statistical value between the model and the observations',
         'name': 'BiasTauxLonRmse',
         'units': '1e-3 N/m2'}},
       'EnsoAmpl': {'diagnostic': {'CSIRO-Mk3-6-0_r4i1p1': {'keyerror': None,
          'name': 'CSIRO-Mk3-6-0_r4i1p1',
          'nyears': 156,
          'time_period': ['1850-1-16 12:0:0.0', '2005-12-16 12:0:0.0']},
         'ERA-Interim': {'keyerror': None,
          'name': 'ERA-Interim',
          'nyears': 40,
          'time_period': ['1979-1-16 12:0:0.0', '2019-3-16 12:0:0.0']},
         'HadISST': {'keyerror': None,
          'name': 'HadISST',
          'nyears': 151,
          'time_period': ['1870-1-16 11:59:59.5', '2020-10-16 12:0:0.0']},
         'Tropflux': {'keyerror': None,
          'name': 'Tropflux',
          'nyears': 40,
          'time_period': ['1979-1-15 0:0:0.0', '2018-12-15 12:0:0.0']},
         'method': 'Standard deviation of nino3.4 sstA, time series are linearly detrended',
         'name': 'ENSO amplitude',
         'ref': 'Using CDAT regression calculation',
         'time_frequency': 'monthly',
         'units': 'C'},
        'metric': {'datasets': "CSIRO-Mk3-6-0_r4i1p1; ERA-Interim's ts & HadISST's sst & Tropflux's sst; 's ",
         'method': 'The metric is the absolute value of the relative difference between model and observations values (M = 100 * abs[[model-obs] / obs])',
         'name': 'EnsoAmpl',
         'units': '%'}},
       'EnsoDuration': {'diagnostic': {'CSIRO-Mk3-6-0_r4i1p1': {'keyerror': None,
          'name': 'CSIRO-Mk3-6-0_r4i1p1',
          'nyears': 156,
          'time_period': ['1850-1-16 12:0:0.0', '2005-12-16 12:0:0.0']},
         'ERA-Interim': {'keyerror': None,
          'name': 'ERA-Interim',
          'nyears': 40,
          'time_period': ['1979-1-16 12:0:0.0', '2019-3-16 12:0:0.0']},
         'HadISST': {'keyerror': None,
          'name': 'HadISST',
          'nyears': 151,
          'time_period': ['1870-1-16 11:59:59.5', '2020-10-16 12:0:0.0']},
         'Tropflux': {'keyerror': None,
          'name': 'Tropflux',
          'nyears': 40,
          'time_period': ['1979-1-15 0:0:0.0', '2018-12-15 12:0:0.0']},
         'method': 'nino3.4 SSTA during DEC regressed against nino3.4 SSTA during 6 years (centered on ENSO), the duration is the number of consecutive months during which the regression is above 0.25, time series are linearly detrended, smoothing using a triangle shaped window of 5 points',
         'name': 'ENSO Duration based on life cyle SSTA pattern',
         'ref': 'Using CDAT',
         'time_frequency': 'monthly',
         'units': 'months'},
        'metric': {'datasets': "CSIRO-Mk3-6-0_r4i1p1; ERA-Interim's ts & HadISST's sst & Tropflux's sst; 's ",
         'method': 'The metric is the absolute value of the relative difference between model and observations values (M = 100 * abs[[model-obs] / obs])',
         'name': 'EnsoDuration',
         'units': '%'}},
       'EnsoSeasonality': {'diagnostic': {'CSIRO-Mk3-6-0_r4i1p1': {'keyerror': None,
          'name': 'CSIRO-Mk3-6-0_r4i1p1',
          'nyears': 156,
          'time_period': ['1850-1-16 12:0:0.0', '2005-12-16 12:0:0.0']},
         'ERA-Interim': {'keyerror': None,
          'name': 'ERA-Interim',
          'nyears': 40,
          'time_period': ['1979-1-16 12:0:0.0', '2019-3-16 12:0:0.0']},
         'HadISST': {'keyerror': None,
          'name': 'HadISST',
          'nyears': 151,
          'time_period': ['1870-1-16 11:59:59.5', '2020-10-16 12:0:0.0']},
         'Tropflux': {'keyerror': None,
          'name': 'Tropflux',
          'nyears': 40,
          'time_period': ['1979-1-15 0:0:0.0', '2018-12-15 12:0:0.0']},
         'method': 'Ratio between NDJ and MAM standard deviation nino3.4 sstA, time series are linearly detrended',
         'name': 'ENSO seasonality',
         'ref': 'Using CDAT std dev calculation',
         'time_frequency': 'monthly',
         'units': 'C/C'},
        'metric': {'datasets': "CSIRO-Mk3-6-0_r4i1p1; ERA-Interim's ts & HadISST's sst & Tropflux's sst; 's ",
         'method': 'The metric is the absolute value of the relative difference between model and observations values (M = 100 * abs[[model-obs] / obs])',
         'name': 'EnsoSeasonality',
         'units': '%'}},
       'EnsoSstDiversity_2': {'diagnostic': {'CSIRO-Mk3-6-0_r4i1p1': {'keyerror': None,
          'name': 'CSIRO-Mk3-6-0_r4i1p1',
          'nyears': 156,
          'time_period': ['1850-1-16 12:0:0.0', '2005-12-16 12:0:0.0']},
         'ERA-Interim': {'keyerror': None,
          'name': 'ERA-Interim',
          'nyears': 40,
          'time_period': ['1979-1-16 12:0:0.0', '2019-3-16 12:0:0.0']},
         'HadISST': {'keyerror': None,
          'name': 'HadISST',
          'nyears': 151,
          'time_period': ['1870-1-16 11:59:59.5', '2020-10-16 12:0:0.0']},
         'Tropflux': {'keyerror': None,
          'name': 'Tropflux',
          'nyears': 40,
          'time_period': ['1979-1-15 0:0:0.0', '2018-12-15 12:0:0.0']},
         'method': 'Nino (Nina) events = nino3.4 sstA > 0.75 (< -0.75) during DEC, zonal SSTA (meridional averaged [-5.0 ; 5.0]), the zonal SSTA maximum (minimum) is located for each event, the diversity is the interquartile range (IQR = Q3 - Q1), time series are linearly detrended, smoothing using a triangle shaped window of 5 points',
         'name': 'ENSO Diversity (interquartile range)',
         'ref': 'Using CDAT regridding',
         'time_frequency': 'monthly',
         'units': 'long'},
        'metric': {'datasets': "CSIRO-Mk3-6-0_r4i1p1; ERA-Interim's ts & HadISST's sst & Tropflux's sst; 's ",
         'method': 'The metric is the absolute value of the relative difference between model and observations values (M = 100 * abs[[model-obs] / obs])',
         'name': 'EnsoSstDiversity',
         'units': '%'}},
       'EnsoSstLonRmse': {'diagnostic': {'CSIRO-Mk3-6-0_r4i1p1': {'keyerror': None,
          'name': 'CSIRO-Mk3-6-0_r4i1p1',
          'nyears': 156,
          'time_period': ['1850-1-16 12:0:0.0', '2005-12-16 12:0:0.0']},
         'ERA-Interim': {'name': 'ERA-Interim',
          'nyears': 40,
          'time_period': ['1979-1-16 12:0:0.0', '2019-3-16 12:0:0.0']},
         'HadISST': {'name': 'HadISST',
          'nyears': 151,
          'time_period': ['1870-1-16 11:59:59.5', '2020-10-16 12:0:0.0']},
         'Tropflux': {'name': 'Tropflux',
          'nyears': 40,
          'time_period': ['1979-1-15 0:0:0.0', '2018-12-15 12:0:0.0']},
         'method': 'nino3.4 SSTA during DEC regressed against equatorial_pacific SSTA, time series are linearly detrended, smoothing using a triangle shaped window of 5 points, observations and model regridded to generic_1x1deg',
         'name': 'ENSO Zonal SSTA pattern',
         'ref': 'Using CDAT regridding and rms (uncentered and biased) calculation',
         'time_frequency': 'monthly',
         'units': 'C/C'},
        'metric': {'datasets': "CSIRO-Mk3-6-0_r4i1p1; ERA-Interim's ts & HadISST's sst & Tropflux's sst; 's ",
         'method': 'The metric is the statistical value between the model and the observations',
         'name': 'EnsoSstLonRmse',
         'units': 'C/C'}},
       'EnsoSstSkew': {'diagnostic': {'CSIRO-Mk3-6-0_r4i1p1': {'keyerror': None,
          'name': 'CSIRO-Mk3-6-0_r4i1p1',
          'nyears': 156,
          'time_period': ['1850-1-16 12:0:0.0', '2005-12-16 12:0:0.0']},
         'ERA-Interim': {'keyerror': None,
          'name': 'ERA-Interim',
          'nyears': 40,
          'time_period': ['1979-1-16 12:0:0.0', '2019-3-16 12:0:0.0']},
         'HadISST': {'keyerror': None,
          'name': 'HadISST',
          'nyears': 151,
          'time_period': ['1870-1-16 11:59:59.5', '2020-10-16 12:0:0.0']},
         'Tropflux': {'keyerror': None,
          'name': 'Tropflux',
          'nyears': 40,
          'time_period': ['1979-1-15 0:0:0.0', '2018-12-15 12:0:0.0']},
         'method': 'Standard deviation of nino3.4 sstA, time series are linearly detrended',
         'name': 'ENSO skewness',
         'ref': 'Using CDAT regression calculation',
         'time_frequency': 'monthly',
         'units': 'C'},
        'metric': {'datasets': "CSIRO-Mk3-6-0_r4i1p1; ERA-Interim's ts & HadISST's sst & Tropflux's sst; 's ",
         'method': 'The metric is the absolute value of the relative difference between model and observations values (M = 100 * abs[[model-obs] / obs])',
         'name': 'EnsoSstSkew',
         'units': '%'}},
       'EnsoSstTsRmse': {'diagnostic': {'CSIRO-Mk3-6-0_r4i1p1': {'keyerror': None,
          'name': 'CSIRO-Mk3-6-0_r4i1p1',
          'nyears': 156,
          'time_period': ['1850-1-16 12:0:0.0', '2005-12-16 12:0:0.0']},
         'ERA-Interim': {'name': 'ERA-Interim',
          'nyears': 40,
          'time_period': ['1979-1-16 12:0:0.0', '2019-3-16 12:0:0.0']},
         'HadISST': {'name': 'HadISST',
          'nyears': 151,
          'time_period': ['1870-1-16 11:59:59.5', '2020-10-16 12:0:0.0']},
         'Tropflux': {'name': 'Tropflux',
          'nyears': 40,
          'time_period': ['1979-1-15 0:0:0.0', '2018-12-15 12:0:0.0']},
         'method': 'nino3.4 SSTA during DEC regressed against nino3.4 SSTA during 6 years (centered on ENSO), time series are linearly detrended, smoothing using a triangle shaped window of 5 points',
         'name': 'ENSO life cyle SSTA pattern',
         'ref': 'Using CDAT regridding and rms (uncentered and biased) calculation',
         'time_frequency': 'monthly',
         'units': 'C/C'},
        'metric': {'datasets': "CSIRO-Mk3-6-0_r4i1p1; ERA-Interim's ts & HadISST's sst & Tropflux's sst; 's ",
         'method': 'The metric is the statistical value between the model and the observations',
         'name': 'EnsoSstTsRmse',
         'units': 'C/C'}},
       'SeasonalPrLatRmse': {'diagnostic': {'CSIRO-Mk3-6-0_r4i1p1': {'keyerror': None,
          'name': 'CSIRO-Mk3-6-0_r4i1p1',
          'nyears': 156,
          'time_period': ['1850-1-16 12:0:0.0', '2005-12-16 12:0:0.0']},
         'ERA-Interim': {'name': 'ERA-Interim',
          'nyears': 40,
          'time_period': ['1979-1-16 12:0:0.0', '2019-3-16 12:0:0.0']},
         'GPCPv2.3': {'name': 'GPCPv2.3',
          'nyears': 41,
          'time_period': ['1979-1-1 0:0:0.0', '2019-7-1 0:0:0.0']},
         'method': 'Meridional root mean square error of nino3_LatExt climatological pr STD, time series are linearly detrended, observations and model regridded to generic_1x1deg',
         'name': 'pr meridional seasonality RMSE',
         'ref': 'Using CDAT regridding and rms (uncentered and biased) calculation',
         'time_frequency': 'monthly',
         'units': 'mm/day'},
        'metric': {'datasets': "CSIRO-Mk3-6-0_r4i1p1; ERA-Interim's pr & GPCPv2.3's precip; 's ",
         'method': 'The metric is the statistical value between the model and the observations',
         'name': 'SeasonalPrLatRmse',
         'units': 'mm/day'}},
       'SeasonalPrLonRmse': {'diagnostic': {'CSIRO-Mk3-6-0_r4i1p1': {'keyerror': None,
          'name': 'CSIRO-Mk3-6-0_r4i1p1',
          'nyears': 156,
          'time_period': ['1850-1-16 12:0:0.0', '2005-12-16 12:0:0.0']},
         'ERA-Interim': {'name': 'ERA-Interim',
          'nyears': 40,
          'time_period': ['1979-1-16 12:0:0.0', '2019-3-16 12:0:0.0']},
         'GPCPv2.3': {'name': 'GPCPv2.3',
          'nyears': 41,
          'time_period': ['1979-1-1 0:0:0.0', '2019-7-1 0:0:0.0']},
         'method': 'Zonal root mean square error of equatorial_pacific climatological pr STD, time series are linearly detrended, observations and model regridded to generic_1x1deg',
         'name': 'pr zonal seasonality RMSE',
         'ref': 'Using CDAT regridding and rms (uncentered and biased) calculation',
         'time_frequency': 'monthly',
         'units': 'mm/day'},
        'metric': {'datasets': "CSIRO-Mk3-6-0_r4i1p1; ERA-Interim's pr & GPCPv2.3's precip; 's ",
         'method': 'The metric is the statistical value between the model and the observations',
         'name': 'SeasonalPrLonRmse',
         'units': 'mm/day'}},
       'SeasonalSstLonRmse': {'diagnostic': {'CSIRO-Mk3-6-0_r4i1p1': {'keyerror': None,
          'name': 'CSIRO-Mk3-6-0_r4i1p1',
          'nyears': 156,
          'time_period': ['1850-1-16 12:0:0.0', '2005-12-16 12:0:0.0']},
         'ERA-Interim': {'name': 'ERA-Interim',
          'nyears': 40,
          'time_period': ['1979-1-16 12:0:0.0', '2019-3-16 12:0:0.0']},
         'HadISST': {'name': 'HadISST',
          'nyears': 151,
          'time_period': ['1870-1-16 11:59:59.5', '2020-10-16 12:0:0.0']},
         'Tropflux': {'name': 'Tropflux',
          'nyears': 40,
          'time_period': ['1979-1-15 0:0:0.0', '2018-12-15 12:0:0.0']},
         'method': 'Zonal root mean square error of equatorial_pacific climatological sst STD, time series are linearly detrended, observations and model regridded to generic_1x1deg',
         'name': 'sst zonal seasonality RMSE',
         'ref': 'Using CDAT regridding and rms (uncentered and biased) calculation',
         'time_frequency': 'monthly',
         'units': 'C'},
        'metric': {'datasets': "CSIRO-Mk3-6-0_r4i1p1; ERA-Interim's ts & HadISST's sst & Tropflux's sst; 's ",
         'method': 'The metric is the statistical value between the model and the observations',
         'name': 'SeasonalSstLonRmse',
         'units': 'C'}},
       'SeasonalTauxLonRmse': {'diagnostic': {'CSIRO-Mk3-6-0_r4i1p1': {'keyerror': None,
          'name': 'CSIRO-Mk3-6-0_r4i1p1',
          'nyears': 156,
          'time_period': ['1850-1-16 12:0:0.0', '2005-12-16 12:0:0.0']},
         'ERA-Interim': {'name': 'ERA-Interim',
          'nyears': 40,
          'time_period': ['1979-1-16 12:0:0.0', '2019-3-16 12:0:0.0']},
         'Tropflux': {'name': 'Tropflux',
          'nyears': 40,
          'time_period': ['1979-1-15 0:0:0.0', '2018-12-15 12:0:0.0']},
         'method': 'Zonal root mean square error of equatorial_pacific climatological taux STD, time series are linearly detrended, observations and model regridded to generic_1x1deg',
         'name': 'taux zonal seasonality RMSE',
         'ref': 'Using CDAT regridding and rms (uncentered and biased) calculation',
         'time_frequency': 'monthly',
         'units': '1e-3 N/m2'},
        'metric': {'datasets': "CSIRO-Mk3-6-0_r4i1p1; ERA-Interim's tauu & Tropflux's taux; 's ",
         'method': 'The metric is the statistical value between the model and the observations',
         'name': 'SeasonalTauxLonRmse',
         'units': '1e-3 N/m2'}}},
      'name': 'Metrics Collection for ENSO performance'},
     'value': {'BiasPrLatRmse': {'diagnostic': {'CSIRO-Mk3-6-0_r4i1p1': {'value': None,
         'value_error': None},
        'ERA-Interim': {'value': None, 'value_error': None},
        'GPCPv2.3': {'value': None, 'value_error': None}},
       'metric': {'ERA-Interim': {'value': 1.1294476846323303,
         'value_error': None},
        'GPCPv2.3': {'value': 1.1680706725916998, 'value_error': None}}},
      'BiasPrLonRmse': {'diagnostic': {'CSIRO-Mk3-6-0_r4i1p1': {'value': None,
         'value_error': None},
        'ERA-Interim': {'value': None, 'value_error': None},
        'GPCPv2.3': {'value': None, 'value_error': None}},
       'metric': {'ERA-Interim': {'value': 4.06372941066421,
         'value_error': None},
        'GPCPv2.3': {'value': 2.9492258536628104, 'value_error': None}}},
      'BiasSstLonRmse': {'diagnostic': {'CSIRO-Mk3-6-0_r4i1p1': {'value': None,
         'value_error': None},
        'ERA-Interim': {'value': None, 'value_error': None},
        'HadISST': {'value': None, 'value_error': None},
        'Tropflux': {'value': None, 'value_error': None}},
       'metric': {'ERA-Interim': {'value': 2.78117454432697,
         'value_error': None},
        'HadISST': {'value': 2.5829172607987654, 'value_error': None},
        'Tropflux': {'value': 2.8287950051175654, 'value_error': None}}},
      'BiasTauxLonRmse': {'diagnostic': {'CSIRO-Mk3-6-0_r4i1p1': {'value': None,
         'value_error': None},
        'ERA-Interim': {'value': None, 'value_error': None},
        'Tropflux': {'value': None, 'value_error': None}},
       'metric': {'ERA-Interim': {'value': 9.064136212179404,
         'value_error': None},
        'Tropflux': {'value': 9.23376869490706, 'value_error': None}}},
      'EnsoAmpl': {'diagnostic': {'CSIRO-Mk3-6-0_r4i1p1': {'value': 0.7531909861129797,
         'value_error': 0.060303541034452235},
        'ERA-Interim': {'value': 0.8989844997845644,
         'value_error': 0.14214193002531866},
        'HadISST': {'value': 0.7665787872085695,
         'value_error': 0.06238329697691264},
        'Tropflux': {'value': 0.9039789553693535,
         'value_error': 0.14293162279134272}},
       'metric': {'ERA-Interim': {'value': 16.21757813472013,
         'value_error': 19.95512631627198},
        'HadISST': {'value': 1.7464351113002115,
         'value_error': 15.862342689152625},
        'Tropflux': {'value': 16.68047340712305,
         'value_error': 19.844874864638623}}},
      'EnsoDuration': {'diagnostic': {'CSIRO-Mk3-6-0_r4i1p1': {'value': 16.0,
         'value_error': None},
        'ERA-Interim': {'value': 13.0, 'value_error': None},
        'HadISST': {'value': 13.0, 'value_error': None},
        'Tropflux': {'value': 13.0, 'value_error': None}},
       'metric': {'ERA-Interim': {'value': 23.076923076923077,
         'value_error': None},
        'HadISST': {'value': 23.076923076923077, 'value_error': None},
        'Tropflux': {'value': 23.076923076923077, 'value_error': None}}},
      'EnsoSeasonality': {'diagnostic': {'CSIRO-Mk3-6-0_r4i1p1': {'value': 0.900206174811902,
         'value_error': 0.14438047636891485},
        'ERA-Interim': {'value': 2.0466846866656914,
         'value_error': 0.6513411033995022},
        'HadISST': {'value': 1.6639865947361325,
         'value_error': 0.2712772451657809},
        'Tropflux': {'value': 2.0532132553583624,
         'value_error': 0.6534187683977347}},
       'metric': {'ERA-Interim': {'value': 56.016372200524344,
         'value_error': 21.051797856321567},
        'HadISST': {'value': 45.90063539816842,
         'value_error': 17.496519697571408},
        'Tropflux': {'value': 56.15622622430506,
         'value_error': 20.98485979810937}}},
      'EnsoSstDiversity_2': {'diagnostic': {'CSIRO-Mk3-6-0_r4i1p1': {'value': 45.0,
         'value_error': None},
        'ERA-Interim': {'value': 33.25, 'value_error': None},
        'HadISST': {'value': 49.0, 'value_error': None},
        'Tropflux': {'value': 32.0, 'value_error': None}},
       'metric': {'ERA-Interim': {'value': 35.338345864661655,
         'value_error': None},
        'HadISST': {'value': 8.16326530612245, 'value_error': None},
        'Tropflux': {'value': 40.625, 'value_error': None}}},
      'EnsoSstLonRmse': {'diagnostic': {'CSIRO-Mk3-6-0_r4i1p1': {'value': None,
         'value_error': None},
        'ERA-Interim': {'value': None, 'value_error': None},
        'HadISST': {'value': None, 'value_error': None},
        'Tropflux': {'value': None, 'value_error': None}},
       'metric': {'ERA-Interim': {'value': 0.5944123845508368,
         'value_error': None},
        'HadISST': {'value': 0.6029447388067828, 'value_error': None},
        'Tropflux': {'value': 0.5941317099236546, 'value_error': None}}},
      'EnsoSstSkew': {'diagnostic': {'CSIRO-Mk3-6-0_r4i1p1': {'value': 0.24408815333405348,
         'value_error': 0.019542692679537503},
        'ERA-Interim': {'value': 0.39098111106809963,
         'value_error': 0.061819541653923164},
        'HadISST': {'value': 0.38989908235027515,
         'value_error': 0.03172953733021198},
        'Tropflux': {'value': 0.39744741059612115,
         'value_error': 0.06284195338099416}},
       'metric': {'ERA-Interim': {'value': 37.57034638649356,
         'value_error': 14.869367535613012},
        'HadISST': {'value': 37.397094688524795,
         'value_error': 10.106796007982828},
        'Tropflux': {'value': 38.58605017253681,
         'value_error': 14.627449279979396}}},
      'EnsoSstTsRmse': {'diagnostic': {'CSIRO-Mk3-6-0_r4i1p1': {'value': None,
         'value_error': None},
        'ERA-Interim': {'value': None, 'value_error': None},
        'HadISST': {'value': None, 'value_error': None},
        'Tropflux': {'value': None, 'value_error': None}},
       'metric': {'ERA-Interim': {'value': 0.15109398382474887,
         'value_error': None},
        'HadISST': {'value': 0.11789829239436601, 'value_error': None},
        'Tropflux': {'value': 0.1475139143171975, 'value_error': None}}},
      'SeasonalPrLatRmse': {'diagnostic': {'CSIRO-Mk3-6-0_r4i1p1': {'value': None,
         'value_error': None},
        'ERA-Interim': {'value': None, 'value_error': None},
        'GPCPv2.3': {'value': None, 'value_error': None}},
       'metric': {'ERA-Interim': {'value': 0.8623350901307807,
         'value_error': None},
        'GPCPv2.3': {'value': 0.8351944564297854, 'value_error': None}}},
      'SeasonalPrLonRmse': {'diagnostic': {'CSIRO-Mk3-6-0_r4i1p1': {'value': None,
         'value_error': None},
        'ERA-Interim': {'value': None, 'value_error': None},
        'GPCPv2.3': {'value': None, 'value_error': None}},
       'metric': {'ERA-Interim': {'value': 0.9173955644318912,
         'value_error': None},
        'GPCPv2.3': {'value': 0.6275697867830168, 'value_error': None}}},
      'SeasonalSstLonRmse': {'diagnostic': {'CSIRO-Mk3-6-0_r4i1p1': {'value': None,
         'value_error': None},
        'ERA-Interim': {'value': None, 'value_error': None},
        'HadISST': {'value': None, 'value_error': None},
        'Tropflux': {'value': None, 'value_error': None}},
       'metric': {'ERA-Interim': {'value': 0.18253026067329253,
         'value_error': None},
        'HadISST': {'value': 0.19978434100886405, 'value_error': None},
        'Tropflux': {'value': 0.1826369016862916, 'value_error': None}}},
      'SeasonalTauxLonRmse': {'diagnostic': {'CSIRO-Mk3-6-0_r4i1p1': {'value': None,
         'value_error': None},
        'ERA-Interim': {'value': None, 'value_error': None},
        'Tropflux': {'value': None, 'value_error': None}},
       'metric': {'ERA-Interim': {'value': 2.582681192064557,
         'value_error': None},
        'Tropflux': {'value': 2.7818236910571192, 'value_error': None}}}}},
    'r5i1p1': {'metadata': {'description_of_the_collection': 'Describe which science question this collection is about',
      'metrics': {'BiasPrLatRmse': {'diagnostic': {'CSIRO-Mk3-6-0_r5i1p1': {'keyerror': None,
          'name': 'CSIRO-Mk3-6-0_r5i1p1',
          'nyears': 156,
          'time_period': ['1850-1-16 12:0:0.0', '2005-12-16 12:0:0.0']},
         'ERA-Interim': {'name': 'ERA-Interim',
          'nyears': 40,
          'time_period': ['1979-1-16 12:0:0.0', '2019-3-16 12:0:0.0']},
         'GPCPv2.3': {'name': 'GPCPv2.3',
          'nyears': 41,
          'time_period': ['1979-1-1 0:0:0.0', '2019-7-1 0:0:0.0']},
         'method': 'Meridional root mean square error of nino3_LatExt pr, time series are linearly detrended, observations and model regridded to generic_1x1deg',
         'name': 'pr Meridional RMSE',
         'ref': 'Using CDAT regridding and rms (uncentered and biased) calculation',
         'time_frequency': 'monthly',
         'units': 'mm/day'},
        'metric': {'datasets': "CSIRO-Mk3-6-0_r5i1p1; ERA-Interim's pr & GPCPv2.3's precip; 's ",
         'method': 'The metric is the statistical value between the model and the observations',
         'name': 'BiasPrLatRmse',
         'units': 'mm/day'}},
       'BiasPrLonRmse': {'diagnostic': {'CSIRO-Mk3-6-0_r5i1p1': {'keyerror': None,
          'name': 'CSIRO-Mk3-6-0_r5i1p1',
          'nyears': 156,
          'time_period': ['1850-1-16 12:0:0.0', '2005-12-16 12:0:0.0']},
         'ERA-Interim': {'name': 'ERA-Interim',
          'nyears': 40,
          'time_period': ['1979-1-16 12:0:0.0', '2019-3-16 12:0:0.0']},
         'GPCPv2.3': {'name': 'GPCPv2.3',
          'nyears': 41,
          'time_period': ['1979-1-1 0:0:0.0', '2019-7-1 0:0:0.0']},
         'method': 'Zonal root mean square error of equatorial_pacific pr, time series are linearly detrended, observations and model regridded to generic_1x1deg',
         'name': 'pr Zonal RMSE',
         'ref': 'Using CDAT regridding and rms (uncentered and biased) calculation',
         'time_frequency': 'monthly',
         'units': 'mm/day'},
        'metric': {'datasets': "CSIRO-Mk3-6-0_r5i1p1; ERA-Interim's pr & GPCPv2.3's precip; 's ",
         'method': 'The metric is the statistical value between the model and the observations',
         'name': 'BiasPrLonRmse',
         'units': 'mm/day'}},
       'BiasSstLonRmse': {'diagnostic': {'CSIRO-Mk3-6-0_r5i1p1': {'keyerror': None,
          'name': 'CSIRO-Mk3-6-0_r5i1p1',
          'nyears': 156,
          'time_period': ['1850-1-16 12:0:0.0', '2005-12-16 12:0:0.0']},
         'ERA-Interim': {'name': 'ERA-Interim',
          'nyears': 40,
          'time_period': ['1979-1-16 12:0:0.0', '2019-3-16 12:0:0.0']},
         'HadISST': {'name': 'HadISST',
          'nyears': 151,
          'time_period': ['1870-1-16 11:59:59.5', '2020-10-16 12:0:0.0']},
         'Tropflux': {'name': 'Tropflux',
          'nyears': 40,
          'time_period': ['1979-1-15 0:0:0.0', '2018-12-15 12:0:0.0']},
         'method': 'Zonal root mean square error of equatorial_pacific sst, time series are linearly detrended, observations and model regridded to generic_1x1deg',
         'name': 'sst Zonal RMSE',
         'ref': 'Using CDAT regridding and rms (uncentered and biased) calculation',
         'time_frequency': 'monthly',
         'units': 'C'},
        'metric': {'datasets': "CSIRO-Mk3-6-0_r5i1p1; ERA-Interim's ts & HadISST's sst & Tropflux's sst; 's ",
         'method': 'The metric is the statistical value between the model and the observations',
         'name': 'BiasSstLonRmse',
         'units': 'C'}},
       'BiasTauxLonRmse': {'diagnostic': {'CSIRO-Mk3-6-0_r5i1p1': {'keyerror': None,
          'name': 'CSIRO-Mk3-6-0_r5i1p1',
          'nyears': 156,
          'time_period': ['1850-1-16 12:0:0.0', '2005-12-16 12:0:0.0']},
         'ERA-Interim': {'name': 'ERA-Interim',
          'nyears': 40,
          'time_period': ['1979-1-16 12:0:0.0', '2019-3-16 12:0:0.0']},
         'Tropflux': {'name': 'Tropflux',
          'nyears': 40,
          'time_period': ['1979-1-15 0:0:0.0', '2018-12-15 12:0:0.0']},
         'method': 'Zonal root mean square error of equatorial_pacific taux, time series are linearly detrended, observations and model regridded to generic_1x1deg',
         'name': 'taux Zonal RMSE',
         'ref': 'Using CDAT regridding and rms (uncentered and biased) calculation',
         'time_frequency': 'monthly',
         'units': '1e-3 N/m2'},
        'metric': {'datasets': "CSIRO-Mk3-6-0_r5i1p1; ERA-Interim's tauu & Tropflux's taux; 's ",
         'method': 'The metric is the statistical value between the model and the observations',
         'name': 'BiasTauxLonRmse',
         'units': '1e-3 N/m2'}},
       'EnsoAmpl': {'diagnostic': {'CSIRO-Mk3-6-0_r5i1p1': {'keyerror': None,
          'name': 'CSIRO-Mk3-6-0_r5i1p1',
          'nyears': 156,
          'time_period': ['1850-1-16 12:0:0.0', '2005-12-16 12:0:0.0']},
         'ERA-Interim': {'keyerror': None,
          'name': 'ERA-Interim',
          'nyears': 40,
          'time_period': ['1979-1-16 12:0:0.0', '2019-3-16 12:0:0.0']},
         'HadISST': {'keyerror': None,
          'name': 'HadISST',
          'nyears': 151,
          'time_period': ['1870-1-16 11:59:59.5', '2020-10-16 12:0:0.0']},
         'Tropflux': {'keyerror': None,
          'name': 'Tropflux',
          'nyears': 40,
          'time_period': ['1979-1-15 0:0:0.0', '2018-12-15 12:0:0.0']},
         'method': 'Standard deviation of nino3.4 sstA, time series are linearly detrended',
         'name': 'ENSO amplitude',
         'ref': 'Using CDAT regression calculation',
         'time_frequency': 'monthly',
         'units': 'C'},
        'metric': {'datasets': "CSIRO-Mk3-6-0_r5i1p1; ERA-Interim's ts & HadISST's sst & Tropflux's sst; 's ",
         'method': 'The metric is the absolute value of the relative difference between model and observations values (M = 100 * abs[[model-obs] / obs])',
         'name': 'EnsoAmpl',
         'units': '%'}},
       'EnsoDuration': {'diagnostic': {'CSIRO-Mk3-6-0_r5i1p1': {'keyerror': None,
          'name': 'CSIRO-Mk3-6-0_r5i1p1',
          'nyears': 156,
          'time_period': ['1850-1-16 12:0:0.0', '2005-12-16 12:0:0.0']},
         'ERA-Interim': {'keyerror': None,
          'name': 'ERA-Interim',
          'nyears': 40,
          'time_period': ['1979-1-16 12:0:0.0', '2019-3-16 12:0:0.0']},
         'HadISST': {'keyerror': None,
          'name': 'HadISST',
          'nyears': 151,
          'time_period': ['1870-1-16 11:59:59.5', '2020-10-16 12:0:0.0']},
         'Tropflux': {'keyerror': None,
          'name': 'Tropflux',
          'nyears': 40,
          'time_period': ['1979-1-15 0:0:0.0', '2018-12-15 12:0:0.0']},
         'method': 'nino3.4 SSTA during DEC regressed against nino3.4 SSTA during 6 years (centered on ENSO), the duration is the number of consecutive months during which the regression is above 0.25, time series are linearly detrended, smoothing using a triangle shaped window of 5 points',
         'name': 'ENSO Duration based on life cyle SSTA pattern',
         'ref': 'Using CDAT',
         'time_frequency': 'monthly',
         'units': 'months'},
        'metric': {'datasets': "CSIRO-Mk3-6-0_r5i1p1; ERA-Interim's ts & HadISST's sst & Tropflux's sst; 's ",
         'method': 'The metric is the absolute value of the relative difference between model and observations values (M = 100 * abs[[model-obs] / obs])',
         'name': 'EnsoDuration',
         'units': '%'}},
       'EnsoSeasonality': {'diagnostic': {'CSIRO-Mk3-6-0_r5i1p1': {'keyerror': None,
          'name': 'CSIRO-Mk3-6-0_r5i1p1',
          'nyears': 156,
          'time_period': ['1850-1-16 12:0:0.0', '2005-12-16 12:0:0.0']},
         'ERA-Interim': {'keyerror': None,
          'name': 'ERA-Interim',
          'nyears': 40,
          'time_period': ['1979-1-16 12:0:0.0', '2019-3-16 12:0:0.0']},
         'HadISST': {'keyerror': None,
          'name': 'HadISST',
          'nyears': 151,
          'time_period': ['1870-1-16 11:59:59.5', '2020-10-16 12:0:0.0']},
         'Tropflux': {'keyerror': None,
          'name': 'Tropflux',
          'nyears': 40,
          'time_period': ['1979-1-15 0:0:0.0', '2018-12-15 12:0:0.0']},
         'method': 'Ratio between NDJ and MAM standard deviation nino3.4 sstA, time series are linearly detrended',
         'name': 'ENSO seasonality',
         'ref': 'Using CDAT std dev calculation',
         'time_frequency': 'monthly',
         'units': 'C/C'},
        'metric': {'datasets': "CSIRO-Mk3-6-0_r5i1p1; ERA-Interim's ts & HadISST's sst & Tropflux's sst; 's ",
         'method': 'The metric is the absolute value of the relative difference between model and observations values (M = 100 * abs[[model-obs] / obs])',
         'name': 'EnsoSeasonality',
         'units': '%'}},
       'EnsoSstDiversity_2': {'diagnostic': {'CSIRO-Mk3-6-0_r5i1p1': {'keyerror': None,
          'name': 'CSIRO-Mk3-6-0_r5i1p1',
          'nyears': 156,
          'time_period': ['1850-1-16 12:0:0.0', '2005-12-16 12:0:0.0']},
         'ERA-Interim': {'keyerror': None,
          'name': 'ERA-Interim',
          'nyears': 40,
          'time_period': ['1979-1-16 12:0:0.0', '2019-3-16 12:0:0.0']},
         'HadISST': {'keyerror': None,
          'name': 'HadISST',
          'nyears': 151,
          'time_period': ['1870-1-16 11:59:59.5', '2020-10-16 12:0:0.0']},
         'Tropflux': {'keyerror': None,
          'name': 'Tropflux',
          'nyears': 40,
          'time_period': ['1979-1-15 0:0:0.0', '2018-12-15 12:0:0.0']},
         'method': 'Nino (Nina) events = nino3.4 sstA > 0.75 (< -0.75) during DEC, zonal SSTA (meridional averaged [-5.0 ; 5.0]), the zonal SSTA maximum (minimum) is located for each event, the diversity is the interquartile range (IQR = Q3 - Q1), time series are linearly detrended, smoothing using a triangle shaped window of 5 points',
         'name': 'ENSO Diversity (interquartile range)',
         'ref': 'Using CDAT regridding',
         'time_frequency': 'monthly',
         'units': 'long'},
        'metric': {'datasets': "CSIRO-Mk3-6-0_r5i1p1; ERA-Interim's ts & HadISST's sst & Tropflux's sst; 's ",
         'method': 'The metric is the absolute value of the relative difference between model and observations values (M = 100 * abs[[model-obs] / obs])',
         'name': 'EnsoSstDiversity',
         'units': '%'}},
       'EnsoSstLonRmse': {'diagnostic': {'CSIRO-Mk3-6-0_r5i1p1': {'keyerror': None,
          'name': 'CSIRO-Mk3-6-0_r5i1p1',
          'nyears': 156,
          'time_period': ['1850-1-16 12:0:0.0', '2005-12-16 12:0:0.0']},
         'ERA-Interim': {'name': 'ERA-Interim',
          'nyears': 40,
          'time_period': ['1979-1-16 12:0:0.0', '2019-3-16 12:0:0.0']},
         'HadISST': {'name': 'HadISST',
          'nyears': 151,
          'time_period': ['1870-1-16 11:59:59.5', '2020-10-16 12:0:0.0']},
         'Tropflux': {'name': 'Tropflux',
          'nyears': 40,
          'time_period': ['1979-1-15 0:0:0.0', '2018-12-15 12:0:0.0']},
         'method': 'nino3.4 SSTA during DEC regressed against equatorial_pacific SSTA, time series are linearly detrended, smoothing using a triangle shaped window of 5 points, observations and model regridded to generic_1x1deg',
         'name': 'ENSO Zonal SSTA pattern',
         'ref': 'Using CDAT regridding and rms (uncentered and biased) calculation',
         'time_frequency': 'monthly',
         'units': 'C/C'},
        'metric': {'datasets': "CSIRO-Mk3-6-0_r5i1p1; ERA-Interim's ts & HadISST's sst & Tropflux's sst; 's ",
         'method': 'The metric is the statistical value between the model and the observations',
         'name': 'EnsoSstLonRmse',
         'units': 'C/C'}},
       'EnsoSstSkew': {'diagnostic': {'CSIRO-Mk3-6-0_r5i1p1': {'keyerror': None,
          'name': 'CSIRO-Mk3-6-0_r5i1p1',
          'nyears': 156,
          'time_period': ['1850-1-16 12:0:0.0', '2005-12-16 12:0:0.0']},
         'ERA-Interim': {'keyerror': None,
          'name': 'ERA-Interim',
          'nyears': 40,
          'time_period': ['1979-1-16 12:0:0.0', '2019-3-16 12:0:0.0']},
         'HadISST': {'keyerror': None,
          'name': 'HadISST',
          'nyears': 151,
          'time_period': ['1870-1-16 11:59:59.5', '2020-10-16 12:0:0.0']},
         'Tropflux': {'keyerror': None,
          'name': 'Tropflux',
          'nyears': 40,
          'time_period': ['1979-1-15 0:0:0.0', '2018-12-15 12:0:0.0']},
         'method': 'Standard deviation of nino3.4 sstA, time series are linearly detrended',
         'name': 'ENSO skewness',
         'ref': 'Using CDAT regression calculation',
         'time_frequency': 'monthly',
         'units': 'C'},
        'metric': {'datasets': "CSIRO-Mk3-6-0_r5i1p1; ERA-Interim's ts & HadISST's sst & Tropflux's sst; 's ",
         'method': 'The metric is the absolute value of the relative difference between model and observations values (M = 100 * abs[[model-obs] / obs])',
         'name': 'EnsoSstSkew',
         'units': '%'}},
       'EnsoSstTsRmse': {'diagnostic': {'CSIRO-Mk3-6-0_r5i1p1': {'keyerror': None,
          'name': 'CSIRO-Mk3-6-0_r5i1p1',
          'nyears': 156,
          'time_period': ['1850-1-16 12:0:0.0', '2005-12-16 12:0:0.0']},
         'ERA-Interim': {'name': 'ERA-Interim',
          'nyears': 40,
          'time_period': ['1979-1-16 12:0:0.0', '2019-3-16 12:0:0.0']},
         'HadISST': {'name': 'HadISST',
          'nyears': 151,
          'time_period': ['1870-1-16 11:59:59.5', '2020-10-16 12:0:0.0']},
         'Tropflux': {'name': 'Tropflux',
          'nyears': 40,
          'time_period': ['1979-1-15 0:0:0.0', '2018-12-15 12:0:0.0']},
         'method': 'nino3.4 SSTA during DEC regressed against nino3.4 SSTA during 6 years (centered on ENSO), time series are linearly detrended, smoothing using a triangle shaped window of 5 points',
         'name': 'ENSO life cyle SSTA pattern',
         'ref': 'Using CDAT regridding and rms (uncentered and biased) calculation',
         'time_frequency': 'monthly',
         'units': 'C/C'},
        'metric': {'datasets': "CSIRO-Mk3-6-0_r5i1p1; ERA-Interim's ts & HadISST's sst & Tropflux's sst; 's ",
         'method': 'The metric is the statistical value between the model and the observations',
         'name': 'EnsoSstTsRmse',
         'units': 'C/C'}},
       'SeasonalPrLatRmse': {'diagnostic': {'CSIRO-Mk3-6-0_r5i1p1': {'keyerror': None,
          'name': 'CSIRO-Mk3-6-0_r5i1p1',
          'nyears': 156,
          'time_period': ['1850-1-16 12:0:0.0', '2005-12-16 12:0:0.0']},
         'ERA-Interim': {'name': 'ERA-Interim',
          'nyears': 40,
          'time_period': ['1979-1-16 12:0:0.0', '2019-3-16 12:0:0.0']},
         'GPCPv2.3': {'name': 'GPCPv2.3',
          'nyears': 41,
          'time_period': ['1979-1-1 0:0:0.0', '2019-7-1 0:0:0.0']},
         'method': 'Meridional root mean square error of nino3_LatExt climatological pr STD, time series are linearly detrended, observations and model regridded to generic_1x1deg',
         'name': 'pr meridional seasonality RMSE',
         'ref': 'Using CDAT regridding and rms (uncentered and biased) calculation',
         'time_frequency': 'monthly',
         'units': 'mm/day'},
        'metric': {'datasets': "CSIRO-Mk3-6-0_r5i1p1; ERA-Interim's pr & GPCPv2.3's precip; 's ",
         'method': 'The metric is the statistical value between the model and the observations',
         'name': 'SeasonalPrLatRmse',
         'units': 'mm/day'}},
       'SeasonalPrLonRmse': {'diagnostic': {'CSIRO-Mk3-6-0_r5i1p1': {'keyerror': None,
          'name': 'CSIRO-Mk3-6-0_r5i1p1',
          'nyears': 156,
          'time_period': ['1850-1-16 12:0:0.0', '2005-12-16 12:0:0.0']},
         'ERA-Interim': {'name': 'ERA-Interim',
          'nyears': 40,
          'time_period': ['1979-1-16 12:0:0.0', '2019-3-16 12:0:0.0']},
         'GPCPv2.3': {'name': 'GPCPv2.3',
          'nyears': 41,
          'time_period': ['1979-1-1 0:0:0.0', '2019-7-1 0:0:0.0']},
         'method': 'Zonal root mean square error of equatorial_pacific climatological pr STD, time series are linearly detrended, observations and model regridded to generic_1x1deg',
         'name': 'pr zonal seasonality RMSE',
         'ref': 'Using CDAT regridding and rms (uncentered and biased) calculation',
         'time_frequency': 'monthly',
         'units': 'mm/day'},
        'metric': {'datasets': "CSIRO-Mk3-6-0_r5i1p1; ERA-Interim's pr & GPCPv2.3's precip; 's ",
         'method': 'The metric is the statistical value between the model and the observations',
         'name': 'SeasonalPrLonRmse',
         'units': 'mm/day'}},
       'SeasonalSstLonRmse': {'diagnostic': {'CSIRO-Mk3-6-0_r5i1p1': {'keyerror': None,
          'name': 'CSIRO-Mk3-6-0_r5i1p1',
          'nyears': 156,
          'time_period': ['1850-1-16 12:0:0.0', '2005-12-16 12:0:0.0']},
         'ERA-Interim': {'name': 'ERA-Interim',
          'nyears': 40,
          'time_period': ['1979-1-16 12:0:0.0', '2019-3-16 12:0:0.0']},
         'HadISST': {'name': 'HadISST',
          'nyears': 151,
          'time_period': ['1870-1-16 11:59:59.5', '2020-10-16 12:0:0.0']},
         'Tropflux': {'name': 'Tropflux',
          'nyears': 40,
          'time_period': ['1979-1-15 0:0:0.0', '2018-12-15 12:0:0.0']},
         'method': 'Zonal root mean square error of equatorial_pacific climatological sst STD, time series are linearly detrended, observations and model regridded to generic_1x1deg',
         'name': 'sst zonal seasonality RMSE',
         'ref': 'Using CDAT regridding and rms (uncentered and biased) calculation',
         'time_frequency': 'monthly',
         'units': 'C'},
        'metric': {'datasets': "CSIRO-Mk3-6-0_r5i1p1; ERA-Interim's ts & HadISST's sst & Tropflux's sst; 's ",
         'method': 'The metric is the statistical value between the model and the observations',
         'name': 'SeasonalSstLonRmse',
         'units': 'C'}},
       'SeasonalTauxLonRmse': {'diagnostic': {'CSIRO-Mk3-6-0_r5i1p1': {'keyerror': None,
          'name': 'CSIRO-Mk3-6-0_r5i1p1',
          'nyears': 156,
          'time_period': ['1850-1-16 12:0:0.0', '2005-12-16 12:0:0.0']},
         'ERA-Interim': {'name': 'ERA-Interim',
          'nyears': 40,
          'time_period': ['1979-1-16 12:0:0.0', '2019-3-16 12:0:0.0']},
         'Tropflux': {'name': 'Tropflux',
          'nyears': 40,
          'time_period': ['1979-1-15 0:0:0.0', '2018-12-15 12:0:0.0']},
         'method': 'Zonal root mean square error of equatorial_pacific climatological taux STD, time series are linearly detrended, observations and model regridded to generic_1x1deg',
         'name': 'taux zonal seasonality RMSE',
         'ref': 'Using CDAT regridding and rms (uncentered and biased) calculation',
         'time_frequency': 'monthly',
         'units': '1e-3 N/m2'},
        'metric': {'datasets': "CSIRO-Mk3-6-0_r5i1p1; ERA-Interim's tauu & Tropflux's taux; 's ",
         'method': 'The metric is the statistical value between the model and the observations',
         'name': 'SeasonalTauxLonRmse',
         'units': '1e-3 N/m2'}}},
      'name': 'Metrics Collection for ENSO performance'},
     'value': {'BiasPrLatRmse': {'diagnostic': {'CSIRO-Mk3-6-0_r5i1p1': {'value': None,
         'value_error': None},
        'ERA-Interim': {'value': None, 'value_error': None},
        'GPCPv2.3': {'value': None, 'value_error': None}},
       'metric': {'ERA-Interim': {'value': 1.0897602052146858,
         'value_error': None},
        'GPCPv2.3': {'value': 1.1714498302537828, 'value_error': None}}},
      'BiasPrLonRmse': {'diagnostic': {'CSIRO-Mk3-6-0_r5i1p1': {'value': None,
         'value_error': None},
        'ERA-Interim': {'value': None, 'value_error': None},
        'GPCPv2.3': {'value': None, 'value_error': None}},
       'metric': {'ERA-Interim': {'value': 3.930114889775419,
         'value_error': None},
        'GPCPv2.3': {'value': 2.8350996773553296, 'value_error': None}}},
      'BiasSstLonRmse': {'diagnostic': {'CSIRO-Mk3-6-0_r5i1p1': {'value': None,
         'value_error': None},
        'ERA-Interim': {'value': None, 'value_error': None},
        'HadISST': {'value': None, 'value_error': None},
        'Tropflux': {'value': None, 'value_error': None}},
       'metric': {'ERA-Interim': {'value': 2.7047582602282283,
         'value_error': None},
        'HadISST': {'value': 2.507652592254559, 'value_error': None},
        'Tropflux': {'value': 2.7524414825783503, 'value_error': None}}},
      'BiasTauxLonRmse': {'diagnostic': {'CSIRO-Mk3-6-0_r5i1p1': {'value': None,
         'value_error': None},
        'ERA-Interim': {'value': None, 'value_error': None},
        'Tropflux': {'value': None, 'value_error': None}},
       'metric': {'ERA-Interim': {'value': 8.631385482149463,
         'value_error': None},
        'Tropflux': {'value': 8.787123684829238, 'value_error': None}}},
      'EnsoAmpl': {'diagnostic': {'CSIRO-Mk3-6-0_r5i1p1': {'value': 0.753872910115726,
         'value_error': 0.0603581386502498},
        'ERA-Interim': {'value': 0.8989844997845644,
         'value_error': 0.14214193002531866},
        'HadISST': {'value': 0.7665787872085695,
         'value_error': 0.06238329697691264},
        'Tropflux': {'value': 0.9039789553693535,
         'value_error': 0.14293162279134272}},
       'metric': {'ERA-Interim': {'value': 16.14172321142505,
         'value_error': 19.973193287151602},
        'HadISST': {'value': 1.6574783055386775,
         'value_error': 15.876704135875908},
        'Tropflux': {'value': 16.605037579917575,
         'value_error': 19.86284201606662}}},
      'EnsoDuration': {'diagnostic': {'CSIRO-Mk3-6-0_r5i1p1': {'value': 15.0,
         'value_error': None},
        'ERA-Interim': {'value': 13.0, 'value_error': None},
        'HadISST': {'value': 13.0, 'value_error': None},
        'Tropflux': {'value': 13.0, 'value_error': None}},
       'metric': {'ERA-Interim': {'value': 15.384615384615385,
         'value_error': None},
        'HadISST': {'value': 15.384615384615385, 'value_error': None},
        'Tropflux': {'value': 15.384615384615385, 'value_error': None}}},
      'EnsoSeasonality': {'diagnostic': {'CSIRO-Mk3-6-0_r5i1p1': {'value': 0.768177377153333,
         'value_error': 0.12320490433471686},
        'ERA-Interim': {'value': 2.0466846866656914,
         'value_error': 0.6513411033995022},
        'HadISST': {'value': 1.6639865947361325,
         'value_error': 0.2712772451657809},
        'Tropflux': {'value': 2.0532132553583624,
         'value_error': 0.6534187683977347}},
       'metric': {'ERA-Interim': {'value': 62.467233855900325,
         'value_error': 17.96423454328149},
        'HadISST': {'value': 53.83512225498745,
         'value_error': 14.930391488816893},
        'Tropflux': {'value': 62.586576180112495,
         'value_error': 17.907113959766356}}},
      'EnsoSstDiversity_2': {'diagnostic': {'CSIRO-Mk3-6-0_r5i1p1': {'value': 47.5,
         'value_error': None},
        'ERA-Interim': {'value': 33.25, 'value_error': None},
        'HadISST': {'value': 49.0, 'value_error': None},
        'Tropflux': {'value': 32.0, 'value_error': None}},
       'metric': {'ERA-Interim': {'value': 42.857142857142854,
         'value_error': None},
        'HadISST': {'value': 3.061224489795918, 'value_error': None},
        'Tropflux': {'value': 48.4375, 'value_error': None}}},
      'EnsoSstLonRmse': {'diagnostic': {'CSIRO-Mk3-6-0_r5i1p1': {'value': None,
         'value_error': None},
        'ERA-Interim': {'value': None, 'value_error': None},
        'HadISST': {'value': None, 'value_error': None},
        'Tropflux': {'value': None, 'value_error': None}},
       'metric': {'ERA-Interim': {'value': 0.516296148776496,
         'value_error': None},
        'HadISST': {'value': 0.5233151892451225, 'value_error': None},
        'Tropflux': {'value': 0.5159838657416896, 'value_error': None}}},
      'EnsoSstSkew': {'diagnostic': {'CSIRO-Mk3-6-0_r5i1p1': {'value': 0.2292332901863051,
         'value_error': 0.018353351774099417},
        'ERA-Interim': {'value': 0.39098111106809963,
         'value_error': 0.061819541653923164},
        'HadISST': {'value': 0.38989908235027515,
         'value_error': 0.03172953733021198},
        'Tropflux': {'value': 0.39744741059612115,
         'value_error': 0.06284195338099416}},
       'metric': {'ERA-Interim': {'value': 41.36972766789798,
         'value_error': 13.96443865308421},
        'HadISST': {'value': 41.20701982561531,
         'value_error': 9.491710558279241},
        'Tropflux': {'value': 42.32361714409361,
         'value_error': 13.737243203663402}}},
      'EnsoSstTsRmse': {'diagnostic': {'CSIRO-Mk3-6-0_r5i1p1': {'value': None,
         'value_error': None},
        'ERA-Interim': {'value': None, 'value_error': None},
        'HadISST': {'value': None, 'value_error': None},
        'Tropflux': {'value': None, 'value_error': None}},
       'metric': {'ERA-Interim': {'value': 0.17105773509864536,
         'value_error': None},
        'HadISST': {'value': 0.14266283295783178, 'value_error': None},
        'Tropflux': {'value': 0.16747751915353226, 'value_error': None}}},
      'SeasonalPrLatRmse': {'diagnostic': {'CSIRO-Mk3-6-0_r5i1p1': {'value': None,
         'value_error': None},
        'ERA-Interim': {'value': None, 'value_error': None},
        'GPCPv2.3': {'value': None, 'value_error': None}},
       'metric': {'ERA-Interim': {'value': 0.8239978719745303,
         'value_error': None},
        'GPCPv2.3': {'value': 0.8018205298047385, 'value_error': None}}},
      'SeasonalPrLonRmse': {'diagnostic': {'CSIRO-Mk3-6-0_r5i1p1': {'value': None,
         'value_error': None},
        'ERA-Interim': {'value': None, 'value_error': None},
        'GPCPv2.3': {'value': None, 'value_error': None}},
       'metric': {'ERA-Interim': {'value': 0.9230071749318304,
         'value_error': None},
        'GPCPv2.3': {'value': 0.6582019688085113, 'value_error': None}}},
      'SeasonalSstLonRmse': {'diagnostic': {'CSIRO-Mk3-6-0_r5i1p1': {'value': None,
         'value_error': None},
        'ERA-Interim': {'value': None, 'value_error': None},
        'HadISST': {'value': None, 'value_error': None},
        'Tropflux': {'value': None, 'value_error': None}},
       'metric': {'ERA-Interim': {'value': 0.20127955566349656,
         'value_error': None},
        'HadISST': {'value': 0.22020581635917352, 'value_error': None},
        'Tropflux': {'value': 0.20028760974801124, 'value_error': None}}},
      'SeasonalTauxLonRmse': {'diagnostic': {'CSIRO-Mk3-6-0_r5i1p1': {'value': None,
         'value_error': None},
        'ERA-Interim': {'value': None, 'value_error': None},
        'Tropflux': {'value': None, 'value_error': None}},
       'metric': {'ERA-Interim': {'value': 2.302141949040024,
         'value_error': None},
        'Tropflux': {'value': 2.4571115506194334, 'value_error': None}}}}},
    'r6i1p1': {'metadata': {'description_of_the_collection': 'Describe which science question this collection is about',
      'metrics': {'BiasPrLatRmse': {'diagnostic': {'CSIRO-Mk3-6-0_r6i1p1': {'keyerror': None,
          'name': 'CSIRO-Mk3-6-0_r6i1p1',
          'nyears': 156,
          'time_period': ['1850-1-16 12:0:0.0', '2005-12-16 12:0:0.0']},
         'ERA-Interim': {'name': 'ERA-Interim',
          'nyears': 40,
          'time_period': ['1979-1-16 12:0:0.0', '2019-3-16 12:0:0.0']},
         'GPCPv2.3': {'name': 'GPCPv2.3',
          'nyears': 41,
          'time_period': ['1979-1-1 0:0:0.0', '2019-7-1 0:0:0.0']},
         'method': 'Meridional root mean square error of nino3_LatExt pr, time series are linearly detrended, observations and model regridded to generic_1x1deg',
         'name': 'pr Meridional RMSE',
         'ref': 'Using CDAT regridding and rms (uncentered and biased) calculation',
         'time_frequency': 'monthly',
         'units': 'mm/day'},
        'metric': {'datasets': "CSIRO-Mk3-6-0_r6i1p1; ERA-Interim's pr & GPCPv2.3's precip; 's ",
         'method': 'The metric is the statistical value between the model and the observations',
         'name': 'BiasPrLatRmse',
         'units': 'mm/day'}},
       'BiasPrLonRmse': {'diagnostic': {'CSIRO-Mk3-6-0_r6i1p1': {'keyerror': None,
          'name': 'CSIRO-Mk3-6-0_r6i1p1',
          'nyears': 156,
          'time_period': ['1850-1-16 12:0:0.0', '2005-12-16 12:0:0.0']},
         'ERA-Interim': {'name': 'ERA-Interim',
          'nyears': 40,
          'time_period': ['1979-1-16 12:0:0.0', '2019-3-16 12:0:0.0']},
         'GPCPv2.3': {'name': 'GPCPv2.3',
          'nyears': 41,
          'time_period': ['1979-1-1 0:0:0.0', '2019-7-1 0:0:0.0']},
         'method': 'Zonal root mean square error of equatorial_pacific pr, time series are linearly detrended, observations and model regridded to generic_1x1deg',
         'name': 'pr Zonal RMSE',
         'ref': 'Using CDAT regridding and rms (uncentered and biased) calculation',
         'time_frequency': 'monthly',
         'units': 'mm/day'},
        'metric': {'datasets': "CSIRO-Mk3-6-0_r6i1p1; ERA-Interim's pr & GPCPv2.3's precip; 's ",
         'method': 'The metric is the statistical value between the model and the observations',
         'name': 'BiasPrLonRmse',
         'units': 'mm/day'}},
       'BiasSstLonRmse': {'diagnostic': {'CSIRO-Mk3-6-0_r6i1p1': {'keyerror': None,
          'name': 'CSIRO-Mk3-6-0_r6i1p1',
          'nyears': 156,
          'time_period': ['1850-1-16 12:0:0.0', '2005-12-16 12:0:0.0']},
         'ERA-Interim': {'name': 'ERA-Interim',
          'nyears': 40,
          'time_period': ['1979-1-16 12:0:0.0', '2019-3-16 12:0:0.0']},
         'HadISST': {'name': 'HadISST',
          'nyears': 151,
          'time_period': ['1870-1-16 11:59:59.5', '2020-10-16 12:0:0.0']},
         'Tropflux': {'name': 'Tropflux',
          'nyears': 40,
          'time_period': ['1979-1-15 0:0:0.0', '2018-12-15 12:0:0.0']},
         'method': 'Zonal root mean square error of equatorial_pacific sst, time series are linearly detrended, observations and model regridded to generic_1x1deg',
         'name': 'sst Zonal RMSE',
         'ref': 'Using CDAT regridding and rms (uncentered and biased) calculation',
         'time_frequency': 'monthly',
         'units': 'C'},
        'metric': {'datasets': "CSIRO-Mk3-6-0_r6i1p1; ERA-Interim's ts & HadISST's sst & Tropflux's sst; 's ",
         'method': 'The metric is the statistical value between the model and the observations',
         'name': 'BiasSstLonRmse',
         'units': 'C'}},
       'BiasTauxLonRmse': {'diagnostic': {'CSIRO-Mk3-6-0_r6i1p1': {'keyerror': None,
          'name': 'CSIRO-Mk3-6-0_r6i1p1',
          'nyears': 156,
          'time_period': ['1850-1-16 12:0:0.0', '2005-12-16 12:0:0.0']},
         'ERA-Interim': {'name': 'ERA-Interim',
          'nyears': 40,
          'time_period': ['1979-1-16 12:0:0.0', '2019-3-16 12:0:0.0']},
         'Tropflux': {'name': 'Tropflux',
          'nyears': 40,
          'time_period': ['1979-1-15 0:0:0.0', '2018-12-15 12:0:0.0']},
         'method': 'Zonal root mean square error of equatorial_pacific taux, time series are linearly detrended, observations and model regridded to generic_1x1deg',
         'name': 'taux Zonal RMSE',
         'ref': 'Using CDAT regridding and rms (uncentered and biased) calculation',
         'time_frequency': 'monthly',
         'units': '1e-3 N/m2'},
        'metric': {'datasets': "CSIRO-Mk3-6-0_r6i1p1; ERA-Interim's tauu & Tropflux's taux; 's ",
         'method': 'The metric is the statistical value between the model and the observations',
         'name': 'BiasTauxLonRmse',
         'units': '1e-3 N/m2'}},
       'EnsoAmpl': {'diagnostic': {'CSIRO-Mk3-6-0_r6i1p1': {'keyerror': None,
          'name': 'CSIRO-Mk3-6-0_r6i1p1',
          'nyears': 156,
          'time_period': ['1850-1-16 12:0:0.0', '2005-12-16 12:0:0.0']},
         'ERA-Interim': {'keyerror': None,
          'name': 'ERA-Interim',
          'nyears': 40,
          'time_period': ['1979-1-16 12:0:0.0', '2019-3-16 12:0:0.0']},
         'HadISST': {'keyerror': None,
          'name': 'HadISST',
          'nyears': 151,
          'time_period': ['1870-1-16 11:59:59.5', '2020-10-16 12:0:0.0']},
         'Tropflux': {'keyerror': None,
          'name': 'Tropflux',
          'nyears': 40,
          'time_period': ['1979-1-15 0:0:0.0', '2018-12-15 12:0:0.0']},
         'method': 'Standard deviation of nino3.4 sstA, time series are linearly detrended',
         'name': 'ENSO amplitude',
         'ref': 'Using CDAT regression calculation',
         'time_frequency': 'monthly',
         'units': 'C'},
        'metric': {'datasets': "CSIRO-Mk3-6-0_r6i1p1; ERA-Interim's ts & HadISST's sst & Tropflux's sst; 's ",
         'method': 'The metric is the absolute value of the relative difference between model and observations values (M = 100 * abs[[model-obs] / obs])',
         'name': 'EnsoAmpl',
         'units': '%'}},
       'EnsoDuration': {'diagnostic': {'CSIRO-Mk3-6-0_r6i1p1': {'keyerror': None,
          'name': 'CSIRO-Mk3-6-0_r6i1p1',
          'nyears': 156,
          'time_period': ['1850-1-16 12:0:0.0', '2005-12-16 12:0:0.0']},
         'ERA-Interim': {'keyerror': None,
          'name': 'ERA-Interim',
          'nyears': 40,
          'time_period': ['1979-1-16 12:0:0.0', '2019-3-16 12:0:0.0']},
         'HadISST': {'keyerror': None,
          'name': 'HadISST',
          'nyears': 151,
          'time_period': ['1870-1-16 11:59:59.5', '2020-10-16 12:0:0.0']},
         'Tropflux': {'keyerror': None,
          'name': 'Tropflux',
          'nyears': 40,
          'time_period': ['1979-1-15 0:0:0.0', '2018-12-15 12:0:0.0']},
         'method': 'nino3.4 SSTA during DEC regressed against nino3.4 SSTA during 6 years (centered on ENSO), the duration is the number of consecutive months during which the regression is above 0.25, time series are linearly detrended, smoothing using a triangle shaped window of 5 points',
         'name': 'ENSO Duration based on life cyle SSTA pattern',
         'ref': 'Using CDAT',
         'time_frequency': 'monthly',
         'units': 'months'},
        'metric': {'datasets': "CSIRO-Mk3-6-0_r6i1p1; ERA-Interim's ts & HadISST's sst & Tropflux's sst; 's ",
         'method': 'The metric is the absolute value of the relative difference between model and observations values (M = 100 * abs[[model-obs] / obs])',
         'name': 'EnsoDuration',
         'units': '%'}},
       'EnsoSeasonality': {'diagnostic': {'CSIRO-Mk3-6-0_r6i1p1': {'keyerror': None,
          'name': 'CSIRO-Mk3-6-0_r6i1p1',
          'nyears': 156,
          'time_period': ['1850-1-16 12:0:0.0', '2005-12-16 12:0:0.0']},
         'ERA-Interim': {'keyerror': None,
          'name': 'ERA-Interim',
          'nyears': 40,
          'time_period': ['1979-1-16 12:0:0.0', '2019-3-16 12:0:0.0']},
         'HadISST': {'keyerror': None,
          'name': 'HadISST',
          'nyears': 151,
          'time_period': ['1870-1-16 11:59:59.5', '2020-10-16 12:0:0.0']},
         'Tropflux': {'keyerror': None,
          'name': 'Tropflux',
          'nyears': 40,
          'time_period': ['1979-1-15 0:0:0.0', '2018-12-15 12:0:0.0']},
         'method': 'Ratio between NDJ and MAM standard deviation nino3.4 sstA, time series are linearly detrended',
         'name': 'ENSO seasonality',
         'ref': 'Using CDAT std dev calculation',
         'time_frequency': 'monthly',
         'units': 'C/C'},
        'metric': {'datasets': "CSIRO-Mk3-6-0_r6i1p1; ERA-Interim's ts & HadISST's sst & Tropflux's sst; 's ",
         'method': 'The metric is the absolute value of the relative difference between model and observations values (M = 100 * abs[[model-obs] / obs])',
         'name': 'EnsoSeasonality',
         'units': '%'}},
       'EnsoSstDiversity_2': {'diagnostic': {'CSIRO-Mk3-6-0_r6i1p1': {'keyerror': None,
          'name': 'CSIRO-Mk3-6-0_r6i1p1',
          'nyears': 156,
          'time_period': ['1850-1-16 12:0:0.0', '2005-12-16 12:0:0.0']},
         'ERA-Interim': {'keyerror': None,
          'name': 'ERA-Interim',
          'nyears': 40,
          'time_period': ['1979-1-16 12:0:0.0', '2019-3-16 12:0:0.0']},
         'HadISST': {'keyerror': None,
          'name': 'HadISST',
          'nyears': 151,
          'time_period': ['1870-1-16 11:59:59.5', '2020-10-16 12:0:0.0']},
         'Tropflux': {'keyerror': None,
          'name': 'Tropflux',
          'nyears': 40,
          'time_period': ['1979-1-15 0:0:0.0', '2018-12-15 12:0:0.0']},
         'method': 'Nino (Nina) events = nino3.4 sstA > 0.75 (< -0.75) during DEC, zonal SSTA (meridional averaged [-5.0 ; 5.0]), the zonal SSTA maximum (minimum) is located for each event, the diversity is the interquartile range (IQR = Q3 - Q1), time series are linearly detrended, smoothing using a triangle shaped window of 5 points',
         'name': 'ENSO Diversity (interquartile range)',
         'ref': 'Using CDAT regridding',
         'time_frequency': 'monthly',
         'units': 'long'},
        'metric': {'datasets': "CSIRO-Mk3-6-0_r6i1p1; ERA-Interim's ts & HadISST's sst & Tropflux's sst; 's ",
         'method': 'The metric is the absolute value of the relative difference between model and observations values (M = 100 * abs[[model-obs] / obs])',
         'name': 'EnsoSstDiversity',
         'units': '%'}},
       'EnsoSstLonRmse': {'diagnostic': {'CSIRO-Mk3-6-0_r6i1p1': {'keyerror': None,
          'name': 'CSIRO-Mk3-6-0_r6i1p1',
          'nyears': 156,
          'time_period': ['1850-1-16 12:0:0.0', '2005-12-16 12:0:0.0']},
         'ERA-Interim': {'name': 'ERA-Interim',
          'nyears': 40,
          'time_period': ['1979-1-16 12:0:0.0', '2019-3-16 12:0:0.0']},
         'HadISST': {'name': 'HadISST',
          'nyears': 151,
          'time_period': ['1870-1-16 11:59:59.5', '2020-10-16 12:0:0.0']},
         'Tropflux': {'name': 'Tropflux',
          'nyears': 40,
          'time_period': ['1979-1-15 0:0:0.0', '2018-12-15 12:0:0.0']},
         'method': 'nino3.4 SSTA during DEC regressed against equatorial_pacific SSTA, time series are linearly detrended, smoothing using a triangle shaped window of 5 points, observations and model regridded to generic_1x1deg',
         'name': 'ENSO Zonal SSTA pattern',
         'ref': 'Using CDAT regridding and rms (uncentered and biased) calculation',
         'time_frequency': 'monthly',
         'units': 'C/C'},
        'metric': {'datasets': "CSIRO-Mk3-6-0_r6i1p1; ERA-Interim's ts & HadISST's sst & Tropflux's sst; 's ",
         'method': 'The metric is the statistical value between the model and the observations',
         'name': 'EnsoSstLonRmse',
         'units': 'C/C'}},
       'EnsoSstSkew': {'diagnostic': {'CSIRO-Mk3-6-0_r6i1p1': {'keyerror': None,
          'name': 'CSIRO-Mk3-6-0_r6i1p1',
          'nyears': 156,
          'time_period': ['1850-1-16 12:0:0.0', '2005-12-16 12:0:0.0']},
         'ERA-Interim': {'keyerror': None,
          'name': 'ERA-Interim',
          'nyears': 40,
          'time_period': ['1979-1-16 12:0:0.0', '2019-3-16 12:0:0.0']},
         'HadISST': {'keyerror': None,
          'name': 'HadISST',
          'nyears': 151,
          'time_period': ['1870-1-16 11:59:59.5', '2020-10-16 12:0:0.0']},
         'Tropflux': {'keyerror': None,
          'name': 'Tropflux',
          'nyears': 40,
          'time_period': ['1979-1-15 0:0:0.0', '2018-12-15 12:0:0.0']},
         'method': 'Standard deviation of nino3.4 sstA, time series are linearly detrended',
         'name': 'ENSO skewness',
         'ref': 'Using CDAT regression calculation',
         'time_frequency': 'monthly',
         'units': 'C'},
        'metric': {'datasets': "CSIRO-Mk3-6-0_r6i1p1; ERA-Interim's ts & HadISST's sst & Tropflux's sst; 's ",
         'method': 'The metric is the absolute value of the relative difference between model and observations values (M = 100 * abs[[model-obs] / obs])',
         'name': 'EnsoSstSkew',
         'units': '%'}},
       'EnsoSstTsRmse': {'diagnostic': {'CSIRO-Mk3-6-0_r6i1p1': {'keyerror': None,
          'name': 'CSIRO-Mk3-6-0_r6i1p1',
          'nyears': 156,
          'time_period': ['1850-1-16 12:0:0.0', '2005-12-16 12:0:0.0']},
         'ERA-Interim': {'name': 'ERA-Interim',
          'nyears': 40,
          'time_period': ['1979-1-16 12:0:0.0', '2019-3-16 12:0:0.0']},
         'HadISST': {'name': 'HadISST',
          'nyears': 151,
          'time_period': ['1870-1-16 11:59:59.5', '2020-10-16 12:0:0.0']},
         'Tropflux': {'name': 'Tropflux',
          'nyears': 40,
          'time_period': ['1979-1-15 0:0:0.0', '2018-12-15 12:0:0.0']},
         'method': 'nino3.4 SSTA during DEC regressed against nino3.4 SSTA during 6 years (centered on ENSO), time series are linearly detrended, smoothing using a triangle shaped window of 5 points',
         'name': 'ENSO life cyle SSTA pattern',
         'ref': 'Using CDAT regridding and rms (uncentered and biased) calculation',
         'time_frequency': 'monthly',
         'units': 'C/C'},
        'metric': {'datasets': "CSIRO-Mk3-6-0_r6i1p1; ERA-Interim's ts & HadISST's sst & Tropflux's sst; 's ",
         'method': 'The metric is the statistical value between the model and the observations',
         'name': 'EnsoSstTsRmse',
         'units': 'C/C'}},
       'SeasonalPrLatRmse': {'diagnostic': {'CSIRO-Mk3-6-0_r6i1p1': {'keyerror': None,
          'name': 'CSIRO-Mk3-6-0_r6i1p1',
          'nyears': 156,
          'time_period': ['1850-1-16 12:0:0.0', '2005-12-16 12:0:0.0']},
         'ERA-Interim': {'name': 'ERA-Interim',
          'nyears': 40,
          'time_period': ['1979-1-16 12:0:0.0', '2019-3-16 12:0:0.0']},
         'GPCPv2.3': {'name': 'GPCPv2.3',
          'nyears': 41,
          'time_period': ['1979-1-1 0:0:0.0', '2019-7-1 0:0:0.0']},
         'method': 'Meridional root mean square error of nino3_LatExt climatological pr STD, time series are linearly detrended, observations and model regridded to generic_1x1deg',
         'name': 'pr meridional seasonality RMSE',
         'ref': 'Using CDAT regridding and rms (uncentered and biased) calculation',
         'time_frequency': 'monthly',
         'units': 'mm/day'},
        'metric': {'datasets': "CSIRO-Mk3-6-0_r6i1p1; ERA-Interim's pr & GPCPv2.3's precip; 's ",
         'method': 'The metric is the statistical value between the model and the observations',
         'name': 'SeasonalPrLatRmse',
         'units': 'mm/day'}},
       'SeasonalPrLonRmse': {'diagnostic': {'CSIRO-Mk3-6-0_r6i1p1': {'keyerror': None,
          'name': 'CSIRO-Mk3-6-0_r6i1p1',
          'nyears': 156,
          'time_period': ['1850-1-16 12:0:0.0', '2005-12-16 12:0:0.0']},
         'ERA-Interim': {'name': 'ERA-Interim',
          'nyears': 40,
          'time_period': ['1979-1-16 12:0:0.0', '2019-3-16 12:0:0.0']},
         'GPCPv2.3': {'name': 'GPCPv2.3',
          'nyears': 41,
          'time_period': ['1979-1-1 0:0:0.0', '2019-7-1 0:0:0.0']},
         'method': 'Zonal root mean square error of equatorial_pacific climatological pr STD, time series are linearly detrended, observations and model regridded to generic_1x1deg',
         'name': 'pr zonal seasonality RMSE',
         'ref': 'Using CDAT regridding and rms (uncentered and biased) calculation',
         'time_frequency': 'monthly',
         'units': 'mm/day'},
        'metric': {'datasets': "CSIRO-Mk3-6-0_r6i1p1; ERA-Interim's pr & GPCPv2.3's precip; 's ",
         'method': 'The metric is the statistical value between the model and the observations',
         'name': 'SeasonalPrLonRmse',
         'units': 'mm/day'}},
       'SeasonalSstLonRmse': {'diagnostic': {'CSIRO-Mk3-6-0_r6i1p1': {'keyerror': None,
          'name': 'CSIRO-Mk3-6-0_r6i1p1',
          'nyears': 156,
          'time_period': ['1850-1-16 12:0:0.0', '2005-12-16 12:0:0.0']},
         'ERA-Interim': {'name': 'ERA-Interim',
          'nyears': 40,
          'time_period': ['1979-1-16 12:0:0.0', '2019-3-16 12:0:0.0']},
         'HadISST': {'name': 'HadISST',
          'nyears': 151,
          'time_period': ['1870-1-16 11:59:59.5', '2020-10-16 12:0:0.0']},
         'Tropflux': {'name': 'Tropflux',
          'nyears': 40,
          'time_period': ['1979-1-15 0:0:0.0', '2018-12-15 12:0:0.0']},
         'method': 'Zonal root mean square error of equatorial_pacific climatological sst STD, time series are linearly detrended, observations and model regridded to generic_1x1deg',
         'name': 'sst zonal seasonality RMSE',
         'ref': 'Using CDAT regridding and rms (uncentered and biased) calculation',
         'time_frequency': 'monthly',
         'units': 'C'},
        'metric': {'datasets': "CSIRO-Mk3-6-0_r6i1p1; ERA-Interim's ts & HadISST's sst & Tropflux's sst; 's ",
         'method': 'The metric is the statistical value between the model and the observations',
         'name': 'SeasonalSstLonRmse',
         'units': 'C'}},
       'SeasonalTauxLonRmse': {'diagnostic': {'CSIRO-Mk3-6-0_r6i1p1': {'keyerror': None,
          'name': 'CSIRO-Mk3-6-0_r6i1p1',
          'nyears': 156,
          'time_period': ['1850-1-16 12:0:0.0', '2005-12-16 12:0:0.0']},
         'ERA-Interim': {'name': 'ERA-Interim',
          'nyears': 40,
          'time_period': ['1979-1-16 12:0:0.0', '2019-3-16 12:0:0.0']},
         'Tropflux': {'name': 'Tropflux',
          'nyears': 40,
          'time_period': ['1979-1-15 0:0:0.0', '2018-12-15 12:0:0.0']},
         'method': 'Zonal root mean square error of equatorial_pacific climatological taux STD, time series are linearly detrended, observations and model regridded to generic_1x1deg',
         'name': 'taux zonal seasonality RMSE',
         'ref': 'Using CDAT regridding and rms (uncentered and biased) calculation',
         'time_frequency': 'monthly',
         'units': '1e-3 N/m2'},
        'metric': {'datasets': "CSIRO-Mk3-6-0_r6i1p1; ERA-Interim's tauu & Tropflux's taux; 's ",
         'method': 'The metric is the statistical value between the model and the observations',
         'name': 'SeasonalTauxLonRmse',
         'units': '1e-3 N/m2'}}},
      'name': 'Metrics Collection for ENSO performance'},
     'value': {'BiasPrLatRmse': {'diagnostic': {'CSIRO-Mk3-6-0_r6i1p1': {'value': None,
         'value_error': None},
        'ERA-Interim': {'value': None, 'value_error': None},
        'GPCPv2.3': {'value': None, 'value_error': None}},
       'metric': {'ERA-Interim': {'value': 1.1228162400204404,
         'value_error': None},
        'GPCPv2.3': {'value': 1.1689741864085437, 'value_error': None}}},
      'BiasPrLonRmse': {'diagnostic': {'CSIRO-Mk3-6-0_r6i1p1': {'value': None,
         'value_error': None},
        'ERA-Interim': {'value': None, 'value_error': None},
        'GPCPv2.3': {'value': None, 'value_error': None}},
       'metric': {'ERA-Interim': {'value': 4.0578274836030594,
         'value_error': None},
        'GPCPv2.3': {'value': 2.941653352264851, 'value_error': None}}},
      'BiasSstLonRmse': {'diagnostic': {'CSIRO-Mk3-6-0_r6i1p1': {'value': None,
         'value_error': None},
        'ERA-Interim': {'value': None, 'value_error': None},
        'HadISST': {'value': None, 'value_error': None},
        'Tropflux': {'value': None, 'value_error': None}},
       'metric': {'ERA-Interim': {'value': 2.7862897793750494,
         'value_error': None},
        'HadISST': {'value': 2.588475806297217, 'value_error': None},
        'Tropflux': {'value': 2.8338660144864423, 'value_error': None}}},
      'BiasTauxLonRmse': {'diagnostic': {'CSIRO-Mk3-6-0_r6i1p1': {'value': None,
         'value_error': None},
        'ERA-Interim': {'value': None, 'value_error': None},
        'Tropflux': {'value': None, 'value_error': None}},
       'metric': {'ERA-Interim': {'value': 9.143423404236495,
         'value_error': None},
        'Tropflux': {'value': 9.322318525639801, 'value_error': None}}},
      'EnsoAmpl': {'diagnostic': {'CSIRO-Mk3-6-0_r6i1p1': {'value': 0.7157229450421121,
         'value_error': 0.05730369691276663},
        'ERA-Interim': {'value': 0.8989844997845644,
         'value_error': 0.14214193002531866},
        'HadISST': {'value': 0.7665787872085695,
         'value_error': 0.06238329697691264},
        'Tropflux': {'value': 0.9039789553693535,
         'value_error': 0.14293162279134272}},
       'metric': {'ERA-Interim': {'value': 20.385396498645942,
         'value_error': 18.962443841072684},
        'HadISST': {'value': 6.634131157169715,
         'value_error': 15.073258753848867},
        'Tropflux': {'value': 20.825264704345084,
         'value_error': 18.857676929209568}}},
      'EnsoDuration': {'diagnostic': {'CSIRO-Mk3-6-0_r6i1p1': {'value': 16.0,
         'value_error': None},
        'ERA-Interim': {'value': 13.0, 'value_error': None},
        'HadISST': {'value': 13.0, 'value_error': None},
        'Tropflux': {'value': 13.0, 'value_error': None}},
       'metric': {'ERA-Interim': {'value': 23.076923076923077,
         'value_error': None},
        'HadISST': {'value': 23.076923076923077, 'value_error': None},
        'Tropflux': {'value': 23.076923076923077, 'value_error': None}}},
      'EnsoSeasonality': {'diagnostic': {'CSIRO-Mk3-6-0_r6i1p1': {'value': 0.8817082056214053,
         'value_error': 0.14141366090118102},
        'ERA-Interim': {'value': 2.0466846866656914,
         'value_error': 0.6513411033995022},
        'HadISST': {'value': 1.6639865947361325,
         'value_error': 0.2712772451657809},
        'Tropflux': {'value': 2.0532132553583624,
         'value_error': 0.6534187683977347}},
       'metric': {'ERA-Interim': {'value': 56.92017381251727,
         'value_error': 20.61921305625377},
        'HadISST': {'value': 47.012301156114624,
         'value_error': 17.13699085699861},
        'Tropflux': {'value': 57.05715403305662,
         'value_error': 20.553650480873316}}},
      'EnsoSstDiversity_2': {'diagnostic': {'CSIRO-Mk3-6-0_r6i1p1': {'value': 47.0,
         'value_error': None},
        'ERA-Interim': {'value': 33.25, 'value_error': None},
        'HadISST': {'value': 49.0, 'value_error': None},
        'Tropflux': {'value': 32.0, 'value_error': None}},
       'metric': {'ERA-Interim': {'value': 41.35338345864661,
         'value_error': None},
        'HadISST': {'value': 4.081632653061225, 'value_error': None},
        'Tropflux': {'value': 46.875, 'value_error': None}}},
      'EnsoSstLonRmse': {'diagnostic': {'CSIRO-Mk3-6-0_r6i1p1': {'value': None,
         'value_error': None},
        'ERA-Interim': {'value': None, 'value_error': None},
        'HadISST': {'value': None, 'value_error': None},
        'Tropflux': {'value': None, 'value_error': None}},
       'metric': {'ERA-Interim': {'value': 0.6216017308145901,
         'value_error': None},
        'HadISST': {'value': 0.6301621441814379, 'value_error': None},
        'Tropflux': {'value': 0.6213205115322602, 'value_error': None}}},
      'EnsoSstSkew': {'diagnostic': {'CSIRO-Mk3-6-0_r6i1p1': {'value': 0.25815966246589966,
         'value_error': 0.02066931506880448},
        'ERA-Interim': {'value': 0.39098111106809963,
         'value_error': 0.061819541653923164},
        'HadISST': {'value': 0.38989908235027515,
         'value_error': 0.03172953733021198},
        'Tropflux': {'value': 0.39744741059612115,
         'value_error': 0.06284195338099416}},
       'metric': {'ERA-Interim': {'value': 33.97132107977094,
         'value_error': 15.726576040836132},
        'HadISST': {'value': 33.788081544142806,
         'value_error': 10.689445638362065},
        'Tropflux': {'value': 35.04557946957244,
         'value_error': 15.47071136913598}}},
      'EnsoSstTsRmse': {'diagnostic': {'CSIRO-Mk3-6-0_r6i1p1': {'value': None,
         'value_error': None},
        'ERA-Interim': {'value': None, 'value_error': None},
        'HadISST': {'value': None, 'value_error': None},
        'Tropflux': {'value': None, 'value_error': None}},
       'metric': {'ERA-Interim': {'value': 0.18277314713763063,
         'value_error': None},
        'HadISST': {'value': 0.14931791378491585, 'value_error': None},
        'Tropflux': {'value': 0.1775575746932016, 'value_error': None}}},
      'SeasonalPrLatRmse': {'diagnostic': {'CSIRO-Mk3-6-0_r6i1p1': {'value': None,
         'value_error': None},
        'ERA-Interim': {'value': None, 'value_error': None},
        'GPCPv2.3': {'value': None, 'value_error': None}},
       'metric': {'ERA-Interim': {'value': 0.8437810196977154,
         'value_error': None},
        'GPCPv2.3': {'value': 0.8052612428220073, 'value_error': None}}},
      'SeasonalPrLonRmse': {'diagnostic': {'CSIRO-Mk3-6-0_r6i1p1': {'value': None,
         'value_error': None},
        'ERA-Interim': {'value': None, 'value_error': None},
        'GPCPv2.3': {'value': None, 'value_error': None}},
       'metric': {'ERA-Interim': {'value': 0.9211012474864425,
         'value_error': None},
        'GPCPv2.3': {'value': 0.6260588735059097, 'value_error': None}}},
      'SeasonalSstLonRmse': {'diagnostic': {'CSIRO-Mk3-6-0_r6i1p1': {'value': None,
         'value_error': None},
        'ERA-Interim': {'value': None, 'value_error': None},
        'HadISST': {'value': None, 'value_error': None},
        'Tropflux': {'value': None, 'value_error': None}},
       'metric': {'ERA-Interim': {'value': 0.18723863559032183,
         'value_error': None},
        'HadISST': {'value': 0.20479909676167404, 'value_error': None},
        'Tropflux': {'value': 0.1873308625757763, 'value_error': None}}},
      'SeasonalTauxLonRmse': {'diagnostic': {'CSIRO-Mk3-6-0_r6i1p1': {'value': None,
         'value_error': None},
        'ERA-Interim': {'value': None, 'value_error': None},
        'Tropflux': {'value': None, 'value_error': None}},
       'metric': {'ERA-Interim': {'value': 2.5528955486003353,
         'value_error': None},
        'Tropflux': {'value': 2.730830946279003, 'value_error': None}}}}},
    'r7i1p1': {'metadata': {'description_of_the_collection': 'Describe which science question this collection is about',
      'metrics': {'BiasPrLatRmse': {'diagnostic': {'CSIRO-Mk3-6-0_r7i1p1': {'keyerror': None,
          'name': 'CSIRO-Mk3-6-0_r7i1p1',
          'nyears': 156,
          'time_period': ['1850-1-16 12:0:0.0', '2005-12-16 12:0:0.0']},
         'ERA-Interim': {'name': 'ERA-Interim',
          'nyears': 40,
          'time_period': ['1979-1-16 12:0:0.0', '2019-3-16 12:0:0.0']},
         'GPCPv2.3': {'name': 'GPCPv2.3',
          'nyears': 41,
          'time_period': ['1979-1-1 0:0:0.0', '2019-7-1 0:0:0.0']},
         'method': 'Meridional root mean square error of nino3_LatExt pr, time series are linearly detrended, observations and model regridded to generic_1x1deg',
         'name': 'pr Meridional RMSE',
         'ref': 'Using CDAT regridding and rms (uncentered and biased) calculation',
         'time_frequency': 'monthly',
         'units': 'mm/day'},
        'metric': {'datasets': "CSIRO-Mk3-6-0_r7i1p1; ERA-Interim's pr & GPCPv2.3's precip; 's ",
         'method': 'The metric is the statistical value between the model and the observations',
         'name': 'BiasPrLatRmse',
         'units': 'mm/day'}},
       'BiasPrLonRmse': {'diagnostic': {'CSIRO-Mk3-6-0_r7i1p1': {'keyerror': None,
          'name': 'CSIRO-Mk3-6-0_r7i1p1',
          'nyears': 156,
          'time_period': ['1850-1-16 12:0:0.0', '2005-12-16 12:0:0.0']},
         'ERA-Interim': {'name': 'ERA-Interim',
          'nyears': 40,
          'time_period': ['1979-1-16 12:0:0.0', '2019-3-16 12:0:0.0']},
         'GPCPv2.3': {'name': 'GPCPv2.3',
          'nyears': 41,
          'time_period': ['1979-1-1 0:0:0.0', '2019-7-1 0:0:0.0']},
         'method': 'Zonal root mean square error of equatorial_pacific pr, time series are linearly detrended, observations and model regridded to generic_1x1deg',
         'name': 'pr Zonal RMSE',
         'ref': 'Using CDAT regridding and rms (uncentered and biased) calculation',
         'time_frequency': 'monthly',
         'units': 'mm/day'},
        'metric': {'datasets': "CSIRO-Mk3-6-0_r7i1p1; ERA-Interim's pr & GPCPv2.3's precip; 's ",
         'method': 'The metric is the statistical value between the model and the observations',
         'name': 'BiasPrLonRmse',
         'units': 'mm/day'}},
       'BiasSstLonRmse': {'diagnostic': {'CSIRO-Mk3-6-0_r7i1p1': {'keyerror': None,
          'name': 'CSIRO-Mk3-6-0_r7i1p1',
          'nyears': 156,
          'time_period': ['1850-1-16 12:0:0.0', '2005-12-16 12:0:0.0']},
         'ERA-Interim': {'name': 'ERA-Interim',
          'nyears': 40,
          'time_period': ['1979-1-16 12:0:0.0', '2019-3-16 12:0:0.0']},
         'HadISST': {'name': 'HadISST',
          'nyears': 151,
          'time_period': ['1870-1-16 11:59:59.5', '2020-10-16 12:0:0.0']},
         'Tropflux': {'name': 'Tropflux',
          'nyears': 40,
          'time_period': ['1979-1-15 0:0:0.0', '2018-12-15 12:0:0.0']},
         'method': 'Zonal root mean square error of equatorial_pacific sst, time series are linearly detrended, observations and model regridded to generic_1x1deg',
         'name': 'sst Zonal RMSE',
         'ref': 'Using CDAT regridding and rms (uncentered and biased) calculation',
         'time_frequency': 'monthly',
         'units': 'C'},
        'metric': {'datasets': "CSIRO-Mk3-6-0_r7i1p1; ERA-Interim's ts & HadISST's sst & Tropflux's sst; 's ",
         'method': 'The metric is the statistical value between the model and the observations',
         'name': 'BiasSstLonRmse',
         'units': 'C'}},
       'BiasTauxLonRmse': {'diagnostic': {'CSIRO-Mk3-6-0_r7i1p1': {'keyerror': None,
          'name': 'CSIRO-Mk3-6-0_r7i1p1',
          'nyears': 156,
          'time_period': ['1850-1-16 12:0:0.0', '2005-12-16 12:0:0.0']},
         'ERA-Interim': {'name': 'ERA-Interim',
          'nyears': 40,
          'time_period': ['1979-1-16 12:0:0.0', '2019-3-16 12:0:0.0']},
         'Tropflux': {'name': 'Tropflux',
          'nyears': 40,
          'time_period': ['1979-1-15 0:0:0.0', '2018-12-15 12:0:0.0']},
         'method': 'Zonal root mean square error of equatorial_pacific taux, time series are linearly detrended, observations and model regridded to generic_1x1deg',
         'name': 'taux Zonal RMSE',
         'ref': 'Using CDAT regridding and rms (uncentered and biased) calculation',
         'time_frequency': 'monthly',
         'units': '1e-3 N/m2'},
        'metric': {'datasets': "CSIRO-Mk3-6-0_r7i1p1; ERA-Interim's tauu & Tropflux's taux; 's ",
         'method': 'The metric is the statistical value between the model and the observations',
         'name': 'BiasTauxLonRmse',
         'units': '1e-3 N/m2'}},
       'EnsoAmpl': {'diagnostic': {'CSIRO-Mk3-6-0_r7i1p1': {'keyerror': None,
          'name': 'CSIRO-Mk3-6-0_r7i1p1',
          'nyears': 156,
          'time_period': ['1850-1-16 12:0:0.0', '2005-12-16 12:0:0.0']},
         'ERA-Interim': {'keyerror': None,
          'name': 'ERA-Interim',
          'nyears': 40,
          'time_period': ['1979-1-16 12:0:0.0', '2019-3-16 12:0:0.0']},
         'HadISST': {'keyerror': None,
          'name': 'HadISST',
          'nyears': 151,
          'time_period': ['1870-1-16 11:59:59.5', '2020-10-16 12:0:0.0']},
         'Tropflux': {'keyerror': None,
          'name': 'Tropflux',
          'nyears': 40,
          'time_period': ['1979-1-15 0:0:0.0', '2018-12-15 12:0:0.0']},
         'method': 'Standard deviation of nino3.4 sstA, time series are linearly detrended',
         'name': 'ENSO amplitude',
         'ref': 'Using CDAT regression calculation',
         'time_frequency': 'monthly',
         'units': 'C'},
        'metric': {'datasets': "CSIRO-Mk3-6-0_r7i1p1; ERA-Interim's ts & HadISST's sst & Tropflux's sst; 's ",
         'method': 'The metric is the absolute value of the relative difference between model and observations values (M = 100 * abs[[model-obs] / obs])',
         'name': 'EnsoAmpl',
         'units': '%'}},
       'EnsoDuration': {'diagnostic': {'CSIRO-Mk3-6-0_r7i1p1': {'keyerror': None,
          'name': 'CSIRO-Mk3-6-0_r7i1p1',
          'nyears': 156,
          'time_period': ['1850-1-16 12:0:0.0', '2005-12-16 12:0:0.0']},
         'ERA-Interim': {'keyerror': None,
          'name': 'ERA-Interim',
          'nyears': 40,
          'time_period': ['1979-1-16 12:0:0.0', '2019-3-16 12:0:0.0']},
         'HadISST': {'keyerror': None,
          'name': 'HadISST',
          'nyears': 151,
          'time_period': ['1870-1-16 11:59:59.5', '2020-10-16 12:0:0.0']},
         'Tropflux': {'keyerror': None,
          'name': 'Tropflux',
          'nyears': 40,
          'time_period': ['1979-1-15 0:0:0.0', '2018-12-15 12:0:0.0']},
         'method': 'nino3.4 SSTA during DEC regressed against nino3.4 SSTA during 6 years (centered on ENSO), the duration is the number of consecutive months during which the regression is above 0.25, time series are linearly detrended, smoothing using a triangle shaped window of 5 points',
         'name': 'ENSO Duration based on life cyle SSTA pattern',
         'ref': 'Using CDAT',
         'time_frequency': 'monthly',
         'units': 'months'},
        'metric': {'datasets': "CSIRO-Mk3-6-0_r7i1p1; ERA-Interim's ts & HadISST's sst & Tropflux's sst; 's ",
         'method': 'The metric is the absolute value of the relative difference between model and observations values (M = 100 * abs[[model-obs] / obs])',
         'name': 'EnsoDuration',
         'units': '%'}},
       'EnsoSeasonality': {'diagnostic': {'CSIRO-Mk3-6-0_r7i1p1': {'keyerror': None,
          'name': 'CSIRO-Mk3-6-0_r7i1p1',
          'nyears': 156,
          'time_period': ['1850-1-16 12:0:0.0', '2005-12-16 12:0:0.0']},
         'ERA-Interim': {'keyerror': None,
          'name': 'ERA-Interim',
          'nyears': 40,
          'time_period': ['1979-1-16 12:0:0.0', '2019-3-16 12:0:0.0']},
         'HadISST': {'keyerror': None,
          'name': 'HadISST',
          'nyears': 151,
          'time_period': ['1870-1-16 11:59:59.5', '2020-10-16 12:0:0.0']},
         'Tropflux': {'keyerror': None,
          'name': 'Tropflux',
          'nyears': 40,
          'time_period': ['1979-1-15 0:0:0.0', '2018-12-15 12:0:0.0']},
         'method': 'Ratio between NDJ and MAM standard deviation nino3.4 sstA, time series are linearly detrended',
         'name': 'ENSO seasonality',
         'ref': 'Using CDAT std dev calculation',
         'time_frequency': 'monthly',
         'units': 'C/C'},
        'metric': {'datasets': "CSIRO-Mk3-6-0_r7i1p1; ERA-Interim's ts & HadISST's sst & Tropflux's sst; 's ",
         'method': 'The metric is the absolute value of the relative difference between model and observations values (M = 100 * abs[[model-obs] / obs])',
         'name': 'EnsoSeasonality',
         'units': '%'}},
       'EnsoSstDiversity_2': {'diagnostic': {'CSIRO-Mk3-6-0_r7i1p1': {'keyerror': None,
          'name': 'CSIRO-Mk3-6-0_r7i1p1',
          'nyears': 156,
          'time_period': ['1850-1-16 12:0:0.0', '2005-12-16 12:0:0.0']},
         'ERA-Interim': {'keyerror': None,
          'name': 'ERA-Interim',
          'nyears': 40,
          'time_period': ['1979-1-16 12:0:0.0', '2019-3-16 12:0:0.0']},
         'HadISST': {'keyerror': None,
          'name': 'HadISST',
          'nyears': 151,
          'time_period': ['1870-1-16 11:59:59.5', '2020-10-16 12:0:0.0']},
         'Tropflux': {'keyerror': None,
          'name': 'Tropflux',
          'nyears': 40,
          'time_period': ['1979-1-15 0:0:0.0', '2018-12-15 12:0:0.0']},
         'method': 'Nino (Nina) events = nino3.4 sstA > 0.75 (< -0.75) during DEC, zonal SSTA (meridional averaged [-5.0 ; 5.0]), the zonal SSTA maximum (minimum) is located for each event, the diversity is the interquartile range (IQR = Q3 - Q1), time series are linearly detrended, smoothing using a triangle shaped window of 5 points',
         'name': 'ENSO Diversity (interquartile range)',
         'ref': 'Using CDAT regridding',
         'time_frequency': 'monthly',
         'units': 'long'},
        'metric': {'datasets': "CSIRO-Mk3-6-0_r7i1p1; ERA-Interim's ts & HadISST's sst & Tropflux's sst; 's ",
         'method': 'The metric is the absolute value of the relative difference between model and observations values (M = 100 * abs[[model-obs] / obs])',
         'name': 'EnsoSstDiversity',
         'units': '%'}},
       'EnsoSstLonRmse': {'diagnostic': {'CSIRO-Mk3-6-0_r7i1p1': {'keyerror': None,
          'name': 'CSIRO-Mk3-6-0_r7i1p1',
          'nyears': 156,
          'time_period': ['1850-1-16 12:0:0.0', '2005-12-16 12:0:0.0']},
         'ERA-Interim': {'name': 'ERA-Interim',
          'nyears': 40,
          'time_period': ['1979-1-16 12:0:0.0', '2019-3-16 12:0:0.0']},
         'HadISST': {'name': 'HadISST',
          'nyears': 151,
          'time_period': ['1870-1-16 11:59:59.5', '2020-10-16 12:0:0.0']},
         'Tropflux': {'name': 'Tropflux',
          'nyears': 40,
          'time_period': ['1979-1-15 0:0:0.0', '2018-12-15 12:0:0.0']},
         'method': 'nino3.4 SSTA during DEC regressed against equatorial_pacific SSTA, time series are linearly detrended, smoothing using a triangle shaped window of 5 points, observations and model regridded to generic_1x1deg',
         'name': 'ENSO Zonal SSTA pattern',
         'ref': 'Using CDAT regridding and rms (uncentered and biased) calculation',
         'time_frequency': 'monthly',
         'units': 'C/C'},
        'metric': {'datasets': "CSIRO-Mk3-6-0_r7i1p1; ERA-Interim's ts & HadISST's sst & Tropflux's sst; 's ",
         'method': 'The metric is the statistical value between the model and the observations',
         'name': 'EnsoSstLonRmse',
         'units': 'C/C'}},
       'EnsoSstSkew': {'diagnostic': {'CSIRO-Mk3-6-0_r7i1p1': {'keyerror': None,
          'name': 'CSIRO-Mk3-6-0_r7i1p1',
          'nyears': 156,
          'time_period': ['1850-1-16 12:0:0.0', '2005-12-16 12:0:0.0']},
         'ERA-Interim': {'keyerror': None,
          'name': 'ERA-Interim',
          'nyears': 40,
          'time_period': ['1979-1-16 12:0:0.0', '2019-3-16 12:0:0.0']},
         'HadISST': {'keyerror': None,
          'name': 'HadISST',
          'nyears': 151,
          'time_period': ['1870-1-16 11:59:59.5', '2020-10-16 12:0:0.0']},
         'Tropflux': {'keyerror': None,
          'name': 'Tropflux',
          'nyears': 40,
          'time_period': ['1979-1-15 0:0:0.0', '2018-12-15 12:0:0.0']},
         'method': 'Standard deviation of nino3.4 sstA, time series are linearly detrended',
         'name': 'ENSO skewness',
         'ref': 'Using CDAT regression calculation',
         'time_frequency': 'monthly',
         'units': 'C'},
        'metric': {'datasets': "CSIRO-Mk3-6-0_r7i1p1; ERA-Interim's ts & HadISST's sst & Tropflux's sst; 's ",
         'method': 'The metric is the absolute value of the relative difference between model and observations values (M = 100 * abs[[model-obs] / obs])',
         'name': 'EnsoSstSkew',
         'units': '%'}},
       'EnsoSstTsRmse': {'diagnostic': {'CSIRO-Mk3-6-0_r7i1p1': {'keyerror': None,
          'name': 'CSIRO-Mk3-6-0_r7i1p1',
          'nyears': 156,
          'time_period': ['1850-1-16 12:0:0.0', '2005-12-16 12:0:0.0']},
         'ERA-Interim': {'name': 'ERA-Interim',
          'nyears': 40,
          'time_period': ['1979-1-16 12:0:0.0', '2019-3-16 12:0:0.0']},
         'HadISST': {'name': 'HadISST',
          'nyears': 151,
          'time_period': ['1870-1-16 11:59:59.5', '2020-10-16 12:0:0.0']},
         'Tropflux': {'name': 'Tropflux',
          'nyears': 40,
          'time_period': ['1979-1-15 0:0:0.0', '2018-12-15 12:0:0.0']},
         'method': 'nino3.4 SSTA during DEC regressed against nino3.4 SSTA during 6 years (centered on ENSO), time series are linearly detrended, smoothing using a triangle shaped window of 5 points',
         'name': 'ENSO life cyle SSTA pattern',
         'ref': 'Using CDAT regridding and rms (uncentered and biased) calculation',
         'time_frequency': 'monthly',
         'units': 'C/C'},
        'metric': {'datasets': "CSIRO-Mk3-6-0_r7i1p1; ERA-Interim's ts & HadISST's sst & Tropflux's sst; 's ",
         'method': 'The metric is the statistical value between the model and the observations',
         'name': 'EnsoSstTsRmse',
         'units': 'C/C'}},
       'SeasonalPrLatRmse': {'diagnostic': {'CSIRO-Mk3-6-0_r7i1p1': {'keyerror': None,
          'name': 'CSIRO-Mk3-6-0_r7i1p1',
          'nyears': 156,
          'time_period': ['1850-1-16 12:0:0.0', '2005-12-16 12:0:0.0']},
         'ERA-Interim': {'name': 'ERA-Interim',
          'nyears': 40,
          'time_period': ['1979-1-16 12:0:0.0', '2019-3-16 12:0:0.0']},
         'GPCPv2.3': {'name': 'GPCPv2.3',
          'nyears': 41,
          'time_period': ['1979-1-1 0:0:0.0', '2019-7-1 0:0:0.0']},
         'method': 'Meridional root mean square error of nino3_LatExt climatological pr STD, time series are linearly detrended, observations and model regridded to generic_1x1deg',
         'name': 'pr meridional seasonality RMSE',
         'ref': 'Using CDAT regridding and rms (uncentered and biased) calculation',
         'time_frequency': 'monthly',
         'units': 'mm/day'},
        'metric': {'datasets': "CSIRO-Mk3-6-0_r7i1p1; ERA-Interim's pr & GPCPv2.3's precip; 's ",
         'method': 'The metric is the statistical value between the model and the observations',
         'name': 'SeasonalPrLatRmse',
         'units': 'mm/day'}},
       'SeasonalPrLonRmse': {'diagnostic': {'CSIRO-Mk3-6-0_r7i1p1': {'keyerror': None,
          'name': 'CSIRO-Mk3-6-0_r7i1p1',
          'nyears': 156,
          'time_period': ['1850-1-16 12:0:0.0', '2005-12-16 12:0:0.0']},
         'ERA-Interim': {'name': 'ERA-Interim',
          'nyears': 40,
          'time_period': ['1979-1-16 12:0:0.0', '2019-3-16 12:0:0.0']},
         'GPCPv2.3': {'name': 'GPCPv2.3',
          'nyears': 41,
          'time_period': ['1979-1-1 0:0:0.0', '2019-7-1 0:0:0.0']},
         'method': 'Zonal root mean square error of equatorial_pacific climatological pr STD, time series are linearly detrended, observations and model regridded to generic_1x1deg',
         'name': 'pr zonal seasonality RMSE',
         'ref': 'Using CDAT regridding and rms (uncentered and biased) calculation',
         'time_frequency': 'monthly',
         'units': 'mm/day'},
        'metric': {'datasets': "CSIRO-Mk3-6-0_r7i1p1; ERA-Interim's pr & GPCPv2.3's precip; 's ",
         'method': 'The metric is the statistical value between the model and the observations',
         'name': 'SeasonalPrLonRmse',
         'units': 'mm/day'}},
       'SeasonalSstLonRmse': {'diagnostic': {'CSIRO-Mk3-6-0_r7i1p1': {'keyerror': None,
          'name': 'CSIRO-Mk3-6-0_r7i1p1',
          'nyears': 156,
          'time_period': ['1850-1-16 12:0:0.0', '2005-12-16 12:0:0.0']},
         'ERA-Interim': {'name': 'ERA-Interim',
          'nyears': 40,
          'time_period': ['1979-1-16 12:0:0.0', '2019-3-16 12:0:0.0']},
         'HadISST': {'name': 'HadISST',
          'nyears': 151,
          'time_period': ['1870-1-16 11:59:59.5', '2020-10-16 12:0:0.0']},
         'Tropflux': {'name': 'Tropflux',
          'nyears': 40,
          'time_period': ['1979-1-15 0:0:0.0', '2018-12-15 12:0:0.0']},
         'method': 'Zonal root mean square error of equatorial_pacific climatological sst STD, time series are linearly detrended, observations and model regridded to generic_1x1deg',
         'name': 'sst zonal seasonality RMSE',
         'ref': 'Using CDAT regridding and rms (uncentered and biased) calculation',
         'time_frequency': 'monthly',
         'units': 'C'},
        'metric': {'datasets': "CSIRO-Mk3-6-0_r7i1p1; ERA-Interim's ts & HadISST's sst & Tropflux's sst; 's ",
         'method': 'The metric is the statistical value between the model and the observations',
         'name': 'SeasonalSstLonRmse',
         'units': 'C'}},
       'SeasonalTauxLonRmse': {'diagnostic': {'CSIRO-Mk3-6-0_r7i1p1': {'keyerror': None,
          'name': 'CSIRO-Mk3-6-0_r7i1p1',
          'nyears': 156,
          'time_period': ['1850-1-16 12:0:0.0', '2005-12-16 12:0:0.0']},
         'ERA-Interim': {'name': 'ERA-Interim',
          'nyears': 40,
          'time_period': ['1979-1-16 12:0:0.0', '2019-3-16 12:0:0.0']},
         'Tropflux': {'name': 'Tropflux',
          'nyears': 40,
          'time_period': ['1979-1-15 0:0:0.0', '2018-12-15 12:0:0.0']},
         'method': 'Zonal root mean square error of equatorial_pacific climatological taux STD, time series are linearly detrended, observations and model regridded to generic_1x1deg',
         'name': 'taux zonal seasonality RMSE',
         'ref': 'Using CDAT regridding and rms (uncentered and biased) calculation',
         'time_frequency': 'monthly',
         'units': '1e-3 N/m2'},
        'metric': {'datasets': "CSIRO-Mk3-6-0_r7i1p1; ERA-Interim's tauu & Tropflux's taux; 's ",
         'method': 'The metric is the statistical value between the model and the observations',
         'name': 'SeasonalTauxLonRmse',
         'units': '1e-3 N/m2'}}},
      'name': 'Metrics Collection for ENSO performance'},
     'value': {'BiasPrLatRmse': {'diagnostic': {'CSIRO-Mk3-6-0_r7i1p1': {'value': None,
         'value_error': None},
        'ERA-Interim': {'value': None, 'value_error': None},
        'GPCPv2.3': {'value': None, 'value_error': None}},
       'metric': {'ERA-Interim': {'value': 1.0951896643274894,
         'value_error': None},
        'GPCPv2.3': {'value': 1.162574054201195, 'value_error': None}}},
      'BiasPrLonRmse': {'diagnostic': {'CSIRO-Mk3-6-0_r7i1p1': {'value': None,
         'value_error': None},
        'ERA-Interim': {'value': None, 'value_error': None},
        'GPCPv2.3': {'value': None, 'value_error': None}},
       'metric': {'ERA-Interim': {'value': 3.960608780298882,
         'value_error': None},
        'GPCPv2.3': {'value': 2.8429935844703746, 'value_error': None}}},
      'BiasSstLonRmse': {'diagnostic': {'CSIRO-Mk3-6-0_r7i1p1': {'value': None,
         'value_error': None},
        'ERA-Interim': {'value': None, 'value_error': None},
        'HadISST': {'value': None, 'value_error': None},
        'Tropflux': {'value': None, 'value_error': None}},
       'metric': {'ERA-Interim': {'value': 2.717604328683773,
         'value_error': None},
        'HadISST': {'value': 2.520275738586108, 'value_error': None},
        'Tropflux': {'value': 2.765231447380835, 'value_error': None}}},
      'BiasTauxLonRmse': {'diagnostic': {'CSIRO-Mk3-6-0_r7i1p1': {'value': None,
         'value_error': None},
        'ERA-Interim': {'value': None, 'value_error': None},
        'Tropflux': {'value': None, 'value_error': None}},
       'metric': {'ERA-Interim': {'value': 8.481948073107331,
         'value_error': None},
        'Tropflux': {'value': 8.674028068927456, 'value_error': None}}},
      'EnsoAmpl': {'diagnostic': {'CSIRO-Mk3-6-0_r7i1p1': {'value': 0.7069017600851039,
         'value_error': 0.05659743688199716},
        'ERA-Interim': {'value': 0.8989844997845644,
         'value_error': 0.14214193002531866},
        'HadISST': {'value': 0.7665787872085695,
         'value_error': 0.06238329697691264},
        'Tropflux': {'value': 0.9039789553693535,
         'value_error': 0.14293162279134272}},
       'metric': {'ERA-Interim': {'value': 21.36663532524664,
         'value_error': 18.7287343791675},
        'HadISST': {'value': 7.784852401248203,
         'value_error': 14.887482952900191},
        'Tropflux': {'value': 21.80108221697778,
         'value_error': 18.62525870480532}}},
      'EnsoDuration': {'diagnostic': {'CSIRO-Mk3-6-0_r7i1p1': {'value': 17.0,
         'value_error': None},
        'ERA-Interim': {'value': 13.0, 'value_error': None},
        'HadISST': {'value': 13.0, 'value_error': None},
        'Tropflux': {'value': 13.0, 'value_error': None}},
       'metric': {'ERA-Interim': {'value': 30.76923076923077,
         'value_error': None},
        'HadISST': {'value': 30.76923076923077, 'value_error': None},
        'Tropflux': {'value': 30.76923076923077, 'value_error': None}}},
      'EnsoSeasonality': {'diagnostic': {'CSIRO-Mk3-6-0_r7i1p1': {'value': 0.8468259883283481,
         'value_error': 0.1358190412568224},
        'ERA-Interim': {'value': 2.0466846866656914,
         'value_error': 0.6513411033995022},
        'HadISST': {'value': 1.6639865947361325,
         'value_error': 0.2712772451657809},
        'Tropflux': {'value': 2.0532132553583624,
         'value_error': 0.6534187683977347}},
       'metric': {'ERA-Interim': {'value': 58.62450167114238,
         'value_error': 19.803473942503338},
        'HadISST': {'value': 49.10860514097868,
         'value_error': 16.459015723035034},
        'Tropflux': {'value': 58.75606266819345,
         'value_error': 19.740505159475198}}},
      'EnsoSstDiversity_2': {'diagnostic': {'CSIRO-Mk3-6-0_r7i1p1': {'value': 33.0,
         'value_error': None},
        'ERA-Interim': {'value': 33.25, 'value_error': None},
        'HadISST': {'value': 49.0, 'value_error': None},
        'Tropflux': {'value': 32.0, 'value_error': None}},
       'metric': {'ERA-Interim': {'value': 0.7518796992481203,
         'value_error': None},
        'HadISST': {'value': 32.6530612244898, 'value_error': None},
        'Tropflux': {'value': 3.125, 'value_error': None}}},
      'EnsoSstLonRmse': {'diagnostic': {'CSIRO-Mk3-6-0_r7i1p1': {'value': None,
         'value_error': None},
        'ERA-Interim': {'value': None, 'value_error': None},
        'HadISST': {'value': None, 'value_error': None},
        'Tropflux': {'value': None, 'value_error': None}},
       'metric': {'ERA-Interim': {'value': 0.6296451351253857,
         'value_error': None},
        'HadISST': {'value': 0.6380680036425554, 'value_error': None},
        'Tropflux': {'value': 0.6292870738248049, 'value_error': None}}},
      'EnsoSstSkew': {'diagnostic': {'CSIRO-Mk3-6-0_r7i1p1': {'value': 0.20715563583915061,
         'value_error': 0.016585724758621065},
        'ERA-Interim': {'value': 0.39098111106809963,
         'value_error': 0.061819541653923164},
        'HadISST': {'value': 0.38989908235027515,
         'value_error': 0.03172953733021198},
        'Tropflux': {'value': 0.39744741059612115,
         'value_error': 0.06284195338099416}},
       'metric': {'ERA-Interim': {'value': 47.01645936980597,
         'value_error': 12.619511616159206},
        'HadISST': {'value': 46.86942205905286,
         'value_error': 8.57755579175901},
        'Tropflux': {'value': 47.87847893424612,
         'value_error': 12.414197554897518}}},
      'EnsoSstTsRmse': {'diagnostic': {'CSIRO-Mk3-6-0_r7i1p1': {'value': None,
         'value_error': None},
        'ERA-Interim': {'value': None, 'value_error': None},
        'HadISST': {'value': None, 'value_error': None},
        'Tropflux': {'value': None, 'value_error': None}},
       'metric': {'ERA-Interim': {'value': 0.18122186578970922,
         'value_error': None},
        'HadISST': {'value': 0.15330324787455538, 'value_error': None},
        'Tropflux': {'value': 0.17827791906864926, 'value_error': None}}},
      'SeasonalPrLatRmse': {'diagnostic': {'CSIRO-Mk3-6-0_r7i1p1': {'value': None,
         'value_error': None},
        'ERA-Interim': {'value': None, 'value_error': None},
        'GPCPv2.3': {'value': None, 'value_error': None}},
       'metric': {'ERA-Interim': {'value': 0.8394614436952469,
         'value_error': None},
        'GPCPv2.3': {'value': 0.7885173778716502, 'value_error': None}}},
      'SeasonalPrLonRmse': {'diagnostic': {'CSIRO-Mk3-6-0_r7i1p1': {'value': None,
         'value_error': None},
        'ERA-Interim': {'value': None, 'value_error': None},
        'GPCPv2.3': {'value': None, 'value_error': None}},
       'metric': {'ERA-Interim': {'value': 0.9436770006042658,
         'value_error': None},
        'GPCPv2.3': {'value': 0.6489470746339031, 'value_error': None}}},
      'SeasonalSstLonRmse': {'diagnostic': {'CSIRO-Mk3-6-0_r7i1p1': {'value': None,
         'value_error': None},
        'ERA-Interim': {'value': None, 'value_error': None},
        'HadISST': {'value': None, 'value_error': None},
        'Tropflux': {'value': None, 'value_error': None}},
       'metric': {'ERA-Interim': {'value': 0.18173848912586055,
         'value_error': None},
        'HadISST': {'value': 0.19820396232586354, 'value_error': None},
        'Tropflux': {'value': 0.18215648416153435, 'value_error': None}}},
      'SeasonalTauxLonRmse': {'diagnostic': {'CSIRO-Mk3-6-0_r7i1p1': {'value': None,
         'value_error': None},
        'ERA-Interim': {'value': None, 'value_error': None},
        'Tropflux': {'value': None, 'value_error': None}},
       'metric': {'ERA-Interim': {'value': 2.5193918450344563,
         'value_error': None},
        'Tropflux': {'value': 2.6981578247438325, 'value_error': None}}}}},
    'r8i1p1': {'metadata': {'description_of_the_collection': 'Describe which science question this collection is about',
      'metrics': {'BiasPrLatRmse': {'diagnostic': {'CSIRO-Mk3-6-0_r8i1p1': {'keyerror': None,
          'name': 'CSIRO-Mk3-6-0_r8i1p1',
          'nyears': 156,
          'time_period': ['1850-1-16 12:0:0.0', '2005-12-16 12:0:0.0']},
         'ERA-Interim': {'name': 'ERA-Interim',
          'nyears': 40,
          'time_period': ['1979-1-16 12:0:0.0', '2019-3-16 12:0:0.0']},
         'GPCPv2.3': {'name': 'GPCPv2.3',
          'nyears': 41,
          'time_period': ['1979-1-1 0:0:0.0', '2019-7-1 0:0:0.0']},
         'method': 'Meridional root mean square error of nino3_LatExt pr, time series are linearly detrended, observations and model regridded to generic_1x1deg',
         'name': 'pr Meridional RMSE',
         'ref': 'Using CDAT regridding and rms (uncentered and biased) calculation',
         'time_frequency': 'monthly',
         'units': 'mm/day'},
        'metric': {'datasets': "CSIRO-Mk3-6-0_r8i1p1; ERA-Interim's pr & GPCPv2.3's precip; 's ",
         'method': 'The metric is the statistical value between the model and the observations',
         'name': 'BiasPrLatRmse',
         'units': 'mm/day'}},
       'BiasPrLonRmse': {'diagnostic': {'CSIRO-Mk3-6-0_r8i1p1': {'keyerror': None,
          'name': 'CSIRO-Mk3-6-0_r8i1p1',
          'nyears': 156,
          'time_period': ['1850-1-16 12:0:0.0', '2005-12-16 12:0:0.0']},
         'ERA-Interim': {'name': 'ERA-Interim',
          'nyears': 40,
          'time_period': ['1979-1-16 12:0:0.0', '2019-3-16 12:0:0.0']},
         'GPCPv2.3': {'name': 'GPCPv2.3',
          'nyears': 41,
          'time_period': ['1979-1-1 0:0:0.0', '2019-7-1 0:0:0.0']},
         'method': 'Zonal root mean square error of equatorial_pacific pr, time series are linearly detrended, observations and model regridded to generic_1x1deg',
         'name': 'pr Zonal RMSE',
         'ref': 'Using CDAT regridding and rms (uncentered and biased) calculation',
         'time_frequency': 'monthly',
         'units': 'mm/day'},
        'metric': {'datasets': "CSIRO-Mk3-6-0_r8i1p1; ERA-Interim's pr & GPCPv2.3's precip; 's ",
         'method': 'The metric is the statistical value between the model and the observations',
         'name': 'BiasPrLonRmse',
         'units': 'mm/day'}},
       'BiasSstLonRmse': {'diagnostic': {'CSIRO-Mk3-6-0_r8i1p1': {'keyerror': None,
          'name': 'CSIRO-Mk3-6-0_r8i1p1',
          'nyears': 156,
          'time_period': ['1850-1-16 12:0:0.0', '2005-12-16 12:0:0.0']},
         'ERA-Interim': {'name': 'ERA-Interim',
          'nyears': 40,
          'time_period': ['1979-1-16 12:0:0.0', '2019-3-16 12:0:0.0']},
         'HadISST': {'name': 'HadISST',
          'nyears': 151,
          'time_period': ['1870-1-16 11:59:59.5', '2020-10-16 12:0:0.0']},
         'Tropflux': {'name': 'Tropflux',
          'nyears': 40,
          'time_period': ['1979-1-15 0:0:0.0', '2018-12-15 12:0:0.0']},
         'method': 'Zonal root mean square error of equatorial_pacific sst, time series are linearly detrended, observations and model regridded to generic_1x1deg',
         'name': 'sst Zonal RMSE',
         'ref': 'Using CDAT regridding and rms (uncentered and biased) calculation',
         'time_frequency': 'monthly',
         'units': 'C'},
        'metric': {'datasets': "CSIRO-Mk3-6-0_r8i1p1; ERA-Interim's ts & HadISST's sst & Tropflux's sst; 's ",
         'method': 'The metric is the statistical value between the model and the observations',
         'name': 'BiasSstLonRmse',
         'units': 'C'}},
       'BiasTauxLonRmse': {'diagnostic': {'CSIRO-Mk3-6-0_r8i1p1': {'keyerror': None,
          'name': 'CSIRO-Mk3-6-0_r8i1p1',
          'nyears': 156,
          'time_period': ['1850-1-16 12:0:0.0', '2005-12-16 12:0:0.0']},
         'ERA-Interim': {'name': 'ERA-Interim',
          'nyears': 40,
          'time_period': ['1979-1-16 12:0:0.0', '2019-3-16 12:0:0.0']},
         'Tropflux': {'name': 'Tropflux',
          'nyears': 40,
          'time_period': ['1979-1-15 0:0:0.0', '2018-12-15 12:0:0.0']},
         'method': 'Zonal root mean square error of equatorial_pacific taux, time series are linearly detrended, observations and model regridded to generic_1x1deg',
         'name': 'taux Zonal RMSE',
         'ref': 'Using CDAT regridding and rms (uncentered and biased) calculation',
         'time_frequency': 'monthly',
         'units': '1e-3 N/m2'},
        'metric': {'datasets': "CSIRO-Mk3-6-0_r8i1p1; ERA-Interim's tauu & Tropflux's taux; 's ",
         'method': 'The metric is the statistical value between the model and the observations',
         'name': 'BiasTauxLonRmse',
         'units': '1e-3 N/m2'}},
       'EnsoAmpl': {'diagnostic': {'CSIRO-Mk3-6-0_r8i1p1': {'keyerror': None,
          'name': 'CSIRO-Mk3-6-0_r8i1p1',
          'nyears': 156,
          'time_period': ['1850-1-16 12:0:0.0', '2005-12-16 12:0:0.0']},
         'ERA-Interim': {'keyerror': None,
          'name': 'ERA-Interim',
          'nyears': 40,
          'time_period': ['1979-1-16 12:0:0.0', '2019-3-16 12:0:0.0']},
         'HadISST': {'keyerror': None,
          'name': 'HadISST',
          'nyears': 151,
          'time_period': ['1870-1-16 11:59:59.5', '2020-10-16 12:0:0.0']},
         'Tropflux': {'keyerror': None,
          'name': 'Tropflux',
          'nyears': 40,
          'time_period': ['1979-1-15 0:0:0.0', '2018-12-15 12:0:0.0']},
         'method': 'Standard deviation of nino3.4 sstA, time series are linearly detrended',
         'name': 'ENSO amplitude',
         'ref': 'Using CDAT regression calculation',
         'time_frequency': 'monthly',
         'units': 'C'},
        'metric': {'datasets': "CSIRO-Mk3-6-0_r8i1p1; ERA-Interim's ts & HadISST's sst & Tropflux's sst; 's ",
         'method': 'The metric is the absolute value of the relative difference between model and observations values (M = 100 * abs[[model-obs] / obs])',
         'name': 'EnsoAmpl',
         'units': '%'}},
       'EnsoDuration': {'diagnostic': {'CSIRO-Mk3-6-0_r8i1p1': {'keyerror': None,
          'name': 'CSIRO-Mk3-6-0_r8i1p1',
          'nyears': 156,
          'time_period': ['1850-1-16 12:0:0.0', '2005-12-16 12:0:0.0']},
         'ERA-Interim': {'keyerror': None,
          'name': 'ERA-Interim',
          'nyears': 40,
          'time_period': ['1979-1-16 12:0:0.0', '2019-3-16 12:0:0.0']},
         'HadISST': {'keyerror': None,
          'name': 'HadISST',
          'nyears': 151,
          'time_period': ['1870-1-16 11:59:59.5', '2020-10-16 12:0:0.0']},
         'Tropflux': {'keyerror': None,
          'name': 'Tropflux',
          'nyears': 40,
          'time_period': ['1979-1-15 0:0:0.0', '2018-12-15 12:0:0.0']},
         'method': 'nino3.4 SSTA during DEC regressed against nino3.4 SSTA during 6 years (centered on ENSO), the duration is the number of consecutive months during which the regression is above 0.25, time series are linearly detrended, smoothing using a triangle shaped window of 5 points',
         'name': 'ENSO Duration based on life cyle SSTA pattern',
         'ref': 'Using CDAT',
         'time_frequency': 'monthly',
         'units': 'months'},
        'metric': {'datasets': "CSIRO-Mk3-6-0_r8i1p1; ERA-Interim's ts & HadISST's sst & Tropflux's sst; 's ",
         'method': 'The metric is the absolute value of the relative difference between model and observations values (M = 100 * abs[[model-obs] / obs])',
         'name': 'EnsoDuration',
         'units': '%'}},
       'EnsoSeasonality': {'diagnostic': {'CSIRO-Mk3-6-0_r8i1p1': {'keyerror': None,
          'name': 'CSIRO-Mk3-6-0_r8i1p1',
          'nyears': 156,
          'time_period': ['1850-1-16 12:0:0.0', '2005-12-16 12:0:0.0']},
         'ERA-Interim': {'keyerror': None,
          'name': 'ERA-Interim',
          'nyears': 40,
          'time_period': ['1979-1-16 12:0:0.0', '2019-3-16 12:0:0.0']},
         'HadISST': {'keyerror': None,
          'name': 'HadISST',
          'nyears': 151,
          'time_period': ['1870-1-16 11:59:59.5', '2020-10-16 12:0:0.0']},
         'Tropflux': {'keyerror': None,
          'name': 'Tropflux',
          'nyears': 40,
          'time_period': ['1979-1-15 0:0:0.0', '2018-12-15 12:0:0.0']},
         'method': 'Ratio between NDJ and MAM standard deviation nino3.4 sstA, time series are linearly detrended',
         'name': 'ENSO seasonality',
         'ref': 'Using CDAT std dev calculation',
         'time_frequency': 'monthly',
         'units': 'C/C'},
        'metric': {'datasets': "CSIRO-Mk3-6-0_r8i1p1; ERA-Interim's ts & HadISST's sst & Tropflux's sst; 's ",
         'method': 'The metric is the absolute value of the relative difference between model and observations values (M = 100 * abs[[model-obs] / obs])',
         'name': 'EnsoSeasonality',
         'units': '%'}},
       'EnsoSstDiversity_2': {'diagnostic': {'CSIRO-Mk3-6-0_r8i1p1': {'keyerror': None,
          'name': 'CSIRO-Mk3-6-0_r8i1p1',
          'nyears': 156,
          'time_period': ['1850-1-16 12:0:0.0', '2005-12-16 12:0:0.0']},
         'ERA-Interim': {'keyerror': None,
          'name': 'ERA-Interim',
          'nyears': 40,
          'time_period': ['1979-1-16 12:0:0.0', '2019-3-16 12:0:0.0']},
         'HadISST': {'keyerror': None,
          'name': 'HadISST',
          'nyears': 151,
          'time_period': ['1870-1-16 11:59:59.5', '2020-10-16 12:0:0.0']},
         'Tropflux': {'keyerror': None,
          'name': 'Tropflux',
          'nyears': 40,
          'time_period': ['1979-1-15 0:0:0.0', '2018-12-15 12:0:0.0']},
         'method': 'Nino (Nina) events = nino3.4 sstA > 0.75 (< -0.75) during DEC, zonal SSTA (meridional averaged [-5.0 ; 5.0]), the zonal SSTA maximum (minimum) is located for each event, the diversity is the interquartile range (IQR = Q3 - Q1), time series are linearly detrended, smoothing using a triangle shaped window of 5 points',
         'name': 'ENSO Diversity (interquartile range)',
         'ref': 'Using CDAT regridding',
         'time_frequency': 'monthly',
         'units': 'long'},
        'metric': {'datasets': "CSIRO-Mk3-6-0_r8i1p1; ERA-Interim's ts & HadISST's sst & Tropflux's sst; 's ",
         'method': 'The metric is the absolute value of the relative difference between model and observations values (M = 100 * abs[[model-obs] / obs])',
         'name': 'EnsoSstDiversity',
         'units': '%'}},
       'EnsoSstLonRmse': {'diagnostic': {'CSIRO-Mk3-6-0_r8i1p1': {'keyerror': None,
          'name': 'CSIRO-Mk3-6-0_r8i1p1',
          'nyears': 156,
          'time_period': ['1850-1-16 12:0:0.0', '2005-12-16 12:0:0.0']},
         'ERA-Interim': {'name': 'ERA-Interim',
          'nyears': 40,
          'time_period': ['1979-1-16 12:0:0.0', '2019-3-16 12:0:0.0']},
         'HadISST': {'name': 'HadISST',
          'nyears': 151,
          'time_period': ['1870-1-16 11:59:59.5', '2020-10-16 12:0:0.0']},
         'Tropflux': {'name': 'Tropflux',
          'nyears': 40,
          'time_period': ['1979-1-15 0:0:0.0', '2018-12-15 12:0:0.0']},
         'method': 'nino3.4 SSTA during DEC regressed against equatorial_pacific SSTA, time series are linearly detrended, smoothing using a triangle shaped window of 5 points, observations and model regridded to generic_1x1deg',
         'name': 'ENSO Zonal SSTA pattern',
         'ref': 'Using CDAT regridding and rms (uncentered and biased) calculation',
         'time_frequency': 'monthly',
         'units': 'C/C'},
        'metric': {'datasets': "CSIRO-Mk3-6-0_r8i1p1; ERA-Interim's ts & HadISST's sst & Tropflux's sst; 's ",
         'method': 'The metric is the statistical value between the model and the observations',
         'name': 'EnsoSstLonRmse',
         'units': 'C/C'}},
       'EnsoSstSkew': {'diagnostic': {'CSIRO-Mk3-6-0_r8i1p1': {'keyerror': None,
          'name': 'CSIRO-Mk3-6-0_r8i1p1',
          'nyears': 156,
          'time_period': ['1850-1-16 12:0:0.0', '2005-12-16 12:0:0.0']},
         'ERA-Interim': {'keyerror': None,
          'name': 'ERA-Interim',
          'nyears': 40,
          'time_period': ['1979-1-16 12:0:0.0', '2019-3-16 12:0:0.0']},
         'HadISST': {'keyerror': None,
          'name': 'HadISST',
          'nyears': 151,
          'time_period': ['1870-1-16 11:59:59.5', '2020-10-16 12:0:0.0']},
         'Tropflux': {'keyerror': None,
          'name': 'Tropflux',
          'nyears': 40,
          'time_period': ['1979-1-15 0:0:0.0', '2018-12-15 12:0:0.0']},
         'method': 'Standard deviation of nino3.4 sstA, time series are linearly detrended',
         'name': 'ENSO skewness',
         'ref': 'Using CDAT regression calculation',
         'time_frequency': 'monthly',
         'units': 'C'},
        'metric': {'datasets': "CSIRO-Mk3-6-0_r8i1p1; ERA-Interim's ts & HadISST's sst & Tropflux's sst; 's ",
         'method': 'The metric is the absolute value of the relative difference between model and observations values (M = 100 * abs[[model-obs] / obs])',
         'name': 'EnsoSstSkew',
         'units': '%'}},
       'EnsoSstTsRmse': {'diagnostic': {'CSIRO-Mk3-6-0_r8i1p1': {'keyerror': None,
          'name': 'CSIRO-Mk3-6-0_r8i1p1',
          'nyears': 156,
          'time_period': ['1850-1-16 12:0:0.0', '2005-12-16 12:0:0.0']},
         'ERA-Interim': {'name': 'ERA-Interim',
          'nyears': 40,
          'time_period': ['1979-1-16 12:0:0.0', '2019-3-16 12:0:0.0']},
         'HadISST': {'name': 'HadISST',
          'nyears': 151,
          'time_period': ['1870-1-16 11:59:59.5', '2020-10-16 12:0:0.0']},
         'Tropflux': {'name': 'Tropflux',
          'nyears': 40,
          'time_period': ['1979-1-15 0:0:0.0', '2018-12-15 12:0:0.0']},
         'method': 'nino3.4 SSTA during DEC regressed against nino3.4 SSTA during 6 years (centered on ENSO), time series are linearly detrended, smoothing using a triangle shaped window of 5 points',
         'name': 'ENSO life cyle SSTA pattern',
         'ref': 'Using CDAT regridding and rms (uncentered and biased) calculation',
         'time_frequency': 'monthly',
         'units': 'C/C'},
        'metric': {'datasets': "CSIRO-Mk3-6-0_r8i1p1; ERA-Interim's ts & HadISST's sst & Tropflux's sst; 's ",
         'method': 'The metric is the statistical value between the model and the observations',
         'name': 'EnsoSstTsRmse',
         'units': 'C/C'}},
       'SeasonalPrLatRmse': {'diagnostic': {'CSIRO-Mk3-6-0_r8i1p1': {'keyerror': None,
          'name': 'CSIRO-Mk3-6-0_r8i1p1',
          'nyears': 156,
          'time_period': ['1850-1-16 12:0:0.0', '2005-12-16 12:0:0.0']},
         'ERA-Interim': {'name': 'ERA-Interim',
          'nyears': 40,
          'time_period': ['1979-1-16 12:0:0.0', '2019-3-16 12:0:0.0']},
         'GPCPv2.3': {'name': 'GPCPv2.3',
          'nyears': 41,
          'time_period': ['1979-1-1 0:0:0.0', '2019-7-1 0:0:0.0']},
         'method': 'Meridional root mean square error of nino3_LatExt climatological pr STD, time series are linearly detrended, observations and model regridded to generic_1x1deg',
         'name': 'pr meridional seasonality RMSE',
         'ref': 'Using CDAT regridding and rms (uncentered and biased) calculation',
         'time_frequency': 'monthly',
         'units': 'mm/day'},
        'metric': {'datasets': "CSIRO-Mk3-6-0_r8i1p1; ERA-Interim's pr & GPCPv2.3's precip; 's ",
         'method': 'The metric is the statistical value between the model and the observations',
         'name': 'SeasonalPrLatRmse',
         'units': 'mm/day'}},
       'SeasonalPrLonRmse': {'diagnostic': {'CSIRO-Mk3-6-0_r8i1p1': {'keyerror': None,
          'name': 'CSIRO-Mk3-6-0_r8i1p1',
          'nyears': 156,
          'time_period': ['1850-1-16 12:0:0.0', '2005-12-16 12:0:0.0']},
         'ERA-Interim': {'name': 'ERA-Interim',
          'nyears': 40,
          'time_period': ['1979-1-16 12:0:0.0', '2019-3-16 12:0:0.0']},
         'GPCPv2.3': {'name': 'GPCPv2.3',
          'nyears': 41,
          'time_period': ['1979-1-1 0:0:0.0', '2019-7-1 0:0:0.0']},
         'method': 'Zonal root mean square error of equatorial_pacific climatological pr STD, time series are linearly detrended, observations and model regridded to generic_1x1deg',
         'name': 'pr zonal seasonality RMSE',
         'ref': 'Using CDAT regridding and rms (uncentered and biased) calculation',
         'time_frequency': 'monthly',
         'units': 'mm/day'},
        'metric': {'datasets': "CSIRO-Mk3-6-0_r8i1p1; ERA-Interim's pr & GPCPv2.3's precip; 's ",
         'method': 'The metric is the statistical value between the model and the observations',
         'name': 'SeasonalPrLonRmse',
         'units': 'mm/day'}},
       'SeasonalSstLonRmse': {'diagnostic': {'CSIRO-Mk3-6-0_r8i1p1': {'keyerror': None,
          'name': 'CSIRO-Mk3-6-0_r8i1p1',
          'nyears': 156,
          'time_period': ['1850-1-16 12:0:0.0', '2005-12-16 12:0:0.0']},
         'ERA-Interim': {'name': 'ERA-Interim',
          'nyears': 40,
          'time_period': ['1979-1-16 12:0:0.0', '2019-3-16 12:0:0.0']},
         'HadISST': {'name': 'HadISST',
          'nyears': 151,
          'time_period': ['1870-1-16 11:59:59.5', '2020-10-16 12:0:0.0']},
         'Tropflux': {'name': 'Tropflux',
          'nyears': 40,
          'time_period': ['1979-1-15 0:0:0.0', '2018-12-15 12:0:0.0']},
         'method': 'Zonal root mean square error of equatorial_pacific climatological sst STD, time series are linearly detrended, observations and model regridded to generic_1x1deg',
         'name': 'sst zonal seasonality RMSE',
         'ref': 'Using CDAT regridding and rms (uncentered and biased) calculation',
         'time_frequency': 'monthly',
         'units': 'C'},
        'metric': {'datasets': "CSIRO-Mk3-6-0_r8i1p1; ERA-Interim's ts & HadISST's sst & Tropflux's sst; 's ",
         'method': 'The metric is the statistical value between the model and the observations',
         'name': 'SeasonalSstLonRmse',
         'units': 'C'}},
       'SeasonalTauxLonRmse': {'diagnostic': {'CSIRO-Mk3-6-0_r8i1p1': {'keyerror': None,
          'name': 'CSIRO-Mk3-6-0_r8i1p1',
          'nyears': 156,
          'time_period': ['1850-1-16 12:0:0.0', '2005-12-16 12:0:0.0']},
         'ERA-Interim': {'name': 'ERA-Interim',
          'nyears': 40,
          'time_period': ['1979-1-16 12:0:0.0', '2019-3-16 12:0:0.0']},
         'Tropflux': {'name': 'Tropflux',
          'nyears': 40,
          'time_period': ['1979-1-15 0:0:0.0', '2018-12-15 12:0:0.0']},
         'method': 'Zonal root mean square error of equatorial_pacific climatological taux STD, time series are linearly detrended, observations and model regridded to generic_1x1deg',
         'name': 'taux zonal seasonality RMSE',
         'ref': 'Using CDAT regridding and rms (uncentered and biased) calculation',
         'time_frequency': 'monthly',
         'units': '1e-3 N/m2'},
        'metric': {'datasets': "CSIRO-Mk3-6-0_r8i1p1; ERA-Interim's tauu & Tropflux's taux; 's ",
         'method': 'The metric is the statistical value between the model and the observations',
         'name': 'SeasonalTauxLonRmse',
         'units': '1e-3 N/m2'}}},
      'name': 'Metrics Collection for ENSO performance'},
     'value': {'BiasPrLatRmse': {'diagnostic': {'CSIRO-Mk3-6-0_r8i1p1': {'value': None,
         'value_error': None},
        'ERA-Interim': {'value': None, 'value_error': None},
        'GPCPv2.3': {'value': None, 'value_error': None}},
       'metric': {'ERA-Interim': {'value': 1.1006482909155844,
         'value_error': None},
        'GPCPv2.3': {'value': 1.1733162337613159, 'value_error': None}}},
      'BiasPrLonRmse': {'diagnostic': {'CSIRO-Mk3-6-0_r8i1p1': {'value': None,
         'value_error': None},
        'ERA-Interim': {'value': None, 'value_error': None},
        'GPCPv2.3': {'value': None, 'value_error': None}},
       'metric': {'ERA-Interim': {'value': 3.987708103070616,
         'value_error': None},
        'GPCPv2.3': {'value': 2.887326995953489, 'value_error': None}}},
      'BiasSstLonRmse': {'diagnostic': {'CSIRO-Mk3-6-0_r8i1p1': {'value': None,
         'value_error': None},
        'ERA-Interim': {'value': None, 'value_error': None},
        'HadISST': {'value': None, 'value_error': None},
        'Tropflux': {'value': None, 'value_error': None}},
       'metric': {'ERA-Interim': {'value': 2.70226880092786,
         'value_error': None},
        'HadISST': {'value': 2.504975162414957, 'value_error': None},
        'Tropflux': {'value': 2.749900270876695, 'value_error': None}}},
      'BiasTauxLonRmse': {'diagnostic': {'CSIRO-Mk3-6-0_r8i1p1': {'value': None,
         'value_error': None},
        'ERA-Interim': {'value': None, 'value_error': None},
        'Tropflux': {'value': None, 'value_error': None}},
       'metric': {'ERA-Interim': {'value': 8.806171090341662,
         'value_error': None},
        'Tropflux': {'value': 8.965714886130522, 'value_error': None}}},
      'EnsoAmpl': {'diagnostic': {'CSIRO-Mk3-6-0_r8i1p1': {'value': 0.6943974196728584,
         'value_error': 0.05559628840961555},
        'ERA-Interim': {'value': 0.8989844997845644,
         'value_error': 0.14214193002531866},
        'HadISST': {'value': 0.7665787872085695,
         'value_error': 0.06238329697691264},
        'Tropflux': {'value': 0.9039789553693535,
         'value_error': 0.14293162279134272}},
       'metric': {'ERA-Interim': {'value': 22.75757592714156,
         'value_error': 18.397442984250844},
        'HadISST': {'value': 9.416040300117533,
         'value_error': 14.624139210903914},
        'Tropflux': {'value': 23.18433791535146,
         'value_error': 18.29579768453146}}},
      'EnsoDuration': {'diagnostic': {'CSIRO-Mk3-6-0_r8i1p1': {'value': 16.0,
         'value_error': None},
        'ERA-Interim': {'value': 13.0, 'value_error': None},
        'HadISST': {'value': 13.0, 'value_error': None},
        'Tropflux': {'value': 13.0, 'value_error': None}},
       'metric': {'ERA-Interim': {'value': 23.076923076923077,
         'value_error': None},
        'HadISST': {'value': 23.076923076923077, 'value_error': None},
        'Tropflux': {'value': 23.076923076923077, 'value_error': None}}},
      'EnsoSeasonality': {'diagnostic': {'CSIRO-Mk3-6-0_r8i1p1': {'value': 0.8076125501767865,
         'value_error': 0.129529754381437},
        'ERA-Interim': {'value': 2.0466846866656914,
         'value_error': 0.6513411033995022},
        'HadISST': {'value': 1.6639865947361325,
         'value_error': 0.2712772451657809},
        'Tropflux': {'value': 2.0532132553583624,
         'value_error': 0.6534187683977347}},
       'metric': {'ERA-Interim': {'value': 60.54045083551733,
         'value_error': 18.886446936561583},
        'HadISST': {'value': 51.46520093782041,
         'value_error': 15.696858439264286},
        'Tropflux': {'value': 60.66591972026656,
         'value_error': 18.826394009344185}}},
      'EnsoSstDiversity_2': {'diagnostic': {'CSIRO-Mk3-6-0_r8i1p1': {'value': 46.0,
         'value_error': None},
        'ERA-Interim': {'value': 33.25, 'value_error': None},
        'HadISST': {'value': 49.0, 'value_error': None},
        'Tropflux': {'value': 32.0, 'value_error': None}},
       'metric': {'ERA-Interim': {'value': 38.34586466165413,
         'value_error': None},
        'HadISST': {'value': 6.122448979591836, 'value_error': None},
        'Tropflux': {'value': 43.75, 'value_error': None}}},
      'EnsoSstLonRmse': {'diagnostic': {'CSIRO-Mk3-6-0_r8i1p1': {'value': None,
         'value_error': None},
        'ERA-Interim': {'value': None, 'value_error': None},
        'HadISST': {'value': None, 'value_error': None},
        'Tropflux': {'value': None, 'value_error': None}},
       'metric': {'ERA-Interim': {'value': 0.5830742979865513,
         'value_error': None},
        'HadISST': {'value': 0.5898223265308155, 'value_error': None},
        'Tropflux': {'value': 0.5824158195016378, 'value_error': None}}},
      'EnsoSstSkew': {'diagnostic': {'CSIRO-Mk3-6-0_r8i1p1': {'value': 0.1365088005858908,
         'value_error': 0.010929451107982744},
        'ERA-Interim': {'value': 0.39098111106809963,
         'value_error': 0.061819541653923164},
        'HadISST': {'value': 0.38989908235027515,
         'value_error': 0.03172953733021198},
        'Tropflux': {'value': 0.39744741059612115,
         'value_error': 0.06284195338099416}},
       'metric': {'ERA-Interim': {'value': 65.08557658630365,
         'value_error': 8.315846140141746},
        'HadISST': {'value': 64.988683799144,
         'value_error': 5.652329217829037},
        'Tropflux': {'value': 65.65361933516066,
         'value_error': 8.180550877076765}}},
      'EnsoSstTsRmse': {'diagnostic': {'CSIRO-Mk3-6-0_r8i1p1': {'value': None,
         'value_error': None},
        'ERA-Interim': {'value': None, 'value_error': None},
        'HadISST': {'value': None, 'value_error': None},
        'Tropflux': {'value': None, 'value_error': None}},
       'metric': {'ERA-Interim': {'value': 0.17553397536255091,
         'value_error': None},
        'HadISST': {'value': 0.1425626232972626, 'value_error': None},
        'Tropflux': {'value': 0.17071475784334783, 'value_error': None}}},
      'SeasonalPrLatRmse': {'diagnostic': {'CSIRO-Mk3-6-0_r8i1p1': {'value': None,
         'value_error': None},
        'ERA-Interim': {'value': None, 'value_error': None},
        'GPCPv2.3': {'value': None, 'value_error': None}},
       'metric': {'ERA-Interim': {'value': 0.8246070574430677,
         'value_error': None},
        'GPCPv2.3': {'value': 0.7965647507230589, 'value_error': None}}},
      'SeasonalPrLonRmse': {'diagnostic': {'CSIRO-Mk3-6-0_r8i1p1': {'value': None,
         'value_error': None},
        'ERA-Interim': {'value': None, 'value_error': None},
        'GPCPv2.3': {'value': None, 'value_error': None}},
       'metric': {'ERA-Interim': {'value': 0.9285273409540652,
         'value_error': None},
        'GPCPv2.3': {'value': 0.6647601642207376, 'value_error': None}}},
      'SeasonalSstLonRmse': {'diagnostic': {'CSIRO-Mk3-6-0_r8i1p1': {'value': None,
         'value_error': None},
        'ERA-Interim': {'value': None, 'value_error': None},
        'HadISST': {'value': None, 'value_error': None},
        'Tropflux': {'value': None, 'value_error': None}},
       'metric': {'ERA-Interim': {'value': 0.1876589040264123,
         'value_error': None},
        'HadISST': {'value': 0.20517858463483257, 'value_error': None},
        'Tropflux': {'value': 0.18731610616688513, 'value_error': None}}},
      'SeasonalTauxLonRmse': {'diagnostic': {'CSIRO-Mk3-6-0_r8i1p1': {'value': None,
         'value_error': None},
        'ERA-Interim': {'value': None, 'value_error': None},
        'Tropflux': {'value': None, 'value_error': None}},
       'metric': {'ERA-Interim': {'value': 2.564408110518108,
         'value_error': None},
        'Tropflux': {'value': 2.7478596435310143, 'value_error': None}}}}},
    'r9i1p1': {'metadata': {'description_of_the_collection': 'Describe which science question this collection is about',
      'metrics': {'BiasPrLatRmse': {'diagnostic': {'CSIRO-Mk3-6-0_r9i1p1': {'keyerror': None,
          'name': 'CSIRO-Mk3-6-0_r9i1p1',
          'nyears': 156,
          'time_period': ['1850-1-16 12:0:0.0', '2005-12-16 12:0:0.0']},
         'ERA-Interim': {'name': 'ERA-Interim',
          'nyears': 40,
          'time_period': ['1979-1-16 12:0:0.0', '2019-3-16 12:0:0.0']},
         'GPCPv2.3': {'name': 'GPCPv2.3',
          'nyears': 41,
          'time_period': ['1979-1-1 0:0:0.0', '2019-7-1 0:0:0.0']},
         'method': 'Meridional root mean square error of nino3_LatExt pr, time series are linearly detrended, observations and model regridded to generic_1x1deg',
         'name': 'pr Meridional RMSE',
         'ref': 'Using CDAT regridding and rms (uncentered and biased) calculation',
         'time_frequency': 'monthly',
         'units': 'mm/day'},
        'metric': {'datasets': "CSIRO-Mk3-6-0_r9i1p1; ERA-Interim's pr & GPCPv2.3's precip; 's ",
         'method': 'The metric is the statistical value between the model and the observations',
         'name': 'BiasPrLatRmse',
         'units': 'mm/day'}},
       'BiasPrLonRmse': {'diagnostic': {'CSIRO-Mk3-6-0_r9i1p1': {'keyerror': None,
          'name': 'CSIRO-Mk3-6-0_r9i1p1',
          'nyears': 156,
          'time_period': ['1850-1-16 12:0:0.0', '2005-12-16 12:0:0.0']},
         'ERA-Interim': {'name': 'ERA-Interim',
          'nyears': 40,
          'time_period': ['1979-1-16 12:0:0.0', '2019-3-16 12:0:0.0']},
         'GPCPv2.3': {'name': 'GPCPv2.3',
          'nyears': 41,
          'time_period': ['1979-1-1 0:0:0.0', '2019-7-1 0:0:0.0']},
         'method': 'Zonal root mean square error of equatorial_pacific pr, time series are linearly detrended, observations and model regridded to generic_1x1deg',
         'name': 'pr Zonal RMSE',
         'ref': 'Using CDAT regridding and rms (uncentered and biased) calculation',
         'time_frequency': 'monthly',
         'units': 'mm/day'},
        'metric': {'datasets': "CSIRO-Mk3-6-0_r9i1p1; ERA-Interim's pr & GPCPv2.3's precip; 's ",
         'method': 'The metric is the statistical value between the model and the observations',
         'name': 'BiasPrLonRmse',
         'units': 'mm/day'}},
       'BiasSstLonRmse': {'diagnostic': {'CSIRO-Mk3-6-0_r9i1p1': {'keyerror': None,
          'name': 'CSIRO-Mk3-6-0_r9i1p1',
          'nyears': 156,
          'time_period': ['1850-1-16 12:0:0.0', '2005-12-16 12:0:0.0']},
         'ERA-Interim': {'name': 'ERA-Interim',
          'nyears': 40,
          'time_period': ['1979-1-16 12:0:0.0', '2019-3-16 12:0:0.0']},
         'HadISST': {'name': 'HadISST',
          'nyears': 151,
          'time_period': ['1870-1-16 11:59:59.5', '2020-10-16 12:0:0.0']},
         'Tropflux': {'name': 'Tropflux',
          'nyears': 40,
          'time_period': ['1979-1-15 0:0:0.0', '2018-12-15 12:0:0.0']},
         'method': 'Zonal root mean square error of equatorial_pacific sst, time series are linearly detrended, observations and model regridded to generic_1x1deg',
         'name': 'sst Zonal RMSE',
         'ref': 'Using CDAT regridding and rms (uncentered and biased) calculation',
         'time_frequency': 'monthly',
         'units': 'C'},
        'metric': {'datasets': "CSIRO-Mk3-6-0_r9i1p1; ERA-Interim's ts & HadISST's sst & Tropflux's sst; 's ",
         'method': 'The metric is the statistical value between the model and the observations',
         'name': 'BiasSstLonRmse',
         'units': 'C'}},
       'BiasTauxLonRmse': {'diagnostic': {'CSIRO-Mk3-6-0_r9i1p1': {'keyerror': None,
          'name': 'CSIRO-Mk3-6-0_r9i1p1',
          'nyears': 156,
          'time_period': ['1850-1-16 12:0:0.0', '2005-12-16 12:0:0.0']},
         'ERA-Interim': {'name': 'ERA-Interim',
          'nyears': 40,
          'time_period': ['1979-1-16 12:0:0.0', '2019-3-16 12:0:0.0']},
         'Tropflux': {'name': 'Tropflux',
          'nyears': 40,
          'time_period': ['1979-1-15 0:0:0.0', '2018-12-15 12:0:0.0']},
         'method': 'Zonal root mean square error of equatorial_pacific taux, time series are linearly detrended, observations and model regridded to generic_1x1deg',
         'name': 'taux Zonal RMSE',
         'ref': 'Using CDAT regridding and rms (uncentered and biased) calculation',
         'time_frequency': 'monthly',
         'units': '1e-3 N/m2'},
        'metric': {'datasets': "CSIRO-Mk3-6-0_r9i1p1; ERA-Interim's tauu & Tropflux's taux; 's ",
         'method': 'The metric is the statistical value between the model and the observations',
         'name': 'BiasTauxLonRmse',
         'units': '1e-3 N/m2'}},
       'EnsoAmpl': {'diagnostic': {'CSIRO-Mk3-6-0_r9i1p1': {'keyerror': None,
          'name': 'CSIRO-Mk3-6-0_r9i1p1',
          'nyears': 156,
          'time_period': ['1850-1-16 12:0:0.0', '2005-12-16 12:0:0.0']},
         'ERA-Interim': {'keyerror': None,
          'name': 'ERA-Interim',
          'nyears': 40,
          'time_period': ['1979-1-16 12:0:0.0', '2019-3-16 12:0:0.0']},
         'HadISST': {'keyerror': None,
          'name': 'HadISST',
          'nyears': 151,
          'time_period': ['1870-1-16 11:59:59.5', '2020-10-16 12:0:0.0']},
         'Tropflux': {'keyerror': None,
          'name': 'Tropflux',
          'nyears': 40,
          'time_period': ['1979-1-15 0:0:0.0', '2018-12-15 12:0:0.0']},
         'method': 'Standard deviation of nino3.4 sstA, time series are linearly detrended',
         'name': 'ENSO amplitude',
         'ref': 'Using CDAT regression calculation',
         'time_frequency': 'monthly',
         'units': 'C'},
        'metric': {'datasets': "CSIRO-Mk3-6-0_r9i1p1; ERA-Interim's ts & HadISST's sst & Tropflux's sst; 's ",
         'method': 'The metric is the absolute value of the relative difference between model and observations values (M = 100 * abs[[model-obs] / obs])',
         'name': 'EnsoAmpl',
         'units': '%'}},
       'EnsoDuration': {'diagnostic': {'CSIRO-Mk3-6-0_r9i1p1': {'keyerror': None,
          'name': 'CSIRO-Mk3-6-0_r9i1p1',
          'nyears': 156,
          'time_period': ['1850-1-16 12:0:0.0', '2005-12-16 12:0:0.0']},
         'ERA-Interim': {'keyerror': None,
          'name': 'ERA-Interim',
          'nyears': 40,
          'time_period': ['1979-1-16 12:0:0.0', '2019-3-16 12:0:0.0']},
         'HadISST': {'keyerror': None,
          'name': 'HadISST',
          'nyears': 151,
          'time_period': ['1870-1-16 11:59:59.5', '2020-10-16 12:0:0.0']},
         'Tropflux': {'keyerror': None,
          'name': 'Tropflux',
          'nyears': 40,
          'time_period': ['1979-1-15 0:0:0.0', '2018-12-15 12:0:0.0']},
         'method': 'nino3.4 SSTA during DEC regressed against nino3.4 SSTA during 6 years (centered on ENSO), the duration is the number of consecutive months during which the regression is above 0.25, time series are linearly detrended, smoothing using a triangle shaped window of 5 points',
         'name': 'ENSO Duration based on life cyle SSTA pattern',
         'ref': 'Using CDAT',
         'time_frequency': 'monthly',
         'units': 'months'},
        'metric': {'datasets': "CSIRO-Mk3-6-0_r9i1p1; ERA-Interim's ts & HadISST's sst & Tropflux's sst; 's ",
         'method': 'The metric is the absolute value of the relative difference between model and observations values (M = 100 * abs[[model-obs] / obs])',
         'name': 'EnsoDuration',
         'units': '%'}},
       'EnsoSeasonality': {'diagnostic': {'CSIRO-Mk3-6-0_r9i1p1': {'keyerror': None,
          'name': 'CSIRO-Mk3-6-0_r9i1p1',
          'nyears': 156,
          'time_period': ['1850-1-16 12:0:0.0', '2005-12-16 12:0:0.0']},
         'ERA-Interim': {'keyerror': None,
          'name': 'ERA-Interim',
          'nyears': 40,
          'time_period': ['1979-1-16 12:0:0.0', '2019-3-16 12:0:0.0']},
         'HadISST': {'keyerror': None,
          'name': 'HadISST',
          'nyears': 151,
          'time_period': ['1870-1-16 11:59:59.5', '2020-10-16 12:0:0.0']},
         'Tropflux': {'keyerror': None,
          'name': 'Tropflux',
          'nyears': 40,
          'time_period': ['1979-1-15 0:0:0.0', '2018-12-15 12:0:0.0']},
         'method': 'Ratio between NDJ and MAM standard deviation nino3.4 sstA, time series are linearly detrended',
         'name': 'ENSO seasonality',
         'ref': 'Using CDAT std dev calculation',
         'time_frequency': 'monthly',
         'units': 'C/C'},
        'metric': {'datasets': "CSIRO-Mk3-6-0_r9i1p1; ERA-Interim's ts & HadISST's sst & Tropflux's sst; 's ",
         'method': 'The metric is the absolute value of the relative difference between model and observations values (M = 100 * abs[[model-obs] / obs])',
         'name': 'EnsoSeasonality',
         'units': '%'}},
       'EnsoSstDiversity_2': {'diagnostic': {'CSIRO-Mk3-6-0_r9i1p1': {'keyerror': None,
          'name': 'CSIRO-Mk3-6-0_r9i1p1',
          'nyears': 156,
          'time_period': ['1850-1-16 12:0:0.0', '2005-12-16 12:0:0.0']},
         'ERA-Interim': {'keyerror': None,
          'name': 'ERA-Interim',
          'nyears': 40,
          'time_period': ['1979-1-16 12:0:0.0', '2019-3-16 12:0:0.0']},
         'HadISST': {'keyerror': None,
          'name': 'HadISST',
          'nyears': 151,
          'time_period': ['1870-1-16 11:59:59.5', '2020-10-16 12:0:0.0']},
         'Tropflux': {'keyerror': None,
          'name': 'Tropflux',
          'nyears': 40,
          'time_period': ['1979-1-15 0:0:0.0', '2018-12-15 12:0:0.0']},
         'method': 'Nino (Nina) events = nino3.4 sstA > 0.75 (< -0.75) during DEC, zonal SSTA (meridional averaged [-5.0 ; 5.0]), the zonal SSTA maximum (minimum) is located for each event, the diversity is the interquartile range (IQR = Q3 - Q1), time series are linearly detrended, smoothing using a triangle shaped window of 5 points',
         'name': 'ENSO Diversity (interquartile range)',
         'ref': 'Using CDAT regridding',
         'time_frequency': 'monthly',
         'units': 'long'},
        'metric': {'datasets': "CSIRO-Mk3-6-0_r9i1p1; ERA-Interim's ts & HadISST's sst & Tropflux's sst; 's ",
         'method': 'The metric is the absolute value of the relative difference between model and observations values (M = 100 * abs[[model-obs] / obs])',
         'name': 'EnsoSstDiversity',
         'units': '%'}},
       'EnsoSstLonRmse': {'diagnostic': {'CSIRO-Mk3-6-0_r9i1p1': {'keyerror': None,
          'name': 'CSIRO-Mk3-6-0_r9i1p1',
          'nyears': 156,
          'time_period': ['1850-1-16 12:0:0.0', '2005-12-16 12:0:0.0']},
         'ERA-Interim': {'name': 'ERA-Interim',
          'nyears': 40,
          'time_period': ['1979-1-16 12:0:0.0', '2019-3-16 12:0:0.0']},
         'HadISST': {'name': 'HadISST',
          'nyears': 151,
          'time_period': ['1870-1-16 11:59:59.5', '2020-10-16 12:0:0.0']},
         'Tropflux': {'name': 'Tropflux',
          'nyears': 40,
          'time_period': ['1979-1-15 0:0:0.0', '2018-12-15 12:0:0.0']},
         'method': 'nino3.4 SSTA during DEC regressed against equatorial_pacific SSTA, time series are linearly detrended, smoothing using a triangle shaped window of 5 points, observations and model regridded to generic_1x1deg',
         'name': 'ENSO Zonal SSTA pattern',
         'ref': 'Using CDAT regridding and rms (uncentered and biased) calculation',
         'time_frequency': 'monthly',
         'units': 'C/C'},
        'metric': {'datasets': "CSIRO-Mk3-6-0_r9i1p1; ERA-Interim's ts & HadISST's sst & Tropflux's sst; 's ",
         'method': 'The metric is the statistical value between the model and the observations',
         'name': 'EnsoSstLonRmse',
         'units': 'C/C'}},
       'EnsoSstSkew': {'diagnostic': {'CSIRO-Mk3-6-0_r9i1p1': {'keyerror': None,
          'name': 'CSIRO-Mk3-6-0_r9i1p1',
          'nyears': 156,
          'time_period': ['1850-1-16 12:0:0.0', '2005-12-16 12:0:0.0']},
         'ERA-Interim': {'keyerror': None,
          'name': 'ERA-Interim',
          'nyears': 40,
          'time_period': ['1979-1-16 12:0:0.0', '2019-3-16 12:0:0.0']},
         'HadISST': {'keyerror': None,
          'name': 'HadISST',
          'nyears': 151,
          'time_period': ['1870-1-16 11:59:59.5', '2020-10-16 12:0:0.0']},
         'Tropflux': {'keyerror': None,
          'name': 'Tropflux',
          'nyears': 40,
          'time_period': ['1979-1-15 0:0:0.0', '2018-12-15 12:0:0.0']},
         'method': 'Standard deviation of nino3.4 sstA, time series are linearly detrended',
         'name': 'ENSO skewness',
         'ref': 'Using CDAT regression calculation',
         'time_frequency': 'monthly',
         'units': 'C'},
        'metric': {'datasets': "CSIRO-Mk3-6-0_r9i1p1; ERA-Interim's ts & HadISST's sst & Tropflux's sst; 's ",
         'method': 'The metric is the absolute value of the relative difference between model and observations values (M = 100 * abs[[model-obs] / obs])',
         'name': 'EnsoSstSkew',
         'units': '%'}},
       'EnsoSstTsRmse': {'diagnostic': {'CSIRO-Mk3-6-0_r9i1p1': {'keyerror': None,
          'name': 'CSIRO-Mk3-6-0_r9i1p1',
          'nyears': 156,
          'time_period': ['1850-1-16 12:0:0.0', '2005-12-16 12:0:0.0']},
         'ERA-Interim': {'name': 'ERA-Interim',
          'nyears': 40,
          'time_period': ['1979-1-16 12:0:0.0', '2019-3-16 12:0:0.0']},
         'HadISST': {'name': 'HadISST',
          'nyears': 151,
          'time_period': ['1870-1-16 11:59:59.5', '2020-10-16 12:0:0.0']},
         'Tropflux': {'name': 'Tropflux',
          'nyears': 40,
          'time_period': ['1979-1-15 0:0:0.0', '2018-12-15 12:0:0.0']},
         'method': 'nino3.4 SSTA during DEC regressed against nino3.4 SSTA during 6 years (centered on ENSO), time series are linearly detrended, smoothing using a triangle shaped window of 5 points',
         'name': 'ENSO life cyle SSTA pattern',
         'ref': 'Using CDAT regridding and rms (uncentered and biased) calculation',
         'time_frequency': 'monthly',
         'units': 'C/C'},
        'metric': {'datasets': "CSIRO-Mk3-6-0_r9i1p1; ERA-Interim's ts & HadISST's sst & Tropflux's sst; 's ",
         'method': 'The metric is the statistical value between the model and the observations',
         'name': 'EnsoSstTsRmse',
         'units': 'C/C'}},
       'SeasonalPrLatRmse': {'diagnostic': {'CSIRO-Mk3-6-0_r9i1p1': {'keyerror': None,
          'name': 'CSIRO-Mk3-6-0_r9i1p1',
          'nyears': 156,
          'time_period': ['1850-1-16 12:0:0.0', '2005-12-16 12:0:0.0']},
         'ERA-Interim': {'name': 'ERA-Interim',
          'nyears': 40,
          'time_period': ['1979-1-16 12:0:0.0', '2019-3-16 12:0:0.0']},
         'GPCPv2.3': {'name': 'GPCPv2.3',
          'nyears': 41,
          'time_period': ['1979-1-1 0:0:0.0', '2019-7-1 0:0:0.0']},
         'method': 'Meridional root mean square error of nino3_LatExt climatological pr STD, time series are linearly detrended, observations and model regridded to generic_1x1deg',
         'name': 'pr meridional seasonality RMSE',
         'ref': 'Using CDAT regridding and rms (uncentered and biased) calculation',
         'time_frequency': 'monthly',
         'units': 'mm/day'},
        'metric': {'datasets': "CSIRO-Mk3-6-0_r9i1p1; ERA-Interim's pr & GPCPv2.3's precip; 's ",
         'method': 'The metric is the statistical value between the model and the observations',
         'name': 'SeasonalPrLatRmse',
         'units': 'mm/day'}},
       'SeasonalPrLonRmse': {'diagnostic': {'CSIRO-Mk3-6-0_r9i1p1': {'keyerror': None,
          'name': 'CSIRO-Mk3-6-0_r9i1p1',
          'nyears': 156,
          'time_period': ['1850-1-16 12:0:0.0', '2005-12-16 12:0:0.0']},
         'ERA-Interim': {'name': 'ERA-Interim',
          'nyears': 40,
          'time_period': ['1979-1-16 12:0:0.0', '2019-3-16 12:0:0.0']},
         'GPCPv2.3': {'name': 'GPCPv2.3',
          'nyears': 41,
          'time_period': ['1979-1-1 0:0:0.0', '2019-7-1 0:0:0.0']},
         'method': 'Zonal root mean square error of equatorial_pacific climatological pr STD, time series are linearly detrended, observations and model regridded to generic_1x1deg',
         'name': 'pr zonal seasonality RMSE',
         'ref': 'Using CDAT regridding and rms (uncentered and biased) calculation',
         'time_frequency': 'monthly',
         'units': 'mm/day'},
        'metric': {'datasets': "CSIRO-Mk3-6-0_r9i1p1; ERA-Interim's pr & GPCPv2.3's precip; 's ",
         'method': 'The metric is the statistical value between the model and the observations',
         'name': 'SeasonalPrLonRmse',
         'units': 'mm/day'}},
       'SeasonalSstLonRmse': {'diagnostic': {'CSIRO-Mk3-6-0_r9i1p1': {'keyerror': None,
          'name': 'CSIRO-Mk3-6-0_r9i1p1',
          'nyears': 156,
          'time_period': ['1850-1-16 12:0:0.0', '2005-12-16 12:0:0.0']},
         'ERA-Interim': {'name': 'ERA-Interim',
          'nyears': 40,
          'time_period': ['1979-1-16 12:0:0.0', '2019-3-16 12:0:0.0']},
         'HadISST': {'name': 'HadISST',
          'nyears': 151,
          'time_period': ['1870-1-16 11:59:59.5', '2020-10-16 12:0:0.0']},
         'Tropflux': {'name': 'Tropflux',
          'nyears': 40,
          'time_period': ['1979-1-15 0:0:0.0', '2018-12-15 12:0:0.0']},
         'method': 'Zonal root mean square error of equatorial_pacific climatological sst STD, time series are linearly detrended, observations and model regridded to generic_1x1deg',
         'name': 'sst zonal seasonality RMSE',
         'ref': 'Using CDAT regridding and rms (uncentered and biased) calculation',
         'time_frequency': 'monthly',
         'units': 'C'},
        'metric': {'datasets': "CSIRO-Mk3-6-0_r9i1p1; ERA-Interim's ts & HadISST's sst & Tropflux's sst; 's ",
         'method': 'The metric is the statistical value between the model and the observations',
         'name': 'SeasonalSstLonRmse',
         'units': 'C'}},
       'SeasonalTauxLonRmse': {'diagnostic': {'CSIRO-Mk3-6-0_r9i1p1': {'keyerror': None,
          'name': 'CSIRO-Mk3-6-0_r9i1p1',
          'nyears': 156,
          'time_period': ['1850-1-16 12:0:0.0', '2005-12-16 12:0:0.0']},
         'ERA-Interim': {'name': 'ERA-Interim',
          'nyears': 40,
          'time_period': ['1979-1-16 12:0:0.0', '2019-3-16 12:0:0.0']},
         'Tropflux': {'name': 'Tropflux',
          'nyears': 40,
          'time_period': ['1979-1-15 0:0:0.0', '2018-12-15 12:0:0.0']},
         'method': 'Zonal root mean square error of equatorial_pacific climatological taux STD, time series are linearly detrended, observations and model regridded to generic_1x1deg',
         'name': 'taux zonal seasonality RMSE',
         'ref': 'Using CDAT regridding and rms (uncentered and biased) calculation',
         'time_frequency': 'monthly',
         'units': '1e-3 N/m2'},
        'metric': {'datasets': "CSIRO-Mk3-6-0_r9i1p1; ERA-Interim's tauu & Tropflux's taux; 's ",
         'method': 'The metric is the statistical value between the model and the observations',
         'name': 'SeasonalTauxLonRmse',
         'units': '1e-3 N/m2'}}},
      'name': 'Metrics Collection for ENSO performance'},
     'value': {'BiasPrLatRmse': {'diagnostic': {'CSIRO-Mk3-6-0_r9i1p1': {'value': None,
         'value_error': None},
        'ERA-Interim': {'value': None, 'value_error': None},
        'GPCPv2.3': {'value': None, 'value_error': None}},
       'metric': {'ERA-Interim': {'value': 1.0997772907135583,
         'value_error': None},
        'GPCPv2.3': {'value': 1.1604990185616746, 'value_error': None}}},
      'BiasPrLonRmse': {'diagnostic': {'CSIRO-Mk3-6-0_r9i1p1': {'value': None,
         'value_error': None},
        'ERA-Interim': {'value': None, 'value_error': None},
        'GPCPv2.3': {'value': None, 'value_error': None}},
       'metric': {'ERA-Interim': {'value': 3.969281522182626,
         'value_error': None},
        'GPCPv2.3': {'value': 2.862759639079641, 'value_error': None}}},
      'BiasSstLonRmse': {'diagnostic': {'CSIRO-Mk3-6-0_r9i1p1': {'value': None,
         'value_error': None},
        'ERA-Interim': {'value': None, 'value_error': None},
        'HadISST': {'value': None, 'value_error': None},
        'Tropflux': {'value': None, 'value_error': None}},
       'metric': {'ERA-Interim': {'value': 2.711977363168962,
         'value_error': None},
        'HadISST': {'value': 2.5156652477667727, 'value_error': None},
        'Tropflux': {'value': 2.7595194037680555, 'value_error': None}}},
      'BiasTauxLonRmse': {'diagnostic': {'CSIRO-Mk3-6-0_r9i1p1': {'value': None,
         'value_error': None},
        'ERA-Interim': {'value': None, 'value_error': None},
        'Tropflux': {'value': None, 'value_error': None}},
       'metric': {'ERA-Interim': {'value': 9.15458861726089,
         'value_error': None},
        'Tropflux': {'value': 9.324793136921414, 'value_error': None}}},
      'EnsoAmpl': {'diagnostic': {'CSIRO-Mk3-6-0_r9i1p1': {'value': 0.7336695904675088,
         'value_error': 0.058740578512248266},
        'ERA-Interim': {'value': 0.8989844997845644,
         'value_error': 0.14214193002531866},
        'HadISST': {'value': 0.7665787872085695,
         'value_error': 0.06238329697691264},
        'Tropflux': {'value': 0.9039789553693535,
         'value_error': 0.14293162279134272}},
       'metric': {'ERA-Interim': {'value': 18.38907226505821,
         'value_error': 19.437924274349424},
        'HadISST': {'value': 4.2929960090464725,
         'value_error': 15.451218454784074},
        'Tropflux': {'value': 18.839970099996254,
         'value_error': 19.330530347895614}}},
      'EnsoDuration': {'diagnostic': {'CSIRO-Mk3-6-0_r9i1p1': {'value': 15.0,
         'value_error': None},
        'ERA-Interim': {'value': 13.0, 'value_error': None},
        'HadISST': {'value': 13.0, 'value_error': None},
        'Tropflux': {'value': 13.0, 'value_error': None}},
       'metric': {'ERA-Interim': {'value': 15.384615384615385,
         'value_error': None},
        'HadISST': {'value': 15.384615384615385, 'value_error': None},
        'Tropflux': {'value': 15.384615384615385, 'value_error': None}}},
      'EnsoSeasonality': {'diagnostic': {'CSIRO-Mk3-6-0_r9i1p1': {'value': 0.820431998701361,
         'value_error': 0.13158581457803756},
        'ERA-Interim': {'value': 2.0466846866656914,
         'value_error': 0.6513411033995022},
        'HadISST': {'value': 1.6639865947361325,
         'value_error': 0.2712772451657809},
        'Tropflux': {'value': 2.0532132553583624,
         'value_error': 0.6534187683977347}},
       'metric': {'ERA-Interim': {'value': 59.91409893050265,
         'value_error': 19.186236525346892},
        'HadISST': {'value': 50.69479518063898,
         'value_error': 15.946018842623086},
        'Tropflux': {'value': 60.041559416186175,
         'value_error': 19.12523036206469}}},
      'EnsoSstDiversity_2': {'diagnostic': {'CSIRO-Mk3-6-0_r9i1p1': {'value': 47.5,
         'value_error': None},
        'ERA-Interim': {'value': 33.25, 'value_error': None},
        'HadISST': {'value': 49.0, 'value_error': None},
        'Tropflux': {'value': 32.0, 'value_error': None}},
       'metric': {'ERA-Interim': {'value': 42.857142857142854,
         'value_error': None},
        'HadISST': {'value': 3.061224489795918, 'value_error': None},
        'Tropflux': {'value': 48.4375, 'value_error': None}}},
      'EnsoSstLonRmse': {'diagnostic': {'CSIRO-Mk3-6-0_r9i1p1': {'value': None,
         'value_error': None},
        'ERA-Interim': {'value': None, 'value_error': None},
        'HadISST': {'value': None, 'value_error': None},
        'Tropflux': {'value': None, 'value_error': None}},
       'metric': {'ERA-Interim': {'value': 0.606574253950055,
         'value_error': None},
        'HadISST': {'value': 0.6141569822345718, 'value_error': None},
        'Tropflux': {'value': 0.60599228144321, 'value_error': None}}},
      'EnsoSstSkew': {'diagnostic': {'CSIRO-Mk3-6-0_r9i1p1': {'value': -0.056057944407181974,
         'value_error': -0.00448822757201513},
        'ERA-Interim': {'value': 0.39098111106809963,
         'value_error': 0.061819541653923164},
        'HadISST': {'value': 0.38989908235027515,
         'value_error': 0.03172953733021198},
        'Tropflux': {'value': 0.39744741059612115,
         'value_error': 0.06284195338099416}},
       'metric': {'ERA-Interim': {'value': 114.33776282798942,
         'value_error': -3.414939100057751},
        'HadISST': {'value': 114.37755228077735,
         'value_error': -2.3211540626260567},
        'Tropflux': {'value': 114.1044935537766,
         'value_error': -3.359379500215836}}},
      'EnsoSstTsRmse': {'diagnostic': {'CSIRO-Mk3-6-0_r9i1p1': {'value': None,
         'value_error': None},
        'ERA-Interim': {'value': None, 'value_error': None},
        'HadISST': {'value': None, 'value_error': None},
        'Tropflux': {'value': None, 'value_error': None}},
       'metric': {'ERA-Interim': {'value': 0.17625543749214304,
         'value_error': None},
        'HadISST': {'value': 0.14076549219894513, 'value_error': None},
        'Tropflux': {'value': 0.1711943118486397, 'value_error': None}}},
      'SeasonalPrLatRmse': {'diagnostic': {'CSIRO-Mk3-6-0_r9i1p1': {'value': None,
         'value_error': None},
        'ERA-Interim': {'value': None, 'value_error': None},
        'GPCPv2.3': {'value': None, 'value_error': None}},
       'metric': {'ERA-Interim': {'value': 0.8190685329046402,
         'value_error': None},
        'GPCPv2.3': {'value': 0.7898975101006535, 'value_error': None}}},
      'SeasonalPrLonRmse': {'diagnostic': {'CSIRO-Mk3-6-0_r9i1p1': {'value': None,
         'value_error': None},
        'ERA-Interim': {'value': None, 'value_error': None},
        'GPCPv2.3': {'value': None, 'value_error': None}},
       'metric': {'ERA-Interim': {'value': 0.9237319436264837,
         'value_error': None},
        'GPCPv2.3': {'value': 0.6560416114867132, 'value_error': None}}},
      'SeasonalSstLonRmse': {'diagnostic': {'CSIRO-Mk3-6-0_r9i1p1': {'value': None,
         'value_error': None},
        'ERA-Interim': {'value': None, 'value_error': None},
        'HadISST': {'value': None, 'value_error': None},
        'Tropflux': {'value': None, 'value_error': None}},
       'metric': {'ERA-Interim': {'value': 0.19527066339386528,
         'value_error': None},
        'HadISST': {'value': 0.21331355599061436, 'value_error': None},
        'Tropflux': {'value': 0.1939155324800638, 'value_error': None}}},
      'SeasonalTauxLonRmse': {'diagnostic': {'CSIRO-Mk3-6-0_r9i1p1': {'value': None,
         'value_error': None},
        'ERA-Interim': {'value': None, 'value_error': None},
        'Tropflux': {'value': None, 'value_error': None}},
       'metric': {'ERA-Interim': {'value': 2.4227206012936864,
         'value_error': None},
        'Tropflux': {'value': 2.5858133322912056, 'value_error': None}}}}}},
   'CSIRO-Mk3L-1-2': {'r1i2p1': {'metadata': {'description_of_the_collection': 'Describe which science question this collection is about',
      'metrics': {'BiasPrLatRmse': {'diagnostic': {'CSIRO-Mk3L-1-2_r1i2p1': {'keyerror': None,
          'name': 'CSIRO-Mk3L-1-2_r1i2p1',
          'nyears': 155,
          'time_period': ['1851-1-16 12:0:0.0', '2005-12-16 12:0:0.0']},
         'ERA-Interim': {'name': 'ERA-Interim',
          'nyears': 40,
          'time_period': ['1979-1-16 12:0:0.0', '2019-3-16 12:0:0.0']},
         'GPCPv2.3': {'name': 'GPCPv2.3',
          'nyears': 41,
          'time_period': ['1979-1-1 0:0:0.0', '2019-7-1 0:0:0.0']},
         'method': 'Meridional root mean square error of nino3_LatExt pr, time series are linearly detrended, observations and model regridded to generic_1x1deg',
         'name': 'pr Meridional RMSE',
         'ref': 'Using CDAT regridding and rms (uncentered and biased) calculation',
         'time_frequency': 'monthly',
         'units': 'mm/day'},
        'metric': {'datasets': "CSIRO-Mk3L-1-2_r1i2p1; ERA-Interim's pr & GPCPv2.3's precip; 's ",
         'method': 'The metric is the statistical value between the model and the observations',
         'name': 'BiasPrLatRmse',
         'units': 'mm/day'}},
       'BiasPrLonRmse': {'diagnostic': {'CSIRO-Mk3L-1-2_r1i2p1': {'keyerror': None,
          'name': 'CSIRO-Mk3L-1-2_r1i2p1',
          'nyears': 155,
          'time_period': ['1851-1-16 12:0:0.0', '2005-12-16 12:0:0.0']},
         'ERA-Interim': {'name': 'ERA-Interim',
          'nyears': 40,
          'time_period': ['1979-1-16 12:0:0.0', '2019-3-16 12:0:0.0']},
         'GPCPv2.3': {'name': 'GPCPv2.3',
          'nyears': 41,
          'time_period': ['1979-1-1 0:0:0.0', '2019-7-1 0:0:0.0']},
         'method': 'Zonal root mean square error of equatorial_pacific pr, time series are linearly detrended, observations and model regridded to generic_1x1deg',
         'name': 'pr Zonal RMSE',
         'ref': 'Using CDAT regridding and rms (uncentered and biased) calculation',
         'time_frequency': 'monthly',
         'units': 'mm/day'},
        'metric': {'datasets': "CSIRO-Mk3L-1-2_r1i2p1; ERA-Interim's pr & GPCPv2.3's precip; 's ",
         'method': 'The metric is the statistical value between the model and the observations',
         'name': 'BiasPrLonRmse',
         'units': 'mm/day'}},
       'BiasSstLonRmse': {'diagnostic': {'CSIRO-Mk3L-1-2_r1i2p1': {'keyerror': None,
          'name': 'CSIRO-Mk3L-1-2_r1i2p1',
          'nyears': 155,
          'time_period': ['1851-1-16 12:0:0.0', '2005-12-16 12:0:0.0']},
         'ERA-Interim': {'name': 'ERA-Interim',
          'nyears': 40,
          'time_period': ['1979-1-16 12:0:0.0', '2019-3-16 12:0:0.0']},
         'HadISST': {'name': 'HadISST',
          'nyears': 151,
          'time_period': ['1870-1-16 11:59:59.5', '2020-10-16 12:0:0.0']},
         'Tropflux': {'name': 'Tropflux',
          'nyears': 40,
          'time_period': ['1979-1-15 0:0:0.0', '2018-12-15 12:0:0.0']},
         'method': 'Zonal root mean square error of equatorial_pacific sst, time series are linearly detrended, observations and model regridded to generic_1x1deg',
         'name': 'sst Zonal RMSE',
         'ref': 'Using CDAT regridding and rms (uncentered and biased) calculation',
         'time_frequency': 'monthly',
         'units': 'C'},
        'metric': {'datasets': "CSIRO-Mk3L-1-2_r1i2p1; ERA-Interim's ts & HadISST's sst & Tropflux's sst; 's ",
         'method': 'The metric is the statistical value between the model and the observations',
         'name': 'BiasSstLonRmse',
         'units': 'C'}},
       'BiasTauxLonRmse': {'diagnostic': {'CSIRO-Mk3L-1-2_r1i2p1': {'keyerror': None,
          'name': 'CSIRO-Mk3L-1-2_r1i2p1',
          'nyears': 155,
          'time_period': ['1851-1-16 12:0:0.0', '2005-12-16 12:0:0.0']},
         'ERA-Interim': {'name': 'ERA-Interim',
          'nyears': 40,
          'time_period': ['1979-1-16 12:0:0.0', '2019-3-16 12:0:0.0']},
         'Tropflux': {'name': 'Tropflux',
          'nyears': 40,
          'time_period': ['1979-1-15 0:0:0.0', '2018-12-15 12:0:0.0']},
         'method': 'Zonal root mean square error of equatorial_pacific taux, time series are linearly detrended, observations and model regridded to generic_1x1deg',
         'name': 'taux Zonal RMSE',
         'ref': 'Using CDAT regridding and rms (uncentered and biased) calculation',
         'time_frequency': 'monthly',
         'units': '1e-3 N/m2'},
        'metric': {'datasets': "CSIRO-Mk3L-1-2_r1i2p1; ERA-Interim's tauu & Tropflux's taux; 's ",
         'method': 'The metric is the statistical value between the model and the observations',
         'name': 'BiasTauxLonRmse',
         'units': '1e-3 N/m2'}},
       'EnsoAmpl': {'diagnostic': {'CSIRO-Mk3L-1-2_r1i2p1': {'keyerror': None,
          'name': 'CSIRO-Mk3L-1-2_r1i2p1',
          'nyears': 155,
          'time_period': ['1851-1-16 12:0:0.0', '2005-12-16 12:0:0.0']},
         'ERA-Interim': {'keyerror': None,
          'name': 'ERA-Interim',
          'nyears': 40,
          'time_period': ['1979-1-16 12:0:0.0', '2019-3-16 12:0:0.0']},
         'HadISST': {'keyerror': None,
          'name': 'HadISST',
          'nyears': 151,
          'time_period': ['1870-1-16 11:59:59.5', '2020-10-16 12:0:0.0']},
         'Tropflux': {'keyerror': None,
          'name': 'Tropflux',
          'nyears': 40,
          'time_period': ['1979-1-15 0:0:0.0', '2018-12-15 12:0:0.0']},
         'method': 'Standard deviation of nino3.4 sstA, time series are linearly detrended',
         'name': 'ENSO amplitude',
         'ref': 'Using CDAT regression calculation',
         'time_frequency': 'monthly',
         'units': 'C'},
        'metric': {'datasets': "CSIRO-Mk3L-1-2_r1i2p1; ERA-Interim's ts & HadISST's sst & Tropflux's sst; 's ",
         'method': 'The metric is the absolute value of the relative difference between model and observations values (M = 100 * abs[[model-obs] / obs])',
         'name': 'EnsoAmpl',
         'units': '%'}},
       'EnsoDuration': {'diagnostic': {'CSIRO-Mk3L-1-2_r1i2p1': {'keyerror': None,
          'name': 'CSIRO-Mk3L-1-2_r1i2p1',
          'nyears': 155,
          'time_period': ['1851-1-16 12:0:0.0', '2005-12-16 12:0:0.0']},
         'ERA-Interim': {'keyerror': None,
          'name': 'ERA-Interim',
          'nyears': 40,
          'time_period': ['1979-1-16 12:0:0.0', '2019-3-16 12:0:0.0']},
         'HadISST': {'keyerror': None,
          'name': 'HadISST',
          'nyears': 151,
          'time_period': ['1870-1-16 11:59:59.5', '2020-10-16 12:0:0.0']},
         'Tropflux': {'keyerror': None,
          'name': 'Tropflux',
          'nyears': 40,
          'time_period': ['1979-1-15 0:0:0.0', '2018-12-15 12:0:0.0']},
         'method': 'nino3.4 SSTA during DEC regressed against nino3.4 SSTA during 6 years (centered on ENSO), the duration is the number of consecutive months during which the regression is above 0.25, time series are linearly detrended, smoothing using a triangle shaped window of 5 points',
         'name': 'ENSO Duration based on life cyle SSTA pattern',
         'ref': 'Using CDAT',
         'time_frequency': 'monthly',
         'units': 'months'},
        'metric': {'datasets': "CSIRO-Mk3L-1-2_r1i2p1; ERA-Interim's ts & HadISST's sst & Tropflux's sst; 's ",
         'method': 'The metric is the absolute value of the relative difference between model and observations values (M = 100 * abs[[model-obs] / obs])',
         'name': 'EnsoDuration',
         'units': '%'}},
       'EnsoSeasonality': {'diagnostic': {'CSIRO-Mk3L-1-2_r1i2p1': {'keyerror': None,
          'name': 'CSIRO-Mk3L-1-2_r1i2p1',
          'nyears': 155,
          'time_period': ['1851-1-16 12:0:0.0', '2005-12-16 12:0:0.0']},
         'ERA-Interim': {'keyerror': None,
          'name': 'ERA-Interim',
          'nyears': 40,
          'time_period': ['1979-1-16 12:0:0.0', '2019-3-16 12:0:0.0']},
         'HadISST': {'keyerror': None,
          'name': 'HadISST',
          'nyears': 151,
          'time_period': ['1870-1-16 11:59:59.5', '2020-10-16 12:0:0.0']},
         'Tropflux': {'keyerror': None,
          'name': 'Tropflux',
          'nyears': 40,
          'time_period': ['1979-1-15 0:0:0.0', '2018-12-15 12:0:0.0']},
         'method': 'Ratio between NDJ and MAM standard deviation nino3.4 sstA, time series are linearly detrended',
         'name': 'ENSO seasonality',
         'ref': 'Using CDAT std dev calculation',
         'time_frequency': 'monthly',
         'units': 'C/C'},
        'metric': {'datasets': "CSIRO-Mk3L-1-2_r1i2p1; ERA-Interim's ts & HadISST's sst & Tropflux's sst; 's ",
         'method': 'The metric is the absolute value of the relative difference between model and observations values (M = 100 * abs[[model-obs] / obs])',
         'name': 'EnsoSeasonality',
         'units': '%'}},
       'EnsoSstDiversity_2': {'diagnostic': {'CSIRO-Mk3L-1-2_r1i2p1': {'keyerror': None,
          'name': 'CSIRO-Mk3L-1-2_r1i2p1',
          'nyears': 155,
          'time_period': ['1851-1-16 12:0:0.0', '2005-12-16 12:0:0.0']},
         'ERA-Interim': {'keyerror': None,
          'name': 'ERA-Interim',
          'nyears': 40,
          'time_period': ['1979-1-16 12:0:0.0', '2019-3-16 12:0:0.0']},
         'HadISST': {'keyerror': None,
          'name': 'HadISST',
          'nyears': 151,
          'time_period': ['1870-1-16 11:59:59.5', '2020-10-16 12:0:0.0']},
         'Tropflux': {'keyerror': None,
          'name': 'Tropflux',
          'nyears': 40,
          'time_period': ['1979-1-15 0:0:0.0', '2018-12-15 12:0:0.0']},
         'method': 'Nino (Nina) events = nino3.4 sstA > 0.75 (< -0.75) during DEC, zonal SSTA (meridional averaged [-5.0 ; 5.0]), the zonal SSTA maximum (minimum) is located for each event, the diversity is the interquartile range (IQR = Q3 - Q1), time series are linearly detrended, smoothing using a triangle shaped window of 5 points',
         'name': 'ENSO Diversity (interquartile range)',
         'ref': 'Using CDAT regridding',
         'time_frequency': 'monthly',
         'units': 'long'},
        'metric': {'datasets': "CSIRO-Mk3L-1-2_r1i2p1; ERA-Interim's ts & HadISST's sst & Tropflux's sst; 's ",
         'method': 'The metric is the absolute value of the relative difference between model and observations values (M = 100 * abs[[model-obs] / obs])',
         'name': 'EnsoSstDiversity',
         'units': '%'}},
       'EnsoSstLonRmse': {'diagnostic': {'CSIRO-Mk3L-1-2_r1i2p1': {'keyerror': None,
          'name': 'CSIRO-Mk3L-1-2_r1i2p1',
          'nyears': 155,
          'time_period': ['1851-1-16 12:0:0.0', '2005-12-16 12:0:0.0']},
         'ERA-Interim': {'name': 'ERA-Interim',
          'nyears': 40,
          'time_period': ['1979-1-16 12:0:0.0', '2019-3-16 12:0:0.0']},
         'HadISST': {'name': 'HadISST',
          'nyears': 151,
          'time_period': ['1870-1-16 11:59:59.5', '2020-10-16 12:0:0.0']},
         'Tropflux': {'name': 'Tropflux',
          'nyears': 40,
          'time_period': ['1979-1-15 0:0:0.0', '2018-12-15 12:0:0.0']},
         'method': 'nino3.4 SSTA during DEC regressed against equatorial_pacific SSTA, time series are linearly detrended, smoothing using a triangle shaped window of 5 points, observations and model regridded to generic_1x1deg',
         'name': 'ENSO Zonal SSTA pattern',
         'ref': 'Using CDAT regridding and rms (uncentered and biased) calculation',
         'time_frequency': 'monthly',
         'units': 'C/C'},
        'metric': {'datasets': "CSIRO-Mk3L-1-2_r1i2p1; ERA-Interim's ts & HadISST's sst & Tropflux's sst; 's ",
         'method': 'The metric is the statistical value between the model and the observations',
         'name': 'EnsoSstLonRmse',
         'units': 'C/C'}},
       'EnsoSstSkew': {'diagnostic': {'CSIRO-Mk3L-1-2_r1i2p1': {'keyerror': None,
          'name': 'CSIRO-Mk3L-1-2_r1i2p1',
          'nyears': 155,
          'time_period': ['1851-1-16 12:0:0.0', '2005-12-16 12:0:0.0']},
         'ERA-Interim': {'keyerror': None,
          'name': 'ERA-Interim',
          'nyears': 40,
          'time_period': ['1979-1-16 12:0:0.0', '2019-3-16 12:0:0.0']},
         'HadISST': {'keyerror': None,
          'name': 'HadISST',
          'nyears': 151,
          'time_period': ['1870-1-16 11:59:59.5', '2020-10-16 12:0:0.0']},
         'Tropflux': {'keyerror': None,
          'name': 'Tropflux',
          'nyears': 40,
          'time_period': ['1979-1-15 0:0:0.0', '2018-12-15 12:0:0.0']},
         'method': 'Standard deviation of nino3.4 sstA, time series are linearly detrended',
         'name': 'ENSO skewness',
         'ref': 'Using CDAT regression calculation',
         'time_frequency': 'monthly',
         'units': 'C'},
        'metric': {'datasets': "CSIRO-Mk3L-1-2_r1i2p1; ERA-Interim's ts & HadISST's sst & Tropflux's sst; 's ",
         'method': 'The metric is the absolute value of the relative difference between model and observations values (M = 100 * abs[[model-obs] / obs])',
         'name': 'EnsoSstSkew',
         'units': '%'}},
       'EnsoSstTsRmse': {'diagnostic': {'CSIRO-Mk3L-1-2_r1i2p1': {'keyerror': None,
          'name': 'CSIRO-Mk3L-1-2_r1i2p1',
          'nyears': 155,
          'time_period': ['1851-1-16 12:0:0.0', '2005-12-16 12:0:0.0']},
         'ERA-Interim': {'name': 'ERA-Interim',
          'nyears': 40,
          'time_period': ['1979-1-16 12:0:0.0', '2019-3-16 12:0:0.0']},
         'HadISST': {'name': 'HadISST',
          'nyears': 151,
          'time_period': ['1870-1-16 11:59:59.5', '2020-10-16 12:0:0.0']},
         'Tropflux': {'name': 'Tropflux',
          'nyears': 40,
          'time_period': ['1979-1-15 0:0:0.0', '2018-12-15 12:0:0.0']},
         'method': 'nino3.4 SSTA during DEC regressed against nino3.4 SSTA during 6 years (centered on ENSO), time series are linearly detrended, smoothing using a triangle shaped window of 5 points',
         'name': 'ENSO life cyle SSTA pattern',
         'ref': 'Using CDAT regridding and rms (uncentered and biased) calculation',
         'time_frequency': 'monthly',
         'units': 'C/C'},
        'metric': {'datasets': "CSIRO-Mk3L-1-2_r1i2p1; ERA-Interim's ts & HadISST's sst & Tropflux's sst; 's ",
         'method': 'The metric is the statistical value between the model and the observations',
         'name': 'EnsoSstTsRmse',
         'units': 'C/C'}},
       'SeasonalPrLatRmse': {'diagnostic': {'CSIRO-Mk3L-1-2_r1i2p1': {'keyerror': None,
          'name': 'CSIRO-Mk3L-1-2_r1i2p1',
          'nyears': 155,
          'time_period': ['1851-1-16 12:0:0.0', '2005-12-16 12:0:0.0']},
         'ERA-Interim': {'name': 'ERA-Interim',
          'nyears': 40,
          'time_period': ['1979-1-16 12:0:0.0', '2019-3-16 12:0:0.0']},
         'GPCPv2.3': {'name': 'GPCPv2.3',
          'nyears': 41,
          'time_period': ['1979-1-1 0:0:0.0', '2019-7-1 0:0:0.0']},
         'method': 'Meridional root mean square error of nino3_LatExt climatological pr STD, time series are linearly detrended, observations and model regridded to generic_1x1deg',
         'name': 'pr meridional seasonality RMSE',
         'ref': 'Using CDAT regridding and rms (uncentered and biased) calculation',
         'time_frequency': 'monthly',
         'units': 'mm/day'},
        'metric': {'datasets': "CSIRO-Mk3L-1-2_r1i2p1; ERA-Interim's pr & GPCPv2.3's precip; 's ",
         'method': 'The metric is the statistical value between the model and the observations',
         'name': 'SeasonalPrLatRmse',
         'units': 'mm/day'}},
       'SeasonalPrLonRmse': {'diagnostic': {'CSIRO-Mk3L-1-2_r1i2p1': {'keyerror': None,
          'name': 'CSIRO-Mk3L-1-2_r1i2p1',
          'nyears': 155,
          'time_period': ['1851-1-16 12:0:0.0', '2005-12-16 12:0:0.0']},
         'ERA-Interim': {'name': 'ERA-Interim',
          'nyears': 40,
          'time_period': ['1979-1-16 12:0:0.0', '2019-3-16 12:0:0.0']},
         'GPCPv2.3': {'name': 'GPCPv2.3',
          'nyears': 41,
          'time_period': ['1979-1-1 0:0:0.0', '2019-7-1 0:0:0.0']},
         'method': 'Zonal root mean square error of equatorial_pacific climatological pr STD, time series are linearly detrended, observations and model regridded to generic_1x1deg',
         'name': 'pr zonal seasonality RMSE',
         'ref': 'Using CDAT regridding and rms (uncentered and biased) calculation',
         'time_frequency': 'monthly',
         'units': 'mm/day'},
        'metric': {'datasets': "CSIRO-Mk3L-1-2_r1i2p1; ERA-Interim's pr & GPCPv2.3's precip; 's ",
         'method': 'The metric is the statistical value between the model and the observations',
         'name': 'SeasonalPrLonRmse',
         'units': 'mm/day'}},
       'SeasonalSstLonRmse': {'diagnostic': {'CSIRO-Mk3L-1-2_r1i2p1': {'keyerror': None,
          'name': 'CSIRO-Mk3L-1-2_r1i2p1',
          'nyears': 155,
          'time_period': ['1851-1-16 12:0:0.0', '2005-12-16 12:0:0.0']},
         'ERA-Interim': {'name': 'ERA-Interim',
          'nyears': 40,
          'time_period': ['1979-1-16 12:0:0.0', '2019-3-16 12:0:0.0']},
         'HadISST': {'name': 'HadISST',
          'nyears': 151,
          'time_period': ['1870-1-16 11:59:59.5', '2020-10-16 12:0:0.0']},
         'Tropflux': {'name': 'Tropflux',
          'nyears': 40,
          'time_period': ['1979-1-15 0:0:0.0', '2018-12-15 12:0:0.0']},
         'method': 'Zonal root mean square error of equatorial_pacific climatological sst STD, time series are linearly detrended, observations and model regridded to generic_1x1deg',
         'name': 'sst zonal seasonality RMSE',
         'ref': 'Using CDAT regridding and rms (uncentered and biased) calculation',
         'time_frequency': 'monthly',
         'units': 'C'},
        'metric': {'datasets': "CSIRO-Mk3L-1-2_r1i2p1; ERA-Interim's ts & HadISST's sst & Tropflux's sst; 's ",
         'method': 'The metric is the statistical value between the model and the observations',
         'name': 'SeasonalSstLonRmse',
         'units': 'C'}},
       'SeasonalTauxLonRmse': {'diagnostic': {'CSIRO-Mk3L-1-2_r1i2p1': {'keyerror': None,
          'name': 'CSIRO-Mk3L-1-2_r1i2p1',
          'nyears': 155,
          'time_period': ['1851-1-16 12:0:0.0', '2005-12-16 12:0:0.0']},
         'ERA-Interim': {'name': 'ERA-Interim',
          'nyears': 40,
          'time_period': ['1979-1-16 12:0:0.0', '2019-3-16 12:0:0.0']},
         'Tropflux': {'name': 'Tropflux',
          'nyears': 40,
          'time_period': ['1979-1-15 0:0:0.0', '2018-12-15 12:0:0.0']},
         'method': 'Zonal root mean square error of equatorial_pacific climatological taux STD, time series are linearly detrended, observations and model regridded to generic_1x1deg',
         'name': 'taux zonal seasonality RMSE',
         'ref': 'Using CDAT regridding and rms (uncentered and biased) calculation',
         'time_frequency': 'monthly',
         'units': '1e-3 N/m2'},
        'metric': {'datasets': "CSIRO-Mk3L-1-2_r1i2p1; ERA-Interim's tauu & Tropflux's taux; 's ",
         'method': 'The metric is the statistical value between the model and the observations',
         'name': 'SeasonalTauxLonRmse',
         'units': '1e-3 N/m2'}}},
      'name': 'Metrics Collection for ENSO performance'},
     'value': {'BiasPrLatRmse': {'diagnostic': {'CSIRO-Mk3L-1-2_r1i2p1': {'value': None,
         'value_error': None},
        'ERA-Interim': {'value': None, 'value_error': None},
        'GPCPv2.3': {'value': None, 'value_error': None}},
       'metric': {'ERA-Interim': {'value': 1.8614691607209792,
         'value_error': None},
        'GPCPv2.3': {'value': 1.194556172081318, 'value_error': None}}},
      'BiasPrLonRmse': {'diagnostic': {'CSIRO-Mk3L-1-2_r1i2p1': {'value': None,
         'value_error': None},
        'ERA-Interim': {'value': None, 'value_error': None},
        'GPCPv2.3': {'value': None, 'value_error': None}},
       'metric': {'ERA-Interim': {'value': 0.9981415986108314,
         'value_error': None},
        'GPCPv2.3': {'value': 1.1418197883716903, 'value_error': None}}},
      'BiasSstLonRmse': {'diagnostic': {'CSIRO-Mk3L-1-2_r1i2p1': {'value': None,
         'value_error': None},
        'ERA-Interim': {'value': None, 'value_error': None},
        'HadISST': {'value': None, 'value_error': None},
        'Tropflux': {'value': None, 'value_error': None}},
       'metric': {'ERA-Interim': {'value': 0.3091007198425894,
         'value_error': None},
        'HadISST': {'value': 0.4791465225860035, 'value_error': None},
        'Tropflux': {'value': 0.27824385053115175, 'value_error': None}}},
      'BiasTauxLonRmse': {'diagnostic': {'CSIRO-Mk3L-1-2_r1i2p1': {'value': None,
         'value_error': None},
        'ERA-Interim': {'value': None, 'value_error': None},
        'Tropflux': {'value': None, 'value_error': None}},
       'metric': {'ERA-Interim': {'value': 9.52555950279072,
         'value_error': None},
        'Tropflux': {'value': 9.796118071617416, 'value_error': None}}},
      'EnsoAmpl': {'diagnostic': {'CSIRO-Mk3L-1-2_r1i2p1': {'value': 0.5710135624017934,
         'value_error': 0.04586491303865936},
        'ERA-Interim': {'value': 0.8989844997845644,
         'value_error': 0.14214193002531866},
        'HadISST': {'value': 0.7665787872085695,
         'value_error': 0.06238329697691264},
        'Tropflux': {'value': 0.9039789553693535,
         'value_error': 0.14293162279134272}},
       'metric': {'ERA-Interim': {'value': 36.48237955842031,
         'value_error': 15.14487565393002},
        'HadISST': {'value': 25.5114318410649,
         'value_error': 12.044859480565815},
        'Tropflux': {'value': 36.83331243386247,
         'value_error': 15.061200687448304}}},
      'EnsoDuration': {'diagnostic': {'CSIRO-Mk3L-1-2_r1i2p1': {'value': 31.0,
         'value_error': None},
        'ERA-Interim': {'value': 13.0, 'value_error': None},
        'HadISST': {'value': 13.0, 'value_error': None},
        'Tropflux': {'value': 13.0, 'value_error': None}},
       'metric': {'ERA-Interim': {'value': 138.46153846153845,
         'value_error': None},
        'HadISST': {'value': 138.46153846153845, 'value_error': None},
        'Tropflux': {'value': 138.46153846153845, 'value_error': None}}},
      'EnsoSeasonality': {'diagnostic': {'CSIRO-Mk3L-1-2_r1i2p1': {'value': 1.3816004082649933,
         'value_error': 0.22230534888247985},
        'ERA-Interim': {'value': 2.0466846866656914,
         'value_error': 0.6513411033995022},
        'HadISST': {'value': 1.6639865947361325,
         'value_error': 0.2712772451657809},
        'Tropflux': {'value': 2.0532132553583624,
         'value_error': 0.6534187683977347}},
       'metric': {'ERA-Interim': {'value': 32.49568840446081,
         'value_error': 32.344438847078415},
        'HadISST': {'value': 16.97046042104196,
         'value_error': 26.895985697353453},
        'Tropflux': {'value': 32.71033076279977,
         'value_error': 32.24159376253205}}},
      'EnsoSstDiversity_2': {'diagnostic': {'CSIRO-Mk3L-1-2_r1i2p1': {'value': 8.0,
         'value_error': None},
        'ERA-Interim': {'value': 33.25, 'value_error': None},
        'HadISST': {'value': 49.0, 'value_error': None},
        'Tropflux': {'value': 32.0, 'value_error': None}},
       'metric': {'ERA-Interim': {'value': 75.93984962406014,
         'value_error': None},
        'HadISST': {'value': 83.6734693877551, 'value_error': None},
        'Tropflux': {'value': 75.0, 'value_error': None}}},
      'EnsoSstLonRmse': {'diagnostic': {'CSIRO-Mk3L-1-2_r1i2p1': {'value': None,
         'value_error': None},
        'ERA-Interim': {'value': None, 'value_error': None},
        'HadISST': {'value': None, 'value_error': None},
        'Tropflux': {'value': None, 'value_error': None}},
       'metric': {'ERA-Interim': {'value': 0.19572447460516995,
         'value_error': None},
        'HadISST': {'value': 0.21368007361020624, 'value_error': None},
        'Tropflux': {'value': 0.19636258318155886, 'value_error': None}}},
      'EnsoSstSkew': {'diagnostic': {'CSIRO-Mk3L-1-2_r1i2p1': {'value': 0.5064701497818019,
         'value_error': 0.0406806613816887},
        'ERA-Interim': {'value': 0.39098111106809963,
         'value_error': 0.061819541653923164},
        'HadISST': {'value': 0.38989908235027515,
         'value_error': 0.03172953733021198},
        'Tropflux': {'value': 0.39744741059612115,
         'value_error': 0.06284195338099416}},
       'metric': {'ERA-Interim': {'value': 29.538265518301948,
         'value_error': 30.886562028954728},
        'HadISST': {'value': 29.897753728694955,
         'value_error': 21.004567938061477},
        'Tropflux': {'value': 27.430733294289272,
         'value_error': 30.384050863589522}}},
      'EnsoSstTsRmse': {'diagnostic': {'CSIRO-Mk3L-1-2_r1i2p1': {'value': None,
         'value_error': None},
        'ERA-Interim': {'value': None, 'value_error': None},
        'HadISST': {'value': None, 'value_error': None},
        'Tropflux': {'value': None, 'value_error': None}},
       'metric': {'ERA-Interim': {'value': 0.2607667176993489,
         'value_error': None},
        'HadISST': {'value': 0.22790782032318413, 'value_error': None},
        'Tropflux': {'value': 0.2574627285418937, 'value_error': None}}},
      'SeasonalPrLatRmse': {'diagnostic': {'CSIRO-Mk3L-1-2_r1i2p1': {'value': None,
         'value_error': None},
        'ERA-Interim': {'value': None, 'value_error': None},
        'GPCPv2.3': {'value': None, 'value_error': None}},
       'metric': {'ERA-Interim': {'value': 0.9815665904278619,
         'value_error': None},
        'GPCPv2.3': {'value': 0.8174081889323704, 'value_error': None}}},
      'SeasonalPrLonRmse': {'diagnostic': {'CSIRO-Mk3L-1-2_r1i2p1': {'value': None,
         'value_error': None},
        'ERA-Interim': {'value': None, 'value_error': None},
        'GPCPv2.3': {'value': None, 'value_error': None}},
       'metric': {'ERA-Interim': {'value': 0.5619226892766658,
         'value_error': None},
        'GPCPv2.3': {'value': 0.60727374065074, 'value_error': None}}},
      'SeasonalSstLonRmse': {'diagnostic': {'CSIRO-Mk3L-1-2_r1i2p1': {'value': None,
         'value_error': None},
        'ERA-Interim': {'value': None, 'value_error': None},
        'HadISST': {'value': None, 'value_error': None},
        'Tropflux': {'value': None, 'value_error': None}},
       'metric': {'ERA-Interim': {'value': 0.020310532638421985,
         'value_error': None},
        'HadISST': {'value': 0.041944795834851036, 'value_error': None},
        'Tropflux': {'value': 0.021082168697707977, 'value_error': None}}},
      'SeasonalTauxLonRmse': {'diagnostic': {'CSIRO-Mk3L-1-2_r1i2p1': {'value': None,
         'value_error': None},
        'ERA-Interim': {'value': None, 'value_error': None},
        'Tropflux': {'value': None, 'value_error': None}},
       'metric': {'ERA-Interim': {'value': 8.750526737836816,
         'value_error': None},
        'Tropflux': {'value': 8.65489955956396, 'value_error': None}}}}},
    'r2i2p1': {'metadata': {'description_of_the_collection': 'Describe which science question this collection is about',
      'metrics': {'BiasPrLatRmse': {'diagnostic': {'CSIRO-Mk3L-1-2_r2i2p1': {'keyerror': None,
          'name': 'CSIRO-Mk3L-1-2_r2i2p1',
          'nyears': 155,
          'time_period': ['1851-1-16 12:0:0.0', '2005-12-16 12:0:0.0']},
         'ERA-Interim': {'name': 'ERA-Interim',
          'nyears': 40,
          'time_period': ['1979-1-16 12:0:0.0', '2019-3-16 12:0:0.0']},
         'GPCPv2.3': {'name': 'GPCPv2.3',
          'nyears': 41,
          'time_period': ['1979-1-1 0:0:0.0', '2019-7-1 0:0:0.0']},
         'method': 'Meridional root mean square error of nino3_LatExt pr, time series are linearly detrended, observations and model regridded to generic_1x1deg',
         'name': 'pr Meridional RMSE',
         'ref': 'Using CDAT regridding and rms (uncentered and biased) calculation',
         'time_frequency': 'monthly',
         'units': 'mm/day'},
        'metric': {'datasets': "CSIRO-Mk3L-1-2_r2i2p1; ERA-Interim's pr & GPCPv2.3's precip; 's ",
         'method': 'The metric is the statistical value between the model and the observations',
         'name': 'BiasPrLatRmse',
         'units': 'mm/day'}},
       'BiasPrLonRmse': {'diagnostic': {'CSIRO-Mk3L-1-2_r2i2p1': {'keyerror': None,
          'name': 'CSIRO-Mk3L-1-2_r2i2p1',
          'nyears': 155,
          'time_period': ['1851-1-16 12:0:0.0', '2005-12-16 12:0:0.0']},
         'ERA-Interim': {'name': 'ERA-Interim',
          'nyears': 40,
          'time_period': ['1979-1-16 12:0:0.0', '2019-3-16 12:0:0.0']},
         'GPCPv2.3': {'name': 'GPCPv2.3',
          'nyears': 41,
          'time_period': ['1979-1-1 0:0:0.0', '2019-7-1 0:0:0.0']},
         'method': 'Zonal root mean square error of equatorial_pacific pr, time series are linearly detrended, observations and model regridded to generic_1x1deg',
         'name': 'pr Zonal RMSE',
         'ref': 'Using CDAT regridding and rms (uncentered and biased) calculation',
         'time_frequency': 'monthly',
         'units': 'mm/day'},
        'metric': {'datasets': "CSIRO-Mk3L-1-2_r2i2p1; ERA-Interim's pr & GPCPv2.3's precip; 's ",
         'method': 'The metric is the statistical value between the model and the observations',
         'name': 'BiasPrLonRmse',
         'units': 'mm/day'}},
       'BiasSstLonRmse': {'diagnostic': {'CSIRO-Mk3L-1-2_r2i2p1': {'keyerror': None,
          'name': 'CSIRO-Mk3L-1-2_r2i2p1',
          'nyears': 155,
          'time_period': ['1851-1-16 12:0:0.0', '2005-12-16 12:0:0.0']},
         'ERA-Interim': {'name': 'ERA-Interim',
          'nyears': 40,
          'time_period': ['1979-1-16 12:0:0.0', '2019-3-16 12:0:0.0']},
         'HadISST': {'name': 'HadISST',
          'nyears': 151,
          'time_period': ['1870-1-16 11:59:59.5', '2020-10-16 12:0:0.0']},
         'Tropflux': {'name': 'Tropflux',
          'nyears': 40,
          'time_period': ['1979-1-15 0:0:0.0', '2018-12-15 12:0:0.0']},
         'method': 'Zonal root mean square error of equatorial_pacific sst, time series are linearly detrended, observations and model regridded to generic_1x1deg',
         'name': 'sst Zonal RMSE',
         'ref': 'Using CDAT regridding and rms (uncentered and biased) calculation',
         'time_frequency': 'monthly',
         'units': 'C'},
        'metric': {'datasets': "CSIRO-Mk3L-1-2_r2i2p1; ERA-Interim's ts & HadISST's sst & Tropflux's sst; 's ",
         'method': 'The metric is the statistical value between the model and the observations',
         'name': 'BiasSstLonRmse',
         'units': 'C'}},
       'BiasTauxLonRmse': {'diagnostic': {'CSIRO-Mk3L-1-2_r2i2p1': {'keyerror': None,
          'name': 'CSIRO-Mk3L-1-2_r2i2p1',
          'nyears': 155,
          'time_period': ['1851-1-16 12:0:0.0', '2005-12-16 12:0:0.0']},
         'ERA-Interim': {'name': 'ERA-Interim',
          'nyears': 40,
          'time_period': ['1979-1-16 12:0:0.0', '2019-3-16 12:0:0.0']},
         'Tropflux': {'name': 'Tropflux',
          'nyears': 40,
          'time_period': ['1979-1-15 0:0:0.0', '2018-12-15 12:0:0.0']},
         'method': 'Zonal root mean square error of equatorial_pacific taux, time series are linearly detrended, observations and model regridded to generic_1x1deg',
         'name': 'taux Zonal RMSE',
         'ref': 'Using CDAT regridding and rms (uncentered and biased) calculation',
         'time_frequency': 'monthly',
         'units': '1e-3 N/m2'},
        'metric': {'datasets': "CSIRO-Mk3L-1-2_r2i2p1; ERA-Interim's tauu & Tropflux's taux; 's ",
         'method': 'The metric is the statistical value between the model and the observations',
         'name': 'BiasTauxLonRmse',
         'units': '1e-3 N/m2'}},
       'EnsoAmpl': {'diagnostic': {'CSIRO-Mk3L-1-2_r2i2p1': {'keyerror': None,
          'name': 'CSIRO-Mk3L-1-2_r2i2p1',
          'nyears': 155,
          'time_period': ['1851-1-16 12:0:0.0', '2005-12-16 12:0:0.0']},
         'ERA-Interim': {'keyerror': None,
          'name': 'ERA-Interim',
          'nyears': 40,
          'time_period': ['1979-1-16 12:0:0.0', '2019-3-16 12:0:0.0']},
         'HadISST': {'keyerror': None,
          'name': 'HadISST',
          'nyears': 151,
          'time_period': ['1870-1-16 11:59:59.5', '2020-10-16 12:0:0.0']},
         'Tropflux': {'keyerror': None,
          'name': 'Tropflux',
          'nyears': 40,
          'time_period': ['1979-1-15 0:0:0.0', '2018-12-15 12:0:0.0']},
         'method': 'Standard deviation of nino3.4 sstA, time series are linearly detrended',
         'name': 'ENSO amplitude',
         'ref': 'Using CDAT regression calculation',
         'time_frequency': 'monthly',
         'units': 'C'},
        'metric': {'datasets': "CSIRO-Mk3L-1-2_r2i2p1; ERA-Interim's ts & HadISST's sst & Tropflux's sst; 's ",
         'method': 'The metric is the absolute value of the relative difference between model and observations values (M = 100 * abs[[model-obs] / obs])',
         'name': 'EnsoAmpl',
         'units': '%'}},
       'EnsoDuration': {'diagnostic': {'CSIRO-Mk3L-1-2_r2i2p1': {'keyerror': None,
          'name': 'CSIRO-Mk3L-1-2_r2i2p1',
          'nyears': 155,
          'time_period': ['1851-1-16 12:0:0.0', '2005-12-16 12:0:0.0']},
         'ERA-Interim': {'keyerror': None,
          'name': 'ERA-Interim',
          'nyears': 40,
          'time_period': ['1979-1-16 12:0:0.0', '2019-3-16 12:0:0.0']},
         'HadISST': {'keyerror': None,
          'name': 'HadISST',
          'nyears': 151,
          'time_period': ['1870-1-16 11:59:59.5', '2020-10-16 12:0:0.0']},
         'Tropflux': {'keyerror': None,
          'name': 'Tropflux',
          'nyears': 40,
          'time_period': ['1979-1-15 0:0:0.0', '2018-12-15 12:0:0.0']},
         'method': 'nino3.4 SSTA during DEC regressed against nino3.4 SSTA during 6 years (centered on ENSO), the duration is the number of consecutive months during which the regression is above 0.25, time series are linearly detrended, smoothing using a triangle shaped window of 5 points',
         'name': 'ENSO Duration based on life cyle SSTA pattern',
         'ref': 'Using CDAT',
         'time_frequency': 'monthly',
         'units': 'months'},
        'metric': {'datasets': "CSIRO-Mk3L-1-2_r2i2p1; ERA-Interim's ts & HadISST's sst & Tropflux's sst; 's ",
         'method': 'The metric is the absolute value of the relative difference between model and observations values (M = 100 * abs[[model-obs] / obs])',
         'name': 'EnsoDuration',
         'units': '%'}},
       'EnsoSeasonality': {'diagnostic': {'CSIRO-Mk3L-1-2_r2i2p1': {'keyerror': None,
          'name': 'CSIRO-Mk3L-1-2_r2i2p1',
          'nyears': 155,
          'time_period': ['1851-1-16 12:0:0.0', '2005-12-16 12:0:0.0']},
         'ERA-Interim': {'keyerror': None,
          'name': 'ERA-Interim',
          'nyears': 40,
          'time_period': ['1979-1-16 12:0:0.0', '2019-3-16 12:0:0.0']},
         'HadISST': {'keyerror': None,
          'name': 'HadISST',
          'nyears': 151,
          'time_period': ['1870-1-16 11:59:59.5', '2020-10-16 12:0:0.0']},
         'Tropflux': {'keyerror': None,
          'name': 'Tropflux',
          'nyears': 40,
          'time_period': ['1979-1-15 0:0:0.0', '2018-12-15 12:0:0.0']},
         'method': 'Ratio between NDJ and MAM standard deviation nino3.4 sstA, time series are linearly detrended',
         'name': 'ENSO seasonality',
         'ref': 'Using CDAT std dev calculation',
         'time_frequency': 'monthly',
         'units': 'C/C'},
        'metric': {'datasets': "CSIRO-Mk3L-1-2_r2i2p1; ERA-Interim's ts & HadISST's sst & Tropflux's sst; 's ",
         'method': 'The metric is the absolute value of the relative difference between model and observations values (M = 100 * abs[[model-obs] / obs])',
         'name': 'EnsoSeasonality',
         'units': '%'}},
       'EnsoSstDiversity_2': {'diagnostic': {'CSIRO-Mk3L-1-2_r2i2p1': {'keyerror': None,
          'name': 'CSIRO-Mk3L-1-2_r2i2p1',
          'nyears': 155,
          'time_period': ['1851-1-16 12:0:0.0', '2005-12-16 12:0:0.0']},
         'ERA-Interim': {'keyerror': None,
          'name': 'ERA-Interim',
          'nyears': 40,
          'time_period': ['1979-1-16 12:0:0.0', '2019-3-16 12:0:0.0']},
         'HadISST': {'keyerror': None,
          'name': 'HadISST',
          'nyears': 151,
          'time_period': ['1870-1-16 11:59:59.5', '2020-10-16 12:0:0.0']},
         'Tropflux': {'keyerror': None,
          'name': 'Tropflux',
          'nyears': 40,
          'time_period': ['1979-1-15 0:0:0.0', '2018-12-15 12:0:0.0']},
         'method': 'Nino (Nina) events = nino3.4 sstA > 0.75 (< -0.75) during DEC, zonal SSTA (meridional averaged [-5.0 ; 5.0]), the zonal SSTA maximum (minimum) is located for each event, the diversity is the interquartile range (IQR = Q3 - Q1), time series are linearly detrended, smoothing using a triangle shaped window of 5 points',
         'name': 'ENSO Diversity (interquartile range)',
         'ref': 'Using CDAT regridding',
         'time_frequency': 'monthly',
         'units': 'long'},
        'metric': {'datasets': "CSIRO-Mk3L-1-2_r2i2p1; ERA-Interim's ts & HadISST's sst & Tropflux's sst; 's ",
         'method': 'The metric is the absolute value of the relative difference between model and observations values (M = 100 * abs[[model-obs] / obs])',
         'name': 'EnsoSstDiversity',
         'units': '%'}},
       'EnsoSstLonRmse': {'diagnostic': {'CSIRO-Mk3L-1-2_r2i2p1': {'keyerror': None,
          'name': 'CSIRO-Mk3L-1-2_r2i2p1',
          'nyears': 155,
          'time_period': ['1851-1-16 12:0:0.0', '2005-12-16 12:0:0.0']},
         'ERA-Interim': {'name': 'ERA-Interim',
          'nyears': 40,
          'time_period': ['1979-1-16 12:0:0.0', '2019-3-16 12:0:0.0']},
         'HadISST': {'name': 'HadISST',
          'nyears': 151,
          'time_period': ['1870-1-16 11:59:59.5', '2020-10-16 12:0:0.0']},
         'Tropflux': {'name': 'Tropflux',
          'nyears': 40,
          'time_period': ['1979-1-15 0:0:0.0', '2018-12-15 12:0:0.0']},
         'method': 'nino3.4 SSTA during DEC regressed against equatorial_pacific SSTA, time series are linearly detrended, smoothing using a triangle shaped window of 5 points, observations and model regridded to generic_1x1deg',
         'name': 'ENSO Zonal SSTA pattern',
         'ref': 'Using CDAT regridding and rms (uncentered and biased) calculation',
         'time_frequency': 'monthly',
         'units': 'C/C'},
        'metric': {'datasets': "CSIRO-Mk3L-1-2_r2i2p1; ERA-Interim's ts & HadISST's sst & Tropflux's sst; 's ",
         'method': 'The metric is the statistical value between the model and the observations',
         'name': 'EnsoSstLonRmse',
         'units': 'C/C'}},
       'EnsoSstSkew': {'diagnostic': {'CSIRO-Mk3L-1-2_r2i2p1': {'keyerror': None,
          'name': 'CSIRO-Mk3L-1-2_r2i2p1',
          'nyears': 155,
          'time_period': ['1851-1-16 12:0:0.0', '2005-12-16 12:0:0.0']},
         'ERA-Interim': {'keyerror': None,
          'name': 'ERA-Interim',
          'nyears': 40,
          'time_period': ['1979-1-16 12:0:0.0', '2019-3-16 12:0:0.0']},
         'HadISST': {'keyerror': None,
          'name': 'HadISST',
          'nyears': 151,
          'time_period': ['1870-1-16 11:59:59.5', '2020-10-16 12:0:0.0']},
         'Tropflux': {'keyerror': None,
          'name': 'Tropflux',
          'nyears': 40,
          'time_period': ['1979-1-15 0:0:0.0', '2018-12-15 12:0:0.0']},
         'method': 'Standard deviation of nino3.4 sstA, time series are linearly detrended',
         'name': 'ENSO skewness',
         'ref': 'Using CDAT regression calculation',
         'time_frequency': 'monthly',
         'units': 'C'},
        'metric': {'datasets': "CSIRO-Mk3L-1-2_r2i2p1; ERA-Interim's ts & HadISST's sst & Tropflux's sst; 's ",
         'method': 'The metric is the absolute value of the relative difference between model and observations values (M = 100 * abs[[model-obs] / obs])',
         'name': 'EnsoSstSkew',
         'units': '%'}},
       'EnsoSstTsRmse': {'diagnostic': {'CSIRO-Mk3L-1-2_r2i2p1': {'keyerror': None,
          'name': 'CSIRO-Mk3L-1-2_r2i2p1',
          'nyears': 155,
          'time_period': ['1851-1-16 12:0:0.0', '2005-12-16 12:0:0.0']},
         'ERA-Interim': {'name': 'ERA-Interim',
          'nyears': 40,
          'time_period': ['1979-1-16 12:0:0.0', '2019-3-16 12:0:0.0']},
         'HadISST': {'name': 'HadISST',
          'nyears': 151,
          'time_period': ['1870-1-16 11:59:59.5', '2020-10-16 12:0:0.0']},
         'Tropflux': {'name': 'Tropflux',
          'nyears': 40,
          'time_period': ['1979-1-15 0:0:0.0', '2018-12-15 12:0:0.0']},
         'method': 'nino3.4 SSTA during DEC regressed against nino3.4 SSTA during 6 years (centered on ENSO), time series are linearly detrended, smoothing using a triangle shaped window of 5 points',
         'name': 'ENSO life cyle SSTA pattern',
         'ref': 'Using CDAT regridding and rms (uncentered and biased) calculation',
         'time_frequency': 'monthly',
         'units': 'C/C'},
        'metric': {'datasets': "CSIRO-Mk3L-1-2_r2i2p1; ERA-Interim's ts & HadISST's sst & Tropflux's sst; 's ",
         'method': 'The metric is the statistical value between the model and the observations',
         'name': 'EnsoSstTsRmse',
         'units': 'C/C'}},
       'SeasonalPrLatRmse': {'diagnostic': {'CSIRO-Mk3L-1-2_r2i2p1': {'keyerror': None,
          'name': 'CSIRO-Mk3L-1-2_r2i2p1',
          'nyears': 155,
          'time_period': ['1851-1-16 12:0:0.0', '2005-12-16 12:0:0.0']},
         'ERA-Interim': {'name': 'ERA-Interim',
          'nyears': 40,
          'time_period': ['1979-1-16 12:0:0.0', '2019-3-16 12:0:0.0']},
         'GPCPv2.3': {'name': 'GPCPv2.3',
          'nyears': 41,
          'time_period': ['1979-1-1 0:0:0.0', '2019-7-1 0:0:0.0']},
         'method': 'Meridional root mean square error of nino3_LatExt climatological pr STD, time series are linearly detrended, observations and model regridded to generic_1x1deg',
         'name': 'pr meridional seasonality RMSE',
         'ref': 'Using CDAT regridding and rms (uncentered and biased) calculation',
         'time_frequency': 'monthly',
         'units': 'mm/day'},
        'metric': {'datasets': "CSIRO-Mk3L-1-2_r2i2p1; ERA-Interim's pr & GPCPv2.3's precip; 's ",
         'method': 'The metric is the statistical value between the model and the observations',
         'name': 'SeasonalPrLatRmse',
         'units': 'mm/day'}},
       'SeasonalPrLonRmse': {'diagnostic': {'CSIRO-Mk3L-1-2_r2i2p1': {'keyerror': None,
          'name': 'CSIRO-Mk3L-1-2_r2i2p1',
          'nyears': 155,
          'time_period': ['1851-1-16 12:0:0.0', '2005-12-16 12:0:0.0']},
         'ERA-Interim': {'name': 'ERA-Interim',
          'nyears': 40,
          'time_period': ['1979-1-16 12:0:0.0', '2019-3-16 12:0:0.0']},
         'GPCPv2.3': {'name': 'GPCPv2.3',
          'nyears': 41,
          'time_period': ['1979-1-1 0:0:0.0', '2019-7-1 0:0:0.0']},
         'method': 'Zonal root mean square error of equatorial_pacific climatological pr STD, time series are linearly detrended, observations and model regridded to generic_1x1deg',
         'name': 'pr zonal seasonality RMSE',
         'ref': 'Using CDAT regridding and rms (uncentered and biased) calculation',
         'time_frequency': 'monthly',
         'units': 'mm/day'},
        'metric': {'datasets': "CSIRO-Mk3L-1-2_r2i2p1; ERA-Interim's pr & GPCPv2.3's precip; 's ",
         'method': 'The metric is the statistical value between the model and the observations',
         'name': 'SeasonalPrLonRmse',
         'units': 'mm/day'}},
       'SeasonalSstLonRmse': {'diagnostic': {'CSIRO-Mk3L-1-2_r2i2p1': {'keyerror': None,
          'name': 'CSIRO-Mk3L-1-2_r2i2p1',
          'nyears': 155,
          'time_period': ['1851-1-16 12:0:0.0', '2005-12-16 12:0:0.0']},
         'ERA-Interim': {'name': 'ERA-Interim',
          'nyears': 40,
          'time_period': ['1979-1-16 12:0:0.0', '2019-3-16 12:0:0.0']},
         'HadISST': {'name': 'HadISST',
          'nyears': 151,
          'time_period': ['1870-1-16 11:59:59.5', '2020-10-16 12:0:0.0']},
         'Tropflux': {'name': 'Tropflux',
          'nyears': 40,
          'time_period': ['1979-1-15 0:0:0.0', '2018-12-15 12:0:0.0']},
         'method': 'Zonal root mean square error of equatorial_pacific climatological sst STD, time series are linearly detrended, observations and model regridded to generic_1x1deg',
         'name': 'sst zonal seasonality RMSE',
         'ref': 'Using CDAT regridding and rms (uncentered and biased) calculation',
         'time_frequency': 'monthly',
         'units': 'C'},
        'metric': {'datasets': "CSIRO-Mk3L-1-2_r2i2p1; ERA-Interim's ts & HadISST's sst & Tropflux's sst; 's ",
         'method': 'The metric is the statistical value between the model and the observations',
         'name': 'SeasonalSstLonRmse',
         'units': 'C'}},
       'SeasonalTauxLonRmse': {'diagnostic': {'CSIRO-Mk3L-1-2_r2i2p1': {'keyerror': None,
          'name': 'CSIRO-Mk3L-1-2_r2i2p1',
          'nyears': 155,
          'time_period': ['1851-1-16 12:0:0.0', '2005-12-16 12:0:0.0']},
         'ERA-Interim': {'name': 'ERA-Interim',
          'nyears': 40,
          'time_period': ['1979-1-16 12:0:0.0', '2019-3-16 12:0:0.0']},
         'Tropflux': {'name': 'Tropflux',
          'nyears': 40,
          'time_period': ['1979-1-15 0:0:0.0', '2018-12-15 12:0:0.0']},
         'method': 'Zonal root mean square error of equatorial_pacific climatological taux STD, time series are linearly detrended, observations and model regridded to generic_1x1deg',
         'name': 'taux zonal seasonality RMSE',
         'ref': 'Using CDAT regridding and rms (uncentered and biased) calculation',
         'time_frequency': 'monthly',
         'units': '1e-3 N/m2'},
        'metric': {'datasets': "CSIRO-Mk3L-1-2_r2i2p1; ERA-Interim's tauu & Tropflux's taux; 's ",
         'method': 'The metric is the statistical value between the model and the observations',
         'name': 'SeasonalTauxLonRmse',
         'units': '1e-3 N/m2'}}},
      'name': 'Metrics Collection for ENSO performance'},
     'value': {'BiasPrLatRmse': {'diagnostic': {'CSIRO-Mk3L-1-2_r2i2p1': {'value': None,
         'value_error': None},
        'ERA-Interim': {'value': None, 'value_error': None},
        'GPCPv2.3': {'value': None, 'value_error': None}},
       'metric': {'ERA-Interim': {'value': 1.8706162829620836,
         'value_error': None},
        'GPCPv2.3': {'value': 1.1940705328335477, 'value_error': None}}},
      'BiasPrLonRmse': {'diagnostic': {'CSIRO-Mk3L-1-2_r2i2p1': {'value': None,
         'value_error': None},
        'ERA-Interim': {'value': None, 'value_error': None},
        'GPCPv2.3': {'value': None, 'value_error': None}},
       'metric': {'ERA-Interim': {'value': 1.034752408643538,
         'value_error': None},
        'GPCPv2.3': {'value': 1.1029616648015865, 'value_error': None}}},
      'BiasSstLonRmse': {'diagnostic': {'CSIRO-Mk3L-1-2_r2i2p1': {'value': None,
         'value_error': None},
        'ERA-Interim': {'value': None, 'value_error': None},
        'HadISST': {'value': None, 'value_error': None},
        'Tropflux': {'value': None, 'value_error': None}},
       'metric': {'ERA-Interim': {'value': 0.29205633893469485,
         'value_error': None},
        'HadISST': {'value': 0.44855395505777135, 'value_error': None},
        'Tropflux': {'value': 0.26589951893806374, 'value_error': None}}},
      'BiasTauxLonRmse': {'diagnostic': {'CSIRO-Mk3L-1-2_r2i2p1': {'value': None,
         'value_error': None},
        'ERA-Interim': {'value': None, 'value_error': None},
        'Tropflux': {'value': None, 'value_error': None}},
       'metric': {'ERA-Interim': {'value': 9.496521987614706,
         'value_error': None},
        'Tropflux': {'value': 9.79023163203276, 'value_error': None}}},
      'EnsoAmpl': {'diagnostic': {'CSIRO-Mk3L-1-2_r2i2p1': {'value': 0.5898655445272533,
         'value_error': 0.047379140681788744},
        'ERA-Interim': {'value': 0.8989844997845644,
         'value_error': 0.14214193002531866},
        'HadISST': {'value': 0.7665787872085695,
         'value_error': 0.06238329697691264},
        'Tropflux': {'value': 0.9039789553693535,
         'value_error': 0.14293162279134272}},
       'metric': {'ERA-Interim': {'value': 34.38534872752416,
         'value_error': 15.644882911059407},
        'HadISST': {'value': 23.052195759916902,
         'value_error': 12.442519870060252},
        'Tropflux': {'value': 34.747867633020036,
         'value_error': 15.558445420048809}}},
      'EnsoDuration': {'diagnostic': {'CSIRO-Mk3L-1-2_r2i2p1': {'value': 32.0,
         'value_error': None},
        'ERA-Interim': {'value': 13.0, 'value_error': None},
        'HadISST': {'value': 13.0, 'value_error': None},
        'Tropflux': {'value': 13.0, 'value_error': None}},
       'metric': {'ERA-Interim': {'value': 146.15384615384613,
         'value_error': None},
        'HadISST': {'value': 146.15384615384613, 'value_error': None},
        'Tropflux': {'value': 146.15384615384613, 'value_error': None}}},
      'EnsoSeasonality': {'diagnostic': {'CSIRO-Mk3L-1-2_r2i2p1': {'value': 1.3199821583964506,
         'value_error': 0.21239071187701156},
        'ERA-Interim': {'value': 2.0466846866656914,
         'value_error': 0.6513411033995022},
        'HadISST': {'value': 1.6639865947361325,
         'value_error': 0.2712772451657809},
        'Tropflux': {'value': 2.0532132553583624,
         'value_error': 0.6534187683977347}},
       'metric': {'ERA-Interim': {'value': 35.506325571484645,
         'value_error': 30.901903289898115},
        'HadISST': {'value': 20.673510076818413,
         'value_error': 25.69644670095037},
        'Tropflux': {'value': 35.71139505593809,
         'value_error': 30.803645012129895}}},
      'EnsoSstDiversity_2': {'diagnostic': {'CSIRO-Mk3L-1-2_r2i2p1': {'value': 10.0,
         'value_error': None},
        'ERA-Interim': {'value': 33.25, 'value_error': None},
        'HadISST': {'value': 49.0, 'value_error': None},
        'Tropflux': {'value': 32.0, 'value_error': None}},
       'metric': {'ERA-Interim': {'value': 69.92481203007519,
         'value_error': None},
        'HadISST': {'value': 79.59183673469387, 'value_error': None},
        'Tropflux': {'value': 68.75, 'value_error': None}}},
      'EnsoSstLonRmse': {'diagnostic': {'CSIRO-Mk3L-1-2_r2i2p1': {'value': None,
         'value_error': None},
        'ERA-Interim': {'value': None, 'value_error': None},
        'HadISST': {'value': None, 'value_error': None},
        'Tropflux': {'value': None, 'value_error': None}},
       'metric': {'ERA-Interim': {'value': 0.22527050205531124,
         'value_error': None},
        'HadISST': {'value': 0.24003137870699043, 'value_error': None},
        'Tropflux': {'value': 0.22611431570486074, 'value_error': None}}},
      'EnsoSstSkew': {'diagnostic': {'CSIRO-Mk3L-1-2_r2i2p1': {'value': 0.12433736944243842,
         'value_error': 0.009987017844105746},
        'ERA-Interim': {'value': 0.39098111106809963,
         'value_error': 0.061819541653923164},
        'HadISST': {'value': 0.38989908235027515,
         'value_error': 0.03172953733021198},
        'Tropflux': {'value': 0.39744741059612115,
         'value_error': 0.06284195338099416}},
       'metric': {'ERA-Interim': {'value': 68.19862496610946,
         'value_error': 7.582586802905246},
        'HadISST': {'value': 68.11037135739217,
         'value_error': 5.156577786111782},
        'Tropflux': {'value': 68.71601974813524,
         'value_error': 7.459221355911218}}},
      'EnsoSstTsRmse': {'diagnostic': {'CSIRO-Mk3L-1-2_r2i2p1': {'value': None,
         'value_error': None},
        'ERA-Interim': {'value': None, 'value_error': None},
        'HadISST': {'value': None, 'value_error': None},
        'Tropflux': {'value': None, 'value_error': None}},
       'metric': {'ERA-Interim': {'value': 0.3281634745011673,
         'value_error': None},
        'HadISST': {'value': 0.2906834803277875, 'value_error': None},
        'Tropflux': {'value': 0.3247030288665319, 'value_error': None}}},
      'SeasonalPrLatRmse': {'diagnostic': {'CSIRO-Mk3L-1-2_r2i2p1': {'value': None,
         'value_error': None},
        'ERA-Interim': {'value': None, 'value_error': None},
        'GPCPv2.3': {'value': None, 'value_error': None}},
       'metric': {'ERA-Interim': {'value': 0.9778369173433318,
         'value_error': None},
        'GPCPv2.3': {'value': 0.8135273199876261, 'value_error': None}}},
      'SeasonalPrLonRmse': {'diagnostic': {'CSIRO-Mk3L-1-2_r2i2p1': {'value': None,
         'value_error': None},
        'ERA-Interim': {'value': None, 'value_error': None},
        'GPCPv2.3': {'value': None, 'value_error': None}},
       'metric': {'ERA-Interim': {'value': 0.5468875177976653,
         'value_error': None},
        'GPCPv2.3': {'value': 0.5731408583207062, 'value_error': None}}},
      'SeasonalSstLonRmse': {'diagnostic': {'CSIRO-Mk3L-1-2_r2i2p1': {'value': None,
         'value_error': None},
        'ERA-Interim': {'value': None, 'value_error': None},
        'HadISST': {'value': None, 'value_error': None},
        'Tropflux': {'value': None, 'value_error': None}},
       'metric': {'ERA-Interim': {'value': 0.021562731216689075,
         'value_error': None},
        'HadISST': {'value': 0.040889370839449976, 'value_error': None},
        'Tropflux': {'value': 0.024365213653017942, 'value_error': None}}},
      'SeasonalTauxLonRmse': {'diagnostic': {'CSIRO-Mk3L-1-2_r2i2p1': {'value': None,
         'value_error': None},
        'ERA-Interim': {'value': None, 'value_error': None},
        'Tropflux': {'value': None, 'value_error': None}},
       'metric': {'ERA-Interim': {'value': 8.55718019022319,
         'value_error': None},
        'Tropflux': {'value': 8.451895760860834, 'value_error': None}}}}},
    'r3i2p1': {'metadata': {'description_of_the_collection': 'Describe which science question this collection is about',
      'metrics': {'BiasPrLatRmse': {'diagnostic': {'CSIRO-Mk3L-1-2_r3i2p1': {'keyerror': None,
          'name': 'CSIRO-Mk3L-1-2_r3i2p1',
          'nyears': 155,
          'time_period': ['1851-1-16 12:0:0.0', '2005-12-16 12:0:0.0']},
         'ERA-Interim': {'name': 'ERA-Interim',
          'nyears': 40,
          'time_period': ['1979-1-16 12:0:0.0', '2019-3-16 12:0:0.0']},
         'GPCPv2.3': {'name': 'GPCPv2.3',
          'nyears': 41,
          'time_period': ['1979-1-1 0:0:0.0', '2019-7-1 0:0:0.0']},
         'method': 'Meridional root mean square error of nino3_LatExt pr, time series are linearly detrended, observations and model regridded to generic_1x1deg',
         'name': 'pr Meridional RMSE',
         'ref': 'Using CDAT regridding and rms (uncentered and biased) calculation',
         'time_frequency': 'monthly',
         'units': 'mm/day'},
        'metric': {'datasets': "CSIRO-Mk3L-1-2_r3i2p1; ERA-Interim's pr & GPCPv2.3's precip; 's ",
         'method': 'The metric is the statistical value between the model and the observations',
         'name': 'BiasPrLatRmse',
         'units': 'mm/day'}},
       'BiasPrLonRmse': {'diagnostic': {'CSIRO-Mk3L-1-2_r3i2p1': {'keyerror': None,
          'name': 'CSIRO-Mk3L-1-2_r3i2p1',
          'nyears': 155,
          'time_period': ['1851-1-16 12:0:0.0', '2005-12-16 12:0:0.0']},
         'ERA-Interim': {'name': 'ERA-Interim',
          'nyears': 40,
          'time_period': ['1979-1-16 12:0:0.0', '2019-3-16 12:0:0.0']},
         'GPCPv2.3': {'name': 'GPCPv2.3',
          'nyears': 41,
          'time_period': ['1979-1-1 0:0:0.0', '2019-7-1 0:0:0.0']},
         'method': 'Zonal root mean square error of equatorial_pacific pr, time series are linearly detrended, observations and model regridded to generic_1x1deg',
         'name': 'pr Zonal RMSE',
         'ref': 'Using CDAT regridding and rms (uncentered and biased) calculation',
         'time_frequency': 'monthly',
         'units': 'mm/day'},
        'metric': {'datasets': "CSIRO-Mk3L-1-2_r3i2p1; ERA-Interim's pr & GPCPv2.3's precip; 's ",
         'method': 'The metric is the statistical value between the model and the observations',
         'name': 'BiasPrLonRmse',
         'units': 'mm/day'}},
       'BiasSstLonRmse': {'diagnostic': {'CSIRO-Mk3L-1-2_r3i2p1': {'keyerror': None,
          'name': 'CSIRO-Mk3L-1-2_r3i2p1',
          'nyears': 155,
          'time_period': ['1851-1-16 12:0:0.0', '2005-12-16 12:0:0.0']},
         'ERA-Interim': {'name': 'ERA-Interim',
          'nyears': 40,
          'time_period': ['1979-1-16 12:0:0.0', '2019-3-16 12:0:0.0']},
         'HadISST': {'name': 'HadISST',
          'nyears': 151,
          'time_period': ['1870-1-16 11:59:59.5', '2020-10-16 12:0:0.0']},
         'Tropflux': {'name': 'Tropflux',
          'nyears': 40,
          'time_period': ['1979-1-15 0:0:0.0', '2018-12-15 12:0:0.0']},
         'method': 'Zonal root mean square error of equatorial_pacific sst, time series are linearly detrended, observations and model regridded to generic_1x1deg',
         'name': 'sst Zonal RMSE',
         'ref': 'Using CDAT regridding and rms (uncentered and biased) calculation',
         'time_frequency': 'monthly',
         'units': 'C'},
        'metric': {'datasets': "CSIRO-Mk3L-1-2_r3i2p1; ERA-Interim's ts & HadISST's sst & Tropflux's sst; 's ",
         'method': 'The metric is the statistical value between the model and the observations',
         'name': 'BiasSstLonRmse',
         'units': 'C'}},
       'BiasTauxLonRmse': {'diagnostic': {'CSIRO-Mk3L-1-2_r3i2p1': {'keyerror': None,
          'name': 'CSIRO-Mk3L-1-2_r3i2p1',
          'nyears': 155,
          'time_period': ['1851-1-16 12:0:0.0', '2005-12-16 12:0:0.0']},
         'ERA-Interim': {'name': 'ERA-Interim',
          'nyears': 40,
          'time_period': ['1979-1-16 12:0:0.0', '2019-3-16 12:0:0.0']},
         'Tropflux': {'name': 'Tropflux',
          'nyears': 40,
          'time_period': ['1979-1-15 0:0:0.0', '2018-12-15 12:0:0.0']},
         'method': 'Zonal root mean square error of equatorial_pacific taux, time series are linearly detrended, observations and model regridded to generic_1x1deg',
         'name': 'taux Zonal RMSE',
         'ref': 'Using CDAT regridding and rms (uncentered and biased) calculation',
         'time_frequency': 'monthly',
         'units': '1e-3 N/m2'},
        'metric': {'datasets': "CSIRO-Mk3L-1-2_r3i2p1; ERA-Interim's tauu & Tropflux's taux; 's ",
         'method': 'The metric is the statistical value between the model and the observations',
         'name': 'BiasTauxLonRmse',
         'units': '1e-3 N/m2'}},
       'EnsoAmpl': {'diagnostic': {'CSIRO-Mk3L-1-2_r3i2p1': {'keyerror': None,
          'name': 'CSIRO-Mk3L-1-2_r3i2p1',
          'nyears': 155,
          'time_period': ['1851-1-16 12:0:0.0', '2005-12-16 12:0:0.0']},
         'ERA-Interim': {'keyerror': None,
          'name': 'ERA-Interim',
          'nyears': 40,
          'time_period': ['1979-1-16 12:0:0.0', '2019-3-16 12:0:0.0']},
         'HadISST': {'keyerror': None,
          'name': 'HadISST',
          'nyears': 151,
          'time_period': ['1870-1-16 11:59:59.5', '2020-10-16 12:0:0.0']},
         'Tropflux': {'keyerror': None,
          'name': 'Tropflux',
          'nyears': 40,
          'time_period': ['1979-1-15 0:0:0.0', '2018-12-15 12:0:0.0']},
         'method': 'Standard deviation of nino3.4 sstA, time series are linearly detrended',
         'name': 'ENSO amplitude',
         'ref': 'Using CDAT regression calculation',
         'time_frequency': 'monthly',
         'units': 'C'},
        'metric': {'datasets': "CSIRO-Mk3L-1-2_r3i2p1; ERA-Interim's ts & HadISST's sst & Tropflux's sst; 's ",
         'method': 'The metric is the absolute value of the relative difference between model and observations values (M = 100 * abs[[model-obs] / obs])',
         'name': 'EnsoAmpl',
         'units': '%'}},
       'EnsoDuration': {'diagnostic': {'CSIRO-Mk3L-1-2_r3i2p1': {'keyerror': None,
          'name': 'CSIRO-Mk3L-1-2_r3i2p1',
          'nyears': 155,
          'time_period': ['1851-1-16 12:0:0.0', '2005-12-16 12:0:0.0']},
         'ERA-Interim': {'keyerror': None,
          'name': 'ERA-Interim',
          'nyears': 40,
          'time_period': ['1979-1-16 12:0:0.0', '2019-3-16 12:0:0.0']},
         'HadISST': {'keyerror': None,
          'name': 'HadISST',
          'nyears': 151,
          'time_period': ['1870-1-16 11:59:59.5', '2020-10-16 12:0:0.0']},
         'Tropflux': {'keyerror': None,
          'name': 'Tropflux',
          'nyears': 40,
          'time_period': ['1979-1-15 0:0:0.0', '2018-12-15 12:0:0.0']},
         'method': 'nino3.4 SSTA during DEC regressed against nino3.4 SSTA during 6 years (centered on ENSO), the duration is the number of consecutive months during which the regression is above 0.25, time series are linearly detrended, smoothing using a triangle shaped window of 5 points',
         'name': 'ENSO Duration based on life cyle SSTA pattern',
         'ref': 'Using CDAT',
         'time_frequency': 'monthly',
         'units': 'months'},
        'metric': {'datasets': "CSIRO-Mk3L-1-2_r3i2p1; ERA-Interim's ts & HadISST's sst & Tropflux's sst; 's ",
         'method': 'The metric is the absolute value of the relative difference between model and observations values (M = 100 * abs[[model-obs] / obs])',
         'name': 'EnsoDuration',
         'units': '%'}},
       'EnsoSeasonality': {'diagnostic': {'CSIRO-Mk3L-1-2_r3i2p1': {'keyerror': None,
          'name': 'CSIRO-Mk3L-1-2_r3i2p1',
          'nyears': 155,
          'time_period': ['1851-1-16 12:0:0.0', '2005-12-16 12:0:0.0']},
         'ERA-Interim': {'keyerror': None,
          'name': 'ERA-Interim',
          'nyears': 40,
          'time_period': ['1979-1-16 12:0:0.0', '2019-3-16 12:0:0.0']},
         'HadISST': {'keyerror': None,
          'name': 'HadISST',
          'nyears': 151,
          'time_period': ['1870-1-16 11:59:59.5', '2020-10-16 12:0:0.0']},
         'Tropflux': {'keyerror': None,
          'name': 'Tropflux',
          'nyears': 40,
          'time_period': ['1979-1-15 0:0:0.0', '2018-12-15 12:0:0.0']},
         'method': 'Ratio between NDJ and MAM standard deviation nino3.4 sstA, time series are linearly detrended',
         'name': 'ENSO seasonality',
         'ref': 'Using CDAT std dev calculation',
         'time_frequency': 'monthly',
         'units': 'C/C'},
        'metric': {'datasets': "CSIRO-Mk3L-1-2_r3i2p1; ERA-Interim's ts & HadISST's sst & Tropflux's sst; 's ",
         'method': 'The metric is the absolute value of the relative difference between model and observations values (M = 100 * abs[[model-obs] / obs])',
         'name': 'EnsoSeasonality',
         'units': '%'}},
       'EnsoSstDiversity_2': {'diagnostic': {'CSIRO-Mk3L-1-2_r3i2p1': {'keyerror': None,
          'name': 'CSIRO-Mk3L-1-2_r3i2p1',
          'nyears': 155,
          'time_period': ['1851-1-16 12:0:0.0', '2005-12-16 12:0:0.0']},
         'ERA-Interim': {'keyerror': None,
          'name': 'ERA-Interim',
          'nyears': 40,
          'time_period': ['1979-1-16 12:0:0.0', '2019-3-16 12:0:0.0']},
         'HadISST': {'keyerror': None,
          'name': 'HadISST',
          'nyears': 151,
          'time_period': ['1870-1-16 11:59:59.5', '2020-10-16 12:0:0.0']},
         'Tropflux': {'keyerror': None,
          'name': 'Tropflux',
          'nyears': 40,
          'time_period': ['1979-1-15 0:0:0.0', '2018-12-15 12:0:0.0']},
         'method': 'Nino (Nina) events = nino3.4 sstA > 0.75 (< -0.75) during DEC, zonal SSTA (meridional averaged [-5.0 ; 5.0]), the zonal SSTA maximum (minimum) is located for each event, the diversity is the interquartile range (IQR = Q3 - Q1), time series are linearly detrended, smoothing using a triangle shaped window of 5 points',
         'name': 'ENSO Diversity (interquartile range)',
         'ref': 'Using CDAT regridding',
         'time_frequency': 'monthly',
         'units': 'long'},
        'metric': {'datasets': "CSIRO-Mk3L-1-2_r3i2p1; ERA-Interim's ts & HadISST's sst & Tropflux's sst; 's ",
         'method': 'The metric is the absolute value of the relative difference between model and observations values (M = 100 * abs[[model-obs] / obs])',
         'name': 'EnsoSstDiversity',
         'units': '%'}},
       'EnsoSstLonRmse': {'diagnostic': {'CSIRO-Mk3L-1-2_r3i2p1': {'keyerror': None,
          'name': 'CSIRO-Mk3L-1-2_r3i2p1',
          'nyears': 155,
          'time_period': ['1851-1-16 12:0:0.0', '2005-12-16 12:0:0.0']},
         'ERA-Interim': {'name': 'ERA-Interim',
          'nyears': 40,
          'time_period': ['1979-1-16 12:0:0.0', '2019-3-16 12:0:0.0']},
         'HadISST': {'name': 'HadISST',
          'nyears': 151,
          'time_period': ['1870-1-16 11:59:59.5', '2020-10-16 12:0:0.0']},
         'Tropflux': {'name': 'Tropflux',
          'nyears': 40,
          'time_period': ['1979-1-15 0:0:0.0', '2018-12-15 12:0:0.0']},
         'method': 'nino3.4 SSTA during DEC regressed against equatorial_pacific SSTA, time series are linearly detrended, smoothing using a triangle shaped window of 5 points, observations and model regridded to generic_1x1deg',
         'name': 'ENSO Zonal SSTA pattern',
         'ref': 'Using CDAT regridding and rms (uncentered and biased) calculation',
         'time_frequency': 'monthly',
         'units': 'C/C'},
        'metric': {'datasets': "CSIRO-Mk3L-1-2_r3i2p1; ERA-Interim's ts & HadISST's sst & Tropflux's sst; 's ",
         'method': 'The metric is the statistical value between the model and the observations',
         'name': 'EnsoSstLonRmse',
         'units': 'C/C'}},
       'EnsoSstSkew': {'diagnostic': {'CSIRO-Mk3L-1-2_r3i2p1': {'keyerror': None,
          'name': 'CSIRO-Mk3L-1-2_r3i2p1',
          'nyears': 155,
          'time_period': ['1851-1-16 12:0:0.0', '2005-12-16 12:0:0.0']},
         'ERA-Interim': {'keyerror': None,
          'name': 'ERA-Interim',
          'nyears': 40,
          'time_period': ['1979-1-16 12:0:0.0', '2019-3-16 12:0:0.0']},
         'HadISST': {'keyerror': None,
          'name': 'HadISST',
          'nyears': 151,
          'time_period': ['1870-1-16 11:59:59.5', '2020-10-16 12:0:0.0']},
         'Tropflux': {'keyerror': None,
          'name': 'Tropflux',
          'nyears': 40,
          'time_period': ['1979-1-15 0:0:0.0', '2018-12-15 12:0:0.0']},
         'method': 'Standard deviation of nino3.4 sstA, time series are linearly detrended',
         'name': 'ENSO skewness',
         'ref': 'Using CDAT regression calculation',
         'time_frequency': 'monthly',
         'units': 'C'},
        'metric': {'datasets': "CSIRO-Mk3L-1-2_r3i2p1; ERA-Interim's ts & HadISST's sst & Tropflux's sst; 's ",
         'method': 'The metric is the absolute value of the relative difference between model and observations values (M = 100 * abs[[model-obs] / obs])',
         'name': 'EnsoSstSkew',
         'units': '%'}},
       'EnsoSstTsRmse': {'diagnostic': {'CSIRO-Mk3L-1-2_r3i2p1': {'keyerror': None,
          'name': 'CSIRO-Mk3L-1-2_r3i2p1',
          'nyears': 155,
          'time_period': ['1851-1-16 12:0:0.0', '2005-12-16 12:0:0.0']},
         'ERA-Interim': {'name': 'ERA-Interim',
          'nyears': 40,
          'time_period': ['1979-1-16 12:0:0.0', '2019-3-16 12:0:0.0']},
         'HadISST': {'name': 'HadISST',
          'nyears': 151,
          'time_period': ['1870-1-16 11:59:59.5', '2020-10-16 12:0:0.0']},
         'Tropflux': {'name': 'Tropflux',
          'nyears': 40,
          'time_period': ['1979-1-15 0:0:0.0', '2018-12-15 12:0:0.0']},
         'method': 'nino3.4 SSTA during DEC regressed against nino3.4 SSTA during 6 years (centered on ENSO), time series are linearly detrended, smoothing using a triangle shaped window of 5 points',
         'name': 'ENSO life cyle SSTA pattern',
         'ref': 'Using CDAT regridding and rms (uncentered and biased) calculation',
         'time_frequency': 'monthly',
         'units': 'C/C'},
        'metric': {'datasets': "CSIRO-Mk3L-1-2_r3i2p1; ERA-Interim's ts & HadISST's sst & Tropflux's sst; 's ",
         'method': 'The metric is the statistical value between the model and the observations',
         'name': 'EnsoSstTsRmse',
         'units': 'C/C'}},
       'SeasonalPrLatRmse': {'diagnostic': {'CSIRO-Mk3L-1-2_r3i2p1': {'keyerror': None,
          'name': 'CSIRO-Mk3L-1-2_r3i2p1',
          'nyears': 155,
          'time_period': ['1851-1-16 12:0:0.0', '2005-12-16 12:0:0.0']},
         'ERA-Interim': {'name': 'ERA-Interim',
          'nyears': 40,
          'time_period': ['1979-1-16 12:0:0.0', '2019-3-16 12:0:0.0']},
         'GPCPv2.3': {'name': 'GPCPv2.3',
          'nyears': 41,
          'time_period': ['1979-1-1 0:0:0.0', '2019-7-1 0:0:0.0']},
         'method': 'Meridional root mean square error of nino3_LatExt climatological pr STD, time series are linearly detrended, observations and model regridded to generic_1x1deg',
         'name': 'pr meridional seasonality RMSE',
         'ref': 'Using CDAT regridding and rms (uncentered and biased) calculation',
         'time_frequency': 'monthly',
         'units': 'mm/day'},
        'metric': {'datasets': "CSIRO-Mk3L-1-2_r3i2p1; ERA-Interim's pr & GPCPv2.3's precip; 's ",
         'method': 'The metric is the statistical value between the model and the observations',
         'name': 'SeasonalPrLatRmse',
         'units': 'mm/day'}},
       'SeasonalPrLonRmse': {'diagnostic': {'CSIRO-Mk3L-1-2_r3i2p1': {'keyerror': None,
          'name': 'CSIRO-Mk3L-1-2_r3i2p1',
          'nyears': 155,
          'time_period': ['1851-1-16 12:0:0.0', '2005-12-16 12:0:0.0']},
         'ERA-Interim': {'name': 'ERA-Interim',
          'nyears': 40,
          'time_period': ['1979-1-16 12:0:0.0', '2019-3-16 12:0:0.0']},
         'GPCPv2.3': {'name': 'GPCPv2.3',
          'nyears': 41,
          'time_period': ['1979-1-1 0:0:0.0', '2019-7-1 0:0:0.0']},
         'method': 'Zonal root mean square error of equatorial_pacific climatological pr STD, time series are linearly detrended, observations and model regridded to generic_1x1deg',
         'name': 'pr zonal seasonality RMSE',
         'ref': 'Using CDAT regridding and rms (uncentered and biased) calculation',
         'time_frequency': 'monthly',
         'units': 'mm/day'},
        'metric': {'datasets': "CSIRO-Mk3L-1-2_r3i2p1; ERA-Interim's pr & GPCPv2.3's precip; 's ",
         'method': 'The metric is the statistical value between the model and the observations',
         'name': 'SeasonalPrLonRmse',
         'units': 'mm/day'}},
       'SeasonalSstLonRmse': {'diagnostic': {'CSIRO-Mk3L-1-2_r3i2p1': {'keyerror': None,
          'name': 'CSIRO-Mk3L-1-2_r3i2p1',
          'nyears': 155,
          'time_period': ['1851-1-16 12:0:0.0', '2005-12-16 12:0:0.0']},
         'ERA-Interim': {'name': 'ERA-Interim',
          'nyears': 40,
          'time_period': ['1979-1-16 12:0:0.0', '2019-3-16 12:0:0.0']},
         'HadISST': {'name': 'HadISST',
          'nyears': 151,
          'time_period': ['1870-1-16 11:59:59.5', '2020-10-16 12:0:0.0']},
         'Tropflux': {'name': 'Tropflux',
          'nyears': 40,
          'time_period': ['1979-1-15 0:0:0.0', '2018-12-15 12:0:0.0']},
         'method': 'Zonal root mean square error of equatorial_pacific climatological sst STD, time series are linearly detrended, observations and model regridded to generic_1x1deg',
         'name': 'sst zonal seasonality RMSE',
         'ref': 'Using CDAT regridding and rms (uncentered and biased) calculation',
         'time_frequency': 'monthly',
         'units': 'C'},
        'metric': {'datasets': "CSIRO-Mk3L-1-2_r3i2p1; ERA-Interim's ts & HadISST's sst & Tropflux's sst; 's ",
         'method': 'The metric is the statistical value between the model and the observations',
         'name': 'SeasonalSstLonRmse',
         'units': 'C'}},
       'SeasonalTauxLonRmse': {'diagnostic': {'CSIRO-Mk3L-1-2_r3i2p1': {'keyerror': None,
          'name': 'CSIRO-Mk3L-1-2_r3i2p1',
          'nyears': 155,
          'time_period': ['1851-1-16 12:0:0.0', '2005-12-16 12:0:0.0']},
         'ERA-Interim': {'name': 'ERA-Interim',
          'nyears': 40,
          'time_period': ['1979-1-16 12:0:0.0', '2019-3-16 12:0:0.0']},
         'Tropflux': {'name': 'Tropflux',
          'nyears': 40,
          'time_period': ['1979-1-15 0:0:0.0', '2018-12-15 12:0:0.0']},
         'method': 'Zonal root mean square error of equatorial_pacific climatological taux STD, time series are linearly detrended, observations and model regridded to generic_1x1deg',
         'name': 'taux zonal seasonality RMSE',
         'ref': 'Using CDAT regridding and rms (uncentered and biased) calculation',
         'time_frequency': 'monthly',
         'units': '1e-3 N/m2'},
        'metric': {'datasets': "CSIRO-Mk3L-1-2_r3i2p1; ERA-Interim's tauu & Tropflux's taux; 's ",
         'method': 'The metric is the statistical value between the model and the observations',
         'name': 'SeasonalTauxLonRmse',
         'units': '1e-3 N/m2'}}},
      'name': 'Metrics Collection for ENSO performance'},
     'value': {'BiasPrLatRmse': {'diagnostic': {'CSIRO-Mk3L-1-2_r3i2p1': {'value': None,
         'value_error': None},
        'ERA-Interim': {'value': None, 'value_error': None},
        'GPCPv2.3': {'value': None, 'value_error': None}},
       'metric': {'ERA-Interim': {'value': 1.8316728374804088,
         'value_error': None},
        'GPCPv2.3': {'value': 1.1575326817445193, 'value_error': None}}},
      'BiasPrLonRmse': {'diagnostic': {'CSIRO-Mk3L-1-2_r3i2p1': {'value': None,
         'value_error': None},
        'ERA-Interim': {'value': None, 'value_error': None},
        'GPCPv2.3': {'value': None, 'value_error': None}},
       'metric': {'ERA-Interim': {'value': 0.9705009597503037,
         'value_error': None},
        'GPCPv2.3': {'value': 1.0390693416825574, 'value_error': None}}},
      'BiasSstLonRmse': {'diagnostic': {'CSIRO-Mk3L-1-2_r3i2p1': {'value': None,
         'value_error': None},
        'ERA-Interim': {'value': None, 'value_error': None},
        'HadISST': {'value': None, 'value_error': None},
        'Tropflux': {'value': None, 'value_error': None}},
       'metric': {'ERA-Interim': {'value': 0.2626717239976234,
         'value_error': None},
        'HadISST': {'value': 0.4231823487429132, 'value_error': None},
        'Tropflux': {'value': 0.23882743478348778, 'value_error': None}}},
      'BiasTauxLonRmse': {'diagnostic': {'CSIRO-Mk3L-1-2_r3i2p1': {'value': None,
         'value_error': None},
        'ERA-Interim': {'value': None, 'value_error': None},
        'Tropflux': {'value': None, 'value_error': None}},
       'metric': {'ERA-Interim': {'value': 8.970222653761656,
         'value_error': None},
        'Tropflux': {'value': 9.277526097621173, 'value_error': None}}},
      'EnsoAmpl': {'diagnostic': {'CSIRO-Mk3L-1-2_r3i2p1': {'value': 0.5672316225687443,
         'value_error': 0.04556114032119423},
        'ERA-Interim': {'value': 0.8989844997845644,
         'value_error': 0.14214193002531866},
        'HadISST': {'value': 0.7665787872085695,
         'value_error': 0.06238329697691264},
        'Tropflux': {'value': 0.9039789553693535,
         'value_error': 0.14293162279134272}},
       'metric': {'ERA-Interim': {'value': 36.90306977432008,
         'value_error': 15.044568039061376},
        'HadISST': {'value': 26.004784891808807,
         'value_error': 11.96508390805327},
        'Tropflux': {'value': 37.25167834941676,
         'value_error': 14.961447269028922}}},
      'EnsoDuration': {'diagnostic': {'CSIRO-Mk3L-1-2_r3i2p1': {'value': 32.0,
         'value_error': None},
        'ERA-Interim': {'value': 13.0, 'value_error': None},
        'HadISST': {'value': 13.0, 'value_error': None},
        'Tropflux': {'value': 13.0, 'value_error': None}},
       'metric': {'ERA-Interim': {'value': 146.15384615384613,
         'value_error': None},
        'HadISST': {'value': 146.15384615384613, 'value_error': None},
        'Tropflux': {'value': 146.15384615384613, 'value_error': None}}},
      'EnsoSeasonality': {'diagnostic': {'CSIRO-Mk3L-1-2_r3i2p1': {'value': 1.3495971295821165,
         'value_error': 0.21715588599116928},
        'ERA-Interim': {'value': 2.0466846866656914,
         'value_error': 0.6513411033995022},
        'HadISST': {'value': 1.6639865947361325,
         'value_error': 0.2712772451657809},
        'Tropflux': {'value': 2.0532132553583624,
         'value_error': 0.6534187683977347}},
       'metric': {'ERA-Interim': {'value': 34.05935274862581,
         'value_error': 31.595214915128206},
        'HadISST': {'value': 18.89374987446161,
         'value_error': 26.27296928785195},
        'Tropflux': {'value': 34.26902314895871,
         'value_error': 31.494752125695687}}},
      'EnsoSstDiversity_2': {'diagnostic': {'CSIRO-Mk3L-1-2_r3i2p1': {'value': 10.0,
         'value_error': None},
        'ERA-Interim': {'value': 33.25, 'value_error': None},
        'HadISST': {'value': 49.0, 'value_error': None},
        'Tropflux': {'value': 32.0, 'value_error': None}},
       'metric': {'ERA-Interim': {'value': 69.92481203007519,
         'value_error': None},
        'HadISST': {'value': 79.59183673469387, 'value_error': None},
        'Tropflux': {'value': 68.75, 'value_error': None}}},
      'EnsoSstLonRmse': {'diagnostic': {'CSIRO-Mk3L-1-2_r3i2p1': {'value': None,
         'value_error': None},
        'ERA-Interim': {'value': None, 'value_error': None},
        'HadISST': {'value': None, 'value_error': None},
        'Tropflux': {'value': None, 'value_error': None}},
       'metric': {'ERA-Interim': {'value': 0.22781759454481432,
         'value_error': None},
        'HadISST': {'value': 0.24660934533360693, 'value_error': None},
        'Tropflux': {'value': 0.22900866802339997, 'value_error': None}}},
      'EnsoSstSkew': {'diagnostic': {'CSIRO-Mk3L-1-2_r3i2p1': {'value': 0.4087390967219699,
         'value_error': 0.03283071429652342},
        'ERA-Interim': {'value': 0.39098111106809963,
         'value_error': 0.061819541653923164},
        'HadISST': {'value': 0.38989908235027515,
         'value_error': 0.03172953733021198},
        'Tropflux': {'value': 0.39744741059612115,
         'value_error': 0.06284195338099416}},
       'metric': {'ERA-Interim': {'value': 4.541903726591346,
         'value_error': 24.926534110649897},
        'HadISST': {'value': 4.832023265643229,
         'value_error': 16.951419801813124},
        'Tropflux': {'value': 2.841051627160593,
         'value_error': 24.520990052599164}}},
      'EnsoSstTsRmse': {'diagnostic': {'CSIRO-Mk3L-1-2_r3i2p1': {'value': None,
         'value_error': None},
        'ERA-Interim': {'value': None, 'value_error': None},
        'HadISST': {'value': None, 'value_error': None},
        'Tropflux': {'value': None, 'value_error': None}},
       'metric': {'ERA-Interim': {'value': 0.33366584159753093,
         'value_error': None},
        'HadISST': {'value': 0.2963451056436713, 'value_error': None},
        'Tropflux': {'value': 0.33063886140530324, 'value_error': None}}},
      'SeasonalPrLatRmse': {'diagnostic': {'CSIRO-Mk3L-1-2_r3i2p1': {'value': None,
         'value_error': None},
        'ERA-Interim': {'value': None, 'value_error': None},
        'GPCPv2.3': {'value': None, 'value_error': None}},
       'metric': {'ERA-Interim': {'value': 0.9502656596250146,
         'value_error': None},
        'GPCPv2.3': {'value': 0.8069896094855523, 'value_error': None}}},
      'SeasonalPrLonRmse': {'diagnostic': {'CSIRO-Mk3L-1-2_r3i2p1': {'value': None,
         'value_error': None},
        'ERA-Interim': {'value': None, 'value_error': None},
        'GPCPv2.3': {'value': None, 'value_error': None}},
       'metric': {'ERA-Interim': {'value': 0.531674386160794,
         'value_error': None},
        'GPCPv2.3': {'value': 0.6131984869072207, 'value_error': None}}},
      'SeasonalSstLonRmse': {'diagnostic': {'CSIRO-Mk3L-1-2_r3i2p1': {'value': None,
         'value_error': None},
        'ERA-Interim': {'value': None, 'value_error': None},
        'HadISST': {'value': None, 'value_error': None},
        'Tropflux': {'value': None, 'value_error': None}},
       'metric': {'ERA-Interim': {'value': 0.026182393608958538,
         'value_error': None},
        'HadISST': {'value': 0.05100282651686244, 'value_error': None},
        'Tropflux': {'value': 0.02084600001948026, 'value_error': None}}},
      'SeasonalTauxLonRmse': {'diagnostic': {'CSIRO-Mk3L-1-2_r3i2p1': {'value': None,
         'value_error': None},
        'ERA-Interim': {'value': None, 'value_error': None},
        'Tropflux': {'value': None, 'value_error': None}},
       'metric': {'ERA-Interim': {'value': 8.958583803246196,
         'value_error': None},
        'Tropflux': {'value': 8.84985009083633, 'value_error': None}}}}}},
   'CanCM4': {'r10i1p1': {'metadata': {'description_of_the_collection': 'Describe which science question this collection is about',
      'metrics': {'BiasPrLatRmse': {'diagnostic': {'CanCM4_r10i1p1': {'keyerror': None,
          'name': 'CanCM4_r10i1p1',
          'nyears': 45,
          'time_period': ['1961-1-16 12:0:0.0', '2005-12-16 12:0:0.0']},
         'ERA-Interim': {'name': 'ERA-Interim',
          'nyears': 40,
          'time_period': ['1979-1-16 12:0:0.0', '2019-3-16 12:0:0.0']},
         'GPCPv2.3': {'name': 'GPCPv2.3',
          'nyears': 41,
          'time_period': ['1979-1-1 0:0:0.0', '2019-7-1 0:0:0.0']},
         'method': 'Meridional root mean square error of nino3_LatExt pr, time series are linearly detrended, observations and model regridded to generic_1x1deg',
         'name': 'pr Meridional RMSE',
         'ref': 'Using CDAT regridding and rms (uncentered and biased) calculation',
         'time_frequency': 'monthly',
         'units': 'mm/day'},
        'metric': {'datasets': "CanCM4_r10i1p1; ERA-Interim's pr & GPCPv2.3's precip; 's ",
         'method': 'The metric is the statistical value between the model and the observations',
         'name': 'BiasPrLatRmse',
         'units': 'mm/day'}},
       'BiasPrLonRmse': {'diagnostic': {'CanCM4_r10i1p1': {'keyerror': None,
          'name': 'CanCM4_r10i1p1',
          'nyears': 45,
          'time_period': ['1961-1-16 12:0:0.0', '2005-12-16 12:0:0.0']},
         'ERA-Interim': {'name': 'ERA-Interim',
          'nyears': 40,
          'time_period': ['1979-1-16 12:0:0.0', '2019-3-16 12:0:0.0']},
         'GPCPv2.3': {'name': 'GPCPv2.3',
          'nyears': 41,
          'time_period': ['1979-1-1 0:0:0.0', '2019-7-1 0:0:0.0']},
         'method': 'Zonal root mean square error of equatorial_pacific pr, time series are linearly detrended, observations and model regridded to generic_1x1deg',
         'name': 'pr Zonal RMSE',
         'ref': 'Using CDAT regridding and rms (uncentered and biased) calculation',
         'time_frequency': 'monthly',
         'units': 'mm/day'},
        'metric': {'datasets': "CanCM4_r10i1p1; ERA-Interim's pr & GPCPv2.3's precip; 's ",
         'method': 'The metric is the statistical value between the model and the observations',
         'name': 'BiasPrLonRmse',
         'units': 'mm/day'}},
       'BiasSstLonRmse': {'diagnostic': {'CanCM4_r10i1p1': {'keyerror': None,
          'name': 'CanCM4_r10i1p1',
          'nyears': 45,
          'time_period': ['1961-1-16 12:0:0.0', '2005-12-16 12:0:0.0']},
         'ERA-Interim': {'name': 'ERA-Interim',
          'nyears': 40,
          'time_period': ['1979-1-16 12:0:0.0', '2019-3-16 12:0:0.0']},
         'HadISST': {'name': 'HadISST',
          'nyears': 151,
          'time_period': ['1870-1-16 11:59:59.5', '2020-10-16 12:0:0.0']},
         'Tropflux': {'name': 'Tropflux',
          'nyears': 40,
          'time_period': ['1979-1-15 0:0:0.0', '2018-12-15 12:0:0.0']},
         'method': 'Zonal root mean square error of equatorial_pacific sst, time series are linearly detrended, observations and model regridded to generic_1x1deg',
         'name': 'sst Zonal RMSE',
         'ref': 'Using CDAT regridding and rms (uncentered and biased) calculation',
         'time_frequency': 'monthly',
         'units': 'C'},
        'metric': {'datasets': "CanCM4_r10i1p1; ERA-Interim's ts & HadISST's sst & Tropflux's sst; 's ",
         'method': 'The metric is the statistical value between the model and the observations',
         'name': 'BiasSstLonRmse',
         'units': 'C'}},
       'BiasTauxLonRmse': {'diagnostic': {'CanCM4_r10i1p1': {'keyerror': None,
          'name': 'CanCM4_r10i1p1',
          'nyears': 45,
          'time_period': ['1961-1-16 12:0:0.0', '2005-12-16 12:0:0.0']},
         'ERA-Interim': {'name': 'ERA-Interim',
          'nyears': 40,
          'time_period': ['1979-1-16 12:0:0.0', '2019-3-16 12:0:0.0']},
         'Tropflux': {'name': 'Tropflux',
          'nyears': 40,
          'time_period': ['1979-1-15 0:0:0.0', '2018-12-15 12:0:0.0']},
         'method': 'Zonal root mean square error of equatorial_pacific taux, time series are linearly detrended, observations and model regridded to generic_1x1deg',
         'name': 'taux Zonal RMSE',
         'ref': 'Using CDAT regridding and rms (uncentered and biased) calculation',
         'time_frequency': 'monthly',
         'units': '1e-3 N/m2'},
        'metric': {'datasets': "CanCM4_r10i1p1; ERA-Interim's tauu & Tropflux's taux; 's ",
         'method': 'The metric is the statistical value between the model and the observations',
         'name': 'BiasTauxLonRmse',
         'units': '1e-3 N/m2'}},
       'EnsoAmpl': {'diagnostic': {'CanCM4_r10i1p1': {'keyerror': None,
          'name': 'CanCM4_r10i1p1',
          'nyears': 45,
          'time_period': ['1961-1-16 12:0:0.0', '2005-12-16 12:0:0.0']},
         'ERA-Interim': {'keyerror': None,
          'name': 'ERA-Interim',
          'nyears': 40,
          'time_period': ['1979-1-16 12:0:0.0', '2019-3-16 12:0:0.0']},
         'HadISST': {'keyerror': None,
          'name': 'HadISST',
          'nyears': 151,
          'time_period': ['1870-1-16 11:59:59.5', '2020-10-16 12:0:0.0']},
         'Tropflux': {'keyerror': None,
          'name': 'Tropflux',
          'nyears': 40,
          'time_period': ['1979-1-15 0:0:0.0', '2018-12-15 12:0:0.0']},
         'method': 'Standard deviation of nino3.4 sstA, time series are linearly detrended',
         'name': 'ENSO amplitude',
         'ref': 'Using CDAT regression calculation',
         'time_frequency': 'monthly',
         'units': 'C'},
        'metric': {'datasets': "CanCM4_r10i1p1; ERA-Interim's ts & HadISST's sst & Tropflux's sst; 's ",
         'method': 'The metric is the absolute value of the relative difference between model and observations values (M = 100 * abs[[model-obs] / obs])',
         'name': 'EnsoAmpl',
         'units': '%'}},
       'EnsoDuration': {'diagnostic': {'CanCM4_r10i1p1': {'keyerror': None,
          'name': 'CanCM4_r10i1p1',
          'nyears': 45,
          'time_period': ['1961-1-16 12:0:0.0', '2005-12-16 12:0:0.0']},
         'ERA-Interim': {'keyerror': None,
          'name': 'ERA-Interim',
          'nyears': 40,
          'time_period': ['1979-1-16 12:0:0.0', '2019-3-16 12:0:0.0']},
         'HadISST': {'keyerror': None,
          'name': 'HadISST',
          'nyears': 151,
          'time_period': ['1870-1-16 11:59:59.5', '2020-10-16 12:0:0.0']},
         'Tropflux': {'keyerror': None,
          'name': 'Tropflux',
          'nyears': 40,
          'time_period': ['1979-1-15 0:0:0.0', '2018-12-15 12:0:0.0']},
         'method': 'nino3.4 SSTA during DEC regressed against nino3.4 SSTA during 6 years (centered on ENSO), the duration is the number of consecutive months during which the regression is above 0.25, time series are linearly detrended, smoothing using a triangle shaped window of 5 points',
         'name': 'ENSO Duration based on life cyle SSTA pattern',
         'ref': 'Using CDAT',
         'time_frequency': 'monthly',
         'units': 'months'},
        'metric': {'datasets': "CanCM4_r10i1p1; ERA-Interim's ts & HadISST's sst & Tropflux's sst; 's ",
         'method': 'The metric is the absolute value of the relative difference between model and observations values (M = 100 * abs[[model-obs] / obs])',
         'name': 'EnsoDuration',
         'units': '%'}},
       'EnsoSeasonality': {'diagnostic': {'CanCM4_r10i1p1': {'keyerror': None,
          'name': 'CanCM4_r10i1p1',
          'nyears': 45,
          'time_period': ['1961-1-16 12:0:0.0', '2005-12-16 12:0:0.0']},
         'ERA-Interim': {'keyerror': None,
          'name': 'ERA-Interim',
          'nyears': 40,
          'time_period': ['1979-1-16 12:0:0.0', '2019-3-16 12:0:0.0']},
         'HadISST': {'keyerror': None,
          'name': 'HadISST',
          'nyears': 151,
          'time_period': ['1870-1-16 11:59:59.5', '2020-10-16 12:0:0.0']},
         'Tropflux': {'keyerror': None,
          'name': 'Tropflux',
          'nyears': 40,
          'time_period': ['1979-1-15 0:0:0.0', '2018-12-15 12:0:0.0']},
         'method': 'Ratio between NDJ and MAM standard deviation nino3.4 sstA, time series are linearly detrended',
         'name': 'ENSO seasonality',
         'ref': 'Using CDAT std dev calculation',
         'time_frequency': 'monthly',
         'units': 'C/C'},
        'metric': {'datasets': "CanCM4_r10i1p1; ERA-Interim's ts & HadISST's sst & Tropflux's sst; 's ",
         'method': 'The metric is the absolute value of the relative difference between model and observations values (M = 100 * abs[[model-obs] / obs])',
         'name': 'EnsoSeasonality',
         'units': '%'}},
       'EnsoSstDiversity_2': {'diagnostic': {'CanCM4_r10i1p1': {'keyerror': None,
          'name': 'CanCM4_r10i1p1',
          'nyears': 45,
          'time_period': ['1961-1-16 12:0:0.0', '2005-12-16 12:0:0.0']},
         'ERA-Interim': {'keyerror': None,
          'name': 'ERA-Interim',
          'nyears': 40,
          'time_period': ['1979-1-16 12:0:0.0', '2019-3-16 12:0:0.0']},
         'HadISST': {'keyerror': None,
          'name': 'HadISST',
          'nyears': 151,
          'time_period': ['1870-1-16 11:59:59.5', '2020-10-16 12:0:0.0']},
         'Tropflux': {'keyerror': None,
          'name': 'Tropflux',
          'nyears': 40,
          'time_period': ['1979-1-15 0:0:0.0', '2018-12-15 12:0:0.0']},
         'method': 'Nino (Nina) events = nino3.4 sstA > 0.75 (< -0.75) during DEC, zonal SSTA (meridional averaged [-5.0 ; 5.0]), the zonal SSTA maximum (minimum) is located for each event, the diversity is the interquartile range (IQR = Q3 - Q1), time series are linearly detrended, smoothing using a triangle shaped window of 5 points',
         'name': 'ENSO Diversity (interquartile range)',
         'ref': 'Using CDAT regridding',
         'time_frequency': 'monthly',
         'units': 'long'},
        'metric': {'datasets': "CanCM4_r10i1p1; ERA-Interim's ts & HadISST's sst & Tropflux's sst; 's ",
         'method': 'The metric is the absolute value of the relative difference between model and observations values (M = 100 * abs[[model-obs] / obs])',
         'name': 'EnsoSstDiversity',
         'units': '%'}},
       'EnsoSstLonRmse': {'diagnostic': {'CanCM4_r10i1p1': {'keyerror': None,
          'name': 'CanCM4_r10i1p1',
          'nyears': 45,
          'time_period': ['1961-1-16 12:0:0.0', '2005-12-16 12:0:0.0']},
         'ERA-Interim': {'name': 'ERA-Interim',
          'nyears': 40,
          'time_period': ['1979-1-16 12:0:0.0', '2019-3-16 12:0:0.0']},
         'HadISST': {'name': 'HadISST',
          'nyears': 151,
          'time_period': ['1870-1-16 11:59:59.5', '2020-10-16 12:0:0.0']},
         'Tropflux': {'name': 'Tropflux',
          'nyears': 40,
          'time_period': ['1979-1-15 0:0:0.0', '2018-12-15 12:0:0.0']},
         'method': 'nino3.4 SSTA during DEC regressed against equatorial_pacific SSTA, time series are linearly detrended, smoothing using a triangle shaped window of 5 points, observations and model regridded to generic_1x1deg',
         'name': 'ENSO Zonal SSTA pattern',
         'ref': 'Using CDAT regridding and rms (uncentered and biased) calculation',
         'time_frequency': 'monthly',
         'units': 'C/C'},
        'metric': {'datasets': "CanCM4_r10i1p1; ERA-Interim's ts & HadISST's sst & Tropflux's sst; 's ",
         'method': 'The metric is the statistical value between the model and the observations',
         'name': 'EnsoSstLonRmse',
         'units': 'C/C'}},
       'EnsoSstSkew': {'diagnostic': {'CanCM4_r10i1p1': {'keyerror': None,
          'name': 'CanCM4_r10i1p1',
          'nyears': 45,
          'time_period': ['1961-1-16 12:0:0.0', '2005-12-16 12:0:0.0']},
         'ERA-Interim': {'keyerror': None,
          'name': 'ERA-Interim',
          'nyears': 40,
          'time_period': ['1979-1-16 12:0:0.0', '2019-3-16 12:0:0.0']},
         'HadISST': {'keyerror': None,
          'name': 'HadISST',
          'nyears': 151,
          'time_period': ['1870-1-16 11:59:59.5', '2020-10-16 12:0:0.0']},
         'Tropflux': {'keyerror': None,
          'name': 'Tropflux',
          'nyears': 40,
          'time_period': ['1979-1-15 0:0:0.0', '2018-12-15 12:0:0.0']},
         'method': 'Standard deviation of nino3.4 sstA, time series are linearly detrended',
         'name': 'ENSO skewness',
         'ref': 'Using CDAT regression calculation',
         'time_frequency': 'monthly',
         'units': 'C'},
        'metric': {'datasets': "CanCM4_r10i1p1; ERA-Interim's ts & HadISST's sst & Tropflux's sst; 's ",
         'method': 'The metric is the absolute value of the relative difference between model and observations values (M = 100 * abs[[model-obs] / obs])',
         'name': 'EnsoSstSkew',
         'units': '%'}},
       'EnsoSstTsRmse': {'diagnostic': {'CanCM4_r10i1p1': {'keyerror': None,
          'name': 'CanCM4_r10i1p1',
          'nyears': 45,
          'time_period': ['1961-1-16 12:0:0.0', '2005-12-16 12:0:0.0']},
         'ERA-Interim': {'name': 'ERA-Interim',
          'nyears': 40,
          'time_period': ['1979-1-16 12:0:0.0', '2019-3-16 12:0:0.0']},
         'HadISST': {'name': 'HadISST',
          'nyears': 151,
          'time_period': ['1870-1-16 11:59:59.5', '2020-10-16 12:0:0.0']},
         'Tropflux': {'name': 'Tropflux',
          'nyears': 40,
          'time_period': ['1979-1-15 0:0:0.0', '2018-12-15 12:0:0.0']},
         'method': 'nino3.4 SSTA during DEC regressed against nino3.4 SSTA during 6 years (centered on ENSO), time series are linearly detrended, smoothing using a triangle shaped window of 5 points',
         'name': 'ENSO life cyle SSTA pattern',
         'ref': 'Using CDAT regridding and rms (uncentered and biased) calculation',
         'time_frequency': 'monthly',
         'units': 'C/C'},
        'metric': {'datasets': "CanCM4_r10i1p1; ERA-Interim's ts & HadISST's sst & Tropflux's sst; 's ",
         'method': 'The metric is the statistical value between the model and the observations',
         'name': 'EnsoSstTsRmse',
         'units': 'C/C'}},
       'SeasonalPrLatRmse': {'diagnostic': {'CanCM4_r10i1p1': {'keyerror': None,
          'name': 'CanCM4_r10i1p1',
          'nyears': 45,
          'time_period': ['1961-1-16 12:0:0.0', '2005-12-16 12:0:0.0']},
         'ERA-Interim': {'name': 'ERA-Interim',
          'nyears': 40,
          'time_period': ['1979-1-16 12:0:0.0', '2019-3-16 12:0:0.0']},
         'GPCPv2.3': {'name': 'GPCPv2.3',
          'nyears': 41,
          'time_period': ['1979-1-1 0:0:0.0', '2019-7-1 0:0:0.0']},
         'method': 'Meridional root mean square error of nino3_LatExt climatological pr STD, time series are linearly detrended, observations and model regridded to generic_1x1deg',
         'name': 'pr meridional seasonality RMSE',
         'ref': 'Using CDAT regridding and rms (uncentered and biased) calculation',
         'time_frequency': 'monthly',
         'units': 'mm/day'},
        'metric': {'datasets': "CanCM4_r10i1p1; ERA-Interim's pr & GPCPv2.3's precip; 's ",
         'method': 'The metric is the statistical value between the model and the observations',
         'name': 'SeasonalPrLatRmse',
         'units': 'mm/day'}},
       'SeasonalPrLonRmse': {'diagnostic': {'CanCM4_r10i1p1': {'keyerror': None,
          'name': 'CanCM4_r10i1p1',
          'nyears': 45,
          'time_period': ['1961-1-16 12:0:0.0', '2005-12-16 12:0:0.0']},
         'ERA-Interim': {'name': 'ERA-Interim',
          'nyears': 40,
          'time_period': ['1979-1-16 12:0:0.0', '2019-3-16 12:0:0.0']},
         'GPCPv2.3': {'name': 'GPCPv2.3',
          'nyears': 41,
          'time_period': ['1979-1-1 0:0:0.0', '2019-7-1 0:0:0.0']},
         'method': 'Zonal root mean square error of equatorial_pacific climatological pr STD, time series are linearly detrended, observations and model regridded to generic_1x1deg',
         'name': 'pr zonal seasonality RMSE',
         'ref': 'Using CDAT regridding and rms (uncentered and biased) calculation',
         'time_frequency': 'monthly',
         'units': 'mm/day'},
        'metric': {'datasets': "CanCM4_r10i1p1; ERA-Interim's pr & GPCPv2.3's precip; 's ",
         'method': 'The metric is the statistical value between the model and the observations',
         'name': 'SeasonalPrLonRmse',
         'units': 'mm/day'}},
       'SeasonalSstLonRmse': {'diagnostic': {'CanCM4_r10i1p1': {'keyerror': None,
          'name': 'CanCM4_r10i1p1',
          'nyears': 45,
          'time_period': ['1961-1-16 12:0:0.0', '2005-12-16 12:0:0.0']},
         'ERA-Interim': {'name': 'ERA-Interim',
          'nyears': 40,
          'time_period': ['1979-1-16 12:0:0.0', '2019-3-16 12:0:0.0']},
         'HadISST': {'name': 'HadISST',
          'nyears': 151,
          'time_period': ['1870-1-16 11:59:59.5', '2020-10-16 12:0:0.0']},
         'Tropflux': {'name': 'Tropflux',
          'nyears': 40,
          'time_period': ['1979-1-15 0:0:0.0', '2018-12-15 12:0:0.0']},
         'method': 'Zonal root mean square error of equatorial_pacific climatological sst STD, time series are linearly detrended, observations and model regridded to generic_1x1deg',
         'name': 'sst zonal seasonality RMSE',
         'ref': 'Using CDAT regridding and rms (uncentered and biased) calculation',
         'time_frequency': 'monthly',
         'units': 'C'},
        'metric': {'datasets': "CanCM4_r10i1p1; ERA-Interim's ts & HadISST's sst & Tropflux's sst; 's ",
         'method': 'The metric is the statistical value between the model and the observations',
         'name': 'SeasonalSstLonRmse',
         'units': 'C'}},
       'SeasonalTauxLonRmse': {'diagnostic': {'CanCM4_r10i1p1': {'keyerror': None,
          'name': 'CanCM4_r10i1p1',
          'nyears': 45,
          'time_period': ['1961-1-16 12:0:0.0', '2005-12-16 12:0:0.0']},
         'ERA-Interim': {'name': 'ERA-Interim',
          'nyears': 40,
          'time_period': ['1979-1-16 12:0:0.0', '2019-3-16 12:0:0.0']},
         'Tropflux': {'name': 'Tropflux',
          'nyears': 40,
          'time_period': ['1979-1-15 0:0:0.0', '2018-12-15 12:0:0.0']},
         'method': 'Zonal root mean square error of equatorial_pacific climatological taux STD, time series are linearly detrended, observations and model regridded to generic_1x1deg',
         'name': 'taux zonal seasonality RMSE',
         'ref': 'Using CDAT regridding and rms (uncentered and biased) calculation',
         'time_frequency': 'monthly',
         'units': '1e-3 N/m2'},
        'metric': {'datasets': "CanCM4_r10i1p1; ERA-Interim's tauu & Tropflux's taux; 's ",
         'method': 'The metric is the statistical value between the model and the observations',
         'name': 'SeasonalTauxLonRmse',
         'units': '1e-3 N/m2'}}},
      'name': 'Metrics Collection for ENSO performance'},
     'value': {'BiasPrLatRmse': {'diagnostic': {'CanCM4_r10i1p1': {'value': None,
         'value_error': None},
        'ERA-Interim': {'value': None, 'value_error': None},
        'GPCPv2.3': {'value': None, 'value_error': None}},
       'metric': {'ERA-Interim': {'value': 0.6944065254335208,
         'value_error': None},
        'GPCPv2.3': {'value': 1.1544968765789951, 'value_error': None}}},
      'BiasPrLonRmse': {'diagnostic': {'CanCM4_r10i1p1': {'value': None,
         'value_error': None},
        'ERA-Interim': {'value': None, 'value_error': None},
        'GPCPv2.3': {'value': None, 'value_error': None}},
       'metric': {'ERA-Interim': {'value': 1.7464404747419475,
         'value_error': None},
        'GPCPv2.3': {'value': 1.0299918434466926, 'value_error': None}}},
      'BiasSstLonRmse': {'diagnostic': {'CanCM4_r10i1p1': {'value': None,
         'value_error': None},
        'ERA-Interim': {'value': None, 'value_error': None},
        'HadISST': {'value': None, 'value_error': None},
        'Tropflux': {'value': None, 'value_error': None}},
       'metric': {'ERA-Interim': {'value': 0.9409921626657921,
         'value_error': None},
        'HadISST': {'value': 0.8882556267459633, 'value_error': None},
        'Tropflux': {'value': 0.9720148534683192, 'value_error': None}}},
      'BiasTauxLonRmse': {'diagnostic': {'CanCM4_r10i1p1': {'value': None,
         'value_error': None},
        'ERA-Interim': {'value': None, 'value_error': None},
        'Tropflux': {'value': None, 'value_error': None}},
       'metric': {'ERA-Interim': {'value': 3.699544556044081,
         'value_error': None},
        'Tropflux': {'value': 4.395395079427156, 'value_error': None}}},
      'EnsoAmpl': {'diagnostic': {'CanCM4_r10i1p1': {'value': 1.0247505099325225,
         'value_error': 0.15276078667911291},
        'ERA-Interim': {'value': 0.8989844997845644,
         'value_error': 0.14214193002531866},
        'HadISST': {'value': 0.7665787872085695,
         'value_error': 0.06238329697691264},
        'Tropflux': {'value': 0.9039789553693535,
         'value_error': 0.14293162279134272}},
       'metric': {'ERA-Interim': {'value': 13.989786273077796,
         'value_error': 35.01596178742106},
        'HadISST': {'value': 33.678432932388205,
         'value_error': 30.80620080153031},
        'Tropflux': {'value': 13.359996252769335,
         'value_error': 34.82249968869942}}},
      'EnsoDuration': {'diagnostic': {'CanCM4_r10i1p1': {'value': 12.0,
         'value_error': None},
        'ERA-Interim': {'value': 13.0, 'value_error': None},
        'HadISST': {'value': 13.0, 'value_error': None},
        'Tropflux': {'value': 13.0, 'value_error': None}},
       'metric': {'ERA-Interim': {'value': 7.6923076923076925,
         'value_error': None},
        'HadISST': {'value': 7.6923076923076925, 'value_error': None},
        'Tropflux': {'value': 7.6923076923076925, 'value_error': None}}},
      'EnsoSeasonality': {'diagnostic': {'CanCM4_r10i1p1': {'value': 1.4585717879165614,
         'value_error': 0.4373190149919466},
        'ERA-Interim': {'value': 2.0466846866656914,
         'value_error': 0.6513411033995022},
        'HadISST': {'value': 1.6639865947361325,
         'value_error': 0.2712772451657809},
        'Tropflux': {'value': 2.0532132553583624,
         'value_error': 0.6534187683977347}},
       'metric': {'ERA-Interim': {'value': 28.734904921150328,
         'value_error': 44.04673946556393},
        'HadISST': {'value': 12.344739282719095,
         'value_error': 40.57170854887354},
        'Tropflux': {'value': 28.961505381379094,
         'value_error': 43.906684766648134}}},
      'EnsoSstDiversity_2': {'diagnostic': {'CanCM4_r10i1p1': {'value': 13.5,
         'value_error': None},
        'ERA-Interim': {'value': 33.25, 'value_error': None},
        'HadISST': {'value': 49.0, 'value_error': None},
        'Tropflux': {'value': 32.0, 'value_error': None}},
       'metric': {'ERA-Interim': {'value': 59.3984962406015,
         'value_error': None},
        'HadISST': {'value': 72.44897959183673, 'value_error': None},
        'Tropflux': {'value': 57.8125, 'value_error': None}}},
      'EnsoSstLonRmse': {'diagnostic': {'CanCM4_r10i1p1': {'value': None,
         'value_error': None},
        'ERA-Interim': {'value': None, 'value_error': None},
        'HadISST': {'value': None, 'value_error': None},
        'Tropflux': {'value': None, 'value_error': None}},
       'metric': {'ERA-Interim': {'value': 0.1847980517074336,
         'value_error': None},
        'HadISST': {'value': 0.21115426257780098, 'value_error': None},
        'Tropflux': {'value': 0.18509544609404135, 'value_error': None}}},
      'EnsoSstSkew': {'diagnostic': {'CanCM4_r10i1p1': {'value': -0.36349039087087276,
         'value_error': -0.05418594821034936},
        'ERA-Interim': {'value': 0.39098111106809963,
         'value_error': 0.061819541653923164},
        'HadISST': {'value': 0.38989908235027515,
         'value_error': 0.03172953733021198},
        'Tropflux': {'value': 0.39744741059612115,
         'value_error': 0.06284195338099416}},
       'metric': {'ERA-Interim': {'value': 192.96878559628456,
         'value_error': -28.558623981132097},
        'HadISST': {'value': 193.22678798826269,
         'value_error': -21.48411742902981},
        'Tropflux': {'value': 191.4562231832591,
         'value_error': -28.093987373000324}}},
      'EnsoSstTsRmse': {'diagnostic': {'CanCM4_r10i1p1': {'value': None,
         'value_error': None},
        'ERA-Interim': {'value': None, 'value_error': None},
        'HadISST': {'value': None, 'value_error': None},
        'Tropflux': {'value': None, 'value_error': None}},
       'metric': {'ERA-Interim': {'value': 0.18680980348830156,
         'value_error': None},
        'HadISST': {'value': 0.17172830243174167, 'value_error': None},
        'Tropflux': {'value': 0.1857703362422313, 'value_error': None}}},
      'SeasonalPrLatRmse': {'diagnostic': {'CanCM4_r10i1p1': {'value': None,
         'value_error': None},
        'ERA-Interim': {'value': None, 'value_error': None},
        'GPCPv2.3': {'value': None, 'value_error': None}},
       'metric': {'ERA-Interim': {'value': 0.781159647085484,
         'value_error': None},
        'GPCPv2.3': {'value': 1.1323051291630635, 'value_error': None}}},
      'SeasonalPrLonRmse': {'diagnostic': {'CanCM4_r10i1p1': {'value': None,
         'value_error': None},
        'ERA-Interim': {'value': None, 'value_error': None},
        'GPCPv2.3': {'value': None, 'value_error': None}},
       'metric': {'ERA-Interim': {'value': 0.4933312522735083,
         'value_error': None},
        'GPCPv2.3': {'value': 0.7423958818515501, 'value_error': None}}},
      'SeasonalSstLonRmse': {'diagnostic': {'CanCM4_r10i1p1': {'value': None,
         'value_error': None},
        'ERA-Interim': {'value': None, 'value_error': None},
        'HadISST': {'value': None, 'value_error': None},
        'Tropflux': {'value': None, 'value_error': None}},
       'metric': {'ERA-Interim': {'value': 0.3612594725049427,
         'value_error': None},
        'HadISST': {'value': 0.3797708708677685, 'value_error': None},
        'Tropflux': {'value': 0.3631361819985813, 'value_error': None}}},
      'SeasonalTauxLonRmse': {'diagnostic': {'CanCM4_r10i1p1': {'value': None,
         'value_error': None},
        'ERA-Interim': {'value': None, 'value_error': None},
        'Tropflux': {'value': None, 'value_error': None}},
       'metric': {'ERA-Interim': {'value': 3.747103592808532,
         'value_error': None},
        'Tropflux': {'value': 3.560965852858891, 'value_error': None}}}}},
    'r1i1p1': {'metadata': {'description_of_the_collection': 'Describe which science question this collection is about',
      'metrics': {'BiasPrLatRmse': {'diagnostic': {'CanCM4_r1i1p1': {'keyerror': None,
          'name': 'CanCM4_r1i1p1',
          'nyears': 45,
          'time_period': ['1961-1-16 12:0:0.0', '2005-12-16 12:0:0.0']},
         'ERA-Interim': {'name': 'ERA-Interim',
          'nyears': 40,
          'time_period': ['1979-1-16 12:0:0.0', '2019-3-16 12:0:0.0']},
         'GPCPv2.3': {'name': 'GPCPv2.3',
          'nyears': 41,
          'time_period': ['1979-1-1 0:0:0.0', '2019-7-1 0:0:0.0']},
         'method': 'Meridional root mean square error of nino3_LatExt pr, time series are linearly detrended, observations and model regridded to generic_1x1deg',
         'name': 'pr Meridional RMSE',
         'ref': 'Using CDAT regridding and rms (uncentered and biased) calculation',
         'time_frequency': 'monthly',
         'units': 'mm/day'},
        'metric': {'datasets': "CanCM4_r1i1p1; ERA-Interim's pr & GPCPv2.3's precip; 's ",
         'method': 'The metric is the statistical value between the model and the observations',
         'name': 'BiasPrLatRmse',
         'units': 'mm/day'}},
       'BiasPrLonRmse': {'diagnostic': {'CanCM4_r1i1p1': {'keyerror': None,
          'name': 'CanCM4_r1i1p1',
          'nyears': 45,
          'time_period': ['1961-1-16 12:0:0.0', '2005-12-16 12:0:0.0']},
         'ERA-Interim': {'name': 'ERA-Interim',
          'nyears': 40,
          'time_period': ['1979-1-16 12:0:0.0', '2019-3-16 12:0:0.0']},
         'GPCPv2.3': {'name': 'GPCPv2.3',
          'nyears': 41,
          'time_period': ['1979-1-1 0:0:0.0', '2019-7-1 0:0:0.0']},
         'method': 'Zonal root mean square error of equatorial_pacific pr, time series are linearly detrended, observations and model regridded to generic_1x1deg',
         'name': 'pr Zonal RMSE',
         'ref': 'Using CDAT regridding and rms (uncentered and biased) calculation',
         'time_frequency': 'monthly',
         'units': 'mm/day'},
        'metric': {'datasets': "CanCM4_r1i1p1; ERA-Interim's pr & GPCPv2.3's precip; 's ",
         'method': 'The metric is the statistical value between the model and the observations',
         'name': 'BiasPrLonRmse',
         'units': 'mm/day'}},
       'BiasSstLonRmse': {'diagnostic': {'CanCM4_r1i1p1': {'keyerror': None,
          'name': 'CanCM4_r1i1p1',
          'nyears': 45,
          'time_period': ['1961-1-16 12:0:0.0', '2005-12-16 12:0:0.0']},
         'ERA-Interim': {'name': 'ERA-Interim',
          'nyears': 40,
          'time_period': ['1979-1-16 12:0:0.0', '2019-3-16 12:0:0.0']},
         'HadISST': {'name': 'HadISST',
          'nyears': 151,
          'time_period': ['1870-1-16 11:59:59.5', '2020-10-16 12:0:0.0']},
         'Tropflux': {'name': 'Tropflux',
          'nyears': 40,
          'time_period': ['1979-1-15 0:0:0.0', '2018-12-15 12:0:0.0']},
         'method': 'Zonal root mean square error of equatorial_pacific sst, time series are linearly detrended, observations and model regridded to generic_1x1deg',
         'name': 'sst Zonal RMSE',
         'ref': 'Using CDAT regridding and rms (uncentered and biased) calculation',
         'time_frequency': 'monthly',
         'units': 'C'},
        'metric': {'datasets': "CanCM4_r1i1p1; ERA-Interim's ts & HadISST's sst & Tropflux's sst; 's ",
         'method': 'The metric is the statistical value between the model and the observations',
         'name': 'BiasSstLonRmse',
         'units': 'C'}},
       'BiasTauxLonRmse': {'diagnostic': {'CanCM4_r1i1p1': {'keyerror': None,
          'name': 'CanCM4_r1i1p1',
          'nyears': 45,
          'time_period': ['1961-1-16 12:0:0.0', '2005-12-16 12:0:0.0']},
         'ERA-Interim': {'name': 'ERA-Interim',
          'nyears': 40,
          'time_period': ['1979-1-16 12:0:0.0', '2019-3-16 12:0:0.0']},
         'Tropflux': {'name': 'Tropflux',
          'nyears': 40,
          'time_period': ['1979-1-15 0:0:0.0', '2018-12-15 12:0:0.0']},
         'method': 'Zonal root mean square error of equatorial_pacific taux, time series are linearly detrended, observations and model regridded to generic_1x1deg',
         'name': 'taux Zonal RMSE',
         'ref': 'Using CDAT regridding and rms (uncentered and biased) calculation',
         'time_frequency': 'monthly',
         'units': '1e-3 N/m2'},
        'metric': {'datasets': "CanCM4_r1i1p1; ERA-Interim's tauu & Tropflux's taux; 's ",
         'method': 'The metric is the statistical value between the model and the observations',
         'name': 'BiasTauxLonRmse',
         'units': '1e-3 N/m2'}},
       'EnsoAmpl': {'diagnostic': {'CanCM4_r1i1p1': {'keyerror': None,
          'name': 'CanCM4_r1i1p1',
          'nyears': 45,
          'time_period': ['1961-1-16 12:0:0.0', '2005-12-16 12:0:0.0']},
         'ERA-Interim': {'keyerror': None,
          'name': 'ERA-Interim',
          'nyears': 40,
          'time_period': ['1979-1-16 12:0:0.0', '2019-3-16 12:0:0.0']},
         'HadISST': {'keyerror': None,
          'name': 'HadISST',
          'nyears': 151,
          'time_period': ['1870-1-16 11:59:59.5', '2020-10-16 12:0:0.0']},
         'Tropflux': {'keyerror': None,
          'name': 'Tropflux',
          'nyears': 40,
          'time_period': ['1979-1-15 0:0:0.0', '2018-12-15 12:0:0.0']},
         'method': 'Standard deviation of nino3.4 sstA, time series are linearly detrended',
         'name': 'ENSO amplitude',
         'ref': 'Using CDAT regression calculation',
         'time_frequency': 'monthly',
         'units': 'C'},
        'metric': {'datasets': "CanCM4_r1i1p1; ERA-Interim's ts & HadISST's sst & Tropflux's sst; 's ",
         'method': 'The metric is the absolute value of the relative difference between model and observations values (M = 100 * abs[[model-obs] / obs])',
         'name': 'EnsoAmpl',
         'units': '%'}},
       'EnsoDuration': {'diagnostic': {'CanCM4_r1i1p1': {'keyerror': None,
          'name': 'CanCM4_r1i1p1',
          'nyears': 45,
          'time_period': ['1961-1-16 12:0:0.0', '2005-12-16 12:0:0.0']},
         'ERA-Interim': {'keyerror': None,
          'name': 'ERA-Interim',
          'nyears': 40,
          'time_period': ['1979-1-16 12:0:0.0', '2019-3-16 12:0:0.0']},
         'HadISST': {'keyerror': None,
          'name': 'HadISST',
          'nyears': 151,
          'time_period': ['1870-1-16 11:59:59.5', '2020-10-16 12:0:0.0']},
         'Tropflux': {'keyerror': None,
          'name': 'Tropflux',
          'nyears': 40,
          'time_period': ['1979-1-15 0:0:0.0', '2018-12-15 12:0:0.0']},
         'method': 'nino3.4 SSTA during DEC regressed against nino3.4 SSTA during 6 years (centered on ENSO), the duration is the number of consecutive months during which the regression is above 0.25, time series are linearly detrended, smoothing using a triangle shaped window of 5 points',
         'name': 'ENSO Duration based on life cyle SSTA pattern',
         'ref': 'Using CDAT',
         'time_frequency': 'monthly',
         'units': 'months'},
        'metric': {'datasets': "CanCM4_r1i1p1; ERA-Interim's ts & HadISST's sst & Tropflux's sst; 's ",
         'method': 'The metric is the absolute value of the relative difference between model and observations values (M = 100 * abs[[model-obs] / obs])',
         'name': 'EnsoDuration',
         'units': '%'}},
       'EnsoSeasonality': {'diagnostic': {'CanCM4_r1i1p1': {'keyerror': None,
          'name': 'CanCM4_r1i1p1',
          'nyears': 45,
          'time_period': ['1961-1-16 12:0:0.0', '2005-12-16 12:0:0.0']},
         'ERA-Interim': {'keyerror': None,
          'name': 'ERA-Interim',
          'nyears': 40,
          'time_period': ['1979-1-16 12:0:0.0', '2019-3-16 12:0:0.0']},
         'HadISST': {'keyerror': None,
          'name': 'HadISST',
          'nyears': 151,
          'time_period': ['1870-1-16 11:59:59.5', '2020-10-16 12:0:0.0']},
         'Tropflux': {'keyerror': None,
          'name': 'Tropflux',
          'nyears': 40,
          'time_period': ['1979-1-15 0:0:0.0', '2018-12-15 12:0:0.0']},
         'method': 'Ratio between NDJ and MAM standard deviation nino3.4 sstA, time series are linearly detrended',
         'name': 'ENSO seasonality',
         'ref': 'Using CDAT std dev calculation',
         'time_frequency': 'monthly',
         'units': 'C/C'},
        'metric': {'datasets': "CanCM4_r1i1p1; ERA-Interim's ts & HadISST's sst & Tropflux's sst; 's ",
         'method': 'The metric is the absolute value of the relative difference between model and observations values (M = 100 * abs[[model-obs] / obs])',
         'name': 'EnsoSeasonality',
         'units': '%'}},
       'EnsoSstDiversity_2': {'diagnostic': {'CanCM4_r1i1p1': {'keyerror': None,
          'name': 'CanCM4_r1i1p1',
          'nyears': 45,
          'time_period': ['1961-1-16 12:0:0.0', '2005-12-16 12:0:0.0']},
         'ERA-Interim': {'keyerror': None,
          'name': 'ERA-Interim',
          'nyears': 40,
          'time_period': ['1979-1-16 12:0:0.0', '2019-3-16 12:0:0.0']},
         'HadISST': {'keyerror': None,
          'name': 'HadISST',
          'nyears': 151,
          'time_period': ['1870-1-16 11:59:59.5', '2020-10-16 12:0:0.0']},
         'Tropflux': {'keyerror': None,
          'name': 'Tropflux',
          'nyears': 40,
          'time_period': ['1979-1-15 0:0:0.0', '2018-12-15 12:0:0.0']},
         'method': 'Nino (Nina) events = nino3.4 sstA > 0.75 (< -0.75) during DEC, zonal SSTA (meridional averaged [-5.0 ; 5.0]), the zonal SSTA maximum (minimum) is located for each event, the diversity is the interquartile range (IQR = Q3 - Q1), time series are linearly detrended, smoothing using a triangle shaped window of 5 points',
         'name': 'ENSO Diversity (interquartile range)',
         'ref': 'Using CDAT regridding',
         'time_frequency': 'monthly',
         'units': 'long'},
        'metric': {'datasets': "CanCM4_r1i1p1; ERA-Interim's ts & HadISST's sst & Tropflux's sst; 's ",
         'method': 'The metric is the absolute value of the relative difference between model and observations values (M = 100 * abs[[model-obs] / obs])',
         'name': 'EnsoSstDiversity',
         'units': '%'}},
       'EnsoSstLonRmse': {'diagnostic': {'CanCM4_r1i1p1': {'keyerror': None,
          'name': 'CanCM4_r1i1p1',
          'nyears': 45,
          'time_period': ['1961-1-16 12:0:0.0', '2005-12-16 12:0:0.0']},
         'ERA-Interim': {'name': 'ERA-Interim',
          'nyears': 40,
          'time_period': ['1979-1-16 12:0:0.0', '2019-3-16 12:0:0.0']},
         'HadISST': {'name': 'HadISST',
          'nyears': 151,
          'time_period': ['1870-1-16 11:59:59.5', '2020-10-16 12:0:0.0']},
         'Tropflux': {'name': 'Tropflux',
          'nyears': 40,
          'time_period': ['1979-1-15 0:0:0.0', '2018-12-15 12:0:0.0']},
         'method': 'nino3.4 SSTA during DEC regressed against equatorial_pacific SSTA, time series are linearly detrended, smoothing using a triangle shaped window of 5 points, observations and model regridded to generic_1x1deg',
         'name': 'ENSO Zonal SSTA pattern',
         'ref': 'Using CDAT regridding and rms (uncentered and biased) calculation',
         'time_frequency': 'monthly',
         'units': 'C/C'},
        'metric': {'datasets': "CanCM4_r1i1p1; ERA-Interim's ts & HadISST's sst & Tropflux's sst; 's ",
         'method': 'The metric is the statistical value between the model and the observations',
         'name': 'EnsoSstLonRmse',
         'units': 'C/C'}},
       'EnsoSstSkew': {'diagnostic': {'CanCM4_r1i1p1': {'keyerror': None,
          'name': 'CanCM4_r1i1p1',
          'nyears': 45,
          'time_period': ['1961-1-16 12:0:0.0', '2005-12-16 12:0:0.0']},
         'ERA-Interim': {'keyerror': None,
          'name': 'ERA-Interim',
          'nyears': 40,
          'time_period': ['1979-1-16 12:0:0.0', '2019-3-16 12:0:0.0']},
         'HadISST': {'keyerror': None,
          'name': 'HadISST',
          'nyears': 151,
          'time_period': ['1870-1-16 11:59:59.5', '2020-10-16 12:0:0.0']},
         'Tropflux': {'keyerror': None,
          'name': 'Tropflux',
          'nyears': 40,
          'time_period': ['1979-1-15 0:0:0.0', '2018-12-15 12:0:0.0']},
         'method': 'Standard deviation of nino3.4 sstA, time series are linearly detrended',
         'name': 'ENSO skewness',
         'ref': 'Using CDAT regression calculation',
         'time_frequency': 'monthly',
         'units': 'C'},
        'metric': {'datasets': "CanCM4_r1i1p1; ERA-Interim's ts & HadISST's sst & Tropflux's sst; 's ",
         'method': 'The metric is the absolute value of the relative difference between model and observations values (M = 100 * abs[[model-obs] / obs])',
         'name': 'EnsoSstSkew',
         'units': '%'}},
       'EnsoSstTsRmse': {'diagnostic': {'CanCM4_r1i1p1': {'keyerror': None,
          'name': 'CanCM4_r1i1p1',
          'nyears': 45,
          'time_period': ['1961-1-16 12:0:0.0', '2005-12-16 12:0:0.0']},
         'ERA-Interim': {'name': 'ERA-Interim',
          'nyears': 40,
          'time_period': ['1979-1-16 12:0:0.0', '2019-3-16 12:0:0.0']},
         'HadISST': {'name': 'HadISST',
          'nyears': 151,
          'time_period': ['1870-1-16 11:59:59.5', '2020-10-16 12:0:0.0']},
         'Tropflux': {'name': 'Tropflux',
          'nyears': 40,
          'time_period': ['1979-1-15 0:0:0.0', '2018-12-15 12:0:0.0']},
         'method': 'nino3.4 SSTA during DEC regressed against nino3.4 SSTA during 6 years (centered on ENSO), time series are linearly detrended, smoothing using a triangle shaped window of 5 points',
         'name': 'ENSO life cyle SSTA pattern',
         'ref': 'Using CDAT regridding and rms (uncentered and biased) calculation',
         'time_frequency': 'monthly',
         'units': 'C/C'},
        'metric': {'datasets': "CanCM4_r1i1p1; ERA-Interim's ts & HadISST's sst & Tropflux's sst; 's ",
         'method': 'The metric is the statistical value between the model and the observations',
         'name': 'EnsoSstTsRmse',
         'units': 'C/C'}},
       'SeasonalPrLatRmse': {'diagnostic': {'CanCM4_r1i1p1': {'keyerror': None,
          'name': 'CanCM4_r1i1p1',
          'nyears': 45,
          'time_period': ['1961-1-16 12:0:0.0', '2005-12-16 12:0:0.0']},
         'ERA-Interim': {'name': 'ERA-Interim',
          'nyears': 40,
          'time_period': ['1979-1-16 12:0:0.0', '2019-3-16 12:0:0.0']},
         'GPCPv2.3': {'name': 'GPCPv2.3',
          'nyears': 41,
          'time_period': ['1979-1-1 0:0:0.0', '2019-7-1 0:0:0.0']},
         'method': 'Meridional root mean square error of nino3_LatExt climatological pr STD, time series are linearly detrended, observations and model regridded to generic_1x1deg',
         'name': 'pr meridional seasonality RMSE',
         'ref': 'Using CDAT regridding and rms (uncentered and biased) calculation',
         'time_frequency': 'monthly',
         'units': 'mm/day'},
        'metric': {'datasets': "CanCM4_r1i1p1; ERA-Interim's pr & GPCPv2.3's precip; 's ",
         'method': 'The metric is the statistical value between the model and the observations',
         'name': 'SeasonalPrLatRmse',
         'units': 'mm/day'}},
       'SeasonalPrLonRmse': {'diagnostic': {'CanCM4_r1i1p1': {'keyerror': None,
          'name': 'CanCM4_r1i1p1',
          'nyears': 45,
          'time_period': ['1961-1-16 12:0:0.0', '2005-12-16 12:0:0.0']},
         'ERA-Interim': {'name': 'ERA-Interim',
          'nyears': 40,
          'time_period': ['1979-1-16 12:0:0.0', '2019-3-16 12:0:0.0']},
         'GPCPv2.3': {'name': 'GPCPv2.3',
          'nyears': 41,
          'time_period': ['1979-1-1 0:0:0.0', '2019-7-1 0:0:0.0']},
         'method': 'Zonal root mean square error of equatorial_pacific climatological pr STD, time series are linearly detrended, observations and model regridded to generic_1x1deg',
         'name': 'pr zonal seasonality RMSE',
         'ref': 'Using CDAT regridding and rms (uncentered and biased) calculation',
         'time_frequency': 'monthly',
         'units': 'mm/day'},
        'metric': {'datasets': "CanCM4_r1i1p1; ERA-Interim's pr & GPCPv2.3's precip; 's ",
         'method': 'The metric is the statistical value between the model and the observations',
         'name': 'SeasonalPrLonRmse',
         'units': 'mm/day'}},
       'SeasonalSstLonRmse': {'diagnostic': {'CanCM4_r1i1p1': {'keyerror': None,
          'name': 'CanCM4_r1i1p1',
          'nyears': 45,
          'time_period': ['1961-1-16 12:0:0.0', '2005-12-16 12:0:0.0']},
         'ERA-Interim': {'name': 'ERA-Interim',
          'nyears': 40,
          'time_period': ['1979-1-16 12:0:0.0', '2019-3-16 12:0:0.0']},
         'HadISST': {'name': 'HadISST',
          'nyears': 151,
          'time_period': ['1870-1-16 11:59:59.5', '2020-10-16 12:0:0.0']},
         'Tropflux': {'name': 'Tropflux',
          'nyears': 40,
          'time_period': ['1979-1-15 0:0:0.0', '2018-12-15 12:0:0.0']},
         'method': 'Zonal root mean square error of equatorial_pacific climatological sst STD, time series are linearly detrended, observations and model regridded to generic_1x1deg',
         'name': 'sst zonal seasonality RMSE',
         'ref': 'Using CDAT regridding and rms (uncentered and biased) calculation',
         'time_frequency': 'monthly',
         'units': 'C'},
        'metric': {'datasets': "CanCM4_r1i1p1; ERA-Interim's ts & HadISST's sst & Tropflux's sst; 's ",
         'method': 'The metric is the statistical value between the model and the observations',
         'name': 'SeasonalSstLonRmse',
         'units': 'C'}},
       'SeasonalTauxLonRmse': {'diagnostic': {'CanCM4_r1i1p1': {'keyerror': None,
          'name': 'CanCM4_r1i1p1',
          'nyears': 45,
          'time_period': ['1961-1-16 12:0:0.0', '2005-12-16 12:0:0.0']},
         'ERA-Interim': {'name': 'ERA-Interim',
          'nyears': 40,
          'time_period': ['1979-1-16 12:0:0.0', '2019-3-16 12:0:0.0']},
         'Tropflux': {'name': 'Tropflux',
          'nyears': 40,
          'time_period': ['1979-1-15 0:0:0.0', '2018-12-15 12:0:0.0']},
         'method': 'Zonal root mean square error of equatorial_pacific climatological taux STD, time series are linearly detrended, observations and model regridded to generic_1x1deg',
         'name': 'taux zonal seasonality RMSE',
         'ref': 'Using CDAT regridding and rms (uncentered and biased) calculation',
         'time_frequency': 'monthly',
         'units': '1e-3 N/m2'},
        'metric': {'datasets': "CanCM4_r1i1p1; ERA-Interim's tauu & Tropflux's taux; 's ",
         'method': 'The metric is the statistical value between the model and the observations',
         'name': 'SeasonalTauxLonRmse',
         'units': '1e-3 N/m2'}}},
      'name': 'Metrics Collection for ENSO performance'},
     'value': {'BiasPrLatRmse': {'diagnostic': {'CanCM4_r1i1p1': {'value': None,
         'value_error': None},
        'ERA-Interim': {'value': None, 'value_error': None},
        'GPCPv2.3': {'value': None, 'value_error': None}},
       'metric': {'ERA-Interim': {'value': 0.7201360946498714,
         'value_error': None},
        'GPCPv2.3': {'value': 1.1439012707899594, 'value_error': None}}},
      'BiasPrLonRmse': {'diagnostic': {'CanCM4_r1i1p1': {'value': None,
         'value_error': None},
        'ERA-Interim': {'value': None, 'value_error': None},
        'GPCPv2.3': {'value': None, 'value_error': None}},
       'metric': {'ERA-Interim': {'value': 1.7162813334713534,
         'value_error': None},
        'GPCPv2.3': {'value': 0.9657629217892554, 'value_error': None}}},
      'BiasSstLonRmse': {'diagnostic': {'CanCM4_r1i1p1': {'value': None,
         'value_error': None},
        'ERA-Interim': {'value': None, 'value_error': None},
        'HadISST': {'value': None, 'value_error': None},
        'Tropflux': {'value': None, 'value_error': None}},
       'metric': {'ERA-Interim': {'value': 0.95454728134312,
         'value_error': None},
        'HadISST': {'value': 0.8929150806226632, 'value_error': None},
        'Tropflux': {'value': 0.9872885072663553, 'value_error': None}}},
      'BiasTauxLonRmse': {'diagnostic': {'CanCM4_r1i1p1': {'value': None,
         'value_error': None},
        'ERA-Interim': {'value': None, 'value_error': None},
        'Tropflux': {'value': None, 'value_error': None}},
       'metric': {'ERA-Interim': {'value': 3.8336496843905903,
         'value_error': None},
        'Tropflux': {'value': 4.564487978423361, 'value_error': None}}},
      'EnsoAmpl': {'diagnostic': {'CanCM4_r1i1p1': {'value': 0.9838728582016024,
         'value_error': 0.14666710614371964},
        'ERA-Interim': {'value': 0.8989844997845644,
         'value_error': 0.14214193002531866},
        'HadISST': {'value': 0.7665787872085695,
         'value_error': 0.06238329697691264},
        'Tropflux': {'value': 0.9039789553693535,
         'value_error': 0.14293162279134272}},
       'metric': {'ERA-Interim': {'value': 9.442694333148228,
         'value_error': 33.61916297922758},
        'HadISST': {'value': 28.345954077895957,
         'value_error': 29.57733081287261},
        'Tropflux': {'value': 8.838026854243017,
         'value_error': 33.4334181504346}}},
      'EnsoDuration': {'diagnostic': {'CanCM4_r1i1p1': {'value': 12.0,
         'value_error': None},
        'ERA-Interim': {'value': 13.0, 'value_error': None},
        'HadISST': {'value': 13.0, 'value_error': None},
        'Tropflux': {'value': 13.0, 'value_error': None}},
       'metric': {'ERA-Interim': {'value': 7.6923076923076925,
         'value_error': None},
        'HadISST': {'value': 7.6923076923076925, 'value_error': None},
        'Tropflux': {'value': 7.6923076923076925, 'value_error': None}}},
      'EnsoSeasonality': {'diagnostic': {'CanCM4_r1i1p1': {'value': 1.4853581705173855,
         'value_error': 0.4453502922669052},
        'ERA-Interim': {'value': 2.0466846866656914,
         'value_error': 0.6513411033995022},
        'HadISST': {'value': 1.6639865947361325,
         'value_error': 0.2712772451657809},
        'Tropflux': {'value': 2.0532132553583624,
         'value_error': 0.6534187683977347}},
       'metric': {'ERA-Interim': {'value': 27.42613553545358,
         'value_error': 44.85564913008496},
        'HadISST': {'value': 10.734967744561255,
         'value_error': 41.31679995744357},
        'Tropflux': {'value': 27.656897468347243,
         'value_error': 44.713022354305146}}},
      'EnsoSstDiversity_2': {'diagnostic': {'CanCM4_r1i1p1': {'value': 14.75,
         'value_error': None},
        'ERA-Interim': {'value': 33.25, 'value_error': None},
        'HadISST': {'value': 49.0, 'value_error': None},
        'Tropflux': {'value': 32.0, 'value_error': None}},
       'metric': {'ERA-Interim': {'value': 55.639097744360896,
         'value_error': None},
        'HadISST': {'value': 69.89795918367348, 'value_error': None},
        'Tropflux': {'value': 53.90625, 'value_error': None}}},
      'EnsoSstLonRmse': {'diagnostic': {'CanCM4_r1i1p1': {'value': None,
         'value_error': None},
        'ERA-Interim': {'value': None, 'value_error': None},
        'HadISST': {'value': None, 'value_error': None},
        'Tropflux': {'value': None, 'value_error': None}},
       'metric': {'ERA-Interim': {'value': 0.20992636420855243,
         'value_error': None},
        'HadISST': {'value': 0.23074714035046642, 'value_error': None},
        'Tropflux': {'value': 0.20950133546027822, 'value_error': None}}},
      'EnsoSstSkew': {'diagnostic': {'CanCM4_r1i1p1': {'value': -0.26220688895284316,
         'value_error': -0.039087495191153065},
        'ERA-Interim': {'value': 0.39098111106809963,
         'value_error': 0.061819541653923164},
        'HadISST': {'value': 0.38989908235027515,
         'value_error': 0.03172953733021198},
        'Tropflux': {'value': 0.39744741059612115,
         'value_error': 0.06284195338099416}},
       'metric': {'ERA-Interim': {'value': 167.0638252156312,
         'value_error': -20.601006615129087},
        'HadISST': {'value': 167.24993743824288,
         'value_error': -15.497751067000404},
        'Tropflux': {'value': 165.9727254379556,
         'value_error': -20.265837040990018}}},
      'EnsoSstTsRmse': {'diagnostic': {'CanCM4_r1i1p1': {'value': None,
         'value_error': None},
        'ERA-Interim': {'value': None, 'value_error': None},
        'HadISST': {'value': None, 'value_error': None},
        'Tropflux': {'value': None, 'value_error': None}},
       'metric': {'ERA-Interim': {'value': 0.17198336160402009,
         'value_error': None},
        'HadISST': {'value': 0.16355238383093687, 'value_error': None},
        'Tropflux': {'value': 0.17123704332950906, 'value_error': None}}},
      'SeasonalPrLatRmse': {'diagnostic': {'CanCM4_r1i1p1': {'value': None,
         'value_error': None},
        'ERA-Interim': {'value': None, 'value_error': None},
        'GPCPv2.3': {'value': None, 'value_error': None}},
       'metric': {'ERA-Interim': {'value': 0.834332604221314,
         'value_error': None},
        'GPCPv2.3': {'value': 1.1953447535162443, 'value_error': None}}},
      'SeasonalPrLonRmse': {'diagnostic': {'CanCM4_r1i1p1': {'value': None,
         'value_error': None},
        'ERA-Interim': {'value': None, 'value_error': None},
        'GPCPv2.3': {'value': None, 'value_error': None}},
       'metric': {'ERA-Interim': {'value': 0.5215001404338776,
         'value_error': None},
        'GPCPv2.3': {'value': 0.7687603247312693, 'value_error': None}}},
      'SeasonalSstLonRmse': {'diagnostic': {'CanCM4_r1i1p1': {'value': None,
         'value_error': None},
        'ERA-Interim': {'value': None, 'value_error': None},
        'HadISST': {'value': None, 'value_error': None},
        'Tropflux': {'value': None, 'value_error': None}},
       'metric': {'ERA-Interim': {'value': 0.3472190240003725,
         'value_error': None},
        'HadISST': {'value': 0.3654606392801227, 'value_error': None},
        'Tropflux': {'value': 0.3492312142145828, 'value_error': None}}},
      'SeasonalTauxLonRmse': {'diagnostic': {'CanCM4_r1i1p1': {'value': None,
         'value_error': None},
        'ERA-Interim': {'value': None, 'value_error': None},
        'Tropflux': {'value': None, 'value_error': None}},
       'metric': {'ERA-Interim': {'value': 3.809236061681172,
         'value_error': None},
        'Tropflux': {'value': 3.630178459702264, 'value_error': None}}}}},
    'r2i1p1': {'metadata': {'description_of_the_collection': 'Describe which science question this collection is about',
      'metrics': {'BiasPrLatRmse': {'diagnostic': {'CanCM4_r2i1p1': {'keyerror': None,
          'name': 'CanCM4_r2i1p1',
          'nyears': 45,
          'time_period': ['1961-1-16 12:0:0.0', '2005-12-16 12:0:0.0']},
         'ERA-Interim': {'name': 'ERA-Interim',
          'nyears': 40,
          'time_period': ['1979-1-16 12:0:0.0', '2019-3-16 12:0:0.0']},
         'GPCPv2.3': {'name': 'GPCPv2.3',
          'nyears': 41,
          'time_period': ['1979-1-1 0:0:0.0', '2019-7-1 0:0:0.0']},
         'method': 'Meridional root mean square error of nino3_LatExt pr, time series are linearly detrended, observations and model regridded to generic_1x1deg',
         'name': 'pr Meridional RMSE',
         'ref': 'Using CDAT regridding and rms (uncentered and biased) calculation',
         'time_frequency': 'monthly',
         'units': 'mm/day'},
        'metric': {'datasets': "CanCM4_r2i1p1; ERA-Interim's pr & GPCPv2.3's precip; 's ",
         'method': 'The metric is the statistical value between the model and the observations',
         'name': 'BiasPrLatRmse',
         'units': 'mm/day'}},
       'BiasPrLonRmse': {'diagnostic': {'CanCM4_r2i1p1': {'keyerror': None,
          'name': 'CanCM4_r2i1p1',
          'nyears': 45,
          'time_period': ['1961-1-16 12:0:0.0', '2005-12-16 12:0:0.0']},
         'ERA-Interim': {'name': 'ERA-Interim',
          'nyears': 40,
          'time_period': ['1979-1-16 12:0:0.0', '2019-3-16 12:0:0.0']},
         'GPCPv2.3': {'name': 'GPCPv2.3',
          'nyears': 41,
          'time_period': ['1979-1-1 0:0:0.0', '2019-7-1 0:0:0.0']},
         'method': 'Zonal root mean square error of equatorial_pacific pr, time series are linearly detrended, observations and model regridded to generic_1x1deg',
         'name': 'pr Zonal RMSE',
         'ref': 'Using CDAT regridding and rms (uncentered and biased) calculation',
         'time_frequency': 'monthly',
         'units': 'mm/day'},
        'metric': {'datasets': "CanCM4_r2i1p1; ERA-Interim's pr & GPCPv2.3's precip; 's ",
         'method': 'The metric is the statistical value between the model and the observations',
         'name': 'BiasPrLonRmse',
         'units': 'mm/day'}},
       'BiasSstLonRmse': {'diagnostic': {'CanCM4_r2i1p1': {'keyerror': None,
          'name': 'CanCM4_r2i1p1',
          'nyears': 45,
          'time_period': ['1961-1-16 12:0:0.0', '2005-12-16 12:0:0.0']},
         'ERA-Interim': {'name': 'ERA-Interim',
          'nyears': 40,
          'time_period': ['1979-1-16 12:0:0.0', '2019-3-16 12:0:0.0']},
         'HadISST': {'name': 'HadISST',
          'nyears': 151,
          'time_period': ['1870-1-16 11:59:59.5', '2020-10-16 12:0:0.0']},
         'Tropflux': {'name': 'Tropflux',
          'nyears': 40,
          'time_period': ['1979-1-15 0:0:0.0', '2018-12-15 12:0:0.0']},
         'method': 'Zonal root mean square error of equatorial_pacific sst, time series are linearly detrended, observations and model regridded to generic_1x1deg',
         'name': 'sst Zonal RMSE',
         'ref': 'Using CDAT regridding and rms (uncentered and biased) calculation',
         'time_frequency': 'monthly',
         'units': 'C'},
        'metric': {'datasets': "CanCM4_r2i1p1; ERA-Interim's ts & HadISST's sst & Tropflux's sst; 's ",
         'method': 'The metric is the statistical value between the model and the observations',
         'name': 'BiasSstLonRmse',
         'units': 'C'}},
       'BiasTauxLonRmse': {'diagnostic': {'CanCM4_r2i1p1': {'keyerror': None,
          'name': 'CanCM4_r2i1p1',
          'nyears': 45,
          'time_period': ['1961-1-16 12:0:0.0', '2005-12-16 12:0:0.0']},
         'ERA-Interim': {'name': 'ERA-Interim',
          'nyears': 40,
          'time_period': ['1979-1-16 12:0:0.0', '2019-3-16 12:0:0.0']},
         'Tropflux': {'name': 'Tropflux',
          'nyears': 40,
          'time_period': ['1979-1-15 0:0:0.0', '2018-12-15 12:0:0.0']},
         'method': 'Zonal root mean square error of equatorial_pacific taux, time series are linearly detrended, observations and model regridded to generic_1x1deg',
         'name': 'taux Zonal RMSE',
         'ref': 'Using CDAT regridding and rms (uncentered and biased) calculation',
         'time_frequency': 'monthly',
         'units': '1e-3 N/m2'},
        'metric': {'datasets': "CanCM4_r2i1p1; ERA-Interim's tauu & Tropflux's taux; 's ",
         'method': 'The metric is the statistical value between the model and the observations',
         'name': 'BiasTauxLonRmse',
         'units': '1e-3 N/m2'}},
       'EnsoAmpl': {'diagnostic': {'CanCM4_r2i1p1': {'keyerror': None,
          'name': 'CanCM4_r2i1p1',
          'nyears': 45,
          'time_period': ['1961-1-16 12:0:0.0', '2005-12-16 12:0:0.0']},
         'ERA-Interim': {'keyerror': None,
          'name': 'ERA-Interim',
          'nyears': 40,
          'time_period': ['1979-1-16 12:0:0.0', '2019-3-16 12:0:0.0']},
         'HadISST': {'keyerror': None,
          'name': 'HadISST',
          'nyears': 151,
          'time_period': ['1870-1-16 11:59:59.5', '2020-10-16 12:0:0.0']},
         'Tropflux': {'keyerror': None,
          'name': 'Tropflux',
          'nyears': 40,
          'time_period': ['1979-1-15 0:0:0.0', '2018-12-15 12:0:0.0']},
         'method': 'Standard deviation of nino3.4 sstA, time series are linearly detrended',
         'name': 'ENSO amplitude',
         'ref': 'Using CDAT regression calculation',
         'time_frequency': 'monthly',
         'units': 'C'},
        'metric': {'datasets': "CanCM4_r2i1p1; ERA-Interim's ts & HadISST's sst & Tropflux's sst; 's ",
         'method': 'The metric is the absolute value of the relative difference between model and observations values (M = 100 * abs[[model-obs] / obs])',
         'name': 'EnsoAmpl',
         'units': '%'}},
       'EnsoDuration': {'diagnostic': {'CanCM4_r2i1p1': {'keyerror': None,
          'name': 'CanCM4_r2i1p1',
          'nyears': 45,
          'time_period': ['1961-1-16 12:0:0.0', '2005-12-16 12:0:0.0']},
         'ERA-Interim': {'keyerror': None,
          'name': 'ERA-Interim',
          'nyears': 40,
          'time_period': ['1979-1-16 12:0:0.0', '2019-3-16 12:0:0.0']},
         'HadISST': {'keyerror': None,
          'name': 'HadISST',
          'nyears': 151,
          'time_period': ['1870-1-16 11:59:59.5', '2020-10-16 12:0:0.0']},
         'Tropflux': {'keyerror': None,
          'name': 'Tropflux',
          'nyears': 40,
          'time_period': ['1979-1-15 0:0:0.0', '2018-12-15 12:0:0.0']},
         'method': 'nino3.4 SSTA during DEC regressed against nino3.4 SSTA during 6 years (centered on ENSO), the duration is the number of consecutive months during which the regression is above 0.25, time series are linearly detrended, smoothing using a triangle shaped window of 5 points',
         'name': 'ENSO Duration based on life cyle SSTA pattern',
         'ref': 'Using CDAT',
         'time_frequency': 'monthly',
         'units': 'months'},
        'metric': {'datasets': "CanCM4_r2i1p1; ERA-Interim's ts & HadISST's sst & Tropflux's sst; 's ",
         'method': 'The metric is the absolute value of the relative difference between model and observations values (M = 100 * abs[[model-obs] / obs])',
         'name': 'EnsoDuration',
         'units': '%'}},
       'EnsoSeasonality': {'diagnostic': {'CanCM4_r2i1p1': {'keyerror': None,
          'name': 'CanCM4_r2i1p1',
          'nyears': 45,
          'time_period': ['1961-1-16 12:0:0.0', '2005-12-16 12:0:0.0']},
         'ERA-Interim': {'keyerror': None,
          'name': 'ERA-Interim',
          'nyears': 40,
          'time_period': ['1979-1-16 12:0:0.0', '2019-3-16 12:0:0.0']},
         'HadISST': {'keyerror': None,
          'name': 'HadISST',
          'nyears': 151,
          'time_period': ['1870-1-16 11:59:59.5', '2020-10-16 12:0:0.0']},
         'Tropflux': {'keyerror': None,
          'name': 'Tropflux',
          'nyears': 40,
          'time_period': ['1979-1-15 0:0:0.0', '2018-12-15 12:0:0.0']},
         'method': 'Ratio between NDJ and MAM standard deviation nino3.4 sstA, time series are linearly detrended',
         'name': 'ENSO seasonality',
         'ref': 'Using CDAT std dev calculation',
         'time_frequency': 'monthly',
         'units': 'C/C'},
        'metric': {'datasets': "CanCM4_r2i1p1; ERA-Interim's ts & HadISST's sst & Tropflux's sst; 's ",
         'method': 'The metric is the absolute value of the relative difference between model and observations values (M = 100 * abs[[model-obs] / obs])',
         'name': 'EnsoSeasonality',
         'units': '%'}},
       'EnsoSstDiversity_2': {'diagnostic': {'CanCM4_r2i1p1': {'keyerror': None,
          'name': 'CanCM4_r2i1p1',
          'nyears': 45,
          'time_period': ['1961-1-16 12:0:0.0', '2005-12-16 12:0:0.0']},
         'ERA-Interim': {'keyerror': None,
          'name': 'ERA-Interim',
          'nyears': 40,
          'time_period': ['1979-1-16 12:0:0.0', '2019-3-16 12:0:0.0']},
         'HadISST': {'keyerror': None,
          'name': 'HadISST',
          'nyears': 151,
          'time_period': ['1870-1-16 11:59:59.5', '2020-10-16 12:0:0.0']},
         'Tropflux': {'keyerror': None,
          'name': 'Tropflux',
          'nyears': 40,
          'time_period': ['1979-1-15 0:0:0.0', '2018-12-15 12:0:0.0']},
         'method': 'Nino (Nina) events = nino3.4 sstA > 0.75 (< -0.75) during DEC, zonal SSTA (meridional averaged [-5.0 ; 5.0]), the zonal SSTA maximum (minimum) is located for each event, the diversity is the interquartile range (IQR = Q3 - Q1), time series are linearly detrended, smoothing using a triangle shaped window of 5 points',
         'name': 'ENSO Diversity (interquartile range)',
         'ref': 'Using CDAT regridding',
         'time_frequency': 'monthly',
         'units': 'long'},
        'metric': {'datasets': "CanCM4_r2i1p1; ERA-Interim's ts & HadISST's sst & Tropflux's sst; 's ",
         'method': 'The metric is the absolute value of the relative difference between model and observations values (M = 100 * abs[[model-obs] / obs])',
         'name': 'EnsoSstDiversity',
         'units': '%'}},
       'EnsoSstLonRmse': {'diagnostic': {'CanCM4_r2i1p1': {'keyerror': None,
          'name': 'CanCM4_r2i1p1',
          'nyears': 45,
          'time_period': ['1961-1-16 12:0:0.0', '2005-12-16 12:0:0.0']},
         'ERA-Interim': {'name': 'ERA-Interim',
          'nyears': 40,
          'time_period': ['1979-1-16 12:0:0.0', '2019-3-16 12:0:0.0']},
         'HadISST': {'name': 'HadISST',
          'nyears': 151,
          'time_period': ['1870-1-16 11:59:59.5', '2020-10-16 12:0:0.0']},
         'Tropflux': {'name': 'Tropflux',
          'nyears': 40,
          'time_period': ['1979-1-15 0:0:0.0', '2018-12-15 12:0:0.0']},
         'method': 'nino3.4 SSTA during DEC regressed against equatorial_pacific SSTA, time series are linearly detrended, smoothing using a triangle shaped window of 5 points, observations and model regridded to generic_1x1deg',
         'name': 'ENSO Zonal SSTA pattern',
         'ref': 'Using CDAT regridding and rms (uncentered and biased) calculation',
         'time_frequency': 'monthly',
         'units': 'C/C'},
        'metric': {'datasets': "CanCM4_r2i1p1; ERA-Interim's ts & HadISST's sst & Tropflux's sst; 's ",
         'method': 'The metric is the statistical value between the model and the observations',
         'name': 'EnsoSstLonRmse',
         'units': 'C/C'}},
       'EnsoSstSkew': {'diagnostic': {'CanCM4_r2i1p1': {'keyerror': None,
          'name': 'CanCM4_r2i1p1',
          'nyears': 45,
          'time_period': ['1961-1-16 12:0:0.0', '2005-12-16 12:0:0.0']},
         'ERA-Interim': {'keyerror': None,
          'name': 'ERA-Interim',
          'nyears': 40,
          'time_period': ['1979-1-16 12:0:0.0', '2019-3-16 12:0:0.0']},
         'HadISST': {'keyerror': None,
          'name': 'HadISST',
          'nyears': 151,
          'time_period': ['1870-1-16 11:59:59.5', '2020-10-16 12:0:0.0']},
         'Tropflux': {'keyerror': None,
          'name': 'Tropflux',
          'nyears': 40,
          'time_period': ['1979-1-15 0:0:0.0', '2018-12-15 12:0:0.0']},
         'method': 'Standard deviation of nino3.4 sstA, time series are linearly detrended',
         'name': 'ENSO skewness',
         'ref': 'Using CDAT regression calculation',
         'time_frequency': 'monthly',
         'units': 'C'},
        'metric': {'datasets': "CanCM4_r2i1p1; ERA-Interim's ts & HadISST's sst & Tropflux's sst; 's ",
         'method': 'The metric is the absolute value of the relative difference between model and observations values (M = 100 * abs[[model-obs] / obs])',
         'name': 'EnsoSstSkew',
         'units': '%'}},
       'EnsoSstTsRmse': {'diagnostic': {'CanCM4_r2i1p1': {'keyerror': None,
          'name': 'CanCM4_r2i1p1',
          'nyears': 45,
          'time_period': ['1961-1-16 12:0:0.0', '2005-12-16 12:0:0.0']},
         'ERA-Interim': {'name': 'ERA-Interim',
          'nyears': 40,
          'time_period': ['1979-1-16 12:0:0.0', '2019-3-16 12:0:0.0']},
         'HadISST': {'name': 'HadISST',
          'nyears': 151,
          'time_period': ['1870-1-16 11:59:59.5', '2020-10-16 12:0:0.0']},
         'Tropflux': {'name': 'Tropflux',
          'nyears': 40,
          'time_period': ['1979-1-15 0:0:0.0', '2018-12-15 12:0:0.0']},
         'method': 'nino3.4 SSTA during DEC regressed against nino3.4 SSTA during 6 years (centered on ENSO), time series are linearly detrended, smoothing using a triangle shaped window of 5 points',
         'name': 'ENSO life cyle SSTA pattern',
         'ref': 'Using CDAT regridding and rms (uncentered and biased) calculation',
         'time_frequency': 'monthly',
         'units': 'C/C'},
        'metric': {'datasets': "CanCM4_r2i1p1; ERA-Interim's ts & HadISST's sst & Tropflux's sst; 's ",
         'method': 'The metric is the statistical value between the model and the observations',
         'name': 'EnsoSstTsRmse',
         'units': 'C/C'}},
       'SeasonalPrLatRmse': {'diagnostic': {'CanCM4_r2i1p1': {'keyerror': None,
          'name': 'CanCM4_r2i1p1',
          'nyears': 45,
          'time_period': ['1961-1-16 12:0:0.0', '2005-12-16 12:0:0.0']},
         'ERA-Interim': {'name': 'ERA-Interim',
          'nyears': 40,
          'time_period': ['1979-1-16 12:0:0.0', '2019-3-16 12:0:0.0']},
         'GPCPv2.3': {'name': 'GPCPv2.3',
          'nyears': 41,
          'time_period': ['1979-1-1 0:0:0.0', '2019-7-1 0:0:0.0']},
         'method': 'Meridional root mean square error of nino3_LatExt climatological pr STD, time series are linearly detrended, observations and model regridded to generic_1x1deg',
         'name': 'pr meridional seasonality RMSE',
         'ref': 'Using CDAT regridding and rms (uncentered and biased) calculation',
         'time_frequency': 'monthly',
         'units': 'mm/day'},
        'metric': {'datasets': "CanCM4_r2i1p1; ERA-Interim's pr & GPCPv2.3's precip; 's ",
         'method': 'The metric is the statistical value between the model and the observations',
         'name': 'SeasonalPrLatRmse',
         'units': 'mm/day'}},
       'SeasonalPrLonRmse': {'diagnostic': {'CanCM4_r2i1p1': {'keyerror': None,
          'name': 'CanCM4_r2i1p1',
          'nyears': 45,
          'time_period': ['1961-1-16 12:0:0.0', '2005-12-16 12:0:0.0']},
         'ERA-Interim': {'name': 'ERA-Interim',
          'nyears': 40,
          'time_period': ['1979-1-16 12:0:0.0', '2019-3-16 12:0:0.0']},
         'GPCPv2.3': {'name': 'GPCPv2.3',
          'nyears': 41,
          'time_period': ['1979-1-1 0:0:0.0', '2019-7-1 0:0:0.0']},
         'method': 'Zonal root mean square error of equatorial_pacific climatological pr STD, time series are linearly detrended, observations and model regridded to generic_1x1deg',
         'name': 'pr zonal seasonality RMSE',
         'ref': 'Using CDAT regridding and rms (uncentered and biased) calculation',
         'time_frequency': 'monthly',
         'units': 'mm/day'},
        'metric': {'datasets': "CanCM4_r2i1p1; ERA-Interim's pr & GPCPv2.3's precip; 's ",
         'method': 'The metric is the statistical value between the model and the observations',
         'name': 'SeasonalPrLonRmse',
         'units': 'mm/day'}},
       'SeasonalSstLonRmse': {'diagnostic': {'CanCM4_r2i1p1': {'keyerror': None,
          'name': 'CanCM4_r2i1p1',
          'nyears': 45,
          'time_period': ['1961-1-16 12:0:0.0', '2005-12-16 12:0:0.0']},
         'ERA-Interim': {'name': 'ERA-Interim',
          'nyears': 40,
          'time_period': ['1979-1-16 12:0:0.0', '2019-3-16 12:0:0.0']},
         'HadISST': {'name': 'HadISST',
          'nyears': 151,
          'time_period': ['1870-1-16 11:59:59.5', '2020-10-16 12:0:0.0']},
         'Tropflux': {'name': 'Tropflux',
          'nyears': 40,
          'time_period': ['1979-1-15 0:0:0.0', '2018-12-15 12:0:0.0']},
         'method': 'Zonal root mean square error of equatorial_pacific climatological sst STD, time series are linearly detrended, observations and model regridded to generic_1x1deg',
         'name': 'sst zonal seasonality RMSE',
         'ref': 'Using CDAT regridding and rms (uncentered and biased) calculation',
         'time_frequency': 'monthly',
         'units': 'C'},
        'metric': {'datasets': "CanCM4_r2i1p1; ERA-Interim's ts & HadISST's sst & Tropflux's sst; 's ",
         'method': 'The metric is the statistical value between the model and the observations',
         'name': 'SeasonalSstLonRmse',
         'units': 'C'}},
       'SeasonalTauxLonRmse': {'diagnostic': {'CanCM4_r2i1p1': {'keyerror': None,
          'name': 'CanCM4_r2i1p1',
          'nyears': 45,
          'time_period': ['1961-1-16 12:0:0.0', '2005-12-16 12:0:0.0']},
         'ERA-Interim': {'name': 'ERA-Interim',
          'nyears': 40,
          'time_period': ['1979-1-16 12:0:0.0', '2019-3-16 12:0:0.0']},
         'Tropflux': {'name': 'Tropflux',
          'nyears': 40,
          'time_period': ['1979-1-15 0:0:0.0', '2018-12-15 12:0:0.0']},
         'method': 'Zonal root mean square error of equatorial_pacific climatological taux STD, time series are linearly detrended, observations and model regridded to generic_1x1deg',
         'name': 'taux zonal seasonality RMSE',
         'ref': 'Using CDAT regridding and rms (uncentered and biased) calculation',
         'time_frequency': 'monthly',
         'units': '1e-3 N/m2'},
        'metric': {'datasets': "CanCM4_r2i1p1; ERA-Interim's tauu & Tropflux's taux; 's ",
         'method': 'The metric is the statistical value between the model and the observations',
         'name': 'SeasonalTauxLonRmse',
         'units': '1e-3 N/m2'}}},
      'name': 'Metrics Collection for ENSO performance'},
     'value': {'BiasPrLatRmse': {'diagnostic': {'CanCM4_r2i1p1': {'value': None,
         'value_error': None},
        'ERA-Interim': {'value': None, 'value_error': None},
        'GPCPv2.3': {'value': None, 'value_error': None}},
       'metric': {'ERA-Interim': {'value': 0.6565718190408663,
         'value_error': None},
        'GPCPv2.3': {'value': 1.069814939633353, 'value_error': None}}},
      'BiasPrLonRmse': {'diagnostic': {'CanCM4_r2i1p1': {'value': None,
         'value_error': None},
        'ERA-Interim': {'value': None, 'value_error': None},
        'GPCPv2.3': {'value': None, 'value_error': None}},
       'metric': {'ERA-Interim': {'value': 1.7828656846084348,
         'value_error': None},
        'GPCPv2.3': {'value': 0.9796235097611444, 'value_error': None}}},
      'BiasSstLonRmse': {'diagnostic': {'CanCM4_r2i1p1': {'value': None,
         'value_error': None},
        'ERA-Interim': {'value': None, 'value_error': None},
        'HadISST': {'value': None, 'value_error': None},
        'Tropflux': {'value': None, 'value_error': None}},
       'metric': {'ERA-Interim': {'value': 0.9287854334557132,
         'value_error': None},
        'HadISST': {'value': 0.8622788922606187, 'value_error': None},
        'Tropflux': {'value': 0.9626089266458646, 'value_error': None}}},
      'BiasTauxLonRmse': {'diagnostic': {'CanCM4_r2i1p1': {'value': None,
         'value_error': None},
        'ERA-Interim': {'value': None, 'value_error': None},
        'Tropflux': {'value': None, 'value_error': None}},
       'metric': {'ERA-Interim': {'value': 4.416465392935939,
         'value_error': None},
        'Tropflux': {'value': 5.143363620996165, 'value_error': None}}},
      'EnsoAmpl': {'diagnostic': {'CanCM4_r2i1p1': {'value': 0.8263391634069046,
         'value_error': 0.12318336945654303},
        'ERA-Interim': {'value': 0.8989844997845644,
         'value_error': 0.14214193002531866},
        'HadISST': {'value': 0.7665787872085695,
         'value_error': 0.06238329697691264},
        'Tropflux': {'value': 0.9039789553693535,
         'value_error': 0.14293162279134272}},
       'metric': {'ERA-Interim': {'value': 8.080821904612232,
         'value_error': 28.236200215417284},
        'HadISST': {'value': 7.795725266015685,
         'value_error': 24.841529671215202},
        'Tropflux': {'value': 8.588672501864416,
         'value_error': 28.080196088306273}}},
      'EnsoDuration': {'diagnostic': {'CanCM4_r2i1p1': {'value': 12.0,
         'value_error': None},
        'ERA-Interim': {'value': 13.0, 'value_error': None},
        'HadISST': {'value': 13.0, 'value_error': None},
        'Tropflux': {'value': 13.0, 'value_error': None}},
       'metric': {'ERA-Interim': {'value': 7.6923076923076925,
         'value_error': None},
        'HadISST': {'value': 7.6923076923076925, 'value_error': None},
        'Tropflux': {'value': 7.6923076923076925, 'value_error': None}}},
      'EnsoSeasonality': {'diagnostic': {'CanCM4_r2i1p1': {'value': 1.2514882808871204,
         'value_error': 0.37522981508732484},
        'ERA-Interim': {'value': 2.0466846866656914,
         'value_error': 0.6513411033995022},
        'HadISST': {'value': 1.6639865947361325,
         'value_error': 0.2712772451657809},
        'Tropflux': {'value': 2.0532132553583624,
         'value_error': 0.6534187683977347}},
       'metric': {'ERA-Interim': {'value': 38.85290249931203,
         'value_error': 37.79311975530606},
        'HadISST': {'value': 24.789761837860492,
         'value_error': 34.8114629702324},
        'Tropflux': {'value': 39.04733092770293,
         'value_error': 37.67294958896365}}},
      'EnsoSstDiversity_2': {'diagnostic': {'CanCM4_r2i1p1': {'value': 11.0,
         'value_error': None},
        'ERA-Interim': {'value': 33.25, 'value_error': None},
        'HadISST': {'value': 49.0, 'value_error': None},
        'Tropflux': {'value': 32.0, 'value_error': None}},
       'metric': {'ERA-Interim': {'value': 66.9172932330827,
         'value_error': None},
        'HadISST': {'value': 77.55102040816327, 'value_error': None},
        'Tropflux': {'value': 65.625, 'value_error': None}}},
      'EnsoSstLonRmse': {'diagnostic': {'CanCM4_r2i1p1': {'value': None,
         'value_error': None},
        'ERA-Interim': {'value': None, 'value_error': None},
        'HadISST': {'value': None, 'value_error': None},
        'Tropflux': {'value': None, 'value_error': None}},
       'metric': {'ERA-Interim': {'value': 0.21398403022669413,
         'value_error': None},
        'HadISST': {'value': 0.2355432054206397, 'value_error': None},
        'Tropflux': {'value': 0.2137738863899347, 'value_error': None}}},
      'EnsoSstSkew': {'diagnostic': {'CanCM4_r2i1p1': {'value': -0.43094793764222106,
         'value_error': -0.06424192555542312},
        'ERA-Interim': {'value': 0.39098111106809963,
         'value_error': 0.061819541653923164},
        'HadISST': {'value': 0.38989908235027515,
         'value_error': 0.03172953733021198},
        'Tropflux': {'value': 0.39744741059612115,
         'value_error': 0.06284195338099416}},
       'metric': {'ERA-Interim': {'value': 210.22218860265096,
         'value_error': -33.85861198994012},
        'HadISST': {'value': 210.52807178834772,
         'value_error': -25.47119904854024},
        'Tropflux': {'value': 208.42892069565963,
         'value_error': -33.30774684176459}}},
      'EnsoSstTsRmse': {'diagnostic': {'CanCM4_r2i1p1': {'value': None,
         'value_error': None},
        'ERA-Interim': {'value': None, 'value_error': None},
        'HadISST': {'value': None, 'value_error': None},
        'Tropflux': {'value': None, 'value_error': None}},
       'metric': {'ERA-Interim': {'value': 0.2421477169746451,
         'value_error': None},
        'HadISST': {'value': 0.2199314810842114, 'value_error': None},
        'Tropflux': {'value': 0.23996761960045768, 'value_error': None}}},
      'SeasonalPrLatRmse': {'diagnostic': {'CanCM4_r2i1p1': {'value': None,
         'value_error': None},
        'ERA-Interim': {'value': None, 'value_error': None},
        'GPCPv2.3': {'value': None, 'value_error': None}},
       'metric': {'ERA-Interim': {'value': 0.8127393076115524,
         'value_error': None},
        'GPCPv2.3': {'value': 1.180845359605651, 'value_error': None}}},
      'SeasonalPrLonRmse': {'diagnostic': {'CanCM4_r2i1p1': {'value': None,
         'value_error': None},
        'ERA-Interim': {'value': None, 'value_error': None},
        'GPCPv2.3': {'value': None, 'value_error': None}},
       'metric': {'ERA-Interim': {'value': 0.5612014977925236,
         'value_error': None},
        'GPCPv2.3': {'value': 0.7774907129324827, 'value_error': None}}},
      'SeasonalSstLonRmse': {'diagnostic': {'CanCM4_r2i1p1': {'value': None,
         'value_error': None},
        'ERA-Interim': {'value': None, 'value_error': None},
        'HadISST': {'value': None, 'value_error': None},
        'Tropflux': {'value': None, 'value_error': None}},
       'metric': {'ERA-Interim': {'value': 0.34036760703016006,
         'value_error': None},
        'HadISST': {'value': 0.35780493883571723, 'value_error': None},
        'Tropflux': {'value': 0.34328591547289306, 'value_error': None}}},
      'SeasonalTauxLonRmse': {'diagnostic': {'CanCM4_r2i1p1': {'value': None,
         'value_error': None},
        'ERA-Interim': {'value': None, 'value_error': None},
        'Tropflux': {'value': None, 'value_error': None}},
       'metric': {'ERA-Interim': {'value': 3.7719050263419653,
         'value_error': None},
        'Tropflux': {'value': 3.56173052166305, 'value_error': None}}}}},
    'r3i1p1': {'metadata': {'description_of_the_collection': 'Describe which science question this collection is about',
      'metrics': {'BiasPrLatRmse': {'diagnostic': {'CanCM4_r3i1p1': {'keyerror': None,
          'name': 'CanCM4_r3i1p1',
          'nyears': 45,
          'time_period': ['1961-1-16 12:0:0.0', '2005-12-16 12:0:0.0']},
         'ERA-Interim': {'name': 'ERA-Interim',
          'nyears': 40,
          'time_period': ['1979-1-16 12:0:0.0', '2019-3-16 12:0:0.0']},
         'GPCPv2.3': {'name': 'GPCPv2.3',
          'nyears': 41,
          'time_period': ['1979-1-1 0:0:0.0', '2019-7-1 0:0:0.0']},
         'method': 'Meridional root mean square error of nino3_LatExt pr, time series are linearly detrended, observations and model regridded to generic_1x1deg',
         'name': 'pr Meridional RMSE',
         'ref': 'Using CDAT regridding and rms (uncentered and biased) calculation',
         'time_frequency': 'monthly',
         'units': 'mm/day'},
        'metric': {'datasets': "CanCM4_r3i1p1; ERA-Interim's pr & GPCPv2.3's precip; 's ",
         'method': 'The metric is the statistical value between the model and the observations',
         'name': 'BiasPrLatRmse',
         'units': 'mm/day'}},
       'BiasPrLonRmse': {'diagnostic': {'CanCM4_r3i1p1': {'keyerror': None,
          'name': 'CanCM4_r3i1p1',
          'nyears': 45,
          'time_period': ['1961-1-16 12:0:0.0', '2005-12-16 12:0:0.0']},
         'ERA-Interim': {'name': 'ERA-Interim',
          'nyears': 40,
          'time_period': ['1979-1-16 12:0:0.0', '2019-3-16 12:0:0.0']},
         'GPCPv2.3': {'name': 'GPCPv2.3',
          'nyears': 41,
          'time_period': ['1979-1-1 0:0:0.0', '2019-7-1 0:0:0.0']},
         'method': 'Zonal root mean square error of equatorial_pacific pr, time series are linearly detrended, observations and model regridded to generic_1x1deg',
         'name': 'pr Zonal RMSE',
         'ref': 'Using CDAT regridding and rms (uncentered and biased) calculation',
         'time_frequency': 'monthly',
         'units': 'mm/day'},
        'metric': {'datasets': "CanCM4_r3i1p1; ERA-Interim's pr & GPCPv2.3's precip; 's ",
         'method': 'The metric is the statistical value between the model and the observations',
         'name': 'BiasPrLonRmse',
         'units': 'mm/day'}},
       'BiasSstLonRmse': {'diagnostic': {'CanCM4_r3i1p1': {'keyerror': None,
          'name': 'CanCM4_r3i1p1',
          'nyears': 45,
          'time_period': ['1961-1-16 12:0:0.0', '2005-12-16 12:0:0.0']},
         'ERA-Interim': {'name': 'ERA-Interim',
          'nyears': 40,
          'time_period': ['1979-1-16 12:0:0.0', '2019-3-16 12:0:0.0']},
         'HadISST': {'name': 'HadISST',
          'nyears': 151,
          'time_period': ['1870-1-16 11:59:59.5', '2020-10-16 12:0:0.0']},
         'Tropflux': {'name': 'Tropflux',
          'nyears': 40,
          'time_period': ['1979-1-15 0:0:0.0', '2018-12-15 12:0:0.0']},
         'method': 'Zonal root mean square error of equatorial_pacific sst, time series are linearly detrended, observations and model regridded to generic_1x1deg',
         'name': 'sst Zonal RMSE',
         'ref': 'Using CDAT regridding and rms (uncentered and biased) calculation',
         'time_frequency': 'monthly',
         'units': 'C'},
        'metric': {'datasets': "CanCM4_r3i1p1; ERA-Interim's ts & HadISST's sst & Tropflux's sst; 's ",
         'method': 'The metric is the statistical value between the model and the observations',
         'name': 'BiasSstLonRmse',
         'units': 'C'}},
       'BiasTauxLonRmse': {'diagnostic': {'CanCM4_r3i1p1': {'keyerror': None,
          'name': 'CanCM4_r3i1p1',
          'nyears': 45,
          'time_period': ['1961-1-16 12:0:0.0', '2005-12-16 12:0:0.0']},
         'ERA-Interim': {'name': 'ERA-Interim',
          'nyears': 40,
          'time_period': ['1979-1-16 12:0:0.0', '2019-3-16 12:0:0.0']},
         'Tropflux': {'name': 'Tropflux',
          'nyears': 40,
          'time_period': ['1979-1-15 0:0:0.0', '2018-12-15 12:0:0.0']},
         'method': 'Zonal root mean square error of equatorial_pacific taux, time series are linearly detrended, observations and model regridded to generic_1x1deg',
         'name': 'taux Zonal RMSE',
         'ref': 'Using CDAT regridding and rms (uncentered and biased) calculation',
         'time_frequency': 'monthly',
         'units': '1e-3 N/m2'},
        'metric': {'datasets': "CanCM4_r3i1p1; ERA-Interim's tauu & Tropflux's taux; 's ",
         'method': 'The metric is the statistical value between the model and the observations',
         'name': 'BiasTauxLonRmse',
         'units': '1e-3 N/m2'}},
       'EnsoAmpl': {'diagnostic': {'CanCM4_r3i1p1': {'keyerror': None,
          'name': 'CanCM4_r3i1p1',
          'nyears': 45,
          'time_period': ['1961-1-16 12:0:0.0', '2005-12-16 12:0:0.0']},
         'ERA-Interim': {'keyerror': None,
          'name': 'ERA-Interim',
          'nyears': 40,
          'time_period': ['1979-1-16 12:0:0.0', '2019-3-16 12:0:0.0']},
         'HadISST': {'keyerror': None,
          'name': 'HadISST',
          'nyears': 151,
          'time_period': ['1870-1-16 11:59:59.5', '2020-10-16 12:0:0.0']},
         'Tropflux': {'keyerror': None,
          'name': 'Tropflux',
          'nyears': 40,
          'time_period': ['1979-1-15 0:0:0.0', '2018-12-15 12:0:0.0']},
         'method': 'Standard deviation of nino3.4 sstA, time series are linearly detrended',
         'name': 'ENSO amplitude',
         'ref': 'Using CDAT regression calculation',
         'time_frequency': 'monthly',
         'units': 'C'},
        'metric': {'datasets': "CanCM4_r3i1p1; ERA-Interim's ts & HadISST's sst & Tropflux's sst; 's ",
         'method': 'The metric is the absolute value of the relative difference between model and observations values (M = 100 * abs[[model-obs] / obs])',
         'name': 'EnsoAmpl',
         'units': '%'}},
       'EnsoDuration': {'diagnostic': {'CanCM4_r3i1p1': {'keyerror': None,
          'name': 'CanCM4_r3i1p1',
          'nyears': 45,
          'time_period': ['1961-1-16 12:0:0.0', '2005-12-16 12:0:0.0']},
         'ERA-Interim': {'keyerror': None,
          'name': 'ERA-Interim',
          'nyears': 40,
          'time_period': ['1979-1-16 12:0:0.0', '2019-3-16 12:0:0.0']},
         'HadISST': {'keyerror': None,
          'name': 'HadISST',
          'nyears': 151,
          'time_period': ['1870-1-16 11:59:59.5', '2020-10-16 12:0:0.0']},
         'Tropflux': {'keyerror': None,
          'name': 'Tropflux',
          'nyears': 40,
          'time_period': ['1979-1-15 0:0:0.0', '2018-12-15 12:0:0.0']},
         'method': 'nino3.4 SSTA during DEC regressed against nino3.4 SSTA during 6 years (centered on ENSO), the duration is the number of consecutive months during which the regression is above 0.25, time series are linearly detrended, smoothing using a triangle shaped window of 5 points',
         'name': 'ENSO Duration based on life cyle SSTA pattern',
         'ref': 'Using CDAT',
         'time_frequency': 'monthly',
         'units': 'months'},
        'metric': {'datasets': "CanCM4_r3i1p1; ERA-Interim's ts & HadISST's sst & Tropflux's sst; 's ",
         'method': 'The metric is the absolute value of the relative difference between model and observations values (M = 100 * abs[[model-obs] / obs])',
         'name': 'EnsoDuration',
         'units': '%'}},
       'EnsoSeasonality': {'diagnostic': {'CanCM4_r3i1p1': {'keyerror': None,
          'name': 'CanCM4_r3i1p1',
          'nyears': 45,
          'time_period': ['1961-1-16 12:0:0.0', '2005-12-16 12:0:0.0']},
         'ERA-Interim': {'keyerror': None,
          'name': 'ERA-Interim',
          'nyears': 40,
          'time_period': ['1979-1-16 12:0:0.0', '2019-3-16 12:0:0.0']},
         'HadISST': {'keyerror': None,
          'name': 'HadISST',
          'nyears': 151,
          'time_period': ['1870-1-16 11:59:59.5', '2020-10-16 12:0:0.0']},
         'Tropflux': {'keyerror': None,
          'name': 'Tropflux',
          'nyears': 40,
          'time_period': ['1979-1-15 0:0:0.0', '2018-12-15 12:0:0.0']},
         'method': 'Ratio between NDJ and MAM standard deviation nino3.4 sstA, time series are linearly detrended',
         'name': 'ENSO seasonality',
         'ref': 'Using CDAT std dev calculation',
         'time_frequency': 'monthly',
         'units': 'C/C'},
        'metric': {'datasets': "CanCM4_r3i1p1; ERA-Interim's ts & HadISST's sst & Tropflux's sst; 's ",
         'method': 'The metric is the absolute value of the relative difference between model and observations values (M = 100 * abs[[model-obs] / obs])',
         'name': 'EnsoSeasonality',
         'units': '%'}},
       'EnsoSstDiversity_2': {'diagnostic': {'CanCM4_r3i1p1': {'keyerror': None,
          'name': 'CanCM4_r3i1p1',
          'nyears': 45,
          'time_period': ['1961-1-16 12:0:0.0', '2005-12-16 12:0:0.0']},
         'ERA-Interim': {'keyerror': None,
          'name': 'ERA-Interim',
          'nyears': 40,
          'time_period': ['1979-1-16 12:0:0.0', '2019-3-16 12:0:0.0']},
         'HadISST': {'keyerror': None,
          'name': 'HadISST',
          'nyears': 151,
          'time_period': ['1870-1-16 11:59:59.5', '2020-10-16 12:0:0.0']},
         'Tropflux': {'keyerror': None,
          'name': 'Tropflux',
          'nyears': 40,
          'time_period': ['1979-1-15 0:0:0.0', '2018-12-15 12:0:0.0']},
         'method': 'Nino (Nina) events = nino3.4 sstA > 0.75 (< -0.75) during DEC, zonal SSTA (meridional averaged [-5.0 ; 5.0]), the zonal SSTA maximum (minimum) is located for each event, the diversity is the interquartile range (IQR = Q3 - Q1), time series are linearly detrended, smoothing using a triangle shaped window of 5 points',
         'name': 'ENSO Diversity (interquartile range)',
         'ref': 'Using CDAT regridding',
         'time_frequency': 'monthly',
         'units': 'long'},
        'metric': {'datasets': "CanCM4_r3i1p1; ERA-Interim's ts & HadISST's sst & Tropflux's sst; 's ",
         'method': 'The metric is the absolute value of the relative difference between model and observations values (M = 100 * abs[[model-obs] / obs])',
         'name': 'EnsoSstDiversity',
         'units': '%'}},
       'EnsoSstLonRmse': {'diagnostic': {'CanCM4_r3i1p1': {'keyerror': None,
          'name': 'CanCM4_r3i1p1',
          'nyears': 45,
          'time_period': ['1961-1-16 12:0:0.0', '2005-12-16 12:0:0.0']},
         'ERA-Interim': {'name': 'ERA-Interim',
          'nyears': 40,
          'time_period': ['1979-1-16 12:0:0.0', '2019-3-16 12:0:0.0']},
         'HadISST': {'name': 'HadISST',
          'nyears': 151,
          'time_period': ['1870-1-16 11:59:59.5', '2020-10-16 12:0:0.0']},
         'Tropflux': {'name': 'Tropflux',
          'nyears': 40,
          'time_period': ['1979-1-15 0:0:0.0', '2018-12-15 12:0:0.0']},
         'method': 'nino3.4 SSTA during DEC regressed against equatorial_pacific SSTA, time series are linearly detrended, smoothing using a triangle shaped window of 5 points, observations and model regridded to generic_1x1deg',
         'name': 'ENSO Zonal SSTA pattern',
         'ref': 'Using CDAT regridding and rms (uncentered and biased) calculation',
         'time_frequency': 'monthly',
         'units': 'C/C'},
        'metric': {'datasets': "CanCM4_r3i1p1; ERA-Interim's ts & HadISST's sst & Tropflux's sst; 's ",
         'method': 'The metric is the statistical value between the model and the observations',
         'name': 'EnsoSstLonRmse',
         'units': 'C/C'}},
       'EnsoSstSkew': {'diagnostic': {'CanCM4_r3i1p1': {'keyerror': None,
          'name': 'CanCM4_r3i1p1',
          'nyears': 45,
          'time_period': ['1961-1-16 12:0:0.0', '2005-12-16 12:0:0.0']},
         'ERA-Interim': {'keyerror': None,
          'name': 'ERA-Interim',
          'nyears': 40,
          'time_period': ['1979-1-16 12:0:0.0', '2019-3-16 12:0:0.0']},
         'HadISST': {'keyerror': None,
          'name': 'HadISST',
          'nyears': 151,
          'time_period': ['1870-1-16 11:59:59.5', '2020-10-16 12:0:0.0']},
         'Tropflux': {'keyerror': None,
          'name': 'Tropflux',
          'nyears': 40,
          'time_period': ['1979-1-15 0:0:0.0', '2018-12-15 12:0:0.0']},
         'method': 'Standard deviation of nino3.4 sstA, time series are linearly detrended',
         'name': 'ENSO skewness',
         'ref': 'Using CDAT regression calculation',
         'time_frequency': 'monthly',
         'units': 'C'},
        'metric': {'datasets': "CanCM4_r3i1p1; ERA-Interim's ts & HadISST's sst & Tropflux's sst; 's ",
         'method': 'The metric is the absolute value of the relative difference between model and observations values (M = 100 * abs[[model-obs] / obs])',
         'name': 'EnsoSstSkew',
         'units': '%'}},
       'EnsoSstTsRmse': {'diagnostic': {'CanCM4_r3i1p1': {'keyerror': None,
          'name': 'CanCM4_r3i1p1',
          'nyears': 45,
          'time_period': ['1961-1-16 12:0:0.0', '2005-12-16 12:0:0.0']},
         'ERA-Interim': {'name': 'ERA-Interim',
          'nyears': 40,
          'time_period': ['1979-1-16 12:0:0.0', '2019-3-16 12:0:0.0']},
         'HadISST': {'name': 'HadISST',
          'nyears': 151,
          'time_period': ['1870-1-16 11:59:59.5', '2020-10-16 12:0:0.0']},
         'Tropflux': {'name': 'Tropflux',
          'nyears': 40,
          'time_period': ['1979-1-15 0:0:0.0', '2018-12-15 12:0:0.0']},
         'method': 'nino3.4 SSTA during DEC regressed against nino3.4 SSTA during 6 years (centered on ENSO), time series are linearly detrended, smoothing using a triangle shaped window of 5 points',
         'name': 'ENSO life cyle SSTA pattern',
         'ref': 'Using CDAT regridding and rms (uncentered and biased) calculation',
         'time_frequency': 'monthly',
         'units': 'C/C'},
        'metric': {'datasets': "CanCM4_r3i1p1; ERA-Interim's ts & HadISST's sst & Tropflux's sst; 's ",
         'method': 'The metric is the statistical value between the model and the observations',
         'name': 'EnsoSstTsRmse',
         'units': 'C/C'}},
       'SeasonalPrLatRmse': {'diagnostic': {'CanCM4_r3i1p1': {'keyerror': None,
          'name': 'CanCM4_r3i1p1',
          'nyears': 45,
          'time_period': ['1961-1-16 12:0:0.0', '2005-12-16 12:0:0.0']},
         'ERA-Interim': {'name': 'ERA-Interim',
          'nyears': 40,
          'time_period': ['1979-1-16 12:0:0.0', '2019-3-16 12:0:0.0']},
         'GPCPv2.3': {'name': 'GPCPv2.3',
          'nyears': 41,
          'time_period': ['1979-1-1 0:0:0.0', '2019-7-1 0:0:0.0']},
         'method': 'Meridional root mean square error of nino3_LatExt climatological pr STD, time series are linearly detrended, observations and model regridded to generic_1x1deg',
         'name': 'pr meridional seasonality RMSE',
         'ref': 'Using CDAT regridding and rms (uncentered and biased) calculation',
         'time_frequency': 'monthly',
         'units': 'mm/day'},
        'metric': {'datasets': "CanCM4_r3i1p1; ERA-Interim's pr & GPCPv2.3's precip; 's ",
         'method': 'The metric is the statistical value between the model and the observations',
         'name': 'SeasonalPrLatRmse',
         'units': 'mm/day'}},
       'SeasonalPrLonRmse': {'diagnostic': {'CanCM4_r3i1p1': {'keyerror': None,
          'name': 'CanCM4_r3i1p1',
          'nyears': 45,
          'time_period': ['1961-1-16 12:0:0.0', '2005-12-16 12:0:0.0']},
         'ERA-Interim': {'name': 'ERA-Interim',
          'nyears': 40,
          'time_period': ['1979-1-16 12:0:0.0', '2019-3-16 12:0:0.0']},
         'GPCPv2.3': {'name': 'GPCPv2.3',
          'nyears': 41,
          'time_period': ['1979-1-1 0:0:0.0', '2019-7-1 0:0:0.0']},
         'method': 'Zonal root mean square error of equatorial_pacific climatological pr STD, time series are linearly detrended, observations and model regridded to generic_1x1deg',
         'name': 'pr zonal seasonality RMSE',
         'ref': 'Using CDAT regridding and rms (uncentered and biased) calculation',
         'time_frequency': 'monthly',
         'units': 'mm/day'},
        'metric': {'datasets': "CanCM4_r3i1p1; ERA-Interim's pr & GPCPv2.3's precip; 's ",
         'method': 'The metric is the statistical value between the model and the observations',
         'name': 'SeasonalPrLonRmse',
         'units': 'mm/day'}},
       'SeasonalSstLonRmse': {'diagnostic': {'CanCM4_r3i1p1': {'keyerror': None,
          'name': 'CanCM4_r3i1p1',
          'nyears': 45,
          'time_period': ['1961-1-16 12:0:0.0', '2005-12-16 12:0:0.0']},
         'ERA-Interim': {'name': 'ERA-Interim',
          'nyears': 40,
          'time_period': ['1979-1-16 12:0:0.0', '2019-3-16 12:0:0.0']},
         'HadISST': {'name': 'HadISST',
          'nyears': 151,
          'time_period': ['1870-1-16 11:59:59.5', '2020-10-16 12:0:0.0']},
         'Tropflux': {'name': 'Tropflux',
          'nyears': 40,
          'time_period': ['1979-1-15 0:0:0.0', '2018-12-15 12:0:0.0']},
         'method': 'Zonal root mean square error of equatorial_pacific climatological sst STD, time series are linearly detrended, observations and model regridded to generic_1x1deg',
         'name': 'sst zonal seasonality RMSE',
         'ref': 'Using CDAT regridding and rms (uncentered and biased) calculation',
         'time_frequency': 'monthly',
         'units': 'C'},
        'metric': {'datasets': "CanCM4_r3i1p1; ERA-Interim's ts & HadISST's sst & Tropflux's sst; 's ",
         'method': 'The metric is the statistical value between the model and the observations',
         'name': 'SeasonalSstLonRmse',
         'units': 'C'}},
       'SeasonalTauxLonRmse': {'diagnostic': {'CanCM4_r3i1p1': {'keyerror': None,
          'name': 'CanCM4_r3i1p1',
          'nyears': 45,
          'time_period': ['1961-1-16 12:0:0.0', '2005-12-16 12:0:0.0']},
         'ERA-Interim': {'name': 'ERA-Interim',
          'nyears': 40,
          'time_period': ['1979-1-16 12:0:0.0', '2019-3-16 12:0:0.0']},
         'Tropflux': {'name': 'Tropflux',
          'nyears': 40,
          'time_period': ['1979-1-15 0:0:0.0', '2018-12-15 12:0:0.0']},
         'method': 'Zonal root mean square error of equatorial_pacific climatological taux STD, time series are linearly detrended, observations and model regridded to generic_1x1deg',
         'name': 'taux zonal seasonality RMSE',
         'ref': 'Using CDAT regridding and rms (uncentered and biased) calculation',
         'time_frequency': 'monthly',
         'units': '1e-3 N/m2'},
        'metric': {'datasets': "CanCM4_r3i1p1; ERA-Interim's tauu & Tropflux's taux; 's ",
         'method': 'The metric is the statistical value between the model and the observations',
         'name': 'SeasonalTauxLonRmse',
         'units': '1e-3 N/m2'}}},
      'name': 'Metrics Collection for ENSO performance'},
     'value': {'BiasPrLatRmse': {'diagnostic': {'CanCM4_r3i1p1': {'value': None,
         'value_error': None},
        'ERA-Interim': {'value': None, 'value_error': None},
        'GPCPv2.3': {'value': None, 'value_error': None}},
       'metric': {'ERA-Interim': {'value': 0.6751418087849723,
         'value_error': None},
        'GPCPv2.3': {'value': 1.1139097341849589, 'value_error': None}}},
      'BiasPrLonRmse': {'diagnostic': {'CanCM4_r3i1p1': {'value': None,
         'value_error': None},
        'ERA-Interim': {'value': None, 'value_error': None},
        'GPCPv2.3': {'value': None, 'value_error': None}},
       'metric': {'ERA-Interim': {'value': 1.6848737267086018,
         'value_error': None},
        'GPCPv2.3': {'value': 0.9468470066596161, 'value_error': None}}},
      'BiasSstLonRmse': {'diagnostic': {'CanCM4_r3i1p1': {'value': None,
         'value_error': None},
        'ERA-Interim': {'value': None, 'value_error': None},
        'HadISST': {'value': None, 'value_error': None},
        'Tropflux': {'value': None, 'value_error': None}},
       'metric': {'ERA-Interim': {'value': 0.8583656240827348,
         'value_error': None},
        'HadISST': {'value': 0.816677377826456, 'value_error': None},
        'Tropflux': {'value': 0.8881385564660573, 'value_error': None}}},
      'BiasTauxLonRmse': {'diagnostic': {'CanCM4_r3i1p1': {'value': None,
         'value_error': None},
        'ERA-Interim': {'value': None, 'value_error': None},
        'Tropflux': {'value': None, 'value_error': None}},
       'metric': {'ERA-Interim': {'value': 3.266359031107471,
         'value_error': None},
        'Tropflux': {'value': 4.059820933538098, 'value_error': None}}},
      'EnsoAmpl': {'diagnostic': {'CanCM4_r3i1p1': {'value': 0.9319376557394643,
         'value_error': 0.13892506326834927},
        'ERA-Interim': {'value': 0.8989844997845644,
         'value_error': 0.14214193002531866},
        'HadISST': {'value': 0.7665787872085695,
         'value_error': 0.06238329697691264},
        'Tropflux': {'value': 0.9039789553693535,
         'value_error': 0.14293162279134272}},
       'metric': {'ERA-Interim': {'value': 3.6655977898169425,
         'value_error': 31.844525106682436},
        'HadISST': {'value': 21.571020655689523,
         'value_error': 28.016047105073223},
        'Tropflux': {'value': 3.0928485894549715,
         'value_error': 31.668585096885376}}},
      'EnsoDuration': {'diagnostic': {'CanCM4_r3i1p1': {'value': 12.0,
         'value_error': None},
        'ERA-Interim': {'value': 13.0, 'value_error': None},
        'HadISST': {'value': 13.0, 'value_error': None},
        'Tropflux': {'value': 13.0, 'value_error': None}},
       'metric': {'ERA-Interim': {'value': 7.6923076923076925,
         'value_error': None},
        'HadISST': {'value': 7.6923076923076925, 'value_error': None},
        'Tropflux': {'value': 7.6923076923076925, 'value_error': None}}},
      'EnsoSeasonality': {'diagnostic': {'CanCM4_r3i1p1': {'value': 1.3376420290458921,
         'value_error': 0.40106102380450165},
        'ERA-Interim': {'value': 2.0466846866656914,
         'value_error': 0.6513411033995022},
        'HadISST': {'value': 1.6639865947361325,
         'value_error': 0.2712772451657809},
        'Tropflux': {'value': 2.0532132553583624,
         'value_error': 0.6534187683977347}},
       'metric': {'ERA-Interim': {'value': 34.64347303906981,
         'value_error': 40.394837223427224},
        'HadISST': {'value': 19.612211223491897,
         'value_error': 37.20792010017841},
        'Tropflux': {'value': 34.85128612164431,
         'value_error': 40.26639441849492}}},
      'EnsoSstDiversity_2': {'diagnostic': {'CanCM4_r3i1p1': {'value': 9.0,
         'value_error': None},
        'ERA-Interim': {'value': 33.25, 'value_error': None},
        'HadISST': {'value': 49.0, 'value_error': None},
        'Tropflux': {'value': 32.0, 'value_error': None}},
       'metric': {'ERA-Interim': {'value': 72.93233082706767,
         'value_error': None},
        'HadISST': {'value': 81.63265306122449, 'value_error': None},
        'Tropflux': {'value': 71.875, 'value_error': None}}},
      'EnsoSstLonRmse': {'diagnostic': {'CanCM4_r3i1p1': {'value': None,
         'value_error': None},
        'ERA-Interim': {'value': None, 'value_error': None},
        'HadISST': {'value': None, 'value_error': None},
        'Tropflux': {'value': None, 'value_error': None}},
       'metric': {'ERA-Interim': {'value': 0.2283436324627203,
         'value_error': None},
        'HadISST': {'value': 0.2538094497427658, 'value_error': None},
        'Tropflux': {'value': 0.2286547368732959, 'value_error': None}}},
      'EnsoSstSkew': {'diagnostic': {'CanCM4_r3i1p1': {'value': -0.41709223197585865,
         'value_error': -0.062176438905675424},
        'ERA-Interim': {'value': 0.39098111106809963,
         'value_error': 0.061819541653923164},
        'HadISST': {'value': 0.38989908235027515,
         'value_error': 0.03172953733021198},
        'Tropflux': {'value': 0.39744741059612115,
         'value_error': 0.06284195338099416}},
       'metric': {'ERA-Interim': {'value': 206.67835866454715,
         'value_error': -32.77000030155177},
        'HadISST': {'value': 206.97440718805126,
         'value_error': -24.652256883700588},
        'Tropflux': {'value': 204.94274735625342,
         'value_error': -32.23684640034666}}},
      'EnsoSstTsRmse': {'diagnostic': {'CanCM4_r3i1p1': {'value': None,
         'value_error': None},
        'ERA-Interim': {'value': None, 'value_error': None},
        'HadISST': {'value': None, 'value_error': None},
        'Tropflux': {'value': None, 'value_error': None}},
       'metric': {'ERA-Interim': {'value': 0.16730610373443375,
         'value_error': None},
        'HadISST': {'value': 0.16267225979743535, 'value_error': None},
        'Tropflux': {'value': 0.16690115673332662, 'value_error': None}}},
      'SeasonalPrLatRmse': {'diagnostic': {'CanCM4_r3i1p1': {'value': None,
         'value_error': None},
        'ERA-Interim': {'value': None, 'value_error': None},
        'GPCPv2.3': {'value': None, 'value_error': None}},
       'metric': {'ERA-Interim': {'value': 0.8052461401468826,
         'value_error': None},
        'GPCPv2.3': {'value': 1.1658523199232045, 'value_error': None}}},
      'SeasonalPrLonRmse': {'diagnostic': {'CanCM4_r3i1p1': {'value': None,
         'value_error': None},
        'ERA-Interim': {'value': None, 'value_error': None},
        'GPCPv2.3': {'value': None, 'value_error': None}},
       'metric': {'ERA-Interim': {'value': 0.5112780257212968,
         'value_error': None},
        'GPCPv2.3': {'value': 0.7694240365755568, 'value_error': None}}},
      'SeasonalSstLonRmse': {'diagnostic': {'CanCM4_r3i1p1': {'value': None,
         'value_error': None},
        'ERA-Interim': {'value': None, 'value_error': None},
        'HadISST': {'value': None, 'value_error': None},
        'Tropflux': {'value': None, 'value_error': None}},
       'metric': {'ERA-Interim': {'value': 0.3581701893220753,
         'value_error': None},
        'HadISST': {'value': 0.3764250180888388, 'value_error': None},
        'Tropflux': {'value': 0.36054676170571615, 'value_error': None}}},
      'SeasonalTauxLonRmse': {'diagnostic': {'CanCM4_r3i1p1': {'value': None,
         'value_error': None},
        'ERA-Interim': {'value': None, 'value_error': None},
        'Tropflux': {'value': None, 'value_error': None}},
       'metric': {'ERA-Interim': {'value': 3.5450467256080125,
         'value_error': None},
        'Tropflux': {'value': 3.389895585804732, 'value_error': None}}}}},
    'r4i1p1': {'metadata': {'description_of_the_collection': 'Describe which science question this collection is about',
      'metrics': {'BiasPrLatRmse': {'diagnostic': {'CanCM4_r4i1p1': {'keyerror': None,
          'name': 'CanCM4_r4i1p1',
          'nyears': 45,
          'time_period': ['1961-1-16 12:0:0.0', '2005-12-16 12:0:0.0']},
         'ERA-Interim': {'name': 'ERA-Interim',
          'nyears': 40,
          'time_period': ['1979-1-16 12:0:0.0', '2019-3-16 12:0:0.0']},
         'GPCPv2.3': {'name': 'GPCPv2.3',
          'nyears': 41,
          'time_period': ['1979-1-1 0:0:0.0', '2019-7-1 0:0:0.0']},
         'method': 'Meridional root mean square error of nino3_LatExt pr, time series are linearly detrended, observations and model regridded to generic_1x1deg',
         'name': 'pr Meridional RMSE',
         'ref': 'Using CDAT regridding and rms (uncentered and biased) calculation',
         'time_frequency': 'monthly',
         'units': 'mm/day'},
        'metric': {'datasets': "CanCM4_r4i1p1; ERA-Interim's pr & GPCPv2.3's precip; 's ",
         'method': 'The metric is the statistical value between the model and the observations',
         'name': 'BiasPrLatRmse',
         'units': 'mm/day'}},
       'BiasPrLonRmse': {'diagnostic': {'CanCM4_r4i1p1': {'keyerror': None,
          'name': 'CanCM4_r4i1p1',
          'nyears': 45,
          'time_period': ['1961-1-16 12:0:0.0', '2005-12-16 12:0:0.0']},
         'ERA-Interim': {'name': 'ERA-Interim',
          'nyears': 40,
          'time_period': ['1979-1-16 12:0:0.0', '2019-3-16 12:0:0.0']},
         'GPCPv2.3': {'name': 'GPCPv2.3',
          'nyears': 41,
          'time_period': ['1979-1-1 0:0:0.0', '2019-7-1 0:0:0.0']},
         'method': 'Zonal root mean square error of equatorial_pacific pr, time series are linearly detrended, observations and model regridded to generic_1x1deg',
         'name': 'pr Zonal RMSE',
         'ref': 'Using CDAT regridding and rms (uncentered and biased) calculation',
         'time_frequency': 'monthly',
         'units': 'mm/day'},
        'metric': {'datasets': "CanCM4_r4i1p1; ERA-Interim's pr & GPCPv2.3's precip; 's ",
         'method': 'The metric is the statistical value between the model and the observations',
         'name': 'BiasPrLonRmse',
         'units': 'mm/day'}},
       'BiasSstLonRmse': {'diagnostic': {'CanCM4_r4i1p1': {'keyerror': None,
          'name': 'CanCM4_r4i1p1',
          'nyears': 45,
          'time_period': ['1961-1-16 12:0:0.0', '2005-12-16 12:0:0.0']},
         'ERA-Interim': {'name': 'ERA-Interim',
          'nyears': 40,
          'time_period': ['1979-1-16 12:0:0.0', '2019-3-16 12:0:0.0']},
         'HadISST': {'name': 'HadISST',
          'nyears': 151,
          'time_period': ['1870-1-16 11:59:59.5', '2020-10-16 12:0:0.0']},
         'Tropflux': {'name': 'Tropflux',
          'nyears': 40,
          'time_period': ['1979-1-15 0:0:0.0', '2018-12-15 12:0:0.0']},
         'method': 'Zonal root mean square error of equatorial_pacific sst, time series are linearly detrended, observations and model regridded to generic_1x1deg',
         'name': 'sst Zonal RMSE',
         'ref': 'Using CDAT regridding and rms (uncentered and biased) calculation',
         'time_frequency': 'monthly',
         'units': 'C'},
        'metric': {'datasets': "CanCM4_r4i1p1; ERA-Interim's ts & HadISST's sst & Tropflux's sst; 's ",
         'method': 'The metric is the statistical value between the model and the observations',
         'name': 'BiasSstLonRmse',
         'units': 'C'}},
       'BiasTauxLonRmse': {'diagnostic': {'CanCM4_r4i1p1': {'keyerror': None,
          'name': 'CanCM4_r4i1p1',
          'nyears': 45,
          'time_period': ['1961-1-16 12:0:0.0', '2005-12-16 12:0:0.0']},
         'ERA-Interim': {'name': 'ERA-Interim',
          'nyears': 40,
          'time_period': ['1979-1-16 12:0:0.0', '2019-3-16 12:0:0.0']},
         'Tropflux': {'name': 'Tropflux',
          'nyears': 40,
          'time_period': ['1979-1-15 0:0:0.0', '2018-12-15 12:0:0.0']},
         'method': 'Zonal root mean square error of equatorial_pacific taux, time series are linearly detrended, observations and model regridded to generic_1x1deg',
         'name': 'taux Zonal RMSE',
         'ref': 'Using CDAT regridding and rms (uncentered and biased) calculation',
         'time_frequency': 'monthly',
         'units': '1e-3 N/m2'},
        'metric': {'datasets': "CanCM4_r4i1p1; ERA-Interim's tauu & Tropflux's taux; 's ",
         'method': 'The metric is the statistical value between the model and the observations',
         'name': 'BiasTauxLonRmse',
         'units': '1e-3 N/m2'}},
       'EnsoAmpl': {'diagnostic': {'CanCM4_r4i1p1': {'keyerror': None,
          'name': 'CanCM4_r4i1p1',
          'nyears': 45,
          'time_period': ['1961-1-16 12:0:0.0', '2005-12-16 12:0:0.0']},
         'ERA-Interim': {'keyerror': None,
          'name': 'ERA-Interim',
          'nyears': 40,
          'time_period': ['1979-1-16 12:0:0.0', '2019-3-16 12:0:0.0']},
         'HadISST': {'keyerror': None,
          'name': 'HadISST',
          'nyears': 151,
          'time_period': ['1870-1-16 11:59:59.5', '2020-10-16 12:0:0.0']},
         'Tropflux': {'keyerror': None,
          'name': 'Tropflux',
          'nyears': 40,
          'time_period': ['1979-1-15 0:0:0.0', '2018-12-15 12:0:0.0']},
         'method': 'Standard deviation of nino3.4 sstA, time series are linearly detrended',
         'name': 'ENSO amplitude',
         'ref': 'Using CDAT regression calculation',
         'time_frequency': 'monthly',
         'units': 'C'},
        'metric': {'datasets': "CanCM4_r4i1p1; ERA-Interim's ts & HadISST's sst & Tropflux's sst; 's ",
         'method': 'The metric is the absolute value of the relative difference between model and observations values (M = 100 * abs[[model-obs] / obs])',
         'name': 'EnsoAmpl',
         'units': '%'}},
       'EnsoDuration': {'diagnostic': {'CanCM4_r4i1p1': {'keyerror': None,
          'name': 'CanCM4_r4i1p1',
          'nyears': 45,
          'time_period': ['1961-1-16 12:0:0.0', '2005-12-16 12:0:0.0']},
         'ERA-Interim': {'keyerror': None,
          'name': 'ERA-Interim',
          'nyears': 40,
          'time_period': ['1979-1-16 12:0:0.0', '2019-3-16 12:0:0.0']},
         'HadISST': {'keyerror': None,
          'name': 'HadISST',
          'nyears': 151,
          'time_period': ['1870-1-16 11:59:59.5', '2020-10-16 12:0:0.0']},
         'Tropflux': {'keyerror': None,
          'name': 'Tropflux',
          'nyears': 40,
          'time_period': ['1979-1-15 0:0:0.0', '2018-12-15 12:0:0.0']},
         'method': 'nino3.4 SSTA during DEC regressed against nino3.4 SSTA during 6 years (centered on ENSO), the duration is the number of consecutive months during which the regression is above 0.25, time series are linearly detrended, smoothing using a triangle shaped window of 5 points',
         'name': 'ENSO Duration based on life cyle SSTA pattern',
         'ref': 'Using CDAT',
         'time_frequency': 'monthly',
         'units': 'months'},
        'metric': {'datasets': "CanCM4_r4i1p1; ERA-Interim's ts & HadISST's sst & Tropflux's sst; 's ",
         'method': 'The metric is the absolute value of the relative difference between model and observations values (M = 100 * abs[[model-obs] / obs])',
         'name': 'EnsoDuration',
         'units': '%'}},
       'EnsoSeasonality': {'diagnostic': {'CanCM4_r4i1p1': {'keyerror': None,
          'name': 'CanCM4_r4i1p1',
          'nyears': 45,
          'time_period': ['1961-1-16 12:0:0.0', '2005-12-16 12:0:0.0']},
         'ERA-Interim': {'keyerror': None,
          'name': 'ERA-Interim',
          'nyears': 40,
          'time_period': ['1979-1-16 12:0:0.0', '2019-3-16 12:0:0.0']},
         'HadISST': {'keyerror': None,
          'name': 'HadISST',
          'nyears': 151,
          'time_period': ['1870-1-16 11:59:59.5', '2020-10-16 12:0:0.0']},
         'Tropflux': {'keyerror': None,
          'name': 'Tropflux',
          'nyears': 40,
          'time_period': ['1979-1-15 0:0:0.0', '2018-12-15 12:0:0.0']},
         'method': 'Ratio between NDJ and MAM standard deviation nino3.4 sstA, time series are linearly detrended',
         'name': 'ENSO seasonality',
         'ref': 'Using CDAT std dev calculation',
         'time_frequency': 'monthly',
         'units': 'C/C'},
        'metric': {'datasets': "CanCM4_r4i1p1; ERA-Interim's ts & HadISST's sst & Tropflux's sst; 's ",
         'method': 'The metric is the absolute value of the relative difference between model and observations values (M = 100 * abs[[model-obs] / obs])',
         'name': 'EnsoSeasonality',
         'units': '%'}},
       'EnsoSstDiversity_2': {'diagnostic': {'CanCM4_r4i1p1': {'keyerror': None,
          'name': 'CanCM4_r4i1p1',
          'nyears': 45,
          'time_period': ['1961-1-16 12:0:0.0', '2005-12-16 12:0:0.0']},
         'ERA-Interim': {'keyerror': None,
          'name': 'ERA-Interim',
          'nyears': 40,
          'time_period': ['1979-1-16 12:0:0.0', '2019-3-16 12:0:0.0']},
         'HadISST': {'keyerror': None,
          'name': 'HadISST',
          'nyears': 151,
          'time_period': ['1870-1-16 11:59:59.5', '2020-10-16 12:0:0.0']},
         'Tropflux': {'keyerror': None,
          'name': 'Tropflux',
          'nyears': 40,
          'time_period': ['1979-1-15 0:0:0.0', '2018-12-15 12:0:0.0']},
         'method': 'Nino (Nina) events = nino3.4 sstA > 0.75 (< -0.75) during DEC, zonal SSTA (meridional averaged [-5.0 ; 5.0]), the zonal SSTA maximum (minimum) is located for each event, the diversity is the interquartile range (IQR = Q3 - Q1), time series are linearly detrended, smoothing using a triangle shaped window of 5 points',
         'name': 'ENSO Diversity (interquartile range)',
         'ref': 'Using CDAT regridding',
         'time_frequency': 'monthly',
         'units': 'long'},
        'metric': {'datasets': "CanCM4_r4i1p1; ERA-Interim's ts & HadISST's sst & Tropflux's sst; 's ",
         'method': 'The metric is the absolute value of the relative difference between model and observations values (M = 100 * abs[[model-obs] / obs])',
         'name': 'EnsoSstDiversity',
         'units': '%'}},
       'EnsoSstLonRmse': {'diagnostic': {'CanCM4_r4i1p1': {'keyerror': None,
          'name': 'CanCM4_r4i1p1',
          'nyears': 45,
          'time_period': ['1961-1-16 12:0:0.0', '2005-12-16 12:0:0.0']},
         'ERA-Interim': {'name': 'ERA-Interim',
          'nyears': 40,
          'time_period': ['1979-1-16 12:0:0.0', '2019-3-16 12:0:0.0']},
         'HadISST': {'name': 'HadISST',
          'nyears': 151,
          'time_period': ['1870-1-16 11:59:59.5', '2020-10-16 12:0:0.0']},
         'Tropflux': {'name': 'Tropflux',
          'nyears': 40,
          'time_period': ['1979-1-15 0:0:0.0', '2018-12-15 12:0:0.0']},
         'method': 'nino3.4 SSTA during DEC regressed against equatorial_pacific SSTA, time series are linearly detrended, smoothing using a triangle shaped window of 5 points, observations and model regridded to generic_1x1deg',
         'name': 'ENSO Zonal SSTA pattern',
         'ref': 'Using CDAT regridding and rms (uncentered and biased) calculation',
         'time_frequency': 'monthly',
         'units': 'C/C'},
        'metric': {'datasets': "CanCM4_r4i1p1; ERA-Interim's ts & HadISST's sst & Tropflux's sst; 's ",
         'method': 'The metric is the statistical value between the model and the observations',
         'name': 'EnsoSstLonRmse',
         'units': 'C/C'}},
       'EnsoSstSkew': {'diagnostic': {'CanCM4_r4i1p1': {'keyerror': None,
          'name': 'CanCM4_r4i1p1',
          'nyears': 45,
          'time_period': ['1961-1-16 12:0:0.0', '2005-12-16 12:0:0.0']},
         'ERA-Interim': {'keyerror': None,
          'name': 'ERA-Interim',
          'nyears': 40,
          'time_period': ['1979-1-16 12:0:0.0', '2019-3-16 12:0:0.0']},
         'HadISST': {'keyerror': None,
          'name': 'HadISST',
          'nyears': 151,
          'time_period': ['1870-1-16 11:59:59.5', '2020-10-16 12:0:0.0']},
         'Tropflux': {'keyerror': None,
          'name': 'Tropflux',
          'nyears': 40,
          'time_period': ['1979-1-15 0:0:0.0', '2018-12-15 12:0:0.0']},
         'method': 'Standard deviation of nino3.4 sstA, time series are linearly detrended',
         'name': 'ENSO skewness',
         'ref': 'Using CDAT regression calculation',
         'time_frequency': 'monthly',
         'units': 'C'},
        'metric': {'datasets': "CanCM4_r4i1p1; ERA-Interim's ts & HadISST's sst & Tropflux's sst; 's ",
         'method': 'The metric is the absolute value of the relative difference between model and observations values (M = 100 * abs[[model-obs] / obs])',
         'name': 'EnsoSstSkew',
         'units': '%'}},
       'EnsoSstTsRmse': {'diagnostic': {'CanCM4_r4i1p1': {'keyerror': None,
          'name': 'CanCM4_r4i1p1',
          'nyears': 45,
          'time_period': ['1961-1-16 12:0:0.0', '2005-12-16 12:0:0.0']},
         'ERA-Interim': {'name': 'ERA-Interim',
          'nyears': 40,
          'time_period': ['1979-1-16 12:0:0.0', '2019-3-16 12:0:0.0']},
         'HadISST': {'name': 'HadISST',
          'nyears': 151,
          'time_period': ['1870-1-16 11:59:59.5', '2020-10-16 12:0:0.0']},
         'Tropflux': {'name': 'Tropflux',
          'nyears': 40,
          'time_period': ['1979-1-15 0:0:0.0', '2018-12-15 12:0:0.0']},
         'method': 'nino3.4 SSTA during DEC regressed against nino3.4 SSTA during 6 years (centered on ENSO), time series are linearly detrended, smoothing using a triangle shaped window of 5 points',
         'name': 'ENSO life cyle SSTA pattern',
         'ref': 'Using CDAT regridding and rms (uncentered and biased) calculation',
         'time_frequency': 'monthly',
         'units': 'C/C'},
        'metric': {'datasets': "CanCM4_r4i1p1; ERA-Interim's ts & HadISST's sst & Tropflux's sst; 's ",
         'method': 'The metric is the statistical value between the model and the observations',
         'name': 'EnsoSstTsRmse',
         'units': 'C/C'}},
       'SeasonalPrLatRmse': {'diagnostic': {'CanCM4_r4i1p1': {'keyerror': None,
          'name': 'CanCM4_r4i1p1',
          'nyears': 45,
          'time_period': ['1961-1-16 12:0:0.0', '2005-12-16 12:0:0.0']},
         'ERA-Interim': {'name': 'ERA-Interim',
          'nyears': 40,
          'time_period': ['1979-1-16 12:0:0.0', '2019-3-16 12:0:0.0']},
         'GPCPv2.3': {'name': 'GPCPv2.3',
          'nyears': 41,
          'time_period': ['1979-1-1 0:0:0.0', '2019-7-1 0:0:0.0']},
         'method': 'Meridional root mean square error of nino3_LatExt climatological pr STD, time series are linearly detrended, observations and model regridded to generic_1x1deg',
         'name': 'pr meridional seasonality RMSE',
         'ref': 'Using CDAT regridding and rms (uncentered and biased) calculation',
         'time_frequency': 'monthly',
         'units': 'mm/day'},
        'metric': {'datasets': "CanCM4_r4i1p1; ERA-Interim's pr & GPCPv2.3's precip; 's ",
         'method': 'The metric is the statistical value between the model and the observations',
         'name': 'SeasonalPrLatRmse',
         'units': 'mm/day'}},
       'SeasonalPrLonRmse': {'diagnostic': {'CanCM4_r4i1p1': {'keyerror': None,
          'name': 'CanCM4_r4i1p1',
          'nyears': 45,
          'time_period': ['1961-1-16 12:0:0.0', '2005-12-16 12:0:0.0']},
         'ERA-Interim': {'name': 'ERA-Interim',
          'nyears': 40,
          'time_period': ['1979-1-16 12:0:0.0', '2019-3-16 12:0:0.0']},
         'GPCPv2.3': {'name': 'GPCPv2.3',
          'nyears': 41,
          'time_period': ['1979-1-1 0:0:0.0', '2019-7-1 0:0:0.0']},
         'method': 'Zonal root mean square error of equatorial_pacific climatological pr STD, time series are linearly detrended, observations and model regridded to generic_1x1deg',
         'name': 'pr zonal seasonality RMSE',
         'ref': 'Using CDAT regridding and rms (uncentered and biased) calculation',
         'time_frequency': 'monthly',
         'units': 'mm/day'},
        'metric': {'datasets': "CanCM4_r4i1p1; ERA-Interim's pr & GPCPv2.3's precip; 's ",
         'method': 'The metric is the statistical value between the model and the observations',
         'name': 'SeasonalPrLonRmse',
         'units': 'mm/day'}},
       'SeasonalSstLonRmse': {'diagnostic': {'CanCM4_r4i1p1': {'keyerror': None,
          'name': 'CanCM4_r4i1p1',
          'nyears': 45,
          'time_period': ['1961-1-16 12:0:0.0', '2005-12-16 12:0:0.0']},
         'ERA-Interim': {'name': 'ERA-Interim',
          'nyears': 40,
          'time_period': ['1979-1-16 12:0:0.0', '2019-3-16 12:0:0.0']},
         'HadISST': {'name': 'HadISST',
          'nyears': 151,
          'time_period': ['1870-1-16 11:59:59.5', '2020-10-16 12:0:0.0']},
         'Tropflux': {'name': 'Tropflux',
          'nyears': 40,
          'time_period': ['1979-1-15 0:0:0.0', '2018-12-15 12:0:0.0']},
         'method': 'Zonal root mean square error of equatorial_pacific climatological sst STD, time series are linearly detrended, observations and model regridded to generic_1x1deg',
         'name': 'sst zonal seasonality RMSE',
         'ref': 'Using CDAT regridding and rms (uncentered and biased) calculation',
         'time_frequency': 'monthly',
         'units': 'C'},
        'metric': {'datasets': "CanCM4_r4i1p1; ERA-Interim's ts & HadISST's sst & Tropflux's sst; 's ",
         'method': 'The metric is the statistical value between the model and the observations',
         'name': 'SeasonalSstLonRmse',
         'units': 'C'}},
       'SeasonalTauxLonRmse': {'diagnostic': {'CanCM4_r4i1p1': {'keyerror': None,
          'name': 'CanCM4_r4i1p1',
          'nyears': 45,
          'time_period': ['1961-1-16 12:0:0.0', '2005-12-16 12:0:0.0']},
         'ERA-Interim': {'name': 'ERA-Interim',
          'nyears': 40,
          'time_period': ['1979-1-16 12:0:0.0', '2019-3-16 12:0:0.0']},
         'Tropflux': {'name': 'Tropflux',
          'nyears': 40,
          'time_period': ['1979-1-15 0:0:0.0', '2018-12-15 12:0:0.0']},
         'method': 'Zonal root mean square error of equatorial_pacific climatological taux STD, time series are linearly detrended, observations and model regridded to generic_1x1deg',
         'name': 'taux zonal seasonality RMSE',
         'ref': 'Using CDAT regridding and rms (uncentered and biased) calculation',
         'time_frequency': 'monthly',
         'units': '1e-3 N/m2'},
        'metric': {'datasets': "CanCM4_r4i1p1; ERA-Interim's tauu & Tropflux's taux; 's ",
         'method': 'The metric is the statistical value between the model and the observations',
         'name': 'SeasonalTauxLonRmse',
         'units': '1e-3 N/m2'}}},
      'name': 'Metrics Collection for ENSO performance'},
     'value': {'BiasPrLatRmse': {'diagnostic': {'CanCM4_r4i1p1': {'value': None,
         'value_error': None},
        'ERA-Interim': {'value': None, 'value_error': None},
        'GPCPv2.3': {'value': None, 'value_error': None}},
       'metric': {'ERA-Interim': {'value': 0.7092630883257897,
         'value_error': None},
        'GPCPv2.3': {'value': 1.0924569132559945, 'value_error': None}}},
      'BiasPrLonRmse': {'diagnostic': {'CanCM4_r4i1p1': {'value': None,
         'value_error': None},
        'ERA-Interim': {'value': None, 'value_error': None},
        'GPCPv2.3': {'value': None, 'value_error': None}},
       'metric': {'ERA-Interim': {'value': 1.7324283677330667,
         'value_error': None},
        'GPCPv2.3': {'value': 0.950098441498233, 'value_error': None}}},
      'BiasSstLonRmse': {'diagnostic': {'CanCM4_r4i1p1': {'value': None,
         'value_error': None},
        'ERA-Interim': {'value': None, 'value_error': None},
        'HadISST': {'value': None, 'value_error': None},
        'Tropflux': {'value': None, 'value_error': None}},
       'metric': {'ERA-Interim': {'value': 0.9110823038164013,
         'value_error': None},
        'HadISST': {'value': 0.8535008097056743, 'value_error': None},
        'Tropflux': {'value': 0.9434505492635807, 'value_error': None}}},
      'BiasTauxLonRmse': {'diagnostic': {'CanCM4_r4i1p1': {'value': None,
         'value_error': None},
        'ERA-Interim': {'value': None, 'value_error': None},
        'Tropflux': {'value': None, 'value_error': None}},
       'metric': {'ERA-Interim': {'value': 4.406697485851918,
         'value_error': None},
        'Tropflux': {'value': 5.110767675322145, 'value_error': None}}},
      'EnsoAmpl': {'diagnostic': {'CanCM4_r4i1p1': {'value': 0.8906386140088649,
         'value_error': 0.13276856562066788},
        'ERA-Interim': {'value': 0.8989844997845644,
         'value_error': 0.14214193002531866},
        'HadISST': {'value': 0.7665787872085695,
         'value_error': 0.06238329697691264},
        'Tropflux': {'value': 0.9039789553693535,
         'value_error': 0.14293162279134272}},
       'metric': {'ERA-Interim': {'value': 0.9283681506966512,
         'value_error': 30.43332730479894},
        'HadISST': {'value': 16.183571587213955,
         'value_error': 26.77450922816365},
        'Tropflux': {'value': 1.47573583226148,
         'value_error': 30.265184118922374}}},
      'EnsoDuration': {'diagnostic': {'CanCM4_r4i1p1': {'value': 14.0,
         'value_error': None},
        'ERA-Interim': {'value': 13.0, 'value_error': None},
        'HadISST': {'value': 13.0, 'value_error': None},
        'Tropflux': {'value': 13.0, 'value_error': None}},
       'metric': {'ERA-Interim': {'value': 7.6923076923076925,
         'value_error': None},
        'HadISST': {'value': 7.6923076923076925, 'value_error': None},
        'Tropflux': {'value': 7.6923076923076925, 'value_error': None}}},
      'EnsoSeasonality': {'diagnostic': {'CanCM4_r4i1p1': {'value': 1.4827440103400702,
         'value_error': 0.4445664968011999},
        'ERA-Interim': {'value': 2.0466846866656914,
         'value_error': 0.6513411033995022},
        'HadISST': {'value': 1.6639865947361325,
         'value_error': 0.2712772451657809},
        'Tropflux': {'value': 2.0532132553583624,
         'value_error': 0.6534187683977347}},
       'metric': {'ERA-Interim': {'value': 27.553862106837375,
         'value_error': 44.776705307637975},
        'HadISST': {'value': 10.892069982378851,
         'value_error': 41.244084342283074},
        'Tropflux': {'value': 27.784217909635693,
         'value_error': 44.63432954824253}}},
      'EnsoSstDiversity_2': {'diagnostic': {'CanCM4_r4i1p1': {'value': 12.5,
         'value_error': None},
        'ERA-Interim': {'value': 33.25, 'value_error': None},
        'HadISST': {'value': 49.0, 'value_error': None},
        'Tropflux': {'value': 32.0, 'value_error': None}},
       'metric': {'ERA-Interim': {'value': 62.40601503759399,
         'value_error': None},
        'HadISST': {'value': 74.48979591836735, 'value_error': None},
        'Tropflux': {'value': 60.9375, 'value_error': None}}},
      'EnsoSstLonRmse': {'diagnostic': {'CanCM4_r4i1p1': {'value': None,
         'value_error': None},
        'ERA-Interim': {'value': None, 'value_error': None},
        'HadISST': {'value': None, 'value_error': None},
        'Tropflux': {'value': None, 'value_error': None}},
       'metric': {'ERA-Interim': {'value': 0.2517692001028889,
         'value_error': None},
        'HadISST': {'value': 0.274814276876957, 'value_error': None},
        'Tropflux': {'value': 0.25226925452384, 'value_error': None}}},
      'EnsoSstSkew': {'diagnostic': {'CanCM4_r4i1p1': {'value': -0.3015193885593207,
         'value_error': -0.044947856623520896},
        'ERA-Interim': {'value': 0.39098111106809963,
         'value_error': 0.061819541653923164},
        'HadISST': {'value': 0.38989908235027515,
         'value_error': 0.03172953733021198},
        'Tropflux': {'value': 0.39744741059612115,
         'value_error': 0.06284195338099416}},
       'metric': {'ERA-Interim': {'value': 177.11865868292628,
         'value_error': -23.689701453333573},
        'HadISST': {'value': 177.33267458384105,
         'value_error': -17.82131828964615},
        'Tropflux': {'value': 175.86397106149957,
         'value_error': -23.304280134078017}}},
      'EnsoSstTsRmse': {'diagnostic': {'CanCM4_r4i1p1': {'value': None,
         'value_error': None},
        'ERA-Interim': {'value': None, 'value_error': None},
        'HadISST': {'value': None, 'value_error': None},
        'Tropflux': {'value': None, 'value_error': None}},
       'metric': {'ERA-Interim': {'value': 0.19549155212971867,
         'value_error': None},
        'HadISST': {'value': 0.1608300209455151, 'value_error': None},
        'Tropflux': {'value': 0.19082997400176435, 'value_error': None}}},
      'SeasonalPrLatRmse': {'diagnostic': {'CanCM4_r4i1p1': {'value': None,
         'value_error': None},
        'ERA-Interim': {'value': None, 'value_error': None},
        'GPCPv2.3': {'value': None, 'value_error': None}},
       'metric': {'ERA-Interim': {'value': 0.8142171719570246,
         'value_error': None},
        'GPCPv2.3': {'value': 1.1685654836525456, 'value_error': None}}},
      'SeasonalPrLonRmse': {'diagnostic': {'CanCM4_r4i1p1': {'value': None,
         'value_error': None},
        'ERA-Interim': {'value': None, 'value_error': None},
        'GPCPv2.3': {'value': None, 'value_error': None}},
       'metric': {'ERA-Interim': {'value': 0.5467814750677404,
         'value_error': None},
        'GPCPv2.3': {'value': 0.7629692894870979, 'value_error': None}}},
      'SeasonalSstLonRmse': {'diagnostic': {'CanCM4_r4i1p1': {'value': None,
         'value_error': None},
        'ERA-Interim': {'value': None, 'value_error': None},
        'HadISST': {'value': None, 'value_error': None},
        'Tropflux': {'value': None, 'value_error': None}},
       'metric': {'ERA-Interim': {'value': 0.3452050798776115,
         'value_error': None},
        'HadISST': {'value': 0.3628454743326972, 'value_error': None},
        'Tropflux': {'value': 0.3475934354407396, 'value_error': None}}},
      'SeasonalTauxLonRmse': {'diagnostic': {'CanCM4_r4i1p1': {'value': None,
         'value_error': None},
        'ERA-Interim': {'value': None, 'value_error': None},
        'Tropflux': {'value': None, 'value_error': None}},
       'metric': {'ERA-Interim': {'value': 3.909943888049585,
         'value_error': None},
        'Tropflux': {'value': 3.6877501188032293, 'value_error': None}}}}},
    'r5i1p1': {'metadata': {'description_of_the_collection': 'Describe which science question this collection is about',
      'metrics': {'BiasPrLatRmse': {'diagnostic': {'CanCM4_r5i1p1': {'keyerror': None,
          'name': 'CanCM4_r5i1p1',
          'nyears': 45,
          'time_period': ['1961-1-16 12:0:0.0', '2005-12-16 12:0:0.0']},
         'ERA-Interim': {'name': 'ERA-Interim',
          'nyears': 40,
          'time_period': ['1979-1-16 12:0:0.0', '2019-3-16 12:0:0.0']},
         'GPCPv2.3': {'name': 'GPCPv2.3',
          'nyears': 41,
          'time_period': ['1979-1-1 0:0:0.0', '2019-7-1 0:0:0.0']},
         'method': 'Meridional root mean square error of nino3_LatExt pr, time series are linearly detrended, observations and model regridded to generic_1x1deg',
         'name': 'pr Meridional RMSE',
         'ref': 'Using CDAT regridding and rms (uncentered and biased) calculation',
         'time_frequency': 'monthly',
         'units': 'mm/day'},
        'metric': {'datasets': "CanCM4_r5i1p1; ERA-Interim's pr & GPCPv2.3's precip; 's ",
         'method': 'The metric is the statistical value between the model and the observations',
         'name': 'BiasPrLatRmse',
         'units': 'mm/day'}},
       'BiasPrLonRmse': {'diagnostic': {'CanCM4_r5i1p1': {'keyerror': None,
          'name': 'CanCM4_r5i1p1',
          'nyears': 45,
          'time_period': ['1961-1-16 12:0:0.0', '2005-12-16 12:0:0.0']},
         'ERA-Interim': {'name': 'ERA-Interim',
          'nyears': 40,
          'time_period': ['1979-1-16 12:0:0.0', '2019-3-16 12:0:0.0']},
         'GPCPv2.3': {'name': 'GPCPv2.3',
          'nyears': 41,
          'time_period': ['1979-1-1 0:0:0.0', '2019-7-1 0:0:0.0']},
         'method': 'Zonal root mean square error of equatorial_pacific pr, time series are linearly detrended, observations and model regridded to generic_1x1deg',
         'name': 'pr Zonal RMSE',
         'ref': 'Using CDAT regridding and rms (uncentered and biased) calculation',
         'time_frequency': 'monthly',
         'units': 'mm/day'},
        'metric': {'datasets': "CanCM4_r5i1p1; ERA-Interim's pr & GPCPv2.3's precip; 's ",
         'method': 'The metric is the statistical value between the model and the observations',
         'name': 'BiasPrLonRmse',
         'units': 'mm/day'}},
       'BiasSstLonRmse': {'diagnostic': {'CanCM4_r5i1p1': {'keyerror': None,
          'name': 'CanCM4_r5i1p1',
          'nyears': 45,
          'time_period': ['1961-1-16 12:0:0.0', '2005-12-16 12:0:0.0']},
         'ERA-Interim': {'name': 'ERA-Interim',
          'nyears': 40,
          'time_period': ['1979-1-16 12:0:0.0', '2019-3-16 12:0:0.0']},
         'HadISST': {'name': 'HadISST',
          'nyears': 151,
          'time_period': ['1870-1-16 11:59:59.5', '2020-10-16 12:0:0.0']},
         'Tropflux': {'name': 'Tropflux',
          'nyears': 40,
          'time_period': ['1979-1-15 0:0:0.0', '2018-12-15 12:0:0.0']},
         'method': 'Zonal root mean square error of equatorial_pacific sst, time series are linearly detrended, observations and model regridded to generic_1x1deg',
         'name': 'sst Zonal RMSE',
         'ref': 'Using CDAT regridding and rms (uncentered and biased) calculation',
         'time_frequency': 'monthly',
         'units': 'C'},
        'metric': {'datasets': "CanCM4_r5i1p1; ERA-Interim's ts & HadISST's sst & Tropflux's sst; 's ",
         'method': 'The metric is the statistical value between the model and the observations',
         'name': 'BiasSstLonRmse',
         'units': 'C'}},
       'BiasTauxLonRmse': {'diagnostic': {'CanCM4_r5i1p1': {'keyerror': None,
          'name': 'CanCM4_r5i1p1',
          'nyears': 45,
          'time_period': ['1961-1-16 12:0:0.0', '2005-12-16 12:0:0.0']},
         'ERA-Interim': {'name': 'ERA-Interim',
          'nyears': 40,
          'time_period': ['1979-1-16 12:0:0.0', '2019-3-16 12:0:0.0']},
         'Tropflux': {'name': 'Tropflux',
          'nyears': 40,
          'time_period': ['1979-1-15 0:0:0.0', '2018-12-15 12:0:0.0']},
         'method': 'Zonal root mean square error of equatorial_pacific taux, time series are linearly detrended, observations and model regridded to generic_1x1deg',
         'name': 'taux Zonal RMSE',
         'ref': 'Using CDAT regridding and rms (uncentered and biased) calculation',
         'time_frequency': 'monthly',
         'units': '1e-3 N/m2'},
        'metric': {'datasets': "CanCM4_r5i1p1; ERA-Interim's tauu & Tropflux's taux; 's ",
         'method': 'The metric is the statistical value between the model and the observations',
         'name': 'BiasTauxLonRmse',
         'units': '1e-3 N/m2'}},
       'EnsoAmpl': {'diagnostic': {'CanCM4_r5i1p1': {'keyerror': None,
          'name': 'CanCM4_r5i1p1',
          'nyears': 45,
          'time_period': ['1961-1-16 12:0:0.0', '2005-12-16 12:0:0.0']},
         'ERA-Interim': {'keyerror': None,
          'name': 'ERA-Interim',
          'nyears': 40,
          'time_period': ['1979-1-16 12:0:0.0', '2019-3-16 12:0:0.0']},
         'HadISST': {'keyerror': None,
          'name': 'HadISST',
          'nyears': 151,
          'time_period': ['1870-1-16 11:59:59.5', '2020-10-16 12:0:0.0']},
         'Tropflux': {'keyerror': None,
          'name': 'Tropflux',
          'nyears': 40,
          'time_period': ['1979-1-15 0:0:0.0', '2018-12-15 12:0:0.0']},
         'method': 'Standard deviation of nino3.4 sstA, time series are linearly detrended',
         'name': 'ENSO amplitude',
         'ref': 'Using CDAT regression calculation',
         'time_frequency': 'monthly',
         'units': 'C'},
        'metric': {'datasets': "CanCM4_r5i1p1; ERA-Interim's ts & HadISST's sst & Tropflux's sst; 's ",
         'method': 'The metric is the absolute value of the relative difference between model and observations values (M = 100 * abs[[model-obs] / obs])',
         'name': 'EnsoAmpl',
         'units': '%'}},
       'EnsoDuration': {'diagnostic': {'CanCM4_r5i1p1': {'keyerror': None,
          'name': 'CanCM4_r5i1p1',
          'nyears': 45,
          'time_period': ['1961-1-16 12:0:0.0', '2005-12-16 12:0:0.0']},
         'ERA-Interim': {'keyerror': None,
          'name': 'ERA-Interim',
          'nyears': 40,
          'time_period': ['1979-1-16 12:0:0.0', '2019-3-16 12:0:0.0']},
         'HadISST': {'keyerror': None,
          'name': 'HadISST',
          'nyears': 151,
          'time_period': ['1870-1-16 11:59:59.5', '2020-10-16 12:0:0.0']},
         'Tropflux': {'keyerror': None,
          'name': 'Tropflux',
          'nyears': 40,
          'time_period': ['1979-1-15 0:0:0.0', '2018-12-15 12:0:0.0']},
         'method': 'nino3.4 SSTA during DEC regressed against nino3.4 SSTA during 6 years (centered on ENSO), the duration is the number of consecutive months during which the regression is above 0.25, time series are linearly detrended, smoothing using a triangle shaped window of 5 points',
         'name': 'ENSO Duration based on life cyle SSTA pattern',
         'ref': 'Using CDAT',
         'time_frequency': 'monthly',
         'units': 'months'},
        'metric': {'datasets': "CanCM4_r5i1p1; ERA-Interim's ts & HadISST's sst & Tropflux's sst; 's ",
         'method': 'The metric is the absolute value of the relative difference between model and observations values (M = 100 * abs[[model-obs] / obs])',
         'name': 'EnsoDuration',
         'units': '%'}},
       'EnsoSeasonality': {'diagnostic': {'CanCM4_r5i1p1': {'keyerror': None,
          'name': 'CanCM4_r5i1p1',
          'nyears': 45,
          'time_period': ['1961-1-16 12:0:0.0', '2005-12-16 12:0:0.0']},
         'ERA-Interim': {'keyerror': None,
          'name': 'ERA-Interim',
          'nyears': 40,
          'time_period': ['1979-1-16 12:0:0.0', '2019-3-16 12:0:0.0']},
         'HadISST': {'keyerror': None,
          'name': 'HadISST',
          'nyears': 151,
          'time_period': ['1870-1-16 11:59:59.5', '2020-10-16 12:0:0.0']},
         'Tropflux': {'keyerror': None,
          'name': 'Tropflux',
          'nyears': 40,
          'time_period': ['1979-1-15 0:0:0.0', '2018-12-15 12:0:0.0']},
         'method': 'Ratio between NDJ and MAM standard deviation nino3.4 sstA, time series are linearly detrended',
         'name': 'ENSO seasonality',
         'ref': 'Using CDAT std dev calculation',
         'time_frequency': 'monthly',
         'units': 'C/C'},
        'metric': {'datasets': "CanCM4_r5i1p1; ERA-Interim's ts & HadISST's sst & Tropflux's sst; 's ",
         'method': 'The metric is the absolute value of the relative difference between model and observations values (M = 100 * abs[[model-obs] / obs])',
         'name': 'EnsoSeasonality',
         'units': '%'}},
       'EnsoSstDiversity_2': {'diagnostic': {'CanCM4_r5i1p1': {'keyerror': None,
          'name': 'CanCM4_r5i1p1',
          'nyears': 45,
          'time_period': ['1961-1-16 12:0:0.0', '2005-12-16 12:0:0.0']},
         'ERA-Interim': {'keyerror': None,
          'name': 'ERA-Interim',
          'nyears': 40,
          'time_period': ['1979-1-16 12:0:0.0', '2019-3-16 12:0:0.0']},
         'HadISST': {'keyerror': None,
          'name': 'HadISST',
          'nyears': 151,
          'time_period': ['1870-1-16 11:59:59.5', '2020-10-16 12:0:0.0']},
         'Tropflux': {'keyerror': None,
          'name': 'Tropflux',
          'nyears': 40,
          'time_period': ['1979-1-15 0:0:0.0', '2018-12-15 12:0:0.0']},
         'method': 'Nino (Nina) events = nino3.4 sstA > 0.75 (< -0.75) during DEC, zonal SSTA (meridional averaged [-5.0 ; 5.0]), the zonal SSTA maximum (minimum) is located for each event, the diversity is the interquartile range (IQR = Q3 - Q1), time series are linearly detrended, smoothing using a triangle shaped window of 5 points',
         'name': 'ENSO Diversity (interquartile range)',
         'ref': 'Using CDAT regridding',
         'time_frequency': 'monthly',
         'units': 'long'},
        'metric': {'datasets': "CanCM4_r5i1p1; ERA-Interim's ts & HadISST's sst & Tropflux's sst; 's ",
         'method': 'The metric is the absolute value of the relative difference between model and observations values (M = 100 * abs[[model-obs] / obs])',
         'name': 'EnsoSstDiversity',
         'units': '%'}},
       'EnsoSstLonRmse': {'diagnostic': {'CanCM4_r5i1p1': {'keyerror': None,
          'name': 'CanCM4_r5i1p1',
          'nyears': 45,
          'time_period': ['1961-1-16 12:0:0.0', '2005-12-16 12:0:0.0']},
         'ERA-Interim': {'name': 'ERA-Interim',
          'nyears': 40,
          'time_period': ['1979-1-16 12:0:0.0', '2019-3-16 12:0:0.0']},
         'HadISST': {'name': 'HadISST',
          'nyears': 151,
          'time_period': ['1870-1-16 11:59:59.5', '2020-10-16 12:0:0.0']},
         'Tropflux': {'name': 'Tropflux',
          'nyears': 40,
          'time_period': ['1979-1-15 0:0:0.0', '2018-12-15 12:0:0.0']},
         'method': 'nino3.4 SSTA during DEC regressed against equatorial_pacific SSTA, time series are linearly detrended, smoothing using a triangle shaped window of 5 points, observations and model regridded to generic_1x1deg',
         'name': 'ENSO Zonal SSTA pattern',
         'ref': 'Using CDAT regridding and rms (uncentered and biased) calculation',
         'time_frequency': 'monthly',
         'units': 'C/C'},
        'metric': {'datasets': "CanCM4_r5i1p1; ERA-Interim's ts & HadISST's sst & Tropflux's sst; 's ",
         'method': 'The metric is the statistical value between the model and the observations',
         'name': 'EnsoSstLonRmse',
         'units': 'C/C'}},
       'EnsoSstSkew': {'diagnostic': {'CanCM4_r5i1p1': {'keyerror': None,
          'name': 'CanCM4_r5i1p1',
          'nyears': 45,
          'time_period': ['1961-1-16 12:0:0.0', '2005-12-16 12:0:0.0']},
         'ERA-Interim': {'keyerror': None,
          'name': 'ERA-Interim',
          'nyears': 40,
          'time_period': ['1979-1-16 12:0:0.0', '2019-3-16 12:0:0.0']},
         'HadISST': {'keyerror': None,
          'name': 'HadISST',
          'nyears': 151,
          'time_period': ['1870-1-16 11:59:59.5', '2020-10-16 12:0:0.0']},
         'Tropflux': {'keyerror': None,
          'name': 'Tropflux',
          'nyears': 40,
          'time_period': ['1979-1-15 0:0:0.0', '2018-12-15 12:0:0.0']},
         'method': 'Standard deviation of nino3.4 sstA, time series are linearly detrended',
         'name': 'ENSO skewness',
         'ref': 'Using CDAT regression calculation',
         'time_frequency': 'monthly',
         'units': 'C'},
        'metric': {'datasets': "CanCM4_r5i1p1; ERA-Interim's ts & HadISST's sst & Tropflux's sst; 's ",
         'method': 'The metric is the absolute value of the relative difference between model and observations values (M = 100 * abs[[model-obs] / obs])',
         'name': 'EnsoSstSkew',
         'units': '%'}},
       'EnsoSstTsRmse': {'diagnostic': {'CanCM4_r5i1p1': {'keyerror': None,
          'name': 'CanCM4_r5i1p1',
          'nyears': 45,
          'time_period': ['1961-1-16 12:0:0.0', '2005-12-16 12:0:0.0']},
         'ERA-Interim': {'name': 'ERA-Interim',
          'nyears': 40,
          'time_period': ['1979-1-16 12:0:0.0', '2019-3-16 12:0:0.0']},
         'HadISST': {'name': 'HadISST',
          'nyears': 151,
          'time_period': ['1870-1-16 11:59:59.5', '2020-10-16 12:0:0.0']},
         'Tropflux': {'name': 'Tropflux',
          'nyears': 40,
          'time_period': ['1979-1-15 0:0:0.0', '2018-12-15 12:0:0.0']},
         'method': 'nino3.4 SSTA during DEC regressed against nino3.4 SSTA during 6 years (centered on ENSO), time series are linearly detrended, smoothing using a triangle shaped window of 5 points',
         'name': 'ENSO life cyle SSTA pattern',
         'ref': 'Using CDAT regridding and rms (uncentered and biased) calculation',
         'time_frequency': 'monthly',
         'units': 'C/C'},
        'metric': {'datasets': "CanCM4_r5i1p1; ERA-Interim's ts & HadISST's sst & Tropflux's sst; 's ",
         'method': 'The metric is the statistical value between the model and the observations',
         'name': 'EnsoSstTsRmse',
         'units': 'C/C'}},
       'SeasonalPrLatRmse': {'diagnostic': {'CanCM4_r5i1p1': {'keyerror': None,
          'name': 'CanCM4_r5i1p1',
          'nyears': 45,
          'time_period': ['1961-1-16 12:0:0.0', '2005-12-16 12:0:0.0']},
         'ERA-Interim': {'name': 'ERA-Interim',
          'nyears': 40,
          'time_period': ['1979-1-16 12:0:0.0', '2019-3-16 12:0:0.0']},
         'GPCPv2.3': {'name': 'GPCPv2.3',
          'nyears': 41,
          'time_period': ['1979-1-1 0:0:0.0', '2019-7-1 0:0:0.0']},
         'method': 'Meridional root mean square error of nino3_LatExt climatological pr STD, time series are linearly detrended, observations and model regridded to generic_1x1deg',
         'name': 'pr meridional seasonality RMSE',
         'ref': 'Using CDAT regridding and rms (uncentered and biased) calculation',
         'time_frequency': 'monthly',
         'units': 'mm/day'},
        'metric': {'datasets': "CanCM4_r5i1p1; ERA-Interim's pr & GPCPv2.3's precip; 's ",
         'method': 'The metric is the statistical value between the model and the observations',
         'name': 'SeasonalPrLatRmse',
         'units': 'mm/day'}},
       'SeasonalPrLonRmse': {'diagnostic': {'CanCM4_r5i1p1': {'keyerror': None,
          'name': 'CanCM4_r5i1p1',
          'nyears': 45,
          'time_period': ['1961-1-16 12:0:0.0', '2005-12-16 12:0:0.0']},
         'ERA-Interim': {'name': 'ERA-Interim',
          'nyears': 40,
          'time_period': ['1979-1-16 12:0:0.0', '2019-3-16 12:0:0.0']},
         'GPCPv2.3': {'name': 'GPCPv2.3',
          'nyears': 41,
          'time_period': ['1979-1-1 0:0:0.0', '2019-7-1 0:0:0.0']},
         'method': 'Zonal root mean square error of equatorial_pacific climatological pr STD, time series are linearly detrended, observations and model regridded to generic_1x1deg',
         'name': 'pr zonal seasonality RMSE',
         'ref': 'Using CDAT regridding and rms (uncentered and biased) calculation',
         'time_frequency': 'monthly',
         'units': 'mm/day'},
        'metric': {'datasets': "CanCM4_r5i1p1; ERA-Interim's pr & GPCPv2.3's precip; 's ",
         'method': 'The metric is the statistical value between the model and the observations',
         'name': 'SeasonalPrLonRmse',
         'units': 'mm/day'}},
       'SeasonalSstLonRmse': {'diagnostic': {'CanCM4_r5i1p1': {'keyerror': None,
          'name': 'CanCM4_r5i1p1',
          'nyears': 45,
          'time_period': ['1961-1-16 12:0:0.0', '2005-12-16 12:0:0.0']},
         'ERA-Interim': {'name': 'ERA-Interim',
          'nyears': 40,
          'time_period': ['1979-1-16 12:0:0.0', '2019-3-16 12:0:0.0']},
         'HadISST': {'name': 'HadISST',
          'nyears': 151,
          'time_period': ['1870-1-16 11:59:59.5', '2020-10-16 12:0:0.0']},
         'Tropflux': {'name': 'Tropflux',
          'nyears': 40,
          'time_period': ['1979-1-15 0:0:0.0', '2018-12-15 12:0:0.0']},
         'method': 'Zonal root mean square error of equatorial_pacific climatological sst STD, time series are linearly detrended, observations and model regridded to generic_1x1deg',
         'name': 'sst zonal seasonality RMSE',
         'ref': 'Using CDAT regridding and rms (uncentered and biased) calculation',
         'time_frequency': 'monthly',
         'units': 'C'},
        'metric': {'datasets': "CanCM4_r5i1p1; ERA-Interim's ts & HadISST's sst & Tropflux's sst; 's ",
         'method': 'The metric is the statistical value between the model and the observations',
         'name': 'SeasonalSstLonRmse',
         'units': 'C'}},
       'SeasonalTauxLonRmse': {'diagnostic': {'CanCM4_r5i1p1': {'keyerror': None,
          'name': 'CanCM4_r5i1p1',
          'nyears': 45,
          'time_period': ['1961-1-16 12:0:0.0', '2005-12-16 12:0:0.0']},
         'ERA-Interim': {'name': 'ERA-Interim',
          'nyears': 40,
          'time_period': ['1979-1-16 12:0:0.0', '2019-3-16 12:0:0.0']},
         'Tropflux': {'name': 'Tropflux',
          'nyears': 40,
          'time_period': ['1979-1-15 0:0:0.0', '2018-12-15 12:0:0.0']},
         'method': 'Zonal root mean square error of equatorial_pacific climatological taux STD, time series are linearly detrended, observations and model regridded to generic_1x1deg',
         'name': 'taux zonal seasonality RMSE',
         'ref': 'Using CDAT regridding and rms (uncentered and biased) calculation',
         'time_frequency': 'monthly',
         'units': '1e-3 N/m2'},
        'metric': {'datasets': "CanCM4_r5i1p1; ERA-Interim's tauu & Tropflux's taux; 's ",
         'method': 'The metric is the statistical value between the model and the observations',
         'name': 'SeasonalTauxLonRmse',
         'units': '1e-3 N/m2'}}},
      'name': 'Metrics Collection for ENSO performance'},
     'value': {'BiasPrLatRmse': {'diagnostic': {'CanCM4_r5i1p1': {'value': None,
         'value_error': None},
        'ERA-Interim': {'value': None, 'value_error': None},
        'GPCPv2.3': {'value': None, 'value_error': None}},
       'metric': {'ERA-Interim': {'value': 0.8010632087520897,
         'value_error': None},
        'GPCPv2.3': {'value': 1.234917088489838, 'value_error': None}}},
      'BiasPrLonRmse': {'diagnostic': {'CanCM4_r5i1p1': {'value': None,
         'value_error': None},
        'ERA-Interim': {'value': None, 'value_error': None},
        'GPCPv2.3': {'value': None, 'value_error': None}},
       'metric': {'ERA-Interim': {'value': 1.5816104505514936,
         'value_error': None},
        'GPCPv2.3': {'value': 0.8986409715304449, 'value_error': None}}},
      'BiasSstLonRmse': {'diagnostic': {'CanCM4_r5i1p1': {'value': None,
         'value_error': None},
        'ERA-Interim': {'value': None, 'value_error': None},
        'HadISST': {'value': None, 'value_error': None},
        'Tropflux': {'value': None, 'value_error': None}},
       'metric': {'ERA-Interim': {'value': 0.8468532644382257,
         'value_error': None},
        'HadISST': {'value': 0.8201860154683538, 'value_error': None},
        'Tropflux': {'value': 0.8740154886291438, 'value_error': None}}},
      'BiasTauxLonRmse': {'diagnostic': {'CanCM4_r5i1p1': {'value': None,
         'value_error': None},
        'ERA-Interim': {'value': None, 'value_error': None},
        'Tropflux': {'value': None, 'value_error': None}},
       'metric': {'ERA-Interim': {'value': 2.6119870427459473,
         'value_error': None},
        'Tropflux': {'value': 3.3497838536276667, 'value_error': None}}},
      'EnsoAmpl': {'diagnostic': {'CanCM4_r5i1p1': {'value': 0.9888533734610139,
         'value_error': 0.14740955752258755},
        'ERA-Interim': {'value': 0.8989844997845644,
         'value_error': 0.14214193002531866},
        'HadISST': {'value': 0.7665787872085695,
         'value_error': 0.06238329697691264},
        'Tropflux': {'value': 0.9039789553693535,
         'value_error': 0.14293162279134272}},
       'metric': {'ERA-Interim': {'value': 9.996710032040145,
         'value_error': 33.78934833684863},
        'HadISST': {'value': 28.995660975936737,
         'value_error': 29.727055796358215},
        'Tropflux': {'value': 9.388981633646756,
         'value_error': 33.60266323925319}}},
      'EnsoDuration': {'diagnostic': {'CanCM4_r5i1p1': {'value': 12.0,
         'value_error': None},
        'ERA-Interim': {'value': 13.0, 'value_error': None},
        'HadISST': {'value': 13.0, 'value_error': None},
        'Tropflux': {'value': 13.0, 'value_error': None}},
       'metric': {'ERA-Interim': {'value': 7.6923076923076925,
         'value_error': None},
        'HadISST': {'value': 7.6923076923076925, 'value_error': None},
        'Tropflux': {'value': 7.6923076923076925, 'value_error': None}}},
      'EnsoSeasonality': {'diagnostic': {'CanCM4_r5i1p1': {'value': 1.5903780513155894,
         'value_error': 0.47683807449725063},
        'ERA-Interim': {'value': 2.0466846866656914,
         'value_error': 0.6513411033995022},
        'HadISST': {'value': 1.6639865947361325,
         'value_error': 0.2712772451657809},
        'Tropflux': {'value': 2.0532132553583624,
         'value_error': 0.6534187683977347}},
       'metric': {'ERA-Interim': {'value': 22.294916179466963,
         'value_error': 48.02709627210776},
        'HadISST': {'value': 4.4236259867355265,
         'value_error': 44.238038411992584},
        'Tropflux': {'value': 22.54199376683797,
         'value_error': 47.87438529758832}}},
      'EnsoSstDiversity_2': {'diagnostic': {'CanCM4_r5i1p1': {'value': 12.25,
         'value_error': None},
        'ERA-Interim': {'value': 33.25, 'value_error': None},
        'HadISST': {'value': 49.0, 'value_error': None},
        'Tropflux': {'value': 32.0, 'value_error': None}},
       'metric': {'ERA-Interim': {'value': 63.1578947368421,
         'value_error': None},
        'HadISST': {'value': 75.0, 'value_error': None},
        'Tropflux': {'value': 61.71875, 'value_error': None}}},
      'EnsoSstLonRmse': {'diagnostic': {'CanCM4_r5i1p1': {'value': None,
         'value_error': None},
        'ERA-Interim': {'value': None, 'value_error': None},
        'HadISST': {'value': None, 'value_error': None},
        'Tropflux': {'value': None, 'value_error': None}},
       'metric': {'ERA-Interim': {'value': 0.2145738992955294,
         'value_error': None},
        'HadISST': {'value': 0.23915770609689968, 'value_error': None},
        'Tropflux': {'value': 0.21482731435323968, 'value_error': None}}},
      'EnsoSstSkew': {'diagnostic': {'CanCM4_r5i1p1': {'value': -0.1924594671356167,
         'value_error': -0.028690163428575045},
        'ERA-Interim': {'value': 0.39098111106809963,
         'value_error': 0.061819541653923164},
        'HadISST': {'value': 0.38989908235027515,
         'value_error': 0.03172953733021198},
        'Tropflux': {'value': 0.39744741059612115,
         'value_error': 0.06284195338099416}},
       'metric': {'ERA-Interim': {'value': 149.22474812398156,
         'value_error': -15.121108264695984},
        'HadISST': {'value': 149.36135421901716,
         'value_error': -11.37532627028635},
        'Tropflux': {'value': 148.4238825073616,
         'value_error': -14.875094294977298}}},
      'EnsoSstTsRmse': {'diagnostic': {'CanCM4_r5i1p1': {'value': None,
         'value_error': None},
        'ERA-Interim': {'value': None, 'value_error': None},
        'HadISST': {'value': None, 'value_error': None},
        'Tropflux': {'value': None, 'value_error': None}},
       'metric': {'ERA-Interim': {'value': 0.20535789200957058,
         'value_error': None},
        'HadISST': {'value': 0.19619269091839636, 'value_error': None},
        'Tropflux': {'value': 0.2049622215874369, 'value_error': None}}},
      'SeasonalPrLatRmse': {'diagnostic': {'CanCM4_r5i1p1': {'value': None,
         'value_error': None},
        'ERA-Interim': {'value': None, 'value_error': None},
        'GPCPv2.3': {'value': None, 'value_error': None}},
       'metric': {'ERA-Interim': {'value': 0.8724507280516961,
         'value_error': None},
        'GPCPv2.3': {'value': 1.2161145726618048, 'value_error': None}}},
      'SeasonalPrLonRmse': {'diagnostic': {'CanCM4_r5i1p1': {'value': None,
         'value_error': None},
        'ERA-Interim': {'value': None, 'value_error': None},
        'GPCPv2.3': {'value': None, 'value_error': None}},
       'metric': {'ERA-Interim': {'value': 0.5442544125227698,
         'value_error': None},
        'GPCPv2.3': {'value': 0.7828835134827885, 'value_error': None}}},
      'SeasonalSstLonRmse': {'diagnostic': {'CanCM4_r5i1p1': {'value': None,
         'value_error': None},
        'ERA-Interim': {'value': None, 'value_error': None},
        'HadISST': {'value': None, 'value_error': None},
        'Tropflux': {'value': None, 'value_error': None}},
       'metric': {'ERA-Interim': {'value': 0.35873131741232595,
         'value_error': None},
        'HadISST': {'value': 0.3763252088157234, 'value_error': None},
        'Tropflux': {'value': 0.36122604181200046, 'value_error': None}}},
      'SeasonalTauxLonRmse': {'diagnostic': {'CanCM4_r5i1p1': {'value': None,
         'value_error': None},
        'ERA-Interim': {'value': None, 'value_error': None},
        'Tropflux': {'value': None, 'value_error': None}},
       'metric': {'ERA-Interim': {'value': 3.55970428547804,
         'value_error': None},
        'Tropflux': {'value': 3.387314026125043, 'value_error': None}}}}},
    'r6i1p1': {'metadata': {'description_of_the_collection': 'Describe which science question this collection is about',
      'metrics': {'BiasPrLatRmse': {'diagnostic': {'CanCM4_r6i1p1': {'keyerror': None,
          'name': 'CanCM4_r6i1p1',
          'nyears': 45,
          'time_period': ['1961-1-16 12:0:0.0', '2005-12-16 12:0:0.0']},
         'ERA-Interim': {'name': 'ERA-Interim',
          'nyears': 40,
          'time_period': ['1979-1-16 12:0:0.0', '2019-3-16 12:0:0.0']},
         'GPCPv2.3': {'name': 'GPCPv2.3',
          'nyears': 41,
          'time_period': ['1979-1-1 0:0:0.0', '2019-7-1 0:0:0.0']},
         'method': 'Meridional root mean square error of nino3_LatExt pr, time series are linearly detrended, observations and model regridded to generic_1x1deg',
         'name': 'pr Meridional RMSE',
         'ref': 'Using CDAT regridding and rms (uncentered and biased) calculation',
         'time_frequency': 'monthly',
         'units': 'mm/day'},
        'metric': {'datasets': "CanCM4_r6i1p1; ERA-Interim's pr & GPCPv2.3's precip; 's ",
         'method': 'The metric is the statistical value between the model and the observations',
         'name': 'BiasPrLatRmse',
         'units': 'mm/day'}},
       'BiasPrLonRmse': {'diagnostic': {'CanCM4_r6i1p1': {'keyerror': None,
          'name': 'CanCM4_r6i1p1',
          'nyears': 45,
          'time_period': ['1961-1-16 12:0:0.0', '2005-12-16 12:0:0.0']},
         'ERA-Interim': {'name': 'ERA-Interim',
          'nyears': 40,
          'time_period': ['1979-1-16 12:0:0.0', '2019-3-16 12:0:0.0']},
         'GPCPv2.3': {'name': 'GPCPv2.3',
          'nyears': 41,
          'time_period': ['1979-1-1 0:0:0.0', '2019-7-1 0:0:0.0']},
         'method': 'Zonal root mean square error of equatorial_pacific pr, time series are linearly detrended, observations and model regridded to generic_1x1deg',
         'name': 'pr Zonal RMSE',
         'ref': 'Using CDAT regridding and rms (uncentered and biased) calculation',
         'time_frequency': 'monthly',
         'units': 'mm/day'},
        'metric': {'datasets': "CanCM4_r6i1p1; ERA-Interim's pr & GPCPv2.3's precip; 's ",
         'method': 'The metric is the statistical value between the model and the observations',
         'name': 'BiasPrLonRmse',
         'units': 'mm/day'}},
       'BiasSstLonRmse': {'diagnostic': {'CanCM4_r6i1p1': {'keyerror': None,
          'name': 'CanCM4_r6i1p1',
          'nyears': 45,
          'time_period': ['1961-1-16 12:0:0.0', '2005-12-16 12:0:0.0']},
         'ERA-Interim': {'name': 'ERA-Interim',
          'nyears': 40,
          'time_period': ['1979-1-16 12:0:0.0', '2019-3-16 12:0:0.0']},
         'HadISST': {'name': 'HadISST',
          'nyears': 151,
          'time_period': ['1870-1-16 11:59:59.5', '2020-10-16 12:0:0.0']},
         'Tropflux': {'name': 'Tropflux',
          'nyears': 40,
          'time_period': ['1979-1-15 0:0:0.0', '2018-12-15 12:0:0.0']},
         'method': 'Zonal root mean square error of equatorial_pacific sst, time series are linearly detrended, observations and model regridded to generic_1x1deg',
         'name': 'sst Zonal RMSE',
         'ref': 'Using CDAT regridding and rms (uncentered and biased) calculation',
         'time_frequency': 'monthly',
         'units': 'C'},
        'metric': {'datasets': "CanCM4_r6i1p1; ERA-Interim's ts & HadISST's sst & Tropflux's sst; 's ",
         'method': 'The metric is the statistical value between the model and the observations',
         'name': 'BiasSstLonRmse',
         'units': 'C'}},
       'BiasTauxLonRmse': {'diagnostic': {'CanCM4_r6i1p1': {'keyerror': None,
          'name': 'CanCM4_r6i1p1',
          'nyears': 45,
          'time_period': ['1961-1-16 12:0:0.0', '2005-12-16 12:0:0.0']},
         'ERA-Interim': {'name': 'ERA-Interim',
          'nyears': 40,
          'time_period': ['1979-1-16 12:0:0.0', '2019-3-16 12:0:0.0']},
         'Tropflux': {'name': 'Tropflux',
          'nyears': 40,
          'time_period': ['1979-1-15 0:0:0.0', '2018-12-15 12:0:0.0']},
         'method': 'Zonal root mean square error of equatorial_pacific taux, time series are linearly detrended, observations and model regridded to generic_1x1deg',
         'name': 'taux Zonal RMSE',
         'ref': 'Using CDAT regridding and rms (uncentered and biased) calculation',
         'time_frequency': 'monthly',
         'units': '1e-3 N/m2'},
        'metric': {'datasets': "CanCM4_r6i1p1; ERA-Interim's tauu & Tropflux's taux; 's ",
         'method': 'The metric is the statistical value between the model and the observations',
         'name': 'BiasTauxLonRmse',
         'units': '1e-3 N/m2'}},
       'EnsoAmpl': {'diagnostic': {'CanCM4_r6i1p1': {'keyerror': None,
          'name': 'CanCM4_r6i1p1',
          'nyears': 45,
          'time_period': ['1961-1-16 12:0:0.0', '2005-12-16 12:0:0.0']},
         'ERA-Interim': {'keyerror': None,
          'name': 'ERA-Interim',
          'nyears': 40,
          'time_period': ['1979-1-16 12:0:0.0', '2019-3-16 12:0:0.0']},
         'HadISST': {'keyerror': None,
          'name': 'HadISST',
          'nyears': 151,
          'time_period': ['1870-1-16 11:59:59.5', '2020-10-16 12:0:0.0']},
         'Tropflux': {'keyerror': None,
          'name': 'Tropflux',
          'nyears': 40,
          'time_period': ['1979-1-15 0:0:0.0', '2018-12-15 12:0:0.0']},
         'method': 'Standard deviation of nino3.4 sstA, time series are linearly detrended',
         'name': 'ENSO amplitude',
         'ref': 'Using CDAT regression calculation',
         'time_frequency': 'monthly',
         'units': 'C'},
        'metric': {'datasets': "CanCM4_r6i1p1; ERA-Interim's ts & HadISST's sst & Tropflux's sst; 's ",
         'method': 'The metric is the absolute value of the relative difference between model and observations values (M = 100 * abs[[model-obs] / obs])',
         'name': 'EnsoAmpl',
         'units': '%'}},
       'EnsoDuration': {'diagnostic': {'CanCM4_r6i1p1': {'keyerror': None,
          'name': 'CanCM4_r6i1p1',
          'nyears': 45,
          'time_period': ['1961-1-16 12:0:0.0', '2005-12-16 12:0:0.0']},
         'ERA-Interim': {'keyerror': None,
          'name': 'ERA-Interim',
          'nyears': 40,
          'time_period': ['1979-1-16 12:0:0.0', '2019-3-16 12:0:0.0']},
         'HadISST': {'keyerror': None,
          'name': 'HadISST',
          'nyears': 151,
          'time_period': ['1870-1-16 11:59:59.5', '2020-10-16 12:0:0.0']},
         'Tropflux': {'keyerror': None,
          'name': 'Tropflux',
          'nyears': 40,
          'time_period': ['1979-1-15 0:0:0.0', '2018-12-15 12:0:0.0']},
         'method': 'nino3.4 SSTA during DEC regressed against nino3.4 SSTA during 6 years (centered on ENSO), the duration is the number of consecutive months during which the regression is above 0.25, time series are linearly detrended, smoothing using a triangle shaped window of 5 points',
         'name': 'ENSO Duration based on life cyle SSTA pattern',
         'ref': 'Using CDAT',
         'time_frequency': 'monthly',
         'units': 'months'},
        'metric': {'datasets': "CanCM4_r6i1p1; ERA-Interim's ts & HadISST's sst & Tropflux's sst; 's ",
         'method': 'The metric is the absolute value of the relative difference between model and observations values (M = 100 * abs[[model-obs] / obs])',
         'name': 'EnsoDuration',
         'units': '%'}},
       'EnsoSeasonality': {'diagnostic': {'CanCM4_r6i1p1': {'keyerror': None,
          'name': 'CanCM4_r6i1p1',
          'nyears': 45,
          'time_period': ['1961-1-16 12:0:0.0', '2005-12-16 12:0:0.0']},
         'ERA-Interim': {'keyerror': None,
          'name': 'ERA-Interim',
          'nyears': 40,
          'time_period': ['1979-1-16 12:0:0.0', '2019-3-16 12:0:0.0']},
         'HadISST': {'keyerror': None,
          'name': 'HadISST',
          'nyears': 151,
          'time_period': ['1870-1-16 11:59:59.5', '2020-10-16 12:0:0.0']},
         'Tropflux': {'keyerror': None,
          'name': 'Tropflux',
          'nyears': 40,
          'time_period': ['1979-1-15 0:0:0.0', '2018-12-15 12:0:0.0']},
         'method': 'Ratio between NDJ and MAM standard deviation nino3.4 sstA, time series are linearly detrended',
         'name': 'ENSO seasonality',
         'ref': 'Using CDAT std dev calculation',
         'time_frequency': 'monthly',
         'units': 'C/C'},
        'metric': {'datasets': "CanCM4_r6i1p1; ERA-Interim's ts & HadISST's sst & Tropflux's sst; 's ",
         'method': 'The metric is the absolute value of the relative difference between model and observations values (M = 100 * abs[[model-obs] / obs])',
         'name': 'EnsoSeasonality',
         'units': '%'}},
       'EnsoSstDiversity_2': {'diagnostic': {'CanCM4_r6i1p1': {'keyerror': None,
          'name': 'CanCM4_r6i1p1',
          'nyears': 45,
          'time_period': ['1961-1-16 12:0:0.0', '2005-12-16 12:0:0.0']},
         'ERA-Interim': {'keyerror': None,
          'name': 'ERA-Interim',
          'nyears': 40,
          'time_period': ['1979-1-16 12:0:0.0', '2019-3-16 12:0:0.0']},
         'HadISST': {'keyerror': None,
          'name': 'HadISST',
          'nyears': 151,
          'time_period': ['1870-1-16 11:59:59.5', '2020-10-16 12:0:0.0']},
         'Tropflux': {'keyerror': None,
          'name': 'Tropflux',
          'nyears': 40,
          'time_period': ['1979-1-15 0:0:0.0', '2018-12-15 12:0:0.0']},
         'method': 'Nino (Nina) events = nino3.4 sstA > 0.75 (< -0.75) during DEC, zonal SSTA (meridional averaged [-5.0 ; 5.0]), the zonal SSTA maximum (minimum) is located for each event, the diversity is the interquartile range (IQR = Q3 - Q1), time series are linearly detrended, smoothing using a triangle shaped window of 5 points',
         'name': 'ENSO Diversity (interquartile range)',
         'ref': 'Using CDAT regridding',
         'time_frequency': 'monthly',
         'units': 'long'},
        'metric': {'datasets': "CanCM4_r6i1p1; ERA-Interim's ts & HadISST's sst & Tropflux's sst; 's ",
         'method': 'The metric is the absolute value of the relative difference between model and observations values (M = 100 * abs[[model-obs] / obs])',
         'name': 'EnsoSstDiversity',
         'units': '%'}},
       'EnsoSstLonRmse': {'diagnostic': {'CanCM4_r6i1p1': {'keyerror': None,
          'name': 'CanCM4_r6i1p1',
          'nyears': 45,
          'time_period': ['1961-1-16 12:0:0.0', '2005-12-16 12:0:0.0']},
         'ERA-Interim': {'name': 'ERA-Interim',
          'nyears': 40,
          'time_period': ['1979-1-16 12:0:0.0', '2019-3-16 12:0:0.0']},
         'HadISST': {'name': 'HadISST',
          'nyears': 151,
          'time_period': ['1870-1-16 11:59:59.5', '2020-10-16 12:0:0.0']},
         'Tropflux': {'name': 'Tropflux',
          'nyears': 40,
          'time_period': ['1979-1-15 0:0:0.0', '2018-12-15 12:0:0.0']},
         'method': 'nino3.4 SSTA during DEC regressed against equatorial_pacific SSTA, time series are linearly detrended, smoothing using a triangle shaped window of 5 points, observations and model regridded to generic_1x1deg',
         'name': 'ENSO Zonal SSTA pattern',
         'ref': 'Using CDAT regridding and rms (uncentered and biased) calculation',
         'time_frequency': 'monthly',
         'units': 'C/C'},
        'metric': {'datasets': "CanCM4_r6i1p1; ERA-Interim's ts & HadISST's sst & Tropflux's sst; 's ",
         'method': 'The metric is the statistical value between the model and the observations',
         'name': 'EnsoSstLonRmse',
         'units': 'C/C'}},
       'EnsoSstSkew': {'diagnostic': {'CanCM4_r6i1p1': {'keyerror': None,
          'name': 'CanCM4_r6i1p1',
          'nyears': 45,
          'time_period': ['1961-1-16 12:0:0.0', '2005-12-16 12:0:0.0']},
         'ERA-Interim': {'keyerror': None,
          'name': 'ERA-Interim',
          'nyears': 40,
          'time_period': ['1979-1-16 12:0:0.0', '2019-3-16 12:0:0.0']},
         'HadISST': {'keyerror': None,
          'name': 'HadISST',
          'nyears': 151,
          'time_period': ['1870-1-16 11:59:59.5', '2020-10-16 12:0:0.0']},
         'Tropflux': {'keyerror': None,
          'name': 'Tropflux',
          'nyears': 40,
          'time_period': ['1979-1-15 0:0:0.0', '2018-12-15 12:0:0.0']},
         'method': 'Standard deviation of nino3.4 sstA, time series are linearly detrended',
         'name': 'ENSO skewness',
         'ref': 'Using CDAT regression calculation',
         'time_frequency': 'monthly',
         'units': 'C'},
        'metric': {'datasets': "CanCM4_r6i1p1; ERA-Interim's ts & HadISST's sst & Tropflux's sst; 's ",
         'method': 'The metric is the absolute value of the relative difference between model and observations values (M = 100 * abs[[model-obs] / obs])',
         'name': 'EnsoSstSkew',
         'units': '%'}},
       'EnsoSstTsRmse': {'diagnostic': {'CanCM4_r6i1p1': {'keyerror': None,
          'name': 'CanCM4_r6i1p1',
          'nyears': 45,
          'time_period': ['1961-1-16 12:0:0.0', '2005-12-16 12:0:0.0']},
         'ERA-Interim': {'name': 'ERA-Interim',
          'nyears': 40,
          'time_period': ['1979-1-16 12:0:0.0', '2019-3-16 12:0:0.0']},
         'HadISST': {'name': 'HadISST',
          'nyears': 151,
          'time_period': ['1870-1-16 11:59:59.5', '2020-10-16 12:0:0.0']},
         'Tropflux': {'name': 'Tropflux',
          'nyears': 40,
          'time_period': ['1979-1-15 0:0:0.0', '2018-12-15 12:0:0.0']},
         'method': 'nino3.4 SSTA during DEC regressed against nino3.4 SSTA during 6 years (centered on ENSO), time series are linearly detrended, smoothing using a triangle shaped window of 5 points',
         'name': 'ENSO life cyle SSTA pattern',
         'ref': 'Using CDAT regridding and rms (uncentered and biased) calculation',
         'time_frequency': 'monthly',
         'units': 'C/C'},
        'metric': {'datasets': "CanCM4_r6i1p1; ERA-Interim's ts & HadISST's sst & Tropflux's sst; 's ",
         'method': 'The metric is the statistical value between the model and the observations',
         'name': 'EnsoSstTsRmse',
         'units': 'C/C'}},
       'SeasonalPrLatRmse': {'diagnostic': {'CanCM4_r6i1p1': {'keyerror': None,
          'name': 'CanCM4_r6i1p1',
          'nyears': 45,
          'time_period': ['1961-1-16 12:0:0.0', '2005-12-16 12:0:0.0']},
         'ERA-Interim': {'name': 'ERA-Interim',
          'nyears': 40,
          'time_period': ['1979-1-16 12:0:0.0', '2019-3-16 12:0:0.0']},
         'GPCPv2.3': {'name': 'GPCPv2.3',
          'nyears': 41,
          'time_period': ['1979-1-1 0:0:0.0', '2019-7-1 0:0:0.0']},
         'method': 'Meridional root mean square error of nino3_LatExt climatological pr STD, time series are linearly detrended, observations and model regridded to generic_1x1deg',
         'name': 'pr meridional seasonality RMSE',
         'ref': 'Using CDAT regridding and rms (uncentered and biased) calculation',
         'time_frequency': 'monthly',
         'units': 'mm/day'},
        'metric': {'datasets': "CanCM4_r6i1p1; ERA-Interim's pr & GPCPv2.3's precip; 's ",
         'method': 'The metric is the statistical value between the model and the observations',
         'name': 'SeasonalPrLatRmse',
         'units': 'mm/day'}},
       'SeasonalPrLonRmse': {'diagnostic': {'CanCM4_r6i1p1': {'keyerror': None,
          'name': 'CanCM4_r6i1p1',
          'nyears': 45,
          'time_period': ['1961-1-16 12:0:0.0', '2005-12-16 12:0:0.0']},
         'ERA-Interim': {'name': 'ERA-Interim',
          'nyears': 40,
          'time_period': ['1979-1-16 12:0:0.0', '2019-3-16 12:0:0.0']},
         'GPCPv2.3': {'name': 'GPCPv2.3',
          'nyears': 41,
          'time_period': ['1979-1-1 0:0:0.0', '2019-7-1 0:0:0.0']},
         'method': 'Zonal root mean square error of equatorial_pacific climatological pr STD, time series are linearly detrended, observations and model regridded to generic_1x1deg',
         'name': 'pr zonal seasonality RMSE',
         'ref': 'Using CDAT regridding and rms (uncentered and biased) calculation',
         'time_frequency': 'monthly',
         'units': 'mm/day'},
        'metric': {'datasets': "CanCM4_r6i1p1; ERA-Interim's pr & GPCPv2.3's precip; 's ",
         'method': 'The metric is the statistical value between the model and the observations',
         'name': 'SeasonalPrLonRmse',
         'units': 'mm/day'}},
       'SeasonalSstLonRmse': {'diagnostic': {'CanCM4_r6i1p1': {'keyerror': None,
          'name': 'CanCM4_r6i1p1',
          'nyears': 45,
          'time_period': ['1961-1-16 12:0:0.0', '2005-12-16 12:0:0.0']},
         'ERA-Interim': {'name': 'ERA-Interim',
          'nyears': 40,
          'time_period': ['1979-1-16 12:0:0.0', '2019-3-16 12:0:0.0']},
         'HadISST': {'name': 'HadISST',
          'nyears': 151,
          'time_period': ['1870-1-16 11:59:59.5', '2020-10-16 12:0:0.0']},
         'Tropflux': {'name': 'Tropflux',
          'nyears': 40,
          'time_period': ['1979-1-15 0:0:0.0', '2018-12-15 12:0:0.0']},
         'method': 'Zonal root mean square error of equatorial_pacific climatological sst STD, time series are linearly detrended, observations and model regridded to generic_1x1deg',
         'name': 'sst zonal seasonality RMSE',
         'ref': 'Using CDAT regridding and rms (uncentered and biased) calculation',
         'time_frequency': 'monthly',
         'units': 'C'},
        'metric': {'datasets': "CanCM4_r6i1p1; ERA-Interim's ts & HadISST's sst & Tropflux's sst; 's ",
         'method': 'The metric is the statistical value between the model and the observations',
         'name': 'SeasonalSstLonRmse',
         'units': 'C'}},
       'SeasonalTauxLonRmse': {'diagnostic': {'CanCM4_r6i1p1': {'keyerror': None,
          'name': 'CanCM4_r6i1p1',
          'nyears': 45,
          'time_period': ['1961-1-16 12:0:0.0', '2005-12-16 12:0:0.0']},
         'ERA-Interim': {'name': 'ERA-Interim',
          'nyears': 40,
          'time_period': ['1979-1-16 12:0:0.0', '2019-3-16 12:0:0.0']},
         'Tropflux': {'name': 'Tropflux',
          'nyears': 40,
          'time_period': ['1979-1-15 0:0:0.0', '2018-12-15 12:0:0.0']},
         'method': 'Zonal root mean square error of equatorial_pacific climatological taux STD, time series are linearly detrended, observations and model regridded to generic_1x1deg',
         'name': 'taux zonal seasonality RMSE',
         'ref': 'Using CDAT regridding and rms (uncentered and biased) calculation',
         'time_frequency': 'monthly',
         'units': '1e-3 N/m2'},
        'metric': {'datasets': "CanCM4_r6i1p1; ERA-Interim's tauu & Tropflux's taux; 's ",
         'method': 'The metric is the statistical value between the model and the observations',
         'name': 'SeasonalTauxLonRmse',
         'units': '1e-3 N/m2'}}},
      'name': 'Metrics Collection for ENSO performance'},
     'value': {'BiasPrLatRmse': {'diagnostic': {'CanCM4_r6i1p1': {'value': None,
         'value_error': None},
        'ERA-Interim': {'value': None, 'value_error': None},
        'GPCPv2.3': {'value': None, 'value_error': None}},
       'metric': {'ERA-Interim': {'value': 0.7526087990105615,
         'value_error': None},
        'GPCPv2.3': {'value': 1.1365447244556708, 'value_error': None}}},
      'BiasPrLonRmse': {'diagnostic': {'CanCM4_r6i1p1': {'value': None,
         'value_error': None},
        'ERA-Interim': {'value': None, 'value_error': None},
        'GPCPv2.3': {'value': None, 'value_error': None}},
       'metric': {'ERA-Interim': {'value': 1.7636143380416547,
         'value_error': None},
        'GPCPv2.3': {'value': 1.0275735896316902, 'value_error': None}}},
      'BiasSstLonRmse': {'diagnostic': {'CanCM4_r6i1p1': {'value': None,
         'value_error': None},
        'ERA-Interim': {'value': None, 'value_error': None},
        'HadISST': {'value': None, 'value_error': None},
        'Tropflux': {'value': None, 'value_error': None}},
       'metric': {'ERA-Interim': {'value': 0.9666650868053087,
         'value_error': None},
        'HadISST': {'value': 0.9028393778419641, 'value_error': None},
        'Tropflux': {'value': 0.9997054077140392, 'value_error': None}}},
      'BiasTauxLonRmse': {'diagnostic': {'CanCM4_r6i1p1': {'value': None,
         'value_error': None},
        'ERA-Interim': {'value': None, 'value_error': None},
        'Tropflux': {'value': None, 'value_error': None}},
       'metric': {'ERA-Interim': {'value': 4.026985979031335,
         'value_error': None},
        'Tropflux': {'value': 4.735217330610981, 'value_error': None}}},
      'EnsoAmpl': {'diagnostic': {'CanCM4_r6i1p1': {'value': 1.0091157713590715,
         'value_error': 0.1504300974617346},
        'ERA-Interim': {'value': 0.8989844997845644,
         'value_error': 0.14214193002531866},
        'HadISST': {'value': 0.7665787872085695,
         'value_error': 0.06238329697691264},
        'Tropflux': {'value': 0.9039789553693535,
         'value_error': 0.14293162279134272}},
       'metric': {'ERA-Interim': {'value': 12.250630750685836,
         'value_error': 34.48171915651929},
        'HadISST': {'value': 31.638885421507613,
         'value_error': 30.336186987138664},
        'Tropflux': {'value': 11.630449510493367,
         'value_error': 34.29120873170078}}},
      'EnsoDuration': {'diagnostic': {'CanCM4_r6i1p1': {'value': 13.0,
         'value_error': None},
        'ERA-Interim': {'value': 13.0, 'value_error': None},
        'HadISST': {'value': 13.0, 'value_error': None},
        'Tropflux': {'value': 13.0, 'value_error': None}},
       'metric': {'ERA-Interim': {'value': 0.0, 'value_error': None},
        'HadISST': {'value': 0.0, 'value_error': None},
        'Tropflux': {'value': 0.0, 'value_error': None}}},
      'EnsoSeasonality': {'diagnostic': {'CanCM4_r6i1p1': {'value': 1.3320826660508156,
         'value_error': 0.39939417739410843},
        'ERA-Interim': {'value': 2.0466846866656914,
         'value_error': 0.6513411033995022},
        'HadISST': {'value': 1.6639865947361325,
         'value_error': 0.2712772451657809},
        'Tropflux': {'value': 2.0532132553583624,
         'value_error': 0.6534187683977347}},
       'metric': {'ERA-Interim': {'value': 34.91510076127325,
         'value_error': 40.22695257389042},
        'HadISST': {'value': 19.946310248848416,
         'value_error': 37.05328057059048},
        'Tropflux': {'value': 35.12205015361069,
         'value_error': 40.09904358903944}}},
      'EnsoSstDiversity_2': {'diagnostic': {'CanCM4_r6i1p1': {'value': 15.25,
         'value_error': None},
        'ERA-Interim': {'value': 33.25, 'value_error': None},
        'HadISST': {'value': 49.0, 'value_error': None},
        'Tropflux': {'value': 32.0, 'value_error': None}},
       'metric': {'ERA-Interim': {'value': 54.13533834586466,
         'value_error': None},
        'HadISST': {'value': 68.87755102040816, 'value_error': None},
        'Tropflux': {'value': 52.34375, 'value_error': None}}},
      'EnsoSstLonRmse': {'diagnostic': {'CanCM4_r6i1p1': {'value': None,
         'value_error': None},
        'ERA-Interim': {'value': None, 'value_error': None},
        'HadISST': {'value': None, 'value_error': None},
        'Tropflux': {'value': None, 'value_error': None}},
       'metric': {'ERA-Interim': {'value': 0.20712979872861323,
         'value_error': None},
        'HadISST': {'value': 0.2282299735271875, 'value_error': None},
        'Tropflux': {'value': 0.20705742447715011, 'value_error': None}}},
      'EnsoSstSkew': {'diagnostic': {'CanCM4_r6i1p1': {'value': -0.26002108807334284,
         'value_error': -0.038761655234363625},
        'ERA-Interim': {'value': 0.39098111106809963,
         'value_error': 0.061819541653923164},
        'HadISST': {'value': 0.38989908235027515,
         'value_error': 0.03172953733021198},
        'Tropflux': {'value': 0.39744741059612115,
         'value_error': 0.06284195338099416}},
       'metric': {'ERA-Interim': {'value': 166.50476985013566,
         'value_error': -20.42927314711163},
        'HadISST': {'value': 166.6893306098491,
         'value_error': -15.368559198518946},
        'Tropflux': {'value': 165.4227656643539,
         'value_error': -20.09689760310983}}},
      'EnsoSstTsRmse': {'diagnostic': {'CanCM4_r6i1p1': {'value': None,
         'value_error': None},
        'ERA-Interim': {'value': None, 'value_error': None},
        'HadISST': {'value': None, 'value_error': None},
        'Tropflux': {'value': None, 'value_error': None}},
       'metric': {'ERA-Interim': {'value': 0.19982328262209437,
         'value_error': None},
        'HadISST': {'value': 0.17765743582000249, 'value_error': None},
        'Tropflux': {'value': 0.19819214603528884, 'value_error': None}}},
      'SeasonalPrLatRmse': {'diagnostic': {'CanCM4_r6i1p1': {'value': None,
         'value_error': None},
        'ERA-Interim': {'value': None, 'value_error': None},
        'GPCPv2.3': {'value': None, 'value_error': None}},
       'metric': {'ERA-Interim': {'value': 0.8435136037194181,
         'value_error': None},
        'GPCPv2.3': {'value': 1.1886098572821415, 'value_error': None}}},
      'SeasonalPrLonRmse': {'diagnostic': {'CanCM4_r6i1p1': {'value': None,
         'value_error': None},
        'ERA-Interim': {'value': None, 'value_error': None},
        'GPCPv2.3': {'value': None, 'value_error': None}},
       'metric': {'ERA-Interim': {'value': 0.4803878601848461,
         'value_error': None},
        'GPCPv2.3': {'value': 0.7472943169892908, 'value_error': None}}},
      'SeasonalSstLonRmse': {'diagnostic': {'CanCM4_r6i1p1': {'value': None,
         'value_error': None},
        'ERA-Interim': {'value': None, 'value_error': None},
        'HadISST': {'value': None, 'value_error': None},
        'Tropflux': {'value': None, 'value_error': None}},
       'metric': {'ERA-Interim': {'value': 0.3539980061382118,
         'value_error': None},
        'HadISST': {'value': 0.3720662489281646, 'value_error': None},
        'Tropflux': {'value': 0.3559150345177025, 'value_error': None}}},
      'SeasonalTauxLonRmse': {'diagnostic': {'CanCM4_r6i1p1': {'value': None,
         'value_error': None},
        'ERA-Interim': {'value': None, 'value_error': None},
        'Tropflux': {'value': None, 'value_error': None}},
       'metric': {'ERA-Interim': {'value': 3.625304963169237,
         'value_error': None},
        'Tropflux': {'value': 3.4546619838822594, 'value_error': None}}}}},
    'r7i1p1': {'metadata': {'description_of_the_collection': 'Describe which science question this collection is about',
      'metrics': {'BiasPrLatRmse': {'diagnostic': {'CanCM4_r7i1p1': {'keyerror': None,
          'name': 'CanCM4_r7i1p1',
          'nyears': 45,
          'time_period': ['1961-1-16 12:0:0.0', '2005-12-16 12:0:0.0']},
         'ERA-Interim': {'name': 'ERA-Interim',
          'nyears': 40,
          'time_period': ['1979-1-16 12:0:0.0', '2019-3-16 12:0:0.0']},
         'GPCPv2.3': {'name': 'GPCPv2.3',
          'nyears': 41,
          'time_period': ['1979-1-1 0:0:0.0', '2019-7-1 0:0:0.0']},
         'method': 'Meridional root mean square error of nino3_LatExt pr, time series are linearly detrended, observations and model regridded to generic_1x1deg',
         'name': 'pr Meridional RMSE',
         'ref': 'Using CDAT regridding and rms (uncentered and biased) calculation',
         'time_frequency': 'monthly',
         'units': 'mm/day'},
        'metric': {'datasets': "CanCM4_r7i1p1; ERA-Interim's pr & GPCPv2.3's precip; 's ",
         'method': 'The metric is the statistical value between the model and the observations',
         'name': 'BiasPrLatRmse',
         'units': 'mm/day'}},
       'BiasPrLonRmse': {'diagnostic': {'CanCM4_r7i1p1': {'keyerror': None,
          'name': 'CanCM4_r7i1p1',
          'nyears': 45,
          'time_period': ['1961-1-16 12:0:0.0', '2005-12-16 12:0:0.0']},
         'ERA-Interim': {'name': 'ERA-Interim',
          'nyears': 40,
          'time_period': ['1979-1-16 12:0:0.0', '2019-3-16 12:0:0.0']},
         'GPCPv2.3': {'name': 'GPCPv2.3',
          'nyears': 41,
          'time_period': ['1979-1-1 0:0:0.0', '2019-7-1 0:0:0.0']},
         'method': 'Zonal root mean square error of equatorial_pacific pr, time series are linearly detrended, observations and model regridded to generic_1x1deg',
         'name': 'pr Zonal RMSE',
         'ref': 'Using CDAT regridding and rms (uncentered and biased) calculation',
         'time_frequency': 'monthly',
         'units': 'mm/day'},
        'metric': {'datasets': "CanCM4_r7i1p1; ERA-Interim's pr & GPCPv2.3's precip; 's ",
         'method': 'The metric is the statistical value between the model and the observations',
         'name': 'BiasPrLonRmse',
         'units': 'mm/day'}},
       'BiasSstLonRmse': {'diagnostic': {'CanCM4_r7i1p1': {'keyerror': None,
          'name': 'CanCM4_r7i1p1',
          'nyears': 45,
          'time_period': ['1961-1-16 12:0:0.0', '2005-12-16 12:0:0.0']},
         'ERA-Interim': {'name': 'ERA-Interim',
          'nyears': 40,
          'time_period': ['1979-1-16 12:0:0.0', '2019-3-16 12:0:0.0']},
         'HadISST': {'name': 'HadISST',
          'nyears': 151,
          'time_period': ['1870-1-16 11:59:59.5', '2020-10-16 12:0:0.0']},
         'Tropflux': {'name': 'Tropflux',
          'nyears': 40,
          'time_period': ['1979-1-15 0:0:0.0', '2018-12-15 12:0:0.0']},
         'method': 'Zonal root mean square error of equatorial_pacific sst, time series are linearly detrended, observations and model regridded to generic_1x1deg',
         'name': 'sst Zonal RMSE',
         'ref': 'Using CDAT regridding and rms (uncentered and biased) calculation',
         'time_frequency': 'monthly',
         'units': 'C'},
        'metric': {'datasets': "CanCM4_r7i1p1; ERA-Interim's ts & HadISST's sst & Tropflux's sst; 's ",
         'method': 'The metric is the statistical value between the model and the observations',
         'name': 'BiasSstLonRmse',
         'units': 'C'}},
       'BiasTauxLonRmse': {'diagnostic': {'CanCM4_r7i1p1': {'keyerror': None,
          'name': 'CanCM4_r7i1p1',
          'nyears': 45,
          'time_period': ['1961-1-16 12:0:0.0', '2005-12-16 12:0:0.0']},
         'ERA-Interim': {'name': 'ERA-Interim',
          'nyears': 40,
          'time_period': ['1979-1-16 12:0:0.0', '2019-3-16 12:0:0.0']},
         'Tropflux': {'name': 'Tropflux',
          'nyears': 40,
          'time_period': ['1979-1-15 0:0:0.0', '2018-12-15 12:0:0.0']},
         'method': 'Zonal root mean square error of equatorial_pacific taux, time series are linearly detrended, observations and model regridded to generic_1x1deg',
         'name': 'taux Zonal RMSE',
         'ref': 'Using CDAT regridding and rms (uncentered and biased) calculation',
         'time_frequency': 'monthly',
         'units': '1e-3 N/m2'},
        'metric': {'datasets': "CanCM4_r7i1p1; ERA-Interim's tauu & Tropflux's taux; 's ",
         'method': 'The metric is the statistical value between the model and the observations',
         'name': 'BiasTauxLonRmse',
         'units': '1e-3 N/m2'}},
       'EnsoAmpl': {'diagnostic': {'CanCM4_r7i1p1': {'keyerror': None,
          'name': 'CanCM4_r7i1p1',
          'nyears': 45,
          'time_period': ['1961-1-16 12:0:0.0', '2005-12-16 12:0:0.0']},
         'ERA-Interim': {'keyerror': None,
          'name': 'ERA-Interim',
          'nyears': 40,
          'time_period': ['1979-1-16 12:0:0.0', '2019-3-16 12:0:0.0']},
         'HadISST': {'keyerror': None,
          'name': 'HadISST',
          'nyears': 151,
          'time_period': ['1870-1-16 11:59:59.5', '2020-10-16 12:0:0.0']},
         'Tropflux': {'keyerror': None,
          'name': 'Tropflux',
          'nyears': 40,
          'time_period': ['1979-1-15 0:0:0.0', '2018-12-15 12:0:0.0']},
         'method': 'Standard deviation of nino3.4 sstA, time series are linearly detrended',
         'name': 'ENSO amplitude',
         'ref': 'Using CDAT regression calculation',
         'time_frequency': 'monthly',
         'units': 'C'},
        'metric': {'datasets': "CanCM4_r7i1p1; ERA-Interim's ts & HadISST's sst & Tropflux's sst; 's ",
         'method': 'The metric is the absolute value of the relative difference between model and observations values (M = 100 * abs[[model-obs] / obs])',
         'name': 'EnsoAmpl',
         'units': '%'}},
       'EnsoDuration': {'diagnostic': {'CanCM4_r7i1p1': {'keyerror': None,
          'name': 'CanCM4_r7i1p1',
          'nyears': 45,
          'time_period': ['1961-1-16 12:0:0.0', '2005-12-16 12:0:0.0']},
         'ERA-Interim': {'keyerror': None,
          'name': 'ERA-Interim',
          'nyears': 40,
          'time_period': ['1979-1-16 12:0:0.0', '2019-3-16 12:0:0.0']},
         'HadISST': {'keyerror': None,
          'name': 'HadISST',
          'nyears': 151,
          'time_period': ['1870-1-16 11:59:59.5', '2020-10-16 12:0:0.0']},
         'Tropflux': {'keyerror': None,
          'name': 'Tropflux',
          'nyears': 40,
          'time_period': ['1979-1-15 0:0:0.0', '2018-12-15 12:0:0.0']},
         'method': 'nino3.4 SSTA during DEC regressed against nino3.4 SSTA during 6 years (centered on ENSO), the duration is the number of consecutive months during which the regression is above 0.25, time series are linearly detrended, smoothing using a triangle shaped window of 5 points',
         'name': 'ENSO Duration based on life cyle SSTA pattern',
         'ref': 'Using CDAT',
         'time_frequency': 'monthly',
         'units': 'months'},
        'metric': {'datasets': "CanCM4_r7i1p1; ERA-Interim's ts & HadISST's sst & Tropflux's sst; 's ",
         'method': 'The metric is the absolute value of the relative difference between model and observations values (M = 100 * abs[[model-obs] / obs])',
         'name': 'EnsoDuration',
         'units': '%'}},
       'EnsoSeasonality': {'diagnostic': {'CanCM4_r7i1p1': {'keyerror': None,
          'name': 'CanCM4_r7i1p1',
          'nyears': 45,
          'time_period': ['1961-1-16 12:0:0.0', '2005-12-16 12:0:0.0']},
         'ERA-Interim': {'keyerror': None,
          'name': 'ERA-Interim',
          'nyears': 40,
          'time_period': ['1979-1-16 12:0:0.0', '2019-3-16 12:0:0.0']},
         'HadISST': {'keyerror': None,
          'name': 'HadISST',
          'nyears': 151,
          'time_period': ['1870-1-16 11:59:59.5', '2020-10-16 12:0:0.0']},
         'Tropflux': {'keyerror': None,
          'name': 'Tropflux',
          'nyears': 40,
          'time_period': ['1979-1-15 0:0:0.0', '2018-12-15 12:0:0.0']},
         'method': 'Ratio between NDJ and MAM standard deviation nino3.4 sstA, time series are linearly detrended',
         'name': 'ENSO seasonality',
         'ref': 'Using CDAT std dev calculation',
         'time_frequency': 'monthly',
         'units': 'C/C'},
        'metric': {'datasets': "CanCM4_r7i1p1; ERA-Interim's ts & HadISST's sst & Tropflux's sst; 's ",
         'method': 'The metric is the absolute value of the relative difference between model and observations values (M = 100 * abs[[model-obs] / obs])',
         'name': 'EnsoSeasonality',
         'units': '%'}},
       'EnsoSstDiversity_2': {'diagnostic': {'CanCM4_r7i1p1': {'keyerror': None,
          'name': 'CanCM4_r7i1p1',
          'nyears': 45,
          'time_period': ['1961-1-16 12:0:0.0', '2005-12-16 12:0:0.0']},
         'ERA-Interim': {'keyerror': None,
          'name': 'ERA-Interim',
          'nyears': 40,
          'time_period': ['1979-1-16 12:0:0.0', '2019-3-16 12:0:0.0']},
         'HadISST': {'keyerror': None,
          'name': 'HadISST',
          'nyears': 151,
          'time_period': ['1870-1-16 11:59:59.5', '2020-10-16 12:0:0.0']},
         'Tropflux': {'keyerror': None,
          'name': 'Tropflux',
          'nyears': 40,
          'time_period': ['1979-1-15 0:0:0.0', '2018-12-15 12:0:0.0']},
         'method': 'Nino (Nina) events = nino3.4 sstA > 0.75 (< -0.75) during DEC, zonal SSTA (meridional averaged [-5.0 ; 5.0]), the zonal SSTA maximum (minimum) is located for each event, the diversity is the interquartile range (IQR = Q3 - Q1), time series are linearly detrended, smoothing using a triangle shaped window of 5 points',
         'name': 'ENSO Diversity (interquartile range)',
         'ref': 'Using CDAT regridding',
         'time_frequency': 'monthly',
         'units': 'long'},
        'metric': {'datasets': "CanCM4_r7i1p1; ERA-Interim's ts & HadISST's sst & Tropflux's sst; 's ",
         'method': 'The metric is the absolute value of the relative difference between model and observations values (M = 100 * abs[[model-obs] / obs])',
         'name': 'EnsoSstDiversity',
         'units': '%'}},
       'EnsoSstLonRmse': {'diagnostic': {'CanCM4_r7i1p1': {'keyerror': None,
          'name': 'CanCM4_r7i1p1',
          'nyears': 45,
          'time_period': ['1961-1-16 12:0:0.0', '2005-12-16 12:0:0.0']},
         'ERA-Interim': {'name': 'ERA-Interim',
          'nyears': 40,
          'time_period': ['1979-1-16 12:0:0.0', '2019-3-16 12:0:0.0']},
         'HadISST': {'name': 'HadISST',
          'nyears': 151,
          'time_period': ['1870-1-16 11:59:59.5', '2020-10-16 12:0:0.0']},
         'Tropflux': {'name': 'Tropflux',
          'nyears': 40,
          'time_period': ['1979-1-15 0:0:0.0', '2018-12-15 12:0:0.0']},
         'method': 'nino3.4 SSTA during DEC regressed against equatorial_pacific SSTA, time series are linearly detrended, smoothing using a triangle shaped window of 5 points, observations and model regridded to generic_1x1deg',
         'name': 'ENSO Zonal SSTA pattern',
         'ref': 'Using CDAT regridding and rms (uncentered and biased) calculation',
         'time_frequency': 'monthly',
         'units': 'C/C'},
        'metric': {'datasets': "CanCM4_r7i1p1; ERA-Interim's ts & HadISST's sst & Tropflux's sst; 's ",
         'method': 'The metric is the statistical value between the model and the observations',
         'name': 'EnsoSstLonRmse',
         'units': 'C/C'}},
       'EnsoSstSkew': {'diagnostic': {'CanCM4_r7i1p1': {'keyerror': None,
          'name': 'CanCM4_r7i1p1',
          'nyears': 45,
          'time_period': ['1961-1-16 12:0:0.0', '2005-12-16 12:0:0.0']},
         'ERA-Interim': {'keyerror': None,
          'name': 'ERA-Interim',
          'nyears': 40,
          'time_period': ['1979-1-16 12:0:0.0', '2019-3-16 12:0:0.0']},
         'HadISST': {'keyerror': None,
          'name': 'HadISST',
          'nyears': 151,
          'time_period': ['1870-1-16 11:59:59.5', '2020-10-16 12:0:0.0']},
         'Tropflux': {'keyerror': None,
          'name': 'Tropflux',
          'nyears': 40,
          'time_period': ['1979-1-15 0:0:0.0', '2018-12-15 12:0:0.0']},
         'method': 'Standard deviation of nino3.4 sstA, time series are linearly detrended',
         'name': 'ENSO skewness',
         'ref': 'Using CDAT regression calculation',
         'time_frequency': 'monthly',
         'units': 'C'},
        'metric': {'datasets': "CanCM4_r7i1p1; ERA-Interim's ts & HadISST's sst & Tropflux's sst; 's ",
         'method': 'The metric is the absolute value of the relative difference between model and observations values (M = 100 * abs[[model-obs] / obs])',
         'name': 'EnsoSstSkew',
         'units': '%'}},
       'EnsoSstTsRmse': {'diagnostic': {'CanCM4_r7i1p1': {'keyerror': None,
          'name': 'CanCM4_r7i1p1',
          'nyears': 45,
          'time_period': ['1961-1-16 12:0:0.0', '2005-12-16 12:0:0.0']},
         'ERA-Interim': {'name': 'ERA-Interim',
          'nyears': 40,
          'time_period': ['1979-1-16 12:0:0.0', '2019-3-16 12:0:0.0']},
         'HadISST': {'name': 'HadISST',
          'nyears': 151,
          'time_period': ['1870-1-16 11:59:59.5', '2020-10-16 12:0:0.0']},
         'Tropflux': {'name': 'Tropflux',
          'nyears': 40,
          'time_period': ['1979-1-15 0:0:0.0', '2018-12-15 12:0:0.0']},
         'method': 'nino3.4 SSTA during DEC regressed against nino3.4 SSTA during 6 years (centered on ENSO), time series are linearly detrended, smoothing using a triangle shaped window of 5 points',
         'name': 'ENSO life cyle SSTA pattern',
         'ref': 'Using CDAT regridding and rms (uncentered and biased) calculation',
         'time_frequency': 'monthly',
         'units': 'C/C'},
        'metric': {'datasets': "CanCM4_r7i1p1; ERA-Interim's ts & HadISST's sst & Tropflux's sst; 's ",
         'method': 'The metric is the statistical value between the model and the observations',
         'name': 'EnsoSstTsRmse',
         'units': 'C/C'}},
       'SeasonalPrLatRmse': {'diagnostic': {'CanCM4_r7i1p1': {'keyerror': None,
          'name': 'CanCM4_r7i1p1',
          'nyears': 45,
          'time_period': ['1961-1-16 12:0:0.0', '2005-12-16 12:0:0.0']},
         'ERA-Interim': {'name': 'ERA-Interim',
          'nyears': 40,
          'time_period': ['1979-1-16 12:0:0.0', '2019-3-16 12:0:0.0']},
         'GPCPv2.3': {'name': 'GPCPv2.3',
          'nyears': 41,
          'time_period': ['1979-1-1 0:0:0.0', '2019-7-1 0:0:0.0']},
         'method': 'Meridional root mean square error of nino3_LatExt climatological pr STD, time series are linearly detrended, observations and model regridded to generic_1x1deg',
         'name': 'pr meridional seasonality RMSE',
         'ref': 'Using CDAT regridding and rms (uncentered and biased) calculation',
         'time_frequency': 'monthly',
         'units': 'mm/day'},
        'metric': {'datasets': "CanCM4_r7i1p1; ERA-Interim's pr & GPCPv2.3's precip; 's ",
         'method': 'The metric is the statistical value between the model and the observations',
         'name': 'SeasonalPrLatRmse',
         'units': 'mm/day'}},
       'SeasonalPrLonRmse': {'diagnostic': {'CanCM4_r7i1p1': {'keyerror': None,
          'name': 'CanCM4_r7i1p1',
          'nyears': 45,
          'time_period': ['1961-1-16 12:0:0.0', '2005-12-16 12:0:0.0']},
         'ERA-Interim': {'name': 'ERA-Interim',
          'nyears': 40,
          'time_period': ['1979-1-16 12:0:0.0', '2019-3-16 12:0:0.0']},
         'GPCPv2.3': {'name': 'GPCPv2.3',
          'nyears': 41,
          'time_period': ['1979-1-1 0:0:0.0', '2019-7-1 0:0:0.0']},
         'method': 'Zonal root mean square error of equatorial_pacific climatological pr STD, time series are linearly detrended, observations and model regridded to generic_1x1deg',
         'name': 'pr zonal seasonality RMSE',
         'ref': 'Using CDAT regridding and rms (uncentered and biased) calculation',
         'time_frequency': 'monthly',
         'units': 'mm/day'},
        'metric': {'datasets': "CanCM4_r7i1p1; ERA-Interim's pr & GPCPv2.3's precip; 's ",
         'method': 'The metric is the statistical value between the model and the observations',
         'name': 'SeasonalPrLonRmse',
         'units': 'mm/day'}},
       'SeasonalSstLonRmse': {'diagnostic': {'CanCM4_r7i1p1': {'keyerror': None,
          'name': 'CanCM4_r7i1p1',
          'nyears': 45,
          'time_period': ['1961-1-16 12:0:0.0', '2005-12-16 12:0:0.0']},
         'ERA-Interim': {'name': 'ERA-Interim',
          'nyears': 40,
          'time_period': ['1979-1-16 12:0:0.0', '2019-3-16 12:0:0.0']},
         'HadISST': {'name': 'HadISST',
          'nyears': 151,
          'time_period': ['1870-1-16 11:59:59.5', '2020-10-16 12:0:0.0']},
         'Tropflux': {'name': 'Tropflux',
          'nyears': 40,
          'time_period': ['1979-1-15 0:0:0.0', '2018-12-15 12:0:0.0']},
         'method': 'Zonal root mean square error of equatorial_pacific climatological sst STD, time series are linearly detrended, observations and model regridded to generic_1x1deg',
         'name': 'sst zonal seasonality RMSE',
         'ref': 'Using CDAT regridding and rms (uncentered and biased) calculation',
         'time_frequency': 'monthly',
         'units': 'C'},
        'metric': {'datasets': "CanCM4_r7i1p1; ERA-Interim's ts & HadISST's sst & Tropflux's sst; 's ",
         'method': 'The metric is the statistical value between the model and the observations',
         'name': 'SeasonalSstLonRmse',
         'units': 'C'}},
       'SeasonalTauxLonRmse': {'diagnostic': {'CanCM4_r7i1p1': {'keyerror': None,
          'name': 'CanCM4_r7i1p1',
          'nyears': 45,
          'time_period': ['1961-1-16 12:0:0.0', '2005-12-16 12:0:0.0']},
         'ERA-Interim': {'name': 'ERA-Interim',
          'nyears': 40,
          'time_period': ['1979-1-16 12:0:0.0', '2019-3-16 12:0:0.0']},
         'Tropflux': {'name': 'Tropflux',
          'nyears': 40,
          'time_period': ['1979-1-15 0:0:0.0', '2018-12-15 12:0:0.0']},
         'method': 'Zonal root mean square error of equatorial_pacific climatological taux STD, time series are linearly detrended, observations and model regridded to generic_1x1deg',
         'name': 'taux zonal seasonality RMSE',
         'ref': 'Using CDAT regridding and rms (uncentered and biased) calculation',
         'time_frequency': 'monthly',
         'units': '1e-3 N/m2'},
        'metric': {'datasets': "CanCM4_r7i1p1; ERA-Interim's tauu & Tropflux's taux; 's ",
         'method': 'The metric is the statistical value between the model and the observations',
         'name': 'SeasonalTauxLonRmse',
         'units': '1e-3 N/m2'}}},
      'name': 'Metrics Collection for ENSO performance'},
     'value': {'BiasPrLatRmse': {'diagnostic': {'CanCM4_r7i1p1': {'value': None,
         'value_error': None},
        'ERA-Interim': {'value': None, 'value_error': None},
        'GPCPv2.3': {'value': None, 'value_error': None}},
       'metric': {'ERA-Interim': {'value': 0.734196177969259,
         'value_error': None},
        'GPCPv2.3': {'value': 1.1546774591732059, 'value_error': None}}},
      'BiasPrLonRmse': {'diagnostic': {'CanCM4_r7i1p1': {'value': None,
         'value_error': None},
        'ERA-Interim': {'value': None, 'value_error': None},
        'GPCPv2.3': {'value': None, 'value_error': None}},
       'metric': {'ERA-Interim': {'value': 1.5884666660230655,
         'value_error': None},
        'GPCPv2.3': {'value': 0.8978584091228663, 'value_error': None}}},
      'BiasSstLonRmse': {'diagnostic': {'CanCM4_r7i1p1': {'value': None,
         'value_error': None},
        'ERA-Interim': {'value': None, 'value_error': None},
        'HadISST': {'value': None, 'value_error': None},
        'Tropflux': {'value': None, 'value_error': None}},
       'metric': {'ERA-Interim': {'value': 0.8612759348842103,
         'value_error': None},
        'HadISST': {'value': 0.8313795777103828, 'value_error': None},
        'Tropflux': {'value': 0.889045238780636, 'value_error': None}}},
      'BiasTauxLonRmse': {'diagnostic': {'CanCM4_r7i1p1': {'value': None,
         'value_error': None},
        'ERA-Interim': {'value': None, 'value_error': None},
        'Tropflux': {'value': None, 'value_error': None}},
       'metric': {'ERA-Interim': {'value': 3.3342496059615576,
         'value_error': None},
        'Tropflux': {'value': 4.116200629058058, 'value_error': None}}},
      'EnsoAmpl': {'diagnostic': {'CanCM4_r7i1p1': {'value': 0.9322958270814393,
         'value_error': 0.13897845629956584},
        'ERA-Interim': {'value': 0.8989844997845644,
         'value_error': 0.14214193002531866},
        'HadISST': {'value': 0.7665787872085695,
         'value_error': 0.06238329697691264},
        'Tropflux': {'value': 0.9039789553693535,
         'value_error': 0.14293162279134272}},
       'metric': {'ERA-Interim': {'value': 3.7054395603992893,
         'value_error': 31.85676390422622},
        'HadISST': {'value': 21.617744012499234,
         'value_error': 28.02681450472347},
        'Tropflux': {'value': 3.1324702354952465,
         'value_error': 31.680756275453753}}},
      'EnsoDuration': {'diagnostic': {'CanCM4_r7i1p1': {'value': 12.0,
         'value_error': None},
        'ERA-Interim': {'value': 13.0, 'value_error': None},
        'HadISST': {'value': 13.0, 'value_error': None},
        'Tropflux': {'value': 13.0, 'value_error': None}},
       'metric': {'ERA-Interim': {'value': 7.6923076923076925,
         'value_error': None},
        'HadISST': {'value': 7.6923076923076925, 'value_error': None},
        'Tropflux': {'value': 7.6923076923076925, 'value_error': None}}},
      'EnsoSeasonality': {'diagnostic': {'CanCM4_r7i1p1': {'value': 1.4573178196754935,
         'value_error': 0.4369430416181587},
        'ERA-Interim': {'value': 2.0466846866656914,
         'value_error': 0.6513411033995022},
        'HadISST': {'value': 1.6639865947361325,
         'value_error': 0.2712772451657809},
        'Tropflux': {'value': 2.0532132553583624,
         'value_error': 0.6534187683977347}},
       'metric': {'ERA-Interim': {'value': 28.796173188277045,
         'value_error': 44.00887145463024},
        'HadISST': {'value': 12.420098558150444,
         'value_error': 40.53682810320222},
        'Tropflux': {'value': 29.022578834796338,
         'value_error': 43.86893716401103}}},
      'EnsoSstDiversity_2': {'diagnostic': {'CanCM4_r7i1p1': {'value': 22.5,
         'value_error': None},
        'ERA-Interim': {'value': 33.25, 'value_error': None},
        'HadISST': {'value': 49.0, 'value_error': None},
        'Tropflux': {'value': 32.0, 'value_error': None}},
       'metric': {'ERA-Interim': {'value': 32.33082706766917,
         'value_error': None},
        'HadISST': {'value': 54.08163265306123, 'value_error': None},
        'Tropflux': {'value': 29.6875, 'value_error': None}}},
      'EnsoSstLonRmse': {'diagnostic': {'CanCM4_r7i1p1': {'value': None,
         'value_error': None},
        'ERA-Interim': {'value': None, 'value_error': None},
        'HadISST': {'value': None, 'value_error': None},
        'Tropflux': {'value': None, 'value_error': None}},
       'metric': {'ERA-Interim': {'value': 0.22348885162060703,
         'value_error': None},
        'HadISST': {'value': 0.24583582295734854, 'value_error': None},
        'Tropflux': {'value': 0.22352427118825563, 'value_error': None}}},
      'EnsoSstSkew': {'diagnostic': {'CanCM4_r7i1p1': {'value': -0.05225692679270159,
         'value_error': -0.007790002706914053},
        'ERA-Interim': {'value': 0.39098111106809963,
         'value_error': 0.061819541653923164},
        'HadISST': {'value': 0.38989908235027515,
         'value_error': 0.03172953733021198},
        'Tropflux': {'value': 0.39744741059612115,
         'value_error': 0.06284195338099416}},
       'metric': {'ERA-Interim': {'value': 113.36558859581318,
         'value_error': -4.10570942221268},
        'HadISST': {'value': 113.40268011858396,
         'value_error': -3.088648228099773},
        'Tropflux': {'value': 113.14813618091581,
         'value_error': -4.038911284418227}}},
      'EnsoSstTsRmse': {'diagnostic': {'CanCM4_r7i1p1': {'value': None,
         'value_error': None},
        'ERA-Interim': {'value': None, 'value_error': None},
        'HadISST': {'value': None, 'value_error': None},
        'Tropflux': {'value': None, 'value_error': None}},
       'metric': {'ERA-Interim': {'value': 0.09349926410493041,
         'value_error': None},
        'HadISST': {'value': 0.10172920689432151, 'value_error': None},
        'Tropflux': {'value': 0.09539926339680817, 'value_error': None}}},
      'SeasonalPrLatRmse': {'diagnostic': {'CanCM4_r7i1p1': {'value': None,
         'value_error': None},
        'ERA-Interim': {'value': None, 'value_error': None},
        'GPCPv2.3': {'value': None, 'value_error': None}},
       'metric': {'ERA-Interim': {'value': 0.889661069817011,
         'value_error': None},
        'GPCPv2.3': {'value': 1.2506702226016513, 'value_error': None}}},
      'SeasonalPrLonRmse': {'diagnostic': {'CanCM4_r7i1p1': {'value': None,
         'value_error': None},
        'ERA-Interim': {'value': None, 'value_error': None},
        'GPCPv2.3': {'value': None, 'value_error': None}},
       'metric': {'ERA-Interim': {'value': 0.5136740159520888,
         'value_error': None},
        'GPCPv2.3': {'value': 0.7805927027774605, 'value_error': None}}},
      'SeasonalSstLonRmse': {'diagnostic': {'CanCM4_r7i1p1': {'value': None,
         'value_error': None},
        'ERA-Interim': {'value': None, 'value_error': None},
        'HadISST': {'value': None, 'value_error': None},
        'Tropflux': {'value': None, 'value_error': None}},
       'metric': {'ERA-Interim': {'value': 0.34090284683299066,
         'value_error': None},
        'HadISST': {'value': 0.3582501519315895, 'value_error': None},
        'Tropflux': {'value': 0.34344790630669775, 'value_error': None}}},
      'SeasonalTauxLonRmse': {'diagnostic': {'CanCM4_r7i1p1': {'value': None,
         'value_error': None},
        'ERA-Interim': {'value': None, 'value_error': None},
        'Tropflux': {'value': None, 'value_error': None}},
       'metric': {'ERA-Interim': {'value': 3.5281187877934195,
         'value_error': None},
        'Tropflux': {'value': 3.3670736301300237, 'value_error': None}}}}},
    'r8i1p1': {'metadata': {'description_of_the_collection': 'Describe which science question this collection is about',
      'metrics': {'BiasPrLatRmse': {'diagnostic': {'CanCM4_r8i1p1': {'keyerror': None,
          'name': 'CanCM4_r8i1p1',
          'nyears': 45,
          'time_period': ['1961-1-16 12:0:0.0', '2005-12-16 12:0:0.0']},
         'ERA-Interim': {'name': 'ERA-Interim',
          'nyears': 40,
          'time_period': ['1979-1-16 12:0:0.0', '2019-3-16 12:0:0.0']},
         'GPCPv2.3': {'name': 'GPCPv2.3',
          'nyears': 41,
          'time_period': ['1979-1-1 0:0:0.0', '2019-7-1 0:0:0.0']},
         'method': 'Meridional root mean square error of nino3_LatExt pr, time series are linearly detrended, observations and model regridded to generic_1x1deg',
         'name': 'pr Meridional RMSE',
         'ref': 'Using CDAT regridding and rms (uncentered and biased) calculation',
         'time_frequency': 'monthly',
         'units': 'mm/day'},
        'metric': {'datasets': "CanCM4_r8i1p1; ERA-Interim's pr & GPCPv2.3's precip; 's ",
         'method': 'The metric is the statistical value between the model and the observations',
         'name': 'BiasPrLatRmse',
         'units': 'mm/day'}},
       'BiasPrLonRmse': {'diagnostic': {'CanCM4_r8i1p1': {'keyerror': None,
          'name': 'CanCM4_r8i1p1',
          'nyears': 45,
          'time_period': ['1961-1-16 12:0:0.0', '2005-12-16 12:0:0.0']},
         'ERA-Interim': {'name': 'ERA-Interim',
          'nyears': 40,
          'time_period': ['1979-1-16 12:0:0.0', '2019-3-16 12:0:0.0']},
         'GPCPv2.3': {'name': 'GPCPv2.3',
          'nyears': 41,
          'time_period': ['1979-1-1 0:0:0.0', '2019-7-1 0:0:0.0']},
         'method': 'Zonal root mean square error of equatorial_pacific pr, time series are linearly detrended, observations and model regridded to generic_1x1deg',
         'name': 'pr Zonal RMSE',
         'ref': 'Using CDAT regridding and rms (uncentered and biased) calculation',
         'time_frequency': 'monthly',
         'units': 'mm/day'},
        'metric': {'datasets': "CanCM4_r8i1p1; ERA-Interim's pr & GPCPv2.3's precip; 's ",
         'method': 'The metric is the statistical value between the model and the observations',
         'name': 'BiasPrLonRmse',
         'units': 'mm/day'}},
       'BiasSstLonRmse': {'diagnostic': {'CanCM4_r8i1p1': {'keyerror': None,
          'name': 'CanCM4_r8i1p1',
          'nyears': 45,
          'time_period': ['1961-1-16 12:0:0.0', '2005-12-16 12:0:0.0']},
         'ERA-Interim': {'name': 'ERA-Interim',
          'nyears': 40,
          'time_period': ['1979-1-16 12:0:0.0', '2019-3-16 12:0:0.0']},
         'HadISST': {'name': 'HadISST',
          'nyears': 151,
          'time_period': ['1870-1-16 11:59:59.5', '2020-10-16 12:0:0.0']},
         'Tropflux': {'name': 'Tropflux',
          'nyears': 40,
          'time_period': ['1979-1-15 0:0:0.0', '2018-12-15 12:0:0.0']},
         'method': 'Zonal root mean square error of equatorial_pacific sst, time series are linearly detrended, observations and model regridded to generic_1x1deg',
         'name': 'sst Zonal RMSE',
         'ref': 'Using CDAT regridding and rms (uncentered and biased) calculation',
         'time_frequency': 'monthly',
         'units': 'C'},
        'metric': {'datasets': "CanCM4_r8i1p1; ERA-Interim's ts & HadISST's sst & Tropflux's sst; 's ",
         'method': 'The metric is the statistical value between the model and the observations',
         'name': 'BiasSstLonRmse',
         'units': 'C'}},
       'BiasTauxLonRmse': {'diagnostic': {'CanCM4_r8i1p1': {'keyerror': None,
          'name': 'CanCM4_r8i1p1',
          'nyears': 45,
          'time_period': ['1961-1-16 12:0:0.0', '2005-12-16 12:0:0.0']},
         'ERA-Interim': {'name': 'ERA-Interim',
          'nyears': 40,
          'time_period': ['1979-1-16 12:0:0.0', '2019-3-16 12:0:0.0']},
         'Tropflux': {'name': 'Tropflux',
          'nyears': 40,
          'time_period': ['1979-1-15 0:0:0.0', '2018-12-15 12:0:0.0']},
         'method': 'Zonal root mean square error of equatorial_pacific taux, time series are linearly detrended, observations and model regridded to generic_1x1deg',
         'name': 'taux Zonal RMSE',
         'ref': 'Using CDAT regridding and rms (uncentered and biased) calculation',
         'time_frequency': 'monthly',
         'units': '1e-3 N/m2'},
        'metric': {'datasets': "CanCM4_r8i1p1; ERA-Interim's tauu & Tropflux's taux; 's ",
         'method': 'The metric is the statistical value between the model and the observations',
         'name': 'BiasTauxLonRmse',
         'units': '1e-3 N/m2'}},
       'EnsoAmpl': {'diagnostic': {'CanCM4_r8i1p1': {'keyerror': None,
          'name': 'CanCM4_r8i1p1',
          'nyears': 45,
          'time_period': ['1961-1-16 12:0:0.0', '2005-12-16 12:0:0.0']},
         'ERA-Interim': {'keyerror': None,
          'name': 'ERA-Interim',
          'nyears': 40,
          'time_period': ['1979-1-16 12:0:0.0', '2019-3-16 12:0:0.0']},
         'HadISST': {'keyerror': None,
          'name': 'HadISST',
          'nyears': 151,
          'time_period': ['1870-1-16 11:59:59.5', '2020-10-16 12:0:0.0']},
         'Tropflux': {'keyerror': None,
          'name': 'Tropflux',
          'nyears': 40,
          'time_period': ['1979-1-15 0:0:0.0', '2018-12-15 12:0:0.0']},
         'method': 'Standard deviation of nino3.4 sstA, time series are linearly detrended',
         'name': 'ENSO amplitude',
         'ref': 'Using CDAT regression calculation',
         'time_frequency': 'monthly',
         'units': 'C'},
        'metric': {'datasets': "CanCM4_r8i1p1; ERA-Interim's ts & HadISST's sst & Tropflux's sst; 's ",
         'method': 'The metric is the absolute value of the relative difference between model and observations values (M = 100 * abs[[model-obs] / obs])',
         'name': 'EnsoAmpl',
         'units': '%'}},
       'EnsoDuration': {'diagnostic': {'CanCM4_r8i1p1': {'keyerror': None,
          'name': 'CanCM4_r8i1p1',
          'nyears': 45,
          'time_period': ['1961-1-16 12:0:0.0', '2005-12-16 12:0:0.0']},
         'ERA-Interim': {'keyerror': None,
          'name': 'ERA-Interim',
          'nyears': 40,
          'time_period': ['1979-1-16 12:0:0.0', '2019-3-16 12:0:0.0']},
         'HadISST': {'keyerror': None,
          'name': 'HadISST',
          'nyears': 151,
          'time_period': ['1870-1-16 11:59:59.5', '2020-10-16 12:0:0.0']},
         'Tropflux': {'keyerror': None,
          'name': 'Tropflux',
          'nyears': 40,
          'time_period': ['1979-1-15 0:0:0.0', '2018-12-15 12:0:0.0']},
         'method': 'nino3.4 SSTA during DEC regressed against nino3.4 SSTA during 6 years (centered on ENSO), the duration is the number of consecutive months during which the regression is above 0.25, time series are linearly detrended, smoothing using a triangle shaped window of 5 points',
         'name': 'ENSO Duration based on life cyle SSTA pattern',
         'ref': 'Using CDAT',
         'time_frequency': 'monthly',
         'units': 'months'},
        'metric': {'datasets': "CanCM4_r8i1p1; ERA-Interim's ts & HadISST's sst & Tropflux's sst; 's ",
         'method': 'The metric is the absolute value of the relative difference between model and observations values (M = 100 * abs[[model-obs] / obs])',
         'name': 'EnsoDuration',
         'units': '%'}},
       'EnsoSeasonality': {'diagnostic': {'CanCM4_r8i1p1': {'keyerror': None,
          'name': 'CanCM4_r8i1p1',
          'nyears': 45,
          'time_period': ['1961-1-16 12:0:0.0', '2005-12-16 12:0:0.0']},
         'ERA-Interim': {'keyerror': None,
          'name': 'ERA-Interim',
          'nyears': 40,
          'time_period': ['1979-1-16 12:0:0.0', '2019-3-16 12:0:0.0']},
         'HadISST': {'keyerror': None,
          'name': 'HadISST',
          'nyears': 151,
          'time_period': ['1870-1-16 11:59:59.5', '2020-10-16 12:0:0.0']},
         'Tropflux': {'keyerror': None,
          'name': 'Tropflux',
          'nyears': 40,
          'time_period': ['1979-1-15 0:0:0.0', '2018-12-15 12:0:0.0']},
         'method': 'Ratio between NDJ and MAM standard deviation nino3.4 sstA, time series are linearly detrended',
         'name': 'ENSO seasonality',
         'ref': 'Using CDAT std dev calculation',
         'time_frequency': 'monthly',
         'units': 'C/C'},
        'metric': {'datasets': "CanCM4_r8i1p1; ERA-Interim's ts & HadISST's sst & Tropflux's sst; 's ",
         'method': 'The metric is the absolute value of the relative difference between model and observations values (M = 100 * abs[[model-obs] / obs])',
         'name': 'EnsoSeasonality',
         'units': '%'}},
       'EnsoSstDiversity_2': {'diagnostic': {'CanCM4_r8i1p1': {'keyerror': None,
          'name': 'CanCM4_r8i1p1',
          'nyears': 45,
          'time_period': ['1961-1-16 12:0:0.0', '2005-12-16 12:0:0.0']},
         'ERA-Interim': {'keyerror': None,
          'name': 'ERA-Interim',
          'nyears': 40,
          'time_period': ['1979-1-16 12:0:0.0', '2019-3-16 12:0:0.0']},
         'HadISST': {'keyerror': None,
          'name': 'HadISST',
          'nyears': 151,
          'time_period': ['1870-1-16 11:59:59.5', '2020-10-16 12:0:0.0']},
         'Tropflux': {'keyerror': None,
          'name': 'Tropflux',
          'nyears': 40,
          'time_period': ['1979-1-15 0:0:0.0', '2018-12-15 12:0:0.0']},
         'method': 'Nino (Nina) events = nino3.4 sstA > 0.75 (< -0.75) during DEC, zonal SSTA (meridional averaged [-5.0 ; 5.0]), the zonal SSTA maximum (minimum) is located for each event, the diversity is the interquartile range (IQR = Q3 - Q1), time series are linearly detrended, smoothing using a triangle shaped window of 5 points',
         'name': 'ENSO Diversity (interquartile range)',
         'ref': 'Using CDAT regridding',
         'time_frequency': 'monthly',
         'units': 'long'},
        'metric': {'datasets': "CanCM4_r8i1p1; ERA-Interim's ts & HadISST's sst & Tropflux's sst; 's ",
         'method': 'The metric is the absolute value of the relative difference between model and observations values (M = 100 * abs[[model-obs] / obs])',
         'name': 'EnsoSstDiversity',
         'units': '%'}},
       'EnsoSstLonRmse': {'diagnostic': {'CanCM4_r8i1p1': {'keyerror': None,
          'name': 'CanCM4_r8i1p1',
          'nyears': 45,
          'time_period': ['1961-1-16 12:0:0.0', '2005-12-16 12:0:0.0']},
         'ERA-Interim': {'name': 'ERA-Interim',
          'nyears': 40,
          'time_period': ['1979-1-16 12:0:0.0', '2019-3-16 12:0:0.0']},
         'HadISST': {'name': 'HadISST',
          'nyears': 151,
          'time_period': ['1870-1-16 11:59:59.5', '2020-10-16 12:0:0.0']},
         'Tropflux': {'name': 'Tropflux',
          'nyears': 40,
          'time_period': ['1979-1-15 0:0:0.0', '2018-12-15 12:0:0.0']},
         'method': 'nino3.4 SSTA during DEC regressed against equatorial_pacific SSTA, time series are linearly detrended, smoothing using a triangle shaped window of 5 points, observations and model regridded to generic_1x1deg',
         'name': 'ENSO Zonal SSTA pattern',
         'ref': 'Using CDAT regridding and rms (uncentered and biased) calculation',
         'time_frequency': 'monthly',
         'units': 'C/C'},
        'metric': {'datasets': "CanCM4_r8i1p1; ERA-Interim's ts & HadISST's sst & Tropflux's sst; 's ",
         'method': 'The metric is the statistical value between the model and the observations',
         'name': 'EnsoSstLonRmse',
         'units': 'C/C'}},
       'EnsoSstSkew': {'diagnostic': {'CanCM4_r8i1p1': {'keyerror': None,
          'name': 'CanCM4_r8i1p1',
          'nyears': 45,
          'time_period': ['1961-1-16 12:0:0.0', '2005-12-16 12:0:0.0']},
         'ERA-Interim': {'keyerror': None,
          'name': 'ERA-Interim',
          'nyears': 40,
          'time_period': ['1979-1-16 12:0:0.0', '2019-3-16 12:0:0.0']},
         'HadISST': {'keyerror': None,
          'name': 'HadISST',
          'nyears': 151,
          'time_period': ['1870-1-16 11:59:59.5', '2020-10-16 12:0:0.0']},
         'Tropflux': {'keyerror': None,
          'name': 'Tropflux',
          'nyears': 40,
          'time_period': ['1979-1-15 0:0:0.0', '2018-12-15 12:0:0.0']},
         'method': 'Standard deviation of nino3.4 sstA, time series are linearly detrended',
         'name': 'ENSO skewness',
         'ref': 'Using CDAT regression calculation',
         'time_frequency': 'monthly',
         'units': 'C'},
        'metric': {'datasets': "CanCM4_r8i1p1; ERA-Interim's ts & HadISST's sst & Tropflux's sst; 's ",
         'method': 'The metric is the absolute value of the relative difference between model and observations values (M = 100 * abs[[model-obs] / obs])',
         'name': 'EnsoSstSkew',
         'units': '%'}},
       'EnsoSstTsRmse': {'diagnostic': {'CanCM4_r8i1p1': {'keyerror': None,
          'name': 'CanCM4_r8i1p1',
          'nyears': 45,
          'time_period': ['1961-1-16 12:0:0.0', '2005-12-16 12:0:0.0']},
         'ERA-Interim': {'name': 'ERA-Interim',
          'nyears': 40,
          'time_period': ['1979-1-16 12:0:0.0', '2019-3-16 12:0:0.0']},
         'HadISST': {'name': 'HadISST',
          'nyears': 151,
          'time_period': ['1870-1-16 11:59:59.5', '2020-10-16 12:0:0.0']},
         'Tropflux': {'name': 'Tropflux',
          'nyears': 40,
          'time_period': ['1979-1-15 0:0:0.0', '2018-12-15 12:0:0.0']},
         'method': 'nino3.4 SSTA during DEC regressed against nino3.4 SSTA during 6 years (centered on ENSO), time series are linearly detrended, smoothing using a triangle shaped window of 5 points',
         'name': 'ENSO life cyle SSTA pattern',
         'ref': 'Using CDAT regridding and rms (uncentered and biased) calculation',
         'time_frequency': 'monthly',
         'units': 'C/C'},
        'metric': {'datasets': "CanCM4_r8i1p1; ERA-Interim's ts & HadISST's sst & Tropflux's sst; 's ",
         'method': 'The metric is the statistical value between the model and the observations',
         'name': 'EnsoSstTsRmse',
         'units': 'C/C'}},
       'SeasonalPrLatRmse': {'diagnostic': {'CanCM4_r8i1p1': {'keyerror': None,
          'name': 'CanCM4_r8i1p1',
          'nyears': 45,
          'time_period': ['1961-1-16 12:0:0.0', '2005-12-16 12:0:0.0']},
         'ERA-Interim': {'name': 'ERA-Interim',
          'nyears': 40,
          'time_period': ['1979-1-16 12:0:0.0', '2019-3-16 12:0:0.0']},
         'GPCPv2.3': {'name': 'GPCPv2.3',
          'nyears': 41,
          'time_period': ['1979-1-1 0:0:0.0', '2019-7-1 0:0:0.0']},
         'method': 'Meridional root mean square error of nino3_LatExt climatological pr STD, time series are linearly detrended, observations and model regridded to generic_1x1deg',
         'name': 'pr meridional seasonality RMSE',
         'ref': 'Using CDAT regridding and rms (uncentered and biased) calculation',
         'time_frequency': 'monthly',
         'units': 'mm/day'},
        'metric': {'datasets': "CanCM4_r8i1p1; ERA-Interim's pr & GPCPv2.3's precip; 's ",
         'method': 'The metric is the statistical value between the model and the observations',
         'name': 'SeasonalPrLatRmse',
         'units': 'mm/day'}},
       'SeasonalPrLonRmse': {'diagnostic': {'CanCM4_r8i1p1': {'keyerror': None,
          'name': 'CanCM4_r8i1p1',
          'nyears': 45,
          'time_period': ['1961-1-16 12:0:0.0', '2005-12-16 12:0:0.0']},
         'ERA-Interim': {'name': 'ERA-Interim',
          'nyears': 40,
          'time_period': ['1979-1-16 12:0:0.0', '2019-3-16 12:0:0.0']},
         'GPCPv2.3': {'name': 'GPCPv2.3',
          'nyears': 41,
          'time_period': ['1979-1-1 0:0:0.0', '2019-7-1 0:0:0.0']},
         'method': 'Zonal root mean square error of equatorial_pacific climatological pr STD, time series are linearly detrended, observations and model regridded to generic_1x1deg',
         'name': 'pr zonal seasonality RMSE',
         'ref': 'Using CDAT regridding and rms (uncentered and biased) calculation',
         'time_frequency': 'monthly',
         'units': 'mm/day'},
        'metric': {'datasets': "CanCM4_r8i1p1; ERA-Interim's pr & GPCPv2.3's precip; 's ",
         'method': 'The metric is the statistical value between the model and the observations',
         'name': 'SeasonalPrLonRmse',
         'units': 'mm/day'}},
       'SeasonalSstLonRmse': {'diagnostic': {'CanCM4_r8i1p1': {'keyerror': None,
          'name': 'CanCM4_r8i1p1',
          'nyears': 45,
          'time_period': ['1961-1-16 12:0:0.0', '2005-12-16 12:0:0.0']},
         'ERA-Interim': {'name': 'ERA-Interim',
          'nyears': 40,
          'time_period': ['1979-1-16 12:0:0.0', '2019-3-16 12:0:0.0']},
         'HadISST': {'name': 'HadISST',
          'nyears': 151,
          'time_period': ['1870-1-16 11:59:59.5', '2020-10-16 12:0:0.0']},
         'Tropflux': {'name': 'Tropflux',
          'nyears': 40,
          'time_period': ['1979-1-15 0:0:0.0', '2018-12-15 12:0:0.0']},
         'method': 'Zonal root mean square error of equatorial_pacific climatological sst STD, time series are linearly detrended, observations and model regridded to generic_1x1deg',
         'name': 'sst zonal seasonality RMSE',
         'ref': 'Using CDAT regridding and rms (uncentered and biased) calculation',
         'time_frequency': 'monthly',
         'units': 'C'},
        'metric': {'datasets': "CanCM4_r8i1p1; ERA-Interim's ts & HadISST's sst & Tropflux's sst; 's ",
         'method': 'The metric is the statistical value between the model and the observations',
         'name': 'SeasonalSstLonRmse',
         'units': 'C'}},
       'SeasonalTauxLonRmse': {'diagnostic': {'CanCM4_r8i1p1': {'keyerror': None,
          'name': 'CanCM4_r8i1p1',
          'nyears': 45,
          'time_period': ['1961-1-16 12:0:0.0', '2005-12-16 12:0:0.0']},
         'ERA-Interim': {'name': 'ERA-Interim',
          'nyears': 40,
          'time_period': ['1979-1-16 12:0:0.0', '2019-3-16 12:0:0.0']},
         'Tropflux': {'name': 'Tropflux',
          'nyears': 40,
          'time_period': ['1979-1-15 0:0:0.0', '2018-12-15 12:0:0.0']},
         'method': 'Zonal root mean square error of equatorial_pacific climatological taux STD, time series are linearly detrended, observations and model regridded to generic_1x1deg',
         'name': 'taux zonal seasonality RMSE',
         'ref': 'Using CDAT regridding and rms (uncentered and biased) calculation',
         'time_frequency': 'monthly',
         'units': '1e-3 N/m2'},
        'metric': {'datasets': "CanCM4_r8i1p1; ERA-Interim's tauu & Tropflux's taux; 's ",
         'method': 'The metric is the statistical value between the model and the observations',
         'name': 'SeasonalTauxLonRmse',
         'units': '1e-3 N/m2'}}},
      'name': 'Metrics Collection for ENSO performance'},
     'value': {'BiasPrLatRmse': {'diagnostic': {'CanCM4_r8i1p1': {'value': None,
         'value_error': None},
        'ERA-Interim': {'value': None, 'value_error': None},
        'GPCPv2.3': {'value': None, 'value_error': None}},
       'metric': {'ERA-Interim': {'value': 0.7384884750941387,
         'value_error': None},
        'GPCPv2.3': {'value': 1.1434106552553256, 'value_error': None}}},
      'BiasPrLonRmse': {'diagnostic': {'CanCM4_r8i1p1': {'value': None,
         'value_error': None},
        'ERA-Interim': {'value': None, 'value_error': None},
        'GPCPv2.3': {'value': None, 'value_error': None}},
       'metric': {'ERA-Interim': {'value': 1.7442368933787922,
         'value_error': None},
        'GPCPv2.3': {'value': 0.9930738853122826, 'value_error': None}}},
      'BiasSstLonRmse': {'diagnostic': {'CanCM4_r8i1p1': {'value': None,
         'value_error': None},
        'ERA-Interim': {'value': None, 'value_error': None},
        'HadISST': {'value': None, 'value_error': None},
        'Tropflux': {'value': None, 'value_error': None}},
       'metric': {'ERA-Interim': {'value': 0.9089020173536236,
         'value_error': None},
        'HadISST': {'value': 0.8530191480139407, 'value_error': None},
        'Tropflux': {'value': 0.9411086287254693, 'value_error': None}}},
      'BiasTauxLonRmse': {'diagnostic': {'CanCM4_r8i1p1': {'value': None,
         'value_error': None},
        'ERA-Interim': {'value': None, 'value_error': None},
        'Tropflux': {'value': None, 'value_error': None}},
       'metric': {'ERA-Interim': {'value': 3.5187538007523815,
         'value_error': None},
        'Tropflux': {'value': 4.264019053072433, 'value_error': None}}},
      'EnsoAmpl': {'diagnostic': {'CanCM4_r8i1p1': {'value': 0.9101019351761311,
         'value_error': 0.13566998623386242},
        'ERA-Interim': {'value': 0.8989844997845644,
         'value_error': 0.14214193002531866},
        'HadISST': {'value': 0.7665787872085695,
         'value_error': 0.06238329697691264},
        'Tropflux': {'value': 0.9039789553693535,
         'value_error': 0.14293162279134272}},
       'metric': {'ERA-Interim': {'value': 1.2366659707960426,
         'value_error': 31.098393487878155},
        'HadISST': {'value': 18.72255668464148,
         'value_error': 27.35961845653863},
        'Tropflux': {'value': 0.6773365431140935,
         'value_error': 30.926575832045618}}},
      'EnsoDuration': {'diagnostic': {'CanCM4_r8i1p1': {'value': 12.0,
         'value_error': None},
        'ERA-Interim': {'value': 13.0, 'value_error': None},
        'HadISST': {'value': 13.0, 'value_error': None},
        'Tropflux': {'value': 13.0, 'value_error': None}},
       'metric': {'ERA-Interim': {'value': 7.6923076923076925,
         'value_error': None},
        'HadISST': {'value': 7.6923076923076925, 'value_error': None},
        'Tropflux': {'value': 7.6923076923076925, 'value_error': None}}},
      'EnsoSeasonality': {'diagnostic': {'CanCM4_r8i1p1': {'value': 1.2411398820922908,
         'value_error': 0.3721270870589959},
        'ERA-Interim': {'value': 2.0466846866656914,
         'value_error': 0.6513411033995022},
        'HadISST': {'value': 1.6639865947361325,
         'value_error': 0.2712772451657809},
        'Tropflux': {'value': 2.0532132553583624,
         'value_error': 0.6534187683977347}},
       'metric': {'ERA-Interim': {'value': 39.358520138523886,
         'value_error': 37.4806132133739},
        'HadISST': {'value': 25.411665813984207,
         'value_error': 34.5236113722997},
        'Tropflux': {'value': 39.55134086275585,
         'value_error': 37.36143671898475}}},
      'EnsoSstDiversity_2': {'diagnostic': {'CanCM4_r8i1p1': {'value': 10.0,
         'value_error': None},
        'ERA-Interim': {'value': 33.25, 'value_error': None},
        'HadISST': {'value': 49.0, 'value_error': None},
        'Tropflux': {'value': 32.0, 'value_error': None}},
       'metric': {'ERA-Interim': {'value': 69.92481203007519,
         'value_error': None},
        'HadISST': {'value': 79.59183673469387, 'value_error': None},
        'Tropflux': {'value': 68.75, 'value_error': None}}},
      'EnsoSstLonRmse': {'diagnostic': {'CanCM4_r8i1p1': {'value': None,
         'value_error': None},
        'ERA-Interim': {'value': None, 'value_error': None},
        'HadISST': {'value': None, 'value_error': None},
        'Tropflux': {'value': None, 'value_error': None}},
       'metric': {'ERA-Interim': {'value': 0.22172745207912886,
         'value_error': None},
        'HadISST': {'value': 0.2448179083396378, 'value_error': None},
        'Tropflux': {'value': 0.22177864304159578, 'value_error': None}}},
      'EnsoSstSkew': {'diagnostic': {'CanCM4_r8i1p1': {'value': -0.01718300409285816,
         'value_error': -0.00256149101395253},
        'ERA-Interim': {'value': 0.39098111106809963,
         'value_error': 0.061819541653923164},
        'HadISST': {'value': 0.38989908235027515,
         'value_error': 0.03172953733021198},
        'Tropflux': {'value': 0.39744741059612115,
         'value_error': 0.06284195338099416}},
       'metric': {'ERA-Interim': {'value': 104.39484251449306,
         'value_error': -1.3500300560311551},
        'HadISST': {'value': 104.40703886484692,
         'value_error': -1.0156023019755878},
        'Tropflux': {'value': 104.32334030484331,
         'value_error': -1.3280656439318625}}},
      'EnsoSstTsRmse': {'diagnostic': {'CanCM4_r8i1p1': {'value': None,
         'value_error': None},
        'ERA-Interim': {'value': None, 'value_error': None},
        'HadISST': {'value': None, 'value_error': None},
        'Tropflux': {'value': None, 'value_error': None}},
       'metric': {'ERA-Interim': {'value': 0.14034258618988718,
         'value_error': None},
        'HadISST': {'value': 0.14524224442386371, 'value_error': None},
        'Tropflux': {'value': 0.14339227488726344, 'value_error': None}}},
      'SeasonalPrLatRmse': {'diagnostic': {'CanCM4_r8i1p1': {'value': None,
         'value_error': None},
        'ERA-Interim': {'value': None, 'value_error': None},
        'GPCPv2.3': {'value': None, 'value_error': None}},
       'metric': {'ERA-Interim': {'value': 0.8152981602824817,
         'value_error': None},
        'GPCPv2.3': {'value': 1.1583270642339016, 'value_error': None}}},
      'SeasonalPrLonRmse': {'diagnostic': {'CanCM4_r8i1p1': {'value': None,
         'value_error': None},
        'ERA-Interim': {'value': None, 'value_error': None},
        'GPCPv2.3': {'value': None, 'value_error': None}},
       'metric': {'ERA-Interim': {'value': 0.5258440954967736,
         'value_error': None},
        'GPCPv2.3': {'value': 0.7639943225915234, 'value_error': None}}},
      'SeasonalSstLonRmse': {'diagnostic': {'CanCM4_r8i1p1': {'value': None,
         'value_error': None},
        'ERA-Interim': {'value': None, 'value_error': None},
        'HadISST': {'value': None, 'value_error': None},
        'Tropflux': {'value': None, 'value_error': None}},
       'metric': {'ERA-Interim': {'value': 0.3462315516957554,
         'value_error': None},
        'HadISST': {'value': 0.3643633372853487, 'value_error': None},
        'Tropflux': {'value': 0.3482674919513144, 'value_error': None}}},
      'SeasonalTauxLonRmse': {'diagnostic': {'CanCM4_r8i1p1': {'value': None,
         'value_error': None},
        'ERA-Interim': {'value': None, 'value_error': None},
        'Tropflux': {'value': None, 'value_error': None}},
       'metric': {'ERA-Interim': {'value': 3.5709874344209616,
         'value_error': None},
        'Tropflux': {'value': 3.3850121708345107, 'value_error': None}}}}},
    'r9i1p1': {'metadata': {'description_of_the_collection': 'Describe which science question this collection is about',
      'metrics': {'BiasPrLatRmse': {'diagnostic': {'CanCM4_r9i1p1': {'keyerror': None,
          'name': 'CanCM4_r9i1p1',
          'nyears': 45,
          'time_period': ['1961-1-16 12:0:0.0', '2005-12-16 12:0:0.0']},
         'ERA-Interim': {'name': 'ERA-Interim',
          'nyears': 40,
          'time_period': ['1979-1-16 12:0:0.0', '2019-3-16 12:0:0.0']},
         'GPCPv2.3': {'name': 'GPCPv2.3',
          'nyears': 41,
          'time_period': ['1979-1-1 0:0:0.0', '2019-7-1 0:0:0.0']},
         'method': 'Meridional root mean square error of nino3_LatExt pr, time series are linearly detrended, observations and model regridded to generic_1x1deg',
         'name': 'pr Meridional RMSE',
         'ref': 'Using CDAT regridding and rms (uncentered and biased) calculation',
         'time_frequency': 'monthly',
         'units': 'mm/day'},
        'metric': {'datasets': "CanCM4_r9i1p1; ERA-Interim's pr & GPCPv2.3's precip; 's ",
         'method': 'The metric is the statistical value between the model and the observations',
         'name': 'BiasPrLatRmse',
         'units': 'mm/day'}},
       'BiasPrLonRmse': {'diagnostic': {'CanCM4_r9i1p1': {'keyerror': None,
          'name': 'CanCM4_r9i1p1',
          'nyears': 45,
          'time_period': ['1961-1-16 12:0:0.0', '2005-12-16 12:0:0.0']},
         'ERA-Interim': {'name': 'ERA-Interim',
          'nyears': 40,
          'time_period': ['1979-1-16 12:0:0.0', '2019-3-16 12:0:0.0']},
         'GPCPv2.3': {'name': 'GPCPv2.3',
          'nyears': 41,
          'time_period': ['1979-1-1 0:0:0.0', '2019-7-1 0:0:0.0']},
         'method': 'Zonal root mean square error of equatorial_pacific pr, time series are linearly detrended, observations and model regridded to generic_1x1deg',
         'name': 'pr Zonal RMSE',
         'ref': 'Using CDAT regridding and rms (uncentered and biased) calculation',
         'time_frequency': 'monthly',
         'units': 'mm/day'},
        'metric': {'datasets': "CanCM4_r9i1p1; ERA-Interim's pr & GPCPv2.3's precip; 's ",
         'method': 'The metric is the statistical value between the model and the observations',
         'name': 'BiasPrLonRmse',
         'units': 'mm/day'}},
       'BiasSstLonRmse': {'diagnostic': {'CanCM4_r9i1p1': {'keyerror': None,
          'name': 'CanCM4_r9i1p1',
          'nyears': 45,
          'time_period': ['1961-1-16 12:0:0.0', '2005-12-16 12:0:0.0']},
         'ERA-Interim': {'name': 'ERA-Interim',
          'nyears': 40,
          'time_period': ['1979-1-16 12:0:0.0', '2019-3-16 12:0:0.0']},
         'HadISST': {'name': 'HadISST',
          'nyears': 151,
          'time_period': ['1870-1-16 11:59:59.5', '2020-10-16 12:0:0.0']},
         'Tropflux': {'name': 'Tropflux',
          'nyears': 40,
          'time_period': ['1979-1-15 0:0:0.0', '2018-12-15 12:0:0.0']},
         'method': 'Zonal root mean square error of equatorial_pacific sst, time series are linearly detrended, observations and model regridded to generic_1x1deg',
         'name': 'sst Zonal RMSE',
         'ref': 'Using CDAT regridding and rms (uncentered and biased) calculation',
         'time_frequency': 'monthly',
         'units': 'C'},
        'metric': {'datasets': "CanCM4_r9i1p1; ERA-Interim's ts & HadISST's sst & Tropflux's sst; 's ",
         'method': 'The metric is the statistical value between the model and the observations',
         'name': 'BiasSstLonRmse',
         'units': 'C'}},
       'BiasTauxLonRmse': {'diagnostic': {'CanCM4_r9i1p1': {'keyerror': None,
          'name': 'CanCM4_r9i1p1',
          'nyears': 45,
          'time_period': ['1961-1-16 12:0:0.0', '2005-12-16 12:0:0.0']},
         'ERA-Interim': {'name': 'ERA-Interim',
          'nyears': 40,
          'time_period': ['1979-1-16 12:0:0.0', '2019-3-16 12:0:0.0']},
         'Tropflux': {'name': 'Tropflux',
          'nyears': 40,
          'time_period': ['1979-1-15 0:0:0.0', '2018-12-15 12:0:0.0']},
         'method': 'Zonal root mean square error of equatorial_pacific taux, time series are linearly detrended, observations and model regridded to generic_1x1deg',
         'name': 'taux Zonal RMSE',
         'ref': 'Using CDAT regridding and rms (uncentered and biased) calculation',
         'time_frequency': 'monthly',
         'units': '1e-3 N/m2'},
        'metric': {'datasets': "CanCM4_r9i1p1; ERA-Interim's tauu & Tropflux's taux; 's ",
         'method': 'The metric is the statistical value between the model and the observations',
         'name': 'BiasTauxLonRmse',
         'units': '1e-3 N/m2'}},
       'EnsoAmpl': {'diagnostic': {'CanCM4_r9i1p1': {'keyerror': None,
          'name': 'CanCM4_r9i1p1',
          'nyears': 45,
          'time_period': ['1961-1-16 12:0:0.0', '2005-12-16 12:0:0.0']},
         'ERA-Interim': {'keyerror': None,
          'name': 'ERA-Interim',
          'nyears': 40,
          'time_period': ['1979-1-16 12:0:0.0', '2019-3-16 12:0:0.0']},
         'HadISST': {'keyerror': None,
          'name': 'HadISST',
          'nyears': 151,
          'time_period': ['1870-1-16 11:59:59.5', '2020-10-16 12:0:0.0']},
         'Tropflux': {'keyerror': None,
          'name': 'Tropflux',
          'nyears': 40,
          'time_period': ['1979-1-15 0:0:0.0', '2018-12-15 12:0:0.0']},
         'method': 'Standard deviation of nino3.4 sstA, time series are linearly detrended',
         'name': 'ENSO amplitude',
         'ref': 'Using CDAT regression calculation',
         'time_frequency': 'monthly',
         'units': 'C'},
        'metric': {'datasets': "CanCM4_r9i1p1; ERA-Interim's ts & HadISST's sst & Tropflux's sst; 's ",
         'method': 'The metric is the absolute value of the relative difference between model and observations values (M = 100 * abs[[model-obs] / obs])',
         'name': 'EnsoAmpl',
         'units': '%'}},
       'EnsoDuration': {'diagnostic': {'CanCM4_r9i1p1': {'keyerror': None,
          'name': 'CanCM4_r9i1p1',
          'nyears': 45,
          'time_period': ['1961-1-16 12:0:0.0', '2005-12-16 12:0:0.0']},
         'ERA-Interim': {'keyerror': None,
          'name': 'ERA-Interim',
          'nyears': 40,
          'time_period': ['1979-1-16 12:0:0.0', '2019-3-16 12:0:0.0']},
         'HadISST': {'keyerror': None,
          'name': 'HadISST',
          'nyears': 151,
          'time_period': ['1870-1-16 11:59:59.5', '2020-10-16 12:0:0.0']},
         'Tropflux': {'keyerror': None,
          'name': 'Tropflux',
          'nyears': 40,
          'time_period': ['1979-1-15 0:0:0.0', '2018-12-15 12:0:0.0']},
         'method': 'nino3.4 SSTA during DEC regressed against nino3.4 SSTA during 6 years (centered on ENSO), the duration is the number of consecutive months during which the regression is above 0.25, time series are linearly detrended, smoothing using a triangle shaped window of 5 points',
         'name': 'ENSO Duration based on life cyle SSTA pattern',
         'ref': 'Using CDAT',
         'time_frequency': 'monthly',
         'units': 'months'},
        'metric': {'datasets': "CanCM4_r9i1p1; ERA-Interim's ts & HadISST's sst & Tropflux's sst; 's ",
         'method': 'The metric is the absolute value of the relative difference between model and observations values (M = 100 * abs[[model-obs] / obs])',
         'name': 'EnsoDuration',
         'units': '%'}},
       'EnsoSeasonality': {'diagnostic': {'CanCM4_r9i1p1': {'keyerror': None,
          'name': 'CanCM4_r9i1p1',
          'nyears': 45,
          'time_period': ['1961-1-16 12:0:0.0', '2005-12-16 12:0:0.0']},
         'ERA-Interim': {'keyerror': None,
          'name': 'ERA-Interim',
          'nyears': 40,
          'time_period': ['1979-1-16 12:0:0.0', '2019-3-16 12:0:0.0']},
         'HadISST': {'keyerror': None,
          'name': 'HadISST',
          'nyears': 151,
          'time_period': ['1870-1-16 11:59:59.5', '2020-10-16 12:0:0.0']},
         'Tropflux': {'keyerror': None,
          'name': 'Tropflux',
          'nyears': 40,
          'time_period': ['1979-1-15 0:0:0.0', '2018-12-15 12:0:0.0']},
         'method': 'Ratio between NDJ and MAM standard deviation nino3.4 sstA, time series are linearly detrended',
         'name': 'ENSO seasonality',
         'ref': 'Using CDAT std dev calculation',
         'time_frequency': 'monthly',
         'units': 'C/C'},
        'metric': {'datasets': "CanCM4_r9i1p1; ERA-Interim's ts & HadISST's sst & Tropflux's sst; 's ",
         'method': 'The metric is the absolute value of the relative difference between model and observations values (M = 100 * abs[[model-obs] / obs])',
         'name': 'EnsoSeasonality',
         'units': '%'}},
       'EnsoSstDiversity_2': {'diagnostic': {'CanCM4_r9i1p1': {'keyerror': None,
          'name': 'CanCM4_r9i1p1',
          'nyears': 45,
          'time_period': ['1961-1-16 12:0:0.0', '2005-12-16 12:0:0.0']},
         'ERA-Interim': {'keyerror': None,
          'name': 'ERA-Interim',
          'nyears': 40,
          'time_period': ['1979-1-16 12:0:0.0', '2019-3-16 12:0:0.0']},
         'HadISST': {'keyerror': None,
          'name': 'HadISST',
          'nyears': 151,
          'time_period': ['1870-1-16 11:59:59.5', '2020-10-16 12:0:0.0']},
         'Tropflux': {'keyerror': None,
          'name': 'Tropflux',
          'nyears': 40,
          'time_period': ['1979-1-15 0:0:0.0', '2018-12-15 12:0:0.0']},
         'method': 'Nino (Nina) events = nino3.4 sstA > 0.75 (< -0.75) during DEC, zonal SSTA (meridional averaged [-5.0 ; 5.0]), the zonal SSTA maximum (minimum) is located for each event, the diversity is the interquartile range (IQR = Q3 - Q1), time series are linearly detrended, smoothing using a triangle shaped window of 5 points',
         'name': 'ENSO Diversity (interquartile range)',
         'ref': 'Using CDAT regridding',
         'time_frequency': 'monthly',
         'units': 'long'},
        'metric': {'datasets': "CanCM4_r9i1p1; ERA-Interim's ts & HadISST's sst & Tropflux's sst; 's ",
         'method': 'The metric is the absolute value of the relative difference between model and observations values (M = 100 * abs[[model-obs] / obs])',
         'name': 'EnsoSstDiversity',
         'units': '%'}},
       'EnsoSstLonRmse': {'diagnostic': {'CanCM4_r9i1p1': {'keyerror': None,
          'name': 'CanCM4_r9i1p1',
          'nyears': 45,
          'time_period': ['1961-1-16 12:0:0.0', '2005-12-16 12:0:0.0']},
         'ERA-Interim': {'name': 'ERA-Interim',
          'nyears': 40,
          'time_period': ['1979-1-16 12:0:0.0', '2019-3-16 12:0:0.0']},
         'HadISST': {'name': 'HadISST',
          'nyears': 151,
          'time_period': ['1870-1-16 11:59:59.5', '2020-10-16 12:0:0.0']},
         'Tropflux': {'name': 'Tropflux',
          'nyears': 40,
          'time_period': ['1979-1-15 0:0:0.0', '2018-12-15 12:0:0.0']},
         'method': 'nino3.4 SSTA during DEC regressed against equatorial_pacific SSTA, time series are linearly detrended, smoothing using a triangle shaped window of 5 points, observations and model regridded to generic_1x1deg',
         'name': 'ENSO Zonal SSTA pattern',
         'ref': 'Using CDAT regridding and rms (uncentered and biased) calculation',
         'time_frequency': 'monthly',
         'units': 'C/C'},
        'metric': {'datasets': "CanCM4_r9i1p1; ERA-Interim's ts & HadISST's sst & Tropflux's sst; 's ",
         'method': 'The metric is the statistical value between the model and the observations',
         'name': 'EnsoSstLonRmse',
         'units': 'C/C'}},
       'EnsoSstSkew': {'diagnostic': {'CanCM4_r9i1p1': {'keyerror': None,
          'name': 'CanCM4_r9i1p1',
          'nyears': 45,
          'time_period': ['1961-1-16 12:0:0.0', '2005-12-16 12:0:0.0']},
         'ERA-Interim': {'keyerror': None,
          'name': 'ERA-Interim',
          'nyears': 40,
          'time_period': ['1979-1-16 12:0:0.0', '2019-3-16 12:0:0.0']},
         'HadISST': {'keyerror': None,
          'name': 'HadISST',
          'nyears': 151,
          'time_period': ['1870-1-16 11:59:59.5', '2020-10-16 12:0:0.0']},
         'Tropflux': {'keyerror': None,
          'name': 'Tropflux',
          'nyears': 40,
          'time_period': ['1979-1-15 0:0:0.0', '2018-12-15 12:0:0.0']},
         'method': 'Standard deviation of nino3.4 sstA, time series are linearly detrended',
         'name': 'ENSO skewness',
         'ref': 'Using CDAT regression calculation',
         'time_frequency': 'monthly',
         'units': 'C'},
        'metric': {'datasets': "CanCM4_r9i1p1; ERA-Interim's ts & HadISST's sst & Tropflux's sst; 's ",
         'method': 'The metric is the absolute value of the relative difference between model and observations values (M = 100 * abs[[model-obs] / obs])',
         'name': 'EnsoSstSkew',
         'units': '%'}},
       'EnsoSstTsRmse': {'diagnostic': {'CanCM4_r9i1p1': {'keyerror': None,
          'name': 'CanCM4_r9i1p1',
          'nyears': 45,
          'time_period': ['1961-1-16 12:0:0.0', '2005-12-16 12:0:0.0']},
         'ERA-Interim': {'name': 'ERA-Interim',
          'nyears': 40,
          'time_period': ['1979-1-16 12:0:0.0', '2019-3-16 12:0:0.0']},
         'HadISST': {'name': 'HadISST',
          'nyears': 151,
          'time_period': ['1870-1-16 11:59:59.5', '2020-10-16 12:0:0.0']},
         'Tropflux': {'name': 'Tropflux',
          'nyears': 40,
          'time_period': ['1979-1-15 0:0:0.0', '2018-12-15 12:0:0.0']},
         'method': 'nino3.4 SSTA during DEC regressed against nino3.4 SSTA during 6 years (centered on ENSO), time series are linearly detrended, smoothing using a triangle shaped window of 5 points',
         'name': 'ENSO life cyle SSTA pattern',
         'ref': 'Using CDAT regridding and rms (uncentered and biased) calculation',
         'time_frequency': 'monthly',
         'units': 'C/C'},
        'metric': {'datasets': "CanCM4_r9i1p1; ERA-Interim's ts & HadISST's sst & Tropflux's sst; 's ",
         'method': 'The metric is the statistical value between the model and the observations',
         'name': 'EnsoSstTsRmse',
         'units': 'C/C'}},
       'SeasonalPrLatRmse': {'diagnostic': {'CanCM4_r9i1p1': {'keyerror': None,
          'name': 'CanCM4_r9i1p1',
          'nyears': 45,
          'time_period': ['1961-1-16 12:0:0.0', '2005-12-16 12:0:0.0']},
         'ERA-Interim': {'name': 'ERA-Interim',
          'nyears': 40,
          'time_period': ['1979-1-16 12:0:0.0', '2019-3-16 12:0:0.0']},
         'GPCPv2.3': {'name': 'GPCPv2.3',
          'nyears': 41,
          'time_period': ['1979-1-1 0:0:0.0', '2019-7-1 0:0:0.0']},
         'method': 'Meridional root mean square error of nino3_LatExt climatological pr STD, time series are linearly detrended, observations and model regridded to generic_1x1deg',
         'name': 'pr meridional seasonality RMSE',
         'ref': 'Using CDAT regridding and rms (uncentered and biased) calculation',
         'time_frequency': 'monthly',
         'units': 'mm/day'},
        'metric': {'datasets': "CanCM4_r9i1p1; ERA-Interim's pr & GPCPv2.3's precip; 's ",
         'method': 'The metric is the statistical value between the model and the observations',
         'name': 'SeasonalPrLatRmse',
         'units': 'mm/day'}},
       'SeasonalPrLonRmse': {'diagnostic': {'CanCM4_r9i1p1': {'keyerror': None,
          'name': 'CanCM4_r9i1p1',
          'nyears': 45,
          'time_period': ['1961-1-16 12:0:0.0', '2005-12-16 12:0:0.0']},
         'ERA-Interim': {'name': 'ERA-Interim',
          'nyears': 40,
          'time_period': ['1979-1-16 12:0:0.0', '2019-3-16 12:0:0.0']},
         'GPCPv2.3': {'name': 'GPCPv2.3',
          'nyears': 41,
          'time_period': ['1979-1-1 0:0:0.0', '2019-7-1 0:0:0.0']},
         'method': 'Zonal root mean square error of equatorial_pacific climatological pr STD, time series are linearly detrended, observations and model regridded to generic_1x1deg',
         'name': 'pr zonal seasonality RMSE',
         'ref': 'Using CDAT regridding and rms (uncentered and biased) calculation',
         'time_frequency': 'monthly',
         'units': 'mm/day'},
        'metric': {'datasets': "CanCM4_r9i1p1; ERA-Interim's pr & GPCPv2.3's precip; 's ",
         'method': 'The metric is the statistical value between the model and the observations',
         'name': 'SeasonalPrLonRmse',
         'units': 'mm/day'}},
       'SeasonalSstLonRmse': {'diagnostic': {'CanCM4_r9i1p1': {'keyerror': None,
          'name': 'CanCM4_r9i1p1',
          'nyears': 45,
          'time_period': ['1961-1-16 12:0:0.0', '2005-12-16 12:0:0.0']},
         'ERA-Interim': {'name': 'ERA-Interim',
          'nyears': 40,
          'time_period': ['1979-1-16 12:0:0.0', '2019-3-16 12:0:0.0']},
         'HadISST': {'name': 'HadISST',
          'nyears': 151,
          'time_period': ['1870-1-16 11:59:59.5', '2020-10-16 12:0:0.0']},
         'Tropflux': {'name': 'Tropflux',
          'nyears': 40,
          'time_period': ['1979-1-15 0:0:0.0', '2018-12-15 12:0:0.0']},
         'method': 'Zonal root mean square error of equatorial_pacific climatological sst STD, time series are linearly detrended, observations and model regridded to generic_1x1deg',
         'name': 'sst zonal seasonality RMSE',
         'ref': 'Using CDAT regridding and rms (uncentered and biased) calculation',
         'time_frequency': 'monthly',
         'units': 'C'},
        'metric': {'datasets': "CanCM4_r9i1p1; ERA-Interim's ts & HadISST's sst & Tropflux's sst; 's ",
         'method': 'The metric is the statistical value between the model and the observations',
         'name': 'SeasonalSstLonRmse',
         'units': 'C'}},
       'SeasonalTauxLonRmse': {'diagnostic': {'CanCM4_r9i1p1': {'keyerror': None,
          'name': 'CanCM4_r9i1p1',
          'nyears': 45,
          'time_period': ['1961-1-16 12:0:0.0', '2005-12-16 12:0:0.0']},
         'ERA-Interim': {'name': 'ERA-Interim',
          'nyears': 40,
          'time_period': ['1979-1-16 12:0:0.0', '2019-3-16 12:0:0.0']},
         'Tropflux': {'name': 'Tropflux',
          'nyears': 40,
          'time_period': ['1979-1-15 0:0:0.0', '2018-12-15 12:0:0.0']},
         'method': 'Zonal root mean square error of equatorial_pacific climatological taux STD, time series are linearly detrended, observations and model regridded to generic_1x1deg',
         'name': 'taux zonal seasonality RMSE',
         'ref': 'Using CDAT regridding and rms (uncentered and biased) calculation',
         'time_frequency': 'monthly',
         'units': '1e-3 N/m2'},
        'metric': {'datasets': "CanCM4_r9i1p1; ERA-Interim's tauu & Tropflux's taux; 's ",
         'method': 'The metric is the statistical value between the model and the observations',
         'name': 'SeasonalTauxLonRmse',
         'units': '1e-3 N/m2'}}},
      'name': 'Metrics Collection for ENSO performance'},
     'value': {'BiasPrLatRmse': {'diagnostic': {'CanCM4_r9i1p1': {'value': None,
         'value_error': None},
        'ERA-Interim': {'value': None, 'value_error': None},
        'GPCPv2.3': {'value': None, 'value_error': None}},
       'metric': {'ERA-Interim': {'value': 0.758087139764898,
         'value_error': None},
        'GPCPv2.3': {'value': 1.1905828409011843, 'value_error': None}}},
      'BiasPrLonRmse': {'diagnostic': {'CanCM4_r9i1p1': {'value': None,
         'value_error': None},
        'ERA-Interim': {'value': None, 'value_error': None},
        'GPCPv2.3': {'value': None, 'value_error': None}},
       'metric': {'ERA-Interim': {'value': 1.6966993997022868,
         'value_error': None},
        'GPCPv2.3': {'value': 0.95619604809908, 'value_error': None}}},
      'BiasSstLonRmse': {'diagnostic': {'CanCM4_r9i1p1': {'value': None,
         'value_error': None},
        'ERA-Interim': {'value': None, 'value_error': None},
        'HadISST': {'value': None, 'value_error': None},
        'Tropflux': {'value': None, 'value_error': None}},
       'metric': {'ERA-Interim': {'value': 0.913882425734805,
         'value_error': None},
        'HadISST': {'value': 0.8680462076518465, 'value_error': None},
        'Tropflux': {'value': 0.944169798886861, 'value_error': None}}},
      'BiasTauxLonRmse': {'diagnostic': {'CanCM4_r9i1p1': {'value': None,
         'value_error': None},
        'ERA-Interim': {'value': None, 'value_error': None},
        'Tropflux': {'value': None, 'value_error': None}},
       'metric': {'ERA-Interim': {'value': 3.199453589838721,
         'value_error': None},
        'Tropflux': {'value': 3.9514502446920914, 'value_error': None}}},
      'EnsoAmpl': {'diagnostic': {'CanCM4_r9i1p1': {'value': 0.9912679386383292,
         'value_error': 0.14776949964742628},
        'ERA-Interim': {'value': 0.8989844997845644,
         'value_error': 0.14214193002531866},
        'HadISST': {'value': 0.7665787872085695,
         'value_error': 0.06238329697691264},
        'Tropflux': {'value': 0.9039789553693535,
         'value_error': 0.14293162279134272}},
       'metric': {'ERA-Interim': {'value': 10.265298108685954,
         'value_error': 33.871854587065265},
        'HadISST': {'value': 29.31064036456654,
         'value_error': 29.799642810445825},
        'Tropflux': {'value': 9.656085769531066,
         'value_error': 33.684713645006035}}},
      'EnsoDuration': {'diagnostic': {'CanCM4_r9i1p1': {'value': 11.0,
         'value_error': None},
        'ERA-Interim': {'value': 13.0, 'value_error': None},
        'HadISST': {'value': 13.0, 'value_error': None},
        'Tropflux': {'value': 13.0, 'value_error': None}},
       'metric': {'ERA-Interim': {'value': 15.384615384615385,
         'value_error': None},
        'HadISST': {'value': 15.384615384615385, 'value_error': None},
        'Tropflux': {'value': 15.384615384615385, 'value_error': None}}},
      'EnsoSeasonality': {'diagnostic': {'CanCM4_r9i1p1': {'value': 1.6428180433699013,
         'value_error': 0.49256099321908803},
        'ERA-Interim': {'value': 2.0466846866656914,
         'value_error': 0.6513411033995022},
        'HadISST': {'value': 1.6639865947361325,
         'value_error': 0.2712772451657809},
        'Tropflux': {'value': 2.0532132553583624,
         'value_error': 0.6534187683977347}},
       'metric': {'ERA-Interim': {'value': 19.732724142952375,
         'value_error': 49.610707505183846},
        'HadISST': {'value': 1.2721587681773365,
         'value_error': 45.69671195247828},
        'Tropflux': {'value': 19.987948690543195,
         'value_error': 49.45296114786106}}},
      'EnsoSstDiversity_2': {'diagnostic': {'CanCM4_r9i1p1': {'value': 11.0,
         'value_error': None},
        'ERA-Interim': {'value': 33.25, 'value_error': None},
        'HadISST': {'value': 49.0, 'value_error': None},
        'Tropflux': {'value': 32.0, 'value_error': None}},
       'metric': {'ERA-Interim': {'value': 66.9172932330827,
         'value_error': None},
        'HadISST': {'value': 77.55102040816327, 'value_error': None},
        'Tropflux': {'value': 65.625, 'value_error': None}}},
      'EnsoSstLonRmse': {'diagnostic': {'CanCM4_r9i1p1': {'value': None,
         'value_error': None},
        'ERA-Interim': {'value': None, 'value_error': None},
        'HadISST': {'value': None, 'value_error': None},
        'Tropflux': {'value': None, 'value_error': None}},
       'metric': {'ERA-Interim': {'value': 0.2102958162545779,
         'value_error': None},
        'HadISST': {'value': 0.23444199235222377, 'value_error': None},
        'Tropflux': {'value': 0.2102750979020648, 'value_error': None}}},
      'EnsoSstSkew': {'diagnostic': {'CanCM4_r9i1p1': {'value': -0.42281082157617045,
         'value_error': -0.06302891591112346},
        'ERA-Interim': {'value': 0.39098111106809963,
         'value_error': 0.061819541653923164},
        'HadISST': {'value': 0.38989908235027515,
         'value_error': 0.03172953733021198},
        'Tropflux': {'value': 0.39744741059612115,
         'value_error': 0.06284195338099416}},
       'metric': {'ERA-Interim': {'value': 208.14098420793704,
         'value_error': -33.219297048314274},
        'HadISST': {'value': 208.4410917377662,
         'value_error': -24.990254403269603},
        'Tropflux': {'value': 206.3815766070805,
         'value_error': -32.67883328103865}}},
      'EnsoSstTsRmse': {'diagnostic': {'CanCM4_r9i1p1': {'value': None,
         'value_error': None},
        'ERA-Interim': {'value': None, 'value_error': None},
        'HadISST': {'value': None, 'value_error': None},
        'Tropflux': {'value': None, 'value_error': None}},
       'metric': {'ERA-Interim': {'value': 0.30191648194785076,
         'value_error': None},
        'HadISST': {'value': 0.2927635360139262, 'value_error': None},
        'Tropflux': {'value': 0.3006179698491813, 'value_error': None}}},
      'SeasonalPrLatRmse': {'diagnostic': {'CanCM4_r9i1p1': {'value': None,
         'value_error': None},
        'ERA-Interim': {'value': None, 'value_error': None},
        'GPCPv2.3': {'value': None, 'value_error': None}},
       'metric': {'ERA-Interim': {'value': 0.8936523363573576,
         'value_error': None},
        'GPCPv2.3': {'value': 1.238569392155081, 'value_error': None}}},
      'SeasonalPrLonRmse': {'diagnostic': {'CanCM4_r9i1p1': {'value': None,
         'value_error': None},
        'ERA-Interim': {'value': None, 'value_error': None},
        'GPCPv2.3': {'value': None, 'value_error': None}},
       'metric': {'ERA-Interim': {'value': 0.5318305069472964,
         'value_error': None},
        'GPCPv2.3': {'value': 0.7625538640190596, 'value_error': None}}},
      'SeasonalSstLonRmse': {'diagnostic': {'CanCM4_r9i1p1': {'value': None,
         'value_error': None},
        'ERA-Interim': {'value': None, 'value_error': None},
        'HadISST': {'value': None, 'value_error': None},
        'Tropflux': {'value': None, 'value_error': None}},
       'metric': {'ERA-Interim': {'value': 0.3614458540649398,
         'value_error': None},
        'HadISST': {'value': 0.37965242426483253, 'value_error': None},
        'Tropflux': {'value': 0.3635038634844897, 'value_error': None}}},
      'SeasonalTauxLonRmse': {'diagnostic': {'CanCM4_r9i1p1': {'value': None,
         'value_error': None},
        'ERA-Interim': {'value': None, 'value_error': None},
        'Tropflux': {'value': None, 'value_error': None}},
       'metric': {'ERA-Interim': {'value': 3.650859833860903,
         'value_error': None},
        'Tropflux': {'value': 3.481550991379502, 'value_error': None}}}}}},
   'CanESM2': {'r1i1p1': {'metadata': {'description_of_the_collection': 'Describe which science question this collection is about',
      'metrics': {'BiasPrLatRmse': {'diagnostic': {'CanESM2_r1i1p1': {'keyerror': None,
          'name': 'CanESM2_r1i1p1',
          'nyears': 156,
          'time_period': ['1850-1-16 12:0:0.0', '2005-12-16 12:0:0.0']},
         'ERA-Interim': {'name': 'ERA-Interim',
          'nyears': 40,
          'time_period': ['1979-1-16 12:0:0.0', '2019-3-16 12:0:0.0']},
         'GPCPv2.3': {'name': 'GPCPv2.3',
          'nyears': 41,
          'time_period': ['1979-1-1 0:0:0.0', '2019-7-1 0:0:0.0']},
         'method': 'Meridional root mean square error of nino3_LatExt pr, time series are linearly detrended, observations and model regridded to generic_1x1deg',
         'name': 'pr Meridional RMSE',
         'ref': 'Using CDAT regridding and rms (uncentered and biased) calculation',
         'time_frequency': 'monthly',
         'units': 'mm/day'},
        'metric': {'datasets': "CanESM2_r1i1p1; ERA-Interim's pr & GPCPv2.3's precip; 's ",
         'method': 'The metric is the statistical value between the model and the observations',
         'name': 'BiasPrLatRmse',
         'units': 'mm/day'}},
       'BiasPrLonRmse': {'diagnostic': {'CanESM2_r1i1p1': {'keyerror': None,
          'name': 'CanESM2_r1i1p1',
          'nyears': 156,
          'time_period': ['1850-1-16 12:0:0.0', '2005-12-16 12:0:0.0']},
         'ERA-Interim': {'name': 'ERA-Interim',
          'nyears': 40,
          'time_period': ['1979-1-16 12:0:0.0', '2019-3-16 12:0:0.0']},
         'GPCPv2.3': {'name': 'GPCPv2.3',
          'nyears': 41,
          'time_period': ['1979-1-1 0:0:0.0', '2019-7-1 0:0:0.0']},
         'method': 'Zonal root mean square error of equatorial_pacific pr, time series are linearly detrended, observations and model regridded to generic_1x1deg',
         'name': 'pr Zonal RMSE',
         'ref': 'Using CDAT regridding and rms (uncentered and biased) calculation',
         'time_frequency': 'monthly',
         'units': 'mm/day'},
        'metric': {'datasets': "CanESM2_r1i1p1; ERA-Interim's pr & GPCPv2.3's precip; 's ",
         'method': 'The metric is the statistical value between the model and the observations',
         'name': 'BiasPrLonRmse',
         'units': 'mm/day'}},
       'BiasSstLonRmse': {'diagnostic': {'CanESM2_r1i1p1': {'keyerror': None,
          'name': 'CanESM2_r1i1p1',
          'nyears': 156,
          'time_period': ['1850-1-16 12:0:0.0', '2005-12-16 12:0:0.0']},
         'ERA-Interim': {'name': 'ERA-Interim',
          'nyears': 40,
          'time_period': ['1979-1-16 12:0:0.0', '2019-3-16 12:0:0.0']},
         'HadISST': {'name': 'HadISST',
          'nyears': 151,
          'time_period': ['1870-1-16 11:59:59.5', '2020-10-16 12:0:0.0']},
         'Tropflux': {'name': 'Tropflux',
          'nyears': 40,
          'time_period': ['1979-1-15 0:0:0.0', '2018-12-15 12:0:0.0']},
         'method': 'Zonal root mean square error of equatorial_pacific sst, time series are linearly detrended, observations and model regridded to generic_1x1deg',
         'name': 'sst Zonal RMSE',
         'ref': 'Using CDAT regridding and rms (uncentered and biased) calculation',
         'time_frequency': 'monthly',
         'units': 'C'},
        'metric': {'datasets': "CanESM2_r1i1p1; ERA-Interim's ts & HadISST's sst & Tropflux's sst; 's ",
         'method': 'The metric is the statistical value between the model and the observations',
         'name': 'BiasSstLonRmse',
         'units': 'C'}},
       'BiasTauxLonRmse': {'diagnostic': {'CanESM2_r1i1p1': {'keyerror': None,
          'name': 'CanESM2_r1i1p1',
          'nyears': 156,
          'time_period': ['1850-1-16 12:0:0.0', '2005-12-16 12:0:0.0']},
         'ERA-Interim': {'name': 'ERA-Interim',
          'nyears': 40,
          'time_period': ['1979-1-16 12:0:0.0', '2019-3-16 12:0:0.0']},
         'Tropflux': {'name': 'Tropflux',
          'nyears': 40,
          'time_period': ['1979-1-15 0:0:0.0', '2018-12-15 12:0:0.0']},
         'method': 'Zonal root mean square error of equatorial_pacific taux, time series are linearly detrended, observations and model regridded to generic_1x1deg',
         'name': 'taux Zonal RMSE',
         'ref': 'Using CDAT regridding and rms (uncentered and biased) calculation',
         'time_frequency': 'monthly',
         'units': '1e-3 N/m2'},
        'metric': {'datasets': "CanESM2_r1i1p1; ERA-Interim's tauu & Tropflux's taux; 's ",
         'method': 'The metric is the statistical value between the model and the observations',
         'name': 'BiasTauxLonRmse',
         'units': '1e-3 N/m2'}},
       'EnsoAmpl': {'diagnostic': {'CanESM2_r1i1p1': {'keyerror': None,
          'name': 'CanESM2_r1i1p1',
          'nyears': 156,
          'time_period': ['1850-1-16 12:0:0.0', '2005-12-16 12:0:0.0']},
         'ERA-Interim': {'keyerror': None,
          'name': 'ERA-Interim',
          'nyears': 40,
          'time_period': ['1979-1-16 12:0:0.0', '2019-3-16 12:0:0.0']},
         'HadISST': {'keyerror': None,
          'name': 'HadISST',
          'nyears': 151,
          'time_period': ['1870-1-16 11:59:59.5', '2020-10-16 12:0:0.0']},
         'Tropflux': {'keyerror': None,
          'name': 'Tropflux',
          'nyears': 40,
          'time_period': ['1979-1-15 0:0:0.0', '2018-12-15 12:0:0.0']},
         'method': 'Standard deviation of nino3.4 sstA, time series are linearly detrended',
         'name': 'ENSO amplitude',
         'ref': 'Using CDAT regression calculation',
         'time_frequency': 'monthly',
         'units': 'C'},
        'metric': {'datasets': "CanESM2_r1i1p1; ERA-Interim's ts & HadISST's sst & Tropflux's sst; 's ",
         'method': 'The metric is the absolute value of the relative difference between model and observations values (M = 100 * abs[[model-obs] / obs])',
         'name': 'EnsoAmpl',
         'units': '%'}},
       'EnsoDuration': {'diagnostic': {'CanESM2_r1i1p1': {'keyerror': None,
          'name': 'CanESM2_r1i1p1',
          'nyears': 156,
          'time_period': ['1850-1-16 12:0:0.0', '2005-12-16 12:0:0.0']},
         'ERA-Interim': {'keyerror': None,
          'name': 'ERA-Interim',
          'nyears': 40,
          'time_period': ['1979-1-16 12:0:0.0', '2019-3-16 12:0:0.0']},
         'HadISST': {'keyerror': None,
          'name': 'HadISST',
          'nyears': 151,
          'time_period': ['1870-1-16 11:59:59.5', '2020-10-16 12:0:0.0']},
         'Tropflux': {'keyerror': None,
          'name': 'Tropflux',
          'nyears': 40,
          'time_period': ['1979-1-15 0:0:0.0', '2018-12-15 12:0:0.0']},
         'method': 'nino3.4 SSTA during DEC regressed against nino3.4 SSTA during 6 years (centered on ENSO), the duration is the number of consecutive months during which the regression is above 0.25, time series are linearly detrended, smoothing using a triangle shaped window of 5 points',
         'name': 'ENSO Duration based on life cyle SSTA pattern',
         'ref': 'Using CDAT',
         'time_frequency': 'monthly',
         'units': 'months'},
        'metric': {'datasets': "CanESM2_r1i1p1; ERA-Interim's ts & HadISST's sst & Tropflux's sst; 's ",
         'method': 'The metric is the absolute value of the relative difference between model and observations values (M = 100 * abs[[model-obs] / obs])',
         'name': 'EnsoDuration',
         'units': '%'}},
       'EnsoSeasonality': {'diagnostic': {'CanESM2_r1i1p1': {'keyerror': None,
          'name': 'CanESM2_r1i1p1',
          'nyears': 156,
          'time_period': ['1850-1-16 12:0:0.0', '2005-12-16 12:0:0.0']},
         'ERA-Interim': {'keyerror': None,
          'name': 'ERA-Interim',
          'nyears': 40,
          'time_period': ['1979-1-16 12:0:0.0', '2019-3-16 12:0:0.0']},
         'HadISST': {'keyerror': None,
          'name': 'HadISST',
          'nyears': 151,
          'time_period': ['1870-1-16 11:59:59.5', '2020-10-16 12:0:0.0']},
         'Tropflux': {'keyerror': None,
          'name': 'Tropflux',
          'nyears': 40,
          'time_period': ['1979-1-15 0:0:0.0', '2018-12-15 12:0:0.0']},
         'method': 'Ratio between NDJ and MAM standard deviation nino3.4 sstA, time series are linearly detrended',
         'name': 'ENSO seasonality',
         'ref': 'Using CDAT std dev calculation',
         'time_frequency': 'monthly',
         'units': 'C/C'},
        'metric': {'datasets': "CanESM2_r1i1p1; ERA-Interim's ts & HadISST's sst & Tropflux's sst; 's ",
         'method': 'The metric is the absolute value of the relative difference between model and observations values (M = 100 * abs[[model-obs] / obs])',
         'name': 'EnsoSeasonality',
         'units': '%'}},
       'EnsoSstDiversity_2': {'diagnostic': {'CanESM2_r1i1p1': {'keyerror': None,
          'name': 'CanESM2_r1i1p1',
          'nyears': 156,
          'time_period': ['1850-1-16 12:0:0.0', '2005-12-16 12:0:0.0']},
         'ERA-Interim': {'keyerror': None,
          'name': 'ERA-Interim',
          'nyears': 40,
          'time_period': ['1979-1-16 12:0:0.0', '2019-3-16 12:0:0.0']},
         'HadISST': {'keyerror': None,
          'name': 'HadISST',
          'nyears': 151,
          'time_period': ['1870-1-16 11:59:59.5', '2020-10-16 12:0:0.0']},
         'Tropflux': {'keyerror': None,
          'name': 'Tropflux',
          'nyears': 40,
          'time_period': ['1979-1-15 0:0:0.0', '2018-12-15 12:0:0.0']},
         'method': 'Nino (Nina) events = nino3.4 sstA > 0.75 (< -0.75) during DEC, zonal SSTA (meridional averaged [-5.0 ; 5.0]), the zonal SSTA maximum (minimum) is located for each event, the diversity is the interquartile range (IQR = Q3 - Q1), time series are linearly detrended, smoothing using a triangle shaped window of 5 points',
         'name': 'ENSO Diversity (interquartile range)',
         'ref': 'Using CDAT regridding',
         'time_frequency': 'monthly',
         'units': 'long'},
        'metric': {'datasets': "CanESM2_r1i1p1; ERA-Interim's ts & HadISST's sst & Tropflux's sst; 's ",
         'method': 'The metric is the absolute value of the relative difference between model and observations values (M = 100 * abs[[model-obs] / obs])',
         'name': 'EnsoSstDiversity',
         'units': '%'}},
       'EnsoSstLonRmse': {'diagnostic': {'CanESM2_r1i1p1': {'keyerror': None,
          'name': 'CanESM2_r1i1p1',
          'nyears': 156,
          'time_period': ['1850-1-16 12:0:0.0', '2005-12-16 12:0:0.0']},
         'ERA-Interim': {'name': 'ERA-Interim',
          'nyears': 40,
          'time_period': ['1979-1-16 12:0:0.0', '2019-3-16 12:0:0.0']},
         'HadISST': {'name': 'HadISST',
          'nyears': 151,
          'time_period': ['1870-1-16 11:59:59.5', '2020-10-16 12:0:0.0']},
         'Tropflux': {'name': 'Tropflux',
          'nyears': 40,
          'time_period': ['1979-1-15 0:0:0.0', '2018-12-15 12:0:0.0']},
         'method': 'nino3.4 SSTA during DEC regressed against equatorial_pacific SSTA, time series are linearly detrended, smoothing using a triangle shaped window of 5 points, observations and model regridded to generic_1x1deg',
         'name': 'ENSO Zonal SSTA pattern',
         'ref': 'Using CDAT regridding and rms (uncentered and biased) calculation',
         'time_frequency': 'monthly',
         'units': 'C/C'},
        'metric': {'datasets': "CanESM2_r1i1p1; ERA-Interim's ts & HadISST's sst & Tropflux's sst; 's ",
         'method': 'The metric is the statistical value between the model and the observations',
         'name': 'EnsoSstLonRmse',
         'units': 'C/C'}},
       'EnsoSstSkew': {'diagnostic': {'CanESM2_r1i1p1': {'keyerror': None,
          'name': 'CanESM2_r1i1p1',
          'nyears': 156,
          'time_period': ['1850-1-16 12:0:0.0', '2005-12-16 12:0:0.0']},
         'ERA-Interim': {'keyerror': None,
          'name': 'ERA-Interim',
          'nyears': 40,
          'time_period': ['1979-1-16 12:0:0.0', '2019-3-16 12:0:0.0']},
         'HadISST': {'keyerror': None,
          'name': 'HadISST',
          'nyears': 151,
          'time_period': ['1870-1-16 11:59:59.5', '2020-10-16 12:0:0.0']},
         'Tropflux': {'keyerror': None,
          'name': 'Tropflux',
          'nyears': 40,
          'time_period': ['1979-1-15 0:0:0.0', '2018-12-15 12:0:0.0']},
         'method': 'Standard deviation of nino3.4 sstA, time series are linearly detrended',
         'name': 'ENSO skewness',
         'ref': 'Using CDAT regression calculation',
         'time_frequency': 'monthly',
         'units': 'C'},
        'metric': {'datasets': "CanESM2_r1i1p1; ERA-Interim's ts & HadISST's sst & Tropflux's sst; 's ",
         'method': 'The metric is the absolute value of the relative difference between model and observations values (M = 100 * abs[[model-obs] / obs])',
         'name': 'EnsoSstSkew',
         'units': '%'}},
       'EnsoSstTsRmse': {'diagnostic': {'CanESM2_r1i1p1': {'keyerror': None,
          'name': 'CanESM2_r1i1p1',
          'nyears': 156,
          'time_period': ['1850-1-16 12:0:0.0', '2005-12-16 12:0:0.0']},
         'ERA-Interim': {'name': 'ERA-Interim',
          'nyears': 40,
          'time_period': ['1979-1-16 12:0:0.0', '2019-3-16 12:0:0.0']},
         'HadISST': {'name': 'HadISST',
          'nyears': 151,
          'time_period': ['1870-1-16 11:59:59.5', '2020-10-16 12:0:0.0']},
         'Tropflux': {'name': 'Tropflux',
          'nyears': 40,
          'time_period': ['1979-1-15 0:0:0.0', '2018-12-15 12:0:0.0']},
         'method': 'nino3.4 SSTA during DEC regressed against nino3.4 SSTA during 6 years (centered on ENSO), time series are linearly detrended, smoothing using a triangle shaped window of 5 points',
         'name': 'ENSO life cyle SSTA pattern',
         'ref': 'Using CDAT regridding and rms (uncentered and biased) calculation',
         'time_frequency': 'monthly',
         'units': 'C/C'},
        'metric': {'datasets': "CanESM2_r1i1p1; ERA-Interim's ts & HadISST's sst & Tropflux's sst; 's ",
         'method': 'The metric is the statistical value between the model and the observations',
         'name': 'EnsoSstTsRmse',
         'units': 'C/C'}},
       'SeasonalPrLatRmse': {'diagnostic': {'CanESM2_r1i1p1': {'keyerror': None,
          'name': 'CanESM2_r1i1p1',
          'nyears': 156,
          'time_period': ['1850-1-16 12:0:0.0', '2005-12-16 12:0:0.0']},
         'ERA-Interim': {'name': 'ERA-Interim',
          'nyears': 40,
          'time_period': ['1979-1-16 12:0:0.0', '2019-3-16 12:0:0.0']},
         'GPCPv2.3': {'name': 'GPCPv2.3',
          'nyears': 41,
          'time_period': ['1979-1-1 0:0:0.0', '2019-7-1 0:0:0.0']},
         'method': 'Meridional root mean square error of nino3_LatExt climatological pr STD, time series are linearly detrended, observations and model regridded to generic_1x1deg',
         'name': 'pr meridional seasonality RMSE',
         'ref': 'Using CDAT regridding and rms (uncentered and biased) calculation',
         'time_frequency': 'monthly',
         'units': 'mm/day'},
        'metric': {'datasets': "CanESM2_r1i1p1; ERA-Interim's pr & GPCPv2.3's precip; 's ",
         'method': 'The metric is the statistical value between the model and the observations',
         'name': 'SeasonalPrLatRmse',
         'units': 'mm/day'}},
       'SeasonalPrLonRmse': {'diagnostic': {'CanESM2_r1i1p1': {'keyerror': None,
          'name': 'CanESM2_r1i1p1',
          'nyears': 156,
          'time_period': ['1850-1-16 12:0:0.0', '2005-12-16 12:0:0.0']},
         'ERA-Interim': {'name': 'ERA-Interim',
          'nyears': 40,
          'time_period': ['1979-1-16 12:0:0.0', '2019-3-16 12:0:0.0']},
         'GPCPv2.3': {'name': 'GPCPv2.3',
          'nyears': 41,
          'time_period': ['1979-1-1 0:0:0.0', '2019-7-1 0:0:0.0']},
         'method': 'Zonal root mean square error of equatorial_pacific climatological pr STD, time series are linearly detrended, observations and model regridded to generic_1x1deg',
         'name': 'pr zonal seasonality RMSE',
         'ref': 'Using CDAT regridding and rms (uncentered and biased) calculation',
         'time_frequency': 'monthly',
         'units': 'mm/day'},
        'metric': {'datasets': "CanESM2_r1i1p1; ERA-Interim's pr & GPCPv2.3's precip; 's ",
         'method': 'The metric is the statistical value between the model and the observations',
         'name': 'SeasonalPrLonRmse',
         'units': 'mm/day'}},
       'SeasonalSstLonRmse': {'diagnostic': {'CanESM2_r1i1p1': {'keyerror': None,
          'name': 'CanESM2_r1i1p1',
          'nyears': 156,
          'time_period': ['1850-1-16 12:0:0.0', '2005-12-16 12:0:0.0']},
         'ERA-Interim': {'name': 'ERA-Interim',
          'nyears': 40,
          'time_period': ['1979-1-16 12:0:0.0', '2019-3-16 12:0:0.0']},
         'HadISST': {'name': 'HadISST',
          'nyears': 151,
          'time_period': ['1870-1-16 11:59:59.5', '2020-10-16 12:0:0.0']},
         'Tropflux': {'name': 'Tropflux',
          'nyears': 40,
          'time_period': ['1979-1-15 0:0:0.0', '2018-12-15 12:0:0.0']},
         'method': 'Zonal root mean square error of equatorial_pacific climatological sst STD, time series are linearly detrended, observations and model regridded to generic_1x1deg',
         'name': 'sst zonal seasonality RMSE',
         'ref': 'Using CDAT regridding and rms (uncentered and biased) calculation',
         'time_frequency': 'monthly',
         'units': 'C'},
        'metric': {'datasets': "CanESM2_r1i1p1; ERA-Interim's ts & HadISST's sst & Tropflux's sst; 's ",
         'method': 'The metric is the statistical value between the model and the observations',
         'name': 'SeasonalSstLonRmse',
         'units': 'C'}},
       'SeasonalTauxLonRmse': {'diagnostic': {'CanESM2_r1i1p1': {'keyerror': None,
          'name': 'CanESM2_r1i1p1',
          'nyears': 156,
          'time_period': ['1850-1-16 12:0:0.0', '2005-12-16 12:0:0.0']},
         'ERA-Interim': {'name': 'ERA-Interim',
          'nyears': 40,
          'time_period': ['1979-1-16 12:0:0.0', '2019-3-16 12:0:0.0']},
         'Tropflux': {'name': 'Tropflux',
          'nyears': 40,
          'time_period': ['1979-1-15 0:0:0.0', '2018-12-15 12:0:0.0']},
         'method': 'Zonal root mean square error of equatorial_pacific climatological taux STD, time series are linearly detrended, observations and model regridded to generic_1x1deg',
         'name': 'taux zonal seasonality RMSE',
         'ref': 'Using CDAT regridding and rms (uncentered and biased) calculation',
         'time_frequency': 'monthly',
         'units': '1e-3 N/m2'},
        'metric': {'datasets': "CanESM2_r1i1p1; ERA-Interim's tauu & Tropflux's taux; 's ",
         'method': 'The metric is the statistical value between the model and the observations',
         'name': 'SeasonalTauxLonRmse',
         'units': '1e-3 N/m2'}}},
      'name': 'Metrics Collection for ENSO performance'},
     'value': {'BiasPrLatRmse': {'diagnostic': {'CanESM2_r1i1p1': {'value': None,
         'value_error': None},
        'ERA-Interim': {'value': None, 'value_error': None},
        'GPCPv2.3': {'value': None, 'value_error': None}},
       'metric': {'ERA-Interim': {'value': 0.7782493930608967,
         'value_error': None},
        'GPCPv2.3': {'value': 1.1563954501590212, 'value_error': None}}},
      'BiasPrLonRmse': {'diagnostic': {'CanESM2_r1i1p1': {'value': None,
         'value_error': None},
        'ERA-Interim': {'value': None, 'value_error': None},
        'GPCPv2.3': {'value': None, 'value_error': None}},
       'metric': {'ERA-Interim': {'value': 1.7713529269978725,
         'value_error': None},
        'GPCPv2.3': {'value': 1.0041302663498122, 'value_error': None}}},
      'BiasSstLonRmse': {'diagnostic': {'CanESM2_r1i1p1': {'value': None,
         'value_error': None},
        'ERA-Interim': {'value': None, 'value_error': None},
        'HadISST': {'value': None, 'value_error': None},
        'Tropflux': {'value': None, 'value_error': None}},
       'metric': {'ERA-Interim': {'value': 1.0892786603240394,
         'value_error': None},
        'HadISST': {'value': 0.9907826885961905, 'value_error': None},
        'Tropflux': {'value': 1.127318806453402, 'value_error': None}}},
      'BiasTauxLonRmse': {'diagnostic': {'CanESM2_r1i1p1': {'value': None,
         'value_error': None},
        'ERA-Interim': {'value': None, 'value_error': None},
        'Tropflux': {'value': None, 'value_error': None}},
       'metric': {'ERA-Interim': {'value': 3.5762162635058568,
         'value_error': None},
        'Tropflux': {'value': 4.2908730863805955, 'value_error': None}}},
      'EnsoAmpl': {'diagnostic': {'CanESM2_r1i1p1': {'value': 0.966594355823751,
         'value_error': 0.07738948483823736},
        'ERA-Interim': {'value': 0.8989844997845644,
         'value_error': 0.14214193002531866},
        'HadISST': {'value': 0.7665787872085695,
         'value_error': 0.06238329697691264},
        'Tropflux': {'value': 0.9039789553693535,
         'value_error': 0.14293162279134272}},
       'metric': {'ERA-Interim': {'value': 7.520692075935549,
         'value_error': 25.60905908686113},
        'HadISST': {'value': 26.0919780135739,
         'value_error': 20.35665746957994},
        'Tropflux': {'value': 6.926643599663635,
         'value_error': 25.46756983269446}}},
      'EnsoDuration': {'diagnostic': {'CanESM2_r1i1p1': {'value': 12.0,
         'value_error': None},
        'ERA-Interim': {'value': 13.0, 'value_error': None},
        'HadISST': {'value': 13.0, 'value_error': None},
        'Tropflux': {'value': 13.0, 'value_error': None}},
       'metric': {'ERA-Interim': {'value': 7.6923076923076925,
         'value_error': None},
        'HadISST': {'value': 7.6923076923076925, 'value_error': None},
        'Tropflux': {'value': 7.6923076923076925, 'value_error': None}}},
      'EnsoSeasonality': {'diagnostic': {'CanESM2_r1i1p1': {'value': 1.427947582438456,
         'value_error': 0.22902281494056992},
        'ERA-Interim': {'value': 2.0466846866656914,
         'value_error': 0.6513411033995022},
        'HadISST': {'value': 1.6639865947361325,
         'value_error': 0.2712772451657809},
        'Tropflux': {'value': 2.0532132553583624,
         'value_error': 0.6534187683977347}},
       'metric': {'ERA-Interim': {'value': 30.23118843163069,
         'value_error': 33.3933099950116},
        'HadISST': {'value': 14.185151072993262,
         'value_error': 27.753767639345888},
        'Tropflux': {'value': 30.453031183591015,
         'value_error': 33.28712983198706}}},
      'EnsoSstDiversity_2': {'diagnostic': {'CanESM2_r1i1p1': {'value': 14.5,
         'value_error': None},
        'ERA-Interim': {'value': 33.25, 'value_error': None},
        'HadISST': {'value': 49.0, 'value_error': None},
        'Tropflux': {'value': 32.0, 'value_error': None}},
       'metric': {'ERA-Interim': {'value': 56.390977443609025,
         'value_error': None},
        'HadISST': {'value': 70.40816326530613, 'value_error': None},
        'Tropflux': {'value': 54.6875, 'value_error': None}}},
      'EnsoSstLonRmse': {'diagnostic': {'CanESM2_r1i1p1': {'value': None,
         'value_error': None},
        'ERA-Interim': {'value': None, 'value_error': None},
        'HadISST': {'value': None, 'value_error': None},
        'Tropflux': {'value': None, 'value_error': None}},
       'metric': {'ERA-Interim': {'value': 0.21063730245671997,
         'value_error': None},
        'HadISST': {'value': 0.23310210358843525, 'value_error': None},
        'Tropflux': {'value': 0.21068242619120056, 'value_error': None}}},
      'EnsoSstSkew': {'diagnostic': {'CanESM2_r1i1p1': {'value': -0.014808408619221234,
         'value_error': -0.0011856215664936178},
        'ERA-Interim': {'value': 0.39098111106809963,
         'value_error': 0.061819541653923164},
        'HadISST': {'value': 0.38989908235027515,
         'value_error': 0.03172953733021198},
        'Tropflux': {'value': 0.39744741059612115,
         'value_error': 0.06284195338099416}},
       'metric': {'ERA-Interim': {'value': 103.78749975382875,
         'value_error': -0.9020989645302084},
        'HadISST': {'value': 103.79801063648509,
         'value_error': -0.6131619379023884},
        'Tropflux': {'value': 103.72587875135744,
         'value_error': -0.8874221998739196}}},
      'EnsoSstTsRmse': {'diagnostic': {'CanESM2_r1i1p1': {'value': None,
         'value_error': None},
        'ERA-Interim': {'value': None, 'value_error': None},
        'HadISST': {'value': None, 'value_error': None},
        'Tropflux': {'value': None, 'value_error': None}},
       'metric': {'ERA-Interim': {'value': 0.14454203525485798,
         'value_error': None},
        'HadISST': {'value': 0.13521549721760434, 'value_error': None},
        'Tropflux': {'value': 0.14517648944281705, 'value_error': None}}},
      'SeasonalPrLatRmse': {'diagnostic': {'CanESM2_r1i1p1': {'value': None,
         'value_error': None},
        'ERA-Interim': {'value': None, 'value_error': None},
        'GPCPv2.3': {'value': None, 'value_error': None}},
       'metric': {'ERA-Interim': {'value': 0.8771214558143003,
         'value_error': None},
        'GPCPv2.3': {'value': 1.2190141929345588, 'value_error': None}}},
      'SeasonalPrLonRmse': {'diagnostic': {'CanESM2_r1i1p1': {'value': None,
         'value_error': None},
        'ERA-Interim': {'value': None, 'value_error': None},
        'GPCPv2.3': {'value': None, 'value_error': None}},
       'metric': {'ERA-Interim': {'value': 0.5435444527617086,
         'value_error': None},
        'GPCPv2.3': {'value': 0.8007313079545106, 'value_error': None}}},
      'SeasonalSstLonRmse': {'diagnostic': {'CanESM2_r1i1p1': {'value': None,
         'value_error': None},
        'ERA-Interim': {'value': None, 'value_error': None},
        'HadISST': {'value': None, 'value_error': None},
        'Tropflux': {'value': None, 'value_error': None}},
       'metric': {'ERA-Interim': {'value': 0.35441644956993745,
         'value_error': None},
        'HadISST': {'value': 0.37282033885866017, 'value_error': None},
        'Tropflux': {'value': 0.35543721480080437, 'value_error': None}}},
      'SeasonalTauxLonRmse': {'diagnostic': {'CanESM2_r1i1p1': {'value': None,
         'value_error': None},
        'ERA-Interim': {'value': None, 'value_error': None},
        'Tropflux': {'value': None, 'value_error': None}},
       'metric': {'ERA-Interim': {'value': 3.77167540812989,
         'value_error': None},
        'Tropflux': {'value': 3.5662867339427233, 'value_error': None}}}}},
    'r2i1p1': {'metadata': {'description_of_the_collection': 'Describe which science question this collection is about',
      'metrics': {'BiasPrLatRmse': {'diagnostic': {'CanESM2_r2i1p1': {'keyerror': None,
          'name': 'CanESM2_r2i1p1',
          'nyears': 156,
          'time_period': ['1850-1-16 12:0:0.0', '2005-12-16 12:0:0.0']},
         'ERA-Interim': {'name': 'ERA-Interim',
          'nyears': 40,
          'time_period': ['1979-1-16 12:0:0.0', '2019-3-16 12:0:0.0']},
         'GPCPv2.3': {'name': 'GPCPv2.3',
          'nyears': 41,
          'time_period': ['1979-1-1 0:0:0.0', '2019-7-1 0:0:0.0']},
         'method': 'Meridional root mean square error of nino3_LatExt pr, time series are linearly detrended, observations and model regridded to generic_1x1deg',
         'name': 'pr Meridional RMSE',
         'ref': 'Using CDAT regridding and rms (uncentered and biased) calculation',
         'time_frequency': 'monthly',
         'units': 'mm/day'},
        'metric': {'datasets': "CanESM2_r2i1p1; ERA-Interim's pr & GPCPv2.3's precip; 's ",
         'method': 'The metric is the statistical value between the model and the observations',
         'name': 'BiasPrLatRmse',
         'units': 'mm/day'}},
       'BiasPrLonRmse': {'diagnostic': {'CanESM2_r2i1p1': {'keyerror': None,
          'name': 'CanESM2_r2i1p1',
          'nyears': 156,
          'time_period': ['1850-1-16 12:0:0.0', '2005-12-16 12:0:0.0']},
         'ERA-Interim': {'name': 'ERA-Interim',
          'nyears': 40,
          'time_period': ['1979-1-16 12:0:0.0', '2019-3-16 12:0:0.0']},
         'GPCPv2.3': {'name': 'GPCPv2.3',
          'nyears': 41,
          'time_period': ['1979-1-1 0:0:0.0', '2019-7-1 0:0:0.0']},
         'method': 'Zonal root mean square error of equatorial_pacific pr, time series are linearly detrended, observations and model regridded to generic_1x1deg',
         'name': 'pr Zonal RMSE',
         'ref': 'Using CDAT regridding and rms (uncentered and biased) calculation',
         'time_frequency': 'monthly',
         'units': 'mm/day'},
        'metric': {'datasets': "CanESM2_r2i1p1; ERA-Interim's pr & GPCPv2.3's precip; 's ",
         'method': 'The metric is the statistical value between the model and the observations',
         'name': 'BiasPrLonRmse',
         'units': 'mm/day'}},
       'BiasSstLonRmse': {'diagnostic': {'CanESM2_r2i1p1': {'keyerror': None,
          'name': 'CanESM2_r2i1p1',
          'nyears': 156,
          'time_period': ['1850-1-16 12:0:0.0', '2005-12-16 12:0:0.0']},
         'ERA-Interim': {'name': 'ERA-Interim',
          'nyears': 40,
          'time_period': ['1979-1-16 12:0:0.0', '2019-3-16 12:0:0.0']},
         'HadISST': {'name': 'HadISST',
          'nyears': 151,
          'time_period': ['1870-1-16 11:59:59.5', '2020-10-16 12:0:0.0']},
         'Tropflux': {'name': 'Tropflux',
          'nyears': 40,
          'time_period': ['1979-1-15 0:0:0.0', '2018-12-15 12:0:0.0']},
         'method': 'Zonal root mean square error of equatorial_pacific sst, time series are linearly detrended, observations and model regridded to generic_1x1deg',
         'name': 'sst Zonal RMSE',
         'ref': 'Using CDAT regridding and rms (uncentered and biased) calculation',
         'time_frequency': 'monthly',
         'units': 'C'},
        'metric': {'datasets': "CanESM2_r2i1p1; ERA-Interim's ts & HadISST's sst & Tropflux's sst; 's ",
         'method': 'The metric is the statistical value between the model and the observations',
         'name': 'BiasSstLonRmse',
         'units': 'C'}},
       'BiasTauxLonRmse': {'diagnostic': {'CanESM2_r2i1p1': {'keyerror': None,
          'name': 'CanESM2_r2i1p1',
          'nyears': 156,
          'time_period': ['1850-1-16 12:0:0.0', '2005-12-16 12:0:0.0']},
         'ERA-Interim': {'name': 'ERA-Interim',
          'nyears': 40,
          'time_period': ['1979-1-16 12:0:0.0', '2019-3-16 12:0:0.0']},
         'Tropflux': {'name': 'Tropflux',
          'nyears': 40,
          'time_period': ['1979-1-15 0:0:0.0', '2018-12-15 12:0:0.0']},
         'method': 'Zonal root mean square error of equatorial_pacific taux, time series are linearly detrended, observations and model regridded to generic_1x1deg',
         'name': 'taux Zonal RMSE',
         'ref': 'Using CDAT regridding and rms (uncentered and biased) calculation',
         'time_frequency': 'monthly',
         'units': '1e-3 N/m2'},
        'metric': {'datasets': "CanESM2_r2i1p1; ERA-Interim's tauu & Tropflux's taux; 's ",
         'method': 'The metric is the statistical value between the model and the observations',
         'name': 'BiasTauxLonRmse',
         'units': '1e-3 N/m2'}},
       'EnsoAmpl': {'diagnostic': {'CanESM2_r2i1p1': {'keyerror': None,
          'name': 'CanESM2_r2i1p1',
          'nyears': 156,
          'time_period': ['1850-1-16 12:0:0.0', '2005-12-16 12:0:0.0']},
         'ERA-Interim': {'keyerror': None,
          'name': 'ERA-Interim',
          'nyears': 40,
          'time_period': ['1979-1-16 12:0:0.0', '2019-3-16 12:0:0.0']},
         'HadISST': {'keyerror': None,
          'name': 'HadISST',
          'nyears': 151,
          'time_period': ['1870-1-16 11:59:59.5', '2020-10-16 12:0:0.0']},
         'Tropflux': {'keyerror': None,
          'name': 'Tropflux',
          'nyears': 40,
          'time_period': ['1979-1-15 0:0:0.0', '2018-12-15 12:0:0.0']},
         'method': 'Standard deviation of nino3.4 sstA, time series are linearly detrended',
         'name': 'ENSO amplitude',
         'ref': 'Using CDAT regression calculation',
         'time_frequency': 'monthly',
         'units': 'C'},
        'metric': {'datasets': "CanESM2_r2i1p1; ERA-Interim's ts & HadISST's sst & Tropflux's sst; 's ",
         'method': 'The metric is the absolute value of the relative difference between model and observations values (M = 100 * abs[[model-obs] / obs])',
         'name': 'EnsoAmpl',
         'units': '%'}},
       'EnsoDuration': {'diagnostic': {'CanESM2_r2i1p1': {'keyerror': None,
          'name': 'CanESM2_r2i1p1',
          'nyears': 156,
          'time_period': ['1850-1-16 12:0:0.0', '2005-12-16 12:0:0.0']},
         'ERA-Interim': {'keyerror': None,
          'name': 'ERA-Interim',
          'nyears': 40,
          'time_period': ['1979-1-16 12:0:0.0', '2019-3-16 12:0:0.0']},
         'HadISST': {'keyerror': None,
          'name': 'HadISST',
          'nyears': 151,
          'time_period': ['1870-1-16 11:59:59.5', '2020-10-16 12:0:0.0']},
         'Tropflux': {'keyerror': None,
          'name': 'Tropflux',
          'nyears': 40,
          'time_period': ['1979-1-15 0:0:0.0', '2018-12-15 12:0:0.0']},
         'method': 'nino3.4 SSTA during DEC regressed against nino3.4 SSTA during 6 years (centered on ENSO), the duration is the number of consecutive months during which the regression is above 0.25, time series are linearly detrended, smoothing using a triangle shaped window of 5 points',
         'name': 'ENSO Duration based on life cyle SSTA pattern',
         'ref': 'Using CDAT',
         'time_frequency': 'monthly',
         'units': 'months'},
        'metric': {'datasets': "CanESM2_r2i1p1; ERA-Interim's ts & HadISST's sst & Tropflux's sst; 's ",
         'method': 'The metric is the absolute value of the relative difference between model and observations values (M = 100 * abs[[model-obs] / obs])',
         'name': 'EnsoDuration',
         'units': '%'}},
       'EnsoSeasonality': {'diagnostic': {'CanESM2_r2i1p1': {'keyerror': None,
          'name': 'CanESM2_r2i1p1',
          'nyears': 156,
          'time_period': ['1850-1-16 12:0:0.0', '2005-12-16 12:0:0.0']},
         'ERA-Interim': {'keyerror': None,
          'name': 'ERA-Interim',
          'nyears': 40,
          'time_period': ['1979-1-16 12:0:0.0', '2019-3-16 12:0:0.0']},
         'HadISST': {'keyerror': None,
          'name': 'HadISST',
          'nyears': 151,
          'time_period': ['1870-1-16 11:59:59.5', '2020-10-16 12:0:0.0']},
         'Tropflux': {'keyerror': None,
          'name': 'Tropflux',
          'nyears': 40,
          'time_period': ['1979-1-15 0:0:0.0', '2018-12-15 12:0:0.0']},
         'method': 'Ratio between NDJ and MAM standard deviation nino3.4 sstA, time series are linearly detrended',
         'name': 'ENSO seasonality',
         'ref': 'Using CDAT std dev calculation',
         'time_frequency': 'monthly',
         'units': 'C/C'},
        'metric': {'datasets': "CanESM2_r2i1p1; ERA-Interim's ts & HadISST's sst & Tropflux's sst; 's ",
         'method': 'The metric is the absolute value of the relative difference between model and observations values (M = 100 * abs[[model-obs] / obs])',
         'name': 'EnsoSeasonality',
         'units': '%'}},
       'EnsoSstDiversity_2': {'diagnostic': {'CanESM2_r2i1p1': {'keyerror': None,
          'name': 'CanESM2_r2i1p1',
          'nyears': 156,
          'time_period': ['1850-1-16 12:0:0.0', '2005-12-16 12:0:0.0']},
         'ERA-Interim': {'keyerror': None,
          'name': 'ERA-Interim',
          'nyears': 40,
          'time_period': ['1979-1-16 12:0:0.0', '2019-3-16 12:0:0.0']},
         'HadISST': {'keyerror': None,
          'name': 'HadISST',
          'nyears': 151,
          'time_period': ['1870-1-16 11:59:59.5', '2020-10-16 12:0:0.0']},
         'Tropflux': {'keyerror': None,
          'name': 'Tropflux',
          'nyears': 40,
          'time_period': ['1979-1-15 0:0:0.0', '2018-12-15 12:0:0.0']},
         'method': 'Nino (Nina) events = nino3.4 sstA > 0.75 (< -0.75) during DEC, zonal SSTA (meridional averaged [-5.0 ; 5.0]), the zonal SSTA maximum (minimum) is located for each event, the diversity is the interquartile range (IQR = Q3 - Q1), time series are linearly detrended, smoothing using a triangle shaped window of 5 points',
         'name': 'ENSO Diversity (interquartile range)',
         'ref': 'Using CDAT regridding',
         'time_frequency': 'monthly',
         'units': 'long'},
        'metric': {'datasets': "CanESM2_r2i1p1; ERA-Interim's ts & HadISST's sst & Tropflux's sst; 's ",
         'method': 'The metric is the absolute value of the relative difference between model and observations values (M = 100 * abs[[model-obs] / obs])',
         'name': 'EnsoSstDiversity',
         'units': '%'}},
       'EnsoSstLonRmse': {'diagnostic': {'CanESM2_r2i1p1': {'keyerror': None,
          'name': 'CanESM2_r2i1p1',
          'nyears': 156,
          'time_period': ['1850-1-16 12:0:0.0', '2005-12-16 12:0:0.0']},
         'ERA-Interim': {'name': 'ERA-Interim',
          'nyears': 40,
          'time_period': ['1979-1-16 12:0:0.0', '2019-3-16 12:0:0.0']},
         'HadISST': {'name': 'HadISST',
          'nyears': 151,
          'time_period': ['1870-1-16 11:59:59.5', '2020-10-16 12:0:0.0']},
         'Tropflux': {'name': 'Tropflux',
          'nyears': 40,
          'time_period': ['1979-1-15 0:0:0.0', '2018-12-15 12:0:0.0']},
         'method': 'nino3.4 SSTA during DEC regressed against equatorial_pacific SSTA, time series are linearly detrended, smoothing using a triangle shaped window of 5 points, observations and model regridded to generic_1x1deg',
         'name': 'ENSO Zonal SSTA pattern',
         'ref': 'Using CDAT regridding and rms (uncentered and biased) calculation',
         'time_frequency': 'monthly',
         'units': 'C/C'},
        'metric': {'datasets': "CanESM2_r2i1p1; ERA-Interim's ts & HadISST's sst & Tropflux's sst; 's ",
         'method': 'The metric is the statistical value between the model and the observations',
         'name': 'EnsoSstLonRmse',
         'units': 'C/C'}},
       'EnsoSstSkew': {'diagnostic': {'CanESM2_r2i1p1': {'keyerror': None,
          'name': 'CanESM2_r2i1p1',
          'nyears': 156,
          'time_period': ['1850-1-16 12:0:0.0', '2005-12-16 12:0:0.0']},
         'ERA-Interim': {'keyerror': None,
          'name': 'ERA-Interim',
          'nyears': 40,
          'time_period': ['1979-1-16 12:0:0.0', '2019-3-16 12:0:0.0']},
         'HadISST': {'keyerror': None,
          'name': 'HadISST',
          'nyears': 151,
          'time_period': ['1870-1-16 11:59:59.5', '2020-10-16 12:0:0.0']},
         'Tropflux': {'keyerror': None,
          'name': 'Tropflux',
          'nyears': 40,
          'time_period': ['1979-1-15 0:0:0.0', '2018-12-15 12:0:0.0']},
         'method': 'Standard deviation of nino3.4 sstA, time series are linearly detrended',
         'name': 'ENSO skewness',
         'ref': 'Using CDAT regression calculation',
         'time_frequency': 'monthly',
         'units': 'C'},
        'metric': {'datasets': "CanESM2_r2i1p1; ERA-Interim's ts & HadISST's sst & Tropflux's sst; 's ",
         'method': 'The metric is the absolute value of the relative difference between model and observations values (M = 100 * abs[[model-obs] / obs])',
         'name': 'EnsoSstSkew',
         'units': '%'}},
       'EnsoSstTsRmse': {'diagnostic': {'CanESM2_r2i1p1': {'keyerror': None,
          'name': 'CanESM2_r2i1p1',
          'nyears': 156,
          'time_period': ['1850-1-16 12:0:0.0', '2005-12-16 12:0:0.0']},
         'ERA-Interim': {'name': 'ERA-Interim',
          'nyears': 40,
          'time_period': ['1979-1-16 12:0:0.0', '2019-3-16 12:0:0.0']},
         'HadISST': {'name': 'HadISST',
          'nyears': 151,
          'time_period': ['1870-1-16 11:59:59.5', '2020-10-16 12:0:0.0']},
         'Tropflux': {'name': 'Tropflux',
          'nyears': 40,
          'time_period': ['1979-1-15 0:0:0.0', '2018-12-15 12:0:0.0']},
         'method': 'nino3.4 SSTA during DEC regressed against nino3.4 SSTA during 6 years (centered on ENSO), time series are linearly detrended, smoothing using a triangle shaped window of 5 points',
         'name': 'ENSO life cyle SSTA pattern',
         'ref': 'Using CDAT regridding and rms (uncentered and biased) calculation',
         'time_frequency': 'monthly',
         'units': 'C/C'},
        'metric': {'datasets': "CanESM2_r2i1p1; ERA-Interim's ts & HadISST's sst & Tropflux's sst; 's ",
         'method': 'The metric is the statistical value between the model and the observations',
         'name': 'EnsoSstTsRmse',
         'units': 'C/C'}},
       'SeasonalPrLatRmse': {'diagnostic': {'CanESM2_r2i1p1': {'keyerror': None,
          'name': 'CanESM2_r2i1p1',
          'nyears': 156,
          'time_period': ['1850-1-16 12:0:0.0', '2005-12-16 12:0:0.0']},
         'ERA-Interim': {'name': 'ERA-Interim',
          'nyears': 40,
          'time_period': ['1979-1-16 12:0:0.0', '2019-3-16 12:0:0.0']},
         'GPCPv2.3': {'name': 'GPCPv2.3',
          'nyears': 41,
          'time_period': ['1979-1-1 0:0:0.0', '2019-7-1 0:0:0.0']},
         'method': 'Meridional root mean square error of nino3_LatExt climatological pr STD, time series are linearly detrended, observations and model regridded to generic_1x1deg',
         'name': 'pr meridional seasonality RMSE',
         'ref': 'Using CDAT regridding and rms (uncentered and biased) calculation',
         'time_frequency': 'monthly',
         'units': 'mm/day'},
        'metric': {'datasets': "CanESM2_r2i1p1; ERA-Interim's pr & GPCPv2.3's precip; 's ",
         'method': 'The metric is the statistical value between the model and the observations',
         'name': 'SeasonalPrLatRmse',
         'units': 'mm/day'}},
       'SeasonalPrLonRmse': {'diagnostic': {'CanESM2_r2i1p1': {'keyerror': None,
          'name': 'CanESM2_r2i1p1',
          'nyears': 156,
          'time_period': ['1850-1-16 12:0:0.0', '2005-12-16 12:0:0.0']},
         'ERA-Interim': {'name': 'ERA-Interim',
          'nyears': 40,
          'time_period': ['1979-1-16 12:0:0.0', '2019-3-16 12:0:0.0']},
         'GPCPv2.3': {'name': 'GPCPv2.3',
          'nyears': 41,
          'time_period': ['1979-1-1 0:0:0.0', '2019-7-1 0:0:0.0']},
         'method': 'Zonal root mean square error of equatorial_pacific climatological pr STD, time series are linearly detrended, observations and model regridded to generic_1x1deg',
         'name': 'pr zonal seasonality RMSE',
         'ref': 'Using CDAT regridding and rms (uncentered and biased) calculation',
         'time_frequency': 'monthly',
         'units': 'mm/day'},
        'metric': {'datasets': "CanESM2_r2i1p1; ERA-Interim's pr & GPCPv2.3's precip; 's ",
         'method': 'The metric is the statistical value between the model and the observations',
         'name': 'SeasonalPrLonRmse',
         'units': 'mm/day'}},
       'SeasonalSstLonRmse': {'diagnostic': {'CanESM2_r2i1p1': {'keyerror': None,
          'name': 'CanESM2_r2i1p1',
          'nyears': 156,
          'time_period': ['1850-1-16 12:0:0.0', '2005-12-16 12:0:0.0']},
         'ERA-Interim': {'name': 'ERA-Interim',
          'nyears': 40,
          'time_period': ['1979-1-16 12:0:0.0', '2019-3-16 12:0:0.0']},
         'HadISST': {'name': 'HadISST',
          'nyears': 151,
          'time_period': ['1870-1-16 11:59:59.5', '2020-10-16 12:0:0.0']},
         'Tropflux': {'name': 'Tropflux',
          'nyears': 40,
          'time_period': ['1979-1-15 0:0:0.0', '2018-12-15 12:0:0.0']},
         'method': 'Zonal root mean square error of equatorial_pacific climatological sst STD, time series are linearly detrended, observations and model regridded to generic_1x1deg',
         'name': 'sst zonal seasonality RMSE',
         'ref': 'Using CDAT regridding and rms (uncentered and biased) calculation',
         'time_frequency': 'monthly',
         'units': 'C'},
        'metric': {'datasets': "CanESM2_r2i1p1; ERA-Interim's ts & HadISST's sst & Tropflux's sst; 's ",
         'method': 'The metric is the statistical value between the model and the observations',
         'name': 'SeasonalSstLonRmse',
         'units': 'C'}},
       'SeasonalTauxLonRmse': {'diagnostic': {'CanESM2_r2i1p1': {'keyerror': None,
          'name': 'CanESM2_r2i1p1',
          'nyears': 156,
          'time_period': ['1850-1-16 12:0:0.0', '2005-12-16 12:0:0.0']},
         'ERA-Interim': {'name': 'ERA-Interim',
          'nyears': 40,
          'time_period': ['1979-1-16 12:0:0.0', '2019-3-16 12:0:0.0']},
         'Tropflux': {'name': 'Tropflux',
          'nyears': 40,
          'time_period': ['1979-1-15 0:0:0.0', '2018-12-15 12:0:0.0']},
         'method': 'Zonal root mean square error of equatorial_pacific climatological taux STD, time series are linearly detrended, observations and model regridded to generic_1x1deg',
         'name': 'taux zonal seasonality RMSE',
         'ref': 'Using CDAT regridding and rms (uncentered and biased) calculation',
         'time_frequency': 'monthly',
         'units': '1e-3 N/m2'},
        'metric': {'datasets': "CanESM2_r2i1p1; ERA-Interim's tauu & Tropflux's taux; 's ",
         'method': 'The metric is the statistical value between the model and the observations',
         'name': 'SeasonalTauxLonRmse',
         'units': '1e-3 N/m2'}}},
      'name': 'Metrics Collection for ENSO performance'},
     'value': {'BiasPrLatRmse': {'diagnostic': {'CanESM2_r2i1p1': {'value': None,
         'value_error': None},
        'ERA-Interim': {'value': None, 'value_error': None},
        'GPCPv2.3': {'value': None, 'value_error': None}},
       'metric': {'ERA-Interim': {'value': 0.7882540312167032,
         'value_error': None},
        'GPCPv2.3': {'value': 1.16947894187465, 'value_error': None}}},
      'BiasPrLonRmse': {'diagnostic': {'CanESM2_r2i1p1': {'value': None,
         'value_error': None},
        'ERA-Interim': {'value': None, 'value_error': None},
        'GPCPv2.3': {'value': None, 'value_error': None}},
       'metric': {'ERA-Interim': {'value': 1.7415184270550519,
         'value_error': None},
        'GPCPv2.3': {'value': 0.9855097119336973, 'value_error': None}}},
      'BiasSstLonRmse': {'diagnostic': {'CanESM2_r2i1p1': {'value': None,
         'value_error': None},
        'ERA-Interim': {'value': None, 'value_error': None},
        'HadISST': {'value': None, 'value_error': None},
        'Tropflux': {'value': None, 'value_error': None}},
       'metric': {'ERA-Interim': {'value': 1.067673653469832,
         'value_error': None},
        'HadISST': {'value': 0.972552543016527, 'value_error': None},
        'Tropflux': {'value': 1.1052952929311828, 'value_error': None}}},
      'BiasTauxLonRmse': {'diagnostic': {'CanESM2_r2i1p1': {'value': None,
         'value_error': None},
        'ERA-Interim': {'value': None, 'value_error': None},
        'Tropflux': {'value': None, 'value_error': None}},
       'metric': {'ERA-Interim': {'value': 3.266246607807137,
         'value_error': None},
        'Tropflux': {'value': 3.984759233380258, 'value_error': None}}},
      'EnsoAmpl': {'diagnostic': {'CanESM2_r2i1p1': {'value': 0.9313852425888368,
         'value_error': 0.07457049968852683},
        'ERA-Interim': {'value': 0.8989844997845644,
         'value_error': 0.14214193002531866},
        'HadISST': {'value': 0.7665787872085695,
         'value_error': 0.06238329697691264},
        'Tropflux': {'value': 0.9039789553693535,
         'value_error': 0.14293162279134272}},
       'metric': {'ERA-Interim': {'value': 3.604149216369918,
         'value_error': 24.67622489866594},
        'HadISST': {'value': 21.498958506325977,
         'value_error': 19.61514697594584},
        'Tropflux': {'value': 3.03173951746316,
         'value_error': 24.539889524347075}}},
      'EnsoDuration': {'diagnostic': {'CanESM2_r2i1p1': {'value': 12.0,
         'value_error': None},
        'ERA-Interim': {'value': 13.0, 'value_error': None},
        'HadISST': {'value': 13.0, 'value_error': None},
        'Tropflux': {'value': 13.0, 'value_error': None}},
       'metric': {'ERA-Interim': {'value': 7.6923076923076925,
         'value_error': None},
        'HadISST': {'value': 7.6923076923076925, 'value_error': None},
        'Tropflux': {'value': 7.6923076923076925, 'value_error': None}}},
      'EnsoSeasonality': {'diagnostic': {'CanESM2_r2i1p1': {'value': 1.4170233205748748,
         'value_error': 0.2272707161703386},
        'ERA-Interim': {'value': 2.0466846866656914,
         'value_error': 0.6513411033995022},
        'HadISST': {'value': 1.6639865947361325,
         'value_error': 0.2712772451657809},
        'Tropflux': {'value': 2.0532132553583624,
         'value_error': 0.6534187683977347}},
       'metric': {'ERA-Interim': {'value': 30.76494245513776,
         'value_error': 33.13784034937216},
        'HadISST': {'value': 14.841662483490142,
         'value_error': 27.5414423207404},
        'Tropflux': {'value': 30.98508803813702,
         'value_error': 33.032472499012215}}},
      'EnsoSstDiversity_2': {'diagnostic': {'CanESM2_r2i1p1': {'value': 11.5,
         'value_error': None},
        'ERA-Interim': {'value': 33.25, 'value_error': None},
        'HadISST': {'value': 49.0, 'value_error': None},
        'Tropflux': {'value': 32.0, 'value_error': None}},
       'metric': {'ERA-Interim': {'value': 65.41353383458647,
         'value_error': None},
        'HadISST': {'value': 76.53061224489795, 'value_error': None},
        'Tropflux': {'value': 64.0625, 'value_error': None}}},
      'EnsoSstLonRmse': {'diagnostic': {'CanESM2_r2i1p1': {'value': None,
         'value_error': None},
        'ERA-Interim': {'value': None, 'value_error': None},
        'HadISST': {'value': None, 'value_error': None},
        'Tropflux': {'value': None, 'value_error': None}},
       'metric': {'ERA-Interim': {'value': 0.22024617867265103,
         'value_error': None},
        'HadISST': {'value': 0.24506165905942742, 'value_error': None},
        'Tropflux': {'value': 0.22066086245334987, 'value_error': None}}},
      'EnsoSstSkew': {'diagnostic': {'CanESM2_r2i1p1': {'value': -0.16143923529187182,
         'value_error': -0.012925483349496251},
        'ERA-Interim': {'value': 0.39098111106809963,
         'value_error': 0.061819541653923164},
        'HadISST': {'value': 0.38989908235027515,
         'value_error': 0.03172953733021198},
        'Tropflux': {'value': 0.39744741059612115,
         'value_error': 0.06284195338099416}},
       'metric': {'ERA-Interim': {'value': 141.2908017092808,
         'value_error': -9.834558914204582},
        'HadISST': {'value': 141.40538990723732,
         'value_error': -6.68460716545581},
        'Tropflux': {'value': 140.6190180103912,
         'value_error': -9.674554843301618}}},
      'EnsoSstTsRmse': {'diagnostic': {'CanESM2_r2i1p1': {'value': None,
         'value_error': None},
        'ERA-Interim': {'value': None, 'value_error': None},
        'HadISST': {'value': None, 'value_error': None},
        'Tropflux': {'value': None, 'value_error': None}},
       'metric': {'ERA-Interim': {'value': 0.09924358407157377,
         'value_error': None},
        'HadISST': {'value': 0.10852601459445724, 'value_error': None},
        'Tropflux': {'value': 0.10039154381304417, 'value_error': None}}},
      'SeasonalPrLatRmse': {'diagnostic': {'CanESM2_r2i1p1': {'value': None,
         'value_error': None},
        'ERA-Interim': {'value': None, 'value_error': None},
        'GPCPv2.3': {'value': None, 'value_error': None}},
       'metric': {'ERA-Interim': {'value': 0.8982004044488464,
         'value_error': None},
        'GPCPv2.3': {'value': 1.2488609192822169, 'value_error': None}}},
      'SeasonalPrLonRmse': {'diagnostic': {'CanESM2_r2i1p1': {'value': None,
         'value_error': None},
        'ERA-Interim': {'value': None, 'value_error': None},
        'GPCPv2.3': {'value': None, 'value_error': None}},
       'metric': {'ERA-Interim': {'value': 0.5399213582562528,
         'value_error': None},
        'GPCPv2.3': {'value': 0.819430544561994, 'value_error': None}}},
      'SeasonalSstLonRmse': {'diagnostic': {'CanESM2_r2i1p1': {'value': None,
         'value_error': None},
        'ERA-Interim': {'value': None, 'value_error': None},
        'HadISST': {'value': None, 'value_error': None},
        'Tropflux': {'value': None, 'value_error': None}},
       'metric': {'ERA-Interim': {'value': 0.360686997293051,
         'value_error': None},
        'HadISST': {'value': 0.3801224571818871, 'value_error': None},
        'Tropflux': {'value': 0.36095904359897435, 'value_error': None}}},
      'SeasonalTauxLonRmse': {'diagnostic': {'CanESM2_r2i1p1': {'value': None,
         'value_error': None},
        'ERA-Interim': {'value': None, 'value_error': None},
        'Tropflux': {'value': None, 'value_error': None}},
       'metric': {'ERA-Interim': {'value': 3.8335961377929104,
         'value_error': None},
        'Tropflux': {'value': 3.63538449851328, 'value_error': None}}}}},
    'r3i1p1': {'metadata': {'description_of_the_collection': 'Describe which science question this collection is about',
      'metrics': {'BiasPrLatRmse': {'diagnostic': {'CanESM2_r3i1p1': {'keyerror': None,
          'name': 'CanESM2_r3i1p1',
          'nyears': 156,
          'time_period': ['1850-1-16 12:0:0.0', '2005-12-16 12:0:0.0']},
         'ERA-Interim': {'name': 'ERA-Interim',
          'nyears': 40,
          'time_period': ['1979-1-16 12:0:0.0', '2019-3-16 12:0:0.0']},
         'GPCPv2.3': {'name': 'GPCPv2.3',
          'nyears': 41,
          'time_period': ['1979-1-1 0:0:0.0', '2019-7-1 0:0:0.0']},
         'method': 'Meridional root mean square error of nino3_LatExt pr, time series are linearly detrended, observations and model regridded to generic_1x1deg',
         'name': 'pr Meridional RMSE',
         'ref': 'Using CDAT regridding and rms (uncentered and biased) calculation',
         'time_frequency': 'monthly',
         'units': 'mm/day'},
        'metric': {'datasets': "CanESM2_r3i1p1; ERA-Interim's pr & GPCPv2.3's precip; 's ",
         'method': 'The metric is the statistical value between the model and the observations',
         'name': 'BiasPrLatRmse',
         'units': 'mm/day'}},
       'BiasPrLonRmse': {'diagnostic': {'CanESM2_r3i1p1': {'keyerror': None,
          'name': 'CanESM2_r3i1p1',
          'nyears': 156,
          'time_period': ['1850-1-16 12:0:0.0', '2005-12-16 12:0:0.0']},
         'ERA-Interim': {'name': 'ERA-Interim',
          'nyears': 40,
          'time_period': ['1979-1-16 12:0:0.0', '2019-3-16 12:0:0.0']},
         'GPCPv2.3': {'name': 'GPCPv2.3',
          'nyears': 41,
          'time_period': ['1979-1-1 0:0:0.0', '2019-7-1 0:0:0.0']},
         'method': 'Zonal root mean square error of equatorial_pacific pr, time series are linearly detrended, observations and model regridded to generic_1x1deg',
         'name': 'pr Zonal RMSE',
         'ref': 'Using CDAT regridding and rms (uncentered and biased) calculation',
         'time_frequency': 'monthly',
         'units': 'mm/day'},
        'metric': {'datasets': "CanESM2_r3i1p1; ERA-Interim's pr & GPCPv2.3's precip; 's ",
         'method': 'The metric is the statistical value between the model and the observations',
         'name': 'BiasPrLonRmse',
         'units': 'mm/day'}},
       'BiasSstLonRmse': {'diagnostic': {'CanESM2_r3i1p1': {'keyerror': None,
          'name': 'CanESM2_r3i1p1',
          'nyears': 156,
          'time_period': ['1850-1-16 12:0:0.0', '2005-12-16 12:0:0.0']},
         'ERA-Interim': {'name': 'ERA-Interim',
          'nyears': 40,
          'time_period': ['1979-1-16 12:0:0.0', '2019-3-16 12:0:0.0']},
         'HadISST': {'name': 'HadISST',
          'nyears': 151,
          'time_period': ['1870-1-16 11:59:59.5', '2020-10-16 12:0:0.0']},
         'Tropflux': {'name': 'Tropflux',
          'nyears': 40,
          'time_period': ['1979-1-15 0:0:0.0', '2018-12-15 12:0:0.0']},
         'method': 'Zonal root mean square error of equatorial_pacific sst, time series are linearly detrended, observations and model regridded to generic_1x1deg',
         'name': 'sst Zonal RMSE',
         'ref': 'Using CDAT regridding and rms (uncentered and biased) calculation',
         'time_frequency': 'monthly',
         'units': 'C'},
        'metric': {'datasets': "CanESM2_r3i1p1; ERA-Interim's ts & HadISST's sst & Tropflux's sst; 's ",
         'method': 'The metric is the statistical value between the model and the observations',
         'name': 'BiasSstLonRmse',
         'units': 'C'}},
       'BiasTauxLonRmse': {'diagnostic': {'CanESM2_r3i1p1': {'keyerror': None,
          'name': 'CanESM2_r3i1p1',
          'nyears': 156,
          'time_period': ['1850-1-16 12:0:0.0', '2005-12-16 12:0:0.0']},
         'ERA-Interim': {'name': 'ERA-Interim',
          'nyears': 40,
          'time_period': ['1979-1-16 12:0:0.0', '2019-3-16 12:0:0.0']},
         'Tropflux': {'name': 'Tropflux',
          'nyears': 40,
          'time_period': ['1979-1-15 0:0:0.0', '2018-12-15 12:0:0.0']},
         'method': 'Zonal root mean square error of equatorial_pacific taux, time series are linearly detrended, observations and model regridded to generic_1x1deg',
         'name': 'taux Zonal RMSE',
         'ref': 'Using CDAT regridding and rms (uncentered and biased) calculation',
         'time_frequency': 'monthly',
         'units': '1e-3 N/m2'},
        'metric': {'datasets': "CanESM2_r3i1p1; ERA-Interim's tauu & Tropflux's taux; 's ",
         'method': 'The metric is the statistical value between the model and the observations',
         'name': 'BiasTauxLonRmse',
         'units': '1e-3 N/m2'}},
       'EnsoAmpl': {'diagnostic': {'CanESM2_r3i1p1': {'keyerror': None,
          'name': 'CanESM2_r3i1p1',
          'nyears': 156,
          'time_period': ['1850-1-16 12:0:0.0', '2005-12-16 12:0:0.0']},
         'ERA-Interim': {'keyerror': None,
          'name': 'ERA-Interim',
          'nyears': 40,
          'time_period': ['1979-1-16 12:0:0.0', '2019-3-16 12:0:0.0']},
         'HadISST': {'keyerror': None,
          'name': 'HadISST',
          'nyears': 151,
          'time_period': ['1870-1-16 11:59:59.5', '2020-10-16 12:0:0.0']},
         'Tropflux': {'keyerror': None,
          'name': 'Tropflux',
          'nyears': 40,
          'time_period': ['1979-1-15 0:0:0.0', '2018-12-15 12:0:0.0']},
         'method': 'Standard deviation of nino3.4 sstA, time series are linearly detrended',
         'name': 'ENSO amplitude',
         'ref': 'Using CDAT regression calculation',
         'time_frequency': 'monthly',
         'units': 'C'},
        'metric': {'datasets': "CanESM2_r3i1p1; ERA-Interim's ts & HadISST's sst & Tropflux's sst; 's ",
         'method': 'The metric is the absolute value of the relative difference between model and observations values (M = 100 * abs[[model-obs] / obs])',
         'name': 'EnsoAmpl',
         'units': '%'}},
       'EnsoDuration': {'diagnostic': {'CanESM2_r3i1p1': {'keyerror': None,
          'name': 'CanESM2_r3i1p1',
          'nyears': 156,
          'time_period': ['1850-1-16 12:0:0.0', '2005-12-16 12:0:0.0']},
         'ERA-Interim': {'keyerror': None,
          'name': 'ERA-Interim',
          'nyears': 40,
          'time_period': ['1979-1-16 12:0:0.0', '2019-3-16 12:0:0.0']},
         'HadISST': {'keyerror': None,
          'name': 'HadISST',
          'nyears': 151,
          'time_period': ['1870-1-16 11:59:59.5', '2020-10-16 12:0:0.0']},
         'Tropflux': {'keyerror': None,
          'name': 'Tropflux',
          'nyears': 40,
          'time_period': ['1979-1-15 0:0:0.0', '2018-12-15 12:0:0.0']},
         'method': 'nino3.4 SSTA during DEC regressed against nino3.4 SSTA during 6 years (centered on ENSO), the duration is the number of consecutive months during which the regression is above 0.25, time series are linearly detrended, smoothing using a triangle shaped window of 5 points',
         'name': 'ENSO Duration based on life cyle SSTA pattern',
         'ref': 'Using CDAT',
         'time_frequency': 'monthly',
         'units': 'months'},
        'metric': {'datasets': "CanESM2_r3i1p1; ERA-Interim's ts & HadISST's sst & Tropflux's sst; 's ",
         'method': 'The metric is the absolute value of the relative difference between model and observations values (M = 100 * abs[[model-obs] / obs])',
         'name': 'EnsoDuration',
         'units': '%'}},
       'EnsoSeasonality': {'diagnostic': {'CanESM2_r3i1p1': {'keyerror': None,
          'name': 'CanESM2_r3i1p1',
          'nyears': 156,
          'time_period': ['1850-1-16 12:0:0.0', '2005-12-16 12:0:0.0']},
         'ERA-Interim': {'keyerror': None,
          'name': 'ERA-Interim',
          'nyears': 40,
          'time_period': ['1979-1-16 12:0:0.0', '2019-3-16 12:0:0.0']},
         'HadISST': {'keyerror': None,
          'name': 'HadISST',
          'nyears': 151,
          'time_period': ['1870-1-16 11:59:59.5', '2020-10-16 12:0:0.0']},
         'Tropflux': {'keyerror': None,
          'name': 'Tropflux',
          'nyears': 40,
          'time_period': ['1979-1-15 0:0:0.0', '2018-12-15 12:0:0.0']},
         'method': 'Ratio between NDJ and MAM standard deviation nino3.4 sstA, time series are linearly detrended',
         'name': 'ENSO seasonality',
         'ref': 'Using CDAT std dev calculation',
         'time_frequency': 'monthly',
         'units': 'C/C'},
        'metric': {'datasets': "CanESM2_r3i1p1; ERA-Interim's ts & HadISST's sst & Tropflux's sst; 's ",
         'method': 'The metric is the absolute value of the relative difference between model and observations values (M = 100 * abs[[model-obs] / obs])',
         'name': 'EnsoSeasonality',
         'units': '%'}},
       'EnsoSstDiversity_2': {'diagnostic': {'CanESM2_r3i1p1': {'keyerror': None,
          'name': 'CanESM2_r3i1p1',
          'nyears': 156,
          'time_period': ['1850-1-16 12:0:0.0', '2005-12-16 12:0:0.0']},
         'ERA-Interim': {'keyerror': None,
          'name': 'ERA-Interim',
          'nyears': 40,
          'time_period': ['1979-1-16 12:0:0.0', '2019-3-16 12:0:0.0']},
         'HadISST': {'keyerror': None,
          'name': 'HadISST',
          'nyears': 151,
          'time_period': ['1870-1-16 11:59:59.5', '2020-10-16 12:0:0.0']},
         'Tropflux': {'keyerror': None,
          'name': 'Tropflux',
          'nyears': 40,
          'time_period': ['1979-1-15 0:0:0.0', '2018-12-15 12:0:0.0']},
         'method': 'Nino (Nina) events = nino3.4 sstA > 0.75 (< -0.75) during DEC, zonal SSTA (meridional averaged [-5.0 ; 5.0]), the zonal SSTA maximum (minimum) is located for each event, the diversity is the interquartile range (IQR = Q3 - Q1), time series are linearly detrended, smoothing using a triangle shaped window of 5 points',
         'name': 'ENSO Diversity (interquartile range)',
         'ref': 'Using CDAT regridding',
         'time_frequency': 'monthly',
         'units': 'long'},
        'metric': {'datasets': "CanESM2_r3i1p1; ERA-Interim's ts & HadISST's sst & Tropflux's sst; 's ",
         'method': 'The metric is the absolute value of the relative difference between model and observations values (M = 100 * abs[[model-obs] / obs])',
         'name': 'EnsoSstDiversity',
         'units': '%'}},
       'EnsoSstLonRmse': {'diagnostic': {'CanESM2_r3i1p1': {'keyerror': None,
          'name': 'CanESM2_r3i1p1',
          'nyears': 156,
          'time_period': ['1850-1-16 12:0:0.0', '2005-12-16 12:0:0.0']},
         'ERA-Interim': {'name': 'ERA-Interim',
          'nyears': 40,
          'time_period': ['1979-1-16 12:0:0.0', '2019-3-16 12:0:0.0']},
         'HadISST': {'name': 'HadISST',
          'nyears': 151,
          'time_period': ['1870-1-16 11:59:59.5', '2020-10-16 12:0:0.0']},
         'Tropflux': {'name': 'Tropflux',
          'nyears': 40,
          'time_period': ['1979-1-15 0:0:0.0', '2018-12-15 12:0:0.0']},
         'method': 'nino3.4 SSTA during DEC regressed against equatorial_pacific SSTA, time series are linearly detrended, smoothing using a triangle shaped window of 5 points, observations and model regridded to generic_1x1deg',
         'name': 'ENSO Zonal SSTA pattern',
         'ref': 'Using CDAT regridding and rms (uncentered and biased) calculation',
         'time_frequency': 'monthly',
         'units': 'C/C'},
        'metric': {'datasets': "CanESM2_r3i1p1; ERA-Interim's ts & HadISST's sst & Tropflux's sst; 's ",
         'method': 'The metric is the statistical value between the model and the observations',
         'name': 'EnsoSstLonRmse',
         'units': 'C/C'}},
       'EnsoSstSkew': {'diagnostic': {'CanESM2_r3i1p1': {'keyerror': None,
          'name': 'CanESM2_r3i1p1',
          'nyears': 156,
          'time_period': ['1850-1-16 12:0:0.0', '2005-12-16 12:0:0.0']},
         'ERA-Interim': {'keyerror': None,
          'name': 'ERA-Interim',
          'nyears': 40,
          'time_period': ['1979-1-16 12:0:0.0', '2019-3-16 12:0:0.0']},
         'HadISST': {'keyerror': None,
          'name': 'HadISST',
          'nyears': 151,
          'time_period': ['1870-1-16 11:59:59.5', '2020-10-16 12:0:0.0']},
         'Tropflux': {'keyerror': None,
          'name': 'Tropflux',
          'nyears': 40,
          'time_period': ['1979-1-15 0:0:0.0', '2018-12-15 12:0:0.0']},
         'method': 'Standard deviation of nino3.4 sstA, time series are linearly detrended',
         'name': 'ENSO skewness',
         'ref': 'Using CDAT regression calculation',
         'time_frequency': 'monthly',
         'units': 'C'},
        'metric': {'datasets': "CanESM2_r3i1p1; ERA-Interim's ts & HadISST's sst & Tropflux's sst; 's ",
         'method': 'The metric is the absolute value of the relative difference between model and observations values (M = 100 * abs[[model-obs] / obs])',
         'name': 'EnsoSstSkew',
         'units': '%'}},
       'EnsoSstTsRmse': {'diagnostic': {'CanESM2_r3i1p1': {'keyerror': None,
          'name': 'CanESM2_r3i1p1',
          'nyears': 156,
          'time_period': ['1850-1-16 12:0:0.0', '2005-12-16 12:0:0.0']},
         'ERA-Interim': {'name': 'ERA-Interim',
          'nyears': 40,
          'time_period': ['1979-1-16 12:0:0.0', '2019-3-16 12:0:0.0']},
         'HadISST': {'name': 'HadISST',
          'nyears': 151,
          'time_period': ['1870-1-16 11:59:59.5', '2020-10-16 12:0:0.0']},
         'Tropflux': {'name': 'Tropflux',
          'nyears': 40,
          'time_period': ['1979-1-15 0:0:0.0', '2018-12-15 12:0:0.0']},
         'method': 'nino3.4 SSTA during DEC regressed against nino3.4 SSTA during 6 years (centered on ENSO), time series are linearly detrended, smoothing using a triangle shaped window of 5 points',
         'name': 'ENSO life cyle SSTA pattern',
         'ref': 'Using CDAT regridding and rms (uncentered and biased) calculation',
         'time_frequency': 'monthly',
         'units': 'C/C'},
        'metric': {'datasets': "CanESM2_r3i1p1; ERA-Interim's ts & HadISST's sst & Tropflux's sst; 's ",
         'method': 'The metric is the statistical value between the model and the observations',
         'name': 'EnsoSstTsRmse',
         'units': 'C/C'}},
       'SeasonalPrLatRmse': {'diagnostic': {'CanESM2_r3i1p1': {'keyerror': None,
          'name': 'CanESM2_r3i1p1',
          'nyears': 156,
          'time_period': ['1850-1-16 12:0:0.0', '2005-12-16 12:0:0.0']},
         'ERA-Interim': {'name': 'ERA-Interim',
          'nyears': 40,
          'time_period': ['1979-1-16 12:0:0.0', '2019-3-16 12:0:0.0']},
         'GPCPv2.3': {'name': 'GPCPv2.3',
          'nyears': 41,
          'time_period': ['1979-1-1 0:0:0.0', '2019-7-1 0:0:0.0']},
         'method': 'Meridional root mean square error of nino3_LatExt climatological pr STD, time series are linearly detrended, observations and model regridded to generic_1x1deg',
         'name': 'pr meridional seasonality RMSE',
         'ref': 'Using CDAT regridding and rms (uncentered and biased) calculation',
         'time_frequency': 'monthly',
         'units': 'mm/day'},
        'metric': {'datasets': "CanESM2_r3i1p1; ERA-Interim's pr & GPCPv2.3's precip; 's ",
         'method': 'The metric is the statistical value between the model and the observations',
         'name': 'SeasonalPrLatRmse',
         'units': 'mm/day'}},
       'SeasonalPrLonRmse': {'diagnostic': {'CanESM2_r3i1p1': {'keyerror': None,
          'name': 'CanESM2_r3i1p1',
          'nyears': 156,
          'time_period': ['1850-1-16 12:0:0.0', '2005-12-16 12:0:0.0']},
         'ERA-Interim': {'name': 'ERA-Interim',
          'nyears': 40,
          'time_period': ['1979-1-16 12:0:0.0', '2019-3-16 12:0:0.0']},
         'GPCPv2.3': {'name': 'GPCPv2.3',
          'nyears': 41,
          'time_period': ['1979-1-1 0:0:0.0', '2019-7-1 0:0:0.0']},
         'method': 'Zonal root mean square error of equatorial_pacific climatological pr STD, time series are linearly detrended, observations and model regridded to generic_1x1deg',
         'name': 'pr zonal seasonality RMSE',
         'ref': 'Using CDAT regridding and rms (uncentered and biased) calculation',
         'time_frequency': 'monthly',
         'units': 'mm/day'},
        'metric': {'datasets': "CanESM2_r3i1p1; ERA-Interim's pr & GPCPv2.3's precip; 's ",
         'method': 'The metric is the statistical value between the model and the observations',
         'name': 'SeasonalPrLonRmse',
         'units': 'mm/day'}},
       'SeasonalSstLonRmse': {'diagnostic': {'CanESM2_r3i1p1': {'keyerror': None,
          'name': 'CanESM2_r3i1p1',
          'nyears': 156,
          'time_period': ['1850-1-16 12:0:0.0', '2005-12-16 12:0:0.0']},
         'ERA-Interim': {'name': 'ERA-Interim',
          'nyears': 40,
          'time_period': ['1979-1-16 12:0:0.0', '2019-3-16 12:0:0.0']},
         'HadISST': {'name': 'HadISST',
          'nyears': 151,
          'time_period': ['1870-1-16 11:59:59.5', '2020-10-16 12:0:0.0']},
         'Tropflux': {'name': 'Tropflux',
          'nyears': 40,
          'time_period': ['1979-1-15 0:0:0.0', '2018-12-15 12:0:0.0']},
         'method': 'Zonal root mean square error of equatorial_pacific climatological sst STD, time series are linearly detrended, observations and model regridded to generic_1x1deg',
         'name': 'sst zonal seasonality RMSE',
         'ref': 'Using CDAT regridding and rms (uncentered and biased) calculation',
         'time_frequency': 'monthly',
         'units': 'C'},
        'metric': {'datasets': "CanESM2_r3i1p1; ERA-Interim's ts & HadISST's sst & Tropflux's sst; 's ",
         'method': 'The metric is the statistical value between the model and the observations',
         'name': 'SeasonalSstLonRmse',
         'units': 'C'}},
       'SeasonalTauxLonRmse': {'diagnostic': {'CanESM2_r3i1p1': {'keyerror': None,
          'name': 'CanESM2_r3i1p1',
          'nyears': 156,
          'time_period': ['1850-1-16 12:0:0.0', '2005-12-16 12:0:0.0']},
         'ERA-Interim': {'name': 'ERA-Interim',
          'nyears': 40,
          'time_period': ['1979-1-16 12:0:0.0', '2019-3-16 12:0:0.0']},
         'Tropflux': {'name': 'Tropflux',
          'nyears': 40,
          'time_period': ['1979-1-15 0:0:0.0', '2018-12-15 12:0:0.0']},
         'method': 'Zonal root mean square error of equatorial_pacific climatological taux STD, time series are linearly detrended, observations and model regridded to generic_1x1deg',
         'name': 'taux zonal seasonality RMSE',
         'ref': 'Using CDAT regridding and rms (uncentered and biased) calculation',
         'time_frequency': 'monthly',
         'units': '1e-3 N/m2'},
        'metric': {'datasets': "CanESM2_r3i1p1; ERA-Interim's tauu & Tropflux's taux; 's ",
         'method': 'The metric is the statistical value between the model and the observations',
         'name': 'SeasonalTauxLonRmse',
         'units': '1e-3 N/m2'}}},
      'name': 'Metrics Collection for ENSO performance'},
     'value': {'BiasPrLatRmse': {'diagnostic': {'CanESM2_r3i1p1': {'value': None,
         'value_error': None},
        'ERA-Interim': {'value': None, 'value_error': None},
        'GPCPv2.3': {'value': None, 'value_error': None}},
       'metric': {'ERA-Interim': {'value': 0.7785395908194864,
         'value_error': None},
        'GPCPv2.3': {'value': 1.1568629854066235, 'value_error': None}}},
      'BiasPrLonRmse': {'diagnostic': {'CanESM2_r3i1p1': {'value': None,
         'value_error': None},
        'ERA-Interim': {'value': None, 'value_error': None},
        'GPCPv2.3': {'value': None, 'value_error': None}},
       'metric': {'ERA-Interim': {'value': 1.7875790732562695,
         'value_error': None},
        'GPCPv2.3': {'value': 1.0232779317904421, 'value_error': None}}},
      'BiasSstLonRmse': {'diagnostic': {'CanESM2_r3i1p1': {'value': None,
         'value_error': None},
        'ERA-Interim': {'value': None, 'value_error': None},
        'HadISST': {'value': None, 'value_error': None},
        'Tropflux': {'value': None, 'value_error': None}},
       'metric': {'ERA-Interim': {'value': 1.0888277611393946,
         'value_error': None},
        'HadISST': {'value': 0.9919529575214796, 'value_error': None},
        'Tropflux': {'value': 1.126671526166157, 'value_error': None}}},
      'BiasTauxLonRmse': {'diagnostic': {'CanESM2_r3i1p1': {'value': None,
         'value_error': None},
        'ERA-Interim': {'value': None, 'value_error': None},
        'Tropflux': {'value': None, 'value_error': None}},
       'metric': {'ERA-Interim': {'value': 3.6877040508776364,
         'value_error': None},
        'Tropflux': {'value': 4.3865831177184065, 'value_error': None}}},
      'EnsoAmpl': {'diagnostic': {'CanESM2_r3i1p1': {'value': 0.9162259595504257,
         'value_error': 0.07335678568555205},
        'ERA-Interim': {'value': 0.8989844997845644,
         'value_error': 0.14214193002531866},
        'HadISST': {'value': 0.7665787872085695,
         'value_error': 0.06238329697691264},
        'Tropflux': {'value': 0.9039789553693535,
         'value_error': 0.14293162279134272}},
       'metric': {'ERA-Interim': {'value': 1.9178817621430773,
         'value_error': 24.27459315655393},
        'HadISST': {'value': 19.52143404421396,
         'value_error': 19.295889646914198},
        'Tropflux': {'value': 1.3547886384222645,
         'value_error': 24.14047678510622}}},
      'EnsoDuration': {'diagnostic': {'CanESM2_r3i1p1': {'value': 12.0,
         'value_error': None},
        'ERA-Interim': {'value': 13.0, 'value_error': None},
        'HadISST': {'value': 13.0, 'value_error': None},
        'Tropflux': {'value': 13.0, 'value_error': None}},
       'metric': {'ERA-Interim': {'value': 7.6923076923076925,
         'value_error': None},
        'HadISST': {'value': 7.6923076923076925, 'value_error': None},
        'Tropflux': {'value': 7.6923076923076925, 'value_error': None}}},
      'EnsoSeasonality': {'diagnostic': {'CanESM2_r3i1p1': {'value': 1.4495371208450454,
         'value_error': 0.23248547485887108},
        'ERA-Interim': {'value': 2.0466846866656914,
         'value_error': 0.6513411033995022},
        'HadISST': {'value': 1.6639865947361325,
         'value_error': 0.2712772451657809},
        'Tropflux': {'value': 2.0532132553583624,
         'value_error': 0.6534187683977347}},
       'metric': {'ERA-Interim': {'value': 29.176334279095773,
         'value_error': 33.89819277749393},
        'HadISST': {'value': 12.887692399054067,
         'value_error': 28.173384605505113},
        'Tropflux': {'value': 29.401531133596396,
         'value_error': 33.790407246922406}}},
      'EnsoSstDiversity_2': {'diagnostic': {'CanESM2_r3i1p1': {'value': 12.0,
         'value_error': None},
        'ERA-Interim': {'value': 33.25, 'value_error': None},
        'HadISST': {'value': 49.0, 'value_error': None},
        'Tropflux': {'value': 32.0, 'value_error': None}},
       'metric': {'ERA-Interim': {'value': 63.90977443609023,
         'value_error': None},
        'HadISST': {'value': 75.51020408163265, 'value_error': None},
        'Tropflux': {'value': 62.5, 'value_error': None}}},
      'EnsoSstLonRmse': {'diagnostic': {'CanESM2_r3i1p1': {'value': None,
         'value_error': None},
        'ERA-Interim': {'value': None, 'value_error': None},
        'HadISST': {'value': None, 'value_error': None},
        'Tropflux': {'value': None, 'value_error': None}},
       'metric': {'ERA-Interim': {'value': 0.20931022663612658,
         'value_error': None},
        'HadISST': {'value': 0.2328852243533117, 'value_error': None},
        'Tropflux': {'value': 0.20929529295683344, 'value_error': None}}},
      'EnsoSstSkew': {'diagnostic': {'CanESM2_r3i1p1': {'value': -0.1989595480419749,
         'value_error': -0.01592951255492799},
        'ERA-Interim': {'value': 0.39098111106809963,
         'value_error': 0.061819541653923164},
        'HadISST': {'value': 0.38989908235027515,
         'value_error': 0.03172953733021198},
        'Tropflux': {'value': 0.39744741059612115,
         'value_error': 0.06284195338099416}},
       'metric': {'ERA-Interim': {'value': 150.88725322265526,
         'value_error': -12.120222158044587},
        'HadISST': {'value': 151.02847301990693,
         'value_error': -8.238185829316775},
        'Tropflux': {'value': 150.05933935852306,
         'value_error': -11.923031322903574}}},
      'EnsoSstTsRmse': {'diagnostic': {'CanESM2_r3i1p1': {'value': None,
         'value_error': None},
        'ERA-Interim': {'value': None, 'value_error': None},
        'HadISST': {'value': None, 'value_error': None},
        'Tropflux': {'value': None, 'value_error': None}},
       'metric': {'ERA-Interim': {'value': 0.17736699583906157,
         'value_error': None},
        'HadISST': {'value': 0.16800514258018323, 'value_error': None},
        'Tropflux': {'value': 0.17752016354498157, 'value_error': None}}},
      'SeasonalPrLatRmse': {'diagnostic': {'CanESM2_r3i1p1': {'value': None,
         'value_error': None},
        'ERA-Interim': {'value': None, 'value_error': None},
        'GPCPv2.3': {'value': None, 'value_error': None}},
       'metric': {'ERA-Interim': {'value': 0.8794994040908481,
         'value_error': None},
        'GPCPv2.3': {'value': 1.2296193500328023, 'value_error': None}}},
      'SeasonalPrLonRmse': {'diagnostic': {'CanESM2_r3i1p1': {'value': None,
         'value_error': None},
        'ERA-Interim': {'value': None, 'value_error': None},
        'GPCPv2.3': {'value': None, 'value_error': None}},
       'metric': {'ERA-Interim': {'value': 0.5541357621989083,
         'value_error': None},
        'GPCPv2.3': {'value': 0.8264669501010798, 'value_error': None}}},
      'SeasonalSstLonRmse': {'diagnostic': {'CanESM2_r3i1p1': {'value': None,
         'value_error': None},
        'ERA-Interim': {'value': None, 'value_error': None},
        'HadISST': {'value': None, 'value_error': None},
        'Tropflux': {'value': None, 'value_error': None}},
       'metric': {'ERA-Interim': {'value': 0.3696404164318324,
         'value_error': None},
        'HadISST': {'value': 0.38905091193193, 'value_error': None},
        'Tropflux': {'value': 0.3698059515319395, 'value_error': None}}},
      'SeasonalTauxLonRmse': {'diagnostic': {'CanESM2_r3i1p1': {'value': None,
         'value_error': None},
        'ERA-Interim': {'value': None, 'value_error': None},
        'Tropflux': {'value': None, 'value_error': None}},
       'metric': {'ERA-Interim': {'value': 3.9142224116046944,
         'value_error': None},
        'Tropflux': {'value': 3.7036142107950174, 'value_error': None}}}}},
    'r4i1p1': {'metadata': {'description_of_the_collection': 'Describe which science question this collection is about',
      'metrics': {'BiasPrLatRmse': {'diagnostic': {'CanESM2_r4i1p1': {'keyerror': None,
          'name': 'CanESM2_r4i1p1',
          'nyears': 156,
          'time_period': ['1850-1-16 12:0:0.0', '2005-12-16 12:0:0.0']},
         'ERA-Interim': {'name': 'ERA-Interim',
          'nyears': 40,
          'time_period': ['1979-1-16 12:0:0.0', '2019-3-16 12:0:0.0']},
         'GPCPv2.3': {'name': 'GPCPv2.3',
          'nyears': 41,
          'time_period': ['1979-1-1 0:0:0.0', '2019-7-1 0:0:0.0']},
         'method': 'Meridional root mean square error of nino3_LatExt pr, time series are linearly detrended, observations and model regridded to generic_1x1deg',
         'name': 'pr Meridional RMSE',
         'ref': 'Using CDAT regridding and rms (uncentered and biased) calculation',
         'time_frequency': 'monthly',
         'units': 'mm/day'},
        'metric': {'datasets': "CanESM2_r4i1p1; ERA-Interim's pr & GPCPv2.3's precip; 's ",
         'method': 'The metric is the statistical value between the model and the observations',
         'name': 'BiasPrLatRmse',
         'units': 'mm/day'}},
       'BiasPrLonRmse': {'diagnostic': {'CanESM2_r4i1p1': {'keyerror': None,
          'name': 'CanESM2_r4i1p1',
          'nyears': 156,
          'time_period': ['1850-1-16 12:0:0.0', '2005-12-16 12:0:0.0']},
         'ERA-Interim': {'name': 'ERA-Interim',
          'nyears': 40,
          'time_period': ['1979-1-16 12:0:0.0', '2019-3-16 12:0:0.0']},
         'GPCPv2.3': {'name': 'GPCPv2.3',
          'nyears': 41,
          'time_period': ['1979-1-1 0:0:0.0', '2019-7-1 0:0:0.0']},
         'method': 'Zonal root mean square error of equatorial_pacific pr, time series are linearly detrended, observations and model regridded to generic_1x1deg',
         'name': 'pr Zonal RMSE',
         'ref': 'Using CDAT regridding and rms (uncentered and biased) calculation',
         'time_frequency': 'monthly',
         'units': 'mm/day'},
        'metric': {'datasets': "CanESM2_r4i1p1; ERA-Interim's pr & GPCPv2.3's precip; 's ",
         'method': 'The metric is the statistical value between the model and the observations',
         'name': 'BiasPrLonRmse',
         'units': 'mm/day'}},
       'BiasSstLonRmse': {'diagnostic': {'CanESM2_r4i1p1': {'keyerror': None,
          'name': 'CanESM2_r4i1p1',
          'nyears': 156,
          'time_period': ['1850-1-16 12:0:0.0', '2005-12-16 12:0:0.0']},
         'ERA-Interim': {'name': 'ERA-Interim',
          'nyears': 40,
          'time_period': ['1979-1-16 12:0:0.0', '2019-3-16 12:0:0.0']},
         'HadISST': {'name': 'HadISST',
          'nyears': 151,
          'time_period': ['1870-1-16 11:59:59.5', '2020-10-16 12:0:0.0']},
         'Tropflux': {'name': 'Tropflux',
          'nyears': 40,
          'time_period': ['1979-1-15 0:0:0.0', '2018-12-15 12:0:0.0']},
         'method': 'Zonal root mean square error of equatorial_pacific sst, time series are linearly detrended, observations and model regridded to generic_1x1deg',
         'name': 'sst Zonal RMSE',
         'ref': 'Using CDAT regridding and rms (uncentered and biased) calculation',
         'time_frequency': 'monthly',
         'units': 'C'},
        'metric': {'datasets': "CanESM2_r4i1p1; ERA-Interim's ts & HadISST's sst & Tropflux's sst; 's ",
         'method': 'The metric is the statistical value between the model and the observations',
         'name': 'BiasSstLonRmse',
         'units': 'C'}},
       'BiasTauxLonRmse': {'diagnostic': {'CanESM2_r4i1p1': {'keyerror': None,
          'name': 'CanESM2_r4i1p1',
          'nyears': 156,
          'time_period': ['1850-1-16 12:0:0.0', '2005-12-16 12:0:0.0']},
         'ERA-Interim': {'name': 'ERA-Interim',
          'nyears': 40,
          'time_period': ['1979-1-16 12:0:0.0', '2019-3-16 12:0:0.0']},
         'Tropflux': {'name': 'Tropflux',
          'nyears': 40,
          'time_period': ['1979-1-15 0:0:0.0', '2018-12-15 12:0:0.0']},
         'method': 'Zonal root mean square error of equatorial_pacific taux, time series are linearly detrended, observations and model regridded to generic_1x1deg',
         'name': 'taux Zonal RMSE',
         'ref': 'Using CDAT regridding and rms (uncentered and biased) calculation',
         'time_frequency': 'monthly',
         'units': '1e-3 N/m2'},
        'metric': {'datasets': "CanESM2_r4i1p1; ERA-Interim's tauu & Tropflux's taux; 's ",
         'method': 'The metric is the statistical value between the model and the observations',
         'name': 'BiasTauxLonRmse',
         'units': '1e-3 N/m2'}},
       'EnsoAmpl': {'diagnostic': {'CanESM2_r4i1p1': {'keyerror': None,
          'name': 'CanESM2_r4i1p1',
          'nyears': 156,
          'time_period': ['1850-1-16 12:0:0.0', '2005-12-16 12:0:0.0']},
         'ERA-Interim': {'keyerror': None,
          'name': 'ERA-Interim',
          'nyears': 40,
          'time_period': ['1979-1-16 12:0:0.0', '2019-3-16 12:0:0.0']},
         'HadISST': {'keyerror': None,
          'name': 'HadISST',
          'nyears': 151,
          'time_period': ['1870-1-16 11:59:59.5', '2020-10-16 12:0:0.0']},
         'Tropflux': {'keyerror': None,
          'name': 'Tropflux',
          'nyears': 40,
          'time_period': ['1979-1-15 0:0:0.0', '2018-12-15 12:0:0.0']},
         'method': 'Standard deviation of nino3.4 sstA, time series are linearly detrended',
         'name': 'ENSO amplitude',
         'ref': 'Using CDAT regression calculation',
         'time_frequency': 'monthly',
         'units': 'C'},
        'metric': {'datasets': "CanESM2_r4i1p1; ERA-Interim's ts & HadISST's sst & Tropflux's sst; 's ",
         'method': 'The metric is the absolute value of the relative difference between model and observations values (M = 100 * abs[[model-obs] / obs])',
         'name': 'EnsoAmpl',
         'units': '%'}},
       'EnsoDuration': {'diagnostic': {'CanESM2_r4i1p1': {'keyerror': None,
          'name': 'CanESM2_r4i1p1',
          'nyears': 156,
          'time_period': ['1850-1-16 12:0:0.0', '2005-12-16 12:0:0.0']},
         'ERA-Interim': {'keyerror': None,
          'name': 'ERA-Interim',
          'nyears': 40,
          'time_period': ['1979-1-16 12:0:0.0', '2019-3-16 12:0:0.0']},
         'HadISST': {'keyerror': None,
          'name': 'HadISST',
          'nyears': 151,
          'time_period': ['1870-1-16 11:59:59.5', '2020-10-16 12:0:0.0']},
         'Tropflux': {'keyerror': None,
          'name': 'Tropflux',
          'nyears': 40,
          'time_period': ['1979-1-15 0:0:0.0', '2018-12-15 12:0:0.0']},
         'method': 'nino3.4 SSTA during DEC regressed against nino3.4 SSTA during 6 years (centered on ENSO), the duration is the number of consecutive months during which the regression is above 0.25, time series are linearly detrended, smoothing using a triangle shaped window of 5 points',
         'name': 'ENSO Duration based on life cyle SSTA pattern',
         'ref': 'Using CDAT',
         'time_frequency': 'monthly',
         'units': 'months'},
        'metric': {'datasets': "CanESM2_r4i1p1; ERA-Interim's ts & HadISST's sst & Tropflux's sst; 's ",
         'method': 'The metric is the absolute value of the relative difference between model and observations values (M = 100 * abs[[model-obs] / obs])',
         'name': 'EnsoDuration',
         'units': '%'}},
       'EnsoSeasonality': {'diagnostic': {'CanESM2_r4i1p1': {'keyerror': None,
          'name': 'CanESM2_r4i1p1',
          'nyears': 156,
          'time_period': ['1850-1-16 12:0:0.0', '2005-12-16 12:0:0.0']},
         'ERA-Interim': {'keyerror': None,
          'name': 'ERA-Interim',
          'nyears': 40,
          'time_period': ['1979-1-16 12:0:0.0', '2019-3-16 12:0:0.0']},
         'HadISST': {'keyerror': None,
          'name': 'HadISST',
          'nyears': 151,
          'time_period': ['1870-1-16 11:59:59.5', '2020-10-16 12:0:0.0']},
         'Tropflux': {'keyerror': None,
          'name': 'Tropflux',
          'nyears': 40,
          'time_period': ['1979-1-15 0:0:0.0', '2018-12-15 12:0:0.0']},
         'method': 'Ratio between NDJ and MAM standard deviation nino3.4 sstA, time series are linearly detrended',
         'name': 'ENSO seasonality',
         'ref': 'Using CDAT std dev calculation',
         'time_frequency': 'monthly',
         'units': 'C/C'},
        'metric': {'datasets': "CanESM2_r4i1p1; ERA-Interim's ts & HadISST's sst & Tropflux's sst; 's ",
         'method': 'The metric is the absolute value of the relative difference between model and observations values (M = 100 * abs[[model-obs] / obs])',
         'name': 'EnsoSeasonality',
         'units': '%'}},
       'EnsoSstDiversity_2': {'diagnostic': {'CanESM2_r4i1p1': {'keyerror': None,
          'name': 'CanESM2_r4i1p1',
          'nyears': 156,
          'time_period': ['1850-1-16 12:0:0.0', '2005-12-16 12:0:0.0']},
         'ERA-Interim': {'keyerror': None,
          'name': 'ERA-Interim',
          'nyears': 40,
          'time_period': ['1979-1-16 12:0:0.0', '2019-3-16 12:0:0.0']},
         'HadISST': {'keyerror': None,
          'name': 'HadISST',
          'nyears': 151,
          'time_period': ['1870-1-16 11:59:59.5', '2020-10-16 12:0:0.0']},
         'Tropflux': {'keyerror': None,
          'name': 'Tropflux',
          'nyears': 40,
          'time_period': ['1979-1-15 0:0:0.0', '2018-12-15 12:0:0.0']},
         'method': 'Nino (Nina) events = nino3.4 sstA > 0.75 (< -0.75) during DEC, zonal SSTA (meridional averaged [-5.0 ; 5.0]), the zonal SSTA maximum (minimum) is located for each event, the diversity is the interquartile range (IQR = Q3 - Q1), time series are linearly detrended, smoothing using a triangle shaped window of 5 points',
         'name': 'ENSO Diversity (interquartile range)',
         'ref': 'Using CDAT regridding',
         'time_frequency': 'monthly',
         'units': 'long'},
        'metric': {'datasets': "CanESM2_r4i1p1; ERA-Interim's ts & HadISST's sst & Tropflux's sst; 's ",
         'method': 'The metric is the absolute value of the relative difference between model and observations values (M = 100 * abs[[model-obs] / obs])',
         'name': 'EnsoSstDiversity',
         'units': '%'}},
       'EnsoSstLonRmse': {'diagnostic': {'CanESM2_r4i1p1': {'keyerror': None,
          'name': 'CanESM2_r4i1p1',
          'nyears': 156,
          'time_period': ['1850-1-16 12:0:0.0', '2005-12-16 12:0:0.0']},
         'ERA-Interim': {'name': 'ERA-Interim',
          'nyears': 40,
          'time_period': ['1979-1-16 12:0:0.0', '2019-3-16 12:0:0.0']},
         'HadISST': {'name': 'HadISST',
          'nyears': 151,
          'time_period': ['1870-1-16 11:59:59.5', '2020-10-16 12:0:0.0']},
         'Tropflux': {'name': 'Tropflux',
          'nyears': 40,
          'time_period': ['1979-1-15 0:0:0.0', '2018-12-15 12:0:0.0']},
         'method': 'nino3.4 SSTA during DEC regressed against equatorial_pacific SSTA, time series are linearly detrended, smoothing using a triangle shaped window of 5 points, observations and model regridded to generic_1x1deg',
         'name': 'ENSO Zonal SSTA pattern',
         'ref': 'Using CDAT regridding and rms (uncentered and biased) calculation',
         'time_frequency': 'monthly',
         'units': 'C/C'},
        'metric': {'datasets': "CanESM2_r4i1p1; ERA-Interim's ts & HadISST's sst & Tropflux's sst; 's ",
         'method': 'The metric is the statistical value between the model and the observations',
         'name': 'EnsoSstLonRmse',
         'units': 'C/C'}},
       'EnsoSstSkew': {'diagnostic': {'CanESM2_r4i1p1': {'keyerror': None,
          'name': 'CanESM2_r4i1p1',
          'nyears': 156,
          'time_period': ['1850-1-16 12:0:0.0', '2005-12-16 12:0:0.0']},
         'ERA-Interim': {'keyerror': None,
          'name': 'ERA-Interim',
          'nyears': 40,
          'time_period': ['1979-1-16 12:0:0.0', '2019-3-16 12:0:0.0']},
         'HadISST': {'keyerror': None,
          'name': 'HadISST',
          'nyears': 151,
          'time_period': ['1870-1-16 11:59:59.5', '2020-10-16 12:0:0.0']},
         'Tropflux': {'keyerror': None,
          'name': 'Tropflux',
          'nyears': 40,
          'time_period': ['1979-1-15 0:0:0.0', '2018-12-15 12:0:0.0']},
         'method': 'Standard deviation of nino3.4 sstA, time series are linearly detrended',
         'name': 'ENSO skewness',
         'ref': 'Using CDAT regression calculation',
         'time_frequency': 'monthly',
         'units': 'C'},
        'metric': {'datasets': "CanESM2_r4i1p1; ERA-Interim's ts & HadISST's sst & Tropflux's sst; 's ",
         'method': 'The metric is the absolute value of the relative difference between model and observations values (M = 100 * abs[[model-obs] / obs])',
         'name': 'EnsoSstSkew',
         'units': '%'}},
       'EnsoSstTsRmse': {'diagnostic': {'CanESM2_r4i1p1': {'keyerror': None,
          'name': 'CanESM2_r4i1p1',
          'nyears': 156,
          'time_period': ['1850-1-16 12:0:0.0', '2005-12-16 12:0:0.0']},
         'ERA-Interim': {'name': 'ERA-Interim',
          'nyears': 40,
          'time_period': ['1979-1-16 12:0:0.0', '2019-3-16 12:0:0.0']},
         'HadISST': {'name': 'HadISST',
          'nyears': 151,
          'time_period': ['1870-1-16 11:59:59.5', '2020-10-16 12:0:0.0']},
         'Tropflux': {'name': 'Tropflux',
          'nyears': 40,
          'time_period': ['1979-1-15 0:0:0.0', '2018-12-15 12:0:0.0']},
         'method': 'nino3.4 SSTA during DEC regressed against nino3.4 SSTA during 6 years (centered on ENSO), time series are linearly detrended, smoothing using a triangle shaped window of 5 points',
         'name': 'ENSO life cyle SSTA pattern',
         'ref': 'Using CDAT regridding and rms (uncentered and biased) calculation',
         'time_frequency': 'monthly',
         'units': 'C/C'},
        'metric': {'datasets': "CanESM2_r4i1p1; ERA-Interim's ts & HadISST's sst & Tropflux's sst; 's ",
         'method': 'The metric is the statistical value between the model and the observations',
         'name': 'EnsoSstTsRmse',
         'units': 'C/C'}},
       'SeasonalPrLatRmse': {'diagnostic': {'CanESM2_r4i1p1': {'keyerror': None,
          'name': 'CanESM2_r4i1p1',
          'nyears': 156,
          'time_period': ['1850-1-16 12:0:0.0', '2005-12-16 12:0:0.0']},
         'ERA-Interim': {'name': 'ERA-Interim',
          'nyears': 40,
          'time_period': ['1979-1-16 12:0:0.0', '2019-3-16 12:0:0.0']},
         'GPCPv2.3': {'name': 'GPCPv2.3',
          'nyears': 41,
          'time_period': ['1979-1-1 0:0:0.0', '2019-7-1 0:0:0.0']},
         'method': 'Meridional root mean square error of nino3_LatExt climatological pr STD, time series are linearly detrended, observations and model regridded to generic_1x1deg',
         'name': 'pr meridional seasonality RMSE',
         'ref': 'Using CDAT regridding and rms (uncentered and biased) calculation',
         'time_frequency': 'monthly',
         'units': 'mm/day'},
        'metric': {'datasets': "CanESM2_r4i1p1; ERA-Interim's pr & GPCPv2.3's precip; 's ",
         'method': 'The metric is the statistical value between the model and the observations',
         'name': 'SeasonalPrLatRmse',
         'units': 'mm/day'}},
       'SeasonalPrLonRmse': {'diagnostic': {'CanESM2_r4i1p1': {'keyerror': None,
          'name': 'CanESM2_r4i1p1',
          'nyears': 156,
          'time_period': ['1850-1-16 12:0:0.0', '2005-12-16 12:0:0.0']},
         'ERA-Interim': {'name': 'ERA-Interim',
          'nyears': 40,
          'time_period': ['1979-1-16 12:0:0.0', '2019-3-16 12:0:0.0']},
         'GPCPv2.3': {'name': 'GPCPv2.3',
          'nyears': 41,
          'time_period': ['1979-1-1 0:0:0.0', '2019-7-1 0:0:0.0']},
         'method': 'Zonal root mean square error of equatorial_pacific climatological pr STD, time series are linearly detrended, observations and model regridded to generic_1x1deg',
         'name': 'pr zonal seasonality RMSE',
         'ref': 'Using CDAT regridding and rms (uncentered and biased) calculation',
         'time_frequency': 'monthly',
         'units': 'mm/day'},
        'metric': {'datasets': "CanESM2_r4i1p1; ERA-Interim's pr & GPCPv2.3's precip; 's ",
         'method': 'The metric is the statistical value between the model and the observations',
         'name': 'SeasonalPrLonRmse',
         'units': 'mm/day'}},
       'SeasonalSstLonRmse': {'diagnostic': {'CanESM2_r4i1p1': {'keyerror': None,
          'name': 'CanESM2_r4i1p1',
          'nyears': 156,
          'time_period': ['1850-1-16 12:0:0.0', '2005-12-16 12:0:0.0']},
         'ERA-Interim': {'name': 'ERA-Interim',
          'nyears': 40,
          'time_period': ['1979-1-16 12:0:0.0', '2019-3-16 12:0:0.0']},
         'HadISST': {'name': 'HadISST',
          'nyears': 151,
          'time_period': ['1870-1-16 11:59:59.5', '2020-10-16 12:0:0.0']},
         'Tropflux': {'name': 'Tropflux',
          'nyears': 40,
          'time_period': ['1979-1-15 0:0:0.0', '2018-12-15 12:0:0.0']},
         'method': 'Zonal root mean square error of equatorial_pacific climatological sst STD, time series are linearly detrended, observations and model regridded to generic_1x1deg',
         'name': 'sst zonal seasonality RMSE',
         'ref': 'Using CDAT regridding and rms (uncentered and biased) calculation',
         'time_frequency': 'monthly',
         'units': 'C'},
        'metric': {'datasets': "CanESM2_r4i1p1; ERA-Interim's ts & HadISST's sst & Tropflux's sst; 's ",
         'method': 'The metric is the statistical value between the model and the observations',
         'name': 'SeasonalSstLonRmse',
         'units': 'C'}},
       'SeasonalTauxLonRmse': {'diagnostic': {'CanESM2_r4i1p1': {'keyerror': None,
          'name': 'CanESM2_r4i1p1',
          'nyears': 156,
          'time_period': ['1850-1-16 12:0:0.0', '2005-12-16 12:0:0.0']},
         'ERA-Interim': {'name': 'ERA-Interim',
          'nyears': 40,
          'time_period': ['1979-1-16 12:0:0.0', '2019-3-16 12:0:0.0']},
         'Tropflux': {'name': 'Tropflux',
          'nyears': 40,
          'time_period': ['1979-1-15 0:0:0.0', '2018-12-15 12:0:0.0']},
         'method': 'Zonal root mean square error of equatorial_pacific climatological taux STD, time series are linearly detrended, observations and model regridded to generic_1x1deg',
         'name': 'taux zonal seasonality RMSE',
         'ref': 'Using CDAT regridding and rms (uncentered and biased) calculation',
         'time_frequency': 'monthly',
         'units': '1e-3 N/m2'},
        'metric': {'datasets': "CanESM2_r4i1p1; ERA-Interim's tauu & Tropflux's taux; 's ",
         'method': 'The metric is the statistical value between the model and the observations',
         'name': 'SeasonalTauxLonRmse',
         'units': '1e-3 N/m2'}}},
      'name': 'Metrics Collection for ENSO performance'},
     'value': {'BiasPrLatRmse': {'diagnostic': {'CanESM2_r4i1p1': {'value': None,
         'value_error': None},
        'ERA-Interim': {'value': None, 'value_error': None},
        'GPCPv2.3': {'value': None, 'value_error': None}},
       'metric': {'ERA-Interim': {'value': 0.8228249313493471,
         'value_error': None},
        'GPCPv2.3': {'value': 1.1846522876877474, 'value_error': None}}},
      'BiasPrLonRmse': {'diagnostic': {'CanESM2_r4i1p1': {'value': None,
         'value_error': None},
        'ERA-Interim': {'value': None, 'value_error': None},
        'GPCPv2.3': {'value': None, 'value_error': None}},
       'metric': {'ERA-Interim': {'value': 1.78350257578236,
         'value_error': None},
        'GPCPv2.3': {'value': 1.0311430170612683, 'value_error': None}}},
      'BiasSstLonRmse': {'diagnostic': {'CanESM2_r4i1p1': {'value': None,
         'value_error': None},
        'ERA-Interim': {'value': None, 'value_error': None},
        'HadISST': {'value': None, 'value_error': None},
        'Tropflux': {'value': None, 'value_error': None}},
       'metric': {'ERA-Interim': {'value': 1.0724398716525718,
         'value_error': None},
        'HadISST': {'value': 0.9772555116789352, 'value_error': None},
        'Tropflux': {'value': 1.1101786456997635, 'value_error': None}}},
      'BiasTauxLonRmse': {'diagnostic': {'CanESM2_r4i1p1': {'value': None,
         'value_error': None},
        'ERA-Interim': {'value': None, 'value_error': None},
        'Tropflux': {'value': None, 'value_error': None}},
       'metric': {'ERA-Interim': {'value': 3.3563270942049974,
         'value_error': None},
        'Tropflux': {'value': 4.095710711861572, 'value_error': None}}},
      'EnsoAmpl': {'diagnostic': {'CanESM2_r4i1p1': {'value': 0.9443269414448262,
         'value_error': 0.07560666486098232},
        'ERA-Interim': {'value': 0.8989844997845644,
         'value_error': 0.14214193002531866},
        'HadISST': {'value': 0.7665787872085695,
         'value_error': 0.06238329697691264},
        'Tropflux': {'value': 0.9039789553693535,
         'value_error': 0.14293162279134272}},
       'metric': {'ERA-Interim': {'value': 5.043740094643213,
         'value_error': 25.019103717159503},
        'HadISST': {'value': 23.187199698482555,
         'value_error': 19.887701568364616},
        'Tropflux': {'value': 4.463376700952856,
         'value_error': 24.880873948043323}}},
      'EnsoDuration': {'diagnostic': {'CanESM2_r4i1p1': {'value': 12.0,
         'value_error': None},
        'ERA-Interim': {'value': 13.0, 'value_error': None},
        'HadISST': {'value': 13.0, 'value_error': None},
        'Tropflux': {'value': 13.0, 'value_error': None}},
       'metric': {'ERA-Interim': {'value': 7.6923076923076925,
         'value_error': None},
        'HadISST': {'value': 7.6923076923076925, 'value_error': None},
        'Tropflux': {'value': 7.6923076923076925, 'value_error': None}}},
      'EnsoSeasonality': {'diagnostic': {'CanESM2_r4i1p1': {'value': 1.4567845952610705,
         'value_error': 0.23364786836153273},
        'ERA-Interim': {'value': 2.0466846866656914,
         'value_error': 0.6513411033995022},
        'HadISST': {'value': 1.6639865947361325,
         'value_error': 0.2712772451657809},
        'Tropflux': {'value': 2.0532132553583624,
         'value_error': 0.6534187683977347}},
       'metric': {'ERA-Interim': {'value': 28.8222262690421,
         'value_error': 34.06767880263357},
        'HadISST': {'value': 12.452143552750146,
         'value_error': 28.314247423852397},
        'Tropflux': {'value': 29.048549075005496,
         'value_error': 33.95935436011284}}},
      'EnsoSstDiversity_2': {'diagnostic': {'CanESM2_r4i1p1': {'value': 12.0,
         'value_error': None},
        'ERA-Interim': {'value': 33.25, 'value_error': None},
        'HadISST': {'value': 49.0, 'value_error': None},
        'Tropflux': {'value': 32.0, 'value_error': None}},
       'metric': {'ERA-Interim': {'value': 63.90977443609023,
         'value_error': None},
        'HadISST': {'value': 75.51020408163265, 'value_error': None},
        'Tropflux': {'value': 62.5, 'value_error': None}}},
      'EnsoSstLonRmse': {'diagnostic': {'CanESM2_r4i1p1': {'value': None,
         'value_error': None},
        'ERA-Interim': {'value': None, 'value_error': None},
        'HadISST': {'value': None, 'value_error': None},
        'Tropflux': {'value': None, 'value_error': None}},
       'metric': {'ERA-Interim': {'value': 0.18544956726923933,
         'value_error': None},
        'HadISST': {'value': 0.20990238953457227, 'value_error': None},
        'Tropflux': {'value': 0.1855506806806446, 'value_error': None}}},
      'EnsoSstSkew': {'diagnostic': {'CanESM2_r4i1p1': {'value': 0.06232976321863539,
         'value_error': 0.004990374955654155},
        'ERA-Interim': {'value': 0.39098111106809963,
         'value_error': 0.061819541653923164},
        'HadISST': {'value': 0.38989908235027515,
         'value_error': 0.03172953733021198},
        'Tropflux': {'value': 0.39744741059612115,
         'value_error': 0.06284195338099416}},
       'metric': {'ERA-Interim': {'value': 84.05811394612897,
         'value_error': 3.797005897444027},
        'HadISST': {'value': 84.01387280962105,
         'value_error': 2.580847097542165},
        'Tropflux': {'value': 84.31748161973213,
         'value_error': 3.7352302340783723}}},
      'EnsoSstTsRmse': {'diagnostic': {'CanESM2_r4i1p1': {'value': None,
         'value_error': None},
        'ERA-Interim': {'value': None, 'value_error': None},
        'HadISST': {'value': None, 'value_error': None},
        'Tropflux': {'value': None, 'value_error': None}},
       'metric': {'ERA-Interim': {'value': 0.1401991535732372,
         'value_error': None},
        'HadISST': {'value': 0.12759838426081513, 'value_error': None},
        'Tropflux': {'value': 0.14104209103805462, 'value_error': None}}},
      'SeasonalPrLatRmse': {'diagnostic': {'CanESM2_r4i1p1': {'value': None,
         'value_error': None},
        'ERA-Interim': {'value': None, 'value_error': None},
        'GPCPv2.3': {'value': None, 'value_error': None}},
       'metric': {'ERA-Interim': {'value': 0.9049317401043839,
         'value_error': None},
        'GPCPv2.3': {'value': 1.2491848764877862, 'value_error': None}}},
      'SeasonalPrLonRmse': {'diagnostic': {'CanESM2_r4i1p1': {'value': None,
         'value_error': None},
        'ERA-Interim': {'value': None, 'value_error': None},
        'GPCPv2.3': {'value': None, 'value_error': None}},
       'metric': {'ERA-Interim': {'value': 0.5367981306361931,
         'value_error': None},
        'GPCPv2.3': {'value': 0.808426139532777, 'value_error': None}}},
      'SeasonalSstLonRmse': {'diagnostic': {'CanESM2_r4i1p1': {'value': None,
         'value_error': None},
        'ERA-Interim': {'value': None, 'value_error': None},
        'HadISST': {'value': None, 'value_error': None},
        'Tropflux': {'value': None, 'value_error': None}},
       'metric': {'ERA-Interim': {'value': 0.3610997486283356,
         'value_error': None},
        'HadISST': {'value': 0.3806663986395622, 'value_error': None},
        'Tropflux': {'value': 0.3613253722597394, 'value_error': None}}},
      'SeasonalTauxLonRmse': {'diagnostic': {'CanESM2_r4i1p1': {'value': None,
         'value_error': None},
        'ERA-Interim': {'value': None, 'value_error': None},
        'Tropflux': {'value': None, 'value_error': None}},
       'metric': {'ERA-Interim': {'value': 3.9312711909983618,
         'value_error': None},
        'Tropflux': {'value': 3.724099375819474, 'value_error': None}}}}},
    'r5i1p1': {'metadata': {'description_of_the_collection': 'Describe which science question this collection is about',
      'metrics': {'BiasPrLatRmse': {'diagnostic': {'CanESM2_r5i1p1': {'keyerror': None,
          'name': 'CanESM2_r5i1p1',
          'nyears': 156,
          'time_period': ['1850-1-16 12:0:0.0', '2005-12-16 12:0:0.0']},
         'ERA-Interim': {'name': 'ERA-Interim',
          'nyears': 40,
          'time_period': ['1979-1-16 12:0:0.0', '2019-3-16 12:0:0.0']},
         'GPCPv2.3': {'name': 'GPCPv2.3',
          'nyears': 41,
          'time_period': ['1979-1-1 0:0:0.0', '2019-7-1 0:0:0.0']},
         'method': 'Meridional root mean square error of nino3_LatExt pr, time series are linearly detrended, observations and model regridded to generic_1x1deg',
         'name': 'pr Meridional RMSE',
         'ref': 'Using CDAT regridding and rms (uncentered and biased) calculation',
         'time_frequency': 'monthly',
         'units': 'mm/day'},
        'metric': {'datasets': "CanESM2_r5i1p1; ERA-Interim's pr & GPCPv2.3's precip; 's ",
         'method': 'The metric is the statistical value between the model and the observations',
         'name': 'BiasPrLatRmse',
         'units': 'mm/day'}},
       'BiasPrLonRmse': {'diagnostic': {'CanESM2_r5i1p1': {'keyerror': None,
          'name': 'CanESM2_r5i1p1',
          'nyears': 156,
          'time_period': ['1850-1-16 12:0:0.0', '2005-12-16 12:0:0.0']},
         'ERA-Interim': {'name': 'ERA-Interim',
          'nyears': 40,
          'time_period': ['1979-1-16 12:0:0.0', '2019-3-16 12:0:0.0']},
         'GPCPv2.3': {'name': 'GPCPv2.3',
          'nyears': 41,
          'time_period': ['1979-1-1 0:0:0.0', '2019-7-1 0:0:0.0']},
         'method': 'Zonal root mean square error of equatorial_pacific pr, time series are linearly detrended, observations and model regridded to generic_1x1deg',
         'name': 'pr Zonal RMSE',
         'ref': 'Using CDAT regridding and rms (uncentered and biased) calculation',
         'time_frequency': 'monthly',
         'units': 'mm/day'},
        'metric': {'datasets': "CanESM2_r5i1p1; ERA-Interim's pr & GPCPv2.3's precip; 's ",
         'method': 'The metric is the statistical value between the model and the observations',
         'name': 'BiasPrLonRmse',
         'units': 'mm/day'}},
       'BiasSstLonRmse': {'diagnostic': {'CanESM2_r5i1p1': {'keyerror': None,
          'name': 'CanESM2_r5i1p1',
          'nyears': 156,
          'time_period': ['1850-1-16 12:0:0.0', '2005-12-16 12:0:0.0']},
         'ERA-Interim': {'name': 'ERA-Interim',
          'nyears': 40,
          'time_period': ['1979-1-16 12:0:0.0', '2019-3-16 12:0:0.0']},
         'HadISST': {'name': 'HadISST',
          'nyears': 151,
          'time_period': ['1870-1-16 11:59:59.5', '2020-10-16 12:0:0.0']},
         'Tropflux': {'name': 'Tropflux',
          'nyears': 40,
          'time_period': ['1979-1-15 0:0:0.0', '2018-12-15 12:0:0.0']},
         'method': 'Zonal root mean square error of equatorial_pacific sst, time series are linearly detrended, observations and model regridded to generic_1x1deg',
         'name': 'sst Zonal RMSE',
         'ref': 'Using CDAT regridding and rms (uncentered and biased) calculation',
         'time_frequency': 'monthly',
         'units': 'C'},
        'metric': {'datasets': "CanESM2_r5i1p1; ERA-Interim's ts & HadISST's sst & Tropflux's sst; 's ",
         'method': 'The metric is the statistical value between the model and the observations',
         'name': 'BiasSstLonRmse',
         'units': 'C'}},
       'BiasTauxLonRmse': {'diagnostic': {'CanESM2_r5i1p1': {'keyerror': None,
          'name': 'CanESM2_r5i1p1',
          'nyears': 156,
          'time_period': ['1850-1-16 12:0:0.0', '2005-12-16 12:0:0.0']},
         'ERA-Interim': {'name': 'ERA-Interim',
          'nyears': 40,
          'time_period': ['1979-1-16 12:0:0.0', '2019-3-16 12:0:0.0']},
         'Tropflux': {'name': 'Tropflux',
          'nyears': 40,
          'time_period': ['1979-1-15 0:0:0.0', '2018-12-15 12:0:0.0']},
         'method': 'Zonal root mean square error of equatorial_pacific taux, time series are linearly detrended, observations and model regridded to generic_1x1deg',
         'name': 'taux Zonal RMSE',
         'ref': 'Using CDAT regridding and rms (uncentered and biased) calculation',
         'time_frequency': 'monthly',
         'units': '1e-3 N/m2'},
        'metric': {'datasets': "CanESM2_r5i1p1; ERA-Interim's tauu & Tropflux's taux; 's ",
         'method': 'The metric is the statistical value between the model and the observations',
         'name': 'BiasTauxLonRmse',
         'units': '1e-3 N/m2'}},
       'EnsoAmpl': {'diagnostic': {'CanESM2_r5i1p1': {'keyerror': None,
          'name': 'CanESM2_r5i1p1',
          'nyears': 156,
          'time_period': ['1850-1-16 12:0:0.0', '2005-12-16 12:0:0.0']},
         'ERA-Interim': {'keyerror': None,
          'name': 'ERA-Interim',
          'nyears': 40,
          'time_period': ['1979-1-16 12:0:0.0', '2019-3-16 12:0:0.0']},
         'HadISST': {'keyerror': None,
          'name': 'HadISST',
          'nyears': 151,
          'time_period': ['1870-1-16 11:59:59.5', '2020-10-16 12:0:0.0']},
         'Tropflux': {'keyerror': None,
          'name': 'Tropflux',
          'nyears': 40,
          'time_period': ['1979-1-15 0:0:0.0', '2018-12-15 12:0:0.0']},
         'method': 'Standard deviation of nino3.4 sstA, time series are linearly detrended',
         'name': 'ENSO amplitude',
         'ref': 'Using CDAT regression calculation',
         'time_frequency': 'monthly',
         'units': 'C'},
        'metric': {'datasets': "CanESM2_r5i1p1; ERA-Interim's ts & HadISST's sst & Tropflux's sst; 's ",
         'method': 'The metric is the absolute value of the relative difference between model and observations values (M = 100 * abs[[model-obs] / obs])',
         'name': 'EnsoAmpl',
         'units': '%'}},
       'EnsoDuration': {'diagnostic': {'CanESM2_r5i1p1': {'keyerror': None,
          'name': 'CanESM2_r5i1p1',
          'nyears': 156,
          'time_period': ['1850-1-16 12:0:0.0', '2005-12-16 12:0:0.0']},
         'ERA-Interim': {'keyerror': None,
          'name': 'ERA-Interim',
          'nyears': 40,
          'time_period': ['1979-1-16 12:0:0.0', '2019-3-16 12:0:0.0']},
         'HadISST': {'keyerror': None,
          'name': 'HadISST',
          'nyears': 151,
          'time_period': ['1870-1-16 11:59:59.5', '2020-10-16 12:0:0.0']},
         'Tropflux': {'keyerror': None,
          'name': 'Tropflux',
          'nyears': 40,
          'time_period': ['1979-1-15 0:0:0.0', '2018-12-15 12:0:0.0']},
         'method': 'nino3.4 SSTA during DEC regressed against nino3.4 SSTA during 6 years (centered on ENSO), the duration is the number of consecutive months during which the regression is above 0.25, time series are linearly detrended, smoothing using a triangle shaped window of 5 points',
         'name': 'ENSO Duration based on life cyle SSTA pattern',
         'ref': 'Using CDAT',
         'time_frequency': 'monthly',
         'units': 'months'},
        'metric': {'datasets': "CanESM2_r5i1p1; ERA-Interim's ts & HadISST's sst & Tropflux's sst; 's ",
         'method': 'The metric is the absolute value of the relative difference between model and observations values (M = 100 * abs[[model-obs] / obs])',
         'name': 'EnsoDuration',
         'units': '%'}},
       'EnsoSeasonality': {'diagnostic': {'CanESM2_r5i1p1': {'keyerror': None,
          'name': 'CanESM2_r5i1p1',
          'nyears': 156,
          'time_period': ['1850-1-16 12:0:0.0', '2005-12-16 12:0:0.0']},
         'ERA-Interim': {'keyerror': None,
          'name': 'ERA-Interim',
          'nyears': 40,
          'time_period': ['1979-1-16 12:0:0.0', '2019-3-16 12:0:0.0']},
         'HadISST': {'keyerror': None,
          'name': 'HadISST',
          'nyears': 151,
          'time_period': ['1870-1-16 11:59:59.5', '2020-10-16 12:0:0.0']},
         'Tropflux': {'keyerror': None,
          'name': 'Tropflux',
          'nyears': 40,
          'time_period': ['1979-1-15 0:0:0.0', '2018-12-15 12:0:0.0']},
         'method': 'Ratio between NDJ and MAM standard deviation nino3.4 sstA, time series are linearly detrended',
         'name': 'ENSO seasonality',
         'ref': 'Using CDAT std dev calculation',
         'time_frequency': 'monthly',
         'units': 'C/C'},
        'metric': {'datasets': "CanESM2_r5i1p1; ERA-Interim's ts & HadISST's sst & Tropflux's sst; 's ",
         'method': 'The metric is the absolute value of the relative difference between model and observations values (M = 100 * abs[[model-obs] / obs])',
         'name': 'EnsoSeasonality',
         'units': '%'}},
       'EnsoSstDiversity_2': {'diagnostic': {'CanESM2_r5i1p1': {'keyerror': None,
          'name': 'CanESM2_r5i1p1',
          'nyears': 156,
          'time_period': ['1850-1-16 12:0:0.0', '2005-12-16 12:0:0.0']},
         'ERA-Interim': {'keyerror': None,
          'name': 'ERA-Interim',
          'nyears': 40,
          'time_period': ['1979-1-16 12:0:0.0', '2019-3-16 12:0:0.0']},
         'HadISST': {'keyerror': None,
          'name': 'HadISST',
          'nyears': 151,
          'time_period': ['1870-1-16 11:59:59.5', '2020-10-16 12:0:0.0']},
         'Tropflux': {'keyerror': None,
          'name': 'Tropflux',
          'nyears': 40,
          'time_period': ['1979-1-15 0:0:0.0', '2018-12-15 12:0:0.0']},
         'method': 'Nino (Nina) events = nino3.4 sstA > 0.75 (< -0.75) during DEC, zonal SSTA (meridional averaged [-5.0 ; 5.0]), the zonal SSTA maximum (minimum) is located for each event, the diversity is the interquartile range (IQR = Q3 - Q1), time series are linearly detrended, smoothing using a triangle shaped window of 5 points',
         'name': 'ENSO Diversity (interquartile range)',
         'ref': 'Using CDAT regridding',
         'time_frequency': 'monthly',
         'units': 'long'},
        'metric': {'datasets': "CanESM2_r5i1p1; ERA-Interim's ts & HadISST's sst & Tropflux's sst; 's ",
         'method': 'The metric is the absolute value of the relative difference between model and observations values (M = 100 * abs[[model-obs] / obs])',
         'name': 'EnsoSstDiversity',
         'units': '%'}},
       'EnsoSstLonRmse': {'diagnostic': {'CanESM2_r5i1p1': {'keyerror': None,
          'name': 'CanESM2_r5i1p1',
          'nyears': 156,
          'time_period': ['1850-1-16 12:0:0.0', '2005-12-16 12:0:0.0']},
         'ERA-Interim': {'name': 'ERA-Interim',
          'nyears': 40,
          'time_period': ['1979-1-16 12:0:0.0', '2019-3-16 12:0:0.0']},
         'HadISST': {'name': 'HadISST',
          'nyears': 151,
          'time_period': ['1870-1-16 11:59:59.5', '2020-10-16 12:0:0.0']},
         'Tropflux': {'name': 'Tropflux',
          'nyears': 40,
          'time_period': ['1979-1-15 0:0:0.0', '2018-12-15 12:0:0.0']},
         'method': 'nino3.4 SSTA during DEC regressed against equatorial_pacific SSTA, time series are linearly detrended, smoothing using a triangle shaped window of 5 points, observations and model regridded to generic_1x1deg',
         'name': 'ENSO Zonal SSTA pattern',
         'ref': 'Using CDAT regridding and rms (uncentered and biased) calculation',
         'time_frequency': 'monthly',
         'units': 'C/C'},
        'metric': {'datasets': "CanESM2_r5i1p1; ERA-Interim's ts & HadISST's sst & Tropflux's sst; 's ",
         'method': 'The metric is the statistical value between the model and the observations',
         'name': 'EnsoSstLonRmse',
         'units': 'C/C'}},
       'EnsoSstSkew': {'diagnostic': {'CanESM2_r5i1p1': {'keyerror': None,
          'name': 'CanESM2_r5i1p1',
          'nyears': 156,
          'time_period': ['1850-1-16 12:0:0.0', '2005-12-16 12:0:0.0']},
         'ERA-Interim': {'keyerror': None,
          'name': 'ERA-Interim',
          'nyears': 40,
          'time_period': ['1979-1-16 12:0:0.0', '2019-3-16 12:0:0.0']},
         'HadISST': {'keyerror': None,
          'name': 'HadISST',
          'nyears': 151,
          'time_period': ['1870-1-16 11:59:59.5', '2020-10-16 12:0:0.0']},
         'Tropflux': {'keyerror': None,
          'name': 'Tropflux',
          'nyears': 40,
          'time_period': ['1979-1-15 0:0:0.0', '2018-12-15 12:0:0.0']},
         'method': 'Standard deviation of nino3.4 sstA, time series are linearly detrended',
         'name': 'ENSO skewness',
         'ref': 'Using CDAT regression calculation',
         'time_frequency': 'monthly',
         'units': 'C'},
        'metric': {'datasets': "CanESM2_r5i1p1; ERA-Interim's ts & HadISST's sst & Tropflux's sst; 's ",
         'method': 'The metric is the absolute value of the relative difference between model and observations values (M = 100 * abs[[model-obs] / obs])',
         'name': 'EnsoSstSkew',
         'units': '%'}},
       'EnsoSstTsRmse': {'diagnostic': {'CanESM2_r5i1p1': {'keyerror': None,
          'name': 'CanESM2_r5i1p1',
          'nyears': 156,
          'time_period': ['1850-1-16 12:0:0.0', '2005-12-16 12:0:0.0']},
         'ERA-Interim': {'name': 'ERA-Interim',
          'nyears': 40,
          'time_period': ['1979-1-16 12:0:0.0', '2019-3-16 12:0:0.0']},
         'HadISST': {'name': 'HadISST',
          'nyears': 151,
          'time_period': ['1870-1-16 11:59:59.5', '2020-10-16 12:0:0.0']},
         'Tropflux': {'name': 'Tropflux',
          'nyears': 40,
          'time_period': ['1979-1-15 0:0:0.0', '2018-12-15 12:0:0.0']},
         'method': 'nino3.4 SSTA during DEC regressed against nino3.4 SSTA during 6 years (centered on ENSO), time series are linearly detrended, smoothing using a triangle shaped window of 5 points',
         'name': 'ENSO life cyle SSTA pattern',
         'ref': 'Using CDAT regridding and rms (uncentered and biased) calculation',
         'time_frequency': 'monthly',
         'units': 'C/C'},
        'metric': {'datasets': "CanESM2_r5i1p1; ERA-Interim's ts & HadISST's sst & Tropflux's sst; 's ",
         'method': 'The metric is the statistical value between the model and the observations',
         'name': 'EnsoSstTsRmse',
         'units': 'C/C'}},
       'SeasonalPrLatRmse': {'diagnostic': {'CanESM2_r5i1p1': {'keyerror': None,
          'name': 'CanESM2_r5i1p1',
          'nyears': 156,
          'time_period': ['1850-1-16 12:0:0.0', '2005-12-16 12:0:0.0']},
         'ERA-Interim': {'name': 'ERA-Interim',
          'nyears': 40,
          'time_period': ['1979-1-16 12:0:0.0', '2019-3-16 12:0:0.0']},
         'GPCPv2.3': {'name': 'GPCPv2.3',
          'nyears': 41,
          'time_period': ['1979-1-1 0:0:0.0', '2019-7-1 0:0:0.0']},
         'method': 'Meridional root mean square error of nino3_LatExt climatological pr STD, time series are linearly detrended, observations and model regridded to generic_1x1deg',
         'name': 'pr meridional seasonality RMSE',
         'ref': 'Using CDAT regridding and rms (uncentered and biased) calculation',
         'time_frequency': 'monthly',
         'units': 'mm/day'},
        'metric': {'datasets': "CanESM2_r5i1p1; ERA-Interim's pr & GPCPv2.3's precip; 's ",
         'method': 'The metric is the statistical value between the model and the observations',
         'name': 'SeasonalPrLatRmse',
         'units': 'mm/day'}},
       'SeasonalPrLonRmse': {'diagnostic': {'CanESM2_r5i1p1': {'keyerror': None,
          'name': 'CanESM2_r5i1p1',
          'nyears': 156,
          'time_period': ['1850-1-16 12:0:0.0', '2005-12-16 12:0:0.0']},
         'ERA-Interim': {'name': 'ERA-Interim',
          'nyears': 40,
          'time_period': ['1979-1-16 12:0:0.0', '2019-3-16 12:0:0.0']},
         'GPCPv2.3': {'name': 'GPCPv2.3',
          'nyears': 41,
          'time_period': ['1979-1-1 0:0:0.0', '2019-7-1 0:0:0.0']},
         'method': 'Zonal root mean square error of equatorial_pacific climatological pr STD, time series are linearly detrended, observations and model regridded to generic_1x1deg',
         'name': 'pr zonal seasonality RMSE',
         'ref': 'Using CDAT regridding and rms (uncentered and biased) calculation',
         'time_frequency': 'monthly',
         'units': 'mm/day'},
        'metric': {'datasets': "CanESM2_r5i1p1; ERA-Interim's pr & GPCPv2.3's precip; 's ",
         'method': 'The metric is the statistical value between the model and the observations',
         'name': 'SeasonalPrLonRmse',
         'units': 'mm/day'}},
       'SeasonalSstLonRmse': {'diagnostic': {'CanESM2_r5i1p1': {'keyerror': None,
          'name': 'CanESM2_r5i1p1',
          'nyears': 156,
          'time_period': ['1850-1-16 12:0:0.0', '2005-12-16 12:0:0.0']},
         'ERA-Interim': {'name': 'ERA-Interim',
          'nyears': 40,
          'time_period': ['1979-1-16 12:0:0.0', '2019-3-16 12:0:0.0']},
         'HadISST': {'name': 'HadISST',
          'nyears': 151,
          'time_period': ['1870-1-16 11:59:59.5', '2020-10-16 12:0:0.0']},
         'Tropflux': {'name': 'Tropflux',
          'nyears': 40,
          'time_period': ['1979-1-15 0:0:0.0', '2018-12-15 12:0:0.0']},
         'method': 'Zonal root mean square error of equatorial_pacific climatological sst STD, time series are linearly detrended, observations and model regridded to generic_1x1deg',
         'name': 'sst zonal seasonality RMSE',
         'ref': 'Using CDAT regridding and rms (uncentered and biased) calculation',
         'time_frequency': 'monthly',
         'units': 'C'},
        'metric': {'datasets': "CanESM2_r5i1p1; ERA-Interim's ts & HadISST's sst & Tropflux's sst; 's ",
         'method': 'The metric is the statistical value between the model and the observations',
         'name': 'SeasonalSstLonRmse',
         'units': 'C'}},
       'SeasonalTauxLonRmse': {'diagnostic': {'CanESM2_r5i1p1': {'keyerror': None,
          'name': 'CanESM2_r5i1p1',
          'nyears': 156,
          'time_period': ['1850-1-16 12:0:0.0', '2005-12-16 12:0:0.0']},
         'ERA-Interim': {'name': 'ERA-Interim',
          'nyears': 40,
          'time_period': ['1979-1-16 12:0:0.0', '2019-3-16 12:0:0.0']},
         'Tropflux': {'name': 'Tropflux',
          'nyears': 40,
          'time_period': ['1979-1-15 0:0:0.0', '2018-12-15 12:0:0.0']},
         'method': 'Zonal root mean square error of equatorial_pacific climatological taux STD, time series are linearly detrended, observations and model regridded to generic_1x1deg',
         'name': 'taux zonal seasonality RMSE',
         'ref': 'Using CDAT regridding and rms (uncentered and biased) calculation',
         'time_frequency': 'monthly',
         'units': '1e-3 N/m2'},
        'metric': {'datasets': "CanESM2_r5i1p1; ERA-Interim's tauu & Tropflux's taux; 's ",
         'method': 'The metric is the statistical value between the model and the observations',
         'name': 'SeasonalTauxLonRmse',
         'units': '1e-3 N/m2'}}},
      'name': 'Metrics Collection for ENSO performance'},
     'value': {'BiasPrLatRmse': {'diagnostic': {'CanESM2_r5i1p1': {'value': None,
         'value_error': None},
        'ERA-Interim': {'value': None, 'value_error': None},
        'GPCPv2.3': {'value': None, 'value_error': None}},
       'metric': {'ERA-Interim': {'value': 0.7476219832228174,
         'value_error': None},
        'GPCPv2.3': {'value': 1.1451935318875677, 'value_error': None}}},
      'BiasPrLonRmse': {'diagnostic': {'CanESM2_r5i1p1': {'value': None,
         'value_error': None},
        'ERA-Interim': {'value': None, 'value_error': None},
        'GPCPv2.3': {'value': None, 'value_error': None}},
       'metric': {'ERA-Interim': {'value': 1.7727741380719433,
         'value_error': None},
        'GPCPv2.3': {'value': 1.0052256518871452, 'value_error': None}}},
      'BiasSstLonRmse': {'diagnostic': {'CanESM2_r5i1p1': {'value': None,
         'value_error': None},
        'ERA-Interim': {'value': None, 'value_error': None},
        'HadISST': {'value': None, 'value_error': None},
        'Tropflux': {'value': None, 'value_error': None}},
       'metric': {'ERA-Interim': {'value': 1.0836516822242603,
         'value_error': None},
        'HadISST': {'value': 0.9862274677638494, 'value_error': None},
        'Tropflux': {'value': 1.1217009586155298, 'value_error': None}}},
      'BiasTauxLonRmse': {'diagnostic': {'CanESM2_r5i1p1': {'value': None,
         'value_error': None},
        'ERA-Interim': {'value': None, 'value_error': None},
        'Tropflux': {'value': None, 'value_error': None}},
       'metric': {'ERA-Interim': {'value': 3.452012977378366,
         'value_error': None},
        'Tropflux': {'value': 4.208611709777471, 'value_error': None}}},
      'EnsoAmpl': {'diagnostic': {'CanESM2_r5i1p1': {'value': 0.9779083324028184,
         'value_error': 0.07829532792913739},
        'ERA-Interim': {'value': 0.8989844997845644,
         'value_error': 0.14214193002531866},
        'HadISST': {'value': 0.7665787872085695,
         'value_error': 0.06238329697691264},
        'Tropflux': {'value': 0.9039789553693535,
         'value_error': 0.14293162279134272}},
       'metric': {'ERA-Interim': {'value': 8.779220624734636,
         'value_error': 25.908812849103796},
        'HadISST': {'value': 27.567883265304943,
         'value_error': 20.59493192716525},
        'Tropflux': {'value': 8.178218817412446,
         'value_error': 25.765667464732996}}},
      'EnsoDuration': {'diagnostic': {'CanESM2_r5i1p1': {'value': 12.0,
         'value_error': None},
        'ERA-Interim': {'value': 13.0, 'value_error': None},
        'HadISST': {'value': 13.0, 'value_error': None},
        'Tropflux': {'value': 13.0, 'value_error': None}},
       'metric': {'ERA-Interim': {'value': 7.6923076923076925,
         'value_error': None},
        'HadISST': {'value': 7.6923076923076925, 'value_error': None},
        'Tropflux': {'value': 7.6923076923076925, 'value_error': None}}},
      'EnsoSeasonality': {'diagnostic': {'CanESM2_r5i1p1': {'value': 1.53960775325128,
         'value_error': 0.24693154419002047},
        'ERA-Interim': {'value': 2.0466846866656914,
         'value_error': 0.6513411033995022},
        'HadISST': {'value': 1.6639865947361325,
         'value_error': 0.2712772451657809},
        'Tropflux': {'value': 2.0532132553583624,
         'value_error': 0.6534187683977347}},
       'metric': {'ERA-Interim': {'value': 24.77552779468458,
         'value_error': 36.00454218862},
        'HadISST': {'value': 7.474750210026541,
         'value_error': 29.924008671594958},
        'Tropflux': {'value': 25.014717821770493,
         'value_error': 35.89005913318816}}},
      'EnsoSstDiversity_2': {'diagnostic': {'CanESM2_r5i1p1': {'value': 14.0,
         'value_error': None},
        'ERA-Interim': {'value': 33.25, 'value_error': None},
        'HadISST': {'value': 49.0, 'value_error': None},
        'Tropflux': {'value': 32.0, 'value_error': None}},
       'metric': {'ERA-Interim': {'value': 57.89473684210527,
         'value_error': None},
        'HadISST': {'value': 71.42857142857143, 'value_error': None},
        'Tropflux': {'value': 56.25, 'value_error': None}}},
      'EnsoSstLonRmse': {'diagnostic': {'CanESM2_r5i1p1': {'value': None,
         'value_error': None},
        'ERA-Interim': {'value': None, 'value_error': None},
        'HadISST': {'value': None, 'value_error': None},
        'Tropflux': {'value': None, 'value_error': None}},
       'metric': {'ERA-Interim': {'value': 0.20820055952074254,
         'value_error': None},
        'HadISST': {'value': 0.2327979729139056, 'value_error': None},
        'Tropflux': {'value': 0.2085107689366696, 'value_error': None}}},
      'EnsoSstSkew': {'diagnostic': {'CanESM2_r5i1p1': {'value': -0.2322184908246773,
         'value_error': -0.01859235910757957},
        'ERA-Interim': {'value': 0.39098111106809963,
         'value_error': 0.061819541653923164},
        'HadISST': {'value': 0.38989908235027515,
         'value_error': 0.03172953733021198},
        'Tropflux': {'value': 0.39744741059612115,
         'value_error': 0.06284195338099416}},
       'metric': {'ERA-Interim': {'value': 159.39378764111967,
         'value_error': -14.14629117174682},
        'HadISST': {'value': 159.55861435345935,
         'value_error': -9.615316777929058},
        'Tropflux': {'value': 158.42747609712157,
         'value_error': -13.916137059558945}}},
      'EnsoSstTsRmse': {'diagnostic': {'CanESM2_r5i1p1': {'value': None,
         'value_error': None},
        'ERA-Interim': {'value': None, 'value_error': None},
        'HadISST': {'value': None, 'value_error': None},
        'Tropflux': {'value': None, 'value_error': None}},
       'metric': {'ERA-Interim': {'value': 0.15000475707592115,
         'value_error': None},
        'HadISST': {'value': 0.13820177742772205, 'value_error': None},
        'Tropflux': {'value': 0.14998829864649232, 'value_error': None}}},
      'SeasonalPrLatRmse': {'diagnostic': {'CanESM2_r5i1p1': {'value': None,
         'value_error': None},
        'ERA-Interim': {'value': None, 'value_error': None},
        'GPCPv2.3': {'value': None, 'value_error': None}},
       'metric': {'ERA-Interim': {'value': 0.8630165457239232,
         'value_error': None},
        'GPCPv2.3': {'value': 1.210561726229579, 'value_error': None}}},
      'SeasonalPrLonRmse': {'diagnostic': {'CanESM2_r5i1p1': {'value': None,
         'value_error': None},
        'ERA-Interim': {'value': None, 'value_error': None},
        'GPCPv2.3': {'value': None, 'value_error': None}},
       'metric': {'ERA-Interim': {'value': 0.5221877838437499,
         'value_error': None},
        'GPCPv2.3': {'value': 0.7881318530833019, 'value_error': None}}},
      'SeasonalSstLonRmse': {'diagnostic': {'CanESM2_r5i1p1': {'value': None,
         'value_error': None},
        'ERA-Interim': {'value': None, 'value_error': None},
        'HadISST': {'value': None, 'value_error': None},
        'Tropflux': {'value': None, 'value_error': None}},
       'metric': {'ERA-Interim': {'value': 0.36167412716822356,
         'value_error': None},
        'HadISST': {'value': 0.38096788462238707, 'value_error': None},
        'Tropflux': {'value': 0.3622667255250927, 'value_error': None}}},
      'SeasonalTauxLonRmse': {'diagnostic': {'CanESM2_r5i1p1': {'value': None,
         'value_error': None},
        'ERA-Interim': {'value': None, 'value_error': None},
        'Tropflux': {'value': None, 'value_error': None}},
       'metric': {'ERA-Interim': {'value': 3.9604669521336615,
         'value_error': None},
        'Tropflux': {'value': 3.769050056332188, 'value_error': None}}}}}},
   'EC-EARTH': {'r1i1p1': {'metadata': {'description_of_the_collection': 'Describe which science question this collection is about',
      'metrics': {'BiasPrLatRmse': {'diagnostic': {'EC-EARTH_r1i1p1': {'keyerror': None,
          'name': 'EC-EARTH_r1i1p1',
          'nyears': 161,
          'time_period': ['1850-1-1 0:0:0.0', '1855-4-15 0:0:0.0']},
         'ERA-Interim': {'name': 'ERA-Interim',
          'nyears': 40,
          'time_period': ['1979-1-16 12:0:0.0', '2019-3-16 12:0:0.0']},
         'GPCPv2.3': {'name': 'GPCPv2.3',
          'nyears': 41,
          'time_period': ['1979-1-1 0:0:0.0', '2019-7-1 0:0:0.0']},
         'method': 'Meridional root mean square error of nino3_LatExt pr, time series are linearly detrended, observations and model regridded to generic_1x1deg',
         'name': 'pr Meridional RMSE',
         'ref': 'Using CDAT regridding and rms (uncentered and biased) calculation',
         'time_frequency': 'monthly',
         'units': 'mm/day'},
        'metric': {'datasets': "EC-EARTH_r1i1p1; ERA-Interim's pr & GPCPv2.3's precip; 's ",
         'method': 'The metric is the statistical value between the model and the observations',
         'name': 'BiasPrLatRmse',
         'units': 'mm/day'}},
       'BiasPrLonRmse': {'diagnostic': {'EC-EARTH_r1i1p1': {'keyerror': None,
          'name': 'EC-EARTH_r1i1p1',
          'nyears': 161,
          'time_period': ['1850-1-1 0:0:0.0', '1855-4-15 0:0:0.0']},
         'ERA-Interim': {'name': 'ERA-Interim',
          'nyears': 40,
          'time_period': ['1979-1-16 12:0:0.0', '2019-3-16 12:0:0.0']},
         'GPCPv2.3': {'name': 'GPCPv2.3',
          'nyears': 41,
          'time_period': ['1979-1-1 0:0:0.0', '2019-7-1 0:0:0.0']},
         'method': 'Zonal root mean square error of equatorial_pacific pr, time series are linearly detrended, observations and model regridded to generic_1x1deg',
         'name': 'pr Zonal RMSE',
         'ref': 'Using CDAT regridding and rms (uncentered and biased) calculation',
         'time_frequency': 'monthly',
         'units': 'mm/day'},
        'metric': {'datasets': "EC-EARTH_r1i1p1; ERA-Interim's pr & GPCPv2.3's precip; 's ",
         'method': 'The metric is the statistical value between the model and the observations',
         'name': 'BiasPrLonRmse',
         'units': 'mm/day'}},
       'BiasSstLonRmse': {'diagnostic': {'EC-EARTH_r1i1p1': {'keyerror': None,
          'name': 'EC-EARTH_r1i1p1',
          'nyears': 60,
          'time_period': ['1950-1-16 12:0:0.0', '2009-12-16 12:0:0.0']},
         'ERA-Interim': {'name': 'ERA-Interim',
          'nyears': 40,
          'time_period': ['1979-1-16 12:0:0.0', '2019-3-16 12:0:0.0']},
         'HadISST': {'name': 'HadISST',
          'nyears': 151,
          'time_period': ['1870-1-16 11:59:59.5', '2020-10-16 12:0:0.0']},
         'Tropflux': {'name': 'Tropflux',
          'nyears': 40,
          'time_period': ['1979-1-15 0:0:0.0', '2018-12-15 12:0:0.0']},
         'method': 'Zonal root mean square error of equatorial_pacific sst, time series are linearly detrended, observations and model regridded to generic_1x1deg',
         'name': 'sst Zonal RMSE',
         'ref': 'Using CDAT regridding and rms (uncentered and biased) calculation',
         'time_frequency': 'monthly',
         'units': 'C'},
        'metric': {'datasets': "EC-EARTH_r1i1p1; ERA-Interim's ts & HadISST's sst & Tropflux's sst; 's ",
         'method': 'The metric is the statistical value between the model and the observations',
         'name': 'BiasSstLonRmse',
         'units': 'C'}},
       'EnsoAmpl': {'diagnostic': {'EC-EARTH_r1i1p1': {'keyerror': None,
          'name': 'EC-EARTH_r1i1p1',
          'nyears': 60,
          'time_period': ['1950-1-16 12:0:0.0', '2009-12-16 12:0:0.0']},
         'ERA-Interim': {'keyerror': None,
          'name': 'ERA-Interim',
          'nyears': 40,
          'time_period': ['1979-1-16 12:0:0.0', '2019-3-16 12:0:0.0']},
         'HadISST': {'keyerror': None,
          'name': 'HadISST',
          'nyears': 151,
          'time_period': ['1870-1-16 11:59:59.5', '2020-10-16 12:0:0.0']},
         'Tropflux': {'keyerror': None,
          'name': 'Tropflux',
          'nyears': 40,
          'time_period': ['1979-1-15 0:0:0.0', '2018-12-15 12:0:0.0']},
         'method': 'Standard deviation of nino3.4 sstA, time series are linearly detrended',
         'name': 'ENSO amplitude',
         'ref': 'Using CDAT regression calculation',
         'time_frequency': 'monthly',
         'units': 'C'},
        'metric': {'datasets': "EC-EARTH_r1i1p1; ERA-Interim's ts & HadISST's sst & Tropflux's sst; 's ",
         'method': 'The metric is the absolute value of the relative difference between model and observations values (M = 100 * abs[[model-obs] / obs])',
         'name': 'EnsoAmpl',
         'units': '%'}},
       'EnsoDuration': {'diagnostic': {'EC-EARTH_r1i1p1': {'keyerror': None,
          'name': 'EC-EARTH_r1i1p1',
          'nyears': 60,
          'time_period': ['1950-1-16 12:0:0.0', '2009-12-16 12:0:0.0']},
         'ERA-Interim': {'keyerror': None,
          'name': 'ERA-Interim',
          'nyears': 40,
          'time_period': ['1979-1-16 12:0:0.0', '2019-3-16 12:0:0.0']},
         'HadISST': {'keyerror': None,
          'name': 'HadISST',
          'nyears': 151,
          'time_period': ['1870-1-16 11:59:59.5', '2020-10-16 12:0:0.0']},
         'Tropflux': {'keyerror': None,
          'name': 'Tropflux',
          'nyears': 40,
          'time_period': ['1979-1-15 0:0:0.0', '2018-12-15 12:0:0.0']},
         'method': 'nino3.4 SSTA during DEC regressed against nino3.4 SSTA during 6 years (centered on ENSO), the duration is the number of consecutive months during which the regression is above 0.25, time series are linearly detrended, smoothing using a triangle shaped window of 5 points',
         'name': 'ENSO Duration based on life cyle SSTA pattern',
         'ref': 'Using CDAT',
         'time_frequency': 'monthly',
         'units': 'months'},
        'metric': {'datasets': "EC-EARTH_r1i1p1; ERA-Interim's ts & HadISST's sst & Tropflux's sst; 's ",
         'method': 'The metric is the absolute value of the relative difference between model and observations values (M = 100 * abs[[model-obs] / obs])',
         'name': 'EnsoDuration',
         'units': '%'}},
       'EnsoSeasonality': {'diagnostic': {'EC-EARTH_r1i1p1': {'keyerror': None,
          'name': 'EC-EARTH_r1i1p1',
          'nyears': 60,
          'time_period': ['1950-1-16 12:0:0.0', '2009-12-16 12:0:0.0']},
         'ERA-Interim': {'keyerror': None,
          'name': 'ERA-Interim',
          'nyears': 40,
          'time_period': ['1979-1-16 12:0:0.0', '2019-3-16 12:0:0.0']},
         'HadISST': {'keyerror': None,
          'name': 'HadISST',
          'nyears': 151,
          'time_period': ['1870-1-16 11:59:59.5', '2020-10-16 12:0:0.0']},
         'Tropflux': {'keyerror': None,
          'name': 'Tropflux',
          'nyears': 40,
          'time_period': ['1979-1-15 0:0:0.0', '2018-12-15 12:0:0.0']},
         'method': 'Ratio between NDJ and MAM standard deviation nino3.4 sstA, time series are linearly detrended',
         'name': 'ENSO seasonality',
         'ref': 'Using CDAT std dev calculation',
         'time_frequency': 'monthly',
         'units': 'C/C'},
        'metric': {'datasets': "EC-EARTH_r1i1p1; ERA-Interim's ts & HadISST's sst & Tropflux's sst; 's ",
         'method': 'The metric is the absolute value of the relative difference between model and observations values (M = 100 * abs[[model-obs] / obs])',
         'name': 'EnsoSeasonality',
         'units': '%'}},
       'EnsoSstDiversity_2': {'diagnostic': {'EC-EARTH_r1i1p1': {'keyerror': None,
          'name': 'EC-EARTH_r1i1p1',
          'nyears': 60,
          'time_period': ['1950-1-16 12:0:0.0', '2009-12-16 12:0:0.0']},
         'ERA-Interim': {'keyerror': None,
          'name': 'ERA-Interim',
          'nyears': 40,
          'time_period': ['1979-1-16 12:0:0.0', '2019-3-16 12:0:0.0']},
         'HadISST': {'keyerror': None,
          'name': 'HadISST',
          'nyears': 151,
          'time_period': ['1870-1-16 11:59:59.5', '2020-10-16 12:0:0.0']},
         'Tropflux': {'keyerror': None,
          'name': 'Tropflux',
          'nyears': 40,
          'time_period': ['1979-1-15 0:0:0.0', '2018-12-15 12:0:0.0']},
         'method': 'Nino (Nina) events = nino3.4 sstA > 0.75 (< -0.75) during DEC, zonal SSTA (meridional averaged [-5.0 ; 5.0]), the zonal SSTA maximum (minimum) is located for each event, the diversity is the interquartile range (IQR = Q3 - Q1), time series are linearly detrended, smoothing using a triangle shaped window of 5 points',
         'name': 'ENSO Diversity (interquartile range)',
         'ref': 'Using CDAT regridding',
         'time_frequency': 'monthly',
         'units': 'long'},
        'metric': {'datasets': "EC-EARTH_r1i1p1; ERA-Interim's ts & HadISST's sst & Tropflux's sst; 's ",
         'method': 'The metric is the absolute value of the relative difference between model and observations values (M = 100 * abs[[model-obs] / obs])',
         'name': 'EnsoSstDiversity',
         'units': '%'}},
       'EnsoSstLonRmse': {'diagnostic': {'EC-EARTH_r1i1p1': {'keyerror': None,
          'name': 'EC-EARTH_r1i1p1',
          'nyears': 60,
          'time_period': ['1950-1-16 12:0:0.0', '2009-12-16 12:0:0.0']},
         'ERA-Interim': {'name': 'ERA-Interim',
          'nyears': 40,
          'time_period': ['1979-1-16 12:0:0.0', '2019-3-16 12:0:0.0']},
         'HadISST': {'name': 'HadISST',
          'nyears': 151,
          'time_period': ['1870-1-16 11:59:59.5', '2020-10-16 12:0:0.0']},
         'Tropflux': {'name': 'Tropflux',
          'nyears': 40,
          'time_period': ['1979-1-15 0:0:0.0', '2018-12-15 12:0:0.0']},
         'method': 'nino3.4 SSTA during DEC regressed against equatorial_pacific SSTA, time series are linearly detrended, smoothing using a triangle shaped window of 5 points, observations and model regridded to generic_1x1deg',
         'name': 'ENSO Zonal SSTA pattern',
         'ref': 'Using CDAT regridding and rms (uncentered and biased) calculation',
         'time_frequency': 'monthly',
         'units': 'C/C'},
        'metric': {'datasets': "EC-EARTH_r1i1p1; ERA-Interim's ts & HadISST's sst & Tropflux's sst; 's ",
         'method': 'The metric is the statistical value between the model and the observations',
         'name': 'EnsoSstLonRmse',
         'units': 'C/C'}},
       'EnsoSstSkew': {'diagnostic': {'EC-EARTH_r1i1p1': {'keyerror': None,
          'name': 'EC-EARTH_r1i1p1',
          'nyears': 60,
          'time_period': ['1950-1-16 12:0:0.0', '2009-12-16 12:0:0.0']},
         'ERA-Interim': {'keyerror': None,
          'name': 'ERA-Interim',
          'nyears': 40,
          'time_period': ['1979-1-16 12:0:0.0', '2019-3-16 12:0:0.0']},
         'HadISST': {'keyerror': None,
          'name': 'HadISST',
          'nyears': 151,
          'time_period': ['1870-1-16 11:59:59.5', '2020-10-16 12:0:0.0']},
         'Tropflux': {'keyerror': None,
          'name': 'Tropflux',
          'nyears': 40,
          'time_period': ['1979-1-15 0:0:0.0', '2018-12-15 12:0:0.0']},
         'method': 'Standard deviation of nino3.4 sstA, time series are linearly detrended',
         'name': 'ENSO skewness',
         'ref': 'Using CDAT regression calculation',
         'time_frequency': 'monthly',
         'units': 'C'},
        'metric': {'datasets': "EC-EARTH_r1i1p1; ERA-Interim's ts & HadISST's sst & Tropflux's sst; 's ",
         'method': 'The metric is the absolute value of the relative difference between model and observations values (M = 100 * abs[[model-obs] / obs])',
         'name': 'EnsoSstSkew',
         'units': '%'}},
       'EnsoSstTsRmse': {'diagnostic': {'EC-EARTH_r1i1p1': {'keyerror': None,
          'name': 'EC-EARTH_r1i1p1',
          'nyears': 60,
          'time_period': ['1950-1-16 12:0:0.0', '2009-12-16 12:0:0.0']},
         'ERA-Interim': {'name': 'ERA-Interim',
          'nyears': 40,
          'time_period': ['1979-1-16 12:0:0.0', '2019-3-16 12:0:0.0']},
         'HadISST': {'name': 'HadISST',
          'nyears': 151,
          'time_period': ['1870-1-16 11:59:59.5', '2020-10-16 12:0:0.0']},
         'Tropflux': {'name': 'Tropflux',
          'nyears': 40,
          'time_period': ['1979-1-15 0:0:0.0', '2018-12-15 12:0:0.0']},
         'method': 'nino3.4 SSTA during DEC regressed against nino3.4 SSTA during 6 years (centered on ENSO), time series are linearly detrended, smoothing using a triangle shaped window of 5 points',
         'name': 'ENSO life cyle SSTA pattern',
         'ref': 'Using CDAT regridding and rms (uncentered and biased) calculation',
         'time_frequency': 'monthly',
         'units': 'C/C'},
        'metric': {'datasets': "EC-EARTH_r1i1p1; ERA-Interim's ts & HadISST's sst & Tropflux's sst; 's ",
         'method': 'The metric is the statistical value between the model and the observations',
         'name': 'EnsoSstTsRmse',
         'units': 'C/C'}},
       'SeasonalPrLatRmse': {'diagnostic': {'EC-EARTH_r1i1p1': {'keyerror': None,
          'name': 'EC-EARTH_r1i1p1',
          'nyears': 161,
          'time_period': ['1850-1-1 0:0:0.0', '1855-4-15 0:0:0.0']},
         'ERA-Interim': {'name': 'ERA-Interim',
          'nyears': 40,
          'time_period': ['1979-1-16 12:0:0.0', '2019-3-16 12:0:0.0']},
         'GPCPv2.3': {'name': 'GPCPv2.3',
          'nyears': 41,
          'time_period': ['1979-1-1 0:0:0.0', '2019-7-1 0:0:0.0']},
         'method': 'Meridional root mean square error of nino3_LatExt climatological pr STD, time series are linearly detrended, observations and model regridded to generic_1x1deg',
         'name': 'pr meridional seasonality RMSE',
         'ref': 'Using CDAT regridding and rms (uncentered and biased) calculation',
         'time_frequency': 'monthly',
         'units': 'mm/day'},
        'metric': {'datasets': "EC-EARTH_r1i1p1; ERA-Interim's pr & GPCPv2.3's precip; 's ",
         'method': 'The metric is the statistical value between the model and the observations',
         'name': 'SeasonalPrLatRmse',
         'units': 'mm/day'}},
       'SeasonalPrLonRmse': {'diagnostic': {'EC-EARTH_r1i1p1': {'keyerror': None,
          'name': 'EC-EARTH_r1i1p1',
          'nyears': 161,
          'time_period': ['1850-1-1 0:0:0.0', '1855-4-15 0:0:0.0']},
         'ERA-Interim': {'name': 'ERA-Interim',
          'nyears': 40,
          'time_period': ['1979-1-16 12:0:0.0', '2019-3-16 12:0:0.0']},
         'GPCPv2.3': {'name': 'GPCPv2.3',
          'nyears': 41,
          'time_period': ['1979-1-1 0:0:0.0', '2019-7-1 0:0:0.0']},
         'method': 'Zonal root mean square error of equatorial_pacific climatological pr STD, time series are linearly detrended, observations and model regridded to generic_1x1deg',
         'name': 'pr zonal seasonality RMSE',
         'ref': 'Using CDAT regridding and rms (uncentered and biased) calculation',
         'time_frequency': 'monthly',
         'units': 'mm/day'},
        'metric': {'datasets': "EC-EARTH_r1i1p1; ERA-Interim's pr & GPCPv2.3's precip; 's ",
         'method': 'The metric is the statistical value between the model and the observations',
         'name': 'SeasonalPrLonRmse',
         'units': 'mm/day'}},
       'SeasonalSstLonRmse': {'diagnostic': {'EC-EARTH_r1i1p1': {'keyerror': None,
          'name': 'EC-EARTH_r1i1p1',
          'nyears': 60,
          'time_period': ['1950-1-16 12:0:0.0', '2009-12-16 12:0:0.0']},
         'ERA-Interim': {'name': 'ERA-Interim',
          'nyears': 40,
          'time_period': ['1979-1-16 12:0:0.0', '2019-3-16 12:0:0.0']},
         'HadISST': {'name': 'HadISST',
          'nyears': 151,
          'time_period': ['1870-1-16 11:59:59.5', '2020-10-16 12:0:0.0']},
         'Tropflux': {'name': 'Tropflux',
          'nyears': 40,
          'time_period': ['1979-1-15 0:0:0.0', '2018-12-15 12:0:0.0']},
         'method': 'Zonal root mean square error of equatorial_pacific climatological sst STD, time series are linearly detrended, observations and model regridded to generic_1x1deg',
         'name': 'sst zonal seasonality RMSE',
         'ref': 'Using CDAT regridding and rms (uncentered and biased) calculation',
         'time_frequency': 'monthly',
         'units': 'C'},
        'metric': {'datasets': "EC-EARTH_r1i1p1; ERA-Interim's ts & HadISST's sst & Tropflux's sst; 's ",
         'method': 'The metric is the statistical value between the model and the observations',
         'name': 'SeasonalSstLonRmse',
         'units': 'C'}}},
      'name': 'Metrics Collection for ENSO performance'},
     'value': {'BiasPrLatRmse': {'diagnostic': {'EC-EARTH_r1i1p1': {'value': None,
         'value_error': None},
        'ERA-Interim': {'value': None, 'value_error': None},
        'GPCPv2.3': {'value': None, 'value_error': None}},
       'metric': {'ERA-Interim': {'value': 1.3736916150795229,
         'value_error': None},
        'GPCPv2.3': {'value': 1.1733683773183137, 'value_error': None}}},
      'BiasPrLonRmse': {'diagnostic': {'EC-EARTH_r1i1p1': {'value': None,
         'value_error': None},
        'ERA-Interim': {'value': None, 'value_error': None},
        'GPCPv2.3': {'value': None, 'value_error': None}},
       'metric': {'ERA-Interim': {'value': 2.7386111379219993,
         'value_error': None},
        'GPCPv2.3': {'value': 1.7144754188992224, 'value_error': None}}},
      'BiasSstLonRmse': {'diagnostic': {'EC-EARTH_r1i1p1': {'value': None,
         'value_error': None},
        'ERA-Interim': {'value': None, 'value_error': None},
        'HadISST': {'value': None, 'value_error': None},
        'Tropflux': {'value': None, 'value_error': None}},
       'metric': {'ERA-Interim': {'value': 1.76028795861894,
         'value_error': None},
        'HadISST': {'value': 1.5584138016330047, 'value_error': None},
        'Tropflux': {'value': 1.8095990467291043, 'value_error': None}}},
      'EnsoAmpl': {'diagnostic': {'EC-EARTH_r1i1p1': {'value': 0.4798685207490275,
         'value_error': 0.06195075964100573},
        'ERA-Interim': {'value': 0.8989844997845644,
         'value_error': 0.14214193002531866},
        'HadISST': {'value': 0.7665787872085695,
         'value_error': 0.06238329697691264},
        'Tropflux': {'value': 0.9039789553693535,
         'value_error': 0.14293162279134272}},
       'metric': {'ERA-Interim': {'value': 46.62104620668935,
         'value_error': 15.331146957836234},
        'HadISST': {'value': 37.40127841308689,
         'value_error': 13.175671922792198},
        'Tropflux': {'value': 46.915963264547486,
         'value_error': 15.246442848199635}}},
      'EnsoDuration': {'diagnostic': {'EC-EARTH_r1i1p1': {'value': 16.0,
         'value_error': None},
        'ERA-Interim': {'value': 13.0, 'value_error': None},
        'HadISST': {'value': 13.0, 'value_error': None},
        'Tropflux': {'value': 13.0, 'value_error': None}},
       'metric': {'ERA-Interim': {'value': 23.076923076923077,
         'value_error': None},
        'HadISST': {'value': 23.076923076923077, 'value_error': None},
        'Tropflux': {'value': 23.076923076923077, 'value_error': None}}},
      'EnsoSeasonality': {'diagnostic': {'EC-EARTH_r1i1p1': {'value': 1.024904255536285,
         'value_error': 0.26574573932618567},
        'ERA-Interim': {'value': 2.0466846866656914,
         'value_error': 0.6513411033995022},
        'HadISST': {'value': 1.6639865947361325,
         'value_error': 0.2712772451657809},
        'Tropflux': {'value': 2.0532132553583624,
         'value_error': 0.6534187683977347}},
       'metric': {'ERA-Interim': {'value': 49.92368574340663,
         'value_error': 28.92059343597207},
        'HadISST': {'value': 38.40669998313239,
         'value_error': 26.011889049339093},
        'Tropflux': {'value': 50.082912582921104,
         'value_error': 28.828635096823984}}},
      'EnsoSstDiversity_2': {'diagnostic': {'EC-EARTH_r1i1p1': {'value': 8.0,
         'value_error': None},
        'ERA-Interim': {'value': 33.25, 'value_error': None},
        'HadISST': {'value': 49.0, 'value_error': None},
        'Tropflux': {'value': 32.0, 'value_error': None}},
       'metric': {'ERA-Interim': {'value': 75.93984962406014,
         'value_error': None},
        'HadISST': {'value': 83.6734693877551, 'value_error': None},
        'Tropflux': {'value': 75.0, 'value_error': None}}},
      'EnsoSstLonRmse': {'diagnostic': {'EC-EARTH_r1i1p1': {'value': None,
         'value_error': None},
        'ERA-Interim': {'value': None, 'value_error': None},
        'HadISST': {'value': None, 'value_error': None},
        'Tropflux': {'value': None, 'value_error': None}},
       'metric': {'ERA-Interim': {'value': 0.2451617758752234,
         'value_error': None},
        'HadISST': {'value': 0.251835955246885, 'value_error': None},
        'Tropflux': {'value': 0.2455204811155478, 'value_error': None}}},
      'EnsoSstSkew': {'diagnostic': {'EC-EARTH_r1i1p1': {'value': 0.29940790918241245,
         'value_error': 0.03865339486620887},
        'ERA-Interim': {'value': 0.39098111106809963,
         'value_error': 0.061819541653923164},
        'HadISST': {'value': 0.38989908235027515,
         'value_error': 0.03172953733021198},
        'Tropflux': {'value': 0.39744741059612115,
         'value_error': 0.06284195338099416}},
       'metric': {'ERA-Interim': {'value': 23.421387707330265,
         'value_error': 21.994398081163073},
        'HadISST': {'value': 23.208870516542483,
         'value_error': 16.162865678493553},
        'Tropflux': {'value': 24.66728900476714,
         'value_error': 21.636558623313725}}},
      'EnsoSstTsRmse': {'diagnostic': {'EC-EARTH_r1i1p1': {'value': None,
         'value_error': None},
        'ERA-Interim': {'value': None, 'value_error': None},
        'HadISST': {'value': None, 'value_error': None},
        'Tropflux': {'value': None, 'value_error': None}},
       'metric': {'ERA-Interim': {'value': 0.18584378497223222,
         'value_error': None},
        'HadISST': {'value': 0.1494106115331866, 'value_error': None},
        'Tropflux': {'value': 0.18036417396574284, 'value_error': None}}},
      'SeasonalPrLatRmse': {'diagnostic': {'EC-EARTH_r1i1p1': {'value': None,
         'value_error': None},
        'ERA-Interim': {'value': None, 'value_error': None},
        'GPCPv2.3': {'value': None, 'value_error': None}},
       'metric': {'ERA-Interim': {'value': 2.266494936828836,
         'value_error': None},
        'GPCPv2.3': {'value': 1.891337630001131, 'value_error': None}}},
      'SeasonalPrLonRmse': {'diagnostic': {'EC-EARTH_r1i1p1': {'value': None,
         'value_error': None},
        'ERA-Interim': {'value': None, 'value_error': None},
        'GPCPv2.3': {'value': None, 'value_error': None}},
       'metric': {'ERA-Interim': {'value': 1.3093260195659846,
         'value_error': None},
        'GPCPv2.3': {'value': 0.8706605009977747, 'value_error': None}}},
      'SeasonalSstLonRmse': {'diagnostic': {'EC-EARTH_r1i1p1': {'value': None,
         'value_error': None},
        'ERA-Interim': {'value': None, 'value_error': None},
        'HadISST': {'value': None, 'value_error': None},
        'Tropflux': {'value': None, 'value_error': None}},
       'metric': {'ERA-Interim': {'value': 0.14881981279633272,
         'value_error': None},
        'HadISST': {'value': 0.148678175648985, 'value_error': None},
        'Tropflux': {'value': 0.1559504386749672, 'value_error': None}}}}},
    'r7i1p1': {'metadata': {'description_of_the_collection': 'Describe which science question this collection is about',
      'metrics': {'BiasPrLatRmse': {'diagnostic': {'EC-EARTH_r7i1p1': {'keyerror': None,
          'name': 'EC-EARTH_r7i1p1',
          'nyears': 95,
          'time_period': ['2006-1-1 0:0:0.0', '2009-2-13 0:0:0.0']},
         'ERA-Interim': {'name': 'ERA-Interim',
          'nyears': 40,
          'time_period': ['1979-1-16 12:0:0.0', '2019-3-16 12:0:0.0']},
         'GPCPv2.3': {'name': 'GPCPv2.3',
          'nyears': 41,
          'time_period': ['1979-1-1 0:0:0.0', '2019-7-1 0:0:0.0']},
         'method': 'Meridional root mean square error of nino3_LatExt pr, time series are linearly detrended, observations and model regridded to generic_1x1deg',
         'name': 'pr Meridional RMSE',
         'ref': 'Using CDAT regridding and rms (uncentered and biased) calculation',
         'time_frequency': 'monthly',
         'units': 'mm/day'},
        'metric': {'datasets': "EC-EARTH_r7i1p1; ERA-Interim's pr & GPCPv2.3's precip; 's ",
         'method': 'The metric is the statistical value between the model and the observations',
         'name': 'BiasPrLatRmse',
         'units': 'mm/day'}},
       'BiasPrLonRmse': {'diagnostic': {'EC-EARTH_r7i1p1': {'keyerror': None,
          'name': 'EC-EARTH_r7i1p1',
          'nyears': 95,
          'time_period': ['2006-1-1 0:0:0.0', '2009-2-13 0:0:0.0']},
         'ERA-Interim': {'name': 'ERA-Interim',
          'nyears': 40,
          'time_period': ['1979-1-16 12:0:0.0', '2019-3-16 12:0:0.0']},
         'GPCPv2.3': {'name': 'GPCPv2.3',
          'nyears': 41,
          'time_period': ['1979-1-1 0:0:0.0', '2019-7-1 0:0:0.0']},
         'method': 'Zonal root mean square error of equatorial_pacific pr, time series are linearly detrended, observations and model regridded to generic_1x1deg',
         'name': 'pr Zonal RMSE',
         'ref': 'Using CDAT regridding and rms (uncentered and biased) calculation',
         'time_frequency': 'monthly',
         'units': 'mm/day'},
        'metric': {'datasets': "EC-EARTH_r7i1p1; ERA-Interim's pr & GPCPv2.3's precip; 's ",
         'method': 'The metric is the statistical value between the model and the observations',
         'name': 'BiasPrLonRmse',
         'units': 'mm/day'}},
       'BiasSstLonRmse': {'diagnostic': {'EC-EARTH_r7i1p1': {'keyerror': None,
          'name': 'EC-EARTH_r7i1p1',
          'nyears': 163,
          'time_period': ['1850-1-16 12:0:0.0', '2012-12-16 12:0:0.0']},
         'ERA-Interim': {'name': 'ERA-Interim',
          'nyears': 40,
          'time_period': ['1979-1-16 12:0:0.0', '2019-3-16 12:0:0.0']},
         'HadISST': {'name': 'HadISST',
          'nyears': 151,
          'time_period': ['1870-1-16 11:59:59.5', '2020-10-16 12:0:0.0']},
         'Tropflux': {'name': 'Tropflux',
          'nyears': 40,
          'time_period': ['1979-1-15 0:0:0.0', '2018-12-15 12:0:0.0']},
         'method': 'Zonal root mean square error of equatorial_pacific sst, time series are linearly detrended, observations and model regridded to generic_1x1deg',
         'name': 'sst Zonal RMSE',
         'ref': 'Using CDAT regridding and rms (uncentered and biased) calculation',
         'time_frequency': 'monthly',
         'units': 'C'},
        'metric': {'datasets': "EC-EARTH_r7i1p1; ERA-Interim's ts & HadISST's sst & Tropflux's sst; 's ",
         'method': 'The metric is the statistical value between the model and the observations',
         'name': 'BiasSstLonRmse',
         'units': 'C'}},
       'EnsoAmpl': {'diagnostic': {'EC-EARTH_r7i1p1': {'keyerror': None,
          'name': 'EC-EARTH_r7i1p1',
          'nyears': 163,
          'time_period': ['1850-1-16 12:0:0.0', '2012-12-16 12:0:0.0']},
         'ERA-Interim': {'keyerror': None,
          'name': 'ERA-Interim',
          'nyears': 40,
          'time_period': ['1979-1-16 12:0:0.0', '2019-3-16 12:0:0.0']},
         'HadISST': {'keyerror': None,
          'name': 'HadISST',
          'nyears': 151,
          'time_period': ['1870-1-16 11:59:59.5', '2020-10-16 12:0:0.0']},
         'Tropflux': {'keyerror': None,
          'name': 'Tropflux',
          'nyears': 40,
          'time_period': ['1979-1-15 0:0:0.0', '2018-12-15 12:0:0.0']},
         'method': 'Standard deviation of nino3.4 sstA, time series are linearly detrended',
         'name': 'ENSO amplitude',
         'ref': 'Using CDAT regression calculation',
         'time_frequency': 'monthly',
         'units': 'C'},
        'metric': {'datasets': "EC-EARTH_r7i1p1; ERA-Interim's ts & HadISST's sst & Tropflux's sst; 's ",
         'method': 'The metric is the absolute value of the relative difference between model and observations values (M = 100 * abs[[model-obs] / obs])',
         'name': 'EnsoAmpl',
         'units': '%'}},
       'EnsoDuration': {'diagnostic': {'EC-EARTH_r7i1p1': {'keyerror': None,
          'name': 'EC-EARTH_r7i1p1',
          'nyears': 163,
          'time_period': ['1850-1-16 12:0:0.0', '2012-12-16 12:0:0.0']},
         'ERA-Interim': {'keyerror': None,
          'name': 'ERA-Interim',
          'nyears': 40,
          'time_period': ['1979-1-16 12:0:0.0', '2019-3-16 12:0:0.0']},
         'HadISST': {'keyerror': None,
          'name': 'HadISST',
          'nyears': 151,
          'time_period': ['1870-1-16 11:59:59.5', '2020-10-16 12:0:0.0']},
         'Tropflux': {'keyerror': None,
          'name': 'Tropflux',
          'nyears': 40,
          'time_period': ['1979-1-15 0:0:0.0', '2018-12-15 12:0:0.0']},
         'method': 'nino3.4 SSTA during DEC regressed against nino3.4 SSTA during 6 years (centered on ENSO), the duration is the number of consecutive months during which the regression is above 0.25, time series are linearly detrended, smoothing using a triangle shaped window of 5 points',
         'name': 'ENSO Duration based on life cyle SSTA pattern',
         'ref': 'Using CDAT',
         'time_frequency': 'monthly',
         'units': 'months'},
        'metric': {'datasets': "EC-EARTH_r7i1p1; ERA-Interim's ts & HadISST's sst & Tropflux's sst; 's ",
         'method': 'The metric is the absolute value of the relative difference between model and observations values (M = 100 * abs[[model-obs] / obs])',
         'name': 'EnsoDuration',
         'units': '%'}},
       'EnsoSeasonality': {'diagnostic': {'EC-EARTH_r7i1p1': {'keyerror': None,
          'name': 'EC-EARTH_r7i1p1',
          'nyears': 163,
          'time_period': ['1850-1-16 12:0:0.0', '2012-12-16 12:0:0.0']},
         'ERA-Interim': {'keyerror': None,
          'name': 'ERA-Interim',
          'nyears': 40,
          'time_period': ['1979-1-16 12:0:0.0', '2019-3-16 12:0:0.0']},
         'HadISST': {'keyerror': None,
          'name': 'HadISST',
          'nyears': 151,
          'time_period': ['1870-1-16 11:59:59.5', '2020-10-16 12:0:0.0']},
         'Tropflux': {'keyerror': None,
          'name': 'Tropflux',
          'nyears': 40,
          'time_period': ['1979-1-15 0:0:0.0', '2018-12-15 12:0:0.0']},
         'method': 'Ratio between NDJ and MAM standard deviation nino3.4 sstA, time series are linearly detrended',
         'name': 'ENSO seasonality',
         'ref': 'Using CDAT std dev calculation',
         'time_frequency': 'monthly',
         'units': 'C/C'},
        'metric': {'datasets': "EC-EARTH_r7i1p1; ERA-Interim's ts & HadISST's sst & Tropflux's sst; 's ",
         'method': 'The metric is the absolute value of the relative difference between model and observations values (M = 100 * abs[[model-obs] / obs])',
         'name': 'EnsoSeasonality',
         'units': '%'}},
       'EnsoSstDiversity_2': {'diagnostic': {'EC-EARTH_r7i1p1': {'keyerror': None,
          'name': 'EC-EARTH_r7i1p1',
          'nyears': 163,
          'time_period': ['1850-1-16 12:0:0.0', '2012-12-16 12:0:0.0']},
         'ERA-Interim': {'keyerror': None,
          'name': 'ERA-Interim',
          'nyears': 40,
          'time_period': ['1979-1-16 12:0:0.0', '2019-3-16 12:0:0.0']},
         'HadISST': {'keyerror': None,
          'name': 'HadISST',
          'nyears': 151,
          'time_period': ['1870-1-16 11:59:59.5', '2020-10-16 12:0:0.0']},
         'Tropflux': {'keyerror': None,
          'name': 'Tropflux',
          'nyears': 40,
          'time_period': ['1979-1-15 0:0:0.0', '2018-12-15 12:0:0.0']},
         'method': 'Nino (Nina) events = nino3.4 sstA > 0.75 (< -0.75) during DEC, zonal SSTA (meridional averaged [-5.0 ; 5.0]), the zonal SSTA maximum (minimum) is located for each event, the diversity is the interquartile range (IQR = Q3 - Q1), time series are linearly detrended, smoothing using a triangle shaped window of 5 points',
         'name': 'ENSO Diversity (interquartile range)',
         'ref': 'Using CDAT regridding',
         'time_frequency': 'monthly',
         'units': 'long'},
        'metric': {'datasets': "EC-EARTH_r7i1p1; ERA-Interim's ts & HadISST's sst & Tropflux's sst; 's ",
         'method': 'The metric is the absolute value of the relative difference between model and observations values (M = 100 * abs[[model-obs] / obs])',
         'name': 'EnsoSstDiversity',
         'units': '%'}},
       'EnsoSstLonRmse': {'diagnostic': {'EC-EARTH_r7i1p1': {'keyerror': None,
          'name': 'EC-EARTH_r7i1p1',
          'nyears': 163,
          'time_period': ['1850-1-16 12:0:0.0', '2012-12-16 12:0:0.0']},
         'ERA-Interim': {'name': 'ERA-Interim',
          'nyears': 40,
          'time_period': ['1979-1-16 12:0:0.0', '2019-3-16 12:0:0.0']},
         'HadISST': {'name': 'HadISST',
          'nyears': 151,
          'time_period': ['1870-1-16 11:59:59.5', '2020-10-16 12:0:0.0']},
         'Tropflux': {'name': 'Tropflux',
          'nyears': 40,
          'time_period': ['1979-1-15 0:0:0.0', '2018-12-15 12:0:0.0']},
         'method': 'nino3.4 SSTA during DEC regressed against equatorial_pacific SSTA, time series are linearly detrended, smoothing using a triangle shaped window of 5 points, observations and model regridded to generic_1x1deg',
         'name': 'ENSO Zonal SSTA pattern',
         'ref': 'Using CDAT regridding and rms (uncentered and biased) calculation',
         'time_frequency': 'monthly',
         'units': 'C/C'},
        'metric': {'datasets': "EC-EARTH_r7i1p1; ERA-Interim's ts & HadISST's sst & Tropflux's sst; 's ",
         'method': 'The metric is the statistical value between the model and the observations',
         'name': 'EnsoSstLonRmse',
         'units': 'C/C'}},
       'EnsoSstSkew': {'diagnostic': {'EC-EARTH_r7i1p1': {'keyerror': None,
          'name': 'EC-EARTH_r7i1p1',
          'nyears': 163,
          'time_period': ['1850-1-16 12:0:0.0', '2012-12-16 12:0:0.0']},
         'ERA-Interim': {'keyerror': None,
          'name': 'ERA-Interim',
          'nyears': 40,
          'time_period': ['1979-1-16 12:0:0.0', '2019-3-16 12:0:0.0']},
         'HadISST': {'keyerror': None,
          'name': 'HadISST',
          'nyears': 151,
          'time_period': ['1870-1-16 11:59:59.5', '2020-10-16 12:0:0.0']},
         'Tropflux': {'keyerror': None,
          'name': 'Tropflux',
          'nyears': 40,
          'time_period': ['1979-1-15 0:0:0.0', '2018-12-15 12:0:0.0']},
         'method': 'Standard deviation of nino3.4 sstA, time series are linearly detrended',
         'name': 'ENSO skewness',
         'ref': 'Using CDAT regression calculation',
         'time_frequency': 'monthly',
         'units': 'C'},
        'metric': {'datasets': "EC-EARTH_r7i1p1; ERA-Interim's ts & HadISST's sst & Tropflux's sst; 's ",
         'method': 'The metric is the absolute value of the relative difference between model and observations values (M = 100 * abs[[model-obs] / obs])',
         'name': 'EnsoSstSkew',
         'units': '%'}},
       'EnsoSstTsRmse': {'diagnostic': {'EC-EARTH_r7i1p1': {'keyerror': None,
          'name': 'EC-EARTH_r7i1p1',
          'nyears': 163,
          'time_period': ['1850-1-16 12:0:0.0', '2012-12-16 12:0:0.0']},
         'ERA-Interim': {'name': 'ERA-Interim',
          'nyears': 40,
          'time_period': ['1979-1-16 12:0:0.0', '2019-3-16 12:0:0.0']},
         'HadISST': {'name': 'HadISST',
          'nyears': 151,
          'time_period': ['1870-1-16 11:59:59.5', '2020-10-16 12:0:0.0']},
         'Tropflux': {'name': 'Tropflux',
          'nyears': 40,
          'time_period': ['1979-1-15 0:0:0.0', '2018-12-15 12:0:0.0']},
         'method': 'nino3.4 SSTA during DEC regressed against nino3.4 SSTA during 6 years (centered on ENSO), time series are linearly detrended, smoothing using a triangle shaped window of 5 points',
         'name': 'ENSO life cyle SSTA pattern',
         'ref': 'Using CDAT regridding and rms (uncentered and biased) calculation',
         'time_frequency': 'monthly',
         'units': 'C/C'},
        'metric': {'datasets': "EC-EARTH_r7i1p1; ERA-Interim's ts & HadISST's sst & Tropflux's sst; 's ",
         'method': 'The metric is the statistical value between the model and the observations',
         'name': 'EnsoSstTsRmse',
         'units': 'C/C'}},
       'SeasonalPrLatRmse': {'diagnostic': {'EC-EARTH_r7i1p1': {'keyerror': None,
          'name': 'EC-EARTH_r7i1p1',
          'nyears': 95,
          'time_period': ['2006-1-1 0:0:0.0', '2009-2-13 0:0:0.0']},
         'ERA-Interim': {'name': 'ERA-Interim',
          'nyears': 40,
          'time_period': ['1979-1-16 12:0:0.0', '2019-3-16 12:0:0.0']},
         'GPCPv2.3': {'name': 'GPCPv2.3',
          'nyears': 41,
          'time_period': ['1979-1-1 0:0:0.0', '2019-7-1 0:0:0.0']},
         'method': 'Meridional root mean square error of nino3_LatExt climatological pr STD, time series are linearly detrended, observations and model regridded to generic_1x1deg',
         'name': 'pr meridional seasonality RMSE',
         'ref': 'Using CDAT regridding and rms (uncentered and biased) calculation',
         'time_frequency': 'monthly',
         'units': 'mm/day'},
        'metric': {'datasets': "EC-EARTH_r7i1p1; ERA-Interim's pr & GPCPv2.3's precip; 's ",
         'method': 'The metric is the statistical value between the model and the observations',
         'name': 'SeasonalPrLatRmse',
         'units': 'mm/day'}},
       'SeasonalPrLonRmse': {'diagnostic': {'EC-EARTH_r7i1p1': {'keyerror': None,
          'name': 'EC-EARTH_r7i1p1',
          'nyears': 95,
          'time_period': ['2006-1-1 0:0:0.0', '2009-2-13 0:0:0.0']},
         'ERA-Interim': {'name': 'ERA-Interim',
          'nyears': 40,
          'time_period': ['1979-1-16 12:0:0.0', '2019-3-16 12:0:0.0']},
         'GPCPv2.3': {'name': 'GPCPv2.3',
          'nyears': 41,
          'time_period': ['1979-1-1 0:0:0.0', '2019-7-1 0:0:0.0']},
         'method': 'Zonal root mean square error of equatorial_pacific climatological pr STD, time series are linearly detrended, observations and model regridded to generic_1x1deg',
         'name': 'pr zonal seasonality RMSE',
         'ref': 'Using CDAT regridding and rms (uncentered and biased) calculation',
         'time_frequency': 'monthly',
         'units': 'mm/day'},
        'metric': {'datasets': "EC-EARTH_r7i1p1; ERA-Interim's pr & GPCPv2.3's precip; 's ",
         'method': 'The metric is the statistical value between the model and the observations',
         'name': 'SeasonalPrLonRmse',
         'units': 'mm/day'}},
       'SeasonalSstLonRmse': {'diagnostic': {'EC-EARTH_r7i1p1': {'keyerror': None,
          'name': 'EC-EARTH_r7i1p1',
          'nyears': 163,
          'time_period': ['1850-1-16 12:0:0.0', '2012-12-16 12:0:0.0']},
         'ERA-Interim': {'name': 'ERA-Interim',
          'nyears': 40,
          'time_period': ['1979-1-16 12:0:0.0', '2019-3-16 12:0:0.0']},
         'HadISST': {'name': 'HadISST',
          'nyears': 151,
          'time_period': ['1870-1-16 11:59:59.5', '2020-10-16 12:0:0.0']},
         'Tropflux': {'name': 'Tropflux',
          'nyears': 40,
          'time_period': ['1979-1-15 0:0:0.0', '2018-12-15 12:0:0.0']},
         'method': 'Zonal root mean square error of equatorial_pacific climatological sst STD, time series are linearly detrended, observations and model regridded to generic_1x1deg',
         'name': 'sst zonal seasonality RMSE',
         'ref': 'Using CDAT regridding and rms (uncentered and biased) calculation',
         'time_frequency': 'monthly',
         'units': 'C'},
        'metric': {'datasets': "EC-EARTH_r7i1p1; ERA-Interim's ts & HadISST's sst & Tropflux's sst; 's ",
         'method': 'The metric is the statistical value between the model and the observations',
         'name': 'SeasonalSstLonRmse',
         'units': 'C'}}},
      'name': 'Metrics Collection for ENSO performance'},
     'value': {'BiasPrLatRmse': {'diagnostic': {'EC-EARTH_r7i1p1': {'value': None,
         'value_error': None},
        'ERA-Interim': {'value': None, 'value_error': None},
        'GPCPv2.3': {'value': None, 'value_error': None}},
       'metric': {'ERA-Interim': {'value': 1.2006425770092448,
         'value_error': None},
        'GPCPv2.3': {'value': 1.0894109293480292, 'value_error': None}}},
      'BiasPrLonRmse': {'diagnostic': {'EC-EARTH_r7i1p1': {'value': None,
         'value_error': None},
        'ERA-Interim': {'value': None, 'value_error': None},
        'GPCPv2.3': {'value': None, 'value_error': None}},
       'metric': {'ERA-Interim': {'value': 2.1719059920885235,
         'value_error': None},
        'GPCPv2.3': {'value': 1.153339972406894, 'value_error': None}}},
      'BiasSstLonRmse': {'diagnostic': {'EC-EARTH_r7i1p1': {'value': None,
         'value_error': None},
        'ERA-Interim': {'value': None, 'value_error': None},
        'HadISST': {'value': None, 'value_error': None},
        'Tropflux': {'value': None, 'value_error': None}},
       'metric': {'ERA-Interim': {'value': 1.9233200262415666,
         'value_error': None},
        'HadISST': {'value': 1.720794186588863, 'value_error': None},
        'Tropflux': {'value': 1.9727087917202113, 'value_error': None}}},
      'EnsoAmpl': {'diagnostic': {'EC-EARTH_r7i1p1': {'value': 0.4741352733642043,
         'value_error': 0.037137140757040984},
        'ERA-Interim': {'value': 0.8989844997845644,
         'value_error': 0.14214193002531866},
        'HadISST': {'value': 0.7665787872085695,
         'value_error': 0.06238329697691264},
        'Tropflux': {'value': 0.9039789553693535,
         'value_error': 0.14293162279134272}},
       'metric': {'ERA-Interim': {'value': 47.258793285331656,
         'value_error': 12.470127118629813},
        'HadISST': {'value': 38.14917901775929,
         'value_error': 9.877878615554302},
        'Tropflux': {'value': 47.55018681043531,
         'value_error': 12.401230054532535}}},
      'EnsoDuration': {'diagnostic': {'EC-EARTH_r7i1p1': {'value': 17.0,
         'value_error': None},
        'ERA-Interim': {'value': 13.0, 'value_error': None},
        'HadISST': {'value': 13.0, 'value_error': None},
        'Tropflux': {'value': 13.0, 'value_error': None}},
       'metric': {'ERA-Interim': {'value': 30.76923076923077,
         'value_error': None},
        'HadISST': {'value': 30.76923076923077, 'value_error': None},
        'Tropflux': {'value': 30.76923076923077, 'value_error': None}}},
      'EnsoSeasonality': {'diagnostic': {'EC-EARTH_r7i1p1': {'value': 1.044657267572688,
         'value_error': 0.16389989858337928},
        'ERA-Interim': {'value': 2.0466846866656914,
         'value_error': 0.6513411033995022},
        'HadISST': {'value': 1.6639865947361325,
         'value_error': 0.2712772451657809},
        'Tropflux': {'value': 2.0532132553583624,
         'value_error': 0.6534187683977347}},
       'metric': {'ERA-Interim': {'value': 48.958563359626886,
         'value_error': 24.25159861807373},
        'HadISST': {'value': 37.21961036961689,
         'value_error': 20.084825871450214},
        'Tropflux': {'value': 49.12085898304041,
         'value_error': 24.174486205579797}}},
      'EnsoSstDiversity_2': {'diagnostic': {'EC-EARTH_r7i1p1': {'value': 9.0,
         'value_error': None},
        'ERA-Interim': {'value': 33.25, 'value_error': None},
        'HadISST': {'value': 49.0, 'value_error': None},
        'Tropflux': {'value': 32.0, 'value_error': None}},
       'metric': {'ERA-Interim': {'value': 72.93233082706767,
         'value_error': None},
        'HadISST': {'value': 81.63265306122449, 'value_error': None},
        'Tropflux': {'value': 71.875, 'value_error': None}}},
      'EnsoSstLonRmse': {'diagnostic': {'EC-EARTH_r7i1p1': {'value': None,
         'value_error': None},
        'ERA-Interim': {'value': None, 'value_error': None},
        'HadISST': {'value': None, 'value_error': None},
        'Tropflux': {'value': None, 'value_error': None}},
       'metric': {'ERA-Interim': {'value': 0.22181874888810055,
         'value_error': None},
        'HadISST': {'value': 0.2288668914331754, 'value_error': None},
        'Tropflux': {'value': 0.22222899852535427, 'value_error': None}}},
      'EnsoSstSkew': {'diagnostic': {'EC-EARTH_r7i1p1': {'value': 0.13665747076444262,
         'value_error': 0.010703839204517345},
        'ERA-Interim': {'value': 0.39098111106809963,
         'value_error': 0.061819541653923164},
        'HadISST': {'value': 0.38989908235027515,
         'value_error': 0.03172953733021198},
        'Tropflux': {'value': 0.39744741059612115,
         'value_error': 0.06284195338099416}},
       'metric': {'ERA-Interim': {'value': 65.04755168577948,
         'value_error': 8.264154363090192},
        'HadISST': {'value': 64.95055337378992,
         'value_error': 5.597568048699975},
        'Tropflux': {'value': 65.61621308351874,
         'value_error': 8.129700103148236}}},
      'EnsoSstTsRmse': {'diagnostic': {'EC-EARTH_r7i1p1': {'value': None,
         'value_error': None},
        'ERA-Interim': {'value': None, 'value_error': None},
        'HadISST': {'value': None, 'value_error': None},
        'Tropflux': {'value': None, 'value_error': None}},
       'metric': {'ERA-Interim': {'value': 0.21142829035502406,
         'value_error': None},
        'HadISST': {'value': 0.1669895034230152, 'value_error': None},
        'Tropflux': {'value': 0.2082957124376765, 'value_error': None}}},
      'SeasonalPrLatRmse': {'diagnostic': {'EC-EARTH_r7i1p1': {'value': None,
         'value_error': None},
        'ERA-Interim': {'value': None, 'value_error': None},
        'GPCPv2.3': {'value': None, 'value_error': None}},
       'metric': {'ERA-Interim': {'value': 2.1779941583048683,
         'value_error': None},
        'GPCPv2.3': {'value': 1.8111048902809108, 'value_error': None}}},
      'SeasonalPrLonRmse': {'diagnostic': {'EC-EARTH_r7i1p1': {'value': None,
         'value_error': None},
        'ERA-Interim': {'value': None, 'value_error': None},
        'GPCPv2.3': {'value': None, 'value_error': None}},
       'metric': {'ERA-Interim': {'value': 1.1837746546314178,
         'value_error': None},
        'GPCPv2.3': {'value': 0.7402101282264294, 'value_error': None}}},
      'SeasonalSstLonRmse': {'diagnostic': {'EC-EARTH_r7i1p1': {'value': None,
         'value_error': None},
        'ERA-Interim': {'value': None, 'value_error': None},
        'HadISST': {'value': None, 'value_error': None},
        'Tropflux': {'value': None, 'value_error': None}},
       'metric': {'ERA-Interim': {'value': 0.15859469679833837,
         'value_error': None},
        'HadISST': {'value': 0.15834341566946364, 'value_error': None},
        'Tropflux': {'value': 0.16590669608261155, 'value_error': None}}}}},
    'r8i1p1': {'metadata': {'description_of_the_collection': 'Describe which science question this collection is about',
      'metrics': {'BiasPrLatRmse': {'diagnostic': {'EC-EARTH_r8i1p1': {'keyerror': None,
          'name': 'EC-EARTH_r8i1p1',
          'nyears': 163,
          'time_period': ['1850-1-16 12:0:0.0', '2012-12-16 12:0:0.0']},
         'ERA-Interim': {'name': 'ERA-Interim',
          'nyears': 40,
          'time_period': ['1979-1-16 12:0:0.0', '2019-3-16 12:0:0.0']},
         'GPCPv2.3': {'name': 'GPCPv2.3',
          'nyears': 41,
          'time_period': ['1979-1-1 0:0:0.0', '2019-7-1 0:0:0.0']},
         'method': 'Meridional root mean square error of nino3_LatExt pr, time series are linearly detrended, observations and model regridded to generic_1x1deg',
         'name': 'pr Meridional RMSE',
         'ref': 'Using CDAT regridding and rms (uncentered and biased) calculation',
         'time_frequency': 'monthly',
         'units': 'mm/day'},
        'metric': {'datasets': "EC-EARTH_r8i1p1; ERA-Interim's pr & GPCPv2.3's precip; 's ",
         'method': 'The metric is the statistical value between the model and the observations',
         'name': 'BiasPrLatRmse',
         'units': 'mm/day'}},
       'BiasPrLonRmse': {'diagnostic': {'EC-EARTH_r8i1p1': {'keyerror': None,
          'name': 'EC-EARTH_r8i1p1',
          'nyears': 163,
          'time_period': ['1850-1-16 12:0:0.0', '2012-12-16 12:0:0.0']},
         'ERA-Interim': {'name': 'ERA-Interim',
          'nyears': 40,
          'time_period': ['1979-1-16 12:0:0.0', '2019-3-16 12:0:0.0']},
         'GPCPv2.3': {'name': 'GPCPv2.3',
          'nyears': 41,
          'time_period': ['1979-1-1 0:0:0.0', '2019-7-1 0:0:0.0']},
         'method': 'Zonal root mean square error of equatorial_pacific pr, time series are linearly detrended, observations and model regridded to generic_1x1deg',
         'name': 'pr Zonal RMSE',
         'ref': 'Using CDAT regridding and rms (uncentered and biased) calculation',
         'time_frequency': 'monthly',
         'units': 'mm/day'},
        'metric': {'datasets': "EC-EARTH_r8i1p1; ERA-Interim's pr & GPCPv2.3's precip; 's ",
         'method': 'The metric is the statistical value between the model and the observations',
         'name': 'BiasPrLonRmse',
         'units': 'mm/day'}},
       'BiasSstLonRmse': {'diagnostic': {'EC-EARTH_r8i1p1': {'keyerror': None,
          'name': 'EC-EARTH_r8i1p1',
          'nyears': 163,
          'time_period': ['1850-1-16 12:0:0.0', '2012-12-16 12:0:0.0']},
         'ERA-Interim': {'name': 'ERA-Interim',
          'nyears': 40,
          'time_period': ['1979-1-16 12:0:0.0', '2019-3-16 12:0:0.0']},
         'HadISST': {'name': 'HadISST',
          'nyears': 151,
          'time_period': ['1870-1-16 11:59:59.5', '2020-10-16 12:0:0.0']},
         'Tropflux': {'name': 'Tropflux',
          'nyears': 40,
          'time_period': ['1979-1-15 0:0:0.0', '2018-12-15 12:0:0.0']},
         'method': 'Zonal root mean square error of equatorial_pacific sst, time series are linearly detrended, observations and model regridded to generic_1x1deg',
         'name': 'sst Zonal RMSE',
         'ref': 'Using CDAT regridding and rms (uncentered and biased) calculation',
         'time_frequency': 'monthly',
         'units': 'C'},
        'metric': {'datasets': "EC-EARTH_r8i1p1; ERA-Interim's ts & HadISST's sst & Tropflux's sst; 's ",
         'method': 'The metric is the statistical value between the model and the observations',
         'name': 'BiasSstLonRmse',
         'units': 'C'}},
       'EnsoAmpl': {'diagnostic': {'EC-EARTH_r8i1p1': {'keyerror': None,
          'name': 'EC-EARTH_r8i1p1',
          'nyears': 163,
          'time_period': ['1850-1-16 12:0:0.0', '2012-12-16 12:0:0.0']},
         'ERA-Interim': {'keyerror': None,
          'name': 'ERA-Interim',
          'nyears': 40,
          'time_period': ['1979-1-16 12:0:0.0', '2019-3-16 12:0:0.0']},
         'HadISST': {'keyerror': None,
          'name': 'HadISST',
          'nyears': 151,
          'time_period': ['1870-1-16 11:59:59.5', '2020-10-16 12:0:0.0']},
         'Tropflux': {'keyerror': None,
          'name': 'Tropflux',
          'nyears': 40,
          'time_period': ['1979-1-15 0:0:0.0', '2018-12-15 12:0:0.0']},
         'method': 'Standard deviation of nino3.4 sstA, time series are linearly detrended',
         'name': 'ENSO amplitude',
         'ref': 'Using CDAT regression calculation',
         'time_frequency': 'monthly',
         'units': 'C'},
        'metric': {'datasets': "EC-EARTH_r8i1p1; ERA-Interim's ts & HadISST's sst & Tropflux's sst; 's ",
         'method': 'The metric is the absolute value of the relative difference between model and observations values (M = 100 * abs[[model-obs] / obs])',
         'name': 'EnsoAmpl',
         'units': '%'}},
       'EnsoDuration': {'diagnostic': {'EC-EARTH_r8i1p1': {'keyerror': None,
          'name': 'EC-EARTH_r8i1p1',
          'nyears': 163,
          'time_period': ['1850-1-16 12:0:0.0', '2012-12-16 12:0:0.0']},
         'ERA-Interim': {'keyerror': None,
          'name': 'ERA-Interim',
          'nyears': 40,
          'time_period': ['1979-1-16 12:0:0.0', '2019-3-16 12:0:0.0']},
         'HadISST': {'keyerror': None,
          'name': 'HadISST',
          'nyears': 151,
          'time_period': ['1870-1-16 11:59:59.5', '2020-10-16 12:0:0.0']},
         'Tropflux': {'keyerror': None,
          'name': 'Tropflux',
          'nyears': 40,
          'time_period': ['1979-1-15 0:0:0.0', '2018-12-15 12:0:0.0']},
         'method': 'nino3.4 SSTA during DEC regressed against nino3.4 SSTA during 6 years (centered on ENSO), the duration is the number of consecutive months during which the regression is above 0.25, time series are linearly detrended, smoothing using a triangle shaped window of 5 points',
         'name': 'ENSO Duration based on life cyle SSTA pattern',
         'ref': 'Using CDAT',
         'time_frequency': 'monthly',
         'units': 'months'},
        'metric': {'datasets': "EC-EARTH_r8i1p1; ERA-Interim's ts & HadISST's sst & Tropflux's sst; 's ",
         'method': 'The metric is the absolute value of the relative difference between model and observations values (M = 100 * abs[[model-obs] / obs])',
         'name': 'EnsoDuration',
         'units': '%'}},
       'EnsoSeasonality': {'diagnostic': {'EC-EARTH_r8i1p1': {'keyerror': None,
          'name': 'EC-EARTH_r8i1p1',
          'nyears': 163,
          'time_period': ['1850-1-16 12:0:0.0', '2012-12-16 12:0:0.0']},
         'ERA-Interim': {'keyerror': None,
          'name': 'ERA-Interim',
          'nyears': 40,
          'time_period': ['1979-1-16 12:0:0.0', '2019-3-16 12:0:0.0']},
         'HadISST': {'keyerror': None,
          'name': 'HadISST',
          'nyears': 151,
          'time_period': ['1870-1-16 11:59:59.5', '2020-10-16 12:0:0.0']},
         'Tropflux': {'keyerror': None,
          'name': 'Tropflux',
          'nyears': 40,
          'time_period': ['1979-1-15 0:0:0.0', '2018-12-15 12:0:0.0']},
         'method': 'Ratio between NDJ and MAM standard deviation nino3.4 sstA, time series are linearly detrended',
         'name': 'ENSO seasonality',
         'ref': 'Using CDAT std dev calculation',
         'time_frequency': 'monthly',
         'units': 'C/C'},
        'metric': {'datasets': "EC-EARTH_r8i1p1; ERA-Interim's ts & HadISST's sst & Tropflux's sst; 's ",
         'method': 'The metric is the absolute value of the relative difference between model and observations values (M = 100 * abs[[model-obs] / obs])',
         'name': 'EnsoSeasonality',
         'units': '%'}},
       'EnsoSstDiversity_2': {'diagnostic': {'EC-EARTH_r8i1p1': {'keyerror': None,
          'name': 'EC-EARTH_r8i1p1',
          'nyears': 163,
          'time_period': ['1850-1-16 12:0:0.0', '2012-12-16 12:0:0.0']},
         'ERA-Interim': {'keyerror': None,
          'name': 'ERA-Interim',
          'nyears': 40,
          'time_period': ['1979-1-16 12:0:0.0', '2019-3-16 12:0:0.0']},
         'HadISST': {'keyerror': None,
          'name': 'HadISST',
          'nyears': 151,
          'time_period': ['1870-1-16 11:59:59.5', '2020-10-16 12:0:0.0']},
         'Tropflux': {'keyerror': None,
          'name': 'Tropflux',
          'nyears': 40,
          'time_period': ['1979-1-15 0:0:0.0', '2018-12-15 12:0:0.0']},
         'method': 'Nino (Nina) events = nino3.4 sstA > 0.75 (< -0.75) during DEC, zonal SSTA (meridional averaged [-5.0 ; 5.0]), the zonal SSTA maximum (minimum) is located for each event, the diversity is the interquartile range (IQR = Q3 - Q1), time series are linearly detrended, smoothing using a triangle shaped window of 5 points',
         'name': 'ENSO Diversity (interquartile range)',
         'ref': 'Using CDAT regridding',
         'time_frequency': 'monthly',
         'units': 'long'},
        'metric': {'datasets': "EC-EARTH_r8i1p1; ERA-Interim's ts & HadISST's sst & Tropflux's sst; 's ",
         'method': 'The metric is the absolute value of the relative difference between model and observations values (M = 100 * abs[[model-obs] / obs])',
         'name': 'EnsoSstDiversity',
         'units': '%'}},
       'EnsoSstLonRmse': {'diagnostic': {'EC-EARTH_r8i1p1': {'keyerror': None,
          'name': 'EC-EARTH_r8i1p1',
          'nyears': 163,
          'time_period': ['1850-1-16 12:0:0.0', '2012-12-16 12:0:0.0']},
         'ERA-Interim': {'name': 'ERA-Interim',
          'nyears': 40,
          'time_period': ['1979-1-16 12:0:0.0', '2019-3-16 12:0:0.0']},
         'HadISST': {'name': 'HadISST',
          'nyears': 151,
          'time_period': ['1870-1-16 11:59:59.5', '2020-10-16 12:0:0.0']},
         'Tropflux': {'name': 'Tropflux',
          'nyears': 40,
          'time_period': ['1979-1-15 0:0:0.0', '2018-12-15 12:0:0.0']},
         'method': 'nino3.4 SSTA during DEC regressed against equatorial_pacific SSTA, time series are linearly detrended, smoothing using a triangle shaped window of 5 points, observations and model regridded to generic_1x1deg',
         'name': 'ENSO Zonal SSTA pattern',
         'ref': 'Using CDAT regridding and rms (uncentered and biased) calculation',
         'time_frequency': 'monthly',
         'units': 'C/C'},
        'metric': {'datasets': "EC-EARTH_r8i1p1; ERA-Interim's ts & HadISST's sst & Tropflux's sst; 's ",
         'method': 'The metric is the statistical value between the model and the observations',
         'name': 'EnsoSstLonRmse',
         'units': 'C/C'}},
       'EnsoSstSkew': {'diagnostic': {'EC-EARTH_r8i1p1': {'keyerror': None,
          'name': 'EC-EARTH_r8i1p1',
          'nyears': 163,
          'time_period': ['1850-1-16 12:0:0.0', '2012-12-16 12:0:0.0']},
         'ERA-Interim': {'keyerror': None,
          'name': 'ERA-Interim',
          'nyears': 40,
          'time_period': ['1979-1-16 12:0:0.0', '2019-3-16 12:0:0.0']},
         'HadISST': {'keyerror': None,
          'name': 'HadISST',
          'nyears': 151,
          'time_period': ['1870-1-16 11:59:59.5', '2020-10-16 12:0:0.0']},
         'Tropflux': {'keyerror': None,
          'name': 'Tropflux',
          'nyears': 40,
          'time_period': ['1979-1-15 0:0:0.0', '2018-12-15 12:0:0.0']},
         'method': 'Standard deviation of nino3.4 sstA, time series are linearly detrended',
         'name': 'ENSO skewness',
         'ref': 'Using CDAT regression calculation',
         'time_frequency': 'monthly',
         'units': 'C'},
        'metric': {'datasets': "EC-EARTH_r8i1p1; ERA-Interim's ts & HadISST's sst & Tropflux's sst; 's ",
         'method': 'The metric is the absolute value of the relative difference between model and observations values (M = 100 * abs[[model-obs] / obs])',
         'name': 'EnsoSstSkew',
         'units': '%'}},
       'EnsoSstTsRmse': {'diagnostic': {'EC-EARTH_r8i1p1': {'keyerror': None,
          'name': 'EC-EARTH_r8i1p1',
          'nyears': 163,
          'time_period': ['1850-1-16 12:0:0.0', '2012-12-16 12:0:0.0']},
         'ERA-Interim': {'name': 'ERA-Interim',
          'nyears': 40,
          'time_period': ['1979-1-16 12:0:0.0', '2019-3-16 12:0:0.0']},
         'HadISST': {'name': 'HadISST',
          'nyears': 151,
          'time_period': ['1870-1-16 11:59:59.5', '2020-10-16 12:0:0.0']},
         'Tropflux': {'name': 'Tropflux',
          'nyears': 40,
          'time_period': ['1979-1-15 0:0:0.0', '2018-12-15 12:0:0.0']},
         'method': 'nino3.4 SSTA during DEC regressed against nino3.4 SSTA during 6 years (centered on ENSO), time series are linearly detrended, smoothing using a triangle shaped window of 5 points',
         'name': 'ENSO life cyle SSTA pattern',
         'ref': 'Using CDAT regridding and rms (uncentered and biased) calculation',
         'time_frequency': 'monthly',
         'units': 'C/C'},
        'metric': {'datasets': "EC-EARTH_r8i1p1; ERA-Interim's ts & HadISST's sst & Tropflux's sst; 's ",
         'method': 'The metric is the statistical value between the model and the observations',
         'name': 'EnsoSstTsRmse',
         'units': 'C/C'}},
       'SeasonalPrLatRmse': {'diagnostic': {'EC-EARTH_r8i1p1': {'keyerror': None,
          'name': 'EC-EARTH_r8i1p1',
          'nyears': 163,
          'time_period': ['1850-1-16 12:0:0.0', '2012-12-16 12:0:0.0']},
         'ERA-Interim': {'name': 'ERA-Interim',
          'nyears': 40,
          'time_period': ['1979-1-16 12:0:0.0', '2019-3-16 12:0:0.0']},
         'GPCPv2.3': {'name': 'GPCPv2.3',
          'nyears': 41,
          'time_period': ['1979-1-1 0:0:0.0', '2019-7-1 0:0:0.0']},
         'method': 'Meridional root mean square error of nino3_LatExt climatological pr STD, time series are linearly detrended, observations and model regridded to generic_1x1deg',
         'name': 'pr meridional seasonality RMSE',
         'ref': 'Using CDAT regridding and rms (uncentered and biased) calculation',
         'time_frequency': 'monthly',
         'units': 'mm/day'},
        'metric': {'datasets': "EC-EARTH_r8i1p1; ERA-Interim's pr & GPCPv2.3's precip; 's ",
         'method': 'The metric is the statistical value between the model and the observations',
         'name': 'SeasonalPrLatRmse',
         'units': 'mm/day'}},
       'SeasonalPrLonRmse': {'diagnostic': {'EC-EARTH_r8i1p1': {'keyerror': None,
          'name': 'EC-EARTH_r8i1p1',
          'nyears': 163,
          'time_period': ['1850-1-16 12:0:0.0', '2012-12-16 12:0:0.0']},
         'ERA-Interim': {'name': 'ERA-Interim',
          'nyears': 40,
          'time_period': ['1979-1-16 12:0:0.0', '2019-3-16 12:0:0.0']},
         'GPCPv2.3': {'name': 'GPCPv2.3',
          'nyears': 41,
          'time_period': ['1979-1-1 0:0:0.0', '2019-7-1 0:0:0.0']},
         'method': 'Zonal root mean square error of equatorial_pacific climatological pr STD, time series are linearly detrended, observations and model regridded to generic_1x1deg',
         'name': 'pr zonal seasonality RMSE',
         'ref': 'Using CDAT regridding and rms (uncentered and biased) calculation',
         'time_frequency': 'monthly',
         'units': 'mm/day'},
        'metric': {'datasets': "EC-EARTH_r8i1p1; ERA-Interim's pr & GPCPv2.3's precip; 's ",
         'method': 'The metric is the statistical value between the model and the observations',
         'name': 'SeasonalPrLonRmse',
         'units': 'mm/day'}},
       'SeasonalSstLonRmse': {'diagnostic': {'EC-EARTH_r8i1p1': {'keyerror': None,
          'name': 'EC-EARTH_r8i1p1',
          'nyears': 163,
          'time_period': ['1850-1-16 12:0:0.0', '2012-12-16 12:0:0.0']},
         'ERA-Interim': {'name': 'ERA-Interim',
          'nyears': 40,
          'time_period': ['1979-1-16 12:0:0.0', '2019-3-16 12:0:0.0']},
         'HadISST': {'name': 'HadISST',
          'nyears': 151,
          'time_period': ['1870-1-16 11:59:59.5', '2020-10-16 12:0:0.0']},
         'Tropflux': {'name': 'Tropflux',
          'nyears': 40,
          'time_period': ['1979-1-15 0:0:0.0', '2018-12-15 12:0:0.0']},
         'method': 'Zonal root mean square error of equatorial_pacific climatological sst STD, time series are linearly detrended, observations and model regridded to generic_1x1deg',
         'name': 'sst zonal seasonality RMSE',
         'ref': 'Using CDAT regridding and rms (uncentered and biased) calculation',
         'time_frequency': 'monthly',
         'units': 'C'},
        'metric': {'datasets': "EC-EARTH_r8i1p1; ERA-Interim's ts & HadISST's sst & Tropflux's sst; 's ",
         'method': 'The metric is the statistical value between the model and the observations',
         'name': 'SeasonalSstLonRmse',
         'units': 'C'}}},
      'name': 'Metrics Collection for ENSO performance'},
     'value': {'BiasPrLatRmse': {'diagnostic': {'EC-EARTH_r8i1p1': {'value': None,
         'value_error': None},
        'ERA-Interim': {'value': None, 'value_error': None},
        'GPCPv2.3': {'value': None, 'value_error': None}},
       'metric': {'ERA-Interim': {'value': 1.3493705919445533,
         'value_error': None},
        'GPCPv2.3': {'value': 1.1585432904708968, 'value_error': None}}},
      'BiasPrLonRmse': {'diagnostic': {'EC-EARTH_r8i1p1': {'value': None,
         'value_error': None},
        'ERA-Interim': {'value': None, 'value_error': None},
        'GPCPv2.3': {'value': None, 'value_error': None}},
       'metric': {'ERA-Interim': {'value': 2.7163727173798784,
         'value_error': None},
        'GPCPv2.3': {'value': 1.6933483490935772, 'value_error': None}}},
      'BiasSstLonRmse': {'diagnostic': {'EC-EARTH_r8i1p1': {'value': None,
         'value_error': None},
        'ERA-Interim': {'value': None, 'value_error': None},
        'HadISST': {'value': None, 'value_error': None},
        'Tropflux': {'value': None, 'value_error': None}},
       'metric': {'ERA-Interim': {'value': 1.9914680995632086,
         'value_error': None},
        'HadISST': {'value': 1.789169307934207, 'value_error': None},
        'Tropflux': {'value': 2.040867315605399, 'value_error': None}}},
      'EnsoAmpl': {'diagnostic': {'EC-EARTH_r8i1p1': {'value': 0.503622016366456,
         'value_error': 0.03944672071630328},
        'ERA-Interim': {'value': 0.8989844997845644,
         'value_error': 0.14214193002531866},
        'HadISST': {'value': 0.7665787872085695,
         'value_error': 0.06238329697691264},
        'Tropflux': {'value': 0.9039789553693535,
         'value_error': 0.14293162279134272}},
       'metric': {'ERA-Interim': {'value': 43.97878756673273,
         'value_error': 13.245651434598596},
        'HadISST': {'value': 34.30264119356185,
         'value_error': 10.492189519017824},
        'Tropflux': {'value': 44.28830302131504,
         'value_error': 13.172469622800035}}},
      'EnsoDuration': {'diagnostic': {'EC-EARTH_r8i1p1': {'value': 18.0,
         'value_error': None},
        'ERA-Interim': {'value': 13.0, 'value_error': None},
        'HadISST': {'value': 13.0, 'value_error': None},
        'Tropflux': {'value': 13.0, 'value_error': None}},
       'metric': {'ERA-Interim': {'value': 38.46153846153847,
         'value_error': None},
        'HadISST': {'value': 38.46153846153847, 'value_error': None},
        'Tropflux': {'value': 38.46153846153847, 'value_error': None}}},
      'EnsoSeasonality': {'diagnostic': {'EC-EARTH_r8i1p1': {'value': 1.0759538183452129,
         'value_error': 0.16881012288071753},
        'ERA-Interim': {'value': 2.0466846866656914,
         'value_error': 0.6513411033995022},
        'HadISST': {'value': 1.6639865947361325,
         'value_error': 0.2712772451657809},
        'Tropflux': {'value': 2.0532132553583624,
         'value_error': 0.6534187683977347}},
       'metric': {'ERA-Interim': {'value': 47.429429391096,
         'value_error': 24.97814445375148},
        'HadISST': {'value': 35.33879288758136,
         'value_error': 20.686540703821706},
        'Tropflux': {'value': 47.596587176843514,
         'value_error': 24.89872185531646}}},
      'EnsoSstDiversity_2': {'diagnostic': {'EC-EARTH_r8i1p1': {'value': 11.5,
         'value_error': None},
        'ERA-Interim': {'value': 33.25, 'value_error': None},
        'HadISST': {'value': 49.0, 'value_error': None},
        'Tropflux': {'value': 32.0, 'value_error': None}},
       'metric': {'ERA-Interim': {'value': 65.41353383458647,
         'value_error': None},
        'HadISST': {'value': 76.53061224489795, 'value_error': None},
        'Tropflux': {'value': 64.0625, 'value_error': None}}},
      'EnsoSstLonRmse': {'diagnostic': {'EC-EARTH_r8i1p1': {'value': None,
         'value_error': None},
        'ERA-Interim': {'value': None, 'value_error': None},
        'HadISST': {'value': None, 'value_error': None},
        'Tropflux': {'value': None, 'value_error': None}},
       'metric': {'ERA-Interim': {'value': 0.24502232383758646,
         'value_error': None},
        'HadISST': {'value': 0.25347230099105333, 'value_error': None},
        'Tropflux': {'value': 0.2455499992691495, 'value_error': None}}},
      'EnsoSstSkew': {'diagnostic': {'EC-EARTH_r8i1p1': {'value': 0.0871994222931822,
         'value_error': 0.0068299858744047814},
        'ERA-Interim': {'value': 0.39098111106809963,
         'value_error': 0.061819541653923164},
        'HadISST': {'value': 0.38989908235027515,
         'value_error': 0.03172953733021198},
        'Tropflux': {'value': 0.39744741059612115,
         'value_error': 0.06284195338099416}},
       'metric': {'ERA-Interim': {'value': 77.69728004123601,
         'value_error': 5.27325350141523},
        'HadISST': {'value': 77.63538663195813,
         'value_error': 3.5717381374250823},
        'Tropflux': {'value': 78.06013576427785,
         'value_error': 5.187459920382212}}},
      'EnsoSstTsRmse': {'diagnostic': {'EC-EARTH_r8i1p1': {'value': None,
         'value_error': None},
        'ERA-Interim': {'value': None, 'value_error': None},
        'HadISST': {'value': None, 'value_error': None},
        'Tropflux': {'value': None, 'value_error': None}},
       'metric': {'ERA-Interim': {'value': 0.1916605638620769,
         'value_error': None},
        'HadISST': {'value': 0.14797394305004477, 'value_error': None},
        'Tropflux': {'value': 0.18691462301850095, 'value_error': None}}},
      'SeasonalPrLatRmse': {'diagnostic': {'EC-EARTH_r8i1p1': {'value': None,
         'value_error': None},
        'ERA-Interim': {'value': None, 'value_error': None},
        'GPCPv2.3': {'value': None, 'value_error': None}},
       'metric': {'ERA-Interim': {'value': 1.0214340415526952,
         'value_error': None},
        'GPCPv2.3': {'value': 0.7311471793694729, 'value_error': None}}},
      'SeasonalPrLonRmse': {'diagnostic': {'EC-EARTH_r8i1p1': {'value': None,
         'value_error': None},
        'ERA-Interim': {'value': None, 'value_error': None},
        'GPCPv2.3': {'value': None, 'value_error': None}},
       'metric': {'ERA-Interim': {'value': 1.0631681596894047,
         'value_error': None},
        'GPCPv2.3': {'value': 0.7440019280874054, 'value_error': None}}},
      'SeasonalSstLonRmse': {'diagnostic': {'EC-EARTH_r8i1p1': {'value': None,
         'value_error': None},
        'ERA-Interim': {'value': None, 'value_error': None},
        'HadISST': {'value': None, 'value_error': None},
        'Tropflux': {'value': None, 'value_error': None}},
       'metric': {'ERA-Interim': {'value': 0.1612983971769656,
         'value_error': None},
        'HadISST': {'value': 0.15968108246450102, 'value_error': None},
        'Tropflux': {'value': 0.16917580329459034, 'value_error': None}}}}}},
   'FGOALS-g2': {'r1i1p1': {'metadata': {'description_of_the_collection': 'Describe which science question this collection is about',
      'metrics': {'BiasPrLatRmse': {'diagnostic': {'ERA-Interim': {'name': 'ERA-Interim',
          'nyears': 40,
          'time_period': ['1979-1-16 12:0:0.0', '2019-3-16 12:0:0.0']},
         'FGOALS-g2_r1i1p1': {'keyerror': None,
          'name': 'FGOALS-g2_r1i1p1',
          'nyears': 156,
          'time_period': ['1850-1-16 12:0:0.0', '2005-12-16 12:0:0.0']},
         'GPCPv2.3': {'name': 'GPCPv2.3',
          'nyears': 41,
          'time_period': ['1979-1-1 0:0:0.0', '2019-7-1 0:0:0.0']},
         'method': 'Meridional root mean square error of nino3_LatExt pr, time series are linearly detrended, observations and model regridded to generic_1x1deg',
         'name': 'pr Meridional RMSE',
         'ref': 'Using CDAT regridding and rms (uncentered and biased) calculation',
         'time_frequency': 'monthly',
         'units': 'mm/day'},
        'metric': {'datasets': "FGOALS-g2_r1i1p1; ERA-Interim's pr & GPCPv2.3's precip; 's ",
         'method': 'The metric is the statistical value between the model and the observations',
         'name': 'BiasPrLatRmse',
         'units': 'mm/day'}},
       'BiasPrLonRmse': {'diagnostic': {'ERA-Interim': {'name': 'ERA-Interim',
          'nyears': 40,
          'time_period': ['1979-1-16 12:0:0.0', '2019-3-16 12:0:0.0']},
         'FGOALS-g2_r1i1p1': {'keyerror': None,
          'name': 'FGOALS-g2_r1i1p1',
          'nyears': 156,
          'time_period': ['1850-1-16 12:0:0.0', '2005-12-16 12:0:0.0']},
         'GPCPv2.3': {'name': 'GPCPv2.3',
          'nyears': 41,
          'time_period': ['1979-1-1 0:0:0.0', '2019-7-1 0:0:0.0']},
         'method': 'Zonal root mean square error of equatorial_pacific pr, time series are linearly detrended, observations and model regridded to generic_1x1deg',
         'name': 'pr Zonal RMSE',
         'ref': 'Using CDAT regridding and rms (uncentered and biased) calculation',
         'time_frequency': 'monthly',
         'units': 'mm/day'},
        'metric': {'datasets': "FGOALS-g2_r1i1p1; ERA-Interim's pr & GPCPv2.3's precip; 's ",
         'method': 'The metric is the statistical value between the model and the observations',
         'name': 'BiasPrLonRmse',
         'units': 'mm/day'}},
       'BiasSstLonRmse': {'diagnostic': {'ERA-Interim': {'name': 'ERA-Interim',
          'nyears': 40,
          'time_period': ['1979-1-16 12:0:0.0', '2019-3-16 12:0:0.0']},
         'FGOALS-g2_r1i1p1': {'keyerror': None,
          'name': 'FGOALS-g2_r1i1p1',
          'nyears': 156,
          'time_period': ['1850-1-16 12:0:0.0', '2005-12-16 12:0:0.0']},
         'HadISST': {'name': 'HadISST',
          'nyears': 151,
          'time_period': ['1870-1-16 11:59:59.5', '2020-10-16 12:0:0.0']},
         'Tropflux': {'name': 'Tropflux',
          'nyears': 40,
          'time_period': ['1979-1-15 0:0:0.0', '2018-12-15 12:0:0.0']},
         'method': 'Zonal root mean square error of equatorial_pacific sst, time series are linearly detrended, observations and model regridded to generic_1x1deg',
         'name': 'sst Zonal RMSE',
         'ref': 'Using CDAT regridding and rms (uncentered and biased) calculation',
         'time_frequency': 'monthly',
         'units': 'C'},
        'metric': {'datasets': "FGOALS-g2_r1i1p1; ERA-Interim's ts & HadISST's sst & Tropflux's sst; 's ",
         'method': 'The metric is the statistical value between the model and the observations',
         'name': 'BiasSstLonRmse',
         'units': 'C'}},
       'BiasTauxLonRmse': {'diagnostic': {'ERA-Interim': {'name': 'ERA-Interim',
          'nyears': 40,
          'time_period': ['1979-1-16 12:0:0.0', '2019-3-16 12:0:0.0']},
         'FGOALS-g2_r1i1p1': {'keyerror': None,
          'name': 'FGOALS-g2_r1i1p1',
          'nyears': 156,
          'time_period': ['1850-1-16 12:0:0.0', '2005-12-16 12:0:0.0']},
         'Tropflux': {'name': 'Tropflux',
          'nyears': 40,
          'time_period': ['1979-1-15 0:0:0.0', '2018-12-15 12:0:0.0']},
         'method': 'Zonal root mean square error of equatorial_pacific taux, time series are linearly detrended, observations and model regridded to generic_1x1deg',
         'name': 'taux Zonal RMSE',
         'ref': 'Using CDAT regridding and rms (uncentered and biased) calculation',
         'time_frequency': 'monthly',
         'units': '1e-3 N/m2'},
        'metric': {'datasets': "FGOALS-g2_r1i1p1; ERA-Interim's tauu & Tropflux's taux; 's ",
         'method': 'The metric is the statistical value between the model and the observations',
         'name': 'BiasTauxLonRmse',
         'units': '1e-3 N/m2'}},
       'EnsoAmpl': {'diagnostic': {'ERA-Interim': {'keyerror': None,
          'name': 'ERA-Interim',
          'nyears': 40,
          'time_period': ['1979-1-16 12:0:0.0', '2019-3-16 12:0:0.0']},
         'FGOALS-g2_r1i1p1': {'keyerror': None,
          'name': 'FGOALS-g2_r1i1p1',
          'nyears': 156,
          'time_period': ['1850-1-16 12:0:0.0', '2005-12-16 12:0:0.0']},
         'HadISST': {'keyerror': None,
          'name': 'HadISST',
          'nyears': 151,
          'time_period': ['1870-1-16 11:59:59.5', '2020-10-16 12:0:0.0']},
         'Tropflux': {'keyerror': None,
          'name': 'Tropflux',
          'nyears': 40,
          'time_period': ['1979-1-15 0:0:0.0', '2018-12-15 12:0:0.0']},
         'method': 'Standard deviation of nino3.4 sstA, time series are linearly detrended',
         'name': 'ENSO amplitude',
         'ref': 'Using CDAT regression calculation',
         'time_frequency': 'monthly',
         'units': 'C'},
        'metric': {'datasets': "FGOALS-g2_r1i1p1; ERA-Interim's ts & HadISST's sst & Tropflux's sst; 's ",
         'method': 'The metric is the absolute value of the relative difference between model and observations values (M = 100 * abs[[model-obs] / obs])',
         'name': 'EnsoAmpl',
         'units': '%'}},
       'EnsoDuration': {'diagnostic': {'ERA-Interim': {'keyerror': None,
          'name': 'ERA-Interim',
          'nyears': 40,
          'time_period': ['1979-1-16 12:0:0.0', '2019-3-16 12:0:0.0']},
         'FGOALS-g2_r1i1p1': {'keyerror': None,
          'name': 'FGOALS-g2_r1i1p1',
          'nyears': 156,
          'time_period': ['1850-1-16 12:0:0.0', '2005-12-16 12:0:0.0']},
         'HadISST': {'keyerror': None,
          'name': 'HadISST',
          'nyears': 151,
          'time_period': ['1870-1-16 11:59:59.5', '2020-10-16 12:0:0.0']},
         'Tropflux': {'keyerror': None,
          'name': 'Tropflux',
          'nyears': 40,
          'time_period': ['1979-1-15 0:0:0.0', '2018-12-15 12:0:0.0']},
         'method': 'nino3.4 SSTA during DEC regressed against nino3.4 SSTA during 6 years (centered on ENSO), the duration is the number of consecutive months during which the regression is above 0.25, time series are linearly detrended, smoothing using a triangle shaped window of 5 points',
         'name': 'ENSO Duration based on life cyle SSTA pattern',
         'ref': 'Using CDAT',
         'time_frequency': 'monthly',
         'units': 'months'},
        'metric': {'datasets': "FGOALS-g2_r1i1p1; ERA-Interim's ts & HadISST's sst & Tropflux's sst; 's ",
         'method': 'The metric is the absolute value of the relative difference between model and observations values (M = 100 * abs[[model-obs] / obs])',
         'name': 'EnsoDuration',
         'units': '%'}},
       'EnsoSeasonality': {'diagnostic': {'ERA-Interim': {'keyerror': None,
          'name': 'ERA-Interim',
          'nyears': 40,
          'time_period': ['1979-1-16 12:0:0.0', '2019-3-16 12:0:0.0']},
         'FGOALS-g2_r1i1p1': {'keyerror': None,
          'name': 'FGOALS-g2_r1i1p1',
          'nyears': 156,
          'time_period': ['1850-1-16 12:0:0.0', '2005-12-16 12:0:0.0']},
         'HadISST': {'keyerror': None,
          'name': 'HadISST',
          'nyears': 151,
          'time_period': ['1870-1-16 11:59:59.5', '2020-10-16 12:0:0.0']},
         'Tropflux': {'keyerror': None,
          'name': 'Tropflux',
          'nyears': 40,
          'time_period': ['1979-1-15 0:0:0.0', '2018-12-15 12:0:0.0']},
         'method': 'Ratio between NDJ and MAM standard deviation nino3.4 sstA, time series are linearly detrended',
         'name': 'ENSO seasonality',
         'ref': 'Using CDAT std dev calculation',
         'time_frequency': 'monthly',
         'units': 'C/C'},
        'metric': {'datasets': "FGOALS-g2_r1i1p1; ERA-Interim's ts & HadISST's sst & Tropflux's sst; 's ",
         'method': 'The metric is the absolute value of the relative difference between model and observations values (M = 100 * abs[[model-obs] / obs])',
         'name': 'EnsoSeasonality',
         'units': '%'}},
       'EnsoSstDiversity_2': {'diagnostic': {'ERA-Interim': {'keyerror': None,
          'name': 'ERA-Interim',
          'nyears': 40,
          'time_period': ['1979-1-16 12:0:0.0', '2019-3-16 12:0:0.0']},
         'FGOALS-g2_r1i1p1': {'keyerror': None,
          'name': 'FGOALS-g2_r1i1p1',
          'nyears': 156,
          'time_period': ['1850-1-16 12:0:0.0', '2005-12-16 12:0:0.0']},
         'HadISST': {'keyerror': None,
          'name': 'HadISST',
          'nyears': 151,
          'time_period': ['1870-1-16 11:59:59.5', '2020-10-16 12:0:0.0']},
         'Tropflux': {'keyerror': None,
          'name': 'Tropflux',
          'nyears': 40,
          'time_period': ['1979-1-15 0:0:0.0', '2018-12-15 12:0:0.0']},
         'method': 'Nino (Nina) events = nino3.4 sstA > 0.75 (< -0.75) during DEC, zonal SSTA (meridional averaged [-5.0 ; 5.0]), the zonal SSTA maximum (minimum) is located for each event, the diversity is the interquartile range (IQR = Q3 - Q1), time series are linearly detrended, smoothing using a triangle shaped window of 5 points',
         'name': 'ENSO Diversity (interquartile range)',
         'ref': 'Using CDAT regridding',
         'time_frequency': 'monthly',
         'units': 'long'},
        'metric': {'datasets': "FGOALS-g2_r1i1p1; ERA-Interim's ts & HadISST's sst & Tropflux's sst; 's ",
         'method': 'The metric is the absolute value of the relative difference between model and observations values (M = 100 * abs[[model-obs] / obs])',
         'name': 'EnsoSstDiversity',
         'units': '%'}},
       'EnsoSstLonRmse': {'diagnostic': {'ERA-Interim': {'name': 'ERA-Interim',
          'nyears': 40,
          'time_period': ['1979-1-16 12:0:0.0', '2019-3-16 12:0:0.0']},
         'FGOALS-g2_r1i1p1': {'keyerror': None,
          'name': 'FGOALS-g2_r1i1p1',
          'nyears': 156,
          'time_period': ['1850-1-16 12:0:0.0', '2005-12-16 12:0:0.0']},
         'HadISST': {'name': 'HadISST',
          'nyears': 151,
          'time_period': ['1870-1-16 11:59:59.5', '2020-10-16 12:0:0.0']},
         'Tropflux': {'name': 'Tropflux',
          'nyears': 40,
          'time_period': ['1979-1-15 0:0:0.0', '2018-12-15 12:0:0.0']},
         'method': 'nino3.4 SSTA during DEC regressed against equatorial_pacific SSTA, time series are linearly detrended, smoothing using a triangle shaped window of 5 points, observations and model regridded to generic_1x1deg',
         'name': 'ENSO Zonal SSTA pattern',
         'ref': 'Using CDAT regridding and rms (uncentered and biased) calculation',
         'time_frequency': 'monthly',
         'units': 'C/C'},
        'metric': {'datasets': "FGOALS-g2_r1i1p1; ERA-Interim's ts & HadISST's sst & Tropflux's sst; 's ",
         'method': 'The metric is the statistical value between the model and the observations',
         'name': 'EnsoSstLonRmse',
         'units': 'C/C'}},
       'EnsoSstSkew': {'diagnostic': {'ERA-Interim': {'keyerror': None,
          'name': 'ERA-Interim',
          'nyears': 40,
          'time_period': ['1979-1-16 12:0:0.0', '2019-3-16 12:0:0.0']},
         'FGOALS-g2_r1i1p1': {'keyerror': None,
          'name': 'FGOALS-g2_r1i1p1',
          'nyears': 156,
          'time_period': ['1850-1-16 12:0:0.0', '2005-12-16 12:0:0.0']},
         'HadISST': {'keyerror': None,
          'name': 'HadISST',
          'nyears': 151,
          'time_period': ['1870-1-16 11:59:59.5', '2020-10-16 12:0:0.0']},
         'Tropflux': {'keyerror': None,
          'name': 'Tropflux',
          'nyears': 40,
          'time_period': ['1979-1-15 0:0:0.0', '2018-12-15 12:0:0.0']},
         'method': 'Standard deviation of nino3.4 sstA, time series are linearly detrended',
         'name': 'ENSO skewness',
         'ref': 'Using CDAT regression calculation',
         'time_frequency': 'monthly',
         'units': 'C'},
        'metric': {'datasets': "FGOALS-g2_r1i1p1; ERA-Interim's ts & HadISST's sst & Tropflux's sst; 's ",
         'method': 'The metric is the absolute value of the relative difference between model and observations values (M = 100 * abs[[model-obs] / obs])',
         'name': 'EnsoSstSkew',
         'units': '%'}},
       'EnsoSstTsRmse': {'diagnostic': {'ERA-Interim': {'name': 'ERA-Interim',
          'nyears': 40,
          'time_period': ['1979-1-16 12:0:0.0', '2019-3-16 12:0:0.0']},
         'FGOALS-g2_r1i1p1': {'keyerror': None,
          'name': 'FGOALS-g2_r1i1p1',
          'nyears': 156,
          'time_period': ['1850-1-16 12:0:0.0', '2005-12-16 12:0:0.0']},
         'HadISST': {'name': 'HadISST',
          'nyears': 151,
          'time_period': ['1870-1-16 11:59:59.5', '2020-10-16 12:0:0.0']},
         'Tropflux': {'name': 'Tropflux',
          'nyears': 40,
          'time_period': ['1979-1-15 0:0:0.0', '2018-12-15 12:0:0.0']},
         'method': 'nino3.4 SSTA during DEC regressed against nino3.4 SSTA during 6 years (centered on ENSO), time series are linearly detrended, smoothing using a triangle shaped window of 5 points',
         'name': 'ENSO life cyle SSTA pattern',
         'ref': 'Using CDAT regridding and rms (uncentered and biased) calculation',
         'time_frequency': 'monthly',
         'units': 'C/C'},
        'metric': {'datasets': "FGOALS-g2_r1i1p1; ERA-Interim's ts & HadISST's sst & Tropflux's sst; 's ",
         'method': 'The metric is the statistical value between the model and the observations',
         'name': 'EnsoSstTsRmse',
         'units': 'C/C'}},
       'SeasonalPrLatRmse': {'diagnostic': {'ERA-Interim': {'name': 'ERA-Interim',
          'nyears': 40,
          'time_period': ['1979-1-16 12:0:0.0', '2019-3-16 12:0:0.0']},
         'FGOALS-g2_r1i1p1': {'keyerror': None,
          'name': 'FGOALS-g2_r1i1p1',
          'nyears': 156,
          'time_period': ['1850-1-16 12:0:0.0', '2005-12-16 12:0:0.0']},
         'GPCPv2.3': {'name': 'GPCPv2.3',
          'nyears': 41,
          'time_period': ['1979-1-1 0:0:0.0', '2019-7-1 0:0:0.0']},
         'method': 'Meridional root mean square error of nino3_LatExt climatological pr STD, time series are linearly detrended, observations and model regridded to generic_1x1deg',
         'name': 'pr meridional seasonality RMSE',
         'ref': 'Using CDAT regridding and rms (uncentered and biased) calculation',
         'time_frequency': 'monthly',
         'units': 'mm/day'},
        'metric': {'datasets': "FGOALS-g2_r1i1p1; ERA-Interim's pr & GPCPv2.3's precip; 's ",
         'method': 'The metric is the statistical value between the model and the observations',
         'name': 'SeasonalPrLatRmse',
         'units': 'mm/day'}},
       'SeasonalPrLonRmse': {'diagnostic': {'ERA-Interim': {'name': 'ERA-Interim',
          'nyears': 40,
          'time_period': ['1979-1-16 12:0:0.0', '2019-3-16 12:0:0.0']},
         'FGOALS-g2_r1i1p1': {'keyerror': None,
          'name': 'FGOALS-g2_r1i1p1',
          'nyears': 156,
          'time_period': ['1850-1-16 12:0:0.0', '2005-12-16 12:0:0.0']},
         'GPCPv2.3': {'name': 'GPCPv2.3',
          'nyears': 41,
          'time_period': ['1979-1-1 0:0:0.0', '2019-7-1 0:0:0.0']},
         'method': 'Zonal root mean square error of equatorial_pacific climatological pr STD, time series are linearly detrended, observations and model regridded to generic_1x1deg',
         'name': 'pr zonal seasonality RMSE',
         'ref': 'Using CDAT regridding and rms (uncentered and biased) calculation',
         'time_frequency': 'monthly',
         'units': 'mm/day'},
        'metric': {'datasets': "FGOALS-g2_r1i1p1; ERA-Interim's pr & GPCPv2.3's precip; 's ",
         'method': 'The metric is the statistical value between the model and the observations',
         'name': 'SeasonalPrLonRmse',
         'units': 'mm/day'}},
       'SeasonalSstLonRmse': {'diagnostic': {'ERA-Interim': {'name': 'ERA-Interim',
          'nyears': 40,
          'time_period': ['1979-1-16 12:0:0.0', '2019-3-16 12:0:0.0']},
         'FGOALS-g2_r1i1p1': {'keyerror': None,
          'name': 'FGOALS-g2_r1i1p1',
          'nyears': 156,
          'time_period': ['1850-1-16 12:0:0.0', '2005-12-16 12:0:0.0']},
         'HadISST': {'name': 'HadISST',
          'nyears': 151,
          'time_period': ['1870-1-16 11:59:59.5', '2020-10-16 12:0:0.0']},
         'Tropflux': {'name': 'Tropflux',
          'nyears': 40,
          'time_period': ['1979-1-15 0:0:0.0', '2018-12-15 12:0:0.0']},
         'method': 'Zonal root mean square error of equatorial_pacific climatological sst STD, time series are linearly detrended, observations and model regridded to generic_1x1deg',
         'name': 'sst zonal seasonality RMSE',
         'ref': 'Using CDAT regridding and rms (uncentered and biased) calculation',
         'time_frequency': 'monthly',
         'units': 'C'},
        'metric': {'datasets': "FGOALS-g2_r1i1p1; ERA-Interim's ts & HadISST's sst & Tropflux's sst; 's ",
         'method': 'The metric is the statistical value between the model and the observations',
         'name': 'SeasonalSstLonRmse',
         'units': 'C'}},
       'SeasonalTauxLonRmse': {'diagnostic': {'ERA-Interim': {'name': 'ERA-Interim',
          'nyears': 40,
          'time_period': ['1979-1-16 12:0:0.0', '2019-3-16 12:0:0.0']},
         'FGOALS-g2_r1i1p1': {'keyerror': None,
          'name': 'FGOALS-g2_r1i1p1',
          'nyears': 156,
          'time_period': ['1850-1-16 12:0:0.0', '2005-12-16 12:0:0.0']},
         'Tropflux': {'name': 'Tropflux',
          'nyears': 40,
          'time_period': ['1979-1-15 0:0:0.0', '2018-12-15 12:0:0.0']},
         'method': 'Zonal root mean square error of equatorial_pacific climatological taux STD, time series are linearly detrended, observations and model regridded to generic_1x1deg',
         'name': 'taux zonal seasonality RMSE',
         'ref': 'Using CDAT regridding and rms (uncentered and biased) calculation',
         'time_frequency': 'monthly',
         'units': '1e-3 N/m2'},
        'metric': {'datasets': "FGOALS-g2_r1i1p1; ERA-Interim's tauu & Tropflux's taux; 's ",
         'method': 'The metric is the statistical value between the model and the observations',
         'name': 'SeasonalTauxLonRmse',
         'units': '1e-3 N/m2'}}},
      'name': 'Metrics Collection for ENSO performance'},
     'value': {'BiasPrLatRmse': {'diagnostic': {'ERA-Interim': {'value': None,
         'value_error': None},
        'FGOALS-g2_r1i1p1': {'value': None, 'value_error': None},
        'GPCPv2.3': {'value': None, 'value_error': None}},
       'metric': {'ERA-Interim': {'value': 1.861063606495195,
         'value_error': None},
        'GPCPv2.3': {'value': 1.9915983189187882, 'value_error': None}}},
      'BiasPrLonRmse': {'diagnostic': {'ERA-Interim': {'value': None,
         'value_error': None},
        'FGOALS-g2_r1i1p1': {'value': None, 'value_error': None},
        'GPCPv2.3': {'value': None, 'value_error': None}},
       'metric': {'ERA-Interim': {'value': 0.9283821687529638,
         'value_error': None},
        'GPCPv2.3': {'value': 1.5249692786545384, 'value_error': None}}},
      'BiasSstLonRmse': {'diagnostic': {'ERA-Interim': {'value': None,
         'value_error': None},
        'FGOALS-g2_r1i1p1': {'value': None, 'value_error': None},
        'HadISST': {'value': None, 'value_error': None},
        'Tropflux': {'value': None, 'value_error': None}},
       'metric': {'ERA-Interim': {'value': 1.0245568631481512,
         'value_error': None},
        'HadISST': {'value': 0.9132209455134684, 'value_error': None},
        'Tropflux': {'value': 1.0603288378799165, 'value_error': None}}},
      'BiasTauxLonRmse': {'diagnostic': {'ERA-Interim': {'value': None,
         'value_error': None},
        'FGOALS-g2_r1i1p1': {'value': None, 'value_error': None},
        'Tropflux': {'value': None, 'value_error': None}},
       'metric': {'ERA-Interim': {'value': 12.230035767337718,
         'value_error': None},
        'Tropflux': {'value': 11.903172869678766, 'value_error': None}}},
      'EnsoAmpl': {'diagnostic': {'ERA-Interim': {'value': 0.8989844997845644,
         'value_error': 0.14214193002531866},
        'FGOALS-g2_r1i1p1': {'value': 0.7450757742859876,
         'value_error': 0.0596538040906555},
        'HadISST': {'value': 0.7665787872085695,
         'value_error': 0.06238329697691264},
        'Tropflux': {'value': 0.9039789553693535,
         'value_error': 0.14293162279134272}},
       'metric': {'ERA-Interim': {'value': 17.12028689431909,
         'value_error': 19.74012098551695},
        'HadISST': {'value': 2.8050623473267904,
         'value_error': 15.691434814034341},
        'Tropflux': {'value': 17.578194728929304,
         'value_error': 19.631057431642233}}},
      'EnsoDuration': {'diagnostic': {'ERA-Interim': {'value': 13.0,
         'value_error': None},
        'FGOALS-g2_r1i1p1': {'value': 13.0, 'value_error': None},
        'HadISST': {'value': 13.0, 'value_error': None},
        'Tropflux': {'value': 13.0, 'value_error': None}},
       'metric': {'ERA-Interim': {'value': 0.0, 'value_error': None},
        'HadISST': {'value': 0.0, 'value_error': None},
        'Tropflux': {'value': 0.0, 'value_error': None}}},
      'EnsoSeasonality': {'diagnostic': {'ERA-Interim': {'value': 2.0466846866656914,
         'value_error': 0.6513411033995022},
        'FGOALS-g2_r1i1p1': {'value': 1.5241371465475566,
         'value_error': 0.24445027531173671},
        'HadISST': {'value': 1.6639865947361325,
         'value_error': 0.2712772451657809},
        'Tropflux': {'value': 2.0532132553583624,
         'value_error': 0.6534187683977347}},
       'metric': {'ERA-Interim': {'value': 25.531413975126327,
         'value_error': 35.64275386261847},
        'HadISST': {'value': 8.40448166054803,
         'value_error': 29.62332002659468},
        'Tropflux': {'value': 25.768200523255548,
         'value_error': 35.52942117962472}}},
      'EnsoSstDiversity_2': {'diagnostic': {'ERA-Interim': {'value': 33.25,
         'value_error': None},
        'FGOALS-g2_r1i1p1': {'value': 14.0, 'value_error': None},
        'HadISST': {'value': 49.0, 'value_error': None},
        'Tropflux': {'value': 32.0, 'value_error': None}},
       'metric': {'ERA-Interim': {'value': 57.89473684210527,
         'value_error': None},
        'HadISST': {'value': 71.42857142857143, 'value_error': None},
        'Tropflux': {'value': 56.25, 'value_error': None}}},
      'EnsoSstLonRmse': {'diagnostic': {'ERA-Interim': {'value': None,
         'value_error': None},
        'FGOALS-g2_r1i1p1': {'value': None, 'value_error': None},
        'HadISST': {'value': None, 'value_error': None},
        'Tropflux': {'value': None, 'value_error': None}},
       'metric': {'ERA-Interim': {'value': 0.14482378493585885,
         'value_error': None},
        'HadISST': {'value': 0.1608688806610224, 'value_error': None},
        'Tropflux': {'value': 0.14470906355170826, 'value_error': None}}},
      'EnsoSstSkew': {'diagnostic': {'ERA-Interim': {'value': 0.39098111106809963,
         'value_error': 0.061819541653923164},
        'FGOALS-g2_r1i1p1': {'value': -0.3327165116486321,
         'value_error': -0.026638640375382112},
        'HadISST': {'value': 0.38989908235027515,
         'value_error': 0.03172953733021198},
        'Tropflux': {'value': 0.39744741059612115,
         'value_error': 0.06284195338099416}},
       'metric': {'ERA-Interim': {'value': 185.09784801104644,
         'value_error': -20.268431832084204},
        'HadISST': {'value': 185.33400736494377,
         'value_error': -13.77657156149752},
        'Tropflux': {'value': 183.71334238902176,
         'value_error': -19.93867310754511}}},
      'EnsoSstTsRmse': {'diagnostic': {'ERA-Interim': {'value': None,
         'value_error': None},
        'FGOALS-g2_r1i1p1': {'value': None, 'value_error': None},
        'HadISST': {'value': None, 'value_error': None},
        'Tropflux': {'value': None, 'value_error': None}},
       'metric': {'ERA-Interim': {'value': 0.08780714339088076,
         'value_error': None},
        'HadISST': {'value': 0.10155044158658766, 'value_error': None},
        'Tropflux': {'value': 0.09235453662717702, 'value_error': None}}},
      'SeasonalPrLatRmse': {'diagnostic': {'ERA-Interim': {'value': None,
         'value_error': None},
        'FGOALS-g2_r1i1p1': {'value': None, 'value_error': None},
        'GPCPv2.3': {'value': None, 'value_error': None}},
       'metric': {'ERA-Interim': {'value': 0.9402482243911474,
         'value_error': None},
        'GPCPv2.3': {'value': 1.0117398506235442, 'value_error': None}}},
      'SeasonalPrLonRmse': {'diagnostic': {'ERA-Interim': {'value': None,
         'value_error': None},
        'FGOALS-g2_r1i1p1': {'value': None, 'value_error': None},
        'GPCPv2.3': {'value': None, 'value_error': None}},
       'metric': {'ERA-Interim': {'value': 0.5237938628628958,
         'value_error': None},
        'GPCPv2.3': {'value': 0.523582414235771, 'value_error': None}}},
      'SeasonalSstLonRmse': {'diagnostic': {'ERA-Interim': {'value': None,
         'value_error': None},
        'FGOALS-g2_r1i1p1': {'value': None, 'value_error': None},
        'HadISST': {'value': None, 'value_error': None},
        'Tropflux': {'value': None, 'value_error': None}},
       'metric': {'ERA-Interim': {'value': 0.2217419004746078,
         'value_error': None},
        'HadISST': {'value': 0.22023009258660953, 'value_error': None},
        'Tropflux': {'value': 0.22889081563218605, 'value_error': None}}},
      'SeasonalTauxLonRmse': {'diagnostic': {'ERA-Interim': {'value': None,
         'value_error': None},
        'FGOALS-g2_r1i1p1': {'value': None, 'value_error': None},
        'Tropflux': {'value': None, 'value_error': None}},
       'metric': {'ERA-Interim': {'value': 1.6431253647456396,
         'value_error': None},
        'Tropflux': {'value': 1.9482625084995848, 'value_error': None}}}}},
    'r2i1p1': {'metadata': {'description_of_the_collection': 'Describe which science question this collection is about',
      'metrics': {'BiasPrLatRmse': {'diagnostic': {'ERA-Interim': {'name': 'ERA-Interim',
          'nyears': 40,
          'time_period': ['1979-1-16 12:0:0.0', '2019-3-16 12:0:0.0']},
         'FGOALS-g2_r2i1p1': {'keyerror': None,
          'name': 'FGOALS-g2_r2i1p1',
          'nyears': 110,
          'time_period': ['1900-1-16 12:0:0.0', '2009-12-16 12:0:0.0']},
         'GPCPv2.3': {'name': 'GPCPv2.3',
          'nyears': 41,
          'time_period': ['1979-1-1 0:0:0.0', '2019-7-1 0:0:0.0']},
         'method': 'Meridional root mean square error of nino3_LatExt pr, time series are linearly detrended, observations and model regridded to generic_1x1deg',
         'name': 'pr Meridional RMSE',
         'ref': 'Using CDAT regridding and rms (uncentered and biased) calculation',
         'time_frequency': 'monthly',
         'units': 'mm/day'},
        'metric': {'datasets': "FGOALS-g2_r2i1p1; ERA-Interim's pr & GPCPv2.3's precip; 's ",
         'method': 'The metric is the statistical value between the model and the observations',
         'name': 'BiasPrLatRmse',
         'units': 'mm/day'}},
       'BiasPrLonRmse': {'diagnostic': {'ERA-Interim': {'name': 'ERA-Interim',
          'nyears': 40,
          'time_period': ['1979-1-16 12:0:0.0', '2019-3-16 12:0:0.0']},
         'FGOALS-g2_r2i1p1': {'keyerror': None,
          'name': 'FGOALS-g2_r2i1p1',
          'nyears': 110,
          'time_period': ['1900-1-16 12:0:0.0', '2009-12-16 12:0:0.0']},
         'GPCPv2.3': {'name': 'GPCPv2.3',
          'nyears': 41,
          'time_period': ['1979-1-1 0:0:0.0', '2019-7-1 0:0:0.0']},
         'method': 'Zonal root mean square error of equatorial_pacific pr, time series are linearly detrended, observations and model regridded to generic_1x1deg',
         'name': 'pr Zonal RMSE',
         'ref': 'Using CDAT regridding and rms (uncentered and biased) calculation',
         'time_frequency': 'monthly',
         'units': 'mm/day'},
        'metric': {'datasets': "FGOALS-g2_r2i1p1; ERA-Interim's pr & GPCPv2.3's precip; 's ",
         'method': 'The metric is the statistical value between the model and the observations',
         'name': 'BiasPrLonRmse',
         'units': 'mm/day'}},
       'BiasSstLonRmse': {'diagnostic': {'ERA-Interim': {'name': 'ERA-Interim',
          'nyears': 40,
          'time_period': ['1979-1-16 12:0:0.0', '2019-3-16 12:0:0.0']},
         'FGOALS-g2_r2i1p1': {'keyerror': None,
          'name': 'FGOALS-g2_r2i1p1',
          'nyears': 110,
          'time_period': ['1900-1-16 12:0:0.0', '2009-12-16 12:0:0.0']},
         'HadISST': {'name': 'HadISST',
          'nyears': 151,
          'time_period': ['1870-1-16 11:59:59.5', '2020-10-16 12:0:0.0']},
         'Tropflux': {'name': 'Tropflux',
          'nyears': 40,
          'time_period': ['1979-1-15 0:0:0.0', '2018-12-15 12:0:0.0']},
         'method': 'Zonal root mean square error of equatorial_pacific sst, time series are linearly detrended, observations and model regridded to generic_1x1deg',
         'name': 'sst Zonal RMSE',
         'ref': 'Using CDAT regridding and rms (uncentered and biased) calculation',
         'time_frequency': 'monthly',
         'units': 'C'},
        'metric': {'datasets': "FGOALS-g2_r2i1p1; ERA-Interim's ts & HadISST's sst & Tropflux's sst; 's ",
         'method': 'The metric is the statistical value between the model and the observations',
         'name': 'BiasSstLonRmse',
         'units': 'C'}},
       'BiasTauxLonRmse': {'diagnostic': {'ERA-Interim': {'name': 'ERA-Interim',
          'nyears': 40,
          'time_period': ['1979-1-16 12:0:0.0', '2019-3-16 12:0:0.0']},
         'FGOALS-g2_r2i1p1': {'keyerror': None,
          'name': 'FGOALS-g2_r2i1p1',
          'nyears': 110,
          'time_period': ['1900-1-16 12:0:0.0', '2009-12-16 12:0:0.0']},
         'Tropflux': {'name': 'Tropflux',
          'nyears': 40,
          'time_period': ['1979-1-15 0:0:0.0', '2018-12-15 12:0:0.0']},
         'method': 'Zonal root mean square error of equatorial_pacific taux, time series are linearly detrended, observations and model regridded to generic_1x1deg',
         'name': 'taux Zonal RMSE',
         'ref': 'Using CDAT regridding and rms (uncentered and biased) calculation',
         'time_frequency': 'monthly',
         'units': '1e-3 N/m2'},
        'metric': {'datasets': "FGOALS-g2_r2i1p1; ERA-Interim's tauu & Tropflux's taux; 's ",
         'method': 'The metric is the statistical value between the model and the observations',
         'name': 'BiasTauxLonRmse',
         'units': '1e-3 N/m2'}},
       'EnsoAmpl': {'diagnostic': {'ERA-Interim': {'keyerror': None,
          'name': 'ERA-Interim',
          'nyears': 40,
          'time_period': ['1979-1-16 12:0:0.0', '2019-3-16 12:0:0.0']},
         'FGOALS-g2_r2i1p1': {'keyerror': None,
          'name': 'FGOALS-g2_r2i1p1',
          'nyears': 110,
          'time_period': ['1900-1-16 12:0:0.0', '2009-12-16 12:0:0.0']},
         'HadISST': {'keyerror': None,
          'name': 'HadISST',
          'nyears': 151,
          'time_period': ['1870-1-16 11:59:59.5', '2020-10-16 12:0:0.0']},
         'Tropflux': {'keyerror': None,
          'name': 'Tropflux',
          'nyears': 40,
          'time_period': ['1979-1-15 0:0:0.0', '2018-12-15 12:0:0.0']},
         'method': 'Standard deviation of nino3.4 sstA, time series are linearly detrended',
         'name': 'ENSO amplitude',
         'ref': 'Using CDAT regression calculation',
         'time_frequency': 'monthly',
         'units': 'C'},
        'metric': {'datasets': "FGOALS-g2_r2i1p1; ERA-Interim's ts & HadISST's sst & Tropflux's sst; 's ",
         'method': 'The metric is the absolute value of the relative difference between model and observations values (M = 100 * abs[[model-obs] / obs])',
         'name': 'EnsoAmpl',
         'units': '%'}},
       'EnsoDuration': {'diagnostic': {'ERA-Interim': {'keyerror': None,
          'name': 'ERA-Interim',
          'nyears': 40,
          'time_period': ['1979-1-16 12:0:0.0', '2019-3-16 12:0:0.0']},
         'FGOALS-g2_r2i1p1': {'keyerror': None,
          'name': 'FGOALS-g2_r2i1p1',
          'nyears': 110,
          'time_period': ['1900-1-16 12:0:0.0', '2009-12-16 12:0:0.0']},
         'HadISST': {'keyerror': None,
          'name': 'HadISST',
          'nyears': 151,
          'time_period': ['1870-1-16 11:59:59.5', '2020-10-16 12:0:0.0']},
         'Tropflux': {'keyerror': None,
          'name': 'Tropflux',
          'nyears': 40,
          'time_period': ['1979-1-15 0:0:0.0', '2018-12-15 12:0:0.0']},
         'method': 'nino3.4 SSTA during DEC regressed against nino3.4 SSTA during 6 years (centered on ENSO), the duration is the number of consecutive months during which the regression is above 0.25, time series are linearly detrended, smoothing using a triangle shaped window of 5 points',
         'name': 'ENSO Duration based on life cyle SSTA pattern',
         'ref': 'Using CDAT',
         'time_frequency': 'monthly',
         'units': 'months'},
        'metric': {'datasets': "FGOALS-g2_r2i1p1; ERA-Interim's ts & HadISST's sst & Tropflux's sst; 's ",
         'method': 'The metric is the absolute value of the relative difference between model and observations values (M = 100 * abs[[model-obs] / obs])',
         'name': 'EnsoDuration',
         'units': '%'}},
       'EnsoSeasonality': {'diagnostic': {'ERA-Interim': {'keyerror': None,
          'name': 'ERA-Interim',
          'nyears': 40,
          'time_period': ['1979-1-16 12:0:0.0', '2019-3-16 12:0:0.0']},
         'FGOALS-g2_r2i1p1': {'keyerror': None,
          'name': 'FGOALS-g2_r2i1p1',
          'nyears': 110,
          'time_period': ['1900-1-16 12:0:0.0', '2009-12-16 12:0:0.0']},
         'HadISST': {'keyerror': None,
          'name': 'HadISST',
          'nyears': 151,
          'time_period': ['1870-1-16 11:59:59.5', '2020-10-16 12:0:0.0']},
         'Tropflux': {'keyerror': None,
          'name': 'Tropflux',
          'nyears': 40,
          'time_period': ['1979-1-15 0:0:0.0', '2018-12-15 12:0:0.0']},
         'method': 'Ratio between NDJ and MAM standard deviation nino3.4 sstA, time series are linearly detrended',
         'name': 'ENSO seasonality',
         'ref': 'Using CDAT std dev calculation',
         'time_frequency': 'monthly',
         'units': 'C/C'},
        'metric': {'datasets': "FGOALS-g2_r2i1p1; ERA-Interim's ts & HadISST's sst & Tropflux's sst; 's ",
         'method': 'The metric is the absolute value of the relative difference between model and observations values (M = 100 * abs[[model-obs] / obs])',
         'name': 'EnsoSeasonality',
         'units': '%'}},
       'EnsoSstDiversity_2': {'diagnostic': {'ERA-Interim': {'keyerror': None,
          'name': 'ERA-Interim',
          'nyears': 40,
          'time_period': ['1979-1-16 12:0:0.0', '2019-3-16 12:0:0.0']},
         'FGOALS-g2_r2i1p1': {'keyerror': None,
          'name': 'FGOALS-g2_r2i1p1',
          'nyears': 110,
          'time_period': ['1900-1-16 12:0:0.0', '2009-12-16 12:0:0.0']},
         'HadISST': {'keyerror': None,
          'name': 'HadISST',
          'nyears': 151,
          'time_period': ['1870-1-16 11:59:59.5', '2020-10-16 12:0:0.0']},
         'Tropflux': {'keyerror': None,
          'name': 'Tropflux',
          'nyears': 40,
          'time_period': ['1979-1-15 0:0:0.0', '2018-12-15 12:0:0.0']},
         'method': 'Nino (Nina) events = nino3.4 sstA > 0.75 (< -0.75) during DEC, zonal SSTA (meridional averaged [-5.0 ; 5.0]), the zonal SSTA maximum (minimum) is located for each event, the diversity is the interquartile range (IQR = Q3 - Q1), time series are linearly detrended, smoothing using a triangle shaped window of 5 points',
         'name': 'ENSO Diversity (interquartile range)',
         'ref': 'Using CDAT regridding',
         'time_frequency': 'monthly',
         'units': 'long'},
        'metric': {'datasets': "FGOALS-g2_r2i1p1; ERA-Interim's ts & HadISST's sst & Tropflux's sst; 's ",
         'method': 'The metric is the absolute value of the relative difference between model and observations values (M = 100 * abs[[model-obs] / obs])',
         'name': 'EnsoSstDiversity',
         'units': '%'}},
       'EnsoSstLonRmse': {'diagnostic': {'ERA-Interim': {'name': 'ERA-Interim',
          'nyears': 40,
          'time_period': ['1979-1-16 12:0:0.0', '2019-3-16 12:0:0.0']},
         'FGOALS-g2_r2i1p1': {'keyerror': None,
          'name': 'FGOALS-g2_r2i1p1',
          'nyears': 110,
          'time_period': ['1900-1-16 12:0:0.0', '2009-12-16 12:0:0.0']},
         'HadISST': {'name': 'HadISST',
          'nyears': 151,
          'time_period': ['1870-1-16 11:59:59.5', '2020-10-16 12:0:0.0']},
         'Tropflux': {'name': 'Tropflux',
          'nyears': 40,
          'time_period': ['1979-1-15 0:0:0.0', '2018-12-15 12:0:0.0']},
         'method': 'nino3.4 SSTA during DEC regressed against equatorial_pacific SSTA, time series are linearly detrended, smoothing using a triangle shaped window of 5 points, observations and model regridded to generic_1x1deg',
         'name': 'ENSO Zonal SSTA pattern',
         'ref': 'Using CDAT regridding and rms (uncentered and biased) calculation',
         'time_frequency': 'monthly',
         'units': 'C/C'},
        'metric': {'datasets': "FGOALS-g2_r2i1p1; ERA-Interim's ts & HadISST's sst & Tropflux's sst; 's ",
         'method': 'The metric is the statistical value between the model and the observations',
         'name': 'EnsoSstLonRmse',
         'units': 'C/C'}},
       'EnsoSstSkew': {'diagnostic': {'ERA-Interim': {'keyerror': None,
          'name': 'ERA-Interim',
          'nyears': 40,
          'time_period': ['1979-1-16 12:0:0.0', '2019-3-16 12:0:0.0']},
         'FGOALS-g2_r2i1p1': {'keyerror': None,
          'name': 'FGOALS-g2_r2i1p1',
          'nyears': 110,
          'time_period': ['1900-1-16 12:0:0.0', '2009-12-16 12:0:0.0']},
         'HadISST': {'keyerror': None,
          'name': 'HadISST',
          'nyears': 151,
          'time_period': ['1870-1-16 11:59:59.5', '2020-10-16 12:0:0.0']},
         'Tropflux': {'keyerror': None,
          'name': 'Tropflux',
          'nyears': 40,
          'time_period': ['1979-1-15 0:0:0.0', '2018-12-15 12:0:0.0']},
         'method': 'Standard deviation of nino3.4 sstA, time series are linearly detrended',
         'name': 'ENSO skewness',
         'ref': 'Using CDAT regression calculation',
         'time_frequency': 'monthly',
         'units': 'C'},
        'metric': {'datasets': "FGOALS-g2_r2i1p1; ERA-Interim's ts & HadISST's sst & Tropflux's sst; 's ",
         'method': 'The metric is the absolute value of the relative difference between model and observations values (M = 100 * abs[[model-obs] / obs])',
         'name': 'EnsoSstSkew',
         'units': '%'}},
       'EnsoSstTsRmse': {'diagnostic': {'ERA-Interim': {'name': 'ERA-Interim',
          'nyears': 40,
          'time_period': ['1979-1-16 12:0:0.0', '2019-3-16 12:0:0.0']},
         'FGOALS-g2_r2i1p1': {'keyerror': None,
          'name': 'FGOALS-g2_r2i1p1',
          'nyears': 110,
          'time_period': ['1900-1-16 12:0:0.0', '2009-12-16 12:0:0.0']},
         'HadISST': {'name': 'HadISST',
          'nyears': 151,
          'time_period': ['1870-1-16 11:59:59.5', '2020-10-16 12:0:0.0']},
         'Tropflux': {'name': 'Tropflux',
          'nyears': 40,
          'time_period': ['1979-1-15 0:0:0.0', '2018-12-15 12:0:0.0']},
         'method': 'nino3.4 SSTA during DEC regressed against nino3.4 SSTA during 6 years (centered on ENSO), time series are linearly detrended, smoothing using a triangle shaped window of 5 points',
         'name': 'ENSO life cyle SSTA pattern',
         'ref': 'Using CDAT regridding and rms (uncentered and biased) calculation',
         'time_frequency': 'monthly',
         'units': 'C/C'},
        'metric': {'datasets': "FGOALS-g2_r2i1p1; ERA-Interim's ts & HadISST's sst & Tropflux's sst; 's ",
         'method': 'The metric is the statistical value between the model and the observations',
         'name': 'EnsoSstTsRmse',
         'units': 'C/C'}},
       'SeasonalPrLatRmse': {'diagnostic': {'ERA-Interim': {'name': 'ERA-Interim',
          'nyears': 40,
          'time_period': ['1979-1-16 12:0:0.0', '2019-3-16 12:0:0.0']},
         'FGOALS-g2_r2i1p1': {'keyerror': None,
          'name': 'FGOALS-g2_r2i1p1',
          'nyears': 110,
          'time_period': ['1900-1-16 12:0:0.0', '2009-12-16 12:0:0.0']},
         'GPCPv2.3': {'name': 'GPCPv2.3',
          'nyears': 41,
          'time_period': ['1979-1-1 0:0:0.0', '2019-7-1 0:0:0.0']},
         'method': 'Meridional root mean square error of nino3_LatExt climatological pr STD, time series are linearly detrended, observations and model regridded to generic_1x1deg',
         'name': 'pr meridional seasonality RMSE',
         'ref': 'Using CDAT regridding and rms (uncentered and biased) calculation',
         'time_frequency': 'monthly',
         'units': 'mm/day'},
        'metric': {'datasets': "FGOALS-g2_r2i1p1; ERA-Interim's pr & GPCPv2.3's precip; 's ",
         'method': 'The metric is the statistical value between the model and the observations',
         'name': 'SeasonalPrLatRmse',
         'units': 'mm/day'}},
       'SeasonalPrLonRmse': {'diagnostic': {'ERA-Interim': {'name': 'ERA-Interim',
          'nyears': 40,
          'time_period': ['1979-1-16 12:0:0.0', '2019-3-16 12:0:0.0']},
         'FGOALS-g2_r2i1p1': {'keyerror': None,
          'name': 'FGOALS-g2_r2i1p1',
          'nyears': 110,
          'time_period': ['1900-1-16 12:0:0.0', '2009-12-16 12:0:0.0']},
         'GPCPv2.3': {'name': 'GPCPv2.3',
          'nyears': 41,
          'time_period': ['1979-1-1 0:0:0.0', '2019-7-1 0:0:0.0']},
         'method': 'Zonal root mean square error of equatorial_pacific climatological pr STD, time series are linearly detrended, observations and model regridded to generic_1x1deg',
         'name': 'pr zonal seasonality RMSE',
         'ref': 'Using CDAT regridding and rms (uncentered and biased) calculation',
         'time_frequency': 'monthly',
         'units': 'mm/day'},
        'metric': {'datasets': "FGOALS-g2_r2i1p1; ERA-Interim's pr & GPCPv2.3's precip; 's ",
         'method': 'The metric is the statistical value between the model and the observations',
         'name': 'SeasonalPrLonRmse',
         'units': 'mm/day'}},
       'SeasonalSstLonRmse': {'diagnostic': {'ERA-Interim': {'name': 'ERA-Interim',
          'nyears': 40,
          'time_period': ['1979-1-16 12:0:0.0', '2019-3-16 12:0:0.0']},
         'FGOALS-g2_r2i1p1': {'keyerror': None,
          'name': 'FGOALS-g2_r2i1p1',
          'nyears': 110,
          'time_period': ['1900-1-16 12:0:0.0', '2009-12-16 12:0:0.0']},
         'HadISST': {'name': 'HadISST',
          'nyears': 151,
          'time_period': ['1870-1-16 11:59:59.5', '2020-10-16 12:0:0.0']},
         'Tropflux': {'name': 'Tropflux',
          'nyears': 40,
          'time_period': ['1979-1-15 0:0:0.0', '2018-12-15 12:0:0.0']},
         'method': 'Zonal root mean square error of equatorial_pacific climatological sst STD, time series are linearly detrended, observations and model regridded to generic_1x1deg',
         'name': 'sst zonal seasonality RMSE',
         'ref': 'Using CDAT regridding and rms (uncentered and biased) calculation',
         'time_frequency': 'monthly',
         'units': 'C'},
        'metric': {'datasets': "FGOALS-g2_r2i1p1; ERA-Interim's ts & HadISST's sst & Tropflux's sst; 's ",
         'method': 'The metric is the statistical value between the model and the observations',
         'name': 'SeasonalSstLonRmse',
         'units': 'C'}},
       'SeasonalTauxLonRmse': {'diagnostic': {'ERA-Interim': {'name': 'ERA-Interim',
          'nyears': 40,
          'time_period': ['1979-1-16 12:0:0.0', '2019-3-16 12:0:0.0']},
         'FGOALS-g2_r2i1p1': {'keyerror': None,
          'name': 'FGOALS-g2_r2i1p1',
          'nyears': 110,
          'time_period': ['1900-1-16 12:0:0.0', '2009-12-16 12:0:0.0']},
         'Tropflux': {'name': 'Tropflux',
          'nyears': 40,
          'time_period': ['1979-1-15 0:0:0.0', '2018-12-15 12:0:0.0']},
         'method': 'Zonal root mean square error of equatorial_pacific climatological taux STD, time series are linearly detrended, observations and model regridded to generic_1x1deg',
         'name': 'taux zonal seasonality RMSE',
         'ref': 'Using CDAT regridding and rms (uncentered and biased) calculation',
         'time_frequency': 'monthly',
         'units': '1e-3 N/m2'},
        'metric': {'datasets': "FGOALS-g2_r2i1p1; ERA-Interim's tauu & Tropflux's taux; 's ",
         'method': 'The metric is the statistical value between the model and the observations',
         'name': 'SeasonalTauxLonRmse',
         'units': '1e-3 N/m2'}}},
      'name': 'Metrics Collection for ENSO performance'},
     'value': {'BiasPrLatRmse': {'diagnostic': {'ERA-Interim': {'value': None,
         'value_error': None},
        'FGOALS-g2_r2i1p1': {'value': None, 'value_error': None},
        'GPCPv2.3': {'value': None, 'value_error': None}},
       'metric': {'ERA-Interim': {'value': 1.8637416125551207,
         'value_error': None},
        'GPCPv2.3': {'value': 1.9924427581378525, 'value_error': None}}},
      'BiasPrLonRmse': {'diagnostic': {'ERA-Interim': {'value': None,
         'value_error': None},
        'FGOALS-g2_r2i1p1': {'value': None, 'value_error': None},
        'GPCPv2.3': {'value': None, 'value_error': None}},
       'metric': {'ERA-Interim': {'value': 0.9321223085692444,
         'value_error': None},
        'GPCPv2.3': {'value': 1.5303839816756724, 'value_error': None}}},
      'BiasSstLonRmse': {'diagnostic': {'ERA-Interim': {'value': None,
         'value_error': None},
        'FGOALS-g2_r2i1p1': {'value': None, 'value_error': None},
        'HadISST': {'value': None, 'value_error': None},
        'Tropflux': {'value': None, 'value_error': None}},
       'metric': {'ERA-Interim': {'value': 0.9920421576685735,
         'value_error': None},
        'HadISST': {'value': 0.8914631439764118, 'value_error': None},
        'Tropflux': {'value': 1.0262181314729437, 'value_error': None}}},
      'BiasTauxLonRmse': {'diagnostic': {'ERA-Interim': {'value': None,
         'value_error': None},
        'FGOALS-g2_r2i1p1': {'value': None, 'value_error': None},
        'Tropflux': {'value': None, 'value_error': None}},
       'metric': {'ERA-Interim': {'value': 12.047166621407168,
         'value_error': None},
        'Tropflux': {'value': 11.722137017330548, 'value_error': None}}},
      'EnsoAmpl': {'diagnostic': {'ERA-Interim': {'value': 0.8989844997845644,
         'value_error': 0.14214193002531866},
        'FGOALS-g2_r2i1p1': {'value': 0.7675051840426104,
         'value_error': 0.07317874800366822},
        'HadISST': {'value': 0.7665787872085695,
         'value_error': 0.06238329697691264},
        'Tropflux': {'value': 0.9039789553693535,
         'value_error': 0.14293162279134272}},
       'metric': {'ERA-Interim': {'value': 14.625315094249364,
         'value_error': 21.63907975369485},
        'HadISST': {'value': 0.12084822193087633,
         'value_error': 17.693867394853346},
        'Tropflux': {'value': 15.097007570378867,
         'value_error': 21.519524511746347}}},
      'EnsoDuration': {'diagnostic': {'ERA-Interim': {'value': 13.0,
         'value_error': None},
        'FGOALS-g2_r2i1p1': {'value': 11.0, 'value_error': None},
        'HadISST': {'value': 13.0, 'value_error': None},
        'Tropflux': {'value': 13.0, 'value_error': None}},
       'metric': {'ERA-Interim': {'value': 15.384615384615385,
         'value_error': None},
        'HadISST': {'value': 15.384615384615385, 'value_error': None},
        'Tropflux': {'value': 15.384615384615385, 'value_error': None}}},
      'EnsoSeasonality': {'diagnostic': {'ERA-Interim': {'value': 2.0466846866656914,
         'value_error': 0.6513411033995022},
        'FGOALS-g2_r2i1p1': {'value': 1.6393949969353427,
         'value_error': 0.31333574184989615},
        'HadISST': {'value': 1.6639865947361325,
         'value_error': 0.2712772451657809},
        'Tropflux': {'value': 2.0532132553583624,
         'value_error': 0.6534187683977347}},
       'metric': {'ERA-Interim': {'value': 19.899972496197012,
         'value_error': 40.80062504287801},
        'HadISST': {'value': 1.4778723505695919,
         'value_error': 34.8923397251319},
        'Tropflux': {'value': 20.154665246927454,
         'value_error': 40.67089196103607}}},
      'EnsoSstDiversity_2': {'diagnostic': {'ERA-Interim': {'value': 33.25,
         'value_error': None},
        'FGOALS-g2_r2i1p1': {'value': 11.0, 'value_error': None},
        'HadISST': {'value': 49.0, 'value_error': None},
        'Tropflux': {'value': 32.0, 'value_error': None}},
       'metric': {'ERA-Interim': {'value': 66.9172932330827,
         'value_error': None},
        'HadISST': {'value': 77.55102040816327, 'value_error': None},
        'Tropflux': {'value': 65.625, 'value_error': None}}},
      'EnsoSstLonRmse': {'diagnostic': {'ERA-Interim': {'value': None,
         'value_error': None},
        'FGOALS-g2_r2i1p1': {'value': None, 'value_error': None},
        'HadISST': {'value': None, 'value_error': None},
        'Tropflux': {'value': None, 'value_error': None}},
       'metric': {'ERA-Interim': {'value': 0.14572420861544483,
         'value_error': None},
        'HadISST': {'value': 0.16098621959907033, 'value_error': None},
        'Tropflux': {'value': 0.14535389258941123, 'value_error': None}}},
      'EnsoSstSkew': {'diagnostic': {'ERA-Interim': {'value': 0.39098111106809963,
         'value_error': 0.061819541653923164},
        'FGOALS-g2_r2i1p1': {'value': -0.07609702488962236,
         'value_error': -0.007255566638514562},
        'HadISST': {'value': 0.38989908235027515,
         'value_error': 0.03172953733021198},
        'Tropflux': {'value': 0.39744741059612115,
         'value_error': 0.06284195338099416}},
       'metric': {'ERA-Interim': {'value': 119.46309495150216,
         'value_error': -4.933118808862767},
        'HadISST': {'value': 119.51710797340598,
         'value_error': -3.449162952025784},
        'Tropflux': {'value': 119.14643871386315,
         'value_error': -4.8528590739268225}}},
      'EnsoSstTsRmse': {'diagnostic': {'ERA-Interim': {'value': None,
         'value_error': None},
        'FGOALS-g2_r2i1p1': {'value': None, 'value_error': None},
        'HadISST': {'value': None, 'value_error': None},
        'Tropflux': {'value': None, 'value_error': None}},
       'metric': {'ERA-Interim': {'value': 0.10852335790170753,
         'value_error': None},
        'HadISST': {'value': 0.12769614753547373, 'value_error': None},
        'Tropflux': {'value': 0.11384366804719956, 'value_error': None}}},
      'SeasonalPrLatRmse': {'diagnostic': {'ERA-Interim': {'value': None,
         'value_error': None},
        'FGOALS-g2_r2i1p1': {'value': None, 'value_error': None},
        'GPCPv2.3': {'value': None, 'value_error': None}},
       'metric': {'ERA-Interim': {'value': 0.9392202553694156,
         'value_error': None},
        'GPCPv2.3': {'value': 1.004248465537752, 'value_error': None}}},
      'SeasonalPrLonRmse': {'diagnostic': {'ERA-Interim': {'value': None,
         'value_error': None},
        'FGOALS-g2_r2i1p1': {'value': None, 'value_error': None},
        'GPCPv2.3': {'value': None, 'value_error': None}},
       'metric': {'ERA-Interim': {'value': 0.5152705532925422,
         'value_error': None},
        'GPCPv2.3': {'value': 0.510360748551264, 'value_error': None}}},
      'SeasonalSstLonRmse': {'diagnostic': {'ERA-Interim': {'value': None,
         'value_error': None},
        'FGOALS-g2_r2i1p1': {'value': None, 'value_error': None},
        'HadISST': {'value': None, 'value_error': None},
        'Tropflux': {'value': None, 'value_error': None}},
       'metric': {'ERA-Interim': {'value': 0.22107946656752364,
         'value_error': None},
        'HadISST': {'value': 0.21979344271364926, 'value_error': None},
        'Tropflux': {'value': 0.22770632859278803, 'value_error': None}}},
      'SeasonalTauxLonRmse': {'diagnostic': {'ERA-Interim': {'value': None,
         'value_error': None},
        'FGOALS-g2_r2i1p1': {'value': None, 'value_error': None},
        'Tropflux': {'value': None, 'value_error': None}},
       'metric': {'ERA-Interim': {'value': 1.7322748033605992,
         'value_error': None},
        'Tropflux': {'value': 2.0428032566669327, 'value_error': None}}}}},
    'r3i1p1': {'metadata': {'description_of_the_collection': 'Describe which science question this collection is about',
      'metrics': {'BiasPrLatRmse': {'diagnostic': {'ERA-Interim': {'name': 'ERA-Interim',
          'nyears': 40,
          'time_period': ['1979-1-16 12:0:0.0', '2019-3-16 12:0:0.0']},
         'FGOALS-g2_r3i1p1': {'keyerror': None,
          'name': 'FGOALS-g2_r3i1p1',
          'nyears': 157,
          'time_period': ['1850-1-16 12:0:0.0', '2006-12-16 12:0:0.0']},
         'GPCPv2.3': {'name': 'GPCPv2.3',
          'nyears': 41,
          'time_period': ['1979-1-1 0:0:0.0', '2019-7-1 0:0:0.0']},
         'method': 'Meridional root mean square error of nino3_LatExt pr, time series are linearly detrended, observations and model regridded to generic_1x1deg',
         'name': 'pr Meridional RMSE',
         'ref': 'Using CDAT regridding and rms (uncentered and biased) calculation',
         'time_frequency': 'monthly',
         'units': 'mm/day'},
        'metric': {'datasets': "FGOALS-g2_r3i1p1; ERA-Interim's pr & GPCPv2.3's precip; 's ",
         'method': 'The metric is the statistical value between the model and the observations',
         'name': 'BiasPrLatRmse',
         'units': 'mm/day'}},
       'BiasPrLonRmse': {'diagnostic': {'ERA-Interim': {'name': 'ERA-Interim',
          'nyears': 40,
          'time_period': ['1979-1-16 12:0:0.0', '2019-3-16 12:0:0.0']},
         'FGOALS-g2_r3i1p1': {'keyerror': None,
          'name': 'FGOALS-g2_r3i1p1',
          'nyears': 157,
          'time_period': ['1850-1-16 12:0:0.0', '2006-12-16 12:0:0.0']},
         'GPCPv2.3': {'name': 'GPCPv2.3',
          'nyears': 41,
          'time_period': ['1979-1-1 0:0:0.0', '2019-7-1 0:0:0.0']},
         'method': 'Zonal root mean square error of equatorial_pacific pr, time series are linearly detrended, observations and model regridded to generic_1x1deg',
         'name': 'pr Zonal RMSE',
         'ref': 'Using CDAT regridding and rms (uncentered and biased) calculation',
         'time_frequency': 'monthly',
         'units': 'mm/day'},
        'metric': {'datasets': "FGOALS-g2_r3i1p1; ERA-Interim's pr & GPCPv2.3's precip; 's ",
         'method': 'The metric is the statistical value between the model and the observations',
         'name': 'BiasPrLonRmse',
         'units': 'mm/day'}},
       'BiasSstLonRmse': {'diagnostic': {'ERA-Interim': {'name': 'ERA-Interim',
          'nyears': 40,
          'time_period': ['1979-1-16 12:0:0.0', '2019-3-16 12:0:0.0']},
         'FGOALS-g2_r3i1p1': {'keyerror': None,
          'name': 'FGOALS-g2_r3i1p1',
          'nyears': 157,
          'time_period': ['1850-1-16 12:0:0.0', '2006-12-16 12:0:0.0']},
         'HadISST': {'name': 'HadISST',
          'nyears': 151,
          'time_period': ['1870-1-16 11:59:59.5', '2020-10-16 12:0:0.0']},
         'Tropflux': {'name': 'Tropflux',
          'nyears': 40,
          'time_period': ['1979-1-15 0:0:0.0', '2018-12-15 12:0:0.0']},
         'method': 'Zonal root mean square error of equatorial_pacific sst, time series are linearly detrended, observations and model regridded to generic_1x1deg',
         'name': 'sst Zonal RMSE',
         'ref': 'Using CDAT regridding and rms (uncentered and biased) calculation',
         'time_frequency': 'monthly',
         'units': 'C'},
        'metric': {'datasets': "FGOALS-g2_r3i1p1; ERA-Interim's ts & HadISST's sst & Tropflux's sst; 's ",
         'method': 'The metric is the statistical value between the model and the observations',
         'name': 'BiasSstLonRmse',
         'units': 'C'}},
       'BiasTauxLonRmse': {'diagnostic': {'ERA-Interim': {'name': 'ERA-Interim',
          'nyears': 40,
          'time_period': ['1979-1-16 12:0:0.0', '2019-3-16 12:0:0.0']},
         'FGOALS-g2_r3i1p1': {'keyerror': None,
          'name': 'FGOALS-g2_r3i1p1',
          'nyears': 157,
          'time_period': ['1850-1-16 12:0:0.0', '2006-12-16 12:0:0.0']},
         'Tropflux': {'name': 'Tropflux',
          'nyears': 40,
          'time_period': ['1979-1-15 0:0:0.0', '2018-12-15 12:0:0.0']},
         'method': 'Zonal root mean square error of equatorial_pacific taux, time series are linearly detrended, observations and model regridded to generic_1x1deg',
         'name': 'taux Zonal RMSE',
         'ref': 'Using CDAT regridding and rms (uncentered and biased) calculation',
         'time_frequency': 'monthly',
         'units': '1e-3 N/m2'},
        'metric': {'datasets': "FGOALS-g2_r3i1p1; ERA-Interim's tauu & Tropflux's taux; 's ",
         'method': 'The metric is the statistical value between the model and the observations',
         'name': 'BiasTauxLonRmse',
         'units': '1e-3 N/m2'}},
       'EnsoAmpl': {'diagnostic': {'ERA-Interim': {'keyerror': None,
          'name': 'ERA-Interim',
          'nyears': 40,
          'time_period': ['1979-1-16 12:0:0.0', '2019-3-16 12:0:0.0']},
         'FGOALS-g2_r3i1p1': {'keyerror': None,
          'name': 'FGOALS-g2_r3i1p1',
          'nyears': 157,
          'time_period': ['1850-1-16 12:0:0.0', '2006-12-16 12:0:0.0']},
         'HadISST': {'keyerror': None,
          'name': 'HadISST',
          'nyears': 151,
          'time_period': ['1870-1-16 11:59:59.5', '2020-10-16 12:0:0.0']},
         'Tropflux': {'keyerror': None,
          'name': 'Tropflux',
          'nyears': 40,
          'time_period': ['1979-1-15 0:0:0.0', '2018-12-15 12:0:0.0']},
         'method': 'Standard deviation of nino3.4 sstA, time series are linearly detrended',
         'name': 'ENSO amplitude',
         'ref': 'Using CDAT regression calculation',
         'time_frequency': 'monthly',
         'units': 'C'},
        'metric': {'datasets': "FGOALS-g2_r3i1p1; ERA-Interim's ts & HadISST's sst & Tropflux's sst; 's ",
         'method': 'The metric is the absolute value of the relative difference between model and observations values (M = 100 * abs[[model-obs] / obs])',
         'name': 'EnsoAmpl',
         'units': '%'}},
       'EnsoDuration': {'diagnostic': {'ERA-Interim': {'keyerror': None,
          'name': 'ERA-Interim',
          'nyears': 40,
          'time_period': ['1979-1-16 12:0:0.0', '2019-3-16 12:0:0.0']},
         'FGOALS-g2_r3i1p1': {'keyerror': None,
          'name': 'FGOALS-g2_r3i1p1',
          'nyears': 157,
          'time_period': ['1850-1-16 12:0:0.0', '2006-12-16 12:0:0.0']},
         'HadISST': {'keyerror': None,
          'name': 'HadISST',
          'nyears': 151,
          'time_period': ['1870-1-16 11:59:59.5', '2020-10-16 12:0:0.0']},
         'Tropflux': {'keyerror': None,
          'name': 'Tropflux',
          'nyears': 40,
          'time_period': ['1979-1-15 0:0:0.0', '2018-12-15 12:0:0.0']},
         'method': 'nino3.4 SSTA during DEC regressed against nino3.4 SSTA during 6 years (centered on ENSO), the duration is the number of consecutive months during which the regression is above 0.25, time series are linearly detrended, smoothing using a triangle shaped window of 5 points',
         'name': 'ENSO Duration based on life cyle SSTA pattern',
         'ref': 'Using CDAT',
         'time_frequency': 'monthly',
         'units': 'months'},
        'metric': {'datasets': "FGOALS-g2_r3i1p1; ERA-Interim's ts & HadISST's sst & Tropflux's sst; 's ",
         'method': 'The metric is the absolute value of the relative difference between model and observations values (M = 100 * abs[[model-obs] / obs])',
         'name': 'EnsoDuration',
         'units': '%'}},
       'EnsoSeasonality': {'diagnostic': {'ERA-Interim': {'keyerror': None,
          'name': 'ERA-Interim',
          'nyears': 40,
          'time_period': ['1979-1-16 12:0:0.0', '2019-3-16 12:0:0.0']},
         'FGOALS-g2_r3i1p1': {'keyerror': None,
          'name': 'FGOALS-g2_r3i1p1',
          'nyears': 157,
          'time_period': ['1850-1-16 12:0:0.0', '2006-12-16 12:0:0.0']},
         'HadISST': {'keyerror': None,
          'name': 'HadISST',
          'nyears': 151,
          'time_period': ['1870-1-16 11:59:59.5', '2020-10-16 12:0:0.0']},
         'Tropflux': {'keyerror': None,
          'name': 'Tropflux',
          'nyears': 40,
          'time_period': ['1979-1-15 0:0:0.0', '2018-12-15 12:0:0.0']},
         'method': 'Ratio between NDJ and MAM standard deviation nino3.4 sstA, time series are linearly detrended',
         'name': 'ENSO seasonality',
         'ref': 'Using CDAT std dev calculation',
         'time_frequency': 'monthly',
         'units': 'C/C'},
        'metric': {'datasets': "FGOALS-g2_r3i1p1; ERA-Interim's ts & HadISST's sst & Tropflux's sst; 's ",
         'method': 'The metric is the absolute value of the relative difference between model and observations values (M = 100 * abs[[model-obs] / obs])',
         'name': 'EnsoSeasonality',
         'units': '%'}},
       'EnsoSstDiversity_2': {'diagnostic': {'ERA-Interim': {'keyerror': None,
          'name': 'ERA-Interim',
          'nyears': 40,
          'time_period': ['1979-1-16 12:0:0.0', '2019-3-16 12:0:0.0']},
         'FGOALS-g2_r3i1p1': {'keyerror': None,
          'name': 'FGOALS-g2_r3i1p1',
          'nyears': 157,
          'time_period': ['1850-1-16 12:0:0.0', '2006-12-16 12:0:0.0']},
         'HadISST': {'keyerror': None,
          'name': 'HadISST',
          'nyears': 151,
          'time_period': ['1870-1-16 11:59:59.5', '2020-10-16 12:0:0.0']},
         'Tropflux': {'keyerror': None,
          'name': 'Tropflux',
          'nyears': 40,
          'time_period': ['1979-1-15 0:0:0.0', '2018-12-15 12:0:0.0']},
         'method': 'Nino (Nina) events = nino3.4 sstA > 0.75 (< -0.75) during DEC, zonal SSTA (meridional averaged [-5.0 ; 5.0]), the zonal SSTA maximum (minimum) is located for each event, the diversity is the interquartile range (IQR = Q3 - Q1), time series are linearly detrended, smoothing using a triangle shaped window of 5 points',
         'name': 'ENSO Diversity (interquartile range)',
         'ref': 'Using CDAT regridding',
         'time_frequency': 'monthly',
         'units': 'long'},
        'metric': {'datasets': "FGOALS-g2_r3i1p1; ERA-Interim's ts & HadISST's sst & Tropflux's sst; 's ",
         'method': 'The metric is the absolute value of the relative difference between model and observations values (M = 100 * abs[[model-obs] / obs])',
         'name': 'EnsoSstDiversity',
         'units': '%'}},
       'EnsoSstLonRmse': {'diagnostic': {'ERA-Interim': {'name': 'ERA-Interim',
          'nyears': 40,
          'time_period': ['1979-1-16 12:0:0.0', '2019-3-16 12:0:0.0']},
         'FGOALS-g2_r3i1p1': {'keyerror': None,
          'name': 'FGOALS-g2_r3i1p1',
          'nyears': 157,
          'time_period': ['1850-1-16 12:0:0.0', '2006-12-16 12:0:0.0']},
         'HadISST': {'name': 'HadISST',
          'nyears': 151,
          'time_period': ['1870-1-16 11:59:59.5', '2020-10-16 12:0:0.0']},
         'Tropflux': {'name': 'Tropflux',
          'nyears': 40,
          'time_period': ['1979-1-15 0:0:0.0', '2018-12-15 12:0:0.0']},
         'method': 'nino3.4 SSTA during DEC regressed against equatorial_pacific SSTA, time series are linearly detrended, smoothing using a triangle shaped window of 5 points, observations and model regridded to generic_1x1deg',
         'name': 'ENSO Zonal SSTA pattern',
         'ref': 'Using CDAT regridding and rms (uncentered and biased) calculation',
         'time_frequency': 'monthly',
         'units': 'C/C'},
        'metric': {'datasets': "FGOALS-g2_r3i1p1; ERA-Interim's ts & HadISST's sst & Tropflux's sst; 's ",
         'method': 'The metric is the statistical value between the model and the observations',
         'name': 'EnsoSstLonRmse',
         'units': 'C/C'}},
       'EnsoSstSkew': {'diagnostic': {'ERA-Interim': {'keyerror': None,
          'name': 'ERA-Interim',
          'nyears': 40,
          'time_period': ['1979-1-16 12:0:0.0', '2019-3-16 12:0:0.0']},
         'FGOALS-g2_r3i1p1': {'keyerror': None,
          'name': 'FGOALS-g2_r3i1p1',
          'nyears': 157,
          'time_period': ['1850-1-16 12:0:0.0', '2006-12-16 12:0:0.0']},
         'HadISST': {'keyerror': None,
          'name': 'HadISST',
          'nyears': 151,
          'time_period': ['1870-1-16 11:59:59.5', '2020-10-16 12:0:0.0']},
         'Tropflux': {'keyerror': None,
          'name': 'Tropflux',
          'nyears': 40,
          'time_period': ['1979-1-15 0:0:0.0', '2018-12-15 12:0:0.0']},
         'method': 'Standard deviation of nino3.4 sstA, time series are linearly detrended',
         'name': 'ENSO skewness',
         'ref': 'Using CDAT regression calculation',
         'time_frequency': 'monthly',
         'units': 'C'},
        'metric': {'datasets': "FGOALS-g2_r3i1p1; ERA-Interim's ts & HadISST's sst & Tropflux's sst; 's ",
         'method': 'The metric is the absolute value of the relative difference between model and observations values (M = 100 * abs[[model-obs] / obs])',
         'name': 'EnsoSstSkew',
         'units': '%'}},
       'EnsoSstTsRmse': {'diagnostic': {'ERA-Interim': {'name': 'ERA-Interim',
          'nyears': 40,
          'time_period': ['1979-1-16 12:0:0.0', '2019-3-16 12:0:0.0']},
         'FGOALS-g2_r3i1p1': {'keyerror': None,
          'name': 'FGOALS-g2_r3i1p1',
          'nyears': 157,
          'time_period': ['1850-1-16 12:0:0.0', '2006-12-16 12:0:0.0']},
         'HadISST': {'name': 'HadISST',
          'nyears': 151,
          'time_period': ['1870-1-16 11:59:59.5', '2020-10-16 12:0:0.0']},
         'Tropflux': {'name': 'Tropflux',
          'nyears': 40,
          'time_period': ['1979-1-15 0:0:0.0', '2018-12-15 12:0:0.0']},
         'method': 'nino3.4 SSTA during DEC regressed against nino3.4 SSTA during 6 years (centered on ENSO), time series are linearly detrended, smoothing using a triangle shaped window of 5 points',
         'name': 'ENSO life cyle SSTA pattern',
         'ref': 'Using CDAT regridding and rms (uncentered and biased) calculation',
         'time_frequency': 'monthly',
         'units': 'C/C'},
        'metric': {'datasets': "FGOALS-g2_r3i1p1; ERA-Interim's ts & HadISST's sst & Tropflux's sst; 's ",
         'method': 'The metric is the statistical value between the model and the observations',
         'name': 'EnsoSstTsRmse',
         'units': 'C/C'}},
       'SeasonalPrLatRmse': {'diagnostic': {'ERA-Interim': {'name': 'ERA-Interim',
          'nyears': 40,
          'time_period': ['1979-1-16 12:0:0.0', '2019-3-16 12:0:0.0']},
         'FGOALS-g2_r3i1p1': {'keyerror': None,
          'name': 'FGOALS-g2_r3i1p1',
          'nyears': 157,
          'time_period': ['1850-1-16 12:0:0.0', '2006-12-16 12:0:0.0']},
         'GPCPv2.3': {'name': 'GPCPv2.3',
          'nyears': 41,
          'time_period': ['1979-1-1 0:0:0.0', '2019-7-1 0:0:0.0']},
         'method': 'Meridional root mean square error of nino3_LatExt climatological pr STD, time series are linearly detrended, observations and model regridded to generic_1x1deg',
         'name': 'pr meridional seasonality RMSE',
         'ref': 'Using CDAT regridding and rms (uncentered and biased) calculation',
         'time_frequency': 'monthly',
         'units': 'mm/day'},
        'metric': {'datasets': "FGOALS-g2_r3i1p1; ERA-Interim's pr & GPCPv2.3's precip; 's ",
         'method': 'The metric is the statistical value between the model and the observations',
         'name': 'SeasonalPrLatRmse',
         'units': 'mm/day'}},
       'SeasonalPrLonRmse': {'diagnostic': {'ERA-Interim': {'name': 'ERA-Interim',
          'nyears': 40,
          'time_period': ['1979-1-16 12:0:0.0', '2019-3-16 12:0:0.0']},
         'FGOALS-g2_r3i1p1': {'keyerror': None,
          'name': 'FGOALS-g2_r3i1p1',
          'nyears': 157,
          'time_period': ['1850-1-16 12:0:0.0', '2006-12-16 12:0:0.0']},
         'GPCPv2.3': {'name': 'GPCPv2.3',
          'nyears': 41,
          'time_period': ['1979-1-1 0:0:0.0', '2019-7-1 0:0:0.0']},
         'method': 'Zonal root mean square error of equatorial_pacific climatological pr STD, time series are linearly detrended, observations and model regridded to generic_1x1deg',
         'name': 'pr zonal seasonality RMSE',
         'ref': 'Using CDAT regridding and rms (uncentered and biased) calculation',
         'time_frequency': 'monthly',
         'units': 'mm/day'},
        'metric': {'datasets': "FGOALS-g2_r3i1p1; ERA-Interim's pr & GPCPv2.3's precip; 's ",
         'method': 'The metric is the statistical value between the model and the observations',
         'name': 'SeasonalPrLonRmse',
         'units': 'mm/day'}},
       'SeasonalSstLonRmse': {'diagnostic': {'ERA-Interim': {'name': 'ERA-Interim',
          'nyears': 40,
          'time_period': ['1979-1-16 12:0:0.0', '2019-3-16 12:0:0.0']},
         'FGOALS-g2_r3i1p1': {'keyerror': None,
          'name': 'FGOALS-g2_r3i1p1',
          'nyears': 157,
          'time_period': ['1850-1-16 12:0:0.0', '2006-12-16 12:0:0.0']},
         'HadISST': {'name': 'HadISST',
          'nyears': 151,
          'time_period': ['1870-1-16 11:59:59.5', '2020-10-16 12:0:0.0']},
         'Tropflux': {'name': 'Tropflux',
          'nyears': 40,
          'time_period': ['1979-1-15 0:0:0.0', '2018-12-15 12:0:0.0']},
         'method': 'Zonal root mean square error of equatorial_pacific climatological sst STD, time series are linearly detrended, observations and model regridded to generic_1x1deg',
         'name': 'sst zonal seasonality RMSE',
         'ref': 'Using CDAT regridding and rms (uncentered and biased) calculation',
         'time_frequency': 'monthly',
         'units': 'C'},
        'metric': {'datasets': "FGOALS-g2_r3i1p1; ERA-Interim's ts & HadISST's sst & Tropflux's sst; 's ",
         'method': 'The metric is the statistical value between the model and the observations',
         'name': 'SeasonalSstLonRmse',
         'units': 'C'}},
       'SeasonalTauxLonRmse': {'diagnostic': {'ERA-Interim': {'name': 'ERA-Interim',
          'nyears': 40,
          'time_period': ['1979-1-16 12:0:0.0', '2019-3-16 12:0:0.0']},
         'FGOALS-g2_r3i1p1': {'keyerror': None,
          'name': 'FGOALS-g2_r3i1p1',
          'nyears': 157,
          'time_period': ['1850-1-16 12:0:0.0', '2006-12-16 12:0:0.0']},
         'Tropflux': {'name': 'Tropflux',
          'nyears': 40,
          'time_period': ['1979-1-15 0:0:0.0', '2018-12-15 12:0:0.0']},
         'method': 'Zonal root mean square error of equatorial_pacific climatological taux STD, time series are linearly detrended, observations and model regridded to generic_1x1deg',
         'name': 'taux zonal seasonality RMSE',
         'ref': 'Using CDAT regridding and rms (uncentered and biased) calculation',
         'time_frequency': 'monthly',
         'units': '1e-3 N/m2'},
        'metric': {'datasets': "FGOALS-g2_r3i1p1; ERA-Interim's tauu & Tropflux's taux; 's ",
         'method': 'The metric is the statistical value between the model and the observations',
         'name': 'SeasonalTauxLonRmse',
         'units': '1e-3 N/m2'}}},
      'name': 'Metrics Collection for ENSO performance'},
     'value': {'BiasPrLatRmse': {'diagnostic': {'ERA-Interim': {'value': None,
         'value_error': None},
        'FGOALS-g2_r3i1p1': {'value': None, 'value_error': None},
        'GPCPv2.3': {'value': None, 'value_error': None}},
       'metric': {'ERA-Interim': {'value': 1.857439544903428,
         'value_error': None},
        'GPCPv2.3': {'value': 1.9868608598115498, 'value_error': None}}},
      'BiasPrLonRmse': {'diagnostic': {'ERA-Interim': {'value': None,
         'value_error': None},
        'FGOALS-g2_r3i1p1': {'value': None, 'value_error': None},
        'GPCPv2.3': {'value': None, 'value_error': None}},
       'metric': {'ERA-Interim': {'value': 0.9340216948484426,
         'value_error': None},
        'GPCPv2.3': {'value': 1.5392609320030086, 'value_error': None}}},
      'BiasSstLonRmse': {'diagnostic': {'ERA-Interim': {'value': None,
         'value_error': None},
        'FGOALS-g2_r3i1p1': {'value': None, 'value_error': None},
        'HadISST': {'value': None, 'value_error': None},
        'Tropflux': {'value': None, 'value_error': None}},
       'metric': {'ERA-Interim': {'value': 1.0352168509319606,
         'value_error': None},
        'HadISST': {'value': 0.9218209887448682, 'value_error': None},
        'Tropflux': {'value': 1.0712820535982213, 'value_error': None}}},
      'BiasTauxLonRmse': {'diagnostic': {'ERA-Interim': {'value': None,
         'value_error': None},
        'FGOALS-g2_r3i1p1': {'value': None, 'value_error': None},
        'Tropflux': {'value': None, 'value_error': None}},
       'metric': {'ERA-Interim': {'value': 12.049626680470798,
         'value_error': None},
        'Tropflux': {'value': 11.718836621928634, 'value_error': None}}},
      'EnsoAmpl': {'diagnostic': {'ERA-Interim': {'value': 0.8989844997845644,
         'value_error': 0.14214193002531866},
        'FGOALS-g2_r3i1p1': {'value': 0.7784069005735235,
         'value_error': 0.06212363381268215},
        'HadISST': {'value': 0.7665787872085695,
         'value_error': 0.06238329697691264},
        'Tropflux': {'value': 0.9039789553693535,
         'value_error': 0.14293162279134272}},
       'metric': {'ERA-Interim': {'value': 13.412644961057344,
         'value_error': 20.60108616636798},
        'HadISST': {'value': 1.5429742594397875,
         'value_error': 16.367461648792126},
        'Tropflux': {'value': 13.891037401918608,
         'value_error': 20.487265806673545}}},
      'EnsoDuration': {'diagnostic': {'ERA-Interim': {'value': 13.0,
         'value_error': None},
        'FGOALS-g2_r3i1p1': {'value': 12.0, 'value_error': None},
        'HadISST': {'value': 13.0, 'value_error': None},
        'Tropflux': {'value': 13.0, 'value_error': None}},
       'metric': {'ERA-Interim': {'value': 7.6923076923076925,
         'value_error': None},
        'HadISST': {'value': 7.6923076923076925, 'value_error': None},
        'Tropflux': {'value': 7.6923076923076925, 'value_error': None}}},
      'EnsoSeasonality': {'diagnostic': {'ERA-Interim': {'value': 2.0466846866656914,
         'value_error': 0.6513411033995022},
        'FGOALS-g2_r3i1p1': {'value': 1.5957522357058769,
         'value_error': 0.2551173227346357},
        'HadISST': {'value': 1.6639865947361325,
         'value_error': 0.2712772451657809},
        'Tropflux': {'value': 2.0532132553583624,
         'value_error': 0.6534187683977347}},
       'metric': {'ERA-Interim': {'value': 22.032336192168447,
         'value_error': 37.27749415657801},
        'HadISST': {'value': 4.100655572954056,
         'value_error': 30.96602004237174},
        'Tropflux': {'value': 22.28024870084143,
         'value_error': 37.15896351654014}}},
      'EnsoSstDiversity_2': {'diagnostic': {'ERA-Interim': {'value': 33.25,
         'value_error': None},
        'FGOALS-g2_r3i1p1': {'value': 15.0, 'value_error': None},
        'HadISST': {'value': 49.0, 'value_error': None},
        'Tropflux': {'value': 32.0, 'value_error': None}},
       'metric': {'ERA-Interim': {'value': 54.88721804511278,
         'value_error': None},
        'HadISST': {'value': 69.38775510204081, 'value_error': None},
        'Tropflux': {'value': 53.125, 'value_error': None}}},
      'EnsoSstLonRmse': {'diagnostic': {'ERA-Interim': {'value': None,
         'value_error': None},
        'FGOALS-g2_r3i1p1': {'value': None, 'value_error': None},
        'HadISST': {'value': None, 'value_error': None},
        'Tropflux': {'value': None, 'value_error': None}},
       'metric': {'ERA-Interim': {'value': 0.14087318032462032,
         'value_error': None},
        'HadISST': {'value': 0.16286547256298606, 'value_error': None},
        'Tropflux': {'value': 0.141358716837897, 'value_error': None}}},
      'EnsoSstSkew': {'diagnostic': {'ERA-Interim': {'value': 0.39098111106809963,
         'value_error': 0.061819541653923164},
        'FGOALS-g2_r3i1p1': {'value': -0.43795779825920694,
         'value_error': -0.03495283747409899},
        'HadISST': {'value': 0.38989908235027515,
         'value_error': 0.03172953733021198},
        'Tropflux': {'value': 0.39744741059612115,
         'value_error': 0.06284195338099416}},
       'metric': {'ERA-Interim': {'value': 212.01507844273456,
         'value_error': -26.650915504849237},
        'HadISST': {'value': 212.32593716795597,
         'value_error': -18.105540852721685},
        'Tropflux': {'value': 210.192640984206,
         'value_error': -26.217316498399885}}},
      'EnsoSstTsRmse': {'diagnostic': {'ERA-Interim': {'value': None,
         'value_error': None},
        'FGOALS-g2_r3i1p1': {'value': None, 'value_error': None},
        'HadISST': {'value': None, 'value_error': None},
        'Tropflux': {'value': None, 'value_error': None}},
       'metric': {'ERA-Interim': {'value': 0.10005571787103221,
         'value_error': None},
        'HadISST': {'value': 0.10748255940919296, 'value_error': None},
        'Tropflux': {'value': 0.1027634394550048, 'value_error': None}}},
      'SeasonalPrLatRmse': {'diagnostic': {'ERA-Interim': {'value': None,
         'value_error': None},
        'FGOALS-g2_r3i1p1': {'value': None, 'value_error': None},
        'GPCPv2.3': {'value': None, 'value_error': None}},
       'metric': {'ERA-Interim': {'value': 0.9433079004056043,
         'value_error': None},
        'GPCPv2.3': {'value': 1.0083414757969746, 'value_error': None}}},
      'SeasonalPrLonRmse': {'diagnostic': {'ERA-Interim': {'value': None,
         'value_error': None},
        'FGOALS-g2_r3i1p1': {'value': None, 'value_error': None},
        'GPCPv2.3': {'value': None, 'value_error': None}},
       'metric': {'ERA-Interim': {'value': 0.5093513711556328,
         'value_error': None},
        'GPCPv2.3': {'value': 0.500844182890998, 'value_error': None}}},
      'SeasonalSstLonRmse': {'diagnostic': {'ERA-Interim': {'value': None,
         'value_error': None},
        'FGOALS-g2_r3i1p1': {'value': None, 'value_error': None},
        'HadISST': {'value': None, 'value_error': None},
        'Tropflux': {'value': None, 'value_error': None}},
       'metric': {'ERA-Interim': {'value': 0.22129477257802357,
         'value_error': None},
        'HadISST': {'value': 0.21974445648985724, 'value_error': None},
        'Tropflux': {'value': 0.2284588033011489, 'value_error': None}}},
      'SeasonalTauxLonRmse': {'diagnostic': {'ERA-Interim': {'value': None,
         'value_error': None},
        'FGOALS-g2_r3i1p1': {'value': None, 'value_error': None},
        'Tropflux': {'value': None, 'value_error': None}},
       'metric': {'ERA-Interim': {'value': 1.6658927413075648,
         'value_error': None},
        'Tropflux': {'value': 1.9632543510773666, 'value_error': None}}}}},
    'r4i1p1': {'metadata': {'description_of_the_collection': 'Describe which science question this collection is about',
      'metrics': {'BiasPrLatRmse': {'diagnostic': {'ERA-Interim': {'name': 'ERA-Interim',
          'nyears': 40,
          'time_period': ['1979-1-16 12:0:0.0', '2019-3-16 12:0:0.0']},
         'FGOALS-g2_r4i1p1': {'keyerror': None,
          'name': 'FGOALS-g2_r4i1p1',
          'nyears': 160,
          'time_period': ['1850-1-16 12:0:0.0', '2009-12-16 12:0:0.0']},
         'GPCPv2.3': {'name': 'GPCPv2.3',
          'nyears': 41,
          'time_period': ['1979-1-1 0:0:0.0', '2019-7-1 0:0:0.0']},
         'method': 'Meridional root mean square error of nino3_LatExt pr, time series are linearly detrended, observations and model regridded to generic_1x1deg',
         'name': 'pr Meridional RMSE',
         'ref': 'Using CDAT regridding and rms (uncentered and biased) calculation',
         'time_frequency': 'monthly',
         'units': 'mm/day'},
        'metric': {'datasets': "FGOALS-g2_r4i1p1; ERA-Interim's pr & GPCPv2.3's precip; 's ",
         'method': 'The metric is the statistical value between the model and the observations',
         'name': 'BiasPrLatRmse',
         'units': 'mm/day'}},
       'BiasPrLonRmse': {'diagnostic': {'ERA-Interim': {'name': 'ERA-Interim',
          'nyears': 40,
          'time_period': ['1979-1-16 12:0:0.0', '2019-3-16 12:0:0.0']},
         'FGOALS-g2_r4i1p1': {'keyerror': None,
          'name': 'FGOALS-g2_r4i1p1',
          'nyears': 160,
          'time_period': ['1850-1-16 12:0:0.0', '2009-12-16 12:0:0.0']},
         'GPCPv2.3': {'name': 'GPCPv2.3',
          'nyears': 41,
          'time_period': ['1979-1-1 0:0:0.0', '2019-7-1 0:0:0.0']},
         'method': 'Zonal root mean square error of equatorial_pacific pr, time series are linearly detrended, observations and model regridded to generic_1x1deg',
         'name': 'pr Zonal RMSE',
         'ref': 'Using CDAT regridding and rms (uncentered and biased) calculation',
         'time_frequency': 'monthly',
         'units': 'mm/day'},
        'metric': {'datasets': "FGOALS-g2_r4i1p1; ERA-Interim's pr & GPCPv2.3's precip; 's ",
         'method': 'The metric is the statistical value between the model and the observations',
         'name': 'BiasPrLonRmse',
         'units': 'mm/day'}},
       'BiasSstLonRmse': {'diagnostic': {'ERA-Interim': {'name': 'ERA-Interim',
          'nyears': 40,
          'time_period': ['1979-1-16 12:0:0.0', '2019-3-16 12:0:0.0']},
         'FGOALS-g2_r4i1p1': {'keyerror': None,
          'name': 'FGOALS-g2_r4i1p1',
          'nyears': 160,
          'time_period': ['1850-1-16 12:0:0.0', '2009-12-16 12:0:0.0']},
         'HadISST': {'name': 'HadISST',
          'nyears': 151,
          'time_period': ['1870-1-16 11:59:59.5', '2020-10-16 12:0:0.0']},
         'Tropflux': {'name': 'Tropflux',
          'nyears': 40,
          'time_period': ['1979-1-15 0:0:0.0', '2018-12-15 12:0:0.0']},
         'method': 'Zonal root mean square error of equatorial_pacific sst, time series are linearly detrended, observations and model regridded to generic_1x1deg',
         'name': 'sst Zonal RMSE',
         'ref': 'Using CDAT regridding and rms (uncentered and biased) calculation',
         'time_frequency': 'monthly',
         'units': 'C'},
        'metric': {'datasets': "FGOALS-g2_r4i1p1; ERA-Interim's ts & HadISST's sst & Tropflux's sst; 's ",
         'method': 'The metric is the statistical value between the model and the observations',
         'name': 'BiasSstLonRmse',
         'units': 'C'}},
       'BiasTauxLonRmse': {'diagnostic': {'ERA-Interim': {'name': 'ERA-Interim',
          'nyears': 40,
          'time_period': ['1979-1-16 12:0:0.0', '2019-3-16 12:0:0.0']},
         'FGOALS-g2_r4i1p1': {'keyerror': None,
          'name': 'FGOALS-g2_r4i1p1',
          'nyears': 160,
          'time_period': ['1850-1-16 12:0:0.0', '2009-12-16 12:0:0.0']},
         'Tropflux': {'name': 'Tropflux',
          'nyears': 40,
          'time_period': ['1979-1-15 0:0:0.0', '2018-12-15 12:0:0.0']},
         'method': 'Zonal root mean square error of equatorial_pacific taux, time series are linearly detrended, observations and model regridded to generic_1x1deg',
         'name': 'taux Zonal RMSE',
         'ref': 'Using CDAT regridding and rms (uncentered and biased) calculation',
         'time_frequency': 'monthly',
         'units': '1e-3 N/m2'},
        'metric': {'datasets': "FGOALS-g2_r4i1p1; ERA-Interim's tauu & Tropflux's taux; 's ",
         'method': 'The metric is the statistical value between the model and the observations',
         'name': 'BiasTauxLonRmse',
         'units': '1e-3 N/m2'}},
       'EnsoAmpl': {'diagnostic': {'ERA-Interim': {'keyerror': None,
          'name': 'ERA-Interim',
          'nyears': 40,
          'time_period': ['1979-1-16 12:0:0.0', '2019-3-16 12:0:0.0']},
         'FGOALS-g2_r4i1p1': {'keyerror': None,
          'name': 'FGOALS-g2_r4i1p1',
          'nyears': 160,
          'time_period': ['1850-1-16 12:0:0.0', '2009-12-16 12:0:0.0']},
         'HadISST': {'keyerror': None,
          'name': 'HadISST',
          'nyears': 151,
          'time_period': ['1870-1-16 11:59:59.5', '2020-10-16 12:0:0.0']},
         'Tropflux': {'keyerror': None,
          'name': 'Tropflux',
          'nyears': 40,
          'time_period': ['1979-1-15 0:0:0.0', '2018-12-15 12:0:0.0']},
         'method': 'Standard deviation of nino3.4 sstA, time series are linearly detrended',
         'name': 'ENSO amplitude',
         'ref': 'Using CDAT regression calculation',
         'time_frequency': 'monthly',
         'units': 'C'},
        'metric': {'datasets': "FGOALS-g2_r4i1p1; ERA-Interim's ts & HadISST's sst & Tropflux's sst; 's ",
         'method': 'The metric is the absolute value of the relative difference between model and observations values (M = 100 * abs[[model-obs] / obs])',
         'name': 'EnsoAmpl',
         'units': '%'}},
       'EnsoDuration': {'diagnostic': {'ERA-Interim': {'keyerror': None,
          'name': 'ERA-Interim',
          'nyears': 40,
          'time_period': ['1979-1-16 12:0:0.0', '2019-3-16 12:0:0.0']},
         'FGOALS-g2_r4i1p1': {'keyerror': None,
          'name': 'FGOALS-g2_r4i1p1',
          'nyears': 160,
          'time_period': ['1850-1-16 12:0:0.0', '2009-12-16 12:0:0.0']},
         'HadISST': {'keyerror': None,
          'name': 'HadISST',
          'nyears': 151,
          'time_period': ['1870-1-16 11:59:59.5', '2020-10-16 12:0:0.0']},
         'Tropflux': {'keyerror': None,
          'name': 'Tropflux',
          'nyears': 40,
          'time_period': ['1979-1-15 0:0:0.0', '2018-12-15 12:0:0.0']},
         'method': 'nino3.4 SSTA during DEC regressed against nino3.4 SSTA during 6 years (centered on ENSO), the duration is the number of consecutive months during which the regression is above 0.25, time series are linearly detrended, smoothing using a triangle shaped window of 5 points',
         'name': 'ENSO Duration based on life cyle SSTA pattern',
         'ref': 'Using CDAT',
         'time_frequency': 'monthly',
         'units': 'months'},
        'metric': {'datasets': "FGOALS-g2_r4i1p1; ERA-Interim's ts & HadISST's sst & Tropflux's sst; 's ",
         'method': 'The metric is the absolute value of the relative difference between model and observations values (M = 100 * abs[[model-obs] / obs])',
         'name': 'EnsoDuration',
         'units': '%'}},
       'EnsoSeasonality': {'diagnostic': {'ERA-Interim': {'keyerror': None,
          'name': 'ERA-Interim',
          'nyears': 40,
          'time_period': ['1979-1-16 12:0:0.0', '2019-3-16 12:0:0.0']},
         'FGOALS-g2_r4i1p1': {'keyerror': None,
          'name': 'FGOALS-g2_r4i1p1',
          'nyears': 160,
          'time_period': ['1850-1-16 12:0:0.0', '2009-12-16 12:0:0.0']},
         'HadISST': {'keyerror': None,
          'name': 'HadISST',
          'nyears': 151,
          'time_period': ['1870-1-16 11:59:59.5', '2020-10-16 12:0:0.0']},
         'Tropflux': {'keyerror': None,
          'name': 'Tropflux',
          'nyears': 40,
          'time_period': ['1979-1-15 0:0:0.0', '2018-12-15 12:0:0.0']},
         'method': 'Ratio between NDJ and MAM standard deviation nino3.4 sstA, time series are linearly detrended',
         'name': 'ENSO seasonality',
         'ref': 'Using CDAT std dev calculation',
         'time_frequency': 'monthly',
         'units': 'C/C'},
        'metric': {'datasets': "FGOALS-g2_r4i1p1; ERA-Interim's ts & HadISST's sst & Tropflux's sst; 's ",
         'method': 'The metric is the absolute value of the relative difference between model and observations values (M = 100 * abs[[model-obs] / obs])',
         'name': 'EnsoSeasonality',
         'units': '%'}},
       'EnsoSstDiversity_2': {'diagnostic': {'ERA-Interim': {'keyerror': None,
          'name': 'ERA-Interim',
          'nyears': 40,
          'time_period': ['1979-1-16 12:0:0.0', '2019-3-16 12:0:0.0']},
         'FGOALS-g2_r4i1p1': {'keyerror': None,
          'name': 'FGOALS-g2_r4i1p1',
          'nyears': 160,
          'time_period': ['1850-1-16 12:0:0.0', '2009-12-16 12:0:0.0']},
         'HadISST': {'keyerror': None,
          'name': 'HadISST',
          'nyears': 151,
          'time_period': ['1870-1-16 11:59:59.5', '2020-10-16 12:0:0.0']},
         'Tropflux': {'keyerror': None,
          'name': 'Tropflux',
          'nyears': 40,
          'time_period': ['1979-1-15 0:0:0.0', '2018-12-15 12:0:0.0']},
         'method': 'Nino (Nina) events = nino3.4 sstA > 0.75 (< -0.75) during DEC, zonal SSTA (meridional averaged [-5.0 ; 5.0]), the zonal SSTA maximum (minimum) is located for each event, the diversity is the interquartile range (IQR = Q3 - Q1), time series are linearly detrended, smoothing using a triangle shaped window of 5 points',
         'name': 'ENSO Diversity (interquartile range)',
         'ref': 'Using CDAT regridding',
         'time_frequency': 'monthly',
         'units': 'long'},
        'metric': {'datasets': "FGOALS-g2_r4i1p1; ERA-Interim's ts & HadISST's sst & Tropflux's sst; 's ",
         'method': 'The metric is the absolute value of the relative difference between model and observations values (M = 100 * abs[[model-obs] / obs])',
         'name': 'EnsoSstDiversity',
         'units': '%'}},
       'EnsoSstLonRmse': {'diagnostic': {'ERA-Interim': {'name': 'ERA-Interim',
          'nyears': 40,
          'time_period': ['1979-1-16 12:0:0.0', '2019-3-16 12:0:0.0']},
         'FGOALS-g2_r4i1p1': {'keyerror': None,
          'name': 'FGOALS-g2_r4i1p1',
          'nyears': 160,
          'time_period': ['1850-1-16 12:0:0.0', '2009-12-16 12:0:0.0']},
         'HadISST': {'name': 'HadISST',
          'nyears': 151,
          'time_period': ['1870-1-16 11:59:59.5', '2020-10-16 12:0:0.0']},
         'Tropflux': {'name': 'Tropflux',
          'nyears': 40,
          'time_period': ['1979-1-15 0:0:0.0', '2018-12-15 12:0:0.0']},
         'method': 'nino3.4 SSTA during DEC regressed against equatorial_pacific SSTA, time series are linearly detrended, smoothing using a triangle shaped window of 5 points, observations and model regridded to generic_1x1deg',
         'name': 'ENSO Zonal SSTA pattern',
         'ref': 'Using CDAT regridding and rms (uncentered and biased) calculation',
         'time_frequency': 'monthly',
         'units': 'C/C'},
        'metric': {'datasets': "FGOALS-g2_r4i1p1; ERA-Interim's ts & HadISST's sst & Tropflux's sst; 's ",
         'method': 'The metric is the statistical value between the model and the observations',
         'name': 'EnsoSstLonRmse',
         'units': 'C/C'}},
       'EnsoSstSkew': {'diagnostic': {'ERA-Interim': {'keyerror': None,
          'name': 'ERA-Interim',
          'nyears': 40,
          'time_period': ['1979-1-16 12:0:0.0', '2019-3-16 12:0:0.0']},
         'FGOALS-g2_r4i1p1': {'keyerror': None,
          'name': 'FGOALS-g2_r4i1p1',
          'nyears': 160,
          'time_period': ['1850-1-16 12:0:0.0', '2009-12-16 12:0:0.0']},
         'HadISST': {'keyerror': None,
          'name': 'HadISST',
          'nyears': 151,
          'time_period': ['1870-1-16 11:59:59.5', '2020-10-16 12:0:0.0']},
         'Tropflux': {'keyerror': None,
          'name': 'Tropflux',
          'nyears': 40,
          'time_period': ['1979-1-15 0:0:0.0', '2018-12-15 12:0:0.0']},
         'method': 'Standard deviation of nino3.4 sstA, time series are linearly detrended',
         'name': 'ENSO skewness',
         'ref': 'Using CDAT regression calculation',
         'time_frequency': 'monthly',
         'units': 'C'},
        'metric': {'datasets': "FGOALS-g2_r4i1p1; ERA-Interim's ts & HadISST's sst & Tropflux's sst; 's ",
         'method': 'The metric is the absolute value of the relative difference between model and observations values (M = 100 * abs[[model-obs] / obs])',
         'name': 'EnsoSstSkew',
         'units': '%'}},
       'EnsoSstTsRmse': {'diagnostic': {'ERA-Interim': {'name': 'ERA-Interim',
          'nyears': 40,
          'time_period': ['1979-1-16 12:0:0.0', '2019-3-16 12:0:0.0']},
         'FGOALS-g2_r4i1p1': {'keyerror': None,
          'name': 'FGOALS-g2_r4i1p1',
          'nyears': 160,
          'time_period': ['1850-1-16 12:0:0.0', '2009-12-16 12:0:0.0']},
         'HadISST': {'name': 'HadISST',
          'nyears': 151,
          'time_period': ['1870-1-16 11:59:59.5', '2020-10-16 12:0:0.0']},
         'Tropflux': {'name': 'Tropflux',
          'nyears': 40,
          'time_period': ['1979-1-15 0:0:0.0', '2018-12-15 12:0:0.0']},
         'method': 'nino3.4 SSTA during DEC regressed against nino3.4 SSTA during 6 years (centered on ENSO), time series are linearly detrended, smoothing using a triangle shaped window of 5 points',
         'name': 'ENSO life cyle SSTA pattern',
         'ref': 'Using CDAT regridding and rms (uncentered and biased) calculation',
         'time_frequency': 'monthly',
         'units': 'C/C'},
        'metric': {'datasets': "FGOALS-g2_r4i1p1; ERA-Interim's ts & HadISST's sst & Tropflux's sst; 's ",
         'method': 'The metric is the statistical value between the model and the observations',
         'name': 'EnsoSstTsRmse',
         'units': 'C/C'}},
       'SeasonalPrLatRmse': {'diagnostic': {'ERA-Interim': {'name': 'ERA-Interim',
          'nyears': 40,
          'time_period': ['1979-1-16 12:0:0.0', '2019-3-16 12:0:0.0']},
         'FGOALS-g2_r4i1p1': {'keyerror': None,
          'name': 'FGOALS-g2_r4i1p1',
          'nyears': 160,
          'time_period': ['1850-1-16 12:0:0.0', '2009-12-16 12:0:0.0']},
         'GPCPv2.3': {'name': 'GPCPv2.3',
          'nyears': 41,
          'time_period': ['1979-1-1 0:0:0.0', '2019-7-1 0:0:0.0']},
         'method': 'Meridional root mean square error of nino3_LatExt climatological pr STD, time series are linearly detrended, observations and model regridded to generic_1x1deg',
         'name': 'pr meridional seasonality RMSE',
         'ref': 'Using CDAT regridding and rms (uncentered and biased) calculation',
         'time_frequency': 'monthly',
         'units': 'mm/day'},
        'metric': {'datasets': "FGOALS-g2_r4i1p1; ERA-Interim's pr & GPCPv2.3's precip; 's ",
         'method': 'The metric is the statistical value between the model and the observations',
         'name': 'SeasonalPrLatRmse',
         'units': 'mm/day'}},
       'SeasonalPrLonRmse': {'diagnostic': {'ERA-Interim': {'name': 'ERA-Interim',
          'nyears': 40,
          'time_period': ['1979-1-16 12:0:0.0', '2019-3-16 12:0:0.0']},
         'FGOALS-g2_r4i1p1': {'keyerror': None,
          'name': 'FGOALS-g2_r4i1p1',
          'nyears': 160,
          'time_period': ['1850-1-16 12:0:0.0', '2009-12-16 12:0:0.0']},
         'GPCPv2.3': {'name': 'GPCPv2.3',
          'nyears': 41,
          'time_period': ['1979-1-1 0:0:0.0', '2019-7-1 0:0:0.0']},
         'method': 'Zonal root mean square error of equatorial_pacific climatological pr STD, time series are linearly detrended, observations and model regridded to generic_1x1deg',
         'name': 'pr zonal seasonality RMSE',
         'ref': 'Using CDAT regridding and rms (uncentered and biased) calculation',
         'time_frequency': 'monthly',
         'units': 'mm/day'},
        'metric': {'datasets': "FGOALS-g2_r4i1p1; ERA-Interim's pr & GPCPv2.3's precip; 's ",
         'method': 'The metric is the statistical value between the model and the observations',
         'name': 'SeasonalPrLonRmse',
         'units': 'mm/day'}},
       'SeasonalSstLonRmse': {'diagnostic': {'ERA-Interim': {'name': 'ERA-Interim',
          'nyears': 40,
          'time_period': ['1979-1-16 12:0:0.0', '2019-3-16 12:0:0.0']},
         'FGOALS-g2_r4i1p1': {'keyerror': None,
          'name': 'FGOALS-g2_r4i1p1',
          'nyears': 160,
          'time_period': ['1850-1-16 12:0:0.0', '2009-12-16 12:0:0.0']},
         'HadISST': {'name': 'HadISST',
          'nyears': 151,
          'time_period': ['1870-1-16 11:59:59.5', '2020-10-16 12:0:0.0']},
         'Tropflux': {'name': 'Tropflux',
          'nyears': 40,
          'time_period': ['1979-1-15 0:0:0.0', '2018-12-15 12:0:0.0']},
         'method': 'Zonal root mean square error of equatorial_pacific climatological sst STD, time series are linearly detrended, observations and model regridded to generic_1x1deg',
         'name': 'sst zonal seasonality RMSE',
         'ref': 'Using CDAT regridding and rms (uncentered and biased) calculation',
         'time_frequency': 'monthly',
         'units': 'C'},
        'metric': {'datasets': "FGOALS-g2_r4i1p1; ERA-Interim's ts & HadISST's sst & Tropflux's sst; 's ",
         'method': 'The metric is the statistical value between the model and the observations',
         'name': 'SeasonalSstLonRmse',
         'units': 'C'}},
       'SeasonalTauxLonRmse': {'diagnostic': {'ERA-Interim': {'name': 'ERA-Interim',
          'nyears': 40,
          'time_period': ['1979-1-16 12:0:0.0', '2019-3-16 12:0:0.0']},
         'FGOALS-g2_r4i1p1': {'keyerror': None,
          'name': 'FGOALS-g2_r4i1p1',
          'nyears': 160,
          'time_period': ['1850-1-16 12:0:0.0', '2009-12-16 12:0:0.0']},
         'Tropflux': {'name': 'Tropflux',
          'nyears': 40,
          'time_period': ['1979-1-15 0:0:0.0', '2018-12-15 12:0:0.0']},
         'method': 'Zonal root mean square error of equatorial_pacific climatological taux STD, time series are linearly detrended, observations and model regridded to generic_1x1deg',
         'name': 'taux zonal seasonality RMSE',
         'ref': 'Using CDAT regridding and rms (uncentered and biased) calculation',
         'time_frequency': 'monthly',
         'units': '1e-3 N/m2'},
        'metric': {'datasets': "FGOALS-g2_r4i1p1; ERA-Interim's tauu & Tropflux's taux; 's ",
         'method': 'The metric is the statistical value between the model and the observations',
         'name': 'SeasonalTauxLonRmse',
         'units': '1e-3 N/m2'}}},
      'name': 'Metrics Collection for ENSO performance'},
     'value': {'BiasPrLatRmse': {'diagnostic': {'ERA-Interim': {'value': None,
         'value_error': None},
        'FGOALS-g2_r4i1p1': {'value': None, 'value_error': None},
        'GPCPv2.3': {'value': None, 'value_error': None}},
       'metric': {'ERA-Interim': {'value': 1.8469668124497078,
         'value_error': None},
        'GPCPv2.3': {'value': 1.96971633944587, 'value_error': None}}},
      'BiasPrLonRmse': {'diagnostic': {'ERA-Interim': {'value': None,
         'value_error': None},
        'FGOALS-g2_r4i1p1': {'value': None, 'value_error': None},
        'GPCPv2.3': {'value': None, 'value_error': None}},
       'metric': {'ERA-Interim': {'value': 0.9088377277830889,
         'value_error': None},
        'GPCPv2.3': {'value': 1.5270873198909456, 'value_error': None}}},
      'BiasSstLonRmse': {'diagnostic': {'ERA-Interim': {'value': None,
         'value_error': None},
        'FGOALS-g2_r4i1p1': {'value': None, 'value_error': None},
        'HadISST': {'value': None, 'value_error': None},
        'Tropflux': {'value': None, 'value_error': None}},
       'metric': {'ERA-Interim': {'value': 1.021234874875439,
         'value_error': None},
        'HadISST': {'value': 0.9083591618390612, 'value_error': None},
        'Tropflux': {'value': 1.057053442219721, 'value_error': None}}},
      'BiasTauxLonRmse': {'diagnostic': {'ERA-Interim': {'value': None,
         'value_error': None},
        'FGOALS-g2_r4i1p1': {'value': None, 'value_error': None},
        'Tropflux': {'value': None, 'value_error': None}},
       'metric': {'ERA-Interim': {'value': 12.242771051641745,
         'value_error': None},
        'Tropflux': {'value': 11.918006661821705, 'value_error': None}}},
      'EnsoAmpl': {'diagnostic': {'ERA-Interim': {'value': 0.8989844997845644,
         'value_error': 0.14214193002531866},
        'FGOALS-g2_r4i1p1': {'value': 0.7592088040005986,
         'value_error': 0.06002072600735617},
        'HadISST': {'value': 0.7665787872085695,
         'value_error': 0.06238329697691264},
        'Tropflux': {'value': 0.9039789553693535,
         'value_error': 0.14293162279134272}},
       'metric': {'ERA-Interim': {'value': 15.548176394305138,
         'value_error': 20.02950863615771},
        'HadISST': {'value': 0.9614123598186228,
         'value_error': 15.889333789186901},
        'Tropflux': {'value': 16.014770090483324,
         'value_error': 19.91884622452273}}},
      'EnsoDuration': {'diagnostic': {'ERA-Interim': {'value': 13.0,
         'value_error': None},
        'FGOALS-g2_r4i1p1': {'value': 13.0, 'value_error': None},
        'HadISST': {'value': 13.0, 'value_error': None},
        'Tropflux': {'value': 13.0, 'value_error': None}},
       'metric': {'ERA-Interim': {'value': 0.0, 'value_error': None},
        'HadISST': {'value': 0.0, 'value_error': None},
        'Tropflux': {'value': 0.0, 'value_error': None}}},
      'EnsoSeasonality': {'diagnostic': {'ERA-Interim': {'value': 2.0466846866656914,
         'value_error': 0.6513411033995022},
        'FGOALS-g2_r4i1p1': {'value': 1.5331602094932795,
         'value_error': 0.24279447052835246},
        'HadISST': {'value': 1.6639865947361325,
         'value_error': 0.2712772451657809},
        'Tropflux': {'value': 2.0532132553583624,
         'value_error': 0.6534187683977347}},
       'metric': {'ERA-Interim': {'value': 25.090551589019235,
         'value_error': 35.70215300478627},
        'HadISST': {'value': 7.86222591316001,
         'value_error': 29.612214869215325},
        'Tropflux': {'value': 25.328739940085487,
         'value_error': 35.58863145130919}}},
      'EnsoSstDiversity_2': {'diagnostic': {'ERA-Interim': {'value': 33.25,
         'value_error': None},
        'FGOALS-g2_r4i1p1': {'value': 18.0, 'value_error': None},
        'HadISST': {'value': 49.0, 'value_error': None},
        'Tropflux': {'value': 32.0, 'value_error': None}},
       'metric': {'ERA-Interim': {'value': 45.86466165413533,
         'value_error': None},
        'HadISST': {'value': 63.26530612244898, 'value_error': None},
        'Tropflux': {'value': 43.75, 'value_error': None}}},
      'EnsoSstLonRmse': {'diagnostic': {'ERA-Interim': {'value': None,
         'value_error': None},
        'FGOALS-g2_r4i1p1': {'value': None, 'value_error': None},
        'HadISST': {'value': None, 'value_error': None},
        'Tropflux': {'value': None, 'value_error': None}},
       'metric': {'ERA-Interim': {'value': 0.14210184531612155,
         'value_error': None},
        'HadISST': {'value': 0.1624076048601918, 'value_error': None},
        'Tropflux': {'value': 0.14241189611480076, 'value_error': None}}},
      'EnsoSstSkew': {'diagnostic': {'ERA-Interim': {'value': 0.39098111106809963,
         'value_error': 0.061819541653923164},
        'FGOALS-g2_r4i1p1': {'value': -0.5092867412581502,
         'value_error': -0.04026265211251505},
        'HadISST': {'value': 0.38989908235027515,
         'value_error': 0.03172953733021198},
        'Tropflux': {'value': 0.39744741059612115,
         'value_error': 0.06284195338099416}},
       'metric': {'ERA-Interim': {'value': 230.25865619616712,
         'value_error': -30.89355288995196},
        'HadISST': {'value': 230.62014359926613,
         'value_error': -20.956145586210052},
        'Tropflux': {'value': 228.13940352367226,
         'value_error': -30.39092798626576}}},
      'EnsoSstTsRmse': {'diagnostic': {'ERA-Interim': {'value': None,
         'value_error': None},
        'FGOALS-g2_r4i1p1': {'value': None, 'value_error': None},
        'HadISST': {'value': None, 'value_error': None},
        'Tropflux': {'value': None, 'value_error': None}},
       'metric': {'ERA-Interim': {'value': 0.1104832790611612,
         'value_error': None},
        'HadISST': {'value': 0.11344733787135358, 'value_error': None},
        'Tropflux': {'value': 0.11495641316285606, 'value_error': None}}},
      'SeasonalPrLatRmse': {'diagnostic': {'ERA-Interim': {'value': None,
         'value_error': None},
        'FGOALS-g2_r4i1p1': {'value': None, 'value_error': None},
        'GPCPv2.3': {'value': None, 'value_error': None}},
       'metric': {'ERA-Interim': {'value': 0.9411859663788726,
         'value_error': None},
        'GPCPv2.3': {'value': 1.0023353402784891, 'value_error': None}}},
      'SeasonalPrLonRmse': {'diagnostic': {'ERA-Interim': {'value': None,
         'value_error': None},
        'FGOALS-g2_r4i1p1': {'value': None, 'value_error': None},
        'GPCPv2.3': {'value': None, 'value_error': None}},
       'metric': {'ERA-Interim': {'value': 0.5444016598771513,
         'value_error': None},
        'GPCPv2.3': {'value': 0.52956967504379, 'value_error': None}}},
      'SeasonalSstLonRmse': {'diagnostic': {'ERA-Interim': {'value': None,
         'value_error': None},
        'FGOALS-g2_r4i1p1': {'value': None, 'value_error': None},
        'HadISST': {'value': None, 'value_error': None},
        'Tropflux': {'value': None, 'value_error': None}},
       'metric': {'ERA-Interim': {'value': 0.22085264624049708,
         'value_error': None},
        'HadISST': {'value': 0.21984840417407348, 'value_error': None},
        'Tropflux': {'value': 0.22760450164477167, 'value_error': None}}},
      'SeasonalTauxLonRmse': {'diagnostic': {'ERA-Interim': {'value': None,
         'value_error': None},
        'FGOALS-g2_r4i1p1': {'value': None, 'value_error': None},
        'Tropflux': {'value': None, 'value_error': None}},
       'metric': {'ERA-Interim': {'value': 1.6769866082304554,
         'value_error': None},
        'Tropflux': {'value': 1.9722860006826402, 'value_error': None}}}}},
    'r5i1p1': {'metadata': {'description_of_the_collection': 'Describe which science question this collection is about',
      'metrics': {'BiasPrLatRmse': {'diagnostic': {'ERA-Interim': {'name': 'ERA-Interim',
          'nyears': 40,
          'time_period': ['1979-1-16 12:0:0.0', '2019-3-16 12:0:0.0']},
         'FGOALS-g2_r5i1p1': {'keyerror': None,
          'name': 'FGOALS-g2_r5i1p1',
          'nyears': 160,
          'time_period': ['1850-1-16 12:0:0.0', '2009-12-16 12:0:0.0']},
         'GPCPv2.3': {'name': 'GPCPv2.3',
          'nyears': 41,
          'time_period': ['1979-1-1 0:0:0.0', '2019-7-1 0:0:0.0']},
         'method': 'Meridional root mean square error of nino3_LatExt pr, time series are linearly detrended, observations and model regridded to generic_1x1deg',
         'name': 'pr Meridional RMSE',
         'ref': 'Using CDAT regridding and rms (uncentered and biased) calculation',
         'time_frequency': 'monthly',
         'units': 'mm/day'},
        'metric': {'datasets': "FGOALS-g2_r5i1p1; ERA-Interim's pr & GPCPv2.3's precip; 's ",
         'method': 'The metric is the statistical value between the model and the observations',
         'name': 'BiasPrLatRmse',
         'units': 'mm/day'}},
       'BiasPrLonRmse': {'diagnostic': {'ERA-Interim': {'name': 'ERA-Interim',
          'nyears': 40,
          'time_period': ['1979-1-16 12:0:0.0', '2019-3-16 12:0:0.0']},
         'FGOALS-g2_r5i1p1': {'keyerror': None,
          'name': 'FGOALS-g2_r5i1p1',
          'nyears': 160,
          'time_period': ['1850-1-16 12:0:0.0', '2009-12-16 12:0:0.0']},
         'GPCPv2.3': {'name': 'GPCPv2.3',
          'nyears': 41,
          'time_period': ['1979-1-1 0:0:0.0', '2019-7-1 0:0:0.0']},
         'method': 'Zonal root mean square error of equatorial_pacific pr, time series are linearly detrended, observations and model regridded to generic_1x1deg',
         'name': 'pr Zonal RMSE',
         'ref': 'Using CDAT regridding and rms (uncentered and biased) calculation',
         'time_frequency': 'monthly',
         'units': 'mm/day'},
        'metric': {'datasets': "FGOALS-g2_r5i1p1; ERA-Interim's pr & GPCPv2.3's precip; 's ",
         'method': 'The metric is the statistical value between the model and the observations',
         'name': 'BiasPrLonRmse',
         'units': 'mm/day'}},
       'BiasSstLonRmse': {'diagnostic': {'ERA-Interim': {'name': 'ERA-Interim',
          'nyears': 40,
          'time_period': ['1979-1-16 12:0:0.0', '2019-3-16 12:0:0.0']},
         'FGOALS-g2_r5i1p1': {'keyerror': None,
          'name': 'FGOALS-g2_r5i1p1',
          'nyears': 160,
          'time_period': ['1850-1-16 12:0:0.0', '2009-12-16 12:0:0.0']},
         'HadISST': {'name': 'HadISST',
          'nyears': 151,
          'time_period': ['1870-1-16 11:59:59.5', '2020-10-16 12:0:0.0']},
         'Tropflux': {'name': 'Tropflux',
          'nyears': 40,
          'time_period': ['1979-1-15 0:0:0.0', '2018-12-15 12:0:0.0']},
         'method': 'Zonal root mean square error of equatorial_pacific sst, time series are linearly detrended, observations and model regridded to generic_1x1deg',
         'name': 'sst Zonal RMSE',
         'ref': 'Using CDAT regridding and rms (uncentered and biased) calculation',
         'time_frequency': 'monthly',
         'units': 'C'},
        'metric': {'datasets': "FGOALS-g2_r5i1p1; ERA-Interim's ts & HadISST's sst & Tropflux's sst; 's ",
         'method': 'The metric is the statistical value between the model and the observations',
         'name': 'BiasSstLonRmse',
         'units': 'C'}},
       'BiasTauxLonRmse': {'diagnostic': {'ERA-Interim': {'name': 'ERA-Interim',
          'nyears': 40,
          'time_period': ['1979-1-16 12:0:0.0', '2019-3-16 12:0:0.0']},
         'FGOALS-g2_r5i1p1': {'keyerror': None,
          'name': 'FGOALS-g2_r5i1p1',
          'nyears': 160,
          'time_period': ['1850-1-16 12:0:0.0', '2009-12-16 12:0:0.0']},
         'Tropflux': {'name': 'Tropflux',
          'nyears': 40,
          'time_period': ['1979-1-15 0:0:0.0', '2018-12-15 12:0:0.0']},
         'method': 'Zonal root mean square error of equatorial_pacific taux, time series are linearly detrended, observations and model regridded to generic_1x1deg',
         'name': 'taux Zonal RMSE',
         'ref': 'Using CDAT regridding and rms (uncentered and biased) calculation',
         'time_frequency': 'monthly',
         'units': '1e-3 N/m2'},
        'metric': {'datasets': "FGOALS-g2_r5i1p1; ERA-Interim's tauu & Tropflux's taux; 's ",
         'method': 'The metric is the statistical value between the model and the observations',
         'name': 'BiasTauxLonRmse',
         'units': '1e-3 N/m2'}},
       'EnsoAmpl': {'diagnostic': {'ERA-Interim': {'keyerror': None,
          'name': 'ERA-Interim',
          'nyears': 40,
          'time_period': ['1979-1-16 12:0:0.0', '2019-3-16 12:0:0.0']},
         'FGOALS-g2_r5i1p1': {'keyerror': None,
          'name': 'FGOALS-g2_r5i1p1',
          'nyears': 160,
          'time_period': ['1850-1-16 12:0:0.0', '2009-12-16 12:0:0.0']},
         'HadISST': {'keyerror': None,
          'name': 'HadISST',
          'nyears': 151,
          'time_period': ['1870-1-16 11:59:59.5', '2020-10-16 12:0:0.0']},
         'Tropflux': {'keyerror': None,
          'name': 'Tropflux',
          'nyears': 40,
          'time_period': ['1979-1-15 0:0:0.0', '2018-12-15 12:0:0.0']},
         'method': 'Standard deviation of nino3.4 sstA, time series are linearly detrended',
         'name': 'ENSO amplitude',
         'ref': 'Using CDAT regression calculation',
         'time_frequency': 'monthly',
         'units': 'C'},
        'metric': {'datasets': "FGOALS-g2_r5i1p1; ERA-Interim's ts & HadISST's sst & Tropflux's sst; 's ",
         'method': 'The metric is the absolute value of the relative difference between model and observations values (M = 100 * abs[[model-obs] / obs])',
         'name': 'EnsoAmpl',
         'units': '%'}},
       'EnsoDuration': {'diagnostic': {'ERA-Interim': {'keyerror': None,
          'name': 'ERA-Interim',
          'nyears': 40,
          'time_period': ['1979-1-16 12:0:0.0', '2019-3-16 12:0:0.0']},
         'FGOALS-g2_r5i1p1': {'keyerror': None,
          'name': 'FGOALS-g2_r5i1p1',
          'nyears': 160,
          'time_period': ['1850-1-16 12:0:0.0', '2009-12-16 12:0:0.0']},
         'HadISST': {'keyerror': None,
          'name': 'HadISST',
          'nyears': 151,
          'time_period': ['1870-1-16 11:59:59.5', '2020-10-16 12:0:0.0']},
         'Tropflux': {'keyerror': None,
          'name': 'Tropflux',
          'nyears': 40,
          'time_period': ['1979-1-15 0:0:0.0', '2018-12-15 12:0:0.0']},
         'method': 'nino3.4 SSTA during DEC regressed against nino3.4 SSTA during 6 years (centered on ENSO), the duration is the number of consecutive months during which the regression is above 0.25, time series are linearly detrended, smoothing using a triangle shaped window of 5 points',
         'name': 'ENSO Duration based on life cyle SSTA pattern',
         'ref': 'Using CDAT',
         'time_frequency': 'monthly',
         'units': 'months'},
        'metric': {'datasets': "FGOALS-g2_r5i1p1; ERA-Interim's ts & HadISST's sst & Tropflux's sst; 's ",
         'method': 'The metric is the absolute value of the relative difference between model and observations values (M = 100 * abs[[model-obs] / obs])',
         'name': 'EnsoDuration',
         'units': '%'}},
       'EnsoSeasonality': {'diagnostic': {'ERA-Interim': {'keyerror': None,
          'name': 'ERA-Interim',
          'nyears': 40,
          'time_period': ['1979-1-16 12:0:0.0', '2019-3-16 12:0:0.0']},
         'FGOALS-g2_r5i1p1': {'keyerror': None,
          'name': 'FGOALS-g2_r5i1p1',
          'nyears': 160,
          'time_period': ['1850-1-16 12:0:0.0', '2009-12-16 12:0:0.0']},
         'HadISST': {'keyerror': None,
          'name': 'HadISST',
          'nyears': 151,
          'time_period': ['1870-1-16 11:59:59.5', '2020-10-16 12:0:0.0']},
         'Tropflux': {'keyerror': None,
          'name': 'Tropflux',
          'nyears': 40,
          'time_period': ['1979-1-15 0:0:0.0', '2018-12-15 12:0:0.0']},
         'method': 'Ratio between NDJ and MAM standard deviation nino3.4 sstA, time series are linearly detrended',
         'name': 'ENSO seasonality',
         'ref': 'Using CDAT std dev calculation',
         'time_frequency': 'monthly',
         'units': 'C/C'},
        'metric': {'datasets': "FGOALS-g2_r5i1p1; ERA-Interim's ts & HadISST's sst & Tropflux's sst; 's ",
         'method': 'The metric is the absolute value of the relative difference between model and observations values (M = 100 * abs[[model-obs] / obs])',
         'name': 'EnsoSeasonality',
         'units': '%'}},
       'EnsoSstDiversity_2': {'diagnostic': {'ERA-Interim': {'keyerror': None,
          'name': 'ERA-Interim',
          'nyears': 40,
          'time_period': ['1979-1-16 12:0:0.0', '2019-3-16 12:0:0.0']},
         'FGOALS-g2_r5i1p1': {'keyerror': None,
          'name': 'FGOALS-g2_r5i1p1',
          'nyears': 160,
          'time_period': ['1850-1-16 12:0:0.0', '2009-12-16 12:0:0.0']},
         'HadISST': {'keyerror': None,
          'name': 'HadISST',
          'nyears': 151,
          'time_period': ['1870-1-16 11:59:59.5', '2020-10-16 12:0:0.0']},
         'Tropflux': {'keyerror': None,
          'name': 'Tropflux',
          'nyears': 40,
          'time_period': ['1979-1-15 0:0:0.0', '2018-12-15 12:0:0.0']},
         'method': 'Nino (Nina) events = nino3.4 sstA > 0.75 (< -0.75) during DEC, zonal SSTA (meridional averaged [-5.0 ; 5.0]), the zonal SSTA maximum (minimum) is located for each event, the diversity is the interquartile range (IQR = Q3 - Q1), time series are linearly detrended, smoothing using a triangle shaped window of 5 points',
         'name': 'ENSO Diversity (interquartile range)',
         'ref': 'Using CDAT regridding',
         'time_frequency': 'monthly',
         'units': 'long'},
        'metric': {'datasets': "FGOALS-g2_r5i1p1; ERA-Interim's ts & HadISST's sst & Tropflux's sst; 's ",
         'method': 'The metric is the absolute value of the relative difference between model and observations values (M = 100 * abs[[model-obs] / obs])',
         'name': 'EnsoSstDiversity',
         'units': '%'}},
       'EnsoSstLonRmse': {'diagnostic': {'ERA-Interim': {'name': 'ERA-Interim',
          'nyears': 40,
          'time_period': ['1979-1-16 12:0:0.0', '2019-3-16 12:0:0.0']},
         'FGOALS-g2_r5i1p1': {'keyerror': None,
          'name': 'FGOALS-g2_r5i1p1',
          'nyears': 160,
          'time_period': ['1850-1-16 12:0:0.0', '2009-12-16 12:0:0.0']},
         'HadISST': {'name': 'HadISST',
          'nyears': 151,
          'time_period': ['1870-1-16 11:59:59.5', '2020-10-16 12:0:0.0']},
         'Tropflux': {'name': 'Tropflux',
          'nyears': 40,
          'time_period': ['1979-1-15 0:0:0.0', '2018-12-15 12:0:0.0']},
         'method': 'nino3.4 SSTA during DEC regressed against equatorial_pacific SSTA, time series are linearly detrended, smoothing using a triangle shaped window of 5 points, observations and model regridded to generic_1x1deg',
         'name': 'ENSO Zonal SSTA pattern',
         'ref': 'Using CDAT regridding and rms (uncentered and biased) calculation',
         'time_frequency': 'monthly',
         'units': 'C/C'},
        'metric': {'datasets': "FGOALS-g2_r5i1p1; ERA-Interim's ts & HadISST's sst & Tropflux's sst; 's ",
         'method': 'The metric is the statistical value between the model and the observations',
         'name': 'EnsoSstLonRmse',
         'units': 'C/C'}},
       'EnsoSstSkew': {'diagnostic': {'ERA-Interim': {'keyerror': None,
          'name': 'ERA-Interim',
          'nyears': 40,
          'time_period': ['1979-1-16 12:0:0.0', '2019-3-16 12:0:0.0']},
         'FGOALS-g2_r5i1p1': {'keyerror': None,
          'name': 'FGOALS-g2_r5i1p1',
          'nyears': 160,
          'time_period': ['1850-1-16 12:0:0.0', '2009-12-16 12:0:0.0']},
         'HadISST': {'keyerror': None,
          'name': 'HadISST',
          'nyears': 151,
          'time_period': ['1870-1-16 11:59:59.5', '2020-10-16 12:0:0.0']},
         'Tropflux': {'keyerror': None,
          'name': 'Tropflux',
          'nyears': 40,
          'time_period': ['1979-1-15 0:0:0.0', '2018-12-15 12:0:0.0']},
         'method': 'Standard deviation of nino3.4 sstA, time series are linearly detrended',
         'name': 'ENSO skewness',
         'ref': 'Using CDAT regression calculation',
         'time_frequency': 'monthly',
         'units': 'C'},
        'metric': {'datasets': "FGOALS-g2_r5i1p1; ERA-Interim's ts & HadISST's sst & Tropflux's sst; 's ",
         'method': 'The metric is the absolute value of the relative difference between model and observations values (M = 100 * abs[[model-obs] / obs])',
         'name': 'EnsoSstSkew',
         'units': '%'}},
       'EnsoSstTsRmse': {'diagnostic': {'ERA-Interim': {'name': 'ERA-Interim',
          'nyears': 40,
          'time_period': ['1979-1-16 12:0:0.0', '2019-3-16 12:0:0.0']},
         'FGOALS-g2_r5i1p1': {'keyerror': None,
          'name': 'FGOALS-g2_r5i1p1',
          'nyears': 160,
          'time_period': ['1850-1-16 12:0:0.0', '2009-12-16 12:0:0.0']},
         'HadISST': {'name': 'HadISST',
          'nyears': 151,
          'time_period': ['1870-1-16 11:59:59.5', '2020-10-16 12:0:0.0']},
         'Tropflux': {'name': 'Tropflux',
          'nyears': 40,
          'time_period': ['1979-1-15 0:0:0.0', '2018-12-15 12:0:0.0']},
         'method': 'nino3.4 SSTA during DEC regressed against nino3.4 SSTA during 6 years (centered on ENSO), time series are linearly detrended, smoothing using a triangle shaped window of 5 points',
         'name': 'ENSO life cyle SSTA pattern',
         'ref': 'Using CDAT regridding and rms (uncentered and biased) calculation',
         'time_frequency': 'monthly',
         'units': 'C/C'},
        'metric': {'datasets': "FGOALS-g2_r5i1p1; ERA-Interim's ts & HadISST's sst & Tropflux's sst; 's ",
         'method': 'The metric is the statistical value between the model and the observations',
         'name': 'EnsoSstTsRmse',
         'units': 'C/C'}},
       'SeasonalPrLatRmse': {'diagnostic': {'ERA-Interim': {'name': 'ERA-Interim',
          'nyears': 40,
          'time_period': ['1979-1-16 12:0:0.0', '2019-3-16 12:0:0.0']},
         'FGOALS-g2_r5i1p1': {'keyerror': None,
          'name': 'FGOALS-g2_r5i1p1',
          'nyears': 160,
          'time_period': ['1850-1-16 12:0:0.0', '2009-12-16 12:0:0.0']},
         'GPCPv2.3': {'name': 'GPCPv2.3',
          'nyears': 41,
          'time_period': ['1979-1-1 0:0:0.0', '2019-7-1 0:0:0.0']},
         'method': 'Meridional root mean square error of nino3_LatExt climatological pr STD, time series are linearly detrended, observations and model regridded to generic_1x1deg',
         'name': 'pr meridional seasonality RMSE',
         'ref': 'Using CDAT regridding and rms (uncentered and biased) calculation',
         'time_frequency': 'monthly',
         'units': 'mm/day'},
        'metric': {'datasets': "FGOALS-g2_r5i1p1; ERA-Interim's pr & GPCPv2.3's precip; 's ",
         'method': 'The metric is the statistical value between the model and the observations',
         'name': 'SeasonalPrLatRmse',
         'units': 'mm/day'}},
       'SeasonalPrLonRmse': {'diagnostic': {'ERA-Interim': {'name': 'ERA-Interim',
          'nyears': 40,
          'time_period': ['1979-1-16 12:0:0.0', '2019-3-16 12:0:0.0']},
         'FGOALS-g2_r5i1p1': {'keyerror': None,
          'name': 'FGOALS-g2_r5i1p1',
          'nyears': 160,
          'time_period': ['1850-1-16 12:0:0.0', '2009-12-16 12:0:0.0']},
         'GPCPv2.3': {'name': 'GPCPv2.3',
          'nyears': 41,
          'time_period': ['1979-1-1 0:0:0.0', '2019-7-1 0:0:0.0']},
         'method': 'Zonal root mean square error of equatorial_pacific climatological pr STD, time series are linearly detrended, observations and model regridded to generic_1x1deg',
         'name': 'pr zonal seasonality RMSE',
         'ref': 'Using CDAT regridding and rms (uncentered and biased) calculation',
         'time_frequency': 'monthly',
         'units': 'mm/day'},
        'metric': {'datasets': "FGOALS-g2_r5i1p1; ERA-Interim's pr & GPCPv2.3's precip; 's ",
         'method': 'The metric is the statistical value between the model and the observations',
         'name': 'SeasonalPrLonRmse',
         'units': 'mm/day'}},
       'SeasonalSstLonRmse': {'diagnostic': {'ERA-Interim': {'name': 'ERA-Interim',
          'nyears': 40,
          'time_period': ['1979-1-16 12:0:0.0', '2019-3-16 12:0:0.0']},
         'FGOALS-g2_r5i1p1': {'keyerror': None,
          'name': 'FGOALS-g2_r5i1p1',
          'nyears': 160,
          'time_period': ['1850-1-16 12:0:0.0', '2009-12-16 12:0:0.0']},
         'HadISST': {'name': 'HadISST',
          'nyears': 151,
          'time_period': ['1870-1-16 11:59:59.5', '2020-10-16 12:0:0.0']},
         'Tropflux': {'name': 'Tropflux',
          'nyears': 40,
          'time_period': ['1979-1-15 0:0:0.0', '2018-12-15 12:0:0.0']},
         'method': 'Zonal root mean square error of equatorial_pacific climatological sst STD, time series are linearly detrended, observations and model regridded to generic_1x1deg',
         'name': 'sst zonal seasonality RMSE',
         'ref': 'Using CDAT regridding and rms (uncentered and biased) calculation',
         'time_frequency': 'monthly',
         'units': 'C'},
        'metric': {'datasets': "FGOALS-g2_r5i1p1; ERA-Interim's ts & HadISST's sst & Tropflux's sst; 's ",
         'method': 'The metric is the statistical value between the model and the observations',
         'name': 'SeasonalSstLonRmse',
         'units': 'C'}},
       'SeasonalTauxLonRmse': {'diagnostic': {'ERA-Interim': {'name': 'ERA-Interim',
          'nyears': 40,
          'time_period': ['1979-1-16 12:0:0.0', '2019-3-16 12:0:0.0']},
         'FGOALS-g2_r5i1p1': {'keyerror': None,
          'name': 'FGOALS-g2_r5i1p1',
          'nyears': 160,
          'time_period': ['1850-1-16 12:0:0.0', '2009-12-16 12:0:0.0']},
         'Tropflux': {'name': 'Tropflux',
          'nyears': 40,
          'time_period': ['1979-1-15 0:0:0.0', '2018-12-15 12:0:0.0']},
         'method': 'Zonal root mean square error of equatorial_pacific climatological taux STD, time series are linearly detrended, observations and model regridded to generic_1x1deg',
         'name': 'taux zonal seasonality RMSE',
         'ref': 'Using CDAT regridding and rms (uncentered and biased) calculation',
         'time_frequency': 'monthly',
         'units': '1e-3 N/m2'},
        'metric': {'datasets': "FGOALS-g2_r5i1p1; ERA-Interim's tauu & Tropflux's taux; 's ",
         'method': 'The metric is the statistical value between the model and the observations',
         'name': 'SeasonalTauxLonRmse',
         'units': '1e-3 N/m2'}}},
      'name': 'Metrics Collection for ENSO performance'},
     'value': {'BiasPrLatRmse': {'diagnostic': {'ERA-Interim': {'value': None,
         'value_error': None},
        'FGOALS-g2_r5i1p1': {'value': None, 'value_error': None},
        'GPCPv2.3': {'value': None, 'value_error': None}},
       'metric': {'ERA-Interim': {'value': 1.8543434731906712,
         'value_error': None},
        'GPCPv2.3': {'value': 1.9828893560262473, 'value_error': None}}},
      'BiasPrLonRmse': {'diagnostic': {'ERA-Interim': {'value': None,
         'value_error': None},
        'FGOALS-g2_r5i1p1': {'value': None, 'value_error': None},
        'GPCPv2.3': {'value': None, 'value_error': None}},
       'metric': {'ERA-Interim': {'value': 0.9217811015459657,
         'value_error': None},
        'GPCPv2.3': {'value': 1.5175935889140235, 'value_error': None}}},
      'BiasSstLonRmse': {'diagnostic': {'ERA-Interim': {'value': None,
         'value_error': None},
        'FGOALS-g2_r5i1p1': {'value': None, 'value_error': None},
        'HadISST': {'value': None, 'value_error': None},
        'Tropflux': {'value': None, 'value_error': None}},
       'metric': {'ERA-Interim': {'value': 1.0130190572834883,
         'value_error': None},
        'HadISST': {'value': 0.9052201512708694, 'value_error': None},
        'Tropflux': {'value': 1.0480563019914972, 'value_error': None}}},
      'BiasTauxLonRmse': {'diagnostic': {'ERA-Interim': {'value': None,
         'value_error': None},
        'FGOALS-g2_r5i1p1': {'value': None, 'value_error': None},
        'Tropflux': {'value': None, 'value_error': None}},
       'metric': {'ERA-Interim': {'value': 12.413437794217325,
         'value_error': None},
        'Tropflux': {'value': 12.08299113428375, 'value_error': None}}},
      'EnsoAmpl': {'diagnostic': {'ERA-Interim': {'value': 0.8989844997845644,
         'value_error': 0.14214193002531866},
        'FGOALS-g2_r5i1p1': {'value': 0.7588925437922144,
         'value_error': 0.05999572344256182},
        'HadISST': {'value': 0.7665787872085695,
         'value_error': 0.06238329697691264},
        'Tropflux': {'value': 0.9039789553693535,
         'value_error': 0.14293162279134272}},
       'metric': {'ERA-Interim': {'value': 15.583356111915403,
         'value_error': 20.02116503352596},
        'HadISST': {'value': 1.002668420338625,
         'value_error': 15.882714840633124},
        'Tropflux': {'value': 16.049755441249044,
         'value_error': 19.910548720035763}}},
      'EnsoDuration': {'diagnostic': {'ERA-Interim': {'value': 13.0,
         'value_error': None},
        'FGOALS-g2_r5i1p1': {'value': 13.0, 'value_error': None},
        'HadISST': {'value': 13.0, 'value_error': None},
        'Tropflux': {'value': 13.0, 'value_error': None}},
       'metric': {'ERA-Interim': {'value': 0.0, 'value_error': None},
        'HadISST': {'value': 0.0, 'value_error': None},
        'Tropflux': {'value': 0.0, 'value_error': None}}},
      'EnsoSeasonality': {'diagnostic': {'ERA-Interim': {'value': 2.0466846866656914,
         'value_error': 0.6513411033995022},
        'FGOALS-g2_r5i1p1': {'value': 1.5697521301090882,
         'value_error': 0.2485892439228871},
        'HadISST': {'value': 1.6639865947361325,
         'value_error': 0.2712772451657809},
        'Tropflux': {'value': 2.0532132553583624,
         'value_error': 0.6534187683977347}},
       'metric': {'ERA-Interim': {'value': 23.302688472916984,
         'value_error': 36.554255962112805},
        'HadISST': {'value': 5.663174506642441,
         'value_error': 30.318969329084013},
        'Tropflux': {'value': 23.546561663166944,
         'value_error': 36.43802499076322}}},
      'EnsoSstDiversity_2': {'diagnostic': {'ERA-Interim': {'value': 33.25,
         'value_error': None},
        'FGOALS-g2_r5i1p1': {'value': 18.0, 'value_error': None},
        'HadISST': {'value': 49.0, 'value_error': None},
        'Tropflux': {'value': 32.0, 'value_error': None}},
       'metric': {'ERA-Interim': {'value': 45.86466165413533,
         'value_error': None},
        'HadISST': {'value': 63.26530612244898, 'value_error': None},
        'Tropflux': {'value': 43.75, 'value_error': None}}},
      'EnsoSstLonRmse': {'diagnostic': {'ERA-Interim': {'value': None,
         'value_error': None},
        'FGOALS-g2_r5i1p1': {'value': None, 'value_error': None},
        'HadISST': {'value': None, 'value_error': None},
        'Tropflux': {'value': None, 'value_error': None}},
       'metric': {'ERA-Interim': {'value': 0.14462282195724663,
         'value_error': None},
        'HadISST': {'value': 0.16187791648189315, 'value_error': None},
        'Tropflux': {'value': 0.1445748905446516, 'value_error': None}}},
      'EnsoSstSkew': {'diagnostic': {'ERA-Interim': {'value': 0.39098111106809963,
         'value_error': 0.061819541653923164},
        'FGOALS-g2_r5i1p1': {'value': -0.3901895585298711,
         'value_error': -0.03084719310424934},
        'HadISST': {'value': 0.38989908235027515,
         'value_error': 0.03172953733021198},
        'Tropflux': {'value': 0.39744741059612115,
         'value_error': 0.06284195338099416}},
       'metric': {'ERA-Interim': {'value': 199.79754711523887,
         'value_error': -23.669066533659088},
        'HadISST': {'value': 200.07450034964046,
         'value_error': -16.055531260387294},
        'Tropflux': {'value': 198.17388367045487,
         'value_error': -23.283980935728653}}},
      'EnsoSstTsRmse': {'diagnostic': {'ERA-Interim': {'value': None,
         'value_error': None},
        'FGOALS-g2_r5i1p1': {'value': None, 'value_error': None},
        'HadISST': {'value': None, 'value_error': None},
        'Tropflux': {'value': None, 'value_error': None}},
       'metric': {'ERA-Interim': {'value': 0.06940694686790846,
         'value_error': None},
        'HadISST': {'value': 0.07147166328244367, 'value_error': None},
        'Tropflux': {'value': 0.07290308348287662, 'value_error': None}}},
      'SeasonalPrLatRmse': {'diagnostic': {'ERA-Interim': {'value': None,
         'value_error': None},
        'FGOALS-g2_r5i1p1': {'value': None, 'value_error': None},
        'GPCPv2.3': {'value': None, 'value_error': None}},
       'metric': {'ERA-Interim': {'value': 0.9403164830797522,
         'value_error': None},
        'GPCPv2.3': {'value': 0.9972728917761036, 'value_error': None}}},
      'SeasonalPrLonRmse': {'diagnostic': {'ERA-Interim': {'value': None,
         'value_error': None},
        'FGOALS-g2_r5i1p1': {'value': None, 'value_error': None},
        'GPCPv2.3': {'value': None, 'value_error': None}},
       'metric': {'ERA-Interim': {'value': 0.5081961923499919,
         'value_error': None},
        'GPCPv2.3': {'value': 0.48473373153049937, 'value_error': None}}},
      'SeasonalSstLonRmse': {'diagnostic': {'ERA-Interim': {'value': None,
         'value_error': None},
        'FGOALS-g2_r5i1p1': {'value': None, 'value_error': None},
        'HadISST': {'value': None, 'value_error': None},
        'Tropflux': {'value': None, 'value_error': None}},
       'metric': {'ERA-Interim': {'value': 0.22235949345550612,
         'value_error': None},
        'HadISST': {'value': 0.22036639196953836, 'value_error': None},
        'Tropflux': {'value': 0.22958532147997773, 'value_error': None}}},
      'SeasonalTauxLonRmse': {'diagnostic': {'ERA-Interim': {'value': None,
         'value_error': None},
        'FGOALS-g2_r5i1p1': {'value': None, 'value_error': None},
        'Tropflux': {'value': None, 'value_error': None}},
       'metric': {'ERA-Interim': {'value': 1.7081656597410955,
         'value_error': None},
        'Tropflux': {'value': 1.9881450533804974, 'value_error': None}}}}}},
   'FGOALS-s2': {'r2i1p1': {'metadata': {'description_of_the_collection': 'Describe which science question this collection is about',
      'metrics': {'BiasPrLatRmse': {'diagnostic': {'ERA-Interim': {'name': 'ERA-Interim',
          'nyears': 40,
          'time_period': ['1979-1-16 12:0:0.0', '2019-3-16 12:0:0.0']},
         'FGOALS-s2_r2i1p1': {'keyerror': None,
          'name': 'FGOALS-s2_r2i1p1',
          'nyears': 156,
          'time_period': ['1850-1-16 12:0:0.0', '2005-12-16 12:0:0.0']},
         'GPCPv2.3': {'name': 'GPCPv2.3',
          'nyears': 41,
          'time_period': ['1979-1-1 0:0:0.0', '2019-7-1 0:0:0.0']},
         'method': 'Meridional root mean square error of nino3_LatExt pr, time series are linearly detrended, observations and model regridded to generic_1x1deg',
         'name': 'pr Meridional RMSE',
         'ref': 'Using CDAT regridding and rms (uncentered and biased) calculation',
         'time_frequency': 'monthly',
         'units': 'mm/day'},
        'metric': {'datasets': "FGOALS-s2_r2i1p1; ERA-Interim's pr & GPCPv2.3's precip; 's ",
         'method': 'The metric is the statistical value between the model and the observations',
         'name': 'BiasPrLatRmse',
         'units': 'mm/day'}},
       'BiasPrLonRmse': {'diagnostic': {'ERA-Interim': {'name': 'ERA-Interim',
          'nyears': 40,
          'time_period': ['1979-1-16 12:0:0.0', '2019-3-16 12:0:0.0']},
         'FGOALS-s2_r2i1p1': {'keyerror': None,
          'name': 'FGOALS-s2_r2i1p1',
          'nyears': 156,
          'time_period': ['1850-1-16 12:0:0.0', '2005-12-16 12:0:0.0']},
         'GPCPv2.3': {'name': 'GPCPv2.3',
          'nyears': 41,
          'time_period': ['1979-1-1 0:0:0.0', '2019-7-1 0:0:0.0']},
         'method': 'Zonal root mean square error of equatorial_pacific pr, time series are linearly detrended, observations and model regridded to generic_1x1deg',
         'name': 'pr Zonal RMSE',
         'ref': 'Using CDAT regridding and rms (uncentered and biased) calculation',
         'time_frequency': 'monthly',
         'units': 'mm/day'},
        'metric': {'datasets': "FGOALS-s2_r2i1p1; ERA-Interim's pr & GPCPv2.3's precip; 's ",
         'method': 'The metric is the statistical value between the model and the observations',
         'name': 'BiasPrLonRmse',
         'units': 'mm/day'}},
       'BiasSstLonRmse': {'diagnostic': {'ERA-Interim': {'name': 'ERA-Interim',
          'nyears': 40,
          'time_period': ['1979-1-16 12:0:0.0', '2019-3-16 12:0:0.0']},
         'FGOALS-s2_r2i1p1': {'keyerror': None,
          'name': 'FGOALS-s2_r2i1p1',
          'nyears': 156,
          'time_period': ['1850-1-16 12:0:0.0', '2005-12-16 12:0:0.0']},
         'HadISST': {'name': 'HadISST',
          'nyears': 151,
          'time_period': ['1870-1-16 11:59:59.5', '2020-10-16 12:0:0.0']},
         'Tropflux': {'name': 'Tropflux',
          'nyears': 40,
          'time_period': ['1979-1-15 0:0:0.0', '2018-12-15 12:0:0.0']},
         'method': 'Zonal root mean square error of equatorial_pacific sst, time series are linearly detrended, observations and model regridded to generic_1x1deg',
         'name': 'sst Zonal RMSE',
         'ref': 'Using CDAT regridding and rms (uncentered and biased) calculation',
         'time_frequency': 'monthly',
         'units': 'C'},
        'metric': {'datasets': "FGOALS-s2_r2i1p1; ERA-Interim's ts & HadISST's sst & Tropflux's sst; 's ",
         'method': 'The metric is the statistical value between the model and the observations',
         'name': 'BiasSstLonRmse',
         'units': 'C'}},
       'BiasTauxLonRmse': {'diagnostic': {'ERA-Interim': {'name': 'ERA-Interim',
          'nyears': 40,
          'time_period': ['1979-1-16 12:0:0.0', '2019-3-16 12:0:0.0']},
         'FGOALS-s2_r2i1p1': {'keyerror': None,
          'name': 'FGOALS-s2_r2i1p1',
          'nyears': 156,
          'time_period': ['1850-1-16 12:0:0.0', '2005-12-16 12:0:0.0']},
         'Tropflux': {'name': 'Tropflux',
          'nyears': 40,
          'time_period': ['1979-1-15 0:0:0.0', '2018-12-15 12:0:0.0']},
         'method': 'Zonal root mean square error of equatorial_pacific taux, time series are linearly detrended, observations and model regridded to generic_1x1deg',
         'name': 'taux Zonal RMSE',
         'ref': 'Using CDAT regridding and rms (uncentered and biased) calculation',
         'time_frequency': 'monthly',
         'units': '1e-3 N/m2'},
        'metric': {'datasets': "FGOALS-s2_r2i1p1; ERA-Interim's tauu & Tropflux's taux; 's ",
         'method': 'The metric is the statistical value between the model and the observations',
         'name': 'BiasTauxLonRmse',
         'units': '1e-3 N/m2'}},
       'EnsoAmpl': {'diagnostic': {'ERA-Interim': {'keyerror': None,
          'name': 'ERA-Interim',
          'nyears': 40,
          'time_period': ['1979-1-16 12:0:0.0', '2019-3-16 12:0:0.0']},
         'FGOALS-s2_r2i1p1': {'keyerror': None,
          'name': 'FGOALS-s2_r2i1p1',
          'nyears': 156,
          'time_period': ['1850-1-16 12:0:0.0', '2005-12-16 12:0:0.0']},
         'HadISST': {'keyerror': None,
          'name': 'HadISST',
          'nyears': 151,
          'time_period': ['1870-1-16 11:59:59.5', '2020-10-16 12:0:0.0']},
         'Tropflux': {'keyerror': None,
          'name': 'Tropflux',
          'nyears': 40,
          'time_period': ['1979-1-15 0:0:0.0', '2018-12-15 12:0:0.0']},
         'method': 'Standard deviation of nino3.4 sstA, time series are linearly detrended',
         'name': 'ENSO amplitude',
         'ref': 'Using CDAT regression calculation',
         'time_frequency': 'monthly',
         'units': 'C'},
        'metric': {'datasets': "FGOALS-s2_r2i1p1; ERA-Interim's ts & HadISST's sst & Tropflux's sst; 's ",
         'method': 'The metric is the absolute value of the relative difference between model and observations values (M = 100 * abs[[model-obs] / obs])',
         'name': 'EnsoAmpl',
         'units': '%'}},
       'EnsoDuration': {'diagnostic': {'ERA-Interim': {'keyerror': None,
          'name': 'ERA-Interim',
          'nyears': 40,
          'time_period': ['1979-1-16 12:0:0.0', '2019-3-16 12:0:0.0']},
         'FGOALS-s2_r2i1p1': {'keyerror': None,
          'name': 'FGOALS-s2_r2i1p1',
          'nyears': 156,
          'time_period': ['1850-1-16 12:0:0.0', '2005-12-16 12:0:0.0']},
         'HadISST': {'keyerror': None,
          'name': 'HadISST',
          'nyears': 151,
          'time_period': ['1870-1-16 11:59:59.5', '2020-10-16 12:0:0.0']},
         'Tropflux': {'keyerror': None,
          'name': 'Tropflux',
          'nyears': 40,
          'time_period': ['1979-1-15 0:0:0.0', '2018-12-15 12:0:0.0']},
         'method': 'nino3.4 SSTA during DEC regressed against nino3.4 SSTA during 6 years (centered on ENSO), the duration is the number of consecutive months during which the regression is above 0.25, time series are linearly detrended, smoothing using a triangle shaped window of 5 points',
         'name': 'ENSO Duration based on life cyle SSTA pattern',
         'ref': 'Using CDAT',
         'time_frequency': 'monthly',
         'units': 'months'},
        'metric': {'datasets': "FGOALS-s2_r2i1p1; ERA-Interim's ts & HadISST's sst & Tropflux's sst; 's ",
         'method': 'The metric is the absolute value of the relative difference between model and observations values (M = 100 * abs[[model-obs] / obs])',
         'name': 'EnsoDuration',
         'units': '%'}},
       'EnsoSeasonality': {'diagnostic': {'ERA-Interim': {'keyerror': None,
          'name': 'ERA-Interim',
          'nyears': 40,
          'time_period': ['1979-1-16 12:0:0.0', '2019-3-16 12:0:0.0']},
         'FGOALS-s2_r2i1p1': {'keyerror': None,
          'name': 'FGOALS-s2_r2i1p1',
          'nyears': 156,
          'time_period': ['1850-1-16 12:0:0.0', '2005-12-16 12:0:0.0']},
         'HadISST': {'keyerror': None,
          'name': 'HadISST',
          'nyears': 151,
          'time_period': ['1870-1-16 11:59:59.5', '2020-10-16 12:0:0.0']},
         'Tropflux': {'keyerror': None,
          'name': 'Tropflux',
          'nyears': 40,
          'time_period': ['1979-1-15 0:0:0.0', '2018-12-15 12:0:0.0']},
         'method': 'Ratio between NDJ and MAM standard deviation nino3.4 sstA, time series are linearly detrended',
         'name': 'ENSO seasonality',
         'ref': 'Using CDAT std dev calculation',
         'time_frequency': 'monthly',
         'units': 'C/C'},
        'metric': {'datasets': "FGOALS-s2_r2i1p1; ERA-Interim's ts & HadISST's sst & Tropflux's sst; 's ",
         'method': 'The metric is the absolute value of the relative difference between model and observations values (M = 100 * abs[[model-obs] / obs])',
         'name': 'EnsoSeasonality',
         'units': '%'}},
       'EnsoSstDiversity_2': {'diagnostic': {'ERA-Interim': {'keyerror': None,
          'name': 'ERA-Interim',
          'nyears': 40,
          'time_period': ['1979-1-16 12:0:0.0', '2019-3-16 12:0:0.0']},
         'FGOALS-s2_r2i1p1': {'keyerror': None,
          'name': 'FGOALS-s2_r2i1p1',
          'nyears': 156,
          'time_period': ['1850-1-16 12:0:0.0', '2005-12-16 12:0:0.0']},
         'HadISST': {'keyerror': None,
          'name': 'HadISST',
          'nyears': 151,
          'time_period': ['1870-1-16 11:59:59.5', '2020-10-16 12:0:0.0']},
         'Tropflux': {'keyerror': None,
          'name': 'Tropflux',
          'nyears': 40,
          'time_period': ['1979-1-15 0:0:0.0', '2018-12-15 12:0:0.0']},
         'method': 'Nino (Nina) events = nino3.4 sstA > 0.75 (< -0.75) during DEC, zonal SSTA (meridional averaged [-5.0 ; 5.0]), the zonal SSTA maximum (minimum) is located for each event, the diversity is the interquartile range (IQR = Q3 - Q1), time series are linearly detrended, smoothing using a triangle shaped window of 5 points',
         'name': 'ENSO Diversity (interquartile range)',
         'ref': 'Using CDAT regridding',
         'time_frequency': 'monthly',
         'units': 'long'},
        'metric': {'datasets': "FGOALS-s2_r2i1p1; ERA-Interim's ts & HadISST's sst & Tropflux's sst; 's ",
         'method': 'The metric is the absolute value of the relative difference between model and observations values (M = 100 * abs[[model-obs] / obs])',
         'name': 'EnsoSstDiversity',
         'units': '%'}},
       'EnsoSstLonRmse': {'diagnostic': {'ERA-Interim': {'name': 'ERA-Interim',
          'nyears': 40,
          'time_period': ['1979-1-16 12:0:0.0', '2019-3-16 12:0:0.0']},
         'FGOALS-s2_r2i1p1': {'keyerror': None,
          'name': 'FGOALS-s2_r2i1p1',
          'nyears': 156,
          'time_period': ['1850-1-16 12:0:0.0', '2005-12-16 12:0:0.0']},
         'HadISST': {'name': 'HadISST',
          'nyears': 151,
          'time_period': ['1870-1-16 11:59:59.5', '2020-10-16 12:0:0.0']},
         'Tropflux': {'name': 'Tropflux',
          'nyears': 40,
          'time_period': ['1979-1-15 0:0:0.0', '2018-12-15 12:0:0.0']},
         'method': 'nino3.4 SSTA during DEC regressed against equatorial_pacific SSTA, time series are linearly detrended, smoothing using a triangle shaped window of 5 points, observations and model regridded to generic_1x1deg',
         'name': 'ENSO Zonal SSTA pattern',
         'ref': 'Using CDAT regridding and rms (uncentered and biased) calculation',
         'time_frequency': 'monthly',
         'units': 'C/C'},
        'metric': {'datasets': "FGOALS-s2_r2i1p1; ERA-Interim's ts & HadISST's sst & Tropflux's sst; 's ",
         'method': 'The metric is the statistical value between the model and the observations',
         'name': 'EnsoSstLonRmse',
         'units': 'C/C'}},
       'EnsoSstSkew': {'diagnostic': {'ERA-Interim': {'keyerror': None,
          'name': 'ERA-Interim',
          'nyears': 40,
          'time_period': ['1979-1-16 12:0:0.0', '2019-3-16 12:0:0.0']},
         'FGOALS-s2_r2i1p1': {'keyerror': None,
          'name': 'FGOALS-s2_r2i1p1',
          'nyears': 156,
          'time_period': ['1850-1-16 12:0:0.0', '2005-12-16 12:0:0.0']},
         'HadISST': {'keyerror': None,
          'name': 'HadISST',
          'nyears': 151,
          'time_period': ['1870-1-16 11:59:59.5', '2020-10-16 12:0:0.0']},
         'Tropflux': {'keyerror': None,
          'name': 'Tropflux',
          'nyears': 40,
          'time_period': ['1979-1-15 0:0:0.0', '2018-12-15 12:0:0.0']},
         'method': 'Standard deviation of nino3.4 sstA, time series are linearly detrended',
         'name': 'ENSO skewness',
         'ref': 'Using CDAT regression calculation',
         'time_frequency': 'monthly',
         'units': 'C'},
        'metric': {'datasets': "FGOALS-s2_r2i1p1; ERA-Interim's ts & HadISST's sst & Tropflux's sst; 's ",
         'method': 'The metric is the absolute value of the relative difference between model and observations values (M = 100 * abs[[model-obs] / obs])',
         'name': 'EnsoSstSkew',
         'units': '%'}},
       'EnsoSstTsRmse': {'diagnostic': {'ERA-Interim': {'name': 'ERA-Interim',
          'nyears': 40,
          'time_period': ['1979-1-16 12:0:0.0', '2019-3-16 12:0:0.0']},
         'FGOALS-s2_r2i1p1': {'keyerror': None,
          'name': 'FGOALS-s2_r2i1p1',
          'nyears': 156,
          'time_period': ['1850-1-16 12:0:0.0', '2005-12-16 12:0:0.0']},
         'HadISST': {'name': 'HadISST',
          'nyears': 151,
          'time_period': ['1870-1-16 11:59:59.5', '2020-10-16 12:0:0.0']},
         'Tropflux': {'name': 'Tropflux',
          'nyears': 40,
          'time_period': ['1979-1-15 0:0:0.0', '2018-12-15 12:0:0.0']},
         'method': 'nino3.4 SSTA during DEC regressed against nino3.4 SSTA during 6 years (centered on ENSO), time series are linearly detrended, smoothing using a triangle shaped window of 5 points',
         'name': 'ENSO life cyle SSTA pattern',
         'ref': 'Using CDAT regridding and rms (uncentered and biased) calculation',
         'time_frequency': 'monthly',
         'units': 'C/C'},
        'metric': {'datasets': "FGOALS-s2_r2i1p1; ERA-Interim's ts & HadISST's sst & Tropflux's sst; 's ",
         'method': 'The metric is the statistical value between the model and the observations',
         'name': 'EnsoSstTsRmse',
         'units': 'C/C'}},
       'SeasonalPrLatRmse': {'diagnostic': {'ERA-Interim': {'name': 'ERA-Interim',
          'nyears': 40,
          'time_period': ['1979-1-16 12:0:0.0', '2019-3-16 12:0:0.0']},
         'FGOALS-s2_r2i1p1': {'keyerror': None,
          'name': 'FGOALS-s2_r2i1p1',
          'nyears': 156,
          'time_period': ['1850-1-16 12:0:0.0', '2005-12-16 12:0:0.0']},
         'GPCPv2.3': {'name': 'GPCPv2.3',
          'nyears': 41,
          'time_period': ['1979-1-1 0:0:0.0', '2019-7-1 0:0:0.0']},
         'method': 'Meridional root mean square error of nino3_LatExt climatological pr STD, time series are linearly detrended, observations and model regridded to generic_1x1deg',
         'name': 'pr meridional seasonality RMSE',
         'ref': 'Using CDAT regridding and rms (uncentered and biased) calculation',
         'time_frequency': 'monthly',
         'units': 'mm/day'},
        'metric': {'datasets': "FGOALS-s2_r2i1p1; ERA-Interim's pr & GPCPv2.3's precip; 's ",
         'method': 'The metric is the statistical value between the model and the observations',
         'name': 'SeasonalPrLatRmse',
         'units': 'mm/day'}},
       'SeasonalPrLonRmse': {'diagnostic': {'ERA-Interim': {'name': 'ERA-Interim',
          'nyears': 40,
          'time_period': ['1979-1-16 12:0:0.0', '2019-3-16 12:0:0.0']},
         'FGOALS-s2_r2i1p1': {'keyerror': None,
          'name': 'FGOALS-s2_r2i1p1',
          'nyears': 156,
          'time_period': ['1850-1-16 12:0:0.0', '2005-12-16 12:0:0.0']},
         'GPCPv2.3': {'name': 'GPCPv2.3',
          'nyears': 41,
          'time_period': ['1979-1-1 0:0:0.0', '2019-7-1 0:0:0.0']},
         'method': 'Zonal root mean square error of equatorial_pacific climatological pr STD, time series are linearly detrended, observations and model regridded to generic_1x1deg',
         'name': 'pr zonal seasonality RMSE',
         'ref': 'Using CDAT regridding and rms (uncentered and biased) calculation',
         'time_frequency': 'monthly',
         'units': 'mm/day'},
        'metric': {'datasets': "FGOALS-s2_r2i1p1; ERA-Interim's pr & GPCPv2.3's precip; 's ",
         'method': 'The metric is the statistical value between the model and the observations',
         'name': 'SeasonalPrLonRmse',
         'units': 'mm/day'}},
       'SeasonalSstLonRmse': {'diagnostic': {'ERA-Interim': {'name': 'ERA-Interim',
          'nyears': 40,
          'time_period': ['1979-1-16 12:0:0.0', '2019-3-16 12:0:0.0']},
         'FGOALS-s2_r2i1p1': {'keyerror': None,
          'name': 'FGOALS-s2_r2i1p1',
          'nyears': 156,
          'time_period': ['1850-1-16 12:0:0.0', '2005-12-16 12:0:0.0']},
         'HadISST': {'name': 'HadISST',
          'nyears': 151,
          'time_period': ['1870-1-16 11:59:59.5', '2020-10-16 12:0:0.0']},
         'Tropflux': {'name': 'Tropflux',
          'nyears': 40,
          'time_period': ['1979-1-15 0:0:0.0', '2018-12-15 12:0:0.0']},
         'method': 'Zonal root mean square error of equatorial_pacific climatological sst STD, time series are linearly detrended, observations and model regridded to generic_1x1deg',
         'name': 'sst zonal seasonality RMSE',
         'ref': 'Using CDAT regridding and rms (uncentered and biased) calculation',
         'time_frequency': 'monthly',
         'units': 'C'},
        'metric': {'datasets': "FGOALS-s2_r2i1p1; ERA-Interim's ts & HadISST's sst & Tropflux's sst; 's ",
         'method': 'The metric is the statistical value between the model and the observations',
         'name': 'SeasonalSstLonRmse',
         'units': 'C'}},
       'SeasonalTauxLonRmse': {'diagnostic': {'ERA-Interim': {'name': 'ERA-Interim',
          'nyears': 40,
          'time_period': ['1979-1-16 12:0:0.0', '2019-3-16 12:0:0.0']},
         'FGOALS-s2_r2i1p1': {'keyerror': None,
          'name': 'FGOALS-s2_r2i1p1',
          'nyears': 156,
          'time_period': ['1850-1-16 12:0:0.0', '2005-12-16 12:0:0.0']},
         'Tropflux': {'name': 'Tropflux',
          'nyears': 40,
          'time_period': ['1979-1-15 0:0:0.0', '2018-12-15 12:0:0.0']},
         'method': 'Zonal root mean square error of equatorial_pacific climatological taux STD, time series are linearly detrended, observations and model regridded to generic_1x1deg',
         'name': 'taux zonal seasonality RMSE',
         'ref': 'Using CDAT regridding and rms (uncentered and biased) calculation',
         'time_frequency': 'monthly',
         'units': '1e-3 N/m2'},
        'metric': {'datasets': "FGOALS-s2_r2i1p1; ERA-Interim's tauu & Tropflux's taux; 's ",
         'method': 'The metric is the statistical value between the model and the observations',
         'name': 'SeasonalTauxLonRmse',
         'units': '1e-3 N/m2'}}},
      'name': 'Metrics Collection for ENSO performance'},
     'value': {'BiasPrLatRmse': {'diagnostic': {'ERA-Interim': {'value': None,
         'value_error': None},
        'FGOALS-s2_r2i1p1': {'value': None, 'value_error': None},
        'GPCPv2.3': {'value': None, 'value_error': None}},
       'metric': {'ERA-Interim': {'value': 0.6133030894386415,
         'value_error': None},
        'GPCPv2.3': {'value': 1.466903053977844, 'value_error': None}}},
      'BiasPrLonRmse': {'diagnostic': {'ERA-Interim': {'value': None,
         'value_error': None},
        'FGOALS-s2_r2i1p1': {'value': None, 'value_error': None},
        'GPCPv2.3': {'value': None, 'value_error': None}},
       'metric': {'ERA-Interim': {'value': 1.1802483355457378,
         'value_error': None},
        'GPCPv2.3': {'value': 0.7600665109807385, 'value_error': None}}},
      'BiasSstLonRmse': {'diagnostic': {'ERA-Interim': {'value': None,
         'value_error': None},
        'FGOALS-s2_r2i1p1': {'value': None, 'value_error': None},
        'HadISST': {'value': None, 'value_error': None},
        'Tropflux': {'value': None, 'value_error': None}},
       'metric': {'ERA-Interim': {'value': 1.0852276888006536,
         'value_error': None},
        'HadISST': {'value': 0.9441886181186816, 'value_error': None},
        'Tropflux': {'value': 1.1289839503130936, 'value_error': None}}},
      'BiasTauxLonRmse': {'diagnostic': {'ERA-Interim': {'value': None,
         'value_error': None},
        'FGOALS-s2_r2i1p1': {'value': None, 'value_error': None},
        'Tropflux': {'value': None, 'value_error': None}},
       'metric': {'ERA-Interim': {'value': 11.192729459461555,
         'value_error': None},
        'Tropflux': {'value': 10.915409818735185, 'value_error': None}}},
      'EnsoAmpl': {'diagnostic': {'ERA-Interim': {'value': 0.8989844997845644,
         'value_error': 0.14214193002531866},
        'FGOALS-s2_r2i1p1': {'value': 1.072233972054954,
         'value_error': 0.08584742319612759},
        'HadISST': {'value': 0.7665787872085695,
         'value_error': 0.06238329697691264},
        'Tropflux': {'value': 0.9039789553693535,
         'value_error': 0.14293162279134272}},
       'metric': {'ERA-Interim': {'value': 19.271686253979656,
         'value_error': 28.407886907113266},
        'HadISST': {'value': 39.87263800494682,
         'value_error': 22.581447496419894},
        'Tropflux': {'value': 18.612713900718397,
         'value_error': 28.25093421637577}}},
      'EnsoDuration': {'diagnostic': {'ERA-Interim': {'value': 13.0,
         'value_error': None},
        'FGOALS-s2_r2i1p1': {'value': 13.0, 'value_error': None},
        'HadISST': {'value': 13.0, 'value_error': None},
        'Tropflux': {'value': 13.0, 'value_error': None}},
       'metric': {'ERA-Interim': {'value': 0.0, 'value_error': None},
        'HadISST': {'value': 0.0, 'value_error': None},
        'Tropflux': {'value': 0.0, 'value_error': None}}},
      'EnsoSeasonality': {'diagnostic': {'ERA-Interim': {'value': 2.0466846866656914,
         'value_error': 0.6513411033995022},
        'FGOALS-s2_r2i1p1': {'value': 1.856435851514052,
         'value_error': 0.29774633866062555},
        'HadISST': {'value': 1.6639865947361325,
         'value_error': 0.2712772451657809},
        'Tropflux': {'value': 2.0532132553583624,
         'value_error': 0.6534187683977347}},
       'metric': {'ERA-Interim': {'value': 9.295463848980999,
         'value_error': 43.41373495629271},
        'HadISST': {'value': 11.56555331555644,
         'value_error': 36.08191917821525},
        'Tropflux': {'value': 9.583875582858802,
         'value_error': 43.27569301148843}}},
      'EnsoSstDiversity_2': {'diagnostic': {'ERA-Interim': {'value': 33.25,
         'value_error': None},
        'FGOALS-s2_r2i1p1': {'value': 28.5, 'value_error': None},
        'HadISST': {'value': 49.0, 'value_error': None},
        'Tropflux': {'value': 32.0, 'value_error': None}},
       'metric': {'ERA-Interim': {'value': 14.285714285714285,
         'value_error': None},
        'HadISST': {'value': 41.83673469387755, 'value_error': None},
        'Tropflux': {'value': 10.9375, 'value_error': None}}},
      'EnsoSstLonRmse': {'diagnostic': {'ERA-Interim': {'value': None,
         'value_error': None},
        'FGOALS-s2_r2i1p1': {'value': None, 'value_error': None},
        'HadISST': {'value': None, 'value_error': None},
        'Tropflux': {'value': None, 'value_error': None}},
       'metric': {'ERA-Interim': {'value': 0.242207753440023,
         'value_error': None},
        'HadISST': {'value': 0.26968483888482364, 'value_error': None},
        'Tropflux': {'value': 0.2462168120680919, 'value_error': None}}},
      'EnsoSstSkew': {'diagnostic': {'ERA-Interim': {'value': 0.39098111106809963,
         'value_error': 0.061819541653923164},
        'FGOALS-s2_r2i1p1': {'value': 0.3852683933879022,
         'value_error': 0.03084615827632841},
        'HadISST': {'value': 0.38989908235027515,
         'value_error': 0.03172953733021198},
        'Tropflux': {'value': 0.39744741059612115,
         'value_error': 0.06284195338099416}},
       'metric': {'ERA-Interim': {'value': 1.4611237009867752,
         'value_error': 23.469788528817674},
        'HadISST': {'value': 1.1876634678028974,
         'value_error': 15.952552416445226},
        'Tropflux': {'value': 3.0643091094622963,
         'value_error': 23.087945098867948}}},
      'EnsoSstTsRmse': {'diagnostic': {'ERA-Interim': {'value': None,
         'value_error': None},
        'FGOALS-s2_r2i1p1': {'value': None, 'value_error': None},
        'HadISST': {'value': None, 'value_error': None},
        'Tropflux': {'value': None, 'value_error': None}},
       'metric': {'ERA-Interim': {'value': 0.09791570018419933,
         'value_error': None},
        'HadISST': {'value': 0.06483204828996168, 'value_error': None},
        'Tropflux': {'value': 0.0927063125681455, 'value_error': None}}},
      'SeasonalPrLatRmse': {'diagnostic': {'ERA-Interim': {'value': None,
         'value_error': None},
        'FGOALS-s2_r2i1p1': {'value': None, 'value_error': None},
        'GPCPv2.3': {'value': None, 'value_error': None}},
       'metric': {'ERA-Interim': {'value': 0.644897526389196,
         'value_error': None},
        'GPCPv2.3': {'value': 0.8915094507554705, 'value_error': None}}},
      'SeasonalPrLonRmse': {'diagnostic': {'ERA-Interim': {'value': None,
         'value_error': None},
        'FGOALS-s2_r2i1p1': {'value': None, 'value_error': None},
        'GPCPv2.3': {'value': None, 'value_error': None}},
       'metric': {'ERA-Interim': {'value': 0.4359775052282495,
         'value_error': None},
        'GPCPv2.3': {'value': 0.6629999122491101, 'value_error': None}}},
      'SeasonalSstLonRmse': {'diagnostic': {'ERA-Interim': {'value': None,
         'value_error': None},
        'FGOALS-s2_r2i1p1': {'value': None, 'value_error': None},
        'HadISST': {'value': None, 'value_error': None},
        'Tropflux': {'value': None, 'value_error': None}},
       'metric': {'ERA-Interim': {'value': 0.4205848296898124,
         'value_error': None},
        'HadISST': {'value': 0.4383076808046799, 'value_error': None},
        'Tropflux': {'value': 0.41769583331032656, 'value_error': None}}},
      'SeasonalTauxLonRmse': {'diagnostic': {'ERA-Interim': {'value': None,
         'value_error': None},
        'FGOALS-s2_r2i1p1': {'value': None, 'value_error': None},
        'Tropflux': {'value': None, 'value_error': None}},
       'metric': {'ERA-Interim': {'value': 1.768536127967607,
         'value_error': None},
        'Tropflux': {'value': 1.518449641686477, 'value_error': None}}}}},
    'r3i1p1': {'metadata': {'description_of_the_collection': 'Describe which science question this collection is about',
      'metrics': {'BiasPrLatRmse': {'diagnostic': {'ERA-Interim': {'name': 'ERA-Interim',
          'nyears': 40,
          'time_period': ['1979-1-16 12:0:0.0', '2019-3-16 12:0:0.0']},
         'FGOALS-s2_r3i1p1': {'keyerror': None,
          'name': 'FGOALS-s2_r3i1p1',
          'nyears': 156,
          'time_period': ['1850-1-16 12:0:0.0', '2005-12-16 12:0:0.0']},
         'GPCPv2.3': {'name': 'GPCPv2.3',
          'nyears': 41,
          'time_period': ['1979-1-1 0:0:0.0', '2019-7-1 0:0:0.0']},
         'method': 'Meridional root mean square error of nino3_LatExt pr, time series are linearly detrended, observations and model regridded to generic_1x1deg',
         'name': 'pr Meridional RMSE',
         'ref': 'Using CDAT regridding and rms (uncentered and biased) calculation',
         'time_frequency': 'monthly',
         'units': 'mm/day'},
        'metric': {'datasets': "FGOALS-s2_r3i1p1; ERA-Interim's pr & GPCPv2.3's precip; 's ",
         'method': 'The metric is the statistical value between the model and the observations',
         'name': 'BiasPrLatRmse',
         'units': 'mm/day'}},
       'BiasPrLonRmse': {'diagnostic': {'ERA-Interim': {'name': 'ERA-Interim',
          'nyears': 40,
          'time_period': ['1979-1-16 12:0:0.0', '2019-3-16 12:0:0.0']},
         'FGOALS-s2_r3i1p1': {'keyerror': None,
          'name': 'FGOALS-s2_r3i1p1',
          'nyears': 156,
          'time_period': ['1850-1-16 12:0:0.0', '2005-12-16 12:0:0.0']},
         'GPCPv2.3': {'name': 'GPCPv2.3',
          'nyears': 41,
          'time_period': ['1979-1-1 0:0:0.0', '2019-7-1 0:0:0.0']},
         'method': 'Zonal root mean square error of equatorial_pacific pr, time series are linearly detrended, observations and model regridded to generic_1x1deg',
         'name': 'pr Zonal RMSE',
         'ref': 'Using CDAT regridding and rms (uncentered and biased) calculation',
         'time_frequency': 'monthly',
         'units': 'mm/day'},
        'metric': {'datasets': "FGOALS-s2_r3i1p1; ERA-Interim's pr & GPCPv2.3's precip; 's ",
         'method': 'The metric is the statistical value between the model and the observations',
         'name': 'BiasPrLonRmse',
         'units': 'mm/day'}},
       'BiasSstLonRmse': {'diagnostic': {'ERA-Interim': {'name': 'ERA-Interim',
          'nyears': 40,
          'time_period': ['1979-1-16 12:0:0.0', '2019-3-16 12:0:0.0']},
         'FGOALS-s2_r3i1p1': {'keyerror': None,
          'name': 'FGOALS-s2_r3i1p1',
          'nyears': 156,
          'time_period': ['1850-1-16 12:0:0.0', '2005-12-16 12:0:0.0']},
         'HadISST': {'name': 'HadISST',
          'nyears': 151,
          'time_period': ['1870-1-16 11:59:59.5', '2020-10-16 12:0:0.0']},
         'Tropflux': {'name': 'Tropflux',
          'nyears': 40,
          'time_period': ['1979-1-15 0:0:0.0', '2018-12-15 12:0:0.0']},
         'method': 'Zonal root mean square error of equatorial_pacific sst, time series are linearly detrended, observations and model regridded to generic_1x1deg',
         'name': 'sst Zonal RMSE',
         'ref': 'Using CDAT regridding and rms (uncentered and biased) calculation',
         'time_frequency': 'monthly',
         'units': 'C'},
        'metric': {'datasets': "FGOALS-s2_r3i1p1; ERA-Interim's ts & HadISST's sst & Tropflux's sst; 's ",
         'method': 'The metric is the statistical value between the model and the observations',
         'name': 'BiasSstLonRmse',
         'units': 'C'}},
       'BiasTauxLonRmse': {'diagnostic': {'ERA-Interim': {'name': 'ERA-Interim',
          'nyears': 40,
          'time_period': ['1979-1-16 12:0:0.0', '2019-3-16 12:0:0.0']},
         'FGOALS-s2_r3i1p1': {'keyerror': None,
          'name': 'FGOALS-s2_r3i1p1',
          'nyears': 156,
          'time_period': ['1850-1-16 12:0:0.0', '2005-12-16 12:0:0.0']},
         'Tropflux': {'name': 'Tropflux',
          'nyears': 40,
          'time_period': ['1979-1-15 0:0:0.0', '2018-12-15 12:0:0.0']},
         'method': 'Zonal root mean square error of equatorial_pacific taux, time series are linearly detrended, observations and model regridded to generic_1x1deg',
         'name': 'taux Zonal RMSE',
         'ref': 'Using CDAT regridding and rms (uncentered and biased) calculation',
         'time_frequency': 'monthly',
         'units': '1e-3 N/m2'},
        'metric': {'datasets': "FGOALS-s2_r3i1p1; ERA-Interim's tauu & Tropflux's taux; 's ",
         'method': 'The metric is the statistical value between the model and the observations',
         'name': 'BiasTauxLonRmse',
         'units': '1e-3 N/m2'}},
       'EnsoAmpl': {'diagnostic': {'ERA-Interim': {'keyerror': None,
          'name': 'ERA-Interim',
          'nyears': 40,
          'time_period': ['1979-1-16 12:0:0.0', '2019-3-16 12:0:0.0']},
         'FGOALS-s2_r3i1p1': {'keyerror': None,
          'name': 'FGOALS-s2_r3i1p1',
          'nyears': 156,
          'time_period': ['1850-1-16 12:0:0.0', '2005-12-16 12:0:0.0']},
         'HadISST': {'keyerror': None,
          'name': 'HadISST',
          'nyears': 151,
          'time_period': ['1870-1-16 11:59:59.5', '2020-10-16 12:0:0.0']},
         'Tropflux': {'keyerror': None,
          'name': 'Tropflux',
          'nyears': 40,
          'time_period': ['1979-1-15 0:0:0.0', '2018-12-15 12:0:0.0']},
         'method': 'Standard deviation of nino3.4 sstA, time series are linearly detrended',
         'name': 'ENSO amplitude',
         'ref': 'Using CDAT regression calculation',
         'time_frequency': 'monthly',
         'units': 'C'},
        'metric': {'datasets': "FGOALS-s2_r3i1p1; ERA-Interim's ts & HadISST's sst & Tropflux's sst; 's ",
         'method': 'The metric is the absolute value of the relative difference between model and observations values (M = 100 * abs[[model-obs] / obs])',
         'name': 'EnsoAmpl',
         'units': '%'}},
       'EnsoDuration': {'diagnostic': {'ERA-Interim': {'keyerror': None,
          'name': 'ERA-Interim',
          'nyears': 40,
          'time_period': ['1979-1-16 12:0:0.0', '2019-3-16 12:0:0.0']},
         'FGOALS-s2_r3i1p1': {'keyerror': None,
          'name': 'FGOALS-s2_r3i1p1',
          'nyears': 156,
          'time_period': ['1850-1-16 12:0:0.0', '2005-12-16 12:0:0.0']},
         'HadISST': {'keyerror': None,
          'name': 'HadISST',
          'nyears': 151,
          'time_period': ['1870-1-16 11:59:59.5', '2020-10-16 12:0:0.0']},
         'Tropflux': {'keyerror': None,
          'name': 'Tropflux',
          'nyears': 40,
          'time_period': ['1979-1-15 0:0:0.0', '2018-12-15 12:0:0.0']},
         'method': 'nino3.4 SSTA during DEC regressed against nino3.4 SSTA during 6 years (centered on ENSO), the duration is the number of consecutive months during which the regression is above 0.25, time series are linearly detrended, smoothing using a triangle shaped window of 5 points',
         'name': 'ENSO Duration based on life cyle SSTA pattern',
         'ref': 'Using CDAT',
         'time_frequency': 'monthly',
         'units': 'months'},
        'metric': {'datasets': "FGOALS-s2_r3i1p1; ERA-Interim's ts & HadISST's sst & Tropflux's sst; 's ",
         'method': 'The metric is the absolute value of the relative difference between model and observations values (M = 100 * abs[[model-obs] / obs])',
         'name': 'EnsoDuration',
         'units': '%'}},
       'EnsoSeasonality': {'diagnostic': {'ERA-Interim': {'keyerror': None,
          'name': 'ERA-Interim',
          'nyears': 40,
          'time_period': ['1979-1-16 12:0:0.0', '2019-3-16 12:0:0.0']},
         'FGOALS-s2_r3i1p1': {'keyerror': None,
          'name': 'FGOALS-s2_r3i1p1',
          'nyears': 156,
          'time_period': ['1850-1-16 12:0:0.0', '2005-12-16 12:0:0.0']},
         'HadISST': {'keyerror': None,
          'name': 'HadISST',
          'nyears': 151,
          'time_period': ['1870-1-16 11:59:59.5', '2020-10-16 12:0:0.0']},
         'Tropflux': {'keyerror': None,
          'name': 'Tropflux',
          'nyears': 40,
          'time_period': ['1979-1-15 0:0:0.0', '2018-12-15 12:0:0.0']},
         'method': 'Ratio between NDJ and MAM standard deviation nino3.4 sstA, time series are linearly detrended',
         'name': 'ENSO seasonality',
         'ref': 'Using CDAT std dev calculation',
         'time_frequency': 'monthly',
         'units': 'C/C'},
        'metric': {'datasets': "FGOALS-s2_r3i1p1; ERA-Interim's ts & HadISST's sst & Tropflux's sst; 's ",
         'method': 'The metric is the absolute value of the relative difference between model and observations values (M = 100 * abs[[model-obs] / obs])',
         'name': 'EnsoSeasonality',
         'units': '%'}},
       'EnsoSstDiversity_2': {'diagnostic': {'ERA-Interim': {'keyerror': None,
          'name': 'ERA-Interim',
          'nyears': 40,
          'time_period': ['1979-1-16 12:0:0.0', '2019-3-16 12:0:0.0']},
         'FGOALS-s2_r3i1p1': {'keyerror': None,
          'name': 'FGOALS-s2_r3i1p1',
          'nyears': 156,
          'time_period': ['1850-1-16 12:0:0.0', '2005-12-16 12:0:0.0']},
         'HadISST': {'keyerror': None,
          'name': 'HadISST',
          'nyears': 151,
          'time_period': ['1870-1-16 11:59:59.5', '2020-10-16 12:0:0.0']},
         'Tropflux': {'keyerror': None,
          'name': 'Tropflux',
          'nyears': 40,
          'time_period': ['1979-1-15 0:0:0.0', '2018-12-15 12:0:0.0']},
         'method': 'Nino (Nina) events = nino3.4 sstA > 0.75 (< -0.75) during DEC, zonal SSTA (meridional averaged [-5.0 ; 5.0]), the zonal SSTA maximum (minimum) is located for each event, the diversity is the interquartile range (IQR = Q3 - Q1), time series are linearly detrended, smoothing using a triangle shaped window of 5 points',
         'name': 'ENSO Diversity (interquartile range)',
         'ref': 'Using CDAT regridding',
         'time_frequency': 'monthly',
         'units': 'long'},
        'metric': {'datasets': "FGOALS-s2_r3i1p1; ERA-Interim's ts & HadISST's sst & Tropflux's sst; 's ",
         'method': 'The metric is the absolute value of the relative difference between model and observations values (M = 100 * abs[[model-obs] / obs])',
         'name': 'EnsoSstDiversity',
         'units': '%'}},
       'EnsoSstLonRmse': {'diagnostic': {'ERA-Interim': {'name': 'ERA-Interim',
          'nyears': 40,
          'time_period': ['1979-1-16 12:0:0.0', '2019-3-16 12:0:0.0']},
         'FGOALS-s2_r3i1p1': {'keyerror': None,
          'name': 'FGOALS-s2_r3i1p1',
          'nyears': 156,
          'time_period': ['1850-1-16 12:0:0.0', '2005-12-16 12:0:0.0']},
         'HadISST': {'name': 'HadISST',
          'nyears': 151,
          'time_period': ['1870-1-16 11:59:59.5', '2020-10-16 12:0:0.0']},
         'Tropflux': {'name': 'Tropflux',
          'nyears': 40,
          'time_period': ['1979-1-15 0:0:0.0', '2018-12-15 12:0:0.0']},
         'method': 'nino3.4 SSTA during DEC regressed against equatorial_pacific SSTA, time series are linearly detrended, smoothing using a triangle shaped window of 5 points, observations and model regridded to generic_1x1deg',
         'name': 'ENSO Zonal SSTA pattern',
         'ref': 'Using CDAT regridding and rms (uncentered and biased) calculation',
         'time_frequency': 'monthly',
         'units': 'C/C'},
        'metric': {'datasets': "FGOALS-s2_r3i1p1; ERA-Interim's ts & HadISST's sst & Tropflux's sst; 's ",
         'method': 'The metric is the statistical value between the model and the observations',
         'name': 'EnsoSstLonRmse',
         'units': 'C/C'}},
       'EnsoSstSkew': {'diagnostic': {'ERA-Interim': {'keyerror': None,
          'name': 'ERA-Interim',
          'nyears': 40,
          'time_period': ['1979-1-16 12:0:0.0', '2019-3-16 12:0:0.0']},
         'FGOALS-s2_r3i1p1': {'keyerror': None,
          'name': 'FGOALS-s2_r3i1p1',
          'nyears': 156,
          'time_period': ['1850-1-16 12:0:0.0', '2005-12-16 12:0:0.0']},
         'HadISST': {'keyerror': None,
          'name': 'HadISST',
          'nyears': 151,
          'time_period': ['1870-1-16 11:59:59.5', '2020-10-16 12:0:0.0']},
         'Tropflux': {'keyerror': None,
          'name': 'Tropflux',
          'nyears': 40,
          'time_period': ['1979-1-15 0:0:0.0', '2018-12-15 12:0:0.0']},
         'method': 'Standard deviation of nino3.4 sstA, time series are linearly detrended',
         'name': 'ENSO skewness',
         'ref': 'Using CDAT regression calculation',
         'time_frequency': 'monthly',
         'units': 'C'},
        'metric': {'datasets': "FGOALS-s2_r3i1p1; ERA-Interim's ts & HadISST's sst & Tropflux's sst; 's ",
         'method': 'The metric is the absolute value of the relative difference between model and observations values (M = 100 * abs[[model-obs] / obs])',
         'name': 'EnsoSstSkew',
         'units': '%'}},
       'EnsoSstTsRmse': {'diagnostic': {'ERA-Interim': {'name': 'ERA-Interim',
          'nyears': 40,
          'time_period': ['1979-1-16 12:0:0.0', '2019-3-16 12:0:0.0']},
         'FGOALS-s2_r3i1p1': {'keyerror': None,
          'name': 'FGOALS-s2_r3i1p1',
          'nyears': 156,
          'time_period': ['1850-1-16 12:0:0.0', '2005-12-16 12:0:0.0']},
         'HadISST': {'name': 'HadISST',
          'nyears': 151,
          'time_period': ['1870-1-16 11:59:59.5', '2020-10-16 12:0:0.0']},
         'Tropflux': {'name': 'Tropflux',
          'nyears': 40,
          'time_period': ['1979-1-15 0:0:0.0', '2018-12-15 12:0:0.0']},
         'method': 'nino3.4 SSTA during DEC regressed against nino3.4 SSTA during 6 years (centered on ENSO), time series are linearly detrended, smoothing using a triangle shaped window of 5 points',
         'name': 'ENSO life cyle SSTA pattern',
         'ref': 'Using CDAT regridding and rms (uncentered and biased) calculation',
         'time_frequency': 'monthly',
         'units': 'C/C'},
        'metric': {'datasets': "FGOALS-s2_r3i1p1; ERA-Interim's ts & HadISST's sst & Tropflux's sst; 's ",
         'method': 'The metric is the statistical value between the model and the observations',
         'name': 'EnsoSstTsRmse',
         'units': 'C/C'}},
       'SeasonalPrLatRmse': {'diagnostic': {'ERA-Interim': {'name': 'ERA-Interim',
          'nyears': 40,
          'time_period': ['1979-1-16 12:0:0.0', '2019-3-16 12:0:0.0']},
         'FGOALS-s2_r3i1p1': {'keyerror': None,
          'name': 'FGOALS-s2_r3i1p1',
          'nyears': 156,
          'time_period': ['1850-1-16 12:0:0.0', '2005-12-16 12:0:0.0']},
         'GPCPv2.3': {'name': 'GPCPv2.3',
          'nyears': 41,
          'time_period': ['1979-1-1 0:0:0.0', '2019-7-1 0:0:0.0']},
         'method': 'Meridional root mean square error of nino3_LatExt climatological pr STD, time series are linearly detrended, observations and model regridded to generic_1x1deg',
         'name': 'pr meridional seasonality RMSE',
         'ref': 'Using CDAT regridding and rms (uncentered and biased) calculation',
         'time_frequency': 'monthly',
         'units': 'mm/day'},
        'metric': {'datasets': "FGOALS-s2_r3i1p1; ERA-Interim's pr & GPCPv2.3's precip; 's ",
         'method': 'The metric is the statistical value between the model and the observations',
         'name': 'SeasonalPrLatRmse',
         'units': 'mm/day'}},
       'SeasonalPrLonRmse': {'diagnostic': {'ERA-Interim': {'name': 'ERA-Interim',
          'nyears': 40,
          'time_period': ['1979-1-16 12:0:0.0', '2019-3-16 12:0:0.0']},
         'FGOALS-s2_r3i1p1': {'keyerror': None,
          'name': 'FGOALS-s2_r3i1p1',
          'nyears': 156,
          'time_period': ['1850-1-16 12:0:0.0', '2005-12-16 12:0:0.0']},
         'GPCPv2.3': {'name': 'GPCPv2.3',
          'nyears': 41,
          'time_period': ['1979-1-1 0:0:0.0', '2019-7-1 0:0:0.0']},
         'method': 'Zonal root mean square error of equatorial_pacific climatological pr STD, time series are linearly detrended, observations and model regridded to generic_1x1deg',
         'name': 'pr zonal seasonality RMSE',
         'ref': 'Using CDAT regridding and rms (uncentered and biased) calculation',
         'time_frequency': 'monthly',
         'units': 'mm/day'},
        'metric': {'datasets': "FGOALS-s2_r3i1p1; ERA-Interim's pr & GPCPv2.3's precip; 's ",
         'method': 'The metric is the statistical value between the model and the observations',
         'name': 'SeasonalPrLonRmse',
         'units': 'mm/day'}},
       'SeasonalSstLonRmse': {'diagnostic': {'ERA-Interim': {'name': 'ERA-Interim',
          'nyears': 40,
          'time_period': ['1979-1-16 12:0:0.0', '2019-3-16 12:0:0.0']},
         'FGOALS-s2_r3i1p1': {'keyerror': None,
          'name': 'FGOALS-s2_r3i1p1',
          'nyears': 156,
          'time_period': ['1850-1-16 12:0:0.0', '2005-12-16 12:0:0.0']},
         'HadISST': {'name': 'HadISST',
          'nyears': 151,
          'time_period': ['1870-1-16 11:59:59.5', '2020-10-16 12:0:0.0']},
         'Tropflux': {'name': 'Tropflux',
          'nyears': 40,
          'time_period': ['1979-1-15 0:0:0.0', '2018-12-15 12:0:0.0']},
         'method': 'Zonal root mean square error of equatorial_pacific climatological sst STD, time series are linearly detrended, observations and model regridded to generic_1x1deg',
         'name': 'sst zonal seasonality RMSE',
         'ref': 'Using CDAT regridding and rms (uncentered and biased) calculation',
         'time_frequency': 'monthly',
         'units': 'C'},
        'metric': {'datasets': "FGOALS-s2_r3i1p1; ERA-Interim's ts & HadISST's sst & Tropflux's sst; 's ",
         'method': 'The metric is the statistical value between the model and the observations',
         'name': 'SeasonalSstLonRmse',
         'units': 'C'}},
       'SeasonalTauxLonRmse': {'diagnostic': {'ERA-Interim': {'name': 'ERA-Interim',
          'nyears': 40,
          'time_period': ['1979-1-16 12:0:0.0', '2019-3-16 12:0:0.0']},
         'FGOALS-s2_r3i1p1': {'keyerror': None,
          'name': 'FGOALS-s2_r3i1p1',
          'nyears': 156,
          'time_period': ['1850-1-16 12:0:0.0', '2005-12-16 12:0:0.0']},
         'Tropflux': {'name': 'Tropflux',
          'nyears': 40,
          'time_period': ['1979-1-15 0:0:0.0', '2018-12-15 12:0:0.0']},
         'method': 'Zonal root mean square error of equatorial_pacific climatological taux STD, time series are linearly detrended, observations and model regridded to generic_1x1deg',
         'name': 'taux zonal seasonality RMSE',
         'ref': 'Using CDAT regridding and rms (uncentered and biased) calculation',
         'time_frequency': 'monthly',
         'units': '1e-3 N/m2'},
        'metric': {'datasets': "FGOALS-s2_r3i1p1; ERA-Interim's tauu & Tropflux's taux; 's ",
         'method': 'The metric is the statistical value between the model and the observations',
         'name': 'SeasonalTauxLonRmse',
         'units': '1e-3 N/m2'}}},
      'name': 'Metrics Collection for ENSO performance'},
     'value': {'BiasPrLatRmse': {'diagnostic': {'ERA-Interim': {'value': None,
         'value_error': None},
        'FGOALS-s2_r3i1p1': {'value': None, 'value_error': None},
        'GPCPv2.3': {'value': None, 'value_error': None}},
       'metric': {'ERA-Interim': {'value': 0.6565852060194719,
         'value_error': None},
        'GPCPv2.3': {'value': 1.504125716661884, 'value_error': None}}},
      'BiasPrLonRmse': {'diagnostic': {'ERA-Interim': {'value': None,
         'value_error': None},
        'FGOALS-s2_r3i1p1': {'value': None, 'value_error': None},
        'GPCPv2.3': {'value': None, 'value_error': None}},
       'metric': {'ERA-Interim': {'value': 1.098820399018865,
         'value_error': None},
        'GPCPv2.3': {'value': 0.7432305956228085, 'value_error': None}}},
      'BiasSstLonRmse': {'diagnostic': {'ERA-Interim': {'value': None,
         'value_error': None},
        'FGOALS-s2_r3i1p1': {'value': None, 'value_error': None},
        'HadISST': {'value': None, 'value_error': None},
        'Tropflux': {'value': None, 'value_error': None}},
       'metric': {'ERA-Interim': {'value': 1.054108370269925,
         'value_error': None},
        'HadISST': {'value': 0.9160521691806228, 'value_error': None},
        'Tropflux': {'value': 1.097293679001292, 'value_error': None}}},
      'BiasTauxLonRmse': {'diagnostic': {'ERA-Interim': {'value': None,
         'value_error': None},
        'FGOALS-s2_r3i1p1': {'value': None, 'value_error': None},
        'Tropflux': {'value': None, 'value_error': None}},
       'metric': {'ERA-Interim': {'value': 11.873971536789275,
         'value_error': None},
        'Tropflux': {'value': 11.581408429281492, 'value_error': None}}},
      'EnsoAmpl': {'diagnostic': {'ERA-Interim': {'value': 0.8989844997845644,
         'value_error': 0.14214193002531866},
        'FGOALS-s2_r3i1p1': {'value': 1.0944576744065575,
         'value_error': 0.0876267434102656},
        'HadISST': {'value': 0.7665787872085695,
         'value_error': 0.06238329697691264},
        'Tropflux': {'value': 0.9039789553693535,
         'value_error': 0.14293162279134272}},
       'metric': {'ERA-Interim': {'value': 21.74377585696271,
         'value_error': 28.99668416546887},
        'HadISST': {'value': 42.77171409763771,
         'value_error': 23.04948281418455},
        'Tropflux': {'value': 21.071145285608672,
         'value_error': 28.83647838821002}}},
      'EnsoDuration': {'diagnostic': {'ERA-Interim': {'value': 13.0,
         'value_error': None},
        'FGOALS-s2_r3i1p1': {'value': 13.0, 'value_error': None},
        'HadISST': {'value': 13.0, 'value_error': None},
        'Tropflux': {'value': 13.0, 'value_error': None}},
       'metric': {'ERA-Interim': {'value': 0.0, 'value_error': None},
        'HadISST': {'value': 0.0, 'value_error': None},
        'Tropflux': {'value': 0.0, 'value_error': None}}},
      'EnsoSeasonality': {'diagnostic': {'ERA-Interim': {'value': 2.0466846866656914,
         'value_error': 0.6513411033995022},
        'FGOALS-s2_r3i1p1': {'value': 1.908413805182375,
         'value_error': 0.3060828752466826},
        'HadISST': {'value': 1.6639865947361325,
         'value_error': 0.2712772451657809},
        'Tropflux': {'value': 2.0532132553583624,
         'value_error': 0.6534187683977347}},
       'metric': {'ERA-Interim': {'value': 6.755846779142968,
         'value_error': 44.62926691355731},
        'HadISST': {'value': 14.689253580495492,
         'value_error': 37.09216918054087},
        'Tropflux': {'value': 7.0523336919873225,
         'value_error': 44.48735996161827}}},
      'EnsoSstDiversity_2': {'diagnostic': {'ERA-Interim': {'value': 33.25,
         'value_error': None},
        'FGOALS-s2_r3i1p1': {'value': 30.0, 'value_error': None},
        'HadISST': {'value': 49.0, 'value_error': None},
        'Tropflux': {'value': 32.0, 'value_error': None}},
       'metric': {'ERA-Interim': {'value': 9.774436090225564,
         'value_error': None},
        'HadISST': {'value': 38.775510204081634, 'value_error': None},
        'Tropflux': {'value': 6.25, 'value_error': None}}},
      'EnsoSstLonRmse': {'diagnostic': {'ERA-Interim': {'value': None,
         'value_error': None},
        'FGOALS-s2_r3i1p1': {'value': None, 'value_error': None},
        'HadISST': {'value': None, 'value_error': None},
        'Tropflux': {'value': None, 'value_error': None}},
       'metric': {'ERA-Interim': {'value': 0.22365811078335057,
         'value_error': None},
        'HadISST': {'value': 0.250604747797424, 'value_error': None},
        'Tropflux': {'value': 0.22760296713095843, 'value_error': None}}},
      'EnsoSstSkew': {'diagnostic': {'ERA-Interim': {'value': 0.39098111106809963,
         'value_error': 0.061819541653923164},
        'FGOALS-s2_r3i1p1': {'value': 0.42672636827263705,
         'value_error': 0.03416545276572354},
        'HadISST': {'value': 0.38989908235027515,
         'value_error': 0.03172953733021198},
        'Tropflux': {'value': 0.39744741059612115,
         'value_error': 0.06284195338099416}},
       'metric': {'ERA-Interim': {'value': 9.142451180540904,
         'value_error': 25.995326361863054},
        'HadISST': {'value': 9.445337932156821,
         'value_error': 17.669175240374937},
        'Tropflux': {'value': 7.36675013999994,
         'value_error': 25.57239351061524}}},
      'EnsoSstTsRmse': {'diagnostic': {'ERA-Interim': {'value': None,
         'value_error': None},
        'FGOALS-s2_r3i1p1': {'value': None, 'value_error': None},
        'HadISST': {'value': None, 'value_error': None},
        'Tropflux': {'value': None, 'value_error': None}},
       'metric': {'ERA-Interim': {'value': 0.16396201010632463,
         'value_error': None},
        'HadISST': {'value': 0.13467538314051303, 'value_error': None},
        'Tropflux': {'value': 0.15996443165172644, 'value_error': None}}},
      'SeasonalPrLatRmse': {'diagnostic': {'ERA-Interim': {'value': None,
         'value_error': None},
        'FGOALS-s2_r3i1p1': {'value': None, 'value_error': None},
        'GPCPv2.3': {'value': None, 'value_error': None}},
       'metric': {'ERA-Interim': {'value': 0.6847990128962386,
         'value_error': None},
        'GPCPv2.3': {'value': 0.9049124331934353, 'value_error': None}}},
      'SeasonalPrLonRmse': {'diagnostic': {'ERA-Interim': {'value': None,
         'value_error': None},
        'FGOALS-s2_r3i1p1': {'value': None, 'value_error': None},
        'GPCPv2.3': {'value': None, 'value_error': None}},
       'metric': {'ERA-Interim': {'value': 0.4059741465867621,
         'value_error': None},
        'GPCPv2.3': {'value': 0.6288327671302832, 'value_error': None}}},
      'SeasonalSstLonRmse': {'diagnostic': {'ERA-Interim': {'value': None,
         'value_error': None},
        'FGOALS-s2_r3i1p1': {'value': None, 'value_error': None},
        'HadISST': {'value': None, 'value_error': None},
        'Tropflux': {'value': None, 'value_error': None}},
       'metric': {'ERA-Interim': {'value': 0.4023962330570922,
         'value_error': None},
        'HadISST': {'value': 0.4190055645330988, 'value_error': None},
        'Tropflux': {'value': 0.39984398973322904, 'value_error': None}}},
      'SeasonalTauxLonRmse': {'diagnostic': {'ERA-Interim': {'value': None,
         'value_error': None},
        'FGOALS-s2_r3i1p1': {'value': None, 'value_error': None},
        'Tropflux': {'value': None, 'value_error': None}},
       'metric': {'ERA-Interim': {'value': 1.7393847304108518,
         'value_error': None},
        'Tropflux': {'value': 1.541891901746267, 'value_error': None}}}}}},
   'FIO-ESM': {'r1i1p1': {'metadata': {'description_of_the_collection': 'Describe which science question this collection is about',
      'metrics': {'BiasPrLatRmse': {'diagnostic': {'ERA-Interim': {'name': 'ERA-Interim',
          'nyears': 40,
          'time_period': ['1979-1-16 12:0:0.0', '2019-3-16 12:0:0.0']},
         'FIO-ESM_r1i1p1': {'keyerror': None,
          'name': 'FIO-ESM_r1i1p1',
          'nyears': 156,
          'time_period': ['1850-1-16 12:0:0.0', '2005-12-16 12:0:0.0']},
         'GPCPv2.3': {'name': 'GPCPv2.3',
          'nyears': 41,
          'time_period': ['1979-1-1 0:0:0.0', '2019-7-1 0:0:0.0']},
         'method': 'Meridional root mean square error of nino3_LatExt pr, time series are linearly detrended, observations and model regridded to generic_1x1deg',
         'name': 'pr Meridional RMSE',
         'ref': 'Using CDAT regridding and rms (uncentered and biased) calculation',
         'time_frequency': 'monthly',
         'units': 'mm/day'},
        'metric': {'datasets': "FIO-ESM_r1i1p1; ERA-Interim's pr & GPCPv2.3's precip; 's ",
         'method': 'The metric is the statistical value between the model and the observations',
         'name': 'BiasPrLatRmse',
         'units': 'mm/day'}},
       'BiasPrLonRmse': {'diagnostic': {'ERA-Interim': {'name': 'ERA-Interim',
          'nyears': 40,
          'time_period': ['1979-1-16 12:0:0.0', '2019-3-16 12:0:0.0']},
         'FIO-ESM_r1i1p1': {'keyerror': None,
          'name': 'FIO-ESM_r1i1p1',
          'nyears': 156,
          'time_period': ['1850-1-16 12:0:0.0', '2005-12-16 12:0:0.0']},
         'GPCPv2.3': {'name': 'GPCPv2.3',
          'nyears': 41,
          'time_period': ['1979-1-1 0:0:0.0', '2019-7-1 0:0:0.0']},
         'method': 'Zonal root mean square error of equatorial_pacific pr, time series are linearly detrended, observations and model regridded to generic_1x1deg',
         'name': 'pr Zonal RMSE',
         'ref': 'Using CDAT regridding and rms (uncentered and biased) calculation',
         'time_frequency': 'monthly',
         'units': 'mm/day'},
        'metric': {'datasets': "FIO-ESM_r1i1p1; ERA-Interim's pr & GPCPv2.3's precip; 's ",
         'method': 'The metric is the statistical value between the model and the observations',
         'name': 'BiasPrLonRmse',
         'units': 'mm/day'}},
       'BiasSstLonRmse': {'diagnostic': {'ERA-Interim': {'name': 'ERA-Interim',
          'nyears': 40,
          'time_period': ['1979-1-16 12:0:0.0', '2019-3-16 12:0:0.0']},
         'FIO-ESM_r1i1p1': {'keyerror': None,
          'name': 'FIO-ESM_r1i1p1',
          'nyears': 156,
          'time_period': ['1850-1-16 12:0:0.0', '2005-12-16 12:0:0.0']},
         'HadISST': {'name': 'HadISST',
          'nyears': 151,
          'time_period': ['1870-1-16 11:59:59.5', '2020-10-16 12:0:0.0']},
         'Tropflux': {'name': 'Tropflux',
          'nyears': 40,
          'time_period': ['1979-1-15 0:0:0.0', '2018-12-15 12:0:0.0']},
         'method': 'Zonal root mean square error of equatorial_pacific sst, time series are linearly detrended, observations and model regridded to generic_1x1deg',
         'name': 'sst Zonal RMSE',
         'ref': 'Using CDAT regridding and rms (uncentered and biased) calculation',
         'time_frequency': 'monthly',
         'units': 'C'},
        'metric': {'datasets': "FIO-ESM_r1i1p1; ERA-Interim's ts & HadISST's sst & Tropflux's sst; 's ",
         'method': 'The metric is the statistical value between the model and the observations',
         'name': 'BiasSstLonRmse',
         'units': 'C'}},
       'BiasTauxLonRmse': {'diagnostic': {'ERA-Interim': {'name': 'ERA-Interim',
          'nyears': 40,
          'time_period': ['1979-1-16 12:0:0.0', '2019-3-16 12:0:0.0']},
         'FIO-ESM_r1i1p1': {'keyerror': None,
          'name': 'FIO-ESM_r1i1p1',
          'nyears': 156,
          'time_period': ['1850-1-16 12:0:0.0', '2005-12-16 12:0:0.0']},
         'Tropflux': {'name': 'Tropflux',
          'nyears': 40,
          'time_period': ['1979-1-15 0:0:0.0', '2018-12-15 12:0:0.0']},
         'method': 'Zonal root mean square error of equatorial_pacific taux, time series are linearly detrended, observations and model regridded to generic_1x1deg',
         'name': 'taux Zonal RMSE',
         'ref': 'Using CDAT regridding and rms (uncentered and biased) calculation',
         'time_frequency': 'monthly',
         'units': '1e-3 N/m2'},
        'metric': {'datasets': "FIO-ESM_r1i1p1; ERA-Interim's tauu & Tropflux's taux; 's ",
         'method': 'The metric is the statistical value between the model and the observations',
         'name': 'BiasTauxLonRmse',
         'units': '1e-3 N/m2'}},
       'EnsoAmpl': {'diagnostic': {'ERA-Interim': {'keyerror': None,
          'name': 'ERA-Interim',
          'nyears': 40,
          'time_period': ['1979-1-16 12:0:0.0', '2019-3-16 12:0:0.0']},
         'FIO-ESM_r1i1p1': {'keyerror': None,
          'name': 'FIO-ESM_r1i1p1',
          'nyears': 156,
          'time_period': ['1850-1-16 12:0:0.0', '2005-12-16 12:0:0.0']},
         'HadISST': {'keyerror': None,
          'name': 'HadISST',
          'nyears': 151,
          'time_period': ['1870-1-16 11:59:59.5', '2020-10-16 12:0:0.0']},
         'Tropflux': {'keyerror': None,
          'name': 'Tropflux',
          'nyears': 40,
          'time_period': ['1979-1-15 0:0:0.0', '2018-12-15 12:0:0.0']},
         'method': 'Standard deviation of nino3.4 sstA, time series are linearly detrended',
         'name': 'ENSO amplitude',
         'ref': 'Using CDAT regression calculation',
         'time_frequency': 'monthly',
         'units': 'C'},
        'metric': {'datasets': "FIO-ESM_r1i1p1; ERA-Interim's ts & HadISST's sst & Tropflux's sst; 's ",
         'method': 'The metric is the absolute value of the relative difference between model and observations values (M = 100 * abs[[model-obs] / obs])',
         'name': 'EnsoAmpl',
         'units': '%'}},
       'EnsoSeasonality': {'diagnostic': {'ERA-Interim': {'keyerror': None,
          'name': 'ERA-Interim',
          'nyears': 40,
          'time_period': ['1979-1-16 12:0:0.0', '2019-3-16 12:0:0.0']},
         'FIO-ESM_r1i1p1': {'keyerror': None,
          'name': 'FIO-ESM_r1i1p1',
          'nyears': 156,
          'time_period': ['1850-1-16 12:0:0.0', '2005-12-16 12:0:0.0']},
         'HadISST': {'keyerror': None,
          'name': 'HadISST',
          'nyears': 151,
          'time_period': ['1870-1-16 11:59:59.5', '2020-10-16 12:0:0.0']},
         'Tropflux': {'keyerror': None,
          'name': 'Tropflux',
          'nyears': 40,
          'time_period': ['1979-1-15 0:0:0.0', '2018-12-15 12:0:0.0']},
         'method': 'Ratio between NDJ and MAM standard deviation nino3.4 sstA, time series are linearly detrended',
         'name': 'ENSO seasonality',
         'ref': 'Using CDAT std dev calculation',
         'time_frequency': 'monthly',
         'units': 'C/C'},
        'metric': {'datasets': "FIO-ESM_r1i1p1; ERA-Interim's ts & HadISST's sst & Tropflux's sst; 's ",
         'method': 'The metric is the absolute value of the relative difference between model and observations values (M = 100 * abs[[model-obs] / obs])',
         'name': 'EnsoSeasonality',
         'units': '%'}},
       'EnsoSstSkew': {'diagnostic': {'ERA-Interim': {'keyerror': None,
          'name': 'ERA-Interim',
          'nyears': 40,
          'time_period': ['1979-1-16 12:0:0.0', '2019-3-16 12:0:0.0']},
         'FIO-ESM_r1i1p1': {'keyerror': None,
          'name': 'FIO-ESM_r1i1p1',
          'nyears': 156,
          'time_period': ['1850-1-16 12:0:0.0', '2005-12-16 12:0:0.0']},
         'HadISST': {'keyerror': None,
          'name': 'HadISST',
          'nyears': 151,
          'time_period': ['1870-1-16 11:59:59.5', '2020-10-16 12:0:0.0']},
         'Tropflux': {'keyerror': None,
          'name': 'Tropflux',
          'nyears': 40,
          'time_period': ['1979-1-15 0:0:0.0', '2018-12-15 12:0:0.0']},
         'method': 'Standard deviation of nino3.4 sstA, time series are linearly detrended',
         'name': 'ENSO skewness',
         'ref': 'Using CDAT regression calculation',
         'time_frequency': 'monthly',
         'units': 'C'},
        'metric': {'datasets': "FIO-ESM_r1i1p1; ERA-Interim's ts & HadISST's sst & Tropflux's sst; 's ",
         'method': 'The metric is the absolute value of the relative difference between model and observations values (M = 100 * abs[[model-obs] / obs])',
         'name': 'EnsoSstSkew',
         'units': '%'}},
       'SeasonalPrLatRmse': {'diagnostic': {'ERA-Interim': {'name': 'ERA-Interim',
          'nyears': 40,
          'time_period': ['1979-1-16 12:0:0.0', '2019-3-16 12:0:0.0']},
         'FIO-ESM_r1i1p1': {'keyerror': None,
          'name': 'FIO-ESM_r1i1p1',
          'nyears': 156,
          'time_period': ['1850-1-16 12:0:0.0', '2005-12-16 12:0:0.0']},
         'GPCPv2.3': {'name': 'GPCPv2.3',
          'nyears': 41,
          'time_period': ['1979-1-1 0:0:0.0', '2019-7-1 0:0:0.0']},
         'method': 'Meridional root mean square error of nino3_LatExt climatological pr STD, time series are linearly detrended, observations and model regridded to generic_1x1deg',
         'name': 'pr meridional seasonality RMSE',
         'ref': 'Using CDAT regridding and rms (uncentered and biased) calculation',
         'time_frequency': 'monthly',
         'units': 'mm/day'},
        'metric': {'datasets': "FIO-ESM_r1i1p1; ERA-Interim's pr & GPCPv2.3's precip; 's ",
         'method': 'The metric is the statistical value between the model and the observations',
         'name': 'SeasonalPrLatRmse',
         'units': 'mm/day'}},
       'SeasonalPrLonRmse': {'diagnostic': {'ERA-Interim': {'name': 'ERA-Interim',
          'nyears': 40,
          'time_period': ['1979-1-16 12:0:0.0', '2019-3-16 12:0:0.0']},
         'FIO-ESM_r1i1p1': {'keyerror': None,
          'name': 'FIO-ESM_r1i1p1',
          'nyears': 156,
          'time_period': ['1850-1-16 12:0:0.0', '2005-12-16 12:0:0.0']},
         'GPCPv2.3': {'name': 'GPCPv2.3',
          'nyears': 41,
          'time_period': ['1979-1-1 0:0:0.0', '2019-7-1 0:0:0.0']},
         'method': 'Zonal root mean square error of equatorial_pacific climatological pr STD, time series are linearly detrended, observations and model regridded to generic_1x1deg',
         'name': 'pr zonal seasonality RMSE',
         'ref': 'Using CDAT regridding and rms (uncentered and biased) calculation',
         'time_frequency': 'monthly',
         'units': 'mm/day'},
        'metric': {'datasets': "FIO-ESM_r1i1p1; ERA-Interim's pr & GPCPv2.3's precip; 's ",
         'method': 'The metric is the statistical value between the model and the observations',
         'name': 'SeasonalPrLonRmse',
         'units': 'mm/day'}},
       'SeasonalSstLonRmse': {'diagnostic': {'ERA-Interim': {'name': 'ERA-Interim',
          'nyears': 40,
          'time_period': ['1979-1-16 12:0:0.0', '2019-3-16 12:0:0.0']},
         'FIO-ESM_r1i1p1': {'keyerror': None,
          'name': 'FIO-ESM_r1i1p1',
          'nyears': 156,
          'time_period': ['1850-1-16 12:0:0.0', '2005-12-16 12:0:0.0']},
         'HadISST': {'name': 'HadISST',
          'nyears': 151,
          'time_period': ['1870-1-16 11:59:59.5', '2020-10-16 12:0:0.0']},
         'Tropflux': {'name': 'Tropflux',
          'nyears': 40,
          'time_period': ['1979-1-15 0:0:0.0', '2018-12-15 12:0:0.0']},
         'method': 'Zonal root mean square error of equatorial_pacific climatological sst STD, time series are linearly detrended, observations and model regridded to generic_1x1deg',
         'name': 'sst zonal seasonality RMSE',
         'ref': 'Using CDAT regridding and rms (uncentered and biased) calculation',
         'time_frequency': 'monthly',
         'units': 'C'},
        'metric': {'datasets': "FIO-ESM_r1i1p1; ERA-Interim's ts & HadISST's sst & Tropflux's sst; 's ",
         'method': 'The metric is the statistical value between the model and the observations',
         'name': 'SeasonalSstLonRmse',
         'units': 'C'}},
       'SeasonalTauxLonRmse': {'diagnostic': {'ERA-Interim': {'name': 'ERA-Interim',
          'nyears': 40,
          'time_period': ['1979-1-16 12:0:0.0', '2019-3-16 12:0:0.0']},
         'FIO-ESM_r1i1p1': {'keyerror': None,
          'name': 'FIO-ESM_r1i1p1',
          'nyears': 156,
          'time_period': ['1850-1-16 12:0:0.0', '2005-12-16 12:0:0.0']},
         'Tropflux': {'name': 'Tropflux',
          'nyears': 40,
          'time_period': ['1979-1-15 0:0:0.0', '2018-12-15 12:0:0.0']},
         'method': 'Zonal root mean square error of equatorial_pacific climatological taux STD, time series are linearly detrended, observations and model regridded to generic_1x1deg',
         'name': 'taux zonal seasonality RMSE',
         'ref': 'Using CDAT regridding and rms (uncentered and biased) calculation',
         'time_frequency': 'monthly',
         'units': '1e-3 N/m2'},
        'metric': {'datasets': "FIO-ESM_r1i1p1; ERA-Interim's tauu & Tropflux's taux; 's ",
         'method': 'The metric is the statistical value between the model and the observations',
         'name': 'SeasonalTauxLonRmse',
         'units': '1e-3 N/m2'}}},
      'name': 'Metrics Collection for ENSO performance'},
     'value': {'BiasPrLatRmse': {'diagnostic': {'ERA-Interim': {'value': None,
         'value_error': None},
        'FIO-ESM_r1i1p1': {'value': None, 'value_error': None},
        'GPCPv2.3': {'value': None, 'value_error': None}},
       'metric': {'ERA-Interim': {'value': nan, 'value_error': None},
        'GPCPv2.3': {'value': nan, 'value_error': None}}},
      'BiasPrLonRmse': {'diagnostic': {'ERA-Interim': {'value': None,
         'value_error': None},
        'FIO-ESM_r1i1p1': {'value': None, 'value_error': None},
        'GPCPv2.3': {'value': None, 'value_error': None}},
       'metric': {'ERA-Interim': {'value': nan, 'value_error': None},
        'GPCPv2.3': {'value': nan, 'value_error': None}}},
      'BiasSstLonRmse': {'diagnostic': {'ERA-Interim': {'value': None,
         'value_error': None},
        'FIO-ESM_r1i1p1': {'value': None, 'value_error': None},
        'HadISST': {'value': None, 'value_error': None},
        'Tropflux': {'value': None, 'value_error': None}},
       'metric': {'ERA-Interim': {'value': nan, 'value_error': None},
        'HadISST': {'value': nan, 'value_error': None},
        'Tropflux': {'value': nan, 'value_error': None}}},
      'BiasTauxLonRmse': {'diagnostic': {'ERA-Interim': {'value': None,
         'value_error': None},
        'FIO-ESM_r1i1p1': {'value': None, 'value_error': None},
        'Tropflux': {'value': None, 'value_error': None}},
       'metric': {'ERA-Interim': {'value': nan, 'value_error': None},
        'Tropflux': {'value': nan, 'value_error': None}}},
      'EnsoAmpl': {'diagnostic': {'ERA-Interim': {'value': 0.8989844997845644,
         'value_error': 0.14214193002531866},
        'FIO-ESM_r1i1p1': {'value': nan, 'value_error': nan},
        'HadISST': {'value': 0.7665787872085695,
         'value_error': 0.06238329697691264},
        'Tropflux': {'value': 0.9039789553693535,
         'value_error': 0.14293162279134272}},
       'metric': {'ERA-Interim': {'value': nan, 'value_error': nan},
        'HadISST': {'value': nan, 'value_error': nan},
        'Tropflux': {'value': nan, 'value_error': nan}}},
      'EnsoSeasonality': {'diagnostic': {'ERA-Interim': {'value': 2.0466846866656914,
         'value_error': 0.6513411033995022},
        'FIO-ESM_r1i1p1': {'value': nan, 'value_error': nan},
        'HadISST': {'value': 1.6639865947361325,
         'value_error': 0.2712772451657809},
        'Tropflux': {'value': 2.0532132553583624,
         'value_error': 0.6534187683977347}},
       'metric': {'ERA-Interim': {'value': nan, 'value_error': nan},
        'HadISST': {'value': nan, 'value_error': nan},
        'Tropflux': {'value': nan, 'value_error': nan}}},
      'EnsoSstSkew': {'diagnostic': {'ERA-Interim': {'value': 0.39098111106809963,
         'value_error': 0.061819541653923164},
        'FIO-ESM_r1i1p1': {'value': 0.0, 'value_error': 0.0},
        'HadISST': {'value': 0.38989908235027515,
         'value_error': 0.03172953733021198},
        'Tropflux': {'value': 0.39744741059612115,
         'value_error': 0.06284195338099416}},
       'metric': {'ERA-Interim': {'value': 100.0, 'value_error': 0.0},
        'HadISST': {'value': 100.0, 'value_error': 0.0},
        'Tropflux': {'value': 100.0, 'value_error': 0.0}}},
      'SeasonalPrLatRmse': {'diagnostic': {'ERA-Interim': {'value': None,
         'value_error': None},
        'FIO-ESM_r1i1p1': {'value': None, 'value_error': None},
        'GPCPv2.3': {'value': None, 'value_error': None}},
       'metric': {'ERA-Interim': {'value': nan, 'value_error': None},
        'GPCPv2.3': {'value': nan, 'value_error': None}}},
      'SeasonalPrLonRmse': {'diagnostic': {'ERA-Interim': {'value': None,
         'value_error': None},
        'FIO-ESM_r1i1p1': {'value': None, 'value_error': None},
        'GPCPv2.3': {'value': None, 'value_error': None}},
       'metric': {'ERA-Interim': {'value': nan, 'value_error': None},
        'GPCPv2.3': {'value': nan, 'value_error': None}}},
      'SeasonalSstLonRmse': {'diagnostic': {'ERA-Interim': {'value': None,
         'value_error': None},
        'FIO-ESM_r1i1p1': {'value': None, 'value_error': None},
        'HadISST': {'value': None, 'value_error': None},
        'Tropflux': {'value': None, 'value_error': None}},
       'metric': {'ERA-Interim': {'value': nan, 'value_error': None},
        'HadISST': {'value': nan, 'value_error': None},
        'Tropflux': {'value': nan, 'value_error': None}}},
      'SeasonalTauxLonRmse': {'diagnostic': {'ERA-Interim': {'value': None,
         'value_error': None},
        'FIO-ESM_r1i1p1': {'value': None, 'value_error': None},
        'Tropflux': {'value': None, 'value_error': None}},
       'metric': {'ERA-Interim': {'value': nan, 'value_error': None},
        'Tropflux': {'value': nan, 'value_error': None}}}}},
    'r2i1p1': {'metadata': {'description_of_the_collection': 'Describe which science question this collection is about',
      'metrics': {'BiasPrLatRmse': {'diagnostic': {'ERA-Interim': {'name': 'ERA-Interim',
          'nyears': 40,
          'time_period': ['1979-1-16 12:0:0.0', '2019-3-16 12:0:0.0']},
         'FIO-ESM_r2i1p1': {'keyerror': None,
          'name': 'FIO-ESM_r2i1p1',
          'nyears': 156,
          'time_period': ['1850-1-16 12:0:0.0', '2005-12-16 12:0:0.0']},
         'GPCPv2.3': {'name': 'GPCPv2.3',
          'nyears': 41,
          'time_period': ['1979-1-1 0:0:0.0', '2019-7-1 0:0:0.0']},
         'method': 'Meridional root mean square error of nino3_LatExt pr, time series are linearly detrended, observations and model regridded to generic_1x1deg',
         'name': 'pr Meridional RMSE',
         'ref': 'Using CDAT regridding and rms (uncentered and biased) calculation',
         'time_frequency': 'monthly',
         'units': 'mm/day'},
        'metric': {'datasets': "FIO-ESM_r2i1p1; ERA-Interim's pr & GPCPv2.3's precip; 's ",
         'method': 'The metric is the statistical value between the model and the observations',
         'name': 'BiasPrLatRmse',
         'units': 'mm/day'}},
       'BiasPrLonRmse': {'diagnostic': {'ERA-Interim': {'name': 'ERA-Interim',
          'nyears': 40,
          'time_period': ['1979-1-16 12:0:0.0', '2019-3-16 12:0:0.0']},
         'FIO-ESM_r2i1p1': {'keyerror': None,
          'name': 'FIO-ESM_r2i1p1',
          'nyears': 156,
          'time_period': ['1850-1-16 12:0:0.0', '2005-12-16 12:0:0.0']},
         'GPCPv2.3': {'name': 'GPCPv2.3',
          'nyears': 41,
          'time_period': ['1979-1-1 0:0:0.0', '2019-7-1 0:0:0.0']},
         'method': 'Zonal root mean square error of equatorial_pacific pr, time series are linearly detrended, observations and model regridded to generic_1x1deg',
         'name': 'pr Zonal RMSE',
         'ref': 'Using CDAT regridding and rms (uncentered and biased) calculation',
         'time_frequency': 'monthly',
         'units': 'mm/day'},
        'metric': {'datasets': "FIO-ESM_r2i1p1; ERA-Interim's pr & GPCPv2.3's precip; 's ",
         'method': 'The metric is the statistical value between the model and the observations',
         'name': 'BiasPrLonRmse',
         'units': 'mm/day'}},
       'BiasSstLonRmse': {'diagnostic': {'ERA-Interim': {'name': 'ERA-Interim',
          'nyears': 40,
          'time_period': ['1979-1-16 12:0:0.0', '2019-3-16 12:0:0.0']},
         'FIO-ESM_r2i1p1': {'keyerror': None,
          'name': 'FIO-ESM_r2i1p1',
          'nyears': 156,
          'time_period': ['1850-1-16 12:0:0.0', '2005-12-16 12:0:0.0']},
         'HadISST': {'name': 'HadISST',
          'nyears': 151,
          'time_period': ['1870-1-16 11:59:59.5', '2020-10-16 12:0:0.0']},
         'Tropflux': {'name': 'Tropflux',
          'nyears': 40,
          'time_period': ['1979-1-15 0:0:0.0', '2018-12-15 12:0:0.0']},
         'method': 'Zonal root mean square error of equatorial_pacific sst, time series are linearly detrended, observations and model regridded to generic_1x1deg',
         'name': 'sst Zonal RMSE',
         'ref': 'Using CDAT regridding and rms (uncentered and biased) calculation',
         'time_frequency': 'monthly',
         'units': 'C'},
        'metric': {'datasets': "FIO-ESM_r2i1p1; ERA-Interim's ts & HadISST's sst & Tropflux's sst; 's ",
         'method': 'The metric is the statistical value between the model and the observations',
         'name': 'BiasSstLonRmse',
         'units': 'C'}},
       'BiasTauxLonRmse': {'diagnostic': {'ERA-Interim': {'name': 'ERA-Interim',
          'nyears': 40,
          'time_period': ['1979-1-16 12:0:0.0', '2019-3-16 12:0:0.0']},
         'FIO-ESM_r2i1p1': {'keyerror': None,
          'name': 'FIO-ESM_r2i1p1',
          'nyears': 156,
          'time_period': ['1850-1-16 12:0:0.0', '2005-12-16 12:0:0.0']},
         'Tropflux': {'name': 'Tropflux',
          'nyears': 40,
          'time_period': ['1979-1-15 0:0:0.0', '2018-12-15 12:0:0.0']},
         'method': 'Zonal root mean square error of equatorial_pacific taux, time series are linearly detrended, observations and model regridded to generic_1x1deg',
         'name': 'taux Zonal RMSE',
         'ref': 'Using CDAT regridding and rms (uncentered and biased) calculation',
         'time_frequency': 'monthly',
         'units': '1e-3 N/m2'},
        'metric': {'datasets': "FIO-ESM_r2i1p1; ERA-Interim's tauu & Tropflux's taux; 's ",
         'method': 'The metric is the statistical value between the model and the observations',
         'name': 'BiasTauxLonRmse',
         'units': '1e-3 N/m2'}},
       'EnsoAmpl': {'diagnostic': {'ERA-Interim': {'keyerror': None,
          'name': 'ERA-Interim',
          'nyears': 40,
          'time_period': ['1979-1-16 12:0:0.0', '2019-3-16 12:0:0.0']},
         'FIO-ESM_r2i1p1': {'keyerror': None,
          'name': 'FIO-ESM_r2i1p1',
          'nyears': 156,
          'time_period': ['1850-1-16 12:0:0.0', '2005-12-16 12:0:0.0']},
         'HadISST': {'keyerror': None,
          'name': 'HadISST',
          'nyears': 151,
          'time_period': ['1870-1-16 11:59:59.5', '2020-10-16 12:0:0.0']},
         'Tropflux': {'keyerror': None,
          'name': 'Tropflux',
          'nyears': 40,
          'time_period': ['1979-1-15 0:0:0.0', '2018-12-15 12:0:0.0']},
         'method': 'Standard deviation of nino3.4 sstA, time series are linearly detrended',
         'name': 'ENSO amplitude',
         'ref': 'Using CDAT regression calculation',
         'time_frequency': 'monthly',
         'units': 'C'},
        'metric': {'datasets': "FIO-ESM_r2i1p1; ERA-Interim's ts & HadISST's sst & Tropflux's sst; 's ",
         'method': 'The metric is the absolute value of the relative difference between model and observations values (M = 100 * abs[[model-obs] / obs])',
         'name': 'EnsoAmpl',
         'units': '%'}},
       'EnsoSeasonality': {'diagnostic': {'ERA-Interim': {'keyerror': None,
          'name': 'ERA-Interim',
          'nyears': 40,
          'time_period': ['1979-1-16 12:0:0.0', '2019-3-16 12:0:0.0']},
         'FIO-ESM_r2i1p1': {'keyerror': None,
          'name': 'FIO-ESM_r2i1p1',
          'nyears': 156,
          'time_period': ['1850-1-16 12:0:0.0', '2005-12-16 12:0:0.0']},
         'HadISST': {'keyerror': None,
          'name': 'HadISST',
          'nyears': 151,
          'time_period': ['1870-1-16 11:59:59.5', '2020-10-16 12:0:0.0']},
         'Tropflux': {'keyerror': None,
          'name': 'Tropflux',
          'nyears': 40,
          'time_period': ['1979-1-15 0:0:0.0', '2018-12-15 12:0:0.0']},
         'method': 'Ratio between NDJ and MAM standard deviation nino3.4 sstA, time series are linearly detrended',
         'name': 'ENSO seasonality',
         'ref': 'Using CDAT std dev calculation',
         'time_frequency': 'monthly',
         'units': 'C/C'},
        'metric': {'datasets': "FIO-ESM_r2i1p1; ERA-Interim's ts & HadISST's sst & Tropflux's sst; 's ",
         'method': 'The metric is the absolute value of the relative difference between model and observations values (M = 100 * abs[[model-obs] / obs])',
         'name': 'EnsoSeasonality',
         'units': '%'}},
       'EnsoSstSkew': {'diagnostic': {'ERA-Interim': {'keyerror': None,
          'name': 'ERA-Interim',
          'nyears': 40,
          'time_period': ['1979-1-16 12:0:0.0', '2019-3-16 12:0:0.0']},
         'FIO-ESM_r2i1p1': {'keyerror': None,
          'name': 'FIO-ESM_r2i1p1',
          'nyears': 156,
          'time_period': ['1850-1-16 12:0:0.0', '2005-12-16 12:0:0.0']},
         'HadISST': {'keyerror': None,
          'name': 'HadISST',
          'nyears': 151,
          'time_period': ['1870-1-16 11:59:59.5', '2020-10-16 12:0:0.0']},
         'Tropflux': {'keyerror': None,
          'name': 'Tropflux',
          'nyears': 40,
          'time_period': ['1979-1-15 0:0:0.0', '2018-12-15 12:0:0.0']},
         'method': 'Standard deviation of nino3.4 sstA, time series are linearly detrended',
         'name': 'ENSO skewness',
         'ref': 'Using CDAT regression calculation',
         'time_frequency': 'monthly',
         'units': 'C'},
        'metric': {'datasets': "FIO-ESM_r2i1p1; ERA-Interim's ts & HadISST's sst & Tropflux's sst; 's ",
         'method': 'The metric is the absolute value of the relative difference between model and observations values (M = 100 * abs[[model-obs] / obs])',
         'name': 'EnsoSstSkew',
         'units': '%'}},
       'SeasonalPrLatRmse': {'diagnostic': {'ERA-Interim': {'name': 'ERA-Interim',
          'nyears': 40,
          'time_period': ['1979-1-16 12:0:0.0', '2019-3-16 12:0:0.0']},
         'FIO-ESM_r2i1p1': {'keyerror': None,
          'name': 'FIO-ESM_r2i1p1',
          'nyears': 156,
          'time_period': ['1850-1-16 12:0:0.0', '2005-12-16 12:0:0.0']},
         'GPCPv2.3': {'name': 'GPCPv2.3',
          'nyears': 41,
          'time_period': ['1979-1-1 0:0:0.0', '2019-7-1 0:0:0.0']},
         'method': 'Meridional root mean square error of nino3_LatExt climatological pr STD, time series are linearly detrended, observations and model regridded to generic_1x1deg',
         'name': 'pr meridional seasonality RMSE',
         'ref': 'Using CDAT regridding and rms (uncentered and biased) calculation',
         'time_frequency': 'monthly',
         'units': 'mm/day'},
        'metric': {'datasets': "FIO-ESM_r2i1p1; ERA-Interim's pr & GPCPv2.3's precip; 's ",
         'method': 'The metric is the statistical value between the model and the observations',
         'name': 'SeasonalPrLatRmse',
         'units': 'mm/day'}},
       'SeasonalPrLonRmse': {'diagnostic': {'ERA-Interim': {'name': 'ERA-Interim',
          'nyears': 40,
          'time_period': ['1979-1-16 12:0:0.0', '2019-3-16 12:0:0.0']},
         'FIO-ESM_r2i1p1': {'keyerror': None,
          'name': 'FIO-ESM_r2i1p1',
          'nyears': 156,
          'time_period': ['1850-1-16 12:0:0.0', '2005-12-16 12:0:0.0']},
         'GPCPv2.3': {'name': 'GPCPv2.3',
          'nyears': 41,
          'time_period': ['1979-1-1 0:0:0.0', '2019-7-1 0:0:0.0']},
         'method': 'Zonal root mean square error of equatorial_pacific climatological pr STD, time series are linearly detrended, observations and model regridded to generic_1x1deg',
         'name': 'pr zonal seasonality RMSE',
         'ref': 'Using CDAT regridding and rms (uncentered and biased) calculation',
         'time_frequency': 'monthly',
         'units': 'mm/day'},
        'metric': {'datasets': "FIO-ESM_r2i1p1; ERA-Interim's pr & GPCPv2.3's precip; 's ",
         'method': 'The metric is the statistical value between the model and the observations',
         'name': 'SeasonalPrLonRmse',
         'units': 'mm/day'}},
       'SeasonalSstLonRmse': {'diagnostic': {'ERA-Interim': {'name': 'ERA-Interim',
          'nyears': 40,
          'time_period': ['1979-1-16 12:0:0.0', '2019-3-16 12:0:0.0']},
         'FIO-ESM_r2i1p1': {'keyerror': None,
          'name': 'FIO-ESM_r2i1p1',
          'nyears': 156,
          'time_period': ['1850-1-16 12:0:0.0', '2005-12-16 12:0:0.0']},
         'HadISST': {'name': 'HadISST',
          'nyears': 151,
          'time_period': ['1870-1-16 11:59:59.5', '2020-10-16 12:0:0.0']},
         'Tropflux': {'name': 'Tropflux',
          'nyears': 40,
          'time_period': ['1979-1-15 0:0:0.0', '2018-12-15 12:0:0.0']},
         'method': 'Zonal root mean square error of equatorial_pacific climatological sst STD, time series are linearly detrended, observations and model regridded to generic_1x1deg',
         'name': 'sst zonal seasonality RMSE',
         'ref': 'Using CDAT regridding and rms (uncentered and biased) calculation',
         'time_frequency': 'monthly',
         'units': 'C'},
        'metric': {'datasets': "FIO-ESM_r2i1p1; ERA-Interim's ts & HadISST's sst & Tropflux's sst; 's ",
         'method': 'The metric is the statistical value between the model and the observations',
         'name': 'SeasonalSstLonRmse',
         'units': 'C'}},
       'SeasonalTauxLonRmse': {'diagnostic': {'ERA-Interim': {'name': 'ERA-Interim',
          'nyears': 40,
          'time_period': ['1979-1-16 12:0:0.0', '2019-3-16 12:0:0.0']},
         'FIO-ESM_r2i1p1': {'keyerror': None,
          'name': 'FIO-ESM_r2i1p1',
          'nyears': 156,
          'time_period': ['1850-1-16 12:0:0.0', '2005-12-16 12:0:0.0']},
         'Tropflux': {'name': 'Tropflux',
          'nyears': 40,
          'time_period': ['1979-1-15 0:0:0.0', '2018-12-15 12:0:0.0']},
         'method': 'Zonal root mean square error of equatorial_pacific climatological taux STD, time series are linearly detrended, observations and model regridded to generic_1x1deg',
         'name': 'taux zonal seasonality RMSE',
         'ref': 'Using CDAT regridding and rms (uncentered and biased) calculation',
         'time_frequency': 'monthly',
         'units': '1e-3 N/m2'},
        'metric': {'datasets': "FIO-ESM_r2i1p1; ERA-Interim's tauu & Tropflux's taux; 's ",
         'method': 'The metric is the statistical value between the model and the observations',
         'name': 'SeasonalTauxLonRmse',
         'units': '1e-3 N/m2'}}},
      'name': 'Metrics Collection for ENSO performance'},
     'value': {'BiasPrLatRmse': {'diagnostic': {'ERA-Interim': {'value': None,
         'value_error': None},
        'FIO-ESM_r2i1p1': {'value': None, 'value_error': None},
        'GPCPv2.3': {'value': None, 'value_error': None}},
       'metric': {'ERA-Interim': {'value': nan, 'value_error': None},
        'GPCPv2.3': {'value': nan, 'value_error': None}}},
      'BiasPrLonRmse': {'diagnostic': {'ERA-Interim': {'value': None,
         'value_error': None},
        'FIO-ESM_r2i1p1': {'value': None, 'value_error': None},
        'GPCPv2.3': {'value': None, 'value_error': None}},
       'metric': {'ERA-Interim': {'value': nan, 'value_error': None},
        'GPCPv2.3': {'value': nan, 'value_error': None}}},
      'BiasSstLonRmse': {'diagnostic': {'ERA-Interim': {'value': None,
         'value_error': None},
        'FIO-ESM_r2i1p1': {'value': None, 'value_error': None},
        'HadISST': {'value': None, 'value_error': None},
        'Tropflux': {'value': None, 'value_error': None}},
       'metric': {'ERA-Interim': {'value': nan, 'value_error': None},
        'HadISST': {'value': nan, 'value_error': None},
        'Tropflux': {'value': nan, 'value_error': None}}},
      'BiasTauxLonRmse': {'diagnostic': {'ERA-Interim': {'value': None,
         'value_error': None},
        'FIO-ESM_r2i1p1': {'value': None, 'value_error': None},
        'Tropflux': {'value': None, 'value_error': None}},
       'metric': {'ERA-Interim': {'value': nan, 'value_error': None},
        'Tropflux': {'value': nan, 'value_error': None}}},
      'EnsoAmpl': {'diagnostic': {'ERA-Interim': {'value': 0.8989844997845644,
         'value_error': 0.14214193002531866},
        'FIO-ESM_r2i1p1': {'value': nan, 'value_error': nan},
        'HadISST': {'value': 0.7665787872085695,
         'value_error': 0.06238329697691264},
        'Tropflux': {'value': 0.9039789553693535,
         'value_error': 0.14293162279134272}},
       'metric': {'ERA-Interim': {'value': nan, 'value_error': nan},
        'HadISST': {'value': nan, 'value_error': nan},
        'Tropflux': {'value': nan, 'value_error': nan}}},
      'EnsoSeasonality': {'diagnostic': {'ERA-Interim': {'value': 2.0466846866656914,
         'value_error': 0.6513411033995022},
        'FIO-ESM_r2i1p1': {'value': nan, 'value_error': nan},
        'HadISST': {'value': 1.6639865947361325,
         'value_error': 0.2712772451657809},
        'Tropflux': {'value': 2.0532132553583624,
         'value_error': 0.6534187683977347}},
       'metric': {'ERA-Interim': {'value': nan, 'value_error': nan},
        'HadISST': {'value': nan, 'value_error': nan},
        'Tropflux': {'value': nan, 'value_error': nan}}},
      'EnsoSstSkew': {'diagnostic': {'ERA-Interim': {'value': 0.39098111106809963,
         'value_error': 0.061819541653923164},
        'FIO-ESM_r2i1p1': {'value': 0.0, 'value_error': 0.0},
        'HadISST': {'value': 0.38989908235027515,
         'value_error': 0.03172953733021198},
        'Tropflux': {'value': 0.39744741059612115,
         'value_error': 0.06284195338099416}},
       'metric': {'ERA-Interim': {'value': 100.0, 'value_error': 0.0},
        'HadISST': {'value': 100.0, 'value_error': 0.0},
        'Tropflux': {'value': 100.0, 'value_error': 0.0}}},
      'SeasonalPrLatRmse': {'diagnostic': {'ERA-Interim': {'value': None,
         'value_error': None},
        'FIO-ESM_r2i1p1': {'value': None, 'value_error': None},
        'GPCPv2.3': {'value': None, 'value_error': None}},
       'metric': {'ERA-Interim': {'value': nan, 'value_error': None},
        'GPCPv2.3': {'value': nan, 'value_error': None}}},
      'SeasonalPrLonRmse': {'diagnostic': {'ERA-Interim': {'value': None,
         'value_error': None},
        'FIO-ESM_r2i1p1': {'value': None, 'value_error': None},
        'GPCPv2.3': {'value': None, 'value_error': None}},
       'metric': {'ERA-Interim': {'value': nan, 'value_error': None},
        'GPCPv2.3': {'value': nan, 'value_error': None}}},
      'SeasonalSstLonRmse': {'diagnostic': {'ERA-Interim': {'value': None,
         'value_error': None},
        'FIO-ESM_r2i1p1': {'value': None, 'value_error': None},
        'HadISST': {'value': None, 'value_error': None},
        'Tropflux': {'value': None, 'value_error': None}},
       'metric': {'ERA-Interim': {'value': nan, 'value_error': None},
        'HadISST': {'value': nan, 'value_error': None},
        'Tropflux': {'value': nan, 'value_error': None}}},
      'SeasonalTauxLonRmse': {'diagnostic': {'ERA-Interim': {'value': None,
         'value_error': None},
        'FIO-ESM_r2i1p1': {'value': None, 'value_error': None},
        'Tropflux': {'value': None, 'value_error': None}},
       'metric': {'ERA-Interim': {'value': nan, 'value_error': None},
        'Tropflux': {'value': nan, 'value_error': None}}}}},
    'r3i1p1': {'metadata': {'description_of_the_collection': 'Describe which science question this collection is about',
      'metrics': {'BiasPrLatRmse': {'diagnostic': {'ERA-Interim': {'name': 'ERA-Interim',
          'nyears': 40,
          'time_period': ['1979-1-16 12:0:0.0', '2019-3-16 12:0:0.0']},
         'FIO-ESM_r3i1p1': {'keyerror': None,
          'name': 'FIO-ESM_r3i1p1',
          'nyears': 156,
          'time_period': ['1850-1-16 12:0:0.0', '2005-12-16 12:0:0.0']},
         'GPCPv2.3': {'name': 'GPCPv2.3',
          'nyears': 41,
          'time_period': ['1979-1-1 0:0:0.0', '2019-7-1 0:0:0.0']},
         'method': 'Meridional root mean square error of nino3_LatExt pr, time series are linearly detrended, observations and model regridded to generic_1x1deg',
         'name': 'pr Meridional RMSE',
         'ref': 'Using CDAT regridding and rms (uncentered and biased) calculation',
         'time_frequency': 'monthly',
         'units': 'mm/day'},
        'metric': {'datasets': "FIO-ESM_r3i1p1; ERA-Interim's pr & GPCPv2.3's precip; 's ",
         'method': 'The metric is the statistical value between the model and the observations',
         'name': 'BiasPrLatRmse',
         'units': 'mm/day'}},
       'BiasPrLonRmse': {'diagnostic': {'ERA-Interim': {'name': 'ERA-Interim',
          'nyears': 40,
          'time_period': ['1979-1-16 12:0:0.0', '2019-3-16 12:0:0.0']},
         'FIO-ESM_r3i1p1': {'keyerror': None,
          'name': 'FIO-ESM_r3i1p1',
          'nyears': 156,
          'time_period': ['1850-1-16 12:0:0.0', '2005-12-16 12:0:0.0']},
         'GPCPv2.3': {'name': 'GPCPv2.3',
          'nyears': 41,
          'time_period': ['1979-1-1 0:0:0.0', '2019-7-1 0:0:0.0']},
         'method': 'Zonal root mean square error of equatorial_pacific pr, time series are linearly detrended, observations and model regridded to generic_1x1deg',
         'name': 'pr Zonal RMSE',
         'ref': 'Using CDAT regridding and rms (uncentered and biased) calculation',
         'time_frequency': 'monthly',
         'units': 'mm/day'},
        'metric': {'datasets': "FIO-ESM_r3i1p1; ERA-Interim's pr & GPCPv2.3's precip; 's ",
         'method': 'The metric is the statistical value between the model and the observations',
         'name': 'BiasPrLonRmse',
         'units': 'mm/day'}},
       'BiasSstLonRmse': {'diagnostic': {'ERA-Interim': {'name': 'ERA-Interim',
          'nyears': 40,
          'time_period': ['1979-1-16 12:0:0.0', '2019-3-16 12:0:0.0']},
         'FIO-ESM_r3i1p1': {'keyerror': None,
          'name': 'FIO-ESM_r3i1p1',
          'nyears': 156,
          'time_period': ['1850-1-16 12:0:0.0', '2005-12-16 12:0:0.0']},
         'HadISST': {'name': 'HadISST',
          'nyears': 151,
          'time_period': ['1870-1-16 11:59:59.5', '2020-10-16 12:0:0.0']},
         'Tropflux': {'name': 'Tropflux',
          'nyears': 40,
          'time_period': ['1979-1-15 0:0:0.0', '2018-12-15 12:0:0.0']},
         'method': 'Zonal root mean square error of equatorial_pacific sst, time series are linearly detrended, observations and model regridded to generic_1x1deg',
         'name': 'sst Zonal RMSE',
         'ref': 'Using CDAT regridding and rms (uncentered and biased) calculation',
         'time_frequency': 'monthly',
         'units': 'C'},
        'metric': {'datasets': "FIO-ESM_r3i1p1; ERA-Interim's ts & HadISST's sst & Tropflux's sst; 's ",
         'method': 'The metric is the statistical value between the model and the observations',
         'name': 'BiasSstLonRmse',
         'units': 'C'}},
       'BiasTauxLonRmse': {'diagnostic': {'ERA-Interim': {'name': 'ERA-Interim',
          'nyears': 40,
          'time_period': ['1979-1-16 12:0:0.0', '2019-3-16 12:0:0.0']},
         'FIO-ESM_r3i1p1': {'keyerror': None,
          'name': 'FIO-ESM_r3i1p1',
          'nyears': 156,
          'time_period': ['1850-1-16 12:0:0.0', '2005-12-16 12:0:0.0']},
         'Tropflux': {'name': 'Tropflux',
          'nyears': 40,
          'time_period': ['1979-1-15 0:0:0.0', '2018-12-15 12:0:0.0']},
         'method': 'Zonal root mean square error of equatorial_pacific taux, time series are linearly detrended, observations and model regridded to generic_1x1deg',
         'name': 'taux Zonal RMSE',
         'ref': 'Using CDAT regridding and rms (uncentered and biased) calculation',
         'time_frequency': 'monthly',
         'units': '1e-3 N/m2'},
        'metric': {'datasets': "FIO-ESM_r3i1p1; ERA-Interim's tauu & Tropflux's taux; 's ",
         'method': 'The metric is the statistical value between the model and the observations',
         'name': 'BiasTauxLonRmse',
         'units': '1e-3 N/m2'}},
       'EnsoAmpl': {'diagnostic': {'ERA-Interim': {'keyerror': None,
          'name': 'ERA-Interim',
          'nyears': 40,
          'time_period': ['1979-1-16 12:0:0.0', '2019-3-16 12:0:0.0']},
         'FIO-ESM_r3i1p1': {'keyerror': None,
          'name': 'FIO-ESM_r3i1p1',
          'nyears': 156,
          'time_period': ['1850-1-16 12:0:0.0', '2005-12-16 12:0:0.0']},
         'HadISST': {'keyerror': None,
          'name': 'HadISST',
          'nyears': 151,
          'time_period': ['1870-1-16 11:59:59.5', '2020-10-16 12:0:0.0']},
         'Tropflux': {'keyerror': None,
          'name': 'Tropflux',
          'nyears': 40,
          'time_period': ['1979-1-15 0:0:0.0', '2018-12-15 12:0:0.0']},
         'method': 'Standard deviation of nino3.4 sstA, time series are linearly detrended',
         'name': 'ENSO amplitude',
         'ref': 'Using CDAT regression calculation',
         'time_frequency': 'monthly',
         'units': 'C'},
        'metric': {'datasets': "FIO-ESM_r3i1p1; ERA-Interim's ts & HadISST's sst & Tropflux's sst; 's ",
         'method': 'The metric is the absolute value of the relative difference between model and observations values (M = 100 * abs[[model-obs] / obs])',
         'name': 'EnsoAmpl',
         'units': '%'}},
       'EnsoSeasonality': {'diagnostic': {'ERA-Interim': {'keyerror': None,
          'name': 'ERA-Interim',
          'nyears': 40,
          'time_period': ['1979-1-16 12:0:0.0', '2019-3-16 12:0:0.0']},
         'FIO-ESM_r3i1p1': {'keyerror': None,
          'name': 'FIO-ESM_r3i1p1',
          'nyears': 156,
          'time_period': ['1850-1-16 12:0:0.0', '2005-12-16 12:0:0.0']},
         'HadISST': {'keyerror': None,
          'name': 'HadISST',
          'nyears': 151,
          'time_period': ['1870-1-16 11:59:59.5', '2020-10-16 12:0:0.0']},
         'Tropflux': {'keyerror': None,
          'name': 'Tropflux',
          'nyears': 40,
          'time_period': ['1979-1-15 0:0:0.0', '2018-12-15 12:0:0.0']},
         'method': 'Ratio between NDJ and MAM standard deviation nino3.4 sstA, time series are linearly detrended',
         'name': 'ENSO seasonality',
         'ref': 'Using CDAT std dev calculation',
         'time_frequency': 'monthly',
         'units': 'C/C'},
        'metric': {'datasets': "FIO-ESM_r3i1p1; ERA-Interim's ts & HadISST's sst & Tropflux's sst; 's ",
         'method': 'The metric is the absolute value of the relative difference between model and observations values (M = 100 * abs[[model-obs] / obs])',
         'name': 'EnsoSeasonality',
         'units': '%'}},
       'EnsoSstSkew': {'diagnostic': {'ERA-Interim': {'keyerror': None,
          'name': 'ERA-Interim',
          'nyears': 40,
          'time_period': ['1979-1-16 12:0:0.0', '2019-3-16 12:0:0.0']},
         'FIO-ESM_r3i1p1': {'keyerror': None,
          'name': 'FIO-ESM_r3i1p1',
          'nyears': 156,
          'time_period': ['1850-1-16 12:0:0.0', '2005-12-16 12:0:0.0']},
         'HadISST': {'keyerror': None,
          'name': 'HadISST',
          'nyears': 151,
          'time_period': ['1870-1-16 11:59:59.5', '2020-10-16 12:0:0.0']},
         'Tropflux': {'keyerror': None,
          'name': 'Tropflux',
          'nyears': 40,
          'time_period': ['1979-1-15 0:0:0.0', '2018-12-15 12:0:0.0']},
         'method': 'Standard deviation of nino3.4 sstA, time series are linearly detrended',
         'name': 'ENSO skewness',
         'ref': 'Using CDAT regression calculation',
         'time_frequency': 'monthly',
         'units': 'C'},
        'metric': {'datasets': "FIO-ESM_r3i1p1; ERA-Interim's ts & HadISST's sst & Tropflux's sst; 's ",
         'method': 'The metric is the absolute value of the relative difference between model and observations values (M = 100 * abs[[model-obs] / obs])',
         'name': 'EnsoSstSkew',
         'units': '%'}},
       'SeasonalPrLatRmse': {'diagnostic': {'ERA-Interim': {'name': 'ERA-Interim',
          'nyears': 40,
          'time_period': ['1979-1-16 12:0:0.0', '2019-3-16 12:0:0.0']},
         'FIO-ESM_r3i1p1': {'keyerror': None,
          'name': 'FIO-ESM_r3i1p1',
          'nyears': 156,
          'time_period': ['1850-1-16 12:0:0.0', '2005-12-16 12:0:0.0']},
         'GPCPv2.3': {'name': 'GPCPv2.3',
          'nyears': 41,
          'time_period': ['1979-1-1 0:0:0.0', '2019-7-1 0:0:0.0']},
         'method': 'Meridional root mean square error of nino3_LatExt climatological pr STD, time series are linearly detrended, observations and model regridded to generic_1x1deg',
         'name': 'pr meridional seasonality RMSE',
         'ref': 'Using CDAT regridding and rms (uncentered and biased) calculation',
         'time_frequency': 'monthly',
         'units': 'mm/day'},
        'metric': {'datasets': "FIO-ESM_r3i1p1; ERA-Interim's pr & GPCPv2.3's precip; 's ",
         'method': 'The metric is the statistical value between the model and the observations',
         'name': 'SeasonalPrLatRmse',
         'units': 'mm/day'}},
       'SeasonalPrLonRmse': {'diagnostic': {'ERA-Interim': {'name': 'ERA-Interim',
          'nyears': 40,
          'time_period': ['1979-1-16 12:0:0.0', '2019-3-16 12:0:0.0']},
         'FIO-ESM_r3i1p1': {'keyerror': None,
          'name': 'FIO-ESM_r3i1p1',
          'nyears': 156,
          'time_period': ['1850-1-16 12:0:0.0', '2005-12-16 12:0:0.0']},
         'GPCPv2.3': {'name': 'GPCPv2.3',
          'nyears': 41,
          'time_period': ['1979-1-1 0:0:0.0', '2019-7-1 0:0:0.0']},
         'method': 'Zonal root mean square error of equatorial_pacific climatological pr STD, time series are linearly detrended, observations and model regridded to generic_1x1deg',
         'name': 'pr zonal seasonality RMSE',
         'ref': 'Using CDAT regridding and rms (uncentered and biased) calculation',
         'time_frequency': 'monthly',
         'units': 'mm/day'},
        'metric': {'datasets': "FIO-ESM_r3i1p1; ERA-Interim's pr & GPCPv2.3's precip; 's ",
         'method': 'The metric is the statistical value between the model and the observations',
         'name': 'SeasonalPrLonRmse',
         'units': 'mm/day'}},
       'SeasonalSstLonRmse': {'diagnostic': {'ERA-Interim': {'name': 'ERA-Interim',
          'nyears': 40,
          'time_period': ['1979-1-16 12:0:0.0', '2019-3-16 12:0:0.0']},
         'FIO-ESM_r3i1p1': {'keyerror': None,
          'name': 'FIO-ESM_r3i1p1',
          'nyears': 156,
          'time_period': ['1850-1-16 12:0:0.0', '2005-12-16 12:0:0.0']},
         'HadISST': {'name': 'HadISST',
          'nyears': 151,
          'time_period': ['1870-1-16 11:59:59.5', '2020-10-16 12:0:0.0']},
         'Tropflux': {'name': 'Tropflux',
          'nyears': 40,
          'time_period': ['1979-1-15 0:0:0.0', '2018-12-15 12:0:0.0']},
         'method': 'Zonal root mean square error of equatorial_pacific climatological sst STD, time series are linearly detrended, observations and model regridded to generic_1x1deg',
         'name': 'sst zonal seasonality RMSE',
         'ref': 'Using CDAT regridding and rms (uncentered and biased) calculation',
         'time_frequency': 'monthly',
         'units': 'C'},
        'metric': {'datasets': "FIO-ESM_r3i1p1; ERA-Interim's ts & HadISST's sst & Tropflux's sst; 's ",
         'method': 'The metric is the statistical value between the model and the observations',
         'name': 'SeasonalSstLonRmse',
         'units': 'C'}},
       'SeasonalTauxLonRmse': {'diagnostic': {'ERA-Interim': {'name': 'ERA-Interim',
          'nyears': 40,
          'time_period': ['1979-1-16 12:0:0.0', '2019-3-16 12:0:0.0']},
         'FIO-ESM_r3i1p1': {'keyerror': None,
          'name': 'FIO-ESM_r3i1p1',
          'nyears': 156,
          'time_period': ['1850-1-16 12:0:0.0', '2005-12-16 12:0:0.0']},
         'Tropflux': {'name': 'Tropflux',
          'nyears': 40,
          'time_period': ['1979-1-15 0:0:0.0', '2018-12-15 12:0:0.0']},
         'method': 'Zonal root mean square error of equatorial_pacific climatological taux STD, time series are linearly detrended, observations and model regridded to generic_1x1deg',
         'name': 'taux zonal seasonality RMSE',
         'ref': 'Using CDAT regridding and rms (uncentered and biased) calculation',
         'time_frequency': 'monthly',
         'units': '1e-3 N/m2'},
        'metric': {'datasets': "FIO-ESM_r3i1p1; ERA-Interim's tauu & Tropflux's taux; 's ",
         'method': 'The metric is the statistical value between the model and the observations',
         'name': 'SeasonalTauxLonRmse',
         'units': '1e-3 N/m2'}}},
      'name': 'Metrics Collection for ENSO performance'},
     'value': {'BiasPrLatRmse': {'diagnostic': {'ERA-Interim': {'value': None,
         'value_error': None},
        'FIO-ESM_r3i1p1': {'value': None, 'value_error': None},
        'GPCPv2.3': {'value': None, 'value_error': None}},
       'metric': {'ERA-Interim': {'value': nan, 'value_error': None},
        'GPCPv2.3': {'value': nan, 'value_error': None}}},
      'BiasPrLonRmse': {'diagnostic': {'ERA-Interim': {'value': None,
         'value_error': None},
        'FIO-ESM_r3i1p1': {'value': None, 'value_error': None},
        'GPCPv2.3': {'value': None, 'value_error': None}},
       'metric': {'ERA-Interim': {'value': nan, 'value_error': None},
        'GPCPv2.3': {'value': nan, 'value_error': None}}},
      'BiasSstLonRmse': {'diagnostic': {'ERA-Interim': {'value': None,
         'value_error': None},
        'FIO-ESM_r3i1p1': {'value': None, 'value_error': None},
        'HadISST': {'value': None, 'value_error': None},
        'Tropflux': {'value': None, 'value_error': None}},
       'metric': {'ERA-Interim': {'value': nan, 'value_error': None},
        'HadISST': {'value': nan, 'value_error': None},
        'Tropflux': {'value': nan, 'value_error': None}}},
      'BiasTauxLonRmse': {'diagnostic': {'ERA-Interim': {'value': None,
         'value_error': None},
        'FIO-ESM_r3i1p1': {'value': None, 'value_error': None},
        'Tropflux': {'value': None, 'value_error': None}},
       'metric': {'ERA-Interim': {'value': nan, 'value_error': None},
        'Tropflux': {'value': nan, 'value_error': None}}},
      'EnsoAmpl': {'diagnostic': {'ERA-Interim': {'value': 0.8989844997845644,
         'value_error': 0.14214193002531866},
        'FIO-ESM_r3i1p1': {'value': nan, 'value_error': nan},
        'HadISST': {'value': 0.7665787872085695,
         'value_error': 0.06238329697691264},
        'Tropflux': {'value': 0.9039789553693535,
         'value_error': 0.14293162279134272}},
       'metric': {'ERA-Interim': {'value': nan, 'value_error': nan},
        'HadISST': {'value': nan, 'value_error': nan},
        'Tropflux': {'value': nan, 'value_error': nan}}},
      'EnsoSeasonality': {'diagnostic': {'ERA-Interim': {'value': 2.0466846866656914,
         'value_error': 0.6513411033995022},
        'FIO-ESM_r3i1p1': {'value': nan, 'value_error': nan},
        'HadISST': {'value': 1.6639865947361325,
         'value_error': 0.2712772451657809},
        'Tropflux': {'value': 2.0532132553583624,
         'value_error': 0.6534187683977347}},
       'metric': {'ERA-Interim': {'value': nan, 'value_error': nan},
        'HadISST': {'value': nan, 'value_error': nan},
        'Tropflux': {'value': nan, 'value_error': nan}}},
      'EnsoSstSkew': {'diagnostic': {'ERA-Interim': {'value': 0.39098111106809963,
         'value_error': 0.061819541653923164},
        'FIO-ESM_r3i1p1': {'value': 0.0, 'value_error': 0.0},
        'HadISST': {'value': 0.38989908235027515,
         'value_error': 0.03172953733021198},
        'Tropflux': {'value': 0.39744741059612115,
         'value_error': 0.06284195338099416}},
       'metric': {'ERA-Interim': {'value': 100.0, 'value_error': 0.0},
        'HadISST': {'value': 100.0, 'value_error': 0.0},
        'Tropflux': {'value': 100.0, 'value_error': 0.0}}},
      'SeasonalPrLatRmse': {'diagnostic': {'ERA-Interim': {'value': None,
         'value_error': None},
        'FIO-ESM_r3i1p1': {'value': None, 'value_error': None},
        'GPCPv2.3': {'value': None, 'value_error': None}},
       'metric': {'ERA-Interim': {'value': nan, 'value_error': None},
        'GPCPv2.3': {'value': nan, 'value_error': None}}},
      'SeasonalPrLonRmse': {'diagnostic': {'ERA-Interim': {'value': None,
         'value_error': None},
        'FIO-ESM_r3i1p1': {'value': None, 'value_error': None},
        'GPCPv2.3': {'value': None, 'value_error': None}},
       'metric': {'ERA-Interim': {'value': nan, 'value_error': None},
        'GPCPv2.3': {'value': nan, 'value_error': None}}},
      'SeasonalSstLonRmse': {'diagnostic': {'ERA-Interim': {'value': None,
         'value_error': None},
        'FIO-ESM_r3i1p1': {'value': None, 'value_error': None},
        'HadISST': {'value': None, 'value_error': None},
        'Tropflux': {'value': None, 'value_error': None}},
       'metric': {'ERA-Interim': {'value': nan, 'value_error': None},
        'HadISST': {'value': nan, 'value_error': None},
        'Tropflux': {'value': nan, 'value_error': None}}},
      'SeasonalTauxLonRmse': {'diagnostic': {'ERA-Interim': {'value': None,
         'value_error': None},
        'FIO-ESM_r3i1p1': {'value': None, 'value_error': None},
        'Tropflux': {'value': None, 'value_error': None}},
       'metric': {'ERA-Interim': {'value': nan, 'value_error': None},
        'Tropflux': {'value': nan, 'value_error': None}}}}}},
   'GFDL-CM2p1': {'r10i1p1': {'metadata': {'description_of_the_collection': 'Describe which science question this collection is about',
      'metrics': {'BiasPrLatRmse': {'diagnostic': {'ERA-Interim': {'name': 'ERA-Interim',
          'nyears': 40,
          'time_period': ['1979-1-16 12:0:0.0', '2019-3-16 12:0:0.0']},
         'GFDL-CM2p1_r10i1p1': {'keyerror': None,
          'name': 'GFDL-CM2p1_r10i1p1',
          'nyears': 180,
          'time_period': ['1861-1-16 12:0:0.0', '2040-12-16 12:0:0.0']},
         'GPCPv2.3': {'name': 'GPCPv2.3',
          'nyears': 41,
          'time_period': ['1979-1-1 0:0:0.0', '2019-7-1 0:0:0.0']},
         'method': 'Meridional root mean square error of nino3_LatExt pr, time series are linearly detrended, observations and model regridded to generic_1x1deg',
         'name': 'pr Meridional RMSE',
         'ref': 'Using CDAT regridding and rms (uncentered and biased) calculation',
         'time_frequency': 'monthly',
         'units': 'mm/day'},
        'metric': {'datasets': "GFDL-CM2p1_r10i1p1; ERA-Interim's pr & GPCPv2.3's precip; 's ",
         'method': 'The metric is the statistical value between the model and the observations',
         'name': 'BiasPrLatRmse',
         'units': 'mm/day'}},
       'BiasPrLonRmse': {'diagnostic': {'ERA-Interim': {'name': 'ERA-Interim',
          'nyears': 40,
          'time_period': ['1979-1-16 12:0:0.0', '2019-3-16 12:0:0.0']},
         'GFDL-CM2p1_r10i1p1': {'keyerror': None,
          'name': 'GFDL-CM2p1_r10i1p1',
          'nyears': 180,
          'time_period': ['1861-1-16 12:0:0.0', '2040-12-16 12:0:0.0']},
         'GPCPv2.3': {'name': 'GPCPv2.3',
          'nyears': 41,
          'time_period': ['1979-1-1 0:0:0.0', '2019-7-1 0:0:0.0']},
         'method': 'Zonal root mean square error of equatorial_pacific pr, time series are linearly detrended, observations and model regridded to generic_1x1deg',
         'name': 'pr Zonal RMSE',
         'ref': 'Using CDAT regridding and rms (uncentered and biased) calculation',
         'time_frequency': 'monthly',
         'units': 'mm/day'},
        'metric': {'datasets': "GFDL-CM2p1_r10i1p1; ERA-Interim's pr & GPCPv2.3's precip; 's ",
         'method': 'The metric is the statistical value between the model and the observations',
         'name': 'BiasPrLonRmse',
         'units': 'mm/day'}},
       'BiasSstLonRmse': {'diagnostic': {'ERA-Interim': {'name': 'ERA-Interim',
          'nyears': 40,
          'time_period': ['1979-1-16 12:0:0.0', '2019-3-16 12:0:0.0']},
         'GFDL-CM2p1_r10i1p1': {'keyerror': None,
          'name': 'GFDL-CM2p1_r10i1p1',
          'nyears': 145,
          'time_period': ['1861-1-16 12:0:0.0', '2005-12-16 12:0:0.0']},
         'HadISST': {'name': 'HadISST',
          'nyears': 151,
          'time_period': ['1870-1-16 11:59:59.5', '2020-10-16 12:0:0.0']},
         'Tropflux': {'name': 'Tropflux',
          'nyears': 40,
          'time_period': ['1979-1-15 0:0:0.0', '2018-12-15 12:0:0.0']},
         'method': 'Zonal root mean square error of equatorial_pacific sst, time series are linearly detrended, observations and model regridded to generic_1x1deg',
         'name': 'sst Zonal RMSE',
         'ref': 'Using CDAT regridding and rms (uncentered and biased) calculation',
         'time_frequency': 'monthly',
         'units': 'C'},
        'metric': {'datasets': "GFDL-CM2p1_r10i1p1; ERA-Interim's ts & HadISST's sst & Tropflux's sst; 's ",
         'method': 'The metric is the statistical value between the model and the observations',
         'name': 'BiasSstLonRmse',
         'units': 'C'}},
       'EnsoAmpl': {'diagnostic': {'ERA-Interim': {'keyerror': None,
          'name': 'ERA-Interim',
          'nyears': 40,
          'time_period': ['1979-1-16 12:0:0.0', '2019-3-16 12:0:0.0']},
         'GFDL-CM2p1_r10i1p1': {'keyerror': None,
          'name': 'GFDL-CM2p1_r10i1p1',
          'nyears': 145,
          'time_period': ['1861-1-16 12:0:0.0', '2005-12-16 12:0:0.0']},
         'HadISST': {'keyerror': None,
          'name': 'HadISST',
          'nyears': 151,
          'time_period': ['1870-1-16 11:59:59.5', '2020-10-16 12:0:0.0']},
         'Tropflux': {'keyerror': None,
          'name': 'Tropflux',
          'nyears': 40,
          'time_period': ['1979-1-15 0:0:0.0', '2018-12-15 12:0:0.0']},
         'method': 'Standard deviation of nino3.4 sstA, time series are linearly detrended',
         'name': 'ENSO amplitude',
         'ref': 'Using CDAT regression calculation',
         'time_frequency': 'monthly',
         'units': 'C'},
        'metric': {'datasets': "GFDL-CM2p1_r10i1p1; ERA-Interim's ts & HadISST's sst & Tropflux's sst; 's ",
         'method': 'The metric is the absolute value of the relative difference between model and observations values (M = 100 * abs[[model-obs] / obs])',
         'name': 'EnsoAmpl',
         'units': '%'}},
       'EnsoDuration': {'diagnostic': {'ERA-Interim': {'keyerror': None,
          'name': 'ERA-Interim',
          'nyears': 40,
          'time_period': ['1979-1-16 12:0:0.0', '2019-3-16 12:0:0.0']},
         'GFDL-CM2p1_r10i1p1': {'keyerror': None,
          'name': 'GFDL-CM2p1_r10i1p1',
          'nyears': 145,
          'time_period': ['1861-1-16 12:0:0.0', '2005-12-16 12:0:0.0']},
         'HadISST': {'keyerror': None,
          'name': 'HadISST',
          'nyears': 151,
          'time_period': ['1870-1-16 11:59:59.5', '2020-10-16 12:0:0.0']},
         'Tropflux': {'keyerror': None,
          'name': 'Tropflux',
          'nyears': 40,
          'time_period': ['1979-1-15 0:0:0.0', '2018-12-15 12:0:0.0']},
         'method': 'nino3.4 SSTA during DEC regressed against nino3.4 SSTA during 6 years (centered on ENSO), the duration is the number of consecutive months during which the regression is above 0.25, time series are linearly detrended, smoothing using a triangle shaped window of 5 points',
         'name': 'ENSO Duration based on life cyle SSTA pattern',
         'ref': 'Using CDAT',
         'time_frequency': 'monthly',
         'units': 'months'},
        'metric': {'datasets': "GFDL-CM2p1_r10i1p1; ERA-Interim's ts & HadISST's sst & Tropflux's sst; 's ",
         'method': 'The metric is the absolute value of the relative difference between model and observations values (M = 100 * abs[[model-obs] / obs])',
         'name': 'EnsoDuration',
         'units': '%'}},
       'EnsoSeasonality': {'diagnostic': {'ERA-Interim': {'keyerror': None,
          'name': 'ERA-Interim',
          'nyears': 40,
          'time_period': ['1979-1-16 12:0:0.0', '2019-3-16 12:0:0.0']},
         'GFDL-CM2p1_r10i1p1': {'keyerror': None,
          'name': 'GFDL-CM2p1_r10i1p1',
          'nyears': 145,
          'time_period': ['1861-1-16 12:0:0.0', '2005-12-16 12:0:0.0']},
         'HadISST': {'keyerror': None,
          'name': 'HadISST',
          'nyears': 151,
          'time_period': ['1870-1-16 11:59:59.5', '2020-10-16 12:0:0.0']},
         'Tropflux': {'keyerror': None,
          'name': 'Tropflux',
          'nyears': 40,
          'time_period': ['1979-1-15 0:0:0.0', '2018-12-15 12:0:0.0']},
         'method': 'Ratio between NDJ and MAM standard deviation nino3.4 sstA, time series are linearly detrended',
         'name': 'ENSO seasonality',
         'ref': 'Using CDAT std dev calculation',
         'time_frequency': 'monthly',
         'units': 'C/C'},
        'metric': {'datasets': "GFDL-CM2p1_r10i1p1; ERA-Interim's ts & HadISST's sst & Tropflux's sst; 's ",
         'method': 'The metric is the absolute value of the relative difference between model and observations values (M = 100 * abs[[model-obs] / obs])',
         'name': 'EnsoSeasonality',
         'units': '%'}},
       'EnsoSstDiversity_2': {'diagnostic': {'ERA-Interim': {'keyerror': None,
          'name': 'ERA-Interim',
          'nyears': 40,
          'time_period': ['1979-1-16 12:0:0.0', '2019-3-16 12:0:0.0']},
         'GFDL-CM2p1_r10i1p1': {'keyerror': None,
          'name': 'GFDL-CM2p1_r10i1p1',
          'nyears': 145,
          'time_period': ['1861-1-16 12:0:0.0', '2005-12-16 12:0:0.0']},
         'HadISST': {'keyerror': None,
          'name': 'HadISST',
          'nyears': 151,
          'time_period': ['1870-1-16 11:59:59.5', '2020-10-16 12:0:0.0']},
         'Tropflux': {'keyerror': None,
          'name': 'Tropflux',
          'nyears': 40,
          'time_period': ['1979-1-15 0:0:0.0', '2018-12-15 12:0:0.0']},
         'method': 'Nino (Nina) events = nino3.4 sstA > 0.75 (< -0.75) during DEC, zonal SSTA (meridional averaged [-5.0 ; 5.0]), the zonal SSTA maximum (minimum) is located for each event, the diversity is the interquartile range (IQR = Q3 - Q1), time series are linearly detrended, smoothing using a triangle shaped window of 5 points',
         'name': 'ENSO Diversity (interquartile range)',
         'ref': 'Using CDAT regridding',
         'time_frequency': 'monthly',
         'units': 'long'},
        'metric': {'datasets': "GFDL-CM2p1_r10i1p1; ERA-Interim's ts & HadISST's sst & Tropflux's sst; 's ",
         'method': 'The metric is the absolute value of the relative difference between model and observations values (M = 100 * abs[[model-obs] / obs])',
         'name': 'EnsoSstDiversity',
         'units': '%'}},
       'EnsoSstLonRmse': {'diagnostic': {'ERA-Interim': {'name': 'ERA-Interim',
          'nyears': 40,
          'time_period': ['1979-1-16 12:0:0.0', '2019-3-16 12:0:0.0']},
         'GFDL-CM2p1_r10i1p1': {'keyerror': None,
          'name': 'GFDL-CM2p1_r10i1p1',
          'nyears': 145,
          'time_period': ['1861-1-16 12:0:0.0', '2005-12-16 12:0:0.0']},
         'HadISST': {'name': 'HadISST',
          'nyears': 151,
          'time_period': ['1870-1-16 11:59:59.5', '2020-10-16 12:0:0.0']},
         'Tropflux': {'name': 'Tropflux',
          'nyears': 40,
          'time_period': ['1979-1-15 0:0:0.0', '2018-12-15 12:0:0.0']},
         'method': 'nino3.4 SSTA during DEC regressed against equatorial_pacific SSTA, time series are linearly detrended, smoothing using a triangle shaped window of 5 points, observations and model regridded to generic_1x1deg',
         'name': 'ENSO Zonal SSTA pattern',
         'ref': 'Using CDAT regridding and rms (uncentered and biased) calculation',
         'time_frequency': 'monthly',
         'units': 'C/C'},
        'metric': {'datasets': "GFDL-CM2p1_r10i1p1; ERA-Interim's ts & HadISST's sst & Tropflux's sst; 's ",
         'method': 'The metric is the statistical value between the model and the observations',
         'name': 'EnsoSstLonRmse',
         'units': 'C/C'}},
       'EnsoSstSkew': {'diagnostic': {'ERA-Interim': {'keyerror': None,
          'name': 'ERA-Interim',
          'nyears': 40,
          'time_period': ['1979-1-16 12:0:0.0', '2019-3-16 12:0:0.0']},
         'GFDL-CM2p1_r10i1p1': {'keyerror': None,
          'name': 'GFDL-CM2p1_r10i1p1',
          'nyears': 145,
          'time_period': ['1861-1-16 12:0:0.0', '2005-12-16 12:0:0.0']},
         'HadISST': {'keyerror': None,
          'name': 'HadISST',
          'nyears': 151,
          'time_period': ['1870-1-16 11:59:59.5', '2020-10-16 12:0:0.0']},
         'Tropflux': {'keyerror': None,
          'name': 'Tropflux',
          'nyears': 40,
          'time_period': ['1979-1-15 0:0:0.0', '2018-12-15 12:0:0.0']},
         'method': 'Standard deviation of nino3.4 sstA, time series are linearly detrended',
         'name': 'ENSO skewness',
         'ref': 'Using CDAT regression calculation',
         'time_frequency': 'monthly',
         'units': 'C'},
        'metric': {'datasets': "GFDL-CM2p1_r10i1p1; ERA-Interim's ts & HadISST's sst & Tropflux's sst; 's ",
         'method': 'The metric is the absolute value of the relative difference between model and observations values (M = 100 * abs[[model-obs] / obs])',
         'name': 'EnsoSstSkew',
         'units': '%'}},
       'EnsoSstTsRmse': {'diagnostic': {'ERA-Interim': {'name': 'ERA-Interim',
          'nyears': 40,
          'time_period': ['1979-1-16 12:0:0.0', '2019-3-16 12:0:0.0']},
         'GFDL-CM2p1_r10i1p1': {'keyerror': None,
          'name': 'GFDL-CM2p1_r10i1p1',
          'nyears': 145,
          'time_period': ['1861-1-16 12:0:0.0', '2005-12-16 12:0:0.0']},
         'HadISST': {'name': 'HadISST',
          'nyears': 151,
          'time_period': ['1870-1-16 11:59:59.5', '2020-10-16 12:0:0.0']},
         'Tropflux': {'name': 'Tropflux',
          'nyears': 40,
          'time_period': ['1979-1-15 0:0:0.0', '2018-12-15 12:0:0.0']},
         'method': 'nino3.4 SSTA during DEC regressed against nino3.4 SSTA during 6 years (centered on ENSO), time series are linearly detrended, smoothing using a triangle shaped window of 5 points',
         'name': 'ENSO life cyle SSTA pattern',
         'ref': 'Using CDAT regridding and rms (uncentered and biased) calculation',
         'time_frequency': 'monthly',
         'units': 'C/C'},
        'metric': {'datasets': "GFDL-CM2p1_r10i1p1; ERA-Interim's ts & HadISST's sst & Tropflux's sst; 's ",
         'method': 'The metric is the statistical value between the model and the observations',
         'name': 'EnsoSstTsRmse',
         'units': 'C/C'}},
       'SeasonalPrLatRmse': {'diagnostic': {'ERA-Interim': {'name': 'ERA-Interim',
          'nyears': 40,
          'time_period': ['1979-1-16 12:0:0.0', '2019-3-16 12:0:0.0']},
         'GFDL-CM2p1_r10i1p1': {'keyerror': None,
          'name': 'GFDL-CM2p1_r10i1p1',
          'nyears': 180,
          'time_period': ['1861-1-16 12:0:0.0', '2040-12-16 12:0:0.0']},
         'GPCPv2.3': {'name': 'GPCPv2.3',
          'nyears': 41,
          'time_period': ['1979-1-1 0:0:0.0', '2019-7-1 0:0:0.0']},
         'method': 'Meridional root mean square error of nino3_LatExt climatological pr STD, time series are linearly detrended, observations and model regridded to generic_1x1deg',
         'name': 'pr meridional seasonality RMSE',
         'ref': 'Using CDAT regridding and rms (uncentered and biased) calculation',
         'time_frequency': 'monthly',
         'units': 'mm/day'},
        'metric': {'datasets': "GFDL-CM2p1_r10i1p1; ERA-Interim's pr & GPCPv2.3's precip; 's ",
         'method': 'The metric is the statistical value between the model and the observations',
         'name': 'SeasonalPrLatRmse',
         'units': 'mm/day'}},
       'SeasonalPrLonRmse': {'diagnostic': {'ERA-Interim': {'name': 'ERA-Interim',
          'nyears': 40,
          'time_period': ['1979-1-16 12:0:0.0', '2019-3-16 12:0:0.0']},
         'GFDL-CM2p1_r10i1p1': {'keyerror': None,
          'name': 'GFDL-CM2p1_r10i1p1',
          'nyears': 180,
          'time_period': ['1861-1-16 12:0:0.0', '2040-12-16 12:0:0.0']},
         'GPCPv2.3': {'name': 'GPCPv2.3',
          'nyears': 41,
          'time_period': ['1979-1-1 0:0:0.0', '2019-7-1 0:0:0.0']},
         'method': 'Zonal root mean square error of equatorial_pacific climatological pr STD, time series are linearly detrended, observations and model regridded to generic_1x1deg',
         'name': 'pr zonal seasonality RMSE',
         'ref': 'Using CDAT regridding and rms (uncentered and biased) calculation',
         'time_frequency': 'monthly',
         'units': 'mm/day'},
        'metric': {'datasets': "GFDL-CM2p1_r10i1p1; ERA-Interim's pr & GPCPv2.3's precip; 's ",
         'method': 'The metric is the statistical value between the model and the observations',
         'name': 'SeasonalPrLonRmse',
         'units': 'mm/day'}},
       'SeasonalSstLonRmse': {'diagnostic': {'ERA-Interim': {'name': 'ERA-Interim',
          'nyears': 40,
          'time_period': ['1979-1-16 12:0:0.0', '2019-3-16 12:0:0.0']},
         'GFDL-CM2p1_r10i1p1': {'keyerror': None,
          'name': 'GFDL-CM2p1_r10i1p1',
          'nyears': 145,
          'time_period': ['1861-1-16 12:0:0.0', '2005-12-16 12:0:0.0']},
         'HadISST': {'name': 'HadISST',
          'nyears': 151,
          'time_period': ['1870-1-16 11:59:59.5', '2020-10-16 12:0:0.0']},
         'Tropflux': {'name': 'Tropflux',
          'nyears': 40,
          'time_period': ['1979-1-15 0:0:0.0', '2018-12-15 12:0:0.0']},
         'method': 'Zonal root mean square error of equatorial_pacific climatological sst STD, time series are linearly detrended, observations and model regridded to generic_1x1deg',
         'name': 'sst zonal seasonality RMSE',
         'ref': 'Using CDAT regridding and rms (uncentered and biased) calculation',
         'time_frequency': 'monthly',
         'units': 'C'},
        'metric': {'datasets': "GFDL-CM2p1_r10i1p1; ERA-Interim's ts & HadISST's sst & Tropflux's sst; 's ",
         'method': 'The metric is the statistical value between the model and the observations',
         'name': 'SeasonalSstLonRmse',
         'units': 'C'}}},
      'name': 'Metrics Collection for ENSO performance'},
     'value': {'BiasPrLatRmse': {'diagnostic': {'ERA-Interim': {'value': None,
         'value_error': None},
        'GFDL-CM2p1_r10i1p1': {'value': None, 'value_error': None},
        'GPCPv2.3': {'value': None, 'value_error': None}},
       'metric': {'ERA-Interim': {'value': 1.9488324535989932,
         'value_error': None},
        'GPCPv2.3': {'value': 1.9285632550346732, 'value_error': None}}},
      'BiasPrLonRmse': {'diagnostic': {'ERA-Interim': {'value': None,
         'value_error': None},
        'GFDL-CM2p1_r10i1p1': {'value': None, 'value_error': None},
        'GPCPv2.3': {'value': None, 'value_error': None}},
       'metric': {'ERA-Interim': {'value': 2.270701927073681,
         'value_error': None},
        'GPCPv2.3': {'value': 1.3142907760907518, 'value_error': None}}},
      'BiasSstLonRmse': {'diagnostic': {'ERA-Interim': {'value': None,
         'value_error': None},
        'GFDL-CM2p1_r10i1p1': {'value': None, 'value_error': None},
        'HadISST': {'value': None, 'value_error': None},
        'Tropflux': {'value': None, 'value_error': None}},
       'metric': {'ERA-Interim': {'value': 1.5458958018554556,
         'value_error': None},
        'HadISST': {'value': 1.3789287946929094, 'value_error': None},
        'Tropflux': {'value': 1.5943444719783966, 'value_error': None}}},
      'EnsoAmpl': {'diagnostic': {'ERA-Interim': {'value': 0.8989844997845644,
         'value_error': 0.14214193002531866},
        'GFDL-CM2p1_r10i1p1': {'value': 1.357153038524645,
         'value_error': 0.1127054253192404},
        'HadISST': {'value': 0.7665787872085695,
         'value_error': 0.06238329697691264},
        'Tropflux': {'value': 0.9039789553693535,
         'value_error': 0.14293162279134272}},
       'metric': {'ERA-Interim': {'value': 50.965121072707895,
         'value_error': 36.40665241230291},
        'HadISST': {'value': 77.04025485320312,
         'value_error': 29.10972453145681},
        'Tropflux': {'value': 50.13104347878661,
         'value_error': 36.20550679117526}}},
      'EnsoDuration': {'diagnostic': {'ERA-Interim': {'value': 13.0,
         'value_error': None},
        'GFDL-CM2p1_r10i1p1': {'value': 14.0, 'value_error': None},
        'HadISST': {'value': 13.0, 'value_error': None},
        'Tropflux': {'value': 13.0, 'value_error': None}},
       'metric': {'ERA-Interim': {'value': 7.6923076923076925,
         'value_error': None},
        'HadISST': {'value': 7.6923076923076925, 'value_error': None},
        'Tropflux': {'value': 7.6923076923076925, 'value_error': None}}},
      'EnsoSeasonality': {'diagnostic': {'ERA-Interim': {'value': 2.0466846866656914,
         'value_error': 0.6513411033995022},
        'GFDL-CM2p1_r10i1p1': {'value': 1.150722280956384,
         'value_error': 0.1914558074134451},
        'HadISST': {'value': 1.6639865947361325,
         'value_error': 0.2712772451657809},
        'Tropflux': {'value': 2.0532132553583624,
         'value_error': 0.6534187683977347}},
       'metric': {'ERA-Interim': {'value': 43.77627934320179,
         'value_error': 27.247187294892683},
        'HadISST': {'value': 30.845459657151846,
         'value_error': 22.780011603560492},
        'Tropflux': {'value': 43.955052990560404,
         'value_error': 27.16054985795204}}},
      'EnsoSstDiversity_2': {'diagnostic': {'ERA-Interim': {'value': 33.25,
         'value_error': None},
        'GFDL-CM2p1_r10i1p1': {'value': 68.5, 'value_error': None},
        'HadISST': {'value': 49.0, 'value_error': None},
        'Tropflux': {'value': 32.0, 'value_error': None}},
       'metric': {'ERA-Interim': {'value': 106.01503759398496,
         'value_error': None},
        'HadISST': {'value': 39.795918367346935, 'value_error': None},
        'Tropflux': {'value': 114.0625, 'value_error': None}}},
      'EnsoSstLonRmse': {'diagnostic': {'ERA-Interim': {'value': None,
         'value_error': None},
        'GFDL-CM2p1_r10i1p1': {'value': None, 'value_error': None},
        'HadISST': {'value': None, 'value_error': None},
        'Tropflux': {'value': None, 'value_error': None}},
       'metric': {'ERA-Interim': {'value': 0.3377114520449374,
         'value_error': None},
        'HadISST': {'value': 0.3595476633592239, 'value_error': None},
        'Tropflux': {'value': 0.34046923786644867, 'value_error': None}}},
      'EnsoSstSkew': {'diagnostic': {'ERA-Interim': {'value': 0.39098111106809963,
         'value_error': 0.061819541653923164},
        'GFDL-CM2p1_r10i1p1': {'value': 0.05577713940404991,
         'value_error': 0.004632039306678272},
        'HadISST': {'value': 0.38989908235027515,
         'value_error': 0.03172953733021198},
        'Tropflux': {'value': 0.39744741059612115,
         'value_error': 0.06284195338099416}},
       'metric': {'ERA-Interim': {'value': 85.73405777796388,
         'value_error': 3.4403655368946016},
        'HadISST': {'value': 85.69446763818203,
         'value_error': 2.352177512812859},
        'Tropflux': {'value': 85.96615856160915,
         'value_error': 3.3843922597909017}}},
      'EnsoSstTsRmse': {'diagnostic': {'ERA-Interim': {'value': None,
         'value_error': None},
        'GFDL-CM2p1_r10i1p1': {'value': None, 'value_error': None},
        'HadISST': {'value': None, 'value_error': None},
        'Tropflux': {'value': None, 'value_error': None}},
       'metric': {'ERA-Interim': {'value': 0.1319328194039181,
         'value_error': None},
        'HadISST': {'value': 0.12212459723766149, 'value_error': None},
        'Tropflux': {'value': 0.12895158725085473, 'value_error': None}}},
      'SeasonalPrLatRmse': {'diagnostic': {'ERA-Interim': {'value': None,
         'value_error': None},
        'GFDL-CM2p1_r10i1p1': {'value': None, 'value_error': None},
        'GPCPv2.3': {'value': None, 'value_error': None}},
       'metric': {'ERA-Interim': {'value': 1.5066873462054486,
         'value_error': None},
        'GPCPv2.3': {'value': 1.6576051310859168, 'value_error': None}}},
      'SeasonalPrLonRmse': {'diagnostic': {'ERA-Interim': {'value': None,
         'value_error': None},
        'GFDL-CM2p1_r10i1p1': {'value': None, 'value_error': None},
        'GPCPv2.3': {'value': None, 'value_error': None}},
       'metric': {'ERA-Interim': {'value': 0.7460404631430588,
         'value_error': None},
        'GPCPv2.3': {'value': 0.5996104545231352, 'value_error': None}}},
      'SeasonalSstLonRmse': {'diagnostic': {'ERA-Interim': {'value': None,
         'value_error': None},
        'GFDL-CM2p1_r10i1p1': {'value': None, 'value_error': None},
        'HadISST': {'value': None, 'value_error': None},
        'Tropflux': {'value': None, 'value_error': None}},
       'metric': {'ERA-Interim': {'value': 0.1408490686856091,
         'value_error': None},
        'HadISST': {'value': 0.16828287434112263, 'value_error': None},
        'Tropflux': {'value': 0.13189171291216722, 'value_error': None}}}}},
    'r1i1p1': {'metadata': {'description_of_the_collection': 'Describe which science question this collection is about',
      'metrics': {'BiasPrLatRmse': {'diagnostic': {'ERA-Interim': {'name': 'ERA-Interim',
          'nyears': 40,
          'time_period': ['1979-1-16 12:0:0.0', '2019-3-16 12:0:0.0']},
         'GFDL-CM2p1_r1i1p1': {'keyerror': None,
          'name': 'GFDL-CM2p1_r1i1p1',
          'nyears': 180,
          'time_period': ['1861-1-16 12:0:0.0', '2040-12-16 12:0:0.0']},
         'GPCPv2.3': {'name': 'GPCPv2.3',
          'nyears': 41,
          'time_period': ['1979-1-1 0:0:0.0', '2019-7-1 0:0:0.0']},
         'method': 'Meridional root mean square error of nino3_LatExt pr, time series are linearly detrended, observations and model regridded to generic_1x1deg',
         'name': 'pr Meridional RMSE',
         'ref': 'Using CDAT regridding and rms (uncentered and biased) calculation',
         'time_frequency': 'monthly',
         'units': 'mm/day'},
        'metric': {'datasets': "GFDL-CM2p1_r1i1p1; ERA-Interim's pr & GPCPv2.3's precip; 's ",
         'method': 'The metric is the statistical value between the model and the observations',
         'name': 'BiasPrLatRmse',
         'units': 'mm/day'}},
       'BiasPrLonRmse': {'diagnostic': {'ERA-Interim': {'name': 'ERA-Interim',
          'nyears': 40,
          'time_period': ['1979-1-16 12:0:0.0', '2019-3-16 12:0:0.0']},
         'GFDL-CM2p1_r1i1p1': {'keyerror': None,
          'name': 'GFDL-CM2p1_r1i1p1',
          'nyears': 180,
          'time_period': ['1861-1-16 12:0:0.0', '2040-12-16 12:0:0.0']},
         'GPCPv2.3': {'name': 'GPCPv2.3',
          'nyears': 41,
          'time_period': ['1979-1-1 0:0:0.0', '2019-7-1 0:0:0.0']},
         'method': 'Zonal root mean square error of equatorial_pacific pr, time series are linearly detrended, observations and model regridded to generic_1x1deg',
         'name': 'pr Zonal RMSE',
         'ref': 'Using CDAT regridding and rms (uncentered and biased) calculation',
         'time_frequency': 'monthly',
         'units': 'mm/day'},
        'metric': {'datasets': "GFDL-CM2p1_r1i1p1; ERA-Interim's pr & GPCPv2.3's precip; 's ",
         'method': 'The metric is the statistical value between the model and the observations',
         'name': 'BiasPrLonRmse',
         'units': 'mm/day'}},
       'BiasSstLonRmse': {'diagnostic': {'ERA-Interim': {'name': 'ERA-Interim',
          'nyears': 40,
          'time_period': ['1979-1-16 12:0:0.0', '2019-3-16 12:0:0.0']},
         'GFDL-CM2p1_r1i1p1': {'keyerror': None,
          'name': 'GFDL-CM2p1_r1i1p1',
          'nyears': 145,
          'time_period': ['1861-1-16 12:0:0.0', '2005-12-16 12:0:0.0']},
         'HadISST': {'name': 'HadISST',
          'nyears': 151,
          'time_period': ['1870-1-16 11:59:59.5', '2020-10-16 12:0:0.0']},
         'Tropflux': {'name': 'Tropflux',
          'nyears': 40,
          'time_period': ['1979-1-15 0:0:0.0', '2018-12-15 12:0:0.0']},
         'method': 'Zonal root mean square error of equatorial_pacific sst, time series are linearly detrended, observations and model regridded to generic_1x1deg',
         'name': 'sst Zonal RMSE',
         'ref': 'Using CDAT regridding and rms (uncentered and biased) calculation',
         'time_frequency': 'monthly',
         'units': 'C'},
        'metric': {'datasets': "GFDL-CM2p1_r1i1p1; ERA-Interim's ts & HadISST's sst & Tropflux's sst; 's ",
         'method': 'The metric is the statistical value between the model and the observations',
         'name': 'BiasSstLonRmse',
         'units': 'C'}},
       'EnsoAmpl': {'diagnostic': {'ERA-Interim': {'keyerror': None,
          'name': 'ERA-Interim',
          'nyears': 40,
          'time_period': ['1979-1-16 12:0:0.0', '2019-3-16 12:0:0.0']},
         'GFDL-CM2p1_r1i1p1': {'keyerror': None,
          'name': 'GFDL-CM2p1_r1i1p1',
          'nyears': 145,
          'time_period': ['1861-1-16 12:0:0.0', '2005-12-16 12:0:0.0']},
         'HadISST': {'keyerror': None,
          'name': 'HadISST',
          'nyears': 151,
          'time_period': ['1870-1-16 11:59:59.5', '2020-10-16 12:0:0.0']},
         'Tropflux': {'keyerror': None,
          'name': 'Tropflux',
          'nyears': 40,
          'time_period': ['1979-1-15 0:0:0.0', '2018-12-15 12:0:0.0']},
         'method': 'Standard deviation of nino3.4 sstA, time series are linearly detrended',
         'name': 'ENSO amplitude',
         'ref': 'Using CDAT regression calculation',
         'time_frequency': 'monthly',
         'units': 'C'},
        'metric': {'datasets': "GFDL-CM2p1_r1i1p1; ERA-Interim's ts & HadISST's sst & Tropflux's sst; 's ",
         'method': 'The metric is the absolute value of the relative difference between model and observations values (M = 100 * abs[[model-obs] / obs])',
         'name': 'EnsoAmpl',
         'units': '%'}},
       'EnsoDuration': {'diagnostic': {'ERA-Interim': {'keyerror': None,
          'name': 'ERA-Interim',
          'nyears': 40,
          'time_period': ['1979-1-16 12:0:0.0', '2019-3-16 12:0:0.0']},
         'GFDL-CM2p1_r1i1p1': {'keyerror': None,
          'name': 'GFDL-CM2p1_r1i1p1',
          'nyears': 145,
          'time_period': ['1861-1-16 12:0:0.0', '2005-12-16 12:0:0.0']},
         'HadISST': {'keyerror': None,
          'name': 'HadISST',
          'nyears': 151,
          'time_period': ['1870-1-16 11:59:59.5', '2020-10-16 12:0:0.0']},
         'Tropflux': {'keyerror': None,
          'name': 'Tropflux',
          'nyears': 40,
          'time_period': ['1979-1-15 0:0:0.0', '2018-12-15 12:0:0.0']},
         'method': 'nino3.4 SSTA during DEC regressed against nino3.4 SSTA during 6 years (centered on ENSO), the duration is the number of consecutive months during which the regression is above 0.25, time series are linearly detrended, smoothing using a triangle shaped window of 5 points',
         'name': 'ENSO Duration based on life cyle SSTA pattern',
         'ref': 'Using CDAT',
         'time_frequency': 'monthly',
         'units': 'months'},
        'metric': {'datasets': "GFDL-CM2p1_r1i1p1; ERA-Interim's ts & HadISST's sst & Tropflux's sst; 's ",
         'method': 'The metric is the absolute value of the relative difference between model and observations values (M = 100 * abs[[model-obs] / obs])',
         'name': 'EnsoDuration',
         'units': '%'}},
       'EnsoSeasonality': {'diagnostic': {'ERA-Interim': {'keyerror': None,
          'name': 'ERA-Interim',
          'nyears': 40,
          'time_period': ['1979-1-16 12:0:0.0', '2019-3-16 12:0:0.0']},
         'GFDL-CM2p1_r1i1p1': {'keyerror': None,
          'name': 'GFDL-CM2p1_r1i1p1',
          'nyears': 145,
          'time_period': ['1861-1-16 12:0:0.0', '2005-12-16 12:0:0.0']},
         'HadISST': {'keyerror': None,
          'name': 'HadISST',
          'nyears': 151,
          'time_period': ['1870-1-16 11:59:59.5', '2020-10-16 12:0:0.0']},
         'Tropflux': {'keyerror': None,
          'name': 'Tropflux',
          'nyears': 40,
          'time_period': ['1979-1-15 0:0:0.0', '2018-12-15 12:0:0.0']},
         'method': 'Ratio between NDJ and MAM standard deviation nino3.4 sstA, time series are linearly detrended',
         'name': 'ENSO seasonality',
         'ref': 'Using CDAT std dev calculation',
         'time_frequency': 'monthly',
         'units': 'C/C'},
        'metric': {'datasets': "GFDL-CM2p1_r1i1p1; ERA-Interim's ts & HadISST's sst & Tropflux's sst; 's ",
         'method': 'The metric is the absolute value of the relative difference between model and observations values (M = 100 * abs[[model-obs] / obs])',
         'name': 'EnsoSeasonality',
         'units': '%'}},
       'EnsoSstDiversity_2': {'diagnostic': {'ERA-Interim': {'keyerror': None,
          'name': 'ERA-Interim',
          'nyears': 40,
          'time_period': ['1979-1-16 12:0:0.0', '2019-3-16 12:0:0.0']},
         'GFDL-CM2p1_r1i1p1': {'keyerror': None,
          'name': 'GFDL-CM2p1_r1i1p1',
          'nyears': 145,
          'time_period': ['1861-1-16 12:0:0.0', '2005-12-16 12:0:0.0']},
         'HadISST': {'keyerror': None,
          'name': 'HadISST',
          'nyears': 151,
          'time_period': ['1870-1-16 11:59:59.5', '2020-10-16 12:0:0.0']},
         'Tropflux': {'keyerror': None,
          'name': 'Tropflux',
          'nyears': 40,
          'time_period': ['1979-1-15 0:0:0.0', '2018-12-15 12:0:0.0']},
         'method': 'Nino (Nina) events = nino3.4 sstA > 0.75 (< -0.75) during DEC, zonal SSTA (meridional averaged [-5.0 ; 5.0]), the zonal SSTA maximum (minimum) is located for each event, the diversity is the interquartile range (IQR = Q3 - Q1), time series are linearly detrended, smoothing using a triangle shaped window of 5 points',
         'name': 'ENSO Diversity (interquartile range)',
         'ref': 'Using CDAT regridding',
         'time_frequency': 'monthly',
         'units': 'long'},
        'metric': {'datasets': "GFDL-CM2p1_r1i1p1; ERA-Interim's ts & HadISST's sst & Tropflux's sst; 's ",
         'method': 'The metric is the absolute value of the relative difference between model and observations values (M = 100 * abs[[model-obs] / obs])',
         'name': 'EnsoSstDiversity',
         'units': '%'}},
       'EnsoSstLonRmse': {'diagnostic': {'ERA-Interim': {'name': 'ERA-Interim',
          'nyears': 40,
          'time_period': ['1979-1-16 12:0:0.0', '2019-3-16 12:0:0.0']},
         'GFDL-CM2p1_r1i1p1': {'keyerror': None,
          'name': 'GFDL-CM2p1_r1i1p1',
          'nyears': 145,
          'time_period': ['1861-1-16 12:0:0.0', '2005-12-16 12:0:0.0']},
         'HadISST': {'name': 'HadISST',
          'nyears': 151,
          'time_period': ['1870-1-16 11:59:59.5', '2020-10-16 12:0:0.0']},
         'Tropflux': {'name': 'Tropflux',
          'nyears': 40,
          'time_period': ['1979-1-15 0:0:0.0', '2018-12-15 12:0:0.0']},
         'method': 'nino3.4 SSTA during DEC regressed against equatorial_pacific SSTA, time series are linearly detrended, smoothing using a triangle shaped window of 5 points, observations and model regridded to generic_1x1deg',
         'name': 'ENSO Zonal SSTA pattern',
         'ref': 'Using CDAT regridding and rms (uncentered and biased) calculation',
         'time_frequency': 'monthly',
         'units': 'C/C'},
        'metric': {'datasets': "GFDL-CM2p1_r1i1p1; ERA-Interim's ts & HadISST's sst & Tropflux's sst; 's ",
         'method': 'The metric is the statistical value between the model and the observations',
         'name': 'EnsoSstLonRmse',
         'units': 'C/C'}},
       'EnsoSstSkew': {'diagnostic': {'ERA-Interim': {'keyerror': None,
          'name': 'ERA-Interim',
          'nyears': 40,
          'time_period': ['1979-1-16 12:0:0.0', '2019-3-16 12:0:0.0']},
         'GFDL-CM2p1_r1i1p1': {'keyerror': None,
          'name': 'GFDL-CM2p1_r1i1p1',
          'nyears': 145,
          'time_period': ['1861-1-16 12:0:0.0', '2005-12-16 12:0:0.0']},
         'HadISST': {'keyerror': None,
          'name': 'HadISST',
          'nyears': 151,
          'time_period': ['1870-1-16 11:59:59.5', '2020-10-16 12:0:0.0']},
         'Tropflux': {'keyerror': None,
          'name': 'Tropflux',
          'nyears': 40,
          'time_period': ['1979-1-15 0:0:0.0', '2018-12-15 12:0:0.0']},
         'method': 'Standard deviation of nino3.4 sstA, time series are linearly detrended',
         'name': 'ENSO skewness',
         'ref': 'Using CDAT regression calculation',
         'time_frequency': 'monthly',
         'units': 'C'},
        'metric': {'datasets': "GFDL-CM2p1_r1i1p1; ERA-Interim's ts & HadISST's sst & Tropflux's sst; 's ",
         'method': 'The metric is the absolute value of the relative difference between model and observations values (M = 100 * abs[[model-obs] / obs])',
         'name': 'EnsoSstSkew',
         'units': '%'}},
       'EnsoSstTsRmse': {'diagnostic': {'ERA-Interim': {'name': 'ERA-Interim',
          'nyears': 40,
          'time_period': ['1979-1-16 12:0:0.0', '2019-3-16 12:0:0.0']},
         'GFDL-CM2p1_r1i1p1': {'keyerror': None,
          'name': 'GFDL-CM2p1_r1i1p1',
          'nyears': 145,
          'time_period': ['1861-1-16 12:0:0.0', '2005-12-16 12:0:0.0']},
         'HadISST': {'name': 'HadISST',
          'nyears': 151,
          'time_period': ['1870-1-16 11:59:59.5', '2020-10-16 12:0:0.0']},
         'Tropflux': {'name': 'Tropflux',
          'nyears': 40,
          'time_period': ['1979-1-15 0:0:0.0', '2018-12-15 12:0:0.0']},
         'method': 'nino3.4 SSTA during DEC regressed against nino3.4 SSTA during 6 years (centered on ENSO), time series are linearly detrended, smoothing using a triangle shaped window of 5 points',
         'name': 'ENSO life cyle SSTA pattern',
         'ref': 'Using CDAT regridding and rms (uncentered and biased) calculation',
         'time_frequency': 'monthly',
         'units': 'C/C'},
        'metric': {'datasets': "GFDL-CM2p1_r1i1p1; ERA-Interim's ts & HadISST's sst & Tropflux's sst; 's ",
         'method': 'The metric is the statistical value between the model and the observations',
         'name': 'EnsoSstTsRmse',
         'units': 'C/C'}},
       'SeasonalPrLatRmse': {'diagnostic': {'ERA-Interim': {'name': 'ERA-Interim',
          'nyears': 40,
          'time_period': ['1979-1-16 12:0:0.0', '2019-3-16 12:0:0.0']},
         'GFDL-CM2p1_r1i1p1': {'keyerror': None,
          'name': 'GFDL-CM2p1_r1i1p1',
          'nyears': 180,
          'time_period': ['1861-1-16 12:0:0.0', '2040-12-16 12:0:0.0']},
         'GPCPv2.3': {'name': 'GPCPv2.3',
          'nyears': 41,
          'time_period': ['1979-1-1 0:0:0.0', '2019-7-1 0:0:0.0']},
         'method': 'Meridional root mean square error of nino3_LatExt climatological pr STD, time series are linearly detrended, observations and model regridded to generic_1x1deg',
         'name': 'pr meridional seasonality RMSE',
         'ref': 'Using CDAT regridding and rms (uncentered and biased) calculation',
         'time_frequency': 'monthly',
         'units': 'mm/day'},
        'metric': {'datasets': "GFDL-CM2p1_r1i1p1; ERA-Interim's pr & GPCPv2.3's precip; 's ",
         'method': 'The metric is the statistical value between the model and the observations',
         'name': 'SeasonalPrLatRmse',
         'units': 'mm/day'}},
       'SeasonalPrLonRmse': {'diagnostic': {'ERA-Interim': {'name': 'ERA-Interim',
          'nyears': 40,
          'time_period': ['1979-1-16 12:0:0.0', '2019-3-16 12:0:0.0']},
         'GFDL-CM2p1_r1i1p1': {'keyerror': None,
          'name': 'GFDL-CM2p1_r1i1p1',
          'nyears': 180,
          'time_period': ['1861-1-16 12:0:0.0', '2040-12-16 12:0:0.0']},
         'GPCPv2.3': {'name': 'GPCPv2.3',
          'nyears': 41,
          'time_period': ['1979-1-1 0:0:0.0', '2019-7-1 0:0:0.0']},
         'method': 'Zonal root mean square error of equatorial_pacific climatological pr STD, time series are linearly detrended, observations and model regridded to generic_1x1deg',
         'name': 'pr zonal seasonality RMSE',
         'ref': 'Using CDAT regridding and rms (uncentered and biased) calculation',
         'time_frequency': 'monthly',
         'units': 'mm/day'},
        'metric': {'datasets': "GFDL-CM2p1_r1i1p1; ERA-Interim's pr & GPCPv2.3's precip; 's ",
         'method': 'The metric is the statistical value between the model and the observations',
         'name': 'SeasonalPrLonRmse',
         'units': 'mm/day'}},
       'SeasonalSstLonRmse': {'diagnostic': {'ERA-Interim': {'name': 'ERA-Interim',
          'nyears': 40,
          'time_period': ['1979-1-16 12:0:0.0', '2019-3-16 12:0:0.0']},
         'GFDL-CM2p1_r1i1p1': {'keyerror': None,
          'name': 'GFDL-CM2p1_r1i1p1',
          'nyears': 145,
          'time_period': ['1861-1-16 12:0:0.0', '2005-12-16 12:0:0.0']},
         'HadISST': {'name': 'HadISST',
          'nyears': 151,
          'time_period': ['1870-1-16 11:59:59.5', '2020-10-16 12:0:0.0']},
         'Tropflux': {'name': 'Tropflux',
          'nyears': 40,
          'time_period': ['1979-1-15 0:0:0.0', '2018-12-15 12:0:0.0']},
         'method': 'Zonal root mean square error of equatorial_pacific climatological sst STD, time series are linearly detrended, observations and model regridded to generic_1x1deg',
         'name': 'sst zonal seasonality RMSE',
         'ref': 'Using CDAT regridding and rms (uncentered and biased) calculation',
         'time_frequency': 'monthly',
         'units': 'C'},
        'metric': {'datasets': "GFDL-CM2p1_r1i1p1; ERA-Interim's ts & HadISST's sst & Tropflux's sst; 's ",
         'method': 'The metric is the statistical value between the model and the observations',
         'name': 'SeasonalSstLonRmse',
         'units': 'C'}}},
      'name': 'Metrics Collection for ENSO performance'},
     'value': {'BiasPrLatRmse': {'diagnostic': {'ERA-Interim': {'value': None,
         'value_error': None},
        'GFDL-CM2p1_r1i1p1': {'value': None, 'value_error': None},
        'GPCPv2.3': {'value': None, 'value_error': None}},
       'metric': {'ERA-Interim': {'value': 1.9472372053192604,
         'value_error': None},
        'GPCPv2.3': {'value': 1.9448888804785547, 'value_error': None}}},
      'BiasPrLonRmse': {'diagnostic': {'ERA-Interim': {'value': None,
         'value_error': None},
        'GFDL-CM2p1_r1i1p1': {'value': None, 'value_error': None},
        'GPCPv2.3': {'value': None, 'value_error': None}},
       'metric': {'ERA-Interim': {'value': 2.188172241276394,
         'value_error': None},
        'GPCPv2.3': {'value': 1.2445984535164074, 'value_error': None}}},
      'BiasSstLonRmse': {'diagnostic': {'ERA-Interim': {'value': None,
         'value_error': None},
        'GFDL-CM2p1_r1i1p1': {'value': None, 'value_error': None},
        'HadISST': {'value': None, 'value_error': None},
        'Tropflux': {'value': None, 'value_error': None}},
       'metric': {'ERA-Interim': {'value': 1.6315994884546596,
         'value_error': None},
        'HadISST': {'value': 1.4627614432271676, 'value_error': None},
        'Tropflux': {'value': 1.6801542167072163, 'value_error': None}}},
      'EnsoAmpl': {'diagnostic': {'ERA-Interim': {'value': 0.8989844997845644,
         'value_error': 0.14214193002531866},
        'GFDL-CM2p1_r1i1p1': {'value': 1.51251592629888,
         'value_error': 0.1256076108859145},
        'HadISST': {'value': 0.7665787872085695,
         'value_error': 0.06238329697691264},
        'Tropflux': {'value': 0.9039789553693535,
         'value_error': 0.14293162279134272}},
       'metric': {'ERA-Interim': {'value': 68.24716406805061,
         'value_error': 40.574378890016206},
        'HadISST': {'value': 97.30730246353102,
         'value_error': 32.44212016934013},
        'Tropflux': {'value': 67.31760372462286,
         'value_error': 40.35020670985323}}},
      'EnsoDuration': {'diagnostic': {'ERA-Interim': {'value': 13.0,
         'value_error': None},
        'GFDL-CM2p1_r1i1p1': {'value': 14.0, 'value_error': None},
        'HadISST': {'value': 13.0, 'value_error': None},
        'Tropflux': {'value': 13.0, 'value_error': None}},
       'metric': {'ERA-Interim': {'value': 7.6923076923076925,
         'value_error': None},
        'HadISST': {'value': 7.6923076923076925, 'value_error': None},
        'Tropflux': {'value': 7.6923076923076925, 'value_error': None}}},
      'EnsoSeasonality': {'diagnostic': {'ERA-Interim': {'value': 2.0466846866656914,
         'value_error': 0.6513411033995022},
        'GFDL-CM2p1_r1i1p1': {'value': 1.1432958471994998,
         'value_error': 0.1902202061787623},
        'HadISST': {'value': 1.6639865947361325,
         'value_error': 0.2712772451657809},
        'Tropflux': {'value': 2.0532132553583624,
         'value_error': 0.6534187683977347}},
       'metric': {'ERA-Interim': {'value': 44.13913121800537,
         'value_error': 27.07134171090108},
        'HadISST': {'value': 31.291763358177864,
         'value_error': 22.632995898768296},
        'Tropflux': {'value': 44.3167511111771,
         'value_error': 26.985263407295175}}},
      'EnsoSstDiversity_2': {'diagnostic': {'ERA-Interim': {'value': 33.25,
         'value_error': None},
        'GFDL-CM2p1_r1i1p1': {'value': 52.0, 'value_error': None},
        'HadISST': {'value': 49.0, 'value_error': None},
        'Tropflux': {'value': 32.0, 'value_error': None}},
       'metric': {'ERA-Interim': {'value': 56.390977443609025,
         'value_error': None},
        'HadISST': {'value': 6.122448979591836, 'value_error': None},
        'Tropflux': {'value': 62.5, 'value_error': None}}},
      'EnsoSstLonRmse': {'diagnostic': {'ERA-Interim': {'value': None,
         'value_error': None},
        'GFDL-CM2p1_r1i1p1': {'value': None, 'value_error': None},
        'HadISST': {'value': None, 'value_error': None},
        'Tropflux': {'value': None, 'value_error': None}},
       'metric': {'ERA-Interim': {'value': 0.29781603771310583,
         'value_error': None},
        'HadISST': {'value': 0.3198466795035171, 'value_error': None},
        'Tropflux': {'value': 0.3007476748325055, 'value_error': None}}},
      'EnsoSstSkew': {'diagnostic': {'ERA-Interim': {'value': 0.39098111106809963,
         'value_error': 0.061819541653923164},
        'GFDL-CM2p1_r1i1p1': {'value': 0.1760404827960463,
         'value_error': 0.01461936636748172},
        'HadISST': {'value': 0.38989908235027515,
         'value_error': 0.03172953733021198},
        'Tropflux': {'value': 0.39744741059612115,
         'value_error': 0.06284195338099416}},
       'metric': {'ERA-Interim': {'value': 54.97468347892023,
         'value_error': 10.858276644890633},
        'HadISST': {'value': 54.849731439507174,
         'value_error': 7.423802464626096},
        'Tropflux': {'value': 55.707226137916535,
         'value_error': 10.681617123977736}}},
      'EnsoSstTsRmse': {'diagnostic': {'ERA-Interim': {'value': None,
         'value_error': None},
        'GFDL-CM2p1_r1i1p1': {'value': None, 'value_error': None},
        'HadISST': {'value': None, 'value_error': None},
        'Tropflux': {'value': None, 'value_error': None}},
       'metric': {'ERA-Interim': {'value': 0.13769705489168482,
         'value_error': None},
        'HadISST': {'value': 0.13235458713907602, 'value_error': None},
        'Tropflux': {'value': 0.1360508612214691, 'value_error': None}}},
      'SeasonalPrLatRmse': {'diagnostic': {'ERA-Interim': {'value': None,
         'value_error': None},
        'GFDL-CM2p1_r1i1p1': {'value': None, 'value_error': None},
        'GPCPv2.3': {'value': None, 'value_error': None}},
       'metric': {'ERA-Interim': {'value': 1.4595841805864438,
         'value_error': None},
        'GPCPv2.3': {'value': 1.6177700357811682, 'value_error': None}}},
      'SeasonalPrLonRmse': {'diagnostic': {'ERA-Interim': {'value': None,
         'value_error': None},
        'GFDL-CM2p1_r1i1p1': {'value': None, 'value_error': None},
        'GPCPv2.3': {'value': None, 'value_error': None}},
       'metric': {'ERA-Interim': {'value': 0.7360543806333946,
         'value_error': None},
        'GPCPv2.3': {'value': 0.6108174173747222, 'value_error': None}}},
      'SeasonalSstLonRmse': {'diagnostic': {'ERA-Interim': {'value': None,
         'value_error': None},
        'GFDL-CM2p1_r1i1p1': {'value': None, 'value_error': None},
        'HadISST': {'value': None, 'value_error': None},
        'Tropflux': {'value': None, 'value_error': None}},
       'metric': {'ERA-Interim': {'value': 0.15756142957798083,
         'value_error': None},
        'HadISST': {'value': 0.1846348831943267, 'value_error': None},
        'Tropflux': {'value': 0.14822906984096154, 'value_error': None}}}}},
    'r2i1p1': {'metadata': {'description_of_the_collection': 'Describe which science question this collection is about',
      'metrics': {'BiasPrLatRmse': {'diagnostic': {'ERA-Interim': {'name': 'ERA-Interim',
          'nyears': 40,
          'time_period': ['1979-1-16 12:0:0.0', '2019-3-16 12:0:0.0']},
         'GFDL-CM2p1_r2i1p1': {'keyerror': None,
          'name': 'GFDL-CM2p1_r2i1p1',
          'nyears': 180,
          'time_period': ['1861-1-16 12:0:0.0', '2040-12-16 12:0:0.0']},
         'GPCPv2.3': {'name': 'GPCPv2.3',
          'nyears': 41,
          'time_period': ['1979-1-1 0:0:0.0', '2019-7-1 0:0:0.0']},
         'method': 'Meridional root mean square error of nino3_LatExt pr, time series are linearly detrended, observations and model regridded to generic_1x1deg',
         'name': 'pr Meridional RMSE',
         'ref': 'Using CDAT regridding and rms (uncentered and biased) calculation',
         'time_frequency': 'monthly',
         'units': 'mm/day'},
        'metric': {'datasets': "GFDL-CM2p1_r2i1p1; ERA-Interim's pr & GPCPv2.3's precip; 's ",
         'method': 'The metric is the statistical value between the model and the observations',
         'name': 'BiasPrLatRmse',
         'units': 'mm/day'}},
       'BiasPrLonRmse': {'diagnostic': {'ERA-Interim': {'name': 'ERA-Interim',
          'nyears': 40,
          'time_period': ['1979-1-16 12:0:0.0', '2019-3-16 12:0:0.0']},
         'GFDL-CM2p1_r2i1p1': {'keyerror': None,
          'name': 'GFDL-CM2p1_r2i1p1',
          'nyears': 180,
          'time_period': ['1861-1-16 12:0:0.0', '2040-12-16 12:0:0.0']},
         'GPCPv2.3': {'name': 'GPCPv2.3',
          'nyears': 41,
          'time_period': ['1979-1-1 0:0:0.0', '2019-7-1 0:0:0.0']},
         'method': 'Zonal root mean square error of equatorial_pacific pr, time series are linearly detrended, observations and model regridded to generic_1x1deg',
         'name': 'pr Zonal RMSE',
         'ref': 'Using CDAT regridding and rms (uncentered and biased) calculation',
         'time_frequency': 'monthly',
         'units': 'mm/day'},
        'metric': {'datasets': "GFDL-CM2p1_r2i1p1; ERA-Interim's pr & GPCPv2.3's precip; 's ",
         'method': 'The metric is the statistical value between the model and the observations',
         'name': 'BiasPrLonRmse',
         'units': 'mm/day'}},
       'BiasSstLonRmse': {'diagnostic': {'ERA-Interim': {'name': 'ERA-Interim',
          'nyears': 40,
          'time_period': ['1979-1-16 12:0:0.0', '2019-3-16 12:0:0.0']},
         'GFDL-CM2p1_r2i1p1': {'keyerror': None,
          'name': 'GFDL-CM2p1_r2i1p1',
          'nyears': 145,
          'time_period': ['1861-1-16 12:0:0.0', '2005-12-16 12:0:0.0']},
         'HadISST': {'name': 'HadISST',
          'nyears': 151,
          'time_period': ['1870-1-16 11:59:59.5', '2020-10-16 12:0:0.0']},
         'Tropflux': {'name': 'Tropflux',
          'nyears': 40,
          'time_period': ['1979-1-15 0:0:0.0', '2018-12-15 12:0:0.0']},
         'method': 'Zonal root mean square error of equatorial_pacific sst, time series are linearly detrended, observations and model regridded to generic_1x1deg',
         'name': 'sst Zonal RMSE',
         'ref': 'Using CDAT regridding and rms (uncentered and biased) calculation',
         'time_frequency': 'monthly',
         'units': 'C'},
        'metric': {'datasets': "GFDL-CM2p1_r2i1p1; ERA-Interim's ts & HadISST's sst & Tropflux's sst; 's ",
         'method': 'The metric is the statistical value between the model and the observations',
         'name': 'BiasSstLonRmse',
         'units': 'C'}},
       'EnsoAmpl': {'diagnostic': {'ERA-Interim': {'keyerror': None,
          'name': 'ERA-Interim',
          'nyears': 40,
          'time_period': ['1979-1-16 12:0:0.0', '2019-3-16 12:0:0.0']},
         'GFDL-CM2p1_r2i1p1': {'keyerror': None,
          'name': 'GFDL-CM2p1_r2i1p1',
          'nyears': 145,
          'time_period': ['1861-1-16 12:0:0.0', '2005-12-16 12:0:0.0']},
         'HadISST': {'keyerror': None,
          'name': 'HadISST',
          'nyears': 151,
          'time_period': ['1870-1-16 11:59:59.5', '2020-10-16 12:0:0.0']},
         'Tropflux': {'keyerror': None,
          'name': 'Tropflux',
          'nyears': 40,
          'time_period': ['1979-1-15 0:0:0.0', '2018-12-15 12:0:0.0']},
         'method': 'Standard deviation of nino3.4 sstA, time series are linearly detrended',
         'name': 'ENSO amplitude',
         'ref': 'Using CDAT regression calculation',
         'time_frequency': 'monthly',
         'units': 'C'},
        'metric': {'datasets': "GFDL-CM2p1_r2i1p1; ERA-Interim's ts & HadISST's sst & Tropflux's sst; 's ",
         'method': 'The metric is the absolute value of the relative difference between model and observations values (M = 100 * abs[[model-obs] / obs])',
         'name': 'EnsoAmpl',
         'units': '%'}},
       'EnsoDuration': {'diagnostic': {'ERA-Interim': {'keyerror': None,
          'name': 'ERA-Interim',
          'nyears': 40,
          'time_period': ['1979-1-16 12:0:0.0', '2019-3-16 12:0:0.0']},
         'GFDL-CM2p1_r2i1p1': {'keyerror': None,
          'name': 'GFDL-CM2p1_r2i1p1',
          'nyears': 145,
          'time_period': ['1861-1-16 12:0:0.0', '2005-12-16 12:0:0.0']},
         'HadISST': {'keyerror': None,
          'name': 'HadISST',
          'nyears': 151,
          'time_period': ['1870-1-16 11:59:59.5', '2020-10-16 12:0:0.0']},
         'Tropflux': {'keyerror': None,
          'name': 'Tropflux',
          'nyears': 40,
          'time_period': ['1979-1-15 0:0:0.0', '2018-12-15 12:0:0.0']},
         'method': 'nino3.4 SSTA during DEC regressed against nino3.4 SSTA during 6 years (centered on ENSO), the duration is the number of consecutive months during which the regression is above 0.25, time series are linearly detrended, smoothing using a triangle shaped window of 5 points',
         'name': 'ENSO Duration based on life cyle SSTA pattern',
         'ref': 'Using CDAT',
         'time_frequency': 'monthly',
         'units': 'months'},
        'metric': {'datasets': "GFDL-CM2p1_r2i1p1; ERA-Interim's ts & HadISST's sst & Tropflux's sst; 's ",
         'method': 'The metric is the absolute value of the relative difference between model and observations values (M = 100 * abs[[model-obs] / obs])',
         'name': 'EnsoDuration',
         'units': '%'}},
       'EnsoSeasonality': {'diagnostic': {'ERA-Interim': {'keyerror': None,
          'name': 'ERA-Interim',
          'nyears': 40,
          'time_period': ['1979-1-16 12:0:0.0', '2019-3-16 12:0:0.0']},
         'GFDL-CM2p1_r2i1p1': {'keyerror': None,
          'name': 'GFDL-CM2p1_r2i1p1',
          'nyears': 145,
          'time_period': ['1861-1-16 12:0:0.0', '2005-12-16 12:0:0.0']},
         'HadISST': {'keyerror': None,
          'name': 'HadISST',
          'nyears': 151,
          'time_period': ['1870-1-16 11:59:59.5', '2020-10-16 12:0:0.0']},
         'Tropflux': {'keyerror': None,
          'name': 'Tropflux',
          'nyears': 40,
          'time_period': ['1979-1-15 0:0:0.0', '2018-12-15 12:0:0.0']},
         'method': 'Ratio between NDJ and MAM standard deviation nino3.4 sstA, time series are linearly detrended',
         'name': 'ENSO seasonality',
         'ref': 'Using CDAT std dev calculation',
         'time_frequency': 'monthly',
         'units': 'C/C'},
        'metric': {'datasets': "GFDL-CM2p1_r2i1p1; ERA-Interim's ts & HadISST's sst & Tropflux's sst; 's ",
         'method': 'The metric is the absolute value of the relative difference between model and observations values (M = 100 * abs[[model-obs] / obs])',
         'name': 'EnsoSeasonality',
         'units': '%'}},
       'EnsoSstDiversity_2': {'diagnostic': {'ERA-Interim': {'keyerror': None,
          'name': 'ERA-Interim',
          'nyears': 40,
          'time_period': ['1979-1-16 12:0:0.0', '2019-3-16 12:0:0.0']},
         'GFDL-CM2p1_r2i1p1': {'keyerror': None,
          'name': 'GFDL-CM2p1_r2i1p1',
          'nyears': 145,
          'time_period': ['1861-1-16 12:0:0.0', '2005-12-16 12:0:0.0']},
         'HadISST': {'keyerror': None,
          'name': 'HadISST',
          'nyears': 151,
          'time_period': ['1870-1-16 11:59:59.5', '2020-10-16 12:0:0.0']},
         'Tropflux': {'keyerror': None,
          'name': 'Tropflux',
          'nyears': 40,
          'time_period': ['1979-1-15 0:0:0.0', '2018-12-15 12:0:0.0']},
         'method': 'Nino (Nina) events = nino3.4 sstA > 0.75 (< -0.75) during DEC, zonal SSTA (meridional averaged [-5.0 ; 5.0]), the zonal SSTA maximum (minimum) is located for each event, the diversity is the interquartile range (IQR = Q3 - Q1), time series are linearly detrended, smoothing using a triangle shaped window of 5 points',
         'name': 'ENSO Diversity (interquartile range)',
         'ref': 'Using CDAT regridding',
         'time_frequency': 'monthly',
         'units': 'long'},
        'metric': {'datasets': "GFDL-CM2p1_r2i1p1; ERA-Interim's ts & HadISST's sst & Tropflux's sst; 's ",
         'method': 'The metric is the absolute value of the relative difference between model and observations values (M = 100 * abs[[model-obs] / obs])',
         'name': 'EnsoSstDiversity',
         'units': '%'}},
       'EnsoSstLonRmse': {'diagnostic': {'ERA-Interim': {'name': 'ERA-Interim',
          'nyears': 40,
          'time_period': ['1979-1-16 12:0:0.0', '2019-3-16 12:0:0.0']},
         'GFDL-CM2p1_r2i1p1': {'keyerror': None,
          'name': 'GFDL-CM2p1_r2i1p1',
          'nyears': 145,
          'time_period': ['1861-1-16 12:0:0.0', '2005-12-16 12:0:0.0']},
         'HadISST': {'name': 'HadISST',
          'nyears': 151,
          'time_period': ['1870-1-16 11:59:59.5', '2020-10-16 12:0:0.0']},
         'Tropflux': {'name': 'Tropflux',
          'nyears': 40,
          'time_period': ['1979-1-15 0:0:0.0', '2018-12-15 12:0:0.0']},
         'method': 'nino3.4 SSTA during DEC regressed against equatorial_pacific SSTA, time series are linearly detrended, smoothing using a triangle shaped window of 5 points, observations and model regridded to generic_1x1deg',
         'name': 'ENSO Zonal SSTA pattern',
         'ref': 'Using CDAT regridding and rms (uncentered and biased) calculation',
         'time_frequency': 'monthly',
         'units': 'C/C'},
        'metric': {'datasets': "GFDL-CM2p1_r2i1p1; ERA-Interim's ts & HadISST's sst & Tropflux's sst; 's ",
         'method': 'The metric is the statistical value between the model and the observations',
         'name': 'EnsoSstLonRmse',
         'units': 'C/C'}},
       'EnsoSstSkew': {'diagnostic': {'ERA-Interim': {'keyerror': None,
          'name': 'ERA-Interim',
          'nyears': 40,
          'time_period': ['1979-1-16 12:0:0.0', '2019-3-16 12:0:0.0']},
         'GFDL-CM2p1_r2i1p1': {'keyerror': None,
          'name': 'GFDL-CM2p1_r2i1p1',
          'nyears': 145,
          'time_period': ['1861-1-16 12:0:0.0', '2005-12-16 12:0:0.0']},
         'HadISST': {'keyerror': None,
          'name': 'HadISST',
          'nyears': 151,
          'time_period': ['1870-1-16 11:59:59.5', '2020-10-16 12:0:0.0']},
         'Tropflux': {'keyerror': None,
          'name': 'Tropflux',
          'nyears': 40,
          'time_period': ['1979-1-15 0:0:0.0', '2018-12-15 12:0:0.0']},
         'method': 'Standard deviation of nino3.4 sstA, time series are linearly detrended',
         'name': 'ENSO skewness',
         'ref': 'Using CDAT regression calculation',
         'time_frequency': 'monthly',
         'units': 'C'},
        'metric': {'datasets': "GFDL-CM2p1_r2i1p1; ERA-Interim's ts & HadISST's sst & Tropflux's sst; 's ",
         'method': 'The metric is the absolute value of the relative difference between model and observations values (M = 100 * abs[[model-obs] / obs])',
         'name': 'EnsoSstSkew',
         'units': '%'}},
       'EnsoSstTsRmse': {'diagnostic': {'ERA-Interim': {'name': 'ERA-Interim',
          'nyears': 40,
          'time_period': ['1979-1-16 12:0:0.0', '2019-3-16 12:0:0.0']},
         'GFDL-CM2p1_r2i1p1': {'keyerror': None,
          'name': 'GFDL-CM2p1_r2i1p1',
          'nyears': 145,
          'time_period': ['1861-1-16 12:0:0.0', '2005-12-16 12:0:0.0']},
         'HadISST': {'name': 'HadISST',
          'nyears': 151,
          'time_period': ['1870-1-16 11:59:59.5', '2020-10-16 12:0:0.0']},
         'Tropflux': {'name': 'Tropflux',
          'nyears': 40,
          'time_period': ['1979-1-15 0:0:0.0', '2018-12-15 12:0:0.0']},
         'method': 'nino3.4 SSTA during DEC regressed against nino3.4 SSTA during 6 years (centered on ENSO), time series are linearly detrended, smoothing using a triangle shaped window of 5 points',
         'name': 'ENSO life cyle SSTA pattern',
         'ref': 'Using CDAT regridding and rms (uncentered and biased) calculation',
         'time_frequency': 'monthly',
         'units': 'C/C'},
        'metric': {'datasets': "GFDL-CM2p1_r2i1p1; ERA-Interim's ts & HadISST's sst & Tropflux's sst; 's ",
         'method': 'The metric is the statistical value between the model and the observations',
         'name': 'EnsoSstTsRmse',
         'units': 'C/C'}},
       'SeasonalPrLatRmse': {'diagnostic': {'ERA-Interim': {'name': 'ERA-Interim',
          'nyears': 40,
          'time_period': ['1979-1-16 12:0:0.0', '2019-3-16 12:0:0.0']},
         'GFDL-CM2p1_r2i1p1': {'keyerror': None,
          'name': 'GFDL-CM2p1_r2i1p1',
          'nyears': 180,
          'time_period': ['1861-1-16 12:0:0.0', '2040-12-16 12:0:0.0']},
         'GPCPv2.3': {'name': 'GPCPv2.3',
          'nyears': 41,
          'time_period': ['1979-1-1 0:0:0.0', '2019-7-1 0:0:0.0']},
         'method': 'Meridional root mean square error of nino3_LatExt climatological pr STD, time series are linearly detrended, observations and model regridded to generic_1x1deg',
         'name': 'pr meridional seasonality RMSE',
         'ref': 'Using CDAT regridding and rms (uncentered and biased) calculation',
         'time_frequency': 'monthly',
         'units': 'mm/day'},
        'metric': {'datasets': "GFDL-CM2p1_r2i1p1; ERA-Interim's pr & GPCPv2.3's precip; 's ",
         'method': 'The metric is the statistical value between the model and the observations',
         'name': 'SeasonalPrLatRmse',
         'units': 'mm/day'}},
       'SeasonalPrLonRmse': {'diagnostic': {'ERA-Interim': {'name': 'ERA-Interim',
          'nyears': 40,
          'time_period': ['1979-1-16 12:0:0.0', '2019-3-16 12:0:0.0']},
         'GFDL-CM2p1_r2i1p1': {'keyerror': None,
          'name': 'GFDL-CM2p1_r2i1p1',
          'nyears': 180,
          'time_period': ['1861-1-16 12:0:0.0', '2040-12-16 12:0:0.0']},
         'GPCPv2.3': {'name': 'GPCPv2.3',
          'nyears': 41,
          'time_period': ['1979-1-1 0:0:0.0', '2019-7-1 0:0:0.0']},
         'method': 'Zonal root mean square error of equatorial_pacific climatological pr STD, time series are linearly detrended, observations and model regridded to generic_1x1deg',
         'name': 'pr zonal seasonality RMSE',
         'ref': 'Using CDAT regridding and rms (uncentered and biased) calculation',
         'time_frequency': 'monthly',
         'units': 'mm/day'},
        'metric': {'datasets': "GFDL-CM2p1_r2i1p1; ERA-Interim's pr & GPCPv2.3's precip; 's ",
         'method': 'The metric is the statistical value between the model and the observations',
         'name': 'SeasonalPrLonRmse',
         'units': 'mm/day'}},
       'SeasonalSstLonRmse': {'diagnostic': {'ERA-Interim': {'name': 'ERA-Interim',
          'nyears': 40,
          'time_period': ['1979-1-16 12:0:0.0', '2019-3-16 12:0:0.0']},
         'GFDL-CM2p1_r2i1p1': {'keyerror': None,
          'name': 'GFDL-CM2p1_r2i1p1',
          'nyears': 145,
          'time_period': ['1861-1-16 12:0:0.0', '2005-12-16 12:0:0.0']},
         'HadISST': {'name': 'HadISST',
          'nyears': 151,
          'time_period': ['1870-1-16 11:59:59.5', '2020-10-16 12:0:0.0']},
         'Tropflux': {'name': 'Tropflux',
          'nyears': 40,
          'time_period': ['1979-1-15 0:0:0.0', '2018-12-15 12:0:0.0']},
         'method': 'Zonal root mean square error of equatorial_pacific climatological sst STD, time series are linearly detrended, observations and model regridded to generic_1x1deg',
         'name': 'sst zonal seasonality RMSE',
         'ref': 'Using CDAT regridding and rms (uncentered and biased) calculation',
         'time_frequency': 'monthly',
         'units': 'C'},
        'metric': {'datasets': "GFDL-CM2p1_r2i1p1; ERA-Interim's ts & HadISST's sst & Tropflux's sst; 's ",
         'method': 'The metric is the statistical value between the model and the observations',
         'name': 'SeasonalSstLonRmse',
         'units': 'C'}}},
      'name': 'Metrics Collection for ENSO performance'},
     'value': {'BiasPrLatRmse': {'diagnostic': {'ERA-Interim': {'value': None,
         'value_error': None},
        'GFDL-CM2p1_r2i1p1': {'value': None, 'value_error': None},
        'GPCPv2.3': {'value': None, 'value_error': None}},
       'metric': {'ERA-Interim': {'value': 1.9323881478767069,
         'value_error': None},
        'GPCPv2.3': {'value': 1.9140332637108886, 'value_error': None}}},
      'BiasPrLonRmse': {'diagnostic': {'ERA-Interim': {'value': None,
         'value_error': None},
        'GFDL-CM2p1_r2i1p1': {'value': None, 'value_error': None},
        'GPCPv2.3': {'value': None, 'value_error': None}},
       'metric': {'ERA-Interim': {'value': 2.236259220180604,
         'value_error': None},
        'GPCPv2.3': {'value': 1.2909706572282023, 'value_error': None}}},
      'BiasSstLonRmse': {'diagnostic': {'ERA-Interim': {'value': None,
         'value_error': None},
        'GFDL-CM2p1_r2i1p1': {'value': None, 'value_error': None},
        'HadISST': {'value': None, 'value_error': None},
        'Tropflux': {'value': None, 'value_error': None}},
       'metric': {'ERA-Interim': {'value': 1.6023614354146998,
         'value_error': None},
        'HadISST': {'value': 1.4351116421437915, 'value_error': None},
        'Tropflux': {'value': 1.6508882712504998, 'value_error': None}}},
      'EnsoAmpl': {'diagnostic': {'ERA-Interim': {'value': 0.8989844997845644,
         'value_error': 0.14214193002531866},
        'GFDL-CM2p1_r2i1p1': {'value': 1.3420510974823325,
         'value_error': 0.11145127737865866},
        'HadISST': {'value': 0.7665787872085695,
         'value_error': 0.06238329697691264},
        'Tropflux': {'value': 0.9039789553693535,
         'value_error': 0.14293162279134272}},
       'metric': {'ERA-Interim': {'value': 49.285232148490444,
         'value_error': 36.00153146965944},
        'HadISST': {'value': 75.07021063931285,
         'value_error': 28.78580133992793},
        'Tropflux': {'value': 48.46043588857539,
         'value_error': 35.80262412912723}}},
      'EnsoDuration': {'diagnostic': {'ERA-Interim': {'value': 13.0,
         'value_error': None},
        'GFDL-CM2p1_r2i1p1': {'value': 14.0, 'value_error': None},
        'HadISST': {'value': 13.0, 'value_error': None},
        'Tropflux': {'value': 13.0, 'value_error': None}},
       'metric': {'ERA-Interim': {'value': 7.6923076923076925,
         'value_error': None},
        'HadISST': {'value': 7.6923076923076925, 'value_error': None},
        'Tropflux': {'value': 7.6923076923076925, 'value_error': None}}},
      'EnsoSeasonality': {'diagnostic': {'ERA-Interim': {'value': 2.0466846866656914,
         'value_error': 0.6513411033995022},
        'GFDL-CM2p1_r2i1p1': {'value': 1.110069379783914,
         'value_error': 0.18469202596375817},
        'HadISST': {'value': 1.6639865947361325,
         'value_error': 0.2712772451657809},
        'Tropflux': {'value': 2.0532132553583624,
         'value_error': 0.6534187683977347}},
       'metric': {'ERA-Interim': {'value': 45.76255995776478,
         'value_error': 26.284594295123494},
        'HadISST': {'value': 33.288562342057574,
         'value_error': 21.975235702586726},
        'Tropflux': {'value': 45.93501786105674,
         'value_error': 26.201017599440828}}},
      'EnsoSstDiversity_2': {'diagnostic': {'ERA-Interim': {'value': 33.25,
         'value_error': None},
        'GFDL-CM2p1_r2i1p1': {'value': 68.5, 'value_error': None},
        'HadISST': {'value': 49.0, 'value_error': None},
        'Tropflux': {'value': 32.0, 'value_error': None}},
       'metric': {'ERA-Interim': {'value': 106.01503759398496,
         'value_error': None},
        'HadISST': {'value': 39.795918367346935, 'value_error': None},
        'Tropflux': {'value': 114.0625, 'value_error': None}}},
      'EnsoSstLonRmse': {'diagnostic': {'ERA-Interim': {'value': None,
         'value_error': None},
        'GFDL-CM2p1_r2i1p1': {'value': None, 'value_error': None},
        'HadISST': {'value': None, 'value_error': None},
        'Tropflux': {'value': None, 'value_error': None}},
       'metric': {'ERA-Interim': {'value': 0.30471772382580364,
         'value_error': None},
        'HadISST': {'value': 0.32676194901437816, 'value_error': None},
        'Tropflux': {'value': 0.3075857850964875, 'value_error': None}}},
      'EnsoSstSkew': {'diagnostic': {'ERA-Interim': {'value': 0.39098111106809963,
         'value_error': 0.061819541653923164},
        'GFDL-CM2p1_r2i1p1': {'value': 0.22238960339598704,
         'value_error': 0.018468451328502663},
        'HadISST': {'value': 0.38989908235027515,
         'value_error': 0.03172953733021198},
        'Tropflux': {'value': 0.39744741059612115,
         'value_error': 0.06284195338099416}},
       'metric': {'ERA-Interim': {'value': 43.12011575483705,
         'value_error': 13.71711664423685},
        'HadISST': {'value': 42.96226550330836,
         'value_error': 9.378391035834102},
        'Tropflux': {'value': 44.04552716485671,
         'value_error': 13.493945018211138}}},
      'EnsoSstTsRmse': {'diagnostic': {'ERA-Interim': {'value': None,
         'value_error': None},
        'GFDL-CM2p1_r2i1p1': {'value': None, 'value_error': None},
        'HadISST': {'value': None, 'value_error': None},
        'Tropflux': {'value': None, 'value_error': None}},
       'metric': {'ERA-Interim': {'value': 0.12861969375159582,
         'value_error': None},
        'HadISST': {'value': 0.12353953334454161, 'value_error': None},
        'Tropflux': {'value': 0.12673965188692649, 'value_error': None}}},
      'SeasonalPrLatRmse': {'diagnostic': {'ERA-Interim': {'value': None,
         'value_error': None},
        'GFDL-CM2p1_r2i1p1': {'value': None, 'value_error': None},
        'GPCPv2.3': {'value': None, 'value_error': None}},
       'metric': {'ERA-Interim': {'value': 1.4633688408412837,
         'value_error': None},
        'GPCPv2.3': {'value': 1.6238232186893422, 'value_error': None}}},
      'SeasonalPrLonRmse': {'diagnostic': {'ERA-Interim': {'value': None,
         'value_error': None},
        'GFDL-CM2p1_r2i1p1': {'value': None, 'value_error': None},
        'GPCPv2.3': {'value': None, 'value_error': None}},
       'metric': {'ERA-Interim': {'value': 0.7254740512841211,
         'value_error': None},
        'GPCPv2.3': {'value': 0.5841313287479503, 'value_error': None}}},
      'SeasonalSstLonRmse': {'diagnostic': {'ERA-Interim': {'value': None,
         'value_error': None},
        'GFDL-CM2p1_r2i1p1': {'value': None, 'value_error': None},
        'HadISST': {'value': None, 'value_error': None},
        'Tropflux': {'value': None, 'value_error': None}},
       'metric': {'ERA-Interim': {'value': 0.16267485471387266,
         'value_error': None},
        'HadISST': {'value': 0.1906087970043022, 'value_error': None},
        'Tropflux': {'value': 0.1531278231438836, 'value_error': None}}}}},
    'r3i1p1': {'metadata': {'description_of_the_collection': 'Describe which science question this collection is about',
      'metrics': {'BiasPrLatRmse': {'diagnostic': {'ERA-Interim': {'name': 'ERA-Interim',
          'nyears': 40,
          'time_period': ['1979-1-16 12:0:0.0', '2019-3-16 12:0:0.0']},
         'GFDL-CM2p1_r3i1p1': {'keyerror': None,
          'name': 'GFDL-CM2p1_r3i1p1',
          'nyears': 145,
          'time_period': ['1861-1-16 12:0:0.0', '2005-12-16 12:0:0.0']},
         'GPCPv2.3': {'name': 'GPCPv2.3',
          'nyears': 41,
          'time_period': ['1979-1-1 0:0:0.0', '2019-7-1 0:0:0.0']},
         'method': 'Meridional root mean square error of nino3_LatExt pr, time series are linearly detrended, observations and model regridded to generic_1x1deg',
         'name': 'pr Meridional RMSE',
         'ref': 'Using CDAT regridding and rms (uncentered and biased) calculation',
         'time_frequency': 'monthly',
         'units': 'mm/day'},
        'metric': {'datasets': "GFDL-CM2p1_r3i1p1; ERA-Interim's pr & GPCPv2.3's precip; 's ",
         'method': 'The metric is the statistical value between the model and the observations',
         'name': 'BiasPrLatRmse',
         'units': 'mm/day'}},
       'BiasPrLonRmse': {'diagnostic': {'ERA-Interim': {'name': 'ERA-Interim',
          'nyears': 40,
          'time_period': ['1979-1-16 12:0:0.0', '2019-3-16 12:0:0.0']},
         'GFDL-CM2p1_r3i1p1': {'keyerror': None,
          'name': 'GFDL-CM2p1_r3i1p1',
          'nyears': 145,
          'time_period': ['1861-1-16 12:0:0.0', '2005-12-16 12:0:0.0']},
         'GPCPv2.3': {'name': 'GPCPv2.3',
          'nyears': 41,
          'time_period': ['1979-1-1 0:0:0.0', '2019-7-1 0:0:0.0']},
         'method': 'Zonal root mean square error of equatorial_pacific pr, time series are linearly detrended, observations and model regridded to generic_1x1deg',
         'name': 'pr Zonal RMSE',
         'ref': 'Using CDAT regridding and rms (uncentered and biased) calculation',
         'time_frequency': 'monthly',
         'units': 'mm/day'},
        'metric': {'datasets': "GFDL-CM2p1_r3i1p1; ERA-Interim's pr & GPCPv2.3's precip; 's ",
         'method': 'The metric is the statistical value between the model and the observations',
         'name': 'BiasPrLonRmse',
         'units': 'mm/day'}},
       'BiasSstLonRmse': {'diagnostic': {'ERA-Interim': {'name': 'ERA-Interim',
          'nyears': 40,
          'time_period': ['1979-1-16 12:0:0.0', '2019-3-16 12:0:0.0']},
         'GFDL-CM2p1_r3i1p1': {'keyerror': None,
          'name': 'GFDL-CM2p1_r3i1p1',
          'nyears': 145,
          'time_period': ['1861-1-16 12:0:0.0', '2005-12-16 12:0:0.0']},
         'HadISST': {'name': 'HadISST',
          'nyears': 151,
          'time_period': ['1870-1-16 11:59:59.5', '2020-10-16 12:0:0.0']},
         'Tropflux': {'name': 'Tropflux',
          'nyears': 40,
          'time_period': ['1979-1-15 0:0:0.0', '2018-12-15 12:0:0.0']},
         'method': 'Zonal root mean square error of equatorial_pacific sst, time series are linearly detrended, observations and model regridded to generic_1x1deg',
         'name': 'sst Zonal RMSE',
         'ref': 'Using CDAT regridding and rms (uncentered and biased) calculation',
         'time_frequency': 'monthly',
         'units': 'C'},
        'metric': {'datasets': "GFDL-CM2p1_r3i1p1; ERA-Interim's ts & HadISST's sst & Tropflux's sst; 's ",
         'method': 'The metric is the statistical value between the model and the observations',
         'name': 'BiasSstLonRmse',
         'units': 'C'}},
       'EnsoAmpl': {'diagnostic': {'ERA-Interim': {'keyerror': None,
          'name': 'ERA-Interim',
          'nyears': 40,
          'time_period': ['1979-1-16 12:0:0.0', '2019-3-16 12:0:0.0']},
         'GFDL-CM2p1_r3i1p1': {'keyerror': None,
          'name': 'GFDL-CM2p1_r3i1p1',
          'nyears': 145,
          'time_period': ['1861-1-16 12:0:0.0', '2005-12-16 12:0:0.0']},
         'HadISST': {'keyerror': None,
          'name': 'HadISST',
          'nyears': 151,
          'time_period': ['1870-1-16 11:59:59.5', '2020-10-16 12:0:0.0']},
         'Tropflux': {'keyerror': None,
          'name': 'Tropflux',
          'nyears': 40,
          'time_period': ['1979-1-15 0:0:0.0', '2018-12-15 12:0:0.0']},
         'method': 'Standard deviation of nino3.4 sstA, time series are linearly detrended',
         'name': 'ENSO amplitude',
         'ref': 'Using CDAT regression calculation',
         'time_frequency': 'monthly',
         'units': 'C'},
        'metric': {'datasets': "GFDL-CM2p1_r3i1p1; ERA-Interim's ts & HadISST's sst & Tropflux's sst; 's ",
         'method': 'The metric is the absolute value of the relative difference between model and observations values (M = 100 * abs[[model-obs] / obs])',
         'name': 'EnsoAmpl',
         'units': '%'}},
       'EnsoDuration': {'diagnostic': {'ERA-Interim': {'keyerror': None,
          'name': 'ERA-Interim',
          'nyears': 40,
          'time_period': ['1979-1-16 12:0:0.0', '2019-3-16 12:0:0.0']},
         'GFDL-CM2p1_r3i1p1': {'keyerror': None,
          'name': 'GFDL-CM2p1_r3i1p1',
          'nyears': 145,
          'time_period': ['1861-1-16 12:0:0.0', '2005-12-16 12:0:0.0']},
         'HadISST': {'keyerror': None,
          'name': 'HadISST',
          'nyears': 151,
          'time_period': ['1870-1-16 11:59:59.5', '2020-10-16 12:0:0.0']},
         'Tropflux': {'keyerror': None,
          'name': 'Tropflux',
          'nyears': 40,
          'time_period': ['1979-1-15 0:0:0.0', '2018-12-15 12:0:0.0']},
         'method': 'nino3.4 SSTA during DEC regressed against nino3.4 SSTA during 6 years (centered on ENSO), the duration is the number of consecutive months during which the regression is above 0.25, time series are linearly detrended, smoothing using a triangle shaped window of 5 points',
         'name': 'ENSO Duration based on life cyle SSTA pattern',
         'ref': 'Using CDAT',
         'time_frequency': 'monthly',
         'units': 'months'},
        'metric': {'datasets': "GFDL-CM2p1_r3i1p1; ERA-Interim's ts & HadISST's sst & Tropflux's sst; 's ",
         'method': 'The metric is the absolute value of the relative difference between model and observations values (M = 100 * abs[[model-obs] / obs])',
         'name': 'EnsoDuration',
         'units': '%'}},
       'EnsoSeasonality': {'diagnostic': {'ERA-Interim': {'keyerror': None,
          'name': 'ERA-Interim',
          'nyears': 40,
          'time_period': ['1979-1-16 12:0:0.0', '2019-3-16 12:0:0.0']},
         'GFDL-CM2p1_r3i1p1': {'keyerror': None,
          'name': 'GFDL-CM2p1_r3i1p1',
          'nyears': 145,
          'time_period': ['1861-1-16 12:0:0.0', '2005-12-16 12:0:0.0']},
         'HadISST': {'keyerror': None,
          'name': 'HadISST',
          'nyears': 151,
          'time_period': ['1870-1-16 11:59:59.5', '2020-10-16 12:0:0.0']},
         'Tropflux': {'keyerror': None,
          'name': 'Tropflux',
          'nyears': 40,
          'time_period': ['1979-1-15 0:0:0.0', '2018-12-15 12:0:0.0']},
         'method': 'Ratio between NDJ and MAM standard deviation nino3.4 sstA, time series are linearly detrended',
         'name': 'ENSO seasonality',
         'ref': 'Using CDAT std dev calculation',
         'time_frequency': 'monthly',
         'units': 'C/C'},
        'metric': {'datasets': "GFDL-CM2p1_r3i1p1; ERA-Interim's ts & HadISST's sst & Tropflux's sst; 's ",
         'method': 'The metric is the absolute value of the relative difference between model and observations values (M = 100 * abs[[model-obs] / obs])',
         'name': 'EnsoSeasonality',
         'units': '%'}},
       'EnsoSstDiversity_2': {'diagnostic': {'ERA-Interim': {'keyerror': None,
          'name': 'ERA-Interim',
          'nyears': 40,
          'time_period': ['1979-1-16 12:0:0.0', '2019-3-16 12:0:0.0']},
         'GFDL-CM2p1_r3i1p1': {'keyerror': None,
          'name': 'GFDL-CM2p1_r3i1p1',
          'nyears': 145,
          'time_period': ['1861-1-16 12:0:0.0', '2005-12-16 12:0:0.0']},
         'HadISST': {'keyerror': None,
          'name': 'HadISST',
          'nyears': 151,
          'time_period': ['1870-1-16 11:59:59.5', '2020-10-16 12:0:0.0']},
         'Tropflux': {'keyerror': None,
          'name': 'Tropflux',
          'nyears': 40,
          'time_period': ['1979-1-15 0:0:0.0', '2018-12-15 12:0:0.0']},
         'method': 'Nino (Nina) events = nino3.4 sstA > 0.75 (< -0.75) during DEC, zonal SSTA (meridional averaged [-5.0 ; 5.0]), the zonal SSTA maximum (minimum) is located for each event, the diversity is the interquartile range (IQR = Q3 - Q1), time series are linearly detrended, smoothing using a triangle shaped window of 5 points',
         'name': 'ENSO Diversity (interquartile range)',
         'ref': 'Using CDAT regridding',
         'time_frequency': 'monthly',
         'units': 'long'},
        'metric': {'datasets': "GFDL-CM2p1_r3i1p1; ERA-Interim's ts & HadISST's sst & Tropflux's sst; 's ",
         'method': 'The metric is the absolute value of the relative difference between model and observations values (M = 100 * abs[[model-obs] / obs])',
         'name': 'EnsoSstDiversity',
         'units': '%'}},
       'EnsoSstLonRmse': {'diagnostic': {'ERA-Interim': {'name': 'ERA-Interim',
          'nyears': 40,
          'time_period': ['1979-1-16 12:0:0.0', '2019-3-16 12:0:0.0']},
         'GFDL-CM2p1_r3i1p1': {'keyerror': None,
          'name': 'GFDL-CM2p1_r3i1p1',
          'nyears': 145,
          'time_period': ['1861-1-16 12:0:0.0', '2005-12-16 12:0:0.0']},
         'HadISST': {'name': 'HadISST',
          'nyears': 151,
          'time_period': ['1870-1-16 11:59:59.5', '2020-10-16 12:0:0.0']},
         'Tropflux': {'name': 'Tropflux',
          'nyears': 40,
          'time_period': ['1979-1-15 0:0:0.0', '2018-12-15 12:0:0.0']},
         'method': 'nino3.4 SSTA during DEC regressed against equatorial_pacific SSTA, time series are linearly detrended, smoothing using a triangle shaped window of 5 points, observations and model regridded to generic_1x1deg',
         'name': 'ENSO Zonal SSTA pattern',
         'ref': 'Using CDAT regridding and rms (uncentered and biased) calculation',
         'time_frequency': 'monthly',
         'units': 'C/C'},
        'metric': {'datasets': "GFDL-CM2p1_r3i1p1; ERA-Interim's ts & HadISST's sst & Tropflux's sst; 's ",
         'method': 'The metric is the statistical value between the model and the observations',
         'name': 'EnsoSstLonRmse',
         'units': 'C/C'}},
       'EnsoSstSkew': {'diagnostic': {'ERA-Interim': {'keyerror': None,
          'name': 'ERA-Interim',
          'nyears': 40,
          'time_period': ['1979-1-16 12:0:0.0', '2019-3-16 12:0:0.0']},
         'GFDL-CM2p1_r3i1p1': {'keyerror': None,
          'name': 'GFDL-CM2p1_r3i1p1',
          'nyears': 145,
          'time_period': ['1861-1-16 12:0:0.0', '2005-12-16 12:0:0.0']},
         'HadISST': {'keyerror': None,
          'name': 'HadISST',
          'nyears': 151,
          'time_period': ['1870-1-16 11:59:59.5', '2020-10-16 12:0:0.0']},
         'Tropflux': {'keyerror': None,
          'name': 'Tropflux',
          'nyears': 40,
          'time_period': ['1979-1-15 0:0:0.0', '2018-12-15 12:0:0.0']},
         'method': 'Standard deviation of nino3.4 sstA, time series are linearly detrended',
         'name': 'ENSO skewness',
         'ref': 'Using CDAT regression calculation',
         'time_frequency': 'monthly',
         'units': 'C'},
        'metric': {'datasets': "GFDL-CM2p1_r3i1p1; ERA-Interim's ts & HadISST's sst & Tropflux's sst; 's ",
         'method': 'The metric is the absolute value of the relative difference between model and observations values (M = 100 * abs[[model-obs] / obs])',
         'name': 'EnsoSstSkew',
         'units': '%'}},
       'EnsoSstTsRmse': {'diagnostic': {'ERA-Interim': {'name': 'ERA-Interim',
          'nyears': 40,
          'time_period': ['1979-1-16 12:0:0.0', '2019-3-16 12:0:0.0']},
         'GFDL-CM2p1_r3i1p1': {'keyerror': None,
          'name': 'GFDL-CM2p1_r3i1p1',
          'nyears': 145,
          'time_period': ['1861-1-16 12:0:0.0', '2005-12-16 12:0:0.0']},
         'HadISST': {'name': 'HadISST',
          'nyears': 151,
          'time_period': ['1870-1-16 11:59:59.5', '2020-10-16 12:0:0.0']},
         'Tropflux': {'name': 'Tropflux',
          'nyears': 40,
          'time_period': ['1979-1-15 0:0:0.0', '2018-12-15 12:0:0.0']},
         'method': 'nino3.4 SSTA during DEC regressed against nino3.4 SSTA during 6 years (centered on ENSO), time series are linearly detrended, smoothing using a triangle shaped window of 5 points',
         'name': 'ENSO life cyle SSTA pattern',
         'ref': 'Using CDAT regridding and rms (uncentered and biased) calculation',
         'time_frequency': 'monthly',
         'units': 'C/C'},
        'metric': {'datasets': "GFDL-CM2p1_r3i1p1; ERA-Interim's ts & HadISST's sst & Tropflux's sst; 's ",
         'method': 'The metric is the statistical value between the model and the observations',
         'name': 'EnsoSstTsRmse',
         'units': 'C/C'}},
       'SeasonalPrLatRmse': {'diagnostic': {'ERA-Interim': {'name': 'ERA-Interim',
          'nyears': 40,
          'time_period': ['1979-1-16 12:0:0.0', '2019-3-16 12:0:0.0']},
         'GFDL-CM2p1_r3i1p1': {'keyerror': None,
          'name': 'GFDL-CM2p1_r3i1p1',
          'nyears': 145,
          'time_period': ['1861-1-16 12:0:0.0', '2005-12-16 12:0:0.0']},
         'GPCPv2.3': {'name': 'GPCPv2.3',
          'nyears': 41,
          'time_period': ['1979-1-1 0:0:0.0', '2019-7-1 0:0:0.0']},
         'method': 'Meridional root mean square error of nino3_LatExt climatological pr STD, time series are linearly detrended, observations and model regridded to generic_1x1deg',
         'name': 'pr meridional seasonality RMSE',
         'ref': 'Using CDAT regridding and rms (uncentered and biased) calculation',
         'time_frequency': 'monthly',
         'units': 'mm/day'},
        'metric': {'datasets': "GFDL-CM2p1_r3i1p1; ERA-Interim's pr & GPCPv2.3's precip; 's ",
         'method': 'The metric is the statistical value between the model and the observations',
         'name': 'SeasonalPrLatRmse',
         'units': 'mm/day'}},
       'SeasonalPrLonRmse': {'diagnostic': {'ERA-Interim': {'name': 'ERA-Interim',
          'nyears': 40,
          'time_period': ['1979-1-16 12:0:0.0', '2019-3-16 12:0:0.0']},
         'GFDL-CM2p1_r3i1p1': {'keyerror': None,
          'name': 'GFDL-CM2p1_r3i1p1',
          'nyears': 145,
          'time_period': ['1861-1-16 12:0:0.0', '2005-12-16 12:0:0.0']},
         'GPCPv2.3': {'name': 'GPCPv2.3',
          'nyears': 41,
          'time_period': ['1979-1-1 0:0:0.0', '2019-7-1 0:0:0.0']},
         'method': 'Zonal root mean square error of equatorial_pacific climatological pr STD, time series are linearly detrended, observations and model regridded to generic_1x1deg',
         'name': 'pr zonal seasonality RMSE',
         'ref': 'Using CDAT regridding and rms (uncentered and biased) calculation',
         'time_frequency': 'monthly',
         'units': 'mm/day'},
        'metric': {'datasets': "GFDL-CM2p1_r3i1p1; ERA-Interim's pr & GPCPv2.3's precip; 's ",
         'method': 'The metric is the statistical value between the model and the observations',
         'name': 'SeasonalPrLonRmse',
         'units': 'mm/day'}},
       'SeasonalSstLonRmse': {'diagnostic': {'ERA-Interim': {'name': 'ERA-Interim',
          'nyears': 40,
          'time_period': ['1979-1-16 12:0:0.0', '2019-3-16 12:0:0.0']},
         'GFDL-CM2p1_r3i1p1': {'keyerror': None,
          'name': 'GFDL-CM2p1_r3i1p1',
          'nyears': 145,
          'time_period': ['1861-1-16 12:0:0.0', '2005-12-16 12:0:0.0']},
         'HadISST': {'name': 'HadISST',
          'nyears': 151,
          'time_period': ['1870-1-16 11:59:59.5', '2020-10-16 12:0:0.0']},
         'Tropflux': {'name': 'Tropflux',
          'nyears': 40,
          'time_period': ['1979-1-15 0:0:0.0', '2018-12-15 12:0:0.0']},
         'method': 'Zonal root mean square error of equatorial_pacific climatological sst STD, time series are linearly detrended, observations and model regridded to generic_1x1deg',
         'name': 'sst zonal seasonality RMSE',
         'ref': 'Using CDAT regridding and rms (uncentered and biased) calculation',
         'time_frequency': 'monthly',
         'units': 'C'},
        'metric': {'datasets': "GFDL-CM2p1_r3i1p1; ERA-Interim's ts & HadISST's sst & Tropflux's sst; 's ",
         'method': 'The metric is the statistical value between the model and the observations',
         'name': 'SeasonalSstLonRmse',
         'units': 'C'}}},
      'name': 'Metrics Collection for ENSO performance'},
     'value': {'BiasPrLatRmse': {'diagnostic': {'ERA-Interim': {'value': None,
         'value_error': None},
        'GFDL-CM2p1_r3i1p1': {'value': None, 'value_error': None},
        'GPCPv2.3': {'value': None, 'value_error': None}},
       'metric': {'ERA-Interim': {'value': 1.9198217095113783,
         'value_error': None},
        'GPCPv2.3': {'value': 1.9119430668629682, 'value_error': None}}},
      'BiasPrLonRmse': {'diagnostic': {'ERA-Interim': {'value': None,
         'value_error': None},
        'GFDL-CM2p1_r3i1p1': {'value': None, 'value_error': None},
        'GPCPv2.3': {'value': None, 'value_error': None}},
       'metric': {'ERA-Interim': {'value': 2.343386165886233,
         'value_error': None},
        'GPCPv2.3': {'value': 1.3955269549002178, 'value_error': None}}},
      'BiasSstLonRmse': {'diagnostic': {'ERA-Interim': {'value': None,
         'value_error': None},
        'GFDL-CM2p1_r3i1p1': {'value': None, 'value_error': None},
        'HadISST': {'value': None, 'value_error': None},
        'Tropflux': {'value': None, 'value_error': None}},
       'metric': {'ERA-Interim': {'value': 1.6175962233338623,
         'value_error': None},
        'HadISST': {'value': 1.4493434560269771, 'value_error': None},
        'Tropflux': {'value': 1.666109568723837, 'value_error': None}}},
      'EnsoAmpl': {'diagnostic': {'ERA-Interim': {'value': 0.8989844997845644,
         'value_error': 0.14214193002531866},
        'GFDL-CM2p1_r3i1p1': {'value': 1.3862764795454416,
         'value_error': 0.11512399545380454},
        'HadISST': {'value': 0.7665787872085695,
         'value_error': 0.06238329697691264},
        'Tropflux': {'value': 0.9039789553693535,
         'value_error': 0.14293162279134272}},
       'metric': {'ERA-Interim': {'value': 54.20471430571422,
         'value_error': 37.18791065230729},
        'HadISST': {'value': 80.83940003002793,
         'value_error': 29.734396415509863},
        'Tropflux': {'value': 53.352738060039016,
         'value_error': 36.98244860372657}}},
      'EnsoDuration': {'diagnostic': {'ERA-Interim': {'value': 13.0,
         'value_error': None},
        'GFDL-CM2p1_r3i1p1': {'value': 15.0, 'value_error': None},
        'HadISST': {'value': 13.0, 'value_error': None},
        'Tropflux': {'value': 13.0, 'value_error': None}},
       'metric': {'ERA-Interim': {'value': 15.384615384615385,
         'value_error': None},
        'HadISST': {'value': 15.384615384615385, 'value_error': None},
        'Tropflux': {'value': 15.384615384615385, 'value_error': None}}},
      'EnsoSeasonality': {'diagnostic': {'ERA-Interim': {'value': 2.0466846866656914,
         'value_error': 0.6513411033995022},
        'GFDL-CM2p1_r3i1p1': {'value': 1.0392993246455051,
         'value_error': 0.17291738818064592},
        'HadISST': {'value': 1.6639865947361325,
         'value_error': 0.2712772451657809},
        'Tropflux': {'value': 2.0532132553583624,
         'value_error': 0.6534187683977347}},
       'metric': {'ERA-Interim': {'value': 49.22034979708304,
         'value_error': 24.608877244069717},
        'HadISST': {'value': 37.54160472606977,
         'value_error': 20.574252421114423},
        'Tropflux': {'value': 49.38181302243208,
         'value_error': 24.530628798557228}}},
      'EnsoSstDiversity_2': {'diagnostic': {'ERA-Interim': {'value': 33.25,
         'value_error': None},
        'GFDL-CM2p1_r3i1p1': {'value': 58.5, 'value_error': None},
        'HadISST': {'value': 49.0, 'value_error': None},
        'Tropflux': {'value': 32.0, 'value_error': None}},
       'metric': {'ERA-Interim': {'value': 75.93984962406014,
         'value_error': None},
        'HadISST': {'value': 19.387755102040817, 'value_error': None},
        'Tropflux': {'value': 82.8125, 'value_error': None}}},
      'EnsoSstLonRmse': {'diagnostic': {'ERA-Interim': {'value': None,
         'value_error': None},
        'GFDL-CM2p1_r3i1p1': {'value': None, 'value_error': None},
        'HadISST': {'value': None, 'value_error': None},
        'Tropflux': {'value': None, 'value_error': None}},
       'metric': {'ERA-Interim': {'value': 0.29267789778986,
         'value_error': None},
        'HadISST': {'value': 0.31459530462014146, 'value_error': None},
        'Tropflux': {'value': 0.2955656912180566, 'value_error': None}}},
      'EnsoSstSkew': {'diagnostic': {'ERA-Interim': {'value': 0.39098111106809963,
         'value_error': 0.061819541653923164},
        'GFDL-CM2p1_r3i1p1': {'value': 0.17171223209665087,
         'value_error': 0.014259924711223141},
        'HadISST': {'value': 0.38989908235027515,
         'value_error': 0.03172953733021198},
        'Tropflux': {'value': 0.39744741059612115,
         'value_error': 0.06284195338099416}},
       'metric': {'ERA-Interim': {'value': 56.08170644674886,
         'value_error': 10.591307691295306},
        'HadISST': {'value': 55.95982656291838,
         'value_error': 7.241275822462098},
        'Tropflux': {'value': 56.79623831512599,
         'value_error': 10.418991641172772}}},
      'EnsoSstTsRmse': {'diagnostic': {'ERA-Interim': {'value': None,
         'value_error': None},
        'GFDL-CM2p1_r3i1p1': {'value': None, 'value_error': None},
        'HadISST': {'value': None, 'value_error': None},
        'Tropflux': {'value': None, 'value_error': None}},
       'metric': {'ERA-Interim': {'value': 0.15074702931704578,
         'value_error': None},
        'HadISST': {'value': 0.13768532805606323, 'value_error': None},
        'Tropflux': {'value': 0.14870641555089992, 'value_error': None}}},
      'SeasonalPrLatRmse': {'diagnostic': {'ERA-Interim': {'value': None,
         'value_error': None},
        'GFDL-CM2p1_r3i1p1': {'value': None, 'value_error': None},
        'GPCPv2.3': {'value': None, 'value_error': None}},
       'metric': {'ERA-Interim': {'value': 1.4560159520221876,
         'value_error': None},
        'GPCPv2.3': {'value': 1.6051881774079328, 'value_error': None}}},
      'SeasonalPrLonRmse': {'diagnostic': {'ERA-Interim': {'value': None,
         'value_error': None},
        'GFDL-CM2p1_r3i1p1': {'value': None, 'value_error': None},
        'GPCPv2.3': {'value': None, 'value_error': None}},
       'metric': {'ERA-Interim': {'value': 0.7100053935034153,
         'value_error': None},
        'GPCPv2.3': {'value': 0.5398980248552918, 'value_error': None}}},
      'SeasonalSstLonRmse': {'diagnostic': {'ERA-Interim': {'value': None,
         'value_error': None},
        'GFDL-CM2p1_r3i1p1': {'value': None, 'value_error': None},
        'HadISST': {'value': None, 'value_error': None},
        'Tropflux': {'value': None, 'value_error': None}},
       'metric': {'ERA-Interim': {'value': 0.15860763692248964,
         'value_error': None},
        'HadISST': {'value': 0.1862919415167865, 'value_error': None},
        'Tropflux': {'value': 0.14932087710174358, 'value_error': None}}}}},
    'r4i1p1': {'metadata': {'description_of_the_collection': 'Describe which science question this collection is about',
      'metrics': {'BiasPrLatRmse': {'diagnostic': {'ERA-Interim': {'name': 'ERA-Interim',
          'nyears': 40,
          'time_period': ['1979-1-16 12:0:0.0', '2019-3-16 12:0:0.0']},
         'GFDL-CM2p1_r4i1p1': {'keyerror': None,
          'name': 'GFDL-CM2p1_r4i1p1',
          'nyears': 180,
          'time_period': ['1861-1-16 12:0:0.0', '2040-12-16 12:0:0.0']},
         'GPCPv2.3': {'name': 'GPCPv2.3',
          'nyears': 41,
          'time_period': ['1979-1-1 0:0:0.0', '2019-7-1 0:0:0.0']},
         'method': 'Meridional root mean square error of nino3_LatExt pr, time series are linearly detrended, observations and model regridded to generic_1x1deg',
         'name': 'pr Meridional RMSE',
         'ref': 'Using CDAT regridding and rms (uncentered and biased) calculation',
         'time_frequency': 'monthly',
         'units': 'mm/day'},
        'metric': {'datasets': "GFDL-CM2p1_r4i1p1; ERA-Interim's pr & GPCPv2.3's precip; 's ",
         'method': 'The metric is the statistical value between the model and the observations',
         'name': 'BiasPrLatRmse',
         'units': 'mm/day'}},
       'BiasPrLonRmse': {'diagnostic': {'ERA-Interim': {'name': 'ERA-Interim',
          'nyears': 40,
          'time_period': ['1979-1-16 12:0:0.0', '2019-3-16 12:0:0.0']},
         'GFDL-CM2p1_r4i1p1': {'keyerror': None,
          'name': 'GFDL-CM2p1_r4i1p1',
          'nyears': 180,
          'time_period': ['1861-1-16 12:0:0.0', '2040-12-16 12:0:0.0']},
         'GPCPv2.3': {'name': 'GPCPv2.3',
          'nyears': 41,
          'time_period': ['1979-1-1 0:0:0.0', '2019-7-1 0:0:0.0']},
         'method': 'Zonal root mean square error of equatorial_pacific pr, time series are linearly detrended, observations and model regridded to generic_1x1deg',
         'name': 'pr Zonal RMSE',
         'ref': 'Using CDAT regridding and rms (uncentered and biased) calculation',
         'time_frequency': 'monthly',
         'units': 'mm/day'},
        'metric': {'datasets': "GFDL-CM2p1_r4i1p1; ERA-Interim's pr & GPCPv2.3's precip; 's ",
         'method': 'The metric is the statistical value between the model and the observations',
         'name': 'BiasPrLonRmse',
         'units': 'mm/day'}},
       'BiasSstLonRmse': {'diagnostic': {'ERA-Interim': {'name': 'ERA-Interim',
          'nyears': 40,
          'time_period': ['1979-1-16 12:0:0.0', '2019-3-16 12:0:0.0']},
         'GFDL-CM2p1_r4i1p1': {'keyerror': None,
          'name': 'GFDL-CM2p1_r4i1p1',
          'nyears': 145,
          'time_period': ['1861-1-16 12:0:0.0', '2005-12-16 12:0:0.0']},
         'HadISST': {'name': 'HadISST',
          'nyears': 151,
          'time_period': ['1870-1-16 11:59:59.5', '2020-10-16 12:0:0.0']},
         'Tropflux': {'name': 'Tropflux',
          'nyears': 40,
          'time_period': ['1979-1-15 0:0:0.0', '2018-12-15 12:0:0.0']},
         'method': 'Zonal root mean square error of equatorial_pacific sst, time series are linearly detrended, observations and model regridded to generic_1x1deg',
         'name': 'sst Zonal RMSE',
         'ref': 'Using CDAT regridding and rms (uncentered and biased) calculation',
         'time_frequency': 'monthly',
         'units': 'C'},
        'metric': {'datasets': "GFDL-CM2p1_r4i1p1; ERA-Interim's ts & HadISST's sst & Tropflux's sst; 's ",
         'method': 'The metric is the statistical value between the model and the observations',
         'name': 'BiasSstLonRmse',
         'units': 'C'}},
       'EnsoAmpl': {'diagnostic': {'ERA-Interim': {'keyerror': None,
          'name': 'ERA-Interim',
          'nyears': 40,
          'time_period': ['1979-1-16 12:0:0.0', '2019-3-16 12:0:0.0']},
         'GFDL-CM2p1_r4i1p1': {'keyerror': None,
          'name': 'GFDL-CM2p1_r4i1p1',
          'nyears': 145,
          'time_period': ['1861-1-16 12:0:0.0', '2005-12-16 12:0:0.0']},
         'HadISST': {'keyerror': None,
          'name': 'HadISST',
          'nyears': 151,
          'time_period': ['1870-1-16 11:59:59.5', '2020-10-16 12:0:0.0']},
         'Tropflux': {'keyerror': None,
          'name': 'Tropflux',
          'nyears': 40,
          'time_period': ['1979-1-15 0:0:0.0', '2018-12-15 12:0:0.0']},
         'method': 'Standard deviation of nino3.4 sstA, time series are linearly detrended',
         'name': 'ENSO amplitude',
         'ref': 'Using CDAT regression calculation',
         'time_frequency': 'monthly',
         'units': 'C'},
        'metric': {'datasets': "GFDL-CM2p1_r4i1p1; ERA-Interim's ts & HadISST's sst & Tropflux's sst; 's ",
         'method': 'The metric is the absolute value of the relative difference between model and observations values (M = 100 * abs[[model-obs] / obs])',
         'name': 'EnsoAmpl',
         'units': '%'}},
       'EnsoDuration': {'diagnostic': {'ERA-Interim': {'keyerror': None,
          'name': 'ERA-Interim',
          'nyears': 40,
          'time_period': ['1979-1-16 12:0:0.0', '2019-3-16 12:0:0.0']},
         'GFDL-CM2p1_r4i1p1': {'keyerror': None,
          'name': 'GFDL-CM2p1_r4i1p1',
          'nyears': 145,
          'time_period': ['1861-1-16 12:0:0.0', '2005-12-16 12:0:0.0']},
         'HadISST': {'keyerror': None,
          'name': 'HadISST',
          'nyears': 151,
          'time_period': ['1870-1-16 11:59:59.5', '2020-10-16 12:0:0.0']},
         'Tropflux': {'keyerror': None,
          'name': 'Tropflux',
          'nyears': 40,
          'time_period': ['1979-1-15 0:0:0.0', '2018-12-15 12:0:0.0']},
         'method': 'nino3.4 SSTA during DEC regressed against nino3.4 SSTA during 6 years (centered on ENSO), the duration is the number of consecutive months during which the regression is above 0.25, time series are linearly detrended, smoothing using a triangle shaped window of 5 points',
         'name': 'ENSO Duration based on life cyle SSTA pattern',
         'ref': 'Using CDAT',
         'time_frequency': 'monthly',
         'units': 'months'},
        'metric': {'datasets': "GFDL-CM2p1_r4i1p1; ERA-Interim's ts & HadISST's sst & Tropflux's sst; 's ",
         'method': 'The metric is the absolute value of the relative difference between model and observations values (M = 100 * abs[[model-obs] / obs])',
         'name': 'EnsoDuration',
         'units': '%'}},
       'EnsoSeasonality': {'diagnostic': {'ERA-Interim': {'keyerror': None,
          'name': 'ERA-Interim',
          'nyears': 40,
          'time_period': ['1979-1-16 12:0:0.0', '2019-3-16 12:0:0.0']},
         'GFDL-CM2p1_r4i1p1': {'keyerror': None,
          'name': 'GFDL-CM2p1_r4i1p1',
          'nyears': 145,
          'time_period': ['1861-1-16 12:0:0.0', '2005-12-16 12:0:0.0']},
         'HadISST': {'keyerror': None,
          'name': 'HadISST',
          'nyears': 151,
          'time_period': ['1870-1-16 11:59:59.5', '2020-10-16 12:0:0.0']},
         'Tropflux': {'keyerror': None,
          'name': 'Tropflux',
          'nyears': 40,
          'time_period': ['1979-1-15 0:0:0.0', '2018-12-15 12:0:0.0']},
         'method': 'Ratio between NDJ and MAM standard deviation nino3.4 sstA, time series are linearly detrended',
         'name': 'ENSO seasonality',
         'ref': 'Using CDAT std dev calculation',
         'time_frequency': 'monthly',
         'units': 'C/C'},
        'metric': {'datasets': "GFDL-CM2p1_r4i1p1; ERA-Interim's ts & HadISST's sst & Tropflux's sst; 's ",
         'method': 'The metric is the absolute value of the relative difference between model and observations values (M = 100 * abs[[model-obs] / obs])',
         'name': 'EnsoSeasonality',
         'units': '%'}},
       'EnsoSstDiversity_2': {'diagnostic': {'ERA-Interim': {'keyerror': None,
          'name': 'ERA-Interim',
          'nyears': 40,
          'time_period': ['1979-1-16 12:0:0.0', '2019-3-16 12:0:0.0']},
         'GFDL-CM2p1_r4i1p1': {'keyerror': None,
          'name': 'GFDL-CM2p1_r4i1p1',
          'nyears': 145,
          'time_period': ['1861-1-16 12:0:0.0', '2005-12-16 12:0:0.0']},
         'HadISST': {'keyerror': None,
          'name': 'HadISST',
          'nyears': 151,
          'time_period': ['1870-1-16 11:59:59.5', '2020-10-16 12:0:0.0']},
         'Tropflux': {'keyerror': None,
          'name': 'Tropflux',
          'nyears': 40,
          'time_period': ['1979-1-15 0:0:0.0', '2018-12-15 12:0:0.0']},
         'method': 'Nino (Nina) events = nino3.4 sstA > 0.75 (< -0.75) during DEC, zonal SSTA (meridional averaged [-5.0 ; 5.0]), the zonal SSTA maximum (minimum) is located for each event, the diversity is the interquartile range (IQR = Q3 - Q1), time series are linearly detrended, smoothing using a triangle shaped window of 5 points',
         'name': 'ENSO Diversity (interquartile range)',
         'ref': 'Using CDAT regridding',
         'time_frequency': 'monthly',
         'units': 'long'},
        'metric': {'datasets': "GFDL-CM2p1_r4i1p1; ERA-Interim's ts & HadISST's sst & Tropflux's sst; 's ",
         'method': 'The metric is the absolute value of the relative difference between model and observations values (M = 100 * abs[[model-obs] / obs])',
         'name': 'EnsoSstDiversity',
         'units': '%'}},
       'EnsoSstLonRmse': {'diagnostic': {'ERA-Interim': {'name': 'ERA-Interim',
          'nyears': 40,
          'time_period': ['1979-1-16 12:0:0.0', '2019-3-16 12:0:0.0']},
         'GFDL-CM2p1_r4i1p1': {'keyerror': None,
          'name': 'GFDL-CM2p1_r4i1p1',
          'nyears': 145,
          'time_period': ['1861-1-16 12:0:0.0', '2005-12-16 12:0:0.0']},
         'HadISST': {'name': 'HadISST',
          'nyears': 151,
          'time_period': ['1870-1-16 11:59:59.5', '2020-10-16 12:0:0.0']},
         'Tropflux': {'name': 'Tropflux',
          'nyears': 40,
          'time_period': ['1979-1-15 0:0:0.0', '2018-12-15 12:0:0.0']},
         'method': 'nino3.4 SSTA during DEC regressed against equatorial_pacific SSTA, time series are linearly detrended, smoothing using a triangle shaped window of 5 points, observations and model regridded to generic_1x1deg',
         'name': 'ENSO Zonal SSTA pattern',
         'ref': 'Using CDAT regridding and rms (uncentered and biased) calculation',
         'time_frequency': 'monthly',
         'units': 'C/C'},
        'metric': {'datasets': "GFDL-CM2p1_r4i1p1; ERA-Interim's ts & HadISST's sst & Tropflux's sst; 's ",
         'method': 'The metric is the statistical value between the model and the observations',
         'name': 'EnsoSstLonRmse',
         'units': 'C/C'}},
       'EnsoSstSkew': {'diagnostic': {'ERA-Interim': {'keyerror': None,
          'name': 'ERA-Interim',
          'nyears': 40,
          'time_period': ['1979-1-16 12:0:0.0', '2019-3-16 12:0:0.0']},
         'GFDL-CM2p1_r4i1p1': {'keyerror': None,
          'name': 'GFDL-CM2p1_r4i1p1',
          'nyears': 145,
          'time_period': ['1861-1-16 12:0:0.0', '2005-12-16 12:0:0.0']},
         'HadISST': {'keyerror': None,
          'name': 'HadISST',
          'nyears': 151,
          'time_period': ['1870-1-16 11:59:59.5', '2020-10-16 12:0:0.0']},
         'Tropflux': {'keyerror': None,
          'name': 'Tropflux',
          'nyears': 40,
          'time_period': ['1979-1-15 0:0:0.0', '2018-12-15 12:0:0.0']},
         'method': 'Standard deviation of nino3.4 sstA, time series are linearly detrended',
         'name': 'ENSO skewness',
         'ref': 'Using CDAT regression calculation',
         'time_frequency': 'monthly',
         'units': 'C'},
        'metric': {'datasets': "GFDL-CM2p1_r4i1p1; ERA-Interim's ts & HadISST's sst & Tropflux's sst; 's ",
         'method': 'The metric is the absolute value of the relative difference between model and observations values (M = 100 * abs[[model-obs] / obs])',
         'name': 'EnsoSstSkew',
         'units': '%'}},
       'EnsoSstTsRmse': {'diagnostic': {'ERA-Interim': {'name': 'ERA-Interim',
          'nyears': 40,
          'time_period': ['1979-1-16 12:0:0.0', '2019-3-16 12:0:0.0']},
         'GFDL-CM2p1_r4i1p1': {'keyerror': None,
          'name': 'GFDL-CM2p1_r4i1p1',
          'nyears': 145,
          'time_period': ['1861-1-16 12:0:0.0', '2005-12-16 12:0:0.0']},
         'HadISST': {'name': 'HadISST',
          'nyears': 151,
          'time_period': ['1870-1-16 11:59:59.5', '2020-10-16 12:0:0.0']},
         'Tropflux': {'name': 'Tropflux',
          'nyears': 40,
          'time_period': ['1979-1-15 0:0:0.0', '2018-12-15 12:0:0.0']},
         'method': 'nino3.4 SSTA during DEC regressed against nino3.4 SSTA during 6 years (centered on ENSO), time series are linearly detrended, smoothing using a triangle shaped window of 5 points',
         'name': 'ENSO life cyle SSTA pattern',
         'ref': 'Using CDAT regridding and rms (uncentered and biased) calculation',
         'time_frequency': 'monthly',
         'units': 'C/C'},
        'metric': {'datasets': "GFDL-CM2p1_r4i1p1; ERA-Interim's ts & HadISST's sst & Tropflux's sst; 's ",
         'method': 'The metric is the statistical value between the model and the observations',
         'name': 'EnsoSstTsRmse',
         'units': 'C/C'}},
       'SeasonalPrLatRmse': {'diagnostic': {'ERA-Interim': {'name': 'ERA-Interim',
          'nyears': 40,
          'time_period': ['1979-1-16 12:0:0.0', '2019-3-16 12:0:0.0']},
         'GFDL-CM2p1_r4i1p1': {'keyerror': None,
          'name': 'GFDL-CM2p1_r4i1p1',
          'nyears': 180,
          'time_period': ['1861-1-16 12:0:0.0', '2040-12-16 12:0:0.0']},
         'GPCPv2.3': {'name': 'GPCPv2.3',
          'nyears': 41,
          'time_period': ['1979-1-1 0:0:0.0', '2019-7-1 0:0:0.0']},
         'method': 'Meridional root mean square error of nino3_LatExt climatological pr STD, time series are linearly detrended, observations and model regridded to generic_1x1deg',
         'name': 'pr meridional seasonality RMSE',
         'ref': 'Using CDAT regridding and rms (uncentered and biased) calculation',
         'time_frequency': 'monthly',
         'units': 'mm/day'},
        'metric': {'datasets': "GFDL-CM2p1_r4i1p1; ERA-Interim's pr & GPCPv2.3's precip; 's ",
         'method': 'The metric is the statistical value between the model and the observations',
         'name': 'SeasonalPrLatRmse',
         'units': 'mm/day'}},
       'SeasonalPrLonRmse': {'diagnostic': {'ERA-Interim': {'name': 'ERA-Interim',
          'nyears': 40,
          'time_period': ['1979-1-16 12:0:0.0', '2019-3-16 12:0:0.0']},
         'GFDL-CM2p1_r4i1p1': {'keyerror': None,
          'name': 'GFDL-CM2p1_r4i1p1',
          'nyears': 180,
          'time_period': ['1861-1-16 12:0:0.0', '2040-12-16 12:0:0.0']},
         'GPCPv2.3': {'name': 'GPCPv2.3',
          'nyears': 41,
          'time_period': ['1979-1-1 0:0:0.0', '2019-7-1 0:0:0.0']},
         'method': 'Zonal root mean square error of equatorial_pacific climatological pr STD, time series are linearly detrended, observations and model regridded to generic_1x1deg',
         'name': 'pr zonal seasonality RMSE',
         'ref': 'Using CDAT regridding and rms (uncentered and biased) calculation',
         'time_frequency': 'monthly',
         'units': 'mm/day'},
        'metric': {'datasets': "GFDL-CM2p1_r4i1p1; ERA-Interim's pr & GPCPv2.3's precip; 's ",
         'method': 'The metric is the statistical value between the model and the observations',
         'name': 'SeasonalPrLonRmse',
         'units': 'mm/day'}},
       'SeasonalSstLonRmse': {'diagnostic': {'ERA-Interim': {'name': 'ERA-Interim',
          'nyears': 40,
          'time_period': ['1979-1-16 12:0:0.0', '2019-3-16 12:0:0.0']},
         'GFDL-CM2p1_r4i1p1': {'keyerror': None,
          'name': 'GFDL-CM2p1_r4i1p1',
          'nyears': 145,
          'time_period': ['1861-1-16 12:0:0.0', '2005-12-16 12:0:0.0']},
         'HadISST': {'name': 'HadISST',
          'nyears': 151,
          'time_period': ['1870-1-16 11:59:59.5', '2020-10-16 12:0:0.0']},
         'Tropflux': {'name': 'Tropflux',
          'nyears': 40,
          'time_period': ['1979-1-15 0:0:0.0', '2018-12-15 12:0:0.0']},
         'method': 'Zonal root mean square error of equatorial_pacific climatological sst STD, time series are linearly detrended, observations and model regridded to generic_1x1deg',
         'name': 'sst zonal seasonality RMSE',
         'ref': 'Using CDAT regridding and rms (uncentered and biased) calculation',
         'time_frequency': 'monthly',
         'units': 'C'},
        'metric': {'datasets': "GFDL-CM2p1_r4i1p1; ERA-Interim's ts & HadISST's sst & Tropflux's sst; 's ",
         'method': 'The metric is the statistical value between the model and the observations',
         'name': 'SeasonalSstLonRmse',
         'units': 'C'}}},
      'name': 'Metrics Collection for ENSO performance'},
     'value': {'BiasPrLatRmse': {'diagnostic': {'ERA-Interim': {'value': None,
         'value_error': None},
        'GFDL-CM2p1_r4i1p1': {'value': None, 'value_error': None},
        'GPCPv2.3': {'value': None, 'value_error': None}},
       'metric': {'ERA-Interim': {'value': 1.9192926924782492,
         'value_error': None},
        'GPCPv2.3': {'value': 1.9188289788596655, 'value_error': None}}},
      'BiasPrLonRmse': {'diagnostic': {'ERA-Interim': {'value': None,
         'value_error': None},
        'GFDL-CM2p1_r4i1p1': {'value': None, 'value_error': None},
        'GPCPv2.3': {'value': None, 'value_error': None}},
       'metric': {'ERA-Interim': {'value': 2.188002303573358,
         'value_error': None},
        'GPCPv2.3': {'value': 1.2369827929726989, 'value_error': None}}},
      'BiasSstLonRmse': {'diagnostic': {'ERA-Interim': {'value': None,
         'value_error': None},
        'GFDL-CM2p1_r4i1p1': {'value': None, 'value_error': None},
        'HadISST': {'value': None, 'value_error': None},
        'Tropflux': {'value': None, 'value_error': None}},
       'metric': {'ERA-Interim': {'value': 1.5822504587709305,
         'value_error': None},
        'HadISST': {'value': 1.4149841598417783, 'value_error': None},
        'Tropflux': {'value': 1.6307317971862214, 'value_error': None}}},
      'EnsoAmpl': {'diagnostic': {'ERA-Interim': {'value': 0.8989844997845644,
         'value_error': 0.14214193002531866},
        'GFDL-CM2p1_r4i1p1': {'value': 1.3684069839903044,
         'value_error': 0.11364001462068389},
        'HadISST': {'value': 0.7665787872085695,
         'value_error': 0.06238329697691264},
        'Tropflux': {'value': 0.9039789553693535,
         'value_error': 0.14293162279134272}},
       'metric': {'ERA-Interim': {'value': 52.21697196316888,
         'value_error': 36.70854797544492},
        'HadISST': {'value': 78.50832906207074,
         'value_error': 29.35111164337273},
        'Tropflux': {'value': 51.37597793205174,
         'value_error': 36.50573439072982}}},
      'EnsoDuration': {'diagnostic': {'ERA-Interim': {'value': 13.0,
         'value_error': None},
        'GFDL-CM2p1_r4i1p1': {'value': 14.0, 'value_error': None},
        'HadISST': {'value': 13.0, 'value_error': None},
        'Tropflux': {'value': 13.0, 'value_error': None}},
       'metric': {'ERA-Interim': {'value': 7.6923076923076925,
         'value_error': None},
        'HadISST': {'value': 7.6923076923076925, 'value_error': None},
        'Tropflux': {'value': 7.6923076923076925, 'value_error': None}}},
      'EnsoSeasonality': {'diagnostic': {'ERA-Interim': {'value': 2.0466846866656914,
         'value_error': 0.6513411033995022},
        'GFDL-CM2p1_r4i1p1': {'value': 1.1010230805941434,
         'value_error': 0.18318691344082896},
        'HadISST': {'value': 1.6639865947361325,
         'value_error': 0.2712772451657809},
        'Tropflux': {'value': 2.0532132553583624,
         'value_error': 0.6534187683977347}},
       'metric': {'ERA-Interim': {'value': 46.20455765524637,
         'value_error': 26.070392995271668},
        'HadISST': {'value': 33.832214509592326,
         'value_error': 21.79615270061254},
        'Tropflux': {'value': 46.375610145670244,
         'value_error': 25.987497391967736}}},
      'EnsoSstDiversity_2': {'diagnostic': {'ERA-Interim': {'value': 33.25,
         'value_error': None},
        'GFDL-CM2p1_r4i1p1': {'value': 58.75, 'value_error': None},
        'HadISST': {'value': 49.0, 'value_error': None},
        'Tropflux': {'value': 32.0, 'value_error': None}},
       'metric': {'ERA-Interim': {'value': 76.69172932330827,
         'value_error': None},
        'HadISST': {'value': 19.897959183673468, 'value_error': None},
        'Tropflux': {'value': 83.59375, 'value_error': None}}},
      'EnsoSstLonRmse': {'diagnostic': {'ERA-Interim': {'value': None,
         'value_error': None},
        'GFDL-CM2p1_r4i1p1': {'value': None, 'value_error': None},
        'HadISST': {'value': None, 'value_error': None},
        'Tropflux': {'value': None, 'value_error': None}},
       'metric': {'ERA-Interim': {'value': 0.33225412616576006,
         'value_error': None},
        'HadISST': {'value': 0.35414520923322007, 'value_error': None},
        'Tropflux': {'value': 0.3350644449580544, 'value_error': None}}},
      'EnsoSstSkew': {'diagnostic': {'ERA-Interim': {'value': 0.39098111106809963,
         'value_error': 0.061819541653923164},
        'GFDL-CM2p1_r4i1p1': {'value': 0.04877991937824491,
         'value_error': 0.0040509518119930974},
        'HadISST': {'value': 0.38989908235027515,
         'value_error': 0.03172953733021198},
        'Tropflux': {'value': 0.39744741059612115,
         'value_error': 0.06284195338099416}},
       'metric': {'ERA-Interim': {'value': 87.52371457409139,
         'value_error': 3.008773044198564},
        'HadISST': {'value': 87.48909100164994,
         'value_error': 2.0570977763338063},
        'Tropflux': {'value': 87.72669840644296,
         'value_error': 2.9598215925173355}}},
      'EnsoSstTsRmse': {'diagnostic': {'ERA-Interim': {'value': None,
         'value_error': None},
        'GFDL-CM2p1_r4i1p1': {'value': None, 'value_error': None},
        'HadISST': {'value': None, 'value_error': None},
        'Tropflux': {'value': None, 'value_error': None}},
       'metric': {'ERA-Interim': {'value': 0.11860405717158493,
         'value_error': None},
        'HadISST': {'value': 0.10490506911705118, 'value_error': None},
        'Tropflux': {'value': 0.11805029018865527, 'value_error': None}}},
      'SeasonalPrLatRmse': {'diagnostic': {'ERA-Interim': {'value': None,
         'value_error': None},
        'GFDL-CM2p1_r4i1p1': {'value': None, 'value_error': None},
        'GPCPv2.3': {'value': None, 'value_error': None}},
       'metric': {'ERA-Interim': {'value': 1.4687924099574352,
         'value_error': None},
        'GPCPv2.3': {'value': 1.6333954494550138, 'value_error': None}}},
      'SeasonalPrLonRmse': {'diagnostic': {'ERA-Interim': {'value': None,
         'value_error': None},
        'GFDL-CM2p1_r4i1p1': {'value': None, 'value_error': None},
        'GPCPv2.3': {'value': None, 'value_error': None}},
       'metric': {'ERA-Interim': {'value': 0.7163995052366929,
         'value_error': None},
        'GPCPv2.3': {'value': 0.5886975501139754, 'value_error': None}}},
      'SeasonalSstLonRmse': {'diagnostic': {'ERA-Interim': {'value': None,
         'value_error': None},
        'GFDL-CM2p1_r4i1p1': {'value': None, 'value_error': None},
        'HadISST': {'value': None, 'value_error': None},
        'Tropflux': {'value': None, 'value_error': None}},
       'metric': {'ERA-Interim': {'value': 0.1543647170126505,
         'value_error': None},
        'HadISST': {'value': 0.18255784928803212, 'value_error': None},
        'Tropflux': {'value': 0.14479451418293718, 'value_error': None}}}}},
    'r5i1p1': {'metadata': {'description_of_the_collection': 'Describe which science question this collection is about',
      'metrics': {'BiasPrLatRmse': {'diagnostic': {'ERA-Interim': {'name': 'ERA-Interim',
          'nyears': 40,
          'time_period': ['1979-1-16 12:0:0.0', '2019-3-16 12:0:0.0']},
         'GFDL-CM2p1_r5i1p1': {'keyerror': None,
          'name': 'GFDL-CM2p1_r5i1p1',
          'nyears': 145,
          'time_period': ['1861-1-16 12:0:0.0', '2005-12-16 12:0:0.0']},
         'GPCPv2.3': {'name': 'GPCPv2.3',
          'nyears': 41,
          'time_period': ['1979-1-1 0:0:0.0', '2019-7-1 0:0:0.0']},
         'method': 'Meridional root mean square error of nino3_LatExt pr, time series are linearly detrended, observations and model regridded to generic_1x1deg',
         'name': 'pr Meridional RMSE',
         'ref': 'Using CDAT regridding and rms (uncentered and biased) calculation',
         'time_frequency': 'monthly',
         'units': 'mm/day'},
        'metric': {'datasets': "GFDL-CM2p1_r5i1p1; ERA-Interim's pr & GPCPv2.3's precip; 's ",
         'method': 'The metric is the statistical value between the model and the observations',
         'name': 'BiasPrLatRmse',
         'units': 'mm/day'}},
       'BiasPrLonRmse': {'diagnostic': {'ERA-Interim': {'name': 'ERA-Interim',
          'nyears': 40,
          'time_period': ['1979-1-16 12:0:0.0', '2019-3-16 12:0:0.0']},
         'GFDL-CM2p1_r5i1p1': {'keyerror': None,
          'name': 'GFDL-CM2p1_r5i1p1',
          'nyears': 145,
          'time_period': ['1861-1-16 12:0:0.0', '2005-12-16 12:0:0.0']},
         'GPCPv2.3': {'name': 'GPCPv2.3',
          'nyears': 41,
          'time_period': ['1979-1-1 0:0:0.0', '2019-7-1 0:0:0.0']},
         'method': 'Zonal root mean square error of equatorial_pacific pr, time series are linearly detrended, observations and model regridded to generic_1x1deg',
         'name': 'pr Zonal RMSE',
         'ref': 'Using CDAT regridding and rms (uncentered and biased) calculation',
         'time_frequency': 'monthly',
         'units': 'mm/day'},
        'metric': {'datasets': "GFDL-CM2p1_r5i1p1; ERA-Interim's pr & GPCPv2.3's precip; 's ",
         'method': 'The metric is the statistical value between the model and the observations',
         'name': 'BiasPrLonRmse',
         'units': 'mm/day'}},
       'BiasSstLonRmse': {'diagnostic': {'ERA-Interim': {'name': 'ERA-Interim',
          'nyears': 40,
          'time_period': ['1979-1-16 12:0:0.0', '2019-3-16 12:0:0.0']},
         'GFDL-CM2p1_r5i1p1': {'keyerror': None,
          'name': 'GFDL-CM2p1_r5i1p1',
          'nyears': 145,
          'time_period': ['1861-1-16 12:0:0.0', '2005-12-16 12:0:0.0']},
         'HadISST': {'name': 'HadISST',
          'nyears': 151,
          'time_period': ['1870-1-16 11:59:59.5', '2020-10-16 12:0:0.0']},
         'Tropflux': {'name': 'Tropflux',
          'nyears': 40,
          'time_period': ['1979-1-15 0:0:0.0', '2018-12-15 12:0:0.0']},
         'method': 'Zonal root mean square error of equatorial_pacific sst, time series are linearly detrended, observations and model regridded to generic_1x1deg',
         'name': 'sst Zonal RMSE',
         'ref': 'Using CDAT regridding and rms (uncentered and biased) calculation',
         'time_frequency': 'monthly',
         'units': 'C'},
        'metric': {'datasets': "GFDL-CM2p1_r5i1p1; ERA-Interim's ts & HadISST's sst & Tropflux's sst; 's ",
         'method': 'The metric is the statistical value between the model and the observations',
         'name': 'BiasSstLonRmse',
         'units': 'C'}},
       'EnsoAmpl': {'diagnostic': {'ERA-Interim': {'keyerror': None,
          'name': 'ERA-Interim',
          'nyears': 40,
          'time_period': ['1979-1-16 12:0:0.0', '2019-3-16 12:0:0.0']},
         'GFDL-CM2p1_r5i1p1': {'keyerror': None,
          'name': 'GFDL-CM2p1_r5i1p1',
          'nyears': 145,
          'time_period': ['1861-1-16 12:0:0.0', '2005-12-16 12:0:0.0']},
         'HadISST': {'keyerror': None,
          'name': 'HadISST',
          'nyears': 151,
          'time_period': ['1870-1-16 11:59:59.5', '2020-10-16 12:0:0.0']},
         'Tropflux': {'keyerror': None,
          'name': 'Tropflux',
          'nyears': 40,
          'time_period': ['1979-1-15 0:0:0.0', '2018-12-15 12:0:0.0']},
         'method': 'Standard deviation of nino3.4 sstA, time series are linearly detrended',
         'name': 'ENSO amplitude',
         'ref': 'Using CDAT regression calculation',
         'time_frequency': 'monthly',
         'units': 'C'},
        'metric': {'datasets': "GFDL-CM2p1_r5i1p1; ERA-Interim's ts & HadISST's sst & Tropflux's sst; 's ",
         'method': 'The metric is the absolute value of the relative difference between model and observations values (M = 100 * abs[[model-obs] / obs])',
         'name': 'EnsoAmpl',
         'units': '%'}},
       'EnsoDuration': {'diagnostic': {'ERA-Interim': {'keyerror': None,
          'name': 'ERA-Interim',
          'nyears': 40,
          'time_period': ['1979-1-16 12:0:0.0', '2019-3-16 12:0:0.0']},
         'GFDL-CM2p1_r5i1p1': {'keyerror': None,
          'name': 'GFDL-CM2p1_r5i1p1',
          'nyears': 145,
          'time_period': ['1861-1-16 12:0:0.0', '2005-12-16 12:0:0.0']},
         'HadISST': {'keyerror': None,
          'name': 'HadISST',
          'nyears': 151,
          'time_period': ['1870-1-16 11:59:59.5', '2020-10-16 12:0:0.0']},
         'Tropflux': {'keyerror': None,
          'name': 'Tropflux',
          'nyears': 40,
          'time_period': ['1979-1-15 0:0:0.0', '2018-12-15 12:0:0.0']},
         'method': 'nino3.4 SSTA during DEC regressed against nino3.4 SSTA during 6 years (centered on ENSO), the duration is the number of consecutive months during which the regression is above 0.25, time series are linearly detrended, smoothing using a triangle shaped window of 5 points',
         'name': 'ENSO Duration based on life cyle SSTA pattern',
         'ref': 'Using CDAT',
         'time_frequency': 'monthly',
         'units': 'months'},
        'metric': {'datasets': "GFDL-CM2p1_r5i1p1; ERA-Interim's ts & HadISST's sst & Tropflux's sst; 's ",
         'method': 'The metric is the absolute value of the relative difference between model and observations values (M = 100 * abs[[model-obs] / obs])',
         'name': 'EnsoDuration',
         'units': '%'}},
       'EnsoSeasonality': {'diagnostic': {'ERA-Interim': {'keyerror': None,
          'name': 'ERA-Interim',
          'nyears': 40,
          'time_period': ['1979-1-16 12:0:0.0', '2019-3-16 12:0:0.0']},
         'GFDL-CM2p1_r5i1p1': {'keyerror': None,
          'name': 'GFDL-CM2p1_r5i1p1',
          'nyears': 145,
          'time_period': ['1861-1-16 12:0:0.0', '2005-12-16 12:0:0.0']},
         'HadISST': {'keyerror': None,
          'name': 'HadISST',
          'nyears': 151,
          'time_period': ['1870-1-16 11:59:59.5', '2020-10-16 12:0:0.0']},
         'Tropflux': {'keyerror': None,
          'name': 'Tropflux',
          'nyears': 40,
          'time_period': ['1979-1-15 0:0:0.0', '2018-12-15 12:0:0.0']},
         'method': 'Ratio between NDJ and MAM standard deviation nino3.4 sstA, time series are linearly detrended',
         'name': 'ENSO seasonality',
         'ref': 'Using CDAT std dev calculation',
         'time_frequency': 'monthly',
         'units': 'C/C'},
        'metric': {'datasets': "GFDL-CM2p1_r5i1p1; ERA-Interim's ts & HadISST's sst & Tropflux's sst; 's ",
         'method': 'The metric is the absolute value of the relative difference between model and observations values (M = 100 * abs[[model-obs] / obs])',
         'name': 'EnsoSeasonality',
         'units': '%'}},
       'EnsoSstDiversity_2': {'diagnostic': {'ERA-Interim': {'keyerror': None,
          'name': 'ERA-Interim',
          'nyears': 40,
          'time_period': ['1979-1-16 12:0:0.0', '2019-3-16 12:0:0.0']},
         'GFDL-CM2p1_r5i1p1': {'keyerror': None,
          'name': 'GFDL-CM2p1_r5i1p1',
          'nyears': 145,
          'time_period': ['1861-1-16 12:0:0.0', '2005-12-16 12:0:0.0']},
         'HadISST': {'keyerror': None,
          'name': 'HadISST',
          'nyears': 151,
          'time_period': ['1870-1-16 11:59:59.5', '2020-10-16 12:0:0.0']},
         'Tropflux': {'keyerror': None,
          'name': 'Tropflux',
          'nyears': 40,
          'time_period': ['1979-1-15 0:0:0.0', '2018-12-15 12:0:0.0']},
         'method': 'Nino (Nina) events = nino3.4 sstA > 0.75 (< -0.75) during DEC, zonal SSTA (meridional averaged [-5.0 ; 5.0]), the zonal SSTA maximum (minimum) is located for each event, the diversity is the interquartile range (IQR = Q3 - Q1), time series are linearly detrended, smoothing using a triangle shaped window of 5 points',
         'name': 'ENSO Diversity (interquartile range)',
         'ref': 'Using CDAT regridding',
         'time_frequency': 'monthly',
         'units': 'long'},
        'metric': {'datasets': "GFDL-CM2p1_r5i1p1; ERA-Interim's ts & HadISST's sst & Tropflux's sst; 's ",
         'method': 'The metric is the absolute value of the relative difference between model and observations values (M = 100 * abs[[model-obs] / obs])',
         'name': 'EnsoSstDiversity',
         'units': '%'}},
       'EnsoSstLonRmse': {'diagnostic': {'ERA-Interim': {'name': 'ERA-Interim',
          'nyears': 40,
          'time_period': ['1979-1-16 12:0:0.0', '2019-3-16 12:0:0.0']},
         'GFDL-CM2p1_r5i1p1': {'keyerror': None,
          'name': 'GFDL-CM2p1_r5i1p1',
          'nyears': 145,
          'time_period': ['1861-1-16 12:0:0.0', '2005-12-16 12:0:0.0']},
         'HadISST': {'name': 'HadISST',
          'nyears': 151,
          'time_period': ['1870-1-16 11:59:59.5', '2020-10-16 12:0:0.0']},
         'Tropflux': {'name': 'Tropflux',
          'nyears': 40,
          'time_period': ['1979-1-15 0:0:0.0', '2018-12-15 12:0:0.0']},
         'method': 'nino3.4 SSTA during DEC regressed against equatorial_pacific SSTA, time series are linearly detrended, smoothing using a triangle shaped window of 5 points, observations and model regridded to generic_1x1deg',
         'name': 'ENSO Zonal SSTA pattern',
         'ref': 'Using CDAT regridding and rms (uncentered and biased) calculation',
         'time_frequency': 'monthly',
         'units': 'C/C'},
        'metric': {'datasets': "GFDL-CM2p1_r5i1p1; ERA-Interim's ts & HadISST's sst & Tropflux's sst; 's ",
         'method': 'The metric is the statistical value between the model and the observations',
         'name': 'EnsoSstLonRmse',
         'units': 'C/C'}},
       'EnsoSstSkew': {'diagnostic': {'ERA-Interim': {'keyerror': None,
          'name': 'ERA-Interim',
          'nyears': 40,
          'time_period': ['1979-1-16 12:0:0.0', '2019-3-16 12:0:0.0']},
         'GFDL-CM2p1_r5i1p1': {'keyerror': None,
          'name': 'GFDL-CM2p1_r5i1p1',
          'nyears': 145,
          'time_period': ['1861-1-16 12:0:0.0', '2005-12-16 12:0:0.0']},
         'HadISST': {'keyerror': None,
          'name': 'HadISST',
          'nyears': 151,
          'time_period': ['1870-1-16 11:59:59.5', '2020-10-16 12:0:0.0']},
         'Tropflux': {'keyerror': None,
          'name': 'Tropflux',
          'nyears': 40,
          'time_period': ['1979-1-15 0:0:0.0', '2018-12-15 12:0:0.0']},
         'method': 'Standard deviation of nino3.4 sstA, time series are linearly detrended',
         'name': 'ENSO skewness',
         'ref': 'Using CDAT regression calculation',
         'time_frequency': 'monthly',
         'units': 'C'},
        'metric': {'datasets': "GFDL-CM2p1_r5i1p1; ERA-Interim's ts & HadISST's sst & Tropflux's sst; 's ",
         'method': 'The metric is the absolute value of the relative difference between model and observations values (M = 100 * abs[[model-obs] / obs])',
         'name': 'EnsoSstSkew',
         'units': '%'}},
       'EnsoSstTsRmse': {'diagnostic': {'ERA-Interim': {'name': 'ERA-Interim',
          'nyears': 40,
          'time_period': ['1979-1-16 12:0:0.0', '2019-3-16 12:0:0.0']},
         'GFDL-CM2p1_r5i1p1': {'keyerror': None,
          'name': 'GFDL-CM2p1_r5i1p1',
          'nyears': 145,
          'time_period': ['1861-1-16 12:0:0.0', '2005-12-16 12:0:0.0']},
         'HadISST': {'name': 'HadISST',
          'nyears': 151,
          'time_period': ['1870-1-16 11:59:59.5', '2020-10-16 12:0:0.0']},
         'Tropflux': {'name': 'Tropflux',
          'nyears': 40,
          'time_period': ['1979-1-15 0:0:0.0', '2018-12-15 12:0:0.0']},
         'method': 'nino3.4 SSTA during DEC regressed against nino3.4 SSTA during 6 years (centered on ENSO), time series are linearly detrended, smoothing using a triangle shaped window of 5 points',
         'name': 'ENSO life cyle SSTA pattern',
         'ref': 'Using CDAT regridding and rms (uncentered and biased) calculation',
         'time_frequency': 'monthly',
         'units': 'C/C'},
        'metric': {'datasets': "GFDL-CM2p1_r5i1p1; ERA-Interim's ts & HadISST's sst & Tropflux's sst; 's ",
         'method': 'The metric is the statistical value between the model and the observations',
         'name': 'EnsoSstTsRmse',
         'units': 'C/C'}},
       'SeasonalPrLatRmse': {'diagnostic': {'ERA-Interim': {'name': 'ERA-Interim',
          'nyears': 40,
          'time_period': ['1979-1-16 12:0:0.0', '2019-3-16 12:0:0.0']},
         'GFDL-CM2p1_r5i1p1': {'keyerror': None,
          'name': 'GFDL-CM2p1_r5i1p1',
          'nyears': 145,
          'time_period': ['1861-1-16 12:0:0.0', '2005-12-16 12:0:0.0']},
         'GPCPv2.3': {'name': 'GPCPv2.3',
          'nyears': 41,
          'time_period': ['1979-1-1 0:0:0.0', '2019-7-1 0:0:0.0']},
         'method': 'Meridional root mean square error of nino3_LatExt climatological pr STD, time series are linearly detrended, observations and model regridded to generic_1x1deg',
         'name': 'pr meridional seasonality RMSE',
         'ref': 'Using CDAT regridding and rms (uncentered and biased) calculation',
         'time_frequency': 'monthly',
         'units': 'mm/day'},
        'metric': {'datasets': "GFDL-CM2p1_r5i1p1; ERA-Interim's pr & GPCPv2.3's precip; 's ",
         'method': 'The metric is the statistical value between the model and the observations',
         'name': 'SeasonalPrLatRmse',
         'units': 'mm/day'}},
       'SeasonalPrLonRmse': {'diagnostic': {'ERA-Interim': {'name': 'ERA-Interim',
          'nyears': 40,
          'time_period': ['1979-1-16 12:0:0.0', '2019-3-16 12:0:0.0']},
         'GFDL-CM2p1_r5i1p1': {'keyerror': None,
          'name': 'GFDL-CM2p1_r5i1p1',
          'nyears': 145,
          'time_period': ['1861-1-16 12:0:0.0', '2005-12-16 12:0:0.0']},
         'GPCPv2.3': {'name': 'GPCPv2.3',
          'nyears': 41,
          'time_period': ['1979-1-1 0:0:0.0', '2019-7-1 0:0:0.0']},
         'method': 'Zonal root mean square error of equatorial_pacific climatological pr STD, time series are linearly detrended, observations and model regridded to generic_1x1deg',
         'name': 'pr zonal seasonality RMSE',
         'ref': 'Using CDAT regridding and rms (uncentered and biased) calculation',
         'time_frequency': 'monthly',
         'units': 'mm/day'},
        'metric': {'datasets': "GFDL-CM2p1_r5i1p1; ERA-Interim's pr & GPCPv2.3's precip; 's ",
         'method': 'The metric is the statistical value between the model and the observations',
         'name': 'SeasonalPrLonRmse',
         'units': 'mm/day'}},
       'SeasonalSstLonRmse': {'diagnostic': {'ERA-Interim': {'name': 'ERA-Interim',
          'nyears': 40,
          'time_period': ['1979-1-16 12:0:0.0', '2019-3-16 12:0:0.0']},
         'GFDL-CM2p1_r5i1p1': {'keyerror': None,
          'name': 'GFDL-CM2p1_r5i1p1',
          'nyears': 145,
          'time_period': ['1861-1-16 12:0:0.0', '2005-12-16 12:0:0.0']},
         'HadISST': {'name': 'HadISST',
          'nyears': 151,
          'time_period': ['1870-1-16 11:59:59.5', '2020-10-16 12:0:0.0']},
         'Tropflux': {'name': 'Tropflux',
          'nyears': 40,
          'time_period': ['1979-1-15 0:0:0.0', '2018-12-15 12:0:0.0']},
         'method': 'Zonal root mean square error of equatorial_pacific climatological sst STD, time series are linearly detrended, observations and model regridded to generic_1x1deg',
         'name': 'sst zonal seasonality RMSE',
         'ref': 'Using CDAT regridding and rms (uncentered and biased) calculation',
         'time_frequency': 'monthly',
         'units': 'C'},
        'metric': {'datasets': "GFDL-CM2p1_r5i1p1; ERA-Interim's ts & HadISST's sst & Tropflux's sst; 's ",
         'method': 'The metric is the statistical value between the model and the observations',
         'name': 'SeasonalSstLonRmse',
         'units': 'C'}}},
      'name': 'Metrics Collection for ENSO performance'},
     'value': {'BiasPrLatRmse': {'diagnostic': {'ERA-Interim': {'value': None,
         'value_error': None},
        'GFDL-CM2p1_r5i1p1': {'value': None, 'value_error': None},
        'GPCPv2.3': {'value': None, 'value_error': None}},
       'metric': {'ERA-Interim': {'value': 1.9473622206700527,
         'value_error': None},
        'GPCPv2.3': {'value': 1.9548273857946932, 'value_error': None}}},
      'BiasPrLonRmse': {'diagnostic': {'ERA-Interim': {'value': None,
         'value_error': None},
        'GFDL-CM2p1_r5i1p1': {'value': None, 'value_error': None},
        'GPCPv2.3': {'value': None, 'value_error': None}},
       'metric': {'ERA-Interim': {'value': 2.2791293968355664,
         'value_error': None},
        'GPCPv2.3': {'value': 1.335515241546205, 'value_error': None}}},
      'BiasSstLonRmse': {'diagnostic': {'ERA-Interim': {'value': None,
         'value_error': None},
        'GFDL-CM2p1_r5i1p1': {'value': None, 'value_error': None},
        'HadISST': {'value': None, 'value_error': None},
        'Tropflux': {'value': None, 'value_error': None}},
       'metric': {'ERA-Interim': {'value': 1.5340215298672177,
         'value_error': None},
        'HadISST': {'value': 1.3644912751325264, 'value_error': None},
        'Tropflux': {'value': 1.5825230878235537, 'value_error': None}}},
      'EnsoAmpl': {'diagnostic': {'ERA-Interim': {'value': 0.8989844997845644,
         'value_error': 0.14214193002531866},
        'GFDL-CM2p1_r5i1p1': {'value': 1.4360899942139327,
         'value_error': 0.1192607826826507},
        'HadISST': {'value': 0.7665787872085695,
         'value_error': 0.06238329697691264},
        'Tropflux': {'value': 0.9039789553693535,
         'value_error': 0.14293162279134272}},
       'metric': {'ERA-Interim': {'value': 59.74580146354938,
         'value_error': 38.524195700854506},
        'HadISST': {'value': 87.33755984082607,
         'value_error': 30.802851960891697},
        'Tropflux': {'value': 58.8632108838381,
         'value_error': 38.311350718983185}}},
      'EnsoDuration': {'diagnostic': {'ERA-Interim': {'value': 13.0,
         'value_error': None},
        'GFDL-CM2p1_r5i1p1': {'value': 14.0, 'value_error': None},
        'HadISST': {'value': 13.0, 'value_error': None},
        'Tropflux': {'value': 13.0, 'value_error': None}},
       'metric': {'ERA-Interim': {'value': 7.6923076923076925,
         'value_error': None},
        'HadISST': {'value': 7.6923076923076925, 'value_error': None},
        'Tropflux': {'value': 7.6923076923076925, 'value_error': None}}},
      'EnsoSeasonality': {'diagnostic': {'ERA-Interim': {'value': 2.0466846866656914,
         'value_error': 0.6513411033995022},
        'GFDL-CM2p1_r5i1p1': {'value': 1.1555567507910094,
         'value_error': 0.1922601607669188},
        'HadISST': {'value': 1.6639865947361325,
         'value_error': 0.2712772451657809},
        'Tropflux': {'value': 2.0532132553583624,
         'value_error': 0.6534187683977347}},
       'metric': {'ERA-Interim': {'value': 43.54006954175449,
         'value_error': 27.36165948964855},
        'HadISST': {'value': 30.554924273638612,
         'value_error': 22.87571608478276},
        'Tropflux': {'value': 43.71959426156531,
         'value_error': 27.274658067337704}}},
      'EnsoSstDiversity_2': {'diagnostic': {'ERA-Interim': {'value': 33.25,
         'value_error': None},
        'GFDL-CM2p1_r5i1p1': {'value': 70.5, 'value_error': None},
        'HadISST': {'value': 49.0, 'value_error': None},
        'Tropflux': {'value': 32.0, 'value_error': None}},
       'metric': {'ERA-Interim': {'value': 112.03007518796993,
         'value_error': None},
        'HadISST': {'value': 43.87755102040816, 'value_error': None},
        'Tropflux': {'value': 120.3125, 'value_error': None}}},
      'EnsoSstLonRmse': {'diagnostic': {'ERA-Interim': {'value': None,
         'value_error': None},
        'GFDL-CM2p1_r5i1p1': {'value': None, 'value_error': None},
        'HadISST': {'value': None, 'value_error': None},
        'Tropflux': {'value': None, 'value_error': None}},
       'metric': {'ERA-Interim': {'value': 0.2972567922990421,
         'value_error': None},
        'HadISST': {'value': 0.31897645290444065, 'value_error': None},
        'Tropflux': {'value': 0.3001561394916366, 'value_error': None}}},
      'EnsoSstSkew': {'diagnostic': {'ERA-Interim': {'value': 0.39098111106809963,
         'value_error': 0.061819541653923164},
        'GFDL-CM2p1_r5i1p1': {'value': 0.1712728044858797,
         'value_error': 0.014223432234425668},
        'HadISST': {'value': 0.38989908235027515,
         'value_error': 0.03172953733021198},
        'Tropflux': {'value': 0.39744741059612115,
         'value_error': 0.06284195338099416}},
       'metric': {'ERA-Interim': {'value': 56.194097454480854,
         'value_error': 10.564203547479224},
        'HadISST': {'value': 56.07252947263602,
         'value_error': 7.222744722523868},
        'Tropflux': {'value': 56.90680076919057,
         'value_error': 10.392328470194084}}},
      'EnsoSstTsRmse': {'diagnostic': {'ERA-Interim': {'value': None,
         'value_error': None},
        'GFDL-CM2p1_r5i1p1': {'value': None, 'value_error': None},
        'HadISST': {'value': None, 'value_error': None},
        'Tropflux': {'value': None, 'value_error': None}},
       'metric': {'ERA-Interim': {'value': 0.14748135074687432,
         'value_error': None},
        'HadISST': {'value': 0.1384244329945614, 'value_error': None},
        'Tropflux': {'value': 0.1436578431338801, 'value_error': None}}},
      'SeasonalPrLatRmse': {'diagnostic': {'ERA-Interim': {'value': None,
         'value_error': None},
        'GFDL-CM2p1_r5i1p1': {'value': None, 'value_error': None},
        'GPCPv2.3': {'value': None, 'value_error': None}},
       'metric': {'ERA-Interim': {'value': 1.4651746448033292,
         'value_error': None},
        'GPCPv2.3': {'value': 1.6066845868924058, 'value_error': None}}},
      'SeasonalPrLonRmse': {'diagnostic': {'ERA-Interim': {'value': None,
         'value_error': None},
        'GFDL-CM2p1_r5i1p1': {'value': None, 'value_error': None},
        'GPCPv2.3': {'value': None, 'value_error': None}},
       'metric': {'ERA-Interim': {'value': 0.7428202493086656,
         'value_error': None},
        'GPCPv2.3': {'value': 0.5832133894668958, 'value_error': None}}},
      'SeasonalSstLonRmse': {'diagnostic': {'ERA-Interim': {'value': None,
         'value_error': None},
        'GFDL-CM2p1_r5i1p1': {'value': None, 'value_error': None},
        'HadISST': {'value': None, 'value_error': None},
        'Tropflux': {'value': None, 'value_error': None}},
       'metric': {'ERA-Interim': {'value': 0.1404703195995151,
         'value_error': None},
        'HadISST': {'value': 0.16939927608973174, 'value_error': None},
        'Tropflux': {'value': 0.13129454372013014, 'value_error': None}}}}},
    'r6i1p1': {'metadata': {'description_of_the_collection': 'Describe which science question this collection is about',
      'metrics': {'BiasPrLatRmse': {'diagnostic': {'ERA-Interim': {'name': 'ERA-Interim',
          'nyears': 40,
          'time_period': ['1979-1-16 12:0:0.0', '2019-3-16 12:0:0.0']},
         'GFDL-CM2p1_r6i1p1': {'keyerror': None,
          'name': 'GFDL-CM2p1_r6i1p1',
          'nyears': 180,
          'time_period': ['1861-1-16 12:0:0.0', '2040-12-16 12:0:0.0']},
         'GPCPv2.3': {'name': 'GPCPv2.3',
          'nyears': 41,
          'time_period': ['1979-1-1 0:0:0.0', '2019-7-1 0:0:0.0']},
         'method': 'Meridional root mean square error of nino3_LatExt pr, time series are linearly detrended, observations and model regridded to generic_1x1deg',
         'name': 'pr Meridional RMSE',
         'ref': 'Using CDAT regridding and rms (uncentered and biased) calculation',
         'time_frequency': 'monthly',
         'units': 'mm/day'},
        'metric': {'datasets': "GFDL-CM2p1_r6i1p1; ERA-Interim's pr & GPCPv2.3's precip; 's ",
         'method': 'The metric is the statistical value between the model and the observations',
         'name': 'BiasPrLatRmse',
         'units': 'mm/day'}},
       'BiasPrLonRmse': {'diagnostic': {'ERA-Interim': {'name': 'ERA-Interim',
          'nyears': 40,
          'time_period': ['1979-1-16 12:0:0.0', '2019-3-16 12:0:0.0']},
         'GFDL-CM2p1_r6i1p1': {'keyerror': None,
          'name': 'GFDL-CM2p1_r6i1p1',
          'nyears': 180,
          'time_period': ['1861-1-16 12:0:0.0', '2040-12-16 12:0:0.0']},
         'GPCPv2.3': {'name': 'GPCPv2.3',
          'nyears': 41,
          'time_period': ['1979-1-1 0:0:0.0', '2019-7-1 0:0:0.0']},
         'method': 'Zonal root mean square error of equatorial_pacific pr, time series are linearly detrended, observations and model regridded to generic_1x1deg',
         'name': 'pr Zonal RMSE',
         'ref': 'Using CDAT regridding and rms (uncentered and biased) calculation',
         'time_frequency': 'monthly',
         'units': 'mm/day'},
        'metric': {'datasets': "GFDL-CM2p1_r6i1p1; ERA-Interim's pr & GPCPv2.3's precip; 's ",
         'method': 'The metric is the statistical value between the model and the observations',
         'name': 'BiasPrLonRmse',
         'units': 'mm/day'}},
       'BiasSstLonRmse': {'diagnostic': {'ERA-Interim': {'name': 'ERA-Interim',
          'nyears': 40,
          'time_period': ['1979-1-16 12:0:0.0', '2019-3-16 12:0:0.0']},
         'GFDL-CM2p1_r6i1p1': {'keyerror': None,
          'name': 'GFDL-CM2p1_r6i1p1',
          'nyears': 145,
          'time_period': ['1861-1-16 12:0:0.0', '2005-12-16 12:0:0.0']},
         'HadISST': {'name': 'HadISST',
          'nyears': 151,
          'time_period': ['1870-1-16 11:59:59.5', '2020-10-16 12:0:0.0']},
         'Tropflux': {'name': 'Tropflux',
          'nyears': 40,
          'time_period': ['1979-1-15 0:0:0.0', '2018-12-15 12:0:0.0']},
         'method': 'Zonal root mean square error of equatorial_pacific sst, time series are linearly detrended, observations and model regridded to generic_1x1deg',
         'name': 'sst Zonal RMSE',
         'ref': 'Using CDAT regridding and rms (uncentered and biased) calculation',
         'time_frequency': 'monthly',
         'units': 'C'},
        'metric': {'datasets': "GFDL-CM2p1_r6i1p1; ERA-Interim's ts & HadISST's sst & Tropflux's sst; 's ",
         'method': 'The metric is the statistical value between the model and the observations',
         'name': 'BiasSstLonRmse',
         'units': 'C'}},
       'EnsoAmpl': {'diagnostic': {'ERA-Interim': {'keyerror': None,
          'name': 'ERA-Interim',
          'nyears': 40,
          'time_period': ['1979-1-16 12:0:0.0', '2019-3-16 12:0:0.0']},
         'GFDL-CM2p1_r6i1p1': {'keyerror': None,
          'name': 'GFDL-CM2p1_r6i1p1',
          'nyears': 145,
          'time_period': ['1861-1-16 12:0:0.0', '2005-12-16 12:0:0.0']},
         'HadISST': {'keyerror': None,
          'name': 'HadISST',
          'nyears': 151,
          'time_period': ['1870-1-16 11:59:59.5', '2020-10-16 12:0:0.0']},
         'Tropflux': {'keyerror': None,
          'name': 'Tropflux',
          'nyears': 40,
          'time_period': ['1979-1-15 0:0:0.0', '2018-12-15 12:0:0.0']},
         'method': 'Standard deviation of nino3.4 sstA, time series are linearly detrended',
         'name': 'ENSO amplitude',
         'ref': 'Using CDAT regression calculation',
         'time_frequency': 'monthly',
         'units': 'C'},
        'metric': {'datasets': "GFDL-CM2p1_r6i1p1; ERA-Interim's ts & HadISST's sst & Tropflux's sst; 's ",
         'method': 'The metric is the absolute value of the relative difference between model and observations values (M = 100 * abs[[model-obs] / obs])',
         'name': 'EnsoAmpl',
         'units': '%'}},
       'EnsoDuration': {'diagnostic': {'ERA-Interim': {'keyerror': None,
          'name': 'ERA-Interim',
          'nyears': 40,
          'time_period': ['1979-1-16 12:0:0.0', '2019-3-16 12:0:0.0']},
         'GFDL-CM2p1_r6i1p1': {'keyerror': None,
          'name': 'GFDL-CM2p1_r6i1p1',
          'nyears': 145,
          'time_period': ['1861-1-16 12:0:0.0', '2005-12-16 12:0:0.0']},
         'HadISST': {'keyerror': None,
          'name': 'HadISST',
          'nyears': 151,
          'time_period': ['1870-1-16 11:59:59.5', '2020-10-16 12:0:0.0']},
         'Tropflux': {'keyerror': None,
          'name': 'Tropflux',
          'nyears': 40,
          'time_period': ['1979-1-15 0:0:0.0', '2018-12-15 12:0:0.0']},
         'method': 'nino3.4 SSTA during DEC regressed against nino3.4 SSTA during 6 years (centered on ENSO), the duration is the number of consecutive months during which the regression is above 0.25, time series are linearly detrended, smoothing using a triangle shaped window of 5 points',
         'name': 'ENSO Duration based on life cyle SSTA pattern',
         'ref': 'Using CDAT',
         'time_frequency': 'monthly',
         'units': 'months'},
        'metric': {'datasets': "GFDL-CM2p1_r6i1p1; ERA-Interim's ts & HadISST's sst & Tropflux's sst; 's ",
         'method': 'The metric is the absolute value of the relative difference between model and observations values (M = 100 * abs[[model-obs] / obs])',
         'name': 'EnsoDuration',
         'units': '%'}},
       'EnsoSeasonality': {'diagnostic': {'ERA-Interim': {'keyerror': None,
          'name': 'ERA-Interim',
          'nyears': 40,
          'time_period': ['1979-1-16 12:0:0.0', '2019-3-16 12:0:0.0']},
         'GFDL-CM2p1_r6i1p1': {'keyerror': None,
          'name': 'GFDL-CM2p1_r6i1p1',
          'nyears': 145,
          'time_period': ['1861-1-16 12:0:0.0', '2005-12-16 12:0:0.0']},
         'HadISST': {'keyerror': None,
          'name': 'HadISST',
          'nyears': 151,
          'time_period': ['1870-1-16 11:59:59.5', '2020-10-16 12:0:0.0']},
         'Tropflux': {'keyerror': None,
          'name': 'Tropflux',
          'nyears': 40,
          'time_period': ['1979-1-15 0:0:0.0', '2018-12-15 12:0:0.0']},
         'method': 'Ratio between NDJ and MAM standard deviation nino3.4 sstA, time series are linearly detrended',
         'name': 'ENSO seasonality',
         'ref': 'Using CDAT std dev calculation',
         'time_frequency': 'monthly',
         'units': 'C/C'},
        'metric': {'datasets': "GFDL-CM2p1_r6i1p1; ERA-Interim's ts & HadISST's sst & Tropflux's sst; 's ",
         'method': 'The metric is the absolute value of the relative difference between model and observations values (M = 100 * abs[[model-obs] / obs])',
         'name': 'EnsoSeasonality',
         'units': '%'}},
       'EnsoSstDiversity_2': {'diagnostic': {'ERA-Interim': {'keyerror': None,
          'name': 'ERA-Interim',
          'nyears': 40,
          'time_period': ['1979-1-16 12:0:0.0', '2019-3-16 12:0:0.0']},
         'GFDL-CM2p1_r6i1p1': {'keyerror': None,
          'name': 'GFDL-CM2p1_r6i1p1',
          'nyears': 145,
          'time_period': ['1861-1-16 12:0:0.0', '2005-12-16 12:0:0.0']},
         'HadISST': {'keyerror': None,
          'name': 'HadISST',
          'nyears': 151,
          'time_period': ['1870-1-16 11:59:59.5', '2020-10-16 12:0:0.0']},
         'Tropflux': {'keyerror': None,
          'name': 'Tropflux',
          'nyears': 40,
          'time_period': ['1979-1-15 0:0:0.0', '2018-12-15 12:0:0.0']},
         'method': 'Nino (Nina) events = nino3.4 sstA > 0.75 (< -0.75) during DEC, zonal SSTA (meridional averaged [-5.0 ; 5.0]), the zonal SSTA maximum (minimum) is located for each event, the diversity is the interquartile range (IQR = Q3 - Q1), time series are linearly detrended, smoothing using a triangle shaped window of 5 points',
         'name': 'ENSO Diversity (interquartile range)',
         'ref': 'Using CDAT regridding',
         'time_frequency': 'monthly',
         'units': 'long'},
        'metric': {'datasets': "GFDL-CM2p1_r6i1p1; ERA-Interim's ts & HadISST's sst & Tropflux's sst; 's ",
         'method': 'The metric is the absolute value of the relative difference between model and observations values (M = 100 * abs[[model-obs] / obs])',
         'name': 'EnsoSstDiversity',
         'units': '%'}},
       'EnsoSstLonRmse': {'diagnostic': {'ERA-Interim': {'name': 'ERA-Interim',
          'nyears': 40,
          'time_period': ['1979-1-16 12:0:0.0', '2019-3-16 12:0:0.0']},
         'GFDL-CM2p1_r6i1p1': {'keyerror': None,
          'name': 'GFDL-CM2p1_r6i1p1',
          'nyears': 145,
          'time_period': ['1861-1-16 12:0:0.0', '2005-12-16 12:0:0.0']},
         'HadISST': {'name': 'HadISST',
          'nyears': 151,
          'time_period': ['1870-1-16 11:59:59.5', '2020-10-16 12:0:0.0']},
         'Tropflux': {'name': 'Tropflux',
          'nyears': 40,
          'time_period': ['1979-1-15 0:0:0.0', '2018-12-15 12:0:0.0']},
         'method': 'nino3.4 SSTA during DEC regressed against equatorial_pacific SSTA, time series are linearly detrended, smoothing using a triangle shaped window of 5 points, observations and model regridded to generic_1x1deg',
         'name': 'ENSO Zonal SSTA pattern',
         'ref': 'Using CDAT regridding and rms (uncentered and biased) calculation',
         'time_frequency': 'monthly',
         'units': 'C/C'},
        'metric': {'datasets': "GFDL-CM2p1_r6i1p1; ERA-Interim's ts & HadISST's sst & Tropflux's sst; 's ",
         'method': 'The metric is the statistical value between the model and the observations',
         'name': 'EnsoSstLonRmse',
         'units': 'C/C'}},
       'EnsoSstSkew': {'diagnostic': {'ERA-Interim': {'keyerror': None,
          'name': 'ERA-Interim',
          'nyears': 40,
          'time_period': ['1979-1-16 12:0:0.0', '2019-3-16 12:0:0.0']},
         'GFDL-CM2p1_r6i1p1': {'keyerror': None,
          'name': 'GFDL-CM2p1_r6i1p1',
          'nyears': 145,
          'time_period': ['1861-1-16 12:0:0.0', '2005-12-16 12:0:0.0']},
         'HadISST': {'keyerror': None,
          'name': 'HadISST',
          'nyears': 151,
          'time_period': ['1870-1-16 11:59:59.5', '2020-10-16 12:0:0.0']},
         'Tropflux': {'keyerror': None,
          'name': 'Tropflux',
          'nyears': 40,
          'time_period': ['1979-1-15 0:0:0.0', '2018-12-15 12:0:0.0']},
         'method': 'Standard deviation of nino3.4 sstA, time series are linearly detrended',
         'name': 'ENSO skewness',
         'ref': 'Using CDAT regression calculation',
         'time_frequency': 'monthly',
         'units': 'C'},
        'metric': {'datasets': "GFDL-CM2p1_r6i1p1; ERA-Interim's ts & HadISST's sst & Tropflux's sst; 's ",
         'method': 'The metric is the absolute value of the relative difference between model and observations values (M = 100 * abs[[model-obs] / obs])',
         'name': 'EnsoSstSkew',
         'units': '%'}},
       'EnsoSstTsRmse': {'diagnostic': {'ERA-Interim': {'name': 'ERA-Interim',
          'nyears': 40,
          'time_period': ['1979-1-16 12:0:0.0', '2019-3-16 12:0:0.0']},
         'GFDL-CM2p1_r6i1p1': {'keyerror': None,
          'name': 'GFDL-CM2p1_r6i1p1',
          'nyears': 145,
          'time_period': ['1861-1-16 12:0:0.0', '2005-12-16 12:0:0.0']},
         'HadISST': {'name': 'HadISST',
          'nyears': 151,
          'time_period': ['1870-1-16 11:59:59.5', '2020-10-16 12:0:0.0']},
         'Tropflux': {'name': 'Tropflux',
          'nyears': 40,
          'time_period': ['1979-1-15 0:0:0.0', '2018-12-15 12:0:0.0']},
         'method': 'nino3.4 SSTA during DEC regressed against nino3.4 SSTA during 6 years (centered on ENSO), time series are linearly detrended, smoothing using a triangle shaped window of 5 points',
         'name': 'ENSO life cyle SSTA pattern',
         'ref': 'Using CDAT regridding and rms (uncentered and biased) calculation',
         'time_frequency': 'monthly',
         'units': 'C/C'},
        'metric': {'datasets': "GFDL-CM2p1_r6i1p1; ERA-Interim's ts & HadISST's sst & Tropflux's sst; 's ",
         'method': 'The metric is the statistical value between the model and the observations',
         'name': 'EnsoSstTsRmse',
         'units': 'C/C'}},
       'SeasonalPrLatRmse': {'diagnostic': {'ERA-Interim': {'name': 'ERA-Interim',
          'nyears': 40,
          'time_period': ['1979-1-16 12:0:0.0', '2019-3-16 12:0:0.0']},
         'GFDL-CM2p1_r6i1p1': {'keyerror': None,
          'name': 'GFDL-CM2p1_r6i1p1',
          'nyears': 180,
          'time_period': ['1861-1-16 12:0:0.0', '2040-12-16 12:0:0.0']},
         'GPCPv2.3': {'name': 'GPCPv2.3',
          'nyears': 41,
          'time_period': ['1979-1-1 0:0:0.0', '2019-7-1 0:0:0.0']},
         'method': 'Meridional root mean square error of nino3_LatExt climatological pr STD, time series are linearly detrended, observations and model regridded to generic_1x1deg',
         'name': 'pr meridional seasonality RMSE',
         'ref': 'Using CDAT regridding and rms (uncentered and biased) calculation',
         'time_frequency': 'monthly',
         'units': 'mm/day'},
        'metric': {'datasets': "GFDL-CM2p1_r6i1p1; ERA-Interim's pr & GPCPv2.3's precip; 's ",
         'method': 'The metric is the statistical value between the model and the observations',
         'name': 'SeasonalPrLatRmse',
         'units': 'mm/day'}},
       'SeasonalPrLonRmse': {'diagnostic': {'ERA-Interim': {'name': 'ERA-Interim',
          'nyears': 40,
          'time_period': ['1979-1-16 12:0:0.0', '2019-3-16 12:0:0.0']},
         'GFDL-CM2p1_r6i1p1': {'keyerror': None,
          'name': 'GFDL-CM2p1_r6i1p1',
          'nyears': 180,
          'time_period': ['1861-1-16 12:0:0.0', '2040-12-16 12:0:0.0']},
         'GPCPv2.3': {'name': 'GPCPv2.3',
          'nyears': 41,
          'time_period': ['1979-1-1 0:0:0.0', '2019-7-1 0:0:0.0']},
         'method': 'Zonal root mean square error of equatorial_pacific climatological pr STD, time series are linearly detrended, observations and model regridded to generic_1x1deg',
         'name': 'pr zonal seasonality RMSE',
         'ref': 'Using CDAT regridding and rms (uncentered and biased) calculation',
         'time_frequency': 'monthly',
         'units': 'mm/day'},
        'metric': {'datasets': "GFDL-CM2p1_r6i1p1; ERA-Interim's pr & GPCPv2.3's precip; 's ",
         'method': 'The metric is the statistical value between the model and the observations',
         'name': 'SeasonalPrLonRmse',
         'units': 'mm/day'}},
       'SeasonalSstLonRmse': {'diagnostic': {'ERA-Interim': {'name': 'ERA-Interim',
          'nyears': 40,
          'time_period': ['1979-1-16 12:0:0.0', '2019-3-16 12:0:0.0']},
         'GFDL-CM2p1_r6i1p1': {'keyerror': None,
          'name': 'GFDL-CM2p1_r6i1p1',
          'nyears': 145,
          'time_period': ['1861-1-16 12:0:0.0', '2005-12-16 12:0:0.0']},
         'HadISST': {'name': 'HadISST',
          'nyears': 151,
          'time_period': ['1870-1-16 11:59:59.5', '2020-10-16 12:0:0.0']},
         'Tropflux': {'name': 'Tropflux',
          'nyears': 40,
          'time_period': ['1979-1-15 0:0:0.0', '2018-12-15 12:0:0.0']},
         'method': 'Zonal root mean square error of equatorial_pacific climatological sst STD, time series are linearly detrended, observations and model regridded to generic_1x1deg',
         'name': 'sst zonal seasonality RMSE',
         'ref': 'Using CDAT regridding and rms (uncentered and biased) calculation',
         'time_frequency': 'monthly',
         'units': 'C'},
        'metric': {'datasets': "GFDL-CM2p1_r6i1p1; ERA-Interim's ts & HadISST's sst & Tropflux's sst; 's ",
         'method': 'The metric is the statistical value between the model and the observations',
         'name': 'SeasonalSstLonRmse',
         'units': 'C'}}},
      'name': 'Metrics Collection for ENSO performance'},
     'value': {'BiasPrLatRmse': {'diagnostic': {'ERA-Interim': {'value': None,
         'value_error': None},
        'GFDL-CM2p1_r6i1p1': {'value': None, 'value_error': None},
        'GPCPv2.3': {'value': None, 'value_error': None}},
       'metric': {'ERA-Interim': {'value': 1.8820769549994412,
         'value_error': None},
        'GPCPv2.3': {'value': 1.911618863697319, 'value_error': None}}},
      'BiasPrLonRmse': {'diagnostic': {'ERA-Interim': {'value': None,
         'value_error': None},
        'GFDL-CM2p1_r6i1p1': {'value': None, 'value_error': None},
        'GPCPv2.3': {'value': None, 'value_error': None}},
       'metric': {'ERA-Interim': {'value': 2.14930250641501,
         'value_error': None},
        'GPCPv2.3': {'value': 1.2024446975773266, 'value_error': None}}},
      'BiasSstLonRmse': {'diagnostic': {'ERA-Interim': {'value': None,
         'value_error': None},
        'GFDL-CM2p1_r6i1p1': {'value': None, 'value_error': None},
        'HadISST': {'value': None, 'value_error': None},
        'Tropflux': {'value': None, 'value_error': None}},
       'metric': {'ERA-Interim': {'value': 1.5648372075956805,
         'value_error': None},
        'HadISST': {'value': 1.3966442841319424, 'value_error': None},
        'Tropflux': {'value': 1.6132841430514944, 'value_error': None}}},
      'EnsoAmpl': {'diagnostic': {'ERA-Interim': {'value': 0.8989844997845644,
         'value_error': 0.14214193002531866},
        'GFDL-CM2p1_r6i1p1': {'value': 1.5049736646617946,
         'value_error': 0.12498126014908027},
        'HadISST': {'value': 0.7665787872085695,
         'value_error': 0.06238329697691264},
        'Tropflux': {'value': 0.9039789553693535,
         'value_error': 0.14293162279134272}},
       'metric': {'ERA-Interim': {'value': 67.40818835279711,
         'value_error': 40.37205204106885},
        'HadISST': {'value': 96.32341642820906,
         'value_error': 32.28034537138632},
        'Tropflux': {'value': 66.48326332407628,
         'value_error': 40.14899771044726}}},
      'EnsoDuration': {'diagnostic': {'ERA-Interim': {'value': 13.0,
         'value_error': None},
        'GFDL-CM2p1_r6i1p1': {'value': 13.0, 'value_error': None},
        'HadISST': {'value': 13.0, 'value_error': None},
        'Tropflux': {'value': 13.0, 'value_error': None}},
       'metric': {'ERA-Interim': {'value': 0.0, 'value_error': None},
        'HadISST': {'value': 0.0, 'value_error': None},
        'Tropflux': {'value': 0.0, 'value_error': None}}},
      'EnsoSeasonality': {'diagnostic': {'ERA-Interim': {'value': 2.0466846866656914,
         'value_error': 0.6513411033995022},
        'GFDL-CM2p1_r6i1p1': {'value': 1.1450336924023938,
         'value_error': 0.19050934680112264},
        'HadISST': {'value': 1.6639865947361325,
         'value_error': 0.2712772451657809},
        'Tropflux': {'value': 2.0532132553583624,
         'value_error': 0.6534187683977347}},
       'metric': {'ERA-Interim': {'value': 44.05422096220406,
         'value_error': 27.112490991241273},
        'HadISST': {'value': 31.187324704141133,
         'value_error': 22.667398755602015},
        'Tropflux': {'value': 44.23211084313097,
         'value_error': 27.026281845939966}}},
      'EnsoSstDiversity_2': {'diagnostic': {'ERA-Interim': {'value': 33.25,
         'value_error': None},
        'GFDL-CM2p1_r6i1p1': {'value': 46.0, 'value_error': None},
        'HadISST': {'value': 49.0, 'value_error': None},
        'Tropflux': {'value': 32.0, 'value_error': None}},
       'metric': {'ERA-Interim': {'value': 38.34586466165413,
         'value_error': None},
        'HadISST': {'value': 6.122448979591836, 'value_error': None},
        'Tropflux': {'value': 43.75, 'value_error': None}}},
      'EnsoSstLonRmse': {'diagnostic': {'ERA-Interim': {'value': None,
         'value_error': None},
        'GFDL-CM2p1_r6i1p1': {'value': None, 'value_error': None},
        'HadISST': {'value': None, 'value_error': None},
        'Tropflux': {'value': None, 'value_error': None}},
       'metric': {'ERA-Interim': {'value': 0.31209328022688076,
         'value_error': None},
        'HadISST': {'value': 0.3343474014032827, 'value_error': None},
        'Tropflux': {'value': 0.3148651457676019, 'value_error': None}}},
      'EnsoSstSkew': {'diagnostic': {'ERA-Interim': {'value': 0.39098111106809963,
         'value_error': 0.061819541653923164},
        'GFDL-CM2p1_r6i1p1': {'value': 0.08893002059499841,
         'value_error': 0.0073852362337146205},
        'HadISST': {'value': 0.38989908235027515,
         'value_error': 0.03172953733021198},
        'Tropflux': {'value': 0.39744741059612115,
         'value_error': 0.06284195338099416}},
       'metric': {'ERA-Interim': {'value': 77.25465039677864,
         'value_error': 5.485254018389923},
        'HadISST': {'value': 77.19152862352571,
         'value_error': 3.750267527028312},
        'Tropflux': {'value': 77.62470751498556,
         'value_error': 5.396011279540536}}},
      'EnsoSstTsRmse': {'diagnostic': {'ERA-Interim': {'value': None,
         'value_error': None},
        'GFDL-CM2p1_r6i1p1': {'value': None, 'value_error': None},
        'HadISST': {'value': None, 'value_error': None},
        'Tropflux': {'value': None, 'value_error': None}},
       'metric': {'ERA-Interim': {'value': 0.1246824374629104,
         'value_error': None},
        'HadISST': {'value': 0.1237923981110762, 'value_error': None},
        'Tropflux': {'value': 0.12394243229689493, 'value_error': None}}},
      'SeasonalPrLatRmse': {'diagnostic': {'ERA-Interim': {'value': None,
         'value_error': None},
        'GFDL-CM2p1_r6i1p1': {'value': None, 'value_error': None},
        'GPCPv2.3': {'value': None, 'value_error': None}},
       'metric': {'ERA-Interim': {'value': 1.462153420810742,
         'value_error': None},
        'GPCPv2.3': {'value': 1.6151021277900597, 'value_error': None}}},
      'SeasonalPrLonRmse': {'diagnostic': {'ERA-Interim': {'value': None,
         'value_error': None},
        'GFDL-CM2p1_r6i1p1': {'value': None, 'value_error': None},
        'GPCPv2.3': {'value': None, 'value_error': None}},
       'metric': {'ERA-Interim': {'value': 0.7347527630392011,
         'value_error': None},
        'GPCPv2.3': {'value': 0.5918853939406852, 'value_error': None}}},
      'SeasonalSstLonRmse': {'diagnostic': {'ERA-Interim': {'value': None,
         'value_error': None},
        'GFDL-CM2p1_r6i1p1': {'value': None, 'value_error': None},
        'HadISST': {'value': None, 'value_error': None},
        'Tropflux': {'value': None, 'value_error': None}},
       'metric': {'ERA-Interim': {'value': 0.14785608124634078,
         'value_error': None},
        'HadISST': {'value': 0.176265866778398, 'value_error': None},
        'Tropflux': {'value': 0.13922632663962278, 'value_error': None}}}}},
    'r7i1p1': {'metadata': {'description_of_the_collection': 'Describe which science question this collection is about',
      'metrics': {'BiasPrLatRmse': {'diagnostic': {'ERA-Interim': {'name': 'ERA-Interim',
          'nyears': 40,
          'time_period': ['1979-1-16 12:0:0.0', '2019-3-16 12:0:0.0']},
         'GFDL-CM2p1_r7i1p1': {'keyerror': None,
          'name': 'GFDL-CM2p1_r7i1p1',
          'nyears': 180,
          'time_period': ['1861-1-16 12:0:0.0', '2040-12-16 12:0:0.0']},
         'GPCPv2.3': {'name': 'GPCPv2.3',
          'nyears': 41,
          'time_period': ['1979-1-1 0:0:0.0', '2019-7-1 0:0:0.0']},
         'method': 'Meridional root mean square error of nino3_LatExt pr, time series are linearly detrended, observations and model regridded to generic_1x1deg',
         'name': 'pr Meridional RMSE',
         'ref': 'Using CDAT regridding and rms (uncentered and biased) calculation',
         'time_frequency': 'monthly',
         'units': 'mm/day'},
        'metric': {'datasets': "GFDL-CM2p1_r7i1p1; ERA-Interim's pr & GPCPv2.3's precip; 's ",
         'method': 'The metric is the statistical value between the model and the observations',
         'name': 'BiasPrLatRmse',
         'units': 'mm/day'}},
       'BiasPrLonRmse': {'diagnostic': {'ERA-Interim': {'name': 'ERA-Interim',
          'nyears': 40,
          'time_period': ['1979-1-16 12:0:0.0', '2019-3-16 12:0:0.0']},
         'GFDL-CM2p1_r7i1p1': {'keyerror': None,
          'name': 'GFDL-CM2p1_r7i1p1',
          'nyears': 180,
          'time_period': ['1861-1-16 12:0:0.0', '2040-12-16 12:0:0.0']},
         'GPCPv2.3': {'name': 'GPCPv2.3',
          'nyears': 41,
          'time_period': ['1979-1-1 0:0:0.0', '2019-7-1 0:0:0.0']},
         'method': 'Zonal root mean square error of equatorial_pacific pr, time series are linearly detrended, observations and model regridded to generic_1x1deg',
         'name': 'pr Zonal RMSE',
         'ref': 'Using CDAT regridding and rms (uncentered and biased) calculation',
         'time_frequency': 'monthly',
         'units': 'mm/day'},
        'metric': {'datasets': "GFDL-CM2p1_r7i1p1; ERA-Interim's pr & GPCPv2.3's precip; 's ",
         'method': 'The metric is the statistical value between the model and the observations',
         'name': 'BiasPrLonRmse',
         'units': 'mm/day'}},
       'BiasSstLonRmse': {'diagnostic': {'ERA-Interim': {'name': 'ERA-Interim',
          'nyears': 40,
          'time_period': ['1979-1-16 12:0:0.0', '2019-3-16 12:0:0.0']},
         'GFDL-CM2p1_r7i1p1': {'keyerror': None,
          'name': 'GFDL-CM2p1_r7i1p1',
          'nyears': 145,
          'time_period': ['1861-1-16 12:0:0.0', '2005-12-16 12:0:0.0']},
         'HadISST': {'name': 'HadISST',
          'nyears': 151,
          'time_period': ['1870-1-16 11:59:59.5', '2020-10-16 12:0:0.0']},
         'Tropflux': {'name': 'Tropflux',
          'nyears': 40,
          'time_period': ['1979-1-15 0:0:0.0', '2018-12-15 12:0:0.0']},
         'method': 'Zonal root mean square error of equatorial_pacific sst, time series are linearly detrended, observations and model regridded to generic_1x1deg',
         'name': 'sst Zonal RMSE',
         'ref': 'Using CDAT regridding and rms (uncentered and biased) calculation',
         'time_frequency': 'monthly',
         'units': 'C'},
        'metric': {'datasets': "GFDL-CM2p1_r7i1p1; ERA-Interim's ts & HadISST's sst & Tropflux's sst; 's ",
         'method': 'The metric is the statistical value between the model and the observations',
         'name': 'BiasSstLonRmse',
         'units': 'C'}},
       'EnsoAmpl': {'diagnostic': {'ERA-Interim': {'keyerror': None,
          'name': 'ERA-Interim',
          'nyears': 40,
          'time_period': ['1979-1-16 12:0:0.0', '2019-3-16 12:0:0.0']},
         'GFDL-CM2p1_r7i1p1': {'keyerror': None,
          'name': 'GFDL-CM2p1_r7i1p1',
          'nyears': 145,
          'time_period': ['1861-1-16 12:0:0.0', '2005-12-16 12:0:0.0']},
         'HadISST': {'keyerror': None,
          'name': 'HadISST',
          'nyears': 151,
          'time_period': ['1870-1-16 11:59:59.5', '2020-10-16 12:0:0.0']},
         'Tropflux': {'keyerror': None,
          'name': 'Tropflux',
          'nyears': 40,
          'time_period': ['1979-1-15 0:0:0.0', '2018-12-15 12:0:0.0']},
         'method': 'Standard deviation of nino3.4 sstA, time series are linearly detrended',
         'name': 'ENSO amplitude',
         'ref': 'Using CDAT regression calculation',
         'time_frequency': 'monthly',
         'units': 'C'},
        'metric': {'datasets': "GFDL-CM2p1_r7i1p1; ERA-Interim's ts & HadISST's sst & Tropflux's sst; 's ",
         'method': 'The metric is the absolute value of the relative difference between model and observations values (M = 100 * abs[[model-obs] / obs])',
         'name': 'EnsoAmpl',
         'units': '%'}},
       'EnsoDuration': {'diagnostic': {'ERA-Interim': {'keyerror': None,
          'name': 'ERA-Interim',
          'nyears': 40,
          'time_period': ['1979-1-16 12:0:0.0', '2019-3-16 12:0:0.0']},
         'GFDL-CM2p1_r7i1p1': {'keyerror': None,
          'name': 'GFDL-CM2p1_r7i1p1',
          'nyears': 145,
          'time_period': ['1861-1-16 12:0:0.0', '2005-12-16 12:0:0.0']},
         'HadISST': {'keyerror': None,
          'name': 'HadISST',
          'nyears': 151,
          'time_period': ['1870-1-16 11:59:59.5', '2020-10-16 12:0:0.0']},
         'Tropflux': {'keyerror': None,
          'name': 'Tropflux',
          'nyears': 40,
          'time_period': ['1979-1-15 0:0:0.0', '2018-12-15 12:0:0.0']},
         'method': 'nino3.4 SSTA during DEC regressed against nino3.4 SSTA during 6 years (centered on ENSO), the duration is the number of consecutive months during which the regression is above 0.25, time series are linearly detrended, smoothing using a triangle shaped window of 5 points',
         'name': 'ENSO Duration based on life cyle SSTA pattern',
         'ref': 'Using CDAT',
         'time_frequency': 'monthly',
         'units': 'months'},
        'metric': {'datasets': "GFDL-CM2p1_r7i1p1; ERA-Interim's ts & HadISST's sst & Tropflux's sst; 's ",
         'method': 'The metric is the absolute value of the relative difference between model and observations values (M = 100 * abs[[model-obs] / obs])',
         'name': 'EnsoDuration',
         'units': '%'}},
       'EnsoSeasonality': {'diagnostic': {'ERA-Interim': {'keyerror': None,
          'name': 'ERA-Interim',
          'nyears': 40,
          'time_period': ['1979-1-16 12:0:0.0', '2019-3-16 12:0:0.0']},
         'GFDL-CM2p1_r7i1p1': {'keyerror': None,
          'name': 'GFDL-CM2p1_r7i1p1',
          'nyears': 145,
          'time_period': ['1861-1-16 12:0:0.0', '2005-12-16 12:0:0.0']},
         'HadISST': {'keyerror': None,
          'name': 'HadISST',
          'nyears': 151,
          'time_period': ['1870-1-16 11:59:59.5', '2020-10-16 12:0:0.0']},
         'Tropflux': {'keyerror': None,
          'name': 'Tropflux',
          'nyears': 40,
          'time_period': ['1979-1-15 0:0:0.0', '2018-12-15 12:0:0.0']},
         'method': 'Ratio between NDJ and MAM standard deviation nino3.4 sstA, time series are linearly detrended',
         'name': 'ENSO seasonality',
         'ref': 'Using CDAT std dev calculation',
         'time_frequency': 'monthly',
         'units': 'C/C'},
        'metric': {'datasets': "GFDL-CM2p1_r7i1p1; ERA-Interim's ts & HadISST's sst & Tropflux's sst; 's ",
         'method': 'The metric is the absolute value of the relative difference between model and observations values (M = 100 * abs[[model-obs] / obs])',
         'name': 'EnsoSeasonality',
         'units': '%'}},
       'EnsoSstDiversity_2': {'diagnostic': {'ERA-Interim': {'keyerror': None,
          'name': 'ERA-Interim',
          'nyears': 40,
          'time_period': ['1979-1-16 12:0:0.0', '2019-3-16 12:0:0.0']},
         'GFDL-CM2p1_r7i1p1': {'keyerror': None,
          'name': 'GFDL-CM2p1_r7i1p1',
          'nyears': 145,
          'time_period': ['1861-1-16 12:0:0.0', '2005-12-16 12:0:0.0']},
         'HadISST': {'keyerror': None,
          'name': 'HadISST',
          'nyears': 151,
          'time_period': ['1870-1-16 11:59:59.5', '2020-10-16 12:0:0.0']},
         'Tropflux': {'keyerror': None,
          'name': 'Tropflux',
          'nyears': 40,
          'time_period': ['1979-1-15 0:0:0.0', '2018-12-15 12:0:0.0']},
         'method': 'Nino (Nina) events = nino3.4 sstA > 0.75 (< -0.75) during DEC, zonal SSTA (meridional averaged [-5.0 ; 5.0]), the zonal SSTA maximum (minimum) is located for each event, the diversity is the interquartile range (IQR = Q3 - Q1), time series are linearly detrended, smoothing using a triangle shaped window of 5 points',
         'name': 'ENSO Diversity (interquartile range)',
         'ref': 'Using CDAT regridding',
         'time_frequency': 'monthly',
         'units': 'long'},
        'metric': {'datasets': "GFDL-CM2p1_r7i1p1; ERA-Interim's ts & HadISST's sst & Tropflux's sst; 's ",
         'method': 'The metric is the absolute value of the relative difference between model and observations values (M = 100 * abs[[model-obs] / obs])',
         'name': 'EnsoSstDiversity',
         'units': '%'}},
       'EnsoSstLonRmse': {'diagnostic': {'ERA-Interim': {'name': 'ERA-Interim',
          'nyears': 40,
          'time_period': ['1979-1-16 12:0:0.0', '2019-3-16 12:0:0.0']},
         'GFDL-CM2p1_r7i1p1': {'keyerror': None,
          'name': 'GFDL-CM2p1_r7i1p1',
          'nyears': 145,
          'time_period': ['1861-1-16 12:0:0.0', '2005-12-16 12:0:0.0']},
         'HadISST': {'name': 'HadISST',
          'nyears': 151,
          'time_period': ['1870-1-16 11:59:59.5', '2020-10-16 12:0:0.0']},
         'Tropflux': {'name': 'Tropflux',
          'nyears': 40,
          'time_period': ['1979-1-15 0:0:0.0', '2018-12-15 12:0:0.0']},
         'method': 'nino3.4 SSTA during DEC regressed against equatorial_pacific SSTA, time series are linearly detrended, smoothing using a triangle shaped window of 5 points, observations and model regridded to generic_1x1deg',
         'name': 'ENSO Zonal SSTA pattern',
         'ref': 'Using CDAT regridding and rms (uncentered and biased) calculation',
         'time_frequency': 'monthly',
         'units': 'C/C'},
        'metric': {'datasets': "GFDL-CM2p1_r7i1p1; ERA-Interim's ts & HadISST's sst & Tropflux's sst; 's ",
         'method': 'The metric is the statistical value between the model and the observations',
         'name': 'EnsoSstLonRmse',
         'units': 'C/C'}},
       'EnsoSstSkew': {'diagnostic': {'ERA-Interim': {'keyerror': None,
          'name': 'ERA-Interim',
          'nyears': 40,
          'time_period': ['1979-1-16 12:0:0.0', '2019-3-16 12:0:0.0']},
         'GFDL-CM2p1_r7i1p1': {'keyerror': None,
          'name': 'GFDL-CM2p1_r7i1p1',
          'nyears': 145,
          'time_period': ['1861-1-16 12:0:0.0', '2005-12-16 12:0:0.0']},
         'HadISST': {'keyerror': None,
          'name': 'HadISST',
          'nyears': 151,
          'time_period': ['1870-1-16 11:59:59.5', '2020-10-16 12:0:0.0']},
         'Tropflux': {'keyerror': None,
          'name': 'Tropflux',
          'nyears': 40,
          'time_period': ['1979-1-15 0:0:0.0', '2018-12-15 12:0:0.0']},
         'method': 'Standard deviation of nino3.4 sstA, time series are linearly detrended',
         'name': 'ENSO skewness',
         'ref': 'Using CDAT regression calculation',
         'time_frequency': 'monthly',
         'units': 'C'},
        'metric': {'datasets': "GFDL-CM2p1_r7i1p1; ERA-Interim's ts & HadISST's sst & Tropflux's sst; 's ",
         'method': 'The metric is the absolute value of the relative difference between model and observations values (M = 100 * abs[[model-obs] / obs])',
         'name': 'EnsoSstSkew',
         'units': '%'}},
       'EnsoSstTsRmse': {'diagnostic': {'ERA-Interim': {'name': 'ERA-Interim',
          'nyears': 40,
          'time_period': ['1979-1-16 12:0:0.0', '2019-3-16 12:0:0.0']},
         'GFDL-CM2p1_r7i1p1': {'keyerror': None,
          'name': 'GFDL-CM2p1_r7i1p1',
          'nyears': 145,
          'time_period': ['1861-1-16 12:0:0.0', '2005-12-16 12:0:0.0']},
         'HadISST': {'name': 'HadISST',
          'nyears': 151,
          'time_period': ['1870-1-16 11:59:59.5', '2020-10-16 12:0:0.0']},
         'Tropflux': {'name': 'Tropflux',
          'nyears': 40,
          'time_period': ['1979-1-15 0:0:0.0', '2018-12-15 12:0:0.0']},
         'method': 'nino3.4 SSTA during DEC regressed against nino3.4 SSTA during 6 years (centered on ENSO), time series are linearly detrended, smoothing using a triangle shaped window of 5 points',
         'name': 'ENSO life cyle SSTA pattern',
         'ref': 'Using CDAT regridding and rms (uncentered and biased) calculation',
         'time_frequency': 'monthly',
         'units': 'C/C'},
        'metric': {'datasets': "GFDL-CM2p1_r7i1p1; ERA-Interim's ts & HadISST's sst & Tropflux's sst; 's ",
         'method': 'The metric is the statistical value between the model and the observations',
         'name': 'EnsoSstTsRmse',
         'units': 'C/C'}},
       'SeasonalPrLatRmse': {'diagnostic': {'ERA-Interim': {'name': 'ERA-Interim',
          'nyears': 40,
          'time_period': ['1979-1-16 12:0:0.0', '2019-3-16 12:0:0.0']},
         'GFDL-CM2p1_r7i1p1': {'keyerror': None,
          'name': 'GFDL-CM2p1_r7i1p1',
          'nyears': 180,
          'time_period': ['1861-1-16 12:0:0.0', '2040-12-16 12:0:0.0']},
         'GPCPv2.3': {'name': 'GPCPv2.3',
          'nyears': 41,
          'time_period': ['1979-1-1 0:0:0.0', '2019-7-1 0:0:0.0']},
         'method': 'Meridional root mean square error of nino3_LatExt climatological pr STD, time series are linearly detrended, observations and model regridded to generic_1x1deg',
         'name': 'pr meridional seasonality RMSE',
         'ref': 'Using CDAT regridding and rms (uncentered and biased) calculation',
         'time_frequency': 'monthly',
         'units': 'mm/day'},
        'metric': {'datasets': "GFDL-CM2p1_r7i1p1; ERA-Interim's pr & GPCPv2.3's precip; 's ",
         'method': 'The metric is the statistical value between the model and the observations',
         'name': 'SeasonalPrLatRmse',
         'units': 'mm/day'}},
       'SeasonalPrLonRmse': {'diagnostic': {'ERA-Interim': {'name': 'ERA-Interim',
          'nyears': 40,
          'time_period': ['1979-1-16 12:0:0.0', '2019-3-16 12:0:0.0']},
         'GFDL-CM2p1_r7i1p1': {'keyerror': None,
          'name': 'GFDL-CM2p1_r7i1p1',
          'nyears': 180,
          'time_period': ['1861-1-16 12:0:0.0', '2040-12-16 12:0:0.0']},
         'GPCPv2.3': {'name': 'GPCPv2.3',
          'nyears': 41,
          'time_period': ['1979-1-1 0:0:0.0', '2019-7-1 0:0:0.0']},
         'method': 'Zonal root mean square error of equatorial_pacific climatological pr STD, time series are linearly detrended, observations and model regridded to generic_1x1deg',
         'name': 'pr zonal seasonality RMSE',
         'ref': 'Using CDAT regridding and rms (uncentered and biased) calculation',
         'time_frequency': 'monthly',
         'units': 'mm/day'},
        'metric': {'datasets': "GFDL-CM2p1_r7i1p1; ERA-Interim's pr & GPCPv2.3's precip; 's ",
         'method': 'The metric is the statistical value between the model and the observations',
         'name': 'SeasonalPrLonRmse',
         'units': 'mm/day'}},
       'SeasonalSstLonRmse': {'diagnostic': {'ERA-Interim': {'name': 'ERA-Interim',
          'nyears': 40,
          'time_period': ['1979-1-16 12:0:0.0', '2019-3-16 12:0:0.0']},
         'GFDL-CM2p1_r7i1p1': {'keyerror': None,
          'name': 'GFDL-CM2p1_r7i1p1',
          'nyears': 145,
          'time_period': ['1861-1-16 12:0:0.0', '2005-12-16 12:0:0.0']},
         'HadISST': {'name': 'HadISST',
          'nyears': 151,
          'time_period': ['1870-1-16 11:59:59.5', '2020-10-16 12:0:0.0']},
         'Tropflux': {'name': 'Tropflux',
          'nyears': 40,
          'time_period': ['1979-1-15 0:0:0.0', '2018-12-15 12:0:0.0']},
         'method': 'Zonal root mean square error of equatorial_pacific climatological sst STD, time series are linearly detrended, observations and model regridded to generic_1x1deg',
         'name': 'sst zonal seasonality RMSE',
         'ref': 'Using CDAT regridding and rms (uncentered and biased) calculation',
         'time_frequency': 'monthly',
         'units': 'C'},
        'metric': {'datasets': "GFDL-CM2p1_r7i1p1; ERA-Interim's ts & HadISST's sst & Tropflux's sst; 's ",
         'method': 'The metric is the statistical value between the model and the observations',
         'name': 'SeasonalSstLonRmse',
         'units': 'C'}}},
      'name': 'Metrics Collection for ENSO performance'},
     'value': {'BiasPrLatRmse': {'diagnostic': {'ERA-Interim': {'value': None,
         'value_error': None},
        'GFDL-CM2p1_r7i1p1': {'value': None, 'value_error': None},
        'GPCPv2.3': {'value': None, 'value_error': None}},
       'metric': {'ERA-Interim': {'value': 1.9385514562799606,
         'value_error': None},
        'GPCPv2.3': {'value': 1.9290849476316065, 'value_error': None}}},
      'BiasPrLonRmse': {'diagnostic': {'ERA-Interim': {'value': None,
         'value_error': None},
        'GFDL-CM2p1_r7i1p1': {'value': None, 'value_error': None},
        'GPCPv2.3': {'value': None, 'value_error': None}},
       'metric': {'ERA-Interim': {'value': 2.246007288214062,
         'value_error': None},
        'GPCPv2.3': {'value': 1.2961256528726688, 'value_error': None}}},
      'BiasSstLonRmse': {'diagnostic': {'ERA-Interim': {'value': None,
         'value_error': None},
        'GFDL-CM2p1_r7i1p1': {'value': None, 'value_error': None},
        'HadISST': {'value': None, 'value_error': None},
        'Tropflux': {'value': None, 'value_error': None}},
       'metric': {'ERA-Interim': {'value': 1.5044228174348913,
         'value_error': None},
        'HadISST': {'value': 1.337534274480946, 'value_error': None},
        'Tropflux': {'value': 1.5528818618044127, 'value_error': None}}},
      'EnsoAmpl': {'diagnostic': {'ERA-Interim': {'value': 0.8989844997845644,
         'value_error': 0.14214193002531866},
        'GFDL-CM2p1_r7i1p1': {'value': 1.3021879430571623,
         'value_error': 0.10814082259093666},
        'HadISST': {'value': 0.7665787872085695,
         'value_error': 0.06238329697691264},
        'Tropflux': {'value': 0.9039789553693535,
         'value_error': 0.14293162279134272}},
       'metric': {'ERA-Interim': {'value': 44.85098946302444,
         'value_error': 34.93217232885627},
        'HadISST': {'value': 69.87007268997975,
         'value_error': 27.930772163901402},
        'Tropflux': {'value': 44.050692255895065,
         'value_error': 34.73917316428457}}},
      'EnsoDuration': {'diagnostic': {'ERA-Interim': {'value': 13.0,
         'value_error': None},
        'GFDL-CM2p1_r7i1p1': {'value': 14.0, 'value_error': None},
        'HadISST': {'value': 13.0, 'value_error': None},
        'Tropflux': {'value': 13.0, 'value_error': None}},
       'metric': {'ERA-Interim': {'value': 7.6923076923076925,
         'value_error': None},
        'HadISST': {'value': 7.6923076923076925, 'value_error': None},
        'Tropflux': {'value': 7.6923076923076925, 'value_error': None}}},
      'EnsoSeasonality': {'diagnostic': {'ERA-Interim': {'value': 2.0466846866656914,
         'value_error': 0.6513411033995022},
        'GFDL-CM2p1_r7i1p1': {'value': 1.2073950788453292,
         'value_error': 0.20088496026619865},
        'HadISST': {'value': 1.6639865947361325,
         'value_error': 0.2712772451657809},
        'Tropflux': {'value': 2.0532132553583624,
         'value_error': 0.6534187683977347}},
       'metric': {'ERA-Interim': {'value': 41.00727451025548,
         'value_error': 28.58910477069084},
        'HadISST': {'value': 27.439615038678095,
         'value_error': 23.901921741985408},
        'Tropflux': {'value': 41.194852717108844,
         'value_error': 28.498200460643968}}},
      'EnsoSstDiversity_2': {'diagnostic': {'ERA-Interim': {'value': 33.25,
         'value_error': None},
        'GFDL-CM2p1_r7i1p1': {'value': 58.0, 'value_error': None},
        'HadISST': {'value': 49.0, 'value_error': None},
        'Tropflux': {'value': 32.0, 'value_error': None}},
       'metric': {'ERA-Interim': {'value': 74.43609022556392,
         'value_error': None},
        'HadISST': {'value': 18.367346938775512, 'value_error': None},
        'Tropflux': {'value': 81.25, 'value_error': None}}},
      'EnsoSstLonRmse': {'diagnostic': {'ERA-Interim': {'value': None,
         'value_error': None},
        'GFDL-CM2p1_r7i1p1': {'value': None, 'value_error': None},
        'HadISST': {'value': None, 'value_error': None},
        'Tropflux': {'value': None, 'value_error': None}},
       'metric': {'ERA-Interim': {'value': 0.3008446182685298,
         'value_error': None},
        'HadISST': {'value': 0.32267636309946596, 'value_error': None},
        'Tropflux': {'value': 0.30368014070415356, 'value_error': None}}},
      'EnsoSstSkew': {'diagnostic': {'ERA-Interim': {'value': 0.39098111106809963,
         'value_error': 0.061819541653923164},
        'GFDL-CM2p1_r7i1p1': {'value': 0.2609110415018407,
         'value_error': 0.021667482640659423},
        'HadISST': {'value': 0.38989908235027515,
         'value_error': 0.03172953733021198},
        'Tropflux': {'value': 0.39744741059612115,
         'value_error': 0.06284195338099416}},
       'metric': {'ERA-Interim': {'value': 33.267609581170746,
         'value_error': 16.093140755673705},
        'HadISST': {'value': 33.08241714007292,
         'value_error': 11.002878441282192},
        'Tropflux': {'value': 34.35331705633535,
         'value_error': 15.831312232708322}}},
      'EnsoSstTsRmse': {'diagnostic': {'ERA-Interim': {'value': None,
         'value_error': None},
        'GFDL-CM2p1_r7i1p1': {'value': None, 'value_error': None},
        'HadISST': {'value': None, 'value_error': None},
        'Tropflux': {'value': None, 'value_error': None}},
       'metric': {'ERA-Interim': {'value': 0.12349792048655855,
         'value_error': None},
        'HadISST': {'value': 0.11246219877818482, 'value_error': None},
        'Tropflux': {'value': 0.12227780553103883, 'value_error': None}}},
      'SeasonalPrLatRmse': {'diagnostic': {'ERA-Interim': {'value': None,
         'value_error': None},
        'GFDL-CM2p1_r7i1p1': {'value': None, 'value_error': None},
        'GPCPv2.3': {'value': None, 'value_error': None}},
       'metric': {'ERA-Interim': {'value': 1.504876423346296,
         'value_error': None},
        'GPCPv2.3': {'value': 1.6679861835749379, 'value_error': None}}},
      'SeasonalPrLonRmse': {'diagnostic': {'ERA-Interim': {'value': None,
         'value_error': None},
        'GFDL-CM2p1_r7i1p1': {'value': None, 'value_error': None},
        'GPCPv2.3': {'value': None, 'value_error': None}},
       'metric': {'ERA-Interim': {'value': 0.7659482197192152,
         'value_error': None},
        'GPCPv2.3': {'value': 0.6261682474529865, 'value_error': None}}},
      'SeasonalSstLonRmse': {'diagnostic': {'ERA-Interim': {'value': None,
         'value_error': None},
        'GFDL-CM2p1_r7i1p1': {'value': None, 'value_error': None},
        'HadISST': {'value': None, 'value_error': None},
        'Tropflux': {'value': None, 'value_error': None}},
       'metric': {'ERA-Interim': {'value': 0.17288629469458866,
         'value_error': None},
        'HadISST': {'value': 0.20105210713864238, 'value_error': None},
        'Tropflux': {'value': 0.16283370597658733, 'value_error': None}}}}},
    'r8i1p1': {'metadata': {'description_of_the_collection': 'Describe which science question this collection is about',
      'metrics': {'BiasPrLatRmse': {'diagnostic': {'ERA-Interim': {'name': 'ERA-Interim',
          'nyears': 40,
          'time_period': ['1979-1-16 12:0:0.0', '2019-3-16 12:0:0.0']},
         'GFDL-CM2p1_r8i1p1': {'keyerror': None,
          'name': 'GFDL-CM2p1_r8i1p1',
          'nyears': 180,
          'time_period': ['1861-1-16 12:0:0.0', '2040-12-16 12:0:0.0']},
         'GPCPv2.3': {'name': 'GPCPv2.3',
          'nyears': 41,
          'time_period': ['1979-1-1 0:0:0.0', '2019-7-1 0:0:0.0']},
         'method': 'Meridional root mean square error of nino3_LatExt pr, time series are linearly detrended, observations and model regridded to generic_1x1deg',
         'name': 'pr Meridional RMSE',
         'ref': 'Using CDAT regridding and rms (uncentered and biased) calculation',
         'time_frequency': 'monthly',
         'units': 'mm/day'},
        'metric': {'datasets': "GFDL-CM2p1_r8i1p1; ERA-Interim's pr & GPCPv2.3's precip; 's ",
         'method': 'The metric is the statistical value between the model and the observations',
         'name': 'BiasPrLatRmse',
         'units': 'mm/day'}},
       'BiasPrLonRmse': {'diagnostic': {'ERA-Interim': {'name': 'ERA-Interim',
          'nyears': 40,
          'time_period': ['1979-1-16 12:0:0.0', '2019-3-16 12:0:0.0']},
         'GFDL-CM2p1_r8i1p1': {'keyerror': None,
          'name': 'GFDL-CM2p1_r8i1p1',
          'nyears': 180,
          'time_period': ['1861-1-16 12:0:0.0', '2040-12-16 12:0:0.0']},
         'GPCPv2.3': {'name': 'GPCPv2.3',
          'nyears': 41,
          'time_period': ['1979-1-1 0:0:0.0', '2019-7-1 0:0:0.0']},
         'method': 'Zonal root mean square error of equatorial_pacific pr, time series are linearly detrended, observations and model regridded to generic_1x1deg',
         'name': 'pr Zonal RMSE',
         'ref': 'Using CDAT regridding and rms (uncentered and biased) calculation',
         'time_frequency': 'monthly',
         'units': 'mm/day'},
        'metric': {'datasets': "GFDL-CM2p1_r8i1p1; ERA-Interim's pr & GPCPv2.3's precip; 's ",
         'method': 'The metric is the statistical value between the model and the observations',
         'name': 'BiasPrLonRmse',
         'units': 'mm/day'}},
       'BiasSstLonRmse': {'diagnostic': {'ERA-Interim': {'name': 'ERA-Interim',
          'nyears': 40,
          'time_period': ['1979-1-16 12:0:0.0', '2019-3-16 12:0:0.0']},
         'GFDL-CM2p1_r8i1p1': {'keyerror': None,
          'name': 'GFDL-CM2p1_r8i1p1',
          'nyears': 145,
          'time_period': ['1861-1-16 12:0:0.0', '2005-12-16 12:0:0.0']},
         'HadISST': {'name': 'HadISST',
          'nyears': 151,
          'time_period': ['1870-1-16 11:59:59.5', '2020-10-16 12:0:0.0']},
         'Tropflux': {'name': 'Tropflux',
          'nyears': 40,
          'time_period': ['1979-1-15 0:0:0.0', '2018-12-15 12:0:0.0']},
         'method': 'Zonal root mean square error of equatorial_pacific sst, time series are linearly detrended, observations and model regridded to generic_1x1deg',
         'name': 'sst Zonal RMSE',
         'ref': 'Using CDAT regridding and rms (uncentered and biased) calculation',
         'time_frequency': 'monthly',
         'units': 'C'},
        'metric': {'datasets': "GFDL-CM2p1_r8i1p1; ERA-Interim's ts & HadISST's sst & Tropflux's sst; 's ",
         'method': 'The metric is the statistical value between the model and the observations',
         'name': 'BiasSstLonRmse',
         'units': 'C'}},
       'EnsoAmpl': {'diagnostic': {'ERA-Interim': {'keyerror': None,
          'name': 'ERA-Interim',
          'nyears': 40,
          'time_period': ['1979-1-16 12:0:0.0', '2019-3-16 12:0:0.0']},
         'GFDL-CM2p1_r8i1p1': {'keyerror': None,
          'name': 'GFDL-CM2p1_r8i1p1',
          'nyears': 145,
          'time_period': ['1861-1-16 12:0:0.0', '2005-12-16 12:0:0.0']},
         'HadISST': {'keyerror': None,
          'name': 'HadISST',
          'nyears': 151,
          'time_period': ['1870-1-16 11:59:59.5', '2020-10-16 12:0:0.0']},
         'Tropflux': {'keyerror': None,
          'name': 'Tropflux',
          'nyears': 40,
          'time_period': ['1979-1-15 0:0:0.0', '2018-12-15 12:0:0.0']},
         'method': 'Standard deviation of nino3.4 sstA, time series are linearly detrended',
         'name': 'ENSO amplitude',
         'ref': 'Using CDAT regression calculation',
         'time_frequency': 'monthly',
         'units': 'C'},
        'metric': {'datasets': "GFDL-CM2p1_r8i1p1; ERA-Interim's ts & HadISST's sst & Tropflux's sst; 's ",
         'method': 'The metric is the absolute value of the relative difference between model and observations values (M = 100 * abs[[model-obs] / obs])',
         'name': 'EnsoAmpl',
         'units': '%'}},
       'EnsoDuration': {'diagnostic': {'ERA-Interim': {'keyerror': None,
          'name': 'ERA-Interim',
          'nyears': 40,
          'time_period': ['1979-1-16 12:0:0.0', '2019-3-16 12:0:0.0']},
         'GFDL-CM2p1_r8i1p1': {'keyerror': None,
          'name': 'GFDL-CM2p1_r8i1p1',
          'nyears': 145,
          'time_period': ['1861-1-16 12:0:0.0', '2005-12-16 12:0:0.0']},
         'HadISST': {'keyerror': None,
          'name': 'HadISST',
          'nyears': 151,
          'time_period': ['1870-1-16 11:59:59.5', '2020-10-16 12:0:0.0']},
         'Tropflux': {'keyerror': None,
          'name': 'Tropflux',
          'nyears': 40,
          'time_period': ['1979-1-15 0:0:0.0', '2018-12-15 12:0:0.0']},
         'method': 'nino3.4 SSTA during DEC regressed against nino3.4 SSTA during 6 years (centered on ENSO), the duration is the number of consecutive months during which the regression is above 0.25, time series are linearly detrended, smoothing using a triangle shaped window of 5 points',
         'name': 'ENSO Duration based on life cyle SSTA pattern',
         'ref': 'Using CDAT',
         'time_frequency': 'monthly',
         'units': 'months'},
        'metric': {'datasets': "GFDL-CM2p1_r8i1p1; ERA-Interim's ts & HadISST's sst & Tropflux's sst; 's ",
         'method': 'The metric is the absolute value of the relative difference between model and observations values (M = 100 * abs[[model-obs] / obs])',
         'name': 'EnsoDuration',
         'units': '%'}},
       'EnsoSeasonality': {'diagnostic': {'ERA-Interim': {'keyerror': None,
          'name': 'ERA-Interim',
          'nyears': 40,
          'time_period': ['1979-1-16 12:0:0.0', '2019-3-16 12:0:0.0']},
         'GFDL-CM2p1_r8i1p1': {'keyerror': None,
          'name': 'GFDL-CM2p1_r8i1p1',
          'nyears': 145,
          'time_period': ['1861-1-16 12:0:0.0', '2005-12-16 12:0:0.0']},
         'HadISST': {'keyerror': None,
          'name': 'HadISST',
          'nyears': 151,
          'time_period': ['1870-1-16 11:59:59.5', '2020-10-16 12:0:0.0']},
         'Tropflux': {'keyerror': None,
          'name': 'Tropflux',
          'nyears': 40,
          'time_period': ['1979-1-15 0:0:0.0', '2018-12-15 12:0:0.0']},
         'method': 'Ratio between NDJ and MAM standard deviation nino3.4 sstA, time series are linearly detrended',
         'name': 'ENSO seasonality',
         'ref': 'Using CDAT std dev calculation',
         'time_frequency': 'monthly',
         'units': 'C/C'},
        'metric': {'datasets': "GFDL-CM2p1_r8i1p1; ERA-Interim's ts & HadISST's sst & Tropflux's sst; 's ",
         'method': 'The metric is the absolute value of the relative difference between model and observations values (M = 100 * abs[[model-obs] / obs])',
         'name': 'EnsoSeasonality',
         'units': '%'}},
       'EnsoSstDiversity_2': {'diagnostic': {'ERA-Interim': {'keyerror': None,
          'name': 'ERA-Interim',
          'nyears': 40,
          'time_period': ['1979-1-16 12:0:0.0', '2019-3-16 12:0:0.0']},
         'GFDL-CM2p1_r8i1p1': {'keyerror': None,
          'name': 'GFDL-CM2p1_r8i1p1',
          'nyears': 145,
          'time_period': ['1861-1-16 12:0:0.0', '2005-12-16 12:0:0.0']},
         'HadISST': {'keyerror': None,
          'name': 'HadISST',
          'nyears': 151,
          'time_period': ['1870-1-16 11:59:59.5', '2020-10-16 12:0:0.0']},
         'Tropflux': {'keyerror': None,
          'name': 'Tropflux',
          'nyears': 40,
          'time_period': ['1979-1-15 0:0:0.0', '2018-12-15 12:0:0.0']},
         'method': 'Nino (Nina) events = nino3.4 sstA > 0.75 (< -0.75) during DEC, zonal SSTA (meridional averaged [-5.0 ; 5.0]), the zonal SSTA maximum (minimum) is located for each event, the diversity is the interquartile range (IQR = Q3 - Q1), time series are linearly detrended, smoothing using a triangle shaped window of 5 points',
         'name': 'ENSO Diversity (interquartile range)',
         'ref': 'Using CDAT regridding',
         'time_frequency': 'monthly',
         'units': 'long'},
        'metric': {'datasets': "GFDL-CM2p1_r8i1p1; ERA-Interim's ts & HadISST's sst & Tropflux's sst; 's ",
         'method': 'The metric is the absolute value of the relative difference between model and observations values (M = 100 * abs[[model-obs] / obs])',
         'name': 'EnsoSstDiversity',
         'units': '%'}},
       'EnsoSstLonRmse': {'diagnostic': {'ERA-Interim': {'name': 'ERA-Interim',
          'nyears': 40,
          'time_period': ['1979-1-16 12:0:0.0', '2019-3-16 12:0:0.0']},
         'GFDL-CM2p1_r8i1p1': {'keyerror': None,
          'name': 'GFDL-CM2p1_r8i1p1',
          'nyears': 145,
          'time_period': ['1861-1-16 12:0:0.0', '2005-12-16 12:0:0.0']},
         'HadISST': {'name': 'HadISST',
          'nyears': 151,
          'time_period': ['1870-1-16 11:59:59.5', '2020-10-16 12:0:0.0']},
         'Tropflux': {'name': 'Tropflux',
          'nyears': 40,
          'time_period': ['1979-1-15 0:0:0.0', '2018-12-15 12:0:0.0']},
         'method': 'nino3.4 SSTA during DEC regressed against equatorial_pacific SSTA, time series are linearly detrended, smoothing using a triangle shaped window of 5 points, observations and model regridded to generic_1x1deg',
         'name': 'ENSO Zonal SSTA pattern',
         'ref': 'Using CDAT regridding and rms (uncentered and biased) calculation',
         'time_frequency': 'monthly',
         'units': 'C/C'},
        'metric': {'datasets': "GFDL-CM2p1_r8i1p1; ERA-Interim's ts & HadISST's sst & Tropflux's sst; 's ",
         'method': 'The metric is the statistical value between the model and the observations',
         'name': 'EnsoSstLonRmse',
         'units': 'C/C'}},
       'EnsoSstSkew': {'diagnostic': {'ERA-Interim': {'keyerror': None,
          'name': 'ERA-Interim',
          'nyears': 40,
          'time_period': ['1979-1-16 12:0:0.0', '2019-3-16 12:0:0.0']},
         'GFDL-CM2p1_r8i1p1': {'keyerror': None,
          'name': 'GFDL-CM2p1_r8i1p1',
          'nyears': 145,
          'time_period': ['1861-1-16 12:0:0.0', '2005-12-16 12:0:0.0']},
         'HadISST': {'keyerror': None,
          'name': 'HadISST',
          'nyears': 151,
          'time_period': ['1870-1-16 11:59:59.5', '2020-10-16 12:0:0.0']},
         'Tropflux': {'keyerror': None,
          'name': 'Tropflux',
          'nyears': 40,
          'time_period': ['1979-1-15 0:0:0.0', '2018-12-15 12:0:0.0']},
         'method': 'Standard deviation of nino3.4 sstA, time series are linearly detrended',
         'name': 'ENSO skewness',
         'ref': 'Using CDAT regression calculation',
         'time_frequency': 'monthly',
         'units': 'C'},
        'metric': {'datasets': "GFDL-CM2p1_r8i1p1; ERA-Interim's ts & HadISST's sst & Tropflux's sst; 's ",
         'method': 'The metric is the absolute value of the relative difference between model and observations values (M = 100 * abs[[model-obs] / obs])',
         'name': 'EnsoSstSkew',
         'units': '%'}},
       'EnsoSstTsRmse': {'diagnostic': {'ERA-Interim': {'name': 'ERA-Interim',
          'nyears': 40,
          'time_period': ['1979-1-16 12:0:0.0', '2019-3-16 12:0:0.0']},
         'GFDL-CM2p1_r8i1p1': {'keyerror': None,
          'name': 'GFDL-CM2p1_r8i1p1',
          'nyears': 145,
          'time_period': ['1861-1-16 12:0:0.0', '2005-12-16 12:0:0.0']},
         'HadISST': {'name': 'HadISST',
          'nyears': 151,
          'time_period': ['1870-1-16 11:59:59.5', '2020-10-16 12:0:0.0']},
         'Tropflux': {'name': 'Tropflux',
          'nyears': 40,
          'time_period': ['1979-1-15 0:0:0.0', '2018-12-15 12:0:0.0']},
         'method': 'nino3.4 SSTA during DEC regressed against nino3.4 SSTA during 6 years (centered on ENSO), time series are linearly detrended, smoothing using a triangle shaped window of 5 points',
         'name': 'ENSO life cyle SSTA pattern',
         'ref': 'Using CDAT regridding and rms (uncentered and biased) calculation',
         'time_frequency': 'monthly',
         'units': 'C/C'},
        'metric': {'datasets': "GFDL-CM2p1_r8i1p1; ERA-Interim's ts & HadISST's sst & Tropflux's sst; 's ",
         'method': 'The metric is the statistical value between the model and the observations',
         'name': 'EnsoSstTsRmse',
         'units': 'C/C'}},
       'SeasonalPrLatRmse': {'diagnostic': {'ERA-Interim': {'name': 'ERA-Interim',
          'nyears': 40,
          'time_period': ['1979-1-16 12:0:0.0', '2019-3-16 12:0:0.0']},
         'GFDL-CM2p1_r8i1p1': {'keyerror': None,
          'name': 'GFDL-CM2p1_r8i1p1',
          'nyears': 180,
          'time_period': ['1861-1-16 12:0:0.0', '2040-12-16 12:0:0.0']},
         'GPCPv2.3': {'name': 'GPCPv2.3',
          'nyears': 41,
          'time_period': ['1979-1-1 0:0:0.0', '2019-7-1 0:0:0.0']},
         'method': 'Meridional root mean square error of nino3_LatExt climatological pr STD, time series are linearly detrended, observations and model regridded to generic_1x1deg',
         'name': 'pr meridional seasonality RMSE',
         'ref': 'Using CDAT regridding and rms (uncentered and biased) calculation',
         'time_frequency': 'monthly',
         'units': 'mm/day'},
        'metric': {'datasets': "GFDL-CM2p1_r8i1p1; ERA-Interim's pr & GPCPv2.3's precip; 's ",
         'method': 'The metric is the statistical value between the model and the observations',
         'name': 'SeasonalPrLatRmse',
         'units': 'mm/day'}},
       'SeasonalPrLonRmse': {'diagnostic': {'ERA-Interim': {'name': 'ERA-Interim',
          'nyears': 40,
          'time_period': ['1979-1-16 12:0:0.0', '2019-3-16 12:0:0.0']},
         'GFDL-CM2p1_r8i1p1': {'keyerror': None,
          'name': 'GFDL-CM2p1_r8i1p1',
          'nyears': 180,
          'time_period': ['1861-1-16 12:0:0.0', '2040-12-16 12:0:0.0']},
         'GPCPv2.3': {'name': 'GPCPv2.3',
          'nyears': 41,
          'time_period': ['1979-1-1 0:0:0.0', '2019-7-1 0:0:0.0']},
         'method': 'Zonal root mean square error of equatorial_pacific climatological pr STD, time series are linearly detrended, observations and model regridded to generic_1x1deg',
         'name': 'pr zonal seasonality RMSE',
         'ref': 'Using CDAT regridding and rms (uncentered and biased) calculation',
         'time_frequency': 'monthly',
         'units': 'mm/day'},
        'metric': {'datasets': "GFDL-CM2p1_r8i1p1; ERA-Interim's pr & GPCPv2.3's precip; 's ",
         'method': 'The metric is the statistical value between the model and the observations',
         'name': 'SeasonalPrLonRmse',
         'units': 'mm/day'}},
       'SeasonalSstLonRmse': {'diagnostic': {'ERA-Interim': {'name': 'ERA-Interim',
          'nyears': 40,
          'time_period': ['1979-1-16 12:0:0.0', '2019-3-16 12:0:0.0']},
         'GFDL-CM2p1_r8i1p1': {'keyerror': None,
          'name': 'GFDL-CM2p1_r8i1p1',
          'nyears': 145,
          'time_period': ['1861-1-16 12:0:0.0', '2005-12-16 12:0:0.0']},
         'HadISST': {'name': 'HadISST',
          'nyears': 151,
          'time_period': ['1870-1-16 11:59:59.5', '2020-10-16 12:0:0.0']},
         'Tropflux': {'name': 'Tropflux',
          'nyears': 40,
          'time_period': ['1979-1-15 0:0:0.0', '2018-12-15 12:0:0.0']},
         'method': 'Zonal root mean square error of equatorial_pacific climatological sst STD, time series are linearly detrended, observations and model regridded to generic_1x1deg',
         'name': 'sst zonal seasonality RMSE',
         'ref': 'Using CDAT regridding and rms (uncentered and biased) calculation',
         'time_frequency': 'monthly',
         'units': 'C'},
        'metric': {'datasets': "GFDL-CM2p1_r8i1p1; ERA-Interim's ts & HadISST's sst & Tropflux's sst; 's ",
         'method': 'The metric is the statistical value between the model and the observations',
         'name': 'SeasonalSstLonRmse',
         'units': 'C'}}},
      'name': 'Metrics Collection for ENSO performance'},
     'value': {'BiasPrLatRmse': {'diagnostic': {'ERA-Interim': {'value': None,
         'value_error': None},
        'GFDL-CM2p1_r8i1p1': {'value': None, 'value_error': None},
        'GPCPv2.3': {'value': None, 'value_error': None}},
       'metric': {'ERA-Interim': {'value': 1.9620828784049156,
         'value_error': None},
        'GPCPv2.3': {'value': 1.9592086836022398, 'value_error': None}}},
      'BiasPrLonRmse': {'diagnostic': {'ERA-Interim': {'value': None,
         'value_error': None},
        'GFDL-CM2p1_r8i1p1': {'value': None, 'value_error': None},
        'GPCPv2.3': {'value': None, 'value_error': None}},
       'metric': {'ERA-Interim': {'value': 2.217038589730797,
         'value_error': None},
        'GPCPv2.3': {'value': 1.2684953231062384, 'value_error': None}}},
      'BiasSstLonRmse': {'diagnostic': {'ERA-Interim': {'value': None,
         'value_error': None},
        'GFDL-CM2p1_r8i1p1': {'value': None, 'value_error': None},
        'HadISST': {'value': None, 'value_error': None},
        'Tropflux': {'value': None, 'value_error': None}},
       'metric': {'ERA-Interim': {'value': 1.5136171619631666,
         'value_error': None},
        'HadISST': {'value': 1.3459445777763785, 'value_error': None},
        'Tropflux': {'value': 1.5620688817931632, 'value_error': None}}},
      'EnsoAmpl': {'diagnostic': {'ERA-Interim': {'value': 0.8989844997845644,
         'value_error': 0.14214193002531866},
        'GFDL-CM2p1_r8i1p1': {'value': 1.3503188015150802,
         'value_error': 0.11213787282734688},
        'HadISST': {'value': 0.7665787872085695,
         'value_error': 0.06238329697691264},
        'Tropflux': {'value': 0.9039789553693535,
         'value_error': 0.14293162279134272}},
       'metric': {'ERA-Interim': {'value': 50.204903626110905,
         'value_error': 36.2233188572449},
        'HadISST': {'value': 76.14873044323983,
         'value_error': 28.963136231476},
        'Tropflux': {'value': 49.37502620991418,
         'value_error': 36.02318614830119}}},
      'EnsoDuration': {'diagnostic': {'ERA-Interim': {'value': 13.0,
         'value_error': None},
        'GFDL-CM2p1_r8i1p1': {'value': 14.0, 'value_error': None},
        'HadISST': {'value': 13.0, 'value_error': None},
        'Tropflux': {'value': 13.0, 'value_error': None}},
       'metric': {'ERA-Interim': {'value': 7.6923076923076925,
         'value_error': None},
        'HadISST': {'value': 7.6923076923076925, 'value_error': None},
        'Tropflux': {'value': 7.6923076923076925, 'value_error': None}}},
      'EnsoSeasonality': {'diagnostic': {'ERA-Interim': {'value': 2.0466846866656914,
         'value_error': 0.6513411033995022},
        'GFDL-CM2p1_r8i1p1': {'value': 1.086647551357029,
         'value_error': 0.18079512994742175},
        'HadISST': {'value': 1.6639865947361325,
         'value_error': 0.2712772451657809},
        'Tropflux': {'value': 2.0532132553583624,
         'value_error': 0.6534187683977347}},
       'metric': {'ERA-Interim': {'value': 46.90693889309762,
         'value_error': 25.730004402759736},
        'HadISST': {'value': 34.696135486034684,
         'value_error': 21.51157080952704},
        'Tropflux': {'value': 47.07575803335789,
         'value_error': 25.64819112751043}}},
      'EnsoSstDiversity_2': {'diagnostic': {'ERA-Interim': {'value': 33.25,
         'value_error': None},
        'GFDL-CM2p1_r8i1p1': {'value': 62.0, 'value_error': None},
        'HadISST': {'value': 49.0, 'value_error': None},
        'Tropflux': {'value': 32.0, 'value_error': None}},
       'metric': {'ERA-Interim': {'value': 86.46616541353383,
         'value_error': None},
        'HadISST': {'value': 26.53061224489796, 'value_error': None},
        'Tropflux': {'value': 93.75, 'value_error': None}}},
      'EnsoSstLonRmse': {'diagnostic': {'ERA-Interim': {'value': None,
         'value_error': None},
        'GFDL-CM2p1_r8i1p1': {'value': None, 'value_error': None},
        'HadISST': {'value': None, 'value_error': None},
        'Tropflux': {'value': None, 'value_error': None}},
       'metric': {'ERA-Interim': {'value': 0.31324937069926556,
         'value_error': None},
        'HadISST': {'value': 0.3349753829320318, 'value_error': None},
        'Tropflux': {'value': 0.31597548792730856, 'value_error': None}}},
      'EnsoSstSkew': {'diagnostic': {'ERA-Interim': {'value': 0.39098111106809963,
         'value_error': 0.061819541653923164},
        'GFDL-CM2p1_r8i1p1': {'value': 0.0790147817656834,
         'value_error': 0.006561820467269721},
        'HadISST': {'value': 0.38989908235027515,
         'value_error': 0.03172953733021198},
        'Tropflux': {'value': 0.39744741059612115,
         'value_error': 0.06284195338099416}},
       'metric': {'ERA-Interim': {'value': 79.79063961687886,
         'value_error': 4.873676473845252},
        'HadISST': {'value': 79.73455559592763,
         'value_error': 3.3321320317757475},
        'Tropflux': {'value': 80.1194372741865,
         'value_error': 4.794383840298369}}},
      'EnsoSstTsRmse': {'diagnostic': {'ERA-Interim': {'value': None,
         'value_error': None},
        'GFDL-CM2p1_r8i1p1': {'value': None, 'value_error': None},
        'HadISST': {'value': None, 'value_error': None},
        'Tropflux': {'value': None, 'value_error': None}},
       'metric': {'ERA-Interim': {'value': 0.13117822876862903,
         'value_error': None},
        'HadISST': {'value': 0.12408419239836321, 'value_error': None},
        'Tropflux': {'value': 0.1292036522042564, 'value_error': None}}},
      'SeasonalPrLatRmse': {'diagnostic': {'ERA-Interim': {'value': None,
         'value_error': None},
        'GFDL-CM2p1_r8i1p1': {'value': None, 'value_error': None},
        'GPCPv2.3': {'value': None, 'value_error': None}},
       'metric': {'ERA-Interim': {'value': 1.5145645370549583,
         'value_error': None},
        'GPCPv2.3': {'value': 1.672609277982109, 'value_error': None}}},
      'SeasonalPrLonRmse': {'diagnostic': {'ERA-Interim': {'value': None,
         'value_error': None},
        'GFDL-CM2p1_r8i1p1': {'value': None, 'value_error': None},
        'GPCPv2.3': {'value': None, 'value_error': None}},
       'metric': {'ERA-Interim': {'value': 0.7498186187366267,
         'value_error': None},
        'GPCPv2.3': {'value': 0.6081977786305208, 'value_error': None}}},
      'SeasonalSstLonRmse': {'diagnostic': {'ERA-Interim': {'value': None,
         'value_error': None},
        'GFDL-CM2p1_r8i1p1': {'value': None, 'value_error': None},
        'HadISST': {'value': None, 'value_error': None},
        'Tropflux': {'value': None, 'value_error': None}},
       'metric': {'ERA-Interim': {'value': 0.156948572128813,
         'value_error': None},
        'HadISST': {'value': 0.1849766428438231, 'value_error': None},
        'Tropflux': {'value': 0.1474658244103659, 'value_error': None}}}}},
    'r9i1p1': {'metadata': {'description_of_the_collection': 'Describe which science question this collection is about',
      'metrics': {'BiasPrLatRmse': {'diagnostic': {'ERA-Interim': {'name': 'ERA-Interim',
          'nyears': 40,
          'time_period': ['1979-1-16 12:0:0.0', '2019-3-16 12:0:0.0']},
         'GFDL-CM2p1_r9i1p1': {'keyerror': None,
          'name': 'GFDL-CM2p1_r9i1p1',
          'nyears': 145,
          'time_period': ['1861-1-16 12:0:0.0', '2005-12-16 12:0:0.0']},
         'GPCPv2.3': {'name': 'GPCPv2.3',
          'nyears': 41,
          'time_period': ['1979-1-1 0:0:0.0', '2019-7-1 0:0:0.0']},
         'method': 'Meridional root mean square error of nino3_LatExt pr, time series are linearly detrended, observations and model regridded to generic_1x1deg',
         'name': 'pr Meridional RMSE',
         'ref': 'Using CDAT regridding and rms (uncentered and biased) calculation',
         'time_frequency': 'monthly',
         'units': 'mm/day'},
        'metric': {'datasets': "GFDL-CM2p1_r9i1p1; ERA-Interim's pr & GPCPv2.3's precip; 's ",
         'method': 'The metric is the statistical value between the model and the observations',
         'name': 'BiasPrLatRmse',
         'units': 'mm/day'}},
       'BiasPrLonRmse': {'diagnostic': {'ERA-Interim': {'name': 'ERA-Interim',
          'nyears': 40,
          'time_period': ['1979-1-16 12:0:0.0', '2019-3-16 12:0:0.0']},
         'GFDL-CM2p1_r9i1p1': {'keyerror': None,
          'name': 'GFDL-CM2p1_r9i1p1',
          'nyears': 145,
          'time_period': ['1861-1-16 12:0:0.0', '2005-12-16 12:0:0.0']},
         'GPCPv2.3': {'name': 'GPCPv2.3',
          'nyears': 41,
          'time_period': ['1979-1-1 0:0:0.0', '2019-7-1 0:0:0.0']},
         'method': 'Zonal root mean square error of equatorial_pacific pr, time series are linearly detrended, observations and model regridded to generic_1x1deg',
         'name': 'pr Zonal RMSE',
         'ref': 'Using CDAT regridding and rms (uncentered and biased) calculation',
         'time_frequency': 'monthly',
         'units': 'mm/day'},
        'metric': {'datasets': "GFDL-CM2p1_r9i1p1; ERA-Interim's pr & GPCPv2.3's precip; 's ",
         'method': 'The metric is the statistical value between the model and the observations',
         'name': 'BiasPrLonRmse',
         'units': 'mm/day'}},
       'BiasSstLonRmse': {'diagnostic': {'ERA-Interim': {'name': 'ERA-Interim',
          'nyears': 40,
          'time_period': ['1979-1-16 12:0:0.0', '2019-3-16 12:0:0.0']},
         'GFDL-CM2p1_r9i1p1': {'keyerror': None,
          'name': 'GFDL-CM2p1_r9i1p1',
          'nyears': 145,
          'time_period': ['1861-1-16 12:0:0.0', '2005-12-16 12:0:0.0']},
         'HadISST': {'name': 'HadISST',
          'nyears': 151,
          'time_period': ['1870-1-16 11:59:59.5', '2020-10-16 12:0:0.0']},
         'Tropflux': {'name': 'Tropflux',
          'nyears': 40,
          'time_period': ['1979-1-15 0:0:0.0', '2018-12-15 12:0:0.0']},
         'method': 'Zonal root mean square error of equatorial_pacific sst, time series are linearly detrended, observations and model regridded to generic_1x1deg',
         'name': 'sst Zonal RMSE',
         'ref': 'Using CDAT regridding and rms (uncentered and biased) calculation',
         'time_frequency': 'monthly',
         'units': 'C'},
        'metric': {'datasets': "GFDL-CM2p1_r9i1p1; ERA-Interim's ts & HadISST's sst & Tropflux's sst; 's ",
         'method': 'The metric is the statistical value between the model and the observations',
         'name': 'BiasSstLonRmse',
         'units': 'C'}},
       'EnsoAmpl': {'diagnostic': {'ERA-Interim': {'keyerror': None,
          'name': 'ERA-Interim',
          'nyears': 40,
          'time_period': ['1979-1-16 12:0:0.0', '2019-3-16 12:0:0.0']},
         'GFDL-CM2p1_r9i1p1': {'keyerror': None,
          'name': 'GFDL-CM2p1_r9i1p1',
          'nyears': 145,
          'time_period': ['1861-1-16 12:0:0.0', '2005-12-16 12:0:0.0']},
         'HadISST': {'keyerror': None,
          'name': 'HadISST',
          'nyears': 151,
          'time_period': ['1870-1-16 11:59:59.5', '2020-10-16 12:0:0.0']},
         'Tropflux': {'keyerror': None,
          'name': 'Tropflux',
          'nyears': 40,
          'time_period': ['1979-1-15 0:0:0.0', '2018-12-15 12:0:0.0']},
         'method': 'Standard deviation of nino3.4 sstA, time series are linearly detrended',
         'name': 'ENSO amplitude',
         'ref': 'Using CDAT regression calculation',
         'time_frequency': 'monthly',
         'units': 'C'},
        'metric': {'datasets': "GFDL-CM2p1_r9i1p1; ERA-Interim's ts & HadISST's sst & Tropflux's sst; 's ",
         'method': 'The metric is the absolute value of the relative difference between model and observations values (M = 100 * abs[[model-obs] / obs])',
         'name': 'EnsoAmpl',
         'units': '%'}},
       'EnsoDuration': {'diagnostic': {'ERA-Interim': {'keyerror': None,
          'name': 'ERA-Interim',
          'nyears': 40,
          'time_period': ['1979-1-16 12:0:0.0', '2019-3-16 12:0:0.0']},
         'GFDL-CM2p1_r9i1p1': {'keyerror': None,
          'name': 'GFDL-CM2p1_r9i1p1',
          'nyears': 145,
          'time_period': ['1861-1-16 12:0:0.0', '2005-12-16 12:0:0.0']},
         'HadISST': {'keyerror': None,
          'name': 'HadISST',
          'nyears': 151,
          'time_period': ['1870-1-16 11:59:59.5', '2020-10-16 12:0:0.0']},
         'Tropflux': {'keyerror': None,
          'name': 'Tropflux',
          'nyears': 40,
          'time_period': ['1979-1-15 0:0:0.0', '2018-12-15 12:0:0.0']},
         'method': 'nino3.4 SSTA during DEC regressed against nino3.4 SSTA during 6 years (centered on ENSO), the duration is the number of consecutive months during which the regression is above 0.25, time series are linearly detrended, smoothing using a triangle shaped window of 5 points',
         'name': 'ENSO Duration based on life cyle SSTA pattern',
         'ref': 'Using CDAT',
         'time_frequency': 'monthly',
         'units': 'months'},
        'metric': {'datasets': "GFDL-CM2p1_r9i1p1; ERA-Interim's ts & HadISST's sst & Tropflux's sst; 's ",
         'method': 'The metric is the absolute value of the relative difference between model and observations values (M = 100 * abs[[model-obs] / obs])',
         'name': 'EnsoDuration',
         'units': '%'}},
       'EnsoSeasonality': {'diagnostic': {'ERA-Interim': {'keyerror': None,
          'name': 'ERA-Interim',
          'nyears': 40,
          'time_period': ['1979-1-16 12:0:0.0', '2019-3-16 12:0:0.0']},
         'GFDL-CM2p1_r9i1p1': {'keyerror': None,
          'name': 'GFDL-CM2p1_r9i1p1',
          'nyears': 145,
          'time_period': ['1861-1-16 12:0:0.0', '2005-12-16 12:0:0.0']},
         'HadISST': {'keyerror': None,
          'name': 'HadISST',
          'nyears': 151,
          'time_period': ['1870-1-16 11:59:59.5', '2020-10-16 12:0:0.0']},
         'Tropflux': {'keyerror': None,
          'name': 'Tropflux',
          'nyears': 40,
          'time_period': ['1979-1-15 0:0:0.0', '2018-12-15 12:0:0.0']},
         'method': 'Ratio between NDJ and MAM standard deviation nino3.4 sstA, time series are linearly detrended',
         'name': 'ENSO seasonality',
         'ref': 'Using CDAT std dev calculation',
         'time_frequency': 'monthly',
         'units': 'C/C'},
        'metric': {'datasets': "GFDL-CM2p1_r9i1p1; ERA-Interim's ts & HadISST's sst & Tropflux's sst; 's ",
         'method': 'The metric is the absolute value of the relative difference between model and observations values (M = 100 * abs[[model-obs] / obs])',
         'name': 'EnsoSeasonality',
         'units': '%'}},
       'EnsoSstDiversity_2': {'diagnostic': {'ERA-Interim': {'keyerror': None,
          'name': 'ERA-Interim',
          'nyears': 40,
          'time_period': ['1979-1-16 12:0:0.0', '2019-3-16 12:0:0.0']},
         'GFDL-CM2p1_r9i1p1': {'keyerror': None,
          'name': 'GFDL-CM2p1_r9i1p1',
          'nyears': 145,
          'time_period': ['1861-1-16 12:0:0.0', '2005-12-16 12:0:0.0']},
         'HadISST': {'keyerror': None,
          'name': 'HadISST',
          'nyears': 151,
          'time_period': ['1870-1-16 11:59:59.5', '2020-10-16 12:0:0.0']},
         'Tropflux': {'keyerror': None,
          'name': 'Tropflux',
          'nyears': 40,
          'time_period': ['1979-1-15 0:0:0.0', '2018-12-15 12:0:0.0']},
         'method': 'Nino (Nina) events = nino3.4 sstA > 0.75 (< -0.75) during DEC, zonal SSTA (meridional averaged [-5.0 ; 5.0]), the zonal SSTA maximum (minimum) is located for each event, the diversity is the interquartile range (IQR = Q3 - Q1), time series are linearly detrended, smoothing using a triangle shaped window of 5 points',
         'name': 'ENSO Diversity (interquartile range)',
         'ref': 'Using CDAT regridding',
         'time_frequency': 'monthly',
         'units': 'long'},
        'metric': {'datasets': "GFDL-CM2p1_r9i1p1; ERA-Interim's ts & HadISST's sst & Tropflux's sst; 's ",
         'method': 'The metric is the absolute value of the relative difference between model and observations values (M = 100 * abs[[model-obs] / obs])',
         'name': 'EnsoSstDiversity',
         'units': '%'}},
       'EnsoSstLonRmse': {'diagnostic': {'ERA-Interim': {'name': 'ERA-Interim',
          'nyears': 40,
          'time_period': ['1979-1-16 12:0:0.0', '2019-3-16 12:0:0.0']},
         'GFDL-CM2p1_r9i1p1': {'keyerror': None,
          'name': 'GFDL-CM2p1_r9i1p1',
          'nyears': 145,
          'time_period': ['1861-1-16 12:0:0.0', '2005-12-16 12:0:0.0']},
         'HadISST': {'name': 'HadISST',
          'nyears': 151,
          'time_period': ['1870-1-16 11:59:59.5', '2020-10-16 12:0:0.0']},
         'Tropflux': {'name': 'Tropflux',
          'nyears': 40,
          'time_period': ['1979-1-15 0:0:0.0', '2018-12-15 12:0:0.0']},
         'method': 'nino3.4 SSTA during DEC regressed against equatorial_pacific SSTA, time series are linearly detrended, smoothing using a triangle shaped window of 5 points, observations and model regridded to generic_1x1deg',
         'name': 'ENSO Zonal SSTA pattern',
         'ref': 'Using CDAT regridding and rms (uncentered and biased) calculation',
         'time_frequency': 'monthly',
         'units': 'C/C'},
        'metric': {'datasets': "GFDL-CM2p1_r9i1p1; ERA-Interim's ts & HadISST's sst & Tropflux's sst; 's ",
         'method': 'The metric is the statistical value between the model and the observations',
         'name': 'EnsoSstLonRmse',
         'units': 'C/C'}},
       'EnsoSstSkew': {'diagnostic': {'ERA-Interim': {'keyerror': None,
          'name': 'ERA-Interim',
          'nyears': 40,
          'time_period': ['1979-1-16 12:0:0.0', '2019-3-16 12:0:0.0']},
         'GFDL-CM2p1_r9i1p1': {'keyerror': None,
          'name': 'GFDL-CM2p1_r9i1p1',
          'nyears': 145,
          'time_period': ['1861-1-16 12:0:0.0', '2005-12-16 12:0:0.0']},
         'HadISST': {'keyerror': None,
          'name': 'HadISST',
          'nyears': 151,
          'time_period': ['1870-1-16 11:59:59.5', '2020-10-16 12:0:0.0']},
         'Tropflux': {'keyerror': None,
          'name': 'Tropflux',
          'nyears': 40,
          'time_period': ['1979-1-15 0:0:0.0', '2018-12-15 12:0:0.0']},
         'method': 'Standard deviation of nino3.4 sstA, time series are linearly detrended',
         'name': 'ENSO skewness',
         'ref': 'Using CDAT regression calculation',
         'time_frequency': 'monthly',
         'units': 'C'},
        'metric': {'datasets': "GFDL-CM2p1_r9i1p1; ERA-Interim's ts & HadISST's sst & Tropflux's sst; 's ",
         'method': 'The metric is the absolute value of the relative difference between model and observations values (M = 100 * abs[[model-obs] / obs])',
         'name': 'EnsoSstSkew',
         'units': '%'}},
       'EnsoSstTsRmse': {'diagnostic': {'ERA-Interim': {'name': 'ERA-Interim',
          'nyears': 40,
          'time_period': ['1979-1-16 12:0:0.0', '2019-3-16 12:0:0.0']},
         'GFDL-CM2p1_r9i1p1': {'keyerror': None,
          'name': 'GFDL-CM2p1_r9i1p1',
          'nyears': 145,
          'time_period': ['1861-1-16 12:0:0.0', '2005-12-16 12:0:0.0']},
         'HadISST': {'name': 'HadISST',
          'nyears': 151,
          'time_period': ['1870-1-16 11:59:59.5', '2020-10-16 12:0:0.0']},
         'Tropflux': {'name': 'Tropflux',
          'nyears': 40,
          'time_period': ['1979-1-15 0:0:0.0', '2018-12-15 12:0:0.0']},
         'method': 'nino3.4 SSTA during DEC regressed against nino3.4 SSTA during 6 years (centered on ENSO), time series are linearly detrended, smoothing using a triangle shaped window of 5 points',
         'name': 'ENSO life cyle SSTA pattern',
         'ref': 'Using CDAT regridding and rms (uncentered and biased) calculation',
         'time_frequency': 'monthly',
         'units': 'C/C'},
        'metric': {'datasets': "GFDL-CM2p1_r9i1p1; ERA-Interim's ts & HadISST's sst & Tropflux's sst; 's ",
         'method': 'The metric is the statistical value between the model and the observations',
         'name': 'EnsoSstTsRmse',
         'units': 'C/C'}},
       'SeasonalPrLatRmse': {'diagnostic': {'ERA-Interim': {'name': 'ERA-Interim',
          'nyears': 40,
          'time_period': ['1979-1-16 12:0:0.0', '2019-3-16 12:0:0.0']},
         'GFDL-CM2p1_r9i1p1': {'keyerror': None,
          'name': 'GFDL-CM2p1_r9i1p1',
          'nyears': 145,
          'time_period': ['1861-1-16 12:0:0.0', '2005-12-16 12:0:0.0']},
         'GPCPv2.3': {'name': 'GPCPv2.3',
          'nyears': 41,
          'time_period': ['1979-1-1 0:0:0.0', '2019-7-1 0:0:0.0']},
         'method': 'Meridional root mean square error of nino3_LatExt climatological pr STD, time series are linearly detrended, observations and model regridded to generic_1x1deg',
         'name': 'pr meridional seasonality RMSE',
         'ref': 'Using CDAT regridding and rms (uncentered and biased) calculation',
         'time_frequency': 'monthly',
         'units': 'mm/day'},
        'metric': {'datasets': "GFDL-CM2p1_r9i1p1; ERA-Interim's pr & GPCPv2.3's precip; 's ",
         'method': 'The metric is the statistical value between the model and the observations',
         'name': 'SeasonalPrLatRmse',
         'units': 'mm/day'}},
       'SeasonalPrLonRmse': {'diagnostic': {'ERA-Interim': {'name': 'ERA-Interim',
          'nyears': 40,
          'time_period': ['1979-1-16 12:0:0.0', '2019-3-16 12:0:0.0']},
         'GFDL-CM2p1_r9i1p1': {'keyerror': None,
          'name': 'GFDL-CM2p1_r9i1p1',
          'nyears': 145,
          'time_period': ['1861-1-16 12:0:0.0', '2005-12-16 12:0:0.0']},
         'GPCPv2.3': {'name': 'GPCPv2.3',
          'nyears': 41,
          'time_period': ['1979-1-1 0:0:0.0', '2019-7-1 0:0:0.0']},
         'method': 'Zonal root mean square error of equatorial_pacific climatological pr STD, time series are linearly detrended, observations and model regridded to generic_1x1deg',
         'name': 'pr zonal seasonality RMSE',
         'ref': 'Using CDAT regridding and rms (uncentered and biased) calculation',
         'time_frequency': 'monthly',
         'units': 'mm/day'},
        'metric': {'datasets': "GFDL-CM2p1_r9i1p1; ERA-Interim's pr & GPCPv2.3's precip; 's ",
         'method': 'The metric is the statistical value between the model and the observations',
         'name': 'SeasonalPrLonRmse',
         'units': 'mm/day'}},
       'SeasonalSstLonRmse': {'diagnostic': {'ERA-Interim': {'name': 'ERA-Interim',
          'nyears': 40,
          'time_period': ['1979-1-16 12:0:0.0', '2019-3-16 12:0:0.0']},
         'GFDL-CM2p1_r9i1p1': {'keyerror': None,
          'name': 'GFDL-CM2p1_r9i1p1',
          'nyears': 145,
          'time_period': ['1861-1-16 12:0:0.0', '2005-12-16 12:0:0.0']},
         'HadISST': {'name': 'HadISST',
          'nyears': 151,
          'time_period': ['1870-1-16 11:59:59.5', '2020-10-16 12:0:0.0']},
         'Tropflux': {'name': 'Tropflux',
          'nyears': 40,
          'time_period': ['1979-1-15 0:0:0.0', '2018-12-15 12:0:0.0']},
         'method': 'Zonal root mean square error of equatorial_pacific climatological sst STD, time series are linearly detrended, observations and model regridded to generic_1x1deg',
         'name': 'sst zonal seasonality RMSE',
         'ref': 'Using CDAT regridding and rms (uncentered and biased) calculation',
         'time_frequency': 'monthly',
         'units': 'C'},
        'metric': {'datasets': "GFDL-CM2p1_r9i1p1; ERA-Interim's ts & HadISST's sst & Tropflux's sst; 's ",
         'method': 'The metric is the statistical value between the model and the observations',
         'name': 'SeasonalSstLonRmse',
         'units': 'C'}}},
      'name': 'Metrics Collection for ENSO performance'},
     'value': {'BiasPrLatRmse': {'diagnostic': {'ERA-Interim': {'value': None,
         'value_error': None},
        'GFDL-CM2p1_r9i1p1': {'value': None, 'value_error': None},
        'GPCPv2.3': {'value': None, 'value_error': None}},
       'metric': {'ERA-Interim': {'value': 1.9364112412320857,
         'value_error': None},
        'GPCPv2.3': {'value': 1.93710665469297, 'value_error': None}}},
      'BiasPrLonRmse': {'diagnostic': {'ERA-Interim': {'value': None,
         'value_error': None},
        'GFDL-CM2p1_r9i1p1': {'value': None, 'value_error': None},
        'GPCPv2.3': {'value': None, 'value_error': None}},
       'metric': {'ERA-Interim': {'value': 2.418965166211523,
         'value_error': None},
        'GPCPv2.3': {'value': 1.4830506308401685, 'value_error': None}}},
      'BiasSstLonRmse': {'diagnostic': {'ERA-Interim': {'value': None,
         'value_error': None},
        'GFDL-CM2p1_r9i1p1': {'value': None, 'value_error': None},
        'HadISST': {'value': None, 'value_error': None},
        'Tropflux': {'value': None, 'value_error': None}},
       'metric': {'ERA-Interim': {'value': 1.5153493734595629,
         'value_error': None},
        'HadISST': {'value': 1.3500085758262683, 'value_error': None},
        'Tropflux': {'value': 1.563713760684424, 'value_error': None}}},
      'EnsoAmpl': {'diagnostic': {'ERA-Interim': {'value': 0.8989844997845644,
         'value_error': 0.14214193002531866},
        'GFDL-CM2p1_r9i1p1': {'value': 1.300697778875719,
         'value_error': 0.10801707119142785},
        'HadISST': {'value': 0.7665787872085695,
         'value_error': 0.06238329697691264},
        'Tropflux': {'value': 0.9039789553693535,
         'value_error': 0.14293162279134272}},
       'metric': {'ERA-Interim': {'value': 44.68522863157513,
         'value_error': 34.89219755235645},
        'HadISST': {'value': 69.6756811667197,
         'value_error': 27.89880946876157},
        'Tropflux': {'value': 43.885847247878864,
         'value_error': 34.699419247180394}}},
      'EnsoDuration': {'diagnostic': {'ERA-Interim': {'value': 13.0,
         'value_error': None},
        'GFDL-CM2p1_r9i1p1': {'value': 14.0, 'value_error': None},
        'HadISST': {'value': 13.0, 'value_error': None},
        'Tropflux': {'value': 13.0, 'value_error': None}},
       'metric': {'ERA-Interim': {'value': 7.6923076923076925,
         'value_error': None},
        'HadISST': {'value': 7.6923076923076925, 'value_error': None},
        'Tropflux': {'value': 7.6923076923076925, 'value_error': None}}},
      'EnsoSeasonality': {'diagnostic': {'ERA-Interim': {'value': 2.0466846866656914,
         'value_error': 0.6513411033995022},
        'GFDL-CM2p1_r9i1p1': {'value': 1.1902721487382337,
         'value_error': 0.19803606747669492},
        'HadISST': {'value': 1.6639865947361325,
         'value_error': 0.2712772451657809},
        'Tropflux': {'value': 2.0532132553583624,
         'value_error': 0.6534187683977347}},
       'metric': {'ERA-Interim': {'value': 41.84389239373566,
         'value_error': 28.183662300872996},
        'HadISST': {'value': 28.468645570610402,
         'value_error': 23.562951555188988},
        'Tropflux': {'value': 42.02881042035321,
         'value_error': 28.094047169633157}}},
      'EnsoSstDiversity_2': {'diagnostic': {'ERA-Interim': {'value': 33.25,
         'value_error': None},
        'GFDL-CM2p1_r9i1p1': {'value': 58.0, 'value_error': None},
        'HadISST': {'value': 49.0, 'value_error': None},
        'Tropflux': {'value': 32.0, 'value_error': None}},
       'metric': {'ERA-Interim': {'value': 74.43609022556392,
         'value_error': None},
        'HadISST': {'value': 18.367346938775512, 'value_error': None},
        'Tropflux': {'value': 81.25, 'value_error': None}}},
      'EnsoSstLonRmse': {'diagnostic': {'ERA-Interim': {'value': None,
         'value_error': None},
        'GFDL-CM2p1_r9i1p1': {'value': None, 'value_error': None},
        'HadISST': {'value': None, 'value_error': None},
        'Tropflux': {'value': None, 'value_error': None}},
       'metric': {'ERA-Interim': {'value': 0.2913618385348475,
         'value_error': None},
        'HadISST': {'value': 0.3131898008058029, 'value_error': None},
        'Tropflux': {'value': 0.29420281876660004, 'value_error': None}}},
      'EnsoSstSkew': {'diagnostic': {'ERA-Interim': {'value': 0.39098111106809963,
         'value_error': 0.061819541653923164},
        'GFDL-CM2p1_r9i1p1': {'value': 0.0678650857313921,
         'value_error': 0.005635888609878658},
        'HadISST': {'value': 0.38989908235027515,
         'value_error': 0.03172953733021198},
        'Tropflux': {'value': 0.39744741059612115,
         'value_error': 0.06284195338099416}},
       'metric': {'ERA-Interim': {'value': 82.64236204506268,
         'value_error': 4.185956910004713},
        'HadISST': {'value': 82.59419198365184,
         'value_error': 2.861938246888774},
        'Tropflux': {'value': 82.92476339709874,
         'value_error': 4.117853179876279}}},
      'EnsoSstTsRmse': {'diagnostic': {'ERA-Interim': {'value': None,
         'value_error': None},
        'GFDL-CM2p1_r9i1p1': {'value': None, 'value_error': None},
        'HadISST': {'value': None, 'value_error': None},
        'Tropflux': {'value': None, 'value_error': None}},
       'metric': {'ERA-Interim': {'value': 0.12846288913166873,
         'value_error': None},
        'HadISST': {'value': 0.11586543274891302, 'value_error': None},
        'Tropflux': {'value': 0.12622528106359157, 'value_error': None}}},
      'SeasonalPrLatRmse': {'diagnostic': {'ERA-Interim': {'value': None,
         'value_error': None},
        'GFDL-CM2p1_r9i1p1': {'value': None, 'value_error': None},
        'GPCPv2.3': {'value': None, 'value_error': None}},
       'metric': {'ERA-Interim': {'value': 1.4694214267637489,
         'value_error': None},
        'GPCPv2.3': {'value': 1.6304413835245262, 'value_error': None}}},
      'SeasonalPrLonRmse': {'diagnostic': {'ERA-Interim': {'value': None,
         'value_error': None},
        'GFDL-CM2p1_r9i1p1': {'value': None, 'value_error': None},
        'GPCPv2.3': {'value': None, 'value_error': None}},
       'metric': {'ERA-Interim': {'value': 0.7878498532906931,
         'value_error': None},
        'GPCPv2.3': {'value': 0.6562246293555054, 'value_error': None}}},
      'SeasonalSstLonRmse': {'diagnostic': {'ERA-Interim': {'value': None,
         'value_error': None},
        'GFDL-CM2p1_r9i1p1': {'value': None, 'value_error': None},
        'HadISST': {'value': None, 'value_error': None},
        'Tropflux': {'value': None, 'value_error': None}},
       'metric': {'ERA-Interim': {'value': 0.19075368279036692,
         'value_error': None},
        'HadISST': {'value': 0.2181676060725921, 'value_error': None},
        'Tropflux': {'value': 0.18078769909153528, 'value_error': None}}}}}},
   'GFDL-CM3': {'r1i1p1': {'metadata': {'description_of_the_collection': 'Describe which science question this collection is about',
      'metrics': {'BiasPrLatRmse': {'diagnostic': {'ERA-Interim': {'name': 'ERA-Interim',
          'nyears': 40,
          'time_period': ['1979-1-16 12:0:0.0', '2019-3-16 12:0:0.0']},
         'GFDL-CM3_r1i1p1': {'keyerror': None,
          'name': 'GFDL-CM3_r1i1p1',
          'nyears': 146,
          'time_period': ['1860-1-16 12:0:0.0', '2005-12-16 12:0:0.0']},
         'GPCPv2.3': {'name': 'GPCPv2.3',
          'nyears': 41,
          'time_period': ['1979-1-1 0:0:0.0', '2019-7-1 0:0:0.0']},
         'method': 'Meridional root mean square error of nino3_LatExt pr, time series are linearly detrended, observations and model regridded to generic_1x1deg',
         'name': 'pr Meridional RMSE',
         'ref': 'Using CDAT regridding and rms (uncentered and biased) calculation',
         'time_frequency': 'monthly',
         'units': 'mm/day'},
        'metric': {'datasets': "GFDL-CM3_r1i1p1; ERA-Interim's pr & GPCPv2.3's precip; 's ",
         'method': 'The metric is the statistical value between the model and the observations',
         'name': 'BiasPrLatRmse',
         'units': 'mm/day'}},
       'BiasPrLonRmse': {'diagnostic': {'ERA-Interim': {'name': 'ERA-Interim',
          'nyears': 40,
          'time_period': ['1979-1-16 12:0:0.0', '2019-3-16 12:0:0.0']},
         'GFDL-CM3_r1i1p1': {'keyerror': None,
          'name': 'GFDL-CM3_r1i1p1',
          'nyears': 146,
          'time_period': ['1860-1-16 12:0:0.0', '2005-12-16 12:0:0.0']},
         'GPCPv2.3': {'name': 'GPCPv2.3',
          'nyears': 41,
          'time_period': ['1979-1-1 0:0:0.0', '2019-7-1 0:0:0.0']},
         'method': 'Zonal root mean square error of equatorial_pacific pr, time series are linearly detrended, observations and model regridded to generic_1x1deg',
         'name': 'pr Zonal RMSE',
         'ref': 'Using CDAT regridding and rms (uncentered and biased) calculation',
         'time_frequency': 'monthly',
         'units': 'mm/day'},
        'metric': {'datasets': "GFDL-CM3_r1i1p1; ERA-Interim's pr & GPCPv2.3's precip; 's ",
         'method': 'The metric is the statistical value between the model and the observations',
         'name': 'BiasPrLonRmse',
         'units': 'mm/day'}},
       'BiasSstLonRmse': {'diagnostic': {'ERA-Interim': {'name': 'ERA-Interim',
          'nyears': 40,
          'time_period': ['1979-1-16 12:0:0.0', '2019-3-16 12:0:0.0']},
         'GFDL-CM3_r1i1p1': {'keyerror': None,
          'name': 'GFDL-CM3_r1i1p1',
          'nyears': 146,
          'time_period': ['1860-1-16 12:0:0.0', '2005-12-16 12:0:0.0']},
         'HadISST': {'name': 'HadISST',
          'nyears': 151,
          'time_period': ['1870-1-16 11:59:59.5', '2020-10-16 12:0:0.0']},
         'Tropflux': {'name': 'Tropflux',
          'nyears': 40,
          'time_period': ['1979-1-15 0:0:0.0', '2018-12-15 12:0:0.0']},
         'method': 'Zonal root mean square error of equatorial_pacific sst, time series are linearly detrended, observations and model regridded to generic_1x1deg',
         'name': 'sst Zonal RMSE',
         'ref': 'Using CDAT regridding and rms (uncentered and biased) calculation',
         'time_frequency': 'monthly',
         'units': 'C'},
        'metric': {'datasets': "GFDL-CM3_r1i1p1; ERA-Interim's ts & HadISST's sst & Tropflux's sst; 's ",
         'method': 'The metric is the statistical value between the model and the observations',
         'name': 'BiasSstLonRmse',
         'units': 'C'}},
       'BiasTauxLonRmse': {'diagnostic': {'ERA-Interim': {'name': 'ERA-Interim',
          'nyears': 40,
          'time_period': ['1979-1-16 12:0:0.0', '2019-3-16 12:0:0.0']},
         'GFDL-CM3_r1i1p1': {'keyerror': None,
          'name': 'GFDL-CM3_r1i1p1',
          'nyears': 146,
          'time_period': ['1860-1-16 12:0:0.0', '2005-12-16 12:0:0.0']},
         'Tropflux': {'name': 'Tropflux',
          'nyears': 40,
          'time_period': ['1979-1-15 0:0:0.0', '2018-12-15 12:0:0.0']},
         'method': 'Zonal root mean square error of equatorial_pacific taux, time series are linearly detrended, observations and model regridded to generic_1x1deg',
         'name': 'taux Zonal RMSE',
         'ref': 'Using CDAT regridding and rms (uncentered and biased) calculation',
         'time_frequency': 'monthly',
         'units': '1e-3 N/m2'},
        'metric': {'datasets': "GFDL-CM3_r1i1p1; ERA-Interim's tauu & Tropflux's taux; 's ",
         'method': 'The metric is the statistical value between the model and the observations',
         'name': 'BiasTauxLonRmse',
         'units': '1e-3 N/m2'}},
       'EnsoAmpl': {'diagnostic': {'ERA-Interim': {'keyerror': None,
          'name': 'ERA-Interim',
          'nyears': 40,
          'time_period': ['1979-1-16 12:0:0.0', '2019-3-16 12:0:0.0']},
         'GFDL-CM3_r1i1p1': {'keyerror': None,
          'name': 'GFDL-CM3_r1i1p1',
          'nyears': 146,
          'time_period': ['1860-1-16 12:0:0.0', '2005-12-16 12:0:0.0']},
         'HadISST': {'keyerror': None,
          'name': 'HadISST',
          'nyears': 151,
          'time_period': ['1870-1-16 11:59:59.5', '2020-10-16 12:0:0.0']},
         'Tropflux': {'keyerror': None,
          'name': 'Tropflux',
          'nyears': 40,
          'time_period': ['1979-1-15 0:0:0.0', '2018-12-15 12:0:0.0']},
         'method': 'Standard deviation of nino3.4 sstA, time series are linearly detrended',
         'name': 'ENSO amplitude',
         'ref': 'Using CDAT regression calculation',
         'time_frequency': 'monthly',
         'units': 'C'},
        'metric': {'datasets': "GFDL-CM3_r1i1p1; ERA-Interim's ts & HadISST's sst & Tropflux's sst; 's ",
         'method': 'The metric is the absolute value of the relative difference between model and observations values (M = 100 * abs[[model-obs] / obs])',
         'name': 'EnsoAmpl',
         'units': '%'}},
       'EnsoDuration': {'diagnostic': {'ERA-Interim': {'keyerror': None,
          'name': 'ERA-Interim',
          'nyears': 40,
          'time_period': ['1979-1-16 12:0:0.0', '2019-3-16 12:0:0.0']},
         'GFDL-CM3_r1i1p1': {'keyerror': None,
          'name': 'GFDL-CM3_r1i1p1',
          'nyears': 146,
          'time_period': ['1860-1-16 12:0:0.0', '2005-12-16 12:0:0.0']},
         'HadISST': {'keyerror': None,
          'name': 'HadISST',
          'nyears': 151,
          'time_period': ['1870-1-16 11:59:59.5', '2020-10-16 12:0:0.0']},
         'Tropflux': {'keyerror': None,
          'name': 'Tropflux',
          'nyears': 40,
          'time_period': ['1979-1-15 0:0:0.0', '2018-12-15 12:0:0.0']},
         'method': 'nino3.4 SSTA during DEC regressed against nino3.4 SSTA during 6 years (centered on ENSO), the duration is the number of consecutive months during which the regression is above 0.25, time series are linearly detrended, smoothing using a triangle shaped window of 5 points',
         'name': 'ENSO Duration based on life cyle SSTA pattern',
         'ref': 'Using CDAT',
         'time_frequency': 'monthly',
         'units': 'months'},
        'metric': {'datasets': "GFDL-CM3_r1i1p1; ERA-Interim's ts & HadISST's sst & Tropflux's sst; 's ",
         'method': 'The metric is the absolute value of the relative difference between model and observations values (M = 100 * abs[[model-obs] / obs])',
         'name': 'EnsoDuration',
         'units': '%'}},
       'EnsoSeasonality': {'diagnostic': {'ERA-Interim': {'keyerror': None,
          'name': 'ERA-Interim',
          'nyears': 40,
          'time_period': ['1979-1-16 12:0:0.0', '2019-3-16 12:0:0.0']},
         'GFDL-CM3_r1i1p1': {'keyerror': None,
          'name': 'GFDL-CM3_r1i1p1',
          'nyears': 146,
          'time_period': ['1860-1-16 12:0:0.0', '2005-12-16 12:0:0.0']},
         'HadISST': {'keyerror': None,
          'name': 'HadISST',
          'nyears': 151,
          'time_period': ['1870-1-16 11:59:59.5', '2020-10-16 12:0:0.0']},
         'Tropflux': {'keyerror': None,
          'name': 'Tropflux',
          'nyears': 40,
          'time_period': ['1979-1-15 0:0:0.0', '2018-12-15 12:0:0.0']},
         'method': 'Ratio between NDJ and MAM standard deviation nino3.4 sstA, time series are linearly detrended',
         'name': 'ENSO seasonality',
         'ref': 'Using CDAT std dev calculation',
         'time_frequency': 'monthly',
         'units': 'C/C'},
        'metric': {'datasets': "GFDL-CM3_r1i1p1; ERA-Interim's ts & HadISST's sst & Tropflux's sst; 's ",
         'method': 'The metric is the absolute value of the relative difference between model and observations values (M = 100 * abs[[model-obs] / obs])',
         'name': 'EnsoSeasonality',
         'units': '%'}},
       'EnsoSstDiversity_2': {'diagnostic': {'ERA-Interim': {'keyerror': None,
          'name': 'ERA-Interim',
          'nyears': 40,
          'time_period': ['1979-1-16 12:0:0.0', '2019-3-16 12:0:0.0']},
         'GFDL-CM3_r1i1p1': {'keyerror': None,
          'name': 'GFDL-CM3_r1i1p1',
          'nyears': 146,
          'time_period': ['1860-1-16 12:0:0.0', '2005-12-16 12:0:0.0']},
         'HadISST': {'keyerror': None,
          'name': 'HadISST',
          'nyears': 151,
          'time_period': ['1870-1-16 11:59:59.5', '2020-10-16 12:0:0.0']},
         'Tropflux': {'keyerror': None,
          'name': 'Tropflux',
          'nyears': 40,
          'time_period': ['1979-1-15 0:0:0.0', '2018-12-15 12:0:0.0']},
         'method': 'Nino (Nina) events = nino3.4 sstA > 0.75 (< -0.75) during DEC, zonal SSTA (meridional averaged [-5.0 ; 5.0]), the zonal SSTA maximum (minimum) is located for each event, the diversity is the interquartile range (IQR = Q3 - Q1), time series are linearly detrended, smoothing using a triangle shaped window of 5 points',
         'name': 'ENSO Diversity (interquartile range)',
         'ref': 'Using CDAT regridding',
         'time_frequency': 'monthly',
         'units': 'long'},
        'metric': {'datasets': "GFDL-CM3_r1i1p1; ERA-Interim's ts & HadISST's sst & Tropflux's sst; 's ",
         'method': 'The metric is the absolute value of the relative difference between model and observations values (M = 100 * abs[[model-obs] / obs])',
         'name': 'EnsoSstDiversity',
         'units': '%'}},
       'EnsoSstLonRmse': {'diagnostic': {'ERA-Interim': {'name': 'ERA-Interim',
          'nyears': 40,
          'time_period': ['1979-1-16 12:0:0.0', '2019-3-16 12:0:0.0']},
         'GFDL-CM3_r1i1p1': {'keyerror': None,
          'name': 'GFDL-CM3_r1i1p1',
          'nyears': 146,
          'time_period': ['1860-1-16 12:0:0.0', '2005-12-16 12:0:0.0']},
         'HadISST': {'name': 'HadISST',
          'nyears': 151,
          'time_period': ['1870-1-16 11:59:59.5', '2020-10-16 12:0:0.0']},
         'Tropflux': {'name': 'Tropflux',
          'nyears': 40,
          'time_period': ['1979-1-15 0:0:0.0', '2018-12-15 12:0:0.0']},
         'method': 'nino3.4 SSTA during DEC regressed against equatorial_pacific SSTA, time series are linearly detrended, smoothing using a triangle shaped window of 5 points, observations and model regridded to generic_1x1deg',
         'name': 'ENSO Zonal SSTA pattern',
         'ref': 'Using CDAT regridding and rms (uncentered and biased) calculation',
         'time_frequency': 'monthly',
         'units': 'C/C'},
        'metric': {'datasets': "GFDL-CM3_r1i1p1; ERA-Interim's ts & HadISST's sst & Tropflux's sst; 's ",
         'method': 'The metric is the statistical value between the model and the observations',
         'name': 'EnsoSstLonRmse',
         'units': 'C/C'}},
       'EnsoSstSkew': {'diagnostic': {'ERA-Interim': {'keyerror': None,
          'name': 'ERA-Interim',
          'nyears': 40,
          'time_period': ['1979-1-16 12:0:0.0', '2019-3-16 12:0:0.0']},
         'GFDL-CM3_r1i1p1': {'keyerror': None,
          'name': 'GFDL-CM3_r1i1p1',
          'nyears': 146,
          'time_period': ['1860-1-16 12:0:0.0', '2005-12-16 12:0:0.0']},
         'HadISST': {'keyerror': None,
          'name': 'HadISST',
          'nyears': 151,
          'time_period': ['1870-1-16 11:59:59.5', '2020-10-16 12:0:0.0']},
         'Tropflux': {'keyerror': None,
          'name': 'Tropflux',
          'nyears': 40,
          'time_period': ['1979-1-15 0:0:0.0', '2018-12-15 12:0:0.0']},
         'method': 'Standard deviation of nino3.4 sstA, time series are linearly detrended',
         'name': 'ENSO skewness',
         'ref': 'Using CDAT regression calculation',
         'time_frequency': 'monthly',
         'units': 'C'},
        'metric': {'datasets': "GFDL-CM3_r1i1p1; ERA-Interim's ts & HadISST's sst & Tropflux's sst; 's ",
         'method': 'The metric is the absolute value of the relative difference between model and observations values (M = 100 * abs[[model-obs] / obs])',
         'name': 'EnsoSstSkew',
         'units': '%'}},
       'EnsoSstTsRmse': {'diagnostic': {'ERA-Interim': {'name': 'ERA-Interim',
          'nyears': 40,
          'time_period': ['1979-1-16 12:0:0.0', '2019-3-16 12:0:0.0']},
         'GFDL-CM3_r1i1p1': {'keyerror': None,
          'name': 'GFDL-CM3_r1i1p1',
          'nyears': 146,
          'time_period': ['1860-1-16 12:0:0.0', '2005-12-16 12:0:0.0']},
         'HadISST': {'name': 'HadISST',
          'nyears': 151,
          'time_period': ['1870-1-16 11:59:59.5', '2020-10-16 12:0:0.0']},
         'Tropflux': {'name': 'Tropflux',
          'nyears': 40,
          'time_period': ['1979-1-15 0:0:0.0', '2018-12-15 12:0:0.0']},
         'method': 'nino3.4 SSTA during DEC regressed against nino3.4 SSTA during 6 years (centered on ENSO), time series are linearly detrended, smoothing using a triangle shaped window of 5 points',
         'name': 'ENSO life cyle SSTA pattern',
         'ref': 'Using CDAT regridding and rms (uncentered and biased) calculation',
         'time_frequency': 'monthly',
         'units': 'C/C'},
        'metric': {'datasets': "GFDL-CM3_r1i1p1; ERA-Interim's ts & HadISST's sst & Tropflux's sst; 's ",
         'method': 'The metric is the statistical value between the model and the observations',
         'name': 'EnsoSstTsRmse',
         'units': 'C/C'}},
       'SeasonalPrLatRmse': {'diagnostic': {'ERA-Interim': {'name': 'ERA-Interim',
          'nyears': 40,
          'time_period': ['1979-1-16 12:0:0.0', '2019-3-16 12:0:0.0']},
         'GFDL-CM3_r1i1p1': {'keyerror': None,
          'name': 'GFDL-CM3_r1i1p1',
          'nyears': 146,
          'time_period': ['1860-1-16 12:0:0.0', '2005-12-16 12:0:0.0']},
         'GPCPv2.3': {'name': 'GPCPv2.3',
          'nyears': 41,
          'time_period': ['1979-1-1 0:0:0.0', '2019-7-1 0:0:0.0']},
         'method': 'Meridional root mean square error of nino3_LatExt climatological pr STD, time series are linearly detrended, observations and model regridded to generic_1x1deg',
         'name': 'pr meridional seasonality RMSE',
         'ref': 'Using CDAT regridding and rms (uncentered and biased) calculation',
         'time_frequency': 'monthly',
         'units': 'mm/day'},
        'metric': {'datasets': "GFDL-CM3_r1i1p1; ERA-Interim's pr & GPCPv2.3's precip; 's ",
         'method': 'The metric is the statistical value between the model and the observations',
         'name': 'SeasonalPrLatRmse',
         'units': 'mm/day'}},
       'SeasonalPrLonRmse': {'diagnostic': {'ERA-Interim': {'name': 'ERA-Interim',
          'nyears': 40,
          'time_period': ['1979-1-16 12:0:0.0', '2019-3-16 12:0:0.0']},
         'GFDL-CM3_r1i1p1': {'keyerror': None,
          'name': 'GFDL-CM3_r1i1p1',
          'nyears': 146,
          'time_period': ['1860-1-16 12:0:0.0', '2005-12-16 12:0:0.0']},
         'GPCPv2.3': {'name': 'GPCPv2.3',
          'nyears': 41,
          'time_period': ['1979-1-1 0:0:0.0', '2019-7-1 0:0:0.0']},
         'method': 'Zonal root mean square error of equatorial_pacific climatological pr STD, time series are linearly detrended, observations and model regridded to generic_1x1deg',
         'name': 'pr zonal seasonality RMSE',
         'ref': 'Using CDAT regridding and rms (uncentered and biased) calculation',
         'time_frequency': 'monthly',
         'units': 'mm/day'},
        'metric': {'datasets': "GFDL-CM3_r1i1p1; ERA-Interim's pr & GPCPv2.3's precip; 's ",
         'method': 'The metric is the statistical value between the model and the observations',
         'name': 'SeasonalPrLonRmse',
         'units': 'mm/day'}},
       'SeasonalSstLonRmse': {'diagnostic': {'ERA-Interim': {'name': 'ERA-Interim',
          'nyears': 40,
          'time_period': ['1979-1-16 12:0:0.0', '2019-3-16 12:0:0.0']},
         'GFDL-CM3_r1i1p1': {'keyerror': None,
          'name': 'GFDL-CM3_r1i1p1',
          'nyears': 146,
          'time_period': ['1860-1-16 12:0:0.0', '2005-12-16 12:0:0.0']},
         'HadISST': {'name': 'HadISST',
          'nyears': 151,
          'time_period': ['1870-1-16 11:59:59.5', '2020-10-16 12:0:0.0']},
         'Tropflux': {'name': 'Tropflux',
          'nyears': 40,
          'time_period': ['1979-1-15 0:0:0.0', '2018-12-15 12:0:0.0']},
         'method': 'Zonal root mean square error of equatorial_pacific climatological sst STD, time series are linearly detrended, observations and model regridded to generic_1x1deg',
         'name': 'sst zonal seasonality RMSE',
         'ref': 'Using CDAT regridding and rms (uncentered and biased) calculation',
         'time_frequency': 'monthly',
         'units': 'C'},
        'metric': {'datasets': "GFDL-CM3_r1i1p1; ERA-Interim's ts & HadISST's sst & Tropflux's sst; 's ",
         'method': 'The metric is the statistical value between the model and the observations',
         'name': 'SeasonalSstLonRmse',
         'units': 'C'}},
       'SeasonalTauxLonRmse': {'diagnostic': {'ERA-Interim': {'name': 'ERA-Interim',
          'nyears': 40,
          'time_period': ['1979-1-16 12:0:0.0', '2019-3-16 12:0:0.0']},
         'GFDL-CM3_r1i1p1': {'keyerror': None,
          'name': 'GFDL-CM3_r1i1p1',
          'nyears': 146,
          'time_period': ['1860-1-16 12:0:0.0', '2005-12-16 12:0:0.0']},
         'Tropflux': {'name': 'Tropflux',
          'nyears': 40,
          'time_period': ['1979-1-15 0:0:0.0', '2018-12-15 12:0:0.0']},
         'method': 'Zonal root mean square error of equatorial_pacific climatological taux STD, time series are linearly detrended, observations and model regridded to generic_1x1deg',
         'name': 'taux zonal seasonality RMSE',
         'ref': 'Using CDAT regridding and rms (uncentered and biased) calculation',
         'time_frequency': 'monthly',
         'units': '1e-3 N/m2'},
        'metric': {'datasets': "GFDL-CM3_r1i1p1; ERA-Interim's tauu & Tropflux's taux; 's ",
         'method': 'The metric is the statistical value between the model and the observations',
         'name': 'SeasonalTauxLonRmse',
         'units': '1e-3 N/m2'}}},
      'name': 'Metrics Collection for ENSO performance'},
     'value': {'BiasPrLatRmse': {'diagnostic': {'ERA-Interim': {'value': None,
         'value_error': None},
        'GFDL-CM3_r1i1p1': {'value': None, 'value_error': None},
        'GPCPv2.3': {'value': None, 'value_error': None}},
       'metric': {'ERA-Interim': {'value': 1.9892403263305114,
         'value_error': None},
        'GPCPv2.3': {'value': 2.1931645591513034, 'value_error': None}}},
      'BiasPrLonRmse': {'diagnostic': {'ERA-Interim': {'value': None,
         'value_error': None},
        'GFDL-CM3_r1i1p1': {'value': None, 'value_error': None},
        'GPCPv2.3': {'value': None, 'value_error': None}},
       'metric': {'ERA-Interim': {'value': 2.2144234074470766,
         'value_error': None},
        'GPCPv2.3': {'value': 1.3944037808577654, 'value_error': None}}},
      'BiasSstLonRmse': {'diagnostic': {'ERA-Interim': {'value': None,
         'value_error': None},
        'GFDL-CM3_r1i1p1': {'value': None, 'value_error': None},
        'HadISST': {'value': None, 'value_error': None},
        'Tropflux': {'value': None, 'value_error': None}},
       'metric': {'ERA-Interim': {'value': 1.1123145189085988,
         'value_error': None},
        'HadISST': {'value': 0.892286668278695, 'value_error': None},
        'Tropflux': {'value': 1.161932878469586, 'value_error': None}}},
      'BiasTauxLonRmse': {'diagnostic': {'ERA-Interim': {'value': None,
         'value_error': None},
        'GFDL-CM3_r1i1p1': {'value': None, 'value_error': None},
        'Tropflux': {'value': None, 'value_error': None}},
       'metric': {'ERA-Interim': {'value': 4.941860701176958,
         'value_error': None},
        'Tropflux': {'value': 5.326227642799952, 'value_error': None}}},
      'EnsoAmpl': {'diagnostic': {'ERA-Interim': {'value': 0.8989844997845644,
         'value_error': 0.14214193002531866},
        'GFDL-CM3_r1i1p1': {'value': 0.962005579781411,
         'value_error': 0.07961614826954308},
        'HadISST': {'value': 0.7665787872085695,
         'value_error': 0.06238329697691264},
        'Tropflux': {'value': 0.9039789553693535,
         'value_error': 0.14293162279134272}},
       'metric': {'ERA-Interim': {'value': 7.010252124697273,
         'value_error': 25.77603796506816},
        'HadISST': {'value': 25.493373392769094,
         'value_error': 20.59841137197266},
        'Tropflux': {'value': 6.419023813264396,
         'value_error': 25.633626157797963}}},
      'EnsoDuration': {'diagnostic': {'ERA-Interim': {'value': 13.0,
         'value_error': None},
        'GFDL-CM3_r1i1p1': {'value': 12.0, 'value_error': None},
        'HadISST': {'value': 13.0, 'value_error': None},
        'Tropflux': {'value': 13.0, 'value_error': None}},
       'metric': {'ERA-Interim': {'value': 7.6923076923076925,
         'value_error': None},
        'HadISST': {'value': 7.6923076923076925, 'value_error': None},
        'Tropflux': {'value': 7.6923076923076925, 'value_error': None}}},
      'EnsoSeasonality': {'diagnostic': {'ERA-Interim': {'value': 2.0466846866656914,
         'value_error': 0.6513411033995022},
        'GFDL-CM3_r1i1p1': {'value': 1.2063745763382567,
         'value_error': 0.2000242258991356},
        'HadISST': {'value': 1.6639865947361325,
         'value_error': 0.2712772451657809},
        'Tropflux': {'value': 2.0532132553583624,
         'value_error': 0.6534187683977347}},
       'metric': {'ERA-Interim': {'value': 41.05713575726246,
         'value_error': 28.531181771060727},
        'HadISST': {'value': 27.500943808411023,
         'value_error': 23.840196162744704},
        'Tropflux': {'value': 41.24455542112213,
         'value_error': 28.440461637830843}}},
      'EnsoSstDiversity_2': {'diagnostic': {'ERA-Interim': {'value': 33.25,
         'value_error': None},
        'GFDL-CM3_r1i1p1': {'value': 30.25, 'value_error': None},
        'HadISST': {'value': 49.0, 'value_error': None},
        'Tropflux': {'value': 32.0, 'value_error': None}},
       'metric': {'ERA-Interim': {'value': 9.022556390977442,
         'value_error': None},
        'HadISST': {'value': 38.265306122448976, 'value_error': None},
        'Tropflux': {'value': 5.46875, 'value_error': None}}},
      'EnsoSstLonRmse': {'diagnostic': {'ERA-Interim': {'value': None,
         'value_error': None},
        'GFDL-CM3_r1i1p1': {'value': None, 'value_error': None},
        'HadISST': {'value': None, 'value_error': None},
        'Tropflux': {'value': None, 'value_error': None}},
       'metric': {'ERA-Interim': {'value': 0.19478037508530263,
         'value_error': None},
        'HadISST': {'value': 0.2043205712080165, 'value_error': None},
        'Tropflux': {'value': 0.19376448824136713, 'value_error': None}}},
      'EnsoSstSkew': {'diagnostic': {'ERA-Interim': {'value': 0.39098111106809963,
         'value_error': 0.061819541653923164},
        'GFDL-CM3_r1i1p1': {'value': -0.2969269111174794,
         'value_error': -0.024573846012533783},
        'HadISST': {'value': 0.38989908235027515,
         'value_error': 0.03172953733021198},
        'Tropflux': {'value': 0.39744741059612115,
         'value_error': 0.06284195338099416}},
       'metric': {'ERA-Interim': {'value': 175.94405527835377,
         'value_error': -18.292984206737465},
        'HadISST': {'value': 176.1548114777885,
         'value_error': -12.500007708493865},
        'Tropflux': {'value': 174.7084779523727,
         'value_error': -17.995365170888885}}},
      'EnsoSstTsRmse': {'diagnostic': {'ERA-Interim': {'value': None,
         'value_error': None},
        'GFDL-CM3_r1i1p1': {'value': None, 'value_error': None},
        'HadISST': {'value': None, 'value_error': None},
        'Tropflux': {'value': None, 'value_error': None}},
       'metric': {'ERA-Interim': {'value': 0.17616472068771283,
         'value_error': None},
        'HadISST': {'value': 0.17018357831864964, 'value_error': None},
        'Tropflux': {'value': 0.17651555392425283, 'value_error': None}}},
      'SeasonalPrLatRmse': {'diagnostic': {'ERA-Interim': {'value': None,
         'value_error': None},
        'GFDL-CM3_r1i1p1': {'value': None, 'value_error': None},
        'GPCPv2.3': {'value': None, 'value_error': None}},
       'metric': {'ERA-Interim': {'value': 2.021337314271504,
         'value_error': None},
        'GPCPv2.3': {'value': 2.343779350403467, 'value_error': None}}},
      'SeasonalPrLonRmse': {'diagnostic': {'ERA-Interim': {'value': None,
         'value_error': None},
        'GFDL-CM3_r1i1p1': {'value': None, 'value_error': None},
        'GPCPv2.3': {'value': None, 'value_error': None}},
       'metric': {'ERA-Interim': {'value': 0.5698309357364779,
         'value_error': None},
        'GPCPv2.3': {'value': 0.6202692794570769, 'value_error': None}}},
      'SeasonalSstLonRmse': {'diagnostic': {'ERA-Interim': {'value': None,
         'value_error': None},
        'GFDL-CM3_r1i1p1': {'value': None, 'value_error': None},
        'HadISST': {'value': None, 'value_error': None},
        'Tropflux': {'value': None, 'value_error': None}},
       'metric': {'ERA-Interim': {'value': 0.12459963233026906,
         'value_error': None},
        'HadISST': {'value': 0.12703763887658784, 'value_error': None},
        'Tropflux': {'value': 0.1308969458825784, 'value_error': None}}},
      'SeasonalTauxLonRmse': {'diagnostic': {'ERA-Interim': {'value': None,
         'value_error': None},
        'GFDL-CM3_r1i1p1': {'value': None, 'value_error': None},
        'Tropflux': {'value': None, 'value_error': None}},
       'metric': {'ERA-Interim': {'value': 2.924851650225163,
         'value_error': None},
        'Tropflux': {'value': 3.1027529730411207, 'value_error': None}}}}},
    'r2i1p1': {'metadata': {'description_of_the_collection': 'Describe which science question this collection is about',
      'metrics': {'BiasPrLatRmse': {'diagnostic': {'ERA-Interim': {'name': 'ERA-Interim',
          'nyears': 40,
          'time_period': ['1979-1-16 12:0:0.0', '2019-3-16 12:0:0.0']},
         'GFDL-CM3_r2i1p1': {'keyerror': None,
          'name': 'GFDL-CM3_r2i1p1',
          'nyears': 146,
          'time_period': ['1860-1-16 12:0:0.0', '2005-12-16 12:0:0.0']},
         'GPCPv2.3': {'name': 'GPCPv2.3',
          'nyears': 41,
          'time_period': ['1979-1-1 0:0:0.0', '2019-7-1 0:0:0.0']},
         'method': 'Meridional root mean square error of nino3_LatExt pr, time series are linearly detrended, observations and model regridded to generic_1x1deg',
         'name': 'pr Meridional RMSE',
         'ref': 'Using CDAT regridding and rms (uncentered and biased) calculation',
         'time_frequency': 'monthly',
         'units': 'mm/day'},
        'metric': {'datasets': "GFDL-CM3_r2i1p1; ERA-Interim's pr & GPCPv2.3's precip; 's ",
         'method': 'The metric is the statistical value between the model and the observations',
         'name': 'BiasPrLatRmse',
         'units': 'mm/day'}},
       'BiasPrLonRmse': {'diagnostic': {'ERA-Interim': {'name': 'ERA-Interim',
          'nyears': 40,
          'time_period': ['1979-1-16 12:0:0.0', '2019-3-16 12:0:0.0']},
         'GFDL-CM3_r2i1p1': {'keyerror': None,
          'name': 'GFDL-CM3_r2i1p1',
          'nyears': 146,
          'time_period': ['1860-1-16 12:0:0.0', '2005-12-16 12:0:0.0']},
         'GPCPv2.3': {'name': 'GPCPv2.3',
          'nyears': 41,
          'time_period': ['1979-1-1 0:0:0.0', '2019-7-1 0:0:0.0']},
         'method': 'Zonal root mean square error of equatorial_pacific pr, time series are linearly detrended, observations and model regridded to generic_1x1deg',
         'name': 'pr Zonal RMSE',
         'ref': 'Using CDAT regridding and rms (uncentered and biased) calculation',
         'time_frequency': 'monthly',
         'units': 'mm/day'},
        'metric': {'datasets': "GFDL-CM3_r2i1p1; ERA-Interim's pr & GPCPv2.3's precip; 's ",
         'method': 'The metric is the statistical value between the model and the observations',
         'name': 'BiasPrLonRmse',
         'units': 'mm/day'}},
       'BiasSstLonRmse': {'diagnostic': {'ERA-Interim': {'name': 'ERA-Interim',
          'nyears': 40,
          'time_period': ['1979-1-16 12:0:0.0', '2019-3-16 12:0:0.0']},
         'GFDL-CM3_r2i1p1': {'keyerror': None,
          'name': 'GFDL-CM3_r2i1p1',
          'nyears': 146,
          'time_period': ['1860-1-16 12:0:0.0', '2005-12-16 12:0:0.0']},
         'HadISST': {'name': 'HadISST',
          'nyears': 151,
          'time_period': ['1870-1-16 11:59:59.5', '2020-10-16 12:0:0.0']},
         'Tropflux': {'name': 'Tropflux',
          'nyears': 40,
          'time_period': ['1979-1-15 0:0:0.0', '2018-12-15 12:0:0.0']},
         'method': 'Zonal root mean square error of equatorial_pacific sst, time series are linearly detrended, observations and model regridded to generic_1x1deg',
         'name': 'sst Zonal RMSE',
         'ref': 'Using CDAT regridding and rms (uncentered and biased) calculation',
         'time_frequency': 'monthly',
         'units': 'C'},
        'metric': {'datasets': "GFDL-CM3_r2i1p1; ERA-Interim's ts & HadISST's sst & Tropflux's sst; 's ",
         'method': 'The metric is the statistical value between the model and the observations',
         'name': 'BiasSstLonRmse',
         'units': 'C'}},
       'BiasTauxLonRmse': {'diagnostic': {'ERA-Interim': {'name': 'ERA-Interim',
          'nyears': 40,
          'time_period': ['1979-1-16 12:0:0.0', '2019-3-16 12:0:0.0']},
         'GFDL-CM3_r2i1p1': {'keyerror': None,
          'name': 'GFDL-CM3_r2i1p1',
          'nyears': 146,
          'time_period': ['1860-1-16 12:0:0.0', '2005-12-16 12:0:0.0']},
         'Tropflux': {'name': 'Tropflux',
          'nyears': 40,
          'time_period': ['1979-1-15 0:0:0.0', '2018-12-15 12:0:0.0']},
         'method': 'Zonal root mean square error of equatorial_pacific taux, time series are linearly detrended, observations and model regridded to generic_1x1deg',
         'name': 'taux Zonal RMSE',
         'ref': 'Using CDAT regridding and rms (uncentered and biased) calculation',
         'time_frequency': 'monthly',
         'units': '1e-3 N/m2'},
        'metric': {'datasets': "GFDL-CM3_r2i1p1; ERA-Interim's tauu & Tropflux's taux; 's ",
         'method': 'The metric is the statistical value between the model and the observations',
         'name': 'BiasTauxLonRmse',
         'units': '1e-3 N/m2'}},
       'EnsoAmpl': {'diagnostic': {'ERA-Interim': {'keyerror': None,
          'name': 'ERA-Interim',
          'nyears': 40,
          'time_period': ['1979-1-16 12:0:0.0', '2019-3-16 12:0:0.0']},
         'GFDL-CM3_r2i1p1': {'keyerror': None,
          'name': 'GFDL-CM3_r2i1p1',
          'nyears': 146,
          'time_period': ['1860-1-16 12:0:0.0', '2005-12-16 12:0:0.0']},
         'HadISST': {'keyerror': None,
          'name': 'HadISST',
          'nyears': 151,
          'time_period': ['1870-1-16 11:59:59.5', '2020-10-16 12:0:0.0']},
         'Tropflux': {'keyerror': None,
          'name': 'Tropflux',
          'nyears': 40,
          'time_period': ['1979-1-15 0:0:0.0', '2018-12-15 12:0:0.0']},
         'method': 'Standard deviation of nino3.4 sstA, time series are linearly detrended',
         'name': 'ENSO amplitude',
         'ref': 'Using CDAT regression calculation',
         'time_frequency': 'monthly',
         'units': 'C'},
        'metric': {'datasets': "GFDL-CM3_r2i1p1; ERA-Interim's ts & HadISST's sst & Tropflux's sst; 's ",
         'method': 'The metric is the absolute value of the relative difference between model and observations values (M = 100 * abs[[model-obs] / obs])',
         'name': 'EnsoAmpl',
         'units': '%'}},
       'EnsoDuration': {'diagnostic': {'ERA-Interim': {'keyerror': None,
          'name': 'ERA-Interim',
          'nyears': 40,
          'time_period': ['1979-1-16 12:0:0.0', '2019-3-16 12:0:0.0']},
         'GFDL-CM3_r2i1p1': {'keyerror': None,
          'name': 'GFDL-CM3_r2i1p1',
          'nyears': 146,
          'time_period': ['1860-1-16 12:0:0.0', '2005-12-16 12:0:0.0']},
         'HadISST': {'keyerror': None,
          'name': 'HadISST',
          'nyears': 151,
          'time_period': ['1870-1-16 11:59:59.5', '2020-10-16 12:0:0.0']},
         'Tropflux': {'keyerror': None,
          'name': 'Tropflux',
          'nyears': 40,
          'time_period': ['1979-1-15 0:0:0.0', '2018-12-15 12:0:0.0']},
         'method': 'nino3.4 SSTA during DEC regressed against nino3.4 SSTA during 6 years (centered on ENSO), the duration is the number of consecutive months during which the regression is above 0.25, time series are linearly detrended, smoothing using a triangle shaped window of 5 points',
         'name': 'ENSO Duration based on life cyle SSTA pattern',
         'ref': 'Using CDAT',
         'time_frequency': 'monthly',
         'units': 'months'},
        'metric': {'datasets': "GFDL-CM3_r2i1p1; ERA-Interim's ts & HadISST's sst & Tropflux's sst; 's ",
         'method': 'The metric is the absolute value of the relative difference between model and observations values (M = 100 * abs[[model-obs] / obs])',
         'name': 'EnsoDuration',
         'units': '%'}},
       'EnsoSeasonality': {'diagnostic': {'ERA-Interim': {'keyerror': None,
          'name': 'ERA-Interim',
          'nyears': 40,
          'time_period': ['1979-1-16 12:0:0.0', '2019-3-16 12:0:0.0']},
         'GFDL-CM3_r2i1p1': {'keyerror': None,
          'name': 'GFDL-CM3_r2i1p1',
          'nyears': 146,
          'time_period': ['1860-1-16 12:0:0.0', '2005-12-16 12:0:0.0']},
         'HadISST': {'keyerror': None,
          'name': 'HadISST',
          'nyears': 151,
          'time_period': ['1870-1-16 11:59:59.5', '2020-10-16 12:0:0.0']},
         'Tropflux': {'keyerror': None,
          'name': 'Tropflux',
          'nyears': 40,
          'time_period': ['1979-1-15 0:0:0.0', '2018-12-15 12:0:0.0']},
         'method': 'Ratio between NDJ and MAM standard deviation nino3.4 sstA, time series are linearly detrended',
         'name': 'ENSO seasonality',
         'ref': 'Using CDAT std dev calculation',
         'time_frequency': 'monthly',
         'units': 'C/C'},
        'metric': {'datasets': "GFDL-CM3_r2i1p1; ERA-Interim's ts & HadISST's sst & Tropflux's sst; 's ",
         'method': 'The metric is the absolute value of the relative difference between model and observations values (M = 100 * abs[[model-obs] / obs])',
         'name': 'EnsoSeasonality',
         'units': '%'}},
       'EnsoSstDiversity_2': {'diagnostic': {'ERA-Interim': {'keyerror': None,
          'name': 'ERA-Interim',
          'nyears': 40,
          'time_period': ['1979-1-16 12:0:0.0', '2019-3-16 12:0:0.0']},
         'GFDL-CM3_r2i1p1': {'keyerror': None,
          'name': 'GFDL-CM3_r2i1p1',
          'nyears': 146,
          'time_period': ['1860-1-16 12:0:0.0', '2005-12-16 12:0:0.0']},
         'HadISST': {'keyerror': None,
          'name': 'HadISST',
          'nyears': 151,
          'time_period': ['1870-1-16 11:59:59.5', '2020-10-16 12:0:0.0']},
         'Tropflux': {'keyerror': None,
          'name': 'Tropflux',
          'nyears': 40,
          'time_period': ['1979-1-15 0:0:0.0', '2018-12-15 12:0:0.0']},
         'method': 'Nino (Nina) events = nino3.4 sstA > 0.75 (< -0.75) during DEC, zonal SSTA (meridional averaged [-5.0 ; 5.0]), the zonal SSTA maximum (minimum) is located for each event, the diversity is the interquartile range (IQR = Q3 - Q1), time series are linearly detrended, smoothing using a triangle shaped window of 5 points',
         'name': 'ENSO Diversity (interquartile range)',
         'ref': 'Using CDAT regridding',
         'time_frequency': 'monthly',
         'units': 'long'},
        'metric': {'datasets': "GFDL-CM3_r2i1p1; ERA-Interim's ts & HadISST's sst & Tropflux's sst; 's ",
         'method': 'The metric is the absolute value of the relative difference between model and observations values (M = 100 * abs[[model-obs] / obs])',
         'name': 'EnsoSstDiversity',
         'units': '%'}},
       'EnsoSstLonRmse': {'diagnostic': {'ERA-Interim': {'name': 'ERA-Interim',
          'nyears': 40,
          'time_period': ['1979-1-16 12:0:0.0', '2019-3-16 12:0:0.0']},
         'GFDL-CM3_r2i1p1': {'keyerror': None,
          'name': 'GFDL-CM3_r2i1p1',
          'nyears': 146,
          'time_period': ['1860-1-16 12:0:0.0', '2005-12-16 12:0:0.0']},
         'HadISST': {'name': 'HadISST',
          'nyears': 151,
          'time_period': ['1870-1-16 11:59:59.5', '2020-10-16 12:0:0.0']},
         'Tropflux': {'name': 'Tropflux',
          'nyears': 40,
          'time_period': ['1979-1-15 0:0:0.0', '2018-12-15 12:0:0.0']},
         'method': 'nino3.4 SSTA during DEC regressed against equatorial_pacific SSTA, time series are linearly detrended, smoothing using a triangle shaped window of 5 points, observations and model regridded to generic_1x1deg',
         'name': 'ENSO Zonal SSTA pattern',
         'ref': 'Using CDAT regridding and rms (uncentered and biased) calculation',
         'time_frequency': 'monthly',
         'units': 'C/C'},
        'metric': {'datasets': "GFDL-CM3_r2i1p1; ERA-Interim's ts & HadISST's sst & Tropflux's sst; 's ",
         'method': 'The metric is the statistical value between the model and the observations',
         'name': 'EnsoSstLonRmse',
         'units': 'C/C'}},
       'EnsoSstSkew': {'diagnostic': {'ERA-Interim': {'keyerror': None,
          'name': 'ERA-Interim',
          'nyears': 40,
          'time_period': ['1979-1-16 12:0:0.0', '2019-3-16 12:0:0.0']},
         'GFDL-CM3_r2i1p1': {'keyerror': None,
          'name': 'GFDL-CM3_r2i1p1',
          'nyears': 146,
          'time_period': ['1860-1-16 12:0:0.0', '2005-12-16 12:0:0.0']},
         'HadISST': {'keyerror': None,
          'name': 'HadISST',
          'nyears': 151,
          'time_period': ['1870-1-16 11:59:59.5', '2020-10-16 12:0:0.0']},
         'Tropflux': {'keyerror': None,
          'name': 'Tropflux',
          'nyears': 40,
          'time_period': ['1979-1-15 0:0:0.0', '2018-12-15 12:0:0.0']},
         'method': 'Standard deviation of nino3.4 sstA, time series are linearly detrended',
         'name': 'ENSO skewness',
         'ref': 'Using CDAT regression calculation',
         'time_frequency': 'monthly',
         'units': 'C'},
        'metric': {'datasets': "GFDL-CM3_r2i1p1; ERA-Interim's ts & HadISST's sst & Tropflux's sst; 's ",
         'method': 'The metric is the absolute value of the relative difference between model and observations values (M = 100 * abs[[model-obs] / obs])',
         'name': 'EnsoSstSkew',
         'units': '%'}},
       'EnsoSstTsRmse': {'diagnostic': {'ERA-Interim': {'name': 'ERA-Interim',
          'nyears': 40,
          'time_period': ['1979-1-16 12:0:0.0', '2019-3-16 12:0:0.0']},
         'GFDL-CM3_r2i1p1': {'keyerror': None,
          'name': 'GFDL-CM3_r2i1p1',
          'nyears': 146,
          'time_period': ['1860-1-16 12:0:0.0', '2005-12-16 12:0:0.0']},
         'HadISST': {'name': 'HadISST',
          'nyears': 151,
          'time_period': ['1870-1-16 11:59:59.5', '2020-10-16 12:0:0.0']},
         'Tropflux': {'name': 'Tropflux',
          'nyears': 40,
          'time_period': ['1979-1-15 0:0:0.0', '2018-12-15 12:0:0.0']},
         'method': 'nino3.4 SSTA during DEC regressed against nino3.4 SSTA during 6 years (centered on ENSO), time series are linearly detrended, smoothing using a triangle shaped window of 5 points',
         'name': 'ENSO life cyle SSTA pattern',
         'ref': 'Using CDAT regridding and rms (uncentered and biased) calculation',
         'time_frequency': 'monthly',
         'units': 'C/C'},
        'metric': {'datasets': "GFDL-CM3_r2i1p1; ERA-Interim's ts & HadISST's sst & Tropflux's sst; 's ",
         'method': 'The metric is the statistical value between the model and the observations',
         'name': 'EnsoSstTsRmse',
         'units': 'C/C'}},
       'SeasonalPrLatRmse': {'diagnostic': {'ERA-Interim': {'name': 'ERA-Interim',
          'nyears': 40,
          'time_period': ['1979-1-16 12:0:0.0', '2019-3-16 12:0:0.0']},
         'GFDL-CM3_r2i1p1': {'keyerror': None,
          'name': 'GFDL-CM3_r2i1p1',
          'nyears': 146,
          'time_period': ['1860-1-16 12:0:0.0', '2005-12-16 12:0:0.0']},
         'GPCPv2.3': {'name': 'GPCPv2.3',
          'nyears': 41,
          'time_period': ['1979-1-1 0:0:0.0', '2019-7-1 0:0:0.0']},
         'method': 'Meridional root mean square error of nino3_LatExt climatological pr STD, time series are linearly detrended, observations and model regridded to generic_1x1deg',
         'name': 'pr meridional seasonality RMSE',
         'ref': 'Using CDAT regridding and rms (uncentered and biased) calculation',
         'time_frequency': 'monthly',
         'units': 'mm/day'},
        'metric': {'datasets': "GFDL-CM3_r2i1p1; ERA-Interim's pr & GPCPv2.3's precip; 's ",
         'method': 'The metric is the statistical value between the model and the observations',
         'name': 'SeasonalPrLatRmse',
         'units': 'mm/day'}},
       'SeasonalPrLonRmse': {'diagnostic': {'ERA-Interim': {'name': 'ERA-Interim',
          'nyears': 40,
          'time_period': ['1979-1-16 12:0:0.0', '2019-3-16 12:0:0.0']},
         'GFDL-CM3_r2i1p1': {'keyerror': None,
          'name': 'GFDL-CM3_r2i1p1',
          'nyears': 146,
          'time_period': ['1860-1-16 12:0:0.0', '2005-12-16 12:0:0.0']},
         'GPCPv2.3': {'name': 'GPCPv2.3',
          'nyears': 41,
          'time_period': ['1979-1-1 0:0:0.0', '2019-7-1 0:0:0.0']},
         'method': 'Zonal root mean square error of equatorial_pacific climatological pr STD, time series are linearly detrended, observations and model regridded to generic_1x1deg',
         'name': 'pr zonal seasonality RMSE',
         'ref': 'Using CDAT regridding and rms (uncentered and biased) calculation',
         'time_frequency': 'monthly',
         'units': 'mm/day'},
        'metric': {'datasets': "GFDL-CM3_r2i1p1; ERA-Interim's pr & GPCPv2.3's precip; 's ",
         'method': 'The metric is the statistical value between the model and the observations',
         'name': 'SeasonalPrLonRmse',
         'units': 'mm/day'}},
       'SeasonalSstLonRmse': {'diagnostic': {'ERA-Interim': {'name': 'ERA-Interim',
          'nyears': 40,
          'time_period': ['1979-1-16 12:0:0.0', '2019-3-16 12:0:0.0']},
         'GFDL-CM3_r2i1p1': {'keyerror': None,
          'name': 'GFDL-CM3_r2i1p1',
          'nyears': 146,
          'time_period': ['1860-1-16 12:0:0.0', '2005-12-16 12:0:0.0']},
         'HadISST': {'name': 'HadISST',
          'nyears': 151,
          'time_period': ['1870-1-16 11:59:59.5', '2020-10-16 12:0:0.0']},
         'Tropflux': {'name': 'Tropflux',
          'nyears': 40,
          'time_period': ['1979-1-15 0:0:0.0', '2018-12-15 12:0:0.0']},
         'method': 'Zonal root mean square error of equatorial_pacific climatological sst STD, time series are linearly detrended, observations and model regridded to generic_1x1deg',
         'name': 'sst zonal seasonality RMSE',
         'ref': 'Using CDAT regridding and rms (uncentered and biased) calculation',
         'time_frequency': 'monthly',
         'units': 'C'},
        'metric': {'datasets': "GFDL-CM3_r2i1p1; ERA-Interim's ts & HadISST's sst & Tropflux's sst; 's ",
         'method': 'The metric is the statistical value between the model and the observations',
         'name': 'SeasonalSstLonRmse',
         'units': 'C'}},
       'SeasonalTauxLonRmse': {'diagnostic': {'ERA-Interim': {'name': 'ERA-Interim',
          'nyears': 40,
          'time_period': ['1979-1-16 12:0:0.0', '2019-3-16 12:0:0.0']},
         'GFDL-CM3_r2i1p1': {'keyerror': None,
          'name': 'GFDL-CM3_r2i1p1',
          'nyears': 146,
          'time_period': ['1860-1-16 12:0:0.0', '2005-12-16 12:0:0.0']},
         'Tropflux': {'name': 'Tropflux',
          'nyears': 40,
          'time_period': ['1979-1-15 0:0:0.0', '2018-12-15 12:0:0.0']},
         'method': 'Zonal root mean square error of equatorial_pacific climatological taux STD, time series are linearly detrended, observations and model regridded to generic_1x1deg',
         'name': 'taux zonal seasonality RMSE',
         'ref': 'Using CDAT regridding and rms (uncentered and biased) calculation',
         'time_frequency': 'monthly',
         'units': '1e-3 N/m2'},
        'metric': {'datasets': "GFDL-CM3_r2i1p1; ERA-Interim's tauu & Tropflux's taux; 's ",
         'method': 'The metric is the statistical value between the model and the observations',
         'name': 'SeasonalTauxLonRmse',
         'units': '1e-3 N/m2'}}},
      'name': 'Metrics Collection for ENSO performance'},
     'value': {'BiasPrLatRmse': {'diagnostic': {'ERA-Interim': {'value': None,
         'value_error': None},
        'GFDL-CM3_r2i1p1': {'value': None, 'value_error': None},
        'GPCPv2.3': {'value': None, 'value_error': None}},
       'metric': {'ERA-Interim': {'value': 2.0453487456629933,
         'value_error': None},
        'GPCPv2.3': {'value': 2.242800259060079, 'value_error': None}}},
      'BiasPrLonRmse': {'diagnostic': {'ERA-Interim': {'value': None,
         'value_error': None},
        'GFDL-CM3_r2i1p1': {'value': None, 'value_error': None},
        'GPCPv2.3': {'value': None, 'value_error': None}},
       'metric': {'ERA-Interim': {'value': 2.178692980548216,
         'value_error': None},
        'GPCPv2.3': {'value': 1.3555327358611446, 'value_error': None}}},
      'BiasSstLonRmse': {'diagnostic': {'ERA-Interim': {'value': None,
         'value_error': None},
        'GFDL-CM3_r2i1p1': {'value': None, 'value_error': None},
        'HadISST': {'value': None, 'value_error': None},
        'Tropflux': {'value': None, 'value_error': None}},
       'metric': {'ERA-Interim': {'value': 1.016213697148556,
         'value_error': None},
        'HadISST': {'value': 0.7968925172194868, 'value_error': None},
        'Tropflux': {'value': 1.0657715160475614, 'value_error': None}}},
      'BiasTauxLonRmse': {'diagnostic': {'ERA-Interim': {'value': None,
         'value_error': None},
        'GFDL-CM3_r2i1p1': {'value': None, 'value_error': None},
        'Tropflux': {'value': None, 'value_error': None}},
       'metric': {'ERA-Interim': {'value': 4.953066074921358,
         'value_error': None},
        'Tropflux': {'value': 5.327084190326547, 'value_error': None}}},
      'EnsoAmpl': {'diagnostic': {'ERA-Interim': {'value': 0.8989844997845644,
         'value_error': 0.14214193002531866},
        'GFDL-CM3_r2i1p1': {'value': 0.9327658354577885,
         'value_error': 0.07719624981119731},
        'HadISST': {'value': 0.7665787872085695,
         'value_error': 0.06238329697691264},
        'Tropflux': {'value': 0.9039789553693535,
         'value_error': 0.14293162279134272}},
       'metric': {'ERA-Interim': {'value': 3.757721705026007,
         'value_error': 24.992586417993103},
        'HadISST': {'value': 21.679056480857593,
         'value_error': 19.972331550142382},
        'Tropflux': {'value': 3.1844635229006046,
         'value_error': 24.854503156129255}}},
      'EnsoDuration': {'diagnostic': {'ERA-Interim': {'value': 13.0,
         'value_error': None},
        'GFDL-CM3_r2i1p1': {'value': 12.0, 'value_error': None},
        'HadISST': {'value': 13.0, 'value_error': None},
        'Tropflux': {'value': 13.0, 'value_error': None}},
       'metric': {'ERA-Interim': {'value': 7.6923076923076925,
         'value_error': None},
        'HadISST': {'value': 7.6923076923076925, 'value_error': None},
        'Tropflux': {'value': 7.6923076923076925, 'value_error': None}}},
      'EnsoSeasonality': {'diagnostic': {'ERA-Interim': {'value': 2.0466846866656914,
         'value_error': 0.6513411033995022},
        'GFDL-CM3_r2i1p1': {'value': 1.2499742071015154,
         'value_error': 0.20725330927337252},
        'HadISST': {'value': 1.6639865947361325,
         'value_error': 0.2712772451657809},
        'Tropflux': {'value': 2.0532132553583624,
         'value_error': 0.6534187683977347}},
       'metric': {'ERA-Interim': {'value': 38.92687939450597,
         'value_error': 29.56232832774087},
        'HadISST': {'value': 24.88075258204044,
         'value_error': 24.701805625018284},
        'Tropflux': {'value': 39.12107259977005,
         'value_error': 29.468329474626476}}},
      'EnsoSstDiversity_2': {'diagnostic': {'ERA-Interim': {'value': 33.25,
         'value_error': None},
        'GFDL-CM3_r2i1p1': {'value': 50.0, 'value_error': None},
        'HadISST': {'value': 49.0, 'value_error': None},
        'Tropflux': {'value': 32.0, 'value_error': None}},
       'metric': {'ERA-Interim': {'value': 50.37593984962406,
         'value_error': None},
        'HadISST': {'value': 2.0408163265306123, 'value_error': None},
        'Tropflux': {'value': 56.25, 'value_error': None}}},
      'EnsoSstLonRmse': {'diagnostic': {'ERA-Interim': {'value': None,
         'value_error': None},
        'GFDL-CM3_r2i1p1': {'value': None, 'value_error': None},
        'HadISST': {'value': None, 'value_error': None},
        'Tropflux': {'value': None, 'value_error': None}},
       'metric': {'ERA-Interim': {'value': 0.2308254483576096,
         'value_error': None},
        'HadISST': {'value': 0.2405715599546331, 'value_error': None},
        'Tropflux': {'value': 0.2299344961034623, 'value_error': None}}},
      'EnsoSstSkew': {'diagnostic': {'ERA-Interim': {'value': 0.39098111106809963,
         'value_error': 0.061819541653923164},
        'GFDL-CM3_r2i1p1': {'value': -0.4561437044697242,
         'value_error': -0.037750721586804196},
        'HadISST': {'value': 0.38989908235027515,
         'value_error': 0.03172953733021198},
        'Tropflux': {'value': 0.39744741059612115,
         'value_error': 0.06284195338099416}},
       'metric': {'ERA-Interim': {'value': 216.66643005428332,
         'value_error': -28.101964724126958},
        'HadISST': {'value': 216.9901969812631,
         'value_error': -19.202704802316077},
        'Tropflux': {'value': 214.7683170927107,
         'value_error': -27.64475776696111}}},
      'EnsoSstTsRmse': {'diagnostic': {'ERA-Interim': {'value': None,
         'value_error': None},
        'GFDL-CM3_r2i1p1': {'value': None, 'value_error': None},
        'HadISST': {'value': None, 'value_error': None},
        'Tropflux': {'value': None, 'value_error': None}},
       'metric': {'ERA-Interim': {'value': 0.16438884340152662,
         'value_error': None},
        'HadISST': {'value': 0.1727905350095721, 'value_error': None},
        'Tropflux': {'value': 0.16831837359050394, 'value_error': None}}},
      'SeasonalPrLatRmse': {'diagnostic': {'ERA-Interim': {'value': None,
         'value_error': None},
        'GFDL-CM3_r2i1p1': {'value': None, 'value_error': None},
        'GPCPv2.3': {'value': None, 'value_error': None}},
       'metric': {'ERA-Interim': {'value': 2.0852570654910068,
         'value_error': None},
        'GPCPv2.3': {'value': 2.4117184005782937, 'value_error': None}}},
      'SeasonalPrLonRmse': {'diagnostic': {'ERA-Interim': {'value': None,
         'value_error': None},
        'GFDL-CM3_r2i1p1': {'value': None, 'value_error': None},
        'GPCPv2.3': {'value': None, 'value_error': None}},
       'metric': {'ERA-Interim': {'value': 0.5948966030845552,
         'value_error': None},
        'GPCPv2.3': {'value': 0.6547027737774084, 'value_error': None}}},
      'SeasonalSstLonRmse': {'diagnostic': {'ERA-Interim': {'value': None,
         'value_error': None},
        'GFDL-CM3_r2i1p1': {'value': None, 'value_error': None},
        'HadISST': {'value': None, 'value_error': None},
        'Tropflux': {'value': None, 'value_error': None}},
       'metric': {'ERA-Interim': {'value': 0.1250001369073655,
         'value_error': None},
        'HadISST': {'value': 0.1273079021166568, 'value_error': None},
        'Tropflux': {'value': 0.13124862072140578, 'value_error': None}}},
      'SeasonalTauxLonRmse': {'diagnostic': {'ERA-Interim': {'value': None,
         'value_error': None},
        'GFDL-CM3_r2i1p1': {'value': None, 'value_error': None},
        'Tropflux': {'value': None, 'value_error': None}},
       'metric': {'ERA-Interim': {'value': 2.934493994381853,
         'value_error': None},
        'Tropflux': {'value': 3.090726085972221, 'value_error': None}}}}},
    'r3i1p1': {'metadata': {'description_of_the_collection': 'Describe which science question this collection is about',
      'metrics': {'BiasPrLatRmse': {'diagnostic': {'ERA-Interim': {'name': 'ERA-Interim',
          'nyears': 40,
          'time_period': ['1979-1-16 12:0:0.0', '2019-3-16 12:0:0.0']},
         'GFDL-CM3_r3i1p1': {'keyerror': None,
          'name': 'GFDL-CM3_r3i1p1',
          'nyears': 146,
          'time_period': ['1860-1-16 12:0:0.0', '2005-12-16 12:0:0.0']},
         'GPCPv2.3': {'name': 'GPCPv2.3',
          'nyears': 41,
          'time_period': ['1979-1-1 0:0:0.0', '2019-7-1 0:0:0.0']},
         'method': 'Meridional root mean square error of nino3_LatExt pr, time series are linearly detrended, observations and model regridded to generic_1x1deg',
         'name': 'pr Meridional RMSE',
         'ref': 'Using CDAT regridding and rms (uncentered and biased) calculation',
         'time_frequency': 'monthly',
         'units': 'mm/day'},
        'metric': {'datasets': "GFDL-CM3_r3i1p1; ERA-Interim's pr & GPCPv2.3's precip; 's ",
         'method': 'The metric is the statistical value between the model and the observations',
         'name': 'BiasPrLatRmse',
         'units': 'mm/day'}},
       'BiasPrLonRmse': {'diagnostic': {'ERA-Interim': {'name': 'ERA-Interim',
          'nyears': 40,
          'time_period': ['1979-1-16 12:0:0.0', '2019-3-16 12:0:0.0']},
         'GFDL-CM3_r3i1p1': {'keyerror': None,
          'name': 'GFDL-CM3_r3i1p1',
          'nyears': 146,
          'time_period': ['1860-1-16 12:0:0.0', '2005-12-16 12:0:0.0']},
         'GPCPv2.3': {'name': 'GPCPv2.3',
          'nyears': 41,
          'time_period': ['1979-1-1 0:0:0.0', '2019-7-1 0:0:0.0']},
         'method': 'Zonal root mean square error of equatorial_pacific pr, time series are linearly detrended, observations and model regridded to generic_1x1deg',
         'name': 'pr Zonal RMSE',
         'ref': 'Using CDAT regridding and rms (uncentered and biased) calculation',
         'time_frequency': 'monthly',
         'units': 'mm/day'},
        'metric': {'datasets': "GFDL-CM3_r3i1p1; ERA-Interim's pr & GPCPv2.3's precip; 's ",
         'method': 'The metric is the statistical value between the model and the observations',
         'name': 'BiasPrLonRmse',
         'units': 'mm/day'}},
       'BiasSstLonRmse': {'diagnostic': {'ERA-Interim': {'name': 'ERA-Interim',
          'nyears': 40,
          'time_period': ['1979-1-16 12:0:0.0', '2019-3-16 12:0:0.0']},
         'GFDL-CM3_r3i1p1': {'keyerror': None,
          'name': 'GFDL-CM3_r3i1p1',
          'nyears': 146,
          'time_period': ['1860-1-16 12:0:0.0', '2005-12-16 12:0:0.0']},
         'HadISST': {'name': 'HadISST',
          'nyears': 151,
          'time_period': ['1870-1-16 11:59:59.5', '2020-10-16 12:0:0.0']},
         'Tropflux': {'name': 'Tropflux',
          'nyears': 40,
          'time_period': ['1979-1-15 0:0:0.0', '2018-12-15 12:0:0.0']},
         'method': 'Zonal root mean square error of equatorial_pacific sst, time series are linearly detrended, observations and model regridded to generic_1x1deg',
         'name': 'sst Zonal RMSE',
         'ref': 'Using CDAT regridding and rms (uncentered and biased) calculation',
         'time_frequency': 'monthly',
         'units': 'C'},
        'metric': {'datasets': "GFDL-CM3_r3i1p1; ERA-Interim's ts & HadISST's sst & Tropflux's sst; 's ",
         'method': 'The metric is the statistical value between the model and the observations',
         'name': 'BiasSstLonRmse',
         'units': 'C'}},
       'BiasTauxLonRmse': {'diagnostic': {'ERA-Interim': {'name': 'ERA-Interim',
          'nyears': 40,
          'time_period': ['1979-1-16 12:0:0.0', '2019-3-16 12:0:0.0']},
         'GFDL-CM3_r3i1p1': {'keyerror': None,
          'name': 'GFDL-CM3_r3i1p1',
          'nyears': 146,
          'time_period': ['1860-1-16 12:0:0.0', '2005-12-16 12:0:0.0']},
         'Tropflux': {'name': 'Tropflux',
          'nyears': 40,
          'time_period': ['1979-1-15 0:0:0.0', '2018-12-15 12:0:0.0']},
         'method': 'Zonal root mean square error of equatorial_pacific taux, time series are linearly detrended, observations and model regridded to generic_1x1deg',
         'name': 'taux Zonal RMSE',
         'ref': 'Using CDAT regridding and rms (uncentered and biased) calculation',
         'time_frequency': 'monthly',
         'units': '1e-3 N/m2'},
        'metric': {'datasets': "GFDL-CM3_r3i1p1; ERA-Interim's tauu & Tropflux's taux; 's ",
         'method': 'The metric is the statistical value between the model and the observations',
         'name': 'BiasTauxLonRmse',
         'units': '1e-3 N/m2'}},
       'EnsoAmpl': {'diagnostic': {'ERA-Interim': {'keyerror': None,
          'name': 'ERA-Interim',
          'nyears': 40,
          'time_period': ['1979-1-16 12:0:0.0', '2019-3-16 12:0:0.0']},
         'GFDL-CM3_r3i1p1': {'keyerror': None,
          'name': 'GFDL-CM3_r3i1p1',
          'nyears': 146,
          'time_period': ['1860-1-16 12:0:0.0', '2005-12-16 12:0:0.0']},
         'HadISST': {'keyerror': None,
          'name': 'HadISST',
          'nyears': 151,
          'time_period': ['1870-1-16 11:59:59.5', '2020-10-16 12:0:0.0']},
         'Tropflux': {'keyerror': None,
          'name': 'Tropflux',
          'nyears': 40,
          'time_period': ['1979-1-15 0:0:0.0', '2018-12-15 12:0:0.0']},
         'method': 'Standard deviation of nino3.4 sstA, time series are linearly detrended',
         'name': 'ENSO amplitude',
         'ref': 'Using CDAT regression calculation',
         'time_frequency': 'monthly',
         'units': 'C'},
        'metric': {'datasets': "GFDL-CM3_r3i1p1; ERA-Interim's ts & HadISST's sst & Tropflux's sst; 's ",
         'method': 'The metric is the absolute value of the relative difference between model and observations values (M = 100 * abs[[model-obs] / obs])',
         'name': 'EnsoAmpl',
         'units': '%'}},
       'EnsoDuration': {'diagnostic': {'ERA-Interim': {'keyerror': None,
          'name': 'ERA-Interim',
          'nyears': 40,
          'time_period': ['1979-1-16 12:0:0.0', '2019-3-16 12:0:0.0']},
         'GFDL-CM3_r3i1p1': {'keyerror': None,
          'name': 'GFDL-CM3_r3i1p1',
          'nyears': 146,
          'time_period': ['1860-1-16 12:0:0.0', '2005-12-16 12:0:0.0']},
         'HadISST': {'keyerror': None,
          'name': 'HadISST',
          'nyears': 151,
          'time_period': ['1870-1-16 11:59:59.5', '2020-10-16 12:0:0.0']},
         'Tropflux': {'keyerror': None,
          'name': 'Tropflux',
          'nyears': 40,
          'time_period': ['1979-1-15 0:0:0.0', '2018-12-15 12:0:0.0']},
         'method': 'nino3.4 SSTA during DEC regressed against nino3.4 SSTA during 6 years (centered on ENSO), the duration is the number of consecutive months during which the regression is above 0.25, time series are linearly detrended, smoothing using a triangle shaped window of 5 points',
         'name': 'ENSO Duration based on life cyle SSTA pattern',
         'ref': 'Using CDAT',
         'time_frequency': 'monthly',
         'units': 'months'},
        'metric': {'datasets': "GFDL-CM3_r3i1p1; ERA-Interim's ts & HadISST's sst & Tropflux's sst; 's ",
         'method': 'The metric is the absolute value of the relative difference between model and observations values (M = 100 * abs[[model-obs] / obs])',
         'name': 'EnsoDuration',
         'units': '%'}},
       'EnsoSeasonality': {'diagnostic': {'ERA-Interim': {'keyerror': None,
          'name': 'ERA-Interim',
          'nyears': 40,
          'time_period': ['1979-1-16 12:0:0.0', '2019-3-16 12:0:0.0']},
         'GFDL-CM3_r3i1p1': {'keyerror': None,
          'name': 'GFDL-CM3_r3i1p1',
          'nyears': 146,
          'time_period': ['1860-1-16 12:0:0.0', '2005-12-16 12:0:0.0']},
         'HadISST': {'keyerror': None,
          'name': 'HadISST',
          'nyears': 151,
          'time_period': ['1870-1-16 11:59:59.5', '2020-10-16 12:0:0.0']},
         'Tropflux': {'keyerror': None,
          'name': 'Tropflux',
          'nyears': 40,
          'time_period': ['1979-1-15 0:0:0.0', '2018-12-15 12:0:0.0']},
         'method': 'Ratio between NDJ and MAM standard deviation nino3.4 sstA, time series are linearly detrended',
         'name': 'ENSO seasonality',
         'ref': 'Using CDAT std dev calculation',
         'time_frequency': 'monthly',
         'units': 'C/C'},
        'metric': {'datasets': "GFDL-CM3_r3i1p1; ERA-Interim's ts & HadISST's sst & Tropflux's sst; 's ",
         'method': 'The metric is the absolute value of the relative difference between model and observations values (M = 100 * abs[[model-obs] / obs])',
         'name': 'EnsoSeasonality',
         'units': '%'}},
       'EnsoSstDiversity_2': {'diagnostic': {'ERA-Interim': {'keyerror': None,
          'name': 'ERA-Interim',
          'nyears': 40,
          'time_period': ['1979-1-16 12:0:0.0', '2019-3-16 12:0:0.0']},
         'GFDL-CM3_r3i1p1': {'keyerror': None,
          'name': 'GFDL-CM3_r3i1p1',
          'nyears': 146,
          'time_period': ['1860-1-16 12:0:0.0', '2005-12-16 12:0:0.0']},
         'HadISST': {'keyerror': None,
          'name': 'HadISST',
          'nyears': 151,
          'time_period': ['1870-1-16 11:59:59.5', '2020-10-16 12:0:0.0']},
         'Tropflux': {'keyerror': None,
          'name': 'Tropflux',
          'nyears': 40,
          'time_period': ['1979-1-15 0:0:0.0', '2018-12-15 12:0:0.0']},
         'method': 'Nino (Nina) events = nino3.4 sstA > 0.75 (< -0.75) during DEC, zonal SSTA (meridional averaged [-5.0 ; 5.0]), the zonal SSTA maximum (minimum) is located for each event, the diversity is the interquartile range (IQR = Q3 - Q1), time series are linearly detrended, smoothing using a triangle shaped window of 5 points',
         'name': 'ENSO Diversity (interquartile range)',
         'ref': 'Using CDAT regridding',
         'time_frequency': 'monthly',
         'units': 'long'},
        'metric': {'datasets': "GFDL-CM3_r3i1p1; ERA-Interim's ts & HadISST's sst & Tropflux's sst; 's ",
         'method': 'The metric is the absolute value of the relative difference between model and observations values (M = 100 * abs[[model-obs] / obs])',
         'name': 'EnsoSstDiversity',
         'units': '%'}},
       'EnsoSstLonRmse': {'diagnostic': {'ERA-Interim': {'name': 'ERA-Interim',
          'nyears': 40,
          'time_period': ['1979-1-16 12:0:0.0', '2019-3-16 12:0:0.0']},
         'GFDL-CM3_r3i1p1': {'keyerror': None,
          'name': 'GFDL-CM3_r3i1p1',
          'nyears': 146,
          'time_period': ['1860-1-16 12:0:0.0', '2005-12-16 12:0:0.0']},
         'HadISST': {'name': 'HadISST',
          'nyears': 151,
          'time_period': ['1870-1-16 11:59:59.5', '2020-10-16 12:0:0.0']},
         'Tropflux': {'name': 'Tropflux',
          'nyears': 40,
          'time_period': ['1979-1-15 0:0:0.0', '2018-12-15 12:0:0.0']},
         'method': 'nino3.4 SSTA during DEC regressed against equatorial_pacific SSTA, time series are linearly detrended, smoothing using a triangle shaped window of 5 points, observations and model regridded to generic_1x1deg',
         'name': 'ENSO Zonal SSTA pattern',
         'ref': 'Using CDAT regridding and rms (uncentered and biased) calculation',
         'time_frequency': 'monthly',
         'units': 'C/C'},
        'metric': {'datasets': "GFDL-CM3_r3i1p1; ERA-Interim's ts & HadISST's sst & Tropflux's sst; 's ",
         'method': 'The metric is the statistical value between the model and the observations',
         'name': 'EnsoSstLonRmse',
         'units': 'C/C'}},
       'EnsoSstSkew': {'diagnostic': {'ERA-Interim': {'keyerror': None,
          'name': 'ERA-Interim',
          'nyears': 40,
          'time_period': ['1979-1-16 12:0:0.0', '2019-3-16 12:0:0.0']},
         'GFDL-CM3_r3i1p1': {'keyerror': None,
          'name': 'GFDL-CM3_r3i1p1',
          'nyears': 146,
          'time_period': ['1860-1-16 12:0:0.0', '2005-12-16 12:0:0.0']},
         'HadISST': {'keyerror': None,
          'name': 'HadISST',
          'nyears': 151,
          'time_period': ['1870-1-16 11:59:59.5', '2020-10-16 12:0:0.0']},
         'Tropflux': {'keyerror': None,
          'name': 'Tropflux',
          'nyears': 40,
          'time_period': ['1979-1-15 0:0:0.0', '2018-12-15 12:0:0.0']},
         'method': 'Standard deviation of nino3.4 sstA, time series are linearly detrended',
         'name': 'ENSO skewness',
         'ref': 'Using CDAT regression calculation',
         'time_frequency': 'monthly',
         'units': 'C'},
        'metric': {'datasets': "GFDL-CM3_r3i1p1; ERA-Interim's ts & HadISST's sst & Tropflux's sst; 's ",
         'method': 'The metric is the absolute value of the relative difference between model and observations values (M = 100 * abs[[model-obs] / obs])',
         'name': 'EnsoSstSkew',
         'units': '%'}},
       'EnsoSstTsRmse': {'diagnostic': {'ERA-Interim': {'name': 'ERA-Interim',
          'nyears': 40,
          'time_period': ['1979-1-16 12:0:0.0', '2019-3-16 12:0:0.0']},
         'GFDL-CM3_r3i1p1': {'keyerror': None,
          'name': 'GFDL-CM3_r3i1p1',
          'nyears': 146,
          'time_period': ['1860-1-16 12:0:0.0', '2005-12-16 12:0:0.0']},
         'HadISST': {'name': 'HadISST',
          'nyears': 151,
          'time_period': ['1870-1-16 11:59:59.5', '2020-10-16 12:0:0.0']},
         'Tropflux': {'name': 'Tropflux',
          'nyears': 40,
          'time_period': ['1979-1-15 0:0:0.0', '2018-12-15 12:0:0.0']},
         'method': 'nino3.4 SSTA during DEC regressed against nino3.4 SSTA during 6 years (centered on ENSO), time series are linearly detrended, smoothing using a triangle shaped window of 5 points',
         'name': 'ENSO life cyle SSTA pattern',
         'ref': 'Using CDAT regridding and rms (uncentered and biased) calculation',
         'time_frequency': 'monthly',
         'units': 'C/C'},
        'metric': {'datasets': "GFDL-CM3_r3i1p1; ERA-Interim's ts & HadISST's sst & Tropflux's sst; 's ",
         'method': 'The metric is the statistical value between the model and the observations',
         'name': 'EnsoSstTsRmse',
         'units': 'C/C'}},
       'SeasonalPrLatRmse': {'diagnostic': {'ERA-Interim': {'name': 'ERA-Interim',
          'nyears': 40,
          'time_period': ['1979-1-16 12:0:0.0', '2019-3-16 12:0:0.0']},
         'GFDL-CM3_r3i1p1': {'keyerror': None,
          'name': 'GFDL-CM3_r3i1p1',
          'nyears': 146,
          'time_period': ['1860-1-16 12:0:0.0', '2005-12-16 12:0:0.0']},
         'GPCPv2.3': {'name': 'GPCPv2.3',
          'nyears': 41,
          'time_period': ['1979-1-1 0:0:0.0', '2019-7-1 0:0:0.0']},
         'method': 'Meridional root mean square error of nino3_LatExt climatological pr STD, time series are linearly detrended, observations and model regridded to generic_1x1deg',
         'name': 'pr meridional seasonality RMSE',
         'ref': 'Using CDAT regridding and rms (uncentered and biased) calculation',
         'time_frequency': 'monthly',
         'units': 'mm/day'},
        'metric': {'datasets': "GFDL-CM3_r3i1p1; ERA-Interim's pr & GPCPv2.3's precip; 's ",
         'method': 'The metric is the statistical value between the model and the observations',
         'name': 'SeasonalPrLatRmse',
         'units': 'mm/day'}},
       'SeasonalPrLonRmse': {'diagnostic': {'ERA-Interim': {'name': 'ERA-Interim',
          'nyears': 40,
          'time_period': ['1979-1-16 12:0:0.0', '2019-3-16 12:0:0.0']},
         'GFDL-CM3_r3i1p1': {'keyerror': None,
          'name': 'GFDL-CM3_r3i1p1',
          'nyears': 146,
          'time_period': ['1860-1-16 12:0:0.0', '2005-12-16 12:0:0.0']},
         'GPCPv2.3': {'name': 'GPCPv2.3',
          'nyears': 41,
          'time_period': ['1979-1-1 0:0:0.0', '2019-7-1 0:0:0.0']},
         'method': 'Zonal root mean square error of equatorial_pacific climatological pr STD, time series are linearly detrended, observations and model regridded to generic_1x1deg',
         'name': 'pr zonal seasonality RMSE',
         'ref': 'Using CDAT regridding and rms (uncentered and biased) calculation',
         'time_frequency': 'monthly',
         'units': 'mm/day'},
        'metric': {'datasets': "GFDL-CM3_r3i1p1; ERA-Interim's pr & GPCPv2.3's precip; 's ",
         'method': 'The metric is the statistical value between the model and the observations',
         'name': 'SeasonalPrLonRmse',
         'units': 'mm/day'}},
       'SeasonalSstLonRmse': {'diagnostic': {'ERA-Interim': {'name': 'ERA-Interim',
          'nyears': 40,
          'time_period': ['1979-1-16 12:0:0.0', '2019-3-16 12:0:0.0']},
         'GFDL-CM3_r3i1p1': {'keyerror': None,
          'name': 'GFDL-CM3_r3i1p1',
          'nyears': 146,
          'time_period': ['1860-1-16 12:0:0.0', '2005-12-16 12:0:0.0']},
         'HadISST': {'name': 'HadISST',
          'nyears': 151,
          'time_period': ['1870-1-16 11:59:59.5', '2020-10-16 12:0:0.0']},
         'Tropflux': {'name': 'Tropflux',
          'nyears': 40,
          'time_period': ['1979-1-15 0:0:0.0', '2018-12-15 12:0:0.0']},
         'method': 'Zonal root mean square error of equatorial_pacific climatological sst STD, time series are linearly detrended, observations and model regridded to generic_1x1deg',
         'name': 'sst zonal seasonality RMSE',
         'ref': 'Using CDAT regridding and rms (uncentered and biased) calculation',
         'time_frequency': 'monthly',
         'units': 'C'},
        'metric': {'datasets': "GFDL-CM3_r3i1p1; ERA-Interim's ts & HadISST's sst & Tropflux's sst; 's ",
         'method': 'The metric is the statistical value between the model and the observations',
         'name': 'SeasonalSstLonRmse',
         'units': 'C'}},
       'SeasonalTauxLonRmse': {'diagnostic': {'ERA-Interim': {'name': 'ERA-Interim',
          'nyears': 40,
          'time_period': ['1979-1-16 12:0:0.0', '2019-3-16 12:0:0.0']},
         'GFDL-CM3_r3i1p1': {'keyerror': None,
          'name': 'GFDL-CM3_r3i1p1',
          'nyears': 146,
          'time_period': ['1860-1-16 12:0:0.0', '2005-12-16 12:0:0.0']},
         'Tropflux': {'name': 'Tropflux',
          'nyears': 40,
          'time_period': ['1979-1-15 0:0:0.0', '2018-12-15 12:0:0.0']},
         'method': 'Zonal root mean square error of equatorial_pacific climatological taux STD, time series are linearly detrended, observations and model regridded to generic_1x1deg',
         'name': 'taux zonal seasonality RMSE',
         'ref': 'Using CDAT regridding and rms (uncentered and biased) calculation',
         'time_frequency': 'monthly',
         'units': '1e-3 N/m2'},
        'metric': {'datasets': "GFDL-CM3_r3i1p1; ERA-Interim's tauu & Tropflux's taux; 's ",
         'method': 'The metric is the statistical value between the model and the observations',
         'name': 'SeasonalTauxLonRmse',
         'units': '1e-3 N/m2'}}},
      'name': 'Metrics Collection for ENSO performance'},
     'value': {'BiasPrLatRmse': {'diagnostic': {'ERA-Interim': {'value': None,
         'value_error': None},
        'GFDL-CM3_r3i1p1': {'value': None, 'value_error': None},
        'GPCPv2.3': {'value': None, 'value_error': None}},
       'metric': {'ERA-Interim': {'value': 2.075626538748829,
         'value_error': None},
        'GPCPv2.3': {'value': 2.2665223396957392, 'value_error': None}}},
      'BiasPrLonRmse': {'diagnostic': {'ERA-Interim': {'value': None,
         'value_error': None},
        'GFDL-CM3_r3i1p1': {'value': None, 'value_error': None},
        'GPCPv2.3': {'value': None, 'value_error': None}},
       'metric': {'ERA-Interim': {'value': 2.2205976158910903,
         'value_error': None},
        'GPCPv2.3': {'value': 1.3972870628465828, 'value_error': None}}},
      'BiasSstLonRmse': {'diagnostic': {'ERA-Interim': {'value': None,
         'value_error': None},
        'GFDL-CM3_r3i1p1': {'value': None, 'value_error': None},
        'HadISST': {'value': None, 'value_error': None},
        'Tropflux': {'value': None, 'value_error': None}},
       'metric': {'ERA-Interim': {'value': 1.0540960556091958,
         'value_error': None},
        'HadISST': {'value': 0.8333276982362533, 'value_error': None},
        'Tropflux': {'value': 1.1036655537450222, 'value_error': None}}},
      'BiasTauxLonRmse': {'diagnostic': {'ERA-Interim': {'value': None,
         'value_error': None},
        'GFDL-CM3_r3i1p1': {'value': None, 'value_error': None},
        'Tropflux': {'value': None, 'value_error': None}},
       'metric': {'ERA-Interim': {'value': 5.090545921983931,
         'value_error': None},
        'Tropflux': {'value': 5.484085285053841, 'value_error': None}}},
      'EnsoAmpl': {'diagnostic': {'ERA-Interim': {'value': 0.8989844997845644,
         'value_error': 0.14214193002531866},
        'GFDL-CM3_r3i1p1': {'value': 0.9248898166556159,
         'value_error': 0.07654442585725521},
        'HadISST': {'value': 0.7665787872085695,
         'value_error': 0.06238329697691264},
        'Tropflux': {'value': 0.9039789553693535,
         'value_error': 0.14293162279134272}},
       'metric': {'ERA-Interim': {'value': 2.8816199697836278,
         'value_error': 24.781555875213378},
        'HadISST': {'value': 20.65163191164241,
         'value_error': 19.803690662116136},
        'Tropflux': {'value': 2.313202222469716,
         'value_error': 24.644638550528363}}},
      'EnsoDuration': {'diagnostic': {'ERA-Interim': {'value': 13.0,
         'value_error': None},
        'GFDL-CM3_r3i1p1': {'value': 12.0, 'value_error': None},
        'HadISST': {'value': 13.0, 'value_error': None},
        'Tropflux': {'value': 13.0, 'value_error': None}},
       'metric': {'ERA-Interim': {'value': 7.6923076923076925,
         'value_error': None},
        'HadISST': {'value': 7.6923076923076925, 'value_error': None},
        'Tropflux': {'value': 7.6923076923076925, 'value_error': None}}},
      'EnsoSeasonality': {'diagnostic': {'ERA-Interim': {'value': 2.0466846866656914,
         'value_error': 0.6513411033995022},
        'GFDL-CM3_r3i1p1': {'value': 1.1436363913858996,
         'value_error': 0.18962185409393484},
        'HadISST': {'value': 1.6639865947361325,
         'value_error': 0.2712772451657809},
        'Tropflux': {'value': 2.0532132553583624,
         'value_error': 0.6534187683977347}},
       'metric': {'ERA-Interim': {'value': 44.12249239774065,
         'value_error': 27.04740169647116},
        'HadISST': {'value': 31.271297797489034,
         'value_error': 22.600373419879325},
        'Tropflux': {'value': 44.30016519709774,
         'value_error': 26.961399514538588}}},
      'EnsoSstDiversity_2': {'diagnostic': {'ERA-Interim': {'value': 33.25,
         'value_error': None},
        'GFDL-CM3_r3i1p1': {'value': 44.0, 'value_error': None},
        'HadISST': {'value': 49.0, 'value_error': None},
        'Tropflux': {'value': 32.0, 'value_error': None}},
       'metric': {'ERA-Interim': {'value': 32.33082706766917,
         'value_error': None},
        'HadISST': {'value': 10.204081632653061, 'value_error': None},
        'Tropflux': {'value': 37.5, 'value_error': None}}},
      'EnsoSstLonRmse': {'diagnostic': {'ERA-Interim': {'value': None,
         'value_error': None},
        'GFDL-CM3_r3i1p1': {'value': None, 'value_error': None},
        'HadISST': {'value': None, 'value_error': None},
        'Tropflux': {'value': None, 'value_error': None}},
       'metric': {'ERA-Interim': {'value': 0.20139632983456518,
         'value_error': None},
        'HadISST': {'value': 0.20837675222898733, 'value_error': None},
        'Tropflux': {'value': 0.20025031384216777, 'value_error': None}}},
      'EnsoSstSkew': {'diagnostic': {'ERA-Interim': {'value': 0.39098111106809963,
         'value_error': 0.061819541653923164},
        'GFDL-CM3_r3i1p1': {'value': -0.22128622192686925,
         'value_error': -0.01831377803332474},
        'HadISST': {'value': 0.38989908235027515,
         'value_error': 0.03172953733021198},
        'Tropflux': {'value': 0.39744741059612115,
         'value_error': 0.06284195338099416}},
       'metric': {'ERA-Interim': {'value': 156.5976758627417,
         'value_error': -13.632935282431276},
        'HadISST': {'value': 156.75474294347572,
         'value_error': -9.315691425405861},
        'Tropflux': {'value': 155.67685586250713,
         'value_error': -13.411133251188673}}},
      'EnsoSstTsRmse': {'diagnostic': {'ERA-Interim': {'value': None,
         'value_error': None},
        'GFDL-CM3_r3i1p1': {'value': None, 'value_error': None},
        'HadISST': {'value': None, 'value_error': None},
        'Tropflux': {'value': None, 'value_error': None}},
       'metric': {'ERA-Interim': {'value': 0.19891949453350094,
         'value_error': None},
        'HadISST': {'value': 0.2102987823308797, 'value_error': None},
        'Tropflux': {'value': 0.203741893113429, 'value_error': None}}},
      'SeasonalPrLatRmse': {'diagnostic': {'ERA-Interim': {'value': None,
         'value_error': None},
        'GFDL-CM3_r3i1p1': {'value': None, 'value_error': None},
        'GPCPv2.3': {'value': None, 'value_error': None}},
       'metric': {'ERA-Interim': {'value': 2.089431148747593,
         'value_error': None},
        'GPCPv2.3': {'value': 2.418014153311506, 'value_error': None}}},
      'SeasonalPrLonRmse': {'diagnostic': {'ERA-Interim': {'value': None,
         'value_error': None},
        'GFDL-CM3_r3i1p1': {'value': None, 'value_error': None},
        'GPCPv2.3': {'value': None, 'value_error': None}},
       'metric': {'ERA-Interim': {'value': 0.5858503477664988,
         'value_error': None},
        'GPCPv2.3': {'value': 0.6517926485398865, 'value_error': None}}},
      'SeasonalSstLonRmse': {'diagnostic': {'ERA-Interim': {'value': None,
         'value_error': None},
        'GFDL-CM3_r3i1p1': {'value': None, 'value_error': None},
        'HadISST': {'value': None, 'value_error': None},
        'Tropflux': {'value': None, 'value_error': None}},
       'metric': {'ERA-Interim': {'value': 0.11944812546291379,
         'value_error': None},
        'HadISST': {'value': 0.12446172849220083, 'value_error': None},
        'Tropflux': {'value': 0.1246827547991127, 'value_error': None}}},
      'SeasonalTauxLonRmse': {'diagnostic': {'ERA-Interim': {'value': None,
         'value_error': None},
        'GFDL-CM3_r3i1p1': {'value': None, 'value_error': None},
        'Tropflux': {'value': None, 'value_error': None}},
       'metric': {'ERA-Interim': {'value': 2.9495474128105577,
         'value_error': None},
        'Tropflux': {'value': 3.0968323382811764, 'value_error': None}}}}},
    'r4i1p1': {'metadata': {'description_of_the_collection': 'Describe which science question this collection is about',
      'metrics': {'BiasPrLatRmse': {'diagnostic': {'ERA-Interim': {'name': 'ERA-Interim',
          'nyears': 40,
          'time_period': ['1979-1-16 12:0:0.0', '2019-3-16 12:0:0.0']},
         'GFDL-CM3_r4i1p1': {'keyerror': None,
          'name': 'GFDL-CM3_r4i1p1',
          'nyears': 146,
          'time_period': ['1860-1-16 12:0:0.0', '2005-12-16 12:0:0.0']},
         'GPCPv2.3': {'name': 'GPCPv2.3',
          'nyears': 41,
          'time_period': ['1979-1-1 0:0:0.0', '2019-7-1 0:0:0.0']},
         'method': 'Meridional root mean square error of nino3_LatExt pr, time series are linearly detrended, observations and model regridded to generic_1x1deg',
         'name': 'pr Meridional RMSE',
         'ref': 'Using CDAT regridding and rms (uncentered and biased) calculation',
         'time_frequency': 'monthly',
         'units': 'mm/day'},
        'metric': {'datasets': "GFDL-CM3_r4i1p1; ERA-Interim's pr & GPCPv2.3's precip; 's ",
         'method': 'The metric is the statistical value between the model and the observations',
         'name': 'BiasPrLatRmse',
         'units': 'mm/day'}},
       'BiasPrLonRmse': {'diagnostic': {'ERA-Interim': {'name': 'ERA-Interim',
          'nyears': 40,
          'time_period': ['1979-1-16 12:0:0.0', '2019-3-16 12:0:0.0']},
         'GFDL-CM3_r4i1p1': {'keyerror': None,
          'name': 'GFDL-CM3_r4i1p1',
          'nyears': 146,
          'time_period': ['1860-1-16 12:0:0.0', '2005-12-16 12:0:0.0']},
         'GPCPv2.3': {'name': 'GPCPv2.3',
          'nyears': 41,
          'time_period': ['1979-1-1 0:0:0.0', '2019-7-1 0:0:0.0']},
         'method': 'Zonal root mean square error of equatorial_pacific pr, time series are linearly detrended, observations and model regridded to generic_1x1deg',
         'name': 'pr Zonal RMSE',
         'ref': 'Using CDAT regridding and rms (uncentered and biased) calculation',
         'time_frequency': 'monthly',
         'units': 'mm/day'},
        'metric': {'datasets': "GFDL-CM3_r4i1p1; ERA-Interim's pr & GPCPv2.3's precip; 's ",
         'method': 'The metric is the statistical value between the model and the observations',
         'name': 'BiasPrLonRmse',
         'units': 'mm/day'}},
       'BiasSstLonRmse': {'diagnostic': {'ERA-Interim': {'name': 'ERA-Interim',
          'nyears': 40,
          'time_period': ['1979-1-16 12:0:0.0', '2019-3-16 12:0:0.0']},
         'GFDL-CM3_r4i1p1': {'keyerror': None,
          'name': 'GFDL-CM3_r4i1p1',
          'nyears': 146,
          'time_period': ['1860-1-16 12:0:0.0', '2005-12-16 12:0:0.0']},
         'HadISST': {'name': 'HadISST',
          'nyears': 151,
          'time_period': ['1870-1-16 11:59:59.5', '2020-10-16 12:0:0.0']},
         'Tropflux': {'name': 'Tropflux',
          'nyears': 40,
          'time_period': ['1979-1-15 0:0:0.0', '2018-12-15 12:0:0.0']},
         'method': 'Zonal root mean square error of equatorial_pacific sst, time series are linearly detrended, observations and model regridded to generic_1x1deg',
         'name': 'sst Zonal RMSE',
         'ref': 'Using CDAT regridding and rms (uncentered and biased) calculation',
         'time_frequency': 'monthly',
         'units': 'C'},
        'metric': {'datasets': "GFDL-CM3_r4i1p1; ERA-Interim's ts & HadISST's sst & Tropflux's sst; 's ",
         'method': 'The metric is the statistical value between the model and the observations',
         'name': 'BiasSstLonRmse',
         'units': 'C'}},
       'BiasTauxLonRmse': {'diagnostic': {'ERA-Interim': {'name': 'ERA-Interim',
          'nyears': 40,
          'time_period': ['1979-1-16 12:0:0.0', '2019-3-16 12:0:0.0']},
         'GFDL-CM3_r4i1p1': {'keyerror': None,
          'name': 'GFDL-CM3_r4i1p1',
          'nyears': 146,
          'time_period': ['1860-1-16 12:0:0.0', '2005-12-16 12:0:0.0']},
         'Tropflux': {'name': 'Tropflux',
          'nyears': 40,
          'time_period': ['1979-1-15 0:0:0.0', '2018-12-15 12:0:0.0']},
         'method': 'Zonal root mean square error of equatorial_pacific taux, time series are linearly detrended, observations and model regridded to generic_1x1deg',
         'name': 'taux Zonal RMSE',
         'ref': 'Using CDAT regridding and rms (uncentered and biased) calculation',
         'time_frequency': 'monthly',
         'units': '1e-3 N/m2'},
        'metric': {'datasets': "GFDL-CM3_r4i1p1; ERA-Interim's tauu & Tropflux's taux; 's ",
         'method': 'The metric is the statistical value between the model and the observations',
         'name': 'BiasTauxLonRmse',
         'units': '1e-3 N/m2'}},
       'EnsoAmpl': {'diagnostic': {'ERA-Interim': {'keyerror': None,
          'name': 'ERA-Interim',
          'nyears': 40,
          'time_period': ['1979-1-16 12:0:0.0', '2019-3-16 12:0:0.0']},
         'GFDL-CM3_r4i1p1': {'keyerror': None,
          'name': 'GFDL-CM3_r4i1p1',
          'nyears': 146,
          'time_period': ['1860-1-16 12:0:0.0', '2005-12-16 12:0:0.0']},
         'HadISST': {'keyerror': None,
          'name': 'HadISST',
          'nyears': 151,
          'time_period': ['1870-1-16 11:59:59.5', '2020-10-16 12:0:0.0']},
         'Tropflux': {'keyerror': None,
          'name': 'Tropflux',
          'nyears': 40,
          'time_period': ['1979-1-15 0:0:0.0', '2018-12-15 12:0:0.0']},
         'method': 'Standard deviation of nino3.4 sstA, time series are linearly detrended',
         'name': 'ENSO amplitude',
         'ref': 'Using CDAT regression calculation',
         'time_frequency': 'monthly',
         'units': 'C'},
        'metric': {'datasets': "GFDL-CM3_r4i1p1; ERA-Interim's ts & HadISST's sst & Tropflux's sst; 's ",
         'method': 'The metric is the absolute value of the relative difference between model and observations values (M = 100 * abs[[model-obs] / obs])',
         'name': 'EnsoAmpl',
         'units': '%'}},
       'EnsoDuration': {'diagnostic': {'ERA-Interim': {'keyerror': None,
          'name': 'ERA-Interim',
          'nyears': 40,
          'time_period': ['1979-1-16 12:0:0.0', '2019-3-16 12:0:0.0']},
         'GFDL-CM3_r4i1p1': {'keyerror': None,
          'name': 'GFDL-CM3_r4i1p1',
          'nyears': 146,
          'time_period': ['1860-1-16 12:0:0.0', '2005-12-16 12:0:0.0']},
         'HadISST': {'keyerror': None,
          'name': 'HadISST',
          'nyears': 151,
          'time_period': ['1870-1-16 11:59:59.5', '2020-10-16 12:0:0.0']},
         'Tropflux': {'keyerror': None,
          'name': 'Tropflux',
          'nyears': 40,
          'time_period': ['1979-1-15 0:0:0.0', '2018-12-15 12:0:0.0']},
         'method': 'nino3.4 SSTA during DEC regressed against nino3.4 SSTA during 6 years (centered on ENSO), the duration is the number of consecutive months during which the regression is above 0.25, time series are linearly detrended, smoothing using a triangle shaped window of 5 points',
         'name': 'ENSO Duration based on life cyle SSTA pattern',
         'ref': 'Using CDAT',
         'time_frequency': 'monthly',
         'units': 'months'},
        'metric': {'datasets': "GFDL-CM3_r4i1p1; ERA-Interim's ts & HadISST's sst & Tropflux's sst; 's ",
         'method': 'The metric is the absolute value of the relative difference between model and observations values (M = 100 * abs[[model-obs] / obs])',
         'name': 'EnsoDuration',
         'units': '%'}},
       'EnsoSeasonality': {'diagnostic': {'ERA-Interim': {'keyerror': None,
          'name': 'ERA-Interim',
          'nyears': 40,
          'time_period': ['1979-1-16 12:0:0.0', '2019-3-16 12:0:0.0']},
         'GFDL-CM3_r4i1p1': {'keyerror': None,
          'name': 'GFDL-CM3_r4i1p1',
          'nyears': 146,
          'time_period': ['1860-1-16 12:0:0.0', '2005-12-16 12:0:0.0']},
         'HadISST': {'keyerror': None,
          'name': 'HadISST',
          'nyears': 151,
          'time_period': ['1870-1-16 11:59:59.5', '2020-10-16 12:0:0.0']},
         'Tropflux': {'keyerror': None,
          'name': 'Tropflux',
          'nyears': 40,
          'time_period': ['1979-1-15 0:0:0.0', '2018-12-15 12:0:0.0']},
         'method': 'Ratio between NDJ and MAM standard deviation nino3.4 sstA, time series are linearly detrended',
         'name': 'ENSO seasonality',
         'ref': 'Using CDAT std dev calculation',
         'time_frequency': 'monthly',
         'units': 'C/C'},
        'metric': {'datasets': "GFDL-CM3_r4i1p1; ERA-Interim's ts & HadISST's sst & Tropflux's sst; 's ",
         'method': 'The metric is the absolute value of the relative difference between model and observations values (M = 100 * abs[[model-obs] / obs])',
         'name': 'EnsoSeasonality',
         'units': '%'}},
       'EnsoSstDiversity_2': {'diagnostic': {'ERA-Interim': {'keyerror': None,
          'name': 'ERA-Interim',
          'nyears': 40,
          'time_period': ['1979-1-16 12:0:0.0', '2019-3-16 12:0:0.0']},
         'GFDL-CM3_r4i1p1': {'keyerror': None,
          'name': 'GFDL-CM3_r4i1p1',
          'nyears': 146,
          'time_period': ['1860-1-16 12:0:0.0', '2005-12-16 12:0:0.0']},
         'HadISST': {'keyerror': None,
          'name': 'HadISST',
          'nyears': 151,
          'time_period': ['1870-1-16 11:59:59.5', '2020-10-16 12:0:0.0']},
         'Tropflux': {'keyerror': None,
          'name': 'Tropflux',
          'nyears': 40,
          'time_period': ['1979-1-15 0:0:0.0', '2018-12-15 12:0:0.0']},
         'method': 'Nino (Nina) events = nino3.4 sstA > 0.75 (< -0.75) during DEC, zonal SSTA (meridional averaged [-5.0 ; 5.0]), the zonal SSTA maximum (minimum) is located for each event, the diversity is the interquartile range (IQR = Q3 - Q1), time series are linearly detrended, smoothing using a triangle shaped window of 5 points',
         'name': 'ENSO Diversity (interquartile range)',
         'ref': 'Using CDAT regridding',
         'time_frequency': 'monthly',
         'units': 'long'},
        'metric': {'datasets': "GFDL-CM3_r4i1p1; ERA-Interim's ts & HadISST's sst & Tropflux's sst; 's ",
         'method': 'The metric is the absolute value of the relative difference between model and observations values (M = 100 * abs[[model-obs] / obs])',
         'name': 'EnsoSstDiversity',
         'units': '%'}},
       'EnsoSstLonRmse': {'diagnostic': {'ERA-Interim': {'name': 'ERA-Interim',
          'nyears': 40,
          'time_period': ['1979-1-16 12:0:0.0', '2019-3-16 12:0:0.0']},
         'GFDL-CM3_r4i1p1': {'keyerror': None,
          'name': 'GFDL-CM3_r4i1p1',
          'nyears': 146,
          'time_period': ['1860-1-16 12:0:0.0', '2005-12-16 12:0:0.0']},
         'HadISST': {'name': 'HadISST',
          'nyears': 151,
          'time_period': ['1870-1-16 11:59:59.5', '2020-10-16 12:0:0.0']},
         'Tropflux': {'name': 'Tropflux',
          'nyears': 40,
          'time_period': ['1979-1-15 0:0:0.0', '2018-12-15 12:0:0.0']},
         'method': 'nino3.4 SSTA during DEC regressed against equatorial_pacific SSTA, time series are linearly detrended, smoothing using a triangle shaped window of 5 points, observations and model regridded to generic_1x1deg',
         'name': 'ENSO Zonal SSTA pattern',
         'ref': 'Using CDAT regridding and rms (uncentered and biased) calculation',
         'time_frequency': 'monthly',
         'units': 'C/C'},
        'metric': {'datasets': "GFDL-CM3_r4i1p1; ERA-Interim's ts & HadISST's sst & Tropflux's sst; 's ",
         'method': 'The metric is the statistical value between the model and the observations',
         'name': 'EnsoSstLonRmse',
         'units': 'C/C'}},
       'EnsoSstSkew': {'diagnostic': {'ERA-Interim': {'keyerror': None,
          'name': 'ERA-Interim',
          'nyears': 40,
          'time_period': ['1979-1-16 12:0:0.0', '2019-3-16 12:0:0.0']},
         'GFDL-CM3_r4i1p1': {'keyerror': None,
          'name': 'GFDL-CM3_r4i1p1',
          'nyears': 146,
          'time_period': ['1860-1-16 12:0:0.0', '2005-12-16 12:0:0.0']},
         'HadISST': {'keyerror': None,
          'name': 'HadISST',
          'nyears': 151,
          'time_period': ['1870-1-16 11:59:59.5', '2020-10-16 12:0:0.0']},
         'Tropflux': {'keyerror': None,
          'name': 'Tropflux',
          'nyears': 40,
          'time_period': ['1979-1-15 0:0:0.0', '2018-12-15 12:0:0.0']},
         'method': 'Standard deviation of nino3.4 sstA, time series are linearly detrended',
         'name': 'ENSO skewness',
         'ref': 'Using CDAT regression calculation',
         'time_frequency': 'monthly',
         'units': 'C'},
        'metric': {'datasets': "GFDL-CM3_r4i1p1; ERA-Interim's ts & HadISST's sst & Tropflux's sst; 's ",
         'method': 'The metric is the absolute value of the relative difference between model and observations values (M = 100 * abs[[model-obs] / obs])',
         'name': 'EnsoSstSkew',
         'units': '%'}},
       'EnsoSstTsRmse': {'diagnostic': {'ERA-Interim': {'name': 'ERA-Interim',
          'nyears': 40,
          'time_period': ['1979-1-16 12:0:0.0', '2019-3-16 12:0:0.0']},
         'GFDL-CM3_r4i1p1': {'keyerror': None,
          'name': 'GFDL-CM3_r4i1p1',
          'nyears': 146,
          'time_period': ['1860-1-16 12:0:0.0', '2005-12-16 12:0:0.0']},
         'HadISST': {'name': 'HadISST',
          'nyears': 151,
          'time_period': ['1870-1-16 11:59:59.5', '2020-10-16 12:0:0.0']},
         'Tropflux': {'name': 'Tropflux',
          'nyears': 40,
          'time_period': ['1979-1-15 0:0:0.0', '2018-12-15 12:0:0.0']},
         'method': 'nino3.4 SSTA during DEC regressed against nino3.4 SSTA during 6 years (centered on ENSO), time series are linearly detrended, smoothing using a triangle shaped window of 5 points',
         'name': 'ENSO life cyle SSTA pattern',
         'ref': 'Using CDAT regridding and rms (uncentered and biased) calculation',
         'time_frequency': 'monthly',
         'units': 'C/C'},
        'metric': {'datasets': "GFDL-CM3_r4i1p1; ERA-Interim's ts & HadISST's sst & Tropflux's sst; 's ",
         'method': 'The metric is the statistical value between the model and the observations',
         'name': 'EnsoSstTsRmse',
         'units': 'C/C'}},
       'SeasonalPrLatRmse': {'diagnostic': {'ERA-Interim': {'name': 'ERA-Interim',
          'nyears': 40,
          'time_period': ['1979-1-16 12:0:0.0', '2019-3-16 12:0:0.0']},
         'GFDL-CM3_r4i1p1': {'keyerror': None,
          'name': 'GFDL-CM3_r4i1p1',
          'nyears': 146,
          'time_period': ['1860-1-16 12:0:0.0', '2005-12-16 12:0:0.0']},
         'GPCPv2.3': {'name': 'GPCPv2.3',
          'nyears': 41,
          'time_period': ['1979-1-1 0:0:0.0', '2019-7-1 0:0:0.0']},
         'method': 'Meridional root mean square error of nino3_LatExt climatological pr STD, time series are linearly detrended, observations and model regridded to generic_1x1deg',
         'name': 'pr meridional seasonality RMSE',
         'ref': 'Using CDAT regridding and rms (uncentered and biased) calculation',
         'time_frequency': 'monthly',
         'units': 'mm/day'},
        'metric': {'datasets': "GFDL-CM3_r4i1p1; ERA-Interim's pr & GPCPv2.3's precip; 's ",
         'method': 'The metric is the statistical value between the model and the observations',
         'name': 'SeasonalPrLatRmse',
         'units': 'mm/day'}},
       'SeasonalPrLonRmse': {'diagnostic': {'ERA-Interim': {'name': 'ERA-Interim',
          'nyears': 40,
          'time_period': ['1979-1-16 12:0:0.0', '2019-3-16 12:0:0.0']},
         'GFDL-CM3_r4i1p1': {'keyerror': None,
          'name': 'GFDL-CM3_r4i1p1',
          'nyears': 146,
          'time_period': ['1860-1-16 12:0:0.0', '2005-12-16 12:0:0.0']},
         'GPCPv2.3': {'name': 'GPCPv2.3',
          'nyears': 41,
          'time_period': ['1979-1-1 0:0:0.0', '2019-7-1 0:0:0.0']},
         'method': 'Zonal root mean square error of equatorial_pacific climatological pr STD, time series are linearly detrended, observations and model regridded to generic_1x1deg',
         'name': 'pr zonal seasonality RMSE',
         'ref': 'Using CDAT regridding and rms (uncentered and biased) calculation',
         'time_frequency': 'monthly',
         'units': 'mm/day'},
        'metric': {'datasets': "GFDL-CM3_r4i1p1; ERA-Interim's pr & GPCPv2.3's precip; 's ",
         'method': 'The metric is the statistical value between the model and the observations',
         'name': 'SeasonalPrLonRmse',
         'units': 'mm/day'}},
       'SeasonalSstLonRmse': {'diagnostic': {'ERA-Interim': {'name': 'ERA-Interim',
          'nyears': 40,
          'time_period': ['1979-1-16 12:0:0.0', '2019-3-16 12:0:0.0']},
         'GFDL-CM3_r4i1p1': {'keyerror': None,
          'name': 'GFDL-CM3_r4i1p1',
          'nyears': 146,
          'time_period': ['1860-1-16 12:0:0.0', '2005-12-16 12:0:0.0']},
         'HadISST': {'name': 'HadISST',
          'nyears': 151,
          'time_period': ['1870-1-16 11:59:59.5', '2020-10-16 12:0:0.0']},
         'Tropflux': {'name': 'Tropflux',
          'nyears': 40,
          'time_period': ['1979-1-15 0:0:0.0', '2018-12-15 12:0:0.0']},
         'method': 'Zonal root mean square error of equatorial_pacific climatological sst STD, time series are linearly detrended, observations and model regridded to generic_1x1deg',
         'name': 'sst zonal seasonality RMSE',
         'ref': 'Using CDAT regridding and rms (uncentered and biased) calculation',
         'time_frequency': 'monthly',
         'units': 'C'},
        'metric': {'datasets': "GFDL-CM3_r4i1p1; ERA-Interim's ts & HadISST's sst & Tropflux's sst; 's ",
         'method': 'The metric is the statistical value between the model and the observations',
         'name': 'SeasonalSstLonRmse',
         'units': 'C'}},
       'SeasonalTauxLonRmse': {'diagnostic': {'ERA-Interim': {'name': 'ERA-Interim',
          'nyears': 40,
          'time_period': ['1979-1-16 12:0:0.0', '2019-3-16 12:0:0.0']},
         'GFDL-CM3_r4i1p1': {'keyerror': None,
          'name': 'GFDL-CM3_r4i1p1',
          'nyears': 146,
          'time_period': ['1860-1-16 12:0:0.0', '2005-12-16 12:0:0.0']},
         'Tropflux': {'name': 'Tropflux',
          'nyears': 40,
          'time_period': ['1979-1-15 0:0:0.0', '2018-12-15 12:0:0.0']},
         'method': 'Zonal root mean square error of equatorial_pacific climatological taux STD, time series are linearly detrended, observations and model regridded to generic_1x1deg',
         'name': 'taux zonal seasonality RMSE',
         'ref': 'Using CDAT regridding and rms (uncentered and biased) calculation',
         'time_frequency': 'monthly',
         'units': '1e-3 N/m2'},
        'metric': {'datasets': "GFDL-CM3_r4i1p1; ERA-Interim's tauu & Tropflux's taux; 's ",
         'method': 'The metric is the statistical value between the model and the observations',
         'name': 'SeasonalTauxLonRmse',
         'units': '1e-3 N/m2'}}},
      'name': 'Metrics Collection for ENSO performance'},
     'value': {'BiasPrLatRmse': {'diagnostic': {'ERA-Interim': {'value': None,
         'value_error': None},
        'GFDL-CM3_r4i1p1': {'value': None, 'value_error': None},
        'GPCPv2.3': {'value': None, 'value_error': None}},
       'metric': {'ERA-Interim': {'value': 2.0765199428873875,
         'value_error': None},
        'GPCPv2.3': {'value': 2.2793483912543437, 'value_error': None}}},
      'BiasPrLonRmse': {'diagnostic': {'ERA-Interim': {'value': None,
         'value_error': None},
        'GFDL-CM3_r4i1p1': {'value': None, 'value_error': None},
        'GPCPv2.3': {'value': None, 'value_error': None}},
       'metric': {'ERA-Interim': {'value': 2.2353507482834933,
         'value_error': None},
        'GPCPv2.3': {'value': 1.4144042652975255, 'value_error': None}}},
      'BiasSstLonRmse': {'diagnostic': {'ERA-Interim': {'value': None,
         'value_error': None},
        'GFDL-CM3_r4i1p1': {'value': None, 'value_error': None},
        'HadISST': {'value': None, 'value_error': None},
        'Tropflux': {'value': None, 'value_error': None}},
       'metric': {'ERA-Interim': {'value': 1.0071897686570845,
         'value_error': None},
        'HadISST': {'value': 0.788694251411741, 'value_error': None},
        'Tropflux': {'value': 1.0567533105703282, 'value_error': None}}},
      'BiasTauxLonRmse': {'diagnostic': {'ERA-Interim': {'value': None,
         'value_error': None},
        'GFDL-CM3_r4i1p1': {'value': None, 'value_error': None},
        'Tropflux': {'value': None, 'value_error': None}},
       'metric': {'ERA-Interim': {'value': 4.80842440141963,
         'value_error': None},
        'Tropflux': {'value': 5.190739961991847, 'value_error': None}}},
      'EnsoAmpl': {'diagnostic': {'ERA-Interim': {'value': 0.8989844997845644,
         'value_error': 0.14214193002531866},
        'GFDL-CM3_r4i1p1': {'value': 0.9446472918154742,
         'value_error': 0.0781795661358766},
        'HadISST': {'value': 0.7665787872085695,
         'value_error': 0.06238329697691264},
        'Tropflux': {'value': 0.9039789553693535,
         'value_error': 0.14293162279134272}},
       'metric': {'ERA-Interim': {'value': 5.0793747880917435,
         'value_error': 25.310938906370144},
        'HadISST': {'value': 23.228989319587853,
         'value_error': 20.226736650172427},
        'Tropflux': {'value': 4.498814513829501,
         'value_error': 25.171096756919297}}},
      'EnsoDuration': {'diagnostic': {'ERA-Interim': {'value': 13.0,
         'value_error': None},
        'GFDL-CM3_r4i1p1': {'value': 12.0, 'value_error': None},
        'HadISST': {'value': 13.0, 'value_error': None},
        'Tropflux': {'value': 13.0, 'value_error': None}},
       'metric': {'ERA-Interim': {'value': 7.6923076923076925,
         'value_error': None},
        'HadISST': {'value': 7.6923076923076925, 'value_error': None},
        'Tropflux': {'value': 7.6923076923076925, 'value_error': None}}},
      'EnsoSeasonality': {'diagnostic': {'ERA-Interim': {'value': 2.0466846866656914,
         'value_error': 0.6513411033995022},
        'GFDL-CM3_r4i1p1': {'value': 1.2025350423808452,
         'value_error': 0.19938760786796336},
        'HadISST': {'value': 1.6639865947361325,
         'value_error': 0.2712772451657809},
        'Tropflux': {'value': 2.0532132553583624,
         'value_error': 0.6534187683977347}},
       'metric': {'ERA-Interim': {'value': 41.24473348457368,
         'value_error': 28.440375446554473},
        'HadISST': {'value': 27.731686890690497,
         'value_error': 23.764319859883575},
        'Tropflux': {'value': 41.43155664700022,
         'value_error': 28.349944048713237}}},
      'EnsoSstDiversity_2': {'diagnostic': {'ERA-Interim': {'value': 33.25,
         'value_error': None},
        'GFDL-CM3_r4i1p1': {'value': 27.0, 'value_error': None},
        'HadISST': {'value': 49.0, 'value_error': None},
        'Tropflux': {'value': 32.0, 'value_error': None}},
       'metric': {'ERA-Interim': {'value': 18.796992481203006,
         'value_error': None},
        'HadISST': {'value': 44.89795918367347, 'value_error': None},
        'Tropflux': {'value': 15.625, 'value_error': None}}},
      'EnsoSstLonRmse': {'diagnostic': {'ERA-Interim': {'value': None,
         'value_error': None},
        'GFDL-CM3_r4i1p1': {'value': None, 'value_error': None},
        'HadISST': {'value': None, 'value_error': None},
        'Tropflux': {'value': None, 'value_error': None}},
       'metric': {'ERA-Interim': {'value': 0.19134781789767794,
         'value_error': None},
        'HadISST': {'value': 0.19769092895324594, 'value_error': None},
        'Tropflux': {'value': 0.19002958094140684, 'value_error': None}}},
      'EnsoSstSkew': {'diagnostic': {'ERA-Interim': {'value': 0.39098111106809963,
         'value_error': 0.061819541653923164},
        'GFDL-CM3_r4i1p1': {'value': -0.2537990032866095,
         'value_error': -0.021004554964140974},
        'HadISST': {'value': 0.38989908235027515,
         'value_error': 0.03172953733021198},
        'Tropflux': {'value': 0.39744741059612115,
         'value_error': 0.06284195338099416}},
       'metric': {'ERA-Interim': {'value': 164.91336693818025,
         'value_error': -15.635972978450422},
        'HadISST': {'value': 165.09351131496203,
         'value_error': -10.684412152307344},
        'Tropflux': {'value': 163.8572541977171,
         'value_error': -15.381582379857608}}},
      'EnsoSstTsRmse': {'diagnostic': {'ERA-Interim': {'value': None,
         'value_error': None},
        'GFDL-CM3_r4i1p1': {'value': None, 'value_error': None},
        'HadISST': {'value': None, 'value_error': None},
        'Tropflux': {'value': None, 'value_error': None}},
       'metric': {'ERA-Interim': {'value': 0.21194614792629612,
         'value_error': None},
        'HadISST': {'value': 0.2090689648278109, 'value_error': None},
        'Tropflux': {'value': 0.213891349757685, 'value_error': None}}},
      'SeasonalPrLatRmse': {'diagnostic': {'ERA-Interim': {'value': None,
         'value_error': None},
        'GFDL-CM3_r4i1p1': {'value': None, 'value_error': None},
        'GPCPv2.3': {'value': None, 'value_error': None}},
       'metric': {'ERA-Interim': {'value': 2.084029933330283,
         'value_error': None},
        'GPCPv2.3': {'value': 2.404982875454443, 'value_error': None}}},
      'SeasonalPrLonRmse': {'diagnostic': {'ERA-Interim': {'value': None,
         'value_error': None},
        'GFDL-CM3_r4i1p1': {'value': None, 'value_error': None},
        'GPCPv2.3': {'value': None, 'value_error': None}},
       'metric': {'ERA-Interim': {'value': 0.5687788028484938,
         'value_error': None},
        'GPCPv2.3': {'value': 0.6262927162874885, 'value_error': None}}},
      'SeasonalSstLonRmse': {'diagnostic': {'ERA-Interim': {'value': None,
         'value_error': None},
        'GFDL-CM3_r4i1p1': {'value': None, 'value_error': None},
        'HadISST': {'value': None, 'value_error': None},
        'Tropflux': {'value': None, 'value_error': None}},
       'metric': {'ERA-Interim': {'value': 0.12085193305750981,
         'value_error': None},
        'HadISST': {'value': 0.12432163243902074, 'value_error': None},
        'Tropflux': {'value': 0.12690164186810288, 'value_error': None}}},
      'SeasonalTauxLonRmse': {'diagnostic': {'ERA-Interim': {'value': None,
         'value_error': None},
        'GFDL-CM3_r4i1p1': {'value': None, 'value_error': None},
        'Tropflux': {'value': None, 'value_error': None}},
       'metric': {'ERA-Interim': {'value': 2.914105519042928,
         'value_error': None},
        'Tropflux': {'value': 3.070202363890088, 'value_error': None}}}}},
    'r5i1p1': {'metadata': {'description_of_the_collection': 'Describe which science question this collection is about',
      'metrics': {'BiasPrLatRmse': {'diagnostic': {'ERA-Interim': {'name': 'ERA-Interim',
          'nyears': 40,
          'time_period': ['1979-1-16 12:0:0.0', '2019-3-16 12:0:0.0']},
         'GFDL-CM3_r5i1p1': {'keyerror': None,
          'name': 'GFDL-CM3_r5i1p1',
          'nyears': 146,
          'time_period': ['1860-1-16 12:0:0.0', '2005-12-16 12:0:0.0']},
         'GPCPv2.3': {'name': 'GPCPv2.3',
          'nyears': 41,
          'time_period': ['1979-1-1 0:0:0.0', '2019-7-1 0:0:0.0']},
         'method': 'Meridional root mean square error of nino3_LatExt pr, time series are linearly detrended, observations and model regridded to generic_1x1deg',
         'name': 'pr Meridional RMSE',
         'ref': 'Using CDAT regridding and rms (uncentered and biased) calculation',
         'time_frequency': 'monthly',
         'units': 'mm/day'},
        'metric': {'datasets': "GFDL-CM3_r5i1p1; ERA-Interim's pr & GPCPv2.3's precip; 's ",
         'method': 'The metric is the statistical value between the model and the observations',
         'name': 'BiasPrLatRmse',
         'units': 'mm/day'}},
       'BiasPrLonRmse': {'diagnostic': {'ERA-Interim': {'name': 'ERA-Interim',
          'nyears': 40,
          'time_period': ['1979-1-16 12:0:0.0', '2019-3-16 12:0:0.0']},
         'GFDL-CM3_r5i1p1': {'keyerror': None,
          'name': 'GFDL-CM3_r5i1p1',
          'nyears': 146,
          'time_period': ['1860-1-16 12:0:0.0', '2005-12-16 12:0:0.0']},
         'GPCPv2.3': {'name': 'GPCPv2.3',
          'nyears': 41,
          'time_period': ['1979-1-1 0:0:0.0', '2019-7-1 0:0:0.0']},
         'method': 'Zonal root mean square error of equatorial_pacific pr, time series are linearly detrended, observations and model regridded to generic_1x1deg',
         'name': 'pr Zonal RMSE',
         'ref': 'Using CDAT regridding and rms (uncentered and biased) calculation',
         'time_frequency': 'monthly',
         'units': 'mm/day'},
        'metric': {'datasets': "GFDL-CM3_r5i1p1; ERA-Interim's pr & GPCPv2.3's precip; 's ",
         'method': 'The metric is the statistical value between the model and the observations',
         'name': 'BiasPrLonRmse',
         'units': 'mm/day'}},
       'BiasSstLonRmse': {'diagnostic': {'ERA-Interim': {'name': 'ERA-Interim',
          'nyears': 40,
          'time_period': ['1979-1-16 12:0:0.0', '2019-3-16 12:0:0.0']},
         'GFDL-CM3_r5i1p1': {'keyerror': None,
          'name': 'GFDL-CM3_r5i1p1',
          'nyears': 146,
          'time_period': ['1860-1-16 12:0:0.0', '2005-12-16 12:0:0.0']},
         'HadISST': {'name': 'HadISST',
          'nyears': 151,
          'time_period': ['1870-1-16 11:59:59.5', '2020-10-16 12:0:0.0']},
         'Tropflux': {'name': 'Tropflux',
          'nyears': 40,
          'time_period': ['1979-1-15 0:0:0.0', '2018-12-15 12:0:0.0']},
         'method': 'Zonal root mean square error of equatorial_pacific sst, time series are linearly detrended, observations and model regridded to generic_1x1deg',
         'name': 'sst Zonal RMSE',
         'ref': 'Using CDAT regridding and rms (uncentered and biased) calculation',
         'time_frequency': 'monthly',
         'units': 'C'},
        'metric': {'datasets': "GFDL-CM3_r5i1p1; ERA-Interim's ts & HadISST's sst & Tropflux's sst; 's ",
         'method': 'The metric is the statistical value between the model and the observations',
         'name': 'BiasSstLonRmse',
         'units': 'C'}},
       'BiasTauxLonRmse': {'diagnostic': {'ERA-Interim': {'name': 'ERA-Interim',
          'nyears': 40,
          'time_period': ['1979-1-16 12:0:0.0', '2019-3-16 12:0:0.0']},
         'GFDL-CM3_r5i1p1': {'keyerror': None,
          'name': 'GFDL-CM3_r5i1p1',
          'nyears': 146,
          'time_period': ['1860-1-16 12:0:0.0', '2005-12-16 12:0:0.0']},
         'Tropflux': {'name': 'Tropflux',
          'nyears': 40,
          'time_period': ['1979-1-15 0:0:0.0', '2018-12-15 12:0:0.0']},
         'method': 'Zonal root mean square error of equatorial_pacific taux, time series are linearly detrended, observations and model regridded to generic_1x1deg',
         'name': 'taux Zonal RMSE',
         'ref': 'Using CDAT regridding and rms (uncentered and biased) calculation',
         'time_frequency': 'monthly',
         'units': '1e-3 N/m2'},
        'metric': {'datasets': "GFDL-CM3_r5i1p1; ERA-Interim's tauu & Tropflux's taux; 's ",
         'method': 'The metric is the statistical value between the model and the observations',
         'name': 'BiasTauxLonRmse',
         'units': '1e-3 N/m2'}},
       'EnsoAmpl': {'diagnostic': {'ERA-Interim': {'keyerror': None,
          'name': 'ERA-Interim',
          'nyears': 40,
          'time_period': ['1979-1-16 12:0:0.0', '2019-3-16 12:0:0.0']},
         'GFDL-CM3_r5i1p1': {'keyerror': None,
          'name': 'GFDL-CM3_r5i1p1',
          'nyears': 146,
          'time_period': ['1860-1-16 12:0:0.0', '2005-12-16 12:0:0.0']},
         'HadISST': {'keyerror': None,
          'name': 'HadISST',
          'nyears': 151,
          'time_period': ['1870-1-16 11:59:59.5', '2020-10-16 12:0:0.0']},
         'Tropflux': {'keyerror': None,
          'name': 'Tropflux',
          'nyears': 40,
          'time_period': ['1979-1-15 0:0:0.0', '2018-12-15 12:0:0.0']},
         'method': 'Standard deviation of nino3.4 sstA, time series are linearly detrended',
         'name': 'ENSO amplitude',
         'ref': 'Using CDAT regression calculation',
         'time_frequency': 'monthly',
         'units': 'C'},
        'metric': {'datasets': "GFDL-CM3_r5i1p1; ERA-Interim's ts & HadISST's sst & Tropflux's sst; 's ",
         'method': 'The metric is the absolute value of the relative difference between model and observations values (M = 100 * abs[[model-obs] / obs])',
         'name': 'EnsoAmpl',
         'units': '%'}},
       'EnsoDuration': {'diagnostic': {'ERA-Interim': {'keyerror': None,
          'name': 'ERA-Interim',
          'nyears': 40,
          'time_period': ['1979-1-16 12:0:0.0', '2019-3-16 12:0:0.0']},
         'GFDL-CM3_r5i1p1': {'keyerror': None,
          'name': 'GFDL-CM3_r5i1p1',
          'nyears': 146,
          'time_period': ['1860-1-16 12:0:0.0', '2005-12-16 12:0:0.0']},
         'HadISST': {'keyerror': None,
          'name': 'HadISST',
          'nyears': 151,
          'time_period': ['1870-1-16 11:59:59.5', '2020-10-16 12:0:0.0']},
         'Tropflux': {'keyerror': None,
          'name': 'Tropflux',
          'nyears': 40,
          'time_period': ['1979-1-15 0:0:0.0', '2018-12-15 12:0:0.0']},
         'method': 'nino3.4 SSTA during DEC regressed against nino3.4 SSTA during 6 years (centered on ENSO), the duration is the number of consecutive months during which the regression is above 0.25, time series are linearly detrended, smoothing using a triangle shaped window of 5 points',
         'name': 'ENSO Duration based on life cyle SSTA pattern',
         'ref': 'Using CDAT',
         'time_frequency': 'monthly',
         'units': 'months'},
        'metric': {'datasets': "GFDL-CM3_r5i1p1; ERA-Interim's ts & HadISST's sst & Tropflux's sst; 's ",
         'method': 'The metric is the absolute value of the relative difference between model and observations values (M = 100 * abs[[model-obs] / obs])',
         'name': 'EnsoDuration',
         'units': '%'}},
       'EnsoSeasonality': {'diagnostic': {'ERA-Interim': {'keyerror': None,
          'name': 'ERA-Interim',
          'nyears': 40,
          'time_period': ['1979-1-16 12:0:0.0', '2019-3-16 12:0:0.0']},
         'GFDL-CM3_r5i1p1': {'keyerror': None,
          'name': 'GFDL-CM3_r5i1p1',
          'nyears': 146,
          'time_period': ['1860-1-16 12:0:0.0', '2005-12-16 12:0:0.0']},
         'HadISST': {'keyerror': None,
          'name': 'HadISST',
          'nyears': 151,
          'time_period': ['1870-1-16 11:59:59.5', '2020-10-16 12:0:0.0']},
         'Tropflux': {'keyerror': None,
          'name': 'Tropflux',
          'nyears': 40,
          'time_period': ['1979-1-15 0:0:0.0', '2018-12-15 12:0:0.0']},
         'method': 'Ratio between NDJ and MAM standard deviation nino3.4 sstA, time series are linearly detrended',
         'name': 'ENSO seasonality',
         'ref': 'Using CDAT std dev calculation',
         'time_frequency': 'monthly',
         'units': 'C/C'},
        'metric': {'datasets': "GFDL-CM3_r5i1p1; ERA-Interim's ts & HadISST's sst & Tropflux's sst; 's ",
         'method': 'The metric is the absolute value of the relative difference between model and observations values (M = 100 * abs[[model-obs] / obs])',
         'name': 'EnsoSeasonality',
         'units': '%'}},
       'EnsoSstDiversity_2': {'diagnostic': {'ERA-Interim': {'keyerror': None,
          'name': 'ERA-Interim',
          'nyears': 40,
          'time_period': ['1979-1-16 12:0:0.0', '2019-3-16 12:0:0.0']},
         'GFDL-CM3_r5i1p1': {'keyerror': None,
          'name': 'GFDL-CM3_r5i1p1',
          'nyears': 146,
          'time_period': ['1860-1-16 12:0:0.0', '2005-12-16 12:0:0.0']},
         'HadISST': {'keyerror': None,
          'name': 'HadISST',
          'nyears': 151,
          'time_period': ['1870-1-16 11:59:59.5', '2020-10-16 12:0:0.0']},
         'Tropflux': {'keyerror': None,
          'name': 'Tropflux',
          'nyears': 40,
          'time_period': ['1979-1-15 0:0:0.0', '2018-12-15 12:0:0.0']},
         'method': 'Nino (Nina) events = nino3.4 sstA > 0.75 (< -0.75) during DEC, zonal SSTA (meridional averaged [-5.0 ; 5.0]), the zonal SSTA maximum (minimum) is located for each event, the diversity is the interquartile range (IQR = Q3 - Q1), time series are linearly detrended, smoothing using a triangle shaped window of 5 points',
         'name': 'ENSO Diversity (interquartile range)',
         'ref': 'Using CDAT regridding',
         'time_frequency': 'monthly',
         'units': 'long'},
        'metric': {'datasets': "GFDL-CM3_r5i1p1; ERA-Interim's ts & HadISST's sst & Tropflux's sst; 's ",
         'method': 'The metric is the absolute value of the relative difference between model and observations values (M = 100 * abs[[model-obs] / obs])',
         'name': 'EnsoSstDiversity',
         'units': '%'}},
       'EnsoSstLonRmse': {'diagnostic': {'ERA-Interim': {'name': 'ERA-Interim',
          'nyears': 40,
          'time_period': ['1979-1-16 12:0:0.0', '2019-3-16 12:0:0.0']},
         'GFDL-CM3_r5i1p1': {'keyerror': None,
          'name': 'GFDL-CM3_r5i1p1',
          'nyears': 146,
          'time_period': ['1860-1-16 12:0:0.0', '2005-12-16 12:0:0.0']},
         'HadISST': {'name': 'HadISST',
          'nyears': 151,
          'time_period': ['1870-1-16 11:59:59.5', '2020-10-16 12:0:0.0']},
         'Tropflux': {'name': 'Tropflux',
          'nyears': 40,
          'time_period': ['1979-1-15 0:0:0.0', '2018-12-15 12:0:0.0']},
         'method': 'nino3.4 SSTA during DEC regressed against equatorial_pacific SSTA, time series are linearly detrended, smoothing using a triangle shaped window of 5 points, observations and model regridded to generic_1x1deg',
         'name': 'ENSO Zonal SSTA pattern',
         'ref': 'Using CDAT regridding and rms (uncentered and biased) calculation',
         'time_frequency': 'monthly',
         'units': 'C/C'},
        'metric': {'datasets': "GFDL-CM3_r5i1p1; ERA-Interim's ts & HadISST's sst & Tropflux's sst; 's ",
         'method': 'The metric is the statistical value between the model and the observations',
         'name': 'EnsoSstLonRmse',
         'units': 'C/C'}},
       'EnsoSstSkew': {'diagnostic': {'ERA-Interim': {'keyerror': None,
          'name': 'ERA-Interim',
          'nyears': 40,
          'time_period': ['1979-1-16 12:0:0.0', '2019-3-16 12:0:0.0']},
         'GFDL-CM3_r5i1p1': {'keyerror': None,
          'name': 'GFDL-CM3_r5i1p1',
          'nyears': 146,
          'time_period': ['1860-1-16 12:0:0.0', '2005-12-16 12:0:0.0']},
         'HadISST': {'keyerror': None,
          'name': 'HadISST',
          'nyears': 151,
          'time_period': ['1870-1-16 11:59:59.5', '2020-10-16 12:0:0.0']},
         'Tropflux': {'keyerror': None,
          'name': 'Tropflux',
          'nyears': 40,
          'time_period': ['1979-1-15 0:0:0.0', '2018-12-15 12:0:0.0']},
         'method': 'Standard deviation of nino3.4 sstA, time series are linearly detrended',
         'name': 'ENSO skewness',
         'ref': 'Using CDAT regression calculation',
         'time_frequency': 'monthly',
         'units': 'C'},
        'metric': {'datasets': "GFDL-CM3_r5i1p1; ERA-Interim's ts & HadISST's sst & Tropflux's sst; 's ",
         'method': 'The metric is the absolute value of the relative difference between model and observations values (M = 100 * abs[[model-obs] / obs])',
         'name': 'EnsoSstSkew',
         'units': '%'}},
       'EnsoSstTsRmse': {'diagnostic': {'ERA-Interim': {'name': 'ERA-Interim',
          'nyears': 40,
          'time_period': ['1979-1-16 12:0:0.0', '2019-3-16 12:0:0.0']},
         'GFDL-CM3_r5i1p1': {'keyerror': None,
          'name': 'GFDL-CM3_r5i1p1',
          'nyears': 146,
          'time_period': ['1860-1-16 12:0:0.0', '2005-12-16 12:0:0.0']},
         'HadISST': {'name': 'HadISST',
          'nyears': 151,
          'time_period': ['1870-1-16 11:59:59.5', '2020-10-16 12:0:0.0']},
         'Tropflux': {'name': 'Tropflux',
          'nyears': 40,
          'time_period': ['1979-1-15 0:0:0.0', '2018-12-15 12:0:0.0']},
         'method': 'nino3.4 SSTA during DEC regressed against nino3.4 SSTA during 6 years (centered on ENSO), time series are linearly detrended, smoothing using a triangle shaped window of 5 points',
         'name': 'ENSO life cyle SSTA pattern',
         'ref': 'Using CDAT regridding and rms (uncentered and biased) calculation',
         'time_frequency': 'monthly',
         'units': 'C/C'},
        'metric': {'datasets': "GFDL-CM3_r5i1p1; ERA-Interim's ts & HadISST's sst & Tropflux's sst; 's ",
         'method': 'The metric is the statistical value between the model and the observations',
         'name': 'EnsoSstTsRmse',
         'units': 'C/C'}},
       'SeasonalPrLatRmse': {'diagnostic': {'ERA-Interim': {'name': 'ERA-Interim',
          'nyears': 40,
          'time_period': ['1979-1-16 12:0:0.0', '2019-3-16 12:0:0.0']},
         'GFDL-CM3_r5i1p1': {'keyerror': None,
          'name': 'GFDL-CM3_r5i1p1',
          'nyears': 146,
          'time_period': ['1860-1-16 12:0:0.0', '2005-12-16 12:0:0.0']},
         'GPCPv2.3': {'name': 'GPCPv2.3',
          'nyears': 41,
          'time_period': ['1979-1-1 0:0:0.0', '2019-7-1 0:0:0.0']},
         'method': 'Meridional root mean square error of nino3_LatExt climatological pr STD, time series are linearly detrended, observations and model regridded to generic_1x1deg',
         'name': 'pr meridional seasonality RMSE',
         'ref': 'Using CDAT regridding and rms (uncentered and biased) calculation',
         'time_frequency': 'monthly',
         'units': 'mm/day'},
        'metric': {'datasets': "GFDL-CM3_r5i1p1; ERA-Interim's pr & GPCPv2.3's precip; 's ",
         'method': 'The metric is the statistical value between the model and the observations',
         'name': 'SeasonalPrLatRmse',
         'units': 'mm/day'}},
       'SeasonalPrLonRmse': {'diagnostic': {'ERA-Interim': {'name': 'ERA-Interim',
          'nyears': 40,
          'time_period': ['1979-1-16 12:0:0.0', '2019-3-16 12:0:0.0']},
         'GFDL-CM3_r5i1p1': {'keyerror': None,
          'name': 'GFDL-CM3_r5i1p1',
          'nyears': 146,
          'time_period': ['1860-1-16 12:0:0.0', '2005-12-16 12:0:0.0']},
         'GPCPv2.3': {'name': 'GPCPv2.3',
          'nyears': 41,
          'time_period': ['1979-1-1 0:0:0.0', '2019-7-1 0:0:0.0']},
         'method': 'Zonal root mean square error of equatorial_pacific climatological pr STD, time series are linearly detrended, observations and model regridded to generic_1x1deg',
         'name': 'pr zonal seasonality RMSE',
         'ref': 'Using CDAT regridding and rms (uncentered and biased) calculation',
         'time_frequency': 'monthly',
         'units': 'mm/day'},
        'metric': {'datasets': "GFDL-CM3_r5i1p1; ERA-Interim's pr & GPCPv2.3's precip; 's ",
         'method': 'The metric is the statistical value between the model and the observations',
         'name': 'SeasonalPrLonRmse',
         'units': 'mm/day'}},
       'SeasonalSstLonRmse': {'diagnostic': {'ERA-Interim': {'name': 'ERA-Interim',
          'nyears': 40,
          'time_period': ['1979-1-16 12:0:0.0', '2019-3-16 12:0:0.0']},
         'GFDL-CM3_r5i1p1': {'keyerror': None,
          'name': 'GFDL-CM3_r5i1p1',
          'nyears': 146,
          'time_period': ['1860-1-16 12:0:0.0', '2005-12-16 12:0:0.0']},
         'HadISST': {'name': 'HadISST',
          'nyears': 151,
          'time_period': ['1870-1-16 11:59:59.5', '2020-10-16 12:0:0.0']},
         'Tropflux': {'name': 'Tropflux',
          'nyears': 40,
          'time_period': ['1979-1-15 0:0:0.0', '2018-12-15 12:0:0.0']},
         'method': 'Zonal root mean square error of equatorial_pacific climatological sst STD, time series are linearly detrended, observations and model regridded to generic_1x1deg',
         'name': 'sst zonal seasonality RMSE',
         'ref': 'Using CDAT regridding and rms (uncentered and biased) calculation',
         'time_frequency': 'monthly',
         'units': 'C'},
        'metric': {'datasets': "GFDL-CM3_r5i1p1; ERA-Interim's ts & HadISST's sst & Tropflux's sst; 's ",
         'method': 'The metric is the statistical value between the model and the observations',
         'name': 'SeasonalSstLonRmse',
         'units': 'C'}},
       'SeasonalTauxLonRmse': {'diagnostic': {'ERA-Interim': {'name': 'ERA-Interim',
          'nyears': 40,
          'time_period': ['1979-1-16 12:0:0.0', '2019-3-16 12:0:0.0']},
         'GFDL-CM3_r5i1p1': {'keyerror': None,
          'name': 'GFDL-CM3_r5i1p1',
          'nyears': 146,
          'time_period': ['1860-1-16 12:0:0.0', '2005-12-16 12:0:0.0']},
         'Tropflux': {'name': 'Tropflux',
          'nyears': 40,
          'time_period': ['1979-1-15 0:0:0.0', '2018-12-15 12:0:0.0']},
         'method': 'Zonal root mean square error of equatorial_pacific climatological taux STD, time series are linearly detrended, observations and model regridded to generic_1x1deg',
         'name': 'taux zonal seasonality RMSE',
         'ref': 'Using CDAT regridding and rms (uncentered and biased) calculation',
         'time_frequency': 'monthly',
         'units': '1e-3 N/m2'},
        'metric': {'datasets': "GFDL-CM3_r5i1p1; ERA-Interim's tauu & Tropflux's taux; 's ",
         'method': 'The metric is the statistical value between the model and the observations',
         'name': 'SeasonalTauxLonRmse',
         'units': '1e-3 N/m2'}}},
      'name': 'Metrics Collection for ENSO performance'},
     'value': {'BiasPrLatRmse': {'diagnostic': {'ERA-Interim': {'value': None,
         'value_error': None},
        'GFDL-CM3_r5i1p1': {'value': None, 'value_error': None},
        'GPCPv2.3': {'value': None, 'value_error': None}},
       'metric': {'ERA-Interim': {'value': 2.0661039320235997,
         'value_error': None},
        'GPCPv2.3': {'value': 2.2776490785764953, 'value_error': None}}},
      'BiasPrLonRmse': {'diagnostic': {'ERA-Interim': {'value': None,
         'value_error': None},
        'GFDL-CM3_r5i1p1': {'value': None, 'value_error': None},
        'GPCPv2.3': {'value': None, 'value_error': None}},
       'metric': {'ERA-Interim': {'value': 2.1655048606445217,
         'value_error': None},
        'GPCPv2.3': {'value': 1.3347062606627638, 'value_error': None}}},
      'BiasSstLonRmse': {'diagnostic': {'ERA-Interim': {'value': None,
         'value_error': None},
        'GFDL-CM3_r5i1p1': {'value': None, 'value_error': None},
        'HadISST': {'value': None, 'value_error': None},
        'Tropflux': {'value': None, 'value_error': None}},
       'metric': {'ERA-Interim': {'value': 0.9812070288096362,
         'value_error': None},
        'HadISST': {'value': 0.7627145252593193, 'value_error': None},
        'Tropflux': {'value': 1.0307312468082426, 'value_error': None}}},
      'BiasTauxLonRmse': {'diagnostic': {'ERA-Interim': {'value': None,
         'value_error': None},
        'GFDL-CM3_r5i1p1': {'value': None, 'value_error': None},
        'Tropflux': {'value': None, 'value_error': None}},
       'metric': {'ERA-Interim': {'value': 4.838392586620296,
         'value_error': None},
        'Tropflux': {'value': 5.195871599181616, 'value_error': None}}},
      'EnsoAmpl': {'diagnostic': {'ERA-Interim': {'value': 0.8989844997845644,
         'value_error': 0.14214193002531866},
        'GFDL-CM3_r5i1p1': {'value': 0.9768745350329162,
         'value_error': 0.08084671176189416},
        'HadISST': {'value': 0.7665787872085695,
         'value_error': 0.06238329697691264},
        'Tropflux': {'value': 0.9039789553693535,
         'value_error': 0.14293162279134272}},
       'metric': {'ERA-Interim': {'value': 8.664224496308627,
         'value_error': 26.174437686565387},
        'HadISST': {'value': 27.433024671882784,
         'value_error': 20.916784636513967},
        'Tropflux': {'value': 8.06385803901581,
         'value_error': 26.029824733237316}}},
      'EnsoDuration': {'diagnostic': {'ERA-Interim': {'value': 13.0,
         'value_error': None},
        'GFDL-CM3_r5i1p1': {'value': 12.0, 'value_error': None},
        'HadISST': {'value': 13.0, 'value_error': None},
        'Tropflux': {'value': 13.0, 'value_error': None}},
       'metric': {'ERA-Interim': {'value': 7.6923076923076925,
         'value_error': None},
        'HadISST': {'value': 7.6923076923076925, 'value_error': None},
        'Tropflux': {'value': 7.6923076923076925, 'value_error': None}}},
      'EnsoSeasonality': {'diagnostic': {'ERA-Interim': {'value': 2.0466846866656914,
         'value_error': 0.6513411033995022},
        'GFDL-CM3_r5i1p1': {'value': 1.0941834252570595,
         'value_error': 0.18142225219386646},
        'HadISST': {'value': 1.6639865947361325,
         'value_error': 0.2712772451657809},
        'Tropflux': {'value': 2.0532132553583624,
         'value_error': 0.6534187683977347}},
       'metric': {'ERA-Interim': {'value': 46.53873982710923,
         'value_error': 25.877821705799654},
        'HadISST': {'value': 34.2432548003447,
         'value_error': 21.623091208810457},
        'Tropflux': {'value': 46.708729723932954,
         'value_error': 25.795538418283304}}},
      'EnsoSstDiversity_2': {'diagnostic': {'ERA-Interim': {'value': 33.25,
         'value_error': None},
        'GFDL-CM3_r5i1p1': {'value': 42.75, 'value_error': None},
        'HadISST': {'value': 49.0, 'value_error': None},
        'Tropflux': {'value': 32.0, 'value_error': None}},
       'metric': {'ERA-Interim': {'value': 28.57142857142857,
         'value_error': None},
        'HadISST': {'value': 12.755102040816327, 'value_error': None},
        'Tropflux': {'value': 33.59375, 'value_error': None}}},
      'EnsoSstLonRmse': {'diagnostic': {'ERA-Interim': {'value': None,
         'value_error': None},
        'GFDL-CM3_r5i1p1': {'value': None, 'value_error': None},
        'HadISST': {'value': None, 'value_error': None},
        'Tropflux': {'value': None, 'value_error': None}},
       'metric': {'ERA-Interim': {'value': 0.2255117757167929,
         'value_error': None},
        'HadISST': {'value': 0.23504226489093874, 'value_error': None},
        'Tropflux': {'value': 0.22469963406773572, 'value_error': None}}},
      'EnsoSstSkew': {'diagnostic': {'ERA-Interim': {'value': 0.39098111106809963,
         'value_error': 0.061819541653923164},
        'GFDL-CM3_r5i1p1': {'value': -0.32430943464557466,
         'value_error': -0.026840039784198237},
        'HadISST': {'value': 0.38989908235027515,
         'value_error': 0.03172953733021198},
        'Tropflux': {'value': 0.39744741059612115,
         'value_error': 0.06284195338099416}},
       'metric': {'ERA-Interim': {'value': 182.94759656281389,
         'value_error': -19.979958514842128},
        'HadISST': {'value': 183.17778864486365,
         'value_error': -13.652755210870914},
        'Tropflux': {'value': 181.59807461297868,
         'value_error': -19.654893127900408}}},
      'EnsoSstTsRmse': {'diagnostic': {'ERA-Interim': {'value': None,
         'value_error': None},
        'GFDL-CM3_r5i1p1': {'value': None, 'value_error': None},
        'HadISST': {'value': None, 'value_error': None},
        'Tropflux': {'value': None, 'value_error': None}},
       'metric': {'ERA-Interim': {'value': 0.18630067975095035,
         'value_error': None},
        'HadISST': {'value': 0.19156747242965103, 'value_error': None},
        'Tropflux': {'value': 0.18936323776165398, 'value_error': None}}},
      'SeasonalPrLatRmse': {'diagnostic': {'ERA-Interim': {'value': None,
         'value_error': None},
        'GFDL-CM3_r5i1p1': {'value': None, 'value_error': None},
        'GPCPv2.3': {'value': None, 'value_error': None}},
       'metric': {'ERA-Interim': {'value': 2.0990194011772307,
         'value_error': None},
        'GPCPv2.3': {'value': 2.4230280167888876, 'value_error': None}}},
      'SeasonalPrLonRmse': {'diagnostic': {'ERA-Interim': {'value': None,
         'value_error': None},
        'GFDL-CM3_r5i1p1': {'value': None, 'value_error': None},
        'GPCPv2.3': {'value': None, 'value_error': None}},
       'metric': {'ERA-Interim': {'value': 0.5897447743258937,
         'value_error': None},
        'GPCPv2.3': {'value': 0.6538060305861048, 'value_error': None}}},
      'SeasonalSstLonRmse': {'diagnostic': {'ERA-Interim': {'value': None,
         'value_error': None},
        'GFDL-CM3_r5i1p1': {'value': None, 'value_error': None},
        'HadISST': {'value': None, 'value_error': None},
        'Tropflux': {'value': None, 'value_error': None}},
       'metric': {'ERA-Interim': {'value': 0.11452763502509433,
         'value_error': None},
        'HadISST': {'value': 0.1185365519698317, 'value_error': None},
        'Tropflux': {'value': 0.12037714072126186, 'value_error': None}}},
      'SeasonalTauxLonRmse': {'diagnostic': {'ERA-Interim': {'value': None,
         'value_error': None},
        'GFDL-CM3_r5i1p1': {'value': None, 'value_error': None},
        'Tropflux': {'value': None, 'value_error': None}},
       'metric': {'ERA-Interim': {'value': 2.844475898902504,
         'value_error': None},
        'Tropflux': {'value': 2.992179172115775, 'value_error': None}}}}}},
   'GFDL-ESM2G': {'r1i1p1': {'metadata': {'description_of_the_collection': 'Describe which science question this collection is about',
      'metrics': {'BiasPrLatRmse': {'diagnostic': {'ERA-Interim': {'name': 'ERA-Interim',
          'nyears': 40,
          'time_period': ['1979-1-16 12:0:0.0', '2019-3-16 12:0:0.0']},
         'GFDL-ESM2G_r1i1p1': {'keyerror': None,
          'name': 'GFDL-ESM2G_r1i1p1',
          'nyears': 145,
          'time_period': ['1861-1-16 12:0:0.0', '2005-12-16 12:0:0.0']},
         'GPCPv2.3': {'name': 'GPCPv2.3',
          'nyears': 41,
          'time_period': ['1979-1-1 0:0:0.0', '2019-7-1 0:0:0.0']},
         'method': 'Meridional root mean square error of nino3_LatExt pr, time series are linearly detrended, observations and model regridded to generic_1x1deg',
         'name': 'pr Meridional RMSE',
         'ref': 'Using CDAT regridding and rms (uncentered and biased) calculation',
         'time_frequency': 'monthly',
         'units': 'mm/day'},
        'metric': {'datasets': "GFDL-ESM2G_r1i1p1; ERA-Interim's pr & GPCPv2.3's precip; 's ",
         'method': 'The metric is the statistical value between the model and the observations',
         'name': 'BiasPrLatRmse',
         'units': 'mm/day'}},
       'BiasPrLonRmse': {'diagnostic': {'ERA-Interim': {'name': 'ERA-Interim',
          'nyears': 40,
          'time_period': ['1979-1-16 12:0:0.0', '2019-3-16 12:0:0.0']},
         'GFDL-ESM2G_r1i1p1': {'keyerror': None,
          'name': 'GFDL-ESM2G_r1i1p1',
          'nyears': 145,
          'time_period': ['1861-1-16 12:0:0.0', '2005-12-16 12:0:0.0']},
         'GPCPv2.3': {'name': 'GPCPv2.3',
          'nyears': 41,
          'time_period': ['1979-1-1 0:0:0.0', '2019-7-1 0:0:0.0']},
         'method': 'Zonal root mean square error of equatorial_pacific pr, time series are linearly detrended, observations and model regridded to generic_1x1deg',
         'name': 'pr Zonal RMSE',
         'ref': 'Using CDAT regridding and rms (uncentered and biased) calculation',
         'time_frequency': 'monthly',
         'units': 'mm/day'},
        'metric': {'datasets': "GFDL-ESM2G_r1i1p1; ERA-Interim's pr & GPCPv2.3's precip; 's ",
         'method': 'The metric is the statistical value between the model and the observations',
         'name': 'BiasPrLonRmse',
         'units': 'mm/day'}},
       'BiasSstLonRmse': {'diagnostic': {'ERA-Interim': {'name': 'ERA-Interim',
          'nyears': 40,
          'time_period': ['1979-1-16 12:0:0.0', '2019-3-16 12:0:0.0']},
         'GFDL-ESM2G_r1i1p1': {'keyerror': None,
          'name': 'GFDL-ESM2G_r1i1p1',
          'nyears': 145,
          'time_period': ['1861-1-16 12:0:0.0', '2005-12-16 12:0:0.0']},
         'HadISST': {'name': 'HadISST',
          'nyears': 151,
          'time_period': ['1870-1-16 11:59:59.5', '2020-10-16 12:0:0.0']},
         'Tropflux': {'name': 'Tropflux',
          'nyears': 40,
          'time_period': ['1979-1-15 0:0:0.0', '2018-12-15 12:0:0.0']},
         'method': 'Zonal root mean square error of equatorial_pacific sst, time series are linearly detrended, observations and model regridded to generic_1x1deg',
         'name': 'sst Zonal RMSE',
         'ref': 'Using CDAT regridding and rms (uncentered and biased) calculation',
         'time_frequency': 'monthly',
         'units': 'C'},
        'metric': {'datasets': "GFDL-ESM2G_r1i1p1; ERA-Interim's ts & HadISST's sst & Tropflux's sst; 's ",
         'method': 'The metric is the statistical value between the model and the observations',
         'name': 'BiasSstLonRmse',
         'units': 'C'}},
       'BiasTauxLonRmse': {'diagnostic': {'ERA-Interim': {'name': 'ERA-Interim',
          'nyears': 40,
          'time_period': ['1979-1-16 12:0:0.0', '2019-3-16 12:0:0.0']},
         'GFDL-ESM2G_r1i1p1': {'keyerror': None,
          'name': 'GFDL-ESM2G_r1i1p1',
          'nyears': 145,
          'time_period': ['1861-1-16 12:0:0.0', '2005-12-16 12:0:0.0']},
         'Tropflux': {'name': 'Tropflux',
          'nyears': 40,
          'time_period': ['1979-1-15 0:0:0.0', '2018-12-15 12:0:0.0']},
         'method': 'Zonal root mean square error of equatorial_pacific taux, time series are linearly detrended, observations and model regridded to generic_1x1deg',
         'name': 'taux Zonal RMSE',
         'ref': 'Using CDAT regridding and rms (uncentered and biased) calculation',
         'time_frequency': 'monthly',
         'units': '1e-3 N/m2'},
        'metric': {'datasets': "GFDL-ESM2G_r1i1p1; ERA-Interim's tauu & Tropflux's taux; 's ",
         'method': 'The metric is the statistical value between the model and the observations',
         'name': 'BiasTauxLonRmse',
         'units': '1e-3 N/m2'}},
       'EnsoAmpl': {'diagnostic': {'ERA-Interim': {'keyerror': None,
          'name': 'ERA-Interim',
          'nyears': 40,
          'time_period': ['1979-1-16 12:0:0.0', '2019-3-16 12:0:0.0']},
         'GFDL-ESM2G_r1i1p1': {'keyerror': None,
          'name': 'GFDL-ESM2G_r1i1p1',
          'nyears': 145,
          'time_period': ['1861-1-16 12:0:0.0', '2005-12-16 12:0:0.0']},
         'HadISST': {'keyerror': None,
          'name': 'HadISST',
          'nyears': 151,
          'time_period': ['1870-1-16 11:59:59.5', '2020-10-16 12:0:0.0']},
         'Tropflux': {'keyerror': None,
          'name': 'Tropflux',
          'nyears': 40,
          'time_period': ['1979-1-15 0:0:0.0', '2018-12-15 12:0:0.0']},
         'method': 'Standard deviation of nino3.4 sstA, time series are linearly detrended',
         'name': 'ENSO amplitude',
         'ref': 'Using CDAT regression calculation',
         'time_frequency': 'monthly',
         'units': 'C'},
        'metric': {'datasets': "GFDL-ESM2G_r1i1p1; ERA-Interim's ts & HadISST's sst & Tropflux's sst; 's ",
         'method': 'The metric is the absolute value of the relative difference between model and observations values (M = 100 * abs[[model-obs] / obs])',
         'name': 'EnsoAmpl',
         'units': '%'}},
       'EnsoDuration': {'diagnostic': {'ERA-Interim': {'keyerror': None,
          'name': 'ERA-Interim',
          'nyears': 40,
          'time_period': ['1979-1-16 12:0:0.0', '2019-3-16 12:0:0.0']},
         'GFDL-ESM2G_r1i1p1': {'keyerror': None,
          'name': 'GFDL-ESM2G_r1i1p1',
          'nyears': 145,
          'time_period': ['1861-1-16 12:0:0.0', '2005-12-16 12:0:0.0']},
         'HadISST': {'keyerror': None,
          'name': 'HadISST',
          'nyears': 151,
          'time_period': ['1870-1-16 11:59:59.5', '2020-10-16 12:0:0.0']},
         'Tropflux': {'keyerror': None,
          'name': 'Tropflux',
          'nyears': 40,
          'time_period': ['1979-1-15 0:0:0.0', '2018-12-15 12:0:0.0']},
         'method': 'nino3.4 SSTA during DEC regressed against nino3.4 SSTA during 6 years (centered on ENSO), the duration is the number of consecutive months during which the regression is above 0.25, time series are linearly detrended, smoothing using a triangle shaped window of 5 points',
         'name': 'ENSO Duration based on life cyle SSTA pattern',
         'ref': 'Using CDAT',
         'time_frequency': 'monthly',
         'units': 'months'},
        'metric': {'datasets': "GFDL-ESM2G_r1i1p1; ERA-Interim's ts & HadISST's sst & Tropflux's sst; 's ",
         'method': 'The metric is the absolute value of the relative difference between model and observations values (M = 100 * abs[[model-obs] / obs])',
         'name': 'EnsoDuration',
         'units': '%'}},
       'EnsoSeasonality': {'diagnostic': {'ERA-Interim': {'keyerror': None,
          'name': 'ERA-Interim',
          'nyears': 40,
          'time_period': ['1979-1-16 12:0:0.0', '2019-3-16 12:0:0.0']},
         'GFDL-ESM2G_r1i1p1': {'keyerror': None,
          'name': 'GFDL-ESM2G_r1i1p1',
          'nyears': 145,
          'time_period': ['1861-1-16 12:0:0.0', '2005-12-16 12:0:0.0']},
         'HadISST': {'keyerror': None,
          'name': 'HadISST',
          'nyears': 151,
          'time_period': ['1870-1-16 11:59:59.5', '2020-10-16 12:0:0.0']},
         'Tropflux': {'keyerror': None,
          'name': 'Tropflux',
          'nyears': 40,
          'time_period': ['1979-1-15 0:0:0.0', '2018-12-15 12:0:0.0']},
         'method': 'Ratio between NDJ and MAM standard deviation nino3.4 sstA, time series are linearly detrended',
         'name': 'ENSO seasonality',
         'ref': 'Using CDAT std dev calculation',
         'time_frequency': 'monthly',
         'units': 'C/C'},
        'metric': {'datasets': "GFDL-ESM2G_r1i1p1; ERA-Interim's ts & HadISST's sst & Tropflux's sst; 's ",
         'method': 'The metric is the absolute value of the relative difference between model and observations values (M = 100 * abs[[model-obs] / obs])',
         'name': 'EnsoSeasonality',
         'units': '%'}},
       'EnsoSstDiversity_2': {'diagnostic': {'ERA-Interim': {'keyerror': None,
          'name': 'ERA-Interim',
          'nyears': 40,
          'time_period': ['1979-1-16 12:0:0.0', '2019-3-16 12:0:0.0']},
         'GFDL-ESM2G_r1i1p1': {'keyerror': None,
          'name': 'GFDL-ESM2G_r1i1p1',
          'nyears': 145,
          'time_period': ['1861-1-16 12:0:0.0', '2005-12-16 12:0:0.0']},
         'HadISST': {'keyerror': None,
          'name': 'HadISST',
          'nyears': 151,
          'time_period': ['1870-1-16 11:59:59.5', '2020-10-16 12:0:0.0']},
         'Tropflux': {'keyerror': None,
          'name': 'Tropflux',
          'nyears': 40,
          'time_period': ['1979-1-15 0:0:0.0', '2018-12-15 12:0:0.0']},
         'method': 'Nino (Nina) events = nino3.4 sstA > 0.75 (< -0.75) during DEC, zonal SSTA (meridional averaged [-5.0 ; 5.0]), the zonal SSTA maximum (minimum) is located for each event, the diversity is the interquartile range (IQR = Q3 - Q1), time series are linearly detrended, smoothing using a triangle shaped window of 5 points',
         'name': 'ENSO Diversity (interquartile range)',
         'ref': 'Using CDAT regridding',
         'time_frequency': 'monthly',
         'units': 'long'},
        'metric': {'datasets': "GFDL-ESM2G_r1i1p1; ERA-Interim's ts & HadISST's sst & Tropflux's sst; 's ",
         'method': 'The metric is the absolute value of the relative difference between model and observations values (M = 100 * abs[[model-obs] / obs])',
         'name': 'EnsoSstDiversity',
         'units': '%'}},
       'EnsoSstLonRmse': {'diagnostic': {'ERA-Interim': {'name': 'ERA-Interim',
          'nyears': 40,
          'time_period': ['1979-1-16 12:0:0.0', '2019-3-16 12:0:0.0']},
         'GFDL-ESM2G_r1i1p1': {'keyerror': None,
          'name': 'GFDL-ESM2G_r1i1p1',
          'nyears': 145,
          'time_period': ['1861-1-16 12:0:0.0', '2005-12-16 12:0:0.0']},
         'HadISST': {'name': 'HadISST',
          'nyears': 151,
          'time_period': ['1870-1-16 11:59:59.5', '2020-10-16 12:0:0.0']},
         'Tropflux': {'name': 'Tropflux',
          'nyears': 40,
          'time_period': ['1979-1-15 0:0:0.0', '2018-12-15 12:0:0.0']},
         'method': 'nino3.4 SSTA during DEC regressed against equatorial_pacific SSTA, time series are linearly detrended, smoothing using a triangle shaped window of 5 points, observations and model regridded to generic_1x1deg',
         'name': 'ENSO Zonal SSTA pattern',
         'ref': 'Using CDAT regridding and rms (uncentered and biased) calculation',
         'time_frequency': 'monthly',
         'units': 'C/C'},
        'metric': {'datasets': "GFDL-ESM2G_r1i1p1; ERA-Interim's ts & HadISST's sst & Tropflux's sst; 's ",
         'method': 'The metric is the statistical value between the model and the observations',
         'name': 'EnsoSstLonRmse',
         'units': 'C/C'}},
       'EnsoSstSkew': {'diagnostic': {'ERA-Interim': {'keyerror': None,
          'name': 'ERA-Interim',
          'nyears': 40,
          'time_period': ['1979-1-16 12:0:0.0', '2019-3-16 12:0:0.0']},
         'GFDL-ESM2G_r1i1p1': {'keyerror': None,
          'name': 'GFDL-ESM2G_r1i1p1',
          'nyears': 145,
          'time_period': ['1861-1-16 12:0:0.0', '2005-12-16 12:0:0.0']},
         'HadISST': {'keyerror': None,
          'name': 'HadISST',
          'nyears': 151,
          'time_period': ['1870-1-16 11:59:59.5', '2020-10-16 12:0:0.0']},
         'Tropflux': {'keyerror': None,
          'name': 'Tropflux',
          'nyears': 40,
          'time_period': ['1979-1-15 0:0:0.0', '2018-12-15 12:0:0.0']},
         'method': 'Standard deviation of nino3.4 sstA, time series are linearly detrended',
         'name': 'ENSO skewness',
         'ref': 'Using CDAT regression calculation',
         'time_frequency': 'monthly',
         'units': 'C'},
        'metric': {'datasets': "GFDL-ESM2G_r1i1p1; ERA-Interim's ts & HadISST's sst & Tropflux's sst; 's ",
         'method': 'The metric is the absolute value of the relative difference between model and observations values (M = 100 * abs[[model-obs] / obs])',
         'name': 'EnsoSstSkew',
         'units': '%'}},
       'EnsoSstTsRmse': {'diagnostic': {'ERA-Interim': {'name': 'ERA-Interim',
          'nyears': 40,
          'time_period': ['1979-1-16 12:0:0.0', '2019-3-16 12:0:0.0']},
         'GFDL-ESM2G_r1i1p1': {'keyerror': None,
          'name': 'GFDL-ESM2G_r1i1p1',
          'nyears': 145,
          'time_period': ['1861-1-16 12:0:0.0', '2005-12-16 12:0:0.0']},
         'HadISST': {'name': 'HadISST',
          'nyears': 151,
          'time_period': ['1870-1-16 11:59:59.5', '2020-10-16 12:0:0.0']},
         'Tropflux': {'name': 'Tropflux',
          'nyears': 40,
          'time_period': ['1979-1-15 0:0:0.0', '2018-12-15 12:0:0.0']},
         'method': 'nino3.4 SSTA during DEC regressed against nino3.4 SSTA during 6 years (centered on ENSO), time series are linearly detrended, smoothing using a triangle shaped window of 5 points',
         'name': 'ENSO life cyle SSTA pattern',
         'ref': 'Using CDAT regridding and rms (uncentered and biased) calculation',
         'time_frequency': 'monthly',
         'units': 'C/C'},
        'metric': {'datasets': "GFDL-ESM2G_r1i1p1; ERA-Interim's ts & HadISST's sst & Tropflux's sst; 's ",
         'method': 'The metric is the statistical value between the model and the observations',
         'name': 'EnsoSstTsRmse',
         'units': 'C/C'}},
       'SeasonalPrLatRmse': {'diagnostic': {'ERA-Interim': {'name': 'ERA-Interim',
          'nyears': 40,
          'time_period': ['1979-1-16 12:0:0.0', '2019-3-16 12:0:0.0']},
         'GFDL-ESM2G_r1i1p1': {'keyerror': None,
          'name': 'GFDL-ESM2G_r1i1p1',
          'nyears': 145,
          'time_period': ['1861-1-16 12:0:0.0', '2005-12-16 12:0:0.0']},
         'GPCPv2.3': {'name': 'GPCPv2.3',
          'nyears': 41,
          'time_period': ['1979-1-1 0:0:0.0', '2019-7-1 0:0:0.0']},
         'method': 'Meridional root mean square error of nino3_LatExt climatological pr STD, time series are linearly detrended, observations and model regridded to generic_1x1deg',
         'name': 'pr meridional seasonality RMSE',
         'ref': 'Using CDAT regridding and rms (uncentered and biased) calculation',
         'time_frequency': 'monthly',
         'units': 'mm/day'},
        'metric': {'datasets': "GFDL-ESM2G_r1i1p1; ERA-Interim's pr & GPCPv2.3's precip; 's ",
         'method': 'The metric is the statistical value between the model and the observations',
         'name': 'SeasonalPrLatRmse',
         'units': 'mm/day'}},
       'SeasonalPrLonRmse': {'diagnostic': {'ERA-Interim': {'name': 'ERA-Interim',
          'nyears': 40,
          'time_period': ['1979-1-16 12:0:0.0', '2019-3-16 12:0:0.0']},
         'GFDL-ESM2G_r1i1p1': {'keyerror': None,
          'name': 'GFDL-ESM2G_r1i1p1',
          'nyears': 145,
          'time_period': ['1861-1-16 12:0:0.0', '2005-12-16 12:0:0.0']},
         'GPCPv2.3': {'name': 'GPCPv2.3',
          'nyears': 41,
          'time_period': ['1979-1-1 0:0:0.0', '2019-7-1 0:0:0.0']},
         'method': 'Zonal root mean square error of equatorial_pacific climatological pr STD, time series are linearly detrended, observations and model regridded to generic_1x1deg',
         'name': 'pr zonal seasonality RMSE',
         'ref': 'Using CDAT regridding and rms (uncentered and biased) calculation',
         'time_frequency': 'monthly',
         'units': 'mm/day'},
        'metric': {'datasets': "GFDL-ESM2G_r1i1p1; ERA-Interim's pr & GPCPv2.3's precip; 's ",
         'method': 'The metric is the statistical value between the model and the observations',
         'name': 'SeasonalPrLonRmse',
         'units': 'mm/day'}},
       'SeasonalSstLonRmse': {'diagnostic': {'ERA-Interim': {'name': 'ERA-Interim',
          'nyears': 40,
          'time_period': ['1979-1-16 12:0:0.0', '2019-3-16 12:0:0.0']},
         'GFDL-ESM2G_r1i1p1': {'keyerror': None,
          'name': 'GFDL-ESM2G_r1i1p1',
          'nyears': 145,
          'time_period': ['1861-1-16 12:0:0.0', '2005-12-16 12:0:0.0']},
         'HadISST': {'name': 'HadISST',
          'nyears': 151,
          'time_period': ['1870-1-16 11:59:59.5', '2020-10-16 12:0:0.0']},
         'Tropflux': {'name': 'Tropflux',
          'nyears': 40,
          'time_period': ['1979-1-15 0:0:0.0', '2018-12-15 12:0:0.0']},
         'method': 'Zonal root mean square error of equatorial_pacific climatological sst STD, time series are linearly detrended, observations and model regridded to generic_1x1deg',
         'name': 'sst zonal seasonality RMSE',
         'ref': 'Using CDAT regridding and rms (uncentered and biased) calculation',
         'time_frequency': 'monthly',
         'units': 'C'},
        'metric': {'datasets': "GFDL-ESM2G_r1i1p1; ERA-Interim's ts & HadISST's sst & Tropflux's sst; 's ",
         'method': 'The metric is the statistical value between the model and the observations',
         'name': 'SeasonalSstLonRmse',
         'units': 'C'}},
       'SeasonalTauxLonRmse': {'diagnostic': {'ERA-Interim': {'name': 'ERA-Interim',
          'nyears': 40,
          'time_period': ['1979-1-16 12:0:0.0', '2019-3-16 12:0:0.0']},
         'GFDL-ESM2G_r1i1p1': {'keyerror': None,
          'name': 'GFDL-ESM2G_r1i1p1',
          'nyears': 145,
          'time_period': ['1861-1-16 12:0:0.0', '2005-12-16 12:0:0.0']},
         'Tropflux': {'name': 'Tropflux',
          'nyears': 40,
          'time_period': ['1979-1-15 0:0:0.0', '2018-12-15 12:0:0.0']},
         'method': 'Zonal root mean square error of equatorial_pacific climatological taux STD, time series are linearly detrended, observations and model regridded to generic_1x1deg',
         'name': 'taux zonal seasonality RMSE',
         'ref': 'Using CDAT regridding and rms (uncentered and biased) calculation',
         'time_frequency': 'monthly',
         'units': '1e-3 N/m2'},
        'metric': {'datasets': "GFDL-ESM2G_r1i1p1; ERA-Interim's tauu & Tropflux's taux; 's ",
         'method': 'The metric is the statistical value between the model and the observations',
         'name': 'SeasonalTauxLonRmse',
         'units': '1e-3 N/m2'}}},
      'name': 'Metrics Collection for ENSO performance'},
     'value': {'BiasPrLatRmse': {'diagnostic': {'ERA-Interim': {'value': None,
         'value_error': None},
        'GFDL-ESM2G_r1i1p1': {'value': None, 'value_error': None},
        'GPCPv2.3': {'value': None, 'value_error': None}},
       'metric': {'ERA-Interim': {'value': 2.058335974009238,
         'value_error': None},
        'GPCPv2.3': {'value': 1.8610983105414902, 'value_error': None}}},
      'BiasPrLonRmse': {'diagnostic': {'ERA-Interim': {'value': None,
         'value_error': None},
        'GFDL-ESM2G_r1i1p1': {'value': None, 'value_error': None},
        'GPCPv2.3': {'value': None, 'value_error': None}},
       'metric': {'ERA-Interim': {'value': 3.3706118574720727,
         'value_error': None},
        'GPCPv2.3': {'value': 2.438094524035759, 'value_error': None}}},
      'BiasSstLonRmse': {'diagnostic': {'ERA-Interim': {'value': None,
         'value_error': None},
        'GFDL-ESM2G_r1i1p1': {'value': None, 'value_error': None},
        'HadISST': {'value': None, 'value_error': None},
        'Tropflux': {'value': None, 'value_error': None}},
       'metric': {'ERA-Interim': {'value': 1.8871664064015123,
         'value_error': None},
        'HadISST': {'value': 1.7222177644091083, 'value_error': None},
        'Tropflux': {'value': 1.9359093020780447, 'value_error': None}}},
      'BiasTauxLonRmse': {'diagnostic': {'ERA-Interim': {'value': None,
         'value_error': None},
        'GFDL-ESM2G_r1i1p1': {'value': None, 'value_error': None},
        'Tropflux': {'value': None, 'value_error': None}},
       'metric': {'ERA-Interim': {'value': 14.358431096041231,
         'value_error': None},
        'Tropflux': {'value': 14.683522839573522, 'value_error': None}}},
      'EnsoAmpl': {'diagnostic': {'ERA-Interim': {'value': 0.8989844997845644,
         'value_error': 0.14214193002531866},
        'GFDL-ESM2G_r1i1p1': {'value': 0.7460660479284557,
         'value_error': 0.06195741295280196},
        'HadISST': {'value': 0.7665787872085695,
         'value_error': 0.06238329697691264},
        'Tropflux': {'value': 0.9039789553693535,
         'value_error': 0.14293162279134272}},
       'metric': {'ERA-Interim': {'value': 17.010132198358775,
         'value_error': 20.0137836430586},
        'HadISST': {'value': 2.675881412634603,
         'value_error': 16.002452576077417},
        'Tropflux': {'value': 17.468648634234714,
         'value_error': 19.90320811152093}}},
      'EnsoDuration': {'diagnostic': {'ERA-Interim': {'value': 13.0,
         'value_error': None},
        'GFDL-ESM2G_r1i1p1': {'value': 13.0, 'value_error': None},
        'HadISST': {'value': 13.0, 'value_error': None},
        'Tropflux': {'value': 13.0, 'value_error': None}},
       'metric': {'ERA-Interim': {'value': 0.0, 'value_error': None},
        'HadISST': {'value': 0.0, 'value_error': None},
        'Tropflux': {'value': 0.0, 'value_error': None}}},
      'EnsoSeasonality': {'diagnostic': {'ERA-Interim': {'value': 2.0466846866656914,
         'value_error': 0.6513411033995022},
        'GFDL-ESM2G_r1i1p1': {'value': 1.5726231854152937,
         'value_error': 0.2616511791798713},
        'HadISST': {'value': 1.6639865947361325,
         'value_error': 0.2712772451657809},
        'Tropflux': {'value': 2.0532132553583624,
         'value_error': 0.6534187683977347}},
       'metric': {'ERA-Interim': {'value': 23.16241013278425,
         'value_error': 37.23709811344601},
        'HadISST': {'value': 5.490633735263165,
         'value_error': 31.13207678747164},
        'Tropflux': {'value': 23.40672936378388,
         'value_error': 37.11869592004748}}},
      'EnsoSstDiversity_2': {'diagnostic': {'ERA-Interim': {'value': 33.25,
         'value_error': None},
        'GFDL-ESM2G_r1i1p1': {'value': 39.0, 'value_error': None},
        'HadISST': {'value': 49.0, 'value_error': None},
        'Tropflux': {'value': 32.0, 'value_error': None}},
       'metric': {'ERA-Interim': {'value': 17.293233082706767,
         'value_error': None},
        'HadISST': {'value': 20.408163265306122, 'value_error': None},
        'Tropflux': {'value': 21.875, 'value_error': None}}},
      'EnsoSstLonRmse': {'diagnostic': {'ERA-Interim': {'value': None,
         'value_error': None},
        'GFDL-ESM2G_r1i1p1': {'value': None, 'value_error': None},
        'HadISST': {'value': None, 'value_error': None},
        'Tropflux': {'value': None, 'value_error': None}},
       'metric': {'ERA-Interim': {'value': 0.3186712647173022,
         'value_error': None},
        'HadISST': {'value': 0.3383931015315869, 'value_error': None},
        'Tropflux': {'value': 0.3213908479255624, 'value_error': None}}},
      'EnsoSstSkew': {'diagnostic': {'ERA-Interim': {'value': 0.39098111106809963,
         'value_error': 0.061819541653923164},
        'GFDL-ESM2G_r1i1p1': {'value': 0.1935702712976709,
         'value_error': 0.016075136065333707},
        'HadISST': {'value': 0.38989908235027515,
         'value_error': 0.03172953733021198},
        'Tropflux': {'value': 0.39744741059612115,
         'value_error': 0.06284195338099416}},
       'metric': {'ERA-Interim': {'value': 50.491145014942795,
         'value_error': 11.939523924231416},
        'HadISST': {'value': 50.353750480548086,
         'value_error': 8.16305110230171},
        'Tropflux': {'value': 51.296632928784256,
         'value_error': 11.745272972136242}}},
      'EnsoSstTsRmse': {'diagnostic': {'ERA-Interim': {'value': None,
         'value_error': None},
        'GFDL-ESM2G_r1i1p1': {'value': None, 'value_error': None},
        'HadISST': {'value': None, 'value_error': None},
        'Tropflux': {'value': None, 'value_error': None}},
       'metric': {'ERA-Interim': {'value': 0.12738472429722278,
         'value_error': None},
        'HadISST': {'value': 0.09403108448686227, 'value_error': None},
        'Tropflux': {'value': 0.1240550940100247, 'value_error': None}}},
      'SeasonalPrLatRmse': {'diagnostic': {'ERA-Interim': {'value': None,
         'value_error': None},
        'GFDL-ESM2G_r1i1p1': {'value': None, 'value_error': None},
        'GPCPv2.3': {'value': None, 'value_error': None}},
       'metric': {'ERA-Interim': {'value': 1.4902323474145924,
         'value_error': None},
        'GPCPv2.3': {'value': 1.6125094439662786, 'value_error': None}}},
      'SeasonalPrLonRmse': {'diagnostic': {'ERA-Interim': {'value': None,
         'value_error': None},
        'GFDL-ESM2G_r1i1p1': {'value': None, 'value_error': None},
        'GPCPv2.3': {'value': None, 'value_error': None}},
       'metric': {'ERA-Interim': {'value': 0.8145794475125568,
         'value_error': None},
        'GPCPv2.3': {'value': 0.6895057143952715, 'value_error': None}}},
      'SeasonalSstLonRmse': {'diagnostic': {'ERA-Interim': {'value': None,
         'value_error': None},
        'GFDL-ESM2G_r1i1p1': {'value': None, 'value_error': None},
        'HadISST': {'value': None, 'value_error': None},
        'Tropflux': {'value': None, 'value_error': None}},
       'metric': {'ERA-Interim': {'value': 0.2754825787321808,
         'value_error': None},
        'HadISST': {'value': 0.2945048166060324, 'value_error': None},
        'Tropflux': {'value': 0.2649943949621395, 'value_error': None}}},
      'SeasonalTauxLonRmse': {'diagnostic': {'ERA-Interim': {'value': None,
         'value_error': None},
        'GFDL-ESM2G_r1i1p1': {'value': None, 'value_error': None},
        'Tropflux': {'value': None, 'value_error': None}},
       'metric': {'ERA-Interim': {'value': 2.157801788936127,
         'value_error': None},
        'Tropflux': {'value': 2.165980668540753, 'value_error': None}}}}}},
   'GFDL-ESM2M': {'r1i1p1': {'metadata': {'description_of_the_collection': 'Describe which science question this collection is about',
      'metrics': {'BiasPrLatRmse': {'diagnostic': {'ERA-Interim': {'name': 'ERA-Interim',
          'nyears': 40,
          'time_period': ['1979-1-16 12:0:0.0', '2019-3-16 12:0:0.0']},
         'GFDL-ESM2M_r1i1p1': {'keyerror': None,
          'name': 'GFDL-ESM2M_r1i1p1',
          'nyears': 145,
          'time_period': ['1861-1-16 12:0:0.0', '2005-12-16 12:0:0.0']},
         'GPCPv2.3': {'name': 'GPCPv2.3',
          'nyears': 41,
          'time_period': ['1979-1-1 0:0:0.0', '2019-7-1 0:0:0.0']},
         'method': 'Meridional root mean square error of nino3_LatExt pr, time series are linearly detrended, observations and model regridded to generic_1x1deg',
         'name': 'pr Meridional RMSE',
         'ref': 'Using CDAT regridding and rms (uncentered and biased) calculation',
         'time_frequency': 'monthly',
         'units': 'mm/day'},
        'metric': {'datasets': "GFDL-ESM2M_r1i1p1; ERA-Interim's pr & GPCPv2.3's precip; 's ",
         'method': 'The metric is the statistical value between the model and the observations',
         'name': 'BiasPrLatRmse',
         'units': 'mm/day'}},
       'BiasPrLonRmse': {'diagnostic': {'ERA-Interim': {'name': 'ERA-Interim',
          'nyears': 40,
          'time_period': ['1979-1-16 12:0:0.0', '2019-3-16 12:0:0.0']},
         'GFDL-ESM2M_r1i1p1': {'keyerror': None,
          'name': 'GFDL-ESM2M_r1i1p1',
          'nyears': 145,
          'time_period': ['1861-1-16 12:0:0.0', '2005-12-16 12:0:0.0']},
         'GPCPv2.3': {'name': 'GPCPv2.3',
          'nyears': 41,
          'time_period': ['1979-1-1 0:0:0.0', '2019-7-1 0:0:0.0']},
         'method': 'Zonal root mean square error of equatorial_pacific pr, time series are linearly detrended, observations and model regridded to generic_1x1deg',
         'name': 'pr Zonal RMSE',
         'ref': 'Using CDAT regridding and rms (uncentered and biased) calculation',
         'time_frequency': 'monthly',
         'units': 'mm/day'},
        'metric': {'datasets': "GFDL-ESM2M_r1i1p1; ERA-Interim's pr & GPCPv2.3's precip; 's ",
         'method': 'The metric is the statistical value between the model and the observations',
         'name': 'BiasPrLonRmse',
         'units': 'mm/day'}},
       'BiasSstLonRmse': {'diagnostic': {'ERA-Interim': {'name': 'ERA-Interim',
          'nyears': 40,
          'time_period': ['1979-1-16 12:0:0.0', '2019-3-16 12:0:0.0']},
         'GFDL-ESM2M_r1i1p1': {'keyerror': None,
          'name': 'GFDL-ESM2M_r1i1p1',
          'nyears': 145,
          'time_period': ['1861-1-16 12:0:0.0', '2005-12-16 12:0:0.0']},
         'HadISST': {'name': 'HadISST',
          'nyears': 151,
          'time_period': ['1870-1-16 11:59:59.5', '2020-10-16 12:0:0.0']},
         'Tropflux': {'name': 'Tropflux',
          'nyears': 40,
          'time_period': ['1979-1-15 0:0:0.0', '2018-12-15 12:0:0.0']},
         'method': 'Zonal root mean square error of equatorial_pacific sst, time series are linearly detrended, observations and model regridded to generic_1x1deg',
         'name': 'sst Zonal RMSE',
         'ref': 'Using CDAT regridding and rms (uncentered and biased) calculation',
         'time_frequency': 'monthly',
         'units': 'C'},
        'metric': {'datasets': "GFDL-ESM2M_r1i1p1; ERA-Interim's ts & HadISST's sst & Tropflux's sst; 's ",
         'method': 'The metric is the statistical value between the model and the observations',
         'name': 'BiasSstLonRmse',
         'units': 'C'}},
       'BiasTauxLonRmse': {'diagnostic': {'ERA-Interim': {'name': 'ERA-Interim',
          'nyears': 40,
          'time_period': ['1979-1-16 12:0:0.0', '2019-3-16 12:0:0.0']},
         'GFDL-ESM2M_r1i1p1': {'keyerror': None,
          'name': 'GFDL-ESM2M_r1i1p1',
          'nyears': 145,
          'time_period': ['1861-1-16 12:0:0.0', '2005-12-16 12:0:0.0']},
         'Tropflux': {'name': 'Tropflux',
          'nyears': 40,
          'time_period': ['1979-1-15 0:0:0.0', '2018-12-15 12:0:0.0']},
         'method': 'Zonal root mean square error of equatorial_pacific taux, time series are linearly detrended, observations and model regridded to generic_1x1deg',
         'name': 'taux Zonal RMSE',
         'ref': 'Using CDAT regridding and rms (uncentered and biased) calculation',
         'time_frequency': 'monthly',
         'units': '1e-3 N/m2'},
        'metric': {'datasets': "GFDL-ESM2M_r1i1p1; ERA-Interim's tauu & Tropflux's taux; 's ",
         'method': 'The metric is the statistical value between the model and the observations',
         'name': 'BiasTauxLonRmse',
         'units': '1e-3 N/m2'}},
       'EnsoAmpl': {'diagnostic': {'ERA-Interim': {'keyerror': None,
          'name': 'ERA-Interim',
          'nyears': 40,
          'time_period': ['1979-1-16 12:0:0.0', '2019-3-16 12:0:0.0']},
         'GFDL-ESM2M_r1i1p1': {'keyerror': None,
          'name': 'GFDL-ESM2M_r1i1p1',
          'nyears': 145,
          'time_period': ['1861-1-16 12:0:0.0', '2005-12-16 12:0:0.0']},
         'HadISST': {'keyerror': None,
          'name': 'HadISST',
          'nyears': 151,
          'time_period': ['1870-1-16 11:59:59.5', '2020-10-16 12:0:0.0']},
         'Tropflux': {'keyerror': None,
          'name': 'Tropflux',
          'nyears': 40,
          'time_period': ['1979-1-15 0:0:0.0', '2018-12-15 12:0:0.0']},
         'method': 'Standard deviation of nino3.4 sstA, time series are linearly detrended',
         'name': 'ENSO amplitude',
         'ref': 'Using CDAT regression calculation',
         'time_frequency': 'monthly',
         'units': 'C'},
        'metric': {'datasets': "GFDL-ESM2M_r1i1p1; ERA-Interim's ts & HadISST's sst & Tropflux's sst; 's ",
         'method': 'The metric is the absolute value of the relative difference between model and observations values (M = 100 * abs[[model-obs] / obs])',
         'name': 'EnsoAmpl',
         'units': '%'}},
       'EnsoDuration': {'diagnostic': {'ERA-Interim': {'keyerror': None,
          'name': 'ERA-Interim',
          'nyears': 40,
          'time_period': ['1979-1-16 12:0:0.0', '2019-3-16 12:0:0.0']},
         'GFDL-ESM2M_r1i1p1': {'keyerror': None,
          'name': 'GFDL-ESM2M_r1i1p1',
          'nyears': 145,
          'time_period': ['1861-1-16 12:0:0.0', '2005-12-16 12:0:0.0']},
         'HadISST': {'keyerror': None,
          'name': 'HadISST',
          'nyears': 151,
          'time_period': ['1870-1-16 11:59:59.5', '2020-10-16 12:0:0.0']},
         'Tropflux': {'keyerror': None,
          'name': 'Tropflux',
          'nyears': 40,
          'time_period': ['1979-1-15 0:0:0.0', '2018-12-15 12:0:0.0']},
         'method': 'nino3.4 SSTA during DEC regressed against nino3.4 SSTA during 6 years (centered on ENSO), the duration is the number of consecutive months during which the regression is above 0.25, time series are linearly detrended, smoothing using a triangle shaped window of 5 points',
         'name': 'ENSO Duration based on life cyle SSTA pattern',
         'ref': 'Using CDAT',
         'time_frequency': 'monthly',
         'units': 'months'},
        'metric': {'datasets': "GFDL-ESM2M_r1i1p1; ERA-Interim's ts & HadISST's sst & Tropflux's sst; 's ",
         'method': 'The metric is the absolute value of the relative difference between model and observations values (M = 100 * abs[[model-obs] / obs])',
         'name': 'EnsoDuration',
         'units': '%'}},
       'EnsoSeasonality': {'diagnostic': {'ERA-Interim': {'keyerror': None,
          'name': 'ERA-Interim',
          'nyears': 40,
          'time_period': ['1979-1-16 12:0:0.0', '2019-3-16 12:0:0.0']},
         'GFDL-ESM2M_r1i1p1': {'keyerror': None,
          'name': 'GFDL-ESM2M_r1i1p1',
          'nyears': 145,
          'time_period': ['1861-1-16 12:0:0.0', '2005-12-16 12:0:0.0']},
         'HadISST': {'keyerror': None,
          'name': 'HadISST',
          'nyears': 151,
          'time_period': ['1870-1-16 11:59:59.5', '2020-10-16 12:0:0.0']},
         'Tropflux': {'keyerror': None,
          'name': 'Tropflux',
          'nyears': 40,
          'time_period': ['1979-1-15 0:0:0.0', '2018-12-15 12:0:0.0']},
         'method': 'Ratio between NDJ and MAM standard deviation nino3.4 sstA, time series are linearly detrended',
         'name': 'ENSO seasonality',
         'ref': 'Using CDAT std dev calculation',
         'time_frequency': 'monthly',
         'units': 'C/C'},
        'metric': {'datasets': "GFDL-ESM2M_r1i1p1; ERA-Interim's ts & HadISST's sst & Tropflux's sst; 's ",
         'method': 'The metric is the absolute value of the relative difference between model and observations values (M = 100 * abs[[model-obs] / obs])',
         'name': 'EnsoSeasonality',
         'units': '%'}},
       'EnsoSstDiversity_2': {'diagnostic': {'ERA-Interim': {'keyerror': None,
          'name': 'ERA-Interim',
          'nyears': 40,
          'time_period': ['1979-1-16 12:0:0.0', '2019-3-16 12:0:0.0']},
         'GFDL-ESM2M_r1i1p1': {'keyerror': None,
          'name': 'GFDL-ESM2M_r1i1p1',
          'nyears': 145,
          'time_period': ['1861-1-16 12:0:0.0', '2005-12-16 12:0:0.0']},
         'HadISST': {'keyerror': None,
          'name': 'HadISST',
          'nyears': 151,
          'time_period': ['1870-1-16 11:59:59.5', '2020-10-16 12:0:0.0']},
         'Tropflux': {'keyerror': None,
          'name': 'Tropflux',
          'nyears': 40,
          'time_period': ['1979-1-15 0:0:0.0', '2018-12-15 12:0:0.0']},
         'method': 'Nino (Nina) events = nino3.4 sstA > 0.75 (< -0.75) during DEC, zonal SSTA (meridional averaged [-5.0 ; 5.0]), the zonal SSTA maximum (minimum) is located for each event, the diversity is the interquartile range (IQR = Q3 - Q1), time series are linearly detrended, smoothing using a triangle shaped window of 5 points',
         'name': 'ENSO Diversity (interquartile range)',
         'ref': 'Using CDAT regridding',
         'time_frequency': 'monthly',
         'units': 'long'},
        'metric': {'datasets': "GFDL-ESM2M_r1i1p1; ERA-Interim's ts & HadISST's sst & Tropflux's sst; 's ",
         'method': 'The metric is the absolute value of the relative difference between model and observations values (M = 100 * abs[[model-obs] / obs])',
         'name': 'EnsoSstDiversity',
         'units': '%'}},
       'EnsoSstLonRmse': {'diagnostic': {'ERA-Interim': {'name': 'ERA-Interim',
          'nyears': 40,
          'time_period': ['1979-1-16 12:0:0.0', '2019-3-16 12:0:0.0']},
         'GFDL-ESM2M_r1i1p1': {'keyerror': None,
          'name': 'GFDL-ESM2M_r1i1p1',
          'nyears': 145,
          'time_period': ['1861-1-16 12:0:0.0', '2005-12-16 12:0:0.0']},
         'HadISST': {'name': 'HadISST',
          'nyears': 151,
          'time_period': ['1870-1-16 11:59:59.5', '2020-10-16 12:0:0.0']},
         'Tropflux': {'name': 'Tropflux',
          'nyears': 40,
          'time_period': ['1979-1-15 0:0:0.0', '2018-12-15 12:0:0.0']},
         'method': 'nino3.4 SSTA during DEC regressed against equatorial_pacific SSTA, time series are linearly detrended, smoothing using a triangle shaped window of 5 points, observations and model regridded to generic_1x1deg',
         'name': 'ENSO Zonal SSTA pattern',
         'ref': 'Using CDAT regridding and rms (uncentered and biased) calculation',
         'time_frequency': 'monthly',
         'units': 'C/C'},
        'metric': {'datasets': "GFDL-ESM2M_r1i1p1; ERA-Interim's ts & HadISST's sst & Tropflux's sst; 's ",
         'method': 'The metric is the statistical value between the model and the observations',
         'name': 'EnsoSstLonRmse',
         'units': 'C/C'}},
       'EnsoSstSkew': {'diagnostic': {'ERA-Interim': {'keyerror': None,
          'name': 'ERA-Interim',
          'nyears': 40,
          'time_period': ['1979-1-16 12:0:0.0', '2019-3-16 12:0:0.0']},
         'GFDL-ESM2M_r1i1p1': {'keyerror': None,
          'name': 'GFDL-ESM2M_r1i1p1',
          'nyears': 145,
          'time_period': ['1861-1-16 12:0:0.0', '2005-12-16 12:0:0.0']},
         'HadISST': {'keyerror': None,
          'name': 'HadISST',
          'nyears': 151,
          'time_period': ['1870-1-16 11:59:59.5', '2020-10-16 12:0:0.0']},
         'Tropflux': {'keyerror': None,
          'name': 'Tropflux',
          'nyears': 40,
          'time_period': ['1979-1-15 0:0:0.0', '2018-12-15 12:0:0.0']},
         'method': 'Standard deviation of nino3.4 sstA, time series are linearly detrended',
         'name': 'ENSO skewness',
         'ref': 'Using CDAT regression calculation',
         'time_frequency': 'monthly',
         'units': 'C'},
        'metric': {'datasets': "GFDL-ESM2M_r1i1p1; ERA-Interim's ts & HadISST's sst & Tropflux's sst; 's ",
         'method': 'The metric is the absolute value of the relative difference between model and observations values (M = 100 * abs[[model-obs] / obs])',
         'name': 'EnsoSstSkew',
         'units': '%'}},
       'EnsoSstTsRmse': {'diagnostic': {'ERA-Interim': {'name': 'ERA-Interim',
          'nyears': 40,
          'time_period': ['1979-1-16 12:0:0.0', '2019-3-16 12:0:0.0']},
         'GFDL-ESM2M_r1i1p1': {'keyerror': None,
          'name': 'GFDL-ESM2M_r1i1p1',
          'nyears': 145,
          'time_period': ['1861-1-16 12:0:0.0', '2005-12-16 12:0:0.0']},
         'HadISST': {'name': 'HadISST',
          'nyears': 151,
          'time_period': ['1870-1-16 11:59:59.5', '2020-10-16 12:0:0.0']},
         'Tropflux': {'name': 'Tropflux',
          'nyears': 40,
          'time_period': ['1979-1-15 0:0:0.0', '2018-12-15 12:0:0.0']},
         'method': 'nino3.4 SSTA during DEC regressed against nino3.4 SSTA during 6 years (centered on ENSO), time series are linearly detrended, smoothing using a triangle shaped window of 5 points',
         'name': 'ENSO life cyle SSTA pattern',
         'ref': 'Using CDAT regridding and rms (uncentered and biased) calculation',
         'time_frequency': 'monthly',
         'units': 'C/C'},
        'metric': {'datasets': "GFDL-ESM2M_r1i1p1; ERA-Interim's ts & HadISST's sst & Tropflux's sst; 's ",
         'method': 'The metric is the statistical value between the model and the observations',
         'name': 'EnsoSstTsRmse',
         'units': 'C/C'}},
       'SeasonalPrLatRmse': {'diagnostic': {'ERA-Interim': {'name': 'ERA-Interim',
          'nyears': 40,
          'time_period': ['1979-1-16 12:0:0.0', '2019-3-16 12:0:0.0']},
         'GFDL-ESM2M_r1i1p1': {'keyerror': None,
          'name': 'GFDL-ESM2M_r1i1p1',
          'nyears': 145,
          'time_period': ['1861-1-16 12:0:0.0', '2005-12-16 12:0:0.0']},
         'GPCPv2.3': {'name': 'GPCPv2.3',
          'nyears': 41,
          'time_period': ['1979-1-1 0:0:0.0', '2019-7-1 0:0:0.0']},
         'method': 'Meridional root mean square error of nino3_LatExt climatological pr STD, time series are linearly detrended, observations and model regridded to generic_1x1deg',
         'name': 'pr meridional seasonality RMSE',
         'ref': 'Using CDAT regridding and rms (uncentered and biased) calculation',
         'time_frequency': 'monthly',
         'units': 'mm/day'},
        'metric': {'datasets': "GFDL-ESM2M_r1i1p1; ERA-Interim's pr & GPCPv2.3's precip; 's ",
         'method': 'The metric is the statistical value between the model and the observations',
         'name': 'SeasonalPrLatRmse',
         'units': 'mm/day'}},
       'SeasonalPrLonRmse': {'diagnostic': {'ERA-Interim': {'name': 'ERA-Interim',
          'nyears': 40,
          'time_period': ['1979-1-16 12:0:0.0', '2019-3-16 12:0:0.0']},
         'GFDL-ESM2M_r1i1p1': {'keyerror': None,
          'name': 'GFDL-ESM2M_r1i1p1',
          'nyears': 145,
          'time_period': ['1861-1-16 12:0:0.0', '2005-12-16 12:0:0.0']},
         'GPCPv2.3': {'name': 'GPCPv2.3',
          'nyears': 41,
          'time_period': ['1979-1-1 0:0:0.0', '2019-7-1 0:0:0.0']},
         'method': 'Zonal root mean square error of equatorial_pacific climatological pr STD, time series are linearly detrended, observations and model regridded to generic_1x1deg',
         'name': 'pr zonal seasonality RMSE',
         'ref': 'Using CDAT regridding and rms (uncentered and biased) calculation',
         'time_frequency': 'monthly',
         'units': 'mm/day'},
        'metric': {'datasets': "GFDL-ESM2M_r1i1p1; ERA-Interim's pr & GPCPv2.3's precip; 's ",
         'method': 'The metric is the statistical value between the model and the observations',
         'name': 'SeasonalPrLonRmse',
         'units': 'mm/day'}},
       'SeasonalSstLonRmse': {'diagnostic': {'ERA-Interim': {'name': 'ERA-Interim',
          'nyears': 40,
          'time_period': ['1979-1-16 12:0:0.0', '2019-3-16 12:0:0.0']},
         'GFDL-ESM2M_r1i1p1': {'keyerror': None,
          'name': 'GFDL-ESM2M_r1i1p1',
          'nyears': 145,
          'time_period': ['1861-1-16 12:0:0.0', '2005-12-16 12:0:0.0']},
         'HadISST': {'name': 'HadISST',
          'nyears': 151,
          'time_period': ['1870-1-16 11:59:59.5', '2020-10-16 12:0:0.0']},
         'Tropflux': {'name': 'Tropflux',
          'nyears': 40,
          'time_period': ['1979-1-15 0:0:0.0', '2018-12-15 12:0:0.0']},
         'method': 'Zonal root mean square error of equatorial_pacific climatological sst STD, time series are linearly detrended, observations and model regridded to generic_1x1deg',
         'name': 'sst zonal seasonality RMSE',
         'ref': 'Using CDAT regridding and rms (uncentered and biased) calculation',
         'time_frequency': 'monthly',
         'units': 'C'},
        'metric': {'datasets': "GFDL-ESM2M_r1i1p1; ERA-Interim's ts & HadISST's sst & Tropflux's sst; 's ",
         'method': 'The metric is the statistical value between the model and the observations',
         'name': 'SeasonalSstLonRmse',
         'units': 'C'}},
       'SeasonalTauxLonRmse': {'diagnostic': {'ERA-Interim': {'name': 'ERA-Interim',
          'nyears': 40,
          'time_period': ['1979-1-16 12:0:0.0', '2019-3-16 12:0:0.0']},
         'GFDL-ESM2M_r1i1p1': {'keyerror': None,
          'name': 'GFDL-ESM2M_r1i1p1',
          'nyears': 145,
          'time_period': ['1861-1-16 12:0:0.0', '2005-12-16 12:0:0.0']},
         'Tropflux': {'name': 'Tropflux',
          'nyears': 40,
          'time_period': ['1979-1-15 0:0:0.0', '2018-12-15 12:0:0.0']},
         'method': 'Zonal root mean square error of equatorial_pacific climatological taux STD, time series are linearly detrended, observations and model regridded to generic_1x1deg',
         'name': 'taux zonal seasonality RMSE',
         'ref': 'Using CDAT regridding and rms (uncentered and biased) calculation',
         'time_frequency': 'monthly',
         'units': '1e-3 N/m2'},
        'metric': {'datasets': "GFDL-ESM2M_r1i1p1; ERA-Interim's tauu & Tropflux's taux; 's ",
         'method': 'The metric is the statistical value between the model and the observations',
         'name': 'SeasonalTauxLonRmse',
         'units': '1e-3 N/m2'}}},
      'name': 'Metrics Collection for ENSO performance'},
     'value': {'BiasPrLatRmse': {'diagnostic': {'ERA-Interim': {'value': None,
         'value_error': None},
        'GFDL-ESM2M_r1i1p1': {'value': None, 'value_error': None},
        'GPCPv2.3': {'value': None, 'value_error': None}},
       'metric': {'ERA-Interim': {'value': 2.1350848944423784,
         'value_error': None},
        'GPCPv2.3': {'value': 2.1595334757118128, 'value_error': None}}},
      'BiasPrLonRmse': {'diagnostic': {'ERA-Interim': {'value': None,
         'value_error': None},
        'GFDL-ESM2M_r1i1p1': {'value': None, 'value_error': None},
        'GPCPv2.3': {'value': None, 'value_error': None}},
       'metric': {'ERA-Interim': {'value': 1.9906260317414441,
         'value_error': None},
        'GPCPv2.3': {'value': 1.0654762438145235, 'value_error': None}}},
      'BiasSstLonRmse': {'diagnostic': {'ERA-Interim': {'value': None,
         'value_error': None},
        'GFDL-ESM2M_r1i1p1': {'value': None, 'value_error': None},
        'HadISST': {'value': None, 'value_error': None},
        'Tropflux': {'value': None, 'value_error': None}},
       'metric': {'ERA-Interim': {'value': 1.2539666191868981,
         'value_error': None},
        'HadISST': {'value': 1.0832422348497441, 'value_error': None},
        'Tropflux': {'value': 1.3023020627649284, 'value_error': None}}},
      'BiasTauxLonRmse': {'diagnostic': {'ERA-Interim': {'value': None,
         'value_error': None},
        'GFDL-ESM2M_r1i1p1': {'value': None, 'value_error': None},
        'Tropflux': {'value': None, 'value_error': None}},
       'metric': {'ERA-Interim': {'value': 6.913390130656868,
         'value_error': None},
        'Tropflux': {'value': 7.052477317145661, 'value_error': None}}},
      'EnsoAmpl': {'diagnostic': {'ERA-Interim': {'value': 0.8989844997845644,
         'value_error': 0.14214193002531866},
        'GFDL-ESM2M_r1i1p1': {'value': 1.3936112368795008,
         'value_error': 0.11573311389622222},
        'HadISST': {'value': 0.7665787872085695,
         'value_error': 0.06238329697691264},
        'Tropflux': {'value': 0.9039789553693535,
         'value_error': 0.14293162279134272}},
       'metric': {'ERA-Interim': {'value': 55.02060794301463,
         'value_error': 37.384671042041944},
        'HadISST': {'value': 81.79621718391346,
         'value_error': 29.891720430885204},
        'Tropflux': {'value': 54.1641239103946,
         'value_error': 37.17812189843369}}},
      'EnsoDuration': {'diagnostic': {'ERA-Interim': {'value': 13.0,
         'value_error': None},
        'GFDL-ESM2M_r1i1p1': {'value': 14.0, 'value_error': None},
        'HadISST': {'value': 13.0, 'value_error': None},
        'Tropflux': {'value': 13.0, 'value_error': None}},
       'metric': {'ERA-Interim': {'value': 7.6923076923076925,
         'value_error': None},
        'HadISST': {'value': 7.6923076923076925, 'value_error': None},
        'Tropflux': {'value': 7.6923076923076925, 'value_error': None}}},
      'EnsoSeasonality': {'diagnostic': {'ERA-Interim': {'value': 2.0466846866656914,
         'value_error': 0.6513411033995022},
        'GFDL-ESM2M_r1i1p1': {'value': 1.0724947890484808,
         'value_error': 0.17844041015120676},
        'HadISST': {'value': 1.6639865947361325,
         'value_error': 0.2712772451657809},
        'Tropflux': {'value': 2.0532132553583624,
         'value_error': 0.6534187683977347}},
       'metric': {'ERA-Interim': {'value': 47.59843584916293,
         'value_error': 25.39489056013855},
        'HadISST': {'value': 35.5466689190154,
         'value_error': 21.231398873216556},
        'Tropflux': {'value': 47.765056247832845,
         'value_error': 25.314142840907706}}},
      'EnsoSstDiversity_2': {'diagnostic': {'ERA-Interim': {'value': 33.25,
         'value_error': None},
        'GFDL-ESM2M_r1i1p1': {'value': 55.0, 'value_error': None},
        'HadISST': {'value': 49.0, 'value_error': None},
        'Tropflux': {'value': 32.0, 'value_error': None}},
       'metric': {'ERA-Interim': {'value': 65.41353383458647,
         'value_error': None},
        'HadISST': {'value': 12.244897959183673, 'value_error': None},
        'Tropflux': {'value': 71.875, 'value_error': None}}},
      'EnsoSstLonRmse': {'diagnostic': {'ERA-Interim': {'value': None,
         'value_error': None},
        'GFDL-ESM2M_r1i1p1': {'value': None, 'value_error': None},
        'HadISST': {'value': None, 'value_error': None},
        'Tropflux': {'value': None, 'value_error': None}},
       'metric': {'ERA-Interim': {'value': 0.2148229410908963,
         'value_error': None},
        'HadISST': {'value': 0.23591781045374116, 'value_error': None},
        'Tropflux': {'value': 0.21789936003010973, 'value_error': None}}},
      'EnsoSstSkew': {'diagnostic': {'ERA-Interim': {'value': 0.39098111106809963,
         'value_error': 0.061819541653923164},
        'GFDL-ESM2M_r1i1p1': {'value': 0.4743349161649029,
         'value_error': 0.03939137072429788},
        'HadISST': {'value': 0.38989908235027515,
         'value_error': 0.03172953733021198},
        'Tropflux': {'value': 0.39744741059612115,
         'value_error': 0.06284195338099416}},
       'metric': {'ERA-Interim': {'value': 21.319138632834118,
         'value_error': 29.25724617568021},
        'HadISST': {'value': 21.655817527360277,
         'value_error': 20.003175768172255},
        'Tropflux': {'value': 19.345328090944204,
         'value_error': 28.78124328298743}}},
      'EnsoSstTsRmse': {'diagnostic': {'ERA-Interim': {'value': None,
         'value_error': None},
        'GFDL-ESM2M_r1i1p1': {'value': None, 'value_error': None},
        'HadISST': {'value': None, 'value_error': None},
        'Tropflux': {'value': None, 'value_error': None}},
       'metric': {'ERA-Interim': {'value': 0.18271975802367652,
         'value_error': None},
        'HadISST': {'value': 0.17598245275703817, 'value_error': None},
        'Tropflux': {'value': 0.17980626338230615, 'value_error': None}}},
      'SeasonalPrLatRmse': {'diagnostic': {'ERA-Interim': {'value': None,
         'value_error': None},
        'GFDL-ESM2M_r1i1p1': {'value': None, 'value_error': None},
        'GPCPv2.3': {'value': None, 'value_error': None}},
       'metric': {'ERA-Interim': {'value': 1.6478787216833868,
         'value_error': None},
        'GPCPv2.3': {'value': 1.7621421895059985, 'value_error': None}}},
      'SeasonalPrLonRmse': {'diagnostic': {'ERA-Interim': {'value': None,
         'value_error': None},
        'GFDL-ESM2M_r1i1p1': {'value': None, 'value_error': None},
        'GPCPv2.3': {'value': None, 'value_error': None}},
       'metric': {'ERA-Interim': {'value': 0.5293389956232548,
         'value_error': None},
        'GPCPv2.3': {'value': 0.403293422942314, 'value_error': None}}},
      'SeasonalSstLonRmse': {'diagnostic': {'ERA-Interim': {'value': None,
         'value_error': None},
        'GFDL-ESM2M_r1i1p1': {'value': None, 'value_error': None},
        'HadISST': {'value': None, 'value_error': None},
        'Tropflux': {'value': None, 'value_error': None}},
       'metric': {'ERA-Interim': {'value': 0.07253357190737085,
         'value_error': None},
        'HadISST': {'value': 0.08065411559906702, 'value_error': None},
        'Tropflux': {'value': 0.07736028532085737, 'value_error': None}}},
      'SeasonalTauxLonRmse': {'diagnostic': {'ERA-Interim': {'value': None,
         'value_error': None},
        'GFDL-ESM2M_r1i1p1': {'value': None, 'value_error': None},
        'Tropflux': {'value': None, 'value_error': None}},
       'metric': {'ERA-Interim': {'value': 2.2274402787660854,
         'value_error': None},
        'Tropflux': {'value': 2.258467860226432, 'value_error': None}}}}}},
   'GISS-E2-H': {'r1i1p1': {'metadata': {'description_of_the_collection': 'Describe which science question this collection is about',
      'metrics': {'BiasPrLatRmse': {'diagnostic': {'ERA-Interim': {'name': 'ERA-Interim',
          'nyears': 40,
          'time_period': ['1979-1-16 12:0:0.0', '2019-3-16 12:0:0.0']},
         'GISS-E2-H_r1i1p1': {'keyerror': None,
          'name': 'GISS-E2-H_r1i1p1',
          'nyears': 156,
          'time_period': ['1850-1-16 12:0:0.0', '2005-12-16 12:0:0.0']},
         'GPCPv2.3': {'name': 'GPCPv2.3',
          'nyears': 41,
          'time_period': ['1979-1-1 0:0:0.0', '2019-7-1 0:0:0.0']},
         'method': 'Meridional root mean square error of nino3_LatExt pr, time series are linearly detrended, observations and model regridded to generic_1x1deg',
         'name': 'pr Meridional RMSE',
         'ref': 'Using CDAT regridding and rms (uncentered and biased) calculation',
         'time_frequency': 'monthly',
         'units': 'mm/day'},
        'metric': {'datasets': "GISS-E2-H_r1i1p1; ERA-Interim's pr & GPCPv2.3's precip; 's ",
         'method': 'The metric is the statistical value between the model and the observations',
         'name': 'BiasPrLatRmse',
         'units': 'mm/day'}},
       'BiasPrLonRmse': {'diagnostic': {'ERA-Interim': {'name': 'ERA-Interim',
          'nyears': 40,
          'time_period': ['1979-1-16 12:0:0.0', '2019-3-16 12:0:0.0']},
         'GISS-E2-H_r1i1p1': {'keyerror': None,
          'name': 'GISS-E2-H_r1i1p1',
          'nyears': 156,
          'time_period': ['1850-1-16 12:0:0.0', '2005-12-16 12:0:0.0']},
         'GPCPv2.3': {'name': 'GPCPv2.3',
          'nyears': 41,
          'time_period': ['1979-1-1 0:0:0.0', '2019-7-1 0:0:0.0']},
         'method': 'Zonal root mean square error of equatorial_pacific pr, time series are linearly detrended, observations and model regridded to generic_1x1deg',
         'name': 'pr Zonal RMSE',
         'ref': 'Using CDAT regridding and rms (uncentered and biased) calculation',
         'time_frequency': 'monthly',
         'units': 'mm/day'},
        'metric': {'datasets': "GISS-E2-H_r1i1p1; ERA-Interim's pr & GPCPv2.3's precip; 's ",
         'method': 'The metric is the statistical value between the model and the observations',
         'name': 'BiasPrLonRmse',
         'units': 'mm/day'}},
       'BiasSstLonRmse': {'diagnostic': {'ERA-Interim': {'name': 'ERA-Interim',
          'nyears': 40,
          'time_period': ['1979-1-16 12:0:0.0', '2019-3-16 12:0:0.0']},
         'GISS-E2-H_r1i1p1': {'keyerror': None,
          'name': 'GISS-E2-H_r1i1p1',
          'nyears': 156,
          'time_period': ['1850-1-16 12:0:0.0', '2005-12-16 12:0:0.0']},
         'HadISST': {'name': 'HadISST',
          'nyears': 151,
          'time_period': ['1870-1-16 11:59:59.5', '2020-10-16 12:0:0.0']},
         'Tropflux': {'name': 'Tropflux',
          'nyears': 40,
          'time_period': ['1979-1-15 0:0:0.0', '2018-12-15 12:0:0.0']},
         'method': 'Zonal root mean square error of equatorial_pacific sst, time series are linearly detrended, observations and model regridded to generic_1x1deg',
         'name': 'sst Zonal RMSE',
         'ref': 'Using CDAT regridding and rms (uncentered and biased) calculation',
         'time_frequency': 'monthly',
         'units': 'C'},
        'metric': {'datasets': "GISS-E2-H_r1i1p1; ERA-Interim's ts & HadISST's sst & Tropflux's sst; 's ",
         'method': 'The metric is the statistical value between the model and the observations',
         'name': 'BiasSstLonRmse',
         'units': 'C'}},
       'BiasTauxLonRmse': {'diagnostic': {'ERA-Interim': {'name': 'ERA-Interim',
          'nyears': 40,
          'time_period': ['1979-1-16 12:0:0.0', '2019-3-16 12:0:0.0']},
         'GISS-E2-H_r1i1p1': {'keyerror': None,
          'name': 'GISS-E2-H_r1i1p1',
          'nyears': 156,
          'time_period': ['1850-1-16 12:0:0.0', '2005-12-16 12:0:0.0']},
         'Tropflux': {'name': 'Tropflux',
          'nyears': 40,
          'time_period': ['1979-1-15 0:0:0.0', '2018-12-15 12:0:0.0']},
         'method': 'Zonal root mean square error of equatorial_pacific taux, time series are linearly detrended, observations and model regridded to generic_1x1deg',
         'name': 'taux Zonal RMSE',
         'ref': 'Using CDAT regridding and rms (uncentered and biased) calculation',
         'time_frequency': 'monthly',
         'units': '1e-3 N/m2'},
        'metric': {'datasets': "GISS-E2-H_r1i1p1; ERA-Interim's tauu & Tropflux's taux; 's ",
         'method': 'The metric is the statistical value between the model and the observations',
         'name': 'BiasTauxLonRmse',
         'units': '1e-3 N/m2'}},
       'EnsoAmpl': {'diagnostic': {'ERA-Interim': {'keyerror': None,
          'name': 'ERA-Interim',
          'nyears': 40,
          'time_period': ['1979-1-16 12:0:0.0', '2019-3-16 12:0:0.0']},
         'GISS-E2-H_r1i1p1': {'keyerror': None,
          'name': 'GISS-E2-H_r1i1p1',
          'nyears': 156,
          'time_period': ['1850-1-16 12:0:0.0', '2005-12-16 12:0:0.0']},
         'HadISST': {'keyerror': None,
          'name': 'HadISST',
          'nyears': 151,
          'time_period': ['1870-1-16 11:59:59.5', '2020-10-16 12:0:0.0']},
         'Tropflux': {'keyerror': None,
          'name': 'Tropflux',
          'nyears': 40,
          'time_period': ['1979-1-15 0:0:0.0', '2018-12-15 12:0:0.0']},
         'method': 'Standard deviation of nino3.4 sstA, time series are linearly detrended',
         'name': 'ENSO amplitude',
         'ref': 'Using CDAT regression calculation',
         'time_frequency': 'monthly',
         'units': 'C'},
        'metric': {'datasets': "GISS-E2-H_r1i1p1; ERA-Interim's ts & HadISST's sst & Tropflux's sst; 's ",
         'method': 'The metric is the absolute value of the relative difference between model and observations values (M = 100 * abs[[model-obs] / obs])',
         'name': 'EnsoAmpl',
         'units': '%'}},
       'EnsoDuration': {'diagnostic': {'ERA-Interim': {'keyerror': None,
          'name': 'ERA-Interim',
          'nyears': 40,
          'time_period': ['1979-1-16 12:0:0.0', '2019-3-16 12:0:0.0']},
         'GISS-E2-H_r1i1p1': {'keyerror': None,
          'name': 'GISS-E2-H_r1i1p1',
          'nyears': 156,
          'time_period': ['1850-1-16 12:0:0.0', '2005-12-16 12:0:0.0']},
         'HadISST': {'keyerror': None,
          'name': 'HadISST',
          'nyears': 151,
          'time_period': ['1870-1-16 11:59:59.5', '2020-10-16 12:0:0.0']},
         'Tropflux': {'keyerror': None,
          'name': 'Tropflux',
          'nyears': 40,
          'time_period': ['1979-1-15 0:0:0.0', '2018-12-15 12:0:0.0']},
         'method': 'nino3.4 SSTA during DEC regressed against nino3.4 SSTA during 6 years (centered on ENSO), the duration is the number of consecutive months during which the regression is above 0.25, time series are linearly detrended, smoothing using a triangle shaped window of 5 points',
         'name': 'ENSO Duration based on life cyle SSTA pattern',
         'ref': 'Using CDAT',
         'time_frequency': 'monthly',
         'units': 'months'},
        'metric': {'datasets': "GISS-E2-H_r1i1p1; ERA-Interim's ts & HadISST's sst & Tropflux's sst; 's ",
         'method': 'The metric is the absolute value of the relative difference between model and observations values (M = 100 * abs[[model-obs] / obs])',
         'name': 'EnsoDuration',
         'units': '%'}},
       'EnsoSeasonality': {'diagnostic': {'ERA-Interim': {'keyerror': None,
          'name': 'ERA-Interim',
          'nyears': 40,
          'time_period': ['1979-1-16 12:0:0.0', '2019-3-16 12:0:0.0']},
         'GISS-E2-H_r1i1p1': {'keyerror': None,
          'name': 'GISS-E2-H_r1i1p1',
          'nyears': 156,
          'time_period': ['1850-1-16 12:0:0.0', '2005-12-16 12:0:0.0']},
         'HadISST': {'keyerror': None,
          'name': 'HadISST',
          'nyears': 151,
          'time_period': ['1870-1-16 11:59:59.5', '2020-10-16 12:0:0.0']},
         'Tropflux': {'keyerror': None,
          'name': 'Tropflux',
          'nyears': 40,
          'time_period': ['1979-1-15 0:0:0.0', '2018-12-15 12:0:0.0']},
         'method': 'Ratio between NDJ and MAM standard deviation nino3.4 sstA, time series are linearly detrended',
         'name': 'ENSO seasonality',
         'ref': 'Using CDAT std dev calculation',
         'time_frequency': 'monthly',
         'units': 'C/C'},
        'metric': {'datasets': "GISS-E2-H_r1i1p1; ERA-Interim's ts & HadISST's sst & Tropflux's sst; 's ",
         'method': 'The metric is the absolute value of the relative difference between model and observations values (M = 100 * abs[[model-obs] / obs])',
         'name': 'EnsoSeasonality',
         'units': '%'}},
       'EnsoSstDiversity_2': {'diagnostic': {'ERA-Interim': {'keyerror': None,
          'name': 'ERA-Interim',
          'nyears': 40,
          'time_period': ['1979-1-16 12:0:0.0', '2019-3-16 12:0:0.0']},
         'GISS-E2-H_r1i1p1': {'keyerror': None,
          'name': 'GISS-E2-H_r1i1p1',
          'nyears': 156,
          'time_period': ['1850-1-16 12:0:0.0', '2005-12-16 12:0:0.0']},
         'HadISST': {'keyerror': None,
          'name': 'HadISST',
          'nyears': 151,
          'time_period': ['1870-1-16 11:59:59.5', '2020-10-16 12:0:0.0']},
         'Tropflux': {'keyerror': None,
          'name': 'Tropflux',
          'nyears': 40,
          'time_period': ['1979-1-15 0:0:0.0', '2018-12-15 12:0:0.0']},
         'method': 'Nino (Nina) events = nino3.4 sstA > 0.75 (< -0.75) during DEC, zonal SSTA (meridional averaged [-5.0 ; 5.0]), the zonal SSTA maximum (minimum) is located for each event, the diversity is the interquartile range (IQR = Q3 - Q1), time series are linearly detrended, smoothing using a triangle shaped window of 5 points',
         'name': 'ENSO Diversity (interquartile range)',
         'ref': 'Using CDAT regridding',
         'time_frequency': 'monthly',
         'units': 'long'},
        'metric': {'datasets': "GISS-E2-H_r1i1p1; ERA-Interim's ts & HadISST's sst & Tropflux's sst; 's ",
         'method': 'The metric is the absolute value of the relative difference between model and observations values (M = 100 * abs[[model-obs] / obs])',
         'name': 'EnsoSstDiversity',
         'units': '%'}},
       'EnsoSstLonRmse': {'diagnostic': {'ERA-Interim': {'name': 'ERA-Interim',
          'nyears': 40,
          'time_period': ['1979-1-16 12:0:0.0', '2019-3-16 12:0:0.0']},
         'GISS-E2-H_r1i1p1': {'keyerror': None,
          'name': 'GISS-E2-H_r1i1p1',
          'nyears': 156,
          'time_period': ['1850-1-16 12:0:0.0', '2005-12-16 12:0:0.0']},
         'HadISST': {'name': 'HadISST',
          'nyears': 151,
          'time_period': ['1870-1-16 11:59:59.5', '2020-10-16 12:0:0.0']},
         'Tropflux': {'name': 'Tropflux',
          'nyears': 40,
          'time_period': ['1979-1-15 0:0:0.0', '2018-12-15 12:0:0.0']},
         'method': 'nino3.4 SSTA during DEC regressed against equatorial_pacific SSTA, time series are linearly detrended, smoothing using a triangle shaped window of 5 points, observations and model regridded to generic_1x1deg',
         'name': 'ENSO Zonal SSTA pattern',
         'ref': 'Using CDAT regridding and rms (uncentered and biased) calculation',
         'time_frequency': 'monthly',
         'units': 'C/C'},
        'metric': {'datasets': "GISS-E2-H_r1i1p1; ERA-Interim's ts & HadISST's sst & Tropflux's sst; 's ",
         'method': 'The metric is the statistical value between the model and the observations',
         'name': 'EnsoSstLonRmse',
         'units': 'C/C'}},
       'EnsoSstSkew': {'diagnostic': {'ERA-Interim': {'keyerror': None,
          'name': 'ERA-Interim',
          'nyears': 40,
          'time_period': ['1979-1-16 12:0:0.0', '2019-3-16 12:0:0.0']},
         'GISS-E2-H_r1i1p1': {'keyerror': None,
          'name': 'GISS-E2-H_r1i1p1',
          'nyears': 156,
          'time_period': ['1850-1-16 12:0:0.0', '2005-12-16 12:0:0.0']},
         'HadISST': {'keyerror': None,
          'name': 'HadISST',
          'nyears': 151,
          'time_period': ['1870-1-16 11:59:59.5', '2020-10-16 12:0:0.0']},
         'Tropflux': {'keyerror': None,
          'name': 'Tropflux',
          'nyears': 40,
          'time_period': ['1979-1-15 0:0:0.0', '2018-12-15 12:0:0.0']},
         'method': 'Standard deviation of nino3.4 sstA, time series are linearly detrended',
         'name': 'ENSO skewness',
         'ref': 'Using CDAT regression calculation',
         'time_frequency': 'monthly',
         'units': 'C'},
        'metric': {'datasets': "GISS-E2-H_r1i1p1; ERA-Interim's ts & HadISST's sst & Tropflux's sst; 's ",
         'method': 'The metric is the absolute value of the relative difference between model and observations values (M = 100 * abs[[model-obs] / obs])',
         'name': 'EnsoSstSkew',
         'units': '%'}},
       'EnsoSstTsRmse': {'diagnostic': {'ERA-Interim': {'name': 'ERA-Interim',
          'nyears': 40,
          'time_period': ['1979-1-16 12:0:0.0', '2019-3-16 12:0:0.0']},
         'GISS-E2-H_r1i1p1': {'keyerror': None,
          'name': 'GISS-E2-H_r1i1p1',
          'nyears': 156,
          'time_period': ['1850-1-16 12:0:0.0', '2005-12-16 12:0:0.0']},
         'HadISST': {'name': 'HadISST',
          'nyears': 151,
          'time_period': ['1870-1-16 11:59:59.5', '2020-10-16 12:0:0.0']},
         'Tropflux': {'name': 'Tropflux',
          'nyears': 40,
          'time_period': ['1979-1-15 0:0:0.0', '2018-12-15 12:0:0.0']},
         'method': 'nino3.4 SSTA during DEC regressed against nino3.4 SSTA during 6 years (centered on ENSO), time series are linearly detrended, smoothing using a triangle shaped window of 5 points',
         'name': 'ENSO life cyle SSTA pattern',
         'ref': 'Using CDAT regridding and rms (uncentered and biased) calculation',
         'time_frequency': 'monthly',
         'units': 'C/C'},
        'metric': {'datasets': "GISS-E2-H_r1i1p1; ERA-Interim's ts & HadISST's sst & Tropflux's sst; 's ",
         'method': 'The metric is the statistical value between the model and the observations',
         'name': 'EnsoSstTsRmse',
         'units': 'C/C'}},
       'SeasonalPrLatRmse': {'diagnostic': {'ERA-Interim': {'name': 'ERA-Interim',
          'nyears': 40,
          'time_period': ['1979-1-16 12:0:0.0', '2019-3-16 12:0:0.0']},
         'GISS-E2-H_r1i1p1': {'keyerror': None,
          'name': 'GISS-E2-H_r1i1p1',
          'nyears': 156,
          'time_period': ['1850-1-16 12:0:0.0', '2005-12-16 12:0:0.0']},
         'GPCPv2.3': {'name': 'GPCPv2.3',
          'nyears': 41,
          'time_period': ['1979-1-1 0:0:0.0', '2019-7-1 0:0:0.0']},
         'method': 'Meridional root mean square error of nino3_LatExt climatological pr STD, time series are linearly detrended, observations and model regridded to generic_1x1deg',
         'name': 'pr meridional seasonality RMSE',
         'ref': 'Using CDAT regridding and rms (uncentered and biased) calculation',
         'time_frequency': 'monthly',
         'units': 'mm/day'},
        'metric': {'datasets': "GISS-E2-H_r1i1p1; ERA-Interim's pr & GPCPv2.3's precip; 's ",
         'method': 'The metric is the statistical value between the model and the observations',
         'name': 'SeasonalPrLatRmse',
         'units': 'mm/day'}},
       'SeasonalPrLonRmse': {'diagnostic': {'ERA-Interim': {'name': 'ERA-Interim',
          'nyears': 40,
          'time_period': ['1979-1-16 12:0:0.0', '2019-3-16 12:0:0.0']},
         'GISS-E2-H_r1i1p1': {'keyerror': None,
          'name': 'GISS-E2-H_r1i1p1',
          'nyears': 156,
          'time_period': ['1850-1-16 12:0:0.0', '2005-12-16 12:0:0.0']},
         'GPCPv2.3': {'name': 'GPCPv2.3',
          'nyears': 41,
          'time_period': ['1979-1-1 0:0:0.0', '2019-7-1 0:0:0.0']},
         'method': 'Zonal root mean square error of equatorial_pacific climatological pr STD, time series are linearly detrended, observations and model regridded to generic_1x1deg',
         'name': 'pr zonal seasonality RMSE',
         'ref': 'Using CDAT regridding and rms (uncentered and biased) calculation',
         'time_frequency': 'monthly',
         'units': 'mm/day'},
        'metric': {'datasets': "GISS-E2-H_r1i1p1; ERA-Interim's pr & GPCPv2.3's precip; 's ",
         'method': 'The metric is the statistical value between the model and the observations',
         'name': 'SeasonalPrLonRmse',
         'units': 'mm/day'}},
       'SeasonalSstLonRmse': {'diagnostic': {'ERA-Interim': {'name': 'ERA-Interim',
          'nyears': 40,
          'time_period': ['1979-1-16 12:0:0.0', '2019-3-16 12:0:0.0']},
         'GISS-E2-H_r1i1p1': {'keyerror': None,
          'name': 'GISS-E2-H_r1i1p1',
          'nyears': 156,
          'time_period': ['1850-1-16 12:0:0.0', '2005-12-16 12:0:0.0']},
         'HadISST': {'name': 'HadISST',
          'nyears': 151,
          'time_period': ['1870-1-16 11:59:59.5', '2020-10-16 12:0:0.0']},
         'Tropflux': {'name': 'Tropflux',
          'nyears': 40,
          'time_period': ['1979-1-15 0:0:0.0', '2018-12-15 12:0:0.0']},
         'method': 'Zonal root mean square error of equatorial_pacific climatological sst STD, time series are linearly detrended, observations and model regridded to generic_1x1deg',
         'name': 'sst zonal seasonality RMSE',
         'ref': 'Using CDAT regridding and rms (uncentered and biased) calculation',
         'time_frequency': 'monthly',
         'units': 'C'},
        'metric': {'datasets': "GISS-E2-H_r1i1p1; ERA-Interim's ts & HadISST's sst & Tropflux's sst; 's ",
         'method': 'The metric is the statistical value between the model and the observations',
         'name': 'SeasonalSstLonRmse',
         'units': 'C'}},
       'SeasonalTauxLonRmse': {'diagnostic': {'ERA-Interim': {'name': 'ERA-Interim',
          'nyears': 40,
          'time_period': ['1979-1-16 12:0:0.0', '2019-3-16 12:0:0.0']},
         'GISS-E2-H_r1i1p1': {'keyerror': None,
          'name': 'GISS-E2-H_r1i1p1',
          'nyears': 156,
          'time_period': ['1850-1-16 12:0:0.0', '2005-12-16 12:0:0.0']},
         'Tropflux': {'name': 'Tropflux',
          'nyears': 40,
          'time_period': ['1979-1-15 0:0:0.0', '2018-12-15 12:0:0.0']},
         'method': 'Zonal root mean square error of equatorial_pacific climatological taux STD, time series are linearly detrended, observations and model regridded to generic_1x1deg',
         'name': 'taux zonal seasonality RMSE',
         'ref': 'Using CDAT regridding and rms (uncentered and biased) calculation',
         'time_frequency': 'monthly',
         'units': '1e-3 N/m2'},
        'metric': {'datasets': "GISS-E2-H_r1i1p1; ERA-Interim's tauu & Tropflux's taux; 's ",
         'method': 'The metric is the statistical value between the model and the observations',
         'name': 'SeasonalTauxLonRmse',
         'units': '1e-3 N/m2'}}},
      'name': 'Metrics Collection for ENSO performance'},
     'value': {'BiasPrLatRmse': {'diagnostic': {'ERA-Interim': {'value': None,
         'value_error': None},
        'GISS-E2-H_r1i1p1': {'value': None, 'value_error': None},
        'GPCPv2.3': {'value': None, 'value_error': None}},
       'metric': {'ERA-Interim': {'value': 2.877054927142715,
         'value_error': None},
        'GPCPv2.3': {'value': 3.4796559143491756, 'value_error': None}}},
      'BiasPrLonRmse': {'diagnostic': {'ERA-Interim': {'value': None,
         'value_error': None},
        'GISS-E2-H_r1i1p1': {'value': None, 'value_error': None},
        'GPCPv2.3': {'value': None, 'value_error': None}},
       'metric': {'ERA-Interim': {'value': 1.5169820500340354,
         'value_error': None},
        'GPCPv2.3': {'value': 0.948666856596162, 'value_error': None}}},
      'BiasSstLonRmse': {'diagnostic': {'ERA-Interim': {'value': None,
         'value_error': None},
        'GISS-E2-H_r1i1p1': {'value': None, 'value_error': None},
        'HadISST': {'value': None, 'value_error': None},
        'Tropflux': {'value': None, 'value_error': None}},
       'metric': {'ERA-Interim': {'value': 0.8379585686657918,
         'value_error': None},
        'HadISST': {'value': 0.9179864070288443, 'value_error': None},
        'Tropflux': {'value': 0.828891717362887, 'value_error': None}}},
      'BiasTauxLonRmse': {'diagnostic': {'ERA-Interim': {'value': None,
         'value_error': None},
        'GISS-E2-H_r1i1p1': {'value': None, 'value_error': None},
        'Tropflux': {'value': None, 'value_error': None}},
       'metric': {'ERA-Interim': {'value': 21.35556840902519,
         'value_error': None},
        'Tropflux': {'value': 20.997659900296227, 'value_error': None}}},
      'EnsoAmpl': {'diagnostic': {'ERA-Interim': {'value': 0.8989844997845644,
         'value_error': 0.14214193002531866},
        'GISS-E2-H_r1i1p1': {'value': 0.5263559283690084,
         'value_error': 0.042142201527045994},
        'HadISST': {'value': 0.7665787872085695,
         'value_error': 0.06238329697691264},
        'Tropflux': {'value': 0.9039789553693535,
         'value_error': 0.14293162279134272}},
       'metric': {'ERA-Interim': {'value': 41.44994396509105,
         'value_error': 13.945332899067154},
        'HadISST': {'value': 31.337008386875926,
         'value_error': 11.085154052817996},
        'Tropflux': {'value': 41.7734312018418,
         'value_error': 13.86828536896062}}},
      'EnsoDuration': {'diagnostic': {'ERA-Interim': {'value': 13.0,
         'value_error': None},
        'GISS-E2-H_r1i1p1': {'value': 12.0, 'value_error': None},
        'HadISST': {'value': 13.0, 'value_error': None},
        'Tropflux': {'value': 13.0, 'value_error': None}},
       'metric': {'ERA-Interim': {'value': 7.6923076923076925,
         'value_error': None},
        'HadISST': {'value': 7.6923076923076925, 'value_error': None},
        'Tropflux': {'value': 7.6923076923076925, 'value_error': None}}},
      'EnsoSeasonality': {'diagnostic': {'ERA-Interim': {'value': 2.0466846866656914,
         'value_error': 0.6513411033995022},
        'GISS-E2-H_r1i1p1': {'value': 1.410611439707683,
         'value_error': 0.22624234018278294},
        'HadISST': {'value': 1.6639865947361325,
         'value_error': 0.2712772451657809},
        'Tropflux': {'value': 2.0532132553583624,
         'value_error': 0.6534187683977347}},
       'metric': {'ERA-Interim': {'value': 31.078223778292507,
         'value_error': 32.98789512163236},
        'HadISST': {'value': 15.226994966785092,
         'value_error': 27.416820203018595},
        'Tropflux': {'value': 31.297373225779285,
         'value_error': 32.88300404966692}}},
      'EnsoSstDiversity_2': {'diagnostic': {'ERA-Interim': {'value': 33.25,
         'value_error': None},
        'GISS-E2-H_r1i1p1': {'value': 26.5, 'value_error': None},
        'HadISST': {'value': 49.0, 'value_error': None},
        'Tropflux': {'value': 32.0, 'value_error': None}},
       'metric': {'ERA-Interim': {'value': 20.30075187969925,
         'value_error': None},
        'HadISST': {'value': 45.91836734693878, 'value_error': None},
        'Tropflux': {'value': 17.1875, 'value_error': None}}},
      'EnsoSstLonRmse': {'diagnostic': {'ERA-Interim': {'value': None,
         'value_error': None},
        'GISS-E2-H_r1i1p1': {'value': None, 'value_error': None},
        'HadISST': {'value': None, 'value_error': None},
        'Tropflux': {'value': None, 'value_error': None}},
       'metric': {'ERA-Interim': {'value': 0.2847528493350118,
         'value_error': None},
        'HadISST': {'value': 0.2888497157885263, 'value_error': None},
        'Tropflux': {'value': 0.2839854816528618, 'value_error': None}}},
      'EnsoSstSkew': {'diagnostic': {'ERA-Interim': {'value': 0.39098111106809963,
         'value_error': 0.061819541653923164},
        'GISS-E2-H_r1i1p1': {'value': -0.12459193944040547,
         'value_error': -0.009975338620793675},
        'HadISST': {'value': 0.38989908235027515,
         'value_error': 0.03172953733021198},
        'Tropflux': {'value': 0.39744741059612115,
         'value_error': 0.06284195338099416}},
       'metric': {'ERA-Interim': {'value': 131.8664855956953,
         'value_error': -7.589894528714784},
        'HadISST': {'value': 131.95491989603488,
         'value_error': -5.1588956652057645},
        'Tropflux': {'value': 131.34803149265286,
         'value_error': -7.466410188144669}}},
      'EnsoSstTsRmse': {'diagnostic': {'ERA-Interim': {'value': None,
         'value_error': None},
        'GISS-E2-H_r1i1p1': {'value': None, 'value_error': None},
        'HadISST': {'value': None, 'value_error': None},
        'Tropflux': {'value': None, 'value_error': None}},
       'metric': {'ERA-Interim': {'value': 0.20398053098971128,
         'value_error': None},
        'HadISST': {'value': 0.19529929638300522, 'value_error': None},
        'Tropflux': {'value': 0.20558578634812627, 'value_error': None}}},
      'SeasonalPrLatRmse': {'diagnostic': {'ERA-Interim': {'value': None,
         'value_error': None},
        'GISS-E2-H_r1i1p1': {'value': None, 'value_error': None},
        'GPCPv2.3': {'value': None, 'value_error': None}},
       'metric': {'ERA-Interim': {'value': 1.1423542107952447,
         'value_error': None},
        'GPCPv2.3': {'value': 1.0331782595721748, 'value_error': None}}},
      'SeasonalPrLonRmse': {'diagnostic': {'ERA-Interim': {'value': None,
         'value_error': None},
        'GISS-E2-H_r1i1p1': {'value': None, 'value_error': None},
        'GPCPv2.3': {'value': None, 'value_error': None}},
       'metric': {'ERA-Interim': {'value': 0.8110055651441949,
         'value_error': None},
        'GPCPv2.3': {'value': 0.4937790334415139, 'value_error': None}}},
      'SeasonalSstLonRmse': {'diagnostic': {'ERA-Interim': {'value': None,
         'value_error': None},
        'GISS-E2-H_r1i1p1': {'value': None, 'value_error': None},
        'HadISST': {'value': None, 'value_error': None},
        'Tropflux': {'value': None, 'value_error': None}},
       'metric': {'ERA-Interim': {'value': 0.312568720688009,
         'value_error': None},
        'HadISST': {'value': 0.3070047802090827, 'value_error': None},
        'Tropflux': {'value': 0.3222072115932682, 'value_error': None}}},
      'SeasonalTauxLonRmse': {'diagnostic': {'ERA-Interim': {'value': None,
         'value_error': None},
        'GISS-E2-H_r1i1p1': {'value': None, 'value_error': None},
        'Tropflux': {'value': None, 'value_error': None}},
       'metric': {'ERA-Interim': {'value': 2.9760209586824677,
         'value_error': None},
        'Tropflux': {'value': 3.219806925605569, 'value_error': None}}}}},
    'r1i1p2': {'metadata': {'description_of_the_collection': 'Describe which science question this collection is about',
      'metrics': {'BiasPrLatRmse': {'diagnostic': {'ERA-Interim': {'name': 'ERA-Interim',
          'nyears': 40,
          'time_period': ['1979-1-16 12:0:0.0', '2019-3-16 12:0:0.0']},
         'GISS-E2-H_r1i1p2': {'keyerror': None,
          'name': 'GISS-E2-H_r1i1p2',
          'nyears': 156,
          'time_period': ['1850-1-16 12:0:0.0', '2005-12-16 12:0:0.0']},
         'GPCPv2.3': {'name': 'GPCPv2.3',
          'nyears': 41,
          'time_period': ['1979-1-1 0:0:0.0', '2019-7-1 0:0:0.0']},
         'method': 'Meridional root mean square error of nino3_LatExt pr, time series are linearly detrended, observations and model regridded to generic_1x1deg',
         'name': 'pr Meridional RMSE',
         'ref': 'Using CDAT regridding and rms (uncentered and biased) calculation',
         'time_frequency': 'monthly',
         'units': 'mm/day'},
        'metric': {'datasets': "GISS-E2-H_r1i1p2; ERA-Interim's pr & GPCPv2.3's precip; 's ",
         'method': 'The metric is the statistical value between the model and the observations',
         'name': 'BiasPrLatRmse',
         'units': 'mm/day'}},
       'BiasPrLonRmse': {'diagnostic': {'ERA-Interim': {'name': 'ERA-Interim',
          'nyears': 40,
          'time_period': ['1979-1-16 12:0:0.0', '2019-3-16 12:0:0.0']},
         'GISS-E2-H_r1i1p2': {'keyerror': None,
          'name': 'GISS-E2-H_r1i1p2',
          'nyears': 156,
          'time_period': ['1850-1-16 12:0:0.0', '2005-12-16 12:0:0.0']},
         'GPCPv2.3': {'name': 'GPCPv2.3',
          'nyears': 41,
          'time_period': ['1979-1-1 0:0:0.0', '2019-7-1 0:0:0.0']},
         'method': 'Zonal root mean square error of equatorial_pacific pr, time series are linearly detrended, observations and model regridded to generic_1x1deg',
         'name': 'pr Zonal RMSE',
         'ref': 'Using CDAT regridding and rms (uncentered and biased) calculation',
         'time_frequency': 'monthly',
         'units': 'mm/day'},
        'metric': {'datasets': "GISS-E2-H_r1i1p2; ERA-Interim's pr & GPCPv2.3's precip; 's ",
         'method': 'The metric is the statistical value between the model and the observations',
         'name': 'BiasPrLonRmse',
         'units': 'mm/day'}},
       'BiasSstLonRmse': {'diagnostic': {'ERA-Interim': {'name': 'ERA-Interim',
          'nyears': 40,
          'time_period': ['1979-1-16 12:0:0.0', '2019-3-16 12:0:0.0']},
         'GISS-E2-H_r1i1p2': {'keyerror': None,
          'name': 'GISS-E2-H_r1i1p2',
          'nyears': 156,
          'time_period': ['1850-1-16 12:0:0.0', '2005-12-16 12:0:0.0']},
         'HadISST': {'name': 'HadISST',
          'nyears': 151,
          'time_period': ['1870-1-16 11:59:59.5', '2020-10-16 12:0:0.0']},
         'Tropflux': {'name': 'Tropflux',
          'nyears': 40,
          'time_period': ['1979-1-15 0:0:0.0', '2018-12-15 12:0:0.0']},
         'method': 'Zonal root mean square error of equatorial_pacific sst, time series are linearly detrended, observations and model regridded to generic_1x1deg',
         'name': 'sst Zonal RMSE',
         'ref': 'Using CDAT regridding and rms (uncentered and biased) calculation',
         'time_frequency': 'monthly',
         'units': 'C'},
        'metric': {'datasets': "GISS-E2-H_r1i1p2; ERA-Interim's ts & HadISST's sst & Tropflux's sst; 's ",
         'method': 'The metric is the statistical value between the model and the observations',
         'name': 'BiasSstLonRmse',
         'units': 'C'}},
       'BiasTauxLonRmse': {'diagnostic': {'ERA-Interim': {'name': 'ERA-Interim',
          'nyears': 40,
          'time_period': ['1979-1-16 12:0:0.0', '2019-3-16 12:0:0.0']},
         'GISS-E2-H_r1i1p2': {'keyerror': None,
          'name': 'GISS-E2-H_r1i1p2',
          'nyears': 156,
          'time_period': ['1850-1-16 12:0:0.0', '2005-12-16 12:0:0.0']},
         'Tropflux': {'name': 'Tropflux',
          'nyears': 40,
          'time_period': ['1979-1-15 0:0:0.0', '2018-12-15 12:0:0.0']},
         'method': 'Zonal root mean square error of equatorial_pacific taux, time series are linearly detrended, observations and model regridded to generic_1x1deg',
         'name': 'taux Zonal RMSE',
         'ref': 'Using CDAT regridding and rms (uncentered and biased) calculation',
         'time_frequency': 'monthly',
         'units': '1e-3 N/m2'},
        'metric': {'datasets': "GISS-E2-H_r1i1p2; ERA-Interim's tauu & Tropflux's taux; 's ",
         'method': 'The metric is the statistical value between the model and the observations',
         'name': 'BiasTauxLonRmse',
         'units': '1e-3 N/m2'}},
       'EnsoAmpl': {'diagnostic': {'ERA-Interim': {'keyerror': None,
          'name': 'ERA-Interim',
          'nyears': 40,
          'time_period': ['1979-1-16 12:0:0.0', '2019-3-16 12:0:0.0']},
         'GISS-E2-H_r1i1p2': {'keyerror': None,
          'name': 'GISS-E2-H_r1i1p2',
          'nyears': 156,
          'time_period': ['1850-1-16 12:0:0.0', '2005-12-16 12:0:0.0']},
         'HadISST': {'keyerror': None,
          'name': 'HadISST',
          'nyears': 151,
          'time_period': ['1870-1-16 11:59:59.5', '2020-10-16 12:0:0.0']},
         'Tropflux': {'keyerror': None,
          'name': 'Tropflux',
          'nyears': 40,
          'time_period': ['1979-1-15 0:0:0.0', '2018-12-15 12:0:0.0']},
         'method': 'Standard deviation of nino3.4 sstA, time series are linearly detrended',
         'name': 'ENSO amplitude',
         'ref': 'Using CDAT regression calculation',
         'time_frequency': 'monthly',
         'units': 'C'},
        'metric': {'datasets': "GISS-E2-H_r1i1p2; ERA-Interim's ts & HadISST's sst & Tropflux's sst; 's ",
         'method': 'The metric is the absolute value of the relative difference between model and observations values (M = 100 * abs[[model-obs] / obs])',
         'name': 'EnsoAmpl',
         'units': '%'}},
       'EnsoDuration': {'diagnostic': {'ERA-Interim': {'keyerror': None,
          'name': 'ERA-Interim',
          'nyears': 40,
          'time_period': ['1979-1-16 12:0:0.0', '2019-3-16 12:0:0.0']},
         'GISS-E2-H_r1i1p2': {'keyerror': None,
          'name': 'GISS-E2-H_r1i1p2',
          'nyears': 156,
          'time_period': ['1850-1-16 12:0:0.0', '2005-12-16 12:0:0.0']},
         'HadISST': {'keyerror': None,
          'name': 'HadISST',
          'nyears': 151,
          'time_period': ['1870-1-16 11:59:59.5', '2020-10-16 12:0:0.0']},
         'Tropflux': {'keyerror': None,
          'name': 'Tropflux',
          'nyears': 40,
          'time_period': ['1979-1-15 0:0:0.0', '2018-12-15 12:0:0.0']},
         'method': 'nino3.4 SSTA during DEC regressed against nino3.4 SSTA during 6 years (centered on ENSO), the duration is the number of consecutive months during which the regression is above 0.25, time series are linearly detrended, smoothing using a triangle shaped window of 5 points',
         'name': 'ENSO Duration based on life cyle SSTA pattern',
         'ref': 'Using CDAT',
         'time_frequency': 'monthly',
         'units': 'months'},
        'metric': {'datasets': "GISS-E2-H_r1i1p2; ERA-Interim's ts & HadISST's sst & Tropflux's sst; 's ",
         'method': 'The metric is the absolute value of the relative difference between model and observations values (M = 100 * abs[[model-obs] / obs])',
         'name': 'EnsoDuration',
         'units': '%'}},
       'EnsoSeasonality': {'diagnostic': {'ERA-Interim': {'keyerror': None,
          'name': 'ERA-Interim',
          'nyears': 40,
          'time_period': ['1979-1-16 12:0:0.0', '2019-3-16 12:0:0.0']},
         'GISS-E2-H_r1i1p2': {'keyerror': None,
          'name': 'GISS-E2-H_r1i1p2',
          'nyears': 156,
          'time_period': ['1850-1-16 12:0:0.0', '2005-12-16 12:0:0.0']},
         'HadISST': {'keyerror': None,
          'name': 'HadISST',
          'nyears': 151,
          'time_period': ['1870-1-16 11:59:59.5', '2020-10-16 12:0:0.0']},
         'Tropflux': {'keyerror': None,
          'name': 'Tropflux',
          'nyears': 40,
          'time_period': ['1979-1-15 0:0:0.0', '2018-12-15 12:0:0.0']},
         'method': 'Ratio between NDJ and MAM standard deviation nino3.4 sstA, time series are linearly detrended',
         'name': 'ENSO seasonality',
         'ref': 'Using CDAT std dev calculation',
         'time_frequency': 'monthly',
         'units': 'C/C'},
        'metric': {'datasets': "GISS-E2-H_r1i1p2; ERA-Interim's ts & HadISST's sst & Tropflux's sst; 's ",
         'method': 'The metric is the absolute value of the relative difference between model and observations values (M = 100 * abs[[model-obs] / obs])',
         'name': 'EnsoSeasonality',
         'units': '%'}},
       'EnsoSstDiversity_2': {'diagnostic': {'ERA-Interim': {'keyerror': None,
          'name': 'ERA-Interim',
          'nyears': 40,
          'time_period': ['1979-1-16 12:0:0.0', '2019-3-16 12:0:0.0']},
         'GISS-E2-H_r1i1p2': {'keyerror': None,
          'name': 'GISS-E2-H_r1i1p2',
          'nyears': 156,
          'time_period': ['1850-1-16 12:0:0.0', '2005-12-16 12:0:0.0']},
         'HadISST': {'keyerror': None,
          'name': 'HadISST',
          'nyears': 151,
          'time_period': ['1870-1-16 11:59:59.5', '2020-10-16 12:0:0.0']},
         'Tropflux': {'keyerror': None,
          'name': 'Tropflux',
          'nyears': 40,
          'time_period': ['1979-1-15 0:0:0.0', '2018-12-15 12:0:0.0']},
         'method': 'Nino (Nina) events = nino3.4 sstA > 0.75 (< -0.75) during DEC, zonal SSTA (meridional averaged [-5.0 ; 5.0]), the zonal SSTA maximum (minimum) is located for each event, the diversity is the interquartile range (IQR = Q3 - Q1), time series are linearly detrended, smoothing using a triangle shaped window of 5 points',
         'name': 'ENSO Diversity (interquartile range)',
         'ref': 'Using CDAT regridding',
         'time_frequency': 'monthly',
         'units': 'long'},
        'metric': {'datasets': "GISS-E2-H_r1i1p2; ERA-Interim's ts & HadISST's sst & Tropflux's sst; 's ",
         'method': 'The metric is the absolute value of the relative difference between model and observations values (M = 100 * abs[[model-obs] / obs])',
         'name': 'EnsoSstDiversity',
         'units': '%'}},
       'EnsoSstLonRmse': {'diagnostic': {'ERA-Interim': {'name': 'ERA-Interim',
          'nyears': 40,
          'time_period': ['1979-1-16 12:0:0.0', '2019-3-16 12:0:0.0']},
         'GISS-E2-H_r1i1p2': {'keyerror': None,
          'name': 'GISS-E2-H_r1i1p2',
          'nyears': 156,
          'time_period': ['1850-1-16 12:0:0.0', '2005-12-16 12:0:0.0']},
         'HadISST': {'name': 'HadISST',
          'nyears': 151,
          'time_period': ['1870-1-16 11:59:59.5', '2020-10-16 12:0:0.0']},
         'Tropflux': {'name': 'Tropflux',
          'nyears': 40,
          'time_period': ['1979-1-15 0:0:0.0', '2018-12-15 12:0:0.0']},
         'method': 'nino3.4 SSTA during DEC regressed against equatorial_pacific SSTA, time series are linearly detrended, smoothing using a triangle shaped window of 5 points, observations and model regridded to generic_1x1deg',
         'name': 'ENSO Zonal SSTA pattern',
         'ref': 'Using CDAT regridding and rms (uncentered and biased) calculation',
         'time_frequency': 'monthly',
         'units': 'C/C'},
        'metric': {'datasets': "GISS-E2-H_r1i1p2; ERA-Interim's ts & HadISST's sst & Tropflux's sst; 's ",
         'method': 'The metric is the statistical value between the model and the observations',
         'name': 'EnsoSstLonRmse',
         'units': 'C/C'}},
       'EnsoSstSkew': {'diagnostic': {'ERA-Interim': {'keyerror': None,
          'name': 'ERA-Interim',
          'nyears': 40,
          'time_period': ['1979-1-16 12:0:0.0', '2019-3-16 12:0:0.0']},
         'GISS-E2-H_r1i1p2': {'keyerror': None,
          'name': 'GISS-E2-H_r1i1p2',
          'nyears': 156,
          'time_period': ['1850-1-16 12:0:0.0', '2005-12-16 12:0:0.0']},
         'HadISST': {'keyerror': None,
          'name': 'HadISST',
          'nyears': 151,
          'time_period': ['1870-1-16 11:59:59.5', '2020-10-16 12:0:0.0']},
         'Tropflux': {'keyerror': None,
          'name': 'Tropflux',
          'nyears': 40,
          'time_period': ['1979-1-15 0:0:0.0', '2018-12-15 12:0:0.0']},
         'method': 'Standard deviation of nino3.4 sstA, time series are linearly detrended',
         'name': 'ENSO skewness',
         'ref': 'Using CDAT regression calculation',
         'time_frequency': 'monthly',
         'units': 'C'},
        'metric': {'datasets': "GISS-E2-H_r1i1p2; ERA-Interim's ts & HadISST's sst & Tropflux's sst; 's ",
         'method': 'The metric is the absolute value of the relative difference between model and observations values (M = 100 * abs[[model-obs] / obs])',
         'name': 'EnsoSstSkew',
         'units': '%'}},
       'EnsoSstTsRmse': {'diagnostic': {'ERA-Interim': {'name': 'ERA-Interim',
          'nyears': 40,
          'time_period': ['1979-1-16 12:0:0.0', '2019-3-16 12:0:0.0']},
         'GISS-E2-H_r1i1p2': {'keyerror': None,
          'name': 'GISS-E2-H_r1i1p2',
          'nyears': 156,
          'time_period': ['1850-1-16 12:0:0.0', '2005-12-16 12:0:0.0']},
         'HadISST': {'name': 'HadISST',
          'nyears': 151,
          'time_period': ['1870-1-16 11:59:59.5', '2020-10-16 12:0:0.0']},
         'Tropflux': {'name': 'Tropflux',
          'nyears': 40,
          'time_period': ['1979-1-15 0:0:0.0', '2018-12-15 12:0:0.0']},
         'method': 'nino3.4 SSTA during DEC regressed against nino3.4 SSTA during 6 years (centered on ENSO), time series are linearly detrended, smoothing using a triangle shaped window of 5 points',
         'name': 'ENSO life cyle SSTA pattern',
         'ref': 'Using CDAT regridding and rms (uncentered and biased) calculation',
         'time_frequency': 'monthly',
         'units': 'C/C'},
        'metric': {'datasets': "GISS-E2-H_r1i1p2; ERA-Interim's ts & HadISST's sst & Tropflux's sst; 's ",
         'method': 'The metric is the statistical value between the model and the observations',
         'name': 'EnsoSstTsRmse',
         'units': 'C/C'}},
       'SeasonalPrLatRmse': {'diagnostic': {'ERA-Interim': {'name': 'ERA-Interim',
          'nyears': 40,
          'time_period': ['1979-1-16 12:0:0.0', '2019-3-16 12:0:0.0']},
         'GISS-E2-H_r1i1p2': {'keyerror': None,
          'name': 'GISS-E2-H_r1i1p2',
          'nyears': 156,
          'time_period': ['1850-1-16 12:0:0.0', '2005-12-16 12:0:0.0']},
         'GPCPv2.3': {'name': 'GPCPv2.3',
          'nyears': 41,
          'time_period': ['1979-1-1 0:0:0.0', '2019-7-1 0:0:0.0']},
         'method': 'Meridional root mean square error of nino3_LatExt climatological pr STD, time series are linearly detrended, observations and model regridded to generic_1x1deg',
         'name': 'pr meridional seasonality RMSE',
         'ref': 'Using CDAT regridding and rms (uncentered and biased) calculation',
         'time_frequency': 'monthly',
         'units': 'mm/day'},
        'metric': {'datasets': "GISS-E2-H_r1i1p2; ERA-Interim's pr & GPCPv2.3's precip; 's ",
         'method': 'The metric is the statistical value between the model and the observations',
         'name': 'SeasonalPrLatRmse',
         'units': 'mm/day'}},
       'SeasonalPrLonRmse': {'diagnostic': {'ERA-Interim': {'name': 'ERA-Interim',
          'nyears': 40,
          'time_period': ['1979-1-16 12:0:0.0', '2019-3-16 12:0:0.0']},
         'GISS-E2-H_r1i1p2': {'keyerror': None,
          'name': 'GISS-E2-H_r1i1p2',
          'nyears': 156,
          'time_period': ['1850-1-16 12:0:0.0', '2005-12-16 12:0:0.0']},
         'GPCPv2.3': {'name': 'GPCPv2.3',
          'nyears': 41,
          'time_period': ['1979-1-1 0:0:0.0', '2019-7-1 0:0:0.0']},
         'method': 'Zonal root mean square error of equatorial_pacific climatological pr STD, time series are linearly detrended, observations and model regridded to generic_1x1deg',
         'name': 'pr zonal seasonality RMSE',
         'ref': 'Using CDAT regridding and rms (uncentered and biased) calculation',
         'time_frequency': 'monthly',
         'units': 'mm/day'},
        'metric': {'datasets': "GISS-E2-H_r1i1p2; ERA-Interim's pr & GPCPv2.3's precip; 's ",
         'method': 'The metric is the statistical value between the model and the observations',
         'name': 'SeasonalPrLonRmse',
         'units': 'mm/day'}},
       'SeasonalSstLonRmse': {'diagnostic': {'ERA-Interim': {'name': 'ERA-Interim',
          'nyears': 40,
          'time_period': ['1979-1-16 12:0:0.0', '2019-3-16 12:0:0.0']},
         'GISS-E2-H_r1i1p2': {'keyerror': None,
          'name': 'GISS-E2-H_r1i1p2',
          'nyears': 156,
          'time_period': ['1850-1-16 12:0:0.0', '2005-12-16 12:0:0.0']},
         'HadISST': {'name': 'HadISST',
          'nyears': 151,
          'time_period': ['1870-1-16 11:59:59.5', '2020-10-16 12:0:0.0']},
         'Tropflux': {'name': 'Tropflux',
          'nyears': 40,
          'time_period': ['1979-1-15 0:0:0.0', '2018-12-15 12:0:0.0']},
         'method': 'Zonal root mean square error of equatorial_pacific climatological sst STD, time series are linearly detrended, observations and model regridded to generic_1x1deg',
         'name': 'sst zonal seasonality RMSE',
         'ref': 'Using CDAT regridding and rms (uncentered and biased) calculation',
         'time_frequency': 'monthly',
         'units': 'C'},
        'metric': {'datasets': "GISS-E2-H_r1i1p2; ERA-Interim's ts & HadISST's sst & Tropflux's sst; 's ",
         'method': 'The metric is the statistical value between the model and the observations',
         'name': 'SeasonalSstLonRmse',
         'units': 'C'}},
       'SeasonalTauxLonRmse': {'diagnostic': {'ERA-Interim': {'name': 'ERA-Interim',
          'nyears': 40,
          'time_period': ['1979-1-16 12:0:0.0', '2019-3-16 12:0:0.0']},
         'GISS-E2-H_r1i1p2': {'keyerror': None,
          'name': 'GISS-E2-H_r1i1p2',
          'nyears': 156,
          'time_period': ['1850-1-16 12:0:0.0', '2005-12-16 12:0:0.0']},
         'Tropflux': {'name': 'Tropflux',
          'nyears': 40,
          'time_period': ['1979-1-15 0:0:0.0', '2018-12-15 12:0:0.0']},
         'method': 'Zonal root mean square error of equatorial_pacific climatological taux STD, time series are linearly detrended, observations and model regridded to generic_1x1deg',
         'name': 'taux zonal seasonality RMSE',
         'ref': 'Using CDAT regridding and rms (uncentered and biased) calculation',
         'time_frequency': 'monthly',
         'units': '1e-3 N/m2'},
        'metric': {'datasets': "GISS-E2-H_r1i1p2; ERA-Interim's tauu & Tropflux's taux; 's ",
         'method': 'The metric is the statistical value between the model and the observations',
         'name': 'SeasonalTauxLonRmse',
         'units': '1e-3 N/m2'}}},
      'name': 'Metrics Collection for ENSO performance'},
     'value': {'BiasPrLatRmse': {'diagnostic': {'ERA-Interim': {'value': None,
         'value_error': None},
        'GISS-E2-H_r1i1p2': {'value': None, 'value_error': None},
        'GPCPv2.3': {'value': None, 'value_error': None}},
       'metric': {'ERA-Interim': {'value': 2.96473243954701,
         'value_error': None},
        'GPCPv2.3': {'value': 3.5774165962889297, 'value_error': None}}},
      'BiasPrLonRmse': {'diagnostic': {'ERA-Interim': {'value': None,
         'value_error': None},
        'GISS-E2-H_r1i1p2': {'value': None, 'value_error': None},
        'GPCPv2.3': {'value': None, 'value_error': None}},
       'metric': {'ERA-Interim': {'value': 1.4198470192394015,
         'value_error': None},
        'GPCPv2.3': {'value': 0.9227782435341894, 'value_error': None}}},
      'BiasSstLonRmse': {'diagnostic': {'ERA-Interim': {'value': None,
         'value_error': None},
        'GISS-E2-H_r1i1p2': {'value': None, 'value_error': None},
        'HadISST': {'value': None, 'value_error': None},
        'Tropflux': {'value': None, 'value_error': None}},
       'metric': {'ERA-Interim': {'value': 0.8936282472631607,
         'value_error': None},
        'HadISST': {'value': 1.0026213257055954, 'value_error': None},
        'Tropflux': {'value': 0.8762968543512979, 'value_error': None}}},
      'BiasTauxLonRmse': {'diagnostic': {'ERA-Interim': {'value': None,
         'value_error': None},
        'GISS-E2-H_r1i1p2': {'value': None, 'value_error': None},
        'Tropflux': {'value': None, 'value_error': None}},
       'metric': {'ERA-Interim': {'value': 21.661834763592527,
         'value_error': None},
        'Tropflux': {'value': 21.300428597186432, 'value_error': None}}},
      'EnsoAmpl': {'diagnostic': {'ERA-Interim': {'value': 0.8989844997845644,
         'value_error': 0.14214193002531866},
        'GISS-E2-H_r1i1p2': {'value': 0.5614181389609734,
         'value_error': 0.044949425052254265},
        'HadISST': {'value': 0.7665787872085695,
         'value_error': 0.06238329697691264},
        'Tropflux': {'value': 0.9039789553693535,
         'value_error': 0.14293162279134272}},
       'metric': {'ERA-Interim': {'value': 37.549742059455596,
         'value_error': 14.874275032192255},
        'HadISST': {'value': 26.763152290538972,
         'value_error': 11.823570749384201},
        'Tropflux': {'value': 37.89477779030978,
         'value_error': 14.792095125721016}}},
      'EnsoDuration': {'diagnostic': {'ERA-Interim': {'value': 13.0,
         'value_error': None},
        'GISS-E2-H_r1i1p2': {'value': 13.0, 'value_error': None},
        'HadISST': {'value': 13.0, 'value_error': None},
        'Tropflux': {'value': 13.0, 'value_error': None}},
       'metric': {'ERA-Interim': {'value': 0.0, 'value_error': None},
        'HadISST': {'value': 0.0, 'value_error': None},
        'Tropflux': {'value': 0.0, 'value_error': None}}},
      'EnsoSeasonality': {'diagnostic': {'ERA-Interim': {'value': 2.0466846866656914,
         'value_error': 0.6513411033995022},
        'GISS-E2-H_r1i1p2': {'value': 1.437579945362024,
         'value_error': 0.230567711194757},
        'HadISST': {'value': 1.6639865947361325,
         'value_error': 0.2712772451657809},
        'Tropflux': {'value': 2.0532132553583624,
         'value_error': 0.6534187683977347}},
       'metric': {'ERA-Interim': {'value': 29.76055595041248,
         'value_error': 33.61856790016655},
        'HadISST': {'value': 13.606278445410863,
         'value_error': 27.94098344872598},
        'Tropflux': {'value': 29.983895164795605,
         'value_error': 33.511671488255764}}},
      'EnsoSstDiversity_2': {'diagnostic': {'ERA-Interim': {'value': 33.25,
         'value_error': None},
        'GISS-E2-H_r1i1p2': {'value': 19.0, 'value_error': None},
        'HadISST': {'value': 49.0, 'value_error': None},
        'Tropflux': {'value': 32.0, 'value_error': None}},
       'metric': {'ERA-Interim': {'value': 42.857142857142854,
         'value_error': None},
        'HadISST': {'value': 61.224489795918366, 'value_error': None},
        'Tropflux': {'value': 40.625, 'value_error': None}}},
      'EnsoSstLonRmse': {'diagnostic': {'ERA-Interim': {'value': None,
         'value_error': None},
        'GISS-E2-H_r1i1p2': {'value': None, 'value_error': None},
        'HadISST': {'value': None, 'value_error': None},
        'Tropflux': {'value': None, 'value_error': None}},
       'metric': {'ERA-Interim': {'value': 0.26972742837539454,
         'value_error': None},
        'HadISST': {'value': 0.27400511201051764, 'value_error': None},
        'Tropflux': {'value': 0.2688846192300261, 'value_error': None}}},
      'EnsoSstSkew': {'diagnostic': {'ERA-Interim': {'value': 0.39098111106809963,
         'value_error': 0.061819541653923164},
        'GISS-E2-H_r1i1p2': {'value': -0.16546437646162582,
         'value_error': -0.01324775256165503},
        'HadISST': {'value': 0.38989908235027515,
         'value_error': 0.03172953733021198},
        'Tropflux': {'value': 0.39744741059612115,
         'value_error': 0.06284195338099416}},
       'metric': {'ERA-Interim': {'value': 142.32029931308008,
         'value_error': -10.079762553210722},
        'HadISST': {'value': 142.43774452204968,
         'value_error': -6.851273511816183},
        'Tropflux': {'value': 141.63176612811492,
         'value_error': -9.915769123884722}}},
      'EnsoSstTsRmse': {'diagnostic': {'ERA-Interim': {'value': None,
         'value_error': None},
        'GISS-E2-H_r1i1p2': {'value': None, 'value_error': None},
        'HadISST': {'value': None, 'value_error': None},
        'Tropflux': {'value': None, 'value_error': None}},
       'metric': {'ERA-Interim': {'value': 0.18072532384345766,
         'value_error': None},
        'HadISST': {'value': 0.17385304558586503, 'value_error': None},
        'Tropflux': {'value': 0.18223327553810337, 'value_error': None}}},
      'SeasonalPrLatRmse': {'diagnostic': {'ERA-Interim': {'value': None,
         'value_error': None},
        'GISS-E2-H_r1i1p2': {'value': None, 'value_error': None},
        'GPCPv2.3': {'value': None, 'value_error': None}},
       'metric': {'ERA-Interim': {'value': 1.1140196157204267,
         'value_error': None},
        'GPCPv2.3': {'value': 1.0086732060694632, 'value_error': None}}},
      'SeasonalPrLonRmse': {'diagnostic': {'ERA-Interim': {'value': None,
         'value_error': None},
        'GISS-E2-H_r1i1p2': {'value': None, 'value_error': None},
        'GPCPv2.3': {'value': None, 'value_error': None}},
       'metric': {'ERA-Interim': {'value': 0.7883523001597664,
         'value_error': None},
        'GPCPv2.3': {'value': 0.5017050087208084, 'value_error': None}}},
      'SeasonalSstLonRmse': {'diagnostic': {'ERA-Interim': {'value': None,
         'value_error': None},
        'GISS-E2-H_r1i1p2': {'value': None, 'value_error': None},
        'HadISST': {'value': None, 'value_error': None},
        'Tropflux': {'value': None, 'value_error': None}},
       'metric': {'ERA-Interim': {'value': 0.31732637869219116,
         'value_error': None},
        'HadISST': {'value': 0.31128724881472286, 'value_error': None},
        'Tropflux': {'value': 0.3270954451696716, 'value_error': None}}},
      'SeasonalTauxLonRmse': {'diagnostic': {'ERA-Interim': {'value': None,
         'value_error': None},
        'GISS-E2-H_r1i1p2': {'value': None, 'value_error': None},
        'Tropflux': {'value': None, 'value_error': None}},
       'metric': {'ERA-Interim': {'value': 2.918104775611529,
         'value_error': None},
        'Tropflux': {'value': 3.1414648968549472, 'value_error': None}}}}},
    'r1i1p3': {'metadata': {'description_of_the_collection': 'Describe which science question this collection is about',
      'metrics': {'BiasPrLatRmse': {'diagnostic': {'ERA-Interim': {'name': 'ERA-Interim',
          'nyears': 40,
          'time_period': ['1979-1-16 12:0:0.0', '2019-3-16 12:0:0.0']},
         'GISS-E2-H_r1i1p3': {'keyerror': None,
          'name': 'GISS-E2-H_r1i1p3',
          'nyears': 156,
          'time_period': ['1850-1-16 12:0:0.0', '2005-12-16 12:0:0.0']},
         'GPCPv2.3': {'name': 'GPCPv2.3',
          'nyears': 41,
          'time_period': ['1979-1-1 0:0:0.0', '2019-7-1 0:0:0.0']},
         'method': 'Meridional root mean square error of nino3_LatExt pr, time series are linearly detrended, observations and model regridded to generic_1x1deg',
         'name': 'pr Meridional RMSE',
         'ref': 'Using CDAT regridding and rms (uncentered and biased) calculation',
         'time_frequency': 'monthly',
         'units': 'mm/day'},
        'metric': {'datasets': "GISS-E2-H_r1i1p3; ERA-Interim's pr & GPCPv2.3's precip; 's ",
         'method': 'The metric is the statistical value between the model and the observations',
         'name': 'BiasPrLatRmse',
         'units': 'mm/day'}},
       'BiasPrLonRmse': {'diagnostic': {'ERA-Interim': {'name': 'ERA-Interim',
          'nyears': 40,
          'time_period': ['1979-1-16 12:0:0.0', '2019-3-16 12:0:0.0']},
         'GISS-E2-H_r1i1p3': {'keyerror': None,
          'name': 'GISS-E2-H_r1i1p3',
          'nyears': 156,
          'time_period': ['1850-1-16 12:0:0.0', '2005-12-16 12:0:0.0']},
         'GPCPv2.3': {'name': 'GPCPv2.3',
          'nyears': 41,
          'time_period': ['1979-1-1 0:0:0.0', '2019-7-1 0:0:0.0']},
         'method': 'Zonal root mean square error of equatorial_pacific pr, time series are linearly detrended, observations and model regridded to generic_1x1deg',
         'name': 'pr Zonal RMSE',
         'ref': 'Using CDAT regridding and rms (uncentered and biased) calculation',
         'time_frequency': 'monthly',
         'units': 'mm/day'},
        'metric': {'datasets': "GISS-E2-H_r1i1p3; ERA-Interim's pr & GPCPv2.3's precip; 's ",
         'method': 'The metric is the statistical value between the model and the observations',
         'name': 'BiasPrLonRmse',
         'units': 'mm/day'}},
       'BiasSstLonRmse': {'diagnostic': {'ERA-Interim': {'name': 'ERA-Interim',
          'nyears': 40,
          'time_period': ['1979-1-16 12:0:0.0', '2019-3-16 12:0:0.0']},
         'GISS-E2-H_r1i1p3': {'keyerror': None,
          'name': 'GISS-E2-H_r1i1p3',
          'nyears': 156,
          'time_period': ['1850-1-16 12:0:0.0', '2005-12-16 12:0:0.0']},
         'HadISST': {'name': 'HadISST',
          'nyears': 151,
          'time_period': ['1870-1-16 11:59:59.5', '2020-10-16 12:0:0.0']},
         'Tropflux': {'name': 'Tropflux',
          'nyears': 40,
          'time_period': ['1979-1-15 0:0:0.0', '2018-12-15 12:0:0.0']},
         'method': 'Zonal root mean square error of equatorial_pacific sst, time series are linearly detrended, observations and model regridded to generic_1x1deg',
         'name': 'sst Zonal RMSE',
         'ref': 'Using CDAT regridding and rms (uncentered and biased) calculation',
         'time_frequency': 'monthly',
         'units': 'C'},
        'metric': {'datasets': "GISS-E2-H_r1i1p3; ERA-Interim's ts & HadISST's sst & Tropflux's sst; 's ",
         'method': 'The metric is the statistical value between the model and the observations',
         'name': 'BiasSstLonRmse',
         'units': 'C'}},
       'BiasTauxLonRmse': {'diagnostic': {'ERA-Interim': {'name': 'ERA-Interim',
          'nyears': 40,
          'time_period': ['1979-1-16 12:0:0.0', '2019-3-16 12:0:0.0']},
         'GISS-E2-H_r1i1p3': {'keyerror': None,
          'name': 'GISS-E2-H_r1i1p3',
          'nyears': 156,
          'time_period': ['1850-1-16 12:0:0.0', '2005-12-16 12:0:0.0']},
         'Tropflux': {'name': 'Tropflux',
          'nyears': 40,
          'time_period': ['1979-1-15 0:0:0.0', '2018-12-15 12:0:0.0']},
         'method': 'Zonal root mean square error of equatorial_pacific taux, time series are linearly detrended, observations and model regridded to generic_1x1deg',
         'name': 'taux Zonal RMSE',
         'ref': 'Using CDAT regridding and rms (uncentered and biased) calculation',
         'time_frequency': 'monthly',
         'units': '1e-3 N/m2'},
        'metric': {'datasets': "GISS-E2-H_r1i1p3; ERA-Interim's tauu & Tropflux's taux; 's ",
         'method': 'The metric is the statistical value between the model and the observations',
         'name': 'BiasTauxLonRmse',
         'units': '1e-3 N/m2'}},
       'EnsoAmpl': {'diagnostic': {'ERA-Interim': {'keyerror': None,
          'name': 'ERA-Interim',
          'nyears': 40,
          'time_period': ['1979-1-16 12:0:0.0', '2019-3-16 12:0:0.0']},
         'GISS-E2-H_r1i1p3': {'keyerror': None,
          'name': 'GISS-E2-H_r1i1p3',
          'nyears': 156,
          'time_period': ['1850-1-16 12:0:0.0', '2005-12-16 12:0:0.0']},
         'HadISST': {'keyerror': None,
          'name': 'HadISST',
          'nyears': 151,
          'time_period': ['1870-1-16 11:59:59.5', '2020-10-16 12:0:0.0']},
         'Tropflux': {'keyerror': None,
          'name': 'Tropflux',
          'nyears': 40,
          'time_period': ['1979-1-15 0:0:0.0', '2018-12-15 12:0:0.0']},
         'method': 'Standard deviation of nino3.4 sstA, time series are linearly detrended',
         'name': 'ENSO amplitude',
         'ref': 'Using CDAT regression calculation',
         'time_frequency': 'monthly',
         'units': 'C'},
        'metric': {'datasets': "GISS-E2-H_r1i1p3; ERA-Interim's ts & HadISST's sst & Tropflux's sst; 's ",
         'method': 'The metric is the absolute value of the relative difference between model and observations values (M = 100 * abs[[model-obs] / obs])',
         'name': 'EnsoAmpl',
         'units': '%'}},
       'EnsoDuration': {'diagnostic': {'ERA-Interim': {'keyerror': None,
          'name': 'ERA-Interim',
          'nyears': 40,
          'time_period': ['1979-1-16 12:0:0.0', '2019-3-16 12:0:0.0']},
         'GISS-E2-H_r1i1p3': {'keyerror': None,
          'name': 'GISS-E2-H_r1i1p3',
          'nyears': 156,
          'time_period': ['1850-1-16 12:0:0.0', '2005-12-16 12:0:0.0']},
         'HadISST': {'keyerror': None,
          'name': 'HadISST',
          'nyears': 151,
          'time_period': ['1870-1-16 11:59:59.5', '2020-10-16 12:0:0.0']},
         'Tropflux': {'keyerror': None,
          'name': 'Tropflux',
          'nyears': 40,
          'time_period': ['1979-1-15 0:0:0.0', '2018-12-15 12:0:0.0']},
         'method': 'nino3.4 SSTA during DEC regressed against nino3.4 SSTA during 6 years (centered on ENSO), the duration is the number of consecutive months during which the regression is above 0.25, time series are linearly detrended, smoothing using a triangle shaped window of 5 points',
         'name': 'ENSO Duration based on life cyle SSTA pattern',
         'ref': 'Using CDAT',
         'time_frequency': 'monthly',
         'units': 'months'},
        'metric': {'datasets': "GISS-E2-H_r1i1p3; ERA-Interim's ts & HadISST's sst & Tropflux's sst; 's ",
         'method': 'The metric is the absolute value of the relative difference between model and observations values (M = 100 * abs[[model-obs] / obs])',
         'name': 'EnsoDuration',
         'units': '%'}},
       'EnsoSeasonality': {'diagnostic': {'ERA-Interim': {'keyerror': None,
          'name': 'ERA-Interim',
          'nyears': 40,
          'time_period': ['1979-1-16 12:0:0.0', '2019-3-16 12:0:0.0']},
         'GISS-E2-H_r1i1p3': {'keyerror': None,
          'name': 'GISS-E2-H_r1i1p3',
          'nyears': 156,
          'time_period': ['1850-1-16 12:0:0.0', '2005-12-16 12:0:0.0']},
         'HadISST': {'keyerror': None,
          'name': 'HadISST',
          'nyears': 151,
          'time_period': ['1870-1-16 11:59:59.5', '2020-10-16 12:0:0.0']},
         'Tropflux': {'keyerror': None,
          'name': 'Tropflux',
          'nyears': 40,
          'time_period': ['1979-1-15 0:0:0.0', '2018-12-15 12:0:0.0']},
         'method': 'Ratio between NDJ and MAM standard deviation nino3.4 sstA, time series are linearly detrended',
         'name': 'ENSO seasonality',
         'ref': 'Using CDAT std dev calculation',
         'time_frequency': 'monthly',
         'units': 'C/C'},
        'metric': {'datasets': "GISS-E2-H_r1i1p3; ERA-Interim's ts & HadISST's sst & Tropflux's sst; 's ",
         'method': 'The metric is the absolute value of the relative difference between model and observations values (M = 100 * abs[[model-obs] / obs])',
         'name': 'EnsoSeasonality',
         'units': '%'}},
       'EnsoSstDiversity_2': {'diagnostic': {'ERA-Interim': {'keyerror': None,
          'name': 'ERA-Interim',
          'nyears': 40,
          'time_period': ['1979-1-16 12:0:0.0', '2019-3-16 12:0:0.0']},
         'GISS-E2-H_r1i1p3': {'keyerror': None,
          'name': 'GISS-E2-H_r1i1p3',
          'nyears': 156,
          'time_period': ['1850-1-16 12:0:0.0', '2005-12-16 12:0:0.0']},
         'HadISST': {'keyerror': None,
          'name': 'HadISST',
          'nyears': 151,
          'time_period': ['1870-1-16 11:59:59.5', '2020-10-16 12:0:0.0']},
         'Tropflux': {'keyerror': None,
          'name': 'Tropflux',
          'nyears': 40,
          'time_period': ['1979-1-15 0:0:0.0', '2018-12-15 12:0:0.0']},
         'method': 'Nino (Nina) events = nino3.4 sstA > 0.75 (< -0.75) during DEC, zonal SSTA (meridional averaged [-5.0 ; 5.0]), the zonal SSTA maximum (minimum) is located for each event, the diversity is the interquartile range (IQR = Q3 - Q1), time series are linearly detrended, smoothing using a triangle shaped window of 5 points',
         'name': 'ENSO Diversity (interquartile range)',
         'ref': 'Using CDAT regridding',
         'time_frequency': 'monthly',
         'units': 'long'},
        'metric': {'datasets': "GISS-E2-H_r1i1p3; ERA-Interim's ts & HadISST's sst & Tropflux's sst; 's ",
         'method': 'The metric is the absolute value of the relative difference between model and observations values (M = 100 * abs[[model-obs] / obs])',
         'name': 'EnsoSstDiversity',
         'units': '%'}},
       'EnsoSstLonRmse': {'diagnostic': {'ERA-Interim': {'name': 'ERA-Interim',
          'nyears': 40,
          'time_period': ['1979-1-16 12:0:0.0', '2019-3-16 12:0:0.0']},
         'GISS-E2-H_r1i1p3': {'keyerror': None,
          'name': 'GISS-E2-H_r1i1p3',
          'nyears': 156,
          'time_period': ['1850-1-16 12:0:0.0', '2005-12-16 12:0:0.0']},
         'HadISST': {'name': 'HadISST',
          'nyears': 151,
          'time_period': ['1870-1-16 11:59:59.5', '2020-10-16 12:0:0.0']},
         'Tropflux': {'name': 'Tropflux',
          'nyears': 40,
          'time_period': ['1979-1-15 0:0:0.0', '2018-12-15 12:0:0.0']},
         'method': 'nino3.4 SSTA during DEC regressed against equatorial_pacific SSTA, time series are linearly detrended, smoothing using a triangle shaped window of 5 points, observations and model regridded to generic_1x1deg',
         'name': 'ENSO Zonal SSTA pattern',
         'ref': 'Using CDAT regridding and rms (uncentered and biased) calculation',
         'time_frequency': 'monthly',
         'units': 'C/C'},
        'metric': {'datasets': "GISS-E2-H_r1i1p3; ERA-Interim's ts & HadISST's sst & Tropflux's sst; 's ",
         'method': 'The metric is the statistical value between the model and the observations',
         'name': 'EnsoSstLonRmse',
         'units': 'C/C'}},
       'EnsoSstSkew': {'diagnostic': {'ERA-Interim': {'keyerror': None,
          'name': 'ERA-Interim',
          'nyears': 40,
          'time_period': ['1979-1-16 12:0:0.0', '2019-3-16 12:0:0.0']},
         'GISS-E2-H_r1i1p3': {'keyerror': None,
          'name': 'GISS-E2-H_r1i1p3',
          'nyears': 156,
          'time_period': ['1850-1-16 12:0:0.0', '2005-12-16 12:0:0.0']},
         'HadISST': {'keyerror': None,
          'name': 'HadISST',
          'nyears': 151,
          'time_period': ['1870-1-16 11:59:59.5', '2020-10-16 12:0:0.0']},
         'Tropflux': {'keyerror': None,
          'name': 'Tropflux',
          'nyears': 40,
          'time_period': ['1979-1-15 0:0:0.0', '2018-12-15 12:0:0.0']},
         'method': 'Standard deviation of nino3.4 sstA, time series are linearly detrended',
         'name': 'ENSO skewness',
         'ref': 'Using CDAT regression calculation',
         'time_frequency': 'monthly',
         'units': 'C'},
        'metric': {'datasets': "GISS-E2-H_r1i1p3; ERA-Interim's ts & HadISST's sst & Tropflux's sst; 's ",
         'method': 'The metric is the absolute value of the relative difference between model and observations values (M = 100 * abs[[model-obs] / obs])',
         'name': 'EnsoSstSkew',
         'units': '%'}},
       'EnsoSstTsRmse': {'diagnostic': {'ERA-Interim': {'name': 'ERA-Interim',
          'nyears': 40,
          'time_period': ['1979-1-16 12:0:0.0', '2019-3-16 12:0:0.0']},
         'GISS-E2-H_r1i1p3': {'keyerror': None,
          'name': 'GISS-E2-H_r1i1p3',
          'nyears': 156,
          'time_period': ['1850-1-16 12:0:0.0', '2005-12-16 12:0:0.0']},
         'HadISST': {'name': 'HadISST',
          'nyears': 151,
          'time_period': ['1870-1-16 11:59:59.5', '2020-10-16 12:0:0.0']},
         'Tropflux': {'name': 'Tropflux',
          'nyears': 40,
          'time_period': ['1979-1-15 0:0:0.0', '2018-12-15 12:0:0.0']},
         'method': 'nino3.4 SSTA during DEC regressed against nino3.4 SSTA during 6 years (centered on ENSO), time series are linearly detrended, smoothing using a triangle shaped window of 5 points',
         'name': 'ENSO life cyle SSTA pattern',
         'ref': 'Using CDAT regridding and rms (uncentered and biased) calculation',
         'time_frequency': 'monthly',
         'units': 'C/C'},
        'metric': {'datasets': "GISS-E2-H_r1i1p3; ERA-Interim's ts & HadISST's sst & Tropflux's sst; 's ",
         'method': 'The metric is the statistical value between the model and the observations',
         'name': 'EnsoSstTsRmse',
         'units': 'C/C'}},
       'SeasonalPrLatRmse': {'diagnostic': {'ERA-Interim': {'name': 'ERA-Interim',
          'nyears': 40,
          'time_period': ['1979-1-16 12:0:0.0', '2019-3-16 12:0:0.0']},
         'GISS-E2-H_r1i1p3': {'keyerror': None,
          'name': 'GISS-E2-H_r1i1p3',
          'nyears': 156,
          'time_period': ['1850-1-16 12:0:0.0', '2005-12-16 12:0:0.0']},
         'GPCPv2.3': {'name': 'GPCPv2.3',
          'nyears': 41,
          'time_period': ['1979-1-1 0:0:0.0', '2019-7-1 0:0:0.0']},
         'method': 'Meridional root mean square error of nino3_LatExt climatological pr STD, time series are linearly detrended, observations and model regridded to generic_1x1deg',
         'name': 'pr meridional seasonality RMSE',
         'ref': 'Using CDAT regridding and rms (uncentered and biased) calculation',
         'time_frequency': 'monthly',
         'units': 'mm/day'},
        'metric': {'datasets': "GISS-E2-H_r1i1p3; ERA-Interim's pr & GPCPv2.3's precip; 's ",
         'method': 'The metric is the statistical value between the model and the observations',
         'name': 'SeasonalPrLatRmse',
         'units': 'mm/day'}},
       'SeasonalPrLonRmse': {'diagnostic': {'ERA-Interim': {'name': 'ERA-Interim',
          'nyears': 40,
          'time_period': ['1979-1-16 12:0:0.0', '2019-3-16 12:0:0.0']},
         'GISS-E2-H_r1i1p3': {'keyerror': None,
          'name': 'GISS-E2-H_r1i1p3',
          'nyears': 156,
          'time_period': ['1850-1-16 12:0:0.0', '2005-12-16 12:0:0.0']},
         'GPCPv2.3': {'name': 'GPCPv2.3',
          'nyears': 41,
          'time_period': ['1979-1-1 0:0:0.0', '2019-7-1 0:0:0.0']},
         'method': 'Zonal root mean square error of equatorial_pacific climatological pr STD, time series are linearly detrended, observations and model regridded to generic_1x1deg',
         'name': 'pr zonal seasonality RMSE',
         'ref': 'Using CDAT regridding and rms (uncentered and biased) calculation',
         'time_frequency': 'monthly',
         'units': 'mm/day'},
        'metric': {'datasets': "GISS-E2-H_r1i1p3; ERA-Interim's pr & GPCPv2.3's precip; 's ",
         'method': 'The metric is the statistical value between the model and the observations',
         'name': 'SeasonalPrLonRmse',
         'units': 'mm/day'}},
       'SeasonalSstLonRmse': {'diagnostic': {'ERA-Interim': {'name': 'ERA-Interim',
          'nyears': 40,
          'time_period': ['1979-1-16 12:0:0.0', '2019-3-16 12:0:0.0']},
         'GISS-E2-H_r1i1p3': {'keyerror': None,
          'name': 'GISS-E2-H_r1i1p3',
          'nyears': 156,
          'time_period': ['1850-1-16 12:0:0.0', '2005-12-16 12:0:0.0']},
         'HadISST': {'name': 'HadISST',
          'nyears': 151,
          'time_period': ['1870-1-16 11:59:59.5', '2020-10-16 12:0:0.0']},
         'Tropflux': {'name': 'Tropflux',
          'nyears': 40,
          'time_period': ['1979-1-15 0:0:0.0', '2018-12-15 12:0:0.0']},
         'method': 'Zonal root mean square error of equatorial_pacific climatological sst STD, time series are linearly detrended, observations and model regridded to generic_1x1deg',
         'name': 'sst zonal seasonality RMSE',
         'ref': 'Using CDAT regridding and rms (uncentered and biased) calculation',
         'time_frequency': 'monthly',
         'units': 'C'},
        'metric': {'datasets': "GISS-E2-H_r1i1p3; ERA-Interim's ts & HadISST's sst & Tropflux's sst; 's ",
         'method': 'The metric is the statistical value between the model and the observations',
         'name': 'SeasonalSstLonRmse',
         'units': 'C'}},
       'SeasonalTauxLonRmse': {'diagnostic': {'ERA-Interim': {'name': 'ERA-Interim',
          'nyears': 40,
          'time_period': ['1979-1-16 12:0:0.0', '2019-3-16 12:0:0.0']},
         'GISS-E2-H_r1i1p3': {'keyerror': None,
          'name': 'GISS-E2-H_r1i1p3',
          'nyears': 156,
          'time_period': ['1850-1-16 12:0:0.0', '2005-12-16 12:0:0.0']},
         'Tropflux': {'name': 'Tropflux',
          'nyears': 40,
          'time_period': ['1979-1-15 0:0:0.0', '2018-12-15 12:0:0.0']},
         'method': 'Zonal root mean square error of equatorial_pacific climatological taux STD, time series are linearly detrended, observations and model regridded to generic_1x1deg',
         'name': 'taux zonal seasonality RMSE',
         'ref': 'Using CDAT regridding and rms (uncentered and biased) calculation',
         'time_frequency': 'monthly',
         'units': '1e-3 N/m2'},
        'metric': {'datasets': "GISS-E2-H_r1i1p3; ERA-Interim's tauu & Tropflux's taux; 's ",
         'method': 'The metric is the statistical value between the model and the observations',
         'name': 'SeasonalTauxLonRmse',
         'units': '1e-3 N/m2'}}},
      'name': 'Metrics Collection for ENSO performance'},
     'value': {'BiasPrLatRmse': {'diagnostic': {'ERA-Interim': {'value': None,
         'value_error': None},
        'GISS-E2-H_r1i1p3': {'value': None, 'value_error': None},
        'GPCPv2.3': {'value': None, 'value_error': None}},
       'metric': {'ERA-Interim': {'value': 2.8424279384144824,
         'value_error': None},
        'GPCPv2.3': {'value': 3.433728299230513, 'value_error': None}}},
      'BiasPrLonRmse': {'diagnostic': {'ERA-Interim': {'value': None,
         'value_error': None},
        'GISS-E2-H_r1i1p3': {'value': None, 'value_error': None},
        'GPCPv2.3': {'value': None, 'value_error': None}},
       'metric': {'ERA-Interim': {'value': 1.3995461882262161,
         'value_error': None},
        'GPCPv2.3': {'value': 0.9106956984081418, 'value_error': None}}},
      'BiasSstLonRmse': {'diagnostic': {'ERA-Interim': {'value': None,
         'value_error': None},
        'GISS-E2-H_r1i1p3': {'value': None, 'value_error': None},
        'HadISST': {'value': None, 'value_error': None},
        'Tropflux': {'value': None, 'value_error': None}},
       'metric': {'ERA-Interim': {'value': 0.9054398555581612,
         'value_error': None},
        'HadISST': {'value': 1.0174608305976227, 'value_error': None},
        'Tropflux': {'value': 0.8877198893715517, 'value_error': None}}},
      'BiasTauxLonRmse': {'diagnostic': {'ERA-Interim': {'value': None,
         'value_error': None},
        'GISS-E2-H_r1i1p3': {'value': None, 'value_error': None},
        'Tropflux': {'value': None, 'value_error': None}},
       'metric': {'ERA-Interim': {'value': 21.225242054002862,
         'value_error': None},
        'Tropflux': {'value': 20.865604694411903, 'value_error': None}}},
      'EnsoAmpl': {'diagnostic': {'ERA-Interim': {'value': 0.8989844997845644,
         'value_error': 0.14214193002531866},
        'GISS-E2-H_r1i1p3': {'value': 0.6073778303800954,
         'value_error': 0.04862914532045202},
        'HadISST': {'value': 0.7665787872085695,
         'value_error': 0.06238329697691264},
        'Tropflux': {'value': 0.9039789553693535,
         'value_error': 0.14293162279134272}},
       'metric': {'ERA-Interim': {'value': 32.43734118601051,
         'value_error': 16.091936242476432},
        'HadISST': {'value': 20.767722703127575,
         'value_error': 12.791490425295542},
        'Tropflux': {'value': 32.81062277252582,
         'value_error': 16.003028795727882}}},
      'EnsoDuration': {'diagnostic': {'ERA-Interim': {'value': 13.0,
         'value_error': None},
        'GISS-E2-H_r1i1p3': {'value': 13.0, 'value_error': None},
        'HadISST': {'value': 13.0, 'value_error': None},
        'Tropflux': {'value': 13.0, 'value_error': None}},
       'metric': {'ERA-Interim': {'value': 0.0, 'value_error': None},
        'HadISST': {'value': 0.0, 'value_error': None},
        'Tropflux': {'value': 0.0, 'value_error': None}}},
      'EnsoSeasonality': {'diagnostic': {'ERA-Interim': {'value': 2.0466846866656914,
         'value_error': 0.6513411033995022},
        'GISS-E2-H_r1i1p3': {'value': 1.4816214000814536,
         'value_error': 0.23763134438267636},
        'HadISST': {'value': 1.6639865947361325,
         'value_error': 0.2712772451657809},
        'Tropflux': {'value': 2.0532132553583624,
         'value_error': 0.6534187683977347}},
       'metric': {'ERA-Interim': {'value': 27.608712288007464,
         'value_error': 34.64850062890561},
        'HadISST': {'value': 10.959535084692048,
         'value_error': 28.79697866578747},
        'Tropflux': {'value': 27.838893684579524,
         'value_error': 34.53832935669921}}},
      'EnsoSstDiversity_2': {'diagnostic': {'ERA-Interim': {'value': 33.25,
         'value_error': None},
        'GISS-E2-H_r1i1p3': {'value': 26.0, 'value_error': None},
        'HadISST': {'value': 49.0, 'value_error': None},
        'Tropflux': {'value': 32.0, 'value_error': None}},
       'metric': {'ERA-Interim': {'value': 21.804511278195488,
         'value_error': None},
        'HadISST': {'value': 46.93877551020408, 'value_error': None},
        'Tropflux': {'value': 18.75, 'value_error': None}}},
      'EnsoSstLonRmse': {'diagnostic': {'ERA-Interim': {'value': None,
         'value_error': None},
        'GISS-E2-H_r1i1p3': {'value': None, 'value_error': None},
        'HadISST': {'value': None, 'value_error': None},
        'Tropflux': {'value': None, 'value_error': None}},
       'metric': {'ERA-Interim': {'value': 0.2692814474640175,
         'value_error': None},
        'HadISST': {'value': 0.2746202321848834, 'value_error': None},
        'Tropflux': {'value': 0.2685340623392114, 'value_error': None}}},
      'EnsoSstSkew': {'diagnostic': {'ERA-Interim': {'value': 0.39098111106809963,
         'value_error': 0.061819541653923164},
        'GISS-E2-H_r1i1p3': {'value': -0.14266446096694135,
         'value_error': -0.011422298374117117},
        'HadISST': {'value': 0.38989908235027515,
         'value_error': 0.03172953733021198},
        'Tropflux': {'value': 0.39744741059612115,
         'value_error': 0.06284195338099416}},
       'metric': {'ERA-Interim': {'value': 136.48883716586826,
         'value_error': -8.69083679568981},
        'HadISST': {'value': 136.5900991884806,
         'value_error': -5.9072125577859556},
        'Tropflux': {'value': 135.89517937806227,
         'value_error': -8.549440594904924}}},
      'EnsoSstTsRmse': {'diagnostic': {'ERA-Interim': {'value': None,
         'value_error': None},
        'GISS-E2-H_r1i1p3': {'value': None, 'value_error': None},
        'HadISST': {'value': None, 'value_error': None},
        'Tropflux': {'value': None, 'value_error': None}},
       'metric': {'ERA-Interim': {'value': 0.20686262028728356,
         'value_error': None},
        'HadISST': {'value': 0.21107263749948416, 'value_error': None},
        'Tropflux': {'value': 0.21045369597145952, 'value_error': None}}},
      'SeasonalPrLatRmse': {'diagnostic': {'ERA-Interim': {'value': None,
         'value_error': None},
        'GISS-E2-H_r1i1p3': {'value': None, 'value_error': None},
        'GPCPv2.3': {'value': None, 'value_error': None}},
       'metric': {'ERA-Interim': {'value': 1.0943542610755412,
         'value_error': None},
        'GPCPv2.3': {'value': 0.9954380395523758, 'value_error': None}}},
      'SeasonalPrLonRmse': {'diagnostic': {'ERA-Interim': {'value': None,
         'value_error': None},
        'GISS-E2-H_r1i1p3': {'value': None, 'value_error': None},
        'GPCPv2.3': {'value': None, 'value_error': None}},
       'metric': {'ERA-Interim': {'value': 0.711381840963713,
         'value_error': None},
        'GPCPv2.3': {'value': 0.4300565078777371, 'value_error': None}}},
      'SeasonalSstLonRmse': {'diagnostic': {'ERA-Interim': {'value': None,
         'value_error': None},
        'GISS-E2-H_r1i1p3': {'value': None, 'value_error': None},
        'HadISST': {'value': None, 'value_error': None},
        'Tropflux': {'value': None, 'value_error': None}},
       'metric': {'ERA-Interim': {'value': 0.2624906753532569,
         'value_error': None},
        'HadISST': {'value': 0.2591388467027778, 'value_error': None},
        'Tropflux': {'value': 0.2716528146163393, 'value_error': None}}},
      'SeasonalTauxLonRmse': {'diagnostic': {'ERA-Interim': {'value': None,
         'value_error': None},
        'GISS-E2-H_r1i1p3': {'value': None, 'value_error': None},
        'Tropflux': {'value': None, 'value_error': None}},
       'metric': {'ERA-Interim': {'value': 2.365349930813731,
         'value_error': None},
        'Tropflux': {'value': 2.591069995997823, 'value_error': None}}}}},
    'r2i1p1': {'metadata': {'description_of_the_collection': 'Describe which science question this collection is about',
      'metrics': {'BiasPrLatRmse': {'diagnostic': {'ERA-Interim': {'name': 'ERA-Interim',
          'nyears': 40,
          'time_period': ['1979-1-16 12:0:0.0', '2019-3-16 12:0:0.0']},
         'GISS-E2-H_r2i1p1': {'keyerror': None,
          'name': 'GISS-E2-H_r2i1p1',
          'nyears': 156,
          'time_period': ['1850-1-16 12:0:0.0', '2005-12-16 12:0:0.0']},
         'GPCPv2.3': {'name': 'GPCPv2.3',
          'nyears': 41,
          'time_period': ['1979-1-1 0:0:0.0', '2019-7-1 0:0:0.0']},
         'method': 'Meridional root mean square error of nino3_LatExt pr, time series are linearly detrended, observations and model regridded to generic_1x1deg',
         'name': 'pr Meridional RMSE',
         'ref': 'Using CDAT regridding and rms (uncentered and biased) calculation',
         'time_frequency': 'monthly',
         'units': 'mm/day'},
        'metric': {'datasets': "GISS-E2-H_r2i1p1; ERA-Interim's pr & GPCPv2.3's precip; 's ",
         'method': 'The metric is the statistical value between the model and the observations',
         'name': 'BiasPrLatRmse',
         'units': 'mm/day'}},
       'BiasPrLonRmse': {'diagnostic': {'ERA-Interim': {'name': 'ERA-Interim',
          'nyears': 40,
          'time_period': ['1979-1-16 12:0:0.0', '2019-3-16 12:0:0.0']},
         'GISS-E2-H_r2i1p1': {'keyerror': None,
          'name': 'GISS-E2-H_r2i1p1',
          'nyears': 156,
          'time_period': ['1850-1-16 12:0:0.0', '2005-12-16 12:0:0.0']},
         'GPCPv2.3': {'name': 'GPCPv2.3',
          'nyears': 41,
          'time_period': ['1979-1-1 0:0:0.0', '2019-7-1 0:0:0.0']},
         'method': 'Zonal root mean square error of equatorial_pacific pr, time series are linearly detrended, observations and model regridded to generic_1x1deg',
         'name': 'pr Zonal RMSE',
         'ref': 'Using CDAT regridding and rms (uncentered and biased) calculation',
         'time_frequency': 'monthly',
         'units': 'mm/day'},
        'metric': {'datasets': "GISS-E2-H_r2i1p1; ERA-Interim's pr & GPCPv2.3's precip; 's ",
         'method': 'The metric is the statistical value between the model and the observations',
         'name': 'BiasPrLonRmse',
         'units': 'mm/day'}},
       'BiasSstLonRmse': {'diagnostic': {'ERA-Interim': {'name': 'ERA-Interim',
          'nyears': 40,
          'time_period': ['1979-1-16 12:0:0.0', '2019-3-16 12:0:0.0']},
         'GISS-E2-H_r2i1p1': {'keyerror': None,
          'name': 'GISS-E2-H_r2i1p1',
          'nyears': 156,
          'time_period': ['1850-1-16 12:0:0.0', '2005-12-16 12:0:0.0']},
         'HadISST': {'name': 'HadISST',
          'nyears': 151,
          'time_period': ['1870-1-16 11:59:59.5', '2020-10-16 12:0:0.0']},
         'Tropflux': {'name': 'Tropflux',
          'nyears': 40,
          'time_period': ['1979-1-15 0:0:0.0', '2018-12-15 12:0:0.0']},
         'method': 'Zonal root mean square error of equatorial_pacific sst, time series are linearly detrended, observations and model regridded to generic_1x1deg',
         'name': 'sst Zonal RMSE',
         'ref': 'Using CDAT regridding and rms (uncentered and biased) calculation',
         'time_frequency': 'monthly',
         'units': 'C'},
        'metric': {'datasets': "GISS-E2-H_r2i1p1; ERA-Interim's ts & HadISST's sst & Tropflux's sst; 's ",
         'method': 'The metric is the statistical value between the model and the observations',
         'name': 'BiasSstLonRmse',
         'units': 'C'}},
       'BiasTauxLonRmse': {'diagnostic': {'ERA-Interim': {'name': 'ERA-Interim',
          'nyears': 40,
          'time_period': ['1979-1-16 12:0:0.0', '2019-3-16 12:0:0.0']},
         'GISS-E2-H_r2i1p1': {'keyerror': None,
          'name': 'GISS-E2-H_r2i1p1',
          'nyears': 156,
          'time_period': ['1850-1-16 12:0:0.0', '2005-12-16 12:0:0.0']},
         'Tropflux': {'name': 'Tropflux',
          'nyears': 40,
          'time_period': ['1979-1-15 0:0:0.0', '2018-12-15 12:0:0.0']},
         'method': 'Zonal root mean square error of equatorial_pacific taux, time series are linearly detrended, observations and model regridded to generic_1x1deg',
         'name': 'taux Zonal RMSE',
         'ref': 'Using CDAT regridding and rms (uncentered and biased) calculation',
         'time_frequency': 'monthly',
         'units': '1e-3 N/m2'},
        'metric': {'datasets': "GISS-E2-H_r2i1p1; ERA-Interim's tauu & Tropflux's taux; 's ",
         'method': 'The metric is the statistical value between the model and the observations',
         'name': 'BiasTauxLonRmse',
         'units': '1e-3 N/m2'}},
       'EnsoAmpl': {'diagnostic': {'ERA-Interim': {'keyerror': None,
          'name': 'ERA-Interim',
          'nyears': 40,
          'time_period': ['1979-1-16 12:0:0.0', '2019-3-16 12:0:0.0']},
         'GISS-E2-H_r2i1p1': {'keyerror': None,
          'name': 'GISS-E2-H_r2i1p1',
          'nyears': 156,
          'time_period': ['1850-1-16 12:0:0.0', '2005-12-16 12:0:0.0']},
         'HadISST': {'keyerror': None,
          'name': 'HadISST',
          'nyears': 151,
          'time_period': ['1870-1-16 11:59:59.5', '2020-10-16 12:0:0.0']},
         'Tropflux': {'keyerror': None,
          'name': 'Tropflux',
          'nyears': 40,
          'time_period': ['1979-1-15 0:0:0.0', '2018-12-15 12:0:0.0']},
         'method': 'Standard deviation of nino3.4 sstA, time series are linearly detrended',
         'name': 'ENSO amplitude',
         'ref': 'Using CDAT regression calculation',
         'time_frequency': 'monthly',
         'units': 'C'},
        'metric': {'datasets': "GISS-E2-H_r2i1p1; ERA-Interim's ts & HadISST's sst & Tropflux's sst; 's ",
         'method': 'The metric is the absolute value of the relative difference between model and observations values (M = 100 * abs[[model-obs] / obs])',
         'name': 'EnsoAmpl',
         'units': '%'}},
       'EnsoDuration': {'diagnostic': {'ERA-Interim': {'keyerror': None,
          'name': 'ERA-Interim',
          'nyears': 40,
          'time_period': ['1979-1-16 12:0:0.0', '2019-3-16 12:0:0.0']},
         'GISS-E2-H_r2i1p1': {'keyerror': None,
          'name': 'GISS-E2-H_r2i1p1',
          'nyears': 156,
          'time_period': ['1850-1-16 12:0:0.0', '2005-12-16 12:0:0.0']},
         'HadISST': {'keyerror': None,
          'name': 'HadISST',
          'nyears': 151,
          'time_period': ['1870-1-16 11:59:59.5', '2020-10-16 12:0:0.0']},
         'Tropflux': {'keyerror': None,
          'name': 'Tropflux',
          'nyears': 40,
          'time_period': ['1979-1-15 0:0:0.0', '2018-12-15 12:0:0.0']},
         'method': 'nino3.4 SSTA during DEC regressed against nino3.4 SSTA during 6 years (centered on ENSO), the duration is the number of consecutive months during which the regression is above 0.25, time series are linearly detrended, smoothing using a triangle shaped window of 5 points',
         'name': 'ENSO Duration based on life cyle SSTA pattern',
         'ref': 'Using CDAT',
         'time_frequency': 'monthly',
         'units': 'months'},
        'metric': {'datasets': "GISS-E2-H_r2i1p1; ERA-Interim's ts & HadISST's sst & Tropflux's sst; 's ",
         'method': 'The metric is the absolute value of the relative difference between model and observations values (M = 100 * abs[[model-obs] / obs])',
         'name': 'EnsoDuration',
         'units': '%'}},
       'EnsoSeasonality': {'diagnostic': {'ERA-Interim': {'keyerror': None,
          'name': 'ERA-Interim',
          'nyears': 40,
          'time_period': ['1979-1-16 12:0:0.0', '2019-3-16 12:0:0.0']},
         'GISS-E2-H_r2i1p1': {'keyerror': None,
          'name': 'GISS-E2-H_r2i1p1',
          'nyears': 156,
          'time_period': ['1850-1-16 12:0:0.0', '2005-12-16 12:0:0.0']},
         'HadISST': {'keyerror': None,
          'name': 'HadISST',
          'nyears': 151,
          'time_period': ['1870-1-16 11:59:59.5', '2020-10-16 12:0:0.0']},
         'Tropflux': {'keyerror': None,
          'name': 'Tropflux',
          'nyears': 40,
          'time_period': ['1979-1-15 0:0:0.0', '2018-12-15 12:0:0.0']},
         'method': 'Ratio between NDJ and MAM standard deviation nino3.4 sstA, time series are linearly detrended',
         'name': 'ENSO seasonality',
         'ref': 'Using CDAT std dev calculation',
         'time_frequency': 'monthly',
         'units': 'C/C'},
        'metric': {'datasets': "GISS-E2-H_r2i1p1; ERA-Interim's ts & HadISST's sst & Tropflux's sst; 's ",
         'method': 'The metric is the absolute value of the relative difference between model and observations values (M = 100 * abs[[model-obs] / obs])',
         'name': 'EnsoSeasonality',
         'units': '%'}},
       'EnsoSstDiversity_2': {'diagnostic': {'ERA-Interim': {'keyerror': None,
          'name': 'ERA-Interim',
          'nyears': 40,
          'time_period': ['1979-1-16 12:0:0.0', '2019-3-16 12:0:0.0']},
         'GISS-E2-H_r2i1p1': {'keyerror': None,
          'name': 'GISS-E2-H_r2i1p1',
          'nyears': 156,
          'time_period': ['1850-1-16 12:0:0.0', '2005-12-16 12:0:0.0']},
         'HadISST': {'keyerror': None,
          'name': 'HadISST',
          'nyears': 151,
          'time_period': ['1870-1-16 11:59:59.5', '2020-10-16 12:0:0.0']},
         'Tropflux': {'keyerror': None,
          'name': 'Tropflux',
          'nyears': 40,
          'time_period': ['1979-1-15 0:0:0.0', '2018-12-15 12:0:0.0']},
         'method': 'Nino (Nina) events = nino3.4 sstA > 0.75 (< -0.75) during DEC, zonal SSTA (meridional averaged [-5.0 ; 5.0]), the zonal SSTA maximum (minimum) is located for each event, the diversity is the interquartile range (IQR = Q3 - Q1), time series are linearly detrended, smoothing using a triangle shaped window of 5 points',
         'name': 'ENSO Diversity (interquartile range)',
         'ref': 'Using CDAT regridding',
         'time_frequency': 'monthly',
         'units': 'long'},
        'metric': {'datasets': "GISS-E2-H_r2i1p1; ERA-Interim's ts & HadISST's sst & Tropflux's sst; 's ",
         'method': 'The metric is the absolute value of the relative difference between model and observations values (M = 100 * abs[[model-obs] / obs])',
         'name': 'EnsoSstDiversity',
         'units': '%'}},
       'EnsoSstLonRmse': {'diagnostic': {'ERA-Interim': {'name': 'ERA-Interim',
          'nyears': 40,
          'time_period': ['1979-1-16 12:0:0.0', '2019-3-16 12:0:0.0']},
         'GISS-E2-H_r2i1p1': {'keyerror': None,
          'name': 'GISS-E2-H_r2i1p1',
          'nyears': 156,
          'time_period': ['1850-1-16 12:0:0.0', '2005-12-16 12:0:0.0']},
         'HadISST': {'name': 'HadISST',
          'nyears': 151,
          'time_period': ['1870-1-16 11:59:59.5', '2020-10-16 12:0:0.0']},
         'Tropflux': {'name': 'Tropflux',
          'nyears': 40,
          'time_period': ['1979-1-15 0:0:0.0', '2018-12-15 12:0:0.0']},
         'method': 'nino3.4 SSTA during DEC regressed against equatorial_pacific SSTA, time series are linearly detrended, smoothing using a triangle shaped window of 5 points, observations and model regridded to generic_1x1deg',
         'name': 'ENSO Zonal SSTA pattern',
         'ref': 'Using CDAT regridding and rms (uncentered and biased) calculation',
         'time_frequency': 'monthly',
         'units': 'C/C'},
        'metric': {'datasets': "GISS-E2-H_r2i1p1; ERA-Interim's ts & HadISST's sst & Tropflux's sst; 's ",
         'method': 'The metric is the statistical value between the model and the observations',
         'name': 'EnsoSstLonRmse',
         'units': 'C/C'}},
       'EnsoSstSkew': {'diagnostic': {'ERA-Interim': {'keyerror': None,
          'name': 'ERA-Interim',
          'nyears': 40,
          'time_period': ['1979-1-16 12:0:0.0', '2019-3-16 12:0:0.0']},
         'GISS-E2-H_r2i1p1': {'keyerror': None,
          'name': 'GISS-E2-H_r2i1p1',
          'nyears': 156,
          'time_period': ['1850-1-16 12:0:0.0', '2005-12-16 12:0:0.0']},
         'HadISST': {'keyerror': None,
          'name': 'HadISST',
          'nyears': 151,
          'time_period': ['1870-1-16 11:59:59.5', '2020-10-16 12:0:0.0']},
         'Tropflux': {'keyerror': None,
          'name': 'Tropflux',
          'nyears': 40,
          'time_period': ['1979-1-15 0:0:0.0', '2018-12-15 12:0:0.0']},
         'method': 'Standard deviation of nino3.4 sstA, time series are linearly detrended',
         'name': 'ENSO skewness',
         'ref': 'Using CDAT regression calculation',
         'time_frequency': 'monthly',
         'units': 'C'},
        'metric': {'datasets': "GISS-E2-H_r2i1p1; ERA-Interim's ts & HadISST's sst & Tropflux's sst; 's ",
         'method': 'The metric is the absolute value of the relative difference between model and observations values (M = 100 * abs[[model-obs] / obs])',
         'name': 'EnsoSstSkew',
         'units': '%'}},
       'EnsoSstTsRmse': {'diagnostic': {'ERA-Interim': {'name': 'ERA-Interim',
          'nyears': 40,
          'time_period': ['1979-1-16 12:0:0.0', '2019-3-16 12:0:0.0']},
         'GISS-E2-H_r2i1p1': {'keyerror': None,
          'name': 'GISS-E2-H_r2i1p1',
          'nyears': 156,
          'time_period': ['1850-1-16 12:0:0.0', '2005-12-16 12:0:0.0']},
         'HadISST': {'name': 'HadISST',
          'nyears': 151,
          'time_period': ['1870-1-16 11:59:59.5', '2020-10-16 12:0:0.0']},
         'Tropflux': {'name': 'Tropflux',
          'nyears': 40,
          'time_period': ['1979-1-15 0:0:0.0', '2018-12-15 12:0:0.0']},
         'method': 'nino3.4 SSTA during DEC regressed against nino3.4 SSTA during 6 years (centered on ENSO), time series are linearly detrended, smoothing using a triangle shaped window of 5 points',
         'name': 'ENSO life cyle SSTA pattern',
         'ref': 'Using CDAT regridding and rms (uncentered and biased) calculation',
         'time_frequency': 'monthly',
         'units': 'C/C'},
        'metric': {'datasets': "GISS-E2-H_r2i1p1; ERA-Interim's ts & HadISST's sst & Tropflux's sst; 's ",
         'method': 'The metric is the statistical value between the model and the observations',
         'name': 'EnsoSstTsRmse',
         'units': 'C/C'}},
       'SeasonalPrLatRmse': {'diagnostic': {'ERA-Interim': {'name': 'ERA-Interim',
          'nyears': 40,
          'time_period': ['1979-1-16 12:0:0.0', '2019-3-16 12:0:0.0']},
         'GISS-E2-H_r2i1p1': {'keyerror': None,
          'name': 'GISS-E2-H_r2i1p1',
          'nyears': 156,
          'time_period': ['1850-1-16 12:0:0.0', '2005-12-16 12:0:0.0']},
         'GPCPv2.3': {'name': 'GPCPv2.3',
          'nyears': 41,
          'time_period': ['1979-1-1 0:0:0.0', '2019-7-1 0:0:0.0']},
         'method': 'Meridional root mean square error of nino3_LatExt climatological pr STD, time series are linearly detrended, observations and model regridded to generic_1x1deg',
         'name': 'pr meridional seasonality RMSE',
         'ref': 'Using CDAT regridding and rms (uncentered and biased) calculation',
         'time_frequency': 'monthly',
         'units': 'mm/day'},
        'metric': {'datasets': "GISS-E2-H_r2i1p1; ERA-Interim's pr & GPCPv2.3's precip; 's ",
         'method': 'The metric is the statistical value between the model and the observations',
         'name': 'SeasonalPrLatRmse',
         'units': 'mm/day'}},
       'SeasonalPrLonRmse': {'diagnostic': {'ERA-Interim': {'name': 'ERA-Interim',
          'nyears': 40,
          'time_period': ['1979-1-16 12:0:0.0', '2019-3-16 12:0:0.0']},
         'GISS-E2-H_r2i1p1': {'keyerror': None,
          'name': 'GISS-E2-H_r2i1p1',
          'nyears': 156,
          'time_period': ['1850-1-16 12:0:0.0', '2005-12-16 12:0:0.0']},
         'GPCPv2.3': {'name': 'GPCPv2.3',
          'nyears': 41,
          'time_period': ['1979-1-1 0:0:0.0', '2019-7-1 0:0:0.0']},
         'method': 'Zonal root mean square error of equatorial_pacific climatological pr STD, time series are linearly detrended, observations and model regridded to generic_1x1deg',
         'name': 'pr zonal seasonality RMSE',
         'ref': 'Using CDAT regridding and rms (uncentered and biased) calculation',
         'time_frequency': 'monthly',
         'units': 'mm/day'},
        'metric': {'datasets': "GISS-E2-H_r2i1p1; ERA-Interim's pr & GPCPv2.3's precip; 's ",
         'method': 'The metric is the statistical value between the model and the observations',
         'name': 'SeasonalPrLonRmse',
         'units': 'mm/day'}},
       'SeasonalSstLonRmse': {'diagnostic': {'ERA-Interim': {'name': 'ERA-Interim',
          'nyears': 40,
          'time_period': ['1979-1-16 12:0:0.0', '2019-3-16 12:0:0.0']},
         'GISS-E2-H_r2i1p1': {'keyerror': None,
          'name': 'GISS-E2-H_r2i1p1',
          'nyears': 156,
          'time_period': ['1850-1-16 12:0:0.0', '2005-12-16 12:0:0.0']},
         'HadISST': {'name': 'HadISST',
          'nyears': 151,
          'time_period': ['1870-1-16 11:59:59.5', '2020-10-16 12:0:0.0']},
         'Tropflux': {'name': 'Tropflux',
          'nyears': 40,
          'time_period': ['1979-1-15 0:0:0.0', '2018-12-15 12:0:0.0']},
         'method': 'Zonal root mean square error of equatorial_pacific climatological sst STD, time series are linearly detrended, observations and model regridded to generic_1x1deg',
         'name': 'sst zonal seasonality RMSE',
         'ref': 'Using CDAT regridding and rms (uncentered and biased) calculation',
         'time_frequency': 'monthly',
         'units': 'C'},
        'metric': {'datasets': "GISS-E2-H_r2i1p1; ERA-Interim's ts & HadISST's sst & Tropflux's sst; 's ",
         'method': 'The metric is the statistical value between the model and the observations',
         'name': 'SeasonalSstLonRmse',
         'units': 'C'}},
       'SeasonalTauxLonRmse': {'diagnostic': {'ERA-Interim': {'name': 'ERA-Interim',
          'nyears': 40,
          'time_period': ['1979-1-16 12:0:0.0', '2019-3-16 12:0:0.0']},
         'GISS-E2-H_r2i1p1': {'keyerror': None,
          'name': 'GISS-E2-H_r2i1p1',
          'nyears': 156,
          'time_period': ['1850-1-16 12:0:0.0', '2005-12-16 12:0:0.0']},
         'Tropflux': {'name': 'Tropflux',
          'nyears': 40,
          'time_period': ['1979-1-15 0:0:0.0', '2018-12-15 12:0:0.0']},
         'method': 'Zonal root mean square error of equatorial_pacific climatological taux STD, time series are linearly detrended, observations and model regridded to generic_1x1deg',
         'name': 'taux zonal seasonality RMSE',
         'ref': 'Using CDAT regridding and rms (uncentered and biased) calculation',
         'time_frequency': 'monthly',
         'units': '1e-3 N/m2'},
        'metric': {'datasets': "GISS-E2-H_r2i1p1; ERA-Interim's tauu & Tropflux's taux; 's ",
         'method': 'The metric is the statistical value between the model and the observations',
         'name': 'SeasonalTauxLonRmse',
         'units': '1e-3 N/m2'}}},
      'name': 'Metrics Collection for ENSO performance'},
     'value': {'BiasPrLatRmse': {'diagnostic': {'ERA-Interim': {'value': None,
         'value_error': None},
        'GISS-E2-H_r2i1p1': {'value': None, 'value_error': None},
        'GPCPv2.3': {'value': None, 'value_error': None}},
       'metric': {'ERA-Interim': {'value': 2.8573881771483727,
         'value_error': None},
        'GPCPv2.3': {'value': 3.4632515308662826, 'value_error': None}}},
      'BiasPrLonRmse': {'diagnostic': {'ERA-Interim': {'value': None,
         'value_error': None},
        'GISS-E2-H_r2i1p1': {'value': None, 'value_error': None},
        'GPCPv2.3': {'value': None, 'value_error': None}},
       'metric': {'ERA-Interim': {'value': 1.4866972439052395,
         'value_error': None},
        'GPCPv2.3': {'value': 0.9089861219474377, 'value_error': None}}},
      'BiasSstLonRmse': {'diagnostic': {'ERA-Interim': {'value': None,
         'value_error': None},
        'GISS-E2-H_r2i1p1': {'value': None, 'value_error': None},
        'HadISST': {'value': None, 'value_error': None},
        'Tropflux': {'value': None, 'value_error': None}},
       'metric': {'ERA-Interim': {'value': 0.8319746447049507,
         'value_error': None},
        'HadISST': {'value': 0.9093017830918447, 'value_error': None},
        'Tropflux': {'value': 0.8235001697940697, 'value_error': None}}},
      'BiasTauxLonRmse': {'diagnostic': {'ERA-Interim': {'value': None,
         'value_error': None},
        'GISS-E2-H_r2i1p1': {'value': None, 'value_error': None},
        'Tropflux': {'value': None, 'value_error': None}},
       'metric': {'ERA-Interim': {'value': 21.246844192963287,
         'value_error': None},
        'Tropflux': {'value': 20.88943785474221, 'value_error': None}}},
      'EnsoAmpl': {'diagnostic': {'ERA-Interim': {'value': 0.8989844997845644,
         'value_error': 0.14214193002531866},
        'GISS-E2-H_r2i1p1': {'value': 0.5312923609245989,
         'value_error': 0.04253743244280102},
        'HadISST': {'value': 0.7665787872085695,
         'value_error': 0.06238329697691264},
        'Tropflux': {'value': 0.9039789553693535,
         'value_error': 0.14293162279134272}},
       'metric': {'ERA-Interim': {'value': 40.90083187731051,
         'value_error': 14.076119295897174},
        'HadISST': {'value': 30.69305206588691,
         'value_error': 11.189116243420901},
        'Tropflux': {'value': 41.227352941250714,
         'value_error': 13.99834917501994}}},
      'EnsoDuration': {'diagnostic': {'ERA-Interim': {'value': 13.0,
         'value_error': None},
        'GISS-E2-H_r2i1p1': {'value': 13.0, 'value_error': None},
        'HadISST': {'value': 13.0, 'value_error': None},
        'Tropflux': {'value': 13.0, 'value_error': None}},
       'metric': {'ERA-Interim': {'value': 0.0, 'value_error': None},
        'HadISST': {'value': 0.0, 'value_error': None},
        'Tropflux': {'value': 0.0, 'value_error': None}}},
      'EnsoSeasonality': {'diagnostic': {'ERA-Interim': {'value': 2.0466846866656914,
         'value_error': 0.6513411033995022},
        'GISS-E2-H_r2i1p1': {'value': 1.3827566748612186,
         'value_error': 0.22177482559534192},
        'HadISST': {'value': 1.6639865947361325,
         'value_error': 0.2712772451657809},
        'Tropflux': {'value': 2.0532132553583624,
         'value_error': 0.6534187683977347}},
       'metric': {'ERA-Interim': {'value': 32.43919379130625,
         'value_error': 32.33649670281385},
        'HadISST': {'value': 16.90097268599151,
         'value_error': 26.875431512911884},
        'Tropflux': {'value': 32.65401578464503,
         'value_error': 32.23367687177403}}},
      'EnsoSstDiversity_2': {'diagnostic': {'ERA-Interim': {'value': 33.25,
         'value_error': None},
        'GISS-E2-H_r2i1p1': {'value': 29.0, 'value_error': None},
        'HadISST': {'value': 49.0, 'value_error': None},
        'Tropflux': {'value': 32.0, 'value_error': None}},
       'metric': {'ERA-Interim': {'value': 12.781954887218044,
         'value_error': None},
        'HadISST': {'value': 40.816326530612244, 'value_error': None},
        'Tropflux': {'value': 9.375, 'value_error': None}}},
      'EnsoSstLonRmse': {'diagnostic': {'ERA-Interim': {'value': None,
         'value_error': None},
        'GISS-E2-H_r2i1p1': {'value': None, 'value_error': None},
        'HadISST': {'value': None, 'value_error': None},
        'Tropflux': {'value': None, 'value_error': None}},
       'metric': {'ERA-Interim': {'value': 0.2752442237623956,
         'value_error': None},
        'HadISST': {'value': 0.2786150913595279, 'value_error': None},
        'Tropflux': {'value': 0.2745105075529668, 'value_error': None}}},
      'EnsoSstSkew': {'diagnostic': {'ERA-Interim': {'value': 0.39098111106809963,
         'value_error': 0.061819541653923164},
        'GISS-E2-H_r2i1p1': {'value': -0.19296491647500572,
         'value_error': -0.015449557912147754},
        'HadISST': {'value': 0.38989908235027515,
         'value_error': 0.03172953733021198},
        'Tropflux': {'value': 0.39744741059612115,
         'value_error': 0.06284195338099416}},
       'metric': {'ERA-Interim': {'value': 149.35402530006004,
         'value_error': -11.755041059362332},
        'HadISST': {'value': 149.49099015874344,
         'value_error': -7.989970102486909},
        'Tropflux': {'value': 148.55105639902965,
         'value_error': -11.563791564642967}}},
      'EnsoSstTsRmse': {'diagnostic': {'ERA-Interim': {'value': None,
         'value_error': None},
        'GISS-E2-H_r2i1p1': {'value': None, 'value_error': None},
        'HadISST': {'value': None, 'value_error': None},
        'Tropflux': {'value': None, 'value_error': None}},
       'metric': {'ERA-Interim': {'value': 0.21778633171698655,
         'value_error': None},
        'HadISST': {'value': 0.2101732142831879, 'value_error': None},
        'Tropflux': {'value': 0.2198507137862772, 'value_error': None}}},
      'SeasonalPrLatRmse': {'diagnostic': {'ERA-Interim': {'value': None,
         'value_error': None},
        'GISS-E2-H_r2i1p1': {'value': None, 'value_error': None},
        'GPCPv2.3': {'value': None, 'value_error': None}},
       'metric': {'ERA-Interim': {'value': 1.134106105537351,
         'value_error': None},
        'GPCPv2.3': {'value': 1.0155905700268244, 'value_error': None}}},
      'SeasonalPrLonRmse': {'diagnostic': {'ERA-Interim': {'value': None,
         'value_error': None},
        'GISS-E2-H_r2i1p1': {'value': None, 'value_error': None},
        'GPCPv2.3': {'value': None, 'value_error': None}},
       'metric': {'ERA-Interim': {'value': 0.8127660850340769,
         'value_error': None},
        'GPCPv2.3': {'value': 0.5014900835475666, 'value_error': None}}},
      'SeasonalSstLonRmse': {'diagnostic': {'ERA-Interim': {'value': None,
         'value_error': None},
        'GISS-E2-H_r2i1p1': {'value': None, 'value_error': None},
        'HadISST': {'value': None, 'value_error': None},
        'Tropflux': {'value': None, 'value_error': None}},
       'metric': {'ERA-Interim': {'value': 0.31286835574001814,
         'value_error': None},
        'HadISST': {'value': 0.30740927093477355, 'value_error': None},
        'Tropflux': {'value': 0.32247988079635076, 'value_error': None}}},
      'SeasonalTauxLonRmse': {'diagnostic': {'ERA-Interim': {'value': None,
         'value_error': None},
        'GISS-E2-H_r2i1p1': {'value': None, 'value_error': None},
        'Tropflux': {'value': None, 'value_error': None}},
       'metric': {'ERA-Interim': {'value': 3.042669951575294,
         'value_error': None},
        'Tropflux': {'value': 3.2696002016048773, 'value_error': None}}}}},
    'r2i1p2': {'metadata': {'description_of_the_collection': 'Describe which science question this collection is about',
      'metrics': {'BiasPrLatRmse': {'diagnostic': {'ERA-Interim': {'name': 'ERA-Interim',
          'nyears': 40,
          'time_period': ['1979-1-16 12:0:0.0', '2019-3-16 12:0:0.0']},
         'GISS-E2-H_r2i1p2': {'keyerror': None,
          'name': 'GISS-E2-H_r2i1p2',
          'nyears': 156,
          'time_period': ['1850-1-16 12:0:0.0', '2005-12-16 12:0:0.0']},
         'GPCPv2.3': {'name': 'GPCPv2.3',
          'nyears': 41,
          'time_period': ['1979-1-1 0:0:0.0', '2019-7-1 0:0:0.0']},
         'method': 'Meridional root mean square error of nino3_LatExt pr, time series are linearly detrended, observations and model regridded to generic_1x1deg',
         'name': 'pr Meridional RMSE',
         'ref': 'Using CDAT regridding and rms (uncentered and biased) calculation',
         'time_frequency': 'monthly',
         'units': 'mm/day'},
        'metric': {'datasets': "GISS-E2-H_r2i1p2; ERA-Interim's pr & GPCPv2.3's precip; 's ",
         'method': 'The metric is the statistical value between the model and the observations',
         'name': 'BiasPrLatRmse',
         'units': 'mm/day'}},
       'BiasPrLonRmse': {'diagnostic': {'ERA-Interim': {'name': 'ERA-Interim',
          'nyears': 40,
          'time_period': ['1979-1-16 12:0:0.0', '2019-3-16 12:0:0.0']},
         'GISS-E2-H_r2i1p2': {'keyerror': None,
          'name': 'GISS-E2-H_r2i1p2',
          'nyears': 156,
          'time_period': ['1850-1-16 12:0:0.0', '2005-12-16 12:0:0.0']},
         'GPCPv2.3': {'name': 'GPCPv2.3',
          'nyears': 41,
          'time_period': ['1979-1-1 0:0:0.0', '2019-7-1 0:0:0.0']},
         'method': 'Zonal root mean square error of equatorial_pacific pr, time series are linearly detrended, observations and model regridded to generic_1x1deg',
         'name': 'pr Zonal RMSE',
         'ref': 'Using CDAT regridding and rms (uncentered and biased) calculation',
         'time_frequency': 'monthly',
         'units': 'mm/day'},
        'metric': {'datasets': "GISS-E2-H_r2i1p2; ERA-Interim's pr & GPCPv2.3's precip; 's ",
         'method': 'The metric is the statistical value between the model and the observations',
         'name': 'BiasPrLonRmse',
         'units': 'mm/day'}},
       'BiasSstLonRmse': {'diagnostic': {'ERA-Interim': {'name': 'ERA-Interim',
          'nyears': 40,
          'time_period': ['1979-1-16 12:0:0.0', '2019-3-16 12:0:0.0']},
         'GISS-E2-H_r2i1p2': {'keyerror': None,
          'name': 'GISS-E2-H_r2i1p2',
          'nyears': 156,
          'time_period': ['1850-1-16 12:0:0.0', '2005-12-16 12:0:0.0']},
         'HadISST': {'name': 'HadISST',
          'nyears': 151,
          'time_period': ['1870-1-16 11:59:59.5', '2020-10-16 12:0:0.0']},
         'Tropflux': {'name': 'Tropflux',
          'nyears': 40,
          'time_period': ['1979-1-15 0:0:0.0', '2018-12-15 12:0:0.0']},
         'method': 'Zonal root mean square error of equatorial_pacific sst, time series are linearly detrended, observations and model regridded to generic_1x1deg',
         'name': 'sst Zonal RMSE',
         'ref': 'Using CDAT regridding and rms (uncentered and biased) calculation',
         'time_frequency': 'monthly',
         'units': 'C'},
        'metric': {'datasets': "GISS-E2-H_r2i1p2; ERA-Interim's ts & HadISST's sst & Tropflux's sst; 's ",
         'method': 'The metric is the statistical value between the model and the observations',
         'name': 'BiasSstLonRmse',
         'units': 'C'}},
       'BiasTauxLonRmse': {'diagnostic': {'ERA-Interim': {'name': 'ERA-Interim',
          'nyears': 40,
          'time_period': ['1979-1-16 12:0:0.0', '2019-3-16 12:0:0.0']},
         'GISS-E2-H_r2i1p2': {'keyerror': None,
          'name': 'GISS-E2-H_r2i1p2',
          'nyears': 156,
          'time_period': ['1850-1-16 12:0:0.0', '2005-12-16 12:0:0.0']},
         'Tropflux': {'name': 'Tropflux',
          'nyears': 40,
          'time_period': ['1979-1-15 0:0:0.0', '2018-12-15 12:0:0.0']},
         'method': 'Zonal root mean square error of equatorial_pacific taux, time series are linearly detrended, observations and model regridded to generic_1x1deg',
         'name': 'taux Zonal RMSE',
         'ref': 'Using CDAT regridding and rms (uncentered and biased) calculation',
         'time_frequency': 'monthly',
         'units': '1e-3 N/m2'},
        'metric': {'datasets': "GISS-E2-H_r2i1p2; ERA-Interim's tauu & Tropflux's taux; 's ",
         'method': 'The metric is the statistical value between the model and the observations',
         'name': 'BiasTauxLonRmse',
         'units': '1e-3 N/m2'}},
       'EnsoAmpl': {'diagnostic': {'ERA-Interim': {'keyerror': None,
          'name': 'ERA-Interim',
          'nyears': 40,
          'time_period': ['1979-1-16 12:0:0.0', '2019-3-16 12:0:0.0']},
         'GISS-E2-H_r2i1p2': {'keyerror': None,
          'name': 'GISS-E2-H_r2i1p2',
          'nyears': 156,
          'time_period': ['1850-1-16 12:0:0.0', '2005-12-16 12:0:0.0']},
         'HadISST': {'keyerror': None,
          'name': 'HadISST',
          'nyears': 151,
          'time_period': ['1870-1-16 11:59:59.5', '2020-10-16 12:0:0.0']},
         'Tropflux': {'keyerror': None,
          'name': 'Tropflux',
          'nyears': 40,
          'time_period': ['1979-1-15 0:0:0.0', '2018-12-15 12:0:0.0']},
         'method': 'Standard deviation of nino3.4 sstA, time series are linearly detrended',
         'name': 'ENSO amplitude',
         'ref': 'Using CDAT regression calculation',
         'time_frequency': 'monthly',
         'units': 'C'},
        'metric': {'datasets': "GISS-E2-H_r2i1p2; ERA-Interim's ts & HadISST's sst & Tropflux's sst; 's ",
         'method': 'The metric is the absolute value of the relative difference between model and observations values (M = 100 * abs[[model-obs] / obs])',
         'name': 'EnsoAmpl',
         'units': '%'}},
       'EnsoDuration': {'diagnostic': {'ERA-Interim': {'keyerror': None,
          'name': 'ERA-Interim',
          'nyears': 40,
          'time_period': ['1979-1-16 12:0:0.0', '2019-3-16 12:0:0.0']},
         'GISS-E2-H_r2i1p2': {'keyerror': None,
          'name': 'GISS-E2-H_r2i1p2',
          'nyears': 156,
          'time_period': ['1850-1-16 12:0:0.0', '2005-12-16 12:0:0.0']},
         'HadISST': {'keyerror': None,
          'name': 'HadISST',
          'nyears': 151,
          'time_period': ['1870-1-16 11:59:59.5', '2020-10-16 12:0:0.0']},
         'Tropflux': {'keyerror': None,
          'name': 'Tropflux',
          'nyears': 40,
          'time_period': ['1979-1-15 0:0:0.0', '2018-12-15 12:0:0.0']},
         'method': 'nino3.4 SSTA during DEC regressed against nino3.4 SSTA during 6 years (centered on ENSO), the duration is the number of consecutive months during which the regression is above 0.25, time series are linearly detrended, smoothing using a triangle shaped window of 5 points',
         'name': 'ENSO Duration based on life cyle SSTA pattern',
         'ref': 'Using CDAT',
         'time_frequency': 'monthly',
         'units': 'months'},
        'metric': {'datasets': "GISS-E2-H_r2i1p2; ERA-Interim's ts & HadISST's sst & Tropflux's sst; 's ",
         'method': 'The metric is the absolute value of the relative difference between model and observations values (M = 100 * abs[[model-obs] / obs])',
         'name': 'EnsoDuration',
         'units': '%'}},
       'EnsoSeasonality': {'diagnostic': {'ERA-Interim': {'keyerror': None,
          'name': 'ERA-Interim',
          'nyears': 40,
          'time_period': ['1979-1-16 12:0:0.0', '2019-3-16 12:0:0.0']},
         'GISS-E2-H_r2i1p2': {'keyerror': None,
          'name': 'GISS-E2-H_r2i1p2',
          'nyears': 156,
          'time_period': ['1850-1-16 12:0:0.0', '2005-12-16 12:0:0.0']},
         'HadISST': {'keyerror': None,
          'name': 'HadISST',
          'nyears': 151,
          'time_period': ['1870-1-16 11:59:59.5', '2020-10-16 12:0:0.0']},
         'Tropflux': {'keyerror': None,
          'name': 'Tropflux',
          'nyears': 40,
          'time_period': ['1979-1-15 0:0:0.0', '2018-12-15 12:0:0.0']},
         'method': 'Ratio between NDJ and MAM standard deviation nino3.4 sstA, time series are linearly detrended',
         'name': 'ENSO seasonality',
         'ref': 'Using CDAT std dev calculation',
         'time_frequency': 'monthly',
         'units': 'C/C'},
        'metric': {'datasets': "GISS-E2-H_r2i1p2; ERA-Interim's ts & HadISST's sst & Tropflux's sst; 's ",
         'method': 'The metric is the absolute value of the relative difference between model and observations values (M = 100 * abs[[model-obs] / obs])',
         'name': 'EnsoSeasonality',
         'units': '%'}},
       'EnsoSstDiversity_2': {'diagnostic': {'ERA-Interim': {'keyerror': None,
          'name': 'ERA-Interim',
          'nyears': 40,
          'time_period': ['1979-1-16 12:0:0.0', '2019-3-16 12:0:0.0']},
         'GISS-E2-H_r2i1p2': {'keyerror': None,
          'name': 'GISS-E2-H_r2i1p2',
          'nyears': 156,
          'time_period': ['1850-1-16 12:0:0.0', '2005-12-16 12:0:0.0']},
         'HadISST': {'keyerror': None,
          'name': 'HadISST',
          'nyears': 151,
          'time_period': ['1870-1-16 11:59:59.5', '2020-10-16 12:0:0.0']},
         'Tropflux': {'keyerror': None,
          'name': 'Tropflux',
          'nyears': 40,
          'time_period': ['1979-1-15 0:0:0.0', '2018-12-15 12:0:0.0']},
         'method': 'Nino (Nina) events = nino3.4 sstA > 0.75 (< -0.75) during DEC, zonal SSTA (meridional averaged [-5.0 ; 5.0]), the zonal SSTA maximum (minimum) is located for each event, the diversity is the interquartile range (IQR = Q3 - Q1), time series are linearly detrended, smoothing using a triangle shaped window of 5 points',
         'name': 'ENSO Diversity (interquartile range)',
         'ref': 'Using CDAT regridding',
         'time_frequency': 'monthly',
         'units': 'long'},
        'metric': {'datasets': "GISS-E2-H_r2i1p2; ERA-Interim's ts & HadISST's sst & Tropflux's sst; 's ",
         'method': 'The metric is the absolute value of the relative difference between model and observations values (M = 100 * abs[[model-obs] / obs])',
         'name': 'EnsoSstDiversity',
         'units': '%'}},
       'EnsoSstLonRmse': {'diagnostic': {'ERA-Interim': {'name': 'ERA-Interim',
          'nyears': 40,
          'time_period': ['1979-1-16 12:0:0.0', '2019-3-16 12:0:0.0']},
         'GISS-E2-H_r2i1p2': {'keyerror': None,
          'name': 'GISS-E2-H_r2i1p2',
          'nyears': 156,
          'time_period': ['1850-1-16 12:0:0.0', '2005-12-16 12:0:0.0']},
         'HadISST': {'name': 'HadISST',
          'nyears': 151,
          'time_period': ['1870-1-16 11:59:59.5', '2020-10-16 12:0:0.0']},
         'Tropflux': {'name': 'Tropflux',
          'nyears': 40,
          'time_period': ['1979-1-15 0:0:0.0', '2018-12-15 12:0:0.0']},
         'method': 'nino3.4 SSTA during DEC regressed against equatorial_pacific SSTA, time series are linearly detrended, smoothing using a triangle shaped window of 5 points, observations and model regridded to generic_1x1deg',
         'name': 'ENSO Zonal SSTA pattern',
         'ref': 'Using CDAT regridding and rms (uncentered and biased) calculation',
         'time_frequency': 'monthly',
         'units': 'C/C'},
        'metric': {'datasets': "GISS-E2-H_r2i1p2; ERA-Interim's ts & HadISST's sst & Tropflux's sst; 's ",
         'method': 'The metric is the statistical value between the model and the observations',
         'name': 'EnsoSstLonRmse',
         'units': 'C/C'}},
       'EnsoSstSkew': {'diagnostic': {'ERA-Interim': {'keyerror': None,
          'name': 'ERA-Interim',
          'nyears': 40,
          'time_period': ['1979-1-16 12:0:0.0', '2019-3-16 12:0:0.0']},
         'GISS-E2-H_r2i1p2': {'keyerror': None,
          'name': 'GISS-E2-H_r2i1p2',
          'nyears': 156,
          'time_period': ['1850-1-16 12:0:0.0', '2005-12-16 12:0:0.0']},
         'HadISST': {'keyerror': None,
          'name': 'HadISST',
          'nyears': 151,
          'time_period': ['1870-1-16 11:59:59.5', '2020-10-16 12:0:0.0']},
         'Tropflux': {'keyerror': None,
          'name': 'Tropflux',
          'nyears': 40,
          'time_period': ['1979-1-15 0:0:0.0', '2018-12-15 12:0:0.0']},
         'method': 'Standard deviation of nino3.4 sstA, time series are linearly detrended',
         'name': 'ENSO skewness',
         'ref': 'Using CDAT regression calculation',
         'time_frequency': 'monthly',
         'units': 'C'},
        'metric': {'datasets': "GISS-E2-H_r2i1p2; ERA-Interim's ts & HadISST's sst & Tropflux's sst; 's ",
         'method': 'The metric is the absolute value of the relative difference between model and observations values (M = 100 * abs[[model-obs] / obs])',
         'name': 'EnsoSstSkew',
         'units': '%'}},
       'EnsoSstTsRmse': {'diagnostic': {'ERA-Interim': {'name': 'ERA-Interim',
          'nyears': 40,
          'time_period': ['1979-1-16 12:0:0.0', '2019-3-16 12:0:0.0']},
         'GISS-E2-H_r2i1p2': {'keyerror': None,
          'name': 'GISS-E2-H_r2i1p2',
          'nyears': 156,
          'time_period': ['1850-1-16 12:0:0.0', '2005-12-16 12:0:0.0']},
         'HadISST': {'name': 'HadISST',
          'nyears': 151,
          'time_period': ['1870-1-16 11:59:59.5', '2020-10-16 12:0:0.0']},
         'Tropflux': {'name': 'Tropflux',
          'nyears': 40,
          'time_period': ['1979-1-15 0:0:0.0', '2018-12-15 12:0:0.0']},
         'method': 'nino3.4 SSTA during DEC regressed against nino3.4 SSTA during 6 years (centered on ENSO), time series are linearly detrended, smoothing using a triangle shaped window of 5 points',
         'name': 'ENSO life cyle SSTA pattern',
         'ref': 'Using CDAT regridding and rms (uncentered and biased) calculation',
         'time_frequency': 'monthly',
         'units': 'C/C'},
        'metric': {'datasets': "GISS-E2-H_r2i1p2; ERA-Interim's ts & HadISST's sst & Tropflux's sst; 's ",
         'method': 'The metric is the statistical value between the model and the observations',
         'name': 'EnsoSstTsRmse',
         'units': 'C/C'}},
       'SeasonalPrLatRmse': {'diagnostic': {'ERA-Interim': {'name': 'ERA-Interim',
          'nyears': 40,
          'time_period': ['1979-1-16 12:0:0.0', '2019-3-16 12:0:0.0']},
         'GISS-E2-H_r2i1p2': {'keyerror': None,
          'name': 'GISS-E2-H_r2i1p2',
          'nyears': 156,
          'time_period': ['1850-1-16 12:0:0.0', '2005-12-16 12:0:0.0']},
         'GPCPv2.3': {'name': 'GPCPv2.3',
          'nyears': 41,
          'time_period': ['1979-1-1 0:0:0.0', '2019-7-1 0:0:0.0']},
         'method': 'Meridional root mean square error of nino3_LatExt climatological pr STD, time series are linearly detrended, observations and model regridded to generic_1x1deg',
         'name': 'pr meridional seasonality RMSE',
         'ref': 'Using CDAT regridding and rms (uncentered and biased) calculation',
         'time_frequency': 'monthly',
         'units': 'mm/day'},
        'metric': {'datasets': "GISS-E2-H_r2i1p2; ERA-Interim's pr & GPCPv2.3's precip; 's ",
         'method': 'The metric is the statistical value between the model and the observations',
         'name': 'SeasonalPrLatRmse',
         'units': 'mm/day'}},
       'SeasonalPrLonRmse': {'diagnostic': {'ERA-Interim': {'name': 'ERA-Interim',
          'nyears': 40,
          'time_period': ['1979-1-16 12:0:0.0', '2019-3-16 12:0:0.0']},
         'GISS-E2-H_r2i1p2': {'keyerror': None,
          'name': 'GISS-E2-H_r2i1p2',
          'nyears': 156,
          'time_period': ['1850-1-16 12:0:0.0', '2005-12-16 12:0:0.0']},
         'GPCPv2.3': {'name': 'GPCPv2.3',
          'nyears': 41,
          'time_period': ['1979-1-1 0:0:0.0', '2019-7-1 0:0:0.0']},
         'method': 'Zonal root mean square error of equatorial_pacific climatological pr STD, time series are linearly detrended, observations and model regridded to generic_1x1deg',
         'name': 'pr zonal seasonality RMSE',
         'ref': 'Using CDAT regridding and rms (uncentered and biased) calculation',
         'time_frequency': 'monthly',
         'units': 'mm/day'},
        'metric': {'datasets': "GISS-E2-H_r2i1p2; ERA-Interim's pr & GPCPv2.3's precip; 's ",
         'method': 'The metric is the statistical value between the model and the observations',
         'name': 'SeasonalPrLonRmse',
         'units': 'mm/day'}},
       'SeasonalSstLonRmse': {'diagnostic': {'ERA-Interim': {'name': 'ERA-Interim',
          'nyears': 40,
          'time_period': ['1979-1-16 12:0:0.0', '2019-3-16 12:0:0.0']},
         'GISS-E2-H_r2i1p2': {'keyerror': None,
          'name': 'GISS-E2-H_r2i1p2',
          'nyears': 156,
          'time_period': ['1850-1-16 12:0:0.0', '2005-12-16 12:0:0.0']},
         'HadISST': {'name': 'HadISST',
          'nyears': 151,
          'time_period': ['1870-1-16 11:59:59.5', '2020-10-16 12:0:0.0']},
         'Tropflux': {'name': 'Tropflux',
          'nyears': 40,
          'time_period': ['1979-1-15 0:0:0.0', '2018-12-15 12:0:0.0']},
         'method': 'Zonal root mean square error of equatorial_pacific climatological sst STD, time series are linearly detrended, observations and model regridded to generic_1x1deg',
         'name': 'sst zonal seasonality RMSE',
         'ref': 'Using CDAT regridding and rms (uncentered and biased) calculation',
         'time_frequency': 'monthly',
         'units': 'C'},
        'metric': {'datasets': "GISS-E2-H_r2i1p2; ERA-Interim's ts & HadISST's sst & Tropflux's sst; 's ",
         'method': 'The metric is the statistical value between the model and the observations',
         'name': 'SeasonalSstLonRmse',
         'units': 'C'}},
       'SeasonalTauxLonRmse': {'diagnostic': {'ERA-Interim': {'name': 'ERA-Interim',
          'nyears': 40,
          'time_period': ['1979-1-16 12:0:0.0', '2019-3-16 12:0:0.0']},
         'GISS-E2-H_r2i1p2': {'keyerror': None,
          'name': 'GISS-E2-H_r2i1p2',
          'nyears': 156,
          'time_period': ['1850-1-16 12:0:0.0', '2005-12-16 12:0:0.0']},
         'Tropflux': {'name': 'Tropflux',
          'nyears': 40,
          'time_period': ['1979-1-15 0:0:0.0', '2018-12-15 12:0:0.0']},
         'method': 'Zonal root mean square error of equatorial_pacific climatological taux STD, time series are linearly detrended, observations and model regridded to generic_1x1deg',
         'name': 'taux zonal seasonality RMSE',
         'ref': 'Using CDAT regridding and rms (uncentered and biased) calculation',
         'time_frequency': 'monthly',
         'units': '1e-3 N/m2'},
        'metric': {'datasets': "GISS-E2-H_r2i1p2; ERA-Interim's tauu & Tropflux's taux; 's ",
         'method': 'The metric is the statistical value between the model and the observations',
         'name': 'SeasonalTauxLonRmse',
         'units': '1e-3 N/m2'}}},
      'name': 'Metrics Collection for ENSO performance'},
     'value': {'BiasPrLatRmse': {'diagnostic': {'ERA-Interim': {'value': None,
         'value_error': None},
        'GISS-E2-H_r2i1p2': {'value': None, 'value_error': None},
        'GPCPv2.3': {'value': None, 'value_error': None}},
       'metric': {'ERA-Interim': {'value': 2.9282840273018955,
         'value_error': None},
        'GPCPv2.3': {'value': 3.537521171468076, 'value_error': None}}},
      'BiasPrLonRmse': {'diagnostic': {'ERA-Interim': {'value': None,
         'value_error': None},
        'GISS-E2-H_r2i1p2': {'value': None, 'value_error': None},
        'GPCPv2.3': {'value': None, 'value_error': None}},
       'metric': {'ERA-Interim': {'value': 1.4167504249194254,
         'value_error': None},
        'GPCPv2.3': {'value': 0.8825531335789034, 'value_error': None}}},
      'BiasSstLonRmse': {'diagnostic': {'ERA-Interim': {'value': None,
         'value_error': None},
        'GISS-E2-H_r2i1p2': {'value': None, 'value_error': None},
        'HadISST': {'value': None, 'value_error': None},
        'Tropflux': {'value': None, 'value_error': None}},
       'metric': {'ERA-Interim': {'value': 0.8730987544117929,
         'value_error': None},
        'HadISST': {'value': 0.9832362281866838, 'value_error': None},
        'Tropflux': {'value': 0.8559287946141841, 'value_error': None}}},
      'BiasTauxLonRmse': {'diagnostic': {'ERA-Interim': {'value': None,
         'value_error': None},
        'GISS-E2-H_r2i1p2': {'value': None, 'value_error': None},
        'Tropflux': {'value': None, 'value_error': None}},
       'metric': {'ERA-Interim': {'value': 21.381182053495696,
         'value_error': None},
        'Tropflux': {'value': 21.02000683371365, 'value_error': None}}},
      'EnsoAmpl': {'diagnostic': {'ERA-Interim': {'value': 0.8989844997845644,
         'value_error': 0.14214193002531866},
        'GISS-E2-H_r2i1p2': {'value': 0.5249885557936571,
         'value_error': 0.04203272410401865},
        'HadISST': {'value': 0.7665787872085695,
         'value_error': 0.06238329697691264},
        'Tropflux': {'value': 0.9039789553693535,
         'value_error': 0.14293162279134272}},
       'metric': {'ERA-Interim': {'value': 41.60204587293028,
         'value_error': 13.90910557695944},
        'HadISST': {'value': 31.515381777604674,
         'value_error': 11.056356931272632},
        'Tropflux': {'value': 41.924692751375616,
         'value_error': 13.83225820167969}}},
      'EnsoDuration': {'diagnostic': {'ERA-Interim': {'value': 13.0,
         'value_error': None},
        'GISS-E2-H_r2i1p2': {'value': 14.0, 'value_error': None},
        'HadISST': {'value': 13.0, 'value_error': None},
        'Tropflux': {'value': 13.0, 'value_error': None}},
       'metric': {'ERA-Interim': {'value': 7.6923076923076925,
         'value_error': None},
        'HadISST': {'value': 7.6923076923076925, 'value_error': None},
        'Tropflux': {'value': 7.6923076923076925, 'value_error': None}}},
      'EnsoSeasonality': {'diagnostic': {'ERA-Interim': {'value': 2.0466846866656914,
         'value_error': 0.6513411033995022},
        'GISS-E2-H_r2i1p2': {'value': 1.2782416808098718,
         'value_error': 0.20501208273592886},
        'HadISST': {'value': 1.6639865947361325,
         'value_error': 0.2712772451657809},
        'Tropflux': {'value': 2.0532132553583624,
         'value_error': 0.6534187683977347}},
       'metric': {'ERA-Interim': {'value': 37.5457446309285,
         'value_error': 29.892358249549694},
        'HadISST': {'value': 23.18197244776665,
         'value_error': 24.844065029013855},
        'Tropflux': {'value': 37.744329407868996,
         'value_error': 29.79731000567692}}},
      'EnsoSstDiversity_2': {'diagnostic': {'ERA-Interim': {'value': 33.25,
         'value_error': None},
        'GISS-E2-H_r2i1p2': {'value': 18.5, 'value_error': None},
        'HadISST': {'value': 49.0, 'value_error': None},
        'Tropflux': {'value': 32.0, 'value_error': None}},
       'metric': {'ERA-Interim': {'value': 44.3609022556391,
         'value_error': None},
        'HadISST': {'value': 62.244897959183675, 'value_error': None},
        'Tropflux': {'value': 42.1875, 'value_error': None}}},
      'EnsoSstLonRmse': {'diagnostic': {'ERA-Interim': {'value': None,
         'value_error': None},
        'GISS-E2-H_r2i1p2': {'value': None, 'value_error': None},
        'HadISST': {'value': None, 'value_error': None},
        'Tropflux': {'value': None, 'value_error': None}},
       'metric': {'ERA-Interim': {'value': 0.2756450739599309,
         'value_error': None},
        'HadISST': {'value': 0.2798538739811807, 'value_error': None},
        'Tropflux': {'value': 0.27489881599900723, 'value_error': None}}},
      'EnsoSstSkew': {'diagnostic': {'ERA-Interim': {'value': 0.39098111106809963,
         'value_error': 0.061819541653923164},
        'GISS-E2-H_r2i1p2': {'value': -0.1127389622149645,
         'value_error': -0.00902634094069187},
        'HadISST': {'value': 0.38989908235027515,
         'value_error': 0.03172953733021198},
        'Tropflux': {'value': 0.39744741059612115,
         'value_error': 0.06284195338099416}},
       'metric': {'ERA-Interim': {'value': 128.83488716551528,
         'value_error': -6.867834599345227},
        'HadISST': {'value': 128.91490832329856,
         'value_error': -4.668107311619226},
        'Tropflux': {'value': 128.36575587342995,
         'value_error': -6.756097865265952}}},
      'EnsoSstTsRmse': {'diagnostic': {'ERA-Interim': {'value': None,
         'value_error': None},
        'GISS-E2-H_r2i1p2': {'value': None, 'value_error': None},
        'HadISST': {'value': None, 'value_error': None},
        'Tropflux': {'value': None, 'value_error': None}},
       'metric': {'ERA-Interim': {'value': 0.15618631746435582,
         'value_error': None},
        'HadISST': {'value': 0.13171236411505408, 'value_error': None},
        'Tropflux': {'value': 0.15554279320894998, 'value_error': None}}},
      'SeasonalPrLatRmse': {'diagnostic': {'ERA-Interim': {'value': None,
         'value_error': None},
        'GISS-E2-H_r2i1p2': {'value': None, 'value_error': None},
        'GPCPv2.3': {'value': None, 'value_error': None}},
       'metric': {'ERA-Interim': {'value': 1.096818966798927,
         'value_error': None},
        'GPCPv2.3': {'value': 1.0020051076543641, 'value_error': None}}},
      'SeasonalPrLonRmse': {'diagnostic': {'ERA-Interim': {'value': None,
         'value_error': None},
        'GISS-E2-H_r2i1p2': {'value': None, 'value_error': None},
        'GPCPv2.3': {'value': None, 'value_error': None}},
       'metric': {'ERA-Interim': {'value': 0.7766631710991125,
         'value_error': None},
        'GPCPv2.3': {'value': 0.47824072024112163, 'value_error': None}}},
      'SeasonalSstLonRmse': {'diagnostic': {'ERA-Interim': {'value': None,
         'value_error': None},
        'GISS-E2-H_r2i1p2': {'value': None, 'value_error': None},
        'HadISST': {'value': None, 'value_error': None},
        'Tropflux': {'value': None, 'value_error': None}},
       'metric': {'ERA-Interim': {'value': 0.306502791789241,
         'value_error': None},
        'HadISST': {'value': 0.30082009059607967, 'value_error': None},
        'Tropflux': {'value': 0.3161949265296, 'value_error': None}}},
      'SeasonalTauxLonRmse': {'diagnostic': {'ERA-Interim': {'value': None,
         'value_error': None},
        'GISS-E2-H_r2i1p2': {'value': None, 'value_error': None},
        'Tropflux': {'value': None, 'value_error': None}},
       'metric': {'ERA-Interim': {'value': 3.048116652766058,
         'value_error': None},
        'Tropflux': {'value': 3.273043210235894, 'value_error': None}}}}},
    'r2i1p3': {'metadata': {'description_of_the_collection': 'Describe which science question this collection is about',
      'metrics': {'BiasPrLatRmse': {'diagnostic': {'ERA-Interim': {'name': 'ERA-Interim',
          'nyears': 40,
          'time_period': ['1979-1-16 12:0:0.0', '2019-3-16 12:0:0.0']},
         'GISS-E2-H_r2i1p3': {'keyerror': None,
          'name': 'GISS-E2-H_r2i1p3',
          'nyears': 156,
          'time_period': ['1850-1-16 12:0:0.0', '2005-12-16 12:0:0.0']},
         'GPCPv2.3': {'name': 'GPCPv2.3',
          'nyears': 41,
          'time_period': ['1979-1-1 0:0:0.0', '2019-7-1 0:0:0.0']},
         'method': 'Meridional root mean square error of nino3_LatExt pr, time series are linearly detrended, observations and model regridded to generic_1x1deg',
         'name': 'pr Meridional RMSE',
         'ref': 'Using CDAT regridding and rms (uncentered and biased) calculation',
         'time_frequency': 'monthly',
         'units': 'mm/day'},
        'metric': {'datasets': "GISS-E2-H_r2i1p3; ERA-Interim's pr & GPCPv2.3's precip; 's ",
         'method': 'The metric is the statistical value between the model and the observations',
         'name': 'BiasPrLatRmse',
         'units': 'mm/day'}},
       'BiasPrLonRmse': {'diagnostic': {'ERA-Interim': {'name': 'ERA-Interim',
          'nyears': 40,
          'time_period': ['1979-1-16 12:0:0.0', '2019-3-16 12:0:0.0']},
         'GISS-E2-H_r2i1p3': {'keyerror': None,
          'name': 'GISS-E2-H_r2i1p3',
          'nyears': 156,
          'time_period': ['1850-1-16 12:0:0.0', '2005-12-16 12:0:0.0']},
         'GPCPv2.3': {'name': 'GPCPv2.3',
          'nyears': 41,
          'time_period': ['1979-1-1 0:0:0.0', '2019-7-1 0:0:0.0']},
         'method': 'Zonal root mean square error of equatorial_pacific pr, time series are linearly detrended, observations and model regridded to generic_1x1deg',
         'name': 'pr Zonal RMSE',
         'ref': 'Using CDAT regridding and rms (uncentered and biased) calculation',
         'time_frequency': 'monthly',
         'units': 'mm/day'},
        'metric': {'datasets': "GISS-E2-H_r2i1p3; ERA-Interim's pr & GPCPv2.3's precip; 's ",
         'method': 'The metric is the statistical value between the model and the observations',
         'name': 'BiasPrLonRmse',
         'units': 'mm/day'}},
       'BiasSstLonRmse': {'diagnostic': {'ERA-Interim': {'name': 'ERA-Interim',
          'nyears': 40,
          'time_period': ['1979-1-16 12:0:0.0', '2019-3-16 12:0:0.0']},
         'GISS-E2-H_r2i1p3': {'keyerror': None,
          'name': 'GISS-E2-H_r2i1p3',
          'nyears': 156,
          'time_period': ['1850-1-16 12:0:0.0', '2005-12-16 12:0:0.0']},
         'HadISST': {'name': 'HadISST',
          'nyears': 151,
          'time_period': ['1870-1-16 11:59:59.5', '2020-10-16 12:0:0.0']},
         'Tropflux': {'name': 'Tropflux',
          'nyears': 40,
          'time_period': ['1979-1-15 0:0:0.0', '2018-12-15 12:0:0.0']},
         'method': 'Zonal root mean square error of equatorial_pacific sst, time series are linearly detrended, observations and model regridded to generic_1x1deg',
         'name': 'sst Zonal RMSE',
         'ref': 'Using CDAT regridding and rms (uncentered and biased) calculation',
         'time_frequency': 'monthly',
         'units': 'C'},
        'metric': {'datasets': "GISS-E2-H_r2i1p3; ERA-Interim's ts & HadISST's sst & Tropflux's sst; 's ",
         'method': 'The metric is the statistical value between the model and the observations',
         'name': 'BiasSstLonRmse',
         'units': 'C'}},
       'BiasTauxLonRmse': {'diagnostic': {'ERA-Interim': {'name': 'ERA-Interim',
          'nyears': 40,
          'time_period': ['1979-1-16 12:0:0.0', '2019-3-16 12:0:0.0']},
         'GISS-E2-H_r2i1p3': {'keyerror': None,
          'name': 'GISS-E2-H_r2i1p3',
          'nyears': 156,
          'time_period': ['1850-1-16 12:0:0.0', '2005-12-16 12:0:0.0']},
         'Tropflux': {'name': 'Tropflux',
          'nyears': 40,
          'time_period': ['1979-1-15 0:0:0.0', '2018-12-15 12:0:0.0']},
         'method': 'Zonal root mean square error of equatorial_pacific taux, time series are linearly detrended, observations and model regridded to generic_1x1deg',
         'name': 'taux Zonal RMSE',
         'ref': 'Using CDAT regridding and rms (uncentered and biased) calculation',
         'time_frequency': 'monthly',
         'units': '1e-3 N/m2'},
        'metric': {'datasets': "GISS-E2-H_r2i1p3; ERA-Interim's tauu & Tropflux's taux; 's ",
         'method': 'The metric is the statistical value between the model and the observations',
         'name': 'BiasTauxLonRmse',
         'units': '1e-3 N/m2'}},
       'EnsoAmpl': {'diagnostic': {'ERA-Interim': {'keyerror': None,
          'name': 'ERA-Interim',
          'nyears': 40,
          'time_period': ['1979-1-16 12:0:0.0', '2019-3-16 12:0:0.0']},
         'GISS-E2-H_r2i1p3': {'keyerror': None,
          'name': 'GISS-E2-H_r2i1p3',
          'nyears': 156,
          'time_period': ['1850-1-16 12:0:0.0', '2005-12-16 12:0:0.0']},
         'HadISST': {'keyerror': None,
          'name': 'HadISST',
          'nyears': 151,
          'time_period': ['1870-1-16 11:59:59.5', '2020-10-16 12:0:0.0']},
         'Tropflux': {'keyerror': None,
          'name': 'Tropflux',
          'nyears': 40,
          'time_period': ['1979-1-15 0:0:0.0', '2018-12-15 12:0:0.0']},
         'method': 'Standard deviation of nino3.4 sstA, time series are linearly detrended',
         'name': 'ENSO amplitude',
         'ref': 'Using CDAT regression calculation',
         'time_frequency': 'monthly',
         'units': 'C'},
        'metric': {'datasets': "GISS-E2-H_r2i1p3; ERA-Interim's ts & HadISST's sst & Tropflux's sst; 's ",
         'method': 'The metric is the absolute value of the relative difference between model and observations values (M = 100 * abs[[model-obs] / obs])',
         'name': 'EnsoAmpl',
         'units': '%'}},
       'EnsoDuration': {'diagnostic': {'ERA-Interim': {'keyerror': None,
          'name': 'ERA-Interim',
          'nyears': 40,
          'time_period': ['1979-1-16 12:0:0.0', '2019-3-16 12:0:0.0']},
         'GISS-E2-H_r2i1p3': {'keyerror': None,
          'name': 'GISS-E2-H_r2i1p3',
          'nyears': 156,
          'time_period': ['1850-1-16 12:0:0.0', '2005-12-16 12:0:0.0']},
         'HadISST': {'keyerror': None,
          'name': 'HadISST',
          'nyears': 151,
          'time_period': ['1870-1-16 11:59:59.5', '2020-10-16 12:0:0.0']},
         'Tropflux': {'keyerror': None,
          'name': 'Tropflux',
          'nyears': 40,
          'time_period': ['1979-1-15 0:0:0.0', '2018-12-15 12:0:0.0']},
         'method': 'nino3.4 SSTA during DEC regressed against nino3.4 SSTA during 6 years (centered on ENSO), the duration is the number of consecutive months during which the regression is above 0.25, time series are linearly detrended, smoothing using a triangle shaped window of 5 points',
         'name': 'ENSO Duration based on life cyle SSTA pattern',
         'ref': 'Using CDAT',
         'time_frequency': 'monthly',
         'units': 'months'},
        'metric': {'datasets': "GISS-E2-H_r2i1p3; ERA-Interim's ts & HadISST's sst & Tropflux's sst; 's ",
         'method': 'The metric is the absolute value of the relative difference between model and observations values (M = 100 * abs[[model-obs] / obs])',
         'name': 'EnsoDuration',
         'units': '%'}},
       'EnsoSeasonality': {'diagnostic': {'ERA-Interim': {'keyerror': None,
          'name': 'ERA-Interim',
          'nyears': 40,
          'time_period': ['1979-1-16 12:0:0.0', '2019-3-16 12:0:0.0']},
         'GISS-E2-H_r2i1p3': {'keyerror': None,
          'name': 'GISS-E2-H_r2i1p3',
          'nyears': 156,
          'time_period': ['1850-1-16 12:0:0.0', '2005-12-16 12:0:0.0']},
         'HadISST': {'keyerror': None,
          'name': 'HadISST',
          'nyears': 151,
          'time_period': ['1870-1-16 11:59:59.5', '2020-10-16 12:0:0.0']},
         'Tropflux': {'keyerror': None,
          'name': 'Tropflux',
          'nyears': 40,
          'time_period': ['1979-1-15 0:0:0.0', '2018-12-15 12:0:0.0']},
         'method': 'Ratio between NDJ and MAM standard deviation nino3.4 sstA, time series are linearly detrended',
         'name': 'ENSO seasonality',
         'ref': 'Using CDAT std dev calculation',
         'time_frequency': 'monthly',
         'units': 'C/C'},
        'metric': {'datasets': "GISS-E2-H_r2i1p3; ERA-Interim's ts & HadISST's sst & Tropflux's sst; 's ",
         'method': 'The metric is the absolute value of the relative difference between model and observations values (M = 100 * abs[[model-obs] / obs])',
         'name': 'EnsoSeasonality',
         'units': '%'}},
       'EnsoSstDiversity_2': {'diagnostic': {'ERA-Interim': {'keyerror': None,
          'name': 'ERA-Interim',
          'nyears': 40,
          'time_period': ['1979-1-16 12:0:0.0', '2019-3-16 12:0:0.0']},
         'GISS-E2-H_r2i1p3': {'keyerror': None,
          'name': 'GISS-E2-H_r2i1p3',
          'nyears': 156,
          'time_period': ['1850-1-16 12:0:0.0', '2005-12-16 12:0:0.0']},
         'HadISST': {'keyerror': None,
          'name': 'HadISST',
          'nyears': 151,
          'time_period': ['1870-1-16 11:59:59.5', '2020-10-16 12:0:0.0']},
         'Tropflux': {'keyerror': None,
          'name': 'Tropflux',
          'nyears': 40,
          'time_period': ['1979-1-15 0:0:0.0', '2018-12-15 12:0:0.0']},
         'method': 'Nino (Nina) events = nino3.4 sstA > 0.75 (< -0.75) during DEC, zonal SSTA (meridional averaged [-5.0 ; 5.0]), the zonal SSTA maximum (minimum) is located for each event, the diversity is the interquartile range (IQR = Q3 - Q1), time series are linearly detrended, smoothing using a triangle shaped window of 5 points',
         'name': 'ENSO Diversity (interquartile range)',
         'ref': 'Using CDAT regridding',
         'time_frequency': 'monthly',
         'units': 'long'},
        'metric': {'datasets': "GISS-E2-H_r2i1p3; ERA-Interim's ts & HadISST's sst & Tropflux's sst; 's ",
         'method': 'The metric is the absolute value of the relative difference between model and observations values (M = 100 * abs[[model-obs] / obs])',
         'name': 'EnsoSstDiversity',
         'units': '%'}},
       'EnsoSstLonRmse': {'diagnostic': {'ERA-Interim': {'name': 'ERA-Interim',
          'nyears': 40,
          'time_period': ['1979-1-16 12:0:0.0', '2019-3-16 12:0:0.0']},
         'GISS-E2-H_r2i1p3': {'keyerror': None,
          'name': 'GISS-E2-H_r2i1p3',
          'nyears': 156,
          'time_period': ['1850-1-16 12:0:0.0', '2005-12-16 12:0:0.0']},
         'HadISST': {'name': 'HadISST',
          'nyears': 151,
          'time_period': ['1870-1-16 11:59:59.5', '2020-10-16 12:0:0.0']},
         'Tropflux': {'name': 'Tropflux',
          'nyears': 40,
          'time_period': ['1979-1-15 0:0:0.0', '2018-12-15 12:0:0.0']},
         'method': 'nino3.4 SSTA during DEC regressed against equatorial_pacific SSTA, time series are linearly detrended, smoothing using a triangle shaped window of 5 points, observations and model regridded to generic_1x1deg',
         'name': 'ENSO Zonal SSTA pattern',
         'ref': 'Using CDAT regridding and rms (uncentered and biased) calculation',
         'time_frequency': 'monthly',
         'units': 'C/C'},
        'metric': {'datasets': "GISS-E2-H_r2i1p3; ERA-Interim's ts & HadISST's sst & Tropflux's sst; 's ",
         'method': 'The metric is the statistical value between the model and the observations',
         'name': 'EnsoSstLonRmse',
         'units': 'C/C'}},
       'EnsoSstSkew': {'diagnostic': {'ERA-Interim': {'keyerror': None,
          'name': 'ERA-Interim',
          'nyears': 40,
          'time_period': ['1979-1-16 12:0:0.0', '2019-3-16 12:0:0.0']},
         'GISS-E2-H_r2i1p3': {'keyerror': None,
          'name': 'GISS-E2-H_r2i1p3',
          'nyears': 156,
          'time_period': ['1850-1-16 12:0:0.0', '2005-12-16 12:0:0.0']},
         'HadISST': {'keyerror': None,
          'name': 'HadISST',
          'nyears': 151,
          'time_period': ['1870-1-16 11:59:59.5', '2020-10-16 12:0:0.0']},
         'Tropflux': {'keyerror': None,
          'name': 'Tropflux',
          'nyears': 40,
          'time_period': ['1979-1-15 0:0:0.0', '2018-12-15 12:0:0.0']},
         'method': 'Standard deviation of nino3.4 sstA, time series are linearly detrended',
         'name': 'ENSO skewness',
         'ref': 'Using CDAT regression calculation',
         'time_frequency': 'monthly',
         'units': 'C'},
        'metric': {'datasets': "GISS-E2-H_r2i1p3; ERA-Interim's ts & HadISST's sst & Tropflux's sst; 's ",
         'method': 'The metric is the absolute value of the relative difference between model and observations values (M = 100 * abs[[model-obs] / obs])',
         'name': 'EnsoSstSkew',
         'units': '%'}},
       'EnsoSstTsRmse': {'diagnostic': {'ERA-Interim': {'name': 'ERA-Interim',
          'nyears': 40,
          'time_period': ['1979-1-16 12:0:0.0', '2019-3-16 12:0:0.0']},
         'GISS-E2-H_r2i1p3': {'keyerror': None,
          'name': 'GISS-E2-H_r2i1p3',
          'nyears': 156,
          'time_period': ['1850-1-16 12:0:0.0', '2005-12-16 12:0:0.0']},
         'HadISST': {'name': 'HadISST',
          'nyears': 151,
          'time_period': ['1870-1-16 11:59:59.5', '2020-10-16 12:0:0.0']},
         'Tropflux': {'name': 'Tropflux',
          'nyears': 40,
          'time_period': ['1979-1-15 0:0:0.0', '2018-12-15 12:0:0.0']},
         'method': 'nino3.4 SSTA during DEC regressed against nino3.4 SSTA during 6 years (centered on ENSO), time series are linearly detrended, smoothing using a triangle shaped window of 5 points',
         'name': 'ENSO life cyle SSTA pattern',
         'ref': 'Using CDAT regridding and rms (uncentered and biased) calculation',
         'time_frequency': 'monthly',
         'units': 'C/C'},
        'metric': {'datasets': "GISS-E2-H_r2i1p3; ERA-Interim's ts & HadISST's sst & Tropflux's sst; 's ",
         'method': 'The metric is the statistical value between the model and the observations',
         'name': 'EnsoSstTsRmse',
         'units': 'C/C'}},
       'SeasonalPrLatRmse': {'diagnostic': {'ERA-Interim': {'name': 'ERA-Interim',
          'nyears': 40,
          'time_period': ['1979-1-16 12:0:0.0', '2019-3-16 12:0:0.0']},
         'GISS-E2-H_r2i1p3': {'keyerror': None,
          'name': 'GISS-E2-H_r2i1p3',
          'nyears': 156,
          'time_period': ['1850-1-16 12:0:0.0', '2005-12-16 12:0:0.0']},
         'GPCPv2.3': {'name': 'GPCPv2.3',
          'nyears': 41,
          'time_period': ['1979-1-1 0:0:0.0', '2019-7-1 0:0:0.0']},
         'method': 'Meridional root mean square error of nino3_LatExt climatological pr STD, time series are linearly detrended, observations and model regridded to generic_1x1deg',
         'name': 'pr meridional seasonality RMSE',
         'ref': 'Using CDAT regridding and rms (uncentered and biased) calculation',
         'time_frequency': 'monthly',
         'units': 'mm/day'},
        'metric': {'datasets': "GISS-E2-H_r2i1p3; ERA-Interim's pr & GPCPv2.3's precip; 's ",
         'method': 'The metric is the statistical value between the model and the observations',
         'name': 'SeasonalPrLatRmse',
         'units': 'mm/day'}},
       'SeasonalPrLonRmse': {'diagnostic': {'ERA-Interim': {'name': 'ERA-Interim',
          'nyears': 40,
          'time_period': ['1979-1-16 12:0:0.0', '2019-3-16 12:0:0.0']},
         'GISS-E2-H_r2i1p3': {'keyerror': None,
          'name': 'GISS-E2-H_r2i1p3',
          'nyears': 156,
          'time_period': ['1850-1-16 12:0:0.0', '2005-12-16 12:0:0.0']},
         'GPCPv2.3': {'name': 'GPCPv2.3',
          'nyears': 41,
          'time_period': ['1979-1-1 0:0:0.0', '2019-7-1 0:0:0.0']},
         'method': 'Zonal root mean square error of equatorial_pacific climatological pr STD, time series are linearly detrended, observations and model regridded to generic_1x1deg',
         'name': 'pr zonal seasonality RMSE',
         'ref': 'Using CDAT regridding and rms (uncentered and biased) calculation',
         'time_frequency': 'monthly',
         'units': 'mm/day'},
        'metric': {'datasets': "GISS-E2-H_r2i1p3; ERA-Interim's pr & GPCPv2.3's precip; 's ",
         'method': 'The metric is the statistical value between the model and the observations',
         'name': 'SeasonalPrLonRmse',
         'units': 'mm/day'}},
       'SeasonalSstLonRmse': {'diagnostic': {'ERA-Interim': {'name': 'ERA-Interim',
          'nyears': 40,
          'time_period': ['1979-1-16 12:0:0.0', '2019-3-16 12:0:0.0']},
         'GISS-E2-H_r2i1p3': {'keyerror': None,
          'name': 'GISS-E2-H_r2i1p3',
          'nyears': 156,
          'time_period': ['1850-1-16 12:0:0.0', '2005-12-16 12:0:0.0']},
         'HadISST': {'name': 'HadISST',
          'nyears': 151,
          'time_period': ['1870-1-16 11:59:59.5', '2020-10-16 12:0:0.0']},
         'Tropflux': {'name': 'Tropflux',
          'nyears': 40,
          'time_period': ['1979-1-15 0:0:0.0', '2018-12-15 12:0:0.0']},
         'method': 'Zonal root mean square error of equatorial_pacific climatological sst STD, time series are linearly detrended, observations and model regridded to generic_1x1deg',
         'name': 'sst zonal seasonality RMSE',
         'ref': 'Using CDAT regridding and rms (uncentered and biased) calculation',
         'time_frequency': 'monthly',
         'units': 'C'},
        'metric': {'datasets': "GISS-E2-H_r2i1p3; ERA-Interim's ts & HadISST's sst & Tropflux's sst; 's ",
         'method': 'The metric is the statistical value between the model and the observations',
         'name': 'SeasonalSstLonRmse',
         'units': 'C'}},
       'SeasonalTauxLonRmse': {'diagnostic': {'ERA-Interim': {'name': 'ERA-Interim',
          'nyears': 40,
          'time_period': ['1979-1-16 12:0:0.0', '2019-3-16 12:0:0.0']},
         'GISS-E2-H_r2i1p3': {'keyerror': None,
          'name': 'GISS-E2-H_r2i1p3',
          'nyears': 156,
          'time_period': ['1850-1-16 12:0:0.0', '2005-12-16 12:0:0.0']},
         'Tropflux': {'name': 'Tropflux',
          'nyears': 40,
          'time_period': ['1979-1-15 0:0:0.0', '2018-12-15 12:0:0.0']},
         'method': 'Zonal root mean square error of equatorial_pacific climatological taux STD, time series are linearly detrended, observations and model regridded to generic_1x1deg',
         'name': 'taux zonal seasonality RMSE',
         'ref': 'Using CDAT regridding and rms (uncentered and biased) calculation',
         'time_frequency': 'monthly',
         'units': '1e-3 N/m2'},
        'metric': {'datasets': "GISS-E2-H_r2i1p3; ERA-Interim's tauu & Tropflux's taux; 's ",
         'method': 'The metric is the statistical value between the model and the observations',
         'name': 'SeasonalTauxLonRmse',
         'units': '1e-3 N/m2'}}},
      'name': 'Metrics Collection for ENSO performance'},
     'value': {'BiasPrLatRmse': {'diagnostic': {'ERA-Interim': {'value': None,
         'value_error': None},
        'GISS-E2-H_r2i1p3': {'value': None, 'value_error': None},
        'GPCPv2.3': {'value': None, 'value_error': None}},
       'metric': {'ERA-Interim': {'value': 2.8363056870525005,
         'value_error': None},
        'GPCPv2.3': {'value': 3.4111239310419488, 'value_error': None}}},
      'BiasPrLonRmse': {'diagnostic': {'ERA-Interim': {'value': None,
         'value_error': None},
        'GISS-E2-H_r2i1p3': {'value': None, 'value_error': None},
        'GPCPv2.3': {'value': None, 'value_error': None}},
       'metric': {'ERA-Interim': {'value': 1.3938859699519333,
         'value_error': None},
        'GPCPv2.3': {'value': 0.8429439784304773, 'value_error': None}}},
      'BiasSstLonRmse': {'diagnostic': {'ERA-Interim': {'value': None,
         'value_error': None},
        'GISS-E2-H_r2i1p3': {'value': None, 'value_error': None},
        'HadISST': {'value': None, 'value_error': None},
        'Tropflux': {'value': None, 'value_error': None}},
       'metric': {'ERA-Interim': {'value': 0.8808241201529512,
         'value_error': None},
        'HadISST': {'value': 0.990367574083921, 'value_error': None},
        'Tropflux': {'value': 0.864172500483183, 'value_error': None}}},
      'BiasTauxLonRmse': {'diagnostic': {'ERA-Interim': {'value': None,
         'value_error': None},
        'GISS-E2-H_r2i1p3': {'value': None, 'value_error': None},
        'Tropflux': {'value': None, 'value_error': None}},
       'metric': {'ERA-Interim': {'value': 20.79653760419905,
         'value_error': None},
        'Tropflux': {'value': 20.43910528810911, 'value_error': None}}},
      'EnsoAmpl': {'diagnostic': {'ERA-Interim': {'value': 0.8989844997845644,
         'value_error': 0.14214193002531866},
        'GISS-E2-H_r2i1p3': {'value': 0.5508012911147663,
         'value_error': 0.04409939692983293},
        'HadISST': {'value': 0.7665787872085695,
         'value_error': 0.06238329697691264},
        'Tropflux': {'value': 0.9039789553693535,
         'value_error': 0.14293162279134272}},
       'metric': {'ERA-Interim': {'value': 38.730724362126146,
         'value_error': 14.592991076651238},
        'HadISST': {'value': 28.148117283487373,
         'value_error': 11.599977952975097},
        'Tropflux': {'value': 39.06923520252566,
         'value_error': 14.51236525527713}}},
      'EnsoDuration': {'diagnostic': {'ERA-Interim': {'value': 13.0,
         'value_error': None},
        'GISS-E2-H_r2i1p3': {'value': 14.0, 'value_error': None},
        'HadISST': {'value': 13.0, 'value_error': None},
        'Tropflux': {'value': 13.0, 'value_error': None}},
       'metric': {'ERA-Interim': {'value': 7.6923076923076925,
         'value_error': None},
        'HadISST': {'value': 7.6923076923076925, 'value_error': None},
        'Tropflux': {'value': 7.6923076923076925, 'value_error': None}}},
      'EnsoSeasonality': {'diagnostic': {'ERA-Interim': {'value': 2.0466846866656914,
         'value_error': 0.6513411033995022},
        'GISS-E2-H_r2i1p3': {'value': 1.3703148281186135,
         'value_error': 0.219779327441842},
        'HadISST': {'value': 1.6639865947361325,
         'value_error': 0.2712772451657809},
        'Tropflux': {'value': 2.0532132553583624,
         'value_error': 0.6534187683977347}},
       'metric': {'ERA-Interim': {'value': 33.04709626029255,
         'value_error': 32.045537531555794},
        'HadISST': {'value': 17.64868584557847,
         'value_error': 26.633610224970113},
        'Tropflux': {'value': 33.2599853160678,
         'value_error': 31.94364285864622}}},
      'EnsoSstDiversity_2': {'diagnostic': {'ERA-Interim': {'value': 33.25,
         'value_error': None},
        'GISS-E2-H_r2i1p3': {'value': 24.0, 'value_error': None},
        'HadISST': {'value': 49.0, 'value_error': None},
        'Tropflux': {'value': 32.0, 'value_error': None}},
       'metric': {'ERA-Interim': {'value': 27.819548872180448,
         'value_error': None},
        'HadISST': {'value': 51.02040816326531, 'value_error': None},
        'Tropflux': {'value': 25.0, 'value_error': None}}},
      'EnsoSstLonRmse': {'diagnostic': {'ERA-Interim': {'value': None,
         'value_error': None},
        'GISS-E2-H_r2i1p3': {'value': None, 'value_error': None},
        'HadISST': {'value': None, 'value_error': None},
        'Tropflux': {'value': None, 'value_error': None}},
       'metric': {'ERA-Interim': {'value': 0.3129816656186353,
         'value_error': None},
        'HadISST': {'value': 0.3214059216781522, 'value_error': None},
        'Tropflux': {'value': 0.3128235509816313, 'value_error': None}}},
      'EnsoSstSkew': {'diagnostic': {'ERA-Interim': {'value': 0.39098111106809963,
         'value_error': 0.061819541653923164},
        'GISS-E2-H_r2i1p3': {'value': -0.2796040321997107,
         'value_error': -0.022386238736298903},
        'HadISST': {'value': 0.38989908235027515,
         'value_error': 0.03172953733021198},
        'Tropflux': {'value': 0.39744741059612115,
         'value_error': 0.06284195338099416}},
       'metric': {'ERA-Interim': {'value': 171.51343742307034,
         'value_error': -17.03292463164718},
        'HadISST': {'value': 171.7118979901886,
         'value_error': -11.577378409612836},
        'Tropflux': {'value': 170.34994435624574,
         'value_error': -16.75580622662034}}},
      'EnsoSstTsRmse': {'diagnostic': {'ERA-Interim': {'value': None,
         'value_error': None},
        'GISS-E2-H_r2i1p3': {'value': None, 'value_error': None},
        'HadISST': {'value': None, 'value_error': None},
        'Tropflux': {'value': None, 'value_error': None}},
       'metric': {'ERA-Interim': {'value': 0.17601358290473687,
         'value_error': None},
        'HadISST': {'value': 0.16967043675631888, 'value_error': None},
        'Tropflux': {'value': 0.17935104202312888, 'value_error': None}}},
      'SeasonalPrLatRmse': {'diagnostic': {'ERA-Interim': {'value': None,
         'value_error': None},
        'GISS-E2-H_r2i1p3': {'value': None, 'value_error': None},
        'GPCPv2.3': {'value': None, 'value_error': None}},
       'metric': {'ERA-Interim': {'value': 1.1001750727713524,
         'value_error': None},
        'GPCPv2.3': {'value': 0.9999350040223601, 'value_error': None}}},
      'SeasonalPrLonRmse': {'diagnostic': {'ERA-Interim': {'value': None,
         'value_error': None},
        'GISS-E2-H_r2i1p3': {'value': None, 'value_error': None},
        'GPCPv2.3': {'value': None, 'value_error': None}},
       'metric': {'ERA-Interim': {'value': 0.7410503509971499,
         'value_error': None},
        'GPCPv2.3': {'value': 0.47161958714317365, 'value_error': None}}},
      'SeasonalSstLonRmse': {'diagnostic': {'ERA-Interim': {'value': None,
         'value_error': None},
        'GISS-E2-H_r2i1p3': {'value': None, 'value_error': None},
        'HadISST': {'value': None, 'value_error': None},
        'Tropflux': {'value': None, 'value_error': None}},
       'metric': {'ERA-Interim': {'value': 0.2586004593808654,
         'value_error': None},
        'HadISST': {'value': 0.2556371659230464, 'value_error': None},
        'Tropflux': {'value': 0.26762388345051796, 'value_error': None}}},
      'SeasonalTauxLonRmse': {'diagnostic': {'ERA-Interim': {'value': None,
         'value_error': None},
        'GISS-E2-H_r2i1p3': {'value': None, 'value_error': None},
        'Tropflux': {'value': None, 'value_error': None}},
       'metric': {'ERA-Interim': {'value': 2.394385961314243,
         'value_error': None},
        'Tropflux': {'value': 2.626211253866261, 'value_error': None}}}}},
    'r3i1p1': {'metadata': {'description_of_the_collection': 'Describe which science question this collection is about',
      'metrics': {'BiasPrLatRmse': {'diagnostic': {'ERA-Interim': {'name': 'ERA-Interim',
          'nyears': 40,
          'time_period': ['1979-1-16 12:0:0.0', '2019-3-16 12:0:0.0']},
         'GISS-E2-H_r3i1p1': {'keyerror': None,
          'name': 'GISS-E2-H_r3i1p1',
          'nyears': 156,
          'time_period': ['1850-1-16 12:0:0.0', '2005-12-16 12:0:0.0']},
         'GPCPv2.3': {'name': 'GPCPv2.3',
          'nyears': 41,
          'time_period': ['1979-1-1 0:0:0.0', '2019-7-1 0:0:0.0']},
         'method': 'Meridional root mean square error of nino3_LatExt pr, time series are linearly detrended, observations and model regridded to generic_1x1deg',
         'name': 'pr Meridional RMSE',
         'ref': 'Using CDAT regridding and rms (uncentered and biased) calculation',
         'time_frequency': 'monthly',
         'units': 'mm/day'},
        'metric': {'datasets': "GISS-E2-H_r3i1p1; ERA-Interim's pr & GPCPv2.3's precip; 's ",
         'method': 'The metric is the statistical value between the model and the observations',
         'name': 'BiasPrLatRmse',
         'units': 'mm/day'}},
       'BiasPrLonRmse': {'diagnostic': {'ERA-Interim': {'name': 'ERA-Interim',
          'nyears': 40,
          'time_period': ['1979-1-16 12:0:0.0', '2019-3-16 12:0:0.0']},
         'GISS-E2-H_r3i1p1': {'keyerror': None,
          'name': 'GISS-E2-H_r3i1p1',
          'nyears': 156,
          'time_period': ['1850-1-16 12:0:0.0', '2005-12-16 12:0:0.0']},
         'GPCPv2.3': {'name': 'GPCPv2.3',
          'nyears': 41,
          'time_period': ['1979-1-1 0:0:0.0', '2019-7-1 0:0:0.0']},
         'method': 'Zonal root mean square error of equatorial_pacific pr, time series are linearly detrended, observations and model regridded to generic_1x1deg',
         'name': 'pr Zonal RMSE',
         'ref': 'Using CDAT regridding and rms (uncentered and biased) calculation',
         'time_frequency': 'monthly',
         'units': 'mm/day'},
        'metric': {'datasets': "GISS-E2-H_r3i1p1; ERA-Interim's pr & GPCPv2.3's precip; 's ",
         'method': 'The metric is the statistical value between the model and the observations',
         'name': 'BiasPrLonRmse',
         'units': 'mm/day'}},
       'BiasSstLonRmse': {'diagnostic': {'ERA-Interim': {'name': 'ERA-Interim',
          'nyears': 40,
          'time_period': ['1979-1-16 12:0:0.0', '2019-3-16 12:0:0.0']},
         'GISS-E2-H_r3i1p1': {'keyerror': None,
          'name': 'GISS-E2-H_r3i1p1',
          'nyears': 156,
          'time_period': ['1850-1-16 12:0:0.0', '2005-12-16 12:0:0.0']},
         'HadISST': {'name': 'HadISST',
          'nyears': 151,
          'time_period': ['1870-1-16 11:59:59.5', '2020-10-16 12:0:0.0']},
         'Tropflux': {'name': 'Tropflux',
          'nyears': 40,
          'time_period': ['1979-1-15 0:0:0.0', '2018-12-15 12:0:0.0']},
         'method': 'Zonal root mean square error of equatorial_pacific sst, time series are linearly detrended, observations and model regridded to generic_1x1deg',
         'name': 'sst Zonal RMSE',
         'ref': 'Using CDAT regridding and rms (uncentered and biased) calculation',
         'time_frequency': 'monthly',
         'units': 'C'},
        'metric': {'datasets': "GISS-E2-H_r3i1p1; ERA-Interim's ts & HadISST's sst & Tropflux's sst; 's ",
         'method': 'The metric is the statistical value between the model and the observations',
         'name': 'BiasSstLonRmse',
         'units': 'C'}},
       'BiasTauxLonRmse': {'diagnostic': {'ERA-Interim': {'name': 'ERA-Interim',
          'nyears': 40,
          'time_period': ['1979-1-16 12:0:0.0', '2019-3-16 12:0:0.0']},
         'GISS-E2-H_r3i1p1': {'keyerror': None,
          'name': 'GISS-E2-H_r3i1p1',
          'nyears': 156,
          'time_period': ['1850-1-16 12:0:0.0', '2005-12-16 12:0:0.0']},
         'Tropflux': {'name': 'Tropflux',
          'nyears': 40,
          'time_period': ['1979-1-15 0:0:0.0', '2018-12-15 12:0:0.0']},
         'method': 'Zonal root mean square error of equatorial_pacific taux, time series are linearly detrended, observations and model regridded to generic_1x1deg',
         'name': 'taux Zonal RMSE',
         'ref': 'Using CDAT regridding and rms (uncentered and biased) calculation',
         'time_frequency': 'monthly',
         'units': '1e-3 N/m2'},
        'metric': {'datasets': "GISS-E2-H_r3i1p1; ERA-Interim's tauu & Tropflux's taux; 's ",
         'method': 'The metric is the statistical value between the model and the observations',
         'name': 'BiasTauxLonRmse',
         'units': '1e-3 N/m2'}},
       'EnsoAmpl': {'diagnostic': {'ERA-Interim': {'keyerror': None,
          'name': 'ERA-Interim',
          'nyears': 40,
          'time_period': ['1979-1-16 12:0:0.0', '2019-3-16 12:0:0.0']},
         'GISS-E2-H_r3i1p1': {'keyerror': None,
          'name': 'GISS-E2-H_r3i1p1',
          'nyears': 156,
          'time_period': ['1850-1-16 12:0:0.0', '2005-12-16 12:0:0.0']},
         'HadISST': {'keyerror': None,
          'name': 'HadISST',
          'nyears': 151,
          'time_period': ['1870-1-16 11:59:59.5', '2020-10-16 12:0:0.0']},
         'Tropflux': {'keyerror': None,
          'name': 'Tropflux',
          'nyears': 40,
          'time_period': ['1979-1-15 0:0:0.0', '2018-12-15 12:0:0.0']},
         'method': 'Standard deviation of nino3.4 sstA, time series are linearly detrended',
         'name': 'ENSO amplitude',
         'ref': 'Using CDAT regression calculation',
         'time_frequency': 'monthly',
         'units': 'C'},
        'metric': {'datasets': "GISS-E2-H_r3i1p1; ERA-Interim's ts & HadISST's sst & Tropflux's sst; 's ",
         'method': 'The metric is the absolute value of the relative difference between model and observations values (M = 100 * abs[[model-obs] / obs])',
         'name': 'EnsoAmpl',
         'units': '%'}},
       'EnsoDuration': {'diagnostic': {'ERA-Interim': {'keyerror': None,
          'name': 'ERA-Interim',
          'nyears': 40,
          'time_period': ['1979-1-16 12:0:0.0', '2019-3-16 12:0:0.0']},
         'GISS-E2-H_r3i1p1': {'keyerror': None,
          'name': 'GISS-E2-H_r3i1p1',
          'nyears': 156,
          'time_period': ['1850-1-16 12:0:0.0', '2005-12-16 12:0:0.0']},
         'HadISST': {'keyerror': None,
          'name': 'HadISST',
          'nyears': 151,
          'time_period': ['1870-1-16 11:59:59.5', '2020-10-16 12:0:0.0']},
         'Tropflux': {'keyerror': None,
          'name': 'Tropflux',
          'nyears': 40,
          'time_period': ['1979-1-15 0:0:0.0', '2018-12-15 12:0:0.0']},
         'method': 'nino3.4 SSTA during DEC regressed against nino3.4 SSTA during 6 years (centered on ENSO), the duration is the number of consecutive months during which the regression is above 0.25, time series are linearly detrended, smoothing using a triangle shaped window of 5 points',
         'name': 'ENSO Duration based on life cyle SSTA pattern',
         'ref': 'Using CDAT',
         'time_frequency': 'monthly',
         'units': 'months'},
        'metric': {'datasets': "GISS-E2-H_r3i1p1; ERA-Interim's ts & HadISST's sst & Tropflux's sst; 's ",
         'method': 'The metric is the absolute value of the relative difference between model and observations values (M = 100 * abs[[model-obs] / obs])',
         'name': 'EnsoDuration',
         'units': '%'}},
       'EnsoSeasonality': {'diagnostic': {'ERA-Interim': {'keyerror': None,
          'name': 'ERA-Interim',
          'nyears': 40,
          'time_period': ['1979-1-16 12:0:0.0', '2019-3-16 12:0:0.0']},
         'GISS-E2-H_r3i1p1': {'keyerror': None,
          'name': 'GISS-E2-H_r3i1p1',
          'nyears': 156,
          'time_period': ['1850-1-16 12:0:0.0', '2005-12-16 12:0:0.0']},
         'HadISST': {'keyerror': None,
          'name': 'HadISST',
          'nyears': 151,
          'time_period': ['1870-1-16 11:59:59.5', '2020-10-16 12:0:0.0']},
         'Tropflux': {'keyerror': None,
          'name': 'Tropflux',
          'nyears': 40,
          'time_period': ['1979-1-15 0:0:0.0', '2018-12-15 12:0:0.0']},
         'method': 'Ratio between NDJ and MAM standard deviation nino3.4 sstA, time series are linearly detrended',
         'name': 'ENSO seasonality',
         'ref': 'Using CDAT std dev calculation',
         'time_frequency': 'monthly',
         'units': 'C/C'},
        'metric': {'datasets': "GISS-E2-H_r3i1p1; ERA-Interim's ts & HadISST's sst & Tropflux's sst; 's ",
         'method': 'The metric is the absolute value of the relative difference between model and observations values (M = 100 * abs[[model-obs] / obs])',
         'name': 'EnsoSeasonality',
         'units': '%'}},
       'EnsoSstDiversity_2': {'diagnostic': {'ERA-Interim': {'keyerror': None,
          'name': 'ERA-Interim',
          'nyears': 40,
          'time_period': ['1979-1-16 12:0:0.0', '2019-3-16 12:0:0.0']},
         'GISS-E2-H_r3i1p1': {'keyerror': None,
          'name': 'GISS-E2-H_r3i1p1',
          'nyears': 156,
          'time_period': ['1850-1-16 12:0:0.0', '2005-12-16 12:0:0.0']},
         'HadISST': {'keyerror': None,
          'name': 'HadISST',
          'nyears': 151,
          'time_period': ['1870-1-16 11:59:59.5', '2020-10-16 12:0:0.0']},
         'Tropflux': {'keyerror': None,
          'name': 'Tropflux',
          'nyears': 40,
          'time_period': ['1979-1-15 0:0:0.0', '2018-12-15 12:0:0.0']},
         'method': 'Nino (Nina) events = nino3.4 sstA > 0.75 (< -0.75) during DEC, zonal SSTA (meridional averaged [-5.0 ; 5.0]), the zonal SSTA maximum (minimum) is located for each event, the diversity is the interquartile range (IQR = Q3 - Q1), time series are linearly detrended, smoothing using a triangle shaped window of 5 points',
         'name': 'ENSO Diversity (interquartile range)',
         'ref': 'Using CDAT regridding',
         'time_frequency': 'monthly',
         'units': 'long'},
        'metric': {'datasets': "GISS-E2-H_r3i1p1; ERA-Interim's ts & HadISST's sst & Tropflux's sst; 's ",
         'method': 'The metric is the absolute value of the relative difference between model and observations values (M = 100 * abs[[model-obs] / obs])',
         'name': 'EnsoSstDiversity',
         'units': '%'}},
       'EnsoSstLonRmse': {'diagnostic': {'ERA-Interim': {'name': 'ERA-Interim',
          'nyears': 40,
          'time_period': ['1979-1-16 12:0:0.0', '2019-3-16 12:0:0.0']},
         'GISS-E2-H_r3i1p1': {'keyerror': None,
          'name': 'GISS-E2-H_r3i1p1',
          'nyears': 156,
          'time_period': ['1850-1-16 12:0:0.0', '2005-12-16 12:0:0.0']},
         'HadISST': {'name': 'HadISST',
          'nyears': 151,
          'time_period': ['1870-1-16 11:59:59.5', '2020-10-16 12:0:0.0']},
         'Tropflux': {'name': 'Tropflux',
          'nyears': 40,
          'time_period': ['1979-1-15 0:0:0.0', '2018-12-15 12:0:0.0']},
         'method': 'nino3.4 SSTA during DEC regressed against equatorial_pacific SSTA, time series are linearly detrended, smoothing using a triangle shaped window of 5 points, observations and model regridded to generic_1x1deg',
         'name': 'ENSO Zonal SSTA pattern',
         'ref': 'Using CDAT regridding and rms (uncentered and biased) calculation',
         'time_frequency': 'monthly',
         'units': 'C/C'},
        'metric': {'datasets': "GISS-E2-H_r3i1p1; ERA-Interim's ts & HadISST's sst & Tropflux's sst; 's ",
         'method': 'The metric is the statistical value between the model and the observations',
         'name': 'EnsoSstLonRmse',
         'units': 'C/C'}},
       'EnsoSstSkew': {'diagnostic': {'ERA-Interim': {'keyerror': None,
          'name': 'ERA-Interim',
          'nyears': 40,
          'time_period': ['1979-1-16 12:0:0.0', '2019-3-16 12:0:0.0']},
         'GISS-E2-H_r3i1p1': {'keyerror': None,
          'name': 'GISS-E2-H_r3i1p1',
          'nyears': 156,
          'time_period': ['1850-1-16 12:0:0.0', '2005-12-16 12:0:0.0']},
         'HadISST': {'keyerror': None,
          'name': 'HadISST',
          'nyears': 151,
          'time_period': ['1870-1-16 11:59:59.5', '2020-10-16 12:0:0.0']},
         'Tropflux': {'keyerror': None,
          'name': 'Tropflux',
          'nyears': 40,
          'time_period': ['1979-1-15 0:0:0.0', '2018-12-15 12:0:0.0']},
         'method': 'Standard deviation of nino3.4 sstA, time series are linearly detrended',
         'name': 'ENSO skewness',
         'ref': 'Using CDAT regression calculation',
         'time_frequency': 'monthly',
         'units': 'C'},
        'metric': {'datasets': "GISS-E2-H_r3i1p1; ERA-Interim's ts & HadISST's sst & Tropflux's sst; 's ",
         'method': 'The metric is the absolute value of the relative difference between model and observations values (M = 100 * abs[[model-obs] / obs])',
         'name': 'EnsoSstSkew',
         'units': '%'}},
       'EnsoSstTsRmse': {'diagnostic': {'ERA-Interim': {'name': 'ERA-Interim',
          'nyears': 40,
          'time_period': ['1979-1-16 12:0:0.0', '2019-3-16 12:0:0.0']},
         'GISS-E2-H_r3i1p1': {'keyerror': None,
          'name': 'GISS-E2-H_r3i1p1',
          'nyears': 156,
          'time_period': ['1850-1-16 12:0:0.0', '2005-12-16 12:0:0.0']},
         'HadISST': {'name': 'HadISST',
          'nyears': 151,
          'time_period': ['1870-1-16 11:59:59.5', '2020-10-16 12:0:0.0']},
         'Tropflux': {'name': 'Tropflux',
          'nyears': 40,
          'time_period': ['1979-1-15 0:0:0.0', '2018-12-15 12:0:0.0']},
         'method': 'nino3.4 SSTA during DEC regressed against nino3.4 SSTA during 6 years (centered on ENSO), time series are linearly detrended, smoothing using a triangle shaped window of 5 points',
         'name': 'ENSO life cyle SSTA pattern',
         'ref': 'Using CDAT regridding and rms (uncentered and biased) calculation',
         'time_frequency': 'monthly',
         'units': 'C/C'},
        'metric': {'datasets': "GISS-E2-H_r3i1p1; ERA-Interim's ts & HadISST's sst & Tropflux's sst; 's ",
         'method': 'The metric is the statistical value between the model and the observations',
         'name': 'EnsoSstTsRmse',
         'units': 'C/C'}},
       'SeasonalPrLatRmse': {'diagnostic': {'ERA-Interim': {'name': 'ERA-Interim',
          'nyears': 40,
          'time_period': ['1979-1-16 12:0:0.0', '2019-3-16 12:0:0.0']},
         'GISS-E2-H_r3i1p1': {'keyerror': None,
          'name': 'GISS-E2-H_r3i1p1',
          'nyears': 156,
          'time_period': ['1850-1-16 12:0:0.0', '2005-12-16 12:0:0.0']},
         'GPCPv2.3': {'name': 'GPCPv2.3',
          'nyears': 41,
          'time_period': ['1979-1-1 0:0:0.0', '2019-7-1 0:0:0.0']},
         'method': 'Meridional root mean square error of nino3_LatExt climatological pr STD, time series are linearly detrended, observations and model regridded to generic_1x1deg',
         'name': 'pr meridional seasonality RMSE',
         'ref': 'Using CDAT regridding and rms (uncentered and biased) calculation',
         'time_frequency': 'monthly',
         'units': 'mm/day'},
        'metric': {'datasets': "GISS-E2-H_r3i1p1; ERA-Interim's pr & GPCPv2.3's precip; 's ",
         'method': 'The metric is the statistical value between the model and the observations',
         'name': 'SeasonalPrLatRmse',
         'units': 'mm/day'}},
       'SeasonalPrLonRmse': {'diagnostic': {'ERA-Interim': {'name': 'ERA-Interim',
          'nyears': 40,
          'time_period': ['1979-1-16 12:0:0.0', '2019-3-16 12:0:0.0']},
         'GISS-E2-H_r3i1p1': {'keyerror': None,
          'name': 'GISS-E2-H_r3i1p1',
          'nyears': 156,
          'time_period': ['1850-1-16 12:0:0.0', '2005-12-16 12:0:0.0']},
         'GPCPv2.3': {'name': 'GPCPv2.3',
          'nyears': 41,
          'time_period': ['1979-1-1 0:0:0.0', '2019-7-1 0:0:0.0']},
         'method': 'Zonal root mean square error of equatorial_pacific climatological pr STD, time series are linearly detrended, observations and model regridded to generic_1x1deg',
         'name': 'pr zonal seasonality RMSE',
         'ref': 'Using CDAT regridding and rms (uncentered and biased) calculation',
         'time_frequency': 'monthly',
         'units': 'mm/day'},
        'metric': {'datasets': "GISS-E2-H_r3i1p1; ERA-Interim's pr & GPCPv2.3's precip; 's ",
         'method': 'The metric is the statistical value between the model and the observations',
         'name': 'SeasonalPrLonRmse',
         'units': 'mm/day'}},
       'SeasonalSstLonRmse': {'diagnostic': {'ERA-Interim': {'name': 'ERA-Interim',
          'nyears': 40,
          'time_period': ['1979-1-16 12:0:0.0', '2019-3-16 12:0:0.0']},
         'GISS-E2-H_r3i1p1': {'keyerror': None,
          'name': 'GISS-E2-H_r3i1p1',
          'nyears': 156,
          'time_period': ['1850-1-16 12:0:0.0', '2005-12-16 12:0:0.0']},
         'HadISST': {'name': 'HadISST',
          'nyears': 151,
          'time_period': ['1870-1-16 11:59:59.5', '2020-10-16 12:0:0.0']},
         'Tropflux': {'name': 'Tropflux',
          'nyears': 40,
          'time_period': ['1979-1-15 0:0:0.0', '2018-12-15 12:0:0.0']},
         'method': 'Zonal root mean square error of equatorial_pacific climatological sst STD, time series are linearly detrended, observations and model regridded to generic_1x1deg',
         'name': 'sst zonal seasonality RMSE',
         'ref': 'Using CDAT regridding and rms (uncentered and biased) calculation',
         'time_frequency': 'monthly',
         'units': 'C'},
        'metric': {'datasets': "GISS-E2-H_r3i1p1; ERA-Interim's ts & HadISST's sst & Tropflux's sst; 's ",
         'method': 'The metric is the statistical value between the model and the observations',
         'name': 'SeasonalSstLonRmse',
         'units': 'C'}},
       'SeasonalTauxLonRmse': {'diagnostic': {'ERA-Interim': {'name': 'ERA-Interim',
          'nyears': 40,
          'time_period': ['1979-1-16 12:0:0.0', '2019-3-16 12:0:0.0']},
         'GISS-E2-H_r3i1p1': {'keyerror': None,
          'name': 'GISS-E2-H_r3i1p1',
          'nyears': 156,
          'time_period': ['1850-1-16 12:0:0.0', '2005-12-16 12:0:0.0']},
         'Tropflux': {'name': 'Tropflux',
          'nyears': 40,
          'time_period': ['1979-1-15 0:0:0.0', '2018-12-15 12:0:0.0']},
         'method': 'Zonal root mean square error of equatorial_pacific climatological taux STD, time series are linearly detrended, observations and model regridded to generic_1x1deg',
         'name': 'taux zonal seasonality RMSE',
         'ref': 'Using CDAT regridding and rms (uncentered and biased) calculation',
         'time_frequency': 'monthly',
         'units': '1e-3 N/m2'},
        'metric': {'datasets': "GISS-E2-H_r3i1p1; ERA-Interim's tauu & Tropflux's taux; 's ",
         'method': 'The metric is the statistical value between the model and the observations',
         'name': 'SeasonalTauxLonRmse',
         'units': '1e-3 N/m2'}}},
      'name': 'Metrics Collection for ENSO performance'},
     'value': {'BiasPrLatRmse': {'diagnostic': {'ERA-Interim': {'value': None,
         'value_error': None},
        'GISS-E2-H_r3i1p1': {'value': None, 'value_error': None},
        'GPCPv2.3': {'value': None, 'value_error': None}},
       'metric': {'ERA-Interim': {'value': 2.8668305284145594,
         'value_error': None},
        'GPCPv2.3': {'value': 3.4700443019661997, 'value_error': None}}},
      'BiasPrLonRmse': {'diagnostic': {'ERA-Interim': {'value': None,
         'value_error': None},
        'GISS-E2-H_r3i1p1': {'value': None, 'value_error': None},
        'GPCPv2.3': {'value': None, 'value_error': None}},
       'metric': {'ERA-Interim': {'value': 1.4744379485510126,
         'value_error': None},
        'GPCPv2.3': {'value': 0.9141673973477011, 'value_error': None}}},
      'BiasSstLonRmse': {'diagnostic': {'ERA-Interim': {'value': None,
         'value_error': None},
        'GISS-E2-H_r3i1p1': {'value': None, 'value_error': None},
        'HadISST': {'value': None, 'value_error': None},
        'Tropflux': {'value': None, 'value_error': None}},
       'metric': {'ERA-Interim': {'value': 0.8364711159278028,
         'value_error': None},
        'HadISST': {'value': 0.9174712534284283, 'value_error': None},
        'Tropflux': {'value': 0.8270233294829065, 'value_error': None}}},
      'BiasTauxLonRmse': {'diagnostic': {'ERA-Interim': {'value': None,
         'value_error': None},
        'GISS-E2-H_r3i1p1': {'value': None, 'value_error': None},
        'Tropflux': {'value': None, 'value_error': None}},
       'metric': {'ERA-Interim': {'value': 21.329445331549383,
         'value_error': None},
        'Tropflux': {'value': 20.971779210832125, 'value_error': None}}},
      'EnsoAmpl': {'diagnostic': {'ERA-Interim': {'value': 0.8989844997845644,
         'value_error': 0.14214193002531866},
        'GISS-E2-H_r3i1p1': {'value': 0.5632568245764126,
         'value_error': 0.04509663771876839},
        'HadISST': {'value': 0.7665787872085695,
         'value_error': 0.06238329697691264},
        'Tropflux': {'value': 0.9039789553693535,
         'value_error': 0.14293162279134272}},
       'metric': {'ERA-Interim': {'value': 37.345212880601025,
         'value_error': 14.922989374754101},
        'HadISST': {'value': 26.523296238412275,
         'value_error': 11.862293811485925},
        'Tropflux': {'value': 37.69137862880076,
         'value_error': 14.840540323056834}}},
      'EnsoDuration': {'diagnostic': {'ERA-Interim': {'value': 13.0,
         'value_error': None},
        'GISS-E2-H_r3i1p1': {'value': 14.0, 'value_error': None},
        'HadISST': {'value': 13.0, 'value_error': None},
        'Tropflux': {'value': 13.0, 'value_error': None}},
       'metric': {'ERA-Interim': {'value': 7.6923076923076925,
         'value_error': None},
        'HadISST': {'value': 7.6923076923076925, 'value_error': None},
        'Tropflux': {'value': 7.6923076923076925, 'value_error': None}}},
      'EnsoSeasonality': {'diagnostic': {'ERA-Interim': {'value': 2.0466846866656914,
         'value_error': 0.6513411033995022},
        'GISS-E2-H_r3i1p1': {'value': 1.3109285696617519,
         'value_error': 0.21025460241142246},
        'HadISST': {'value': 1.6639865947361325,
         'value_error': 0.2712772451657809},
        'Tropflux': {'value': 2.0532132553583624,
         'value_error': 0.6534187683977347}},
       'metric': {'ERA-Interim': {'value': 35.94867943252067,
         'value_error': 30.656758445766535},
        'HadISST': {'value': 21.2176003214958,
         'value_error': 25.47937148508071},
        'Tropflux': {'value': 36.15234237161859,
         'value_error': 30.559279651060002}}},
      'EnsoSstDiversity_2': {'diagnostic': {'ERA-Interim': {'value': 33.25,
         'value_error': None},
        'GISS-E2-H_r3i1p1': {'value': 19.5, 'value_error': None},
        'HadISST': {'value': 49.0, 'value_error': None},
        'Tropflux': {'value': 32.0, 'value_error': None}},
       'metric': {'ERA-Interim': {'value': 41.35338345864661,
         'value_error': None},
        'HadISST': {'value': 60.204081632653065, 'value_error': None},
        'Tropflux': {'value': 39.0625, 'value_error': None}}},
      'EnsoSstLonRmse': {'diagnostic': {'ERA-Interim': {'value': None,
         'value_error': None},
        'GISS-E2-H_r3i1p1': {'value': None, 'value_error': None},
        'HadISST': {'value': None, 'value_error': None},
        'Tropflux': {'value': None, 'value_error': None}},
       'metric': {'ERA-Interim': {'value': 0.26926946828181964,
         'value_error': None},
        'HadISST': {'value': 0.2741372747576348, 'value_error': None},
        'Tropflux': {'value': 0.2686003237232434, 'value_error': None}}},
      'EnsoSstSkew': {'diagnostic': {'ERA-Interim': {'value': 0.39098111106809963,
         'value_error': 0.061819541653923164},
        'GISS-E2-H_r3i1p1': {'value': -0.2443587862835401,
         'value_error': -0.01956436065681756},
        'HadISST': {'value': 0.38989908235027515,
         'value_error': 0.03172953733021198},
        'Tropflux': {'value': 0.39744741059612115,
         'value_error': 0.06284195338099416}},
       'metric': {'ERA-Interim': {'value': 162.49887254552783,
         'value_error': -14.885853959629081},
        'HadISST': {'value': 162.6723163364654,
         'value_error': -10.118001926730376},
        'Tropflux': {'value': 161.4820425970401,
         'value_error': -14.643667476921909}}},
      'EnsoSstTsRmse': {'diagnostic': {'ERA-Interim': {'value': None,
         'value_error': None},
        'GISS-E2-H_r3i1p1': {'value': None, 'value_error': None},
        'HadISST': {'value': None, 'value_error': None},
        'Tropflux': {'value': None, 'value_error': None}},
       'metric': {'ERA-Interim': {'value': 0.18344935102910606,
         'value_error': None},
        'HadISST': {'value': 0.17504020590421243, 'value_error': None},
        'Tropflux': {'value': 0.1856739392989135, 'value_error': None}}},
      'SeasonalPrLatRmse': {'diagnostic': {'ERA-Interim': {'value': None,
         'value_error': None},
        'GISS-E2-H_r3i1p1': {'value': None, 'value_error': None},
        'GPCPv2.3': {'value': None, 'value_error': None}},
       'metric': {'ERA-Interim': {'value': 1.1377064798267722,
         'value_error': None},
        'GPCPv2.3': {'value': 1.0227620585507011, 'value_error': None}}},
      'SeasonalPrLonRmse': {'diagnostic': {'ERA-Interim': {'value': None,
         'value_error': None},
        'GISS-E2-H_r3i1p1': {'value': None, 'value_error': None},
        'GPCPv2.3': {'value': None, 'value_error': None}},
       'metric': {'ERA-Interim': {'value': 0.8245268985144806,
         'value_error': None},
        'GPCPv2.3': {'value': 0.518045351304265, 'value_error': None}}},
      'SeasonalSstLonRmse': {'diagnostic': {'ERA-Interim': {'value': None,
         'value_error': None},
        'GISS-E2-H_r3i1p1': {'value': None, 'value_error': None},
        'HadISST': {'value': None, 'value_error': None},
        'Tropflux': {'value': None, 'value_error': None}},
       'metric': {'ERA-Interim': {'value': 0.3132976082808482,
         'value_error': None},
        'HadISST': {'value': 0.3077521796991147, 'value_error': None},
        'Tropflux': {'value': 0.32292638872326546, 'value_error': None}}},
      'SeasonalTauxLonRmse': {'diagnostic': {'ERA-Interim': {'value': None,
         'value_error': None},
        'GISS-E2-H_r3i1p1': {'value': None, 'value_error': None},
        'Tropflux': {'value': None, 'value_error': None}},
       'metric': {'ERA-Interim': {'value': 2.9537569162868813,
         'value_error': None},
        'Tropflux': {'value': 3.182448736707369, 'value_error': None}}}}},
    'r3i1p2': {'metadata': {'description_of_the_collection': 'Describe which science question this collection is about',
      'metrics': {'BiasPrLatRmse': {'diagnostic': {'ERA-Interim': {'name': 'ERA-Interim',
          'nyears': 40,
          'time_period': ['1979-1-16 12:0:0.0', '2019-3-16 12:0:0.0']},
         'GISS-E2-H_r3i1p2': {'keyerror': None,
          'name': 'GISS-E2-H_r3i1p2',
          'nyears': 156,
          'time_period': ['1850-1-16 12:0:0.0', '2005-12-16 12:0:0.0']},
         'GPCPv2.3': {'name': 'GPCPv2.3',
          'nyears': 41,
          'time_period': ['1979-1-1 0:0:0.0', '2019-7-1 0:0:0.0']},
         'method': 'Meridional root mean square error of nino3_LatExt pr, time series are linearly detrended, observations and model regridded to generic_1x1deg',
         'name': 'pr Meridional RMSE',
         'ref': 'Using CDAT regridding and rms (uncentered and biased) calculation',
         'time_frequency': 'monthly',
         'units': 'mm/day'},
        'metric': {'datasets': "GISS-E2-H_r3i1p2; ERA-Interim's pr & GPCPv2.3's precip; 's ",
         'method': 'The metric is the statistical value between the model and the observations',
         'name': 'BiasPrLatRmse',
         'units': 'mm/day'}},
       'BiasPrLonRmse': {'diagnostic': {'ERA-Interim': {'name': 'ERA-Interim',
          'nyears': 40,
          'time_period': ['1979-1-16 12:0:0.0', '2019-3-16 12:0:0.0']},
         'GISS-E2-H_r3i1p2': {'keyerror': None,
          'name': 'GISS-E2-H_r3i1p2',
          'nyears': 156,
          'time_period': ['1850-1-16 12:0:0.0', '2005-12-16 12:0:0.0']},
         'GPCPv2.3': {'name': 'GPCPv2.3',
          'nyears': 41,
          'time_period': ['1979-1-1 0:0:0.0', '2019-7-1 0:0:0.0']},
         'method': 'Zonal root mean square error of equatorial_pacific pr, time series are linearly detrended, observations and model regridded to generic_1x1deg',
         'name': 'pr Zonal RMSE',
         'ref': 'Using CDAT regridding and rms (uncentered and biased) calculation',
         'time_frequency': 'monthly',
         'units': 'mm/day'},
        'metric': {'datasets': "GISS-E2-H_r3i1p2; ERA-Interim's pr & GPCPv2.3's precip; 's ",
         'method': 'The metric is the statistical value between the model and the observations',
         'name': 'BiasPrLonRmse',
         'units': 'mm/day'}},
       'BiasSstLonRmse': {'diagnostic': {'ERA-Interim': {'name': 'ERA-Interim',
          'nyears': 40,
          'time_period': ['1979-1-16 12:0:0.0', '2019-3-16 12:0:0.0']},
         'GISS-E2-H_r3i1p2': {'keyerror': None,
          'name': 'GISS-E2-H_r3i1p2',
          'nyears': 156,
          'time_period': ['1850-1-16 12:0:0.0', '2005-12-16 12:0:0.0']},
         'HadISST': {'name': 'HadISST',
          'nyears': 151,
          'time_period': ['1870-1-16 11:59:59.5', '2020-10-16 12:0:0.0']},
         'Tropflux': {'name': 'Tropflux',
          'nyears': 40,
          'time_period': ['1979-1-15 0:0:0.0', '2018-12-15 12:0:0.0']},
         'method': 'Zonal root mean square error of equatorial_pacific sst, time series are linearly detrended, observations and model regridded to generic_1x1deg',
         'name': 'sst Zonal RMSE',
         'ref': 'Using CDAT regridding and rms (uncentered and biased) calculation',
         'time_frequency': 'monthly',
         'units': 'C'},
        'metric': {'datasets': "GISS-E2-H_r3i1p2; ERA-Interim's ts & HadISST's sst & Tropflux's sst; 's ",
         'method': 'The metric is the statistical value between the model and the observations',
         'name': 'BiasSstLonRmse',
         'units': 'C'}},
       'BiasTauxLonRmse': {'diagnostic': {'ERA-Interim': {'name': 'ERA-Interim',
          'nyears': 40,
          'time_period': ['1979-1-16 12:0:0.0', '2019-3-16 12:0:0.0']},
         'GISS-E2-H_r3i1p2': {'keyerror': None,
          'name': 'GISS-E2-H_r3i1p2',
          'nyears': 156,
          'time_period': ['1850-1-16 12:0:0.0', '2005-12-16 12:0:0.0']},
         'Tropflux': {'name': 'Tropflux',
          'nyears': 40,
          'time_period': ['1979-1-15 0:0:0.0', '2018-12-15 12:0:0.0']},
         'method': 'Zonal root mean square error of equatorial_pacific taux, time series are linearly detrended, observations and model regridded to generic_1x1deg',
         'name': 'taux Zonal RMSE',
         'ref': 'Using CDAT regridding and rms (uncentered and biased) calculation',
         'time_frequency': 'monthly',
         'units': '1e-3 N/m2'},
        'metric': {'datasets': "GISS-E2-H_r3i1p2; ERA-Interim's tauu & Tropflux's taux; 's ",
         'method': 'The metric is the statistical value between the model and the observations',
         'name': 'BiasTauxLonRmse',
         'units': '1e-3 N/m2'}},
       'EnsoAmpl': {'diagnostic': {'ERA-Interim': {'keyerror': None,
          'name': 'ERA-Interim',
          'nyears': 40,
          'time_period': ['1979-1-16 12:0:0.0', '2019-3-16 12:0:0.0']},
         'GISS-E2-H_r3i1p2': {'keyerror': None,
          'name': 'GISS-E2-H_r3i1p2',
          'nyears': 156,
          'time_period': ['1850-1-16 12:0:0.0', '2005-12-16 12:0:0.0']},
         'HadISST': {'keyerror': None,
          'name': 'HadISST',
          'nyears': 151,
          'time_period': ['1870-1-16 11:59:59.5', '2020-10-16 12:0:0.0']},
         'Tropflux': {'keyerror': None,
          'name': 'Tropflux',
          'nyears': 40,
          'time_period': ['1979-1-15 0:0:0.0', '2018-12-15 12:0:0.0']},
         'method': 'Standard deviation of nino3.4 sstA, time series are linearly detrended',
         'name': 'ENSO amplitude',
         'ref': 'Using CDAT regression calculation',
         'time_frequency': 'monthly',
         'units': 'C'},
        'metric': {'datasets': "GISS-E2-H_r3i1p2; ERA-Interim's ts & HadISST's sst & Tropflux's sst; 's ",
         'method': 'The metric is the absolute value of the relative difference between model and observations values (M = 100 * abs[[model-obs] / obs])',
         'name': 'EnsoAmpl',
         'units': '%'}},
       'EnsoDuration': {'diagnostic': {'ERA-Interim': {'keyerror': None,
          'name': 'ERA-Interim',
          'nyears': 40,
          'time_period': ['1979-1-16 12:0:0.0', '2019-3-16 12:0:0.0']},
         'GISS-E2-H_r3i1p2': {'keyerror': None,
          'name': 'GISS-E2-H_r3i1p2',
          'nyears': 156,
          'time_period': ['1850-1-16 12:0:0.0', '2005-12-16 12:0:0.0']},
         'HadISST': {'keyerror': None,
          'name': 'HadISST',
          'nyears': 151,
          'time_period': ['1870-1-16 11:59:59.5', '2020-10-16 12:0:0.0']},
         'Tropflux': {'keyerror': None,
          'name': 'Tropflux',
          'nyears': 40,
          'time_period': ['1979-1-15 0:0:0.0', '2018-12-15 12:0:0.0']},
         'method': 'nino3.4 SSTA during DEC regressed against nino3.4 SSTA during 6 years (centered on ENSO), the duration is the number of consecutive months during which the regression is above 0.25, time series are linearly detrended, smoothing using a triangle shaped window of 5 points',
         'name': 'ENSO Duration based on life cyle SSTA pattern',
         'ref': 'Using CDAT',
         'time_frequency': 'monthly',
         'units': 'months'},
        'metric': {'datasets': "GISS-E2-H_r3i1p2; ERA-Interim's ts & HadISST's sst & Tropflux's sst; 's ",
         'method': 'The metric is the absolute value of the relative difference between model and observations values (M = 100 * abs[[model-obs] / obs])',
         'name': 'EnsoDuration',
         'units': '%'}},
       'EnsoSeasonality': {'diagnostic': {'ERA-Interim': {'keyerror': None,
          'name': 'ERA-Interim',
          'nyears': 40,
          'time_period': ['1979-1-16 12:0:0.0', '2019-3-16 12:0:0.0']},
         'GISS-E2-H_r3i1p2': {'keyerror': None,
          'name': 'GISS-E2-H_r3i1p2',
          'nyears': 156,
          'time_period': ['1850-1-16 12:0:0.0', '2005-12-16 12:0:0.0']},
         'HadISST': {'keyerror': None,
          'name': 'HadISST',
          'nyears': 151,
          'time_period': ['1870-1-16 11:59:59.5', '2020-10-16 12:0:0.0']},
         'Tropflux': {'keyerror': None,
          'name': 'Tropflux',
          'nyears': 40,
          'time_period': ['1979-1-15 0:0:0.0', '2018-12-15 12:0:0.0']},
         'method': 'Ratio between NDJ and MAM standard deviation nino3.4 sstA, time series are linearly detrended',
         'name': 'ENSO seasonality',
         'ref': 'Using CDAT std dev calculation',
         'time_frequency': 'monthly',
         'units': 'C/C'},
        'metric': {'datasets': "GISS-E2-H_r3i1p2; ERA-Interim's ts & HadISST's sst & Tropflux's sst; 's ",
         'method': 'The metric is the absolute value of the relative difference between model and observations values (M = 100 * abs[[model-obs] / obs])',
         'name': 'EnsoSeasonality',
         'units': '%'}},
       'EnsoSstDiversity_2': {'diagnostic': {'ERA-Interim': {'keyerror': None,
          'name': 'ERA-Interim',
          'nyears': 40,
          'time_period': ['1979-1-16 12:0:0.0', '2019-3-16 12:0:0.0']},
         'GISS-E2-H_r3i1p2': {'keyerror': None,
          'name': 'GISS-E2-H_r3i1p2',
          'nyears': 156,
          'time_period': ['1850-1-16 12:0:0.0', '2005-12-16 12:0:0.0']},
         'HadISST': {'keyerror': None,
          'name': 'HadISST',
          'nyears': 151,
          'time_period': ['1870-1-16 11:59:59.5', '2020-10-16 12:0:0.0']},
         'Tropflux': {'keyerror': None,
          'name': 'Tropflux',
          'nyears': 40,
          'time_period': ['1979-1-15 0:0:0.0', '2018-12-15 12:0:0.0']},
         'method': 'Nino (Nina) events = nino3.4 sstA > 0.75 (< -0.75) during DEC, zonal SSTA (meridional averaged [-5.0 ; 5.0]), the zonal SSTA maximum (minimum) is located for each event, the diversity is the interquartile range (IQR = Q3 - Q1), time series are linearly detrended, smoothing using a triangle shaped window of 5 points',
         'name': 'ENSO Diversity (interquartile range)',
         'ref': 'Using CDAT regridding',
         'time_frequency': 'monthly',
         'units': 'long'},
        'metric': {'datasets': "GISS-E2-H_r3i1p2; ERA-Interim's ts & HadISST's sst & Tropflux's sst; 's ",
         'method': 'The metric is the absolute value of the relative difference between model and observations values (M = 100 * abs[[model-obs] / obs])',
         'name': 'EnsoSstDiversity',
         'units': '%'}},
       'EnsoSstLonRmse': {'diagnostic': {'ERA-Interim': {'name': 'ERA-Interim',
          'nyears': 40,
          'time_period': ['1979-1-16 12:0:0.0', '2019-3-16 12:0:0.0']},
         'GISS-E2-H_r3i1p2': {'keyerror': None,
          'name': 'GISS-E2-H_r3i1p2',
          'nyears': 156,
          'time_period': ['1850-1-16 12:0:0.0', '2005-12-16 12:0:0.0']},
         'HadISST': {'name': 'HadISST',
          'nyears': 151,
          'time_period': ['1870-1-16 11:59:59.5', '2020-10-16 12:0:0.0']},
         'Tropflux': {'name': 'Tropflux',
          'nyears': 40,
          'time_period': ['1979-1-15 0:0:0.0', '2018-12-15 12:0:0.0']},
         'method': 'nino3.4 SSTA during DEC regressed against equatorial_pacific SSTA, time series are linearly detrended, smoothing using a triangle shaped window of 5 points, observations and model regridded to generic_1x1deg',
         'name': 'ENSO Zonal SSTA pattern',
         'ref': 'Using CDAT regridding and rms (uncentered and biased) calculation',
         'time_frequency': 'monthly',
         'units': 'C/C'},
        'metric': {'datasets': "GISS-E2-H_r3i1p2; ERA-Interim's ts & HadISST's sst & Tropflux's sst; 's ",
         'method': 'The metric is the statistical value between the model and the observations',
         'name': 'EnsoSstLonRmse',
         'units': 'C/C'}},
       'EnsoSstSkew': {'diagnostic': {'ERA-Interim': {'keyerror': None,
          'name': 'ERA-Interim',
          'nyears': 40,
          'time_period': ['1979-1-16 12:0:0.0', '2019-3-16 12:0:0.0']},
         'GISS-E2-H_r3i1p2': {'keyerror': None,
          'name': 'GISS-E2-H_r3i1p2',
          'nyears': 156,
          'time_period': ['1850-1-16 12:0:0.0', '2005-12-16 12:0:0.0']},
         'HadISST': {'keyerror': None,
          'name': 'HadISST',
          'nyears': 151,
          'time_period': ['1870-1-16 11:59:59.5', '2020-10-16 12:0:0.0']},
         'Tropflux': {'keyerror': None,
          'name': 'Tropflux',
          'nyears': 40,
          'time_period': ['1979-1-15 0:0:0.0', '2018-12-15 12:0:0.0']},
         'method': 'Standard deviation of nino3.4 sstA, time series are linearly detrended',
         'name': 'ENSO skewness',
         'ref': 'Using CDAT regression calculation',
         'time_frequency': 'monthly',
         'units': 'C'},
        'metric': {'datasets': "GISS-E2-H_r3i1p2; ERA-Interim's ts & HadISST's sst & Tropflux's sst; 's ",
         'method': 'The metric is the absolute value of the relative difference between model and observations values (M = 100 * abs[[model-obs] / obs])',
         'name': 'EnsoSstSkew',
         'units': '%'}},
       'EnsoSstTsRmse': {'diagnostic': {'ERA-Interim': {'name': 'ERA-Interim',
          'nyears': 40,
          'time_period': ['1979-1-16 12:0:0.0', '2019-3-16 12:0:0.0']},
         'GISS-E2-H_r3i1p2': {'keyerror': None,
          'name': 'GISS-E2-H_r3i1p2',
          'nyears': 156,
          'time_period': ['1850-1-16 12:0:0.0', '2005-12-16 12:0:0.0']},
         'HadISST': {'name': 'HadISST',
          'nyears': 151,
          'time_period': ['1870-1-16 11:59:59.5', '2020-10-16 12:0:0.0']},
         'Tropflux': {'name': 'Tropflux',
          'nyears': 40,
          'time_period': ['1979-1-15 0:0:0.0', '2018-12-15 12:0:0.0']},
         'method': 'nino3.4 SSTA during DEC regressed against nino3.4 SSTA during 6 years (centered on ENSO), time series are linearly detrended, smoothing using a triangle shaped window of 5 points',
         'name': 'ENSO life cyle SSTA pattern',
         'ref': 'Using CDAT regridding and rms (uncentered and biased) calculation',
         'time_frequency': 'monthly',
         'units': 'C/C'},
        'metric': {'datasets': "GISS-E2-H_r3i1p2; ERA-Interim's ts & HadISST's sst & Tropflux's sst; 's ",
         'method': 'The metric is the statistical value between the model and the observations',
         'name': 'EnsoSstTsRmse',
         'units': 'C/C'}},
       'SeasonalPrLatRmse': {'diagnostic': {'ERA-Interim': {'name': 'ERA-Interim',
          'nyears': 40,
          'time_period': ['1979-1-16 12:0:0.0', '2019-3-16 12:0:0.0']},
         'GISS-E2-H_r3i1p2': {'keyerror': None,
          'name': 'GISS-E2-H_r3i1p2',
          'nyears': 156,
          'time_period': ['1850-1-16 12:0:0.0', '2005-12-16 12:0:0.0']},
         'GPCPv2.3': {'name': 'GPCPv2.3',
          'nyears': 41,
          'time_period': ['1979-1-1 0:0:0.0', '2019-7-1 0:0:0.0']},
         'method': 'Meridional root mean square error of nino3_LatExt climatological pr STD, time series are linearly detrended, observations and model regridded to generic_1x1deg',
         'name': 'pr meridional seasonality RMSE',
         'ref': 'Using CDAT regridding and rms (uncentered and biased) calculation',
         'time_frequency': 'monthly',
         'units': 'mm/day'},
        'metric': {'datasets': "GISS-E2-H_r3i1p2; ERA-Interim's pr & GPCPv2.3's precip; 's ",
         'method': 'The metric is the statistical value between the model and the observations',
         'name': 'SeasonalPrLatRmse',
         'units': 'mm/day'}},
       'SeasonalPrLonRmse': {'diagnostic': {'ERA-Interim': {'name': 'ERA-Interim',
          'nyears': 40,
          'time_period': ['1979-1-16 12:0:0.0', '2019-3-16 12:0:0.0']},
         'GISS-E2-H_r3i1p2': {'keyerror': None,
          'name': 'GISS-E2-H_r3i1p2',
          'nyears': 156,
          'time_period': ['1850-1-16 12:0:0.0', '2005-12-16 12:0:0.0']},
         'GPCPv2.3': {'name': 'GPCPv2.3',
          'nyears': 41,
          'time_period': ['1979-1-1 0:0:0.0', '2019-7-1 0:0:0.0']},
         'method': 'Zonal root mean square error of equatorial_pacific climatological pr STD, time series are linearly detrended, observations and model regridded to generic_1x1deg',
         'name': 'pr zonal seasonality RMSE',
         'ref': 'Using CDAT regridding and rms (uncentered and biased) calculation',
         'time_frequency': 'monthly',
         'units': 'mm/day'},
        'metric': {'datasets': "GISS-E2-H_r3i1p2; ERA-Interim's pr & GPCPv2.3's precip; 's ",
         'method': 'The metric is the statistical value between the model and the observations',
         'name': 'SeasonalPrLonRmse',
         'units': 'mm/day'}},
       'SeasonalSstLonRmse': {'diagnostic': {'ERA-Interim': {'name': 'ERA-Interim',
          'nyears': 40,
          'time_period': ['1979-1-16 12:0:0.0', '2019-3-16 12:0:0.0']},
         'GISS-E2-H_r3i1p2': {'keyerror': None,
          'name': 'GISS-E2-H_r3i1p2',
          'nyears': 156,
          'time_period': ['1850-1-16 12:0:0.0', '2005-12-16 12:0:0.0']},
         'HadISST': {'name': 'HadISST',
          'nyears': 151,
          'time_period': ['1870-1-16 11:59:59.5', '2020-10-16 12:0:0.0']},
         'Tropflux': {'name': 'Tropflux',
          'nyears': 40,
          'time_period': ['1979-1-15 0:0:0.0', '2018-12-15 12:0:0.0']},
         'method': 'Zonal root mean square error of equatorial_pacific climatological sst STD, time series are linearly detrended, observations and model regridded to generic_1x1deg',
         'name': 'sst zonal seasonality RMSE',
         'ref': 'Using CDAT regridding and rms (uncentered and biased) calculation',
         'time_frequency': 'monthly',
         'units': 'C'},
        'metric': {'datasets': "GISS-E2-H_r3i1p2; ERA-Interim's ts & HadISST's sst & Tropflux's sst; 's ",
         'method': 'The metric is the statistical value between the model and the observations',
         'name': 'SeasonalSstLonRmse',
         'units': 'C'}},
       'SeasonalTauxLonRmse': {'diagnostic': {'ERA-Interim': {'name': 'ERA-Interim',
          'nyears': 40,
          'time_period': ['1979-1-16 12:0:0.0', '2019-3-16 12:0:0.0']},
         'GISS-E2-H_r3i1p2': {'keyerror': None,
          'name': 'GISS-E2-H_r3i1p2',
          'nyears': 156,
          'time_period': ['1850-1-16 12:0:0.0', '2005-12-16 12:0:0.0']},
         'Tropflux': {'name': 'Tropflux',
          'nyears': 40,
          'time_period': ['1979-1-15 0:0:0.0', '2018-12-15 12:0:0.0']},
         'method': 'Zonal root mean square error of equatorial_pacific climatological taux STD, time series are linearly detrended, observations and model regridded to generic_1x1deg',
         'name': 'taux zonal seasonality RMSE',
         'ref': 'Using CDAT regridding and rms (uncentered and biased) calculation',
         'time_frequency': 'monthly',
         'units': '1e-3 N/m2'},
        'metric': {'datasets': "GISS-E2-H_r3i1p2; ERA-Interim's tauu & Tropflux's taux; 's ",
         'method': 'The metric is the statistical value between the model and the observations',
         'name': 'SeasonalTauxLonRmse',
         'units': '1e-3 N/m2'}}},
      'name': 'Metrics Collection for ENSO performance'},
     'value': {'BiasPrLatRmse': {'diagnostic': {'ERA-Interim': {'value': None,
         'value_error': None},
        'GISS-E2-H_r3i1p2': {'value': None, 'value_error': None},
        'GPCPv2.3': {'value': None, 'value_error': None}},
       'metric': {'ERA-Interim': {'value': 2.9586007541069383,
         'value_error': None},
        'GPCPv2.3': {'value': 3.5607533328212866, 'value_error': None}}},
      'BiasPrLonRmse': {'diagnostic': {'ERA-Interim': {'value': None,
         'value_error': None},
        'GISS-E2-H_r3i1p2': {'value': None, 'value_error': None},
        'GPCPv2.3': {'value': None, 'value_error': None}},
       'metric': {'ERA-Interim': {'value': 1.411300338028962,
         'value_error': None},
        'GPCPv2.3': {'value': 0.8918256245768972, 'value_error': None}}},
      'BiasSstLonRmse': {'diagnostic': {'ERA-Interim': {'value': None,
         'value_error': None},
        'GISS-E2-H_r3i1p2': {'value': None, 'value_error': None},
        'HadISST': {'value': None, 'value_error': None},
        'Tropflux': {'value': None, 'value_error': None}},
       'metric': {'ERA-Interim': {'value': 0.8792430885495005,
         'value_error': None},
        'HadISST': {'value': 0.9894735950331593, 'value_error': None},
        'Tropflux': {'value': 0.8618847350861056, 'value_error': None}}},
      'BiasTauxLonRmse': {'diagnostic': {'ERA-Interim': {'value': None,
         'value_error': None},
        'GISS-E2-H_r3i1p2': {'value': None, 'value_error': None},
        'Tropflux': {'value': None, 'value_error': None}},
       'metric': {'ERA-Interim': {'value': 21.518516601266207,
         'value_error': None},
        'Tropflux': {'value': 21.15846253727753, 'value_error': None}}},
      'EnsoAmpl': {'diagnostic': {'ERA-Interim': {'value': 0.8989844997845644,
         'value_error': 0.14214193002531866},
        'GISS-E2-H_r3i1p2': {'value': 0.5627550413323499,
         'value_error': 0.045056462906527345},
        'HadISST': {'value': 0.7665787872085695,
         'value_error': 0.06238329697691264},
        'Tropflux': {'value': 0.9039789553693535,
         'value_error': 0.14293162279134272}},
       'metric': {'ERA-Interim': {'value': 37.40102955421252,
         'value_error': 14.909695073304299},
        'HadISST': {'value': 26.588753729858116,
         'value_error': 11.851726162749083},
        'Tropflux': {'value': 37.7468869170283,
         'value_error': 14.827319472208647}}},
      'EnsoDuration': {'diagnostic': {'ERA-Interim': {'value': 13.0,
         'value_error': None},
        'GISS-E2-H_r3i1p2': {'value': 12.0, 'value_error': None},
        'HadISST': {'value': 13.0, 'value_error': None},
        'Tropflux': {'value': 13.0, 'value_error': None}},
       'metric': {'ERA-Interim': {'value': 7.6923076923076925,
         'value_error': None},
        'HadISST': {'value': 7.6923076923076925, 'value_error': None},
        'Tropflux': {'value': 7.6923076923076925, 'value_error': None}}},
      'EnsoSeasonality': {'diagnostic': {'ERA-Interim': {'value': 2.0466846866656914,
         'value_error': 0.6513411033995022},
        'GISS-E2-H_r3i1p2': {'value': 1.6225379733709195,
         'value_error': 0.26023239128624753},
        'HadISST': {'value': 1.6639865947361325,
         'value_error': 0.2712772451657809},
        'Tropflux': {'value': 2.0532132553583624,
         'value_error': 0.6534187683977347}},
       'metric': {'ERA-Interim': {'value': 20.72359831771452,
         'value_error': 37.94390927916867},
        'HadISST': {'value': 2.4909227932683993,
         'value_error': 31.535850792262917},
        'Tropflux': {'value': 20.975672198856614,
         'value_error': 37.82325964983715}}},
      'EnsoSstDiversity_2': {'diagnostic': {'ERA-Interim': {'value': 33.25,
         'value_error': None},
        'GISS-E2-H_r3i1p2': {'value': 23.0, 'value_error': None},
        'HadISST': {'value': 49.0, 'value_error': None},
        'Tropflux': {'value': 32.0, 'value_error': None}},
       'metric': {'ERA-Interim': {'value': 30.82706766917293,
         'value_error': None},
        'HadISST': {'value': 53.06122448979592, 'value_error': None},
        'Tropflux': {'value': 28.125, 'value_error': None}}},
      'EnsoSstLonRmse': {'diagnostic': {'ERA-Interim': {'value': None,
         'value_error': None},
        'GISS-E2-H_r3i1p2': {'value': None, 'value_error': None},
        'HadISST': {'value': None, 'value_error': None},
        'Tropflux': {'value': None, 'value_error': None}},
       'metric': {'ERA-Interim': {'value': 0.26648709370163337,
         'value_error': None},
        'HadISST': {'value': 0.27161829593047676, 'value_error': None},
        'Tropflux': {'value': 0.2657217680758711, 'value_error': None}}},
      'EnsoSstSkew': {'diagnostic': {'ERA-Interim': {'value': 0.39098111106809963,
         'value_error': 0.061819541653923164},
        'GISS-E2-H_r3i1p2': {'value': -0.06454233093185574,
         'value_error': -0.0051675221471975145},
        'HadISST': {'value': 0.38989908235027515,
         'value_error': 0.03172953733021198},
        'Tropflux': {'value': 0.39744741059612115,
         'value_error': 0.06284195338099416}},
       'metric': {'ERA-Interim': {'value': 116.50778748761958,
         'value_error': -3.931791146444942},
        'HadISST': {'value': 116.55359908589695,
         'value_error': -2.6724614189499034},
        'Tropflux': {'value': 116.23921283951766,
         'value_error': -3.867822584676221}}},
      'EnsoSstTsRmse': {'diagnostic': {'ERA-Interim': {'value': None,
         'value_error': None},
        'GISS-E2-H_r3i1p2': {'value': None, 'value_error': None},
        'HadISST': {'value': None, 'value_error': None},
        'Tropflux': {'value': None, 'value_error': None}},
       'metric': {'ERA-Interim': {'value': 0.21987586557345717,
         'value_error': None},
        'HadISST': {'value': 0.21973112449812504, 'value_error': None},
        'Tropflux': {'value': 0.22199216044855805, 'value_error': None}}},
      'SeasonalPrLatRmse': {'diagnostic': {'ERA-Interim': {'value': None,
         'value_error': None},
        'GISS-E2-H_r3i1p2': {'value': None, 'value_error': None},
        'GPCPv2.3': {'value': None, 'value_error': None}},
       'metric': {'ERA-Interim': {'value': 1.1106704248031949,
         'value_error': None},
        'GPCPv2.3': {'value': 1.0040652834593002, 'value_error': None}}},
      'SeasonalPrLonRmse': {'diagnostic': {'ERA-Interim': {'value': None,
         'value_error': None},
        'GISS-E2-H_r3i1p2': {'value': None, 'value_error': None},
        'GPCPv2.3': {'value': None, 'value_error': None}},
       'metric': {'ERA-Interim': {'value': 0.7951421319973709,
         'value_error': None},
        'GPCPv2.3': {'value': 0.5086937029422983, 'value_error': None}}},
      'SeasonalSstLonRmse': {'diagnostic': {'ERA-Interim': {'value': None,
         'value_error': None},
        'GISS-E2-H_r3i1p2': {'value': None, 'value_error': None},
        'HadISST': {'value': None, 'value_error': None},
        'Tropflux': {'value': None, 'value_error': None}},
       'metric': {'ERA-Interim': {'value': 0.3119138277471764,
         'value_error': None},
        'HadISST': {'value': 0.30553433389782736, 'value_error': None},
        'Tropflux': {'value': 0.321727112552947, 'value_error': None}}},
      'SeasonalTauxLonRmse': {'diagnostic': {'ERA-Interim': {'value': None,
         'value_error': None},
        'GISS-E2-H_r3i1p2': {'value': None, 'value_error': None},
        'Tropflux': {'value': None, 'value_error': None}},
       'metric': {'ERA-Interim': {'value': 2.934766564742194,
         'value_error': None},
        'Tropflux': {'value': 3.171378533284638, 'value_error': None}}}}},
    'r3i1p3': {'metadata': {'description_of_the_collection': 'Describe which science question this collection is about',
      'metrics': {'BiasPrLatRmse': {'diagnostic': {'ERA-Interim': {'name': 'ERA-Interim',
          'nyears': 40,
          'time_period': ['1979-1-16 12:0:0.0', '2019-3-16 12:0:0.0']},
         'GISS-E2-H_r3i1p3': {'keyerror': None,
          'name': 'GISS-E2-H_r3i1p3',
          'nyears': 156,
          'time_period': ['1850-1-16 12:0:0.0', '2005-12-16 12:0:0.0']},
         'GPCPv2.3': {'name': 'GPCPv2.3',
          'nyears': 41,
          'time_period': ['1979-1-1 0:0:0.0', '2019-7-1 0:0:0.0']},
         'method': 'Meridional root mean square error of nino3_LatExt pr, time series are linearly detrended, observations and model regridded to generic_1x1deg',
         'name': 'pr Meridional RMSE',
         'ref': 'Using CDAT regridding and rms (uncentered and biased) calculation',
         'time_frequency': 'monthly',
         'units': 'mm/day'},
        'metric': {'datasets': "GISS-E2-H_r3i1p3; ERA-Interim's pr & GPCPv2.3's precip; 's ",
         'method': 'The metric is the statistical value between the model and the observations',
         'name': 'BiasPrLatRmse',
         'units': 'mm/day'}},
       'BiasPrLonRmse': {'diagnostic': {'ERA-Interim': {'name': 'ERA-Interim',
          'nyears': 40,
          'time_period': ['1979-1-16 12:0:0.0', '2019-3-16 12:0:0.0']},
         'GISS-E2-H_r3i1p3': {'keyerror': None,
          'name': 'GISS-E2-H_r3i1p3',
          'nyears': 156,
          'time_period': ['1850-1-16 12:0:0.0', '2005-12-16 12:0:0.0']},
         'GPCPv2.3': {'name': 'GPCPv2.3',
          'nyears': 41,
          'time_period': ['1979-1-1 0:0:0.0', '2019-7-1 0:0:0.0']},
         'method': 'Zonal root mean square error of equatorial_pacific pr, time series are linearly detrended, observations and model regridded to generic_1x1deg',
         'name': 'pr Zonal RMSE',
         'ref': 'Using CDAT regridding and rms (uncentered and biased) calculation',
         'time_frequency': 'monthly',
         'units': 'mm/day'},
        'metric': {'datasets': "GISS-E2-H_r3i1p3; ERA-Interim's pr & GPCPv2.3's precip; 's ",
         'method': 'The metric is the statistical value between the model and the observations',
         'name': 'BiasPrLonRmse',
         'units': 'mm/day'}},
       'BiasSstLonRmse': {'diagnostic': {'ERA-Interim': {'name': 'ERA-Interim',
          'nyears': 40,
          'time_period': ['1979-1-16 12:0:0.0', '2019-3-16 12:0:0.0']},
         'GISS-E2-H_r3i1p3': {'keyerror': None,
          'name': 'GISS-E2-H_r3i1p3',
          'nyears': 156,
          'time_period': ['1850-1-16 12:0:0.0', '2005-12-16 12:0:0.0']},
         'HadISST': {'name': 'HadISST',
          'nyears': 151,
          'time_period': ['1870-1-16 11:59:59.5', '2020-10-16 12:0:0.0']},
         'Tropflux': {'name': 'Tropflux',
          'nyears': 40,
          'time_period': ['1979-1-15 0:0:0.0', '2018-12-15 12:0:0.0']},
         'method': 'Zonal root mean square error of equatorial_pacific sst, time series are linearly detrended, observations and model regridded to generic_1x1deg',
         'name': 'sst Zonal RMSE',
         'ref': 'Using CDAT regridding and rms (uncentered and biased) calculation',
         'time_frequency': 'monthly',
         'units': 'C'},
        'metric': {'datasets': "GISS-E2-H_r3i1p3; ERA-Interim's ts & HadISST's sst & Tropflux's sst; 's ",
         'method': 'The metric is the statistical value between the model and the observations',
         'name': 'BiasSstLonRmse',
         'units': 'C'}},
       'BiasTauxLonRmse': {'diagnostic': {'ERA-Interim': {'name': 'ERA-Interim',
          'nyears': 40,
          'time_period': ['1979-1-16 12:0:0.0', '2019-3-16 12:0:0.0']},
         'GISS-E2-H_r3i1p3': {'keyerror': None,
          'name': 'GISS-E2-H_r3i1p3',
          'nyears': 156,
          'time_period': ['1850-1-16 12:0:0.0', '2005-12-16 12:0:0.0']},
         'Tropflux': {'name': 'Tropflux',
          'nyears': 40,
          'time_period': ['1979-1-15 0:0:0.0', '2018-12-15 12:0:0.0']},
         'method': 'Zonal root mean square error of equatorial_pacific taux, time series are linearly detrended, observations and model regridded to generic_1x1deg',
         'name': 'taux Zonal RMSE',
         'ref': 'Using CDAT regridding and rms (uncentered and biased) calculation',
         'time_frequency': 'monthly',
         'units': '1e-3 N/m2'},
        'metric': {'datasets': "GISS-E2-H_r3i1p3; ERA-Interim's tauu & Tropflux's taux; 's ",
         'method': 'The metric is the statistical value between the model and the observations',
         'name': 'BiasTauxLonRmse',
         'units': '1e-3 N/m2'}},
       'EnsoAmpl': {'diagnostic': {'ERA-Interim': {'keyerror': None,
          'name': 'ERA-Interim',
          'nyears': 40,
          'time_period': ['1979-1-16 12:0:0.0', '2019-3-16 12:0:0.0']},
         'GISS-E2-H_r3i1p3': {'keyerror': None,
          'name': 'GISS-E2-H_r3i1p3',
          'nyears': 156,
          'time_period': ['1850-1-16 12:0:0.0', '2005-12-16 12:0:0.0']},
         'HadISST': {'keyerror': None,
          'name': 'HadISST',
          'nyears': 151,
          'time_period': ['1870-1-16 11:59:59.5', '2020-10-16 12:0:0.0']},
         'Tropflux': {'keyerror': None,
          'name': 'Tropflux',
          'nyears': 40,
          'time_period': ['1979-1-15 0:0:0.0', '2018-12-15 12:0:0.0']},
         'method': 'Standard deviation of nino3.4 sstA, time series are linearly detrended',
         'name': 'ENSO amplitude',
         'ref': 'Using CDAT regression calculation',
         'time_frequency': 'monthly',
         'units': 'C'},
        'metric': {'datasets': "GISS-E2-H_r3i1p3; ERA-Interim's ts & HadISST's sst & Tropflux's sst; 's ",
         'method': 'The metric is the absolute value of the relative difference between model and observations values (M = 100 * abs[[model-obs] / obs])',
         'name': 'EnsoAmpl',
         'units': '%'}},
       'EnsoDuration': {'diagnostic': {'ERA-Interim': {'keyerror': None,
          'name': 'ERA-Interim',
          'nyears': 40,
          'time_period': ['1979-1-16 12:0:0.0', '2019-3-16 12:0:0.0']},
         'GISS-E2-H_r3i1p3': {'keyerror': None,
          'name': 'GISS-E2-H_r3i1p3',
          'nyears': 156,
          'time_period': ['1850-1-16 12:0:0.0', '2005-12-16 12:0:0.0']},
         'HadISST': {'keyerror': None,
          'name': 'HadISST',
          'nyears': 151,
          'time_period': ['1870-1-16 11:59:59.5', '2020-10-16 12:0:0.0']},
         'Tropflux': {'keyerror': None,
          'name': 'Tropflux',
          'nyears': 40,
          'time_period': ['1979-1-15 0:0:0.0', '2018-12-15 12:0:0.0']},
         'method': 'nino3.4 SSTA during DEC regressed against nino3.4 SSTA during 6 years (centered on ENSO), the duration is the number of consecutive months during which the regression is above 0.25, time series are linearly detrended, smoothing using a triangle shaped window of 5 points',
         'name': 'ENSO Duration based on life cyle SSTA pattern',
         'ref': 'Using CDAT',
         'time_frequency': 'monthly',
         'units': 'months'},
        'metric': {'datasets': "GISS-E2-H_r3i1p3; ERA-Interim's ts & HadISST's sst & Tropflux's sst; 's ",
         'method': 'The metric is the absolute value of the relative difference between model and observations values (M = 100 * abs[[model-obs] / obs])',
         'name': 'EnsoDuration',
         'units': '%'}},
       'EnsoSeasonality': {'diagnostic': {'ERA-Interim': {'keyerror': None,
          'name': 'ERA-Interim',
          'nyears': 40,
          'time_period': ['1979-1-16 12:0:0.0', '2019-3-16 12:0:0.0']},
         'GISS-E2-H_r3i1p3': {'keyerror': None,
          'name': 'GISS-E2-H_r3i1p3',
          'nyears': 156,
          'time_period': ['1850-1-16 12:0:0.0', '2005-12-16 12:0:0.0']},
         'HadISST': {'keyerror': None,
          'name': 'HadISST',
          'nyears': 151,
          'time_period': ['1870-1-16 11:59:59.5', '2020-10-16 12:0:0.0']},
         'Tropflux': {'keyerror': None,
          'name': 'Tropflux',
          'nyears': 40,
          'time_period': ['1979-1-15 0:0:0.0', '2018-12-15 12:0:0.0']},
         'method': 'Ratio between NDJ and MAM standard deviation nino3.4 sstA, time series are linearly detrended',
         'name': 'ENSO seasonality',
         'ref': 'Using CDAT std dev calculation',
         'time_frequency': 'monthly',
         'units': 'C/C'},
        'metric': {'datasets': "GISS-E2-H_r3i1p3; ERA-Interim's ts & HadISST's sst & Tropflux's sst; 's ",
         'method': 'The metric is the absolute value of the relative difference between model and observations values (M = 100 * abs[[model-obs] / obs])',
         'name': 'EnsoSeasonality',
         'units': '%'}},
       'EnsoSstDiversity_2': {'diagnostic': {'ERA-Interim': {'keyerror': None,
          'name': 'ERA-Interim',
          'nyears': 40,
          'time_period': ['1979-1-16 12:0:0.0', '2019-3-16 12:0:0.0']},
         'GISS-E2-H_r3i1p3': {'keyerror': None,
          'name': 'GISS-E2-H_r3i1p3',
          'nyears': 156,
          'time_period': ['1850-1-16 12:0:0.0', '2005-12-16 12:0:0.0']},
         'HadISST': {'keyerror': None,
          'name': 'HadISST',
          'nyears': 151,
          'time_period': ['1870-1-16 11:59:59.5', '2020-10-16 12:0:0.0']},
         'Tropflux': {'keyerror': None,
          'name': 'Tropflux',
          'nyears': 40,
          'time_period': ['1979-1-15 0:0:0.0', '2018-12-15 12:0:0.0']},
         'method': 'Nino (Nina) events = nino3.4 sstA > 0.75 (< -0.75) during DEC, zonal SSTA (meridional averaged [-5.0 ; 5.0]), the zonal SSTA maximum (minimum) is located for each event, the diversity is the interquartile range (IQR = Q3 - Q1), time series are linearly detrended, smoothing using a triangle shaped window of 5 points',
         'name': 'ENSO Diversity (interquartile range)',
         'ref': 'Using CDAT regridding',
         'time_frequency': 'monthly',
         'units': 'long'},
        'metric': {'datasets': "GISS-E2-H_r3i1p3; ERA-Interim's ts & HadISST's sst & Tropflux's sst; 's ",
         'method': 'The metric is the absolute value of the relative difference between model and observations values (M = 100 * abs[[model-obs] / obs])',
         'name': 'EnsoSstDiversity',
         'units': '%'}},
       'EnsoSstLonRmse': {'diagnostic': {'ERA-Interim': {'name': 'ERA-Interim',
          'nyears': 40,
          'time_period': ['1979-1-16 12:0:0.0', '2019-3-16 12:0:0.0']},
         'GISS-E2-H_r3i1p3': {'keyerror': None,
          'name': 'GISS-E2-H_r3i1p3',
          'nyears': 156,
          'time_period': ['1850-1-16 12:0:0.0', '2005-12-16 12:0:0.0']},
         'HadISST': {'name': 'HadISST',
          'nyears': 151,
          'time_period': ['1870-1-16 11:59:59.5', '2020-10-16 12:0:0.0']},
         'Tropflux': {'name': 'Tropflux',
          'nyears': 40,
          'time_period': ['1979-1-15 0:0:0.0', '2018-12-15 12:0:0.0']},
         'method': 'nino3.4 SSTA during DEC regressed against equatorial_pacific SSTA, time series are linearly detrended, smoothing using a triangle shaped window of 5 points, observations and model regridded to generic_1x1deg',
         'name': 'ENSO Zonal SSTA pattern',
         'ref': 'Using CDAT regridding and rms (uncentered and biased) calculation',
         'time_frequency': 'monthly',
         'units': 'C/C'},
        'metric': {'datasets': "GISS-E2-H_r3i1p3; ERA-Interim's ts & HadISST's sst & Tropflux's sst; 's ",
         'method': 'The metric is the statistical value between the model and the observations',
         'name': 'EnsoSstLonRmse',
         'units': 'C/C'}},
       'EnsoSstSkew': {'diagnostic': {'ERA-Interim': {'keyerror': None,
          'name': 'ERA-Interim',
          'nyears': 40,
          'time_period': ['1979-1-16 12:0:0.0', '2019-3-16 12:0:0.0']},
         'GISS-E2-H_r3i1p3': {'keyerror': None,
          'name': 'GISS-E2-H_r3i1p3',
          'nyears': 156,
          'time_period': ['1850-1-16 12:0:0.0', '2005-12-16 12:0:0.0']},
         'HadISST': {'keyerror': None,
          'name': 'HadISST',
          'nyears': 151,
          'time_period': ['1870-1-16 11:59:59.5', '2020-10-16 12:0:0.0']},
         'Tropflux': {'keyerror': None,
          'name': 'Tropflux',
          'nyears': 40,
          'time_period': ['1979-1-15 0:0:0.0', '2018-12-15 12:0:0.0']},
         'method': 'Standard deviation of nino3.4 sstA, time series are linearly detrended',
         'name': 'ENSO skewness',
         'ref': 'Using CDAT regression calculation',
         'time_frequency': 'monthly',
         'units': 'C'},
        'metric': {'datasets': "GISS-E2-H_r3i1p3; ERA-Interim's ts & HadISST's sst & Tropflux's sst; 's ",
         'method': 'The metric is the absolute value of the relative difference between model and observations values (M = 100 * abs[[model-obs] / obs])',
         'name': 'EnsoSstSkew',
         'units': '%'}},
       'EnsoSstTsRmse': {'diagnostic': {'ERA-Interim': {'name': 'ERA-Interim',
          'nyears': 40,
          'time_period': ['1979-1-16 12:0:0.0', '2019-3-16 12:0:0.0']},
         'GISS-E2-H_r3i1p3': {'keyerror': None,
          'name': 'GISS-E2-H_r3i1p3',
          'nyears': 156,
          'time_period': ['1850-1-16 12:0:0.0', '2005-12-16 12:0:0.0']},
         'HadISST': {'name': 'HadISST',
          'nyears': 151,
          'time_period': ['1870-1-16 11:59:59.5', '2020-10-16 12:0:0.0']},
         'Tropflux': {'name': 'Tropflux',
          'nyears': 40,
          'time_period': ['1979-1-15 0:0:0.0', '2018-12-15 12:0:0.0']},
         'method': 'nino3.4 SSTA during DEC regressed against nino3.4 SSTA during 6 years (centered on ENSO), time series are linearly detrended, smoothing using a triangle shaped window of 5 points',
         'name': 'ENSO life cyle SSTA pattern',
         'ref': 'Using CDAT regridding and rms (uncentered and biased) calculation',
         'time_frequency': 'monthly',
         'units': 'C/C'},
        'metric': {'datasets': "GISS-E2-H_r3i1p3; ERA-Interim's ts & HadISST's sst & Tropflux's sst; 's ",
         'method': 'The metric is the statistical value between the model and the observations',
         'name': 'EnsoSstTsRmse',
         'units': 'C/C'}},
       'SeasonalPrLatRmse': {'diagnostic': {'ERA-Interim': {'name': 'ERA-Interim',
          'nyears': 40,
          'time_period': ['1979-1-16 12:0:0.0', '2019-3-16 12:0:0.0']},
         'GISS-E2-H_r3i1p3': {'keyerror': None,
          'name': 'GISS-E2-H_r3i1p3',
          'nyears': 156,
          'time_period': ['1850-1-16 12:0:0.0', '2005-12-16 12:0:0.0']},
         'GPCPv2.3': {'name': 'GPCPv2.3',
          'nyears': 41,
          'time_period': ['1979-1-1 0:0:0.0', '2019-7-1 0:0:0.0']},
         'method': 'Meridional root mean square error of nino3_LatExt climatological pr STD, time series are linearly detrended, observations and model regridded to generic_1x1deg',
         'name': 'pr meridional seasonality RMSE',
         'ref': 'Using CDAT regridding and rms (uncentered and biased) calculation',
         'time_frequency': 'monthly',
         'units': 'mm/day'},
        'metric': {'datasets': "GISS-E2-H_r3i1p3; ERA-Interim's pr & GPCPv2.3's precip; 's ",
         'method': 'The metric is the statistical value between the model and the observations',
         'name': 'SeasonalPrLatRmse',
         'units': 'mm/day'}},
       'SeasonalPrLonRmse': {'diagnostic': {'ERA-Interim': {'name': 'ERA-Interim',
          'nyears': 40,
          'time_period': ['1979-1-16 12:0:0.0', '2019-3-16 12:0:0.0']},
         'GISS-E2-H_r3i1p3': {'keyerror': None,
          'name': 'GISS-E2-H_r3i1p3',
          'nyears': 156,
          'time_period': ['1850-1-16 12:0:0.0', '2005-12-16 12:0:0.0']},
         'GPCPv2.3': {'name': 'GPCPv2.3',
          'nyears': 41,
          'time_period': ['1979-1-1 0:0:0.0', '2019-7-1 0:0:0.0']},
         'method': 'Zonal root mean square error of equatorial_pacific climatological pr STD, time series are linearly detrended, observations and model regridded to generic_1x1deg',
         'name': 'pr zonal seasonality RMSE',
         'ref': 'Using CDAT regridding and rms (uncentered and biased) calculation',
         'time_frequency': 'monthly',
         'units': 'mm/day'},
        'metric': {'datasets': "GISS-E2-H_r3i1p3; ERA-Interim's pr & GPCPv2.3's precip; 's ",
         'method': 'The metric is the statistical value between the model and the observations',
         'name': 'SeasonalPrLonRmse',
         'units': 'mm/day'}},
       'SeasonalSstLonRmse': {'diagnostic': {'ERA-Interim': {'name': 'ERA-Interim',
          'nyears': 40,
          'time_period': ['1979-1-16 12:0:0.0', '2019-3-16 12:0:0.0']},
         'GISS-E2-H_r3i1p3': {'keyerror': None,
          'name': 'GISS-E2-H_r3i1p3',
          'nyears': 156,
          'time_period': ['1850-1-16 12:0:0.0', '2005-12-16 12:0:0.0']},
         'HadISST': {'name': 'HadISST',
          'nyears': 151,
          'time_period': ['1870-1-16 11:59:59.5', '2020-10-16 12:0:0.0']},
         'Tropflux': {'name': 'Tropflux',
          'nyears': 40,
          'time_period': ['1979-1-15 0:0:0.0', '2018-12-15 12:0:0.0']},
         'method': 'Zonal root mean square error of equatorial_pacific climatological sst STD, time series are linearly detrended, observations and model regridded to generic_1x1deg',
         'name': 'sst zonal seasonality RMSE',
         'ref': 'Using CDAT regridding and rms (uncentered and biased) calculation',
         'time_frequency': 'monthly',
         'units': 'C'},
        'metric': {'datasets': "GISS-E2-H_r3i1p3; ERA-Interim's ts & HadISST's sst & Tropflux's sst; 's ",
         'method': 'The metric is the statistical value between the model and the observations',
         'name': 'SeasonalSstLonRmse',
         'units': 'C'}},
       'SeasonalTauxLonRmse': {'diagnostic': {'ERA-Interim': {'name': 'ERA-Interim',
          'nyears': 40,
          'time_period': ['1979-1-16 12:0:0.0', '2019-3-16 12:0:0.0']},
         'GISS-E2-H_r3i1p3': {'keyerror': None,
          'name': 'GISS-E2-H_r3i1p3',
          'nyears': 156,
          'time_period': ['1850-1-16 12:0:0.0', '2005-12-16 12:0:0.0']},
         'Tropflux': {'name': 'Tropflux',
          'nyears': 40,
          'time_period': ['1979-1-15 0:0:0.0', '2018-12-15 12:0:0.0']},
         'method': 'Zonal root mean square error of equatorial_pacific climatological taux STD, time series are linearly detrended, observations and model regridded to generic_1x1deg',
         'name': 'taux zonal seasonality RMSE',
         'ref': 'Using CDAT regridding and rms (uncentered and biased) calculation',
         'time_frequency': 'monthly',
         'units': '1e-3 N/m2'},
        'metric': {'datasets': "GISS-E2-H_r3i1p3; ERA-Interim's tauu & Tropflux's taux; 's ",
         'method': 'The metric is the statistical value between the model and the observations',
         'name': 'SeasonalTauxLonRmse',
         'units': '1e-3 N/m2'}}},
      'name': 'Metrics Collection for ENSO performance'},
     'value': {'BiasPrLatRmse': {'diagnostic': {'ERA-Interim': {'value': None,
         'value_error': None},
        'GISS-E2-H_r3i1p3': {'value': None, 'value_error': None},
        'GPCPv2.3': {'value': None, 'value_error': None}},
       'metric': {'ERA-Interim': {'value': 2.871812426150658,
         'value_error': None},
        'GPCPv2.3': {'value': 3.4531261679452983, 'value_error': None}}},
      'BiasPrLonRmse': {'diagnostic': {'ERA-Interim': {'value': None,
         'value_error': None},
        'GISS-E2-H_r3i1p3': {'value': None, 'value_error': None},
        'GPCPv2.3': {'value': None, 'value_error': None}},
       'metric': {'ERA-Interim': {'value': 1.386620040535656,
         'value_error': None},
        'GPCPv2.3': {'value': 0.8675062836776725, 'value_error': None}}},
      'BiasSstLonRmse': {'diagnostic': {'ERA-Interim': {'value': None,
         'value_error': None},
        'GISS-E2-H_r3i1p3': {'value': None, 'value_error': None},
        'HadISST': {'value': None, 'value_error': None},
        'Tropflux': {'value': None, 'value_error': None}},
       'metric': {'ERA-Interim': {'value': 0.911378659301356,
         'value_error': None},
        'HadISST': {'value': 1.0269310299667072, 'value_error': None},
        'Tropflux': {'value': 0.8927604698195025, 'value_error': None}}},
      'BiasTauxLonRmse': {'diagnostic': {'ERA-Interim': {'value': None,
         'value_error': None},
        'GISS-E2-H_r3i1p3': {'value': None, 'value_error': None},
        'Tropflux': {'value': None, 'value_error': None}},
       'metric': {'ERA-Interim': {'value': 21.117859422789614,
         'value_error': None},
        'Tropflux': {'value': 20.75930758169495, 'value_error': None}}},
      'EnsoAmpl': {'diagnostic': {'ERA-Interim': {'value': 0.8989844997845644,
         'value_error': 0.14214193002531866},
        'GISS-E2-H_r3i1p3': {'value': 0.5801215729954268,
         'value_error': 0.04644689823313039},
        'HadISST': {'value': 0.7665787872085695,
         'value_error': 0.06238329697691264},
        'Tropflux': {'value': 0.9039789553693535,
         'value_error': 0.14293162279134272}},
       'metric': {'ERA-Interim': {'value': 35.469235216575036,
         'value_error': 15.369805907610345},
        'HadISST': {'value': 24.32329426856574,
         'value_error': 12.217468559618956},
        'Tropflux': {'value': 35.8257656829636,
         'value_error': 15.28488820847981}}},
      'EnsoDuration': {'diagnostic': {'ERA-Interim': {'value': 13.0,
         'value_error': None},
        'GISS-E2-H_r3i1p3': {'value': 13.0, 'value_error': None},
        'HadISST': {'value': 13.0, 'value_error': None},
        'Tropflux': {'value': 13.0, 'value_error': None}},
       'metric': {'ERA-Interim': {'value': 0.0, 'value_error': None},
        'HadISST': {'value': 0.0, 'value_error': None},
        'Tropflux': {'value': 0.0, 'value_error': None}}},
      'EnsoSeasonality': {'diagnostic': {'ERA-Interim': {'value': 2.0466846866656914,
         'value_error': 0.6513411033995022},
        'GISS-E2-H_r3i1p3': {'value': 1.4683916115936912,
         'value_error': 0.23550947139672154},
        'HadISST': {'value': 1.6639865947361325,
         'value_error': 0.2712772451657809},
        'Tropflux': {'value': 2.0532132553583624,
         'value_error': 0.6534187683977347}},
       'metric': {'ERA-Interim': {'value': 28.25511320036858,
         'value_error': 34.33911502289767},
        'HadISST': {'value': 11.754600894093011,
         'value_error': 28.539842843630726},
        'Tropflux': {'value': 28.483239246504766,
         'value_error': 34.22992749905549}}},
      'EnsoSstDiversity_2': {'diagnostic': {'ERA-Interim': {'value': 33.25,
         'value_error': None},
        'GISS-E2-H_r3i1p3': {'value': 22.75, 'value_error': None},
        'HadISST': {'value': 49.0, 'value_error': None},
        'Tropflux': {'value': 32.0, 'value_error': None}},
       'metric': {'ERA-Interim': {'value': 31.57894736842105,
         'value_error': None},
        'HadISST': {'value': 53.57142857142857, 'value_error': None},
        'Tropflux': {'value': 28.90625, 'value_error': None}}},
      'EnsoSstLonRmse': {'diagnostic': {'ERA-Interim': {'value': None,
         'value_error': None},
        'GISS-E2-H_r3i1p3': {'value': None, 'value_error': None},
        'HadISST': {'value': None, 'value_error': None},
        'Tropflux': {'value': None, 'value_error': None}},
       'metric': {'ERA-Interim': {'value': 0.28205775816059964,
         'value_error': None},
        'HadISST': {'value': 0.2878059366970713, 'value_error': None},
        'Tropflux': {'value': 0.2813594379882682, 'value_error': None}}},
      'EnsoSstSkew': {'diagnostic': {'ERA-Interim': {'value': 0.39098111106809963,
         'value_error': 0.061819541653923164},
        'GISS-E2-H_r3i1p3': {'value': -0.08542149512979527,
         'value_error': -0.00683919315520218},
        'HadISST': {'value': 0.38989908235027515,
         'value_error': 0.03172953733021198},
        'Tropflux': {'value': 0.39744741059612115,
         'value_error': 0.06284195338099416}},
       'metric': {'ERA-Interim': {'value': 121.84798516133861,
         'value_error': -5.203708533892612},
        'HadISST': {'value': 121.90861661301753,
         'value_error': -3.5369911000645544},
        'Tropflux': {'value': 121.49252777912776,
         'value_error': -5.119046419762338}}},
      'EnsoSstTsRmse': {'diagnostic': {'ERA-Interim': {'value': None,
         'value_error': None},
        'GISS-E2-H_r3i1p3': {'value': None, 'value_error': None},
        'HadISST': {'value': None, 'value_error': None},
        'Tropflux': {'value': None, 'value_error': None}},
       'metric': {'ERA-Interim': {'value': 0.14878873691955757,
         'value_error': None},
        'HadISST': {'value': 0.14714121086306917, 'value_error': None},
        'Tropflux': {'value': 0.15163699341123585, 'value_error': None}}},
      'SeasonalPrLatRmse': {'diagnostic': {'ERA-Interim': {'value': None,
         'value_error': None},
        'GISS-E2-H_r3i1p3': {'value': None, 'value_error': None},
        'GPCPv2.3': {'value': None, 'value_error': None}},
       'metric': {'ERA-Interim': {'value': 1.1020629635483958,
         'value_error': None},
        'GPCPv2.3': {'value': 1.0094414522698394, 'value_error': None}}},
      'SeasonalPrLonRmse': {'diagnostic': {'ERA-Interim': {'value': None,
         'value_error': None},
        'GISS-E2-H_r3i1p3': {'value': None, 'value_error': None},
        'GPCPv2.3': {'value': None, 'value_error': None}},
       'metric': {'ERA-Interim': {'value': 0.7048095477776456,
         'value_error': None},
        'GPCPv2.3': {'value': 0.42412451779149146, 'value_error': None}}},
      'SeasonalSstLonRmse': {'diagnostic': {'ERA-Interim': {'value': None,
         'value_error': None},
        'GISS-E2-H_r3i1p3': {'value': None, 'value_error': None},
        'HadISST': {'value': None, 'value_error': None},
        'Tropflux': {'value': None, 'value_error': None}},
       'metric': {'ERA-Interim': {'value': 0.257990977994072,
         'value_error': None},
        'HadISST': {'value': 0.25493336938761596, 'value_error': None},
        'Tropflux': {'value': 0.26704783161410744, 'value_error': None}}},
      'SeasonalTauxLonRmse': {'diagnostic': {'ERA-Interim': {'value': None,
         'value_error': None},
        'GISS-E2-H_r3i1p3': {'value': None, 'value_error': None},
        'Tropflux': {'value': None, 'value_error': None}},
       'metric': {'ERA-Interim': {'value': 2.2583996699885978,
         'value_error': None},
        'Tropflux': {'value': 2.495479656502281, 'value_error': None}}}}},
    'r4i1p1': {'metadata': {'description_of_the_collection': 'Describe which science question this collection is about',
      'metrics': {'BiasPrLatRmse': {'diagnostic': {'ERA-Interim': {'name': 'ERA-Interim',
          'nyears': 40,
          'time_period': ['1979-1-16 12:0:0.0', '2019-3-16 12:0:0.0']},
         'GISS-E2-H_r4i1p1': {'keyerror': None,
          'name': 'GISS-E2-H_r4i1p1',
          'nyears': 156,
          'time_period': ['1850-1-16 12:0:0.0', '2005-12-16 12:0:0.0']},
         'GPCPv2.3': {'name': 'GPCPv2.3',
          'nyears': 41,
          'time_period': ['1979-1-1 0:0:0.0', '2019-7-1 0:0:0.0']},
         'method': 'Meridional root mean square error of nino3_LatExt pr, time series are linearly detrended, observations and model regridded to generic_1x1deg',
         'name': 'pr Meridional RMSE',
         'ref': 'Using CDAT regridding and rms (uncentered and biased) calculation',
         'time_frequency': 'monthly',
         'units': 'mm/day'},
        'metric': {'datasets': "GISS-E2-H_r4i1p1; ERA-Interim's pr & GPCPv2.3's precip; 's ",
         'method': 'The metric is the statistical value between the model and the observations',
         'name': 'BiasPrLatRmse',
         'units': 'mm/day'}},
       'BiasPrLonRmse': {'diagnostic': {'ERA-Interim': {'name': 'ERA-Interim',
          'nyears': 40,
          'time_period': ['1979-1-16 12:0:0.0', '2019-3-16 12:0:0.0']},
         'GISS-E2-H_r4i1p1': {'keyerror': None,
          'name': 'GISS-E2-H_r4i1p1',
          'nyears': 156,
          'time_period': ['1850-1-16 12:0:0.0', '2005-12-16 12:0:0.0']},
         'GPCPv2.3': {'name': 'GPCPv2.3',
          'nyears': 41,
          'time_period': ['1979-1-1 0:0:0.0', '2019-7-1 0:0:0.0']},
         'method': 'Zonal root mean square error of equatorial_pacific pr, time series are linearly detrended, observations and model regridded to generic_1x1deg',
         'name': 'pr Zonal RMSE',
         'ref': 'Using CDAT regridding and rms (uncentered and biased) calculation',
         'time_frequency': 'monthly',
         'units': 'mm/day'},
        'metric': {'datasets': "GISS-E2-H_r4i1p1; ERA-Interim's pr & GPCPv2.3's precip; 's ",
         'method': 'The metric is the statistical value between the model and the observations',
         'name': 'BiasPrLonRmse',
         'units': 'mm/day'}},
       'BiasSstLonRmse': {'diagnostic': {'ERA-Interim': {'name': 'ERA-Interim',
          'nyears': 40,
          'time_period': ['1979-1-16 12:0:0.0', '2019-3-16 12:0:0.0']},
         'GISS-E2-H_r4i1p1': {'keyerror': None,
          'name': 'GISS-E2-H_r4i1p1',
          'nyears': 156,
          'time_period': ['1850-1-16 12:0:0.0', '2005-12-16 12:0:0.0']},
         'HadISST': {'name': 'HadISST',
          'nyears': 151,
          'time_period': ['1870-1-16 11:59:59.5', '2020-10-16 12:0:0.0']},
         'Tropflux': {'name': 'Tropflux',
          'nyears': 40,
          'time_period': ['1979-1-15 0:0:0.0', '2018-12-15 12:0:0.0']},
         'method': 'Zonal root mean square error of equatorial_pacific sst, time series are linearly detrended, observations and model regridded to generic_1x1deg',
         'name': 'sst Zonal RMSE',
         'ref': 'Using CDAT regridding and rms (uncentered and biased) calculation',
         'time_frequency': 'monthly',
         'units': 'C'},
        'metric': {'datasets': "GISS-E2-H_r4i1p1; ERA-Interim's ts & HadISST's sst & Tropflux's sst; 's ",
         'method': 'The metric is the statistical value between the model and the observations',
         'name': 'BiasSstLonRmse',
         'units': 'C'}},
       'BiasTauxLonRmse': {'diagnostic': {'ERA-Interim': {'name': 'ERA-Interim',
          'nyears': 40,
          'time_period': ['1979-1-16 12:0:0.0', '2019-3-16 12:0:0.0']},
         'GISS-E2-H_r4i1p1': {'keyerror': None,
          'name': 'GISS-E2-H_r4i1p1',
          'nyears': 156,
          'time_period': ['1850-1-16 12:0:0.0', '2005-12-16 12:0:0.0']},
         'Tropflux': {'name': 'Tropflux',
          'nyears': 40,
          'time_period': ['1979-1-15 0:0:0.0', '2018-12-15 12:0:0.0']},
         'method': 'Zonal root mean square error of equatorial_pacific taux, time series are linearly detrended, observations and model regridded to generic_1x1deg',
         'name': 'taux Zonal RMSE',
         'ref': 'Using CDAT regridding and rms (uncentered and biased) calculation',
         'time_frequency': 'monthly',
         'units': '1e-3 N/m2'},
        'metric': {'datasets': "GISS-E2-H_r4i1p1; ERA-Interim's tauu & Tropflux's taux; 's ",
         'method': 'The metric is the statistical value between the model and the observations',
         'name': 'BiasTauxLonRmse',
         'units': '1e-3 N/m2'}},
       'EnsoAmpl': {'diagnostic': {'ERA-Interim': {'keyerror': None,
          'name': 'ERA-Interim',
          'nyears': 40,
          'time_period': ['1979-1-16 12:0:0.0', '2019-3-16 12:0:0.0']},
         'GISS-E2-H_r4i1p1': {'keyerror': None,
          'name': 'GISS-E2-H_r4i1p1',
          'nyears': 156,
          'time_period': ['1850-1-16 12:0:0.0', '2005-12-16 12:0:0.0']},
         'HadISST': {'keyerror': None,
          'name': 'HadISST',
          'nyears': 151,
          'time_period': ['1870-1-16 11:59:59.5', '2020-10-16 12:0:0.0']},
         'Tropflux': {'keyerror': None,
          'name': 'Tropflux',
          'nyears': 40,
          'time_period': ['1979-1-15 0:0:0.0', '2018-12-15 12:0:0.0']},
         'method': 'Standard deviation of nino3.4 sstA, time series are linearly detrended',
         'name': 'ENSO amplitude',
         'ref': 'Using CDAT regression calculation',
         'time_frequency': 'monthly',
         'units': 'C'},
        'metric': {'datasets': "GISS-E2-H_r4i1p1; ERA-Interim's ts & HadISST's sst & Tropflux's sst; 's ",
         'method': 'The metric is the absolute value of the relative difference between model and observations values (M = 100 * abs[[model-obs] / obs])',
         'name': 'EnsoAmpl',
         'units': '%'}},
       'EnsoDuration': {'diagnostic': {'ERA-Interim': {'keyerror': None,
          'name': 'ERA-Interim',
          'nyears': 40,
          'time_period': ['1979-1-16 12:0:0.0', '2019-3-16 12:0:0.0']},
         'GISS-E2-H_r4i1p1': {'keyerror': None,
          'name': 'GISS-E2-H_r4i1p1',
          'nyears': 156,
          'time_period': ['1850-1-16 12:0:0.0', '2005-12-16 12:0:0.0']},
         'HadISST': {'keyerror': None,
          'name': 'HadISST',
          'nyears': 151,
          'time_period': ['1870-1-16 11:59:59.5', '2020-10-16 12:0:0.0']},
         'Tropflux': {'keyerror': None,
          'name': 'Tropflux',
          'nyears': 40,
          'time_period': ['1979-1-15 0:0:0.0', '2018-12-15 12:0:0.0']},
         'method': 'nino3.4 SSTA during DEC regressed against nino3.4 SSTA during 6 years (centered on ENSO), the duration is the number of consecutive months during which the regression is above 0.25, time series are linearly detrended, smoothing using a triangle shaped window of 5 points',
         'name': 'ENSO Duration based on life cyle SSTA pattern',
         'ref': 'Using CDAT',
         'time_frequency': 'monthly',
         'units': 'months'},
        'metric': {'datasets': "GISS-E2-H_r4i1p1; ERA-Interim's ts & HadISST's sst & Tropflux's sst; 's ",
         'method': 'The metric is the absolute value of the relative difference between model and observations values (M = 100 * abs[[model-obs] / obs])',
         'name': 'EnsoDuration',
         'units': '%'}},
       'EnsoSeasonality': {'diagnostic': {'ERA-Interim': {'keyerror': None,
          'name': 'ERA-Interim',
          'nyears': 40,
          'time_period': ['1979-1-16 12:0:0.0', '2019-3-16 12:0:0.0']},
         'GISS-E2-H_r4i1p1': {'keyerror': None,
          'name': 'GISS-E2-H_r4i1p1',
          'nyears': 156,
          'time_period': ['1850-1-16 12:0:0.0', '2005-12-16 12:0:0.0']},
         'HadISST': {'keyerror': None,
          'name': 'HadISST',
          'nyears': 151,
          'time_period': ['1870-1-16 11:59:59.5', '2020-10-16 12:0:0.0']},
         'Tropflux': {'keyerror': None,
          'name': 'Tropflux',
          'nyears': 40,
          'time_period': ['1979-1-15 0:0:0.0', '2018-12-15 12:0:0.0']},
         'method': 'Ratio between NDJ and MAM standard deviation nino3.4 sstA, time series are linearly detrended',
         'name': 'ENSO seasonality',
         'ref': 'Using CDAT std dev calculation',
         'time_frequency': 'monthly',
         'units': 'C/C'},
        'metric': {'datasets': "GISS-E2-H_r4i1p1; ERA-Interim's ts & HadISST's sst & Tropflux's sst; 's ",
         'method': 'The metric is the absolute value of the relative difference between model and observations values (M = 100 * abs[[model-obs] / obs])',
         'name': 'EnsoSeasonality',
         'units': '%'}},
       'EnsoSstDiversity_2': {'diagnostic': {'ERA-Interim': {'keyerror': None,
          'name': 'ERA-Interim',
          'nyears': 40,
          'time_period': ['1979-1-16 12:0:0.0', '2019-3-16 12:0:0.0']},
         'GISS-E2-H_r4i1p1': {'keyerror': None,
          'name': 'GISS-E2-H_r4i1p1',
          'nyears': 156,
          'time_period': ['1850-1-16 12:0:0.0', '2005-12-16 12:0:0.0']},
         'HadISST': {'keyerror': None,
          'name': 'HadISST',
          'nyears': 151,
          'time_period': ['1870-1-16 11:59:59.5', '2020-10-16 12:0:0.0']},
         'Tropflux': {'keyerror': None,
          'name': 'Tropflux',
          'nyears': 40,
          'time_period': ['1979-1-15 0:0:0.0', '2018-12-15 12:0:0.0']},
         'method': 'Nino (Nina) events = nino3.4 sstA > 0.75 (< -0.75) during DEC, zonal SSTA (meridional averaged [-5.0 ; 5.0]), the zonal SSTA maximum (minimum) is located for each event, the diversity is the interquartile range (IQR = Q3 - Q1), time series are linearly detrended, smoothing using a triangle shaped window of 5 points',
         'name': 'ENSO Diversity (interquartile range)',
         'ref': 'Using CDAT regridding',
         'time_frequency': 'monthly',
         'units': 'long'},
        'metric': {'datasets': "GISS-E2-H_r4i1p1; ERA-Interim's ts & HadISST's sst & Tropflux's sst; 's ",
         'method': 'The metric is the absolute value of the relative difference between model and observations values (M = 100 * abs[[model-obs] / obs])',
         'name': 'EnsoSstDiversity',
         'units': '%'}},
       'EnsoSstLonRmse': {'diagnostic': {'ERA-Interim': {'name': 'ERA-Interim',
          'nyears': 40,
          'time_period': ['1979-1-16 12:0:0.0', '2019-3-16 12:0:0.0']},
         'GISS-E2-H_r4i1p1': {'keyerror': None,
          'name': 'GISS-E2-H_r4i1p1',
          'nyears': 156,
          'time_period': ['1850-1-16 12:0:0.0', '2005-12-16 12:0:0.0']},
         'HadISST': {'name': 'HadISST',
          'nyears': 151,
          'time_period': ['1870-1-16 11:59:59.5', '2020-10-16 12:0:0.0']},
         'Tropflux': {'name': 'Tropflux',
          'nyears': 40,
          'time_period': ['1979-1-15 0:0:0.0', '2018-12-15 12:0:0.0']},
         'method': 'nino3.4 SSTA during DEC regressed against equatorial_pacific SSTA, time series are linearly detrended, smoothing using a triangle shaped window of 5 points, observations and model regridded to generic_1x1deg',
         'name': 'ENSO Zonal SSTA pattern',
         'ref': 'Using CDAT regridding and rms (uncentered and biased) calculation',
         'time_frequency': 'monthly',
         'units': 'C/C'},
        'metric': {'datasets': "GISS-E2-H_r4i1p1; ERA-Interim's ts & HadISST's sst & Tropflux's sst; 's ",
         'method': 'The metric is the statistical value between the model and the observations',
         'name': 'EnsoSstLonRmse',
         'units': 'C/C'}},
       'EnsoSstSkew': {'diagnostic': {'ERA-Interim': {'keyerror': None,
          'name': 'ERA-Interim',
          'nyears': 40,
          'time_period': ['1979-1-16 12:0:0.0', '2019-3-16 12:0:0.0']},
         'GISS-E2-H_r4i1p1': {'keyerror': None,
          'name': 'GISS-E2-H_r4i1p1',
          'nyears': 156,
          'time_period': ['1850-1-16 12:0:0.0', '2005-12-16 12:0:0.0']},
         'HadISST': {'keyerror': None,
          'name': 'HadISST',
          'nyears': 151,
          'time_period': ['1870-1-16 11:59:59.5', '2020-10-16 12:0:0.0']},
         'Tropflux': {'keyerror': None,
          'name': 'Tropflux',
          'nyears': 40,
          'time_period': ['1979-1-15 0:0:0.0', '2018-12-15 12:0:0.0']},
         'method': 'Standard deviation of nino3.4 sstA, time series are linearly detrended',
         'name': 'ENSO skewness',
         'ref': 'Using CDAT regression calculation',
         'time_frequency': 'monthly',
         'units': 'C'},
        'metric': {'datasets': "GISS-E2-H_r4i1p1; ERA-Interim's ts & HadISST's sst & Tropflux's sst; 's ",
         'method': 'The metric is the absolute value of the relative difference between model and observations values (M = 100 * abs[[model-obs] / obs])',
         'name': 'EnsoSstSkew',
         'units': '%'}},
       'EnsoSstTsRmse': {'diagnostic': {'ERA-Interim': {'name': 'ERA-Interim',
          'nyears': 40,
          'time_period': ['1979-1-16 12:0:0.0', '2019-3-16 12:0:0.0']},
         'GISS-E2-H_r4i1p1': {'keyerror': None,
          'name': 'GISS-E2-H_r4i1p1',
          'nyears': 156,
          'time_period': ['1850-1-16 12:0:0.0', '2005-12-16 12:0:0.0']},
         'HadISST': {'name': 'HadISST',
          'nyears': 151,
          'time_period': ['1870-1-16 11:59:59.5', '2020-10-16 12:0:0.0']},
         'Tropflux': {'name': 'Tropflux',
          'nyears': 40,
          'time_period': ['1979-1-15 0:0:0.0', '2018-12-15 12:0:0.0']},
         'method': 'nino3.4 SSTA during DEC regressed against nino3.4 SSTA during 6 years (centered on ENSO), time series are linearly detrended, smoothing using a triangle shaped window of 5 points',
         'name': 'ENSO life cyle SSTA pattern',
         'ref': 'Using CDAT regridding and rms (uncentered and biased) calculation',
         'time_frequency': 'monthly',
         'units': 'C/C'},
        'metric': {'datasets': "GISS-E2-H_r4i1p1; ERA-Interim's ts & HadISST's sst & Tropflux's sst; 's ",
         'method': 'The metric is the statistical value between the model and the observations',
         'name': 'EnsoSstTsRmse',
         'units': 'C/C'}},
       'SeasonalPrLatRmse': {'diagnostic': {'ERA-Interim': {'name': 'ERA-Interim',
          'nyears': 40,
          'time_period': ['1979-1-16 12:0:0.0', '2019-3-16 12:0:0.0']},
         'GISS-E2-H_r4i1p1': {'keyerror': None,
          'name': 'GISS-E2-H_r4i1p1',
          'nyears': 156,
          'time_period': ['1850-1-16 12:0:0.0', '2005-12-16 12:0:0.0']},
         'GPCPv2.3': {'name': 'GPCPv2.3',
          'nyears': 41,
          'time_period': ['1979-1-1 0:0:0.0', '2019-7-1 0:0:0.0']},
         'method': 'Meridional root mean square error of nino3_LatExt climatological pr STD, time series are linearly detrended, observations and model regridded to generic_1x1deg',
         'name': 'pr meridional seasonality RMSE',
         'ref': 'Using CDAT regridding and rms (uncentered and biased) calculation',
         'time_frequency': 'monthly',
         'units': 'mm/day'},
        'metric': {'datasets': "GISS-E2-H_r4i1p1; ERA-Interim's pr & GPCPv2.3's precip; 's ",
         'method': 'The metric is the statistical value between the model and the observations',
         'name': 'SeasonalPrLatRmse',
         'units': 'mm/day'}},
       'SeasonalPrLonRmse': {'diagnostic': {'ERA-Interim': {'name': 'ERA-Interim',
          'nyears': 40,
          'time_period': ['1979-1-16 12:0:0.0', '2019-3-16 12:0:0.0']},
         'GISS-E2-H_r4i1p1': {'keyerror': None,
          'name': 'GISS-E2-H_r4i1p1',
          'nyears': 156,
          'time_period': ['1850-1-16 12:0:0.0', '2005-12-16 12:0:0.0']},
         'GPCPv2.3': {'name': 'GPCPv2.3',
          'nyears': 41,
          'time_period': ['1979-1-1 0:0:0.0', '2019-7-1 0:0:0.0']},
         'method': 'Zonal root mean square error of equatorial_pacific climatological pr STD, time series are linearly detrended, observations and model regridded to generic_1x1deg',
         'name': 'pr zonal seasonality RMSE',
         'ref': 'Using CDAT regridding and rms (uncentered and biased) calculation',
         'time_frequency': 'monthly',
         'units': 'mm/day'},
        'metric': {'datasets': "GISS-E2-H_r4i1p1; ERA-Interim's pr & GPCPv2.3's precip; 's ",
         'method': 'The metric is the statistical value between the model and the observations',
         'name': 'SeasonalPrLonRmse',
         'units': 'mm/day'}},
       'SeasonalSstLonRmse': {'diagnostic': {'ERA-Interim': {'name': 'ERA-Interim',
          'nyears': 40,
          'time_period': ['1979-1-16 12:0:0.0', '2019-3-16 12:0:0.0']},
         'GISS-E2-H_r4i1p1': {'keyerror': None,
          'name': 'GISS-E2-H_r4i1p1',
          'nyears': 156,
          'time_period': ['1850-1-16 12:0:0.0', '2005-12-16 12:0:0.0']},
         'HadISST': {'name': 'HadISST',
          'nyears': 151,
          'time_period': ['1870-1-16 11:59:59.5', '2020-10-16 12:0:0.0']},
         'Tropflux': {'name': 'Tropflux',
          'nyears': 40,
          'time_period': ['1979-1-15 0:0:0.0', '2018-12-15 12:0:0.0']},
         'method': 'Zonal root mean square error of equatorial_pacific climatological sst STD, time series are linearly detrended, observations and model regridded to generic_1x1deg',
         'name': 'sst zonal seasonality RMSE',
         'ref': 'Using CDAT regridding and rms (uncentered and biased) calculation',
         'time_frequency': 'monthly',
         'units': 'C'},
        'metric': {'datasets': "GISS-E2-H_r4i1p1; ERA-Interim's ts & HadISST's sst & Tropflux's sst; 's ",
         'method': 'The metric is the statistical value between the model and the observations',
         'name': 'SeasonalSstLonRmse',
         'units': 'C'}},
       'SeasonalTauxLonRmse': {'diagnostic': {'ERA-Interim': {'name': 'ERA-Interim',
          'nyears': 40,
          'time_period': ['1979-1-16 12:0:0.0', '2019-3-16 12:0:0.0']},
         'GISS-E2-H_r4i1p1': {'keyerror': None,
          'name': 'GISS-E2-H_r4i1p1',
          'nyears': 156,
          'time_period': ['1850-1-16 12:0:0.0', '2005-12-16 12:0:0.0']},
         'Tropflux': {'name': 'Tropflux',
          'nyears': 40,
          'time_period': ['1979-1-15 0:0:0.0', '2018-12-15 12:0:0.0']},
         'method': 'Zonal root mean square error of equatorial_pacific climatological taux STD, time series are linearly detrended, observations and model regridded to generic_1x1deg',
         'name': 'taux zonal seasonality RMSE',
         'ref': 'Using CDAT regridding and rms (uncentered and biased) calculation',
         'time_frequency': 'monthly',
         'units': '1e-3 N/m2'},
        'metric': {'datasets': "GISS-E2-H_r4i1p1; ERA-Interim's tauu & Tropflux's taux; 's ",
         'method': 'The metric is the statistical value between the model and the observations',
         'name': 'SeasonalTauxLonRmse',
         'units': '1e-3 N/m2'}}},
      'name': 'Metrics Collection for ENSO performance'},
     'value': {'BiasPrLatRmse': {'diagnostic': {'ERA-Interim': {'value': None,
         'value_error': None},
        'GISS-E2-H_r4i1p1': {'value': None, 'value_error': None},
        'GPCPv2.3': {'value': None, 'value_error': None}},
       'metric': {'ERA-Interim': {'value': 2.881651477911025,
         'value_error': None},
        'GPCPv2.3': {'value': 3.4810844713456177, 'value_error': None}}},
      'BiasPrLonRmse': {'diagnostic': {'ERA-Interim': {'value': None,
         'value_error': None},
        'GISS-E2-H_r4i1p1': {'value': None, 'value_error': None},
        'GPCPv2.3': {'value': None, 'value_error': None}},
       'metric': {'ERA-Interim': {'value': 1.4987670818031287,
         'value_error': None},
        'GPCPv2.3': {'value': 0.9450442987421107, 'value_error': None}}},
      'BiasSstLonRmse': {'diagnostic': {'ERA-Interim': {'value': None,
         'value_error': None},
        'GISS-E2-H_r4i1p1': {'value': None, 'value_error': None},
        'HadISST': {'value': None, 'value_error': None},
        'Tropflux': {'value': None, 'value_error': None}},
       'metric': {'ERA-Interim': {'value': 0.8444630821808545,
         'value_error': None},
        'HadISST': {'value': 0.9249228807536983, 'value_error': None},
        'Tropflux': {'value': 0.8351179290237398, 'value_error': None}}},
      'BiasTauxLonRmse': {'diagnostic': {'ERA-Interim': {'value': None,
         'value_error': None},
        'GISS-E2-H_r4i1p1': {'value': None, 'value_error': None},
        'Tropflux': {'value': None, 'value_error': None}},
       'metric': {'ERA-Interim': {'value': 21.51209272473677,
         'value_error': None},
        'Tropflux': {'value': 21.15438018961078, 'value_error': None}}},
      'EnsoAmpl': {'diagnostic': {'ERA-Interim': {'value': 0.8989844997845644,
         'value_error': 0.14214193002531866},
        'GISS-E2-H_r4i1p1': {'value': 0.5462831021854537,
         'value_error': 0.04373765230393623},
        'HadISST': {'value': 0.7665787872085695,
         'value_error': 0.06238329697691264},
        'Tropflux': {'value': 0.9039789553693535,
         'value_error': 0.14293162279134272}},
       'metric': {'ERA-Interim': {'value': 39.233312441274926,
         'value_error': 14.473285673284005},
        'HadISST': {'value': 28.737513834070928,
         'value_error': 11.504824051172639},
        'Tropflux': {'value': 39.56904649818425,
         'value_error': 14.39332122053671}}},
      'EnsoDuration': {'diagnostic': {'ERA-Interim': {'value': 13.0,
         'value_error': None},
        'GISS-E2-H_r4i1p1': {'value': 13.0, 'value_error': None},
        'HadISST': {'value': 13.0, 'value_error': None},
        'Tropflux': {'value': 13.0, 'value_error': None}},
       'metric': {'ERA-Interim': {'value': 0.0, 'value_error': None},
        'HadISST': {'value': 0.0, 'value_error': None},
        'Tropflux': {'value': 0.0, 'value_error': None}}},
      'EnsoSeasonality': {'diagnostic': {'ERA-Interim': {'value': 2.0466846866656914,
         'value_error': 0.6513411033995022},
        'GISS-E2-H_r4i1p1': {'value': 1.4236518620132823,
         'value_error': 0.22833384148239094},
        'HadISST': {'value': 1.6639865947361325,
         'value_error': 0.2712772451657809},
        'Tropflux': {'value': 2.0532132553583624,
         'value_error': 0.6534187683977347}},
       'metric': {'ERA-Interim': {'value': 30.44107520379255,
         'value_error': 33.29285229924327},
        'HadISST': {'value': 14.443309428280665,
         'value_error': 27.67027548039685},
        'Tropflux': {'value': 30.662250582207456,
         'value_error': 33.18699155991512}}},
      'EnsoSstDiversity_2': {'diagnostic': {'ERA-Interim': {'value': 33.25,
         'value_error': None},
        'GISS-E2-H_r4i1p1': {'value': 26.5, 'value_error': None},
        'HadISST': {'value': 49.0, 'value_error': None},
        'Tropflux': {'value': 32.0, 'value_error': None}},
       'metric': {'ERA-Interim': {'value': 20.30075187969925,
         'value_error': None},
        'HadISST': {'value': 45.91836734693878, 'value_error': None},
        'Tropflux': {'value': 17.1875, 'value_error': None}}},
      'EnsoSstLonRmse': {'diagnostic': {'ERA-Interim': {'value': None,
         'value_error': None},
        'GISS-E2-H_r4i1p1': {'value': None, 'value_error': None},
        'HadISST': {'value': None, 'value_error': None},
        'Tropflux': {'value': None, 'value_error': None}},
       'metric': {'ERA-Interim': {'value': 0.24873906435532142,
         'value_error': None},
        'HadISST': {'value': 0.25204870250422756, 'value_error': None},
        'Tropflux': {'value': 0.247858042062786, 'value_error': None}}},
      'EnsoSstSkew': {'diagnostic': {'ERA-Interim': {'value': 0.39098111106809963,
         'value_error': 0.061819541653923164},
        'GISS-E2-H_r4i1p1': {'value': -0.03939060162320159,
         'value_error': -0.00315377215759747},
        'HadISST': {'value': 0.38989908235027515,
         'value_error': 0.03172953733021198},
        'Tropflux': {'value': 0.39744741059612115,
         'value_error': 0.06284195338099416}},
       'metric': {'ERA-Interim': {'value': 110.07480937265552,
         'value_error': -2.399597542870934},
        'HadISST': {'value': 110.10276848710664,
         'value_error': -1.631020472724735},
        'Tropflux': {'value': 109.91089652946049,
         'value_error': -2.3605571162755385}}},
      'EnsoSstTsRmse': {'diagnostic': {'ERA-Interim': {'value': None,
         'value_error': None},
        'GISS-E2-H_r4i1p1': {'value': None, 'value_error': None},
        'HadISST': {'value': None, 'value_error': None},
        'Tropflux': {'value': None, 'value_error': None}},
       'metric': {'ERA-Interim': {'value': 0.24539697634495145,
         'value_error': None},
        'HadISST': {'value': 0.24233220522865423, 'value_error': None},
        'Tropflux': {'value': 0.2483360977838597, 'value_error': None}}},
      'SeasonalPrLatRmse': {'diagnostic': {'ERA-Interim': {'value': None,
         'value_error': None},
        'GISS-E2-H_r4i1p1': {'value': None, 'value_error': None},
        'GPCPv2.3': {'value': None, 'value_error': None}},
       'metric': {'ERA-Interim': {'value': 1.1450623300563674,
         'value_error': None},
        'GPCPv2.3': {'value': 1.0188692186379624, 'value_error': None}}},
      'SeasonalPrLonRmse': {'diagnostic': {'ERA-Interim': {'value': None,
         'value_error': None},
        'GISS-E2-H_r4i1p1': {'value': None, 'value_error': None},
        'GPCPv2.3': {'value': None, 'value_error': None}},
       'metric': {'ERA-Interim': {'value': 0.8094694938483057,
         'value_error': None},
        'GPCPv2.3': {'value': 0.461087415021992, 'value_error': None}}},
      'SeasonalSstLonRmse': {'diagnostic': {'ERA-Interim': {'value': None,
         'value_error': None},
        'GISS-E2-H_r4i1p1': {'value': None, 'value_error': None},
        'HadISST': {'value': None, 'value_error': None},
        'Tropflux': {'value': None, 'value_error': None}},
       'metric': {'ERA-Interim': {'value': 0.31415525108135106,
         'value_error': None},
        'HadISST': {'value': 0.30852954554679735, 'value_error': None},
        'Tropflux': {'value': 0.3238148668022025, 'value_error': None}}},
      'SeasonalTauxLonRmse': {'diagnostic': {'ERA-Interim': {'value': None,
         'value_error': None},
        'GISS-E2-H_r4i1p1': {'value': None, 'value_error': None},
        'Tropflux': {'value': None, 'value_error': None}},
       'metric': {'ERA-Interim': {'value': 3.0681849395744694,
         'value_error': None},
        'Tropflux': {'value': 3.30180116307324, 'value_error': None}}}}},
    'r4i1p2': {'metadata': {'description_of_the_collection': 'Describe which science question this collection is about',
      'metrics': {'BiasPrLatRmse': {'diagnostic': {'ERA-Interim': {'name': 'ERA-Interim',
          'nyears': 40,
          'time_period': ['1979-1-16 12:0:0.0', '2019-3-16 12:0:0.0']},
         'GISS-E2-H_r4i1p2': {'keyerror': None,
          'name': 'GISS-E2-H_r4i1p2',
          'nyears': 156,
          'time_period': ['1850-1-16 12:0:0.0', '2005-12-16 12:0:0.0']},
         'GPCPv2.3': {'name': 'GPCPv2.3',
          'nyears': 41,
          'time_period': ['1979-1-1 0:0:0.0', '2019-7-1 0:0:0.0']},
         'method': 'Meridional root mean square error of nino3_LatExt pr, time series are linearly detrended, observations and model regridded to generic_1x1deg',
         'name': 'pr Meridional RMSE',
         'ref': 'Using CDAT regridding and rms (uncentered and biased) calculation',
         'time_frequency': 'monthly',
         'units': 'mm/day'},
        'metric': {'datasets': "GISS-E2-H_r4i1p2; ERA-Interim's pr & GPCPv2.3's precip; 's ",
         'method': 'The metric is the statistical value between the model and the observations',
         'name': 'BiasPrLatRmse',
         'units': 'mm/day'}},
       'BiasPrLonRmse': {'diagnostic': {'ERA-Interim': {'name': 'ERA-Interim',
          'nyears': 40,
          'time_period': ['1979-1-16 12:0:0.0', '2019-3-16 12:0:0.0']},
         'GISS-E2-H_r4i1p2': {'keyerror': None,
          'name': 'GISS-E2-H_r4i1p2',
          'nyears': 156,
          'time_period': ['1850-1-16 12:0:0.0', '2005-12-16 12:0:0.0']},
         'GPCPv2.3': {'name': 'GPCPv2.3',
          'nyears': 41,
          'time_period': ['1979-1-1 0:0:0.0', '2019-7-1 0:0:0.0']},
         'method': 'Zonal root mean square error of equatorial_pacific pr, time series are linearly detrended, observations and model regridded to generic_1x1deg',
         'name': 'pr Zonal RMSE',
         'ref': 'Using CDAT regridding and rms (uncentered and biased) calculation',
         'time_frequency': 'monthly',
         'units': 'mm/day'},
        'metric': {'datasets': "GISS-E2-H_r4i1p2; ERA-Interim's pr & GPCPv2.3's precip; 's ",
         'method': 'The metric is the statistical value between the model and the observations',
         'name': 'BiasPrLonRmse',
         'units': 'mm/day'}},
       'BiasSstLonRmse': {'diagnostic': {'ERA-Interim': {'name': 'ERA-Interim',
          'nyears': 40,
          'time_period': ['1979-1-16 12:0:0.0', '2019-3-16 12:0:0.0']},
         'GISS-E2-H_r4i1p2': {'keyerror': None,
          'name': 'GISS-E2-H_r4i1p2',
          'nyears': 156,
          'time_period': ['1850-1-16 12:0:0.0', '2005-12-16 12:0:0.0']},
         'HadISST': {'name': 'HadISST',
          'nyears': 151,
          'time_period': ['1870-1-16 11:59:59.5', '2020-10-16 12:0:0.0']},
         'Tropflux': {'name': 'Tropflux',
          'nyears': 40,
          'time_period': ['1979-1-15 0:0:0.0', '2018-12-15 12:0:0.0']},
         'method': 'Zonal root mean square error of equatorial_pacific sst, time series are linearly detrended, observations and model regridded to generic_1x1deg',
         'name': 'sst Zonal RMSE',
         'ref': 'Using CDAT regridding and rms (uncentered and biased) calculation',
         'time_frequency': 'monthly',
         'units': 'C'},
        'metric': {'datasets': "GISS-E2-H_r4i1p2; ERA-Interim's ts & HadISST's sst & Tropflux's sst; 's ",
         'method': 'The metric is the statistical value between the model and the observations',
         'name': 'BiasSstLonRmse',
         'units': 'C'}},
       'BiasTauxLonRmse': {'diagnostic': {'ERA-Interim': {'name': 'ERA-Interim',
          'nyears': 40,
          'time_period': ['1979-1-16 12:0:0.0', '2019-3-16 12:0:0.0']},
         'GISS-E2-H_r4i1p2': {'keyerror': None,
          'name': 'GISS-E2-H_r4i1p2',
          'nyears': 156,
          'time_period': ['1850-1-16 12:0:0.0', '2005-12-16 12:0:0.0']},
         'Tropflux': {'name': 'Tropflux',
          'nyears': 40,
          'time_period': ['1979-1-15 0:0:0.0', '2018-12-15 12:0:0.0']},
         'method': 'Zonal root mean square error of equatorial_pacific taux, time series are linearly detrended, observations and model regridded to generic_1x1deg',
         'name': 'taux Zonal RMSE',
         'ref': 'Using CDAT regridding and rms (uncentered and biased) calculation',
         'time_frequency': 'monthly',
         'units': '1e-3 N/m2'},
        'metric': {'datasets': "GISS-E2-H_r4i1p2; ERA-Interim's tauu & Tropflux's taux; 's ",
         'method': 'The metric is the statistical value between the model and the observations',
         'name': 'BiasTauxLonRmse',
         'units': '1e-3 N/m2'}},
       'EnsoAmpl': {'diagnostic': {'ERA-Interim': {'keyerror': None,
          'name': 'ERA-Interim',
          'nyears': 40,
          'time_period': ['1979-1-16 12:0:0.0', '2019-3-16 12:0:0.0']},
         'GISS-E2-H_r4i1p2': {'keyerror': None,
          'name': 'GISS-E2-H_r4i1p2',
          'nyears': 156,
          'time_period': ['1850-1-16 12:0:0.0', '2005-12-16 12:0:0.0']},
         'HadISST': {'keyerror': None,
          'name': 'HadISST',
          'nyears': 151,
          'time_period': ['1870-1-16 11:59:59.5', '2020-10-16 12:0:0.0']},
         'Tropflux': {'keyerror': None,
          'name': 'Tropflux',
          'nyears': 40,
          'time_period': ['1979-1-15 0:0:0.0', '2018-12-15 12:0:0.0']},
         'method': 'Standard deviation of nino3.4 sstA, time series are linearly detrended',
         'name': 'ENSO amplitude',
         'ref': 'Using CDAT regression calculation',
         'time_frequency': 'monthly',
         'units': 'C'},
        'metric': {'datasets': "GISS-E2-H_r4i1p2; ERA-Interim's ts & HadISST's sst & Tropflux's sst; 's ",
         'method': 'The metric is the absolute value of the relative difference between model and observations values (M = 100 * abs[[model-obs] / obs])',
         'name': 'EnsoAmpl',
         'units': '%'}},
       'EnsoDuration': {'diagnostic': {'ERA-Interim': {'keyerror': None,
          'name': 'ERA-Interim',
          'nyears': 40,
          'time_period': ['1979-1-16 12:0:0.0', '2019-3-16 12:0:0.0']},
         'GISS-E2-H_r4i1p2': {'keyerror': None,
          'name': 'GISS-E2-H_r4i1p2',
          'nyears': 156,
          'time_period': ['1850-1-16 12:0:0.0', '2005-12-16 12:0:0.0']},
         'HadISST': {'keyerror': None,
          'name': 'HadISST',
          'nyears': 151,
          'time_period': ['1870-1-16 11:59:59.5', '2020-10-16 12:0:0.0']},
         'Tropflux': {'keyerror': None,
          'name': 'Tropflux',
          'nyears': 40,
          'time_period': ['1979-1-15 0:0:0.0', '2018-12-15 12:0:0.0']},
         'method': 'nino3.4 SSTA during DEC regressed against nino3.4 SSTA during 6 years (centered on ENSO), the duration is the number of consecutive months during which the regression is above 0.25, time series are linearly detrended, smoothing using a triangle shaped window of 5 points',
         'name': 'ENSO Duration based on life cyle SSTA pattern',
         'ref': 'Using CDAT',
         'time_frequency': 'monthly',
         'units': 'months'},
        'metric': {'datasets': "GISS-E2-H_r4i1p2; ERA-Interim's ts & HadISST's sst & Tropflux's sst; 's ",
         'method': 'The metric is the absolute value of the relative difference between model and observations values (M = 100 * abs[[model-obs] / obs])',
         'name': 'EnsoDuration',
         'units': '%'}},
       'EnsoSeasonality': {'diagnostic': {'ERA-Interim': {'keyerror': None,
          'name': 'ERA-Interim',
          'nyears': 40,
          'time_period': ['1979-1-16 12:0:0.0', '2019-3-16 12:0:0.0']},
         'GISS-E2-H_r4i1p2': {'keyerror': None,
          'name': 'GISS-E2-H_r4i1p2',
          'nyears': 156,
          'time_period': ['1850-1-16 12:0:0.0', '2005-12-16 12:0:0.0']},
         'HadISST': {'keyerror': None,
          'name': 'HadISST',
          'nyears': 151,
          'time_period': ['1870-1-16 11:59:59.5', '2020-10-16 12:0:0.0']},
         'Tropflux': {'keyerror': None,
          'name': 'Tropflux',
          'nyears': 40,
          'time_period': ['1979-1-15 0:0:0.0', '2018-12-15 12:0:0.0']},
         'method': 'Ratio between NDJ and MAM standard deviation nino3.4 sstA, time series are linearly detrended',
         'name': 'ENSO seasonality',
         'ref': 'Using CDAT std dev calculation',
         'time_frequency': 'monthly',
         'units': 'C/C'},
        'metric': {'datasets': "GISS-E2-H_r4i1p2; ERA-Interim's ts & HadISST's sst & Tropflux's sst; 's ",
         'method': 'The metric is the absolute value of the relative difference between model and observations values (M = 100 * abs[[model-obs] / obs])',
         'name': 'EnsoSeasonality',
         'units': '%'}},
       'EnsoSstDiversity_2': {'diagnostic': {'ERA-Interim': {'keyerror': None,
          'name': 'ERA-Interim',
          'nyears': 40,
          'time_period': ['1979-1-16 12:0:0.0', '2019-3-16 12:0:0.0']},
         'GISS-E2-H_r4i1p2': {'keyerror': None,
          'name': 'GISS-E2-H_r4i1p2',
          'nyears': 156,
          'time_period': ['1850-1-16 12:0:0.0', '2005-12-16 12:0:0.0']},
         'HadISST': {'keyerror': None,
          'name': 'HadISST',
          'nyears': 151,
          'time_period': ['1870-1-16 11:59:59.5', '2020-10-16 12:0:0.0']},
         'Tropflux': {'keyerror': None,
          'name': 'Tropflux',
          'nyears': 40,
          'time_period': ['1979-1-15 0:0:0.0', '2018-12-15 12:0:0.0']},
         'method': 'Nino (Nina) events = nino3.4 sstA > 0.75 (< -0.75) during DEC, zonal SSTA (meridional averaged [-5.0 ; 5.0]), the zonal SSTA maximum (minimum) is located for each event, the diversity is the interquartile range (IQR = Q3 - Q1), time series are linearly detrended, smoothing using a triangle shaped window of 5 points',
         'name': 'ENSO Diversity (interquartile range)',
         'ref': 'Using CDAT regridding',
         'time_frequency': 'monthly',
         'units': 'long'},
        'metric': {'datasets': "GISS-E2-H_r4i1p2; ERA-Interim's ts & HadISST's sst & Tropflux's sst; 's ",
         'method': 'The metric is the absolute value of the relative difference between model and observations values (M = 100 * abs[[model-obs] / obs])',
         'name': 'EnsoSstDiversity',
         'units': '%'}},
       'EnsoSstLonRmse': {'diagnostic': {'ERA-Interim': {'name': 'ERA-Interim',
          'nyears': 40,
          'time_period': ['1979-1-16 12:0:0.0', '2019-3-16 12:0:0.0']},
         'GISS-E2-H_r4i1p2': {'keyerror': None,
          'name': 'GISS-E2-H_r4i1p2',
          'nyears': 156,
          'time_period': ['1850-1-16 12:0:0.0', '2005-12-16 12:0:0.0']},
         'HadISST': {'name': 'HadISST',
          'nyears': 151,
          'time_period': ['1870-1-16 11:59:59.5', '2020-10-16 12:0:0.0']},
         'Tropflux': {'name': 'Tropflux',
          'nyears': 40,
          'time_period': ['1979-1-15 0:0:0.0', '2018-12-15 12:0:0.0']},
         'method': 'nino3.4 SSTA during DEC regressed against equatorial_pacific SSTA, time series are linearly detrended, smoothing using a triangle shaped window of 5 points, observations and model regridded to generic_1x1deg',
         'name': 'ENSO Zonal SSTA pattern',
         'ref': 'Using CDAT regridding and rms (uncentered and biased) calculation',
         'time_frequency': 'monthly',
         'units': 'C/C'},
        'metric': {'datasets': "GISS-E2-H_r4i1p2; ERA-Interim's ts & HadISST's sst & Tropflux's sst; 's ",
         'method': 'The metric is the statistical value between the model and the observations',
         'name': 'EnsoSstLonRmse',
         'units': 'C/C'}},
       'EnsoSstSkew': {'diagnostic': {'ERA-Interim': {'keyerror': None,
          'name': 'ERA-Interim',
          'nyears': 40,
          'time_period': ['1979-1-16 12:0:0.0', '2019-3-16 12:0:0.0']},
         'GISS-E2-H_r4i1p2': {'keyerror': None,
          'name': 'GISS-E2-H_r4i1p2',
          'nyears': 156,
          'time_period': ['1850-1-16 12:0:0.0', '2005-12-16 12:0:0.0']},
         'HadISST': {'keyerror': None,
          'name': 'HadISST',
          'nyears': 151,
          'time_period': ['1870-1-16 11:59:59.5', '2020-10-16 12:0:0.0']},
         'Tropflux': {'keyerror': None,
          'name': 'Tropflux',
          'nyears': 40,
          'time_period': ['1979-1-15 0:0:0.0', '2018-12-15 12:0:0.0']},
         'method': 'Standard deviation of nino3.4 sstA, time series are linearly detrended',
         'name': 'ENSO skewness',
         'ref': 'Using CDAT regression calculation',
         'time_frequency': 'monthly',
         'units': 'C'},
        'metric': {'datasets': "GISS-E2-H_r4i1p2; ERA-Interim's ts & HadISST's sst & Tropflux's sst; 's ",
         'method': 'The metric is the absolute value of the relative difference between model and observations values (M = 100 * abs[[model-obs] / obs])',
         'name': 'EnsoSstSkew',
         'units': '%'}},
       'EnsoSstTsRmse': {'diagnostic': {'ERA-Interim': {'name': 'ERA-Interim',
          'nyears': 40,
          'time_period': ['1979-1-16 12:0:0.0', '2019-3-16 12:0:0.0']},
         'GISS-E2-H_r4i1p2': {'keyerror': None,
          'name': 'GISS-E2-H_r4i1p2',
          'nyears': 156,
          'time_period': ['1850-1-16 12:0:0.0', '2005-12-16 12:0:0.0']},
         'HadISST': {'name': 'HadISST',
          'nyears': 151,
          'time_period': ['1870-1-16 11:59:59.5', '2020-10-16 12:0:0.0']},
         'Tropflux': {'name': 'Tropflux',
          'nyears': 40,
          'time_period': ['1979-1-15 0:0:0.0', '2018-12-15 12:0:0.0']},
         'method': 'nino3.4 SSTA during DEC regressed against nino3.4 SSTA during 6 years (centered on ENSO), time series are linearly detrended, smoothing using a triangle shaped window of 5 points',
         'name': 'ENSO life cyle SSTA pattern',
         'ref': 'Using CDAT regridding and rms (uncentered and biased) calculation',
         'time_frequency': 'monthly',
         'units': 'C/C'},
        'metric': {'datasets': "GISS-E2-H_r4i1p2; ERA-Interim's ts & HadISST's sst & Tropflux's sst; 's ",
         'method': 'The metric is the statistical value between the model and the observations',
         'name': 'EnsoSstTsRmse',
         'units': 'C/C'}},
       'SeasonalPrLatRmse': {'diagnostic': {'ERA-Interim': {'name': 'ERA-Interim',
          'nyears': 40,
          'time_period': ['1979-1-16 12:0:0.0', '2019-3-16 12:0:0.0']},
         'GISS-E2-H_r4i1p2': {'keyerror': None,
          'name': 'GISS-E2-H_r4i1p2',
          'nyears': 156,
          'time_period': ['1850-1-16 12:0:0.0', '2005-12-16 12:0:0.0']},
         'GPCPv2.3': {'name': 'GPCPv2.3',
          'nyears': 41,
          'time_period': ['1979-1-1 0:0:0.0', '2019-7-1 0:0:0.0']},
         'method': 'Meridional root mean square error of nino3_LatExt climatological pr STD, time series are linearly detrended, observations and model regridded to generic_1x1deg',
         'name': 'pr meridional seasonality RMSE',
         'ref': 'Using CDAT regridding and rms (uncentered and biased) calculation',
         'time_frequency': 'monthly',
         'units': 'mm/day'},
        'metric': {'datasets': "GISS-E2-H_r4i1p2; ERA-Interim's pr & GPCPv2.3's precip; 's ",
         'method': 'The metric is the statistical value between the model and the observations',
         'name': 'SeasonalPrLatRmse',
         'units': 'mm/day'}},
       'SeasonalPrLonRmse': {'diagnostic': {'ERA-Interim': {'name': 'ERA-Interim',
          'nyears': 40,
          'time_period': ['1979-1-16 12:0:0.0', '2019-3-16 12:0:0.0']},
         'GISS-E2-H_r4i1p2': {'keyerror': None,
          'name': 'GISS-E2-H_r4i1p2',
          'nyears': 156,
          'time_period': ['1850-1-16 12:0:0.0', '2005-12-16 12:0:0.0']},
         'GPCPv2.3': {'name': 'GPCPv2.3',
          'nyears': 41,
          'time_period': ['1979-1-1 0:0:0.0', '2019-7-1 0:0:0.0']},
         'method': 'Zonal root mean square error of equatorial_pacific climatological pr STD, time series are linearly detrended, observations and model regridded to generic_1x1deg',
         'name': 'pr zonal seasonality RMSE',
         'ref': 'Using CDAT regridding and rms (uncentered and biased) calculation',
         'time_frequency': 'monthly',
         'units': 'mm/day'},
        'metric': {'datasets': "GISS-E2-H_r4i1p2; ERA-Interim's pr & GPCPv2.3's precip; 's ",
         'method': 'The metric is the statistical value between the model and the observations',
         'name': 'SeasonalPrLonRmse',
         'units': 'mm/day'}},
       'SeasonalSstLonRmse': {'diagnostic': {'ERA-Interim': {'name': 'ERA-Interim',
          'nyears': 40,
          'time_period': ['1979-1-16 12:0:0.0', '2019-3-16 12:0:0.0']},
         'GISS-E2-H_r4i1p2': {'keyerror': None,
          'name': 'GISS-E2-H_r4i1p2',
          'nyears': 156,
          'time_period': ['1850-1-16 12:0:0.0', '2005-12-16 12:0:0.0']},
         'HadISST': {'name': 'HadISST',
          'nyears': 151,
          'time_period': ['1870-1-16 11:59:59.5', '2020-10-16 12:0:0.0']},
         'Tropflux': {'name': 'Tropflux',
          'nyears': 40,
          'time_period': ['1979-1-15 0:0:0.0', '2018-12-15 12:0:0.0']},
         'method': 'Zonal root mean square error of equatorial_pacific climatological sst STD, time series are linearly detrended, observations and model regridded to generic_1x1deg',
         'name': 'sst zonal seasonality RMSE',
         'ref': 'Using CDAT regridding and rms (uncentered and biased) calculation',
         'time_frequency': 'monthly',
         'units': 'C'},
        'metric': {'datasets': "GISS-E2-H_r4i1p2; ERA-Interim's ts & HadISST's sst & Tropflux's sst; 's ",
         'method': 'The metric is the statistical value between the model and the observations',
         'name': 'SeasonalSstLonRmse',
         'units': 'C'}},
       'SeasonalTauxLonRmse': {'diagnostic': {'ERA-Interim': {'name': 'ERA-Interim',
          'nyears': 40,
          'time_period': ['1979-1-16 12:0:0.0', '2019-3-16 12:0:0.0']},
         'GISS-E2-H_r4i1p2': {'keyerror': None,
          'name': 'GISS-E2-H_r4i1p2',
          'nyears': 156,
          'time_period': ['1850-1-16 12:0:0.0', '2005-12-16 12:0:0.0']},
         'Tropflux': {'name': 'Tropflux',
          'nyears': 40,
          'time_period': ['1979-1-15 0:0:0.0', '2018-12-15 12:0:0.0']},
         'method': 'Zonal root mean square error of equatorial_pacific climatological taux STD, time series are linearly detrended, observations and model regridded to generic_1x1deg',
         'name': 'taux zonal seasonality RMSE',
         'ref': 'Using CDAT regridding and rms (uncentered and biased) calculation',
         'time_frequency': 'monthly',
         'units': '1e-3 N/m2'},
        'metric': {'datasets': "GISS-E2-H_r4i1p2; ERA-Interim's tauu & Tropflux's taux; 's ",
         'method': 'The metric is the statistical value between the model and the observations',
         'name': 'SeasonalTauxLonRmse',
         'units': '1e-3 N/m2'}}},
      'name': 'Metrics Collection for ENSO performance'},
     'value': {'BiasPrLatRmse': {'diagnostic': {'ERA-Interim': {'value': None,
         'value_error': None},
        'GISS-E2-H_r4i1p2': {'value': None, 'value_error': None},
        'GPCPv2.3': {'value': None, 'value_error': None}},
       'metric': {'ERA-Interim': {'value': 2.953363841552582,
         'value_error': None},
        'GPCPv2.3': {'value': 3.5633142701440508, 'value_error': None}}},
      'BiasPrLonRmse': {'diagnostic': {'ERA-Interim': {'value': None,
         'value_error': None},
        'GISS-E2-H_r4i1p2': {'value': None, 'value_error': None},
        'GPCPv2.3': {'value': None, 'value_error': None}},
       'metric': {'ERA-Interim': {'value': 1.40964015705149,
         'value_error': None},
        'GPCPv2.3': {'value': 0.9086444301471407, 'value_error': None}}},
      'BiasSstLonRmse': {'diagnostic': {'ERA-Interim': {'value': None,
         'value_error': None},
        'GISS-E2-H_r4i1p2': {'value': None, 'value_error': None},
        'HadISST': {'value': None, 'value_error': None},
        'Tropflux': {'value': None, 'value_error': None}},
       'metric': {'ERA-Interim': {'value': 0.8909244122833557,
         'value_error': None},
        'HadISST': {'value': 0.9995528611496547, 'value_error': None},
        'Tropflux': {'value': 0.8739177127396536, 'value_error': None}}},
      'BiasTauxLonRmse': {'diagnostic': {'ERA-Interim': {'value': None,
         'value_error': None},
        'GISS-E2-H_r4i1p2': {'value': None, 'value_error': None},
        'Tropflux': {'value': None, 'value_error': None}},
       'metric': {'ERA-Interim': {'value': 21.496020230292665,
         'value_error': None},
        'Tropflux': {'value': 21.1353369420029, 'value_error': None}}},
      'EnsoAmpl': {'diagnostic': {'ERA-Interim': {'value': 0.8989844997845644,
         'value_error': 0.14214193002531866},
        'GISS-E2-H_r4i1p2': {'value': 0.574544964606292,
         'value_error': 0.04600041223020734},
        'HadISST': {'value': 0.7665787872085695,
         'value_error': 0.06238329697691264},
        'Tropflux': {'value': 0.9039789553693535,
         'value_error': 0.14293162279134272}},
       'metric': {'ERA-Interim': {'value': 36.089558302286875,
         'value_error': 15.222058620569829},
        'HadISST': {'value': 25.050761357687986,
         'value_error': 12.100024146525053},
        'Tropflux': {'value': 36.44266150293944,
         'value_error': 15.137957220600365}}},
      'EnsoDuration': {'diagnostic': {'ERA-Interim': {'value': 13.0,
         'value_error': None},
        'GISS-E2-H_r4i1p2': {'value': 13.0, 'value_error': None},
        'HadISST': {'value': 13.0, 'value_error': None},
        'Tropflux': {'value': 13.0, 'value_error': None}},
       'metric': {'ERA-Interim': {'value': 0.0, 'value_error': None},
        'HadISST': {'value': 0.0, 'value_error': None},
        'Tropflux': {'value': 0.0, 'value_error': None}}},
      'EnsoSeasonality': {'diagnostic': {'ERA-Interim': {'value': 2.0466846866656914,
         'value_error': 0.6513411033995022},
        'GISS-E2-H_r4i1p2': {'value': 1.5389964715650548,
         'value_error': 0.24683350315950747},
        'HadISST': {'value': 1.6639865947361325,
         'value_error': 0.2712772451657809},
        'Tropflux': {'value': 2.0532132553583624,
         'value_error': 0.6534187683977347}},
       'metric': {'ERA-Interim': {'value': 24.805394715085548,
         'value_error': 35.99024704285034},
        'HadISST': {'value': 7.5114861842320355,
         'value_error': 29.91212772435969},
        'Tropflux': {'value': 25.0444897748119,
         'value_error': 35.87580944146029}}},
      'EnsoSstDiversity_2': {'diagnostic': {'ERA-Interim': {'value': 33.25,
         'value_error': None},
        'GISS-E2-H_r4i1p2': {'value': 24.5, 'value_error': None},
        'HadISST': {'value': 49.0, 'value_error': None},
        'Tropflux': {'value': 32.0, 'value_error': None}},
       'metric': {'ERA-Interim': {'value': 26.31578947368421,
         'value_error': None},
        'HadISST': {'value': 50.0, 'value_error': None},
        'Tropflux': {'value': 23.4375, 'value_error': None}}},
      'EnsoSstLonRmse': {'diagnostic': {'ERA-Interim': {'value': None,
         'value_error': None},
        'GISS-E2-H_r4i1p2': {'value': None, 'value_error': None},
        'HadISST': {'value': None, 'value_error': None},
        'Tropflux': {'value': None, 'value_error': None}},
       'metric': {'ERA-Interim': {'value': 0.2701288708039832,
         'value_error': None},
        'HadISST': {'value': 0.27361309151244395, 'value_error': None},
        'Tropflux': {'value': 0.2692935930471113, 'value_error': None}}},
      'EnsoSstSkew': {'diagnostic': {'ERA-Interim': {'value': 0.39098111106809963,
         'value_error': 0.061819541653923164},
        'GISS-E2-H_r4i1p2': {'value': 0.04683675987077994,
         'value_error': 0.0037499419441600914},
        'HadISST': {'value': 0.38989908235027515,
         'value_error': 0.03172953733021198},
        'Tropflux': {'value': 0.39744741059612115,
         'value_error': 0.06284195338099416}},
       'metric': {'ERA-Interim': {'value': 88.02071032464222,
         'value_error': 2.8532027760591716},
        'HadISST': {'value': 87.98746599031412,
         'value_error': 1.9393386005137503},
        'Tropflux': {'value': 88.21560824851503,
         'value_error': 2.806782386160268}}},
      'EnsoSstTsRmse': {'diagnostic': {'ERA-Interim': {'value': None,
         'value_error': None},
        'GISS-E2-H_r4i1p2': {'value': None, 'value_error': None},
        'HadISST': {'value': None, 'value_error': None},
        'Tropflux': {'value': None, 'value_error': None}},
       'metric': {'ERA-Interim': {'value': 0.17272106490241207,
         'value_error': None},
        'HadISST': {'value': 0.18079902800706033, 'value_error': None},
        'Tropflux': {'value': 0.17730089227461127, 'value_error': None}}},
      'SeasonalPrLatRmse': {'diagnostic': {'ERA-Interim': {'value': None,
         'value_error': None},
        'GISS-E2-H_r4i1p2': {'value': None, 'value_error': None},
        'GPCPv2.3': {'value': None, 'value_error': None}},
       'metric': {'ERA-Interim': {'value': 1.1232241957370264,
         'value_error': None},
        'GPCPv2.3': {'value': 1.012272961384686, 'value_error': None}}},
      'SeasonalPrLonRmse': {'diagnostic': {'ERA-Interim': {'value': None,
         'value_error': None},
        'GISS-E2-H_r4i1p2': {'value': None, 'value_error': None},
        'GPCPv2.3': {'value': None, 'value_error': None}},
       'metric': {'ERA-Interim': {'value': 0.7868527473709617,
         'value_error': None},
        'GPCPv2.3': {'value': 0.4887319529900594, 'value_error': None}}},
      'SeasonalSstLonRmse': {'diagnostic': {'ERA-Interim': {'value': None,
         'value_error': None},
        'GISS-E2-H_r4i1p2': {'value': None, 'value_error': None},
        'HadISST': {'value': None, 'value_error': None},
        'Tropflux': {'value': None, 'value_error': None}},
       'metric': {'ERA-Interim': {'value': 0.31473270270790643,
         'value_error': None},
        'HadISST': {'value': 0.30875202604054813, 'value_error': None},
        'Tropflux': {'value': 0.324480183849281, 'value_error': None}}},
      'SeasonalTauxLonRmse': {'diagnostic': {'ERA-Interim': {'value': None,
         'value_error': None},
        'GISS-E2-H_r4i1p2': {'value': None, 'value_error': None},
        'Tropflux': {'value': None, 'value_error': None}},
       'metric': {'ERA-Interim': {'value': 2.827234619427585,
         'value_error': None},
        'Tropflux': {'value': 3.056315211434957, 'value_error': None}}}}},
    'r4i1p3': {'metadata': {'description_of_the_collection': 'Describe which science question this collection is about',
      'metrics': {'BiasPrLatRmse': {'diagnostic': {'ERA-Interim': {'name': 'ERA-Interim',
          'nyears': 40,
          'time_period': ['1979-1-16 12:0:0.0', '2019-3-16 12:0:0.0']},
         'GISS-E2-H_r4i1p3': {'keyerror': None,
          'name': 'GISS-E2-H_r4i1p3',
          'nyears': 156,
          'time_period': ['1850-1-16 12:0:0.0', '2005-12-16 12:0:0.0']},
         'GPCPv2.3': {'name': 'GPCPv2.3',
          'nyears': 41,
          'time_period': ['1979-1-1 0:0:0.0', '2019-7-1 0:0:0.0']},
         'method': 'Meridional root mean square error of nino3_LatExt pr, time series are linearly detrended, observations and model regridded to generic_1x1deg',
         'name': 'pr Meridional RMSE',
         'ref': 'Using CDAT regridding and rms (uncentered and biased) calculation',
         'time_frequency': 'monthly',
         'units': 'mm/day'},
        'metric': {'datasets': "GISS-E2-H_r4i1p3; ERA-Interim's pr & GPCPv2.3's precip; 's ",
         'method': 'The metric is the statistical value between the model and the observations',
         'name': 'BiasPrLatRmse',
         'units': 'mm/day'}},
       'BiasPrLonRmse': {'diagnostic': {'ERA-Interim': {'name': 'ERA-Interim',
          'nyears': 40,
          'time_period': ['1979-1-16 12:0:0.0', '2019-3-16 12:0:0.0']},
         'GISS-E2-H_r4i1p3': {'keyerror': None,
          'name': 'GISS-E2-H_r4i1p3',
          'nyears': 156,
          'time_period': ['1850-1-16 12:0:0.0', '2005-12-16 12:0:0.0']},
         'GPCPv2.3': {'name': 'GPCPv2.3',
          'nyears': 41,
          'time_period': ['1979-1-1 0:0:0.0', '2019-7-1 0:0:0.0']},
         'method': 'Zonal root mean square error of equatorial_pacific pr, time series are linearly detrended, observations and model regridded to generic_1x1deg',
         'name': 'pr Zonal RMSE',
         'ref': 'Using CDAT regridding and rms (uncentered and biased) calculation',
         'time_frequency': 'monthly',
         'units': 'mm/day'},
        'metric': {'datasets': "GISS-E2-H_r4i1p3; ERA-Interim's pr & GPCPv2.3's precip; 's ",
         'method': 'The metric is the statistical value between the model and the observations',
         'name': 'BiasPrLonRmse',
         'units': 'mm/day'}},
       'BiasSstLonRmse': {'diagnostic': {'ERA-Interim': {'name': 'ERA-Interim',
          'nyears': 40,
          'time_period': ['1979-1-16 12:0:0.0', '2019-3-16 12:0:0.0']},
         'GISS-E2-H_r4i1p3': {'keyerror': None,
          'name': 'GISS-E2-H_r4i1p3',
          'nyears': 156,
          'time_period': ['1850-1-16 12:0:0.0', '2005-12-16 12:0:0.0']},
         'HadISST': {'name': 'HadISST',
          'nyears': 151,
          'time_period': ['1870-1-16 11:59:59.5', '2020-10-16 12:0:0.0']},
         'Tropflux': {'name': 'Tropflux',
          'nyears': 40,
          'time_period': ['1979-1-15 0:0:0.0', '2018-12-15 12:0:0.0']},
         'method': 'Zonal root mean square error of equatorial_pacific sst, time series are linearly detrended, observations and model regridded to generic_1x1deg',
         'name': 'sst Zonal RMSE',
         'ref': 'Using CDAT regridding and rms (uncentered and biased) calculation',
         'time_frequency': 'monthly',
         'units': 'C'},
        'metric': {'datasets': "GISS-E2-H_r4i1p3; ERA-Interim's ts & HadISST's sst & Tropflux's sst; 's ",
         'method': 'The metric is the statistical value between the model and the observations',
         'name': 'BiasSstLonRmse',
         'units': 'C'}},
       'BiasTauxLonRmse': {'diagnostic': {'ERA-Interim': {'name': 'ERA-Interim',
          'nyears': 40,
          'time_period': ['1979-1-16 12:0:0.0', '2019-3-16 12:0:0.0']},
         'GISS-E2-H_r4i1p3': {'keyerror': None,
          'name': 'GISS-E2-H_r4i1p3',
          'nyears': 156,
          'time_period': ['1850-1-16 12:0:0.0', '2005-12-16 12:0:0.0']},
         'Tropflux': {'name': 'Tropflux',
          'nyears': 40,
          'time_period': ['1979-1-15 0:0:0.0', '2018-12-15 12:0:0.0']},
         'method': 'Zonal root mean square error of equatorial_pacific taux, time series are linearly detrended, observations and model regridded to generic_1x1deg',
         'name': 'taux Zonal RMSE',
         'ref': 'Using CDAT regridding and rms (uncentered and biased) calculation',
         'time_frequency': 'monthly',
         'units': '1e-3 N/m2'},
        'metric': {'datasets': "GISS-E2-H_r4i1p3; ERA-Interim's tauu & Tropflux's taux; 's ",
         'method': 'The metric is the statistical value between the model and the observations',
         'name': 'BiasTauxLonRmse',
         'units': '1e-3 N/m2'}},
       'EnsoAmpl': {'diagnostic': {'ERA-Interim': {'keyerror': None,
          'name': 'ERA-Interim',
          'nyears': 40,
          'time_period': ['1979-1-16 12:0:0.0', '2019-3-16 12:0:0.0']},
         'GISS-E2-H_r4i1p3': {'keyerror': None,
          'name': 'GISS-E2-H_r4i1p3',
          'nyears': 156,
          'time_period': ['1850-1-16 12:0:0.0', '2005-12-16 12:0:0.0']},
         'HadISST': {'keyerror': None,
          'name': 'HadISST',
          'nyears': 151,
          'time_period': ['1870-1-16 11:59:59.5', '2020-10-16 12:0:0.0']},
         'Tropflux': {'keyerror': None,
          'name': 'Tropflux',
          'nyears': 40,
          'time_period': ['1979-1-15 0:0:0.0', '2018-12-15 12:0:0.0']},
         'method': 'Standard deviation of nino3.4 sstA, time series are linearly detrended',
         'name': 'ENSO amplitude',
         'ref': 'Using CDAT regression calculation',
         'time_frequency': 'monthly',
         'units': 'C'},
        'metric': {'datasets': "GISS-E2-H_r4i1p3; ERA-Interim's ts & HadISST's sst & Tropflux's sst; 's ",
         'method': 'The metric is the absolute value of the relative difference between model and observations values (M = 100 * abs[[model-obs] / obs])',
         'name': 'EnsoAmpl',
         'units': '%'}},
       'EnsoDuration': {'diagnostic': {'ERA-Interim': {'keyerror': None,
          'name': 'ERA-Interim',
          'nyears': 40,
          'time_period': ['1979-1-16 12:0:0.0', '2019-3-16 12:0:0.0']},
         'GISS-E2-H_r4i1p3': {'keyerror': None,
          'name': 'GISS-E2-H_r4i1p3',
          'nyears': 156,
          'time_period': ['1850-1-16 12:0:0.0', '2005-12-16 12:0:0.0']},
         'HadISST': {'keyerror': None,
          'name': 'HadISST',
          'nyears': 151,
          'time_period': ['1870-1-16 11:59:59.5', '2020-10-16 12:0:0.0']},
         'Tropflux': {'keyerror': None,
          'name': 'Tropflux',
          'nyears': 40,
          'time_period': ['1979-1-15 0:0:0.0', '2018-12-15 12:0:0.0']},
         'method': 'nino3.4 SSTA during DEC regressed against nino3.4 SSTA during 6 years (centered on ENSO), the duration is the number of consecutive months during which the regression is above 0.25, time series are linearly detrended, smoothing using a triangle shaped window of 5 points',
         'name': 'ENSO Duration based on life cyle SSTA pattern',
         'ref': 'Using CDAT',
         'time_frequency': 'monthly',
         'units': 'months'},
        'metric': {'datasets': "GISS-E2-H_r4i1p3; ERA-Interim's ts & HadISST's sst & Tropflux's sst; 's ",
         'method': 'The metric is the absolute value of the relative difference between model and observations values (M = 100 * abs[[model-obs] / obs])',
         'name': 'EnsoDuration',
         'units': '%'}},
       'EnsoSeasonality': {'diagnostic': {'ERA-Interim': {'keyerror': None,
          'name': 'ERA-Interim',
          'nyears': 40,
          'time_period': ['1979-1-16 12:0:0.0', '2019-3-16 12:0:0.0']},
         'GISS-E2-H_r4i1p3': {'keyerror': None,
          'name': 'GISS-E2-H_r4i1p3',
          'nyears': 156,
          'time_period': ['1850-1-16 12:0:0.0', '2005-12-16 12:0:0.0']},
         'HadISST': {'keyerror': None,
          'name': 'HadISST',
          'nyears': 151,
          'time_period': ['1870-1-16 11:59:59.5', '2020-10-16 12:0:0.0']},
         'Tropflux': {'keyerror': None,
          'name': 'Tropflux',
          'nyears': 40,
          'time_period': ['1979-1-15 0:0:0.0', '2018-12-15 12:0:0.0']},
         'method': 'Ratio between NDJ and MAM standard deviation nino3.4 sstA, time series are linearly detrended',
         'name': 'ENSO seasonality',
         'ref': 'Using CDAT std dev calculation',
         'time_frequency': 'monthly',
         'units': 'C/C'},
        'metric': {'datasets': "GISS-E2-H_r4i1p3; ERA-Interim's ts & HadISST's sst & Tropflux's sst; 's ",
         'method': 'The metric is the absolute value of the relative difference between model and observations values (M = 100 * abs[[model-obs] / obs])',
         'name': 'EnsoSeasonality',
         'units': '%'}},
       'EnsoSstDiversity_2': {'diagnostic': {'ERA-Interim': {'keyerror': None,
          'name': 'ERA-Interim',
          'nyears': 40,
          'time_period': ['1979-1-16 12:0:0.0', '2019-3-16 12:0:0.0']},
         'GISS-E2-H_r4i1p3': {'keyerror': None,
          'name': 'GISS-E2-H_r4i1p3',
          'nyears': 156,
          'time_period': ['1850-1-16 12:0:0.0', '2005-12-16 12:0:0.0']},
         'HadISST': {'keyerror': None,
          'name': 'HadISST',
          'nyears': 151,
          'time_period': ['1870-1-16 11:59:59.5', '2020-10-16 12:0:0.0']},
         'Tropflux': {'keyerror': None,
          'name': 'Tropflux',
          'nyears': 40,
          'time_period': ['1979-1-15 0:0:0.0', '2018-12-15 12:0:0.0']},
         'method': 'Nino (Nina) events = nino3.4 sstA > 0.75 (< -0.75) during DEC, zonal SSTA (meridional averaged [-5.0 ; 5.0]), the zonal SSTA maximum (minimum) is located for each event, the diversity is the interquartile range (IQR = Q3 - Q1), time series are linearly detrended, smoothing using a triangle shaped window of 5 points',
         'name': 'ENSO Diversity (interquartile range)',
         'ref': 'Using CDAT regridding',
         'time_frequency': 'monthly',
         'units': 'long'},
        'metric': {'datasets': "GISS-E2-H_r4i1p3; ERA-Interim's ts & HadISST's sst & Tropflux's sst; 's ",
         'method': 'The metric is the absolute value of the relative difference between model and observations values (M = 100 * abs[[model-obs] / obs])',
         'name': 'EnsoSstDiversity',
         'units': '%'}},
       'EnsoSstLonRmse': {'diagnostic': {'ERA-Interim': {'name': 'ERA-Interim',
          'nyears': 40,
          'time_period': ['1979-1-16 12:0:0.0', '2019-3-16 12:0:0.0']},
         'GISS-E2-H_r4i1p3': {'keyerror': None,
          'name': 'GISS-E2-H_r4i1p3',
          'nyears': 156,
          'time_period': ['1850-1-16 12:0:0.0', '2005-12-16 12:0:0.0']},
         'HadISST': {'name': 'HadISST',
          'nyears': 151,
          'time_period': ['1870-1-16 11:59:59.5', '2020-10-16 12:0:0.0']},
         'Tropflux': {'name': 'Tropflux',
          'nyears': 40,
          'time_period': ['1979-1-15 0:0:0.0', '2018-12-15 12:0:0.0']},
         'method': 'nino3.4 SSTA during DEC regressed against equatorial_pacific SSTA, time series are linearly detrended, smoothing using a triangle shaped window of 5 points, observations and model regridded to generic_1x1deg',
         'name': 'ENSO Zonal SSTA pattern',
         'ref': 'Using CDAT regridding and rms (uncentered and biased) calculation',
         'time_frequency': 'monthly',
         'units': 'C/C'},
        'metric': {'datasets': "GISS-E2-H_r4i1p3; ERA-Interim's ts & HadISST's sst & Tropflux's sst; 's ",
         'method': 'The metric is the statistical value between the model and the observations',
         'name': 'EnsoSstLonRmse',
         'units': 'C/C'}},
       'EnsoSstSkew': {'diagnostic': {'ERA-Interim': {'keyerror': None,
          'name': 'ERA-Interim',
          'nyears': 40,
          'time_period': ['1979-1-16 12:0:0.0', '2019-3-16 12:0:0.0']},
         'GISS-E2-H_r4i1p3': {'keyerror': None,
          'name': 'GISS-E2-H_r4i1p3',
          'nyears': 156,
          'time_period': ['1850-1-16 12:0:0.0', '2005-12-16 12:0:0.0']},
         'HadISST': {'keyerror': None,
          'name': 'HadISST',
          'nyears': 151,
          'time_period': ['1870-1-16 11:59:59.5', '2020-10-16 12:0:0.0']},
         'Tropflux': {'keyerror': None,
          'name': 'Tropflux',
          'nyears': 40,
          'time_period': ['1979-1-15 0:0:0.0', '2018-12-15 12:0:0.0']},
         'method': 'Standard deviation of nino3.4 sstA, time series are linearly detrended',
         'name': 'ENSO skewness',
         'ref': 'Using CDAT regression calculation',
         'time_frequency': 'monthly',
         'units': 'C'},
        'metric': {'datasets': "GISS-E2-H_r4i1p3; ERA-Interim's ts & HadISST's sst & Tropflux's sst; 's ",
         'method': 'The metric is the absolute value of the relative difference between model and observations values (M = 100 * abs[[model-obs] / obs])',
         'name': 'EnsoSstSkew',
         'units': '%'}},
       'EnsoSstTsRmse': {'diagnostic': {'ERA-Interim': {'name': 'ERA-Interim',
          'nyears': 40,
          'time_period': ['1979-1-16 12:0:0.0', '2019-3-16 12:0:0.0']},
         'GISS-E2-H_r4i1p3': {'keyerror': None,
          'name': 'GISS-E2-H_r4i1p3',
          'nyears': 156,
          'time_period': ['1850-1-16 12:0:0.0', '2005-12-16 12:0:0.0']},
         'HadISST': {'name': 'HadISST',
          'nyears': 151,
          'time_period': ['1870-1-16 11:59:59.5', '2020-10-16 12:0:0.0']},
         'Tropflux': {'name': 'Tropflux',
          'nyears': 40,
          'time_period': ['1979-1-15 0:0:0.0', '2018-12-15 12:0:0.0']},
         'method': 'nino3.4 SSTA during DEC regressed against nino3.4 SSTA during 6 years (centered on ENSO), time series are linearly detrended, smoothing using a triangle shaped window of 5 points',
         'name': 'ENSO life cyle SSTA pattern',
         'ref': 'Using CDAT regridding and rms (uncentered and biased) calculation',
         'time_frequency': 'monthly',
         'units': 'C/C'},
        'metric': {'datasets': "GISS-E2-H_r4i1p3; ERA-Interim's ts & HadISST's sst & Tropflux's sst; 's ",
         'method': 'The metric is the statistical value between the model and the observations',
         'name': 'EnsoSstTsRmse',
         'units': 'C/C'}},
       'SeasonalPrLatRmse': {'diagnostic': {'ERA-Interim': {'name': 'ERA-Interim',
          'nyears': 40,
          'time_period': ['1979-1-16 12:0:0.0', '2019-3-16 12:0:0.0']},
         'GISS-E2-H_r4i1p3': {'keyerror': None,
          'name': 'GISS-E2-H_r4i1p3',
          'nyears': 156,
          'time_period': ['1850-1-16 12:0:0.0', '2005-12-16 12:0:0.0']},
         'GPCPv2.3': {'name': 'GPCPv2.3',
          'nyears': 41,
          'time_period': ['1979-1-1 0:0:0.0', '2019-7-1 0:0:0.0']},
         'method': 'Meridional root mean square error of nino3_LatExt climatological pr STD, time series are linearly detrended, observations and model regridded to generic_1x1deg',
         'name': 'pr meridional seasonality RMSE',
         'ref': 'Using CDAT regridding and rms (uncentered and biased) calculation',
         'time_frequency': 'monthly',
         'units': 'mm/day'},
        'metric': {'datasets': "GISS-E2-H_r4i1p3; ERA-Interim's pr & GPCPv2.3's precip; 's ",
         'method': 'The metric is the statistical value between the model and the observations',
         'name': 'SeasonalPrLatRmse',
         'units': 'mm/day'}},
       'SeasonalPrLonRmse': {'diagnostic': {'ERA-Interim': {'name': 'ERA-Interim',
          'nyears': 40,
          'time_period': ['1979-1-16 12:0:0.0', '2019-3-16 12:0:0.0']},
         'GISS-E2-H_r4i1p3': {'keyerror': None,
          'name': 'GISS-E2-H_r4i1p3',
          'nyears': 156,
          'time_period': ['1850-1-16 12:0:0.0', '2005-12-16 12:0:0.0']},
         'GPCPv2.3': {'name': 'GPCPv2.3',
          'nyears': 41,
          'time_period': ['1979-1-1 0:0:0.0', '2019-7-1 0:0:0.0']},
         'method': 'Zonal root mean square error of equatorial_pacific climatological pr STD, time series are linearly detrended, observations and model regridded to generic_1x1deg',
         'name': 'pr zonal seasonality RMSE',
         'ref': 'Using CDAT regridding and rms (uncentered and biased) calculation',
         'time_frequency': 'monthly',
         'units': 'mm/day'},
        'metric': {'datasets': "GISS-E2-H_r4i1p3; ERA-Interim's pr & GPCPv2.3's precip; 's ",
         'method': 'The metric is the statistical value between the model and the observations',
         'name': 'SeasonalPrLonRmse',
         'units': 'mm/day'}},
       'SeasonalSstLonRmse': {'diagnostic': {'ERA-Interim': {'name': 'ERA-Interim',
          'nyears': 40,
          'time_period': ['1979-1-16 12:0:0.0', '2019-3-16 12:0:0.0']},
         'GISS-E2-H_r4i1p3': {'keyerror': None,
          'name': 'GISS-E2-H_r4i1p3',
          'nyears': 156,
          'time_period': ['1850-1-16 12:0:0.0', '2005-12-16 12:0:0.0']},
         'HadISST': {'name': 'HadISST',
          'nyears': 151,
          'time_period': ['1870-1-16 11:59:59.5', '2020-10-16 12:0:0.0']},
         'Tropflux': {'name': 'Tropflux',
          'nyears': 40,
          'time_period': ['1979-1-15 0:0:0.0', '2018-12-15 12:0:0.0']},
         'method': 'Zonal root mean square error of equatorial_pacific climatological sst STD, time series are linearly detrended, observations and model regridded to generic_1x1deg',
         'name': 'sst zonal seasonality RMSE',
         'ref': 'Using CDAT regridding and rms (uncentered and biased) calculation',
         'time_frequency': 'monthly',
         'units': 'C'},
        'metric': {'datasets': "GISS-E2-H_r4i1p3; ERA-Interim's ts & HadISST's sst & Tropflux's sst; 's ",
         'method': 'The metric is the statistical value between the model and the observations',
         'name': 'SeasonalSstLonRmse',
         'units': 'C'}},
       'SeasonalTauxLonRmse': {'diagnostic': {'ERA-Interim': {'name': 'ERA-Interim',
          'nyears': 40,
          'time_period': ['1979-1-16 12:0:0.0', '2019-3-16 12:0:0.0']},
         'GISS-E2-H_r4i1p3': {'keyerror': None,
          'name': 'GISS-E2-H_r4i1p3',
          'nyears': 156,
          'time_period': ['1850-1-16 12:0:0.0', '2005-12-16 12:0:0.0']},
         'Tropflux': {'name': 'Tropflux',
          'nyears': 40,
          'time_period': ['1979-1-15 0:0:0.0', '2018-12-15 12:0:0.0']},
         'method': 'Zonal root mean square error of equatorial_pacific climatological taux STD, time series are linearly detrended, observations and model regridded to generic_1x1deg',
         'name': 'taux zonal seasonality RMSE',
         'ref': 'Using CDAT regridding and rms (uncentered and biased) calculation',
         'time_frequency': 'monthly',
         'units': '1e-3 N/m2'},
        'metric': {'datasets': "GISS-E2-H_r4i1p3; ERA-Interim's tauu & Tropflux's taux; 's ",
         'method': 'The metric is the statistical value between the model and the observations',
         'name': 'SeasonalTauxLonRmse',
         'units': '1e-3 N/m2'}}},
      'name': 'Metrics Collection for ENSO performance'},
     'value': {'BiasPrLatRmse': {'diagnostic': {'ERA-Interim': {'value': None,
         'value_error': None},
        'GISS-E2-H_r4i1p3': {'value': None, 'value_error': None},
        'GPCPv2.3': {'value': None, 'value_error': None}},
       'metric': {'ERA-Interim': {'value': 2.8549542223722484,
         'value_error': None},
        'GPCPv2.3': {'value': 3.4418867725798763, 'value_error': None}}},
      'BiasPrLonRmse': {'diagnostic': {'ERA-Interim': {'value': None,
         'value_error': None},
        'GISS-E2-H_r4i1p3': {'value': None, 'value_error': None},
        'GPCPv2.3': {'value': None, 'value_error': None}},
       'metric': {'ERA-Interim': {'value': 1.3878067228047641,
         'value_error': None},
        'GPCPv2.3': {'value': 0.8702191700789493, 'value_error': None}}},
      'BiasSstLonRmse': {'diagnostic': {'ERA-Interim': {'value': None,
         'value_error': None},
        'GISS-E2-H_r4i1p3': {'value': None, 'value_error': None},
        'HadISST': {'value': None, 'value_error': None},
        'Tropflux': {'value': None, 'value_error': None}},
       'metric': {'ERA-Interim': {'value': 0.9210794710016766,
         'value_error': None},
        'HadISST': {'value': 1.03909252856951, 'value_error': None},
        'Tropflux': {'value': 0.901828668011448, 'value_error': None}}},
      'BiasTauxLonRmse': {'diagnostic': {'ERA-Interim': {'value': None,
         'value_error': None},
        'GISS-E2-H_r4i1p3': {'value': None, 'value_error': None},
        'Tropflux': {'value': None, 'value_error': None}},
       'metric': {'ERA-Interim': {'value': 21.223390433697244,
         'value_error': None},
        'Tropflux': {'value': 20.86392625288629, 'value_error': None}}},
      'EnsoAmpl': {'diagnostic': {'ERA-Interim': {'value': 0.8989844997845644,
         'value_error': 0.14214193002531866},
        'GISS-E2-H_r4i1p3': {'value': 0.5564514881686649,
         'value_error': 0.0445517747412708},
        'HadISST': {'value': 0.7665787872085695,
         'value_error': 0.06238329697691264},
        'Tropflux': {'value': 0.9039789553693535,
         'value_error': 0.14293162279134272}},
       'metric': {'ERA-Interim': {'value': 38.10221552184551,
         'value_error': 14.74268803001528},
        'HadISST': {'value': 27.411050572513894,
         'value_error': 11.718972157078248},
        'Tropflux': {'value': 38.444198854020186,
         'value_error': 14.66123513763436}}},
      'EnsoDuration': {'diagnostic': {'ERA-Interim': {'value': 13.0,
         'value_error': None},
        'GISS-E2-H_r4i1p3': {'value': 13.0, 'value_error': None},
        'HadISST': {'value': 13.0, 'value_error': None},
        'Tropflux': {'value': 13.0, 'value_error': None}},
       'metric': {'ERA-Interim': {'value': 0.0, 'value_error': None},
        'HadISST': {'value': 0.0, 'value_error': None},
        'Tropflux': {'value': 0.0, 'value_error': None}}},
      'EnsoSeasonality': {'diagnostic': {'ERA-Interim': {'value': 2.0466846866656914,
         'value_error': 0.6513411033995022},
        'GISS-E2-H_r4i1p3': {'value': 1.439764823918492,
         'value_error': 0.23091813514831078},
        'HadISST': {'value': 1.6639865947361325,
         'value_error': 0.2712772451657809},
        'Tropflux': {'value': 2.0532132553583624,
         'value_error': 0.6534187683977347}},
       'metric': {'ERA-Interim': {'value': 29.653803866385925,
         'value_error': 33.66966244161533},
        'HadISST': {'value': 13.474974589756036,
         'value_error': 27.98344902135776},
        'Tropflux': {'value': 29.877482518629115,
         'value_error': 33.56260356522464}}},
      'EnsoSstDiversity_2': {'diagnostic': {'ERA-Interim': {'value': 33.25,
         'value_error': None},
        'GISS-E2-H_r4i1p3': {'value': 22.0, 'value_error': None},
        'HadISST': {'value': 49.0, 'value_error': None},
        'Tropflux': {'value': 32.0, 'value_error': None}},
       'metric': {'ERA-Interim': {'value': 33.83458646616541,
         'value_error': None},
        'HadISST': {'value': 55.10204081632652, 'value_error': None},
        'Tropflux': {'value': 31.25, 'value_error': None}}},
      'EnsoSstLonRmse': {'diagnostic': {'ERA-Interim': {'value': None,
         'value_error': None},
        'GISS-E2-H_r4i1p3': {'value': None, 'value_error': None},
        'HadISST': {'value': None, 'value_error': None},
        'Tropflux': {'value': None, 'value_error': None}},
       'metric': {'ERA-Interim': {'value': 0.29829553398625847,
         'value_error': None},
        'HadISST': {'value': 0.3055252384088153, 'value_error': None},
        'Tropflux': {'value': 0.29787102783382025, 'value_error': None}}},
      'EnsoSstSkew': {'diagnostic': {'ERA-Interim': {'value': 0.39098111106809963,
         'value_error': 0.061819541653923164},
        'GISS-E2-H_r4i1p3': {'value': -0.23114930442864673,
         'value_error': -0.018506755685744624},
        'HadISST': {'value': 0.38989908235027515,
         'value_error': 0.03172953733021198},
        'Tropflux': {'value': 0.39744741059612115,
         'value_error': 0.06284195338099416}},
       'metric': {'ERA-Interim': {'value': 159.1203252241989,
         'value_error': -14.08115845117231},
        'HadISST': {'value': 159.28439303711625,
         'value_error': -9.571045687130145},
        'Tropflux': {'value': 158.1584627968646,
         'value_error': -13.85206402051482}}},
      'EnsoSstTsRmse': {'diagnostic': {'ERA-Interim': {'value': None,
         'value_error': None},
        'GISS-E2-H_r4i1p3': {'value': None, 'value_error': None},
        'HadISST': {'value': None, 'value_error': None},
        'Tropflux': {'value': None, 'value_error': None}},
       'metric': {'ERA-Interim': {'value': 0.21364381135833166,
         'value_error': None},
        'HadISST': {'value': 0.21062673527804715, 'value_error': None},
        'Tropflux': {'value': 0.21632362603506308, 'value_error': None}}},
      'SeasonalPrLatRmse': {'diagnostic': {'ERA-Interim': {'value': None,
         'value_error': None},
        'GISS-E2-H_r4i1p3': {'value': None, 'value_error': None},
        'GPCPv2.3': {'value': None, 'value_error': None}},
       'metric': {'ERA-Interim': {'value': 1.0971029697765777,
         'value_error': None},
        'GPCPv2.3': {'value': 1.0050677351465525, 'value_error': None}}},
      'SeasonalPrLonRmse': {'diagnostic': {'ERA-Interim': {'value': None,
         'value_error': None},
        'GISS-E2-H_r4i1p3': {'value': None, 'value_error': None},
        'GPCPv2.3': {'value': None, 'value_error': None}},
       'metric': {'ERA-Interim': {'value': 0.7327816855360407,
         'value_error': None},
        'GPCPv2.3': {'value': 0.4802009776551229, 'value_error': None}}},
      'SeasonalSstLonRmse': {'diagnostic': {'ERA-Interim': {'value': None,
         'value_error': None},
        'GISS-E2-H_r4i1p3': {'value': None, 'value_error': None},
        'HadISST': {'value': None, 'value_error': None},
        'Tropflux': {'value': None, 'value_error': None}},
       'metric': {'ERA-Interim': {'value': 0.2553469192321254,
         'value_error': None},
        'HadISST': {'value': 0.25285503990999464, 'value_error': None},
        'Tropflux': {'value': 0.2642929019375272, 'value_error': None}}},
      'SeasonalTauxLonRmse': {'diagnostic': {'ERA-Interim': {'value': None,
         'value_error': None},
        'GISS-E2-H_r4i1p3': {'value': None, 'value_error': None},
        'Tropflux': {'value': None, 'value_error': None}},
       'metric': {'ERA-Interim': {'value': 2.161944218128198,
         'value_error': None},
        'Tropflux': {'value': 2.379604111852496, 'value_error': None}}}}},
    'r5i1p1': {'metadata': {'description_of_the_collection': 'Describe which science question this collection is about',
      'metrics': {'BiasPrLatRmse': {'diagnostic': {'ERA-Interim': {'name': 'ERA-Interim',
          'nyears': 40,
          'time_period': ['1979-1-16 12:0:0.0', '2019-3-16 12:0:0.0']},
         'GISS-E2-H_r5i1p1': {'keyerror': None,
          'name': 'GISS-E2-H_r5i1p1',
          'nyears': 156,
          'time_period': ['1850-1-16 12:0:0.0', '2005-12-16 12:0:0.0']},
         'GPCPv2.3': {'name': 'GPCPv2.3',
          'nyears': 41,
          'time_period': ['1979-1-1 0:0:0.0', '2019-7-1 0:0:0.0']},
         'method': 'Meridional root mean square error of nino3_LatExt pr, time series are linearly detrended, observations and model regridded to generic_1x1deg',
         'name': 'pr Meridional RMSE',
         'ref': 'Using CDAT regridding and rms (uncentered and biased) calculation',
         'time_frequency': 'monthly',
         'units': 'mm/day'},
        'metric': {'datasets': "GISS-E2-H_r5i1p1; ERA-Interim's pr & GPCPv2.3's precip; 's ",
         'method': 'The metric is the statistical value between the model and the observations',
         'name': 'BiasPrLatRmse',
         'units': 'mm/day'}},
       'BiasPrLonRmse': {'diagnostic': {'ERA-Interim': {'name': 'ERA-Interim',
          'nyears': 40,
          'time_period': ['1979-1-16 12:0:0.0', '2019-3-16 12:0:0.0']},
         'GISS-E2-H_r5i1p1': {'keyerror': None,
          'name': 'GISS-E2-H_r5i1p1',
          'nyears': 156,
          'time_period': ['1850-1-16 12:0:0.0', '2005-12-16 12:0:0.0']},
         'GPCPv2.3': {'name': 'GPCPv2.3',
          'nyears': 41,
          'time_period': ['1979-1-1 0:0:0.0', '2019-7-1 0:0:0.0']},
         'method': 'Zonal root mean square error of equatorial_pacific pr, time series are linearly detrended, observations and model regridded to generic_1x1deg',
         'name': 'pr Zonal RMSE',
         'ref': 'Using CDAT regridding and rms (uncentered and biased) calculation',
         'time_frequency': 'monthly',
         'units': 'mm/day'},
        'metric': {'datasets': "GISS-E2-H_r5i1p1; ERA-Interim's pr & GPCPv2.3's precip; 's ",
         'method': 'The metric is the statistical value between the model and the observations',
         'name': 'BiasPrLonRmse',
         'units': 'mm/day'}},
       'BiasSstLonRmse': {'diagnostic': {'ERA-Interim': {'name': 'ERA-Interim',
          'nyears': 40,
          'time_period': ['1979-1-16 12:0:0.0', '2019-3-16 12:0:0.0']},
         'GISS-E2-H_r5i1p1': {'keyerror': None,
          'name': 'GISS-E2-H_r5i1p1',
          'nyears': 156,
          'time_period': ['1850-1-16 12:0:0.0', '2005-12-16 12:0:0.0']},
         'HadISST': {'name': 'HadISST',
          'nyears': 151,
          'time_period': ['1870-1-16 11:59:59.5', '2020-10-16 12:0:0.0']},
         'Tropflux': {'name': 'Tropflux',
          'nyears': 40,
          'time_period': ['1979-1-15 0:0:0.0', '2018-12-15 12:0:0.0']},
         'method': 'Zonal root mean square error of equatorial_pacific sst, time series are linearly detrended, observations and model regridded to generic_1x1deg',
         'name': 'sst Zonal RMSE',
         'ref': 'Using CDAT regridding and rms (uncentered and biased) calculation',
         'time_frequency': 'monthly',
         'units': 'C'},
        'metric': {'datasets': "GISS-E2-H_r5i1p1; ERA-Interim's ts & HadISST's sst & Tropflux's sst; 's ",
         'method': 'The metric is the statistical value between the model and the observations',
         'name': 'BiasSstLonRmse',
         'units': 'C'}},
       'BiasTauxLonRmse': {'diagnostic': {'ERA-Interim': {'name': 'ERA-Interim',
          'nyears': 40,
          'time_period': ['1979-1-16 12:0:0.0', '2019-3-16 12:0:0.0']},
         'GISS-E2-H_r5i1p1': {'keyerror': None,
          'name': 'GISS-E2-H_r5i1p1',
          'nyears': 156,
          'time_period': ['1850-1-16 12:0:0.0', '2005-12-16 12:0:0.0']},
         'Tropflux': {'name': 'Tropflux',
          'nyears': 40,
          'time_period': ['1979-1-15 0:0:0.0', '2018-12-15 12:0:0.0']},
         'method': 'Zonal root mean square error of equatorial_pacific taux, time series are linearly detrended, observations and model regridded to generic_1x1deg',
         'name': 'taux Zonal RMSE',
         'ref': 'Using CDAT regridding and rms (uncentered and biased) calculation',
         'time_frequency': 'monthly',
         'units': '1e-3 N/m2'},
        'metric': {'datasets': "GISS-E2-H_r5i1p1; ERA-Interim's tauu & Tropflux's taux; 's ",
         'method': 'The metric is the statistical value between the model and the observations',
         'name': 'BiasTauxLonRmse',
         'units': '1e-3 N/m2'}},
       'EnsoAmpl': {'diagnostic': {'ERA-Interim': {'keyerror': None,
          'name': 'ERA-Interim',
          'nyears': 40,
          'time_period': ['1979-1-16 12:0:0.0', '2019-3-16 12:0:0.0']},
         'GISS-E2-H_r5i1p1': {'keyerror': None,
          'name': 'GISS-E2-H_r5i1p1',
          'nyears': 156,
          'time_period': ['1850-1-16 12:0:0.0', '2005-12-16 12:0:0.0']},
         'HadISST': {'keyerror': None,
          'name': 'HadISST',
          'nyears': 151,
          'time_period': ['1870-1-16 11:59:59.5', '2020-10-16 12:0:0.0']},
         'Tropflux': {'keyerror': None,
          'name': 'Tropflux',
          'nyears': 40,
          'time_period': ['1979-1-15 0:0:0.0', '2018-12-15 12:0:0.0']},
         'method': 'Standard deviation of nino3.4 sstA, time series are linearly detrended',
         'name': 'ENSO amplitude',
         'ref': 'Using CDAT regression calculation',
         'time_frequency': 'monthly',
         'units': 'C'},
        'metric': {'datasets': "GISS-E2-H_r5i1p1; ERA-Interim's ts & HadISST's sst & Tropflux's sst; 's ",
         'method': 'The metric is the absolute value of the relative difference between model and observations values (M = 100 * abs[[model-obs] / obs])',
         'name': 'EnsoAmpl',
         'units': '%'}},
       'EnsoDuration': {'diagnostic': {'ERA-Interim': {'keyerror': None,
          'name': 'ERA-Interim',
          'nyears': 40,
          'time_period': ['1979-1-16 12:0:0.0', '2019-3-16 12:0:0.0']},
         'GISS-E2-H_r5i1p1': {'keyerror': None,
          'name': 'GISS-E2-H_r5i1p1',
          'nyears': 156,
          'time_period': ['1850-1-16 12:0:0.0', '2005-12-16 12:0:0.0']},
         'HadISST': {'keyerror': None,
          'name': 'HadISST',
          'nyears': 151,
          'time_period': ['1870-1-16 11:59:59.5', '2020-10-16 12:0:0.0']},
         'Tropflux': {'keyerror': None,
          'name': 'Tropflux',
          'nyears': 40,
          'time_period': ['1979-1-15 0:0:0.0', '2018-12-15 12:0:0.0']},
         'method': 'nino3.4 SSTA during DEC regressed against nino3.4 SSTA during 6 years (centered on ENSO), the duration is the number of consecutive months during which the regression is above 0.25, time series are linearly detrended, smoothing using a triangle shaped window of 5 points',
         'name': 'ENSO Duration based on life cyle SSTA pattern',
         'ref': 'Using CDAT',
         'time_frequency': 'monthly',
         'units': 'months'},
        'metric': {'datasets': "GISS-E2-H_r5i1p1; ERA-Interim's ts & HadISST's sst & Tropflux's sst; 's ",
         'method': 'The metric is the absolute value of the relative difference between model and observations values (M = 100 * abs[[model-obs] / obs])',
         'name': 'EnsoDuration',
         'units': '%'}},
       'EnsoSeasonality': {'diagnostic': {'ERA-Interim': {'keyerror': None,
          'name': 'ERA-Interim',
          'nyears': 40,
          'time_period': ['1979-1-16 12:0:0.0', '2019-3-16 12:0:0.0']},
         'GISS-E2-H_r5i1p1': {'keyerror': None,
          'name': 'GISS-E2-H_r5i1p1',
          'nyears': 156,
          'time_period': ['1850-1-16 12:0:0.0', '2005-12-16 12:0:0.0']},
         'HadISST': {'keyerror': None,
          'name': 'HadISST',
          'nyears': 151,
          'time_period': ['1870-1-16 11:59:59.5', '2020-10-16 12:0:0.0']},
         'Tropflux': {'keyerror': None,
          'name': 'Tropflux',
          'nyears': 40,
          'time_period': ['1979-1-15 0:0:0.0', '2018-12-15 12:0:0.0']},
         'method': 'Ratio between NDJ and MAM standard deviation nino3.4 sstA, time series are linearly detrended',
         'name': 'ENSO seasonality',
         'ref': 'Using CDAT std dev calculation',
         'time_frequency': 'monthly',
         'units': 'C/C'},
        'metric': {'datasets': "GISS-E2-H_r5i1p1; ERA-Interim's ts & HadISST's sst & Tropflux's sst; 's ",
         'method': 'The metric is the absolute value of the relative difference between model and observations values (M = 100 * abs[[model-obs] / obs])',
         'name': 'EnsoSeasonality',
         'units': '%'}},
       'EnsoSstDiversity_2': {'diagnostic': {'ERA-Interim': {'keyerror': None,
          'name': 'ERA-Interim',
          'nyears': 40,
          'time_period': ['1979-1-16 12:0:0.0', '2019-3-16 12:0:0.0']},
         'GISS-E2-H_r5i1p1': {'keyerror': None,
          'name': 'GISS-E2-H_r5i1p1',
          'nyears': 156,
          'time_period': ['1850-1-16 12:0:0.0', '2005-12-16 12:0:0.0']},
         'HadISST': {'keyerror': None,
          'name': 'HadISST',
          'nyears': 151,
          'time_period': ['1870-1-16 11:59:59.5', '2020-10-16 12:0:0.0']},
         'Tropflux': {'keyerror': None,
          'name': 'Tropflux',
          'nyears': 40,
          'time_period': ['1979-1-15 0:0:0.0', '2018-12-15 12:0:0.0']},
         'method': 'Nino (Nina) events = nino3.4 sstA > 0.75 (< -0.75) during DEC, zonal SSTA (meridional averaged [-5.0 ; 5.0]), the zonal SSTA maximum (minimum) is located for each event, the diversity is the interquartile range (IQR = Q3 - Q1), time series are linearly detrended, smoothing using a triangle shaped window of 5 points',
         'name': 'ENSO Diversity (interquartile range)',
         'ref': 'Using CDAT regridding',
         'time_frequency': 'monthly',
         'units': 'long'},
        'metric': {'datasets': "GISS-E2-H_r5i1p1; ERA-Interim's ts & HadISST's sst & Tropflux's sst; 's ",
         'method': 'The metric is the absolute value of the relative difference between model and observations values (M = 100 * abs[[model-obs] / obs])',
         'name': 'EnsoSstDiversity',
         'units': '%'}},
       'EnsoSstLonRmse': {'diagnostic': {'ERA-Interim': {'name': 'ERA-Interim',
          'nyears': 40,
          'time_period': ['1979-1-16 12:0:0.0', '2019-3-16 12:0:0.0']},
         'GISS-E2-H_r5i1p1': {'keyerror': None,
          'name': 'GISS-E2-H_r5i1p1',
          'nyears': 156,
          'time_period': ['1850-1-16 12:0:0.0', '2005-12-16 12:0:0.0']},
         'HadISST': {'name': 'HadISST',
          'nyears': 151,
          'time_period': ['1870-1-16 11:59:59.5', '2020-10-16 12:0:0.0']},
         'Tropflux': {'name': 'Tropflux',
          'nyears': 40,
          'time_period': ['1979-1-15 0:0:0.0', '2018-12-15 12:0:0.0']},
         'method': 'nino3.4 SSTA during DEC regressed against equatorial_pacific SSTA, time series are linearly detrended, smoothing using a triangle shaped window of 5 points, observations and model regridded to generic_1x1deg',
         'name': 'ENSO Zonal SSTA pattern',
         'ref': 'Using CDAT regridding and rms (uncentered and biased) calculation',
         'time_frequency': 'monthly',
         'units': 'C/C'},
        'metric': {'datasets': "GISS-E2-H_r5i1p1; ERA-Interim's ts & HadISST's sst & Tropflux's sst; 's ",
         'method': 'The metric is the statistical value between the model and the observations',
         'name': 'EnsoSstLonRmse',
         'units': 'C/C'}},
       'EnsoSstSkew': {'diagnostic': {'ERA-Interim': {'keyerror': None,
          'name': 'ERA-Interim',
          'nyears': 40,
          'time_period': ['1979-1-16 12:0:0.0', '2019-3-16 12:0:0.0']},
         'GISS-E2-H_r5i1p1': {'keyerror': None,
          'name': 'GISS-E2-H_r5i1p1',
          'nyears': 156,
          'time_period': ['1850-1-16 12:0:0.0', '2005-12-16 12:0:0.0']},
         'HadISST': {'keyerror': None,
          'name': 'HadISST',
          'nyears': 151,
          'time_period': ['1870-1-16 11:59:59.5', '2020-10-16 12:0:0.0']},
         'Tropflux': {'keyerror': None,
          'name': 'Tropflux',
          'nyears': 40,
          'time_period': ['1979-1-15 0:0:0.0', '2018-12-15 12:0:0.0']},
         'method': 'Standard deviation of nino3.4 sstA, time series are linearly detrended',
         'name': 'ENSO skewness',
         'ref': 'Using CDAT regression calculation',
         'time_frequency': 'monthly',
         'units': 'C'},
        'metric': {'datasets': "GISS-E2-H_r5i1p1; ERA-Interim's ts & HadISST's sst & Tropflux's sst; 's ",
         'method': 'The metric is the absolute value of the relative difference between model and observations values (M = 100 * abs[[model-obs] / obs])',
         'name': 'EnsoSstSkew',
         'units': '%'}},
       'EnsoSstTsRmse': {'diagnostic': {'ERA-Interim': {'name': 'ERA-Interim',
          'nyears': 40,
          'time_period': ['1979-1-16 12:0:0.0', '2019-3-16 12:0:0.0']},
         'GISS-E2-H_r5i1p1': {'keyerror': None,
          'name': 'GISS-E2-H_r5i1p1',
          'nyears': 156,
          'time_period': ['1850-1-16 12:0:0.0', '2005-12-16 12:0:0.0']},
         'HadISST': {'name': 'HadISST',
          'nyears': 151,
          'time_period': ['1870-1-16 11:59:59.5', '2020-10-16 12:0:0.0']},
         'Tropflux': {'name': 'Tropflux',
          'nyears': 40,
          'time_period': ['1979-1-15 0:0:0.0', '2018-12-15 12:0:0.0']},
         'method': 'nino3.4 SSTA during DEC regressed against nino3.4 SSTA during 6 years (centered on ENSO), time series are linearly detrended, smoothing using a triangle shaped window of 5 points',
         'name': 'ENSO life cyle SSTA pattern',
         'ref': 'Using CDAT regridding and rms (uncentered and biased) calculation',
         'time_frequency': 'monthly',
         'units': 'C/C'},
        'metric': {'datasets': "GISS-E2-H_r5i1p1; ERA-Interim's ts & HadISST's sst & Tropflux's sst; 's ",
         'method': 'The metric is the statistical value between the model and the observations',
         'name': 'EnsoSstTsRmse',
         'units': 'C/C'}},
       'SeasonalPrLatRmse': {'diagnostic': {'ERA-Interim': {'name': 'ERA-Interim',
          'nyears': 40,
          'time_period': ['1979-1-16 12:0:0.0', '2019-3-16 12:0:0.0']},
         'GISS-E2-H_r5i1p1': {'keyerror': None,
          'name': 'GISS-E2-H_r5i1p1',
          'nyears': 156,
          'time_period': ['1850-1-16 12:0:0.0', '2005-12-16 12:0:0.0']},
         'GPCPv2.3': {'name': 'GPCPv2.3',
          'nyears': 41,
          'time_period': ['1979-1-1 0:0:0.0', '2019-7-1 0:0:0.0']},
         'method': 'Meridional root mean square error of nino3_LatExt climatological pr STD, time series are linearly detrended, observations and model regridded to generic_1x1deg',
         'name': 'pr meridional seasonality RMSE',
         'ref': 'Using CDAT regridding and rms (uncentered and biased) calculation',
         'time_frequency': 'monthly',
         'units': 'mm/day'},
        'metric': {'datasets': "GISS-E2-H_r5i1p1; ERA-Interim's pr & GPCPv2.3's precip; 's ",
         'method': 'The metric is the statistical value between the model and the observations',
         'name': 'SeasonalPrLatRmse',
         'units': 'mm/day'}},
       'SeasonalPrLonRmse': {'diagnostic': {'ERA-Interim': {'name': 'ERA-Interim',
          'nyears': 40,
          'time_period': ['1979-1-16 12:0:0.0', '2019-3-16 12:0:0.0']},
         'GISS-E2-H_r5i1p1': {'keyerror': None,
          'name': 'GISS-E2-H_r5i1p1',
          'nyears': 156,
          'time_period': ['1850-1-16 12:0:0.0', '2005-12-16 12:0:0.0']},
         'GPCPv2.3': {'name': 'GPCPv2.3',
          'nyears': 41,
          'time_period': ['1979-1-1 0:0:0.0', '2019-7-1 0:0:0.0']},
         'method': 'Zonal root mean square error of equatorial_pacific climatological pr STD, time series are linearly detrended, observations and model regridded to generic_1x1deg',
         'name': 'pr zonal seasonality RMSE',
         'ref': 'Using CDAT regridding and rms (uncentered and biased) calculation',
         'time_frequency': 'monthly',
         'units': 'mm/day'},
        'metric': {'datasets': "GISS-E2-H_r5i1p1; ERA-Interim's pr & GPCPv2.3's precip; 's ",
         'method': 'The metric is the statistical value between the model and the observations',
         'name': 'SeasonalPrLonRmse',
         'units': 'mm/day'}},
       'SeasonalSstLonRmse': {'diagnostic': {'ERA-Interim': {'name': 'ERA-Interim',
          'nyears': 40,
          'time_period': ['1979-1-16 12:0:0.0', '2019-3-16 12:0:0.0']},
         'GISS-E2-H_r5i1p1': {'keyerror': None,
          'name': 'GISS-E2-H_r5i1p1',
          'nyears': 156,
          'time_period': ['1850-1-16 12:0:0.0', '2005-12-16 12:0:0.0']},
         'HadISST': {'name': 'HadISST',
          'nyears': 151,
          'time_period': ['1870-1-16 11:59:59.5', '2020-10-16 12:0:0.0']},
         'Tropflux': {'name': 'Tropflux',
          'nyears': 40,
          'time_period': ['1979-1-15 0:0:0.0', '2018-12-15 12:0:0.0']},
         'method': 'Zonal root mean square error of equatorial_pacific climatological sst STD, time series are linearly detrended, observations and model regridded to generic_1x1deg',
         'name': 'sst zonal seasonality RMSE',
         'ref': 'Using CDAT regridding and rms (uncentered and biased) calculation',
         'time_frequency': 'monthly',
         'units': 'C'},
        'metric': {'datasets': "GISS-E2-H_r5i1p1; ERA-Interim's ts & HadISST's sst & Tropflux's sst; 's ",
         'method': 'The metric is the statistical value between the model and the observations',
         'name': 'SeasonalSstLonRmse',
         'units': 'C'}},
       'SeasonalTauxLonRmse': {'diagnostic': {'ERA-Interim': {'name': 'ERA-Interim',
          'nyears': 40,
          'time_period': ['1979-1-16 12:0:0.0', '2019-3-16 12:0:0.0']},
         'GISS-E2-H_r5i1p1': {'keyerror': None,
          'name': 'GISS-E2-H_r5i1p1',
          'nyears': 156,
          'time_period': ['1850-1-16 12:0:0.0', '2005-12-16 12:0:0.0']},
         'Tropflux': {'name': 'Tropflux',
          'nyears': 40,
          'time_period': ['1979-1-15 0:0:0.0', '2018-12-15 12:0:0.0']},
         'method': 'Zonal root mean square error of equatorial_pacific climatological taux STD, time series are linearly detrended, observations and model regridded to generic_1x1deg',
         'name': 'taux zonal seasonality RMSE',
         'ref': 'Using CDAT regridding and rms (uncentered and biased) calculation',
         'time_frequency': 'monthly',
         'units': '1e-3 N/m2'},
        'metric': {'datasets': "GISS-E2-H_r5i1p1; ERA-Interim's tauu & Tropflux's taux; 's ",
         'method': 'The metric is the statistical value between the model and the observations',
         'name': 'SeasonalTauxLonRmse',
         'units': '1e-3 N/m2'}}},
      'name': 'Metrics Collection for ENSO performance'},
     'value': {'BiasPrLatRmse': {'diagnostic': {'ERA-Interim': {'value': None,
         'value_error': None},
        'GISS-E2-H_r5i1p1': {'value': None, 'value_error': None},
        'GPCPv2.3': {'value': None, 'value_error': None}},
       'metric': {'ERA-Interim': {'value': 2.874509689973064,
         'value_error': None},
        'GPCPv2.3': {'value': 3.472616806531931, 'value_error': None}}},
      'BiasPrLonRmse': {'diagnostic': {'ERA-Interim': {'value': None,
         'value_error': None},
        'GISS-E2-H_r5i1p1': {'value': None, 'value_error': None},
        'GPCPv2.3': {'value': None, 'value_error': None}},
       'metric': {'ERA-Interim': {'value': 1.4866354513867346,
         'value_error': None},
        'GPCPv2.3': {'value': 0.9037877194460897, 'value_error': None}}},
      'BiasSstLonRmse': {'diagnostic': {'ERA-Interim': {'value': None,
         'value_error': None},
        'GISS-E2-H_r5i1p1': {'value': None, 'value_error': None},
        'HadISST': {'value': None, 'value_error': None},
        'Tropflux': {'value': None, 'value_error': None}},
       'metric': {'ERA-Interim': {'value': 0.8248458336584693,
         'value_error': None},
        'HadISST': {'value': 0.9051245239666483, 'value_error': None},
        'Tropflux': {'value': 0.8157171071456946, 'value_error': None}}},
      'BiasTauxLonRmse': {'diagnostic': {'ERA-Interim': {'value': None,
         'value_error': None},
        'GISS-E2-H_r5i1p1': {'value': None, 'value_error': None},
        'Tropflux': {'value': None, 'value_error': None}},
       'metric': {'ERA-Interim': {'value': 21.279772272664104,
         'value_error': None},
        'Tropflux': {'value': 20.924000677956194, 'value_error': None}}},
      'EnsoAmpl': {'diagnostic': {'ERA-Interim': {'value': 0.8989844997845644,
         'value_error': 0.14214193002531866},
        'GISS-E2-H_r5i1p1': {'value': 0.5107396648885939,
         'value_error': 0.04089189980681971},
        'HadISST': {'value': 0.7665787872085695,
         'value_error': 0.06238329697691264},
        'Tropflux': {'value': 0.9039789553693535,
         'value_error': 0.14293162279134272}},
       'metric': {'ERA-Interim': {'value': 43.18704438052166,
         'value_error': 13.531593865959406},
        'HadISST': {'value': 33.374145826757314,
         'value_error': 10.756272630419673},
        'Tropflux': {'value': 43.50093419155841,
         'value_error': 13.456832231129834}}},
      'EnsoDuration': {'diagnostic': {'ERA-Interim': {'value': 13.0,
         'value_error': None},
        'GISS-E2-H_r5i1p1': {'value': 14.0, 'value_error': None},
        'HadISST': {'value': 13.0, 'value_error': None},
        'Tropflux': {'value': 13.0, 'value_error': None}},
       'metric': {'ERA-Interim': {'value': 7.6923076923076925,
         'value_error': None},
        'HadISST': {'value': 7.6923076923076925, 'value_error': None},
        'Tropflux': {'value': 7.6923076923076925, 'value_error': None}}},
      'EnsoSeasonality': {'diagnostic': {'ERA-Interim': {'value': 2.0466846866656914,
         'value_error': 0.6513411033995022},
        'GISS-E2-H_r5i1p1': {'value': 1.3367977372910322,
         'value_error': 0.2144036549841436},
        'HadISST': {'value': 1.6639865947361325,
         'value_error': 0.2712772451657809},
        'Tropflux': {'value': 2.0532132553583624,
         'value_error': 0.6534187683977347}},
       'metric': {'ERA-Interim': {'value': 34.684724716006684,
         'value_error': 31.261722622730442},
        'HadISST': {'value': 19.662950319439588,
         'value_error': 25.982167859566868},
        'Tropflux': {'value': 34.89240663129699,
         'value_error': 31.162320233299578}}},
      'EnsoSstDiversity_2': {'diagnostic': {'ERA-Interim': {'value': 33.25,
         'value_error': None},
        'GISS-E2-H_r5i1p1': {'value': 26.0, 'value_error': None},
        'HadISST': {'value': 49.0, 'value_error': None},
        'Tropflux': {'value': 32.0, 'value_error': None}},
       'metric': {'ERA-Interim': {'value': 21.804511278195488,
         'value_error': None},
        'HadISST': {'value': 46.93877551020408, 'value_error': None},
        'Tropflux': {'value': 18.75, 'value_error': None}}},
      'EnsoSstLonRmse': {'diagnostic': {'ERA-Interim': {'value': None,
         'value_error': None},
        'GISS-E2-H_r5i1p1': {'value': None, 'value_error': None},
        'HadISST': {'value': None, 'value_error': None},
        'Tropflux': {'value': None, 'value_error': None}},
       'metric': {'ERA-Interim': {'value': 0.2720762452665185,
         'value_error': None},
        'HadISST': {'value': 0.27779061070693156, 'value_error': None},
        'Tropflux': {'value': 0.2715140285819595, 'value_error': None}}},
      'EnsoSstSkew': {'diagnostic': {'ERA-Interim': {'value': 0.39098111106809963,
         'value_error': 0.061819541653923164},
        'GISS-E2-H_r5i1p1': {'value': -0.31561592876108574,
         'value_error': -0.02526949799199528},
        'HadISST': {'value': 0.38989908235027515,
         'value_error': 0.03172953733021198},
        'Tropflux': {'value': 0.39744741059612115,
         'value_error': 0.06284195338099416}},
       'metric': {'ERA-Interim': {'value': 180.72408610709405,
         'value_error': -19.22669814466453},
        'HadISST': {'value': 180.94810761250898,
         'value_error': -13.068499086445856},
        'Tropflux': {'value': 179.41073972219408,
         'value_error': -18.913887982052618}}},
      'EnsoSstTsRmse': {'diagnostic': {'ERA-Interim': {'value': None,
         'value_error': None},
        'GISS-E2-H_r5i1p1': {'value': None, 'value_error': None},
        'HadISST': {'value': None, 'value_error': None},
        'Tropflux': {'value': None, 'value_error': None}},
       'metric': {'ERA-Interim': {'value': 0.12767930015830276,
         'value_error': None},
        'HadISST': {'value': 0.10549589674735305, 'value_error': None},
        'Tropflux': {'value': 0.12762064484851884, 'value_error': None}}},
      'SeasonalPrLatRmse': {'diagnostic': {'ERA-Interim': {'value': None,
         'value_error': None},
        'GISS-E2-H_r5i1p1': {'value': None, 'value_error': None},
        'GPCPv2.3': {'value': None, 'value_error': None}},
       'metric': {'ERA-Interim': {'value': 1.1362679546920644,
         'value_error': None},
        'GPCPv2.3': {'value': 1.0240498506257734, 'value_error': None}}},
      'SeasonalPrLonRmse': {'diagnostic': {'ERA-Interim': {'value': None,
         'value_error': None},
        'GISS-E2-H_r5i1p1': {'value': None, 'value_error': None},
        'GPCPv2.3': {'value': None, 'value_error': None}},
       'metric': {'ERA-Interim': {'value': 0.8088737145075731,
         'value_error': None},
        'GPCPv2.3': {'value': 0.4972784325969952, 'value_error': None}}},
      'SeasonalSstLonRmse': {'diagnostic': {'ERA-Interim': {'value': None,
         'value_error': None},
        'GISS-E2-H_r5i1p1': {'value': None, 'value_error': None},
        'HadISST': {'value': None, 'value_error': None},
        'Tropflux': {'value': None, 'value_error': None}},
       'metric': {'ERA-Interim': {'value': 0.30498603583443595,
         'value_error': None},
        'HadISST': {'value': 0.29979739473304956, 'value_error': None},
        'Tropflux': {'value': 0.31454356893867563, 'value_error': None}}},
      'SeasonalTauxLonRmse': {'diagnostic': {'ERA-Interim': {'value': None,
         'value_error': None},
        'GISS-E2-H_r5i1p1': {'value': None, 'value_error': None},
        'Tropflux': {'value': None, 'value_error': None}},
       'metric': {'ERA-Interim': {'value': 2.979487722866061,
         'value_error': None},
        'Tropflux': {'value': 3.2149898143768434, 'value_error': None}}}}},
    'r5i1p2': {'metadata': {'description_of_the_collection': 'Describe which science question this collection is about',
      'metrics': {'BiasPrLatRmse': {'diagnostic': {'ERA-Interim': {'name': 'ERA-Interim',
          'nyears': 40,
          'time_period': ['1979-1-16 12:0:0.0', '2019-3-16 12:0:0.0']},
         'GISS-E2-H_r5i1p2': {'keyerror': None,
          'name': 'GISS-E2-H_r5i1p2',
          'nyears': 156,
          'time_period': ['1850-1-16 12:0:0.0', '2005-12-16 12:0:0.0']},
         'GPCPv2.3': {'name': 'GPCPv2.3',
          'nyears': 41,
          'time_period': ['1979-1-1 0:0:0.0', '2019-7-1 0:0:0.0']},
         'method': 'Meridional root mean square error of nino3_LatExt pr, time series are linearly detrended, observations and model regridded to generic_1x1deg',
         'name': 'pr Meridional RMSE',
         'ref': 'Using CDAT regridding and rms (uncentered and biased) calculation',
         'time_frequency': 'monthly',
         'units': 'mm/day'},
        'metric': {'datasets': "GISS-E2-H_r5i1p2; ERA-Interim's pr & GPCPv2.3's precip; 's ",
         'method': 'The metric is the statistical value between the model and the observations',
         'name': 'BiasPrLatRmse',
         'units': 'mm/day'}},
       'BiasPrLonRmse': {'diagnostic': {'ERA-Interim': {'name': 'ERA-Interim',
          'nyears': 40,
          'time_period': ['1979-1-16 12:0:0.0', '2019-3-16 12:0:0.0']},
         'GISS-E2-H_r5i1p2': {'keyerror': None,
          'name': 'GISS-E2-H_r5i1p2',
          'nyears': 156,
          'time_period': ['1850-1-16 12:0:0.0', '2005-12-16 12:0:0.0']},
         'GPCPv2.3': {'name': 'GPCPv2.3',
          'nyears': 41,
          'time_period': ['1979-1-1 0:0:0.0', '2019-7-1 0:0:0.0']},
         'method': 'Zonal root mean square error of equatorial_pacific pr, time series are linearly detrended, observations and model regridded to generic_1x1deg',
         'name': 'pr Zonal RMSE',
         'ref': 'Using CDAT regridding and rms (uncentered and biased) calculation',
         'time_frequency': 'monthly',
         'units': 'mm/day'},
        'metric': {'datasets': "GISS-E2-H_r5i1p2; ERA-Interim's pr & GPCPv2.3's precip; 's ",
         'method': 'The metric is the statistical value between the model and the observations',
         'name': 'BiasPrLonRmse',
         'units': 'mm/day'}},
       'BiasSstLonRmse': {'diagnostic': {'ERA-Interim': {'name': 'ERA-Interim',
          'nyears': 40,
          'time_period': ['1979-1-16 12:0:0.0', '2019-3-16 12:0:0.0']},
         'GISS-E2-H_r5i1p2': {'keyerror': None,
          'name': 'GISS-E2-H_r5i1p2',
          'nyears': 156,
          'time_period': ['1850-1-16 12:0:0.0', '2005-12-16 12:0:0.0']},
         'HadISST': {'name': 'HadISST',
          'nyears': 151,
          'time_period': ['1870-1-16 11:59:59.5', '2020-10-16 12:0:0.0']},
         'Tropflux': {'name': 'Tropflux',
          'nyears': 40,
          'time_period': ['1979-1-15 0:0:0.0', '2018-12-15 12:0:0.0']},
         'method': 'Zonal root mean square error of equatorial_pacific sst, time series are linearly detrended, observations and model regridded to generic_1x1deg',
         'name': 'sst Zonal RMSE',
         'ref': 'Using CDAT regridding and rms (uncentered and biased) calculation',
         'time_frequency': 'monthly',
         'units': 'C'},
        'metric': {'datasets': "GISS-E2-H_r5i1p2; ERA-Interim's ts & HadISST's sst & Tropflux's sst; 's ",
         'method': 'The metric is the statistical value between the model and the observations',
         'name': 'BiasSstLonRmse',
         'units': 'C'}},
       'BiasTauxLonRmse': {'diagnostic': {'ERA-Interim': {'name': 'ERA-Interim',
          'nyears': 40,
          'time_period': ['1979-1-16 12:0:0.0', '2019-3-16 12:0:0.0']},
         'GISS-E2-H_r5i1p2': {'keyerror': None,
          'name': 'GISS-E2-H_r5i1p2',
          'nyears': 156,
          'time_period': ['1850-1-16 12:0:0.0', '2005-12-16 12:0:0.0']},
         'Tropflux': {'name': 'Tropflux',
          'nyears': 40,
          'time_period': ['1979-1-15 0:0:0.0', '2018-12-15 12:0:0.0']},
         'method': 'Zonal root mean square error of equatorial_pacific taux, time series are linearly detrended, observations and model regridded to generic_1x1deg',
         'name': 'taux Zonal RMSE',
         'ref': 'Using CDAT regridding and rms (uncentered and biased) calculation',
         'time_frequency': 'monthly',
         'units': '1e-3 N/m2'},
        'metric': {'datasets': "GISS-E2-H_r5i1p2; ERA-Interim's tauu & Tropflux's taux; 's ",
         'method': 'The metric is the statistical value between the model and the observations',
         'name': 'BiasTauxLonRmse',
         'units': '1e-3 N/m2'}},
       'EnsoAmpl': {'diagnostic': {'ERA-Interim': {'keyerror': None,
          'name': 'ERA-Interim',
          'nyears': 40,
          'time_period': ['1979-1-16 12:0:0.0', '2019-3-16 12:0:0.0']},
         'GISS-E2-H_r5i1p2': {'keyerror': None,
          'name': 'GISS-E2-H_r5i1p2',
          'nyears': 156,
          'time_period': ['1850-1-16 12:0:0.0', '2005-12-16 12:0:0.0']},
         'HadISST': {'keyerror': None,
          'name': 'HadISST',
          'nyears': 151,
          'time_period': ['1870-1-16 11:59:59.5', '2020-10-16 12:0:0.0']},
         'Tropflux': {'keyerror': None,
          'name': 'Tropflux',
          'nyears': 40,
          'time_period': ['1979-1-15 0:0:0.0', '2018-12-15 12:0:0.0']},
         'method': 'Standard deviation of nino3.4 sstA, time series are linearly detrended',
         'name': 'ENSO amplitude',
         'ref': 'Using CDAT regression calculation',
         'time_frequency': 'monthly',
         'units': 'C'},
        'metric': {'datasets': "GISS-E2-H_r5i1p2; ERA-Interim's ts & HadISST's sst & Tropflux's sst; 's ",
         'method': 'The metric is the absolute value of the relative difference between model and observations values (M = 100 * abs[[model-obs] / obs])',
         'name': 'EnsoAmpl',
         'units': '%'}},
       'EnsoDuration': {'diagnostic': {'ERA-Interim': {'keyerror': None,
          'name': 'ERA-Interim',
          'nyears': 40,
          'time_period': ['1979-1-16 12:0:0.0', '2019-3-16 12:0:0.0']},
         'GISS-E2-H_r5i1p2': {'keyerror': None,
          'name': 'GISS-E2-H_r5i1p2',
          'nyears': 156,
          'time_period': ['1850-1-16 12:0:0.0', '2005-12-16 12:0:0.0']},
         'HadISST': {'keyerror': None,
          'name': 'HadISST',
          'nyears': 151,
          'time_period': ['1870-1-16 11:59:59.5', '2020-10-16 12:0:0.0']},
         'Tropflux': {'keyerror': None,
          'name': 'Tropflux',
          'nyears': 40,
          'time_period': ['1979-1-15 0:0:0.0', '2018-12-15 12:0:0.0']},
         'method': 'nino3.4 SSTA during DEC regressed against nino3.4 SSTA during 6 years (centered on ENSO), the duration is the number of consecutive months during which the regression is above 0.25, time series are linearly detrended, smoothing using a triangle shaped window of 5 points',
         'name': 'ENSO Duration based on life cyle SSTA pattern',
         'ref': 'Using CDAT',
         'time_frequency': 'monthly',
         'units': 'months'},
        'metric': {'datasets': "GISS-E2-H_r5i1p2; ERA-Interim's ts & HadISST's sst & Tropflux's sst; 's ",
         'method': 'The metric is the absolute value of the relative difference between model and observations values (M = 100 * abs[[model-obs] / obs])',
         'name': 'EnsoDuration',
         'units': '%'}},
       'EnsoSeasonality': {'diagnostic': {'ERA-Interim': {'keyerror': None,
          'name': 'ERA-Interim',
          'nyears': 40,
          'time_period': ['1979-1-16 12:0:0.0', '2019-3-16 12:0:0.0']},
         'GISS-E2-H_r5i1p2': {'keyerror': None,
          'name': 'GISS-E2-H_r5i1p2',
          'nyears': 156,
          'time_period': ['1850-1-16 12:0:0.0', '2005-12-16 12:0:0.0']},
         'HadISST': {'keyerror': None,
          'name': 'HadISST',
          'nyears': 151,
          'time_period': ['1870-1-16 11:59:59.5', '2020-10-16 12:0:0.0']},
         'Tropflux': {'keyerror': None,
          'name': 'Tropflux',
          'nyears': 40,
          'time_period': ['1979-1-15 0:0:0.0', '2018-12-15 12:0:0.0']},
         'method': 'Ratio between NDJ and MAM standard deviation nino3.4 sstA, time series are linearly detrended',
         'name': 'ENSO seasonality',
         'ref': 'Using CDAT std dev calculation',
         'time_frequency': 'monthly',
         'units': 'C/C'},
        'metric': {'datasets': "GISS-E2-H_r5i1p2; ERA-Interim's ts & HadISST's sst & Tropflux's sst; 's ",
         'method': 'The metric is the absolute value of the relative difference between model and observations values (M = 100 * abs[[model-obs] / obs])',
         'name': 'EnsoSeasonality',
         'units': '%'}},
       'EnsoSstDiversity_2': {'diagnostic': {'ERA-Interim': {'keyerror': None,
          'name': 'ERA-Interim',
          'nyears': 40,
          'time_period': ['1979-1-16 12:0:0.0', '2019-3-16 12:0:0.0']},
         'GISS-E2-H_r5i1p2': {'keyerror': None,
          'name': 'GISS-E2-H_r5i1p2',
          'nyears': 156,
          'time_period': ['1850-1-16 12:0:0.0', '2005-12-16 12:0:0.0']},
         'HadISST': {'keyerror': None,
          'name': 'HadISST',
          'nyears': 151,
          'time_period': ['1870-1-16 11:59:59.5', '2020-10-16 12:0:0.0']},
         'Tropflux': {'keyerror': None,
          'name': 'Tropflux',
          'nyears': 40,
          'time_period': ['1979-1-15 0:0:0.0', '2018-12-15 12:0:0.0']},
         'method': 'Nino (Nina) events = nino3.4 sstA > 0.75 (< -0.75) during DEC, zonal SSTA (meridional averaged [-5.0 ; 5.0]), the zonal SSTA maximum (minimum) is located for each event, the diversity is the interquartile range (IQR = Q3 - Q1), time series are linearly detrended, smoothing using a triangle shaped window of 5 points',
         'name': 'ENSO Diversity (interquartile range)',
         'ref': 'Using CDAT regridding',
         'time_frequency': 'monthly',
         'units': 'long'},
        'metric': {'datasets': "GISS-E2-H_r5i1p2; ERA-Interim's ts & HadISST's sst & Tropflux's sst; 's ",
         'method': 'The metric is the absolute value of the relative difference between model and observations values (M = 100 * abs[[model-obs] / obs])',
         'name': 'EnsoSstDiversity',
         'units': '%'}},
       'EnsoSstLonRmse': {'diagnostic': {'ERA-Interim': {'name': 'ERA-Interim',
          'nyears': 40,
          'time_period': ['1979-1-16 12:0:0.0', '2019-3-16 12:0:0.0']},
         'GISS-E2-H_r5i1p2': {'keyerror': None,
          'name': 'GISS-E2-H_r5i1p2',
          'nyears': 156,
          'time_period': ['1850-1-16 12:0:0.0', '2005-12-16 12:0:0.0']},
         'HadISST': {'name': 'HadISST',
          'nyears': 151,
          'time_period': ['1870-1-16 11:59:59.5', '2020-10-16 12:0:0.0']},
         'Tropflux': {'name': 'Tropflux',
          'nyears': 40,
          'time_period': ['1979-1-15 0:0:0.0', '2018-12-15 12:0:0.0']},
         'method': 'nino3.4 SSTA during DEC regressed against equatorial_pacific SSTA, time series are linearly detrended, smoothing using a triangle shaped window of 5 points, observations and model regridded to generic_1x1deg',
         'name': 'ENSO Zonal SSTA pattern',
         'ref': 'Using CDAT regridding and rms (uncentered and biased) calculation',
         'time_frequency': 'monthly',
         'units': 'C/C'},
        'metric': {'datasets': "GISS-E2-H_r5i1p2; ERA-Interim's ts & HadISST's sst & Tropflux's sst; 's ",
         'method': 'The metric is the statistical value between the model and the observations',
         'name': 'EnsoSstLonRmse',
         'units': 'C/C'}},
       'EnsoSstSkew': {'diagnostic': {'ERA-Interim': {'keyerror': None,
          'name': 'ERA-Interim',
          'nyears': 40,
          'time_period': ['1979-1-16 12:0:0.0', '2019-3-16 12:0:0.0']},
         'GISS-E2-H_r5i1p2': {'keyerror': None,
          'name': 'GISS-E2-H_r5i1p2',
          'nyears': 156,
          'time_period': ['1850-1-16 12:0:0.0', '2005-12-16 12:0:0.0']},
         'HadISST': {'keyerror': None,
          'name': 'HadISST',
          'nyears': 151,
          'time_period': ['1870-1-16 11:59:59.5', '2020-10-16 12:0:0.0']},
         'Tropflux': {'keyerror': None,
          'name': 'Tropflux',
          'nyears': 40,
          'time_period': ['1979-1-15 0:0:0.0', '2018-12-15 12:0:0.0']},
         'method': 'Standard deviation of nino3.4 sstA, time series are linearly detrended',
         'name': 'ENSO skewness',
         'ref': 'Using CDAT regression calculation',
         'time_frequency': 'monthly',
         'units': 'C'},
        'metric': {'datasets': "GISS-E2-H_r5i1p2; ERA-Interim's ts & HadISST's sst & Tropflux's sst; 's ",
         'method': 'The metric is the absolute value of the relative difference between model and observations values (M = 100 * abs[[model-obs] / obs])',
         'name': 'EnsoSstSkew',
         'units': '%'}},
       'EnsoSstTsRmse': {'diagnostic': {'ERA-Interim': {'name': 'ERA-Interim',
          'nyears': 40,
          'time_period': ['1979-1-16 12:0:0.0', '2019-3-16 12:0:0.0']},
         'GISS-E2-H_r5i1p2': {'keyerror': None,
          'name': 'GISS-E2-H_r5i1p2',
          'nyears': 156,
          'time_period': ['1850-1-16 12:0:0.0', '2005-12-16 12:0:0.0']},
         'HadISST': {'name': 'HadISST',
          'nyears': 151,
          'time_period': ['1870-1-16 11:59:59.5', '2020-10-16 12:0:0.0']},
         'Tropflux': {'name': 'Tropflux',
          'nyears': 40,
          'time_period': ['1979-1-15 0:0:0.0', '2018-12-15 12:0:0.0']},
         'method': 'nino3.4 SSTA during DEC regressed against nino3.4 SSTA during 6 years (centered on ENSO), time series are linearly detrended, smoothing using a triangle shaped window of 5 points',
         'name': 'ENSO life cyle SSTA pattern',
         'ref': 'Using CDAT regridding and rms (uncentered and biased) calculation',
         'time_frequency': 'monthly',
         'units': 'C/C'},
        'metric': {'datasets': "GISS-E2-H_r5i1p2; ERA-Interim's ts & HadISST's sst & Tropflux's sst; 's ",
         'method': 'The metric is the statistical value between the model and the observations',
         'name': 'EnsoSstTsRmse',
         'units': 'C/C'}},
       'SeasonalPrLatRmse': {'diagnostic': {'ERA-Interim': {'name': 'ERA-Interim',
          'nyears': 40,
          'time_period': ['1979-1-16 12:0:0.0', '2019-3-16 12:0:0.0']},
         'GISS-E2-H_r5i1p2': {'keyerror': None,
          'name': 'GISS-E2-H_r5i1p2',
          'nyears': 156,
          'time_period': ['1850-1-16 12:0:0.0', '2005-12-16 12:0:0.0']},
         'GPCPv2.3': {'name': 'GPCPv2.3',
          'nyears': 41,
          'time_period': ['1979-1-1 0:0:0.0', '2019-7-1 0:0:0.0']},
         'method': 'Meridional root mean square error of nino3_LatExt climatological pr STD, time series are linearly detrended, observations and model regridded to generic_1x1deg',
         'name': 'pr meridional seasonality RMSE',
         'ref': 'Using CDAT regridding and rms (uncentered and biased) calculation',
         'time_frequency': 'monthly',
         'units': 'mm/day'},
        'metric': {'datasets': "GISS-E2-H_r5i1p2; ERA-Interim's pr & GPCPv2.3's precip; 's ",
         'method': 'The metric is the statistical value between the model and the observations',
         'name': 'SeasonalPrLatRmse',
         'units': 'mm/day'}},
       'SeasonalPrLonRmse': {'diagnostic': {'ERA-Interim': {'name': 'ERA-Interim',
          'nyears': 40,
          'time_period': ['1979-1-16 12:0:0.0', '2019-3-16 12:0:0.0']},
         'GISS-E2-H_r5i1p2': {'keyerror': None,
          'name': 'GISS-E2-H_r5i1p2',
          'nyears': 156,
          'time_period': ['1850-1-16 12:0:0.0', '2005-12-16 12:0:0.0']},
         'GPCPv2.3': {'name': 'GPCPv2.3',
          'nyears': 41,
          'time_period': ['1979-1-1 0:0:0.0', '2019-7-1 0:0:0.0']},
         'method': 'Zonal root mean square error of equatorial_pacific climatological pr STD, time series are linearly detrended, observations and model regridded to generic_1x1deg',
         'name': 'pr zonal seasonality RMSE',
         'ref': 'Using CDAT regridding and rms (uncentered and biased) calculation',
         'time_frequency': 'monthly',
         'units': 'mm/day'},
        'metric': {'datasets': "GISS-E2-H_r5i1p2; ERA-Interim's pr & GPCPv2.3's precip; 's ",
         'method': 'The metric is the statistical value between the model and the observations',
         'name': 'SeasonalPrLonRmse',
         'units': 'mm/day'}},
       'SeasonalSstLonRmse': {'diagnostic': {'ERA-Interim': {'name': 'ERA-Interim',
          'nyears': 40,
          'time_period': ['1979-1-16 12:0:0.0', '2019-3-16 12:0:0.0']},
         'GISS-E2-H_r5i1p2': {'keyerror': None,
          'name': 'GISS-E2-H_r5i1p2',
          'nyears': 156,
          'time_period': ['1850-1-16 12:0:0.0', '2005-12-16 12:0:0.0']},
         'HadISST': {'name': 'HadISST',
          'nyears': 151,
          'time_period': ['1870-1-16 11:59:59.5', '2020-10-16 12:0:0.0']},
         'Tropflux': {'name': 'Tropflux',
          'nyears': 40,
          'time_period': ['1979-1-15 0:0:0.0', '2018-12-15 12:0:0.0']},
         'method': 'Zonal root mean square error of equatorial_pacific climatological sst STD, time series are linearly detrended, observations and model regridded to generic_1x1deg',
         'name': 'sst zonal seasonality RMSE',
         'ref': 'Using CDAT regridding and rms (uncentered and biased) calculation',
         'time_frequency': 'monthly',
         'units': 'C'},
        'metric': {'datasets': "GISS-E2-H_r5i1p2; ERA-Interim's ts & HadISST's sst & Tropflux's sst; 's ",
         'method': 'The metric is the statistical value between the model and the observations',
         'name': 'SeasonalSstLonRmse',
         'units': 'C'}},
       'SeasonalTauxLonRmse': {'diagnostic': {'ERA-Interim': {'name': 'ERA-Interim',
          'nyears': 40,
          'time_period': ['1979-1-16 12:0:0.0', '2019-3-16 12:0:0.0']},
         'GISS-E2-H_r5i1p2': {'keyerror': None,
          'name': 'GISS-E2-H_r5i1p2',
          'nyears': 156,
          'time_period': ['1850-1-16 12:0:0.0', '2005-12-16 12:0:0.0']},
         'Tropflux': {'name': 'Tropflux',
          'nyears': 40,
          'time_period': ['1979-1-15 0:0:0.0', '2018-12-15 12:0:0.0']},
         'method': 'Zonal root mean square error of equatorial_pacific climatological taux STD, time series are linearly detrended, observations and model regridded to generic_1x1deg',
         'name': 'taux zonal seasonality RMSE',
         'ref': 'Using CDAT regridding and rms (uncentered and biased) calculation',
         'time_frequency': 'monthly',
         'units': '1e-3 N/m2'},
        'metric': {'datasets': "GISS-E2-H_r5i1p2; ERA-Interim's tauu & Tropflux's taux; 's ",
         'method': 'The metric is the statistical value between the model and the observations',
         'name': 'SeasonalTauxLonRmse',
         'units': '1e-3 N/m2'}}},
      'name': 'Metrics Collection for ENSO performance'},
     'value': {'BiasPrLatRmse': {'diagnostic': {'ERA-Interim': {'value': None,
         'value_error': None},
        'GISS-E2-H_r5i1p2': {'value': None, 'value_error': None},
        'GPCPv2.3': {'value': None, 'value_error': None}},
       'metric': {'ERA-Interim': {'value': 2.933847143807274,
         'value_error': None},
        'GPCPv2.3': {'value': 3.5406603762702247, 'value_error': None}}},
      'BiasPrLonRmse': {'diagnostic': {'ERA-Interim': {'value': None,
         'value_error': None},
        'GISS-E2-H_r5i1p2': {'value': None, 'value_error': None},
        'GPCPv2.3': {'value': None, 'value_error': None}},
       'metric': {'ERA-Interim': {'value': 1.3983313098559613,
         'value_error': None},
        'GPCPv2.3': {'value': 0.9029186077357367, 'value_error': None}}},
      'BiasSstLonRmse': {'diagnostic': {'ERA-Interim': {'value': None,
         'value_error': None},
        'GISS-E2-H_r5i1p2': {'value': None, 'value_error': None},
        'HadISST': {'value': None, 'value_error': None},
        'Tropflux': {'value': None, 'value_error': None}},
       'metric': {'ERA-Interim': {'value': 0.8906007009936836,
         'value_error': None},
        'HadISST': {'value': 1.0048660374227858, 'value_error': None},
        'Tropflux': {'value': 0.8720984734449079, 'value_error': None}}},
      'BiasTauxLonRmse': {'diagnostic': {'ERA-Interim': {'value': None,
         'value_error': None},
        'GISS-E2-H_r5i1p2': {'value': None, 'value_error': None},
        'Tropflux': {'value': None, 'value_error': None}},
       'metric': {'ERA-Interim': {'value': 21.44197081941096,
         'value_error': None},
        'Tropflux': {'value': 21.082520982434517, 'value_error': None}}},
      'EnsoAmpl': {'diagnostic': {'ERA-Interim': {'value': 0.8989844997845644,
         'value_error': 0.14214193002531866},
        'GISS-E2-H_r5i1p2': {'value': 0.5491804718575567,
         'value_error': 0.04396962753217858},
        'HadISST': {'value': 0.7665787872085695,
         'value_error': 0.06238329697691264},
        'Tropflux': {'value': 0.9039789553693535,
         'value_error': 0.14293162279134272}},
       'metric': {'ERA-Interim': {'value': 38.91101882299816,
         'value_error': 14.550048909777487},
        'HadISST': {'value': 28.359552726817554,
         'value_error': 11.565843197024662},
        'Tropflux': {'value': 39.24853354211448,
         'value_error': 14.46966034253844}}},
      'EnsoDuration': {'diagnostic': {'ERA-Interim': {'value': 13.0,
         'value_error': None},
        'GISS-E2-H_r5i1p2': {'value': 12.0, 'value_error': None},
        'HadISST': {'value': 13.0, 'value_error': None},
        'Tropflux': {'value': 13.0, 'value_error': None}},
       'metric': {'ERA-Interim': {'value': 7.6923076923076925,
         'value_error': None},
        'HadISST': {'value': 7.6923076923076925, 'value_error': None},
        'Tropflux': {'value': 7.6923076923076925, 'value_error': None}}},
      'EnsoSeasonality': {'diagnostic': {'ERA-Interim': {'value': 2.0466846866656914,
         'value_error': 0.6513411033995022},
        'GISS-E2-H_r5i1p2': {'value': 1.4369670917770814,
         'value_error': 0.2304694180536809},
        'HadISST': {'value': 1.6639865947361325,
         'value_error': 0.2712772451657809},
        'Tropflux': {'value': 2.0532132553583624,
         'value_error': 0.6534187683977347}},
       'metric': {'ERA-Interim': {'value': 29.79049967300616,
         'value_error': 33.60423599471342},
        'HadISST': {'value': 13.64310888544453,
         'value_error': 27.92907194987083},
        'Tropflux': {'value': 30.013743675823047,
         'value_error': 33.497385153728594}}},
      'EnsoSstDiversity_2': {'diagnostic': {'ERA-Interim': {'value': 33.25,
         'value_error': None},
        'GISS-E2-H_r5i1p2': {'value': 25.25, 'value_error': None},
        'HadISST': {'value': 49.0, 'value_error': None},
        'Tropflux': {'value': 32.0, 'value_error': None}},
       'metric': {'ERA-Interim': {'value': 24.06015037593985,
         'value_error': None},
        'HadISST': {'value': 48.46938775510204, 'value_error': None},
        'Tropflux': {'value': 21.09375, 'value_error': None}}},
      'EnsoSstLonRmse': {'diagnostic': {'ERA-Interim': {'value': None,
         'value_error': None},
        'GISS-E2-H_r5i1p2': {'value': None, 'value_error': None},
        'HadISST': {'value': None, 'value_error': None},
        'Tropflux': {'value': None, 'value_error': None}},
       'metric': {'ERA-Interim': {'value': 0.2661708093861126,
         'value_error': None},
        'HadISST': {'value': 0.2705190984294822, 'value_error': None},
        'Tropflux': {'value': 0.2652842580396545, 'value_error': None}}},
      'EnsoSstSkew': {'diagnostic': {'ERA-Interim': {'value': 0.39098111106809963,
         'value_error': 0.061819541653923164},
        'GISS-E2-H_r5i1p2': {'value': -0.15925471455928467,
         'value_error': -0.012750581713567192},
        'HadISST': {'value': 0.38989908235027515,
         'value_error': 0.03172953733021198},
        'Tropflux': {'value': 0.39744741059612115,
         'value_error': 0.06284195338099416}},
       'metric': {'ERA-Interim': {'value': 140.7320737629052,
         'value_error': -9.701482231791607},
        'HadISST': {'value': 140.84511140660095,
         'value_error': -6.5941541667424675},
        'Tropflux': {'value': 140.06938032894027,
         'value_error': -9.54364326164345}}},
      'EnsoSstTsRmse': {'diagnostic': {'ERA-Interim': {'value': None,
         'value_error': None},
        'GISS-E2-H_r5i1p2': {'value': None, 'value_error': None},
        'HadISST': {'value': None, 'value_error': None},
        'Tropflux': {'value': None, 'value_error': None}},
       'metric': {'ERA-Interim': {'value': 0.23087317745808206,
         'value_error': None},
        'HadISST': {'value': 0.22854301146887854, 'value_error': None},
        'Tropflux': {'value': 0.23359679551651058, 'value_error': None}}},
      'SeasonalPrLatRmse': {'diagnostic': {'ERA-Interim': {'value': None,
         'value_error': None},
        'GISS-E2-H_r5i1p2': {'value': None, 'value_error': None},
        'GPCPv2.3': {'value': None, 'value_error': None}},
       'metric': {'ERA-Interim': {'value': 1.0974707775129107,
         'value_error': None},
        'GPCPv2.3': {'value': 1.0008723822860062, 'value_error': None}}},
      'SeasonalPrLonRmse': {'diagnostic': {'ERA-Interim': {'value': None,
         'value_error': None},
        'GISS-E2-H_r5i1p2': {'value': None, 'value_error': None},
        'GPCPv2.3': {'value': None, 'value_error': None}},
       'metric': {'ERA-Interim': {'value': 0.7572684414374798,
         'value_error': None},
        'GPCPv2.3': {'value': 0.4781972233441372, 'value_error': None}}},
      'SeasonalSstLonRmse': {'diagnostic': {'ERA-Interim': {'value': None,
         'value_error': None},
        'GISS-E2-H_r5i1p2': {'value': None, 'value_error': None},
        'HadISST': {'value': None, 'value_error': None},
        'Tropflux': {'value': None, 'value_error': None}},
       'metric': {'ERA-Interim': {'value': 0.3143502390978442,
         'value_error': None},
        'HadISST': {'value': 0.30798884351101125, 'value_error': None},
        'Tropflux': {'value': 0.32415578608416806, 'value_error': None}}},
      'SeasonalTauxLonRmse': {'diagnostic': {'ERA-Interim': {'value': None,
         'value_error': None},
        'GISS-E2-H_r5i1p2': {'value': None, 'value_error': None},
        'Tropflux': {'value': None, 'value_error': None}},
       'metric': {'ERA-Interim': {'value': 2.7602776287337614,
         'value_error': None},
        'Tropflux': {'value': 2.9865854798168723, 'value_error': None}}}}},
    'r5i1p3': {'metadata': {'description_of_the_collection': 'Describe which science question this collection is about',
      'metrics': {'BiasPrLatRmse': {'diagnostic': {'ERA-Interim': {'name': 'ERA-Interim',
          'nyears': 40,
          'time_period': ['1979-1-16 12:0:0.0', '2019-3-16 12:0:0.0']},
         'GISS-E2-H_r5i1p3': {'keyerror': None,
          'name': 'GISS-E2-H_r5i1p3',
          'nyears': 156,
          'time_period': ['1850-1-16 12:0:0.0', '2005-12-16 12:0:0.0']},
         'GPCPv2.3': {'name': 'GPCPv2.3',
          'nyears': 41,
          'time_period': ['1979-1-1 0:0:0.0', '2019-7-1 0:0:0.0']},
         'method': 'Meridional root mean square error of nino3_LatExt pr, time series are linearly detrended, observations and model regridded to generic_1x1deg',
         'name': 'pr Meridional RMSE',
         'ref': 'Using CDAT regridding and rms (uncentered and biased) calculation',
         'time_frequency': 'monthly',
         'units': 'mm/day'},
        'metric': {'datasets': "GISS-E2-H_r5i1p3; ERA-Interim's pr & GPCPv2.3's precip; 's ",
         'method': 'The metric is the statistical value between the model and the observations',
         'name': 'BiasPrLatRmse',
         'units': 'mm/day'}},
       'BiasPrLonRmse': {'diagnostic': {'ERA-Interim': {'name': 'ERA-Interim',
          'nyears': 40,
          'time_period': ['1979-1-16 12:0:0.0', '2019-3-16 12:0:0.0']},
         'GISS-E2-H_r5i1p3': {'keyerror': None,
          'name': 'GISS-E2-H_r5i1p3',
          'nyears': 156,
          'time_period': ['1850-1-16 12:0:0.0', '2005-12-16 12:0:0.0']},
         'GPCPv2.3': {'name': 'GPCPv2.3',
          'nyears': 41,
          'time_period': ['1979-1-1 0:0:0.0', '2019-7-1 0:0:0.0']},
         'method': 'Zonal root mean square error of equatorial_pacific pr, time series are linearly detrended, observations and model regridded to generic_1x1deg',
         'name': 'pr Zonal RMSE',
         'ref': 'Using CDAT regridding and rms (uncentered and biased) calculation',
         'time_frequency': 'monthly',
         'units': 'mm/day'},
        'metric': {'datasets': "GISS-E2-H_r5i1p3; ERA-Interim's pr & GPCPv2.3's precip; 's ",
         'method': 'The metric is the statistical value between the model and the observations',
         'name': 'BiasPrLonRmse',
         'units': 'mm/day'}},
       'BiasSstLonRmse': {'diagnostic': {'ERA-Interim': {'name': 'ERA-Interim',
          'nyears': 40,
          'time_period': ['1979-1-16 12:0:0.0', '2019-3-16 12:0:0.0']},
         'GISS-E2-H_r5i1p3': {'keyerror': None,
          'name': 'GISS-E2-H_r5i1p3',
          'nyears': 156,
          'time_period': ['1850-1-16 12:0:0.0', '2005-12-16 12:0:0.0']},
         'HadISST': {'name': 'HadISST',
          'nyears': 151,
          'time_period': ['1870-1-16 11:59:59.5', '2020-10-16 12:0:0.0']},
         'Tropflux': {'name': 'Tropflux',
          'nyears': 40,
          'time_period': ['1979-1-15 0:0:0.0', '2018-12-15 12:0:0.0']},
         'method': 'Zonal root mean square error of equatorial_pacific sst, time series are linearly detrended, observations and model regridded to generic_1x1deg',
         'name': 'sst Zonal RMSE',
         'ref': 'Using CDAT regridding and rms (uncentered and biased) calculation',
         'time_frequency': 'monthly',
         'units': 'C'},
        'metric': {'datasets': "GISS-E2-H_r5i1p3; ERA-Interim's ts & HadISST's sst & Tropflux's sst; 's ",
         'method': 'The metric is the statistical value between the model and the observations',
         'name': 'BiasSstLonRmse',
         'units': 'C'}},
       'BiasTauxLonRmse': {'diagnostic': {'ERA-Interim': {'name': 'ERA-Interim',
          'nyears': 40,
          'time_period': ['1979-1-16 12:0:0.0', '2019-3-16 12:0:0.0']},
         'GISS-E2-H_r5i1p3': {'keyerror': None,
          'name': 'GISS-E2-H_r5i1p3',
          'nyears': 156,
          'time_period': ['1850-1-16 12:0:0.0', '2005-12-16 12:0:0.0']},
         'Tropflux': {'name': 'Tropflux',
          'nyears': 40,
          'time_period': ['1979-1-15 0:0:0.0', '2018-12-15 12:0:0.0']},
         'method': 'Zonal root mean square error of equatorial_pacific taux, time series are linearly detrended, observations and model regridded to generic_1x1deg',
         'name': 'taux Zonal RMSE',
         'ref': 'Using CDAT regridding and rms (uncentered and biased) calculation',
         'time_frequency': 'monthly',
         'units': '1e-3 N/m2'},
        'metric': {'datasets': "GISS-E2-H_r5i1p3; ERA-Interim's tauu & Tropflux's taux; 's ",
         'method': 'The metric is the statistical value between the model and the observations',
         'name': 'BiasTauxLonRmse',
         'units': '1e-3 N/m2'}},
       'EnsoAmpl': {'diagnostic': {'ERA-Interim': {'keyerror': None,
          'name': 'ERA-Interim',
          'nyears': 40,
          'time_period': ['1979-1-16 12:0:0.0', '2019-3-16 12:0:0.0']},
         'GISS-E2-H_r5i1p3': {'keyerror': None,
          'name': 'GISS-E2-H_r5i1p3',
          'nyears': 156,
          'time_period': ['1850-1-16 12:0:0.0', '2005-12-16 12:0:0.0']},
         'HadISST': {'keyerror': None,
          'name': 'HadISST',
          'nyears': 151,
          'time_period': ['1870-1-16 11:59:59.5', '2020-10-16 12:0:0.0']},
         'Tropflux': {'keyerror': None,
          'name': 'Tropflux',
          'nyears': 40,
          'time_period': ['1979-1-15 0:0:0.0', '2018-12-15 12:0:0.0']},
         'method': 'Standard deviation of nino3.4 sstA, time series are linearly detrended',
         'name': 'ENSO amplitude',
         'ref': 'Using CDAT regression calculation',
         'time_frequency': 'monthly',
         'units': 'C'},
        'metric': {'datasets': "GISS-E2-H_r5i1p3; ERA-Interim's ts & HadISST's sst & Tropflux's sst; 's ",
         'method': 'The metric is the absolute value of the relative difference between model and observations values (M = 100 * abs[[model-obs] / obs])',
         'name': 'EnsoAmpl',
         'units': '%'}},
       'EnsoDuration': {'diagnostic': {'ERA-Interim': {'keyerror': None,
          'name': 'ERA-Interim',
          'nyears': 40,
          'time_period': ['1979-1-16 12:0:0.0', '2019-3-16 12:0:0.0']},
         'GISS-E2-H_r5i1p3': {'keyerror': None,
          'name': 'GISS-E2-H_r5i1p3',
          'nyears': 156,
          'time_period': ['1850-1-16 12:0:0.0', '2005-12-16 12:0:0.0']},
         'HadISST': {'keyerror': None,
          'name': 'HadISST',
          'nyears': 151,
          'time_period': ['1870-1-16 11:59:59.5', '2020-10-16 12:0:0.0']},
         'Tropflux': {'keyerror': None,
          'name': 'Tropflux',
          'nyears': 40,
          'time_period': ['1979-1-15 0:0:0.0', '2018-12-15 12:0:0.0']},
         'method': 'nino3.4 SSTA during DEC regressed against nino3.4 SSTA during 6 years (centered on ENSO), the duration is the number of consecutive months during which the regression is above 0.25, time series are linearly detrended, smoothing using a triangle shaped window of 5 points',
         'name': 'ENSO Duration based on life cyle SSTA pattern',
         'ref': 'Using CDAT',
         'time_frequency': 'monthly',
         'units': 'months'},
        'metric': {'datasets': "GISS-E2-H_r5i1p3; ERA-Interim's ts & HadISST's sst & Tropflux's sst; 's ",
         'method': 'The metric is the absolute value of the relative difference between model and observations values (M = 100 * abs[[model-obs] / obs])',
         'name': 'EnsoDuration',
         'units': '%'}},
       'EnsoSeasonality': {'diagnostic': {'ERA-Interim': {'keyerror': None,
          'name': 'ERA-Interim',
          'nyears': 40,
          'time_period': ['1979-1-16 12:0:0.0', '2019-3-16 12:0:0.0']},
         'GISS-E2-H_r5i1p3': {'keyerror': None,
          'name': 'GISS-E2-H_r5i1p3',
          'nyears': 156,
          'time_period': ['1850-1-16 12:0:0.0', '2005-12-16 12:0:0.0']},
         'HadISST': {'keyerror': None,
          'name': 'HadISST',
          'nyears': 151,
          'time_period': ['1870-1-16 11:59:59.5', '2020-10-16 12:0:0.0']},
         'Tropflux': {'keyerror': None,
          'name': 'Tropflux',
          'nyears': 40,
          'time_period': ['1979-1-15 0:0:0.0', '2018-12-15 12:0:0.0']},
         'method': 'Ratio between NDJ and MAM standard deviation nino3.4 sstA, time series are linearly detrended',
         'name': 'ENSO seasonality',
         'ref': 'Using CDAT std dev calculation',
         'time_frequency': 'monthly',
         'units': 'C/C'},
        'metric': {'datasets': "GISS-E2-H_r5i1p3; ERA-Interim's ts & HadISST's sst & Tropflux's sst; 's ",
         'method': 'The metric is the absolute value of the relative difference between model and observations values (M = 100 * abs[[model-obs] / obs])',
         'name': 'EnsoSeasonality',
         'units': '%'}},
       'EnsoSstDiversity_2': {'diagnostic': {'ERA-Interim': {'keyerror': None,
          'name': 'ERA-Interim',
          'nyears': 40,
          'time_period': ['1979-1-16 12:0:0.0', '2019-3-16 12:0:0.0']},
         'GISS-E2-H_r5i1p3': {'keyerror': None,
          'name': 'GISS-E2-H_r5i1p3',
          'nyears': 156,
          'time_period': ['1850-1-16 12:0:0.0', '2005-12-16 12:0:0.0']},
         'HadISST': {'keyerror': None,
          'name': 'HadISST',
          'nyears': 151,
          'time_period': ['1870-1-16 11:59:59.5', '2020-10-16 12:0:0.0']},
         'Tropflux': {'keyerror': None,
          'name': 'Tropflux',
          'nyears': 40,
          'time_period': ['1979-1-15 0:0:0.0', '2018-12-15 12:0:0.0']},
         'method': 'Nino (Nina) events = nino3.4 sstA > 0.75 (< -0.75) during DEC, zonal SSTA (meridional averaged [-5.0 ; 5.0]), the zonal SSTA maximum (minimum) is located for each event, the diversity is the interquartile range (IQR = Q3 - Q1), time series are linearly detrended, smoothing using a triangle shaped window of 5 points',
         'name': 'ENSO Diversity (interquartile range)',
         'ref': 'Using CDAT regridding',
         'time_frequency': 'monthly',
         'units': 'long'},
        'metric': {'datasets': "GISS-E2-H_r5i1p3; ERA-Interim's ts & HadISST's sst & Tropflux's sst; 's ",
         'method': 'The metric is the absolute value of the relative difference between model and observations values (M = 100 * abs[[model-obs] / obs])',
         'name': 'EnsoSstDiversity',
         'units': '%'}},
       'EnsoSstLonRmse': {'diagnostic': {'ERA-Interim': {'name': 'ERA-Interim',
          'nyears': 40,
          'time_period': ['1979-1-16 12:0:0.0', '2019-3-16 12:0:0.0']},
         'GISS-E2-H_r5i1p3': {'keyerror': None,
          'name': 'GISS-E2-H_r5i1p3',
          'nyears': 156,
          'time_period': ['1850-1-16 12:0:0.0', '2005-12-16 12:0:0.0']},
         'HadISST': {'name': 'HadISST',
          'nyears': 151,
          'time_period': ['1870-1-16 11:59:59.5', '2020-10-16 12:0:0.0']},
         'Tropflux': {'name': 'Tropflux',
          'nyears': 40,
          'time_period': ['1979-1-15 0:0:0.0', '2018-12-15 12:0:0.0']},
         'method': 'nino3.4 SSTA during DEC regressed against equatorial_pacific SSTA, time series are linearly detrended, smoothing using a triangle shaped window of 5 points, observations and model regridded to generic_1x1deg',
         'name': 'ENSO Zonal SSTA pattern',
         'ref': 'Using CDAT regridding and rms (uncentered and biased) calculation',
         'time_frequency': 'monthly',
         'units': 'C/C'},
        'metric': {'datasets': "GISS-E2-H_r5i1p3; ERA-Interim's ts & HadISST's sst & Tropflux's sst; 's ",
         'method': 'The metric is the statistical value between the model and the observations',
         'name': 'EnsoSstLonRmse',
         'units': 'C/C'}},
       'EnsoSstSkew': {'diagnostic': {'ERA-Interim': {'keyerror': None,
          'name': 'ERA-Interim',
          'nyears': 40,
          'time_period': ['1979-1-16 12:0:0.0', '2019-3-16 12:0:0.0']},
         'GISS-E2-H_r5i1p3': {'keyerror': None,
          'name': 'GISS-E2-H_r5i1p3',
          'nyears': 156,
          'time_period': ['1850-1-16 12:0:0.0', '2005-12-16 12:0:0.0']},
         'HadISST': {'keyerror': None,
          'name': 'HadISST',
          'nyears': 151,
          'time_period': ['1870-1-16 11:59:59.5', '2020-10-16 12:0:0.0']},
         'Tropflux': {'keyerror': None,
          'name': 'Tropflux',
          'nyears': 40,
          'time_period': ['1979-1-15 0:0:0.0', '2018-12-15 12:0:0.0']},
         'method': 'Standard deviation of nino3.4 sstA, time series are linearly detrended',
         'name': 'ENSO skewness',
         'ref': 'Using CDAT regression calculation',
         'time_frequency': 'monthly',
         'units': 'C'},
        'metric': {'datasets': "GISS-E2-H_r5i1p3; ERA-Interim's ts & HadISST's sst & Tropflux's sst; 's ",
         'method': 'The metric is the absolute value of the relative difference between model and observations values (M = 100 * abs[[model-obs] / obs])',
         'name': 'EnsoSstSkew',
         'units': '%'}},
       'EnsoSstTsRmse': {'diagnostic': {'ERA-Interim': {'name': 'ERA-Interim',
          'nyears': 40,
          'time_period': ['1979-1-16 12:0:0.0', '2019-3-16 12:0:0.0']},
         'GISS-E2-H_r5i1p3': {'keyerror': None,
          'name': 'GISS-E2-H_r5i1p3',
          'nyears': 156,
          'time_period': ['1850-1-16 12:0:0.0', '2005-12-16 12:0:0.0']},
         'HadISST': {'name': 'HadISST',
          'nyears': 151,
          'time_period': ['1870-1-16 11:59:59.5', '2020-10-16 12:0:0.0']},
         'Tropflux': {'name': 'Tropflux',
          'nyears': 40,
          'time_period': ['1979-1-15 0:0:0.0', '2018-12-15 12:0:0.0']},
         'method': 'nino3.4 SSTA during DEC regressed against nino3.4 SSTA during 6 years (centered on ENSO), time series are linearly detrended, smoothing using a triangle shaped window of 5 points',
         'name': 'ENSO life cyle SSTA pattern',
         'ref': 'Using CDAT regridding and rms (uncentered and biased) calculation',
         'time_frequency': 'monthly',
         'units': 'C/C'},
        'metric': {'datasets': "GISS-E2-H_r5i1p3; ERA-Interim's ts & HadISST's sst & Tropflux's sst; 's ",
         'method': 'The metric is the statistical value between the model and the observations',
         'name': 'EnsoSstTsRmse',
         'units': 'C/C'}},
       'SeasonalPrLatRmse': {'diagnostic': {'ERA-Interim': {'name': 'ERA-Interim',
          'nyears': 40,
          'time_period': ['1979-1-16 12:0:0.0', '2019-3-16 12:0:0.0']},
         'GISS-E2-H_r5i1p3': {'keyerror': None,
          'name': 'GISS-E2-H_r5i1p3',
          'nyears': 156,
          'time_period': ['1850-1-16 12:0:0.0', '2005-12-16 12:0:0.0']},
         'GPCPv2.3': {'name': 'GPCPv2.3',
          'nyears': 41,
          'time_period': ['1979-1-1 0:0:0.0', '2019-7-1 0:0:0.0']},
         'method': 'Meridional root mean square error of nino3_LatExt climatological pr STD, time series are linearly detrended, observations and model regridded to generic_1x1deg',
         'name': 'pr meridional seasonality RMSE',
         'ref': 'Using CDAT regridding and rms (uncentered and biased) calculation',
         'time_frequency': 'monthly',
         'units': 'mm/day'},
        'metric': {'datasets': "GISS-E2-H_r5i1p3; ERA-Interim's pr & GPCPv2.3's precip; 's ",
         'method': 'The metric is the statistical value between the model and the observations',
         'name': 'SeasonalPrLatRmse',
         'units': 'mm/day'}},
       'SeasonalPrLonRmse': {'diagnostic': {'ERA-Interim': {'name': 'ERA-Interim',
          'nyears': 40,
          'time_period': ['1979-1-16 12:0:0.0', '2019-3-16 12:0:0.0']},
         'GISS-E2-H_r5i1p3': {'keyerror': None,
          'name': 'GISS-E2-H_r5i1p3',
          'nyears': 156,
          'time_period': ['1850-1-16 12:0:0.0', '2005-12-16 12:0:0.0']},
         'GPCPv2.3': {'name': 'GPCPv2.3',
          'nyears': 41,
          'time_period': ['1979-1-1 0:0:0.0', '2019-7-1 0:0:0.0']},
         'method': 'Zonal root mean square error of equatorial_pacific climatological pr STD, time series are linearly detrended, observations and model regridded to generic_1x1deg',
         'name': 'pr zonal seasonality RMSE',
         'ref': 'Using CDAT regridding and rms (uncentered and biased) calculation',
         'time_frequency': 'monthly',
         'units': 'mm/day'},
        'metric': {'datasets': "GISS-E2-H_r5i1p3; ERA-Interim's pr & GPCPv2.3's precip; 's ",
         'method': 'The metric is the statistical value between the model and the observations',
         'name': 'SeasonalPrLonRmse',
         'units': 'mm/day'}},
       'SeasonalSstLonRmse': {'diagnostic': {'ERA-Interim': {'name': 'ERA-Interim',
          'nyears': 40,
          'time_period': ['1979-1-16 12:0:0.0', '2019-3-16 12:0:0.0']},
         'GISS-E2-H_r5i1p3': {'keyerror': None,
          'name': 'GISS-E2-H_r5i1p3',
          'nyears': 156,
          'time_period': ['1850-1-16 12:0:0.0', '2005-12-16 12:0:0.0']},
         'HadISST': {'name': 'HadISST',
          'nyears': 151,
          'time_period': ['1870-1-16 11:59:59.5', '2020-10-16 12:0:0.0']},
         'Tropflux': {'name': 'Tropflux',
          'nyears': 40,
          'time_period': ['1979-1-15 0:0:0.0', '2018-12-15 12:0:0.0']},
         'method': 'Zonal root mean square error of equatorial_pacific climatological sst STD, time series are linearly detrended, observations and model regridded to generic_1x1deg',
         'name': 'sst zonal seasonality RMSE',
         'ref': 'Using CDAT regridding and rms (uncentered and biased) calculation',
         'time_frequency': 'monthly',
         'units': 'C'},
        'metric': {'datasets': "GISS-E2-H_r5i1p3; ERA-Interim's ts & HadISST's sst & Tropflux's sst; 's ",
         'method': 'The metric is the statistical value between the model and the observations',
         'name': 'SeasonalSstLonRmse',
         'units': 'C'}},
       'SeasonalTauxLonRmse': {'diagnostic': {'ERA-Interim': {'name': 'ERA-Interim',
          'nyears': 40,
          'time_period': ['1979-1-16 12:0:0.0', '2019-3-16 12:0:0.0']},
         'GISS-E2-H_r5i1p3': {'keyerror': None,
          'name': 'GISS-E2-H_r5i1p3',
          'nyears': 156,
          'time_period': ['1850-1-16 12:0:0.0', '2005-12-16 12:0:0.0']},
         'Tropflux': {'name': 'Tropflux',
          'nyears': 40,
          'time_period': ['1979-1-15 0:0:0.0', '2018-12-15 12:0:0.0']},
         'method': 'Zonal root mean square error of equatorial_pacific climatological taux STD, time series are linearly detrended, observations and model regridded to generic_1x1deg',
         'name': 'taux zonal seasonality RMSE',
         'ref': 'Using CDAT regridding and rms (uncentered and biased) calculation',
         'time_frequency': 'monthly',
         'units': '1e-3 N/m2'},
        'metric': {'datasets': "GISS-E2-H_r5i1p3; ERA-Interim's tauu & Tropflux's taux; 's ",
         'method': 'The metric is the statistical value between the model and the observations',
         'name': 'SeasonalTauxLonRmse',
         'units': '1e-3 N/m2'}}},
      'name': 'Metrics Collection for ENSO performance'},
     'value': {'BiasPrLatRmse': {'diagnostic': {'ERA-Interim': {'value': None,
         'value_error': None},
        'GISS-E2-H_r5i1p3': {'value': None, 'value_error': None},
        'GPCPv2.3': {'value': None, 'value_error': None}},
       'metric': {'ERA-Interim': {'value': 2.854587110988177,
         'value_error': None},
        'GPCPv2.3': {'value': 3.4333493815661, 'value_error': None}}},
      'BiasPrLonRmse': {'diagnostic': {'ERA-Interim': {'value': None,
         'value_error': None},
        'GISS-E2-H_r5i1p3': {'value': None, 'value_error': None},
        'GPCPv2.3': {'value': None, 'value_error': None}},
       'metric': {'ERA-Interim': {'value': 1.3815424707290171,
         'value_error': None},
        'GPCPv2.3': {'value': 0.8434825655940893, 'value_error': None}}},
      'BiasSstLonRmse': {'diagnostic': {'ERA-Interim': {'value': None,
         'value_error': None},
        'GISS-E2-H_r5i1p3': {'value': None, 'value_error': None},
        'HadISST': {'value': None, 'value_error': None},
        'Tropflux': {'value': None, 'value_error': None}},
       'metric': {'ERA-Interim': {'value': 0.9052855373115822,
         'value_error': None},
        'HadISST': {'value': 1.0246321847919961, 'value_error': None},
        'Tropflux': {'value': 0.8857353009891487, 'value_error': None}}},
      'BiasTauxLonRmse': {'diagnostic': {'ERA-Interim': {'value': None,
         'value_error': None},
        'GISS-E2-H_r5i1p3': {'value': None, 'value_error': None},
        'Tropflux': {'value': None, 'value_error': None}},
       'metric': {'ERA-Interim': {'value': 21.002177967020014,
         'value_error': None},
        'Tropflux': {'value': 20.644853900334724, 'value_error': None}}},
      'EnsoAmpl': {'diagnostic': {'ERA-Interim': {'value': 0.8989844997845644,
         'value_error': 0.14214193002531866},
        'GISS-E2-H_r5i1p3': {'value': 0.5181188420496381,
         'value_error': 0.04148270681451905},
        'HadISST': {'value': 0.7665787872085695,
         'value_error': 0.06238329697691264},
        'Tropflux': {'value': 0.9039789553693535,
         'value_error': 0.14293162279134272}},
       'metric': {'ERA-Interim': {'value': 42.36620963166754,
         'value_error': 13.727098611865513},
        'HadISST': {'value': 32.411534118192456,
         'value_error': 10.911679478152307},
        'Tropflux': {'value': 42.6846345291366,
         'value_error': 13.651256819401464}}},
      'EnsoDuration': {'diagnostic': {'ERA-Interim': {'value': 13.0,
         'value_error': None},
        'GISS-E2-H_r5i1p3': {'value': 13.0, 'value_error': None},
        'HadISST': {'value': 13.0, 'value_error': None},
        'Tropflux': {'value': 13.0, 'value_error': None}},
       'metric': {'ERA-Interim': {'value': 0.0, 'value_error': None},
        'HadISST': {'value': 0.0, 'value_error': None},
        'Tropflux': {'value': 0.0, 'value_error': None}}},
      'EnsoSeasonality': {'diagnostic': {'ERA-Interim': {'value': 2.0466846866656914,
         'value_error': 0.6513411033995022},
        'GISS-E2-H_r5i1p3': {'value': 1.529107566548678,
         'value_error': 0.24524746114271082},
        'HadISST': {'value': 1.6639865947361325,
         'value_error': 0.2712772451657809},
        'Tropflux': {'value': 2.0532132553583624,
         'value_error': 0.6534187683977347}},
       'metric': {'ERA-Interim': {'value': 25.288561715884633,
         'value_error': 35.758989765073245},
        'HadISST': {'value': 8.105776129094542,
         'value_error': 29.719925730807933},
        'Tropflux': {'value': 25.526120457380763,
         'value_error': 35.64528748867669}}},
      'EnsoSstDiversity_2': {'diagnostic': {'ERA-Interim': {'value': 33.25,
         'value_error': None},
        'GISS-E2-H_r5i1p3': {'value': 21.0, 'value_error': None},
        'HadISST': {'value': 49.0, 'value_error': None},
        'Tropflux': {'value': 32.0, 'value_error': None}},
       'metric': {'ERA-Interim': {'value': 36.84210526315789,
         'value_error': None},
        'HadISST': {'value': 57.14285714285714, 'value_error': None},
        'Tropflux': {'value': 34.375, 'value_error': None}}},
      'EnsoSstLonRmse': {'diagnostic': {'ERA-Interim': {'value': None,
         'value_error': None},
        'GISS-E2-H_r5i1p3': {'value': None, 'value_error': None},
        'HadISST': {'value': None, 'value_error': None},
        'Tropflux': {'value': None, 'value_error': None}},
       'metric': {'ERA-Interim': {'value': 0.29018492447717426,
         'value_error': None},
        'HadISST': {'value': 0.297230730189407, 'value_error': None},
        'Tropflux': {'value': 0.2897651493538964, 'value_error': None}}},
      'EnsoSstSkew': {'diagnostic': {'ERA-Interim': {'value': 0.39098111106809963,
         'value_error': 0.061819541653923164},
        'GISS-E2-H_r5i1p3': {'value': -0.08985128978536577,
         'value_error': -0.007193860575168252},
        'HadISST': {'value': 0.38989908235027515,
         'value_error': 0.03172953733021198},
        'Tropflux': {'value': 0.39744741059612115,
         'value_error': 0.06284195338099416}},
       'metric': {'ERA-Interim': {'value': 122.98097970510801,
         'value_error': -5.473562862917858},
        'HadISST': {'value': 123.04475538740706,
         'value_error': -3.720412664485303},
        'Tropflux': {'value': 122.60708898583592,
         'value_error': -5.384510334171989}}},
      'EnsoSstTsRmse': {'diagnostic': {'ERA-Interim': {'value': None,
         'value_error': None},
        'GISS-E2-H_r5i1p3': {'value': None, 'value_error': None},
        'HadISST': {'value': None, 'value_error': None},
        'Tropflux': {'value': None, 'value_error': None}},
       'metric': {'ERA-Interim': {'value': 0.15565567752985968,
         'value_error': None},
        'HadISST': {'value': 0.14858946170795315, 'value_error': None},
        'Tropflux': {'value': 0.15775128229391366, 'value_error': None}}},
      'SeasonalPrLatRmse': {'diagnostic': {'ERA-Interim': {'value': None,
         'value_error': None},
        'GISS-E2-H_r5i1p3': {'value': None, 'value_error': None},
        'GPCPv2.3': {'value': None, 'value_error': None}},
       'metric': {'ERA-Interim': {'value': 1.1250309337034505,
         'value_error': None},
        'GPCPv2.3': {'value': 1.0190848102713737, 'value_error': None}}},
      'SeasonalPrLonRmse': {'diagnostic': {'ERA-Interim': {'value': None,
         'value_error': None},
        'GISS-E2-H_r5i1p3': {'value': None, 'value_error': None},
        'GPCPv2.3': {'value': None, 'value_error': None}},
       'metric': {'ERA-Interim': {'value': 0.7641759876990963,
         'value_error': None},
        'GPCPv2.3': {'value': 0.4877050573629663, 'value_error': None}}},
      'SeasonalSstLonRmse': {'diagnostic': {'ERA-Interim': {'value': None,
         'value_error': None},
        'GISS-E2-H_r5i1p3': {'value': None, 'value_error': None},
        'HadISST': {'value': None, 'value_error': None},
        'Tropflux': {'value': None, 'value_error': None}},
       'metric': {'ERA-Interim': {'value': 0.26693538577562603,
         'value_error': None},
        'HadISST': {'value': 0.26338847218658556, 'value_error': None},
        'Tropflux': {'value': 0.2761348573200171, 'value_error': None}}},
      'SeasonalTauxLonRmse': {'diagnostic': {'ERA-Interim': {'value': None,
         'value_error': None},
        'GISS-E2-H_r5i1p3': {'value': None, 'value_error': None},
        'Tropflux': {'value': None, 'value_error': None}},
       'metric': {'ERA-Interim': {'value': 2.3847516016729178,
         'value_error': None},
        'Tropflux': {'value': 2.6070304108780893, 'value_error': None}}}}},
    'r6i1p1': {'metadata': {'description_of_the_collection': 'Describe which science question this collection is about',
      'metrics': {'BiasPrLatRmse': {'diagnostic': {'ERA-Interim': {'name': 'ERA-Interim',
          'nyears': 40,
          'time_period': ['1979-1-16 12:0:0.0', '2019-3-16 12:0:0.0']},
         'GISS-E2-H_r6i1p1': {'keyerror': None,
          'name': 'GISS-E2-H_r6i1p1',
          'nyears': 156,
          'time_period': ['1850-1-16 12:0:0.0', '2005-12-16 12:0:0.0']},
         'GPCPv2.3': {'name': 'GPCPv2.3',
          'nyears': 41,
          'time_period': ['1979-1-1 0:0:0.0', '2019-7-1 0:0:0.0']},
         'method': 'Meridional root mean square error of nino3_LatExt pr, time series are linearly detrended, observations and model regridded to generic_1x1deg',
         'name': 'pr Meridional RMSE',
         'ref': 'Using CDAT regridding and rms (uncentered and biased) calculation',
         'time_frequency': 'monthly',
         'units': 'mm/day'},
        'metric': {'datasets': "GISS-E2-H_r6i1p1; ERA-Interim's pr & GPCPv2.3's precip; 's ",
         'method': 'The metric is the statistical value between the model and the observations',
         'name': 'BiasPrLatRmse',
         'units': 'mm/day'}},
       'BiasPrLonRmse': {'diagnostic': {'ERA-Interim': {'name': 'ERA-Interim',
          'nyears': 40,
          'time_period': ['1979-1-16 12:0:0.0', '2019-3-16 12:0:0.0']},
         'GISS-E2-H_r6i1p1': {'keyerror': None,
          'name': 'GISS-E2-H_r6i1p1',
          'nyears': 156,
          'time_period': ['1850-1-16 12:0:0.0', '2005-12-16 12:0:0.0']},
         'GPCPv2.3': {'name': 'GPCPv2.3',
          'nyears': 41,
          'time_period': ['1979-1-1 0:0:0.0', '2019-7-1 0:0:0.0']},
         'method': 'Zonal root mean square error of equatorial_pacific pr, time series are linearly detrended, observations and model regridded to generic_1x1deg',
         'name': 'pr Zonal RMSE',
         'ref': 'Using CDAT regridding and rms (uncentered and biased) calculation',
         'time_frequency': 'monthly',
         'units': 'mm/day'},
        'metric': {'datasets': "GISS-E2-H_r6i1p1; ERA-Interim's pr & GPCPv2.3's precip; 's ",
         'method': 'The metric is the statistical value between the model and the observations',
         'name': 'BiasPrLonRmse',
         'units': 'mm/day'}},
       'BiasSstLonRmse': {'diagnostic': {'ERA-Interim': {'name': 'ERA-Interim',
          'nyears': 40,
          'time_period': ['1979-1-16 12:0:0.0', '2019-3-16 12:0:0.0']},
         'GISS-E2-H_r6i1p1': {'keyerror': None,
          'name': 'GISS-E2-H_r6i1p1',
          'nyears': 156,
          'time_period': ['1850-1-16 12:0:0.0', '2005-12-16 12:0:0.0']},
         'HadISST': {'name': 'HadISST',
          'nyears': 151,
          'time_period': ['1870-1-16 11:59:59.5', '2020-10-16 12:0:0.0']},
         'Tropflux': {'name': 'Tropflux',
          'nyears': 40,
          'time_period': ['1979-1-15 0:0:0.0', '2018-12-15 12:0:0.0']},
         'method': 'Zonal root mean square error of equatorial_pacific sst, time series are linearly detrended, observations and model regridded to generic_1x1deg',
         'name': 'sst Zonal RMSE',
         'ref': 'Using CDAT regridding and rms (uncentered and biased) calculation',
         'time_frequency': 'monthly',
         'units': 'C'},
        'metric': {'datasets': "GISS-E2-H_r6i1p1; ERA-Interim's ts & HadISST's sst & Tropflux's sst; 's ",
         'method': 'The metric is the statistical value between the model and the observations',
         'name': 'BiasSstLonRmse',
         'units': 'C'}},
       'BiasTauxLonRmse': {'diagnostic': {'ERA-Interim': {'name': 'ERA-Interim',
          'nyears': 40,
          'time_period': ['1979-1-16 12:0:0.0', '2019-3-16 12:0:0.0']},
         'GISS-E2-H_r6i1p1': {'keyerror': None,
          'name': 'GISS-E2-H_r6i1p1',
          'nyears': 156,
          'time_period': ['1850-1-16 12:0:0.0', '2005-12-16 12:0:0.0']},
         'Tropflux': {'name': 'Tropflux',
          'nyears': 40,
          'time_period': ['1979-1-15 0:0:0.0', '2018-12-15 12:0:0.0']},
         'method': 'Zonal root mean square error of equatorial_pacific taux, time series are linearly detrended, observations and model regridded to generic_1x1deg',
         'name': 'taux Zonal RMSE',
         'ref': 'Using CDAT regridding and rms (uncentered and biased) calculation',
         'time_frequency': 'monthly',
         'units': '1e-3 N/m2'},
        'metric': {'datasets': "GISS-E2-H_r6i1p1; ERA-Interim's tauu & Tropflux's taux; 's ",
         'method': 'The metric is the statistical value between the model and the observations',
         'name': 'BiasTauxLonRmse',
         'units': '1e-3 N/m2'}},
       'EnsoAmpl': {'diagnostic': {'ERA-Interim': {'keyerror': None,
          'name': 'ERA-Interim',
          'nyears': 40,
          'time_period': ['1979-1-16 12:0:0.0', '2019-3-16 12:0:0.0']},
         'GISS-E2-H_r6i1p1': {'keyerror': None,
          'name': 'GISS-E2-H_r6i1p1',
          'nyears': 156,
          'time_period': ['1850-1-16 12:0:0.0', '2005-12-16 12:0:0.0']},
         'HadISST': {'keyerror': None,
          'name': 'HadISST',
          'nyears': 151,
          'time_period': ['1870-1-16 11:59:59.5', '2020-10-16 12:0:0.0']},
         'Tropflux': {'keyerror': None,
          'name': 'Tropflux',
          'nyears': 40,
          'time_period': ['1979-1-15 0:0:0.0', '2018-12-15 12:0:0.0']},
         'method': 'Standard deviation of nino3.4 sstA, time series are linearly detrended',
         'name': 'ENSO amplitude',
         'ref': 'Using CDAT regression calculation',
         'time_frequency': 'monthly',
         'units': 'C'},
        'metric': {'datasets': "GISS-E2-H_r6i1p1; ERA-Interim's ts & HadISST's sst & Tropflux's sst; 's ",
         'method': 'The metric is the absolute value of the relative difference between model and observations values (M = 100 * abs[[model-obs] / obs])',
         'name': 'EnsoAmpl',
         'units': '%'}},
       'EnsoDuration': {'diagnostic': {'ERA-Interim': {'keyerror': None,
          'name': 'ERA-Interim',
          'nyears': 40,
          'time_period': ['1979-1-16 12:0:0.0', '2019-3-16 12:0:0.0']},
         'GISS-E2-H_r6i1p1': {'keyerror': None,
          'name': 'GISS-E2-H_r6i1p1',
          'nyears': 156,
          'time_period': ['1850-1-16 12:0:0.0', '2005-12-16 12:0:0.0']},
         'HadISST': {'keyerror': None,
          'name': 'HadISST',
          'nyears': 151,
          'time_period': ['1870-1-16 11:59:59.5', '2020-10-16 12:0:0.0']},
         'Tropflux': {'keyerror': None,
          'name': 'Tropflux',
          'nyears': 40,
          'time_period': ['1979-1-15 0:0:0.0', '2018-12-15 12:0:0.0']},
         'method': 'nino3.4 SSTA during DEC regressed against nino3.4 SSTA during 6 years (centered on ENSO), the duration is the number of consecutive months during which the regression is above 0.25, time series are linearly detrended, smoothing using a triangle shaped window of 5 points',
         'name': 'ENSO Duration based on life cyle SSTA pattern',
         'ref': 'Using CDAT',
         'time_frequency': 'monthly',
         'units': 'months'},
        'metric': {'datasets': "GISS-E2-H_r6i1p1; ERA-Interim's ts & HadISST's sst & Tropflux's sst; 's ",
         'method': 'The metric is the absolute value of the relative difference between model and observations values (M = 100 * abs[[model-obs] / obs])',
         'name': 'EnsoDuration',
         'units': '%'}},
       'EnsoSeasonality': {'diagnostic': {'ERA-Interim': {'keyerror': None,
          'name': 'ERA-Interim',
          'nyears': 40,
          'time_period': ['1979-1-16 12:0:0.0', '2019-3-16 12:0:0.0']},
         'GISS-E2-H_r6i1p1': {'keyerror': None,
          'name': 'GISS-E2-H_r6i1p1',
          'nyears': 156,
          'time_period': ['1850-1-16 12:0:0.0', '2005-12-16 12:0:0.0']},
         'HadISST': {'keyerror': None,
          'name': 'HadISST',
          'nyears': 151,
          'time_period': ['1870-1-16 11:59:59.5', '2020-10-16 12:0:0.0']},
         'Tropflux': {'keyerror': None,
          'name': 'Tropflux',
          'nyears': 40,
          'time_period': ['1979-1-15 0:0:0.0', '2018-12-15 12:0:0.0']},
         'method': 'Ratio between NDJ and MAM standard deviation nino3.4 sstA, time series are linearly detrended',
         'name': 'ENSO seasonality',
         'ref': 'Using CDAT std dev calculation',
         'time_frequency': 'monthly',
         'units': 'C/C'},
        'metric': {'datasets': "GISS-E2-H_r6i1p1; ERA-Interim's ts & HadISST's sst & Tropflux's sst; 's ",
         'method': 'The metric is the absolute value of the relative difference between model and observations values (M = 100 * abs[[model-obs] / obs])',
         'name': 'EnsoSeasonality',
         'units': '%'}},
       'EnsoSstDiversity_2': {'diagnostic': {'ERA-Interim': {'keyerror': None,
          'name': 'ERA-Interim',
          'nyears': 40,
          'time_period': ['1979-1-16 12:0:0.0', '2019-3-16 12:0:0.0']},
         'GISS-E2-H_r6i1p1': {'keyerror': None,
          'name': 'GISS-E2-H_r6i1p1',
          'nyears': 156,
          'time_period': ['1850-1-16 12:0:0.0', '2005-12-16 12:0:0.0']},
         'HadISST': {'keyerror': None,
          'name': 'HadISST',
          'nyears': 151,
          'time_period': ['1870-1-16 11:59:59.5', '2020-10-16 12:0:0.0']},
         'Tropflux': {'keyerror': None,
          'name': 'Tropflux',
          'nyears': 40,
          'time_period': ['1979-1-15 0:0:0.0', '2018-12-15 12:0:0.0']},
         'method': 'Nino (Nina) events = nino3.4 sstA > 0.75 (< -0.75) during DEC, zonal SSTA (meridional averaged [-5.0 ; 5.0]), the zonal SSTA maximum (minimum) is located for each event, the diversity is the interquartile range (IQR = Q3 - Q1), time series are linearly detrended, smoothing using a triangle shaped window of 5 points',
         'name': 'ENSO Diversity (interquartile range)',
         'ref': 'Using CDAT regridding',
         'time_frequency': 'monthly',
         'units': 'long'},
        'metric': {'datasets': "GISS-E2-H_r6i1p1; ERA-Interim's ts & HadISST's sst & Tropflux's sst; 's ",
         'method': 'The metric is the absolute value of the relative difference between model and observations values (M = 100 * abs[[model-obs] / obs])',
         'name': 'EnsoSstDiversity',
         'units': '%'}},
       'EnsoSstLonRmse': {'diagnostic': {'ERA-Interim': {'name': 'ERA-Interim',
          'nyears': 40,
          'time_period': ['1979-1-16 12:0:0.0', '2019-3-16 12:0:0.0']},
         'GISS-E2-H_r6i1p1': {'keyerror': None,
          'name': 'GISS-E2-H_r6i1p1',
          'nyears': 156,
          'time_period': ['1850-1-16 12:0:0.0', '2005-12-16 12:0:0.0']},
         'HadISST': {'name': 'HadISST',
          'nyears': 151,
          'time_period': ['1870-1-16 11:59:59.5', '2020-10-16 12:0:0.0']},
         'Tropflux': {'name': 'Tropflux',
          'nyears': 40,
          'time_period': ['1979-1-15 0:0:0.0', '2018-12-15 12:0:0.0']},
         'method': 'nino3.4 SSTA during DEC regressed against equatorial_pacific SSTA, time series are linearly detrended, smoothing using a triangle shaped window of 5 points, observations and model regridded to generic_1x1deg',
         'name': 'ENSO Zonal SSTA pattern',
         'ref': 'Using CDAT regridding and rms (uncentered and biased) calculation',
         'time_frequency': 'monthly',
         'units': 'C/C'},
        'metric': {'datasets': "GISS-E2-H_r6i1p1; ERA-Interim's ts & HadISST's sst & Tropflux's sst; 's ",
         'method': 'The metric is the statistical value between the model and the observations',
         'name': 'EnsoSstLonRmse',
         'units': 'C/C'}},
       'EnsoSstSkew': {'diagnostic': {'ERA-Interim': {'keyerror': None,
          'name': 'ERA-Interim',
          'nyears': 40,
          'time_period': ['1979-1-16 12:0:0.0', '2019-3-16 12:0:0.0']},
         'GISS-E2-H_r6i1p1': {'keyerror': None,
          'name': 'GISS-E2-H_r6i1p1',
          'nyears': 156,
          'time_period': ['1850-1-16 12:0:0.0', '2005-12-16 12:0:0.0']},
         'HadISST': {'keyerror': None,
          'name': 'HadISST',
          'nyears': 151,
          'time_period': ['1870-1-16 11:59:59.5', '2020-10-16 12:0:0.0']},
         'Tropflux': {'keyerror': None,
          'name': 'Tropflux',
          'nyears': 40,
          'time_period': ['1979-1-15 0:0:0.0', '2018-12-15 12:0:0.0']},
         'method': 'Standard deviation of nino3.4 sstA, time series are linearly detrended',
         'name': 'ENSO skewness',
         'ref': 'Using CDAT regression calculation',
         'time_frequency': 'monthly',
         'units': 'C'},
        'metric': {'datasets': "GISS-E2-H_r6i1p1; ERA-Interim's ts & HadISST's sst & Tropflux's sst; 's ",
         'method': 'The metric is the absolute value of the relative difference between model and observations values (M = 100 * abs[[model-obs] / obs])',
         'name': 'EnsoSstSkew',
         'units': '%'}},
       'EnsoSstTsRmse': {'diagnostic': {'ERA-Interim': {'name': 'ERA-Interim',
          'nyears': 40,
          'time_period': ['1979-1-16 12:0:0.0', '2019-3-16 12:0:0.0']},
         'GISS-E2-H_r6i1p1': {'keyerror': None,
          'name': 'GISS-E2-H_r6i1p1',
          'nyears': 156,
          'time_period': ['1850-1-16 12:0:0.0', '2005-12-16 12:0:0.0']},
         'HadISST': {'name': 'HadISST',
          'nyears': 151,
          'time_period': ['1870-1-16 11:59:59.5', '2020-10-16 12:0:0.0']},
         'Tropflux': {'name': 'Tropflux',
          'nyears': 40,
          'time_period': ['1979-1-15 0:0:0.0', '2018-12-15 12:0:0.0']},
         'method': 'nino3.4 SSTA during DEC regressed against nino3.4 SSTA during 6 years (centered on ENSO), time series are linearly detrended, smoothing using a triangle shaped window of 5 points',
         'name': 'ENSO life cyle SSTA pattern',
         'ref': 'Using CDAT regridding and rms (uncentered and biased) calculation',
         'time_frequency': 'monthly',
         'units': 'C/C'},
        'metric': {'datasets': "GISS-E2-H_r6i1p1; ERA-Interim's ts & HadISST's sst & Tropflux's sst; 's ",
         'method': 'The metric is the statistical value between the model and the observations',
         'name': 'EnsoSstTsRmse',
         'units': 'C/C'}},
       'SeasonalPrLatRmse': {'diagnostic': {'ERA-Interim': {'name': 'ERA-Interim',
          'nyears': 40,
          'time_period': ['1979-1-16 12:0:0.0', '2019-3-16 12:0:0.0']},
         'GISS-E2-H_r6i1p1': {'keyerror': None,
          'name': 'GISS-E2-H_r6i1p1',
          'nyears': 156,
          'time_period': ['1850-1-16 12:0:0.0', '2005-12-16 12:0:0.0']},
         'GPCPv2.3': {'name': 'GPCPv2.3',
          'nyears': 41,
          'time_period': ['1979-1-1 0:0:0.0', '2019-7-1 0:0:0.0']},
         'method': 'Meridional root mean square error of nino3_LatExt climatological pr STD, time series are linearly detrended, observations and model regridded to generic_1x1deg',
         'name': 'pr meridional seasonality RMSE',
         'ref': 'Using CDAT regridding and rms (uncentered and biased) calculation',
         'time_frequency': 'monthly',
         'units': 'mm/day'},
        'metric': {'datasets': "GISS-E2-H_r6i1p1; ERA-Interim's pr & GPCPv2.3's precip; 's ",
         'method': 'The metric is the statistical value between the model and the observations',
         'name': 'SeasonalPrLatRmse',
         'units': 'mm/day'}},
       'SeasonalPrLonRmse': {'diagnostic': {'ERA-Interim': {'name': 'ERA-Interim',
          'nyears': 40,
          'time_period': ['1979-1-16 12:0:0.0', '2019-3-16 12:0:0.0']},
         'GISS-E2-H_r6i1p1': {'keyerror': None,
          'name': 'GISS-E2-H_r6i1p1',
          'nyears': 156,
          'time_period': ['1850-1-16 12:0:0.0', '2005-12-16 12:0:0.0']},
         'GPCPv2.3': {'name': 'GPCPv2.3',
          'nyears': 41,
          'time_period': ['1979-1-1 0:0:0.0', '2019-7-1 0:0:0.0']},
         'method': 'Zonal root mean square error of equatorial_pacific climatological pr STD, time series are linearly detrended, observations and model regridded to generic_1x1deg',
         'name': 'pr zonal seasonality RMSE',
         'ref': 'Using CDAT regridding and rms (uncentered and biased) calculation',
         'time_frequency': 'monthly',
         'units': 'mm/day'},
        'metric': {'datasets': "GISS-E2-H_r6i1p1; ERA-Interim's pr & GPCPv2.3's precip; 's ",
         'method': 'The metric is the statistical value between the model and the observations',
         'name': 'SeasonalPrLonRmse',
         'units': 'mm/day'}},
       'SeasonalSstLonRmse': {'diagnostic': {'ERA-Interim': {'name': 'ERA-Interim',
          'nyears': 40,
          'time_period': ['1979-1-16 12:0:0.0', '2019-3-16 12:0:0.0']},
         'GISS-E2-H_r6i1p1': {'keyerror': None,
          'name': 'GISS-E2-H_r6i1p1',
          'nyears': 156,
          'time_period': ['1850-1-16 12:0:0.0', '2005-12-16 12:0:0.0']},
         'HadISST': {'name': 'HadISST',
          'nyears': 151,
          'time_period': ['1870-1-16 11:59:59.5', '2020-10-16 12:0:0.0']},
         'Tropflux': {'name': 'Tropflux',
          'nyears': 40,
          'time_period': ['1979-1-15 0:0:0.0', '2018-12-15 12:0:0.0']},
         'method': 'Zonal root mean square error of equatorial_pacific climatological sst STD, time series are linearly detrended, observations and model regridded to generic_1x1deg',
         'name': 'sst zonal seasonality RMSE',
         'ref': 'Using CDAT regridding and rms (uncentered and biased) calculation',
         'time_frequency': 'monthly',
         'units': 'C'},
        'metric': {'datasets': "GISS-E2-H_r6i1p1; ERA-Interim's ts & HadISST's sst & Tropflux's sst; 's ",
         'method': 'The metric is the statistical value between the model and the observations',
         'name': 'SeasonalSstLonRmse',
         'units': 'C'}},
       'SeasonalTauxLonRmse': {'diagnostic': {'ERA-Interim': {'name': 'ERA-Interim',
          'nyears': 40,
          'time_period': ['1979-1-16 12:0:0.0', '2019-3-16 12:0:0.0']},
         'GISS-E2-H_r6i1p1': {'keyerror': None,
          'name': 'GISS-E2-H_r6i1p1',
          'nyears': 156,
          'time_period': ['1850-1-16 12:0:0.0', '2005-12-16 12:0:0.0']},
         'Tropflux': {'name': 'Tropflux',
          'nyears': 40,
          'time_period': ['1979-1-15 0:0:0.0', '2018-12-15 12:0:0.0']},
         'method': 'Zonal root mean square error of equatorial_pacific climatological taux STD, time series are linearly detrended, observations and model regridded to generic_1x1deg',
         'name': 'taux zonal seasonality RMSE',
         'ref': 'Using CDAT regridding and rms (uncentered and biased) calculation',
         'time_frequency': 'monthly',
         'units': '1e-3 N/m2'},
        'metric': {'datasets': "GISS-E2-H_r6i1p1; ERA-Interim's tauu & Tropflux's taux; 's ",
         'method': 'The metric is the statistical value between the model and the observations',
         'name': 'SeasonalTauxLonRmse',
         'units': '1e-3 N/m2'}}},
      'name': 'Metrics Collection for ENSO performance'},
     'value': {'BiasPrLatRmse': {'diagnostic': {'ERA-Interim': {'value': None,
         'value_error': None},
        'GISS-E2-H_r6i1p1': {'value': None, 'value_error': None},
        'GPCPv2.3': {'value': None, 'value_error': None}},
       'metric': {'ERA-Interim': {'value': 2.88373577400808,
         'value_error': None},
        'GPCPv2.3': {'value': 3.4800494007263327, 'value_error': None}}},
      'BiasPrLonRmse': {'diagnostic': {'ERA-Interim': {'value': None,
         'value_error': None},
        'GISS-E2-H_r6i1p1': {'value': None, 'value_error': None},
        'GPCPv2.3': {'value': None, 'value_error': None}},
       'metric': {'ERA-Interim': {'value': 1.4731889937317975,
         'value_error': None},
        'GPCPv2.3': {'value': 0.9185258307357356, 'value_error': None}}},
      'BiasSstLonRmse': {'diagnostic': {'ERA-Interim': {'value': None,
         'value_error': None},
        'GISS-E2-H_r6i1p1': {'value': None, 'value_error': None},
        'HadISST': {'value': None, 'value_error': None},
        'Tropflux': {'value': None, 'value_error': None}},
       'metric': {'ERA-Interim': {'value': 0.8472502805984422,
         'value_error': None},
        'HadISST': {'value': 0.9282429281059803, 'value_error': None},
        'Tropflux': {'value': 0.8378590451055146, 'value_error': None}}},
      'BiasTauxLonRmse': {'diagnostic': {'ERA-Interim': {'value': None,
         'value_error': None},
        'GISS-E2-H_r6i1p1': {'value': None, 'value_error': None},
        'Tropflux': {'value': None, 'value_error': None}},
       'metric': {'ERA-Interim': {'value': 21.2518484553162,
         'value_error': None},
        'Tropflux': {'value': 20.893964848653056, 'value_error': None}}},
      'EnsoAmpl': {'diagnostic': {'ERA-Interim': {'value': 0.8989844997845644,
         'value_error': 0.14214193002531866},
        'GISS-E2-H_r6i1p1': {'value': 0.5718953293778648,
         'value_error': 0.04578827163151485},
        'HadISST': {'value': 0.7665787872085695,
         'value_error': 0.06238329697691264},
        'Tropflux': {'value': 0.9039789553693535,
         'value_error': 0.14293162279134272}},
       'metric': {'ERA-Interim': {'value': 36.38429477761678,
         'value_error': 15.151858888164401},
        'HadISST': {'value': 25.396405572299713,
         'value_error': 12.044222334276252},
        'Tropflux': {'value': 36.735769568419194,
         'value_error': 15.06814533953095}}},
      'EnsoDuration': {'diagnostic': {'ERA-Interim': {'value': 13.0,
         'value_error': None},
        'GISS-E2-H_r6i1p1': {'value': 14.0, 'value_error': None},
        'HadISST': {'value': 13.0, 'value_error': None},
        'Tropflux': {'value': 13.0, 'value_error': None}},
       'metric': {'ERA-Interim': {'value': 7.6923076923076925,
         'value_error': None},
        'HadISST': {'value': 7.6923076923076925, 'value_error': None},
        'Tropflux': {'value': 7.6923076923076925, 'value_error': None}}},
      'EnsoSeasonality': {'diagnostic': {'ERA-Interim': {'value': 2.0466846866656914,
         'value_error': 0.6513411033995022},
        'GISS-E2-H_r6i1p1': {'value': 1.3574262106721808,
         'value_error': 0.2177121735178629},
        'HadISST': {'value': 1.6639865947361325,
         'value_error': 0.2712772451657809},
        'Tropflux': {'value': 2.0532132553583624,
         'value_error': 0.6534187683977347}},
       'metric': {'ERA-Interim': {'value': 33.67682772456757,
         'value_error': 31.744130390923313},
        'HadISST': {'value': 18.42324842241681,
         'value_error': 26.383105445803167},
        'Tropflux': {'value': 33.88771443347909,
         'value_error': 31.643194097381755}}},
      'EnsoSstDiversity_2': {'diagnostic': {'ERA-Interim': {'value': 33.25,
         'value_error': None},
        'GISS-E2-H_r6i1p1': {'value': 24.5, 'value_error': None},
        'HadISST': {'value': 49.0, 'value_error': None},
        'Tropflux': {'value': 32.0, 'value_error': None}},
       'metric': {'ERA-Interim': {'value': 26.31578947368421,
         'value_error': None},
        'HadISST': {'value': 50.0, 'value_error': None},
        'Tropflux': {'value': 23.4375, 'value_error': None}}},
      'EnsoSstLonRmse': {'diagnostic': {'ERA-Interim': {'value': None,
         'value_error': None},
        'GISS-E2-H_r6i1p1': {'value': None, 'value_error': None},
        'HadISST': {'value': None, 'value_error': None},
        'Tropflux': {'value': None, 'value_error': None}},
       'metric': {'ERA-Interim': {'value': 0.24547828643383598,
         'value_error': None},
        'HadISST': {'value': 0.2478760822542714, 'value_error': None},
        'Tropflux': {'value': 0.24443804701207175, 'value_error': None}}},
      'EnsoSstSkew': {'diagnostic': {'ERA-Interim': {'value': 0.39098111106809963,
         'value_error': 0.061819541653923164},
        'GISS-E2-H_r6i1p1': {'value': 0.13779379634480354,
         'value_error': 0.011032333107243778},
        'HadISST': {'value': 0.38989908235027515,
         'value_error': 0.03172953733021198},
        'Tropflux': {'value': 0.39744741059612115,
         'value_error': 0.06284195338099416}},
       'metric': {'ERA-Interim': {'value': 64.75691729240516,
         'value_error': 8.39412554026826},
        'HadISST': {'value': 64.65911242617052,
         'value_error': 5.705536183546382},
        'Tropflux': {'value': 65.33030718752698,
         'value_error': 8.257556704814585}}},
      'EnsoSstTsRmse': {'diagnostic': {'ERA-Interim': {'value': None,
         'value_error': None},
        'GISS-E2-H_r6i1p1': {'value': None, 'value_error': None},
        'HadISST': {'value': None, 'value_error': None},
        'Tropflux': {'value': None, 'value_error': None}},
       'metric': {'ERA-Interim': {'value': 0.1836444791769145,
         'value_error': None},
        'HadISST': {'value': 0.1818787319833921, 'value_error': None},
        'Tropflux': {'value': 0.18742288680339608, 'value_error': None}}},
      'SeasonalPrLatRmse': {'diagnostic': {'ERA-Interim': {'value': None,
         'value_error': None},
        'GISS-E2-H_r6i1p1': {'value': None, 'value_error': None},
        'GPCPv2.3': {'value': None, 'value_error': None}},
       'metric': {'ERA-Interim': {'value': 1.1302449532033683,
         'value_error': None},
        'GPCPv2.3': {'value': 1.007871789350852, 'value_error': None}}},
      'SeasonalPrLonRmse': {'diagnostic': {'ERA-Interim': {'value': None,
         'value_error': None},
        'GISS-E2-H_r6i1p1': {'value': None, 'value_error': None},
        'GPCPv2.3': {'value': None, 'value_error': None}},
       'metric': {'ERA-Interim': {'value': 0.8212291770903363,
         'value_error': None},
        'GPCPv2.3': {'value': 0.5024912345474117, 'value_error': None}}},
      'SeasonalSstLonRmse': {'diagnostic': {'ERA-Interim': {'value': None,
         'value_error': None},
        'GISS-E2-H_r6i1p1': {'value': None, 'value_error': None},
        'HadISST': {'value': None, 'value_error': None},
        'Tropflux': {'value': None, 'value_error': None}},
       'metric': {'ERA-Interim': {'value': 0.3162832287927244,
         'value_error': None},
        'HadISST': {'value': 0.310981637805239, 'value_error': None},
        'Tropflux': {'value': 0.32587453212023026, 'value_error': None}}},
      'SeasonalTauxLonRmse': {'diagnostic': {'ERA-Interim': {'value': None,
         'value_error': None},
        'GISS-E2-H_r6i1p1': {'value': None, 'value_error': None},
        'Tropflux': {'value': None, 'value_error': None}},
       'metric': {'ERA-Interim': {'value': 2.988846531139811,
         'value_error': None},
        'Tropflux': {'value': 3.2208811179954737, 'value_error': None}}}}},
    'r6i1p2': {'metadata': {'description_of_the_collection': 'Describe which science question this collection is about',
      'metrics': {'BiasPrLatRmse': {'diagnostic': {'ERA-Interim': {'name': 'ERA-Interim',
          'nyears': 40,
          'time_period': ['1979-1-16 12:0:0.0', '2019-3-16 12:0:0.0']},
         'GISS-E2-H_r6i1p2': {'keyerror': None,
          'name': 'GISS-E2-H_r6i1p2',
          'nyears': 156,
          'time_period': ['1850-1-16 12:0:0.0', '2005-12-16 12:0:0.0']},
         'GPCPv2.3': {'name': 'GPCPv2.3',
          'nyears': 41,
          'time_period': ['1979-1-1 0:0:0.0', '2019-7-1 0:0:0.0']},
         'method': 'Meridional root mean square error of nino3_LatExt pr, time series are linearly detrended, observations and model regridded to generic_1x1deg',
         'name': 'pr Meridional RMSE',
         'ref': 'Using CDAT regridding and rms (uncentered and biased) calculation',
         'time_frequency': 'monthly',
         'units': 'mm/day'},
        'metric': {'datasets': "GISS-E2-H_r6i1p2; ERA-Interim's pr & GPCPv2.3's precip; 's ",
         'method': 'The metric is the statistical value between the model and the observations',
         'name': 'BiasPrLatRmse',
         'units': 'mm/day'}},
       'BiasPrLonRmse': {'diagnostic': {'ERA-Interim': {'name': 'ERA-Interim',
          'nyears': 40,
          'time_period': ['1979-1-16 12:0:0.0', '2019-3-16 12:0:0.0']},
         'GISS-E2-H_r6i1p2': {'keyerror': None,
          'name': 'GISS-E2-H_r6i1p2',
          'nyears': 156,
          'time_period': ['1850-1-16 12:0:0.0', '2005-12-16 12:0:0.0']},
         'GPCPv2.3': {'name': 'GPCPv2.3',
          'nyears': 41,
          'time_period': ['1979-1-1 0:0:0.0', '2019-7-1 0:0:0.0']},
         'method': 'Zonal root mean square error of equatorial_pacific pr, time series are linearly detrended, observations and model regridded to generic_1x1deg',
         'name': 'pr Zonal RMSE',
         'ref': 'Using CDAT regridding and rms (uncentered and biased) calculation',
         'time_frequency': 'monthly',
         'units': 'mm/day'},
        'metric': {'datasets': "GISS-E2-H_r6i1p2; ERA-Interim's pr & GPCPv2.3's precip; 's ",
         'method': 'The metric is the statistical value between the model and the observations',
         'name': 'BiasPrLonRmse',
         'units': 'mm/day'}},
       'BiasSstLonRmse': {'diagnostic': {'ERA-Interim': {'name': 'ERA-Interim',
          'nyears': 40,
          'time_period': ['1979-1-16 12:0:0.0', '2019-3-16 12:0:0.0']},
         'GISS-E2-H_r6i1p2': {'keyerror': None,
          'name': 'GISS-E2-H_r6i1p2',
          'nyears': 156,
          'time_period': ['1850-1-16 12:0:0.0', '2005-12-16 12:0:0.0']},
         'HadISST': {'name': 'HadISST',
          'nyears': 151,
          'time_period': ['1870-1-16 11:59:59.5', '2020-10-16 12:0:0.0']},
         'Tropflux': {'name': 'Tropflux',
          'nyears': 40,
          'time_period': ['1979-1-15 0:0:0.0', '2018-12-15 12:0:0.0']},
         'method': 'Zonal root mean square error of equatorial_pacific sst, time series are linearly detrended, observations and model regridded to generic_1x1deg',
         'name': 'sst Zonal RMSE',
         'ref': 'Using CDAT regridding and rms (uncentered and biased) calculation',
         'time_frequency': 'monthly',
         'units': 'C'},
        'metric': {'datasets': "GISS-E2-H_r6i1p2; ERA-Interim's ts & HadISST's sst & Tropflux's sst; 's ",
         'method': 'The metric is the statistical value between the model and the observations',
         'name': 'BiasSstLonRmse',
         'units': 'C'}},
       'BiasTauxLonRmse': {'diagnostic': {'ERA-Interim': {'name': 'ERA-Interim',
          'nyears': 40,
          'time_period': ['1979-1-16 12:0:0.0', '2019-3-16 12:0:0.0']},
         'GISS-E2-H_r6i1p2': {'keyerror': None,
          'name': 'GISS-E2-H_r6i1p2',
          'nyears': 156,
          'time_period': ['1850-1-16 12:0:0.0', '2005-12-16 12:0:0.0']},
         'Tropflux': {'name': 'Tropflux',
          'nyears': 40,
          'time_period': ['1979-1-15 0:0:0.0', '2018-12-15 12:0:0.0']},
         'method': 'Zonal root mean square error of equatorial_pacific taux, time series are linearly detrended, observations and model regridded to generic_1x1deg',
         'name': 'taux Zonal RMSE',
         'ref': 'Using CDAT regridding and rms (uncentered and biased) calculation',
         'time_frequency': 'monthly',
         'units': '1e-3 N/m2'},
        'metric': {'datasets': "GISS-E2-H_r6i1p2; ERA-Interim's tauu & Tropflux's taux; 's ",
         'method': 'The metric is the statistical value between the model and the observations',
         'name': 'BiasTauxLonRmse',
         'units': '1e-3 N/m2'}},
       'EnsoAmpl': {'diagnostic': {'ERA-Interim': {'keyerror': None,
          'name': 'ERA-Interim',
          'nyears': 40,
          'time_period': ['1979-1-16 12:0:0.0', '2019-3-16 12:0:0.0']},
         'GISS-E2-H_r6i1p2': {'keyerror': None,
          'name': 'GISS-E2-H_r6i1p2',
          'nyears': 156,
          'time_period': ['1850-1-16 12:0:0.0', '2005-12-16 12:0:0.0']},
         'HadISST': {'keyerror': None,
          'name': 'HadISST',
          'nyears': 151,
          'time_period': ['1870-1-16 11:59:59.5', '2020-10-16 12:0:0.0']},
         'Tropflux': {'keyerror': None,
          'name': 'Tropflux',
          'nyears': 40,
          'time_period': ['1979-1-15 0:0:0.0', '2018-12-15 12:0:0.0']},
         'method': 'Standard deviation of nino3.4 sstA, time series are linearly detrended',
         'name': 'ENSO amplitude',
         'ref': 'Using CDAT regression calculation',
         'time_frequency': 'monthly',
         'units': 'C'},
        'metric': {'datasets': "GISS-E2-H_r6i1p2; ERA-Interim's ts & HadISST's sst & Tropflux's sst; 's ",
         'method': 'The metric is the absolute value of the relative difference between model and observations values (M = 100 * abs[[model-obs] / obs])',
         'name': 'EnsoAmpl',
         'units': '%'}},
       'EnsoDuration': {'diagnostic': {'ERA-Interim': {'keyerror': None,
          'name': 'ERA-Interim',
          'nyears': 40,
          'time_period': ['1979-1-16 12:0:0.0', '2019-3-16 12:0:0.0']},
         'GISS-E2-H_r6i1p2': {'keyerror': None,
          'name': 'GISS-E2-H_r6i1p2',
          'nyears': 156,
          'time_period': ['1850-1-16 12:0:0.0', '2005-12-16 12:0:0.0']},
         'HadISST': {'keyerror': None,
          'name': 'HadISST',
          'nyears': 151,
          'time_period': ['1870-1-16 11:59:59.5', '2020-10-16 12:0:0.0']},
         'Tropflux': {'keyerror': None,
          'name': 'Tropflux',
          'nyears': 40,
          'time_period': ['1979-1-15 0:0:0.0', '2018-12-15 12:0:0.0']},
         'method': 'nino3.4 SSTA during DEC regressed against nino3.4 SSTA during 6 years (centered on ENSO), the duration is the number of consecutive months during which the regression is above 0.25, time series are linearly detrended, smoothing using a triangle shaped window of 5 points',
         'name': 'ENSO Duration based on life cyle SSTA pattern',
         'ref': 'Using CDAT',
         'time_frequency': 'monthly',
         'units': 'months'},
        'metric': {'datasets': "GISS-E2-H_r6i1p2; ERA-Interim's ts & HadISST's sst & Tropflux's sst; 's ",
         'method': 'The metric is the absolute value of the relative difference between model and observations values (M = 100 * abs[[model-obs] / obs])',
         'name': 'EnsoDuration',
         'units': '%'}},
       'EnsoSeasonality': {'diagnostic': {'ERA-Interim': {'keyerror': None,
          'name': 'ERA-Interim',
          'nyears': 40,
          'time_period': ['1979-1-16 12:0:0.0', '2019-3-16 12:0:0.0']},
         'GISS-E2-H_r6i1p2': {'keyerror': None,
          'name': 'GISS-E2-H_r6i1p2',
          'nyears': 156,
          'time_period': ['1850-1-16 12:0:0.0', '2005-12-16 12:0:0.0']},
         'HadISST': {'keyerror': None,
          'name': 'HadISST',
          'nyears': 151,
          'time_period': ['1870-1-16 11:59:59.5', '2020-10-16 12:0:0.0']},
         'Tropflux': {'keyerror': None,
          'name': 'Tropflux',
          'nyears': 40,
          'time_period': ['1979-1-15 0:0:0.0', '2018-12-15 12:0:0.0']},
         'method': 'Ratio between NDJ and MAM standard deviation nino3.4 sstA, time series are linearly detrended',
         'name': 'ENSO seasonality',
         'ref': 'Using CDAT std dev calculation',
         'time_frequency': 'monthly',
         'units': 'C/C'},
        'metric': {'datasets': "GISS-E2-H_r6i1p2; ERA-Interim's ts & HadISST's sst & Tropflux's sst; 's ",
         'method': 'The metric is the absolute value of the relative difference between model and observations values (M = 100 * abs[[model-obs] / obs])',
         'name': 'EnsoSeasonality',
         'units': '%'}},
       'EnsoSstDiversity_2': {'diagnostic': {'ERA-Interim': {'keyerror': None,
          'name': 'ERA-Interim',
          'nyears': 40,
          'time_period': ['1979-1-16 12:0:0.0', '2019-3-16 12:0:0.0']},
         'GISS-E2-H_r6i1p2': {'keyerror': None,
          'name': 'GISS-E2-H_r6i1p2',
          'nyears': 156,
          'time_period': ['1850-1-16 12:0:0.0', '2005-12-16 12:0:0.0']},
         'HadISST': {'keyerror': None,
          'name': 'HadISST',
          'nyears': 151,
          'time_period': ['1870-1-16 11:59:59.5', '2020-10-16 12:0:0.0']},
         'Tropflux': {'keyerror': None,
          'name': 'Tropflux',
          'nyears': 40,
          'time_period': ['1979-1-15 0:0:0.0', '2018-12-15 12:0:0.0']},
         'method': 'Nino (Nina) events = nino3.4 sstA > 0.75 (< -0.75) during DEC, zonal SSTA (meridional averaged [-5.0 ; 5.0]), the zonal SSTA maximum (minimum) is located for each event, the diversity is the interquartile range (IQR = Q3 - Q1), time series are linearly detrended, smoothing using a triangle shaped window of 5 points',
         'name': 'ENSO Diversity (interquartile range)',
         'ref': 'Using CDAT regridding',
         'time_frequency': 'monthly',
         'units': 'long'},
        'metric': {'datasets': "GISS-E2-H_r6i1p2; ERA-Interim's ts & HadISST's sst & Tropflux's sst; 's ",
         'method': 'The metric is the absolute value of the relative difference between model and observations values (M = 100 * abs[[model-obs] / obs])',
         'name': 'EnsoSstDiversity',
         'units': '%'}},
       'EnsoSstLonRmse': {'diagnostic': {'ERA-Interim': {'name': 'ERA-Interim',
          'nyears': 40,
          'time_period': ['1979-1-16 12:0:0.0', '2019-3-16 12:0:0.0']},
         'GISS-E2-H_r6i1p2': {'keyerror': None,
          'name': 'GISS-E2-H_r6i1p2',
          'nyears': 156,
          'time_period': ['1850-1-16 12:0:0.0', '2005-12-16 12:0:0.0']},
         'HadISST': {'name': 'HadISST',
          'nyears': 151,
          'time_period': ['1870-1-16 11:59:59.5', '2020-10-16 12:0:0.0']},
         'Tropflux': {'name': 'Tropflux',
          'nyears': 40,
          'time_period': ['1979-1-15 0:0:0.0', '2018-12-15 12:0:0.0']},
         'method': 'nino3.4 SSTA during DEC regressed against equatorial_pacific SSTA, time series are linearly detrended, smoothing using a triangle shaped window of 5 points, observations and model regridded to generic_1x1deg',
         'name': 'ENSO Zonal SSTA pattern',
         'ref': 'Using CDAT regridding and rms (uncentered and biased) calculation',
         'time_frequency': 'monthly',
         'units': 'C/C'},
        'metric': {'datasets': "GISS-E2-H_r6i1p2; ERA-Interim's ts & HadISST's sst & Tropflux's sst; 's ",
         'method': 'The metric is the statistical value between the model and the observations',
         'name': 'EnsoSstLonRmse',
         'units': 'C/C'}},
       'EnsoSstSkew': {'diagnostic': {'ERA-Interim': {'keyerror': None,
          'name': 'ERA-Interim',
          'nyears': 40,
          'time_period': ['1979-1-16 12:0:0.0', '2019-3-16 12:0:0.0']},
         'GISS-E2-H_r6i1p2': {'keyerror': None,
          'name': 'GISS-E2-H_r6i1p2',
          'nyears': 156,
          'time_period': ['1850-1-16 12:0:0.0', '2005-12-16 12:0:0.0']},
         'HadISST': {'keyerror': None,
          'name': 'HadISST',
          'nyears': 151,
          'time_period': ['1870-1-16 11:59:59.5', '2020-10-16 12:0:0.0']},
         'Tropflux': {'keyerror': None,
          'name': 'Tropflux',
          'nyears': 40,
          'time_period': ['1979-1-15 0:0:0.0', '2018-12-15 12:0:0.0']},
         'method': 'Standard deviation of nino3.4 sstA, time series are linearly detrended',
         'name': 'ENSO skewness',
         'ref': 'Using CDAT regression calculation',
         'time_frequency': 'monthly',
         'units': 'C'},
        'metric': {'datasets': "GISS-E2-H_r6i1p2; ERA-Interim's ts & HadISST's sst & Tropflux's sst; 's ",
         'method': 'The metric is the absolute value of the relative difference between model and observations values (M = 100 * abs[[model-obs] / obs])',
         'name': 'EnsoSstSkew',
         'units': '%'}},
       'EnsoSstTsRmse': {'diagnostic': {'ERA-Interim': {'name': 'ERA-Interim',
          'nyears': 40,
          'time_period': ['1979-1-16 12:0:0.0', '2019-3-16 12:0:0.0']},
         'GISS-E2-H_r6i1p2': {'keyerror': None,
          'name': 'GISS-E2-H_r6i1p2',
          'nyears': 156,
          'time_period': ['1850-1-16 12:0:0.0', '2005-12-16 12:0:0.0']},
         'HadISST': {'name': 'HadISST',
          'nyears': 151,
          'time_period': ['1870-1-16 11:59:59.5', '2020-10-16 12:0:0.0']},
         'Tropflux': {'name': 'Tropflux',
          'nyears': 40,
          'time_period': ['1979-1-15 0:0:0.0', '2018-12-15 12:0:0.0']},
         'method': 'nino3.4 SSTA during DEC regressed against nino3.4 SSTA during 6 years (centered on ENSO), time series are linearly detrended, smoothing using a triangle shaped window of 5 points',
         'name': 'ENSO life cyle SSTA pattern',
         'ref': 'Using CDAT regridding and rms (uncentered and biased) calculation',
         'time_frequency': 'monthly',
         'units': 'C/C'},
        'metric': {'datasets': "GISS-E2-H_r6i1p2; ERA-Interim's ts & HadISST's sst & Tropflux's sst; 's ",
         'method': 'The metric is the statistical value between the model and the observations',
         'name': 'EnsoSstTsRmse',
         'units': 'C/C'}},
       'SeasonalPrLatRmse': {'diagnostic': {'ERA-Interim': {'name': 'ERA-Interim',
          'nyears': 40,
          'time_period': ['1979-1-16 12:0:0.0', '2019-3-16 12:0:0.0']},
         'GISS-E2-H_r6i1p2': {'keyerror': None,
          'name': 'GISS-E2-H_r6i1p2',
          'nyears': 156,
          'time_period': ['1850-1-16 12:0:0.0', '2005-12-16 12:0:0.0']},
         'GPCPv2.3': {'name': 'GPCPv2.3',
          'nyears': 41,
          'time_period': ['1979-1-1 0:0:0.0', '2019-7-1 0:0:0.0']},
         'method': 'Meridional root mean square error of nino3_LatExt climatological pr STD, time series are linearly detrended, observations and model regridded to generic_1x1deg',
         'name': 'pr meridional seasonality RMSE',
         'ref': 'Using CDAT regridding and rms (uncentered and biased) calculation',
         'time_frequency': 'monthly',
         'units': 'mm/day'},
        'metric': {'datasets': "GISS-E2-H_r6i1p2; ERA-Interim's pr & GPCPv2.3's precip; 's ",
         'method': 'The metric is the statistical value between the model and the observations',
         'name': 'SeasonalPrLatRmse',
         'units': 'mm/day'}},
       'SeasonalPrLonRmse': {'diagnostic': {'ERA-Interim': {'name': 'ERA-Interim',
          'nyears': 40,
          'time_period': ['1979-1-16 12:0:0.0', '2019-3-16 12:0:0.0']},
         'GISS-E2-H_r6i1p2': {'keyerror': None,
          'name': 'GISS-E2-H_r6i1p2',
          'nyears': 156,
          'time_period': ['1850-1-16 12:0:0.0', '2005-12-16 12:0:0.0']},
         'GPCPv2.3': {'name': 'GPCPv2.3',
          'nyears': 41,
          'time_period': ['1979-1-1 0:0:0.0', '2019-7-1 0:0:0.0']},
         'method': 'Zonal root mean square error of equatorial_pacific climatological pr STD, time series are linearly detrended, observations and model regridded to generic_1x1deg',
         'name': 'pr zonal seasonality RMSE',
         'ref': 'Using CDAT regridding and rms (uncentered and biased) calculation',
         'time_frequency': 'monthly',
         'units': 'mm/day'},
        'metric': {'datasets': "GISS-E2-H_r6i1p2; ERA-Interim's pr & GPCPv2.3's precip; 's ",
         'method': 'The metric is the statistical value between the model and the observations',
         'name': 'SeasonalPrLonRmse',
         'units': 'mm/day'}},
       'SeasonalSstLonRmse': {'diagnostic': {'ERA-Interim': {'name': 'ERA-Interim',
          'nyears': 40,
          'time_period': ['1979-1-16 12:0:0.0', '2019-3-16 12:0:0.0']},
         'GISS-E2-H_r6i1p2': {'keyerror': None,
          'name': 'GISS-E2-H_r6i1p2',
          'nyears': 156,
          'time_period': ['1850-1-16 12:0:0.0', '2005-12-16 12:0:0.0']},
         'HadISST': {'name': 'HadISST',
          'nyears': 151,
          'time_period': ['1870-1-16 11:59:59.5', '2020-10-16 12:0:0.0']},
         'Tropflux': {'name': 'Tropflux',
          'nyears': 40,
          'time_period': ['1979-1-15 0:0:0.0', '2018-12-15 12:0:0.0']},
         'method': 'Zonal root mean square error of equatorial_pacific climatological sst STD, time series are linearly detrended, observations and model regridded to generic_1x1deg',
         'name': 'sst zonal seasonality RMSE',
         'ref': 'Using CDAT regridding and rms (uncentered and biased) calculation',
         'time_frequency': 'monthly',
         'units': 'C'},
        'metric': {'datasets': "GISS-E2-H_r6i1p2; ERA-Interim's ts & HadISST's sst & Tropflux's sst; 's ",
         'method': 'The metric is the statistical value between the model and the observations',
         'name': 'SeasonalSstLonRmse',
         'units': 'C'}},
       'SeasonalTauxLonRmse': {'diagnostic': {'ERA-Interim': {'name': 'ERA-Interim',
          'nyears': 40,
          'time_period': ['1979-1-16 12:0:0.0', '2019-3-16 12:0:0.0']},
         'GISS-E2-H_r6i1p2': {'keyerror': None,
          'name': 'GISS-E2-H_r6i1p2',
          'nyears': 156,
          'time_period': ['1850-1-16 12:0:0.0', '2005-12-16 12:0:0.0']},
         'Tropflux': {'name': 'Tropflux',
          'nyears': 40,
          'time_period': ['1979-1-15 0:0:0.0', '2018-12-15 12:0:0.0']},
         'method': 'Zonal root mean square error of equatorial_pacific climatological taux STD, time series are linearly detrended, observations and model regridded to generic_1x1deg',
         'name': 'taux zonal seasonality RMSE',
         'ref': 'Using CDAT regridding and rms (uncentered and biased) calculation',
         'time_frequency': 'monthly',
         'units': '1e-3 N/m2'},
        'metric': {'datasets': "GISS-E2-H_r6i1p2; ERA-Interim's tauu & Tropflux's taux; 's ",
         'method': 'The metric is the statistical value between the model and the observations',
         'name': 'SeasonalTauxLonRmse',
         'units': '1e-3 N/m2'}}},
      'name': 'Metrics Collection for ENSO performance'},
     'value': {'BiasPrLatRmse': {'diagnostic': {'ERA-Interim': {'value': None,
         'value_error': None},
        'GISS-E2-H_r6i1p2': {'value': None, 'value_error': None},
        'GPCPv2.3': {'value': None, 'value_error': None}},
       'metric': {'ERA-Interim': {'value': 2.938670594630599,
         'value_error': None},
        'GPCPv2.3': {'value': 3.544983781424655, 'value_error': None}}},
      'BiasPrLonRmse': {'diagnostic': {'ERA-Interim': {'value': None,
         'value_error': None},
        'GISS-E2-H_r6i1p2': {'value': None, 'value_error': None},
        'GPCPv2.3': {'value': None, 'value_error': None}},
       'metric': {'ERA-Interim': {'value': 1.417272330796148,
         'value_error': None},
        'GPCPv2.3': {'value': 0.93021509562013, 'value_error': None}}},
      'BiasSstLonRmse': {'diagnostic': {'ERA-Interim': {'value': None,
         'value_error': None},
        'GISS-E2-H_r6i1p2': {'value': None, 'value_error': None},
        'HadISST': {'value': None, 'value_error': None},
        'Tropflux': {'value': None, 'value_error': None}},
       'metric': {'ERA-Interim': {'value': 0.8990346860438385,
         'value_error': None},
        'HadISST': {'value': 1.0096889654555121, 'value_error': None},
        'Tropflux': {'value': 0.8814577668755026, 'value_error': None}}},
      'BiasTauxLonRmse': {'diagnostic': {'ERA-Interim': {'value': None,
         'value_error': None},
        'GISS-E2-H_r6i1p2': {'value': None, 'value_error': None},
        'Tropflux': {'value': None, 'value_error': None}},
       'metric': {'ERA-Interim': {'value': 21.490105713517266,
         'value_error': None},
        'Tropflux': {'value': 21.128961899110838, 'value_error': None}}},
      'EnsoAmpl': {'diagnostic': {'ERA-Interim': {'value': 0.8989844997845644,
         'value_error': 0.14214193002531866},
        'GISS-E2-H_r6i1p2': {'value': 0.6290716951124901,
         'value_error': 0.05036604457469984},
        'HadISST': {'value': 0.7665787872085695,
         'value_error': 0.06238329697691264},
        'Tropflux': {'value': 0.9039789553693535,
         'value_error': 0.14293162279134272}},
       'metric': {'ERA-Interim': {'value': 30.024188930594146,
         'value_error': 16.66669592362604},
        'HadISST': {'value': 17.937763787698806,
         'value_error': 13.248367263948719},
        'Tropflux': {'value': 30.410803108191832,
         'value_error': 16.57461294753316}}},
      'EnsoDuration': {'diagnostic': {'ERA-Interim': {'value': 13.0,
         'value_error': None},
        'GISS-E2-H_r6i1p2': {'value': 13.0, 'value_error': None},
        'HadISST': {'value': 13.0, 'value_error': None},
        'Tropflux': {'value': 13.0, 'value_error': None}},
       'metric': {'ERA-Interim': {'value': 0.0, 'value_error': None},
        'HadISST': {'value': 0.0, 'value_error': None},
        'Tropflux': {'value': 0.0, 'value_error': None}}},
      'EnsoSeasonality': {'diagnostic': {'ERA-Interim': {'value': 2.0466846866656914,
         'value_error': 0.6513411033995022},
        'GISS-E2-H_r6i1p2': {'value': 1.3888428837041653,
         'value_error': 0.22275096834642777},
        'HadISST': {'value': 1.6639865947361325,
         'value_error': 0.2712772451657809},
        'Tropflux': {'value': 2.0532132553583624,
         'value_error': 0.6534187683977347}},
       'metric': {'ERA-Interim': {'value': 32.14182464194002,
         'value_error': 32.47882591789598},
        'HadISST': {'value': 16.53521199644029,
         'value_error': 26.993723828476597},
        'Tropflux': {'value': 32.35759217511187,
         'value_error': 32.37555352497289}}},
      'EnsoSstDiversity_2': {'diagnostic': {'ERA-Interim': {'value': 33.25,
         'value_error': None},
        'GISS-E2-H_r6i1p2': {'value': 22.25, 'value_error': None},
        'HadISST': {'value': 49.0, 'value_error': None},
        'Tropflux': {'value': 32.0, 'value_error': None}},
       'metric': {'ERA-Interim': {'value': 33.08270676691729,
         'value_error': None},
        'HadISST': {'value': 54.59183673469388, 'value_error': None},
        'Tropflux': {'value': 30.46875, 'value_error': None}}},
      'EnsoSstLonRmse': {'diagnostic': {'ERA-Interim': {'value': None,
         'value_error': None},
        'GISS-E2-H_r6i1p2': {'value': None, 'value_error': None},
        'HadISST': {'value': None, 'value_error': None},
        'Tropflux': {'value': None, 'value_error': None}},
       'metric': {'ERA-Interim': {'value': 0.2576223993787478,
         'value_error': None},
        'HadISST': {'value': 0.2630670402317045, 'value_error': None},
        'Tropflux': {'value': 0.25685633336715635, 'value_error': None}}},
      'EnsoSstSkew': {'diagnostic': {'ERA-Interim': {'value': 0.39098111106809963,
         'value_error': 0.061819541653923164},
        'GISS-E2-H_r6i1p2': {'value': -0.13238583491595993,
         'value_error': -0.010599349667518852},
        'HadISST': {'value': 0.38989908235027515,
         'value_error': 0.03172953733021198},
        'Tropflux': {'value': 0.39744741059612115,
         'value_error': 0.06284195338099416}},
       'metric': {'ERA-Interim': {'value': 133.8599055474323,
         'value_error': -8.064683226065311},
        'HadISST': {'value': 133.95387188857958,
         'value_error': -5.48161231737841},
        'Tropflux': {'value': 133.30901935362917,
         'value_error': -7.933474276282164}}},
      'EnsoSstTsRmse': {'diagnostic': {'ERA-Interim': {'value': None,
         'value_error': None},
        'GISS-E2-H_r6i1p2': {'value': None, 'value_error': None},
        'HadISST': {'value': None, 'value_error': None},
        'Tropflux': {'value': None, 'value_error': None}},
       'metric': {'ERA-Interim': {'value': 0.23074461702185373,
         'value_error': None},
        'HadISST': {'value': 0.23212675115343098, 'value_error': None},
        'Tropflux': {'value': 0.23394693596087554, 'value_error': None}}},
      'SeasonalPrLatRmse': {'diagnostic': {'ERA-Interim': {'value': None,
         'value_error': None},
        'GISS-E2-H_r6i1p2': {'value': None, 'value_error': None},
        'GPCPv2.3': {'value': None, 'value_error': None}},
       'metric': {'ERA-Interim': {'value': 1.1037684467641389,
         'value_error': None},
        'GPCPv2.3': {'value': 0.9893599796158047, 'value_error': None}}},
      'SeasonalPrLonRmse': {'diagnostic': {'ERA-Interim': {'value': None,
         'value_error': None},
        'GISS-E2-H_r6i1p2': {'value': None, 'value_error': None},
        'GPCPv2.3': {'value': None, 'value_error': None}},
       'metric': {'ERA-Interim': {'value': 0.7750619269001221,
         'value_error': None},
        'GPCPv2.3': {'value': 0.4841721974423219, 'value_error': None}}},
      'SeasonalSstLonRmse': {'diagnostic': {'ERA-Interim': {'value': None,
         'value_error': None},
        'GISS-E2-H_r6i1p2': {'value': None, 'value_error': None},
        'HadISST': {'value': None, 'value_error': None},
        'Tropflux': {'value': None, 'value_error': None}},
       'metric': {'ERA-Interim': {'value': 0.3098124708754561,
         'value_error': None},
        'HadISST': {'value': 0.30390572529450255, 'value_error': None},
        'Tropflux': {'value': 0.3195418931091673, 'value_error': None}}},
      'SeasonalTauxLonRmse': {'diagnostic': {'ERA-Interim': {'value': None,
         'value_error': None},
        'GISS-E2-H_r6i1p2': {'value': None, 'value_error': None},
        'Tropflux': {'value': None, 'value_error': None}},
       'metric': {'ERA-Interim': {'value': 2.8209255170051266,
         'value_error': None},
        'Tropflux': {'value': 3.0435493567821545, 'value_error': None}}}}},
    'r6i1p3': {'metadata': {'description_of_the_collection': 'Describe which science question this collection is about',
      'metrics': {'BiasPrLatRmse': {'diagnostic': {'ERA-Interim': {'name': 'ERA-Interim',
          'nyears': 40,
          'time_period': ['1979-1-16 12:0:0.0', '2019-3-16 12:0:0.0']},
         'GISS-E2-H_r6i1p3': {'keyerror': None,
          'name': 'GISS-E2-H_r6i1p3',
          'nyears': 156,
          'time_period': ['1850-1-16 12:0:0.0', '2005-12-16 12:0:0.0']},
         'GPCPv2.3': {'name': 'GPCPv2.3',
          'nyears': 41,
          'time_period': ['1979-1-1 0:0:0.0', '2019-7-1 0:0:0.0']},
         'method': 'Meridional root mean square error of nino3_LatExt pr, time series are linearly detrended, observations and model regridded to generic_1x1deg',
         'name': 'pr Meridional RMSE',
         'ref': 'Using CDAT regridding and rms (uncentered and biased) calculation',
         'time_frequency': 'monthly',
         'units': 'mm/day'},
        'metric': {'datasets': "GISS-E2-H_r6i1p3; ERA-Interim's pr & GPCPv2.3's precip; 's ",
         'method': 'The metric is the statistical value between the model and the observations',
         'name': 'BiasPrLatRmse',
         'units': 'mm/day'}},
       'BiasPrLonRmse': {'diagnostic': {'ERA-Interim': {'name': 'ERA-Interim',
          'nyears': 40,
          'time_period': ['1979-1-16 12:0:0.0', '2019-3-16 12:0:0.0']},
         'GISS-E2-H_r6i1p3': {'keyerror': None,
          'name': 'GISS-E2-H_r6i1p3',
          'nyears': 156,
          'time_period': ['1850-1-16 12:0:0.0', '2005-12-16 12:0:0.0']},
         'GPCPv2.3': {'name': 'GPCPv2.3',
          'nyears': 41,
          'time_period': ['1979-1-1 0:0:0.0', '2019-7-1 0:0:0.0']},
         'method': 'Zonal root mean square error of equatorial_pacific pr, time series are linearly detrended, observations and model regridded to generic_1x1deg',
         'name': 'pr Zonal RMSE',
         'ref': 'Using CDAT regridding and rms (uncentered and biased) calculation',
         'time_frequency': 'monthly',
         'units': 'mm/day'},
        'metric': {'datasets': "GISS-E2-H_r6i1p3; ERA-Interim's pr & GPCPv2.3's precip; 's ",
         'method': 'The metric is the statistical value between the model and the observations',
         'name': 'BiasPrLonRmse',
         'units': 'mm/day'}},
       'BiasSstLonRmse': {'diagnostic': {'ERA-Interim': {'name': 'ERA-Interim',
          'nyears': 40,
          'time_period': ['1979-1-16 12:0:0.0', '2019-3-16 12:0:0.0']},
         'GISS-E2-H_r6i1p3': {'keyerror': None,
          'name': 'GISS-E2-H_r6i1p3',
          'nyears': 156,
          'time_period': ['1850-1-16 12:0:0.0', '2005-12-16 12:0:0.0']},
         'HadISST': {'name': 'HadISST',
          'nyears': 151,
          'time_period': ['1870-1-16 11:59:59.5', '2020-10-16 12:0:0.0']},
         'Tropflux': {'name': 'Tropflux',
          'nyears': 40,
          'time_period': ['1979-1-15 0:0:0.0', '2018-12-15 12:0:0.0']},
         'method': 'Zonal root mean square error of equatorial_pacific sst, time series are linearly detrended, observations and model regridded to generic_1x1deg',
         'name': 'sst Zonal RMSE',
         'ref': 'Using CDAT regridding and rms (uncentered and biased) calculation',
         'time_frequency': 'monthly',
         'units': 'C'},
        'metric': {'datasets': "GISS-E2-H_r6i1p3; ERA-Interim's ts & HadISST's sst & Tropflux's sst; 's ",
         'method': 'The metric is the statistical value between the model and the observations',
         'name': 'BiasSstLonRmse',
         'units': 'C'}},
       'BiasTauxLonRmse': {'diagnostic': {'ERA-Interim': {'name': 'ERA-Interim',
          'nyears': 40,
          'time_period': ['1979-1-16 12:0:0.0', '2019-3-16 12:0:0.0']},
         'GISS-E2-H_r6i1p3': {'keyerror': None,
          'name': 'GISS-E2-H_r6i1p3',
          'nyears': 156,
          'time_period': ['1850-1-16 12:0:0.0', '2005-12-16 12:0:0.0']},
         'Tropflux': {'name': 'Tropflux',
          'nyears': 40,
          'time_period': ['1979-1-15 0:0:0.0', '2018-12-15 12:0:0.0']},
         'method': 'Zonal root mean square error of equatorial_pacific taux, time series are linearly detrended, observations and model regridded to generic_1x1deg',
         'name': 'taux Zonal RMSE',
         'ref': 'Using CDAT regridding and rms (uncentered and biased) calculation',
         'time_frequency': 'monthly',
         'units': '1e-3 N/m2'},
        'metric': {'datasets': "GISS-E2-H_r6i1p3; ERA-Interim's tauu & Tropflux's taux; 's ",
         'method': 'The metric is the statistical value between the model and the observations',
         'name': 'BiasTauxLonRmse',
         'units': '1e-3 N/m2'}},
       'EnsoAmpl': {'diagnostic': {'ERA-Interim': {'keyerror': None,
          'name': 'ERA-Interim',
          'nyears': 40,
          'time_period': ['1979-1-16 12:0:0.0', '2019-3-16 12:0:0.0']},
         'GISS-E2-H_r6i1p3': {'keyerror': None,
          'name': 'GISS-E2-H_r6i1p3',
          'nyears': 156,
          'time_period': ['1850-1-16 12:0:0.0', '2005-12-16 12:0:0.0']},
         'HadISST': {'keyerror': None,
          'name': 'HadISST',
          'nyears': 151,
          'time_period': ['1870-1-16 11:59:59.5', '2020-10-16 12:0:0.0']},
         'Tropflux': {'keyerror': None,
          'name': 'Tropflux',
          'nyears': 40,
          'time_period': ['1979-1-15 0:0:0.0', '2018-12-15 12:0:0.0']},
         'method': 'Standard deviation of nino3.4 sstA, time series are linearly detrended',
         'name': 'ENSO amplitude',
         'ref': 'Using CDAT regression calculation',
         'time_frequency': 'monthly',
         'units': 'C'},
        'metric': {'datasets': "GISS-E2-H_r6i1p3; ERA-Interim's ts & HadISST's sst & Tropflux's sst; 's ",
         'method': 'The metric is the absolute value of the relative difference between model and observations values (M = 100 * abs[[model-obs] / obs])',
         'name': 'EnsoAmpl',
         'units': '%'}},
       'EnsoDuration': {'diagnostic': {'ERA-Interim': {'keyerror': None,
          'name': 'ERA-Interim',
          'nyears': 40,
          'time_period': ['1979-1-16 12:0:0.0', '2019-3-16 12:0:0.0']},
         'GISS-E2-H_r6i1p3': {'keyerror': None,
          'name': 'GISS-E2-H_r6i1p3',
          'nyears': 156,
          'time_period': ['1850-1-16 12:0:0.0', '2005-12-16 12:0:0.0']},
         'HadISST': {'keyerror': None,
          'name': 'HadISST',
          'nyears': 151,
          'time_period': ['1870-1-16 11:59:59.5', '2020-10-16 12:0:0.0']},
         'Tropflux': {'keyerror': None,
          'name': 'Tropflux',
          'nyears': 40,
          'time_period': ['1979-1-15 0:0:0.0', '2018-12-15 12:0:0.0']},
         'method': 'nino3.4 SSTA during DEC regressed against nino3.4 SSTA during 6 years (centered on ENSO), the duration is the number of consecutive months during which the regression is above 0.25, time series are linearly detrended, smoothing using a triangle shaped window of 5 points',
         'name': 'ENSO Duration based on life cyle SSTA pattern',
         'ref': 'Using CDAT',
         'time_frequency': 'monthly',
         'units': 'months'},
        'metric': {'datasets': "GISS-E2-H_r6i1p3; ERA-Interim's ts & HadISST's sst & Tropflux's sst; 's ",
         'method': 'The metric is the absolute value of the relative difference between model and observations values (M = 100 * abs[[model-obs] / obs])',
         'name': 'EnsoDuration',
         'units': '%'}},
       'EnsoSeasonality': {'diagnostic': {'ERA-Interim': {'keyerror': None,
          'name': 'ERA-Interim',
          'nyears': 40,
          'time_period': ['1979-1-16 12:0:0.0', '2019-3-16 12:0:0.0']},
         'GISS-E2-H_r6i1p3': {'keyerror': None,
          'name': 'GISS-E2-H_r6i1p3',
          'nyears': 156,
          'time_period': ['1850-1-16 12:0:0.0', '2005-12-16 12:0:0.0']},
         'HadISST': {'keyerror': None,
          'name': 'HadISST',
          'nyears': 151,
          'time_period': ['1870-1-16 11:59:59.5', '2020-10-16 12:0:0.0']},
         'Tropflux': {'keyerror': None,
          'name': 'Tropflux',
          'nyears': 40,
          'time_period': ['1979-1-15 0:0:0.0', '2018-12-15 12:0:0.0']},
         'method': 'Ratio between NDJ and MAM standard deviation nino3.4 sstA, time series are linearly detrended',
         'name': 'ENSO seasonality',
         'ref': 'Using CDAT std dev calculation',
         'time_frequency': 'monthly',
         'units': 'C/C'},
        'metric': {'datasets': "GISS-E2-H_r6i1p3; ERA-Interim's ts & HadISST's sst & Tropflux's sst; 's ",
         'method': 'The metric is the absolute value of the relative difference between model and observations values (M = 100 * abs[[model-obs] / obs])',
         'name': 'EnsoSeasonality',
         'units': '%'}},
       'EnsoSstDiversity_2': {'diagnostic': {'ERA-Interim': {'keyerror': None,
          'name': 'ERA-Interim',
          'nyears': 40,
          'time_period': ['1979-1-16 12:0:0.0', '2019-3-16 12:0:0.0']},
         'GISS-E2-H_r6i1p3': {'keyerror': None,
          'name': 'GISS-E2-H_r6i1p3',
          'nyears': 156,
          'time_period': ['1850-1-16 12:0:0.0', '2005-12-16 12:0:0.0']},
         'HadISST': {'keyerror': None,
          'name': 'HadISST',
          'nyears': 151,
          'time_period': ['1870-1-16 11:59:59.5', '2020-10-16 12:0:0.0']},
         'Tropflux': {'keyerror': None,
          'name': 'Tropflux',
          'nyears': 40,
          'time_period': ['1979-1-15 0:0:0.0', '2018-12-15 12:0:0.0']},
         'method': 'Nino (Nina) events = nino3.4 sstA > 0.75 (< -0.75) during DEC, zonal SSTA (meridional averaged [-5.0 ; 5.0]), the zonal SSTA maximum (minimum) is located for each event, the diversity is the interquartile range (IQR = Q3 - Q1), time series are linearly detrended, smoothing using a triangle shaped window of 5 points',
         'name': 'ENSO Diversity (interquartile range)',
         'ref': 'Using CDAT regridding',
         'time_frequency': 'monthly',
         'units': 'long'},
        'metric': {'datasets': "GISS-E2-H_r6i1p3; ERA-Interim's ts & HadISST's sst & Tropflux's sst; 's ",
         'method': 'The metric is the absolute value of the relative difference between model and observations values (M = 100 * abs[[model-obs] / obs])',
         'name': 'EnsoSstDiversity',
         'units': '%'}},
       'EnsoSstLonRmse': {'diagnostic': {'ERA-Interim': {'name': 'ERA-Interim',
          'nyears': 40,
          'time_period': ['1979-1-16 12:0:0.0', '2019-3-16 12:0:0.0']},
         'GISS-E2-H_r6i1p3': {'keyerror': None,
          'name': 'GISS-E2-H_r6i1p3',
          'nyears': 156,
          'time_period': ['1850-1-16 12:0:0.0', '2005-12-16 12:0:0.0']},
         'HadISST': {'name': 'HadISST',
          'nyears': 151,
          'time_period': ['1870-1-16 11:59:59.5', '2020-10-16 12:0:0.0']},
         'Tropflux': {'name': 'Tropflux',
          'nyears': 40,
          'time_period': ['1979-1-15 0:0:0.0', '2018-12-15 12:0:0.0']},
         'method': 'nino3.4 SSTA during DEC regressed against equatorial_pacific SSTA, time series are linearly detrended, smoothing using a triangle shaped window of 5 points, observations and model regridded to generic_1x1deg',
         'name': 'ENSO Zonal SSTA pattern',
         'ref': 'Using CDAT regridding and rms (uncentered and biased) calculation',
         'time_frequency': 'monthly',
         'units': 'C/C'},
        'metric': {'datasets': "GISS-E2-H_r6i1p3; ERA-Interim's ts & HadISST's sst & Tropflux's sst; 's ",
         'method': 'The metric is the statistical value between the model and the observations',
         'name': 'EnsoSstLonRmse',
         'units': 'C/C'}},
       'EnsoSstSkew': {'diagnostic': {'ERA-Interim': {'keyerror': None,
          'name': 'ERA-Interim',
          'nyears': 40,
          'time_period': ['1979-1-16 12:0:0.0', '2019-3-16 12:0:0.0']},
         'GISS-E2-H_r6i1p3': {'keyerror': None,
          'name': 'GISS-E2-H_r6i1p3',
          'nyears': 156,
          'time_period': ['1850-1-16 12:0:0.0', '2005-12-16 12:0:0.0']},
         'HadISST': {'keyerror': None,
          'name': 'HadISST',
          'nyears': 151,
          'time_period': ['1870-1-16 11:59:59.5', '2020-10-16 12:0:0.0']},
         'Tropflux': {'keyerror': None,
          'name': 'Tropflux',
          'nyears': 40,
          'time_period': ['1979-1-15 0:0:0.0', '2018-12-15 12:0:0.0']},
         'method': 'Standard deviation of nino3.4 sstA, time series are linearly detrended',
         'name': 'ENSO skewness',
         'ref': 'Using CDAT regression calculation',
         'time_frequency': 'monthly',
         'units': 'C'},
        'metric': {'datasets': "GISS-E2-H_r6i1p3; ERA-Interim's ts & HadISST's sst & Tropflux's sst; 's ",
         'method': 'The metric is the absolute value of the relative difference between model and observations values (M = 100 * abs[[model-obs] / obs])',
         'name': 'EnsoSstSkew',
         'units': '%'}},
       'EnsoSstTsRmse': {'diagnostic': {'ERA-Interim': {'name': 'ERA-Interim',
          'nyears': 40,
          'time_period': ['1979-1-16 12:0:0.0', '2019-3-16 12:0:0.0']},
         'GISS-E2-H_r6i1p3': {'keyerror': None,
          'name': 'GISS-E2-H_r6i1p3',
          'nyears': 156,
          'time_period': ['1850-1-16 12:0:0.0', '2005-12-16 12:0:0.0']},
         'HadISST': {'name': 'HadISST',
          'nyears': 151,
          'time_period': ['1870-1-16 11:59:59.5', '2020-10-16 12:0:0.0']},
         'Tropflux': {'name': 'Tropflux',
          'nyears': 40,
          'time_period': ['1979-1-15 0:0:0.0', '2018-12-15 12:0:0.0']},
         'method': 'nino3.4 SSTA during DEC regressed against nino3.4 SSTA during 6 years (centered on ENSO), time series are linearly detrended, smoothing using a triangle shaped window of 5 points',
         'name': 'ENSO life cyle SSTA pattern',
         'ref': 'Using CDAT regridding and rms (uncentered and biased) calculation',
         'time_frequency': 'monthly',
         'units': 'C/C'},
        'metric': {'datasets': "GISS-E2-H_r6i1p3; ERA-Interim's ts & HadISST's sst & Tropflux's sst; 's ",
         'method': 'The metric is the statistical value between the model and the observations',
         'name': 'EnsoSstTsRmse',
         'units': 'C/C'}},
       'SeasonalPrLatRmse': {'diagnostic': {'ERA-Interim': {'name': 'ERA-Interim',
          'nyears': 40,
          'time_period': ['1979-1-16 12:0:0.0', '2019-3-16 12:0:0.0']},
         'GISS-E2-H_r6i1p3': {'keyerror': None,
          'name': 'GISS-E2-H_r6i1p3',
          'nyears': 156,
          'time_period': ['1850-1-16 12:0:0.0', '2005-12-16 12:0:0.0']},
         'GPCPv2.3': {'name': 'GPCPv2.3',
          'nyears': 41,
          'time_period': ['1979-1-1 0:0:0.0', '2019-7-1 0:0:0.0']},
         'method': 'Meridional root mean square error of nino3_LatExt climatological pr STD, time series are linearly detrended, observations and model regridded to generic_1x1deg',
         'name': 'pr meridional seasonality RMSE',
         'ref': 'Using CDAT regridding and rms (uncentered and biased) calculation',
         'time_frequency': 'monthly',
         'units': 'mm/day'},
        'metric': {'datasets': "GISS-E2-H_r6i1p3; ERA-Interim's pr & GPCPv2.3's precip; 's ",
         'method': 'The metric is the statistical value between the model and the observations',
         'name': 'SeasonalPrLatRmse',
         'units': 'mm/day'}},
       'SeasonalPrLonRmse': {'diagnostic': {'ERA-Interim': {'name': 'ERA-Interim',
          'nyears': 40,
          'time_period': ['1979-1-16 12:0:0.0', '2019-3-16 12:0:0.0']},
         'GISS-E2-H_r6i1p3': {'keyerror': None,
          'name': 'GISS-E2-H_r6i1p3',
          'nyears': 156,
          'time_period': ['1850-1-16 12:0:0.0', '2005-12-16 12:0:0.0']},
         'GPCPv2.3': {'name': 'GPCPv2.3',
          'nyears': 41,
          'time_period': ['1979-1-1 0:0:0.0', '2019-7-1 0:0:0.0']},
         'method': 'Zonal root mean square error of equatorial_pacific climatological pr STD, time series are linearly detrended, observations and model regridded to generic_1x1deg',
         'name': 'pr zonal seasonality RMSE',
         'ref': 'Using CDAT regridding and rms (uncentered and biased) calculation',
         'time_frequency': 'monthly',
         'units': 'mm/day'},
        'metric': {'datasets': "GISS-E2-H_r6i1p3; ERA-Interim's pr & GPCPv2.3's precip; 's ",
         'method': 'The metric is the statistical value between the model and the observations',
         'name': 'SeasonalPrLonRmse',
         'units': 'mm/day'}},
       'SeasonalSstLonRmse': {'diagnostic': {'ERA-Interim': {'name': 'ERA-Interim',
          'nyears': 40,
          'time_period': ['1979-1-16 12:0:0.0', '2019-3-16 12:0:0.0']},
         'GISS-E2-H_r6i1p3': {'keyerror': None,
          'name': 'GISS-E2-H_r6i1p3',
          'nyears': 156,
          'time_period': ['1850-1-16 12:0:0.0', '2005-12-16 12:0:0.0']},
         'HadISST': {'name': 'HadISST',
          'nyears': 151,
          'time_period': ['1870-1-16 11:59:59.5', '2020-10-16 12:0:0.0']},
         'Tropflux': {'name': 'Tropflux',
          'nyears': 40,
          'time_period': ['1979-1-15 0:0:0.0', '2018-12-15 12:0:0.0']},
         'method': 'Zonal root mean square error of equatorial_pacific climatological sst STD, time series are linearly detrended, observations and model regridded to generic_1x1deg',
         'name': 'sst zonal seasonality RMSE',
         'ref': 'Using CDAT regridding and rms (uncentered and biased) calculation',
         'time_frequency': 'monthly',
         'units': 'C'},
        'metric': {'datasets': "GISS-E2-H_r6i1p3; ERA-Interim's ts & HadISST's sst & Tropflux's sst; 's ",
         'method': 'The metric is the statistical value between the model and the observations',
         'name': 'SeasonalSstLonRmse',
         'units': 'C'}},
       'SeasonalTauxLonRmse': {'diagnostic': {'ERA-Interim': {'name': 'ERA-Interim',
          'nyears': 40,
          'time_period': ['1979-1-16 12:0:0.0', '2019-3-16 12:0:0.0']},
         'GISS-E2-H_r6i1p3': {'keyerror': None,
          'name': 'GISS-E2-H_r6i1p3',
          'nyears': 156,
          'time_period': ['1850-1-16 12:0:0.0', '2005-12-16 12:0:0.0']},
         'Tropflux': {'name': 'Tropflux',
          'nyears': 40,
          'time_period': ['1979-1-15 0:0:0.0', '2018-12-15 12:0:0.0']},
         'method': 'Zonal root mean square error of equatorial_pacific climatological taux STD, time series are linearly detrended, observations and model regridded to generic_1x1deg',
         'name': 'taux zonal seasonality RMSE',
         'ref': 'Using CDAT regridding and rms (uncentered and biased) calculation',
         'time_frequency': 'monthly',
         'units': '1e-3 N/m2'},
        'metric': {'datasets': "GISS-E2-H_r6i1p3; ERA-Interim's tauu & Tropflux's taux; 's ",
         'method': 'The metric is the statistical value between the model and the observations',
         'name': 'SeasonalTauxLonRmse',
         'units': '1e-3 N/m2'}}},
      'name': 'Metrics Collection for ENSO performance'},
     'value': {'BiasPrLatRmse': {'diagnostic': {'ERA-Interim': {'value': None,
         'value_error': None},
        'GISS-E2-H_r6i1p3': {'value': None, 'value_error': None},
        'GPCPv2.3': {'value': None, 'value_error': None}},
       'metric': {'ERA-Interim': {'value': 2.854118508455846,
         'value_error': None},
        'GPCPv2.3': {'value': 3.444390432593787, 'value_error': None}}},
      'BiasPrLonRmse': {'diagnostic': {'ERA-Interim': {'value': None,
         'value_error': None},
        'GISS-E2-H_r6i1p3': {'value': None, 'value_error': None},
        'GPCPv2.3': {'value': None, 'value_error': None}},
       'metric': {'ERA-Interim': {'value': 1.3772804819275812,
         'value_error': None},
        'GPCPv2.3': {'value': 0.8737427191314163, 'value_error': None}}},
      'BiasSstLonRmse': {'diagnostic': {'ERA-Interim': {'value': None,
         'value_error': None},
        'GISS-E2-H_r6i1p3': {'value': None, 'value_error': None},
        'HadISST': {'value': None, 'value_error': None},
        'Tropflux': {'value': None, 'value_error': None}},
       'metric': {'ERA-Interim': {'value': 0.9328148475075659,
         'value_error': None},
        'HadISST': {'value': 1.0564784475261675, 'value_error': None},
        'Tropflux': {'value': 0.9118339866122649, 'value_error': None}}},
      'BiasTauxLonRmse': {'diagnostic': {'ERA-Interim': {'value': None,
         'value_error': None},
        'GISS-E2-H_r6i1p3': {'value': None, 'value_error': None},
        'Tropflux': {'value': None, 'value_error': None}},
       'metric': {'ERA-Interim': {'value': 21.424626629430463,
         'value_error': None},
        'Tropflux': {'value': 21.064941585878262, 'value_error': None}}},
      'EnsoAmpl': {'diagnostic': {'ERA-Interim': {'value': 0.8989844997845644,
         'value_error': 0.14214193002531866},
        'GISS-E2-H_r6i1p3': {'value': 0.5602474433852408,
         'value_error': 0.04485569439164934},
        'HadISST': {'value': 0.7665787872085695,
         'value_error': 0.06238329697691264},
        'Tropflux': {'value': 0.9039789553693535,
         'value_error': 0.14293162279134272}},
       'metric': {'ERA-Interim': {'value': 37.67996628201038,
         'value_error': 14.843258492533163},
        'HadISST': {'value': 26.91586921869656,
         'value_error': 11.798915682144507},
        'Tropflux': {'value': 38.02428252808924,
         'value_error': 14.7612499514779}}},
      'EnsoDuration': {'diagnostic': {'ERA-Interim': {'value': 13.0,
         'value_error': None},
        'GISS-E2-H_r6i1p3': {'value': 14.0, 'value_error': None},
        'HadISST': {'value': 13.0, 'value_error': None},
        'Tropflux': {'value': 13.0, 'value_error': None}},
       'metric': {'ERA-Interim': {'value': 7.6923076923076925,
         'value_error': None},
        'HadISST': {'value': 7.6923076923076925, 'value_error': None},
        'Tropflux': {'value': 7.6923076923076925, 'value_error': None}}},
      'EnsoSeasonality': {'diagnostic': {'ERA-Interim': {'value': 2.0466846866656914,
         'value_error': 0.6513411033995022},
        'GISS-E2-H_r6i1p3': {'value': 1.3844763577513584,
         'value_error': 0.22205063867220037},
        'HadISST': {'value': 1.6639865947361325,
         'value_error': 0.2712772451657809},
        'Tropflux': {'value': 2.0532132553583624,
         'value_error': 0.6534187683977347}},
       'metric': {'ERA-Interim': {'value': 32.355170937109726,
         'value_error': 32.37671239738821},
        'HadISST': {'value': 16.797625525889387,
         'value_error': 26.908855484445066},
        'Tropflux': {'value': 32.57026009654728,
         'value_error': 32.27376469316042}}},
      'EnsoSstDiversity_2': {'diagnostic': {'ERA-Interim': {'value': 33.25,
         'value_error': None},
        'GISS-E2-H_r6i1p3': {'value': 20.75, 'value_error': None},
        'HadISST': {'value': 49.0, 'value_error': None},
        'Tropflux': {'value': 32.0, 'value_error': None}},
       'metric': {'ERA-Interim': {'value': 37.59398496240601,
         'value_error': None},
        'HadISST': {'value': 57.6530612244898, 'value_error': None},
        'Tropflux': {'value': 35.15625, 'value_error': None}}},
      'EnsoSstLonRmse': {'diagnostic': {'ERA-Interim': {'value': None,
         'value_error': None},
        'GISS-E2-H_r6i1p3': {'value': None, 'value_error': None},
        'HadISST': {'value': None, 'value_error': None},
        'Tropflux': {'value': None, 'value_error': None}},
       'metric': {'ERA-Interim': {'value': 0.28741795907507783,
         'value_error': None},
        'HadISST': {'value': 0.2957362933613719, 'value_error': None},
        'Tropflux': {'value': 0.2871424365087507, 'value_error': None}}},
      'EnsoSstSkew': {'diagnostic': {'ERA-Interim': {'value': 0.39098111106809963,
         'value_error': 0.061819541653923164},
        'GISS-E2-H_r6i1p3': {'value': -0.16288932165598086,
         'value_error': -0.013041583175667606},
        'HadISST': {'value': 0.38989908235027515,
         'value_error': 0.03172953733021198},
        'Tropflux': {'value': 0.39744741059612115,
         'value_error': 0.06284195338099416}},
       'metric': {'ERA-Interim': {'value': 141.6616857042,
         'value_error': -9.922895307478072},
        'HadISST': {'value': 141.77730316114094,
         'value_error': -6.744649928186497},
        'Tropflux': {'value': 140.98386788120405,
         'value_error': -9.761454041205603}}},
      'EnsoSstTsRmse': {'diagnostic': {'ERA-Interim': {'value': None,
         'value_error': None},
        'GISS-E2-H_r6i1p3': {'value': None, 'value_error': None},
        'HadISST': {'value': None, 'value_error': None},
        'Tropflux': {'value': None, 'value_error': None}},
       'metric': {'ERA-Interim': {'value': 0.17582801268391457,
         'value_error': None},
        'HadISST': {'value': 0.17258756484357785, 'value_error': None},
        'Tropflux': {'value': 0.1789459195610404, 'value_error': None}}},
      'SeasonalPrLatRmse': {'diagnostic': {'ERA-Interim': {'value': None,
         'value_error': None},
        'GISS-E2-H_r6i1p3': {'value': None, 'value_error': None},
        'GPCPv2.3': {'value': None, 'value_error': None}},
       'metric': {'ERA-Interim': {'value': 1.1020724940513276,
         'value_error': None},
        'GPCPv2.3': {'value': 1.0162122751357048, 'value_error': None}}},
      'SeasonalPrLonRmse': {'diagnostic': {'ERA-Interim': {'value': None,
         'value_error': None},
        'GISS-E2-H_r6i1p3': {'value': None, 'value_error': None},
        'GPCPv2.3': {'value': None, 'value_error': None}},
       'metric': {'ERA-Interim': {'value': 0.7431415094164189,
         'value_error': None},
        'GPCPv2.3': {'value': 0.4924735769527339, 'value_error': None}}},
      'SeasonalSstLonRmse': {'diagnostic': {'ERA-Interim': {'value': None,
         'value_error': None},
        'GISS-E2-H_r6i1p3': {'value': None, 'value_error': None},
        'HadISST': {'value': None, 'value_error': None},
        'Tropflux': {'value': None, 'value_error': None}},
       'metric': {'ERA-Interim': {'value': 0.2709286185213397,
         'value_error': None},
        'HadISST': {'value': 0.2679116379915146, 'value_error': None},
        'Tropflux': {'value': 0.27999278290809104, 'value_error': None}}},
      'SeasonalTauxLonRmse': {'diagnostic': {'ERA-Interim': {'value': None,
         'value_error': None},
        'GISS-E2-H_r6i1p3': {'value': None, 'value_error': None},
        'Tropflux': {'value': None, 'value_error': None}},
       'metric': {'ERA-Interim': {'value': 2.291508625862517,
         'value_error': None},
        'Tropflux': {'value': 2.5199947096203106, 'value_error': None}}}}}},
   'GISS-E2-H-CC': {'r1i1p1': {'metadata': {'description_of_the_collection': 'Describe which science question this collection is about',
      'metrics': {'BiasPrLatRmse': {'diagnostic': {'ERA-Interim': {'name': 'ERA-Interim',
          'nyears': 40,
          'time_period': ['1979-1-16 12:0:0.0', '2019-3-16 12:0:0.0']},
         'GISS-E2-H-CC_r1i1p1': {'keyerror': None,
          'name': 'GISS-E2-H-CC_r1i1p1',
          'nyears': 161,
          'time_period': ['1850-1-16 12:0:0.0', '2010-12-16 12:0:0.0']},
         'GPCPv2.3': {'name': 'GPCPv2.3',
          'nyears': 41,
          'time_period': ['1979-1-1 0:0:0.0', '2019-7-1 0:0:0.0']},
         'method': 'Meridional root mean square error of nino3_LatExt pr, time series are linearly detrended, observations and model regridded to generic_1x1deg',
         'name': 'pr Meridional RMSE',
         'ref': 'Using CDAT regridding and rms (uncentered and biased) calculation',
         'time_frequency': 'monthly',
         'units': 'mm/day'},
        'metric': {'datasets': "GISS-E2-H-CC_r1i1p1; ERA-Interim's pr & GPCPv2.3's precip; 's ",
         'method': 'The metric is the statistical value between the model and the observations',
         'name': 'BiasPrLatRmse',
         'units': 'mm/day'}},
       'BiasPrLonRmse': {'diagnostic': {'ERA-Interim': {'name': 'ERA-Interim',
          'nyears': 40,
          'time_period': ['1979-1-16 12:0:0.0', '2019-3-16 12:0:0.0']},
         'GISS-E2-H-CC_r1i1p1': {'keyerror': None,
          'name': 'GISS-E2-H-CC_r1i1p1',
          'nyears': 161,
          'time_period': ['1850-1-16 12:0:0.0', '2010-12-16 12:0:0.0']},
         'GPCPv2.3': {'name': 'GPCPv2.3',
          'nyears': 41,
          'time_period': ['1979-1-1 0:0:0.0', '2019-7-1 0:0:0.0']},
         'method': 'Zonal root mean square error of equatorial_pacific pr, time series are linearly detrended, observations and model regridded to generic_1x1deg',
         'name': 'pr Zonal RMSE',
         'ref': 'Using CDAT regridding and rms (uncentered and biased) calculation',
         'time_frequency': 'monthly',
         'units': 'mm/day'},
        'metric': {'datasets': "GISS-E2-H-CC_r1i1p1; ERA-Interim's pr & GPCPv2.3's precip; 's ",
         'method': 'The metric is the statistical value between the model and the observations',
         'name': 'BiasPrLonRmse',
         'units': 'mm/day'}},
       'BiasSstLonRmse': {'diagnostic': {'ERA-Interim': {'name': 'ERA-Interim',
          'nyears': 40,
          'time_period': ['1979-1-16 12:0:0.0', '2019-3-16 12:0:0.0']},
         'GISS-E2-H-CC_r1i1p1': {'keyerror': None,
          'name': 'GISS-E2-H-CC_r1i1p1',
          'nyears': 161,
          'time_period': ['1850-1-16 12:0:0.0', '2010-12-16 12:0:0.0']},
         'HadISST': {'name': 'HadISST',
          'nyears': 151,
          'time_period': ['1870-1-16 11:59:59.5', '2020-10-16 12:0:0.0']},
         'Tropflux': {'name': 'Tropflux',
          'nyears': 40,
          'time_period': ['1979-1-15 0:0:0.0', '2018-12-15 12:0:0.0']},
         'method': 'Zonal root mean square error of equatorial_pacific sst, time series are linearly detrended, observations and model regridded to generic_1x1deg',
         'name': 'sst Zonal RMSE',
         'ref': 'Using CDAT regridding and rms (uncentered and biased) calculation',
         'time_frequency': 'monthly',
         'units': 'C'},
        'metric': {'datasets': "GISS-E2-H-CC_r1i1p1; ERA-Interim's ts & HadISST's sst & Tropflux's sst; 's ",
         'method': 'The metric is the statistical value between the model and the observations',
         'name': 'BiasSstLonRmse',
         'units': 'C'}},
       'BiasTauxLonRmse': {'diagnostic': {'ERA-Interim': {'name': 'ERA-Interim',
          'nyears': 40,
          'time_period': ['1979-1-16 12:0:0.0', '2019-3-16 12:0:0.0']},
         'GISS-E2-H-CC_r1i1p1': {'keyerror': None,
          'name': 'GISS-E2-H-CC_r1i1p1',
          'nyears': 161,
          'time_period': ['1850-1-16 12:0:0.0', '2010-12-16 12:0:0.0']},
         'Tropflux': {'name': 'Tropflux',
          'nyears': 40,
          'time_period': ['1979-1-15 0:0:0.0', '2018-12-15 12:0:0.0']},
         'method': 'Zonal root mean square error of equatorial_pacific taux, time series are linearly detrended, observations and model regridded to generic_1x1deg',
         'name': 'taux Zonal RMSE',
         'ref': 'Using CDAT regridding and rms (uncentered and biased) calculation',
         'time_frequency': 'monthly',
         'units': '1e-3 N/m2'},
        'metric': {'datasets': "GISS-E2-H-CC_r1i1p1; ERA-Interim's tauu & Tropflux's taux; 's ",
         'method': 'The metric is the statistical value between the model and the observations',
         'name': 'BiasTauxLonRmse',
         'units': '1e-3 N/m2'}},
       'EnsoAmpl': {'diagnostic': {'ERA-Interim': {'keyerror': None,
          'name': 'ERA-Interim',
          'nyears': 40,
          'time_period': ['1979-1-16 12:0:0.0', '2019-3-16 12:0:0.0']},
         'GISS-E2-H-CC_r1i1p1': {'keyerror': None,
          'name': 'GISS-E2-H-CC_r1i1p1',
          'nyears': 161,
          'time_period': ['1850-1-16 12:0:0.0', '2010-12-16 12:0:0.0']},
         'HadISST': {'keyerror': None,
          'name': 'HadISST',
          'nyears': 151,
          'time_period': ['1870-1-16 11:59:59.5', '2020-10-16 12:0:0.0']},
         'Tropflux': {'keyerror': None,
          'name': 'Tropflux',
          'nyears': 40,
          'time_period': ['1979-1-15 0:0:0.0', '2018-12-15 12:0:0.0']},
         'method': 'Standard deviation of nino3.4 sstA, time series are linearly detrended',
         'name': 'ENSO amplitude',
         'ref': 'Using CDAT regression calculation',
         'time_frequency': 'monthly',
         'units': 'C'},
        'metric': {'datasets': "GISS-E2-H-CC_r1i1p1; ERA-Interim's ts & HadISST's sst & Tropflux's sst; 's ",
         'method': 'The metric is the absolute value of the relative difference between model and observations values (M = 100 * abs[[model-obs] / obs])',
         'name': 'EnsoAmpl',
         'units': '%'}},
       'EnsoDuration': {'diagnostic': {'ERA-Interim': {'keyerror': None,
          'name': 'ERA-Interim',
          'nyears': 40,
          'time_period': ['1979-1-16 12:0:0.0', '2019-3-16 12:0:0.0']},
         'GISS-E2-H-CC_r1i1p1': {'keyerror': None,
          'name': 'GISS-E2-H-CC_r1i1p1',
          'nyears': 161,
          'time_period': ['1850-1-16 12:0:0.0', '2010-12-16 12:0:0.0']},
         'HadISST': {'keyerror': None,
          'name': 'HadISST',
          'nyears': 151,
          'time_period': ['1870-1-16 11:59:59.5', '2020-10-16 12:0:0.0']},
         'Tropflux': {'keyerror': None,
          'name': 'Tropflux',
          'nyears': 40,
          'time_period': ['1979-1-15 0:0:0.0', '2018-12-15 12:0:0.0']},
         'method': 'nino3.4 SSTA during DEC regressed against nino3.4 SSTA during 6 years (centered on ENSO), the duration is the number of consecutive months during which the regression is above 0.25, time series are linearly detrended, smoothing using a triangle shaped window of 5 points',
         'name': 'ENSO Duration based on life cyle SSTA pattern',
         'ref': 'Using CDAT',
         'time_frequency': 'monthly',
         'units': 'months'},
        'metric': {'datasets': "GISS-E2-H-CC_r1i1p1; ERA-Interim's ts & HadISST's sst & Tropflux's sst; 's ",
         'method': 'The metric is the absolute value of the relative difference between model and observations values (M = 100 * abs[[model-obs] / obs])',
         'name': 'EnsoDuration',
         'units': '%'}},
       'EnsoSeasonality': {'diagnostic': {'ERA-Interim': {'keyerror': None,
          'name': 'ERA-Interim',
          'nyears': 40,
          'time_period': ['1979-1-16 12:0:0.0', '2019-3-16 12:0:0.0']},
         'GISS-E2-H-CC_r1i1p1': {'keyerror': None,
          'name': 'GISS-E2-H-CC_r1i1p1',
          'nyears': 161,
          'time_period': ['1850-1-16 12:0:0.0', '2010-12-16 12:0:0.0']},
         'HadISST': {'keyerror': None,
          'name': 'HadISST',
          'nyears': 151,
          'time_period': ['1870-1-16 11:59:59.5', '2020-10-16 12:0:0.0']},
         'Tropflux': {'keyerror': None,
          'name': 'Tropflux',
          'nyears': 40,
          'time_period': ['1979-1-15 0:0:0.0', '2018-12-15 12:0:0.0']},
         'method': 'Ratio between NDJ and MAM standard deviation nino3.4 sstA, time series are linearly detrended',
         'name': 'ENSO seasonality',
         'ref': 'Using CDAT std dev calculation',
         'time_frequency': 'monthly',
         'units': 'C/C'},
        'metric': {'datasets': "GISS-E2-H-CC_r1i1p1; ERA-Interim's ts & HadISST's sst & Tropflux's sst; 's ",
         'method': 'The metric is the absolute value of the relative difference between model and observations values (M = 100 * abs[[model-obs] / obs])',
         'name': 'EnsoSeasonality',
         'units': '%'}},
       'EnsoSstDiversity_2': {'diagnostic': {'ERA-Interim': {'keyerror': None,
          'name': 'ERA-Interim',
          'nyears': 40,
          'time_period': ['1979-1-16 12:0:0.0', '2019-3-16 12:0:0.0']},
         'GISS-E2-H-CC_r1i1p1': {'keyerror': None,
          'name': 'GISS-E2-H-CC_r1i1p1',
          'nyears': 161,
          'time_period': ['1850-1-16 12:0:0.0', '2010-12-16 12:0:0.0']},
         'HadISST': {'keyerror': None,
          'name': 'HadISST',
          'nyears': 151,
          'time_period': ['1870-1-16 11:59:59.5', '2020-10-16 12:0:0.0']},
         'Tropflux': {'keyerror': None,
          'name': 'Tropflux',
          'nyears': 40,
          'time_period': ['1979-1-15 0:0:0.0', '2018-12-15 12:0:0.0']},
         'method': 'Nino (Nina) events = nino3.4 sstA > 0.75 (< -0.75) during DEC, zonal SSTA (meridional averaged [-5.0 ; 5.0]), the zonal SSTA maximum (minimum) is located for each event, the diversity is the interquartile range (IQR = Q3 - Q1), time series are linearly detrended, smoothing using a triangle shaped window of 5 points',
         'name': 'ENSO Diversity (interquartile range)',
         'ref': 'Using CDAT regridding',
         'time_frequency': 'monthly',
         'units': 'long'},
        'metric': {'datasets': "GISS-E2-H-CC_r1i1p1; ERA-Interim's ts & HadISST's sst & Tropflux's sst; 's ",
         'method': 'The metric is the absolute value of the relative difference between model and observations values (M = 100 * abs[[model-obs] / obs])',
         'name': 'EnsoSstDiversity',
         'units': '%'}},
       'EnsoSstLonRmse': {'diagnostic': {'ERA-Interim': {'name': 'ERA-Interim',
          'nyears': 40,
          'time_period': ['1979-1-16 12:0:0.0', '2019-3-16 12:0:0.0']},
         'GISS-E2-H-CC_r1i1p1': {'keyerror': None,
          'name': 'GISS-E2-H-CC_r1i1p1',
          'nyears': 161,
          'time_period': ['1850-1-16 12:0:0.0', '2010-12-16 12:0:0.0']},
         'HadISST': {'name': 'HadISST',
          'nyears': 151,
          'time_period': ['1870-1-16 11:59:59.5', '2020-10-16 12:0:0.0']},
         'Tropflux': {'name': 'Tropflux',
          'nyears': 40,
          'time_period': ['1979-1-15 0:0:0.0', '2018-12-15 12:0:0.0']},
         'method': 'nino3.4 SSTA during DEC regressed against equatorial_pacific SSTA, time series are linearly detrended, smoothing using a triangle shaped window of 5 points, observations and model regridded to generic_1x1deg',
         'name': 'ENSO Zonal SSTA pattern',
         'ref': 'Using CDAT regridding and rms (uncentered and biased) calculation',
         'time_frequency': 'monthly',
         'units': 'C/C'},
        'metric': {'datasets': "GISS-E2-H-CC_r1i1p1; ERA-Interim's ts & HadISST's sst & Tropflux's sst; 's ",
         'method': 'The metric is the statistical value between the model and the observations',
         'name': 'EnsoSstLonRmse',
         'units': 'C/C'}},
       'EnsoSstSkew': {'diagnostic': {'ERA-Interim': {'keyerror': None,
          'name': 'ERA-Interim',
          'nyears': 40,
          'time_period': ['1979-1-16 12:0:0.0', '2019-3-16 12:0:0.0']},
         'GISS-E2-H-CC_r1i1p1': {'keyerror': None,
          'name': 'GISS-E2-H-CC_r1i1p1',
          'nyears': 161,
          'time_period': ['1850-1-16 12:0:0.0', '2010-12-16 12:0:0.0']},
         'HadISST': {'keyerror': None,
          'name': 'HadISST',
          'nyears': 151,
          'time_period': ['1870-1-16 11:59:59.5', '2020-10-16 12:0:0.0']},
         'Tropflux': {'keyerror': None,
          'name': 'Tropflux',
          'nyears': 40,
          'time_period': ['1979-1-15 0:0:0.0', '2018-12-15 12:0:0.0']},
         'method': 'Standard deviation of nino3.4 sstA, time series are linearly detrended',
         'name': 'ENSO skewness',
         'ref': 'Using CDAT regression calculation',
         'time_frequency': 'monthly',
         'units': 'C'},
        'metric': {'datasets': "GISS-E2-H-CC_r1i1p1; ERA-Interim's ts & HadISST's sst & Tropflux's sst; 's ",
         'method': 'The metric is the absolute value of the relative difference between model and observations values (M = 100 * abs[[model-obs] / obs])',
         'name': 'EnsoSstSkew',
         'units': '%'}},
       'EnsoSstTsRmse': {'diagnostic': {'ERA-Interim': {'name': 'ERA-Interim',
          'nyears': 40,
          'time_period': ['1979-1-16 12:0:0.0', '2019-3-16 12:0:0.0']},
         'GISS-E2-H-CC_r1i1p1': {'keyerror': None,
          'name': 'GISS-E2-H-CC_r1i1p1',
          'nyears': 161,
          'time_period': ['1850-1-16 12:0:0.0', '2010-12-16 12:0:0.0']},
         'HadISST': {'name': 'HadISST',
          'nyears': 151,
          'time_period': ['1870-1-16 11:59:59.5', '2020-10-16 12:0:0.0']},
         'Tropflux': {'name': 'Tropflux',
          'nyears': 40,
          'time_period': ['1979-1-15 0:0:0.0', '2018-12-15 12:0:0.0']},
         'method': 'nino3.4 SSTA during DEC regressed against nino3.4 SSTA during 6 years (centered on ENSO), time series are linearly detrended, smoothing using a triangle shaped window of 5 points',
         'name': 'ENSO life cyle SSTA pattern',
         'ref': 'Using CDAT regridding and rms (uncentered and biased) calculation',
         'time_frequency': 'monthly',
         'units': 'C/C'},
        'metric': {'datasets': "GISS-E2-H-CC_r1i1p1; ERA-Interim's ts & HadISST's sst & Tropflux's sst; 's ",
         'method': 'The metric is the statistical value between the model and the observations',
         'name': 'EnsoSstTsRmse',
         'units': 'C/C'}},
       'SeasonalPrLatRmse': {'diagnostic': {'ERA-Interim': {'name': 'ERA-Interim',
          'nyears': 40,
          'time_period': ['1979-1-16 12:0:0.0', '2019-3-16 12:0:0.0']},
         'GISS-E2-H-CC_r1i1p1': {'keyerror': None,
          'name': 'GISS-E2-H-CC_r1i1p1',
          'nyears': 161,
          'time_period': ['1850-1-16 12:0:0.0', '2010-12-16 12:0:0.0']},
         'GPCPv2.3': {'name': 'GPCPv2.3',
          'nyears': 41,
          'time_period': ['1979-1-1 0:0:0.0', '2019-7-1 0:0:0.0']},
         'method': 'Meridional root mean square error of nino3_LatExt climatological pr STD, time series are linearly detrended, observations and model regridded to generic_1x1deg',
         'name': 'pr meridional seasonality RMSE',
         'ref': 'Using CDAT regridding and rms (uncentered and biased) calculation',
         'time_frequency': 'monthly',
         'units': 'mm/day'},
        'metric': {'datasets': "GISS-E2-H-CC_r1i1p1; ERA-Interim's pr & GPCPv2.3's precip; 's ",
         'method': 'The metric is the statistical value between the model and the observations',
         'name': 'SeasonalPrLatRmse',
         'units': 'mm/day'}},
       'SeasonalPrLonRmse': {'diagnostic': {'ERA-Interim': {'name': 'ERA-Interim',
          'nyears': 40,
          'time_period': ['1979-1-16 12:0:0.0', '2019-3-16 12:0:0.0']},
         'GISS-E2-H-CC_r1i1p1': {'keyerror': None,
          'name': 'GISS-E2-H-CC_r1i1p1',
          'nyears': 161,
          'time_period': ['1850-1-16 12:0:0.0', '2010-12-16 12:0:0.0']},
         'GPCPv2.3': {'name': 'GPCPv2.3',
          'nyears': 41,
          'time_period': ['1979-1-1 0:0:0.0', '2019-7-1 0:0:0.0']},
         'method': 'Zonal root mean square error of equatorial_pacific climatological pr STD, time series are linearly detrended, observations and model regridded to generic_1x1deg',
         'name': 'pr zonal seasonality RMSE',
         'ref': 'Using CDAT regridding and rms (uncentered and biased) calculation',
         'time_frequency': 'monthly',
         'units': 'mm/day'},
        'metric': {'datasets': "GISS-E2-H-CC_r1i1p1; ERA-Interim's pr & GPCPv2.3's precip; 's ",
         'method': 'The metric is the statistical value between the model and the observations',
         'name': 'SeasonalPrLonRmse',
         'units': 'mm/day'}},
       'SeasonalSstLonRmse': {'diagnostic': {'ERA-Interim': {'name': 'ERA-Interim',
          'nyears': 40,
          'time_period': ['1979-1-16 12:0:0.0', '2019-3-16 12:0:0.0']},
         'GISS-E2-H-CC_r1i1p1': {'keyerror': None,
          'name': 'GISS-E2-H-CC_r1i1p1',
          'nyears': 161,
          'time_period': ['1850-1-16 12:0:0.0', '2010-12-16 12:0:0.0']},
         'HadISST': {'name': 'HadISST',
          'nyears': 151,
          'time_period': ['1870-1-16 11:59:59.5', '2020-10-16 12:0:0.0']},
         'Tropflux': {'name': 'Tropflux',
          'nyears': 40,
          'time_period': ['1979-1-15 0:0:0.0', '2018-12-15 12:0:0.0']},
         'method': 'Zonal root mean square error of equatorial_pacific climatological sst STD, time series are linearly detrended, observations and model regridded to generic_1x1deg',
         'name': 'sst zonal seasonality RMSE',
         'ref': 'Using CDAT regridding and rms (uncentered and biased) calculation',
         'time_frequency': 'monthly',
         'units': 'C'},
        'metric': {'datasets': "GISS-E2-H-CC_r1i1p1; ERA-Interim's ts & HadISST's sst & Tropflux's sst; 's ",
         'method': 'The metric is the statistical value between the model and the observations',
         'name': 'SeasonalSstLonRmse',
         'units': 'C'}},
       'SeasonalTauxLonRmse': {'diagnostic': {'ERA-Interim': {'name': 'ERA-Interim',
          'nyears': 40,
          'time_period': ['1979-1-16 12:0:0.0', '2019-3-16 12:0:0.0']},
         'GISS-E2-H-CC_r1i1p1': {'keyerror': None,
          'name': 'GISS-E2-H-CC_r1i1p1',
          'nyears': 161,
          'time_period': ['1850-1-16 12:0:0.0', '2010-12-16 12:0:0.0']},
         'Tropflux': {'name': 'Tropflux',
          'nyears': 40,
          'time_period': ['1979-1-15 0:0:0.0', '2018-12-15 12:0:0.0']},
         'method': 'Zonal root mean square error of equatorial_pacific climatological taux STD, time series are linearly detrended, observations and model regridded to generic_1x1deg',
         'name': 'taux zonal seasonality RMSE',
         'ref': 'Using CDAT regridding and rms (uncentered and biased) calculation',
         'time_frequency': 'monthly',
         'units': '1e-3 N/m2'},
        'metric': {'datasets': "GISS-E2-H-CC_r1i1p1; ERA-Interim's tauu & Tropflux's taux; 's ",
         'method': 'The metric is the statistical value between the model and the observations',
         'name': 'SeasonalTauxLonRmse',
         'units': '1e-3 N/m2'}}},
      'name': 'Metrics Collection for ENSO performance'},
     'value': {'BiasPrLatRmse': {'diagnostic': {'ERA-Interim': {'value': None,
         'value_error': None},
        'GISS-E2-H-CC_r1i1p1': {'value': None, 'value_error': None},
        'GPCPv2.3': {'value': None, 'value_error': None}},
       'metric': {'ERA-Interim': {'value': 3.0072200108231435,
         'value_error': None},
        'GPCPv2.3': {'value': 3.6817134771260718, 'value_error': None}}},
      'BiasPrLonRmse': {'diagnostic': {'ERA-Interim': {'value': None,
         'value_error': None},
        'GISS-E2-H-CC_r1i1p1': {'value': None, 'value_error': None},
        'GPCPv2.3': {'value': None, 'value_error': None}},
       'metric': {'ERA-Interim': {'value': 1.4695821519964256,
         'value_error': None},
        'GPCPv2.3': {'value': 1.1443227084106575, 'value_error': None}}},
      'BiasSstLonRmse': {'diagnostic': {'ERA-Interim': {'value': None,
         'value_error': None},
        'GISS-E2-H-CC_r1i1p1': {'value': None, 'value_error': None},
        'HadISST': {'value': None, 'value_error': None},
        'Tropflux': {'value': None, 'value_error': None}},
       'metric': {'ERA-Interim': {'value': 1.007027014091788,
         'value_error': None},
        'HadISST': {'value': 1.1127810373266107, 'value_error': None},
        'Tropflux': {'value': 0.9895379967118211, 'value_error': None}}},
      'BiasTauxLonRmse': {'diagnostic': {'ERA-Interim': {'value': None,
         'value_error': None},
        'GISS-E2-H-CC_r1i1p1': {'value': None, 'value_error': None},
        'Tropflux': {'value': None, 'value_error': None}},
       'metric': {'ERA-Interim': {'value': 22.52602485828862,
         'value_error': None},
        'Tropflux': {'value': 22.160086607051902, 'value_error': None}}},
      'EnsoAmpl': {'diagnostic': {'ERA-Interim': {'value': 0.8989844997845644,
         'value_error': 0.14214193002531866},
        'GISS-E2-H-CC_r1i1p1': {'value': 0.7299916859637086,
         'value_error': 0.05753140441760243},
        'HadISST': {'value': 0.7665787872085695,
         'value_error': 0.06238329697691264},
        'Tropflux': {'value': 0.9039789553693535,
         'value_error': 0.14293162279134272}},
       'metric': {'ERA-Interim': {'value': 18.79818994224637,
         'value_error': 19.238732646740168},
        'HadISST': {'value': 4.772777678611451,
         'value_error': 15.254437935471202},
        'Tropflux': {'value': 19.246827414755035,
         'value_error': 19.13243924782745}}},
      'EnsoDuration': {'diagnostic': {'ERA-Interim': {'value': 13.0,
         'value_error': None},
        'GISS-E2-H-CC_r1i1p1': {'value': 12.0, 'value_error': None},
        'HadISST': {'value': 13.0, 'value_error': None},
        'Tropflux': {'value': 13.0, 'value_error': None}},
       'metric': {'ERA-Interim': {'value': 7.6923076923076925,
         'value_error': None},
        'HadISST': {'value': 7.6923076923076925, 'value_error': None},
        'Tropflux': {'value': 7.6923076923076925, 'value_error': None}}},
      'EnsoSeasonality': {'diagnostic': {'ERA-Interim': {'value': 2.0466846866656914,
         'value_error': 0.6513411033995022},
        'GISS-E2-H-CC_r1i1p1': {'value': 1.4972797720905207,
         'value_error': 0.23637253630118119},
        'HadISST': {'value': 1.6639865947361325,
         'value_error': 0.2712772451657809},
        'Tropflux': {'value': 2.0532132553583624,
         'value_error': 0.6534187683977347}},
       'metric': {'ERA-Interim': {'value': 26.84365198775298,
         'value_error': 34.83047023781109},
        'HadISST': {'value': 10.018519570588698,
         'value_error': 28.874740883694766},
        'Tropflux': {'value': 27.076266034080838,
         'value_error': 34.71972035980783}}},
      'EnsoSstDiversity_2': {'diagnostic': {'ERA-Interim': {'value': 33.25,
         'value_error': None},
        'GISS-E2-H-CC_r1i1p1': {'value': 18.0, 'value_error': None},
        'HadISST': {'value': 49.0, 'value_error': None},
        'Tropflux': {'value': 32.0, 'value_error': None}},
       'metric': {'ERA-Interim': {'value': 45.86466165413533,
         'value_error': None},
        'HadISST': {'value': 63.26530612244898, 'value_error': None},
        'Tropflux': {'value': 43.75, 'value_error': None}}},
      'EnsoSstLonRmse': {'diagnostic': {'ERA-Interim': {'value': None,
         'value_error': None},
        'GISS-E2-H-CC_r1i1p1': {'value': None, 'value_error': None},
        'HadISST': {'value': None, 'value_error': None},
        'Tropflux': {'value': None, 'value_error': None}},
       'metric': {'ERA-Interim': {'value': 0.31599395513735207,
         'value_error': None},
        'HadISST': {'value': 0.3122873132917546, 'value_error': None},
        'Tropflux': {'value': 0.3145457520122913, 'value_error': None}}},
      'EnsoSstSkew': {'diagnostic': {'ERA-Interim': {'value': 0.39098111106809963,
         'value_error': 0.061819541653923164},
        'GISS-E2-H-CC_r1i1p1': {'value': -0.45022822367594995,
         'value_error': -0.03548295482615616},
        'HadISST': {'value': 0.38989908235027515,
         'value_error': 0.03172953733021198},
        'Tropflux': {'value': 0.39744741059612115,
         'value_error': 0.06284195338099416}},
       'metric': {'ERA-Interim': {'value': 215.15344627416818,
         'value_error': -27.282721464506803},
        'HadISST': {'value': 215.47301444312623,
         'value_error': -18.49760907757573},
        'Tropflux': {'value': 213.2799489121502,
         'value_error': -26.838843245085325}}},
      'EnsoSstTsRmse': {'diagnostic': {'ERA-Interim': {'value': None,
         'value_error': None},
        'GISS-E2-H-CC_r1i1p1': {'value': None, 'value_error': None},
        'HadISST': {'value': None, 'value_error': None},
        'Tropflux': {'value': None, 'value_error': None}},
       'metric': {'ERA-Interim': {'value': 0.2409562384608357,
         'value_error': None},
        'HadISST': {'value': 0.23080631607412005, 'value_error': None},
        'Tropflux': {'value': 0.24172100187950576, 'value_error': None}}},
      'SeasonalPrLatRmse': {'diagnostic': {'ERA-Interim': {'value': None,
         'value_error': None},
        'GISS-E2-H-CC_r1i1p1': {'value': None, 'value_error': None},
        'GPCPv2.3': {'value': None, 'value_error': None}},
       'metric': {'ERA-Interim': {'value': 1.1495380363326455,
         'value_error': None},
        'GPCPv2.3': {'value': 1.1012846508874976, 'value_error': None}}},
      'SeasonalPrLonRmse': {'diagnostic': {'ERA-Interim': {'value': None,
         'value_error': None},
        'GISS-E2-H-CC_r1i1p1': {'value': None, 'value_error': None},
        'GPCPv2.3': {'value': None, 'value_error': None}},
       'metric': {'ERA-Interim': {'value': 0.7102362967668185,
         'value_error': None},
        'GPCPv2.3': {'value': 0.46976376923820495, 'value_error': None}}},
      'SeasonalSstLonRmse': {'diagnostic': {'ERA-Interim': {'value': None,
         'value_error': None},
        'GISS-E2-H-CC_r1i1p1': {'value': None, 'value_error': None},
        'HadISST': {'value': None, 'value_error': None},
        'Tropflux': {'value': None, 'value_error': None}},
       'metric': {'ERA-Interim': {'value': 0.29775742183503084,
         'value_error': None},
        'HadISST': {'value': 0.29449845357093235, 'value_error': None},
        'Tropflux': {'value': 0.30699658627043314, 'value_error': None}}},
      'SeasonalTauxLonRmse': {'diagnostic': {'ERA-Interim': {'value': None,
         'value_error': None},
        'GISS-E2-H-CC_r1i1p1': {'value': None, 'value_error': None},
        'Tropflux': {'value': None, 'value_error': None}},
       'metric': {'ERA-Interim': {'value': 2.700492633864462,
         'value_error': None},
        'Tropflux': {'value': 2.889043408379172, 'value_error': None}}}}}},
   'GISS-E2-R': {'r1i1p1': {'metadata': {'description_of_the_collection': 'Describe which science question this collection is about',
      'metrics': {'BiasPrLatRmse': {'diagnostic': {'ERA-Interim': {'name': 'ERA-Interim',
          'nyears': 40,
          'time_period': ['1979-1-16 12:0:0.0', '2019-3-16 12:0:0.0']},
         'GISS-E2-R_r1i1p1': {'keyerror': None,
          'name': 'GISS-E2-R_r1i1p1',
          'nyears': 156,
          'time_period': ['1850-1-16 12:0:0.0', '2005-12-16 12:0:0.0']},
         'GPCPv2.3': {'name': 'GPCPv2.3',
          'nyears': 41,
          'time_period': ['1979-1-1 0:0:0.0', '2019-7-1 0:0:0.0']},
         'method': 'Meridional root mean square error of nino3_LatExt pr, time series are linearly detrended, observations and model regridded to generic_1x1deg',
         'name': 'pr Meridional RMSE',
         'ref': 'Using CDAT regridding and rms (uncentered and biased) calculation',
         'time_frequency': 'monthly',
         'units': 'mm/day'},
        'metric': {'datasets': "GISS-E2-R_r1i1p1; ERA-Interim's pr & GPCPv2.3's precip; 's ",
         'method': 'The metric is the statistical value between the model and the observations',
         'name': 'BiasPrLatRmse',
         'units': 'mm/day'}},
       'BiasPrLonRmse': {'diagnostic': {'ERA-Interim': {'name': 'ERA-Interim',
          'nyears': 40,
          'time_period': ['1979-1-16 12:0:0.0', '2019-3-16 12:0:0.0']},
         'GISS-E2-R_r1i1p1': {'keyerror': None,
          'name': 'GISS-E2-R_r1i1p1',
          'nyears': 156,
          'time_period': ['1850-1-16 12:0:0.0', '2005-12-16 12:0:0.0']},
         'GPCPv2.3': {'name': 'GPCPv2.3',
          'nyears': 41,
          'time_period': ['1979-1-1 0:0:0.0', '2019-7-1 0:0:0.0']},
         'method': 'Zonal root mean square error of equatorial_pacific pr, time series are linearly detrended, observations and model regridded to generic_1x1deg',
         'name': 'pr Zonal RMSE',
         'ref': 'Using CDAT regridding and rms (uncentered and biased) calculation',
         'time_frequency': 'monthly',
         'units': 'mm/day'},
        'metric': {'datasets': "GISS-E2-R_r1i1p1; ERA-Interim's pr & GPCPv2.3's precip; 's ",
         'method': 'The metric is the statistical value between the model and the observations',
         'name': 'BiasPrLonRmse',
         'units': 'mm/day'}},
       'BiasSstLonRmse': {'diagnostic': {'ERA-Interim': {'name': 'ERA-Interim',
          'nyears': 40,
          'time_period': ['1979-1-16 12:0:0.0', '2019-3-16 12:0:0.0']},
         'GISS-E2-R_r1i1p1': {'keyerror': None,
          'name': 'GISS-E2-R_r1i1p1',
          'nyears': 156,
          'time_period': ['1850-1-16 12:0:0.0', '2005-12-16 12:0:0.0']},
         'HadISST': {'name': 'HadISST',
          'nyears': 151,
          'time_period': ['1870-1-16 11:59:59.5', '2020-10-16 12:0:0.0']},
         'Tropflux': {'name': 'Tropflux',
          'nyears': 40,
          'time_period': ['1979-1-15 0:0:0.0', '2018-12-15 12:0:0.0']},
         'method': 'Zonal root mean square error of equatorial_pacific sst, time series are linearly detrended, observations and model regridded to generic_1x1deg',
         'name': 'sst Zonal RMSE',
         'ref': 'Using CDAT regridding and rms (uncentered and biased) calculation',
         'time_frequency': 'monthly',
         'units': 'C'},
        'metric': {'datasets': "GISS-E2-R_r1i1p1; ERA-Interim's ts & HadISST's sst & Tropflux's sst; 's ",
         'method': 'The metric is the statistical value between the model and the observations',
         'name': 'BiasSstLonRmse',
         'units': 'C'}},
       'BiasTauxLonRmse': {'diagnostic': {'ERA-Interim': {'name': 'ERA-Interim',
          'nyears': 40,
          'time_period': ['1979-1-16 12:0:0.0', '2019-3-16 12:0:0.0']},
         'GISS-E2-R_r1i1p1': {'keyerror': None,
          'name': 'GISS-E2-R_r1i1p1',
          'nyears': 156,
          'time_period': ['1850-1-16 12:0:0.0', '2005-12-16 12:0:0.0']},
         'Tropflux': {'name': 'Tropflux',
          'nyears': 40,
          'time_period': ['1979-1-15 0:0:0.0', '2018-12-15 12:0:0.0']},
         'method': 'Zonal root mean square error of equatorial_pacific taux, time series are linearly detrended, observations and model regridded to generic_1x1deg',
         'name': 'taux Zonal RMSE',
         'ref': 'Using CDAT regridding and rms (uncentered and biased) calculation',
         'time_frequency': 'monthly',
         'units': '1e-3 N/m2'},
        'metric': {'datasets': "GISS-E2-R_r1i1p1; ERA-Interim's tauu & Tropflux's taux; 's ",
         'method': 'The metric is the statistical value between the model and the observations',
         'name': 'BiasTauxLonRmse',
         'units': '1e-3 N/m2'}},
       'EnsoAmpl': {'diagnostic': {'ERA-Interim': {'keyerror': None,
          'name': 'ERA-Interim',
          'nyears': 40,
          'time_period': ['1979-1-16 12:0:0.0', '2019-3-16 12:0:0.0']},
         'GISS-E2-R_r1i1p1': {'keyerror': None,
          'name': 'GISS-E2-R_r1i1p1',
          'nyears': 156,
          'time_period': ['1850-1-16 12:0:0.0', '2005-12-16 12:0:0.0']},
         'HadISST': {'keyerror': None,
          'name': 'HadISST',
          'nyears': 151,
          'time_period': ['1870-1-16 11:59:59.5', '2020-10-16 12:0:0.0']},
         'Tropflux': {'keyerror': None,
          'name': 'Tropflux',
          'nyears': 40,
          'time_period': ['1979-1-15 0:0:0.0', '2018-12-15 12:0:0.0']},
         'method': 'Standard deviation of nino3.4 sstA, time series are linearly detrended',
         'name': 'ENSO amplitude',
         'ref': 'Using CDAT regression calculation',
         'time_frequency': 'monthly',
         'units': 'C'},
        'metric': {'datasets': "GISS-E2-R_r1i1p1; ERA-Interim's ts & HadISST's sst & Tropflux's sst; 's ",
         'method': 'The metric is the absolute value of the relative difference between model and observations values (M = 100 * abs[[model-obs] / obs])',
         'name': 'EnsoAmpl',
         'units': '%'}},
       'EnsoDuration': {'diagnostic': {'ERA-Interim': {'keyerror': None,
          'name': 'ERA-Interim',
          'nyears': 40,
          'time_period': ['1979-1-16 12:0:0.0', '2019-3-16 12:0:0.0']},
         'GISS-E2-R_r1i1p1': {'keyerror': None,
          'name': 'GISS-E2-R_r1i1p1',
          'nyears': 156,
          'time_period': ['1850-1-16 12:0:0.0', '2005-12-16 12:0:0.0']},
         'HadISST': {'keyerror': None,
          'name': 'HadISST',
          'nyears': 151,
          'time_period': ['1870-1-16 11:59:59.5', '2020-10-16 12:0:0.0']},
         'Tropflux': {'keyerror': None,
          'name': 'Tropflux',
          'nyears': 40,
          'time_period': ['1979-1-15 0:0:0.0', '2018-12-15 12:0:0.0']},
         'method': 'nino3.4 SSTA during DEC regressed against nino3.4 SSTA during 6 years (centered on ENSO), the duration is the number of consecutive months during which the regression is above 0.25, time series are linearly detrended, smoothing using a triangle shaped window of 5 points',
         'name': 'ENSO Duration based on life cyle SSTA pattern',
         'ref': 'Using CDAT',
         'time_frequency': 'monthly',
         'units': 'months'},
        'metric': {'datasets': "GISS-E2-R_r1i1p1; ERA-Interim's ts & HadISST's sst & Tropflux's sst; 's ",
         'method': 'The metric is the absolute value of the relative difference between model and observations values (M = 100 * abs[[model-obs] / obs])',
         'name': 'EnsoDuration',
         'units': '%'}},
       'EnsoSeasonality': {'diagnostic': {'ERA-Interim': {'keyerror': None,
          'name': 'ERA-Interim',
          'nyears': 40,
          'time_period': ['1979-1-16 12:0:0.0', '2019-3-16 12:0:0.0']},
         'GISS-E2-R_r1i1p1': {'keyerror': None,
          'name': 'GISS-E2-R_r1i1p1',
          'nyears': 156,
          'time_period': ['1850-1-16 12:0:0.0', '2005-12-16 12:0:0.0']},
         'HadISST': {'keyerror': None,
          'name': 'HadISST',
          'nyears': 151,
          'time_period': ['1870-1-16 11:59:59.5', '2020-10-16 12:0:0.0']},
         'Tropflux': {'keyerror': None,
          'name': 'Tropflux',
          'nyears': 40,
          'time_period': ['1979-1-15 0:0:0.0', '2018-12-15 12:0:0.0']},
         'method': 'Ratio between NDJ and MAM standard deviation nino3.4 sstA, time series are linearly detrended',
         'name': 'ENSO seasonality',
         'ref': 'Using CDAT std dev calculation',
         'time_frequency': 'monthly',
         'units': 'C/C'},
        'metric': {'datasets': "GISS-E2-R_r1i1p1; ERA-Interim's ts & HadISST's sst & Tropflux's sst; 's ",
         'method': 'The metric is the absolute value of the relative difference between model and observations values (M = 100 * abs[[model-obs] / obs])',
         'name': 'EnsoSeasonality',
         'units': '%'}},
       'EnsoSstDiversity_2': {'diagnostic': {'ERA-Interim': {'keyerror': None,
          'name': 'ERA-Interim',
          'nyears': 40,
          'time_period': ['1979-1-16 12:0:0.0', '2019-3-16 12:0:0.0']},
         'GISS-E2-R_r1i1p1': {'keyerror': None,
          'name': 'GISS-E2-R_r1i1p1',
          'nyears': 156,
          'time_period': ['1850-1-16 12:0:0.0', '2005-12-16 12:0:0.0']},
         'HadISST': {'keyerror': None,
          'name': 'HadISST',
          'nyears': 151,
          'time_period': ['1870-1-16 11:59:59.5', '2020-10-16 12:0:0.0']},
         'Tropflux': {'keyerror': None,
          'name': 'Tropflux',
          'nyears': 40,
          'time_period': ['1979-1-15 0:0:0.0', '2018-12-15 12:0:0.0']},
         'method': 'Nino (Nina) events = nino3.4 sstA > 0.75 (< -0.75) during DEC, zonal SSTA (meridional averaged [-5.0 ; 5.0]), the zonal SSTA maximum (minimum) is located for each event, the diversity is the interquartile range (IQR = Q3 - Q1), time series are linearly detrended, smoothing using a triangle shaped window of 5 points',
         'name': 'ENSO Diversity (interquartile range)',
         'ref': 'Using CDAT regridding',
         'time_frequency': 'monthly',
         'units': 'long'},
        'metric': {'datasets': "GISS-E2-R_r1i1p1; ERA-Interim's ts & HadISST's sst & Tropflux's sst; 's ",
         'method': 'The metric is the absolute value of the relative difference between model and observations values (M = 100 * abs[[model-obs] / obs])',
         'name': 'EnsoSstDiversity',
         'units': '%'}},
       'EnsoSstLonRmse': {'diagnostic': {'ERA-Interim': {'name': 'ERA-Interim',
          'nyears': 40,
          'time_period': ['1979-1-16 12:0:0.0', '2019-3-16 12:0:0.0']},
         'GISS-E2-R_r1i1p1': {'keyerror': None,
          'name': 'GISS-E2-R_r1i1p1',
          'nyears': 156,
          'time_period': ['1850-1-16 12:0:0.0', '2005-12-16 12:0:0.0']},
         'HadISST': {'name': 'HadISST',
          'nyears': 151,
          'time_period': ['1870-1-16 11:59:59.5', '2020-10-16 12:0:0.0']},
         'Tropflux': {'name': 'Tropflux',
          'nyears': 40,
          'time_period': ['1979-1-15 0:0:0.0', '2018-12-15 12:0:0.0']},
         'method': 'nino3.4 SSTA during DEC regressed against equatorial_pacific SSTA, time series are linearly detrended, smoothing using a triangle shaped window of 5 points, observations and model regridded to generic_1x1deg',
         'name': 'ENSO Zonal SSTA pattern',
         'ref': 'Using CDAT regridding and rms (uncentered and biased) calculation',
         'time_frequency': 'monthly',
         'units': 'C/C'},
        'metric': {'datasets': "GISS-E2-R_r1i1p1; ERA-Interim's ts & HadISST's sst & Tropflux's sst; 's ",
         'method': 'The metric is the statistical value between the model and the observations',
         'name': 'EnsoSstLonRmse',
         'units': 'C/C'}},
       'EnsoSstSkew': {'diagnostic': {'ERA-Interim': {'keyerror': None,
          'name': 'ERA-Interim',
          'nyears': 40,
          'time_period': ['1979-1-16 12:0:0.0', '2019-3-16 12:0:0.0']},
         'GISS-E2-R_r1i1p1': {'keyerror': None,
          'name': 'GISS-E2-R_r1i1p1',
          'nyears': 156,
          'time_period': ['1850-1-16 12:0:0.0', '2005-12-16 12:0:0.0']},
         'HadISST': {'keyerror': None,
          'name': 'HadISST',
          'nyears': 151,
          'time_period': ['1870-1-16 11:59:59.5', '2020-10-16 12:0:0.0']},
         'Tropflux': {'keyerror': None,
          'name': 'Tropflux',
          'nyears': 40,
          'time_period': ['1979-1-15 0:0:0.0', '2018-12-15 12:0:0.0']},
         'method': 'Standard deviation of nino3.4 sstA, time series are linearly detrended',
         'name': 'ENSO skewness',
         'ref': 'Using CDAT regression calculation',
         'time_frequency': 'monthly',
         'units': 'C'},
        'metric': {'datasets': "GISS-E2-R_r1i1p1; ERA-Interim's ts & HadISST's sst & Tropflux's sst; 's ",
         'method': 'The metric is the absolute value of the relative difference between model and observations values (M = 100 * abs[[model-obs] / obs])',
         'name': 'EnsoSstSkew',
         'units': '%'}},
       'EnsoSstTsRmse': {'diagnostic': {'ERA-Interim': {'name': 'ERA-Interim',
          'nyears': 40,
          'time_period': ['1979-1-16 12:0:0.0', '2019-3-16 12:0:0.0']},
         'GISS-E2-R_r1i1p1': {'keyerror': None,
          'name': 'GISS-E2-R_r1i1p1',
          'nyears': 156,
          'time_period': ['1850-1-16 12:0:0.0', '2005-12-16 12:0:0.0']},
         'HadISST': {'name': 'HadISST',
          'nyears': 151,
          'time_period': ['1870-1-16 11:59:59.5', '2020-10-16 12:0:0.0']},
         'Tropflux': {'name': 'Tropflux',
          'nyears': 40,
          'time_period': ['1979-1-15 0:0:0.0', '2018-12-15 12:0:0.0']},
         'method': 'nino3.4 SSTA during DEC regressed against nino3.4 SSTA during 6 years (centered on ENSO), time series are linearly detrended, smoothing using a triangle shaped window of 5 points',
         'name': 'ENSO life cyle SSTA pattern',
         'ref': 'Using CDAT regridding and rms (uncentered and biased) calculation',
         'time_frequency': 'monthly',
         'units': 'C/C'},
        'metric': {'datasets': "GISS-E2-R_r1i1p1; ERA-Interim's ts & HadISST's sst & Tropflux's sst; 's ",
         'method': 'The metric is the statistical value between the model and the observations',
         'name': 'EnsoSstTsRmse',
         'units': 'C/C'}},
       'SeasonalPrLatRmse': {'diagnostic': {'ERA-Interim': {'name': 'ERA-Interim',
          'nyears': 40,
          'time_period': ['1979-1-16 12:0:0.0', '2019-3-16 12:0:0.0']},
         'GISS-E2-R_r1i1p1': {'keyerror': None,
          'name': 'GISS-E2-R_r1i1p1',
          'nyears': 156,
          'time_period': ['1850-1-16 12:0:0.0', '2005-12-16 12:0:0.0']},
         'GPCPv2.3': {'name': 'GPCPv2.3',
          'nyears': 41,
          'time_period': ['1979-1-1 0:0:0.0', '2019-7-1 0:0:0.0']},
         'method': 'Meridional root mean square error of nino3_LatExt climatological pr STD, time series are linearly detrended, observations and model regridded to generic_1x1deg',
         'name': 'pr meridional seasonality RMSE',
         'ref': 'Using CDAT regridding and rms (uncentered and biased) calculation',
         'time_frequency': 'monthly',
         'units': 'mm/day'},
        'metric': {'datasets': "GISS-E2-R_r1i1p1; ERA-Interim's pr & GPCPv2.3's precip; 's ",
         'method': 'The metric is the statistical value between the model and the observations',
         'name': 'SeasonalPrLatRmse',
         'units': 'mm/day'}},
       'SeasonalPrLonRmse': {'diagnostic': {'ERA-Interim': {'name': 'ERA-Interim',
          'nyears': 40,
          'time_period': ['1979-1-16 12:0:0.0', '2019-3-16 12:0:0.0']},
         'GISS-E2-R_r1i1p1': {'keyerror': None,
          'name': 'GISS-E2-R_r1i1p1',
          'nyears': 156,
          'time_period': ['1850-1-16 12:0:0.0', '2005-12-16 12:0:0.0']},
         'GPCPv2.3': {'name': 'GPCPv2.3',
          'nyears': 41,
          'time_period': ['1979-1-1 0:0:0.0', '2019-7-1 0:0:0.0']},
         'method': 'Zonal root mean square error of equatorial_pacific climatological pr STD, time series are linearly detrended, observations and model regridded to generic_1x1deg',
         'name': 'pr zonal seasonality RMSE',
         'ref': 'Using CDAT regridding and rms (uncentered and biased) calculation',
         'time_frequency': 'monthly',
         'units': 'mm/day'},
        'metric': {'datasets': "GISS-E2-R_r1i1p1; ERA-Interim's pr & GPCPv2.3's precip; 's ",
         'method': 'The metric is the statistical value between the model and the observations',
         'name': 'SeasonalPrLonRmse',
         'units': 'mm/day'}},
       'SeasonalSstLonRmse': {'diagnostic': {'ERA-Interim': {'name': 'ERA-Interim',
          'nyears': 40,
          'time_period': ['1979-1-16 12:0:0.0', '2019-3-16 12:0:0.0']},
         'GISS-E2-R_r1i1p1': {'keyerror': None,
          'name': 'GISS-E2-R_r1i1p1',
          'nyears': 156,
          'time_period': ['1850-1-16 12:0:0.0', '2005-12-16 12:0:0.0']},
         'HadISST': {'name': 'HadISST',
          'nyears': 151,
          'time_period': ['1870-1-16 11:59:59.5', '2020-10-16 12:0:0.0']},
         'Tropflux': {'name': 'Tropflux',
          'nyears': 40,
          'time_period': ['1979-1-15 0:0:0.0', '2018-12-15 12:0:0.0']},
         'method': 'Zonal root mean square error of equatorial_pacific climatological sst STD, time series are linearly detrended, observations and model regridded to generic_1x1deg',
         'name': 'sst zonal seasonality RMSE',
         'ref': 'Using CDAT regridding and rms (uncentered and biased) calculation',
         'time_frequency': 'monthly',
         'units': 'C'},
        'metric': {'datasets': "GISS-E2-R_r1i1p1; ERA-Interim's ts & HadISST's sst & Tropflux's sst; 's ",
         'method': 'The metric is the statistical value between the model and the observations',
         'name': 'SeasonalSstLonRmse',
         'units': 'C'}},
       'SeasonalTauxLonRmse': {'diagnostic': {'ERA-Interim': {'name': 'ERA-Interim',
          'nyears': 40,
          'time_period': ['1979-1-16 12:0:0.0', '2019-3-16 12:0:0.0']},
         'GISS-E2-R_r1i1p1': {'keyerror': None,
          'name': 'GISS-E2-R_r1i1p1',
          'nyears': 156,
          'time_period': ['1850-1-16 12:0:0.0', '2005-12-16 12:0:0.0']},
         'Tropflux': {'name': 'Tropflux',
          'nyears': 40,
          'time_period': ['1979-1-15 0:0:0.0', '2018-12-15 12:0:0.0']},
         'method': 'Zonal root mean square error of equatorial_pacific climatological taux STD, time series are linearly detrended, observations and model regridded to generic_1x1deg',
         'name': 'taux zonal seasonality RMSE',
         'ref': 'Using CDAT regridding and rms (uncentered and biased) calculation',
         'time_frequency': 'monthly',
         'units': '1e-3 N/m2'},
        'metric': {'datasets': "GISS-E2-R_r1i1p1; ERA-Interim's tauu & Tropflux's taux; 's ",
         'method': 'The metric is the statistical value between the model and the observations',
         'name': 'SeasonalTauxLonRmse',
         'units': '1e-3 N/m2'}}},
      'name': 'Metrics Collection for ENSO performance'},
     'value': {'BiasPrLatRmse': {'diagnostic': {'ERA-Interim': {'value': None,
         'value_error': None},
        'GISS-E2-R_r1i1p1': {'value': None, 'value_error': None},
        'GPCPv2.3': {'value': None, 'value_error': None}},
       'metric': {'ERA-Interim': {'value': 2.0600938069058357,
         'value_error': None},
        'GPCPv2.3': {'value': 2.857231853699034, 'value_error': None}}},
      'BiasPrLonRmse': {'diagnostic': {'ERA-Interim': {'value': None,
         'value_error': None},
        'GISS-E2-R_r1i1p1': {'value': None, 'value_error': None},
        'GPCPv2.3': {'value': None, 'value_error': None}},
       'metric': {'ERA-Interim': {'value': 1.7031611553098582,
         'value_error': None},
        'GPCPv2.3': {'value': 2.160113920743273, 'value_error': None}}},
      'BiasSstLonRmse': {'diagnostic': {'ERA-Interim': {'value': None,
         'value_error': None},
        'GISS-E2-R_r1i1p1': {'value': None, 'value_error': None},
        'HadISST': {'value': None, 'value_error': None},
        'Tropflux': {'value': None, 'value_error': None}},
       'metric': {'ERA-Interim': {'value': 1.0042314572088702,
         'value_error': None},
        'HadISST': {'value': 1.1751441967269578, 'value_error': None},
        'Tropflux': {'value': 0.9710083463998387, 'value_error': None}}},
      'BiasTauxLonRmse': {'diagnostic': {'ERA-Interim': {'value': None,
         'value_error': None},
        'GISS-E2-R_r1i1p1': {'value': None, 'value_error': None},
        'Tropflux': {'value': None, 'value_error': None}},
       'metric': {'ERA-Interim': {'value': 18.050339774207675,
         'value_error': None},
        'Tropflux': {'value': 17.667180078640083, 'value_error': None}}},
      'EnsoAmpl': {'diagnostic': {'ERA-Interim': {'value': 0.8989844997845644,
         'value_error': 0.14214193002531866},
        'GISS-E2-R_r1i1p1': {'value': 0.5493077268957681,
         'value_error': 0.043979816089344176},
        'HadISST': {'value': 0.7665787872085695,
         'value_error': 0.06238329697691264},
        'Tropflux': {'value': 0.9039789553693535,
         'value_error': 0.14293162279134272}},
       'metric': {'ERA-Interim': {'value': 38.896863402271556,
         'value_error': 14.553420419007832},
        'HadISST': {'value': 28.342952340747026,
         'value_error': 11.568523211871156},
        'Tropflux': {'value': 39.2344563296467,
         'value_error': 14.473013224285253}}},
      'EnsoDuration': {'diagnostic': {'ERA-Interim': {'value': 13.0,
         'value_error': None},
        'GISS-E2-R_r1i1p1': {'value': 12.0, 'value_error': None},
        'HadISST': {'value': 13.0, 'value_error': None},
        'Tropflux': {'value': 13.0, 'value_error': None}},
       'metric': {'ERA-Interim': {'value': 7.6923076923076925,
         'value_error': None},
        'HadISST': {'value': 7.6923076923076925, 'value_error': None},
        'Tropflux': {'value': 7.6923076923076925, 'value_error': None}}},
      'EnsoSeasonality': {'diagnostic': {'ERA-Interim': {'value': 2.0466846866656914,
         'value_error': 0.6513411033995022},
        'GISS-E2-R_r1i1p1': {'value': 1.720108498453369,
         'value_error': 0.27588133847760926},
        'HadISST': {'value': 1.6639865947361325,
         'value_error': 0.2712772451657809},
        'Tropflux': {'value': 2.0532132553583624,
         'value_error': 0.6534187683977347}},
       'metric': {'ERA-Interim': {'value': 15.956350792087878,
         'value_error': 40.22564765004806},
        'HadISST': {'value': 3.3727377308671183,
         'value_error': 33.43224370954563},
        'Tropflux': {'value': 16.22358301241603,
         'value_error': 40.09774281444212}}},
      'EnsoSstDiversity_2': {'diagnostic': {'ERA-Interim': {'value': 33.25,
         'value_error': None},
        'GISS-E2-R_r1i1p1': {'value': 20.0, 'value_error': None},
        'HadISST': {'value': 49.0, 'value_error': None},
        'Tropflux': {'value': 32.0, 'value_error': None}},
       'metric': {'ERA-Interim': {'value': 39.849624060150376,
         'value_error': None},
        'HadISST': {'value': 59.183673469387756, 'value_error': None},
        'Tropflux': {'value': 37.5, 'value_error': None}}},
      'EnsoSstLonRmse': {'diagnostic': {'ERA-Interim': {'value': None,
         'value_error': None},
        'GISS-E2-R_r1i1p1': {'value': None, 'value_error': None},
        'HadISST': {'value': None, 'value_error': None},
        'Tropflux': {'value': None, 'value_error': None}},
       'metric': {'ERA-Interim': {'value': 0.11216266773259204,
         'value_error': None},
        'HadISST': {'value': 0.12221951265178949, 'value_error': None},
        'Tropflux': {'value': 0.11051634424869443, 'value_error': None}}},
      'EnsoSstSkew': {'diagnostic': {'ERA-Interim': {'value': 0.39098111106809963,
         'value_error': 0.061819541653923164},
        'GISS-E2-R_r1i1p1': {'value': 0.11805815754765699,
         'value_error': 0.009452217404868212},
        'HadISST': {'value': 0.38989908235027515,
         'value_error': 0.03172953733021198},
        'Tropflux': {'value': 0.39744741059612115,
         'value_error': 0.06284195338099416}},
       'metric': {'ERA-Interim': {'value': 69.8046390974898,
         'value_error': 7.191869458535124},
        'HadISST': {'value': 69.72084242004021,
         'value_error': 4.888355699014591},
        'Tropflux': {'value': 70.29590471590076,
         'value_error': 7.0748608157676}}},
      'EnsoSstTsRmse': {'diagnostic': {'ERA-Interim': {'value': None,
         'value_error': None},
        'GISS-E2-R_r1i1p1': {'value': None, 'value_error': None},
        'HadISST': {'value': None, 'value_error': None},
        'Tropflux': {'value': None, 'value_error': None}},
       'metric': {'ERA-Interim': {'value': 0.09736622451405222,
         'value_error': None},
        'HadISST': {'value': 0.08997614545872855, 'value_error': None},
        'Tropflux': {'value': 0.09849358272100879, 'value_error': None}}},
      'SeasonalPrLatRmse': {'diagnostic': {'ERA-Interim': {'value': None,
         'value_error': None},
        'GISS-E2-R_r1i1p1': {'value': None, 'value_error': None},
        'GPCPv2.3': {'value': None, 'value_error': None}},
       'metric': {'ERA-Interim': {'value': 0.6779942600495655,
         'value_error': None},
        'GPCPv2.3': {'value': 0.8462222262243452, 'value_error': None}}},
      'SeasonalPrLonRmse': {'diagnostic': {'ERA-Interim': {'value': None,
         'value_error': None},
        'GISS-E2-R_r1i1p1': {'value': None, 'value_error': None},
        'GPCPv2.3': {'value': None, 'value_error': None}},
       'metric': {'ERA-Interim': {'value': 0.3047824002582374,
         'value_error': None},
        'GPCPv2.3': {'value': 0.5370826929622878, 'value_error': None}}},
      'SeasonalSstLonRmse': {'diagnostic': {'ERA-Interim': {'value': None,
         'value_error': None},
        'GISS-E2-R_r1i1p1': {'value': None, 'value_error': None},
        'HadISST': {'value': None, 'value_error': None},
        'Tropflux': {'value': None, 'value_error': None}},
       'metric': {'ERA-Interim': {'value': 0.2799197933067166,
         'value_error': None},
        'HadISST': {'value': 0.28183761403930263, 'value_error': None},
        'Tropflux': {'value': 0.28770059015835603, 'value_error': None}}},
      'SeasonalTauxLonRmse': {'diagnostic': {'ERA-Interim': {'value': None,
         'value_error': None},
        'GISS-E2-R_r1i1p1': {'value': None, 'value_error': None},
        'Tropflux': {'value': None, 'value_error': None}},
       'metric': {'ERA-Interim': {'value': 1.972957423336851,
         'value_error': None},
        'Tropflux': {'value': 2.1115480738965924, 'value_error': None}}}}},
    'r1i1p121': {'metadata': {'description_of_the_collection': 'Describe which science question this collection is about',
      'metrics': {'BiasPrLatRmse': {'diagnostic': {'ERA-Interim': {'name': 'ERA-Interim',
          'nyears': 40,
          'time_period': ['1979-1-16 12:0:0.0', '2019-3-16 12:0:0.0']},
         'GISS-E2-R_r1i1p121': {'keyerror': None,
          'name': 'GISS-E2-R_r1i1p121',
          'nyears': 155,
          'time_period': ['1851-1-16 12:0:0.0', '2005-12-16 12:0:0.0']},
         'GPCPv2.3': {'name': 'GPCPv2.3',
          'nyears': 41,
          'time_period': ['1979-1-1 0:0:0.0', '2019-7-1 0:0:0.0']},
         'method': 'Meridional root mean square error of nino3_LatExt pr, time series are linearly detrended, observations and model regridded to generic_1x1deg',
         'name': 'pr Meridional RMSE',
         'ref': 'Using CDAT regridding and rms (uncentered and biased) calculation',
         'time_frequency': 'monthly',
         'units': 'mm/day'},
        'metric': {'datasets': "GISS-E2-R_r1i1p121; ERA-Interim's pr & GPCPv2.3's precip; 's ",
         'method': 'The metric is the statistical value between the model and the observations',
         'name': 'BiasPrLatRmse',
         'units': 'mm/day'}},
       'BiasPrLonRmse': {'diagnostic': {'ERA-Interim': {'name': 'ERA-Interim',
          'nyears': 40,
          'time_period': ['1979-1-16 12:0:0.0', '2019-3-16 12:0:0.0']},
         'GISS-E2-R_r1i1p121': {'keyerror': None,
          'name': 'GISS-E2-R_r1i1p121',
          'nyears': 155,
          'time_period': ['1851-1-16 12:0:0.0', '2005-12-16 12:0:0.0']},
         'GPCPv2.3': {'name': 'GPCPv2.3',
          'nyears': 41,
          'time_period': ['1979-1-1 0:0:0.0', '2019-7-1 0:0:0.0']},
         'method': 'Zonal root mean square error of equatorial_pacific pr, time series are linearly detrended, observations and model regridded to generic_1x1deg',
         'name': 'pr Zonal RMSE',
         'ref': 'Using CDAT regridding and rms (uncentered and biased) calculation',
         'time_frequency': 'monthly',
         'units': 'mm/day'},
        'metric': {'datasets': "GISS-E2-R_r1i1p121; ERA-Interim's pr & GPCPv2.3's precip; 's ",
         'method': 'The metric is the statistical value between the model and the observations',
         'name': 'BiasPrLonRmse',
         'units': 'mm/day'}},
       'BiasSstLonRmse': {'diagnostic': {'ERA-Interim': {'name': 'ERA-Interim',
          'nyears': 40,
          'time_period': ['1979-1-16 12:0:0.0', '2019-3-16 12:0:0.0']},
         'GISS-E2-R_r1i1p121': {'keyerror': None,
          'name': 'GISS-E2-R_r1i1p121',
          'nyears': 155,
          'time_period': ['1851-1-16 12:0:0.0', '2005-12-16 12:0:0.0']},
         'HadISST': {'name': 'HadISST',
          'nyears': 151,
          'time_period': ['1870-1-16 11:59:59.5', '2020-10-16 12:0:0.0']},
         'Tropflux': {'name': 'Tropflux',
          'nyears': 40,
          'time_period': ['1979-1-15 0:0:0.0', '2018-12-15 12:0:0.0']},
         'method': 'Zonal root mean square error of equatorial_pacific sst, time series are linearly detrended, observations and model regridded to generic_1x1deg',
         'name': 'sst Zonal RMSE',
         'ref': 'Using CDAT regridding and rms (uncentered and biased) calculation',
         'time_frequency': 'monthly',
         'units': 'C'},
        'metric': {'datasets': "GISS-E2-R_r1i1p121; ERA-Interim's ts & HadISST's sst & Tropflux's sst; 's ",
         'method': 'The metric is the statistical value between the model and the observations',
         'name': 'BiasSstLonRmse',
         'units': 'C'}},
       'BiasTauxLonRmse': {'diagnostic': {'ERA-Interim': {'name': 'ERA-Interim',
          'nyears': 40,
          'time_period': ['1979-1-16 12:0:0.0', '2019-3-16 12:0:0.0']},
         'GISS-E2-R_r1i1p121': {'keyerror': None,
          'name': 'GISS-E2-R_r1i1p121',
          'nyears': 155,
          'time_period': ['1851-1-16 12:0:0.0', '2005-12-16 12:0:0.0']},
         'Tropflux': {'name': 'Tropflux',
          'nyears': 40,
          'time_period': ['1979-1-15 0:0:0.0', '2018-12-15 12:0:0.0']},
         'method': 'Zonal root mean square error of equatorial_pacific taux, time series are linearly detrended, observations and model regridded to generic_1x1deg',
         'name': 'taux Zonal RMSE',
         'ref': 'Using CDAT regridding and rms (uncentered and biased) calculation',
         'time_frequency': 'monthly',
         'units': '1e-3 N/m2'},
        'metric': {'datasets': "GISS-E2-R_r1i1p121; ERA-Interim's tauu & Tropflux's taux; 's ",
         'method': 'The metric is the statistical value between the model and the observations',
         'name': 'BiasTauxLonRmse',
         'units': '1e-3 N/m2'}},
       'EnsoAmpl': {'diagnostic': {'ERA-Interim': {'keyerror': None,
          'name': 'ERA-Interim',
          'nyears': 40,
          'time_period': ['1979-1-16 12:0:0.0', '2019-3-16 12:0:0.0']},
         'GISS-E2-R_r1i1p121': {'keyerror': None,
          'name': 'GISS-E2-R_r1i1p121',
          'nyears': 155,
          'time_period': ['1851-1-16 12:0:0.0', '2005-12-16 12:0:0.0']},
         'HadISST': {'keyerror': None,
          'name': 'HadISST',
          'nyears': 151,
          'time_period': ['1870-1-16 11:59:59.5', '2020-10-16 12:0:0.0']},
         'Tropflux': {'keyerror': None,
          'name': 'Tropflux',
          'nyears': 40,
          'time_period': ['1979-1-15 0:0:0.0', '2018-12-15 12:0:0.0']},
         'method': 'Standard deviation of nino3.4 sstA, time series are linearly detrended',
         'name': 'ENSO amplitude',
         'ref': 'Using CDAT regression calculation',
         'time_frequency': 'monthly',
         'units': 'C'},
        'metric': {'datasets': "GISS-E2-R_r1i1p121; ERA-Interim's ts & HadISST's sst & Tropflux's sst; 's ",
         'method': 'The metric is the absolute value of the relative difference between model and observations values (M = 100 * abs[[model-obs] / obs])',
         'name': 'EnsoAmpl',
         'units': '%'}},
       'EnsoDuration': {'diagnostic': {'ERA-Interim': {'keyerror': None,
          'name': 'ERA-Interim',
          'nyears': 40,
          'time_period': ['1979-1-16 12:0:0.0', '2019-3-16 12:0:0.0']},
         'GISS-E2-R_r1i1p121': {'keyerror': None,
          'name': 'GISS-E2-R_r1i1p121',
          'nyears': 155,
          'time_period': ['1851-1-16 12:0:0.0', '2005-12-16 12:0:0.0']},
         'HadISST': {'keyerror': None,
          'name': 'HadISST',
          'nyears': 151,
          'time_period': ['1870-1-16 11:59:59.5', '2020-10-16 12:0:0.0']},
         'Tropflux': {'keyerror': None,
          'name': 'Tropflux',
          'nyears': 40,
          'time_period': ['1979-1-15 0:0:0.0', '2018-12-15 12:0:0.0']},
         'method': 'nino3.4 SSTA during DEC regressed against nino3.4 SSTA during 6 years (centered on ENSO), the duration is the number of consecutive months during which the regression is above 0.25, time series are linearly detrended, smoothing using a triangle shaped window of 5 points',
         'name': 'ENSO Duration based on life cyle SSTA pattern',
         'ref': 'Using CDAT',
         'time_frequency': 'monthly',
         'units': 'months'},
        'metric': {'datasets': "GISS-E2-R_r1i1p121; ERA-Interim's ts & HadISST's sst & Tropflux's sst; 's ",
         'method': 'The metric is the absolute value of the relative difference between model and observations values (M = 100 * abs[[model-obs] / obs])',
         'name': 'EnsoDuration',
         'units': '%'}},
       'EnsoSeasonality': {'diagnostic': {'ERA-Interim': {'keyerror': None,
          'name': 'ERA-Interim',
          'nyears': 40,
          'time_period': ['1979-1-16 12:0:0.0', '2019-3-16 12:0:0.0']},
         'GISS-E2-R_r1i1p121': {'keyerror': None,
          'name': 'GISS-E2-R_r1i1p121',
          'nyears': 155,
          'time_period': ['1851-1-16 12:0:0.0', '2005-12-16 12:0:0.0']},
         'HadISST': {'keyerror': None,
          'name': 'HadISST',
          'nyears': 151,
          'time_period': ['1870-1-16 11:59:59.5', '2020-10-16 12:0:0.0']},
         'Tropflux': {'keyerror': None,
          'name': 'Tropflux',
          'nyears': 40,
          'time_period': ['1979-1-15 0:0:0.0', '2018-12-15 12:0:0.0']},
         'method': 'Ratio between NDJ and MAM standard deviation nino3.4 sstA, time series are linearly detrended',
         'name': 'ENSO seasonality',
         'ref': 'Using CDAT std dev calculation',
         'time_frequency': 'monthly',
         'units': 'C/C'},
        'metric': {'datasets': "GISS-E2-R_r1i1p121; ERA-Interim's ts & HadISST's sst & Tropflux's sst; 's ",
         'method': 'The metric is the absolute value of the relative difference between model and observations values (M = 100 * abs[[model-obs] / obs])',
         'name': 'EnsoSeasonality',
         'units': '%'}},
       'EnsoSstDiversity_2': {'diagnostic': {'ERA-Interim': {'keyerror': None,
          'name': 'ERA-Interim',
          'nyears': 40,
          'time_period': ['1979-1-16 12:0:0.0', '2019-3-16 12:0:0.0']},
         'GISS-E2-R_r1i1p121': {'keyerror': None,
          'name': 'GISS-E2-R_r1i1p121',
          'nyears': 155,
          'time_period': ['1851-1-16 12:0:0.0', '2005-12-16 12:0:0.0']},
         'HadISST': {'keyerror': None,
          'name': 'HadISST',
          'nyears': 151,
          'time_period': ['1870-1-16 11:59:59.5', '2020-10-16 12:0:0.0']},
         'Tropflux': {'keyerror': None,
          'name': 'Tropflux',
          'nyears': 40,
          'time_period': ['1979-1-15 0:0:0.0', '2018-12-15 12:0:0.0']},
         'method': 'Nino (Nina) events = nino3.4 sstA > 0.75 (< -0.75) during DEC, zonal SSTA (meridional averaged [-5.0 ; 5.0]), the zonal SSTA maximum (minimum) is located for each event, the diversity is the interquartile range (IQR = Q3 - Q1), time series are linearly detrended, smoothing using a triangle shaped window of 5 points',
         'name': 'ENSO Diversity (interquartile range)',
         'ref': 'Using CDAT regridding',
         'time_frequency': 'monthly',
         'units': 'long'},
        'metric': {'datasets': "GISS-E2-R_r1i1p121; ERA-Interim's ts & HadISST's sst & Tropflux's sst; 's ",
         'method': 'The metric is the absolute value of the relative difference between model and observations values (M = 100 * abs[[model-obs] / obs])',
         'name': 'EnsoSstDiversity',
         'units': '%'}},
       'EnsoSstLonRmse': {'diagnostic': {'ERA-Interim': {'name': 'ERA-Interim',
          'nyears': 40,
          'time_period': ['1979-1-16 12:0:0.0', '2019-3-16 12:0:0.0']},
         'GISS-E2-R_r1i1p121': {'keyerror': None,
          'name': 'GISS-E2-R_r1i1p121',
          'nyears': 155,
          'time_period': ['1851-1-16 12:0:0.0', '2005-12-16 12:0:0.0']},
         'HadISST': {'name': 'HadISST',
          'nyears': 151,
          'time_period': ['1870-1-16 11:59:59.5', '2020-10-16 12:0:0.0']},
         'Tropflux': {'name': 'Tropflux',
          'nyears': 40,
          'time_period': ['1979-1-15 0:0:0.0', '2018-12-15 12:0:0.0']},
         'method': 'nino3.4 SSTA during DEC regressed against equatorial_pacific SSTA, time series are linearly detrended, smoothing using a triangle shaped window of 5 points, observations and model regridded to generic_1x1deg',
         'name': 'ENSO Zonal SSTA pattern',
         'ref': 'Using CDAT regridding and rms (uncentered and biased) calculation',
         'time_frequency': 'monthly',
         'units': 'C/C'},
        'metric': {'datasets': "GISS-E2-R_r1i1p121; ERA-Interim's ts & HadISST's sst & Tropflux's sst; 's ",
         'method': 'The metric is the statistical value between the model and the observations',
         'name': 'EnsoSstLonRmse',
         'units': 'C/C'}},
       'EnsoSstSkew': {'diagnostic': {'ERA-Interim': {'keyerror': None,
          'name': 'ERA-Interim',
          'nyears': 40,
          'time_period': ['1979-1-16 12:0:0.0', '2019-3-16 12:0:0.0']},
         'GISS-E2-R_r1i1p121': {'keyerror': None,
          'name': 'GISS-E2-R_r1i1p121',
          'nyears': 155,
          'time_period': ['1851-1-16 12:0:0.0', '2005-12-16 12:0:0.0']},
         'HadISST': {'keyerror': None,
          'name': 'HadISST',
          'nyears': 151,
          'time_period': ['1870-1-16 11:59:59.5', '2020-10-16 12:0:0.0']},
         'Tropflux': {'keyerror': None,
          'name': 'Tropflux',
          'nyears': 40,
          'time_period': ['1979-1-15 0:0:0.0', '2018-12-15 12:0:0.0']},
         'method': 'Standard deviation of nino3.4 sstA, time series are linearly detrended',
         'name': 'ENSO skewness',
         'ref': 'Using CDAT regression calculation',
         'time_frequency': 'monthly',
         'units': 'C'},
        'metric': {'datasets': "GISS-E2-R_r1i1p121; ERA-Interim's ts & HadISST's sst & Tropflux's sst; 's ",
         'method': 'The metric is the absolute value of the relative difference between model and observations values (M = 100 * abs[[model-obs] / obs])',
         'name': 'EnsoSstSkew',
         'units': '%'}},
       'EnsoSstTsRmse': {'diagnostic': {'ERA-Interim': {'name': 'ERA-Interim',
          'nyears': 40,
          'time_period': ['1979-1-16 12:0:0.0', '2019-3-16 12:0:0.0']},
         'GISS-E2-R_r1i1p121': {'keyerror': None,
          'name': 'GISS-E2-R_r1i1p121',
          'nyears': 155,
          'time_period': ['1851-1-16 12:0:0.0', '2005-12-16 12:0:0.0']},
         'HadISST': {'name': 'HadISST',
          'nyears': 151,
          'time_period': ['1870-1-16 11:59:59.5', '2020-10-16 12:0:0.0']},
         'Tropflux': {'name': 'Tropflux',
          'nyears': 40,
          'time_period': ['1979-1-15 0:0:0.0', '2018-12-15 12:0:0.0']},
         'method': 'nino3.4 SSTA during DEC regressed against nino3.4 SSTA during 6 years (centered on ENSO), time series are linearly detrended, smoothing using a triangle shaped window of 5 points',
         'name': 'ENSO life cyle SSTA pattern',
         'ref': 'Using CDAT regridding and rms (uncentered and biased) calculation',
         'time_frequency': 'monthly',
         'units': 'C/C'},
        'metric': {'datasets': "GISS-E2-R_r1i1p121; ERA-Interim's ts & HadISST's sst & Tropflux's sst; 's ",
         'method': 'The metric is the statistical value between the model and the observations',
         'name': 'EnsoSstTsRmse',
         'units': 'C/C'}},
       'SeasonalPrLatRmse': {'diagnostic': {'ERA-Interim': {'name': 'ERA-Interim',
          'nyears': 40,
          'time_period': ['1979-1-16 12:0:0.0', '2019-3-16 12:0:0.0']},
         'GISS-E2-R_r1i1p121': {'keyerror': None,
          'name': 'GISS-E2-R_r1i1p121',
          'nyears': 155,
          'time_period': ['1851-1-16 12:0:0.0', '2005-12-16 12:0:0.0']},
         'GPCPv2.3': {'name': 'GPCPv2.3',
          'nyears': 41,
          'time_period': ['1979-1-1 0:0:0.0', '2019-7-1 0:0:0.0']},
         'method': 'Meridional root mean square error of nino3_LatExt climatological pr STD, time series are linearly detrended, observations and model regridded to generic_1x1deg',
         'name': 'pr meridional seasonality RMSE',
         'ref': 'Using CDAT regridding and rms (uncentered and biased) calculation',
         'time_frequency': 'monthly',
         'units': 'mm/day'},
        'metric': {'datasets': "GISS-E2-R_r1i1p121; ERA-Interim's pr & GPCPv2.3's precip; 's ",
         'method': 'The metric is the statistical value between the model and the observations',
         'name': 'SeasonalPrLatRmse',
         'units': 'mm/day'}},
       'SeasonalPrLonRmse': {'diagnostic': {'ERA-Interim': {'name': 'ERA-Interim',
          'nyears': 40,
          'time_period': ['1979-1-16 12:0:0.0', '2019-3-16 12:0:0.0']},
         'GISS-E2-R_r1i1p121': {'keyerror': None,
          'name': 'GISS-E2-R_r1i1p121',
          'nyears': 155,
          'time_period': ['1851-1-16 12:0:0.0', '2005-12-16 12:0:0.0']},
         'GPCPv2.3': {'name': 'GPCPv2.3',
          'nyears': 41,
          'time_period': ['1979-1-1 0:0:0.0', '2019-7-1 0:0:0.0']},
         'method': 'Zonal root mean square error of equatorial_pacific climatological pr STD, time series are linearly detrended, observations and model regridded to generic_1x1deg',
         'name': 'pr zonal seasonality RMSE',
         'ref': 'Using CDAT regridding and rms (uncentered and biased) calculation',
         'time_frequency': 'monthly',
         'units': 'mm/day'},
        'metric': {'datasets': "GISS-E2-R_r1i1p121; ERA-Interim's pr & GPCPv2.3's precip; 's ",
         'method': 'The metric is the statistical value between the model and the observations',
         'name': 'SeasonalPrLonRmse',
         'units': 'mm/day'}},
       'SeasonalSstLonRmse': {'diagnostic': {'ERA-Interim': {'name': 'ERA-Interim',
          'nyears': 40,
          'time_period': ['1979-1-16 12:0:0.0', '2019-3-16 12:0:0.0']},
         'GISS-E2-R_r1i1p121': {'keyerror': None,
          'name': 'GISS-E2-R_r1i1p121',
          'nyears': 155,
          'time_period': ['1851-1-16 12:0:0.0', '2005-12-16 12:0:0.0']},
         'HadISST': {'name': 'HadISST',
          'nyears': 151,
          'time_period': ['1870-1-16 11:59:59.5', '2020-10-16 12:0:0.0']},
         'Tropflux': {'name': 'Tropflux',
          'nyears': 40,
          'time_period': ['1979-1-15 0:0:0.0', '2018-12-15 12:0:0.0']},
         'method': 'Zonal root mean square error of equatorial_pacific climatological sst STD, time series are linearly detrended, observations and model regridded to generic_1x1deg',
         'name': 'sst zonal seasonality RMSE',
         'ref': 'Using CDAT regridding and rms (uncentered and biased) calculation',
         'time_frequency': 'monthly',
         'units': 'C'},
        'metric': {'datasets': "GISS-E2-R_r1i1p121; ERA-Interim's ts & HadISST's sst & Tropflux's sst; 's ",
         'method': 'The metric is the statistical value between the model and the observations',
         'name': 'SeasonalSstLonRmse',
         'units': 'C'}},
       'SeasonalTauxLonRmse': {'diagnostic': {'ERA-Interim': {'name': 'ERA-Interim',
          'nyears': 40,
          'time_period': ['1979-1-16 12:0:0.0', '2019-3-16 12:0:0.0']},
         'GISS-E2-R_r1i1p121': {'keyerror': None,
          'name': 'GISS-E2-R_r1i1p121',
          'nyears': 155,
          'time_period': ['1851-1-16 12:0:0.0', '2005-12-16 12:0:0.0']},
         'Tropflux': {'name': 'Tropflux',
          'nyears': 40,
          'time_period': ['1979-1-15 0:0:0.0', '2018-12-15 12:0:0.0']},
         'method': 'Zonal root mean square error of equatorial_pacific climatological taux STD, time series are linearly detrended, observations and model regridded to generic_1x1deg',
         'name': 'taux zonal seasonality RMSE',
         'ref': 'Using CDAT regridding and rms (uncentered and biased) calculation',
         'time_frequency': 'monthly',
         'units': '1e-3 N/m2'},
        'metric': {'datasets': "GISS-E2-R_r1i1p121; ERA-Interim's tauu & Tropflux's taux; 's ",
         'method': 'The metric is the statistical value between the model and the observations',
         'name': 'SeasonalTauxLonRmse',
         'units': '1e-3 N/m2'}}},
      'name': 'Metrics Collection for ENSO performance'},
     'value': {'BiasPrLatRmse': {'diagnostic': {'ERA-Interim': {'value': None,
         'value_error': None},
        'GISS-E2-R_r1i1p121': {'value': None, 'value_error': None},
        'GPCPv2.3': {'value': None, 'value_error': None}},
       'metric': {'ERA-Interim': {'value': 2.1177535681197672,
         'value_error': None},
        'GPCPv2.3': {'value': 2.903306773800081, 'value_error': None}}},
      'BiasPrLonRmse': {'diagnostic': {'ERA-Interim': {'value': None,
         'value_error': None},
        'GISS-E2-R_r1i1p121': {'value': None, 'value_error': None},
        'GPCPv2.3': {'value': None, 'value_error': None}},
       'metric': {'ERA-Interim': {'value': 1.703122477851472,
         'value_error': None},
        'GPCPv2.3': {'value': 2.129075385840092, 'value_error': None}}},
      'BiasSstLonRmse': {'diagnostic': {'ERA-Interim': {'value': None,
         'value_error': None},
        'GISS-E2-R_r1i1p121': {'value': None, 'value_error': None},
        'HadISST': {'value': None, 'value_error': None},
        'Tropflux': {'value': None, 'value_error': None}},
       'metric': {'ERA-Interim': {'value': 1.015930472664537,
         'value_error': None},
        'HadISST': {'value': 1.1870554128659132, 'value_error': None},
        'Tropflux': {'value': 0.9827750074395032, 'value_error': None}}},
      'BiasTauxLonRmse': {'diagnostic': {'ERA-Interim': {'value': None,
         'value_error': None},
        'GISS-E2-R_r1i1p121': {'value': None, 'value_error': None},
        'Tropflux': {'value': None, 'value_error': None}},
       'metric': {'ERA-Interim': {'value': 17.824647552844567,
         'value_error': None},
        'Tropflux': {'value': 17.443484507595706, 'value_error': None}}},
      'EnsoAmpl': {'diagnostic': {'ERA-Interim': {'value': 0.8989844997845644,
         'value_error': 0.14214193002531866},
        'GISS-E2-R_r1i1p121': {'value': 0.5646268026661776,
         'value_error': 0.04535191615178908},
        'HadISST': {'value': 0.7665787872085695,
         'value_error': 0.06238329697691264},
        'Tropflux': {'value': 0.9039789553693535,
         'value_error': 0.14293162279134272}},
       'metric': {'ERA-Interim': {'value': 37.1928211441369,
         'value_error': 14.97548093479134},
        'HadISST': {'value': 26.344582959017515,
         'value_error': 11.910138295961973},
        'Tropflux': {'value': 37.539828851936186,
         'value_error': 14.892741868859089}}},
      'EnsoDuration': {'diagnostic': {'ERA-Interim': {'value': 13.0,
         'value_error': None},
        'GISS-E2-R_r1i1p121': {'value': 12.0, 'value_error': None},
        'HadISST': {'value': 13.0, 'value_error': None},
        'Tropflux': {'value': 13.0, 'value_error': None}},
       'metric': {'ERA-Interim': {'value': 7.6923076923076925,
         'value_error': None},
        'HadISST': {'value': 7.6923076923076925, 'value_error': None},
        'Tropflux': {'value': 7.6923076923076925, 'value_error': None}}},
      'EnsoSeasonality': {'diagnostic': {'ERA-Interim': {'value': 2.0466846866656914,
         'value_error': 0.6513411033995022},
        'GISS-E2-R_r1i1p121': {'value': 1.7637211651202624,
         'value_error': 0.28379019476105377},
        'HadISST': {'value': 1.6639865947361325,
         'value_error': 0.2712772451657809},
        'Tropflux': {'value': 2.0532132553583624,
         'value_error': 0.6534187683977347}},
       'metric': {'ERA-Interim': {'value': 13.825457501536906,
         'value_error': 41.290210271556745},
        'HadISST': {'value': 5.993712371219275,
         'value_error': 34.33483295706703},
        'Tropflux': {'value': 14.099465288498383,
         'value_error': 41.158920463550096}}},
      'EnsoSstDiversity_2': {'diagnostic': {'ERA-Interim': {'value': 33.25,
         'value_error': None},
        'GISS-E2-R_r1i1p121': {'value': 18.5, 'value_error': None},
        'HadISST': {'value': 49.0, 'value_error': None},
        'Tropflux': {'value': 32.0, 'value_error': None}},
       'metric': {'ERA-Interim': {'value': 44.3609022556391,
         'value_error': None},
        'HadISST': {'value': 62.244897959183675, 'value_error': None},
        'Tropflux': {'value': 42.1875, 'value_error': None}}},
      'EnsoSstLonRmse': {'diagnostic': {'ERA-Interim': {'value': None,
         'value_error': None},
        'GISS-E2-R_r1i1p121': {'value': None, 'value_error': None},
        'HadISST': {'value': None, 'value_error': None},
        'Tropflux': {'value': None, 'value_error': None}},
       'metric': {'ERA-Interim': {'value': 0.1355279619772293,
         'value_error': None},
        'HadISST': {'value': 0.14677684115974465, 'value_error': None},
        'Tropflux': {'value': 0.13437910468397812, 'value_error': None}}},
      'EnsoSstSkew': {'diagnostic': {'ERA-Interim': {'value': 0.39098111106809963,
         'value_error': 0.061819541653923164},
        'GISS-E2-R_r1i1p121': {'value': 0.13228360174820136,
         'value_error': 0.010625274582099572},
        'HadISST': {'value': 0.38989908235027515,
         'value_error': 0.03172953733021198},
        'Tropflux': {'value': 0.39744741059612115,
         'value_error': 0.06284195338099416}},
       'metric': {'ERA-Interim': {'value': 66.16624230597148,
         'value_error': 8.067179620693556},
        'HadISST': {'value': 66.07234852905829,
         'value_error': 5.486127664599041},
        'Tropflux': {'value': 66.71670308537358,
         'value_error': 7.935930055636596}}},
      'EnsoSstTsRmse': {'diagnostic': {'ERA-Interim': {'value': None,
         'value_error': None},
        'GISS-E2-R_r1i1p121': {'value': None, 'value_error': None},
        'HadISST': {'value': None, 'value_error': None},
        'Tropflux': {'value': None, 'value_error': None}},
       'metric': {'ERA-Interim': {'value': 0.17182777986235304,
         'value_error': None},
        'HadISST': {'value': 0.16554138043179212, 'value_error': None},
        'Tropflux': {'value': 0.17507017179740428, 'value_error': None}}},
      'SeasonalPrLatRmse': {'diagnostic': {'ERA-Interim': {'value': None,
         'value_error': None},
        'GISS-E2-R_r1i1p121': {'value': None, 'value_error': None},
        'GPCPv2.3': {'value': None, 'value_error': None}},
       'metric': {'ERA-Interim': {'value': 0.7065060657502106,
         'value_error': None},
        'GPCPv2.3': {'value': 0.8767616278830698, 'value_error': None}}},
      'SeasonalPrLonRmse': {'diagnostic': {'ERA-Interim': {'value': None,
         'value_error': None},
        'GISS-E2-R_r1i1p121': {'value': None, 'value_error': None},
        'GPCPv2.3': {'value': None, 'value_error': None}},
       'metric': {'ERA-Interim': {'value': 0.25121066306900686,
         'value_error': None},
        'GPCPv2.3': {'value': 0.4976123957180021, 'value_error': None}}},
      'SeasonalSstLonRmse': {'diagnostic': {'ERA-Interim': {'value': None,
         'value_error': None},
        'GISS-E2-R_r1i1p121': {'value': None, 'value_error': None},
        'HadISST': {'value': None, 'value_error': None},
        'Tropflux': {'value': None, 'value_error': None}},
       'metric': {'ERA-Interim': {'value': 0.2785936612498321,
         'value_error': None},
        'HadISST': {'value': 0.27978014969890913, 'value_error': None},
        'Tropflux': {'value': 0.2865492668811042, 'value_error': None}}},
      'SeasonalTauxLonRmse': {'diagnostic': {'ERA-Interim': {'value': None,
         'value_error': None},
        'GISS-E2-R_r1i1p121': {'value': None, 'value_error': None},
        'Tropflux': {'value': None, 'value_error': None}},
       'metric': {'ERA-Interim': {'value': 1.9711333168010132,
         'value_error': None},
        'Tropflux': {'value': 2.1366015491904156, 'value_error': None}}}}},
    'r1i1p122': {'metadata': {'description_of_the_collection': 'Describe which science question this collection is about',
      'metrics': {'BiasPrLatRmse': {'diagnostic': {'ERA-Interim': {'name': 'ERA-Interim',
          'nyears': 40,
          'time_period': ['1979-1-16 12:0:0.0', '2019-3-16 12:0:0.0']},
         'GISS-E2-R_r1i1p122': {'keyerror': None,
          'name': 'GISS-E2-R_r1i1p122',
          'nyears': 155,
          'time_period': ['1851-1-16 12:0:0.0', '2005-12-16 12:0:0.0']},
         'GPCPv2.3': {'name': 'GPCPv2.3',
          'nyears': 41,
          'time_period': ['1979-1-1 0:0:0.0', '2019-7-1 0:0:0.0']},
         'method': 'Meridional root mean square error of nino3_LatExt pr, time series are linearly detrended, observations and model regridded to generic_1x1deg',
         'name': 'pr Meridional RMSE',
         'ref': 'Using CDAT regridding and rms (uncentered and biased) calculation',
         'time_frequency': 'monthly',
         'units': 'mm/day'},
        'metric': {'datasets': "GISS-E2-R_r1i1p122; ERA-Interim's pr & GPCPv2.3's precip; 's ",
         'method': 'The metric is the statistical value between the model and the observations',
         'name': 'BiasPrLatRmse',
         'units': 'mm/day'}},
       'BiasPrLonRmse': {'diagnostic': {'ERA-Interim': {'name': 'ERA-Interim',
          'nyears': 40,
          'time_period': ['1979-1-16 12:0:0.0', '2019-3-16 12:0:0.0']},
         'GISS-E2-R_r1i1p122': {'keyerror': None,
          'name': 'GISS-E2-R_r1i1p122',
          'nyears': 155,
          'time_period': ['1851-1-16 12:0:0.0', '2005-12-16 12:0:0.0']},
         'GPCPv2.3': {'name': 'GPCPv2.3',
          'nyears': 41,
          'time_period': ['1979-1-1 0:0:0.0', '2019-7-1 0:0:0.0']},
         'method': 'Zonal root mean square error of equatorial_pacific pr, time series are linearly detrended, observations and model regridded to generic_1x1deg',
         'name': 'pr Zonal RMSE',
         'ref': 'Using CDAT regridding and rms (uncentered and biased) calculation',
         'time_frequency': 'monthly',
         'units': 'mm/day'},
        'metric': {'datasets': "GISS-E2-R_r1i1p122; ERA-Interim's pr & GPCPv2.3's precip; 's ",
         'method': 'The metric is the statistical value between the model and the observations',
         'name': 'BiasPrLonRmse',
         'units': 'mm/day'}},
       'BiasSstLonRmse': {'diagnostic': {'ERA-Interim': {'name': 'ERA-Interim',
          'nyears': 40,
          'time_period': ['1979-1-16 12:0:0.0', '2019-3-16 12:0:0.0']},
         'GISS-E2-R_r1i1p122': {'keyerror': None,
          'name': 'GISS-E2-R_r1i1p122',
          'nyears': 155,
          'time_period': ['1851-1-16 12:0:0.0', '2005-12-16 12:0:0.0']},
         'HadISST': {'name': 'HadISST',
          'nyears': 151,
          'time_period': ['1870-1-16 11:59:59.5', '2020-10-16 12:0:0.0']},
         'Tropflux': {'name': 'Tropflux',
          'nyears': 40,
          'time_period': ['1979-1-15 0:0:0.0', '2018-12-15 12:0:0.0']},
         'method': 'Zonal root mean square error of equatorial_pacific sst, time series are linearly detrended, observations and model regridded to generic_1x1deg',
         'name': 'sst Zonal RMSE',
         'ref': 'Using CDAT regridding and rms (uncentered and biased) calculation',
         'time_frequency': 'monthly',
         'units': 'C'},
        'metric': {'datasets': "GISS-E2-R_r1i1p122; ERA-Interim's ts & HadISST's sst & Tropflux's sst; 's ",
         'method': 'The metric is the statistical value between the model and the observations',
         'name': 'BiasSstLonRmse',
         'units': 'C'}},
       'BiasTauxLonRmse': {'diagnostic': {'ERA-Interim': {'name': 'ERA-Interim',
          'nyears': 40,
          'time_period': ['1979-1-16 12:0:0.0', '2019-3-16 12:0:0.0']},
         'GISS-E2-R_r1i1p122': {'keyerror': None,
          'name': 'GISS-E2-R_r1i1p122',
          'nyears': 155,
          'time_period': ['1851-1-16 12:0:0.0', '2005-12-16 12:0:0.0']},
         'Tropflux': {'name': 'Tropflux',
          'nyears': 40,
          'time_period': ['1979-1-15 0:0:0.0', '2018-12-15 12:0:0.0']},
         'method': 'Zonal root mean square error of equatorial_pacific taux, time series are linearly detrended, observations and model regridded to generic_1x1deg',
         'name': 'taux Zonal RMSE',
         'ref': 'Using CDAT regridding and rms (uncentered and biased) calculation',
         'time_frequency': 'monthly',
         'units': '1e-3 N/m2'},
        'metric': {'datasets': "GISS-E2-R_r1i1p122; ERA-Interim's tauu & Tropflux's taux; 's ",
         'method': 'The metric is the statistical value between the model and the observations',
         'name': 'BiasTauxLonRmse',
         'units': '1e-3 N/m2'}},
       'EnsoAmpl': {'diagnostic': {'ERA-Interim': {'keyerror': None,
          'name': 'ERA-Interim',
          'nyears': 40,
          'time_period': ['1979-1-16 12:0:0.0', '2019-3-16 12:0:0.0']},
         'GISS-E2-R_r1i1p122': {'keyerror': None,
          'name': 'GISS-E2-R_r1i1p122',
          'nyears': 155,
          'time_period': ['1851-1-16 12:0:0.0', '2005-12-16 12:0:0.0']},
         'HadISST': {'keyerror': None,
          'name': 'HadISST',
          'nyears': 151,
          'time_period': ['1870-1-16 11:59:59.5', '2020-10-16 12:0:0.0']},
         'Tropflux': {'keyerror': None,
          'name': 'Tropflux',
          'nyears': 40,
          'time_period': ['1979-1-15 0:0:0.0', '2018-12-15 12:0:0.0']},
         'method': 'Standard deviation of nino3.4 sstA, time series are linearly detrended',
         'name': 'ENSO amplitude',
         'ref': 'Using CDAT regression calculation',
         'time_frequency': 'monthly',
         'units': 'C'},
        'metric': {'datasets': "GISS-E2-R_r1i1p122; ERA-Interim's ts & HadISST's sst & Tropflux's sst; 's ",
         'method': 'The metric is the absolute value of the relative difference between model and observations values (M = 100 * abs[[model-obs] / obs])',
         'name': 'EnsoAmpl',
         'units': '%'}},
       'EnsoDuration': {'diagnostic': {'ERA-Interim': {'keyerror': None,
          'name': 'ERA-Interim',
          'nyears': 40,
          'time_period': ['1979-1-16 12:0:0.0', '2019-3-16 12:0:0.0']},
         'GISS-E2-R_r1i1p122': {'keyerror': None,
          'name': 'GISS-E2-R_r1i1p122',
          'nyears': 155,
          'time_period': ['1851-1-16 12:0:0.0', '2005-12-16 12:0:0.0']},
         'HadISST': {'keyerror': None,
          'name': 'HadISST',
          'nyears': 151,
          'time_period': ['1870-1-16 11:59:59.5', '2020-10-16 12:0:0.0']},
         'Tropflux': {'keyerror': None,
          'name': 'Tropflux',
          'nyears': 40,
          'time_period': ['1979-1-15 0:0:0.0', '2018-12-15 12:0:0.0']},
         'method': 'nino3.4 SSTA during DEC regressed against nino3.4 SSTA during 6 years (centered on ENSO), the duration is the number of consecutive months during which the regression is above 0.25, time series are linearly detrended, smoothing using a triangle shaped window of 5 points',
         'name': 'ENSO Duration based on life cyle SSTA pattern',
         'ref': 'Using CDAT',
         'time_frequency': 'monthly',
         'units': 'months'},
        'metric': {'datasets': "GISS-E2-R_r1i1p122; ERA-Interim's ts & HadISST's sst & Tropflux's sst; 's ",
         'method': 'The metric is the absolute value of the relative difference between model and observations values (M = 100 * abs[[model-obs] / obs])',
         'name': 'EnsoDuration',
         'units': '%'}},
       'EnsoSeasonality': {'diagnostic': {'ERA-Interim': {'keyerror': None,
          'name': 'ERA-Interim',
          'nyears': 40,
          'time_period': ['1979-1-16 12:0:0.0', '2019-3-16 12:0:0.0']},
         'GISS-E2-R_r1i1p122': {'keyerror': None,
          'name': 'GISS-E2-R_r1i1p122',
          'nyears': 155,
          'time_period': ['1851-1-16 12:0:0.0', '2005-12-16 12:0:0.0']},
         'HadISST': {'keyerror': None,
          'name': 'HadISST',
          'nyears': 151,
          'time_period': ['1870-1-16 11:59:59.5', '2020-10-16 12:0:0.0']},
         'Tropflux': {'keyerror': None,
          'name': 'Tropflux',
          'nyears': 40,
          'time_period': ['1979-1-15 0:0:0.0', '2018-12-15 12:0:0.0']},
         'method': 'Ratio between NDJ and MAM standard deviation nino3.4 sstA, time series are linearly detrended',
         'name': 'ENSO seasonality',
         'ref': 'Using CDAT std dev calculation',
         'time_frequency': 'monthly',
         'units': 'C/C'},
        'metric': {'datasets': "GISS-E2-R_r1i1p122; ERA-Interim's ts & HadISST's sst & Tropflux's sst; 's ",
         'method': 'The metric is the absolute value of the relative difference between model and observations values (M = 100 * abs[[model-obs] / obs])',
         'name': 'EnsoSeasonality',
         'units': '%'}},
       'EnsoSstDiversity_2': {'diagnostic': {'ERA-Interim': {'keyerror': None,
          'name': 'ERA-Interim',
          'nyears': 40,
          'time_period': ['1979-1-16 12:0:0.0', '2019-3-16 12:0:0.0']},
         'GISS-E2-R_r1i1p122': {'keyerror': None,
          'name': 'GISS-E2-R_r1i1p122',
          'nyears': 155,
          'time_period': ['1851-1-16 12:0:0.0', '2005-12-16 12:0:0.0']},
         'HadISST': {'keyerror': None,
          'name': 'HadISST',
          'nyears': 151,
          'time_period': ['1870-1-16 11:59:59.5', '2020-10-16 12:0:0.0']},
         'Tropflux': {'keyerror': None,
          'name': 'Tropflux',
          'nyears': 40,
          'time_period': ['1979-1-15 0:0:0.0', '2018-12-15 12:0:0.0']},
         'method': 'Nino (Nina) events = nino3.4 sstA > 0.75 (< -0.75) during DEC, zonal SSTA (meridional averaged [-5.0 ; 5.0]), the zonal SSTA maximum (minimum) is located for each event, the diversity is the interquartile range (IQR = Q3 - Q1), time series are linearly detrended, smoothing using a triangle shaped window of 5 points',
         'name': 'ENSO Diversity (interquartile range)',
         'ref': 'Using CDAT regridding',
         'time_frequency': 'monthly',
         'units': 'long'},
        'metric': {'datasets': "GISS-E2-R_r1i1p122; ERA-Interim's ts & HadISST's sst & Tropflux's sst; 's ",
         'method': 'The metric is the absolute value of the relative difference between model and observations values (M = 100 * abs[[model-obs] / obs])',
         'name': 'EnsoSstDiversity',
         'units': '%'}},
       'EnsoSstLonRmse': {'diagnostic': {'ERA-Interim': {'name': 'ERA-Interim',
          'nyears': 40,
          'time_period': ['1979-1-16 12:0:0.0', '2019-3-16 12:0:0.0']},
         'GISS-E2-R_r1i1p122': {'keyerror': None,
          'name': 'GISS-E2-R_r1i1p122',
          'nyears': 155,
          'time_period': ['1851-1-16 12:0:0.0', '2005-12-16 12:0:0.0']},
         'HadISST': {'name': 'HadISST',
          'nyears': 151,
          'time_period': ['1870-1-16 11:59:59.5', '2020-10-16 12:0:0.0']},
         'Tropflux': {'name': 'Tropflux',
          'nyears': 40,
          'time_period': ['1979-1-15 0:0:0.0', '2018-12-15 12:0:0.0']},
         'method': 'nino3.4 SSTA during DEC regressed against equatorial_pacific SSTA, time series are linearly detrended, smoothing using a triangle shaped window of 5 points, observations and model regridded to generic_1x1deg',
         'name': 'ENSO Zonal SSTA pattern',
         'ref': 'Using CDAT regridding and rms (uncentered and biased) calculation',
         'time_frequency': 'monthly',
         'units': 'C/C'},
        'metric': {'datasets': "GISS-E2-R_r1i1p122; ERA-Interim's ts & HadISST's sst & Tropflux's sst; 's ",
         'method': 'The metric is the statistical value between the model and the observations',
         'name': 'EnsoSstLonRmse',
         'units': 'C/C'}},
       'EnsoSstSkew': {'diagnostic': {'ERA-Interim': {'keyerror': None,
          'name': 'ERA-Interim',
          'nyears': 40,
          'time_period': ['1979-1-16 12:0:0.0', '2019-3-16 12:0:0.0']},
         'GISS-E2-R_r1i1p122': {'keyerror': None,
          'name': 'GISS-E2-R_r1i1p122',
          'nyears': 155,
          'time_period': ['1851-1-16 12:0:0.0', '2005-12-16 12:0:0.0']},
         'HadISST': {'keyerror': None,
          'name': 'HadISST',
          'nyears': 151,
          'time_period': ['1870-1-16 11:59:59.5', '2020-10-16 12:0:0.0']},
         'Tropflux': {'keyerror': None,
          'name': 'Tropflux',
          'nyears': 40,
          'time_period': ['1979-1-15 0:0:0.0', '2018-12-15 12:0:0.0']},
         'method': 'Standard deviation of nino3.4 sstA, time series are linearly detrended',
         'name': 'ENSO skewness',
         'ref': 'Using CDAT regression calculation',
         'time_frequency': 'monthly',
         'units': 'C'},
        'metric': {'datasets': "GISS-E2-R_r1i1p122; ERA-Interim's ts & HadISST's sst & Tropflux's sst; 's ",
         'method': 'The metric is the absolute value of the relative difference between model and observations values (M = 100 * abs[[model-obs] / obs])',
         'name': 'EnsoSstSkew',
         'units': '%'}},
       'EnsoSstTsRmse': {'diagnostic': {'ERA-Interim': {'name': 'ERA-Interim',
          'nyears': 40,
          'time_period': ['1979-1-16 12:0:0.0', '2019-3-16 12:0:0.0']},
         'GISS-E2-R_r1i1p122': {'keyerror': None,
          'name': 'GISS-E2-R_r1i1p122',
          'nyears': 155,
          'time_period': ['1851-1-16 12:0:0.0', '2005-12-16 12:0:0.0']},
         'HadISST': {'name': 'HadISST',
          'nyears': 151,
          'time_period': ['1870-1-16 11:59:59.5', '2020-10-16 12:0:0.0']},
         'Tropflux': {'name': 'Tropflux',
          'nyears': 40,
          'time_period': ['1979-1-15 0:0:0.0', '2018-12-15 12:0:0.0']},
         'method': 'nino3.4 SSTA during DEC regressed against nino3.4 SSTA during 6 years (centered on ENSO), time series are linearly detrended, smoothing using a triangle shaped window of 5 points',
         'name': 'ENSO life cyle SSTA pattern',
         'ref': 'Using CDAT regridding and rms (uncentered and biased) calculation',
         'time_frequency': 'monthly',
         'units': 'C/C'},
        'metric': {'datasets': "GISS-E2-R_r1i1p122; ERA-Interim's ts & HadISST's sst & Tropflux's sst; 's ",
         'method': 'The metric is the statistical value between the model and the observations',
         'name': 'EnsoSstTsRmse',
         'units': 'C/C'}},
       'SeasonalPrLatRmse': {'diagnostic': {'ERA-Interim': {'name': 'ERA-Interim',
          'nyears': 40,
          'time_period': ['1979-1-16 12:0:0.0', '2019-3-16 12:0:0.0']},
         'GISS-E2-R_r1i1p122': {'keyerror': None,
          'name': 'GISS-E2-R_r1i1p122',
          'nyears': 155,
          'time_period': ['1851-1-16 12:0:0.0', '2005-12-16 12:0:0.0']},
         'GPCPv2.3': {'name': 'GPCPv2.3',
          'nyears': 41,
          'time_period': ['1979-1-1 0:0:0.0', '2019-7-1 0:0:0.0']},
         'method': 'Meridional root mean square error of nino3_LatExt climatological pr STD, time series are linearly detrended, observations and model regridded to generic_1x1deg',
         'name': 'pr meridional seasonality RMSE',
         'ref': 'Using CDAT regridding and rms (uncentered and biased) calculation',
         'time_frequency': 'monthly',
         'units': 'mm/day'},
        'metric': {'datasets': "GISS-E2-R_r1i1p122; ERA-Interim's pr & GPCPv2.3's precip; 's ",
         'method': 'The metric is the statistical value between the model and the observations',
         'name': 'SeasonalPrLatRmse',
         'units': 'mm/day'}},
       'SeasonalPrLonRmse': {'diagnostic': {'ERA-Interim': {'name': 'ERA-Interim',
          'nyears': 40,
          'time_period': ['1979-1-16 12:0:0.0', '2019-3-16 12:0:0.0']},
         'GISS-E2-R_r1i1p122': {'keyerror': None,
          'name': 'GISS-E2-R_r1i1p122',
          'nyears': 155,
          'time_period': ['1851-1-16 12:0:0.0', '2005-12-16 12:0:0.0']},
         'GPCPv2.3': {'name': 'GPCPv2.3',
          'nyears': 41,
          'time_period': ['1979-1-1 0:0:0.0', '2019-7-1 0:0:0.0']},
         'method': 'Zonal root mean square error of equatorial_pacific climatological pr STD, time series are linearly detrended, observations and model regridded to generic_1x1deg',
         'name': 'pr zonal seasonality RMSE',
         'ref': 'Using CDAT regridding and rms (uncentered and biased) calculation',
         'time_frequency': 'monthly',
         'units': 'mm/day'},
        'metric': {'datasets': "GISS-E2-R_r1i1p122; ERA-Interim's pr & GPCPv2.3's precip; 's ",
         'method': 'The metric is the statistical value between the model and the observations',
         'name': 'SeasonalPrLonRmse',
         'units': 'mm/day'}},
       'SeasonalSstLonRmse': {'diagnostic': {'ERA-Interim': {'name': 'ERA-Interim',
          'nyears': 40,
          'time_period': ['1979-1-16 12:0:0.0', '2019-3-16 12:0:0.0']},
         'GISS-E2-R_r1i1p122': {'keyerror': None,
          'name': 'GISS-E2-R_r1i1p122',
          'nyears': 155,
          'time_period': ['1851-1-16 12:0:0.0', '2005-12-16 12:0:0.0']},
         'HadISST': {'name': 'HadISST',
          'nyears': 151,
          'time_period': ['1870-1-16 11:59:59.5', '2020-10-16 12:0:0.0']},
         'Tropflux': {'name': 'Tropflux',
          'nyears': 40,
          'time_period': ['1979-1-15 0:0:0.0', '2018-12-15 12:0:0.0']},
         'method': 'Zonal root mean square error of equatorial_pacific climatological sst STD, time series are linearly detrended, observations and model regridded to generic_1x1deg',
         'name': 'sst zonal seasonality RMSE',
         'ref': 'Using CDAT regridding and rms (uncentered and biased) calculation',
         'time_frequency': 'monthly',
         'units': 'C'},
        'metric': {'datasets': "GISS-E2-R_r1i1p122; ERA-Interim's ts & HadISST's sst & Tropflux's sst; 's ",
         'method': 'The metric is the statistical value between the model and the observations',
         'name': 'SeasonalSstLonRmse',
         'units': 'C'}},
       'SeasonalTauxLonRmse': {'diagnostic': {'ERA-Interim': {'name': 'ERA-Interim',
          'nyears': 40,
          'time_period': ['1979-1-16 12:0:0.0', '2019-3-16 12:0:0.0']},
         'GISS-E2-R_r1i1p122': {'keyerror': None,
          'name': 'GISS-E2-R_r1i1p122',
          'nyears': 155,
          'time_period': ['1851-1-16 12:0:0.0', '2005-12-16 12:0:0.0']},
         'Tropflux': {'name': 'Tropflux',
          'nyears': 40,
          'time_period': ['1979-1-15 0:0:0.0', '2018-12-15 12:0:0.0']},
         'method': 'Zonal root mean square error of equatorial_pacific climatological taux STD, time series are linearly detrended, observations and model regridded to generic_1x1deg',
         'name': 'taux zonal seasonality RMSE',
         'ref': 'Using CDAT regridding and rms (uncentered and biased) calculation',
         'time_frequency': 'monthly',
         'units': '1e-3 N/m2'},
        'metric': {'datasets': "GISS-E2-R_r1i1p122; ERA-Interim's tauu & Tropflux's taux; 's ",
         'method': 'The metric is the statistical value between the model and the observations',
         'name': 'SeasonalTauxLonRmse',
         'units': '1e-3 N/m2'}}},
      'name': 'Metrics Collection for ENSO performance'},
     'value': {'BiasPrLatRmse': {'diagnostic': {'ERA-Interim': {'value': None,
         'value_error': None},
        'GISS-E2-R_r1i1p122': {'value': None, 'value_error': None},
        'GPCPv2.3': {'value': None, 'value_error': None}},
       'metric': {'ERA-Interim': {'value': 2.0276391313236553,
         'value_error': None},
        'GPCPv2.3': {'value': 2.8255586972236224, 'value_error': None}}},
      'BiasPrLonRmse': {'diagnostic': {'ERA-Interim': {'value': None,
         'value_error': None},
        'GISS-E2-R_r1i1p122': {'value': None, 'value_error': None},
        'GPCPv2.3': {'value': None, 'value_error': None}},
       'metric': {'ERA-Interim': {'value': 1.5188913449238177,
         'value_error': None},
        'GPCPv2.3': {'value': 1.938982271916212, 'value_error': None}}},
      'BiasSstLonRmse': {'diagnostic': {'ERA-Interim': {'value': None,
         'value_error': None},
        'GISS-E2-R_r1i1p122': {'value': None, 'value_error': None},
        'HadISST': {'value': None, 'value_error': None},
        'Tropflux': {'value': None, 'value_error': None}},
       'metric': {'ERA-Interim': {'value': 0.9623854788205982,
         'value_error': None},
        'HadISST': {'value': 1.1324882950931314, 'value_error': None},
        'Tropflux': {'value': 0.9302583421468877, 'value_error': None}}},
      'BiasTauxLonRmse': {'diagnostic': {'ERA-Interim': {'value': None,
         'value_error': None},
        'GISS-E2-R_r1i1p122': {'value': None, 'value_error': None},
        'Tropflux': {'value': None, 'value_error': None}},
       'metric': {'ERA-Interim': {'value': 17.573240504656123,
         'value_error': None},
        'Tropflux': {'value': 17.185824852575962, 'value_error': None}}},
      'EnsoAmpl': {'diagnostic': {'ERA-Interim': {'value': 0.8989844997845644,
         'value_error': 0.14214193002531866},
        'GISS-E2-R_r1i1p122': {'value': 0.47673602424980893,
         'value_error': 0.03829235894615769},
        'HadISST': {'value': 0.7665787872085695,
         'value_error': 0.06238329697691264},
        'Tropflux': {'value': 0.9039789553693535,
         'value_error': 0.14293162279134272}},
       'metric': {'ERA-Interim': {'value': 46.96949453922114,
         'value_error': 12.64437183705962},
        'HadISST': {'value': 37.80991175273686,
         'value_error': 10.056185701193655},
        'Tropflux': {'value': 47.2624864308903,
         'value_error': 12.574512076317795}}},
      'EnsoDuration': {'diagnostic': {'ERA-Interim': {'value': 13.0,
         'value_error': None},
        'GISS-E2-R_r1i1p122': {'value': 13.0, 'value_error': None},
        'HadISST': {'value': 13.0, 'value_error': None},
        'Tropflux': {'value': 13.0, 'value_error': None}},
       'metric': {'ERA-Interim': {'value': 0.0, 'value_error': None},
        'HadISST': {'value': 0.0, 'value_error': None},
        'Tropflux': {'value': 0.0, 'value_error': None}}},
      'EnsoSeasonality': {'diagnostic': {'ERA-Interim': {'value': 2.0466846866656914,
         'value_error': 0.6513411033995022},
        'GISS-E2-R_r1i1p122': {'value': 1.6787629751016722,
         'value_error': 0.2701200626740023},
        'HadISST': {'value': 1.6639865947361325,
         'value_error': 0.2712772451657809},
        'Tropflux': {'value': 2.0532132553583624,
         'value_error': 0.6534187683977347}},
       'metric': {'ERA-Interim': {'value': 17.97647258324927,
         'value_error': 39.301266894603366},
        'HadISST': {'value': 0.8880107815942353,
         'value_error': 32.68092908591619},
        'Tropflux': {'value': 18.23728145527361,
         'value_error': 39.176301297405494}}},
      'EnsoSstDiversity_2': {'diagnostic': {'ERA-Interim': {'value': 33.25,
         'value_error': None},
        'GISS-E2-R_r1i1p122': {'value': 30.0, 'value_error': None},
        'HadISST': {'value': 49.0, 'value_error': None},
        'Tropflux': {'value': 32.0, 'value_error': None}},
       'metric': {'ERA-Interim': {'value': 9.774436090225564,
         'value_error': None},
        'HadISST': {'value': 38.775510204081634, 'value_error': None},
        'Tropflux': {'value': 6.25, 'value_error': None}}},
      'EnsoSstLonRmse': {'diagnostic': {'ERA-Interim': {'value': None,
         'value_error': None},
        'GISS-E2-R_r1i1p122': {'value': None, 'value_error': None},
        'HadISST': {'value': None, 'value_error': None},
        'Tropflux': {'value': None, 'value_error': None}},
       'metric': {'ERA-Interim': {'value': 0.1649874658317104,
         'value_error': None},
        'HadISST': {'value': 0.17114059832375725, 'value_error': None},
        'Tropflux': {'value': 0.16403050918119141, 'value_error': None}}},
      'EnsoSstSkew': {'diagnostic': {'ERA-Interim': {'value': 0.39098111106809963,
         'value_error': 0.061819541653923164},
        'GISS-E2-R_r1i1p122': {'value': -0.23175518922702468,
         'value_error': -0.01861502475606024},
        'HadISST': {'value': 0.38989908235027515,
         'value_error': 0.03172953733021198},
        'Tropflux': {'value': 0.39744741059612115,
         'value_error': 0.06284195338099416}},
       'metric': {'ERA-Interim': {'value': 159.27529045940494,
         'value_error': -14.133352243318797},
        'HadISST': {'value': 159.43978832420586,
         'value_error': -9.611460061791469},
        'Tropflux': {'value': 158.3109068139156,
         'value_error': -13.903408641967216}}},
      'EnsoSstTsRmse': {'diagnostic': {'ERA-Interim': {'value': None,
         'value_error': None},
        'GISS-E2-R_r1i1p122': {'value': None, 'value_error': None},
        'HadISST': {'value': None, 'value_error': None},
        'Tropflux': {'value': None, 'value_error': None}},
       'metric': {'ERA-Interim': {'value': 0.11262120687883155,
         'value_error': None},
        'HadISST': {'value': 0.09578905421973509, 'value_error': None},
        'Tropflux': {'value': 0.11288000619952122, 'value_error': None}}},
      'SeasonalPrLatRmse': {'diagnostic': {'ERA-Interim': {'value': None,
         'value_error': None},
        'GISS-E2-R_r1i1p122': {'value': None, 'value_error': None},
        'GPCPv2.3': {'value': None, 'value_error': None}},
       'metric': {'ERA-Interim': {'value': 0.7026828432288843,
         'value_error': None},
        'GPCPv2.3': {'value': 0.8591294792020746, 'value_error': None}}},
      'SeasonalPrLonRmse': {'diagnostic': {'ERA-Interim': {'value': None,
         'value_error': None},
        'GISS-E2-R_r1i1p122': {'value': None, 'value_error': None},
        'GPCPv2.3': {'value': None, 'value_error': None}},
       'metric': {'ERA-Interim': {'value': 0.3010607602177117,
         'value_error': None},
        'GPCPv2.3': {'value': 0.4980442801100818, 'value_error': None}}},
      'SeasonalSstLonRmse': {'diagnostic': {'ERA-Interim': {'value': None,
         'value_error': None},
        'GISS-E2-R_r1i1p122': {'value': None, 'value_error': None},
        'HadISST': {'value': None, 'value_error': None},
        'Tropflux': {'value': None, 'value_error': None}},
       'metric': {'ERA-Interim': {'value': 0.2732587544191353,
         'value_error': None},
        'HadISST': {'value': 0.2747590654591607, 'value_error': None},
        'Tropflux': {'value': 0.2810456957631204, 'value_error': None}}},
      'SeasonalTauxLonRmse': {'diagnostic': {'ERA-Interim': {'value': None,
         'value_error': None},
        'GISS-E2-R_r1i1p122': {'value': None, 'value_error': None},
        'Tropflux': {'value': None, 'value_error': None}},
       'metric': {'ERA-Interim': {'value': 2.0353152828697367,
         'value_error': None},
        'Tropflux': {'value': 2.2028232606824396, 'value_error': None}}}}},
    'r1i1p123': {'metadata': {'description_of_the_collection': 'Describe which science question this collection is about',
      'metrics': {'BiasPrLatRmse': {'diagnostic': {'ERA-Interim': {'name': 'ERA-Interim',
          'nyears': 40,
          'time_period': ['1979-1-16 12:0:0.0', '2019-3-16 12:0:0.0']},
         'GISS-E2-R_r1i1p123': {'keyerror': None,
          'name': 'GISS-E2-R_r1i1p123',
          'nyears': 155,
          'time_period': ['1851-1-16 12:0:0.0', '2005-12-16 12:0:0.0']},
         'GPCPv2.3': {'name': 'GPCPv2.3',
          'nyears': 41,
          'time_period': ['1979-1-1 0:0:0.0', '2019-7-1 0:0:0.0']},
         'method': 'Meridional root mean square error of nino3_LatExt pr, time series are linearly detrended, observations and model regridded to generic_1x1deg',
         'name': 'pr Meridional RMSE',
         'ref': 'Using CDAT regridding and rms (uncentered and biased) calculation',
         'time_frequency': 'monthly',
         'units': 'mm/day'},
        'metric': {'datasets': "GISS-E2-R_r1i1p123; ERA-Interim's pr & GPCPv2.3's precip; 's ",
         'method': 'The metric is the statistical value between the model and the observations',
         'name': 'BiasPrLatRmse',
         'units': 'mm/day'}},
       'BiasPrLonRmse': {'diagnostic': {'ERA-Interim': {'name': 'ERA-Interim',
          'nyears': 40,
          'time_period': ['1979-1-16 12:0:0.0', '2019-3-16 12:0:0.0']},
         'GISS-E2-R_r1i1p123': {'keyerror': None,
          'name': 'GISS-E2-R_r1i1p123',
          'nyears': 155,
          'time_period': ['1851-1-16 12:0:0.0', '2005-12-16 12:0:0.0']},
         'GPCPv2.3': {'name': 'GPCPv2.3',
          'nyears': 41,
          'time_period': ['1979-1-1 0:0:0.0', '2019-7-1 0:0:0.0']},
         'method': 'Zonal root mean square error of equatorial_pacific pr, time series are linearly detrended, observations and model regridded to generic_1x1deg',
         'name': 'pr Zonal RMSE',
         'ref': 'Using CDAT regridding and rms (uncentered and biased) calculation',
         'time_frequency': 'monthly',
         'units': 'mm/day'},
        'metric': {'datasets': "GISS-E2-R_r1i1p123; ERA-Interim's pr & GPCPv2.3's precip; 's ",
         'method': 'The metric is the statistical value between the model and the observations',
         'name': 'BiasPrLonRmse',
         'units': 'mm/day'}},
       'BiasSstLonRmse': {'diagnostic': {'ERA-Interim': {'name': 'ERA-Interim',
          'nyears': 40,
          'time_period': ['1979-1-16 12:0:0.0', '2019-3-16 12:0:0.0']},
         'GISS-E2-R_r1i1p123': {'keyerror': None,
          'name': 'GISS-E2-R_r1i1p123',
          'nyears': 155,
          'time_period': ['1851-1-16 12:0:0.0', '2005-12-16 12:0:0.0']},
         'HadISST': {'name': 'HadISST',
          'nyears': 151,
          'time_period': ['1870-1-16 11:59:59.5', '2020-10-16 12:0:0.0']},
         'Tropflux': {'name': 'Tropflux',
          'nyears': 40,
          'time_period': ['1979-1-15 0:0:0.0', '2018-12-15 12:0:0.0']},
         'method': 'Zonal root mean square error of equatorial_pacific sst, time series are linearly detrended, observations and model regridded to generic_1x1deg',
         'name': 'sst Zonal RMSE',
         'ref': 'Using CDAT regridding and rms (uncentered and biased) calculation',
         'time_frequency': 'monthly',
         'units': 'C'},
        'metric': {'datasets': "GISS-E2-R_r1i1p123; ERA-Interim's ts & HadISST's sst & Tropflux's sst; 's ",
         'method': 'The metric is the statistical value between the model and the observations',
         'name': 'BiasSstLonRmse',
         'units': 'C'}},
       'BiasTauxLonRmse': {'diagnostic': {'ERA-Interim': {'name': 'ERA-Interim',
          'nyears': 40,
          'time_period': ['1979-1-16 12:0:0.0', '2019-3-16 12:0:0.0']},
         'GISS-E2-R_r1i1p123': {'keyerror': None,
          'name': 'GISS-E2-R_r1i1p123',
          'nyears': 155,
          'time_period': ['1851-1-16 12:0:0.0', '2005-12-16 12:0:0.0']},
         'Tropflux': {'name': 'Tropflux',
          'nyears': 40,
          'time_period': ['1979-1-15 0:0:0.0', '2018-12-15 12:0:0.0']},
         'method': 'Zonal root mean square error of equatorial_pacific taux, time series are linearly detrended, observations and model regridded to generic_1x1deg',
         'name': 'taux Zonal RMSE',
         'ref': 'Using CDAT regridding and rms (uncentered and biased) calculation',
         'time_frequency': 'monthly',
         'units': '1e-3 N/m2'},
        'metric': {'datasets': "GISS-E2-R_r1i1p123; ERA-Interim's tauu & Tropflux's taux; 's ",
         'method': 'The metric is the statistical value between the model and the observations',
         'name': 'BiasTauxLonRmse',
         'units': '1e-3 N/m2'}},
       'EnsoAmpl': {'diagnostic': {'ERA-Interim': {'keyerror': None,
          'name': 'ERA-Interim',
          'nyears': 40,
          'time_period': ['1979-1-16 12:0:0.0', '2019-3-16 12:0:0.0']},
         'GISS-E2-R_r1i1p123': {'keyerror': None,
          'name': 'GISS-E2-R_r1i1p123',
          'nyears': 155,
          'time_period': ['1851-1-16 12:0:0.0', '2005-12-16 12:0:0.0']},
         'HadISST': {'keyerror': None,
          'name': 'HadISST',
          'nyears': 151,
          'time_period': ['1870-1-16 11:59:59.5', '2020-10-16 12:0:0.0']},
         'Tropflux': {'keyerror': None,
          'name': 'Tropflux',
          'nyears': 40,
          'time_period': ['1979-1-15 0:0:0.0', '2018-12-15 12:0:0.0']},
         'method': 'Standard deviation of nino3.4 sstA, time series are linearly detrended',
         'name': 'ENSO amplitude',
         'ref': 'Using CDAT regression calculation',
         'time_frequency': 'monthly',
         'units': 'C'},
        'metric': {'datasets': "GISS-E2-R_r1i1p123; ERA-Interim's ts & HadISST's sst & Tropflux's sst; 's ",
         'method': 'The metric is the absolute value of the relative difference between model and observations values (M = 100 * abs[[model-obs] / obs])',
         'name': 'EnsoAmpl',
         'units': '%'}},
       'EnsoDuration': {'diagnostic': {'ERA-Interim': {'keyerror': None,
          'name': 'ERA-Interim',
          'nyears': 40,
          'time_period': ['1979-1-16 12:0:0.0', '2019-3-16 12:0:0.0']},
         'GISS-E2-R_r1i1p123': {'keyerror': None,
          'name': 'GISS-E2-R_r1i1p123',
          'nyears': 155,
          'time_period': ['1851-1-16 12:0:0.0', '2005-12-16 12:0:0.0']},
         'HadISST': {'keyerror': None,
          'name': 'HadISST',
          'nyears': 151,
          'time_period': ['1870-1-16 11:59:59.5', '2020-10-16 12:0:0.0']},
         'Tropflux': {'keyerror': None,
          'name': 'Tropflux',
          'nyears': 40,
          'time_period': ['1979-1-15 0:0:0.0', '2018-12-15 12:0:0.0']},
         'method': 'nino3.4 SSTA during DEC regressed against nino3.4 SSTA during 6 years (centered on ENSO), the duration is the number of consecutive months during which the regression is above 0.25, time series are linearly detrended, smoothing using a triangle shaped window of 5 points',
         'name': 'ENSO Duration based on life cyle SSTA pattern',
         'ref': 'Using CDAT',
         'time_frequency': 'monthly',
         'units': 'months'},
        'metric': {'datasets': "GISS-E2-R_r1i1p123; ERA-Interim's ts & HadISST's sst & Tropflux's sst; 's ",
         'method': 'The metric is the absolute value of the relative difference between model and observations values (M = 100 * abs[[model-obs] / obs])',
         'name': 'EnsoDuration',
         'units': '%'}},
       'EnsoSeasonality': {'diagnostic': {'ERA-Interim': {'keyerror': None,
          'name': 'ERA-Interim',
          'nyears': 40,
          'time_period': ['1979-1-16 12:0:0.0', '2019-3-16 12:0:0.0']},
         'GISS-E2-R_r1i1p123': {'keyerror': None,
          'name': 'GISS-E2-R_r1i1p123',
          'nyears': 155,
          'time_period': ['1851-1-16 12:0:0.0', '2005-12-16 12:0:0.0']},
         'HadISST': {'keyerror': None,
          'name': 'HadISST',
          'nyears': 151,
          'time_period': ['1870-1-16 11:59:59.5', '2020-10-16 12:0:0.0']},
         'Tropflux': {'keyerror': None,
          'name': 'Tropflux',
          'nyears': 40,
          'time_period': ['1979-1-15 0:0:0.0', '2018-12-15 12:0:0.0']},
         'method': 'Ratio between NDJ and MAM standard deviation nino3.4 sstA, time series are linearly detrended',
         'name': 'ENSO seasonality',
         'ref': 'Using CDAT std dev calculation',
         'time_frequency': 'monthly',
         'units': 'C/C'},
        'metric': {'datasets': "GISS-E2-R_r1i1p123; ERA-Interim's ts & HadISST's sst & Tropflux's sst; 's ",
         'method': 'The metric is the absolute value of the relative difference between model and observations values (M = 100 * abs[[model-obs] / obs])',
         'name': 'EnsoSeasonality',
         'units': '%'}},
       'EnsoSstDiversity_2': {'diagnostic': {'ERA-Interim': {'keyerror': None,
          'name': 'ERA-Interim',
          'nyears': 40,
          'time_period': ['1979-1-16 12:0:0.0', '2019-3-16 12:0:0.0']},
         'GISS-E2-R_r1i1p123': {'keyerror': None,
          'name': 'GISS-E2-R_r1i1p123',
          'nyears': 155,
          'time_period': ['1851-1-16 12:0:0.0', '2005-12-16 12:0:0.0']},
         'HadISST': {'keyerror': None,
          'name': 'HadISST',
          'nyears': 151,
          'time_period': ['1870-1-16 11:59:59.5', '2020-10-16 12:0:0.0']},
         'Tropflux': {'keyerror': None,
          'name': 'Tropflux',
          'nyears': 40,
          'time_period': ['1979-1-15 0:0:0.0', '2018-12-15 12:0:0.0']},
         'method': 'Nino (Nina) events = nino3.4 sstA > 0.75 (< -0.75) during DEC, zonal SSTA (meridional averaged [-5.0 ; 5.0]), the zonal SSTA maximum (minimum) is located for each event, the diversity is the interquartile range (IQR = Q3 - Q1), time series are linearly detrended, smoothing using a triangle shaped window of 5 points',
         'name': 'ENSO Diversity (interquartile range)',
         'ref': 'Using CDAT regridding',
         'time_frequency': 'monthly',
         'units': 'long'},
        'metric': {'datasets': "GISS-E2-R_r1i1p123; ERA-Interim's ts & HadISST's sst & Tropflux's sst; 's ",
         'method': 'The metric is the absolute value of the relative difference between model and observations values (M = 100 * abs[[model-obs] / obs])',
         'name': 'EnsoSstDiversity',
         'units': '%'}},
       'EnsoSstLonRmse': {'diagnostic': {'ERA-Interim': {'name': 'ERA-Interim',
          'nyears': 40,
          'time_period': ['1979-1-16 12:0:0.0', '2019-3-16 12:0:0.0']},
         'GISS-E2-R_r1i1p123': {'keyerror': None,
          'name': 'GISS-E2-R_r1i1p123',
          'nyears': 155,
          'time_period': ['1851-1-16 12:0:0.0', '2005-12-16 12:0:0.0']},
         'HadISST': {'name': 'HadISST',
          'nyears': 151,
          'time_period': ['1870-1-16 11:59:59.5', '2020-10-16 12:0:0.0']},
         'Tropflux': {'name': 'Tropflux',
          'nyears': 40,
          'time_period': ['1979-1-15 0:0:0.0', '2018-12-15 12:0:0.0']},
         'method': 'nino3.4 SSTA during DEC regressed against equatorial_pacific SSTA, time series are linearly detrended, smoothing using a triangle shaped window of 5 points, observations and model regridded to generic_1x1deg',
         'name': 'ENSO Zonal SSTA pattern',
         'ref': 'Using CDAT regridding and rms (uncentered and biased) calculation',
         'time_frequency': 'monthly',
         'units': 'C/C'},
        'metric': {'datasets': "GISS-E2-R_r1i1p123; ERA-Interim's ts & HadISST's sst & Tropflux's sst; 's ",
         'method': 'The metric is the statistical value between the model and the observations',
         'name': 'EnsoSstLonRmse',
         'units': 'C/C'}},
       'EnsoSstSkew': {'diagnostic': {'ERA-Interim': {'keyerror': None,
          'name': 'ERA-Interim',
          'nyears': 40,
          'time_period': ['1979-1-16 12:0:0.0', '2019-3-16 12:0:0.0']},
         'GISS-E2-R_r1i1p123': {'keyerror': None,
          'name': 'GISS-E2-R_r1i1p123',
          'nyears': 155,
          'time_period': ['1851-1-16 12:0:0.0', '2005-12-16 12:0:0.0']},
         'HadISST': {'keyerror': None,
          'name': 'HadISST',
          'nyears': 151,
          'time_period': ['1870-1-16 11:59:59.5', '2020-10-16 12:0:0.0']},
         'Tropflux': {'keyerror': None,
          'name': 'Tropflux',
          'nyears': 40,
          'time_period': ['1979-1-15 0:0:0.0', '2018-12-15 12:0:0.0']},
         'method': 'Standard deviation of nino3.4 sstA, time series are linearly detrended',
         'name': 'ENSO skewness',
         'ref': 'Using CDAT regression calculation',
         'time_frequency': 'monthly',
         'units': 'C'},
        'metric': {'datasets': "GISS-E2-R_r1i1p123; ERA-Interim's ts & HadISST's sst & Tropflux's sst; 's ",
         'method': 'The metric is the absolute value of the relative difference between model and observations values (M = 100 * abs[[model-obs] / obs])',
         'name': 'EnsoSstSkew',
         'units': '%'}},
       'EnsoSstTsRmse': {'diagnostic': {'ERA-Interim': {'name': 'ERA-Interim',
          'nyears': 40,
          'time_period': ['1979-1-16 12:0:0.0', '2019-3-16 12:0:0.0']},
         'GISS-E2-R_r1i1p123': {'keyerror': None,
          'name': 'GISS-E2-R_r1i1p123',
          'nyears': 155,
          'time_period': ['1851-1-16 12:0:0.0', '2005-12-16 12:0:0.0']},
         'HadISST': {'name': 'HadISST',
          'nyears': 151,
          'time_period': ['1870-1-16 11:59:59.5', '2020-10-16 12:0:0.0']},
         'Tropflux': {'name': 'Tropflux',
          'nyears': 40,
          'time_period': ['1979-1-15 0:0:0.0', '2018-12-15 12:0:0.0']},
         'method': 'nino3.4 SSTA during DEC regressed against nino3.4 SSTA during 6 years (centered on ENSO), time series are linearly detrended, smoothing using a triangle shaped window of 5 points',
         'name': 'ENSO life cyle SSTA pattern',
         'ref': 'Using CDAT regridding and rms (uncentered and biased) calculation',
         'time_frequency': 'monthly',
         'units': 'C/C'},
        'metric': {'datasets': "GISS-E2-R_r1i1p123; ERA-Interim's ts & HadISST's sst & Tropflux's sst; 's ",
         'method': 'The metric is the statistical value between the model and the observations',
         'name': 'EnsoSstTsRmse',
         'units': 'C/C'}},
       'SeasonalPrLatRmse': {'diagnostic': {'ERA-Interim': {'name': 'ERA-Interim',
          'nyears': 40,
          'time_period': ['1979-1-16 12:0:0.0', '2019-3-16 12:0:0.0']},
         'GISS-E2-R_r1i1p123': {'keyerror': None,
          'name': 'GISS-E2-R_r1i1p123',
          'nyears': 155,
          'time_period': ['1851-1-16 12:0:0.0', '2005-12-16 12:0:0.0']},
         'GPCPv2.3': {'name': 'GPCPv2.3',
          'nyears': 41,
          'time_period': ['1979-1-1 0:0:0.0', '2019-7-1 0:0:0.0']},
         'method': 'Meridional root mean square error of nino3_LatExt climatological pr STD, time series are linearly detrended, observations and model regridded to generic_1x1deg',
         'name': 'pr meridional seasonality RMSE',
         'ref': 'Using CDAT regridding and rms (uncentered and biased) calculation',
         'time_frequency': 'monthly',
         'units': 'mm/day'},
        'metric': {'datasets': "GISS-E2-R_r1i1p123; ERA-Interim's pr & GPCPv2.3's precip; 's ",
         'method': 'The metric is the statistical value between the model and the observations',
         'name': 'SeasonalPrLatRmse',
         'units': 'mm/day'}},
       'SeasonalPrLonRmse': {'diagnostic': {'ERA-Interim': {'name': 'ERA-Interim',
          'nyears': 40,
          'time_period': ['1979-1-16 12:0:0.0', '2019-3-16 12:0:0.0']},
         'GISS-E2-R_r1i1p123': {'keyerror': None,
          'name': 'GISS-E2-R_r1i1p123',
          'nyears': 155,
          'time_period': ['1851-1-16 12:0:0.0', '2005-12-16 12:0:0.0']},
         'GPCPv2.3': {'name': 'GPCPv2.3',
          'nyears': 41,
          'time_period': ['1979-1-1 0:0:0.0', '2019-7-1 0:0:0.0']},
         'method': 'Zonal root mean square error of equatorial_pacific climatological pr STD, time series are linearly detrended, observations and model regridded to generic_1x1deg',
         'name': 'pr zonal seasonality RMSE',
         'ref': 'Using CDAT regridding and rms (uncentered and biased) calculation',
         'time_frequency': 'monthly',
         'units': 'mm/day'},
        'metric': {'datasets': "GISS-E2-R_r1i1p123; ERA-Interim's pr & GPCPv2.3's precip; 's ",
         'method': 'The metric is the statistical value between the model and the observations',
         'name': 'SeasonalPrLonRmse',
         'units': 'mm/day'}},
       'SeasonalSstLonRmse': {'diagnostic': {'ERA-Interim': {'name': 'ERA-Interim',
          'nyears': 40,
          'time_period': ['1979-1-16 12:0:0.0', '2019-3-16 12:0:0.0']},
         'GISS-E2-R_r1i1p123': {'keyerror': None,
          'name': 'GISS-E2-R_r1i1p123',
          'nyears': 155,
          'time_period': ['1851-1-16 12:0:0.0', '2005-12-16 12:0:0.0']},
         'HadISST': {'name': 'HadISST',
          'nyears': 151,
          'time_period': ['1870-1-16 11:59:59.5', '2020-10-16 12:0:0.0']},
         'Tropflux': {'name': 'Tropflux',
          'nyears': 40,
          'time_period': ['1979-1-15 0:0:0.0', '2018-12-15 12:0:0.0']},
         'method': 'Zonal root mean square error of equatorial_pacific climatological sst STD, time series are linearly detrended, observations and model regridded to generic_1x1deg',
         'name': 'sst zonal seasonality RMSE',
         'ref': 'Using CDAT regridding and rms (uncentered and biased) calculation',
         'time_frequency': 'monthly',
         'units': 'C'},
        'metric': {'datasets': "GISS-E2-R_r1i1p123; ERA-Interim's ts & HadISST's sst & Tropflux's sst; 's ",
         'method': 'The metric is the statistical value between the model and the observations',
         'name': 'SeasonalSstLonRmse',
         'units': 'C'}},
       'SeasonalTauxLonRmse': {'diagnostic': {'ERA-Interim': {'name': 'ERA-Interim',
          'nyears': 40,
          'time_period': ['1979-1-16 12:0:0.0', '2019-3-16 12:0:0.0']},
         'GISS-E2-R_r1i1p123': {'keyerror': None,
          'name': 'GISS-E2-R_r1i1p123',
          'nyears': 155,
          'time_period': ['1851-1-16 12:0:0.0', '2005-12-16 12:0:0.0']},
         'Tropflux': {'name': 'Tropflux',
          'nyears': 40,
          'time_period': ['1979-1-15 0:0:0.0', '2018-12-15 12:0:0.0']},
         'method': 'Zonal root mean square error of equatorial_pacific climatological taux STD, time series are linearly detrended, observations and model regridded to generic_1x1deg',
         'name': 'taux zonal seasonality RMSE',
         'ref': 'Using CDAT regridding and rms (uncentered and biased) calculation',
         'time_frequency': 'monthly',
         'units': '1e-3 N/m2'},
        'metric': {'datasets': "GISS-E2-R_r1i1p123; ERA-Interim's tauu & Tropflux's taux; 's ",
         'method': 'The metric is the statistical value between the model and the observations',
         'name': 'SeasonalTauxLonRmse',
         'units': '1e-3 N/m2'}}},
      'name': 'Metrics Collection for ENSO performance'},
     'value': {'BiasPrLatRmse': {'diagnostic': {'ERA-Interim': {'value': None,
         'value_error': None},
        'GISS-E2-R_r1i1p123': {'value': None, 'value_error': None},
        'GPCPv2.3': {'value': None, 'value_error': None}},
       'metric': {'ERA-Interim': {'value': 2.0622104440944593,
         'value_error': None},
        'GPCPv2.3': {'value': 2.8530332425778475, 'value_error': None}}},
      'BiasPrLonRmse': {'diagnostic': {'ERA-Interim': {'value': None,
         'value_error': None},
        'GISS-E2-R_r1i1p123': {'value': None, 'value_error': None},
        'GPCPv2.3': {'value': None, 'value_error': None}},
       'metric': {'ERA-Interim': {'value': 1.6123816681675616,
         'value_error': None},
        'GPCPv2.3': {'value': 2.0760472998377217, 'value_error': None}}},
      'BiasSstLonRmse': {'diagnostic': {'ERA-Interim': {'value': None,
         'value_error': None},
        'GISS-E2-R_r1i1p123': {'value': None, 'value_error': None},
        'HadISST': {'value': None, 'value_error': None},
        'Tropflux': {'value': None, 'value_error': None}},
       'metric': {'ERA-Interim': {'value': 0.9876794616087884,
         'value_error': None},
        'HadISST': {'value': 1.1606188667824393, 'value_error': None},
        'Tropflux': {'value': 0.9543639800962639, 'value_error': None}}},
      'BiasTauxLonRmse': {'diagnostic': {'ERA-Interim': {'value': None,
         'value_error': None},
        'GISS-E2-R_r1i1p123': {'value': None, 'value_error': None},
        'Tropflux': {'value': None, 'value_error': None}},
       'metric': {'ERA-Interim': {'value': 17.50811319505804,
         'value_error': None},
        'Tropflux': {'value': 17.123179771138133, 'value_error': None}}},
      'EnsoAmpl': {'diagnostic': {'ERA-Interim': {'value': 0.8989844997845644,
         'value_error': 0.14214193002531866},
        'GISS-E2-R_r1i1p123': {'value': 0.5017815321614212,
         'value_error': 0.04030406255183644},
        'HadISST': {'value': 0.7665787872085695,
         'value_error': 0.06238329697691264},
        'Tropflux': {'value': 0.9039789553693535,
         'value_error': 0.14293162279134272}},
       'metric': {'ERA-Interim': {'value': 44.1835168146203,
         'value_error': 13.308648708900343},
        'HadISST': {'value': 34.542731871225484,
         'value_error': 10.584491232407114},
        'Tropflux': {'value': 44.49190114648188,
         'value_error': 13.235118839122558}}},
      'EnsoDuration': {'diagnostic': {'ERA-Interim': {'value': 13.0,
         'value_error': None},
        'GISS-E2-R_r1i1p123': {'value': 12.0, 'value_error': None},
        'HadISST': {'value': 13.0, 'value_error': None},
        'Tropflux': {'value': 13.0, 'value_error': None}},
       'metric': {'ERA-Interim': {'value': 7.6923076923076925,
         'value_error': None},
        'HadISST': {'value': 7.6923076923076925, 'value_error': None},
        'Tropflux': {'value': 7.6923076923076925, 'value_error': None}}},
      'EnsoSeasonality': {'diagnostic': {'ERA-Interim': {'value': 2.0466846866656914,
         'value_error': 0.6513411033995022},
        'GISS-E2-R_r1i1p123': {'value': 1.659605956794708,
         'value_error': 0.2670376174077723},
        'HadISST': {'value': 1.6639865947361325,
         'value_error': 0.2712772451657809},
        'Tropflux': {'value': 2.0532132553583624,
         'value_error': 0.6534187683977347}},
       'metric': {'ERA-Interim': {'value': 18.912475008624007,
         'value_error': 38.85278482741862},
        'HadISST': {'value': 0.26326161252033925,
         'value_error': 32.30799427256079},
        'Tropflux': {'value': 19.170307689006,
         'value_error': 38.7292452613334}}},
      'EnsoSstDiversity_2': {'diagnostic': {'ERA-Interim': {'value': 33.25,
         'value_error': None},
        'GISS-E2-R_r1i1p123': {'value': 22.5, 'value_error': None},
        'HadISST': {'value': 49.0, 'value_error': None},
        'Tropflux': {'value': 32.0, 'value_error': None}},
       'metric': {'ERA-Interim': {'value': 32.33082706766917,
         'value_error': None},
        'HadISST': {'value': 54.08163265306123, 'value_error': None},
        'Tropflux': {'value': 29.6875, 'value_error': None}}},
      'EnsoSstLonRmse': {'diagnostic': {'ERA-Interim': {'value': None,
         'value_error': None},
        'GISS-E2-R_r1i1p123': {'value': None, 'value_error': None},
        'HadISST': {'value': None, 'value_error': None},
        'Tropflux': {'value': None, 'value_error': None}},
       'metric': {'ERA-Interim': {'value': 0.17215903697917911,
         'value_error': None},
        'HadISST': {'value': 0.1820206867195128, 'value_error': None},
        'Tropflux': {'value': 0.17142799466882538, 'value_error': None}}},
      'EnsoSstSkew': {'diagnostic': {'ERA-Interim': {'value': 0.39098111106809963,
         'value_error': 0.061819541653923164},
        'GISS-E2-R_r1i1p123': {'value': -0.18403007961436835,
         'value_error': -0.014781651704572638},
        'HadISST': {'value': 0.38989908235027515,
         'value_error': 0.03172953733021198},
        'Tropflux': {'value': 0.39744741059612115,
         'value_error': 0.06284195338099416}},
       'metric': {'ERA-Interim': {'value': 147.06879038519963,
         'value_error': -11.222885438858494},
        'HadISST': {'value': 147.19941337257126,
         'value_error': -7.632181899707592},
        'Tropflux': {'value': 146.30300127967783,
         'value_error': -11.040293888677091}}},
      'EnsoSstTsRmse': {'diagnostic': {'ERA-Interim': {'value': None,
         'value_error': None},
        'GISS-E2-R_r1i1p123': {'value': None, 'value_error': None},
        'HadISST': {'value': None, 'value_error': None},
        'Tropflux': {'value': None, 'value_error': None}},
       'metric': {'ERA-Interim': {'value': 0.16109079401347343,
         'value_error': None},
        'HadISST': {'value': 0.16491186175727762, 'value_error': None},
        'Tropflux': {'value': 0.16562010956997272, 'value_error': None}}},
      'SeasonalPrLatRmse': {'diagnostic': {'ERA-Interim': {'value': None,
         'value_error': None},
        'GISS-E2-R_r1i1p123': {'value': None, 'value_error': None},
        'GPCPv2.3': {'value': None, 'value_error': None}},
       'metric': {'ERA-Interim': {'value': 0.6950061971403831,
         'value_error': None},
        'GPCPv2.3': {'value': 0.8608713728372996, 'value_error': None}}},
      'SeasonalPrLonRmse': {'diagnostic': {'ERA-Interim': {'value': None,
         'value_error': None},
        'GISS-E2-R_r1i1p123': {'value': None, 'value_error': None},
        'GPCPv2.3': {'value': None, 'value_error': None}},
       'metric': {'ERA-Interim': {'value': 0.29997476331465917,
         'value_error': None},
        'GPCPv2.3': {'value': 0.5125873369647761, 'value_error': None}}},
      'SeasonalSstLonRmse': {'diagnostic': {'ERA-Interim': {'value': None,
         'value_error': None},
        'GISS-E2-R_r1i1p123': {'value': None, 'value_error': None},
        'HadISST': {'value': None, 'value_error': None},
        'Tropflux': {'value': None, 'value_error': None}},
       'metric': {'ERA-Interim': {'value': 0.28086833576572967,
         'value_error': None},
        'HadISST': {'value': 0.2815850456848359, 'value_error': None},
        'Tropflux': {'value': 0.2888952452737016, 'value_error': None}}},
      'SeasonalTauxLonRmse': {'diagnostic': {'ERA-Interim': {'value': None,
         'value_error': None},
        'GISS-E2-R_r1i1p123': {'value': None, 'value_error': None},
        'Tropflux': {'value': None, 'value_error': None}},
       'metric': {'ERA-Interim': {'value': 1.9819717877525254,
         'value_error': None},
        'Tropflux': {'value': 2.163389222486997, 'value_error': None}}}}},
    'r1i1p124': {'metadata': {'description_of_the_collection': 'Describe which science question this collection is about',
      'metrics': {'BiasPrLatRmse': {'diagnostic': {'ERA-Interim': {'name': 'ERA-Interim',
          'nyears': 40,
          'time_period': ['1979-1-16 12:0:0.0', '2019-3-16 12:0:0.0']},
         'GISS-E2-R_r1i1p124': {'keyerror': None,
          'name': 'GISS-E2-R_r1i1p124',
          'nyears': 155,
          'time_period': ['1851-1-16 12:0:0.0', '2005-12-16 12:0:0.0']},
         'GPCPv2.3': {'name': 'GPCPv2.3',
          'nyears': 41,
          'time_period': ['1979-1-1 0:0:0.0', '2019-7-1 0:0:0.0']},
         'method': 'Meridional root mean square error of nino3_LatExt pr, time series are linearly detrended, observations and model regridded to generic_1x1deg',
         'name': 'pr Meridional RMSE',
         'ref': 'Using CDAT regridding and rms (uncentered and biased) calculation',
         'time_frequency': 'monthly',
         'units': 'mm/day'},
        'metric': {'datasets': "GISS-E2-R_r1i1p124; ERA-Interim's pr & GPCPv2.3's precip; 's ",
         'method': 'The metric is the statistical value between the model and the observations',
         'name': 'BiasPrLatRmse',
         'units': 'mm/day'}},
       'BiasPrLonRmse': {'diagnostic': {'ERA-Interim': {'name': 'ERA-Interim',
          'nyears': 40,
          'time_period': ['1979-1-16 12:0:0.0', '2019-3-16 12:0:0.0']},
         'GISS-E2-R_r1i1p124': {'keyerror': None,
          'name': 'GISS-E2-R_r1i1p124',
          'nyears': 155,
          'time_period': ['1851-1-16 12:0:0.0', '2005-12-16 12:0:0.0']},
         'GPCPv2.3': {'name': 'GPCPv2.3',
          'nyears': 41,
          'time_period': ['1979-1-1 0:0:0.0', '2019-7-1 0:0:0.0']},
         'method': 'Zonal root mean square error of equatorial_pacific pr, time series are linearly detrended, observations and model regridded to generic_1x1deg',
         'name': 'pr Zonal RMSE',
         'ref': 'Using CDAT regridding and rms (uncentered and biased) calculation',
         'time_frequency': 'monthly',
         'units': 'mm/day'},
        'metric': {'datasets': "GISS-E2-R_r1i1p124; ERA-Interim's pr & GPCPv2.3's precip; 's ",
         'method': 'The metric is the statistical value between the model and the observations',
         'name': 'BiasPrLonRmse',
         'units': 'mm/day'}},
       'BiasSstLonRmse': {'diagnostic': {'ERA-Interim': {'name': 'ERA-Interim',
          'nyears': 40,
          'time_period': ['1979-1-16 12:0:0.0', '2019-3-16 12:0:0.0']},
         'GISS-E2-R_r1i1p124': {'keyerror': None,
          'name': 'GISS-E2-R_r1i1p124',
          'nyears': 155,
          'time_period': ['1851-1-16 12:0:0.0', '2005-12-16 12:0:0.0']},
         'HadISST': {'name': 'HadISST',
          'nyears': 151,
          'time_period': ['1870-1-16 11:59:59.5', '2020-10-16 12:0:0.0']},
         'Tropflux': {'name': 'Tropflux',
          'nyears': 40,
          'time_period': ['1979-1-15 0:0:0.0', '2018-12-15 12:0:0.0']},
         'method': 'Zonal root mean square error of equatorial_pacific sst, time series are linearly detrended, observations and model regridded to generic_1x1deg',
         'name': 'sst Zonal RMSE',
         'ref': 'Using CDAT regridding and rms (uncentered and biased) calculation',
         'time_frequency': 'monthly',
         'units': 'C'},
        'metric': {'datasets': "GISS-E2-R_r1i1p124; ERA-Interim's ts & HadISST's sst & Tropflux's sst; 's ",
         'method': 'The metric is the statistical value between the model and the observations',
         'name': 'BiasSstLonRmse',
         'units': 'C'}},
       'BiasTauxLonRmse': {'diagnostic': {'ERA-Interim': {'name': 'ERA-Interim',
          'nyears': 40,
          'time_period': ['1979-1-16 12:0:0.0', '2019-3-16 12:0:0.0']},
         'GISS-E2-R_r1i1p124': {'keyerror': None,
          'name': 'GISS-E2-R_r1i1p124',
          'nyears': 155,
          'time_period': ['1851-1-16 12:0:0.0', '2005-12-16 12:0:0.0']},
         'Tropflux': {'name': 'Tropflux',
          'nyears': 40,
          'time_period': ['1979-1-15 0:0:0.0', '2018-12-15 12:0:0.0']},
         'method': 'Zonal root mean square error of equatorial_pacific taux, time series are linearly detrended, observations and model regridded to generic_1x1deg',
         'name': 'taux Zonal RMSE',
         'ref': 'Using CDAT regridding and rms (uncentered and biased) calculation',
         'time_frequency': 'monthly',
         'units': '1e-3 N/m2'},
        'metric': {'datasets': "GISS-E2-R_r1i1p124; ERA-Interim's tauu & Tropflux's taux; 's ",
         'method': 'The metric is the statistical value between the model and the observations',
         'name': 'BiasTauxLonRmse',
         'units': '1e-3 N/m2'}},
       'EnsoAmpl': {'diagnostic': {'ERA-Interim': {'keyerror': None,
          'name': 'ERA-Interim',
          'nyears': 40,
          'time_period': ['1979-1-16 12:0:0.0', '2019-3-16 12:0:0.0']},
         'GISS-E2-R_r1i1p124': {'keyerror': None,
          'name': 'GISS-E2-R_r1i1p124',
          'nyears': 155,
          'time_period': ['1851-1-16 12:0:0.0', '2005-12-16 12:0:0.0']},
         'HadISST': {'keyerror': None,
          'name': 'HadISST',
          'nyears': 151,
          'time_period': ['1870-1-16 11:59:59.5', '2020-10-16 12:0:0.0']},
         'Tropflux': {'keyerror': None,
          'name': 'Tropflux',
          'nyears': 40,
          'time_period': ['1979-1-15 0:0:0.0', '2018-12-15 12:0:0.0']},
         'method': 'Standard deviation of nino3.4 sstA, time series are linearly detrended',
         'name': 'ENSO amplitude',
         'ref': 'Using CDAT regression calculation',
         'time_frequency': 'monthly',
         'units': 'C'},
        'metric': {'datasets': "GISS-E2-R_r1i1p124; ERA-Interim's ts & HadISST's sst & Tropflux's sst; 's ",
         'method': 'The metric is the absolute value of the relative difference between model and observations values (M = 100 * abs[[model-obs] / obs])',
         'name': 'EnsoAmpl',
         'units': '%'}},
       'EnsoDuration': {'diagnostic': {'ERA-Interim': {'keyerror': None,
          'name': 'ERA-Interim',
          'nyears': 40,
          'time_period': ['1979-1-16 12:0:0.0', '2019-3-16 12:0:0.0']},
         'GISS-E2-R_r1i1p124': {'keyerror': None,
          'name': 'GISS-E2-R_r1i1p124',
          'nyears': 155,
          'time_period': ['1851-1-16 12:0:0.0', '2005-12-16 12:0:0.0']},
         'HadISST': {'keyerror': None,
          'name': 'HadISST',
          'nyears': 151,
          'time_period': ['1870-1-16 11:59:59.5', '2020-10-16 12:0:0.0']},
         'Tropflux': {'keyerror': None,
          'name': 'Tropflux',
          'nyears': 40,
          'time_period': ['1979-1-15 0:0:0.0', '2018-12-15 12:0:0.0']},
         'method': 'nino3.4 SSTA during DEC regressed against nino3.4 SSTA during 6 years (centered on ENSO), the duration is the number of consecutive months during which the regression is above 0.25, time series are linearly detrended, smoothing using a triangle shaped window of 5 points',
         'name': 'ENSO Duration based on life cyle SSTA pattern',
         'ref': 'Using CDAT',
         'time_frequency': 'monthly',
         'units': 'months'},
        'metric': {'datasets': "GISS-E2-R_r1i1p124; ERA-Interim's ts & HadISST's sst & Tropflux's sst; 's ",
         'method': 'The metric is the absolute value of the relative difference between model and observations values (M = 100 * abs[[model-obs] / obs])',
         'name': 'EnsoDuration',
         'units': '%'}},
       'EnsoSeasonality': {'diagnostic': {'ERA-Interim': {'keyerror': None,
          'name': 'ERA-Interim',
          'nyears': 40,
          'time_period': ['1979-1-16 12:0:0.0', '2019-3-16 12:0:0.0']},
         'GISS-E2-R_r1i1p124': {'keyerror': None,
          'name': 'GISS-E2-R_r1i1p124',
          'nyears': 155,
          'time_period': ['1851-1-16 12:0:0.0', '2005-12-16 12:0:0.0']},
         'HadISST': {'keyerror': None,
          'name': 'HadISST',
          'nyears': 151,
          'time_period': ['1870-1-16 11:59:59.5', '2020-10-16 12:0:0.0']},
         'Tropflux': {'keyerror': None,
          'name': 'Tropflux',
          'nyears': 40,
          'time_period': ['1979-1-15 0:0:0.0', '2018-12-15 12:0:0.0']},
         'method': 'Ratio between NDJ and MAM standard deviation nino3.4 sstA, time series are linearly detrended',
         'name': 'ENSO seasonality',
         'ref': 'Using CDAT std dev calculation',
         'time_frequency': 'monthly',
         'units': 'C/C'},
        'metric': {'datasets': "GISS-E2-R_r1i1p124; ERA-Interim's ts & HadISST's sst & Tropflux's sst; 's ",
         'method': 'The metric is the absolute value of the relative difference between model and observations values (M = 100 * abs[[model-obs] / obs])',
         'name': 'EnsoSeasonality',
         'units': '%'}},
       'EnsoSstDiversity_2': {'diagnostic': {'ERA-Interim': {'keyerror': None,
          'name': 'ERA-Interim',
          'nyears': 40,
          'time_period': ['1979-1-16 12:0:0.0', '2019-3-16 12:0:0.0']},
         'GISS-E2-R_r1i1p124': {'keyerror': None,
          'name': 'GISS-E2-R_r1i1p124',
          'nyears': 155,
          'time_period': ['1851-1-16 12:0:0.0', '2005-12-16 12:0:0.0']},
         'HadISST': {'keyerror': None,
          'name': 'HadISST',
          'nyears': 151,
          'time_period': ['1870-1-16 11:59:59.5', '2020-10-16 12:0:0.0']},
         'Tropflux': {'keyerror': None,
          'name': 'Tropflux',
          'nyears': 40,
          'time_period': ['1979-1-15 0:0:0.0', '2018-12-15 12:0:0.0']},
         'method': 'Nino (Nina) events = nino3.4 sstA > 0.75 (< -0.75) during DEC, zonal SSTA (meridional averaged [-5.0 ; 5.0]), the zonal SSTA maximum (minimum) is located for each event, the diversity is the interquartile range (IQR = Q3 - Q1), time series are linearly detrended, smoothing using a triangle shaped window of 5 points',
         'name': 'ENSO Diversity (interquartile range)',
         'ref': 'Using CDAT regridding',
         'time_frequency': 'monthly',
         'units': 'long'},
        'metric': {'datasets': "GISS-E2-R_r1i1p124; ERA-Interim's ts & HadISST's sst & Tropflux's sst; 's ",
         'method': 'The metric is the absolute value of the relative difference between model and observations values (M = 100 * abs[[model-obs] / obs])',
         'name': 'EnsoSstDiversity',
         'units': '%'}},
       'EnsoSstLonRmse': {'diagnostic': {'ERA-Interim': {'name': 'ERA-Interim',
          'nyears': 40,
          'time_period': ['1979-1-16 12:0:0.0', '2019-3-16 12:0:0.0']},
         'GISS-E2-R_r1i1p124': {'keyerror': None,
          'name': 'GISS-E2-R_r1i1p124',
          'nyears': 155,
          'time_period': ['1851-1-16 12:0:0.0', '2005-12-16 12:0:0.0']},
         'HadISST': {'name': 'HadISST',
          'nyears': 151,
          'time_period': ['1870-1-16 11:59:59.5', '2020-10-16 12:0:0.0']},
         'Tropflux': {'name': 'Tropflux',
          'nyears': 40,
          'time_period': ['1979-1-15 0:0:0.0', '2018-12-15 12:0:0.0']},
         'method': 'nino3.4 SSTA during DEC regressed against equatorial_pacific SSTA, time series are linearly detrended, smoothing using a triangle shaped window of 5 points, observations and model regridded to generic_1x1deg',
         'name': 'ENSO Zonal SSTA pattern',
         'ref': 'Using CDAT regridding and rms (uncentered and biased) calculation',
         'time_frequency': 'monthly',
         'units': 'C/C'},
        'metric': {'datasets': "GISS-E2-R_r1i1p124; ERA-Interim's ts & HadISST's sst & Tropflux's sst; 's ",
         'method': 'The metric is the statistical value between the model and the observations',
         'name': 'EnsoSstLonRmse',
         'units': 'C/C'}},
       'EnsoSstSkew': {'diagnostic': {'ERA-Interim': {'keyerror': None,
          'name': 'ERA-Interim',
          'nyears': 40,
          'time_period': ['1979-1-16 12:0:0.0', '2019-3-16 12:0:0.0']},
         'GISS-E2-R_r1i1p124': {'keyerror': None,
          'name': 'GISS-E2-R_r1i1p124',
          'nyears': 155,
          'time_period': ['1851-1-16 12:0:0.0', '2005-12-16 12:0:0.0']},
         'HadISST': {'keyerror': None,
          'name': 'HadISST',
          'nyears': 151,
          'time_period': ['1870-1-16 11:59:59.5', '2020-10-16 12:0:0.0']},
         'Tropflux': {'keyerror': None,
          'name': 'Tropflux',
          'nyears': 40,
          'time_period': ['1979-1-15 0:0:0.0', '2018-12-15 12:0:0.0']},
         'method': 'Standard deviation of nino3.4 sstA, time series are linearly detrended',
         'name': 'ENSO skewness',
         'ref': 'Using CDAT regression calculation',
         'time_frequency': 'monthly',
         'units': 'C'},
        'metric': {'datasets': "GISS-E2-R_r1i1p124; ERA-Interim's ts & HadISST's sst & Tropflux's sst; 's ",
         'method': 'The metric is the absolute value of the relative difference between model and observations values (M = 100 * abs[[model-obs] / obs])',
         'name': 'EnsoSstSkew',
         'units': '%'}},
       'EnsoSstTsRmse': {'diagnostic': {'ERA-Interim': {'name': 'ERA-Interim',
          'nyears': 40,
          'time_period': ['1979-1-16 12:0:0.0', '2019-3-16 12:0:0.0']},
         'GISS-E2-R_r1i1p124': {'keyerror': None,
          'name': 'GISS-E2-R_r1i1p124',
          'nyears': 155,
          'time_period': ['1851-1-16 12:0:0.0', '2005-12-16 12:0:0.0']},
         'HadISST': {'name': 'HadISST',
          'nyears': 151,
          'time_period': ['1870-1-16 11:59:59.5', '2020-10-16 12:0:0.0']},
         'Tropflux': {'name': 'Tropflux',
          'nyears': 40,
          'time_period': ['1979-1-15 0:0:0.0', '2018-12-15 12:0:0.0']},
         'method': 'nino3.4 SSTA during DEC regressed against nino3.4 SSTA during 6 years (centered on ENSO), time series are linearly detrended, smoothing using a triangle shaped window of 5 points',
         'name': 'ENSO life cyle SSTA pattern',
         'ref': 'Using CDAT regridding and rms (uncentered and biased) calculation',
         'time_frequency': 'monthly',
         'units': 'C/C'},
        'metric': {'datasets': "GISS-E2-R_r1i1p124; ERA-Interim's ts & HadISST's sst & Tropflux's sst; 's ",
         'method': 'The metric is the statistical value between the model and the observations',
         'name': 'EnsoSstTsRmse',
         'units': 'C/C'}},
       'SeasonalPrLatRmse': {'diagnostic': {'ERA-Interim': {'name': 'ERA-Interim',
          'nyears': 40,
          'time_period': ['1979-1-16 12:0:0.0', '2019-3-16 12:0:0.0']},
         'GISS-E2-R_r1i1p124': {'keyerror': None,
          'name': 'GISS-E2-R_r1i1p124',
          'nyears': 155,
          'time_period': ['1851-1-16 12:0:0.0', '2005-12-16 12:0:0.0']},
         'GPCPv2.3': {'name': 'GPCPv2.3',
          'nyears': 41,
          'time_period': ['1979-1-1 0:0:0.0', '2019-7-1 0:0:0.0']},
         'method': 'Meridional root mean square error of nino3_LatExt climatological pr STD, time series are linearly detrended, observations and model regridded to generic_1x1deg',
         'name': 'pr meridional seasonality RMSE',
         'ref': 'Using CDAT regridding and rms (uncentered and biased) calculation',
         'time_frequency': 'monthly',
         'units': 'mm/day'},
        'metric': {'datasets': "GISS-E2-R_r1i1p124; ERA-Interim's pr & GPCPv2.3's precip; 's ",
         'method': 'The metric is the statistical value between the model and the observations',
         'name': 'SeasonalPrLatRmse',
         'units': 'mm/day'}},
       'SeasonalPrLonRmse': {'diagnostic': {'ERA-Interim': {'name': 'ERA-Interim',
          'nyears': 40,
          'time_period': ['1979-1-16 12:0:0.0', '2019-3-16 12:0:0.0']},
         'GISS-E2-R_r1i1p124': {'keyerror': None,
          'name': 'GISS-E2-R_r1i1p124',
          'nyears': 155,
          'time_period': ['1851-1-16 12:0:0.0', '2005-12-16 12:0:0.0']},
         'GPCPv2.3': {'name': 'GPCPv2.3',
          'nyears': 41,
          'time_period': ['1979-1-1 0:0:0.0', '2019-7-1 0:0:0.0']},
         'method': 'Zonal root mean square error of equatorial_pacific climatological pr STD, time series are linearly detrended, observations and model regridded to generic_1x1deg',
         'name': 'pr zonal seasonality RMSE',
         'ref': 'Using CDAT regridding and rms (uncentered and biased) calculation',
         'time_frequency': 'monthly',
         'units': 'mm/day'},
        'metric': {'datasets': "GISS-E2-R_r1i1p124; ERA-Interim's pr & GPCPv2.3's precip; 's ",
         'method': 'The metric is the statistical value between the model and the observations',
         'name': 'SeasonalPrLonRmse',
         'units': 'mm/day'}},
       'SeasonalSstLonRmse': {'diagnostic': {'ERA-Interim': {'name': 'ERA-Interim',
          'nyears': 40,
          'time_period': ['1979-1-16 12:0:0.0', '2019-3-16 12:0:0.0']},
         'GISS-E2-R_r1i1p124': {'keyerror': None,
          'name': 'GISS-E2-R_r1i1p124',
          'nyears': 155,
          'time_period': ['1851-1-16 12:0:0.0', '2005-12-16 12:0:0.0']},
         'HadISST': {'name': 'HadISST',
          'nyears': 151,
          'time_period': ['1870-1-16 11:59:59.5', '2020-10-16 12:0:0.0']},
         'Tropflux': {'name': 'Tropflux',
          'nyears': 40,
          'time_period': ['1979-1-15 0:0:0.0', '2018-12-15 12:0:0.0']},
         'method': 'Zonal root mean square error of equatorial_pacific climatological sst STD, time series are linearly detrended, observations and model regridded to generic_1x1deg',
         'name': 'sst zonal seasonality RMSE',
         'ref': 'Using CDAT regridding and rms (uncentered and biased) calculation',
         'time_frequency': 'monthly',
         'units': 'C'},
        'metric': {'datasets': "GISS-E2-R_r1i1p124; ERA-Interim's ts & HadISST's sst & Tropflux's sst; 's ",
         'method': 'The metric is the statistical value between the model and the observations',
         'name': 'SeasonalSstLonRmse',
         'units': 'C'}},
       'SeasonalTauxLonRmse': {'diagnostic': {'ERA-Interim': {'name': 'ERA-Interim',
          'nyears': 40,
          'time_period': ['1979-1-16 12:0:0.0', '2019-3-16 12:0:0.0']},
         'GISS-E2-R_r1i1p124': {'keyerror': None,
          'name': 'GISS-E2-R_r1i1p124',
          'nyears': 155,
          'time_period': ['1851-1-16 12:0:0.0', '2005-12-16 12:0:0.0']},
         'Tropflux': {'name': 'Tropflux',
          'nyears': 40,
          'time_period': ['1979-1-15 0:0:0.0', '2018-12-15 12:0:0.0']},
         'method': 'Zonal root mean square error of equatorial_pacific climatological taux STD, time series are linearly detrended, observations and model regridded to generic_1x1deg',
         'name': 'taux zonal seasonality RMSE',
         'ref': 'Using CDAT regridding and rms (uncentered and biased) calculation',
         'time_frequency': 'monthly',
         'units': '1e-3 N/m2'},
        'metric': {'datasets': "GISS-E2-R_r1i1p124; ERA-Interim's tauu & Tropflux's taux; 's ",
         'method': 'The metric is the statistical value between the model and the observations',
         'name': 'SeasonalTauxLonRmse',
         'units': '1e-3 N/m2'}}},
      'name': 'Metrics Collection for ENSO performance'},
     'value': {'BiasPrLatRmse': {'diagnostic': {'ERA-Interim': {'value': None,
         'value_error': None},
        'GISS-E2-R_r1i1p124': {'value': None, 'value_error': None},
        'GPCPv2.3': {'value': None, 'value_error': None}},
       'metric': {'ERA-Interim': {'value': 2.0880912399107734,
         'value_error': None},
        'GPCPv2.3': {'value': 2.8726880782676596, 'value_error': None}}},
      'BiasPrLonRmse': {'diagnostic': {'ERA-Interim': {'value': None,
         'value_error': None},
        'GISS-E2-R_r1i1p124': {'value': None, 'value_error': None},
        'GPCPv2.3': {'value': None, 'value_error': None}},
       'metric': {'ERA-Interim': {'value': 1.62248889741277,
         'value_error': None},
        'GPCPv2.3': {'value': 2.0665733408351716, 'value_error': None}}},
      'BiasSstLonRmse': {'diagnostic': {'ERA-Interim': {'value': None,
         'value_error': None},
        'GISS-E2-R_r1i1p124': {'value': None, 'value_error': None},
        'HadISST': {'value': None, 'value_error': None},
        'Tropflux': {'value': None, 'value_error': None}},
       'metric': {'ERA-Interim': {'value': 1.0115527010350103,
         'value_error': None},
        'HadISST': {'value': 1.1842792395681963, 'value_error': None},
        'Tropflux': {'value': 0.9782102098271656, 'value_error': None}}},
      'BiasTauxLonRmse': {'diagnostic': {'ERA-Interim': {'value': None,
         'value_error': None},
        'GISS-E2-R_r1i1p124': {'value': None, 'value_error': None},
        'Tropflux': {'value': None, 'value_error': None}},
       'metric': {'ERA-Interim': {'value': 17.621288040843954,
         'value_error': None},
        'Tropflux': {'value': 17.23647641199294, 'value_error': None}}},
      'EnsoAmpl': {'diagnostic': {'ERA-Interim': {'value': 0.8989844997845644,
         'value_error': 0.14214193002531866},
        'GISS-E2-R_r1i1p124': {'value': 0.5177059399314778,
         'value_error': 0.0415831417640599},
        'HadISST': {'value': 0.7665787872085695,
         'value_error': 0.06238329697691264},
        'Tropflux': {'value': 0.9039789553693535,
         'value_error': 0.14293162279134272}},
       'metric': {'ERA-Interim': {'value': 42.41213946897387,
         'value_error': 13.731008511573966},
        'HadISST': {'value': 32.465397090277,
         'value_error': 10.920397884247016},
        'Tropflux': {'value': 42.73031060552175,
         'value_error': 13.655145117035758}}},
      'EnsoDuration': {'diagnostic': {'ERA-Interim': {'value': 13.0,
         'value_error': None},
        'GISS-E2-R_r1i1p124': {'value': 13.0, 'value_error': None},
        'HadISST': {'value': 13.0, 'value_error': None},
        'Tropflux': {'value': 13.0, 'value_error': None}},
       'metric': {'ERA-Interim': {'value': 0.0, 'value_error': None},
        'HadISST': {'value': 0.0, 'value_error': None},
        'Tropflux': {'value': 0.0, 'value_error': None}}},
      'EnsoSeasonality': {'diagnostic': {'ERA-Interim': {'value': 2.0466846866656914,
         'value_error': 0.6513411033995022},
        'GISS-E2-R_r1i1p124': {'value': 1.7034889597531655,
         'value_error': 0.27409857817785616},
        'HadISST': {'value': 1.6639865947361325,
         'value_error': 0.2712772451657809},
        'Tropflux': {'value': 2.0532132553583624,
         'value_error': 0.6534187683977347}},
       'metric': {'ERA-Interim': {'value': 16.7683732207737,
         'value_error': 39.88012319321893},
        'HadISST': {'value': 2.373959330080846,
         'value_error': 33.16227646071517},
        'Tropflux': {'value': 17.0330234666324,
         'value_error': 39.75331701609161}}},
      'EnsoSstDiversity_2': {'diagnostic': {'ERA-Interim': {'value': 33.25,
         'value_error': None},
        'GISS-E2-R_r1i1p124': {'value': 26.5, 'value_error': None},
        'HadISST': {'value': 49.0, 'value_error': None},
        'Tropflux': {'value': 32.0, 'value_error': None}},
       'metric': {'ERA-Interim': {'value': 20.30075187969925,
         'value_error': None},
        'HadISST': {'value': 45.91836734693878, 'value_error': None},
        'Tropflux': {'value': 17.1875, 'value_error': None}}},
      'EnsoSstLonRmse': {'diagnostic': {'ERA-Interim': {'value': None,
         'value_error': None},
        'GISS-E2-R_r1i1p124': {'value': None, 'value_error': None},
        'HadISST': {'value': None, 'value_error': None},
        'Tropflux': {'value': None, 'value_error': None}},
       'metric': {'ERA-Interim': {'value': 0.13623497316209357,
         'value_error': None},
        'HadISST': {'value': 0.14518593656654433, 'value_error': None},
        'Tropflux': {'value': 0.134911286295595, 'value_error': None}}},
      'EnsoSstSkew': {'diagnostic': {'ERA-Interim': {'value': 0.39098111106809963,
         'value_error': 0.061819541653923164},
        'GISS-E2-R_r1i1p124': {'value': -0.054578782932330955,
         'value_error': -0.004383873339922203},
        'HadISST': {'value': 0.38989908235027515,
         'value_error': 0.03172953733021198},
        'Tropflux': {'value': 0.39744741059612115,
         'value_error': 0.06284195338099416}},
       'metric': {'ERA-Interim': {'value': 113.95944238411677,
         'value_error': -3.3284310343473433},
        'HadISST': {'value': 113.99818194065377,
         'value_error': -2.263516921130991},
        'Tropflux': {'value': 113.73232822185697,
         'value_error': -3.2742788837667867}}},
      'EnsoSstTsRmse': {'diagnostic': {'ERA-Interim': {'value': None,
         'value_error': None},
        'GISS-E2-R_r1i1p124': {'value': None, 'value_error': None},
        'HadISST': {'value': None, 'value_error': None},
        'Tropflux': {'value': None, 'value_error': None}},
       'metric': {'ERA-Interim': {'value': 0.1325880015662856,
         'value_error': None},
        'HadISST': {'value': 0.12513338456275516, 'value_error': None},
        'Tropflux': {'value': 0.13601015021397664, 'value_error': None}}},
      'SeasonalPrLatRmse': {'diagnostic': {'ERA-Interim': {'value': None,
         'value_error': None},
        'GISS-E2-R_r1i1p124': {'value': None, 'value_error': None},
        'GPCPv2.3': {'value': None, 'value_error': None}},
       'metric': {'ERA-Interim': {'value': 0.7067036278869547,
         'value_error': None},
        'GPCPv2.3': {'value': 0.8588511809422174, 'value_error': None}}},
      'SeasonalPrLonRmse': {'diagnostic': {'ERA-Interim': {'value': None,
         'value_error': None},
        'GISS-E2-R_r1i1p124': {'value': None, 'value_error': None},
        'GPCPv2.3': {'value': None, 'value_error': None}},
       'metric': {'ERA-Interim': {'value': 0.3063735715656406,
         'value_error': None},
        'GPCPv2.3': {'value': 0.49525049417350686, 'value_error': None}}},
      'SeasonalSstLonRmse': {'diagnostic': {'ERA-Interim': {'value': None,
         'value_error': None},
        'GISS-E2-R_r1i1p124': {'value': None, 'value_error': None},
        'HadISST': {'value': None, 'value_error': None},
        'Tropflux': {'value': None, 'value_error': None}},
       'metric': {'ERA-Interim': {'value': 0.28639661800916255,
         'value_error': None},
        'HadISST': {'value': 0.2876414870839543, 'value_error': None},
        'Tropflux': {'value': 0.29434250820636504, 'value_error': None}}},
      'SeasonalTauxLonRmse': {'diagnostic': {'ERA-Interim': {'value': None,
         'value_error': None},
        'GISS-E2-R_r1i1p124': {'value': None, 'value_error': None},
        'Tropflux': {'value': None, 'value_error': None}},
       'metric': {'ERA-Interim': {'value': 1.8805015574010109,
         'value_error': None},
        'Tropflux': {'value': 2.031996131092176, 'value_error': None}}}}},
    'r1i1p125': {'metadata': {'description_of_the_collection': 'Describe which science question this collection is about',
      'metrics': {'BiasPrLatRmse': {'diagnostic': {'ERA-Interim': {'name': 'ERA-Interim',
          'nyears': 40,
          'time_period': ['1979-1-16 12:0:0.0', '2019-3-16 12:0:0.0']},
         'GISS-E2-R_r1i1p125': {'keyerror': None,
          'name': 'GISS-E2-R_r1i1p125',
          'nyears': 155,
          'time_period': ['1851-1-16 12:0:0.0', '2005-12-16 12:0:0.0']},
         'GPCPv2.3': {'name': 'GPCPv2.3',
          'nyears': 41,
          'time_period': ['1979-1-1 0:0:0.0', '2019-7-1 0:0:0.0']},
         'method': 'Meridional root mean square error of nino3_LatExt pr, time series are linearly detrended, observations and model regridded to generic_1x1deg',
         'name': 'pr Meridional RMSE',
         'ref': 'Using CDAT regridding and rms (uncentered and biased) calculation',
         'time_frequency': 'monthly',
         'units': 'mm/day'},
        'metric': {'datasets': "GISS-E2-R_r1i1p125; ERA-Interim's pr & GPCPv2.3's precip; 's ",
         'method': 'The metric is the statistical value between the model and the observations',
         'name': 'BiasPrLatRmse',
         'units': 'mm/day'}},
       'BiasPrLonRmse': {'diagnostic': {'ERA-Interim': {'name': 'ERA-Interim',
          'nyears': 40,
          'time_period': ['1979-1-16 12:0:0.0', '2019-3-16 12:0:0.0']},
         'GISS-E2-R_r1i1p125': {'keyerror': None,
          'name': 'GISS-E2-R_r1i1p125',
          'nyears': 155,
          'time_period': ['1851-1-16 12:0:0.0', '2005-12-16 12:0:0.0']},
         'GPCPv2.3': {'name': 'GPCPv2.3',
          'nyears': 41,
          'time_period': ['1979-1-1 0:0:0.0', '2019-7-1 0:0:0.0']},
         'method': 'Zonal root mean square error of equatorial_pacific pr, time series are linearly detrended, observations and model regridded to generic_1x1deg',
         'name': 'pr Zonal RMSE',
         'ref': 'Using CDAT regridding and rms (uncentered and biased) calculation',
         'time_frequency': 'monthly',
         'units': 'mm/day'},
        'metric': {'datasets': "GISS-E2-R_r1i1p125; ERA-Interim's pr & GPCPv2.3's precip; 's ",
         'method': 'The metric is the statistical value between the model and the observations',
         'name': 'BiasPrLonRmse',
         'units': 'mm/day'}},
       'BiasSstLonRmse': {'diagnostic': {'ERA-Interim': {'name': 'ERA-Interim',
          'nyears': 40,
          'time_period': ['1979-1-16 12:0:0.0', '2019-3-16 12:0:0.0']},
         'GISS-E2-R_r1i1p125': {'keyerror': None,
          'name': 'GISS-E2-R_r1i1p125',
          'nyears': 155,
          'time_period': ['1851-1-16 12:0:0.0', '2005-12-16 12:0:0.0']},
         'HadISST': {'name': 'HadISST',
          'nyears': 151,
          'time_period': ['1870-1-16 11:59:59.5', '2020-10-16 12:0:0.0']},
         'Tropflux': {'name': 'Tropflux',
          'nyears': 40,
          'time_period': ['1979-1-15 0:0:0.0', '2018-12-15 12:0:0.0']},
         'method': 'Zonal root mean square error of equatorial_pacific sst, time series are linearly detrended, observations and model regridded to generic_1x1deg',
         'name': 'sst Zonal RMSE',
         'ref': 'Using CDAT regridding and rms (uncentered and biased) calculation',
         'time_frequency': 'monthly',
         'units': 'C'},
        'metric': {'datasets': "GISS-E2-R_r1i1p125; ERA-Interim's ts & HadISST's sst & Tropflux's sst; 's ",
         'method': 'The metric is the statistical value between the model and the observations',
         'name': 'BiasSstLonRmse',
         'units': 'C'}},
       'BiasTauxLonRmse': {'diagnostic': {'ERA-Interim': {'name': 'ERA-Interim',
          'nyears': 40,
          'time_period': ['1979-1-16 12:0:0.0', '2019-3-16 12:0:0.0']},
         'GISS-E2-R_r1i1p125': {'keyerror': None,
          'name': 'GISS-E2-R_r1i1p125',
          'nyears': 155,
          'time_period': ['1851-1-16 12:0:0.0', '2005-12-16 12:0:0.0']},
         'Tropflux': {'name': 'Tropflux',
          'nyears': 40,
          'time_period': ['1979-1-15 0:0:0.0', '2018-12-15 12:0:0.0']},
         'method': 'Zonal root mean square error of equatorial_pacific taux, time series are linearly detrended, observations and model regridded to generic_1x1deg',
         'name': 'taux Zonal RMSE',
         'ref': 'Using CDAT regridding and rms (uncentered and biased) calculation',
         'time_frequency': 'monthly',
         'units': '1e-3 N/m2'},
        'metric': {'datasets': "GISS-E2-R_r1i1p125; ERA-Interim's tauu & Tropflux's taux; 's ",
         'method': 'The metric is the statistical value between the model and the observations',
         'name': 'BiasTauxLonRmse',
         'units': '1e-3 N/m2'}},
       'EnsoAmpl': {'diagnostic': {'ERA-Interim': {'keyerror': None,
          'name': 'ERA-Interim',
          'nyears': 40,
          'time_period': ['1979-1-16 12:0:0.0', '2019-3-16 12:0:0.0']},
         'GISS-E2-R_r1i1p125': {'keyerror': None,
          'name': 'GISS-E2-R_r1i1p125',
          'nyears': 155,
          'time_period': ['1851-1-16 12:0:0.0', '2005-12-16 12:0:0.0']},
         'HadISST': {'keyerror': None,
          'name': 'HadISST',
          'nyears': 151,
          'time_period': ['1870-1-16 11:59:59.5', '2020-10-16 12:0:0.0']},
         'Tropflux': {'keyerror': None,
          'name': 'Tropflux',
          'nyears': 40,
          'time_period': ['1979-1-15 0:0:0.0', '2018-12-15 12:0:0.0']},
         'method': 'Standard deviation of nino3.4 sstA, time series are linearly detrended',
         'name': 'ENSO amplitude',
         'ref': 'Using CDAT regression calculation',
         'time_frequency': 'monthly',
         'units': 'C'},
        'metric': {'datasets': "GISS-E2-R_r1i1p125; ERA-Interim's ts & HadISST's sst & Tropflux's sst; 's ",
         'method': 'The metric is the absolute value of the relative difference between model and observations values (M = 100 * abs[[model-obs] / obs])',
         'name': 'EnsoAmpl',
         'units': '%'}},
       'EnsoDuration': {'diagnostic': {'ERA-Interim': {'keyerror': None,
          'name': 'ERA-Interim',
          'nyears': 40,
          'time_period': ['1979-1-16 12:0:0.0', '2019-3-16 12:0:0.0']},
         'GISS-E2-R_r1i1p125': {'keyerror': None,
          'name': 'GISS-E2-R_r1i1p125',
          'nyears': 155,
          'time_period': ['1851-1-16 12:0:0.0', '2005-12-16 12:0:0.0']},
         'HadISST': {'keyerror': None,
          'name': 'HadISST',
          'nyears': 151,
          'time_period': ['1870-1-16 11:59:59.5', '2020-10-16 12:0:0.0']},
         'Tropflux': {'keyerror': None,
          'name': 'Tropflux',
          'nyears': 40,
          'time_period': ['1979-1-15 0:0:0.0', '2018-12-15 12:0:0.0']},
         'method': 'nino3.4 SSTA during DEC regressed against nino3.4 SSTA during 6 years (centered on ENSO), the duration is the number of consecutive months during which the regression is above 0.25, time series are linearly detrended, smoothing using a triangle shaped window of 5 points',
         'name': 'ENSO Duration based on life cyle SSTA pattern',
         'ref': 'Using CDAT',
         'time_frequency': 'monthly',
         'units': 'months'},
        'metric': {'datasets': "GISS-E2-R_r1i1p125; ERA-Interim's ts & HadISST's sst & Tropflux's sst; 's ",
         'method': 'The metric is the absolute value of the relative difference between model and observations values (M = 100 * abs[[model-obs] / obs])',
         'name': 'EnsoDuration',
         'units': '%'}},
       'EnsoSeasonality': {'diagnostic': {'ERA-Interim': {'keyerror': None,
          'name': 'ERA-Interim',
          'nyears': 40,
          'time_period': ['1979-1-16 12:0:0.0', '2019-3-16 12:0:0.0']},
         'GISS-E2-R_r1i1p125': {'keyerror': None,
          'name': 'GISS-E2-R_r1i1p125',
          'nyears': 155,
          'time_period': ['1851-1-16 12:0:0.0', '2005-12-16 12:0:0.0']},
         'HadISST': {'keyerror': None,
          'name': 'HadISST',
          'nyears': 151,
          'time_period': ['1870-1-16 11:59:59.5', '2020-10-16 12:0:0.0']},
         'Tropflux': {'keyerror': None,
          'name': 'Tropflux',
          'nyears': 40,
          'time_period': ['1979-1-15 0:0:0.0', '2018-12-15 12:0:0.0']},
         'method': 'Ratio between NDJ and MAM standard deviation nino3.4 sstA, time series are linearly detrended',
         'name': 'ENSO seasonality',
         'ref': 'Using CDAT std dev calculation',
         'time_frequency': 'monthly',
         'units': 'C/C'},
        'metric': {'datasets': "GISS-E2-R_r1i1p125; ERA-Interim's ts & HadISST's sst & Tropflux's sst; 's ",
         'method': 'The metric is the absolute value of the relative difference between model and observations values (M = 100 * abs[[model-obs] / obs])',
         'name': 'EnsoSeasonality',
         'units': '%'}},
       'EnsoSstDiversity_2': {'diagnostic': {'ERA-Interim': {'keyerror': None,
          'name': 'ERA-Interim',
          'nyears': 40,
          'time_period': ['1979-1-16 12:0:0.0', '2019-3-16 12:0:0.0']},
         'GISS-E2-R_r1i1p125': {'keyerror': None,
          'name': 'GISS-E2-R_r1i1p125',
          'nyears': 155,
          'time_period': ['1851-1-16 12:0:0.0', '2005-12-16 12:0:0.0']},
         'HadISST': {'keyerror': None,
          'name': 'HadISST',
          'nyears': 151,
          'time_period': ['1870-1-16 11:59:59.5', '2020-10-16 12:0:0.0']},
         'Tropflux': {'keyerror': None,
          'name': 'Tropflux',
          'nyears': 40,
          'time_period': ['1979-1-15 0:0:0.0', '2018-12-15 12:0:0.0']},
         'method': 'Nino (Nina) events = nino3.4 sstA > 0.75 (< -0.75) during DEC, zonal SSTA (meridional averaged [-5.0 ; 5.0]), the zonal SSTA maximum (minimum) is located for each event, the diversity is the interquartile range (IQR = Q3 - Q1), time series are linearly detrended, smoothing using a triangle shaped window of 5 points',
         'name': 'ENSO Diversity (interquartile range)',
         'ref': 'Using CDAT regridding',
         'time_frequency': 'monthly',
         'units': 'long'},
        'metric': {'datasets': "GISS-E2-R_r1i1p125; ERA-Interim's ts & HadISST's sst & Tropflux's sst; 's ",
         'method': 'The metric is the absolute value of the relative difference between model and observations values (M = 100 * abs[[model-obs] / obs])',
         'name': 'EnsoSstDiversity',
         'units': '%'}},
       'EnsoSstLonRmse': {'diagnostic': {'ERA-Interim': {'name': 'ERA-Interim',
          'nyears': 40,
          'time_period': ['1979-1-16 12:0:0.0', '2019-3-16 12:0:0.0']},
         'GISS-E2-R_r1i1p125': {'keyerror': None,
          'name': 'GISS-E2-R_r1i1p125',
          'nyears': 155,
          'time_period': ['1851-1-16 12:0:0.0', '2005-12-16 12:0:0.0']},
         'HadISST': {'name': 'HadISST',
          'nyears': 151,
          'time_period': ['1870-1-16 11:59:59.5', '2020-10-16 12:0:0.0']},
         'Tropflux': {'name': 'Tropflux',
          'nyears': 40,
          'time_period': ['1979-1-15 0:0:0.0', '2018-12-15 12:0:0.0']},
         'method': 'nino3.4 SSTA during DEC regressed against equatorial_pacific SSTA, time series are linearly detrended, smoothing using a triangle shaped window of 5 points, observations and model regridded to generic_1x1deg',
         'name': 'ENSO Zonal SSTA pattern',
         'ref': 'Using CDAT regridding and rms (uncentered and biased) calculation',
         'time_frequency': 'monthly',
         'units': 'C/C'},
        'metric': {'datasets': "GISS-E2-R_r1i1p125; ERA-Interim's ts & HadISST's sst & Tropflux's sst; 's ",
         'method': 'The metric is the statistical value between the model and the observations',
         'name': 'EnsoSstLonRmse',
         'units': 'C/C'}},
       'EnsoSstSkew': {'diagnostic': {'ERA-Interim': {'keyerror': None,
          'name': 'ERA-Interim',
          'nyears': 40,
          'time_period': ['1979-1-16 12:0:0.0', '2019-3-16 12:0:0.0']},
         'GISS-E2-R_r1i1p125': {'keyerror': None,
          'name': 'GISS-E2-R_r1i1p125',
          'nyears': 155,
          'time_period': ['1851-1-16 12:0:0.0', '2005-12-16 12:0:0.0']},
         'HadISST': {'keyerror': None,
          'name': 'HadISST',
          'nyears': 151,
          'time_period': ['1870-1-16 11:59:59.5', '2020-10-16 12:0:0.0']},
         'Tropflux': {'keyerror': None,
          'name': 'Tropflux',
          'nyears': 40,
          'time_period': ['1979-1-15 0:0:0.0', '2018-12-15 12:0:0.0']},
         'method': 'Standard deviation of nino3.4 sstA, time series are linearly detrended',
         'name': 'ENSO skewness',
         'ref': 'Using CDAT regression calculation',
         'time_frequency': 'monthly',
         'units': 'C'},
        'metric': {'datasets': "GISS-E2-R_r1i1p125; ERA-Interim's ts & HadISST's sst & Tropflux's sst; 's ",
         'method': 'The metric is the absolute value of the relative difference between model and observations values (M = 100 * abs[[model-obs] / obs])',
         'name': 'EnsoSstSkew',
         'units': '%'}},
       'EnsoSstTsRmse': {'diagnostic': {'ERA-Interim': {'name': 'ERA-Interim',
          'nyears': 40,
          'time_period': ['1979-1-16 12:0:0.0', '2019-3-16 12:0:0.0']},
         'GISS-E2-R_r1i1p125': {'keyerror': None,
          'name': 'GISS-E2-R_r1i1p125',
          'nyears': 155,
          'time_period': ['1851-1-16 12:0:0.0', '2005-12-16 12:0:0.0']},
         'HadISST': {'name': 'HadISST',
          'nyears': 151,
          'time_period': ['1870-1-16 11:59:59.5', '2020-10-16 12:0:0.0']},
         'Tropflux': {'name': 'Tropflux',
          'nyears': 40,
          'time_period': ['1979-1-15 0:0:0.0', '2018-12-15 12:0:0.0']},
         'method': 'nino3.4 SSTA during DEC regressed against nino3.4 SSTA during 6 years (centered on ENSO), time series are linearly detrended, smoothing using a triangle shaped window of 5 points',
         'name': 'ENSO life cyle SSTA pattern',
         'ref': 'Using CDAT regridding and rms (uncentered and biased) calculation',
         'time_frequency': 'monthly',
         'units': 'C/C'},
        'metric': {'datasets': "GISS-E2-R_r1i1p125; ERA-Interim's ts & HadISST's sst & Tropflux's sst; 's ",
         'method': 'The metric is the statistical value between the model and the observations',
         'name': 'EnsoSstTsRmse',
         'units': 'C/C'}},
       'SeasonalPrLatRmse': {'diagnostic': {'ERA-Interim': {'name': 'ERA-Interim',
          'nyears': 40,
          'time_period': ['1979-1-16 12:0:0.0', '2019-3-16 12:0:0.0']},
         'GISS-E2-R_r1i1p125': {'keyerror': None,
          'name': 'GISS-E2-R_r1i1p125',
          'nyears': 155,
          'time_period': ['1851-1-16 12:0:0.0', '2005-12-16 12:0:0.0']},
         'GPCPv2.3': {'name': 'GPCPv2.3',
          'nyears': 41,
          'time_period': ['1979-1-1 0:0:0.0', '2019-7-1 0:0:0.0']},
         'method': 'Meridional root mean square error of nino3_LatExt climatological pr STD, time series are linearly detrended, observations and model regridded to generic_1x1deg',
         'name': 'pr meridional seasonality RMSE',
         'ref': 'Using CDAT regridding and rms (uncentered and biased) calculation',
         'time_frequency': 'monthly',
         'units': 'mm/day'},
        'metric': {'datasets': "GISS-E2-R_r1i1p125; ERA-Interim's pr & GPCPv2.3's precip; 's ",
         'method': 'The metric is the statistical value between the model and the observations',
         'name': 'SeasonalPrLatRmse',
         'units': 'mm/day'}},
       'SeasonalPrLonRmse': {'diagnostic': {'ERA-Interim': {'name': 'ERA-Interim',
          'nyears': 40,
          'time_period': ['1979-1-16 12:0:0.0', '2019-3-16 12:0:0.0']},
         'GISS-E2-R_r1i1p125': {'keyerror': None,
          'name': 'GISS-E2-R_r1i1p125',
          'nyears': 155,
          'time_period': ['1851-1-16 12:0:0.0', '2005-12-16 12:0:0.0']},
         'GPCPv2.3': {'name': 'GPCPv2.3',
          'nyears': 41,
          'time_period': ['1979-1-1 0:0:0.0', '2019-7-1 0:0:0.0']},
         'method': 'Zonal root mean square error of equatorial_pacific climatological pr STD, time series are linearly detrended, observations and model regridded to generic_1x1deg',
         'name': 'pr zonal seasonality RMSE',
         'ref': 'Using CDAT regridding and rms (uncentered and biased) calculation',
         'time_frequency': 'monthly',
         'units': 'mm/day'},
        'metric': {'datasets': "GISS-E2-R_r1i1p125; ERA-Interim's pr & GPCPv2.3's precip; 's ",
         'method': 'The metric is the statistical value between the model and the observations',
         'name': 'SeasonalPrLonRmse',
         'units': 'mm/day'}},
       'SeasonalSstLonRmse': {'diagnostic': {'ERA-Interim': {'name': 'ERA-Interim',
          'nyears': 40,
          'time_period': ['1979-1-16 12:0:0.0', '2019-3-16 12:0:0.0']},
         'GISS-E2-R_r1i1p125': {'keyerror': None,
          'name': 'GISS-E2-R_r1i1p125',
          'nyears': 155,
          'time_period': ['1851-1-16 12:0:0.0', '2005-12-16 12:0:0.0']},
         'HadISST': {'name': 'HadISST',
          'nyears': 151,
          'time_period': ['1870-1-16 11:59:59.5', '2020-10-16 12:0:0.0']},
         'Tropflux': {'name': 'Tropflux',
          'nyears': 40,
          'time_period': ['1979-1-15 0:0:0.0', '2018-12-15 12:0:0.0']},
         'method': 'Zonal root mean square error of equatorial_pacific climatological sst STD, time series are linearly detrended, observations and model regridded to generic_1x1deg',
         'name': 'sst zonal seasonality RMSE',
         'ref': 'Using CDAT regridding and rms (uncentered and biased) calculation',
         'time_frequency': 'monthly',
         'units': 'C'},
        'metric': {'datasets': "GISS-E2-R_r1i1p125; ERA-Interim's ts & HadISST's sst & Tropflux's sst; 's ",
         'method': 'The metric is the statistical value between the model and the observations',
         'name': 'SeasonalSstLonRmse',
         'units': 'C'}},
       'SeasonalTauxLonRmse': {'diagnostic': {'ERA-Interim': {'name': 'ERA-Interim',
          'nyears': 40,
          'time_period': ['1979-1-16 12:0:0.0', '2019-3-16 12:0:0.0']},
         'GISS-E2-R_r1i1p125': {'keyerror': None,
          'name': 'GISS-E2-R_r1i1p125',
          'nyears': 155,
          'time_period': ['1851-1-16 12:0:0.0', '2005-12-16 12:0:0.0']},
         'Tropflux': {'name': 'Tropflux',
          'nyears': 40,
          'time_period': ['1979-1-15 0:0:0.0', '2018-12-15 12:0:0.0']},
         'method': 'Zonal root mean square error of equatorial_pacific climatological taux STD, time series are linearly detrended, observations and model regridded to generic_1x1deg',
         'name': 'taux zonal seasonality RMSE',
         'ref': 'Using CDAT regridding and rms (uncentered and biased) calculation',
         'time_frequency': 'monthly',
         'units': '1e-3 N/m2'},
        'metric': {'datasets': "GISS-E2-R_r1i1p125; ERA-Interim's tauu & Tropflux's taux; 's ",
         'method': 'The metric is the statistical value between the model and the observations',
         'name': 'SeasonalTauxLonRmse',
         'units': '1e-3 N/m2'}}},
      'name': 'Metrics Collection for ENSO performance'},
     'value': {'BiasPrLatRmse': {'diagnostic': {'ERA-Interim': {'value': None,
         'value_error': None},
        'GISS-E2-R_r1i1p125': {'value': None, 'value_error': None},
        'GPCPv2.3': {'value': None, 'value_error': None}},
       'metric': {'ERA-Interim': {'value': 2.0883231697762707,
         'value_error': None},
        'GPCPv2.3': {'value': 2.8850926153741656, 'value_error': None}}},
      'BiasPrLonRmse': {'diagnostic': {'ERA-Interim': {'value': None,
         'value_error': None},
        'GISS-E2-R_r1i1p125': {'value': None, 'value_error': None},
        'GPCPv2.3': {'value': None, 'value_error': None}},
       'metric': {'ERA-Interim': {'value': 1.6803983691817101,
         'value_error': None},
        'GPCPv2.3': {'value': 2.1092667084540073, 'value_error': None}}},
      'BiasSstLonRmse': {'diagnostic': {'ERA-Interim': {'value': None,
         'value_error': None},
        'GISS-E2-R_r1i1p125': {'value': None, 'value_error': None},
        'HadISST': {'value': None, 'value_error': None},
        'Tropflux': {'value': None, 'value_error': None}},
       'metric': {'ERA-Interim': {'value': 1.0082345193690327,
         'value_error': None},
        'HadISST': {'value': 1.179337719794677, 'value_error': None},
        'Tropflux': {'value': 0.9751074999196638, 'value_error': None}}},
      'BiasTauxLonRmse': {'diagnostic': {'ERA-Interim': {'value': None,
         'value_error': None},
        'GISS-E2-R_r1i1p125': {'value': None, 'value_error': None},
        'Tropflux': {'value': None, 'value_error': None}},
       'metric': {'ERA-Interim': {'value': 18.060786047170726,
         'value_error': None},
        'Tropflux': {'value': 17.677343087032778, 'value_error': None}}},
      'EnsoAmpl': {'diagnostic': {'ERA-Interim': {'value': 0.8989844997845644,
         'value_error': 0.14214193002531866},
        'GISS-E2-R_r1i1p125': {'value': 0.5095375296045861,
         'value_error': 0.04092703925796328},
        'HadISST': {'value': 0.7665787872085695,
         'value_error': 0.06238329697691264},
        'Tropflux': {'value': 0.9039789553693535,
         'value_error': 0.14293162279134272}},
       'metric': {'ERA-Interim': {'value': 43.32076585005711,
         'value_error': 13.514359439053331},
        'HadISST': {'value': 33.53096405654231,
         'value_error': 10.748094875973138},
        'Tropflux': {'value': 43.63391685413783,
         'value_error': 13.439693023895858}}},
      'EnsoDuration': {'diagnostic': {'ERA-Interim': {'value': 13.0,
         'value_error': None},
        'GISS-E2-R_r1i1p125': {'value': 13.0, 'value_error': None},
        'HadISST': {'value': 13.0, 'value_error': None},
        'Tropflux': {'value': 13.0, 'value_error': None}},
       'metric': {'ERA-Interim': {'value': 0.0, 'value_error': None},
        'HadISST': {'value': 0.0, 'value_error': None},
        'Tropflux': {'value': 0.0, 'value_error': None}}},
      'EnsoSeasonality': {'diagnostic': {'ERA-Interim': {'value': 2.0466846866656914,
         'value_error': 0.6513411033995022},
        'GISS-E2-R_r1i1p125': {'value': 1.6038775940344587,
         'value_error': 0.25807068814808554},
        'HadISST': {'value': 1.6639865947361325,
         'value_error': 0.2712772451657809},
        'Tropflux': {'value': 2.0532132553583624,
         'value_error': 0.6534187683977347}},
       'metric': {'ERA-Interim': {'value': 21.63533520899213,
         'value_error': 37.548136529282786},
        'HadISST': {'value': 3.612348854962116,
         'value_error': 31.223115288181468},
        'Tropflux': {'value': 21.884510055214786,
         'value_error': 37.42874533210759}}},
      'EnsoSstDiversity_2': {'diagnostic': {'ERA-Interim': {'value': 33.25,
         'value_error': None},
        'GISS-E2-R_r1i1p125': {'value': 25.5, 'value_error': None},
        'HadISST': {'value': 49.0, 'value_error': None},
        'Tropflux': {'value': 32.0, 'value_error': None}},
       'metric': {'ERA-Interim': {'value': 23.308270676691727,
         'value_error': None},
        'HadISST': {'value': 47.95918367346938, 'value_error': None},
        'Tropflux': {'value': 20.3125, 'value_error': None}}},
      'EnsoSstLonRmse': {'diagnostic': {'ERA-Interim': {'value': None,
         'value_error': None},
        'GISS-E2-R_r1i1p125': {'value': None, 'value_error': None},
        'HadISST': {'value': None, 'value_error': None},
        'Tropflux': {'value': None, 'value_error': None}},
       'metric': {'ERA-Interim': {'value': 0.12123265776038133,
         'value_error': None},
        'HadISST': {'value': 0.13129371587915478, 'value_error': None},
        'Tropflux': {'value': 0.11968711178172518, 'value_error': None}}},
      'EnsoSstSkew': {'diagnostic': {'ERA-Interim': {'value': 0.39098111106809963,
         'value_error': 0.061819541653923164},
        'GISS-E2-R_r1i1p125': {'value': -0.04331654460729214,
         'value_error': -0.0034792685889844348},
        'HadISST': {'value': 0.38989908235027515,
         'value_error': 0.03172953733021198},
        'Tropflux': {'value': 0.39744741059612115,
         'value_error': 0.06284195338099416}},
       'metric': {'ERA-Interim': {'value': 111.07893537080554,
         'value_error': -2.6416149944266354},
        'HadISST': {'value': 111.10968108624006,
         'value_error': -1.7964440835020947},
        'Tropflux': {'value': 110.89868582671673,
         'value_error': -2.598637047316466}}},
      'EnsoSstTsRmse': {'diagnostic': {'ERA-Interim': {'value': None,
         'value_error': None},
        'GISS-E2-R_r1i1p125': {'value': None, 'value_error': None},
        'HadISST': {'value': None, 'value_error': None},
        'Tropflux': {'value': None, 'value_error': None}},
       'metric': {'ERA-Interim': {'value': 0.13528568310809302,
         'value_error': None},
        'HadISST': {'value': 0.1101509968767725, 'value_error': None},
        'Tropflux': {'value': 0.13550024365548685, 'value_error': None}}},
      'SeasonalPrLatRmse': {'diagnostic': {'ERA-Interim': {'value': None,
         'value_error': None},
        'GISS-E2-R_r1i1p125': {'value': None, 'value_error': None},
        'GPCPv2.3': {'value': None, 'value_error': None}},
       'metric': {'ERA-Interim': {'value': 0.7006115452497297,
         'value_error': None},
        'GPCPv2.3': {'value': 0.8873973432788488, 'value_error': None}}},
      'SeasonalPrLonRmse': {'diagnostic': {'ERA-Interim': {'value': None,
         'value_error': None},
        'GISS-E2-R_r1i1p125': {'value': None, 'value_error': None},
        'GPCPv2.3': {'value': None, 'value_error': None}},
       'metric': {'ERA-Interim': {'value': 0.27544840116190866,
         'value_error': None},
        'GPCPv2.3': {'value': 0.5408701063084709, 'value_error': None}}},
      'SeasonalSstLonRmse': {'diagnostic': {'ERA-Interim': {'value': None,
         'value_error': None},
        'GISS-E2-R_r1i1p125': {'value': None, 'value_error': None},
        'HadISST': {'value': None, 'value_error': None},
        'Tropflux': {'value': None, 'value_error': None}},
       'metric': {'ERA-Interim': {'value': 0.2837043935186768,
         'value_error': None},
        'HadISST': {'value': 0.28543763196930244, 'value_error': None},
        'Tropflux': {'value': 0.2914023089162169, 'value_error': None}}},
      'SeasonalTauxLonRmse': {'diagnostic': {'ERA-Interim': {'value': None,
         'value_error': None},
        'GISS-E2-R_r1i1p125': {'value': None, 'value_error': None},
        'Tropflux': {'value': None, 'value_error': None}},
       'metric': {'ERA-Interim': {'value': 1.8632894910654654,
         'value_error': None},
        'Tropflux': {'value': 2.033086679779805, 'value_error': None}}}}},
    'r1i1p126': {'metadata': {'description_of_the_collection': 'Describe which science question this collection is about',
      'metrics': {'BiasPrLatRmse': {'diagnostic': {'ERA-Interim': {'name': 'ERA-Interim',
          'nyears': 40,
          'time_period': ['1979-1-16 12:0:0.0', '2019-3-16 12:0:0.0']},
         'GISS-E2-R_r1i1p126': {'keyerror': None,
          'name': 'GISS-E2-R_r1i1p126',
          'nyears': 155,
          'time_period': ['1851-1-16 12:0:0.0', '2005-12-16 12:0:0.0']},
         'GPCPv2.3': {'name': 'GPCPv2.3',
          'nyears': 41,
          'time_period': ['1979-1-1 0:0:0.0', '2019-7-1 0:0:0.0']},
         'method': 'Meridional root mean square error of nino3_LatExt pr, time series are linearly detrended, observations and model regridded to generic_1x1deg',
         'name': 'pr Meridional RMSE',
         'ref': 'Using CDAT regridding and rms (uncentered and biased) calculation',
         'time_frequency': 'monthly',
         'units': 'mm/day'},
        'metric': {'datasets': "GISS-E2-R_r1i1p126; ERA-Interim's pr & GPCPv2.3's precip; 's ",
         'method': 'The metric is the statistical value between the model and the observations',
         'name': 'BiasPrLatRmse',
         'units': 'mm/day'}},
       'BiasPrLonRmse': {'diagnostic': {'ERA-Interim': {'name': 'ERA-Interim',
          'nyears': 40,
          'time_period': ['1979-1-16 12:0:0.0', '2019-3-16 12:0:0.0']},
         'GISS-E2-R_r1i1p126': {'keyerror': None,
          'name': 'GISS-E2-R_r1i1p126',
          'nyears': 155,
          'time_period': ['1851-1-16 12:0:0.0', '2005-12-16 12:0:0.0']},
         'GPCPv2.3': {'name': 'GPCPv2.3',
          'nyears': 41,
          'time_period': ['1979-1-1 0:0:0.0', '2019-7-1 0:0:0.0']},
         'method': 'Zonal root mean square error of equatorial_pacific pr, time series are linearly detrended, observations and model regridded to generic_1x1deg',
         'name': 'pr Zonal RMSE',
         'ref': 'Using CDAT regridding and rms (uncentered and biased) calculation',
         'time_frequency': 'monthly',
         'units': 'mm/day'},
        'metric': {'datasets': "GISS-E2-R_r1i1p126; ERA-Interim's pr & GPCPv2.3's precip; 's ",
         'method': 'The metric is the statistical value between the model and the observations',
         'name': 'BiasPrLonRmse',
         'units': 'mm/day'}},
       'BiasSstLonRmse': {'diagnostic': {'ERA-Interim': {'name': 'ERA-Interim',
          'nyears': 40,
          'time_period': ['1979-1-16 12:0:0.0', '2019-3-16 12:0:0.0']},
         'GISS-E2-R_r1i1p126': {'keyerror': None,
          'name': 'GISS-E2-R_r1i1p126',
          'nyears': 155,
          'time_period': ['1851-1-16 12:0:0.0', '2005-12-16 12:0:0.0']},
         'HadISST': {'name': 'HadISST',
          'nyears': 151,
          'time_period': ['1870-1-16 11:59:59.5', '2020-10-16 12:0:0.0']},
         'Tropflux': {'name': 'Tropflux',
          'nyears': 40,
          'time_period': ['1979-1-15 0:0:0.0', '2018-12-15 12:0:0.0']},
         'method': 'Zonal root mean square error of equatorial_pacific sst, time series are linearly detrended, observations and model regridded to generic_1x1deg',
         'name': 'sst Zonal RMSE',
         'ref': 'Using CDAT regridding and rms (uncentered and biased) calculation',
         'time_frequency': 'monthly',
         'units': 'C'},
        'metric': {'datasets': "GISS-E2-R_r1i1p126; ERA-Interim's ts & HadISST's sst & Tropflux's sst; 's ",
         'method': 'The metric is the statistical value between the model and the observations',
         'name': 'BiasSstLonRmse',
         'units': 'C'}},
       'BiasTauxLonRmse': {'diagnostic': {'ERA-Interim': {'name': 'ERA-Interim',
          'nyears': 40,
          'time_period': ['1979-1-16 12:0:0.0', '2019-3-16 12:0:0.0']},
         'GISS-E2-R_r1i1p126': {'keyerror': None,
          'name': 'GISS-E2-R_r1i1p126',
          'nyears': 155,
          'time_period': ['1851-1-16 12:0:0.0', '2005-12-16 12:0:0.0']},
         'Tropflux': {'name': 'Tropflux',
          'nyears': 40,
          'time_period': ['1979-1-15 0:0:0.0', '2018-12-15 12:0:0.0']},
         'method': 'Zonal root mean square error of equatorial_pacific taux, time series are linearly detrended, observations and model regridded to generic_1x1deg',
         'name': 'taux Zonal RMSE',
         'ref': 'Using CDAT regridding and rms (uncentered and biased) calculation',
         'time_frequency': 'monthly',
         'units': '1e-3 N/m2'},
        'metric': {'datasets': "GISS-E2-R_r1i1p126; ERA-Interim's tauu & Tropflux's taux; 's ",
         'method': 'The metric is the statistical value between the model and the observations',
         'name': 'BiasTauxLonRmse',
         'units': '1e-3 N/m2'}},
       'EnsoAmpl': {'diagnostic': {'ERA-Interim': {'keyerror': None,
          'name': 'ERA-Interim',
          'nyears': 40,
          'time_period': ['1979-1-16 12:0:0.0', '2019-3-16 12:0:0.0']},
         'GISS-E2-R_r1i1p126': {'keyerror': None,
          'name': 'GISS-E2-R_r1i1p126',
          'nyears': 155,
          'time_period': ['1851-1-16 12:0:0.0', '2005-12-16 12:0:0.0']},
         'HadISST': {'keyerror': None,
          'name': 'HadISST',
          'nyears': 151,
          'time_period': ['1870-1-16 11:59:59.5', '2020-10-16 12:0:0.0']},
         'Tropflux': {'keyerror': None,
          'name': 'Tropflux',
          'nyears': 40,
          'time_period': ['1979-1-15 0:0:0.0', '2018-12-15 12:0:0.0']},
         'method': 'Standard deviation of nino3.4 sstA, time series are linearly detrended',
         'name': 'ENSO amplitude',
         'ref': 'Using CDAT regression calculation',
         'time_frequency': 'monthly',
         'units': 'C'},
        'metric': {'datasets': "GISS-E2-R_r1i1p126; ERA-Interim's ts & HadISST's sst & Tropflux's sst; 's ",
         'method': 'The metric is the absolute value of the relative difference between model and observations values (M = 100 * abs[[model-obs] / obs])',
         'name': 'EnsoAmpl',
         'units': '%'}},
       'EnsoDuration': {'diagnostic': {'ERA-Interim': {'keyerror': None,
          'name': 'ERA-Interim',
          'nyears': 40,
          'time_period': ['1979-1-16 12:0:0.0', '2019-3-16 12:0:0.0']},
         'GISS-E2-R_r1i1p126': {'keyerror': None,
          'name': 'GISS-E2-R_r1i1p126',
          'nyears': 155,
          'time_period': ['1851-1-16 12:0:0.0', '2005-12-16 12:0:0.0']},
         'HadISST': {'keyerror': None,
          'name': 'HadISST',
          'nyears': 151,
          'time_period': ['1870-1-16 11:59:59.5', '2020-10-16 12:0:0.0']},
         'Tropflux': {'keyerror': None,
          'name': 'Tropflux',
          'nyears': 40,
          'time_period': ['1979-1-15 0:0:0.0', '2018-12-15 12:0:0.0']},
         'method': 'nino3.4 SSTA during DEC regressed against nino3.4 SSTA during 6 years (centered on ENSO), the duration is the number of consecutive months during which the regression is above 0.25, time series are linearly detrended, smoothing using a triangle shaped window of 5 points',
         'name': 'ENSO Duration based on life cyle SSTA pattern',
         'ref': 'Using CDAT',
         'time_frequency': 'monthly',
         'units': 'months'},
        'metric': {'datasets': "GISS-E2-R_r1i1p126; ERA-Interim's ts & HadISST's sst & Tropflux's sst; 's ",
         'method': 'The metric is the absolute value of the relative difference between model and observations values (M = 100 * abs[[model-obs] / obs])',
         'name': 'EnsoDuration',
         'units': '%'}},
       'EnsoSeasonality': {'diagnostic': {'ERA-Interim': {'keyerror': None,
          'name': 'ERA-Interim',
          'nyears': 40,
          'time_period': ['1979-1-16 12:0:0.0', '2019-3-16 12:0:0.0']},
         'GISS-E2-R_r1i1p126': {'keyerror': None,
          'name': 'GISS-E2-R_r1i1p126',
          'nyears': 155,
          'time_period': ['1851-1-16 12:0:0.0', '2005-12-16 12:0:0.0']},
         'HadISST': {'keyerror': None,
          'name': 'HadISST',
          'nyears': 151,
          'time_period': ['1870-1-16 11:59:59.5', '2020-10-16 12:0:0.0']},
         'Tropflux': {'keyerror': None,
          'name': 'Tropflux',
          'nyears': 40,
          'time_period': ['1979-1-15 0:0:0.0', '2018-12-15 12:0:0.0']},
         'method': 'Ratio between NDJ and MAM standard deviation nino3.4 sstA, time series are linearly detrended',
         'name': 'ENSO seasonality',
         'ref': 'Using CDAT std dev calculation',
         'time_frequency': 'monthly',
         'units': 'C/C'},
        'metric': {'datasets': "GISS-E2-R_r1i1p126; ERA-Interim's ts & HadISST's sst & Tropflux's sst; 's ",
         'method': 'The metric is the absolute value of the relative difference between model and observations values (M = 100 * abs[[model-obs] / obs])',
         'name': 'EnsoSeasonality',
         'units': '%'}},
       'EnsoSstDiversity_2': {'diagnostic': {'ERA-Interim': {'keyerror': None,
          'name': 'ERA-Interim',
          'nyears': 40,
          'time_period': ['1979-1-16 12:0:0.0', '2019-3-16 12:0:0.0']},
         'GISS-E2-R_r1i1p126': {'keyerror': None,
          'name': 'GISS-E2-R_r1i1p126',
          'nyears': 155,
          'time_period': ['1851-1-16 12:0:0.0', '2005-12-16 12:0:0.0']},
         'HadISST': {'keyerror': None,
          'name': 'HadISST',
          'nyears': 151,
          'time_period': ['1870-1-16 11:59:59.5', '2020-10-16 12:0:0.0']},
         'Tropflux': {'keyerror': None,
          'name': 'Tropflux',
          'nyears': 40,
          'time_period': ['1979-1-15 0:0:0.0', '2018-12-15 12:0:0.0']},
         'method': 'Nino (Nina) events = nino3.4 sstA > 0.75 (< -0.75) during DEC, zonal SSTA (meridional averaged [-5.0 ; 5.0]), the zonal SSTA maximum (minimum) is located for each event, the diversity is the interquartile range (IQR = Q3 - Q1), time series are linearly detrended, smoothing using a triangle shaped window of 5 points',
         'name': 'ENSO Diversity (interquartile range)',
         'ref': 'Using CDAT regridding',
         'time_frequency': 'monthly',
         'units': 'long'},
        'metric': {'datasets': "GISS-E2-R_r1i1p126; ERA-Interim's ts & HadISST's sst & Tropflux's sst; 's ",
         'method': 'The metric is the absolute value of the relative difference between model and observations values (M = 100 * abs[[model-obs] / obs])',
         'name': 'EnsoSstDiversity',
         'units': '%'}},
       'EnsoSstLonRmse': {'diagnostic': {'ERA-Interim': {'name': 'ERA-Interim',
          'nyears': 40,
          'time_period': ['1979-1-16 12:0:0.0', '2019-3-16 12:0:0.0']},
         'GISS-E2-R_r1i1p126': {'keyerror': None,
          'name': 'GISS-E2-R_r1i1p126',
          'nyears': 155,
          'time_period': ['1851-1-16 12:0:0.0', '2005-12-16 12:0:0.0']},
         'HadISST': {'name': 'HadISST',
          'nyears': 151,
          'time_period': ['1870-1-16 11:59:59.5', '2020-10-16 12:0:0.0']},
         'Tropflux': {'name': 'Tropflux',
          'nyears': 40,
          'time_period': ['1979-1-15 0:0:0.0', '2018-12-15 12:0:0.0']},
         'method': 'nino3.4 SSTA during DEC regressed against equatorial_pacific SSTA, time series are linearly detrended, smoothing using a triangle shaped window of 5 points, observations and model regridded to generic_1x1deg',
         'name': 'ENSO Zonal SSTA pattern',
         'ref': 'Using CDAT regridding and rms (uncentered and biased) calculation',
         'time_frequency': 'monthly',
         'units': 'C/C'},
        'metric': {'datasets': "GISS-E2-R_r1i1p126; ERA-Interim's ts & HadISST's sst & Tropflux's sst; 's ",
         'method': 'The metric is the statistical value between the model and the observations',
         'name': 'EnsoSstLonRmse',
         'units': 'C/C'}},
       'EnsoSstSkew': {'diagnostic': {'ERA-Interim': {'keyerror': None,
          'name': 'ERA-Interim',
          'nyears': 40,
          'time_period': ['1979-1-16 12:0:0.0', '2019-3-16 12:0:0.0']},
         'GISS-E2-R_r1i1p126': {'keyerror': None,
          'name': 'GISS-E2-R_r1i1p126',
          'nyears': 155,
          'time_period': ['1851-1-16 12:0:0.0', '2005-12-16 12:0:0.0']},
         'HadISST': {'keyerror': None,
          'name': 'HadISST',
          'nyears': 151,
          'time_period': ['1870-1-16 11:59:59.5', '2020-10-16 12:0:0.0']},
         'Tropflux': {'keyerror': None,
          'name': 'Tropflux',
          'nyears': 40,
          'time_period': ['1979-1-15 0:0:0.0', '2018-12-15 12:0:0.0']},
         'method': 'Standard deviation of nino3.4 sstA, time series are linearly detrended',
         'name': 'ENSO skewness',
         'ref': 'Using CDAT regression calculation',
         'time_frequency': 'monthly',
         'units': 'C'},
        'metric': {'datasets': "GISS-E2-R_r1i1p126; ERA-Interim's ts & HadISST's sst & Tropflux's sst; 's ",
         'method': 'The metric is the absolute value of the relative difference between model and observations values (M = 100 * abs[[model-obs] / obs])',
         'name': 'EnsoSstSkew',
         'units': '%'}},
       'EnsoSstTsRmse': {'diagnostic': {'ERA-Interim': {'name': 'ERA-Interim',
          'nyears': 40,
          'time_period': ['1979-1-16 12:0:0.0', '2019-3-16 12:0:0.0']},
         'GISS-E2-R_r1i1p126': {'keyerror': None,
          'name': 'GISS-E2-R_r1i1p126',
          'nyears': 155,
          'time_period': ['1851-1-16 12:0:0.0', '2005-12-16 12:0:0.0']},
         'HadISST': {'name': 'HadISST',
          'nyears': 151,
          'time_period': ['1870-1-16 11:59:59.5', '2020-10-16 12:0:0.0']},
         'Tropflux': {'name': 'Tropflux',
          'nyears': 40,
          'time_period': ['1979-1-15 0:0:0.0', '2018-12-15 12:0:0.0']},
         'method': 'nino3.4 SSTA during DEC regressed against nino3.4 SSTA during 6 years (centered on ENSO), time series are linearly detrended, smoothing using a triangle shaped window of 5 points',
         'name': 'ENSO life cyle SSTA pattern',
         'ref': 'Using CDAT regridding and rms (uncentered and biased) calculation',
         'time_frequency': 'monthly',
         'units': 'C/C'},
        'metric': {'datasets': "GISS-E2-R_r1i1p126; ERA-Interim's ts & HadISST's sst & Tropflux's sst; 's ",
         'method': 'The metric is the statistical value between the model and the observations',
         'name': 'EnsoSstTsRmse',
         'units': 'C/C'}},
       'SeasonalPrLatRmse': {'diagnostic': {'ERA-Interim': {'name': 'ERA-Interim',
          'nyears': 40,
          'time_period': ['1979-1-16 12:0:0.0', '2019-3-16 12:0:0.0']},
         'GISS-E2-R_r1i1p126': {'keyerror': None,
          'name': 'GISS-E2-R_r1i1p126',
          'nyears': 155,
          'time_period': ['1851-1-16 12:0:0.0', '2005-12-16 12:0:0.0']},
         'GPCPv2.3': {'name': 'GPCPv2.3',
          'nyears': 41,
          'time_period': ['1979-1-1 0:0:0.0', '2019-7-1 0:0:0.0']},
         'method': 'Meridional root mean square error of nino3_LatExt climatological pr STD, time series are linearly detrended, observations and model regridded to generic_1x1deg',
         'name': 'pr meridional seasonality RMSE',
         'ref': 'Using CDAT regridding and rms (uncentered and biased) calculation',
         'time_frequency': 'monthly',
         'units': 'mm/day'},
        'metric': {'datasets': "GISS-E2-R_r1i1p126; ERA-Interim's pr & GPCPv2.3's precip; 's ",
         'method': 'The metric is the statistical value between the model and the observations',
         'name': 'SeasonalPrLatRmse',
         'units': 'mm/day'}},
       'SeasonalPrLonRmse': {'diagnostic': {'ERA-Interim': {'name': 'ERA-Interim',
          'nyears': 40,
          'time_period': ['1979-1-16 12:0:0.0', '2019-3-16 12:0:0.0']},
         'GISS-E2-R_r1i1p126': {'keyerror': None,
          'name': 'GISS-E2-R_r1i1p126',
          'nyears': 155,
          'time_period': ['1851-1-16 12:0:0.0', '2005-12-16 12:0:0.0']},
         'GPCPv2.3': {'name': 'GPCPv2.3',
          'nyears': 41,
          'time_period': ['1979-1-1 0:0:0.0', '2019-7-1 0:0:0.0']},
         'method': 'Zonal root mean square error of equatorial_pacific climatological pr STD, time series are linearly detrended, observations and model regridded to generic_1x1deg',
         'name': 'pr zonal seasonality RMSE',
         'ref': 'Using CDAT regridding and rms (uncentered and biased) calculation',
         'time_frequency': 'monthly',
         'units': 'mm/day'},
        'metric': {'datasets': "GISS-E2-R_r1i1p126; ERA-Interim's pr & GPCPv2.3's precip; 's ",
         'method': 'The metric is the statistical value between the model and the observations',
         'name': 'SeasonalPrLonRmse',
         'units': 'mm/day'}},
       'SeasonalSstLonRmse': {'diagnostic': {'ERA-Interim': {'name': 'ERA-Interim',
          'nyears': 40,
          'time_period': ['1979-1-16 12:0:0.0', '2019-3-16 12:0:0.0']},
         'GISS-E2-R_r1i1p126': {'keyerror': None,
          'name': 'GISS-E2-R_r1i1p126',
          'nyears': 155,
          'time_period': ['1851-1-16 12:0:0.0', '2005-12-16 12:0:0.0']},
         'HadISST': {'name': 'HadISST',
          'nyears': 151,
          'time_period': ['1870-1-16 11:59:59.5', '2020-10-16 12:0:0.0']},
         'Tropflux': {'name': 'Tropflux',
          'nyears': 40,
          'time_period': ['1979-1-15 0:0:0.0', '2018-12-15 12:0:0.0']},
         'method': 'Zonal root mean square error of equatorial_pacific climatological sst STD, time series are linearly detrended, observations and model regridded to generic_1x1deg',
         'name': 'sst zonal seasonality RMSE',
         'ref': 'Using CDAT regridding and rms (uncentered and biased) calculation',
         'time_frequency': 'monthly',
         'units': 'C'},
        'metric': {'datasets': "GISS-E2-R_r1i1p126; ERA-Interim's ts & HadISST's sst & Tropflux's sst; 's ",
         'method': 'The metric is the statistical value between the model and the observations',
         'name': 'SeasonalSstLonRmse',
         'units': 'C'}},
       'SeasonalTauxLonRmse': {'diagnostic': {'ERA-Interim': {'name': 'ERA-Interim',
          'nyears': 40,
          'time_period': ['1979-1-16 12:0:0.0', '2019-3-16 12:0:0.0']},
         'GISS-E2-R_r1i1p126': {'keyerror': None,
          'name': 'GISS-E2-R_r1i1p126',
          'nyears': 155,
          'time_period': ['1851-1-16 12:0:0.0', '2005-12-16 12:0:0.0']},
         'Tropflux': {'name': 'Tropflux',
          'nyears': 40,
          'time_period': ['1979-1-15 0:0:0.0', '2018-12-15 12:0:0.0']},
         'method': 'Zonal root mean square error of equatorial_pacific climatological taux STD, time series are linearly detrended, observations and model regridded to generic_1x1deg',
         'name': 'taux zonal seasonality RMSE',
         'ref': 'Using CDAT regridding and rms (uncentered and biased) calculation',
         'time_frequency': 'monthly',
         'units': '1e-3 N/m2'},
        'metric': {'datasets': "GISS-E2-R_r1i1p126; ERA-Interim's tauu & Tropflux's taux; 's ",
         'method': 'The metric is the statistical value between the model and the observations',
         'name': 'SeasonalTauxLonRmse',
         'units': '1e-3 N/m2'}}},
      'name': 'Metrics Collection for ENSO performance'},
     'value': {'BiasPrLatRmse': {'diagnostic': {'ERA-Interim': {'value': None,
         'value_error': None},
        'GISS-E2-R_r1i1p126': {'value': None, 'value_error': None},
        'GPCPv2.3': {'value': None, 'value_error': None}},
       'metric': {'ERA-Interim': {'value': 2.108449692147058,
         'value_error': None},
        'GPCPv2.3': {'value': 2.8924783697656657, 'value_error': None}}},
      'BiasPrLonRmse': {'diagnostic': {'ERA-Interim': {'value': None,
         'value_error': None},
        'GISS-E2-R_r1i1p126': {'value': None, 'value_error': None},
        'GPCPv2.3': {'value': None, 'value_error': None}},
       'metric': {'ERA-Interim': {'value': 1.6701120019865148,
         'value_error': None},
        'GPCPv2.3': {'value': 2.116500194981419, 'value_error': None}}},
      'BiasSstLonRmse': {'diagnostic': {'ERA-Interim': {'value': None,
         'value_error': None},
        'GISS-E2-R_r1i1p126': {'value': None, 'value_error': None},
        'HadISST': {'value': None, 'value_error': None},
        'Tropflux': {'value': None, 'value_error': None}},
       'metric': {'ERA-Interim': {'value': 1.0166991454504684,
         'value_error': None},
        'HadISST': {'value': 1.1889259705042041, 'value_error': None},
        'Tropflux': {'value': 0.9832355400290084, 'value_error': None}}},
      'BiasTauxLonRmse': {'diagnostic': {'ERA-Interim': {'value': None,
         'value_error': None},
        'GISS-E2-R_r1i1p126': {'value': None, 'value_error': None},
        'Tropflux': {'value': None, 'value_error': None}},
       'metric': {'ERA-Interim': {'value': 17.79551757401917,
         'value_error': None},
        'Tropflux': {'value': 17.411471293198343, 'value_error': None}}},
      'EnsoAmpl': {'diagnostic': {'ERA-Interim': {'value': 0.8989844997845644,
         'value_error': 0.14214193002531866},
        'GISS-E2-R_r1i1p126': {'value': 0.5297230726246832,
         'value_error': 0.04254838108977677},
        'HadISST': {'value': 0.7665787872085695,
         'value_error': 0.06238329697691264},
        'Tropflux': {'value': 0.9039789553693535,
         'value_error': 0.14293162279134272}},
       'metric': {'ERA-Interim': {'value': 41.07539420850662,
         'value_error': 14.049736458402151},
        'HadISST': {'value': 30.897765309470138,
         'value_error': 11.173885164023961},
        'Tropflux': {'value': 41.40095082100162,
         'value_error': 13.972112101880697}}},
      'EnsoDuration': {'diagnostic': {'ERA-Interim': {'value': 13.0,
         'value_error': None},
        'GISS-E2-R_r1i1p126': {'value': 12.0, 'value_error': None},
        'HadISST': {'value': 13.0, 'value_error': None},
        'Tropflux': {'value': 13.0, 'value_error': None}},
       'metric': {'ERA-Interim': {'value': 7.6923076923076925,
         'value_error': None},
        'HadISST': {'value': 7.6923076923076925, 'value_error': None},
        'Tropflux': {'value': 7.6923076923076925, 'value_error': None}}},
      'EnsoSeasonality': {'diagnostic': {'ERA-Interim': {'value': 2.0466846866656914,
         'value_error': 0.6513411033995022},
        'GISS-E2-R_r1i1p126': {'value': 1.8391392829893518,
         'value_error': 0.2959252888914922},
        'HadISST': {'value': 1.6639865947361325,
         'value_error': 0.2712772451657809},
        'Tropflux': {'value': 2.0532132553583624,
         'value_error': 0.6534187683977347}},
       'metric': {'ERA-Interim': {'value': 10.140565619536506,
         'value_error': 43.05581245782263},
        'HadISST': {'value': 10.526087698500612,
         'value_error': 35.80301768500558},
        'Tropflux': {'value': 10.426290197101162,
         'value_error': 42.91890859334772}}},
      'EnsoSstDiversity_2': {'diagnostic': {'ERA-Interim': {'value': 33.25,
         'value_error': None},
        'GISS-E2-R_r1i1p126': {'value': 12.0, 'value_error': None},
        'HadISST': {'value': 49.0, 'value_error': None},
        'Tropflux': {'value': 32.0, 'value_error': None}},
       'metric': {'ERA-Interim': {'value': 63.90977443609023,
         'value_error': None},
        'HadISST': {'value': 75.51020408163265, 'value_error': None},
        'Tropflux': {'value': 62.5, 'value_error': None}}},
      'EnsoSstLonRmse': {'diagnostic': {'ERA-Interim': {'value': None,
         'value_error': None},
        'GISS-E2-R_r1i1p126': {'value': None, 'value_error': None},
        'HadISST': {'value': None, 'value_error': None},
        'Tropflux': {'value': None, 'value_error': None}},
       'metric': {'ERA-Interim': {'value': 0.13892991846928898,
         'value_error': None},
        'HadISST': {'value': 0.14718425571904142, 'value_error': None},
        'Tropflux': {'value': 0.13765641027284994, 'value_error': None}}},
      'EnsoSstSkew': {'diagnostic': {'ERA-Interim': {'value': 0.39098111106809963,
         'value_error': 0.061819541653923164},
        'GISS-E2-R_r1i1p126': {'value': -0.3187068349855984,
         'value_error': -0.02559914901137718},
        'HadISST': {'value': 0.38989908235027515,
         'value_error': 0.03172953733021198},
        'Tropflux': {'value': 0.39744741059612115,
         'value_error': 0.06284195338099416}},
       'metric': {'ERA-Interim': {'value': 181.51463739896306,
         'value_error': -19.4360090759059},
        'HadISST': {'value': 181.7408528033622,
         'value_error': -13.217559555412286},
        'Tropflux': {'value': 180.188429082373,
         'value_error': -19.119793513888155}}},
      'EnsoSstTsRmse': {'diagnostic': {'ERA-Interim': {'value': None,
         'value_error': None},
        'GISS-E2-R_r1i1p126': {'value': None, 'value_error': None},
        'HadISST': {'value': None, 'value_error': None},
        'Tropflux': {'value': None, 'value_error': None}},
       'metric': {'ERA-Interim': {'value': 0.16877714588318052,
         'value_error': None},
        'HadISST': {'value': 0.1601923519630566, 'value_error': None},
        'Tropflux': {'value': 0.1693308232138842, 'value_error': None}}},
      'SeasonalPrLatRmse': {'diagnostic': {'ERA-Interim': {'value': None,
         'value_error': None},
        'GISS-E2-R_r1i1p126': {'value': None, 'value_error': None},
        'GPCPv2.3': {'value': None, 'value_error': None}},
       'metric': {'ERA-Interim': {'value': 0.7048906357782685,
         'value_error': None},
        'GPCPv2.3': {'value': 0.8627111753417117, 'value_error': None}}},
      'SeasonalPrLonRmse': {'diagnostic': {'ERA-Interim': {'value': None,
         'value_error': None},
        'GISS-E2-R_r1i1p126': {'value': None, 'value_error': None},
        'GPCPv2.3': {'value': None, 'value_error': None}},
       'metric': {'ERA-Interim': {'value': 0.2790387396437008,
         'value_error': None},
        'GPCPv2.3': {'value': 0.49783703011575964, 'value_error': None}}},
      'SeasonalSstLonRmse': {'diagnostic': {'ERA-Interim': {'value': None,
         'value_error': None},
        'GISS-E2-R_r1i1p126': {'value': None, 'value_error': None},
        'HadISST': {'value': None, 'value_error': None},
        'Tropflux': {'value': None, 'value_error': None}},
       'metric': {'ERA-Interim': {'value': 0.28352387771746884,
         'value_error': None},
        'HadISST': {'value': 0.2846629746549678, 'value_error': None},
        'Tropflux': {'value': 0.2915074972176249, 'value_error': None}}},
      'SeasonalTauxLonRmse': {'diagnostic': {'ERA-Interim': {'value': None,
         'value_error': None},
        'GISS-E2-R_r1i1p126': {'value': None, 'value_error': None},
        'Tropflux': {'value': None, 'value_error': None}},
       'metric': {'ERA-Interim': {'value': 1.9405127366894974,
         'value_error': None},
        'Tropflux': {'value': 2.0952923710106885, 'value_error': None}}}}},
    'r1i1p127': {'metadata': {'description_of_the_collection': 'Describe which science question this collection is about',
      'metrics': {'BiasPrLatRmse': {'diagnostic': {'ERA-Interim': {'name': 'ERA-Interim',
          'nyears': 40,
          'time_period': ['1979-1-16 12:0:0.0', '2019-3-16 12:0:0.0']},
         'GISS-E2-R_r1i1p127': {'keyerror': None,
          'name': 'GISS-E2-R_r1i1p127',
          'nyears': 155,
          'time_period': ['1851-1-16 12:0:0.0', '2005-12-16 12:0:0.0']},
         'GPCPv2.3': {'name': 'GPCPv2.3',
          'nyears': 41,
          'time_period': ['1979-1-1 0:0:0.0', '2019-7-1 0:0:0.0']},
         'method': 'Meridional root mean square error of nino3_LatExt pr, time series are linearly detrended, observations and model regridded to generic_1x1deg',
         'name': 'pr Meridional RMSE',
         'ref': 'Using CDAT regridding and rms (uncentered and biased) calculation',
         'time_frequency': 'monthly',
         'units': 'mm/day'},
        'metric': {'datasets': "GISS-E2-R_r1i1p127; ERA-Interim's pr & GPCPv2.3's precip; 's ",
         'method': 'The metric is the statistical value between the model and the observations',
         'name': 'BiasPrLatRmse',
         'units': 'mm/day'}},
       'BiasPrLonRmse': {'diagnostic': {'ERA-Interim': {'name': 'ERA-Interim',
          'nyears': 40,
          'time_period': ['1979-1-16 12:0:0.0', '2019-3-16 12:0:0.0']},
         'GISS-E2-R_r1i1p127': {'keyerror': None,
          'name': 'GISS-E2-R_r1i1p127',
          'nyears': 155,
          'time_period': ['1851-1-16 12:0:0.0', '2005-12-16 12:0:0.0']},
         'GPCPv2.3': {'name': 'GPCPv2.3',
          'nyears': 41,
          'time_period': ['1979-1-1 0:0:0.0', '2019-7-1 0:0:0.0']},
         'method': 'Zonal root mean square error of equatorial_pacific pr, time series are linearly detrended, observations and model regridded to generic_1x1deg',
         'name': 'pr Zonal RMSE',
         'ref': 'Using CDAT regridding and rms (uncentered and biased) calculation',
         'time_frequency': 'monthly',
         'units': 'mm/day'},
        'metric': {'datasets': "GISS-E2-R_r1i1p127; ERA-Interim's pr & GPCPv2.3's precip; 's ",
         'method': 'The metric is the statistical value between the model and the observations',
         'name': 'BiasPrLonRmse',
         'units': 'mm/day'}},
       'BiasSstLonRmse': {'diagnostic': {'ERA-Interim': {'name': 'ERA-Interim',
          'nyears': 40,
          'time_period': ['1979-1-16 12:0:0.0', '2019-3-16 12:0:0.0']},
         'GISS-E2-R_r1i1p127': {'keyerror': None,
          'name': 'GISS-E2-R_r1i1p127',
          'nyears': 155,
          'time_period': ['1851-1-16 12:0:0.0', '2005-12-16 12:0:0.0']},
         'HadISST': {'name': 'HadISST',
          'nyears': 151,
          'time_period': ['1870-1-16 11:59:59.5', '2020-10-16 12:0:0.0']},
         'Tropflux': {'name': 'Tropflux',
          'nyears': 40,
          'time_period': ['1979-1-15 0:0:0.0', '2018-12-15 12:0:0.0']},
         'method': 'Zonal root mean square error of equatorial_pacific sst, time series are linearly detrended, observations and model regridded to generic_1x1deg',
         'name': 'sst Zonal RMSE',
         'ref': 'Using CDAT regridding and rms (uncentered and biased) calculation',
         'time_frequency': 'monthly',
         'units': 'C'},
        'metric': {'datasets': "GISS-E2-R_r1i1p127; ERA-Interim's ts & HadISST's sst & Tropflux's sst; 's ",
         'method': 'The metric is the statistical value between the model and the observations',
         'name': 'BiasSstLonRmse',
         'units': 'C'}},
       'BiasTauxLonRmse': {'diagnostic': {'ERA-Interim': {'name': 'ERA-Interim',
          'nyears': 40,
          'time_period': ['1979-1-16 12:0:0.0', '2019-3-16 12:0:0.0']},
         'GISS-E2-R_r1i1p127': {'keyerror': None,
          'name': 'GISS-E2-R_r1i1p127',
          'nyears': 155,
          'time_period': ['1851-1-16 12:0:0.0', '2005-12-16 12:0:0.0']},
         'Tropflux': {'name': 'Tropflux',
          'nyears': 40,
          'time_period': ['1979-1-15 0:0:0.0', '2018-12-15 12:0:0.0']},
         'method': 'Zonal root mean square error of equatorial_pacific taux, time series are linearly detrended, observations and model regridded to generic_1x1deg',
         'name': 'taux Zonal RMSE',
         'ref': 'Using CDAT regridding and rms (uncentered and biased) calculation',
         'time_frequency': 'monthly',
         'units': '1e-3 N/m2'},
        'metric': {'datasets': "GISS-E2-R_r1i1p127; ERA-Interim's tauu & Tropflux's taux; 's ",
         'method': 'The metric is the statistical value between the model and the observations',
         'name': 'BiasTauxLonRmse',
         'units': '1e-3 N/m2'}},
       'EnsoAmpl': {'diagnostic': {'ERA-Interim': {'keyerror': None,
          'name': 'ERA-Interim',
          'nyears': 40,
          'time_period': ['1979-1-16 12:0:0.0', '2019-3-16 12:0:0.0']},
         'GISS-E2-R_r1i1p127': {'keyerror': None,
          'name': 'GISS-E2-R_r1i1p127',
          'nyears': 155,
          'time_period': ['1851-1-16 12:0:0.0', '2005-12-16 12:0:0.0']},
         'HadISST': {'keyerror': None,
          'name': 'HadISST',
          'nyears': 151,
          'time_period': ['1870-1-16 11:59:59.5', '2020-10-16 12:0:0.0']},
         'Tropflux': {'keyerror': None,
          'name': 'Tropflux',
          'nyears': 40,
          'time_period': ['1979-1-15 0:0:0.0', '2018-12-15 12:0:0.0']},
         'method': 'Standard deviation of nino3.4 sstA, time series are linearly detrended',
         'name': 'ENSO amplitude',
         'ref': 'Using CDAT regression calculation',
         'time_frequency': 'monthly',
         'units': 'C'},
        'metric': {'datasets': "GISS-E2-R_r1i1p127; ERA-Interim's ts & HadISST's sst & Tropflux's sst; 's ",
         'method': 'The metric is the absolute value of the relative difference between model and observations values (M = 100 * abs[[model-obs] / obs])',
         'name': 'EnsoAmpl',
         'units': '%'}},
       'EnsoDuration': {'diagnostic': {'ERA-Interim': {'keyerror': None,
          'name': 'ERA-Interim',
          'nyears': 40,
          'time_period': ['1979-1-16 12:0:0.0', '2019-3-16 12:0:0.0']},
         'GISS-E2-R_r1i1p127': {'keyerror': None,
          'name': 'GISS-E2-R_r1i1p127',
          'nyears': 155,
          'time_period': ['1851-1-16 12:0:0.0', '2005-12-16 12:0:0.0']},
         'HadISST': {'keyerror': None,
          'name': 'HadISST',
          'nyears': 151,
          'time_period': ['1870-1-16 11:59:59.5', '2020-10-16 12:0:0.0']},
         'Tropflux': {'keyerror': None,
          'name': 'Tropflux',
          'nyears': 40,
          'time_period': ['1979-1-15 0:0:0.0', '2018-12-15 12:0:0.0']},
         'method': 'nino3.4 SSTA during DEC regressed against nino3.4 SSTA during 6 years (centered on ENSO), the duration is the number of consecutive months during which the regression is above 0.25, time series are linearly detrended, smoothing using a triangle shaped window of 5 points',
         'name': 'ENSO Duration based on life cyle SSTA pattern',
         'ref': 'Using CDAT',
         'time_frequency': 'monthly',
         'units': 'months'},
        'metric': {'datasets': "GISS-E2-R_r1i1p127; ERA-Interim's ts & HadISST's sst & Tropflux's sst; 's ",
         'method': 'The metric is the absolute value of the relative difference between model and observations values (M = 100 * abs[[model-obs] / obs])',
         'name': 'EnsoDuration',
         'units': '%'}},
       'EnsoSeasonality': {'diagnostic': {'ERA-Interim': {'keyerror': None,
          'name': 'ERA-Interim',
          'nyears': 40,
          'time_period': ['1979-1-16 12:0:0.0', '2019-3-16 12:0:0.0']},
         'GISS-E2-R_r1i1p127': {'keyerror': None,
          'name': 'GISS-E2-R_r1i1p127',
          'nyears': 155,
          'time_period': ['1851-1-16 12:0:0.0', '2005-12-16 12:0:0.0']},
         'HadISST': {'keyerror': None,
          'name': 'HadISST',
          'nyears': 151,
          'time_period': ['1870-1-16 11:59:59.5', '2020-10-16 12:0:0.0']},
         'Tropflux': {'keyerror': None,
          'name': 'Tropflux',
          'nyears': 40,
          'time_period': ['1979-1-15 0:0:0.0', '2018-12-15 12:0:0.0']},
         'method': 'Ratio between NDJ and MAM standard deviation nino3.4 sstA, time series are linearly detrended',
         'name': 'ENSO seasonality',
         'ref': 'Using CDAT std dev calculation',
         'time_frequency': 'monthly',
         'units': 'C/C'},
        'metric': {'datasets': "GISS-E2-R_r1i1p127; ERA-Interim's ts & HadISST's sst & Tropflux's sst; 's ",
         'method': 'The metric is the absolute value of the relative difference between model and observations values (M = 100 * abs[[model-obs] / obs])',
         'name': 'EnsoSeasonality',
         'units': '%'}},
       'EnsoSstDiversity_2': {'diagnostic': {'ERA-Interim': {'keyerror': None,
          'name': 'ERA-Interim',
          'nyears': 40,
          'time_period': ['1979-1-16 12:0:0.0', '2019-3-16 12:0:0.0']},
         'GISS-E2-R_r1i1p127': {'keyerror': None,
          'name': 'GISS-E2-R_r1i1p127',
          'nyears': 155,
          'time_period': ['1851-1-16 12:0:0.0', '2005-12-16 12:0:0.0']},
         'HadISST': {'keyerror': None,
          'name': 'HadISST',
          'nyears': 151,
          'time_period': ['1870-1-16 11:59:59.5', '2020-10-16 12:0:0.0']},
         'Tropflux': {'keyerror': None,
          'name': 'Tropflux',
          'nyears': 40,
          'time_period': ['1979-1-15 0:0:0.0', '2018-12-15 12:0:0.0']},
         'method': 'Nino (Nina) events = nino3.4 sstA > 0.75 (< -0.75) during DEC, zonal SSTA (meridional averaged [-5.0 ; 5.0]), the zonal SSTA maximum (minimum) is located for each event, the diversity is the interquartile range (IQR = Q3 - Q1), time series are linearly detrended, smoothing using a triangle shaped window of 5 points',
         'name': 'ENSO Diversity (interquartile range)',
         'ref': 'Using CDAT regridding',
         'time_frequency': 'monthly',
         'units': 'long'},
        'metric': {'datasets': "GISS-E2-R_r1i1p127; ERA-Interim's ts & HadISST's sst & Tropflux's sst; 's ",
         'method': 'The metric is the absolute value of the relative difference between model and observations values (M = 100 * abs[[model-obs] / obs])',
         'name': 'EnsoSstDiversity',
         'units': '%'}},
       'EnsoSstLonRmse': {'diagnostic': {'ERA-Interim': {'name': 'ERA-Interim',
          'nyears': 40,
          'time_period': ['1979-1-16 12:0:0.0', '2019-3-16 12:0:0.0']},
         'GISS-E2-R_r1i1p127': {'keyerror': None,
          'name': 'GISS-E2-R_r1i1p127',
          'nyears': 155,
          'time_period': ['1851-1-16 12:0:0.0', '2005-12-16 12:0:0.0']},
         'HadISST': {'name': 'HadISST',
          'nyears': 151,
          'time_period': ['1870-1-16 11:59:59.5', '2020-10-16 12:0:0.0']},
         'Tropflux': {'name': 'Tropflux',
          'nyears': 40,
          'time_period': ['1979-1-15 0:0:0.0', '2018-12-15 12:0:0.0']},
         'method': 'nino3.4 SSTA during DEC regressed against equatorial_pacific SSTA, time series are linearly detrended, smoothing using a triangle shaped window of 5 points, observations and model regridded to generic_1x1deg',
         'name': 'ENSO Zonal SSTA pattern',
         'ref': 'Using CDAT regridding and rms (uncentered and biased) calculation',
         'time_frequency': 'monthly',
         'units': 'C/C'},
        'metric': {'datasets': "GISS-E2-R_r1i1p127; ERA-Interim's ts & HadISST's sst & Tropflux's sst; 's ",
         'method': 'The metric is the statistical value between the model and the observations',
         'name': 'EnsoSstLonRmse',
         'units': 'C/C'}},
       'EnsoSstSkew': {'diagnostic': {'ERA-Interim': {'keyerror': None,
          'name': 'ERA-Interim',
          'nyears': 40,
          'time_period': ['1979-1-16 12:0:0.0', '2019-3-16 12:0:0.0']},
         'GISS-E2-R_r1i1p127': {'keyerror': None,
          'name': 'GISS-E2-R_r1i1p127',
          'nyears': 155,
          'time_period': ['1851-1-16 12:0:0.0', '2005-12-16 12:0:0.0']},
         'HadISST': {'keyerror': None,
          'name': 'HadISST',
          'nyears': 151,
          'time_period': ['1870-1-16 11:59:59.5', '2020-10-16 12:0:0.0']},
         'Tropflux': {'keyerror': None,
          'name': 'Tropflux',
          'nyears': 40,
          'time_period': ['1979-1-15 0:0:0.0', '2018-12-15 12:0:0.0']},
         'method': 'Standard deviation of nino3.4 sstA, time series are linearly detrended',
         'name': 'ENSO skewness',
         'ref': 'Using CDAT regression calculation',
         'time_frequency': 'monthly',
         'units': 'C'},
        'metric': {'datasets': "GISS-E2-R_r1i1p127; ERA-Interim's ts & HadISST's sst & Tropflux's sst; 's ",
         'method': 'The metric is the absolute value of the relative difference between model and observations values (M = 100 * abs[[model-obs] / obs])',
         'name': 'EnsoSstSkew',
         'units': '%'}},
       'EnsoSstTsRmse': {'diagnostic': {'ERA-Interim': {'name': 'ERA-Interim',
          'nyears': 40,
          'time_period': ['1979-1-16 12:0:0.0', '2019-3-16 12:0:0.0']},
         'GISS-E2-R_r1i1p127': {'keyerror': None,
          'name': 'GISS-E2-R_r1i1p127',
          'nyears': 155,
          'time_period': ['1851-1-16 12:0:0.0', '2005-12-16 12:0:0.0']},
         'HadISST': {'name': 'HadISST',
          'nyears': 151,
          'time_period': ['1870-1-16 11:59:59.5', '2020-10-16 12:0:0.0']},
         'Tropflux': {'name': 'Tropflux',
          'nyears': 40,
          'time_period': ['1979-1-15 0:0:0.0', '2018-12-15 12:0:0.0']},
         'method': 'nino3.4 SSTA during DEC regressed against nino3.4 SSTA during 6 years (centered on ENSO), time series are linearly detrended, smoothing using a triangle shaped window of 5 points',
         'name': 'ENSO life cyle SSTA pattern',
         'ref': 'Using CDAT regridding and rms (uncentered and biased) calculation',
         'time_frequency': 'monthly',
         'units': 'C/C'},
        'metric': {'datasets': "GISS-E2-R_r1i1p127; ERA-Interim's ts & HadISST's sst & Tropflux's sst; 's ",
         'method': 'The metric is the statistical value between the model and the observations',
         'name': 'EnsoSstTsRmse',
         'units': 'C/C'}},
       'SeasonalPrLatRmse': {'diagnostic': {'ERA-Interim': {'name': 'ERA-Interim',
          'nyears': 40,
          'time_period': ['1979-1-16 12:0:0.0', '2019-3-16 12:0:0.0']},
         'GISS-E2-R_r1i1p127': {'keyerror': None,
          'name': 'GISS-E2-R_r1i1p127',
          'nyears': 155,
          'time_period': ['1851-1-16 12:0:0.0', '2005-12-16 12:0:0.0']},
         'GPCPv2.3': {'name': 'GPCPv2.3',
          'nyears': 41,
          'time_period': ['1979-1-1 0:0:0.0', '2019-7-1 0:0:0.0']},
         'method': 'Meridional root mean square error of nino3_LatExt climatological pr STD, time series are linearly detrended, observations and model regridded to generic_1x1deg',
         'name': 'pr meridional seasonality RMSE',
         'ref': 'Using CDAT regridding and rms (uncentered and biased) calculation',
         'time_frequency': 'monthly',
         'units': 'mm/day'},
        'metric': {'datasets': "GISS-E2-R_r1i1p127; ERA-Interim's pr & GPCPv2.3's precip; 's ",
         'method': 'The metric is the statistical value between the model and the observations',
         'name': 'SeasonalPrLatRmse',
         'units': 'mm/day'}},
       'SeasonalPrLonRmse': {'diagnostic': {'ERA-Interim': {'name': 'ERA-Interim',
          'nyears': 40,
          'time_period': ['1979-1-16 12:0:0.0', '2019-3-16 12:0:0.0']},
         'GISS-E2-R_r1i1p127': {'keyerror': None,
          'name': 'GISS-E2-R_r1i1p127',
          'nyears': 155,
          'time_period': ['1851-1-16 12:0:0.0', '2005-12-16 12:0:0.0']},
         'GPCPv2.3': {'name': 'GPCPv2.3',
          'nyears': 41,
          'time_period': ['1979-1-1 0:0:0.0', '2019-7-1 0:0:0.0']},
         'method': 'Zonal root mean square error of equatorial_pacific climatological pr STD, time series are linearly detrended, observations and model regridded to generic_1x1deg',
         'name': 'pr zonal seasonality RMSE',
         'ref': 'Using CDAT regridding and rms (uncentered and biased) calculation',
         'time_frequency': 'monthly',
         'units': 'mm/day'},
        'metric': {'datasets': "GISS-E2-R_r1i1p127; ERA-Interim's pr & GPCPv2.3's precip; 's ",
         'method': 'The metric is the statistical value between the model and the observations',
         'name': 'SeasonalPrLonRmse',
         'units': 'mm/day'}},
       'SeasonalSstLonRmse': {'diagnostic': {'ERA-Interim': {'name': 'ERA-Interim',
          'nyears': 40,
          'time_period': ['1979-1-16 12:0:0.0', '2019-3-16 12:0:0.0']},
         'GISS-E2-R_r1i1p127': {'keyerror': None,
          'name': 'GISS-E2-R_r1i1p127',
          'nyears': 155,
          'time_period': ['1851-1-16 12:0:0.0', '2005-12-16 12:0:0.0']},
         'HadISST': {'name': 'HadISST',
          'nyears': 151,
          'time_period': ['1870-1-16 11:59:59.5', '2020-10-16 12:0:0.0']},
         'Tropflux': {'name': 'Tropflux',
          'nyears': 40,
          'time_period': ['1979-1-15 0:0:0.0', '2018-12-15 12:0:0.0']},
         'method': 'Zonal root mean square error of equatorial_pacific climatological sst STD, time series are linearly detrended, observations and model regridded to generic_1x1deg',
         'name': 'sst zonal seasonality RMSE',
         'ref': 'Using CDAT regridding and rms (uncentered and biased) calculation',
         'time_frequency': 'monthly',
         'units': 'C'},
        'metric': {'datasets': "GISS-E2-R_r1i1p127; ERA-Interim's ts & HadISST's sst & Tropflux's sst; 's ",
         'method': 'The metric is the statistical value between the model and the observations',
         'name': 'SeasonalSstLonRmse',
         'units': 'C'}},
       'SeasonalTauxLonRmse': {'diagnostic': {'ERA-Interim': {'name': 'ERA-Interim',
          'nyears': 40,
          'time_period': ['1979-1-16 12:0:0.0', '2019-3-16 12:0:0.0']},
         'GISS-E2-R_r1i1p127': {'keyerror': None,
          'name': 'GISS-E2-R_r1i1p127',
          'nyears': 155,
          'time_period': ['1851-1-16 12:0:0.0', '2005-12-16 12:0:0.0']},
         'Tropflux': {'name': 'Tropflux',
          'nyears': 40,
          'time_period': ['1979-1-15 0:0:0.0', '2018-12-15 12:0:0.0']},
         'method': 'Zonal root mean square error of equatorial_pacific climatological taux STD, time series are linearly detrended, observations and model regridded to generic_1x1deg',
         'name': 'taux zonal seasonality RMSE',
         'ref': 'Using CDAT regridding and rms (uncentered and biased) calculation',
         'time_frequency': 'monthly',
         'units': '1e-3 N/m2'},
        'metric': {'datasets': "GISS-E2-R_r1i1p127; ERA-Interim's tauu & Tropflux's taux; 's ",
         'method': 'The metric is the statistical value between the model and the observations',
         'name': 'SeasonalTauxLonRmse',
         'units': '1e-3 N/m2'}}},
      'name': 'Metrics Collection for ENSO performance'},
     'value': {'BiasPrLatRmse': {'diagnostic': {'ERA-Interim': {'value': None,
         'value_error': None},
        'GISS-E2-R_r1i1p127': {'value': None, 'value_error': None},
        'GPCPv2.3': {'value': None, 'value_error': None}},
       'metric': {'ERA-Interim': {'value': 2.1335013604453534,
         'value_error': None},
        'GPCPv2.3': {'value': 2.9197711022684567, 'value_error': None}}},
      'BiasPrLonRmse': {'diagnostic': {'ERA-Interim': {'value': None,
         'value_error': None},
        'GISS-E2-R_r1i1p127': {'value': None, 'value_error': None},
        'GPCPv2.3': {'value': None, 'value_error': None}},
       'metric': {'ERA-Interim': {'value': 1.713027782496193,
         'value_error': None},
        'GPCPv2.3': {'value': 2.163798113845931, 'value_error': None}}},
      'BiasSstLonRmse': {'diagnostic': {'ERA-Interim': {'value': None,
         'value_error': None},
        'GISS-E2-R_r1i1p127': {'value': None, 'value_error': None},
        'HadISST': {'value': None, 'value_error': None},
        'Tropflux': {'value': None, 'value_error': None}},
       'metric': {'ERA-Interim': {'value': 1.0414209053367802,
         'value_error': None},
        'HadISST': {'value': 1.214728916999408, 'value_error': None},
        'Tropflux': {'value': 1.0076439759615934, 'value_error': None}}},
      'BiasTauxLonRmse': {'diagnostic': {'ERA-Interim': {'value': None,
         'value_error': None},
        'GISS-E2-R_r1i1p127': {'value': None, 'value_error': None},
        'Tropflux': {'value': None, 'value_error': None}},
       'metric': {'ERA-Interim': {'value': 18.179309057479852,
         'value_error': None},
        'Tropflux': {'value': 17.791160421190867, 'value_error': None}}},
      'EnsoAmpl': {'diagnostic': {'ERA-Interim': {'value': 0.8989844997845644,
         'value_error': 0.14214193002531866},
        'GISS-E2-R_r1i1p127': {'value': 0.49482378282388456,
         'value_error': 0.039745202676479637},
        'HadISST': {'value': 0.7665787872085695,
         'value_error': 0.06238329697691264},
        'Tropflux': {'value': 0.9039789553693535,
         'value_error': 0.14293162279134272}},
       'metric': {'ERA-Interim': {'value': 44.95747335549547,
         'value_error': 13.124109749606655},
        'HadISST': {'value': 35.45036843169863,
         'value_error': 10.437725693740871},
        'Tropflux': {'value': 45.26158160156435,
         'value_error': 13.05159945183371}}},
      'EnsoDuration': {'diagnostic': {'ERA-Interim': {'value': 13.0,
         'value_error': None},
        'GISS-E2-R_r1i1p127': {'value': 12.0, 'value_error': None},
        'HadISST': {'value': 13.0, 'value_error': None},
        'Tropflux': {'value': 13.0, 'value_error': None}},
       'metric': {'ERA-Interim': {'value': 7.6923076923076925,
         'value_error': None},
        'HadISST': {'value': 7.6923076923076925, 'value_error': None},
        'Tropflux': {'value': 7.6923076923076925, 'value_error': None}}},
      'EnsoSeasonality': {'diagnostic': {'ERA-Interim': {'value': 2.0466846866656914,
         'value_error': 0.6513411033995022},
        'GISS-E2-R_r1i1p127': {'value': 1.758324110998657,
         'value_error': 0.2829217859271653},
        'HadISST': {'value': 1.6639865947361325,
         'value_error': 0.2712772451657809},
        'Tropflux': {'value': 2.0532132553583624,
         'value_error': 0.6534187683977347}},
       'metric': {'ERA-Interim': {'value': 14.089154892579488,
         'value_error': 41.16386065125672},
        'HadISST': {'value': 5.669367563473912,
         'value_error': 34.2297670569745},
        'Tropflux': {'value': 14.362324205248534,
         'value_error': 41.032972595076515}}},
      'EnsoSstDiversity_2': {'diagnostic': {'ERA-Interim': {'value': 33.25,
         'value_error': None},
        'GISS-E2-R_r1i1p127': {'value': 29.5, 'value_error': None},
        'HadISST': {'value': 49.0, 'value_error': None},
        'Tropflux': {'value': 32.0, 'value_error': None}},
       'metric': {'ERA-Interim': {'value': 11.278195488721805,
         'value_error': None},
        'HadISST': {'value': 39.795918367346935, 'value_error': None},
        'Tropflux': {'value': 7.8125, 'value_error': None}}},
      'EnsoSstLonRmse': {'diagnostic': {'ERA-Interim': {'value': None,
         'value_error': None},
        'GISS-E2-R_r1i1p127': {'value': None, 'value_error': None},
        'HadISST': {'value': None, 'value_error': None},
        'Tropflux': {'value': None, 'value_error': None}},
       'metric': {'ERA-Interim': {'value': 0.1352255602618883,
         'value_error': None},
        'HadISST': {'value': 0.14322179632509136, 'value_error': None},
        'Tropflux': {'value': 0.13384892885404986, 'value_error': None}}},
      'EnsoSstSkew': {'diagnostic': {'ERA-Interim': {'value': 0.39098111106809963,
         'value_error': 0.061819541653923164},
        'GISS-E2-R_r1i1p127': {'value': -0.021671769109071096,
         'value_error': -0.0017407183839917991},
        'HadISST': {'value': 0.38989908235027515,
         'value_error': 0.03172953733021198},
        'Tropflux': {'value': 0.39744741059612115,
         'value_error': 0.06284195338099416}},
       'metric': {'ERA-Interim': {'value': 105.54291972056326,
         'value_error': -1.3216305860333264},
        'HadISST': {'value': 105.55830215819839,
         'value_error': -0.8987817876050112},
        'Tropflux': {'value': 105.452738785382,
         'value_error': -1.3001282211748706}}},
      'EnsoSstTsRmse': {'diagnostic': {'ERA-Interim': {'value': None,
         'value_error': None},
        'GISS-E2-R_r1i1p127': {'value': None, 'value_error': None},
        'HadISST': {'value': None, 'value_error': None},
        'Tropflux': {'value': None, 'value_error': None}},
       'metric': {'ERA-Interim': {'value': 0.19691415407569168,
         'value_error': None},
        'HadISST': {'value': 0.18465023451214047, 'value_error': None},
        'Tropflux': {'value': 0.19857518235554533, 'value_error': None}}},
      'SeasonalPrLatRmse': {'diagnostic': {'ERA-Interim': {'value': None,
         'value_error': None},
        'GISS-E2-R_r1i1p127': {'value': None, 'value_error': None},
        'GPCPv2.3': {'value': None, 'value_error': None}},
       'metric': {'ERA-Interim': {'value': 0.6853335575279447,
         'value_error': None},
        'GPCPv2.3': {'value': 0.8556407599039675, 'value_error': None}}},
      'SeasonalPrLonRmse': {'diagnostic': {'ERA-Interim': {'value': None,
         'value_error': None},
        'GISS-E2-R_r1i1p127': {'value': None, 'value_error': None},
        'GPCPv2.3': {'value': None, 'value_error': None}},
       'metric': {'ERA-Interim': {'value': 0.28996172979546514,
         'value_error': None},
        'GPCPv2.3': {'value': 0.5389573036189109, 'value_error': None}}},
      'SeasonalSstLonRmse': {'diagnostic': {'ERA-Interim': {'value': None,
         'value_error': None},
        'GISS-E2-R_r1i1p127': {'value': None, 'value_error': None},
        'HadISST': {'value': None, 'value_error': None},
        'Tropflux': {'value': None, 'value_error': None}},
       'metric': {'ERA-Interim': {'value': 0.2828283510498223,
         'value_error': None},
        'HadISST': {'value': 0.28496302747683316, 'value_error': None},
        'Tropflux': {'value': 0.2904681459876099, 'value_error': None}}},
      'SeasonalTauxLonRmse': {'diagnostic': {'ERA-Interim': {'value': None,
         'value_error': None},
        'GISS-E2-R_r1i1p127': {'value': None, 'value_error': None},
        'Tropflux': {'value': None, 'value_error': None}},
       'metric': {'ERA-Interim': {'value': 1.8328895229028088,
         'value_error': None},
        'Tropflux': {'value': 1.9791783109834877, 'value_error': None}}}}},
    'r1i1p128': {'metadata': {'description_of_the_collection': 'Describe which science question this collection is about',
      'metrics': {'BiasPrLatRmse': {'diagnostic': {'ERA-Interim': {'name': 'ERA-Interim',
          'nyears': 40,
          'time_period': ['1979-1-16 12:0:0.0', '2019-3-16 12:0:0.0']},
         'GISS-E2-R_r1i1p128': {'keyerror': None,
          'name': 'GISS-E2-R_r1i1p128',
          'nyears': 155,
          'time_period': ['1851-1-16 12:0:0.0', '2005-12-16 12:0:0.0']},
         'GPCPv2.3': {'name': 'GPCPv2.3',
          'nyears': 41,
          'time_period': ['1979-1-1 0:0:0.0', '2019-7-1 0:0:0.0']},
         'method': 'Meridional root mean square error of nino3_LatExt pr, time series are linearly detrended, observations and model regridded to generic_1x1deg',
         'name': 'pr Meridional RMSE',
         'ref': 'Using CDAT regridding and rms (uncentered and biased) calculation',
         'time_frequency': 'monthly',
         'units': 'mm/day'},
        'metric': {'datasets': "GISS-E2-R_r1i1p128; ERA-Interim's pr & GPCPv2.3's precip; 's ",
         'method': 'The metric is the statistical value between the model and the observations',
         'name': 'BiasPrLatRmse',
         'units': 'mm/day'}},
       'BiasPrLonRmse': {'diagnostic': {'ERA-Interim': {'name': 'ERA-Interim',
          'nyears': 40,
          'time_period': ['1979-1-16 12:0:0.0', '2019-3-16 12:0:0.0']},
         'GISS-E2-R_r1i1p128': {'keyerror': None,
          'name': 'GISS-E2-R_r1i1p128',
          'nyears': 155,
          'time_period': ['1851-1-16 12:0:0.0', '2005-12-16 12:0:0.0']},
         'GPCPv2.3': {'name': 'GPCPv2.3',
          'nyears': 41,
          'time_period': ['1979-1-1 0:0:0.0', '2019-7-1 0:0:0.0']},
         'method': 'Zonal root mean square error of equatorial_pacific pr, time series are linearly detrended, observations and model regridded to generic_1x1deg',
         'name': 'pr Zonal RMSE',
         'ref': 'Using CDAT regridding and rms (uncentered and biased) calculation',
         'time_frequency': 'monthly',
         'units': 'mm/day'},
        'metric': {'datasets': "GISS-E2-R_r1i1p128; ERA-Interim's pr & GPCPv2.3's precip; 's ",
         'method': 'The metric is the statistical value between the model and the observations',
         'name': 'BiasPrLonRmse',
         'units': 'mm/day'}},
       'BiasSstLonRmse': {'diagnostic': {'ERA-Interim': {'name': 'ERA-Interim',
          'nyears': 40,
          'time_period': ['1979-1-16 12:0:0.0', '2019-3-16 12:0:0.0']},
         'GISS-E2-R_r1i1p128': {'keyerror': None,
          'name': 'GISS-E2-R_r1i1p128',
          'nyears': 155,
          'time_period': ['1851-1-16 12:0:0.0', '2005-12-16 12:0:0.0']},
         'HadISST': {'name': 'HadISST',
          'nyears': 151,
          'time_period': ['1870-1-16 11:59:59.5', '2020-10-16 12:0:0.0']},
         'Tropflux': {'name': 'Tropflux',
          'nyears': 40,
          'time_period': ['1979-1-15 0:0:0.0', '2018-12-15 12:0:0.0']},
         'method': 'Zonal root mean square error of equatorial_pacific sst, time series are linearly detrended, observations and model regridded to generic_1x1deg',
         'name': 'sst Zonal RMSE',
         'ref': 'Using CDAT regridding and rms (uncentered and biased) calculation',
         'time_frequency': 'monthly',
         'units': 'C'},
        'metric': {'datasets': "GISS-E2-R_r1i1p128; ERA-Interim's ts & HadISST's sst & Tropflux's sst; 's ",
         'method': 'The metric is the statistical value between the model and the observations',
         'name': 'BiasSstLonRmse',
         'units': 'C'}},
       'BiasTauxLonRmse': {'diagnostic': {'ERA-Interim': {'name': 'ERA-Interim',
          'nyears': 40,
          'time_period': ['1979-1-16 12:0:0.0', '2019-3-16 12:0:0.0']},
         'GISS-E2-R_r1i1p128': {'keyerror': None,
          'name': 'GISS-E2-R_r1i1p128',
          'nyears': 155,
          'time_period': ['1851-1-16 12:0:0.0', '2005-12-16 12:0:0.0']},
         'Tropflux': {'name': 'Tropflux',
          'nyears': 40,
          'time_period': ['1979-1-15 0:0:0.0', '2018-12-15 12:0:0.0']},
         'method': 'Zonal root mean square error of equatorial_pacific taux, time series are linearly detrended, observations and model regridded to generic_1x1deg',
         'name': 'taux Zonal RMSE',
         'ref': 'Using CDAT regridding and rms (uncentered and biased) calculation',
         'time_frequency': 'monthly',
         'units': '1e-3 N/m2'},
        'metric': {'datasets': "GISS-E2-R_r1i1p128; ERA-Interim's tauu & Tropflux's taux; 's ",
         'method': 'The metric is the statistical value between the model and the observations',
         'name': 'BiasTauxLonRmse',
         'units': '1e-3 N/m2'}},
       'EnsoAmpl': {'diagnostic': {'ERA-Interim': {'keyerror': None,
          'name': 'ERA-Interim',
          'nyears': 40,
          'time_period': ['1979-1-16 12:0:0.0', '2019-3-16 12:0:0.0']},
         'GISS-E2-R_r1i1p128': {'keyerror': None,
          'name': 'GISS-E2-R_r1i1p128',
          'nyears': 155,
          'time_period': ['1851-1-16 12:0:0.0', '2005-12-16 12:0:0.0']},
         'HadISST': {'keyerror': None,
          'name': 'HadISST',
          'nyears': 151,
          'time_period': ['1870-1-16 11:59:59.5', '2020-10-16 12:0:0.0']},
         'Tropflux': {'keyerror': None,
          'name': 'Tropflux',
          'nyears': 40,
          'time_period': ['1979-1-15 0:0:0.0', '2018-12-15 12:0:0.0']},
         'method': 'Standard deviation of nino3.4 sstA, time series are linearly detrended',
         'name': 'ENSO amplitude',
         'ref': 'Using CDAT regression calculation',
         'time_frequency': 'monthly',
         'units': 'C'},
        'metric': {'datasets': "GISS-E2-R_r1i1p128; ERA-Interim's ts & HadISST's sst & Tropflux's sst; 's ",
         'method': 'The metric is the absolute value of the relative difference between model and observations values (M = 100 * abs[[model-obs] / obs])',
         'name': 'EnsoAmpl',
         'units': '%'}},
       'EnsoDuration': {'diagnostic': {'ERA-Interim': {'keyerror': None,
          'name': 'ERA-Interim',
          'nyears': 40,
          'time_period': ['1979-1-16 12:0:0.0', '2019-3-16 12:0:0.0']},
         'GISS-E2-R_r1i1p128': {'keyerror': None,
          'name': 'GISS-E2-R_r1i1p128',
          'nyears': 155,
          'time_period': ['1851-1-16 12:0:0.0', '2005-12-16 12:0:0.0']},
         'HadISST': {'keyerror': None,
          'name': 'HadISST',
          'nyears': 151,
          'time_period': ['1870-1-16 11:59:59.5', '2020-10-16 12:0:0.0']},
         'Tropflux': {'keyerror': None,
          'name': 'Tropflux',
          'nyears': 40,
          'time_period': ['1979-1-15 0:0:0.0', '2018-12-15 12:0:0.0']},
         'method': 'nino3.4 SSTA during DEC regressed against nino3.4 SSTA during 6 years (centered on ENSO), the duration is the number of consecutive months during which the regression is above 0.25, time series are linearly detrended, smoothing using a triangle shaped window of 5 points',
         'name': 'ENSO Duration based on life cyle SSTA pattern',
         'ref': 'Using CDAT',
         'time_frequency': 'monthly',
         'units': 'months'},
        'metric': {'datasets': "GISS-E2-R_r1i1p128; ERA-Interim's ts & HadISST's sst & Tropflux's sst; 's ",
         'method': 'The metric is the absolute value of the relative difference between model and observations values (M = 100 * abs[[model-obs] / obs])',
         'name': 'EnsoDuration',
         'units': '%'}},
       'EnsoSeasonality': {'diagnostic': {'ERA-Interim': {'keyerror': None,
          'name': 'ERA-Interim',
          'nyears': 40,
          'time_period': ['1979-1-16 12:0:0.0', '2019-3-16 12:0:0.0']},
         'GISS-E2-R_r1i1p128': {'keyerror': None,
          'name': 'GISS-E2-R_r1i1p128',
          'nyears': 155,
          'time_period': ['1851-1-16 12:0:0.0', '2005-12-16 12:0:0.0']},
         'HadISST': {'keyerror': None,
          'name': 'HadISST',
          'nyears': 151,
          'time_period': ['1870-1-16 11:59:59.5', '2020-10-16 12:0:0.0']},
         'Tropflux': {'keyerror': None,
          'name': 'Tropflux',
          'nyears': 40,
          'time_period': ['1979-1-15 0:0:0.0', '2018-12-15 12:0:0.0']},
         'method': 'Ratio between NDJ and MAM standard deviation nino3.4 sstA, time series are linearly detrended',
         'name': 'ENSO seasonality',
         'ref': 'Using CDAT std dev calculation',
         'time_frequency': 'monthly',
         'units': 'C/C'},
        'metric': {'datasets': "GISS-E2-R_r1i1p128; ERA-Interim's ts & HadISST's sst & Tropflux's sst; 's ",
         'method': 'The metric is the absolute value of the relative difference between model and observations values (M = 100 * abs[[model-obs] / obs])',
         'name': 'EnsoSeasonality',
         'units': '%'}},
       'EnsoSstDiversity_2': {'diagnostic': {'ERA-Interim': {'keyerror': None,
          'name': 'ERA-Interim',
          'nyears': 40,
          'time_period': ['1979-1-16 12:0:0.0', '2019-3-16 12:0:0.0']},
         'GISS-E2-R_r1i1p128': {'keyerror': None,
          'name': 'GISS-E2-R_r1i1p128',
          'nyears': 155,
          'time_period': ['1851-1-16 12:0:0.0', '2005-12-16 12:0:0.0']},
         'HadISST': {'keyerror': None,
          'name': 'HadISST',
          'nyears': 151,
          'time_period': ['1870-1-16 11:59:59.5', '2020-10-16 12:0:0.0']},
         'Tropflux': {'keyerror': None,
          'name': 'Tropflux',
          'nyears': 40,
          'time_period': ['1979-1-15 0:0:0.0', '2018-12-15 12:0:0.0']},
         'method': 'Nino (Nina) events = nino3.4 sstA > 0.75 (< -0.75) during DEC, zonal SSTA (meridional averaged [-5.0 ; 5.0]), the zonal SSTA maximum (minimum) is located for each event, the diversity is the interquartile range (IQR = Q3 - Q1), time series are linearly detrended, smoothing using a triangle shaped window of 5 points',
         'name': 'ENSO Diversity (interquartile range)',
         'ref': 'Using CDAT regridding',
         'time_frequency': 'monthly',
         'units': 'long'},
        'metric': {'datasets': "GISS-E2-R_r1i1p128; ERA-Interim's ts & HadISST's sst & Tropflux's sst; 's ",
         'method': 'The metric is the absolute value of the relative difference between model and observations values (M = 100 * abs[[model-obs] / obs])',
         'name': 'EnsoSstDiversity',
         'units': '%'}},
       'EnsoSstLonRmse': {'diagnostic': {'ERA-Interim': {'name': 'ERA-Interim',
          'nyears': 40,
          'time_period': ['1979-1-16 12:0:0.0', '2019-3-16 12:0:0.0']},
         'GISS-E2-R_r1i1p128': {'keyerror': None,
          'name': 'GISS-E2-R_r1i1p128',
          'nyears': 155,
          'time_period': ['1851-1-16 12:0:0.0', '2005-12-16 12:0:0.0']},
         'HadISST': {'name': 'HadISST',
          'nyears': 151,
          'time_period': ['1870-1-16 11:59:59.5', '2020-10-16 12:0:0.0']},
         'Tropflux': {'name': 'Tropflux',
          'nyears': 40,
          'time_period': ['1979-1-15 0:0:0.0', '2018-12-15 12:0:0.0']},
         'method': 'nino3.4 SSTA during DEC regressed against equatorial_pacific SSTA, time series are linearly detrended, smoothing using a triangle shaped window of 5 points, observations and model regridded to generic_1x1deg',
         'name': 'ENSO Zonal SSTA pattern',
         'ref': 'Using CDAT regridding and rms (uncentered and biased) calculation',
         'time_frequency': 'monthly',
         'units': 'C/C'},
        'metric': {'datasets': "GISS-E2-R_r1i1p128; ERA-Interim's ts & HadISST's sst & Tropflux's sst; 's ",
         'method': 'The metric is the statistical value between the model and the observations',
         'name': 'EnsoSstLonRmse',
         'units': 'C/C'}},
       'EnsoSstSkew': {'diagnostic': {'ERA-Interim': {'keyerror': None,
          'name': 'ERA-Interim',
          'nyears': 40,
          'time_period': ['1979-1-16 12:0:0.0', '2019-3-16 12:0:0.0']},
         'GISS-E2-R_r1i1p128': {'keyerror': None,
          'name': 'GISS-E2-R_r1i1p128',
          'nyears': 155,
          'time_period': ['1851-1-16 12:0:0.0', '2005-12-16 12:0:0.0']},
         'HadISST': {'keyerror': None,
          'name': 'HadISST',
          'nyears': 151,
          'time_period': ['1870-1-16 11:59:59.5', '2020-10-16 12:0:0.0']},
         'Tropflux': {'keyerror': None,
          'name': 'Tropflux',
          'nyears': 40,
          'time_period': ['1979-1-15 0:0:0.0', '2018-12-15 12:0:0.0']},
         'method': 'Standard deviation of nino3.4 sstA, time series are linearly detrended',
         'name': 'ENSO skewness',
         'ref': 'Using CDAT regression calculation',
         'time_frequency': 'monthly',
         'units': 'C'},
        'metric': {'datasets': "GISS-E2-R_r1i1p128; ERA-Interim's ts & HadISST's sst & Tropflux's sst; 's ",
         'method': 'The metric is the absolute value of the relative difference between model and observations values (M = 100 * abs[[model-obs] / obs])',
         'name': 'EnsoSstSkew',
         'units': '%'}},
       'EnsoSstTsRmse': {'diagnostic': {'ERA-Interim': {'name': 'ERA-Interim',
          'nyears': 40,
          'time_period': ['1979-1-16 12:0:0.0', '2019-3-16 12:0:0.0']},
         'GISS-E2-R_r1i1p128': {'keyerror': None,
          'name': 'GISS-E2-R_r1i1p128',
          'nyears': 155,
          'time_period': ['1851-1-16 12:0:0.0', '2005-12-16 12:0:0.0']},
         'HadISST': {'name': 'HadISST',
          'nyears': 151,
          'time_period': ['1870-1-16 11:59:59.5', '2020-10-16 12:0:0.0']},
         'Tropflux': {'name': 'Tropflux',
          'nyears': 40,
          'time_period': ['1979-1-15 0:0:0.0', '2018-12-15 12:0:0.0']},
         'method': 'nino3.4 SSTA during DEC regressed against nino3.4 SSTA during 6 years (centered on ENSO), time series are linearly detrended, smoothing using a triangle shaped window of 5 points',
         'name': 'ENSO life cyle SSTA pattern',
         'ref': 'Using CDAT regridding and rms (uncentered and biased) calculation',
         'time_frequency': 'monthly',
         'units': 'C/C'},
        'metric': {'datasets': "GISS-E2-R_r1i1p128; ERA-Interim's ts & HadISST's sst & Tropflux's sst; 's ",
         'method': 'The metric is the statistical value between the model and the observations',
         'name': 'EnsoSstTsRmse',
         'units': 'C/C'}},
       'SeasonalPrLatRmse': {'diagnostic': {'ERA-Interim': {'name': 'ERA-Interim',
          'nyears': 40,
          'time_period': ['1979-1-16 12:0:0.0', '2019-3-16 12:0:0.0']},
         'GISS-E2-R_r1i1p128': {'keyerror': None,
          'name': 'GISS-E2-R_r1i1p128',
          'nyears': 155,
          'time_period': ['1851-1-16 12:0:0.0', '2005-12-16 12:0:0.0']},
         'GPCPv2.3': {'name': 'GPCPv2.3',
          'nyears': 41,
          'time_period': ['1979-1-1 0:0:0.0', '2019-7-1 0:0:0.0']},
         'method': 'Meridional root mean square error of nino3_LatExt climatological pr STD, time series are linearly detrended, observations and model regridded to generic_1x1deg',
         'name': 'pr meridional seasonality RMSE',
         'ref': 'Using CDAT regridding and rms (uncentered and biased) calculation',
         'time_frequency': 'monthly',
         'units': 'mm/day'},
        'metric': {'datasets': "GISS-E2-R_r1i1p128; ERA-Interim's pr & GPCPv2.3's precip; 's ",
         'method': 'The metric is the statistical value between the model and the observations',
         'name': 'SeasonalPrLatRmse',
         'units': 'mm/day'}},
       'SeasonalPrLonRmse': {'diagnostic': {'ERA-Interim': {'name': 'ERA-Interim',
          'nyears': 40,
          'time_period': ['1979-1-16 12:0:0.0', '2019-3-16 12:0:0.0']},
         'GISS-E2-R_r1i1p128': {'keyerror': None,
          'name': 'GISS-E2-R_r1i1p128',
          'nyears': 155,
          'time_period': ['1851-1-16 12:0:0.0', '2005-12-16 12:0:0.0']},
         'GPCPv2.3': {'name': 'GPCPv2.3',
          'nyears': 41,
          'time_period': ['1979-1-1 0:0:0.0', '2019-7-1 0:0:0.0']},
         'method': 'Zonal root mean square error of equatorial_pacific climatological pr STD, time series are linearly detrended, observations and model regridded to generic_1x1deg',
         'name': 'pr zonal seasonality RMSE',
         'ref': 'Using CDAT regridding and rms (uncentered and biased) calculation',
         'time_frequency': 'monthly',
         'units': 'mm/day'},
        'metric': {'datasets': "GISS-E2-R_r1i1p128; ERA-Interim's pr & GPCPv2.3's precip; 's ",
         'method': 'The metric is the statistical value between the model and the observations',
         'name': 'SeasonalPrLonRmse',
         'units': 'mm/day'}},
       'SeasonalSstLonRmse': {'diagnostic': {'ERA-Interim': {'name': 'ERA-Interim',
          'nyears': 40,
          'time_period': ['1979-1-16 12:0:0.0', '2019-3-16 12:0:0.0']},
         'GISS-E2-R_r1i1p128': {'keyerror': None,
          'name': 'GISS-E2-R_r1i1p128',
          'nyears': 155,
          'time_period': ['1851-1-16 12:0:0.0', '2005-12-16 12:0:0.0']},
         'HadISST': {'name': 'HadISST',
          'nyears': 151,
          'time_period': ['1870-1-16 11:59:59.5', '2020-10-16 12:0:0.0']},
         'Tropflux': {'name': 'Tropflux',
          'nyears': 40,
          'time_period': ['1979-1-15 0:0:0.0', '2018-12-15 12:0:0.0']},
         'method': 'Zonal root mean square error of equatorial_pacific climatological sst STD, time series are linearly detrended, observations and model regridded to generic_1x1deg',
         'name': 'sst zonal seasonality RMSE',
         'ref': 'Using CDAT regridding and rms (uncentered and biased) calculation',
         'time_frequency': 'monthly',
         'units': 'C'},
        'metric': {'datasets': "GISS-E2-R_r1i1p128; ERA-Interim's ts & HadISST's sst & Tropflux's sst; 's ",
         'method': 'The metric is the statistical value between the model and the observations',
         'name': 'SeasonalSstLonRmse',
         'units': 'C'}},
       'SeasonalTauxLonRmse': {'diagnostic': {'ERA-Interim': {'name': 'ERA-Interim',
          'nyears': 40,
          'time_period': ['1979-1-16 12:0:0.0', '2019-3-16 12:0:0.0']},
         'GISS-E2-R_r1i1p128': {'keyerror': None,
          'name': 'GISS-E2-R_r1i1p128',
          'nyears': 155,
          'time_period': ['1851-1-16 12:0:0.0', '2005-12-16 12:0:0.0']},
         'Tropflux': {'name': 'Tropflux',
          'nyears': 40,
          'time_period': ['1979-1-15 0:0:0.0', '2018-12-15 12:0:0.0']},
         'method': 'Zonal root mean square error of equatorial_pacific climatological taux STD, time series are linearly detrended, observations and model regridded to generic_1x1deg',
         'name': 'taux zonal seasonality RMSE',
         'ref': 'Using CDAT regridding and rms (uncentered and biased) calculation',
         'time_frequency': 'monthly',
         'units': '1e-3 N/m2'},
        'metric': {'datasets': "GISS-E2-R_r1i1p128; ERA-Interim's tauu & Tropflux's taux; 's ",
         'method': 'The metric is the statistical value between the model and the observations',
         'name': 'SeasonalTauxLonRmse',
         'units': '1e-3 N/m2'}}},
      'name': 'Metrics Collection for ENSO performance'},
     'value': {'BiasPrLatRmse': {'diagnostic': {'ERA-Interim': {'value': None,
         'value_error': None},
        'GISS-E2-R_r1i1p128': {'value': None, 'value_error': None},
        'GPCPv2.3': {'value': None, 'value_error': None}},
       'metric': {'ERA-Interim': {'value': 2.101914950664987,
         'value_error': None},
        'GPCPv2.3': {'value': 2.887739735011123, 'value_error': None}}},
      'BiasPrLonRmse': {'diagnostic': {'ERA-Interim': {'value': None,
         'value_error': None},
        'GISS-E2-R_r1i1p128': {'value': None, 'value_error': None},
        'GPCPv2.3': {'value': None, 'value_error': None}},
       'metric': {'ERA-Interim': {'value': 1.6525655054389239,
         'value_error': None},
        'GPCPv2.3': {'value': 2.0987088470467934, 'value_error': None}}},
      'BiasSstLonRmse': {'diagnostic': {'ERA-Interim': {'value': None,
         'value_error': None},
        'GISS-E2-R_r1i1p128': {'value': None, 'value_error': None},
        'HadISST': {'value': None, 'value_error': None},
        'Tropflux': {'value': None, 'value_error': None}},
       'metric': {'ERA-Interim': {'value': 0.9963313939233454,
         'value_error': None},
        'HadISST': {'value': 1.167229323245907, 'value_error': None},
        'Tropflux': {'value': 0.9634683282318709, 'value_error': None}}},
      'BiasTauxLonRmse': {'diagnostic': {'ERA-Interim': {'value': None,
         'value_error': None},
        'GISS-E2-R_r1i1p128': {'value': None, 'value_error': None},
        'Tropflux': {'value': None, 'value_error': None}},
       'metric': {'ERA-Interim': {'value': 17.75693253640443,
         'value_error': None},
        'Tropflux': {'value': 17.371447788343307, 'value_error': None}}},
      'EnsoAmpl': {'diagnostic': {'ERA-Interim': {'value': 0.8989844997845644,
         'value_error': 0.14214193002531866},
        'GISS-E2-R_r1i1p128': {'value': 0.5335937489114218,
         'value_error': 0.042859281290720065},
        'HadISST': {'value': 0.7665787872085695,
         'value_error': 0.06238329697691264},
        'Tropflux': {'value': 0.9039789553693535,
         'value_error': 0.14293162279134272}},
       'metric': {'ERA-Interim': {'value': 40.64483324915014,
         'value_error': 14.15239761204043},
        'HadISST': {'value': 30.392836611816858,
         'value_error': 11.255532527656488},
        'Tropflux': {'value': 40.97276869754091,
         'value_error': 14.074206055841277}}},
      'EnsoDuration': {'diagnostic': {'ERA-Interim': {'value': 13.0,
         'value_error': None},
        'GISS-E2-R_r1i1p128': {'value': 12.0, 'value_error': None},
        'HadISST': {'value': 13.0, 'value_error': None},
        'Tropflux': {'value': 13.0, 'value_error': None}},
       'metric': {'ERA-Interim': {'value': 7.6923076923076925,
         'value_error': None},
        'HadISST': {'value': 7.6923076923076925, 'value_error': None},
        'Tropflux': {'value': 7.6923076923076925, 'value_error': None}}},
      'EnsoSeasonality': {'diagnostic': {'ERA-Interim': {'value': 2.0466846866656914,
         'value_error': 0.6513411033995022},
        'GISS-E2-R_r1i1p128': {'value': 1.688191347129516,
         'value_error': 0.27163712760862824},
        'HadISST': {'value': 1.6639865947361325,
         'value_error': 0.2712772451657809},
        'Tropflux': {'value': 2.0532132553583624,
         'value_error': 0.6534187683977347}},
       'metric': {'ERA-Interim': {'value': 17.515806996152712,
         'value_error': 39.52199309058434},
        'HadISST': {'value': 1.4546242421635476,
         'value_error': 32.864473732901835},
        'Tropflux': {'value': 17.77808063902921,
         'value_error': 39.39632565390197}}},
      'EnsoSstDiversity_2': {'diagnostic': {'ERA-Interim': {'value': 33.25,
         'value_error': None},
        'GISS-E2-R_r1i1p128': {'value': 28.25, 'value_error': None},
        'HadISST': {'value': 49.0, 'value_error': None},
        'Tropflux': {'value': 32.0, 'value_error': None}},
       'metric': {'ERA-Interim': {'value': 15.037593984962406,
         'value_error': None},
        'HadISST': {'value': 42.3469387755102, 'value_error': None},
        'Tropflux': {'value': 11.71875, 'value_error': None}}},
      'EnsoSstLonRmse': {'diagnostic': {'ERA-Interim': {'value': None,
         'value_error': None},
        'GISS-E2-R_r1i1p128': {'value': None, 'value_error': None},
        'HadISST': {'value': None, 'value_error': None},
        'Tropflux': {'value': None, 'value_error': None}},
       'metric': {'ERA-Interim': {'value': 0.12562398493374966,
         'value_error': None},
        'HadISST': {'value': 0.13745686420748926, 'value_error': None},
        'Tropflux': {'value': 0.12448944187075632, 'value_error': None}}},
      'EnsoSstSkew': {'diagnostic': {'ERA-Interim': {'value': 0.39098111106809963,
         'value_error': 0.061819541653923164},
        'GISS-E2-R_r1i1p128': {'value': -0.2754431780948853,
         'value_error': -0.022124128466014522},
        'HadISST': {'value': 0.38989908235027515,
         'value_error': 0.03172953733021198},
        'Tropflux': {'value': 0.39744741059612115,
         'value_error': 0.06284195338099416}},
       'metric': {'ERA-Interim': {'value': 170.4492289518584,
         'value_error': -16.79761938456848},
        'HadISST': {'value': 170.644736180075,
         'value_error': -11.423308856133236},
        'Tropflux': {'value': 169.303050102089,
         'value_error': -16.52432929535792}}},
      'EnsoSstTsRmse': {'diagnostic': {'ERA-Interim': {'value': None,
         'value_error': None},
        'GISS-E2-R_r1i1p128': {'value': None, 'value_error': None},
        'HadISST': {'value': None, 'value_error': None},
        'Tropflux': {'value': None, 'value_error': None}},
       'metric': {'ERA-Interim': {'value': 0.13126507467961052,
         'value_error': None},
        'HadISST': {'value': 0.12581016552478239, 'value_error': None},
        'Tropflux': {'value': 0.1331000343508005, 'value_error': None}}},
      'SeasonalPrLatRmse': {'diagnostic': {'ERA-Interim': {'value': None,
         'value_error': None},
        'GISS-E2-R_r1i1p128': {'value': None, 'value_error': None},
        'GPCPv2.3': {'value': None, 'value_error': None}},
       'metric': {'ERA-Interim': {'value': 0.699769142868899,
         'value_error': None},
        'GPCPv2.3': {'value': 0.8583514706081451, 'value_error': None}}},
      'SeasonalPrLonRmse': {'diagnostic': {'ERA-Interim': {'value': None,
         'value_error': None},
        'GISS-E2-R_r1i1p128': {'value': None, 'value_error': None},
        'GPCPv2.3': {'value': None, 'value_error': None}},
       'metric': {'ERA-Interim': {'value': 0.2960218843091938,
         'value_error': None},
        'GPCPv2.3': {'value': 0.49601379030319537, 'value_error': None}}},
      'SeasonalSstLonRmse': {'diagnostic': {'ERA-Interim': {'value': None,
         'value_error': None},
        'GISS-E2-R_r1i1p128': {'value': None, 'value_error': None},
        'HadISST': {'value': None, 'value_error': None},
        'Tropflux': {'value': None, 'value_error': None}},
       'metric': {'ERA-Interim': {'value': 0.2864593199044741,
         'value_error': None},
        'HadISST': {'value': 0.2874547684493358, 'value_error': None},
        'Tropflux': {'value': 0.2944344425190296, 'value_error': None}}},
      'SeasonalTauxLonRmse': {'diagnostic': {'ERA-Interim': {'value': None,
         'value_error': None},
        'GISS-E2-R_r1i1p128': {'value': None, 'value_error': None},
        'Tropflux': {'value': None, 'value_error': None}},
       'metric': {'ERA-Interim': {'value': 1.962705169651321,
         'value_error': None},
        'Tropflux': {'value': 2.127547293245924, 'value_error': None}}}}},
    'r1i1p2': {'metadata': {'description_of_the_collection': 'Describe which science question this collection is about',
      'metrics': {'BiasPrLatRmse': {'diagnostic': {'ERA-Interim': {'name': 'ERA-Interim',
          'nyears': 40,
          'time_period': ['1979-1-16 12:0:0.0', '2019-3-16 12:0:0.0']},
         'GISS-E2-R_r1i1p2': {'keyerror': None,
          'name': 'GISS-E2-R_r1i1p2',
          'nyears': 156,
          'time_period': ['1850-1-16 12:0:0.0', '2005-12-16 12:0:0.0']},
         'GPCPv2.3': {'name': 'GPCPv2.3',
          'nyears': 41,
          'time_period': ['1979-1-1 0:0:0.0', '2019-7-1 0:0:0.0']},
         'method': 'Meridional root mean square error of nino3_LatExt pr, time series are linearly detrended, observations and model regridded to generic_1x1deg',
         'name': 'pr Meridional RMSE',
         'ref': 'Using CDAT regridding and rms (uncentered and biased) calculation',
         'time_frequency': 'monthly',
         'units': 'mm/day'},
        'metric': {'datasets': "GISS-E2-R_r1i1p2; ERA-Interim's pr & GPCPv2.3's precip; 's ",
         'method': 'The metric is the statistical value between the model and the observations',
         'name': 'BiasPrLatRmse',
         'units': 'mm/day'}},
       'BiasPrLonRmse': {'diagnostic': {'ERA-Interim': {'name': 'ERA-Interim',
          'nyears': 40,
          'time_period': ['1979-1-16 12:0:0.0', '2019-3-16 12:0:0.0']},
         'GISS-E2-R_r1i1p2': {'keyerror': None,
          'name': 'GISS-E2-R_r1i1p2',
          'nyears': 156,
          'time_period': ['1850-1-16 12:0:0.0', '2005-12-16 12:0:0.0']},
         'GPCPv2.3': {'name': 'GPCPv2.3',
          'nyears': 41,
          'time_period': ['1979-1-1 0:0:0.0', '2019-7-1 0:0:0.0']},
         'method': 'Zonal root mean square error of equatorial_pacific pr, time series are linearly detrended, observations and model regridded to generic_1x1deg',
         'name': 'pr Zonal RMSE',
         'ref': 'Using CDAT regridding and rms (uncentered and biased) calculation',
         'time_frequency': 'monthly',
         'units': 'mm/day'},
        'metric': {'datasets': "GISS-E2-R_r1i1p2; ERA-Interim's pr & GPCPv2.3's precip; 's ",
         'method': 'The metric is the statistical value between the model and the observations',
         'name': 'BiasPrLonRmse',
         'units': 'mm/day'}},
       'BiasSstLonRmse': {'diagnostic': {'ERA-Interim': {'name': 'ERA-Interim',
          'nyears': 40,
          'time_period': ['1979-1-16 12:0:0.0', '2019-3-16 12:0:0.0']},
         'GISS-E2-R_r1i1p2': {'keyerror': None,
          'name': 'GISS-E2-R_r1i1p2',
          'nyears': 156,
          'time_period': ['1850-1-16 12:0:0.0', '2005-12-16 12:0:0.0']},
         'HadISST': {'name': 'HadISST',
          'nyears': 151,
          'time_period': ['1870-1-16 11:59:59.5', '2020-10-16 12:0:0.0']},
         'Tropflux': {'name': 'Tropflux',
          'nyears': 40,
          'time_period': ['1979-1-15 0:0:0.0', '2018-12-15 12:0:0.0']},
         'method': 'Zonal root mean square error of equatorial_pacific sst, time series are linearly detrended, observations and model regridded to generic_1x1deg',
         'name': 'sst Zonal RMSE',
         'ref': 'Using CDAT regridding and rms (uncentered and biased) calculation',
         'time_frequency': 'monthly',
         'units': 'C'},
        'metric': {'datasets': "GISS-E2-R_r1i1p2; ERA-Interim's ts & HadISST's sst & Tropflux's sst; 's ",
         'method': 'The metric is the statistical value between the model and the observations',
         'name': 'BiasSstLonRmse',
         'units': 'C'}},
       'BiasTauxLonRmse': {'diagnostic': {'ERA-Interim': {'name': 'ERA-Interim',
          'nyears': 40,
          'time_period': ['1979-1-16 12:0:0.0', '2019-3-16 12:0:0.0']},
         'GISS-E2-R_r1i1p2': {'keyerror': None,
          'name': 'GISS-E2-R_r1i1p2',
          'nyears': 156,
          'time_period': ['1850-1-16 12:0:0.0', '2005-12-16 12:0:0.0']},
         'Tropflux': {'name': 'Tropflux',
          'nyears': 40,
          'time_period': ['1979-1-15 0:0:0.0', '2018-12-15 12:0:0.0']},
         'method': 'Zonal root mean square error of equatorial_pacific taux, time series are linearly detrended, observations and model regridded to generic_1x1deg',
         'name': 'taux Zonal RMSE',
         'ref': 'Using CDAT regridding and rms (uncentered and biased) calculation',
         'time_frequency': 'monthly',
         'units': '1e-3 N/m2'},
        'metric': {'datasets': "GISS-E2-R_r1i1p2; ERA-Interim's tauu & Tropflux's taux; 's ",
         'method': 'The metric is the statistical value between the model and the observations',
         'name': 'BiasTauxLonRmse',
         'units': '1e-3 N/m2'}},
       'EnsoAmpl': {'diagnostic': {'ERA-Interim': {'keyerror': None,
          'name': 'ERA-Interim',
          'nyears': 40,
          'time_period': ['1979-1-16 12:0:0.0', '2019-3-16 12:0:0.0']},
         'GISS-E2-R_r1i1p2': {'keyerror': None,
          'name': 'GISS-E2-R_r1i1p2',
          'nyears': 156,
          'time_period': ['1850-1-16 12:0:0.0', '2005-12-16 12:0:0.0']},
         'HadISST': {'keyerror': None,
          'name': 'HadISST',
          'nyears': 151,
          'time_period': ['1870-1-16 11:59:59.5', '2020-10-16 12:0:0.0']},
         'Tropflux': {'keyerror': None,
          'name': 'Tropflux',
          'nyears': 40,
          'time_period': ['1979-1-15 0:0:0.0', '2018-12-15 12:0:0.0']},
         'method': 'Standard deviation of nino3.4 sstA, time series are linearly detrended',
         'name': 'ENSO amplitude',
         'ref': 'Using CDAT regression calculation',
         'time_frequency': 'monthly',
         'units': 'C'},
        'metric': {'datasets': "GISS-E2-R_r1i1p2; ERA-Interim's ts & HadISST's sst & Tropflux's sst; 's ",
         'method': 'The metric is the absolute value of the relative difference between model and observations values (M = 100 * abs[[model-obs] / obs])',
         'name': 'EnsoAmpl',
         'units': '%'}},
       'EnsoDuration': {'diagnostic': {'ERA-Interim': {'keyerror': None,
          'name': 'ERA-Interim',
          'nyears': 40,
          'time_period': ['1979-1-16 12:0:0.0', '2019-3-16 12:0:0.0']},
         'GISS-E2-R_r1i1p2': {'keyerror': None,
          'name': 'GISS-E2-R_r1i1p2',
          'nyears': 156,
          'time_period': ['1850-1-16 12:0:0.0', '2005-12-16 12:0:0.0']},
         'HadISST': {'keyerror': None,
          'name': 'HadISST',
          'nyears': 151,
          'time_period': ['1870-1-16 11:59:59.5', '2020-10-16 12:0:0.0']},
         'Tropflux': {'keyerror': None,
          'name': 'Tropflux',
          'nyears': 40,
          'time_period': ['1979-1-15 0:0:0.0', '2018-12-15 12:0:0.0']},
         'method': 'nino3.4 SSTA during DEC regressed against nino3.4 SSTA during 6 years (centered on ENSO), the duration is the number of consecutive months during which the regression is above 0.25, time series are linearly detrended, smoothing using a triangle shaped window of 5 points',
         'name': 'ENSO Duration based on life cyle SSTA pattern',
         'ref': 'Using CDAT',
         'time_frequency': 'monthly',
         'units': 'months'},
        'metric': {'datasets': "GISS-E2-R_r1i1p2; ERA-Interim's ts & HadISST's sst & Tropflux's sst; 's ",
         'method': 'The metric is the absolute value of the relative difference between model and observations values (M = 100 * abs[[model-obs] / obs])',
         'name': 'EnsoDuration',
         'units': '%'}},
       'EnsoSeasonality': {'diagnostic': {'ERA-Interim': {'keyerror': None,
          'name': 'ERA-Interim',
          'nyears': 40,
          'time_period': ['1979-1-16 12:0:0.0', '2019-3-16 12:0:0.0']},
         'GISS-E2-R_r1i1p2': {'keyerror': None,
          'name': 'GISS-E2-R_r1i1p2',
          'nyears': 156,
          'time_period': ['1850-1-16 12:0:0.0', '2005-12-16 12:0:0.0']},
         'HadISST': {'keyerror': None,
          'name': 'HadISST',
          'nyears': 151,
          'time_period': ['1870-1-16 11:59:59.5', '2020-10-16 12:0:0.0']},
         'Tropflux': {'keyerror': None,
          'name': 'Tropflux',
          'nyears': 40,
          'time_period': ['1979-1-15 0:0:0.0', '2018-12-15 12:0:0.0']},
         'method': 'Ratio between NDJ and MAM standard deviation nino3.4 sstA, time series are linearly detrended',
         'name': 'ENSO seasonality',
         'ref': 'Using CDAT std dev calculation',
         'time_frequency': 'monthly',
         'units': 'C/C'},
        'metric': {'datasets': "GISS-E2-R_r1i1p2; ERA-Interim's ts & HadISST's sst & Tropflux's sst; 's ",
         'method': 'The metric is the absolute value of the relative difference between model and observations values (M = 100 * abs[[model-obs] / obs])',
         'name': 'EnsoSeasonality',
         'units': '%'}},
       'EnsoSstDiversity_2': {'diagnostic': {'ERA-Interim': {'keyerror': None,
          'name': 'ERA-Interim',
          'nyears': 40,
          'time_period': ['1979-1-16 12:0:0.0', '2019-3-16 12:0:0.0']},
         'GISS-E2-R_r1i1p2': {'keyerror': None,
          'name': 'GISS-E2-R_r1i1p2',
          'nyears': 156,
          'time_period': ['1850-1-16 12:0:0.0', '2005-12-16 12:0:0.0']},
         'HadISST': {'keyerror': None,
          'name': 'HadISST',
          'nyears': 151,
          'time_period': ['1870-1-16 11:59:59.5', '2020-10-16 12:0:0.0']},
         'Tropflux': {'keyerror': None,
          'name': 'Tropflux',
          'nyears': 40,
          'time_period': ['1979-1-15 0:0:0.0', '2018-12-15 12:0:0.0']},
         'method': 'Nino (Nina) events = nino3.4 sstA > 0.75 (< -0.75) during DEC, zonal SSTA (meridional averaged [-5.0 ; 5.0]), the zonal SSTA maximum (minimum) is located for each event, the diversity is the interquartile range (IQR = Q3 - Q1), time series are linearly detrended, smoothing using a triangle shaped window of 5 points',
         'name': 'ENSO Diversity (interquartile range)',
         'ref': 'Using CDAT regridding',
         'time_frequency': 'monthly',
         'units': 'long'},
        'metric': {'datasets': "GISS-E2-R_r1i1p2; ERA-Interim's ts & HadISST's sst & Tropflux's sst; 's ",
         'method': 'The metric is the absolute value of the relative difference between model and observations values (M = 100 * abs[[model-obs] / obs])',
         'name': 'EnsoSstDiversity',
         'units': '%'}},
       'EnsoSstLonRmse': {'diagnostic': {'ERA-Interim': {'name': 'ERA-Interim',
          'nyears': 40,
          'time_period': ['1979-1-16 12:0:0.0', '2019-3-16 12:0:0.0']},
         'GISS-E2-R_r1i1p2': {'keyerror': None,
          'name': 'GISS-E2-R_r1i1p2',
          'nyears': 156,
          'time_period': ['1850-1-16 12:0:0.0', '2005-12-16 12:0:0.0']},
         'HadISST': {'name': 'HadISST',
          'nyears': 151,
          'time_period': ['1870-1-16 11:59:59.5', '2020-10-16 12:0:0.0']},
         'Tropflux': {'name': 'Tropflux',
          'nyears': 40,
          'time_period': ['1979-1-15 0:0:0.0', '2018-12-15 12:0:0.0']},
         'method': 'nino3.4 SSTA during DEC regressed against equatorial_pacific SSTA, time series are linearly detrended, smoothing using a triangle shaped window of 5 points, observations and model regridded to generic_1x1deg',
         'name': 'ENSO Zonal SSTA pattern',
         'ref': 'Using CDAT regridding and rms (uncentered and biased) calculation',
         'time_frequency': 'monthly',
         'units': 'C/C'},
        'metric': {'datasets': "GISS-E2-R_r1i1p2; ERA-Interim's ts & HadISST's sst & Tropflux's sst; 's ",
         'method': 'The metric is the statistical value between the model and the observations',
         'name': 'EnsoSstLonRmse',
         'units': 'C/C'}},
       'EnsoSstSkew': {'diagnostic': {'ERA-Interim': {'keyerror': None,
          'name': 'ERA-Interim',
          'nyears': 40,
          'time_period': ['1979-1-16 12:0:0.0', '2019-3-16 12:0:0.0']},
         'GISS-E2-R_r1i1p2': {'keyerror': None,
          'name': 'GISS-E2-R_r1i1p2',
          'nyears': 156,
          'time_period': ['1850-1-16 12:0:0.0', '2005-12-16 12:0:0.0']},
         'HadISST': {'keyerror': None,
          'name': 'HadISST',
          'nyears': 151,
          'time_period': ['1870-1-16 11:59:59.5', '2020-10-16 12:0:0.0']},
         'Tropflux': {'keyerror': None,
          'name': 'Tropflux',
          'nyears': 40,
          'time_period': ['1979-1-15 0:0:0.0', '2018-12-15 12:0:0.0']},
         'method': 'Standard deviation of nino3.4 sstA, time series are linearly detrended',
         'name': 'ENSO skewness',
         'ref': 'Using CDAT regression calculation',
         'time_frequency': 'monthly',
         'units': 'C'},
        'metric': {'datasets': "GISS-E2-R_r1i1p2; ERA-Interim's ts & HadISST's sst & Tropflux's sst; 's ",
         'method': 'The metric is the absolute value of the relative difference between model and observations values (M = 100 * abs[[model-obs] / obs])',
         'name': 'EnsoSstSkew',
         'units': '%'}},
       'EnsoSstTsRmse': {'diagnostic': {'ERA-Interim': {'name': 'ERA-Interim',
          'nyears': 40,
          'time_period': ['1979-1-16 12:0:0.0', '2019-3-16 12:0:0.0']},
         'GISS-E2-R_r1i1p2': {'keyerror': None,
          'name': 'GISS-E2-R_r1i1p2',
          'nyears': 156,
          'time_period': ['1850-1-16 12:0:0.0', '2005-12-16 12:0:0.0']},
         'HadISST': {'name': 'HadISST',
          'nyears': 151,
          'time_period': ['1870-1-16 11:59:59.5', '2020-10-16 12:0:0.0']},
         'Tropflux': {'name': 'Tropflux',
          'nyears': 40,
          'time_period': ['1979-1-15 0:0:0.0', '2018-12-15 12:0:0.0']},
         'method': 'nino3.4 SSTA during DEC regressed against nino3.4 SSTA during 6 years (centered on ENSO), time series are linearly detrended, smoothing using a triangle shaped window of 5 points',
         'name': 'ENSO life cyle SSTA pattern',
         'ref': 'Using CDAT regridding and rms (uncentered and biased) calculation',
         'time_frequency': 'monthly',
         'units': 'C/C'},
        'metric': {'datasets': "GISS-E2-R_r1i1p2; ERA-Interim's ts & HadISST's sst & Tropflux's sst; 's ",
         'method': 'The metric is the statistical value between the model and the observations',
         'name': 'EnsoSstTsRmse',
         'units': 'C/C'}},
       'SeasonalPrLatRmse': {'diagnostic': {'ERA-Interim': {'name': 'ERA-Interim',
          'nyears': 40,
          'time_period': ['1979-1-16 12:0:0.0', '2019-3-16 12:0:0.0']},
         'GISS-E2-R_r1i1p2': {'keyerror': None,
          'name': 'GISS-E2-R_r1i1p2',
          'nyears': 156,
          'time_period': ['1850-1-16 12:0:0.0', '2005-12-16 12:0:0.0']},
         'GPCPv2.3': {'name': 'GPCPv2.3',
          'nyears': 41,
          'time_period': ['1979-1-1 0:0:0.0', '2019-7-1 0:0:0.0']},
         'method': 'Meridional root mean square error of nino3_LatExt climatological pr STD, time series are linearly detrended, observations and model regridded to generic_1x1deg',
         'name': 'pr meridional seasonality RMSE',
         'ref': 'Using CDAT regridding and rms (uncentered and biased) calculation',
         'time_frequency': 'monthly',
         'units': 'mm/day'},
        'metric': {'datasets': "GISS-E2-R_r1i1p2; ERA-Interim's pr & GPCPv2.3's precip; 's ",
         'method': 'The metric is the statistical value between the model and the observations',
         'name': 'SeasonalPrLatRmse',
         'units': 'mm/day'}},
       'SeasonalPrLonRmse': {'diagnostic': {'ERA-Interim': {'name': 'ERA-Interim',
          'nyears': 40,
          'time_period': ['1979-1-16 12:0:0.0', '2019-3-16 12:0:0.0']},
         'GISS-E2-R_r1i1p2': {'keyerror': None,
          'name': 'GISS-E2-R_r1i1p2',
          'nyears': 156,
          'time_period': ['1850-1-16 12:0:0.0', '2005-12-16 12:0:0.0']},
         'GPCPv2.3': {'name': 'GPCPv2.3',
          'nyears': 41,
          'time_period': ['1979-1-1 0:0:0.0', '2019-7-1 0:0:0.0']},
         'method': 'Zonal root mean square error of equatorial_pacific climatological pr STD, time series are linearly detrended, observations and model regridded to generic_1x1deg',
         'name': 'pr zonal seasonality RMSE',
         'ref': 'Using CDAT regridding and rms (uncentered and biased) calculation',
         'time_frequency': 'monthly',
         'units': 'mm/day'},
        'metric': {'datasets': "GISS-E2-R_r1i1p2; ERA-Interim's pr & GPCPv2.3's precip; 's ",
         'method': 'The metric is the statistical value between the model and the observations',
         'name': 'SeasonalPrLonRmse',
         'units': 'mm/day'}},
       'SeasonalSstLonRmse': {'diagnostic': {'ERA-Interim': {'name': 'ERA-Interim',
          'nyears': 40,
          'time_period': ['1979-1-16 12:0:0.0', '2019-3-16 12:0:0.0']},
         'GISS-E2-R_r1i1p2': {'keyerror': None,
          'name': 'GISS-E2-R_r1i1p2',
          'nyears': 156,
          'time_period': ['1850-1-16 12:0:0.0', '2005-12-16 12:0:0.0']},
         'HadISST': {'name': 'HadISST',
          'nyears': 151,
          'time_period': ['1870-1-16 11:59:59.5', '2020-10-16 12:0:0.0']},
         'Tropflux': {'name': 'Tropflux',
          'nyears': 40,
          'time_period': ['1979-1-15 0:0:0.0', '2018-12-15 12:0:0.0']},
         'method': 'Zonal root mean square error of equatorial_pacific climatological sst STD, time series are linearly detrended, observations and model regridded to generic_1x1deg',
         'name': 'sst zonal seasonality RMSE',
         'ref': 'Using CDAT regridding and rms (uncentered and biased) calculation',
         'time_frequency': 'monthly',
         'units': 'C'},
        'metric': {'datasets': "GISS-E2-R_r1i1p2; ERA-Interim's ts & HadISST's sst & Tropflux's sst; 's ",
         'method': 'The metric is the statistical value between the model and the observations',
         'name': 'SeasonalSstLonRmse',
         'units': 'C'}},
       'SeasonalTauxLonRmse': {'diagnostic': {'ERA-Interim': {'name': 'ERA-Interim',
          'nyears': 40,
          'time_period': ['1979-1-16 12:0:0.0', '2019-3-16 12:0:0.0']},
         'GISS-E2-R_r1i1p2': {'keyerror': None,
          'name': 'GISS-E2-R_r1i1p2',
          'nyears': 156,
          'time_period': ['1850-1-16 12:0:0.0', '2005-12-16 12:0:0.0']},
         'Tropflux': {'name': 'Tropflux',
          'nyears': 40,
          'time_period': ['1979-1-15 0:0:0.0', '2018-12-15 12:0:0.0']},
         'method': 'Zonal root mean square error of equatorial_pacific climatological taux STD, time series are linearly detrended, observations and model regridded to generic_1x1deg',
         'name': 'taux zonal seasonality RMSE',
         'ref': 'Using CDAT regridding and rms (uncentered and biased) calculation',
         'time_frequency': 'monthly',
         'units': '1e-3 N/m2'},
        'metric': {'datasets': "GISS-E2-R_r1i1p2; ERA-Interim's tauu & Tropflux's taux; 's ",
         'method': 'The metric is the statistical value between the model and the observations',
         'name': 'SeasonalTauxLonRmse',
         'units': '1e-3 N/m2'}}},
      'name': 'Metrics Collection for ENSO performance'},
     'value': {'BiasPrLatRmse': {'diagnostic': {'ERA-Interim': {'value': None,
         'value_error': None},
        'GISS-E2-R_r1i1p2': {'value': None, 'value_error': None},
        'GPCPv2.3': {'value': None, 'value_error': None}},
       'metric': {'ERA-Interim': {'value': 2.1686648053822224,
         'value_error': None},
        'GPCPv2.3': {'value': 2.963435155922053, 'value_error': None}}},
      'BiasPrLonRmse': {'diagnostic': {'ERA-Interim': {'value': None,
         'value_error': None},
        'GISS-E2-R_r1i1p2': {'value': None, 'value_error': None},
        'GPCPv2.3': {'value': None, 'value_error': None}},
       'metric': {'ERA-Interim': {'value': 1.761216295579251,
         'value_error': None},
        'GPCPv2.3': {'value': 2.227907640553879, 'value_error': None}}},
      'BiasSstLonRmse': {'diagnostic': {'ERA-Interim': {'value': None,
         'value_error': None},
        'GISS-E2-R_r1i1p2': {'value': None, 'value_error': None},
        'HadISST': {'value': None, 'value_error': None},
        'Tropflux': {'value': None, 'value_error': None}},
       'metric': {'ERA-Interim': {'value': 1.1149053337117873,
         'value_error': None},
        'HadISST': {'value': 1.2943900892444988, 'value_error': None},
        'Tropflux': {'value': 1.07851912117348, 'value_error': None}}},
      'BiasTauxLonRmse': {'diagnostic': {'ERA-Interim': {'value': None,
         'value_error': None},
        'GISS-E2-R_r1i1p2': {'value': None, 'value_error': None},
        'Tropflux': {'value': None, 'value_error': None}},
       'metric': {'ERA-Interim': {'value': 18.49483057988121,
         'value_error': None},
        'Tropflux': {'value': 18.110143078867456, 'value_error': None}}},
      'EnsoAmpl': {'diagnostic': {'ERA-Interim': {'value': 0.8989844997845644,
         'value_error': 0.14214193002531866},
        'GISS-E2-R_r1i1p2': {'value': 0.5687451525358826,
         'value_error': 0.04553605563058178},
        'HadISST': {'value': 0.7665787872085695,
         'value_error': 0.06238329697691264},
        'Tropflux': {'value': 0.9039789553693535,
         'value_error': 0.14293162279134272}},
       'metric': {'ERA-Interim': {'value': 36.73470981177333,
         'value_error': 15.068397750206863},
        'HadISST': {'value': 25.80734530798602,
         'value_error': 11.977879022260755},
        'Tropflux': {'value': 37.08424857042152,
         'value_error': 14.985145321762225}}},
      'EnsoDuration': {'diagnostic': {'ERA-Interim': {'value': 13.0,
         'value_error': None},
        'GISS-E2-R_r1i1p2': {'value': 12.0, 'value_error': None},
        'HadISST': {'value': 13.0, 'value_error': None},
        'Tropflux': {'value': 13.0, 'value_error': None}},
       'metric': {'ERA-Interim': {'value': 7.6923076923076925,
         'value_error': None},
        'HadISST': {'value': 7.6923076923076925, 'value_error': None},
        'Tropflux': {'value': 7.6923076923076925, 'value_error': None}}},
      'EnsoSeasonality': {'diagnostic': {'ERA-Interim': {'value': 2.0466846866656914,
         'value_error': 0.6513411033995022},
        'GISS-E2-R_r1i1p2': {'value': 1.8054063480269347,
         'value_error': 0.2895619202146194},
        'HadISST': {'value': 1.6639865947361325,
         'value_error': 0.2712772451657809},
        'Tropflux': {'value': 2.0532132553583624,
         'value_error': 0.6534187683977347}},
       'metric': {'ERA-Interim': {'value': 11.788740112764007,
         'value_error': 42.22038300850839},
        'HadISST': {'value': 8.498851717806527,
         'value_error': 35.090103372123735},
        'Tropflux': {'value': 12.069224016780282,
         'value_error': 42.08613554542458}}},
      'EnsoSstDiversity_2': {'diagnostic': {'ERA-Interim': {'value': 33.25,
         'value_error': None},
        'GISS-E2-R_r1i1p2': {'value': 13.25, 'value_error': None},
        'HadISST': {'value': 49.0, 'value_error': None},
        'Tropflux': {'value': 32.0, 'value_error': None}},
       'metric': {'ERA-Interim': {'value': 60.150375939849624,
         'value_error': None},
        'HadISST': {'value': 72.95918367346938, 'value_error': None},
        'Tropflux': {'value': 58.59375, 'value_error': None}}},
      'EnsoSstLonRmse': {'diagnostic': {'ERA-Interim': {'value': None,
         'value_error': None},
        'GISS-E2-R_r1i1p2': {'value': None, 'value_error': None},
        'HadISST': {'value': None, 'value_error': None},
        'Tropflux': {'value': None, 'value_error': None}},
       'metric': {'ERA-Interim': {'value': 0.12486141501486193,
         'value_error': None},
        'HadISST': {'value': 0.13925747087749413, 'value_error': None},
        'Tropflux': {'value': 0.12385770005884607, 'value_error': None}}},
      'EnsoSstSkew': {'diagnostic': {'ERA-Interim': {'value': 0.39098111106809963,
         'value_error': 0.061819541653923164},
        'GISS-E2-R_r1i1p2': {'value': -0.17271086765570529,
         'value_error': -0.013827936189891412},
        'HadISST': {'value': 0.38989908235027515,
         'value_error': 0.03172953733021198},
        'Tropflux': {'value': 0.39744741059612115,
         'value_error': 0.06284195338099416}},
       'metric': {'ERA-Interim': {'value': 144.1737114061306,
         'value_error': -10.521204464407804},
        'HadISST': {'value': 144.29630011299855,
         'value_error': -7.15132415856745},
        'Tropflux': {'value': 143.4550239984356,
         'value_error': -10.350028963829306}}},
      'EnsoSstTsRmse': {'diagnostic': {'ERA-Interim': {'value': None,
         'value_error': None},
        'GISS-E2-R_r1i1p2': {'value': None, 'value_error': None},
        'HadISST': {'value': None, 'value_error': None},
        'Tropflux': {'value': None, 'value_error': None}},
       'metric': {'ERA-Interim': {'value': 0.18549652677718456,
         'value_error': None},
        'HadISST': {'value': 0.1779598123097036, 'value_error': None},
        'Tropflux': {'value': 0.18677890914928053, 'value_error': None}}},
      'SeasonalPrLatRmse': {'diagnostic': {'ERA-Interim': {'value': None,
         'value_error': None},
        'GISS-E2-R_r1i1p2': {'value': None, 'value_error': None},
        'GPCPv2.3': {'value': None, 'value_error': None}},
       'metric': {'ERA-Interim': {'value': 0.7226526539245978,
         'value_error': None},
        'GPCPv2.3': {'value': 0.8877431631856268, 'value_error': None}}},
      'SeasonalPrLonRmse': {'diagnostic': {'ERA-Interim': {'value': None,
         'value_error': None},
        'GISS-E2-R_r1i1p2': {'value': None, 'value_error': None},
        'GPCPv2.3': {'value': None, 'value_error': None}},
       'metric': {'ERA-Interim': {'value': 0.25561494467359275,
         'value_error': None},
        'GPCPv2.3': {'value': 0.4696760846888414, 'value_error': None}}},
      'SeasonalSstLonRmse': {'diagnostic': {'ERA-Interim': {'value': None,
         'value_error': None},
        'GISS-E2-R_r1i1p2': {'value': None, 'value_error': None},
        'HadISST': {'value': None, 'value_error': None},
        'Tropflux': {'value': None, 'value_error': None}},
       'metric': {'ERA-Interim': {'value': 0.28669404633423856,
         'value_error': None},
        'HadISST': {'value': 0.2878635729263706, 'value_error': None},
        'Tropflux': {'value': 0.2947199996227253, 'value_error': None}}},
      'SeasonalTauxLonRmse': {'diagnostic': {'ERA-Interim': {'value': None,
         'value_error': None},
        'GISS-E2-R_r1i1p2': {'value': None, 'value_error': None},
        'Tropflux': {'value': None, 'value_error': None}},
       'metric': {'ERA-Interim': {'value': 2.003389673466228,
         'value_error': None},
        'Tropflux': {'value': 2.1360017662349744, 'value_error': None}}}}},
    'r1i1p3': {'metadata': {'description_of_the_collection': 'Describe which science question this collection is about',
      'metrics': {'BiasPrLatRmse': {'diagnostic': {'ERA-Interim': {'name': 'ERA-Interim',
          'nyears': 40,
          'time_period': ['1979-1-16 12:0:0.0', '2019-3-16 12:0:0.0']},
         'GISS-E2-R_r1i1p3': {'keyerror': None,
          'name': 'GISS-E2-R_r1i1p3',
          'nyears': 156,
          'time_period': ['1850-1-16 12:0:0.0', '2005-12-16 12:0:0.0']},
         'GPCPv2.3': {'name': 'GPCPv2.3',
          'nyears': 41,
          'time_period': ['1979-1-1 0:0:0.0', '2019-7-1 0:0:0.0']},
         'method': 'Meridional root mean square error of nino3_LatExt pr, time series are linearly detrended, observations and model regridded to generic_1x1deg',
         'name': 'pr Meridional RMSE',
         'ref': 'Using CDAT regridding and rms (uncentered and biased) calculation',
         'time_frequency': 'monthly',
         'units': 'mm/day'},
        'metric': {'datasets': "GISS-E2-R_r1i1p3; ERA-Interim's pr & GPCPv2.3's precip; 's ",
         'method': 'The metric is the statistical value between the model and the observations',
         'name': 'BiasPrLatRmse',
         'units': 'mm/day'}},
       'BiasPrLonRmse': {'diagnostic': {'ERA-Interim': {'name': 'ERA-Interim',
          'nyears': 40,
          'time_period': ['1979-1-16 12:0:0.0', '2019-3-16 12:0:0.0']},
         'GISS-E2-R_r1i1p3': {'keyerror': None,
          'name': 'GISS-E2-R_r1i1p3',
          'nyears': 156,
          'time_period': ['1850-1-16 12:0:0.0', '2005-12-16 12:0:0.0']},
         'GPCPv2.3': {'name': 'GPCPv2.3',
          'nyears': 41,
          'time_period': ['1979-1-1 0:0:0.0', '2019-7-1 0:0:0.0']},
         'method': 'Zonal root mean square error of equatorial_pacific pr, time series are linearly detrended, observations and model regridded to generic_1x1deg',
         'name': 'pr Zonal RMSE',
         'ref': 'Using CDAT regridding and rms (uncentered and biased) calculation',
         'time_frequency': 'monthly',
         'units': 'mm/day'},
        'metric': {'datasets': "GISS-E2-R_r1i1p3; ERA-Interim's pr & GPCPv2.3's precip; 's ",
         'method': 'The metric is the statistical value between the model and the observations',
         'name': 'BiasPrLonRmse',
         'units': 'mm/day'}},
       'BiasSstLonRmse': {'diagnostic': {'ERA-Interim': {'name': 'ERA-Interim',
          'nyears': 40,
          'time_period': ['1979-1-16 12:0:0.0', '2019-3-16 12:0:0.0']},
         'GISS-E2-R_r1i1p3': {'keyerror': None,
          'name': 'GISS-E2-R_r1i1p3',
          'nyears': 156,
          'time_period': ['1850-1-16 12:0:0.0', '2005-12-16 12:0:0.0']},
         'HadISST': {'name': 'HadISST',
          'nyears': 151,
          'time_period': ['1870-1-16 11:59:59.5', '2020-10-16 12:0:0.0']},
         'Tropflux': {'name': 'Tropflux',
          'nyears': 40,
          'time_period': ['1979-1-15 0:0:0.0', '2018-12-15 12:0:0.0']},
         'method': 'Zonal root mean square error of equatorial_pacific sst, time series are linearly detrended, observations and model regridded to generic_1x1deg',
         'name': 'sst Zonal RMSE',
         'ref': 'Using CDAT regridding and rms (uncentered and biased) calculation',
         'time_frequency': 'monthly',
         'units': 'C'},
        'metric': {'datasets': "GISS-E2-R_r1i1p3; ERA-Interim's ts & HadISST's sst & Tropflux's sst; 's ",
         'method': 'The metric is the statistical value between the model and the observations',
         'name': 'BiasSstLonRmse',
         'units': 'C'}},
       'BiasTauxLonRmse': {'diagnostic': {'ERA-Interim': {'name': 'ERA-Interim',
          'nyears': 40,
          'time_period': ['1979-1-16 12:0:0.0', '2019-3-16 12:0:0.0']},
         'GISS-E2-R_r1i1p3': {'keyerror': None,
          'name': 'GISS-E2-R_r1i1p3',
          'nyears': 156,
          'time_period': ['1850-1-16 12:0:0.0', '2005-12-16 12:0:0.0']},
         'Tropflux': {'name': 'Tropflux',
          'nyears': 40,
          'time_period': ['1979-1-15 0:0:0.0', '2018-12-15 12:0:0.0']},
         'method': 'Zonal root mean square error of equatorial_pacific taux, time series are linearly detrended, observations and model regridded to generic_1x1deg',
         'name': 'taux Zonal RMSE',
         'ref': 'Using CDAT regridding and rms (uncentered and biased) calculation',
         'time_frequency': 'monthly',
         'units': '1e-3 N/m2'},
        'metric': {'datasets': "GISS-E2-R_r1i1p3; ERA-Interim's tauu & Tropflux's taux; 's ",
         'method': 'The metric is the statistical value between the model and the observations',
         'name': 'BiasTauxLonRmse',
         'units': '1e-3 N/m2'}},
       'EnsoAmpl': {'diagnostic': {'ERA-Interim': {'keyerror': None,
          'name': 'ERA-Interim',
          'nyears': 40,
          'time_period': ['1979-1-16 12:0:0.0', '2019-3-16 12:0:0.0']},
         'GISS-E2-R_r1i1p3': {'keyerror': None,
          'name': 'GISS-E2-R_r1i1p3',
          'nyears': 156,
          'time_period': ['1850-1-16 12:0:0.0', '2005-12-16 12:0:0.0']},
         'HadISST': {'keyerror': None,
          'name': 'HadISST',
          'nyears': 151,
          'time_period': ['1870-1-16 11:59:59.5', '2020-10-16 12:0:0.0']},
         'Tropflux': {'keyerror': None,
          'name': 'Tropflux',
          'nyears': 40,
          'time_period': ['1979-1-15 0:0:0.0', '2018-12-15 12:0:0.0']},
         'method': 'Standard deviation of nino3.4 sstA, time series are linearly detrended',
         'name': 'ENSO amplitude',
         'ref': 'Using CDAT regression calculation',
         'time_frequency': 'monthly',
         'units': 'C'},
        'metric': {'datasets': "GISS-E2-R_r1i1p3; ERA-Interim's ts & HadISST's sst & Tropflux's sst; 's ",
         'method': 'The metric is the absolute value of the relative difference between model and observations values (M = 100 * abs[[model-obs] / obs])',
         'name': 'EnsoAmpl',
         'units': '%'}},
       'EnsoDuration': {'diagnostic': {'ERA-Interim': {'keyerror': None,
          'name': 'ERA-Interim',
          'nyears': 40,
          'time_period': ['1979-1-16 12:0:0.0', '2019-3-16 12:0:0.0']},
         'GISS-E2-R_r1i1p3': {'keyerror': None,
          'name': 'GISS-E2-R_r1i1p3',
          'nyears': 156,
          'time_period': ['1850-1-16 12:0:0.0', '2005-12-16 12:0:0.0']},
         'HadISST': {'keyerror': None,
          'name': 'HadISST',
          'nyears': 151,
          'time_period': ['1870-1-16 11:59:59.5', '2020-10-16 12:0:0.0']},
         'Tropflux': {'keyerror': None,
          'name': 'Tropflux',
          'nyears': 40,
          'time_period': ['1979-1-15 0:0:0.0', '2018-12-15 12:0:0.0']},
         'method': 'nino3.4 SSTA during DEC regressed against nino3.4 SSTA during 6 years (centered on ENSO), the duration is the number of consecutive months during which the regression is above 0.25, time series are linearly detrended, smoothing using a triangle shaped window of 5 points',
         'name': 'ENSO Duration based on life cyle SSTA pattern',
         'ref': 'Using CDAT',
         'time_frequency': 'monthly',
         'units': 'months'},
        'metric': {'datasets': "GISS-E2-R_r1i1p3; ERA-Interim's ts & HadISST's sst & Tropflux's sst; 's ",
         'method': 'The metric is the absolute value of the relative difference between model and observations values (M = 100 * abs[[model-obs] / obs])',
         'name': 'EnsoDuration',
         'units': '%'}},
       'EnsoSeasonality': {'diagnostic': {'ERA-Interim': {'keyerror': None,
          'name': 'ERA-Interim',
          'nyears': 40,
          'time_period': ['1979-1-16 12:0:0.0', '2019-3-16 12:0:0.0']},
         'GISS-E2-R_r1i1p3': {'keyerror': None,
          'name': 'GISS-E2-R_r1i1p3',
          'nyears': 156,
          'time_period': ['1850-1-16 12:0:0.0', '2005-12-16 12:0:0.0']},
         'HadISST': {'keyerror': None,
          'name': 'HadISST',
          'nyears': 151,
          'time_period': ['1870-1-16 11:59:59.5', '2020-10-16 12:0:0.0']},
         'Tropflux': {'keyerror': None,
          'name': 'Tropflux',
          'nyears': 40,
          'time_period': ['1979-1-15 0:0:0.0', '2018-12-15 12:0:0.0']},
         'method': 'Ratio between NDJ and MAM standard deviation nino3.4 sstA, time series are linearly detrended',
         'name': 'ENSO seasonality',
         'ref': 'Using CDAT std dev calculation',
         'time_frequency': 'monthly',
         'units': 'C/C'},
        'metric': {'datasets': "GISS-E2-R_r1i1p3; ERA-Interim's ts & HadISST's sst & Tropflux's sst; 's ",
         'method': 'The metric is the absolute value of the relative difference between model and observations values (M = 100 * abs[[model-obs] / obs])',
         'name': 'EnsoSeasonality',
         'units': '%'}},
       'EnsoSstDiversity_2': {'diagnostic': {'ERA-Interim': {'keyerror': None,
          'name': 'ERA-Interim',
          'nyears': 40,
          'time_period': ['1979-1-16 12:0:0.0', '2019-3-16 12:0:0.0']},
         'GISS-E2-R_r1i1p3': {'keyerror': None,
          'name': 'GISS-E2-R_r1i1p3',
          'nyears': 156,
          'time_period': ['1850-1-16 12:0:0.0', '2005-12-16 12:0:0.0']},
         'HadISST': {'keyerror': None,
          'name': 'HadISST',
          'nyears': 151,
          'time_period': ['1870-1-16 11:59:59.5', '2020-10-16 12:0:0.0']},
         'Tropflux': {'keyerror': None,
          'name': 'Tropflux',
          'nyears': 40,
          'time_period': ['1979-1-15 0:0:0.0', '2018-12-15 12:0:0.0']},
         'method': 'Nino (Nina) events = nino3.4 sstA > 0.75 (< -0.75) during DEC, zonal SSTA (meridional averaged [-5.0 ; 5.0]), the zonal SSTA maximum (minimum) is located for each event, the diversity is the interquartile range (IQR = Q3 - Q1), time series are linearly detrended, smoothing using a triangle shaped window of 5 points',
         'name': 'ENSO Diversity (interquartile range)',
         'ref': 'Using CDAT regridding',
         'time_frequency': 'monthly',
         'units': 'long'},
        'metric': {'datasets': "GISS-E2-R_r1i1p3; ERA-Interim's ts & HadISST's sst & Tropflux's sst; 's ",
         'method': 'The metric is the absolute value of the relative difference between model and observations values (M = 100 * abs[[model-obs] / obs])',
         'name': 'EnsoSstDiversity',
         'units': '%'}},
       'EnsoSstLonRmse': {'diagnostic': {'ERA-Interim': {'name': 'ERA-Interim',
          'nyears': 40,
          'time_period': ['1979-1-16 12:0:0.0', '2019-3-16 12:0:0.0']},
         'GISS-E2-R_r1i1p3': {'keyerror': None,
          'name': 'GISS-E2-R_r1i1p3',
          'nyears': 156,
          'time_period': ['1850-1-16 12:0:0.0', '2005-12-16 12:0:0.0']},
         'HadISST': {'name': 'HadISST',
          'nyears': 151,
          'time_period': ['1870-1-16 11:59:59.5', '2020-10-16 12:0:0.0']},
         'Tropflux': {'name': 'Tropflux',
          'nyears': 40,
          'time_period': ['1979-1-15 0:0:0.0', '2018-12-15 12:0:0.0']},
         'method': 'nino3.4 SSTA during DEC regressed against equatorial_pacific SSTA, time series are linearly detrended, smoothing using a triangle shaped window of 5 points, observations and model regridded to generic_1x1deg',
         'name': 'ENSO Zonal SSTA pattern',
         'ref': 'Using CDAT regridding and rms (uncentered and biased) calculation',
         'time_frequency': 'monthly',
         'units': 'C/C'},
        'metric': {'datasets': "GISS-E2-R_r1i1p3; ERA-Interim's ts & HadISST's sst & Tropflux's sst; 's ",
         'method': 'The metric is the statistical value between the model and the observations',
         'name': 'EnsoSstLonRmse',
         'units': 'C/C'}},
       'EnsoSstSkew': {'diagnostic': {'ERA-Interim': {'keyerror': None,
          'name': 'ERA-Interim',
          'nyears': 40,
          'time_period': ['1979-1-16 12:0:0.0', '2019-3-16 12:0:0.0']},
         'GISS-E2-R_r1i1p3': {'keyerror': None,
          'name': 'GISS-E2-R_r1i1p3',
          'nyears': 156,
          'time_period': ['1850-1-16 12:0:0.0', '2005-12-16 12:0:0.0']},
         'HadISST': {'keyerror': None,
          'name': 'HadISST',
          'nyears': 151,
          'time_period': ['1870-1-16 11:59:59.5', '2020-10-16 12:0:0.0']},
         'Tropflux': {'keyerror': None,
          'name': 'Tropflux',
          'nyears': 40,
          'time_period': ['1979-1-15 0:0:0.0', '2018-12-15 12:0:0.0']},
         'method': 'Standard deviation of nino3.4 sstA, time series are linearly detrended',
         'name': 'ENSO skewness',
         'ref': 'Using CDAT regression calculation',
         'time_frequency': 'monthly',
         'units': 'C'},
        'metric': {'datasets': "GISS-E2-R_r1i1p3; ERA-Interim's ts & HadISST's sst & Tropflux's sst; 's ",
         'method': 'The metric is the absolute value of the relative difference between model and observations values (M = 100 * abs[[model-obs] / obs])',
         'name': 'EnsoSstSkew',
         'units': '%'}},
       'EnsoSstTsRmse': {'diagnostic': {'ERA-Interim': {'name': 'ERA-Interim',
          'nyears': 40,
          'time_period': ['1979-1-16 12:0:0.0', '2019-3-16 12:0:0.0']},
         'GISS-E2-R_r1i1p3': {'keyerror': None,
          'name': 'GISS-E2-R_r1i1p3',
          'nyears': 156,
          'time_period': ['1850-1-16 12:0:0.0', '2005-12-16 12:0:0.0']},
         'HadISST': {'name': 'HadISST',
          'nyears': 151,
          'time_period': ['1870-1-16 11:59:59.5', '2020-10-16 12:0:0.0']},
         'Tropflux': {'name': 'Tropflux',
          'nyears': 40,
          'time_period': ['1979-1-15 0:0:0.0', '2018-12-15 12:0:0.0']},
         'method': 'nino3.4 SSTA during DEC regressed against nino3.4 SSTA during 6 years (centered on ENSO), time series are linearly detrended, smoothing using a triangle shaped window of 5 points',
         'name': 'ENSO life cyle SSTA pattern',
         'ref': 'Using CDAT regridding and rms (uncentered and biased) calculation',
         'time_frequency': 'monthly',
         'units': 'C/C'},
        'metric': {'datasets': "GISS-E2-R_r1i1p3; ERA-Interim's ts & HadISST's sst & Tropflux's sst; 's ",
         'method': 'The metric is the statistical value between the model and the observations',
         'name': 'EnsoSstTsRmse',
         'units': 'C/C'}},
       'SeasonalPrLatRmse': {'diagnostic': {'ERA-Interim': {'name': 'ERA-Interim',
          'nyears': 40,
          'time_period': ['1979-1-16 12:0:0.0', '2019-3-16 12:0:0.0']},
         'GISS-E2-R_r1i1p3': {'keyerror': None,
          'name': 'GISS-E2-R_r1i1p3',
          'nyears': 156,
          'time_period': ['1850-1-16 12:0:0.0', '2005-12-16 12:0:0.0']},
         'GPCPv2.3': {'name': 'GPCPv2.3',
          'nyears': 41,
          'time_period': ['1979-1-1 0:0:0.0', '2019-7-1 0:0:0.0']},
         'method': 'Meridional root mean square error of nino3_LatExt climatological pr STD, time series are linearly detrended, observations and model regridded to generic_1x1deg',
         'name': 'pr meridional seasonality RMSE',
         'ref': 'Using CDAT regridding and rms (uncentered and biased) calculation',
         'time_frequency': 'monthly',
         'units': 'mm/day'},
        'metric': {'datasets': "GISS-E2-R_r1i1p3; ERA-Interim's pr & GPCPv2.3's precip; 's ",
         'method': 'The metric is the statistical value between the model and the observations',
         'name': 'SeasonalPrLatRmse',
         'units': 'mm/day'}},
       'SeasonalPrLonRmse': {'diagnostic': {'ERA-Interim': {'name': 'ERA-Interim',
          'nyears': 40,
          'time_period': ['1979-1-16 12:0:0.0', '2019-3-16 12:0:0.0']},
         'GISS-E2-R_r1i1p3': {'keyerror': None,
          'name': 'GISS-E2-R_r1i1p3',
          'nyears': 156,
          'time_period': ['1850-1-16 12:0:0.0', '2005-12-16 12:0:0.0']},
         'GPCPv2.3': {'name': 'GPCPv2.3',
          'nyears': 41,
          'time_period': ['1979-1-1 0:0:0.0', '2019-7-1 0:0:0.0']},
         'method': 'Zonal root mean square error of equatorial_pacific climatological pr STD, time series are linearly detrended, observations and model regridded to generic_1x1deg',
         'name': 'pr zonal seasonality RMSE',
         'ref': 'Using CDAT regridding and rms (uncentered and biased) calculation',
         'time_frequency': 'monthly',
         'units': 'mm/day'},
        'metric': {'datasets': "GISS-E2-R_r1i1p3; ERA-Interim's pr & GPCPv2.3's precip; 's ",
         'method': 'The metric is the statistical value between the model and the observations',
         'name': 'SeasonalPrLonRmse',
         'units': 'mm/day'}},
       'SeasonalSstLonRmse': {'diagnostic': {'ERA-Interim': {'name': 'ERA-Interim',
          'nyears': 40,
          'time_period': ['1979-1-16 12:0:0.0', '2019-3-16 12:0:0.0']},
         'GISS-E2-R_r1i1p3': {'keyerror': None,
          'name': 'GISS-E2-R_r1i1p3',
          'nyears': 156,
          'time_period': ['1850-1-16 12:0:0.0', '2005-12-16 12:0:0.0']},
         'HadISST': {'name': 'HadISST',
          'nyears': 151,
          'time_period': ['1870-1-16 11:59:59.5', '2020-10-16 12:0:0.0']},
         'Tropflux': {'name': 'Tropflux',
          'nyears': 40,
          'time_period': ['1979-1-15 0:0:0.0', '2018-12-15 12:0:0.0']},
         'method': 'Zonal root mean square error of equatorial_pacific climatological sst STD, time series are linearly detrended, observations and model regridded to generic_1x1deg',
         'name': 'sst zonal seasonality RMSE',
         'ref': 'Using CDAT regridding and rms (uncentered and biased) calculation',
         'time_frequency': 'monthly',
         'units': 'C'},
        'metric': {'datasets': "GISS-E2-R_r1i1p3; ERA-Interim's ts & HadISST's sst & Tropflux's sst; 's ",
         'method': 'The metric is the statistical value between the model and the observations',
         'name': 'SeasonalSstLonRmse',
         'units': 'C'}},
       'SeasonalTauxLonRmse': {'diagnostic': {'ERA-Interim': {'name': 'ERA-Interim',
          'nyears': 40,
          'time_period': ['1979-1-16 12:0:0.0', '2019-3-16 12:0:0.0']},
         'GISS-E2-R_r1i1p3': {'keyerror': None,
          'name': 'GISS-E2-R_r1i1p3',
          'nyears': 156,
          'time_period': ['1850-1-16 12:0:0.0', '2005-12-16 12:0:0.0']},
         'Tropflux': {'name': 'Tropflux',
          'nyears': 40,
          'time_period': ['1979-1-15 0:0:0.0', '2018-12-15 12:0:0.0']},
         'method': 'Zonal root mean square error of equatorial_pacific climatological taux STD, time series are linearly detrended, observations and model regridded to generic_1x1deg',
         'name': 'taux zonal seasonality RMSE',
         'ref': 'Using CDAT regridding and rms (uncentered and biased) calculation',
         'time_frequency': 'monthly',
         'units': '1e-3 N/m2'},
        'metric': {'datasets': "GISS-E2-R_r1i1p3; ERA-Interim's tauu & Tropflux's taux; 's ",
         'method': 'The metric is the statistical value between the model and the observations',
         'name': 'SeasonalTauxLonRmse',
         'units': '1e-3 N/m2'}}},
      'name': 'Metrics Collection for ENSO performance'},
     'value': {'BiasPrLatRmse': {'diagnostic': {'ERA-Interim': {'value': None,
         'value_error': None},
        'GISS-E2-R_r1i1p3': {'value': None, 'value_error': None},
        'GPCPv2.3': {'value': None, 'value_error': None}},
       'metric': {'ERA-Interim': {'value': 2.128263167448335,
         'value_error': None},
        'GPCPv2.3': {'value': 2.880944762216224, 'value_error': None}}},
      'BiasPrLonRmse': {'diagnostic': {'ERA-Interim': {'value': None,
         'value_error': None},
        'GISS-E2-R_r1i1p3': {'value': None, 'value_error': None},
        'GPCPv2.3': {'value': None, 'value_error': None}},
       'metric': {'ERA-Interim': {'value': 1.7797321355068332,
         'value_error': None},
        'GPCPv2.3': {'value': 2.3275031396047816, 'value_error': None}}},
      'BiasSstLonRmse': {'diagnostic': {'ERA-Interim': {'value': None,
         'value_error': None},
        'GISS-E2-R_r1i1p3': {'value': None, 'value_error': None},
        'HadISST': {'value': None, 'value_error': None},
        'Tropflux': {'value': None, 'value_error': None}},
       'metric': {'ERA-Interim': {'value': 1.1454306746231726,
         'value_error': None},
        'HadISST': {'value': 1.3253787324684903, 'value_error': None},
        'Tropflux': {'value': 1.1089049142213498, 'value_error': None}}},
      'BiasTauxLonRmse': {'diagnostic': {'ERA-Interim': {'value': None,
         'value_error': None},
        'GISS-E2-R_r1i1p3': {'value': None, 'value_error': None},
        'Tropflux': {'value': None, 'value_error': None}},
       'metric': {'ERA-Interim': {'value': 17.93265337868443,
         'value_error': None},
        'Tropflux': {'value': 17.54119660973642, 'value_error': None}}},
      'EnsoAmpl': {'diagnostic': {'ERA-Interim': {'value': 0.8989844997845644,
         'value_error': 0.14214193002531866},
        'GISS-E2-R_r1i1p3': {'value': 0.5320974840963134,
         'value_error': 0.042601893886337186},
        'HadISST': {'value': 0.7665787872085695,
         'value_error': 0.06238329697691264},
        'Tropflux': {'value': 0.9039789553693535,
         'value_error': 0.14293162279134272}},
       'metric': {'ERA-Interim': {'value': 40.811272694487286,
         'value_error': 14.097450319353303},
        'HadISST': {'value': 30.588023961124666,
         'value_error': 11.206072287627727},
        'Tropflux': {'value': 41.13828857012433,
         'value_error': 14.019562345235576}}},
      'EnsoDuration': {'diagnostic': {'ERA-Interim': {'value': 13.0,
         'value_error': None},
        'GISS-E2-R_r1i1p3': {'value': 12.0, 'value_error': None},
        'HadISST': {'value': 13.0, 'value_error': None},
        'Tropflux': {'value': 13.0, 'value_error': None}},
       'metric': {'ERA-Interim': {'value': 7.6923076923076925,
         'value_error': None},
        'HadISST': {'value': 7.6923076923076925, 'value_error': None},
        'Tropflux': {'value': 7.6923076923076925, 'value_error': None}}},
      'EnsoSeasonality': {'diagnostic': {'ERA-Interim': {'value': 2.0466846866656914,
         'value_error': 0.6513411033995022},
        'GISS-E2-R_r1i1p3': {'value': 1.627933337808474,
         'value_error': 0.26109773225976485},
        'HadISST': {'value': 1.6639865947361325,
         'value_error': 0.2712772451657809},
        'Tropflux': {'value': 2.0532132553583624,
         'value_error': 0.6534187683977347}},
       'metric': {'ERA-Interim': {'value': 20.459983483797714,
         'value_error': 38.07008273218271},
        'HadISST': {'value': 2.16667952985377,
         'value_error': 31.64071576964098},
        'Tropflux': {'value': 20.712895576726698,
         'value_error': 37.94903191118099}}},
      'EnsoSstDiversity_2': {'diagnostic': {'ERA-Interim': {'value': 33.25,
         'value_error': None},
        'GISS-E2-R_r1i1p3': {'value': 27.5, 'value_error': None},
        'HadISST': {'value': 49.0, 'value_error': None},
        'Tropflux': {'value': 32.0, 'value_error': None}},
       'metric': {'ERA-Interim': {'value': 17.293233082706767,
         'value_error': None},
        'HadISST': {'value': 43.87755102040816, 'value_error': None},
        'Tropflux': {'value': 14.0625, 'value_error': None}}},
      'EnsoSstLonRmse': {'diagnostic': {'ERA-Interim': {'value': None,
         'value_error': None},
        'GISS-E2-R_r1i1p3': {'value': None, 'value_error': None},
        'HadISST': {'value': None, 'value_error': None},
        'Tropflux': {'value': None, 'value_error': None}},
       'metric': {'ERA-Interim': {'value': 0.12365398554477006,
         'value_error': None},
        'HadISST': {'value': 0.12908578600863693, 'value_error': None},
        'Tropflux': {'value': 0.12198065825248448, 'value_error': None}}},
      'EnsoSstSkew': {'diagnostic': {'ERA-Interim': {'value': 0.39098111106809963,
         'value_error': 0.061819541653923164},
        'GISS-E2-R_r1i1p3': {'value': -0.05973828808875964,
         'value_error': -0.004782890891564754},
        'HadISST': {'value': 0.38989908235027515,
         'value_error': 0.03172953733021198},
        'Tropflux': {'value': 0.39744741059612115,
         'value_error': 0.06284195338099416}},
       'metric': {'ERA-Interim': {'value': 115.27907267068834,
         'value_error': -3.63913835803589},
        'HadISST': {'value': 115.3214744001609,
         'value_error': -2.4735436084557056},
        'Tropflux': {'value': 115.03048868758756,
         'value_error': -3.5799311320744023}}},
      'EnsoSstTsRmse': {'diagnostic': {'ERA-Interim': {'value': None,
         'value_error': None},
        'GISS-E2-R_r1i1p3': {'value': None, 'value_error': None},
        'HadISST': {'value': None, 'value_error': None},
        'Tropflux': {'value': None, 'value_error': None}},
       'metric': {'ERA-Interim': {'value': 0.16733127422565822,
         'value_error': None},
        'HadISST': {'value': 0.14661225577017525, 'value_error': None},
        'Tropflux': {'value': 0.16568591989902487, 'value_error': None}}},
      'SeasonalPrLatRmse': {'diagnostic': {'ERA-Interim': {'value': None,
         'value_error': None},
        'GISS-E2-R_r1i1p3': {'value': None, 'value_error': None},
        'GPCPv2.3': {'value': None, 'value_error': None}},
       'metric': {'ERA-Interim': {'value': 0.744855102654373,
         'value_error': None},
        'GPCPv2.3': {'value': 0.8919231482468437, 'value_error': None}}},
      'SeasonalPrLonRmse': {'diagnostic': {'ERA-Interim': {'value': None,
         'value_error': None},
        'GISS-E2-R_r1i1p3': {'value': None, 'value_error': None},
        'GPCPv2.3': {'value': None, 'value_error': None}},
       'metric': {'ERA-Interim': {'value': 0.22664251980699532,
         'value_error': None},
        'GPCPv2.3': {'value': 0.5031881039156952, 'value_error': None}}},
      'SeasonalSstLonRmse': {'diagnostic': {'ERA-Interim': {'value': None,
         'value_error': None},
        'GISS-E2-R_r1i1p3': {'value': None, 'value_error': None},
        'HadISST': {'value': None, 'value_error': None},
        'Tropflux': {'value': None, 'value_error': None}},
       'metric': {'ERA-Interim': {'value': 0.267940988156236,
         'value_error': None},
        'HadISST': {'value': 0.2712087178953018, 'value_error': None},
        'Tropflux': {'value': 0.27531302584686135, 'value_error': None}}},
      'SeasonalTauxLonRmse': {'diagnostic': {'ERA-Interim': {'value': None,
         'value_error': None},
        'GISS-E2-R_r1i1p3': {'value': None, 'value_error': None},
        'Tropflux': {'value': None, 'value_error': None}},
       'metric': {'ERA-Interim': {'value': 1.7938017985707055,
         'value_error': None},
        'Tropflux': {'value': 1.8707424427332244, 'value_error': None}}}}},
    'r2i1p1': {'metadata': {'description_of_the_collection': 'Describe which science question this collection is about',
      'metrics': {'BiasPrLatRmse': {'diagnostic': {'ERA-Interim': {'name': 'ERA-Interim',
          'nyears': 40,
          'time_period': ['1979-1-16 12:0:0.0', '2019-3-16 12:0:0.0']},
         'GISS-E2-R_r2i1p1': {'keyerror': None,
          'name': 'GISS-E2-R_r2i1p1',
          'nyears': 156,
          'time_period': ['1850-1-16 12:0:0.0', '2005-12-16 12:0:0.0']},
         'GPCPv2.3': {'name': 'GPCPv2.3',
          'nyears': 41,
          'time_period': ['1979-1-1 0:0:0.0', '2019-7-1 0:0:0.0']},
         'method': 'Meridional root mean square error of nino3_LatExt pr, time series are linearly detrended, observations and model regridded to generic_1x1deg',
         'name': 'pr Meridional RMSE',
         'ref': 'Using CDAT regridding and rms (uncentered and biased) calculation',
         'time_frequency': 'monthly',
         'units': 'mm/day'},
        'metric': {'datasets': "GISS-E2-R_r2i1p1; ERA-Interim's pr & GPCPv2.3's precip; 's ",
         'method': 'The metric is the statistical value between the model and the observations',
         'name': 'BiasPrLatRmse',
         'units': 'mm/day'}},
       'BiasPrLonRmse': {'diagnostic': {'ERA-Interim': {'name': 'ERA-Interim',
          'nyears': 40,
          'time_period': ['1979-1-16 12:0:0.0', '2019-3-16 12:0:0.0']},
         'GISS-E2-R_r2i1p1': {'keyerror': None,
          'name': 'GISS-E2-R_r2i1p1',
          'nyears': 156,
          'time_period': ['1850-1-16 12:0:0.0', '2005-12-16 12:0:0.0']},
         'GPCPv2.3': {'name': 'GPCPv2.3',
          'nyears': 41,
          'time_period': ['1979-1-1 0:0:0.0', '2019-7-1 0:0:0.0']},
         'method': 'Zonal root mean square error of equatorial_pacific pr, time series are linearly detrended, observations and model regridded to generic_1x1deg',
         'name': 'pr Zonal RMSE',
         'ref': 'Using CDAT regridding and rms (uncentered and biased) calculation',
         'time_frequency': 'monthly',
         'units': 'mm/day'},
        'metric': {'datasets': "GISS-E2-R_r2i1p1; ERA-Interim's pr & GPCPv2.3's precip; 's ",
         'method': 'The metric is the statistical value between the model and the observations',
         'name': 'BiasPrLonRmse',
         'units': 'mm/day'}},
       'BiasSstLonRmse': {'diagnostic': {'ERA-Interim': {'name': 'ERA-Interim',
          'nyears': 40,
          'time_period': ['1979-1-16 12:0:0.0', '2019-3-16 12:0:0.0']},
         'GISS-E2-R_r2i1p1': {'keyerror': None,
          'name': 'GISS-E2-R_r2i1p1',
          'nyears': 156,
          'time_period': ['1850-1-16 12:0:0.0', '2005-12-16 12:0:0.0']},
         'HadISST': {'name': 'HadISST',
          'nyears': 151,
          'time_period': ['1870-1-16 11:59:59.5', '2020-10-16 12:0:0.0']},
         'Tropflux': {'name': 'Tropflux',
          'nyears': 40,
          'time_period': ['1979-1-15 0:0:0.0', '2018-12-15 12:0:0.0']},
         'method': 'Zonal root mean square error of equatorial_pacific sst, time series are linearly detrended, observations and model regridded to generic_1x1deg',
         'name': 'sst Zonal RMSE',
         'ref': 'Using CDAT regridding and rms (uncentered and biased) calculation',
         'time_frequency': 'monthly',
         'units': 'C'},
        'metric': {'datasets': "GISS-E2-R_r2i1p1; ERA-Interim's ts & HadISST's sst & Tropflux's sst; 's ",
         'method': 'The metric is the statistical value between the model and the observations',
         'name': 'BiasSstLonRmse',
         'units': 'C'}},
       'BiasTauxLonRmse': {'diagnostic': {'ERA-Interim': {'name': 'ERA-Interim',
          'nyears': 40,
          'time_period': ['1979-1-16 12:0:0.0', '2019-3-16 12:0:0.0']},
         'GISS-E2-R_r2i1p1': {'keyerror': None,
          'name': 'GISS-E2-R_r2i1p1',
          'nyears': 156,
          'time_period': ['1850-1-16 12:0:0.0', '2005-12-16 12:0:0.0']},
         'Tropflux': {'name': 'Tropflux',
          'nyears': 40,
          'time_period': ['1979-1-15 0:0:0.0', '2018-12-15 12:0:0.0']},
         'method': 'Zonal root mean square error of equatorial_pacific taux, time series are linearly detrended, observations and model regridded to generic_1x1deg',
         'name': 'taux Zonal RMSE',
         'ref': 'Using CDAT regridding and rms (uncentered and biased) calculation',
         'time_frequency': 'monthly',
         'units': '1e-3 N/m2'},
        'metric': {'datasets': "GISS-E2-R_r2i1p1; ERA-Interim's tauu & Tropflux's taux; 's ",
         'method': 'The metric is the statistical value between the model and the observations',
         'name': 'BiasTauxLonRmse',
         'units': '1e-3 N/m2'}},
       'EnsoAmpl': {'diagnostic': {'ERA-Interim': {'keyerror': None,
          'name': 'ERA-Interim',
          'nyears': 40,
          'time_period': ['1979-1-16 12:0:0.0', '2019-3-16 12:0:0.0']},
         'GISS-E2-R_r2i1p1': {'keyerror': None,
          'name': 'GISS-E2-R_r2i1p1',
          'nyears': 156,
          'time_period': ['1850-1-16 12:0:0.0', '2005-12-16 12:0:0.0']},
         'HadISST': {'keyerror': None,
          'name': 'HadISST',
          'nyears': 151,
          'time_period': ['1870-1-16 11:59:59.5', '2020-10-16 12:0:0.0']},
         'Tropflux': {'keyerror': None,
          'name': 'Tropflux',
          'nyears': 40,
          'time_period': ['1979-1-15 0:0:0.0', '2018-12-15 12:0:0.0']},
         'method': 'Standard deviation of nino3.4 sstA, time series are linearly detrended',
         'name': 'ENSO amplitude',
         'ref': 'Using CDAT regression calculation',
         'time_frequency': 'monthly',
         'units': 'C'},
        'metric': {'datasets': "GISS-E2-R_r2i1p1; ERA-Interim's ts & HadISST's sst & Tropflux's sst; 's ",
         'method': 'The metric is the absolute value of the relative difference between model and observations values (M = 100 * abs[[model-obs] / obs])',
         'name': 'EnsoAmpl',
         'units': '%'}},
       'EnsoDuration': {'diagnostic': {'ERA-Interim': {'keyerror': None,
          'name': 'ERA-Interim',
          'nyears': 40,
          'time_period': ['1979-1-16 12:0:0.0', '2019-3-16 12:0:0.0']},
         'GISS-E2-R_r2i1p1': {'keyerror': None,
          'name': 'GISS-E2-R_r2i1p1',
          'nyears': 156,
          'time_period': ['1850-1-16 12:0:0.0', '2005-12-16 12:0:0.0']},
         'HadISST': {'keyerror': None,
          'name': 'HadISST',
          'nyears': 151,
          'time_period': ['1870-1-16 11:59:59.5', '2020-10-16 12:0:0.0']},
         'Tropflux': {'keyerror': None,
          'name': 'Tropflux',
          'nyears': 40,
          'time_period': ['1979-1-15 0:0:0.0', '2018-12-15 12:0:0.0']},
         'method': 'nino3.4 SSTA during DEC regressed against nino3.4 SSTA during 6 years (centered on ENSO), the duration is the number of consecutive months during which the regression is above 0.25, time series are linearly detrended, smoothing using a triangle shaped window of 5 points',
         'name': 'ENSO Duration based on life cyle SSTA pattern',
         'ref': 'Using CDAT',
         'time_frequency': 'monthly',
         'units': 'months'},
        'metric': {'datasets': "GISS-E2-R_r2i1p1; ERA-Interim's ts & HadISST's sst & Tropflux's sst; 's ",
         'method': 'The metric is the absolute value of the relative difference between model and observations values (M = 100 * abs[[model-obs] / obs])',
         'name': 'EnsoDuration',
         'units': '%'}},
       'EnsoSeasonality': {'diagnostic': {'ERA-Interim': {'keyerror': None,
          'name': 'ERA-Interim',
          'nyears': 40,
          'time_period': ['1979-1-16 12:0:0.0', '2019-3-16 12:0:0.0']},
         'GISS-E2-R_r2i1p1': {'keyerror': None,
          'name': 'GISS-E2-R_r2i1p1',
          'nyears': 156,
          'time_period': ['1850-1-16 12:0:0.0', '2005-12-16 12:0:0.0']},
         'HadISST': {'keyerror': None,
          'name': 'HadISST',
          'nyears': 151,
          'time_period': ['1870-1-16 11:59:59.5', '2020-10-16 12:0:0.0']},
         'Tropflux': {'keyerror': None,
          'name': 'Tropflux',
          'nyears': 40,
          'time_period': ['1979-1-15 0:0:0.0', '2018-12-15 12:0:0.0']},
         'method': 'Ratio between NDJ and MAM standard deviation nino3.4 sstA, time series are linearly detrended',
         'name': 'ENSO seasonality',
         'ref': 'Using CDAT std dev calculation',
         'time_frequency': 'monthly',
         'units': 'C/C'},
        'metric': {'datasets': "GISS-E2-R_r2i1p1; ERA-Interim's ts & HadISST's sst & Tropflux's sst; 's ",
         'method': 'The metric is the absolute value of the relative difference between model and observations values (M = 100 * abs[[model-obs] / obs])',
         'name': 'EnsoSeasonality',
         'units': '%'}},
       'EnsoSstDiversity_2': {'diagnostic': {'ERA-Interim': {'keyerror': None,
          'name': 'ERA-Interim',
          'nyears': 40,
          'time_period': ['1979-1-16 12:0:0.0', '2019-3-16 12:0:0.0']},
         'GISS-E2-R_r2i1p1': {'keyerror': None,
          'name': 'GISS-E2-R_r2i1p1',
          'nyears': 156,
          'time_period': ['1850-1-16 12:0:0.0', '2005-12-16 12:0:0.0']},
         'HadISST': {'keyerror': None,
          'name': 'HadISST',
          'nyears': 151,
          'time_period': ['1870-1-16 11:59:59.5', '2020-10-16 12:0:0.0']},
         'Tropflux': {'keyerror': None,
          'name': 'Tropflux',
          'nyears': 40,
          'time_period': ['1979-1-15 0:0:0.0', '2018-12-15 12:0:0.0']},
         'method': 'Nino (Nina) events = nino3.4 sstA > 0.75 (< -0.75) during DEC, zonal SSTA (meridional averaged [-5.0 ; 5.0]), the zonal SSTA maximum (minimum) is located for each event, the diversity is the interquartile range (IQR = Q3 - Q1), time series are linearly detrended, smoothing using a triangle shaped window of 5 points',
         'name': 'ENSO Diversity (interquartile range)',
         'ref': 'Using CDAT regridding',
         'time_frequency': 'monthly',
         'units': 'long'},
        'metric': {'datasets': "GISS-E2-R_r2i1p1; ERA-Interim's ts & HadISST's sst & Tropflux's sst; 's ",
         'method': 'The metric is the absolute value of the relative difference between model and observations values (M = 100 * abs[[model-obs] / obs])',
         'name': 'EnsoSstDiversity',
         'units': '%'}},
       'EnsoSstLonRmse': {'diagnostic': {'ERA-Interim': {'name': 'ERA-Interim',
          'nyears': 40,
          'time_period': ['1979-1-16 12:0:0.0', '2019-3-16 12:0:0.0']},
         'GISS-E2-R_r2i1p1': {'keyerror': None,
          'name': 'GISS-E2-R_r2i1p1',
          'nyears': 156,
          'time_period': ['1850-1-16 12:0:0.0', '2005-12-16 12:0:0.0']},
         'HadISST': {'name': 'HadISST',
          'nyears': 151,
          'time_period': ['1870-1-16 11:59:59.5', '2020-10-16 12:0:0.0']},
         'Tropflux': {'name': 'Tropflux',
          'nyears': 40,
          'time_period': ['1979-1-15 0:0:0.0', '2018-12-15 12:0:0.0']},
         'method': 'nino3.4 SSTA during DEC regressed against equatorial_pacific SSTA, time series are linearly detrended, smoothing using a triangle shaped window of 5 points, observations and model regridded to generic_1x1deg',
         'name': 'ENSO Zonal SSTA pattern',
         'ref': 'Using CDAT regridding and rms (uncentered and biased) calculation',
         'time_frequency': 'monthly',
         'units': 'C/C'},
        'metric': {'datasets': "GISS-E2-R_r2i1p1; ERA-Interim's ts & HadISST's sst & Tropflux's sst; 's ",
         'method': 'The metric is the statistical value between the model and the observations',
         'name': 'EnsoSstLonRmse',
         'units': 'C/C'}},
       'EnsoSstSkew': {'diagnostic': {'ERA-Interim': {'keyerror': None,
          'name': 'ERA-Interim',
          'nyears': 40,
          'time_period': ['1979-1-16 12:0:0.0', '2019-3-16 12:0:0.0']},
         'GISS-E2-R_r2i1p1': {'keyerror': None,
          'name': 'GISS-E2-R_r2i1p1',
          'nyears': 156,
          'time_period': ['1850-1-16 12:0:0.0', '2005-12-16 12:0:0.0']},
         'HadISST': {'keyerror': None,
          'name': 'HadISST',
          'nyears': 151,
          'time_period': ['1870-1-16 11:59:59.5', '2020-10-16 12:0:0.0']},
         'Tropflux': {'keyerror': None,
          'name': 'Tropflux',
          'nyears': 40,
          'time_period': ['1979-1-15 0:0:0.0', '2018-12-15 12:0:0.0']},
         'method': 'Standard deviation of nino3.4 sstA, time series are linearly detrended',
         'name': 'ENSO skewness',
         'ref': 'Using CDAT regression calculation',
         'time_frequency': 'monthly',
         'units': 'C'},
        'metric': {'datasets': "GISS-E2-R_r2i1p1; ERA-Interim's ts & HadISST's sst & Tropflux's sst; 's ",
         'method': 'The metric is the absolute value of the relative difference between model and observations values (M = 100 * abs[[model-obs] / obs])',
         'name': 'EnsoSstSkew',
         'units': '%'}},
       'EnsoSstTsRmse': {'diagnostic': {'ERA-Interim': {'name': 'ERA-Interim',
          'nyears': 40,
          'time_period': ['1979-1-16 12:0:0.0', '2019-3-16 12:0:0.0']},
         'GISS-E2-R_r2i1p1': {'keyerror': None,
          'name': 'GISS-E2-R_r2i1p1',
          'nyears': 156,
          'time_period': ['1850-1-16 12:0:0.0', '2005-12-16 12:0:0.0']},
         'HadISST': {'name': 'HadISST',
          'nyears': 151,
          'time_period': ['1870-1-16 11:59:59.5', '2020-10-16 12:0:0.0']},
         'Tropflux': {'name': 'Tropflux',
          'nyears': 40,
          'time_period': ['1979-1-15 0:0:0.0', '2018-12-15 12:0:0.0']},
         'method': 'nino3.4 SSTA during DEC regressed against nino3.4 SSTA during 6 years (centered on ENSO), time series are linearly detrended, smoothing using a triangle shaped window of 5 points',
         'name': 'ENSO life cyle SSTA pattern',
         'ref': 'Using CDAT regridding and rms (uncentered and biased) calculation',
         'time_frequency': 'monthly',
         'units': 'C/C'},
        'metric': {'datasets': "GISS-E2-R_r2i1p1; ERA-Interim's ts & HadISST's sst & Tropflux's sst; 's ",
         'method': 'The metric is the statistical value between the model and the observations',
         'name': 'EnsoSstTsRmse',
         'units': 'C/C'}},
       'SeasonalPrLatRmse': {'diagnostic': {'ERA-Interim': {'name': 'ERA-Interim',
          'nyears': 40,
          'time_period': ['1979-1-16 12:0:0.0', '2019-3-16 12:0:0.0']},
         'GISS-E2-R_r2i1p1': {'keyerror': None,
          'name': 'GISS-E2-R_r2i1p1',
          'nyears': 156,
          'time_period': ['1850-1-16 12:0:0.0', '2005-12-16 12:0:0.0']},
         'GPCPv2.3': {'name': 'GPCPv2.3',
          'nyears': 41,
          'time_period': ['1979-1-1 0:0:0.0', '2019-7-1 0:0:0.0']},
         'method': 'Meridional root mean square error of nino3_LatExt climatological pr STD, time series are linearly detrended, observations and model regridded to generic_1x1deg',
         'name': 'pr meridional seasonality RMSE',
         'ref': 'Using CDAT regridding and rms (uncentered and biased) calculation',
         'time_frequency': 'monthly',
         'units': 'mm/day'},
        'metric': {'datasets': "GISS-E2-R_r2i1p1; ERA-Interim's pr & GPCPv2.3's precip; 's ",
         'method': 'The metric is the statistical value between the model and the observations',
         'name': 'SeasonalPrLatRmse',
         'units': 'mm/day'}},
       'SeasonalPrLonRmse': {'diagnostic': {'ERA-Interim': {'name': 'ERA-Interim',
          'nyears': 40,
          'time_period': ['1979-1-16 12:0:0.0', '2019-3-16 12:0:0.0']},
         'GISS-E2-R_r2i1p1': {'keyerror': None,
          'name': 'GISS-E2-R_r2i1p1',
          'nyears': 156,
          'time_period': ['1850-1-16 12:0:0.0', '2005-12-16 12:0:0.0']},
         'GPCPv2.3': {'name': 'GPCPv2.3',
          'nyears': 41,
          'time_period': ['1979-1-1 0:0:0.0', '2019-7-1 0:0:0.0']},
         'method': 'Zonal root mean square error of equatorial_pacific climatological pr STD, time series are linearly detrended, observations and model regridded to generic_1x1deg',
         'name': 'pr zonal seasonality RMSE',
         'ref': 'Using CDAT regridding and rms (uncentered and biased) calculation',
         'time_frequency': 'monthly',
         'units': 'mm/day'},
        'metric': {'datasets': "GISS-E2-R_r2i1p1; ERA-Interim's pr & GPCPv2.3's precip; 's ",
         'method': 'The metric is the statistical value between the model and the observations',
         'name': 'SeasonalPrLonRmse',
         'units': 'mm/day'}},
       'SeasonalSstLonRmse': {'diagnostic': {'ERA-Interim': {'name': 'ERA-Interim',
          'nyears': 40,
          'time_period': ['1979-1-16 12:0:0.0', '2019-3-16 12:0:0.0']},
         'GISS-E2-R_r2i1p1': {'keyerror': None,
          'name': 'GISS-E2-R_r2i1p1',
          'nyears': 156,
          'time_period': ['1850-1-16 12:0:0.0', '2005-12-16 12:0:0.0']},
         'HadISST': {'name': 'HadISST',
          'nyears': 151,
          'time_period': ['1870-1-16 11:59:59.5', '2020-10-16 12:0:0.0']},
         'Tropflux': {'name': 'Tropflux',
          'nyears': 40,
          'time_period': ['1979-1-15 0:0:0.0', '2018-12-15 12:0:0.0']},
         'method': 'Zonal root mean square error of equatorial_pacific climatological sst STD, time series are linearly detrended, observations and model regridded to generic_1x1deg',
         'name': 'sst zonal seasonality RMSE',
         'ref': 'Using CDAT regridding and rms (uncentered and biased) calculation',
         'time_frequency': 'monthly',
         'units': 'C'},
        'metric': {'datasets': "GISS-E2-R_r2i1p1; ERA-Interim's ts & HadISST's sst & Tropflux's sst; 's ",
         'method': 'The metric is the statistical value between the model and the observations',
         'name': 'SeasonalSstLonRmse',
         'units': 'C'}},
       'SeasonalTauxLonRmse': {'diagnostic': {'ERA-Interim': {'name': 'ERA-Interim',
          'nyears': 40,
          'time_period': ['1979-1-16 12:0:0.0', '2019-3-16 12:0:0.0']},
         'GISS-E2-R_r2i1p1': {'keyerror': None,
          'name': 'GISS-E2-R_r2i1p1',
          'nyears': 156,
          'time_period': ['1850-1-16 12:0:0.0', '2005-12-16 12:0:0.0']},
         'Tropflux': {'name': 'Tropflux',
          'nyears': 40,
          'time_period': ['1979-1-15 0:0:0.0', '2018-12-15 12:0:0.0']},
         'method': 'Zonal root mean square error of equatorial_pacific climatological taux STD, time series are linearly detrended, observations and model regridded to generic_1x1deg',
         'name': 'taux zonal seasonality RMSE',
         'ref': 'Using CDAT regridding and rms (uncentered and biased) calculation',
         'time_frequency': 'monthly',
         'units': '1e-3 N/m2'},
        'metric': {'datasets': "GISS-E2-R_r2i1p1; ERA-Interim's tauu & Tropflux's taux; 's ",
         'method': 'The metric is the statistical value between the model and the observations',
         'name': 'SeasonalTauxLonRmse',
         'units': '1e-3 N/m2'}}},
      'name': 'Metrics Collection for ENSO performance'},
     'value': {'BiasPrLatRmse': {'diagnostic': {'ERA-Interim': {'value': None,
         'value_error': None},
        'GISS-E2-R_r2i1p1': {'value': None, 'value_error': None},
        'GPCPv2.3': {'value': None, 'value_error': None}},
       'metric': {'ERA-Interim': {'value': 2.0592715886412196,
         'value_error': None},
        'GPCPv2.3': {'value': 2.8571885844530134, 'value_error': None}}},
      'BiasPrLonRmse': {'diagnostic': {'ERA-Interim': {'value': None,
         'value_error': None},
        'GISS-E2-R_r2i1p1': {'value': None, 'value_error': None},
        'GPCPv2.3': {'value': None, 'value_error': None}},
       'metric': {'ERA-Interim': {'value': 1.6878915086203705,
         'value_error': None},
        'GPCPv2.3': {'value': 2.1580626177006734, 'value_error': None}}},
      'BiasSstLonRmse': {'diagnostic': {'ERA-Interim': {'value': None,
         'value_error': None},
        'GISS-E2-R_r2i1p1': {'value': None, 'value_error': None},
        'HadISST': {'value': None, 'value_error': None},
        'Tropflux': {'value': None, 'value_error': None}},
       'metric': {'ERA-Interim': {'value': 0.9996179994270462,
         'value_error': None},
        'HadISST': {'value': 1.1702613681375904, 'value_error': None},
        'Tropflux': {'value': 0.9665275062837124, 'value_error': None}}},
      'BiasTauxLonRmse': {'diagnostic': {'ERA-Interim': {'value': None,
         'value_error': None},
        'GISS-E2-R_r2i1p1': {'value': None, 'value_error': None},
        'Tropflux': {'value': None, 'value_error': None}},
       'metric': {'ERA-Interim': {'value': 18.049267673448096,
         'value_error': None},
        'Tropflux': {'value': 17.666200090682857, 'value_error': None}}},
      'EnsoAmpl': {'diagnostic': {'ERA-Interim': {'value': 0.8989844997845644,
         'value_error': 0.14214193002531866},
        'GISS-E2-R_r2i1p1': {'value': 0.534485651423747,
         'value_error': 0.04279310029889698},
        'HadISST': {'value': 0.7665787872085695,
         'value_error': 0.06238329697691264},
        'Tropflux': {'value': 0.9039789553693535,
         'value_error': 0.14293162279134272}},
       'metric': {'ERA-Interim': {'value': 40.545621025520134,
         'value_error': 14.16072269191484},
        'HadISST': {'value': 30.27648816502862,
         'value_error': 11.256367537099962},
        'Tropflux': {'value': 40.874104618357684,
         'value_error': 14.082485139908568}}},
      'EnsoDuration': {'diagnostic': {'ERA-Interim': {'value': 13.0,
         'value_error': None},
        'GISS-E2-R_r2i1p1': {'value': 13.0, 'value_error': None},
        'HadISST': {'value': 13.0, 'value_error': None},
        'Tropflux': {'value': 13.0, 'value_error': None}},
       'metric': {'ERA-Interim': {'value': 0.0, 'value_error': None},
        'HadISST': {'value': 0.0, 'value_error': None},
        'Tropflux': {'value': 0.0, 'value_error': None}}},
      'EnsoSeasonality': {'diagnostic': {'ERA-Interim': {'value': 2.0466846866656914,
         'value_error': 0.6513411033995022},
        'GISS-E2-R_r2i1p1': {'value': 1.6388715207549633,
         'value_error': 0.2628520637769358},
        'HadISST': {'value': 1.6639865947361325,
         'value_error': 0.2712772451657809},
        'Tropflux': {'value': 2.0532132553583624,
         'value_error': 0.6534187683977347}},
       'metric': {'ERA-Interim': {'value': 19.92554928307532,
         'value_error': 38.32587792971407},
        'HadISST': {'value': 1.5093315090769601,
         'value_error': 31.853311660153377},
        'Tropflux': {'value': 20.18016070771377,
         'value_error': 38.20401376089571}}},
      'EnsoSstDiversity_2': {'diagnostic': {'ERA-Interim': {'value': 33.25,
         'value_error': None},
        'GISS-E2-R_r2i1p1': {'value': 21.0, 'value_error': None},
        'HadISST': {'value': 49.0, 'value_error': None},
        'Tropflux': {'value': 32.0, 'value_error': None}},
       'metric': {'ERA-Interim': {'value': 36.84210526315789,
         'value_error': None},
        'HadISST': {'value': 57.14285714285714, 'value_error': None},
        'Tropflux': {'value': 34.375, 'value_error': None}}},
      'EnsoSstLonRmse': {'diagnostic': {'ERA-Interim': {'value': None,
         'value_error': None},
        'GISS-E2-R_r2i1p1': {'value': None, 'value_error': None},
        'HadISST': {'value': None, 'value_error': None},
        'Tropflux': {'value': None, 'value_error': None}},
       'metric': {'ERA-Interim': {'value': 0.131325684840543,
         'value_error': None},
        'HadISST': {'value': 0.14133005262288553, 'value_error': None},
        'Tropflux': {'value': 0.1300643802781607, 'value_error': None}}},
      'EnsoSstSkew': {'diagnostic': {'ERA-Interim': {'value': 0.39098111106809963,
         'value_error': 0.061819541653923164},
        'GISS-E2-R_r2i1p1': {'value': 0.019284752800027467,
         'value_error': 0.0015440159312279415},
        'HadISST': {'value': 0.38989908235027515,
         'value_error': 0.03172953733021198},
        'Tropflux': {'value': 0.39744741059612115,
         'value_error': 0.06284195338099416}},
       'metric': {'ERA-Interim': {'value': 95.06759987781903,
         'value_error': 1.1747889985656477},
        'HadISST': {'value': 95.05391172408491,
         'value_error': 0.7985109475899388},
        'Tropflux': {'value': 95.14784792002978,
         'value_error': 1.155675683585038}}},
      'EnsoSstTsRmse': {'diagnostic': {'ERA-Interim': {'value': None,
         'value_error': None},
        'GISS-E2-R_r2i1p1': {'value': None, 'value_error': None},
        'HadISST': {'value': None, 'value_error': None},
        'Tropflux': {'value': None, 'value_error': None}},
       'metric': {'ERA-Interim': {'value': 0.15568783469423356,
         'value_error': None},
        'HadISST': {'value': 0.13988583350324485, 'value_error': None},
        'Tropflux': {'value': 0.15692895036918525, 'value_error': None}}},
      'SeasonalPrLatRmse': {'diagnostic': {'ERA-Interim': {'value': None,
         'value_error': None},
        'GISS-E2-R_r2i1p1': {'value': None, 'value_error': None},
        'GPCPv2.3': {'value': None, 'value_error': None}},
       'metric': {'ERA-Interim': {'value': 0.6779444563053812,
         'value_error': None},
        'GPCPv2.3': {'value': 0.8381369719239615, 'value_error': None}}},
      'SeasonalPrLonRmse': {'diagnostic': {'ERA-Interim': {'value': None,
         'value_error': None},
        'GISS-E2-R_r2i1p1': {'value': None, 'value_error': None},
        'GPCPv2.3': {'value': None, 'value_error': None}},
       'metric': {'ERA-Interim': {'value': 0.27387073630504616,
         'value_error': None},
        'GPCPv2.3': {'value': 0.5222660099624423, 'value_error': None}}},
      'SeasonalSstLonRmse': {'diagnostic': {'ERA-Interim': {'value': None,
         'value_error': None},
        'GISS-E2-R_r2i1p1': {'value': None, 'value_error': None},
        'HadISST': {'value': None, 'value_error': None},
        'Tropflux': {'value': None, 'value_error': None}},
       'metric': {'ERA-Interim': {'value': 0.2802289277332244,
         'value_error': None},
        'HadISST': {'value': 0.28218297364272393, 'value_error': None},
        'Tropflux': {'value': 0.28792550579747095, 'value_error': None}}},
      'SeasonalTauxLonRmse': {'diagnostic': {'ERA-Interim': {'value': None,
         'value_error': None},
        'GISS-E2-R_r2i1p1': {'value': None, 'value_error': None},
        'Tropflux': {'value': None, 'value_error': None}},
       'metric': {'ERA-Interim': {'value': 1.8815435180645836,
         'value_error': None},
        'Tropflux': {'value': 2.011969176708827, 'value_error': None}}}}},
    'r2i1p2': {'metadata': {'description_of_the_collection': 'Describe which science question this collection is about',
      'metrics': {'BiasPrLatRmse': {'diagnostic': {'ERA-Interim': {'name': 'ERA-Interim',
          'nyears': 40,
          'time_period': ['1979-1-16 12:0:0.0', '2019-3-16 12:0:0.0']},
         'GISS-E2-R_r2i1p2': {'keyerror': None,
          'name': 'GISS-E2-R_r2i1p2',
          'nyears': 156,
          'time_period': ['1850-1-16 12:0:0.0', '2005-12-16 12:0:0.0']},
         'GPCPv2.3': {'name': 'GPCPv2.3',
          'nyears': 41,
          'time_period': ['1979-1-1 0:0:0.0', '2019-7-1 0:0:0.0']},
         'method': 'Meridional root mean square error of nino3_LatExt pr, time series are linearly detrended, observations and model regridded to generic_1x1deg',
         'name': 'pr Meridional RMSE',
         'ref': 'Using CDAT regridding and rms (uncentered and biased) calculation',
         'time_frequency': 'monthly',
         'units': 'mm/day'},
        'metric': {'datasets': "GISS-E2-R_r2i1p2; ERA-Interim's pr & GPCPv2.3's precip; 's ",
         'method': 'The metric is the statistical value between the model and the observations',
         'name': 'BiasPrLatRmse',
         'units': 'mm/day'}},
       'BiasPrLonRmse': {'diagnostic': {'ERA-Interim': {'name': 'ERA-Interim',
          'nyears': 40,
          'time_period': ['1979-1-16 12:0:0.0', '2019-3-16 12:0:0.0']},
         'GISS-E2-R_r2i1p2': {'keyerror': None,
          'name': 'GISS-E2-R_r2i1p2',
          'nyears': 156,
          'time_period': ['1850-1-16 12:0:0.0', '2005-12-16 12:0:0.0']},
         'GPCPv2.3': {'name': 'GPCPv2.3',
          'nyears': 41,
          'time_period': ['1979-1-1 0:0:0.0', '2019-7-1 0:0:0.0']},
         'method': 'Zonal root mean square error of equatorial_pacific pr, time series are linearly detrended, observations and model regridded to generic_1x1deg',
         'name': 'pr Zonal RMSE',
         'ref': 'Using CDAT regridding and rms (uncentered and biased) calculation',
         'time_frequency': 'monthly',
         'units': 'mm/day'},
        'metric': {'datasets': "GISS-E2-R_r2i1p2; ERA-Interim's pr & GPCPv2.3's precip; 's ",
         'method': 'The metric is the statistical value between the model and the observations',
         'name': 'BiasPrLonRmse',
         'units': 'mm/day'}},
       'BiasSstLonRmse': {'diagnostic': {'ERA-Interim': {'name': 'ERA-Interim',
          'nyears': 40,
          'time_period': ['1979-1-16 12:0:0.0', '2019-3-16 12:0:0.0']},
         'GISS-E2-R_r2i1p2': {'keyerror': None,
          'name': 'GISS-E2-R_r2i1p2',
          'nyears': 156,
          'time_period': ['1850-1-16 12:0:0.0', '2005-12-16 12:0:0.0']},
         'HadISST': {'name': 'HadISST',
          'nyears': 151,
          'time_period': ['1870-1-16 11:59:59.5', '2020-10-16 12:0:0.0']},
         'Tropflux': {'name': 'Tropflux',
          'nyears': 40,
          'time_period': ['1979-1-15 0:0:0.0', '2018-12-15 12:0:0.0']},
         'method': 'Zonal root mean square error of equatorial_pacific sst, time series are linearly detrended, observations and model regridded to generic_1x1deg',
         'name': 'sst Zonal RMSE',
         'ref': 'Using CDAT regridding and rms (uncentered and biased) calculation',
         'time_frequency': 'monthly',
         'units': 'C'},
        'metric': {'datasets': "GISS-E2-R_r2i1p2; ERA-Interim's ts & HadISST's sst & Tropflux's sst; 's ",
         'method': 'The metric is the statistical value between the model and the observations',
         'name': 'BiasSstLonRmse',
         'units': 'C'}},
       'BiasTauxLonRmse': {'diagnostic': {'ERA-Interim': {'name': 'ERA-Interim',
          'nyears': 40,
          'time_period': ['1979-1-16 12:0:0.0', '2019-3-16 12:0:0.0']},
         'GISS-E2-R_r2i1p2': {'keyerror': None,
          'name': 'GISS-E2-R_r2i1p2',
          'nyears': 156,
          'time_period': ['1850-1-16 12:0:0.0', '2005-12-16 12:0:0.0']},
         'Tropflux': {'name': 'Tropflux',
          'nyears': 40,
          'time_period': ['1979-1-15 0:0:0.0', '2018-12-15 12:0:0.0']},
         'method': 'Zonal root mean square error of equatorial_pacific taux, time series are linearly detrended, observations and model regridded to generic_1x1deg',
         'name': 'taux Zonal RMSE',
         'ref': 'Using CDAT regridding and rms (uncentered and biased) calculation',
         'time_frequency': 'monthly',
         'units': '1e-3 N/m2'},
        'metric': {'datasets': "GISS-E2-R_r2i1p2; ERA-Interim's tauu & Tropflux's taux; 's ",
         'method': 'The metric is the statistical value between the model and the observations',
         'name': 'BiasTauxLonRmse',
         'units': '1e-3 N/m2'}},
       'EnsoAmpl': {'diagnostic': {'ERA-Interim': {'keyerror': None,
          'name': 'ERA-Interim',
          'nyears': 40,
          'time_period': ['1979-1-16 12:0:0.0', '2019-3-16 12:0:0.0']},
         'GISS-E2-R_r2i1p2': {'keyerror': None,
          'name': 'GISS-E2-R_r2i1p2',
          'nyears': 156,
          'time_period': ['1850-1-16 12:0:0.0', '2005-12-16 12:0:0.0']},
         'HadISST': {'keyerror': None,
          'name': 'HadISST',
          'nyears': 151,
          'time_period': ['1870-1-16 11:59:59.5', '2020-10-16 12:0:0.0']},
         'Tropflux': {'keyerror': None,
          'name': 'Tropflux',
          'nyears': 40,
          'time_period': ['1979-1-15 0:0:0.0', '2018-12-15 12:0:0.0']},
         'method': 'Standard deviation of nino3.4 sstA, time series are linearly detrended',
         'name': 'ENSO amplitude',
         'ref': 'Using CDAT regression calculation',
         'time_frequency': 'monthly',
         'units': 'C'},
        'metric': {'datasets': "GISS-E2-R_r2i1p2; ERA-Interim's ts & HadISST's sst & Tropflux's sst; 's ",
         'method': 'The metric is the absolute value of the relative difference between model and observations values (M = 100 * abs[[model-obs] / obs])',
         'name': 'EnsoAmpl',
         'units': '%'}},
       'EnsoDuration': {'diagnostic': {'ERA-Interim': {'keyerror': None,
          'name': 'ERA-Interim',
          'nyears': 40,
          'time_period': ['1979-1-16 12:0:0.0', '2019-3-16 12:0:0.0']},
         'GISS-E2-R_r2i1p2': {'keyerror': None,
          'name': 'GISS-E2-R_r2i1p2',
          'nyears': 156,
          'time_period': ['1850-1-16 12:0:0.0', '2005-12-16 12:0:0.0']},
         'HadISST': {'keyerror': None,
          'name': 'HadISST',
          'nyears': 151,
          'time_period': ['1870-1-16 11:59:59.5', '2020-10-16 12:0:0.0']},
         'Tropflux': {'keyerror': None,
          'name': 'Tropflux',
          'nyears': 40,
          'time_period': ['1979-1-15 0:0:0.0', '2018-12-15 12:0:0.0']},
         'method': 'nino3.4 SSTA during DEC regressed against nino3.4 SSTA during 6 years (centered on ENSO), the duration is the number of consecutive months during which the regression is above 0.25, time series are linearly detrended, smoothing using a triangle shaped window of 5 points',
         'name': 'ENSO Duration based on life cyle SSTA pattern',
         'ref': 'Using CDAT',
         'time_frequency': 'monthly',
         'units': 'months'},
        'metric': {'datasets': "GISS-E2-R_r2i1p2; ERA-Interim's ts & HadISST's sst & Tropflux's sst; 's ",
         'method': 'The metric is the absolute value of the relative difference between model and observations values (M = 100 * abs[[model-obs] / obs])',
         'name': 'EnsoDuration',
         'units': '%'}},
       'EnsoSeasonality': {'diagnostic': {'ERA-Interim': {'keyerror': None,
          'name': 'ERA-Interim',
          'nyears': 40,
          'time_period': ['1979-1-16 12:0:0.0', '2019-3-16 12:0:0.0']},
         'GISS-E2-R_r2i1p2': {'keyerror': None,
          'name': 'GISS-E2-R_r2i1p2',
          'nyears': 156,
          'time_period': ['1850-1-16 12:0:0.0', '2005-12-16 12:0:0.0']},
         'HadISST': {'keyerror': None,
          'name': 'HadISST',
          'nyears': 151,
          'time_period': ['1870-1-16 11:59:59.5', '2020-10-16 12:0:0.0']},
         'Tropflux': {'keyerror': None,
          'name': 'Tropflux',
          'nyears': 40,
          'time_period': ['1979-1-15 0:0:0.0', '2018-12-15 12:0:0.0']},
         'method': 'Ratio between NDJ and MAM standard deviation nino3.4 sstA, time series are linearly detrended',
         'name': 'ENSO seasonality',
         'ref': 'Using CDAT std dev calculation',
         'time_frequency': 'monthly',
         'units': 'C/C'},
        'metric': {'datasets': "GISS-E2-R_r2i1p2; ERA-Interim's ts & HadISST's sst & Tropflux's sst; 's ",
         'method': 'The metric is the absolute value of the relative difference between model and observations values (M = 100 * abs[[model-obs] / obs])',
         'name': 'EnsoSeasonality',
         'units': '%'}},
       'EnsoSstDiversity_2': {'diagnostic': {'ERA-Interim': {'keyerror': None,
          'name': 'ERA-Interim',
          'nyears': 40,
          'time_period': ['1979-1-16 12:0:0.0', '2019-3-16 12:0:0.0']},
         'GISS-E2-R_r2i1p2': {'keyerror': None,
          'name': 'GISS-E2-R_r2i1p2',
          'nyears': 156,
          'time_period': ['1850-1-16 12:0:0.0', '2005-12-16 12:0:0.0']},
         'HadISST': {'keyerror': None,
          'name': 'HadISST',
          'nyears': 151,
          'time_period': ['1870-1-16 11:59:59.5', '2020-10-16 12:0:0.0']},
         'Tropflux': {'keyerror': None,
          'name': 'Tropflux',
          'nyears': 40,
          'time_period': ['1979-1-15 0:0:0.0', '2018-12-15 12:0:0.0']},
         'method': 'Nino (Nina) events = nino3.4 sstA > 0.75 (< -0.75) during DEC, zonal SSTA (meridional averaged [-5.0 ; 5.0]), the zonal SSTA maximum (minimum) is located for each event, the diversity is the interquartile range (IQR = Q3 - Q1), time series are linearly detrended, smoothing using a triangle shaped window of 5 points',
         'name': 'ENSO Diversity (interquartile range)',
         'ref': 'Using CDAT regridding',
         'time_frequency': 'monthly',
         'units': 'long'},
        'metric': {'datasets': "GISS-E2-R_r2i1p2; ERA-Interim's ts & HadISST's sst & Tropflux's sst; 's ",
         'method': 'The metric is the absolute value of the relative difference between model and observations values (M = 100 * abs[[model-obs] / obs])',
         'name': 'EnsoSstDiversity',
         'units': '%'}},
       'EnsoSstLonRmse': {'diagnostic': {'ERA-Interim': {'name': 'ERA-Interim',
          'nyears': 40,
          'time_period': ['1979-1-16 12:0:0.0', '2019-3-16 12:0:0.0']},
         'GISS-E2-R_r2i1p2': {'keyerror': None,
          'name': 'GISS-E2-R_r2i1p2',
          'nyears': 156,
          'time_period': ['1850-1-16 12:0:0.0', '2005-12-16 12:0:0.0']},
         'HadISST': {'name': 'HadISST',
          'nyears': 151,
          'time_period': ['1870-1-16 11:59:59.5', '2020-10-16 12:0:0.0']},
         'Tropflux': {'name': 'Tropflux',
          'nyears': 40,
          'time_period': ['1979-1-15 0:0:0.0', '2018-12-15 12:0:0.0']},
         'method': 'nino3.4 SSTA during DEC regressed against equatorial_pacific SSTA, time series are linearly detrended, smoothing using a triangle shaped window of 5 points, observations and model regridded to generic_1x1deg',
         'name': 'ENSO Zonal SSTA pattern',
         'ref': 'Using CDAT regridding and rms (uncentered and biased) calculation',
         'time_frequency': 'monthly',
         'units': 'C/C'},
        'metric': {'datasets': "GISS-E2-R_r2i1p2; ERA-Interim's ts & HadISST's sst & Tropflux's sst; 's ",
         'method': 'The metric is the statistical value between the model and the observations',
         'name': 'EnsoSstLonRmse',
         'units': 'C/C'}},
       'EnsoSstSkew': {'diagnostic': {'ERA-Interim': {'keyerror': None,
          'name': 'ERA-Interim',
          'nyears': 40,
          'time_period': ['1979-1-16 12:0:0.0', '2019-3-16 12:0:0.0']},
         'GISS-E2-R_r2i1p2': {'keyerror': None,
          'name': 'GISS-E2-R_r2i1p2',
          'nyears': 156,
          'time_period': ['1850-1-16 12:0:0.0', '2005-12-16 12:0:0.0']},
         'HadISST': {'keyerror': None,
          'name': 'HadISST',
          'nyears': 151,
          'time_period': ['1870-1-16 11:59:59.5', '2020-10-16 12:0:0.0']},
         'Tropflux': {'keyerror': None,
          'name': 'Tropflux',
          'nyears': 40,
          'time_period': ['1979-1-15 0:0:0.0', '2018-12-15 12:0:0.0']},
         'method': 'Standard deviation of nino3.4 sstA, time series are linearly detrended',
         'name': 'ENSO skewness',
         'ref': 'Using CDAT regression calculation',
         'time_frequency': 'monthly',
         'units': 'C'},
        'metric': {'datasets': "GISS-E2-R_r2i1p2; ERA-Interim's ts & HadISST's sst & Tropflux's sst; 's ",
         'method': 'The metric is the absolute value of the relative difference between model and observations values (M = 100 * abs[[model-obs] / obs])',
         'name': 'EnsoSstSkew',
         'units': '%'}},
       'EnsoSstTsRmse': {'diagnostic': {'ERA-Interim': {'name': 'ERA-Interim',
          'nyears': 40,
          'time_period': ['1979-1-16 12:0:0.0', '2019-3-16 12:0:0.0']},
         'GISS-E2-R_r2i1p2': {'keyerror': None,
          'name': 'GISS-E2-R_r2i1p2',
          'nyears': 156,
          'time_period': ['1850-1-16 12:0:0.0', '2005-12-16 12:0:0.0']},
         'HadISST': {'name': 'HadISST',
          'nyears': 151,
          'time_period': ['1870-1-16 11:59:59.5', '2020-10-16 12:0:0.0']},
         'Tropflux': {'name': 'Tropflux',
          'nyears': 40,
          'time_period': ['1979-1-15 0:0:0.0', '2018-12-15 12:0:0.0']},
         'method': 'nino3.4 SSTA during DEC regressed against nino3.4 SSTA during 6 years (centered on ENSO), time series are linearly detrended, smoothing using a triangle shaped window of 5 points',
         'name': 'ENSO life cyle SSTA pattern',
         'ref': 'Using CDAT regridding and rms (uncentered and biased) calculation',
         'time_frequency': 'monthly',
         'units': 'C/C'},
        'metric': {'datasets': "GISS-E2-R_r2i1p2; ERA-Interim's ts & HadISST's sst & Tropflux's sst; 's ",
         'method': 'The metric is the statistical value between the model and the observations',
         'name': 'EnsoSstTsRmse',
         'units': 'C/C'}},
       'SeasonalPrLatRmse': {'diagnostic': {'ERA-Interim': {'name': 'ERA-Interim',
          'nyears': 40,
          'time_period': ['1979-1-16 12:0:0.0', '2019-3-16 12:0:0.0']},
         'GISS-E2-R_r2i1p2': {'keyerror': None,
          'name': 'GISS-E2-R_r2i1p2',
          'nyears': 156,
          'time_period': ['1850-1-16 12:0:0.0', '2005-12-16 12:0:0.0']},
         'GPCPv2.3': {'name': 'GPCPv2.3',
          'nyears': 41,
          'time_period': ['1979-1-1 0:0:0.0', '2019-7-1 0:0:0.0']},
         'method': 'Meridional root mean square error of nino3_LatExt climatological pr STD, time series are linearly detrended, observations and model regridded to generic_1x1deg',
         'name': 'pr meridional seasonality RMSE',
         'ref': 'Using CDAT regridding and rms (uncentered and biased) calculation',
         'time_frequency': 'monthly',
         'units': 'mm/day'},
        'metric': {'datasets': "GISS-E2-R_r2i1p2; ERA-Interim's pr & GPCPv2.3's precip; 's ",
         'method': 'The metric is the statistical value between the model and the observations',
         'name': 'SeasonalPrLatRmse',
         'units': 'mm/day'}},
       'SeasonalPrLonRmse': {'diagnostic': {'ERA-Interim': {'name': 'ERA-Interim',
          'nyears': 40,
          'time_period': ['1979-1-16 12:0:0.0', '2019-3-16 12:0:0.0']},
         'GISS-E2-R_r2i1p2': {'keyerror': None,
          'name': 'GISS-E2-R_r2i1p2',
          'nyears': 156,
          'time_period': ['1850-1-16 12:0:0.0', '2005-12-16 12:0:0.0']},
         'GPCPv2.3': {'name': 'GPCPv2.3',
          'nyears': 41,
          'time_period': ['1979-1-1 0:0:0.0', '2019-7-1 0:0:0.0']},
         'method': 'Zonal root mean square error of equatorial_pacific climatological pr STD, time series are linearly detrended, observations and model regridded to generic_1x1deg',
         'name': 'pr zonal seasonality RMSE',
         'ref': 'Using CDAT regridding and rms (uncentered and biased) calculation',
         'time_frequency': 'monthly',
         'units': 'mm/day'},
        'metric': {'datasets': "GISS-E2-R_r2i1p2; ERA-Interim's pr & GPCPv2.3's precip; 's ",
         'method': 'The metric is the statistical value between the model and the observations',
         'name': 'SeasonalPrLonRmse',
         'units': 'mm/day'}},
       'SeasonalSstLonRmse': {'diagnostic': {'ERA-Interim': {'name': 'ERA-Interim',
          'nyears': 40,
          'time_period': ['1979-1-16 12:0:0.0', '2019-3-16 12:0:0.0']},
         'GISS-E2-R_r2i1p2': {'keyerror': None,
          'name': 'GISS-E2-R_r2i1p2',
          'nyears': 156,
          'time_period': ['1850-1-16 12:0:0.0', '2005-12-16 12:0:0.0']},
         'HadISST': {'name': 'HadISST',
          'nyears': 151,
          'time_period': ['1870-1-16 11:59:59.5', '2020-10-16 12:0:0.0']},
         'Tropflux': {'name': 'Tropflux',
          'nyears': 40,
          'time_period': ['1979-1-15 0:0:0.0', '2018-12-15 12:0:0.0']},
         'method': 'Zonal root mean square error of equatorial_pacific climatological sst STD, time series are linearly detrended, observations and model regridded to generic_1x1deg',
         'name': 'sst zonal seasonality RMSE',
         'ref': 'Using CDAT regridding and rms (uncentered and biased) calculation',
         'time_frequency': 'monthly',
         'units': 'C'},
        'metric': {'datasets': "GISS-E2-R_r2i1p2; ERA-Interim's ts & HadISST's sst & Tropflux's sst; 's ",
         'method': 'The metric is the statistical value between the model and the observations',
         'name': 'SeasonalSstLonRmse',
         'units': 'C'}},
       'SeasonalTauxLonRmse': {'diagnostic': {'ERA-Interim': {'name': 'ERA-Interim',
          'nyears': 40,
          'time_period': ['1979-1-16 12:0:0.0', '2019-3-16 12:0:0.0']},
         'GISS-E2-R_r2i1p2': {'keyerror': None,
          'name': 'GISS-E2-R_r2i1p2',
          'nyears': 156,
          'time_period': ['1850-1-16 12:0:0.0', '2005-12-16 12:0:0.0']},
         'Tropflux': {'name': 'Tropflux',
          'nyears': 40,
          'time_period': ['1979-1-15 0:0:0.0', '2018-12-15 12:0:0.0']},
         'method': 'Zonal root mean square error of equatorial_pacific climatological taux STD, time series are linearly detrended, observations and model regridded to generic_1x1deg',
         'name': 'taux zonal seasonality RMSE',
         'ref': 'Using CDAT regridding and rms (uncentered and biased) calculation',
         'time_frequency': 'monthly',
         'units': '1e-3 N/m2'},
        'metric': {'datasets': "GISS-E2-R_r2i1p2; ERA-Interim's tauu & Tropflux's taux; 's ",
         'method': 'The metric is the statistical value between the model and the observations',
         'name': 'SeasonalTauxLonRmse',
         'units': '1e-3 N/m2'}}},
      'name': 'Metrics Collection for ENSO performance'},
     'value': {'BiasPrLatRmse': {'diagnostic': {'ERA-Interim': {'value': None,
         'value_error': None},
        'GISS-E2-R_r2i1p2': {'value': None, 'value_error': None},
        'GPCPv2.3': {'value': None, 'value_error': None}},
       'metric': {'ERA-Interim': {'value': 2.168353221131648,
         'value_error': None},
        'GPCPv2.3': {'value': 2.955835209960119, 'value_error': None}}},
      'BiasPrLonRmse': {'diagnostic': {'ERA-Interim': {'value': None,
         'value_error': None},
        'GISS-E2-R_r2i1p2': {'value': None, 'value_error': None},
        'GPCPv2.3': {'value': None, 'value_error': None}},
       'metric': {'ERA-Interim': {'value': 1.7886595991390934,
         'value_error': None},
        'GPCPv2.3': {'value': 2.2815051413212557, 'value_error': None}}},
      'BiasSstLonRmse': {'diagnostic': {'ERA-Interim': {'value': None,
         'value_error': None},
        'GISS-E2-R_r2i1p2': {'value': None, 'value_error': None},
        'HadISST': {'value': None, 'value_error': None},
        'Tropflux': {'value': None, 'value_error': None}},
       'metric': {'ERA-Interim': {'value': 1.1180035753063626,
         'value_error': None},
        'HadISST': {'value': 1.2974144348597738, 'value_error': None},
        'Tropflux': {'value': 1.0816567629292606, 'value_error': None}}},
      'BiasTauxLonRmse': {'diagnostic': {'ERA-Interim': {'value': None,
         'value_error': None},
        'GISS-E2-R_r2i1p2': {'value': None, 'value_error': None},
        'Tropflux': {'value': None, 'value_error': None}},
       'metric': {'ERA-Interim': {'value': 18.439260468232813,
         'value_error': None},
        'Tropflux': {'value': 18.052408899051283, 'value_error': None}}},
      'EnsoAmpl': {'diagnostic': {'ERA-Interim': {'value': 0.8989844997845644,
         'value_error': 0.14214193002531866},
        'GISS-E2-R_r2i1p2': {'value': 0.5514753279029654,
         'value_error': 0.04415336306307845},
        'HadISST': {'value': 0.7665787872085695,
         'value_error': 0.06238329697691264},
        'Tropflux': {'value': 0.9039789553693535,
         'value_error': 0.14293162279134272}},
       'metric': {'ERA-Interim': {'value': 38.655746785943165,
         'value_error': 14.610849082785565},
        'HadISST': {'value': 28.060189362777027,
         'value_error': 11.614173293488516},
        'Tropflux': {'value': 38.994671875116815,
         'value_error': 14.530124596483542}}},
      'EnsoDuration': {'diagnostic': {'ERA-Interim': {'value': 13.0,
         'value_error': None},
        'GISS-E2-R_r2i1p2': {'value': 12.0, 'value_error': None},
        'HadISST': {'value': 13.0, 'value_error': None},
        'Tropflux': {'value': 13.0, 'value_error': None}},
       'metric': {'ERA-Interim': {'value': 7.6923076923076925,
         'value_error': None},
        'HadISST': {'value': 7.6923076923076925, 'value_error': None},
        'Tropflux': {'value': 7.6923076923076925, 'value_error': None}}},
      'EnsoSeasonality': {'diagnostic': {'ERA-Interim': {'value': 2.0466846866656914,
         'value_error': 0.6513411033995022},
        'GISS-E2-R_r2i1p2': {'value': 1.8475278706077511,
         'value_error': 0.29631762314775356},
        'HadISST': {'value': 1.6639865947361325,
         'value_error': 0.2712772451657809},
        'Tropflux': {'value': 2.0532132553583624,
         'value_error': 0.6534187683977347}},
       'metric': {'ERA-Interim': {'value': 9.730703383645867,
         'value_error': 43.20541710801023},
        'HadISST': {'value': 11.030213611830435,
         'value_error': 35.90878254823686},
        'Tropflux': {'value': 10.017731193475637,
         'value_error': 43.06803754806972}}},
      'EnsoSstDiversity_2': {'diagnostic': {'ERA-Interim': {'value': 33.25,
         'value_error': None},
        'GISS-E2-R_r2i1p2': {'value': 15.5, 'value_error': None},
        'HadISST': {'value': 49.0, 'value_error': None},
        'Tropflux': {'value': 32.0, 'value_error': None}},
       'metric': {'ERA-Interim': {'value': 53.383458646616546,
         'value_error': None},
        'HadISST': {'value': 68.36734693877551, 'value_error': None},
        'Tropflux': {'value': 51.5625, 'value_error': None}}},
      'EnsoSstLonRmse': {'diagnostic': {'ERA-Interim': {'value': None,
         'value_error': None},
        'GISS-E2-R_r2i1p2': {'value': None, 'value_error': None},
        'HadISST': {'value': None, 'value_error': None},
        'Tropflux': {'value': None, 'value_error': None}},
       'metric': {'ERA-Interim': {'value': 0.10446632070903535,
         'value_error': None},
        'HadISST': {'value': 0.11573034473379536, 'value_error': None},
        'Tropflux': {'value': 0.10258367277403944, 'value_error': None}}},
      'EnsoSstSkew': {'diagnostic': {'ERA-Interim': {'value': 0.39098111106809963,
         'value_error': 0.061819541653923164},
        'GISS-E2-R_r2i1p2': {'value': -0.31379188456046064,
         'value_error': -0.025123457576842794},
        'HadISST': {'value': 0.38989908235027515,
         'value_error': 0.03172953733021198},
        'Tropflux': {'value': 0.39744741059612115,
         'value_error': 0.06284195338099416}},
       'metric': {'ERA-Interim': {'value': 180.25755610117068,
         'value_error': -19.115580979616464},
        'HadISST': {'value': 180.48028291550537,
         'value_error': -12.992972100013084},
        'Tropflux': {'value': 178.95179996010347,
         'value_error': -18.80457864579586}}},
      'EnsoSstTsRmse': {'diagnostic': {'ERA-Interim': {'value': None,
         'value_error': None},
        'GISS-E2-R_r2i1p2': {'value': None, 'value_error': None},
        'HadISST': {'value': None, 'value_error': None},
        'Tropflux': {'value': None, 'value_error': None}},
       'metric': {'ERA-Interim': {'value': 0.13244276596196589,
         'value_error': None},
        'HadISST': {'value': 0.11588013655938087, 'value_error': None},
        'Tropflux': {'value': 0.1319936257702435, 'value_error': None}}},
      'SeasonalPrLatRmse': {'diagnostic': {'ERA-Interim': {'value': None,
         'value_error': None},
        'GISS-E2-R_r2i1p2': {'value': None, 'value_error': None},
        'GPCPv2.3': {'value': None, 'value_error': None}},
       'metric': {'ERA-Interim': {'value': 0.6927833102128855,
         'value_error': None},
        'GPCPv2.3': {'value': 0.8694028357316457, 'value_error': None}}},
      'SeasonalPrLonRmse': {'diagnostic': {'ERA-Interim': {'value': None,
         'value_error': None},
        'GISS-E2-R_r2i1p2': {'value': None, 'value_error': None},
        'GPCPv2.3': {'value': None, 'value_error': None}},
       'metric': {'ERA-Interim': {'value': 0.23122220949049835,
         'value_error': None},
        'GPCPv2.3': {'value': 0.5103354149229604, 'value_error': None}}},
      'SeasonalSstLonRmse': {'diagnostic': {'ERA-Interim': {'value': None,
         'value_error': None},
        'GISS-E2-R_r2i1p2': {'value': None, 'value_error': None},
        'HadISST': {'value': None, 'value_error': None},
        'Tropflux': {'value': None, 'value_error': None}},
       'metric': {'ERA-Interim': {'value': 0.2773950797112928,
         'value_error': None},
        'HadISST': {'value': 0.2783260649964234, 'value_error': None},
        'Tropflux': {'value': 0.28542586124340935, 'value_error': None}}},
      'SeasonalTauxLonRmse': {'diagnostic': {'ERA-Interim': {'value': None,
         'value_error': None},
        'GISS-E2-R_r2i1p2': {'value': None, 'value_error': None},
        'Tropflux': {'value': None, 'value_error': None}},
       'metric': {'ERA-Interim': {'value': 1.8539556913949733,
         'value_error': None},
        'Tropflux': {'value': 1.981399924267915, 'value_error': None}}}}},
    'r2i1p3': {'metadata': {'description_of_the_collection': 'Describe which science question this collection is about',
      'metrics': {'BiasPrLatRmse': {'diagnostic': {'ERA-Interim': {'name': 'ERA-Interim',
          'nyears': 40,
          'time_period': ['1979-1-16 12:0:0.0', '2019-3-16 12:0:0.0']},
         'GISS-E2-R_r2i1p3': {'keyerror': None,
          'name': 'GISS-E2-R_r2i1p3',
          'nyears': 156,
          'time_period': ['1850-1-16 12:0:0.0', '2005-12-16 12:0:0.0']},
         'GPCPv2.3': {'name': 'GPCPv2.3',
          'nyears': 41,
          'time_period': ['1979-1-1 0:0:0.0', '2019-7-1 0:0:0.0']},
         'method': 'Meridional root mean square error of nino3_LatExt pr, time series are linearly detrended, observations and model regridded to generic_1x1deg',
         'name': 'pr Meridional RMSE',
         'ref': 'Using CDAT regridding and rms (uncentered and biased) calculation',
         'time_frequency': 'monthly',
         'units': 'mm/day'},
        'metric': {'datasets': "GISS-E2-R_r2i1p3; ERA-Interim's pr & GPCPv2.3's precip; 's ",
         'method': 'The metric is the statistical value between the model and the observations',
         'name': 'BiasPrLatRmse',
         'units': 'mm/day'}},
       'BiasPrLonRmse': {'diagnostic': {'ERA-Interim': {'name': 'ERA-Interim',
          'nyears': 40,
          'time_period': ['1979-1-16 12:0:0.0', '2019-3-16 12:0:0.0']},
         'GISS-E2-R_r2i1p3': {'keyerror': None,
          'name': 'GISS-E2-R_r2i1p3',
          'nyears': 156,
          'time_period': ['1850-1-16 12:0:0.0', '2005-12-16 12:0:0.0']},
         'GPCPv2.3': {'name': 'GPCPv2.3',
          'nyears': 41,
          'time_period': ['1979-1-1 0:0:0.0', '2019-7-1 0:0:0.0']},
         'method': 'Zonal root mean square error of equatorial_pacific pr, time series are linearly detrended, observations and model regridded to generic_1x1deg',
         'name': 'pr Zonal RMSE',
         'ref': 'Using CDAT regridding and rms (uncentered and biased) calculation',
         'time_frequency': 'monthly',
         'units': 'mm/day'},
        'metric': {'datasets': "GISS-E2-R_r2i1p3; ERA-Interim's pr & GPCPv2.3's precip; 's ",
         'method': 'The metric is the statistical value between the model and the observations',
         'name': 'BiasPrLonRmse',
         'units': 'mm/day'}},
       'BiasSstLonRmse': {'diagnostic': {'ERA-Interim': {'name': 'ERA-Interim',
          'nyears': 40,
          'time_period': ['1979-1-16 12:0:0.0', '2019-3-16 12:0:0.0']},
         'GISS-E2-R_r2i1p3': {'keyerror': None,
          'name': 'GISS-E2-R_r2i1p3',
          'nyears': 156,
          'time_period': ['1850-1-16 12:0:0.0', '2005-12-16 12:0:0.0']},
         'HadISST': {'name': 'HadISST',
          'nyears': 151,
          'time_period': ['1870-1-16 11:59:59.5', '2020-10-16 12:0:0.0']},
         'Tropflux': {'name': 'Tropflux',
          'nyears': 40,
          'time_period': ['1979-1-15 0:0:0.0', '2018-12-15 12:0:0.0']},
         'method': 'Zonal root mean square error of equatorial_pacific sst, time series are linearly detrended, observations and model regridded to generic_1x1deg',
         'name': 'sst Zonal RMSE',
         'ref': 'Using CDAT regridding and rms (uncentered and biased) calculation',
         'time_frequency': 'monthly',
         'units': 'C'},
        'metric': {'datasets': "GISS-E2-R_r2i1p3; ERA-Interim's ts & HadISST's sst & Tropflux's sst; 's ",
         'method': 'The metric is the statistical value between the model and the observations',
         'name': 'BiasSstLonRmse',
         'units': 'C'}},
       'BiasTauxLonRmse': {'diagnostic': {'ERA-Interim': {'name': 'ERA-Interim',
          'nyears': 40,
          'time_period': ['1979-1-16 12:0:0.0', '2019-3-16 12:0:0.0']},
         'GISS-E2-R_r2i1p3': {'keyerror': None,
          'name': 'GISS-E2-R_r2i1p3',
          'nyears': 156,
          'time_period': ['1850-1-16 12:0:0.0', '2005-12-16 12:0:0.0']},
         'Tropflux': {'name': 'Tropflux',
          'nyears': 40,
          'time_period': ['1979-1-15 0:0:0.0', '2018-12-15 12:0:0.0']},
         'method': 'Zonal root mean square error of equatorial_pacific taux, time series are linearly detrended, observations and model regridded to generic_1x1deg',
         'name': 'taux Zonal RMSE',
         'ref': 'Using CDAT regridding and rms (uncentered and biased) calculation',
         'time_frequency': 'monthly',
         'units': '1e-3 N/m2'},
        'metric': {'datasets': "GISS-E2-R_r2i1p3; ERA-Interim's tauu & Tropflux's taux; 's ",
         'method': 'The metric is the statistical value between the model and the observations',
         'name': 'BiasTauxLonRmse',
         'units': '1e-3 N/m2'}},
       'EnsoAmpl': {'diagnostic': {'ERA-Interim': {'keyerror': None,
          'name': 'ERA-Interim',
          'nyears': 40,
          'time_period': ['1979-1-16 12:0:0.0', '2019-3-16 12:0:0.0']},
         'GISS-E2-R_r2i1p3': {'keyerror': None,
          'name': 'GISS-E2-R_r2i1p3',
          'nyears': 156,
          'time_period': ['1850-1-16 12:0:0.0', '2005-12-16 12:0:0.0']},
         'HadISST': {'keyerror': None,
          'name': 'HadISST',
          'nyears': 151,
          'time_period': ['1870-1-16 11:59:59.5', '2020-10-16 12:0:0.0']},
         'Tropflux': {'keyerror': None,
          'name': 'Tropflux',
          'nyears': 40,
          'time_period': ['1979-1-15 0:0:0.0', '2018-12-15 12:0:0.0']},
         'method': 'Standard deviation of nino3.4 sstA, time series are linearly detrended',
         'name': 'ENSO amplitude',
         'ref': 'Using CDAT regression calculation',
         'time_frequency': 'monthly',
         'units': 'C'},
        'metric': {'datasets': "GISS-E2-R_r2i1p3; ERA-Interim's ts & HadISST's sst & Tropflux's sst; 's ",
         'method': 'The metric is the absolute value of the relative difference between model and observations values (M = 100 * abs[[model-obs] / obs])',
         'name': 'EnsoAmpl',
         'units': '%'}},
       'EnsoDuration': {'diagnostic': {'ERA-Interim': {'keyerror': None,
          'name': 'ERA-Interim',
          'nyears': 40,
          'time_period': ['1979-1-16 12:0:0.0', '2019-3-16 12:0:0.0']},
         'GISS-E2-R_r2i1p3': {'keyerror': None,
          'name': 'GISS-E2-R_r2i1p3',
          'nyears': 156,
          'time_period': ['1850-1-16 12:0:0.0', '2005-12-16 12:0:0.0']},
         'HadISST': {'keyerror': None,
          'name': 'HadISST',
          'nyears': 151,
          'time_period': ['1870-1-16 11:59:59.5', '2020-10-16 12:0:0.0']},
         'Tropflux': {'keyerror': None,
          'name': 'Tropflux',
          'nyears': 40,
          'time_period': ['1979-1-15 0:0:0.0', '2018-12-15 12:0:0.0']},
         'method': 'nino3.4 SSTA during DEC regressed against nino3.4 SSTA during 6 years (centered on ENSO), the duration is the number of consecutive months during which the regression is above 0.25, time series are linearly detrended, smoothing using a triangle shaped window of 5 points',
         'name': 'ENSO Duration based on life cyle SSTA pattern',
         'ref': 'Using CDAT',
         'time_frequency': 'monthly',
         'units': 'months'},
        'metric': {'datasets': "GISS-E2-R_r2i1p3; ERA-Interim's ts & HadISST's sst & Tropflux's sst; 's ",
         'method': 'The metric is the absolute value of the relative difference between model and observations values (M = 100 * abs[[model-obs] / obs])',
         'name': 'EnsoDuration',
         'units': '%'}},
       'EnsoSeasonality': {'diagnostic': {'ERA-Interim': {'keyerror': None,
          'name': 'ERA-Interim',
          'nyears': 40,
          'time_period': ['1979-1-16 12:0:0.0', '2019-3-16 12:0:0.0']},
         'GISS-E2-R_r2i1p3': {'keyerror': None,
          'name': 'GISS-E2-R_r2i1p3',
          'nyears': 156,
          'time_period': ['1850-1-16 12:0:0.0', '2005-12-16 12:0:0.0']},
         'HadISST': {'keyerror': None,
          'name': 'HadISST',
          'nyears': 151,
          'time_period': ['1870-1-16 11:59:59.5', '2020-10-16 12:0:0.0']},
         'Tropflux': {'keyerror': None,
          'name': 'Tropflux',
          'nyears': 40,
          'time_period': ['1979-1-15 0:0:0.0', '2018-12-15 12:0:0.0']},
         'method': 'Ratio between NDJ and MAM standard deviation nino3.4 sstA, time series are linearly detrended',
         'name': 'ENSO seasonality',
         'ref': 'Using CDAT std dev calculation',
         'time_frequency': 'monthly',
         'units': 'C/C'},
        'metric': {'datasets': "GISS-E2-R_r2i1p3; ERA-Interim's ts & HadISST's sst & Tropflux's sst; 's ",
         'method': 'The metric is the absolute value of the relative difference between model and observations values (M = 100 * abs[[model-obs] / obs])',
         'name': 'EnsoSeasonality',
         'units': '%'}},
       'EnsoSstDiversity_2': {'diagnostic': {'ERA-Interim': {'keyerror': None,
          'name': 'ERA-Interim',
          'nyears': 40,
          'time_period': ['1979-1-16 12:0:0.0', '2019-3-16 12:0:0.0']},
         'GISS-E2-R_r2i1p3': {'keyerror': None,
          'name': 'GISS-E2-R_r2i1p3',
          'nyears': 156,
          'time_period': ['1850-1-16 12:0:0.0', '2005-12-16 12:0:0.0']},
         'HadISST': {'keyerror': None,
          'name': 'HadISST',
          'nyears': 151,
          'time_period': ['1870-1-16 11:59:59.5', '2020-10-16 12:0:0.0']},
         'Tropflux': {'keyerror': None,
          'name': 'Tropflux',
          'nyears': 40,
          'time_period': ['1979-1-15 0:0:0.0', '2018-12-15 12:0:0.0']},
         'method': 'Nino (Nina) events = nino3.4 sstA > 0.75 (< -0.75) during DEC, zonal SSTA (meridional averaged [-5.0 ; 5.0]), the zonal SSTA maximum (minimum) is located for each event, the diversity is the interquartile range (IQR = Q3 - Q1), time series are linearly detrended, smoothing using a triangle shaped window of 5 points',
         'name': 'ENSO Diversity (interquartile range)',
         'ref': 'Using CDAT regridding',
         'time_frequency': 'monthly',
         'units': 'long'},
        'metric': {'datasets': "GISS-E2-R_r2i1p3; ERA-Interim's ts & HadISST's sst & Tropflux's sst; 's ",
         'method': 'The metric is the absolute value of the relative difference between model and observations values (M = 100 * abs[[model-obs] / obs])',
         'name': 'EnsoSstDiversity',
         'units': '%'}},
       'EnsoSstLonRmse': {'diagnostic': {'ERA-Interim': {'name': 'ERA-Interim',
          'nyears': 40,
          'time_period': ['1979-1-16 12:0:0.0', '2019-3-16 12:0:0.0']},
         'GISS-E2-R_r2i1p3': {'keyerror': None,
          'name': 'GISS-E2-R_r2i1p3',
          'nyears': 156,
          'time_period': ['1850-1-16 12:0:0.0', '2005-12-16 12:0:0.0']},
         'HadISST': {'name': 'HadISST',
          'nyears': 151,
          'time_period': ['1870-1-16 11:59:59.5', '2020-10-16 12:0:0.0']},
         'Tropflux': {'name': 'Tropflux',
          'nyears': 40,
          'time_period': ['1979-1-15 0:0:0.0', '2018-12-15 12:0:0.0']},
         'method': 'nino3.4 SSTA during DEC regressed against equatorial_pacific SSTA, time series are linearly detrended, smoothing using a triangle shaped window of 5 points, observations and model regridded to generic_1x1deg',
         'name': 'ENSO Zonal SSTA pattern',
         'ref': 'Using CDAT regridding and rms (uncentered and biased) calculation',
         'time_frequency': 'monthly',
         'units': 'C/C'},
        'metric': {'datasets': "GISS-E2-R_r2i1p3; ERA-Interim's ts & HadISST's sst & Tropflux's sst; 's ",
         'method': 'The metric is the statistical value between the model and the observations',
         'name': 'EnsoSstLonRmse',
         'units': 'C/C'}},
       'EnsoSstSkew': {'diagnostic': {'ERA-Interim': {'keyerror': None,
          'name': 'ERA-Interim',
          'nyears': 40,
          'time_period': ['1979-1-16 12:0:0.0', '2019-3-16 12:0:0.0']},
         'GISS-E2-R_r2i1p3': {'keyerror': None,
          'name': 'GISS-E2-R_r2i1p3',
          'nyears': 156,
          'time_period': ['1850-1-16 12:0:0.0', '2005-12-16 12:0:0.0']},
         'HadISST': {'keyerror': None,
          'name': 'HadISST',
          'nyears': 151,
          'time_period': ['1870-1-16 11:59:59.5', '2020-10-16 12:0:0.0']},
         'Tropflux': {'keyerror': None,
          'name': 'Tropflux',
          'nyears': 40,
          'time_period': ['1979-1-15 0:0:0.0', '2018-12-15 12:0:0.0']},
         'method': 'Standard deviation of nino3.4 sstA, time series are linearly detrended',
         'name': 'ENSO skewness',
         'ref': 'Using CDAT regression calculation',
         'time_frequency': 'monthly',
         'units': 'C'},
        'metric': {'datasets': "GISS-E2-R_r2i1p3; ERA-Interim's ts & HadISST's sst & Tropflux's sst; 's ",
         'method': 'The metric is the absolute value of the relative difference between model and observations values (M = 100 * abs[[model-obs] / obs])',
         'name': 'EnsoSstSkew',
         'units': '%'}},
       'EnsoSstTsRmse': {'diagnostic': {'ERA-Interim': {'name': 'ERA-Interim',
          'nyears': 40,
          'time_period': ['1979-1-16 12:0:0.0', '2019-3-16 12:0:0.0']},
         'GISS-E2-R_r2i1p3': {'keyerror': None,
          'name': 'GISS-E2-R_r2i1p3',
          'nyears': 156,
          'time_period': ['1850-1-16 12:0:0.0', '2005-12-16 12:0:0.0']},
         'HadISST': {'name': 'HadISST',
          'nyears': 151,
          'time_period': ['1870-1-16 11:59:59.5', '2020-10-16 12:0:0.0']},
         'Tropflux': {'name': 'Tropflux',
          'nyears': 40,
          'time_period': ['1979-1-15 0:0:0.0', '2018-12-15 12:0:0.0']},
         'method': 'nino3.4 SSTA during DEC regressed against nino3.4 SSTA during 6 years (centered on ENSO), time series are linearly detrended, smoothing using a triangle shaped window of 5 points',
         'name': 'ENSO life cyle SSTA pattern',
         'ref': 'Using CDAT regridding and rms (uncentered and biased) calculation',
         'time_frequency': 'monthly',
         'units': 'C/C'},
        'metric': {'datasets': "GISS-E2-R_r2i1p3; ERA-Interim's ts & HadISST's sst & Tropflux's sst; 's ",
         'method': 'The metric is the statistical value between the model and the observations',
         'name': 'EnsoSstTsRmse',
         'units': 'C/C'}},
       'SeasonalPrLatRmse': {'diagnostic': {'ERA-Interim': {'name': 'ERA-Interim',
          'nyears': 40,
          'time_period': ['1979-1-16 12:0:0.0', '2019-3-16 12:0:0.0']},
         'GISS-E2-R_r2i1p3': {'keyerror': None,
          'name': 'GISS-E2-R_r2i1p3',
          'nyears': 156,
          'time_period': ['1850-1-16 12:0:0.0', '2005-12-16 12:0:0.0']},
         'GPCPv2.3': {'name': 'GPCPv2.3',
          'nyears': 41,
          'time_period': ['1979-1-1 0:0:0.0', '2019-7-1 0:0:0.0']},
         'method': 'Meridional root mean square error of nino3_LatExt climatological pr STD, time series are linearly detrended, observations and model regridded to generic_1x1deg',
         'name': 'pr meridional seasonality RMSE',
         'ref': 'Using CDAT regridding and rms (uncentered and biased) calculation',
         'time_frequency': 'monthly',
         'units': 'mm/day'},
        'metric': {'datasets': "GISS-E2-R_r2i1p3; ERA-Interim's pr & GPCPv2.3's precip; 's ",
         'method': 'The metric is the statistical value between the model and the observations',
         'name': 'SeasonalPrLatRmse',
         'units': 'mm/day'}},
       'SeasonalPrLonRmse': {'diagnostic': {'ERA-Interim': {'name': 'ERA-Interim',
          'nyears': 40,
          'time_period': ['1979-1-16 12:0:0.0', '2019-3-16 12:0:0.0']},
         'GISS-E2-R_r2i1p3': {'keyerror': None,
          'name': 'GISS-E2-R_r2i1p3',
          'nyears': 156,
          'time_period': ['1850-1-16 12:0:0.0', '2005-12-16 12:0:0.0']},
         'GPCPv2.3': {'name': 'GPCPv2.3',
          'nyears': 41,
          'time_period': ['1979-1-1 0:0:0.0', '2019-7-1 0:0:0.0']},
         'method': 'Zonal root mean square error of equatorial_pacific climatological pr STD, time series are linearly detrended, observations and model regridded to generic_1x1deg',
         'name': 'pr zonal seasonality RMSE',
         'ref': 'Using CDAT regridding and rms (uncentered and biased) calculation',
         'time_frequency': 'monthly',
         'units': 'mm/day'},
        'metric': {'datasets': "GISS-E2-R_r2i1p3; ERA-Interim's pr & GPCPv2.3's precip; 's ",
         'method': 'The metric is the statistical value between the model and the observations',
         'name': 'SeasonalPrLonRmse',
         'units': 'mm/day'}},
       'SeasonalSstLonRmse': {'diagnostic': {'ERA-Interim': {'name': 'ERA-Interim',
          'nyears': 40,
          'time_period': ['1979-1-16 12:0:0.0', '2019-3-16 12:0:0.0']},
         'GISS-E2-R_r2i1p3': {'keyerror': None,
          'name': 'GISS-E2-R_r2i1p3',
          'nyears': 156,
          'time_period': ['1850-1-16 12:0:0.0', '2005-12-16 12:0:0.0']},
         'HadISST': {'name': 'HadISST',
          'nyears': 151,
          'time_period': ['1870-1-16 11:59:59.5', '2020-10-16 12:0:0.0']},
         'Tropflux': {'name': 'Tropflux',
          'nyears': 40,
          'time_period': ['1979-1-15 0:0:0.0', '2018-12-15 12:0:0.0']},
         'method': 'Zonal root mean square error of equatorial_pacific climatological sst STD, time series are linearly detrended, observations and model regridded to generic_1x1deg',
         'name': 'sst zonal seasonality RMSE',
         'ref': 'Using CDAT regridding and rms (uncentered and biased) calculation',
         'time_frequency': 'monthly',
         'units': 'C'},
        'metric': {'datasets': "GISS-E2-R_r2i1p3; ERA-Interim's ts & HadISST's sst & Tropflux's sst; 's ",
         'method': 'The metric is the statistical value between the model and the observations',
         'name': 'SeasonalSstLonRmse',
         'units': 'C'}},
       'SeasonalTauxLonRmse': {'diagnostic': {'ERA-Interim': {'name': 'ERA-Interim',
          'nyears': 40,
          'time_period': ['1979-1-16 12:0:0.0', '2019-3-16 12:0:0.0']},
         'GISS-E2-R_r2i1p3': {'keyerror': None,
          'name': 'GISS-E2-R_r2i1p3',
          'nyears': 156,
          'time_period': ['1850-1-16 12:0:0.0', '2005-12-16 12:0:0.0']},
         'Tropflux': {'name': 'Tropflux',
          'nyears': 40,
          'time_period': ['1979-1-15 0:0:0.0', '2018-12-15 12:0:0.0']},
         'method': 'Zonal root mean square error of equatorial_pacific climatological taux STD, time series are linearly detrended, observations and model regridded to generic_1x1deg',
         'name': 'taux zonal seasonality RMSE',
         'ref': 'Using CDAT regridding and rms (uncentered and biased) calculation',
         'time_frequency': 'monthly',
         'units': '1e-3 N/m2'},
        'metric': {'datasets': "GISS-E2-R_r2i1p3; ERA-Interim's tauu & Tropflux's taux; 's ",
         'method': 'The metric is the statistical value between the model and the observations',
         'name': 'SeasonalTauxLonRmse',
         'units': '1e-3 N/m2'}}},
      'name': 'Metrics Collection for ENSO performance'},
     'value': {'BiasPrLatRmse': {'diagnostic': {'ERA-Interim': {'value': None,
         'value_error': None},
        'GISS-E2-R_r2i1p3': {'value': None, 'value_error': None},
        'GPCPv2.3': {'value': None, 'value_error': None}},
       'metric': {'ERA-Interim': {'value': 2.193984171444032,
         'value_error': None},
        'GPCPv2.3': {'value': 2.9292153556842773, 'value_error': None}}},
      'BiasPrLonRmse': {'diagnostic': {'ERA-Interim': {'value': None,
         'value_error': None},
        'GISS-E2-R_r2i1p3': {'value': None, 'value_error': None},
        'GPCPv2.3': {'value': None, 'value_error': None}},
       'metric': {'ERA-Interim': {'value': 1.8321571618371053,
         'value_error': None},
        'GPCPv2.3': {'value': 2.3679297107808575, 'value_error': None}}},
      'BiasSstLonRmse': {'diagnostic': {'ERA-Interim': {'value': None,
         'value_error': None},
        'GISS-E2-R_r2i1p3': {'value': None, 'value_error': None},
        'HadISST': {'value': None, 'value_error': None},
        'Tropflux': {'value': None, 'value_error': None}},
       'metric': {'ERA-Interim': {'value': 1.1536919611141023,
         'value_error': None},
        'HadISST': {'value': 1.3301034583257407, 'value_error': None},
        'Tropflux': {'value': 1.1181590487068507, 'value_error': None}}},
      'BiasTauxLonRmse': {'diagnostic': {'ERA-Interim': {'value': None,
         'value_error': None},
        'GISS-E2-R_r2i1p3': {'value': None, 'value_error': None},
        'Tropflux': {'value': None, 'value_error': None}},
       'metric': {'ERA-Interim': {'value': 17.933303733050494,
         'value_error': None},
        'Tropflux': {'value': 17.544617285702696, 'value_error': None}}},
      'EnsoAmpl': {'diagnostic': {'ERA-Interim': {'value': 0.8989844997845644,
         'value_error': 0.14214193002531866},
        'GISS-E2-R_r2i1p3': {'value': 0.5966388395324761,
         'value_error': 0.047769337931372516},
        'HadISST': {'value': 0.7665787872085695,
         'value_error': 0.06238329697691264},
        'Tropflux': {'value': 0.9039789553693535,
         'value_error': 0.14293162279134272}},
       'metric': {'ERA-Interim': {'value': 33.63191026369681,
         'value_error': 15.807416216580386},
        'HadISST': {'value': 22.168621218298394,
         'value_error': 12.565325274488682},
        'Tropflux': {'value': 33.99859189324849,
         'value_error': 15.720080734116939}}},
      'EnsoDuration': {'diagnostic': {'ERA-Interim': {'value': 13.0,
         'value_error': None},
        'GISS-E2-R_r2i1p3': {'value': 12.0, 'value_error': None},
        'HadISST': {'value': 13.0, 'value_error': None},
        'Tropflux': {'value': 13.0, 'value_error': None}},
       'metric': {'ERA-Interim': {'value': 7.6923076923076925,
         'value_error': None},
        'HadISST': {'value': 7.6923076923076925, 'value_error': None},
        'Tropflux': {'value': 7.6923076923076925, 'value_error': None}}},
      'EnsoSeasonality': {'diagnostic': {'ERA-Interim': {'value': 2.0466846866656914,
         'value_error': 0.6513411033995022},
        'GISS-E2-R_r2i1p3': {'value': 1.8574137783180669,
         'value_error': 0.297903184438591},
        'HadISST': {'value': 1.6639865947361325,
         'value_error': 0.2712772451657809},
        'Tropflux': {'value': 2.0532132553583624,
         'value_error': 0.6534187683977347}},
       'metric': {'ERA-Interim': {'value': 9.24768282973626,
         'value_error': 43.43660429219868},
        'HadISST': {'value': 11.624323428675646,
         'value_error': 36.10092628577349},
        'Tropflux': {'value': 9.536246492141471,
         'value_error': 43.29848963014011}}},
      'EnsoSstDiversity_2': {'diagnostic': {'ERA-Interim': {'value': 33.25,
         'value_error': None},
        'GISS-E2-R_r2i1p3': {'value': 22.5, 'value_error': None},
        'HadISST': {'value': 49.0, 'value_error': None},
        'Tropflux': {'value': 32.0, 'value_error': None}},
       'metric': {'ERA-Interim': {'value': 32.33082706766917,
         'value_error': None},
        'HadISST': {'value': 54.08163265306123, 'value_error': None},
        'Tropflux': {'value': 29.6875, 'value_error': None}}},
      'EnsoSstLonRmse': {'diagnostic': {'ERA-Interim': {'value': None,
         'value_error': None},
        'GISS-E2-R_r2i1p3': {'value': None, 'value_error': None},
        'HadISST': {'value': None, 'value_error': None},
        'Tropflux': {'value': None, 'value_error': None}},
       'metric': {'ERA-Interim': {'value': 0.09224817205889824,
         'value_error': None},
        'HadISST': {'value': 0.09504565490348138, 'value_error': None},
        'Tropflux': {'value': 0.08915313037877019, 'value_error': None}}},
      'EnsoSstSkew': {'diagnostic': {'ERA-Interim': {'value': 0.39098111106809963,
         'value_error': 0.061819541653923164},
        'GISS-E2-R_r2i1p3': {'value': -0.08441506322148921,
         'value_error': -0.006758614113498389},
        'HadISST': {'value': 0.38989908235027515,
         'value_error': 0.03172953733021198},
        'Tropflux': {'value': 0.39744741059612115,
         'value_error': 0.06284195338099416}},
       'metric': {'ERA-Interim': {'value': 121.59057326091289,
         'value_error': -5.1423986925924074},
        'HadISST': {'value': 121.65049035577185,
         'value_error': -3.4953184426486357},
        'Tropflux': {'value': 121.23930386032136,
         'value_error': -5.058734063380372}}},
      'EnsoSstTsRmse': {'diagnostic': {'ERA-Interim': {'value': None,
         'value_error': None},
        'GISS-E2-R_r2i1p3': {'value': None, 'value_error': None},
        'HadISST': {'value': None, 'value_error': None},
        'Tropflux': {'value': None, 'value_error': None}},
       'metric': {'ERA-Interim': {'value': 0.20633674607208682,
         'value_error': None},
        'HadISST': {'value': 0.20781333142521483, 'value_error': None},
        'Tropflux': {'value': 0.21001422855671462, 'value_error': None}}},
      'SeasonalPrLatRmse': {'diagnostic': {'ERA-Interim': {'value': None,
         'value_error': None},
        'GISS-E2-R_r2i1p3': {'value': None, 'value_error': None},
        'GPCPv2.3': {'value': None, 'value_error': None}},
       'metric': {'ERA-Interim': {'value': 0.7550012000106794,
         'value_error': None},
        'GPCPv2.3': {'value': 0.9054659787078168, 'value_error': None}}},
      'SeasonalPrLonRmse': {'diagnostic': {'ERA-Interim': {'value': None,
         'value_error': None},
        'GISS-E2-R_r2i1p3': {'value': None, 'value_error': None},
        'GPCPv2.3': {'value': None, 'value_error': None}},
       'metric': {'ERA-Interim': {'value': 0.19449383950476198,
         'value_error': None},
        'GPCPv2.3': {'value': 0.4878578952425641, 'value_error': None}}},
      'SeasonalSstLonRmse': {'diagnostic': {'ERA-Interim': {'value': None,
         'value_error': None},
        'GISS-E2-R_r2i1p3': {'value': None, 'value_error': None},
        'HadISST': {'value': None, 'value_error': None},
        'Tropflux': {'value': None, 'value_error': None}},
       'metric': {'ERA-Interim': {'value': 0.2686619664012364,
         'value_error': None},
        'HadISST': {'value': 0.2721274255856839, 'value_error': None},
        'Tropflux': {'value': 0.2760195650702864, 'value_error': None}}},
      'SeasonalTauxLonRmse': {'diagnostic': {'ERA-Interim': {'value': None,
         'value_error': None},
        'GISS-E2-R_r2i1p3': {'value': None, 'value_error': None},
        'Tropflux': {'value': None, 'value_error': None}},
       'metric': {'ERA-Interim': {'value': 1.731823245981631,
         'value_error': None},
        'Tropflux': {'value': 1.7805763863906061, 'value_error': None}}}}},
    'r3i1p1': {'metadata': {'description_of_the_collection': 'Describe which science question this collection is about',
      'metrics': {'BiasPrLatRmse': {'diagnostic': {'ERA-Interim': {'name': 'ERA-Interim',
          'nyears': 40,
          'time_period': ['1979-1-16 12:0:0.0', '2019-3-16 12:0:0.0']},
         'GISS-E2-R_r3i1p1': {'keyerror': None,
          'name': 'GISS-E2-R_r3i1p1',
          'nyears': 156,
          'time_period': ['1850-1-16 12:0:0.0', '2005-12-16 12:0:0.0']},
         'GPCPv2.3': {'name': 'GPCPv2.3',
          'nyears': 41,
          'time_period': ['1979-1-1 0:0:0.0', '2019-7-1 0:0:0.0']},
         'method': 'Meridional root mean square error of nino3_LatExt pr, time series are linearly detrended, observations and model regridded to generic_1x1deg',
         'name': 'pr Meridional RMSE',
         'ref': 'Using CDAT regridding and rms (uncentered and biased) calculation',
         'time_frequency': 'monthly',
         'units': 'mm/day'},
        'metric': {'datasets': "GISS-E2-R_r3i1p1; ERA-Interim's pr & GPCPv2.3's precip; 's ",
         'method': 'The metric is the statistical value between the model and the observations',
         'name': 'BiasPrLatRmse',
         'units': 'mm/day'}},
       'BiasPrLonRmse': {'diagnostic': {'ERA-Interim': {'name': 'ERA-Interim',
          'nyears': 40,
          'time_period': ['1979-1-16 12:0:0.0', '2019-3-16 12:0:0.0']},
         'GISS-E2-R_r3i1p1': {'keyerror': None,
          'name': 'GISS-E2-R_r3i1p1',
          'nyears': 156,
          'time_period': ['1850-1-16 12:0:0.0', '2005-12-16 12:0:0.0']},
         'GPCPv2.3': {'name': 'GPCPv2.3',
          'nyears': 41,
          'time_period': ['1979-1-1 0:0:0.0', '2019-7-1 0:0:0.0']},
         'method': 'Zonal root mean square error of equatorial_pacific pr, time series are linearly detrended, observations and model regridded to generic_1x1deg',
         'name': 'pr Zonal RMSE',
         'ref': 'Using CDAT regridding and rms (uncentered and biased) calculation',
         'time_frequency': 'monthly',
         'units': 'mm/day'},
        'metric': {'datasets': "GISS-E2-R_r3i1p1; ERA-Interim's pr & GPCPv2.3's precip; 's ",
         'method': 'The metric is the statistical value between the model and the observations',
         'name': 'BiasPrLonRmse',
         'units': 'mm/day'}},
       'BiasSstLonRmse': {'diagnostic': {'ERA-Interim': {'name': 'ERA-Interim',
          'nyears': 40,
          'time_period': ['1979-1-16 12:0:0.0', '2019-3-16 12:0:0.0']},
         'GISS-E2-R_r3i1p1': {'keyerror': None,
          'name': 'GISS-E2-R_r3i1p1',
          'nyears': 156,
          'time_period': ['1850-1-16 12:0:0.0', '2005-12-16 12:0:0.0']},
         'HadISST': {'name': 'HadISST',
          'nyears': 151,
          'time_period': ['1870-1-16 11:59:59.5', '2020-10-16 12:0:0.0']},
         'Tropflux': {'name': 'Tropflux',
          'nyears': 40,
          'time_period': ['1979-1-15 0:0:0.0', '2018-12-15 12:0:0.0']},
         'method': 'Zonal root mean square error of equatorial_pacific sst, time series are linearly detrended, observations and model regridded to generic_1x1deg',
         'name': 'sst Zonal RMSE',
         'ref': 'Using CDAT regridding and rms (uncentered and biased) calculation',
         'time_frequency': 'monthly',
         'units': 'C'},
        'metric': {'datasets': "GISS-E2-R_r3i1p1; ERA-Interim's ts & HadISST's sst & Tropflux's sst; 's ",
         'method': 'The metric is the statistical value between the model and the observations',
         'name': 'BiasSstLonRmse',
         'units': 'C'}},
       'BiasTauxLonRmse': {'diagnostic': {'ERA-Interim': {'name': 'ERA-Interim',
          'nyears': 40,
          'time_period': ['1979-1-16 12:0:0.0', '2019-3-16 12:0:0.0']},
         'GISS-E2-R_r3i1p1': {'keyerror': None,
          'name': 'GISS-E2-R_r3i1p1',
          'nyears': 156,
          'time_period': ['1850-1-16 12:0:0.0', '2005-12-16 12:0:0.0']},
         'Tropflux': {'name': 'Tropflux',
          'nyears': 40,
          'time_period': ['1979-1-15 0:0:0.0', '2018-12-15 12:0:0.0']},
         'method': 'Zonal root mean square error of equatorial_pacific taux, time series are linearly detrended, observations and model regridded to generic_1x1deg',
         'name': 'taux Zonal RMSE',
         'ref': 'Using CDAT regridding and rms (uncentered and biased) calculation',
         'time_frequency': 'monthly',
         'units': '1e-3 N/m2'},
        'metric': {'datasets': "GISS-E2-R_r3i1p1; ERA-Interim's tauu & Tropflux's taux; 's ",
         'method': 'The metric is the statistical value between the model and the observations',
         'name': 'BiasTauxLonRmse',
         'units': '1e-3 N/m2'}},
       'EnsoAmpl': {'diagnostic': {'ERA-Interim': {'keyerror': None,
          'name': 'ERA-Interim',
          'nyears': 40,
          'time_period': ['1979-1-16 12:0:0.0', '2019-3-16 12:0:0.0']},
         'GISS-E2-R_r3i1p1': {'keyerror': None,
          'name': 'GISS-E2-R_r3i1p1',
          'nyears': 156,
          'time_period': ['1850-1-16 12:0:0.0', '2005-12-16 12:0:0.0']},
         'HadISST': {'keyerror': None,
          'name': 'HadISST',
          'nyears': 151,
          'time_period': ['1870-1-16 11:59:59.5', '2020-10-16 12:0:0.0']},
         'Tropflux': {'keyerror': None,
          'name': 'Tropflux',
          'nyears': 40,
          'time_period': ['1979-1-15 0:0:0.0', '2018-12-15 12:0:0.0']},
         'method': 'Standard deviation of nino3.4 sstA, time series are linearly detrended',
         'name': 'ENSO amplitude',
         'ref': 'Using CDAT regression calculation',
         'time_frequency': 'monthly',
         'units': 'C'},
        'metric': {'datasets': "GISS-E2-R_r3i1p1; ERA-Interim's ts & HadISST's sst & Tropflux's sst; 's ",
         'method': 'The metric is the absolute value of the relative difference between model and observations values (M = 100 * abs[[model-obs] / obs])',
         'name': 'EnsoAmpl',
         'units': '%'}},
       'EnsoDuration': {'diagnostic': {'ERA-Interim': {'keyerror': None,
          'name': 'ERA-Interim',
          'nyears': 40,
          'time_period': ['1979-1-16 12:0:0.0', '2019-3-16 12:0:0.0']},
         'GISS-E2-R_r3i1p1': {'keyerror': None,
          'name': 'GISS-E2-R_r3i1p1',
          'nyears': 156,
          'time_period': ['1850-1-16 12:0:0.0', '2005-12-16 12:0:0.0']},
         'HadISST': {'keyerror': None,
          'name': 'HadISST',
          'nyears': 151,
          'time_period': ['1870-1-16 11:59:59.5', '2020-10-16 12:0:0.0']},
         'Tropflux': {'keyerror': None,
          'name': 'Tropflux',
          'nyears': 40,
          'time_period': ['1979-1-15 0:0:0.0', '2018-12-15 12:0:0.0']},
         'method': 'nino3.4 SSTA during DEC regressed against nino3.4 SSTA during 6 years (centered on ENSO), the duration is the number of consecutive months during which the regression is above 0.25, time series are linearly detrended, smoothing using a triangle shaped window of 5 points',
         'name': 'ENSO Duration based on life cyle SSTA pattern',
         'ref': 'Using CDAT',
         'time_frequency': 'monthly',
         'units': 'months'},
        'metric': {'datasets': "GISS-E2-R_r3i1p1; ERA-Interim's ts & HadISST's sst & Tropflux's sst; 's ",
         'method': 'The metric is the absolute value of the relative difference between model and observations values (M = 100 * abs[[model-obs] / obs])',
         'name': 'EnsoDuration',
         'units': '%'}},
       'EnsoSeasonality': {'diagnostic': {'ERA-Interim': {'keyerror': None,
          'name': 'ERA-Interim',
          'nyears': 40,
          'time_period': ['1979-1-16 12:0:0.0', '2019-3-16 12:0:0.0']},
         'GISS-E2-R_r3i1p1': {'keyerror': None,
          'name': 'GISS-E2-R_r3i1p1',
          'nyears': 156,
          'time_period': ['1850-1-16 12:0:0.0', '2005-12-16 12:0:0.0']},
         'HadISST': {'keyerror': None,
          'name': 'HadISST',
          'nyears': 151,
          'time_period': ['1870-1-16 11:59:59.5', '2020-10-16 12:0:0.0']},
         'Tropflux': {'keyerror': None,
          'name': 'Tropflux',
          'nyears': 40,
          'time_period': ['1979-1-15 0:0:0.0', '2018-12-15 12:0:0.0']},
         'method': 'Ratio between NDJ and MAM standard deviation nino3.4 sstA, time series are linearly detrended',
         'name': 'ENSO seasonality',
         'ref': 'Using CDAT std dev calculation',
         'time_frequency': 'monthly',
         'units': 'C/C'},
        'metric': {'datasets': "GISS-E2-R_r3i1p1; ERA-Interim's ts & HadISST's sst & Tropflux's sst; 's ",
         'method': 'The metric is the absolute value of the relative difference between model and observations values (M = 100 * abs[[model-obs] / obs])',
         'name': 'EnsoSeasonality',
         'units': '%'}},
       'EnsoSstDiversity_2': {'diagnostic': {'ERA-Interim': {'keyerror': None,
          'name': 'ERA-Interim',
          'nyears': 40,
          'time_period': ['1979-1-16 12:0:0.0', '2019-3-16 12:0:0.0']},
         'GISS-E2-R_r3i1p1': {'keyerror': None,
          'name': 'GISS-E2-R_r3i1p1',
          'nyears': 156,
          'time_period': ['1850-1-16 12:0:0.0', '2005-12-16 12:0:0.0']},
         'HadISST': {'keyerror': None,
          'name': 'HadISST',
          'nyears': 151,
          'time_period': ['1870-1-16 11:59:59.5', '2020-10-16 12:0:0.0']},
         'Tropflux': {'keyerror': None,
          'name': 'Tropflux',
          'nyears': 40,
          'time_period': ['1979-1-15 0:0:0.0', '2018-12-15 12:0:0.0']},
         'method': 'Nino (Nina) events = nino3.4 sstA > 0.75 (< -0.75) during DEC, zonal SSTA (meridional averaged [-5.0 ; 5.0]), the zonal SSTA maximum (minimum) is located for each event, the diversity is the interquartile range (IQR = Q3 - Q1), time series are linearly detrended, smoothing using a triangle shaped window of 5 points',
         'name': 'ENSO Diversity (interquartile range)',
         'ref': 'Using CDAT regridding',
         'time_frequency': 'monthly',
         'units': 'long'},
        'metric': {'datasets': "GISS-E2-R_r3i1p1; ERA-Interim's ts & HadISST's sst & Tropflux's sst; 's ",
         'method': 'The metric is the absolute value of the relative difference between model and observations values (M = 100 * abs[[model-obs] / obs])',
         'name': 'EnsoSstDiversity',
         'units': '%'}},
       'EnsoSstLonRmse': {'diagnostic': {'ERA-Interim': {'name': 'ERA-Interim',
          'nyears': 40,
          'time_period': ['1979-1-16 12:0:0.0', '2019-3-16 12:0:0.0']},
         'GISS-E2-R_r3i1p1': {'keyerror': None,
          'name': 'GISS-E2-R_r3i1p1',
          'nyears': 156,
          'time_period': ['1850-1-16 12:0:0.0', '2005-12-16 12:0:0.0']},
         'HadISST': {'name': 'HadISST',
          'nyears': 151,
          'time_period': ['1870-1-16 11:59:59.5', '2020-10-16 12:0:0.0']},
         'Tropflux': {'name': 'Tropflux',
          'nyears': 40,
          'time_period': ['1979-1-15 0:0:0.0', '2018-12-15 12:0:0.0']},
         'method': 'nino3.4 SSTA during DEC regressed against equatorial_pacific SSTA, time series are linearly detrended, smoothing using a triangle shaped window of 5 points, observations and model regridded to generic_1x1deg',
         'name': 'ENSO Zonal SSTA pattern',
         'ref': 'Using CDAT regridding and rms (uncentered and biased) calculation',
         'time_frequency': 'monthly',
         'units': 'C/C'},
        'metric': {'datasets': "GISS-E2-R_r3i1p1; ERA-Interim's ts & HadISST's sst & Tropflux's sst; 's ",
         'method': 'The metric is the statistical value between the model and the observations',
         'name': 'EnsoSstLonRmse',
         'units': 'C/C'}},
       'EnsoSstSkew': {'diagnostic': {'ERA-Interim': {'keyerror': None,
          'name': 'ERA-Interim',
          'nyears': 40,
          'time_period': ['1979-1-16 12:0:0.0', '2019-3-16 12:0:0.0']},
         'GISS-E2-R_r3i1p1': {'keyerror': None,
          'name': 'GISS-E2-R_r3i1p1',
          'nyears': 156,
          'time_period': ['1850-1-16 12:0:0.0', '2005-12-16 12:0:0.0']},
         'HadISST': {'keyerror': None,
          'name': 'HadISST',
          'nyears': 151,
          'time_period': ['1870-1-16 11:59:59.5', '2020-10-16 12:0:0.0']},
         'Tropflux': {'keyerror': None,
          'name': 'Tropflux',
          'nyears': 40,
          'time_period': ['1979-1-15 0:0:0.0', '2018-12-15 12:0:0.0']},
         'method': 'Standard deviation of nino3.4 sstA, time series are linearly detrended',
         'name': 'ENSO skewness',
         'ref': 'Using CDAT regression calculation',
         'time_frequency': 'monthly',
         'units': 'C'},
        'metric': {'datasets': "GISS-E2-R_r3i1p1; ERA-Interim's ts & HadISST's sst & Tropflux's sst; 's ",
         'method': 'The metric is the absolute value of the relative difference between model and observations values (M = 100 * abs[[model-obs] / obs])',
         'name': 'EnsoSstSkew',
         'units': '%'}},
       'EnsoSstTsRmse': {'diagnostic': {'ERA-Interim': {'name': 'ERA-Interim',
          'nyears': 40,
          'time_period': ['1979-1-16 12:0:0.0', '2019-3-16 12:0:0.0']},
         'GISS-E2-R_r3i1p1': {'keyerror': None,
          'name': 'GISS-E2-R_r3i1p1',
          'nyears': 156,
          'time_period': ['1850-1-16 12:0:0.0', '2005-12-16 12:0:0.0']},
         'HadISST': {'name': 'HadISST',
          'nyears': 151,
          'time_period': ['1870-1-16 11:59:59.5', '2020-10-16 12:0:0.0']},
         'Tropflux': {'name': 'Tropflux',
          'nyears': 40,
          'time_period': ['1979-1-15 0:0:0.0', '2018-12-15 12:0:0.0']},
         'method': 'nino3.4 SSTA during DEC regressed against nino3.4 SSTA during 6 years (centered on ENSO), time series are linearly detrended, smoothing using a triangle shaped window of 5 points',
         'name': 'ENSO life cyle SSTA pattern',
         'ref': 'Using CDAT regridding and rms (uncentered and biased) calculation',
         'time_frequency': 'monthly',
         'units': 'C/C'},
        'metric': {'datasets': "GISS-E2-R_r3i1p1; ERA-Interim's ts & HadISST's sst & Tropflux's sst; 's ",
         'method': 'The metric is the statistical value between the model and the observations',
         'name': 'EnsoSstTsRmse',
         'units': 'C/C'}},
       'SeasonalPrLatRmse': {'diagnostic': {'ERA-Interim': {'name': 'ERA-Interim',
          'nyears': 40,
          'time_period': ['1979-1-16 12:0:0.0', '2019-3-16 12:0:0.0']},
         'GISS-E2-R_r3i1p1': {'keyerror': None,
          'name': 'GISS-E2-R_r3i1p1',
          'nyears': 156,
          'time_period': ['1850-1-16 12:0:0.0', '2005-12-16 12:0:0.0']},
         'GPCPv2.3': {'name': 'GPCPv2.3',
          'nyears': 41,
          'time_period': ['1979-1-1 0:0:0.0', '2019-7-1 0:0:0.0']},
         'method': 'Meridional root mean square error of nino3_LatExt climatological pr STD, time series are linearly detrended, observations and model regridded to generic_1x1deg',
         'name': 'pr meridional seasonality RMSE',
         'ref': 'Using CDAT regridding and rms (uncentered and biased) calculation',
         'time_frequency': 'monthly',
         'units': 'mm/day'},
        'metric': {'datasets': "GISS-E2-R_r3i1p1; ERA-Interim's pr & GPCPv2.3's precip; 's ",
         'method': 'The metric is the statistical value between the model and the observations',
         'name': 'SeasonalPrLatRmse',
         'units': 'mm/day'}},
       'SeasonalPrLonRmse': {'diagnostic': {'ERA-Interim': {'name': 'ERA-Interim',
          'nyears': 40,
          'time_period': ['1979-1-16 12:0:0.0', '2019-3-16 12:0:0.0']},
         'GISS-E2-R_r3i1p1': {'keyerror': None,
          'name': 'GISS-E2-R_r3i1p1',
          'nyears': 156,
          'time_period': ['1850-1-16 12:0:0.0', '2005-12-16 12:0:0.0']},
         'GPCPv2.3': {'name': 'GPCPv2.3',
          'nyears': 41,
          'time_period': ['1979-1-1 0:0:0.0', '2019-7-1 0:0:0.0']},
         'method': 'Zonal root mean square error of equatorial_pacific climatological pr STD, time series are linearly detrended, observations and model regridded to generic_1x1deg',
         'name': 'pr zonal seasonality RMSE',
         'ref': 'Using CDAT regridding and rms (uncentered and biased) calculation',
         'time_frequency': 'monthly',
         'units': 'mm/day'},
        'metric': {'datasets': "GISS-E2-R_r3i1p1; ERA-Interim's pr & GPCPv2.3's precip; 's ",
         'method': 'The metric is the statistical value between the model and the observations',
         'name': 'SeasonalPrLonRmse',
         'units': 'mm/day'}},
       'SeasonalSstLonRmse': {'diagnostic': {'ERA-Interim': {'name': 'ERA-Interim',
          'nyears': 40,
          'time_period': ['1979-1-16 12:0:0.0', '2019-3-16 12:0:0.0']},
         'GISS-E2-R_r3i1p1': {'keyerror': None,
          'name': 'GISS-E2-R_r3i1p1',
          'nyears': 156,
          'time_period': ['1850-1-16 12:0:0.0', '2005-12-16 12:0:0.0']},
         'HadISST': {'name': 'HadISST',
          'nyears': 151,
          'time_period': ['1870-1-16 11:59:59.5', '2020-10-16 12:0:0.0']},
         'Tropflux': {'name': 'Tropflux',
          'nyears': 40,
          'time_period': ['1979-1-15 0:0:0.0', '2018-12-15 12:0:0.0']},
         'method': 'Zonal root mean square error of equatorial_pacific climatological sst STD, time series are linearly detrended, observations and model regridded to generic_1x1deg',
         'name': 'sst zonal seasonality RMSE',
         'ref': 'Using CDAT regridding and rms (uncentered and biased) calculation',
         'time_frequency': 'monthly',
         'units': 'C'},
        'metric': {'datasets': "GISS-E2-R_r3i1p1; ERA-Interim's ts & HadISST's sst & Tropflux's sst; 's ",
         'method': 'The metric is the statistical value between the model and the observations',
         'name': 'SeasonalSstLonRmse',
         'units': 'C'}},
       'SeasonalTauxLonRmse': {'diagnostic': {'ERA-Interim': {'name': 'ERA-Interim',
          'nyears': 40,
          'time_period': ['1979-1-16 12:0:0.0', '2019-3-16 12:0:0.0']},
         'GISS-E2-R_r3i1p1': {'keyerror': None,
          'name': 'GISS-E2-R_r3i1p1',
          'nyears': 156,
          'time_period': ['1850-1-16 12:0:0.0', '2005-12-16 12:0:0.0']},
         'Tropflux': {'name': 'Tropflux',
          'nyears': 40,
          'time_period': ['1979-1-15 0:0:0.0', '2018-12-15 12:0:0.0']},
         'method': 'Zonal root mean square error of equatorial_pacific climatological taux STD, time series are linearly detrended, observations and model regridded to generic_1x1deg',
         'name': 'taux zonal seasonality RMSE',
         'ref': 'Using CDAT regridding and rms (uncentered and biased) calculation',
         'time_frequency': 'monthly',
         'units': '1e-3 N/m2'},
        'metric': {'datasets': "GISS-E2-R_r3i1p1; ERA-Interim's tauu & Tropflux's taux; 's ",
         'method': 'The metric is the statistical value between the model and the observations',
         'name': 'SeasonalTauxLonRmse',
         'units': '1e-3 N/m2'}}},
      'name': 'Metrics Collection for ENSO performance'},
     'value': {'BiasPrLatRmse': {'diagnostic': {'ERA-Interim': {'value': None,
         'value_error': None},
        'GISS-E2-R_r3i1p1': {'value': None, 'value_error': None},
        'GPCPv2.3': {'value': None, 'value_error': None}},
       'metric': {'ERA-Interim': {'value': 2.0244041948968987,
         'value_error': None},
        'GPCPv2.3': {'value': 2.8245510417703894, 'value_error': None}}},
      'BiasPrLonRmse': {'diagnostic': {'ERA-Interim': {'value': None,
         'value_error': None},
        'GISS-E2-R_r3i1p1': {'value': None, 'value_error': None},
        'GPCPv2.3': {'value': None, 'value_error': None}},
       'metric': {'ERA-Interim': {'value': 1.6220952060995353,
         'value_error': None},
        'GPCPv2.3': {'value': 2.0974903650183356, 'value_error': None}}},
      'BiasSstLonRmse': {'diagnostic': {'ERA-Interim': {'value': None,
         'value_error': None},
        'GISS-E2-R_r3i1p1': {'value': None, 'value_error': None},
        'HadISST': {'value': None, 'value_error': None},
        'Tropflux': {'value': None, 'value_error': None}},
       'metric': {'ERA-Interim': {'value': 0.9912860912166486,
         'value_error': None},
        'HadISST': {'value': 1.1641041337713631, 'value_error': None},
        'Tropflux': {'value': 0.95774685760522, 'value_error': None}}},
      'BiasTauxLonRmse': {'diagnostic': {'ERA-Interim': {'value': None,
         'value_error': None},
        'GISS-E2-R_r3i1p1': {'value': None, 'value_error': None},
        'Tropflux': {'value': None, 'value_error': None}},
       'metric': {'ERA-Interim': {'value': 17.882582615548607,
         'value_error': None},
        'Tropflux': {'value': 17.49830388119988, 'value_error': None}}},
      'EnsoAmpl': {'diagnostic': {'ERA-Interim': {'value': 0.8989844997845644,
         'value_error': 0.14214193002531866},
        'GISS-E2-R_r3i1p1': {'value': 0.5159839753280187,
         'value_error': 0.04131178068114263},
        'HadISST': {'value': 0.7665787872085695,
         'value_error': 0.06238329697691264},
        'Tropflux': {'value': 0.9039789553693535,
         'value_error': 0.14293162279134272}},
       'metric': {'ERA-Interim': {'value': 42.603684996607754,
         'value_error': 13.670537213914935},
        'HadISST': {'value': 32.69002691726838,
         'value_error': 10.866718786696401},
        'Tropflux': {'value': 42.92079785007886,
         'value_error': 13.595007921413643}}},
      'EnsoDuration': {'diagnostic': {'ERA-Interim': {'value': 13.0,
         'value_error': None},
        'GISS-E2-R_r3i1p1': {'value': 12.0, 'value_error': None},
        'HadISST': {'value': 13.0, 'value_error': None},
        'Tropflux': {'value': 13.0, 'value_error': None}},
       'metric': {'ERA-Interim': {'value': 7.6923076923076925,
         'value_error': None},
        'HadISST': {'value': 7.6923076923076925, 'value_error': None},
        'Tropflux': {'value': 7.6923076923076925, 'value_error': None}}},
      'EnsoSeasonality': {'diagnostic': {'ERA-Interim': {'value': 2.0466846866656914,
         'value_error': 0.6513411033995022},
        'GISS-E2-R_r3i1p1': {'value': 1.7340110806454694,
         'value_error': 0.27811111816121664},
        'HadISST': {'value': 1.6639865947361325,
         'value_error': 0.2712772451657809},
        'Tropflux': {'value': 2.0532132553583624,
         'value_error': 0.6534187683977347}},
       'metric': {'ERA-Interim': {'value': 15.277077512589734,
         'value_error': 40.55076689292611},
        'HadISST': {'value': 4.208236179957989,
         'value_error': 33.70245603420784},
        'Tropflux': {'value': 15.54646960708328,
         'value_error': 40.42182828096748}}},
      'EnsoSstDiversity_2': {'diagnostic': {'ERA-Interim': {'value': 33.25,
         'value_error': None},
        'GISS-E2-R_r3i1p1': {'value': 21.25, 'value_error': None},
        'HadISST': {'value': 49.0, 'value_error': None},
        'Tropflux': {'value': 32.0, 'value_error': None}},
       'metric': {'ERA-Interim': {'value': 36.09022556390977,
         'value_error': None},
        'HadISST': {'value': 56.63265306122449, 'value_error': None},
        'Tropflux': {'value': 33.59375, 'value_error': None}}},
      'EnsoSstLonRmse': {'diagnostic': {'ERA-Interim': {'value': None,
         'value_error': None},
        'GISS-E2-R_r3i1p1': {'value': None, 'value_error': None},
        'HadISST': {'value': None, 'value_error': None},
        'Tropflux': {'value': None, 'value_error': None}},
       'metric': {'ERA-Interim': {'value': 0.12469552478549827,
         'value_error': None},
        'HadISST': {'value': 0.13460562359791128, 'value_error': None},
        'Tropflux': {'value': 0.12330886136215513, 'value_error': None}}},
      'EnsoSstSkew': {'diagnostic': {'ERA-Interim': {'value': 0.39098111106809963,
         'value_error': 0.061819541653923164},
        'GISS-E2-R_r3i1p1': {'value': -0.15546579742050537,
         'value_error': -0.012447225560390601},
        'HadISST': {'value': 0.38989908235027515,
         'value_error': 0.03172953733021198},
        'Tropflux': {'value': 0.39744741059612115,
         'value_error': 0.06284195338099416}},
       'metric': {'ERA-Interim': {'value': 139.7629944310601,
         'value_error': -9.470668893540857},
        'HadISST': {'value': 139.87334273355353,
         'value_error': -6.437268991899982},
        'Tropflux': {'value': 139.11606750370478,
         'value_error': -9.3165851577719}}},
      'EnsoSstTsRmse': {'diagnostic': {'ERA-Interim': {'value': None,
         'value_error': None},
        'GISS-E2-R_r3i1p1': {'value': None, 'value_error': None},
        'HadISST': {'value': None, 'value_error': None},
        'Tropflux': {'value': None, 'value_error': None}},
       'metric': {'ERA-Interim': {'value': 0.21102546989844995,
         'value_error': None},
        'HadISST': {'value': 0.19293695842670064, 'value_error': None},
        'Tropflux': {'value': 0.20958073219155607, 'value_error': None}}},
      'SeasonalPrLatRmse': {'diagnostic': {'ERA-Interim': {'value': None,
         'value_error': None},
        'GISS-E2-R_r3i1p1': {'value': None, 'value_error': None},
        'GPCPv2.3': {'value': None, 'value_error': None}},
       'metric': {'ERA-Interim': {'value': 0.687848530273943,
         'value_error': None},
        'GPCPv2.3': {'value': 0.855704645250671, 'value_error': None}}},
      'SeasonalPrLonRmse': {'diagnostic': {'ERA-Interim': {'value': None,
         'value_error': None},
        'GISS-E2-R_r3i1p1': {'value': None, 'value_error': None},
        'GPCPv2.3': {'value': None, 'value_error': None}},
       'metric': {'ERA-Interim': {'value': 0.2990622941687365,
         'value_error': None},
        'GPCPv2.3': {'value': 0.5116448912515735, 'value_error': None}}},
      'SeasonalSstLonRmse': {'diagnostic': {'ERA-Interim': {'value': None,
         'value_error': None},
        'GISS-E2-R_r3i1p1': {'value': None, 'value_error': None},
        'HadISST': {'value': None, 'value_error': None},
        'Tropflux': {'value': None, 'value_error': None}},
       'metric': {'ERA-Interim': {'value': 0.28116055440192705,
         'value_error': None},
        'HadISST': {'value': 0.28303076291697227, 'value_error': None},
        'Tropflux': {'value': 0.2888871255385333, 'value_error': None}}},
      'SeasonalTauxLonRmse': {'diagnostic': {'ERA-Interim': {'value': None,
         'value_error': None},
        'GISS-E2-R_r3i1p1': {'value': None, 'value_error': None},
        'Tropflux': {'value': None, 'value_error': None}},
       'metric': {'ERA-Interim': {'value': 1.9681409045311822,
         'value_error': None},
        'Tropflux': {'value': 2.109646693245939, 'value_error': None}}}}},
    'r3i1p2': {'metadata': {'description_of_the_collection': 'Describe which science question this collection is about',
      'metrics': {'BiasPrLatRmse': {'diagnostic': {'ERA-Interim': {'name': 'ERA-Interim',
          'nyears': 40,
          'time_period': ['1979-1-16 12:0:0.0', '2019-3-16 12:0:0.0']},
         'GISS-E2-R_r3i1p2': {'keyerror': None,
          'name': 'GISS-E2-R_r3i1p2',
          'nyears': 156,
          'time_period': ['1850-1-16 12:0:0.0', '2005-12-16 12:0:0.0']},
         'GPCPv2.3': {'name': 'GPCPv2.3',
          'nyears': 41,
          'time_period': ['1979-1-1 0:0:0.0', '2019-7-1 0:0:0.0']},
         'method': 'Meridional root mean square error of nino3_LatExt pr, time series are linearly detrended, observations and model regridded to generic_1x1deg',
         'name': 'pr Meridional RMSE',
         'ref': 'Using CDAT regridding and rms (uncentered and biased) calculation',
         'time_frequency': 'monthly',
         'units': 'mm/day'},
        'metric': {'datasets': "GISS-E2-R_r3i1p2; ERA-Interim's pr & GPCPv2.3's precip; 's ",
         'method': 'The metric is the statistical value between the model and the observations',
         'name': 'BiasPrLatRmse',
         'units': 'mm/day'}},
       'BiasPrLonRmse': {'diagnostic': {'ERA-Interim': {'name': 'ERA-Interim',
          'nyears': 40,
          'time_period': ['1979-1-16 12:0:0.0', '2019-3-16 12:0:0.0']},
         'GISS-E2-R_r3i1p2': {'keyerror': None,
          'name': 'GISS-E2-R_r3i1p2',
          'nyears': 156,
          'time_period': ['1850-1-16 12:0:0.0', '2005-12-16 12:0:0.0']},
         'GPCPv2.3': {'name': 'GPCPv2.3',
          'nyears': 41,
          'time_period': ['1979-1-1 0:0:0.0', '2019-7-1 0:0:0.0']},
         'method': 'Zonal root mean square error of equatorial_pacific pr, time series are linearly detrended, observations and model regridded to generic_1x1deg',
         'name': 'pr Zonal RMSE',
         'ref': 'Using CDAT regridding and rms (uncentered and biased) calculation',
         'time_frequency': 'monthly',
         'units': 'mm/day'},
        'metric': {'datasets': "GISS-E2-R_r3i1p2; ERA-Interim's pr & GPCPv2.3's precip; 's ",
         'method': 'The metric is the statistical value between the model and the observations',
         'name': 'BiasPrLonRmse',
         'units': 'mm/day'}},
       'BiasSstLonRmse': {'diagnostic': {'ERA-Interim': {'name': 'ERA-Interim',
          'nyears': 40,
          'time_period': ['1979-1-16 12:0:0.0', '2019-3-16 12:0:0.0']},
         'GISS-E2-R_r3i1p2': {'keyerror': None,
          'name': 'GISS-E2-R_r3i1p2',
          'nyears': 156,
          'time_period': ['1850-1-16 12:0:0.0', '2005-12-16 12:0:0.0']},
         'HadISST': {'name': 'HadISST',
          'nyears': 151,
          'time_period': ['1870-1-16 11:59:59.5', '2020-10-16 12:0:0.0']},
         'Tropflux': {'name': 'Tropflux',
          'nyears': 40,
          'time_period': ['1979-1-15 0:0:0.0', '2018-12-15 12:0:0.0']},
         'method': 'Zonal root mean square error of equatorial_pacific sst, time series are linearly detrended, observations and model regridded to generic_1x1deg',
         'name': 'sst Zonal RMSE',
         'ref': 'Using CDAT regridding and rms (uncentered and biased) calculation',
         'time_frequency': 'monthly',
         'units': 'C'},
        'metric': {'datasets': "GISS-E2-R_r3i1p2; ERA-Interim's ts & HadISST's sst & Tropflux's sst; 's ",
         'method': 'The metric is the statistical value between the model and the observations',
         'name': 'BiasSstLonRmse',
         'units': 'C'}},
       'BiasTauxLonRmse': {'diagnostic': {'ERA-Interim': {'name': 'ERA-Interim',
          'nyears': 40,
          'time_period': ['1979-1-16 12:0:0.0', '2019-3-16 12:0:0.0']},
         'GISS-E2-R_r3i1p2': {'keyerror': None,
          'name': 'GISS-E2-R_r3i1p2',
          'nyears': 156,
          'time_period': ['1850-1-16 12:0:0.0', '2005-12-16 12:0:0.0']},
         'Tropflux': {'name': 'Tropflux',
          'nyears': 40,
          'time_period': ['1979-1-15 0:0:0.0', '2018-12-15 12:0:0.0']},
         'method': 'Zonal root mean square error of equatorial_pacific taux, time series are linearly detrended, observations and model regridded to generic_1x1deg',
         'name': 'taux Zonal RMSE',
         'ref': 'Using CDAT regridding and rms (uncentered and biased) calculation',
         'time_frequency': 'monthly',
         'units': '1e-3 N/m2'},
        'metric': {'datasets': "GISS-E2-R_r3i1p2; ERA-Interim's tauu & Tropflux's taux; 's ",
         'method': 'The metric is the statistical value between the model and the observations',
         'name': 'BiasTauxLonRmse',
         'units': '1e-3 N/m2'}},
       'EnsoAmpl': {'diagnostic': {'ERA-Interim': {'keyerror': None,
          'name': 'ERA-Interim',
          'nyears': 40,
          'time_period': ['1979-1-16 12:0:0.0', '2019-3-16 12:0:0.0']},
         'GISS-E2-R_r3i1p2': {'keyerror': None,
          'name': 'GISS-E2-R_r3i1p2',
          'nyears': 156,
          'time_period': ['1850-1-16 12:0:0.0', '2005-12-16 12:0:0.0']},
         'HadISST': {'keyerror': None,
          'name': 'HadISST',
          'nyears': 151,
          'time_period': ['1870-1-16 11:59:59.5', '2020-10-16 12:0:0.0']},
         'Tropflux': {'keyerror': None,
          'name': 'Tropflux',
          'nyears': 40,
          'time_period': ['1979-1-15 0:0:0.0', '2018-12-15 12:0:0.0']},
         'method': 'Standard deviation of nino3.4 sstA, time series are linearly detrended',
         'name': 'ENSO amplitude',
         'ref': 'Using CDAT regression calculation',
         'time_frequency': 'monthly',
         'units': 'C'},
        'metric': {'datasets': "GISS-E2-R_r3i1p2; ERA-Interim's ts & HadISST's sst & Tropflux's sst; 's ",
         'method': 'The metric is the absolute value of the relative difference between model and observations values (M = 100 * abs[[model-obs] / obs])',
         'name': 'EnsoAmpl',
         'units': '%'}},
       'EnsoDuration': {'diagnostic': {'ERA-Interim': {'keyerror': None,
          'name': 'ERA-Interim',
          'nyears': 40,
          'time_period': ['1979-1-16 12:0:0.0', '2019-3-16 12:0:0.0']},
         'GISS-E2-R_r3i1p2': {'keyerror': None,
          'name': 'GISS-E2-R_r3i1p2',
          'nyears': 156,
          'time_period': ['1850-1-16 12:0:0.0', '2005-12-16 12:0:0.0']},
         'HadISST': {'keyerror': None,
          'name': 'HadISST',
          'nyears': 151,
          'time_period': ['1870-1-16 11:59:59.5', '2020-10-16 12:0:0.0']},
         'Tropflux': {'keyerror': None,
          'name': 'Tropflux',
          'nyears': 40,
          'time_period': ['1979-1-15 0:0:0.0', '2018-12-15 12:0:0.0']},
         'method': 'nino3.4 SSTA during DEC regressed against nino3.4 SSTA during 6 years (centered on ENSO), the duration is the number of consecutive months during which the regression is above 0.25, time series are linearly detrended, smoothing using a triangle shaped window of 5 points',
         'name': 'ENSO Duration based on life cyle SSTA pattern',
         'ref': 'Using CDAT',
         'time_frequency': 'monthly',
         'units': 'months'},
        'metric': {'datasets': "GISS-E2-R_r3i1p2; ERA-Interim's ts & HadISST's sst & Tropflux's sst; 's ",
         'method': 'The metric is the absolute value of the relative difference between model and observations values (M = 100 * abs[[model-obs] / obs])',
         'name': 'EnsoDuration',
         'units': '%'}},
       'EnsoSeasonality': {'diagnostic': {'ERA-Interim': {'keyerror': None,
          'name': 'ERA-Interim',
          'nyears': 40,
          'time_period': ['1979-1-16 12:0:0.0', '2019-3-16 12:0:0.0']},
         'GISS-E2-R_r3i1p2': {'keyerror': None,
          'name': 'GISS-E2-R_r3i1p2',
          'nyears': 156,
          'time_period': ['1850-1-16 12:0:0.0', '2005-12-16 12:0:0.0']},
         'HadISST': {'keyerror': None,
          'name': 'HadISST',
          'nyears': 151,
          'time_period': ['1870-1-16 11:59:59.5', '2020-10-16 12:0:0.0']},
         'Tropflux': {'keyerror': None,
          'name': 'Tropflux',
          'nyears': 40,
          'time_period': ['1979-1-15 0:0:0.0', '2018-12-15 12:0:0.0']},
         'method': 'Ratio between NDJ and MAM standard deviation nino3.4 sstA, time series are linearly detrended',
         'name': 'ENSO seasonality',
         'ref': 'Using CDAT std dev calculation',
         'time_frequency': 'monthly',
         'units': 'C/C'},
        'metric': {'datasets': "GISS-E2-R_r3i1p2; ERA-Interim's ts & HadISST's sst & Tropflux's sst; 's ",
         'method': 'The metric is the absolute value of the relative difference between model and observations values (M = 100 * abs[[model-obs] / obs])',
         'name': 'EnsoSeasonality',
         'units': '%'}},
       'EnsoSstDiversity_2': {'diagnostic': {'ERA-Interim': {'keyerror': None,
          'name': 'ERA-Interim',
          'nyears': 40,
          'time_period': ['1979-1-16 12:0:0.0', '2019-3-16 12:0:0.0']},
         'GISS-E2-R_r3i1p2': {'keyerror': None,
          'name': 'GISS-E2-R_r3i1p2',
          'nyears': 156,
          'time_period': ['1850-1-16 12:0:0.0', '2005-12-16 12:0:0.0']},
         'HadISST': {'keyerror': None,
          'name': 'HadISST',
          'nyears': 151,
          'time_period': ['1870-1-16 11:59:59.5', '2020-10-16 12:0:0.0']},
         'Tropflux': {'keyerror': None,
          'name': 'Tropflux',
          'nyears': 40,
          'time_period': ['1979-1-15 0:0:0.0', '2018-12-15 12:0:0.0']},
         'method': 'Nino (Nina) events = nino3.4 sstA > 0.75 (< -0.75) during DEC, zonal SSTA (meridional averaged [-5.0 ; 5.0]), the zonal SSTA maximum (minimum) is located for each event, the diversity is the interquartile range (IQR = Q3 - Q1), time series are linearly detrended, smoothing using a triangle shaped window of 5 points',
         'name': 'ENSO Diversity (interquartile range)',
         'ref': 'Using CDAT regridding',
         'time_frequency': 'monthly',
         'units': 'long'},
        'metric': {'datasets': "GISS-E2-R_r3i1p2; ERA-Interim's ts & HadISST's sst & Tropflux's sst; 's ",
         'method': 'The metric is the absolute value of the relative difference between model and observations values (M = 100 * abs[[model-obs] / obs])',
         'name': 'EnsoSstDiversity',
         'units': '%'}},
       'EnsoSstLonRmse': {'diagnostic': {'ERA-Interim': {'name': 'ERA-Interim',
          'nyears': 40,
          'time_period': ['1979-1-16 12:0:0.0', '2019-3-16 12:0:0.0']},
         'GISS-E2-R_r3i1p2': {'keyerror': None,
          'name': 'GISS-E2-R_r3i1p2',
          'nyears': 156,
          'time_period': ['1850-1-16 12:0:0.0', '2005-12-16 12:0:0.0']},
         'HadISST': {'name': 'HadISST',
          'nyears': 151,
          'time_period': ['1870-1-16 11:59:59.5', '2020-10-16 12:0:0.0']},
         'Tropflux': {'name': 'Tropflux',
          'nyears': 40,
          'time_period': ['1979-1-15 0:0:0.0', '2018-12-15 12:0:0.0']},
         'method': 'nino3.4 SSTA during DEC regressed against equatorial_pacific SSTA, time series are linearly detrended, smoothing using a triangle shaped window of 5 points, observations and model regridded to generic_1x1deg',
         'name': 'ENSO Zonal SSTA pattern',
         'ref': 'Using CDAT regridding and rms (uncentered and biased) calculation',
         'time_frequency': 'monthly',
         'units': 'C/C'},
        'metric': {'datasets': "GISS-E2-R_r3i1p2; ERA-Interim's ts & HadISST's sst & Tropflux's sst; 's ",
         'method': 'The metric is the statistical value between the model and the observations',
         'name': 'EnsoSstLonRmse',
         'units': 'C/C'}},
       'EnsoSstSkew': {'diagnostic': {'ERA-Interim': {'keyerror': None,
          'name': 'ERA-Interim',
          'nyears': 40,
          'time_period': ['1979-1-16 12:0:0.0', '2019-3-16 12:0:0.0']},
         'GISS-E2-R_r3i1p2': {'keyerror': None,
          'name': 'GISS-E2-R_r3i1p2',
          'nyears': 156,
          'time_period': ['1850-1-16 12:0:0.0', '2005-12-16 12:0:0.0']},
         'HadISST': {'keyerror': None,
          'name': 'HadISST',
          'nyears': 151,
          'time_period': ['1870-1-16 11:59:59.5', '2020-10-16 12:0:0.0']},
         'Tropflux': {'keyerror': None,
          'name': 'Tropflux',
          'nyears': 40,
          'time_period': ['1979-1-15 0:0:0.0', '2018-12-15 12:0:0.0']},
         'method': 'Standard deviation of nino3.4 sstA, time series are linearly detrended',
         'name': 'ENSO skewness',
         'ref': 'Using CDAT regression calculation',
         'time_frequency': 'monthly',
         'units': 'C'},
        'metric': {'datasets': "GISS-E2-R_r3i1p2; ERA-Interim's ts & HadISST's sst & Tropflux's sst; 's ",
         'method': 'The metric is the absolute value of the relative difference between model and observations values (M = 100 * abs[[model-obs] / obs])',
         'name': 'EnsoSstSkew',
         'units': '%'}},
       'EnsoSstTsRmse': {'diagnostic': {'ERA-Interim': {'name': 'ERA-Interim',
          'nyears': 40,
          'time_period': ['1979-1-16 12:0:0.0', '2019-3-16 12:0:0.0']},
         'GISS-E2-R_r3i1p2': {'keyerror': None,
          'name': 'GISS-E2-R_r3i1p2',
          'nyears': 156,
          'time_period': ['1850-1-16 12:0:0.0', '2005-12-16 12:0:0.0']},
         'HadISST': {'name': 'HadISST',
          'nyears': 151,
          'time_period': ['1870-1-16 11:59:59.5', '2020-10-16 12:0:0.0']},
         'Tropflux': {'name': 'Tropflux',
          'nyears': 40,
          'time_period': ['1979-1-15 0:0:0.0', '2018-12-15 12:0:0.0']},
         'method': 'nino3.4 SSTA during DEC regressed against nino3.4 SSTA during 6 years (centered on ENSO), time series are linearly detrended, smoothing using a triangle shaped window of 5 points',
         'name': 'ENSO life cyle SSTA pattern',
         'ref': 'Using CDAT regridding and rms (uncentered and biased) calculation',
         'time_frequency': 'monthly',
         'units': 'C/C'},
        'metric': {'datasets': "GISS-E2-R_r3i1p2; ERA-Interim's ts & HadISST's sst & Tropflux's sst; 's ",
         'method': 'The metric is the statistical value between the model and the observations',
         'name': 'EnsoSstTsRmse',
         'units': 'C/C'}},
       'SeasonalPrLatRmse': {'diagnostic': {'ERA-Interim': {'name': 'ERA-Interim',
          'nyears': 40,
          'time_period': ['1979-1-16 12:0:0.0', '2019-3-16 12:0:0.0']},
         'GISS-E2-R_r3i1p2': {'keyerror': None,
          'name': 'GISS-E2-R_r3i1p2',
          'nyears': 156,
          'time_period': ['1850-1-16 12:0:0.0', '2005-12-16 12:0:0.0']},
         'GPCPv2.3': {'name': 'GPCPv2.3',
          'nyears': 41,
          'time_period': ['1979-1-1 0:0:0.0', '2019-7-1 0:0:0.0']},
         'method': 'Meridional root mean square error of nino3_LatExt climatological pr STD, time series are linearly detrended, observations and model regridded to generic_1x1deg',
         'name': 'pr meridional seasonality RMSE',
         'ref': 'Using CDAT regridding and rms (uncentered and biased) calculation',
         'time_frequency': 'monthly',
         'units': 'mm/day'},
        'metric': {'datasets': "GISS-E2-R_r3i1p2; ERA-Interim's pr & GPCPv2.3's precip; 's ",
         'method': 'The metric is the statistical value between the model and the observations',
         'name': 'SeasonalPrLatRmse',
         'units': 'mm/day'}},
       'SeasonalPrLonRmse': {'diagnostic': {'ERA-Interim': {'name': 'ERA-Interim',
          'nyears': 40,
          'time_period': ['1979-1-16 12:0:0.0', '2019-3-16 12:0:0.0']},
         'GISS-E2-R_r3i1p2': {'keyerror': None,
          'name': 'GISS-E2-R_r3i1p2',
          'nyears': 156,
          'time_period': ['1850-1-16 12:0:0.0', '2005-12-16 12:0:0.0']},
         'GPCPv2.3': {'name': 'GPCPv2.3',
          'nyears': 41,
          'time_period': ['1979-1-1 0:0:0.0', '2019-7-1 0:0:0.0']},
         'method': 'Zonal root mean square error of equatorial_pacific climatological pr STD, time series are linearly detrended, observations and model regridded to generic_1x1deg',
         'name': 'pr zonal seasonality RMSE',
         'ref': 'Using CDAT regridding and rms (uncentered and biased) calculation',
         'time_frequency': 'monthly',
         'units': 'mm/day'},
        'metric': {'datasets': "GISS-E2-R_r3i1p2; ERA-Interim's pr & GPCPv2.3's precip; 's ",
         'method': 'The metric is the statistical value between the model and the observations',
         'name': 'SeasonalPrLonRmse',
         'units': 'mm/day'}},
       'SeasonalSstLonRmse': {'diagnostic': {'ERA-Interim': {'name': 'ERA-Interim',
          'nyears': 40,
          'time_period': ['1979-1-16 12:0:0.0', '2019-3-16 12:0:0.0']},
         'GISS-E2-R_r3i1p2': {'keyerror': None,
          'name': 'GISS-E2-R_r3i1p2',
          'nyears': 156,
          'time_period': ['1850-1-16 12:0:0.0', '2005-12-16 12:0:0.0']},
         'HadISST': {'name': 'HadISST',
          'nyears': 151,
          'time_period': ['1870-1-16 11:59:59.5', '2020-10-16 12:0:0.0']},
         'Tropflux': {'name': 'Tropflux',
          'nyears': 40,
          'time_period': ['1979-1-15 0:0:0.0', '2018-12-15 12:0:0.0']},
         'method': 'Zonal root mean square error of equatorial_pacific climatological sst STD, time series are linearly detrended, observations and model regridded to generic_1x1deg',
         'name': 'sst zonal seasonality RMSE',
         'ref': 'Using CDAT regridding and rms (uncentered and biased) calculation',
         'time_frequency': 'monthly',
         'units': 'C'},
        'metric': {'datasets': "GISS-E2-R_r3i1p2; ERA-Interim's ts & HadISST's sst & Tropflux's sst; 's ",
         'method': 'The metric is the statistical value between the model and the observations',
         'name': 'SeasonalSstLonRmse',
         'units': 'C'}},
       'SeasonalTauxLonRmse': {'diagnostic': {'ERA-Interim': {'name': 'ERA-Interim',
          'nyears': 40,
          'time_period': ['1979-1-16 12:0:0.0', '2019-3-16 12:0:0.0']},
         'GISS-E2-R_r3i1p2': {'keyerror': None,
          'name': 'GISS-E2-R_r3i1p2',
          'nyears': 156,
          'time_period': ['1850-1-16 12:0:0.0', '2005-12-16 12:0:0.0']},
         'Tropflux': {'name': 'Tropflux',
          'nyears': 40,
          'time_period': ['1979-1-15 0:0:0.0', '2018-12-15 12:0:0.0']},
         'method': 'Zonal root mean square error of equatorial_pacific climatological taux STD, time series are linearly detrended, observations and model regridded to generic_1x1deg',
         'name': 'taux zonal seasonality RMSE',
         'ref': 'Using CDAT regridding and rms (uncentered and biased) calculation',
         'time_frequency': 'monthly',
         'units': '1e-3 N/m2'},
        'metric': {'datasets': "GISS-E2-R_r3i1p2; ERA-Interim's tauu & Tropflux's taux; 's ",
         'method': 'The metric is the statistical value between the model and the observations',
         'name': 'SeasonalTauxLonRmse',
         'units': '1e-3 N/m2'}}},
      'name': 'Metrics Collection for ENSO performance'},
     'value': {'BiasPrLatRmse': {'diagnostic': {'ERA-Interim': {'value': None,
         'value_error': None},
        'GISS-E2-R_r3i1p2': {'value': None, 'value_error': None},
        'GPCPv2.3': {'value': None, 'value_error': None}},
       'metric': {'ERA-Interim': {'value': 2.1475898726649905,
         'value_error': None},
        'GPCPv2.3': {'value': 2.934752290513076, 'value_error': None}}},
      'BiasPrLonRmse': {'diagnostic': {'ERA-Interim': {'value': None,
         'value_error': None},
        'GISS-E2-R_r3i1p2': {'value': None, 'value_error': None},
        'GPCPv2.3': {'value': None, 'value_error': None}},
       'metric': {'ERA-Interim': {'value': 1.751458702890003,
         'value_error': None},
        'GPCPv2.3': {'value': 2.2214212762455947, 'value_error': None}}},
      'BiasSstLonRmse': {'diagnostic': {'ERA-Interim': {'value': None,
         'value_error': None},
        'GISS-E2-R_r3i1p2': {'value': None, 'value_error': None},
        'HadISST': {'value': None, 'value_error': None},
        'Tropflux': {'value': None, 'value_error': None}},
       'metric': {'ERA-Interim': {'value': 1.0871020235114779,
         'value_error': None},
        'HadISST': {'value': 1.265811608330247, 'value_error': None},
        'Tropflux': {'value': 1.0513814006661315, 'value_error': None}}},
      'BiasTauxLonRmse': {'diagnostic': {'ERA-Interim': {'value': None,
         'value_error': None},
        'GISS-E2-R_r3i1p2': {'value': None, 'value_error': None},
        'Tropflux': {'value': None, 'value_error': None}},
       'metric': {'ERA-Interim': {'value': 17.97996620519939,
         'value_error': None},
        'Tropflux': {'value': 17.595007961117314, 'value_error': None}}},
      'EnsoAmpl': {'diagnostic': {'ERA-Interim': {'value': 0.8989844997845644,
         'value_error': 0.14214193002531866},
        'GISS-E2-R_r3i1p2': {'value': 0.5713430352617417,
         'value_error': 0.045744052712928744},
        'HadISST': {'value': 0.7665787872085695,
         'value_error': 0.06238329697691264},
        'Tropflux': {'value': 0.9039789553693535,
         'value_error': 0.14293162279134272}},
       'metric': {'ERA-Interim': {'value': 36.4457301100675,
         'value_error': 15.137226346014836},
        'HadISST': {'value': 25.468452193643653,
         'value_error': 12.03259091715009},
        'Tropflux': {'value': 36.79686547257079,
         'value_error': 15.053593641721205}}},
      'EnsoDuration': {'diagnostic': {'ERA-Interim': {'value': 13.0,
         'value_error': None},
        'GISS-E2-R_r3i1p2': {'value': 12.0, 'value_error': None},
        'HadISST': {'value': 13.0, 'value_error': None},
        'Tropflux': {'value': 13.0, 'value_error': None}},
       'metric': {'ERA-Interim': {'value': 7.6923076923076925,
         'value_error': None},
        'HadISST': {'value': 7.6923076923076925, 'value_error': None},
        'Tropflux': {'value': 7.6923076923076925, 'value_error': None}}},
      'EnsoSeasonality': {'diagnostic': {'ERA-Interim': {'value': 2.0466846866656914,
         'value_error': 0.6513411033995022},
        'GISS-E2-R_r3i1p2': {'value': 1.7440102252352971,
         'value_error': 0.2797148410633203},
        'HadISST': {'value': 1.6639865947361325,
         'value_error': 0.2712772451657809},
        'Tropflux': {'value': 2.0532132553583624,
         'value_error': 0.6534187683977347}},
       'metric': {'ERA-Interim': {'value': 14.788524260837132,
         'value_error': 40.78460218147561},
        'HadISST': {'value': 4.809151152558077,
         'value_error': 33.89680065788401},
        'Tropflux': {'value': 15.059469800135192,
         'value_error': 40.65492004726469}}},
      'EnsoSstDiversity_2': {'diagnostic': {'ERA-Interim': {'value': 33.25,
         'value_error': None},
        'GISS-E2-R_r3i1p2': {'value': 15.0, 'value_error': None},
        'HadISST': {'value': 49.0, 'value_error': None},
        'Tropflux': {'value': 32.0, 'value_error': None}},
       'metric': {'ERA-Interim': {'value': 54.88721804511278,
         'value_error': None},
        'HadISST': {'value': 69.38775510204081, 'value_error': None},
        'Tropflux': {'value': 53.125, 'value_error': None}}},
      'EnsoSstLonRmse': {'diagnostic': {'ERA-Interim': {'value': None,
         'value_error': None},
        'GISS-E2-R_r3i1p2': {'value': None, 'value_error': None},
        'HadISST': {'value': None, 'value_error': None},
        'Tropflux': {'value': None, 'value_error': None}},
       'metric': {'ERA-Interim': {'value': 0.08890059905814722,
         'value_error': None},
        'HadISST': {'value': 0.10056336690436711, 'value_error': None},
        'Tropflux': {'value': 0.08643010495323723, 'value_error': None}}},
      'EnsoSstSkew': {'diagnostic': {'ERA-Interim': {'value': 0.39098111106809963,
         'value_error': 0.061819541653923164},
        'GISS-E2-R_r3i1p2': {'value': -0.04116110371167336,
         'value_error': -0.003295525772964987},
        'HadISST': {'value': 0.38989908235027515,
         'value_error': 0.03172953733021198},
        'Tropflux': {'value': 0.39744741059612115,
         'value_error': 0.06284195338099416}},
       'metric': {'ERA-Interim': {'value': 110.5276450821953,
         'value_error': -2.5074530283439547},
        'HadISST': {'value': 110.55686088399031,
         'value_error': -1.7043304764896559},
        'Tropflux': {'value': 110.35636479551769,
         'value_error': -2.466657839090116}}},
      'EnsoSstTsRmse': {'diagnostic': {'ERA-Interim': {'value': None,
         'value_error': None},
        'GISS-E2-R_r3i1p2': {'value': None, 'value_error': None},
        'HadISST': {'value': None, 'value_error': None},
        'Tropflux': {'value': None, 'value_error': None}},
       'metric': {'ERA-Interim': {'value': 0.16160619761453474,
         'value_error': None},
        'HadISST': {'value': 0.15494591283252934, 'value_error': None},
        'Tropflux': {'value': 0.1634705629062798, 'value_error': None}}},
      'SeasonalPrLatRmse': {'diagnostic': {'ERA-Interim': {'value': None,
         'value_error': None},
        'GISS-E2-R_r3i1p2': {'value': None, 'value_error': None},
        'GPCPv2.3': {'value': None, 'value_error': None}},
       'metric': {'ERA-Interim': {'value': 0.695994405999954,
         'value_error': None},
        'GPCPv2.3': {'value': 0.8786159676057957, 'value_error': None}}},
      'SeasonalPrLonRmse': {'diagnostic': {'ERA-Interim': {'value': None,
         'value_error': None},
        'GISS-E2-R_r3i1p2': {'value': None, 'value_error': None},
        'GPCPv2.3': {'value': None, 'value_error': None}},
       'metric': {'ERA-Interim': {'value': 0.2509432779816907,
         'value_error': None},
        'GPCPv2.3': {'value': 0.4980579337247631, 'value_error': None}}},
      'SeasonalSstLonRmse': {'diagnostic': {'ERA-Interim': {'value': None,
         'value_error': None},
        'GISS-E2-R_r3i1p2': {'value': None, 'value_error': None},
        'HadISST': {'value': None, 'value_error': None},
        'Tropflux': {'value': None, 'value_error': None}},
       'metric': {'ERA-Interim': {'value': 0.2752350954566879,
         'value_error': None},
        'HadISST': {'value': 0.2760413062224754, 'value_error': None},
        'Tropflux': {'value': 0.2833233255934895, 'value_error': None}}},
      'SeasonalTauxLonRmse': {'diagnostic': {'ERA-Interim': {'value': None,
         'value_error': None},
        'GISS-E2-R_r3i1p2': {'value': None, 'value_error': None},
        'Tropflux': {'value': None, 'value_error': None}},
       'metric': {'ERA-Interim': {'value': 1.9779928770517161,
         'value_error': None},
        'Tropflux': {'value': 2.1243224173398723, 'value_error': None}}}}},
    'r3i1p3': {'metadata': {'description_of_the_collection': 'Describe which science question this collection is about',
      'metrics': {'BiasPrLatRmse': {'diagnostic': {'ERA-Interim': {'name': 'ERA-Interim',
          'nyears': 40,
          'time_period': ['1979-1-16 12:0:0.0', '2019-3-16 12:0:0.0']},
         'GISS-E2-R_r3i1p3': {'keyerror': None,
          'name': 'GISS-E2-R_r3i1p3',
          'nyears': 156,
          'time_period': ['1850-1-16 12:0:0.0', '2005-12-16 12:0:0.0']},
         'GPCPv2.3': {'name': 'GPCPv2.3',
          'nyears': 41,
          'time_period': ['1979-1-1 0:0:0.0', '2019-7-1 0:0:0.0']},
         'method': 'Meridional root mean square error of nino3_LatExt pr, time series are linearly detrended, observations and model regridded to generic_1x1deg',
         'name': 'pr Meridional RMSE',
         'ref': 'Using CDAT regridding and rms (uncentered and biased) calculation',
         'time_frequency': 'monthly',
         'units': 'mm/day'},
        'metric': {'datasets': "GISS-E2-R_r3i1p3; ERA-Interim's pr & GPCPv2.3's precip; 's ",
         'method': 'The metric is the statistical value between the model and the observations',
         'name': 'BiasPrLatRmse',
         'units': 'mm/day'}},
       'BiasPrLonRmse': {'diagnostic': {'ERA-Interim': {'name': 'ERA-Interim',
          'nyears': 40,
          'time_period': ['1979-1-16 12:0:0.0', '2019-3-16 12:0:0.0']},
         'GISS-E2-R_r3i1p3': {'keyerror': None,
          'name': 'GISS-E2-R_r3i1p3',
          'nyears': 156,
          'time_period': ['1850-1-16 12:0:0.0', '2005-12-16 12:0:0.0']},
         'GPCPv2.3': {'name': 'GPCPv2.3',
          'nyears': 41,
          'time_period': ['1979-1-1 0:0:0.0', '2019-7-1 0:0:0.0']},
         'method': 'Zonal root mean square error of equatorial_pacific pr, time series are linearly detrended, observations and model regridded to generic_1x1deg',
         'name': 'pr Zonal RMSE',
         'ref': 'Using CDAT regridding and rms (uncentered and biased) calculation',
         'time_frequency': 'monthly',
         'units': 'mm/day'},
        'metric': {'datasets': "GISS-E2-R_r3i1p3; ERA-Interim's pr & GPCPv2.3's precip; 's ",
         'method': 'The metric is the statistical value between the model and the observations',
         'name': 'BiasPrLonRmse',
         'units': 'mm/day'}},
       'BiasSstLonRmse': {'diagnostic': {'ERA-Interim': {'name': 'ERA-Interim',
          'nyears': 40,
          'time_period': ['1979-1-16 12:0:0.0', '2019-3-16 12:0:0.0']},
         'GISS-E2-R_r3i1p3': {'keyerror': None,
          'name': 'GISS-E2-R_r3i1p3',
          'nyears': 156,
          'time_period': ['1850-1-16 12:0:0.0', '2005-12-16 12:0:0.0']},
         'HadISST': {'name': 'HadISST',
          'nyears': 151,
          'time_period': ['1870-1-16 11:59:59.5', '2020-10-16 12:0:0.0']},
         'Tropflux': {'name': 'Tropflux',
          'nyears': 40,
          'time_period': ['1979-1-15 0:0:0.0', '2018-12-15 12:0:0.0']},
         'method': 'Zonal root mean square error of equatorial_pacific sst, time series are linearly detrended, observations and model regridded to generic_1x1deg',
         'name': 'sst Zonal RMSE',
         'ref': 'Using CDAT regridding and rms (uncentered and biased) calculation',
         'time_frequency': 'monthly',
         'units': 'C'},
        'metric': {'datasets': "GISS-E2-R_r3i1p3; ERA-Interim's ts & HadISST's sst & Tropflux's sst; 's ",
         'method': 'The metric is the statistical value between the model and the observations',
         'name': 'BiasSstLonRmse',
         'units': 'C'}},
       'BiasTauxLonRmse': {'diagnostic': {'ERA-Interim': {'name': 'ERA-Interim',
          'nyears': 40,
          'time_period': ['1979-1-16 12:0:0.0', '2019-3-16 12:0:0.0']},
         'GISS-E2-R_r3i1p3': {'keyerror': None,
          'name': 'GISS-E2-R_r3i1p3',
          'nyears': 156,
          'time_period': ['1850-1-16 12:0:0.0', '2005-12-16 12:0:0.0']},
         'Tropflux': {'name': 'Tropflux',
          'nyears': 40,
          'time_period': ['1979-1-15 0:0:0.0', '2018-12-15 12:0:0.0']},
         'method': 'Zonal root mean square error of equatorial_pacific taux, time series are linearly detrended, observations and model regridded to generic_1x1deg',
         'name': 'taux Zonal RMSE',
         'ref': 'Using CDAT regridding and rms (uncentered and biased) calculation',
         'time_frequency': 'monthly',
         'units': '1e-3 N/m2'},
        'metric': {'datasets': "GISS-E2-R_r3i1p3; ERA-Interim's tauu & Tropflux's taux; 's ",
         'method': 'The metric is the statistical value between the model and the observations',
         'name': 'BiasTauxLonRmse',
         'units': '1e-3 N/m2'}},
       'EnsoAmpl': {'diagnostic': {'ERA-Interim': {'keyerror': None,
          'name': 'ERA-Interim',
          'nyears': 40,
          'time_period': ['1979-1-16 12:0:0.0', '2019-3-16 12:0:0.0']},
         'GISS-E2-R_r3i1p3': {'keyerror': None,
          'name': 'GISS-E2-R_r3i1p3',
          'nyears': 156,
          'time_period': ['1850-1-16 12:0:0.0', '2005-12-16 12:0:0.0']},
         'HadISST': {'keyerror': None,
          'name': 'HadISST',
          'nyears': 151,
          'time_period': ['1870-1-16 11:59:59.5', '2020-10-16 12:0:0.0']},
         'Tropflux': {'keyerror': None,
          'name': 'Tropflux',
          'nyears': 40,
          'time_period': ['1979-1-15 0:0:0.0', '2018-12-15 12:0:0.0']},
         'method': 'Standard deviation of nino3.4 sstA, time series are linearly detrended',
         'name': 'ENSO amplitude',
         'ref': 'Using CDAT regression calculation',
         'time_frequency': 'monthly',
         'units': 'C'},
        'metric': {'datasets': "GISS-E2-R_r3i1p3; ERA-Interim's ts & HadISST's sst & Tropflux's sst; 's ",
         'method': 'The metric is the absolute value of the relative difference between model and observations values (M = 100 * abs[[model-obs] / obs])',
         'name': 'EnsoAmpl',
         'units': '%'}},
       'EnsoDuration': {'diagnostic': {'ERA-Interim': {'keyerror': None,
          'name': 'ERA-Interim',
          'nyears': 40,
          'time_period': ['1979-1-16 12:0:0.0', '2019-3-16 12:0:0.0']},
         'GISS-E2-R_r3i1p3': {'keyerror': None,
          'name': 'GISS-E2-R_r3i1p3',
          'nyears': 156,
          'time_period': ['1850-1-16 12:0:0.0', '2005-12-16 12:0:0.0']},
         'HadISST': {'keyerror': None,
          'name': 'HadISST',
          'nyears': 151,
          'time_period': ['1870-1-16 11:59:59.5', '2020-10-16 12:0:0.0']},
         'Tropflux': {'keyerror': None,
          'name': 'Tropflux',
          'nyears': 40,
          'time_period': ['1979-1-15 0:0:0.0', '2018-12-15 12:0:0.0']},
         'method': 'nino3.4 SSTA during DEC regressed against nino3.4 SSTA during 6 years (centered on ENSO), the duration is the number of consecutive months during which the regression is above 0.25, time series are linearly detrended, smoothing using a triangle shaped window of 5 points',
         'name': 'ENSO Duration based on life cyle SSTA pattern',
         'ref': 'Using CDAT',
         'time_frequency': 'monthly',
         'units': 'months'},
        'metric': {'datasets': "GISS-E2-R_r3i1p3; ERA-Interim's ts & HadISST's sst & Tropflux's sst; 's ",
         'method': 'The metric is the absolute value of the relative difference between model and observations values (M = 100 * abs[[model-obs] / obs])',
         'name': 'EnsoDuration',
         'units': '%'}},
       'EnsoSeasonality': {'diagnostic': {'ERA-Interim': {'keyerror': None,
          'name': 'ERA-Interim',
          'nyears': 40,
          'time_period': ['1979-1-16 12:0:0.0', '2019-3-16 12:0:0.0']},
         'GISS-E2-R_r3i1p3': {'keyerror': None,
          'name': 'GISS-E2-R_r3i1p3',
          'nyears': 156,
          'time_period': ['1850-1-16 12:0:0.0', '2005-12-16 12:0:0.0']},
         'HadISST': {'keyerror': None,
          'name': 'HadISST',
          'nyears': 151,
          'time_period': ['1870-1-16 11:59:59.5', '2020-10-16 12:0:0.0']},
         'Tropflux': {'keyerror': None,
          'name': 'Tropflux',
          'nyears': 40,
          'time_period': ['1979-1-15 0:0:0.0', '2018-12-15 12:0:0.0']},
         'method': 'Ratio between NDJ and MAM standard deviation nino3.4 sstA, time series are linearly detrended',
         'name': 'ENSO seasonality',
         'ref': 'Using CDAT std dev calculation',
         'time_frequency': 'monthly',
         'units': 'C/C'},
        'metric': {'datasets': "GISS-E2-R_r3i1p3; ERA-Interim's ts & HadISST's sst & Tropflux's sst; 's ",
         'method': 'The metric is the absolute value of the relative difference between model and observations values (M = 100 * abs[[model-obs] / obs])',
         'name': 'EnsoSeasonality',
         'units': '%'}},
       'EnsoSstDiversity_2': {'diagnostic': {'ERA-Interim': {'keyerror': None,
          'name': 'ERA-Interim',
          'nyears': 40,
          'time_period': ['1979-1-16 12:0:0.0', '2019-3-16 12:0:0.0']},
         'GISS-E2-R_r3i1p3': {'keyerror': None,
          'name': 'GISS-E2-R_r3i1p3',
          'nyears': 156,
          'time_period': ['1850-1-16 12:0:0.0', '2005-12-16 12:0:0.0']},
         'HadISST': {'keyerror': None,
          'name': 'HadISST',
          'nyears': 151,
          'time_period': ['1870-1-16 11:59:59.5', '2020-10-16 12:0:0.0']},
         'Tropflux': {'keyerror': None,
          'name': 'Tropflux',
          'nyears': 40,
          'time_period': ['1979-1-15 0:0:0.0', '2018-12-15 12:0:0.0']},
         'method': 'Nino (Nina) events = nino3.4 sstA > 0.75 (< -0.75) during DEC, zonal SSTA (meridional averaged [-5.0 ; 5.0]), the zonal SSTA maximum (minimum) is located for each event, the diversity is the interquartile range (IQR = Q3 - Q1), time series are linearly detrended, smoothing using a triangle shaped window of 5 points',
         'name': 'ENSO Diversity (interquartile range)',
         'ref': 'Using CDAT regridding',
         'time_frequency': 'monthly',
         'units': 'long'},
        'metric': {'datasets': "GISS-E2-R_r3i1p3; ERA-Interim's ts & HadISST's sst & Tropflux's sst; 's ",
         'method': 'The metric is the absolute value of the relative difference between model and observations values (M = 100 * abs[[model-obs] / obs])',
         'name': 'EnsoSstDiversity',
         'units': '%'}},
       'EnsoSstLonRmse': {'diagnostic': {'ERA-Interim': {'name': 'ERA-Interim',
          'nyears': 40,
          'time_period': ['1979-1-16 12:0:0.0', '2019-3-16 12:0:0.0']},
         'GISS-E2-R_r3i1p3': {'keyerror': None,
          'name': 'GISS-E2-R_r3i1p3',
          'nyears': 156,
          'time_period': ['1850-1-16 12:0:0.0', '2005-12-16 12:0:0.0']},
         'HadISST': {'name': 'HadISST',
          'nyears': 151,
          'time_period': ['1870-1-16 11:59:59.5', '2020-10-16 12:0:0.0']},
         'Tropflux': {'name': 'Tropflux',
          'nyears': 40,
          'time_period': ['1979-1-15 0:0:0.0', '2018-12-15 12:0:0.0']},
         'method': 'nino3.4 SSTA during DEC regressed against equatorial_pacific SSTA, time series are linearly detrended, smoothing using a triangle shaped window of 5 points, observations and model regridded to generic_1x1deg',
         'name': 'ENSO Zonal SSTA pattern',
         'ref': 'Using CDAT regridding and rms (uncentered and biased) calculation',
         'time_frequency': 'monthly',
         'units': 'C/C'},
        'metric': {'datasets': "GISS-E2-R_r3i1p3; ERA-Interim's ts & HadISST's sst & Tropflux's sst; 's ",
         'method': 'The metric is the statistical value between the model and the observations',
         'name': 'EnsoSstLonRmse',
         'units': 'C/C'}},
       'EnsoSstSkew': {'diagnostic': {'ERA-Interim': {'keyerror': None,
          'name': 'ERA-Interim',
          'nyears': 40,
          'time_period': ['1979-1-16 12:0:0.0', '2019-3-16 12:0:0.0']},
         'GISS-E2-R_r3i1p3': {'keyerror': None,
          'name': 'GISS-E2-R_r3i1p3',
          'nyears': 156,
          'time_period': ['1850-1-16 12:0:0.0', '2005-12-16 12:0:0.0']},
         'HadISST': {'keyerror': None,
          'name': 'HadISST',
          'nyears': 151,
          'time_period': ['1870-1-16 11:59:59.5', '2020-10-16 12:0:0.0']},
         'Tropflux': {'keyerror': None,
          'name': 'Tropflux',
          'nyears': 40,
          'time_period': ['1979-1-15 0:0:0.0', '2018-12-15 12:0:0.0']},
         'method': 'Standard deviation of nino3.4 sstA, time series are linearly detrended',
         'name': 'ENSO skewness',
         'ref': 'Using CDAT regression calculation',
         'time_frequency': 'monthly',
         'units': 'C'},
        'metric': {'datasets': "GISS-E2-R_r3i1p3; ERA-Interim's ts & HadISST's sst & Tropflux's sst; 's ",
         'method': 'The metric is the absolute value of the relative difference between model and observations values (M = 100 * abs[[model-obs] / obs])',
         'name': 'EnsoSstSkew',
         'units': '%'}},
       'EnsoSstTsRmse': {'diagnostic': {'ERA-Interim': {'name': 'ERA-Interim',
          'nyears': 40,
          'time_period': ['1979-1-16 12:0:0.0', '2019-3-16 12:0:0.0']},
         'GISS-E2-R_r3i1p3': {'keyerror': None,
          'name': 'GISS-E2-R_r3i1p3',
          'nyears': 156,
          'time_period': ['1850-1-16 12:0:0.0', '2005-12-16 12:0:0.0']},
         'HadISST': {'name': 'HadISST',
          'nyears': 151,
          'time_period': ['1870-1-16 11:59:59.5', '2020-10-16 12:0:0.0']},
         'Tropflux': {'name': 'Tropflux',
          'nyears': 40,
          'time_period': ['1979-1-15 0:0:0.0', '2018-12-15 12:0:0.0']},
         'method': 'nino3.4 SSTA during DEC regressed against nino3.4 SSTA during 6 years (centered on ENSO), time series are linearly detrended, smoothing using a triangle shaped window of 5 points',
         'name': 'ENSO life cyle SSTA pattern',
         'ref': 'Using CDAT regridding and rms (uncentered and biased) calculation',
         'time_frequency': 'monthly',
         'units': 'C/C'},
        'metric': {'datasets': "GISS-E2-R_r3i1p3; ERA-Interim's ts & HadISST's sst & Tropflux's sst; 's ",
         'method': 'The metric is the statistical value between the model and the observations',
         'name': 'EnsoSstTsRmse',
         'units': 'C/C'}},
       'SeasonalPrLatRmse': {'diagnostic': {'ERA-Interim': {'name': 'ERA-Interim',
          'nyears': 40,
          'time_period': ['1979-1-16 12:0:0.0', '2019-3-16 12:0:0.0']},
         'GISS-E2-R_r3i1p3': {'keyerror': None,
          'name': 'GISS-E2-R_r3i1p3',
          'nyears': 156,
          'time_period': ['1850-1-16 12:0:0.0', '2005-12-16 12:0:0.0']},
         'GPCPv2.3': {'name': 'GPCPv2.3',
          'nyears': 41,
          'time_period': ['1979-1-1 0:0:0.0', '2019-7-1 0:0:0.0']},
         'method': 'Meridional root mean square error of nino3_LatExt climatological pr STD, time series are linearly detrended, observations and model regridded to generic_1x1deg',
         'name': 'pr meridional seasonality RMSE',
         'ref': 'Using CDAT regridding and rms (uncentered and biased) calculation',
         'time_frequency': 'monthly',
         'units': 'mm/day'},
        'metric': {'datasets': "GISS-E2-R_r3i1p3; ERA-Interim's pr & GPCPv2.3's precip; 's ",
         'method': 'The metric is the statistical value between the model and the observations',
         'name': 'SeasonalPrLatRmse',
         'units': 'mm/day'}},
       'SeasonalPrLonRmse': {'diagnostic': {'ERA-Interim': {'name': 'ERA-Interim',
          'nyears': 40,
          'time_period': ['1979-1-16 12:0:0.0', '2019-3-16 12:0:0.0']},
         'GISS-E2-R_r3i1p3': {'keyerror': None,
          'name': 'GISS-E2-R_r3i1p3',
          'nyears': 156,
          'time_period': ['1850-1-16 12:0:0.0', '2005-12-16 12:0:0.0']},
         'GPCPv2.3': {'name': 'GPCPv2.3',
          'nyears': 41,
          'time_period': ['1979-1-1 0:0:0.0', '2019-7-1 0:0:0.0']},
         'method': 'Zonal root mean square error of equatorial_pacific climatological pr STD, time series are linearly detrended, observations and model regridded to generic_1x1deg',
         'name': 'pr zonal seasonality RMSE',
         'ref': 'Using CDAT regridding and rms (uncentered and biased) calculation',
         'time_frequency': 'monthly',
         'units': 'mm/day'},
        'metric': {'datasets': "GISS-E2-R_r3i1p3; ERA-Interim's pr & GPCPv2.3's precip; 's ",
         'method': 'The metric is the statistical value between the model and the observations',
         'name': 'SeasonalPrLonRmse',
         'units': 'mm/day'}},
       'SeasonalSstLonRmse': {'diagnostic': {'ERA-Interim': {'name': 'ERA-Interim',
          'nyears': 40,
          'time_period': ['1979-1-16 12:0:0.0', '2019-3-16 12:0:0.0']},
         'GISS-E2-R_r3i1p3': {'keyerror': None,
          'name': 'GISS-E2-R_r3i1p3',
          'nyears': 156,
          'time_period': ['1850-1-16 12:0:0.0', '2005-12-16 12:0:0.0']},
         'HadISST': {'name': 'HadISST',
          'nyears': 151,
          'time_period': ['1870-1-16 11:59:59.5', '2020-10-16 12:0:0.0']},
         'Tropflux': {'name': 'Tropflux',
          'nyears': 40,
          'time_period': ['1979-1-15 0:0:0.0', '2018-12-15 12:0:0.0']},
         'method': 'Zonal root mean square error of equatorial_pacific climatological sst STD, time series are linearly detrended, observations and model regridded to generic_1x1deg',
         'name': 'sst zonal seasonality RMSE',
         'ref': 'Using CDAT regridding and rms (uncentered and biased) calculation',
         'time_frequency': 'monthly',
         'units': 'C'},
        'metric': {'datasets': "GISS-E2-R_r3i1p3; ERA-Interim's ts & HadISST's sst & Tropflux's sst; 's ",
         'method': 'The metric is the statistical value between the model and the observations',
         'name': 'SeasonalSstLonRmse',
         'units': 'C'}},
       'SeasonalTauxLonRmse': {'diagnostic': {'ERA-Interim': {'name': 'ERA-Interim',
          'nyears': 40,
          'time_period': ['1979-1-16 12:0:0.0', '2019-3-16 12:0:0.0']},
         'GISS-E2-R_r3i1p3': {'keyerror': None,
          'name': 'GISS-E2-R_r3i1p3',
          'nyears': 156,
          'time_period': ['1850-1-16 12:0:0.0', '2005-12-16 12:0:0.0']},
         'Tropflux': {'name': 'Tropflux',
          'nyears': 40,
          'time_period': ['1979-1-15 0:0:0.0', '2018-12-15 12:0:0.0']},
         'method': 'Zonal root mean square error of equatorial_pacific climatological taux STD, time series are linearly detrended, observations and model regridded to generic_1x1deg',
         'name': 'taux zonal seasonality RMSE',
         'ref': 'Using CDAT regridding and rms (uncentered and biased) calculation',
         'time_frequency': 'monthly',
         'units': '1e-3 N/m2'},
        'metric': {'datasets': "GISS-E2-R_r3i1p3; ERA-Interim's tauu & Tropflux's taux; 's ",
         'method': 'The metric is the statistical value between the model and the observations',
         'name': 'SeasonalTauxLonRmse',
         'units': '1e-3 N/m2'}}},
      'name': 'Metrics Collection for ENSO performance'},
     'value': {'BiasPrLatRmse': {'diagnostic': {'ERA-Interim': {'value': None,
         'value_error': None},
        'GISS-E2-R_r3i1p3': {'value': None, 'value_error': None},
        'GPCPv2.3': {'value': None, 'value_error': None}},
       'metric': {'ERA-Interim': {'value': 2.199004345997784,
         'value_error': None},
        'GPCPv2.3': {'value': 2.9421091615948822, 'value_error': None}}},
      'BiasPrLonRmse': {'diagnostic': {'ERA-Interim': {'value': None,
         'value_error': None},
        'GISS-E2-R_r3i1p3': {'value': None, 'value_error': None},
        'GPCPv2.3': {'value': None, 'value_error': None}},
       'metric': {'ERA-Interim': {'value': 1.8868041518578165,
         'value_error': None},
        'GPCPv2.3': {'value': 2.4096178125393735, 'value_error': None}}},
      'BiasSstLonRmse': {'diagnostic': {'ERA-Interim': {'value': None,
         'value_error': None},
        'GISS-E2-R_r3i1p3': {'value': None, 'value_error': None},
        'HadISST': {'value': None, 'value_error': None},
        'Tropflux': {'value': None, 'value_error': None}},
       'metric': {'ERA-Interim': {'value': 1.1656018452387413,
         'value_error': None},
        'HadISST': {'value': 1.3412242135013825, 'value_error': None},
        'Tropflux': {'value': 1.129997501928908, 'value_error': None}}},
      'BiasTauxLonRmse': {'diagnostic': {'ERA-Interim': {'value': None,
         'value_error': None},
        'GISS-E2-R_r3i1p3': {'value': None, 'value_error': None},
        'Tropflux': {'value': None, 'value_error': None}},
       'metric': {'ERA-Interim': {'value': 18.38085808060075,
         'value_error': None},
        'Tropflux': {'value': 17.993232170205992, 'value_error': None}}},
      'EnsoAmpl': {'diagnostic': {'ERA-Interim': {'value': 0.8989844997845644,
         'value_error': 0.14214193002531866},
        'GISS-E2-R_r3i1p3': {'value': 0.6188842567485312,
         'value_error': 0.049550396726087916},
        'HadISST': {'value': 0.7665787872085695,
         'value_error': 0.06238329697691264},
        'Tropflux': {'value': 0.9039789553693535,
         'value_error': 0.14293162279134272}},
       'metric': {'ERA-Interim': {'value': 31.157405172520473,
         'value_error': 16.396788790986054},
        'HadISST': {'value': 19.266712427284247,
         'value_error': 13.033817911349994},
        'Tropflux': {'value': 31.537758365662004,
         'value_error': 16.306197043397987}}},
      'EnsoDuration': {'diagnostic': {'ERA-Interim': {'value': 13.0,
         'value_error': None},
        'GISS-E2-R_r3i1p3': {'value': 12.0, 'value_error': None},
        'HadISST': {'value': 13.0, 'value_error': None},
        'Tropflux': {'value': 13.0, 'value_error': None}},
       'metric': {'ERA-Interim': {'value': 7.6923076923076925,
         'value_error': None},
        'HadISST': {'value': 7.6923076923076925, 'value_error': None},
        'Tropflux': {'value': 7.6923076923076925, 'value_error': None}}},
      'EnsoSeasonality': {'diagnostic': {'ERA-Interim': {'value': 2.0466846866656914,
         'value_error': 0.6513411033995022},
        'GISS-E2-R_r3i1p3': {'value': 1.75502581945899,
         'value_error': 0.28148158826635494},
        'HadISST': {'value': 1.6639865947361325,
         'value_error': 0.2712772451657809},
        'Tropflux': {'value': 2.0532132553583624,
         'value_error': 0.6534187683977347}},
       'metric': {'ERA-Interim': {'value': 14.250307783454938,
         'value_error': 41.04220768269638},
        'HadISST': {'value': 5.47115133083714,
         'value_error': 34.110901123652944},
        'Tropflux': {'value': 14.522964680905856,
         'value_error': 40.91170644447571}}},
      'EnsoSstDiversity_2': {'diagnostic': {'ERA-Interim': {'value': 33.25,
         'value_error': None},
        'GISS-E2-R_r3i1p3': {'value': 24.0, 'value_error': None},
        'HadISST': {'value': 49.0, 'value_error': None},
        'Tropflux': {'value': 32.0, 'value_error': None}},
       'metric': {'ERA-Interim': {'value': 27.819548872180448,
         'value_error': None},
        'HadISST': {'value': 51.02040816326531, 'value_error': None},
        'Tropflux': {'value': 25.0, 'value_error': None}}},
      'EnsoSstLonRmse': {'diagnostic': {'ERA-Interim': {'value': None,
         'value_error': None},
        'GISS-E2-R_r3i1p3': {'value': None, 'value_error': None},
        'HadISST': {'value': None, 'value_error': None},
        'Tropflux': {'value': None, 'value_error': None}},
       'metric': {'ERA-Interim': {'value': 0.06915501242109422,
         'value_error': None},
        'HadISST': {'value': 0.07180549944321282, 'value_error': None},
        'Tropflux': {'value': 0.06460129514700805, 'value_error': None}}},
      'EnsoSstSkew': {'diagnostic': {'ERA-Interim': {'value': 0.39098111106809963,
         'value_error': 0.061819541653923164},
        'GISS-E2-R_r3i1p3': {'value': -0.24545398973368115,
         'value_error': -0.019652047110073588},
        'HadISST': {'value': 0.38989908235027515,
         'value_error': 0.03172953733021198},
        'Tropflux': {'value': 0.39744741059612115,
         'value_error': 0.06284195338099416}},
       'metric': {'ERA-Interim': {'value': 162.77898926194644,
         'value_error': -14.952571587682625},
        'HadISST': {'value': 162.95321041899032,
         'value_error': -10.163350288404715},
        'Tropflux': {'value': 161.75760193418574,
         'value_error': -14.709299637677672}}},
      'EnsoSstTsRmse': {'diagnostic': {'ERA-Interim': {'value': None,
         'value_error': None},
        'GISS-E2-R_r3i1p3': {'value': None, 'value_error': None},
        'HadISST': {'value': None, 'value_error': None},
        'Tropflux': {'value': None, 'value_error': None}},
       'metric': {'ERA-Interim': {'value': 0.17508961495507536,
         'value_error': None},
        'HadISST': {'value': 0.1647664387258795, 'value_error': None},
        'Tropflux': {'value': 0.17554458536550868, 'value_error': None}}},
      'SeasonalPrLatRmse': {'diagnostic': {'ERA-Interim': {'value': None,
         'value_error': None},
        'GISS-E2-R_r3i1p3': {'value': None, 'value_error': None},
        'GPCPv2.3': {'value': None, 'value_error': None}},
       'metric': {'ERA-Interim': {'value': 0.761454396173159,
         'value_error': None},
        'GPCPv2.3': {'value': 0.8972311990280781, 'value_error': None}}},
      'SeasonalPrLonRmse': {'diagnostic': {'ERA-Interim': {'value': None,
         'value_error': None},
        'GISS-E2-R_r3i1p3': {'value': None, 'value_error': None},
        'GPCPv2.3': {'value': None, 'value_error': None}},
       'metric': {'ERA-Interim': {'value': 0.19407181121690856,
         'value_error': None},
        'GPCPv2.3': {'value': 0.47015884408441927, 'value_error': None}}},
      'SeasonalSstLonRmse': {'diagnostic': {'ERA-Interim': {'value': None,
         'value_error': None},
        'GISS-E2-R_r3i1p3': {'value': None, 'value_error': None},
        'HadISST': {'value': None, 'value_error': None},
        'Tropflux': {'value': None, 'value_error': None}},
       'metric': {'ERA-Interim': {'value': 0.2701624043369671,
         'value_error': None},
        'HadISST': {'value': 0.27275368306369824, 'value_error': None},
        'Tropflux': {'value': 0.27778231122989716, 'value_error': None}}},
      'SeasonalTauxLonRmse': {'diagnostic': {'ERA-Interim': {'value': None,
         'value_error': None},
        'GISS-E2-R_r3i1p3': {'value': None, 'value_error': None},
        'Tropflux': {'value': None, 'value_error': None}},
       'metric': {'ERA-Interim': {'value': 1.7675586779114383,
         'value_error': None},
        'Tropflux': {'value': 1.802783969360823, 'value_error': None}}}}},
    'r4i1p1': {'metadata': {'description_of_the_collection': 'Describe which science question this collection is about',
      'metrics': {'BiasPrLatRmse': {'diagnostic': {'ERA-Interim': {'name': 'ERA-Interim',
          'nyears': 40,
          'time_period': ['1979-1-16 12:0:0.0', '2019-3-16 12:0:0.0']},
         'GISS-E2-R_r4i1p1': {'keyerror': None,
          'name': 'GISS-E2-R_r4i1p1',
          'nyears': 156,
          'time_period': ['1850-1-16 12:0:0.0', '2005-12-16 12:0:0.0']},
         'GPCPv2.3': {'name': 'GPCPv2.3',
          'nyears': 41,
          'time_period': ['1979-1-1 0:0:0.0', '2019-7-1 0:0:0.0']},
         'method': 'Meridional root mean square error of nino3_LatExt pr, time series are linearly detrended, observations and model regridded to generic_1x1deg',
         'name': 'pr Meridional RMSE',
         'ref': 'Using CDAT regridding and rms (uncentered and biased) calculation',
         'time_frequency': 'monthly',
         'units': 'mm/day'},
        'metric': {'datasets': "GISS-E2-R_r4i1p1; ERA-Interim's pr & GPCPv2.3's precip; 's ",
         'method': 'The metric is the statistical value between the model and the observations',
         'name': 'BiasPrLatRmse',
         'units': 'mm/day'}},
       'BiasPrLonRmse': {'diagnostic': {'ERA-Interim': {'name': 'ERA-Interim',
          'nyears': 40,
          'time_period': ['1979-1-16 12:0:0.0', '2019-3-16 12:0:0.0']},
         'GISS-E2-R_r4i1p1': {'keyerror': None,
          'name': 'GISS-E2-R_r4i1p1',
          'nyears': 156,
          'time_period': ['1850-1-16 12:0:0.0', '2005-12-16 12:0:0.0']},
         'GPCPv2.3': {'name': 'GPCPv2.3',
          'nyears': 41,
          'time_period': ['1979-1-1 0:0:0.0', '2019-7-1 0:0:0.0']},
         'method': 'Zonal root mean square error of equatorial_pacific pr, time series are linearly detrended, observations and model regridded to generic_1x1deg',
         'name': 'pr Zonal RMSE',
         'ref': 'Using CDAT regridding and rms (uncentered and biased) calculation',
         'time_frequency': 'monthly',
         'units': 'mm/day'},
        'metric': {'datasets': "GISS-E2-R_r4i1p1; ERA-Interim's pr & GPCPv2.3's precip; 's ",
         'method': 'The metric is the statistical value between the model and the observations',
         'name': 'BiasPrLonRmse',
         'units': 'mm/day'}},
       'BiasSstLonRmse': {'diagnostic': {'ERA-Interim': {'name': 'ERA-Interim',
          'nyears': 40,
          'time_period': ['1979-1-16 12:0:0.0', '2019-3-16 12:0:0.0']},
         'GISS-E2-R_r4i1p1': {'keyerror': None,
          'name': 'GISS-E2-R_r4i1p1',
          'nyears': 156,
          'time_period': ['1850-1-16 12:0:0.0', '2005-12-16 12:0:0.0']},
         'HadISST': {'name': 'HadISST',
          'nyears': 151,
          'time_period': ['1870-1-16 11:59:59.5', '2020-10-16 12:0:0.0']},
         'Tropflux': {'name': 'Tropflux',
          'nyears': 40,
          'time_period': ['1979-1-15 0:0:0.0', '2018-12-15 12:0:0.0']},
         'method': 'Zonal root mean square error of equatorial_pacific sst, time series are linearly detrended, observations and model regridded to generic_1x1deg',
         'name': 'sst Zonal RMSE',
         'ref': 'Using CDAT regridding and rms (uncentered and biased) calculation',
         'time_frequency': 'monthly',
         'units': 'C'},
        'metric': {'datasets': "GISS-E2-R_r4i1p1; ERA-Interim's ts & HadISST's sst & Tropflux's sst; 's ",
         'method': 'The metric is the statistical value between the model and the observations',
         'name': 'BiasSstLonRmse',
         'units': 'C'}},
       'BiasTauxLonRmse': {'diagnostic': {'ERA-Interim': {'name': 'ERA-Interim',
          'nyears': 40,
          'time_period': ['1979-1-16 12:0:0.0', '2019-3-16 12:0:0.0']},
         'GISS-E2-R_r4i1p1': {'keyerror': None,
          'name': 'GISS-E2-R_r4i1p1',
          'nyears': 156,
          'time_period': ['1850-1-16 12:0:0.0', '2005-12-16 12:0:0.0']},
         'Tropflux': {'name': 'Tropflux',
          'nyears': 40,
          'time_period': ['1979-1-15 0:0:0.0', '2018-12-15 12:0:0.0']},
         'method': 'Zonal root mean square error of equatorial_pacific taux, time series are linearly detrended, observations and model regridded to generic_1x1deg',
         'name': 'taux Zonal RMSE',
         'ref': 'Using CDAT regridding and rms (uncentered and biased) calculation',
         'time_frequency': 'monthly',
         'units': '1e-3 N/m2'},
        'metric': {'datasets': "GISS-E2-R_r4i1p1; ERA-Interim's tauu & Tropflux's taux; 's ",
         'method': 'The metric is the statistical value between the model and the observations',
         'name': 'BiasTauxLonRmse',
         'units': '1e-3 N/m2'}},
       'EnsoAmpl': {'diagnostic': {'ERA-Interim': {'keyerror': None,
          'name': 'ERA-Interim',
          'nyears': 40,
          'time_period': ['1979-1-16 12:0:0.0', '2019-3-16 12:0:0.0']},
         'GISS-E2-R_r4i1p1': {'keyerror': None,
          'name': 'GISS-E2-R_r4i1p1',
          'nyears': 156,
          'time_period': ['1850-1-16 12:0:0.0', '2005-12-16 12:0:0.0']},
         'HadISST': {'keyerror': None,
          'name': 'HadISST',
          'nyears': 151,
          'time_period': ['1870-1-16 11:59:59.5', '2020-10-16 12:0:0.0']},
         'Tropflux': {'keyerror': None,
          'name': 'Tropflux',
          'nyears': 40,
          'time_period': ['1979-1-15 0:0:0.0', '2018-12-15 12:0:0.0']},
         'method': 'Standard deviation of nino3.4 sstA, time series are linearly detrended',
         'name': 'ENSO amplitude',
         'ref': 'Using CDAT regression calculation',
         'time_frequency': 'monthly',
         'units': 'C'},
        'metric': {'datasets': "GISS-E2-R_r4i1p1; ERA-Interim's ts & HadISST's sst & Tropflux's sst; 's ",
         'method': 'The metric is the absolute value of the relative difference between model and observations values (M = 100 * abs[[model-obs] / obs])',
         'name': 'EnsoAmpl',
         'units': '%'}},
       'EnsoDuration': {'diagnostic': {'ERA-Interim': {'keyerror': None,
          'name': 'ERA-Interim',
          'nyears': 40,
          'time_period': ['1979-1-16 12:0:0.0', '2019-3-16 12:0:0.0']},
         'GISS-E2-R_r4i1p1': {'keyerror': None,
          'name': 'GISS-E2-R_r4i1p1',
          'nyears': 156,
          'time_period': ['1850-1-16 12:0:0.0', '2005-12-16 12:0:0.0']},
         'HadISST': {'keyerror': None,
          'name': 'HadISST',
          'nyears': 151,
          'time_period': ['1870-1-16 11:59:59.5', '2020-10-16 12:0:0.0']},
         'Tropflux': {'keyerror': None,
          'name': 'Tropflux',
          'nyears': 40,
          'time_period': ['1979-1-15 0:0:0.0', '2018-12-15 12:0:0.0']},
         'method': 'nino3.4 SSTA during DEC regressed against nino3.4 SSTA during 6 years (centered on ENSO), the duration is the number of consecutive months during which the regression is above 0.25, time series are linearly detrended, smoothing using a triangle shaped window of 5 points',
         'name': 'ENSO Duration based on life cyle SSTA pattern',
         'ref': 'Using CDAT',
         'time_frequency': 'monthly',
         'units': 'months'},
        'metric': {'datasets': "GISS-E2-R_r4i1p1; ERA-Interim's ts & HadISST's sst & Tropflux's sst; 's ",
         'method': 'The metric is the absolute value of the relative difference between model and observations values (M = 100 * abs[[model-obs] / obs])',
         'name': 'EnsoDuration',
         'units': '%'}},
       'EnsoSeasonality': {'diagnostic': {'ERA-Interim': {'keyerror': None,
          'name': 'ERA-Interim',
          'nyears': 40,
          'time_period': ['1979-1-16 12:0:0.0', '2019-3-16 12:0:0.0']},
         'GISS-E2-R_r4i1p1': {'keyerror': None,
          'name': 'GISS-E2-R_r4i1p1',
          'nyears': 156,
          'time_period': ['1850-1-16 12:0:0.0', '2005-12-16 12:0:0.0']},
         'HadISST': {'keyerror': None,
          'name': 'HadISST',
          'nyears': 151,
          'time_period': ['1870-1-16 11:59:59.5', '2020-10-16 12:0:0.0']},
         'Tropflux': {'keyerror': None,
          'name': 'Tropflux',
          'nyears': 40,
          'time_period': ['1979-1-15 0:0:0.0', '2018-12-15 12:0:0.0']},
         'method': 'Ratio between NDJ and MAM standard deviation nino3.4 sstA, time series are linearly detrended',
         'name': 'ENSO seasonality',
         'ref': 'Using CDAT std dev calculation',
         'time_frequency': 'monthly',
         'units': 'C/C'},
        'metric': {'datasets': "GISS-E2-R_r4i1p1; ERA-Interim's ts & HadISST's sst & Tropflux's sst; 's ",
         'method': 'The metric is the absolute value of the relative difference between model and observations values (M = 100 * abs[[model-obs] / obs])',
         'name': 'EnsoSeasonality',
         'units': '%'}},
       'EnsoSstDiversity_2': {'diagnostic': {'ERA-Interim': {'keyerror': None,
          'name': 'ERA-Interim',
          'nyears': 40,
          'time_period': ['1979-1-16 12:0:0.0', '2019-3-16 12:0:0.0']},
         'GISS-E2-R_r4i1p1': {'keyerror': None,
          'name': 'GISS-E2-R_r4i1p1',
          'nyears': 156,
          'time_period': ['1850-1-16 12:0:0.0', '2005-12-16 12:0:0.0']},
         'HadISST': {'keyerror': None,
          'name': 'HadISST',
          'nyears': 151,
          'time_period': ['1870-1-16 11:59:59.5', '2020-10-16 12:0:0.0']},
         'Tropflux': {'keyerror': None,
          'name': 'Tropflux',
          'nyears': 40,
          'time_period': ['1979-1-15 0:0:0.0', '2018-12-15 12:0:0.0']},
         'method': 'Nino (Nina) events = nino3.4 sstA > 0.75 (< -0.75) during DEC, zonal SSTA (meridional averaged [-5.0 ; 5.0]), the zonal SSTA maximum (minimum) is located for each event, the diversity is the interquartile range (IQR = Q3 - Q1), time series are linearly detrended, smoothing using a triangle shaped window of 5 points',
         'name': 'ENSO Diversity (interquartile range)',
         'ref': 'Using CDAT regridding',
         'time_frequency': 'monthly',
         'units': 'long'},
        'metric': {'datasets': "GISS-E2-R_r4i1p1; ERA-Interim's ts & HadISST's sst & Tropflux's sst; 's ",
         'method': 'The metric is the absolute value of the relative difference between model and observations values (M = 100 * abs[[model-obs] / obs])',
         'name': 'EnsoSstDiversity',
         'units': '%'}},
       'EnsoSstLonRmse': {'diagnostic': {'ERA-Interim': {'name': 'ERA-Interim',
          'nyears': 40,
          'time_period': ['1979-1-16 12:0:0.0', '2019-3-16 12:0:0.0']},
         'GISS-E2-R_r4i1p1': {'keyerror': None,
          'name': 'GISS-E2-R_r4i1p1',
          'nyears': 156,
          'time_period': ['1850-1-16 12:0:0.0', '2005-12-16 12:0:0.0']},
         'HadISST': {'name': 'HadISST',
          'nyears': 151,
          'time_period': ['1870-1-16 11:59:59.5', '2020-10-16 12:0:0.0']},
         'Tropflux': {'name': 'Tropflux',
          'nyears': 40,
          'time_period': ['1979-1-15 0:0:0.0', '2018-12-15 12:0:0.0']},
         'method': 'nino3.4 SSTA during DEC regressed against equatorial_pacific SSTA, time series are linearly detrended, smoothing using a triangle shaped window of 5 points, observations and model regridded to generic_1x1deg',
         'name': 'ENSO Zonal SSTA pattern',
         'ref': 'Using CDAT regridding and rms (uncentered and biased) calculation',
         'time_frequency': 'monthly',
         'units': 'C/C'},
        'metric': {'datasets': "GISS-E2-R_r4i1p1; ERA-Interim's ts & HadISST's sst & Tropflux's sst; 's ",
         'method': 'The metric is the statistical value between the model and the observations',
         'name': 'EnsoSstLonRmse',
         'units': 'C/C'}},
       'EnsoSstSkew': {'diagnostic': {'ERA-Interim': {'keyerror': None,
          'name': 'ERA-Interim',
          'nyears': 40,
          'time_period': ['1979-1-16 12:0:0.0', '2019-3-16 12:0:0.0']},
         'GISS-E2-R_r4i1p1': {'keyerror': None,
          'name': 'GISS-E2-R_r4i1p1',
          'nyears': 156,
          'time_period': ['1850-1-16 12:0:0.0', '2005-12-16 12:0:0.0']},
         'HadISST': {'keyerror': None,
          'name': 'HadISST',
          'nyears': 151,
          'time_period': ['1870-1-16 11:59:59.5', '2020-10-16 12:0:0.0']},
         'Tropflux': {'keyerror': None,
          'name': 'Tropflux',
          'nyears': 40,
          'time_period': ['1979-1-15 0:0:0.0', '2018-12-15 12:0:0.0']},
         'method': 'Standard deviation of nino3.4 sstA, time series are linearly detrended',
         'name': 'ENSO skewness',
         'ref': 'Using CDAT regression calculation',
         'time_frequency': 'monthly',
         'units': 'C'},
        'metric': {'datasets': "GISS-E2-R_r4i1p1; ERA-Interim's ts & HadISST's sst & Tropflux's sst; 's ",
         'method': 'The metric is the absolute value of the relative difference between model and observations values (M = 100 * abs[[model-obs] / obs])',
         'name': 'EnsoSstSkew',
         'units': '%'}},
       'EnsoSstTsRmse': {'diagnostic': {'ERA-Interim': {'name': 'ERA-Interim',
          'nyears': 40,
          'time_period': ['1979-1-16 12:0:0.0', '2019-3-16 12:0:0.0']},
         'GISS-E2-R_r4i1p1': {'keyerror': None,
          'name': 'GISS-E2-R_r4i1p1',
          'nyears': 156,
          'time_period': ['1850-1-16 12:0:0.0', '2005-12-16 12:0:0.0']},
         'HadISST': {'name': 'HadISST',
          'nyears': 151,
          'time_period': ['1870-1-16 11:59:59.5', '2020-10-16 12:0:0.0']},
         'Tropflux': {'name': 'Tropflux',
          'nyears': 40,
          'time_period': ['1979-1-15 0:0:0.0', '2018-12-15 12:0:0.0']},
         'method': 'nino3.4 SSTA during DEC regressed against nino3.4 SSTA during 6 years (centered on ENSO), time series are linearly detrended, smoothing using a triangle shaped window of 5 points',
         'name': 'ENSO life cyle SSTA pattern',
         'ref': 'Using CDAT regridding and rms (uncentered and biased) calculation',
         'time_frequency': 'monthly',
         'units': 'C/C'},
        'metric': {'datasets': "GISS-E2-R_r4i1p1; ERA-Interim's ts & HadISST's sst & Tropflux's sst; 's ",
         'method': 'The metric is the statistical value between the model and the observations',
         'name': 'EnsoSstTsRmse',
         'units': 'C/C'}},
       'SeasonalPrLatRmse': {'diagnostic': {'ERA-Interim': {'name': 'ERA-Interim',
          'nyears': 40,
          'time_period': ['1979-1-16 12:0:0.0', '2019-3-16 12:0:0.0']},
         'GISS-E2-R_r4i1p1': {'keyerror': None,
          'name': 'GISS-E2-R_r4i1p1',
          'nyears': 156,
          'time_period': ['1850-1-16 12:0:0.0', '2005-12-16 12:0:0.0']},
         'GPCPv2.3': {'name': 'GPCPv2.3',
          'nyears': 41,
          'time_period': ['1979-1-1 0:0:0.0', '2019-7-1 0:0:0.0']},
         'method': 'Meridional root mean square error of nino3_LatExt climatological pr STD, time series are linearly detrended, observations and model regridded to generic_1x1deg',
         'name': 'pr meridional seasonality RMSE',
         'ref': 'Using CDAT regridding and rms (uncentered and biased) calculation',
         'time_frequency': 'monthly',
         'units': 'mm/day'},
        'metric': {'datasets': "GISS-E2-R_r4i1p1; ERA-Interim's pr & GPCPv2.3's precip; 's ",
         'method': 'The metric is the statistical value between the model and the observations',
         'name': 'SeasonalPrLatRmse',
         'units': 'mm/day'}},
       'SeasonalPrLonRmse': {'diagnostic': {'ERA-Interim': {'name': 'ERA-Interim',
          'nyears': 40,
          'time_period': ['1979-1-16 12:0:0.0', '2019-3-16 12:0:0.0']},
         'GISS-E2-R_r4i1p1': {'keyerror': None,
          'name': 'GISS-E2-R_r4i1p1',
          'nyears': 156,
          'time_period': ['1850-1-16 12:0:0.0', '2005-12-16 12:0:0.0']},
         'GPCPv2.3': {'name': 'GPCPv2.3',
          'nyears': 41,
          'time_period': ['1979-1-1 0:0:0.0', '2019-7-1 0:0:0.0']},
         'method': 'Zonal root mean square error of equatorial_pacific climatological pr STD, time series are linearly detrended, observations and model regridded to generic_1x1deg',
         'name': 'pr zonal seasonality RMSE',
         'ref': 'Using CDAT regridding and rms (uncentered and biased) calculation',
         'time_frequency': 'monthly',
         'units': 'mm/day'},
        'metric': {'datasets': "GISS-E2-R_r4i1p1; ERA-Interim's pr & GPCPv2.3's precip; 's ",
         'method': 'The metric is the statistical value between the model and the observations',
         'name': 'SeasonalPrLonRmse',
         'units': 'mm/day'}},
       'SeasonalSstLonRmse': {'diagnostic': {'ERA-Interim': {'name': 'ERA-Interim',
          'nyears': 40,
          'time_period': ['1979-1-16 12:0:0.0', '2019-3-16 12:0:0.0']},
         'GISS-E2-R_r4i1p1': {'keyerror': None,
          'name': 'GISS-E2-R_r4i1p1',
          'nyears': 156,
          'time_period': ['1850-1-16 12:0:0.0', '2005-12-16 12:0:0.0']},
         'HadISST': {'name': 'HadISST',
          'nyears': 151,
          'time_period': ['1870-1-16 11:59:59.5', '2020-10-16 12:0:0.0']},
         'Tropflux': {'name': 'Tropflux',
          'nyears': 40,
          'time_period': ['1979-1-15 0:0:0.0', '2018-12-15 12:0:0.0']},
         'method': 'Zonal root mean square error of equatorial_pacific climatological sst STD, time series are linearly detrended, observations and model regridded to generic_1x1deg',
         'name': 'sst zonal seasonality RMSE',
         'ref': 'Using CDAT regridding and rms (uncentered and biased) calculation',
         'time_frequency': 'monthly',
         'units': 'C'},
        'metric': {'datasets': "GISS-E2-R_r4i1p1; ERA-Interim's ts & HadISST's sst & Tropflux's sst; 's ",
         'method': 'The metric is the statistical value between the model and the observations',
         'name': 'SeasonalSstLonRmse',
         'units': 'C'}},
       'SeasonalTauxLonRmse': {'diagnostic': {'ERA-Interim': {'name': 'ERA-Interim',
          'nyears': 40,
          'time_period': ['1979-1-16 12:0:0.0', '2019-3-16 12:0:0.0']},
         'GISS-E2-R_r4i1p1': {'keyerror': None,
          'name': 'GISS-E2-R_r4i1p1',
          'nyears': 156,
          'time_period': ['1850-1-16 12:0:0.0', '2005-12-16 12:0:0.0']},
         'Tropflux': {'name': 'Tropflux',
          'nyears': 40,
          'time_period': ['1979-1-15 0:0:0.0', '2018-12-15 12:0:0.0']},
         'method': 'Zonal root mean square error of equatorial_pacific climatological taux STD, time series are linearly detrended, observations and model regridded to generic_1x1deg',
         'name': 'taux zonal seasonality RMSE',
         'ref': 'Using CDAT regridding and rms (uncentered and biased) calculation',
         'time_frequency': 'monthly',
         'units': '1e-3 N/m2'},
        'metric': {'datasets': "GISS-E2-R_r4i1p1; ERA-Interim's tauu & Tropflux's taux; 's ",
         'method': 'The metric is the statistical value between the model and the observations',
         'name': 'SeasonalTauxLonRmse',
         'units': '1e-3 N/m2'}}},
      'name': 'Metrics Collection for ENSO performance'},
     'value': {'BiasPrLatRmse': {'diagnostic': {'ERA-Interim': {'value': None,
         'value_error': None},
        'GISS-E2-R_r4i1p1': {'value': None, 'value_error': None},
        'GPCPv2.3': {'value': None, 'value_error': None}},
       'metric': {'ERA-Interim': {'value': 2.0515470914496596,
         'value_error': None},
        'GPCPv2.3': {'value': 2.84548882491522, 'value_error': None}}},
      'BiasPrLonRmse': {'diagnostic': {'ERA-Interim': {'value': None,
         'value_error': None},
        'GISS-E2-R_r4i1p1': {'value': None, 'value_error': None},
        'GPCPv2.3': {'value': None, 'value_error': None}},
       'metric': {'ERA-Interim': {'value': 1.6700550282475934,
         'value_error': None},
        'GPCPv2.3': {'value': 2.146754740051453, 'value_error': None}}},
      'BiasSstLonRmse': {'diagnostic': {'ERA-Interim': {'value': None,
         'value_error': None},
        'GISS-E2-R_r4i1p1': {'value': None, 'value_error': None},
        'HadISST': {'value': None, 'value_error': None},
        'Tropflux': {'value': None, 'value_error': None}},
       'metric': {'ERA-Interim': {'value': 0.9841903361742905,
         'value_error': None},
        'HadISST': {'value': 1.1548786005268206, 'value_error': None},
        'Tropflux': {'value': 0.951206754576674, 'value_error': None}}},
      'BiasTauxLonRmse': {'diagnostic': {'ERA-Interim': {'value': None,
         'value_error': None},
        'GISS-E2-R_r4i1p1': {'value': None, 'value_error': None},
        'Tropflux': {'value': None, 'value_error': None}},
       'metric': {'ERA-Interim': {'value': 17.86336392580538,
         'value_error': None},
        'Tropflux': {'value': 17.478975333417328, 'value_error': None}}},
      'EnsoAmpl': {'diagnostic': {'ERA-Interim': {'value': 0.8989844997845644,
         'value_error': 0.14214193002531866},
        'GISS-E2-R_r4i1p1': {'value': 0.5421959299828211,
         'value_error': 0.043410416634390714},
        'HadISST': {'value': 0.7665787872085695,
         'value_error': 0.06238329697691264},
        'Tropflux': {'value': 0.9039789553693535,
         'value_error': 0.14293162279134272}},
       'metric': {'ERA-Interim': {'value': 39.68795567523637,
         'value_error': 14.364999675331747},
        'HadISST': {'value': 29.270684366680594,
         'value_error': 11.418747442048147},
        'Tropflux': {'value': 40.02117784243249,
         'value_error': 14.285633499351865}}},
      'EnsoDuration': {'diagnostic': {'ERA-Interim': {'value': 13.0,
         'value_error': None},
        'GISS-E2-R_r4i1p1': {'value': 13.0, 'value_error': None},
        'HadISST': {'value': 13.0, 'value_error': None},
        'Tropflux': {'value': 13.0, 'value_error': None}},
       'metric': {'ERA-Interim': {'value': 0.0, 'value_error': None},
        'HadISST': {'value': 0.0, 'value_error': None},
        'Tropflux': {'value': 0.0, 'value_error': None}}},
      'EnsoSeasonality': {'diagnostic': {'ERA-Interim': {'value': 2.0466846866656914,
         'value_error': 0.6513411033995022},
        'GISS-E2-R_r4i1p1': {'value': 1.676177049192131,
         'value_error': 0.2688353486261848},
        'HadISST': {'value': 1.6639865947361325,
         'value_error': 0.2712772451657809},
        'Tropflux': {'value': 2.0532132553583624,
         'value_error': 0.6534187683977347}},
       'metric': {'ERA-Interim': {'value': 18.102819642294982,
         'value_error': 39.198287457172164},
        'HadISST': {'value': 0.7326053283459079,
         'value_error': 32.57838657231515},
        'Tropflux': {'value': 18.36322677063686,
         'value_error': 39.07364930201153}}},
      'EnsoSstDiversity_2': {'diagnostic': {'ERA-Interim': {'value': 33.25,
         'value_error': None},
        'GISS-E2-R_r4i1p1': {'value': 22.5, 'value_error': None},
        'HadISST': {'value': 49.0, 'value_error': None},
        'Tropflux': {'value': 32.0, 'value_error': None}},
       'metric': {'ERA-Interim': {'value': 32.33082706766917,
         'value_error': None},
        'HadISST': {'value': 54.08163265306123, 'value_error': None},
        'Tropflux': {'value': 29.6875, 'value_error': None}}},
      'EnsoSstLonRmse': {'diagnostic': {'ERA-Interim': {'value': None,
         'value_error': None},
        'GISS-E2-R_r4i1p1': {'value': None, 'value_error': None},
        'HadISST': {'value': None, 'value_error': None},
        'Tropflux': {'value': None, 'value_error': None}},
       'metric': {'ERA-Interim': {'value': 0.14756912568335323,
         'value_error': None},
        'HadISST': {'value': 0.1587223422059059, 'value_error': None},
        'Tropflux': {'value': 0.14683736346959242, 'value_error': None}}},
      'EnsoSstSkew': {'diagnostic': {'ERA-Interim': {'value': 0.39098111106809963,
         'value_error': 0.061819541653923164},
        'GISS-E2-R_r4i1p1': {'value': -0.07953217609864423,
         'value_error': -0.006367670263388489},
        'HadISST': {'value': 0.38989908235027515,
         'value_error': 0.03172953733021198},
        'Tropflux': {'value': 0.39744741059612115,
         'value_error': 0.06284195338099416}},
       'metric': {'ERA-Interim': {'value': 120.34169269235915,
         'value_error': -4.844942866601838},
        'HadISST': {'value': 120.39814395541322,
         'value_error': -3.2931359794421535},
        'Tropflux': {'value': 120.01074204493017,
         'value_error': -4.766117716565989}}},
      'EnsoSstTsRmse': {'diagnostic': {'ERA-Interim': {'value': None,
         'value_error': None},
        'GISS-E2-R_r4i1p1': {'value': None, 'value_error': None},
        'HadISST': {'value': None, 'value_error': None},
        'Tropflux': {'value': None, 'value_error': None}},
       'metric': {'ERA-Interim': {'value': 0.1598785501678474,
         'value_error': None},
        'HadISST': {'value': 0.14584622320061733, 'value_error': None},
        'Tropflux': {'value': 0.16071237634519756, 'value_error': None}}},
      'SeasonalPrLatRmse': {'diagnostic': {'ERA-Interim': {'value': None,
         'value_error': None},
        'GISS-E2-R_r4i1p1': {'value': None, 'value_error': None},
        'GPCPv2.3': {'value': None, 'value_error': None}},
       'metric': {'ERA-Interim': {'value': 0.676842263680256,
         'value_error': None},
        'GPCPv2.3': {'value': 0.8393227769509316, 'value_error': None}}},
      'SeasonalPrLonRmse': {'diagnostic': {'ERA-Interim': {'value': None,
         'value_error': None},
        'GISS-E2-R_r4i1p1': {'value': None, 'value_error': None},
        'GPCPv2.3': {'value': None, 'value_error': None}},
       'metric': {'ERA-Interim': {'value': 0.31741883461133935,
         'value_error': None},
        'GPCPv2.3': {'value': 0.5434215283310725, 'value_error': None}}},
      'SeasonalSstLonRmse': {'diagnostic': {'ERA-Interim': {'value': None,
         'value_error': None},
        'GISS-E2-R_r4i1p1': {'value': None, 'value_error': None},
        'HadISST': {'value': None, 'value_error': None},
        'Tropflux': {'value': None, 'value_error': None}},
       'metric': {'ERA-Interim': {'value': 0.28317581260020025,
         'value_error': None},
        'HadISST': {'value': 0.28559711688298833, 'value_error': None},
        'Tropflux': {'value': 0.290734845376643, 'value_error': None}}},
      'SeasonalTauxLonRmse': {'diagnostic': {'ERA-Interim': {'value': None,
         'value_error': None},
        'GISS-E2-R_r4i1p1': {'value': None, 'value_error': None},
        'Tropflux': {'value': None, 'value_error': None}},
       'metric': {'ERA-Interim': {'value': 1.941092256260677,
         'value_error': None},
        'Tropflux': {'value': 2.0677911087162153, 'value_error': None}}}}},
    'r4i1p2': {'metadata': {'description_of_the_collection': 'Describe which science question this collection is about',
      'metrics': {'BiasPrLatRmse': {'diagnostic': {'ERA-Interim': {'name': 'ERA-Interim',
          'nyears': 40,
          'time_period': ['1979-1-16 12:0:0.0', '2019-3-16 12:0:0.0']},
         'GISS-E2-R_r4i1p2': {'keyerror': None,
          'name': 'GISS-E2-R_r4i1p2',
          'nyears': 156,
          'time_period': ['1850-1-16 12:0:0.0', '2005-12-16 12:0:0.0']},
         'GPCPv2.3': {'name': 'GPCPv2.3',
          'nyears': 41,
          'time_period': ['1979-1-1 0:0:0.0', '2019-7-1 0:0:0.0']},
         'method': 'Meridional root mean square error of nino3_LatExt pr, time series are linearly detrended, observations and model regridded to generic_1x1deg',
         'name': 'pr Meridional RMSE',
         'ref': 'Using CDAT regridding and rms (uncentered and biased) calculation',
         'time_frequency': 'monthly',
         'units': 'mm/day'},
        'metric': {'datasets': "GISS-E2-R_r4i1p2; ERA-Interim's pr & GPCPv2.3's precip; 's ",
         'method': 'The metric is the statistical value between the model and the observations',
         'name': 'BiasPrLatRmse',
         'units': 'mm/day'}},
       'BiasPrLonRmse': {'diagnostic': {'ERA-Interim': {'name': 'ERA-Interim',
          'nyears': 40,
          'time_period': ['1979-1-16 12:0:0.0', '2019-3-16 12:0:0.0']},
         'GISS-E2-R_r4i1p2': {'keyerror': None,
          'name': 'GISS-E2-R_r4i1p2',
          'nyears': 156,
          'time_period': ['1850-1-16 12:0:0.0', '2005-12-16 12:0:0.0']},
         'GPCPv2.3': {'name': 'GPCPv2.3',
          'nyears': 41,
          'time_period': ['1979-1-1 0:0:0.0', '2019-7-1 0:0:0.0']},
         'method': 'Zonal root mean square error of equatorial_pacific pr, time series are linearly detrended, observations and model regridded to generic_1x1deg',
         'name': 'pr Zonal RMSE',
         'ref': 'Using CDAT regridding and rms (uncentered and biased) calculation',
         'time_frequency': 'monthly',
         'units': 'mm/day'},
        'metric': {'datasets': "GISS-E2-R_r4i1p2; ERA-Interim's pr & GPCPv2.3's precip; 's ",
         'method': 'The metric is the statistical value between the model and the observations',
         'name': 'BiasPrLonRmse',
         'units': 'mm/day'}},
       'BiasSstLonRmse': {'diagnostic': {'ERA-Interim': {'name': 'ERA-Interim',
          'nyears': 40,
          'time_period': ['1979-1-16 12:0:0.0', '2019-3-16 12:0:0.0']},
         'GISS-E2-R_r4i1p2': {'keyerror': None,
          'name': 'GISS-E2-R_r4i1p2',
          'nyears': 156,
          'time_period': ['1850-1-16 12:0:0.0', '2005-12-16 12:0:0.0']},
         'HadISST': {'name': 'HadISST',
          'nyears': 151,
          'time_period': ['1870-1-16 11:59:59.5', '2020-10-16 12:0:0.0']},
         'Tropflux': {'name': 'Tropflux',
          'nyears': 40,
          'time_period': ['1979-1-15 0:0:0.0', '2018-12-15 12:0:0.0']},
         'method': 'Zonal root mean square error of equatorial_pacific sst, time series are linearly detrended, observations and model regridded to generic_1x1deg',
         'name': 'sst Zonal RMSE',
         'ref': 'Using CDAT regridding and rms (uncentered and biased) calculation',
         'time_frequency': 'monthly',
         'units': 'C'},
        'metric': {'datasets': "GISS-E2-R_r4i1p2; ERA-Interim's ts & HadISST's sst & Tropflux's sst; 's ",
         'method': 'The metric is the statistical value between the model and the observations',
         'name': 'BiasSstLonRmse',
         'units': 'C'}},
       'BiasTauxLonRmse': {'diagnostic': {'ERA-Interim': {'name': 'ERA-Interim',
          'nyears': 40,
          'time_period': ['1979-1-16 12:0:0.0', '2019-3-16 12:0:0.0']},
         'GISS-E2-R_r4i1p2': {'keyerror': None,
          'name': 'GISS-E2-R_r4i1p2',
          'nyears': 156,
          'time_period': ['1850-1-16 12:0:0.0', '2005-12-16 12:0:0.0']},
         'Tropflux': {'name': 'Tropflux',
          'nyears': 40,
          'time_period': ['1979-1-15 0:0:0.0', '2018-12-15 12:0:0.0']},
         'method': 'Zonal root mean square error of equatorial_pacific taux, time series are linearly detrended, observations and model regridded to generic_1x1deg',
         'name': 'taux Zonal RMSE',
         'ref': 'Using CDAT regridding and rms (uncentered and biased) calculation',
         'time_frequency': 'monthly',
         'units': '1e-3 N/m2'},
        'metric': {'datasets': "GISS-E2-R_r4i1p2; ERA-Interim's tauu & Tropflux's taux; 's ",
         'method': 'The metric is the statistical value between the model and the observations',
         'name': 'BiasTauxLonRmse',
         'units': '1e-3 N/m2'}},
       'EnsoAmpl': {'diagnostic': {'ERA-Interim': {'keyerror': None,
          'name': 'ERA-Interim',
          'nyears': 40,
          'time_period': ['1979-1-16 12:0:0.0', '2019-3-16 12:0:0.0']},
         'GISS-E2-R_r4i1p2': {'keyerror': None,
          'name': 'GISS-E2-R_r4i1p2',
          'nyears': 156,
          'time_period': ['1850-1-16 12:0:0.0', '2005-12-16 12:0:0.0']},
         'HadISST': {'keyerror': None,
          'name': 'HadISST',
          'nyears': 151,
          'time_period': ['1870-1-16 11:59:59.5', '2020-10-16 12:0:0.0']},
         'Tropflux': {'keyerror': None,
          'name': 'Tropflux',
          'nyears': 40,
          'time_period': ['1979-1-15 0:0:0.0', '2018-12-15 12:0:0.0']},
         'method': 'Standard deviation of nino3.4 sstA, time series are linearly detrended',
         'name': 'ENSO amplitude',
         'ref': 'Using CDAT regression calculation',
         'time_frequency': 'monthly',
         'units': 'C'},
        'metric': {'datasets': "GISS-E2-R_r4i1p2; ERA-Interim's ts & HadISST's sst & Tropflux's sst; 's ",
         'method': 'The metric is the absolute value of the relative difference between model and observations values (M = 100 * abs[[model-obs] / obs])',
         'name': 'EnsoAmpl',
         'units': '%'}},
       'EnsoDuration': {'diagnostic': {'ERA-Interim': {'keyerror': None,
          'name': 'ERA-Interim',
          'nyears': 40,
          'time_period': ['1979-1-16 12:0:0.0', '2019-3-16 12:0:0.0']},
         'GISS-E2-R_r4i1p2': {'keyerror': None,
          'name': 'GISS-E2-R_r4i1p2',
          'nyears': 156,
          'time_period': ['1850-1-16 12:0:0.0', '2005-12-16 12:0:0.0']},
         'HadISST': {'keyerror': None,
          'name': 'HadISST',
          'nyears': 151,
          'time_period': ['1870-1-16 11:59:59.5', '2020-10-16 12:0:0.0']},
         'Tropflux': {'keyerror': None,
          'name': 'Tropflux',
          'nyears': 40,
          'time_period': ['1979-1-15 0:0:0.0', '2018-12-15 12:0:0.0']},
         'method': 'nino3.4 SSTA during DEC regressed against nino3.4 SSTA during 6 years (centered on ENSO), the duration is the number of consecutive months during which the regression is above 0.25, time series are linearly detrended, smoothing using a triangle shaped window of 5 points',
         'name': 'ENSO Duration based on life cyle SSTA pattern',
         'ref': 'Using CDAT',
         'time_frequency': 'monthly',
         'units': 'months'},
        'metric': {'datasets': "GISS-E2-R_r4i1p2; ERA-Interim's ts & HadISST's sst & Tropflux's sst; 's ",
         'method': 'The metric is the absolute value of the relative difference between model and observations values (M = 100 * abs[[model-obs] / obs])',
         'name': 'EnsoDuration',
         'units': '%'}},
       'EnsoSeasonality': {'diagnostic': {'ERA-Interim': {'keyerror': None,
          'name': 'ERA-Interim',
          'nyears': 40,
          'time_period': ['1979-1-16 12:0:0.0', '2019-3-16 12:0:0.0']},
         'GISS-E2-R_r4i1p2': {'keyerror': None,
          'name': 'GISS-E2-R_r4i1p2',
          'nyears': 156,
          'time_period': ['1850-1-16 12:0:0.0', '2005-12-16 12:0:0.0']},
         'HadISST': {'keyerror': None,
          'name': 'HadISST',
          'nyears': 151,
          'time_period': ['1870-1-16 11:59:59.5', '2020-10-16 12:0:0.0']},
         'Tropflux': {'keyerror': None,
          'name': 'Tropflux',
          'nyears': 40,
          'time_period': ['1979-1-15 0:0:0.0', '2018-12-15 12:0:0.0']},
         'method': 'Ratio between NDJ and MAM standard deviation nino3.4 sstA, time series are linearly detrended',
         'name': 'ENSO seasonality',
         'ref': 'Using CDAT std dev calculation',
         'time_frequency': 'monthly',
         'units': 'C/C'},
        'metric': {'datasets': "GISS-E2-R_r4i1p2; ERA-Interim's ts & HadISST's sst & Tropflux's sst; 's ",
         'method': 'The metric is the absolute value of the relative difference between model and observations values (M = 100 * abs[[model-obs] / obs])',
         'name': 'EnsoSeasonality',
         'units': '%'}},
       'EnsoSstDiversity_2': {'diagnostic': {'ERA-Interim': {'keyerror': None,
          'name': 'ERA-Interim',
          'nyears': 40,
          'time_period': ['1979-1-16 12:0:0.0', '2019-3-16 12:0:0.0']},
         'GISS-E2-R_r4i1p2': {'keyerror': None,
          'name': 'GISS-E2-R_r4i1p2',
          'nyears': 156,
          'time_period': ['1850-1-16 12:0:0.0', '2005-12-16 12:0:0.0']},
         'HadISST': {'keyerror': None,
          'name': 'HadISST',
          'nyears': 151,
          'time_period': ['1870-1-16 11:59:59.5', '2020-10-16 12:0:0.0']},
         'Tropflux': {'keyerror': None,
          'name': 'Tropflux',
          'nyears': 40,
          'time_period': ['1979-1-15 0:0:0.0', '2018-12-15 12:0:0.0']},
         'method': 'Nino (Nina) events = nino3.4 sstA > 0.75 (< -0.75) during DEC, zonal SSTA (meridional averaged [-5.0 ; 5.0]), the zonal SSTA maximum (minimum) is located for each event, the diversity is the interquartile range (IQR = Q3 - Q1), time series are linearly detrended, smoothing using a triangle shaped window of 5 points',
         'name': 'ENSO Diversity (interquartile range)',
         'ref': 'Using CDAT regridding',
         'time_frequency': 'monthly',
         'units': 'long'},
        'metric': {'datasets': "GISS-E2-R_r4i1p2; ERA-Interim's ts & HadISST's sst & Tropflux's sst; 's ",
         'method': 'The metric is the absolute value of the relative difference between model and observations values (M = 100 * abs[[model-obs] / obs])',
         'name': 'EnsoSstDiversity',
         'units': '%'}},
       'EnsoSstLonRmse': {'diagnostic': {'ERA-Interim': {'name': 'ERA-Interim',
          'nyears': 40,
          'time_period': ['1979-1-16 12:0:0.0', '2019-3-16 12:0:0.0']},
         'GISS-E2-R_r4i1p2': {'keyerror': None,
          'name': 'GISS-E2-R_r4i1p2',
          'nyears': 156,
          'time_period': ['1850-1-16 12:0:0.0', '2005-12-16 12:0:0.0']},
         'HadISST': {'name': 'HadISST',
          'nyears': 151,
          'time_period': ['1870-1-16 11:59:59.5', '2020-10-16 12:0:0.0']},
         'Tropflux': {'name': 'Tropflux',
          'nyears': 40,
          'time_period': ['1979-1-15 0:0:0.0', '2018-12-15 12:0:0.0']},
         'method': 'nino3.4 SSTA during DEC regressed against equatorial_pacific SSTA, time series are linearly detrended, smoothing using a triangle shaped window of 5 points, observations and model regridded to generic_1x1deg',
         'name': 'ENSO Zonal SSTA pattern',
         'ref': 'Using CDAT regridding and rms (uncentered and biased) calculation',
         'time_frequency': 'monthly',
         'units': 'C/C'},
        'metric': {'datasets': "GISS-E2-R_r4i1p2; ERA-Interim's ts & HadISST's sst & Tropflux's sst; 's ",
         'method': 'The metric is the statistical value between the model and the observations',
         'name': 'EnsoSstLonRmse',
         'units': 'C/C'}},
       'EnsoSstSkew': {'diagnostic': {'ERA-Interim': {'keyerror': None,
          'name': 'ERA-Interim',
          'nyears': 40,
          'time_period': ['1979-1-16 12:0:0.0', '2019-3-16 12:0:0.0']},
         'GISS-E2-R_r4i1p2': {'keyerror': None,
          'name': 'GISS-E2-R_r4i1p2',
          'nyears': 156,
          'time_period': ['1850-1-16 12:0:0.0', '2005-12-16 12:0:0.0']},
         'HadISST': {'keyerror': None,
          'name': 'HadISST',
          'nyears': 151,
          'time_period': ['1870-1-16 11:59:59.5', '2020-10-16 12:0:0.0']},
         'Tropflux': {'keyerror': None,
          'name': 'Tropflux',
          'nyears': 40,
          'time_period': ['1979-1-15 0:0:0.0', '2018-12-15 12:0:0.0']},
         'method': 'Standard deviation of nino3.4 sstA, time series are linearly detrended',
         'name': 'ENSO skewness',
         'ref': 'Using CDAT regression calculation',
         'time_frequency': 'monthly',
         'units': 'C'},
        'metric': {'datasets': "GISS-E2-R_r4i1p2; ERA-Interim's ts & HadISST's sst & Tropflux's sst; 's ",
         'method': 'The metric is the absolute value of the relative difference between model and observations values (M = 100 * abs[[model-obs] / obs])',
         'name': 'EnsoSstSkew',
         'units': '%'}},
       'EnsoSstTsRmse': {'diagnostic': {'ERA-Interim': {'name': 'ERA-Interim',
          'nyears': 40,
          'time_period': ['1979-1-16 12:0:0.0', '2019-3-16 12:0:0.0']},
         'GISS-E2-R_r4i1p2': {'keyerror': None,
          'name': 'GISS-E2-R_r4i1p2',
          'nyears': 156,
          'time_period': ['1850-1-16 12:0:0.0', '2005-12-16 12:0:0.0']},
         'HadISST': {'name': 'HadISST',
          'nyears': 151,
          'time_period': ['1870-1-16 11:59:59.5', '2020-10-16 12:0:0.0']},
         'Tropflux': {'name': 'Tropflux',
          'nyears': 40,
          'time_period': ['1979-1-15 0:0:0.0', '2018-12-15 12:0:0.0']},
         'method': 'nino3.4 SSTA during DEC regressed against nino3.4 SSTA during 6 years (centered on ENSO), time series are linearly detrended, smoothing using a triangle shaped window of 5 points',
         'name': 'ENSO life cyle SSTA pattern',
         'ref': 'Using CDAT regridding and rms (uncentered and biased) calculation',
         'time_frequency': 'monthly',
         'units': 'C/C'},
        'metric': {'datasets': "GISS-E2-R_r4i1p2; ERA-Interim's ts & HadISST's sst & Tropflux's sst; 's ",
         'method': 'The metric is the statistical value between the model and the observations',
         'name': 'EnsoSstTsRmse',
         'units': 'C/C'}},
       'SeasonalPrLatRmse': {'diagnostic': {'ERA-Interim': {'name': 'ERA-Interim',
          'nyears': 40,
          'time_period': ['1979-1-16 12:0:0.0', '2019-3-16 12:0:0.0']},
         'GISS-E2-R_r4i1p2': {'keyerror': None,
          'name': 'GISS-E2-R_r4i1p2',
          'nyears': 156,
          'time_period': ['1850-1-16 12:0:0.0', '2005-12-16 12:0:0.0']},
         'GPCPv2.3': {'name': 'GPCPv2.3',
          'nyears': 41,
          'time_period': ['1979-1-1 0:0:0.0', '2019-7-1 0:0:0.0']},
         'method': 'Meridional root mean square error of nino3_LatExt climatological pr STD, time series are linearly detrended, observations and model regridded to generic_1x1deg',
         'name': 'pr meridional seasonality RMSE',
         'ref': 'Using CDAT regridding and rms (uncentered and biased) calculation',
         'time_frequency': 'monthly',
         'units': 'mm/day'},
        'metric': {'datasets': "GISS-E2-R_r4i1p2; ERA-Interim's pr & GPCPv2.3's precip; 's ",
         'method': 'The metric is the statistical value between the model and the observations',
         'name': 'SeasonalPrLatRmse',
         'units': 'mm/day'}},
       'SeasonalPrLonRmse': {'diagnostic': {'ERA-Interim': {'name': 'ERA-Interim',
          'nyears': 40,
          'time_period': ['1979-1-16 12:0:0.0', '2019-3-16 12:0:0.0']},
         'GISS-E2-R_r4i1p2': {'keyerror': None,
          'name': 'GISS-E2-R_r4i1p2',
          'nyears': 156,
          'time_period': ['1850-1-16 12:0:0.0', '2005-12-16 12:0:0.0']},
         'GPCPv2.3': {'name': 'GPCPv2.3',
          'nyears': 41,
          'time_period': ['1979-1-1 0:0:0.0', '2019-7-1 0:0:0.0']},
         'method': 'Zonal root mean square error of equatorial_pacific climatological pr STD, time series are linearly detrended, observations and model regridded to generic_1x1deg',
         'name': 'pr zonal seasonality RMSE',
         'ref': 'Using CDAT regridding and rms (uncentered and biased) calculation',
         'time_frequency': 'monthly',
         'units': 'mm/day'},
        'metric': {'datasets': "GISS-E2-R_r4i1p2; ERA-Interim's pr & GPCPv2.3's precip; 's ",
         'method': 'The metric is the statistical value between the model and the observations',
         'name': 'SeasonalPrLonRmse',
         'units': 'mm/day'}},
       'SeasonalSstLonRmse': {'diagnostic': {'ERA-Interim': {'name': 'ERA-Interim',
          'nyears': 40,
          'time_period': ['1979-1-16 12:0:0.0', '2019-3-16 12:0:0.0']},
         'GISS-E2-R_r4i1p2': {'keyerror': None,
          'name': 'GISS-E2-R_r4i1p2',
          'nyears': 156,
          'time_period': ['1850-1-16 12:0:0.0', '2005-12-16 12:0:0.0']},
         'HadISST': {'name': 'HadISST',
          'nyears': 151,
          'time_period': ['1870-1-16 11:59:59.5', '2020-10-16 12:0:0.0']},
         'Tropflux': {'name': 'Tropflux',
          'nyears': 40,
          'time_period': ['1979-1-15 0:0:0.0', '2018-12-15 12:0:0.0']},
         'method': 'Zonal root mean square error of equatorial_pacific climatological sst STD, time series are linearly detrended, observations and model regridded to generic_1x1deg',
         'name': 'sst zonal seasonality RMSE',
         'ref': 'Using CDAT regridding and rms (uncentered and biased) calculation',
         'time_frequency': 'monthly',
         'units': 'C'},
        'metric': {'datasets': "GISS-E2-R_r4i1p2; ERA-Interim's ts & HadISST's sst & Tropflux's sst; 's ",
         'method': 'The metric is the statistical value between the model and the observations',
         'name': 'SeasonalSstLonRmse',
         'units': 'C'}},
       'SeasonalTauxLonRmse': {'diagnostic': {'ERA-Interim': {'name': 'ERA-Interim',
          'nyears': 40,
          'time_period': ['1979-1-16 12:0:0.0', '2019-3-16 12:0:0.0']},
         'GISS-E2-R_r4i1p2': {'keyerror': None,
          'name': 'GISS-E2-R_r4i1p2',
          'nyears': 156,
          'time_period': ['1850-1-16 12:0:0.0', '2005-12-16 12:0:0.0']},
         'Tropflux': {'name': 'Tropflux',
          'nyears': 40,
          'time_period': ['1979-1-15 0:0:0.0', '2018-12-15 12:0:0.0']},
         'method': 'Zonal root mean square error of equatorial_pacific climatological taux STD, time series are linearly detrended, observations and model regridded to generic_1x1deg',
         'name': 'taux zonal seasonality RMSE',
         'ref': 'Using CDAT regridding and rms (uncentered and biased) calculation',
         'time_frequency': 'monthly',
         'units': '1e-3 N/m2'},
        'metric': {'datasets': "GISS-E2-R_r4i1p2; ERA-Interim's tauu & Tropflux's taux; 's ",
         'method': 'The metric is the statistical value between the model and the observations',
         'name': 'SeasonalTauxLonRmse',
         'units': '1e-3 N/m2'}}},
      'name': 'Metrics Collection for ENSO performance'},
     'value': {'BiasPrLatRmse': {'diagnostic': {'ERA-Interim': {'value': None,
         'value_error': None},
        'GISS-E2-R_r4i1p2': {'value': None, 'value_error': None},
        'GPCPv2.3': {'value': None, 'value_error': None}},
       'metric': {'ERA-Interim': {'value': 2.1740319323509865,
         'value_error': None},
        'GPCPv2.3': {'value': 2.9621924995839386, 'value_error': None}}},
      'BiasPrLonRmse': {'diagnostic': {'ERA-Interim': {'value': None,
         'value_error': None},
        'GISS-E2-R_r4i1p2': {'value': None, 'value_error': None},
        'GPCPv2.3': {'value': None, 'value_error': None}},
       'metric': {'ERA-Interim': {'value': 1.764447698074173,
         'value_error': None},
        'GPCPv2.3': {'value': 2.270993734223533, 'value_error': None}}},
      'BiasSstLonRmse': {'diagnostic': {'ERA-Interim': {'value': None,
         'value_error': None},
        'GISS-E2-R_r4i1p2': {'value': None, 'value_error': None},
        'HadISST': {'value': None, 'value_error': None},
        'Tropflux': {'value': None, 'value_error': None}},
       'metric': {'ERA-Interim': {'value': 1.1138058621535214,
         'value_error': None},
        'HadISST': {'value': 1.294140415788202, 'value_error': None},
        'Tropflux': {'value': 1.0774968532602138, 'value_error': None}}},
      'BiasTauxLonRmse': {'diagnostic': {'ERA-Interim': {'value': None,
         'value_error': None},
        'GISS-E2-R_r4i1p2': {'value': None, 'value_error': None},
        'Tropflux': {'value': None, 'value_error': None}},
       'metric': {'ERA-Interim': {'value': 18.170061541011787,
         'value_error': None},
        'Tropflux': {'value': 17.782273905290737, 'value_error': None}}},
      'EnsoAmpl': {'diagnostic': {'ERA-Interim': {'value': 0.8989844997845644,
         'value_error': 0.14214193002531866},
        'GISS-E2-R_r4i1p2': {'value': 0.517365259084663,
         'value_error': 0.04142237189005884},
        'HadISST': {'value': 0.7665787872085695,
         'value_error': 0.06238329697691264},
        'Tropflux': {'value': 0.9039789553693535,
         'value_error': 0.14293162279134272}},
       'metric': {'ERA-Interim': {'value': 42.45003565593777,
         'value_error': 13.70713310041738},
        'HadISST': {'value': 32.50983881662002,
         'value_error': 10.895808880315188},
        'Tropflux': {'value': 42.7679974172325,
         'value_error': 13.631401616782501}}},
      'EnsoDuration': {'diagnostic': {'ERA-Interim': {'value': 13.0,
         'value_error': None},
        'GISS-E2-R_r4i1p2': {'value': 12.0, 'value_error': None},
        'HadISST': {'value': 13.0, 'value_error': None},
        'Tropflux': {'value': 13.0, 'value_error': None}},
       'metric': {'ERA-Interim': {'value': 7.6923076923076925,
         'value_error': None},
        'HadISST': {'value': 7.6923076923076925, 'value_error': None},
        'Tropflux': {'value': 7.6923076923076925, 'value_error': None}}},
      'EnsoSeasonality': {'diagnostic': {'ERA-Interim': {'value': 2.0466846866656914,
         'value_error': 0.6513411033995022},
        'GISS-E2-R_r4i1p2': {'value': 1.7499157524368758,
         'value_error': 0.2806620050069043},
        'HadISST': {'value': 1.6639865947361325,
         'value_error': 0.2712772451657809},
        'Tropflux': {'value': 2.0532132553583624,
         'value_error': 0.6534187683977347}},
       'metric': {'ERA-Interim': {'value': 14.499983126970562,
         'value_error': 40.92270606074374},
        'HadISST': {'value': 5.1640534829170015,
         'value_error': 34.011581222490285},
        'Tropflux': {'value': 14.77184613580482,
         'value_error': 40.792584799880885}}},
      'EnsoSstDiversity_2': {'diagnostic': {'ERA-Interim': {'value': 33.25,
         'value_error': None},
        'GISS-E2-R_r4i1p2': {'value': 24.0, 'value_error': None},
        'HadISST': {'value': 49.0, 'value_error': None},
        'Tropflux': {'value': 32.0, 'value_error': None}},
       'metric': {'ERA-Interim': {'value': 27.819548872180448,
         'value_error': None},
        'HadISST': {'value': 51.02040816326531, 'value_error': None},
        'Tropflux': {'value': 25.0, 'value_error': None}}},
      'EnsoSstLonRmse': {'diagnostic': {'ERA-Interim': {'value': None,
         'value_error': None},
        'GISS-E2-R_r4i1p2': {'value': None, 'value_error': None},
        'HadISST': {'value': None, 'value_error': None},
        'Tropflux': {'value': None, 'value_error': None}},
       'metric': {'ERA-Interim': {'value': 0.14228211000810323,
         'value_error': None},
        'HadISST': {'value': 0.15108262900914077, 'value_error': None},
        'Tropflux': {'value': 0.14109364134571675, 'value_error': None}}},
      'EnsoSstSkew': {'diagnostic': {'ERA-Interim': {'value': 0.39098111106809963,
         'value_error': 0.061819541653923164},
        'GISS-E2-R_r4i1p2': {'value': -0.276848613535744,
         'value_error': -0.022165628684488372},
        'HadISST': {'value': 0.38989908235027515,
         'value_error': 0.03172953733021198},
        'Tropflux': {'value': 0.39744741059612115,
         'value_error': 0.06284195338099416}},
       'metric': {'ERA-Interim': {'value': 170.80869272160913,
         'value_error': -16.86506997639508},
        'HadISST': {'value': 171.00519751596403,
         'value_error': -11.46328661952425},
        'Tropflux': {'value': 169.65666554991662,
         'value_error': -16.59068249487937}}},
      'EnsoSstTsRmse': {'diagnostic': {'ERA-Interim': {'value': None,
         'value_error': None},
        'GISS-E2-R_r4i1p2': {'value': None, 'value_error': None},
        'HadISST': {'value': None, 'value_error': None},
        'Tropflux': {'value': None, 'value_error': None}},
       'metric': {'ERA-Interim': {'value': 0.1398282610352986,
         'value_error': None},
        'HadISST': {'value': 0.14275201070086227, 'value_error': None},
        'Tropflux': {'value': 0.14296586604552647, 'value_error': None}}},
      'SeasonalPrLatRmse': {'diagnostic': {'ERA-Interim': {'value': None,
         'value_error': None},
        'GISS-E2-R_r4i1p2': {'value': None, 'value_error': None},
        'GPCPv2.3': {'value': None, 'value_error': None}},
       'metric': {'ERA-Interim': {'value': 0.7089014167122109,
         'value_error': None},
        'GPCPv2.3': {'value': 0.8898968503897121, 'value_error': None}}},
      'SeasonalPrLonRmse': {'diagnostic': {'ERA-Interim': {'value': None,
         'value_error': None},
        'GISS-E2-R_r4i1p2': {'value': None, 'value_error': None},
        'GPCPv2.3': {'value': None, 'value_error': None}},
       'metric': {'ERA-Interim': {'value': 0.261328471087466,
         'value_error': None},
        'GPCPv2.3': {'value': 0.524779071835963, 'value_error': None}}},
      'SeasonalSstLonRmse': {'diagnostic': {'ERA-Interim': {'value': None,
         'value_error': None},
        'GISS-E2-R_r4i1p2': {'value': None, 'value_error': None},
        'HadISST': {'value': None, 'value_error': None},
        'Tropflux': {'value': None, 'value_error': None}},
       'metric': {'ERA-Interim': {'value': 0.27637783105961483,
         'value_error': None},
        'HadISST': {'value': 0.2773899865018505, 'value_error': None},
        'Tropflux': {'value': 0.28435465574385005, 'value_error': None}}},
      'SeasonalTauxLonRmse': {'diagnostic': {'ERA-Interim': {'value': None,
         'value_error': None},
        'GISS-E2-R_r4i1p2': {'value': None, 'value_error': None},
        'Tropflux': {'value': None, 'value_error': None}},
       'metric': {'ERA-Interim': {'value': 1.9081130199726781,
         'value_error': None},
        'Tropflux': {'value': 2.0350597266478987, 'value_error': None}}}}},
    'r4i1p3': {'metadata': {'description_of_the_collection': 'Describe which science question this collection is about',
      'metrics': {'BiasPrLatRmse': {'diagnostic': {'ERA-Interim': {'name': 'ERA-Interim',
          'nyears': 40,
          'time_period': ['1979-1-16 12:0:0.0', '2019-3-16 12:0:0.0']},
         'GISS-E2-R_r4i1p3': {'keyerror': None,
          'name': 'GISS-E2-R_r4i1p3',
          'nyears': 156,
          'time_period': ['1850-1-16 12:0:0.0', '2005-12-16 12:0:0.0']},
         'GPCPv2.3': {'name': 'GPCPv2.3',
          'nyears': 41,
          'time_period': ['1979-1-1 0:0:0.0', '2019-7-1 0:0:0.0']},
         'method': 'Meridional root mean square error of nino3_LatExt pr, time series are linearly detrended, observations and model regridded to generic_1x1deg',
         'name': 'pr Meridional RMSE',
         'ref': 'Using CDAT regridding and rms (uncentered and biased) calculation',
         'time_frequency': 'monthly',
         'units': 'mm/day'},
        'metric': {'datasets': "GISS-E2-R_r4i1p3; ERA-Interim's pr & GPCPv2.3's precip; 's ",
         'method': 'The metric is the statistical value between the model and the observations',
         'name': 'BiasPrLatRmse',
         'units': 'mm/day'}},
       'BiasPrLonRmse': {'diagnostic': {'ERA-Interim': {'name': 'ERA-Interim',
          'nyears': 40,
          'time_period': ['1979-1-16 12:0:0.0', '2019-3-16 12:0:0.0']},
         'GISS-E2-R_r4i1p3': {'keyerror': None,
          'name': 'GISS-E2-R_r4i1p3',
          'nyears': 156,
          'time_period': ['1850-1-16 12:0:0.0', '2005-12-16 12:0:0.0']},
         'GPCPv2.3': {'name': 'GPCPv2.3',
          'nyears': 41,
          'time_period': ['1979-1-1 0:0:0.0', '2019-7-1 0:0:0.0']},
         'method': 'Zonal root mean square error of equatorial_pacific pr, time series are linearly detrended, observations and model regridded to generic_1x1deg',
         'name': 'pr Zonal RMSE',
         'ref': 'Using CDAT regridding and rms (uncentered and biased) calculation',
         'time_frequency': 'monthly',
         'units': 'mm/day'},
        'metric': {'datasets': "GISS-E2-R_r4i1p3; ERA-Interim's pr & GPCPv2.3's precip; 's ",
         'method': 'The metric is the statistical value between the model and the observations',
         'name': 'BiasPrLonRmse',
         'units': 'mm/day'}},
       'BiasSstLonRmse': {'diagnostic': {'ERA-Interim': {'name': 'ERA-Interim',
          'nyears': 40,
          'time_period': ['1979-1-16 12:0:0.0', '2019-3-16 12:0:0.0']},
         'GISS-E2-R_r4i1p3': {'keyerror': None,
          'name': 'GISS-E2-R_r4i1p3',
          'nyears': 156,
          'time_period': ['1850-1-16 12:0:0.0', '2005-12-16 12:0:0.0']},
         'HadISST': {'name': 'HadISST',
          'nyears': 151,
          'time_period': ['1870-1-16 11:59:59.5', '2020-10-16 12:0:0.0']},
         'Tropflux': {'name': 'Tropflux',
          'nyears': 40,
          'time_period': ['1979-1-15 0:0:0.0', '2018-12-15 12:0:0.0']},
         'method': 'Zonal root mean square error of equatorial_pacific sst, time series are linearly detrended, observations and model regridded to generic_1x1deg',
         'name': 'sst Zonal RMSE',
         'ref': 'Using CDAT regridding and rms (uncentered and biased) calculation',
         'time_frequency': 'monthly',
         'units': 'C'},
        'metric': {'datasets': "GISS-E2-R_r4i1p3; ERA-Interim's ts & HadISST's sst & Tropflux's sst; 's ",
         'method': 'The metric is the statistical value between the model and the observations',
         'name': 'BiasSstLonRmse',
         'units': 'C'}},
       'BiasTauxLonRmse': {'diagnostic': {'ERA-Interim': {'name': 'ERA-Interim',
          'nyears': 40,
          'time_period': ['1979-1-16 12:0:0.0', '2019-3-16 12:0:0.0']},
         'GISS-E2-R_r4i1p3': {'keyerror': None,
          'name': 'GISS-E2-R_r4i1p3',
          'nyears': 156,
          'time_period': ['1850-1-16 12:0:0.0', '2005-12-16 12:0:0.0']},
         'Tropflux': {'name': 'Tropflux',
          'nyears': 40,
          'time_period': ['1979-1-15 0:0:0.0', '2018-12-15 12:0:0.0']},
         'method': 'Zonal root mean square error of equatorial_pacific taux, time series are linearly detrended, observations and model regridded to generic_1x1deg',
         'name': 'taux Zonal RMSE',
         'ref': 'Using CDAT regridding and rms (uncentered and biased) calculation',
         'time_frequency': 'monthly',
         'units': '1e-3 N/m2'},
        'metric': {'datasets': "GISS-E2-R_r4i1p3; ERA-Interim's tauu & Tropflux's taux; 's ",
         'method': 'The metric is the statistical value between the model and the observations',
         'name': 'BiasTauxLonRmse',
         'units': '1e-3 N/m2'}},
       'EnsoAmpl': {'diagnostic': {'ERA-Interim': {'keyerror': None,
          'name': 'ERA-Interim',
          'nyears': 40,
          'time_period': ['1979-1-16 12:0:0.0', '2019-3-16 12:0:0.0']},
         'GISS-E2-R_r4i1p3': {'keyerror': None,
          'name': 'GISS-E2-R_r4i1p3',
          'nyears': 156,
          'time_period': ['1850-1-16 12:0:0.0', '2005-12-16 12:0:0.0']},
         'HadISST': {'keyerror': None,
          'name': 'HadISST',
          'nyears': 151,
          'time_period': ['1870-1-16 11:59:59.5', '2020-10-16 12:0:0.0']},
         'Tropflux': {'keyerror': None,
          'name': 'Tropflux',
          'nyears': 40,
          'time_period': ['1979-1-15 0:0:0.0', '2018-12-15 12:0:0.0']},
         'method': 'Standard deviation of nino3.4 sstA, time series are linearly detrended',
         'name': 'ENSO amplitude',
         'ref': 'Using CDAT regression calculation',
         'time_frequency': 'monthly',
         'units': 'C'},
        'metric': {'datasets': "GISS-E2-R_r4i1p3; ERA-Interim's ts & HadISST's sst & Tropflux's sst; 's ",
         'method': 'The metric is the absolute value of the relative difference between model and observations values (M = 100 * abs[[model-obs] / obs])',
         'name': 'EnsoAmpl',
         'units': '%'}},
       'EnsoDuration': {'diagnostic': {'ERA-Interim': {'keyerror': None,
          'name': 'ERA-Interim',
          'nyears': 40,
          'time_period': ['1979-1-16 12:0:0.0', '2019-3-16 12:0:0.0']},
         'GISS-E2-R_r4i1p3': {'keyerror': None,
          'name': 'GISS-E2-R_r4i1p3',
          'nyears': 156,
          'time_period': ['1850-1-16 12:0:0.0', '2005-12-16 12:0:0.0']},
         'HadISST': {'keyerror': None,
          'name': 'HadISST',
          'nyears': 151,
          'time_period': ['1870-1-16 11:59:59.5', '2020-10-16 12:0:0.0']},
         'Tropflux': {'keyerror': None,
          'name': 'Tropflux',
          'nyears': 40,
          'time_period': ['1979-1-15 0:0:0.0', '2018-12-15 12:0:0.0']},
         'method': 'nino3.4 SSTA during DEC regressed against nino3.4 SSTA during 6 years (centered on ENSO), the duration is the number of consecutive months during which the regression is above 0.25, time series are linearly detrended, smoothing using a triangle shaped window of 5 points',
         'name': 'ENSO Duration based on life cyle SSTA pattern',
         'ref': 'Using CDAT',
         'time_frequency': 'monthly',
         'units': 'months'},
        'metric': {'datasets': "GISS-E2-R_r4i1p3; ERA-Interim's ts & HadISST's sst & Tropflux's sst; 's ",
         'method': 'The metric is the absolute value of the relative difference between model and observations values (M = 100 * abs[[model-obs] / obs])',
         'name': 'EnsoDuration',
         'units': '%'}},
       'EnsoSeasonality': {'diagnostic': {'ERA-Interim': {'keyerror': None,
          'name': 'ERA-Interim',
          'nyears': 40,
          'time_period': ['1979-1-16 12:0:0.0', '2019-3-16 12:0:0.0']},
         'GISS-E2-R_r4i1p3': {'keyerror': None,
          'name': 'GISS-E2-R_r4i1p3',
          'nyears': 156,
          'time_period': ['1850-1-16 12:0:0.0', '2005-12-16 12:0:0.0']},
         'HadISST': {'keyerror': None,
          'name': 'HadISST',
          'nyears': 151,
          'time_period': ['1870-1-16 11:59:59.5', '2020-10-16 12:0:0.0']},
         'Tropflux': {'keyerror': None,
          'name': 'Tropflux',
          'nyears': 40,
          'time_period': ['1979-1-15 0:0:0.0', '2018-12-15 12:0:0.0']},
         'method': 'Ratio between NDJ and MAM standard deviation nino3.4 sstA, time series are linearly detrended',
         'name': 'ENSO seasonality',
         'ref': 'Using CDAT std dev calculation',
         'time_frequency': 'monthly',
         'units': 'C/C'},
        'metric': {'datasets': "GISS-E2-R_r4i1p3; ERA-Interim's ts & HadISST's sst & Tropflux's sst; 's ",
         'method': 'The metric is the absolute value of the relative difference between model and observations values (M = 100 * abs[[model-obs] / obs])',
         'name': 'EnsoSeasonality',
         'units': '%'}},
       'EnsoSstDiversity_2': {'diagnostic': {'ERA-Interim': {'keyerror': None,
          'name': 'ERA-Interim',
          'nyears': 40,
          'time_period': ['1979-1-16 12:0:0.0', '2019-3-16 12:0:0.0']},
         'GISS-E2-R_r4i1p3': {'keyerror': None,
          'name': 'GISS-E2-R_r4i1p3',
          'nyears': 156,
          'time_period': ['1850-1-16 12:0:0.0', '2005-12-16 12:0:0.0']},
         'HadISST': {'keyerror': None,
          'name': 'HadISST',
          'nyears': 151,
          'time_period': ['1870-1-16 11:59:59.5', '2020-10-16 12:0:0.0']},
         'Tropflux': {'keyerror': None,
          'name': 'Tropflux',
          'nyears': 40,
          'time_period': ['1979-1-15 0:0:0.0', '2018-12-15 12:0:0.0']},
         'method': 'Nino (Nina) events = nino3.4 sstA > 0.75 (< -0.75) during DEC, zonal SSTA (meridional averaged [-5.0 ; 5.0]), the zonal SSTA maximum (minimum) is located for each event, the diversity is the interquartile range (IQR = Q3 - Q1), time series are linearly detrended, smoothing using a triangle shaped window of 5 points',
         'name': 'ENSO Diversity (interquartile range)',
         'ref': 'Using CDAT regridding',
         'time_frequency': 'monthly',
         'units': 'long'},
        'metric': {'datasets': "GISS-E2-R_r4i1p3; ERA-Interim's ts & HadISST's sst & Tropflux's sst; 's ",
         'method': 'The metric is the absolute value of the relative difference between model and observations values (M = 100 * abs[[model-obs] / obs])',
         'name': 'EnsoSstDiversity',
         'units': '%'}},
       'EnsoSstLonRmse': {'diagnostic': {'ERA-Interim': {'name': 'ERA-Interim',
          'nyears': 40,
          'time_period': ['1979-1-16 12:0:0.0', '2019-3-16 12:0:0.0']},
         'GISS-E2-R_r4i1p3': {'keyerror': None,
          'name': 'GISS-E2-R_r4i1p3',
          'nyears': 156,
          'time_period': ['1850-1-16 12:0:0.0', '2005-12-16 12:0:0.0']},
         'HadISST': {'name': 'HadISST',
          'nyears': 151,
          'time_period': ['1870-1-16 11:59:59.5', '2020-10-16 12:0:0.0']},
         'Tropflux': {'name': 'Tropflux',
          'nyears': 40,
          'time_period': ['1979-1-15 0:0:0.0', '2018-12-15 12:0:0.0']},
         'method': 'nino3.4 SSTA during DEC regressed against equatorial_pacific SSTA, time series are linearly detrended, smoothing using a triangle shaped window of 5 points, observations and model regridded to generic_1x1deg',
         'name': 'ENSO Zonal SSTA pattern',
         'ref': 'Using CDAT regridding and rms (uncentered and biased) calculation',
         'time_frequency': 'monthly',
         'units': 'C/C'},
        'metric': {'datasets': "GISS-E2-R_r4i1p3; ERA-Interim's ts & HadISST's sst & Tropflux's sst; 's ",
         'method': 'The metric is the statistical value between the model and the observations',
         'name': 'EnsoSstLonRmse',
         'units': 'C/C'}},
       'EnsoSstSkew': {'diagnostic': {'ERA-Interim': {'keyerror': None,
          'name': 'ERA-Interim',
          'nyears': 40,
          'time_period': ['1979-1-16 12:0:0.0', '2019-3-16 12:0:0.0']},
         'GISS-E2-R_r4i1p3': {'keyerror': None,
          'name': 'GISS-E2-R_r4i1p3',
          'nyears': 156,
          'time_period': ['1850-1-16 12:0:0.0', '2005-12-16 12:0:0.0']},
         'HadISST': {'keyerror': None,
          'name': 'HadISST',
          'nyears': 151,
          'time_period': ['1870-1-16 11:59:59.5', '2020-10-16 12:0:0.0']},
         'Tropflux': {'keyerror': None,
          'name': 'Tropflux',
          'nyears': 40,
          'time_period': ['1979-1-15 0:0:0.0', '2018-12-15 12:0:0.0']},
         'method': 'Standard deviation of nino3.4 sstA, time series are linearly detrended',
         'name': 'ENSO skewness',
         'ref': 'Using CDAT regression calculation',
         'time_frequency': 'monthly',
         'units': 'C'},
        'metric': {'datasets': "GISS-E2-R_r4i1p3; ERA-Interim's ts & HadISST's sst & Tropflux's sst; 's ",
         'method': 'The metric is the absolute value of the relative difference between model and observations values (M = 100 * abs[[model-obs] / obs])',
         'name': 'EnsoSstSkew',
         'units': '%'}},
       'EnsoSstTsRmse': {'diagnostic': {'ERA-Interim': {'name': 'ERA-Interim',
          'nyears': 40,
          'time_period': ['1979-1-16 12:0:0.0', '2019-3-16 12:0:0.0']},
         'GISS-E2-R_r4i1p3': {'keyerror': None,
          'name': 'GISS-E2-R_r4i1p3',
          'nyears': 156,
          'time_period': ['1850-1-16 12:0:0.0', '2005-12-16 12:0:0.0']},
         'HadISST': {'name': 'HadISST',
          'nyears': 151,
          'time_period': ['1870-1-16 11:59:59.5', '2020-10-16 12:0:0.0']},
         'Tropflux': {'name': 'Tropflux',
          'nyears': 40,
          'time_period': ['1979-1-15 0:0:0.0', '2018-12-15 12:0:0.0']},
         'method': 'nino3.4 SSTA during DEC regressed against nino3.4 SSTA during 6 years (centered on ENSO), time series are linearly detrended, smoothing using a triangle shaped window of 5 points',
         'name': 'ENSO life cyle SSTA pattern',
         'ref': 'Using CDAT regridding and rms (uncentered and biased) calculation',
         'time_frequency': 'monthly',
         'units': 'C/C'},
        'metric': {'datasets': "GISS-E2-R_r4i1p3; ERA-Interim's ts & HadISST's sst & Tropflux's sst; 's ",
         'method': 'The metric is the statistical value between the model and the observations',
         'name': 'EnsoSstTsRmse',
         'units': 'C/C'}},
       'SeasonalPrLatRmse': {'diagnostic': {'ERA-Interim': {'name': 'ERA-Interim',
          'nyears': 40,
          'time_period': ['1979-1-16 12:0:0.0', '2019-3-16 12:0:0.0']},
         'GISS-E2-R_r4i1p3': {'keyerror': None,
          'name': 'GISS-E2-R_r4i1p3',
          'nyears': 156,
          'time_period': ['1850-1-16 12:0:0.0', '2005-12-16 12:0:0.0']},
         'GPCPv2.3': {'name': 'GPCPv2.3',
          'nyears': 41,
          'time_period': ['1979-1-1 0:0:0.0', '2019-7-1 0:0:0.0']},
         'method': 'Meridional root mean square error of nino3_LatExt climatological pr STD, time series are linearly detrended, observations and model regridded to generic_1x1deg',
         'name': 'pr meridional seasonality RMSE',
         'ref': 'Using CDAT regridding and rms (uncentered and biased) calculation',
         'time_frequency': 'monthly',
         'units': 'mm/day'},
        'metric': {'datasets': "GISS-E2-R_r4i1p3; ERA-Interim's pr & GPCPv2.3's precip; 's ",
         'method': 'The metric is the statistical value between the model and the observations',
         'name': 'SeasonalPrLatRmse',
         'units': 'mm/day'}},
       'SeasonalPrLonRmse': {'diagnostic': {'ERA-Interim': {'name': 'ERA-Interim',
          'nyears': 40,
          'time_period': ['1979-1-16 12:0:0.0', '2019-3-16 12:0:0.0']},
         'GISS-E2-R_r4i1p3': {'keyerror': None,
          'name': 'GISS-E2-R_r4i1p3',
          'nyears': 156,
          'time_period': ['1850-1-16 12:0:0.0', '2005-12-16 12:0:0.0']},
         'GPCPv2.3': {'name': 'GPCPv2.3',
          'nyears': 41,
          'time_period': ['1979-1-1 0:0:0.0', '2019-7-1 0:0:0.0']},
         'method': 'Zonal root mean square error of equatorial_pacific climatological pr STD, time series are linearly detrended, observations and model regridded to generic_1x1deg',
         'name': 'pr zonal seasonality RMSE',
         'ref': 'Using CDAT regridding and rms (uncentered and biased) calculation',
         'time_frequency': 'monthly',
         'units': 'mm/day'},
        'metric': {'datasets': "GISS-E2-R_r4i1p3; ERA-Interim's pr & GPCPv2.3's precip; 's ",
         'method': 'The metric is the statistical value between the model and the observations',
         'name': 'SeasonalPrLonRmse',
         'units': 'mm/day'}},
       'SeasonalSstLonRmse': {'diagnostic': {'ERA-Interim': {'name': 'ERA-Interim',
          'nyears': 40,
          'time_period': ['1979-1-16 12:0:0.0', '2019-3-16 12:0:0.0']},
         'GISS-E2-R_r4i1p3': {'keyerror': None,
          'name': 'GISS-E2-R_r4i1p3',
          'nyears': 156,
          'time_period': ['1850-1-16 12:0:0.0', '2005-12-16 12:0:0.0']},
         'HadISST': {'name': 'HadISST',
          'nyears': 151,
          'time_period': ['1870-1-16 11:59:59.5', '2020-10-16 12:0:0.0']},
         'Tropflux': {'name': 'Tropflux',
          'nyears': 40,
          'time_period': ['1979-1-15 0:0:0.0', '2018-12-15 12:0:0.0']},
         'method': 'Zonal root mean square error of equatorial_pacific climatological sst STD, time series are linearly detrended, observations and model regridded to generic_1x1deg',
         'name': 'sst zonal seasonality RMSE',
         'ref': 'Using CDAT regridding and rms (uncentered and biased) calculation',
         'time_frequency': 'monthly',
         'units': 'C'},
        'metric': {'datasets': "GISS-E2-R_r4i1p3; ERA-Interim's ts & HadISST's sst & Tropflux's sst; 's ",
         'method': 'The metric is the statistical value between the model and the observations',
         'name': 'SeasonalSstLonRmse',
         'units': 'C'}},
       'SeasonalTauxLonRmse': {'diagnostic': {'ERA-Interim': {'name': 'ERA-Interim',
          'nyears': 40,
          'time_period': ['1979-1-16 12:0:0.0', '2019-3-16 12:0:0.0']},
         'GISS-E2-R_r4i1p3': {'keyerror': None,
          'name': 'GISS-E2-R_r4i1p3',
          'nyears': 156,
          'time_period': ['1850-1-16 12:0:0.0', '2005-12-16 12:0:0.0']},
         'Tropflux': {'name': 'Tropflux',
          'nyears': 40,
          'time_period': ['1979-1-15 0:0:0.0', '2018-12-15 12:0:0.0']},
         'method': 'Zonal root mean square error of equatorial_pacific climatological taux STD, time series are linearly detrended, observations and model regridded to generic_1x1deg',
         'name': 'taux zonal seasonality RMSE',
         'ref': 'Using CDAT regridding and rms (uncentered and biased) calculation',
         'time_frequency': 'monthly',
         'units': '1e-3 N/m2'},
        'metric': {'datasets': "GISS-E2-R_r4i1p3; ERA-Interim's tauu & Tropflux's taux; 's ",
         'method': 'The metric is the statistical value between the model and the observations',
         'name': 'SeasonalTauxLonRmse',
         'units': '1e-3 N/m2'}}},
      'name': 'Metrics Collection for ENSO performance'},
     'value': {'BiasPrLatRmse': {'diagnostic': {'ERA-Interim': {'value': None,
         'value_error': None},
        'GISS-E2-R_r4i1p3': {'value': None, 'value_error': None},
        'GPCPv2.3': {'value': None, 'value_error': None}},
       'metric': {'ERA-Interim': {'value': 2.196903694526837,
         'value_error': None},
        'GPCPv2.3': {'value': 2.935410526284118, 'value_error': None}}},
      'BiasPrLonRmse': {'diagnostic': {'ERA-Interim': {'value': None,
         'value_error': None},
        'GISS-E2-R_r4i1p3': {'value': None, 'value_error': None},
        'GPCPv2.3': {'value': None, 'value_error': None}},
       'metric': {'ERA-Interim': {'value': 1.8638999763669404,
         'value_error': None},
        'GPCPv2.3': {'value': 2.3942753173134577, 'value_error': None}}},
      'BiasSstLonRmse': {'diagnostic': {'ERA-Interim': {'value': None,
         'value_error': None},
        'GISS-E2-R_r4i1p3': {'value': None, 'value_error': None},
        'HadISST': {'value': None, 'value_error': None},
        'Tropflux': {'value': None, 'value_error': None}},
       'metric': {'ERA-Interim': {'value': 1.1659858593734822,
         'value_error': None},
        'HadISST': {'value': 1.3430512230929665, 'value_error': None},
        'Tropflux': {'value': 1.1300397761664573, 'value_error': None}}},
      'BiasTauxLonRmse': {'diagnostic': {'ERA-Interim': {'value': None,
         'value_error': None},
        'GISS-E2-R_r4i1p3': {'value': None, 'value_error': None},
        'Tropflux': {'value': None, 'value_error': None}},
       'metric': {'ERA-Interim': {'value': 18.130691800878708,
         'value_error': None},
        'Tropflux': {'value': 17.74117032546684, 'value_error': None}}},
      'EnsoAmpl': {'diagnostic': {'ERA-Interim': {'value': 0.8989844997845644,
         'value_error': 0.14214193002531866},
        'GISS-E2-R_r4i1p3': {'value': 0.5752187447963482,
         'value_error': 0.0460543578191594},
        'HadISST': {'value': 0.7665787872085695,
         'value_error': 0.06238329697691264},
        'Tropflux': {'value': 0.9039789553693535,
         'value_error': 0.14293162279134272}},
       'metric': {'ERA-Interim': {'value': 36.01460926921482,
         'value_error': 15.239909828364226},
        'HadISST': {'value': 24.962866910137503,
         'value_error': 12.114214083033705},
        'Tropflux': {'value': 36.36812656094172,
         'value_error': 15.155709801027461}}},
      'EnsoDuration': {'diagnostic': {'ERA-Interim': {'value': 13.0,
         'value_error': None},
        'GISS-E2-R_r4i1p3': {'value': 12.0, 'value_error': None},
        'HadISST': {'value': 13.0, 'value_error': None},
        'Tropflux': {'value': 13.0, 'value_error': None}},
       'metric': {'ERA-Interim': {'value': 7.6923076923076925,
         'value_error': None},
        'HadISST': {'value': 7.6923076923076925, 'value_error': None},
        'Tropflux': {'value': 7.6923076923076925, 'value_error': None}}},
      'EnsoSeasonality': {'diagnostic': {'ERA-Interim': {'value': 2.0466846866656914,
         'value_error': 0.6513411033995022},
        'GISS-E2-R_r4i1p3': {'value': 1.8615322583213392,
         'value_error': 0.2985637310127272},
        'HadISST': {'value': 1.6639865947361325,
         'value_error': 0.2712772451657809},
        'Tropflux': {'value': 2.0532132553583624,
         'value_error': 0.6534187683977347}},
       'metric': {'ERA-Interim': {'value': 9.04645593679547,
         'value_error': 43.532917126891576},
        'HadISST': {'value': 11.871830230491282,
         'value_error': 36.18097357773566},
        'Tropflux': {'value': 9.33565943706942,
         'value_error': 43.39449622048375}}},
      'EnsoSstDiversity_2': {'diagnostic': {'ERA-Interim': {'value': 33.25,
         'value_error': None},
        'GISS-E2-R_r4i1p3': {'value': 17.0, 'value_error': None},
        'HadISST': {'value': 49.0, 'value_error': None},
        'Tropflux': {'value': 32.0, 'value_error': None}},
       'metric': {'ERA-Interim': {'value': 48.87218045112782,
         'value_error': None},
        'HadISST': {'value': 65.3061224489796, 'value_error': None},
        'Tropflux': {'value': 46.875, 'value_error': None}}},
      'EnsoSstLonRmse': {'diagnostic': {'ERA-Interim': {'value': None,
         'value_error': None},
        'GISS-E2-R_r4i1p3': {'value': None, 'value_error': None},
        'HadISST': {'value': None, 'value_error': None},
        'Tropflux': {'value': None, 'value_error': None}},
       'metric': {'ERA-Interim': {'value': 0.09417170338323333,
         'value_error': None},
        'HadISST': {'value': 0.10449103795650028, 'value_error': None},
        'Tropflux': {'value': 0.09175263780437039, 'value_error': None}}},
      'EnsoSstSkew': {'diagnostic': {'ERA-Interim': {'value': 0.39098111106809963,
         'value_error': 0.061819541653923164},
        'GISS-E2-R_r4i1p3': {'value': -0.12886790947730895,
         'value_error': -0.010317690214661286},
        'HadISST': {'value': 0.38989908235027515,
         'value_error': 0.03172953733021198},
        'Tropflux': {'value': 0.39744741059612115,
         'value_error': 0.06284195338099416}},
       'metric': {'ERA-Interim': {'value': 132.96013690412354,
         'value_error': -7.8503781662101755},
        'HadISST': {'value': 133.0516062516755,
         'value_error': -5.33594791583296},
        'Tropflux': {'value': 132.4238895616462,
         'value_error': -7.722655868171252}}},
      'EnsoSstTsRmse': {'diagnostic': {'ERA-Interim': {'value': None,
         'value_error': None},
        'GISS-E2-R_r4i1p3': {'value': None, 'value_error': None},
        'HadISST': {'value': None, 'value_error': None},
        'Tropflux': {'value': None, 'value_error': None}},
       'metric': {'ERA-Interim': {'value': 0.24131544732441912,
         'value_error': None},
        'HadISST': {'value': 0.22525480861176733, 'value_error': None},
        'Tropflux': {'value': 0.2402994064134987, 'value_error': None}}},
      'SeasonalPrLatRmse': {'diagnostic': {'ERA-Interim': {'value': None,
         'value_error': None},
        'GISS-E2-R_r4i1p3': {'value': None, 'value_error': None},
        'GPCPv2.3': {'value': None, 'value_error': None}},
       'metric': {'ERA-Interim': {'value': 0.7501034861749311,
         'value_error': None},
        'GPCPv2.3': {'value': 0.8886123752967068, 'value_error': None}}},
      'SeasonalPrLonRmse': {'diagnostic': {'ERA-Interim': {'value': None,
         'value_error': None},
        'GISS-E2-R_r4i1p3': {'value': None, 'value_error': None},
        'GPCPv2.3': {'value': None, 'value_error': None}},
       'metric': {'ERA-Interim': {'value': 0.19376167847796702,
         'value_error': None},
        'GPCPv2.3': {'value': 0.4707488233953825, 'value_error': None}}},
      'SeasonalSstLonRmse': {'diagnostic': {'ERA-Interim': {'value': None,
         'value_error': None},
        'GISS-E2-R_r4i1p3': {'value': None, 'value_error': None},
        'HadISST': {'value': None, 'value_error': None},
        'Tropflux': {'value': None, 'value_error': None}},
       'metric': {'ERA-Interim': {'value': 0.2748203794731039,
         'value_error': None},
        'HadISST': {'value': 0.277662572064297, 'value_error': None},
        'Tropflux': {'value': 0.2823925669713831, 'value_error': None}}},
      'SeasonalTauxLonRmse': {'diagnostic': {'ERA-Interim': {'value': None,
         'value_error': None},
        'GISS-E2-R_r4i1p3': {'value': None, 'value_error': None},
        'Tropflux': {'value': None, 'value_error': None}},
       'metric': {'ERA-Interim': {'value': 1.7827024988769753,
         'value_error': None},
        'Tropflux': {'value': 1.8176483130182801, 'value_error': None}}}}},
    'r5i1p1': {'metadata': {'description_of_the_collection': 'Describe which science question this collection is about',
      'metrics': {'BiasPrLatRmse': {'diagnostic': {'ERA-Interim': {'name': 'ERA-Interim',
          'nyears': 40,
          'time_period': ['1979-1-16 12:0:0.0', '2019-3-16 12:0:0.0']},
         'GISS-E2-R_r5i1p1': {'keyerror': None,
          'name': 'GISS-E2-R_r5i1p1',
          'nyears': 156,
          'time_period': ['1850-1-16 12:0:0.0', '2005-12-16 12:0:0.0']},
         'GPCPv2.3': {'name': 'GPCPv2.3',
          'nyears': 41,
          'time_period': ['1979-1-1 0:0:0.0', '2019-7-1 0:0:0.0']},
         'method': 'Meridional root mean square error of nino3_LatExt pr, time series are linearly detrended, observations and model regridded to generic_1x1deg',
         'name': 'pr Meridional RMSE',
         'ref': 'Using CDAT regridding and rms (uncentered and biased) calculation',
         'time_frequency': 'monthly',
         'units': 'mm/day'},
        'metric': {'datasets': "GISS-E2-R_r5i1p1; ERA-Interim's pr & GPCPv2.3's precip; 's ",
         'method': 'The metric is the statistical value between the model and the observations',
         'name': 'BiasPrLatRmse',
         'units': 'mm/day'}},
       'BiasPrLonRmse': {'diagnostic': {'ERA-Interim': {'name': 'ERA-Interim',
          'nyears': 40,
          'time_period': ['1979-1-16 12:0:0.0', '2019-3-16 12:0:0.0']},
         'GISS-E2-R_r5i1p1': {'keyerror': None,
          'name': 'GISS-E2-R_r5i1p1',
          'nyears': 156,
          'time_period': ['1850-1-16 12:0:0.0', '2005-12-16 12:0:0.0']},
         'GPCPv2.3': {'name': 'GPCPv2.3',
          'nyears': 41,
          'time_period': ['1979-1-1 0:0:0.0', '2019-7-1 0:0:0.0']},
         'method': 'Zonal root mean square error of equatorial_pacific pr, time series are linearly detrended, observations and model regridded to generic_1x1deg',
         'name': 'pr Zonal RMSE',
         'ref': 'Using CDAT regridding and rms (uncentered and biased) calculation',
         'time_frequency': 'monthly',
         'units': 'mm/day'},
        'metric': {'datasets': "GISS-E2-R_r5i1p1; ERA-Interim's pr & GPCPv2.3's precip; 's ",
         'method': 'The metric is the statistical value between the model and the observations',
         'name': 'BiasPrLonRmse',
         'units': 'mm/day'}},
       'BiasSstLonRmse': {'diagnostic': {'ERA-Interim': {'name': 'ERA-Interim',
          'nyears': 40,
          'time_period': ['1979-1-16 12:0:0.0', '2019-3-16 12:0:0.0']},
         'GISS-E2-R_r5i1p1': {'keyerror': None,
          'name': 'GISS-E2-R_r5i1p1',
          'nyears': 156,
          'time_period': ['1850-1-16 12:0:0.0', '2005-12-16 12:0:0.0']},
         'HadISST': {'name': 'HadISST',
          'nyears': 151,
          'time_period': ['1870-1-16 11:59:59.5', '2020-10-16 12:0:0.0']},
         'Tropflux': {'name': 'Tropflux',
          'nyears': 40,
          'time_period': ['1979-1-15 0:0:0.0', '2018-12-15 12:0:0.0']},
         'method': 'Zonal root mean square error of equatorial_pacific sst, time series are linearly detrended, observations and model regridded to generic_1x1deg',
         'name': 'sst Zonal RMSE',
         'ref': 'Using CDAT regridding and rms (uncentered and biased) calculation',
         'time_frequency': 'monthly',
         'units': 'C'},
        'metric': {'datasets': "GISS-E2-R_r5i1p1; ERA-Interim's ts & HadISST's sst & Tropflux's sst; 's ",
         'method': 'The metric is the statistical value between the model and the observations',
         'name': 'BiasSstLonRmse',
         'units': 'C'}},
       'BiasTauxLonRmse': {'diagnostic': {'ERA-Interim': {'name': 'ERA-Interim',
          'nyears': 40,
          'time_period': ['1979-1-16 12:0:0.0', '2019-3-16 12:0:0.0']},
         'GISS-E2-R_r5i1p1': {'keyerror': None,
          'name': 'GISS-E2-R_r5i1p1',
          'nyears': 156,
          'time_period': ['1850-1-16 12:0:0.0', '2005-12-16 12:0:0.0']},
         'Tropflux': {'name': 'Tropflux',
          'nyears': 40,
          'time_period': ['1979-1-15 0:0:0.0', '2018-12-15 12:0:0.0']},
         'method': 'Zonal root mean square error of equatorial_pacific taux, time series are linearly detrended, observations and model regridded to generic_1x1deg',
         'name': 'taux Zonal RMSE',
         'ref': 'Using CDAT regridding and rms (uncentered and biased) calculation',
         'time_frequency': 'monthly',
         'units': '1e-3 N/m2'},
        'metric': {'datasets': "GISS-E2-R_r5i1p1; ERA-Interim's tauu & Tropflux's taux; 's ",
         'method': 'The metric is the statistical value between the model and the observations',
         'name': 'BiasTauxLonRmse',
         'units': '1e-3 N/m2'}},
       'EnsoAmpl': {'diagnostic': {'ERA-Interim': {'keyerror': None,
          'name': 'ERA-Interim',
          'nyears': 40,
          'time_period': ['1979-1-16 12:0:0.0', '2019-3-16 12:0:0.0']},
         'GISS-E2-R_r5i1p1': {'keyerror': None,
          'name': 'GISS-E2-R_r5i1p1',
          'nyears': 156,
          'time_period': ['1850-1-16 12:0:0.0', '2005-12-16 12:0:0.0']},
         'HadISST': {'keyerror': None,
          'name': 'HadISST',
          'nyears': 151,
          'time_period': ['1870-1-16 11:59:59.5', '2020-10-16 12:0:0.0']},
         'Tropflux': {'keyerror': None,
          'name': 'Tropflux',
          'nyears': 40,
          'time_period': ['1979-1-15 0:0:0.0', '2018-12-15 12:0:0.0']},
         'method': 'Standard deviation of nino3.4 sstA, time series are linearly detrended',
         'name': 'ENSO amplitude',
         'ref': 'Using CDAT regression calculation',
         'time_frequency': 'monthly',
         'units': 'C'},
        'metric': {'datasets': "GISS-E2-R_r5i1p1; ERA-Interim's ts & HadISST's sst & Tropflux's sst; 's ",
         'method': 'The metric is the absolute value of the relative difference between model and observations values (M = 100 * abs[[model-obs] / obs])',
         'name': 'EnsoAmpl',
         'units': '%'}},
       'EnsoDuration': {'diagnostic': {'ERA-Interim': {'keyerror': None,
          'name': 'ERA-Interim',
          'nyears': 40,
          'time_period': ['1979-1-16 12:0:0.0', '2019-3-16 12:0:0.0']},
         'GISS-E2-R_r5i1p1': {'keyerror': None,
          'name': 'GISS-E2-R_r5i1p1',
          'nyears': 156,
          'time_period': ['1850-1-16 12:0:0.0', '2005-12-16 12:0:0.0']},
         'HadISST': {'keyerror': None,
          'name': 'HadISST',
          'nyears': 151,
          'time_period': ['1870-1-16 11:59:59.5', '2020-10-16 12:0:0.0']},
         'Tropflux': {'keyerror': None,
          'name': 'Tropflux',
          'nyears': 40,
          'time_period': ['1979-1-15 0:0:0.0', '2018-12-15 12:0:0.0']},
         'method': 'nino3.4 SSTA during DEC regressed against nino3.4 SSTA during 6 years (centered on ENSO), the duration is the number of consecutive months during which the regression is above 0.25, time series are linearly detrended, smoothing using a triangle shaped window of 5 points',
         'name': 'ENSO Duration based on life cyle SSTA pattern',
         'ref': 'Using CDAT',
         'time_frequency': 'monthly',
         'units': 'months'},
        'metric': {'datasets': "GISS-E2-R_r5i1p1; ERA-Interim's ts & HadISST's sst & Tropflux's sst; 's ",
         'method': 'The metric is the absolute value of the relative difference between model and observations values (M = 100 * abs[[model-obs] / obs])',
         'name': 'EnsoDuration',
         'units': '%'}},
       'EnsoSeasonality': {'diagnostic': {'ERA-Interim': {'keyerror': None,
          'name': 'ERA-Interim',
          'nyears': 40,
          'time_period': ['1979-1-16 12:0:0.0', '2019-3-16 12:0:0.0']},
         'GISS-E2-R_r5i1p1': {'keyerror': None,
          'name': 'GISS-E2-R_r5i1p1',
          'nyears': 156,
          'time_period': ['1850-1-16 12:0:0.0', '2005-12-16 12:0:0.0']},
         'HadISST': {'keyerror': None,
          'name': 'HadISST',
          'nyears': 151,
          'time_period': ['1870-1-16 11:59:59.5', '2020-10-16 12:0:0.0']},
         'Tropflux': {'keyerror': None,
          'name': 'Tropflux',
          'nyears': 40,
          'time_period': ['1979-1-15 0:0:0.0', '2018-12-15 12:0:0.0']},
         'method': 'Ratio between NDJ and MAM standard deviation nino3.4 sstA, time series are linearly detrended',
         'name': 'ENSO seasonality',
         'ref': 'Using CDAT std dev calculation',
         'time_frequency': 'monthly',
         'units': 'C/C'},
        'metric': {'datasets': "GISS-E2-R_r5i1p1; ERA-Interim's ts & HadISST's sst & Tropflux's sst; 's ",
         'method': 'The metric is the absolute value of the relative difference between model and observations values (M = 100 * abs[[model-obs] / obs])',
         'name': 'EnsoSeasonality',
         'units': '%'}},
       'EnsoSstDiversity_2': {'diagnostic': {'ERA-Interim': {'keyerror': None,
          'name': 'ERA-Interim',
          'nyears': 40,
          'time_period': ['1979-1-16 12:0:0.0', '2019-3-16 12:0:0.0']},
         'GISS-E2-R_r5i1p1': {'keyerror': None,
          'name': 'GISS-E2-R_r5i1p1',
          'nyears': 156,
          'time_period': ['1850-1-16 12:0:0.0', '2005-12-16 12:0:0.0']},
         'HadISST': {'keyerror': None,
          'name': 'HadISST',
          'nyears': 151,
          'time_period': ['1870-1-16 11:59:59.5', '2020-10-16 12:0:0.0']},
         'Tropflux': {'keyerror': None,
          'name': 'Tropflux',
          'nyears': 40,
          'time_period': ['1979-1-15 0:0:0.0', '2018-12-15 12:0:0.0']},
         'method': 'Nino (Nina) events = nino3.4 sstA > 0.75 (< -0.75) during DEC, zonal SSTA (meridional averaged [-5.0 ; 5.0]), the zonal SSTA maximum (minimum) is located for each event, the diversity is the interquartile range (IQR = Q3 - Q1), time series are linearly detrended, smoothing using a triangle shaped window of 5 points',
         'name': 'ENSO Diversity (interquartile range)',
         'ref': 'Using CDAT regridding',
         'time_frequency': 'monthly',
         'units': 'long'},
        'metric': {'datasets': "GISS-E2-R_r5i1p1; ERA-Interim's ts & HadISST's sst & Tropflux's sst; 's ",
         'method': 'The metric is the absolute value of the relative difference between model and observations values (M = 100 * abs[[model-obs] / obs])',
         'name': 'EnsoSstDiversity',
         'units': '%'}},
       'EnsoSstLonRmse': {'diagnostic': {'ERA-Interim': {'name': 'ERA-Interim',
          'nyears': 40,
          'time_period': ['1979-1-16 12:0:0.0', '2019-3-16 12:0:0.0']},
         'GISS-E2-R_r5i1p1': {'keyerror': None,
          'name': 'GISS-E2-R_r5i1p1',
          'nyears': 156,
          'time_period': ['1850-1-16 12:0:0.0', '2005-12-16 12:0:0.0']},
         'HadISST': {'name': 'HadISST',
          'nyears': 151,
          'time_period': ['1870-1-16 11:59:59.5', '2020-10-16 12:0:0.0']},
         'Tropflux': {'name': 'Tropflux',
          'nyears': 40,
          'time_period': ['1979-1-15 0:0:0.0', '2018-12-15 12:0:0.0']},
         'method': 'nino3.4 SSTA during DEC regressed against equatorial_pacific SSTA, time series are linearly detrended, smoothing using a triangle shaped window of 5 points, observations and model regridded to generic_1x1deg',
         'name': 'ENSO Zonal SSTA pattern',
         'ref': 'Using CDAT regridding and rms (uncentered and biased) calculation',
         'time_frequency': 'monthly',
         'units': 'C/C'},
        'metric': {'datasets': "GISS-E2-R_r5i1p1; ERA-Interim's ts & HadISST's sst & Tropflux's sst; 's ",
         'method': 'The metric is the statistical value between the model and the observations',
         'name': 'EnsoSstLonRmse',
         'units': 'C/C'}},
       'EnsoSstSkew': {'diagnostic': {'ERA-Interim': {'keyerror': None,
          'name': 'ERA-Interim',
          'nyears': 40,
          'time_period': ['1979-1-16 12:0:0.0', '2019-3-16 12:0:0.0']},
         'GISS-E2-R_r5i1p1': {'keyerror': None,
          'name': 'GISS-E2-R_r5i1p1',
          'nyears': 156,
          'time_period': ['1850-1-16 12:0:0.0', '2005-12-16 12:0:0.0']},
         'HadISST': {'keyerror': None,
          'name': 'HadISST',
          'nyears': 151,
          'time_period': ['1870-1-16 11:59:59.5', '2020-10-16 12:0:0.0']},
         'Tropflux': {'keyerror': None,
          'name': 'Tropflux',
          'nyears': 40,
          'time_period': ['1979-1-15 0:0:0.0', '2018-12-15 12:0:0.0']},
         'method': 'Standard deviation of nino3.4 sstA, time series are linearly detrended',
         'name': 'ENSO skewness',
         'ref': 'Using CDAT regression calculation',
         'time_frequency': 'monthly',
         'units': 'C'},
        'metric': {'datasets': "GISS-E2-R_r5i1p1; ERA-Interim's ts & HadISST's sst & Tropflux's sst; 's ",
         'method': 'The metric is the absolute value of the relative difference between model and observations values (M = 100 * abs[[model-obs] / obs])',
         'name': 'EnsoSstSkew',
         'units': '%'}},
       'EnsoSstTsRmse': {'diagnostic': {'ERA-Interim': {'name': 'ERA-Interim',
          'nyears': 40,
          'time_period': ['1979-1-16 12:0:0.0', '2019-3-16 12:0:0.0']},
         'GISS-E2-R_r5i1p1': {'keyerror': None,
          'name': 'GISS-E2-R_r5i1p1',
          'nyears': 156,
          'time_period': ['1850-1-16 12:0:0.0', '2005-12-16 12:0:0.0']},
         'HadISST': {'name': 'HadISST',
          'nyears': 151,
          'time_period': ['1870-1-16 11:59:59.5', '2020-10-16 12:0:0.0']},
         'Tropflux': {'name': 'Tropflux',
          'nyears': 40,
          'time_period': ['1979-1-15 0:0:0.0', '2018-12-15 12:0:0.0']},
         'method': 'nino3.4 SSTA during DEC regressed against nino3.4 SSTA during 6 years (centered on ENSO), time series are linearly detrended, smoothing using a triangle shaped window of 5 points',
         'name': 'ENSO life cyle SSTA pattern',
         'ref': 'Using CDAT regridding and rms (uncentered and biased) calculation',
         'time_frequency': 'monthly',
         'units': 'C/C'},
        'metric': {'datasets': "GISS-E2-R_r5i1p1; ERA-Interim's ts & HadISST's sst & Tropflux's sst; 's ",
         'method': 'The metric is the statistical value between the model and the observations',
         'name': 'EnsoSstTsRmse',
         'units': 'C/C'}},
       'SeasonalPrLatRmse': {'diagnostic': {'ERA-Interim': {'name': 'ERA-Interim',
          'nyears': 40,
          'time_period': ['1979-1-16 12:0:0.0', '2019-3-16 12:0:0.0']},
         'GISS-E2-R_r5i1p1': {'keyerror': None,
          'name': 'GISS-E2-R_r5i1p1',
          'nyears': 156,
          'time_period': ['1850-1-16 12:0:0.0', '2005-12-16 12:0:0.0']},
         'GPCPv2.3': {'name': 'GPCPv2.3',
          'nyears': 41,
          'time_period': ['1979-1-1 0:0:0.0', '2019-7-1 0:0:0.0']},
         'method': 'Meridional root mean square error of nino3_LatExt climatological pr STD, time series are linearly detrended, observations and model regridded to generic_1x1deg',
         'name': 'pr meridional seasonality RMSE',
         'ref': 'Using CDAT regridding and rms (uncentered and biased) calculation',
         'time_frequency': 'monthly',
         'units': 'mm/day'},
        'metric': {'datasets': "GISS-E2-R_r5i1p1; ERA-Interim's pr & GPCPv2.3's precip; 's ",
         'method': 'The metric is the statistical value between the model and the observations',
         'name': 'SeasonalPrLatRmse',
         'units': 'mm/day'}},
       'SeasonalPrLonRmse': {'diagnostic': {'ERA-Interim': {'name': 'ERA-Interim',
          'nyears': 40,
          'time_period': ['1979-1-16 12:0:0.0', '2019-3-16 12:0:0.0']},
         'GISS-E2-R_r5i1p1': {'keyerror': None,
          'name': 'GISS-E2-R_r5i1p1',
          'nyears': 156,
          'time_period': ['1850-1-16 12:0:0.0', '2005-12-16 12:0:0.0']},
         'GPCPv2.3': {'name': 'GPCPv2.3',
          'nyears': 41,
          'time_period': ['1979-1-1 0:0:0.0', '2019-7-1 0:0:0.0']},
         'method': 'Zonal root mean square error of equatorial_pacific climatological pr STD, time series are linearly detrended, observations and model regridded to generic_1x1deg',
         'name': 'pr zonal seasonality RMSE',
         'ref': 'Using CDAT regridding and rms (uncentered and biased) calculation',
         'time_frequency': 'monthly',
         'units': 'mm/day'},
        'metric': {'datasets': "GISS-E2-R_r5i1p1; ERA-Interim's pr & GPCPv2.3's precip; 's ",
         'method': 'The metric is the statistical value between the model and the observations',
         'name': 'SeasonalPrLonRmse',
         'units': 'mm/day'}},
       'SeasonalSstLonRmse': {'diagnostic': {'ERA-Interim': {'name': 'ERA-Interim',
          'nyears': 40,
          'time_period': ['1979-1-16 12:0:0.0', '2019-3-16 12:0:0.0']},
         'GISS-E2-R_r5i1p1': {'keyerror': None,
          'name': 'GISS-E2-R_r5i1p1',
          'nyears': 156,
          'time_period': ['1850-1-16 12:0:0.0', '2005-12-16 12:0:0.0']},
         'HadISST': {'name': 'HadISST',
          'nyears': 151,
          'time_period': ['1870-1-16 11:59:59.5', '2020-10-16 12:0:0.0']},
         'Tropflux': {'name': 'Tropflux',
          'nyears': 40,
          'time_period': ['1979-1-15 0:0:0.0', '2018-12-15 12:0:0.0']},
         'method': 'Zonal root mean square error of equatorial_pacific climatological sst STD, time series are linearly detrended, observations and model regridded to generic_1x1deg',
         'name': 'sst zonal seasonality RMSE',
         'ref': 'Using CDAT regridding and rms (uncentered and biased) calculation',
         'time_frequency': 'monthly',
         'units': 'C'},
        'metric': {'datasets': "GISS-E2-R_r5i1p1; ERA-Interim's ts & HadISST's sst & Tropflux's sst; 's ",
         'method': 'The metric is the statistical value between the model and the observations',
         'name': 'SeasonalSstLonRmse',
         'units': 'C'}},
       'SeasonalTauxLonRmse': {'diagnostic': {'ERA-Interim': {'name': 'ERA-Interim',
          'nyears': 40,
          'time_period': ['1979-1-16 12:0:0.0', '2019-3-16 12:0:0.0']},
         'GISS-E2-R_r5i1p1': {'keyerror': None,
          'name': 'GISS-E2-R_r5i1p1',
          'nyears': 156,
          'time_period': ['1850-1-16 12:0:0.0', '2005-12-16 12:0:0.0']},
         'Tropflux': {'name': 'Tropflux',
          'nyears': 40,
          'time_period': ['1979-1-15 0:0:0.0', '2018-12-15 12:0:0.0']},
         'method': 'Zonal root mean square error of equatorial_pacific climatological taux STD, time series are linearly detrended, observations and model regridded to generic_1x1deg',
         'name': 'taux zonal seasonality RMSE',
         'ref': 'Using CDAT regridding and rms (uncentered and biased) calculation',
         'time_frequency': 'monthly',
         'units': '1e-3 N/m2'},
        'metric': {'datasets': "GISS-E2-R_r5i1p1; ERA-Interim's tauu & Tropflux's taux; 's ",
         'method': 'The metric is the statistical value between the model and the observations',
         'name': 'SeasonalTauxLonRmse',
         'units': '1e-3 N/m2'}}},
      'name': 'Metrics Collection for ENSO performance'},
     'value': {'BiasPrLatRmse': {'diagnostic': {'ERA-Interim': {'value': None,
         'value_error': None},
        'GISS-E2-R_r5i1p1': {'value': None, 'value_error': None},
        'GPCPv2.3': {'value': None, 'value_error': None}},
       'metric': {'ERA-Interim': {'value': 2.0342431129161938,
         'value_error': None},
        'GPCPv2.3': {'value': 2.841692891304727, 'value_error': None}}},
      'BiasPrLonRmse': {'diagnostic': {'ERA-Interim': {'value': None,
         'value_error': None},
        'GISS-E2-R_r5i1p1': {'value': None, 'value_error': None},
        'GPCPv2.3': {'value': None, 'value_error': None}},
       'metric': {'ERA-Interim': {'value': 1.648391355081595,
         'value_error': None},
        'GPCPv2.3': {'value': 2.129319090507731, 'value_error': None}}},
      'BiasSstLonRmse': {'diagnostic': {'ERA-Interim': {'value': None,
         'value_error': None},
        'GISS-E2-R_r5i1p1': {'value': None, 'value_error': None},
        'HadISST': {'value': None, 'value_error': None},
        'Tropflux': {'value': None, 'value_error': None}},
       'metric': {'ERA-Interim': {'value': 0.9960408525406175,
         'value_error': None},
        'HadISST': {'value': 1.1691586864344647, 'value_error': None},
        'Tropflux': {'value': 0.9622495449759947, 'value_error': None}}},
      'BiasTauxLonRmse': {'diagnostic': {'ERA-Interim': {'value': None,
         'value_error': None},
        'GISS-E2-R_r5i1p1': {'value': None, 'value_error': None},
        'Tropflux': {'value': None, 'value_error': None}},
       'metric': {'ERA-Interim': {'value': 18.06158267233974,
         'value_error': None},
        'Tropflux': {'value': 17.67638363846943, 'value_error': None}}},
      'EnsoAmpl': {'diagnostic': {'ERA-Interim': {'value': 0.8989844997845644,
         'value_error': 0.14214193002531866},
        'GISS-E2-R_r5i1p1': {'value': 0.50952389658486,
         'value_error': 0.04079456043985388},
        'HadISST': {'value': 0.7665787872085695,
         'value_error': 0.06238329697691264},
        'Tropflux': {'value': 0.9039789553693535,
         'value_error': 0.14293162279134272}},
       'metric': {'ERA-Interim': {'value': 43.322282341134475,
         'value_error': 13.499383164398129},
        'HadISST': {'value': 33.5327424803591,
         'value_error': 10.730668323119128},
        'Tropflux': {'value': 43.6354249666492,
         'value_error': 13.424799492691864}}},
      'EnsoDuration': {'diagnostic': {'ERA-Interim': {'value': 13.0,
         'value_error': None},
        'GISS-E2-R_r5i1p1': {'value': 12.0, 'value_error': None},
        'HadISST': {'value': 13.0, 'value_error': None},
        'Tropflux': {'value': 13.0, 'value_error': None}},
       'metric': {'ERA-Interim': {'value': 7.6923076923076925,
         'value_error': None},
        'HadISST': {'value': 7.6923076923076925, 'value_error': None},
        'Tropflux': {'value': 7.6923076923076925, 'value_error': None}}},
      'EnsoSeasonality': {'diagnostic': {'ERA-Interim': {'value': 2.0466846866656914,
         'value_error': 0.6513411033995022},
        'GISS-E2-R_r5i1p1': {'value': 1.7327751750335678,
         'value_error': 0.27791289619164317},
        'HadISST': {'value': 1.6639865947361325,
         'value_error': 0.2712772451657809},
        'Tropflux': {'value': 2.0532132553583624,
         'value_error': 0.6534187683977347}},
       'metric': {'ERA-Interim': {'value': 15.337463248602399,
         'value_error': 40.521864586055486},
        'HadISST': {'value': 4.133962407812755,
         'value_error': 33.67843481830416},
        'Tropflux': {'value': 15.606663335556256,
         'value_error': 40.39301787429051}}},
      'EnsoSstDiversity_2': {'diagnostic': {'ERA-Interim': {'value': 33.25,
         'value_error': None},
        'GISS-E2-R_r5i1p1': {'value': 27.0, 'value_error': None},
        'HadISST': {'value': 49.0, 'value_error': None},
        'Tropflux': {'value': 32.0, 'value_error': None}},
       'metric': {'ERA-Interim': {'value': 18.796992481203006,
         'value_error': None},
        'HadISST': {'value': 44.89795918367347, 'value_error': None},
        'Tropflux': {'value': 15.625, 'value_error': None}}},
      'EnsoSstLonRmse': {'diagnostic': {'ERA-Interim': {'value': None,
         'value_error': None},
        'GISS-E2-R_r5i1p1': {'value': None, 'value_error': None},
        'HadISST': {'value': None, 'value_error': None},
        'Tropflux': {'value': None, 'value_error': None}},
       'metric': {'ERA-Interim': {'value': 0.12685798163740106,
         'value_error': None},
        'HadISST': {'value': 0.13617834351646066, 'value_error': None},
        'Tropflux': {'value': 0.1254359930783098, 'value_error': None}}},
      'EnsoSstSkew': {'diagnostic': {'ERA-Interim': {'value': 0.39098111106809963,
         'value_error': 0.061819541653923164},
        'GISS-E2-R_r5i1p1': {'value': 0.006673935599270866,
         'value_error': 0.0005343424930626458},
        'HadISST': {'value': 0.38989908235027515,
         'value_error': 0.03172953733021198},
        'Tropflux': {'value': 0.39744741059612115,
         'value_error': 0.06284195338099416}},
       'metric': {'ERA-Interim': {'value': 98.29302863735828,
         'value_error': 0.4065629567804403},
        'HadISST': {'value': 98.28829153455786,
         'value_error': 0.27634321760766445},
        'Tropflux': {'value': 98.32080033198334,
         'value_error': 0.39994835121137123}}},
      'EnsoSstTsRmse': {'diagnostic': {'ERA-Interim': {'value': None,
         'value_error': None},
        'GISS-E2-R_r5i1p1': {'value': None, 'value_error': None},
        'HadISST': {'value': None, 'value_error': None},
        'Tropflux': {'value': None, 'value_error': None}},
       'metric': {'ERA-Interim': {'value': 0.1364200794698191,
         'value_error': None},
        'HadISST': {'value': 0.1284768259544277, 'value_error': None},
        'Tropflux': {'value': 0.13863446780615277, 'value_error': None}}},
      'SeasonalPrLatRmse': {'diagnostic': {'ERA-Interim': {'value': None,
         'value_error': None},
        'GISS-E2-R_r5i1p1': {'value': None, 'value_error': None},
        'GPCPv2.3': {'value': None, 'value_error': None}},
       'metric': {'ERA-Interim': {'value': 0.6786290564241176,
         'value_error': None},
        'GPCPv2.3': {'value': 0.8514846544238807, 'value_error': None}}},
      'SeasonalPrLonRmse': {'diagnostic': {'ERA-Interim': {'value': None,
         'value_error': None},
        'GISS-E2-R_r5i1p1': {'value': None, 'value_error': None},
        'GPCPv2.3': {'value': None, 'value_error': None}},
       'metric': {'ERA-Interim': {'value': 0.31648432694831635,
         'value_error': None},
        'GPCPv2.3': {'value': 0.5564187005914384, 'value_error': None}}},
      'SeasonalSstLonRmse': {'diagnostic': {'ERA-Interim': {'value': None,
         'value_error': None},
        'GISS-E2-R_r5i1p1': {'value': None, 'value_error': None},
        'HadISST': {'value': None, 'value_error': None},
        'Tropflux': {'value': None, 'value_error': None}},
       'metric': {'ERA-Interim': {'value': 0.281842100447578,
         'value_error': None},
        'HadISST': {'value': 0.2838804914772946, 'value_error': None},
        'Tropflux': {'value': 0.28953034519874205, 'value_error': None}}},
      'SeasonalTauxLonRmse': {'diagnostic': {'ERA-Interim': {'value': None,
         'value_error': None},
        'GISS-E2-R_r5i1p1': {'value': None, 'value_error': None},
        'Tropflux': {'value': None, 'value_error': None}},
       'metric': {'ERA-Interim': {'value': 1.951022909675836,
         'value_error': None},
        'Tropflux': {'value': 2.0750878570644904, 'value_error': None}}}}},
    'r5i1p2': {'metadata': {'description_of_the_collection': 'Describe which science question this collection is about',
      'metrics': {'BiasPrLatRmse': {'diagnostic': {'ERA-Interim': {'name': 'ERA-Interim',
          'nyears': 40,
          'time_period': ['1979-1-16 12:0:0.0', '2019-3-16 12:0:0.0']},
         'GISS-E2-R_r5i1p2': {'keyerror': None,
          'name': 'GISS-E2-R_r5i1p2',
          'nyears': 156,
          'time_period': ['1850-1-16 12:0:0.0', '2005-12-16 12:0:0.0']},
         'GPCPv2.3': {'name': 'GPCPv2.3',
          'nyears': 41,
          'time_period': ['1979-1-1 0:0:0.0', '2019-7-1 0:0:0.0']},
         'method': 'Meridional root mean square error of nino3_LatExt pr, time series are linearly detrended, observations and model regridded to generic_1x1deg',
         'name': 'pr Meridional RMSE',
         'ref': 'Using CDAT regridding and rms (uncentered and biased) calculation',
         'time_frequency': 'monthly',
         'units': 'mm/day'},
        'metric': {'datasets': "GISS-E2-R_r5i1p2; ERA-Interim's pr & GPCPv2.3's precip; 's ",
         'method': 'The metric is the statistical value between the model and the observations',
         'name': 'BiasPrLatRmse',
         'units': 'mm/day'}},
       'BiasPrLonRmse': {'diagnostic': {'ERA-Interim': {'name': 'ERA-Interim',
          'nyears': 40,
          'time_period': ['1979-1-16 12:0:0.0', '2019-3-16 12:0:0.0']},
         'GISS-E2-R_r5i1p2': {'keyerror': None,
          'name': 'GISS-E2-R_r5i1p2',
          'nyears': 156,
          'time_period': ['1850-1-16 12:0:0.0', '2005-12-16 12:0:0.0']},
         'GPCPv2.3': {'name': 'GPCPv2.3',
          'nyears': 41,
          'time_period': ['1979-1-1 0:0:0.0', '2019-7-1 0:0:0.0']},
         'method': 'Zonal root mean square error of equatorial_pacific pr, time series are linearly detrended, observations and model regridded to generic_1x1deg',
         'name': 'pr Zonal RMSE',
         'ref': 'Using CDAT regridding and rms (uncentered and biased) calculation',
         'time_frequency': 'monthly',
         'units': 'mm/day'},
        'metric': {'datasets': "GISS-E2-R_r5i1p2; ERA-Interim's pr & GPCPv2.3's precip; 's ",
         'method': 'The metric is the statistical value between the model and the observations',
         'name': 'BiasPrLonRmse',
         'units': 'mm/day'}},
       'BiasSstLonRmse': {'diagnostic': {'ERA-Interim': {'name': 'ERA-Interim',
          'nyears': 40,
          'time_period': ['1979-1-16 12:0:0.0', '2019-3-16 12:0:0.0']},
         'GISS-E2-R_r5i1p2': {'keyerror': None,
          'name': 'GISS-E2-R_r5i1p2',
          'nyears': 156,
          'time_period': ['1850-1-16 12:0:0.0', '2005-12-16 12:0:0.0']},
         'HadISST': {'name': 'HadISST',
          'nyears': 151,
          'time_period': ['1870-1-16 11:59:59.5', '2020-10-16 12:0:0.0']},
         'Tropflux': {'name': 'Tropflux',
          'nyears': 40,
          'time_period': ['1979-1-15 0:0:0.0', '2018-12-15 12:0:0.0']},
         'method': 'Zonal root mean square error of equatorial_pacific sst, time series are linearly detrended, observations and model regridded to generic_1x1deg',
         'name': 'sst Zonal RMSE',
         'ref': 'Using CDAT regridding and rms (uncentered and biased) calculation',
         'time_frequency': 'monthly',
         'units': 'C'},
        'metric': {'datasets': "GISS-E2-R_r5i1p2; ERA-Interim's ts & HadISST's sst & Tropflux's sst; 's ",
         'method': 'The metric is the statistical value between the model and the observations',
         'name': 'BiasSstLonRmse',
         'units': 'C'}},
       'BiasTauxLonRmse': {'diagnostic': {'ERA-Interim': {'name': 'ERA-Interim',
          'nyears': 40,
          'time_period': ['1979-1-16 12:0:0.0', '2019-3-16 12:0:0.0']},
         'GISS-E2-R_r5i1p2': {'keyerror': None,
          'name': 'GISS-E2-R_r5i1p2',
          'nyears': 156,
          'time_period': ['1850-1-16 12:0:0.0', '2005-12-16 12:0:0.0']},
         'Tropflux': {'name': 'Tropflux',
          'nyears': 40,
          'time_period': ['1979-1-15 0:0:0.0', '2018-12-15 12:0:0.0']},
         'method': 'Zonal root mean square error of equatorial_pacific taux, time series are linearly detrended, observations and model regridded to generic_1x1deg',
         'name': 'taux Zonal RMSE',
         'ref': 'Using CDAT regridding and rms (uncentered and biased) calculation',
         'time_frequency': 'monthly',
         'units': '1e-3 N/m2'},
        'metric': {'datasets': "GISS-E2-R_r5i1p2; ERA-Interim's tauu & Tropflux's taux; 's ",
         'method': 'The metric is the statistical value between the model and the observations',
         'name': 'BiasTauxLonRmse',
         'units': '1e-3 N/m2'}},
       'EnsoAmpl': {'diagnostic': {'ERA-Interim': {'keyerror': None,
          'name': 'ERA-Interim',
          'nyears': 40,
          'time_period': ['1979-1-16 12:0:0.0', '2019-3-16 12:0:0.0']},
         'GISS-E2-R_r5i1p2': {'keyerror': None,
          'name': 'GISS-E2-R_r5i1p2',
          'nyears': 156,
          'time_period': ['1850-1-16 12:0:0.0', '2005-12-16 12:0:0.0']},
         'HadISST': {'keyerror': None,
          'name': 'HadISST',
          'nyears': 151,
          'time_period': ['1870-1-16 11:59:59.5', '2020-10-16 12:0:0.0']},
         'Tropflux': {'keyerror': None,
          'name': 'Tropflux',
          'nyears': 40,
          'time_period': ['1979-1-15 0:0:0.0', '2018-12-15 12:0:0.0']},
         'method': 'Standard deviation of nino3.4 sstA, time series are linearly detrended',
         'name': 'ENSO amplitude',
         'ref': 'Using CDAT regression calculation',
         'time_frequency': 'monthly',
         'units': 'C'},
        'metric': {'datasets': "GISS-E2-R_r5i1p2; ERA-Interim's ts & HadISST's sst & Tropflux's sst; 's ",
         'method': 'The metric is the absolute value of the relative difference between model and observations values (M = 100 * abs[[model-obs] / obs])',
         'name': 'EnsoAmpl',
         'units': '%'}},
       'EnsoDuration': {'diagnostic': {'ERA-Interim': {'keyerror': None,
          'name': 'ERA-Interim',
          'nyears': 40,
          'time_period': ['1979-1-16 12:0:0.0', '2019-3-16 12:0:0.0']},
         'GISS-E2-R_r5i1p2': {'keyerror': None,
          'name': 'GISS-E2-R_r5i1p2',
          'nyears': 156,
          'time_period': ['1850-1-16 12:0:0.0', '2005-12-16 12:0:0.0']},
         'HadISST': {'keyerror': None,
          'name': 'HadISST',
          'nyears': 151,
          'time_period': ['1870-1-16 11:59:59.5', '2020-10-16 12:0:0.0']},
         'Tropflux': {'keyerror': None,
          'name': 'Tropflux',
          'nyears': 40,
          'time_period': ['1979-1-15 0:0:0.0', '2018-12-15 12:0:0.0']},
         'method': 'nino3.4 SSTA during DEC regressed against nino3.4 SSTA during 6 years (centered on ENSO), the duration is the number of consecutive months during which the regression is above 0.25, time series are linearly detrended, smoothing using a triangle shaped window of 5 points',
         'name': 'ENSO Duration based on life cyle SSTA pattern',
         'ref': 'Using CDAT',
         'time_frequency': 'monthly',
         'units': 'months'},
        'metric': {'datasets': "GISS-E2-R_r5i1p2; ERA-Interim's ts & HadISST's sst & Tropflux's sst; 's ",
         'method': 'The metric is the absolute value of the relative difference between model and observations values (M = 100 * abs[[model-obs] / obs])',
         'name': 'EnsoDuration',
         'units': '%'}},
       'EnsoSeasonality': {'diagnostic': {'ERA-Interim': {'keyerror': None,
          'name': 'ERA-Interim',
          'nyears': 40,
          'time_period': ['1979-1-16 12:0:0.0', '2019-3-16 12:0:0.0']},
         'GISS-E2-R_r5i1p2': {'keyerror': None,
          'name': 'GISS-E2-R_r5i1p2',
          'nyears': 156,
          'time_period': ['1850-1-16 12:0:0.0', '2005-12-16 12:0:0.0']},
         'HadISST': {'keyerror': None,
          'name': 'HadISST',
          'nyears': 151,
          'time_period': ['1870-1-16 11:59:59.5', '2020-10-16 12:0:0.0']},
         'Tropflux': {'keyerror': None,
          'name': 'Tropflux',
          'nyears': 40,
          'time_period': ['1979-1-15 0:0:0.0', '2018-12-15 12:0:0.0']},
         'method': 'Ratio between NDJ and MAM standard deviation nino3.4 sstA, time series are linearly detrended',
         'name': 'ENSO seasonality',
         'ref': 'Using CDAT std dev calculation',
         'time_frequency': 'monthly',
         'units': 'C/C'},
        'metric': {'datasets': "GISS-E2-R_r5i1p2; ERA-Interim's ts & HadISST's sst & Tropflux's sst; 's ",
         'method': 'The metric is the absolute value of the relative difference between model and observations values (M = 100 * abs[[model-obs] / obs])',
         'name': 'EnsoSeasonality',
         'units': '%'}},
       'EnsoSstDiversity_2': {'diagnostic': {'ERA-Interim': {'keyerror': None,
          'name': 'ERA-Interim',
          'nyears': 40,
          'time_period': ['1979-1-16 12:0:0.0', '2019-3-16 12:0:0.0']},
         'GISS-E2-R_r5i1p2': {'keyerror': None,
          'name': 'GISS-E2-R_r5i1p2',
          'nyears': 156,
          'time_period': ['1850-1-16 12:0:0.0', '2005-12-16 12:0:0.0']},
         'HadISST': {'keyerror': None,
          'name': 'HadISST',
          'nyears': 151,
          'time_period': ['1870-1-16 11:59:59.5', '2020-10-16 12:0:0.0']},
         'Tropflux': {'keyerror': None,
          'name': 'Tropflux',
          'nyears': 40,
          'time_period': ['1979-1-15 0:0:0.0', '2018-12-15 12:0:0.0']},
         'method': 'Nino (Nina) events = nino3.4 sstA > 0.75 (< -0.75) during DEC, zonal SSTA (meridional averaged [-5.0 ; 5.0]), the zonal SSTA maximum (minimum) is located for each event, the diversity is the interquartile range (IQR = Q3 - Q1), time series are linearly detrended, smoothing using a triangle shaped window of 5 points',
         'name': 'ENSO Diversity (interquartile range)',
         'ref': 'Using CDAT regridding',
         'time_frequency': 'monthly',
         'units': 'long'},
        'metric': {'datasets': "GISS-E2-R_r5i1p2; ERA-Interim's ts & HadISST's sst & Tropflux's sst; 's ",
         'method': 'The metric is the absolute value of the relative difference between model and observations values (M = 100 * abs[[model-obs] / obs])',
         'name': 'EnsoSstDiversity',
         'units': '%'}},
       'EnsoSstLonRmse': {'diagnostic': {'ERA-Interim': {'name': 'ERA-Interim',
          'nyears': 40,
          'time_period': ['1979-1-16 12:0:0.0', '2019-3-16 12:0:0.0']},
         'GISS-E2-R_r5i1p2': {'keyerror': None,
          'name': 'GISS-E2-R_r5i1p2',
          'nyears': 156,
          'time_period': ['1850-1-16 12:0:0.0', '2005-12-16 12:0:0.0']},
         'HadISST': {'name': 'HadISST',
          'nyears': 151,
          'time_period': ['1870-1-16 11:59:59.5', '2020-10-16 12:0:0.0']},
         'Tropflux': {'name': 'Tropflux',
          'nyears': 40,
          'time_period': ['1979-1-15 0:0:0.0', '2018-12-15 12:0:0.0']},
         'method': 'nino3.4 SSTA during DEC regressed against equatorial_pacific SSTA, time series are linearly detrended, smoothing using a triangle shaped window of 5 points, observations and model regridded to generic_1x1deg',
         'name': 'ENSO Zonal SSTA pattern',
         'ref': 'Using CDAT regridding and rms (uncentered and biased) calculation',
         'time_frequency': 'monthly',
         'units': 'C/C'},
        'metric': {'datasets': "GISS-E2-R_r5i1p2; ERA-Interim's ts & HadISST's sst & Tropflux's sst; 's ",
         'method': 'The metric is the statistical value between the model and the observations',
         'name': 'EnsoSstLonRmse',
         'units': 'C/C'}},
       'EnsoSstSkew': {'diagnostic': {'ERA-Interim': {'keyerror': None,
          'name': 'ERA-Interim',
          'nyears': 40,
          'time_period': ['1979-1-16 12:0:0.0', '2019-3-16 12:0:0.0']},
         'GISS-E2-R_r5i1p2': {'keyerror': None,
          'name': 'GISS-E2-R_r5i1p2',
          'nyears': 156,
          'time_period': ['1850-1-16 12:0:0.0', '2005-12-16 12:0:0.0']},
         'HadISST': {'keyerror': None,
          'name': 'HadISST',
          'nyears': 151,
          'time_period': ['1870-1-16 11:59:59.5', '2020-10-16 12:0:0.0']},
         'Tropflux': {'keyerror': None,
          'name': 'Tropflux',
          'nyears': 40,
          'time_period': ['1979-1-15 0:0:0.0', '2018-12-15 12:0:0.0']},
         'method': 'Standard deviation of nino3.4 sstA, time series are linearly detrended',
         'name': 'ENSO skewness',
         'ref': 'Using CDAT regression calculation',
         'time_frequency': 'monthly',
         'units': 'C'},
        'metric': {'datasets': "GISS-E2-R_r5i1p2; ERA-Interim's ts & HadISST's sst & Tropflux's sst; 's ",
         'method': 'The metric is the absolute value of the relative difference between model and observations values (M = 100 * abs[[model-obs] / obs])',
         'name': 'EnsoSstSkew',
         'units': '%'}},
       'EnsoSstTsRmse': {'diagnostic': {'ERA-Interim': {'name': 'ERA-Interim',
          'nyears': 40,
          'time_period': ['1979-1-16 12:0:0.0', '2019-3-16 12:0:0.0']},
         'GISS-E2-R_r5i1p2': {'keyerror': None,
          'name': 'GISS-E2-R_r5i1p2',
          'nyears': 156,
          'time_period': ['1850-1-16 12:0:0.0', '2005-12-16 12:0:0.0']},
         'HadISST': {'name': 'HadISST',
          'nyears': 151,
          'time_period': ['1870-1-16 11:59:59.5', '2020-10-16 12:0:0.0']},
         'Tropflux': {'name': 'Tropflux',
          'nyears': 40,
          'time_period': ['1979-1-15 0:0:0.0', '2018-12-15 12:0:0.0']},
         'method': 'nino3.4 SSTA during DEC regressed against nino3.4 SSTA during 6 years (centered on ENSO), time series are linearly detrended, smoothing using a triangle shaped window of 5 points',
         'name': 'ENSO life cyle SSTA pattern',
         'ref': 'Using CDAT regridding and rms (uncentered and biased) calculation',
         'time_frequency': 'monthly',
         'units': 'C/C'},
        'metric': {'datasets': "GISS-E2-R_r5i1p2; ERA-Interim's ts & HadISST's sst & Tropflux's sst; 's ",
         'method': 'The metric is the statistical value between the model and the observations',
         'name': 'EnsoSstTsRmse',
         'units': 'C/C'}},
       'SeasonalPrLatRmse': {'diagnostic': {'ERA-Interim': {'name': 'ERA-Interim',
          'nyears': 40,
          'time_period': ['1979-1-16 12:0:0.0', '2019-3-16 12:0:0.0']},
         'GISS-E2-R_r5i1p2': {'keyerror': None,
          'name': 'GISS-E2-R_r5i1p2',
          'nyears': 156,
          'time_period': ['1850-1-16 12:0:0.0', '2005-12-16 12:0:0.0']},
         'GPCPv2.3': {'name': 'GPCPv2.3',
          'nyears': 41,
          'time_period': ['1979-1-1 0:0:0.0', '2019-7-1 0:0:0.0']},
         'method': 'Meridional root mean square error of nino3_LatExt climatological pr STD, time series are linearly detrended, observations and model regridded to generic_1x1deg',
         'name': 'pr meridional seasonality RMSE',
         'ref': 'Using CDAT regridding and rms (uncentered and biased) calculation',
         'time_frequency': 'monthly',
         'units': 'mm/day'},
        'metric': {'datasets': "GISS-E2-R_r5i1p2; ERA-Interim's pr & GPCPv2.3's precip; 's ",
         'method': 'The metric is the statistical value between the model and the observations',
         'name': 'SeasonalPrLatRmse',
         'units': 'mm/day'}},
       'SeasonalPrLonRmse': {'diagnostic': {'ERA-Interim': {'name': 'ERA-Interim',
          'nyears': 40,
          'time_period': ['1979-1-16 12:0:0.0', '2019-3-16 12:0:0.0']},
         'GISS-E2-R_r5i1p2': {'keyerror': None,
          'name': 'GISS-E2-R_r5i1p2',
          'nyears': 156,
          'time_period': ['1850-1-16 12:0:0.0', '2005-12-16 12:0:0.0']},
         'GPCPv2.3': {'name': 'GPCPv2.3',
          'nyears': 41,
          'time_period': ['1979-1-1 0:0:0.0', '2019-7-1 0:0:0.0']},
         'method': 'Zonal root mean square error of equatorial_pacific climatological pr STD, time series are linearly detrended, observations and model regridded to generic_1x1deg',
         'name': 'pr zonal seasonality RMSE',
         'ref': 'Using CDAT regridding and rms (uncentered and biased) calculation',
         'time_frequency': 'monthly',
         'units': 'mm/day'},
        'metric': {'datasets': "GISS-E2-R_r5i1p2; ERA-Interim's pr & GPCPv2.3's precip; 's ",
         'method': 'The metric is the statistical value between the model and the observations',
         'name': 'SeasonalPrLonRmse',
         'units': 'mm/day'}},
       'SeasonalSstLonRmse': {'diagnostic': {'ERA-Interim': {'name': 'ERA-Interim',
          'nyears': 40,
          'time_period': ['1979-1-16 12:0:0.0', '2019-3-16 12:0:0.0']},
         'GISS-E2-R_r5i1p2': {'keyerror': None,
          'name': 'GISS-E2-R_r5i1p2',
          'nyears': 156,
          'time_period': ['1850-1-16 12:0:0.0', '2005-12-16 12:0:0.0']},
         'HadISST': {'name': 'HadISST',
          'nyears': 151,
          'time_period': ['1870-1-16 11:59:59.5', '2020-10-16 12:0:0.0']},
         'Tropflux': {'name': 'Tropflux',
          'nyears': 40,
          'time_period': ['1979-1-15 0:0:0.0', '2018-12-15 12:0:0.0']},
         'method': 'Zonal root mean square error of equatorial_pacific climatological sst STD, time series are linearly detrended, observations and model regridded to generic_1x1deg',
         'name': 'sst zonal seasonality RMSE',
         'ref': 'Using CDAT regridding and rms (uncentered and biased) calculation',
         'time_frequency': 'monthly',
         'units': 'C'},
        'metric': {'datasets': "GISS-E2-R_r5i1p2; ERA-Interim's ts & HadISST's sst & Tropflux's sst; 's ",
         'method': 'The metric is the statistical value between the model and the observations',
         'name': 'SeasonalSstLonRmse',
         'units': 'C'}},
       'SeasonalTauxLonRmse': {'diagnostic': {'ERA-Interim': {'name': 'ERA-Interim',
          'nyears': 40,
          'time_period': ['1979-1-16 12:0:0.0', '2019-3-16 12:0:0.0']},
         'GISS-E2-R_r5i1p2': {'keyerror': None,
          'name': 'GISS-E2-R_r5i1p2',
          'nyears': 156,
          'time_period': ['1850-1-16 12:0:0.0', '2005-12-16 12:0:0.0']},
         'Tropflux': {'name': 'Tropflux',
          'nyears': 40,
          'time_period': ['1979-1-15 0:0:0.0', '2018-12-15 12:0:0.0']},
         'method': 'Zonal root mean square error of equatorial_pacific climatological taux STD, time series are linearly detrended, observations and model regridded to generic_1x1deg',
         'name': 'taux zonal seasonality RMSE',
         'ref': 'Using CDAT regridding and rms (uncentered and biased) calculation',
         'time_frequency': 'monthly',
         'units': '1e-3 N/m2'},
        'metric': {'datasets': "GISS-E2-R_r5i1p2; ERA-Interim's tauu & Tropflux's taux; 's ",
         'method': 'The metric is the statistical value between the model and the observations',
         'name': 'SeasonalTauxLonRmse',
         'units': '1e-3 N/m2'}}},
      'name': 'Metrics Collection for ENSO performance'},
     'value': {'BiasPrLatRmse': {'diagnostic': {'ERA-Interim': {'value': None,
         'value_error': None},
        'GISS-E2-R_r5i1p2': {'value': None, 'value_error': None},
        'GPCPv2.3': {'value': None, 'value_error': None}},
       'metric': {'ERA-Interim': {'value': 2.1590673586330986,
         'value_error': None},
        'GPCPv2.3': {'value': 2.953065835230972, 'value_error': None}}},
      'BiasPrLonRmse': {'diagnostic': {'ERA-Interim': {'value': None,
         'value_error': None},
        'GISS-E2-R_r5i1p2': {'value': None, 'value_error': None},
        'GPCPv2.3': {'value': None, 'value_error': None}},
       'metric': {'ERA-Interim': {'value': 1.7574115403263306,
         'value_error': None},
        'GPCPv2.3': {'value': 2.229012288499285, 'value_error': None}}},
      'BiasSstLonRmse': {'diagnostic': {'ERA-Interim': {'value': None,
         'value_error': None},
        'GISS-E2-R_r5i1p2': {'value': None, 'value_error': None},
        'HadISST': {'value': None, 'value_error': None},
        'Tropflux': {'value': None, 'value_error': None}},
       'metric': {'ERA-Interim': {'value': 1.1014626085775572,
         'value_error': None},
        'HadISST': {'value': 1.2808796610485396, 'value_error': None},
        'Tropflux': {'value': 1.065323646666712, 'value_error': None}}},
      'BiasTauxLonRmse': {'diagnostic': {'ERA-Interim': {'value': None,
         'value_error': None},
        'GISS-E2-R_r5i1p2': {'value': None, 'value_error': None},
        'Tropflux': {'value': None, 'value_error': None}},
       'metric': {'ERA-Interim': {'value': 18.253444106143686,
         'value_error': None},
        'Tropflux': {'value': 17.86420293192252, 'value_error': None}}},
      'EnsoAmpl': {'diagnostic': {'ERA-Interim': {'value': 0.8989844997845644,
         'value_error': 0.14214193002531866},
        'GISS-E2-R_r5i1p2': {'value': 0.547611249865604,
         'value_error': 0.043843989221937725},
        'HadISST': {'value': 0.7665787872085695,
         'value_error': 0.06238329697691264},
        'Tropflux': {'value': 0.9039789553693535,
         'value_error': 0.14293162279134272}},
       'metric': {'ERA-Interim': {'value': 39.08557377832038,
         'value_error': 14.508473766626494},
        'HadISST': {'value': 28.564257320544556,
         'value_error': 11.532795089106953},
        'Tropflux': {'value': 39.42212408674297,
         'value_error': 14.428314900758993}}},
      'EnsoDuration': {'diagnostic': {'ERA-Interim': {'value': 13.0,
         'value_error': None},
        'GISS-E2-R_r5i1p2': {'value': 12.0, 'value_error': None},
        'HadISST': {'value': 13.0, 'value_error': None},
        'Tropflux': {'value': 13.0, 'value_error': None}},
       'metric': {'ERA-Interim': {'value': 7.6923076923076925,
         'value_error': None},
        'HadISST': {'value': 7.6923076923076925, 'value_error': None},
        'Tropflux': {'value': 7.6923076923076925, 'value_error': None}}},
      'EnsoSeasonality': {'diagnostic': {'ERA-Interim': {'value': 2.0466846866656914,
         'value_error': 0.6513411033995022},
        'GISS-E2-R_r5i1p2': {'value': 1.710263863217174,
         'value_error': 0.2743023967142105},
        'HadISST': {'value': 1.6639865947361325,
         'value_error': 0.2712772451657809},
        'Tropflux': {'value': 2.0532132553583624,
         'value_error': 0.6534187683977347}},
       'metric': {'ERA-Interim': {'value': 16.437354793355563,
         'value_error': 39.99542564451149},
        'HadISST': {'value': 2.781108250957993,
         'value_error': 33.24090214897317},
        'Tropflux': {'value': 16.70305757310781,
         'value_error': 39.868252842060805}}},
      'EnsoSstDiversity_2': {'diagnostic': {'ERA-Interim': {'value': 33.25,
         'value_error': None},
        'GISS-E2-R_r5i1p2': {'value': 17.25, 'value_error': None},
        'HadISST': {'value': 49.0, 'value_error': None},
        'Tropflux': {'value': 32.0, 'value_error': None}},
       'metric': {'ERA-Interim': {'value': 48.1203007518797,
         'value_error': None},
        'HadISST': {'value': 64.79591836734694, 'value_error': None},
        'Tropflux': {'value': 46.09375, 'value_error': None}}},
      'EnsoSstLonRmse': {'diagnostic': {'ERA-Interim': {'value': None,
         'value_error': None},
        'GISS-E2-R_r5i1p2': {'value': None, 'value_error': None},
        'HadISST': {'value': None, 'value_error': None},
        'Tropflux': {'value': None, 'value_error': None}},
       'metric': {'ERA-Interim': {'value': 0.14915684387404682,
         'value_error': None},
        'HadISST': {'value': 0.16006714792164697, 'value_error': None},
        'Tropflux': {'value': 0.14835090006234922, 'value_error': None}}},
      'EnsoSstSkew': {'diagnostic': {'ERA-Interim': {'value': 0.39098111106809963,
         'value_error': 0.061819541653923164},
        'GISS-E2-R_r5i1p2': {'value': -0.21588756760843214,
         'value_error': -0.017284838815304585},
        'HadISST': {'value': 0.38989908235027515,
         'value_error': 0.03172953733021198},
        'Tropflux': {'value': 0.39744741059612115,
         'value_error': 0.06284195338099416}},
       'metric': {'ERA-Interim': {'value': 155.2168791527194,
         'value_error': -13.151443629244863},
        'HadISST': {'value': 155.37011431447388,
         'value_error': -8.939113089572531},
        'Tropflux': {'value': 154.3185241248969,
         'value_error': -12.937475261442346}}},
      'EnsoSstTsRmse': {'diagnostic': {'ERA-Interim': {'value': None,
         'value_error': None},
        'GISS-E2-R_r5i1p2': {'value': None, 'value_error': None},
        'HadISST': {'value': None, 'value_error': None},
        'Tropflux': {'value': None, 'value_error': None}},
       'metric': {'ERA-Interim': {'value': 0.14906173015760055,
         'value_error': None},
        'HadISST': {'value': 0.14086237573210225, 'value_error': None},
        'Tropflux': {'value': 0.1520189931216918, 'value_error': None}}},
      'SeasonalPrLatRmse': {'diagnostic': {'ERA-Interim': {'value': None,
         'value_error': None},
        'GISS-E2-R_r5i1p2': {'value': None, 'value_error': None},
        'GPCPv2.3': {'value': None, 'value_error': None}},
       'metric': {'ERA-Interim': {'value': 0.6943984416290795,
         'value_error': None},
        'GPCPv2.3': {'value': 0.8875512492106586, 'value_error': None}}},
      'SeasonalPrLonRmse': {'diagnostic': {'ERA-Interim': {'value': None,
         'value_error': None},
        'GISS-E2-R_r5i1p2': {'value': None, 'value_error': None},
        'GPCPv2.3': {'value': None, 'value_error': None}},
       'metric': {'ERA-Interim': {'value': 0.22775106326816255,
         'value_error': None},
        'GPCPv2.3': {'value': 0.526490311061547, 'value_error': None}}},
      'SeasonalSstLonRmse': {'diagnostic': {'ERA-Interim': {'value': None,
         'value_error': None},
        'GISS-E2-R_r5i1p2': {'value': None, 'value_error': None},
        'HadISST': {'value': None, 'value_error': None},
        'Tropflux': {'value': None, 'value_error': None}},
       'metric': {'ERA-Interim': {'value': 0.2741137824061624,
         'value_error': None},
        'HadISST': {'value': 0.2756548609875701, 'value_error': None},
        'Tropflux': {'value': 0.2819414288146932, 'value_error': None}}},
      'SeasonalTauxLonRmse': {'diagnostic': {'ERA-Interim': {'value': None,
         'value_error': None},
        'GISS-E2-R_r5i1p2': {'value': None, 'value_error': None},
        'Tropflux': {'value': None, 'value_error': None}},
       'metric': {'ERA-Interim': {'value': 1.9450859480477363,
         'value_error': None},
        'Tropflux': {'value': 2.091738226686371, 'value_error': None}}}}},
    'r5i1p3': {'metadata': {'description_of_the_collection': 'Describe which science question this collection is about',
      'metrics': {'BiasPrLatRmse': {'diagnostic': {'ERA-Interim': {'name': 'ERA-Interim',
          'nyears': 40,
          'time_period': ['1979-1-16 12:0:0.0', '2019-3-16 12:0:0.0']},
         'GISS-E2-R_r5i1p3': {'keyerror': None,
          'name': 'GISS-E2-R_r5i1p3',
          'nyears': 156,
          'time_period': ['1850-1-16 12:0:0.0', '2005-12-16 12:0:0.0']},
         'GPCPv2.3': {'name': 'GPCPv2.3',
          'nyears': 41,
          'time_period': ['1979-1-1 0:0:0.0', '2019-7-1 0:0:0.0']},
         'method': 'Meridional root mean square error of nino3_LatExt pr, time series are linearly detrended, observations and model regridded to generic_1x1deg',
         'name': 'pr Meridional RMSE',
         'ref': 'Using CDAT regridding and rms (uncentered and biased) calculation',
         'time_frequency': 'monthly',
         'units': 'mm/day'},
        'metric': {'datasets': "GISS-E2-R_r5i1p3; ERA-Interim's pr & GPCPv2.3's precip; 's ",
         'method': 'The metric is the statistical value between the model and the observations',
         'name': 'BiasPrLatRmse',
         'units': 'mm/day'}},
       'BiasPrLonRmse': {'diagnostic': {'ERA-Interim': {'name': 'ERA-Interim',
          'nyears': 40,
          'time_period': ['1979-1-16 12:0:0.0', '2019-3-16 12:0:0.0']},
         'GISS-E2-R_r5i1p3': {'keyerror': None,
          'name': 'GISS-E2-R_r5i1p3',
          'nyears': 156,
          'time_period': ['1850-1-16 12:0:0.0', '2005-12-16 12:0:0.0']},
         'GPCPv2.3': {'name': 'GPCPv2.3',
          'nyears': 41,
          'time_period': ['1979-1-1 0:0:0.0', '2019-7-1 0:0:0.0']},
         'method': 'Zonal root mean square error of equatorial_pacific pr, time series are linearly detrended, observations and model regridded to generic_1x1deg',
         'name': 'pr Zonal RMSE',
         'ref': 'Using CDAT regridding and rms (uncentered and biased) calculation',
         'time_frequency': 'monthly',
         'units': 'mm/day'},
        'metric': {'datasets': "GISS-E2-R_r5i1p3; ERA-Interim's pr & GPCPv2.3's precip; 's ",
         'method': 'The metric is the statistical value between the model and the observations',
         'name': 'BiasPrLonRmse',
         'units': 'mm/day'}},
       'BiasSstLonRmse': {'diagnostic': {'ERA-Interim': {'name': 'ERA-Interim',
          'nyears': 40,
          'time_period': ['1979-1-16 12:0:0.0', '2019-3-16 12:0:0.0']},
         'GISS-E2-R_r5i1p3': {'keyerror': None,
          'name': 'GISS-E2-R_r5i1p3',
          'nyears': 156,
          'time_period': ['1850-1-16 12:0:0.0', '2005-12-16 12:0:0.0']},
         'HadISST': {'name': 'HadISST',
          'nyears': 151,
          'time_period': ['1870-1-16 11:59:59.5', '2020-10-16 12:0:0.0']},
         'Tropflux': {'name': 'Tropflux',
          'nyears': 40,
          'time_period': ['1979-1-15 0:0:0.0', '2018-12-15 12:0:0.0']},
         'method': 'Zonal root mean square error of equatorial_pacific sst, time series are linearly detrended, observations and model regridded to generic_1x1deg',
         'name': 'sst Zonal RMSE',
         'ref': 'Using CDAT regridding and rms (uncentered and biased) calculation',
         'time_frequency': 'monthly',
         'units': 'C'},
        'metric': {'datasets': "GISS-E2-R_r5i1p3; ERA-Interim's ts & HadISST's sst & Tropflux's sst; 's ",
         'method': 'The metric is the statistical value between the model and the observations',
         'name': 'BiasSstLonRmse',
         'units': 'C'}},
       'BiasTauxLonRmse': {'diagnostic': {'ERA-Interim': {'name': 'ERA-Interim',
          'nyears': 40,
          'time_period': ['1979-1-16 12:0:0.0', '2019-3-16 12:0:0.0']},
         'GISS-E2-R_r5i1p3': {'keyerror': None,
          'name': 'GISS-E2-R_r5i1p3',
          'nyears': 156,
          'time_period': ['1850-1-16 12:0:0.0', '2005-12-16 12:0:0.0']},
         'Tropflux': {'name': 'Tropflux',
          'nyears': 40,
          'time_period': ['1979-1-15 0:0:0.0', '2018-12-15 12:0:0.0']},
         'method': 'Zonal root mean square error of equatorial_pacific taux, time series are linearly detrended, observations and model regridded to generic_1x1deg',
         'name': 'taux Zonal RMSE',
         'ref': 'Using CDAT regridding and rms (uncentered and biased) calculation',
         'time_frequency': 'monthly',
         'units': '1e-3 N/m2'},
        'metric': {'datasets': "GISS-E2-R_r5i1p3; ERA-Interim's tauu & Tropflux's taux; 's ",
         'method': 'The metric is the statistical value between the model and the observations',
         'name': 'BiasTauxLonRmse',
         'units': '1e-3 N/m2'}},
       'EnsoAmpl': {'diagnostic': {'ERA-Interim': {'keyerror': None,
          'name': 'ERA-Interim',
          'nyears': 40,
          'time_period': ['1979-1-16 12:0:0.0', '2019-3-16 12:0:0.0']},
         'GISS-E2-R_r5i1p3': {'keyerror': None,
          'name': 'GISS-E2-R_r5i1p3',
          'nyears': 156,
          'time_period': ['1850-1-16 12:0:0.0', '2005-12-16 12:0:0.0']},
         'HadISST': {'keyerror': None,
          'name': 'HadISST',
          'nyears': 151,
          'time_period': ['1870-1-16 11:59:59.5', '2020-10-16 12:0:0.0']},
         'Tropflux': {'keyerror': None,
          'name': 'Tropflux',
          'nyears': 40,
          'time_period': ['1979-1-15 0:0:0.0', '2018-12-15 12:0:0.0']},
         'method': 'Standard deviation of nino3.4 sstA, time series are linearly detrended',
         'name': 'ENSO amplitude',
         'ref': 'Using CDAT regression calculation',
         'time_frequency': 'monthly',
         'units': 'C'},
        'metric': {'datasets': "GISS-E2-R_r5i1p3; ERA-Interim's ts & HadISST's sst & Tropflux's sst; 's ",
         'method': 'The metric is the absolute value of the relative difference between model and observations values (M = 100 * abs[[model-obs] / obs])',
         'name': 'EnsoAmpl',
         'units': '%'}},
       'EnsoDuration': {'diagnostic': {'ERA-Interim': {'keyerror': None,
          'name': 'ERA-Interim',
          'nyears': 40,
          'time_period': ['1979-1-16 12:0:0.0', '2019-3-16 12:0:0.0']},
         'GISS-E2-R_r5i1p3': {'keyerror': None,
          'name': 'GISS-E2-R_r5i1p3',
          'nyears': 156,
          'time_period': ['1850-1-16 12:0:0.0', '2005-12-16 12:0:0.0']},
         'HadISST': {'keyerror': None,
          'name': 'HadISST',
          'nyears': 151,
          'time_period': ['1870-1-16 11:59:59.5', '2020-10-16 12:0:0.0']},
         'Tropflux': {'keyerror': None,
          'name': 'Tropflux',
          'nyears': 40,
          'time_period': ['1979-1-15 0:0:0.0', '2018-12-15 12:0:0.0']},
         'method': 'nino3.4 SSTA during DEC regressed against nino3.4 SSTA during 6 years (centered on ENSO), the duration is the number of consecutive months during which the regression is above 0.25, time series are linearly detrended, smoothing using a triangle shaped window of 5 points',
         'name': 'ENSO Duration based on life cyle SSTA pattern',
         'ref': 'Using CDAT',
         'time_frequency': 'monthly',
         'units': 'months'},
        'metric': {'datasets': "GISS-E2-R_r5i1p3; ERA-Interim's ts & HadISST's sst & Tropflux's sst; 's ",
         'method': 'The metric is the absolute value of the relative difference between model and observations values (M = 100 * abs[[model-obs] / obs])',
         'name': 'EnsoDuration',
         'units': '%'}},
       'EnsoSeasonality': {'diagnostic': {'ERA-Interim': {'keyerror': None,
          'name': 'ERA-Interim',
          'nyears': 40,
          'time_period': ['1979-1-16 12:0:0.0', '2019-3-16 12:0:0.0']},
         'GISS-E2-R_r5i1p3': {'keyerror': None,
          'name': 'GISS-E2-R_r5i1p3',
          'nyears': 156,
          'time_period': ['1850-1-16 12:0:0.0', '2005-12-16 12:0:0.0']},
         'HadISST': {'keyerror': None,
          'name': 'HadISST',
          'nyears': 151,
          'time_period': ['1870-1-16 11:59:59.5', '2020-10-16 12:0:0.0']},
         'Tropflux': {'keyerror': None,
          'name': 'Tropflux',
          'nyears': 40,
          'time_period': ['1979-1-15 0:0:0.0', '2018-12-15 12:0:0.0']},
         'method': 'Ratio between NDJ and MAM standard deviation nino3.4 sstA, time series are linearly detrended',
         'name': 'ENSO seasonality',
         'ref': 'Using CDAT std dev calculation',
         'time_frequency': 'monthly',
         'units': 'C/C'},
        'metric': {'datasets': "GISS-E2-R_r5i1p3; ERA-Interim's ts & HadISST's sst & Tropflux's sst; 's ",
         'method': 'The metric is the absolute value of the relative difference between model and observations values (M = 100 * abs[[model-obs] / obs])',
         'name': 'EnsoSeasonality',
         'units': '%'}},
       'EnsoSstDiversity_2': {'diagnostic': {'ERA-Interim': {'keyerror': None,
          'name': 'ERA-Interim',
          'nyears': 40,
          'time_period': ['1979-1-16 12:0:0.0', '2019-3-16 12:0:0.0']},
         'GISS-E2-R_r5i1p3': {'keyerror': None,
          'name': 'GISS-E2-R_r5i1p3',
          'nyears': 156,
          'time_period': ['1850-1-16 12:0:0.0', '2005-12-16 12:0:0.0']},
         'HadISST': {'keyerror': None,
          'name': 'HadISST',
          'nyears': 151,
          'time_period': ['1870-1-16 11:59:59.5', '2020-10-16 12:0:0.0']},
         'Tropflux': {'keyerror': None,
          'name': 'Tropflux',
          'nyears': 40,
          'time_period': ['1979-1-15 0:0:0.0', '2018-12-15 12:0:0.0']},
         'method': 'Nino (Nina) events = nino3.4 sstA > 0.75 (< -0.75) during DEC, zonal SSTA (meridional averaged [-5.0 ; 5.0]), the zonal SSTA maximum (minimum) is located for each event, the diversity is the interquartile range (IQR = Q3 - Q1), time series are linearly detrended, smoothing using a triangle shaped window of 5 points',
         'name': 'ENSO Diversity (interquartile range)',
         'ref': 'Using CDAT regridding',
         'time_frequency': 'monthly',
         'units': 'long'},
        'metric': {'datasets': "GISS-E2-R_r5i1p3; ERA-Interim's ts & HadISST's sst & Tropflux's sst; 's ",
         'method': 'The metric is the absolute value of the relative difference between model and observations values (M = 100 * abs[[model-obs] / obs])',
         'name': 'EnsoSstDiversity',
         'units': '%'}},
       'EnsoSstLonRmse': {'diagnostic': {'ERA-Interim': {'name': 'ERA-Interim',
          'nyears': 40,
          'time_period': ['1979-1-16 12:0:0.0', '2019-3-16 12:0:0.0']},
         'GISS-E2-R_r5i1p3': {'keyerror': None,
          'name': 'GISS-E2-R_r5i1p3',
          'nyears': 156,
          'time_period': ['1850-1-16 12:0:0.0', '2005-12-16 12:0:0.0']},
         'HadISST': {'name': 'HadISST',
          'nyears': 151,
          'time_period': ['1870-1-16 11:59:59.5', '2020-10-16 12:0:0.0']},
         'Tropflux': {'name': 'Tropflux',
          'nyears': 40,
          'time_period': ['1979-1-15 0:0:0.0', '2018-12-15 12:0:0.0']},
         'method': 'nino3.4 SSTA during DEC regressed against equatorial_pacific SSTA, time series are linearly detrended, smoothing using a triangle shaped window of 5 points, observations and model regridded to generic_1x1deg',
         'name': 'ENSO Zonal SSTA pattern',
         'ref': 'Using CDAT regridding and rms (uncentered and biased) calculation',
         'time_frequency': 'monthly',
         'units': 'C/C'},
        'metric': {'datasets': "GISS-E2-R_r5i1p3; ERA-Interim's ts & HadISST's sst & Tropflux's sst; 's ",
         'method': 'The metric is the statistical value between the model and the observations',
         'name': 'EnsoSstLonRmse',
         'units': 'C/C'}},
       'EnsoSstSkew': {'diagnostic': {'ERA-Interim': {'keyerror': None,
          'name': 'ERA-Interim',
          'nyears': 40,
          'time_period': ['1979-1-16 12:0:0.0', '2019-3-16 12:0:0.0']},
         'GISS-E2-R_r5i1p3': {'keyerror': None,
          'name': 'GISS-E2-R_r5i1p3',
          'nyears': 156,
          'time_period': ['1850-1-16 12:0:0.0', '2005-12-16 12:0:0.0']},
         'HadISST': {'keyerror': None,
          'name': 'HadISST',
          'nyears': 151,
          'time_period': ['1870-1-16 11:59:59.5', '2020-10-16 12:0:0.0']},
         'Tropflux': {'keyerror': None,
          'name': 'Tropflux',
          'nyears': 40,
          'time_period': ['1979-1-15 0:0:0.0', '2018-12-15 12:0:0.0']},
         'method': 'Standard deviation of nino3.4 sstA, time series are linearly detrended',
         'name': 'ENSO skewness',
         'ref': 'Using CDAT regression calculation',
         'time_frequency': 'monthly',
         'units': 'C'},
        'metric': {'datasets': "GISS-E2-R_r5i1p3; ERA-Interim's ts & HadISST's sst & Tropflux's sst; 's ",
         'method': 'The metric is the absolute value of the relative difference between model and observations values (M = 100 * abs[[model-obs] / obs])',
         'name': 'EnsoSstSkew',
         'units': '%'}},
       'EnsoSstTsRmse': {'diagnostic': {'ERA-Interim': {'name': 'ERA-Interim',
          'nyears': 40,
          'time_period': ['1979-1-16 12:0:0.0', '2019-3-16 12:0:0.0']},
         'GISS-E2-R_r5i1p3': {'keyerror': None,
          'name': 'GISS-E2-R_r5i1p3',
          'nyears': 156,
          'time_period': ['1850-1-16 12:0:0.0', '2005-12-16 12:0:0.0']},
         'HadISST': {'name': 'HadISST',
          'nyears': 151,
          'time_period': ['1870-1-16 11:59:59.5', '2020-10-16 12:0:0.0']},
         'Tropflux': {'name': 'Tropflux',
          'nyears': 40,
          'time_period': ['1979-1-15 0:0:0.0', '2018-12-15 12:0:0.0']},
         'method': 'nino3.4 SSTA during DEC regressed against nino3.4 SSTA during 6 years (centered on ENSO), time series are linearly detrended, smoothing using a triangle shaped window of 5 points',
         'name': 'ENSO life cyle SSTA pattern',
         'ref': 'Using CDAT regridding and rms (uncentered and biased) calculation',
         'time_frequency': 'monthly',
         'units': 'C/C'},
        'metric': {'datasets': "GISS-E2-R_r5i1p3; ERA-Interim's ts & HadISST's sst & Tropflux's sst; 's ",
         'method': 'The metric is the statistical value between the model and the observations',
         'name': 'EnsoSstTsRmse',
         'units': 'C/C'}},
       'SeasonalPrLatRmse': {'diagnostic': {'ERA-Interim': {'name': 'ERA-Interim',
          'nyears': 40,
          'time_period': ['1979-1-16 12:0:0.0', '2019-3-16 12:0:0.0']},
         'GISS-E2-R_r5i1p3': {'keyerror': None,
          'name': 'GISS-E2-R_r5i1p3',
          'nyears': 156,
          'time_period': ['1850-1-16 12:0:0.0', '2005-12-16 12:0:0.0']},
         'GPCPv2.3': {'name': 'GPCPv2.3',
          'nyears': 41,
          'time_period': ['1979-1-1 0:0:0.0', '2019-7-1 0:0:0.0']},
         'method': 'Meridional root mean square error of nino3_LatExt climatological pr STD, time series are linearly detrended, observations and model regridded to generic_1x1deg',
         'name': 'pr meridional seasonality RMSE',
         'ref': 'Using CDAT regridding and rms (uncentered and biased) calculation',
         'time_frequency': 'monthly',
         'units': 'mm/day'},
        'metric': {'datasets': "GISS-E2-R_r5i1p3; ERA-Interim's pr & GPCPv2.3's precip; 's ",
         'method': 'The metric is the statistical value between the model and the observations',
         'name': 'SeasonalPrLatRmse',
         'units': 'mm/day'}},
       'SeasonalPrLonRmse': {'diagnostic': {'ERA-Interim': {'name': 'ERA-Interim',
          'nyears': 40,
          'time_period': ['1979-1-16 12:0:0.0', '2019-3-16 12:0:0.0']},
         'GISS-E2-R_r5i1p3': {'keyerror': None,
          'name': 'GISS-E2-R_r5i1p3',
          'nyears': 156,
          'time_period': ['1850-1-16 12:0:0.0', '2005-12-16 12:0:0.0']},
         'GPCPv2.3': {'name': 'GPCPv2.3',
          'nyears': 41,
          'time_period': ['1979-1-1 0:0:0.0', '2019-7-1 0:0:0.0']},
         'method': 'Zonal root mean square error of equatorial_pacific climatological pr STD, time series are linearly detrended, observations and model regridded to generic_1x1deg',
         'name': 'pr zonal seasonality RMSE',
         'ref': 'Using CDAT regridding and rms (uncentered and biased) calculation',
         'time_frequency': 'monthly',
         'units': 'mm/day'},
        'metric': {'datasets': "GISS-E2-R_r5i1p3; ERA-Interim's pr & GPCPv2.3's precip; 's ",
         'method': 'The metric is the statistical value between the model and the observations',
         'name': 'SeasonalPrLonRmse',
         'units': 'mm/day'}},
       'SeasonalSstLonRmse': {'diagnostic': {'ERA-Interim': {'name': 'ERA-Interim',
          'nyears': 40,
          'time_period': ['1979-1-16 12:0:0.0', '2019-3-16 12:0:0.0']},
         'GISS-E2-R_r5i1p3': {'keyerror': None,
          'name': 'GISS-E2-R_r5i1p3',
          'nyears': 156,
          'time_period': ['1850-1-16 12:0:0.0', '2005-12-16 12:0:0.0']},
         'HadISST': {'name': 'HadISST',
          'nyears': 151,
          'time_period': ['1870-1-16 11:59:59.5', '2020-10-16 12:0:0.0']},
         'Tropflux': {'name': 'Tropflux',
          'nyears': 40,
          'time_period': ['1979-1-15 0:0:0.0', '2018-12-15 12:0:0.0']},
         'method': 'Zonal root mean square error of equatorial_pacific climatological sst STD, time series are linearly detrended, observations and model regridded to generic_1x1deg',
         'name': 'sst zonal seasonality RMSE',
         'ref': 'Using CDAT regridding and rms (uncentered and biased) calculation',
         'time_frequency': 'monthly',
         'units': 'C'},
        'metric': {'datasets': "GISS-E2-R_r5i1p3; ERA-Interim's ts & HadISST's sst & Tropflux's sst; 's ",
         'method': 'The metric is the statistical value between the model and the observations',
         'name': 'SeasonalSstLonRmse',
         'units': 'C'}},
       'SeasonalTauxLonRmse': {'diagnostic': {'ERA-Interim': {'name': 'ERA-Interim',
          'nyears': 40,
          'time_period': ['1979-1-16 12:0:0.0', '2019-3-16 12:0:0.0']},
         'GISS-E2-R_r5i1p3': {'keyerror': None,
          'name': 'GISS-E2-R_r5i1p3',
          'nyears': 156,
          'time_period': ['1850-1-16 12:0:0.0', '2005-12-16 12:0:0.0']},
         'Tropflux': {'name': 'Tropflux',
          'nyears': 40,
          'time_period': ['1979-1-15 0:0:0.0', '2018-12-15 12:0:0.0']},
         'method': 'Zonal root mean square error of equatorial_pacific climatological taux STD, time series are linearly detrended, observations and model regridded to generic_1x1deg',
         'name': 'taux zonal seasonality RMSE',
         'ref': 'Using CDAT regridding and rms (uncentered and biased) calculation',
         'time_frequency': 'monthly',
         'units': '1e-3 N/m2'},
        'metric': {'datasets': "GISS-E2-R_r5i1p3; ERA-Interim's tauu & Tropflux's taux; 's ",
         'method': 'The metric is the statistical value between the model and the observations',
         'name': 'SeasonalTauxLonRmse',
         'units': '1e-3 N/m2'}}},
      'name': 'Metrics Collection for ENSO performance'},
     'value': {'BiasPrLatRmse': {'diagnostic': {'ERA-Interim': {'value': None,
         'value_error': None},
        'GISS-E2-R_r5i1p3': {'value': None, 'value_error': None},
        'GPCPv2.3': {'value': None, 'value_error': None}},
       'metric': {'ERA-Interim': {'value': 2.1579910538962386,
         'value_error': None},
        'GPCPv2.3': {'value': 2.9050670956129165, 'value_error': None}}},
      'BiasPrLonRmse': {'diagnostic': {'ERA-Interim': {'value': None,
         'value_error': None},
        'GISS-E2-R_r5i1p3': {'value': None, 'value_error': None},
        'GPCPv2.3': {'value': None, 'value_error': None}},
       'metric': {'ERA-Interim': {'value': 1.8070727424884052,
         'value_error': None},
        'GPCPv2.3': {'value': 2.3512994769219295, 'value_error': None}}},
      'BiasSstLonRmse': {'diagnostic': {'ERA-Interim': {'value': None,
         'value_error': None},
        'GISS-E2-R_r5i1p3': {'value': None, 'value_error': None},
        'HadISST': {'value': None, 'value_error': None},
        'Tropflux': {'value': None, 'value_error': None}},
       'metric': {'ERA-Interim': {'value': 1.151604733537532,
         'value_error': None},
        'HadISST': {'value': 1.3302880550861356, 'value_error': None},
        'Tropflux': {'value': 1.1152763312184872, 'value_error': None}}},
      'BiasTauxLonRmse': {'diagnostic': {'ERA-Interim': {'value': None,
         'value_error': None},
        'GISS-E2-R_r5i1p3': {'value': None, 'value_error': None},
        'Tropflux': {'value': None, 'value_error': None}},
       'metric': {'ERA-Interim': {'value': 18.04103552528316,
         'value_error': None},
        'Tropflux': {'value': 17.649781113386517, 'value_error': None}}},
      'EnsoAmpl': {'diagnostic': {'ERA-Interim': {'value': 0.8989844997845644,
         'value_error': 0.14214193002531866},
        'GISS-E2-R_r5i1p3': {'value': 0.5358048162257011,
         'value_error': 0.042898718011047755},
        'HadISST': {'value': 0.7665787872085695,
         'value_error': 0.06238329697691264},
        'Tropflux': {'value': 0.9039789553693535,
         'value_error': 0.14293162279134272}},
       'metric': {'ERA-Interim': {'value': 40.39888158760211,
         'value_error': 14.195672791876635},
        'HadISST': {'value': 30.104403465586614,
         'value_error': 11.284149393943538},
        'Tropflux': {'value': 40.72817591126571,
         'value_error': 14.117242141656178}}},
      'EnsoDuration': {'diagnostic': {'ERA-Interim': {'value': 13.0,
         'value_error': None},
        'GISS-E2-R_r5i1p3': {'value': 12.0, 'value_error': None},
        'HadISST': {'value': 13.0, 'value_error': None},
        'Tropflux': {'value': 13.0, 'value_error': None}},
       'metric': {'ERA-Interim': {'value': 7.6923076923076925,
         'value_error': None},
        'HadISST': {'value': 7.6923076923076925, 'value_error': None},
        'Tropflux': {'value': 7.6923076923076925, 'value_error': None}}},
      'EnsoSeasonality': {'diagnostic': {'ERA-Interim': {'value': 2.0466846866656914,
         'value_error': 0.6513411033995022},
        'GISS-E2-R_r5i1p3': {'value': 1.735063056193777,
         'value_error': 0.27827984032180925},
        'HadISST': {'value': 1.6639865947361325,
         'value_error': 0.2712772451657809},
        'Tropflux': {'value': 2.0532132553583624,
         'value_error': 0.6534187683977347}},
       'metric': {'ERA-Interim': {'value': 15.225678508377637,
         'value_error': 40.57536789790965},
        'HadISST': {'value': 4.27145637365639,
         'value_error': 33.722902362412796},
        'Tropflux': {'value': 15.495234035446373,
         'value_error': 40.44635106253681}}},
      'EnsoSstDiversity_2': {'diagnostic': {'ERA-Interim': {'value': 33.25,
         'value_error': None},
        'GISS-E2-R_r5i1p3': {'value': 19.0, 'value_error': None},
        'HadISST': {'value': 49.0, 'value_error': None},
        'Tropflux': {'value': 32.0, 'value_error': None}},
       'metric': {'ERA-Interim': {'value': 42.857142857142854,
         'value_error': None},
        'HadISST': {'value': 61.224489795918366, 'value_error': None},
        'Tropflux': {'value': 40.625, 'value_error': None}}},
      'EnsoSstLonRmse': {'diagnostic': {'ERA-Interim': {'value': None,
         'value_error': None},
        'GISS-E2-R_r5i1p3': {'value': None, 'value_error': None},
        'HadISST': {'value': None, 'value_error': None},
        'Tropflux': {'value': None, 'value_error': None}},
       'metric': {'ERA-Interim': {'value': 0.08249862809988076,
         'value_error': None},
        'HadISST': {'value': 0.08985024387178614, 'value_error': None},
        'Tropflux': {'value': 0.0792876253237246, 'value_error': None}}},
      'EnsoSstSkew': {'diagnostic': {'ERA-Interim': {'value': 0.39098111106809963,
         'value_error': 0.061819541653923164},
        'GISS-E2-R_r5i1p3': {'value': 0.014653362756465718,
         'value_error': 0.001173207962614539},
        'HadISST': {'value': 0.38989908235027515,
         'value_error': 0.03172953733021198},
        'Tropflux': {'value': 0.39744741059612115,
         'value_error': 0.06284195338099416}},
       'metric': {'ERA-Interim': {'value': 96.25215583524354,
         'value_error': 0.8926538772258942},
        'HadISST': {'value': 96.24175500282365,
         'value_error': 0.6067420568661835},
        'Tropflux': {'value': 96.31313165822681,
         'value_error': 0.8781307801038523}}},
      'EnsoSstTsRmse': {'diagnostic': {'ERA-Interim': {'value': None,
         'value_error': None},
        'GISS-E2-R_r5i1p3': {'value': None, 'value_error': None},
        'HadISST': {'value': None, 'value_error': None},
        'Tropflux': {'value': None, 'value_error': None}},
       'metric': {'ERA-Interim': {'value': 0.16796534276098346,
         'value_error': None},
        'HadISST': {'value': 0.1598922371433367, 'value_error': None},
        'Tropflux': {'value': 0.16925646390187538, 'value_error': None}}},
      'SeasonalPrLatRmse': {'diagnostic': {'ERA-Interim': {'value': None,
         'value_error': None},
        'GISS-E2-R_r5i1p3': {'value': None, 'value_error': None},
        'GPCPv2.3': {'value': None, 'value_error': None}},
       'metric': {'ERA-Interim': {'value': 0.723016489292259,
         'value_error': None},
        'GPCPv2.3': {'value': 0.874471391425433, 'value_error': None}}},
      'SeasonalPrLonRmse': {'diagnostic': {'ERA-Interim': {'value': None,
         'value_error': None},
        'GISS-E2-R_r5i1p3': {'value': None, 'value_error': None},
        'GPCPv2.3': {'value': None, 'value_error': None}},
       'metric': {'ERA-Interim': {'value': 0.20872904123300837,
         'value_error': None},
        'GPCPv2.3': {'value': 0.47615833595162976, 'value_error': None}}},
      'SeasonalSstLonRmse': {'diagnostic': {'ERA-Interim': {'value': None,
         'value_error': None},
        'GISS-E2-R_r5i1p3': {'value': None, 'value_error': None},
        'HadISST': {'value': None, 'value_error': None},
        'Tropflux': {'value': None, 'value_error': None}},
       'metric': {'ERA-Interim': {'value': 0.26918608233389263,
         'value_error': None},
        'HadISST': {'value': 0.271990171649261, 'value_error': None},
        'Tropflux': {'value': 0.2767736268089055, 'value_error': None}}},
      'SeasonalTauxLonRmse': {'diagnostic': {'ERA-Interim': {'value': None,
         'value_error': None},
        'GISS-E2-R_r5i1p3': {'value': None, 'value_error': None},
        'Tropflux': {'value': None, 'value_error': None}},
       'metric': {'ERA-Interim': {'value': 1.7297991206381993,
         'value_error': None},
        'Tropflux': {'value': 1.7869111528564348, 'value_error': None}}}}},
    'r6i1p1': {'metadata': {'description_of_the_collection': 'Describe which science question this collection is about',
      'metrics': {'BiasPrLatRmse': {'diagnostic': {'ERA-Interim': {'name': 'ERA-Interim',
          'nyears': 40,
          'time_period': ['1979-1-16 12:0:0.0', '2019-3-16 12:0:0.0']},
         'GISS-E2-R_r6i1p1': {'keyerror': None,
          'name': 'GISS-E2-R_r6i1p1',
          'nyears': 156,
          'time_period': ['1850-1-16 12:0:0.0', '2005-12-16 12:0:0.0']},
         'GPCPv2.3': {'name': 'GPCPv2.3',
          'nyears': 41,
          'time_period': ['1979-1-1 0:0:0.0', '2019-7-1 0:0:0.0']},
         'method': 'Meridional root mean square error of nino3_LatExt pr, time series are linearly detrended, observations and model regridded to generic_1x1deg',
         'name': 'pr Meridional RMSE',
         'ref': 'Using CDAT regridding and rms (uncentered and biased) calculation',
         'time_frequency': 'monthly',
         'units': 'mm/day'},
        'metric': {'datasets': "GISS-E2-R_r6i1p1; ERA-Interim's pr & GPCPv2.3's precip; 's ",
         'method': 'The metric is the statistical value between the model and the observations',
         'name': 'BiasPrLatRmse',
         'units': 'mm/day'}},
       'BiasPrLonRmse': {'diagnostic': {'ERA-Interim': {'name': 'ERA-Interim',
          'nyears': 40,
          'time_period': ['1979-1-16 12:0:0.0', '2019-3-16 12:0:0.0']},
         'GISS-E2-R_r6i1p1': {'keyerror': None,
          'name': 'GISS-E2-R_r6i1p1',
          'nyears': 156,
          'time_period': ['1850-1-16 12:0:0.0', '2005-12-16 12:0:0.0']},
         'GPCPv2.3': {'name': 'GPCPv2.3',
          'nyears': 41,
          'time_period': ['1979-1-1 0:0:0.0', '2019-7-1 0:0:0.0']},
         'method': 'Zonal root mean square error of equatorial_pacific pr, time series are linearly detrended, observations and model regridded to generic_1x1deg',
         'name': 'pr Zonal RMSE',
         'ref': 'Using CDAT regridding and rms (uncentered and biased) calculation',
         'time_frequency': 'monthly',
         'units': 'mm/day'},
        'metric': {'datasets': "GISS-E2-R_r6i1p1; ERA-Interim's pr & GPCPv2.3's precip; 's ",
         'method': 'The metric is the statistical value between the model and the observations',
         'name': 'BiasPrLonRmse',
         'units': 'mm/day'}},
       'BiasSstLonRmse': {'diagnostic': {'ERA-Interim': {'name': 'ERA-Interim',
          'nyears': 40,
          'time_period': ['1979-1-16 12:0:0.0', '2019-3-16 12:0:0.0']},
         'GISS-E2-R_r6i1p1': {'keyerror': None,
          'name': 'GISS-E2-R_r6i1p1',
          'nyears': 156,
          'time_period': ['1850-1-16 12:0:0.0', '2005-12-16 12:0:0.0']},
         'HadISST': {'name': 'HadISST',
          'nyears': 151,
          'time_period': ['1870-1-16 11:59:59.5', '2020-10-16 12:0:0.0']},
         'Tropflux': {'name': 'Tropflux',
          'nyears': 40,
          'time_period': ['1979-1-15 0:0:0.0', '2018-12-15 12:0:0.0']},
         'method': 'Zonal root mean square error of equatorial_pacific sst, time series are linearly detrended, observations and model regridded to generic_1x1deg',
         'name': 'sst Zonal RMSE',
         'ref': 'Using CDAT regridding and rms (uncentered and biased) calculation',
         'time_frequency': 'monthly',
         'units': 'C'},
        'metric': {'datasets': "GISS-E2-R_r6i1p1; ERA-Interim's ts & HadISST's sst & Tropflux's sst; 's ",
         'method': 'The metric is the statistical value between the model and the observations',
         'name': 'BiasSstLonRmse',
         'units': 'C'}},
       'BiasTauxLonRmse': {'diagnostic': {'ERA-Interim': {'name': 'ERA-Interim',
          'nyears': 40,
          'time_period': ['1979-1-16 12:0:0.0', '2019-3-16 12:0:0.0']},
         'GISS-E2-R_r6i1p1': {'keyerror': None,
          'name': 'GISS-E2-R_r6i1p1',
          'nyears': 156,
          'time_period': ['1850-1-16 12:0:0.0', '2005-12-16 12:0:0.0']},
         'Tropflux': {'name': 'Tropflux',
          'nyears': 40,
          'time_period': ['1979-1-15 0:0:0.0', '2018-12-15 12:0:0.0']},
         'method': 'Zonal root mean square error of equatorial_pacific taux, time series are linearly detrended, observations and model regridded to generic_1x1deg',
         'name': 'taux Zonal RMSE',
         'ref': 'Using CDAT regridding and rms (uncentered and biased) calculation',
         'time_frequency': 'monthly',
         'units': '1e-3 N/m2'},
        'metric': {'datasets': "GISS-E2-R_r6i1p1; ERA-Interim's tauu & Tropflux's taux; 's ",
         'method': 'The metric is the statistical value between the model and the observations',
         'name': 'BiasTauxLonRmse',
         'units': '1e-3 N/m2'}},
       'EnsoAmpl': {'diagnostic': {'ERA-Interim': {'keyerror': None,
          'name': 'ERA-Interim',
          'nyears': 40,
          'time_period': ['1979-1-16 12:0:0.0', '2019-3-16 12:0:0.0']},
         'GISS-E2-R_r6i1p1': {'keyerror': None,
          'name': 'GISS-E2-R_r6i1p1',
          'nyears': 156,
          'time_period': ['1850-1-16 12:0:0.0', '2005-12-16 12:0:0.0']},
         'HadISST': {'keyerror': None,
          'name': 'HadISST',
          'nyears': 151,
          'time_period': ['1870-1-16 11:59:59.5', '2020-10-16 12:0:0.0']},
         'Tropflux': {'keyerror': None,
          'name': 'Tropflux',
          'nyears': 40,
          'time_period': ['1979-1-15 0:0:0.0', '2018-12-15 12:0:0.0']},
         'method': 'Standard deviation of nino3.4 sstA, time series are linearly detrended',
         'name': 'ENSO amplitude',
         'ref': 'Using CDAT regression calculation',
         'time_frequency': 'monthly',
         'units': 'C'},
        'metric': {'datasets': "GISS-E2-R_r6i1p1; ERA-Interim's ts & HadISST's sst & Tropflux's sst; 's ",
         'method': 'The metric is the absolute value of the relative difference between model and observations values (M = 100 * abs[[model-obs] / obs])',
         'name': 'EnsoAmpl',
         'units': '%'}},
       'EnsoDuration': {'diagnostic': {'ERA-Interim': {'keyerror': None,
          'name': 'ERA-Interim',
          'nyears': 40,
          'time_period': ['1979-1-16 12:0:0.0', '2019-3-16 12:0:0.0']},
         'GISS-E2-R_r6i1p1': {'keyerror': None,
          'name': 'GISS-E2-R_r6i1p1',
          'nyears': 156,
          'time_period': ['1850-1-16 12:0:0.0', '2005-12-16 12:0:0.0']},
         'HadISST': {'keyerror': None,
          'name': 'HadISST',
          'nyears': 151,
          'time_period': ['1870-1-16 11:59:59.5', '2020-10-16 12:0:0.0']},
         'Tropflux': {'keyerror': None,
          'name': 'Tropflux',
          'nyears': 40,
          'time_period': ['1979-1-15 0:0:0.0', '2018-12-15 12:0:0.0']},
         'method': 'nino3.4 SSTA during DEC regressed against nino3.4 SSTA during 6 years (centered on ENSO), the duration is the number of consecutive months during which the regression is above 0.25, time series are linearly detrended, smoothing using a triangle shaped window of 5 points',
         'name': 'ENSO Duration based on life cyle SSTA pattern',
         'ref': 'Using CDAT',
         'time_frequency': 'monthly',
         'units': 'months'},
        'metric': {'datasets': "GISS-E2-R_r6i1p1; ERA-Interim's ts & HadISST's sst & Tropflux's sst; 's ",
         'method': 'The metric is the absolute value of the relative difference between model and observations values (M = 100 * abs[[model-obs] / obs])',
         'name': 'EnsoDuration',
         'units': '%'}},
       'EnsoSeasonality': {'diagnostic': {'ERA-Interim': {'keyerror': None,
          'name': 'ERA-Interim',
          'nyears': 40,
          'time_period': ['1979-1-16 12:0:0.0', '2019-3-16 12:0:0.0']},
         'GISS-E2-R_r6i1p1': {'keyerror': None,
          'name': 'GISS-E2-R_r6i1p1',
          'nyears': 156,
          'time_period': ['1850-1-16 12:0:0.0', '2005-12-16 12:0:0.0']},
         'HadISST': {'keyerror': None,
          'name': 'HadISST',
          'nyears': 151,
          'time_period': ['1870-1-16 11:59:59.5', '2020-10-16 12:0:0.0']},
         'Tropflux': {'keyerror': None,
          'name': 'Tropflux',
          'nyears': 40,
          'time_period': ['1979-1-15 0:0:0.0', '2018-12-15 12:0:0.0']},
         'method': 'Ratio between NDJ and MAM standard deviation nino3.4 sstA, time series are linearly detrended',
         'name': 'ENSO seasonality',
         'ref': 'Using CDAT std dev calculation',
         'time_frequency': 'monthly',
         'units': 'C/C'},
        'metric': {'datasets': "GISS-E2-R_r6i1p1; ERA-Interim's ts & HadISST's sst & Tropflux's sst; 's ",
         'method': 'The metric is the absolute value of the relative difference between model and observations values (M = 100 * abs[[model-obs] / obs])',
         'name': 'EnsoSeasonality',
         'units': '%'}},
       'EnsoSstDiversity_2': {'diagnostic': {'ERA-Interim': {'keyerror': None,
          'name': 'ERA-Interim',
          'nyears': 40,
          'time_period': ['1979-1-16 12:0:0.0', '2019-3-16 12:0:0.0']},
         'GISS-E2-R_r6i1p1': {'keyerror': None,
          'name': 'GISS-E2-R_r6i1p1',
          'nyears': 156,
          'time_period': ['1850-1-16 12:0:0.0', '2005-12-16 12:0:0.0']},
         'HadISST': {'keyerror': None,
          'name': 'HadISST',
          'nyears': 151,
          'time_period': ['1870-1-16 11:59:59.5', '2020-10-16 12:0:0.0']},
         'Tropflux': {'keyerror': None,
          'name': 'Tropflux',
          'nyears': 40,
          'time_period': ['1979-1-15 0:0:0.0', '2018-12-15 12:0:0.0']},
         'method': 'Nino (Nina) events = nino3.4 sstA > 0.75 (< -0.75) during DEC, zonal SSTA (meridional averaged [-5.0 ; 5.0]), the zonal SSTA maximum (minimum) is located for each event, the diversity is the interquartile range (IQR = Q3 - Q1), time series are linearly detrended, smoothing using a triangle shaped window of 5 points',
         'name': 'ENSO Diversity (interquartile range)',
         'ref': 'Using CDAT regridding',
         'time_frequency': 'monthly',
         'units': 'long'},
        'metric': {'datasets': "GISS-E2-R_r6i1p1; ERA-Interim's ts & HadISST's sst & Tropflux's sst; 's ",
         'method': 'The metric is the absolute value of the relative difference between model and observations values (M = 100 * abs[[model-obs] / obs])',
         'name': 'EnsoSstDiversity',
         'units': '%'}},
       'EnsoSstLonRmse': {'diagnostic': {'ERA-Interim': {'name': 'ERA-Interim',
          'nyears': 40,
          'time_period': ['1979-1-16 12:0:0.0', '2019-3-16 12:0:0.0']},
         'GISS-E2-R_r6i1p1': {'keyerror': None,
          'name': 'GISS-E2-R_r6i1p1',
          'nyears': 156,
          'time_period': ['1850-1-16 12:0:0.0', '2005-12-16 12:0:0.0']},
         'HadISST': {'name': 'HadISST',
          'nyears': 151,
          'time_period': ['1870-1-16 11:59:59.5', '2020-10-16 12:0:0.0']},
         'Tropflux': {'name': 'Tropflux',
          'nyears': 40,
          'time_period': ['1979-1-15 0:0:0.0', '2018-12-15 12:0:0.0']},
         'method': 'nino3.4 SSTA during DEC regressed against equatorial_pacific SSTA, time series are linearly detrended, smoothing using a triangle shaped window of 5 points, observations and model regridded to generic_1x1deg',
         'name': 'ENSO Zonal SSTA pattern',
         'ref': 'Using CDAT regridding and rms (uncentered and biased) calculation',
         'time_frequency': 'monthly',
         'units': 'C/C'},
        'metric': {'datasets': "GISS-E2-R_r6i1p1; ERA-Interim's ts & HadISST's sst & Tropflux's sst; 's ",
         'method': 'The metric is the statistical value between the model and the observations',
         'name': 'EnsoSstLonRmse',
         'units': 'C/C'}},
       'EnsoSstSkew': {'diagnostic': {'ERA-Interim': {'keyerror': None,
          'name': 'ERA-Interim',
          'nyears': 40,
          'time_period': ['1979-1-16 12:0:0.0', '2019-3-16 12:0:0.0']},
         'GISS-E2-R_r6i1p1': {'keyerror': None,
          'name': 'GISS-E2-R_r6i1p1',
          'nyears': 156,
          'time_period': ['1850-1-16 12:0:0.0', '2005-12-16 12:0:0.0']},
         'HadISST': {'keyerror': None,
          'name': 'HadISST',
          'nyears': 151,
          'time_period': ['1870-1-16 11:59:59.5', '2020-10-16 12:0:0.0']},
         'Tropflux': {'keyerror': None,
          'name': 'Tropflux',
          'nyears': 40,
          'time_period': ['1979-1-15 0:0:0.0', '2018-12-15 12:0:0.0']},
         'method': 'Standard deviation of nino3.4 sstA, time series are linearly detrended',
         'name': 'ENSO skewness',
         'ref': 'Using CDAT regression calculation',
         'time_frequency': 'monthly',
         'units': 'C'},
        'metric': {'datasets': "GISS-E2-R_r6i1p1; ERA-Interim's ts & HadISST's sst & Tropflux's sst; 's ",
         'method': 'The metric is the absolute value of the relative difference between model and observations values (M = 100 * abs[[model-obs] / obs])',
         'name': 'EnsoSstSkew',
         'units': '%'}},
       'EnsoSstTsRmse': {'diagnostic': {'ERA-Interim': {'name': 'ERA-Interim',
          'nyears': 40,
          'time_period': ['1979-1-16 12:0:0.0', '2019-3-16 12:0:0.0']},
         'GISS-E2-R_r6i1p1': {'keyerror': None,
          'name': 'GISS-E2-R_r6i1p1',
          'nyears': 156,
          'time_period': ['1850-1-16 12:0:0.0', '2005-12-16 12:0:0.0']},
         'HadISST': {'name': 'HadISST',
          'nyears': 151,
          'time_period': ['1870-1-16 11:59:59.5', '2020-10-16 12:0:0.0']},
         'Tropflux': {'name': 'Tropflux',
          'nyears': 40,
          'time_period': ['1979-1-15 0:0:0.0', '2018-12-15 12:0:0.0']},
         'method': 'nino3.4 SSTA during DEC regressed against nino3.4 SSTA during 6 years (centered on ENSO), time series are linearly detrended, smoothing using a triangle shaped window of 5 points',
         'name': 'ENSO life cyle SSTA pattern',
         'ref': 'Using CDAT regridding and rms (uncentered and biased) calculation',
         'time_frequency': 'monthly',
         'units': 'C/C'},
        'metric': {'datasets': "GISS-E2-R_r6i1p1; ERA-Interim's ts & HadISST's sst & Tropflux's sst; 's ",
         'method': 'The metric is the statistical value between the model and the observations',
         'name': 'EnsoSstTsRmse',
         'units': 'C/C'}},
       'SeasonalPrLatRmse': {'diagnostic': {'ERA-Interim': {'name': 'ERA-Interim',
          'nyears': 40,
          'time_period': ['1979-1-16 12:0:0.0', '2019-3-16 12:0:0.0']},
         'GISS-E2-R_r6i1p1': {'keyerror': None,
          'name': 'GISS-E2-R_r6i1p1',
          'nyears': 156,
          'time_period': ['1850-1-16 12:0:0.0', '2005-12-16 12:0:0.0']},
         'GPCPv2.3': {'name': 'GPCPv2.3',
          'nyears': 41,
          'time_period': ['1979-1-1 0:0:0.0', '2019-7-1 0:0:0.0']},
         'method': 'Meridional root mean square error of nino3_LatExt climatological pr STD, time series are linearly detrended, observations and model regridded to generic_1x1deg',
         'name': 'pr meridional seasonality RMSE',
         'ref': 'Using CDAT regridding and rms (uncentered and biased) calculation',
         'time_frequency': 'monthly',
         'units': 'mm/day'},
        'metric': {'datasets': "GISS-E2-R_r6i1p1; ERA-Interim's pr & GPCPv2.3's precip; 's ",
         'method': 'The metric is the statistical value between the model and the observations',
         'name': 'SeasonalPrLatRmse',
         'units': 'mm/day'}},
       'SeasonalPrLonRmse': {'diagnostic': {'ERA-Interim': {'name': 'ERA-Interim',
          'nyears': 40,
          'time_period': ['1979-1-16 12:0:0.0', '2019-3-16 12:0:0.0']},
         'GISS-E2-R_r6i1p1': {'keyerror': None,
          'name': 'GISS-E2-R_r6i1p1',
          'nyears': 156,
          'time_period': ['1850-1-16 12:0:0.0', '2005-12-16 12:0:0.0']},
         'GPCPv2.3': {'name': 'GPCPv2.3',
          'nyears': 41,
          'time_period': ['1979-1-1 0:0:0.0', '2019-7-1 0:0:0.0']},
         'method': 'Zonal root mean square error of equatorial_pacific climatological pr STD, time series are linearly detrended, observations and model regridded to generic_1x1deg',
         'name': 'pr zonal seasonality RMSE',
         'ref': 'Using CDAT regridding and rms (uncentered and biased) calculation',
         'time_frequency': 'monthly',
         'units': 'mm/day'},
        'metric': {'datasets': "GISS-E2-R_r6i1p1; ERA-Interim's pr & GPCPv2.3's precip; 's ",
         'method': 'The metric is the statistical value between the model and the observations',
         'name': 'SeasonalPrLonRmse',
         'units': 'mm/day'}},
       'SeasonalSstLonRmse': {'diagnostic': {'ERA-Interim': {'name': 'ERA-Interim',
          'nyears': 40,
          'time_period': ['1979-1-16 12:0:0.0', '2019-3-16 12:0:0.0']},
         'GISS-E2-R_r6i1p1': {'keyerror': None,
          'name': 'GISS-E2-R_r6i1p1',
          'nyears': 156,
          'time_period': ['1850-1-16 12:0:0.0', '2005-12-16 12:0:0.0']},
         'HadISST': {'name': 'HadISST',
          'nyears': 151,
          'time_period': ['1870-1-16 11:59:59.5', '2020-10-16 12:0:0.0']},
         'Tropflux': {'name': 'Tropflux',
          'nyears': 40,
          'time_period': ['1979-1-15 0:0:0.0', '2018-12-15 12:0:0.0']},
         'method': 'Zonal root mean square error of equatorial_pacific climatological sst STD, time series are linearly detrended, observations and model regridded to generic_1x1deg',
         'name': 'sst zonal seasonality RMSE',
         'ref': 'Using CDAT regridding and rms (uncentered and biased) calculation',
         'time_frequency': 'monthly',
         'units': 'C'},
        'metric': {'datasets': "GISS-E2-R_r6i1p1; ERA-Interim's ts & HadISST's sst & Tropflux's sst; 's ",
         'method': 'The metric is the statistical value between the model and the observations',
         'name': 'SeasonalSstLonRmse',
         'units': 'C'}},
       'SeasonalTauxLonRmse': {'diagnostic': {'ERA-Interim': {'name': 'ERA-Interim',
          'nyears': 40,
          'time_period': ['1979-1-16 12:0:0.0', '2019-3-16 12:0:0.0']},
         'GISS-E2-R_r6i1p1': {'keyerror': None,
          'name': 'GISS-E2-R_r6i1p1',
          'nyears': 156,
          'time_period': ['1850-1-16 12:0:0.0', '2005-12-16 12:0:0.0']},
         'Tropflux': {'name': 'Tropflux',
          'nyears': 40,
          'time_period': ['1979-1-15 0:0:0.0', '2018-12-15 12:0:0.0']},
         'method': 'Zonal root mean square error of equatorial_pacific climatological taux STD, time series are linearly detrended, observations and model regridded to generic_1x1deg',
         'name': 'taux zonal seasonality RMSE',
         'ref': 'Using CDAT regridding and rms (uncentered and biased) calculation',
         'time_frequency': 'monthly',
         'units': '1e-3 N/m2'},
        'metric': {'datasets': "GISS-E2-R_r6i1p1; ERA-Interim's tauu & Tropflux's taux; 's ",
         'method': 'The metric is the statistical value between the model and the observations',
         'name': 'SeasonalTauxLonRmse',
         'units': '1e-3 N/m2'}}},
      'name': 'Metrics Collection for ENSO performance'},
     'value': {'BiasPrLatRmse': {'diagnostic': {'ERA-Interim': {'value': None,
         'value_error': None},
        'GISS-E2-R_r6i1p1': {'value': None, 'value_error': None},
        'GPCPv2.3': {'value': None, 'value_error': None}},
       'metric': {'ERA-Interim': {'value': 2.0682370623065602,
         'value_error': None},
        'GPCPv2.3': {'value': 2.863735583165499, 'value_error': None}}},
      'BiasPrLonRmse': {'diagnostic': {'ERA-Interim': {'value': None,
         'value_error': None},
        'GISS-E2-R_r6i1p1': {'value': None, 'value_error': None},
        'GPCPv2.3': {'value': None, 'value_error': None}},
       'metric': {'ERA-Interim': {'value': 1.6972243081315266,
         'value_error': None},
        'GPCPv2.3': {'value': 2.17149361382077, 'value_error': None}}},
      'BiasSstLonRmse': {'diagnostic': {'ERA-Interim': {'value': None,
         'value_error': None},
        'GISS-E2-R_r6i1p1': {'value': None, 'value_error': None},
        'HadISST': {'value': None, 'value_error': None},
        'Tropflux': {'value': None, 'value_error': None}},
       'metric': {'ERA-Interim': {'value': 1.0091961058702132,
         'value_error': None},
        'HadISST': {'value': 1.1803929125999657, 'value_error': None},
        'Tropflux': {'value': 0.9756694672993207, 'value_error': None}}},
      'BiasTauxLonRmse': {'diagnostic': {'ERA-Interim': {'value': None,
         'value_error': None},
        'GISS-E2-R_r6i1p1': {'value': None, 'value_error': None},
        'Tropflux': {'value': None, 'value_error': None}},
       'metric': {'ERA-Interim': {'value': 18.101090570860677,
         'value_error': None},
        'Tropflux': {'value': 17.720235432292785, 'value_error': None}}},
      'EnsoAmpl': {'diagnostic': {'ERA-Interim': {'value': 0.8989844997845644,
         'value_error': 0.14214193002531866},
        'GISS-E2-R_r6i1p1': {'value': 0.5294391671320865,
         'value_error': 0.04238905819248199},
        'HadISST': {'value': 0.7665787872085695,
         'value_error': 0.06238329697691264},
        'Tropflux': {'value': 0.9039789553693535,
         'value_error': 0.14293162279134272}},
       'metric': {'ERA-Interim': {'value': 41.10697489679043,
         'value_error': 14.027020572067558},
        'HadISST': {'value': 30.9348007058748,
         'value_error': 11.15008763640325},
        'Tropflux': {'value': 41.43235702696587,
         'value_error': 13.949521720110889}}},
      'EnsoDuration': {'diagnostic': {'ERA-Interim': {'value': 13.0,
         'value_error': None},
        'GISS-E2-R_r6i1p1': {'value': 12.0, 'value_error': None},
        'HadISST': {'value': 13.0, 'value_error': None},
        'Tropflux': {'value': 13.0, 'value_error': None}},
       'metric': {'ERA-Interim': {'value': 7.6923076923076925,
         'value_error': None},
        'HadISST': {'value': 7.6923076923076925, 'value_error': None},
        'Tropflux': {'value': 7.6923076923076925, 'value_error': None}}},
      'EnsoSeasonality': {'diagnostic': {'ERA-Interim': {'value': 2.0466846866656914,
         'value_error': 0.6513411033995022},
        'GISS-E2-R_r6i1p1': {'value': 1.7472456641012186,
         'value_error': 0.280233760192954},
        'HadISST': {'value': 1.6639865947361325,
         'value_error': 0.2712772451657809},
        'Tropflux': {'value': 2.0532132553583624,
         'value_error': 0.6534187683977347}},
       'metric': {'ERA-Interim': {'value': 14.630442320467882,
         'value_error': 40.86026463179829},
        'HadISST': {'value': 5.003590150814222,
         'value_error': 33.95968505196153},
        'Tropflux': {'value': 14.90189051033284,
         'value_error': 40.730341914928395}}},
      'EnsoSstDiversity_2': {'diagnostic': {'ERA-Interim': {'value': 33.25,
         'value_error': None},
        'GISS-E2-R_r6i1p1': {'value': 24.5, 'value_error': None},
        'HadISST': {'value': 49.0, 'value_error': None},
        'Tropflux': {'value': 32.0, 'value_error': None}},
       'metric': {'ERA-Interim': {'value': 26.31578947368421,
         'value_error': None},
        'HadISST': {'value': 50.0, 'value_error': None},
        'Tropflux': {'value': 23.4375, 'value_error': None}}},
      'EnsoSstLonRmse': {'diagnostic': {'ERA-Interim': {'value': None,
         'value_error': None},
        'GISS-E2-R_r6i1p1': {'value': None, 'value_error': None},
        'HadISST': {'value': None, 'value_error': None},
        'Tropflux': {'value': None, 'value_error': None}},
       'metric': {'ERA-Interim': {'value': 0.10552538441764521,
         'value_error': None},
        'HadISST': {'value': 0.1168235989365986, 'value_error': None},
        'Tropflux': {'value': 0.10363762004647109, 'value_error': None}}},
      'EnsoSstSkew': {'diagnostic': {'ERA-Interim': {'value': 0.39098111106809963,
         'value_error': 0.061819541653923164},
        'GISS-E2-R_r6i1p1': {'value': -0.011750174886691986,
         'value_error': -0.0009407669057464432},
        'HadISST': {'value': 0.38989908235027515,
         'value_error': 0.03172953733021198},
        'Tropflux': {'value': 0.39744741059612115,
         'value_error': 0.06284195338099416}},
       'metric': {'ERA-Interim': {'value': 103.00530500171539,
         'value_error': -0.7157974142187847},
        'HadISST': {'value': 103.01364517604479,
         'value_error': -0.4865316854414922},
        'Tropflux': {'value': 102.95640997360336,
         'value_error': -0.7041516961732696}}},
      'EnsoSstTsRmse': {'diagnostic': {'ERA-Interim': {'value': None,
         'value_error': None},
        'GISS-E2-R_r6i1p1': {'value': None, 'value_error': None},
        'HadISST': {'value': None, 'value_error': None},
        'Tropflux': {'value': None, 'value_error': None}},
       'metric': {'ERA-Interim': {'value': 0.09832595693447961,
         'value_error': None},
        'HadISST': {'value': 0.09419875738703808, 'value_error': None},
        'Tropflux': {'value': 0.0994212396922834, 'value_error': None}}},
      'SeasonalPrLatRmse': {'diagnostic': {'ERA-Interim': {'value': None,
         'value_error': None},
        'GISS-E2-R_r6i1p1': {'value': None, 'value_error': None},
        'GPCPv2.3': {'value': None, 'value_error': None}},
       'metric': {'ERA-Interim': {'value': 0.6925050583712082,
         'value_error': None},
        'GPCPv2.3': {'value': 0.8687348700833031, 'value_error': None}}},
      'SeasonalPrLonRmse': {'diagnostic': {'ERA-Interim': {'value': None,
         'value_error': None},
        'GISS-E2-R_r6i1p1': {'value': None, 'value_error': None},
        'GPCPv2.3': {'value': None, 'value_error': None}},
       'metric': {'ERA-Interim': {'value': 0.2776320492068834,
         'value_error': None},
        'GPCPv2.3': {'value': 0.5234473719688465, 'value_error': None}}},
      'SeasonalSstLonRmse': {'diagnostic': {'ERA-Interim': {'value': None,
         'value_error': None},
        'GISS-E2-R_r6i1p1': {'value': None, 'value_error': None},
        'HadISST': {'value': None, 'value_error': None},
        'Tropflux': {'value': None, 'value_error': None}},
       'metric': {'ERA-Interim': {'value': 0.2837033313035686,
         'value_error': None},
        'HadISST': {'value': 0.2853203753432155, 'value_error': None},
        'Tropflux': {'value': 0.29154330558559705, 'value_error': None}}},
      'SeasonalTauxLonRmse': {'diagnostic': {'ERA-Interim': {'value': None,
         'value_error': None},
        'GISS-E2-R_r6i1p1': {'value': None, 'value_error': None},
        'Tropflux': {'value': None, 'value_error': None}},
       'metric': {'ERA-Interim': {'value': 1.8663641542590788,
         'value_error': None},
        'Tropflux': {'value': 1.9770402907565814, 'value_error': None}}}}},
    'r6i1p2': {'metadata': {'description_of_the_collection': 'Describe which science question this collection is about',
      'metrics': {'BiasPrLatRmse': {'diagnostic': {'ERA-Interim': {'name': 'ERA-Interim',
          'nyears': 40,
          'time_period': ['1979-1-16 12:0:0.0', '2019-3-16 12:0:0.0']},
         'GISS-E2-R_r6i1p2': {'keyerror': None,
          'name': 'GISS-E2-R_r6i1p2',
          'nyears': 156,
          'time_period': ['1850-1-16 12:0:0.0', '2005-12-16 12:0:0.0']},
         'GPCPv2.3': {'name': 'GPCPv2.3',
          'nyears': 41,
          'time_period': ['1979-1-1 0:0:0.0', '2019-7-1 0:0:0.0']},
         'method': 'Meridional root mean square error of nino3_LatExt pr, time series are linearly detrended, observations and model regridded to generic_1x1deg',
         'name': 'pr Meridional RMSE',
         'ref': 'Using CDAT regridding and rms (uncentered and biased) calculation',
         'time_frequency': 'monthly',
         'units': 'mm/day'},
        'metric': {'datasets': "GISS-E2-R_r6i1p2; ERA-Interim's pr & GPCPv2.3's precip; 's ",
         'method': 'The metric is the statistical value between the model and the observations',
         'name': 'BiasPrLatRmse',
         'units': 'mm/day'}},
       'BiasPrLonRmse': {'diagnostic': {'ERA-Interim': {'name': 'ERA-Interim',
          'nyears': 40,
          'time_period': ['1979-1-16 12:0:0.0', '2019-3-16 12:0:0.0']},
         'GISS-E2-R_r6i1p2': {'keyerror': None,
          'name': 'GISS-E2-R_r6i1p2',
          'nyears': 156,
          'time_period': ['1850-1-16 12:0:0.0', '2005-12-16 12:0:0.0']},
         'GPCPv2.3': {'name': 'GPCPv2.3',
          'nyears': 41,
          'time_period': ['1979-1-1 0:0:0.0', '2019-7-1 0:0:0.0']},
         'method': 'Zonal root mean square error of equatorial_pacific pr, time series are linearly detrended, observations and model regridded to generic_1x1deg',
         'name': 'pr Zonal RMSE',
         'ref': 'Using CDAT regridding and rms (uncentered and biased) calculation',
         'time_frequency': 'monthly',
         'units': 'mm/day'},
        'metric': {'datasets': "GISS-E2-R_r6i1p2; ERA-Interim's pr & GPCPv2.3's precip; 's ",
         'method': 'The metric is the statistical value between the model and the observations',
         'name': 'BiasPrLonRmse',
         'units': 'mm/day'}},
       'BiasSstLonRmse': {'diagnostic': {'ERA-Interim': {'name': 'ERA-Interim',
          'nyears': 40,
          'time_period': ['1979-1-16 12:0:0.0', '2019-3-16 12:0:0.0']},
         'GISS-E2-R_r6i1p2': {'keyerror': None,
          'name': 'GISS-E2-R_r6i1p2',
          'nyears': 156,
          'time_period': ['1850-1-16 12:0:0.0', '2005-12-16 12:0:0.0']},
         'HadISST': {'name': 'HadISST',
          'nyears': 151,
          'time_period': ['1870-1-16 11:59:59.5', '2020-10-16 12:0:0.0']},
         'Tropflux': {'name': 'Tropflux',
          'nyears': 40,
          'time_period': ['1979-1-15 0:0:0.0', '2018-12-15 12:0:0.0']},
         'method': 'Zonal root mean square error of equatorial_pacific sst, time series are linearly detrended, observations and model regridded to generic_1x1deg',
         'name': 'sst Zonal RMSE',
         'ref': 'Using CDAT regridding and rms (uncentered and biased) calculation',
         'time_frequency': 'monthly',
         'units': 'C'},
        'metric': {'datasets': "GISS-E2-R_r6i1p2; ERA-Interim's ts & HadISST's sst & Tropflux's sst; 's ",
         'method': 'The metric is the statistical value between the model and the observations',
         'name': 'BiasSstLonRmse',
         'units': 'C'}},
       'BiasTauxLonRmse': {'diagnostic': {'ERA-Interim': {'name': 'ERA-Interim',
          'nyears': 40,
          'time_period': ['1979-1-16 12:0:0.0', '2019-3-16 12:0:0.0']},
         'GISS-E2-R_r6i1p2': {'keyerror': None,
          'name': 'GISS-E2-R_r6i1p2',
          'nyears': 156,
          'time_period': ['1850-1-16 12:0:0.0', '2005-12-16 12:0:0.0']},
         'Tropflux': {'name': 'Tropflux',
          'nyears': 40,
          'time_period': ['1979-1-15 0:0:0.0', '2018-12-15 12:0:0.0']},
         'method': 'Zonal root mean square error of equatorial_pacific taux, time series are linearly detrended, observations and model regridded to generic_1x1deg',
         'name': 'taux Zonal RMSE',
         'ref': 'Using CDAT regridding and rms (uncentered and biased) calculation',
         'time_frequency': 'monthly',
         'units': '1e-3 N/m2'},
        'metric': {'datasets': "GISS-E2-R_r6i1p2; ERA-Interim's tauu & Tropflux's taux; 's ",
         'method': 'The metric is the statistical value between the model and the observations',
         'name': 'BiasTauxLonRmse',
         'units': '1e-3 N/m2'}},
       'EnsoAmpl': {'diagnostic': {'ERA-Interim': {'keyerror': None,
          'name': 'ERA-Interim',
          'nyears': 40,
          'time_period': ['1979-1-16 12:0:0.0', '2019-3-16 12:0:0.0']},
         'GISS-E2-R_r6i1p2': {'keyerror': None,
          'name': 'GISS-E2-R_r6i1p2',
          'nyears': 156,
          'time_period': ['1850-1-16 12:0:0.0', '2005-12-16 12:0:0.0']},
         'HadISST': {'keyerror': None,
          'name': 'HadISST',
          'nyears': 151,
          'time_period': ['1870-1-16 11:59:59.5', '2020-10-16 12:0:0.0']},
         'Tropflux': {'keyerror': None,
          'name': 'Tropflux',
          'nyears': 40,
          'time_period': ['1979-1-15 0:0:0.0', '2018-12-15 12:0:0.0']},
         'method': 'Standard deviation of nino3.4 sstA, time series are linearly detrended',
         'name': 'ENSO amplitude',
         'ref': 'Using CDAT regression calculation',
         'time_frequency': 'monthly',
         'units': 'C'},
        'metric': {'datasets': "GISS-E2-R_r6i1p2; ERA-Interim's ts & HadISST's sst & Tropflux's sst; 's ",
         'method': 'The metric is the absolute value of the relative difference between model and observations values (M = 100 * abs[[model-obs] / obs])',
         'name': 'EnsoAmpl',
         'units': '%'}},
       'EnsoDuration': {'diagnostic': {'ERA-Interim': {'keyerror': None,
          'name': 'ERA-Interim',
          'nyears': 40,
          'time_period': ['1979-1-16 12:0:0.0', '2019-3-16 12:0:0.0']},
         'GISS-E2-R_r6i1p2': {'keyerror': None,
          'name': 'GISS-E2-R_r6i1p2',
          'nyears': 156,
          'time_period': ['1850-1-16 12:0:0.0', '2005-12-16 12:0:0.0']},
         'HadISST': {'keyerror': None,
          'name': 'HadISST',
          'nyears': 151,
          'time_period': ['1870-1-16 11:59:59.5', '2020-10-16 12:0:0.0']},
         'Tropflux': {'keyerror': None,
          'name': 'Tropflux',
          'nyears': 40,
          'time_period': ['1979-1-15 0:0:0.0', '2018-12-15 12:0:0.0']},
         'method': 'nino3.4 SSTA during DEC regressed against nino3.4 SSTA during 6 years (centered on ENSO), the duration is the number of consecutive months during which the regression is above 0.25, time series are linearly detrended, smoothing using a triangle shaped window of 5 points',
         'name': 'ENSO Duration based on life cyle SSTA pattern',
         'ref': 'Using CDAT',
         'time_frequency': 'monthly',
         'units': 'months'},
        'metric': {'datasets': "GISS-E2-R_r6i1p2; ERA-Interim's ts & HadISST's sst & Tropflux's sst; 's ",
         'method': 'The metric is the absolute value of the relative difference between model and observations values (M = 100 * abs[[model-obs] / obs])',
         'name': 'EnsoDuration',
         'units': '%'}},
       'EnsoSeasonality': {'diagnostic': {'ERA-Interim': {'keyerror': None,
          'name': 'ERA-Interim',
          'nyears': 40,
          'time_period': ['1979-1-16 12:0:0.0', '2019-3-16 12:0:0.0']},
         'GISS-E2-R_r6i1p2': {'keyerror': None,
          'name': 'GISS-E2-R_r6i1p2',
          'nyears': 156,
          'time_period': ['1850-1-16 12:0:0.0', '2005-12-16 12:0:0.0']},
         'HadISST': {'keyerror': None,
          'name': 'HadISST',
          'nyears': 151,
          'time_period': ['1870-1-16 11:59:59.5', '2020-10-16 12:0:0.0']},
         'Tropflux': {'keyerror': None,
          'name': 'Tropflux',
          'nyears': 40,
          'time_period': ['1979-1-15 0:0:0.0', '2018-12-15 12:0:0.0']},
         'method': 'Ratio between NDJ and MAM standard deviation nino3.4 sstA, time series are linearly detrended',
         'name': 'ENSO seasonality',
         'ref': 'Using CDAT std dev calculation',
         'time_frequency': 'monthly',
         'units': 'C/C'},
        'metric': {'datasets': "GISS-E2-R_r6i1p2; ERA-Interim's ts & HadISST's sst & Tropflux's sst; 's ",
         'method': 'The metric is the absolute value of the relative difference between model and observations values (M = 100 * abs[[model-obs] / obs])',
         'name': 'EnsoSeasonality',
         'units': '%'}},
       'EnsoSstDiversity_2': {'diagnostic': {'ERA-Interim': {'keyerror': None,
          'name': 'ERA-Interim',
          'nyears': 40,
          'time_period': ['1979-1-16 12:0:0.0', '2019-3-16 12:0:0.0']},
         'GISS-E2-R_r6i1p2': {'keyerror': None,
          'name': 'GISS-E2-R_r6i1p2',
          'nyears': 156,
          'time_period': ['1850-1-16 12:0:0.0', '2005-12-16 12:0:0.0']},
         'HadISST': {'keyerror': None,
          'name': 'HadISST',
          'nyears': 151,
          'time_period': ['1870-1-16 11:59:59.5', '2020-10-16 12:0:0.0']},
         'Tropflux': {'keyerror': None,
          'name': 'Tropflux',
          'nyears': 40,
          'time_period': ['1979-1-15 0:0:0.0', '2018-12-15 12:0:0.0']},
         'method': 'Nino (Nina) events = nino3.4 sstA > 0.75 (< -0.75) during DEC, zonal SSTA (meridional averaged [-5.0 ; 5.0]), the zonal SSTA maximum (minimum) is located for each event, the diversity is the interquartile range (IQR = Q3 - Q1), time series are linearly detrended, smoothing using a triangle shaped window of 5 points',
         'name': 'ENSO Diversity (interquartile range)',
         'ref': 'Using CDAT regridding',
         'time_frequency': 'monthly',
         'units': 'long'},
        'metric': {'datasets': "GISS-E2-R_r6i1p2; ERA-Interim's ts & HadISST's sst & Tropflux's sst; 's ",
         'method': 'The metric is the absolute value of the relative difference between model and observations values (M = 100 * abs[[model-obs] / obs])',
         'name': 'EnsoSstDiversity',
         'units': '%'}},
       'EnsoSstLonRmse': {'diagnostic': {'ERA-Interim': {'name': 'ERA-Interim',
          'nyears': 40,
          'time_period': ['1979-1-16 12:0:0.0', '2019-3-16 12:0:0.0']},
         'GISS-E2-R_r6i1p2': {'keyerror': None,
          'name': 'GISS-E2-R_r6i1p2',
          'nyears': 156,
          'time_period': ['1850-1-16 12:0:0.0', '2005-12-16 12:0:0.0']},
         'HadISST': {'name': 'HadISST',
          'nyears': 151,
          'time_period': ['1870-1-16 11:59:59.5', '2020-10-16 12:0:0.0']},
         'Tropflux': {'name': 'Tropflux',
          'nyears': 40,
          'time_period': ['1979-1-15 0:0:0.0', '2018-12-15 12:0:0.0']},
         'method': 'nino3.4 SSTA during DEC regressed against equatorial_pacific SSTA, time series are linearly detrended, smoothing using a triangle shaped window of 5 points, observations and model regridded to generic_1x1deg',
         'name': 'ENSO Zonal SSTA pattern',
         'ref': 'Using CDAT regridding and rms (uncentered and biased) calculation',
         'time_frequency': 'monthly',
         'units': 'C/C'},
        'metric': {'datasets': "GISS-E2-R_r6i1p2; ERA-Interim's ts & HadISST's sst & Tropflux's sst; 's ",
         'method': 'The metric is the statistical value between the model and the observations',
         'name': 'EnsoSstLonRmse',
         'units': 'C/C'}},
       'EnsoSstSkew': {'diagnostic': {'ERA-Interim': {'keyerror': None,
          'name': 'ERA-Interim',
          'nyears': 40,
          'time_period': ['1979-1-16 12:0:0.0', '2019-3-16 12:0:0.0']},
         'GISS-E2-R_r6i1p2': {'keyerror': None,
          'name': 'GISS-E2-R_r6i1p2',
          'nyears': 156,
          'time_period': ['1850-1-16 12:0:0.0', '2005-12-16 12:0:0.0']},
         'HadISST': {'keyerror': None,
          'name': 'HadISST',
          'nyears': 151,
          'time_period': ['1870-1-16 11:59:59.5', '2020-10-16 12:0:0.0']},
         'Tropflux': {'keyerror': None,
          'name': 'Tropflux',
          'nyears': 40,
          'time_period': ['1979-1-15 0:0:0.0', '2018-12-15 12:0:0.0']},
         'method': 'Standard deviation of nino3.4 sstA, time series are linearly detrended',
         'name': 'ENSO skewness',
         'ref': 'Using CDAT regression calculation',
         'time_frequency': 'monthly',
         'units': 'C'},
        'metric': {'datasets': "GISS-E2-R_r6i1p2; ERA-Interim's ts & HadISST's sst & Tropflux's sst; 's ",
         'method': 'The metric is the absolute value of the relative difference between model and observations values (M = 100 * abs[[model-obs] / obs])',
         'name': 'EnsoSstSkew',
         'units': '%'}},
       'EnsoSstTsRmse': {'diagnostic': {'ERA-Interim': {'name': 'ERA-Interim',
          'nyears': 40,
          'time_period': ['1979-1-16 12:0:0.0', '2019-3-16 12:0:0.0']},
         'GISS-E2-R_r6i1p2': {'keyerror': None,
          'name': 'GISS-E2-R_r6i1p2',
          'nyears': 156,
          'time_period': ['1850-1-16 12:0:0.0', '2005-12-16 12:0:0.0']},
         'HadISST': {'name': 'HadISST',
          'nyears': 151,
          'time_period': ['1870-1-16 11:59:59.5', '2020-10-16 12:0:0.0']},
         'Tropflux': {'name': 'Tropflux',
          'nyears': 40,
          'time_period': ['1979-1-15 0:0:0.0', '2018-12-15 12:0:0.0']},
         'method': 'nino3.4 SSTA during DEC regressed against nino3.4 SSTA during 6 years (centered on ENSO), time series are linearly detrended, smoothing using a triangle shaped window of 5 points',
         'name': 'ENSO life cyle SSTA pattern',
         'ref': 'Using CDAT regridding and rms (uncentered and biased) calculation',
         'time_frequency': 'monthly',
         'units': 'C/C'},
        'metric': {'datasets': "GISS-E2-R_r6i1p2; ERA-Interim's ts & HadISST's sst & Tropflux's sst; 's ",
         'method': 'The metric is the statistical value between the model and the observations',
         'name': 'EnsoSstTsRmse',
         'units': 'C/C'}},
       'SeasonalPrLatRmse': {'diagnostic': {'ERA-Interim': {'name': 'ERA-Interim',
          'nyears': 40,
          'time_period': ['1979-1-16 12:0:0.0', '2019-3-16 12:0:0.0']},
         'GISS-E2-R_r6i1p2': {'keyerror': None,
          'name': 'GISS-E2-R_r6i1p2',
          'nyears': 156,
          'time_period': ['1850-1-16 12:0:0.0', '2005-12-16 12:0:0.0']},
         'GPCPv2.3': {'name': 'GPCPv2.3',
          'nyears': 41,
          'time_period': ['1979-1-1 0:0:0.0', '2019-7-1 0:0:0.0']},
         'method': 'Meridional root mean square error of nino3_LatExt climatological pr STD, time series are linearly detrended, observations and model regridded to generic_1x1deg',
         'name': 'pr meridional seasonality RMSE',
         'ref': 'Using CDAT regridding and rms (uncentered and biased) calculation',
         'time_frequency': 'monthly',
         'units': 'mm/day'},
        'metric': {'datasets': "GISS-E2-R_r6i1p2; ERA-Interim's pr & GPCPv2.3's precip; 's ",
         'method': 'The metric is the statistical value between the model and the observations',
         'name': 'SeasonalPrLatRmse',
         'units': 'mm/day'}},
       'SeasonalPrLonRmse': {'diagnostic': {'ERA-Interim': {'name': 'ERA-Interim',
          'nyears': 40,
          'time_period': ['1979-1-16 12:0:0.0', '2019-3-16 12:0:0.0']},
         'GISS-E2-R_r6i1p2': {'keyerror': None,
          'name': 'GISS-E2-R_r6i1p2',
          'nyears': 156,
          'time_period': ['1850-1-16 12:0:0.0', '2005-12-16 12:0:0.0']},
         'GPCPv2.3': {'name': 'GPCPv2.3',
          'nyears': 41,
          'time_period': ['1979-1-1 0:0:0.0', '2019-7-1 0:0:0.0']},
         'method': 'Zonal root mean square error of equatorial_pacific climatological pr STD, time series are linearly detrended, observations and model regridded to generic_1x1deg',
         'name': 'pr zonal seasonality RMSE',
         'ref': 'Using CDAT regridding and rms (uncentered and biased) calculation',
         'time_frequency': 'monthly',
         'units': 'mm/day'},
        'metric': {'datasets': "GISS-E2-R_r6i1p2; ERA-Interim's pr & GPCPv2.3's precip; 's ",
         'method': 'The metric is the statistical value between the model and the observations',
         'name': 'SeasonalPrLonRmse',
         'units': 'mm/day'}},
       'SeasonalSstLonRmse': {'diagnostic': {'ERA-Interim': {'name': 'ERA-Interim',
          'nyears': 40,
          'time_period': ['1979-1-16 12:0:0.0', '2019-3-16 12:0:0.0']},
         'GISS-E2-R_r6i1p2': {'keyerror': None,
          'name': 'GISS-E2-R_r6i1p2',
          'nyears': 156,
          'time_period': ['1850-1-16 12:0:0.0', '2005-12-16 12:0:0.0']},
         'HadISST': {'name': 'HadISST',
          'nyears': 151,
          'time_period': ['1870-1-16 11:59:59.5', '2020-10-16 12:0:0.0']},
         'Tropflux': {'name': 'Tropflux',
          'nyears': 40,
          'time_period': ['1979-1-15 0:0:0.0', '2018-12-15 12:0:0.0']},
         'method': 'Zonal root mean square error of equatorial_pacific climatological sst STD, time series are linearly detrended, observations and model regridded to generic_1x1deg',
         'name': 'sst zonal seasonality RMSE',
         'ref': 'Using CDAT regridding and rms (uncentered and biased) calculation',
         'time_frequency': 'monthly',
         'units': 'C'},
        'metric': {'datasets': "GISS-E2-R_r6i1p2; ERA-Interim's ts & HadISST's sst & Tropflux's sst; 's ",
         'method': 'The metric is the statistical value between the model and the observations',
         'name': 'SeasonalSstLonRmse',
         'units': 'C'}},
       'SeasonalTauxLonRmse': {'diagnostic': {'ERA-Interim': {'name': 'ERA-Interim',
          'nyears': 40,
          'time_period': ['1979-1-16 12:0:0.0', '2019-3-16 12:0:0.0']},
         'GISS-E2-R_r6i1p2': {'keyerror': None,
          'name': 'GISS-E2-R_r6i1p2',
          'nyears': 156,
          'time_period': ['1850-1-16 12:0:0.0', '2005-12-16 12:0:0.0']},
         'Tropflux': {'name': 'Tropflux',
          'nyears': 40,
          'time_period': ['1979-1-15 0:0:0.0', '2018-12-15 12:0:0.0']},
         'method': 'Zonal root mean square error of equatorial_pacific climatological taux STD, time series are linearly detrended, observations and model regridded to generic_1x1deg',
         'name': 'taux zonal seasonality RMSE',
         'ref': 'Using CDAT regridding and rms (uncentered and biased) calculation',
         'time_frequency': 'monthly',
         'units': '1e-3 N/m2'},
        'metric': {'datasets': "GISS-E2-R_r6i1p2; ERA-Interim's tauu & Tropflux's taux; 's ",
         'method': 'The metric is the statistical value between the model and the observations',
         'name': 'SeasonalTauxLonRmse',
         'units': '1e-3 N/m2'}}},
      'name': 'Metrics Collection for ENSO performance'},
     'value': {'BiasPrLatRmse': {'diagnostic': {'ERA-Interim': {'value': None,
         'value_error': None},
        'GISS-E2-R_r6i1p2': {'value': None, 'value_error': None},
        'GPCPv2.3': {'value': None, 'value_error': None}},
       'metric': {'ERA-Interim': {'value': 2.1810714610291004,
         'value_error': None},
        'GPCPv2.3': {'value': 2.975004303963453, 'value_error': None}}},
      'BiasPrLonRmse': {'diagnostic': {'ERA-Interim': {'value': None,
         'value_error': None},
        'GISS-E2-R_r6i1p2': {'value': None, 'value_error': None},
        'GPCPv2.3': {'value': None, 'value_error': None}},
       'metric': {'ERA-Interim': {'value': 1.8323236885034087,
         'value_error': None},
        'GPCPv2.3': {'value': 2.334262774799289, 'value_error': None}}},
      'BiasSstLonRmse': {'diagnostic': {'ERA-Interim': {'value': None,
         'value_error': None},
        'GISS-E2-R_r6i1p2': {'value': None, 'value_error': None},
        'HadISST': {'value': None, 'value_error': None},
        'Tropflux': {'value': None, 'value_error': None}},
       'metric': {'ERA-Interim': {'value': 1.1266044918239664,
         'value_error': None},
        'HadISST': {'value': 1.3058222235009318, 'value_error': None},
        'Tropflux': {'value': 1.0901900752162637, 'value_error': None}}},
      'BiasTauxLonRmse': {'diagnostic': {'ERA-Interim': {'value': None,
         'value_error': None},
        'GISS-E2-R_r6i1p2': {'value': None, 'value_error': None},
        'Tropflux': {'value': None, 'value_error': None}},
       'metric': {'ERA-Interim': {'value': 18.594436898331526,
         'value_error': None},
        'Tropflux': {'value': 18.209255285571107, 'value_error': None}}},
      'EnsoAmpl': {'diagnostic': {'ERA-Interim': {'value': 0.8989844997845644,
         'value_error': 0.14214193002531866},
        'GISS-E2-R_r6i1p2': {'value': 0.5486273969115458,
         'value_error': 0.0439253460971683},
        'HadISST': {'value': 0.7665787872085695,
         'value_error': 0.06238329697691264},
        'Tropflux': {'value': 0.9039789553693535,
         'value_error': 0.14293162279134272}},
       'metric': {'ERA-Interim': {'value': 38.97254101232883,
         'value_error': 14.535395680233453},
        'HadISST': {'value': 28.431701207213795,
         'value_error': 11.554195335475384},
        'Tropflux': {'value': 39.309715823264476,
         'value_error': 14.455088071631437}}},
      'EnsoDuration': {'diagnostic': {'ERA-Interim': {'value': 13.0,
         'value_error': None},
        'GISS-E2-R_r6i1p2': {'value': 13.0, 'value_error': None},
        'HadISST': {'value': 13.0, 'value_error': None},
        'Tropflux': {'value': 13.0, 'value_error': None}},
       'metric': {'ERA-Interim': {'value': 0.0, 'value_error': None},
        'HadISST': {'value': 0.0, 'value_error': None},
        'Tropflux': {'value': 0.0, 'value_error': None}}},
      'EnsoSeasonality': {'diagnostic': {'ERA-Interim': {'value': 2.0466846866656914,
         'value_error': 0.6513411033995022},
        'GISS-E2-R_r6i1p2': {'value': 1.711770470080249,
         'value_error': 0.27454403537730543},
        'HadISST': {'value': 1.6639865947361325,
         'value_error': 0.2712772451657809},
        'Tropflux': {'value': 2.0532132553583624,
         'value_error': 0.6534187683977347}},
       'metric': {'ERA-Interim': {'value': 16.363742728297836,
         'value_error': 40.03065844341673},
        'HadISST': {'value': 2.87165025819777,
         'value_error': 33.27018474821971},
        'Tropflux': {'value': 16.629679571132467,
         'value_error': 39.90337361181014}}},
      'EnsoSstDiversity_2': {'diagnostic': {'ERA-Interim': {'value': 33.25,
         'value_error': None},
        'GISS-E2-R_r6i1p2': {'value': 21.5, 'value_error': None},
        'HadISST': {'value': 49.0, 'value_error': None},
        'Tropflux': {'value': 32.0, 'value_error': None}},
       'metric': {'ERA-Interim': {'value': 35.338345864661655,
         'value_error': None},
        'HadISST': {'value': 56.12244897959183, 'value_error': None},
        'Tropflux': {'value': 32.8125, 'value_error': None}}},
      'EnsoSstLonRmse': {'diagnostic': {'ERA-Interim': {'value': None,
         'value_error': None},
        'GISS-E2-R_r6i1p2': {'value': None, 'value_error': None},
        'HadISST': {'value': None, 'value_error': None},
        'Tropflux': {'value': None, 'value_error': None}},
       'metric': {'ERA-Interim': {'value': 0.09530449269928601,
         'value_error': None},
        'HadISST': {'value': 0.1059809242816384, 'value_error': None},
        'Tropflux': {'value': 0.09305570590976153, 'value_error': None}}},
      'EnsoSstSkew': {'diagnostic': {'ERA-Interim': {'value': 0.39098111106809963,
         'value_error': 0.061819541653923164},
        'GISS-E2-R_r6i1p2': {'value': -0.07866120250526179,
         'value_error': -0.006297936566627833},
        'HadISST': {'value': 0.38989908235027515,
         'value_error': 0.03172953733021198},
        'Tropflux': {'value': 0.39744741059612115,
         'value_error': 0.06284195338099416}},
       'metric': {'ERA-Interim': {'value': 120.1189265359576,
         'value_error': -4.791884877932911},
        'HadISST': {'value': 120.17475958935306,
         'value_error': -3.2570721544821235},
        'Tropflux': {'value': 119.79160019869796,
         'value_error': -4.713922958699281}}},
      'EnsoSstTsRmse': {'diagnostic': {'ERA-Interim': {'value': None,
         'value_error': None},
        'GISS-E2-R_r6i1p2': {'value': None, 'value_error': None},
        'HadISST': {'value': None, 'value_error': None},
        'Tropflux': {'value': None, 'value_error': None}},
       'metric': {'ERA-Interim': {'value': 0.12569047615710846,
         'value_error': None},
        'HadISST': {'value': 0.12467460797363646, 'value_error': None},
        'Tropflux': {'value': 0.12789041734950604, 'value_error': None}}},
      'SeasonalPrLatRmse': {'diagnostic': {'ERA-Interim': {'value': None,
         'value_error': None},
        'GISS-E2-R_r6i1p2': {'value': None, 'value_error': None},
        'GPCPv2.3': {'value': None, 'value_error': None}},
       'metric': {'ERA-Interim': {'value': 0.7085713772374419,
         'value_error': None},
        'GPCPv2.3': {'value': 0.8926147629564607, 'value_error': None}}},
      'SeasonalPrLonRmse': {'diagnostic': {'ERA-Interim': {'value': None,
         'value_error': None},
        'GISS-E2-R_r6i1p2': {'value': None, 'value_error': None},
        'GPCPv2.3': {'value': None, 'value_error': None}},
       'metric': {'ERA-Interim': {'value': 0.23766171036982797,
         'value_error': None},
        'GPCPv2.3': {'value': 0.5142811976378425, 'value_error': None}}},
      'SeasonalSstLonRmse': {'diagnostic': {'ERA-Interim': {'value': None,
         'value_error': None},
        'GISS-E2-R_r6i1p2': {'value': None, 'value_error': None},
        'HadISST': {'value': None, 'value_error': None},
        'Tropflux': {'value': None, 'value_error': None}},
       'metric': {'ERA-Interim': {'value': 0.27974283869322786,
         'value_error': None},
        'HadISST': {'value': 0.28093344415434707, 'value_error': None},
        'Tropflux': {'value': 0.2877231661380612, 'value_error': None}}},
      'SeasonalTauxLonRmse': {'diagnostic': {'ERA-Interim': {'value': None,
         'value_error': None},
        'GISS-E2-R_r6i1p2': {'value': None, 'value_error': None},
        'Tropflux': {'value': None, 'value_error': None}},
       'metric': {'ERA-Interim': {'value': 1.9562498918057885,
         'value_error': None},
        'Tropflux': {'value': 2.0785980493043095, 'value_error': None}}}}},
    'r6i1p3': {'metadata': {'description_of_the_collection': 'Describe which science question this collection is about',
      'metrics': {'BiasPrLatRmse': {'diagnostic': {'ERA-Interim': {'name': 'ERA-Interim',
          'nyears': 40,
          'time_period': ['1979-1-16 12:0:0.0', '2019-3-16 12:0:0.0']},
         'GISS-E2-R_r6i1p3': {'keyerror': None,
          'name': 'GISS-E2-R_r6i1p3',
          'nyears': 156,
          'time_period': ['1850-1-16 12:0:0.0', '2005-12-16 12:0:0.0']},
         'GPCPv2.3': {'name': 'GPCPv2.3',
          'nyears': 41,
          'time_period': ['1979-1-1 0:0:0.0', '2019-7-1 0:0:0.0']},
         'method': 'Meridional root mean square error of nino3_LatExt pr, time series are linearly detrended, observations and model regridded to generic_1x1deg',
         'name': 'pr Meridional RMSE',
         'ref': 'Using CDAT regridding and rms (uncentered and biased) calculation',
         'time_frequency': 'monthly',
         'units': 'mm/day'},
        'metric': {'datasets': "GISS-E2-R_r6i1p3; ERA-Interim's pr & GPCPv2.3's precip; 's ",
         'method': 'The metric is the statistical value between the model and the observations',
         'name': 'BiasPrLatRmse',
         'units': 'mm/day'}},
       'BiasPrLonRmse': {'diagnostic': {'ERA-Interim': {'name': 'ERA-Interim',
          'nyears': 40,
          'time_period': ['1979-1-16 12:0:0.0', '2019-3-16 12:0:0.0']},
         'GISS-E2-R_r6i1p3': {'keyerror': None,
          'name': 'GISS-E2-R_r6i1p3',
          'nyears': 156,
          'time_period': ['1850-1-16 12:0:0.0', '2005-12-16 12:0:0.0']},
         'GPCPv2.3': {'name': 'GPCPv2.3',
          'nyears': 41,
          'time_period': ['1979-1-1 0:0:0.0', '2019-7-1 0:0:0.0']},
         'method': 'Zonal root mean square error of equatorial_pacific pr, time series are linearly detrended, observations and model regridded to generic_1x1deg',
         'name': 'pr Zonal RMSE',
         'ref': 'Using CDAT regridding and rms (uncentered and biased) calculation',
         'time_frequency': 'monthly',
         'units': 'mm/day'},
        'metric': {'datasets': "GISS-E2-R_r6i1p3; ERA-Interim's pr & GPCPv2.3's precip; 's ",
         'method': 'The metric is the statistical value between the model and the observations',
         'name': 'BiasPrLonRmse',
         'units': 'mm/day'}},
       'BiasSstLonRmse': {'diagnostic': {'ERA-Interim': {'name': 'ERA-Interim',
          'nyears': 40,
          'time_period': ['1979-1-16 12:0:0.0', '2019-3-16 12:0:0.0']},
         'GISS-E2-R_r6i1p3': {'keyerror': None,
          'name': 'GISS-E2-R_r6i1p3',
          'nyears': 156,
          'time_period': ['1850-1-16 12:0:0.0', '2005-12-16 12:0:0.0']},
         'HadISST': {'name': 'HadISST',
          'nyears': 151,
          'time_period': ['1870-1-16 11:59:59.5', '2020-10-16 12:0:0.0']},
         'Tropflux': {'name': 'Tropflux',
          'nyears': 40,
          'time_period': ['1979-1-15 0:0:0.0', '2018-12-15 12:0:0.0']},
         'method': 'Zonal root mean square error of equatorial_pacific sst, time series are linearly detrended, observations and model regridded to generic_1x1deg',
         'name': 'sst Zonal RMSE',
         'ref': 'Using CDAT regridding and rms (uncentered and biased) calculation',
         'time_frequency': 'monthly',
         'units': 'C'},
        'metric': {'datasets': "GISS-E2-R_r6i1p3; ERA-Interim's ts & HadISST's sst & Tropflux's sst; 's ",
         'method': 'The metric is the statistical value between the model and the observations',
         'name': 'BiasSstLonRmse',
         'units': 'C'}},
       'BiasTauxLonRmse': {'diagnostic': {'ERA-Interim': {'name': 'ERA-Interim',
          'nyears': 40,
          'time_period': ['1979-1-16 12:0:0.0', '2019-3-16 12:0:0.0']},
         'GISS-E2-R_r6i1p3': {'keyerror': None,
          'name': 'GISS-E2-R_r6i1p3',
          'nyears': 156,
          'time_period': ['1850-1-16 12:0:0.0', '2005-12-16 12:0:0.0']},
         'Tropflux': {'name': 'Tropflux',
          'nyears': 40,
          'time_period': ['1979-1-15 0:0:0.0', '2018-12-15 12:0:0.0']},
         'method': 'Zonal root mean square error of equatorial_pacific taux, time series are linearly detrended, observations and model regridded to generic_1x1deg',
         'name': 'taux Zonal RMSE',
         'ref': 'Using CDAT regridding and rms (uncentered and biased) calculation',
         'time_frequency': 'monthly',
         'units': '1e-3 N/m2'},
        'metric': {'datasets': "GISS-E2-R_r6i1p3; ERA-Interim's tauu & Tropflux's taux; 's ",
         'method': 'The metric is the statistical value between the model and the observations',
         'name': 'BiasTauxLonRmse',
         'units': '1e-3 N/m2'}},
       'EnsoAmpl': {'diagnostic': {'ERA-Interim': {'keyerror': None,
          'name': 'ERA-Interim',
          'nyears': 40,
          'time_period': ['1979-1-16 12:0:0.0', '2019-3-16 12:0:0.0']},
         'GISS-E2-R_r6i1p3': {'keyerror': None,
          'name': 'GISS-E2-R_r6i1p3',
          'nyears': 156,
          'time_period': ['1850-1-16 12:0:0.0', '2005-12-16 12:0:0.0']},
         'HadISST': {'keyerror': None,
          'name': 'HadISST',
          'nyears': 151,
          'time_period': ['1870-1-16 11:59:59.5', '2020-10-16 12:0:0.0']},
         'Tropflux': {'keyerror': None,
          'name': 'Tropflux',
          'nyears': 40,
          'time_period': ['1979-1-15 0:0:0.0', '2018-12-15 12:0:0.0']},
         'method': 'Standard deviation of nino3.4 sstA, time series are linearly detrended',
         'name': 'ENSO amplitude',
         'ref': 'Using CDAT regression calculation',
         'time_frequency': 'monthly',
         'units': 'C'},
        'metric': {'datasets': "GISS-E2-R_r6i1p3; ERA-Interim's ts & HadISST's sst & Tropflux's sst; 's ",
         'method': 'The metric is the absolute value of the relative difference between model and observations values (M = 100 * abs[[model-obs] / obs])',
         'name': 'EnsoAmpl',
         'units': '%'}},
       'EnsoDuration': {'diagnostic': {'ERA-Interim': {'keyerror': None,
          'name': 'ERA-Interim',
          'nyears': 40,
          'time_period': ['1979-1-16 12:0:0.0', '2019-3-16 12:0:0.0']},
         'GISS-E2-R_r6i1p3': {'keyerror': None,
          'name': 'GISS-E2-R_r6i1p3',
          'nyears': 156,
          'time_period': ['1850-1-16 12:0:0.0', '2005-12-16 12:0:0.0']},
         'HadISST': {'keyerror': None,
          'name': 'HadISST',
          'nyears': 151,
          'time_period': ['1870-1-16 11:59:59.5', '2020-10-16 12:0:0.0']},
         'Tropflux': {'keyerror': None,
          'name': 'Tropflux',
          'nyears': 40,
          'time_period': ['1979-1-15 0:0:0.0', '2018-12-15 12:0:0.0']},
         'method': 'nino3.4 SSTA during DEC regressed against nino3.4 SSTA during 6 years (centered on ENSO), the duration is the number of consecutive months during which the regression is above 0.25, time series are linearly detrended, smoothing using a triangle shaped window of 5 points',
         'name': 'ENSO Duration based on life cyle SSTA pattern',
         'ref': 'Using CDAT',
         'time_frequency': 'monthly',
         'units': 'months'},
        'metric': {'datasets': "GISS-E2-R_r6i1p3; ERA-Interim's ts & HadISST's sst & Tropflux's sst; 's ",
         'method': 'The metric is the absolute value of the relative difference between model and observations values (M = 100 * abs[[model-obs] / obs])',
         'name': 'EnsoDuration',
         'units': '%'}},
       'EnsoSeasonality': {'diagnostic': {'ERA-Interim': {'keyerror': None,
          'name': 'ERA-Interim',
          'nyears': 40,
          'time_period': ['1979-1-16 12:0:0.0', '2019-3-16 12:0:0.0']},
         'GISS-E2-R_r6i1p3': {'keyerror': None,
          'name': 'GISS-E2-R_r6i1p3',
          'nyears': 156,
          'time_period': ['1850-1-16 12:0:0.0', '2005-12-16 12:0:0.0']},
         'HadISST': {'keyerror': None,
          'name': 'HadISST',
          'nyears': 151,
          'time_period': ['1870-1-16 11:59:59.5', '2020-10-16 12:0:0.0']},
         'Tropflux': {'keyerror': None,
          'name': 'Tropflux',
          'nyears': 40,
          'time_period': ['1979-1-15 0:0:0.0', '2018-12-15 12:0:0.0']},
         'method': 'Ratio between NDJ and MAM standard deviation nino3.4 sstA, time series are linearly detrended',
         'name': 'ENSO seasonality',
         'ref': 'Using CDAT std dev calculation',
         'time_frequency': 'monthly',
         'units': 'C/C'},
        'metric': {'datasets': "GISS-E2-R_r6i1p3; ERA-Interim's ts & HadISST's sst & Tropflux's sst; 's ",
         'method': 'The metric is the absolute value of the relative difference between model and observations values (M = 100 * abs[[model-obs] / obs])',
         'name': 'EnsoSeasonality',
         'units': '%'}},
       'EnsoSstDiversity_2': {'diagnostic': {'ERA-Interim': {'keyerror': None,
          'name': 'ERA-Interim',
          'nyears': 40,
          'time_period': ['1979-1-16 12:0:0.0', '2019-3-16 12:0:0.0']},
         'GISS-E2-R_r6i1p3': {'keyerror': None,
          'name': 'GISS-E2-R_r6i1p3',
          'nyears': 156,
          'time_period': ['1850-1-16 12:0:0.0', '2005-12-16 12:0:0.0']},
         'HadISST': {'keyerror': None,
          'name': 'HadISST',
          'nyears': 151,
          'time_period': ['1870-1-16 11:59:59.5', '2020-10-16 12:0:0.0']},
         'Tropflux': {'keyerror': None,
          'name': 'Tropflux',
          'nyears': 40,
          'time_period': ['1979-1-15 0:0:0.0', '2018-12-15 12:0:0.0']},
         'method': 'Nino (Nina) events = nino3.4 sstA > 0.75 (< -0.75) during DEC, zonal SSTA (meridional averaged [-5.0 ; 5.0]), the zonal SSTA maximum (minimum) is located for each event, the diversity is the interquartile range (IQR = Q3 - Q1), time series are linearly detrended, smoothing using a triangle shaped window of 5 points',
         'name': 'ENSO Diversity (interquartile range)',
         'ref': 'Using CDAT regridding',
         'time_frequency': 'monthly',
         'units': 'long'},
        'metric': {'datasets': "GISS-E2-R_r6i1p3; ERA-Interim's ts & HadISST's sst & Tropflux's sst; 's ",
         'method': 'The metric is the absolute value of the relative difference between model and observations values (M = 100 * abs[[model-obs] / obs])',
         'name': 'EnsoSstDiversity',
         'units': '%'}},
       'EnsoSstLonRmse': {'diagnostic': {'ERA-Interim': {'name': 'ERA-Interim',
          'nyears': 40,
          'time_period': ['1979-1-16 12:0:0.0', '2019-3-16 12:0:0.0']},
         'GISS-E2-R_r6i1p3': {'keyerror': None,
          'name': 'GISS-E2-R_r6i1p3',
          'nyears': 156,
          'time_period': ['1850-1-16 12:0:0.0', '2005-12-16 12:0:0.0']},
         'HadISST': {'name': 'HadISST',
          'nyears': 151,
          'time_period': ['1870-1-16 11:59:59.5', '2020-10-16 12:0:0.0']},
         'Tropflux': {'name': 'Tropflux',
          'nyears': 40,
          'time_period': ['1979-1-15 0:0:0.0', '2018-12-15 12:0:0.0']},
         'method': 'nino3.4 SSTA during DEC regressed against equatorial_pacific SSTA, time series are linearly detrended, smoothing using a triangle shaped window of 5 points, observations and model regridded to generic_1x1deg',
         'name': 'ENSO Zonal SSTA pattern',
         'ref': 'Using CDAT regridding and rms (uncentered and biased) calculation',
         'time_frequency': 'monthly',
         'units': 'C/C'},
        'metric': {'datasets': "GISS-E2-R_r6i1p3; ERA-Interim's ts & HadISST's sst & Tropflux's sst; 's ",
         'method': 'The metric is the statistical value between the model and the observations',
         'name': 'EnsoSstLonRmse',
         'units': 'C/C'}},
       'EnsoSstSkew': {'diagnostic': {'ERA-Interim': {'keyerror': None,
          'name': 'ERA-Interim',
          'nyears': 40,
          'time_period': ['1979-1-16 12:0:0.0', '2019-3-16 12:0:0.0']},
         'GISS-E2-R_r6i1p3': {'keyerror': None,
          'name': 'GISS-E2-R_r6i1p3',
          'nyears': 156,
          'time_period': ['1850-1-16 12:0:0.0', '2005-12-16 12:0:0.0']},
         'HadISST': {'keyerror': None,
          'name': 'HadISST',
          'nyears': 151,
          'time_period': ['1870-1-16 11:59:59.5', '2020-10-16 12:0:0.0']},
         'Tropflux': {'keyerror': None,
          'name': 'Tropflux',
          'nyears': 40,
          'time_period': ['1979-1-15 0:0:0.0', '2018-12-15 12:0:0.0']},
         'method': 'Standard deviation of nino3.4 sstA, time series are linearly detrended',
         'name': 'ENSO skewness',
         'ref': 'Using CDAT regression calculation',
         'time_frequency': 'monthly',
         'units': 'C'},
        'metric': {'datasets': "GISS-E2-R_r6i1p3; ERA-Interim's ts & HadISST's sst & Tropflux's sst; 's ",
         'method': 'The metric is the absolute value of the relative difference between model and observations values (M = 100 * abs[[model-obs] / obs])',
         'name': 'EnsoSstSkew',
         'units': '%'}},
       'EnsoSstTsRmse': {'diagnostic': {'ERA-Interim': {'name': 'ERA-Interim',
          'nyears': 40,
          'time_period': ['1979-1-16 12:0:0.0', '2019-3-16 12:0:0.0']},
         'GISS-E2-R_r6i1p3': {'keyerror': None,
          'name': 'GISS-E2-R_r6i1p3',
          'nyears': 156,
          'time_period': ['1850-1-16 12:0:0.0', '2005-12-16 12:0:0.0']},
         'HadISST': {'name': 'HadISST',
          'nyears': 151,
          'time_period': ['1870-1-16 11:59:59.5', '2020-10-16 12:0:0.0']},
         'Tropflux': {'name': 'Tropflux',
          'nyears': 40,
          'time_period': ['1979-1-15 0:0:0.0', '2018-12-15 12:0:0.0']},
         'method': 'nino3.4 SSTA during DEC regressed against nino3.4 SSTA during 6 years (centered on ENSO), time series are linearly detrended, smoothing using a triangle shaped window of 5 points',
         'name': 'ENSO life cyle SSTA pattern',
         'ref': 'Using CDAT regridding and rms (uncentered and biased) calculation',
         'time_frequency': 'monthly',
         'units': 'C/C'},
        'metric': {'datasets': "GISS-E2-R_r6i1p3; ERA-Interim's ts & HadISST's sst & Tropflux's sst; 's ",
         'method': 'The metric is the statistical value between the model and the observations',
         'name': 'EnsoSstTsRmse',
         'units': 'C/C'}},
       'SeasonalPrLatRmse': {'diagnostic': {'ERA-Interim': {'name': 'ERA-Interim',
          'nyears': 40,
          'time_period': ['1979-1-16 12:0:0.0', '2019-3-16 12:0:0.0']},
         'GISS-E2-R_r6i1p3': {'keyerror': None,
          'name': 'GISS-E2-R_r6i1p3',
          'nyears': 156,
          'time_period': ['1850-1-16 12:0:0.0', '2005-12-16 12:0:0.0']},
         'GPCPv2.3': {'name': 'GPCPv2.3',
          'nyears': 41,
          'time_period': ['1979-1-1 0:0:0.0', '2019-7-1 0:0:0.0']},
         'method': 'Meridional root mean square error of nino3_LatExt climatological pr STD, time series are linearly detrended, observations and model regridded to generic_1x1deg',
         'name': 'pr meridional seasonality RMSE',
         'ref': 'Using CDAT regridding and rms (uncentered and biased) calculation',
         'time_frequency': 'monthly',
         'units': 'mm/day'},
        'metric': {'datasets': "GISS-E2-R_r6i1p3; ERA-Interim's pr & GPCPv2.3's precip; 's ",
         'method': 'The metric is the statistical value between the model and the observations',
         'name': 'SeasonalPrLatRmse',
         'units': 'mm/day'}},
       'SeasonalPrLonRmse': {'diagnostic': {'ERA-Interim': {'name': 'ERA-Interim',
          'nyears': 40,
          'time_period': ['1979-1-16 12:0:0.0', '2019-3-16 12:0:0.0']},
         'GISS-E2-R_r6i1p3': {'keyerror': None,
          'name': 'GISS-E2-R_r6i1p3',
          'nyears': 156,
          'time_period': ['1850-1-16 12:0:0.0', '2005-12-16 12:0:0.0']},
         'GPCPv2.3': {'name': 'GPCPv2.3',
          'nyears': 41,
          'time_period': ['1979-1-1 0:0:0.0', '2019-7-1 0:0:0.0']},
         'method': 'Zonal root mean square error of equatorial_pacific climatological pr STD, time series are linearly detrended, observations and model regridded to generic_1x1deg',
         'name': 'pr zonal seasonality RMSE',
         'ref': 'Using CDAT regridding and rms (uncentered and biased) calculation',
         'time_frequency': 'monthly',
         'units': 'mm/day'},
        'metric': {'datasets': "GISS-E2-R_r6i1p3; ERA-Interim's pr & GPCPv2.3's precip; 's ",
         'method': 'The metric is the statistical value between the model and the observations',
         'name': 'SeasonalPrLonRmse',
         'units': 'mm/day'}},
       'SeasonalSstLonRmse': {'diagnostic': {'ERA-Interim': {'name': 'ERA-Interim',
          'nyears': 40,
          'time_period': ['1979-1-16 12:0:0.0', '2019-3-16 12:0:0.0']},
         'GISS-E2-R_r6i1p3': {'keyerror': None,
          'name': 'GISS-E2-R_r6i1p3',
          'nyears': 156,
          'time_period': ['1850-1-16 12:0:0.0', '2005-12-16 12:0:0.0']},
         'HadISST': {'name': 'HadISST',
          'nyears': 151,
          'time_period': ['1870-1-16 11:59:59.5', '2020-10-16 12:0:0.0']},
         'Tropflux': {'name': 'Tropflux',
          'nyears': 40,
          'time_period': ['1979-1-15 0:0:0.0', '2018-12-15 12:0:0.0']},
         'method': 'Zonal root mean square error of equatorial_pacific climatological sst STD, time series are linearly detrended, observations and model regridded to generic_1x1deg',
         'name': 'sst zonal seasonality RMSE',
         'ref': 'Using CDAT regridding and rms (uncentered and biased) calculation',
         'time_frequency': 'monthly',
         'units': 'C'},
        'metric': {'datasets': "GISS-E2-R_r6i1p3; ERA-Interim's ts & HadISST's sst & Tropflux's sst; 's ",
         'method': 'The metric is the statistical value between the model and the observations',
         'name': 'SeasonalSstLonRmse',
         'units': 'C'}},
       'SeasonalTauxLonRmse': {'diagnostic': {'ERA-Interim': {'name': 'ERA-Interim',
          'nyears': 40,
          'time_period': ['1979-1-16 12:0:0.0', '2019-3-16 12:0:0.0']},
         'GISS-E2-R_r6i1p3': {'keyerror': None,
          'name': 'GISS-E2-R_r6i1p3',
          'nyears': 156,
          'time_period': ['1850-1-16 12:0:0.0', '2005-12-16 12:0:0.0']},
         'Tropflux': {'name': 'Tropflux',
          'nyears': 40,
          'time_period': ['1979-1-15 0:0:0.0', '2018-12-15 12:0:0.0']},
         'method': 'Zonal root mean square error of equatorial_pacific climatological taux STD, time series are linearly detrended, observations and model regridded to generic_1x1deg',
         'name': 'taux zonal seasonality RMSE',
         'ref': 'Using CDAT regridding and rms (uncentered and biased) calculation',
         'time_frequency': 'monthly',
         'units': '1e-3 N/m2'},
        'metric': {'datasets': "GISS-E2-R_r6i1p3; ERA-Interim's tauu & Tropflux's taux; 's ",
         'method': 'The metric is the statistical value between the model and the observations',
         'name': 'SeasonalTauxLonRmse',
         'units': '1e-3 N/m2'}}},
      'name': 'Metrics Collection for ENSO performance'},
     'value': {'BiasPrLatRmse': {'diagnostic': {'ERA-Interim': {'value': None,
         'value_error': None},
        'GISS-E2-R_r6i1p3': {'value': None, 'value_error': None},
        'GPCPv2.3': {'value': None, 'value_error': None}},
       'metric': {'ERA-Interim': {'value': 2.0987849162753642,
         'value_error': None},
        'GPCPv2.3': {'value': 2.8586486917491043, 'value_error': None}}},
      'BiasPrLonRmse': {'diagnostic': {'ERA-Interim': {'value': None,
         'value_error': None},
        'GISS-E2-R_r6i1p3': {'value': None, 'value_error': None},
        'GPCPv2.3': {'value': None, 'value_error': None}},
       'metric': {'ERA-Interim': {'value': 1.7638051749233594,
         'value_error': None},
        'GPCPv2.3': {'value': 2.2937331567414048, 'value_error': None}}},
      'BiasSstLonRmse': {'diagnostic': {'ERA-Interim': {'value': None,
         'value_error': None},
        'GISS-E2-R_r6i1p3': {'value': None, 'value_error': None},
        'HadISST': {'value': None, 'value_error': None},
        'Tropflux': {'value': None, 'value_error': None}},
       'metric': {'ERA-Interim': {'value': 1.1315757843690353,
         'value_error': None},
        'HadISST': {'value': 1.3106394023794659, 'value_error': None},
        'Tropflux': {'value': 1.0952986480036917, 'value_error': None}}},
      'BiasTauxLonRmse': {'diagnostic': {'ERA-Interim': {'value': None,
         'value_error': None},
        'GISS-E2-R_r6i1p3': {'value': None, 'value_error': None},
        'Tropflux': {'value': None, 'value_error': None}},
       'metric': {'ERA-Interim': {'value': 17.86212380827721,
         'value_error': None},
        'Tropflux': {'value': 17.474665499458062, 'value_error': None}}},
      'EnsoAmpl': {'diagnostic': {'ERA-Interim': {'value': 0.8989844997845644,
         'value_error': 0.14214193002531866},
        'GISS-E2-R_r6i1p3': {'value': 0.5536259013097853,
         'value_error': 0.044325546737706646},
        'HadISST': {'value': 0.7665787872085695,
         'value_error': 0.06238329697691264},
        'Tropflux': {'value': 0.9039789553693535,
         'value_error': 0.14293162279134272}},
       'metric': {'ERA-Interim': {'value': 38.41652426238072,
         'value_error': 14.66782661541242},
        'HadISST': {'value': 27.77964763077176,
         'value_error': 11.659464770665116},
        'Tropflux': {'value': 38.75677104854932,
         'value_error': 14.586787330016515}}},
      'EnsoDuration': {'diagnostic': {'ERA-Interim': {'value': 13.0,
         'value_error': None},
        'GISS-E2-R_r6i1p3': {'value': 12.0, 'value_error': None},
        'HadISST': {'value': 13.0, 'value_error': None},
        'Tropflux': {'value': 13.0, 'value_error': None}},
       'metric': {'ERA-Interim': {'value': 7.6923076923076925,
         'value_error': None},
        'HadISST': {'value': 7.6923076923076925, 'value_error': None},
        'Tropflux': {'value': 7.6923076923076925, 'value_error': None}}},
      'EnsoSeasonality': {'diagnostic': {'ERA-Interim': {'value': 2.0466846866656914,
         'value_error': 0.6513411033995022},
        'GISS-E2-R_r6i1p3': {'value': 1.6519249883150824,
         'value_error': 0.264945657352863},
        'HadISST': {'value': 1.6639865947361325,
         'value_error': 0.2712772451657809},
        'Tropflux': {'value': 2.0532132553583624,
         'value_error': 0.6534187683977347}},
       'metric': {'ERA-Interim': {'value': 19.287763323901277,
         'value_error': 38.63114017750647},
        'HadISST': {'value': 0.7248619946342066,
         'value_error': 32.10702048672853},
        'Tropflux': {'value': 19.544402706149498,
         'value_error': 38.508305371298746}}},
      'EnsoSstDiversity_2': {'diagnostic': {'ERA-Interim': {'value': 33.25,
         'value_error': None},
        'GISS-E2-R_r6i1p3': {'value': 20.0, 'value_error': None},
        'HadISST': {'value': 49.0, 'value_error': None},
        'Tropflux': {'value': 32.0, 'value_error': None}},
       'metric': {'ERA-Interim': {'value': 39.849624060150376,
         'value_error': None},
        'HadISST': {'value': 59.183673469387756, 'value_error': None},
        'Tropflux': {'value': 37.5, 'value_error': None}}},
      'EnsoSstLonRmse': {'diagnostic': {'ERA-Interim': {'value': None,
         'value_error': None},
        'GISS-E2-R_r6i1p3': {'value': None, 'value_error': None},
        'HadISST': {'value': None, 'value_error': None},
        'Tropflux': {'value': None, 'value_error': None}},
       'metric': {'ERA-Interim': {'value': 0.10192088217861611,
         'value_error': None},
        'HadISST': {'value': 0.10963579834004553, 'value_error': None},
        'Tropflux': {'value': 0.09967695742342964, 'value_error': None}}},
      'EnsoSstSkew': {'diagnostic': {'ERA-Interim': {'value': 0.39098111106809963,
         'value_error': 0.061819541653923164},
        'GISS-E2-R_r6i1p3': {'value': -0.018970603196765388,
         'value_error': -0.0015188638332334628},
        'HadISST': {'value': 0.38989908235027515,
         'value_error': 0.03172953733021198},
        'Tropflux': {'value': 0.39744741059612115,
         'value_error': 0.06284195338099416}},
       'metric': {'ERA-Interim': {'value': 104.85205107350089,
         'value_error': -1.1556516260702356},
        'HadISST': {'value': 104.86551624651497,
         'value_error': -0.7855031636692946},
        'Tropflux': {'value': 104.77311027597635,
         'value_error': -1.1368496679621003}}},
      'EnsoSstTsRmse': {'diagnostic': {'ERA-Interim': {'value': None,
         'value_error': None},
        'GISS-E2-R_r6i1p3': {'value': None, 'value_error': None},
        'HadISST': {'value': None, 'value_error': None},
        'Tropflux': {'value': None, 'value_error': None}},
       'metric': {'ERA-Interim': {'value': 0.14661537337373867,
         'value_error': None},
        'HadISST': {'value': 0.12809285505801982, 'value_error': None},
        'Tropflux': {'value': 0.147454980660331, 'value_error': None}}},
      'SeasonalPrLatRmse': {'diagnostic': {'ERA-Interim': {'value': None,
         'value_error': None},
        'GISS-E2-R_r6i1p3': {'value': None, 'value_error': None},
        'GPCPv2.3': {'value': None, 'value_error': None}},
       'metric': {'ERA-Interim': {'value': 0.7371095651469477,
         'value_error': None},
        'GPCPv2.3': {'value': 0.8987591310375709, 'value_error': None}}},
      'SeasonalPrLonRmse': {'diagnostic': {'ERA-Interim': {'value': None,
         'value_error': None},
        'GISS-E2-R_r6i1p3': {'value': None, 'value_error': None},
        'GPCPv2.3': {'value': None, 'value_error': None}},
       'metric': {'ERA-Interim': {'value': 0.2070078092022702,
         'value_error': None},
        'GPCPv2.3': {'value': 0.515191344263839, 'value_error': None}}},
      'SeasonalSstLonRmse': {'diagnostic': {'ERA-Interim': {'value': None,
         'value_error': None},
        'GISS-E2-R_r6i1p3': {'value': None, 'value_error': None},
        'HadISST': {'value': None, 'value_error': None},
        'Tropflux': {'value': None, 'value_error': None}},
       'metric': {'ERA-Interim': {'value': 0.26457151425271597,
         'value_error': None},
        'HadISST': {'value': 0.2677541592147845, 'value_error': None},
        'Tropflux': {'value': 0.2719434705803146, 'value_error': None}}},
      'SeasonalTauxLonRmse': {'diagnostic': {'ERA-Interim': {'value': None,
         'value_error': None},
        'GISS-E2-R_r6i1p3': {'value': None, 'value_error': None},
        'Tropflux': {'value': None, 'value_error': None}},
       'metric': {'ERA-Interim': {'value': 1.8123892291483008,
         'value_error': None},
        'Tropflux': {'value': 1.8812463468623393, 'value_error': None}}}}}},
   'GISS-E2-R-CC': {'r1i1p1': {'metadata': {'description_of_the_collection': 'Describe which science question this collection is about',
      'metrics': {'BiasPrLatRmse': {'diagnostic': {'ERA-Interim': {'name': 'ERA-Interim',
          'nyears': 40,
          'time_period': ['1979-1-16 12:0:0.0', '2019-3-16 12:0:0.0']},
         'GISS-E2-R-CC_r1i1p1': {'keyerror': None,
          'name': 'GISS-E2-R-CC_r1i1p1',
          'nyears': 161,
          'time_period': ['1850-1-16 12:0:0.0', '2010-12-16 12:0:0.0']},
         'GPCPv2.3': {'name': 'GPCPv2.3',
          'nyears': 41,
          'time_period': ['1979-1-1 0:0:0.0', '2019-7-1 0:0:0.0']},
         'method': 'Meridional root mean square error of nino3_LatExt pr, time series are linearly detrended, observations and model regridded to generic_1x1deg',
         'name': 'pr Meridional RMSE',
         'ref': 'Using CDAT regridding and rms (uncentered and biased) calculation',
         'time_frequency': 'monthly',
         'units': 'mm/day'},
        'metric': {'datasets': "GISS-E2-R-CC_r1i1p1; ERA-Interim's pr & GPCPv2.3's precip; 's ",
         'method': 'The metric is the statistical value between the model and the observations',
         'name': 'BiasPrLatRmse',
         'units': 'mm/day'}},
       'BiasPrLonRmse': {'diagnostic': {'ERA-Interim': {'name': 'ERA-Interim',
          'nyears': 40,
          'time_period': ['1979-1-16 12:0:0.0', '2019-3-16 12:0:0.0']},
         'GISS-E2-R-CC_r1i1p1': {'keyerror': None,
          'name': 'GISS-E2-R-CC_r1i1p1',
          'nyears': 161,
          'time_period': ['1850-1-16 12:0:0.0', '2010-12-16 12:0:0.0']},
         'GPCPv2.3': {'name': 'GPCPv2.3',
          'nyears': 41,
          'time_period': ['1979-1-1 0:0:0.0', '2019-7-1 0:0:0.0']},
         'method': 'Zonal root mean square error of equatorial_pacific pr, time series are linearly detrended, observations and model regridded to generic_1x1deg',
         'name': 'pr Zonal RMSE',
         'ref': 'Using CDAT regridding and rms (uncentered and biased) calculation',
         'time_frequency': 'monthly',
         'units': 'mm/day'},
        'metric': {'datasets': "GISS-E2-R-CC_r1i1p1; ERA-Interim's pr & GPCPv2.3's precip; 's ",
         'method': 'The metric is the statistical value between the model and the observations',
         'name': 'BiasPrLonRmse',
         'units': 'mm/day'}},
       'BiasSstLonRmse': {'diagnostic': {'ERA-Interim': {'name': 'ERA-Interim',
          'nyears': 40,
          'time_period': ['1979-1-16 12:0:0.0', '2019-3-16 12:0:0.0']},
         'GISS-E2-R-CC_r1i1p1': {'keyerror': None,
          'name': 'GISS-E2-R-CC_r1i1p1',
          'nyears': 161,
          'time_period': ['1850-1-16 12:0:0.0', '2010-12-16 12:0:0.0']},
         'HadISST': {'name': 'HadISST',
          'nyears': 151,
          'time_period': ['1870-1-16 11:59:59.5', '2020-10-16 12:0:0.0']},
         'Tropflux': {'name': 'Tropflux',
          'nyears': 40,
          'time_period': ['1979-1-15 0:0:0.0', '2018-12-15 12:0:0.0']},
         'method': 'Zonal root mean square error of equatorial_pacific sst, time series are linearly detrended, observations and model regridded to generic_1x1deg',
         'name': 'sst Zonal RMSE',
         'ref': 'Using CDAT regridding and rms (uncentered and biased) calculation',
         'time_frequency': 'monthly',
         'units': 'C'},
        'metric': {'datasets': "GISS-E2-R-CC_r1i1p1; ERA-Interim's ts & HadISST's sst & Tropflux's sst; 's ",
         'method': 'The metric is the statistical value between the model and the observations',
         'name': 'BiasSstLonRmse',
         'units': 'C'}},
       'BiasTauxLonRmse': {'diagnostic': {'ERA-Interim': {'name': 'ERA-Interim',
          'nyears': 40,
          'time_period': ['1979-1-16 12:0:0.0', '2019-3-16 12:0:0.0']},
         'GISS-E2-R-CC_r1i1p1': {'keyerror': None,
          'name': 'GISS-E2-R-CC_r1i1p1',
          'nyears': 161,
          'time_period': ['1850-1-16 12:0:0.0', '2010-12-16 12:0:0.0']},
         'Tropflux': {'name': 'Tropflux',
          'nyears': 40,
          'time_period': ['1979-1-15 0:0:0.0', '2018-12-15 12:0:0.0']},
         'method': 'Zonal root mean square error of equatorial_pacific taux, time series are linearly detrended, observations and model regridded to generic_1x1deg',
         'name': 'taux Zonal RMSE',
         'ref': 'Using CDAT regridding and rms (uncentered and biased) calculation',
         'time_frequency': 'monthly',
         'units': '1e-3 N/m2'},
        'metric': {'datasets': "GISS-E2-R-CC_r1i1p1; ERA-Interim's tauu & Tropflux's taux; 's ",
         'method': 'The metric is the statistical value between the model and the observations',
         'name': 'BiasTauxLonRmse',
         'units': '1e-3 N/m2'}},
       'EnsoAmpl': {'diagnostic': {'ERA-Interim': {'keyerror': None,
          'name': 'ERA-Interim',
          'nyears': 40,
          'time_period': ['1979-1-16 12:0:0.0', '2019-3-16 12:0:0.0']},
         'GISS-E2-R-CC_r1i1p1': {'keyerror': None,
          'name': 'GISS-E2-R-CC_r1i1p1',
          'nyears': 161,
          'time_period': ['1850-1-16 12:0:0.0', '2010-12-16 12:0:0.0']},
         'HadISST': {'keyerror': None,
          'name': 'HadISST',
          'nyears': 151,
          'time_period': ['1870-1-16 11:59:59.5', '2020-10-16 12:0:0.0']},
         'Tropflux': {'keyerror': None,
          'name': 'Tropflux',
          'nyears': 40,
          'time_period': ['1979-1-15 0:0:0.0', '2018-12-15 12:0:0.0']},
         'method': 'Standard deviation of nino3.4 sstA, time series are linearly detrended',
         'name': 'ENSO amplitude',
         'ref': 'Using CDAT regression calculation',
         'time_frequency': 'monthly',
         'units': 'C'},
        'metric': {'datasets': "GISS-E2-R-CC_r1i1p1; ERA-Interim's ts & HadISST's sst & Tropflux's sst; 's ",
         'method': 'The metric is the absolute value of the relative difference between model and observations values (M = 100 * abs[[model-obs] / obs])',
         'name': 'EnsoAmpl',
         'units': '%'}},
       'EnsoDuration': {'diagnostic': {'ERA-Interim': {'keyerror': None,
          'name': 'ERA-Interim',
          'nyears': 40,
          'time_period': ['1979-1-16 12:0:0.0', '2019-3-16 12:0:0.0']},
         'GISS-E2-R-CC_r1i1p1': {'keyerror': None,
          'name': 'GISS-E2-R-CC_r1i1p1',
          'nyears': 161,
          'time_period': ['1850-1-16 12:0:0.0', '2010-12-16 12:0:0.0']},
         'HadISST': {'keyerror': None,
          'name': 'HadISST',
          'nyears': 151,
          'time_period': ['1870-1-16 11:59:59.5', '2020-10-16 12:0:0.0']},
         'Tropflux': {'keyerror': None,
          'name': 'Tropflux',
          'nyears': 40,
          'time_period': ['1979-1-15 0:0:0.0', '2018-12-15 12:0:0.0']},
         'method': 'nino3.4 SSTA during DEC regressed against nino3.4 SSTA during 6 years (centered on ENSO), the duration is the number of consecutive months during which the regression is above 0.25, time series are linearly detrended, smoothing using a triangle shaped window of 5 points',
         'name': 'ENSO Duration based on life cyle SSTA pattern',
         'ref': 'Using CDAT',
         'time_frequency': 'monthly',
         'units': 'months'},
        'metric': {'datasets': "GISS-E2-R-CC_r1i1p1; ERA-Interim's ts & HadISST's sst & Tropflux's sst; 's ",
         'method': 'The metric is the absolute value of the relative difference between model and observations values (M = 100 * abs[[model-obs] / obs])',
         'name': 'EnsoDuration',
         'units': '%'}},
       'EnsoSeasonality': {'diagnostic': {'ERA-Interim': {'keyerror': None,
          'name': 'ERA-Interim',
          'nyears': 40,
          'time_period': ['1979-1-16 12:0:0.0', '2019-3-16 12:0:0.0']},
         'GISS-E2-R-CC_r1i1p1': {'keyerror': None,
          'name': 'GISS-E2-R-CC_r1i1p1',
          'nyears': 161,
          'time_period': ['1850-1-16 12:0:0.0', '2010-12-16 12:0:0.0']},
         'HadISST': {'keyerror': None,
          'name': 'HadISST',
          'nyears': 151,
          'time_period': ['1870-1-16 11:59:59.5', '2020-10-16 12:0:0.0']},
         'Tropflux': {'keyerror': None,
          'name': 'Tropflux',
          'nyears': 40,
          'time_period': ['1979-1-15 0:0:0.0', '2018-12-15 12:0:0.0']},
         'method': 'Ratio between NDJ and MAM standard deviation nino3.4 sstA, time series are linearly detrended',
         'name': 'ENSO seasonality',
         'ref': 'Using CDAT std dev calculation',
         'time_frequency': 'monthly',
         'units': 'C/C'},
        'metric': {'datasets': "GISS-E2-R-CC_r1i1p1; ERA-Interim's ts & HadISST's sst & Tropflux's sst; 's ",
         'method': 'The metric is the absolute value of the relative difference between model and observations values (M = 100 * abs[[model-obs] / obs])',
         'name': 'EnsoSeasonality',
         'units': '%'}},
       'EnsoSstDiversity_2': {'diagnostic': {'ERA-Interim': {'keyerror': None,
          'name': 'ERA-Interim',
          'nyears': 40,
          'time_period': ['1979-1-16 12:0:0.0', '2019-3-16 12:0:0.0']},
         'GISS-E2-R-CC_r1i1p1': {'keyerror': None,
          'name': 'GISS-E2-R-CC_r1i1p1',
          'nyears': 161,
          'time_period': ['1850-1-16 12:0:0.0', '2010-12-16 12:0:0.0']},
         'HadISST': {'keyerror': None,
          'name': 'HadISST',
          'nyears': 151,
          'time_period': ['1870-1-16 11:59:59.5', '2020-10-16 12:0:0.0']},
         'Tropflux': {'keyerror': None,
          'name': 'Tropflux',
          'nyears': 40,
          'time_period': ['1979-1-15 0:0:0.0', '2018-12-15 12:0:0.0']},
         'method': 'Nino (Nina) events = nino3.4 sstA > 0.75 (< -0.75) during DEC, zonal SSTA (meridional averaged [-5.0 ; 5.0]), the zonal SSTA maximum (minimum) is located for each event, the diversity is the interquartile range (IQR = Q3 - Q1), time series are linearly detrended, smoothing using a triangle shaped window of 5 points',
         'name': 'ENSO Diversity (interquartile range)',
         'ref': 'Using CDAT regridding',
         'time_frequency': 'monthly',
         'units': 'long'},
        'metric': {'datasets': "GISS-E2-R-CC_r1i1p1; ERA-Interim's ts & HadISST's sst & Tropflux's sst; 's ",
         'method': 'The metric is the absolute value of the relative difference between model and observations values (M = 100 * abs[[model-obs] / obs])',
         'name': 'EnsoSstDiversity',
         'units': '%'}},
       'EnsoSstLonRmse': {'diagnostic': {'ERA-Interim': {'name': 'ERA-Interim',
          'nyears': 40,
          'time_period': ['1979-1-16 12:0:0.0', '2019-3-16 12:0:0.0']},
         'GISS-E2-R-CC_r1i1p1': {'keyerror': None,
          'name': 'GISS-E2-R-CC_r1i1p1',
          'nyears': 161,
          'time_period': ['1850-1-16 12:0:0.0', '2010-12-16 12:0:0.0']},
         'HadISST': {'name': 'HadISST',
          'nyears': 151,
          'time_period': ['1870-1-16 11:59:59.5', '2020-10-16 12:0:0.0']},
         'Tropflux': {'name': 'Tropflux',
          'nyears': 40,
          'time_period': ['1979-1-15 0:0:0.0', '2018-12-15 12:0:0.0']},
         'method': 'nino3.4 SSTA during DEC regressed against equatorial_pacific SSTA, time series are linearly detrended, smoothing using a triangle shaped window of 5 points, observations and model regridded to generic_1x1deg',
         'name': 'ENSO Zonal SSTA pattern',
         'ref': 'Using CDAT regridding and rms (uncentered and biased) calculation',
         'time_frequency': 'monthly',
         'units': 'C/C'},
        'metric': {'datasets': "GISS-E2-R-CC_r1i1p1; ERA-Interim's ts & HadISST's sst & Tropflux's sst; 's ",
         'method': 'The metric is the statistical value between the model and the observations',
         'name': 'EnsoSstLonRmse',
         'units': 'C/C'}},
       'EnsoSstSkew': {'diagnostic': {'ERA-Interim': {'keyerror': None,
          'name': 'ERA-Interim',
          'nyears': 40,
          'time_period': ['1979-1-16 12:0:0.0', '2019-3-16 12:0:0.0']},
         'GISS-E2-R-CC_r1i1p1': {'keyerror': None,
          'name': 'GISS-E2-R-CC_r1i1p1',
          'nyears': 161,
          'time_period': ['1850-1-16 12:0:0.0', '2010-12-16 12:0:0.0']},
         'HadISST': {'keyerror': None,
          'name': 'HadISST',
          'nyears': 151,
          'time_period': ['1870-1-16 11:59:59.5', '2020-10-16 12:0:0.0']},
         'Tropflux': {'keyerror': None,
          'name': 'Tropflux',
          'nyears': 40,
          'time_period': ['1979-1-15 0:0:0.0', '2018-12-15 12:0:0.0']},
         'method': 'Standard deviation of nino3.4 sstA, time series are linearly detrended',
         'name': 'ENSO skewness',
         'ref': 'Using CDAT regression calculation',
         'time_frequency': 'monthly',
         'units': 'C'},
        'metric': {'datasets': "GISS-E2-R-CC_r1i1p1; ERA-Interim's ts & HadISST's sst & Tropflux's sst; 's ",
         'method': 'The metric is the absolute value of the relative difference between model and observations values (M = 100 * abs[[model-obs] / obs])',
         'name': 'EnsoSstSkew',
         'units': '%'}},
       'EnsoSstTsRmse': {'diagnostic': {'ERA-Interim': {'name': 'ERA-Interim',
          'nyears': 40,
          'time_period': ['1979-1-16 12:0:0.0', '2019-3-16 12:0:0.0']},
         'GISS-E2-R-CC_r1i1p1': {'keyerror': None,
          'name': 'GISS-E2-R-CC_r1i1p1',
          'nyears': 161,
          'time_period': ['1850-1-16 12:0:0.0', '2010-12-16 12:0:0.0']},
         'HadISST': {'name': 'HadISST',
          'nyears': 151,
          'time_period': ['1870-1-16 11:59:59.5', '2020-10-16 12:0:0.0']},
         'Tropflux': {'name': 'Tropflux',
          'nyears': 40,
          'time_period': ['1979-1-15 0:0:0.0', '2018-12-15 12:0:0.0']},
         'method': 'nino3.4 SSTA during DEC regressed against nino3.4 SSTA during 6 years (centered on ENSO), time series are linearly detrended, smoothing using a triangle shaped window of 5 points',
         'name': 'ENSO life cyle SSTA pattern',
         'ref': 'Using CDAT regridding and rms (uncentered and biased) calculation',
         'time_frequency': 'monthly',
         'units': 'C/C'},
        'metric': {'datasets': "GISS-E2-R-CC_r1i1p1; ERA-Interim's ts & HadISST's sst & Tropflux's sst; 's ",
         'method': 'The metric is the statistical value between the model and the observations',
         'name': 'EnsoSstTsRmse',
         'units': 'C/C'}},
       'SeasonalPrLatRmse': {'diagnostic': {'ERA-Interim': {'name': 'ERA-Interim',
          'nyears': 40,
          'time_period': ['1979-1-16 12:0:0.0', '2019-3-16 12:0:0.0']},
         'GISS-E2-R-CC_r1i1p1': {'keyerror': None,
          'name': 'GISS-E2-R-CC_r1i1p1',
          'nyears': 161,
          'time_period': ['1850-1-16 12:0:0.0', '2010-12-16 12:0:0.0']},
         'GPCPv2.3': {'name': 'GPCPv2.3',
          'nyears': 41,
          'time_period': ['1979-1-1 0:0:0.0', '2019-7-1 0:0:0.0']},
         'method': 'Meridional root mean square error of nino3_LatExt climatological pr STD, time series are linearly detrended, observations and model regridded to generic_1x1deg',
         'name': 'pr meridional seasonality RMSE',
         'ref': 'Using CDAT regridding and rms (uncentered and biased) calculation',
         'time_frequency': 'monthly',
         'units': 'mm/day'},
        'metric': {'datasets': "GISS-E2-R-CC_r1i1p1; ERA-Interim's pr & GPCPv2.3's precip; 's ",
         'method': 'The metric is the statistical value between the model and the observations',
         'name': 'SeasonalPrLatRmse',
         'units': 'mm/day'}},
       'SeasonalPrLonRmse': {'diagnostic': {'ERA-Interim': {'name': 'ERA-Interim',
          'nyears': 40,
          'time_period': ['1979-1-16 12:0:0.0', '2019-3-16 12:0:0.0']},
         'GISS-E2-R-CC_r1i1p1': {'keyerror': None,
          'name': 'GISS-E2-R-CC_r1i1p1',
          'nyears': 161,
          'time_period': ['1850-1-16 12:0:0.0', '2010-12-16 12:0:0.0']},
         'GPCPv2.3': {'name': 'GPCPv2.3',
          'nyears': 41,
          'time_period': ['1979-1-1 0:0:0.0', '2019-7-1 0:0:0.0']},
         'method': 'Zonal root mean square error of equatorial_pacific climatological pr STD, time series are linearly detrended, observations and model regridded to generic_1x1deg',
         'name': 'pr zonal seasonality RMSE',
         'ref': 'Using CDAT regridding and rms (uncentered and biased) calculation',
         'time_frequency': 'monthly',
         'units': 'mm/day'},
        'metric': {'datasets': "GISS-E2-R-CC_r1i1p1; ERA-Interim's pr & GPCPv2.3's precip; 's ",
         'method': 'The metric is the statistical value between the model and the observations',
         'name': 'SeasonalPrLonRmse',
         'units': 'mm/day'}},
       'SeasonalSstLonRmse': {'diagnostic': {'ERA-Interim': {'name': 'ERA-Interim',
          'nyears': 40,
          'time_period': ['1979-1-16 12:0:0.0', '2019-3-16 12:0:0.0']},
         'GISS-E2-R-CC_r1i1p1': {'keyerror': None,
          'name': 'GISS-E2-R-CC_r1i1p1',
          'nyears': 161,
          'time_period': ['1850-1-16 12:0:0.0', '2010-12-16 12:0:0.0']},
         'HadISST': {'name': 'HadISST',
          'nyears': 151,
          'time_period': ['1870-1-16 11:59:59.5', '2020-10-16 12:0:0.0']},
         'Tropflux': {'name': 'Tropflux',
          'nyears': 40,
          'time_period': ['1979-1-15 0:0:0.0', '2018-12-15 12:0:0.0']},
         'method': 'Zonal root mean square error of equatorial_pacific climatological sst STD, time series are linearly detrended, observations and model regridded to generic_1x1deg',
         'name': 'sst zonal seasonality RMSE',
         'ref': 'Using CDAT regridding and rms (uncentered and biased) calculation',
         'time_frequency': 'monthly',
         'units': 'C'},
        'metric': {'datasets': "GISS-E2-R-CC_r1i1p1; ERA-Interim's ts & HadISST's sst & Tropflux's sst; 's ",
         'method': 'The metric is the statistical value between the model and the observations',
         'name': 'SeasonalSstLonRmse',
         'units': 'C'}},
       'SeasonalTauxLonRmse': {'diagnostic': {'ERA-Interim': {'name': 'ERA-Interim',
          'nyears': 40,
          'time_period': ['1979-1-16 12:0:0.0', '2019-3-16 12:0:0.0']},
         'GISS-E2-R-CC_r1i1p1': {'keyerror': None,
          'name': 'GISS-E2-R-CC_r1i1p1',
          'nyears': 161,
          'time_period': ['1850-1-16 12:0:0.0', '2010-12-16 12:0:0.0']},
         'Tropflux': {'name': 'Tropflux',
          'nyears': 40,
          'time_period': ['1979-1-15 0:0:0.0', '2018-12-15 12:0:0.0']},
         'method': 'Zonal root mean square error of equatorial_pacific climatological taux STD, time series are linearly detrended, observations and model regridded to generic_1x1deg',
         'name': 'taux zonal seasonality RMSE',
         'ref': 'Using CDAT regridding and rms (uncentered and biased) calculation',
         'time_frequency': 'monthly',
         'units': '1e-3 N/m2'},
        'metric': {'datasets': "GISS-E2-R-CC_r1i1p1; ERA-Interim's tauu & Tropflux's taux; 's ",
         'method': 'The metric is the statistical value between the model and the observations',
         'name': 'SeasonalTauxLonRmse',
         'units': '1e-3 N/m2'}}},
      'name': 'Metrics Collection for ENSO performance'},
     'value': {'BiasPrLatRmse': {'diagnostic': {'ERA-Interim': {'value': None,
         'value_error': None},
        'GISS-E2-R-CC_r1i1p1': {'value': None, 'value_error': None},
        'GPCPv2.3': {'value': None, 'value_error': None}},
       'metric': {'ERA-Interim': {'value': 2.079758256576057,
         'value_error': None},
        'GPCPv2.3': {'value': 2.8764126979747977, 'value_error': None}}},
      'BiasPrLonRmse': {'diagnostic': {'ERA-Interim': {'value': None,
         'value_error': None},
        'GISS-E2-R-CC_r1i1p1': {'value': None, 'value_error': None},
        'GPCPv2.3': {'value': None, 'value_error': None}},
       'metric': {'ERA-Interim': {'value': 1.7128748534447555,
         'value_error': None},
        'GPCPv2.3': {'value': 2.1900842139554513, 'value_error': None}}},
      'BiasSstLonRmse': {'diagnostic': {'ERA-Interim': {'value': None,
         'value_error': None},
        'GISS-E2-R-CC_r1i1p1': {'value': None, 'value_error': None},
        'HadISST': {'value': None, 'value_error': None},
        'Tropflux': {'value': None, 'value_error': None}},
       'metric': {'ERA-Interim': {'value': 1.0217803569263653,
         'value_error': None},
        'HadISST': {'value': 1.1948350235189096, 'value_error': None},
        'Tropflux': {'value': 0.987734107060135, 'value_error': None}}},
      'BiasTauxLonRmse': {'diagnostic': {'ERA-Interim': {'value': None,
         'value_error': None},
        'GISS-E2-R-CC_r1i1p1': {'value': None, 'value_error': None},
        'Tropflux': {'value': None, 'value_error': None}},
       'metric': {'ERA-Interim': {'value': 18.291301210134197,
         'value_error': None},
        'Tropflux': {'value': 17.9060524564541, 'value_error': None}}},
      'EnsoAmpl': {'diagnostic': {'ERA-Interim': {'value': 0.8989844997845644,
         'value_error': 0.14214193002531866},
        'GISS-E2-R-CC_r1i1p1': {'value': 0.5290936111877899,
         'value_error': 0.04169841808517218},
        'HadISST': {'value': 0.7665787872085695,
         'value_error': 0.06238329697691264},
        'Tropflux': {'value': 0.9039789553693535,
         'value_error': 0.14293162279134272}},
       'metric': {'ERA-Interim': {'value': 41.145413373135625,
         'value_error': 13.94411844198214},
        'HadISST': {'value': 30.979878387394656,
         'value_error': 11.056325447410265},
        'Tropflux': {'value': 41.470583131925956,
         'value_error': 13.867077621713191}}},
      'EnsoDuration': {'diagnostic': {'ERA-Interim': {'value': 13.0,
         'value_error': None},
        'GISS-E2-R-CC_r1i1p1': {'value': 12.0, 'value_error': None},
        'HadISST': {'value': 13.0, 'value_error': None},
        'Tropflux': {'value': 13.0, 'value_error': None}},
       'metric': {'ERA-Interim': {'value': 7.6923076923076925,
         'value_error': None},
        'HadISST': {'value': 7.6923076923076925, 'value_error': None},
        'Tropflux': {'value': 7.6923076923076925, 'value_error': None}}},
      'EnsoSeasonality': {'diagnostic': {'ERA-Interim': {'value': 2.0466846866656914,
         'value_error': 0.6513411033995022},
        'GISS-E2-R-CC_r1i1p1': {'value': 1.7089041553671014,
         'value_error': 0.26978125065816283},
        'HadISST': {'value': 1.6639865947361325,
         'value_error': 0.2712772451657809},
        'Tropflux': {'value': 2.0532132553583624,
         'value_error': 0.6534187683977347}},
       'metric': {'ERA-Interim': {'value': 16.50378944540193,
         'value_error': 39.753382388703656},
        'HadISST': {'value': 2.6993943805233407,
         'value_error': 32.955874781103454},
        'Tropflux': {'value': 16.76928098397486,
         'value_error': 39.62697920724485}}},
      'EnsoSstDiversity_2': {'diagnostic': {'ERA-Interim': {'value': 33.25,
         'value_error': None},
        'GISS-E2-R-CC_r1i1p1': {'value': 25.0, 'value_error': None},
        'HadISST': {'value': 49.0, 'value_error': None},
        'Tropflux': {'value': 32.0, 'value_error': None}},
       'metric': {'ERA-Interim': {'value': 24.81203007518797,
         'value_error': None},
        'HadISST': {'value': 48.97959183673469, 'value_error': None},
        'Tropflux': {'value': 21.875, 'value_error': None}}},
      'EnsoSstLonRmse': {'diagnostic': {'ERA-Interim': {'value': None,
         'value_error': None},
        'GISS-E2-R-CC_r1i1p1': {'value': None, 'value_error': None},
        'HadISST': {'value': None, 'value_error': None},
        'Tropflux': {'value': None, 'value_error': None}},
       'metric': {'ERA-Interim': {'value': 0.14438370609109066,
         'value_error': None},
        'HadISST': {'value': 0.15152841520028515, 'value_error': None},
        'Tropflux': {'value': 0.14309581712757302, 'value_error': None}}},
      'EnsoSstSkew': {'diagnostic': {'ERA-Interim': {'value': 0.39098111106809963,
         'value_error': 0.061819541653923164},
        'GISS-E2-R-CC_r1i1p1': {'value': -0.4467820947253688,
         'value_error': -0.03521136181743668},
        'HadISST': {'value': 0.38989908235027515,
         'value_error': 0.03172953733021198},
        'Tropflux': {'value': 0.39744741059612115,
         'value_error': 0.06284195338099416}},
       'metric': {'ERA-Interim': {'value': 214.27204079113426,
         'value_error': -27.073894537749876},
        'HadISST': {'value': 214.5891629270344,
         'value_error': -18.356025003529215},
        'Tropflux': {'value': 212.41288351967165,
         'value_error': -26.6334138431881}}},
      'EnsoSstTsRmse': {'diagnostic': {'ERA-Interim': {'value': None,
         'value_error': None},
        'GISS-E2-R-CC_r1i1p1': {'value': None, 'value_error': None},
        'HadISST': {'value': None, 'value_error': None},
        'Tropflux': {'value': None, 'value_error': None}},
       'metric': {'ERA-Interim': {'value': 0.18839722997106523,
         'value_error': None},
        'HadISST': {'value': 0.17551758333459933, 'value_error': None},
        'Tropflux': {'value': 0.19021383922729804, 'value_error': None}}},
      'SeasonalPrLatRmse': {'diagnostic': {'ERA-Interim': {'value': None,
         'value_error': None},
        'GISS-E2-R-CC_r1i1p1': {'value': None, 'value_error': None},
        'GPCPv2.3': {'value': None, 'value_error': None}},
       'metric': {'ERA-Interim': {'value': 0.6942812244180467,
         'value_error': None},
        'GPCPv2.3': {'value': 0.8763603476338755, 'value_error': None}}},
      'SeasonalPrLonRmse': {'diagnostic': {'ERA-Interim': {'value': None,
         'value_error': None},
        'GISS-E2-R-CC_r1i1p1': {'value': None, 'value_error': None},
        'GPCPv2.3': {'value': None, 'value_error': None}},
       'metric': {'ERA-Interim': {'value': 0.25363498934554923,
         'value_error': None},
        'GPCPv2.3': {'value': 0.5387565761096764, 'value_error': None}}},
      'SeasonalSstLonRmse': {'diagnostic': {'ERA-Interim': {'value': None,
         'value_error': None},
        'GISS-E2-R-CC_r1i1p1': {'value': None, 'value_error': None},
        'HadISST': {'value': None, 'value_error': None},
        'Tropflux': {'value': None, 'value_error': None}},
       'metric': {'ERA-Interim': {'value': 0.2809047142669015,
         'value_error': None},
        'HadISST': {'value': 0.2827717890889462, 'value_error': None},
        'Tropflux': {'value': 0.2886241745579582, 'value_error': None}}},
      'SeasonalTauxLonRmse': {'diagnostic': {'ERA-Interim': {'value': None,
         'value_error': None},
        'GISS-E2-R-CC_r1i1p1': {'value': None, 'value_error': None},
        'Tropflux': {'value': None, 'value_error': None}},
       'metric': {'ERA-Interim': {'value': 1.8871955703371914,
         'value_error': None},
        'Tropflux': {'value': 2.001606989256877, 'value_error': None}}}}}},
   'HadCM3': {'r10i1p1': {'metadata': {'description_of_the_collection': 'Describe which science question this collection is about',
      'metrics': {'BiasPrLatRmse': {'diagnostic': {'ERA-Interim': {'name': 'ERA-Interim',
          'nyears': 40,
          'time_period': ['1979-1-16 12:0:0.0', '2019-3-16 12:0:0.0']},
         'GPCPv2.3': {'name': 'GPCPv2.3',
          'nyears': 41,
          'time_period': ['1979-1-1 0:0:0.0', '2019-7-1 0:0:0.0']},
         'HadCM3_r10i1p1': {'keyerror': None,
          'name': 'HadCM3_r10i1p1',
          'nyears': 146,
          'time_period': ['1859-12-16 0:0:0.0', '2005-12-16 0:0:0.0']},
         'method': 'Meridional root mean square error of nino3_LatExt pr, time series are linearly detrended, observations and model regridded to generic_1x1deg',
         'name': 'pr Meridional RMSE',
         'ref': 'Using CDAT regridding and rms (uncentered and biased) calculation',
         'time_frequency': 'monthly',
         'units': 'mm/day'},
        'metric': {'datasets': "HadCM3_r10i1p1; ERA-Interim's pr & GPCPv2.3's precip; 's ",
         'method': 'The metric is the statistical value between the model and the observations',
         'name': 'BiasPrLatRmse',
         'units': 'mm/day'}},
       'BiasPrLonRmse': {'diagnostic': {'ERA-Interim': {'name': 'ERA-Interim',
          'nyears': 40,
          'time_period': ['1979-1-16 12:0:0.0', '2019-3-16 12:0:0.0']},
         'GPCPv2.3': {'name': 'GPCPv2.3',
          'nyears': 41,
          'time_period': ['1979-1-1 0:0:0.0', '2019-7-1 0:0:0.0']},
         'HadCM3_r10i1p1': {'keyerror': None,
          'name': 'HadCM3_r10i1p1',
          'nyears': 146,
          'time_period': ['1859-12-16 0:0:0.0', '2005-12-16 0:0:0.0']},
         'method': 'Zonal root mean square error of equatorial_pacific pr, time series are linearly detrended, observations and model regridded to generic_1x1deg',
         'name': 'pr Zonal RMSE',
         'ref': 'Using CDAT regridding and rms (uncentered and biased) calculation',
         'time_frequency': 'monthly',
         'units': 'mm/day'},
        'metric': {'datasets': "HadCM3_r10i1p1; ERA-Interim's pr & GPCPv2.3's precip; 's ",
         'method': 'The metric is the statistical value between the model and the observations',
         'name': 'BiasPrLonRmse',
         'units': 'mm/day'}},
       'BiasSstLonRmse': {'diagnostic': {'ERA-Interim': {'name': 'ERA-Interim',
          'nyears': 40,
          'time_period': ['1979-1-16 12:0:0.0', '2019-3-16 12:0:0.0']},
         'HadCM3_r10i1p1': {'keyerror': None,
          'name': 'HadCM3_r10i1p1',
          'nyears': 146,
          'time_period': ['1859-12-16 0:0:0.0', '2005-12-16 0:0:0.0']},
         'HadISST': {'name': 'HadISST',
          'nyears': 151,
          'time_period': ['1870-1-16 11:59:59.5', '2020-10-16 12:0:0.0']},
         'Tropflux': {'name': 'Tropflux',
          'nyears': 40,
          'time_period': ['1979-1-15 0:0:0.0', '2018-12-15 12:0:0.0']},
         'method': 'Zonal root mean square error of equatorial_pacific sst, time series are linearly detrended, observations and model regridded to generic_1x1deg',
         'name': 'sst Zonal RMSE',
         'ref': 'Using CDAT regridding and rms (uncentered and biased) calculation',
         'time_frequency': 'monthly',
         'units': 'C'},
        'metric': {'datasets': "HadCM3_r10i1p1; ERA-Interim's ts & HadISST's sst & Tropflux's sst; 's ",
         'method': 'The metric is the statistical value between the model and the observations',
         'name': 'BiasSstLonRmse',
         'units': 'C'}},
       'BiasTauxLonRmse': {'diagnostic': {'ERA-Interim': {'name': 'ERA-Interim',
          'nyears': 40,
          'time_period': ['1979-1-16 12:0:0.0', '2019-3-16 12:0:0.0']},
         'HadCM3_r10i1p1': {'keyerror': None,
          'name': 'HadCM3_r10i1p1',
          'nyears': 146,
          'time_period': ['1859-12-16 0:0:0.0', '2005-12-16 0:0:0.0']},
         'Tropflux': {'name': 'Tropflux',
          'nyears': 40,
          'time_period': ['1979-1-15 0:0:0.0', '2018-12-15 12:0:0.0']},
         'method': 'Zonal root mean square error of equatorial_pacific taux, time series are linearly detrended, observations and model regridded to generic_1x1deg',
         'name': 'taux Zonal RMSE',
         'ref': 'Using CDAT regridding and rms (uncentered and biased) calculation',
         'time_frequency': 'monthly',
         'units': '1e-3 N/m2'},
        'metric': {'datasets': "HadCM3_r10i1p1; ERA-Interim's tauu & Tropflux's taux; 's ",
         'method': 'The metric is the statistical value between the model and the observations',
         'name': 'BiasTauxLonRmse',
         'units': '1e-3 N/m2'}},
       'EnsoAmpl': {'diagnostic': {'ERA-Interim': {'keyerror': None,
          'name': 'ERA-Interim',
          'nyears': 40,
          'time_period': ['1979-1-16 12:0:0.0', '2019-3-16 12:0:0.0']},
         'HadCM3_r10i1p1': {'keyerror': None,
          'name': 'HadCM3_r10i1p1',
          'nyears': 146,
          'time_period': ['1859-12-16 0:0:0.0', '2005-12-16 0:0:0.0']},
         'HadISST': {'keyerror': None,
          'name': 'HadISST',
          'nyears': 151,
          'time_period': ['1870-1-16 11:59:59.5', '2020-10-16 12:0:0.0']},
         'Tropflux': {'keyerror': None,
          'name': 'Tropflux',
          'nyears': 40,
          'time_period': ['1979-1-15 0:0:0.0', '2018-12-15 12:0:0.0']},
         'method': 'Standard deviation of nino3.4 sstA, time series are linearly detrended',
         'name': 'ENSO amplitude',
         'ref': 'Using CDAT regression calculation',
         'time_frequency': 'monthly',
         'units': 'C'},
        'metric': {'datasets': "HadCM3_r10i1p1; ERA-Interim's ts & HadISST's sst & Tropflux's sst; 's ",
         'method': 'The metric is the absolute value of the relative difference between model and observations values (M = 100 * abs[[model-obs] / obs])',
         'name': 'EnsoAmpl',
         'units': '%'}},
       'EnsoDuration': {'diagnostic': {'ERA-Interim': {'keyerror': None,
          'name': 'ERA-Interim',
          'nyears': 40,
          'time_period': ['1979-1-16 12:0:0.0', '2019-3-16 12:0:0.0']},
         'HadCM3_r10i1p1': {'keyerror': None,
          'name': 'HadCM3_r10i1p1',
          'nyears': 146,
          'time_period': ['1859-12-16 0:0:0.0', '2005-12-16 0:0:0.0']},
         'HadISST': {'keyerror': None,
          'name': 'HadISST',
          'nyears': 151,
          'time_period': ['1870-1-16 11:59:59.5', '2020-10-16 12:0:0.0']},
         'Tropflux': {'keyerror': None,
          'name': 'Tropflux',
          'nyears': 40,
          'time_period': ['1979-1-15 0:0:0.0', '2018-12-15 12:0:0.0']},
         'method': 'nino3.4 SSTA during DEC regressed against nino3.4 SSTA during 6 years (centered on ENSO), the duration is the number of consecutive months during which the regression is above 0.25, time series are linearly detrended, smoothing using a triangle shaped window of 5 points',
         'name': 'ENSO Duration based on life cyle SSTA pattern',
         'ref': 'Using CDAT',
         'time_frequency': 'monthly',
         'units': 'months'},
        'metric': {'datasets': "HadCM3_r10i1p1; ERA-Interim's ts & HadISST's sst & Tropflux's sst; 's ",
         'method': 'The metric is the absolute value of the relative difference between model and observations values (M = 100 * abs[[model-obs] / obs])',
         'name': 'EnsoDuration',
         'units': '%'}},
       'EnsoSeasonality': {'diagnostic': {'ERA-Interim': {'keyerror': None,
          'name': 'ERA-Interim',
          'nyears': 40,
          'time_period': ['1979-1-16 12:0:0.0', '2019-3-16 12:0:0.0']},
         'HadCM3_r10i1p1': {'keyerror': None,
          'name': 'HadCM3_r10i1p1',
          'nyears': 146,
          'time_period': ['1859-12-16 0:0:0.0', '2005-12-16 0:0:0.0']},
         'HadISST': {'keyerror': None,
          'name': 'HadISST',
          'nyears': 151,
          'time_period': ['1870-1-16 11:59:59.5', '2020-10-16 12:0:0.0']},
         'Tropflux': {'keyerror': None,
          'name': 'Tropflux',
          'nyears': 40,
          'time_period': ['1979-1-15 0:0:0.0', '2018-12-15 12:0:0.0']},
         'method': 'Ratio between NDJ and MAM standard deviation nino3.4 sstA, time series are linearly detrended',
         'name': 'ENSO seasonality',
         'ref': 'Using CDAT std dev calculation',
         'time_frequency': 'monthly',
         'units': 'C/C'},
        'metric': {'datasets': "HadCM3_r10i1p1; ERA-Interim's ts & HadISST's sst & Tropflux's sst; 's ",
         'method': 'The metric is the absolute value of the relative difference between model and observations values (M = 100 * abs[[model-obs] / obs])',
         'name': 'EnsoSeasonality',
         'units': '%'}},
       'EnsoSstDiversity_2': {'diagnostic': {'ERA-Interim': {'keyerror': None,
          'name': 'ERA-Interim',
          'nyears': 40,
          'time_period': ['1979-1-16 12:0:0.0', '2019-3-16 12:0:0.0']},
         'HadCM3_r10i1p1': {'keyerror': None,
          'name': 'HadCM3_r10i1p1',
          'nyears': 146,
          'time_period': ['1859-12-16 0:0:0.0', '2005-12-16 0:0:0.0']},
         'HadISST': {'keyerror': None,
          'name': 'HadISST',
          'nyears': 151,
          'time_period': ['1870-1-16 11:59:59.5', '2020-10-16 12:0:0.0']},
         'Tropflux': {'keyerror': None,
          'name': 'Tropflux',
          'nyears': 40,
          'time_period': ['1979-1-15 0:0:0.0', '2018-12-15 12:0:0.0']},
         'method': 'Nino (Nina) events = nino3.4 sstA > 0.75 (< -0.75) during DEC, zonal SSTA (meridional averaged [-5.0 ; 5.0]), the zonal SSTA maximum (minimum) is located for each event, the diversity is the interquartile range (IQR = Q3 - Q1), time series are linearly detrended, smoothing using a triangle shaped window of 5 points',
         'name': 'ENSO Diversity (interquartile range)',
         'ref': 'Using CDAT regridding',
         'time_frequency': 'monthly',
         'units': 'long'},
        'metric': {'datasets': "HadCM3_r10i1p1; ERA-Interim's ts & HadISST's sst & Tropflux's sst; 's ",
         'method': 'The metric is the absolute value of the relative difference between model and observations values (M = 100 * abs[[model-obs] / obs])',
         'name': 'EnsoSstDiversity',
         'units': '%'}},
       'EnsoSstLonRmse': {'diagnostic': {'ERA-Interim': {'name': 'ERA-Interim',
          'nyears': 40,
          'time_period': ['1979-1-16 12:0:0.0', '2019-3-16 12:0:0.0']},
         'HadCM3_r10i1p1': {'keyerror': None,
          'name': 'HadCM3_r10i1p1',
          'nyears': 146,
          'time_period': ['1859-12-16 0:0:0.0', '2005-12-16 0:0:0.0']},
         'HadISST': {'name': 'HadISST',
          'nyears': 151,
          'time_period': ['1870-1-16 11:59:59.5', '2020-10-16 12:0:0.0']},
         'Tropflux': {'name': 'Tropflux',
          'nyears': 40,
          'time_period': ['1979-1-15 0:0:0.0', '2018-12-15 12:0:0.0']},
         'method': 'nino3.4 SSTA during DEC regressed against equatorial_pacific SSTA, time series are linearly detrended, smoothing using a triangle shaped window of 5 points, observations and model regridded to generic_1x1deg',
         'name': 'ENSO Zonal SSTA pattern',
         'ref': 'Using CDAT regridding and rms (uncentered and biased) calculation',
         'time_frequency': 'monthly',
         'units': 'C/C'},
        'metric': {'datasets': "HadCM3_r10i1p1; ERA-Interim's ts & HadISST's sst & Tropflux's sst; 's ",
         'method': 'The metric is the statistical value between the model and the observations',
         'name': 'EnsoSstLonRmse',
         'units': 'C/C'}},
       'EnsoSstSkew': {'diagnostic': {'ERA-Interim': {'keyerror': None,
          'name': 'ERA-Interim',
          'nyears': 40,
          'time_period': ['1979-1-16 12:0:0.0', '2019-3-16 12:0:0.0']},
         'HadCM3_r10i1p1': {'keyerror': None,
          'name': 'HadCM3_r10i1p1',
          'nyears': 146,
          'time_period': ['1859-12-16 0:0:0.0', '2005-12-16 0:0:0.0']},
         'HadISST': {'keyerror': None,
          'name': 'HadISST',
          'nyears': 151,
          'time_period': ['1870-1-16 11:59:59.5', '2020-10-16 12:0:0.0']},
         'Tropflux': {'keyerror': None,
          'name': 'Tropflux',
          'nyears': 40,
          'time_period': ['1979-1-15 0:0:0.0', '2018-12-15 12:0:0.0']},
         'method': 'Standard deviation of nino3.4 sstA, time series are linearly detrended',
         'name': 'ENSO skewness',
         'ref': 'Using CDAT regression calculation',
         'time_frequency': 'monthly',
         'units': 'C'},
        'metric': {'datasets': "HadCM3_r10i1p1; ERA-Interim's ts & HadISST's sst & Tropflux's sst; 's ",
         'method': 'The metric is the absolute value of the relative difference between model and observations values (M = 100 * abs[[model-obs] / obs])',
         'name': 'EnsoSstSkew',
         'units': '%'}},
       'EnsoSstTsRmse': {'diagnostic': {'ERA-Interim': {'name': 'ERA-Interim',
          'nyears': 40,
          'time_period': ['1979-1-16 12:0:0.0', '2019-3-16 12:0:0.0']},
         'HadCM3_r10i1p1': {'keyerror': None,
          'name': 'HadCM3_r10i1p1',
          'nyears': 146,
          'time_period': ['1859-12-16 0:0:0.0', '2005-12-16 0:0:0.0']},
         'HadISST': {'name': 'HadISST',
          'nyears': 151,
          'time_period': ['1870-1-16 11:59:59.5', '2020-10-16 12:0:0.0']},
         'Tropflux': {'name': 'Tropflux',
          'nyears': 40,
          'time_period': ['1979-1-15 0:0:0.0', '2018-12-15 12:0:0.0']},
         'method': 'nino3.4 SSTA during DEC regressed against nino3.4 SSTA during 6 years (centered on ENSO), time series are linearly detrended, smoothing using a triangle shaped window of 5 points',
         'name': 'ENSO life cyle SSTA pattern',
         'ref': 'Using CDAT regridding and rms (uncentered and biased) calculation',
         'time_frequency': 'monthly',
         'units': 'C/C'},
        'metric': {'datasets': "HadCM3_r10i1p1; ERA-Interim's ts & HadISST's sst & Tropflux's sst; 's ",
         'method': 'The metric is the statistical value between the model and the observations',
         'name': 'EnsoSstTsRmse',
         'units': 'C/C'}},
       'SeasonalPrLatRmse': {'diagnostic': {'ERA-Interim': {'name': 'ERA-Interim',
          'nyears': 40,
          'time_period': ['1979-1-16 12:0:0.0', '2019-3-16 12:0:0.0']},
         'GPCPv2.3': {'name': 'GPCPv2.3',
          'nyears': 41,
          'time_period': ['1979-1-1 0:0:0.0', '2019-7-1 0:0:0.0']},
         'HadCM3_r10i1p1': {'keyerror': None,
          'name': 'HadCM3_r10i1p1',
          'nyears': 146,
          'time_period': ['1859-12-16 0:0:0.0', '2005-12-16 0:0:0.0']},
         'method': 'Meridional root mean square error of nino3_LatExt climatological pr STD, time series are linearly detrended, observations and model regridded to generic_1x1deg',
         'name': 'pr meridional seasonality RMSE',
         'ref': 'Using CDAT regridding and rms (uncentered and biased) calculation',
         'time_frequency': 'monthly',
         'units': 'mm/day'},
        'metric': {'datasets': "HadCM3_r10i1p1; ERA-Interim's pr & GPCPv2.3's precip; 's ",
         'method': 'The metric is the statistical value between the model and the observations',
         'name': 'SeasonalPrLatRmse',
         'units': 'mm/day'}},
       'SeasonalPrLonRmse': {'diagnostic': {'ERA-Interim': {'name': 'ERA-Interim',
          'nyears': 40,
          'time_period': ['1979-1-16 12:0:0.0', '2019-3-16 12:0:0.0']},
         'GPCPv2.3': {'name': 'GPCPv2.3',
          'nyears': 41,
          'time_period': ['1979-1-1 0:0:0.0', '2019-7-1 0:0:0.0']},
         'HadCM3_r10i1p1': {'keyerror': None,
          'name': 'HadCM3_r10i1p1',
          'nyears': 146,
          'time_period': ['1859-12-16 0:0:0.0', '2005-12-16 0:0:0.0']},
         'method': 'Zonal root mean square error of equatorial_pacific climatological pr STD, time series are linearly detrended, observations and model regridded to generic_1x1deg',
         'name': 'pr zonal seasonality RMSE',
         'ref': 'Using CDAT regridding and rms (uncentered and biased) calculation',
         'time_frequency': 'monthly',
         'units': 'mm/day'},
        'metric': {'datasets': "HadCM3_r10i1p1; ERA-Interim's pr & GPCPv2.3's precip; 's ",
         'method': 'The metric is the statistical value between the model and the observations',
         'name': 'SeasonalPrLonRmse',
         'units': 'mm/day'}},
       'SeasonalSstLonRmse': {'diagnostic': {'ERA-Interim': {'name': 'ERA-Interim',
          'nyears': 40,
          'time_period': ['1979-1-16 12:0:0.0', '2019-3-16 12:0:0.0']},
         'HadCM3_r10i1p1': {'keyerror': None,
          'name': 'HadCM3_r10i1p1',
          'nyears': 146,
          'time_period': ['1859-12-16 0:0:0.0', '2005-12-16 0:0:0.0']},
         'HadISST': {'name': 'HadISST',
          'nyears': 151,
          'time_period': ['1870-1-16 11:59:59.5', '2020-10-16 12:0:0.0']},
         'Tropflux': {'name': 'Tropflux',
          'nyears': 40,
          'time_period': ['1979-1-15 0:0:0.0', '2018-12-15 12:0:0.0']},
         'method': 'Zonal root mean square error of equatorial_pacific climatological sst STD, time series are linearly detrended, observations and model regridded to generic_1x1deg',
         'name': 'sst zonal seasonality RMSE',
         'ref': 'Using CDAT regridding and rms (uncentered and biased) calculation',
         'time_frequency': 'monthly',
         'units': 'C'},
        'metric': {'datasets': "HadCM3_r10i1p1; ERA-Interim's ts & HadISST's sst & Tropflux's sst; 's ",
         'method': 'The metric is the statistical value between the model and the observations',
         'name': 'SeasonalSstLonRmse',
         'units': 'C'}},
       'SeasonalTauxLonRmse': {'diagnostic': {'ERA-Interim': {'name': 'ERA-Interim',
          'nyears': 40,
          'time_period': ['1979-1-16 12:0:0.0', '2019-3-16 12:0:0.0']},
         'HadCM3_r10i1p1': {'keyerror': None,
          'name': 'HadCM3_r10i1p1',
          'nyears': 146,
          'time_period': ['1859-12-16 0:0:0.0', '2005-12-16 0:0:0.0']},
         'Tropflux': {'name': 'Tropflux',
          'nyears': 40,
          'time_period': ['1979-1-15 0:0:0.0', '2018-12-15 12:0:0.0']},
         'method': 'Zonal root mean square error of equatorial_pacific climatological taux STD, time series are linearly detrended, observations and model regridded to generic_1x1deg',
         'name': 'taux zonal seasonality RMSE',
         'ref': 'Using CDAT regridding and rms (uncentered and biased) calculation',
         'time_frequency': 'monthly',
         'units': '1e-3 N/m2'},
        'metric': {'datasets': "HadCM3_r10i1p1; ERA-Interim's tauu & Tropflux's taux; 's ",
         'method': 'The metric is the statistical value between the model and the observations',
         'name': 'SeasonalTauxLonRmse',
         'units': '1e-3 N/m2'}}},
      'name': 'Metrics Collection for ENSO performance'},
     'value': {'BiasPrLatRmse': {'diagnostic': {'ERA-Interim': {'value': None,
         'value_error': None},
        'GPCPv2.3': {'value': None, 'value_error': None},
        'HadCM3_r10i1p1': {'value': None, 'value_error': None}},
       'metric': {'ERA-Interim': {'value': 0.5851853707205381,
         'value_error': None},
        'GPCPv2.3': {'value': 1.291585084224255, 'value_error': None}}},
      'BiasPrLonRmse': {'diagnostic': {'ERA-Interim': {'value': None,
         'value_error': None},
        'GPCPv2.3': {'value': None, 'value_error': None},
        'HadCM3_r10i1p1': {'value': None, 'value_error': None}},
       'metric': {'ERA-Interim': {'value': 2.869544721482936,
         'value_error': None},
        'GPCPv2.3': {'value': 2.114314499972585, 'value_error': None}}},
      'BiasSstLonRmse': {'diagnostic': {'ERA-Interim': {'value': None,
         'value_error': None},
        'HadCM3_r10i1p1': {'value': None, 'value_error': None},
        'HadISST': {'value': None, 'value_error': None},
        'Tropflux': {'value': None, 'value_error': None}},
       'metric': {'ERA-Interim': {'value': 1.131979593245782,
         'value_error': None},
        'HadISST': {'value': 1.0295139701596052, 'value_error': None},
        'Tropflux': {'value': 1.1698790354058544, 'value_error': None}}},
      'BiasTauxLonRmse': {'diagnostic': {'ERA-Interim': {'value': None,
         'value_error': None},
        'HadCM3_r10i1p1': {'value': None, 'value_error': None},
        'Tropflux': {'value': None, 'value_error': None}},
       'metric': {'ERA-Interim': {'value': 10.93384903157396,
         'value_error': None},
        'Tropflux': {'value': 10.961167688445412, 'value_error': None}}},
      'EnsoAmpl': {'diagnostic': {'ERA-Interim': {'value': 0.8989844997845644,
         'value_error': 0.14214193002531866},
        'HadCM3_r10i1p1': {'value': 0.8460254620693382,
         'value_error': 0.07001756543161235},
        'HadISST': {'value': 0.7665787872085695,
         'value_error': 0.06238329697691264},
        'Tropflux': {'value': 0.9039789553693535,
         'value_error': 0.14293162279134272}},
       'metric': {'ERA-Interim': {'value': 5.890984519523699,
         'value_error': 22.66845940193888},
        'HadISST': {'value': 10.363797718701143,
         'value_error': 18.11505137301515},
        'Tropflux': {'value': 6.410933900152167,
         'value_error': 22.543216869481558}}},
      'EnsoDuration': {'diagnostic': {'ERA-Interim': {'value': 13.0,
         'value_error': None},
        'HadCM3_r10i1p1': {'value': 14.0, 'value_error': None},
        'HadISST': {'value': 13.0, 'value_error': None},
        'Tropflux': {'value': 13.0, 'value_error': None}},
       'metric': {'ERA-Interim': {'value': 7.6923076923076925,
         'value_error': None},
        'HadISST': {'value': 7.6923076923076925, 'value_error': None},
        'Tropflux': {'value': 7.6923076923076925, 'value_error': None}}},
      'EnsoSeasonality': {'diagnostic': {'ERA-Interim': {'value': 2.0466846866656914,
         'value_error': 0.6513411033995022},
        'HadCM3_r10i1p1': {'value': 1.2554795318866563,
         'value_error': 0.20816612553299027},
        'HadISST': {'value': 1.6639865947361325,
         'value_error': 0.2712772451657809},
        'Tropflux': {'value': 2.0532132553583624,
         'value_error': 0.6534187683977347}},
       'metric': {'ERA-Interim': {'value': 38.65789195247308,
         'value_error': 29.69253118946757},
        'HadISST': {'value': 24.54990107142392,
         'value_error': 24.810601040133676},
        'Tropflux': {'value': 38.85294045271843,
         'value_error': 29.598118332437828}}},
      'EnsoSstDiversity_2': {'diagnostic': {'ERA-Interim': {'value': 33.25,
         'value_error': None},
        'HadCM3_r10i1p1': {'value': 41.0, 'value_error': None},
        'HadISST': {'value': 49.0, 'value_error': None},
        'Tropflux': {'value': 32.0, 'value_error': None}},
       'metric': {'ERA-Interim': {'value': 23.308270676691727,
         'value_error': None},
        'HadISST': {'value': 16.3265306122449, 'value_error': None},
        'Tropflux': {'value': 28.125, 'value_error': None}}},
      'EnsoSstLonRmse': {'diagnostic': {'ERA-Interim': {'value': None,
         'value_error': None},
        'HadCM3_r10i1p1': {'value': None, 'value_error': None},
        'HadISST': {'value': None, 'value_error': None},
        'Tropflux': {'value': None, 'value_error': None}},
       'metric': {'ERA-Interim': {'value': 0.25809216456470957,
         'value_error': None},
        'HadISST': {'value': 0.2695305415549711, 'value_error': None},
        'Tropflux': {'value': 0.25735288040529986, 'value_error': None}}},
      'EnsoSstSkew': {'diagnostic': {'ERA-Interim': {'value': 0.39098111106809963,
         'value_error': 0.061819541653923164},
        'HadCM3_r10i1p1': {'value': 0.4053168408152692,
         'value_error': 0.03354426042084254},
        'HadISST': {'value': 0.38989908235027515,
         'value_error': 0.03172953733021198},
        'Tropflux': {'value': 0.39744741059612115,
         'value_error': 0.06284195338099416}},
       'metric': {'ERA-Interim': {'value': 3.666604176351789,
         'value_error': 24.97063853139572},
        'HadISST': {'value': 3.954294627229498,
         'value_error': 17.062999158633676},
        'Tropflux': {'value': 1.979992826559088,
         'value_error': 24.564376913266727}}},
      'EnsoSstTsRmse': {'diagnostic': {'ERA-Interim': {'value': None,
         'value_error': None},
        'HadCM3_r10i1p1': {'value': None, 'value_error': None},
        'HadISST': {'value': None, 'value_error': None},
        'Tropflux': {'value': None, 'value_error': None}},
       'metric': {'ERA-Interim': {'value': 0.09546381093109907,
         'value_error': None},
        'HadISST': {'value': 0.09057408162025672, 'value_error': None},
        'Tropflux': {'value': 0.09807732140668304, 'value_error': None}}},
      'SeasonalPrLatRmse': {'diagnostic': {'ERA-Interim': {'value': None,
         'value_error': None},
        'GPCPv2.3': {'value': None, 'value_error': None},
        'HadCM3_r10i1p1': {'value': None, 'value_error': None}},
       'metric': {'ERA-Interim': {'value': 0.425917500585054,
         'value_error': None},
        'GPCPv2.3': {'value': 0.5321681061491997, 'value_error': None}}},
      'SeasonalPrLonRmse': {'diagnostic': {'ERA-Interim': {'value': None,
         'value_error': None},
        'GPCPv2.3': {'value': None, 'value_error': None},
        'HadCM3_r10i1p1': {'value': None, 'value_error': None}},
       'metric': {'ERA-Interim': {'value': 0.5919658255510504,
         'value_error': None},
        'GPCPv2.3': {'value': 0.4224325953134937, 'value_error': None}}},
      'SeasonalSstLonRmse': {'diagnostic': {'ERA-Interim': {'value': None,
         'value_error': None},
        'HadCM3_r10i1p1': {'value': None, 'value_error': None},
        'HadISST': {'value': None, 'value_error': None},
        'Tropflux': {'value': None, 'value_error': None}},
       'metric': {'ERA-Interim': {'value': 0.30139612955442185,
         'value_error': None},
        'HadISST': {'value': 0.3086219933519705, 'value_error': None},
        'Tropflux': {'value': 0.3083511093639166, 'value_error': None}}},
      'SeasonalTauxLonRmse': {'diagnostic': {'ERA-Interim': {'value': None,
         'value_error': None},
        'HadCM3_r10i1p1': {'value': None, 'value_error': None},
        'Tropflux': {'value': None, 'value_error': None}},
       'metric': {'ERA-Interim': {'value': 2.522207977309373,
         'value_error': None},
        'Tropflux': {'value': 2.885918526678999, 'value_error': None}}}}},
    'r1i1p1': {'metadata': {'description_of_the_collection': 'Describe which science question this collection is about',
      'metrics': {'BiasPrLatRmse': {'diagnostic': {'ERA-Interim': {'name': 'ERA-Interim',
          'nyears': 40,
          'time_period': ['1979-1-16 12:0:0.0', '2019-3-16 12:0:0.0']},
         'GPCPv2.3': {'name': 'GPCPv2.3',
          'nyears': 41,
          'time_period': ['1979-1-1 0:0:0.0', '2019-7-1 0:0:0.0']},
         'HadCM3_r1i1p1': {'keyerror': None,
          'name': 'HadCM3_r1i1p1',
          'nyears': 146,
          'time_period': ['1859-12-16 0:0:0.0', '2005-12-16 0:0:0.0']},
         'method': 'Meridional root mean square error of nino3_LatExt pr, time series are linearly detrended, observations and model regridded to generic_1x1deg',
         'name': 'pr Meridional RMSE',
         'ref': 'Using CDAT regridding and rms (uncentered and biased) calculation',
         'time_frequency': 'monthly',
         'units': 'mm/day'},
        'metric': {'datasets': "HadCM3_r1i1p1; ERA-Interim's pr & GPCPv2.3's precip; 's ",
         'method': 'The metric is the statistical value between the model and the observations',
         'name': 'BiasPrLatRmse',
         'units': 'mm/day'}},
       'BiasPrLonRmse': {'diagnostic': {'ERA-Interim': {'name': 'ERA-Interim',
          'nyears': 40,
          'time_period': ['1979-1-16 12:0:0.0', '2019-3-16 12:0:0.0']},
         'GPCPv2.3': {'name': 'GPCPv2.3',
          'nyears': 41,
          'time_period': ['1979-1-1 0:0:0.0', '2019-7-1 0:0:0.0']},
         'HadCM3_r1i1p1': {'keyerror': None,
          'name': 'HadCM3_r1i1p1',
          'nyears': 146,
          'time_period': ['1859-12-16 0:0:0.0', '2005-12-16 0:0:0.0']},
         'method': 'Zonal root mean square error of equatorial_pacific pr, time series are linearly detrended, observations and model regridded to generic_1x1deg',
         'name': 'pr Zonal RMSE',
         'ref': 'Using CDAT regridding and rms (uncentered and biased) calculation',
         'time_frequency': 'monthly',
         'units': 'mm/day'},
        'metric': {'datasets': "HadCM3_r1i1p1; ERA-Interim's pr & GPCPv2.3's precip; 's ",
         'method': 'The metric is the statistical value between the model and the observations',
         'name': 'BiasPrLonRmse',
         'units': 'mm/day'}},
       'BiasSstLonRmse': {'diagnostic': {'ERA-Interim': {'name': 'ERA-Interim',
          'nyears': 40,
          'time_period': ['1979-1-16 12:0:0.0', '2019-3-16 12:0:0.0']},
         'HadCM3_r1i1p1': {'keyerror': None,
          'name': 'HadCM3_r1i1p1',
          'nyears': 146,
          'time_period': ['1859-12-16 0:0:0.0', '2005-12-16 0:0:0.0']},
         'HadISST': {'name': 'HadISST',
          'nyears': 151,
          'time_period': ['1870-1-16 11:59:59.5', '2020-10-16 12:0:0.0']},
         'Tropflux': {'name': 'Tropflux',
          'nyears': 40,
          'time_period': ['1979-1-15 0:0:0.0', '2018-12-15 12:0:0.0']},
         'method': 'Zonal root mean square error of equatorial_pacific sst, time series are linearly detrended, observations and model regridded to generic_1x1deg',
         'name': 'sst Zonal RMSE',
         'ref': 'Using CDAT regridding and rms (uncentered and biased) calculation',
         'time_frequency': 'monthly',
         'units': 'C'},
        'metric': {'datasets': "HadCM3_r1i1p1; ERA-Interim's ts & HadISST's sst & Tropflux's sst; 's ",
         'method': 'The metric is the statistical value between the model and the observations',
         'name': 'BiasSstLonRmse',
         'units': 'C'}},
       'BiasTauxLonRmse': {'diagnostic': {'ERA-Interim': {'name': 'ERA-Interim',
          'nyears': 40,
          'time_period': ['1979-1-16 12:0:0.0', '2019-3-16 12:0:0.0']},
         'HadCM3_r1i1p1': {'keyerror': None,
          'name': 'HadCM3_r1i1p1',
          'nyears': 146,
          'time_period': ['1859-12-16 0:0:0.0', '2005-12-16 0:0:0.0']},
         'Tropflux': {'name': 'Tropflux',
          'nyears': 40,
          'time_period': ['1979-1-15 0:0:0.0', '2018-12-15 12:0:0.0']},
         'method': 'Zonal root mean square error of equatorial_pacific taux, time series are linearly detrended, observations and model regridded to generic_1x1deg',
         'name': 'taux Zonal RMSE',
         'ref': 'Using CDAT regridding and rms (uncentered and biased) calculation',
         'time_frequency': 'monthly',
         'units': '1e-3 N/m2'},
        'metric': {'datasets': "HadCM3_r1i1p1; ERA-Interim's tauu & Tropflux's taux; 's ",
         'method': 'The metric is the statistical value between the model and the observations',
         'name': 'BiasTauxLonRmse',
         'units': '1e-3 N/m2'}},
       'EnsoAmpl': {'diagnostic': {'ERA-Interim': {'keyerror': None,
          'name': 'ERA-Interim',
          'nyears': 40,
          'time_period': ['1979-1-16 12:0:0.0', '2019-3-16 12:0:0.0']},
         'HadCM3_r1i1p1': {'keyerror': None,
          'name': 'HadCM3_r1i1p1',
          'nyears': 146,
          'time_period': ['1859-12-16 0:0:0.0', '2005-12-16 0:0:0.0']},
         'HadISST': {'keyerror': None,
          'name': 'HadISST',
          'nyears': 151,
          'time_period': ['1870-1-16 11:59:59.5', '2020-10-16 12:0:0.0']},
         'Tropflux': {'keyerror': None,
          'name': 'Tropflux',
          'nyears': 40,
          'time_period': ['1979-1-15 0:0:0.0', '2018-12-15 12:0:0.0']},
         'method': 'Standard deviation of nino3.4 sstA, time series are linearly detrended',
         'name': 'ENSO amplitude',
         'ref': 'Using CDAT regression calculation',
         'time_frequency': 'monthly',
         'units': 'C'},
        'metric': {'datasets': "HadCM3_r1i1p1; ERA-Interim's ts & HadISST's sst & Tropflux's sst; 's ",
         'method': 'The metric is the absolute value of the relative difference between model and observations values (M = 100 * abs[[model-obs] / obs])',
         'name': 'EnsoAmpl',
         'units': '%'}},
       'EnsoDuration': {'diagnostic': {'ERA-Interim': {'keyerror': None,
          'name': 'ERA-Interim',
          'nyears': 40,
          'time_period': ['1979-1-16 12:0:0.0', '2019-3-16 12:0:0.0']},
         'HadCM3_r1i1p1': {'keyerror': None,
          'name': 'HadCM3_r1i1p1',
          'nyears': 146,
          'time_period': ['1859-12-16 0:0:0.0', '2005-12-16 0:0:0.0']},
         'HadISST': {'keyerror': None,
          'name': 'HadISST',
          'nyears': 151,
          'time_period': ['1870-1-16 11:59:59.5', '2020-10-16 12:0:0.0']},
         'Tropflux': {'keyerror': None,
          'name': 'Tropflux',
          'nyears': 40,
          'time_period': ['1979-1-15 0:0:0.0', '2018-12-15 12:0:0.0']},
         'method': 'nino3.4 SSTA during DEC regressed against nino3.4 SSTA during 6 years (centered on ENSO), the duration is the number of consecutive months during which the regression is above 0.25, time series are linearly detrended, smoothing using a triangle shaped window of 5 points',
         'name': 'ENSO Duration based on life cyle SSTA pattern',
         'ref': 'Using CDAT',
         'time_frequency': 'monthly',
         'units': 'months'},
        'metric': {'datasets': "HadCM3_r1i1p1; ERA-Interim's ts & HadISST's sst & Tropflux's sst; 's ",
         'method': 'The metric is the absolute value of the relative difference between model and observations values (M = 100 * abs[[model-obs] / obs])',
         'name': 'EnsoDuration',
         'units': '%'}},
       'EnsoSeasonality': {'diagnostic': {'ERA-Interim': {'keyerror': None,
          'name': 'ERA-Interim',
          'nyears': 40,
          'time_period': ['1979-1-16 12:0:0.0', '2019-3-16 12:0:0.0']},
         'HadCM3_r1i1p1': {'keyerror': None,
          'name': 'HadCM3_r1i1p1',
          'nyears': 146,
          'time_period': ['1859-12-16 0:0:0.0', '2005-12-16 0:0:0.0']},
         'HadISST': {'keyerror': None,
          'name': 'HadISST',
          'nyears': 151,
          'time_period': ['1870-1-16 11:59:59.5', '2020-10-16 12:0:0.0']},
         'Tropflux': {'keyerror': None,
          'name': 'Tropflux',
          'nyears': 40,
          'time_period': ['1979-1-15 0:0:0.0', '2018-12-15 12:0:0.0']},
         'method': 'Ratio between NDJ and MAM standard deviation nino3.4 sstA, time series are linearly detrended',
         'name': 'ENSO seasonality',
         'ref': 'Using CDAT std dev calculation',
         'time_frequency': 'monthly',
         'units': 'C/C'},
        'metric': {'datasets': "HadCM3_r1i1p1; ERA-Interim's ts & HadISST's sst & Tropflux's sst; 's ",
         'method': 'The metric is the absolute value of the relative difference between model and observations values (M = 100 * abs[[model-obs] / obs])',
         'name': 'EnsoSeasonality',
         'units': '%'}},
       'EnsoSstDiversity_2': {'diagnostic': {'ERA-Interim': {'keyerror': None,
          'name': 'ERA-Interim',
          'nyears': 40,
          'time_period': ['1979-1-16 12:0:0.0', '2019-3-16 12:0:0.0']},
         'HadCM3_r1i1p1': {'keyerror': None,
          'name': 'HadCM3_r1i1p1',
          'nyears': 146,
          'time_period': ['1859-12-16 0:0:0.0', '2005-12-16 0:0:0.0']},
         'HadISST': {'keyerror': None,
          'name': 'HadISST',
          'nyears': 151,
          'time_period': ['1870-1-16 11:59:59.5', '2020-10-16 12:0:0.0']},
         'Tropflux': {'keyerror': None,
          'name': 'Tropflux',
          'nyears': 40,
          'time_period': ['1979-1-15 0:0:0.0', '2018-12-15 12:0:0.0']},
         'method': 'Nino (Nina) events = nino3.4 sstA > 0.75 (< -0.75) during DEC, zonal SSTA (meridional averaged [-5.0 ; 5.0]), the zonal SSTA maximum (minimum) is located for each event, the diversity is the interquartile range (IQR = Q3 - Q1), time series are linearly detrended, smoothing using a triangle shaped window of 5 points',
         'name': 'ENSO Diversity (interquartile range)',
         'ref': 'Using CDAT regridding',
         'time_frequency': 'monthly',
         'units': 'long'},
        'metric': {'datasets': "HadCM3_r1i1p1; ERA-Interim's ts & HadISST's sst & Tropflux's sst; 's ",
         'method': 'The metric is the absolute value of the relative difference between model and observations values (M = 100 * abs[[model-obs] / obs])',
         'name': 'EnsoSstDiversity',
         'units': '%'}},
       'EnsoSstLonRmse': {'diagnostic': {'ERA-Interim': {'name': 'ERA-Interim',
          'nyears': 40,
          'time_period': ['1979-1-16 12:0:0.0', '2019-3-16 12:0:0.0']},
         'HadCM3_r1i1p1': {'keyerror': None,
          'name': 'HadCM3_r1i1p1',
          'nyears': 146,
          'time_period': ['1859-12-16 0:0:0.0', '2005-12-16 0:0:0.0']},
         'HadISST': {'name': 'HadISST',
          'nyears': 151,
          'time_period': ['1870-1-16 11:59:59.5', '2020-10-16 12:0:0.0']},
         'Tropflux': {'name': 'Tropflux',
          'nyears': 40,
          'time_period': ['1979-1-15 0:0:0.0', '2018-12-15 12:0:0.0']},
         'method': 'nino3.4 SSTA during DEC regressed against equatorial_pacific SSTA, time series are linearly detrended, smoothing using a triangle shaped window of 5 points, observations and model regridded to generic_1x1deg',
         'name': 'ENSO Zonal SSTA pattern',
         'ref': 'Using CDAT regridding and rms (uncentered and biased) calculation',
         'time_frequency': 'monthly',
         'units': 'C/C'},
        'metric': {'datasets': "HadCM3_r1i1p1; ERA-Interim's ts & HadISST's sst & Tropflux's sst; 's ",
         'method': 'The metric is the statistical value between the model and the observations',
         'name': 'EnsoSstLonRmse',
         'units': 'C/C'}},
       'EnsoSstSkew': {'diagnostic': {'ERA-Interim': {'keyerror': None,
          'name': 'ERA-Interim',
          'nyears': 40,
          'time_period': ['1979-1-16 12:0:0.0', '2019-3-16 12:0:0.0']},
         'HadCM3_r1i1p1': {'keyerror': None,
          'name': 'HadCM3_r1i1p1',
          'nyears': 146,
          'time_period': ['1859-12-16 0:0:0.0', '2005-12-16 0:0:0.0']},
         'HadISST': {'keyerror': None,
          'name': 'HadISST',
          'nyears': 151,
          'time_period': ['1870-1-16 11:59:59.5', '2020-10-16 12:0:0.0']},
         'Tropflux': {'keyerror': None,
          'name': 'Tropflux',
          'nyears': 40,
          'time_period': ['1979-1-15 0:0:0.0', '2018-12-15 12:0:0.0']},
         'method': 'Standard deviation of nino3.4 sstA, time series are linearly detrended',
         'name': 'ENSO skewness',
         'ref': 'Using CDAT regression calculation',
         'time_frequency': 'monthly',
         'units': 'C'},
        'metric': {'datasets': "HadCM3_r1i1p1; ERA-Interim's ts & HadISST's sst & Tropflux's sst; 's ",
         'method': 'The metric is the absolute value of the relative difference between model and observations values (M = 100 * abs[[model-obs] / obs])',
         'name': 'EnsoSstSkew',
         'units': '%'}},
       'EnsoSstTsRmse': {'diagnostic': {'ERA-Interim': {'name': 'ERA-Interim',
          'nyears': 40,
          'time_period': ['1979-1-16 12:0:0.0', '2019-3-16 12:0:0.0']},
         'HadCM3_r1i1p1': {'keyerror': None,
          'name': 'HadCM3_r1i1p1',
          'nyears': 146,
          'time_period': ['1859-12-16 0:0:0.0', '2005-12-16 0:0:0.0']},
         'HadISST': {'name': 'HadISST',
          'nyears': 151,
          'time_period': ['1870-1-16 11:59:59.5', '2020-10-16 12:0:0.0']},
         'Tropflux': {'name': 'Tropflux',
          'nyears': 40,
          'time_period': ['1979-1-15 0:0:0.0', '2018-12-15 12:0:0.0']},
         'method': 'nino3.4 SSTA during DEC regressed against nino3.4 SSTA during 6 years (centered on ENSO), time series are linearly detrended, smoothing using a triangle shaped window of 5 points',
         'name': 'ENSO life cyle SSTA pattern',
         'ref': 'Using CDAT regridding and rms (uncentered and biased) calculation',
         'time_frequency': 'monthly',
         'units': 'C/C'},
        'metric': {'datasets': "HadCM3_r1i1p1; ERA-Interim's ts & HadISST's sst & Tropflux's sst; 's ",
         'method': 'The metric is the statistical value between the model and the observations',
         'name': 'EnsoSstTsRmse',
         'units': 'C/C'}},
       'SeasonalPrLatRmse': {'diagnostic': {'ERA-Interim': {'name': 'ERA-Interim',
          'nyears': 40,
          'time_period': ['1979-1-16 12:0:0.0', '2019-3-16 12:0:0.0']},
         'GPCPv2.3': {'name': 'GPCPv2.3',
          'nyears': 41,
          'time_period': ['1979-1-1 0:0:0.0', '2019-7-1 0:0:0.0']},
         'HadCM3_r1i1p1': {'keyerror': None,
          'name': 'HadCM3_r1i1p1',
          'nyears': 146,
          'time_period': ['1859-12-16 0:0:0.0', '2005-12-16 0:0:0.0']},
         'method': 'Meridional root mean square error of nino3_LatExt climatological pr STD, time series are linearly detrended, observations and model regridded to generic_1x1deg',
         'name': 'pr meridional seasonality RMSE',
         'ref': 'Using CDAT regridding and rms (uncentered and biased) calculation',
         'time_frequency': 'monthly',
         'units': 'mm/day'},
        'metric': {'datasets': "HadCM3_r1i1p1; ERA-Interim's pr & GPCPv2.3's precip; 's ",
         'method': 'The metric is the statistical value between the model and the observations',
         'name': 'SeasonalPrLatRmse',
         'units': 'mm/day'}},
       'SeasonalPrLonRmse': {'diagnostic': {'ERA-Interim': {'name': 'ERA-Interim',
          'nyears': 40,
          'time_period': ['1979-1-16 12:0:0.0', '2019-3-16 12:0:0.0']},
         'GPCPv2.3': {'name': 'GPCPv2.3',
          'nyears': 41,
          'time_period': ['1979-1-1 0:0:0.0', '2019-7-1 0:0:0.0']},
         'HadCM3_r1i1p1': {'keyerror': None,
          'name': 'HadCM3_r1i1p1',
          'nyears': 146,
          'time_period': ['1859-12-16 0:0:0.0', '2005-12-16 0:0:0.0']},
         'method': 'Zonal root mean square error of equatorial_pacific climatological pr STD, time series are linearly detrended, observations and model regridded to generic_1x1deg',
         'name': 'pr zonal seasonality RMSE',
         'ref': 'Using CDAT regridding and rms (uncentered and biased) calculation',
         'time_frequency': 'monthly',
         'units': 'mm/day'},
        'metric': {'datasets': "HadCM3_r1i1p1; ERA-Interim's pr & GPCPv2.3's precip; 's ",
         'method': 'The metric is the statistical value between the model and the observations',
         'name': 'SeasonalPrLonRmse',
         'units': 'mm/day'}},
       'SeasonalSstLonRmse': {'diagnostic': {'ERA-Interim': {'name': 'ERA-Interim',
          'nyears': 40,
          'time_period': ['1979-1-16 12:0:0.0', '2019-3-16 12:0:0.0']},
         'HadCM3_r1i1p1': {'keyerror': None,
          'name': 'HadCM3_r1i1p1',
          'nyears': 146,
          'time_period': ['1859-12-16 0:0:0.0', '2005-12-16 0:0:0.0']},
         'HadISST': {'name': 'HadISST',
          'nyears': 151,
          'time_period': ['1870-1-16 11:59:59.5', '2020-10-16 12:0:0.0']},
         'Tropflux': {'name': 'Tropflux',
          'nyears': 40,
          'time_period': ['1979-1-15 0:0:0.0', '2018-12-15 12:0:0.0']},
         'method': 'Zonal root mean square error of equatorial_pacific climatological sst STD, time series are linearly detrended, observations and model regridded to generic_1x1deg',
         'name': 'sst zonal seasonality RMSE',
         'ref': 'Using CDAT regridding and rms (uncentered and biased) calculation',
         'time_frequency': 'monthly',
         'units': 'C'},
        'metric': {'datasets': "HadCM3_r1i1p1; ERA-Interim's ts & HadISST's sst & Tropflux's sst; 's ",
         'method': 'The metric is the statistical value between the model and the observations',
         'name': 'SeasonalSstLonRmse',
         'units': 'C'}},
       'SeasonalTauxLonRmse': {'diagnostic': {'ERA-Interim': {'name': 'ERA-Interim',
          'nyears': 40,
          'time_period': ['1979-1-16 12:0:0.0', '2019-3-16 12:0:0.0']},
         'HadCM3_r1i1p1': {'keyerror': None,
          'name': 'HadCM3_r1i1p1',
          'nyears': 146,
          'time_period': ['1859-12-16 0:0:0.0', '2005-12-16 0:0:0.0']},
         'Tropflux': {'name': 'Tropflux',
          'nyears': 40,
          'time_period': ['1979-1-15 0:0:0.0', '2018-12-15 12:0:0.0']},
         'method': 'Zonal root mean square error of equatorial_pacific climatological taux STD, time series are linearly detrended, observations and model regridded to generic_1x1deg',
         'name': 'taux zonal seasonality RMSE',
         'ref': 'Using CDAT regridding and rms (uncentered and biased) calculation',
         'time_frequency': 'monthly',
         'units': '1e-3 N/m2'},
        'metric': {'datasets': "HadCM3_r1i1p1; ERA-Interim's tauu & Tropflux's taux; 's ",
         'method': 'The metric is the statistical value between the model and the observations',
         'name': 'SeasonalTauxLonRmse',
         'units': '1e-3 N/m2'}}},
      'name': 'Metrics Collection for ENSO performance'},
     'value': {'BiasPrLatRmse': {'diagnostic': {'ERA-Interim': {'value': None,
         'value_error': None},
        'GPCPv2.3': {'value': None, 'value_error': None},
        'HadCM3_r1i1p1': {'value': None, 'value_error': None}},
       'metric': {'ERA-Interim': {'value': 0.5976500880109358,
         'value_error': None},
        'GPCPv2.3': {'value': 1.3327565613048185, 'value_error': None}}},
      'BiasPrLonRmse': {'diagnostic': {'ERA-Interim': {'value': None,
         'value_error': None},
        'GPCPv2.3': {'value': None, 'value_error': None},
        'HadCM3_r1i1p1': {'value': None, 'value_error': None}},
       'metric': {'ERA-Interim': {'value': 2.7150533871674902,
         'value_error': None},
        'GPCPv2.3': {'value': 1.9871758139345757, 'value_error': None}}},
      'BiasSstLonRmse': {'diagnostic': {'ERA-Interim': {'value': None,
         'value_error': None},
        'HadCM3_r1i1p1': {'value': None, 'value_error': None},
        'HadISST': {'value': None, 'value_error': None},
        'Tropflux': {'value': None, 'value_error': None}},
       'metric': {'ERA-Interim': {'value': 1.0538010637733595,
         'value_error': None},
        'HadISST': {'value': 0.9650467581116231, 'value_error': None},
        'Tropflux': {'value': 1.0900248910639958, 'value_error': None}}},
      'BiasTauxLonRmse': {'diagnostic': {'ERA-Interim': {'value': None,
         'value_error': None},
        'HadCM3_r1i1p1': {'value': None, 'value_error': None},
        'Tropflux': {'value': None, 'value_error': None}},
       'metric': {'ERA-Interim': {'value': 10.973757108685511,
         'value_error': None},
        'Tropflux': {'value': 10.953679279790277, 'value_error': None}}},
      'EnsoAmpl': {'diagnostic': {'ERA-Interim': {'value': 0.8989844997845644,
         'value_error': 0.14214193002531866},
        'HadCM3_r1i1p1': {'value': 0.8888898606977632,
         'value_error': 0.07356504830324073},
        'HadISST': {'value': 0.7665787872085695,
         'value_error': 0.06238329697691264},
        'Tropflux': {'value': 0.9039789553693535,
         'value_error': 0.14293162279134272}},
       'metric': {'ERA-Interim': {'value': 1.1228935637066386,
         'value_error': 23.816970792743028},
        'HadISST': {'value': 15.95544718039732,
         'value_error': 19.03286155490738},
        'Tropflux': {'value': 1.6691864984207574,
         'value_error': 23.685382770608186}}},
      'EnsoDuration': {'diagnostic': {'ERA-Interim': {'value': 13.0,
         'value_error': None},
        'HadCM3_r1i1p1': {'value': 13.0, 'value_error': None},
        'HadISST': {'value': 13.0, 'value_error': None},
        'Tropflux': {'value': 13.0, 'value_error': None}},
       'metric': {'ERA-Interim': {'value': 0.0, 'value_error': None},
        'HadISST': {'value': 0.0, 'value_error': None},
        'Tropflux': {'value': 0.0, 'value_error': None}}},
      'EnsoSeasonality': {'diagnostic': {'ERA-Interim': {'value': 2.0466846866656914,
         'value_error': 0.6513411033995022},
        'HadCM3_r1i1p1': {'value': 1.5448598690424087,
         'value_error': 0.2561471415999108},
        'HadISST': {'value': 1.6639865947361325,
         'value_error': 0.2712772451657809},
        'Tropflux': {'value': 2.0532132553583624,
         'value_error': 0.6534187683977347}},
       'metric': {'ERA-Interim': {'value': 24.518912018676353,
         'value_error': 36.53647764051297},
        'HadISST': {'value': 7.159115708658363,
         'value_error': 30.52929251353551},
        'Tropflux': {'value': 24.758918002758904,
         'value_error': 36.42030319860255}}},
      'EnsoSstDiversity_2': {'diagnostic': {'ERA-Interim': {'value': 33.25,
         'value_error': None},
        'HadCM3_r1i1p1': {'value': 26.5, 'value_error': None},
        'HadISST': {'value': 49.0, 'value_error': None},
        'Tropflux': {'value': 32.0, 'value_error': None}},
       'metric': {'ERA-Interim': {'value': 20.30075187969925,
         'value_error': None},
        'HadISST': {'value': 45.91836734693878, 'value_error': None},
        'Tropflux': {'value': 17.1875, 'value_error': None}}},
      'EnsoSstLonRmse': {'diagnostic': {'ERA-Interim': {'value': None,
         'value_error': None},
        'HadCM3_r1i1p1': {'value': None, 'value_error': None},
        'HadISST': {'value': None, 'value_error': None},
        'Tropflux': {'value': None, 'value_error': None}},
       'metric': {'ERA-Interim': {'value': 0.258390752324202,
         'value_error': None},
        'HadISST': {'value': 0.27194247214468287, 'value_error': None},
        'Tropflux': {'value': 0.2579433444753308, 'value_error': None}}},
      'EnsoSstSkew': {'diagnostic': {'ERA-Interim': {'value': 0.39098111106809963,
         'value_error': 0.061819541653923164},
        'HadCM3_r1i1p1': {'value': 0.2263007504437517,
         'value_error': 0.018728783366238382},
        'HadISST': {'value': 0.38989908235027515,
         'value_error': 0.03172953733021198},
        'Tropflux': {'value': 0.39744741059612115,
         'value_error': 0.06284195338099416}},
       'metric': {'ERA-Interim': {'value': 42.11977406644193,
         'value_error': 13.941868853384271},
        'HadISST': {'value': 41.95914771595974,
         'value_error': 9.526792685576558},
        'Tropflux': {'value': 43.061460608252794,
         'value_error': 13.71504060495976}}},
      'EnsoSstTsRmse': {'diagnostic': {'ERA-Interim': {'value': None,
         'value_error': None},
        'HadCM3_r1i1p1': {'value': None, 'value_error': None},
        'HadISST': {'value': None, 'value_error': None},
        'Tropflux': {'value': None, 'value_error': None}},
       'metric': {'ERA-Interim': {'value': 0.11902205304828674,
         'value_error': None},
        'HadISST': {'value': 0.11146145382380687, 'value_error': None},
        'Tropflux': {'value': 0.12156555963374888, 'value_error': None}}},
      'SeasonalPrLatRmse': {'diagnostic': {'ERA-Interim': {'value': None,
         'value_error': None},
        'GPCPv2.3': {'value': None, 'value_error': None},
        'HadCM3_r1i1p1': {'value': None, 'value_error': None}},
       'metric': {'ERA-Interim': {'value': 0.4246543173169749,
         'value_error': None},
        'GPCPv2.3': {'value': 0.5490032034708046, 'value_error': None}}},
      'SeasonalPrLonRmse': {'diagnostic': {'ERA-Interim': {'value': None,
         'value_error': None},
        'GPCPv2.3': {'value': None, 'value_error': None},
        'HadCM3_r1i1p1': {'value': None, 'value_error': None}},
       'metric': {'ERA-Interim': {'value': 0.5886815254843234,
         'value_error': None},
        'GPCPv2.3': {'value': 0.4082588825315297, 'value_error': None}}},
      'SeasonalSstLonRmse': {'diagnostic': {'ERA-Interim': {'value': None,
         'value_error': None},
        'HadCM3_r1i1p1': {'value': None, 'value_error': None},
        'HadISST': {'value': None, 'value_error': None},
        'Tropflux': {'value': None, 'value_error': None}},
       'metric': {'ERA-Interim': {'value': 0.29130592261272664,
         'value_error': None},
        'HadISST': {'value': 0.29771913762923613, 'value_error': None},
        'Tropflux': {'value': 0.29852670949891985, 'value_error': None}}},
      'SeasonalTauxLonRmse': {'diagnostic': {'ERA-Interim': {'value': None,
         'value_error': None},
        'HadCM3_r1i1p1': {'value': None, 'value_error': None},
        'Tropflux': {'value': None, 'value_error': None}},
       'metric': {'ERA-Interim': {'value': 2.4202471794726916,
         'value_error': None},
        'Tropflux': {'value': 2.761715448365351, 'value_error': None}}}}},
    'r2i1p1': {'metadata': {'description_of_the_collection': 'Describe which science question this collection is about',
      'metrics': {'BiasPrLatRmse': {'diagnostic': {'ERA-Interim': {'name': 'ERA-Interim',
          'nyears': 40,
          'time_period': ['1979-1-16 12:0:0.0', '2019-3-16 12:0:0.0']},
         'GPCPv2.3': {'name': 'GPCPv2.3',
          'nyears': 41,
          'time_period': ['1979-1-1 0:0:0.0', '2019-7-1 0:0:0.0']},
         'HadCM3_r2i1p1': {'keyerror': None,
          'name': 'HadCM3_r2i1p1',
          'nyears': 146,
          'time_period': ['1859-12-16 0:0:0.0', '2005-12-16 0:0:0.0']},
         'method': 'Meridional root mean square error of nino3_LatExt pr, time series are linearly detrended, observations and model regridded to generic_1x1deg',
         'name': 'pr Meridional RMSE',
         'ref': 'Using CDAT regridding and rms (uncentered and biased) calculation',
         'time_frequency': 'monthly',
         'units': 'mm/day'},
        'metric': {'datasets': "HadCM3_r2i1p1; ERA-Interim's pr & GPCPv2.3's precip; 's ",
         'method': 'The metric is the statistical value between the model and the observations',
         'name': 'BiasPrLatRmse',
         'units': 'mm/day'}},
       'BiasPrLonRmse': {'diagnostic': {'ERA-Interim': {'name': 'ERA-Interim',
          'nyears': 40,
          'time_period': ['1979-1-16 12:0:0.0', '2019-3-16 12:0:0.0']},
         'GPCPv2.3': {'name': 'GPCPv2.3',
          'nyears': 41,
          'time_period': ['1979-1-1 0:0:0.0', '2019-7-1 0:0:0.0']},
         'HadCM3_r2i1p1': {'keyerror': None,
          'name': 'HadCM3_r2i1p1',
          'nyears': 146,
          'time_period': ['1859-12-16 0:0:0.0', '2005-12-16 0:0:0.0']},
         'method': 'Zonal root mean square error of equatorial_pacific pr, time series are linearly detrended, observations and model regridded to generic_1x1deg',
         'name': 'pr Zonal RMSE',
         'ref': 'Using CDAT regridding and rms (uncentered and biased) calculation',
         'time_frequency': 'monthly',
         'units': 'mm/day'},
        'metric': {'datasets': "HadCM3_r2i1p1; ERA-Interim's pr & GPCPv2.3's precip; 's ",
         'method': 'The metric is the statistical value between the model and the observations',
         'name': 'BiasPrLonRmse',
         'units': 'mm/day'}},
       'BiasSstLonRmse': {'diagnostic': {'ERA-Interim': {'name': 'ERA-Interim',
          'nyears': 40,
          'time_period': ['1979-1-16 12:0:0.0', '2019-3-16 12:0:0.0']},
         'HadCM3_r2i1p1': {'keyerror': None,
          'name': 'HadCM3_r2i1p1',
          'nyears': 146,
          'time_period': ['1859-12-16 0:0:0.0', '2005-12-16 0:0:0.0']},
         'HadISST': {'name': 'HadISST',
          'nyears': 151,
          'time_period': ['1870-1-16 11:59:59.5', '2020-10-16 12:0:0.0']},
         'Tropflux': {'name': 'Tropflux',
          'nyears': 40,
          'time_period': ['1979-1-15 0:0:0.0', '2018-12-15 12:0:0.0']},
         'method': 'Zonal root mean square error of equatorial_pacific sst, time series are linearly detrended, observations and model regridded to generic_1x1deg',
         'name': 'sst Zonal RMSE',
         'ref': 'Using CDAT regridding and rms (uncentered and biased) calculation',
         'time_frequency': 'monthly',
         'units': 'C'},
        'metric': {'datasets': "HadCM3_r2i1p1; ERA-Interim's ts & HadISST's sst & Tropflux's sst; 's ",
         'method': 'The metric is the statistical value between the model and the observations',
         'name': 'BiasSstLonRmse',
         'units': 'C'}},
       'BiasTauxLonRmse': {'diagnostic': {'ERA-Interim': {'name': 'ERA-Interim',
          'nyears': 40,
          'time_period': ['1979-1-16 12:0:0.0', '2019-3-16 12:0:0.0']},
         'HadCM3_r2i1p1': {'keyerror': None,
          'name': 'HadCM3_r2i1p1',
          'nyears': 146,
          'time_period': ['1859-12-16 0:0:0.0', '2005-12-16 0:0:0.0']},
         'Tropflux': {'name': 'Tropflux',
          'nyears': 40,
          'time_period': ['1979-1-15 0:0:0.0', '2018-12-15 12:0:0.0']},
         'method': 'Zonal root mean square error of equatorial_pacific taux, time series are linearly detrended, observations and model regridded to generic_1x1deg',
         'name': 'taux Zonal RMSE',
         'ref': 'Using CDAT regridding and rms (uncentered and biased) calculation',
         'time_frequency': 'monthly',
         'units': '1e-3 N/m2'},
        'metric': {'datasets': "HadCM3_r2i1p1; ERA-Interim's tauu & Tropflux's taux; 's ",
         'method': 'The metric is the statistical value between the model and the observations',
         'name': 'BiasTauxLonRmse',
         'units': '1e-3 N/m2'}},
       'EnsoAmpl': {'diagnostic': {'ERA-Interim': {'keyerror': None,
          'name': 'ERA-Interim',
          'nyears': 40,
          'time_period': ['1979-1-16 12:0:0.0', '2019-3-16 12:0:0.0']},
         'HadCM3_r2i1p1': {'keyerror': None,
          'name': 'HadCM3_r2i1p1',
          'nyears': 146,
          'time_period': ['1859-12-16 0:0:0.0', '2005-12-16 0:0:0.0']},
         'HadISST': {'keyerror': None,
          'name': 'HadISST',
          'nyears': 151,
          'time_period': ['1870-1-16 11:59:59.5', '2020-10-16 12:0:0.0']},
         'Tropflux': {'keyerror': None,
          'name': 'Tropflux',
          'nyears': 40,
          'time_period': ['1979-1-15 0:0:0.0', '2018-12-15 12:0:0.0']},
         'method': 'Standard deviation of nino3.4 sstA, time series are linearly detrended',
         'name': 'ENSO amplitude',
         'ref': 'Using CDAT regression calculation',
         'time_frequency': 'monthly',
         'units': 'C'},
        'metric': {'datasets': "HadCM3_r2i1p1; ERA-Interim's ts & HadISST's sst & Tropflux's sst; 's ",
         'method': 'The metric is the absolute value of the relative difference between model and observations values (M = 100 * abs[[model-obs] / obs])',
         'name': 'EnsoAmpl',
         'units': '%'}},
       'EnsoDuration': {'diagnostic': {'ERA-Interim': {'keyerror': None,
          'name': 'ERA-Interim',
          'nyears': 40,
          'time_period': ['1979-1-16 12:0:0.0', '2019-3-16 12:0:0.0']},
         'HadCM3_r2i1p1': {'keyerror': None,
          'name': 'HadCM3_r2i1p1',
          'nyears': 146,
          'time_period': ['1859-12-16 0:0:0.0', '2005-12-16 0:0:0.0']},
         'HadISST': {'keyerror': None,
          'name': 'HadISST',
          'nyears': 151,
          'time_period': ['1870-1-16 11:59:59.5', '2020-10-16 12:0:0.0']},
         'Tropflux': {'keyerror': None,
          'name': 'Tropflux',
          'nyears': 40,
          'time_period': ['1979-1-15 0:0:0.0', '2018-12-15 12:0:0.0']},
         'method': 'nino3.4 SSTA during DEC regressed against nino3.4 SSTA during 6 years (centered on ENSO), the duration is the number of consecutive months during which the regression is above 0.25, time series are linearly detrended, smoothing using a triangle shaped window of 5 points',
         'name': 'ENSO Duration based on life cyle SSTA pattern',
         'ref': 'Using CDAT',
         'time_frequency': 'monthly',
         'units': 'months'},
        'metric': {'datasets': "HadCM3_r2i1p1; ERA-Interim's ts & HadISST's sst & Tropflux's sst; 's ",
         'method': 'The metric is the absolute value of the relative difference between model and observations values (M = 100 * abs[[model-obs] / obs])',
         'name': 'EnsoDuration',
         'units': '%'}},
       'EnsoSeasonality': {'diagnostic': {'ERA-Interim': {'keyerror': None,
          'name': 'ERA-Interim',
          'nyears': 40,
          'time_period': ['1979-1-16 12:0:0.0', '2019-3-16 12:0:0.0']},
         'HadCM3_r2i1p1': {'keyerror': None,
          'name': 'HadCM3_r2i1p1',
          'nyears': 146,
          'time_period': ['1859-12-16 0:0:0.0', '2005-12-16 0:0:0.0']},
         'HadISST': {'keyerror': None,
          'name': 'HadISST',
          'nyears': 151,
          'time_period': ['1870-1-16 11:59:59.5', '2020-10-16 12:0:0.0']},
         'Tropflux': {'keyerror': None,
          'name': 'Tropflux',
          'nyears': 40,
          'time_period': ['1979-1-15 0:0:0.0', '2018-12-15 12:0:0.0']},
         'method': 'Ratio between NDJ and MAM standard deviation nino3.4 sstA, time series are linearly detrended',
         'name': 'ENSO seasonality',
         'ref': 'Using CDAT std dev calculation',
         'time_frequency': 'monthly',
         'units': 'C/C'},
        'metric': {'datasets': "HadCM3_r2i1p1; ERA-Interim's ts & HadISST's sst & Tropflux's sst; 's ",
         'method': 'The metric is the absolute value of the relative difference between model and observations values (M = 100 * abs[[model-obs] / obs])',
         'name': 'EnsoSeasonality',
         'units': '%'}},
       'EnsoSstDiversity_2': {'diagnostic': {'ERA-Interim': {'keyerror': None,
          'name': 'ERA-Interim',
          'nyears': 40,
          'time_period': ['1979-1-16 12:0:0.0', '2019-3-16 12:0:0.0']},
         'HadCM3_r2i1p1': {'keyerror': None,
          'name': 'HadCM3_r2i1p1',
          'nyears': 146,
          'time_period': ['1859-12-16 0:0:0.0', '2005-12-16 0:0:0.0']},
         'HadISST': {'keyerror': None,
          'name': 'HadISST',
          'nyears': 151,
          'time_period': ['1870-1-16 11:59:59.5', '2020-10-16 12:0:0.0']},
         'Tropflux': {'keyerror': None,
          'name': 'Tropflux',
          'nyears': 40,
          'time_period': ['1979-1-15 0:0:0.0', '2018-12-15 12:0:0.0']},
         'method': 'Nino (Nina) events = nino3.4 sstA > 0.75 (< -0.75) during DEC, zonal SSTA (meridional averaged [-5.0 ; 5.0]), the zonal SSTA maximum (minimum) is located for each event, the diversity is the interquartile range (IQR = Q3 - Q1), time series are linearly detrended, smoothing using a triangle shaped window of 5 points',
         'name': 'ENSO Diversity (interquartile range)',
         'ref': 'Using CDAT regridding',
         'time_frequency': 'monthly',
         'units': 'long'},
        'metric': {'datasets': "HadCM3_r2i1p1; ERA-Interim's ts & HadISST's sst & Tropflux's sst; 's ",
         'method': 'The metric is the absolute value of the relative difference between model and observations values (M = 100 * abs[[model-obs] / obs])',
         'name': 'EnsoSstDiversity',
         'units': '%'}},
       'EnsoSstLonRmse': {'diagnostic': {'ERA-Interim': {'name': 'ERA-Interim',
          'nyears': 40,
          'time_period': ['1979-1-16 12:0:0.0', '2019-3-16 12:0:0.0']},
         'HadCM3_r2i1p1': {'keyerror': None,
          'name': 'HadCM3_r2i1p1',
          'nyears': 146,
          'time_period': ['1859-12-16 0:0:0.0', '2005-12-16 0:0:0.0']},
         'HadISST': {'name': 'HadISST',
          'nyears': 151,
          'time_period': ['1870-1-16 11:59:59.5', '2020-10-16 12:0:0.0']},
         'Tropflux': {'name': 'Tropflux',
          'nyears': 40,
          'time_period': ['1979-1-15 0:0:0.0', '2018-12-15 12:0:0.0']},
         'method': 'nino3.4 SSTA during DEC regressed against equatorial_pacific SSTA, time series are linearly detrended, smoothing using a triangle shaped window of 5 points, observations and model regridded to generic_1x1deg',
         'name': 'ENSO Zonal SSTA pattern',
         'ref': 'Using CDAT regridding and rms (uncentered and biased) calculation',
         'time_frequency': 'monthly',
         'units': 'C/C'},
        'metric': {'datasets': "HadCM3_r2i1p1; ERA-Interim's ts & HadISST's sst & Tropflux's sst; 's ",
         'method': 'The metric is the statistical value between the model and the observations',
         'name': 'EnsoSstLonRmse',
         'units': 'C/C'}},
       'EnsoSstSkew': {'diagnostic': {'ERA-Interim': {'keyerror': None,
          'name': 'ERA-Interim',
          'nyears': 40,
          'time_period': ['1979-1-16 12:0:0.0', '2019-3-16 12:0:0.0']},
         'HadCM3_r2i1p1': {'keyerror': None,
          'name': 'HadCM3_r2i1p1',
          'nyears': 146,
          'time_period': ['1859-12-16 0:0:0.0', '2005-12-16 0:0:0.0']},
         'HadISST': {'keyerror': None,
          'name': 'HadISST',
          'nyears': 151,
          'time_period': ['1870-1-16 11:59:59.5', '2020-10-16 12:0:0.0']},
         'Tropflux': {'keyerror': None,
          'name': 'Tropflux',
          'nyears': 40,
          'time_period': ['1979-1-15 0:0:0.0', '2018-12-15 12:0:0.0']},
         'method': 'Standard deviation of nino3.4 sstA, time series are linearly detrended',
         'name': 'ENSO skewness',
         'ref': 'Using CDAT regression calculation',
         'time_frequency': 'monthly',
         'units': 'C'},
        'metric': {'datasets': "HadCM3_r2i1p1; ERA-Interim's ts & HadISST's sst & Tropflux's sst; 's ",
         'method': 'The metric is the absolute value of the relative difference between model and observations values (M = 100 * abs[[model-obs] / obs])',
         'name': 'EnsoSstSkew',
         'units': '%'}},
       'EnsoSstTsRmse': {'diagnostic': {'ERA-Interim': {'name': 'ERA-Interim',
          'nyears': 40,
          'time_period': ['1979-1-16 12:0:0.0', '2019-3-16 12:0:0.0']},
         'HadCM3_r2i1p1': {'keyerror': None,
          'name': 'HadCM3_r2i1p1',
          'nyears': 146,
          'time_period': ['1859-12-16 0:0:0.0', '2005-12-16 0:0:0.0']},
         'HadISST': {'name': 'HadISST',
          'nyears': 151,
          'time_period': ['1870-1-16 11:59:59.5', '2020-10-16 12:0:0.0']},
         'Tropflux': {'name': 'Tropflux',
          'nyears': 40,
          'time_period': ['1979-1-15 0:0:0.0', '2018-12-15 12:0:0.0']},
         'method': 'nino3.4 SSTA during DEC regressed against nino3.4 SSTA during 6 years (centered on ENSO), time series are linearly detrended, smoothing using a triangle shaped window of 5 points',
         'name': 'ENSO life cyle SSTA pattern',
         'ref': 'Using CDAT regridding and rms (uncentered and biased) calculation',
         'time_frequency': 'monthly',
         'units': 'C/C'},
        'metric': {'datasets': "HadCM3_r2i1p1; ERA-Interim's ts & HadISST's sst & Tropflux's sst; 's ",
         'method': 'The metric is the statistical value between the model and the observations',
         'name': 'EnsoSstTsRmse',
         'units': 'C/C'}},
       'SeasonalPrLatRmse': {'diagnostic': {'ERA-Interim': {'name': 'ERA-Interim',
          'nyears': 40,
          'time_period': ['1979-1-16 12:0:0.0', '2019-3-16 12:0:0.0']},
         'GPCPv2.3': {'name': 'GPCPv2.3',
          'nyears': 41,
          'time_period': ['1979-1-1 0:0:0.0', '2019-7-1 0:0:0.0']},
         'HadCM3_r2i1p1': {'keyerror': None,
          'name': 'HadCM3_r2i1p1',
          'nyears': 146,
          'time_period': ['1859-12-16 0:0:0.0', '2005-12-16 0:0:0.0']},
         'method': 'Meridional root mean square error of nino3_LatExt climatological pr STD, time series are linearly detrended, observations and model regridded to generic_1x1deg',
         'name': 'pr meridional seasonality RMSE',
         'ref': 'Using CDAT regridding and rms (uncentered and biased) calculation',
         'time_frequency': 'monthly',
         'units': 'mm/day'},
        'metric': {'datasets': "HadCM3_r2i1p1; ERA-Interim's pr & GPCPv2.3's precip; 's ",
         'method': 'The metric is the statistical value between the model and the observations',
         'name': 'SeasonalPrLatRmse',
         'units': 'mm/day'}},
       'SeasonalPrLonRmse': {'diagnostic': {'ERA-Interim': {'name': 'ERA-Interim',
          'nyears': 40,
          'time_period': ['1979-1-16 12:0:0.0', '2019-3-16 12:0:0.0']},
         'GPCPv2.3': {'name': 'GPCPv2.3',
          'nyears': 41,
          'time_period': ['1979-1-1 0:0:0.0', '2019-7-1 0:0:0.0']},
         'HadCM3_r2i1p1': {'keyerror': None,
          'name': 'HadCM3_r2i1p1',
          'nyears': 146,
          'time_period': ['1859-12-16 0:0:0.0', '2005-12-16 0:0:0.0']},
         'method': 'Zonal root mean square error of equatorial_pacific climatological pr STD, time series are linearly detrended, observations and model regridded to generic_1x1deg',
         'name': 'pr zonal seasonality RMSE',
         'ref': 'Using CDAT regridding and rms (uncentered and biased) calculation',
         'time_frequency': 'monthly',
         'units': 'mm/day'},
        'metric': {'datasets': "HadCM3_r2i1p1; ERA-Interim's pr & GPCPv2.3's precip; 's ",
         'method': 'The metric is the statistical value between the model and the observations',
         'name': 'SeasonalPrLonRmse',
         'units': 'mm/day'}},
       'SeasonalSstLonRmse': {'diagnostic': {'ERA-Interim': {'name': 'ERA-Interim',
          'nyears': 40,
          'time_period': ['1979-1-16 12:0:0.0', '2019-3-16 12:0:0.0']},
         'HadCM3_r2i1p1': {'keyerror': None,
          'name': 'HadCM3_r2i1p1',
          'nyears': 146,
          'time_period': ['1859-12-16 0:0:0.0', '2005-12-16 0:0:0.0']},
         'HadISST': {'name': 'HadISST',
          'nyears': 151,
          'time_period': ['1870-1-16 11:59:59.5', '2020-10-16 12:0:0.0']},
         'Tropflux': {'name': 'Tropflux',
          'nyears': 40,
          'time_period': ['1979-1-15 0:0:0.0', '2018-12-15 12:0:0.0']},
         'method': 'Zonal root mean square error of equatorial_pacific climatological sst STD, time series are linearly detrended, observations and model regridded to generic_1x1deg',
         'name': 'sst zonal seasonality RMSE',
         'ref': 'Using CDAT regridding and rms (uncentered and biased) calculation',
         'time_frequency': 'monthly',
         'units': 'C'},
        'metric': {'datasets': "HadCM3_r2i1p1; ERA-Interim's ts & HadISST's sst & Tropflux's sst; 's ",
         'method': 'The metric is the statistical value between the model and the observations',
         'name': 'SeasonalSstLonRmse',
         'units': 'C'}},
       'SeasonalTauxLonRmse': {'diagnostic': {'ERA-Interim': {'name': 'ERA-Interim',
          'nyears': 40,
          'time_period': ['1979-1-16 12:0:0.0', '2019-3-16 12:0:0.0']},
         'HadCM3_r2i1p1': {'keyerror': None,
          'name': 'HadCM3_r2i1p1',
          'nyears': 146,
          'time_period': ['1859-12-16 0:0:0.0', '2005-12-16 0:0:0.0']},
         'Tropflux': {'name': 'Tropflux',
          'nyears': 40,
          'time_period': ['1979-1-15 0:0:0.0', '2018-12-15 12:0:0.0']},
         'method': 'Zonal root mean square error of equatorial_pacific climatological taux STD, time series are linearly detrended, observations and model regridded to generic_1x1deg',
         'name': 'taux zonal seasonality RMSE',
         'ref': 'Using CDAT regridding and rms (uncentered and biased) calculation',
         'time_frequency': 'monthly',
         'units': '1e-3 N/m2'},
        'metric': {'datasets': "HadCM3_r2i1p1; ERA-Interim's tauu & Tropflux's taux; 's ",
         'method': 'The metric is the statistical value between the model and the observations',
         'name': 'SeasonalTauxLonRmse',
         'units': '1e-3 N/m2'}}},
      'name': 'Metrics Collection for ENSO performance'},
     'value': {'BiasPrLatRmse': {'diagnostic': {'ERA-Interim': {'value': None,
         'value_error': None},
        'GPCPv2.3': {'value': None, 'value_error': None},
        'HadCM3_r2i1p1': {'value': None, 'value_error': None}},
       'metric': {'ERA-Interim': {'value': 0.6217342934124882,
         'value_error': None},
        'GPCPv2.3': {'value': 1.3476742328740268, 'value_error': None}}},
      'BiasPrLonRmse': {'diagnostic': {'ERA-Interim': {'value': None,
         'value_error': None},
        'GPCPv2.3': {'value': None, 'value_error': None},
        'HadCM3_r2i1p1': {'value': None, 'value_error': None}},
       'metric': {'ERA-Interim': {'value': 2.7471550090403154,
         'value_error': None},
        'GPCPv2.3': {'value': 2.018477199642942, 'value_error': None}}},
      'BiasSstLonRmse': {'diagnostic': {'ERA-Interim': {'value': None,
         'value_error': None},
        'HadCM3_r2i1p1': {'value': None, 'value_error': None},
        'HadISST': {'value': None, 'value_error': None},
        'Tropflux': {'value': None, 'value_error': None}},
       'metric': {'ERA-Interim': {'value': 1.0623412739902156,
         'value_error': None},
        'HadISST': {'value': 0.9751132272041184, 'value_error': None},
        'Tropflux': {'value': 1.0983441693841105, 'value_error': None}}},
      'BiasTauxLonRmse': {'diagnostic': {'ERA-Interim': {'value': None,
         'value_error': None},
        'HadCM3_r2i1p1': {'value': None, 'value_error': None},
        'Tropflux': {'value': None, 'value_error': None}},
       'metric': {'ERA-Interim': {'value': 10.73435754003928,
         'value_error': None},
        'Tropflux': {'value': 10.732295635464192, 'value_error': None}}},
      'EnsoAmpl': {'diagnostic': {'ERA-Interim': {'value': 0.8989844997845644,
         'value_error': 0.14214193002531866},
        'HadCM3_r2i1p1': {'value': 0.85744289857408,
         'value_error': 0.07096247920001915},
        'HadISST': {'value': 0.7665787872085695,
         'value_error': 0.06238329697691264},
        'Tropflux': {'value': 0.9039789553693535,
         'value_error': 0.14293162279134272}},
       'metric': {'ERA-Interim': {'value': 4.62094743796357,
         'value_error': 22.974378913213283},
        'HadISST': {'value': 11.85319929036704,
         'value_error': 18.359520905085308},
        'Tropflux': {'value': 5.147913733927523,
         'value_error': 22.847446184980384}}},
      'EnsoDuration': {'diagnostic': {'ERA-Interim': {'value': 13.0,
         'value_error': None},
        'HadCM3_r2i1p1': {'value': 14.0, 'value_error': None},
        'HadISST': {'value': 13.0, 'value_error': None},
        'Tropflux': {'value': 13.0, 'value_error': None}},
       'metric': {'ERA-Interim': {'value': 7.6923076923076925,
         'value_error': None},
        'HadISST': {'value': 7.6923076923076925, 'value_error': None},
        'Tropflux': {'value': 7.6923076923076925, 'value_error': None}}},
      'EnsoSeasonality': {'diagnostic': {'ERA-Interim': {'value': 2.0466846866656914,
         'value_error': 0.6513411033995022},
        'HadCM3_r2i1p1': {'value': 1.3768086738462197,
         'value_error': 0.22828323358174554},
        'HadISST': {'value': 1.6639865947361325,
         'value_error': 0.2712772451657809},
        'Tropflux': {'value': 2.0532132553583624,
         'value_error': 0.6534187683977347}},
       'metric': {'ERA-Interim': {'value': 32.72981017465785,
         'value_error': 32.56200794343102},
        'HadISST': {'value': 17.258427549739498,
         'value_error': 27.208289619872495},
        'Tropflux': {'value': 32.9437080998235,
         'value_error': 32.45847105797833}}},
      'EnsoSstDiversity_2': {'diagnostic': {'ERA-Interim': {'value': 33.25,
         'value_error': None},
        'HadCM3_r2i1p1': {'value': 29.0, 'value_error': None},
        'HadISST': {'value': 49.0, 'value_error': None},
        'Tropflux': {'value': 32.0, 'value_error': None}},
       'metric': {'ERA-Interim': {'value': 12.781954887218044,
         'value_error': None},
        'HadISST': {'value': 40.816326530612244, 'value_error': None},
        'Tropflux': {'value': 9.375, 'value_error': None}}},
      'EnsoSstLonRmse': {'diagnostic': {'ERA-Interim': {'value': None,
         'value_error': None},
        'HadCM3_r2i1p1': {'value': None, 'value_error': None},
        'HadISST': {'value': None, 'value_error': None},
        'Tropflux': {'value': None, 'value_error': None}},
       'metric': {'ERA-Interim': {'value': 0.25597087452251654,
         'value_error': None},
        'HadISST': {'value': 0.26993796526746444, 'value_error': None},
        'Tropflux': {'value': 0.2555165234986296, 'value_error': None}}},
      'EnsoSstSkew': {'diagnostic': {'ERA-Interim': {'value': 0.39098111106809963,
         'value_error': 0.061819541653923164},
        'HadCM3_r2i1p1': {'value': 0.4917605555590046,
         'value_error': 0.040698393156300416},
        'HadISST': {'value': 0.38989908235027515,
         'value_error': 0.03172953733021198},
        'Tropflux': {'value': 0.39744741059612115,
         'value_error': 0.06284195338099416}},
       'metric': {'ERA-Interim': {'value': 25.776039209564676,
         'value_error': 30.29623701833523},
        'HadISST': {'value': 26.125086674920606,
         'value_error': 20.70210043302109},
        'Tropflux': {'value': 23.729716799871863,
         'value_error': 29.80333018862748}}},
      'EnsoSstTsRmse': {'diagnostic': {'ERA-Interim': {'value': None,
         'value_error': None},
        'HadCM3_r2i1p1': {'value': None, 'value_error': None},
        'HadISST': {'value': None, 'value_error': None},
        'Tropflux': {'value': None, 'value_error': None}},
       'metric': {'ERA-Interim': {'value': 0.09071596931545785,
         'value_error': None},
        'HadISST': {'value': 0.06454118779436058, 'value_error': None},
        'Tropflux': {'value': 0.08911194543606218, 'value_error': None}}},
      'SeasonalPrLatRmse': {'diagnostic': {'ERA-Interim': {'value': None,
         'value_error': None},
        'GPCPv2.3': {'value': None, 'value_error': None},
        'HadCM3_r2i1p1': {'value': None, 'value_error': None}},
       'metric': {'ERA-Interim': {'value': 0.41777234092354026,
         'value_error': None},
        'GPCPv2.3': {'value': 0.5319981677475185, 'value_error': None}}},
      'SeasonalPrLonRmse': {'diagnostic': {'ERA-Interim': {'value': None,
         'value_error': None},
        'GPCPv2.3': {'value': None, 'value_error': None},
        'HadCM3_r2i1p1': {'value': None, 'value_error': None}},
       'metric': {'ERA-Interim': {'value': 0.5820243765955747,
         'value_error': None},
        'GPCPv2.3': {'value': 0.4042062403636551, 'value_error': None}}},
      'SeasonalSstLonRmse': {'diagnostic': {'ERA-Interim': {'value': None,
         'value_error': None},
        'HadCM3_r2i1p1': {'value': None, 'value_error': None},
        'HadISST': {'value': None, 'value_error': None},
        'Tropflux': {'value': None, 'value_error': None}},
       'metric': {'ERA-Interim': {'value': 0.29189264603330517,
         'value_error': None},
        'HadISST': {'value': 0.2977143235588403, 'value_error': None},
        'Tropflux': {'value': 0.29928331889775417, 'value_error': None}}},
      'SeasonalTauxLonRmse': {'diagnostic': {'ERA-Interim': {'value': None,
         'value_error': None},
        'HadCM3_r2i1p1': {'value': None, 'value_error': None},
        'Tropflux': {'value': None, 'value_error': None}},
       'metric': {'ERA-Interim': {'value': 2.450315907185167,
         'value_error': None},
        'Tropflux': {'value': 2.7898851349719327, 'value_error': None}}}}},
    'r3i1p1': {'metadata': {'description_of_the_collection': 'Describe which science question this collection is about',
      'metrics': {'BiasPrLatRmse': {'diagnostic': {'ERA-Interim': {'name': 'ERA-Interim',
          'nyears': 40,
          'time_period': ['1979-1-16 12:0:0.0', '2019-3-16 12:0:0.0']},
         'GPCPv2.3': {'name': 'GPCPv2.3',
          'nyears': 41,
          'time_period': ['1979-1-1 0:0:0.0', '2019-7-1 0:0:0.0']},
         'HadCM3_r3i1p1': {'keyerror': None,
          'name': 'HadCM3_r3i1p1',
          'nyears': 146,
          'time_period': ['1859-12-16 0:0:0.0', '2005-12-16 0:0:0.0']},
         'method': 'Meridional root mean square error of nino3_LatExt pr, time series are linearly detrended, observations and model regridded to generic_1x1deg',
         'name': 'pr Meridional RMSE',
         'ref': 'Using CDAT regridding and rms (uncentered and biased) calculation',
         'time_frequency': 'monthly',
         'units': 'mm/day'},
        'metric': {'datasets': "HadCM3_r3i1p1; ERA-Interim's pr & GPCPv2.3's precip; 's ",
         'method': 'The metric is the statistical value between the model and the observations',
         'name': 'BiasPrLatRmse',
         'units': 'mm/day'}},
       'BiasPrLonRmse': {'diagnostic': {'ERA-Interim': {'name': 'ERA-Interim',
          'nyears': 40,
          'time_period': ['1979-1-16 12:0:0.0', '2019-3-16 12:0:0.0']},
         'GPCPv2.3': {'name': 'GPCPv2.3',
          'nyears': 41,
          'time_period': ['1979-1-1 0:0:0.0', '2019-7-1 0:0:0.0']},
         'HadCM3_r3i1p1': {'keyerror': None,
          'name': 'HadCM3_r3i1p1',
          'nyears': 146,
          'time_period': ['1859-12-16 0:0:0.0', '2005-12-16 0:0:0.0']},
         'method': 'Zonal root mean square error of equatorial_pacific pr, time series are linearly detrended, observations and model regridded to generic_1x1deg',
         'name': 'pr Zonal RMSE',
         'ref': 'Using CDAT regridding and rms (uncentered and biased) calculation',
         'time_frequency': 'monthly',
         'units': 'mm/day'},
        'metric': {'datasets': "HadCM3_r3i1p1; ERA-Interim's pr & GPCPv2.3's precip; 's ",
         'method': 'The metric is the statistical value between the model and the observations',
         'name': 'BiasPrLonRmse',
         'units': 'mm/day'}},
       'BiasSstLonRmse': {'diagnostic': {'ERA-Interim': {'name': 'ERA-Interim',
          'nyears': 40,
          'time_period': ['1979-1-16 12:0:0.0', '2019-3-16 12:0:0.0']},
         'HadCM3_r3i1p1': {'keyerror': None,
          'name': 'HadCM3_r3i1p1',
          'nyears': 146,
          'time_period': ['1859-12-16 0:0:0.0', '2005-12-16 0:0:0.0']},
         'HadISST': {'name': 'HadISST',
          'nyears': 151,
          'time_period': ['1870-1-16 11:59:59.5', '2020-10-16 12:0:0.0']},
         'Tropflux': {'name': 'Tropflux',
          'nyears': 40,
          'time_period': ['1979-1-15 0:0:0.0', '2018-12-15 12:0:0.0']},
         'method': 'Zonal root mean square error of equatorial_pacific sst, time series are linearly detrended, observations and model regridded to generic_1x1deg',
         'name': 'sst Zonal RMSE',
         'ref': 'Using CDAT regridding and rms (uncentered and biased) calculation',
         'time_frequency': 'monthly',
         'units': 'C'},
        'metric': {'datasets': "HadCM3_r3i1p1; ERA-Interim's ts & HadISST's sst & Tropflux's sst; 's ",
         'method': 'The metric is the statistical value between the model and the observations',
         'name': 'BiasSstLonRmse',
         'units': 'C'}},
       'BiasTauxLonRmse': {'diagnostic': {'ERA-Interim': {'name': 'ERA-Interim',
          'nyears': 40,
          'time_period': ['1979-1-16 12:0:0.0', '2019-3-16 12:0:0.0']},
         'HadCM3_r3i1p1': {'keyerror': None,
          'name': 'HadCM3_r3i1p1',
          'nyears': 146,
          'time_period': ['1859-12-16 0:0:0.0', '2005-12-16 0:0:0.0']},
         'Tropflux': {'name': 'Tropflux',
          'nyears': 40,
          'time_period': ['1979-1-15 0:0:0.0', '2018-12-15 12:0:0.0']},
         'method': 'Zonal root mean square error of equatorial_pacific taux, time series are linearly detrended, observations and model regridded to generic_1x1deg',
         'name': 'taux Zonal RMSE',
         'ref': 'Using CDAT regridding and rms (uncentered and biased) calculation',
         'time_frequency': 'monthly',
         'units': '1e-3 N/m2'},
        'metric': {'datasets': "HadCM3_r3i1p1; ERA-Interim's tauu & Tropflux's taux; 's ",
         'method': 'The metric is the statistical value between the model and the observations',
         'name': 'BiasTauxLonRmse',
         'units': '1e-3 N/m2'}},
       'EnsoAmpl': {'diagnostic': {'ERA-Interim': {'keyerror': None,
          'name': 'ERA-Interim',
          'nyears': 40,
          'time_period': ['1979-1-16 12:0:0.0', '2019-3-16 12:0:0.0']},
         'HadCM3_r3i1p1': {'keyerror': None,
          'name': 'HadCM3_r3i1p1',
          'nyears': 146,
          'time_period': ['1859-12-16 0:0:0.0', '2005-12-16 0:0:0.0']},
         'HadISST': {'keyerror': None,
          'name': 'HadISST',
          'nyears': 151,
          'time_period': ['1870-1-16 11:59:59.5', '2020-10-16 12:0:0.0']},
         'Tropflux': {'keyerror': None,
          'name': 'Tropflux',
          'nyears': 40,
          'time_period': ['1979-1-15 0:0:0.0', '2018-12-15 12:0:0.0']},
         'method': 'Standard deviation of nino3.4 sstA, time series are linearly detrended',
         'name': 'ENSO amplitude',
         'ref': 'Using CDAT regression calculation',
         'time_frequency': 'monthly',
         'units': 'C'},
        'metric': {'datasets': "HadCM3_r3i1p1; ERA-Interim's ts & HadISST's sst & Tropflux's sst; 's ",
         'method': 'The metric is the absolute value of the relative difference between model and observations values (M = 100 * abs[[model-obs] / obs])',
         'name': 'EnsoAmpl',
         'units': '%'}},
       'EnsoDuration': {'diagnostic': {'ERA-Interim': {'keyerror': None,
          'name': 'ERA-Interim',
          'nyears': 40,
          'time_period': ['1979-1-16 12:0:0.0', '2019-3-16 12:0:0.0']},
         'HadCM3_r3i1p1': {'keyerror': None,
          'name': 'HadCM3_r3i1p1',
          'nyears': 146,
          'time_period': ['1859-12-16 0:0:0.0', '2005-12-16 0:0:0.0']},
         'HadISST': {'keyerror': None,
          'name': 'HadISST',
          'nyears': 151,
          'time_period': ['1870-1-16 11:59:59.5', '2020-10-16 12:0:0.0']},
         'Tropflux': {'keyerror': None,
          'name': 'Tropflux',
          'nyears': 40,
          'time_period': ['1979-1-15 0:0:0.0', '2018-12-15 12:0:0.0']},
         'method': 'nino3.4 SSTA during DEC regressed against nino3.4 SSTA during 6 years (centered on ENSO), the duration is the number of consecutive months during which the regression is above 0.25, time series are linearly detrended, smoothing using a triangle shaped window of 5 points',
         'name': 'ENSO Duration based on life cyle SSTA pattern',
         'ref': 'Using CDAT',
         'time_frequency': 'monthly',
         'units': 'months'},
        'metric': {'datasets': "HadCM3_r3i1p1; ERA-Interim's ts & HadISST's sst & Tropflux's sst; 's ",
         'method': 'The metric is the absolute value of the relative difference between model and observations values (M = 100 * abs[[model-obs] / obs])',
         'name': 'EnsoDuration',
         'units': '%'}},
       'EnsoSeasonality': {'diagnostic': {'ERA-Interim': {'keyerror': None,
          'name': 'ERA-Interim',
          'nyears': 40,
          'time_period': ['1979-1-16 12:0:0.0', '2019-3-16 12:0:0.0']},
         'HadCM3_r3i1p1': {'keyerror': None,
          'name': 'HadCM3_r3i1p1',
          'nyears': 146,
          'time_period': ['1859-12-16 0:0:0.0', '2005-12-16 0:0:0.0']},
         'HadISST': {'keyerror': None,
          'name': 'HadISST',
          'nyears': 151,
          'time_period': ['1870-1-16 11:59:59.5', '2020-10-16 12:0:0.0']},
         'Tropflux': {'keyerror': None,
          'name': 'Tropflux',
          'nyears': 40,
          'time_period': ['1979-1-15 0:0:0.0', '2018-12-15 12:0:0.0']},
         'method': 'Ratio between NDJ and MAM standard deviation nino3.4 sstA, time series are linearly detrended',
         'name': 'ENSO seasonality',
         'ref': 'Using CDAT std dev calculation',
         'time_frequency': 'monthly',
         'units': 'C/C'},
        'metric': {'datasets': "HadCM3_r3i1p1; ERA-Interim's ts & HadISST's sst & Tropflux's sst; 's ",
         'method': 'The metric is the absolute value of the relative difference between model and observations values (M = 100 * abs[[model-obs] / obs])',
         'name': 'EnsoSeasonality',
         'units': '%'}},
       'EnsoSstDiversity_2': {'diagnostic': {'ERA-Interim': {'keyerror': None,
          'name': 'ERA-Interim',
          'nyears': 40,
          'time_period': ['1979-1-16 12:0:0.0', '2019-3-16 12:0:0.0']},
         'HadCM3_r3i1p1': {'keyerror': None,
          'name': 'HadCM3_r3i1p1',
          'nyears': 146,
          'time_period': ['1859-12-16 0:0:0.0', '2005-12-16 0:0:0.0']},
         'HadISST': {'keyerror': None,
          'name': 'HadISST',
          'nyears': 151,
          'time_period': ['1870-1-16 11:59:59.5', '2020-10-16 12:0:0.0']},
         'Tropflux': {'keyerror': None,
          'name': 'Tropflux',
          'nyears': 40,
          'time_period': ['1979-1-15 0:0:0.0', '2018-12-15 12:0:0.0']},
         'method': 'Nino (Nina) events = nino3.4 sstA > 0.75 (< -0.75) during DEC, zonal SSTA (meridional averaged [-5.0 ; 5.0]), the zonal SSTA maximum (minimum) is located for each event, the diversity is the interquartile range (IQR = Q3 - Q1), time series are linearly detrended, smoothing using a triangle shaped window of 5 points',
         'name': 'ENSO Diversity (interquartile range)',
         'ref': 'Using CDAT regridding',
         'time_frequency': 'monthly',
         'units': 'long'},
        'metric': {'datasets': "HadCM3_r3i1p1; ERA-Interim's ts & HadISST's sst & Tropflux's sst; 's ",
         'method': 'The metric is the absolute value of the relative difference between model and observations values (M = 100 * abs[[model-obs] / obs])',
         'name': 'EnsoSstDiversity',
         'units': '%'}},
       'EnsoSstLonRmse': {'diagnostic': {'ERA-Interim': {'name': 'ERA-Interim',
          'nyears': 40,
          'time_period': ['1979-1-16 12:0:0.0', '2019-3-16 12:0:0.0']},
         'HadCM3_r3i1p1': {'keyerror': None,
          'name': 'HadCM3_r3i1p1',
          'nyears': 146,
          'time_period': ['1859-12-16 0:0:0.0', '2005-12-16 0:0:0.0']},
         'HadISST': {'name': 'HadISST',
          'nyears': 151,
          'time_period': ['1870-1-16 11:59:59.5', '2020-10-16 12:0:0.0']},
         'Tropflux': {'name': 'Tropflux',
          'nyears': 40,
          'time_period': ['1979-1-15 0:0:0.0', '2018-12-15 12:0:0.0']},
         'method': 'nino3.4 SSTA during DEC regressed against equatorial_pacific SSTA, time series are linearly detrended, smoothing using a triangle shaped window of 5 points, observations and model regridded to generic_1x1deg',
         'name': 'ENSO Zonal SSTA pattern',
         'ref': 'Using CDAT regridding and rms (uncentered and biased) calculation',
         'time_frequency': 'monthly',
         'units': 'C/C'},
        'metric': {'datasets': "HadCM3_r3i1p1; ERA-Interim's ts & HadISST's sst & Tropflux's sst; 's ",
         'method': 'The metric is the statistical value between the model and the observations',
         'name': 'EnsoSstLonRmse',
         'units': 'C/C'}},
       'EnsoSstSkew': {'diagnostic': {'ERA-Interim': {'keyerror': None,
          'name': 'ERA-Interim',
          'nyears': 40,
          'time_period': ['1979-1-16 12:0:0.0', '2019-3-16 12:0:0.0']},
         'HadCM3_r3i1p1': {'keyerror': None,
          'name': 'HadCM3_r3i1p1',
          'nyears': 146,
          'time_period': ['1859-12-16 0:0:0.0', '2005-12-16 0:0:0.0']},
         'HadISST': {'keyerror': None,
          'name': 'HadISST',
          'nyears': 151,
          'time_period': ['1870-1-16 11:59:59.5', '2020-10-16 12:0:0.0']},
         'Tropflux': {'keyerror': None,
          'name': 'Tropflux',
          'nyears': 40,
          'time_period': ['1979-1-15 0:0:0.0', '2018-12-15 12:0:0.0']},
         'method': 'Standard deviation of nino3.4 sstA, time series are linearly detrended',
         'name': 'ENSO skewness',
         'ref': 'Using CDAT regression calculation',
         'time_frequency': 'monthly',
         'units': 'C'},
        'metric': {'datasets': "HadCM3_r3i1p1; ERA-Interim's ts & HadISST's sst & Tropflux's sst; 's ",
         'method': 'The metric is the absolute value of the relative difference between model and observations values (M = 100 * abs[[model-obs] / obs])',
         'name': 'EnsoSstSkew',
         'units': '%'}},
       'EnsoSstTsRmse': {'diagnostic': {'ERA-Interim': {'name': 'ERA-Interim',
          'nyears': 40,
          'time_period': ['1979-1-16 12:0:0.0', '2019-3-16 12:0:0.0']},
         'HadCM3_r3i1p1': {'keyerror': None,
          'name': 'HadCM3_r3i1p1',
          'nyears': 146,
          'time_period': ['1859-12-16 0:0:0.0', '2005-12-16 0:0:0.0']},
         'HadISST': {'name': 'HadISST',
          'nyears': 151,
          'time_period': ['1870-1-16 11:59:59.5', '2020-10-16 12:0:0.0']},
         'Tropflux': {'name': 'Tropflux',
          'nyears': 40,
          'time_period': ['1979-1-15 0:0:0.0', '2018-12-15 12:0:0.0']},
         'method': 'nino3.4 SSTA during DEC regressed against nino3.4 SSTA during 6 years (centered on ENSO), time series are linearly detrended, smoothing using a triangle shaped window of 5 points',
         'name': 'ENSO life cyle SSTA pattern',
         'ref': 'Using CDAT regridding and rms (uncentered and biased) calculation',
         'time_frequency': 'monthly',
         'units': 'C/C'},
        'metric': {'datasets': "HadCM3_r3i1p1; ERA-Interim's ts & HadISST's sst & Tropflux's sst; 's ",
         'method': 'The metric is the statistical value between the model and the observations',
         'name': 'EnsoSstTsRmse',
         'units': 'C/C'}},
       'SeasonalPrLatRmse': {'diagnostic': {'ERA-Interim': {'name': 'ERA-Interim',
          'nyears': 40,
          'time_period': ['1979-1-16 12:0:0.0', '2019-3-16 12:0:0.0']},
         'GPCPv2.3': {'name': 'GPCPv2.3',
          'nyears': 41,
          'time_period': ['1979-1-1 0:0:0.0', '2019-7-1 0:0:0.0']},
         'HadCM3_r3i1p1': {'keyerror': None,
          'name': 'HadCM3_r3i1p1',
          'nyears': 146,
          'time_period': ['1859-12-16 0:0:0.0', '2005-12-16 0:0:0.0']},
         'method': 'Meridional root mean square error of nino3_LatExt climatological pr STD, time series are linearly detrended, observations and model regridded to generic_1x1deg',
         'name': 'pr meridional seasonality RMSE',
         'ref': 'Using CDAT regridding and rms (uncentered and biased) calculation',
         'time_frequency': 'monthly',
         'units': 'mm/day'},
        'metric': {'datasets': "HadCM3_r3i1p1; ERA-Interim's pr & GPCPv2.3's precip; 's ",
         'method': 'The metric is the statistical value between the model and the observations',
         'name': 'SeasonalPrLatRmse',
         'units': 'mm/day'}},
       'SeasonalPrLonRmse': {'diagnostic': {'ERA-Interim': {'name': 'ERA-Interim',
          'nyears': 40,
          'time_period': ['1979-1-16 12:0:0.0', '2019-3-16 12:0:0.0']},
         'GPCPv2.3': {'name': 'GPCPv2.3',
          'nyears': 41,
          'time_period': ['1979-1-1 0:0:0.0', '2019-7-1 0:0:0.0']},
         'HadCM3_r3i1p1': {'keyerror': None,
          'name': 'HadCM3_r3i1p1',
          'nyears': 146,
          'time_period': ['1859-12-16 0:0:0.0', '2005-12-16 0:0:0.0']},
         'method': 'Zonal root mean square error of equatorial_pacific climatological pr STD, time series are linearly detrended, observations and model regridded to generic_1x1deg',
         'name': 'pr zonal seasonality RMSE',
         'ref': 'Using CDAT regridding and rms (uncentered and biased) calculation',
         'time_frequency': 'monthly',
         'units': 'mm/day'},
        'metric': {'datasets': "HadCM3_r3i1p1; ERA-Interim's pr & GPCPv2.3's precip; 's ",
         'method': 'The metric is the statistical value between the model and the observations',
         'name': 'SeasonalPrLonRmse',
         'units': 'mm/day'}},
       'SeasonalSstLonRmse': {'diagnostic': {'ERA-Interim': {'name': 'ERA-Interim',
          'nyears': 40,
          'time_period': ['1979-1-16 12:0:0.0', '2019-3-16 12:0:0.0']},
         'HadCM3_r3i1p1': {'keyerror': None,
          'name': 'HadCM3_r3i1p1',
          'nyears': 146,
          'time_period': ['1859-12-16 0:0:0.0', '2005-12-16 0:0:0.0']},
         'HadISST': {'name': 'HadISST',
          'nyears': 151,
          'time_period': ['1870-1-16 11:59:59.5', '2020-10-16 12:0:0.0']},
         'Tropflux': {'name': 'Tropflux',
          'nyears': 40,
          'time_period': ['1979-1-15 0:0:0.0', '2018-12-15 12:0:0.0']},
         'method': 'Zonal root mean square error of equatorial_pacific climatological sst STD, time series are linearly detrended, observations and model regridded to generic_1x1deg',
         'name': 'sst zonal seasonality RMSE',
         'ref': 'Using CDAT regridding and rms (uncentered and biased) calculation',
         'time_frequency': 'monthly',
         'units': 'C'},
        'metric': {'datasets': "HadCM3_r3i1p1; ERA-Interim's ts & HadISST's sst & Tropflux's sst; 's ",
         'method': 'The metric is the statistical value between the model and the observations',
         'name': 'SeasonalSstLonRmse',
         'units': 'C'}},
       'SeasonalTauxLonRmse': {'diagnostic': {'ERA-Interim': {'name': 'ERA-Interim',
          'nyears': 40,
          'time_period': ['1979-1-16 12:0:0.0', '2019-3-16 12:0:0.0']},
         'HadCM3_r3i1p1': {'keyerror': None,
          'name': 'HadCM3_r3i1p1',
          'nyears': 146,
          'time_period': ['1859-12-16 0:0:0.0', '2005-12-16 0:0:0.0']},
         'Tropflux': {'name': 'Tropflux',
          'nyears': 40,
          'time_period': ['1979-1-15 0:0:0.0', '2018-12-15 12:0:0.0']},
         'method': 'Zonal root mean square error of equatorial_pacific climatological taux STD, time series are linearly detrended, observations and model regridded to generic_1x1deg',
         'name': 'taux zonal seasonality RMSE',
         'ref': 'Using CDAT regridding and rms (uncentered and biased) calculation',
         'time_frequency': 'monthly',
         'units': '1e-3 N/m2'},
        'metric': {'datasets': "HadCM3_r3i1p1; ERA-Interim's tauu & Tropflux's taux; 's ",
         'method': 'The metric is the statistical value between the model and the observations',
         'name': 'SeasonalTauxLonRmse',
         'units': '1e-3 N/m2'}}},
      'name': 'Metrics Collection for ENSO performance'},
     'value': {'BiasPrLatRmse': {'diagnostic': {'ERA-Interim': {'value': None,
         'value_error': None},
        'GPCPv2.3': {'value': None, 'value_error': None},
        'HadCM3_r3i1p1': {'value': None, 'value_error': None}},
       'metric': {'ERA-Interim': {'value': 0.6176774323043652,
         'value_error': None},
        'GPCPv2.3': {'value': 1.3197332959185548, 'value_error': None}}},
      'BiasPrLonRmse': {'diagnostic': {'ERA-Interim': {'value': None,
         'value_error': None},
        'GPCPv2.3': {'value': None, 'value_error': None},
        'HadCM3_r3i1p1': {'value': None, 'value_error': None}},
       'metric': {'ERA-Interim': {'value': 2.810017525751351,
         'value_error': None},
        'GPCPv2.3': {'value': 2.0780089285014736, 'value_error': None}}},
      'BiasSstLonRmse': {'diagnostic': {'ERA-Interim': {'value': None,
         'value_error': None},
        'HadCM3_r3i1p1': {'value': None, 'value_error': None},
        'HadISST': {'value': None, 'value_error': None},
        'Tropflux': {'value': None, 'value_error': None}},
       'metric': {'ERA-Interim': {'value': 1.064311190035183,
         'value_error': None},
        'HadISST': {'value': 0.9711107507903284, 'value_error': None},
        'Tropflux': {'value': 1.1011927451622523, 'value_error': None}}},
      'BiasTauxLonRmse': {'diagnostic': {'ERA-Interim': {'value': None,
         'value_error': None},
        'HadCM3_r3i1p1': {'value': None, 'value_error': None},
        'Tropflux': {'value': None, 'value_error': None}},
       'metric': {'ERA-Interim': {'value': 10.416207620972541,
         'value_error': None},
        'Tropflux': {'value': 10.43052360892823, 'value_error': None}}},
      'EnsoAmpl': {'diagnostic': {'ERA-Interim': {'value': 0.8989844997845644,
         'value_error': 0.14214193002531866},
        'HadCM3_r3i1p1': {'value': 0.7499899119165737,
         'value_error': 0.06206960674945276},
        'HadISST': {'value': 0.7665787872085695,
         'value_error': 0.06238329697691264},
        'Tropflux': {'value': 0.9039789553693535,
         'value_error': 0.14293162279134272}},
       'metric': {'ERA-Interim': {'value': 16.573654818708913,
         'value_error': 20.095276835475666},
        'HadISST': {'value': 2.164014393406681,
         'value_error': 16.058743374438006},
        'Tropflux': {'value': 17.034582778518548,
         'value_error': 19.98425105658702}}},
      'EnsoDuration': {'diagnostic': {'ERA-Interim': {'value': 13.0,
         'value_error': None},
        'HadCM3_r3i1p1': {'value': 13.0, 'value_error': None},
        'HadISST': {'value': 13.0, 'value_error': None},
        'Tropflux': {'value': 13.0, 'value_error': None}},
       'metric': {'ERA-Interim': {'value': 0.0, 'value_error': None},
        'HadISST': {'value': 0.0, 'value_error': None},
        'Tropflux': {'value': 0.0, 'value_error': None}}},
      'EnsoSeasonality': {'diagnostic': {'ERA-Interim': {'value': 2.0466846866656914,
         'value_error': 0.6513411033995022},
        'HadCM3_r3i1p1': {'value': 1.3808450075463459,
         'value_error': 0.2289524822045812},
        'HadISST': {'value': 1.6639865947361325,
         'value_error': 0.2712772451657809},
        'Tropflux': {'value': 2.0532132553583624,
         'value_error': 0.6534187683977347}},
       'metric': {'ERA-Interim': {'value': 32.53259690939901,
         'value_error': 32.657468650864466},
        'HadISST': {'value': 17.01585746456605,
         'value_error': 27.288055050176396},
        'Tropflux': {'value': 32.747121910366936,
         'value_error': 32.55362823055765}}},
      'EnsoSstDiversity_2': {'diagnostic': {'ERA-Interim': {'value': 33.25,
         'value_error': None},
        'HadCM3_r3i1p1': {'value': 27.0, 'value_error': None},
        'HadISST': {'value': 49.0, 'value_error': None},
        'Tropflux': {'value': 32.0, 'value_error': None}},
       'metric': {'ERA-Interim': {'value': 18.796992481203006,
         'value_error': None},
        'HadISST': {'value': 44.89795918367347, 'value_error': None},
        'Tropflux': {'value': 15.625, 'value_error': None}}},
      'EnsoSstLonRmse': {'diagnostic': {'ERA-Interim': {'value': None,
         'value_error': None},
        'HadCM3_r3i1p1': {'value': None, 'value_error': None},
        'HadISST': {'value': None, 'value_error': None},
        'Tropflux': {'value': None, 'value_error': None}},
       'metric': {'ERA-Interim': {'value': 0.2530586135964928,
         'value_error': None},
        'HadISST': {'value': 0.26728593272680734, 'value_error': None},
        'Tropflux': {'value': 0.2527399833029206, 'value_error': None}}},
      'EnsoSstSkew': {'diagnostic': {'ERA-Interim': {'value': 0.39098111106809963,
         'value_error': 0.061819541653923164},
        'HadCM3_r3i1p1': {'value': -0.026528735379019737,
         'value_error': -0.0021955337616850704},
        'HadISST': {'value': 0.38989908235027515,
         'value_error': 0.03172953733021198},
        'Tropflux': {'value': 0.39744741059612115,
         'value_error': 0.06284195338099416}},
       'metric': {'ERA-Interim': {'value': 106.7851705946989,
         'value_error': -1.6343743835368272},
        'HadISST': {'value': 106.8040004657377,
         'value_error': -1.1168047903988696},
        'Tropflux': {'value': 106.67477876865017,
         'value_error': -1.6077838107387241}}},
      'EnsoSstTsRmse': {'diagnostic': {'ERA-Interim': {'value': None,
         'value_error': None},
        'HadCM3_r3i1p1': {'value': None, 'value_error': None},
        'HadISST': {'value': None, 'value_error': None},
        'Tropflux': {'value': None, 'value_error': None}},
       'metric': {'ERA-Interim': {'value': 0.1266611450708587,
         'value_error': None},
        'HadISST': {'value': 0.10639201535332796, 'value_error': None},
        'Tropflux': {'value': 0.12702187775863794, 'value_error': None}}},
      'SeasonalPrLatRmse': {'diagnostic': {'ERA-Interim': {'value': None,
         'value_error': None},
        'GPCPv2.3': {'value': None, 'value_error': None},
        'HadCM3_r3i1p1': {'value': None, 'value_error': None}},
       'metric': {'ERA-Interim': {'value': 0.4473429384788433,
         'value_error': None},
        'GPCPv2.3': {'value': 0.5432053011822907, 'value_error': None}}},
      'SeasonalPrLonRmse': {'diagnostic': {'ERA-Interim': {'value': None,
         'value_error': None},
        'GPCPv2.3': {'value': None, 'value_error': None},
        'HadCM3_r3i1p1': {'value': None, 'value_error': None}},
       'metric': {'ERA-Interim': {'value': 0.5920146784986211,
         'value_error': None},
        'GPCPv2.3': {'value': 0.4160529241274529, 'value_error': None}}},
      'SeasonalSstLonRmse': {'diagnostic': {'ERA-Interim': {'value': None,
         'value_error': None},
        'HadCM3_r3i1p1': {'value': None, 'value_error': None},
        'HadISST': {'value': None, 'value_error': None},
        'Tropflux': {'value': None, 'value_error': None}},
       'metric': {'ERA-Interim': {'value': 0.3008505993669579,
         'value_error': None},
        'HadISST': {'value': 0.30694246884007964, 'value_error': None},
        'Tropflux': {'value': 0.30825521196123873, 'value_error': None}}},
      'SeasonalTauxLonRmse': {'diagnostic': {'ERA-Interim': {'value': None,
         'value_error': None},
        'HadCM3_r3i1p1': {'value': None, 'value_error': None},
        'Tropflux': {'value': None, 'value_error': None}},
       'metric': {'ERA-Interim': {'value': 2.491801871834863,
         'value_error': None},
        'Tropflux': {'value': 2.8353448037938986, 'value_error': None}}}}},
    'r4i1p1': {'metadata': {'description_of_the_collection': 'Describe which science question this collection is about',
      'metrics': {'BiasPrLatRmse': {'diagnostic': {'ERA-Interim': {'name': 'ERA-Interim',
          'nyears': 40,
          'time_period': ['1979-1-16 12:0:0.0', '2019-3-16 12:0:0.0']},
         'GPCPv2.3': {'name': 'GPCPv2.3',
          'nyears': 41,
          'time_period': ['1979-1-1 0:0:0.0', '2019-7-1 0:0:0.0']},
         'HadCM3_r4i1p1': {'keyerror': None,
          'name': 'HadCM3_r4i1p1',
          'nyears': 146,
          'time_period': ['1859-12-16 0:0:0.0', '2005-12-16 0:0:0.0']},
         'method': 'Meridional root mean square error of nino3_LatExt pr, time series are linearly detrended, observations and model regridded to generic_1x1deg',
         'name': 'pr Meridional RMSE',
         'ref': 'Using CDAT regridding and rms (uncentered and biased) calculation',
         'time_frequency': 'monthly',
         'units': 'mm/day'},
        'metric': {'datasets': "HadCM3_r4i1p1; ERA-Interim's pr & GPCPv2.3's precip; 's ",
         'method': 'The metric is the statistical value between the model and the observations',
         'name': 'BiasPrLatRmse',
         'units': 'mm/day'}},
       'BiasPrLonRmse': {'diagnostic': {'ERA-Interim': {'name': 'ERA-Interim',
          'nyears': 40,
          'time_period': ['1979-1-16 12:0:0.0', '2019-3-16 12:0:0.0']},
         'GPCPv2.3': {'name': 'GPCPv2.3',
          'nyears': 41,
          'time_period': ['1979-1-1 0:0:0.0', '2019-7-1 0:0:0.0']},
         'HadCM3_r4i1p1': {'keyerror': None,
          'name': 'HadCM3_r4i1p1',
          'nyears': 146,
          'time_period': ['1859-12-16 0:0:0.0', '2005-12-16 0:0:0.0']},
         'method': 'Zonal root mean square error of equatorial_pacific pr, time series are linearly detrended, observations and model regridded to generic_1x1deg',
         'name': 'pr Zonal RMSE',
         'ref': 'Using CDAT regridding and rms (uncentered and biased) calculation',
         'time_frequency': 'monthly',
         'units': 'mm/day'},
        'metric': {'datasets': "HadCM3_r4i1p1; ERA-Interim's pr & GPCPv2.3's precip; 's ",
         'method': 'The metric is the statistical value between the model and the observations',
         'name': 'BiasPrLonRmse',
         'units': 'mm/day'}},
       'BiasSstLonRmse': {'diagnostic': {'ERA-Interim': {'name': 'ERA-Interim',
          'nyears': 40,
          'time_period': ['1979-1-16 12:0:0.0', '2019-3-16 12:0:0.0']},
         'HadCM3_r4i1p1': {'keyerror': None,
          'name': 'HadCM3_r4i1p1',
          'nyears': 146,
          'time_period': ['1859-12-16 0:0:0.0', '2005-12-16 0:0:0.0']},
         'HadISST': {'name': 'HadISST',
          'nyears': 151,
          'time_period': ['1870-1-16 11:59:59.5', '2020-10-16 12:0:0.0']},
         'Tropflux': {'name': 'Tropflux',
          'nyears': 40,
          'time_period': ['1979-1-15 0:0:0.0', '2018-12-15 12:0:0.0']},
         'method': 'Zonal root mean square error of equatorial_pacific sst, time series are linearly detrended, observations and model regridded to generic_1x1deg',
         'name': 'sst Zonal RMSE',
         'ref': 'Using CDAT regridding and rms (uncentered and biased) calculation',
         'time_frequency': 'monthly',
         'units': 'C'},
        'metric': {'datasets': "HadCM3_r4i1p1; ERA-Interim's ts & HadISST's sst & Tropflux's sst; 's ",
         'method': 'The metric is the statistical value between the model and the observations',
         'name': 'BiasSstLonRmse',
         'units': 'C'}},
       'BiasTauxLonRmse': {'diagnostic': {'ERA-Interim': {'name': 'ERA-Interim',
          'nyears': 40,
          'time_period': ['1979-1-16 12:0:0.0', '2019-3-16 12:0:0.0']},
         'HadCM3_r4i1p1': {'keyerror': None,
          'name': 'HadCM3_r4i1p1',
          'nyears': 146,
          'time_period': ['1859-12-16 0:0:0.0', '2005-12-16 0:0:0.0']},
         'Tropflux': {'name': 'Tropflux',
          'nyears': 40,
          'time_period': ['1979-1-15 0:0:0.0', '2018-12-15 12:0:0.0']},
         'method': 'Zonal root mean square error of equatorial_pacific taux, time series are linearly detrended, observations and model regridded to generic_1x1deg',
         'name': 'taux Zonal RMSE',
         'ref': 'Using CDAT regridding and rms (uncentered and biased) calculation',
         'time_frequency': 'monthly',
         'units': '1e-3 N/m2'},
        'metric': {'datasets': "HadCM3_r4i1p1; ERA-Interim's tauu & Tropflux's taux; 's ",
         'method': 'The metric is the statistical value between the model and the observations',
         'name': 'BiasTauxLonRmse',
         'units': '1e-3 N/m2'}},
       'EnsoAmpl': {'diagnostic': {'ERA-Interim': {'keyerror': None,
          'name': 'ERA-Interim',
          'nyears': 40,
          'time_period': ['1979-1-16 12:0:0.0', '2019-3-16 12:0:0.0']},
         'HadCM3_r4i1p1': {'keyerror': None,
          'name': 'HadCM3_r4i1p1',
          'nyears': 146,
          'time_period': ['1859-12-16 0:0:0.0', '2005-12-16 0:0:0.0']},
         'HadISST': {'keyerror': None,
          'name': 'HadISST',
          'nyears': 151,
          'time_period': ['1870-1-16 11:59:59.5', '2020-10-16 12:0:0.0']},
         'Tropflux': {'keyerror': None,
          'name': 'Tropflux',
          'nyears': 40,
          'time_period': ['1979-1-15 0:0:0.0', '2018-12-15 12:0:0.0']},
         'method': 'Standard deviation of nino3.4 sstA, time series are linearly detrended',
         'name': 'ENSO amplitude',
         'ref': 'Using CDAT regression calculation',
         'time_frequency': 'monthly',
         'units': 'C'},
        'metric': {'datasets': "HadCM3_r4i1p1; ERA-Interim's ts & HadISST's sst & Tropflux's sst; 's ",
         'method': 'The metric is the absolute value of the relative difference between model and observations values (M = 100 * abs[[model-obs] / obs])',
         'name': 'EnsoAmpl',
         'units': '%'}},
       'EnsoDuration': {'diagnostic': {'ERA-Interim': {'keyerror': None,
          'name': 'ERA-Interim',
          'nyears': 40,
          'time_period': ['1979-1-16 12:0:0.0', '2019-3-16 12:0:0.0']},
         'HadCM3_r4i1p1': {'keyerror': None,
          'name': 'HadCM3_r4i1p1',
          'nyears': 146,
          'time_period': ['1859-12-16 0:0:0.0', '2005-12-16 0:0:0.0']},
         'HadISST': {'keyerror': None,
          'name': 'HadISST',
          'nyears': 151,
          'time_period': ['1870-1-16 11:59:59.5', '2020-10-16 12:0:0.0']},
         'Tropflux': {'keyerror': None,
          'name': 'Tropflux',
          'nyears': 40,
          'time_period': ['1979-1-15 0:0:0.0', '2018-12-15 12:0:0.0']},
         'method': 'nino3.4 SSTA during DEC regressed against nino3.4 SSTA during 6 years (centered on ENSO), the duration is the number of consecutive months during which the regression is above 0.25, time series are linearly detrended, smoothing using a triangle shaped window of 5 points',
         'name': 'ENSO Duration based on life cyle SSTA pattern',
         'ref': 'Using CDAT',
         'time_frequency': 'monthly',
         'units': 'months'},
        'metric': {'datasets': "HadCM3_r4i1p1; ERA-Interim's ts & HadISST's sst & Tropflux's sst; 's ",
         'method': 'The metric is the absolute value of the relative difference between model and observations values (M = 100 * abs[[model-obs] / obs])',
         'name': 'EnsoDuration',
         'units': '%'}},
       'EnsoSeasonality': {'diagnostic': {'ERA-Interim': {'keyerror': None,
          'name': 'ERA-Interim',
          'nyears': 40,
          'time_period': ['1979-1-16 12:0:0.0', '2019-3-16 12:0:0.0']},
         'HadCM3_r4i1p1': {'keyerror': None,
          'name': 'HadCM3_r4i1p1',
          'nyears': 146,
          'time_period': ['1859-12-16 0:0:0.0', '2005-12-16 0:0:0.0']},
         'HadISST': {'keyerror': None,
          'name': 'HadISST',
          'nyears': 151,
          'time_period': ['1870-1-16 11:59:59.5', '2020-10-16 12:0:0.0']},
         'Tropflux': {'keyerror': None,
          'name': 'Tropflux',
          'nyears': 40,
          'time_period': ['1979-1-15 0:0:0.0', '2018-12-15 12:0:0.0']},
         'method': 'Ratio between NDJ and MAM standard deviation nino3.4 sstA, time series are linearly detrended',
         'name': 'ENSO seasonality',
         'ref': 'Using CDAT std dev calculation',
         'time_frequency': 'monthly',
         'units': 'C/C'},
        'metric': {'datasets': "HadCM3_r4i1p1; ERA-Interim's ts & HadISST's sst & Tropflux's sst; 's ",
         'method': 'The metric is the absolute value of the relative difference between model and observations values (M = 100 * abs[[model-obs] / obs])',
         'name': 'EnsoSeasonality',
         'units': '%'}},
       'EnsoSstDiversity_2': {'diagnostic': {'ERA-Interim': {'keyerror': None,
          'name': 'ERA-Interim',
          'nyears': 40,
          'time_period': ['1979-1-16 12:0:0.0', '2019-3-16 12:0:0.0']},
         'HadCM3_r4i1p1': {'keyerror': None,
          'name': 'HadCM3_r4i1p1',
          'nyears': 146,
          'time_period': ['1859-12-16 0:0:0.0', '2005-12-16 0:0:0.0']},
         'HadISST': {'keyerror': None,
          'name': 'HadISST',
          'nyears': 151,
          'time_period': ['1870-1-16 11:59:59.5', '2020-10-16 12:0:0.0']},
         'Tropflux': {'keyerror': None,
          'name': 'Tropflux',
          'nyears': 40,
          'time_period': ['1979-1-15 0:0:0.0', '2018-12-15 12:0:0.0']},
         'method': 'Nino (Nina) events = nino3.4 sstA > 0.75 (< -0.75) during DEC, zonal SSTA (meridional averaged [-5.0 ; 5.0]), the zonal SSTA maximum (minimum) is located for each event, the diversity is the interquartile range (IQR = Q3 - Q1), time series are linearly detrended, smoothing using a triangle shaped window of 5 points',
         'name': 'ENSO Diversity (interquartile range)',
         'ref': 'Using CDAT regridding',
         'time_frequency': 'monthly',
         'units': 'long'},
        'metric': {'datasets': "HadCM3_r4i1p1; ERA-Interim's ts & HadISST's sst & Tropflux's sst; 's ",
         'method': 'The metric is the absolute value of the relative difference between model and observations values (M = 100 * abs[[model-obs] / obs])',
         'name': 'EnsoSstDiversity',
         'units': '%'}},
       'EnsoSstLonRmse': {'diagnostic': {'ERA-Interim': {'name': 'ERA-Interim',
          'nyears': 40,
          'time_period': ['1979-1-16 12:0:0.0', '2019-3-16 12:0:0.0']},
         'HadCM3_r4i1p1': {'keyerror': None,
          'name': 'HadCM3_r4i1p1',
          'nyears': 146,
          'time_period': ['1859-12-16 0:0:0.0', '2005-12-16 0:0:0.0']},
         'HadISST': {'name': 'HadISST',
          'nyears': 151,
          'time_period': ['1870-1-16 11:59:59.5', '2020-10-16 12:0:0.0']},
         'Tropflux': {'name': 'Tropflux',
          'nyears': 40,
          'time_period': ['1979-1-15 0:0:0.0', '2018-12-15 12:0:0.0']},
         'method': 'nino3.4 SSTA during DEC regressed against equatorial_pacific SSTA, time series are linearly detrended, smoothing using a triangle shaped window of 5 points, observations and model regridded to generic_1x1deg',
         'name': 'ENSO Zonal SSTA pattern',
         'ref': 'Using CDAT regridding and rms (uncentered and biased) calculation',
         'time_frequency': 'monthly',
         'units': 'C/C'},
        'metric': {'datasets': "HadCM3_r4i1p1; ERA-Interim's ts & HadISST's sst & Tropflux's sst; 's ",
         'method': 'The metric is the statistical value between the model and the observations',
         'name': 'EnsoSstLonRmse',
         'units': 'C/C'}},
       'EnsoSstSkew': {'diagnostic': {'ERA-Interim': {'keyerror': None,
          'name': 'ERA-Interim',
          'nyears': 40,
          'time_period': ['1979-1-16 12:0:0.0', '2019-3-16 12:0:0.0']},
         'HadCM3_r4i1p1': {'keyerror': None,
          'name': 'HadCM3_r4i1p1',
          'nyears': 146,
          'time_period': ['1859-12-16 0:0:0.0', '2005-12-16 0:0:0.0']},
         'HadISST': {'keyerror': None,
          'name': 'HadISST',
          'nyears': 151,
          'time_period': ['1870-1-16 11:59:59.5', '2020-10-16 12:0:0.0']},
         'Tropflux': {'keyerror': None,
          'name': 'Tropflux',
          'nyears': 40,
          'time_period': ['1979-1-15 0:0:0.0', '2018-12-15 12:0:0.0']},
         'method': 'Standard deviation of nino3.4 sstA, time series are linearly detrended',
         'name': 'ENSO skewness',
         'ref': 'Using CDAT regression calculation',
         'time_frequency': 'monthly',
         'units': 'C'},
        'metric': {'datasets': "HadCM3_r4i1p1; ERA-Interim's ts & HadISST's sst & Tropflux's sst; 's ",
         'method': 'The metric is the absolute value of the relative difference between model and observations values (M = 100 * abs[[model-obs] / obs])',
         'name': 'EnsoSstSkew',
         'units': '%'}},
       'EnsoSstTsRmse': {'diagnostic': {'ERA-Interim': {'name': 'ERA-Interim',
          'nyears': 40,
          'time_period': ['1979-1-16 12:0:0.0', '2019-3-16 12:0:0.0']},
         'HadCM3_r4i1p1': {'keyerror': None,
          'name': 'HadCM3_r4i1p1',
          'nyears': 146,
          'time_period': ['1859-12-16 0:0:0.0', '2005-12-16 0:0:0.0']},
         'HadISST': {'name': 'HadISST',
          'nyears': 151,
          'time_period': ['1870-1-16 11:59:59.5', '2020-10-16 12:0:0.0']},
         'Tropflux': {'name': 'Tropflux',
          'nyears': 40,
          'time_period': ['1979-1-15 0:0:0.0', '2018-12-15 12:0:0.0']},
         'method': 'nino3.4 SSTA during DEC regressed against nino3.4 SSTA during 6 years (centered on ENSO), time series are linearly detrended, smoothing using a triangle shaped window of 5 points',
         'name': 'ENSO life cyle SSTA pattern',
         'ref': 'Using CDAT regridding and rms (uncentered and biased) calculation',
         'time_frequency': 'monthly',
         'units': 'C/C'},
        'metric': {'datasets': "HadCM3_r4i1p1; ERA-Interim's ts & HadISST's sst & Tropflux's sst; 's ",
         'method': 'The metric is the statistical value between the model and the observations',
         'name': 'EnsoSstTsRmse',
         'units': 'C/C'}},
       'SeasonalPrLatRmse': {'diagnostic': {'ERA-Interim': {'name': 'ERA-Interim',
          'nyears': 40,
          'time_period': ['1979-1-16 12:0:0.0', '2019-3-16 12:0:0.0']},
         'GPCPv2.3': {'name': 'GPCPv2.3',
          'nyears': 41,
          'time_period': ['1979-1-1 0:0:0.0', '2019-7-1 0:0:0.0']},
         'HadCM3_r4i1p1': {'keyerror': None,
          'name': 'HadCM3_r4i1p1',
          'nyears': 146,
          'time_period': ['1859-12-16 0:0:0.0', '2005-12-16 0:0:0.0']},
         'method': 'Meridional root mean square error of nino3_LatExt climatological pr STD, time series are linearly detrended, observations and model regridded to generic_1x1deg',
         'name': 'pr meridional seasonality RMSE',
         'ref': 'Using CDAT regridding and rms (uncentered and biased) calculation',
         'time_frequency': 'monthly',
         'units': 'mm/day'},
        'metric': {'datasets': "HadCM3_r4i1p1; ERA-Interim's pr & GPCPv2.3's precip; 's ",
         'method': 'The metric is the statistical value between the model and the observations',
         'name': 'SeasonalPrLatRmse',
         'units': 'mm/day'}},
       'SeasonalPrLonRmse': {'diagnostic': {'ERA-Interim': {'name': 'ERA-Interim',
          'nyears': 40,
          'time_period': ['1979-1-16 12:0:0.0', '2019-3-16 12:0:0.0']},
         'GPCPv2.3': {'name': 'GPCPv2.3',
          'nyears': 41,
          'time_period': ['1979-1-1 0:0:0.0', '2019-7-1 0:0:0.0']},
         'HadCM3_r4i1p1': {'keyerror': None,
          'name': 'HadCM3_r4i1p1',
          'nyears': 146,
          'time_period': ['1859-12-16 0:0:0.0', '2005-12-16 0:0:0.0']},
         'method': 'Zonal root mean square error of equatorial_pacific climatological pr STD, time series are linearly detrended, observations and model regridded to generic_1x1deg',
         'name': 'pr zonal seasonality RMSE',
         'ref': 'Using CDAT regridding and rms (uncentered and biased) calculation',
         'time_frequency': 'monthly',
         'units': 'mm/day'},
        'metric': {'datasets': "HadCM3_r4i1p1; ERA-Interim's pr & GPCPv2.3's precip; 's ",
         'method': 'The metric is the statistical value between the model and the observations',
         'name': 'SeasonalPrLonRmse',
         'units': 'mm/day'}},
       'SeasonalSstLonRmse': {'diagnostic': {'ERA-Interim': {'name': 'ERA-Interim',
          'nyears': 40,
          'time_period': ['1979-1-16 12:0:0.0', '2019-3-16 12:0:0.0']},
         'HadCM3_r4i1p1': {'keyerror': None,
          'name': 'HadCM3_r4i1p1',
          'nyears': 146,
          'time_period': ['1859-12-16 0:0:0.0', '2005-12-16 0:0:0.0']},
         'HadISST': {'name': 'HadISST',
          'nyears': 151,
          'time_period': ['1870-1-16 11:59:59.5', '2020-10-16 12:0:0.0']},
         'Tropflux': {'name': 'Tropflux',
          'nyears': 40,
          'time_period': ['1979-1-15 0:0:0.0', '2018-12-15 12:0:0.0']},
         'method': 'Zonal root mean square error of equatorial_pacific climatological sst STD, time series are linearly detrended, observations and model regridded to generic_1x1deg',
         'name': 'sst zonal seasonality RMSE',
         'ref': 'Using CDAT regridding and rms (uncentered and biased) calculation',
         'time_frequency': 'monthly',
         'units': 'C'},
        'metric': {'datasets': "HadCM3_r4i1p1; ERA-Interim's ts & HadISST's sst & Tropflux's sst; 's ",
         'method': 'The metric is the statistical value between the model and the observations',
         'name': 'SeasonalSstLonRmse',
         'units': 'C'}},
       'SeasonalTauxLonRmse': {'diagnostic': {'ERA-Interim': {'name': 'ERA-Interim',
          'nyears': 40,
          'time_period': ['1979-1-16 12:0:0.0', '2019-3-16 12:0:0.0']},
         'HadCM3_r4i1p1': {'keyerror': None,
          'name': 'HadCM3_r4i1p1',
          'nyears': 146,
          'time_period': ['1859-12-16 0:0:0.0', '2005-12-16 0:0:0.0']},
         'Tropflux': {'name': 'Tropflux',
          'nyears': 40,
          'time_period': ['1979-1-15 0:0:0.0', '2018-12-15 12:0:0.0']},
         'method': 'Zonal root mean square error of equatorial_pacific climatological taux STD, time series are linearly detrended, observations and model regridded to generic_1x1deg',
         'name': 'taux zonal seasonality RMSE',
         'ref': 'Using CDAT regridding and rms (uncentered and biased) calculation',
         'time_frequency': 'monthly',
         'units': '1e-3 N/m2'},
        'metric': {'datasets': "HadCM3_r4i1p1; ERA-Interim's tauu & Tropflux's taux; 's ",
         'method': 'The metric is the statistical value between the model and the observations',
         'name': 'SeasonalTauxLonRmse',
         'units': '1e-3 N/m2'}}},
      'name': 'Metrics Collection for ENSO performance'},
     'value': {'BiasPrLatRmse': {'diagnostic': {'ERA-Interim': {'value': None,
         'value_error': None},
        'GPCPv2.3': {'value': None, 'value_error': None},
        'HadCM3_r4i1p1': {'value': None, 'value_error': None}},
       'metric': {'ERA-Interim': {'value': 0.6277095507247508,
         'value_error': None},
        'GPCPv2.3': {'value': 1.3390411071232946, 'value_error': None}}},
      'BiasPrLonRmse': {'diagnostic': {'ERA-Interim': {'value': None,
         'value_error': None},
        'GPCPv2.3': {'value': None, 'value_error': None},
        'HadCM3_r4i1p1': {'value': None, 'value_error': None}},
       'metric': {'ERA-Interim': {'value': 2.669473483145014,
         'value_error': None},
        'GPCPv2.3': {'value': 1.9367396653597908, 'value_error': None}}},
      'BiasSstLonRmse': {'diagnostic': {'ERA-Interim': {'value': None,
         'value_error': None},
        'HadCM3_r4i1p1': {'value': None, 'value_error': None},
        'HadISST': {'value': None, 'value_error': None},
        'Tropflux': {'value': None, 'value_error': None}},
       'metric': {'ERA-Interim': {'value': 1.025298585343199,
         'value_error': None},
        'HadISST': {'value': 0.9445503970597269, 'value_error': None},
        'Tropflux': {'value': 1.060362179772569, 'value_error': None}}},
      'BiasTauxLonRmse': {'diagnostic': {'ERA-Interim': {'value': None,
         'value_error': None},
        'HadCM3_r4i1p1': {'value': None, 'value_error': None},
        'Tropflux': {'value': None, 'value_error': None}},
       'metric': {'ERA-Interim': {'value': 11.073673180703343,
         'value_error': None},
        'Tropflux': {'value': 11.042710309451541, 'value_error': None}}},
      'EnsoAmpl': {'diagnostic': {'ERA-Interim': {'value': 0.8989844997845644,
         'value_error': 0.14214193002531866},
        'HadCM3_r4i1p1': {'value': 0.9196165666320956,
         'value_error': 0.07610800858010142},
        'HadISST': {'value': 0.7665787872085695,
         'value_error': 0.06238329697691264},
        'Tropflux': {'value': 0.9039789553693535,
         'value_error': 0.14293162279134272}},
       'metric': {'ERA-Interim': {'value': 2.2950414442602174,
         'value_error': 24.640264082668434},
        'HadISST': {'value': 19.963737841063917,
         'value_error': 19.690780118212203},
        'Tropflux': {'value': 1.7298645250378406,
         'value_error': 24.504127390738386}}},
      'EnsoDuration': {'diagnostic': {'ERA-Interim': {'value': 13.0,
         'value_error': None},
        'HadCM3_r4i1p1': {'value': 14.0, 'value_error': None},
        'HadISST': {'value': 13.0, 'value_error': None},
        'Tropflux': {'value': 13.0, 'value_error': None}},
       'metric': {'ERA-Interim': {'value': 7.6923076923076925,
         'value_error': None},
        'HadISST': {'value': 7.6923076923076925, 'value_error': None},
        'Tropflux': {'value': 7.6923076923076925, 'value_error': None}}},
      'EnsoSeasonality': {'diagnostic': {'ERA-Interim': {'value': 2.0466846866656914,
         'value_error': 0.6513411033995022},
        'HadCM3_r4i1p1': {'value': 1.2928650376867057,
         'value_error': 0.21436486927658005},
        'HadISST': {'value': 1.6639865947361325,
         'value_error': 0.2712772451657809},
        'Tropflux': {'value': 2.0532132553583624,
         'value_error': 0.6534187683977347}},
       'metric': {'ERA-Interim': {'value': 36.83125465735777,
         'value_error': 30.576711511653986},
        'HadISST': {'value': 22.303157863376754,
         'value_error': 25.549407882882242},
        'Tropflux': {'value': 37.032111286411286,
         'value_error': 30.479487240877983}}},
      'EnsoSstDiversity_2': {'diagnostic': {'ERA-Interim': {'value': 33.25,
         'value_error': None},
        'HadCM3_r4i1p1': {'value': 24.5, 'value_error': None},
        'HadISST': {'value': 49.0, 'value_error': None},
        'Tropflux': {'value': 32.0, 'value_error': None}},
       'metric': {'ERA-Interim': {'value': 26.31578947368421,
         'value_error': None},
        'HadISST': {'value': 50.0, 'value_error': None},
        'Tropflux': {'value': 23.4375, 'value_error': None}}},
      'EnsoSstLonRmse': {'diagnostic': {'ERA-Interim': {'value': None,
         'value_error': None},
        'HadCM3_r4i1p1': {'value': None, 'value_error': None},
        'HadISST': {'value': None, 'value_error': None},
        'Tropflux': {'value': None, 'value_error': None}},
       'metric': {'ERA-Interim': {'value': 0.25418561635824055,
         'value_error': None},
        'HadISST': {'value': 0.2673395953244086, 'value_error': None},
        'Tropflux': {'value': 0.2536446448843113, 'value_error': None}}},
      'EnsoSstSkew': {'diagnostic': {'ERA-Interim': {'value': 0.39098111106809963,
         'value_error': 0.061819541653923164},
        'HadCM3_r4i1p1': {'value': 0.23965501135546957,
         'value_error': 0.019833989863085398},
        'HadISST': {'value': 0.38989908235027515,
         'value_error': 0.03172953733021198},
        'Tropflux': {'value': 0.39744741059612115,
         'value_error': 0.06284195338099416}},
       'metric': {'ERA-Interim': {'value': 38.70419706446449,
         'value_error': 14.764594159862316},
        'HadISST': {'value': 38.53409197301732,
         'value_error': 10.088979399167048},
        'Tropflux': {'value': 39.70145358450891,
         'value_error': 14.524380522279046}}},
      'EnsoSstTsRmse': {'diagnostic': {'ERA-Interim': {'value': None,
         'value_error': None},
        'HadCM3_r4i1p1': {'value': None, 'value_error': None},
        'HadISST': {'value': None, 'value_error': None},
        'Tropflux': {'value': None, 'value_error': None}},
       'metric': {'ERA-Interim': {'value': 0.10403879766391579,
         'value_error': None},
        'HadISST': {'value': 0.08124545666306959, 'value_error': None},
        'Tropflux': {'value': 0.10379743503063231, 'value_error': None}}},
      'SeasonalPrLatRmse': {'diagnostic': {'ERA-Interim': {'value': None,
         'value_error': None},
        'GPCPv2.3': {'value': None, 'value_error': None},
        'HadCM3_r4i1p1': {'value': None, 'value_error': None}},
       'metric': {'ERA-Interim': {'value': 0.4124377616566821,
         'value_error': None},
        'GPCPv2.3': {'value': 0.5642470723963676, 'value_error': None}}},
      'SeasonalPrLonRmse': {'diagnostic': {'ERA-Interim': {'value': None,
         'value_error': None},
        'GPCPv2.3': {'value': None, 'value_error': None},
        'HadCM3_r4i1p1': {'value': None, 'value_error': None}},
       'metric': {'ERA-Interim': {'value': 0.5319540496106101,
         'value_error': None},
        'GPCPv2.3': {'value': 0.3563961567834074, 'value_error': None}}},
      'SeasonalSstLonRmse': {'diagnostic': {'ERA-Interim': {'value': None,
         'value_error': None},
        'HadCM3_r4i1p1': {'value': None, 'value_error': None},
        'HadISST': {'value': None, 'value_error': None},
        'Tropflux': {'value': None, 'value_error': None}},
       'metric': {'ERA-Interim': {'value': 0.28357844792528314,
         'value_error': None},
        'HadISST': {'value': 0.2893927631377913, 'value_error': None},
        'Tropflux': {'value': 0.29095325094707236, 'value_error': None}}},
      'SeasonalTauxLonRmse': {'diagnostic': {'ERA-Interim': {'value': None,
         'value_error': None},
        'HadCM3_r4i1p1': {'value': None, 'value_error': None},
        'Tropflux': {'value': None, 'value_error': None}},
       'metric': {'ERA-Interim': {'value': 2.453314967207502,
         'value_error': None},
        'Tropflux': {'value': 2.786110313636023, 'value_error': None}}}}},
    'r5i1p1': {'metadata': {'description_of_the_collection': 'Describe which science question this collection is about',
      'metrics': {'BiasPrLatRmse': {'diagnostic': {'ERA-Interim': {'name': 'ERA-Interim',
          'nyears': 40,
          'time_period': ['1979-1-16 12:0:0.0', '2019-3-16 12:0:0.0']},
         'GPCPv2.3': {'name': 'GPCPv2.3',
          'nyears': 41,
          'time_period': ['1979-1-1 0:0:0.0', '2019-7-1 0:0:0.0']},
         'HadCM3_r5i1p1': {'keyerror': None,
          'name': 'HadCM3_r5i1p1',
          'nyears': 146,
          'time_period': ['1859-12-16 0:0:0.0', '2005-12-16 0:0:0.0']},
         'method': 'Meridional root mean square error of nino3_LatExt pr, time series are linearly detrended, observations and model regridded to generic_1x1deg',
         'name': 'pr Meridional RMSE',
         'ref': 'Using CDAT regridding and rms (uncentered and biased) calculation',
         'time_frequency': 'monthly',
         'units': 'mm/day'},
        'metric': {'datasets': "HadCM3_r5i1p1; ERA-Interim's pr & GPCPv2.3's precip; 's ",
         'method': 'The metric is the statistical value between the model and the observations',
         'name': 'BiasPrLatRmse',
         'units': 'mm/day'}},
       'BiasPrLonRmse': {'diagnostic': {'ERA-Interim': {'name': 'ERA-Interim',
          'nyears': 40,
          'time_period': ['1979-1-16 12:0:0.0', '2019-3-16 12:0:0.0']},
         'GPCPv2.3': {'name': 'GPCPv2.3',
          'nyears': 41,
          'time_period': ['1979-1-1 0:0:0.0', '2019-7-1 0:0:0.0']},
         'HadCM3_r5i1p1': {'keyerror': None,
          'name': 'HadCM3_r5i1p1',
          'nyears': 146,
          'time_period': ['1859-12-16 0:0:0.0', '2005-12-16 0:0:0.0']},
         'method': 'Zonal root mean square error of equatorial_pacific pr, time series are linearly detrended, observations and model regridded to generic_1x1deg',
         'name': 'pr Zonal RMSE',
         'ref': 'Using CDAT regridding and rms (uncentered and biased) calculation',
         'time_frequency': 'monthly',
         'units': 'mm/day'},
        'metric': {'datasets': "HadCM3_r5i1p1; ERA-Interim's pr & GPCPv2.3's precip; 's ",
         'method': 'The metric is the statistical value between the model and the observations',
         'name': 'BiasPrLonRmse',
         'units': 'mm/day'}},
       'BiasSstLonRmse': {'diagnostic': {'ERA-Interim': {'name': 'ERA-Interim',
          'nyears': 40,
          'time_period': ['1979-1-16 12:0:0.0', '2019-3-16 12:0:0.0']},
         'HadCM3_r5i1p1': {'keyerror': None,
          'name': 'HadCM3_r5i1p1',
          'nyears': 146,
          'time_period': ['1859-12-16 0:0:0.0', '2005-12-16 0:0:0.0']},
         'HadISST': {'name': 'HadISST',
          'nyears': 151,
          'time_period': ['1870-1-16 11:59:59.5', '2020-10-16 12:0:0.0']},
         'Tropflux': {'name': 'Tropflux',
          'nyears': 40,
          'time_period': ['1979-1-15 0:0:0.0', '2018-12-15 12:0:0.0']},
         'method': 'Zonal root mean square error of equatorial_pacific sst, time series are linearly detrended, observations and model regridded to generic_1x1deg',
         'name': 'sst Zonal RMSE',
         'ref': 'Using CDAT regridding and rms (uncentered and biased) calculation',
         'time_frequency': 'monthly',
         'units': 'C'},
        'metric': {'datasets': "HadCM3_r5i1p1; ERA-Interim's ts & HadISST's sst & Tropflux's sst; 's ",
         'method': 'The metric is the statistical value between the model and the observations',
         'name': 'BiasSstLonRmse',
         'units': 'C'}},
       'BiasTauxLonRmse': {'diagnostic': {'ERA-Interim': {'name': 'ERA-Interim',
          'nyears': 40,
          'time_period': ['1979-1-16 12:0:0.0', '2019-3-16 12:0:0.0']},
         'HadCM3_r5i1p1': {'keyerror': None,
          'name': 'HadCM3_r5i1p1',
          'nyears': 146,
          'time_period': ['1859-12-16 0:0:0.0', '2005-12-16 0:0:0.0']},
         'Tropflux': {'name': 'Tropflux',
          'nyears': 40,
          'time_period': ['1979-1-15 0:0:0.0', '2018-12-15 12:0:0.0']},
         'method': 'Zonal root mean square error of equatorial_pacific taux, time series are linearly detrended, observations and model regridded to generic_1x1deg',
         'name': 'taux Zonal RMSE',
         'ref': 'Using CDAT regridding and rms (uncentered and biased) calculation',
         'time_frequency': 'monthly',
         'units': '1e-3 N/m2'},
        'metric': {'datasets': "HadCM3_r5i1p1; ERA-Interim's tauu & Tropflux's taux; 's ",
         'method': 'The metric is the statistical value between the model and the observations',
         'name': 'BiasTauxLonRmse',
         'units': '1e-3 N/m2'}},
       'EnsoAmpl': {'diagnostic': {'ERA-Interim': {'keyerror': None,
          'name': 'ERA-Interim',
          'nyears': 40,
          'time_period': ['1979-1-16 12:0:0.0', '2019-3-16 12:0:0.0']},
         'HadCM3_r5i1p1': {'keyerror': None,
          'name': 'HadCM3_r5i1p1',
          'nyears': 146,
          'time_period': ['1859-12-16 0:0:0.0', '2005-12-16 0:0:0.0']},
         'HadISST': {'keyerror': None,
          'name': 'HadISST',
          'nyears': 151,
          'time_period': ['1870-1-16 11:59:59.5', '2020-10-16 12:0:0.0']},
         'Tropflux': {'keyerror': None,
          'name': 'Tropflux',
          'nyears': 40,
          'time_period': ['1979-1-15 0:0:0.0', '2018-12-15 12:0:0.0']},
         'method': 'Standard deviation of nino3.4 sstA, time series are linearly detrended',
         'name': 'ENSO amplitude',
         'ref': 'Using CDAT regression calculation',
         'time_frequency': 'monthly',
         'units': 'C'},
        'metric': {'datasets': "HadCM3_r5i1p1; ERA-Interim's ts & HadISST's sst & Tropflux's sst; 's ",
         'method': 'The metric is the absolute value of the relative difference between model and observations values (M = 100 * abs[[model-obs] / obs])',
         'name': 'EnsoAmpl',
         'units': '%'}},
       'EnsoDuration': {'diagnostic': {'ERA-Interim': {'keyerror': None,
          'name': 'ERA-Interim',
          'nyears': 40,
          'time_period': ['1979-1-16 12:0:0.0', '2019-3-16 12:0:0.0']},
         'HadCM3_r5i1p1': {'keyerror': None,
          'name': 'HadCM3_r5i1p1',
          'nyears': 146,
          'time_period': ['1859-12-16 0:0:0.0', '2005-12-16 0:0:0.0']},
         'HadISST': {'keyerror': None,
          'name': 'HadISST',
          'nyears': 151,
          'time_period': ['1870-1-16 11:59:59.5', '2020-10-16 12:0:0.0']},
         'Tropflux': {'keyerror': None,
          'name': 'Tropflux',
          'nyears': 40,
          'time_period': ['1979-1-15 0:0:0.0', '2018-12-15 12:0:0.0']},
         'method': 'nino3.4 SSTA during DEC regressed against nino3.4 SSTA during 6 years (centered on ENSO), the duration is the number of consecutive months during which the regression is above 0.25, time series are linearly detrended, smoothing using a triangle shaped window of 5 points',
         'name': 'ENSO Duration based on life cyle SSTA pattern',
         'ref': 'Using CDAT',
         'time_frequency': 'monthly',
         'units': 'months'},
        'metric': {'datasets': "HadCM3_r5i1p1; ERA-Interim's ts & HadISST's sst & Tropflux's sst; 's ",
         'method': 'The metric is the absolute value of the relative difference between model and observations values (M = 100 * abs[[model-obs] / obs])',
         'name': 'EnsoDuration',
         'units': '%'}},
       'EnsoSeasonality': {'diagnostic': {'ERA-Interim': {'keyerror': None,
          'name': 'ERA-Interim',
          'nyears': 40,
          'time_period': ['1979-1-16 12:0:0.0', '2019-3-16 12:0:0.0']},
         'HadCM3_r5i1p1': {'keyerror': None,
          'name': 'HadCM3_r5i1p1',
          'nyears': 146,
          'time_period': ['1859-12-16 0:0:0.0', '2005-12-16 0:0:0.0']},
         'HadISST': {'keyerror': None,
          'name': 'HadISST',
          'nyears': 151,
          'time_period': ['1870-1-16 11:59:59.5', '2020-10-16 12:0:0.0']},
         'Tropflux': {'keyerror': None,
          'name': 'Tropflux',
          'nyears': 40,
          'time_period': ['1979-1-15 0:0:0.0', '2018-12-15 12:0:0.0']},
         'method': 'Ratio between NDJ and MAM standard deviation nino3.4 sstA, time series are linearly detrended',
         'name': 'ENSO seasonality',
         'ref': 'Using CDAT std dev calculation',
         'time_frequency': 'monthly',
         'units': 'C/C'},
        'metric': {'datasets': "HadCM3_r5i1p1; ERA-Interim's ts & HadISST's sst & Tropflux's sst; 's ",
         'method': 'The metric is the absolute value of the relative difference between model and observations values (M = 100 * abs[[model-obs] / obs])',
         'name': 'EnsoSeasonality',
         'units': '%'}},
       'EnsoSstDiversity_2': {'diagnostic': {'ERA-Interim': {'keyerror': None,
          'name': 'ERA-Interim',
          'nyears': 40,
          'time_period': ['1979-1-16 12:0:0.0', '2019-3-16 12:0:0.0']},
         'HadCM3_r5i1p1': {'keyerror': None,
          'name': 'HadCM3_r5i1p1',
          'nyears': 146,
          'time_period': ['1859-12-16 0:0:0.0', '2005-12-16 0:0:0.0']},
         'HadISST': {'keyerror': None,
          'name': 'HadISST',
          'nyears': 151,
          'time_period': ['1870-1-16 11:59:59.5', '2020-10-16 12:0:0.0']},
         'Tropflux': {'keyerror': None,
          'name': 'Tropflux',
          'nyears': 40,
          'time_period': ['1979-1-15 0:0:0.0', '2018-12-15 12:0:0.0']},
         'method': 'Nino (Nina) events = nino3.4 sstA > 0.75 (< -0.75) during DEC, zonal SSTA (meridional averaged [-5.0 ; 5.0]), the zonal SSTA maximum (minimum) is located for each event, the diversity is the interquartile range (IQR = Q3 - Q1), time series are linearly detrended, smoothing using a triangle shaped window of 5 points',
         'name': 'ENSO Diversity (interquartile range)',
         'ref': 'Using CDAT regridding',
         'time_frequency': 'monthly',
         'units': 'long'},
        'metric': {'datasets': "HadCM3_r5i1p1; ERA-Interim's ts & HadISST's sst & Tropflux's sst; 's ",
         'method': 'The metric is the absolute value of the relative difference between model and observations values (M = 100 * abs[[model-obs] / obs])',
         'name': 'EnsoSstDiversity',
         'units': '%'}},
       'EnsoSstLonRmse': {'diagnostic': {'ERA-Interim': {'name': 'ERA-Interim',
          'nyears': 40,
          'time_period': ['1979-1-16 12:0:0.0', '2019-3-16 12:0:0.0']},
         'HadCM3_r5i1p1': {'keyerror': None,
          'name': 'HadCM3_r5i1p1',
          'nyears': 146,
          'time_period': ['1859-12-16 0:0:0.0', '2005-12-16 0:0:0.0']},
         'HadISST': {'name': 'HadISST',
          'nyears': 151,
          'time_period': ['1870-1-16 11:59:59.5', '2020-10-16 12:0:0.0']},
         'Tropflux': {'name': 'Tropflux',
          'nyears': 40,
          'time_period': ['1979-1-15 0:0:0.0', '2018-12-15 12:0:0.0']},
         'method': 'nino3.4 SSTA during DEC regressed against equatorial_pacific SSTA, time series are linearly detrended, smoothing using a triangle shaped window of 5 points, observations and model regridded to generic_1x1deg',
         'name': 'ENSO Zonal SSTA pattern',
         'ref': 'Using CDAT regridding and rms (uncentered and biased) calculation',
         'time_frequency': 'monthly',
         'units': 'C/C'},
        'metric': {'datasets': "HadCM3_r5i1p1; ERA-Interim's ts & HadISST's sst & Tropflux's sst; 's ",
         'method': 'The metric is the statistical value between the model and the observations',
         'name': 'EnsoSstLonRmse',
         'units': 'C/C'}},
       'EnsoSstSkew': {'diagnostic': {'ERA-Interim': {'keyerror': None,
          'name': 'ERA-Interim',
          'nyears': 40,
          'time_period': ['1979-1-16 12:0:0.0', '2019-3-16 12:0:0.0']},
         'HadCM3_r5i1p1': {'keyerror': None,
          'name': 'HadCM3_r5i1p1',
          'nyears': 146,
          'time_period': ['1859-12-16 0:0:0.0', '2005-12-16 0:0:0.0']},
         'HadISST': {'keyerror': None,
          'name': 'HadISST',
          'nyears': 151,
          'time_period': ['1870-1-16 11:59:59.5', '2020-10-16 12:0:0.0']},
         'Tropflux': {'keyerror': None,
          'name': 'Tropflux',
          'nyears': 40,
          'time_period': ['1979-1-15 0:0:0.0', '2018-12-15 12:0:0.0']},
         'method': 'Standard deviation of nino3.4 sstA, time series are linearly detrended',
         'name': 'ENSO skewness',
         'ref': 'Using CDAT regression calculation',
         'time_frequency': 'monthly',
         'units': 'C'},
        'metric': {'datasets': "HadCM3_r5i1p1; ERA-Interim's ts & HadISST's sst & Tropflux's sst; 's ",
         'method': 'The metric is the absolute value of the relative difference between model and observations values (M = 100 * abs[[model-obs] / obs])',
         'name': 'EnsoSstSkew',
         'units': '%'}},
       'EnsoSstTsRmse': {'diagnostic': {'ERA-Interim': {'name': 'ERA-Interim',
          'nyears': 40,
          'time_period': ['1979-1-16 12:0:0.0', '2019-3-16 12:0:0.0']},
         'HadCM3_r5i1p1': {'keyerror': None,
          'name': 'HadCM3_r5i1p1',
          'nyears': 146,
          'time_period': ['1859-12-16 0:0:0.0', '2005-12-16 0:0:0.0']},
         'HadISST': {'name': 'HadISST',
          'nyears': 151,
          'time_period': ['1870-1-16 11:59:59.5', '2020-10-16 12:0:0.0']},
         'Tropflux': {'name': 'Tropflux',
          'nyears': 40,
          'time_period': ['1979-1-15 0:0:0.0', '2018-12-15 12:0:0.0']},
         'method': 'nino3.4 SSTA during DEC regressed against nino3.4 SSTA during 6 years (centered on ENSO), time series are linearly detrended, smoothing using a triangle shaped window of 5 points',
         'name': 'ENSO life cyle SSTA pattern',
         'ref': 'Using CDAT regridding and rms (uncentered and biased) calculation',
         'time_frequency': 'monthly',
         'units': 'C/C'},
        'metric': {'datasets': "HadCM3_r5i1p1; ERA-Interim's ts & HadISST's sst & Tropflux's sst; 's ",
         'method': 'The metric is the statistical value between the model and the observations',
         'name': 'EnsoSstTsRmse',
         'units': 'C/C'}},
       'SeasonalPrLatRmse': {'diagnostic': {'ERA-Interim': {'name': 'ERA-Interim',
          'nyears': 40,
          'time_period': ['1979-1-16 12:0:0.0', '2019-3-16 12:0:0.0']},
         'GPCPv2.3': {'name': 'GPCPv2.3',
          'nyears': 41,
          'time_period': ['1979-1-1 0:0:0.0', '2019-7-1 0:0:0.0']},
         'HadCM3_r5i1p1': {'keyerror': None,
          'name': 'HadCM3_r5i1p1',
          'nyears': 146,
          'time_period': ['1859-12-16 0:0:0.0', '2005-12-16 0:0:0.0']},
         'method': 'Meridional root mean square error of nino3_LatExt climatological pr STD, time series are linearly detrended, observations and model regridded to generic_1x1deg',
         'name': 'pr meridional seasonality RMSE',
         'ref': 'Using CDAT regridding and rms (uncentered and biased) calculation',
         'time_frequency': 'monthly',
         'units': 'mm/day'},
        'metric': {'datasets': "HadCM3_r5i1p1; ERA-Interim's pr & GPCPv2.3's precip; 's ",
         'method': 'The metric is the statistical value between the model and the observations',
         'name': 'SeasonalPrLatRmse',
         'units': 'mm/day'}},
       'SeasonalPrLonRmse': {'diagnostic': {'ERA-Interim': {'name': 'ERA-Interim',
          'nyears': 40,
          'time_period': ['1979-1-16 12:0:0.0', '2019-3-16 12:0:0.0']},
         'GPCPv2.3': {'name': 'GPCPv2.3',
          'nyears': 41,
          'time_period': ['1979-1-1 0:0:0.0', '2019-7-1 0:0:0.0']},
         'HadCM3_r5i1p1': {'keyerror': None,
          'name': 'HadCM3_r5i1p1',
          'nyears': 146,
          'time_period': ['1859-12-16 0:0:0.0', '2005-12-16 0:0:0.0']},
         'method': 'Zonal root mean square error of equatorial_pacific climatological pr STD, time series are linearly detrended, observations and model regridded to generic_1x1deg',
         'name': 'pr zonal seasonality RMSE',
         'ref': 'Using CDAT regridding and rms (uncentered and biased) calculation',
         'time_frequency': 'monthly',
         'units': 'mm/day'},
        'metric': {'datasets': "HadCM3_r5i1p1; ERA-Interim's pr & GPCPv2.3's precip; 's ",
         'method': 'The metric is the statistical value between the model and the observations',
         'name': 'SeasonalPrLonRmse',
         'units': 'mm/day'}},
       'SeasonalSstLonRmse': {'diagnostic': {'ERA-Interim': {'name': 'ERA-Interim',
          'nyears': 40,
          'time_period': ['1979-1-16 12:0:0.0', '2019-3-16 12:0:0.0']},
         'HadCM3_r5i1p1': {'keyerror': None,
          'name': 'HadCM3_r5i1p1',
          'nyears': 146,
          'time_period': ['1859-12-16 0:0:0.0', '2005-12-16 0:0:0.0']},
         'HadISST': {'name': 'HadISST',
          'nyears': 151,
          'time_period': ['1870-1-16 11:59:59.5', '2020-10-16 12:0:0.0']},
         'Tropflux': {'name': 'Tropflux',
          'nyears': 40,
          'time_period': ['1979-1-15 0:0:0.0', '2018-12-15 12:0:0.0']},
         'method': 'Zonal root mean square error of equatorial_pacific climatological sst STD, time series are linearly detrended, observations and model regridded to generic_1x1deg',
         'name': 'sst zonal seasonality RMSE',
         'ref': 'Using CDAT regridding and rms (uncentered and biased) calculation',
         'time_frequency': 'monthly',
         'units': 'C'},
        'metric': {'datasets': "HadCM3_r5i1p1; ERA-Interim's ts & HadISST's sst & Tropflux's sst; 's ",
         'method': 'The metric is the statistical value between the model and the observations',
         'name': 'SeasonalSstLonRmse',
         'units': 'C'}},
       'SeasonalTauxLonRmse': {'diagnostic': {'ERA-Interim': {'name': 'ERA-Interim',
          'nyears': 40,
          'time_period': ['1979-1-16 12:0:0.0', '2019-3-16 12:0:0.0']},
         'HadCM3_r5i1p1': {'keyerror': None,
          'name': 'HadCM3_r5i1p1',
          'nyears': 146,
          'time_period': ['1859-12-16 0:0:0.0', '2005-12-16 0:0:0.0']},
         'Tropflux': {'name': 'Tropflux',
          'nyears': 40,
          'time_period': ['1979-1-15 0:0:0.0', '2018-12-15 12:0:0.0']},
         'method': 'Zonal root mean square error of equatorial_pacific climatological taux STD, time series are linearly detrended, observations and model regridded to generic_1x1deg',
         'name': 'taux zonal seasonality RMSE',
         'ref': 'Using CDAT regridding and rms (uncentered and biased) calculation',
         'time_frequency': 'monthly',
         'units': '1e-3 N/m2'},
        'metric': {'datasets': "HadCM3_r5i1p1; ERA-Interim's tauu & Tropflux's taux; 's ",
         'method': 'The metric is the statistical value between the model and the observations',
         'name': 'SeasonalTauxLonRmse',
         'units': '1e-3 N/m2'}}},
      'name': 'Metrics Collection for ENSO performance'},
     'value': {'BiasPrLatRmse': {'diagnostic': {'ERA-Interim': {'value': None,
         'value_error': None},
        'GPCPv2.3': {'value': None, 'value_error': None},
        'HadCM3_r5i1p1': {'value': None, 'value_error': None}},
       'metric': {'ERA-Interim': {'value': 0.6119596908307898,
         'value_error': None},
        'GPCPv2.3': {'value': 1.3308557301251862, 'value_error': None}}},
      'BiasPrLonRmse': {'diagnostic': {'ERA-Interim': {'value': None,
         'value_error': None},
        'GPCPv2.3': {'value': None, 'value_error': None},
        'HadCM3_r5i1p1': {'value': None, 'value_error': None}},
       'metric': {'ERA-Interim': {'value': 2.672706320186576,
         'value_error': None},
        'GPCPv2.3': {'value': 1.9440128337943574, 'value_error': None}}},
      'BiasSstLonRmse': {'diagnostic': {'ERA-Interim': {'value': None,
         'value_error': None},
        'HadCM3_r5i1p1': {'value': None, 'value_error': None},
        'HadISST': {'value': None, 'value_error': None},
        'Tropflux': {'value': None, 'value_error': None}},
       'metric': {'ERA-Interim': {'value': 1.0157203649344633,
         'value_error': None},
        'HadISST': {'value': 0.9340050785563994, 'value_error': None},
        'Tropflux': {'value': 1.051003141869254, 'value_error': None}}},
      'BiasTauxLonRmse': {'diagnostic': {'ERA-Interim': {'value': None,
         'value_error': None},
        'HadCM3_r5i1p1': {'value': None, 'value_error': None},
        'Tropflux': {'value': None, 'value_error': None}},
       'metric': {'ERA-Interim': {'value': 10.971353568239103,
         'value_error': None},
        'Tropflux': {'value': 10.941273714624288, 'value_error': None}}},
      'EnsoAmpl': {'diagnostic': {'ERA-Interim': {'value': 0.8989844997845644,
         'value_error': 0.14214193002531866},
        'HadCM3_r5i1p1': {'value': 0.7922918115658557,
         'value_error': 0.06557053687433399},
        'HadISST': {'value': 0.7665787872085695,
         'value_error': 0.06238329697691264},
        'Tropflux': {'value': 0.9039789553693535,
         'value_error': 0.14293162279134272}},
       'metric': {'ERA-Interim': {'value': 11.868134349844395,
         'value_error': 21.228716593280556},
        'HadISST': {'value': 3.354257225264207,
         'value_error': 16.964509358653824},
        'Tropflux': {'value': 12.355060163747277,
         'value_error': 21.11142859501748}}},
      'EnsoDuration': {'diagnostic': {'ERA-Interim': {'value': 13.0,
         'value_error': None},
        'HadCM3_r5i1p1': {'value': 15.0, 'value_error': None},
        'HadISST': {'value': 13.0, 'value_error': None},
        'Tropflux': {'value': 13.0, 'value_error': None}},
       'metric': {'ERA-Interim': {'value': 15.384615384615385,
         'value_error': None},
        'HadISST': {'value': 15.384615384615385, 'value_error': None},
        'Tropflux': {'value': 15.384615384615385, 'value_error': None}}},
      'EnsoSeasonality': {'diagnostic': {'ERA-Interim': {'value': 2.0466846866656914,
         'value_error': 0.6513411033995022},
        'HadCM3_r5i1p1': {'value': 1.2339757570140204,
         'value_error': 0.2046006691588482},
        'HadISST': {'value': 1.6639865947361325,
         'value_error': 0.2712772451657809},
        'Tropflux': {'value': 2.0532132553583624,
         'value_error': 0.6534187683977347}},
       'metric': {'ERA-Interim': {'value': 39.708555741220536,
         'value_error': 29.18395937297804},
        'HadISST': {'value': 25.842205645310578,
         'value_error': 24.385646617802255},
        'Tropflux': {'value': 39.90026346295697,
         'value_error': 29.091163613456526}}},
      'EnsoSstDiversity_2': {'diagnostic': {'ERA-Interim': {'value': 33.25,
         'value_error': None},
        'HadCM3_r5i1p1': {'value': 24.0, 'value_error': None},
        'HadISST': {'value': 49.0, 'value_error': None},
        'Tropflux': {'value': 32.0, 'value_error': None}},
       'metric': {'ERA-Interim': {'value': 27.819548872180448,
         'value_error': None},
        'HadISST': {'value': 51.02040816326531, 'value_error': None},
        'Tropflux': {'value': 25.0, 'value_error': None}}},
      'EnsoSstLonRmse': {'diagnostic': {'ERA-Interim': {'value': None,
         'value_error': None},
        'HadCM3_r5i1p1': {'value': None, 'value_error': None},
        'HadISST': {'value': None, 'value_error': None},
        'Tropflux': {'value': None, 'value_error': None}},
       'metric': {'ERA-Interim': {'value': 0.2575246613614642,
         'value_error': None},
        'HadISST': {'value': 0.2697310287041272, 'value_error': None},
        'Tropflux': {'value': 0.25695485573395926, 'value_error': None}}},
      'EnsoSstSkew': {'diagnostic': {'ERA-Interim': {'value': 0.39098111106809963,
         'value_error': 0.061819541653923164},
        'HadCM3_r5i1p1': {'value': 0.5615311961353503,
         'value_error': 0.046472652455554715},
        'HadISST': {'value': 0.38989908235027515,
         'value_error': 0.03172953733021198},
        'Tropflux': {'value': 0.39744741059612115,
         'value_error': 0.06284195338099416}},
       'metric': {'ERA-Interim': {'value': 43.62105488966829,
         'value_error': 34.59464574576807},
        'HadISST': {'value': 44.01962496307835,
         'value_error': 23.63929983252522},
        'Tropflux': {'value': 41.284401700623505,
         'value_error': 34.031805642916694}}},
      'EnsoSstTsRmse': {'diagnostic': {'ERA-Interim': {'value': None,
         'value_error': None},
        'HadCM3_r5i1p1': {'value': None, 'value_error': None},
        'HadISST': {'value': None, 'value_error': None},
        'Tropflux': {'value': None, 'value_error': None}},
       'metric': {'ERA-Interim': {'value': 0.11787020311770871,
         'value_error': None},
        'HadISST': {'value': 0.07900188716563394, 'value_error': None},
        'Tropflux': {'value': 0.11643967036887937, 'value_error': None}}},
      'SeasonalPrLatRmse': {'diagnostic': {'ERA-Interim': {'value': None,
         'value_error': None},
        'GPCPv2.3': {'value': None, 'value_error': None},
        'HadCM3_r5i1p1': {'value': None, 'value_error': None}},
       'metric': {'ERA-Interim': {'value': 0.43340785505107027,
         'value_error': None},
        'GPCPv2.3': {'value': 0.5917017176166451, 'value_error': None}}},
      'SeasonalPrLonRmse': {'diagnostic': {'ERA-Interim': {'value': None,
         'value_error': None},
        'GPCPv2.3': {'value': None, 'value_error': None},
        'HadCM3_r5i1p1': {'value': None, 'value_error': None}},
       'metric': {'ERA-Interim': {'value': 0.545616840922194,
         'value_error': None},
        'GPCPv2.3': {'value': 0.36666316250444614, 'value_error': None}}},
      'SeasonalSstLonRmse': {'diagnostic': {'ERA-Interim': {'value': None,
         'value_error': None},
        'HadCM3_r5i1p1': {'value': None, 'value_error': None},
        'HadISST': {'value': None, 'value_error': None},
        'Tropflux': {'value': None, 'value_error': None}},
       'metric': {'ERA-Interim': {'value': 0.29311052151067196,
         'value_error': None},
        'HadISST': {'value': 0.30040817885652027, 'value_error': None},
        'Tropflux': {'value': 0.3000171910798353, 'value_error': None}}},
      'SeasonalTauxLonRmse': {'diagnostic': {'ERA-Interim': {'value': None,
         'value_error': None},
        'HadCM3_r5i1p1': {'value': None, 'value_error': None},
        'Tropflux': {'value': None, 'value_error': None}},
       'metric': {'ERA-Interim': {'value': 2.177661879110609,
         'value_error': None},
        'Tropflux': {'value': 2.5029939813112225, 'value_error': None}}}}},
    'r6i1p1': {'metadata': {'description_of_the_collection': 'Describe which science question this collection is about',
      'metrics': {'BiasPrLatRmse': {'diagnostic': {'ERA-Interim': {'name': 'ERA-Interim',
          'nyears': 40,
          'time_period': ['1979-1-16 12:0:0.0', '2019-3-16 12:0:0.0']},
         'GPCPv2.3': {'name': 'GPCPv2.3',
          'nyears': 41,
          'time_period': ['1979-1-1 0:0:0.0', '2019-7-1 0:0:0.0']},
         'HadCM3_r6i1p1': {'keyerror': None,
          'name': 'HadCM3_r6i1p1',
          'nyears': 146,
          'time_period': ['1859-12-16 0:0:0.0', '2005-12-16 0:0:0.0']},
         'method': 'Meridional root mean square error of nino3_LatExt pr, time series are linearly detrended, observations and model regridded to generic_1x1deg',
         'name': 'pr Meridional RMSE',
         'ref': 'Using CDAT regridding and rms (uncentered and biased) calculation',
         'time_frequency': 'monthly',
         'units': 'mm/day'},
        'metric': {'datasets': "HadCM3_r6i1p1; ERA-Interim's pr & GPCPv2.3's precip; 's ",
         'method': 'The metric is the statistical value between the model and the observations',
         'name': 'BiasPrLatRmse',
         'units': 'mm/day'}},
       'BiasPrLonRmse': {'diagnostic': {'ERA-Interim': {'name': 'ERA-Interim',
          'nyears': 40,
          'time_period': ['1979-1-16 12:0:0.0', '2019-3-16 12:0:0.0']},
         'GPCPv2.3': {'name': 'GPCPv2.3',
          'nyears': 41,
          'time_period': ['1979-1-1 0:0:0.0', '2019-7-1 0:0:0.0']},
         'HadCM3_r6i1p1': {'keyerror': None,
          'name': 'HadCM3_r6i1p1',
          'nyears': 146,
          'time_period': ['1859-12-16 0:0:0.0', '2005-12-16 0:0:0.0']},
         'method': 'Zonal root mean square error of equatorial_pacific pr, time series are linearly detrended, observations and model regridded to generic_1x1deg',
         'name': 'pr Zonal RMSE',
         'ref': 'Using CDAT regridding and rms (uncentered and biased) calculation',
         'time_frequency': 'monthly',
         'units': 'mm/day'},
        'metric': {'datasets': "HadCM3_r6i1p1; ERA-Interim's pr & GPCPv2.3's precip; 's ",
         'method': 'The metric is the statistical value between the model and the observations',
         'name': 'BiasPrLonRmse',
         'units': 'mm/day'}},
       'BiasSstLonRmse': {'diagnostic': {'ERA-Interim': {'name': 'ERA-Interim',
          'nyears': 40,
          'time_period': ['1979-1-16 12:0:0.0', '2019-3-16 12:0:0.0']},
         'HadCM3_r6i1p1': {'keyerror': None,
          'name': 'HadCM3_r6i1p1',
          'nyears': 146,
          'time_period': ['1859-12-16 0:0:0.0', '2005-12-16 0:0:0.0']},
         'HadISST': {'name': 'HadISST',
          'nyears': 151,
          'time_period': ['1870-1-16 11:59:59.5', '2020-10-16 12:0:0.0']},
         'Tropflux': {'name': 'Tropflux',
          'nyears': 40,
          'time_period': ['1979-1-15 0:0:0.0', '2018-12-15 12:0:0.0']},
         'method': 'Zonal root mean square error of equatorial_pacific sst, time series are linearly detrended, observations and model regridded to generic_1x1deg',
         'name': 'sst Zonal RMSE',
         'ref': 'Using CDAT regridding and rms (uncentered and biased) calculation',
         'time_frequency': 'monthly',
         'units': 'C'},
        'metric': {'datasets': "HadCM3_r6i1p1; ERA-Interim's ts & HadISST's sst & Tropflux's sst; 's ",
         'method': 'The metric is the statistical value between the model and the observations',
         'name': 'BiasSstLonRmse',
         'units': 'C'}},
       'BiasTauxLonRmse': {'diagnostic': {'ERA-Interim': {'name': 'ERA-Interim',
          'nyears': 40,
          'time_period': ['1979-1-16 12:0:0.0', '2019-3-16 12:0:0.0']},
         'HadCM3_r6i1p1': {'keyerror': None,
          'name': 'HadCM3_r6i1p1',
          'nyears': 146,
          'time_period': ['1859-12-16 0:0:0.0', '2005-12-16 0:0:0.0']},
         'Tropflux': {'name': 'Tropflux',
          'nyears': 40,
          'time_period': ['1979-1-15 0:0:0.0', '2018-12-15 12:0:0.0']},
         'method': 'Zonal root mean square error of equatorial_pacific taux, time series are linearly detrended, observations and model regridded to generic_1x1deg',
         'name': 'taux Zonal RMSE',
         'ref': 'Using CDAT regridding and rms (uncentered and biased) calculation',
         'time_frequency': 'monthly',
         'units': '1e-3 N/m2'},
        'metric': {'datasets': "HadCM3_r6i1p1; ERA-Interim's tauu & Tropflux's taux; 's ",
         'method': 'The metric is the statistical value between the model and the observations',
         'name': 'BiasTauxLonRmse',
         'units': '1e-3 N/m2'}},
       'EnsoAmpl': {'diagnostic': {'ERA-Interim': {'keyerror': None,
          'name': 'ERA-Interim',
          'nyears': 40,
          'time_period': ['1979-1-16 12:0:0.0', '2019-3-16 12:0:0.0']},
         'HadCM3_r6i1p1': {'keyerror': None,
          'name': 'HadCM3_r6i1p1',
          'nyears': 146,
          'time_period': ['1859-12-16 0:0:0.0', '2005-12-16 0:0:0.0']},
         'HadISST': {'keyerror': None,
          'name': 'HadISST',
          'nyears': 151,
          'time_period': ['1870-1-16 11:59:59.5', '2020-10-16 12:0:0.0']},
         'Tropflux': {'keyerror': None,
          'name': 'Tropflux',
          'nyears': 40,
          'time_period': ['1979-1-15 0:0:0.0', '2018-12-15 12:0:0.0']},
         'method': 'Standard deviation of nino3.4 sstA, time series are linearly detrended',
         'name': 'ENSO amplitude',
         'ref': 'Using CDAT regression calculation',
         'time_frequency': 'monthly',
         'units': 'C'},
        'metric': {'datasets': "HadCM3_r6i1p1; ERA-Interim's ts & HadISST's sst & Tropflux's sst; 's ",
         'method': 'The metric is the absolute value of the relative difference between model and observations values (M = 100 * abs[[model-obs] / obs])',
         'name': 'EnsoAmpl',
         'units': '%'}},
       'EnsoDuration': {'diagnostic': {'ERA-Interim': {'keyerror': None,
          'name': 'ERA-Interim',
          'nyears': 40,
          'time_period': ['1979-1-16 12:0:0.0', '2019-3-16 12:0:0.0']},
         'HadCM3_r6i1p1': {'keyerror': None,
          'name': 'HadCM3_r6i1p1',
          'nyears': 146,
          'time_period': ['1859-12-16 0:0:0.0', '2005-12-16 0:0:0.0']},
         'HadISST': {'keyerror': None,
          'name': 'HadISST',
          'nyears': 151,
          'time_period': ['1870-1-16 11:59:59.5', '2020-10-16 12:0:0.0']},
         'Tropflux': {'keyerror': None,
          'name': 'Tropflux',
          'nyears': 40,
          'time_period': ['1979-1-15 0:0:0.0', '2018-12-15 12:0:0.0']},
         'method': 'nino3.4 SSTA during DEC regressed against nino3.4 SSTA during 6 years (centered on ENSO), the duration is the number of consecutive months during which the regression is above 0.25, time series are linearly detrended, smoothing using a triangle shaped window of 5 points',
         'name': 'ENSO Duration based on life cyle SSTA pattern',
         'ref': 'Using CDAT',
         'time_frequency': 'monthly',
         'units': 'months'},
        'metric': {'datasets': "HadCM3_r6i1p1; ERA-Interim's ts & HadISST's sst & Tropflux's sst; 's ",
         'method': 'The metric is the absolute value of the relative difference between model and observations values (M = 100 * abs[[model-obs] / obs])',
         'name': 'EnsoDuration',
         'units': '%'}},
       'EnsoSeasonality': {'diagnostic': {'ERA-Interim': {'keyerror': None,
          'name': 'ERA-Interim',
          'nyears': 40,
          'time_period': ['1979-1-16 12:0:0.0', '2019-3-16 12:0:0.0']},
         'HadCM3_r6i1p1': {'keyerror': None,
          'name': 'HadCM3_r6i1p1',
          'nyears': 146,
          'time_period': ['1859-12-16 0:0:0.0', '2005-12-16 0:0:0.0']},
         'HadISST': {'keyerror': None,
          'name': 'HadISST',
          'nyears': 151,
          'time_period': ['1870-1-16 11:59:59.5', '2020-10-16 12:0:0.0']},
         'Tropflux': {'keyerror': None,
          'name': 'Tropflux',
          'nyears': 40,
          'time_period': ['1979-1-15 0:0:0.0', '2018-12-15 12:0:0.0']},
         'method': 'Ratio between NDJ and MAM standard deviation nino3.4 sstA, time series are linearly detrended',
         'name': 'ENSO seasonality',
         'ref': 'Using CDAT std dev calculation',
         'time_frequency': 'monthly',
         'units': 'C/C'},
        'metric': {'datasets': "HadCM3_r6i1p1; ERA-Interim's ts & HadISST's sst & Tropflux's sst; 's ",
         'method': 'The metric is the absolute value of the relative difference between model and observations values (M = 100 * abs[[model-obs] / obs])',
         'name': 'EnsoSeasonality',
         'units': '%'}},
       'EnsoSstDiversity_2': {'diagnostic': {'ERA-Interim': {'keyerror': None,
          'name': 'ERA-Interim',
          'nyears': 40,
          'time_period': ['1979-1-16 12:0:0.0', '2019-3-16 12:0:0.0']},
         'HadCM3_r6i1p1': {'keyerror': None,
          'name': 'HadCM3_r6i1p1',
          'nyears': 146,
          'time_period': ['1859-12-16 0:0:0.0', '2005-12-16 0:0:0.0']},
         'HadISST': {'keyerror': None,
          'name': 'HadISST',
          'nyears': 151,
          'time_period': ['1870-1-16 11:59:59.5', '2020-10-16 12:0:0.0']},
         'Tropflux': {'keyerror': None,
          'name': 'Tropflux',
          'nyears': 40,
          'time_period': ['1979-1-15 0:0:0.0', '2018-12-15 12:0:0.0']},
         'method': 'Nino (Nina) events = nino3.4 sstA > 0.75 (< -0.75) during DEC, zonal SSTA (meridional averaged [-5.0 ; 5.0]), the zonal SSTA maximum (minimum) is located for each event, the diversity is the interquartile range (IQR = Q3 - Q1), time series are linearly detrended, smoothing using a triangle shaped window of 5 points',
         'name': 'ENSO Diversity (interquartile range)',
         'ref': 'Using CDAT regridding',
         'time_frequency': 'monthly',
         'units': 'long'},
        'metric': {'datasets': "HadCM3_r6i1p1; ERA-Interim's ts & HadISST's sst & Tropflux's sst; 's ",
         'method': 'The metric is the absolute value of the relative difference between model and observations values (M = 100 * abs[[model-obs] / obs])',
         'name': 'EnsoSstDiversity',
         'units': '%'}},
       'EnsoSstLonRmse': {'diagnostic': {'ERA-Interim': {'name': 'ERA-Interim',
          'nyears': 40,
          'time_period': ['1979-1-16 12:0:0.0', '2019-3-16 12:0:0.0']},
         'HadCM3_r6i1p1': {'keyerror': None,
          'name': 'HadCM3_r6i1p1',
          'nyears': 146,
          'time_period': ['1859-12-16 0:0:0.0', '2005-12-16 0:0:0.0']},
         'HadISST': {'name': 'HadISST',
          'nyears': 151,
          'time_period': ['1870-1-16 11:59:59.5', '2020-10-16 12:0:0.0']},
         'Tropflux': {'name': 'Tropflux',
          'nyears': 40,
          'time_period': ['1979-1-15 0:0:0.0', '2018-12-15 12:0:0.0']},
         'method': 'nino3.4 SSTA during DEC regressed against equatorial_pacific SSTA, time series are linearly detrended, smoothing using a triangle shaped window of 5 points, observations and model regridded to generic_1x1deg',
         'name': 'ENSO Zonal SSTA pattern',
         'ref': 'Using CDAT regridding and rms (uncentered and biased) calculation',
         'time_frequency': 'monthly',
         'units': 'C/C'},
        'metric': {'datasets': "HadCM3_r6i1p1; ERA-Interim's ts & HadISST's sst & Tropflux's sst; 's ",
         'method': 'The metric is the statistical value between the model and the observations',
         'name': 'EnsoSstLonRmse',
         'units': 'C/C'}},
       'EnsoSstSkew': {'diagnostic': {'ERA-Interim': {'keyerror': None,
          'name': 'ERA-Interim',
          'nyears': 40,
          'time_period': ['1979-1-16 12:0:0.0', '2019-3-16 12:0:0.0']},
         'HadCM3_r6i1p1': {'keyerror': None,
          'name': 'HadCM3_r6i1p1',
          'nyears': 146,
          'time_period': ['1859-12-16 0:0:0.0', '2005-12-16 0:0:0.0']},
         'HadISST': {'keyerror': None,
          'name': 'HadISST',
          'nyears': 151,
          'time_period': ['1870-1-16 11:59:59.5', '2020-10-16 12:0:0.0']},
         'Tropflux': {'keyerror': None,
          'name': 'Tropflux',
          'nyears': 40,
          'time_period': ['1979-1-15 0:0:0.0', '2018-12-15 12:0:0.0']},
         'method': 'Standard deviation of nino3.4 sstA, time series are linearly detrended',
         'name': 'ENSO skewness',
         'ref': 'Using CDAT regression calculation',
         'time_frequency': 'monthly',
         'units': 'C'},
        'metric': {'datasets': "HadCM3_r6i1p1; ERA-Interim's ts & HadISST's sst & Tropflux's sst; 's ",
         'method': 'The metric is the absolute value of the relative difference between model and observations values (M = 100 * abs[[model-obs] / obs])',
         'name': 'EnsoSstSkew',
         'units': '%'}},
       'EnsoSstTsRmse': {'diagnostic': {'ERA-Interim': {'name': 'ERA-Interim',
          'nyears': 40,
          'time_period': ['1979-1-16 12:0:0.0', '2019-3-16 12:0:0.0']},
         'HadCM3_r6i1p1': {'keyerror': None,
          'name': 'HadCM3_r6i1p1',
          'nyears': 146,
          'time_period': ['1859-12-16 0:0:0.0', '2005-12-16 0:0:0.0']},
         'HadISST': {'name': 'HadISST',
          'nyears': 151,
          'time_period': ['1870-1-16 11:59:59.5', '2020-10-16 12:0:0.0']},
         'Tropflux': {'name': 'Tropflux',
          'nyears': 40,
          'time_period': ['1979-1-15 0:0:0.0', '2018-12-15 12:0:0.0']},
         'method': 'nino3.4 SSTA during DEC regressed against nino3.4 SSTA during 6 years (centered on ENSO), time series are linearly detrended, smoothing using a triangle shaped window of 5 points',
         'name': 'ENSO life cyle SSTA pattern',
         'ref': 'Using CDAT regridding and rms (uncentered and biased) calculation',
         'time_frequency': 'monthly',
         'units': 'C/C'},
        'metric': {'datasets': "HadCM3_r6i1p1; ERA-Interim's ts & HadISST's sst & Tropflux's sst; 's ",
         'method': 'The metric is the statistical value between the model and the observations',
         'name': 'EnsoSstTsRmse',
         'units': 'C/C'}},
       'SeasonalPrLatRmse': {'diagnostic': {'ERA-Interim': {'name': 'ERA-Interim',
          'nyears': 40,
          'time_period': ['1979-1-16 12:0:0.0', '2019-3-16 12:0:0.0']},
         'GPCPv2.3': {'name': 'GPCPv2.3',
          'nyears': 41,
          'time_period': ['1979-1-1 0:0:0.0', '2019-7-1 0:0:0.0']},
         'HadCM3_r6i1p1': {'keyerror': None,
          'name': 'HadCM3_r6i1p1',
          'nyears': 146,
          'time_period': ['1859-12-16 0:0:0.0', '2005-12-16 0:0:0.0']},
         'method': 'Meridional root mean square error of nino3_LatExt climatological pr STD, time series are linearly detrended, observations and model regridded to generic_1x1deg',
         'name': 'pr meridional seasonality RMSE',
         'ref': 'Using CDAT regridding and rms (uncentered and biased) calculation',
         'time_frequency': 'monthly',
         'units': 'mm/day'},
        'metric': {'datasets': "HadCM3_r6i1p1; ERA-Interim's pr & GPCPv2.3's precip; 's ",
         'method': 'The metric is the statistical value between the model and the observations',
         'name': 'SeasonalPrLatRmse',
         'units': 'mm/day'}},
       'SeasonalPrLonRmse': {'diagnostic': {'ERA-Interim': {'name': 'ERA-Interim',
          'nyears': 40,
          'time_period': ['1979-1-16 12:0:0.0', '2019-3-16 12:0:0.0']},
         'GPCPv2.3': {'name': 'GPCPv2.3',
          'nyears': 41,
          'time_period': ['1979-1-1 0:0:0.0', '2019-7-1 0:0:0.0']},
         'HadCM3_r6i1p1': {'keyerror': None,
          'name': 'HadCM3_r6i1p1',
          'nyears': 146,
          'time_period': ['1859-12-16 0:0:0.0', '2005-12-16 0:0:0.0']},
         'method': 'Zonal root mean square error of equatorial_pacific climatological pr STD, time series are linearly detrended, observations and model regridded to generic_1x1deg',
         'name': 'pr zonal seasonality RMSE',
         'ref': 'Using CDAT regridding and rms (uncentered and biased) calculation',
         'time_frequency': 'monthly',
         'units': 'mm/day'},
        'metric': {'datasets': "HadCM3_r6i1p1; ERA-Interim's pr & GPCPv2.3's precip; 's ",
         'method': 'The metric is the statistical value between the model and the observations',
         'name': 'SeasonalPrLonRmse',
         'units': 'mm/day'}},
       'SeasonalSstLonRmse': {'diagnostic': {'ERA-Interim': {'name': 'ERA-Interim',
          'nyears': 40,
          'time_period': ['1979-1-16 12:0:0.0', '2019-3-16 12:0:0.0']},
         'HadCM3_r6i1p1': {'keyerror': None,
          'name': 'HadCM3_r6i1p1',
          'nyears': 146,
          'time_period': ['1859-12-16 0:0:0.0', '2005-12-16 0:0:0.0']},
         'HadISST': {'name': 'HadISST',
          'nyears': 151,
          'time_period': ['1870-1-16 11:59:59.5', '2020-10-16 12:0:0.0']},
         'Tropflux': {'name': 'Tropflux',
          'nyears': 40,
          'time_period': ['1979-1-15 0:0:0.0', '2018-12-15 12:0:0.0']},
         'method': 'Zonal root mean square error of equatorial_pacific climatological sst STD, time series are linearly detrended, observations and model regridded to generic_1x1deg',
         'name': 'sst zonal seasonality RMSE',
         'ref': 'Using CDAT regridding and rms (uncentered and biased) calculation',
         'time_frequency': 'monthly',
         'units': 'C'},
        'metric': {'datasets': "HadCM3_r6i1p1; ERA-Interim's ts & HadISST's sst & Tropflux's sst; 's ",
         'method': 'The metric is the statistical value between the model and the observations',
         'name': 'SeasonalSstLonRmse',
         'units': 'C'}},
       'SeasonalTauxLonRmse': {'diagnostic': {'ERA-Interim': {'name': 'ERA-Interim',
          'nyears': 40,
          'time_period': ['1979-1-16 12:0:0.0', '2019-3-16 12:0:0.0']},
         'HadCM3_r6i1p1': {'keyerror': None,
          'name': 'HadCM3_r6i1p1',
          'nyears': 146,
          'time_period': ['1859-12-16 0:0:0.0', '2005-12-16 0:0:0.0']},
         'Tropflux': {'name': 'Tropflux',
          'nyears': 40,
          'time_period': ['1979-1-15 0:0:0.0', '2018-12-15 12:0:0.0']},
         'method': 'Zonal root mean square error of equatorial_pacific climatological taux STD, time series are linearly detrended, observations and model regridded to generic_1x1deg',
         'name': 'taux zonal seasonality RMSE',
         'ref': 'Using CDAT regridding and rms (uncentered and biased) calculation',
         'time_frequency': 'monthly',
         'units': '1e-3 N/m2'},
        'metric': {'datasets': "HadCM3_r6i1p1; ERA-Interim's tauu & Tropflux's taux; 's ",
         'method': 'The metric is the statistical value between the model and the observations',
         'name': 'SeasonalTauxLonRmse',
         'units': '1e-3 N/m2'}}},
      'name': 'Metrics Collection for ENSO performance'},
     'value': {'BiasPrLatRmse': {'diagnostic': {'ERA-Interim': {'value': None,
         'value_error': None},
        'GPCPv2.3': {'value': None, 'value_error': None},
        'HadCM3_r6i1p1': {'value': None, 'value_error': None}},
       'metric': {'ERA-Interim': {'value': 0.6265601409527681,
         'value_error': None},
        'GPCPv2.3': {'value': 1.3599926219442313, 'value_error': None}}},
      'BiasPrLonRmse': {'diagnostic': {'ERA-Interim': {'value': None,
         'value_error': None},
        'GPCPv2.3': {'value': None, 'value_error': None},
        'HadCM3_r6i1p1': {'value': None, 'value_error': None}},
       'metric': {'ERA-Interim': {'value': 2.7820485816096903,
         'value_error': None},
        'GPCPv2.3': {'value': 2.0532878629887885, 'value_error': None}}},
      'BiasSstLonRmse': {'diagnostic': {'ERA-Interim': {'value': None,
         'value_error': None},
        'HadCM3_r6i1p1': {'value': None, 'value_error': None},
        'HadISST': {'value': None, 'value_error': None},
        'Tropflux': {'value': None, 'value_error': None}},
       'metric': {'ERA-Interim': {'value': 1.061354749451538,
         'value_error': None},
        'HadISST': {'value': 0.9710917934158275, 'value_error': None},
        'Tropflux': {'value': 1.097739818893833, 'value_error': None}}},
      'BiasTauxLonRmse': {'diagnostic': {'ERA-Interim': {'value': None,
         'value_error': None},
        'HadCM3_r6i1p1': {'value': None, 'value_error': None},
        'Tropflux': {'value': None, 'value_error': None}},
       'metric': {'ERA-Interim': {'value': 10.453282647507587,
         'value_error': None},
        'Tropflux': {'value': 10.476141369128957, 'value_error': None}}},
      'EnsoAmpl': {'diagnostic': {'ERA-Interim': {'value': 0.8989844997845644,
         'value_error': 0.14214193002531866},
        'HadCM3_r6i1p1': {'value': 0.8359293112807367,
         'value_error': 0.06918200204712595},
        'HadISST': {'value': 0.7665787872085695,
         'value_error': 0.06238329697691264},
        'Tropflux': {'value': 0.9039789553693535,
         'value_error': 0.14293162279134272}},
       'metric': {'ERA-Interim': {'value': 7.014046239833778,
         'value_error': 22.397942503183284},
        'HadISST': {'value': 9.046757519171782,
         'value_error': 17.898873139138026},
        'Tropflux': {'value': 7.527790739421876,
         'value_error': 22.274194568169577}}},
      'EnsoDuration': {'diagnostic': {'ERA-Interim': {'value': 13.0,
         'value_error': None},
        'HadCM3_r6i1p1': {'value': 15.0, 'value_error': None},
        'HadISST': {'value': 13.0, 'value_error': None},
        'Tropflux': {'value': 13.0, 'value_error': None}},
       'metric': {'ERA-Interim': {'value': 15.384615384615385,
         'value_error': None},
        'HadISST': {'value': 15.384615384615385, 'value_error': None},
        'Tropflux': {'value': 15.384615384615385, 'value_error': None}}},
      'EnsoSeasonality': {'diagnostic': {'ERA-Interim': {'value': 2.0466846866656914,
         'value_error': 0.6513411033995022},
        'HadCM3_r6i1p1': {'value': 1.2700603086849371,
         'value_error': 0.2105837068127092},
        'HadISST': {'value': 1.6639865947361325,
         'value_error': 0.2712772451657809},
        'Tropflux': {'value': 2.0532132553583624,
         'value_error': 0.6534187683977347}},
       'metric': {'ERA-Interim': {'value': 37.945482420449125,
         'value_error': 30.037371673803488},
        'HadISST': {'value': 23.673645406600315,
         'value_error': 25.09874419723776},
        'Tropflux': {'value': 38.142796157661465,
         'value_error': 29.941862333111303}}},
      'EnsoSstDiversity_2': {'diagnostic': {'ERA-Interim': {'value': 33.25,
         'value_error': None},
        'HadCM3_r6i1p1': {'value': 20.0, 'value_error': None},
        'HadISST': {'value': 49.0, 'value_error': None},
        'Tropflux': {'value': 32.0, 'value_error': None}},
       'metric': {'ERA-Interim': {'value': 39.849624060150376,
         'value_error': None},
        'HadISST': {'value': 59.183673469387756, 'value_error': None},
        'Tropflux': {'value': 37.5, 'value_error': None}}},
      'EnsoSstLonRmse': {'diagnostic': {'ERA-Interim': {'value': None,
         'value_error': None},
        'HadCM3_r6i1p1': {'value': None, 'value_error': None},
        'HadISST': {'value': None, 'value_error': None},
        'Tropflux': {'value': None, 'value_error': None}},
       'metric': {'ERA-Interim': {'value': 0.2663805489021836,
         'value_error': None},
        'HadISST': {'value': 0.2803977826641542, 'value_error': None},
        'Tropflux': {'value': 0.26601422749231607, 'value_error': None}}},
      'EnsoSstSkew': {'diagnostic': {'ERA-Interim': {'value': 0.39098111106809963,
         'value_error': 0.061819541653923164},
        'HadCM3_r6i1p1': {'value': 0.31969303586214026,
         'value_error': 0.02645798390246753},
        'HadISST': {'value': 0.38989908235027515,
         'value_error': 0.03172953733021198},
        'Tropflux': {'value': 0.39744741059612115,
         'value_error': 0.06284195338099416}},
       'metric': {'ERA-Interim': {'value': 18.233125127505886,
         'value_error': 19.69555280126248},
        'HadISST': {'value': 18.00620972610128,
         'value_error': 13.458414387530787},
        'Tropflux': {'value': 19.563437240000912,
         'value_error': 19.375114573744767}}},
      'EnsoSstTsRmse': {'diagnostic': {'ERA-Interim': {'value': None,
         'value_error': None},
        'HadCM3_r6i1p1': {'value': None, 'value_error': None},
        'HadISST': {'value': None, 'value_error': None},
        'Tropflux': {'value': None, 'value_error': None}},
       'metric': {'ERA-Interim': {'value': 0.1266131278785893,
         'value_error': None},
        'HadISST': {'value': 0.1027739697549678, 'value_error': None},
        'Tropflux': {'value': 0.12832838253592774, 'value_error': None}}},
      'SeasonalPrLatRmse': {'diagnostic': {'ERA-Interim': {'value': None,
         'value_error': None},
        'GPCPv2.3': {'value': None, 'value_error': None},
        'HadCM3_r6i1p1': {'value': None, 'value_error': None}},
       'metric': {'ERA-Interim': {'value': 0.42679837392242115,
         'value_error': None},
        'GPCPv2.3': {'value': 0.5373154751894941, 'value_error': None}}},
      'SeasonalPrLonRmse': {'diagnostic': {'ERA-Interim': {'value': None,
         'value_error': None},
        'GPCPv2.3': {'value': None, 'value_error': None},
        'HadCM3_r6i1p1': {'value': None, 'value_error': None}},
       'metric': {'ERA-Interim': {'value': 0.5746094673755986,
         'value_error': None},
        'GPCPv2.3': {'value': 0.39946573218202897, 'value_error': None}}},
      'SeasonalSstLonRmse': {'diagnostic': {'ERA-Interim': {'value': None,
         'value_error': None},
        'HadCM3_r6i1p1': {'value': None, 'value_error': None},
        'HadISST': {'value': None, 'value_error': None},
        'Tropflux': {'value': None, 'value_error': None}},
       'metric': {'ERA-Interim': {'value': 0.29526170283254305,
         'value_error': None},
        'HadISST': {'value': 0.3017883079125728, 'value_error': None},
        'Tropflux': {'value': 0.3024981419413787, 'value_error': None}}},
      'SeasonalTauxLonRmse': {'diagnostic': {'ERA-Interim': {'value': None,
         'value_error': None},
        'HadCM3_r6i1p1': {'value': None, 'value_error': None},
        'Tropflux': {'value': None, 'value_error': None}},
       'metric': {'ERA-Interim': {'value': 2.383642673280318,
         'value_error': None},
        'Tropflux': {'value': 2.7393527562960887, 'value_error': None}}}}},
    'r7i1p1': {'metadata': {'description_of_the_collection': 'Describe which science question this collection is about',
      'metrics': {'BiasPrLatRmse': {'diagnostic': {'ERA-Interim': {'name': 'ERA-Interim',
          'nyears': 40,
          'time_period': ['1979-1-16 12:0:0.0', '2019-3-16 12:0:0.0']},
         'GPCPv2.3': {'name': 'GPCPv2.3',
          'nyears': 41,
          'time_period': ['1979-1-1 0:0:0.0', '2019-7-1 0:0:0.0']},
         'HadCM3_r7i1p1': {'keyerror': None,
          'name': 'HadCM3_r7i1p1',
          'nyears': 146,
          'time_period': ['1859-12-16 0:0:0.0', '2005-12-16 0:0:0.0']},
         'method': 'Meridional root mean square error of nino3_LatExt pr, time series are linearly detrended, observations and model regridded to generic_1x1deg',
         'name': 'pr Meridional RMSE',
         'ref': 'Using CDAT regridding and rms (uncentered and biased) calculation',
         'time_frequency': 'monthly',
         'units': 'mm/day'},
        'metric': {'datasets': "HadCM3_r7i1p1; ERA-Interim's pr & GPCPv2.3's precip; 's ",
         'method': 'The metric is the statistical value between the model and the observations',
         'name': 'BiasPrLatRmse',
         'units': 'mm/day'}},
       'BiasPrLonRmse': {'diagnostic': {'ERA-Interim': {'name': 'ERA-Interim',
          'nyears': 40,
          'time_period': ['1979-1-16 12:0:0.0', '2019-3-16 12:0:0.0']},
         'GPCPv2.3': {'name': 'GPCPv2.3',
          'nyears': 41,
          'time_period': ['1979-1-1 0:0:0.0', '2019-7-1 0:0:0.0']},
         'HadCM3_r7i1p1': {'keyerror': None,
          'name': 'HadCM3_r7i1p1',
          'nyears': 146,
          'time_period': ['1859-12-16 0:0:0.0', '2005-12-16 0:0:0.0']},
         'method': 'Zonal root mean square error of equatorial_pacific pr, time series are linearly detrended, observations and model regridded to generic_1x1deg',
         'name': 'pr Zonal RMSE',
         'ref': 'Using CDAT regridding and rms (uncentered and biased) calculation',
         'time_frequency': 'monthly',
         'units': 'mm/day'},
        'metric': {'datasets': "HadCM3_r7i1p1; ERA-Interim's pr & GPCPv2.3's precip; 's ",
         'method': 'The metric is the statistical value between the model and the observations',
         'name': 'BiasPrLonRmse',
         'units': 'mm/day'}},
       'BiasSstLonRmse': {'diagnostic': {'ERA-Interim': {'name': 'ERA-Interim',
          'nyears': 40,
          'time_period': ['1979-1-16 12:0:0.0', '2019-3-16 12:0:0.0']},
         'HadCM3_r7i1p1': {'keyerror': None,
          'name': 'HadCM3_r7i1p1',
          'nyears': 146,
          'time_period': ['1859-12-16 0:0:0.0', '2005-12-16 0:0:0.0']},
         'HadISST': {'name': 'HadISST',
          'nyears': 151,
          'time_period': ['1870-1-16 11:59:59.5', '2020-10-16 12:0:0.0']},
         'Tropflux': {'name': 'Tropflux',
          'nyears': 40,
          'time_period': ['1979-1-15 0:0:0.0', '2018-12-15 12:0:0.0']},
         'method': 'Zonal root mean square error of equatorial_pacific sst, time series are linearly detrended, observations and model regridded to generic_1x1deg',
         'name': 'sst Zonal RMSE',
         'ref': 'Using CDAT regridding and rms (uncentered and biased) calculation',
         'time_frequency': 'monthly',
         'units': 'C'},
        'metric': {'datasets': "HadCM3_r7i1p1; ERA-Interim's ts & HadISST's sst & Tropflux's sst; 's ",
         'method': 'The metric is the statistical value between the model and the observations',
         'name': 'BiasSstLonRmse',
         'units': 'C'}},
       'BiasTauxLonRmse': {'diagnostic': {'ERA-Interim': {'name': 'ERA-Interim',
          'nyears': 40,
          'time_period': ['1979-1-16 12:0:0.0', '2019-3-16 12:0:0.0']},
         'HadCM3_r7i1p1': {'keyerror': None,
          'name': 'HadCM3_r7i1p1',
          'nyears': 146,
          'time_period': ['1859-12-16 0:0:0.0', '2005-12-16 0:0:0.0']},
         'Tropflux': {'name': 'Tropflux',
          'nyears': 40,
          'time_period': ['1979-1-15 0:0:0.0', '2018-12-15 12:0:0.0']},
         'method': 'Zonal root mean square error of equatorial_pacific taux, time series are linearly detrended, observations and model regridded to generic_1x1deg',
         'name': 'taux Zonal RMSE',
         'ref': 'Using CDAT regridding and rms (uncentered and biased) calculation',
         'time_frequency': 'monthly',
         'units': '1e-3 N/m2'},
        'metric': {'datasets': "HadCM3_r7i1p1; ERA-Interim's tauu & Tropflux's taux; 's ",
         'method': 'The metric is the statistical value between the model and the observations',
         'name': 'BiasTauxLonRmse',
         'units': '1e-3 N/m2'}},
       'EnsoAmpl': {'diagnostic': {'ERA-Interim': {'keyerror': None,
          'name': 'ERA-Interim',
          'nyears': 40,
          'time_period': ['1979-1-16 12:0:0.0', '2019-3-16 12:0:0.0']},
         'HadCM3_r7i1p1': {'keyerror': None,
          'name': 'HadCM3_r7i1p1',
          'nyears': 146,
          'time_period': ['1859-12-16 0:0:0.0', '2005-12-16 0:0:0.0']},
         'HadISST': {'keyerror': None,
          'name': 'HadISST',
          'nyears': 151,
          'time_period': ['1870-1-16 11:59:59.5', '2020-10-16 12:0:0.0']},
         'Tropflux': {'keyerror': None,
          'name': 'Tropflux',
          'nyears': 40,
          'time_period': ['1979-1-15 0:0:0.0', '2018-12-15 12:0:0.0']},
         'method': 'Standard deviation of nino3.4 sstA, time series are linearly detrended',
         'name': 'ENSO amplitude',
         'ref': 'Using CDAT regression calculation',
         'time_frequency': 'monthly',
         'units': 'C'},
        'metric': {'datasets': "HadCM3_r7i1p1; ERA-Interim's ts & HadISST's sst & Tropflux's sst; 's ",
         'method': 'The metric is the absolute value of the relative difference between model and observations values (M = 100 * abs[[model-obs] / obs])',
         'name': 'EnsoAmpl',
         'units': '%'}},
       'EnsoDuration': {'diagnostic': {'ERA-Interim': {'keyerror': None,
          'name': 'ERA-Interim',
          'nyears': 40,
          'time_period': ['1979-1-16 12:0:0.0', '2019-3-16 12:0:0.0']},
         'HadCM3_r7i1p1': {'keyerror': None,
          'name': 'HadCM3_r7i1p1',
          'nyears': 146,
          'time_period': ['1859-12-16 0:0:0.0', '2005-12-16 0:0:0.0']},
         'HadISST': {'keyerror': None,
          'name': 'HadISST',
          'nyears': 151,
          'time_period': ['1870-1-16 11:59:59.5', '2020-10-16 12:0:0.0']},
         'Tropflux': {'keyerror': None,
          'name': 'Tropflux',
          'nyears': 40,
          'time_period': ['1979-1-15 0:0:0.0', '2018-12-15 12:0:0.0']},
         'method': 'nino3.4 SSTA during DEC regressed against nino3.4 SSTA during 6 years (centered on ENSO), the duration is the number of consecutive months during which the regression is above 0.25, time series are linearly detrended, smoothing using a triangle shaped window of 5 points',
         'name': 'ENSO Duration based on life cyle SSTA pattern',
         'ref': 'Using CDAT',
         'time_frequency': 'monthly',
         'units': 'months'},
        'metric': {'datasets': "HadCM3_r7i1p1; ERA-Interim's ts & HadISST's sst & Tropflux's sst; 's ",
         'method': 'The metric is the absolute value of the relative difference between model and observations values (M = 100 * abs[[model-obs] / obs])',
         'name': 'EnsoDuration',
         'units': '%'}},
       'EnsoSeasonality': {'diagnostic': {'ERA-Interim': {'keyerror': None,
          'name': 'ERA-Interim',
          'nyears': 40,
          'time_period': ['1979-1-16 12:0:0.0', '2019-3-16 12:0:0.0']},
         'HadCM3_r7i1p1': {'keyerror': None,
          'name': 'HadCM3_r7i1p1',
          'nyears': 146,
          'time_period': ['1859-12-16 0:0:0.0', '2005-12-16 0:0:0.0']},
         'HadISST': {'keyerror': None,
          'name': 'HadISST',
          'nyears': 151,
          'time_period': ['1870-1-16 11:59:59.5', '2020-10-16 12:0:0.0']},
         'Tropflux': {'keyerror': None,
          'name': 'Tropflux',
          'nyears': 40,
          'time_period': ['1979-1-15 0:0:0.0', '2018-12-15 12:0:0.0']},
         'method': 'Ratio between NDJ and MAM standard deviation nino3.4 sstA, time series are linearly detrended',
         'name': 'ENSO seasonality',
         'ref': 'Using CDAT std dev calculation',
         'time_frequency': 'monthly',
         'units': 'C/C'},
        'metric': {'datasets': "HadCM3_r7i1p1; ERA-Interim's ts & HadISST's sst & Tropflux's sst; 's ",
         'method': 'The metric is the absolute value of the relative difference between model and observations values (M = 100 * abs[[model-obs] / obs])',
         'name': 'EnsoSeasonality',
         'units': '%'}},
       'EnsoSstDiversity_2': {'diagnostic': {'ERA-Interim': {'keyerror': None,
          'name': 'ERA-Interim',
          'nyears': 40,
          'time_period': ['1979-1-16 12:0:0.0', '2019-3-16 12:0:0.0']},
         'HadCM3_r7i1p1': {'keyerror': None,
          'name': 'HadCM3_r7i1p1',
          'nyears': 146,
          'time_period': ['1859-12-16 0:0:0.0', '2005-12-16 0:0:0.0']},
         'HadISST': {'keyerror': None,
          'name': 'HadISST',
          'nyears': 151,
          'time_period': ['1870-1-16 11:59:59.5', '2020-10-16 12:0:0.0']},
         'Tropflux': {'keyerror': None,
          'name': 'Tropflux',
          'nyears': 40,
          'time_period': ['1979-1-15 0:0:0.0', '2018-12-15 12:0:0.0']},
         'method': 'Nino (Nina) events = nino3.4 sstA > 0.75 (< -0.75) during DEC, zonal SSTA (meridional averaged [-5.0 ; 5.0]), the zonal SSTA maximum (minimum) is located for each event, the diversity is the interquartile range (IQR = Q3 - Q1), time series are linearly detrended, smoothing using a triangle shaped window of 5 points',
         'name': 'ENSO Diversity (interquartile range)',
         'ref': 'Using CDAT regridding',
         'time_frequency': 'monthly',
         'units': 'long'},
        'metric': {'datasets': "HadCM3_r7i1p1; ERA-Interim's ts & HadISST's sst & Tropflux's sst; 's ",
         'method': 'The metric is the absolute value of the relative difference between model and observations values (M = 100 * abs[[model-obs] / obs])',
         'name': 'EnsoSstDiversity',
         'units': '%'}},
       'EnsoSstLonRmse': {'diagnostic': {'ERA-Interim': {'name': 'ERA-Interim',
          'nyears': 40,
          'time_period': ['1979-1-16 12:0:0.0', '2019-3-16 12:0:0.0']},
         'HadCM3_r7i1p1': {'keyerror': None,
          'name': 'HadCM3_r7i1p1',
          'nyears': 146,
          'time_period': ['1859-12-16 0:0:0.0', '2005-12-16 0:0:0.0']},
         'HadISST': {'name': 'HadISST',
          'nyears': 151,
          'time_period': ['1870-1-16 11:59:59.5', '2020-10-16 12:0:0.0']},
         'Tropflux': {'name': 'Tropflux',
          'nyears': 40,
          'time_period': ['1979-1-15 0:0:0.0', '2018-12-15 12:0:0.0']},
         'method': 'nino3.4 SSTA during DEC regressed against equatorial_pacific SSTA, time series are linearly detrended, smoothing using a triangle shaped window of 5 points, observations and model regridded to generic_1x1deg',
         'name': 'ENSO Zonal SSTA pattern',
         'ref': 'Using CDAT regridding and rms (uncentered and biased) calculation',
         'time_frequency': 'monthly',
         'units': 'C/C'},
        'metric': {'datasets': "HadCM3_r7i1p1; ERA-Interim's ts & HadISST's sst & Tropflux's sst; 's ",
         'method': 'The metric is the statistical value between the model and the observations',
         'name': 'EnsoSstLonRmse',
         'units': 'C/C'}},
       'EnsoSstSkew': {'diagnostic': {'ERA-Interim': {'keyerror': None,
          'name': 'ERA-Interim',
          'nyears': 40,
          'time_period': ['1979-1-16 12:0:0.0', '2019-3-16 12:0:0.0']},
         'HadCM3_r7i1p1': {'keyerror': None,
          'name': 'HadCM3_r7i1p1',
          'nyears': 146,
          'time_period': ['1859-12-16 0:0:0.0', '2005-12-16 0:0:0.0']},
         'HadISST': {'keyerror': None,
          'name': 'HadISST',
          'nyears': 151,
          'time_period': ['1870-1-16 11:59:59.5', '2020-10-16 12:0:0.0']},
         'Tropflux': {'keyerror': None,
          'name': 'Tropflux',
          'nyears': 40,
          'time_period': ['1979-1-15 0:0:0.0', '2018-12-15 12:0:0.0']},
         'method': 'Standard deviation of nino3.4 sstA, time series are linearly detrended',
         'name': 'ENSO skewness',
         'ref': 'Using CDAT regression calculation',
         'time_frequency': 'monthly',
         'units': 'C'},
        'metric': {'datasets': "HadCM3_r7i1p1; ERA-Interim's ts & HadISST's sst & Tropflux's sst; 's ",
         'method': 'The metric is the absolute value of the relative difference between model and observations values (M = 100 * abs[[model-obs] / obs])',
         'name': 'EnsoSstSkew',
         'units': '%'}},
       'EnsoSstTsRmse': {'diagnostic': {'ERA-Interim': {'name': 'ERA-Interim',
          'nyears': 40,
          'time_period': ['1979-1-16 12:0:0.0', '2019-3-16 12:0:0.0']},
         'HadCM3_r7i1p1': {'keyerror': None,
          'name': 'HadCM3_r7i1p1',
          'nyears': 146,
          'time_period': ['1859-12-16 0:0:0.0', '2005-12-16 0:0:0.0']},
         'HadISST': {'name': 'HadISST',
          'nyears': 151,
          'time_period': ['1870-1-16 11:59:59.5', '2020-10-16 12:0:0.0']},
         'Tropflux': {'name': 'Tropflux',
          'nyears': 40,
          'time_period': ['1979-1-15 0:0:0.0', '2018-12-15 12:0:0.0']},
         'method': 'nino3.4 SSTA during DEC regressed against nino3.4 SSTA during 6 years (centered on ENSO), time series are linearly detrended, smoothing using a triangle shaped window of 5 points',
         'name': 'ENSO life cyle SSTA pattern',
         'ref': 'Using CDAT regridding and rms (uncentered and biased) calculation',
         'time_frequency': 'monthly',
         'units': 'C/C'},
        'metric': {'datasets': "HadCM3_r7i1p1; ERA-Interim's ts & HadISST's sst & Tropflux's sst; 's ",
         'method': 'The metric is the statistical value between the model and the observations',
         'name': 'EnsoSstTsRmse',
         'units': 'C/C'}},
       'SeasonalPrLatRmse': {'diagnostic': {'ERA-Interim': {'name': 'ERA-Interim',
          'nyears': 40,
          'time_period': ['1979-1-16 12:0:0.0', '2019-3-16 12:0:0.0']},
         'GPCPv2.3': {'name': 'GPCPv2.3',
          'nyears': 41,
          'time_period': ['1979-1-1 0:0:0.0', '2019-7-1 0:0:0.0']},
         'HadCM3_r7i1p1': {'keyerror': None,
          'name': 'HadCM3_r7i1p1',
          'nyears': 146,
          'time_period': ['1859-12-16 0:0:0.0', '2005-12-16 0:0:0.0']},
         'method': 'Meridional root mean square error of nino3_LatExt climatological pr STD, time series are linearly detrended, observations and model regridded to generic_1x1deg',
         'name': 'pr meridional seasonality RMSE',
         'ref': 'Using CDAT regridding and rms (uncentered and biased) calculation',
         'time_frequency': 'monthly',
         'units': 'mm/day'},
        'metric': {'datasets': "HadCM3_r7i1p1; ERA-Interim's pr & GPCPv2.3's precip; 's ",
         'method': 'The metric is the statistical value between the model and the observations',
         'name': 'SeasonalPrLatRmse',
         'units': 'mm/day'}},
       'SeasonalPrLonRmse': {'diagnostic': {'ERA-Interim': {'name': 'ERA-Interim',
          'nyears': 40,
          'time_period': ['1979-1-16 12:0:0.0', '2019-3-16 12:0:0.0']},
         'GPCPv2.3': {'name': 'GPCPv2.3',
          'nyears': 41,
          'time_period': ['1979-1-1 0:0:0.0', '2019-7-1 0:0:0.0']},
         'HadCM3_r7i1p1': {'keyerror': None,
          'name': 'HadCM3_r7i1p1',
          'nyears': 146,
          'time_period': ['1859-12-16 0:0:0.0', '2005-12-16 0:0:0.0']},
         'method': 'Zonal root mean square error of equatorial_pacific climatological pr STD, time series are linearly detrended, observations and model regridded to generic_1x1deg',
         'name': 'pr zonal seasonality RMSE',
         'ref': 'Using CDAT regridding and rms (uncentered and biased) calculation',
         'time_frequency': 'monthly',
         'units': 'mm/day'},
        'metric': {'datasets': "HadCM3_r7i1p1; ERA-Interim's pr & GPCPv2.3's precip; 's ",
         'method': 'The metric is the statistical value between the model and the observations',
         'name': 'SeasonalPrLonRmse',
         'units': 'mm/day'}},
       'SeasonalSstLonRmse': {'diagnostic': {'ERA-Interim': {'name': 'ERA-Interim',
          'nyears': 40,
          'time_period': ['1979-1-16 12:0:0.0', '2019-3-16 12:0:0.0']},
         'HadCM3_r7i1p1': {'keyerror': None,
          'name': 'HadCM3_r7i1p1',
          'nyears': 146,
          'time_period': ['1859-12-16 0:0:0.0', '2005-12-16 0:0:0.0']},
         'HadISST': {'name': 'HadISST',
          'nyears': 151,
          'time_period': ['1870-1-16 11:59:59.5', '2020-10-16 12:0:0.0']},
         'Tropflux': {'name': 'Tropflux',
          'nyears': 40,
          'time_period': ['1979-1-15 0:0:0.0', '2018-12-15 12:0:0.0']},
         'method': 'Zonal root mean square error of equatorial_pacific climatological sst STD, time series are linearly detrended, observations and model regridded to generic_1x1deg',
         'name': 'sst zonal seasonality RMSE',
         'ref': 'Using CDAT regridding and rms (uncentered and biased) calculation',
         'time_frequency': 'monthly',
         'units': 'C'},
        'metric': {'datasets': "HadCM3_r7i1p1; ERA-Interim's ts & HadISST's sst & Tropflux's sst; 's ",
         'method': 'The metric is the statistical value between the model and the observations',
         'name': 'SeasonalSstLonRmse',
         'units': 'C'}},
       'SeasonalTauxLonRmse': {'diagnostic': {'ERA-Interim': {'name': 'ERA-Interim',
          'nyears': 40,
          'time_period': ['1979-1-16 12:0:0.0', '2019-3-16 12:0:0.0']},
         'HadCM3_r7i1p1': {'keyerror': None,
          'name': 'HadCM3_r7i1p1',
          'nyears': 146,
          'time_period': ['1859-12-16 0:0:0.0', '2005-12-16 0:0:0.0']},
         'Tropflux': {'name': 'Tropflux',
          'nyears': 40,
          'time_period': ['1979-1-15 0:0:0.0', '2018-12-15 12:0:0.0']},
         'method': 'Zonal root mean square error of equatorial_pacific climatological taux STD, time series are linearly detrended, observations and model regridded to generic_1x1deg',
         'name': 'taux zonal seasonality RMSE',
         'ref': 'Using CDAT regridding and rms (uncentered and biased) calculation',
         'time_frequency': 'monthly',
         'units': '1e-3 N/m2'},
        'metric': {'datasets': "HadCM3_r7i1p1; ERA-Interim's tauu & Tropflux's taux; 's ",
         'method': 'The metric is the statistical value between the model and the observations',
         'name': 'SeasonalTauxLonRmse',
         'units': '1e-3 N/m2'}}},
      'name': 'Metrics Collection for ENSO performance'},
     'value': {'BiasPrLatRmse': {'diagnostic': {'ERA-Interim': {'value': None,
         'value_error': None},
        'GPCPv2.3': {'value': None, 'value_error': None},
        'HadCM3_r7i1p1': {'value': None, 'value_error': None}},
       'metric': {'ERA-Interim': {'value': 0.6080231265065513,
         'value_error': None},
        'GPCPv2.3': {'value': 1.3007843543911328, 'value_error': None}}},
      'BiasPrLonRmse': {'diagnostic': {'ERA-Interim': {'value': None,
         'value_error': None},
        'GPCPv2.3': {'value': None, 'value_error': None},
        'HadCM3_r7i1p1': {'value': None, 'value_error': None}},
       'metric': {'ERA-Interim': {'value': 2.7788446031067586,
         'value_error': None},
        'GPCPv2.3': {'value': 2.042052559626932, 'value_error': None}}},
      'BiasSstLonRmse': {'diagnostic': {'ERA-Interim': {'value': None,
         'value_error': None},
        'HadCM3_r7i1p1': {'value': None, 'value_error': None},
        'HadISST': {'value': None, 'value_error': None},
        'Tropflux': {'value': None, 'value_error': None}},
       'metric': {'ERA-Interim': {'value': 1.0967364065247733,
         'value_error': None},
        'HadISST': {'value': 0.9989563926770915, 'value_error': None},
        'Tropflux': {'value': 1.134091708931195, 'value_error': None}}},
      'BiasTauxLonRmse': {'diagnostic': {'ERA-Interim': {'value': None,
         'value_error': None},
        'HadCM3_r7i1p1': {'value': None, 'value_error': None},
        'Tropflux': {'value': None, 'value_error': None}},
       'metric': {'ERA-Interim': {'value': 10.827114479285804,
         'value_error': None},
        'Tropflux': {'value': 10.83249999407528, 'value_error': None}}},
      'EnsoAmpl': {'diagnostic': {'ERA-Interim': {'value': 0.8989844997845644,
         'value_error': 0.14214193002531866},
        'HadCM3_r7i1p1': {'value': 0.8178446899176081,
         'value_error': 0.06768530813379901},
        'HadISST': {'value': 0.7665787872085695,
         'value_error': 0.06238329697691264},
        'Tropflux': {'value': 0.9039789553693535,
         'value_error': 0.14293162279134272}},
       'metric': {'ERA-Interim': {'value': 9.025718450807657,
         'value_error': 21.913382021792106},
        'HadISST': {'value': 6.687623446471677,
         'value_error': 17.511646205975406},
        'Tropflux': {'value': 9.528348524059625,
         'value_error': 21.792311268352226}}},
      'EnsoDuration': {'diagnostic': {'ERA-Interim': {'value': 13.0,
         'value_error': None},
        'HadCM3_r7i1p1': {'value': 13.0, 'value_error': None},
        'HadISST': {'value': 13.0, 'value_error': None},
        'Tropflux': {'value': 13.0, 'value_error': None}},
       'metric': {'ERA-Interim': {'value': 0.0, 'value_error': None},
        'HadISST': {'value': 0.0, 'value_error': None},
        'Tropflux': {'value': 0.0, 'value_error': None}}},
      'EnsoSeasonality': {'diagnostic': {'ERA-Interim': {'value': 2.0466846866656914,
         'value_error': 0.6513411033995022},
        'HadCM3_r7i1p1': {'value': 1.4223393378661293,
         'value_error': 0.23583249398882364},
        'HadISST': {'value': 1.6639865947361325,
         'value_error': 0.2712772451657809},
        'Tropflux': {'value': 2.0532132553583624,
         'value_error': 0.6534187683977347}},
       'metric': {'ERA-Interim': {'value': 30.505204483485908,
         'value_error': 33.63882411378846},
        'HadISST': {'value': 14.522187716802042,
         'value_error': 28.10805987609705},
        'Tropflux': {'value': 30.726175951076357,
         'value_error': 33.531863293525674}}},
      'EnsoSstDiversity_2': {'diagnostic': {'ERA-Interim': {'value': 33.25,
         'value_error': None},
        'HadCM3_r7i1p1': {'value': 24.75, 'value_error': None},
        'HadISST': {'value': 49.0, 'value_error': None},
        'Tropflux': {'value': 32.0, 'value_error': None}},
       'metric': {'ERA-Interim': {'value': 25.563909774436087,
         'value_error': None},
        'HadISST': {'value': 49.48979591836735, 'value_error': None},
        'Tropflux': {'value': 22.65625, 'value_error': None}}},
      'EnsoSstLonRmse': {'diagnostic': {'ERA-Interim': {'value': None,
         'value_error': None},
        'HadCM3_r7i1p1': {'value': None, 'value_error': None},
        'HadISST': {'value': None, 'value_error': None},
        'Tropflux': {'value': None, 'value_error': None}},
       'metric': {'ERA-Interim': {'value': 0.24116122154630015,
         'value_error': None},
        'HadISST': {'value': 0.2547133680064858, 'value_error': None},
        'Tropflux': {'value': 0.24052697481641336, 'value_error': None}}},
      'EnsoSstSkew': {'diagnostic': {'ERA-Interim': {'value': 0.39098111106809963,
         'value_error': 0.061819541653923164},
        'HadCM3_r7i1p1': {'value': 0.2979423400283957,
         'value_error': 0.024657883507146927},
        'HadISST': {'value': 0.38989908235027515,
         'value_error': 0.03172953733021198},
        'Tropflux': {'value': 0.39744741059612115,
         'value_error': 0.06284195338099416}},
       'metric': {'ERA-Interim': {'value': 23.796231686368802,
         'value_error': 18.35554244694732},
        'HadISST': {'value': 23.584754744118097,
         'value_error': 12.54275516161663},
        'Tropflux': {'value': 25.036034432449906,
         'value_error': 18.056905615263727}}},
      'EnsoSstTsRmse': {'diagnostic': {'ERA-Interim': {'value': None,
         'value_error': None},
        'HadCM3_r7i1p1': {'value': None, 'value_error': None},
        'HadISST': {'value': None, 'value_error': None},
        'Tropflux': {'value': None, 'value_error': None}},
       'metric': {'ERA-Interim': {'value': 0.07975549323219616,
         'value_error': None},
        'HadISST': {'value': 0.07480864232507385, 'value_error': None},
        'Tropflux': {'value': 0.08072618512541341, 'value_error': None}}},
      'SeasonalPrLatRmse': {'diagnostic': {'ERA-Interim': {'value': None,
         'value_error': None},
        'GPCPv2.3': {'value': None, 'value_error': None},
        'HadCM3_r7i1p1': {'value': None, 'value_error': None}},
       'metric': {'ERA-Interim': {'value': 0.41669263447609073,
         'value_error': None},
        'GPCPv2.3': {'value': 0.5329601482270555, 'value_error': None}}},
      'SeasonalPrLonRmse': {'diagnostic': {'ERA-Interim': {'value': None,
         'value_error': None},
        'GPCPv2.3': {'value': None, 'value_error': None},
        'HadCM3_r7i1p1': {'value': None, 'value_error': None}},
       'metric': {'ERA-Interim': {'value': 0.5836315405609687,
         'value_error': None},
        'GPCPv2.3': {'value': 0.4084844732488913, 'value_error': None}}},
      'SeasonalSstLonRmse': {'diagnostic': {'ERA-Interim': {'value': None,
         'value_error': None},
        'HadCM3_r7i1p1': {'value': None, 'value_error': None},
        'HadISST': {'value': None, 'value_error': None},
        'Tropflux': {'value': None, 'value_error': None}},
       'metric': {'ERA-Interim': {'value': 0.29745268501078925,
         'value_error': None},
        'HadISST': {'value': 0.30452628513937885, 'value_error': None},
        'Tropflux': {'value': 0.3044586517339176, 'value_error': None}}},
      'SeasonalTauxLonRmse': {'diagnostic': {'ERA-Interim': {'value': None,
         'value_error': None},
        'HadCM3_r7i1p1': {'value': None, 'value_error': None},
        'Tropflux': {'value': None, 'value_error': None}},
       'metric': {'ERA-Interim': {'value': 2.262878596492244,
         'value_error': None},
        'Tropflux': {'value': 2.6158342539207857, 'value_error': None}}}}},
    'r8i1p1': {'metadata': {'description_of_the_collection': 'Describe which science question this collection is about',
      'metrics': {'BiasPrLatRmse': {'diagnostic': {'ERA-Interim': {'name': 'ERA-Interim',
          'nyears': 40,
          'time_period': ['1979-1-16 12:0:0.0', '2019-3-16 12:0:0.0']},
         'GPCPv2.3': {'name': 'GPCPv2.3',
          'nyears': 41,
          'time_period': ['1979-1-1 0:0:0.0', '2019-7-1 0:0:0.0']},
         'HadCM3_r8i1p1': {'keyerror': None,
          'name': 'HadCM3_r8i1p1',
          'nyears': 146,
          'time_period': ['1859-12-16 0:0:0.0', '2005-12-16 0:0:0.0']},
         'method': 'Meridional root mean square error of nino3_LatExt pr, time series are linearly detrended, observations and model regridded to generic_1x1deg',
         'name': 'pr Meridional RMSE',
         'ref': 'Using CDAT regridding and rms (uncentered and biased) calculation',
         'time_frequency': 'monthly',
         'units': 'mm/day'},
        'metric': {'datasets': "HadCM3_r8i1p1; ERA-Interim's pr & GPCPv2.3's precip; 's ",
         'method': 'The metric is the statistical value between the model and the observations',
         'name': 'BiasPrLatRmse',
         'units': 'mm/day'}},
       'BiasPrLonRmse': {'diagnostic': {'ERA-Interim': {'name': 'ERA-Interim',
          'nyears': 40,
          'time_period': ['1979-1-16 12:0:0.0', '2019-3-16 12:0:0.0']},
         'GPCPv2.3': {'name': 'GPCPv2.3',
          'nyears': 41,
          'time_period': ['1979-1-1 0:0:0.0', '2019-7-1 0:0:0.0']},
         'HadCM3_r8i1p1': {'keyerror': None,
          'name': 'HadCM3_r8i1p1',
          'nyears': 146,
          'time_period': ['1859-12-16 0:0:0.0', '2005-12-16 0:0:0.0']},
         'method': 'Zonal root mean square error of equatorial_pacific pr, time series are linearly detrended, observations and model regridded to generic_1x1deg',
         'name': 'pr Zonal RMSE',
         'ref': 'Using CDAT regridding and rms (uncentered and biased) calculation',
         'time_frequency': 'monthly',
         'units': 'mm/day'},
        'metric': {'datasets': "HadCM3_r8i1p1; ERA-Interim's pr & GPCPv2.3's precip; 's ",
         'method': 'The metric is the statistical value between the model and the observations',
         'name': 'BiasPrLonRmse',
         'units': 'mm/day'}},
       'BiasSstLonRmse': {'diagnostic': {'ERA-Interim': {'name': 'ERA-Interim',
          'nyears': 40,
          'time_period': ['1979-1-16 12:0:0.0', '2019-3-16 12:0:0.0']},
         'HadCM3_r8i1p1': {'keyerror': None,
          'name': 'HadCM3_r8i1p1',
          'nyears': 146,
          'time_period': ['1859-12-16 0:0:0.0', '2005-12-16 0:0:0.0']},
         'HadISST': {'name': 'HadISST',
          'nyears': 151,
          'time_period': ['1870-1-16 11:59:59.5', '2020-10-16 12:0:0.0']},
         'Tropflux': {'name': 'Tropflux',
          'nyears': 40,
          'time_period': ['1979-1-15 0:0:0.0', '2018-12-15 12:0:0.0']},
         'method': 'Zonal root mean square error of equatorial_pacific sst, time series are linearly detrended, observations and model regridded to generic_1x1deg',
         'name': 'sst Zonal RMSE',
         'ref': 'Using CDAT regridding and rms (uncentered and biased) calculation',
         'time_frequency': 'monthly',
         'units': 'C'},
        'metric': {'datasets': "HadCM3_r8i1p1; ERA-Interim's ts & HadISST's sst & Tropflux's sst; 's ",
         'method': 'The metric is the statistical value between the model and the observations',
         'name': 'BiasSstLonRmse',
         'units': 'C'}},
       'BiasTauxLonRmse': {'diagnostic': {'ERA-Interim': {'name': 'ERA-Interim',
          'nyears': 40,
          'time_period': ['1979-1-16 12:0:0.0', '2019-3-16 12:0:0.0']},
         'HadCM3_r8i1p1': {'keyerror': None,
          'name': 'HadCM3_r8i1p1',
          'nyears': 146,
          'time_period': ['1859-12-16 0:0:0.0', '2005-12-16 0:0:0.0']},
         'Tropflux': {'name': 'Tropflux',
          'nyears': 40,
          'time_period': ['1979-1-15 0:0:0.0', '2018-12-15 12:0:0.0']},
         'method': 'Zonal root mean square error of equatorial_pacific taux, time series are linearly detrended, observations and model regridded to generic_1x1deg',
         'name': 'taux Zonal RMSE',
         'ref': 'Using CDAT regridding and rms (uncentered and biased) calculation',
         'time_frequency': 'monthly',
         'units': '1e-3 N/m2'},
        'metric': {'datasets': "HadCM3_r8i1p1; ERA-Interim's tauu & Tropflux's taux; 's ",
         'method': 'The metric is the statistical value between the model and the observations',
         'name': 'BiasTauxLonRmse',
         'units': '1e-3 N/m2'}},
       'EnsoAmpl': {'diagnostic': {'ERA-Interim': {'keyerror': None,
          'name': 'ERA-Interim',
          'nyears': 40,
          'time_period': ['1979-1-16 12:0:0.0', '2019-3-16 12:0:0.0']},
         'HadCM3_r8i1p1': {'keyerror': None,
          'name': 'HadCM3_r8i1p1',
          'nyears': 146,
          'time_period': ['1859-12-16 0:0:0.0', '2005-12-16 0:0:0.0']},
         'HadISST': {'keyerror': None,
          'name': 'HadISST',
          'nyears': 151,
          'time_period': ['1870-1-16 11:59:59.5', '2020-10-16 12:0:0.0']},
         'Tropflux': {'keyerror': None,
          'name': 'Tropflux',
          'nyears': 40,
          'time_period': ['1979-1-15 0:0:0.0', '2018-12-15 12:0:0.0']},
         'method': 'Standard deviation of nino3.4 sstA, time series are linearly detrended',
         'name': 'ENSO amplitude',
         'ref': 'Using CDAT regression calculation',
         'time_frequency': 'monthly',
         'units': 'C'},
        'metric': {'datasets': "HadCM3_r8i1p1; ERA-Interim's ts & HadISST's sst & Tropflux's sst; 's ",
         'method': 'The metric is the absolute value of the relative difference between model and observations values (M = 100 * abs[[model-obs] / obs])',
         'name': 'EnsoAmpl',
         'units': '%'}},
       'EnsoDuration': {'diagnostic': {'ERA-Interim': {'keyerror': None,
          'name': 'ERA-Interim',
          'nyears': 40,
          'time_period': ['1979-1-16 12:0:0.0', '2019-3-16 12:0:0.0']},
         'HadCM3_r8i1p1': {'keyerror': None,
          'name': 'HadCM3_r8i1p1',
          'nyears': 146,
          'time_period': ['1859-12-16 0:0:0.0', '2005-12-16 0:0:0.0']},
         'HadISST': {'keyerror': None,
          'name': 'HadISST',
          'nyears': 151,
          'time_period': ['1870-1-16 11:59:59.5', '2020-10-16 12:0:0.0']},
         'Tropflux': {'keyerror': None,
          'name': 'Tropflux',
          'nyears': 40,
          'time_period': ['1979-1-15 0:0:0.0', '2018-12-15 12:0:0.0']},
         'method': 'nino3.4 SSTA during DEC regressed against nino3.4 SSTA during 6 years (centered on ENSO), the duration is the number of consecutive months during which the regression is above 0.25, time series are linearly detrended, smoothing using a triangle shaped window of 5 points',
         'name': 'ENSO Duration based on life cyle SSTA pattern',
         'ref': 'Using CDAT',
         'time_frequency': 'monthly',
         'units': 'months'},
        'metric': {'datasets': "HadCM3_r8i1p1; ERA-Interim's ts & HadISST's sst & Tropflux's sst; 's ",
         'method': 'The metric is the absolute value of the relative difference between model and observations values (M = 100 * abs[[model-obs] / obs])',
         'name': 'EnsoDuration',
         'units': '%'}},
       'EnsoSeasonality': {'diagnostic': {'ERA-Interim': {'keyerror': None,
          'name': 'ERA-Interim',
          'nyears': 40,
          'time_period': ['1979-1-16 12:0:0.0', '2019-3-16 12:0:0.0']},
         'HadCM3_r8i1p1': {'keyerror': None,
          'name': 'HadCM3_r8i1p1',
          'nyears': 146,
          'time_period': ['1859-12-16 0:0:0.0', '2005-12-16 0:0:0.0']},
         'HadISST': {'keyerror': None,
          'name': 'HadISST',
          'nyears': 151,
          'time_period': ['1870-1-16 11:59:59.5', '2020-10-16 12:0:0.0']},
         'Tropflux': {'keyerror': None,
          'name': 'Tropflux',
          'nyears': 40,
          'time_period': ['1979-1-15 0:0:0.0', '2018-12-15 12:0:0.0']},
         'method': 'Ratio between NDJ and MAM standard deviation nino3.4 sstA, time series are linearly detrended',
         'name': 'ENSO seasonality',
         'ref': 'Using CDAT std dev calculation',
         'time_frequency': 'monthly',
         'units': 'C/C'},
        'metric': {'datasets': "HadCM3_r8i1p1; ERA-Interim's ts & HadISST's sst & Tropflux's sst; 's ",
         'method': 'The metric is the absolute value of the relative difference between model and observations values (M = 100 * abs[[model-obs] / obs])',
         'name': 'EnsoSeasonality',
         'units': '%'}},
       'EnsoSstDiversity_2': {'diagnostic': {'ERA-Interim': {'keyerror': None,
          'name': 'ERA-Interim',
          'nyears': 40,
          'time_period': ['1979-1-16 12:0:0.0', '2019-3-16 12:0:0.0']},
         'HadCM3_r8i1p1': {'keyerror': None,
          'name': 'HadCM3_r8i1p1',
          'nyears': 146,
          'time_period': ['1859-12-16 0:0:0.0', '2005-12-16 0:0:0.0']},
         'HadISST': {'keyerror': None,
          'name': 'HadISST',
          'nyears': 151,
          'time_period': ['1870-1-16 11:59:59.5', '2020-10-16 12:0:0.0']},
         'Tropflux': {'keyerror': None,
          'name': 'Tropflux',
          'nyears': 40,
          'time_period': ['1979-1-15 0:0:0.0', '2018-12-15 12:0:0.0']},
         'method': 'Nino (Nina) events = nino3.4 sstA > 0.75 (< -0.75) during DEC, zonal SSTA (meridional averaged [-5.0 ; 5.0]), the zonal SSTA maximum (minimum) is located for each event, the diversity is the interquartile range (IQR = Q3 - Q1), time series are linearly detrended, smoothing using a triangle shaped window of 5 points',
         'name': 'ENSO Diversity (interquartile range)',
         'ref': 'Using CDAT regridding',
         'time_frequency': 'monthly',
         'units': 'long'},
        'metric': {'datasets': "HadCM3_r8i1p1; ERA-Interim's ts & HadISST's sst & Tropflux's sst; 's ",
         'method': 'The metric is the absolute value of the relative difference between model and observations values (M = 100 * abs[[model-obs] / obs])',
         'name': 'EnsoSstDiversity',
         'units': '%'}},
       'EnsoSstLonRmse': {'diagnostic': {'ERA-Interim': {'name': 'ERA-Interim',
          'nyears': 40,
          'time_period': ['1979-1-16 12:0:0.0', '2019-3-16 12:0:0.0']},
         'HadCM3_r8i1p1': {'keyerror': None,
          'name': 'HadCM3_r8i1p1',
          'nyears': 146,
          'time_period': ['1859-12-16 0:0:0.0', '2005-12-16 0:0:0.0']},
         'HadISST': {'name': 'HadISST',
          'nyears': 151,
          'time_period': ['1870-1-16 11:59:59.5', '2020-10-16 12:0:0.0']},
         'Tropflux': {'name': 'Tropflux',
          'nyears': 40,
          'time_period': ['1979-1-15 0:0:0.0', '2018-12-15 12:0:0.0']},
         'method': 'nino3.4 SSTA during DEC regressed against equatorial_pacific SSTA, time series are linearly detrended, smoothing using a triangle shaped window of 5 points, observations and model regridded to generic_1x1deg',
         'name': 'ENSO Zonal SSTA pattern',
         'ref': 'Using CDAT regridding and rms (uncentered and biased) calculation',
         'time_frequency': 'monthly',
         'units': 'C/C'},
        'metric': {'datasets': "HadCM3_r8i1p1; ERA-Interim's ts & HadISST's sst & Tropflux's sst; 's ",
         'method': 'The metric is the statistical value between the model and the observations',
         'name': 'EnsoSstLonRmse',
         'units': 'C/C'}},
       'EnsoSstSkew': {'diagnostic': {'ERA-Interim': {'keyerror': None,
          'name': 'ERA-Interim',
          'nyears': 40,
          'time_period': ['1979-1-16 12:0:0.0', '2019-3-16 12:0:0.0']},
         'HadCM3_r8i1p1': {'keyerror': None,
          'name': 'HadCM3_r8i1p1',
          'nyears': 146,
          'time_period': ['1859-12-16 0:0:0.0', '2005-12-16 0:0:0.0']},
         'HadISST': {'keyerror': None,
          'name': 'HadISST',
          'nyears': 151,
          'time_period': ['1870-1-16 11:59:59.5', '2020-10-16 12:0:0.0']},
         'Tropflux': {'keyerror': None,
          'name': 'Tropflux',
          'nyears': 40,
          'time_period': ['1979-1-15 0:0:0.0', '2018-12-15 12:0:0.0']},
         'method': 'Standard deviation of nino3.4 sstA, time series are linearly detrended',
         'name': 'ENSO skewness',
         'ref': 'Using CDAT regression calculation',
         'time_frequency': 'monthly',
         'units': 'C'},
        'metric': {'datasets': "HadCM3_r8i1p1; ERA-Interim's ts & HadISST's sst & Tropflux's sst; 's ",
         'method': 'The metric is the absolute value of the relative difference between model and observations values (M = 100 * abs[[model-obs] / obs])',
         'name': 'EnsoSstSkew',
         'units': '%'}},
       'EnsoSstTsRmse': {'diagnostic': {'ERA-Interim': {'name': 'ERA-Interim',
          'nyears': 40,
          'time_period': ['1979-1-16 12:0:0.0', '2019-3-16 12:0:0.0']},
         'HadCM3_r8i1p1': {'keyerror': None,
          'name': 'HadCM3_r8i1p1',
          'nyears': 146,
          'time_period': ['1859-12-16 0:0:0.0', '2005-12-16 0:0:0.0']},
         'HadISST': {'name': 'HadISST',
          'nyears': 151,
          'time_period': ['1870-1-16 11:59:59.5', '2020-10-16 12:0:0.0']},
         'Tropflux': {'name': 'Tropflux',
          'nyears': 40,
          'time_period': ['1979-1-15 0:0:0.0', '2018-12-15 12:0:0.0']},
         'method': 'nino3.4 SSTA during DEC regressed against nino3.4 SSTA during 6 years (centered on ENSO), time series are linearly detrended, smoothing using a triangle shaped window of 5 points',
         'name': 'ENSO life cyle SSTA pattern',
         'ref': 'Using CDAT regridding and rms (uncentered and biased) calculation',
         'time_frequency': 'monthly',
         'units': 'C/C'},
        'metric': {'datasets': "HadCM3_r8i1p1; ERA-Interim's ts & HadISST's sst & Tropflux's sst; 's ",
         'method': 'The metric is the statistical value between the model and the observations',
         'name': 'EnsoSstTsRmse',
         'units': 'C/C'}},
       'SeasonalPrLatRmse': {'diagnostic': {'ERA-Interim': {'name': 'ERA-Interim',
          'nyears': 40,
          'time_period': ['1979-1-16 12:0:0.0', '2019-3-16 12:0:0.0']},
         'GPCPv2.3': {'name': 'GPCPv2.3',
          'nyears': 41,
          'time_period': ['1979-1-1 0:0:0.0', '2019-7-1 0:0:0.0']},
         'HadCM3_r8i1p1': {'keyerror': None,
          'name': 'HadCM3_r8i1p1',
          'nyears': 146,
          'time_period': ['1859-12-16 0:0:0.0', '2005-12-16 0:0:0.0']},
         'method': 'Meridional root mean square error of nino3_LatExt climatological pr STD, time series are linearly detrended, observations and model regridded to generic_1x1deg',
         'name': 'pr meridional seasonality RMSE',
         'ref': 'Using CDAT regridding and rms (uncentered and biased) calculation',
         'time_frequency': 'monthly',
         'units': 'mm/day'},
        'metric': {'datasets': "HadCM3_r8i1p1; ERA-Interim's pr & GPCPv2.3's precip; 's ",
         'method': 'The metric is the statistical value between the model and the observations',
         'name': 'SeasonalPrLatRmse',
         'units': 'mm/day'}},
       'SeasonalPrLonRmse': {'diagnostic': {'ERA-Interim': {'name': 'ERA-Interim',
          'nyears': 40,
          'time_period': ['1979-1-16 12:0:0.0', '2019-3-16 12:0:0.0']},
         'GPCPv2.3': {'name': 'GPCPv2.3',
          'nyears': 41,
          'time_period': ['1979-1-1 0:0:0.0', '2019-7-1 0:0:0.0']},
         'HadCM3_r8i1p1': {'keyerror': None,
          'name': 'HadCM3_r8i1p1',
          'nyears': 146,
          'time_period': ['1859-12-16 0:0:0.0', '2005-12-16 0:0:0.0']},
         'method': 'Zonal root mean square error of equatorial_pacific climatological pr STD, time series are linearly detrended, observations and model regridded to generic_1x1deg',
         'name': 'pr zonal seasonality RMSE',
         'ref': 'Using CDAT regridding and rms (uncentered and biased) calculation',
         'time_frequency': 'monthly',
         'units': 'mm/day'},
        'metric': {'datasets': "HadCM3_r8i1p1; ERA-Interim's pr & GPCPv2.3's precip; 's ",
         'method': 'The metric is the statistical value between the model and the observations',
         'name': 'SeasonalPrLonRmse',
         'units': 'mm/day'}},
       'SeasonalSstLonRmse': {'diagnostic': {'ERA-Interim': {'name': 'ERA-Interim',
          'nyears': 40,
          'time_period': ['1979-1-16 12:0:0.0', '2019-3-16 12:0:0.0']},
         'HadCM3_r8i1p1': {'keyerror': None,
          'name': 'HadCM3_r8i1p1',
          'nyears': 146,
          'time_period': ['1859-12-16 0:0:0.0', '2005-12-16 0:0:0.0']},
         'HadISST': {'name': 'HadISST',
          'nyears': 151,
          'time_period': ['1870-1-16 11:59:59.5', '2020-10-16 12:0:0.0']},
         'Tropflux': {'name': 'Tropflux',
          'nyears': 40,
          'time_period': ['1979-1-15 0:0:0.0', '2018-12-15 12:0:0.0']},
         'method': 'Zonal root mean square error of equatorial_pacific climatological sst STD, time series are linearly detrended, observations and model regridded to generic_1x1deg',
         'name': 'sst zonal seasonality RMSE',
         'ref': 'Using CDAT regridding and rms (uncentered and biased) calculation',
         'time_frequency': 'monthly',
         'units': 'C'},
        'metric': {'datasets': "HadCM3_r8i1p1; ERA-Interim's ts & HadISST's sst & Tropflux's sst; 's ",
         'method': 'The metric is the statistical value between the model and the observations',
         'name': 'SeasonalSstLonRmse',
         'units': 'C'}},
       'SeasonalTauxLonRmse': {'diagnostic': {'ERA-Interim': {'name': 'ERA-Interim',
          'nyears': 40,
          'time_period': ['1979-1-16 12:0:0.0', '2019-3-16 12:0:0.0']},
         'HadCM3_r8i1p1': {'keyerror': None,
          'name': 'HadCM3_r8i1p1',
          'nyears': 146,
          'time_period': ['1859-12-16 0:0:0.0', '2005-12-16 0:0:0.0']},
         'Tropflux': {'name': 'Tropflux',
          'nyears': 40,
          'time_period': ['1979-1-15 0:0:0.0', '2018-12-15 12:0:0.0']},
         'method': 'Zonal root mean square error of equatorial_pacific climatological taux STD, time series are linearly detrended, observations and model regridded to generic_1x1deg',
         'name': 'taux zonal seasonality RMSE',
         'ref': 'Using CDAT regridding and rms (uncentered and biased) calculation',
         'time_frequency': 'monthly',
         'units': '1e-3 N/m2'},
        'metric': {'datasets': "HadCM3_r8i1p1; ERA-Interim's tauu & Tropflux's taux; 's ",
         'method': 'The metric is the statistical value between the model and the observations',
         'name': 'SeasonalTauxLonRmse',
         'units': '1e-3 N/m2'}}},
      'name': 'Metrics Collection for ENSO performance'},
     'value': {'BiasPrLatRmse': {'diagnostic': {'ERA-Interim': {'value': None,
         'value_error': None},
        'GPCPv2.3': {'value': None, 'value_error': None},
        'HadCM3_r8i1p1': {'value': None, 'value_error': None}},
       'metric': {'ERA-Interim': {'value': 0.5972689124167574,
         'value_error': None},
        'GPCPv2.3': {'value': 1.307048413270318, 'value_error': None}}},
      'BiasPrLonRmse': {'diagnostic': {'ERA-Interim': {'value': None,
         'value_error': None},
        'GPCPv2.3': {'value': None, 'value_error': None},
        'HadCM3_r8i1p1': {'value': None, 'value_error': None}},
       'metric': {'ERA-Interim': {'value': 2.7522234829047405,
         'value_error': None},
        'GPCPv2.3': {'value': 2.0190514626879335, 'value_error': None}}},
      'BiasSstLonRmse': {'diagnostic': {'ERA-Interim': {'value': None,
         'value_error': None},
        'HadCM3_r8i1p1': {'value': None, 'value_error': None},
        'HadISST': {'value': None, 'value_error': None},
        'Tropflux': {'value': None, 'value_error': None}},
       'metric': {'ERA-Interim': {'value': 1.0754087849352811,
         'value_error': None},
        'HadISST': {'value': 0.9851374105609607, 'value_error': None},
        'Tropflux': {'value': 1.1118277451619476, 'value_error': None}}},
      'BiasTauxLonRmse': {'diagnostic': {'ERA-Interim': {'value': None,
         'value_error': None},
        'HadCM3_r8i1p1': {'value': None, 'value_error': None},
        'Tropflux': {'value': None, 'value_error': None}},
       'metric': {'ERA-Interim': {'value': 11.014219760631196,
         'value_error': None},
        'Tropflux': {'value': 11.018632570403962, 'value_error': None}}},
      'EnsoAmpl': {'diagnostic': {'ERA-Interim': {'value': 0.8989844997845644,
         'value_error': 0.14214193002531866},
        'HadCM3_r8i1p1': {'value': 0.8712872511090549,
         'value_error': 0.0721082459682024},
        'HadISST': {'value': 0.7665787872085695,
         'value_error': 0.06238329697691264},
        'Tropflux': {'value': 0.9039789553693535,
         'value_error': 0.14293162279134272}},
       'metric': {'ERA-Interim': {'value': 3.0809484125863067,
         'value_error': 23.34532536512928},
        'HadISST': {'value': 13.659191416158567,
         'value_error': 18.65595543175284},
        'Tropflux': {'value': 3.616423155220595,
         'value_error': 23.216343169298238}}},
      'EnsoDuration': {'diagnostic': {'ERA-Interim': {'value': 13.0,
         'value_error': None},
        'HadCM3_r8i1p1': {'value': 13.0, 'value_error': None},
        'HadISST': {'value': 13.0, 'value_error': None},
        'Tropflux': {'value': 13.0, 'value_error': None}},
       'metric': {'ERA-Interim': {'value': 0.0, 'value_error': None},
        'HadISST': {'value': 0.0, 'value_error': None},
        'Tropflux': {'value': 0.0, 'value_error': None}}},
      'EnsoSeasonality': {'diagnostic': {'ERA-Interim': {'value': 2.0466846866656914,
         'value_error': 0.6513411033995022},
        'HadCM3_r8i1p1': {'value': 1.4005542018980341,
         'value_error': 0.2322203862375543},
        'HadISST': {'value': 1.6639865947361325,
         'value_error': 0.2712772451657809},
        'Tropflux': {'value': 2.0532132553583624,
         'value_error': 0.6534187683977347}},
       'metric': {'ERA-Interim': {'value': 31.569615435990077,
         'value_error': 33.12359800872611},
        'HadISST': {'value': 15.831401146586298,
         'value_error': 27.677545237361972},
        'Tropflux': {'value': 31.787202413439264,
         'value_error': 33.01827544450438}}},
      'EnsoSstDiversity_2': {'diagnostic': {'ERA-Interim': {'value': 33.25,
         'value_error': None},
        'HadCM3_r8i1p1': {'value': 15.0, 'value_error': None},
        'HadISST': {'value': 49.0, 'value_error': None},
        'Tropflux': {'value': 32.0, 'value_error': None}},
       'metric': {'ERA-Interim': {'value': 54.88721804511278,
         'value_error': None},
        'HadISST': {'value': 69.38775510204081, 'value_error': None},
        'Tropflux': {'value': 53.125, 'value_error': None}}},
      'EnsoSstLonRmse': {'diagnostic': {'ERA-Interim': {'value': None,
         'value_error': None},
        'HadCM3_r8i1p1': {'value': None, 'value_error': None},
        'HadISST': {'value': None, 'value_error': None},
        'Tropflux': {'value': None, 'value_error': None}},
       'metric': {'ERA-Interim': {'value': 0.2595032255323534,
         'value_error': None},
        'HadISST': {'value': 0.27223561754845915, 'value_error': None},
        'Tropflux': {'value': 0.25900023167417063, 'value_error': None}}},
      'EnsoSstSkew': {'diagnostic': {'ERA-Interim': {'value': 0.39098111106809963,
         'value_error': 0.061819541653923164},
        'HadCM3_r8i1p1': {'value': 0.1916863147650231,
         'value_error': 0.015864072286402013},
        'HadISST': {'value': 0.38989908235027515,
         'value_error': 0.03172953733021198},
        'Tropflux': {'value': 0.39744741059612115,
         'value_error': 0.06284195338099416}},
       'metric': {'ERA-Interim': {'value': 50.97299860820236,
         'value_error': 11.809353067553108},
        'HadISST': {'value': 50.836941290152325,
         'value_error': 8.069596666593682},
        'Tropflux': {'value': 51.77064696999341,
         'value_error': 11.617219939669793}}},
      'EnsoSstTsRmse': {'diagnostic': {'ERA-Interim': {'value': None,
         'value_error': None},
        'HadCM3_r8i1p1': {'value': None, 'value_error': None},
        'HadISST': {'value': None, 'value_error': None},
        'Tropflux': {'value': None, 'value_error': None}},
       'metric': {'ERA-Interim': {'value': 0.07103369686249157,
         'value_error': None},
        'HadISST': {'value': 0.058937049929853116, 'value_error': None},
        'Tropflux': {'value': 0.06888708827476607, 'value_error': None}}},
      'SeasonalPrLatRmse': {'diagnostic': {'ERA-Interim': {'value': None,
         'value_error': None},
        'GPCPv2.3': {'value': None, 'value_error': None},
        'HadCM3_r8i1p1': {'value': None, 'value_error': None}},
       'metric': {'ERA-Interim': {'value': 0.4070247561802545,
         'value_error': None},
        'GPCPv2.3': {'value': 0.5660973779582076, 'value_error': None}}},
      'SeasonalPrLonRmse': {'diagnostic': {'ERA-Interim': {'value': None,
         'value_error': None},
        'GPCPv2.3': {'value': None, 'value_error': None},
        'HadCM3_r8i1p1': {'value': None, 'value_error': None}},
       'metric': {'ERA-Interim': {'value': 0.548599998532659,
         'value_error': None},
        'GPCPv2.3': {'value': 0.3786184991988651, 'value_error': None}}},
      'SeasonalSstLonRmse': {'diagnostic': {'ERA-Interim': {'value': None,
         'value_error': None},
        'HadCM3_r8i1p1': {'value': None, 'value_error': None},
        'HadISST': {'value': None, 'value_error': None},
        'Tropflux': {'value': None, 'value_error': None}},
       'metric': {'ERA-Interim': {'value': 0.2888472198095912,
         'value_error': None},
        'HadISST': {'value': 0.29570178685208637, 'value_error': None},
        'Tropflux': {'value': 0.29568632029187125, 'value_error': None}}},
      'SeasonalTauxLonRmse': {'diagnostic': {'ERA-Interim': {'value': None,
         'value_error': None},
        'HadCM3_r8i1p1': {'value': None, 'value_error': None},
        'Tropflux': {'value': None, 'value_error': None}},
       'metric': {'ERA-Interim': {'value': 2.492553385091434,
         'value_error': None},
        'Tropflux': {'value': 2.8496021067810733, 'value_error': None}}}}},
    'r9i1p1': {'metadata': {'description_of_the_collection': 'Describe which science question this collection is about',
      'metrics': {'BiasPrLatRmse': {'diagnostic': {'ERA-Interim': {'name': 'ERA-Interim',
          'nyears': 40,
          'time_period': ['1979-1-16 12:0:0.0', '2019-3-16 12:0:0.0']},
         'GPCPv2.3': {'name': 'GPCPv2.3',
          'nyears': 41,
          'time_period': ['1979-1-1 0:0:0.0', '2019-7-1 0:0:0.0']},
         'HadCM3_r9i1p1': {'keyerror': None,
          'name': 'HadCM3_r9i1p1',
          'nyears': 146,
          'time_period': ['1859-12-16 0:0:0.0', '2005-12-16 0:0:0.0']},
         'method': 'Meridional root mean square error of nino3_LatExt pr, time series are linearly detrended, observations and model regridded to generic_1x1deg',
         'name': 'pr Meridional RMSE',
         'ref': 'Using CDAT regridding and rms (uncentered and biased) calculation',
         'time_frequency': 'monthly',
         'units': 'mm/day'},
        'metric': {'datasets': "HadCM3_r9i1p1; ERA-Interim's pr & GPCPv2.3's precip; 's ",
         'method': 'The metric is the statistical value between the model and the observations',
         'name': 'BiasPrLatRmse',
         'units': 'mm/day'}},
       'BiasPrLonRmse': {'diagnostic': {'ERA-Interim': {'name': 'ERA-Interim',
          'nyears': 40,
          'time_period': ['1979-1-16 12:0:0.0', '2019-3-16 12:0:0.0']},
         'GPCPv2.3': {'name': 'GPCPv2.3',
          'nyears': 41,
          'time_period': ['1979-1-1 0:0:0.0', '2019-7-1 0:0:0.0']},
         'HadCM3_r9i1p1': {'keyerror': None,
          'name': 'HadCM3_r9i1p1',
          'nyears': 146,
          'time_period': ['1859-12-16 0:0:0.0', '2005-12-16 0:0:0.0']},
         'method': 'Zonal root mean square error of equatorial_pacific pr, time series are linearly detrended, observations and model regridded to generic_1x1deg',
         'name': 'pr Zonal RMSE',
         'ref': 'Using CDAT regridding and rms (uncentered and biased) calculation',
         'time_frequency': 'monthly',
         'units': 'mm/day'},
        'metric': {'datasets': "HadCM3_r9i1p1; ERA-Interim's pr & GPCPv2.3's precip; 's ",
         'method': 'The metric is the statistical value between the model and the observations',
         'name': 'BiasPrLonRmse',
         'units': 'mm/day'}},
       'BiasSstLonRmse': {'diagnostic': {'ERA-Interim': {'name': 'ERA-Interim',
          'nyears': 40,
          'time_period': ['1979-1-16 12:0:0.0', '2019-3-16 12:0:0.0']},
         'HadCM3_r9i1p1': {'keyerror': None,
          'name': 'HadCM3_r9i1p1',
          'nyears': 146,
          'time_period': ['1859-12-16 0:0:0.0', '2005-12-16 0:0:0.0']},
         'HadISST': {'name': 'HadISST',
          'nyears': 151,
          'time_period': ['1870-1-16 11:59:59.5', '2020-10-16 12:0:0.0']},
         'Tropflux': {'name': 'Tropflux',
          'nyears': 40,
          'time_period': ['1979-1-15 0:0:0.0', '2018-12-15 12:0:0.0']},
         'method': 'Zonal root mean square error of equatorial_pacific sst, time series are linearly detrended, observations and model regridded to generic_1x1deg',
         'name': 'sst Zonal RMSE',
         'ref': 'Using CDAT regridding and rms (uncentered and biased) calculation',
         'time_frequency': 'monthly',
         'units': 'C'},
        'metric': {'datasets': "HadCM3_r9i1p1; ERA-Interim's ts & HadISST's sst & Tropflux's sst; 's ",
         'method': 'The metric is the statistical value between the model and the observations',
         'name': 'BiasSstLonRmse',
         'units': 'C'}},
       'BiasTauxLonRmse': {'diagnostic': {'ERA-Interim': {'name': 'ERA-Interim',
          'nyears': 40,
          'time_period': ['1979-1-16 12:0:0.0', '2019-3-16 12:0:0.0']},
         'HadCM3_r9i1p1': {'keyerror': None,
          'name': 'HadCM3_r9i1p1',
          'nyears': 146,
          'time_period': ['1859-12-16 0:0:0.0', '2005-12-16 0:0:0.0']},
         'Tropflux': {'name': 'Tropflux',
          'nyears': 40,
          'time_period': ['1979-1-15 0:0:0.0', '2018-12-15 12:0:0.0']},
         'method': 'Zonal root mean square error of equatorial_pacific taux, time series are linearly detrended, observations and model regridded to generic_1x1deg',
         'name': 'taux Zonal RMSE',
         'ref': 'Using CDAT regridding and rms (uncentered and biased) calculation',
         'time_frequency': 'monthly',
         'units': '1e-3 N/m2'},
        'metric': {'datasets': "HadCM3_r9i1p1; ERA-Interim's tauu & Tropflux's taux; 's ",
         'method': 'The metric is the statistical value between the model and the observations',
         'name': 'BiasTauxLonRmse',
         'units': '1e-3 N/m2'}},
       'EnsoAmpl': {'diagnostic': {'ERA-Interim': {'keyerror': None,
          'name': 'ERA-Interim',
          'nyears': 40,
          'time_period': ['1979-1-16 12:0:0.0', '2019-3-16 12:0:0.0']},
         'HadCM3_r9i1p1': {'keyerror': None,
          'name': 'HadCM3_r9i1p1',
          'nyears': 146,
          'time_period': ['1859-12-16 0:0:0.0', '2005-12-16 0:0:0.0']},
         'HadISST': {'keyerror': None,
          'name': 'HadISST',
          'nyears': 151,
          'time_period': ['1870-1-16 11:59:59.5', '2020-10-16 12:0:0.0']},
         'Tropflux': {'keyerror': None,
          'name': 'Tropflux',
          'nyears': 40,
          'time_period': ['1979-1-15 0:0:0.0', '2018-12-15 12:0:0.0']},
         'method': 'Standard deviation of nino3.4 sstA, time series are linearly detrended',
         'name': 'ENSO amplitude',
         'ref': 'Using CDAT regression calculation',
         'time_frequency': 'monthly',
         'units': 'C'},
        'metric': {'datasets': "HadCM3_r9i1p1; ERA-Interim's ts & HadISST's sst & Tropflux's sst; 's ",
         'method': 'The metric is the absolute value of the relative difference between model and observations values (M = 100 * abs[[model-obs] / obs])',
         'name': 'EnsoAmpl',
         'units': '%'}},
       'EnsoDuration': {'diagnostic': {'ERA-Interim': {'keyerror': None,
          'name': 'ERA-Interim',
          'nyears': 40,
          'time_period': ['1979-1-16 12:0:0.0', '2019-3-16 12:0:0.0']},
         'HadCM3_r9i1p1': {'keyerror': None,
          'name': 'HadCM3_r9i1p1',
          'nyears': 146,
          'time_period': ['1859-12-16 0:0:0.0', '2005-12-16 0:0:0.0']},
         'HadISST': {'keyerror': None,
          'name': 'HadISST',
          'nyears': 151,
          'time_period': ['1870-1-16 11:59:59.5', '2020-10-16 12:0:0.0']},
         'Tropflux': {'keyerror': None,
          'name': 'Tropflux',
          'nyears': 40,
          'time_period': ['1979-1-15 0:0:0.0', '2018-12-15 12:0:0.0']},
         'method': 'nino3.4 SSTA during DEC regressed against nino3.4 SSTA during 6 years (centered on ENSO), the duration is the number of consecutive months during which the regression is above 0.25, time series are linearly detrended, smoothing using a triangle shaped window of 5 points',
         'name': 'ENSO Duration based on life cyle SSTA pattern',
         'ref': 'Using CDAT',
         'time_frequency': 'monthly',
         'units': 'months'},
        'metric': {'datasets': "HadCM3_r9i1p1; ERA-Interim's ts & HadISST's sst & Tropflux's sst; 's ",
         'method': 'The metric is the absolute value of the relative difference between model and observations values (M = 100 * abs[[model-obs] / obs])',
         'name': 'EnsoDuration',
         'units': '%'}},
       'EnsoSeasonality': {'diagnostic': {'ERA-Interim': {'keyerror': None,
          'name': 'ERA-Interim',
          'nyears': 40,
          'time_period': ['1979-1-16 12:0:0.0', '2019-3-16 12:0:0.0']},
         'HadCM3_r9i1p1': {'keyerror': None,
          'name': 'HadCM3_r9i1p1',
          'nyears': 146,
          'time_period': ['1859-12-16 0:0:0.0', '2005-12-16 0:0:0.0']},
         'HadISST': {'keyerror': None,
          'name': 'HadISST',
          'nyears': 151,
          'time_period': ['1870-1-16 11:59:59.5', '2020-10-16 12:0:0.0']},
         'Tropflux': {'keyerror': None,
          'name': 'Tropflux',
          'nyears': 40,
          'time_period': ['1979-1-15 0:0:0.0', '2018-12-15 12:0:0.0']},
         'method': 'Ratio between NDJ and MAM standard deviation nino3.4 sstA, time series are linearly detrended',
         'name': 'ENSO seasonality',
         'ref': 'Using CDAT std dev calculation',
         'time_frequency': 'monthly',
         'units': 'C/C'},
        'metric': {'datasets': "HadCM3_r9i1p1; ERA-Interim's ts & HadISST's sst & Tropflux's sst; 's ",
         'method': 'The metric is the absolute value of the relative difference between model and observations values (M = 100 * abs[[model-obs] / obs])',
         'name': 'EnsoSeasonality',
         'units': '%'}},
       'EnsoSstDiversity_2': {'diagnostic': {'ERA-Interim': {'keyerror': None,
          'name': 'ERA-Interim',
          'nyears': 40,
          'time_period': ['1979-1-16 12:0:0.0', '2019-3-16 12:0:0.0']},
         'HadCM3_r9i1p1': {'keyerror': None,
          'name': 'HadCM3_r9i1p1',
          'nyears': 146,
          'time_period': ['1859-12-16 0:0:0.0', '2005-12-16 0:0:0.0']},
         'HadISST': {'keyerror': None,
          'name': 'HadISST',
          'nyears': 151,
          'time_period': ['1870-1-16 11:59:59.5', '2020-10-16 12:0:0.0']},
         'Tropflux': {'keyerror': None,
          'name': 'Tropflux',
          'nyears': 40,
          'time_period': ['1979-1-15 0:0:0.0', '2018-12-15 12:0:0.0']},
         'method': 'Nino (Nina) events = nino3.4 sstA > 0.75 (< -0.75) during DEC, zonal SSTA (meridional averaged [-5.0 ; 5.0]), the zonal SSTA maximum (minimum) is located for each event, the diversity is the interquartile range (IQR = Q3 - Q1), time series are linearly detrended, smoothing using a triangle shaped window of 5 points',
         'name': 'ENSO Diversity (interquartile range)',
         'ref': 'Using CDAT regridding',
         'time_frequency': 'monthly',
         'units': 'long'},
        'metric': {'datasets': "HadCM3_r9i1p1; ERA-Interim's ts & HadISST's sst & Tropflux's sst; 's ",
         'method': 'The metric is the absolute value of the relative difference between model and observations values (M = 100 * abs[[model-obs] / obs])',
         'name': 'EnsoSstDiversity',
         'units': '%'}},
       'EnsoSstLonRmse': {'diagnostic': {'ERA-Interim': {'name': 'ERA-Interim',
          'nyears': 40,
          'time_period': ['1979-1-16 12:0:0.0', '2019-3-16 12:0:0.0']},
         'HadCM3_r9i1p1': {'keyerror': None,
          'name': 'HadCM3_r9i1p1',
          'nyears': 146,
          'time_period': ['1859-12-16 0:0:0.0', '2005-12-16 0:0:0.0']},
         'HadISST': {'name': 'HadISST',
          'nyears': 151,
          'time_period': ['1870-1-16 11:59:59.5', '2020-10-16 12:0:0.0']},
         'Tropflux': {'name': 'Tropflux',
          'nyears': 40,
          'time_period': ['1979-1-15 0:0:0.0', '2018-12-15 12:0:0.0']},
         'method': 'nino3.4 SSTA during DEC regressed against equatorial_pacific SSTA, time series are linearly detrended, smoothing using a triangle shaped window of 5 points, observations and model regridded to generic_1x1deg',
         'name': 'ENSO Zonal SSTA pattern',
         'ref': 'Using CDAT regridding and rms (uncentered and biased) calculation',
         'time_frequency': 'monthly',
         'units': 'C/C'},
        'metric': {'datasets': "HadCM3_r9i1p1; ERA-Interim's ts & HadISST's sst & Tropflux's sst; 's ",
         'method': 'The metric is the statistical value between the model and the observations',
         'name': 'EnsoSstLonRmse',
         'units': 'C/C'}},
       'EnsoSstSkew': {'diagnostic': {'ERA-Interim': {'keyerror': None,
          'name': 'ERA-Interim',
          'nyears': 40,
          'time_period': ['1979-1-16 12:0:0.0', '2019-3-16 12:0:0.0']},
         'HadCM3_r9i1p1': {'keyerror': None,
          'name': 'HadCM3_r9i1p1',
          'nyears': 146,
          'time_period': ['1859-12-16 0:0:0.0', '2005-12-16 0:0:0.0']},
         'HadISST': {'keyerror': None,
          'name': 'HadISST',
          'nyears': 151,
          'time_period': ['1870-1-16 11:59:59.5', '2020-10-16 12:0:0.0']},
         'Tropflux': {'keyerror': None,
          'name': 'Tropflux',
          'nyears': 40,
          'time_period': ['1979-1-15 0:0:0.0', '2018-12-15 12:0:0.0']},
         'method': 'Standard deviation of nino3.4 sstA, time series are linearly detrended',
         'name': 'ENSO skewness',
         'ref': 'Using CDAT regression calculation',
         'time_frequency': 'monthly',
         'units': 'C'},
        'metric': {'datasets': "HadCM3_r9i1p1; ERA-Interim's ts & HadISST's sst & Tropflux's sst; 's ",
         'method': 'The metric is the absolute value of the relative difference between model and observations values (M = 100 * abs[[model-obs] / obs])',
         'name': 'EnsoSstSkew',
         'units': '%'}},
       'EnsoSstTsRmse': {'diagnostic': {'ERA-Interim': {'name': 'ERA-Interim',
          'nyears': 40,
          'time_period': ['1979-1-16 12:0:0.0', '2019-3-16 12:0:0.0']},
         'HadCM3_r9i1p1': {'keyerror': None,
          'name': 'HadCM3_r9i1p1',
          'nyears': 146,
          'time_period': ['1859-12-16 0:0:0.0', '2005-12-16 0:0:0.0']},
         'HadISST': {'name': 'HadISST',
          'nyears': 151,
          'time_period': ['1870-1-16 11:59:59.5', '2020-10-16 12:0:0.0']},
         'Tropflux': {'name': 'Tropflux',
          'nyears': 40,
          'time_period': ['1979-1-15 0:0:0.0', '2018-12-15 12:0:0.0']},
         'method': 'nino3.4 SSTA during DEC regressed against nino3.4 SSTA during 6 years (centered on ENSO), time series are linearly detrended, smoothing using a triangle shaped window of 5 points',
         'name': 'ENSO life cyle SSTA pattern',
         'ref': 'Using CDAT regridding and rms (uncentered and biased) calculation',
         'time_frequency': 'monthly',
         'units': 'C/C'},
        'metric': {'datasets': "HadCM3_r9i1p1; ERA-Interim's ts & HadISST's sst & Tropflux's sst; 's ",
         'method': 'The metric is the statistical value between the model and the observations',
         'name': 'EnsoSstTsRmse',
         'units': 'C/C'}},
       'SeasonalPrLatRmse': {'diagnostic': {'ERA-Interim': {'name': 'ERA-Interim',
          'nyears': 40,
          'time_period': ['1979-1-16 12:0:0.0', '2019-3-16 12:0:0.0']},
         'GPCPv2.3': {'name': 'GPCPv2.3',
          'nyears': 41,
          'time_period': ['1979-1-1 0:0:0.0', '2019-7-1 0:0:0.0']},
         'HadCM3_r9i1p1': {'keyerror': None,
          'name': 'HadCM3_r9i1p1',
          'nyears': 146,
          'time_period': ['1859-12-16 0:0:0.0', '2005-12-16 0:0:0.0']},
         'method': 'Meridional root mean square error of nino3_LatExt climatological pr STD, time series are linearly detrended, observations and model regridded to generic_1x1deg',
         'name': 'pr meridional seasonality RMSE',
         'ref': 'Using CDAT regridding and rms (uncentered and biased) calculation',
         'time_frequency': 'monthly',
         'units': 'mm/day'},
        'metric': {'datasets': "HadCM3_r9i1p1; ERA-Interim's pr & GPCPv2.3's precip; 's ",
         'method': 'The metric is the statistical value between the model and the observations',
         'name': 'SeasonalPrLatRmse',
         'units': 'mm/day'}},
       'SeasonalPrLonRmse': {'diagnostic': {'ERA-Interim': {'name': 'ERA-Interim',
          'nyears': 40,
          'time_period': ['1979-1-16 12:0:0.0', '2019-3-16 12:0:0.0']},
         'GPCPv2.3': {'name': 'GPCPv2.3',
          'nyears': 41,
          'time_period': ['1979-1-1 0:0:0.0', '2019-7-1 0:0:0.0']},
         'HadCM3_r9i1p1': {'keyerror': None,
          'name': 'HadCM3_r9i1p1',
          'nyears': 146,
          'time_period': ['1859-12-16 0:0:0.0', '2005-12-16 0:0:0.0']},
         'method': 'Zonal root mean square error of equatorial_pacific climatological pr STD, time series are linearly detrended, observations and model regridded to generic_1x1deg',
         'name': 'pr zonal seasonality RMSE',
         'ref': 'Using CDAT regridding and rms (uncentered and biased) calculation',
         'time_frequency': 'monthly',
         'units': 'mm/day'},
        'metric': {'datasets': "HadCM3_r9i1p1; ERA-Interim's pr & GPCPv2.3's precip; 's ",
         'method': 'The metric is the statistical value between the model and the observations',
         'name': 'SeasonalPrLonRmse',
         'units': 'mm/day'}},
       'SeasonalSstLonRmse': {'diagnostic': {'ERA-Interim': {'name': 'ERA-Interim',
          'nyears': 40,
          'time_period': ['1979-1-16 12:0:0.0', '2019-3-16 12:0:0.0']},
         'HadCM3_r9i1p1': {'keyerror': None,
          'name': 'HadCM3_r9i1p1',
          'nyears': 146,
          'time_period': ['1859-12-16 0:0:0.0', '2005-12-16 0:0:0.0']},
         'HadISST': {'name': 'HadISST',
          'nyears': 151,
          'time_period': ['1870-1-16 11:59:59.5', '2020-10-16 12:0:0.0']},
         'Tropflux': {'name': 'Tropflux',
          'nyears': 40,
          'time_period': ['1979-1-15 0:0:0.0', '2018-12-15 12:0:0.0']},
         'method': 'Zonal root mean square error of equatorial_pacific climatological sst STD, time series are linearly detrended, observations and model regridded to generic_1x1deg',
         'name': 'sst zonal seasonality RMSE',
         'ref': 'Using CDAT regridding and rms (uncentered and biased) calculation',
         'time_frequency': 'monthly',
         'units': 'C'},
        'metric': {'datasets': "HadCM3_r9i1p1; ERA-Interim's ts & HadISST's sst & Tropflux's sst; 's ",
         'method': 'The metric is the statistical value between the model and the observations',
         'name': 'SeasonalSstLonRmse',
         'units': 'C'}},
       'SeasonalTauxLonRmse': {'diagnostic': {'ERA-Interim': {'name': 'ERA-Interim',
          'nyears': 40,
          'time_period': ['1979-1-16 12:0:0.0', '2019-3-16 12:0:0.0']},
         'HadCM3_r9i1p1': {'keyerror': None,
          'name': 'HadCM3_r9i1p1',
          'nyears': 146,
          'time_period': ['1859-12-16 0:0:0.0', '2005-12-16 0:0:0.0']},
         'Tropflux': {'name': 'Tropflux',
          'nyears': 40,
          'time_period': ['1979-1-15 0:0:0.0', '2018-12-15 12:0:0.0']},
         'method': 'Zonal root mean square error of equatorial_pacific climatological taux STD, time series are linearly detrended, observations and model regridded to generic_1x1deg',
         'name': 'taux zonal seasonality RMSE',
         'ref': 'Using CDAT regridding and rms (uncentered and biased) calculation',
         'time_frequency': 'monthly',
         'units': '1e-3 N/m2'},
        'metric': {'datasets': "HadCM3_r9i1p1; ERA-Interim's tauu & Tropflux's taux; 's ",
         'method': 'The metric is the statistical value between the model and the observations',
         'name': 'SeasonalTauxLonRmse',
         'units': '1e-3 N/m2'}}},
      'name': 'Metrics Collection for ENSO performance'},
     'value': {'BiasPrLatRmse': {'diagnostic': {'ERA-Interim': {'value': None,
         'value_error': None},
        'GPCPv2.3': {'value': None, 'value_error': None},
        'HadCM3_r9i1p1': {'value': None, 'value_error': None}},
       'metric': {'ERA-Interim': {'value': 0.623890675818215,
         'value_error': None},
        'GPCPv2.3': {'value': 1.3475988502886533, 'value_error': None}}},
      'BiasPrLonRmse': {'diagnostic': {'ERA-Interim': {'value': None,
         'value_error': None},
        'GPCPv2.3': {'value': None, 'value_error': None},
        'HadCM3_r9i1p1': {'value': None, 'value_error': None}},
       'metric': {'ERA-Interim': {'value': 2.6815948768335303,
         'value_error': None},
        'GPCPv2.3': {'value': 1.9552528725182825, 'value_error': None}}},
      'BiasSstLonRmse': {'diagnostic': {'ERA-Interim': {'value': None,
         'value_error': None},
        'HadCM3_r9i1p1': {'value': None, 'value_error': None},
        'HadISST': {'value': None, 'value_error': None},
        'Tropflux': {'value': None, 'value_error': None}},
       'metric': {'ERA-Interim': {'value': 1.0273582686667113,
         'value_error': None},
        'HadISST': {'value': 0.9474240598508203, 'value_error': None},
        'Tropflux': {'value': 1.0624290663895537, 'value_error': None}}},
      'BiasTauxLonRmse': {'diagnostic': {'ERA-Interim': {'value': None,
         'value_error': None},
        'HadCM3_r9i1p1': {'value': None, 'value_error': None},
        'Tropflux': {'value': None, 'value_error': None}},
       'metric': {'ERA-Interim': {'value': 10.997194610340438,
         'value_error': None},
        'Tropflux': {'value': 10.960099324273816, 'value_error': None}}},
      'EnsoAmpl': {'diagnostic': {'ERA-Interim': {'value': 0.8989844997845644,
         'value_error': 0.14214193002531866},
        'HadCM3_r9i1p1': {'value': 0.843389267413508,
         'value_error': 0.06979939240954564},
        'HadISST': {'value': 0.7665787872085695,
         'value_error': 0.06238329697691264},
        'Tropflux': {'value': 0.9039789553693535,
         'value_error': 0.14293162279134272}},
       'metric': {'ERA-Interim': {'value': 6.184225910945014,
         'value_error': 22.59782503665024},
        'HadISST': {'value': 10.019906823229109,
         'value_error': 18.05860531582104},
        'Tropflux': {'value': 6.70255514201538,
         'value_error': 22.472972756862074}}},
      'EnsoDuration': {'diagnostic': {'ERA-Interim': {'value': 13.0,
         'value_error': None},
        'HadCM3_r9i1p1': {'value': 15.0, 'value_error': None},
        'HadISST': {'value': 13.0, 'value_error': None},
        'Tropflux': {'value': 13.0, 'value_error': None}},
       'metric': {'ERA-Interim': {'value': 15.384615384615385,
         'value_error': None},
        'HadISST': {'value': 15.384615384615385, 'value_error': None},
        'Tropflux': {'value': 15.384615384615385, 'value_error': None}}},
      'EnsoSeasonality': {'diagnostic': {'ERA-Interim': {'value': 2.0466846866656914,
         'value_error': 0.6513411033995022},
        'HadCM3_r9i1p1': {'value': 1.2834523242060496,
         'value_error': 0.21280418425842143},
        'HadISST': {'value': 1.6639865947361325,
         'value_error': 0.2712772451657809},
        'Tropflux': {'value': 2.0532132553583624,
         'value_error': 0.6534187683977347}},
       'metric': {'ERA-Interim': {'value': 37.29115517559492,
         'value_error': 30.354097537070178},
        'HadISST': {'value': 22.868830297904314,
         'value_error': 25.36339522959533},
        'Tropflux': {'value': 37.49054946647326,
         'value_error': 30.25758110831752}}},
      'EnsoSstDiversity_2': {'diagnostic': {'ERA-Interim': {'value': 33.25,
         'value_error': None},
        'HadCM3_r9i1p1': {'value': 21.0, 'value_error': None},
        'HadISST': {'value': 49.0, 'value_error': None},
        'Tropflux': {'value': 32.0, 'value_error': None}},
       'metric': {'ERA-Interim': {'value': 36.84210526315789,
         'value_error': None},
        'HadISST': {'value': 57.14285714285714, 'value_error': None},
        'Tropflux': {'value': 34.375, 'value_error': None}}},
      'EnsoSstLonRmse': {'diagnostic': {'ERA-Interim': {'value': None,
         'value_error': None},
        'HadCM3_r9i1p1': {'value': None, 'value_error': None},
        'HadISST': {'value': None, 'value_error': None},
        'Tropflux': {'value': None, 'value_error': None}},
       'metric': {'ERA-Interim': {'value': 0.2973399769681441,
         'value_error': None},
        'HadISST': {'value': 0.3108338258608661, 'value_error': None},
        'Tropflux': {'value': 0.2970627173268184, 'value_error': None}}},
      'EnsoSstSkew': {'diagnostic': {'ERA-Interim': {'value': 0.39098111106809963,
         'value_error': 0.061819541653923164},
        'HadCM3_r9i1p1': {'value': 0.1645973314574294,
         'value_error': 0.013622172076240436},
        'HadISST': {'value': 0.38989908235027515,
         'value_error': 0.03172953733021198},
        'Tropflux': {'value': 0.39744741059612115,
         'value_error': 0.06284195338099416}},
       'metric': {'ERA-Interim': {'value': 57.90146204051263,
         'value_error': 10.140463097434079},
        'HadISST': {'value': 57.78463225272239,
         'value_error': 6.929206599267619},
        'Tropflux': {'value': 58.586387263020754,
         'value_error': 9.97548209619291}}},
      'EnsoSstTsRmse': {'diagnostic': {'ERA-Interim': {'value': None,
         'value_error': None},
        'HadCM3_r9i1p1': {'value': None, 'value_error': None},
        'HadISST': {'value': None, 'value_error': None},
        'Tropflux': {'value': None, 'value_error': None}},
       'metric': {'ERA-Interim': {'value': 0.1409601156688482,
         'value_error': None},
        'HadISST': {'value': 0.098826262844605, 'value_error': None},
        'Tropflux': {'value': 0.13686957668448746, 'value_error': None}}},
      'SeasonalPrLatRmse': {'diagnostic': {'ERA-Interim': {'value': None,
         'value_error': None},
        'GPCPv2.3': {'value': None, 'value_error': None},
        'HadCM3_r9i1p1': {'value': None, 'value_error': None}},
       'metric': {'ERA-Interim': {'value': 0.4063853076529288,
         'value_error': None},
        'GPCPv2.3': {'value': 0.6034157697661248, 'value_error': None}}},
      'SeasonalPrLonRmse': {'diagnostic': {'ERA-Interim': {'value': None,
         'value_error': None},
        'GPCPv2.3': {'value': None, 'value_error': None},
        'HadCM3_r9i1p1': {'value': None, 'value_error': None}},
       'metric': {'ERA-Interim': {'value': 0.5138792019606134,
         'value_error': None},
        'GPCPv2.3': {'value': 0.36141946937549474, 'value_error': None}}},
      'SeasonalSstLonRmse': {'diagnostic': {'ERA-Interim': {'value': None,
         'value_error': None},
        'HadCM3_r9i1p1': {'value': None, 'value_error': None},
        'HadISST': {'value': None, 'value_error': None},
        'Tropflux': {'value': None, 'value_error': None}},
       'metric': {'ERA-Interim': {'value': 0.2886472615246609,
         'value_error': None},
        'HadISST': {'value': 0.2974483165710086, 'value_error': None},
        'Tropflux': {'value': 0.29479609492439046, 'value_error': None}}},
      'SeasonalTauxLonRmse': {'diagnostic': {'ERA-Interim': {'value': None,
         'value_error': None},
        'HadCM3_r9i1p1': {'value': None, 'value_error': None},
        'Tropflux': {'value': None, 'value_error': None}},
       'metric': {'ERA-Interim': {'value': 1.9650351396413004,
         'value_error': None},
        'Tropflux': {'value': 2.311471452440372, 'value_error': None}}}}}},
   'HadGEM2-AO': {'r1i1p1': {'metadata': {'description_of_the_collection': 'Describe which science question this collection is about',
      'metrics': {'BiasPrLatRmse': {'diagnostic': {'ERA-Interim': {'name': 'ERA-Interim',
          'nyears': 40,
          'time_period': ['1979-1-16 12:0:0.0', '2019-3-16 12:0:0.0']},
         'GPCPv2.3': {'name': 'GPCPv2.3',
          'nyears': 41,
          'time_period': ['1979-1-1 0:0:0.0', '2019-7-1 0:0:0.0']},
         'HadGEM2-AO_r1i1p1': {'keyerror': None,
          'name': 'HadGEM2-AO_r1i1p1',
          'nyears': 146,
          'time_period': ['1860-1-16 0:0:0.0', '2005-12-16 0:0:0.0']},
         'method': 'Meridional root mean square error of nino3_LatExt pr, time series are linearly detrended, observations and model regridded to generic_1x1deg',
         'name': 'pr Meridional RMSE',
         'ref': 'Using CDAT regridding and rms (uncentered and biased) calculation',
         'time_frequency': 'monthly',
         'units': 'mm/day'},
        'metric': {'datasets': "HadGEM2-AO_r1i1p1; ERA-Interim's pr & GPCPv2.3's precip; 's ",
         'method': 'The metric is the statistical value between the model and the observations',
         'name': 'BiasPrLatRmse',
         'units': 'mm/day'}},
       'BiasPrLonRmse': {'diagnostic': {'ERA-Interim': {'name': 'ERA-Interim',
          'nyears': 40,
          'time_period': ['1979-1-16 12:0:0.0', '2019-3-16 12:0:0.0']},
         'GPCPv2.3': {'name': 'GPCPv2.3',
          'nyears': 41,
          'time_period': ['1979-1-1 0:0:0.0', '2019-7-1 0:0:0.0']},
         'HadGEM2-AO_r1i1p1': {'keyerror': None,
          'name': 'HadGEM2-AO_r1i1p1',
          'nyears': 146,
          'time_period': ['1860-1-16 0:0:0.0', '2005-12-16 0:0:0.0']},
         'method': 'Zonal root mean square error of equatorial_pacific pr, time series are linearly detrended, observations and model regridded to generic_1x1deg',
         'name': 'pr Zonal RMSE',
         'ref': 'Using CDAT regridding and rms (uncentered and biased) calculation',
         'time_frequency': 'monthly',
         'units': 'mm/day'},
        'metric': {'datasets': "HadGEM2-AO_r1i1p1; ERA-Interim's pr & GPCPv2.3's precip; 's ",
         'method': 'The metric is the statistical value between the model and the observations',
         'name': 'BiasPrLonRmse',
         'units': 'mm/day'}},
       'BiasSstLonRmse': {'diagnostic': {'ERA-Interim': {'name': 'ERA-Interim',
          'nyears': 40,
          'time_period': ['1979-1-16 12:0:0.0', '2019-3-16 12:0:0.0']},
         'HadGEM2-AO_r1i1p1': {'keyerror': None,
          'name': 'HadGEM2-AO_r1i1p1',
          'nyears': 146,
          'time_period': ['1860-1-16 0:0:0.0', '2005-12-16 0:0:0.0']},
         'HadISST': {'name': 'HadISST',
          'nyears': 151,
          'time_period': ['1870-1-16 11:59:59.5', '2020-10-16 12:0:0.0']},
         'Tropflux': {'name': 'Tropflux',
          'nyears': 40,
          'time_period': ['1979-1-15 0:0:0.0', '2018-12-15 12:0:0.0']},
         'method': 'Zonal root mean square error of equatorial_pacific sst, time series are linearly detrended, observations and model regridded to generic_1x1deg',
         'name': 'sst Zonal RMSE',
         'ref': 'Using CDAT regridding and rms (uncentered and biased) calculation',
         'time_frequency': 'monthly',
         'units': 'C'},
        'metric': {'datasets': "HadGEM2-AO_r1i1p1; ERA-Interim's ts & HadISST's sst & Tropflux's sst; 's ",
         'method': 'The metric is the statistical value between the model and the observations',
         'name': 'BiasSstLonRmse',
         'units': 'C'}},
       'BiasTauxLonRmse': {'diagnostic': {'ERA-Interim': {'name': 'ERA-Interim',
          'nyears': 40,
          'time_period': ['1979-1-16 12:0:0.0', '2019-3-16 12:0:0.0']},
         'HadGEM2-AO_r1i1p1': {'keyerror': None,
          'name': 'HadGEM2-AO_r1i1p1',
          'nyears': 146,
          'time_period': ['1860-1-16 0:0:0.0', '2005-12-16 0:0:0.0']},
         'Tropflux': {'name': 'Tropflux',
          'nyears': 40,
          'time_period': ['1979-1-15 0:0:0.0', '2018-12-15 12:0:0.0']},
         'method': 'Zonal root mean square error of equatorial_pacific taux, time series are linearly detrended, observations and model regridded to generic_1x1deg',
         'name': 'taux Zonal RMSE',
         'ref': 'Using CDAT regridding and rms (uncentered and biased) calculation',
         'time_frequency': 'monthly',
         'units': '1e-3 N/m2'},
        'metric': {'datasets': "HadGEM2-AO_r1i1p1; ERA-Interim's tauu & Tropflux's taux; 's ",
         'method': 'The metric is the statistical value between the model and the observations',
         'name': 'BiasTauxLonRmse',
         'units': '1e-3 N/m2'}},
       'EnsoAmpl': {'diagnostic': {'ERA-Interim': {'keyerror': None,
          'name': 'ERA-Interim',
          'nyears': 40,
          'time_period': ['1979-1-16 12:0:0.0', '2019-3-16 12:0:0.0']},
         'HadGEM2-AO_r1i1p1': {'keyerror': None,
          'name': 'HadGEM2-AO_r1i1p1',
          'nyears': 146,
          'time_period': ['1860-1-16 0:0:0.0', '2005-12-16 0:0:0.0']},
         'HadISST': {'keyerror': None,
          'name': 'HadISST',
          'nyears': 151,
          'time_period': ['1870-1-16 11:59:59.5', '2020-10-16 12:0:0.0']},
         'Tropflux': {'keyerror': None,
          'name': 'Tropflux',
          'nyears': 40,
          'time_period': ['1979-1-15 0:0:0.0', '2018-12-15 12:0:0.0']},
         'method': 'Standard deviation of nino3.4 sstA, time series are linearly detrended',
         'name': 'ENSO amplitude',
         'ref': 'Using CDAT regression calculation',
         'time_frequency': 'monthly',
         'units': 'C'},
        'metric': {'datasets': "HadGEM2-AO_r1i1p1; ERA-Interim's ts & HadISST's sst & Tropflux's sst; 's ",
         'method': 'The metric is the absolute value of the relative difference between model and observations values (M = 100 * abs[[model-obs] / obs])',
         'name': 'EnsoAmpl',
         'units': '%'}},
       'EnsoDuration': {'diagnostic': {'ERA-Interim': {'keyerror': None,
          'name': 'ERA-Interim',
          'nyears': 40,
          'time_period': ['1979-1-16 12:0:0.0', '2019-3-16 12:0:0.0']},
         'HadGEM2-AO_r1i1p1': {'keyerror': None,
          'name': 'HadGEM2-AO_r1i1p1',
          'nyears': 146,
          'time_period': ['1860-1-16 0:0:0.0', '2005-12-16 0:0:0.0']},
         'HadISST': {'keyerror': None,
          'name': 'HadISST',
          'nyears': 151,
          'time_period': ['1870-1-16 11:59:59.5', '2020-10-16 12:0:0.0']},
         'Tropflux': {'keyerror': None,
          'name': 'Tropflux',
          'nyears': 40,
          'time_period': ['1979-1-15 0:0:0.0', '2018-12-15 12:0:0.0']},
         'method': 'nino3.4 SSTA during DEC regressed against nino3.4 SSTA during 6 years (centered on ENSO), the duration is the number of consecutive months during which the regression is above 0.25, time series are linearly detrended, smoothing using a triangle shaped window of 5 points',
         'name': 'ENSO Duration based on life cyle SSTA pattern',
         'ref': 'Using CDAT',
         'time_frequency': 'monthly',
         'units': 'months'},
        'metric': {'datasets': "HadGEM2-AO_r1i1p1; ERA-Interim's ts & HadISST's sst & Tropflux's sst; 's ",
         'method': 'The metric is the absolute value of the relative difference between model and observations values (M = 100 * abs[[model-obs] / obs])',
         'name': 'EnsoDuration',
         'units': '%'}},
       'EnsoSeasonality': {'diagnostic': {'ERA-Interim': {'keyerror': None,
          'name': 'ERA-Interim',
          'nyears': 40,
          'time_period': ['1979-1-16 12:0:0.0', '2019-3-16 12:0:0.0']},
         'HadGEM2-AO_r1i1p1': {'keyerror': None,
          'name': 'HadGEM2-AO_r1i1p1',
          'nyears': 146,
          'time_period': ['1860-1-16 0:0:0.0', '2005-12-16 0:0:0.0']},
         'HadISST': {'keyerror': None,
          'name': 'HadISST',
          'nyears': 151,
          'time_period': ['1870-1-16 11:59:59.5', '2020-10-16 12:0:0.0']},
         'Tropflux': {'keyerror': None,
          'name': 'Tropflux',
          'nyears': 40,
          'time_period': ['1979-1-15 0:0:0.0', '2018-12-15 12:0:0.0']},
         'method': 'Ratio between NDJ and MAM standard deviation nino3.4 sstA, time series are linearly detrended',
         'name': 'ENSO seasonality',
         'ref': 'Using CDAT std dev calculation',
         'time_frequency': 'monthly',
         'units': 'C/C'},
        'metric': {'datasets': "HadGEM2-AO_r1i1p1; ERA-Interim's ts & HadISST's sst & Tropflux's sst; 's ",
         'method': 'The metric is the absolute value of the relative difference between model and observations values (M = 100 * abs[[model-obs] / obs])',
         'name': 'EnsoSeasonality',
         'units': '%'}},
       'EnsoSstDiversity_2': {'diagnostic': {'ERA-Interim': {'keyerror': None,
          'name': 'ERA-Interim',
          'nyears': 40,
          'time_period': ['1979-1-16 12:0:0.0', '2019-3-16 12:0:0.0']},
         'HadGEM2-AO_r1i1p1': {'keyerror': None,
          'name': 'HadGEM2-AO_r1i1p1',
          'nyears': 146,
          'time_period': ['1860-1-16 0:0:0.0', '2005-12-16 0:0:0.0']},
         'HadISST': {'keyerror': None,
          'name': 'HadISST',
          'nyears': 151,
          'time_period': ['1870-1-16 11:59:59.5', '2020-10-16 12:0:0.0']},
         'Tropflux': {'keyerror': None,
          'name': 'Tropflux',
          'nyears': 40,
          'time_period': ['1979-1-15 0:0:0.0', '2018-12-15 12:0:0.0']},
         'method': 'Nino (Nina) events = nino3.4 sstA > 0.75 (< -0.75) during DEC, zonal SSTA (meridional averaged [-5.0 ; 5.0]), the zonal SSTA maximum (minimum) is located for each event, the diversity is the interquartile range (IQR = Q3 - Q1), time series are linearly detrended, smoothing using a triangle shaped window of 5 points',
         'name': 'ENSO Diversity (interquartile range)',
         'ref': 'Using CDAT regridding',
         'time_frequency': 'monthly',
         'units': 'long'},
        'metric': {'datasets': "HadGEM2-AO_r1i1p1; ERA-Interim's ts & HadISST's sst & Tropflux's sst; 's ",
         'method': 'The metric is the absolute value of the relative difference between model and observations values (M = 100 * abs[[model-obs] / obs])',
         'name': 'EnsoSstDiversity',
         'units': '%'}},
       'EnsoSstLonRmse': {'diagnostic': {'ERA-Interim': {'name': 'ERA-Interim',
          'nyears': 40,
          'time_period': ['1979-1-16 12:0:0.0', '2019-3-16 12:0:0.0']},
         'HadGEM2-AO_r1i1p1': {'keyerror': None,
          'name': 'HadGEM2-AO_r1i1p1',
          'nyears': 146,
          'time_period': ['1860-1-16 0:0:0.0', '2005-12-16 0:0:0.0']},
         'HadISST': {'name': 'HadISST',
          'nyears': 151,
          'time_period': ['1870-1-16 11:59:59.5', '2020-10-16 12:0:0.0']},
         'Tropflux': {'name': 'Tropflux',
          'nyears': 40,
          'time_period': ['1979-1-15 0:0:0.0', '2018-12-15 12:0:0.0']},
         'method': 'nino3.4 SSTA during DEC regressed against equatorial_pacific SSTA, time series are linearly detrended, smoothing using a triangle shaped window of 5 points, observations and model regridded to generic_1x1deg',
         'name': 'ENSO Zonal SSTA pattern',
         'ref': 'Using CDAT regridding and rms (uncentered and biased) calculation',
         'time_frequency': 'monthly',
         'units': 'C/C'},
        'metric': {'datasets': "HadGEM2-AO_r1i1p1; ERA-Interim's ts & HadISST's sst & Tropflux's sst; 's ",
         'method': 'The metric is the statistical value between the model and the observations',
         'name': 'EnsoSstLonRmse',
         'units': 'C/C'}},
       'EnsoSstSkew': {'diagnostic': {'ERA-Interim': {'keyerror': None,
          'name': 'ERA-Interim',
          'nyears': 40,
          'time_period': ['1979-1-16 12:0:0.0', '2019-3-16 12:0:0.0']},
         'HadGEM2-AO_r1i1p1': {'keyerror': None,
          'name': 'HadGEM2-AO_r1i1p1',
          'nyears': 146,
          'time_period': ['1860-1-16 0:0:0.0', '2005-12-16 0:0:0.0']},
         'HadISST': {'keyerror': None,
          'name': 'HadISST',
          'nyears': 151,
          'time_period': ['1870-1-16 11:59:59.5', '2020-10-16 12:0:0.0']},
         'Tropflux': {'keyerror': None,
          'name': 'Tropflux',
          'nyears': 40,
          'time_period': ['1979-1-15 0:0:0.0', '2018-12-15 12:0:0.0']},
         'method': 'Standard deviation of nino3.4 sstA, time series are linearly detrended',
         'name': 'ENSO skewness',
         'ref': 'Using CDAT regression calculation',
         'time_frequency': 'monthly',
         'units': 'C'},
        'metric': {'datasets': "HadGEM2-AO_r1i1p1; ERA-Interim's ts & HadISST's sst & Tropflux's sst; 's ",
         'method': 'The metric is the absolute value of the relative difference between model and observations values (M = 100 * abs[[model-obs] / obs])',
         'name': 'EnsoSstSkew',
         'units': '%'}},
       'EnsoSstTsRmse': {'diagnostic': {'ERA-Interim': {'name': 'ERA-Interim',
          'nyears': 40,
          'time_period': ['1979-1-16 12:0:0.0', '2019-3-16 12:0:0.0']},
         'HadGEM2-AO_r1i1p1': {'keyerror': None,
          'name': 'HadGEM2-AO_r1i1p1',
          'nyears': 146,
          'time_period': ['1860-1-16 0:0:0.0', '2005-12-16 0:0:0.0']},
         'HadISST': {'name': 'HadISST',
          'nyears': 151,
          'time_period': ['1870-1-16 11:59:59.5', '2020-10-16 12:0:0.0']},
         'Tropflux': {'name': 'Tropflux',
          'nyears': 40,
          'time_period': ['1979-1-15 0:0:0.0', '2018-12-15 12:0:0.0']},
         'method': 'nino3.4 SSTA during DEC regressed against nino3.4 SSTA during 6 years (centered on ENSO), time series are linearly detrended, smoothing using a triangle shaped window of 5 points',
         'name': 'ENSO life cyle SSTA pattern',
         'ref': 'Using CDAT regridding and rms (uncentered and biased) calculation',
         'time_frequency': 'monthly',
         'units': 'C/C'},
        'metric': {'datasets': "HadGEM2-AO_r1i1p1; ERA-Interim's ts & HadISST's sst & Tropflux's sst; 's ",
         'method': 'The metric is the statistical value between the model and the observations',
         'name': 'EnsoSstTsRmse',
         'units': 'C/C'}},
       'SeasonalPrLatRmse': {'diagnostic': {'ERA-Interim': {'name': 'ERA-Interim',
          'nyears': 40,
          'time_period': ['1979-1-16 12:0:0.0', '2019-3-16 12:0:0.0']},
         'GPCPv2.3': {'name': 'GPCPv2.3',
          'nyears': 41,
          'time_period': ['1979-1-1 0:0:0.0', '2019-7-1 0:0:0.0']},
         'HadGEM2-AO_r1i1p1': {'keyerror': None,
          'name': 'HadGEM2-AO_r1i1p1',
          'nyears': 146,
          'time_period': ['1860-1-16 0:0:0.0', '2005-12-16 0:0:0.0']},
         'method': 'Meridional root mean square error of nino3_LatExt climatological pr STD, time series are linearly detrended, observations and model regridded to generic_1x1deg',
         'name': 'pr meridional seasonality RMSE',
         'ref': 'Using CDAT regridding and rms (uncentered and biased) calculation',
         'time_frequency': 'monthly',
         'units': 'mm/day'},
        'metric': {'datasets': "HadGEM2-AO_r1i1p1; ERA-Interim's pr & GPCPv2.3's precip; 's ",
         'method': 'The metric is the statistical value between the model and the observations',
         'name': 'SeasonalPrLatRmse',
         'units': 'mm/day'}},
       'SeasonalPrLonRmse': {'diagnostic': {'ERA-Interim': {'name': 'ERA-Interim',
          'nyears': 40,
          'time_period': ['1979-1-16 12:0:0.0', '2019-3-16 12:0:0.0']},
         'GPCPv2.3': {'name': 'GPCPv2.3',
          'nyears': 41,
          'time_period': ['1979-1-1 0:0:0.0', '2019-7-1 0:0:0.0']},
         'HadGEM2-AO_r1i1p1': {'keyerror': None,
          'name': 'HadGEM2-AO_r1i1p1',
          'nyears': 146,
          'time_period': ['1860-1-16 0:0:0.0', '2005-12-16 0:0:0.0']},
         'method': 'Zonal root mean square error of equatorial_pacific climatological pr STD, time series are linearly detrended, observations and model regridded to generic_1x1deg',
         'name': 'pr zonal seasonality RMSE',
         'ref': 'Using CDAT regridding and rms (uncentered and biased) calculation',
         'time_frequency': 'monthly',
         'units': 'mm/day'},
        'metric': {'datasets': "HadGEM2-AO_r1i1p1; ERA-Interim's pr & GPCPv2.3's precip; 's ",
         'method': 'The metric is the statistical value between the model and the observations',
         'name': 'SeasonalPrLonRmse',
         'units': 'mm/day'}},
       'SeasonalSstLonRmse': {'diagnostic': {'ERA-Interim': {'name': 'ERA-Interim',
          'nyears': 40,
          'time_period': ['1979-1-16 12:0:0.0', '2019-3-16 12:0:0.0']},
         'HadGEM2-AO_r1i1p1': {'keyerror': None,
          'name': 'HadGEM2-AO_r1i1p1',
          'nyears': 146,
          'time_period': ['1860-1-16 0:0:0.0', '2005-12-16 0:0:0.0']},
         'HadISST': {'name': 'HadISST',
          'nyears': 151,
          'time_period': ['1870-1-16 11:59:59.5', '2020-10-16 12:0:0.0']},
         'Tropflux': {'name': 'Tropflux',
          'nyears': 40,
          'time_period': ['1979-1-15 0:0:0.0', '2018-12-15 12:0:0.0']},
         'method': 'Zonal root mean square error of equatorial_pacific climatological sst STD, time series are linearly detrended, observations and model regridded to generic_1x1deg',
         'name': 'sst zonal seasonality RMSE',
         'ref': 'Using CDAT regridding and rms (uncentered and biased) calculation',
         'time_frequency': 'monthly',
         'units': 'C'},
        'metric': {'datasets': "HadGEM2-AO_r1i1p1; ERA-Interim's ts & HadISST's sst & Tropflux's sst; 's ",
         'method': 'The metric is the statistical value between the model and the observations',
         'name': 'SeasonalSstLonRmse',
         'units': 'C'}},
       'SeasonalTauxLonRmse': {'diagnostic': {'ERA-Interim': {'name': 'ERA-Interim',
          'nyears': 40,
          'time_period': ['1979-1-16 12:0:0.0', '2019-3-16 12:0:0.0']},
         'HadGEM2-AO_r1i1p1': {'keyerror': None,
          'name': 'HadGEM2-AO_r1i1p1',
          'nyears': 146,
          'time_period': ['1860-1-16 0:0:0.0', '2005-12-16 0:0:0.0']},
         'Tropflux': {'name': 'Tropflux',
          'nyears': 40,
          'time_period': ['1979-1-15 0:0:0.0', '2018-12-15 12:0:0.0']},
         'method': 'Zonal root mean square error of equatorial_pacific climatological taux STD, time series are linearly detrended, observations and model regridded to generic_1x1deg',
         'name': 'taux zonal seasonality RMSE',
         'ref': 'Using CDAT regridding and rms (uncentered and biased) calculation',
         'time_frequency': 'monthly',
         'units': '1e-3 N/m2'},
        'metric': {'datasets': "HadGEM2-AO_r1i1p1; ERA-Interim's tauu & Tropflux's taux; 's ",
         'method': 'The metric is the statistical value between the model and the observations',
         'name': 'SeasonalTauxLonRmse',
         'units': '1e-3 N/m2'}}},
      'name': 'Metrics Collection for ENSO performance'},
     'value': {'BiasPrLatRmse': {'diagnostic': {'ERA-Interim': {'value': None,
         'value_error': None},
        'GPCPv2.3': {'value': None, 'value_error': None},
        'HadGEM2-AO_r1i1p1': {'value': None, 'value_error': None}},
       'metric': {'ERA-Interim': {'value': 0.9831010270857359,
         'value_error': None},
        'GPCPv2.3': {'value': 1.7666393072775088, 'value_error': None}}},
      'BiasPrLonRmse': {'diagnostic': {'ERA-Interim': {'value': None,
         'value_error': None},
        'GPCPv2.3': {'value': None, 'value_error': None},
        'HadGEM2-AO_r1i1p1': {'value': None, 'value_error': None}},
       'metric': {'ERA-Interim': {'value': 1.219101953008681,
         'value_error': None},
        'GPCPv2.3': {'value': 0.74835558314193, 'value_error': None}}},
      'BiasSstLonRmse': {'diagnostic': {'ERA-Interim': {'value': None,
         'value_error': None},
        'HadGEM2-AO_r1i1p1': {'value': None, 'value_error': None},
        'HadISST': {'value': None, 'value_error': None},
        'Tropflux': {'value': None, 'value_error': None}},
       'metric': {'ERA-Interim': {'value': 0.8061152124738303,
         'value_error': None},
        'HadISST': {'value': 0.6200150508385294, 'value_error': None},
        'Tropflux': {'value': 0.8541196711989075, 'value_error': None}}},
      'BiasTauxLonRmse': {'diagnostic': {'ERA-Interim': {'value': None,
         'value_error': None},
        'HadGEM2-AO_r1i1p1': {'value': None, 'value_error': None},
        'Tropflux': {'value': None, 'value_error': None}},
       'metric': {'ERA-Interim': {'value': 8.922947301302221,
         'value_error': None},
        'Tropflux': {'value': 8.999029773635938, 'value_error': None}}},
      'EnsoAmpl': {'diagnostic': {'ERA-Interim': {'value': 0.8989844997845644,
         'value_error': 0.14214193002531866},
        'HadGEM2-AO_r1i1p1': {'value': 0.7080523973214107,
         'value_error': 0.0585988333462223},
        'HadISST': {'value': 0.7665787872085695,
         'value_error': 0.06238329697691264},
        'Tropflux': {'value': 0.9039789553693535,
         'value_error': 0.14293162279134272}},
       'metric': {'ERA-Interim': {'value': 21.23864232463511,
         'value_error': 18.971600433711817},
        'HadISST': {'value': 7.634752078162461,
         'value_error': 15.160779583265857},
        'Tropflux': {'value': 21.673796373709813,
         'value_error': 18.86678293195944}}},
      'EnsoDuration': {'diagnostic': {'ERA-Interim': {'value': 13.0,
         'value_error': None},
        'HadGEM2-AO_r1i1p1': {'value': 13.0, 'value_error': None},
        'HadISST': {'value': 13.0, 'value_error': None},
        'Tropflux': {'value': 13.0, 'value_error': None}},
       'metric': {'ERA-Interim': {'value': 0.0, 'value_error': None},
        'HadISST': {'value': 0.0, 'value_error': None},
        'Tropflux': {'value': 0.0, 'value_error': None}}},
      'EnsoSeasonality': {'diagnostic': {'ERA-Interim': {'value': 2.0466846866656914,
         'value_error': 0.6513411033995022},
        'HadGEM2-AO_r1i1p1': {'value': 1.3614892642689074,
         'value_error': 0.22574318250471212},
        'HadISST': {'value': 1.6639865947361325,
         'value_error': 0.2712772451657809},
        'Tropflux': {'value': 2.0532132553583624,
         'value_error': 0.6534187683977347}},
       'metric': {'ERA-Interim': {'value': 33.47830893839608,
         'value_error': 32.19969853485388},
        'HadISST': {'value': 18.179072561290305,
         'value_error': 26.905549710905657},
        'Tropflux': {'value': 33.68982687425342,
         'value_error': 32.09731367871704}}},
      'EnsoSstDiversity_2': {'diagnostic': {'ERA-Interim': {'value': 33.25,
         'value_error': None},
        'HadGEM2-AO_r1i1p1': {'value': 5.0, 'value_error': None},
        'HadISST': {'value': 49.0, 'value_error': None},
        'Tropflux': {'value': 32.0, 'value_error': None}},
       'metric': {'ERA-Interim': {'value': 84.9624060150376,
         'value_error': None},
        'HadISST': {'value': 89.79591836734694, 'value_error': None},
        'Tropflux': {'value': 84.375, 'value_error': None}}},
      'EnsoSstLonRmse': {'diagnostic': {'ERA-Interim': {'value': None,
         'value_error': None},
        'HadGEM2-AO_r1i1p1': {'value': None, 'value_error': None},
        'HadISST': {'value': None, 'value_error': None},
        'Tropflux': {'value': None, 'value_error': None}},
       'metric': {'ERA-Interim': {'value': 0.17868547929839443,
         'value_error': None},
        'HadISST': {'value': 0.18874883337831602, 'value_error': None},
        'Tropflux': {'value': 0.17821596072827492, 'value_error': None}}},
      'EnsoSstSkew': {'diagnostic': {'ERA-Interim': {'value': 0.39098111106809963,
         'value_error': 0.061819541653923164},
        'HadGEM2-AO_r1i1p1': {'value': -0.4568441258391742,
         'value_error': -0.037808688871790175},
        'HadISST': {'value': 0.38989908235027515,
         'value_error': 0.03172953733021198},
        'Tropflux': {'value': 0.39744741059612115,
         'value_error': 0.06284195338099416}},
       'metric': {'ERA-Interim': {'value': 216.8455746087444,
         'value_error': -28.145116074070923},
        'HadISST': {'value': 217.16983868886294,
         'value_error': -19.232191090656762},
        'Tropflux': {'value': 214.9445470418251,
         'value_error': -27.68720706288148}}},
      'EnsoSstTsRmse': {'diagnostic': {'ERA-Interim': {'value': None,
         'value_error': None},
        'HadGEM2-AO_r1i1p1': {'value': None, 'value_error': None},
        'HadISST': {'value': None, 'value_error': None},
        'Tropflux': {'value': None, 'value_error': None}},
       'metric': {'ERA-Interim': {'value': 0.1865901606577584,
         'value_error': None},
        'HadISST': {'value': 0.15150613114470107, 'value_error': None},
        'Tropflux': {'value': 0.1831811644967847, 'value_error': None}}},
      'SeasonalPrLatRmse': {'diagnostic': {'ERA-Interim': {'value': None,
         'value_error': None},
        'GPCPv2.3': {'value': None, 'value_error': None},
        'HadGEM2-AO_r1i1p1': {'value': None, 'value_error': None}},
       'metric': {'ERA-Interim': {'value': 1.646638024013878,
         'value_error': None},
        'GPCPv2.3': {'value': 1.9604794271502959, 'value_error': None}}},
      'SeasonalPrLonRmse': {'diagnostic': {'ERA-Interim': {'value': None,
         'value_error': None},
        'GPCPv2.3': {'value': None, 'value_error': None},
        'HadGEM2-AO_r1i1p1': {'value': None, 'value_error': None}},
       'metric': {'ERA-Interim': {'value': 0.7740436604765183,
         'value_error': None},
        'GPCPv2.3': {'value': 0.769365229904841, 'value_error': None}}},
      'SeasonalSstLonRmse': {'diagnostic': {'ERA-Interim': {'value': None,
         'value_error': None},
        'HadGEM2-AO_r1i1p1': {'value': None, 'value_error': None},
        'HadISST': {'value': None, 'value_error': None},
        'Tropflux': {'value': None, 'value_error': None}},
       'metric': {'ERA-Interim': {'value': 0.17072542032418442,
         'value_error': None},
        'HadISST': {'value': 0.18940528305318413, 'value_error': None},
        'Tropflux': {'value': 0.17021175588685633, 'value_error': None}}},
      'SeasonalTauxLonRmse': {'diagnostic': {'ERA-Interim': {'value': None,
         'value_error': None},
        'HadGEM2-AO_r1i1p1': {'value': None, 'value_error': None},
        'Tropflux': {'value': None, 'value_error': None}},
       'metric': {'ERA-Interim': {'value': 4.77094272706078,
         'value_error': None},
        'Tropflux': {'value': 4.467867902617733, 'value_error': None}}}}}},
   'HadGEM2-CC': {'r1i1p1': {'metadata': {'description_of_the_collection': 'Describe which science question this collection is about',
      'metrics': {'BiasPrLatRmse': {'diagnostic': {'ERA-Interim': {'name': 'ERA-Interim',
          'nyears': 40,
          'time_period': ['1979-1-16 12:0:0.0', '2019-3-16 12:0:0.0']},
         'GPCPv2.3': {'name': 'GPCPv2.3',
          'nyears': 41,
          'time_period': ['1979-1-1 0:0:0.0', '2019-7-1 0:0:0.0']},
         'HadGEM2-CC_r1i1p1': {'keyerror': None,
          'name': 'HadGEM2-CC_r1i1p1',
          'nyears': 146,
          'time_period': ['1859-12-16 0:0:0.0', '2005-11-16 0:0:0.0']},
         'method': 'Meridional root mean square error of nino3_LatExt pr, time series are linearly detrended, observations and model regridded to generic_1x1deg',
         'name': 'pr Meridional RMSE',
         'ref': 'Using CDAT regridding and rms (uncentered and biased) calculation',
         'time_frequency': 'monthly',
         'units': 'mm/day'},
        'metric': {'datasets': "HadGEM2-CC_r1i1p1; ERA-Interim's pr & GPCPv2.3's precip; 's ",
         'method': 'The metric is the statistical value between the model and the observations',
         'name': 'BiasPrLatRmse',
         'units': 'mm/day'}},
       'BiasPrLonRmse': {'diagnostic': {'ERA-Interim': {'name': 'ERA-Interim',
          'nyears': 40,
          'time_period': ['1979-1-16 12:0:0.0', '2019-3-16 12:0:0.0']},
         'GPCPv2.3': {'name': 'GPCPv2.3',
          'nyears': 41,
          'time_period': ['1979-1-1 0:0:0.0', '2019-7-1 0:0:0.0']},
         'HadGEM2-CC_r1i1p1': {'keyerror': None,
          'name': 'HadGEM2-CC_r1i1p1',
          'nyears': 146,
          'time_period': ['1859-12-16 0:0:0.0', '2005-11-16 0:0:0.0']},
         'method': 'Zonal root mean square error of equatorial_pacific pr, time series are linearly detrended, observations and model regridded to generic_1x1deg',
         'name': 'pr Zonal RMSE',
         'ref': 'Using CDAT regridding and rms (uncentered and biased) calculation',
         'time_frequency': 'monthly',
         'units': 'mm/day'},
        'metric': {'datasets': "HadGEM2-CC_r1i1p1; ERA-Interim's pr & GPCPv2.3's precip; 's ",
         'method': 'The metric is the statistical value between the model and the observations',
         'name': 'BiasPrLonRmse',
         'units': 'mm/day'}},
       'BiasSstLonRmse': {'diagnostic': {'ERA-Interim': {'name': 'ERA-Interim',
          'nyears': 40,
          'time_period': ['1979-1-16 12:0:0.0', '2019-3-16 12:0:0.0']},
         'HadGEM2-CC_r1i1p1': {'keyerror': None,
          'name': 'HadGEM2-CC_r1i1p1',
          'nyears': 146,
          'time_period': ['1859-12-16 0:0:0.0', '2005-11-16 0:0:0.0']},
         'HadISST': {'name': 'HadISST',
          'nyears': 151,
          'time_period': ['1870-1-16 11:59:59.5', '2020-10-16 12:0:0.0']},
         'Tropflux': {'name': 'Tropflux',
          'nyears': 40,
          'time_period': ['1979-1-15 0:0:0.0', '2018-12-15 12:0:0.0']},
         'method': 'Zonal root mean square error of equatorial_pacific sst, time series are linearly detrended, observations and model regridded to generic_1x1deg',
         'name': 'sst Zonal RMSE',
         'ref': 'Using CDAT regridding and rms (uncentered and biased) calculation',
         'time_frequency': 'monthly',
         'units': 'C'},
        'metric': {'datasets': "HadGEM2-CC_r1i1p1; ERA-Interim's ts & HadISST's sst & Tropflux's sst; 's ",
         'method': 'The metric is the statistical value between the model and the observations',
         'name': 'BiasSstLonRmse',
         'units': 'C'}},
       'BiasTauxLonRmse': {'diagnostic': {'ERA-Interim': {'name': 'ERA-Interim',
          'nyears': 40,
          'time_period': ['1979-1-16 12:0:0.0', '2019-3-16 12:0:0.0']},
         'HadGEM2-CC_r1i1p1': {'keyerror': None,
          'name': 'HadGEM2-CC_r1i1p1',
          'nyears': 146,
          'time_period': ['1859-12-16 0:0:0.0', '2005-11-16 0:0:0.0']},
         'Tropflux': {'name': 'Tropflux',
          'nyears': 40,
          'time_period': ['1979-1-15 0:0:0.0', '2018-12-15 12:0:0.0']},
         'method': 'Zonal root mean square error of equatorial_pacific taux, time series are linearly detrended, observations and model regridded to generic_1x1deg',
         'name': 'taux Zonal RMSE',
         'ref': 'Using CDAT regridding and rms (uncentered and biased) calculation',
         'time_frequency': 'monthly',
         'units': '1e-3 N/m2'},
        'metric': {'datasets': "HadGEM2-CC_r1i1p1; ERA-Interim's tauu & Tropflux's taux; 's ",
         'method': 'The metric is the statistical value between the model and the observations',
         'name': 'BiasTauxLonRmse',
         'units': '1e-3 N/m2'}},
       'EnsoAmpl': {'diagnostic': {'ERA-Interim': {'keyerror': None,
          'name': 'ERA-Interim',
          'nyears': 40,
          'time_period': ['1979-1-16 12:0:0.0', '2019-3-16 12:0:0.0']},
         'HadGEM2-CC_r1i1p1': {'keyerror': None,
          'name': 'HadGEM2-CC_r1i1p1',
          'nyears': 146,
          'time_period': ['1859-12-16 0:0:0.0', '2005-11-16 0:0:0.0']},
         'HadISST': {'keyerror': None,
          'name': 'HadISST',
          'nyears': 151,
          'time_period': ['1870-1-16 11:59:59.5', '2020-10-16 12:0:0.0']},
         'Tropflux': {'keyerror': None,
          'name': 'Tropflux',
          'nyears': 40,
          'time_period': ['1979-1-15 0:0:0.0', '2018-12-15 12:0:0.0']},
         'method': 'Standard deviation of nino3.4 sstA, time series are linearly detrended',
         'name': 'ENSO amplitude',
         'ref': 'Using CDAT regression calculation',
         'time_frequency': 'monthly',
         'units': 'C'},
        'metric': {'datasets': "HadGEM2-CC_r1i1p1; ERA-Interim's ts & HadISST's sst & Tropflux's sst; 's ",
         'method': 'The metric is the absolute value of the relative difference between model and observations values (M = 100 * abs[[model-obs] / obs])',
         'name': 'EnsoAmpl',
         'units': '%'}},
       'EnsoDuration': {'diagnostic': {'ERA-Interim': {'keyerror': None,
          'name': 'ERA-Interim',
          'nyears': 40,
          'time_period': ['1979-1-16 12:0:0.0', '2019-3-16 12:0:0.0']},
         'HadGEM2-CC_r1i1p1': {'keyerror': None,
          'name': 'HadGEM2-CC_r1i1p1',
          'nyears': 146,
          'time_period': ['1859-12-16 0:0:0.0', '2005-11-16 0:0:0.0']},
         'HadISST': {'keyerror': None,
          'name': 'HadISST',
          'nyears': 151,
          'time_period': ['1870-1-16 11:59:59.5', '2020-10-16 12:0:0.0']},
         'Tropflux': {'keyerror': None,
          'name': 'Tropflux',
          'nyears': 40,
          'time_period': ['1979-1-15 0:0:0.0', '2018-12-15 12:0:0.0']},
         'method': 'nino3.4 SSTA during DEC regressed against nino3.4 SSTA during 6 years (centered on ENSO), the duration is the number of consecutive months during which the regression is above 0.25, time series are linearly detrended, smoothing using a triangle shaped window of 5 points',
         'name': 'ENSO Duration based on life cyle SSTA pattern',
         'ref': 'Using CDAT',
         'time_frequency': 'monthly',
         'units': 'months'},
        'metric': {'datasets': "HadGEM2-CC_r1i1p1; ERA-Interim's ts & HadISST's sst & Tropflux's sst; 's ",
         'method': 'The metric is the absolute value of the relative difference between model and observations values (M = 100 * abs[[model-obs] / obs])',
         'name': 'EnsoDuration',
         'units': '%'}},
       'EnsoSeasonality': {'diagnostic': {'ERA-Interim': {'keyerror': None,
          'name': 'ERA-Interim',
          'nyears': 40,
          'time_period': ['1979-1-16 12:0:0.0', '2019-3-16 12:0:0.0']},
         'HadGEM2-CC_r1i1p1': {'keyerror': None,
          'name': 'HadGEM2-CC_r1i1p1',
          'nyears': 146,
          'time_period': ['1859-12-16 0:0:0.0', '2005-11-16 0:0:0.0']},
         'HadISST': {'keyerror': None,
          'name': 'HadISST',
          'nyears': 151,
          'time_period': ['1870-1-16 11:59:59.5', '2020-10-16 12:0:0.0']},
         'Tropflux': {'keyerror': None,
          'name': 'Tropflux',
          'nyears': 40,
          'time_period': ['1979-1-15 0:0:0.0', '2018-12-15 12:0:0.0']},
         'method': 'Ratio between NDJ and MAM standard deviation nino3.4 sstA, time series are linearly detrended',
         'name': 'ENSO seasonality',
         'ref': 'Using CDAT std dev calculation',
         'time_frequency': 'monthly',
         'units': 'C/C'},
        'metric': {'datasets': "HadGEM2-CC_r1i1p1; ERA-Interim's ts & HadISST's sst & Tropflux's sst; 's ",
         'method': 'The metric is the absolute value of the relative difference between model and observations values (M = 100 * abs[[model-obs] / obs])',
         'name': 'EnsoSeasonality',
         'units': '%'}},
       'EnsoSstDiversity_2': {'diagnostic': {'ERA-Interim': {'keyerror': None,
          'name': 'ERA-Interim',
          'nyears': 40,
          'time_period': ['1979-1-16 12:0:0.0', '2019-3-16 12:0:0.0']},
         'HadGEM2-CC_r1i1p1': {'keyerror': None,
          'name': 'HadGEM2-CC_r1i1p1',
          'nyears': 146,
          'time_period': ['1859-12-16 0:0:0.0', '2005-11-16 0:0:0.0']},
         'HadISST': {'keyerror': None,
          'name': 'HadISST',
          'nyears': 151,
          'time_period': ['1870-1-16 11:59:59.5', '2020-10-16 12:0:0.0']},
         'Tropflux': {'keyerror': None,
          'name': 'Tropflux',
          'nyears': 40,
          'time_period': ['1979-1-15 0:0:0.0', '2018-12-15 12:0:0.0']},
         'method': 'Nino (Nina) events = nino3.4 sstA > 0.75 (< -0.75) during DEC, zonal SSTA (meridional averaged [-5.0 ; 5.0]), the zonal SSTA maximum (minimum) is located for each event, the diversity is the interquartile range (IQR = Q3 - Q1), time series are linearly detrended, smoothing using a triangle shaped window of 5 points',
         'name': 'ENSO Diversity (interquartile range)',
         'ref': 'Using CDAT regridding',
         'time_frequency': 'monthly',
         'units': 'long'},
        'metric': {'datasets': "HadGEM2-CC_r1i1p1; ERA-Interim's ts & HadISST's sst & Tropflux's sst; 's ",
         'method': 'The metric is the absolute value of the relative difference between model and observations values (M = 100 * abs[[model-obs] / obs])',
         'name': 'EnsoSstDiversity',
         'units': '%'}},
       'EnsoSstLonRmse': {'diagnostic': {'ERA-Interim': {'name': 'ERA-Interim',
          'nyears': 40,
          'time_period': ['1979-1-16 12:0:0.0', '2019-3-16 12:0:0.0']},
         'HadGEM2-CC_r1i1p1': {'keyerror': None,
          'name': 'HadGEM2-CC_r1i1p1',
          'nyears': 146,
          'time_period': ['1859-12-16 0:0:0.0', '2005-11-16 0:0:0.0']},
         'HadISST': {'name': 'HadISST',
          'nyears': 151,
          'time_period': ['1870-1-16 11:59:59.5', '2020-10-16 12:0:0.0']},
         'Tropflux': {'name': 'Tropflux',
          'nyears': 40,
          'time_period': ['1979-1-15 0:0:0.0', '2018-12-15 12:0:0.0']},
         'method': 'nino3.4 SSTA during DEC regressed against equatorial_pacific SSTA, time series are linearly detrended, smoothing using a triangle shaped window of 5 points, observations and model regridded to generic_1x1deg',
         'name': 'ENSO Zonal SSTA pattern',
         'ref': 'Using CDAT regridding and rms (uncentered and biased) calculation',
         'time_frequency': 'monthly',
         'units': 'C/C'},
        'metric': {'datasets': "HadGEM2-CC_r1i1p1; ERA-Interim's ts & HadISST's sst & Tropflux's sst; 's ",
         'method': 'The metric is the statistical value between the model and the observations',
         'name': 'EnsoSstLonRmse',
         'units': 'C/C'}},
       'EnsoSstSkew': {'diagnostic': {'ERA-Interim': {'keyerror': None,
          'name': 'ERA-Interim',
          'nyears': 40,
          'time_period': ['1979-1-16 12:0:0.0', '2019-3-16 12:0:0.0']},
         'HadGEM2-CC_r1i1p1': {'keyerror': None,
          'name': 'HadGEM2-CC_r1i1p1',
          'nyears': 146,
          'time_period': ['1859-12-16 0:0:0.0', '2005-11-16 0:0:0.0']},
         'HadISST': {'keyerror': None,
          'name': 'HadISST',
          'nyears': 151,
          'time_period': ['1870-1-16 11:59:59.5', '2020-10-16 12:0:0.0']},
         'Tropflux': {'keyerror': None,
          'name': 'Tropflux',
          'nyears': 40,
          'time_period': ['1979-1-15 0:0:0.0', '2018-12-15 12:0:0.0']},
         'method': 'Standard deviation of nino3.4 sstA, time series are linearly detrended',
         'name': 'ENSO skewness',
         'ref': 'Using CDAT regression calculation',
         'time_frequency': 'monthly',
         'units': 'C'},
        'metric': {'datasets': "HadGEM2-CC_r1i1p1; ERA-Interim's ts & HadISST's sst & Tropflux's sst; 's ",
         'method': 'The metric is the absolute value of the relative difference between model and observations values (M = 100 * abs[[model-obs] / obs])',
         'name': 'EnsoSstSkew',
         'units': '%'}},
       'EnsoSstTsRmse': {'diagnostic': {'ERA-Interim': {'name': 'ERA-Interim',
          'nyears': 40,
          'time_period': ['1979-1-16 12:0:0.0', '2019-3-16 12:0:0.0']},
         'HadGEM2-CC_r1i1p1': {'keyerror': None,
          'name': 'HadGEM2-CC_r1i1p1',
          'nyears': 146,
          'time_period': ['1859-12-16 0:0:0.0', '2005-11-16 0:0:0.0']},
         'HadISST': {'name': 'HadISST',
          'nyears': 151,
          'time_period': ['1870-1-16 11:59:59.5', '2020-10-16 12:0:0.0']},
         'Tropflux': {'name': 'Tropflux',
          'nyears': 40,
          'time_period': ['1979-1-15 0:0:0.0', '2018-12-15 12:0:0.0']},
         'method': 'nino3.4 SSTA during DEC regressed against nino3.4 SSTA during 6 years (centered on ENSO), time series are linearly detrended, smoothing using a triangle shaped window of 5 points',
         'name': 'ENSO life cyle SSTA pattern',
         'ref': 'Using CDAT regridding and rms (uncentered and biased) calculation',
         'time_frequency': 'monthly',
         'units': 'C/C'},
        'metric': {'datasets': "HadGEM2-CC_r1i1p1; ERA-Interim's ts & HadISST's sst & Tropflux's sst; 's ",
         'method': 'The metric is the statistical value between the model and the observations',
         'name': 'EnsoSstTsRmse',
         'units': 'C/C'}},
       'SeasonalPrLatRmse': {'diagnostic': {'ERA-Interim': {'name': 'ERA-Interim',
          'nyears': 40,
          'time_period': ['1979-1-16 12:0:0.0', '2019-3-16 12:0:0.0']},
         'GPCPv2.3': {'name': 'GPCPv2.3',
          'nyears': 41,
          'time_period': ['1979-1-1 0:0:0.0', '2019-7-1 0:0:0.0']},
         'HadGEM2-CC_r1i1p1': {'keyerror': None,
          'name': 'HadGEM2-CC_r1i1p1',
          'nyears': 146,
          'time_period': ['1859-12-16 0:0:0.0', '2005-11-16 0:0:0.0']},
         'method': 'Meridional root mean square error of nino3_LatExt climatological pr STD, time series are linearly detrended, observations and model regridded to generic_1x1deg',
         'name': 'pr meridional seasonality RMSE',
         'ref': 'Using CDAT regridding and rms (uncentered and biased) calculation',
         'time_frequency': 'monthly',
         'units': 'mm/day'},
        'metric': {'datasets': "HadGEM2-CC_r1i1p1; ERA-Interim's pr & GPCPv2.3's precip; 's ",
         'method': 'The metric is the statistical value between the model and the observations',
         'name': 'SeasonalPrLatRmse',
         'units': 'mm/day'}},
       'SeasonalPrLonRmse': {'diagnostic': {'ERA-Interim': {'name': 'ERA-Interim',
          'nyears': 40,
          'time_period': ['1979-1-16 12:0:0.0', '2019-3-16 12:0:0.0']},
         'GPCPv2.3': {'name': 'GPCPv2.3',
          'nyears': 41,
          'time_period': ['1979-1-1 0:0:0.0', '2019-7-1 0:0:0.0']},
         'HadGEM2-CC_r1i1p1': {'keyerror': None,
          'name': 'HadGEM2-CC_r1i1p1',
          'nyears': 146,
          'time_period': ['1859-12-16 0:0:0.0', '2005-11-16 0:0:0.0']},
         'method': 'Zonal root mean square error of equatorial_pacific climatological pr STD, time series are linearly detrended, observations and model regridded to generic_1x1deg',
         'name': 'pr zonal seasonality RMSE',
         'ref': 'Using CDAT regridding and rms (uncentered and biased) calculation',
         'time_frequency': 'monthly',
         'units': 'mm/day'},
        'metric': {'datasets': "HadGEM2-CC_r1i1p1; ERA-Interim's pr & GPCPv2.3's precip; 's ",
         'method': 'The metric is the statistical value between the model and the observations',
         'name': 'SeasonalPrLonRmse',
         'units': 'mm/day'}},
       'SeasonalSstLonRmse': {'diagnostic': {'ERA-Interim': {'name': 'ERA-Interim',
          'nyears': 40,
          'time_period': ['1979-1-16 12:0:0.0', '2019-3-16 12:0:0.0']},
         'HadGEM2-CC_r1i1p1': {'keyerror': None,
          'name': 'HadGEM2-CC_r1i1p1',
          'nyears': 146,
          'time_period': ['1859-12-16 0:0:0.0', '2005-11-16 0:0:0.0']},
         'HadISST': {'name': 'HadISST',
          'nyears': 151,
          'time_period': ['1870-1-16 11:59:59.5', '2020-10-16 12:0:0.0']},
         'Tropflux': {'name': 'Tropflux',
          'nyears': 40,
          'time_period': ['1979-1-15 0:0:0.0', '2018-12-15 12:0:0.0']},
         'method': 'Zonal root mean square error of equatorial_pacific climatological sst STD, time series are linearly detrended, observations and model regridded to generic_1x1deg',
         'name': 'sst zonal seasonality RMSE',
         'ref': 'Using CDAT regridding and rms (uncentered and biased) calculation',
         'time_frequency': 'monthly',
         'units': 'C'},
        'metric': {'datasets': "HadGEM2-CC_r1i1p1; ERA-Interim's ts & HadISST's sst & Tropflux's sst; 's ",
         'method': 'The metric is the statistical value between the model and the observations',
         'name': 'SeasonalSstLonRmse',
         'units': 'C'}},
       'SeasonalTauxLonRmse': {'diagnostic': {'ERA-Interim': {'name': 'ERA-Interim',
          'nyears': 40,
          'time_period': ['1979-1-16 12:0:0.0', '2019-3-16 12:0:0.0']},
         'HadGEM2-CC_r1i1p1': {'keyerror': None,
          'name': 'HadGEM2-CC_r1i1p1',
          'nyears': 146,
          'time_period': ['1859-12-16 0:0:0.0', '2005-11-16 0:0:0.0']},
         'Tropflux': {'name': 'Tropflux',
          'nyears': 40,
          'time_period': ['1979-1-15 0:0:0.0', '2018-12-15 12:0:0.0']},
         'method': 'Zonal root mean square error of equatorial_pacific climatological taux STD, time series are linearly detrended, observations and model regridded to generic_1x1deg',
         'name': 'taux zonal seasonality RMSE',
         'ref': 'Using CDAT regridding and rms (uncentered and biased) calculation',
         'time_frequency': 'monthly',
         'units': '1e-3 N/m2'},
        'metric': {'datasets': "HadGEM2-CC_r1i1p1; ERA-Interim's tauu & Tropflux's taux; 's ",
         'method': 'The metric is the statistical value between the model and the observations',
         'name': 'SeasonalTauxLonRmse',
         'units': '1e-3 N/m2'}}},
      'name': 'Metrics Collection for ENSO performance'},
     'value': {'BiasPrLatRmse': {'diagnostic': {'ERA-Interim': {'value': None,
         'value_error': None},
        'GPCPv2.3': {'value': None, 'value_error': None},
        'HadGEM2-CC_r1i1p1': {'value': None, 'value_error': None}},
       'metric': {'ERA-Interim': {'value': 0.8563568307567402,
         'value_error': None},
        'GPCPv2.3': {'value': 1.6287637901788639, 'value_error': None}}},
      'BiasPrLonRmse': {'diagnostic': {'ERA-Interim': {'value': None,
         'value_error': None},
        'GPCPv2.3': {'value': None, 'value_error': None},
        'HadGEM2-CC_r1i1p1': {'value': None, 'value_error': None}},
       'metric': {'ERA-Interim': {'value': 1.0419224469502477,
         'value_error': None},
        'GPCPv2.3': {'value': 0.6459090949252458, 'value_error': None}}},
      'BiasSstLonRmse': {'diagnostic': {'ERA-Interim': {'value': None,
         'value_error': None},
        'HadGEM2-CC_r1i1p1': {'value': None, 'value_error': None},
        'HadISST': {'value': None, 'value_error': None},
        'Tropflux': {'value': None, 'value_error': None}},
       'metric': {'ERA-Interim': {'value': 1.2099022929753394,
         'value_error': None},
        'HadISST': {'value': 1.0043405921386646, 'value_error': None},
        'Tropflux': {'value': 1.2593936055335249, 'value_error': None}}},
      'BiasTauxLonRmse': {'diagnostic': {'ERA-Interim': {'value': None,
         'value_error': None},
        'HadGEM2-CC_r1i1p1': {'value': None, 'value_error': None},
        'Tropflux': {'value': None, 'value_error': None}},
       'metric': {'ERA-Interim': {'value': 7.7947661548413665,
         'value_error': None},
        'Tropflux': {'value': 7.747139587392371, 'value_error': None}}},
      'EnsoAmpl': {'diagnostic': {'ERA-Interim': {'value': 0.8989844997845644,
         'value_error': 0.14214193002531866},
        'HadGEM2-CC_r1i1p1': {'value': 0.765124633737896,
         'value_error': 0.06332216523962127},
        'HadISST': {'value': 0.7665787872085695,
         'value_error': 0.06238329697691264},
        'Tropflux': {'value': 0.9039789553693535,
         'value_error': 0.14293162279134272}},
       'metric': {'ERA-Interim': {'value': 14.890119471330937,
         'value_error': 20.500797523147547},
        'HadISST': {'value': 0.18969393556645933,
         'value_error': 16.38280721837829},
        'Tropflux': {'value': 15.360348911521232,
         'value_error': 20.387531255084617}}},
      'EnsoDuration': {'diagnostic': {'ERA-Interim': {'value': 13.0,
         'value_error': None},
        'HadGEM2-CC_r1i1p1': {'value': 14.0, 'value_error': None},
        'HadISST': {'value': 13.0, 'value_error': None},
        'Tropflux': {'value': 13.0, 'value_error': None}},
       'metric': {'ERA-Interim': {'value': 7.6923076923076925,
         'value_error': None},
        'HadISST': {'value': 7.6923076923076925, 'value_error': None},
        'Tropflux': {'value': 7.6923076923076925, 'value_error': None}}},
      'EnsoSeasonality': {'diagnostic': {'ERA-Interim': {'value': 2.0466846866656914,
         'value_error': 0.6513411033995022},
        'HadGEM2-CC_r1i1p1': {'value': 1.3873504339063352,
         'value_error': 0.23003112137463932},
        'HadISST': {'value': 1.6639865947361325,
         'value_error': 0.2712772451657809},
        'Tropflux': {'value': 2.0532132553583624,
         'value_error': 0.6534187683977347}},
       'metric': {'ERA-Interim': {'value': 32.21474499980235,
         'value_error': 32.811324265543014},
        'HadISST': {'value': 16.624903211655084,
         'value_error': 27.416614324871315},
        'Tropflux': {'value': 32.4302806693019,
         'value_error': 32.706994633048154}}},
      'EnsoSstDiversity_2': {'diagnostic': {'ERA-Interim': {'value': 33.25,
         'value_error': None},
        'HadGEM2-CC_r1i1p1': {'value': 8.25, 'value_error': None},
        'HadISST': {'value': 49.0, 'value_error': None},
        'Tropflux': {'value': 32.0, 'value_error': None}},
       'metric': {'ERA-Interim': {'value': 75.18796992481202,
         'value_error': None},
        'HadISST': {'value': 83.16326530612244, 'value_error': None},
        'Tropflux': {'value': 74.21875, 'value_error': None}}},
      'EnsoSstLonRmse': {'diagnostic': {'ERA-Interim': {'value': None,
         'value_error': None},
        'HadGEM2-CC_r1i1p1': {'value': None, 'value_error': None},
        'HadISST': {'value': None, 'value_error': None},
        'Tropflux': {'value': None, 'value_error': None}},
       'metric': {'ERA-Interim': {'value': 0.16720343902743445,
         'value_error': None},
        'HadISST': {'value': 0.1678368624285184, 'value_error': None},
        'Tropflux': {'value': 0.16585470522085982, 'value_error': None}}},
      'EnsoSstSkew': {'diagnostic': {'ERA-Interim': {'value': 0.39098111106809963,
         'value_error': 0.061819541653923164},
        'HadGEM2-CC_r1i1p1': {'value': -0.39970109167462275,
         'value_error': -0.03307949771507127},
        'HadISST': {'value': 0.38989908235027515,
         'value_error': 0.03172953733021198},
        'Tropflux': {'value': 0.39744741059612115,
         'value_error': 0.06284195338099416}},
       'metric': {'ERA-Interim': {'value': 202.2302818114925,
         'value_error': -24.624665140327103},
        'HadISST': {'value': 202.51398625132998,
         'value_error': -16.82658775596605},
        'Tropflux': {'value': 200.56703881278816,
         'value_error': -24.224032361424957}}},
      'EnsoSstTsRmse': {'diagnostic': {'ERA-Interim': {'value': None,
         'value_error': None},
        'HadGEM2-CC_r1i1p1': {'value': None, 'value_error': None},
        'HadISST': {'value': None, 'value_error': None},
        'Tropflux': {'value': None, 'value_error': None}},
       'metric': {'ERA-Interim': {'value': 0.14324754238932466,
         'value_error': None},
        'HadISST': {'value': 0.10276356122976375, 'value_error': None},
        'Tropflux': {'value': 0.1394750267260021, 'value_error': None}}},
      'SeasonalPrLatRmse': {'diagnostic': {'ERA-Interim': {'value': None,
         'value_error': None},
        'GPCPv2.3': {'value': None, 'value_error': None},
        'HadGEM2-CC_r1i1p1': {'value': None, 'value_error': None}},
       'metric': {'ERA-Interim': {'value': 1.4703142639775728,
         'value_error': None},
        'GPCPv2.3': {'value': 1.7756268946001004, 'value_error': None}}},
      'SeasonalPrLonRmse': {'diagnostic': {'ERA-Interim': {'value': None,
         'value_error': None},
        'GPCPv2.3': {'value': None, 'value_error': None},
        'HadGEM2-CC_r1i1p1': {'value': None, 'value_error': None}},
       'metric': {'ERA-Interim': {'value': 0.7411600269762827,
         'value_error': None},
        'GPCPv2.3': {'value': 0.7342504907550685, 'value_error': None}}},
      'SeasonalSstLonRmse': {'diagnostic': {'ERA-Interim': {'value': None,
         'value_error': None},
        'HadGEM2-CC_r1i1p1': {'value': None, 'value_error': None},
        'HadISST': {'value': None, 'value_error': None},
        'Tropflux': {'value': None, 'value_error': None}},
       'metric': {'ERA-Interim': {'value': 0.17336087833662858,
         'value_error': None},
        'HadISST': {'value': 0.18907667031372588, 'value_error': None},
        'Tropflux': {'value': 0.17512592701296692, 'value_error': None}}},
      'SeasonalTauxLonRmse': {'diagnostic': {'ERA-Interim': {'value': None,
         'value_error': None},
        'HadGEM2-CC_r1i1p1': {'value': None, 'value_error': None},
        'Tropflux': {'value': None, 'value_error': None}},
       'metric': {'ERA-Interim': {'value': 4.514597944480628,
         'value_error': None},
        'Tropflux': {'value': 4.199702700718536, 'value_error': None}}}}},
    'r2i1p1': {'metadata': {'description_of_the_collection': 'Describe which science question this collection is about',
      'metrics': {'BiasPrLatRmse': {'diagnostic': {'ERA-Interim': {'name': 'ERA-Interim',
          'nyears': 40,
          'time_period': ['1979-1-16 12:0:0.0', '2019-3-16 12:0:0.0']},
         'GPCPv2.3': {'name': 'GPCPv2.3',
          'nyears': 41,
          'time_period': ['1979-1-1 0:0:0.0', '2019-7-1 0:0:0.0']},
         'HadGEM2-CC_r2i1p1': {'keyerror': None,
          'name': 'HadGEM2-CC_r2i1p1',
          'nyears': 46,
          'time_period': ['1959-12-16 0:0:0.0', '2005-12-16 0:0:0.0']},
         'method': 'Meridional root mean square error of nino3_LatExt pr, time series are linearly detrended, observations and model regridded to generic_1x1deg',
         'name': 'pr Meridional RMSE',
         'ref': 'Using CDAT regridding and rms (uncentered and biased) calculation',
         'time_frequency': 'monthly',
         'units': 'mm/day'},
        'metric': {'datasets': "HadGEM2-CC_r2i1p1; ERA-Interim's pr & GPCPv2.3's precip; 's ",
         'method': 'The metric is the statistical value between the model and the observations',
         'name': 'BiasPrLatRmse',
         'units': 'mm/day'}},
       'BiasPrLonRmse': {'diagnostic': {'ERA-Interim': {'name': 'ERA-Interim',
          'nyears': 40,
          'time_period': ['1979-1-16 12:0:0.0', '2019-3-16 12:0:0.0']},
         'GPCPv2.3': {'name': 'GPCPv2.3',
          'nyears': 41,
          'time_period': ['1979-1-1 0:0:0.0', '2019-7-1 0:0:0.0']},
         'HadGEM2-CC_r2i1p1': {'keyerror': None,
          'name': 'HadGEM2-CC_r2i1p1',
          'nyears': 46,
          'time_period': ['1959-12-16 0:0:0.0', '2005-12-16 0:0:0.0']},
         'method': 'Zonal root mean square error of equatorial_pacific pr, time series are linearly detrended, observations and model regridded to generic_1x1deg',
         'name': 'pr Zonal RMSE',
         'ref': 'Using CDAT regridding and rms (uncentered and biased) calculation',
         'time_frequency': 'monthly',
         'units': 'mm/day'},
        'metric': {'datasets': "HadGEM2-CC_r2i1p1; ERA-Interim's pr & GPCPv2.3's precip; 's ",
         'method': 'The metric is the statistical value between the model and the observations',
         'name': 'BiasPrLonRmse',
         'units': 'mm/day'}},
       'BiasSstLonRmse': {'diagnostic': {'ERA-Interim': {'name': 'ERA-Interim',
          'nyears': 40,
          'time_period': ['1979-1-16 12:0:0.0', '2019-3-16 12:0:0.0']},
         'HadGEM2-CC_r2i1p1': {'keyerror': None,
          'name': 'HadGEM2-CC_r2i1p1',
          'nyears': 46,
          'time_period': ['1959-12-16 0:0:0.0', '2005-12-16 0:0:0.0']},
         'HadISST': {'name': 'HadISST',
          'nyears': 151,
          'time_period': ['1870-1-16 11:59:59.5', '2020-10-16 12:0:0.0']},
         'Tropflux': {'name': 'Tropflux',
          'nyears': 40,
          'time_period': ['1979-1-15 0:0:0.0', '2018-12-15 12:0:0.0']},
         'method': 'Zonal root mean square error of equatorial_pacific sst, time series are linearly detrended, observations and model regridded to generic_1x1deg',
         'name': 'sst Zonal RMSE',
         'ref': 'Using CDAT regridding and rms (uncentered and biased) calculation',
         'time_frequency': 'monthly',
         'units': 'C'},
        'metric': {'datasets': "HadGEM2-CC_r2i1p1; ERA-Interim's ts & HadISST's sst & Tropflux's sst; 's ",
         'method': 'The metric is the statistical value between the model and the observations',
         'name': 'BiasSstLonRmse',
         'units': 'C'}},
       'BiasTauxLonRmse': {'diagnostic': {'ERA-Interim': {'name': 'ERA-Interim',
          'nyears': 40,
          'time_period': ['1979-1-16 12:0:0.0', '2019-3-16 12:0:0.0']},
         'HadGEM2-CC_r2i1p1': {'keyerror': None,
          'name': 'HadGEM2-CC_r2i1p1',
          'nyears': 46,
          'time_period': ['1959-12-16 0:0:0.0', '2005-12-16 0:0:0.0']},
         'Tropflux': {'name': 'Tropflux',
          'nyears': 40,
          'time_period': ['1979-1-15 0:0:0.0', '2018-12-15 12:0:0.0']},
         'method': 'Zonal root mean square error of equatorial_pacific taux, time series are linearly detrended, observations and model regridded to generic_1x1deg',
         'name': 'taux Zonal RMSE',
         'ref': 'Using CDAT regridding and rms (uncentered and biased) calculation',
         'time_frequency': 'monthly',
         'units': '1e-3 N/m2'},
        'metric': {'datasets': "HadGEM2-CC_r2i1p1; ERA-Interim's tauu & Tropflux's taux; 's ",
         'method': 'The metric is the statistical value between the model and the observations',
         'name': 'BiasTauxLonRmse',
         'units': '1e-3 N/m2'}},
       'EnsoAmpl': {'diagnostic': {'ERA-Interim': {'keyerror': None,
          'name': 'ERA-Interim',
          'nyears': 40,
          'time_period': ['1979-1-16 12:0:0.0', '2019-3-16 12:0:0.0']},
         'HadGEM2-CC_r2i1p1': {'keyerror': None,
          'name': 'HadGEM2-CC_r2i1p1',
          'nyears': 46,
          'time_period': ['1959-12-16 0:0:0.0', '2005-12-16 0:0:0.0']},
         'HadISST': {'keyerror': None,
          'name': 'HadISST',
          'nyears': 151,
          'time_period': ['1870-1-16 11:59:59.5', '2020-10-16 12:0:0.0']},
         'Tropflux': {'keyerror': None,
          'name': 'Tropflux',
          'nyears': 40,
          'time_period': ['1979-1-15 0:0:0.0', '2018-12-15 12:0:0.0']},
         'method': 'Standard deviation of nino3.4 sstA, time series are linearly detrended',
         'name': 'ENSO amplitude',
         'ref': 'Using CDAT regression calculation',
         'time_frequency': 'monthly',
         'units': 'C'},
        'metric': {'datasets': "HadGEM2-CC_r2i1p1; ERA-Interim's ts & HadISST's sst & Tropflux's sst; 's ",
         'method': 'The metric is the absolute value of the relative difference between model and observations values (M = 100 * abs[[model-obs] / obs])',
         'name': 'EnsoAmpl',
         'units': '%'}},
       'EnsoDuration': {'diagnostic': {'ERA-Interim': {'keyerror': None,
          'name': 'ERA-Interim',
          'nyears': 40,
          'time_period': ['1979-1-16 12:0:0.0', '2019-3-16 12:0:0.0']},
         'HadGEM2-CC_r2i1p1': {'keyerror': None,
          'name': 'HadGEM2-CC_r2i1p1',
          'nyears': 46,
          'time_period': ['1959-12-16 0:0:0.0', '2005-12-16 0:0:0.0']},
         'HadISST': {'keyerror': None,
          'name': 'HadISST',
          'nyears': 151,
          'time_period': ['1870-1-16 11:59:59.5', '2020-10-16 12:0:0.0']},
         'Tropflux': {'keyerror': None,
          'name': 'Tropflux',
          'nyears': 40,
          'time_period': ['1979-1-15 0:0:0.0', '2018-12-15 12:0:0.0']},
         'method': 'nino3.4 SSTA during DEC regressed against nino3.4 SSTA during 6 years (centered on ENSO), the duration is the number of consecutive months during which the regression is above 0.25, time series are linearly detrended, smoothing using a triangle shaped window of 5 points',
         'name': 'ENSO Duration based on life cyle SSTA pattern',
         'ref': 'Using CDAT',
         'time_frequency': 'monthly',
         'units': 'months'},
        'metric': {'datasets': "HadGEM2-CC_r2i1p1; ERA-Interim's ts & HadISST's sst & Tropflux's sst; 's ",
         'method': 'The metric is the absolute value of the relative difference between model and observations values (M = 100 * abs[[model-obs] / obs])',
         'name': 'EnsoDuration',
         'units': '%'}},
       'EnsoSeasonality': {'diagnostic': {'ERA-Interim': {'keyerror': None,
          'name': 'ERA-Interim',
          'nyears': 40,
          'time_period': ['1979-1-16 12:0:0.0', '2019-3-16 12:0:0.0']},
         'HadGEM2-CC_r2i1p1': {'keyerror': None,
          'name': 'HadGEM2-CC_r2i1p1',
          'nyears': 46,
          'time_period': ['1959-12-16 0:0:0.0', '2005-12-16 0:0:0.0']},
         'HadISST': {'keyerror': None,
          'name': 'HadISST',
          'nyears': 151,
          'time_period': ['1870-1-16 11:59:59.5', '2020-10-16 12:0:0.0']},
         'Tropflux': {'keyerror': None,
          'name': 'Tropflux',
          'nyears': 40,
          'time_period': ['1979-1-15 0:0:0.0', '2018-12-15 12:0:0.0']},
         'method': 'Ratio between NDJ and MAM standard deviation nino3.4 sstA, time series are linearly detrended',
         'name': 'ENSO seasonality',
         'ref': 'Using CDAT std dev calculation',
         'time_frequency': 'monthly',
         'units': 'C/C'},
        'metric': {'datasets': "HadGEM2-CC_r2i1p1; ERA-Interim's ts & HadISST's sst & Tropflux's sst; 's ",
         'method': 'The metric is the absolute value of the relative difference between model and observations values (M = 100 * abs[[model-obs] / obs])',
         'name': 'EnsoSeasonality',
         'units': '%'}},
       'EnsoSstDiversity_2': {'diagnostic': {'ERA-Interim': {'keyerror': None,
          'name': 'ERA-Interim',
          'nyears': 40,
          'time_period': ['1979-1-16 12:0:0.0', '2019-3-16 12:0:0.0']},
         'HadGEM2-CC_r2i1p1': {'keyerror': None,
          'name': 'HadGEM2-CC_r2i1p1',
          'nyears': 46,
          'time_period': ['1959-12-16 0:0:0.0', '2005-12-16 0:0:0.0']},
         'HadISST': {'keyerror': None,
          'name': 'HadISST',
          'nyears': 151,
          'time_period': ['1870-1-16 11:59:59.5', '2020-10-16 12:0:0.0']},
         'Tropflux': {'keyerror': None,
          'name': 'Tropflux',
          'nyears': 40,
          'time_period': ['1979-1-15 0:0:0.0', '2018-12-15 12:0:0.0']},
         'method': 'Nino (Nina) events = nino3.4 sstA > 0.75 (< -0.75) during DEC, zonal SSTA (meridional averaged [-5.0 ; 5.0]), the zonal SSTA maximum (minimum) is located for each event, the diversity is the interquartile range (IQR = Q3 - Q1), time series are linearly detrended, smoothing using a triangle shaped window of 5 points',
         'name': 'ENSO Diversity (interquartile range)',
         'ref': 'Using CDAT regridding',
         'time_frequency': 'monthly',
         'units': 'long'},
        'metric': {'datasets': "HadGEM2-CC_r2i1p1; ERA-Interim's ts & HadISST's sst & Tropflux's sst; 's ",
         'method': 'The metric is the absolute value of the relative difference between model and observations values (M = 100 * abs[[model-obs] / obs])',
         'name': 'EnsoSstDiversity',
         'units': '%'}},
       'EnsoSstLonRmse': {'diagnostic': {'ERA-Interim': {'name': 'ERA-Interim',
          'nyears': 40,
          'time_period': ['1979-1-16 12:0:0.0', '2019-3-16 12:0:0.0']},
         'HadGEM2-CC_r2i1p1': {'keyerror': None,
          'name': 'HadGEM2-CC_r2i1p1',
          'nyears': 46,
          'time_period': ['1959-12-16 0:0:0.0', '2005-12-16 0:0:0.0']},
         'HadISST': {'name': 'HadISST',
          'nyears': 151,
          'time_period': ['1870-1-16 11:59:59.5', '2020-10-16 12:0:0.0']},
         'Tropflux': {'name': 'Tropflux',
          'nyears': 40,
          'time_period': ['1979-1-15 0:0:0.0', '2018-12-15 12:0:0.0']},
         'method': 'nino3.4 SSTA during DEC regressed against equatorial_pacific SSTA, time series are linearly detrended, smoothing using a triangle shaped window of 5 points, observations and model regridded to generic_1x1deg',
         'name': 'ENSO Zonal SSTA pattern',
         'ref': 'Using CDAT regridding and rms (uncentered and biased) calculation',
         'time_frequency': 'monthly',
         'units': 'C/C'},
        'metric': {'datasets': "HadGEM2-CC_r2i1p1; ERA-Interim's ts & HadISST's sst & Tropflux's sst; 's ",
         'method': 'The metric is the statistical value between the model and the observations',
         'name': 'EnsoSstLonRmse',
         'units': 'C/C'}},
       'EnsoSstSkew': {'diagnostic': {'ERA-Interim': {'keyerror': None,
          'name': 'ERA-Interim',
          'nyears': 40,
          'time_period': ['1979-1-16 12:0:0.0', '2019-3-16 12:0:0.0']},
         'HadGEM2-CC_r2i1p1': {'keyerror': None,
          'name': 'HadGEM2-CC_r2i1p1',
          'nyears': 46,
          'time_period': ['1959-12-16 0:0:0.0', '2005-12-16 0:0:0.0']},
         'HadISST': {'keyerror': None,
          'name': 'HadISST',
          'nyears': 151,
          'time_period': ['1870-1-16 11:59:59.5', '2020-10-16 12:0:0.0']},
         'Tropflux': {'keyerror': None,
          'name': 'Tropflux',
          'nyears': 40,
          'time_period': ['1979-1-15 0:0:0.0', '2018-12-15 12:0:0.0']},
         'method': 'Standard deviation of nino3.4 sstA, time series are linearly detrended',
         'name': 'ENSO skewness',
         'ref': 'Using CDAT regression calculation',
         'time_frequency': 'monthly',
         'units': 'C'},
        'metric': {'datasets': "HadGEM2-CC_r2i1p1; ERA-Interim's ts & HadISST's sst & Tropflux's sst; 's ",
         'method': 'The metric is the absolute value of the relative difference between model and observations values (M = 100 * abs[[model-obs] / obs])',
         'name': 'EnsoSstSkew',
         'units': '%'}},
       'EnsoSstTsRmse': {'diagnostic': {'ERA-Interim': {'name': 'ERA-Interim',
          'nyears': 40,
          'time_period': ['1979-1-16 12:0:0.0', '2019-3-16 12:0:0.0']},
         'HadGEM2-CC_r2i1p1': {'keyerror': None,
          'name': 'HadGEM2-CC_r2i1p1',
          'nyears': 46,
          'time_period': ['1959-12-16 0:0:0.0', '2005-12-16 0:0:0.0']},
         'HadISST': {'name': 'HadISST',
          'nyears': 151,
          'time_period': ['1870-1-16 11:59:59.5', '2020-10-16 12:0:0.0']},
         'Tropflux': {'name': 'Tropflux',
          'nyears': 40,
          'time_period': ['1979-1-15 0:0:0.0', '2018-12-15 12:0:0.0']},
         'method': 'nino3.4 SSTA during DEC regressed against nino3.4 SSTA during 6 years (centered on ENSO), time series are linearly detrended, smoothing using a triangle shaped window of 5 points',
         'name': 'ENSO life cyle SSTA pattern',
         'ref': 'Using CDAT regridding and rms (uncentered and biased) calculation',
         'time_frequency': 'monthly',
         'units': 'C/C'},
        'metric': {'datasets': "HadGEM2-CC_r2i1p1; ERA-Interim's ts & HadISST's sst & Tropflux's sst; 's ",
         'method': 'The metric is the statistical value between the model and the observations',
         'name': 'EnsoSstTsRmse',
         'units': 'C/C'}},
       'SeasonalPrLatRmse': {'diagnostic': {'ERA-Interim': {'name': 'ERA-Interim',
          'nyears': 40,
          'time_period': ['1979-1-16 12:0:0.0', '2019-3-16 12:0:0.0']},
         'GPCPv2.3': {'name': 'GPCPv2.3',
          'nyears': 41,
          'time_period': ['1979-1-1 0:0:0.0', '2019-7-1 0:0:0.0']},
         'HadGEM2-CC_r2i1p1': {'keyerror': None,
          'name': 'HadGEM2-CC_r2i1p1',
          'nyears': 46,
          'time_period': ['1959-12-16 0:0:0.0', '2005-12-16 0:0:0.0']},
         'method': 'Meridional root mean square error of nino3_LatExt climatological pr STD, time series are linearly detrended, observations and model regridded to generic_1x1deg',
         'name': 'pr meridional seasonality RMSE',
         'ref': 'Using CDAT regridding and rms (uncentered and biased) calculation',
         'time_frequency': 'monthly',
         'units': 'mm/day'},
        'metric': {'datasets': "HadGEM2-CC_r2i1p1; ERA-Interim's pr & GPCPv2.3's precip; 's ",
         'method': 'The metric is the statistical value between the model and the observations',
         'name': 'SeasonalPrLatRmse',
         'units': 'mm/day'}},
       'SeasonalPrLonRmse': {'diagnostic': {'ERA-Interim': {'name': 'ERA-Interim',
          'nyears': 40,
          'time_period': ['1979-1-16 12:0:0.0', '2019-3-16 12:0:0.0']},
         'GPCPv2.3': {'name': 'GPCPv2.3',
          'nyears': 41,
          'time_period': ['1979-1-1 0:0:0.0', '2019-7-1 0:0:0.0']},
         'HadGEM2-CC_r2i1p1': {'keyerror': None,
          'name': 'HadGEM2-CC_r2i1p1',
          'nyears': 46,
          'time_period': ['1959-12-16 0:0:0.0', '2005-12-16 0:0:0.0']},
         'method': 'Zonal root mean square error of equatorial_pacific climatological pr STD, time series are linearly detrended, observations and model regridded to generic_1x1deg',
         'name': 'pr zonal seasonality RMSE',
         'ref': 'Using CDAT regridding and rms (uncentered and biased) calculation',
         'time_frequency': 'monthly',
         'units': 'mm/day'},
        'metric': {'datasets': "HadGEM2-CC_r2i1p1; ERA-Interim's pr & GPCPv2.3's precip; 's ",
         'method': 'The metric is the statistical value between the model and the observations',
         'name': 'SeasonalPrLonRmse',
         'units': 'mm/day'}},
       'SeasonalSstLonRmse': {'diagnostic': {'ERA-Interim': {'name': 'ERA-Interim',
          'nyears': 40,
          'time_period': ['1979-1-16 12:0:0.0', '2019-3-16 12:0:0.0']},
         'HadGEM2-CC_r2i1p1': {'keyerror': None,
          'name': 'HadGEM2-CC_r2i1p1',
          'nyears': 46,
          'time_period': ['1959-12-16 0:0:0.0', '2005-12-16 0:0:0.0']},
         'HadISST': {'name': 'HadISST',
          'nyears': 151,
          'time_period': ['1870-1-16 11:59:59.5', '2020-10-16 12:0:0.0']},
         'Tropflux': {'name': 'Tropflux',
          'nyears': 40,
          'time_period': ['1979-1-15 0:0:0.0', '2018-12-15 12:0:0.0']},
         'method': 'Zonal root mean square error of equatorial_pacific climatological sst STD, time series are linearly detrended, observations and model regridded to generic_1x1deg',
         'name': 'sst zonal seasonality RMSE',
         'ref': 'Using CDAT regridding and rms (uncentered and biased) calculation',
         'time_frequency': 'monthly',
         'units': 'C'},
        'metric': {'datasets': "HadGEM2-CC_r2i1p1; ERA-Interim's ts & HadISST's sst & Tropflux's sst; 's ",
         'method': 'The metric is the statistical value between the model and the observations',
         'name': 'SeasonalSstLonRmse',
         'units': 'C'}},
       'SeasonalTauxLonRmse': {'diagnostic': {'ERA-Interim': {'name': 'ERA-Interim',
          'nyears': 40,
          'time_period': ['1979-1-16 12:0:0.0', '2019-3-16 12:0:0.0']},
         'HadGEM2-CC_r2i1p1': {'keyerror': None,
          'name': 'HadGEM2-CC_r2i1p1',
          'nyears': 46,
          'time_period': ['1959-12-16 0:0:0.0', '2005-12-16 0:0:0.0']},
         'Tropflux': {'name': 'Tropflux',
          'nyears': 40,
          'time_period': ['1979-1-15 0:0:0.0', '2018-12-15 12:0:0.0']},
         'method': 'Zonal root mean square error of equatorial_pacific climatological taux STD, time series are linearly detrended, observations and model regridded to generic_1x1deg',
         'name': 'taux zonal seasonality RMSE',
         'ref': 'Using CDAT regridding and rms (uncentered and biased) calculation',
         'time_frequency': 'monthly',
         'units': '1e-3 N/m2'},
        'metric': {'datasets': "HadGEM2-CC_r2i1p1; ERA-Interim's tauu & Tropflux's taux; 's ",
         'method': 'The metric is the statistical value between the model and the observations',
         'name': 'SeasonalTauxLonRmse',
         'units': '1e-3 N/m2'}}},
      'name': 'Metrics Collection for ENSO performance'},
     'value': {'BiasPrLatRmse': {'diagnostic': {'ERA-Interim': {'value': None,
         'value_error': None},
        'GPCPv2.3': {'value': None, 'value_error': None},
        'HadGEM2-CC_r2i1p1': {'value': None, 'value_error': None}},
       'metric': {'ERA-Interim': {'value': 0.9825395326990355,
         'value_error': None},
        'GPCPv2.3': {'value': 1.6639435148507957, 'value_error': None}}},
      'BiasPrLonRmse': {'diagnostic': {'ERA-Interim': {'value': None,
         'value_error': None},
        'GPCPv2.3': {'value': None, 'value_error': None},
        'HadGEM2-CC_r2i1p1': {'value': None, 'value_error': None}},
       'metric': {'ERA-Interim': {'value': 1.0635414733912527,
         'value_error': None},
        'GPCPv2.3': {'value': 0.6237295948826471, 'value_error': None}}},
      'BiasSstLonRmse': {'diagnostic': {'ERA-Interim': {'value': None,
         'value_error': None},
        'HadGEM2-CC_r2i1p1': {'value': None, 'value_error': None},
        'HadISST': {'value': None, 'value_error': None},
        'Tropflux': {'value': None, 'value_error': None}},
       'metric': {'ERA-Interim': {'value': 1.1591442591915853,
         'value_error': None},
        'HadISST': {'value': 0.9510693142338065, 'value_error': None},
        'Tropflux': {'value': 1.2086335498343426, 'value_error': None}}},
      'BiasTauxLonRmse': {'diagnostic': {'ERA-Interim': {'value': None,
         'value_error': None},
        'HadGEM2-CC_r2i1p1': {'value': None, 'value_error': None},
        'Tropflux': {'value': None, 'value_error': None}},
       'metric': {'ERA-Interim': {'value': 8.560496208088347,
         'value_error': None},
        'Tropflux': {'value': 8.487875073153855, 'value_error': None}}},
      'EnsoAmpl': {'diagnostic': {'ERA-Interim': {'value': 0.8989844997845644,
         'value_error': 0.14214193002531866},
        'HadGEM2-CC_r2i1p1': {'value': 0.7141643172614786,
         'value_error': 0.10529778395305897},
        'HadISST': {'value': 0.7665787872085695,
         'value_error': 0.06238329697691264},
        'Tropflux': {'value': 0.9039789553693535,
         'value_error': 0.14293162279134272}},
       'metric': {'ERA-Interim': {'value': 20.558772989676324,
         'value_error': 24.273730783302945},
        'HadISST': {'value': 6.837453738832735,
         'value_error': 21.31752855482482},
        'Tropflux': {'value': 20.997683295660266,
         'value_error': 24.13961917644059}}},
      'EnsoDuration': {'diagnostic': {'ERA-Interim': {'value': 13.0,
         'value_error': None},
        'HadGEM2-CC_r2i1p1': {'value': 14.0, 'value_error': None},
        'HadISST': {'value': 13.0, 'value_error': None},
        'Tropflux': {'value': 13.0, 'value_error': None}},
       'metric': {'ERA-Interim': {'value': 7.6923076923076925,
         'value_error': None},
        'HadISST': {'value': 7.6923076923076925, 'value_error': None},
        'Tropflux': {'value': 7.6923076923076925, 'value_error': None}}},
      'EnsoSeasonality': {'diagnostic': {'ERA-Interim': {'value': 2.0466846866656914,
         'value_error': 0.6513411033995022},
        'HadGEM2-CC_r2i1p1': {'value': 1.3495325944415204,
         'value_error': 0.4001541668874441},
        'HadISST': {'value': 1.6639865947361325,
         'value_error': 0.2712772451657809},
        'Tropflux': {'value': 2.0532132553583624,
         'value_error': 0.6534187683977347}},
       'metric': {'ERA-Interim': {'value': 34.06250590362896,
         'value_error': 40.53541680816036},
        'HadISST': {'value': 18.897628219443487,
         'value_error': 37.26991844643981},
        'Tropflux': {'value': 34.272166277926324,
         'value_error': 40.406527004615846}}},
      'EnsoSstDiversity_2': {'diagnostic': {'ERA-Interim': {'value': 33.25,
         'value_error': None},
        'HadGEM2-CC_r2i1p1': {'value': 5.0, 'value_error': None},
        'HadISST': {'value': 49.0, 'value_error': None},
        'Tropflux': {'value': 32.0, 'value_error': None}},
       'metric': {'ERA-Interim': {'value': 84.9624060150376,
         'value_error': None},
        'HadISST': {'value': 89.79591836734694, 'value_error': None},
        'Tropflux': {'value': 84.375, 'value_error': None}}},
      'EnsoSstLonRmse': {'diagnostic': {'ERA-Interim': {'value': None,
         'value_error': None},
        'HadGEM2-CC_r2i1p1': {'value': None, 'value_error': None},
        'HadISST': {'value': None, 'value_error': None},
        'Tropflux': {'value': None, 'value_error': None}},
       'metric': {'ERA-Interim': {'value': 0.17524006923652607,
         'value_error': None},
        'HadISST': {'value': 0.169805249678168, 'value_error': None},
        'Tropflux': {'value': 0.17358431565520835, 'value_error': None}}},
      'EnsoSstSkew': {'diagnostic': {'ERA-Interim': {'value': 0.39098111106809963,
         'value_error': 0.061819541653923164},
        'HadGEM2-CC_r2i1p1': {'value': -0.1229219899696319,
         'value_error': -0.01812385865557517},
        'HadISST': {'value': 0.38989908235027515,
         'value_error': 0.03172953733021198},
        'Tropflux': {'value': 0.39744741059612115,
         'value_error': 0.06284195338099416}},
       'metric': {'ERA-Interim': {'value': 131.439367910595,
         'value_error': -9.606482444686085},
        'HadISST': {'value': 131.52661689498464,
         'value_error': -7.213945763266397},
        'Tropflux': {'value': 130.9278628297677,
         'value_error': -9.4501890804776}}},
      'EnsoSstTsRmse': {'diagnostic': {'ERA-Interim': {'value': None,
         'value_error': None},
        'HadGEM2-CC_r2i1p1': {'value': None, 'value_error': None},
        'HadISST': {'value': None, 'value_error': None},
        'Tropflux': {'value': None, 'value_error': None}},
       'metric': {'ERA-Interim': {'value': 0.21878832571917434,
         'value_error': None},
        'HadISST': {'value': 0.18795011196913913, 'value_error': None},
        'Tropflux': {'value': 0.21449277341014863, 'value_error': None}}},
      'SeasonalPrLatRmse': {'diagnostic': {'ERA-Interim': {'value': None,
         'value_error': None},
        'GPCPv2.3': {'value': None, 'value_error': None},
        'HadGEM2-CC_r2i1p1': {'value': None, 'value_error': None}},
       'metric': {'ERA-Interim': {'value': 1.6037084345750379,
         'value_error': None},
        'GPCPv2.3': {'value': 1.9064003107549148, 'value_error': None}}},
      'SeasonalPrLonRmse': {'diagnostic': {'ERA-Interim': {'value': None,
         'value_error': None},
        'GPCPv2.3': {'value': None, 'value_error': None},
        'HadGEM2-CC_r2i1p1': {'value': None, 'value_error': None}},
       'metric': {'ERA-Interim': {'value': 0.8138456260523285,
         'value_error': None},
        'GPCPv2.3': {'value': 0.8271855341468995, 'value_error': None}}},
      'SeasonalSstLonRmse': {'diagnostic': {'ERA-Interim': {'value': None,
         'value_error': None},
        'HadGEM2-CC_r2i1p1': {'value': None, 'value_error': None},
        'HadISST': {'value': None, 'value_error': None},
        'Tropflux': {'value': None, 'value_error': None}},
       'metric': {'ERA-Interim': {'value': 0.1752123575958811,
         'value_error': None},
        'HadISST': {'value': 0.1947664602922102, 'value_error': None},
        'Tropflux': {'value': 0.17387397604237687, 'value_error': None}}},
      'SeasonalTauxLonRmse': {'diagnostic': {'ERA-Interim': {'value': None,
         'value_error': None},
        'HadGEM2-CC_r2i1p1': {'value': None, 'value_error': None},
        'Tropflux': {'value': None, 'value_error': None}},
       'metric': {'ERA-Interim': {'value': 5.02760980092572,
         'value_error': None},
        'Tropflux': {'value': 4.706068482737693, 'value_error': None}}}}},
    'r3i1p1': {'metadata': {'description_of_the_collection': 'Describe which science question this collection is about',
      'metrics': {'BiasPrLatRmse': {'diagnostic': {'ERA-Interim': {'name': 'ERA-Interim',
          'nyears': 40,
          'time_period': ['1979-1-16 12:0:0.0', '2019-3-16 12:0:0.0']},
         'GPCPv2.3': {'name': 'GPCPv2.3',
          'nyears': 41,
          'time_period': ['1979-1-1 0:0:0.0', '2019-7-1 0:0:0.0']},
         'HadGEM2-CC_r3i1p1': {'keyerror': None,
          'name': 'HadGEM2-CC_r3i1p1',
          'nyears': 46,
          'time_period': ['1959-12-16 0:0:0.0', '2005-12-16 0:0:0.0']},
         'method': 'Meridional root mean square error of nino3_LatExt pr, time series are linearly detrended, observations and model regridded to generic_1x1deg',
         'name': 'pr Meridional RMSE',
         'ref': 'Using CDAT regridding and rms (uncentered and biased) calculation',
         'time_frequency': 'monthly',
         'units': 'mm/day'},
        'metric': {'datasets': "HadGEM2-CC_r3i1p1; ERA-Interim's pr & GPCPv2.3's precip; 's ",
         'method': 'The metric is the statistical value between the model and the observations',
         'name': 'BiasPrLatRmse',
         'units': 'mm/day'}},
       'BiasPrLonRmse': {'diagnostic': {'ERA-Interim': {'name': 'ERA-Interim',
          'nyears': 40,
          'time_period': ['1979-1-16 12:0:0.0', '2019-3-16 12:0:0.0']},
         'GPCPv2.3': {'name': 'GPCPv2.3',
          'nyears': 41,
          'time_period': ['1979-1-1 0:0:0.0', '2019-7-1 0:0:0.0']},
         'HadGEM2-CC_r3i1p1': {'keyerror': None,
          'name': 'HadGEM2-CC_r3i1p1',
          'nyears': 46,
          'time_period': ['1959-12-16 0:0:0.0', '2005-12-16 0:0:0.0']},
         'method': 'Zonal root mean square error of equatorial_pacific pr, time series are linearly detrended, observations and model regridded to generic_1x1deg',
         'name': 'pr Zonal RMSE',
         'ref': 'Using CDAT regridding and rms (uncentered and biased) calculation',
         'time_frequency': 'monthly',
         'units': 'mm/day'},
        'metric': {'datasets': "HadGEM2-CC_r3i1p1; ERA-Interim's pr & GPCPv2.3's precip; 's ",
         'method': 'The metric is the statistical value between the model and the observations',
         'name': 'BiasPrLonRmse',
         'units': 'mm/day'}},
       'BiasSstLonRmse': {'diagnostic': {'ERA-Interim': {'name': 'ERA-Interim',
          'nyears': 40,
          'time_period': ['1979-1-16 12:0:0.0', '2019-3-16 12:0:0.0']},
         'HadGEM2-CC_r3i1p1': {'keyerror': None,
          'name': 'HadGEM2-CC_r3i1p1',
          'nyears': 46,
          'time_period': ['1959-12-16 0:0:0.0', '2005-12-16 0:0:0.0']},
         'HadISST': {'name': 'HadISST',
          'nyears': 151,
          'time_period': ['1870-1-16 11:59:59.5', '2020-10-16 12:0:0.0']},
         'Tropflux': {'name': 'Tropflux',
          'nyears': 40,
          'time_period': ['1979-1-15 0:0:0.0', '2018-12-15 12:0:0.0']},
         'method': 'Zonal root mean square error of equatorial_pacific sst, time series are linearly detrended, observations and model regridded to generic_1x1deg',
         'name': 'sst Zonal RMSE',
         'ref': 'Using CDAT regridding and rms (uncentered and biased) calculation',
         'time_frequency': 'monthly',
         'units': 'C'},
        'metric': {'datasets': "HadGEM2-CC_r3i1p1; ERA-Interim's ts & HadISST's sst & Tropflux's sst; 's ",
         'method': 'The metric is the statistical value between the model and the observations',
         'name': 'BiasSstLonRmse',
         'units': 'C'}},
       'BiasTauxLonRmse': {'diagnostic': {'ERA-Interim': {'name': 'ERA-Interim',
          'nyears': 40,
          'time_period': ['1979-1-16 12:0:0.0', '2019-3-16 12:0:0.0']},
         'HadGEM2-CC_r3i1p1': {'keyerror': None,
          'name': 'HadGEM2-CC_r3i1p1',
          'nyears': 46,
          'time_period': ['1959-12-16 0:0:0.0', '2005-12-16 0:0:0.0']},
         'Tropflux': {'name': 'Tropflux',
          'nyears': 40,
          'time_period': ['1979-1-15 0:0:0.0', '2018-12-15 12:0:0.0']},
         'method': 'Zonal root mean square error of equatorial_pacific taux, time series are linearly detrended, observations and model regridded to generic_1x1deg',
         'name': 'taux Zonal RMSE',
         'ref': 'Using CDAT regridding and rms (uncentered and biased) calculation',
         'time_frequency': 'monthly',
         'units': '1e-3 N/m2'},
        'metric': {'datasets': "HadGEM2-CC_r3i1p1; ERA-Interim's tauu & Tropflux's taux; 's ",
         'method': 'The metric is the statistical value between the model and the observations',
         'name': 'BiasTauxLonRmse',
         'units': '1e-3 N/m2'}},
       'EnsoAmpl': {'diagnostic': {'ERA-Interim': {'keyerror': None,
          'name': 'ERA-Interim',
          'nyears': 40,
          'time_period': ['1979-1-16 12:0:0.0', '2019-3-16 12:0:0.0']},
         'HadGEM2-CC_r3i1p1': {'keyerror': None,
          'name': 'HadGEM2-CC_r3i1p1',
          'nyears': 46,
          'time_period': ['1959-12-16 0:0:0.0', '2005-12-16 0:0:0.0']},
         'HadISST': {'keyerror': None,
          'name': 'HadISST',
          'nyears': 151,
          'time_period': ['1870-1-16 11:59:59.5', '2020-10-16 12:0:0.0']},
         'Tropflux': {'keyerror': None,
          'name': 'Tropflux',
          'nyears': 40,
          'time_period': ['1979-1-15 0:0:0.0', '2018-12-15 12:0:0.0']},
         'method': 'Standard deviation of nino3.4 sstA, time series are linearly detrended',
         'name': 'ENSO amplitude',
         'ref': 'Using CDAT regression calculation',
         'time_frequency': 'monthly',
         'units': 'C'},
        'metric': {'datasets': "HadGEM2-CC_r3i1p1; ERA-Interim's ts & HadISST's sst & Tropflux's sst; 's ",
         'method': 'The metric is the absolute value of the relative difference between model and observations values (M = 100 * abs[[model-obs] / obs])',
         'name': 'EnsoAmpl',
         'units': '%'}},
       'EnsoDuration': {'diagnostic': {'ERA-Interim': {'keyerror': None,
          'name': 'ERA-Interim',
          'nyears': 40,
          'time_period': ['1979-1-16 12:0:0.0', '2019-3-16 12:0:0.0']},
         'HadGEM2-CC_r3i1p1': {'keyerror': None,
          'name': 'HadGEM2-CC_r3i1p1',
          'nyears': 46,
          'time_period': ['1959-12-16 0:0:0.0', '2005-12-16 0:0:0.0']},
         'HadISST': {'keyerror': None,
          'name': 'HadISST',
          'nyears': 151,
          'time_period': ['1870-1-16 11:59:59.5', '2020-10-16 12:0:0.0']},
         'Tropflux': {'keyerror': None,
          'name': 'Tropflux',
          'nyears': 40,
          'time_period': ['1979-1-15 0:0:0.0', '2018-12-15 12:0:0.0']},
         'method': 'nino3.4 SSTA during DEC regressed against nino3.4 SSTA during 6 years (centered on ENSO), the duration is the number of consecutive months during which the regression is above 0.25, time series are linearly detrended, smoothing using a triangle shaped window of 5 points',
         'name': 'ENSO Duration based on life cyle SSTA pattern',
         'ref': 'Using CDAT',
         'time_frequency': 'monthly',
         'units': 'months'},
        'metric': {'datasets': "HadGEM2-CC_r3i1p1; ERA-Interim's ts & HadISST's sst & Tropflux's sst; 's ",
         'method': 'The metric is the absolute value of the relative difference between model and observations values (M = 100 * abs[[model-obs] / obs])',
         'name': 'EnsoDuration',
         'units': '%'}},
       'EnsoSeasonality': {'diagnostic': {'ERA-Interim': {'keyerror': None,
          'name': 'ERA-Interim',
          'nyears': 40,
          'time_period': ['1979-1-16 12:0:0.0', '2019-3-16 12:0:0.0']},
         'HadGEM2-CC_r3i1p1': {'keyerror': None,
          'name': 'HadGEM2-CC_r3i1p1',
          'nyears': 46,
          'time_period': ['1959-12-16 0:0:0.0', '2005-12-16 0:0:0.0']},
         'HadISST': {'keyerror': None,
          'name': 'HadISST',
          'nyears': 151,
          'time_period': ['1870-1-16 11:59:59.5', '2020-10-16 12:0:0.0']},
         'Tropflux': {'keyerror': None,
          'name': 'Tropflux',
          'nyears': 40,
          'time_period': ['1979-1-15 0:0:0.0', '2018-12-15 12:0:0.0']},
         'method': 'Ratio between NDJ and MAM standard deviation nino3.4 sstA, time series are linearly detrended',
         'name': 'ENSO seasonality',
         'ref': 'Using CDAT std dev calculation',
         'time_frequency': 'monthly',
         'units': 'C/C'},
        'metric': {'datasets': "HadGEM2-CC_r3i1p1; ERA-Interim's ts & HadISST's sst & Tropflux's sst; 's ",
         'method': 'The metric is the absolute value of the relative difference between model and observations values (M = 100 * abs[[model-obs] / obs])',
         'name': 'EnsoSeasonality',
         'units': '%'}},
       'EnsoSstDiversity_2': {'diagnostic': {'ERA-Interim': {'keyerror': None,
          'name': 'ERA-Interim',
          'nyears': 40,
          'time_period': ['1979-1-16 12:0:0.0', '2019-3-16 12:0:0.0']},
         'HadGEM2-CC_r3i1p1': {'keyerror': None,
          'name': 'HadGEM2-CC_r3i1p1',
          'nyears': 46,
          'time_period': ['1959-12-16 0:0:0.0', '2005-12-16 0:0:0.0']},
         'HadISST': {'keyerror': None,
          'name': 'HadISST',
          'nyears': 151,
          'time_period': ['1870-1-16 11:59:59.5', '2020-10-16 12:0:0.0']},
         'Tropflux': {'keyerror': None,
          'name': 'Tropflux',
          'nyears': 40,
          'time_period': ['1979-1-15 0:0:0.0', '2018-12-15 12:0:0.0']},
         'method': 'Nino (Nina) events = nino3.4 sstA > 0.75 (< -0.75) during DEC, zonal SSTA (meridional averaged [-5.0 ; 5.0]), the zonal SSTA maximum (minimum) is located for each event, the diversity is the interquartile range (IQR = Q3 - Q1), time series are linearly detrended, smoothing using a triangle shaped window of 5 points',
         'name': 'ENSO Diversity (interquartile range)',
         'ref': 'Using CDAT regridding',
         'time_frequency': 'monthly',
         'units': 'long'},
        'metric': {'datasets': "HadGEM2-CC_r3i1p1; ERA-Interim's ts & HadISST's sst & Tropflux's sst; 's ",
         'method': 'The metric is the absolute value of the relative difference between model and observations values (M = 100 * abs[[model-obs] / obs])',
         'name': 'EnsoSstDiversity',
         'units': '%'}},
       'EnsoSstLonRmse': {'diagnostic': {'ERA-Interim': {'name': 'ERA-Interim',
          'nyears': 40,
          'time_period': ['1979-1-16 12:0:0.0', '2019-3-16 12:0:0.0']},
         'HadGEM2-CC_r3i1p1': {'keyerror': None,
          'name': 'HadGEM2-CC_r3i1p1',
          'nyears': 46,
          'time_period': ['1959-12-16 0:0:0.0', '2005-12-16 0:0:0.0']},
         'HadISST': {'name': 'HadISST',
          'nyears': 151,
          'time_period': ['1870-1-16 11:59:59.5', '2020-10-16 12:0:0.0']},
         'Tropflux': {'name': 'Tropflux',
          'nyears': 40,
          'time_period': ['1979-1-15 0:0:0.0', '2018-12-15 12:0:0.0']},
         'method': 'nino3.4 SSTA during DEC regressed against equatorial_pacific SSTA, time series are linearly detrended, smoothing using a triangle shaped window of 5 points, observations and model regridded to generic_1x1deg',
         'name': 'ENSO Zonal SSTA pattern',
         'ref': 'Using CDAT regridding and rms (uncentered and biased) calculation',
         'time_frequency': 'monthly',
         'units': 'C/C'},
        'metric': {'datasets': "HadGEM2-CC_r3i1p1; ERA-Interim's ts & HadISST's sst & Tropflux's sst; 's ",
         'method': 'The metric is the statistical value between the model and the observations',
         'name': 'EnsoSstLonRmse',
         'units': 'C/C'}},
       'EnsoSstSkew': {'diagnostic': {'ERA-Interim': {'keyerror': None,
          'name': 'ERA-Interim',
          'nyears': 40,
          'time_period': ['1979-1-16 12:0:0.0', '2019-3-16 12:0:0.0']},
         'HadGEM2-CC_r3i1p1': {'keyerror': None,
          'name': 'HadGEM2-CC_r3i1p1',
          'nyears': 46,
          'time_period': ['1959-12-16 0:0:0.0', '2005-12-16 0:0:0.0']},
         'HadISST': {'keyerror': None,
          'name': 'HadISST',
          'nyears': 151,
          'time_period': ['1870-1-16 11:59:59.5', '2020-10-16 12:0:0.0']},
         'Tropflux': {'keyerror': None,
          'name': 'Tropflux',
          'nyears': 40,
          'time_period': ['1979-1-15 0:0:0.0', '2018-12-15 12:0:0.0']},
         'method': 'Standard deviation of nino3.4 sstA, time series are linearly detrended',
         'name': 'ENSO skewness',
         'ref': 'Using CDAT regression calculation',
         'time_frequency': 'monthly',
         'units': 'C'},
        'metric': {'datasets': "HadGEM2-CC_r3i1p1; ERA-Interim's ts & HadISST's sst & Tropflux's sst; 's ",
         'method': 'The metric is the absolute value of the relative difference between model and observations values (M = 100 * abs[[model-obs] / obs])',
         'name': 'EnsoSstSkew',
         'units': '%'}},
       'EnsoSstTsRmse': {'diagnostic': {'ERA-Interim': {'name': 'ERA-Interim',
          'nyears': 40,
          'time_period': ['1979-1-16 12:0:0.0', '2019-3-16 12:0:0.0']},
         'HadGEM2-CC_r3i1p1': {'keyerror': None,
          'name': 'HadGEM2-CC_r3i1p1',
          'nyears': 46,
          'time_period': ['1959-12-16 0:0:0.0', '2005-12-16 0:0:0.0']},
         'HadISST': {'name': 'HadISST',
          'nyears': 151,
          'time_period': ['1870-1-16 11:59:59.5', '2020-10-16 12:0:0.0']},
         'Tropflux': {'name': 'Tropflux',
          'nyears': 40,
          'time_period': ['1979-1-15 0:0:0.0', '2018-12-15 12:0:0.0']},
         'method': 'nino3.4 SSTA during DEC regressed against nino3.4 SSTA during 6 years (centered on ENSO), time series are linearly detrended, smoothing using a triangle shaped window of 5 points',
         'name': 'ENSO life cyle SSTA pattern',
         'ref': 'Using CDAT regridding and rms (uncentered and biased) calculation',
         'time_frequency': 'monthly',
         'units': 'C/C'},
        'metric': {'datasets': "HadGEM2-CC_r3i1p1; ERA-Interim's ts & HadISST's sst & Tropflux's sst; 's ",
         'method': 'The metric is the statistical value between the model and the observations',
         'name': 'EnsoSstTsRmse',
         'units': 'C/C'}},
       'SeasonalPrLatRmse': {'diagnostic': {'ERA-Interim': {'name': 'ERA-Interim',
          'nyears': 40,
          'time_period': ['1979-1-16 12:0:0.0', '2019-3-16 12:0:0.0']},
         'GPCPv2.3': {'name': 'GPCPv2.3',
          'nyears': 41,
          'time_period': ['1979-1-1 0:0:0.0', '2019-7-1 0:0:0.0']},
         'HadGEM2-CC_r3i1p1': {'keyerror': None,
          'name': 'HadGEM2-CC_r3i1p1',
          'nyears': 46,
          'time_period': ['1959-12-16 0:0:0.0', '2005-12-16 0:0:0.0']},
         'method': 'Meridional root mean square error of nino3_LatExt climatological pr STD, time series are linearly detrended, observations and model regridded to generic_1x1deg',
         'name': 'pr meridional seasonality RMSE',
         'ref': 'Using CDAT regridding and rms (uncentered and biased) calculation',
         'time_frequency': 'monthly',
         'units': 'mm/day'},
        'metric': {'datasets': "HadGEM2-CC_r3i1p1; ERA-Interim's pr & GPCPv2.3's precip; 's ",
         'method': 'The metric is the statistical value between the model and the observations',
         'name': 'SeasonalPrLatRmse',
         'units': 'mm/day'}},
       'SeasonalPrLonRmse': {'diagnostic': {'ERA-Interim': {'name': 'ERA-Interim',
          'nyears': 40,
          'time_period': ['1979-1-16 12:0:0.0', '2019-3-16 12:0:0.0']},
         'GPCPv2.3': {'name': 'GPCPv2.3',
          'nyears': 41,
          'time_period': ['1979-1-1 0:0:0.0', '2019-7-1 0:0:0.0']},
         'HadGEM2-CC_r3i1p1': {'keyerror': None,
          'name': 'HadGEM2-CC_r3i1p1',
          'nyears': 46,
          'time_period': ['1959-12-16 0:0:0.0', '2005-12-16 0:0:0.0']},
         'method': 'Zonal root mean square error of equatorial_pacific climatological pr STD, time series are linearly detrended, observations and model regridded to generic_1x1deg',
         'name': 'pr zonal seasonality RMSE',
         'ref': 'Using CDAT regridding and rms (uncentered and biased) calculation',
         'time_frequency': 'monthly',
         'units': 'mm/day'},
        'metric': {'datasets': "HadGEM2-CC_r3i1p1; ERA-Interim's pr & GPCPv2.3's precip; 's ",
         'method': 'The metric is the statistical value between the model and the observations',
         'name': 'SeasonalPrLonRmse',
         'units': 'mm/day'}},
       'SeasonalSstLonRmse': {'diagnostic': {'ERA-Interim': {'name': 'ERA-Interim',
          'nyears': 40,
          'time_period': ['1979-1-16 12:0:0.0', '2019-3-16 12:0:0.0']},
         'HadGEM2-CC_r3i1p1': {'keyerror': None,
          'name': 'HadGEM2-CC_r3i1p1',
          'nyears': 46,
          'time_period': ['1959-12-16 0:0:0.0', '2005-12-16 0:0:0.0']},
         'HadISST': {'name': 'HadISST',
          'nyears': 151,
          'time_period': ['1870-1-16 11:59:59.5', '2020-10-16 12:0:0.0']},
         'Tropflux': {'name': 'Tropflux',
          'nyears': 40,
          'time_period': ['1979-1-15 0:0:0.0', '2018-12-15 12:0:0.0']},
         'method': 'Zonal root mean square error of equatorial_pacific climatological sst STD, time series are linearly detrended, observations and model regridded to generic_1x1deg',
         'name': 'sst zonal seasonality RMSE',
         'ref': 'Using CDAT regridding and rms (uncentered and biased) calculation',
         'time_frequency': 'monthly',
         'units': 'C'},
        'metric': {'datasets': "HadGEM2-CC_r3i1p1; ERA-Interim's ts & HadISST's sst & Tropflux's sst; 's ",
         'method': 'The metric is the statistical value between the model and the observations',
         'name': 'SeasonalSstLonRmse',
         'units': 'C'}},
       'SeasonalTauxLonRmse': {'diagnostic': {'ERA-Interim': {'name': 'ERA-Interim',
          'nyears': 40,
          'time_period': ['1979-1-16 12:0:0.0', '2019-3-16 12:0:0.0']},
         'HadGEM2-CC_r3i1p1': {'keyerror': None,
          'name': 'HadGEM2-CC_r3i1p1',
          'nyears': 46,
          'time_period': ['1959-12-16 0:0:0.0', '2005-12-16 0:0:0.0']},
         'Tropflux': {'name': 'Tropflux',
          'nyears': 40,
          'time_period': ['1979-1-15 0:0:0.0', '2018-12-15 12:0:0.0']},
         'method': 'Zonal root mean square error of equatorial_pacific climatological taux STD, time series are linearly detrended, observations and model regridded to generic_1x1deg',
         'name': 'taux zonal seasonality RMSE',
         'ref': 'Using CDAT regridding and rms (uncentered and biased) calculation',
         'time_frequency': 'monthly',
         'units': '1e-3 N/m2'},
        'metric': {'datasets': "HadGEM2-CC_r3i1p1; ERA-Interim's tauu & Tropflux's taux; 's ",
         'method': 'The metric is the statistical value between the model and the observations',
         'name': 'SeasonalTauxLonRmse',
         'units': '1e-3 N/m2'}}},
      'name': 'Metrics Collection for ENSO performance'},
     'value': {'BiasPrLatRmse': {'diagnostic': {'ERA-Interim': {'value': None,
         'value_error': None},
        'GPCPv2.3': {'value': None, 'value_error': None},
        'HadGEM2-CC_r3i1p1': {'value': None, 'value_error': None}},
       'metric': {'ERA-Interim': {'value': 0.9243504388282304,
         'value_error': None},
        'GPCPv2.3': {'value': 1.6748629498634313, 'value_error': None}}},
      'BiasPrLonRmse': {'diagnostic': {'ERA-Interim': {'value': None,
         'value_error': None},
        'GPCPv2.3': {'value': None, 'value_error': None},
        'HadGEM2-CC_r3i1p1': {'value': None, 'value_error': None}},
       'metric': {'ERA-Interim': {'value': 0.9240009694553899,
         'value_error': None},
        'GPCPv2.3': {'value': 0.7343631286039018, 'value_error': None}}},
      'BiasSstLonRmse': {'diagnostic': {'ERA-Interim': {'value': None,
         'value_error': None},
        'HadGEM2-CC_r3i1p1': {'value': None, 'value_error': None},
        'HadISST': {'value': None, 'value_error': None},
        'Tropflux': {'value': None, 'value_error': None}},
       'metric': {'ERA-Interim': {'value': 1.0795057188833477,
         'value_error': None},
        'HadISST': {'value': 0.8787402118216597, 'value_error': None},
        'Tropflux': {'value': 1.1288303720647945, 'value_error': None}}},
      'BiasTauxLonRmse': {'diagnostic': {'ERA-Interim': {'value': None,
         'value_error': None},
        'HadGEM2-CC_r3i1p1': {'value': None, 'value_error': None},
        'Tropflux': {'value': None, 'value_error': None}},
       'metric': {'ERA-Interim': {'value': 7.465844079404597,
         'value_error': None},
        'Tropflux': {'value': 7.384905282179934, 'value_error': None}}},
      'EnsoAmpl': {'diagnostic': {'ERA-Interim': {'value': 0.8989844997845644,
         'value_error': 0.14214193002531866},
        'HadGEM2-CC_r3i1p1': {'value': 0.6336474155455001,
         'value_error': 0.0934262144605235},
        'HadISST': {'value': 0.7665787872085695,
         'value_error': 0.06238329697691264},
        'Tropflux': {'value': 0.9039789553693535,
         'value_error': 0.14293162279134272}},
       'metric': {'ERA-Interim': {'value': 29.51520124125061,
         'value_error': 21.537041832987132},
        'HadISST': {'value': 17.340862267677345,
         'value_error': 18.914130191184704},
        'Tropflux': {'value': 29.904627559985574,
         'value_error': 21.418050347373782}}},
      'EnsoDuration': {'diagnostic': {'ERA-Interim': {'value': 13.0,
         'value_error': None},
        'HadGEM2-CC_r3i1p1': {'value': 13.0, 'value_error': None},
        'HadISST': {'value': 13.0, 'value_error': None},
        'Tropflux': {'value': 13.0, 'value_error': None}},
       'metric': {'ERA-Interim': {'value': 0.0, 'value_error': None},
        'HadISST': {'value': 0.0, 'value_error': None},
        'Tropflux': {'value': 0.0, 'value_error': None}}},
      'EnsoSeasonality': {'diagnostic': {'ERA-Interim': {'value': 2.0466846866656914,
         'value_error': 0.6513411033995022},
        'HadGEM2-CC_r3i1p1': {'value': 1.5087977296319226,
         'value_error': 0.4473783745492868},
        'HadISST': {'value': 1.6639865947361325,
         'value_error': 0.2712772451657809},
        'Tropflux': {'value': 2.0532132553583624,
         'value_error': 0.6534187683977347}},
       'metric': {'ERA-Interim': {'value': 26.280890287504654,
         'value_error': 45.319205406184274},
        'HadISST': {'value': 9.326329045867048,
         'value_error': 41.66832914385905},
        'Tropflux': {'value': 26.5152937380301,
         'value_error': 45.175104668075655}}},
      'EnsoSstDiversity_2': {'diagnostic': {'ERA-Interim': {'value': 33.25,
         'value_error': None},
        'HadGEM2-CC_r3i1p1': {'value': 11.0, 'value_error': None},
        'HadISST': {'value': 49.0, 'value_error': None},
        'Tropflux': {'value': 32.0, 'value_error': None}},
       'metric': {'ERA-Interim': {'value': 66.9172932330827,
         'value_error': None},
        'HadISST': {'value': 77.55102040816327, 'value_error': None},
        'Tropflux': {'value': 65.625, 'value_error': None}}},
      'EnsoSstLonRmse': {'diagnostic': {'ERA-Interim': {'value': None,
         'value_error': None},
        'HadGEM2-CC_r3i1p1': {'value': None, 'value_error': None},
        'HadISST': {'value': None, 'value_error': None},
        'Tropflux': {'value': None, 'value_error': None}},
       'metric': {'ERA-Interim': {'value': 0.13177514043249314,
         'value_error': None},
        'HadISST': {'value': 0.12985089560108032, 'value_error': None},
        'Tropflux': {'value': 0.12995295597489104, 'value_error': None}}},
      'EnsoSstSkew': {'diagnostic': {'ERA-Interim': {'value': 0.39098111106809963,
         'value_error': 0.061819541653923164},
        'HadGEM2-CC_r3i1p1': {'value': -0.0004900185991242842,
         'value_error': -7.224930080716682e-05},
        'HadISST': {'value': 0.38989908235027515,
         'value_error': 0.03172953733021198},
        'Tropflux': {'value': 0.39744741059612115,
         'value_error': 0.06284195338099416}},
       'metric': {'ERA-Interim': {'value': 100.12533050453145,
         'value_error': -0.03829546748486633},
        'HadISST': {'value': 100.12567831557091,
         'value_error': -0.028757812966969727},
        'Tropflux': {'value': 100.12329143078058,
         'value_error': -0.03767241659380376}}},
      'EnsoSstTsRmse': {'diagnostic': {'ERA-Interim': {'value': None,
         'value_error': None},
        'HadGEM2-CC_r3i1p1': {'value': None, 'value_error': None},
        'HadISST': {'value': None, 'value_error': None},
        'Tropflux': {'value': None, 'value_error': None}},
       'metric': {'ERA-Interim': {'value': 0.2151805366796901,
         'value_error': None},
        'HadISST': {'value': 0.1879065547346746, 'value_error': None},
        'Tropflux': {'value': 0.20990467107320224, 'value_error': None}}},
      'SeasonalPrLatRmse': {'diagnostic': {'ERA-Interim': {'value': None,
         'value_error': None},
        'GPCPv2.3': {'value': None, 'value_error': None},
        'HadGEM2-CC_r3i1p1': {'value': None, 'value_error': None}},
       'metric': {'ERA-Interim': {'value': 1.6733928386459116,
         'value_error': None},
        'GPCPv2.3': {'value': 1.9892346253134696, 'value_error': None}}},
      'SeasonalPrLonRmse': {'diagnostic': {'ERA-Interim': {'value': None,
         'value_error': None},
        'GPCPv2.3': {'value': None, 'value_error': None},
        'HadGEM2-CC_r3i1p1': {'value': None, 'value_error': None}},
       'metric': {'ERA-Interim': {'value': 0.9810621338531327,
         'value_error': None},
        'GPCPv2.3': {'value': 0.9963737346216046, 'value_error': None}}},
      'SeasonalSstLonRmse': {'diagnostic': {'ERA-Interim': {'value': None,
         'value_error': None},
        'HadGEM2-CC_r3i1p1': {'value': None, 'value_error': None},
        'HadISST': {'value': None, 'value_error': None},
        'Tropflux': {'value': None, 'value_error': None}},
       'metric': {'ERA-Interim': {'value': 0.1919090760804908,
         'value_error': None},
        'HadISST': {'value': 0.211870906349441, 'value_error': None},
        'Tropflux': {'value': 0.19024104134899256, 'value_error': None}}},
      'SeasonalTauxLonRmse': {'diagnostic': {'ERA-Interim': {'value': None,
         'value_error': None},
        'HadGEM2-CC_r3i1p1': {'value': None, 'value_error': None},
        'Tropflux': {'value': None, 'value_error': None}},
       'metric': {'ERA-Interim': {'value': 5.372698970262609,
         'value_error': None},
        'Tropflux': {'value': 5.074385658879744, 'value_error': None}}}}}},
   'HadGEM2-ES': {'r1i1p1': {'metadata': {'description_of_the_collection': 'Describe which science question this collection is about',
      'metrics': {'BiasPrLatRmse': {'diagnostic': {'ERA-Interim': {'name': 'ERA-Interim',
          'nyears': 40,
          'time_period': ['1979-1-16 12:0:0.0', '2019-3-16 12:0:0.0']},
         'GPCPv2.3': {'name': 'GPCPv2.3',
          'nyears': 41,
          'time_period': ['1979-1-1 0:0:0.0', '2019-7-1 0:0:0.0']},
         'HadGEM2-ES_r1i1p1': {'keyerror': None,
          'name': 'HadGEM2-ES_r1i1p1',
          'nyears': 146,
          'time_period': ['1859-12-16 0:0:0.0', '2005-11-16 0:0:0.0']},
         'method': 'Meridional root mean square error of nino3_LatExt pr, time series are linearly detrended, observations and model regridded to generic_1x1deg',
         'name': 'pr Meridional RMSE',
         'ref': 'Using CDAT regridding and rms (uncentered and biased) calculation',
         'time_frequency': 'monthly',
         'units': 'mm/day'},
        'metric': {'datasets': "HadGEM2-ES_r1i1p1; ERA-Interim's pr & GPCPv2.3's precip; 's ",
         'method': 'The metric is the statistical value between the model and the observations',
         'name': 'BiasPrLatRmse',
         'units': 'mm/day'}},
       'BiasPrLonRmse': {'diagnostic': {'ERA-Interim': {'name': 'ERA-Interim',
          'nyears': 40,
          'time_period': ['1979-1-16 12:0:0.0', '2019-3-16 12:0:0.0']},
         'GPCPv2.3': {'name': 'GPCPv2.3',
          'nyears': 41,
          'time_period': ['1979-1-1 0:0:0.0', '2019-7-1 0:0:0.0']},
         'HadGEM2-ES_r1i1p1': {'keyerror': None,
          'name': 'HadGEM2-ES_r1i1p1',
          'nyears': 146,
          'time_period': ['1859-12-16 0:0:0.0', '2005-11-16 0:0:0.0']},
         'method': 'Zonal root mean square error of equatorial_pacific pr, time series are linearly detrended, observations and model regridded to generic_1x1deg',
         'name': 'pr Zonal RMSE',
         'ref': 'Using CDAT regridding and rms (uncentered and biased) calculation',
         'time_frequency': 'monthly',
         'units': 'mm/day'},
        'metric': {'datasets': "HadGEM2-ES_r1i1p1; ERA-Interim's pr & GPCPv2.3's precip; 's ",
         'method': 'The metric is the statistical value between the model and the observations',
         'name': 'BiasPrLonRmse',
         'units': 'mm/day'}},
       'BiasSstLonRmse': {'diagnostic': {'ERA-Interim': {'name': 'ERA-Interim',
          'nyears': 40,
          'time_period': ['1979-1-16 12:0:0.0', '2019-3-16 12:0:0.0']},
         'HadGEM2-ES_r1i1p1': {'keyerror': None,
          'name': 'HadGEM2-ES_r1i1p1',
          'nyears': 146,
          'time_period': ['1859-12-16 0:0:0.0', '2005-11-16 0:0:0.0']},
         'HadISST': {'name': 'HadISST',
          'nyears': 151,
          'time_period': ['1870-1-16 11:59:59.5', '2020-10-16 12:0:0.0']},
         'Tropflux': {'name': 'Tropflux',
          'nyears': 40,
          'time_period': ['1979-1-15 0:0:0.0', '2018-12-15 12:0:0.0']},
         'method': 'Zonal root mean square error of equatorial_pacific sst, time series are linearly detrended, observations and model regridded to generic_1x1deg',
         'name': 'sst Zonal RMSE',
         'ref': 'Using CDAT regridding and rms (uncentered and biased) calculation',
         'time_frequency': 'monthly',
         'units': 'C'},
        'metric': {'datasets': "HadGEM2-ES_r1i1p1; ERA-Interim's ts & HadISST's sst & Tropflux's sst; 's ",
         'method': 'The metric is the statistical value between the model and the observations',
         'name': 'BiasSstLonRmse',
         'units': 'C'}},
       'BiasTauxLonRmse': {'diagnostic': {'ERA-Interim': {'name': 'ERA-Interim',
          'nyears': 40,
          'time_period': ['1979-1-16 12:0:0.0', '2019-3-16 12:0:0.0']},
         'HadGEM2-ES_r1i1p1': {'keyerror': None,
          'name': 'HadGEM2-ES_r1i1p1',
          'nyears': 146,
          'time_period': ['1859-12-16 0:0:0.0', '2005-11-16 0:0:0.0']},
         'Tropflux': {'name': 'Tropflux',
          'nyears': 40,
          'time_period': ['1979-1-15 0:0:0.0', '2018-12-15 12:0:0.0']},
         'method': 'Zonal root mean square error of equatorial_pacific taux, time series are linearly detrended, observations and model regridded to generic_1x1deg',
         'name': 'taux Zonal RMSE',
         'ref': 'Using CDAT regridding and rms (uncentered and biased) calculation',
         'time_frequency': 'monthly',
         'units': '1e-3 N/m2'},
        'metric': {'datasets': "HadGEM2-ES_r1i1p1; ERA-Interim's tauu & Tropflux's taux; 's ",
         'method': 'The metric is the statistical value between the model and the observations',
         'name': 'BiasTauxLonRmse',
         'units': '1e-3 N/m2'}},
       'EnsoAmpl': {'diagnostic': {'ERA-Interim': {'keyerror': None,
          'name': 'ERA-Interim',
          'nyears': 40,
          'time_period': ['1979-1-16 12:0:0.0', '2019-3-16 12:0:0.0']},
         'HadGEM2-ES_r1i1p1': {'keyerror': None,
          'name': 'HadGEM2-ES_r1i1p1',
          'nyears': 146,
          'time_period': ['1859-12-16 0:0:0.0', '2005-11-16 0:0:0.0']},
         'HadISST': {'keyerror': None,
          'name': 'HadISST',
          'nyears': 151,
          'time_period': ['1870-1-16 11:59:59.5', '2020-10-16 12:0:0.0']},
         'Tropflux': {'keyerror': None,
          'name': 'Tropflux',
          'nyears': 40,
          'time_period': ['1979-1-15 0:0:0.0', '2018-12-15 12:0:0.0']},
         'method': 'Standard deviation of nino3.4 sstA, time series are linearly detrended',
         'name': 'ENSO amplitude',
         'ref': 'Using CDAT regression calculation',
         'time_frequency': 'monthly',
         'units': 'C'},
        'metric': {'datasets': "HadGEM2-ES_r1i1p1; ERA-Interim's ts & HadISST's sst & Tropflux's sst; 's ",
         'method': 'The metric is the absolute value of the relative difference between model and observations values (M = 100 * abs[[model-obs] / obs])',
         'name': 'EnsoAmpl',
         'units': '%'}},
       'EnsoDuration': {'diagnostic': {'ERA-Interim': {'keyerror': None,
          'name': 'ERA-Interim',
          'nyears': 40,
          'time_period': ['1979-1-16 12:0:0.0', '2019-3-16 12:0:0.0']},
         'HadGEM2-ES_r1i1p1': {'keyerror': None,
          'name': 'HadGEM2-ES_r1i1p1',
          'nyears': 146,
          'time_period': ['1859-12-16 0:0:0.0', '2005-11-16 0:0:0.0']},
         'HadISST': {'keyerror': None,
          'name': 'HadISST',
          'nyears': 151,
          'time_period': ['1870-1-16 11:59:59.5', '2020-10-16 12:0:0.0']},
         'Tropflux': {'keyerror': None,
          'name': 'Tropflux',
          'nyears': 40,
          'time_period': ['1979-1-15 0:0:0.0', '2018-12-15 12:0:0.0']},
         'method': 'nino3.4 SSTA during DEC regressed against nino3.4 SSTA during 6 years (centered on ENSO), the duration is the number of consecutive months during which the regression is above 0.25, time series are linearly detrended, smoothing using a triangle shaped window of 5 points',
         'name': 'ENSO Duration based on life cyle SSTA pattern',
         'ref': 'Using CDAT',
         'time_frequency': 'monthly',
         'units': 'months'},
        'metric': {'datasets': "HadGEM2-ES_r1i1p1; ERA-Interim's ts & HadISST's sst & Tropflux's sst; 's ",
         'method': 'The metric is the absolute value of the relative difference between model and observations values (M = 100 * abs[[model-obs] / obs])',
         'name': 'EnsoDuration',
         'units': '%'}},
       'EnsoSeasonality': {'diagnostic': {'ERA-Interim': {'keyerror': None,
          'name': 'ERA-Interim',
          'nyears': 40,
          'time_period': ['1979-1-16 12:0:0.0', '2019-3-16 12:0:0.0']},
         'HadGEM2-ES_r1i1p1': {'keyerror': None,
          'name': 'HadGEM2-ES_r1i1p1',
          'nyears': 146,
          'time_period': ['1859-12-16 0:0:0.0', '2005-11-16 0:0:0.0']},
         'HadISST': {'keyerror': None,
          'name': 'HadISST',
          'nyears': 151,
          'time_period': ['1870-1-16 11:59:59.5', '2020-10-16 12:0:0.0']},
         'Tropflux': {'keyerror': None,
          'name': 'Tropflux',
          'nyears': 40,
          'time_period': ['1979-1-15 0:0:0.0', '2018-12-15 12:0:0.0']},
         'method': 'Ratio between NDJ and MAM standard deviation nino3.4 sstA, time series are linearly detrended',
         'name': 'ENSO seasonality',
         'ref': 'Using CDAT std dev calculation',
         'time_frequency': 'monthly',
         'units': 'C/C'},
        'metric': {'datasets': "HadGEM2-ES_r1i1p1; ERA-Interim's ts & HadISST's sst & Tropflux's sst; 's ",
         'method': 'The metric is the absolute value of the relative difference between model and observations values (M = 100 * abs[[model-obs] / obs])',
         'name': 'EnsoSeasonality',
         'units': '%'}},
       'EnsoSstDiversity_2': {'diagnostic': {'ERA-Interim': {'keyerror': None,
          'name': 'ERA-Interim',
          'nyears': 40,
          'time_period': ['1979-1-16 12:0:0.0', '2019-3-16 12:0:0.0']},
         'HadGEM2-ES_r1i1p1': {'keyerror': None,
          'name': 'HadGEM2-ES_r1i1p1',
          'nyears': 146,
          'time_period': ['1859-12-16 0:0:0.0', '2005-11-16 0:0:0.0']},
         'HadISST': {'keyerror': None,
          'name': 'HadISST',
          'nyears': 151,
          'time_period': ['1870-1-16 11:59:59.5', '2020-10-16 12:0:0.0']},
         'Tropflux': {'keyerror': None,
          'name': 'Tropflux',
          'nyears': 40,
          'time_period': ['1979-1-15 0:0:0.0', '2018-12-15 12:0:0.0']},
         'method': 'Nino (Nina) events = nino3.4 sstA > 0.75 (< -0.75) during DEC, zonal SSTA (meridional averaged [-5.0 ; 5.0]), the zonal SSTA maximum (minimum) is located for each event, the diversity is the interquartile range (IQR = Q3 - Q1), time series are linearly detrended, smoothing using a triangle shaped window of 5 points',
         'name': 'ENSO Diversity (interquartile range)',
         'ref': 'Using CDAT regridding',
         'time_frequency': 'monthly',
         'units': 'long'},
        'metric': {'datasets': "HadGEM2-ES_r1i1p1; ERA-Interim's ts & HadISST's sst & Tropflux's sst; 's ",
         'method': 'The metric is the absolute value of the relative difference between model and observations values (M = 100 * abs[[model-obs] / obs])',
         'name': 'EnsoSstDiversity',
         'units': '%'}},
       'EnsoSstLonRmse': {'diagnostic': {'ERA-Interim': {'name': 'ERA-Interim',
          'nyears': 40,
          'time_period': ['1979-1-16 12:0:0.0', '2019-3-16 12:0:0.0']},
         'HadGEM2-ES_r1i1p1': {'keyerror': None,
          'name': 'HadGEM2-ES_r1i1p1',
          'nyears': 146,
          'time_period': ['1859-12-16 0:0:0.0', '2005-11-16 0:0:0.0']},
         'HadISST': {'name': 'HadISST',
          'nyears': 151,
          'time_period': ['1870-1-16 11:59:59.5', '2020-10-16 12:0:0.0']},
         'Tropflux': {'name': 'Tropflux',
          'nyears': 40,
          'time_period': ['1979-1-15 0:0:0.0', '2018-12-15 12:0:0.0']},
         'method': 'nino3.4 SSTA during DEC regressed against equatorial_pacific SSTA, time series are linearly detrended, smoothing using a triangle shaped window of 5 points, observations and model regridded to generic_1x1deg',
         'name': 'ENSO Zonal SSTA pattern',
         'ref': 'Using CDAT regridding and rms (uncentered and biased) calculation',
         'time_frequency': 'monthly',
         'units': 'C/C'},
        'metric': {'datasets': "HadGEM2-ES_r1i1p1; ERA-Interim's ts & HadISST's sst & Tropflux's sst; 's ",
         'method': 'The metric is the statistical value between the model and the observations',
         'name': 'EnsoSstLonRmse',
         'units': 'C/C'}},
       'EnsoSstSkew': {'diagnostic': {'ERA-Interim': {'keyerror': None,
          'name': 'ERA-Interim',
          'nyears': 40,
          'time_period': ['1979-1-16 12:0:0.0', '2019-3-16 12:0:0.0']},
         'HadGEM2-ES_r1i1p1': {'keyerror': None,
          'name': 'HadGEM2-ES_r1i1p1',
          'nyears': 146,
          'time_period': ['1859-12-16 0:0:0.0', '2005-11-16 0:0:0.0']},
         'HadISST': {'keyerror': None,
          'name': 'HadISST',
          'nyears': 151,
          'time_period': ['1870-1-16 11:59:59.5', '2020-10-16 12:0:0.0']},
         'Tropflux': {'keyerror': None,
          'name': 'Tropflux',
          'nyears': 40,
          'time_period': ['1979-1-15 0:0:0.0', '2018-12-15 12:0:0.0']},
         'method': 'Standard deviation of nino3.4 sstA, time series are linearly detrended',
         'name': 'ENSO skewness',
         'ref': 'Using CDAT regression calculation',
         'time_frequency': 'monthly',
         'units': 'C'},
        'metric': {'datasets': "HadGEM2-ES_r1i1p1; ERA-Interim's ts & HadISST's sst & Tropflux's sst; 's ",
         'method': 'The metric is the absolute value of the relative difference between model and observations values (M = 100 * abs[[model-obs] / obs])',
         'name': 'EnsoSstSkew',
         'units': '%'}},
       'EnsoSstTsRmse': {'diagnostic': {'ERA-Interim': {'name': 'ERA-Interim',
          'nyears': 40,
          'time_period': ['1979-1-16 12:0:0.0', '2019-3-16 12:0:0.0']},
         'HadGEM2-ES_r1i1p1': {'keyerror': None,
          'name': 'HadGEM2-ES_r1i1p1',
          'nyears': 146,
          'time_period': ['1859-12-16 0:0:0.0', '2005-11-16 0:0:0.0']},
         'HadISST': {'name': 'HadISST',
          'nyears': 151,
          'time_period': ['1870-1-16 11:59:59.5', '2020-10-16 12:0:0.0']},
         'Tropflux': {'name': 'Tropflux',
          'nyears': 40,
          'time_period': ['1979-1-15 0:0:0.0', '2018-12-15 12:0:0.0']},
         'method': 'nino3.4 SSTA during DEC regressed against nino3.4 SSTA during 6 years (centered on ENSO), time series are linearly detrended, smoothing using a triangle shaped window of 5 points',
         'name': 'ENSO life cyle SSTA pattern',
         'ref': 'Using CDAT regridding and rms (uncentered and biased) calculation',
         'time_frequency': 'monthly',
         'units': 'C/C'},
        'metric': {'datasets': "HadGEM2-ES_r1i1p1; ERA-Interim's ts & HadISST's sst & Tropflux's sst; 's ",
         'method': 'The metric is the statistical value between the model and the observations',
         'name': 'EnsoSstTsRmse',
         'units': 'C/C'}},
       'SeasonalPrLatRmse': {'diagnostic': {'ERA-Interim': {'name': 'ERA-Interim',
          'nyears': 40,
          'time_period': ['1979-1-16 12:0:0.0', '2019-3-16 12:0:0.0']},
         'GPCPv2.3': {'name': 'GPCPv2.3',
          'nyears': 41,
          'time_period': ['1979-1-1 0:0:0.0', '2019-7-1 0:0:0.0']},
         'HadGEM2-ES_r1i1p1': {'keyerror': None,
          'name': 'HadGEM2-ES_r1i1p1',
          'nyears': 146,
          'time_period': ['1859-12-16 0:0:0.0', '2005-11-16 0:0:0.0']},
         'method': 'Meridional root mean square error of nino3_LatExt climatological pr STD, time series are linearly detrended, observations and model regridded to generic_1x1deg',
         'name': 'pr meridional seasonality RMSE',
         'ref': 'Using CDAT regridding and rms (uncentered and biased) calculation',
         'time_frequency': 'monthly',
         'units': 'mm/day'},
        'metric': {'datasets': "HadGEM2-ES_r1i1p1; ERA-Interim's pr & GPCPv2.3's precip; 's ",
         'method': 'The metric is the statistical value between the model and the observations',
         'name': 'SeasonalPrLatRmse',
         'units': 'mm/day'}},
       'SeasonalPrLonRmse': {'diagnostic': {'ERA-Interim': {'name': 'ERA-Interim',
          'nyears': 40,
          'time_period': ['1979-1-16 12:0:0.0', '2019-3-16 12:0:0.0']},
         'GPCPv2.3': {'name': 'GPCPv2.3',
          'nyears': 41,
          'time_period': ['1979-1-1 0:0:0.0', '2019-7-1 0:0:0.0']},
         'HadGEM2-ES_r1i1p1': {'keyerror': None,
          'name': 'HadGEM2-ES_r1i1p1',
          'nyears': 146,
          'time_period': ['1859-12-16 0:0:0.0', '2005-11-16 0:0:0.0']},
         'method': 'Zonal root mean square error of equatorial_pacific climatological pr STD, time series are linearly detrended, observations and model regridded to generic_1x1deg',
         'name': 'pr zonal seasonality RMSE',
         'ref': 'Using CDAT regridding and rms (uncentered and biased) calculation',
         'time_frequency': 'monthly',
         'units': 'mm/day'},
        'metric': {'datasets': "HadGEM2-ES_r1i1p1; ERA-Interim's pr & GPCPv2.3's precip; 's ",
         'method': 'The metric is the statistical value between the model and the observations',
         'name': 'SeasonalPrLonRmse',
         'units': 'mm/day'}},
       'SeasonalSstLonRmse': {'diagnostic': {'ERA-Interim': {'name': 'ERA-Interim',
          'nyears': 40,
          'time_period': ['1979-1-16 12:0:0.0', '2019-3-16 12:0:0.0']},
         'HadGEM2-ES_r1i1p1': {'keyerror': None,
          'name': 'HadGEM2-ES_r1i1p1',
          'nyears': 146,
          'time_period': ['1859-12-16 0:0:0.0', '2005-11-16 0:0:0.0']},
         'HadISST': {'name': 'HadISST',
          'nyears': 151,
          'time_period': ['1870-1-16 11:59:59.5', '2020-10-16 12:0:0.0']},
         'Tropflux': {'name': 'Tropflux',
          'nyears': 40,
          'time_period': ['1979-1-15 0:0:0.0', '2018-12-15 12:0:0.0']},
         'method': 'Zonal root mean square error of equatorial_pacific climatological sst STD, time series are linearly detrended, observations and model regridded to generic_1x1deg',
         'name': 'sst zonal seasonality RMSE',
         'ref': 'Using CDAT regridding and rms (uncentered and biased) calculation',
         'time_frequency': 'monthly',
         'units': 'C'},
        'metric': {'datasets': "HadGEM2-ES_r1i1p1; ERA-Interim's ts & HadISST's sst & Tropflux's sst; 's ",
         'method': 'The metric is the statistical value between the model and the observations',
         'name': 'SeasonalSstLonRmse',
         'units': 'C'}},
       'SeasonalTauxLonRmse': {'diagnostic': {'ERA-Interim': {'name': 'ERA-Interim',
          'nyears': 40,
          'time_period': ['1979-1-16 12:0:0.0', '2019-3-16 12:0:0.0']},
         'HadGEM2-ES_r1i1p1': {'keyerror': None,
          'name': 'HadGEM2-ES_r1i1p1',
          'nyears': 146,
          'time_period': ['1859-12-16 0:0:0.0', '2005-11-16 0:0:0.0']},
         'Tropflux': {'name': 'Tropflux',
          'nyears': 40,
          'time_period': ['1979-1-15 0:0:0.0', '2018-12-15 12:0:0.0']},
         'method': 'Zonal root mean square error of equatorial_pacific climatological taux STD, time series are linearly detrended, observations and model regridded to generic_1x1deg',
         'name': 'taux zonal seasonality RMSE',
         'ref': 'Using CDAT regridding and rms (uncentered and biased) calculation',
         'time_frequency': 'monthly',
         'units': '1e-3 N/m2'},
        'metric': {'datasets': "HadGEM2-ES_r1i1p1; ERA-Interim's tauu & Tropflux's taux; 's ",
         'method': 'The metric is the statistical value between the model and the observations',
         'name': 'SeasonalTauxLonRmse',
         'units': '1e-3 N/m2'}}},
      'name': 'Metrics Collection for ENSO performance'},
     'value': {'BiasPrLatRmse': {'diagnostic': {'ERA-Interim': {'value': None,
         'value_error': None},
        'GPCPv2.3': {'value': None, 'value_error': None},
        'HadGEM2-ES_r1i1p1': {'value': None, 'value_error': None}},
       'metric': {'ERA-Interim': {'value': 0.9634434994167944,
         'value_error': None},
        'GPCPv2.3': {'value': 1.6770142140828663, 'value_error': None}}},
      'BiasPrLonRmse': {'diagnostic': {'ERA-Interim': {'value': None,
         'value_error': None},
        'GPCPv2.3': {'value': None, 'value_error': None},
        'HadGEM2-ES_r1i1p1': {'value': None, 'value_error': None}},
       'metric': {'ERA-Interim': {'value': 1.3469546789938933,
         'value_error': None},
        'GPCPv2.3': {'value': 0.7769195651214647, 'value_error': None}}},
      'BiasSstLonRmse': {'diagnostic': {'ERA-Interim': {'value': None,
         'value_error': None},
        'HadGEM2-ES_r1i1p1': {'value': None, 'value_error': None},
        'HadISST': {'value': None, 'value_error': None},
        'Tropflux': {'value': None, 'value_error': None}},
       'metric': {'ERA-Interim': {'value': 1.2023811704180314,
         'value_error': None},
        'HadISST': {'value': 0.997656012772172, 'value_error': None},
        'Tropflux': {'value': 1.2515654530882019, 'value_error': None}}},
      'BiasTauxLonRmse': {'diagnostic': {'ERA-Interim': {'value': None,
         'value_error': None},
        'HadGEM2-ES_r1i1p1': {'value': None, 'value_error': None},
        'Tropflux': {'value': None, 'value_error': None}},
       'metric': {'ERA-Interim': {'value': 8.615914924555113,
         'value_error': None},
        'Tropflux': {'value': 8.684892801059148, 'value_error': None}}},
      'EnsoAmpl': {'diagnostic': {'ERA-Interim': {'value': 0.8989844997845644,
         'value_error': 0.14214193002531866},
        'HadGEM2-ES_r1i1p1': {'value': 0.7918552344330884,
         'value_error': 0.06553440549374324},
        'HadISST': {'value': 0.7665787872085695,
         'value_error': 0.06238329697691264},
        'Tropflux': {'value': 0.9039789553693535,
         'value_error': 0.14293162279134272}},
       'metric': {'ERA-Interim': {'value': 11.91669771582812,
         'value_error': 21.21701891814706},
        'HadISST': {'value': 3.2973058537871665,
         'value_error': 16.95516139273206},
        'Tropflux': {'value': 12.403355218645867,
         'value_error': 21.099795549174914}}},
      'EnsoDuration': {'diagnostic': {'ERA-Interim': {'value': 13.0,
         'value_error': None},
        'HadGEM2-ES_r1i1p1': {'value': 25.0, 'value_error': None},
        'HadISST': {'value': 13.0, 'value_error': None},
        'Tropflux': {'value': 13.0, 'value_error': None}},
       'metric': {'ERA-Interim': {'value': 92.3076923076923,
         'value_error': None},
        'HadISST': {'value': 92.3076923076923, 'value_error': None},
        'Tropflux': {'value': 92.3076923076923, 'value_error': None}}},
      'EnsoSeasonality': {'diagnostic': {'ERA-Interim': {'value': 2.0466846866656914,
         'value_error': 0.6513411033995022},
        'HadGEM2-ES_r1i1p1': {'value': 1.33733786833274,
         'value_error': 0.2217387344905815},
        'HadISST': {'value': 1.6639865947361325,
         'value_error': 0.2712772451657809},
        'Tropflux': {'value': 2.0532132553583624,
         'value_error': 0.6534187683977347}},
       'metric': {'ERA-Interim': {'value': 34.658334180853586,
         'value_error': 31.62850955176771},
        'HadISST': {'value': 19.63049025976024,
         'value_error': 26.428273392243497},
        'Tropflux': {'value': 34.866100009697995,
         'value_error': 31.527940895922224}}},
      'EnsoSstDiversity_2': {'diagnostic': {'ERA-Interim': {'value': 33.25,
         'value_error': None},
        'HadGEM2-ES_r1i1p1': {'value': 7.25, 'value_error': None},
        'HadISST': {'value': 49.0, 'value_error': None},
        'Tropflux': {'value': 32.0, 'value_error': None}},
       'metric': {'ERA-Interim': {'value': 78.19548872180451,
         'value_error': None},
        'HadISST': {'value': 85.20408163265306, 'value_error': None},
        'Tropflux': {'value': 77.34375, 'value_error': None}}},
      'EnsoSstLonRmse': {'diagnostic': {'ERA-Interim': {'value': None,
         'value_error': None},
        'HadGEM2-ES_r1i1p1': {'value': None, 'value_error': None},
        'HadISST': {'value': None, 'value_error': None},
        'Tropflux': {'value': None, 'value_error': None}},
       'metric': {'ERA-Interim': {'value': 0.1754839820250079,
         'value_error': None},
        'HadISST': {'value': 0.1856297229566208, 'value_error': None},
        'Tropflux': {'value': 0.1749622192591237, 'value_error': None}}},
      'EnsoSstSkew': {'diagnostic': {'ERA-Interim': {'value': 0.39098111106809963,
         'value_error': 0.061819541653923164},
        'HadGEM2-ES_r1i1p1': {'value': -0.49747367727258285,
         'value_error': -0.04117121447354635},
        'HadISST': {'value': 0.38989908235027515,
         'value_error': 0.03172953733021198},
        'Tropflux': {'value': 0.39744741059612115,
         'value_error': 0.06284195338099416}},
       'metric': {'ERA-Interim': {'value': 227.2372662488891,
         'value_error': -30.64820930971271},
        'HadISST': {'value': 227.5903688395105,
         'value_error': -20.942611019247597},
        'Tropflux': {'value': 225.16717029969695,
         'value_error': -30.1495760412336}}},
      'EnsoSstTsRmse': {'diagnostic': {'ERA-Interim': {'value': None,
         'value_error': None},
        'HadGEM2-ES_r1i1p1': {'value': None, 'value_error': None},
        'HadISST': {'value': None, 'value_error': None},
        'Tropflux': {'value': None, 'value_error': None}},
       'metric': {'ERA-Interim': {'value': 0.20477362377989475,
         'value_error': None},
        'HadISST': {'value': 0.16936619412087395, 'value_error': None},
        'Tropflux': {'value': 0.20032153712428094, 'value_error': None}}},
      'SeasonalPrLatRmse': {'diagnostic': {'ERA-Interim': {'value': None,
         'value_error': None},
        'GPCPv2.3': {'value': None, 'value_error': None},
        'HadGEM2-ES_r1i1p1': {'value': None, 'value_error': None}},
       'metric': {'ERA-Interim': {'value': 1.557965008762284,
         'value_error': None},
        'GPCPv2.3': {'value': 1.853529237158138, 'value_error': None}}},
      'SeasonalPrLonRmse': {'diagnostic': {'ERA-Interim': {'value': None,
         'value_error': None},
        'GPCPv2.3': {'value': None, 'value_error': None},
        'HadGEM2-ES_r1i1p1': {'value': None, 'value_error': None}},
       'metric': {'ERA-Interim': {'value': 0.7245534993887159,
         'value_error': None},
        'GPCPv2.3': {'value': 0.6979116523011123, 'value_error': None}}},
      'SeasonalSstLonRmse': {'diagnostic': {'ERA-Interim': {'value': None,
         'value_error': None},
        'HadGEM2-ES_r1i1p1': {'value': None, 'value_error': None},
        'HadISST': {'value': None, 'value_error': None},
        'Tropflux': {'value': None, 'value_error': None}},
       'metric': {'ERA-Interim': {'value': 0.17691290090686804,
         'value_error': None},
        'HadISST': {'value': 0.19461899691135215, 'value_error': None},
        'Tropflux': {'value': 0.17787641631500975, 'value_error': None}}},
      'SeasonalTauxLonRmse': {'diagnostic': {'ERA-Interim': {'value': None,
         'value_error': None},
        'HadGEM2-ES_r1i1p1': {'value': None, 'value_error': None},
        'Tropflux': {'value': None, 'value_error': None}},
       'metric': {'ERA-Interim': {'value': 4.301395510315637,
         'value_error': None},
        'Tropflux': {'value': 4.002593800641284, 'value_error': None}}}}},
    'r2i1p1': {'metadata': {'description_of_the_collection': 'Describe which science question this collection is about',
      'metrics': {'BiasPrLatRmse': {'diagnostic': {'ERA-Interim': {'name': 'ERA-Interim',
          'nyears': 40,
          'time_period': ['1979-1-16 12:0:0.0', '2019-3-16 12:0:0.0']},
         'GPCPv2.3': {'name': 'GPCPv2.3',
          'nyears': 41,
          'time_period': ['1979-1-1 0:0:0.0', '2019-7-1 0:0:0.0']},
         'HadGEM2-ES_r2i1p1': {'keyerror': None,
          'name': 'HadGEM2-ES_r2i1p1',
          'nyears': 146,
          'time_period': ['1859-12-16 0:0:0.0', '2005-12-16 0:0:0.0']},
         'method': 'Meridional root mean square error of nino3_LatExt pr, time series are linearly detrended, observations and model regridded to generic_1x1deg',
         'name': 'pr Meridional RMSE',
         'ref': 'Using CDAT regridding and rms (uncentered and biased) calculation',
         'time_frequency': 'monthly',
         'units': 'mm/day'},
        'metric': {'datasets': "HadGEM2-ES_r2i1p1; ERA-Interim's pr & GPCPv2.3's precip; 's ",
         'method': 'The metric is the statistical value between the model and the observations',
         'name': 'BiasPrLatRmse',
         'units': 'mm/day'}},
       'BiasPrLonRmse': {'diagnostic': {'ERA-Interim': {'name': 'ERA-Interim',
          'nyears': 40,
          'time_period': ['1979-1-16 12:0:0.0', '2019-3-16 12:0:0.0']},
         'GPCPv2.3': {'name': 'GPCPv2.3',
          'nyears': 41,
          'time_period': ['1979-1-1 0:0:0.0', '2019-7-1 0:0:0.0']},
         'HadGEM2-ES_r2i1p1': {'keyerror': None,
          'name': 'HadGEM2-ES_r2i1p1',
          'nyears': 146,
          'time_period': ['1859-12-16 0:0:0.0', '2005-12-16 0:0:0.0']},
         'method': 'Zonal root mean square error of equatorial_pacific pr, time series are linearly detrended, observations and model regridded to generic_1x1deg',
         'name': 'pr Zonal RMSE',
         'ref': 'Using CDAT regridding and rms (uncentered and biased) calculation',
         'time_frequency': 'monthly',
         'units': 'mm/day'},
        'metric': {'datasets': "HadGEM2-ES_r2i1p1; ERA-Interim's pr & GPCPv2.3's precip; 's ",
         'method': 'The metric is the statistical value between the model and the observations',
         'name': 'BiasPrLonRmse',
         'units': 'mm/day'}},
       'BiasSstLonRmse': {'diagnostic': {'ERA-Interim': {'name': 'ERA-Interim',
          'nyears': 40,
          'time_period': ['1979-1-16 12:0:0.0', '2019-3-16 12:0:0.0']},
         'HadGEM2-ES_r2i1p1': {'keyerror': None,
          'name': 'HadGEM2-ES_r2i1p1',
          'nyears': 146,
          'time_period': ['1859-12-16 0:0:0.0', '2005-12-16 0:0:0.0']},
         'HadISST': {'name': 'HadISST',
          'nyears': 151,
          'time_period': ['1870-1-16 11:59:59.5', '2020-10-16 12:0:0.0']},
         'Tropflux': {'name': 'Tropflux',
          'nyears': 40,
          'time_period': ['1979-1-15 0:0:0.0', '2018-12-15 12:0:0.0']},
         'method': 'Zonal root mean square error of equatorial_pacific sst, time series are linearly detrended, observations and model regridded to generic_1x1deg',
         'name': 'sst Zonal RMSE',
         'ref': 'Using CDAT regridding and rms (uncentered and biased) calculation',
         'time_frequency': 'monthly',
         'units': 'C'},
        'metric': {'datasets': "HadGEM2-ES_r2i1p1; ERA-Interim's ts & HadISST's sst & Tropflux's sst; 's ",
         'method': 'The metric is the statistical value between the model and the observations',
         'name': 'BiasSstLonRmse',
         'units': 'C'}},
       'BiasTauxLonRmse': {'diagnostic': {'ERA-Interim': {'name': 'ERA-Interim',
          'nyears': 40,
          'time_period': ['1979-1-16 12:0:0.0', '2019-3-16 12:0:0.0']},
         'HadGEM2-ES_r2i1p1': {'keyerror': None,
          'name': 'HadGEM2-ES_r2i1p1',
          'nyears': 146,
          'time_period': ['1859-12-16 0:0:0.0', '2005-12-16 0:0:0.0']},
         'Tropflux': {'name': 'Tropflux',
          'nyears': 40,
          'time_period': ['1979-1-15 0:0:0.0', '2018-12-15 12:0:0.0']},
         'method': 'Zonal root mean square error of equatorial_pacific taux, time series are linearly detrended, observations and model regridded to generic_1x1deg',
         'name': 'taux Zonal RMSE',
         'ref': 'Using CDAT regridding and rms (uncentered and biased) calculation',
         'time_frequency': 'monthly',
         'units': '1e-3 N/m2'},
        'metric': {'datasets': "HadGEM2-ES_r2i1p1; ERA-Interim's tauu & Tropflux's taux; 's ",
         'method': 'The metric is the statistical value between the model and the observations',
         'name': 'BiasTauxLonRmse',
         'units': '1e-3 N/m2'}},
       'EnsoAmpl': {'diagnostic': {'ERA-Interim': {'keyerror': None,
          'name': 'ERA-Interim',
          'nyears': 40,
          'time_period': ['1979-1-16 12:0:0.0', '2019-3-16 12:0:0.0']},
         'HadGEM2-ES_r2i1p1': {'keyerror': None,
          'name': 'HadGEM2-ES_r2i1p1',
          'nyears': 146,
          'time_period': ['1859-12-16 0:0:0.0', '2005-12-16 0:0:0.0']},
         'HadISST': {'keyerror': None,
          'name': 'HadISST',
          'nyears': 151,
          'time_period': ['1870-1-16 11:59:59.5', '2020-10-16 12:0:0.0']},
         'Tropflux': {'keyerror': None,
          'name': 'Tropflux',
          'nyears': 40,
          'time_period': ['1979-1-15 0:0:0.0', '2018-12-15 12:0:0.0']},
         'method': 'Standard deviation of nino3.4 sstA, time series are linearly detrended',
         'name': 'ENSO amplitude',
         'ref': 'Using CDAT regression calculation',
         'time_frequency': 'monthly',
         'units': 'C'},
        'metric': {'datasets': "HadGEM2-ES_r2i1p1; ERA-Interim's ts & HadISST's sst & Tropflux's sst; 's ",
         'method': 'The metric is the absolute value of the relative difference between model and observations values (M = 100 * abs[[model-obs] / obs])',
         'name': 'EnsoAmpl',
         'units': '%'}},
       'EnsoDuration': {'diagnostic': {'ERA-Interim': {'keyerror': None,
          'name': 'ERA-Interim',
          'nyears': 40,
          'time_period': ['1979-1-16 12:0:0.0', '2019-3-16 12:0:0.0']},
         'HadGEM2-ES_r2i1p1': {'keyerror': None,
          'name': 'HadGEM2-ES_r2i1p1',
          'nyears': 146,
          'time_period': ['1859-12-16 0:0:0.0', '2005-12-16 0:0:0.0']},
         'HadISST': {'keyerror': None,
          'name': 'HadISST',
          'nyears': 151,
          'time_period': ['1870-1-16 11:59:59.5', '2020-10-16 12:0:0.0']},
         'Tropflux': {'keyerror': None,
          'name': 'Tropflux',
          'nyears': 40,
          'time_period': ['1979-1-15 0:0:0.0', '2018-12-15 12:0:0.0']},
         'method': 'nino3.4 SSTA during DEC regressed against nino3.4 SSTA during 6 years (centered on ENSO), the duration is the number of consecutive months during which the regression is above 0.25, time series are linearly detrended, smoothing using a triangle shaped window of 5 points',
         'name': 'ENSO Duration based on life cyle SSTA pattern',
         'ref': 'Using CDAT',
         'time_frequency': 'monthly',
         'units': 'months'},
        'metric': {'datasets': "HadGEM2-ES_r2i1p1; ERA-Interim's ts & HadISST's sst & Tropflux's sst; 's ",
         'method': 'The metric is the absolute value of the relative difference between model and observations values (M = 100 * abs[[model-obs] / obs])',
         'name': 'EnsoDuration',
         'units': '%'}},
       'EnsoSeasonality': {'diagnostic': {'ERA-Interim': {'keyerror': None,
          'name': 'ERA-Interim',
          'nyears': 40,
          'time_period': ['1979-1-16 12:0:0.0', '2019-3-16 12:0:0.0']},
         'HadGEM2-ES_r2i1p1': {'keyerror': None,
          'name': 'HadGEM2-ES_r2i1p1',
          'nyears': 146,
          'time_period': ['1859-12-16 0:0:0.0', '2005-12-16 0:0:0.0']},
         'HadISST': {'keyerror': None,
          'name': 'HadISST',
          'nyears': 151,
          'time_period': ['1870-1-16 11:59:59.5', '2020-10-16 12:0:0.0']},
         'Tropflux': {'keyerror': None,
          'name': 'Tropflux',
          'nyears': 40,
          'time_period': ['1979-1-15 0:0:0.0', '2018-12-15 12:0:0.0']},
         'method': 'Ratio between NDJ and MAM standard deviation nino3.4 sstA, time series are linearly detrended',
         'name': 'ENSO seasonality',
         'ref': 'Using CDAT std dev calculation',
         'time_frequency': 'monthly',
         'units': 'C/C'},
        'metric': {'datasets': "HadGEM2-ES_r2i1p1; ERA-Interim's ts & HadISST's sst & Tropflux's sst; 's ",
         'method': 'The metric is the absolute value of the relative difference between model and observations values (M = 100 * abs[[model-obs] / obs])',
         'name': 'EnsoSeasonality',
         'units': '%'}},
       'EnsoSstDiversity_2': {'diagnostic': {'ERA-Interim': {'keyerror': None,
          'name': 'ERA-Interim',
          'nyears': 40,
          'time_period': ['1979-1-16 12:0:0.0', '2019-3-16 12:0:0.0']},
         'HadGEM2-ES_r2i1p1': {'keyerror': None,
          'name': 'HadGEM2-ES_r2i1p1',
          'nyears': 146,
          'time_period': ['1859-12-16 0:0:0.0', '2005-12-16 0:0:0.0']},
         'HadISST': {'keyerror': None,
          'name': 'HadISST',
          'nyears': 151,
          'time_period': ['1870-1-16 11:59:59.5', '2020-10-16 12:0:0.0']},
         'Tropflux': {'keyerror': None,
          'name': 'Tropflux',
          'nyears': 40,
          'time_period': ['1979-1-15 0:0:0.0', '2018-12-15 12:0:0.0']},
         'method': 'Nino (Nina) events = nino3.4 sstA > 0.75 (< -0.75) during DEC, zonal SSTA (meridional averaged [-5.0 ; 5.0]), the zonal SSTA maximum (minimum) is located for each event, the diversity is the interquartile range (IQR = Q3 - Q1), time series are linearly detrended, smoothing using a triangle shaped window of 5 points',
         'name': 'ENSO Diversity (interquartile range)',
         'ref': 'Using CDAT regridding',
         'time_frequency': 'monthly',
         'units': 'long'},
        'metric': {'datasets': "HadGEM2-ES_r2i1p1; ERA-Interim's ts & HadISST's sst & Tropflux's sst; 's ",
         'method': 'The metric is the absolute value of the relative difference between model and observations values (M = 100 * abs[[model-obs] / obs])',
         'name': 'EnsoSstDiversity',
         'units': '%'}},
       'EnsoSstLonRmse': {'diagnostic': {'ERA-Interim': {'name': 'ERA-Interim',
          'nyears': 40,
          'time_period': ['1979-1-16 12:0:0.0', '2019-3-16 12:0:0.0']},
         'HadGEM2-ES_r2i1p1': {'keyerror': None,
          'name': 'HadGEM2-ES_r2i1p1',
          'nyears': 146,
          'time_period': ['1859-12-16 0:0:0.0', '2005-12-16 0:0:0.0']},
         'HadISST': {'name': 'HadISST',
          'nyears': 151,
          'time_period': ['1870-1-16 11:59:59.5', '2020-10-16 12:0:0.0']},
         'Tropflux': {'name': 'Tropflux',
          'nyears': 40,
          'time_period': ['1979-1-15 0:0:0.0', '2018-12-15 12:0:0.0']},
         'method': 'nino3.4 SSTA during DEC regressed against equatorial_pacific SSTA, time series are linearly detrended, smoothing using a triangle shaped window of 5 points, observations and model regridded to generic_1x1deg',
         'name': 'ENSO Zonal SSTA pattern',
         'ref': 'Using CDAT regridding and rms (uncentered and biased) calculation',
         'time_frequency': 'monthly',
         'units': 'C/C'},
        'metric': {'datasets': "HadGEM2-ES_r2i1p1; ERA-Interim's ts & HadISST's sst & Tropflux's sst; 's ",
         'method': 'The metric is the statistical value between the model and the observations',
         'name': 'EnsoSstLonRmse',
         'units': 'C/C'}},
       'EnsoSstSkew': {'diagnostic': {'ERA-Interim': {'keyerror': None,
          'name': 'ERA-Interim',
          'nyears': 40,
          'time_period': ['1979-1-16 12:0:0.0', '2019-3-16 12:0:0.0']},
         'HadGEM2-ES_r2i1p1': {'keyerror': None,
          'name': 'HadGEM2-ES_r2i1p1',
          'nyears': 146,
          'time_period': ['1859-12-16 0:0:0.0', '2005-12-16 0:0:0.0']},
         'HadISST': {'keyerror': None,
          'name': 'HadISST',
          'nyears': 151,
          'time_period': ['1870-1-16 11:59:59.5', '2020-10-16 12:0:0.0']},
         'Tropflux': {'keyerror': None,
          'name': 'Tropflux',
          'nyears': 40,
          'time_period': ['1979-1-15 0:0:0.0', '2018-12-15 12:0:0.0']},
         'method': 'Standard deviation of nino3.4 sstA, time series are linearly detrended',
         'name': 'ENSO skewness',
         'ref': 'Using CDAT regression calculation',
         'time_frequency': 'monthly',
         'units': 'C'},
        'metric': {'datasets': "HadGEM2-ES_r2i1p1; ERA-Interim's ts & HadISST's sst & Tropflux's sst; 's ",
         'method': 'The metric is the absolute value of the relative difference between model and observations values (M = 100 * abs[[model-obs] / obs])',
         'name': 'EnsoSstSkew',
         'units': '%'}},
       'EnsoSstTsRmse': {'diagnostic': {'ERA-Interim': {'name': 'ERA-Interim',
          'nyears': 40,
          'time_period': ['1979-1-16 12:0:0.0', '2019-3-16 12:0:0.0']},
         'HadGEM2-ES_r2i1p1': {'keyerror': None,
          'name': 'HadGEM2-ES_r2i1p1',
          'nyears': 146,
          'time_period': ['1859-12-16 0:0:0.0', '2005-12-16 0:0:0.0']},
         'HadISST': {'name': 'HadISST',
          'nyears': 151,
          'time_period': ['1870-1-16 11:59:59.5', '2020-10-16 12:0:0.0']},
         'Tropflux': {'name': 'Tropflux',
          'nyears': 40,
          'time_period': ['1979-1-15 0:0:0.0', '2018-12-15 12:0:0.0']},
         'method': 'nino3.4 SSTA during DEC regressed against nino3.4 SSTA during 6 years (centered on ENSO), time series are linearly detrended, smoothing using a triangle shaped window of 5 points',
         'name': 'ENSO life cyle SSTA pattern',
         'ref': 'Using CDAT regridding and rms (uncentered and biased) calculation',
         'time_frequency': 'monthly',
         'units': 'C/C'},
        'metric': {'datasets': "HadGEM2-ES_r2i1p1; ERA-Interim's ts & HadISST's sst & Tropflux's sst; 's ",
         'method': 'The metric is the statistical value between the model and the observations',
         'name': 'EnsoSstTsRmse',
         'units': 'C/C'}},
       'SeasonalPrLatRmse': {'diagnostic': {'ERA-Interim': {'name': 'ERA-Interim',
          'nyears': 40,
          'time_period': ['1979-1-16 12:0:0.0', '2019-3-16 12:0:0.0']},
         'GPCPv2.3': {'name': 'GPCPv2.3',
          'nyears': 41,
          'time_period': ['1979-1-1 0:0:0.0', '2019-7-1 0:0:0.0']},
         'HadGEM2-ES_r2i1p1': {'keyerror': None,
          'name': 'HadGEM2-ES_r2i1p1',
          'nyears': 146,
          'time_period': ['1859-12-16 0:0:0.0', '2005-12-16 0:0:0.0']},
         'method': 'Meridional root mean square error of nino3_LatExt climatological pr STD, time series are linearly detrended, observations and model regridded to generic_1x1deg',
         'name': 'pr meridional seasonality RMSE',
         'ref': 'Using CDAT regridding and rms (uncentered and biased) calculation',
         'time_frequency': 'monthly',
         'units': 'mm/day'},
        'metric': {'datasets': "HadGEM2-ES_r2i1p1; ERA-Interim's pr & GPCPv2.3's precip; 's ",
         'method': 'The metric is the statistical value between the model and the observations',
         'name': 'SeasonalPrLatRmse',
         'units': 'mm/day'}},
       'SeasonalPrLonRmse': {'diagnostic': {'ERA-Interim': {'name': 'ERA-Interim',
          'nyears': 40,
          'time_period': ['1979-1-16 12:0:0.0', '2019-3-16 12:0:0.0']},
         'GPCPv2.3': {'name': 'GPCPv2.3',
          'nyears': 41,
          'time_period': ['1979-1-1 0:0:0.0', '2019-7-1 0:0:0.0']},
         'HadGEM2-ES_r2i1p1': {'keyerror': None,
          'name': 'HadGEM2-ES_r2i1p1',
          'nyears': 146,
          'time_period': ['1859-12-16 0:0:0.0', '2005-12-16 0:0:0.0']},
         'method': 'Zonal root mean square error of equatorial_pacific climatological pr STD, time series are linearly detrended, observations and model regridded to generic_1x1deg',
         'name': 'pr zonal seasonality RMSE',
         'ref': 'Using CDAT regridding and rms (uncentered and biased) calculation',
         'time_frequency': 'monthly',
         'units': 'mm/day'},
        'metric': {'datasets': "HadGEM2-ES_r2i1p1; ERA-Interim's pr & GPCPv2.3's precip; 's ",
         'method': 'The metric is the statistical value between the model and the observations',
         'name': 'SeasonalPrLonRmse',
         'units': 'mm/day'}},
       'SeasonalSstLonRmse': {'diagnostic': {'ERA-Interim': {'name': 'ERA-Interim',
          'nyears': 40,
          'time_period': ['1979-1-16 12:0:0.0', '2019-3-16 12:0:0.0']},
         'HadGEM2-ES_r2i1p1': {'keyerror': None,
          'name': 'HadGEM2-ES_r2i1p1',
          'nyears': 146,
          'time_period': ['1859-12-16 0:0:0.0', '2005-12-16 0:0:0.0']},
         'HadISST': {'name': 'HadISST',
          'nyears': 151,
          'time_period': ['1870-1-16 11:59:59.5', '2020-10-16 12:0:0.0']},
         'Tropflux': {'name': 'Tropflux',
          'nyears': 40,
          'time_period': ['1979-1-15 0:0:0.0', '2018-12-15 12:0:0.0']},
         'method': 'Zonal root mean square error of equatorial_pacific climatological sst STD, time series are linearly detrended, observations and model regridded to generic_1x1deg',
         'name': 'sst zonal seasonality RMSE',
         'ref': 'Using CDAT regridding and rms (uncentered and biased) calculation',
         'time_frequency': 'monthly',
         'units': 'C'},
        'metric': {'datasets': "HadGEM2-ES_r2i1p1; ERA-Interim's ts & HadISST's sst & Tropflux's sst; 's ",
         'method': 'The metric is the statistical value between the model and the observations',
         'name': 'SeasonalSstLonRmse',
         'units': 'C'}},
       'SeasonalTauxLonRmse': {'diagnostic': {'ERA-Interim': {'name': 'ERA-Interim',
          'nyears': 40,
          'time_period': ['1979-1-16 12:0:0.0', '2019-3-16 12:0:0.0']},
         'HadGEM2-ES_r2i1p1': {'keyerror': None,
          'name': 'HadGEM2-ES_r2i1p1',
          'nyears': 146,
          'time_period': ['1859-12-16 0:0:0.0', '2005-12-16 0:0:0.0']},
         'Tropflux': {'name': 'Tropflux',
          'nyears': 40,
          'time_period': ['1979-1-15 0:0:0.0', '2018-12-15 12:0:0.0']},
         'method': 'Zonal root mean square error of equatorial_pacific climatological taux STD, time series are linearly detrended, observations and model regridded to generic_1x1deg',
         'name': 'taux zonal seasonality RMSE',
         'ref': 'Using CDAT regridding and rms (uncentered and biased) calculation',
         'time_frequency': 'monthly',
         'units': '1e-3 N/m2'},
        'metric': {'datasets': "HadGEM2-ES_r2i1p1; ERA-Interim's tauu & Tropflux's taux; 's ",
         'method': 'The metric is the statistical value between the model and the observations',
         'name': 'SeasonalTauxLonRmse',
         'units': '1e-3 N/m2'}}},
      'name': 'Metrics Collection for ENSO performance'},
     'value': {'BiasPrLatRmse': {'diagnostic': {'ERA-Interim': {'value': None,
         'value_error': None},
        'GPCPv2.3': {'value': None, 'value_error': None},
        'HadGEM2-ES_r2i1p1': {'value': None, 'value_error': None}},
       'metric': {'ERA-Interim': {'value': 0.9421082584867426,
         'value_error': None},
        'GPCPv2.3': {'value': 1.6746645224053416, 'value_error': None}}},
      'BiasPrLonRmse': {'diagnostic': {'ERA-Interim': {'value': None,
         'value_error': None},
        'GPCPv2.3': {'value': None, 'value_error': None},
        'HadGEM2-ES_r2i1p1': {'value': None, 'value_error': None}},
       'metric': {'ERA-Interim': {'value': 1.2947815665179798,
         'value_error': None},
        'GPCPv2.3': {'value': 0.7710450408116564, 'value_error': None}}},
      'BiasSstLonRmse': {'diagnostic': {'ERA-Interim': {'value': None,
         'value_error': None},
        'HadGEM2-ES_r2i1p1': {'value': None, 'value_error': None},
        'HadISST': {'value': None, 'value_error': None},
        'Tropflux': {'value': None, 'value_error': None}},
       'metric': {'ERA-Interim': {'value': 1.1556961998095967,
         'value_error': None},
        'HadISST': {'value': 0.9524412637962045, 'value_error': None},
        'Tropflux': {'value': 1.2048921181885248, 'value_error': None}}},
      'BiasTauxLonRmse': {'diagnostic': {'ERA-Interim': {'value': None,
         'value_error': None},
        'HadGEM2-ES_r2i1p1': {'value': None, 'value_error': None},
        'Tropflux': {'value': None, 'value_error': None}},
       'metric': {'ERA-Interim': {'value': 8.579124755155107,
         'value_error': None},
        'Tropflux': {'value': 8.638419941383335, 'value_error': None}}},
      'EnsoAmpl': {'diagnostic': {'ERA-Interim': {'value': 0.8989844997845644,
         'value_error': 0.14214193002531866},
        'HadGEM2-ES_r2i1p1': {'value': 0.7912106610838043,
         'value_error': 0.06548106022379288},
        'HadISST': {'value': 0.7665787872085695,
         'value_error': 0.06238329697691264},
        'Tropflux': {'value': 0.9039789553693535,
         'value_error': 0.14293162279134272}},
       'metric': {'ERA-Interim': {'value': 11.988397878560459,
         'value_error': 21.199748179316014},
        'HadISST': {'value': 3.213221430889008,
         'value_error': 16.941359823087343},
        'Tropflux': {'value': 12.474659240211356,
         'value_error': 21.082620230638216}}},
      'EnsoDuration': {'diagnostic': {'ERA-Interim': {'value': 13.0,
         'value_error': None},
        'HadGEM2-ES_r2i1p1': {'value': 21.0, 'value_error': None},
        'HadISST': {'value': 13.0, 'value_error': None},
        'Tropflux': {'value': 13.0, 'value_error': None}},
       'metric': {'ERA-Interim': {'value': 61.53846153846154,
         'value_error': None},
        'HadISST': {'value': 61.53846153846154, 'value_error': None},
        'Tropflux': {'value': 61.53846153846154, 'value_error': None}}},
      'EnsoSeasonality': {'diagnostic': {'ERA-Interim': {'value': 2.0466846866656914,
         'value_error': 0.6513411033995022},
        'HadGEM2-ES_r2i1p1': {'value': 1.4743019070915377,
         'value_error': 0.2444482033123665},
        'HadISST': {'value': 1.6639865947361325,
         'value_error': 0.2712772451657809},
        'Tropflux': {'value': 2.0532132553583624,
         'value_error': 0.6534187683977347}},
       'metric': {'ERA-Interim': {'value': 27.96633908990826,
         'value_error': 34.86775709773901},
        'HadISST': {'value': 11.39941200515946,
         'value_error': 29.134936492822593},
        'Tropflux': {'value': 28.195383346372516,
         'value_error': 34.756888659315536}}},
      'EnsoSstDiversity_2': {'diagnostic': {'ERA-Interim': {'value': 33.25,
         'value_error': None},
        'HadGEM2-ES_r2i1p1': {'value': 8.0, 'value_error': None},
        'HadISST': {'value': 49.0, 'value_error': None},
        'Tropflux': {'value': 32.0, 'value_error': None}},
       'metric': {'ERA-Interim': {'value': 75.93984962406014,
         'value_error': None},
        'HadISST': {'value': 83.6734693877551, 'value_error': None},
        'Tropflux': {'value': 75.0, 'value_error': None}}},
      'EnsoSstLonRmse': {'diagnostic': {'ERA-Interim': {'value': None,
         'value_error': None},
        'HadGEM2-ES_r2i1p1': {'value': None, 'value_error': None},
        'HadISST': {'value': None, 'value_error': None},
        'Tropflux': {'value': None, 'value_error': None}},
       'metric': {'ERA-Interim': {'value': 0.17740105641278578,
         'value_error': None},
        'HadISST': {'value': 0.18771257955851345, 'value_error': None},
        'Tropflux': {'value': 0.1769090123198803, 'value_error': None}}},
      'EnsoSstSkew': {'diagnostic': {'ERA-Interim': {'value': 0.39098111106809963,
         'value_error': 0.061819541653923164},
        'HadGEM2-ES_r2i1p1': {'value': -0.6479673951684467,
         'value_error': -0.0536261631863744},
        'HadISST': {'value': 0.38989908235027515,
         'value_error': 0.03172953733021198},
        'Tropflux': {'value': 0.39744741059612115,
         'value_error': 0.06284195338099416}},
       'metric': {'ERA-Interim': {'value': 265.7285676533837,
         'value_error': -39.91978120705758},
        'HadISST': {'value': 266.18848940668437,
         'value_error': -27.278084711067713},
        'Tropflux': {'value': 263.032234678942,
         'value_error': -39.270303425856916}}},
      'EnsoSstTsRmse': {'diagnostic': {'ERA-Interim': {'value': None,
         'value_error': None},
        'HadGEM2-ES_r2i1p1': {'value': None, 'value_error': None},
        'HadISST': {'value': None, 'value_error': None},
        'Tropflux': {'value': None, 'value_error': None}},
       'metric': {'ERA-Interim': {'value': 0.18439670318111262,
         'value_error': None},
        'HadISST': {'value': 0.14803073523125862, 'value_error': None},
        'Tropflux': {'value': 0.1805809787406033, 'value_error': None}}},
      'SeasonalPrLatRmse': {'diagnostic': {'ERA-Interim': {'value': None,
         'value_error': None},
        'GPCPv2.3': {'value': None, 'value_error': None},
        'HadGEM2-ES_r2i1p1': {'value': None, 'value_error': None}},
       'metric': {'ERA-Interim': {'value': 1.5281894656752955,
         'value_error': None},
        'GPCPv2.3': {'value': 1.812918793167366, 'value_error': None}}},
      'SeasonalPrLonRmse': {'diagnostic': {'ERA-Interim': {'value': None,
         'value_error': None},
        'GPCPv2.3': {'value': None, 'value_error': None},
        'HadGEM2-ES_r2i1p1': {'value': None, 'value_error': None}},
       'metric': {'ERA-Interim': {'value': 0.757482518465412,
         'value_error': None},
        'GPCPv2.3': {'value': 0.7124412204139632, 'value_error': None}}},
      'SeasonalSstLonRmse': {'diagnostic': {'ERA-Interim': {'value': None,
         'value_error': None},
        'HadGEM2-ES_r2i1p1': {'value': None, 'value_error': None},
        'HadISST': {'value': None, 'value_error': None},
        'Tropflux': {'value': None, 'value_error': None}},
       'metric': {'ERA-Interim': {'value': 0.1841452975733409,
         'value_error': None},
        'HadISST': {'value': 0.20201536797585434, 'value_error': None},
        'Tropflux': {'value': 0.1857741402102519, 'value_error': None}}},
      'SeasonalTauxLonRmse': {'diagnostic': {'ERA-Interim': {'value': None,
         'value_error': None},
        'HadGEM2-ES_r2i1p1': {'value': None, 'value_error': None},
        'Tropflux': {'value': None, 'value_error': None}},
       'metric': {'ERA-Interim': {'value': 4.265345103334888,
         'value_error': None},
        'Tropflux': {'value': 3.946219860267455, 'value_error': None}}}}},
    'r3i1p1': {'metadata': {'description_of_the_collection': 'Describe which science question this collection is about',
      'metrics': {'BiasPrLatRmse': {'diagnostic': {'ERA-Interim': {'name': 'ERA-Interim',
          'nyears': 40,
          'time_period': ['1979-1-16 12:0:0.0', '2019-3-16 12:0:0.0']},
         'GPCPv2.3': {'name': 'GPCPv2.3',
          'nyears': 41,
          'time_period': ['1979-1-1 0:0:0.0', '2019-7-1 0:0:0.0']},
         'HadGEM2-ES_r3i1p1': {'keyerror': None,
          'name': 'HadGEM2-ES_r3i1p1',
          'nyears': 146,
          'time_period': ['1859-12-16 0:0:0.0', '2005-12-16 0:0:0.0']},
         'method': 'Meridional root mean square error of nino3_LatExt pr, time series are linearly detrended, observations and model regridded to generic_1x1deg',
         'name': 'pr Meridional RMSE',
         'ref': 'Using CDAT regridding and rms (uncentered and biased) calculation',
         'time_frequency': 'monthly',
         'units': 'mm/day'},
        'metric': {'datasets': "HadGEM2-ES_r3i1p1; ERA-Interim's pr & GPCPv2.3's precip; 's ",
         'method': 'The metric is the statistical value between the model and the observations',
         'name': 'BiasPrLatRmse',
         'units': 'mm/day'}},
       'BiasPrLonRmse': {'diagnostic': {'ERA-Interim': {'name': 'ERA-Interim',
          'nyears': 40,
          'time_period': ['1979-1-16 12:0:0.0', '2019-3-16 12:0:0.0']},
         'GPCPv2.3': {'name': 'GPCPv2.3',
          'nyears': 41,
          'time_period': ['1979-1-1 0:0:0.0', '2019-7-1 0:0:0.0']},
         'HadGEM2-ES_r3i1p1': {'keyerror': None,
          'name': 'HadGEM2-ES_r3i1p1',
          'nyears': 146,
          'time_period': ['1859-12-16 0:0:0.0', '2005-12-16 0:0:0.0']},
         'method': 'Zonal root mean square error of equatorial_pacific pr, time series are linearly detrended, observations and model regridded to generic_1x1deg',
         'name': 'pr Zonal RMSE',
         'ref': 'Using CDAT regridding and rms (uncentered and biased) calculation',
         'time_frequency': 'monthly',
         'units': 'mm/day'},
        'metric': {'datasets': "HadGEM2-ES_r3i1p1; ERA-Interim's pr & GPCPv2.3's precip; 's ",
         'method': 'The metric is the statistical value between the model and the observations',
         'name': 'BiasPrLonRmse',
         'units': 'mm/day'}},
       'BiasSstLonRmse': {'diagnostic': {'ERA-Interim': {'name': 'ERA-Interim',
          'nyears': 40,
          'time_period': ['1979-1-16 12:0:0.0', '2019-3-16 12:0:0.0']},
         'HadGEM2-ES_r3i1p1': {'keyerror': None,
          'name': 'HadGEM2-ES_r3i1p1',
          'nyears': 146,
          'time_period': ['1859-12-16 0:0:0.0', '2005-12-16 0:0:0.0']},
         'HadISST': {'name': 'HadISST',
          'nyears': 151,
          'time_period': ['1870-1-16 11:59:59.5', '2020-10-16 12:0:0.0']},
         'Tropflux': {'name': 'Tropflux',
          'nyears': 40,
          'time_period': ['1979-1-15 0:0:0.0', '2018-12-15 12:0:0.0']},
         'method': 'Zonal root mean square error of equatorial_pacific sst, time series are linearly detrended, observations and model regridded to generic_1x1deg',
         'name': 'sst Zonal RMSE',
         'ref': 'Using CDAT regridding and rms (uncentered and biased) calculation',
         'time_frequency': 'monthly',
         'units': 'C'},
        'metric': {'datasets': "HadGEM2-ES_r3i1p1; ERA-Interim's ts & HadISST's sst & Tropflux's sst; 's ",
         'method': 'The metric is the statistical value between the model and the observations',
         'name': 'BiasSstLonRmse',
         'units': 'C'}},
       'BiasTauxLonRmse': {'diagnostic': {'ERA-Interim': {'name': 'ERA-Interim',
          'nyears': 40,
          'time_period': ['1979-1-16 12:0:0.0', '2019-3-16 12:0:0.0']},
         'HadGEM2-ES_r3i1p1': {'keyerror': None,
          'name': 'HadGEM2-ES_r3i1p1',
          'nyears': 146,
          'time_period': ['1859-12-16 0:0:0.0', '2005-12-16 0:0:0.0']},
         'Tropflux': {'name': 'Tropflux',
          'nyears': 40,
          'time_period': ['1979-1-15 0:0:0.0', '2018-12-15 12:0:0.0']},
         'method': 'Zonal root mean square error of equatorial_pacific taux, time series are linearly detrended, observations and model regridded to generic_1x1deg',
         'name': 'taux Zonal RMSE',
         'ref': 'Using CDAT regridding and rms (uncentered and biased) calculation',
         'time_frequency': 'monthly',
         'units': '1e-3 N/m2'},
        'metric': {'datasets': "HadGEM2-ES_r3i1p1; ERA-Interim's tauu & Tropflux's taux; 's ",
         'method': 'The metric is the statistical value between the model and the observations',
         'name': 'BiasTauxLonRmse',
         'units': '1e-3 N/m2'}},
       'EnsoAmpl': {'diagnostic': {'ERA-Interim': {'keyerror': None,
          'name': 'ERA-Interim',
          'nyears': 40,
          'time_period': ['1979-1-16 12:0:0.0', '2019-3-16 12:0:0.0']},
         'HadGEM2-ES_r3i1p1': {'keyerror': None,
          'name': 'HadGEM2-ES_r3i1p1',
          'nyears': 146,
          'time_period': ['1859-12-16 0:0:0.0', '2005-12-16 0:0:0.0']},
         'HadISST': {'keyerror': None,
          'name': 'HadISST',
          'nyears': 151,
          'time_period': ['1870-1-16 11:59:59.5', '2020-10-16 12:0:0.0']},
         'Tropflux': {'keyerror': None,
          'name': 'Tropflux',
          'nyears': 40,
          'time_period': ['1979-1-15 0:0:0.0', '2018-12-15 12:0:0.0']},
         'method': 'Standard deviation of nino3.4 sstA, time series are linearly detrended',
         'name': 'ENSO amplitude',
         'ref': 'Using CDAT regression calculation',
         'time_frequency': 'monthly',
         'units': 'C'},
        'metric': {'datasets': "HadGEM2-ES_r3i1p1; ERA-Interim's ts & HadISST's sst & Tropflux's sst; 's ",
         'method': 'The metric is the absolute value of the relative difference between model and observations values (M = 100 * abs[[model-obs] / obs])',
         'name': 'EnsoAmpl',
         'units': '%'}},
       'EnsoDuration': {'diagnostic': {'ERA-Interim': {'keyerror': None,
          'name': 'ERA-Interim',
          'nyears': 40,
          'time_period': ['1979-1-16 12:0:0.0', '2019-3-16 12:0:0.0']},
         'HadGEM2-ES_r3i1p1': {'keyerror': None,
          'name': 'HadGEM2-ES_r3i1p1',
          'nyears': 146,
          'time_period': ['1859-12-16 0:0:0.0', '2005-12-16 0:0:0.0']},
         'HadISST': {'keyerror': None,
          'name': 'HadISST',
          'nyears': 151,
          'time_period': ['1870-1-16 11:59:59.5', '2020-10-16 12:0:0.0']},
         'Tropflux': {'keyerror': None,
          'name': 'Tropflux',
          'nyears': 40,
          'time_period': ['1979-1-15 0:0:0.0', '2018-12-15 12:0:0.0']},
         'method': 'nino3.4 SSTA during DEC regressed against nino3.4 SSTA during 6 years (centered on ENSO), the duration is the number of consecutive months during which the regression is above 0.25, time series are linearly detrended, smoothing using a triangle shaped window of 5 points',
         'name': 'ENSO Duration based on life cyle SSTA pattern',
         'ref': 'Using CDAT',
         'time_frequency': 'monthly',
         'units': 'months'},
        'metric': {'datasets': "HadGEM2-ES_r3i1p1; ERA-Interim's ts & HadISST's sst & Tropflux's sst; 's ",
         'method': 'The metric is the absolute value of the relative difference between model and observations values (M = 100 * abs[[model-obs] / obs])',
         'name': 'EnsoDuration',
         'units': '%'}},
       'EnsoSeasonality': {'diagnostic': {'ERA-Interim': {'keyerror': None,
          'name': 'ERA-Interim',
          'nyears': 40,
          'time_period': ['1979-1-16 12:0:0.0', '2019-3-16 12:0:0.0']},
         'HadGEM2-ES_r3i1p1': {'keyerror': None,
          'name': 'HadGEM2-ES_r3i1p1',
          'nyears': 146,
          'time_period': ['1859-12-16 0:0:0.0', '2005-12-16 0:0:0.0']},
         'HadISST': {'keyerror': None,
          'name': 'HadISST',
          'nyears': 151,
          'time_period': ['1870-1-16 11:59:59.5', '2020-10-16 12:0:0.0']},
         'Tropflux': {'keyerror': None,
          'name': 'Tropflux',
          'nyears': 40,
          'time_period': ['1979-1-15 0:0:0.0', '2018-12-15 12:0:0.0']},
         'method': 'Ratio between NDJ and MAM standard deviation nino3.4 sstA, time series are linearly detrended',
         'name': 'ENSO seasonality',
         'ref': 'Using CDAT std dev calculation',
         'time_frequency': 'monthly',
         'units': 'C/C'},
        'metric': {'datasets': "HadGEM2-ES_r3i1p1; ERA-Interim's ts & HadISST's sst & Tropflux's sst; 's ",
         'method': 'The metric is the absolute value of the relative difference between model and observations values (M = 100 * abs[[model-obs] / obs])',
         'name': 'EnsoSeasonality',
         'units': '%'}},
       'EnsoSstDiversity_2': {'diagnostic': {'ERA-Interim': {'keyerror': None,
          'name': 'ERA-Interim',
          'nyears': 40,
          'time_period': ['1979-1-16 12:0:0.0', '2019-3-16 12:0:0.0']},
         'HadGEM2-ES_r3i1p1': {'keyerror': None,
          'name': 'HadGEM2-ES_r3i1p1',
          'nyears': 146,
          'time_period': ['1859-12-16 0:0:0.0', '2005-12-16 0:0:0.0']},
         'HadISST': {'keyerror': None,
          'name': 'HadISST',
          'nyears': 151,
          'time_period': ['1870-1-16 11:59:59.5', '2020-10-16 12:0:0.0']},
         'Tropflux': {'keyerror': None,
          'name': 'Tropflux',
          'nyears': 40,
          'time_period': ['1979-1-15 0:0:0.0', '2018-12-15 12:0:0.0']},
         'method': 'Nino (Nina) events = nino3.4 sstA > 0.75 (< -0.75) during DEC, zonal SSTA (meridional averaged [-5.0 ; 5.0]), the zonal SSTA maximum (minimum) is located for each event, the diversity is the interquartile range (IQR = Q3 - Q1), time series are linearly detrended, smoothing using a triangle shaped window of 5 points',
         'name': 'ENSO Diversity (interquartile range)',
         'ref': 'Using CDAT regridding',
         'time_frequency': 'monthly',
         'units': 'long'},
        'metric': {'datasets': "HadGEM2-ES_r3i1p1; ERA-Interim's ts & HadISST's sst & Tropflux's sst; 's ",
         'method': 'The metric is the absolute value of the relative difference between model and observations values (M = 100 * abs[[model-obs] / obs])',
         'name': 'EnsoSstDiversity',
         'units': '%'}},
       'EnsoSstLonRmse': {'diagnostic': {'ERA-Interim': {'name': 'ERA-Interim',
          'nyears': 40,
          'time_period': ['1979-1-16 12:0:0.0', '2019-3-16 12:0:0.0']},
         'HadGEM2-ES_r3i1p1': {'keyerror': None,
          'name': 'HadGEM2-ES_r3i1p1',
          'nyears': 146,
          'time_period': ['1859-12-16 0:0:0.0', '2005-12-16 0:0:0.0']},
         'HadISST': {'name': 'HadISST',
          'nyears': 151,
          'time_period': ['1870-1-16 11:59:59.5', '2020-10-16 12:0:0.0']},
         'Tropflux': {'name': 'Tropflux',
          'nyears': 40,
          'time_period': ['1979-1-15 0:0:0.0', '2018-12-15 12:0:0.0']},
         'method': 'nino3.4 SSTA during DEC regressed against equatorial_pacific SSTA, time series are linearly detrended, smoothing using a triangle shaped window of 5 points, observations and model regridded to generic_1x1deg',
         'name': 'ENSO Zonal SSTA pattern',
         'ref': 'Using CDAT regridding and rms (uncentered and biased) calculation',
         'time_frequency': 'monthly',
         'units': 'C/C'},
        'metric': {'datasets': "HadGEM2-ES_r3i1p1; ERA-Interim's ts & HadISST's sst & Tropflux's sst; 's ",
         'method': 'The metric is the statistical value between the model and the observations',
         'name': 'EnsoSstLonRmse',
         'units': 'C/C'}},
       'EnsoSstSkew': {'diagnostic': {'ERA-Interim': {'keyerror': None,
          'name': 'ERA-Interim',
          'nyears': 40,
          'time_period': ['1979-1-16 12:0:0.0', '2019-3-16 12:0:0.0']},
         'HadGEM2-ES_r3i1p1': {'keyerror': None,
          'name': 'HadGEM2-ES_r3i1p1',
          'nyears': 146,
          'time_period': ['1859-12-16 0:0:0.0', '2005-12-16 0:0:0.0']},
         'HadISST': {'keyerror': None,
          'name': 'HadISST',
          'nyears': 151,
          'time_period': ['1870-1-16 11:59:59.5', '2020-10-16 12:0:0.0']},
         'Tropflux': {'keyerror': None,
          'name': 'Tropflux',
          'nyears': 40,
          'time_period': ['1979-1-15 0:0:0.0', '2018-12-15 12:0:0.0']},
         'method': 'Standard deviation of nino3.4 sstA, time series are linearly detrended',
         'name': 'ENSO skewness',
         'ref': 'Using CDAT regression calculation',
         'time_frequency': 'monthly',
         'units': 'C'},
        'metric': {'datasets': "HadGEM2-ES_r3i1p1; ERA-Interim's ts & HadISST's sst & Tropflux's sst; 's ",
         'method': 'The metric is the absolute value of the relative difference between model and observations values (M = 100 * abs[[model-obs] / obs])',
         'name': 'EnsoSstSkew',
         'units': '%'}},
       'EnsoSstTsRmse': {'diagnostic': {'ERA-Interim': {'name': 'ERA-Interim',
          'nyears': 40,
          'time_period': ['1979-1-16 12:0:0.0', '2019-3-16 12:0:0.0']},
         'HadGEM2-ES_r3i1p1': {'keyerror': None,
          'name': 'HadGEM2-ES_r3i1p1',
          'nyears': 146,
          'time_period': ['1859-12-16 0:0:0.0', '2005-12-16 0:0:0.0']},
         'HadISST': {'name': 'HadISST',
          'nyears': 151,
          'time_period': ['1870-1-16 11:59:59.5', '2020-10-16 12:0:0.0']},
         'Tropflux': {'name': 'Tropflux',
          'nyears': 40,
          'time_period': ['1979-1-15 0:0:0.0', '2018-12-15 12:0:0.0']},
         'method': 'nino3.4 SSTA during DEC regressed against nino3.4 SSTA during 6 years (centered on ENSO), time series are linearly detrended, smoothing using a triangle shaped window of 5 points',
         'name': 'ENSO life cyle SSTA pattern',
         'ref': 'Using CDAT regridding and rms (uncentered and biased) calculation',
         'time_frequency': 'monthly',
         'units': 'C/C'},
        'metric': {'datasets': "HadGEM2-ES_r3i1p1; ERA-Interim's ts & HadISST's sst & Tropflux's sst; 's ",
         'method': 'The metric is the statistical value between the model and the observations',
         'name': 'EnsoSstTsRmse',
         'units': 'C/C'}},
       'SeasonalPrLatRmse': {'diagnostic': {'ERA-Interim': {'name': 'ERA-Interim',
          'nyears': 40,
          'time_period': ['1979-1-16 12:0:0.0', '2019-3-16 12:0:0.0']},
         'GPCPv2.3': {'name': 'GPCPv2.3',
          'nyears': 41,
          'time_period': ['1979-1-1 0:0:0.0', '2019-7-1 0:0:0.0']},
         'HadGEM2-ES_r3i1p1': {'keyerror': None,
          'name': 'HadGEM2-ES_r3i1p1',
          'nyears': 146,
          'time_period': ['1859-12-16 0:0:0.0', '2005-12-16 0:0:0.0']},
         'method': 'Meridional root mean square error of nino3_LatExt climatological pr STD, time series are linearly detrended, observations and model regridded to generic_1x1deg',
         'name': 'pr meridional seasonality RMSE',
         'ref': 'Using CDAT regridding and rms (uncentered and biased) calculation',
         'time_frequency': 'monthly',
         'units': 'mm/day'},
        'metric': {'datasets': "HadGEM2-ES_r3i1p1; ERA-Interim's pr & GPCPv2.3's precip; 's ",
         'method': 'The metric is the statistical value between the model and the observations',
         'name': 'SeasonalPrLatRmse',
         'units': 'mm/day'}},
       'SeasonalPrLonRmse': {'diagnostic': {'ERA-Interim': {'name': 'ERA-Interim',
          'nyears': 40,
          'time_period': ['1979-1-16 12:0:0.0', '2019-3-16 12:0:0.0']},
         'GPCPv2.3': {'name': 'GPCPv2.3',
          'nyears': 41,
          'time_period': ['1979-1-1 0:0:0.0', '2019-7-1 0:0:0.0']},
         'HadGEM2-ES_r3i1p1': {'keyerror': None,
          'name': 'HadGEM2-ES_r3i1p1',
          'nyears': 146,
          'time_period': ['1859-12-16 0:0:0.0', '2005-12-16 0:0:0.0']},
         'method': 'Zonal root mean square error of equatorial_pacific climatological pr STD, time series are linearly detrended, observations and model regridded to generic_1x1deg',
         'name': 'pr zonal seasonality RMSE',
         'ref': 'Using CDAT regridding and rms (uncentered and biased) calculation',
         'time_frequency': 'monthly',
         'units': 'mm/day'},
        'metric': {'datasets': "HadGEM2-ES_r3i1p1; ERA-Interim's pr & GPCPv2.3's precip; 's ",
         'method': 'The metric is the statistical value between the model and the observations',
         'name': 'SeasonalPrLonRmse',
         'units': 'mm/day'}},
       'SeasonalSstLonRmse': {'diagnostic': {'ERA-Interim': {'name': 'ERA-Interim',
          'nyears': 40,
          'time_period': ['1979-1-16 12:0:0.0', '2019-3-16 12:0:0.0']},
         'HadGEM2-ES_r3i1p1': {'keyerror': None,
          'name': 'HadGEM2-ES_r3i1p1',
          'nyears': 146,
          'time_period': ['1859-12-16 0:0:0.0', '2005-12-16 0:0:0.0']},
         'HadISST': {'name': 'HadISST',
          'nyears': 151,
          'time_period': ['1870-1-16 11:59:59.5', '2020-10-16 12:0:0.0']},
         'Tropflux': {'name': 'Tropflux',
          'nyears': 40,
          'time_period': ['1979-1-15 0:0:0.0', '2018-12-15 12:0:0.0']},
         'method': 'Zonal root mean square error of equatorial_pacific climatological sst STD, time series are linearly detrended, observations and model regridded to generic_1x1deg',
         'name': 'sst zonal seasonality RMSE',
         'ref': 'Using CDAT regridding and rms (uncentered and biased) calculation',
         'time_frequency': 'monthly',
         'units': 'C'},
        'metric': {'datasets': "HadGEM2-ES_r3i1p1; ERA-Interim's ts & HadISST's sst & Tropflux's sst; 's ",
         'method': 'The metric is the statistical value between the model and the observations',
         'name': 'SeasonalSstLonRmse',
         'units': 'C'}},
       'SeasonalTauxLonRmse': {'diagnostic': {'ERA-Interim': {'name': 'ERA-Interim',
          'nyears': 40,
          'time_period': ['1979-1-16 12:0:0.0', '2019-3-16 12:0:0.0']},
         'HadGEM2-ES_r3i1p1': {'keyerror': None,
          'name': 'HadGEM2-ES_r3i1p1',
          'nyears': 146,
          'time_period': ['1859-12-16 0:0:0.0', '2005-12-16 0:0:0.0']},
         'Tropflux': {'name': 'Tropflux',
          'nyears': 40,
          'time_period': ['1979-1-15 0:0:0.0', '2018-12-15 12:0:0.0']},
         'method': 'Zonal root mean square error of equatorial_pacific climatological taux STD, time series are linearly detrended, observations and model regridded to generic_1x1deg',
         'name': 'taux zonal seasonality RMSE',
         'ref': 'Using CDAT regridding and rms (uncentered and biased) calculation',
         'time_frequency': 'monthly',
         'units': '1e-3 N/m2'},
        'metric': {'datasets': "HadGEM2-ES_r3i1p1; ERA-Interim's tauu & Tropflux's taux; 's ",
         'method': 'The metric is the statistical value between the model and the observations',
         'name': 'SeasonalTauxLonRmse',
         'units': '1e-3 N/m2'}}},
      'name': 'Metrics Collection for ENSO performance'},
     'value': {'BiasPrLatRmse': {'diagnostic': {'ERA-Interim': {'value': None,
         'value_error': None},
        'GPCPv2.3': {'value': None, 'value_error': None},
        'HadGEM2-ES_r3i1p1': {'value': None, 'value_error': None}},
       'metric': {'ERA-Interim': {'value': 0.9492639999072388,
         'value_error': None},
        'GPCPv2.3': {'value': 1.669736126631814, 'value_error': None}}},
      'BiasPrLonRmse': {'diagnostic': {'ERA-Interim': {'value': None,
         'value_error': None},
        'GPCPv2.3': {'value': None, 'value_error': None},
        'HadGEM2-ES_r3i1p1': {'value': None, 'value_error': None}},
       'metric': {'ERA-Interim': {'value': 1.3544574794791981,
         'value_error': None},
        'GPCPv2.3': {'value': 0.8158866838498879, 'value_error': None}}},
      'BiasSstLonRmse': {'diagnostic': {'ERA-Interim': {'value': None,
         'value_error': None},
        'HadGEM2-ES_r3i1p1': {'value': None, 'value_error': None},
        'HadISST': {'value': None, 'value_error': None},
        'Tropflux': {'value': None, 'value_error': None}},
       'metric': {'ERA-Interim': {'value': 1.117437729444759,
         'value_error': None},
        'HadISST': {'value': 0.915394900973624, 'value_error': None},
        'Tropflux': {'value': 1.1665926614864532, 'value_error': None}}},
      'BiasTauxLonRmse': {'diagnostic': {'ERA-Interim': {'value': None,
         'value_error': None},
        'HadGEM2-ES_r3i1p1': {'value': None, 'value_error': None},
        'Tropflux': {'value': None, 'value_error': None}},
       'metric': {'ERA-Interim': {'value': 8.402034097729748,
         'value_error': None},
        'Tropflux': {'value': 8.491114018907394, 'value_error': None}}},
      'EnsoAmpl': {'diagnostic': {'ERA-Interim': {'value': 0.8989844997845644,
         'value_error': 0.14214193002531866},
        'HadGEM2-ES_r3i1p1': {'value': 0.7116259748758741,
         'value_error': 0.058894584728967414},
        'HadISST': {'value': 0.7665787872085695,
         'value_error': 0.06238329697691264},
        'Tropflux': {'value': 0.9039789553693535,
         'value_error': 0.14293162279134272}},
       'metric': {'ERA-Interim': {'value': 20.84112962499237,
         'value_error': 19.067351095299344},
        'HadISST': {'value': 7.168579831539739,
         'value_error': 15.237296832316755},
        'Tropflux': {'value': 21.278479919356812,
         'value_error': 18.962004574122705}}},
      'EnsoDuration': {'diagnostic': {'ERA-Interim': {'value': 13.0,
         'value_error': None},
        'HadGEM2-ES_r3i1p1': {'value': 26.0, 'value_error': None},
        'HadISST': {'value': 13.0, 'value_error': None},
        'Tropflux': {'value': 13.0, 'value_error': None}},
       'metric': {'ERA-Interim': {'value': 100.0, 'value_error': None},
        'HadISST': {'value': 100.0, 'value_error': None},
        'Tropflux': {'value': 100.0, 'value_error': None}}},
      'EnsoSeasonality': {'diagnostic': {'ERA-Interim': {'value': 2.0466846866656914,
         'value_error': 0.6513411033995022},
        'HadGEM2-ES_r3i1p1': {'value': 1.3486847032097546,
         'value_error': 0.22362010857388595},
        'HadISST': {'value': 1.6639865947361325,
         'value_error': 0.2712772451657809},
        'Tropflux': {'value': 2.0532132553583624,
         'value_error': 0.6534187683977347}},
       'metric': {'ERA-Interim': {'value': 34.10393344922451,
         'value_error': 31.896866175615806},
        'HadISST': {'value': 18.948583631851736,
         'value_error': 26.652507866842086},
        'Tropflux': {'value': 34.31346209703099,
         'value_error': 31.79544423059134}}},
      'EnsoSstDiversity_2': {'diagnostic': {'ERA-Interim': {'value': 33.25,
         'value_error': None},
        'HadGEM2-ES_r3i1p1': {'value': 8.5, 'value_error': None},
        'HadISST': {'value': 49.0, 'value_error': None},
        'Tropflux': {'value': 32.0, 'value_error': None}},
       'metric': {'ERA-Interim': {'value': 74.43609022556392,
         'value_error': None},
        'HadISST': {'value': 82.6530612244898, 'value_error': None},
        'Tropflux': {'value': 73.4375, 'value_error': None}}},
      'EnsoSstLonRmse': {'diagnostic': {'ERA-Interim': {'value': None,
         'value_error': None},
        'HadGEM2-ES_r3i1p1': {'value': None, 'value_error': None},
        'HadISST': {'value': None, 'value_error': None},
        'Tropflux': {'value': None, 'value_error': None}},
       'metric': {'ERA-Interim': {'value': 0.18274208272524706,
         'value_error': None},
        'HadISST': {'value': 0.1901227012276355, 'value_error': None},
        'Tropflux': {'value': 0.18208304989140556, 'value_error': None}}},
      'EnsoSstSkew': {'diagnostic': {'ERA-Interim': {'value': 0.39098111106809963,
         'value_error': 0.061819541653923164},
        'HadGEM2-ES_r3i1p1': {'value': -0.28632832475902814,
         'value_error': -0.023696700764422287},
        'HadISST': {'value': 0.38989908235027515,
         'value_error': 0.03172953733021198},
        'Tropflux': {'value': 0.39744741059612115,
         'value_error': 0.06284195338099416}},
       'metric': {'ERA-Interim': {'value': 173.23328842583308,
         'value_error': -17.64002967277748},
        'HadISST': {'value': 173.4365218386942,
         'value_error': -12.053829183680527},
        'Tropflux': {'value': 172.04181411814247,
         'value_error': -17.35303392816744}}},
      'EnsoSstTsRmse': {'diagnostic': {'ERA-Interim': {'value': None,
         'value_error': None},
        'HadGEM2-ES_r3i1p1': {'value': None, 'value_error': None},
        'HadISST': {'value': None, 'value_error': None},
        'Tropflux': {'value': None, 'value_error': None}},
       'metric': {'ERA-Interim': {'value': 0.21513856837812584,
         'value_error': None},
        'HadISST': {'value': 0.17841988456886324, 'value_error': None},
        'Tropflux': {'value': 0.21075960438777894, 'value_error': None}}},
      'SeasonalPrLatRmse': {'diagnostic': {'ERA-Interim': {'value': None,
         'value_error': None},
        'GPCPv2.3': {'value': None, 'value_error': None},
        'HadGEM2-ES_r3i1p1': {'value': None, 'value_error': None}},
       'metric': {'ERA-Interim': {'value': 1.5717606166132982,
         'value_error': None},
        'GPCPv2.3': {'value': 1.861730921453577, 'value_error': None}}},
      'SeasonalPrLonRmse': {'diagnostic': {'ERA-Interim': {'value': None,
         'value_error': None},
        'GPCPv2.3': {'value': None, 'value_error': None},
        'HadGEM2-ES_r3i1p1': {'value': None, 'value_error': None}},
       'metric': {'ERA-Interim': {'value': 0.7016671207774291,
         'value_error': None},
        'GPCPv2.3': {'value': 0.6521837705252663, 'value_error': None}}},
      'SeasonalSstLonRmse': {'diagnostic': {'ERA-Interim': {'value': None,
         'value_error': None},
        'HadGEM2-ES_r3i1p1': {'value': None, 'value_error': None},
        'HadISST': {'value': None, 'value_error': None},
        'Tropflux': {'value': None, 'value_error': None}},
       'metric': {'ERA-Interim': {'value': 0.17768803933513067,
         'value_error': None},
        'HadISST': {'value': 0.19590869923547444, 'value_error': None},
        'Tropflux': {'value': 0.17851946416700024, 'value_error': None}}},
      'SeasonalTauxLonRmse': {'diagnostic': {'ERA-Interim': {'value': None,
         'value_error': None},
        'HadGEM2-ES_r3i1p1': {'value': None, 'value_error': None},
        'Tropflux': {'value': None, 'value_error': None}},
       'metric': {'ERA-Interim': {'value': 4.448520243546338,
         'value_error': None},
        'Tropflux': {'value': 4.151935197777128, 'value_error': None}}}}},
    'r4i1p1': {'metadata': {'description_of_the_collection': 'Describe which science question this collection is about',
      'metrics': {'BiasPrLatRmse': {'diagnostic': {'ERA-Interim': {'name': 'ERA-Interim',
          'nyears': 40,
          'time_period': ['1979-1-16 12:0:0.0', '2019-3-16 12:0:0.0']},
         'GPCPv2.3': {'name': 'GPCPv2.3',
          'nyears': 41,
          'time_period': ['1979-1-1 0:0:0.0', '2019-7-1 0:0:0.0']},
         'HadGEM2-ES_r4i1p1': {'keyerror': None,
          'name': 'HadGEM2-ES_r4i1p1',
          'nyears': 146,
          'time_period': ['1859-12-16 0:0:0.0', '2005-11-16 0:0:0.0']},
         'method': 'Meridional root mean square error of nino3_LatExt pr, time series are linearly detrended, observations and model regridded to generic_1x1deg',
         'name': 'pr Meridional RMSE',
         'ref': 'Using CDAT regridding and rms (uncentered and biased) calculation',
         'time_frequency': 'monthly',
         'units': 'mm/day'},
        'metric': {'datasets': "HadGEM2-ES_r4i1p1; ERA-Interim's pr & GPCPv2.3's precip; 's ",
         'method': 'The metric is the statistical value between the model and the observations',
         'name': 'BiasPrLatRmse',
         'units': 'mm/day'}},
       'BiasPrLonRmse': {'diagnostic': {'ERA-Interim': {'name': 'ERA-Interim',
          'nyears': 40,
          'time_period': ['1979-1-16 12:0:0.0', '2019-3-16 12:0:0.0']},
         'GPCPv2.3': {'name': 'GPCPv2.3',
          'nyears': 41,
          'time_period': ['1979-1-1 0:0:0.0', '2019-7-1 0:0:0.0']},
         'HadGEM2-ES_r4i1p1': {'keyerror': None,
          'name': 'HadGEM2-ES_r4i1p1',
          'nyears': 146,
          'time_period': ['1859-12-16 0:0:0.0', '2005-11-16 0:0:0.0']},
         'method': 'Zonal root mean square error of equatorial_pacific pr, time series are linearly detrended, observations and model regridded to generic_1x1deg',
         'name': 'pr Zonal RMSE',
         'ref': 'Using CDAT regridding and rms (uncentered and biased) calculation',
         'time_frequency': 'monthly',
         'units': 'mm/day'},
        'metric': {'datasets': "HadGEM2-ES_r4i1p1; ERA-Interim's pr & GPCPv2.3's precip; 's ",
         'method': 'The metric is the statistical value between the model and the observations',
         'name': 'BiasPrLonRmse',
         'units': 'mm/day'}},
       'BiasSstLonRmse': {'diagnostic': {'ERA-Interim': {'name': 'ERA-Interim',
          'nyears': 40,
          'time_period': ['1979-1-16 12:0:0.0', '2019-3-16 12:0:0.0']},
         'HadGEM2-ES_r4i1p1': {'keyerror': None,
          'name': 'HadGEM2-ES_r4i1p1',
          'nyears': 146,
          'time_period': ['1859-12-16 0:0:0.0', '2005-11-16 0:0:0.0']},
         'HadISST': {'name': 'HadISST',
          'nyears': 151,
          'time_period': ['1870-1-16 11:59:59.5', '2020-10-16 12:0:0.0']},
         'Tropflux': {'name': 'Tropflux',
          'nyears': 40,
          'time_period': ['1979-1-15 0:0:0.0', '2018-12-15 12:0:0.0']},
         'method': 'Zonal root mean square error of equatorial_pacific sst, time series are linearly detrended, observations and model regridded to generic_1x1deg',
         'name': 'sst Zonal RMSE',
         'ref': 'Using CDAT regridding and rms (uncentered and biased) calculation',
         'time_frequency': 'monthly',
         'units': 'C'},
        'metric': {'datasets': "HadGEM2-ES_r4i1p1; ERA-Interim's ts & HadISST's sst & Tropflux's sst; 's ",
         'method': 'The metric is the statistical value between the model and the observations',
         'name': 'BiasSstLonRmse',
         'units': 'C'}},
       'BiasTauxLonRmse': {'diagnostic': {'ERA-Interim': {'name': 'ERA-Interim',
          'nyears': 40,
          'time_period': ['1979-1-16 12:0:0.0', '2019-3-16 12:0:0.0']},
         'HadGEM2-ES_r4i1p1': {'keyerror': None,
          'name': 'HadGEM2-ES_r4i1p1',
          'nyears': 146,
          'time_period': ['1859-12-16 0:0:0.0', '2005-11-16 0:0:0.0']},
         'Tropflux': {'name': 'Tropflux',
          'nyears': 40,
          'time_period': ['1979-1-15 0:0:0.0', '2018-12-15 12:0:0.0']},
         'method': 'Zonal root mean square error of equatorial_pacific taux, time series are linearly detrended, observations and model regridded to generic_1x1deg',
         'name': 'taux Zonal RMSE',
         'ref': 'Using CDAT regridding and rms (uncentered and biased) calculation',
         'time_frequency': 'monthly',
         'units': '1e-3 N/m2'},
        'metric': {'datasets': "HadGEM2-ES_r4i1p1; ERA-Interim's tauu & Tropflux's taux; 's ",
         'method': 'The metric is the statistical value between the model and the observations',
         'name': 'BiasTauxLonRmse',
         'units': '1e-3 N/m2'}},
       'EnsoAmpl': {'diagnostic': {'ERA-Interim': {'keyerror': None,
          'name': 'ERA-Interim',
          'nyears': 40,
          'time_period': ['1979-1-16 12:0:0.0', '2019-3-16 12:0:0.0']},
         'HadGEM2-ES_r4i1p1': {'keyerror': None,
          'name': 'HadGEM2-ES_r4i1p1',
          'nyears': 146,
          'time_period': ['1859-12-16 0:0:0.0', '2005-11-16 0:0:0.0']},
         'HadISST': {'keyerror': None,
          'name': 'HadISST',
          'nyears': 151,
          'time_period': ['1870-1-16 11:59:59.5', '2020-10-16 12:0:0.0']},
         'Tropflux': {'keyerror': None,
          'name': 'Tropflux',
          'nyears': 40,
          'time_period': ['1979-1-15 0:0:0.0', '2018-12-15 12:0:0.0']},
         'method': 'Standard deviation of nino3.4 sstA, time series are linearly detrended',
         'name': 'ENSO amplitude',
         'ref': 'Using CDAT regression calculation',
         'time_frequency': 'monthly',
         'units': 'C'},
        'metric': {'datasets': "HadGEM2-ES_r4i1p1; ERA-Interim's ts & HadISST's sst & Tropflux's sst; 's ",
         'method': 'The metric is the absolute value of the relative difference between model and observations values (M = 100 * abs[[model-obs] / obs])',
         'name': 'EnsoAmpl',
         'units': '%'}},
       'EnsoDuration': {'diagnostic': {'ERA-Interim': {'keyerror': None,
          'name': 'ERA-Interim',
          'nyears': 40,
          'time_period': ['1979-1-16 12:0:0.0', '2019-3-16 12:0:0.0']},
         'HadGEM2-ES_r4i1p1': {'keyerror': None,
          'name': 'HadGEM2-ES_r4i1p1',
          'nyears': 146,
          'time_period': ['1859-12-16 0:0:0.0', '2005-11-16 0:0:0.0']},
         'HadISST': {'keyerror': None,
          'name': 'HadISST',
          'nyears': 151,
          'time_period': ['1870-1-16 11:59:59.5', '2020-10-16 12:0:0.0']},
         'Tropflux': {'keyerror': None,
          'name': 'Tropflux',
          'nyears': 40,
          'time_period': ['1979-1-15 0:0:0.0', '2018-12-15 12:0:0.0']},
         'method': 'nino3.4 SSTA during DEC regressed against nino3.4 SSTA during 6 years (centered on ENSO), the duration is the number of consecutive months during which the regression is above 0.25, time series are linearly detrended, smoothing using a triangle shaped window of 5 points',
         'name': 'ENSO Duration based on life cyle SSTA pattern',
         'ref': 'Using CDAT',
         'time_frequency': 'monthly',
         'units': 'months'},
        'metric': {'datasets': "HadGEM2-ES_r4i1p1; ERA-Interim's ts & HadISST's sst & Tropflux's sst; 's ",
         'method': 'The metric is the absolute value of the relative difference between model and observations values (M = 100 * abs[[model-obs] / obs])',
         'name': 'EnsoDuration',
         'units': '%'}},
       'EnsoSeasonality': {'diagnostic': {'ERA-Interim': {'keyerror': None,
          'name': 'ERA-Interim',
          'nyears': 40,
          'time_period': ['1979-1-16 12:0:0.0', '2019-3-16 12:0:0.0']},
         'HadGEM2-ES_r4i1p1': {'keyerror': None,
          'name': 'HadGEM2-ES_r4i1p1',
          'nyears': 146,
          'time_period': ['1859-12-16 0:0:0.0', '2005-11-16 0:0:0.0']},
         'HadISST': {'keyerror': None,
          'name': 'HadISST',
          'nyears': 151,
          'time_period': ['1870-1-16 11:59:59.5', '2020-10-16 12:0:0.0']},
         'Tropflux': {'keyerror': None,
          'name': 'Tropflux',
          'nyears': 40,
          'time_period': ['1979-1-15 0:0:0.0', '2018-12-15 12:0:0.0']},
         'method': 'Ratio between NDJ and MAM standard deviation nino3.4 sstA, time series are linearly detrended',
         'name': 'ENSO seasonality',
         'ref': 'Using CDAT std dev calculation',
         'time_frequency': 'monthly',
         'units': 'C/C'},
        'metric': {'datasets': "HadGEM2-ES_r4i1p1; ERA-Interim's ts & HadISST's sst & Tropflux's sst; 's ",
         'method': 'The metric is the absolute value of the relative difference between model and observations values (M = 100 * abs[[model-obs] / obs])',
         'name': 'EnsoSeasonality',
         'units': '%'}},
       'EnsoSstDiversity_2': {'diagnostic': {'ERA-Interim': {'keyerror': None,
          'name': 'ERA-Interim',
          'nyears': 40,
          'time_period': ['1979-1-16 12:0:0.0', '2019-3-16 12:0:0.0']},
         'HadGEM2-ES_r4i1p1': {'keyerror': None,
          'name': 'HadGEM2-ES_r4i1p1',
          'nyears': 146,
          'time_period': ['1859-12-16 0:0:0.0', '2005-11-16 0:0:0.0']},
         'HadISST': {'keyerror': None,
          'name': 'HadISST',
          'nyears': 151,
          'time_period': ['1870-1-16 11:59:59.5', '2020-10-16 12:0:0.0']},
         'Tropflux': {'keyerror': None,
          'name': 'Tropflux',
          'nyears': 40,
          'time_period': ['1979-1-15 0:0:0.0', '2018-12-15 12:0:0.0']},
         'method': 'Nino (Nina) events = nino3.4 sstA > 0.75 (< -0.75) during DEC, zonal SSTA (meridional averaged [-5.0 ; 5.0]), the zonal SSTA maximum (minimum) is located for each event, the diversity is the interquartile range (IQR = Q3 - Q1), time series are linearly detrended, smoothing using a triangle shaped window of 5 points',
         'name': 'ENSO Diversity (interquartile range)',
         'ref': 'Using CDAT regridding',
         'time_frequency': 'monthly',
         'units': 'long'},
        'metric': {'datasets': "HadGEM2-ES_r4i1p1; ERA-Interim's ts & HadISST's sst & Tropflux's sst; 's ",
         'method': 'The metric is the absolute value of the relative difference between model and observations values (M = 100 * abs[[model-obs] / obs])',
         'name': 'EnsoSstDiversity',
         'units': '%'}},
       'EnsoSstLonRmse': {'diagnostic': {'ERA-Interim': {'name': 'ERA-Interim',
          'nyears': 40,
          'time_period': ['1979-1-16 12:0:0.0', '2019-3-16 12:0:0.0']},
         'HadGEM2-ES_r4i1p1': {'keyerror': None,
          'name': 'HadGEM2-ES_r4i1p1',
          'nyears': 146,
          'time_period': ['1859-12-16 0:0:0.0', '2005-11-16 0:0:0.0']},
         'HadISST': {'name': 'HadISST',
          'nyears': 151,
          'time_period': ['1870-1-16 11:59:59.5', '2020-10-16 12:0:0.0']},
         'Tropflux': {'name': 'Tropflux',
          'nyears': 40,
          'time_period': ['1979-1-15 0:0:0.0', '2018-12-15 12:0:0.0']},
         'method': 'nino3.4 SSTA during DEC regressed against equatorial_pacific SSTA, time series are linearly detrended, smoothing using a triangle shaped window of 5 points, observations and model regridded to generic_1x1deg',
         'name': 'ENSO Zonal SSTA pattern',
         'ref': 'Using CDAT regridding and rms (uncentered and biased) calculation',
         'time_frequency': 'monthly',
         'units': 'C/C'},
        'metric': {'datasets': "HadGEM2-ES_r4i1p1; ERA-Interim's ts & HadISST's sst & Tropflux's sst; 's ",
         'method': 'The metric is the statistical value between the model and the observations',
         'name': 'EnsoSstLonRmse',
         'units': 'C/C'}},
       'EnsoSstSkew': {'diagnostic': {'ERA-Interim': {'keyerror': None,
          'name': 'ERA-Interim',
          'nyears': 40,
          'time_period': ['1979-1-16 12:0:0.0', '2019-3-16 12:0:0.0']},
         'HadGEM2-ES_r4i1p1': {'keyerror': None,
          'name': 'HadGEM2-ES_r4i1p1',
          'nyears': 146,
          'time_period': ['1859-12-16 0:0:0.0', '2005-11-16 0:0:0.0']},
         'HadISST': {'keyerror': None,
          'name': 'HadISST',
          'nyears': 151,
          'time_period': ['1870-1-16 11:59:59.5', '2020-10-16 12:0:0.0']},
         'Tropflux': {'keyerror': None,
          'name': 'Tropflux',
          'nyears': 40,
          'time_period': ['1979-1-15 0:0:0.0', '2018-12-15 12:0:0.0']},
         'method': 'Standard deviation of nino3.4 sstA, time series are linearly detrended',
         'name': 'ENSO skewness',
         'ref': 'Using CDAT regression calculation',
         'time_frequency': 'monthly',
         'units': 'C'},
        'metric': {'datasets': "HadGEM2-ES_r4i1p1; ERA-Interim's ts & HadISST's sst & Tropflux's sst; 's ",
         'method': 'The metric is the absolute value of the relative difference between model and observations values (M = 100 * abs[[model-obs] / obs])',
         'name': 'EnsoSstSkew',
         'units': '%'}},
       'EnsoSstTsRmse': {'diagnostic': {'ERA-Interim': {'name': 'ERA-Interim',
          'nyears': 40,
          'time_period': ['1979-1-16 12:0:0.0', '2019-3-16 12:0:0.0']},
         'HadGEM2-ES_r4i1p1': {'keyerror': None,
          'name': 'HadGEM2-ES_r4i1p1',
          'nyears': 146,
          'time_period': ['1859-12-16 0:0:0.0', '2005-11-16 0:0:0.0']},
         'HadISST': {'name': 'HadISST',
          'nyears': 151,
          'time_period': ['1870-1-16 11:59:59.5', '2020-10-16 12:0:0.0']},
         'Tropflux': {'name': 'Tropflux',
          'nyears': 40,
          'time_period': ['1979-1-15 0:0:0.0', '2018-12-15 12:0:0.0']},
         'method': 'nino3.4 SSTA during DEC regressed against nino3.4 SSTA during 6 years (centered on ENSO), time series are linearly detrended, smoothing using a triangle shaped window of 5 points',
         'name': 'ENSO life cyle SSTA pattern',
         'ref': 'Using CDAT regridding and rms (uncentered and biased) calculation',
         'time_frequency': 'monthly',
         'units': 'C/C'},
        'metric': {'datasets': "HadGEM2-ES_r4i1p1; ERA-Interim's ts & HadISST's sst & Tropflux's sst; 's ",
         'method': 'The metric is the statistical value between the model and the observations',
         'name': 'EnsoSstTsRmse',
         'units': 'C/C'}},
       'SeasonalPrLatRmse': {'diagnostic': {'ERA-Interim': {'name': 'ERA-Interim',
          'nyears': 40,
          'time_period': ['1979-1-16 12:0:0.0', '2019-3-16 12:0:0.0']},
         'GPCPv2.3': {'name': 'GPCPv2.3',
          'nyears': 41,
          'time_period': ['1979-1-1 0:0:0.0', '2019-7-1 0:0:0.0']},
         'HadGEM2-ES_r4i1p1': {'keyerror': None,
          'name': 'HadGEM2-ES_r4i1p1',
          'nyears': 146,
          'time_period': ['1859-12-16 0:0:0.0', '2005-11-16 0:0:0.0']},
         'method': 'Meridional root mean square error of nino3_LatExt climatological pr STD, time series are linearly detrended, observations and model regridded to generic_1x1deg',
         'name': 'pr meridional seasonality RMSE',
         'ref': 'Using CDAT regridding and rms (uncentered and biased) calculation',
         'time_frequency': 'monthly',
         'units': 'mm/day'},
        'metric': {'datasets': "HadGEM2-ES_r4i1p1; ERA-Interim's pr & GPCPv2.3's precip; 's ",
         'method': 'The metric is the statistical value between the model and the observations',
         'name': 'SeasonalPrLatRmse',
         'units': 'mm/day'}},
       'SeasonalPrLonRmse': {'diagnostic': {'ERA-Interim': {'name': 'ERA-Interim',
          'nyears': 40,
          'time_period': ['1979-1-16 12:0:0.0', '2019-3-16 12:0:0.0']},
         'GPCPv2.3': {'name': 'GPCPv2.3',
          'nyears': 41,
          'time_period': ['1979-1-1 0:0:0.0', '2019-7-1 0:0:0.0']},
         'HadGEM2-ES_r4i1p1': {'keyerror': None,
          'name': 'HadGEM2-ES_r4i1p1',
          'nyears': 146,
          'time_period': ['1859-12-16 0:0:0.0', '2005-11-16 0:0:0.0']},
         'method': 'Zonal root mean square error of equatorial_pacific climatological pr STD, time series are linearly detrended, observations and model regridded to generic_1x1deg',
         'name': 'pr zonal seasonality RMSE',
         'ref': 'Using CDAT regridding and rms (uncentered and biased) calculation',
         'time_frequency': 'monthly',
         'units': 'mm/day'},
        'metric': {'datasets': "HadGEM2-ES_r4i1p1; ERA-Interim's pr & GPCPv2.3's precip; 's ",
         'method': 'The metric is the statistical value between the model and the observations',
         'name': 'SeasonalPrLonRmse',
         'units': 'mm/day'}},
       'SeasonalSstLonRmse': {'diagnostic': {'ERA-Interim': {'name': 'ERA-Interim',
          'nyears': 40,
          'time_period': ['1979-1-16 12:0:0.0', '2019-3-16 12:0:0.0']},
         'HadGEM2-ES_r4i1p1': {'keyerror': None,
          'name': 'HadGEM2-ES_r4i1p1',
          'nyears': 146,
          'time_period': ['1859-12-16 0:0:0.0', '2005-11-16 0:0:0.0']},
         'HadISST': {'name': 'HadISST',
          'nyears': 151,
          'time_period': ['1870-1-16 11:59:59.5', '2020-10-16 12:0:0.0']},
         'Tropflux': {'name': 'Tropflux',
          'nyears': 40,
          'time_period': ['1979-1-15 0:0:0.0', '2018-12-15 12:0:0.0']},
         'method': 'Zonal root mean square error of equatorial_pacific climatological sst STD, time series are linearly detrended, observations and model regridded to generic_1x1deg',
         'name': 'sst zonal seasonality RMSE',
         'ref': 'Using CDAT regridding and rms (uncentered and biased) calculation',
         'time_frequency': 'monthly',
         'units': 'C'},
        'metric': {'datasets': "HadGEM2-ES_r4i1p1; ERA-Interim's ts & HadISST's sst & Tropflux's sst; 's ",
         'method': 'The metric is the statistical value between the model and the observations',
         'name': 'SeasonalSstLonRmse',
         'units': 'C'}},
       'SeasonalTauxLonRmse': {'diagnostic': {'ERA-Interim': {'name': 'ERA-Interim',
          'nyears': 40,
          'time_period': ['1979-1-16 12:0:0.0', '2019-3-16 12:0:0.0']},
         'HadGEM2-ES_r4i1p1': {'keyerror': None,
          'name': 'HadGEM2-ES_r4i1p1',
          'nyears': 146,
          'time_period': ['1859-12-16 0:0:0.0', '2005-11-16 0:0:0.0']},
         'Tropflux': {'name': 'Tropflux',
          'nyears': 40,
          'time_period': ['1979-1-15 0:0:0.0', '2018-12-15 12:0:0.0']},
         'method': 'Zonal root mean square error of equatorial_pacific climatological taux STD, time series are linearly detrended, observations and model regridded to generic_1x1deg',
         'name': 'taux zonal seasonality RMSE',
         'ref': 'Using CDAT regridding and rms (uncentered and biased) calculation',
         'time_frequency': 'monthly',
         'units': '1e-3 N/m2'},
        'metric': {'datasets': "HadGEM2-ES_r4i1p1; ERA-Interim's tauu & Tropflux's taux; 's ",
         'method': 'The metric is the statistical value between the model and the observations',
         'name': 'SeasonalTauxLonRmse',
         'units': '1e-3 N/m2'}}},
      'name': 'Metrics Collection for ENSO performance'},
     'value': {'BiasPrLatRmse': {'diagnostic': {'ERA-Interim': {'value': None,
         'value_error': None},
        'GPCPv2.3': {'value': None, 'value_error': None},
        'HadGEM2-ES_r4i1p1': {'value': None, 'value_error': None}},
       'metric': {'ERA-Interim': {'value': 0.9842540399949022,
         'value_error': None},
        'GPCPv2.3': {'value': 1.709371640231596, 'value_error': None}}},
      'BiasPrLonRmse': {'diagnostic': {'ERA-Interim': {'value': None,
         'value_error': None},
        'GPCPv2.3': {'value': None, 'value_error': None},
        'HadGEM2-ES_r4i1p1': {'value': None, 'value_error': None}},
       'metric': {'ERA-Interim': {'value': 1.2438232491932895,
         'value_error': None},
        'GPCPv2.3': {'value': 0.757156703960924, 'value_error': None}}},
      'BiasSstLonRmse': {'diagnostic': {'ERA-Interim': {'value': None,
         'value_error': None},
        'HadGEM2-ES_r4i1p1': {'value': None, 'value_error': None},
        'HadISST': {'value': None, 'value_error': None},
        'Tropflux': {'value': None, 'value_error': None}},
       'metric': {'ERA-Interim': {'value': 1.1152473977733062,
         'value_error': None},
        'HadISST': {'value': 0.9101899344253925, 'value_error': None},
        'Tropflux': {'value': 1.1645126261747079, 'value_error': None}}},
      'BiasTauxLonRmse': {'diagnostic': {'ERA-Interim': {'value': None,
         'value_error': None},
        'HadGEM2-ES_r4i1p1': {'value': None, 'value_error': None},
        'Tropflux': {'value': None, 'value_error': None}},
       'metric': {'ERA-Interim': {'value': 8.64490116879139,
         'value_error': None},
        'Tropflux': {'value': 8.683625770722712, 'value_error': None}}},
      'EnsoAmpl': {'diagnostic': {'ERA-Interim': {'value': 0.8989844997845644,
         'value_error': 0.14214193002531866},
        'HadGEM2-ES_r4i1p1': {'value': 0.7212699500213061,
         'value_error': 0.05969272579095686},
        'HadISST': {'value': 0.7665787872085695,
         'value_error': 0.06238329697691264},
        'Tropflux': {'value': 0.9039789553693535,
         'value_error': 0.14293162279134272}},
       'metric': {'ERA-Interim': {'value': 19.768366396288968,
         'value_error': 19.32575237145339},
        'HadISST': {'value': 5.910525825042933,
         'value_error': 15.443793105812203},
        'Tropflux': {'value': 20.2116436740936,
         'value_error': 19.21897819127082}}},
      'EnsoDuration': {'diagnostic': {'ERA-Interim': {'value': 13.0,
         'value_error': None},
        'HadGEM2-ES_r4i1p1': {'value': 21.0, 'value_error': None},
        'HadISST': {'value': 13.0, 'value_error': None},
        'Tropflux': {'value': 13.0, 'value_error': None}},
       'metric': {'ERA-Interim': {'value': 61.53846153846154,
         'value_error': None},
        'HadISST': {'value': 61.53846153846154, 'value_error': None},
        'Tropflux': {'value': 61.53846153846154, 'value_error': None}}},
      'EnsoSeasonality': {'diagnostic': {'ERA-Interim': {'value': 2.0466846866656914,
         'value_error': 0.6513411033995022},
        'HadGEM2-ES_r4i1p1': {'value': 1.3154697229670833,
         'value_error': 0.21811286327743618},
        'HadISST': {'value': 1.6639865947361325,
         'value_error': 0.2712772451657809},
        'Tropflux': {'value': 2.0532132553583624,
         'value_error': 0.6534187683977347}},
       'metric': {'ERA-Interim': {'value': 35.726800931405315,
         'value_error': 31.111320245344043},
        'HadISST': {'value': 20.94469227525931,
         'value_error': 25.99611833405658},
        'Tropflux': {'value': 35.93116937395357,
         'value_error': 31.012396087898946}}},
      'EnsoSstDiversity_2': {'diagnostic': {'ERA-Interim': {'value': 33.25,
         'value_error': None},
        'HadGEM2-ES_r4i1p1': {'value': 6.0, 'value_error': None},
        'HadISST': {'value': 49.0, 'value_error': None},
        'Tropflux': {'value': 32.0, 'value_error': None}},
       'metric': {'ERA-Interim': {'value': 81.95488721804512,
         'value_error': None},
        'HadISST': {'value': 87.75510204081633, 'value_error': None},
        'Tropflux': {'value': 81.25, 'value_error': None}}},
      'EnsoSstLonRmse': {'diagnostic': {'ERA-Interim': {'value': None,
         'value_error': None},
        'HadGEM2-ES_r4i1p1': {'value': None, 'value_error': None},
        'HadISST': {'value': None, 'value_error': None},
        'Tropflux': {'value': None, 'value_error': None}},
       'metric': {'ERA-Interim': {'value': 0.17674111357902667,
         'value_error': None},
        'HadISST': {'value': 0.18850753322327982, 'value_error': None},
        'Tropflux': {'value': 0.17642039000360663, 'value_error': None}}},
      'EnsoSstSkew': {'diagnostic': {'ERA-Interim': {'value': 0.39098111106809963,
         'value_error': 0.061819541653923164},
        'HadGEM2-ES_r4i1p1': {'value': -0.2964612837771815,
         'value_error': -0.024535310419661307},
        'HadISST': {'value': 0.38989908235027515,
         'value_error': 0.03172953733021198},
        'Tropflux': {'value': 0.39744741059612115,
         'value_error': 0.06284195338099416}},
       'metric': {'ERA-Interim': {'value': 175.8249632488115,
         'value_error': -18.26429797701771},
        'HadISST': {'value': 176.0353889499151,
         'value_error': -12.480405762273824},
        'Tropflux': {'value': 174.59132349925915,
         'value_error': -17.967145653868098}}},
      'EnsoSstTsRmse': {'diagnostic': {'ERA-Interim': {'value': None,
         'value_error': None},
        'HadGEM2-ES_r4i1p1': {'value': None, 'value_error': None},
        'HadISST': {'value': None, 'value_error': None},
        'Tropflux': {'value': None, 'value_error': None}},
       'metric': {'ERA-Interim': {'value': 0.16460880961538119,
         'value_error': None},
        'HadISST': {'value': 0.1305241822748552, 'value_error': None},
        'Tropflux': {'value': 0.16010070447944627, 'value_error': None}}},
      'SeasonalPrLatRmse': {'diagnostic': {'ERA-Interim': {'value': None,
         'value_error': None},
        'GPCPv2.3': {'value': None, 'value_error': None},
        'HadGEM2-ES_r4i1p1': {'value': None, 'value_error': None}},
       'metric': {'ERA-Interim': {'value': 1.5587324272470273,
         'value_error': None},
        'GPCPv2.3': {'value': 1.8549659563699084, 'value_error': None}}},
      'SeasonalPrLonRmse': {'diagnostic': {'ERA-Interim': {'value': None,
         'value_error': None},
        'GPCPv2.3': {'value': None, 'value_error': None},
        'HadGEM2-ES_r4i1p1': {'value': None, 'value_error': None}},
       'metric': {'ERA-Interim': {'value': 0.8200826429470754,
         'value_error': None},
        'GPCPv2.3': {'value': 0.7936345244421517, 'value_error': None}}},
      'SeasonalSstLonRmse': {'diagnostic': {'ERA-Interim': {'value': None,
         'value_error': None},
        'HadGEM2-ES_r4i1p1': {'value': None, 'value_error': None},
        'HadISST': {'value': None, 'value_error': None},
        'Tropflux': {'value': None, 'value_error': None}},
       'metric': {'ERA-Interim': {'value': 0.18448297672026123,
         'value_error': None},
        'HadISST': {'value': 0.20199211660022542, 'value_error': None},
        'Tropflux': {'value': 0.18596305261195267, 'value_error': None}}},
      'SeasonalTauxLonRmse': {'diagnostic': {'ERA-Interim': {'value': None,
         'value_error': None},
        'HadGEM2-ES_r4i1p1': {'value': None, 'value_error': None},
        'Tropflux': {'value': None, 'value_error': None}},
       'metric': {'ERA-Interim': {'value': 4.4747690355237575,
         'value_error': None},
        'Tropflux': {'value': 4.15568176274605, 'value_error': None}}}}},
    'r5i1p1': {'metadata': {'description_of_the_collection': 'Describe which science question this collection is about',
      'metrics': {'BiasPrLatRmse': {'diagnostic': {'ERA-Interim': {'name': 'ERA-Interim',
          'nyears': 40,
          'time_period': ['1979-1-16 12:0:0.0', '2019-3-16 12:0:0.0']},
         'GPCPv2.3': {'name': 'GPCPv2.3',
          'nyears': 41,
          'time_period': ['1979-1-1 0:0:0.0', '2019-7-1 0:0:0.0']},
         'HadGEM2-ES_r5i1p1': {'keyerror': None,
          'name': 'HadGEM2-ES_r5i1p1',
          'nyears': 146,
          'time_period': ['1859-12-16 0:0:0.0', '2005-12-16 0:0:0.0']},
         'method': 'Meridional root mean square error of nino3_LatExt pr, time series are linearly detrended, observations and model regridded to generic_1x1deg',
         'name': 'pr Meridional RMSE',
         'ref': 'Using CDAT regridding and rms (uncentered and biased) calculation',
         'time_frequency': 'monthly',
         'units': 'mm/day'},
        'metric': {'datasets': "HadGEM2-ES_r5i1p1; ERA-Interim's pr & GPCPv2.3's precip; 's ",
         'method': 'The metric is the statistical value between the model and the observations',
         'name': 'BiasPrLatRmse',
         'units': 'mm/day'}},
       'BiasPrLonRmse': {'diagnostic': {'ERA-Interim': {'name': 'ERA-Interim',
          'nyears': 40,
          'time_period': ['1979-1-16 12:0:0.0', '2019-3-16 12:0:0.0']},
         'GPCPv2.3': {'name': 'GPCPv2.3',
          'nyears': 41,
          'time_period': ['1979-1-1 0:0:0.0', '2019-7-1 0:0:0.0']},
         'HadGEM2-ES_r5i1p1': {'keyerror': None,
          'name': 'HadGEM2-ES_r5i1p1',
          'nyears': 146,
          'time_period': ['1859-12-16 0:0:0.0', '2005-12-16 0:0:0.0']},
         'method': 'Zonal root mean square error of equatorial_pacific pr, time series are linearly detrended, observations and model regridded to generic_1x1deg',
         'name': 'pr Zonal RMSE',
         'ref': 'Using CDAT regridding and rms (uncentered and biased) calculation',
         'time_frequency': 'monthly',
         'units': 'mm/day'},
        'metric': {'datasets': "HadGEM2-ES_r5i1p1; ERA-Interim's pr & GPCPv2.3's precip; 's ",
         'method': 'The metric is the statistical value between the model and the observations',
         'name': 'BiasPrLonRmse',
         'units': 'mm/day'}},
       'BiasSstLonRmse': {'diagnostic': {'ERA-Interim': {'name': 'ERA-Interim',
          'nyears': 40,
          'time_period': ['1979-1-16 12:0:0.0', '2019-3-16 12:0:0.0']},
         'HadGEM2-ES_r5i1p1': {'keyerror': None,
          'name': 'HadGEM2-ES_r5i1p1',
          'nyears': 146,
          'time_period': ['1859-12-16 0:0:0.0', '2005-12-16 0:0:0.0']},
         'HadISST': {'name': 'HadISST',
          'nyears': 151,
          'time_period': ['1870-1-16 11:59:59.5', '2020-10-16 12:0:0.0']},
         'Tropflux': {'name': 'Tropflux',
          'nyears': 40,
          'time_period': ['1979-1-15 0:0:0.0', '2018-12-15 12:0:0.0']},
         'method': 'Zonal root mean square error of equatorial_pacific sst, time series are linearly detrended, observations and model regridded to generic_1x1deg',
         'name': 'sst Zonal RMSE',
         'ref': 'Using CDAT regridding and rms (uncentered and biased) calculation',
         'time_frequency': 'monthly',
         'units': 'C'},
        'metric': {'datasets': "HadGEM2-ES_r5i1p1; ERA-Interim's ts & HadISST's sst & Tropflux's sst; 's ",
         'method': 'The metric is the statistical value between the model and the observations',
         'name': 'BiasSstLonRmse',
         'units': 'C'}},
       'BiasTauxLonRmse': {'diagnostic': {'ERA-Interim': {'name': 'ERA-Interim',
          'nyears': 40,
          'time_period': ['1979-1-16 12:0:0.0', '2019-3-16 12:0:0.0']},
         'HadGEM2-ES_r5i1p1': {'keyerror': None,
          'name': 'HadGEM2-ES_r5i1p1',
          'nyears': 146,
          'time_period': ['1859-12-16 0:0:0.0', '2005-12-16 0:0:0.0']},
         'Tropflux': {'name': 'Tropflux',
          'nyears': 40,
          'time_period': ['1979-1-15 0:0:0.0', '2018-12-15 12:0:0.0']},
         'method': 'Zonal root mean square error of equatorial_pacific taux, time series are linearly detrended, observations and model regridded to generic_1x1deg',
         'name': 'taux Zonal RMSE',
         'ref': 'Using CDAT regridding and rms (uncentered and biased) calculation',
         'time_frequency': 'monthly',
         'units': '1e-3 N/m2'},
        'metric': {'datasets': "HadGEM2-ES_r5i1p1; ERA-Interim's tauu & Tropflux's taux; 's ",
         'method': 'The metric is the statistical value between the model and the observations',
         'name': 'BiasTauxLonRmse',
         'units': '1e-3 N/m2'}},
       'EnsoAmpl': {'diagnostic': {'ERA-Interim': {'keyerror': None,
          'name': 'ERA-Interim',
          'nyears': 40,
          'time_period': ['1979-1-16 12:0:0.0', '2019-3-16 12:0:0.0']},
         'HadGEM2-ES_r5i1p1': {'keyerror': None,
          'name': 'HadGEM2-ES_r5i1p1',
          'nyears': 146,
          'time_period': ['1859-12-16 0:0:0.0', '2005-12-16 0:0:0.0']},
         'HadISST': {'keyerror': None,
          'name': 'HadISST',
          'nyears': 151,
          'time_period': ['1870-1-16 11:59:59.5', '2020-10-16 12:0:0.0']},
         'Tropflux': {'keyerror': None,
          'name': 'Tropflux',
          'nyears': 40,
          'time_period': ['1979-1-15 0:0:0.0', '2018-12-15 12:0:0.0']},
         'method': 'Standard deviation of nino3.4 sstA, time series are linearly detrended',
         'name': 'ENSO amplitude',
         'ref': 'Using CDAT regression calculation',
         'time_frequency': 'monthly',
         'units': 'C'},
        'metric': {'datasets': "HadGEM2-ES_r5i1p1; ERA-Interim's ts & HadISST's sst & Tropflux's sst; 's ",
         'method': 'The metric is the absolute value of the relative difference between model and observations values (M = 100 * abs[[model-obs] / obs])',
         'name': 'EnsoAmpl',
         'units': '%'}},
       'EnsoDuration': {'diagnostic': {'ERA-Interim': {'keyerror': None,
          'name': 'ERA-Interim',
          'nyears': 40,
          'time_period': ['1979-1-16 12:0:0.0', '2019-3-16 12:0:0.0']},
         'HadGEM2-ES_r5i1p1': {'keyerror': None,
          'name': 'HadGEM2-ES_r5i1p1',
          'nyears': 146,
          'time_period': ['1859-12-16 0:0:0.0', '2005-12-16 0:0:0.0']},
         'HadISST': {'keyerror': None,
          'name': 'HadISST',
          'nyears': 151,
          'time_period': ['1870-1-16 11:59:59.5', '2020-10-16 12:0:0.0']},
         'Tropflux': {'keyerror': None,
          'name': 'Tropflux',
          'nyears': 40,
          'time_period': ['1979-1-15 0:0:0.0', '2018-12-15 12:0:0.0']},
         'method': 'nino3.4 SSTA during DEC regressed against nino3.4 SSTA during 6 years (centered on ENSO), the duration is the number of consecutive months during which the regression is above 0.25, time series are linearly detrended, smoothing using a triangle shaped window of 5 points',
         'name': 'ENSO Duration based on life cyle SSTA pattern',
         'ref': 'Using CDAT',
         'time_frequency': 'monthly',
         'units': 'months'},
        'metric': {'datasets': "HadGEM2-ES_r5i1p1; ERA-Interim's ts & HadISST's sst & Tropflux's sst; 's ",
         'method': 'The metric is the absolute value of the relative difference between model and observations values (M = 100 * abs[[model-obs] / obs])',
         'name': 'EnsoDuration',
         'units': '%'}},
       'EnsoSeasonality': {'diagnostic': {'ERA-Interim': {'keyerror': None,
          'name': 'ERA-Interim',
          'nyears': 40,
          'time_period': ['1979-1-16 12:0:0.0', '2019-3-16 12:0:0.0']},
         'HadGEM2-ES_r5i1p1': {'keyerror': None,
          'name': 'HadGEM2-ES_r5i1p1',
          'nyears': 146,
          'time_period': ['1859-12-16 0:0:0.0', '2005-12-16 0:0:0.0']},
         'HadISST': {'keyerror': None,
          'name': 'HadISST',
          'nyears': 151,
          'time_period': ['1870-1-16 11:59:59.5', '2020-10-16 12:0:0.0']},
         'Tropflux': {'keyerror': None,
          'name': 'Tropflux',
          'nyears': 40,
          'time_period': ['1979-1-15 0:0:0.0', '2018-12-15 12:0:0.0']},
         'method': 'Ratio between NDJ and MAM standard deviation nino3.4 sstA, time series are linearly detrended',
         'name': 'ENSO seasonality',
         'ref': 'Using CDAT std dev calculation',
         'time_frequency': 'monthly',
         'units': 'C/C'},
        'metric': {'datasets': "HadGEM2-ES_r5i1p1; ERA-Interim's ts & HadISST's sst & Tropflux's sst; 's ",
         'method': 'The metric is the absolute value of the relative difference between model and observations values (M = 100 * abs[[model-obs] / obs])',
         'name': 'EnsoSeasonality',
         'units': '%'}},
       'EnsoSstDiversity_2': {'diagnostic': {'ERA-Interim': {'keyerror': None,
          'name': 'ERA-Interim',
          'nyears': 40,
          'time_period': ['1979-1-16 12:0:0.0', '2019-3-16 12:0:0.0']},
         'HadGEM2-ES_r5i1p1': {'keyerror': None,
          'name': 'HadGEM2-ES_r5i1p1',
          'nyears': 146,
          'time_period': ['1859-12-16 0:0:0.0', '2005-12-16 0:0:0.0']},
         'HadISST': {'keyerror': None,
          'name': 'HadISST',
          'nyears': 151,
          'time_period': ['1870-1-16 11:59:59.5', '2020-10-16 12:0:0.0']},
         'Tropflux': {'keyerror': None,
          'name': 'Tropflux',
          'nyears': 40,
          'time_period': ['1979-1-15 0:0:0.0', '2018-12-15 12:0:0.0']},
         'method': 'Nino (Nina) events = nino3.4 sstA > 0.75 (< -0.75) during DEC, zonal SSTA (meridional averaged [-5.0 ; 5.0]), the zonal SSTA maximum (minimum) is located for each event, the diversity is the interquartile range (IQR = Q3 - Q1), time series are linearly detrended, smoothing using a triangle shaped window of 5 points',
         'name': 'ENSO Diversity (interquartile range)',
         'ref': 'Using CDAT regridding',
         'time_frequency': 'monthly',
         'units': 'long'},
        'metric': {'datasets': "HadGEM2-ES_r5i1p1; ERA-Interim's ts & HadISST's sst & Tropflux's sst; 's ",
         'method': 'The metric is the absolute value of the relative difference between model and observations values (M = 100 * abs[[model-obs] / obs])',
         'name': 'EnsoSstDiversity',
         'units': '%'}},
       'EnsoSstLonRmse': {'diagnostic': {'ERA-Interim': {'name': 'ERA-Interim',
          'nyears': 40,
          'time_period': ['1979-1-16 12:0:0.0', '2019-3-16 12:0:0.0']},
         'HadGEM2-ES_r5i1p1': {'keyerror': None,
          'name': 'HadGEM2-ES_r5i1p1',
          'nyears': 146,
          'time_period': ['1859-12-16 0:0:0.0', '2005-12-16 0:0:0.0']},
         'HadISST': {'name': 'HadISST',
          'nyears': 151,
          'time_period': ['1870-1-16 11:59:59.5', '2020-10-16 12:0:0.0']},
         'Tropflux': {'name': 'Tropflux',
          'nyears': 40,
          'time_period': ['1979-1-15 0:0:0.0', '2018-12-15 12:0:0.0']},
         'method': 'nino3.4 SSTA during DEC regressed against equatorial_pacific SSTA, time series are linearly detrended, smoothing using a triangle shaped window of 5 points, observations and model regridded to generic_1x1deg',
         'name': 'ENSO Zonal SSTA pattern',
         'ref': 'Using CDAT regridding and rms (uncentered and biased) calculation',
         'time_frequency': 'monthly',
         'units': 'C/C'},
        'metric': {'datasets': "HadGEM2-ES_r5i1p1; ERA-Interim's ts & HadISST's sst & Tropflux's sst; 's ",
         'method': 'The metric is the statistical value between the model and the observations',
         'name': 'EnsoSstLonRmse',
         'units': 'C/C'}},
       'EnsoSstSkew': {'diagnostic': {'ERA-Interim': {'keyerror': None,
          'name': 'ERA-Interim',
          'nyears': 40,
          'time_period': ['1979-1-16 12:0:0.0', '2019-3-16 12:0:0.0']},
         'HadGEM2-ES_r5i1p1': {'keyerror': None,
          'name': 'HadGEM2-ES_r5i1p1',
          'nyears': 146,
          'time_period': ['1859-12-16 0:0:0.0', '2005-12-16 0:0:0.0']},
         'HadISST': {'keyerror': None,
          'name': 'HadISST',
          'nyears': 151,
          'time_period': ['1870-1-16 11:59:59.5', '2020-10-16 12:0:0.0']},
         'Tropflux': {'keyerror': None,
          'name': 'Tropflux',
          'nyears': 40,
          'time_period': ['1979-1-15 0:0:0.0', '2018-12-15 12:0:0.0']},
         'method': 'Standard deviation of nino3.4 sstA, time series are linearly detrended',
         'name': 'ENSO skewness',
         'ref': 'Using CDAT regression calculation',
         'time_frequency': 'monthly',
         'units': 'C'},
        'metric': {'datasets': "HadGEM2-ES_r5i1p1; ERA-Interim's ts & HadISST's sst & Tropflux's sst; 's ",
         'method': 'The metric is the absolute value of the relative difference between model and observations values (M = 100 * abs[[model-obs] / obs])',
         'name': 'EnsoSstSkew',
         'units': '%'}},
       'EnsoSstTsRmse': {'diagnostic': {'ERA-Interim': {'name': 'ERA-Interim',
          'nyears': 40,
          'time_period': ['1979-1-16 12:0:0.0', '2019-3-16 12:0:0.0']},
         'HadGEM2-ES_r5i1p1': {'keyerror': None,
          'name': 'HadGEM2-ES_r5i1p1',
          'nyears': 146,
          'time_period': ['1859-12-16 0:0:0.0', '2005-12-16 0:0:0.0']},
         'HadISST': {'name': 'HadISST',
          'nyears': 151,
          'time_period': ['1870-1-16 11:59:59.5', '2020-10-16 12:0:0.0']},
         'Tropflux': {'name': 'Tropflux',
          'nyears': 40,
          'time_period': ['1979-1-15 0:0:0.0', '2018-12-15 12:0:0.0']},
         'method': 'nino3.4 SSTA during DEC regressed against nino3.4 SSTA during 6 years (centered on ENSO), time series are linearly detrended, smoothing using a triangle shaped window of 5 points',
         'name': 'ENSO life cyle SSTA pattern',
         'ref': 'Using CDAT regridding and rms (uncentered and biased) calculation',
         'time_frequency': 'monthly',
         'units': 'C/C'},
        'metric': {'datasets': "HadGEM2-ES_r5i1p1; ERA-Interim's ts & HadISST's sst & Tropflux's sst; 's ",
         'method': 'The metric is the statistical value between the model and the observations',
         'name': 'EnsoSstTsRmse',
         'units': 'C/C'}},
       'SeasonalPrLatRmse': {'diagnostic': {'ERA-Interim': {'name': 'ERA-Interim',
          'nyears': 40,
          'time_period': ['1979-1-16 12:0:0.0', '2019-3-16 12:0:0.0']},
         'GPCPv2.3': {'name': 'GPCPv2.3',
          'nyears': 41,
          'time_period': ['1979-1-1 0:0:0.0', '2019-7-1 0:0:0.0']},
         'HadGEM2-ES_r5i1p1': {'keyerror': None,
          'name': 'HadGEM2-ES_r5i1p1',
          'nyears': 146,
          'time_period': ['1859-12-16 0:0:0.0', '2005-12-16 0:0:0.0']},
         'method': 'Meridional root mean square error of nino3_LatExt climatological pr STD, time series are linearly detrended, observations and model regridded to generic_1x1deg',
         'name': 'pr meridional seasonality RMSE',
         'ref': 'Using CDAT regridding and rms (uncentered and biased) calculation',
         'time_frequency': 'monthly',
         'units': 'mm/day'},
        'metric': {'datasets': "HadGEM2-ES_r5i1p1; ERA-Interim's pr & GPCPv2.3's precip; 's ",
         'method': 'The metric is the statistical value between the model and the observations',
         'name': 'SeasonalPrLatRmse',
         'units': 'mm/day'}},
       'SeasonalPrLonRmse': {'diagnostic': {'ERA-Interim': {'name': 'ERA-Interim',
          'nyears': 40,
          'time_period': ['1979-1-16 12:0:0.0', '2019-3-16 12:0:0.0']},
         'GPCPv2.3': {'name': 'GPCPv2.3',
          'nyears': 41,
          'time_period': ['1979-1-1 0:0:0.0', '2019-7-1 0:0:0.0']},
         'HadGEM2-ES_r5i1p1': {'keyerror': None,
          'name': 'HadGEM2-ES_r5i1p1',
          'nyears': 146,
          'time_period': ['1859-12-16 0:0:0.0', '2005-12-16 0:0:0.0']},
         'method': 'Zonal root mean square error of equatorial_pacific climatological pr STD, time series are linearly detrended, observations and model regridded to generic_1x1deg',
         'name': 'pr zonal seasonality RMSE',
         'ref': 'Using CDAT regridding and rms (uncentered and biased) calculation',
         'time_frequency': 'monthly',
         'units': 'mm/day'},
        'metric': {'datasets': "HadGEM2-ES_r5i1p1; ERA-Interim's pr & GPCPv2.3's precip; 's ",
         'method': 'The metric is the statistical value between the model and the observations',
         'name': 'SeasonalPrLonRmse',
         'units': 'mm/day'}},
       'SeasonalSstLonRmse': {'diagnostic': {'ERA-Interim': {'name': 'ERA-Interim',
          'nyears': 40,
          'time_period': ['1979-1-16 12:0:0.0', '2019-3-16 12:0:0.0']},
         'HadGEM2-ES_r5i1p1': {'keyerror': None,
          'name': 'HadGEM2-ES_r5i1p1',
          'nyears': 146,
          'time_period': ['1859-12-16 0:0:0.0', '2005-12-16 0:0:0.0']},
         'HadISST': {'name': 'HadISST',
          'nyears': 151,
          'time_period': ['1870-1-16 11:59:59.5', '2020-10-16 12:0:0.0']},
         'Tropflux': {'name': 'Tropflux',
          'nyears': 40,
          'time_period': ['1979-1-15 0:0:0.0', '2018-12-15 12:0:0.0']},
         'method': 'Zonal root mean square error of equatorial_pacific climatological sst STD, time series are linearly detrended, observations and model regridded to generic_1x1deg',
         'name': 'sst zonal seasonality RMSE',
         'ref': 'Using CDAT regridding and rms (uncentered and biased) calculation',
         'time_frequency': 'monthly',
         'units': 'C'},
        'metric': {'datasets': "HadGEM2-ES_r5i1p1; ERA-Interim's ts & HadISST's sst & Tropflux's sst; 's ",
         'method': 'The metric is the statistical value between the model and the observations',
         'name': 'SeasonalSstLonRmse',
         'units': 'C'}},
       'SeasonalTauxLonRmse': {'diagnostic': {'ERA-Interim': {'name': 'ERA-Interim',
          'nyears': 40,
          'time_period': ['1979-1-16 12:0:0.0', '2019-3-16 12:0:0.0']},
         'HadGEM2-ES_r5i1p1': {'keyerror': None,
          'name': 'HadGEM2-ES_r5i1p1',
          'nyears': 146,
          'time_period': ['1859-12-16 0:0:0.0', '2005-12-16 0:0:0.0']},
         'Tropflux': {'name': 'Tropflux',
          'nyears': 40,
          'time_period': ['1979-1-15 0:0:0.0', '2018-12-15 12:0:0.0']},
         'method': 'Zonal root mean square error of equatorial_pacific climatological taux STD, time series are linearly detrended, observations and model regridded to generic_1x1deg',
         'name': 'taux zonal seasonality RMSE',
         'ref': 'Using CDAT regridding and rms (uncentered and biased) calculation',
         'time_frequency': 'monthly',
         'units': '1e-3 N/m2'},
        'metric': {'datasets': "HadGEM2-ES_r5i1p1; ERA-Interim's tauu & Tropflux's taux; 's ",
         'method': 'The metric is the statistical value between the model and the observations',
         'name': 'SeasonalTauxLonRmse',
         'units': '1e-3 N/m2'}}},
      'name': 'Metrics Collection for ENSO performance'},
     'value': {'BiasPrLatRmse': {'diagnostic': {'ERA-Interim': {'value': None,
         'value_error': None},
        'GPCPv2.3': {'value': None, 'value_error': None},
        'HadGEM2-ES_r5i1p1': {'value': None, 'value_error': None}},
       'metric': {'ERA-Interim': {'value': 0.9454748985612494,
         'value_error': None},
        'GPCPv2.3': {'value': 1.673575374166771, 'value_error': None}}},
      'BiasPrLonRmse': {'diagnostic': {'ERA-Interim': {'value': None,
         'value_error': None},
        'GPCPv2.3': {'value': None, 'value_error': None},
        'HadGEM2-ES_r5i1p1': {'value': None, 'value_error': None}},
       'metric': {'ERA-Interim': {'value': 1.2830975113821441,
         'value_error': None},
        'GPCPv2.3': {'value': 0.7793421679606303, 'value_error': None}}},
      'BiasSstLonRmse': {'diagnostic': {'ERA-Interim': {'value': None,
         'value_error': None},
        'HadGEM2-ES_r5i1p1': {'value': None, 'value_error': None},
        'HadISST': {'value': None, 'value_error': None},
        'Tropflux': {'value': None, 'value_error': None}},
       'metric': {'ERA-Interim': {'value': 1.154816487422248,
         'value_error': None},
        'HadISST': {'value': 0.9501364650548555, 'value_error': None},
        'Tropflux': {'value': 1.204027641824973, 'value_error': None}}},
      'BiasTauxLonRmse': {'diagnostic': {'ERA-Interim': {'value': None,
         'value_error': None},
        'HadGEM2-ES_r5i1p1': {'value': None, 'value_error': None},
        'Tropflux': {'value': None, 'value_error': None}},
       'metric': {'ERA-Interim': {'value': 8.186243888349914,
         'value_error': None},
        'Tropflux': {'value': 8.259544444889508, 'value_error': None}}},
      'EnsoAmpl': {'diagnostic': {'ERA-Interim': {'value': 0.8989844997845644,
         'value_error': 0.14214193002531866},
        'HadGEM2-ES_r5i1p1': {'value': 0.7097890054961646,
         'value_error': 0.058742556061384434},
        'HadISST': {'value': 0.7665787872085695,
         'value_error': 0.06238329697691264},
        'Tropflux': {'value': 0.9039789553693535,
         'value_error': 0.14293162279134272}},
       'metric': {'ERA-Interim': {'value': 21.04546789557987,
         'value_error': 19.018131222289025},
        'HadISST': {'value': 7.408212001169506,
         'value_error': 15.197963743448836},
        'Tropflux': {'value': 21.48168922736099,
         'value_error': 18.9130566393784}}},
      'EnsoDuration': {'diagnostic': {'ERA-Interim': {'value': 13.0,
         'value_error': None},
        'HadGEM2-ES_r5i1p1': {'value': 22.0, 'value_error': None},
        'HadISST': {'value': 13.0, 'value_error': None},
        'Tropflux': {'value': 13.0, 'value_error': None}},
       'metric': {'ERA-Interim': {'value': 69.23076923076923,
         'value_error': None},
        'HadISST': {'value': 69.23076923076923, 'value_error': None},
        'Tropflux': {'value': 69.23076923076923, 'value_error': None}}},
      'EnsoSeasonality': {'diagnostic': {'ERA-Interim': {'value': 2.0466846866656914,
         'value_error': 0.6513411033995022},
        'HadGEM2-ES_r5i1p1': {'value': 1.2792117856585878,
         'value_error': 0.21210107723263677},
        'HadISST': {'value': 1.6639865947361325,
         'value_error': 0.2712772451657809},
        'Tropflux': {'value': 2.0532132553583624,
         'value_error': 0.6534187683977347}},
       'metric': {'ERA-Interim': {'value': 37.49834578854519,
         'value_error': 30.25380731338853},
        'HadISST': {'value': 23.123672407863392,
         'value_error': 25.279594333265088},
        'Tropflux': {'value': 37.69708127881156,
         'value_error': 30.157609775824007}}},
      'EnsoSstDiversity_2': {'diagnostic': {'ERA-Interim': {'value': 33.25,
         'value_error': None},
        'HadGEM2-ES_r5i1p1': {'value': 11.0, 'value_error': None},
        'HadISST': {'value': 49.0, 'value_error': None},
        'Tropflux': {'value': 32.0, 'value_error': None}},
       'metric': {'ERA-Interim': {'value': 66.9172932330827,
         'value_error': None},
        'HadISST': {'value': 77.55102040816327, 'value_error': None},
        'Tropflux': {'value': 65.625, 'value_error': None}}},
      'EnsoSstLonRmse': {'diagnostic': {'ERA-Interim': {'value': None,
         'value_error': None},
        'HadGEM2-ES_r5i1p1': {'value': None, 'value_error': None},
        'HadISST': {'value': None, 'value_error': None},
        'Tropflux': {'value': None, 'value_error': None}},
       'metric': {'ERA-Interim': {'value': 0.17541800151046483,
         'value_error': None},
        'HadISST': {'value': 0.1826850099661982, 'value_error': None},
        'Tropflux': {'value': 0.17469497295845793, 'value_error': None}}},
      'EnsoSstSkew': {'diagnostic': {'ERA-Interim': {'value': 0.39098111106809963,
         'value_error': 0.061819541653923164},
        'HadGEM2-ES_r5i1p1': {'value': -0.34417961105425476,
         'value_error': -0.02848450728453739},
        'HadISST': {'value': 0.38989908235027515,
         'value_error': 0.03172953733021198},
        'Tropflux': {'value': 0.39744741059612115,
         'value_error': 0.06284195338099416}},
       'metric': {'ERA-Interim': {'value': 188.0297286265338,
         'value_error': -21.20411439165742},
        'HadISST': {'value': 188.2740243910225,
         'value_error': -14.489248465533722},
        'Tropflux': {'value': 186.59752255978438,
         'value_error': -20.85913251172206}}},
      'EnsoSstTsRmse': {'diagnostic': {'ERA-Interim': {'value': None,
         'value_error': None},
        'HadGEM2-ES_r5i1p1': {'value': None, 'value_error': None},
        'HadISST': {'value': None, 'value_error': None},
        'Tropflux': {'value': None, 'value_error': None}},
       'metric': {'ERA-Interim': {'value': 0.1970630917551254,
         'value_error': None},
        'HadISST': {'value': 0.16121154883633557, 'value_error': None},
        'Tropflux': {'value': 0.1934148462000116, 'value_error': None}}},
      'SeasonalPrLatRmse': {'diagnostic': {'ERA-Interim': {'value': None,
         'value_error': None},
        'GPCPv2.3': {'value': None, 'value_error': None},
        'HadGEM2-ES_r5i1p1': {'value': None, 'value_error': None}},
       'metric': {'ERA-Interim': {'value': 1.5625213045664244,
         'value_error': None},
        'GPCPv2.3': {'value': 1.8584126027436902, 'value_error': None}}},
      'SeasonalPrLonRmse': {'diagnostic': {'ERA-Interim': {'value': None,
         'value_error': None},
        'GPCPv2.3': {'value': None, 'value_error': None},
        'HadGEM2-ES_r5i1p1': {'value': None, 'value_error': None}},
       'metric': {'ERA-Interim': {'value': 0.747818583724793,
         'value_error': None},
        'GPCPv2.3': {'value': 0.7193694543167486, 'value_error': None}}},
      'SeasonalSstLonRmse': {'diagnostic': {'ERA-Interim': {'value': None,
         'value_error': None},
        'HadGEM2-ES_r5i1p1': {'value': None, 'value_error': None},
        'HadISST': {'value': None, 'value_error': None},
        'Tropflux': {'value': None, 'value_error': None}},
       'metric': {'ERA-Interim': {'value': 0.1819315994668804,
         'value_error': None},
        'HadISST': {'value': 0.19892240113903606, 'value_error': None},
        'Tropflux': {'value': 0.18361837036195414, 'value_error': None}}},
      'SeasonalTauxLonRmse': {'diagnostic': {'ERA-Interim': {'value': None,
         'value_error': None},
        'HadGEM2-ES_r5i1p1': {'value': None, 'value_error': None},
        'Tropflux': {'value': None, 'value_error': None}},
       'metric': {'ERA-Interim': {'value': 4.304037891054174,
         'value_error': None},
        'Tropflux': {'value': 4.002065264943239, 'value_error': None}}}}}},
   'INMCM4': {'r1i1p1': {'metadata': {'description_of_the_collection': 'Describe which science question this collection is about',
      'metrics': {'BiasPrLatRmse': {'diagnostic': {'ERA-Interim': {'name': 'ERA-Interim',
          'nyears': 40,
          'time_period': ['1979-1-16 12:0:0.0', '2019-3-16 12:0:0.0']},
         'GPCPv2.3': {'name': 'GPCPv2.3',
          'nyears': 41,
          'time_period': ['1979-1-1 0:0:0.0', '2019-7-1 0:0:0.0']},
         'INMCM4_r1i1p1': {'keyerror': None,
          'name': 'INMCM4_r1i1p1',
          'nyears': 156,
          'time_period': ['1850-1-16 12:0:0.0', '2005-12-16 12:0:0.0']},
         'method': 'Meridional root mean square error of nino3_LatExt pr, time series are linearly detrended, observations and model regridded to generic_1x1deg',
         'name': 'pr Meridional RMSE',
         'ref': 'Using CDAT regridding and rms (uncentered and biased) calculation',
         'time_frequency': 'monthly',
         'units': 'mm/day'},
        'metric': {'datasets': "INMCM4_r1i1p1; ERA-Interim's pr & GPCPv2.3's precip; 's ",
         'method': 'The metric is the statistical value between the model and the observations',
         'name': 'BiasPrLatRmse',
         'units': 'mm/day'}},
       'BiasPrLonRmse': {'diagnostic': {'ERA-Interim': {'name': 'ERA-Interim',
          'nyears': 40,
          'time_period': ['1979-1-16 12:0:0.0', '2019-3-16 12:0:0.0']},
         'GPCPv2.3': {'name': 'GPCPv2.3',
          'nyears': 41,
          'time_period': ['1979-1-1 0:0:0.0', '2019-7-1 0:0:0.0']},
         'INMCM4_r1i1p1': {'keyerror': None,
          'name': 'INMCM4_r1i1p1',
          'nyears': 156,
          'time_period': ['1850-1-16 12:0:0.0', '2005-12-16 12:0:0.0']},
         'method': 'Zonal root mean square error of equatorial_pacific pr, time series are linearly detrended, observations and model regridded to generic_1x1deg',
         'name': 'pr Zonal RMSE',
         'ref': 'Using CDAT regridding and rms (uncentered and biased) calculation',
         'time_frequency': 'monthly',
         'units': 'mm/day'},
        'metric': {'datasets': "INMCM4_r1i1p1; ERA-Interim's pr & GPCPv2.3's precip; 's ",
         'method': 'The metric is the statistical value between the model and the observations',
         'name': 'BiasPrLonRmse',
         'units': 'mm/day'}},
       'BiasSstLonRmse': {'diagnostic': {'ERA-Interim': {'name': 'ERA-Interim',
          'nyears': 40,
          'time_period': ['1979-1-16 12:0:0.0', '2019-3-16 12:0:0.0']},
         'HadISST': {'name': 'HadISST',
          'nyears': 151,
          'time_period': ['1870-1-16 11:59:59.5', '2020-10-16 12:0:0.0']},
         'INMCM4_r1i1p1': {'keyerror': None,
          'name': 'INMCM4_r1i1p1',
          'nyears': 156,
          'time_period': ['1850-1-16 12:0:0.0', '2005-12-16 12:0:0.0']},
         'Tropflux': {'name': 'Tropflux',
          'nyears': 40,
          'time_period': ['1979-1-15 0:0:0.0', '2018-12-15 12:0:0.0']},
         'method': 'Zonal root mean square error of equatorial_pacific sst, time series are linearly detrended, observations and model regridded to generic_1x1deg',
         'name': 'sst Zonal RMSE',
         'ref': 'Using CDAT regridding and rms (uncentered and biased) calculation',
         'time_frequency': 'monthly',
         'units': 'C'},
        'metric': {'datasets': "INMCM4_r1i1p1; ERA-Interim's ts & HadISST's sst & Tropflux's sst; 's ",
         'method': 'The metric is the statistical value between the model and the observations',
         'name': 'BiasSstLonRmse',
         'units': 'C'}},
       'BiasTauxLonRmse': {'diagnostic': {'ERA-Interim': {'name': 'ERA-Interim',
          'nyears': 40,
          'time_period': ['1979-1-16 12:0:0.0', '2019-3-16 12:0:0.0']},
         'INMCM4_r1i1p1': {'keyerror': None,
          'name': 'INMCM4_r1i1p1',
          'nyears': 156,
          'time_period': ['1850-1-16 12:0:0.0', '2005-12-16 12:0:0.0']},
         'Tropflux': {'name': 'Tropflux',
          'nyears': 40,
          'time_period': ['1979-1-15 0:0:0.0', '2018-12-15 12:0:0.0']},
         'method': 'Zonal root mean square error of equatorial_pacific taux, time series are linearly detrended, observations and model regridded to generic_1x1deg',
         'name': 'taux Zonal RMSE',
         'ref': 'Using CDAT regridding and rms (uncentered and biased) calculation',
         'time_frequency': 'monthly',
         'units': '1e-3 N/m2'},
        'metric': {'datasets': "INMCM4_r1i1p1; ERA-Interim's tauu & Tropflux's taux; 's ",
         'method': 'The metric is the statistical value between the model and the observations',
         'name': 'BiasTauxLonRmse',
         'units': '1e-3 N/m2'}},
       'EnsoAmpl': {'diagnostic': {'ERA-Interim': {'keyerror': None,
          'name': 'ERA-Interim',
          'nyears': 40,
          'time_period': ['1979-1-16 12:0:0.0', '2019-3-16 12:0:0.0']},
         'HadISST': {'keyerror': None,
          'name': 'HadISST',
          'nyears': 151,
          'time_period': ['1870-1-16 11:59:59.5', '2020-10-16 12:0:0.0']},
         'INMCM4_r1i1p1': {'keyerror': None,
          'name': 'INMCM4_r1i1p1',
          'nyears': 156,
          'time_period': ['1850-1-16 12:0:0.0', '2005-12-16 12:0:0.0']},
         'Tropflux': {'keyerror': None,
          'name': 'Tropflux',
          'nyears': 40,
          'time_period': ['1979-1-15 0:0:0.0', '2018-12-15 12:0:0.0']},
         'method': 'Standard deviation of nino3.4 sstA, time series are linearly detrended',
         'name': 'ENSO amplitude',
         'ref': 'Using CDAT regression calculation',
         'time_frequency': 'monthly',
         'units': 'C'},
        'metric': {'datasets': "INMCM4_r1i1p1; ERA-Interim's ts & HadISST's sst & Tropflux's sst; 's ",
         'method': 'The metric is the absolute value of the relative difference between model and observations values (M = 100 * abs[[model-obs] / obs])',
         'name': 'EnsoAmpl',
         'units': '%'}},
       'EnsoDuration': {'diagnostic': {'ERA-Interim': {'keyerror': None,
          'name': 'ERA-Interim',
          'nyears': 40,
          'time_period': ['1979-1-16 12:0:0.0', '2019-3-16 12:0:0.0']},
         'HadISST': {'keyerror': None,
          'name': 'HadISST',
          'nyears': 151,
          'time_period': ['1870-1-16 11:59:59.5', '2020-10-16 12:0:0.0']},
         'INMCM4_r1i1p1': {'keyerror': None,
          'name': 'INMCM4_r1i1p1',
          'nyears': 156,
          'time_period': ['1850-1-16 12:0:0.0', '2005-12-16 12:0:0.0']},
         'Tropflux': {'keyerror': None,
          'name': 'Tropflux',
          'nyears': 40,
          'time_period': ['1979-1-15 0:0:0.0', '2018-12-15 12:0:0.0']},
         'method': 'nino3.4 SSTA during DEC regressed against nino3.4 SSTA during 6 years (centered on ENSO), the duration is the number of consecutive months during which the regression is above 0.25, time series are linearly detrended, smoothing using a triangle shaped window of 5 points',
         'name': 'ENSO Duration based on life cyle SSTA pattern',
         'ref': 'Using CDAT',
         'time_frequency': 'monthly',
         'units': 'months'},
        'metric': {'datasets': "INMCM4_r1i1p1; ERA-Interim's ts & HadISST's sst & Tropflux's sst; 's ",
         'method': 'The metric is the absolute value of the relative difference between model and observations values (M = 100 * abs[[model-obs] / obs])',
         'name': 'EnsoDuration',
         'units': '%'}},
       'EnsoSeasonality': {'diagnostic': {'ERA-Interim': {'keyerror': None,
          'name': 'ERA-Interim',
          'nyears': 40,
          'time_period': ['1979-1-16 12:0:0.0', '2019-3-16 12:0:0.0']},
         'HadISST': {'keyerror': None,
          'name': 'HadISST',
          'nyears': 151,
          'time_period': ['1870-1-16 11:59:59.5', '2020-10-16 12:0:0.0']},
         'INMCM4_r1i1p1': {'keyerror': None,
          'name': 'INMCM4_r1i1p1',
          'nyears': 156,
          'time_period': ['1850-1-16 12:0:0.0', '2005-12-16 12:0:0.0']},
         'Tropflux': {'keyerror': None,
          'name': 'Tropflux',
          'nyears': 40,
          'time_period': ['1979-1-15 0:0:0.0', '2018-12-15 12:0:0.0']},
         'method': 'Ratio between NDJ and MAM standard deviation nino3.4 sstA, time series are linearly detrended',
         'name': 'ENSO seasonality',
         'ref': 'Using CDAT std dev calculation',
         'time_frequency': 'monthly',
         'units': 'C/C'},
        'metric': {'datasets': "INMCM4_r1i1p1; ERA-Interim's ts & HadISST's sst & Tropflux's sst; 's ",
         'method': 'The metric is the absolute value of the relative difference between model and observations values (M = 100 * abs[[model-obs] / obs])',
         'name': 'EnsoSeasonality',
         'units': '%'}},
       'EnsoSstDiversity_2': {'diagnostic': {'ERA-Interim': {'keyerror': None,
          'name': 'ERA-Interim',
          'nyears': 40,
          'time_period': ['1979-1-16 12:0:0.0', '2019-3-16 12:0:0.0']},
         'HadISST': {'keyerror': None,
          'name': 'HadISST',
          'nyears': 151,
          'time_period': ['1870-1-16 11:59:59.5', '2020-10-16 12:0:0.0']},
         'INMCM4_r1i1p1': {'keyerror': None,
          'name': 'INMCM4_r1i1p1',
          'nyears': 156,
          'time_period': ['1850-1-16 12:0:0.0', '2005-12-16 12:0:0.0']},
         'Tropflux': {'keyerror': None,
          'name': 'Tropflux',
          'nyears': 40,
          'time_period': ['1979-1-15 0:0:0.0', '2018-12-15 12:0:0.0']},
         'method': 'Nino (Nina) events = nino3.4 sstA > 0.75 (< -0.75) during DEC, zonal SSTA (meridional averaged [-5.0 ; 5.0]), the zonal SSTA maximum (minimum) is located for each event, the diversity is the interquartile range (IQR = Q3 - Q1), time series are linearly detrended, smoothing using a triangle shaped window of 5 points',
         'name': 'ENSO Diversity (interquartile range)',
         'ref': 'Using CDAT regridding',
         'time_frequency': 'monthly',
         'units': 'long'},
        'metric': {'datasets': "INMCM4_r1i1p1; ERA-Interim's ts & HadISST's sst & Tropflux's sst; 's ",
         'method': 'The metric is the absolute value of the relative difference between model and observations values (M = 100 * abs[[model-obs] / obs])',
         'name': 'EnsoSstDiversity',
         'units': '%'}},
       'EnsoSstLonRmse': {'diagnostic': {'ERA-Interim': {'name': 'ERA-Interim',
          'nyears': 40,
          'time_period': ['1979-1-16 12:0:0.0', '2019-3-16 12:0:0.0']},
         'HadISST': {'name': 'HadISST',
          'nyears': 151,
          'time_period': ['1870-1-16 11:59:59.5', '2020-10-16 12:0:0.0']},
         'INMCM4_r1i1p1': {'keyerror': None,
          'name': 'INMCM4_r1i1p1',
          'nyears': 156,
          'time_period': ['1850-1-16 12:0:0.0', '2005-12-16 12:0:0.0']},
         'Tropflux': {'name': 'Tropflux',
          'nyears': 40,
          'time_period': ['1979-1-15 0:0:0.0', '2018-12-15 12:0:0.0']},
         'method': 'nino3.4 SSTA during DEC regressed against equatorial_pacific SSTA, time series are linearly detrended, smoothing using a triangle shaped window of 5 points, observations and model regridded to generic_1x1deg',
         'name': 'ENSO Zonal SSTA pattern',
         'ref': 'Using CDAT regridding and rms (uncentered and biased) calculation',
         'time_frequency': 'monthly',
         'units': 'C/C'},
        'metric': {'datasets': "INMCM4_r1i1p1; ERA-Interim's ts & HadISST's sst & Tropflux's sst; 's ",
         'method': 'The metric is the statistical value between the model and the observations',
         'name': 'EnsoSstLonRmse',
         'units': 'C/C'}},
       'EnsoSstSkew': {'diagnostic': {'ERA-Interim': {'keyerror': None,
          'name': 'ERA-Interim',
          'nyears': 40,
          'time_period': ['1979-1-16 12:0:0.0', '2019-3-16 12:0:0.0']},
         'HadISST': {'keyerror': None,
          'name': 'HadISST',
          'nyears': 151,
          'time_period': ['1870-1-16 11:59:59.5', '2020-10-16 12:0:0.0']},
         'INMCM4_r1i1p1': {'keyerror': None,
          'name': 'INMCM4_r1i1p1',
          'nyears': 156,
          'time_period': ['1850-1-16 12:0:0.0', '2005-12-16 12:0:0.0']},
         'Tropflux': {'keyerror': None,
          'name': 'Tropflux',
          'nyears': 40,
          'time_period': ['1979-1-15 0:0:0.0', '2018-12-15 12:0:0.0']},
         'method': 'Standard deviation of nino3.4 sstA, time series are linearly detrended',
         'name': 'ENSO skewness',
         'ref': 'Using CDAT regression calculation',
         'time_frequency': 'monthly',
         'units': 'C'},
        'metric': {'datasets': "INMCM4_r1i1p1; ERA-Interim's ts & HadISST's sst & Tropflux's sst; 's ",
         'method': 'The metric is the absolute value of the relative difference between model and observations values (M = 100 * abs[[model-obs] / obs])',
         'name': 'EnsoSstSkew',
         'units': '%'}},
       'EnsoSstTsRmse': {'diagnostic': {'ERA-Interim': {'name': 'ERA-Interim',
          'nyears': 40,
          'time_period': ['1979-1-16 12:0:0.0', '2019-3-16 12:0:0.0']},
         'HadISST': {'name': 'HadISST',
          'nyears': 151,
          'time_period': ['1870-1-16 11:59:59.5', '2020-10-16 12:0:0.0']},
         'INMCM4_r1i1p1': {'keyerror': None,
          'name': 'INMCM4_r1i1p1',
          'nyears': 156,
          'time_period': ['1850-1-16 12:0:0.0', '2005-12-16 12:0:0.0']},
         'Tropflux': {'name': 'Tropflux',
          'nyears': 40,
          'time_period': ['1979-1-15 0:0:0.0', '2018-12-15 12:0:0.0']},
         'method': 'nino3.4 SSTA during DEC regressed against nino3.4 SSTA during 6 years (centered on ENSO), time series are linearly detrended, smoothing using a triangle shaped window of 5 points',
         'name': 'ENSO life cyle SSTA pattern',
         'ref': 'Using CDAT regridding and rms (uncentered and biased) calculation',
         'time_frequency': 'monthly',
         'units': 'C/C'},
        'metric': {'datasets': "INMCM4_r1i1p1; ERA-Interim's ts & HadISST's sst & Tropflux's sst; 's ",
         'method': 'The metric is the statistical value between the model and the observations',
         'name': 'EnsoSstTsRmse',
         'units': 'C/C'}},
       'SeasonalPrLatRmse': {'diagnostic': {'ERA-Interim': {'name': 'ERA-Interim',
          'nyears': 40,
          'time_period': ['1979-1-16 12:0:0.0', '2019-3-16 12:0:0.0']},
         'GPCPv2.3': {'name': 'GPCPv2.3',
          'nyears': 41,
          'time_period': ['1979-1-1 0:0:0.0', '2019-7-1 0:0:0.0']},
         'INMCM4_r1i1p1': {'keyerror': None,
          'name': 'INMCM4_r1i1p1',
          'nyears': 156,
          'time_period': ['1850-1-16 12:0:0.0', '2005-12-16 12:0:0.0']},
         'method': 'Meridional root mean square error of nino3_LatExt climatological pr STD, time series are linearly detrended, observations and model regridded to generic_1x1deg',
         'name': 'pr meridional seasonality RMSE',
         'ref': 'Using CDAT regridding and rms (uncentered and biased) calculation',
         'time_frequency': 'monthly',
         'units': 'mm/day'},
        'metric': {'datasets': "INMCM4_r1i1p1; ERA-Interim's pr & GPCPv2.3's precip; 's ",
         'method': 'The metric is the statistical value between the model and the observations',
         'name': 'SeasonalPrLatRmse',
         'units': 'mm/day'}},
       'SeasonalPrLonRmse': {'diagnostic': {'ERA-Interim': {'name': 'ERA-Interim',
          'nyears': 40,
          'time_period': ['1979-1-16 12:0:0.0', '2019-3-16 12:0:0.0']},
         'GPCPv2.3': {'name': 'GPCPv2.3',
          'nyears': 41,
          'time_period': ['1979-1-1 0:0:0.0', '2019-7-1 0:0:0.0']},
         'INMCM4_r1i1p1': {'keyerror': None,
          'name': 'INMCM4_r1i1p1',
          'nyears': 156,
          'time_period': ['1850-1-16 12:0:0.0', '2005-12-16 12:0:0.0']},
         'method': 'Zonal root mean square error of equatorial_pacific climatological pr STD, time series are linearly detrended, observations and model regridded to generic_1x1deg',
         'name': 'pr zonal seasonality RMSE',
         'ref': 'Using CDAT regridding and rms (uncentered and biased) calculation',
         'time_frequency': 'monthly',
         'units': 'mm/day'},
        'metric': {'datasets': "INMCM4_r1i1p1; ERA-Interim's pr & GPCPv2.3's precip; 's ",
         'method': 'The metric is the statistical value between the model and the observations',
         'name': 'SeasonalPrLonRmse',
         'units': 'mm/day'}},
       'SeasonalSstLonRmse': {'diagnostic': {'ERA-Interim': {'name': 'ERA-Interim',
          'nyears': 40,
          'time_period': ['1979-1-16 12:0:0.0', '2019-3-16 12:0:0.0']},
         'HadISST': {'name': 'HadISST',
          'nyears': 151,
          'time_period': ['1870-1-16 11:59:59.5', '2020-10-16 12:0:0.0']},
         'INMCM4_r1i1p1': {'keyerror': None,
          'name': 'INMCM4_r1i1p1',
          'nyears': 156,
          'time_period': ['1850-1-16 12:0:0.0', '2005-12-16 12:0:0.0']},
         'Tropflux': {'name': 'Tropflux',
          'nyears': 40,
          'time_period': ['1979-1-15 0:0:0.0', '2018-12-15 12:0:0.0']},
         'method': 'Zonal root mean square error of equatorial_pacific climatological sst STD, time series are linearly detrended, observations and model regridded to generic_1x1deg',
         'name': 'sst zonal seasonality RMSE',
         'ref': 'Using CDAT regridding and rms (uncentered and biased) calculation',
         'time_frequency': 'monthly',
         'units': 'C'},
        'metric': {'datasets': "INMCM4_r1i1p1; ERA-Interim's ts & HadISST's sst & Tropflux's sst; 's ",
         'method': 'The metric is the statistical value between the model and the observations',
         'name': 'SeasonalSstLonRmse',
         'units': 'C'}},
       'SeasonalTauxLonRmse': {'diagnostic': {'ERA-Interim': {'name': 'ERA-Interim',
          'nyears': 40,
          'time_period': ['1979-1-16 12:0:0.0', '2019-3-16 12:0:0.0']},
         'INMCM4_r1i1p1': {'keyerror': None,
          'name': 'INMCM4_r1i1p1',
          'nyears': 156,
          'time_period': ['1850-1-16 12:0:0.0', '2005-12-16 12:0:0.0']},
         'Tropflux': {'name': 'Tropflux',
          'nyears': 40,
          'time_period': ['1979-1-15 0:0:0.0', '2018-12-15 12:0:0.0']},
         'method': 'Zonal root mean square error of equatorial_pacific climatological taux STD, time series are linearly detrended, observations and model regridded to generic_1x1deg',
         'name': 'taux zonal seasonality RMSE',
         'ref': 'Using CDAT regridding and rms (uncentered and biased) calculation',
         'time_frequency': 'monthly',
         'units': '1e-3 N/m2'},
        'metric': {'datasets': "INMCM4_r1i1p1; ERA-Interim's tauu & Tropflux's taux; 's ",
         'method': 'The metric is the statistical value between the model and the observations',
         'name': 'SeasonalTauxLonRmse',
         'units': '1e-3 N/m2'}}},
      'name': 'Metrics Collection for ENSO performance'},
     'value': {'BiasPrLatRmse': {'diagnostic': {'ERA-Interim': {'value': None,
         'value_error': None},
        'GPCPv2.3': {'value': None, 'value_error': None},
        'INMCM4_r1i1p1': {'value': None, 'value_error': None}},
       'metric': {'ERA-Interim': {'value': 2.1250380284950356,
         'value_error': None},
        'GPCPv2.3': {'value': 2.5625005961198295, 'value_error': None}}},
      'BiasPrLonRmse': {'diagnostic': {'ERA-Interim': {'value': None,
         'value_error': None},
        'GPCPv2.3': {'value': None, 'value_error': None},
        'INMCM4_r1i1p1': {'value': None, 'value_error': None}},
       'metric': {'ERA-Interim': {'value': 2.6911811722539967,
         'value_error': None},
        'GPCPv2.3': {'value': 1.8358278478670285, 'value_error': None}}},
      'BiasSstLonRmse': {'diagnostic': {'ERA-Interim': {'value': None,
         'value_error': None},
        'HadISST': {'value': None, 'value_error': None},
        'INMCM4_r1i1p1': {'value': None, 'value_error': None},
        'Tropflux': {'value': None, 'value_error': None}},
       'metric': {'ERA-Interim': {'value': 1.410591128124567,
         'value_error': None},
        'HadISST': {'value': 1.2527015571058957, 'value_error': None},
        'Tropflux': {'value': 1.457480167163873, 'value_error': None}}},
      'BiasTauxLonRmse': {'diagnostic': {'ERA-Interim': {'value': None,
         'value_error': None},
        'INMCM4_r1i1p1': {'value': None, 'value_error': None},
        'Tropflux': {'value': None, 'value_error': None}},
       'metric': {'ERA-Interim': {'value': 6.2651244636026115,
         'value_error': None},
        'Tropflux': {'value': 6.749885733253258, 'value_error': None}}},
      'EnsoAmpl': {'diagnostic': {'ERA-Interim': {'value': 0.8989844997845644,
         'value_error': 0.14214193002531866},
        'HadISST': {'value': 0.7665787872085695,
         'value_error': 0.06238329697691264},
        'INMCM4_r1i1p1': {'value': 0.6277034697811947,
         'value_error': 0.050256498876555006},
        'Tropflux': {'value': 0.9039789553693535,
         'value_error': 0.14293162279134272}},
       'metric': {'ERA-Interim': {'value': 30.176385696124946,
         'value_error': 16.630446008506865},
        'HadISST': {'value': 18.116248420214873,
         'value_error': 13.219552183204076},
        'Tropflux': {'value': 30.562158991331422,
         'value_error': 16.53856331206645}}},
      'EnsoDuration': {'diagnostic': {'ERA-Interim': {'value': 13.0,
         'value_error': None},
        'HadISST': {'value': 13.0, 'value_error': None},
        'INMCM4_r1i1p1': {'value': 15.0, 'value_error': None},
        'Tropflux': {'value': 13.0, 'value_error': None}},
       'metric': {'ERA-Interim': {'value': 15.384615384615385,
         'value_error': None},
        'HadISST': {'value': 15.384615384615385, 'value_error': None},
        'Tropflux': {'value': 15.384615384615385, 'value_error': None}}},
      'EnsoSeasonality': {'diagnostic': {'ERA-Interim': {'value': 2.0466846866656914,
         'value_error': 0.6513411033995022},
        'HadISST': {'value': 1.6639865947361325,
         'value_error': 0.2712772451657809},
        'INMCM4_r1i1p1': {'value': 1.1189436797528791,
         'value_error': 0.17946291197842962},
        'Tropflux': {'value': 2.0532132553583624,
         'value_error': 0.6534187683977347}},
       'metric': {'ERA-Interim': {'value': 45.32896605701487,
         'value_error': 26.167090182077686},
        'HadISST': {'value': 32.75524674942972,
         'value_error': 21.747929175624712},
        'Tropflux': {'value': 45.50280265175954,
         'value_error': 26.083887112306336}}},
      'EnsoSstDiversity_2': {'diagnostic': {'ERA-Interim': {'value': 33.25,
         'value_error': None},
        'HadISST': {'value': 49.0, 'value_error': None},
        'INMCM4_r1i1p1': {'value': 27.5, 'value_error': None},
        'Tropflux': {'value': 32.0, 'value_error': None}},
       'metric': {'ERA-Interim': {'value': 17.293233082706767,
         'value_error': None},
        'HadISST': {'value': 43.87755102040816, 'value_error': None},
        'Tropflux': {'value': 14.0625, 'value_error': None}}},
      'EnsoSstLonRmse': {'diagnostic': {'ERA-Interim': {'value': None,
         'value_error': None},
        'HadISST': {'value': None, 'value_error': None},
        'INMCM4_r1i1p1': {'value': None, 'value_error': None},
        'Tropflux': {'value': None, 'value_error': None}},
       'metric': {'ERA-Interim': {'value': 0.2842806817590433,
         'value_error': None},
        'HadISST': {'value': 0.31168072304532934, 'value_error': None},
        'Tropflux': {'value': 0.2874499936571269, 'value_error': None}}},
      'EnsoSstSkew': {'diagnostic': {'ERA-Interim': {'value': 0.39098111106809963,
         'value_error': 0.061819541653923164},
        'HadISST': {'value': 0.38989908235027515,
         'value_error': 0.03172953733021198},
        'INMCM4_r1i1p1': {'value': 0.03126856836623799,
         'value_error': 0.0025034890623069194},
        'Tropflux': {'value': 0.39744741059612115,
         'value_error': 0.06284195338099416}},
       'metric': {'ERA-Interim': {'value': 92.00253733976633,
         'value_error': 1.9048193408785528},
        'HadISST': {'value': 91.98034317553302,
         'value_error': 1.2947168374317939},
        'Tropflux': {'value': 92.13265263966896,
         'value_error': 1.8738287441945427}}},
      'EnsoSstTsRmse': {'diagnostic': {'ERA-Interim': {'value': None,
         'value_error': None},
        'HadISST': {'value': None, 'value_error': None},
        'INMCM4_r1i1p1': {'value': None, 'value_error': None},
        'Tropflux': {'value': None, 'value_error': None}},
       'metric': {'ERA-Interim': {'value': 0.12369925557666306,
         'value_error': None},
        'HadISST': {'value': 0.10049974803851001, 'value_error': None},
        'Tropflux': {'value': 0.12284172461257503, 'value_error': None}}},
      'SeasonalPrLatRmse': {'diagnostic': {'ERA-Interim': {'value': None,
         'value_error': None},
        'GPCPv2.3': {'value': None, 'value_error': None},
        'INMCM4_r1i1p1': {'value': None, 'value_error': None}},
       'metric': {'ERA-Interim': {'value': 1.1139415287062409,
         'value_error': None},
        'GPCPv2.3': {'value': 1.276589260142767, 'value_error': None}}},
      'SeasonalPrLonRmse': {'diagnostic': {'ERA-Interim': {'value': None,
         'value_error': None},
        'GPCPv2.3': {'value': None, 'value_error': None},
        'INMCM4_r1i1p1': {'value': None, 'value_error': None}},
       'metric': {'ERA-Interim': {'value': 0.5610026692395598,
         'value_error': None},
        'GPCPv2.3': {'value': 0.7029514492121425, 'value_error': None}}},
      'SeasonalSstLonRmse': {'diagnostic': {'ERA-Interim': {'value': None,
         'value_error': None},
        'HadISST': {'value': None, 'value_error': None},
        'INMCM4_r1i1p1': {'value': None, 'value_error': None},
        'Tropflux': {'value': None, 'value_error': None}},
       'metric': {'ERA-Interim': {'value': 0.46435702008200286,
         'value_error': None},
        'HadISST': {'value': 0.4854333329922383, 'value_error': None},
        'Tropflux': {'value': 0.45398682099513527, 'value_error': None}}},
      'SeasonalTauxLonRmse': {'diagnostic': {'ERA-Interim': {'value': None,
         'value_error': None},
        'INMCM4_r1i1p1': {'value': None, 'value_error': None},
        'Tropflux': {'value': None, 'value_error': None}},
       'metric': {'ERA-Interim': {'value': 3.256882696859938,
         'value_error': None},
        'Tropflux': {'value': 3.176237088454591, 'value_error': None}}}}}},
   'IPSL-CM5A-LR': {'r1i1p1': {'metadata': {'description_of_the_collection': 'Describe which science question this collection is about',
      'metrics': {'BiasPrLatRmse': {'diagnostic': {'ERA-Interim': {'name': 'ERA-Interim',
          'nyears': 40,
          'time_period': ['1979-1-16 12:0:0.0', '2019-3-16 12:0:0.0']},
         'GPCPv2.3': {'name': 'GPCPv2.3',
          'nyears': 41,
          'time_period': ['1979-1-1 0:0:0.0', '2019-7-1 0:0:0.0']},
         'IPSL-CM5A-LR_r1i1p1': {'keyerror': None,
          'name': 'IPSL-CM5A-LR_r1i1p1',
          'nyears': 156,
          'time_period': ['1850-1-16 12:0:0.0', '2005-12-16 12:0:0.0']},
         'method': 'Meridional root mean square error of nino3_LatExt pr, time series are linearly detrended, observations and model regridded to generic_1x1deg',
         'name': 'pr Meridional RMSE',
         'ref': 'Using CDAT regridding and rms (uncentered and biased) calculation',
         'time_frequency': 'monthly',
         'units': 'mm/day'},
        'metric': {'datasets': "IPSL-CM5A-LR_r1i1p1; ERA-Interim's pr & GPCPv2.3's precip; 's ",
         'method': 'The metric is the statistical value between the model and the observations',
         'name': 'BiasPrLatRmse',
         'units': 'mm/day'}},
       'BiasPrLonRmse': {'diagnostic': {'ERA-Interim': {'name': 'ERA-Interim',
          'nyears': 40,
          'time_period': ['1979-1-16 12:0:0.0', '2019-3-16 12:0:0.0']},
         'GPCPv2.3': {'name': 'GPCPv2.3',
          'nyears': 41,
          'time_period': ['1979-1-1 0:0:0.0', '2019-7-1 0:0:0.0']},
         'IPSL-CM5A-LR_r1i1p1': {'keyerror': None,
          'name': 'IPSL-CM5A-LR_r1i1p1',
          'nyears': 156,
          'time_period': ['1850-1-16 12:0:0.0', '2005-12-16 12:0:0.0']},
         'method': 'Zonal root mean square error of equatorial_pacific pr, time series are linearly detrended, observations and model regridded to generic_1x1deg',
         'name': 'pr Zonal RMSE',
         'ref': 'Using CDAT regridding and rms (uncentered and biased) calculation',
         'time_frequency': 'monthly',
         'units': 'mm/day'},
        'metric': {'datasets': "IPSL-CM5A-LR_r1i1p1; ERA-Interim's pr & GPCPv2.3's precip; 's ",
         'method': 'The metric is the statistical value between the model and the observations',
         'name': 'BiasPrLonRmse',
         'units': 'mm/day'}},
       'BiasSstLonRmse': {'diagnostic': {'ERA-Interim': {'name': 'ERA-Interim',
          'nyears': 40,
          'time_period': ['1979-1-16 12:0:0.0', '2019-3-16 12:0:0.0']},
         'HadISST': {'name': 'HadISST',
          'nyears': 151,
          'time_period': ['1870-1-16 11:59:59.5', '2020-10-16 12:0:0.0']},
         'IPSL-CM5A-LR_r1i1p1': {'keyerror': None,
          'name': 'IPSL-CM5A-LR_r1i1p1',
          'nyears': 156,
          'time_period': ['1850-1-16 12:0:0.0', '2005-12-16 12:0:0.0']},
         'Tropflux': {'name': 'Tropflux',
          'nyears': 40,
          'time_period': ['1979-1-15 0:0:0.0', '2018-12-15 12:0:0.0']},
         'method': 'Zonal root mean square error of equatorial_pacific sst, time series are linearly detrended, observations and model regridded to generic_1x1deg',
         'name': 'sst Zonal RMSE',
         'ref': 'Using CDAT regridding and rms (uncentered and biased) calculation',
         'time_frequency': 'monthly',
         'units': 'C'},
        'metric': {'datasets': "IPSL-CM5A-LR_r1i1p1; ERA-Interim's ts & HadISST's sst & Tropflux's sst; 's ",
         'method': 'The metric is the statistical value between the model and the observations',
         'name': 'BiasSstLonRmse',
         'units': 'C'}},
       'BiasTauxLonRmse': {'diagnostic': {'ERA-Interim': {'name': 'ERA-Interim',
          'nyears': 40,
          'time_period': ['1979-1-16 12:0:0.0', '2019-3-16 12:0:0.0']},
         'IPSL-CM5A-LR_r1i1p1': {'keyerror': None,
          'name': 'IPSL-CM5A-LR_r1i1p1',
          'nyears': 156,
          'time_period': ['1850-1-16 12:0:0.0', '2005-12-16 12:0:0.0']},
         'Tropflux': {'name': 'Tropflux',
          'nyears': 40,
          'time_period': ['1979-1-15 0:0:0.0', '2018-12-15 12:0:0.0']},
         'method': 'Zonal root mean square error of equatorial_pacific taux, time series are linearly detrended, observations and model regridded to generic_1x1deg',
         'name': 'taux Zonal RMSE',
         'ref': 'Using CDAT regridding and rms (uncentered and biased) calculation',
         'time_frequency': 'monthly',
         'units': '1e-3 N/m2'},
        'metric': {'datasets': "IPSL-CM5A-LR_r1i1p1; ERA-Interim's tauu & Tropflux's taux; 's ",
         'method': 'The metric is the statistical value between the model and the observations',
         'name': 'BiasTauxLonRmse',
         'units': '1e-3 N/m2'}},
       'EnsoAmpl': {'diagnostic': {'ERA-Interim': {'keyerror': None,
          'name': 'ERA-Interim',
          'nyears': 40,
          'time_period': ['1979-1-16 12:0:0.0', '2019-3-16 12:0:0.0']},
         'HadISST': {'keyerror': None,
          'name': 'HadISST',
          'nyears': 151,
          'time_period': ['1870-1-16 11:59:59.5', '2020-10-16 12:0:0.0']},
         'IPSL-CM5A-LR_r1i1p1': {'keyerror': None,
          'name': 'IPSL-CM5A-LR_r1i1p1',
          'nyears': 156,
          'time_period': ['1850-1-16 12:0:0.0', '2005-12-16 12:0:0.0']},
         'Tropflux': {'keyerror': None,
          'name': 'Tropflux',
          'nyears': 40,
          'time_period': ['1979-1-15 0:0:0.0', '2018-12-15 12:0:0.0']},
         'method': 'Standard deviation of nino3.4 sstA, time series are linearly detrended',
         'name': 'ENSO amplitude',
         'ref': 'Using CDAT regression calculation',
         'time_frequency': 'monthly',
         'units': 'C'},
        'metric': {'datasets': "IPSL-CM5A-LR_r1i1p1; ERA-Interim's ts & HadISST's sst & Tropflux's sst; 's ",
         'method': 'The metric is the absolute value of the relative difference between model and observations values (M = 100 * abs[[model-obs] / obs])',
         'name': 'EnsoAmpl',
         'units': '%'}},
       'EnsoDuration': {'diagnostic': {'ERA-Interim': {'keyerror': None,
          'name': 'ERA-Interim',
          'nyears': 40,
          'time_period': ['1979-1-16 12:0:0.0', '2019-3-16 12:0:0.0']},
         'HadISST': {'keyerror': None,
          'name': 'HadISST',
          'nyears': 151,
          'time_period': ['1870-1-16 11:59:59.5', '2020-10-16 12:0:0.0']},
         'IPSL-CM5A-LR_r1i1p1': {'keyerror': None,
          'name': 'IPSL-CM5A-LR_r1i1p1',
          'nyears': 156,
          'time_period': ['1850-1-16 12:0:0.0', '2005-12-16 12:0:0.0']},
         'Tropflux': {'keyerror': None,
          'name': 'Tropflux',
          'nyears': 40,
          'time_period': ['1979-1-15 0:0:0.0', '2018-12-15 12:0:0.0']},
         'method': 'nino3.4 SSTA during DEC regressed against nino3.4 SSTA during 6 years (centered on ENSO), the duration is the number of consecutive months during which the regression is above 0.25, time series are linearly detrended, smoothing using a triangle shaped window of 5 points',
         'name': 'ENSO Duration based on life cyle SSTA pattern',
         'ref': 'Using CDAT',
         'time_frequency': 'monthly',
         'units': 'months'},
        'metric': {'datasets': "IPSL-CM5A-LR_r1i1p1; ERA-Interim's ts & HadISST's sst & Tropflux's sst; 's ",
         'method': 'The metric is the absolute value of the relative difference between model and observations values (M = 100 * abs[[model-obs] / obs])',
         'name': 'EnsoDuration',
         'units': '%'}},
       'EnsoSeasonality': {'diagnostic': {'ERA-Interim': {'keyerror': None,
          'name': 'ERA-Interim',
          'nyears': 40,
          'time_period': ['1979-1-16 12:0:0.0', '2019-3-16 12:0:0.0']},
         'HadISST': {'keyerror': None,
          'name': 'HadISST',
          'nyears': 151,
          'time_period': ['1870-1-16 11:59:59.5', '2020-10-16 12:0:0.0']},
         'IPSL-CM5A-LR_r1i1p1': {'keyerror': None,
          'name': 'IPSL-CM5A-LR_r1i1p1',
          'nyears': 156,
          'time_period': ['1850-1-16 12:0:0.0', '2005-12-16 12:0:0.0']},
         'Tropflux': {'keyerror': None,
          'name': 'Tropflux',
          'nyears': 40,
          'time_period': ['1979-1-15 0:0:0.0', '2018-12-15 12:0:0.0']},
         'method': 'Ratio between NDJ and MAM standard deviation nino3.4 sstA, time series are linearly detrended',
         'name': 'ENSO seasonality',
         'ref': 'Using CDAT std dev calculation',
         'time_frequency': 'monthly',
         'units': 'C/C'},
        'metric': {'datasets': "IPSL-CM5A-LR_r1i1p1; ERA-Interim's ts & HadISST's sst & Tropflux's sst; 's ",
         'method': 'The metric is the absolute value of the relative difference between model and observations values (M = 100 * abs[[model-obs] / obs])',
         'name': 'EnsoSeasonality',
         'units': '%'}},
       'EnsoSstDiversity_2': {'diagnostic': {'ERA-Interim': {'keyerror': None,
          'name': 'ERA-Interim',
          'nyears': 40,
          'time_period': ['1979-1-16 12:0:0.0', '2019-3-16 12:0:0.0']},
         'HadISST': {'keyerror': None,
          'name': 'HadISST',
          'nyears': 151,
          'time_period': ['1870-1-16 11:59:59.5', '2020-10-16 12:0:0.0']},
         'IPSL-CM5A-LR_r1i1p1': {'keyerror': None,
          'name': 'IPSL-CM5A-LR_r1i1p1',
          'nyears': 156,
          'time_period': ['1850-1-16 12:0:0.0', '2005-12-16 12:0:0.0']},
         'Tropflux': {'keyerror': None,
          'name': 'Tropflux',
          'nyears': 40,
          'time_period': ['1979-1-15 0:0:0.0', '2018-12-15 12:0:0.0']},
         'method': 'Nino (Nina) events = nino3.4 sstA > 0.75 (< -0.75) during DEC, zonal SSTA (meridional averaged [-5.0 ; 5.0]), the zonal SSTA maximum (minimum) is located for each event, the diversity is the interquartile range (IQR = Q3 - Q1), time series are linearly detrended, smoothing using a triangle shaped window of 5 points',
         'name': 'ENSO Diversity (interquartile range)',
         'ref': 'Using CDAT regridding',
         'time_frequency': 'monthly',
         'units': 'long'},
        'metric': {'datasets': "IPSL-CM5A-LR_r1i1p1; ERA-Interim's ts & HadISST's sst & Tropflux's sst; 's ",
         'method': 'The metric is the absolute value of the relative difference between model and observations values (M = 100 * abs[[model-obs] / obs])',
         'name': 'EnsoSstDiversity',
         'units': '%'}},
       'EnsoSstLonRmse': {'diagnostic': {'ERA-Interim': {'name': 'ERA-Interim',
          'nyears': 40,
          'time_period': ['1979-1-16 12:0:0.0', '2019-3-16 12:0:0.0']},
         'HadISST': {'name': 'HadISST',
          'nyears': 151,
          'time_period': ['1870-1-16 11:59:59.5', '2020-10-16 12:0:0.0']},
         'IPSL-CM5A-LR_r1i1p1': {'keyerror': None,
          'name': 'IPSL-CM5A-LR_r1i1p1',
          'nyears': 156,
          'time_period': ['1850-1-16 12:0:0.0', '2005-12-16 12:0:0.0']},
         'Tropflux': {'name': 'Tropflux',
          'nyears': 40,
          'time_period': ['1979-1-15 0:0:0.0', '2018-12-15 12:0:0.0']},
         'method': 'nino3.4 SSTA during DEC regressed against equatorial_pacific SSTA, time series are linearly detrended, smoothing using a triangle shaped window of 5 points, observations and model regridded to generic_1x1deg',
         'name': 'ENSO Zonal SSTA pattern',
         'ref': 'Using CDAT regridding and rms (uncentered and biased) calculation',
         'time_frequency': 'monthly',
         'units': 'C/C'},
        'metric': {'datasets': "IPSL-CM5A-LR_r1i1p1; ERA-Interim's ts & HadISST's sst & Tropflux's sst; 's ",
         'method': 'The metric is the statistical value between the model and the observations',
         'name': 'EnsoSstLonRmse',
         'units': 'C/C'}},
       'EnsoSstSkew': {'diagnostic': {'ERA-Interim': {'keyerror': None,
          'name': 'ERA-Interim',
          'nyears': 40,
          'time_period': ['1979-1-16 12:0:0.0', '2019-3-16 12:0:0.0']},
         'HadISST': {'keyerror': None,
          'name': 'HadISST',
          'nyears': 151,
          'time_period': ['1870-1-16 11:59:59.5', '2020-10-16 12:0:0.0']},
         'IPSL-CM5A-LR_r1i1p1': {'keyerror': None,
          'name': 'IPSL-CM5A-LR_r1i1p1',
          'nyears': 156,
          'time_period': ['1850-1-16 12:0:0.0', '2005-12-16 12:0:0.0']},
         'Tropflux': {'keyerror': None,
          'name': 'Tropflux',
          'nyears': 40,
          'time_period': ['1979-1-15 0:0:0.0', '2018-12-15 12:0:0.0']},
         'method': 'Standard deviation of nino3.4 sstA, time series are linearly detrended',
         'name': 'ENSO skewness',
         'ref': 'Using CDAT regression calculation',
         'time_frequency': 'monthly',
         'units': 'C'},
        'metric': {'datasets': "IPSL-CM5A-LR_r1i1p1; ERA-Interim's ts & HadISST's sst & Tropflux's sst; 's ",
         'method': 'The metric is the absolute value of the relative difference between model and observations values (M = 100 * abs[[model-obs] / obs])',
         'name': 'EnsoSstSkew',
         'units': '%'}},
       'EnsoSstTsRmse': {'diagnostic': {'ERA-Interim': {'name': 'ERA-Interim',
          'nyears': 40,
          'time_period': ['1979-1-16 12:0:0.0', '2019-3-16 12:0:0.0']},
         'HadISST': {'name': 'HadISST',
          'nyears': 151,
          'time_period': ['1870-1-16 11:59:59.5', '2020-10-16 12:0:0.0']},
         'IPSL-CM5A-LR_r1i1p1': {'keyerror': None,
          'name': 'IPSL-CM5A-LR_r1i1p1',
          'nyears': 156,
          'time_period': ['1850-1-16 12:0:0.0', '2005-12-16 12:0:0.0']},
         'Tropflux': {'name': 'Tropflux',
          'nyears': 40,
          'time_period': ['1979-1-15 0:0:0.0', '2018-12-15 12:0:0.0']},
         'method': 'nino3.4 SSTA during DEC regressed against nino3.4 SSTA during 6 years (centered on ENSO), time series are linearly detrended, smoothing using a triangle shaped window of 5 points',
         'name': 'ENSO life cyle SSTA pattern',
         'ref': 'Using CDAT regridding and rms (uncentered and biased) calculation',
         'time_frequency': 'monthly',
         'units': 'C/C'},
        'metric': {'datasets': "IPSL-CM5A-LR_r1i1p1; ERA-Interim's ts & HadISST's sst & Tropflux's sst; 's ",
         'method': 'The metric is the statistical value between the model and the observations',
         'name': 'EnsoSstTsRmse',
         'units': 'C/C'}},
       'SeasonalPrLatRmse': {'diagnostic': {'ERA-Interim': {'name': 'ERA-Interim',
          'nyears': 40,
          'time_period': ['1979-1-16 12:0:0.0', '2019-3-16 12:0:0.0']},
         'GPCPv2.3': {'name': 'GPCPv2.3',
          'nyears': 41,
          'time_period': ['1979-1-1 0:0:0.0', '2019-7-1 0:0:0.0']},
         'IPSL-CM5A-LR_r1i1p1': {'keyerror': None,
          'name': 'IPSL-CM5A-LR_r1i1p1',
          'nyears': 156,
          'time_period': ['1850-1-16 12:0:0.0', '2005-12-16 12:0:0.0']},
         'method': 'Meridional root mean square error of nino3_LatExt climatological pr STD, time series are linearly detrended, observations and model regridded to generic_1x1deg',
         'name': 'pr meridional seasonality RMSE',
         'ref': 'Using CDAT regridding and rms (uncentered and biased) calculation',
         'time_frequency': 'monthly',
         'units': 'mm/day'},
        'metric': {'datasets': "IPSL-CM5A-LR_r1i1p1; ERA-Interim's pr & GPCPv2.3's precip; 's ",
         'method': 'The metric is the statistical value between the model and the observations',
         'name': 'SeasonalPrLatRmse',
         'units': 'mm/day'}},
       'SeasonalPrLonRmse': {'diagnostic': {'ERA-Interim': {'name': 'ERA-Interim',
          'nyears': 40,
          'time_period': ['1979-1-16 12:0:0.0', '2019-3-16 12:0:0.0']},
         'GPCPv2.3': {'name': 'GPCPv2.3',
          'nyears': 41,
          'time_period': ['1979-1-1 0:0:0.0', '2019-7-1 0:0:0.0']},
         'IPSL-CM5A-LR_r1i1p1': {'keyerror': None,
          'name': 'IPSL-CM5A-LR_r1i1p1',
          'nyears': 156,
          'time_period': ['1850-1-16 12:0:0.0', '2005-12-16 12:0:0.0']},
         'method': 'Zonal root mean square error of equatorial_pacific climatological pr STD, time series are linearly detrended, observations and model regridded to generic_1x1deg',
         'name': 'pr zonal seasonality RMSE',
         'ref': 'Using CDAT regridding and rms (uncentered and biased) calculation',
         'time_frequency': 'monthly',
         'units': 'mm/day'},
        'metric': {'datasets': "IPSL-CM5A-LR_r1i1p1; ERA-Interim's pr & GPCPv2.3's precip; 's ",
         'method': 'The metric is the statistical value between the model and the observations',
         'name': 'SeasonalPrLonRmse',
         'units': 'mm/day'}},
       'SeasonalSstLonRmse': {'diagnostic': {'ERA-Interim': {'name': 'ERA-Interim',
          'nyears': 40,
          'time_period': ['1979-1-16 12:0:0.0', '2019-3-16 12:0:0.0']},
         'HadISST': {'name': 'HadISST',
          'nyears': 151,
          'time_period': ['1870-1-16 11:59:59.5', '2020-10-16 12:0:0.0']},
         'IPSL-CM5A-LR_r1i1p1': {'keyerror': None,
          'name': 'IPSL-CM5A-LR_r1i1p1',
          'nyears': 156,
          'time_period': ['1850-1-16 12:0:0.0', '2005-12-16 12:0:0.0']},
         'Tropflux': {'name': 'Tropflux',
          'nyears': 40,
          'time_period': ['1979-1-15 0:0:0.0', '2018-12-15 12:0:0.0']},
         'method': 'Zonal root mean square error of equatorial_pacific climatological sst STD, time series are linearly detrended, observations and model regridded to generic_1x1deg',
         'name': 'sst zonal seasonality RMSE',
         'ref': 'Using CDAT regridding and rms (uncentered and biased) calculation',
         'time_frequency': 'monthly',
         'units': 'C'},
        'metric': {'datasets': "IPSL-CM5A-LR_r1i1p1; ERA-Interim's ts & HadISST's sst & Tropflux's sst; 's ",
         'method': 'The metric is the statistical value between the model and the observations',
         'name': 'SeasonalSstLonRmse',
         'units': 'C'}},
       'SeasonalTauxLonRmse': {'diagnostic': {'ERA-Interim': {'name': 'ERA-Interim',
          'nyears': 40,
          'time_period': ['1979-1-16 12:0:0.0', '2019-3-16 12:0:0.0']},
         'IPSL-CM5A-LR_r1i1p1': {'keyerror': None,
          'name': 'IPSL-CM5A-LR_r1i1p1',
          'nyears': 156,
          'time_period': ['1850-1-16 12:0:0.0', '2005-12-16 12:0:0.0']},
         'Tropflux': {'name': 'Tropflux',
          'nyears': 40,
          'time_period': ['1979-1-15 0:0:0.0', '2018-12-15 12:0:0.0']},
         'method': 'Zonal root mean square error of equatorial_pacific climatological taux STD, time series are linearly detrended, observations and model regridded to generic_1x1deg',
         'name': 'taux zonal seasonality RMSE',
         'ref': 'Using CDAT regridding and rms (uncentered and biased) calculation',
         'time_frequency': 'monthly',
         'units': '1e-3 N/m2'},
        'metric': {'datasets': "IPSL-CM5A-LR_r1i1p1; ERA-Interim's tauu & Tropflux's taux; 's ",
         'method': 'The metric is the statistical value between the model and the observations',
         'name': 'SeasonalTauxLonRmse',
         'units': '1e-3 N/m2'}}},
      'name': 'Metrics Collection for ENSO performance'},
     'value': {'BiasPrLatRmse': {'diagnostic': {'ERA-Interim': {'value': None,
         'value_error': None},
        'GPCPv2.3': {'value': None, 'value_error': None},
        'IPSL-CM5A-LR_r1i1p1': {'value': None, 'value_error': None}},
       'metric': {'ERA-Interim': {'value': 1.5405333407940345,
         'value_error': None},
        'GPCPv2.3': {'value': 1.6079194227983131, 'value_error': None}}},
      'BiasPrLonRmse': {'diagnostic': {'ERA-Interim': {'value': None,
         'value_error': None},
        'GPCPv2.3': {'value': None, 'value_error': None},
        'IPSL-CM5A-LR_r1i1p1': {'value': None, 'value_error': None}},
       'metric': {'ERA-Interim': {'value': 3.262621047532487,
         'value_error': None},
        'GPCPv2.3': {'value': 2.3838891897750933, 'value_error': None}}},
      'BiasSstLonRmse': {'diagnostic': {'ERA-Interim': {'value': None,
         'value_error': None},
        'HadISST': {'value': None, 'value_error': None},
        'IPSL-CM5A-LR_r1i1p1': {'value': None, 'value_error': None},
        'Tropflux': {'value': None, 'value_error': None}},
       'metric': {'ERA-Interim': {'value': 1.432009165611351,
         'value_error': None},
        'HadISST': {'value': 1.240336391957861, 'value_error': None},
        'Tropflux': {'value': 1.4805414422158794, 'value_error': None}}},
      'BiasTauxLonRmse': {'diagnostic': {'ERA-Interim': {'value': None,
         'value_error': None},
        'IPSL-CM5A-LR_r1i1p1': {'value': None, 'value_error': None},
        'Tropflux': {'value': None, 'value_error': None}},
       'metric': {'ERA-Interim': {'value': 6.807242502147613,
         'value_error': None},
        'Tropflux': {'value': 6.986002727249759, 'value_error': None}}},
      'EnsoAmpl': {'diagnostic': {'ERA-Interim': {'value': 0.8989844997845644,
         'value_error': 0.14214193002531866},
        'HadISST': {'value': 0.7665787872085695,
         'value_error': 0.06238329697691264},
        'IPSL-CM5A-LR_r1i1p1': {'value': 0.7009576314046778,
         'value_error': 0.05612152570620891},
        'Tropflux': {'value': 0.9039789553693535,
         'value_error': 0.14293162279134272}},
       'metric': {'ERA-Interim': {'value': 22.027840127092556,
         'value_error': 18.57124996838051},
        'HadISST': {'value': 8.560262415145283,
         'value_error': 14.762298493904028},
        'Tropflux': {'value': 22.45863388287882,
         'value_error': 18.468644390484954}}},
      'EnsoDuration': {'diagnostic': {'ERA-Interim': {'value': 13.0,
         'value_error': None},
        'HadISST': {'value': 13.0, 'value_error': None},
        'IPSL-CM5A-LR_r1i1p1': {'value': 16.0, 'value_error': None},
        'Tropflux': {'value': 13.0, 'value_error': None}},
       'metric': {'ERA-Interim': {'value': 23.076923076923077,
         'value_error': None},
        'HadISST': {'value': 23.076923076923077, 'value_error': None},
        'Tropflux': {'value': 23.076923076923077, 'value_error': None}}},
      'EnsoSeasonality': {'diagnostic': {'ERA-Interim': {'value': 2.0466846866656914,
         'value_error': 0.6513411033995022},
        'HadISST': {'value': 1.6639865947361325,
         'value_error': 0.2712772451657809},
        'IPSL-CM5A-LR_r1i1p1': {'value': 0.9977073100386973,
         'value_error': 0.1600182943982081},
        'Tropflux': {'value': 2.0532132553583624,
         'value_error': 0.6534187683977347}},
       'metric': {'ERA-Interim': {'value': 51.2525150288739,
         'value_error': 23.331913508700037},
        'HadISST': {'value': 40.04114497106816,
         'value_error': 19.39156394494913},
        'Tropflux': {'value': 51.407516611587425,
         'value_error': 23.25772540394497}}},
      'EnsoSstDiversity_2': {'diagnostic': {'ERA-Interim': {'value': 33.25,
         'value_error': None},
        'HadISST': {'value': 49.0, 'value_error': None},
        'IPSL-CM5A-LR_r1i1p1': {'value': 40.5, 'value_error': None},
        'Tropflux': {'value': 32.0, 'value_error': None}},
       'metric': {'ERA-Interim': {'value': 21.804511278195488,
         'value_error': None},
        'HadISST': {'value': 17.346938775510203, 'value_error': None},
        'Tropflux': {'value': 26.5625, 'value_error': None}}},
      'EnsoSstLonRmse': {'diagnostic': {'ERA-Interim': {'value': None,
         'value_error': None},
        'HadISST': {'value': None, 'value_error': None},
        'IPSL-CM5A-LR_r1i1p1': {'value': None, 'value_error': None},
        'Tropflux': {'value': None, 'value_error': None}},
       'metric': {'ERA-Interim': {'value': 0.2246873337251727,
         'value_error': None},
        'HadISST': {'value': 0.23263428719625098, 'value_error': None},
        'Tropflux': {'value': 0.22433019859349587, 'value_error': None}}},
      'EnsoSstSkew': {'diagnostic': {'ERA-Interim': {'value': 0.39098111106809963,
         'value_error': 0.061819541653923164},
        'HadISST': {'value': 0.38989908235027515,
         'value_error': 0.03172953733021198},
        'IPSL-CM5A-LR_r1i1p1': {'value': 0.06384016244398671,
         'value_error': 0.0051113036753862254},
        'Tropflux': {'value': 0.39744741059612115,
         'value_error': 0.06284195338099416}},
       'metric': {'ERA-Interim': {'value': 83.67180392178402,
         'value_error': 3.8890164309356616},
        'HadISST': {'value': 83.62649071673516,
         'value_error': 2.6433871948501637},
        'Tropflux': {'value': 83.93745669440027,
         'value_error': 3.825743795509233}}},
      'EnsoSstTsRmse': {'diagnostic': {'ERA-Interim': {'value': None,
         'value_error': None},
        'HadISST': {'value': None, 'value_error': None},
        'IPSL-CM5A-LR_r1i1p1': {'value': None, 'value_error': None},
        'Tropflux': {'value': None, 'value_error': None}},
       'metric': {'ERA-Interim': {'value': 0.14710685888720343,
         'value_error': None},
        'HadISST': {'value': 0.10552100120860594, 'value_error': None},
        'Tropflux': {'value': 0.144490876572676, 'value_error': None}}},
      'SeasonalPrLatRmse': {'diagnostic': {'ERA-Interim': {'value': None,
         'value_error': None},
        'GPCPv2.3': {'value': None, 'value_error': None},
        'IPSL-CM5A-LR_r1i1p1': {'value': None, 'value_error': None}},
       'metric': {'ERA-Interim': {'value': 1.1882511039383263,
         'value_error': None},
        'GPCPv2.3': {'value': 1.2642161664577538, 'value_error': None}}},
      'SeasonalPrLonRmse': {'diagnostic': {'ERA-Interim': {'value': None,
         'value_error': None},
        'GPCPv2.3': {'value': None, 'value_error': None},
        'IPSL-CM5A-LR_r1i1p1': {'value': None, 'value_error': None}},
       'metric': {'ERA-Interim': {'value': 0.8837845969566617,
         'value_error': None},
        'GPCPv2.3': {'value': 0.618408014446847, 'value_error': None}}},
      'SeasonalSstLonRmse': {'diagnostic': {'ERA-Interim': {'value': None,
         'value_error': None},
        'HadISST': {'value': None, 'value_error': None},
        'IPSL-CM5A-LR_r1i1p1': {'value': None, 'value_error': None},
        'Tropflux': {'value': None, 'value_error': None}},
       'metric': {'ERA-Interim': {'value': 0.07880087835065193,
         'value_error': None},
        'HadISST': {'value': 0.07771444847039925, 'value_error': None},
        'Tropflux': {'value': 0.07706466602078249, 'value_error': None}}},
      'SeasonalTauxLonRmse': {'diagnostic': {'ERA-Interim': {'value': None,
         'value_error': None},
        'IPSL-CM5A-LR_r1i1p1': {'value': None, 'value_error': None},
        'Tropflux': {'value': None, 'value_error': None}},
       'metric': {'ERA-Interim': {'value': 2.3231675163017207,
         'value_error': None},
        'Tropflux': {'value': 2.579137291889918, 'value_error': None}}}}},
    'r2i1p1': {'metadata': {'description_of_the_collection': 'Describe which science question this collection is about',
      'metrics': {'BiasPrLatRmse': {'diagnostic': {'ERA-Interim': {'name': 'ERA-Interim',
          'nyears': 40,
          'time_period': ['1979-1-16 12:0:0.0', '2019-3-16 12:0:0.0']},
         'GPCPv2.3': {'name': 'GPCPv2.3',
          'nyears': 41,
          'time_period': ['1979-1-1 0:0:0.0', '2019-7-1 0:0:0.0']},
         'IPSL-CM5A-LR_r2i1p1': {'keyerror': None,
          'name': 'IPSL-CM5A-LR_r2i1p1',
          'nyears': 156,
          'time_period': ['1850-1-16 12:0:0.0', '2005-12-16 12:0:0.0']},
         'method': 'Meridional root mean square error of nino3_LatExt pr, time series are linearly detrended, observations and model regridded to generic_1x1deg',
         'name': 'pr Meridional RMSE',
         'ref': 'Using CDAT regridding and rms (uncentered and biased) calculation',
         'time_frequency': 'monthly',
         'units': 'mm/day'},
        'metric': {'datasets': "IPSL-CM5A-LR_r2i1p1; ERA-Interim's pr & GPCPv2.3's precip; 's ",
         'method': 'The metric is the statistical value between the model and the observations',
         'name': 'BiasPrLatRmse',
         'units': 'mm/day'}},
       'BiasPrLonRmse': {'diagnostic': {'ERA-Interim': {'name': 'ERA-Interim',
          'nyears': 40,
          'time_period': ['1979-1-16 12:0:0.0', '2019-3-16 12:0:0.0']},
         'GPCPv2.3': {'name': 'GPCPv2.3',
          'nyears': 41,
          'time_period': ['1979-1-1 0:0:0.0', '2019-7-1 0:0:0.0']},
         'IPSL-CM5A-LR_r2i1p1': {'keyerror': None,
          'name': 'IPSL-CM5A-LR_r2i1p1',
          'nyears': 156,
          'time_period': ['1850-1-16 12:0:0.0', '2005-12-16 12:0:0.0']},
         'method': 'Zonal root mean square error of equatorial_pacific pr, time series are linearly detrended, observations and model regridded to generic_1x1deg',
         'name': 'pr Zonal RMSE',
         'ref': 'Using CDAT regridding and rms (uncentered and biased) calculation',
         'time_frequency': 'monthly',
         'units': 'mm/day'},
        'metric': {'datasets': "IPSL-CM5A-LR_r2i1p1; ERA-Interim's pr & GPCPv2.3's precip; 's ",
         'method': 'The metric is the statistical value between the model and the observations',
         'name': 'BiasPrLonRmse',
         'units': 'mm/day'}},
       'BiasSstLonRmse': {'diagnostic': {'ERA-Interim': {'name': 'ERA-Interim',
          'nyears': 40,
          'time_period': ['1979-1-16 12:0:0.0', '2019-3-16 12:0:0.0']},
         'HadISST': {'name': 'HadISST',
          'nyears': 151,
          'time_period': ['1870-1-16 11:59:59.5', '2020-10-16 12:0:0.0']},
         'IPSL-CM5A-LR_r2i1p1': {'keyerror': None,
          'name': 'IPSL-CM5A-LR_r2i1p1',
          'nyears': 156,
          'time_period': ['1850-1-16 12:0:0.0', '2005-12-16 12:0:0.0']},
         'Tropflux': {'name': 'Tropflux',
          'nyears': 40,
          'time_period': ['1979-1-15 0:0:0.0', '2018-12-15 12:0:0.0']},
         'method': 'Zonal root mean square error of equatorial_pacific sst, time series are linearly detrended, observations and model regridded to generic_1x1deg',
         'name': 'sst Zonal RMSE',
         'ref': 'Using CDAT regridding and rms (uncentered and biased) calculation',
         'time_frequency': 'monthly',
         'units': 'C'},
        'metric': {'datasets': "IPSL-CM5A-LR_r2i1p1; ERA-Interim's ts & HadISST's sst & Tropflux's sst; 's ",
         'method': 'The metric is the statistical value between the model and the observations',
         'name': 'BiasSstLonRmse',
         'units': 'C'}},
       'BiasTauxLonRmse': {'diagnostic': {'ERA-Interim': {'name': 'ERA-Interim',
          'nyears': 40,
          'time_period': ['1979-1-16 12:0:0.0', '2019-3-16 12:0:0.0']},
         'IPSL-CM5A-LR_r2i1p1': {'keyerror': None,
          'name': 'IPSL-CM5A-LR_r2i1p1',
          'nyears': 156,
          'time_period': ['1850-1-16 12:0:0.0', '2005-12-16 12:0:0.0']},
         'Tropflux': {'name': 'Tropflux',
          'nyears': 40,
          'time_period': ['1979-1-15 0:0:0.0', '2018-12-15 12:0:0.0']},
         'method': 'Zonal root mean square error of equatorial_pacific taux, time series are linearly detrended, observations and model regridded to generic_1x1deg',
         'name': 'taux Zonal RMSE',
         'ref': 'Using CDAT regridding and rms (uncentered and biased) calculation',
         'time_frequency': 'monthly',
         'units': '1e-3 N/m2'},
        'metric': {'datasets': "IPSL-CM5A-LR_r2i1p1; ERA-Interim's tauu & Tropflux's taux; 's ",
         'method': 'The metric is the statistical value between the model and the observations',
         'name': 'BiasTauxLonRmse',
         'units': '1e-3 N/m2'}},
       'EnsoAmpl': {'diagnostic': {'ERA-Interim': {'keyerror': None,
          'name': 'ERA-Interim',
          'nyears': 40,
          'time_period': ['1979-1-16 12:0:0.0', '2019-3-16 12:0:0.0']},
         'HadISST': {'keyerror': None,
          'name': 'HadISST',
          'nyears': 151,
          'time_period': ['1870-1-16 11:59:59.5', '2020-10-16 12:0:0.0']},
         'IPSL-CM5A-LR_r2i1p1': {'keyerror': None,
          'name': 'IPSL-CM5A-LR_r2i1p1',
          'nyears': 156,
          'time_period': ['1850-1-16 12:0:0.0', '2005-12-16 12:0:0.0']},
         'Tropflux': {'keyerror': None,
          'name': 'Tropflux',
          'nyears': 40,
          'time_period': ['1979-1-15 0:0:0.0', '2018-12-15 12:0:0.0']},
         'method': 'Standard deviation of nino3.4 sstA, time series are linearly detrended',
         'name': 'ENSO amplitude',
         'ref': 'Using CDAT regression calculation',
         'time_frequency': 'monthly',
         'units': 'C'},
        'metric': {'datasets': "IPSL-CM5A-LR_r2i1p1; ERA-Interim's ts & HadISST's sst & Tropflux's sst; 's ",
         'method': 'The metric is the absolute value of the relative difference between model and observations values (M = 100 * abs[[model-obs] / obs])',
         'name': 'EnsoAmpl',
         'units': '%'}},
       'EnsoDuration': {'diagnostic': {'ERA-Interim': {'keyerror': None,
          'name': 'ERA-Interim',
          'nyears': 40,
          'time_period': ['1979-1-16 12:0:0.0', '2019-3-16 12:0:0.0']},
         'HadISST': {'keyerror': None,
          'name': 'HadISST',
          'nyears': 151,
          'time_period': ['1870-1-16 11:59:59.5', '2020-10-16 12:0:0.0']},
         'IPSL-CM5A-LR_r2i1p1': {'keyerror': None,
          'name': 'IPSL-CM5A-LR_r2i1p1',
          'nyears': 156,
          'time_period': ['1850-1-16 12:0:0.0', '2005-12-16 12:0:0.0']},
         'Tropflux': {'keyerror': None,
          'name': 'Tropflux',
          'nyears': 40,
          'time_period': ['1979-1-15 0:0:0.0', '2018-12-15 12:0:0.0']},
         'method': 'nino3.4 SSTA during DEC regressed against nino3.4 SSTA during 6 years (centered on ENSO), the duration is the number of consecutive months during which the regression is above 0.25, time series are linearly detrended, smoothing using a triangle shaped window of 5 points',
         'name': 'ENSO Duration based on life cyle SSTA pattern',
         'ref': 'Using CDAT',
         'time_frequency': 'monthly',
         'units': 'months'},
        'metric': {'datasets': "IPSL-CM5A-LR_r2i1p1; ERA-Interim's ts & HadISST's sst & Tropflux's sst; 's ",
         'method': 'The metric is the absolute value of the relative difference between model and observations values (M = 100 * abs[[model-obs] / obs])',
         'name': 'EnsoDuration',
         'units': '%'}},
       'EnsoSeasonality': {'diagnostic': {'ERA-Interim': {'keyerror': None,
          'name': 'ERA-Interim',
          'nyears': 40,
          'time_period': ['1979-1-16 12:0:0.0', '2019-3-16 12:0:0.0']},
         'HadISST': {'keyerror': None,
          'name': 'HadISST',
          'nyears': 151,
          'time_period': ['1870-1-16 11:59:59.5', '2020-10-16 12:0:0.0']},
         'IPSL-CM5A-LR_r2i1p1': {'keyerror': None,
          'name': 'IPSL-CM5A-LR_r2i1p1',
          'nyears': 156,
          'time_period': ['1850-1-16 12:0:0.0', '2005-12-16 12:0:0.0']},
         'Tropflux': {'keyerror': None,
          'name': 'Tropflux',
          'nyears': 40,
          'time_period': ['1979-1-15 0:0:0.0', '2018-12-15 12:0:0.0']},
         'method': 'Ratio between NDJ and MAM standard deviation nino3.4 sstA, time series are linearly detrended',
         'name': 'ENSO seasonality',
         'ref': 'Using CDAT std dev calculation',
         'time_frequency': 'monthly',
         'units': 'C/C'},
        'metric': {'datasets': "IPSL-CM5A-LR_r2i1p1; ERA-Interim's ts & HadISST's sst & Tropflux's sst; 's ",
         'method': 'The metric is the absolute value of the relative difference between model and observations values (M = 100 * abs[[model-obs] / obs])',
         'name': 'EnsoSeasonality',
         'units': '%'}},
       'EnsoSstDiversity_2': {'diagnostic': {'ERA-Interim': {'keyerror': None,
          'name': 'ERA-Interim',
          'nyears': 40,
          'time_period': ['1979-1-16 12:0:0.0', '2019-3-16 12:0:0.0']},
         'HadISST': {'keyerror': None,
          'name': 'HadISST',
          'nyears': 151,
          'time_period': ['1870-1-16 11:59:59.5', '2020-10-16 12:0:0.0']},
         'IPSL-CM5A-LR_r2i1p1': {'keyerror': None,
          'name': 'IPSL-CM5A-LR_r2i1p1',
          'nyears': 156,
          'time_period': ['1850-1-16 12:0:0.0', '2005-12-16 12:0:0.0']},
         'Tropflux': {'keyerror': None,
          'name': 'Tropflux',
          'nyears': 40,
          'time_period': ['1979-1-15 0:0:0.0', '2018-12-15 12:0:0.0']},
         'method': 'Nino (Nina) events = nino3.4 sstA > 0.75 (< -0.75) during DEC, zonal SSTA (meridional averaged [-5.0 ; 5.0]), the zonal SSTA maximum (minimum) is located for each event, the diversity is the interquartile range (IQR = Q3 - Q1), time series are linearly detrended, smoothing using a triangle shaped window of 5 points',
         'name': 'ENSO Diversity (interquartile range)',
         'ref': 'Using CDAT regridding',
         'time_frequency': 'monthly',
         'units': 'long'},
        'metric': {'datasets': "IPSL-CM5A-LR_r2i1p1; ERA-Interim's ts & HadISST's sst & Tropflux's sst; 's ",
         'method': 'The metric is the absolute value of the relative difference between model and observations values (M = 100 * abs[[model-obs] / obs])',
         'name': 'EnsoSstDiversity',
         'units': '%'}},
       'EnsoSstLonRmse': {'diagnostic': {'ERA-Interim': {'name': 'ERA-Interim',
          'nyears': 40,
          'time_period': ['1979-1-16 12:0:0.0', '2019-3-16 12:0:0.0']},
         'HadISST': {'name': 'HadISST',
          'nyears': 151,
          'time_period': ['1870-1-16 11:59:59.5', '2020-10-16 12:0:0.0']},
         'IPSL-CM5A-LR_r2i1p1': {'keyerror': None,
          'name': 'IPSL-CM5A-LR_r2i1p1',
          'nyears': 156,
          'time_period': ['1850-1-16 12:0:0.0', '2005-12-16 12:0:0.0']},
         'Tropflux': {'name': 'Tropflux',
          'nyears': 40,
          'time_period': ['1979-1-15 0:0:0.0', '2018-12-15 12:0:0.0']},
         'method': 'nino3.4 SSTA during DEC regressed against equatorial_pacific SSTA, time series are linearly detrended, smoothing using a triangle shaped window of 5 points, observations and model regridded to generic_1x1deg',
         'name': 'ENSO Zonal SSTA pattern',
         'ref': 'Using CDAT regridding and rms (uncentered and biased) calculation',
         'time_frequency': 'monthly',
         'units': 'C/C'},
        'metric': {'datasets': "IPSL-CM5A-LR_r2i1p1; ERA-Interim's ts & HadISST's sst & Tropflux's sst; 's ",
         'method': 'The metric is the statistical value between the model and the observations',
         'name': 'EnsoSstLonRmse',
         'units': 'C/C'}},
       'EnsoSstSkew': {'diagnostic': {'ERA-Interim': {'keyerror': None,
          'name': 'ERA-Interim',
          'nyears': 40,
          'time_period': ['1979-1-16 12:0:0.0', '2019-3-16 12:0:0.0']},
         'HadISST': {'keyerror': None,
          'name': 'HadISST',
          'nyears': 151,
          'time_period': ['1870-1-16 11:59:59.5', '2020-10-16 12:0:0.0']},
         'IPSL-CM5A-LR_r2i1p1': {'keyerror': None,
          'name': 'IPSL-CM5A-LR_r2i1p1',
          'nyears': 156,
          'time_period': ['1850-1-16 12:0:0.0', '2005-12-16 12:0:0.0']},
         'Tropflux': {'keyerror': None,
          'name': 'Tropflux',
          'nyears': 40,
          'time_period': ['1979-1-15 0:0:0.0', '2018-12-15 12:0:0.0']},
         'method': 'Standard deviation of nino3.4 sstA, time series are linearly detrended',
         'name': 'ENSO skewness',
         'ref': 'Using CDAT regression calculation',
         'time_frequency': 'monthly',
         'units': 'C'},
        'metric': {'datasets': "IPSL-CM5A-LR_r2i1p1; ERA-Interim's ts & HadISST's sst & Tropflux's sst; 's ",
         'method': 'The metric is the absolute value of the relative difference between model and observations values (M = 100 * abs[[model-obs] / obs])',
         'name': 'EnsoSstSkew',
         'units': '%'}},
       'EnsoSstTsRmse': {'diagnostic': {'ERA-Interim': {'name': 'ERA-Interim',
          'nyears': 40,
          'time_period': ['1979-1-16 12:0:0.0', '2019-3-16 12:0:0.0']},
         'HadISST': {'name': 'HadISST',
          'nyears': 151,
          'time_period': ['1870-1-16 11:59:59.5', '2020-10-16 12:0:0.0']},
         'IPSL-CM5A-LR_r2i1p1': {'keyerror': None,
          'name': 'IPSL-CM5A-LR_r2i1p1',
          'nyears': 156,
          'time_period': ['1850-1-16 12:0:0.0', '2005-12-16 12:0:0.0']},
         'Tropflux': {'name': 'Tropflux',
          'nyears': 40,
          'time_period': ['1979-1-15 0:0:0.0', '2018-12-15 12:0:0.0']},
         'method': 'nino3.4 SSTA during DEC regressed against nino3.4 SSTA during 6 years (centered on ENSO), time series are linearly detrended, smoothing using a triangle shaped window of 5 points',
         'name': 'ENSO life cyle SSTA pattern',
         'ref': 'Using CDAT regridding and rms (uncentered and biased) calculation',
         'time_frequency': 'monthly',
         'units': 'C/C'},
        'metric': {'datasets': "IPSL-CM5A-LR_r2i1p1; ERA-Interim's ts & HadISST's sst & Tropflux's sst; 's ",
         'method': 'The metric is the statistical value between the model and the observations',
         'name': 'EnsoSstTsRmse',
         'units': 'C/C'}},
       'SeasonalPrLatRmse': {'diagnostic': {'ERA-Interim': {'name': 'ERA-Interim',
          'nyears': 40,
          'time_period': ['1979-1-16 12:0:0.0', '2019-3-16 12:0:0.0']},
         'GPCPv2.3': {'name': 'GPCPv2.3',
          'nyears': 41,
          'time_period': ['1979-1-1 0:0:0.0', '2019-7-1 0:0:0.0']},
         'IPSL-CM5A-LR_r2i1p1': {'keyerror': None,
          'name': 'IPSL-CM5A-LR_r2i1p1',
          'nyears': 156,
          'time_period': ['1850-1-16 12:0:0.0', '2005-12-16 12:0:0.0']},
         'method': 'Meridional root mean square error of nino3_LatExt climatological pr STD, time series are linearly detrended, observations and model regridded to generic_1x1deg',
         'name': 'pr meridional seasonality RMSE',
         'ref': 'Using CDAT regridding and rms (uncentered and biased) calculation',
         'time_frequency': 'monthly',
         'units': 'mm/day'},
        'metric': {'datasets': "IPSL-CM5A-LR_r2i1p1; ERA-Interim's pr & GPCPv2.3's precip; 's ",
         'method': 'The metric is the statistical value between the model and the observations',
         'name': 'SeasonalPrLatRmse',
         'units': 'mm/day'}},
       'SeasonalPrLonRmse': {'diagnostic': {'ERA-Interim': {'name': 'ERA-Interim',
          'nyears': 40,
          'time_period': ['1979-1-16 12:0:0.0', '2019-3-16 12:0:0.0']},
         'GPCPv2.3': {'name': 'GPCPv2.3',
          'nyears': 41,
          'time_period': ['1979-1-1 0:0:0.0', '2019-7-1 0:0:0.0']},
         'IPSL-CM5A-LR_r2i1p1': {'keyerror': None,
          'name': 'IPSL-CM5A-LR_r2i1p1',
          'nyears': 156,
          'time_period': ['1850-1-16 12:0:0.0', '2005-12-16 12:0:0.0']},
         'method': 'Zonal root mean square error of equatorial_pacific climatological pr STD, time series are linearly detrended, observations and model regridded to generic_1x1deg',
         'name': 'pr zonal seasonality RMSE',
         'ref': 'Using CDAT regridding and rms (uncentered and biased) calculation',
         'time_frequency': 'monthly',
         'units': 'mm/day'},
        'metric': {'datasets': "IPSL-CM5A-LR_r2i1p1; ERA-Interim's pr & GPCPv2.3's precip; 's ",
         'method': 'The metric is the statistical value between the model and the observations',
         'name': 'SeasonalPrLonRmse',
         'units': 'mm/day'}},
       'SeasonalSstLonRmse': {'diagnostic': {'ERA-Interim': {'name': 'ERA-Interim',
          'nyears': 40,
          'time_period': ['1979-1-16 12:0:0.0', '2019-3-16 12:0:0.0']},
         'HadISST': {'name': 'HadISST',
          'nyears': 151,
          'time_period': ['1870-1-16 11:59:59.5', '2020-10-16 12:0:0.0']},
         'IPSL-CM5A-LR_r2i1p1': {'keyerror': None,
          'name': 'IPSL-CM5A-LR_r2i1p1',
          'nyears': 156,
          'time_period': ['1850-1-16 12:0:0.0', '2005-12-16 12:0:0.0']},
         'Tropflux': {'name': 'Tropflux',
          'nyears': 40,
          'time_period': ['1979-1-15 0:0:0.0', '2018-12-15 12:0:0.0']},
         'method': 'Zonal root mean square error of equatorial_pacific climatological sst STD, time series are linearly detrended, observations and model regridded to generic_1x1deg',
         'name': 'sst zonal seasonality RMSE',
         'ref': 'Using CDAT regridding and rms (uncentered and biased) calculation',
         'time_frequency': 'monthly',
         'units': 'C'},
        'metric': {'datasets': "IPSL-CM5A-LR_r2i1p1; ERA-Interim's ts & HadISST's sst & Tropflux's sst; 's ",
         'method': 'The metric is the statistical value between the model and the observations',
         'name': 'SeasonalSstLonRmse',
         'units': 'C'}},
       'SeasonalTauxLonRmse': {'diagnostic': {'ERA-Interim': {'name': 'ERA-Interim',
          'nyears': 40,
          'time_period': ['1979-1-16 12:0:0.0', '2019-3-16 12:0:0.0']},
         'IPSL-CM5A-LR_r2i1p1': {'keyerror': None,
          'name': 'IPSL-CM5A-LR_r2i1p1',
          'nyears': 156,
          'time_period': ['1850-1-16 12:0:0.0', '2005-12-16 12:0:0.0']},
         'Tropflux': {'name': 'Tropflux',
          'nyears': 40,
          'time_period': ['1979-1-15 0:0:0.0', '2018-12-15 12:0:0.0']},
         'method': 'Zonal root mean square error of equatorial_pacific climatological taux STD, time series are linearly detrended, observations and model regridded to generic_1x1deg',
         'name': 'taux zonal seasonality RMSE',
         'ref': 'Using CDAT regridding and rms (uncentered and biased) calculation',
         'time_frequency': 'monthly',
         'units': '1e-3 N/m2'},
        'metric': {'datasets': "IPSL-CM5A-LR_r2i1p1; ERA-Interim's tauu & Tropflux's taux; 's ",
         'method': 'The metric is the statistical value between the model and the observations',
         'name': 'SeasonalTauxLonRmse',
         'units': '1e-3 N/m2'}}},
      'name': 'Metrics Collection for ENSO performance'},
     'value': {'BiasPrLatRmse': {'diagnostic': {'ERA-Interim': {'value': None,
         'value_error': None},
        'GPCPv2.3': {'value': None, 'value_error': None},
        'IPSL-CM5A-LR_r2i1p1': {'value': None, 'value_error': None}},
       'metric': {'ERA-Interim': {'value': 1.5459385384307247,
         'value_error': None},
        'GPCPv2.3': {'value': 1.6134930058619228, 'value_error': None}}},
      'BiasPrLonRmse': {'diagnostic': {'ERA-Interim': {'value': None,
         'value_error': None},
        'GPCPv2.3': {'value': None, 'value_error': None},
        'IPSL-CM5A-LR_r2i1p1': {'value': None, 'value_error': None}},
       'metric': {'ERA-Interim': {'value': 3.2057789031629254,
         'value_error': None},
        'GPCPv2.3': {'value': 2.3358858042708253, 'value_error': None}}},
      'BiasSstLonRmse': {'diagnostic': {'ERA-Interim': {'value': None,
         'value_error': None},
        'HadISST': {'value': None, 'value_error': None},
        'IPSL-CM5A-LR_r2i1p1': {'value': None, 'value_error': None},
        'Tropflux': {'value': None, 'value_error': None}},
       'metric': {'ERA-Interim': {'value': 1.3603437337025752,
         'value_error': None},
        'HadISST': {'value': 1.169999617619099, 'value_error': None},
        'Tropflux': {'value': 1.4088691463678489, 'value_error': None}}},
      'BiasTauxLonRmse': {'diagnostic': {'ERA-Interim': {'value': None,
         'value_error': None},
        'IPSL-CM5A-LR_r2i1p1': {'value': None, 'value_error': None},
        'Tropflux': {'value': None, 'value_error': None}},
       'metric': {'ERA-Interim': {'value': 6.939078211220068,
         'value_error': None},
        'Tropflux': {'value': 7.09657710099045, 'value_error': None}}},
      'EnsoAmpl': {'diagnostic': {'ERA-Interim': {'value': 0.8989844997845644,
         'value_error': 0.14214193002531866},
        'HadISST': {'value': 0.7665787872085695,
         'value_error': 0.06238329697691264},
        'IPSL-CM5A-LR_r2i1p1': {'value': 0.6854590707801911,
         'value_error': 0.05488064775649127},
        'Tropflux': {'value': 0.9039789553693535,
         'value_error': 0.14293162279134272}},
       'metric': {'ERA-Interim': {'value': 23.751847674297306,
         'value_error': 18.16062936791618},
        'HadISST': {'value': 10.582045548608109,
         'value_error': 14.435895915611171},
        'Tropflux': {'value': 24.173116342058886,
         'value_error': 18.060292456054317}}},
      'EnsoDuration': {'diagnostic': {'ERA-Interim': {'value': 13.0,
         'value_error': None},
        'HadISST': {'value': 13.0, 'value_error': None},
        'IPSL-CM5A-LR_r2i1p1': {'value': 17.0, 'value_error': None},
        'Tropflux': {'value': 13.0, 'value_error': None}},
       'metric': {'ERA-Interim': {'value': 30.76923076923077,
         'value_error': None},
        'HadISST': {'value': 30.76923076923077, 'value_error': None},
        'Tropflux': {'value': 30.76923076923077, 'value_error': None}}},
      'EnsoSeasonality': {'diagnostic': {'ERA-Interim': {'value': 2.0466846866656914,
         'value_error': 0.6513411033995022},
        'HadISST': {'value': 1.6639865947361325,
         'value_error': 0.2712772451657809},
        'IPSL-CM5A-LR_r2i1p1': {'value': 0.9844189661281013,
         'value_error': 0.15788702994163328},
        'Tropflux': {'value': 2.0532132553583624,
         'value_error': 0.6534187683977347}},
       'metric': {'ERA-Interim': {'value': 51.90177693019024,
         'value_error': 23.02115855313711},
        'HadISST': {'value': 40.839729764517365,
         'value_error': 19.133290032277486},
        'Tropflux': {'value': 52.05471406542797,
         'value_error': 22.9479585508447}}},
      'EnsoSstDiversity_2': {'diagnostic': {'ERA-Interim': {'value': 33.25,
         'value_error': None},
        'HadISST': {'value': 49.0, 'value_error': None},
        'IPSL-CM5A-LR_r2i1p1': {'value': 50.5, 'value_error': None},
        'Tropflux': {'value': 32.0, 'value_error': None}},
       'metric': {'ERA-Interim': {'value': 51.8796992481203,
         'value_error': None},
        'HadISST': {'value': 3.061224489795918, 'value_error': None},
        'Tropflux': {'value': 57.8125, 'value_error': None}}},
      'EnsoSstLonRmse': {'diagnostic': {'ERA-Interim': {'value': None,
         'value_error': None},
        'HadISST': {'value': None, 'value_error': None},
        'IPSL-CM5A-LR_r2i1p1': {'value': None, 'value_error': None},
        'Tropflux': {'value': None, 'value_error': None}},
       'metric': {'ERA-Interim': {'value': 0.23958545044849852,
         'value_error': None},
        'HadISST': {'value': 0.24973565482342075, 'value_error': None},
        'Tropflux': {'value': 0.23952115170890348, 'value_error': None}}},
      'EnsoSstSkew': {'diagnostic': {'ERA-Interim': {'value': 0.39098111106809963,
         'value_error': 0.061819541653923164},
        'HadISST': {'value': 0.38989908235027515,
         'value_error': 0.03172953733021198},
        'IPSL-CM5A-LR_r2i1p1': {'value': -0.17639485664063426,
         'value_error': -0.014122891367288889},
        'Tropflux': {'value': 0.39744741059612115,
         'value_error': 0.06284195338099416}},
       'metric': {'ERA-Interim': {'value': 145.11595359651798,
         'value_error': -10.745625787056307},
        'HadISST': {'value': 145.2411571674759,
         'value_error': -7.303864643051251},
        'Tropflux': {'value': 144.3819363110365,
         'value_error': -10.570799047460946}}},
      'EnsoSstTsRmse': {'diagnostic': {'ERA-Interim': {'value': None,
         'value_error': None},
        'HadISST': {'value': None, 'value_error': None},
        'IPSL-CM5A-LR_r2i1p1': {'value': None, 'value_error': None},
        'Tropflux': {'value': None, 'value_error': None}},
       'metric': {'ERA-Interim': {'value': 0.15061106866190854,
         'value_error': None},
        'HadISST': {'value': 0.11260296787986455, 'value_error': None},
        'Tropflux': {'value': 0.1470362179305823, 'value_error': None}}},
      'SeasonalPrLatRmse': {'diagnostic': {'ERA-Interim': {'value': None,
         'value_error': None},
        'GPCPv2.3': {'value': None, 'value_error': None},
        'IPSL-CM5A-LR_r2i1p1': {'value': None, 'value_error': None}},
       'metric': {'ERA-Interim': {'value': 1.1773318154726762,
         'value_error': None},
        'GPCPv2.3': {'value': 1.253455711707639, 'value_error': None}}},
      'SeasonalPrLonRmse': {'diagnostic': {'ERA-Interim': {'value': None,
         'value_error': None},
        'GPCPv2.3': {'value': None, 'value_error': None},
        'IPSL-CM5A-LR_r2i1p1': {'value': None, 'value_error': None}},
       'metric': {'ERA-Interim': {'value': 0.8829345848940331,
         'value_error': None},
        'GPCPv2.3': {'value': 0.6147107144738587, 'value_error': None}}},
      'SeasonalSstLonRmse': {'diagnostic': {'ERA-Interim': {'value': None,
         'value_error': None},
        'HadISST': {'value': None, 'value_error': None},
        'IPSL-CM5A-LR_r2i1p1': {'value': None, 'value_error': None},
        'Tropflux': {'value': None, 'value_error': None}},
       'metric': {'ERA-Interim': {'value': 0.0768670196074561,
         'value_error': None},
        'HadISST': {'value': 0.07674136934297017, 'value_error': None},
        'Tropflux': {'value': 0.07562653521241937, 'value_error': None}}},
      'SeasonalTauxLonRmse': {'diagnostic': {'ERA-Interim': {'value': None,
         'value_error': None},
        'IPSL-CM5A-LR_r2i1p1': {'value': None, 'value_error': None},
        'Tropflux': {'value': None, 'value_error': None}},
       'metric': {'ERA-Interim': {'value': 2.354048930519101,
         'value_error': None},
        'Tropflux': {'value': 2.616519879786517, 'value_error': None}}}}},
    'r3i1p1': {'metadata': {'description_of_the_collection': 'Describe which science question this collection is about',
      'metrics': {'BiasPrLatRmse': {'diagnostic': {'ERA-Interim': {'name': 'ERA-Interim',
          'nyears': 40,
          'time_period': ['1979-1-16 12:0:0.0', '2019-3-16 12:0:0.0']},
         'GPCPv2.3': {'name': 'GPCPv2.3',
          'nyears': 41,
          'time_period': ['1979-1-1 0:0:0.0', '2019-7-1 0:0:0.0']},
         'IPSL-CM5A-LR_r3i1p1': {'keyerror': None,
          'name': 'IPSL-CM5A-LR_r3i1p1',
          'nyears': 156,
          'time_period': ['1850-1-16 12:0:0.0', '2005-12-16 12:0:0.0']},
         'method': 'Meridional root mean square error of nino3_LatExt pr, time series are linearly detrended, observations and model regridded to generic_1x1deg',
         'name': 'pr Meridional RMSE',
         'ref': 'Using CDAT regridding and rms (uncentered and biased) calculation',
         'time_frequency': 'monthly',
         'units': 'mm/day'},
        'metric': {'datasets': "IPSL-CM5A-LR_r3i1p1; ERA-Interim's pr & GPCPv2.3's precip; 's ",
         'method': 'The metric is the statistical value between the model and the observations',
         'name': 'BiasPrLatRmse',
         'units': 'mm/day'}},
       'BiasPrLonRmse': {'diagnostic': {'ERA-Interim': {'name': 'ERA-Interim',
          'nyears': 40,
          'time_period': ['1979-1-16 12:0:0.0', '2019-3-16 12:0:0.0']},
         'GPCPv2.3': {'name': 'GPCPv2.3',
          'nyears': 41,
          'time_period': ['1979-1-1 0:0:0.0', '2019-7-1 0:0:0.0']},
         'IPSL-CM5A-LR_r3i1p1': {'keyerror': None,
          'name': 'IPSL-CM5A-LR_r3i1p1',
          'nyears': 156,
          'time_period': ['1850-1-16 12:0:0.0', '2005-12-16 12:0:0.0']},
         'method': 'Zonal root mean square error of equatorial_pacific pr, time series are linearly detrended, observations and model regridded to generic_1x1deg',
         'name': 'pr Zonal RMSE',
         'ref': 'Using CDAT regridding and rms (uncentered and biased) calculation',
         'time_frequency': 'monthly',
         'units': 'mm/day'},
        'metric': {'datasets': "IPSL-CM5A-LR_r3i1p1; ERA-Interim's pr & GPCPv2.3's precip; 's ",
         'method': 'The metric is the statistical value between the model and the observations',
         'name': 'BiasPrLonRmse',
         'units': 'mm/day'}},
       'BiasSstLonRmse': {'diagnostic': {'ERA-Interim': {'name': 'ERA-Interim',
          'nyears': 40,
          'time_period': ['1979-1-16 12:0:0.0', '2019-3-16 12:0:0.0']},
         'HadISST': {'name': 'HadISST',
          'nyears': 151,
          'time_period': ['1870-1-16 11:59:59.5', '2020-10-16 12:0:0.0']},
         'IPSL-CM5A-LR_r3i1p1': {'keyerror': None,
          'name': 'IPSL-CM5A-LR_r3i1p1',
          'nyears': 156,
          'time_period': ['1850-1-16 12:0:0.0', '2005-12-16 12:0:0.0']},
         'Tropflux': {'name': 'Tropflux',
          'nyears': 40,
          'time_period': ['1979-1-15 0:0:0.0', '2018-12-15 12:0:0.0']},
         'method': 'Zonal root mean square error of equatorial_pacific sst, time series are linearly detrended, observations and model regridded to generic_1x1deg',
         'name': 'sst Zonal RMSE',
         'ref': 'Using CDAT regridding and rms (uncentered and biased) calculation',
         'time_frequency': 'monthly',
         'units': 'C'},
        'metric': {'datasets': "IPSL-CM5A-LR_r3i1p1; ERA-Interim's ts & HadISST's sst & Tropflux's sst; 's ",
         'method': 'The metric is the statistical value between the model and the observations',
         'name': 'BiasSstLonRmse',
         'units': 'C'}},
       'BiasTauxLonRmse': {'diagnostic': {'ERA-Interim': {'name': 'ERA-Interim',
          'nyears': 40,
          'time_period': ['1979-1-16 12:0:0.0', '2019-3-16 12:0:0.0']},
         'IPSL-CM5A-LR_r3i1p1': {'keyerror': None,
          'name': 'IPSL-CM5A-LR_r3i1p1',
          'nyears': 156,
          'time_period': ['1850-1-16 12:0:0.0', '2005-12-16 12:0:0.0']},
         'Tropflux': {'name': 'Tropflux',
          'nyears': 40,
          'time_period': ['1979-1-15 0:0:0.0', '2018-12-15 12:0:0.0']},
         'method': 'Zonal root mean square error of equatorial_pacific taux, time series are linearly detrended, observations and model regridded to generic_1x1deg',
         'name': 'taux Zonal RMSE',
         'ref': 'Using CDAT regridding and rms (uncentered and biased) calculation',
         'time_frequency': 'monthly',
         'units': '1e-3 N/m2'},
        'metric': {'datasets': "IPSL-CM5A-LR_r3i1p1; ERA-Interim's tauu & Tropflux's taux; 's ",
         'method': 'The metric is the statistical value between the model and the observations',
         'name': 'BiasTauxLonRmse',
         'units': '1e-3 N/m2'}},
       'EnsoAmpl': {'diagnostic': {'ERA-Interim': {'keyerror': None,
          'name': 'ERA-Interim',
          'nyears': 40,
          'time_period': ['1979-1-16 12:0:0.0', '2019-3-16 12:0:0.0']},
         'HadISST': {'keyerror': None,
          'name': 'HadISST',
          'nyears': 151,
          'time_period': ['1870-1-16 11:59:59.5', '2020-10-16 12:0:0.0']},
         'IPSL-CM5A-LR_r3i1p1': {'keyerror': None,
          'name': 'IPSL-CM5A-LR_r3i1p1',
          'nyears': 156,
          'time_period': ['1850-1-16 12:0:0.0', '2005-12-16 12:0:0.0']},
         'Tropflux': {'keyerror': None,
          'name': 'Tropflux',
          'nyears': 40,
          'time_period': ['1979-1-15 0:0:0.0', '2018-12-15 12:0:0.0']},
         'method': 'Standard deviation of nino3.4 sstA, time series are linearly detrended',
         'name': 'ENSO amplitude',
         'ref': 'Using CDAT regression calculation',
         'time_frequency': 'monthly',
         'units': 'C'},
        'metric': {'datasets': "IPSL-CM5A-LR_r3i1p1; ERA-Interim's ts & HadISST's sst & Tropflux's sst; 's ",
         'method': 'The metric is the absolute value of the relative difference between model and observations values (M = 100 * abs[[model-obs] / obs])',
         'name': 'EnsoAmpl',
         'units': '%'}},
       'EnsoDuration': {'diagnostic': {'ERA-Interim': {'keyerror': None,
          'name': 'ERA-Interim',
          'nyears': 40,
          'time_period': ['1979-1-16 12:0:0.0', '2019-3-16 12:0:0.0']},
         'HadISST': {'keyerror': None,
          'name': 'HadISST',
          'nyears': 151,
          'time_period': ['1870-1-16 11:59:59.5', '2020-10-16 12:0:0.0']},
         'IPSL-CM5A-LR_r3i1p1': {'keyerror': None,
          'name': 'IPSL-CM5A-LR_r3i1p1',
          'nyears': 156,
          'time_period': ['1850-1-16 12:0:0.0', '2005-12-16 12:0:0.0']},
         'Tropflux': {'keyerror': None,
          'name': 'Tropflux',
          'nyears': 40,
          'time_period': ['1979-1-15 0:0:0.0', '2018-12-15 12:0:0.0']},
         'method': 'nino3.4 SSTA during DEC regressed against nino3.4 SSTA during 6 years (centered on ENSO), the duration is the number of consecutive months during which the regression is above 0.25, time series are linearly detrended, smoothing using a triangle shaped window of 5 points',
         'name': 'ENSO Duration based on life cyle SSTA pattern',
         'ref': 'Using CDAT',
         'time_frequency': 'monthly',
         'units': 'months'},
        'metric': {'datasets': "IPSL-CM5A-LR_r3i1p1; ERA-Interim's ts & HadISST's sst & Tropflux's sst; 's ",
         'method': 'The metric is the absolute value of the relative difference between model and observations values (M = 100 * abs[[model-obs] / obs])',
         'name': 'EnsoDuration',
         'units': '%'}},
       'EnsoSeasonality': {'diagnostic': {'ERA-Interim': {'keyerror': None,
          'name': 'ERA-Interim',
          'nyears': 40,
          'time_period': ['1979-1-16 12:0:0.0', '2019-3-16 12:0:0.0']},
         'HadISST': {'keyerror': None,
          'name': 'HadISST',
          'nyears': 151,
          'time_period': ['1870-1-16 11:59:59.5', '2020-10-16 12:0:0.0']},
         'IPSL-CM5A-LR_r3i1p1': {'keyerror': None,
          'name': 'IPSL-CM5A-LR_r3i1p1',
          'nyears': 156,
          'time_period': ['1850-1-16 12:0:0.0', '2005-12-16 12:0:0.0']},
         'Tropflux': {'keyerror': None,
          'name': 'Tropflux',
          'nyears': 40,
          'time_period': ['1979-1-15 0:0:0.0', '2018-12-15 12:0:0.0']},
         'method': 'Ratio between NDJ and MAM standard deviation nino3.4 sstA, time series are linearly detrended',
         'name': 'ENSO seasonality',
         'ref': 'Using CDAT std dev calculation',
         'time_frequency': 'monthly',
         'units': 'C/C'},
        'metric': {'datasets': "IPSL-CM5A-LR_r3i1p1; ERA-Interim's ts & HadISST's sst & Tropflux's sst; 's ",
         'method': 'The metric is the absolute value of the relative difference between model and observations values (M = 100 * abs[[model-obs] / obs])',
         'name': 'EnsoSeasonality',
         'units': '%'}},
       'EnsoSstDiversity_2': {'diagnostic': {'ERA-Interim': {'keyerror': None,
          'name': 'ERA-Interim',
          'nyears': 40,
          'time_period': ['1979-1-16 12:0:0.0', '2019-3-16 12:0:0.0']},
         'HadISST': {'keyerror': None,
          'name': 'HadISST',
          'nyears': 151,
          'time_period': ['1870-1-16 11:59:59.5', '2020-10-16 12:0:0.0']},
         'IPSL-CM5A-LR_r3i1p1': {'keyerror': None,
          'name': 'IPSL-CM5A-LR_r3i1p1',
          'nyears': 156,
          'time_period': ['1850-1-16 12:0:0.0', '2005-12-16 12:0:0.0']},
         'Tropflux': {'keyerror': None,
          'name': 'Tropflux',
          'nyears': 40,
          'time_period': ['1979-1-15 0:0:0.0', '2018-12-15 12:0:0.0']},
         'method': 'Nino (Nina) events = nino3.4 sstA > 0.75 (< -0.75) during DEC, zonal SSTA (meridional averaged [-5.0 ; 5.0]), the zonal SSTA maximum (minimum) is located for each event, the diversity is the interquartile range (IQR = Q3 - Q1), time series are linearly detrended, smoothing using a triangle shaped window of 5 points',
         'name': 'ENSO Diversity (interquartile range)',
         'ref': 'Using CDAT regridding',
         'time_frequency': 'monthly',
         'units': 'long'},
        'metric': {'datasets': "IPSL-CM5A-LR_r3i1p1; ERA-Interim's ts & HadISST's sst & Tropflux's sst; 's ",
         'method': 'The metric is the absolute value of the relative difference between model and observations values (M = 100 * abs[[model-obs] / obs])',
         'name': 'EnsoSstDiversity',
         'units': '%'}},
       'EnsoSstLonRmse': {'diagnostic': {'ERA-Interim': {'name': 'ERA-Interim',
          'nyears': 40,
          'time_period': ['1979-1-16 12:0:0.0', '2019-3-16 12:0:0.0']},
         'HadISST': {'name': 'HadISST',
          'nyears': 151,
          'time_period': ['1870-1-16 11:59:59.5', '2020-10-16 12:0:0.0']},
         'IPSL-CM5A-LR_r3i1p1': {'keyerror': None,
          'name': 'IPSL-CM5A-LR_r3i1p1',
          'nyears': 156,
          'time_period': ['1850-1-16 12:0:0.0', '2005-12-16 12:0:0.0']},
         'Tropflux': {'name': 'Tropflux',
          'nyears': 40,
          'time_period': ['1979-1-15 0:0:0.0', '2018-12-15 12:0:0.0']},
         'method': 'nino3.4 SSTA during DEC regressed against equatorial_pacific SSTA, time series are linearly detrended, smoothing using a triangle shaped window of 5 points, observations and model regridded to generic_1x1deg',
         'name': 'ENSO Zonal SSTA pattern',
         'ref': 'Using CDAT regridding and rms (uncentered and biased) calculation',
         'time_frequency': 'monthly',
         'units': 'C/C'},
        'metric': {'datasets': "IPSL-CM5A-LR_r3i1p1; ERA-Interim's ts & HadISST's sst & Tropflux's sst; 's ",
         'method': 'The metric is the statistical value between the model and the observations',
         'name': 'EnsoSstLonRmse',
         'units': 'C/C'}},
       'EnsoSstSkew': {'diagnostic': {'ERA-Interim': {'keyerror': None,
          'name': 'ERA-Interim',
          'nyears': 40,
          'time_period': ['1979-1-16 12:0:0.0', '2019-3-16 12:0:0.0']},
         'HadISST': {'keyerror': None,
          'name': 'HadISST',
          'nyears': 151,
          'time_period': ['1870-1-16 11:59:59.5', '2020-10-16 12:0:0.0']},
         'IPSL-CM5A-LR_r3i1p1': {'keyerror': None,
          'name': 'IPSL-CM5A-LR_r3i1p1',
          'nyears': 156,
          'time_period': ['1850-1-16 12:0:0.0', '2005-12-16 12:0:0.0']},
         'Tropflux': {'keyerror': None,
          'name': 'Tropflux',
          'nyears': 40,
          'time_period': ['1979-1-15 0:0:0.0', '2018-12-15 12:0:0.0']},
         'method': 'Standard deviation of nino3.4 sstA, time series are linearly detrended',
         'name': 'ENSO skewness',
         'ref': 'Using CDAT regression calculation',
         'time_frequency': 'monthly',
         'units': 'C'},
        'metric': {'datasets': "IPSL-CM5A-LR_r3i1p1; ERA-Interim's ts & HadISST's sst & Tropflux's sst; 's ",
         'method': 'The metric is the absolute value of the relative difference between model and observations values (M = 100 * abs[[model-obs] / obs])',
         'name': 'EnsoSstSkew',
         'units': '%'}},
       'EnsoSstTsRmse': {'diagnostic': {'ERA-Interim': {'name': 'ERA-Interim',
          'nyears': 40,
          'time_period': ['1979-1-16 12:0:0.0', '2019-3-16 12:0:0.0']},
         'HadISST': {'name': 'HadISST',
          'nyears': 151,
          'time_period': ['1870-1-16 11:59:59.5', '2020-10-16 12:0:0.0']},
         'IPSL-CM5A-LR_r3i1p1': {'keyerror': None,
          'name': 'IPSL-CM5A-LR_r3i1p1',
          'nyears': 156,
          'time_period': ['1850-1-16 12:0:0.0', '2005-12-16 12:0:0.0']},
         'Tropflux': {'name': 'Tropflux',
          'nyears': 40,
          'time_period': ['1979-1-15 0:0:0.0', '2018-12-15 12:0:0.0']},
         'method': 'nino3.4 SSTA during DEC regressed against nino3.4 SSTA during 6 years (centered on ENSO), time series are linearly detrended, smoothing using a triangle shaped window of 5 points',
         'name': 'ENSO life cyle SSTA pattern',
         'ref': 'Using CDAT regridding and rms (uncentered and biased) calculation',
         'time_frequency': 'monthly',
         'units': 'C/C'},
        'metric': {'datasets': "IPSL-CM5A-LR_r3i1p1; ERA-Interim's ts & HadISST's sst & Tropflux's sst; 's ",
         'method': 'The metric is the statistical value between the model and the observations',
         'name': 'EnsoSstTsRmse',
         'units': 'C/C'}},
       'SeasonalPrLatRmse': {'diagnostic': {'ERA-Interim': {'name': 'ERA-Interim',
          'nyears': 40,
          'time_period': ['1979-1-16 12:0:0.0', '2019-3-16 12:0:0.0']},
         'GPCPv2.3': {'name': 'GPCPv2.3',
          'nyears': 41,
          'time_period': ['1979-1-1 0:0:0.0', '2019-7-1 0:0:0.0']},
         'IPSL-CM5A-LR_r3i1p1': {'keyerror': None,
          'name': 'IPSL-CM5A-LR_r3i1p1',
          'nyears': 156,
          'time_period': ['1850-1-16 12:0:0.0', '2005-12-16 12:0:0.0']},
         'method': 'Meridional root mean square error of nino3_LatExt climatological pr STD, time series are linearly detrended, observations and model regridded to generic_1x1deg',
         'name': 'pr meridional seasonality RMSE',
         'ref': 'Using CDAT regridding and rms (uncentered and biased) calculation',
         'time_frequency': 'monthly',
         'units': 'mm/day'},
        'metric': {'datasets': "IPSL-CM5A-LR_r3i1p1; ERA-Interim's pr & GPCPv2.3's precip; 's ",
         'method': 'The metric is the statistical value between the model and the observations',
         'name': 'SeasonalPrLatRmse',
         'units': 'mm/day'}},
       'SeasonalPrLonRmse': {'diagnostic': {'ERA-Interim': {'name': 'ERA-Interim',
          'nyears': 40,
          'time_period': ['1979-1-16 12:0:0.0', '2019-3-16 12:0:0.0']},
         'GPCPv2.3': {'name': 'GPCPv2.3',
          'nyears': 41,
          'time_period': ['1979-1-1 0:0:0.0', '2019-7-1 0:0:0.0']},
         'IPSL-CM5A-LR_r3i1p1': {'keyerror': None,
          'name': 'IPSL-CM5A-LR_r3i1p1',
          'nyears': 156,
          'time_period': ['1850-1-16 12:0:0.0', '2005-12-16 12:0:0.0']},
         'method': 'Zonal root mean square error of equatorial_pacific climatological pr STD, time series are linearly detrended, observations and model regridded to generic_1x1deg',
         'name': 'pr zonal seasonality RMSE',
         'ref': 'Using CDAT regridding and rms (uncentered and biased) calculation',
         'time_frequency': 'monthly',
         'units': 'mm/day'},
        'metric': {'datasets': "IPSL-CM5A-LR_r3i1p1; ERA-Interim's pr & GPCPv2.3's precip; 's ",
         'method': 'The metric is the statistical value between the model and the observations',
         'name': 'SeasonalPrLonRmse',
         'units': 'mm/day'}},
       'SeasonalSstLonRmse': {'diagnostic': {'ERA-Interim': {'name': 'ERA-Interim',
          'nyears': 40,
          'time_period': ['1979-1-16 12:0:0.0', '2019-3-16 12:0:0.0']},
         'HadISST': {'name': 'HadISST',
          'nyears': 151,
          'time_period': ['1870-1-16 11:59:59.5', '2020-10-16 12:0:0.0']},
         'IPSL-CM5A-LR_r3i1p1': {'keyerror': None,
          'name': 'IPSL-CM5A-LR_r3i1p1',
          'nyears': 156,
          'time_period': ['1850-1-16 12:0:0.0', '2005-12-16 12:0:0.0']},
         'Tropflux': {'name': 'Tropflux',
          'nyears': 40,
          'time_period': ['1979-1-15 0:0:0.0', '2018-12-15 12:0:0.0']},
         'method': 'Zonal root mean square error of equatorial_pacific climatological sst STD, time series are linearly detrended, observations and model regridded to generic_1x1deg',
         'name': 'sst zonal seasonality RMSE',
         'ref': 'Using CDAT regridding and rms (uncentered and biased) calculation',
         'time_frequency': 'monthly',
         'units': 'C'},
        'metric': {'datasets': "IPSL-CM5A-LR_r3i1p1; ERA-Interim's ts & HadISST's sst & Tropflux's sst; 's ",
         'method': 'The metric is the statistical value between the model and the observations',
         'name': 'SeasonalSstLonRmse',
         'units': 'C'}},
       'SeasonalTauxLonRmse': {'diagnostic': {'ERA-Interim': {'name': 'ERA-Interim',
          'nyears': 40,
          'time_period': ['1979-1-16 12:0:0.0', '2019-3-16 12:0:0.0']},
         'IPSL-CM5A-LR_r3i1p1': {'keyerror': None,
          'name': 'IPSL-CM5A-LR_r3i1p1',
          'nyears': 156,
          'time_period': ['1850-1-16 12:0:0.0', '2005-12-16 12:0:0.0']},
         'Tropflux': {'name': 'Tropflux',
          'nyears': 40,
          'time_period': ['1979-1-15 0:0:0.0', '2018-12-15 12:0:0.0']},
         'method': 'Zonal root mean square error of equatorial_pacific climatological taux STD, time series are linearly detrended, observations and model regridded to generic_1x1deg',
         'name': 'taux zonal seasonality RMSE',
         'ref': 'Using CDAT regridding and rms (uncentered and biased) calculation',
         'time_frequency': 'monthly',
         'units': '1e-3 N/m2'},
        'metric': {'datasets': "IPSL-CM5A-LR_r3i1p1; ERA-Interim's tauu & Tropflux's taux; 's ",
         'method': 'The metric is the statistical value between the model and the observations',
         'name': 'SeasonalTauxLonRmse',
         'units': '1e-3 N/m2'}}},
      'name': 'Metrics Collection for ENSO performance'},
     'value': {'BiasPrLatRmse': {'diagnostic': {'ERA-Interim': {'value': None,
         'value_error': None},
        'GPCPv2.3': {'value': None, 'value_error': None},
        'IPSL-CM5A-LR_r3i1p1': {'value': None, 'value_error': None}},
       'metric': {'ERA-Interim': {'value': 1.524282264058674,
         'value_error': None},
        'GPCPv2.3': {'value': 1.601775151454028, 'value_error': None}}},
      'BiasPrLonRmse': {'diagnostic': {'ERA-Interim': {'value': None,
         'value_error': None},
        'GPCPv2.3': {'value': None, 'value_error': None},
        'IPSL-CM5A-LR_r3i1p1': {'value': None, 'value_error': None}},
       'metric': {'ERA-Interim': {'value': 3.214535331798137,
         'value_error': None},
        'GPCPv2.3': {'value': 2.336013204670561, 'value_error': None}}},
      'BiasSstLonRmse': {'diagnostic': {'ERA-Interim': {'value': None,
         'value_error': None},
        'HadISST': {'value': None, 'value_error': None},
        'IPSL-CM5A-LR_r3i1p1': {'value': None, 'value_error': None},
        'Tropflux': {'value': None, 'value_error': None}},
       'metric': {'ERA-Interim': {'value': 1.3938382937458718,
         'value_error': None},
        'HadISST': {'value': 1.2024117289344545, 'value_error': None},
        'Tropflux': {'value': 1.4423920903121874, 'value_error': None}}},
      'BiasTauxLonRmse': {'diagnostic': {'ERA-Interim': {'value': None,
         'value_error': None},
        'IPSL-CM5A-LR_r3i1p1': {'value': None, 'value_error': None},
        'Tropflux': {'value': None, 'value_error': None}},
       'metric': {'ERA-Interim': {'value': 7.004869562367099,
         'value_error': None},
        'Tropflux': {'value': 7.163849330316752, 'value_error': None}}},
      'EnsoAmpl': {'diagnostic': {'ERA-Interim': {'value': 0.8989844997845644,
         'value_error': 0.14214193002531866},
        'HadISST': {'value': 0.7665787872085695,
         'value_error': 0.06238329697691264},
        'IPSL-CM5A-LR_r3i1p1': {'value': 0.6966079779035138,
         'value_error': 0.0557732747137923},
        'Tropflux': {'value': 0.9039789553693535,
         'value_error': 0.14293162279134272}},
       'metric': {'ERA-Interim': {'value': 22.511680894336752,
         'value_error': 18.45600976151653},
        'HadISST': {'value': 9.127673563711355,
         'value_error': 14.670693979661758},
        'Tropflux': {'value': 22.939801444947435,
         'value_error': 18.354040882176122}}},
      'EnsoDuration': {'diagnostic': {'ERA-Interim': {'value': 13.0,
         'value_error': None},
        'HadISST': {'value': 13.0, 'value_error': None},
        'IPSL-CM5A-LR_r3i1p1': {'value': 15.0, 'value_error': None},
        'Tropflux': {'value': 13.0, 'value_error': None}},
       'metric': {'ERA-Interim': {'value': 15.384615384615385,
         'value_error': None},
        'HadISST': {'value': 15.384615384615385, 'value_error': None},
        'Tropflux': {'value': 15.384615384615385, 'value_error': None}}},
      'EnsoSeasonality': {'diagnostic': {'ERA-Interim': {'value': 2.0466846866656914,
         'value_error': 0.6513411033995022},
        'HadISST': {'value': 1.6639865947361325,
         'value_error': 0.2712772451657809},
        'IPSL-CM5A-LR_r3i1p1': {'value': 0.9004049680840102,
         'value_error': 0.14441236002860194},
        'Tropflux': {'value': 2.0532132553583624,
         'value_error': 0.6534187683977347}},
       'metric': {'ERA-Interim': {'value': 56.00665925971802,
         'value_error': 21.0564467422065},
        'HadISST': {'value': 45.88868859086017,
         'value_error': 17.500383468448025},
        'Tropflux': {'value': 56.14654416757815,
         'value_error': 20.9894939020077}}},
      'EnsoSstDiversity_2': {'diagnostic': {'ERA-Interim': {'value': 33.25,
         'value_error': None},
        'HadISST': {'value': 49.0, 'value_error': None},
        'IPSL-CM5A-LR_r3i1p1': {'value': 44.75, 'value_error': None},
        'Tropflux': {'value': 32.0, 'value_error': None}},
       'metric': {'ERA-Interim': {'value': 34.58646616541353,
         'value_error': None},
        'HadISST': {'value': 8.673469387755102, 'value_error': None},
        'Tropflux': {'value': 39.84375, 'value_error': None}}},
      'EnsoSstLonRmse': {'diagnostic': {'ERA-Interim': {'value': None,
         'value_error': None},
        'HadISST': {'value': None, 'value_error': None},
        'IPSL-CM5A-LR_r3i1p1': {'value': None, 'value_error': None},
        'Tropflux': {'value': None, 'value_error': None}},
       'metric': {'ERA-Interim': {'value': 0.223893111570631,
         'value_error': None},
        'HadISST': {'value': 0.23799927869565493, 'value_error': None},
        'Tropflux': {'value': 0.22408827571193046, 'value_error': None}}},
      'EnsoSstSkew': {'diagnostic': {'ERA-Interim': {'value': 0.39098111106809963,
         'value_error': 0.061819541653923164},
        'HadISST': {'value': 0.38989908235027515,
         'value_error': 0.03172953733021198},
        'IPSL-CM5A-LR_r3i1p1': {'value': 0.13756202479905275,
         'value_error': 0.011013776532380963},
        'Tropflux': {'value': 0.39744741059612115,
         'value_error': 0.06284195338099416}},
       'metric': {'ERA-Interim': {'value': 64.81619676632083,
         'value_error': 8.380006476106432},
        'HadISST': {'value': 64.7185564095607,
         'value_error': 5.695939373126202},
        'Tropflux': {'value': 65.38862220973411,
         'value_error': 8.243667351793125}}},
      'EnsoSstTsRmse': {'diagnostic': {'ERA-Interim': {'value': None,
         'value_error': None},
        'HadISST': {'value': None, 'value_error': None},
        'IPSL-CM5A-LR_r3i1p1': {'value': None, 'value_error': None},
        'Tropflux': {'value': None, 'value_error': None}},
       'metric': {'ERA-Interim': {'value': 0.1587388019457323,
         'value_error': None},
        'HadISST': {'value': 0.1254196640305073, 'value_error': None},
        'Tropflux': {'value': 0.1563799288434741, 'value_error': None}}},
      'SeasonalPrLatRmse': {'diagnostic': {'ERA-Interim': {'value': None,
         'value_error': None},
        'GPCPv2.3': {'value': None, 'value_error': None},
        'IPSL-CM5A-LR_r3i1p1': {'value': None, 'value_error': None}},
       'metric': {'ERA-Interim': {'value': 1.1754211711908722,
         'value_error': None},
        'GPCPv2.3': {'value': 1.2464745700360909, 'value_error': None}}},
      'SeasonalPrLonRmse': {'diagnostic': {'ERA-Interim': {'value': None,
         'value_error': None},
        'GPCPv2.3': {'value': None, 'value_error': None},
        'IPSL-CM5A-LR_r3i1p1': {'value': None, 'value_error': None}},
       'metric': {'ERA-Interim': {'value': 0.8829169529449794,
         'value_error': None},
        'GPCPv2.3': {'value': 0.6146946292129577, 'value_error': None}}},
      'SeasonalSstLonRmse': {'diagnostic': {'ERA-Interim': {'value': None,
         'value_error': None},
        'HadISST': {'value': None, 'value_error': None},
        'IPSL-CM5A-LR_r3i1p1': {'value': None, 'value_error': None},
        'Tropflux': {'value': None, 'value_error': None}},
       'metric': {'ERA-Interim': {'value': 0.07302912762248787,
         'value_error': None},
        'HadISST': {'value': 0.07460956729930965, 'value_error': None},
        'Tropflux': {'value': 0.07217945180314574, 'value_error': None}}},
      'SeasonalTauxLonRmse': {'diagnostic': {'ERA-Interim': {'value': None,
         'value_error': None},
        'IPSL-CM5A-LR_r3i1p1': {'value': None, 'value_error': None},
        'Tropflux': {'value': None, 'value_error': None}},
       'metric': {'ERA-Interim': {'value': 2.3165891822228932,
         'value_error': None},
        'Tropflux': {'value': 2.5910494534940414, 'value_error': None}}}}},
    'r4i1p1': {'metadata': {'description_of_the_collection': 'Describe which science question this collection is about',
      'metrics': {'BiasPrLatRmse': {'diagnostic': {'ERA-Interim': {'name': 'ERA-Interim',
          'nyears': 40,
          'time_period': ['1979-1-16 12:0:0.0', '2019-3-16 12:0:0.0']},
         'GPCPv2.3': {'name': 'GPCPv2.3',
          'nyears': 41,
          'time_period': ['1979-1-1 0:0:0.0', '2019-7-1 0:0:0.0']},
         'IPSL-CM5A-LR_r4i1p1': {'keyerror': None,
          'name': 'IPSL-CM5A-LR_r4i1p1',
          'nyears': 156,
          'time_period': ['1850-1-16 12:0:0.0', '2005-12-16 12:0:0.0']},
         'method': 'Meridional root mean square error of nino3_LatExt pr, time series are linearly detrended, observations and model regridded to generic_1x1deg',
         'name': 'pr Meridional RMSE',
         'ref': 'Using CDAT regridding and rms (uncentered and biased) calculation',
         'time_frequency': 'monthly',
         'units': 'mm/day'},
        'metric': {'datasets': "IPSL-CM5A-LR_r4i1p1; ERA-Interim's pr & GPCPv2.3's precip; 's ",
         'method': 'The metric is the statistical value between the model and the observations',
         'name': 'BiasPrLatRmse',
         'units': 'mm/day'}},
       'BiasPrLonRmse': {'diagnostic': {'ERA-Interim': {'name': 'ERA-Interim',
          'nyears': 40,
          'time_period': ['1979-1-16 12:0:0.0', '2019-3-16 12:0:0.0']},
         'GPCPv2.3': {'name': 'GPCPv2.3',
          'nyears': 41,
          'time_period': ['1979-1-1 0:0:0.0', '2019-7-1 0:0:0.0']},
         'IPSL-CM5A-LR_r4i1p1': {'keyerror': None,
          'name': 'IPSL-CM5A-LR_r4i1p1',
          'nyears': 156,
          'time_period': ['1850-1-16 12:0:0.0', '2005-12-16 12:0:0.0']},
         'method': 'Zonal root mean square error of equatorial_pacific pr, time series are linearly detrended, observations and model regridded to generic_1x1deg',
         'name': 'pr Zonal RMSE',
         'ref': 'Using CDAT regridding and rms (uncentered and biased) calculation',
         'time_frequency': 'monthly',
         'units': 'mm/day'},
        'metric': {'datasets': "IPSL-CM5A-LR_r4i1p1; ERA-Interim's pr & GPCPv2.3's precip; 's ",
         'method': 'The metric is the statistical value between the model and the observations',
         'name': 'BiasPrLonRmse',
         'units': 'mm/day'}},
       'BiasSstLonRmse': {'diagnostic': {'ERA-Interim': {'name': 'ERA-Interim',
          'nyears': 40,
          'time_period': ['1979-1-16 12:0:0.0', '2019-3-16 12:0:0.0']},
         'HadISST': {'name': 'HadISST',
          'nyears': 151,
          'time_period': ['1870-1-16 11:59:59.5', '2020-10-16 12:0:0.0']},
         'IPSL-CM5A-LR_r4i1p1': {'keyerror': None,
          'name': 'IPSL-CM5A-LR_r4i1p1',
          'nyears': 156,
          'time_period': ['1850-1-16 12:0:0.0', '2005-12-16 12:0:0.0']},
         'Tropflux': {'name': 'Tropflux',
          'nyears': 40,
          'time_period': ['1979-1-15 0:0:0.0', '2018-12-15 12:0:0.0']},
         'method': 'Zonal root mean square error of equatorial_pacific sst, time series are linearly detrended, observations and model regridded to generic_1x1deg',
         'name': 'sst Zonal RMSE',
         'ref': 'Using CDAT regridding and rms (uncentered and biased) calculation',
         'time_frequency': 'monthly',
         'units': 'C'},
        'metric': {'datasets': "IPSL-CM5A-LR_r4i1p1; ERA-Interim's ts & HadISST's sst & Tropflux's sst; 's ",
         'method': 'The metric is the statistical value between the model and the observations',
         'name': 'BiasSstLonRmse',
         'units': 'C'}},
       'BiasTauxLonRmse': {'diagnostic': {'ERA-Interim': {'name': 'ERA-Interim',
          'nyears': 40,
          'time_period': ['1979-1-16 12:0:0.0', '2019-3-16 12:0:0.0']},
         'IPSL-CM5A-LR_r4i1p1': {'keyerror': None,
          'name': 'IPSL-CM5A-LR_r4i1p1',
          'nyears': 156,
          'time_period': ['1850-1-16 12:0:0.0', '2005-12-16 12:0:0.0']},
         'Tropflux': {'name': 'Tropflux',
          'nyears': 40,
          'time_period': ['1979-1-15 0:0:0.0', '2018-12-15 12:0:0.0']},
         'method': 'Zonal root mean square error of equatorial_pacific taux, time series are linearly detrended, observations and model regridded to generic_1x1deg',
         'name': 'taux Zonal RMSE',
         'ref': 'Using CDAT regridding and rms (uncentered and biased) calculation',
         'time_frequency': 'monthly',
         'units': '1e-3 N/m2'},
        'metric': {'datasets': "IPSL-CM5A-LR_r4i1p1; ERA-Interim's tauu & Tropflux's taux; 's ",
         'method': 'The metric is the statistical value between the model and the observations',
         'name': 'BiasTauxLonRmse',
         'units': '1e-3 N/m2'}},
       'EnsoAmpl': {'diagnostic': {'ERA-Interim': {'keyerror': None,
          'name': 'ERA-Interim',
          'nyears': 40,
          'time_period': ['1979-1-16 12:0:0.0', '2019-3-16 12:0:0.0']},
         'HadISST': {'keyerror': None,
          'name': 'HadISST',
          'nyears': 151,
          'time_period': ['1870-1-16 11:59:59.5', '2020-10-16 12:0:0.0']},
         'IPSL-CM5A-LR_r4i1p1': {'keyerror': None,
          'name': 'IPSL-CM5A-LR_r4i1p1',
          'nyears': 156,
          'time_period': ['1850-1-16 12:0:0.0', '2005-12-16 12:0:0.0']},
         'Tropflux': {'keyerror': None,
          'name': 'Tropflux',
          'nyears': 40,
          'time_period': ['1979-1-15 0:0:0.0', '2018-12-15 12:0:0.0']},
         'method': 'Standard deviation of nino3.4 sstA, time series are linearly detrended',
         'name': 'ENSO amplitude',
         'ref': 'Using CDAT regression calculation',
         'time_frequency': 'monthly',
         'units': 'C'},
        'metric': {'datasets': "IPSL-CM5A-LR_r4i1p1; ERA-Interim's ts & HadISST's sst & Tropflux's sst; 's ",
         'method': 'The metric is the absolute value of the relative difference between model and observations values (M = 100 * abs[[model-obs] / obs])',
         'name': 'EnsoAmpl',
         'units': '%'}},
       'EnsoDuration': {'diagnostic': {'ERA-Interim': {'keyerror': None,
          'name': 'ERA-Interim',
          'nyears': 40,
          'time_period': ['1979-1-16 12:0:0.0', '2019-3-16 12:0:0.0']},
         'HadISST': {'keyerror': None,
          'name': 'HadISST',
          'nyears': 151,
          'time_period': ['1870-1-16 11:59:59.5', '2020-10-16 12:0:0.0']},
         'IPSL-CM5A-LR_r4i1p1': {'keyerror': None,
          'name': 'IPSL-CM5A-LR_r4i1p1',
          'nyears': 156,
          'time_period': ['1850-1-16 12:0:0.0', '2005-12-16 12:0:0.0']},
         'Tropflux': {'keyerror': None,
          'name': 'Tropflux',
          'nyears': 40,
          'time_period': ['1979-1-15 0:0:0.0', '2018-12-15 12:0:0.0']},
         'method': 'nino3.4 SSTA during DEC regressed against nino3.4 SSTA during 6 years (centered on ENSO), the duration is the number of consecutive months during which the regression is above 0.25, time series are linearly detrended, smoothing using a triangle shaped window of 5 points',
         'name': 'ENSO Duration based on life cyle SSTA pattern',
         'ref': 'Using CDAT',
         'time_frequency': 'monthly',
         'units': 'months'},
        'metric': {'datasets': "IPSL-CM5A-LR_r4i1p1; ERA-Interim's ts & HadISST's sst & Tropflux's sst; 's ",
         'method': 'The metric is the absolute value of the relative difference between model and observations values (M = 100 * abs[[model-obs] / obs])',
         'name': 'EnsoDuration',
         'units': '%'}},
       'EnsoSeasonality': {'diagnostic': {'ERA-Interim': {'keyerror': None,
          'name': 'ERA-Interim',
          'nyears': 40,
          'time_period': ['1979-1-16 12:0:0.0', '2019-3-16 12:0:0.0']},
         'HadISST': {'keyerror': None,
          'name': 'HadISST',
          'nyears': 151,
          'time_period': ['1870-1-16 11:59:59.5', '2020-10-16 12:0:0.0']},
         'IPSL-CM5A-LR_r4i1p1': {'keyerror': None,
          'name': 'IPSL-CM5A-LR_r4i1p1',
          'nyears': 156,
          'time_period': ['1850-1-16 12:0:0.0', '2005-12-16 12:0:0.0']},
         'Tropflux': {'keyerror': None,
          'name': 'Tropflux',
          'nyears': 40,
          'time_period': ['1979-1-15 0:0:0.0', '2018-12-15 12:0:0.0']},
         'method': 'Ratio between NDJ and MAM standard deviation nino3.4 sstA, time series are linearly detrended',
         'name': 'ENSO seasonality',
         'ref': 'Using CDAT std dev calculation',
         'time_frequency': 'monthly',
         'units': 'C/C'},
        'metric': {'datasets': "IPSL-CM5A-LR_r4i1p1; ERA-Interim's ts & HadISST's sst & Tropflux's sst; 's ",
         'method': 'The metric is the absolute value of the relative difference between model and observations values (M = 100 * abs[[model-obs] / obs])',
         'name': 'EnsoSeasonality',
         'units': '%'}},
       'EnsoSstDiversity_2': {'diagnostic': {'ERA-Interim': {'keyerror': None,
          'name': 'ERA-Interim',
          'nyears': 40,
          'time_period': ['1979-1-16 12:0:0.0', '2019-3-16 12:0:0.0']},
         'HadISST': {'keyerror': None,
          'name': 'HadISST',
          'nyears': 151,
          'time_period': ['1870-1-16 11:59:59.5', '2020-10-16 12:0:0.0']},
         'IPSL-CM5A-LR_r4i1p1': {'keyerror': None,
          'name': 'IPSL-CM5A-LR_r4i1p1',
          'nyears': 156,
          'time_period': ['1850-1-16 12:0:0.0', '2005-12-16 12:0:0.0']},
         'Tropflux': {'keyerror': None,
          'name': 'Tropflux',
          'nyears': 40,
          'time_period': ['1979-1-15 0:0:0.0', '2018-12-15 12:0:0.0']},
         'method': 'Nino (Nina) events = nino3.4 sstA > 0.75 (< -0.75) during DEC, zonal SSTA (meridional averaged [-5.0 ; 5.0]), the zonal SSTA maximum (minimum) is located for each event, the diversity is the interquartile range (IQR = Q3 - Q1), time series are linearly detrended, smoothing using a triangle shaped window of 5 points',
         'name': 'ENSO Diversity (interquartile range)',
         'ref': 'Using CDAT regridding',
         'time_frequency': 'monthly',
         'units': 'long'},
        'metric': {'datasets': "IPSL-CM5A-LR_r4i1p1; ERA-Interim's ts & HadISST's sst & Tropflux's sst; 's ",
         'method': 'The metric is the absolute value of the relative difference between model and observations values (M = 100 * abs[[model-obs] / obs])',
         'name': 'EnsoSstDiversity',
         'units': '%'}},
       'EnsoSstLonRmse': {'diagnostic': {'ERA-Interim': {'name': 'ERA-Interim',
          'nyears': 40,
          'time_period': ['1979-1-16 12:0:0.0', '2019-3-16 12:0:0.0']},
         'HadISST': {'name': 'HadISST',
          'nyears': 151,
          'time_period': ['1870-1-16 11:59:59.5', '2020-10-16 12:0:0.0']},
         'IPSL-CM5A-LR_r4i1p1': {'keyerror': None,
          'name': 'IPSL-CM5A-LR_r4i1p1',
          'nyears': 156,
          'time_period': ['1850-1-16 12:0:0.0', '2005-12-16 12:0:0.0']},
         'Tropflux': {'name': 'Tropflux',
          'nyears': 40,
          'time_period': ['1979-1-15 0:0:0.0', '2018-12-15 12:0:0.0']},
         'method': 'nino3.4 SSTA during DEC regressed against equatorial_pacific SSTA, time series are linearly detrended, smoothing using a triangle shaped window of 5 points, observations and model regridded to generic_1x1deg',
         'name': 'ENSO Zonal SSTA pattern',
         'ref': 'Using CDAT regridding and rms (uncentered and biased) calculation',
         'time_frequency': 'monthly',
         'units': 'C/C'},
        'metric': {'datasets': "IPSL-CM5A-LR_r4i1p1; ERA-Interim's ts & HadISST's sst & Tropflux's sst; 's ",
         'method': 'The metric is the statistical value between the model and the observations',
         'name': 'EnsoSstLonRmse',
         'units': 'C/C'}},
       'EnsoSstSkew': {'diagnostic': {'ERA-Interim': {'keyerror': None,
          'name': 'ERA-Interim',
          'nyears': 40,
          'time_period': ['1979-1-16 12:0:0.0', '2019-3-16 12:0:0.0']},
         'HadISST': {'keyerror': None,
          'name': 'HadISST',
          'nyears': 151,
          'time_period': ['1870-1-16 11:59:59.5', '2020-10-16 12:0:0.0']},
         'IPSL-CM5A-LR_r4i1p1': {'keyerror': None,
          'name': 'IPSL-CM5A-LR_r4i1p1',
          'nyears': 156,
          'time_period': ['1850-1-16 12:0:0.0', '2005-12-16 12:0:0.0']},
         'Tropflux': {'keyerror': None,
          'name': 'Tropflux',
          'nyears': 40,
          'time_period': ['1979-1-15 0:0:0.0', '2018-12-15 12:0:0.0']},
         'method': 'Standard deviation of nino3.4 sstA, time series are linearly detrended',
         'name': 'ENSO skewness',
         'ref': 'Using CDAT regression calculation',
         'time_frequency': 'monthly',
         'units': 'C'},
        'metric': {'datasets': "IPSL-CM5A-LR_r4i1p1; ERA-Interim's ts & HadISST's sst & Tropflux's sst; 's ",
         'method': 'The metric is the absolute value of the relative difference between model and observations values (M = 100 * abs[[model-obs] / obs])',
         'name': 'EnsoSstSkew',
         'units': '%'}},
       'EnsoSstTsRmse': {'diagnostic': {'ERA-Interim': {'name': 'ERA-Interim',
          'nyears': 40,
          'time_period': ['1979-1-16 12:0:0.0', '2019-3-16 12:0:0.0']},
         'HadISST': {'name': 'HadISST',
          'nyears': 151,
          'time_period': ['1870-1-16 11:59:59.5', '2020-10-16 12:0:0.0']},
         'IPSL-CM5A-LR_r4i1p1': {'keyerror': None,
          'name': 'IPSL-CM5A-LR_r4i1p1',
          'nyears': 156,
          'time_period': ['1850-1-16 12:0:0.0', '2005-12-16 12:0:0.0']},
         'Tropflux': {'name': 'Tropflux',
          'nyears': 40,
          'time_period': ['1979-1-15 0:0:0.0', '2018-12-15 12:0:0.0']},
         'method': 'nino3.4 SSTA during DEC regressed against nino3.4 SSTA during 6 years (centered on ENSO), time series are linearly detrended, smoothing using a triangle shaped window of 5 points',
         'name': 'ENSO life cyle SSTA pattern',
         'ref': 'Using CDAT regridding and rms (uncentered and biased) calculation',
         'time_frequency': 'monthly',
         'units': 'C/C'},
        'metric': {'datasets': "IPSL-CM5A-LR_r4i1p1; ERA-Interim's ts & HadISST's sst & Tropflux's sst; 's ",
         'method': 'The metric is the statistical value between the model and the observations',
         'name': 'EnsoSstTsRmse',
         'units': 'C/C'}},
       'SeasonalPrLatRmse': {'diagnostic': {'ERA-Interim': {'name': 'ERA-Interim',
          'nyears': 40,
          'time_period': ['1979-1-16 12:0:0.0', '2019-3-16 12:0:0.0']},
         'GPCPv2.3': {'name': 'GPCPv2.3',
          'nyears': 41,
          'time_period': ['1979-1-1 0:0:0.0', '2019-7-1 0:0:0.0']},
         'IPSL-CM5A-LR_r4i1p1': {'keyerror': None,
          'name': 'IPSL-CM5A-LR_r4i1p1',
          'nyears': 156,
          'time_period': ['1850-1-16 12:0:0.0', '2005-12-16 12:0:0.0']},
         'method': 'Meridional root mean square error of nino3_LatExt climatological pr STD, time series are linearly detrended, observations and model regridded to generic_1x1deg',
         'name': 'pr meridional seasonality RMSE',
         'ref': 'Using CDAT regridding and rms (uncentered and biased) calculation',
         'time_frequency': 'monthly',
         'units': 'mm/day'},
        'metric': {'datasets': "IPSL-CM5A-LR_r4i1p1; ERA-Interim's pr & GPCPv2.3's precip; 's ",
         'method': 'The metric is the statistical value between the model and the observations',
         'name': 'SeasonalPrLatRmse',
         'units': 'mm/day'}},
       'SeasonalPrLonRmse': {'diagnostic': {'ERA-Interim': {'name': 'ERA-Interim',
          'nyears': 40,
          'time_period': ['1979-1-16 12:0:0.0', '2019-3-16 12:0:0.0']},
         'GPCPv2.3': {'name': 'GPCPv2.3',
          'nyears': 41,
          'time_period': ['1979-1-1 0:0:0.0', '2019-7-1 0:0:0.0']},
         'IPSL-CM5A-LR_r4i1p1': {'keyerror': None,
          'name': 'IPSL-CM5A-LR_r4i1p1',
          'nyears': 156,
          'time_period': ['1850-1-16 12:0:0.0', '2005-12-16 12:0:0.0']},
         'method': 'Zonal root mean square error of equatorial_pacific climatological pr STD, time series are linearly detrended, observations and model regridded to generic_1x1deg',
         'name': 'pr zonal seasonality RMSE',
         'ref': 'Using CDAT regridding and rms (uncentered and biased) calculation',
         'time_frequency': 'monthly',
         'units': 'mm/day'},
        'metric': {'datasets': "IPSL-CM5A-LR_r4i1p1; ERA-Interim's pr & GPCPv2.3's precip; 's ",
         'method': 'The metric is the statistical value between the model and the observations',
         'name': 'SeasonalPrLonRmse',
         'units': 'mm/day'}},
       'SeasonalSstLonRmse': {'diagnostic': {'ERA-Interim': {'name': 'ERA-Interim',
          'nyears': 40,
          'time_period': ['1979-1-16 12:0:0.0', '2019-3-16 12:0:0.0']},
         'HadISST': {'name': 'HadISST',
          'nyears': 151,
          'time_period': ['1870-1-16 11:59:59.5', '2020-10-16 12:0:0.0']},
         'IPSL-CM5A-LR_r4i1p1': {'keyerror': None,
          'name': 'IPSL-CM5A-LR_r4i1p1',
          'nyears': 156,
          'time_period': ['1850-1-16 12:0:0.0', '2005-12-16 12:0:0.0']},
         'Tropflux': {'name': 'Tropflux',
          'nyears': 40,
          'time_period': ['1979-1-15 0:0:0.0', '2018-12-15 12:0:0.0']},
         'method': 'Zonal root mean square error of equatorial_pacific climatological sst STD, time series are linearly detrended, observations and model regridded to generic_1x1deg',
         'name': 'sst zonal seasonality RMSE',
         'ref': 'Using CDAT regridding and rms (uncentered and biased) calculation',
         'time_frequency': 'monthly',
         'units': 'C'},
        'metric': {'datasets': "IPSL-CM5A-LR_r4i1p1; ERA-Interim's ts & HadISST's sst & Tropflux's sst; 's ",
         'method': 'The metric is the statistical value between the model and the observations',
         'name': 'SeasonalSstLonRmse',
         'units': 'C'}},
       'SeasonalTauxLonRmse': {'diagnostic': {'ERA-Interim': {'name': 'ERA-Interim',
          'nyears': 40,
          'time_period': ['1979-1-16 12:0:0.0', '2019-3-16 12:0:0.0']},
         'IPSL-CM5A-LR_r4i1p1': {'keyerror': None,
          'name': 'IPSL-CM5A-LR_r4i1p1',
          'nyears': 156,
          'time_period': ['1850-1-16 12:0:0.0', '2005-12-16 12:0:0.0']},
         'Tropflux': {'name': 'Tropflux',
          'nyears': 40,
          'time_period': ['1979-1-15 0:0:0.0', '2018-12-15 12:0:0.0']},
         'method': 'Zonal root mean square error of equatorial_pacific climatological taux STD, time series are linearly detrended, observations and model regridded to generic_1x1deg',
         'name': 'taux zonal seasonality RMSE',
         'ref': 'Using CDAT regridding and rms (uncentered and biased) calculation',
         'time_frequency': 'monthly',
         'units': '1e-3 N/m2'},
        'metric': {'datasets': "IPSL-CM5A-LR_r4i1p1; ERA-Interim's tauu & Tropflux's taux; 's ",
         'method': 'The metric is the statistical value between the model and the observations',
         'name': 'SeasonalTauxLonRmse',
         'units': '1e-3 N/m2'}}},
      'name': 'Metrics Collection for ENSO performance'},
     'value': {'BiasPrLatRmse': {'diagnostic': {'ERA-Interim': {'value': None,
         'value_error': None},
        'GPCPv2.3': {'value': None, 'value_error': None},
        'IPSL-CM5A-LR_r4i1p1': {'value': None, 'value_error': None}},
       'metric': {'ERA-Interim': {'value': 1.5315496640607027,
         'value_error': None},
        'GPCPv2.3': {'value': 1.598979538813418, 'value_error': None}}},
      'BiasPrLonRmse': {'diagnostic': {'ERA-Interim': {'value': None,
         'value_error': None},
        'GPCPv2.3': {'value': None, 'value_error': None},
        'IPSL-CM5A-LR_r4i1p1': {'value': None, 'value_error': None}},
       'metric': {'ERA-Interim': {'value': 3.2358744675728093,
         'value_error': None},
        'GPCPv2.3': {'value': 2.355688614083777, 'value_error': None}}},
      'BiasSstLonRmse': {'diagnostic': {'ERA-Interim': {'value': None,
         'value_error': None},
        'HadISST': {'value': None, 'value_error': None},
        'IPSL-CM5A-LR_r4i1p1': {'value': None, 'value_error': None},
        'Tropflux': {'value': None, 'value_error': None}},
       'metric': {'ERA-Interim': {'value': 1.4480232142743983,
         'value_error': None},
        'HadISST': {'value': 1.2558600918996237, 'value_error': None},
        'Tropflux': {'value': 1.49656661205667, 'value_error': None}}},
      'BiasTauxLonRmse': {'diagnostic': {'ERA-Interim': {'value': None,
         'value_error': None},
        'IPSL-CM5A-LR_r4i1p1': {'value': None, 'value_error': None},
        'Tropflux': {'value': None, 'value_error': None}},
       'metric': {'ERA-Interim': {'value': 6.823287612833675,
         'value_error': None},
        'Tropflux': {'value': 6.998326435548866, 'value_error': None}}},
      'EnsoAmpl': {'diagnostic': {'ERA-Interim': {'value': 0.8989844997845644,
         'value_error': 0.14214193002531866},
        'HadISST': {'value': 0.7665787872085695,
         'value_error': 0.06238329697691264},
        'IPSL-CM5A-LR_r4i1p1': {'value': 0.7127286890468555,
         'value_error': 0.0570639645704965},
        'Tropflux': {'value': 0.9039789553693535,
         'value_error': 0.14293162279134272}},
       'metric': {'ERA-Interim': {'value': 20.718467424337558,
         'value_error': 18.8831136874858},
        'HadISST': {'value': 7.024731059648093,
         'value_error': 15.01019916395531},
        'Tropflux': {'value': 21.15649542354177,
         'value_error': 18.778785072251456}}},
      'EnsoDuration': {'diagnostic': {'ERA-Interim': {'value': 13.0,
         'value_error': None},
        'HadISST': {'value': 13.0, 'value_error': None},
        'IPSL-CM5A-LR_r4i1p1': {'value': 16.0, 'value_error': None},
        'Tropflux': {'value': 13.0, 'value_error': None}},
       'metric': {'ERA-Interim': {'value': 23.076923076923077,
         'value_error': None},
        'HadISST': {'value': 23.076923076923077, 'value_error': None},
        'Tropflux': {'value': 23.076923076923077, 'value_error': None}}},
      'EnsoSeasonality': {'diagnostic': {'ERA-Interim': {'value': 2.0466846866656914,
         'value_error': 0.6513411033995022},
        'HadISST': {'value': 1.6639865947361325,
         'value_error': 0.2712772451657809},
        'IPSL-CM5A-LR_r4i1p1': {'value': 0.8907543502583328,
         'value_error': 0.14286453594350634},
        'Tropflux': {'value': 2.0532132553583624,
         'value_error': 0.6534187683977347}},
       'metric': {'ERA-Interim': {'value': 56.47818366641104,
         'value_error': 20.830761936503826},
        'HadISST': {'value': 46.46865827668614,
         'value_error': 17.312812854509527},
        'Tropflux': {'value': 56.61656927580751,
         'value_error': 20.764526702599976}}},
      'EnsoSstDiversity_2': {'diagnostic': {'ERA-Interim': {'value': 33.25,
         'value_error': None},
        'HadISST': {'value': 49.0, 'value_error': None},
        'IPSL-CM5A-LR_r4i1p1': {'value': 42.0, 'value_error': None},
        'Tropflux': {'value': 32.0, 'value_error': None}},
       'metric': {'ERA-Interim': {'value': 26.31578947368421,
         'value_error': None},
        'HadISST': {'value': 14.285714285714285, 'value_error': None},
        'Tropflux': {'value': 31.25, 'value_error': None}}},
      'EnsoSstLonRmse': {'diagnostic': {'ERA-Interim': {'value': None,
         'value_error': None},
        'HadISST': {'value': None, 'value_error': None},
        'IPSL-CM5A-LR_r4i1p1': {'value': None, 'value_error': None},
        'Tropflux': {'value': None, 'value_error': None}},
       'metric': {'ERA-Interim': {'value': 0.23275070487445781,
         'value_error': None},
        'HadISST': {'value': 0.24395013722628903, 'value_error': None},
        'Tropflux': {'value': 0.23269982299962175, 'value_error': None}}},
      'EnsoSstSkew': {'diagnostic': {'ERA-Interim': {'value': 0.39098111106809963,
         'value_error': 0.061819541653923164},
        'HadISST': {'value': 0.38989908235027515,
         'value_error': 0.03172953733021198},
        'IPSL-CM5A-LR_r4i1p1': {'value': 0.174073125802805,
         'value_error': 0.013937004130941922},
        'Tropflux': {'value': 0.39744741059612115,
         'value_error': 0.06284195338099416}},
       'metric': {'ERA-Interim': {'value': 55.47786814374119,
         'value_error': 10.6041905364106},
        'HadISST': {'value': 55.35431251761135,
         'value_error': 7.207730276664082},
        'Tropflux': {'value': 56.202224203268244,
         'value_error': 10.431664887903299}}},
      'EnsoSstTsRmse': {'diagnostic': {'ERA-Interim': {'value': None,
         'value_error': None},
        'HadISST': {'value': None, 'value_error': None},
        'IPSL-CM5A-LR_r4i1p1': {'value': None, 'value_error': None},
        'Tropflux': {'value': None, 'value_error': None}},
       'metric': {'ERA-Interim': {'value': 0.18002216841204574,
         'value_error': None},
        'HadISST': {'value': 0.1348962813948056, 'value_error': None},
        'Tropflux': {'value': 0.17515355466944435, 'value_error': None}}},
      'SeasonalPrLatRmse': {'diagnostic': {'ERA-Interim': {'value': None,
         'value_error': None},
        'GPCPv2.3': {'value': None, 'value_error': None},
        'IPSL-CM5A-LR_r4i1p1': {'value': None, 'value_error': None}},
       'metric': {'ERA-Interim': {'value': 1.1669523716170698,
         'value_error': None},
        'GPCPv2.3': {'value': 1.2407925255588916, 'value_error': None}}},
      'SeasonalPrLonRmse': {'diagnostic': {'ERA-Interim': {'value': None,
         'value_error': None},
        'GPCPv2.3': {'value': None, 'value_error': None},
        'IPSL-CM5A-LR_r4i1p1': {'value': None, 'value_error': None}},
       'metric': {'ERA-Interim': {'value': 0.8816955419436124,
         'value_error': None},
        'GPCPv2.3': {'value': 0.6214761044357078, 'value_error': None}}},
      'SeasonalSstLonRmse': {'diagnostic': {'ERA-Interim': {'value': None,
         'value_error': None},
        'HadISST': {'value': None, 'value_error': None},
        'IPSL-CM5A-LR_r4i1p1': {'value': None, 'value_error': None},
        'Tropflux': {'value': None, 'value_error': None}},
       'metric': {'ERA-Interim': {'value': 0.07471980305891313,
         'value_error': None},
        'HadISST': {'value': 0.07588183821503658, 'value_error': None},
        'Tropflux': {'value': 0.07315518635613329, 'value_error': None}}},
      'SeasonalTauxLonRmse': {'diagnostic': {'ERA-Interim': {'value': None,
         'value_error': None},
        'IPSL-CM5A-LR_r4i1p1': {'value': None, 'value_error': None},
        'Tropflux': {'value': None, 'value_error': None}},
       'metric': {'ERA-Interim': {'value': 2.3040655035185496,
         'value_error': None},
        'Tropflux': {'value': 2.560363221261442, 'value_error': None}}}}},
    'r5i1p1': {'metadata': {'description_of_the_collection': 'Describe which science question this collection is about',
      'metrics': {'BiasPrLatRmse': {'diagnostic': {'ERA-Interim': {'name': 'ERA-Interim',
          'nyears': 40,
          'time_period': ['1979-1-16 12:0:0.0', '2019-3-16 12:0:0.0']},
         'GPCPv2.3': {'name': 'GPCPv2.3',
          'nyears': 41,
          'time_period': ['1979-1-1 0:0:0.0', '2019-7-1 0:0:0.0']},
         'IPSL-CM5A-LR_r5i1p1': {'keyerror': None,
          'name': 'IPSL-CM5A-LR_r5i1p1',
          'nyears': 156,
          'time_period': ['1850-1-16 12:0:0.0', '2005-12-16 12:0:0.0']},
         'method': 'Meridional root mean square error of nino3_LatExt pr, time series are linearly detrended, observations and model regridded to generic_1x1deg',
         'name': 'pr Meridional RMSE',
         'ref': 'Using CDAT regridding and rms (uncentered and biased) calculation',
         'time_frequency': 'monthly',
         'units': 'mm/day'},
        'metric': {'datasets': "IPSL-CM5A-LR_r5i1p1; ERA-Interim's pr & GPCPv2.3's precip; 's ",
         'method': 'The metric is the statistical value between the model and the observations',
         'name': 'BiasPrLatRmse',
         'units': 'mm/day'}},
       'BiasPrLonRmse': {'diagnostic': {'ERA-Interim': {'name': 'ERA-Interim',
          'nyears': 40,
          'time_period': ['1979-1-16 12:0:0.0', '2019-3-16 12:0:0.0']},
         'GPCPv2.3': {'name': 'GPCPv2.3',
          'nyears': 41,
          'time_period': ['1979-1-1 0:0:0.0', '2019-7-1 0:0:0.0']},
         'IPSL-CM5A-LR_r5i1p1': {'keyerror': None,
          'name': 'IPSL-CM5A-LR_r5i1p1',
          'nyears': 156,
          'time_period': ['1850-1-16 12:0:0.0', '2005-12-16 12:0:0.0']},
         'method': 'Zonal root mean square error of equatorial_pacific pr, time series are linearly detrended, observations and model regridded to generic_1x1deg',
         'name': 'pr Zonal RMSE',
         'ref': 'Using CDAT regridding and rms (uncentered and biased) calculation',
         'time_frequency': 'monthly',
         'units': 'mm/day'},
        'metric': {'datasets': "IPSL-CM5A-LR_r5i1p1; ERA-Interim's pr & GPCPv2.3's precip; 's ",
         'method': 'The metric is the statistical value between the model and the observations',
         'name': 'BiasPrLonRmse',
         'units': 'mm/day'}},
       'BiasSstLonRmse': {'diagnostic': {'ERA-Interim': {'name': 'ERA-Interim',
          'nyears': 40,
          'time_period': ['1979-1-16 12:0:0.0', '2019-3-16 12:0:0.0']},
         'HadISST': {'name': 'HadISST',
          'nyears': 151,
          'time_period': ['1870-1-16 11:59:59.5', '2020-10-16 12:0:0.0']},
         'IPSL-CM5A-LR_r5i1p1': {'keyerror': None,
          'name': 'IPSL-CM5A-LR_r5i1p1',
          'nyears': 156,
          'time_period': ['1850-1-16 12:0:0.0', '2005-12-16 12:0:0.0']},
         'Tropflux': {'name': 'Tropflux',
          'nyears': 40,
          'time_period': ['1979-1-15 0:0:0.0', '2018-12-15 12:0:0.0']},
         'method': 'Zonal root mean square error of equatorial_pacific sst, time series are linearly detrended, observations and model regridded to generic_1x1deg',
         'name': 'sst Zonal RMSE',
         'ref': 'Using CDAT regridding and rms (uncentered and biased) calculation',
         'time_frequency': 'monthly',
         'units': 'C'},
        'metric': {'datasets': "IPSL-CM5A-LR_r5i1p1; ERA-Interim's ts & HadISST's sst & Tropflux's sst; 's ",
         'method': 'The metric is the statistical value between the model and the observations',
         'name': 'BiasSstLonRmse',
         'units': 'C'}},
       'BiasTauxLonRmse': {'diagnostic': {'ERA-Interim': {'name': 'ERA-Interim',
          'nyears': 40,
          'time_period': ['1979-1-16 12:0:0.0', '2019-3-16 12:0:0.0']},
         'IPSL-CM5A-LR_r5i1p1': {'keyerror': None,
          'name': 'IPSL-CM5A-LR_r5i1p1',
          'nyears': 156,
          'time_period': ['1850-1-16 12:0:0.0', '2005-12-16 12:0:0.0']},
         'Tropflux': {'name': 'Tropflux',
          'nyears': 40,
          'time_period': ['1979-1-15 0:0:0.0', '2018-12-15 12:0:0.0']},
         'method': 'Zonal root mean square error of equatorial_pacific taux, time series are linearly detrended, observations and model regridded to generic_1x1deg',
         'name': 'taux Zonal RMSE',
         'ref': 'Using CDAT regridding and rms (uncentered and biased) calculation',
         'time_frequency': 'monthly',
         'units': '1e-3 N/m2'},
        'metric': {'datasets': "IPSL-CM5A-LR_r5i1p1; ERA-Interim's tauu & Tropflux's taux; 's ",
         'method': 'The metric is the statistical value between the model and the observations',
         'name': 'BiasTauxLonRmse',
         'units': '1e-3 N/m2'}},
       'EnsoAmpl': {'diagnostic': {'ERA-Interim': {'keyerror': None,
          'name': 'ERA-Interim',
          'nyears': 40,
          'time_period': ['1979-1-16 12:0:0.0', '2019-3-16 12:0:0.0']},
         'HadISST': {'keyerror': None,
          'name': 'HadISST',
          'nyears': 151,
          'time_period': ['1870-1-16 11:59:59.5', '2020-10-16 12:0:0.0']},
         'IPSL-CM5A-LR_r5i1p1': {'keyerror': None,
          'name': 'IPSL-CM5A-LR_r5i1p1',
          'nyears': 156,
          'time_period': ['1850-1-16 12:0:0.0', '2005-12-16 12:0:0.0']},
         'Tropflux': {'keyerror': None,
          'name': 'Tropflux',
          'nyears': 40,
          'time_period': ['1979-1-15 0:0:0.0', '2018-12-15 12:0:0.0']},
         'method': 'Standard deviation of nino3.4 sstA, time series are linearly detrended',
         'name': 'ENSO amplitude',
         'ref': 'Using CDAT regression calculation',
         'time_frequency': 'monthly',
         'units': 'C'},
        'metric': {'datasets': "IPSL-CM5A-LR_r5i1p1; ERA-Interim's ts & HadISST's sst & Tropflux's sst; 's ",
         'method': 'The metric is the absolute value of the relative difference between model and observations values (M = 100 * abs[[model-obs] / obs])',
         'name': 'EnsoAmpl',
         'units': '%'}},
       'EnsoDuration': {'diagnostic': {'ERA-Interim': {'keyerror': None,
          'name': 'ERA-Interim',
          'nyears': 40,
          'time_period': ['1979-1-16 12:0:0.0', '2019-3-16 12:0:0.0']},
         'HadISST': {'keyerror': None,
          'name': 'HadISST',
          'nyears': 151,
          'time_period': ['1870-1-16 11:59:59.5', '2020-10-16 12:0:0.0']},
         'IPSL-CM5A-LR_r5i1p1': {'keyerror': None,
          'name': 'IPSL-CM5A-LR_r5i1p1',
          'nyears': 156,
          'time_period': ['1850-1-16 12:0:0.0', '2005-12-16 12:0:0.0']},
         'Tropflux': {'keyerror': None,
          'name': 'Tropflux',
          'nyears': 40,
          'time_period': ['1979-1-15 0:0:0.0', '2018-12-15 12:0:0.0']},
         'method': 'nino3.4 SSTA during DEC regressed against nino3.4 SSTA during 6 years (centered on ENSO), the duration is the number of consecutive months during which the regression is above 0.25, time series are linearly detrended, smoothing using a triangle shaped window of 5 points',
         'name': 'ENSO Duration based on life cyle SSTA pattern',
         'ref': 'Using CDAT',
         'time_frequency': 'monthly',
         'units': 'months'},
        'metric': {'datasets': "IPSL-CM5A-LR_r5i1p1; ERA-Interim's ts & HadISST's sst & Tropflux's sst; 's ",
         'method': 'The metric is the absolute value of the relative difference between model and observations values (M = 100 * abs[[model-obs] / obs])',
         'name': 'EnsoDuration',
         'units': '%'}},
       'EnsoSeasonality': {'diagnostic': {'ERA-Interim': {'keyerror': None,
          'name': 'ERA-Interim',
          'nyears': 40,
          'time_period': ['1979-1-16 12:0:0.0', '2019-3-16 12:0:0.0']},
         'HadISST': {'keyerror': None,
          'name': 'HadISST',
          'nyears': 151,
          'time_period': ['1870-1-16 11:59:59.5', '2020-10-16 12:0:0.0']},
         'IPSL-CM5A-LR_r5i1p1': {'keyerror': None,
          'name': 'IPSL-CM5A-LR_r5i1p1',
          'nyears': 156,
          'time_period': ['1850-1-16 12:0:0.0', '2005-12-16 12:0:0.0']},
         'Tropflux': {'keyerror': None,
          'name': 'Tropflux',
          'nyears': 40,
          'time_period': ['1979-1-15 0:0:0.0', '2018-12-15 12:0:0.0']},
         'method': 'Ratio between NDJ and MAM standard deviation nino3.4 sstA, time series are linearly detrended',
         'name': 'ENSO seasonality',
         'ref': 'Using CDAT std dev calculation',
         'time_frequency': 'monthly',
         'units': 'C/C'},
        'metric': {'datasets': "IPSL-CM5A-LR_r5i1p1; ERA-Interim's ts & HadISST's sst & Tropflux's sst; 's ",
         'method': 'The metric is the absolute value of the relative difference between model and observations values (M = 100 * abs[[model-obs] / obs])',
         'name': 'EnsoSeasonality',
         'units': '%'}},
       'EnsoSstDiversity_2': {'diagnostic': {'ERA-Interim': {'keyerror': None,
          'name': 'ERA-Interim',
          'nyears': 40,
          'time_period': ['1979-1-16 12:0:0.0', '2019-3-16 12:0:0.0']},
         'HadISST': {'keyerror': None,
          'name': 'HadISST',
          'nyears': 151,
          'time_period': ['1870-1-16 11:59:59.5', '2020-10-16 12:0:0.0']},
         'IPSL-CM5A-LR_r5i1p1': {'keyerror': None,
          'name': 'IPSL-CM5A-LR_r5i1p1',
          'nyears': 156,
          'time_period': ['1850-1-16 12:0:0.0', '2005-12-16 12:0:0.0']},
         'Tropflux': {'keyerror': None,
          'name': 'Tropflux',
          'nyears': 40,
          'time_period': ['1979-1-15 0:0:0.0', '2018-12-15 12:0:0.0']},
         'method': 'Nino (Nina) events = nino3.4 sstA > 0.75 (< -0.75) during DEC, zonal SSTA (meridional averaged [-5.0 ; 5.0]), the zonal SSTA maximum (minimum) is located for each event, the diversity is the interquartile range (IQR = Q3 - Q1), time series are linearly detrended, smoothing using a triangle shaped window of 5 points',
         'name': 'ENSO Diversity (interquartile range)',
         'ref': 'Using CDAT regridding',
         'time_frequency': 'monthly',
         'units': 'long'},
        'metric': {'datasets': "IPSL-CM5A-LR_r5i1p1; ERA-Interim's ts & HadISST's sst & Tropflux's sst; 's ",
         'method': 'The metric is the absolute value of the relative difference between model and observations values (M = 100 * abs[[model-obs] / obs])',
         'name': 'EnsoSstDiversity',
         'units': '%'}},
       'EnsoSstLonRmse': {'diagnostic': {'ERA-Interim': {'name': 'ERA-Interim',
          'nyears': 40,
          'time_period': ['1979-1-16 12:0:0.0', '2019-3-16 12:0:0.0']},
         'HadISST': {'name': 'HadISST',
          'nyears': 151,
          'time_period': ['1870-1-16 11:59:59.5', '2020-10-16 12:0:0.0']},
         'IPSL-CM5A-LR_r5i1p1': {'keyerror': None,
          'name': 'IPSL-CM5A-LR_r5i1p1',
          'nyears': 156,
          'time_period': ['1850-1-16 12:0:0.0', '2005-12-16 12:0:0.0']},
         'Tropflux': {'name': 'Tropflux',
          'nyears': 40,
          'time_period': ['1979-1-15 0:0:0.0', '2018-12-15 12:0:0.0']},
         'method': 'nino3.4 SSTA during DEC regressed against equatorial_pacific SSTA, time series are linearly detrended, smoothing using a triangle shaped window of 5 points, observations and model regridded to generic_1x1deg',
         'name': 'ENSO Zonal SSTA pattern',
         'ref': 'Using CDAT regridding and rms (uncentered and biased) calculation',
         'time_frequency': 'monthly',
         'units': 'C/C'},
        'metric': {'datasets': "IPSL-CM5A-LR_r5i1p1; ERA-Interim's ts & HadISST's sst & Tropflux's sst; 's ",
         'method': 'The metric is the statistical value between the model and the observations',
         'name': 'EnsoSstLonRmse',
         'units': 'C/C'}},
       'EnsoSstSkew': {'diagnostic': {'ERA-Interim': {'keyerror': None,
          'name': 'ERA-Interim',
          'nyears': 40,
          'time_period': ['1979-1-16 12:0:0.0', '2019-3-16 12:0:0.0']},
         'HadISST': {'keyerror': None,
          'name': 'HadISST',
          'nyears': 151,
          'time_period': ['1870-1-16 11:59:59.5', '2020-10-16 12:0:0.0']},
         'IPSL-CM5A-LR_r5i1p1': {'keyerror': None,
          'name': 'IPSL-CM5A-LR_r5i1p1',
          'nyears': 156,
          'time_period': ['1850-1-16 12:0:0.0', '2005-12-16 12:0:0.0']},
         'Tropflux': {'keyerror': None,
          'name': 'Tropflux',
          'nyears': 40,
          'time_period': ['1979-1-15 0:0:0.0', '2018-12-15 12:0:0.0']},
         'method': 'Standard deviation of nino3.4 sstA, time series are linearly detrended',
         'name': 'ENSO skewness',
         'ref': 'Using CDAT regression calculation',
         'time_frequency': 'monthly',
         'units': 'C'},
        'metric': {'datasets': "IPSL-CM5A-LR_r5i1p1; ERA-Interim's ts & HadISST's sst & Tropflux's sst; 's ",
         'method': 'The metric is the absolute value of the relative difference between model and observations values (M = 100 * abs[[model-obs] / obs])',
         'name': 'EnsoSstSkew',
         'units': '%'}},
       'EnsoSstTsRmse': {'diagnostic': {'ERA-Interim': {'name': 'ERA-Interim',
          'nyears': 40,
          'time_period': ['1979-1-16 12:0:0.0', '2019-3-16 12:0:0.0']},
         'HadISST': {'name': 'HadISST',
          'nyears': 151,
          'time_period': ['1870-1-16 11:59:59.5', '2020-10-16 12:0:0.0']},
         'IPSL-CM5A-LR_r5i1p1': {'keyerror': None,
          'name': 'IPSL-CM5A-LR_r5i1p1',
          'nyears': 156,
          'time_period': ['1850-1-16 12:0:0.0', '2005-12-16 12:0:0.0']},
         'Tropflux': {'name': 'Tropflux',
          'nyears': 40,
          'time_period': ['1979-1-15 0:0:0.0', '2018-12-15 12:0:0.0']},
         'method': 'nino3.4 SSTA during DEC regressed against nino3.4 SSTA during 6 years (centered on ENSO), time series are linearly detrended, smoothing using a triangle shaped window of 5 points',
         'name': 'ENSO life cyle SSTA pattern',
         'ref': 'Using CDAT regridding and rms (uncentered and biased) calculation',
         'time_frequency': 'monthly',
         'units': 'C/C'},
        'metric': {'datasets': "IPSL-CM5A-LR_r5i1p1; ERA-Interim's ts & HadISST's sst & Tropflux's sst; 's ",
         'method': 'The metric is the statistical value between the model and the observations',
         'name': 'EnsoSstTsRmse',
         'units': 'C/C'}},
       'SeasonalPrLatRmse': {'diagnostic': {'ERA-Interim': {'name': 'ERA-Interim',
          'nyears': 40,
          'time_period': ['1979-1-16 12:0:0.0', '2019-3-16 12:0:0.0']},
         'GPCPv2.3': {'name': 'GPCPv2.3',
          'nyears': 41,
          'time_period': ['1979-1-1 0:0:0.0', '2019-7-1 0:0:0.0']},
         'IPSL-CM5A-LR_r5i1p1': {'keyerror': None,
          'name': 'IPSL-CM5A-LR_r5i1p1',
          'nyears': 156,
          'time_period': ['1850-1-16 12:0:0.0', '2005-12-16 12:0:0.0']},
         'method': 'Meridional root mean square error of nino3_LatExt climatological pr STD, time series are linearly detrended, observations and model regridded to generic_1x1deg',
         'name': 'pr meridional seasonality RMSE',
         'ref': 'Using CDAT regridding and rms (uncentered and biased) calculation',
         'time_frequency': 'monthly',
         'units': 'mm/day'},
        'metric': {'datasets': "IPSL-CM5A-LR_r5i1p1; ERA-Interim's pr & GPCPv2.3's precip; 's ",
         'method': 'The metric is the statistical value between the model and the observations',
         'name': 'SeasonalPrLatRmse',
         'units': 'mm/day'}},
       'SeasonalPrLonRmse': {'diagnostic': {'ERA-Interim': {'name': 'ERA-Interim',
          'nyears': 40,
          'time_period': ['1979-1-16 12:0:0.0', '2019-3-16 12:0:0.0']},
         'GPCPv2.3': {'name': 'GPCPv2.3',
          'nyears': 41,
          'time_period': ['1979-1-1 0:0:0.0', '2019-7-1 0:0:0.0']},
         'IPSL-CM5A-LR_r5i1p1': {'keyerror': None,
          'name': 'IPSL-CM5A-LR_r5i1p1',
          'nyears': 156,
          'time_period': ['1850-1-16 12:0:0.0', '2005-12-16 12:0:0.0']},
         'method': 'Zonal root mean square error of equatorial_pacific climatological pr STD, time series are linearly detrended, observations and model regridded to generic_1x1deg',
         'name': 'pr zonal seasonality RMSE',
         'ref': 'Using CDAT regridding and rms (uncentered and biased) calculation',
         'time_frequency': 'monthly',
         'units': 'mm/day'},
        'metric': {'datasets': "IPSL-CM5A-LR_r5i1p1; ERA-Interim's pr & GPCPv2.3's precip; 's ",
         'method': 'The metric is the statistical value between the model and the observations',
         'name': 'SeasonalPrLonRmse',
         'units': 'mm/day'}},
       'SeasonalSstLonRmse': {'diagnostic': {'ERA-Interim': {'name': 'ERA-Interim',
          'nyears': 40,
          'time_period': ['1979-1-16 12:0:0.0', '2019-3-16 12:0:0.0']},
         'HadISST': {'name': 'HadISST',
          'nyears': 151,
          'time_period': ['1870-1-16 11:59:59.5', '2020-10-16 12:0:0.0']},
         'IPSL-CM5A-LR_r5i1p1': {'keyerror': None,
          'name': 'IPSL-CM5A-LR_r5i1p1',
          'nyears': 156,
          'time_period': ['1850-1-16 12:0:0.0', '2005-12-16 12:0:0.0']},
         'Tropflux': {'name': 'Tropflux',
          'nyears': 40,
          'time_period': ['1979-1-15 0:0:0.0', '2018-12-15 12:0:0.0']},
         'method': 'Zonal root mean square error of equatorial_pacific climatological sst STD, time series are linearly detrended, observations and model regridded to generic_1x1deg',
         'name': 'sst zonal seasonality RMSE',
         'ref': 'Using CDAT regridding and rms (uncentered and biased) calculation',
         'time_frequency': 'monthly',
         'units': 'C'},
        'metric': {'datasets': "IPSL-CM5A-LR_r5i1p1; ERA-Interim's ts & HadISST's sst & Tropflux's sst; 's ",
         'method': 'The metric is the statistical value between the model and the observations',
         'name': 'SeasonalSstLonRmse',
         'units': 'C'}},
       'SeasonalTauxLonRmse': {'diagnostic': {'ERA-Interim': {'name': 'ERA-Interim',
          'nyears': 40,
          'time_period': ['1979-1-16 12:0:0.0', '2019-3-16 12:0:0.0']},
         'IPSL-CM5A-LR_r5i1p1': {'keyerror': None,
          'name': 'IPSL-CM5A-LR_r5i1p1',
          'nyears': 156,
          'time_period': ['1850-1-16 12:0:0.0', '2005-12-16 12:0:0.0']},
         'Tropflux': {'name': 'Tropflux',
          'nyears': 40,
          'time_period': ['1979-1-15 0:0:0.0', '2018-12-15 12:0:0.0']},
         'method': 'Zonal root mean square error of equatorial_pacific climatological taux STD, time series are linearly detrended, observations and model regridded to generic_1x1deg',
         'name': 'taux zonal seasonality RMSE',
         'ref': 'Using CDAT regridding and rms (uncentered and biased) calculation',
         'time_frequency': 'monthly',
         'units': '1e-3 N/m2'},
        'metric': {'datasets': "IPSL-CM5A-LR_r5i1p1; ERA-Interim's tauu & Tropflux's taux; 's ",
         'method': 'The metric is the statistical value between the model and the observations',
         'name': 'SeasonalTauxLonRmse',
         'units': '1e-3 N/m2'}}},
      'name': 'Metrics Collection for ENSO performance'},
     'value': {'BiasPrLatRmse': {'diagnostic': {'ERA-Interim': {'value': None,
         'value_error': None},
        'GPCPv2.3': {'value': None, 'value_error': None},
        'IPSL-CM5A-LR_r5i1p1': {'value': None, 'value_error': None}},
       'metric': {'ERA-Interim': {'value': 1.5149322841496928,
         'value_error': None},
        'GPCPv2.3': {'value': 1.5867409528830747, 'value_error': None}}},
      'BiasPrLonRmse': {'diagnostic': {'ERA-Interim': {'value': None,
         'value_error': None},
        'GPCPv2.3': {'value': None, 'value_error': None},
        'IPSL-CM5A-LR_r5i1p1': {'value': None, 'value_error': None}},
       'metric': {'ERA-Interim': {'value': 3.2450537351238915,
         'value_error': None},
        'GPCPv2.3': {'value': 2.363022586886896, 'value_error': None}}},
      'BiasSstLonRmse': {'diagnostic': {'ERA-Interim': {'value': None,
         'value_error': None},
        'HadISST': {'value': None, 'value_error': None},
        'IPSL-CM5A-LR_r5i1p1': {'value': None, 'value_error': None},
        'Tropflux': {'value': None, 'value_error': None}},
       'metric': {'ERA-Interim': {'value': 1.4249949175808119,
         'value_error': None},
        'HadISST': {'value': 1.2343491138735574, 'value_error': None},
        'Tropflux': {'value': 1.4734562195213436, 'value_error': None}}},
      'BiasTauxLonRmse': {'diagnostic': {'ERA-Interim': {'value': None,
         'value_error': None},
        'IPSL-CM5A-LR_r5i1p1': {'value': None, 'value_error': None},
        'Tropflux': {'value': None, 'value_error': None}},
       'metric': {'ERA-Interim': {'value': 7.063448177674829,
         'value_error': None},
        'Tropflux': {'value': 7.214849836173432, 'value_error': None}}},
      'EnsoAmpl': {'diagnostic': {'ERA-Interim': {'value': 0.8989844997845644,
         'value_error': 0.14214193002531866},
        'HadISST': {'value': 0.7665787872085695,
         'value_error': 0.06238329697691264},
        'IPSL-CM5A-LR_r5i1p1': {'value': 0.7266440166121637,
         'value_error': 0.05817808242680942},
        'Tropflux': {'value': 0.9039789553693535,
         'value_error': 0.14293162279134272}},
       'metric': {'ERA-Interim': {'value': 19.17057337625965,
         'value_error': 19.251787934015315},
        'HadISST': {'value': 5.209480259925381,
         'value_error': 15.303258558640657},
        'Tropflux': {'value': 19.617153441888824,
         'value_error': 19.145422405046855}}},
      'EnsoDuration': {'diagnostic': {'ERA-Interim': {'value': 13.0,
         'value_error': None},
        'HadISST': {'value': 13.0, 'value_error': None},
        'IPSL-CM5A-LR_r5i1p1': {'value': 15.0, 'value_error': None},
        'Tropflux': {'value': 13.0, 'value_error': None}},
       'metric': {'ERA-Interim': {'value': 15.384615384615385,
         'value_error': None},
        'HadISST': {'value': 15.384615384615385, 'value_error': None},
        'Tropflux': {'value': 15.384615384615385, 'value_error': None}}},
      'EnsoSeasonality': {'diagnostic': {'ERA-Interim': {'value': 2.0466846866656914,
         'value_error': 0.6513411033995022},
        'HadISST': {'value': 1.6639865947361325,
         'value_error': 0.2712772451657809},
        'IPSL-CM5A-LR_r5i1p1': {'value': 1.0410279000102491,
         'value_error': 0.166966310965615},
        'Tropflux': {'value': 2.0532132553583624,
         'value_error': 0.6534187683977347}},
       'metric': {'ERA-Interim': {'value': 49.135892460982085,
         'value_error': 24.3449884337729},
        'HadISST': {'value': 37.43772315814054,
         'value_error': 20.233548344696274},
        'Tropflux': {'value': 49.29762423394491,
         'value_error': 24.267579071205525}}},
      'EnsoSstDiversity_2': {'diagnostic': {'ERA-Interim': {'value': 33.25,
         'value_error': None},
        'HadISST': {'value': 49.0, 'value_error': None},
        'IPSL-CM5A-LR_r5i1p1': {'value': 46.5, 'value_error': None},
        'Tropflux': {'value': 32.0, 'value_error': None}},
       'metric': {'ERA-Interim': {'value': 39.849624060150376,
         'value_error': None},
        'HadISST': {'value': 5.1020408163265305, 'value_error': None},
        'Tropflux': {'value': 45.3125, 'value_error': None}}},
      'EnsoSstLonRmse': {'diagnostic': {'ERA-Interim': {'value': None,
         'value_error': None},
        'HadISST': {'value': None, 'value_error': None},
        'IPSL-CM5A-LR_r5i1p1': {'value': None, 'value_error': None},
        'Tropflux': {'value': None, 'value_error': None}},
       'metric': {'ERA-Interim': {'value': 0.23613562915367128,
         'value_error': None},
        'HadISST': {'value': 0.24686933065923164, 'value_error': None},
        'Tropflux': {'value': 0.23606512229426385, 'value_error': None}}},
      'EnsoSstSkew': {'diagnostic': {'ERA-Interim': {'value': 0.39098111106809963,
         'value_error': 0.061819541653923164},
        'HadISST': {'value': 0.38989908235027515,
         'value_error': 0.03172953733021198},
        'IPSL-CM5A-LR_r5i1p1': {'value': 0.2701653475398139,
         'value_error': 0.02163053916183007},
        'Tropflux': {'value': 0.39744741059612115,
         'value_error': 0.06284195338099416}},
       'metric': {'ERA-Interim': {'value': 30.90066504702384,
         'value_error': 16.45793863030413},
        'HadISST': {'value': 30.70890397810569,
         'value_error': 11.186557064380656},
        'Tropflux': {'value': 32.024881698285604,
         'value_error': 16.19017500180867}}},
      'EnsoSstTsRmse': {'diagnostic': {'ERA-Interim': {'value': None,
         'value_error': None},
        'HadISST': {'value': None, 'value_error': None},
        'IPSL-CM5A-LR_r5i1p1': {'value': None, 'value_error': None},
        'Tropflux': {'value': None, 'value_error': None}},
       'metric': {'ERA-Interim': {'value': 0.12664356691803136,
         'value_error': None},
        'HadISST': {'value': 0.09460891725690207, 'value_error': None},
        'Tropflux': {'value': 0.12333807396762361, 'value_error': None}}},
      'SeasonalPrLatRmse': {'diagnostic': {'ERA-Interim': {'value': None,
         'value_error': None},
        'GPCPv2.3': {'value': None, 'value_error': None},
        'IPSL-CM5A-LR_r5i1p1': {'value': None, 'value_error': None}},
       'metric': {'ERA-Interim': {'value': 1.1428765506063348,
         'value_error': None},
        'GPCPv2.3': {'value': 1.2208637704475904, 'value_error': None}}},
      'SeasonalPrLonRmse': {'diagnostic': {'ERA-Interim': {'value': None,
         'value_error': None},
        'GPCPv2.3': {'value': None, 'value_error': None},
        'IPSL-CM5A-LR_r5i1p1': {'value': None, 'value_error': None}},
       'metric': {'ERA-Interim': {'value': 0.8836440914191706,
         'value_error': None},
        'GPCPv2.3': {'value': 0.6272147425763119, 'value_error': None}}},
      'SeasonalSstLonRmse': {'diagnostic': {'ERA-Interim': {'value': None,
         'value_error': None},
        'HadISST': {'value': None, 'value_error': None},
        'IPSL-CM5A-LR_r5i1p1': {'value': None, 'value_error': None},
        'Tropflux': {'value': None, 'value_error': None}},
       'metric': {'ERA-Interim': {'value': 0.0781655890874871,
         'value_error': None},
        'HadISST': {'value': 0.07726322611973192, 'value_error': None},
        'Tropflux': {'value': 0.0761812105581458, 'value_error': None}}},
      'SeasonalTauxLonRmse': {'diagnostic': {'ERA-Interim': {'value': None,
         'value_error': None},
        'IPSL-CM5A-LR_r5i1p1': {'value': None, 'value_error': None},
        'Tropflux': {'value': None, 'value_error': None}},
       'metric': {'ERA-Interim': {'value': 2.297032865680567,
         'value_error': None},
        'Tropflux': {'value': 2.5580612954798565, 'value_error': None}}}}},
    'r6i1p1': {'metadata': {'description_of_the_collection': 'Describe which science question this collection is about',
      'metrics': {'BiasPrLatRmse': {'diagnostic': {'ERA-Interim': {'name': 'ERA-Interim',
          'nyears': 40,
          'time_period': ['1979-1-16 12:0:0.0', '2019-3-16 12:0:0.0']},
         'GPCPv2.3': {'name': 'GPCPv2.3',
          'nyears': 41,
          'time_period': ['1979-1-1 0:0:0.0', '2019-7-1 0:0:0.0']},
         'IPSL-CM5A-LR_r6i1p1': {'keyerror': None,
          'name': 'IPSL-CM5A-LR_r6i1p1',
          'nyears': 156,
          'time_period': ['1850-1-16 12:0:0.0', '2005-12-16 12:0:0.0']},
         'method': 'Meridional root mean square error of nino3_LatExt pr, time series are linearly detrended, observations and model regridded to generic_1x1deg',
         'name': 'pr Meridional RMSE',
         'ref': 'Using CDAT regridding and rms (uncentered and biased) calculation',
         'time_frequency': 'monthly',
         'units': 'mm/day'},
        'metric': {'datasets': "IPSL-CM5A-LR_r6i1p1; ERA-Interim's pr & GPCPv2.3's precip; 's ",
         'method': 'The metric is the statistical value between the model and the observations',
         'name': 'BiasPrLatRmse',
         'units': 'mm/day'}},
       'BiasPrLonRmse': {'diagnostic': {'ERA-Interim': {'name': 'ERA-Interim',
          'nyears': 40,
          'time_period': ['1979-1-16 12:0:0.0', '2019-3-16 12:0:0.0']},
         'GPCPv2.3': {'name': 'GPCPv2.3',
          'nyears': 41,
          'time_period': ['1979-1-1 0:0:0.0', '2019-7-1 0:0:0.0']},
         'IPSL-CM5A-LR_r6i1p1': {'keyerror': None,
          'name': 'IPSL-CM5A-LR_r6i1p1',
          'nyears': 156,
          'time_period': ['1850-1-16 12:0:0.0', '2005-12-16 12:0:0.0']},
         'method': 'Zonal root mean square error of equatorial_pacific pr, time series are linearly detrended, observations and model regridded to generic_1x1deg',
         'name': 'pr Zonal RMSE',
         'ref': 'Using CDAT regridding and rms (uncentered and biased) calculation',
         'time_frequency': 'monthly',
         'units': 'mm/day'},
        'metric': {'datasets': "IPSL-CM5A-LR_r6i1p1; ERA-Interim's pr & GPCPv2.3's precip; 's ",
         'method': 'The metric is the statistical value between the model and the observations',
         'name': 'BiasPrLonRmse',
         'units': 'mm/day'}},
       'BiasSstLonRmse': {'diagnostic': {'ERA-Interim': {'name': 'ERA-Interim',
          'nyears': 40,
          'time_period': ['1979-1-16 12:0:0.0', '2019-3-16 12:0:0.0']},
         'HadISST': {'name': 'HadISST',
          'nyears': 151,
          'time_period': ['1870-1-16 11:59:59.5', '2020-10-16 12:0:0.0']},
         'IPSL-CM5A-LR_r6i1p1': {'keyerror': None,
          'name': 'IPSL-CM5A-LR_r6i1p1',
          'nyears': 156,
          'time_period': ['1850-1-16 12:0:0.0', '2005-12-16 12:0:0.0']},
         'Tropflux': {'name': 'Tropflux',
          'nyears': 40,
          'time_period': ['1979-1-15 0:0:0.0', '2018-12-15 12:0:0.0']},
         'method': 'Zonal root mean square error of equatorial_pacific sst, time series are linearly detrended, observations and model regridded to generic_1x1deg',
         'name': 'sst Zonal RMSE',
         'ref': 'Using CDAT regridding and rms (uncentered and biased) calculation',
         'time_frequency': 'monthly',
         'units': 'C'},
        'metric': {'datasets': "IPSL-CM5A-LR_r6i1p1; ERA-Interim's ts & HadISST's sst & Tropflux's sst; 's ",
         'method': 'The metric is the statistical value between the model and the observations',
         'name': 'BiasSstLonRmse',
         'units': 'C'}},
       'BiasTauxLonRmse': {'diagnostic': {'ERA-Interim': {'name': 'ERA-Interim',
          'nyears': 40,
          'time_period': ['1979-1-16 12:0:0.0', '2019-3-16 12:0:0.0']},
         'IPSL-CM5A-LR_r6i1p1': {'keyerror': None,
          'name': 'IPSL-CM5A-LR_r6i1p1',
          'nyears': 156,
          'time_period': ['1850-1-16 12:0:0.0', '2005-12-16 12:0:0.0']},
         'Tropflux': {'name': 'Tropflux',
          'nyears': 40,
          'time_period': ['1979-1-15 0:0:0.0', '2018-12-15 12:0:0.0']},
         'method': 'Zonal root mean square error of equatorial_pacific taux, time series are linearly detrended, observations and model regridded to generic_1x1deg',
         'name': 'taux Zonal RMSE',
         'ref': 'Using CDAT regridding and rms (uncentered and biased) calculation',
         'time_frequency': 'monthly',
         'units': '1e-3 N/m2'},
        'metric': {'datasets': "IPSL-CM5A-LR_r6i1p1; ERA-Interim's tauu & Tropflux's taux; 's ",
         'method': 'The metric is the statistical value between the model and the observations',
         'name': 'BiasTauxLonRmse',
         'units': '1e-3 N/m2'}},
       'EnsoAmpl': {'diagnostic': {'ERA-Interim': {'keyerror': None,
          'name': 'ERA-Interim',
          'nyears': 40,
          'time_period': ['1979-1-16 12:0:0.0', '2019-3-16 12:0:0.0']},
         'HadISST': {'keyerror': None,
          'name': 'HadISST',
          'nyears': 151,
          'time_period': ['1870-1-16 11:59:59.5', '2020-10-16 12:0:0.0']},
         'IPSL-CM5A-LR_r6i1p1': {'keyerror': None,
          'name': 'IPSL-CM5A-LR_r6i1p1',
          'nyears': 156,
          'time_period': ['1850-1-16 12:0:0.0', '2005-12-16 12:0:0.0']},
         'Tropflux': {'keyerror': None,
          'name': 'Tropflux',
          'nyears': 40,
          'time_period': ['1979-1-15 0:0:0.0', '2018-12-15 12:0:0.0']},
         'method': 'Standard deviation of nino3.4 sstA, time series are linearly detrended',
         'name': 'ENSO amplitude',
         'ref': 'Using CDAT regression calculation',
         'time_frequency': 'monthly',
         'units': 'C'},
        'metric': {'datasets': "IPSL-CM5A-LR_r6i1p1; ERA-Interim's ts & HadISST's sst & Tropflux's sst; 's ",
         'method': 'The metric is the absolute value of the relative difference between model and observations values (M = 100 * abs[[model-obs] / obs])',
         'name': 'EnsoAmpl',
         'units': '%'}},
       'EnsoDuration': {'diagnostic': {'ERA-Interim': {'keyerror': None,
          'name': 'ERA-Interim',
          'nyears': 40,
          'time_period': ['1979-1-16 12:0:0.0', '2019-3-16 12:0:0.0']},
         'HadISST': {'keyerror': None,
          'name': 'HadISST',
          'nyears': 151,
          'time_period': ['1870-1-16 11:59:59.5', '2020-10-16 12:0:0.0']},
         'IPSL-CM5A-LR_r6i1p1': {'keyerror': None,
          'name': 'IPSL-CM5A-LR_r6i1p1',
          'nyears': 156,
          'time_period': ['1850-1-16 12:0:0.0', '2005-12-16 12:0:0.0']},
         'Tropflux': {'keyerror': None,
          'name': 'Tropflux',
          'nyears': 40,
          'time_period': ['1979-1-15 0:0:0.0', '2018-12-15 12:0:0.0']},
         'method': 'nino3.4 SSTA during DEC regressed against nino3.4 SSTA during 6 years (centered on ENSO), the duration is the number of consecutive months during which the regression is above 0.25, time series are linearly detrended, smoothing using a triangle shaped window of 5 points',
         'name': 'ENSO Duration based on life cyle SSTA pattern',
         'ref': 'Using CDAT',
         'time_frequency': 'monthly',
         'units': 'months'},
        'metric': {'datasets': "IPSL-CM5A-LR_r6i1p1; ERA-Interim's ts & HadISST's sst & Tropflux's sst; 's ",
         'method': 'The metric is the absolute value of the relative difference between model and observations values (M = 100 * abs[[model-obs] / obs])',
         'name': 'EnsoDuration',
         'units': '%'}},
       'EnsoSeasonality': {'diagnostic': {'ERA-Interim': {'keyerror': None,
          'name': 'ERA-Interim',
          'nyears': 40,
          'time_period': ['1979-1-16 12:0:0.0', '2019-3-16 12:0:0.0']},
         'HadISST': {'keyerror': None,
          'name': 'HadISST',
          'nyears': 151,
          'time_period': ['1870-1-16 11:59:59.5', '2020-10-16 12:0:0.0']},
         'IPSL-CM5A-LR_r6i1p1': {'keyerror': None,
          'name': 'IPSL-CM5A-LR_r6i1p1',
          'nyears': 156,
          'time_period': ['1850-1-16 12:0:0.0', '2005-12-16 12:0:0.0']},
         'Tropflux': {'keyerror': None,
          'name': 'Tropflux',
          'nyears': 40,
          'time_period': ['1979-1-15 0:0:0.0', '2018-12-15 12:0:0.0']},
         'method': 'Ratio between NDJ and MAM standard deviation nino3.4 sstA, time series are linearly detrended',
         'name': 'ENSO seasonality',
         'ref': 'Using CDAT std dev calculation',
         'time_frequency': 'monthly',
         'units': 'C/C'},
        'metric': {'datasets': "IPSL-CM5A-LR_r6i1p1; ERA-Interim's ts & HadISST's sst & Tropflux's sst; 's ",
         'method': 'The metric is the absolute value of the relative difference between model and observations values (M = 100 * abs[[model-obs] / obs])',
         'name': 'EnsoSeasonality',
         'units': '%'}},
       'EnsoSstDiversity_2': {'diagnostic': {'ERA-Interim': {'keyerror': None,
          'name': 'ERA-Interim',
          'nyears': 40,
          'time_period': ['1979-1-16 12:0:0.0', '2019-3-16 12:0:0.0']},
         'HadISST': {'keyerror': None,
          'name': 'HadISST',
          'nyears': 151,
          'time_period': ['1870-1-16 11:59:59.5', '2020-10-16 12:0:0.0']},
         'IPSL-CM5A-LR_r6i1p1': {'keyerror': None,
          'name': 'IPSL-CM5A-LR_r6i1p1',
          'nyears': 156,
          'time_period': ['1850-1-16 12:0:0.0', '2005-12-16 12:0:0.0']},
         'Tropflux': {'keyerror': None,
          'name': 'Tropflux',
          'nyears': 40,
          'time_period': ['1979-1-15 0:0:0.0', '2018-12-15 12:0:0.0']},
         'method': 'Nino (Nina) events = nino3.4 sstA > 0.75 (< -0.75) during DEC, zonal SSTA (meridional averaged [-5.0 ; 5.0]), the zonal SSTA maximum (minimum) is located for each event, the diversity is the interquartile range (IQR = Q3 - Q1), time series are linearly detrended, smoothing using a triangle shaped window of 5 points',
         'name': 'ENSO Diversity (interquartile range)',
         'ref': 'Using CDAT regridding',
         'time_frequency': 'monthly',
         'units': 'long'},
        'metric': {'datasets': "IPSL-CM5A-LR_r6i1p1; ERA-Interim's ts & HadISST's sst & Tropflux's sst; 's ",
         'method': 'The metric is the absolute value of the relative difference between model and observations values (M = 100 * abs[[model-obs] / obs])',
         'name': 'EnsoSstDiversity',
         'units': '%'}},
       'EnsoSstLonRmse': {'diagnostic': {'ERA-Interim': {'name': 'ERA-Interim',
          'nyears': 40,
          'time_period': ['1979-1-16 12:0:0.0', '2019-3-16 12:0:0.0']},
         'HadISST': {'name': 'HadISST',
          'nyears': 151,
          'time_period': ['1870-1-16 11:59:59.5', '2020-10-16 12:0:0.0']},
         'IPSL-CM5A-LR_r6i1p1': {'keyerror': None,
          'name': 'IPSL-CM5A-LR_r6i1p1',
          'nyears': 156,
          'time_period': ['1850-1-16 12:0:0.0', '2005-12-16 12:0:0.0']},
         'Tropflux': {'name': 'Tropflux',
          'nyears': 40,
          'time_period': ['1979-1-15 0:0:0.0', '2018-12-15 12:0:0.0']},
         'method': 'nino3.4 SSTA during DEC regressed against equatorial_pacific SSTA, time series are linearly detrended, smoothing using a triangle shaped window of 5 points, observations and model regridded to generic_1x1deg',
         'name': 'ENSO Zonal SSTA pattern',
         'ref': 'Using CDAT regridding and rms (uncentered and biased) calculation',
         'time_frequency': 'monthly',
         'units': 'C/C'},
        'metric': {'datasets': "IPSL-CM5A-LR_r6i1p1; ERA-Interim's ts & HadISST's sst & Tropflux's sst; 's ",
         'method': 'The metric is the statistical value between the model and the observations',
         'name': 'EnsoSstLonRmse',
         'units': 'C/C'}},
       'EnsoSstSkew': {'diagnostic': {'ERA-Interim': {'keyerror': None,
          'name': 'ERA-Interim',
          'nyears': 40,
          'time_period': ['1979-1-16 12:0:0.0', '2019-3-16 12:0:0.0']},
         'HadISST': {'keyerror': None,
          'name': 'HadISST',
          'nyears': 151,
          'time_period': ['1870-1-16 11:59:59.5', '2020-10-16 12:0:0.0']},
         'IPSL-CM5A-LR_r6i1p1': {'keyerror': None,
          'name': 'IPSL-CM5A-LR_r6i1p1',
          'nyears': 156,
          'time_period': ['1850-1-16 12:0:0.0', '2005-12-16 12:0:0.0']},
         'Tropflux': {'keyerror': None,
          'name': 'Tropflux',
          'nyears': 40,
          'time_period': ['1979-1-15 0:0:0.0', '2018-12-15 12:0:0.0']},
         'method': 'Standard deviation of nino3.4 sstA, time series are linearly detrended',
         'name': 'ENSO skewness',
         'ref': 'Using CDAT regression calculation',
         'time_frequency': 'monthly',
         'units': 'C'},
        'metric': {'datasets': "IPSL-CM5A-LR_r6i1p1; ERA-Interim's ts & HadISST's sst & Tropflux's sst; 's ",
         'method': 'The metric is the absolute value of the relative difference between model and observations values (M = 100 * abs[[model-obs] / obs])',
         'name': 'EnsoSstSkew',
         'units': '%'}},
       'EnsoSstTsRmse': {'diagnostic': {'ERA-Interim': {'name': 'ERA-Interim',
          'nyears': 40,
          'time_period': ['1979-1-16 12:0:0.0', '2019-3-16 12:0:0.0']},
         'HadISST': {'name': 'HadISST',
          'nyears': 151,
          'time_period': ['1870-1-16 11:59:59.5', '2020-10-16 12:0:0.0']},
         'IPSL-CM5A-LR_r6i1p1': {'keyerror': None,
          'name': 'IPSL-CM5A-LR_r6i1p1',
          'nyears': 156,
          'time_period': ['1850-1-16 12:0:0.0', '2005-12-16 12:0:0.0']},
         'Tropflux': {'name': 'Tropflux',
          'nyears': 40,
          'time_period': ['1979-1-15 0:0:0.0', '2018-12-15 12:0:0.0']},
         'method': 'nino3.4 SSTA during DEC regressed against nino3.4 SSTA during 6 years (centered on ENSO), time series are linearly detrended, smoothing using a triangle shaped window of 5 points',
         'name': 'ENSO life cyle SSTA pattern',
         'ref': 'Using CDAT regridding and rms (uncentered and biased) calculation',
         'time_frequency': 'monthly',
         'units': 'C/C'},
        'metric': {'datasets': "IPSL-CM5A-LR_r6i1p1; ERA-Interim's ts & HadISST's sst & Tropflux's sst; 's ",
         'method': 'The metric is the statistical value between the model and the observations',
         'name': 'EnsoSstTsRmse',
         'units': 'C/C'}},
       'SeasonalPrLatRmse': {'diagnostic': {'ERA-Interim': {'name': 'ERA-Interim',
          'nyears': 40,
          'time_period': ['1979-1-16 12:0:0.0', '2019-3-16 12:0:0.0']},
         'GPCPv2.3': {'name': 'GPCPv2.3',
          'nyears': 41,
          'time_period': ['1979-1-1 0:0:0.0', '2019-7-1 0:0:0.0']},
         'IPSL-CM5A-LR_r6i1p1': {'keyerror': None,
          'name': 'IPSL-CM5A-LR_r6i1p1',
          'nyears': 156,
          'time_period': ['1850-1-16 12:0:0.0', '2005-12-16 12:0:0.0']},
         'method': 'Meridional root mean square error of nino3_LatExt climatological pr STD, time series are linearly detrended, observations and model regridded to generic_1x1deg',
         'name': 'pr meridional seasonality RMSE',
         'ref': 'Using CDAT regridding and rms (uncentered and biased) calculation',
         'time_frequency': 'monthly',
         'units': 'mm/day'},
        'metric': {'datasets': "IPSL-CM5A-LR_r6i1p1; ERA-Interim's pr & GPCPv2.3's precip; 's ",
         'method': 'The metric is the statistical value between the model and the observations',
         'name': 'SeasonalPrLatRmse',
         'units': 'mm/day'}},
       'SeasonalPrLonRmse': {'diagnostic': {'ERA-Interim': {'name': 'ERA-Interim',
          'nyears': 40,
          'time_period': ['1979-1-16 12:0:0.0', '2019-3-16 12:0:0.0']},
         'GPCPv2.3': {'name': 'GPCPv2.3',
          'nyears': 41,
          'time_period': ['1979-1-1 0:0:0.0', '2019-7-1 0:0:0.0']},
         'IPSL-CM5A-LR_r6i1p1': {'keyerror': None,
          'name': 'IPSL-CM5A-LR_r6i1p1',
          'nyears': 156,
          'time_period': ['1850-1-16 12:0:0.0', '2005-12-16 12:0:0.0']},
         'method': 'Zonal root mean square error of equatorial_pacific climatological pr STD, time series are linearly detrended, observations and model regridded to generic_1x1deg',
         'name': 'pr zonal seasonality RMSE',
         'ref': 'Using CDAT regridding and rms (uncentered and biased) calculation',
         'time_frequency': 'monthly',
         'units': 'mm/day'},
        'metric': {'datasets': "IPSL-CM5A-LR_r6i1p1; ERA-Interim's pr & GPCPv2.3's precip; 's ",
         'method': 'The metric is the statistical value between the model and the observations',
         'name': 'SeasonalPrLonRmse',
         'units': 'mm/day'}},
       'SeasonalSstLonRmse': {'diagnostic': {'ERA-Interim': {'name': 'ERA-Interim',
          'nyears': 40,
          'time_period': ['1979-1-16 12:0:0.0', '2019-3-16 12:0:0.0']},
         'HadISST': {'name': 'HadISST',
          'nyears': 151,
          'time_period': ['1870-1-16 11:59:59.5', '2020-10-16 12:0:0.0']},
         'IPSL-CM5A-LR_r6i1p1': {'keyerror': None,
          'name': 'IPSL-CM5A-LR_r6i1p1',
          'nyears': 156,
          'time_period': ['1850-1-16 12:0:0.0', '2005-12-16 12:0:0.0']},
         'Tropflux': {'name': 'Tropflux',
          'nyears': 40,
          'time_period': ['1979-1-15 0:0:0.0', '2018-12-15 12:0:0.0']},
         'method': 'Zonal root mean square error of equatorial_pacific climatological sst STD, time series are linearly detrended, observations and model regridded to generic_1x1deg',
         'name': 'sst zonal seasonality RMSE',
         'ref': 'Using CDAT regridding and rms (uncentered and biased) calculation',
         'time_frequency': 'monthly',
         'units': 'C'},
        'metric': {'datasets': "IPSL-CM5A-LR_r6i1p1; ERA-Interim's ts & HadISST's sst & Tropflux's sst; 's ",
         'method': 'The metric is the statistical value between the model and the observations',
         'name': 'SeasonalSstLonRmse',
         'units': 'C'}},
       'SeasonalTauxLonRmse': {'diagnostic': {'ERA-Interim': {'name': 'ERA-Interim',
          'nyears': 40,
          'time_period': ['1979-1-16 12:0:0.0', '2019-3-16 12:0:0.0']},
         'IPSL-CM5A-LR_r6i1p1': {'keyerror': None,
          'name': 'IPSL-CM5A-LR_r6i1p1',
          'nyears': 156,
          'time_period': ['1850-1-16 12:0:0.0', '2005-12-16 12:0:0.0']},
         'Tropflux': {'name': 'Tropflux',
          'nyears': 40,
          'time_period': ['1979-1-15 0:0:0.0', '2018-12-15 12:0:0.0']},
         'method': 'Zonal root mean square error of equatorial_pacific climatological taux STD, time series are linearly detrended, observations and model regridded to generic_1x1deg',
         'name': 'taux zonal seasonality RMSE',
         'ref': 'Using CDAT regridding and rms (uncentered and biased) calculation',
         'time_frequency': 'monthly',
         'units': '1e-3 N/m2'},
        'metric': {'datasets': "IPSL-CM5A-LR_r6i1p1; ERA-Interim's tauu & Tropflux's taux; 's ",
         'method': 'The metric is the statistical value between the model and the observations',
         'name': 'SeasonalTauxLonRmse',
         'units': '1e-3 N/m2'}}},
      'name': 'Metrics Collection for ENSO performance'},
     'value': {'BiasPrLatRmse': {'diagnostic': {'ERA-Interim': {'value': None,
         'value_error': None},
        'GPCPv2.3': {'value': None, 'value_error': None},
        'IPSL-CM5A-LR_r6i1p1': {'value': None, 'value_error': None}},
       'metric': {'ERA-Interim': {'value': 1.5666243971856213,
         'value_error': None},
        'GPCPv2.3': {'value': 1.6146261647419118, 'value_error': None}}},
      'BiasPrLonRmse': {'diagnostic': {'ERA-Interim': {'value': None,
         'value_error': None},
        'GPCPv2.3': {'value': None, 'value_error': None},
        'IPSL-CM5A-LR_r6i1p1': {'value': None, 'value_error': None}},
       'metric': {'ERA-Interim': {'value': 3.238622108571064,
         'value_error': None},
        'GPCPv2.3': {'value': 2.35321645995551, 'value_error': None}}},
      'BiasSstLonRmse': {'diagnostic': {'ERA-Interim': {'value': None,
         'value_error': None},
        'HadISST': {'value': None, 'value_error': None},
        'IPSL-CM5A-LR_r6i1p1': {'value': None, 'value_error': None},
        'Tropflux': {'value': None, 'value_error': None}},
       'metric': {'ERA-Interim': {'value': 1.4135838425814964,
         'value_error': None},
        'HadISST': {'value': 1.2223249455448528, 'value_error': None},
        'Tropflux': {'value': 1.4621148270412156, 'value_error': None}}},
      'BiasTauxLonRmse': {'diagnostic': {'ERA-Interim': {'value': None,
         'value_error': None},
        'IPSL-CM5A-LR_r6i1p1': {'value': None, 'value_error': None},
        'Tropflux': {'value': None, 'value_error': None}},
       'metric': {'ERA-Interim': {'value': 6.665876962270249,
         'value_error': None},
        'Tropflux': {'value': 6.8534824748569845, 'value_error': None}}},
      'EnsoAmpl': {'diagnostic': {'ERA-Interim': {'value': 0.8989844997845644,
         'value_error': 0.14214193002531866},
        'HadISST': {'value': 0.7665787872085695,
         'value_error': 0.06238329697691264},
        'IPSL-CM5A-LR_r6i1p1': {'value': 0.7330471926294403,
         'value_error': 0.058690746803877175},
        'Tropflux': {'value': 0.9039789553693535,
         'value_error': 0.14293162279134272}},
       'metric': {'ERA-Interim': {'value': 18.458305698806807,
         'value_error': 19.421434396341557},
        'HadISST': {'value': 4.374187642372893,
         'value_error': 15.438110640194601},
        'Tropflux': {'value': 18.908821021178838,
         'value_error': 19.314131575950352}}},
      'EnsoDuration': {'diagnostic': {'ERA-Interim': {'value': 13.0,
         'value_error': None},
        'HadISST': {'value': 13.0, 'value_error': None},
        'IPSL-CM5A-LR_r6i1p1': {'value': 16.0, 'value_error': None},
        'Tropflux': {'value': 13.0, 'value_error': None}},
       'metric': {'ERA-Interim': {'value': 23.076923076923077,
         'value_error': None},
        'HadISST': {'value': 23.076923076923077, 'value_error': None},
        'Tropflux': {'value': 23.076923076923077, 'value_error': None}}},
      'EnsoSeasonality': {'diagnostic': {'ERA-Interim': {'value': 2.0466846866656914,
         'value_error': 0.6513411033995022},
        'HadISST': {'value': 1.6639865947361325,
         'value_error': 0.2712772451657809},
        'IPSL-CM5A-LR_r6i1p1': {'value': 0.910991725444446,
         'value_error': 0.14611032779828673},
        'Tropflux': {'value': 2.0532132553583624,
         'value_error': 0.6534187683977347}},
       'metric': {'ERA-Interim': {'value': 55.48939553905752,
         'value_error': 21.30402366640655},
        'HadISST': {'value': 45.25246006630799,
         'value_error': 17.706149007358015},
        'Tropflux': {'value': 55.63092518193178,
         'value_error': 21.236283609900745}}},
      'EnsoSstDiversity_2': {'diagnostic': {'ERA-Interim': {'value': 33.25,
         'value_error': None},
        'HadISST': {'value': 49.0, 'value_error': None},
        'IPSL-CM5A-LR_r6i1p1': {'value': 43.5, 'value_error': None},
        'Tropflux': {'value': 32.0, 'value_error': None}},
       'metric': {'ERA-Interim': {'value': 30.82706766917293,
         'value_error': None},
        'HadISST': {'value': 11.224489795918368, 'value_error': None},
        'Tropflux': {'value': 35.9375, 'value_error': None}}},
      'EnsoSstLonRmse': {'diagnostic': {'ERA-Interim': {'value': None,
         'value_error': None},
        'HadISST': {'value': None, 'value_error': None},
        'IPSL-CM5A-LR_r6i1p1': {'value': None, 'value_error': None},
        'Tropflux': {'value': None, 'value_error': None}},
       'metric': {'ERA-Interim': {'value': 0.24434891402523806,
         'value_error': None},
        'HadISST': {'value': 0.25592668409945746, 'value_error': None},
        'Tropflux': {'value': 0.24441120657229126, 'value_error': None}}},
      'EnsoSstSkew': {'diagnostic': {'ERA-Interim': {'value': 0.39098111106809963,
         'value_error': 0.061819541653923164},
        'HadISST': {'value': 0.38989908235027515,
         'value_error': 0.03172953733021198},
        'IPSL-CM5A-LR_r6i1p1': {'value': 0.1631644411487714,
         'value_error': 0.013063610363895778},
        'Tropflux': {'value': 0.39744741059612115,
         'value_error': 0.06284195338099416}},
       'metric': {'ERA-Interim': {'value': 58.26794785481285,
         'value_error': 9.939655042838584},
        'HadISST': {'value': 58.152135120392835,
         'value_error': 6.756041618252044},
        'Tropflux': {'value': 58.94691050973378,
         'value_error': 9.777941102833783}}},
      'EnsoSstTsRmse': {'diagnostic': {'ERA-Interim': {'value': None,
         'value_error': None},
        'HadISST': {'value': None, 'value_error': None},
        'IPSL-CM5A-LR_r6i1p1': {'value': None, 'value_error': None},
        'Tropflux': {'value': None, 'value_error': None}},
       'metric': {'ERA-Interim': {'value': 0.1491602840123698,
         'value_error': None},
        'HadISST': {'value': 0.11346511911159744, 'value_error': None},
        'Tropflux': {'value': 0.14676064657383936, 'value_error': None}}},
      'SeasonalPrLatRmse': {'diagnostic': {'ERA-Interim': {'value': None,
         'value_error': None},
        'GPCPv2.3': {'value': None, 'value_error': None},
        'IPSL-CM5A-LR_r6i1p1': {'value': None, 'value_error': None}},
       'metric': {'ERA-Interim': {'value': 1.188658304355536,
         'value_error': None},
        'GPCPv2.3': {'value': 1.2657378651795574, 'value_error': None}}},
      'SeasonalPrLonRmse': {'diagnostic': {'ERA-Interim': {'value': None,
         'value_error': None},
        'GPCPv2.3': {'value': None, 'value_error': None},
        'IPSL-CM5A-LR_r6i1p1': {'value': None, 'value_error': None}},
       'metric': {'ERA-Interim': {'value': 0.8855449980363123,
         'value_error': None},
        'GPCPv2.3': {'value': 0.6151895512516913, 'value_error': None}}},
      'SeasonalSstLonRmse': {'diagnostic': {'ERA-Interim': {'value': None,
         'value_error': None},
        'HadISST': {'value': None, 'value_error': None},
        'IPSL-CM5A-LR_r6i1p1': {'value': None, 'value_error': None},
        'Tropflux': {'value': None, 'value_error': None}},
       'metric': {'ERA-Interim': {'value': 0.07764375900865156,
         'value_error': None},
        'HadISST': {'value': 0.07526057241830968, 'value_error': None},
        'Tropflux': {'value': 0.0772351562946695, 'value_error': None}}},
      'SeasonalTauxLonRmse': {'diagnostic': {'ERA-Interim': {'value': None,
         'value_error': None},
        'IPSL-CM5A-LR_r6i1p1': {'value': None, 'value_error': None},
        'Tropflux': {'value': None, 'value_error': None}},
       'metric': {'ERA-Interim': {'value': 2.4301368736168385,
         'value_error': None},
        'Tropflux': {'value': 2.6764493085672707, 'value_error': None}}}}}},
   'IPSL-CM5A-MR': {'r1i1p1': {'metadata': {'description_of_the_collection': 'Describe which science question this collection is about',
      'metrics': {'BiasPrLatRmse': {'diagnostic': {'ERA-Interim': {'name': 'ERA-Interim',
          'nyears': 40,
          'time_period': ['1979-1-16 12:0:0.0', '2019-3-16 12:0:0.0']},
         'GPCPv2.3': {'name': 'GPCPv2.3',
          'nyears': 41,
          'time_period': ['1979-1-1 0:0:0.0', '2019-7-1 0:0:0.0']},
         'IPSL-CM5A-MR_r1i1p1': {'keyerror': None,
          'name': 'IPSL-CM5A-MR_r1i1p1',
          'nyears': 156,
          'time_period': ['1850-1-16 12:0:0.0', '2005-12-16 12:0:0.0']},
         'method': 'Meridional root mean square error of nino3_LatExt pr, time series are linearly detrended, observations and model regridded to generic_1x1deg',
         'name': 'pr Meridional RMSE',
         'ref': 'Using CDAT regridding and rms (uncentered and biased) calculation',
         'time_frequency': 'monthly',
         'units': 'mm/day'},
        'metric': {'datasets': "IPSL-CM5A-MR_r1i1p1; ERA-Interim's pr & GPCPv2.3's precip; 's ",
         'method': 'The metric is the statistical value between the model and the observations',
         'name': 'BiasPrLatRmse',
         'units': 'mm/day'}},
       'BiasPrLonRmse': {'diagnostic': {'ERA-Interim': {'name': 'ERA-Interim',
          'nyears': 40,
          'time_period': ['1979-1-16 12:0:0.0', '2019-3-16 12:0:0.0']},
         'GPCPv2.3': {'name': 'GPCPv2.3',
          'nyears': 41,
          'time_period': ['1979-1-1 0:0:0.0', '2019-7-1 0:0:0.0']},
         'IPSL-CM5A-MR_r1i1p1': {'keyerror': None,
          'name': 'IPSL-CM5A-MR_r1i1p1',
          'nyears': 156,
          'time_period': ['1850-1-16 12:0:0.0', '2005-12-16 12:0:0.0']},
         'method': 'Zonal root mean square error of equatorial_pacific pr, time series are linearly detrended, observations and model regridded to generic_1x1deg',
         'name': 'pr Zonal RMSE',
         'ref': 'Using CDAT regridding and rms (uncentered and biased) calculation',
         'time_frequency': 'monthly',
         'units': 'mm/day'},
        'metric': {'datasets': "IPSL-CM5A-MR_r1i1p1; ERA-Interim's pr & GPCPv2.3's precip; 's ",
         'method': 'The metric is the statistical value between the model and the observations',
         'name': 'BiasPrLonRmse',
         'units': 'mm/day'}},
       'BiasSstLonRmse': {'diagnostic': {'ERA-Interim': {'name': 'ERA-Interim',
          'nyears': 40,
          'time_period': ['1979-1-16 12:0:0.0', '2019-3-16 12:0:0.0']},
         'HadISST': {'name': 'HadISST',
          'nyears': 151,
          'time_period': ['1870-1-16 11:59:59.5', '2020-10-16 12:0:0.0']},
         'IPSL-CM5A-MR_r1i1p1': {'keyerror': None,
          'name': 'IPSL-CM5A-MR_r1i1p1',
          'nyears': 156,
          'time_period': ['1850-1-16 12:0:0.0', '2005-12-16 12:0:0.0']},
         'Tropflux': {'name': 'Tropflux',
          'nyears': 40,
          'time_period': ['1979-1-15 0:0:0.0', '2018-12-15 12:0:0.0']},
         'method': 'Zonal root mean square error of equatorial_pacific sst, time series are linearly detrended, observations and model regridded to generic_1x1deg',
         'name': 'sst Zonal RMSE',
         'ref': 'Using CDAT regridding and rms (uncentered and biased) calculation',
         'time_frequency': 'monthly',
         'units': 'C'},
        'metric': {'datasets': "IPSL-CM5A-MR_r1i1p1; ERA-Interim's ts & HadISST's sst & Tropflux's sst; 's ",
         'method': 'The metric is the statistical value between the model and the observations',
         'name': 'BiasSstLonRmse',
         'units': 'C'}},
       'BiasTauxLonRmse': {'diagnostic': {'ERA-Interim': {'name': 'ERA-Interim',
          'nyears': 40,
          'time_period': ['1979-1-16 12:0:0.0', '2019-3-16 12:0:0.0']},
         'IPSL-CM5A-MR_r1i1p1': {'keyerror': None,
          'name': 'IPSL-CM5A-MR_r1i1p1',
          'nyears': 156,
          'time_period': ['1850-1-16 12:0:0.0', '2005-12-16 12:0:0.0']},
         'Tropflux': {'name': 'Tropflux',
          'nyears': 40,
          'time_period': ['1979-1-15 0:0:0.0', '2018-12-15 12:0:0.0']},
         'method': 'Zonal root mean square error of equatorial_pacific taux, time series are linearly detrended, observations and model regridded to generic_1x1deg',
         'name': 'taux Zonal RMSE',
         'ref': 'Using CDAT regridding and rms (uncentered and biased) calculation',
         'time_frequency': 'monthly',
         'units': '1e-3 N/m2'},
        'metric': {'datasets': "IPSL-CM5A-MR_r1i1p1; ERA-Interim's tauu & Tropflux's taux; 's ",
         'method': 'The metric is the statistical value between the model and the observations',
         'name': 'BiasTauxLonRmse',
         'units': '1e-3 N/m2'}},
       'EnsoAmpl': {'diagnostic': {'ERA-Interim': {'keyerror': None,
          'name': 'ERA-Interim',
          'nyears': 40,
          'time_period': ['1979-1-16 12:0:0.0', '2019-3-16 12:0:0.0']},
         'HadISST': {'keyerror': None,
          'name': 'HadISST',
          'nyears': 151,
          'time_period': ['1870-1-16 11:59:59.5', '2020-10-16 12:0:0.0']},
         'IPSL-CM5A-MR_r1i1p1': {'keyerror': None,
          'name': 'IPSL-CM5A-MR_r1i1p1',
          'nyears': 156,
          'time_period': ['1850-1-16 12:0:0.0', '2005-12-16 12:0:0.0']},
         'Tropflux': {'keyerror': None,
          'name': 'Tropflux',
          'nyears': 40,
          'time_period': ['1979-1-15 0:0:0.0', '2018-12-15 12:0:0.0']},
         'method': 'Standard deviation of nino3.4 sstA, time series are linearly detrended',
         'name': 'ENSO amplitude',
         'ref': 'Using CDAT regression calculation',
         'time_frequency': 'monthly',
         'units': 'C'},
        'metric': {'datasets': "IPSL-CM5A-MR_r1i1p1; ERA-Interim's ts & HadISST's sst & Tropflux's sst; 's ",
         'method': 'The metric is the absolute value of the relative difference between model and observations values (M = 100 * abs[[model-obs] / obs])',
         'name': 'EnsoAmpl',
         'units': '%'}},
       'EnsoDuration': {'diagnostic': {'ERA-Interim': {'keyerror': None,
          'name': 'ERA-Interim',
          'nyears': 40,
          'time_period': ['1979-1-16 12:0:0.0', '2019-3-16 12:0:0.0']},
         'HadISST': {'keyerror': None,
          'name': 'HadISST',
          'nyears': 151,
          'time_period': ['1870-1-16 11:59:59.5', '2020-10-16 12:0:0.0']},
         'IPSL-CM5A-MR_r1i1p1': {'keyerror': None,
          'name': 'IPSL-CM5A-MR_r1i1p1',
          'nyears': 156,
          'time_period': ['1850-1-16 12:0:0.0', '2005-12-16 12:0:0.0']},
         'Tropflux': {'keyerror': None,
          'name': 'Tropflux',
          'nyears': 40,
          'time_period': ['1979-1-15 0:0:0.0', '2018-12-15 12:0:0.0']},
         'method': 'nino3.4 SSTA during DEC regressed against nino3.4 SSTA during 6 years (centered on ENSO), the duration is the number of consecutive months during which the regression is above 0.25, time series are linearly detrended, smoothing using a triangle shaped window of 5 points',
         'name': 'ENSO Duration based on life cyle SSTA pattern',
         'ref': 'Using CDAT',
         'time_frequency': 'monthly',
         'units': 'months'},
        'metric': {'datasets': "IPSL-CM5A-MR_r1i1p1; ERA-Interim's ts & HadISST's sst & Tropflux's sst; 's ",
         'method': 'The metric is the absolute value of the relative difference between model and observations values (M = 100 * abs[[model-obs] / obs])',
         'name': 'EnsoDuration',
         'units': '%'}},
       'EnsoSeasonality': {'diagnostic': {'ERA-Interim': {'keyerror': None,
          'name': 'ERA-Interim',
          'nyears': 40,
          'time_period': ['1979-1-16 12:0:0.0', '2019-3-16 12:0:0.0']},
         'HadISST': {'keyerror': None,
          'name': 'HadISST',
          'nyears': 151,
          'time_period': ['1870-1-16 11:59:59.5', '2020-10-16 12:0:0.0']},
         'IPSL-CM5A-MR_r1i1p1': {'keyerror': None,
          'name': 'IPSL-CM5A-MR_r1i1p1',
          'nyears': 156,
          'time_period': ['1850-1-16 12:0:0.0', '2005-12-16 12:0:0.0']},
         'Tropflux': {'keyerror': None,
          'name': 'Tropflux',
          'nyears': 40,
          'time_period': ['1979-1-15 0:0:0.0', '2018-12-15 12:0:0.0']},
         'method': 'Ratio between NDJ and MAM standard deviation nino3.4 sstA, time series are linearly detrended',
         'name': 'ENSO seasonality',
         'ref': 'Using CDAT std dev calculation',
         'time_frequency': 'monthly',
         'units': 'C/C'},
        'metric': {'datasets': "IPSL-CM5A-MR_r1i1p1; ERA-Interim's ts & HadISST's sst & Tropflux's sst; 's ",
         'method': 'The metric is the absolute value of the relative difference between model and observations values (M = 100 * abs[[model-obs] / obs])',
         'name': 'EnsoSeasonality',
         'units': '%'}},
       'EnsoSstDiversity_2': {'diagnostic': {'ERA-Interim': {'keyerror': None,
          'name': 'ERA-Interim',
          'nyears': 40,
          'time_period': ['1979-1-16 12:0:0.0', '2019-3-16 12:0:0.0']},
         'HadISST': {'keyerror': None,
          'name': 'HadISST',
          'nyears': 151,
          'time_period': ['1870-1-16 11:59:59.5', '2020-10-16 12:0:0.0']},
         'IPSL-CM5A-MR_r1i1p1': {'keyerror': None,
          'name': 'IPSL-CM5A-MR_r1i1p1',
          'nyears': 156,
          'time_period': ['1850-1-16 12:0:0.0', '2005-12-16 12:0:0.0']},
         'Tropflux': {'keyerror': None,
          'name': 'Tropflux',
          'nyears': 40,
          'time_period': ['1979-1-15 0:0:0.0', '2018-12-15 12:0:0.0']},
         'method': 'Nino (Nina) events = nino3.4 sstA > 0.75 (< -0.75) during DEC, zonal SSTA (meridional averaged [-5.0 ; 5.0]), the zonal SSTA maximum (minimum) is located for each event, the diversity is the interquartile range (IQR = Q3 - Q1), time series are linearly detrended, smoothing using a triangle shaped window of 5 points',
         'name': 'ENSO Diversity (interquartile range)',
         'ref': 'Using CDAT regridding',
         'time_frequency': 'monthly',
         'units': 'long'},
        'metric': {'datasets': "IPSL-CM5A-MR_r1i1p1; ERA-Interim's ts & HadISST's sst & Tropflux's sst; 's ",
         'method': 'The metric is the absolute value of the relative difference between model and observations values (M = 100 * abs[[model-obs] / obs])',
         'name': 'EnsoSstDiversity',
         'units': '%'}},
       'EnsoSstLonRmse': {'diagnostic': {'ERA-Interim': {'name': 'ERA-Interim',
          'nyears': 40,
          'time_period': ['1979-1-16 12:0:0.0', '2019-3-16 12:0:0.0']},
         'HadISST': {'name': 'HadISST',
          'nyears': 151,
          'time_period': ['1870-1-16 11:59:59.5', '2020-10-16 12:0:0.0']},
         'IPSL-CM5A-MR_r1i1p1': {'keyerror': None,
          'name': 'IPSL-CM5A-MR_r1i1p1',
          'nyears': 156,
          'time_period': ['1850-1-16 12:0:0.0', '2005-12-16 12:0:0.0']},
         'Tropflux': {'name': 'Tropflux',
          'nyears': 40,
          'time_period': ['1979-1-15 0:0:0.0', '2018-12-15 12:0:0.0']},
         'method': 'nino3.4 SSTA during DEC regressed against equatorial_pacific SSTA, time series are linearly detrended, smoothing using a triangle shaped window of 5 points, observations and model regridded to generic_1x1deg',
         'name': 'ENSO Zonal SSTA pattern',
         'ref': 'Using CDAT regridding and rms (uncentered and biased) calculation',
         'time_frequency': 'monthly',
         'units': 'C/C'},
        'metric': {'datasets': "IPSL-CM5A-MR_r1i1p1; ERA-Interim's ts & HadISST's sst & Tropflux's sst; 's ",
         'method': 'The metric is the statistical value between the model and the observations',
         'name': 'EnsoSstLonRmse',
         'units': 'C/C'}},
       'EnsoSstSkew': {'diagnostic': {'ERA-Interim': {'keyerror': None,
          'name': 'ERA-Interim',
          'nyears': 40,
          'time_period': ['1979-1-16 12:0:0.0', '2019-3-16 12:0:0.0']},
         'HadISST': {'keyerror': None,
          'name': 'HadISST',
          'nyears': 151,
          'time_period': ['1870-1-16 11:59:59.5', '2020-10-16 12:0:0.0']},
         'IPSL-CM5A-MR_r1i1p1': {'keyerror': None,
          'name': 'IPSL-CM5A-MR_r1i1p1',
          'nyears': 156,
          'time_period': ['1850-1-16 12:0:0.0', '2005-12-16 12:0:0.0']},
         'Tropflux': {'keyerror': None,
          'name': 'Tropflux',
          'nyears': 40,
          'time_period': ['1979-1-15 0:0:0.0', '2018-12-15 12:0:0.0']},
         'method': 'Standard deviation of nino3.4 sstA, time series are linearly detrended',
         'name': 'ENSO skewness',
         'ref': 'Using CDAT regression calculation',
         'time_frequency': 'monthly',
         'units': 'C'},
        'metric': {'datasets': "IPSL-CM5A-MR_r1i1p1; ERA-Interim's ts & HadISST's sst & Tropflux's sst; 's ",
         'method': 'The metric is the absolute value of the relative difference between model and observations values (M = 100 * abs[[model-obs] / obs])',
         'name': 'EnsoSstSkew',
         'units': '%'}},
       'EnsoSstTsRmse': {'diagnostic': {'ERA-Interim': {'name': 'ERA-Interim',
          'nyears': 40,
          'time_period': ['1979-1-16 12:0:0.0', '2019-3-16 12:0:0.0']},
         'HadISST': {'name': 'HadISST',
          'nyears': 151,
          'time_period': ['1870-1-16 11:59:59.5', '2020-10-16 12:0:0.0']},
         'IPSL-CM5A-MR_r1i1p1': {'keyerror': None,
          'name': 'IPSL-CM5A-MR_r1i1p1',
          'nyears': 156,
          'time_period': ['1850-1-16 12:0:0.0', '2005-12-16 12:0:0.0']},
         'Tropflux': {'name': 'Tropflux',
          'nyears': 40,
          'time_period': ['1979-1-15 0:0:0.0', '2018-12-15 12:0:0.0']},
         'method': 'nino3.4 SSTA during DEC regressed against nino3.4 SSTA during 6 years (centered on ENSO), time series are linearly detrended, smoothing using a triangle shaped window of 5 points',
         'name': 'ENSO life cyle SSTA pattern',
         'ref': 'Using CDAT regridding and rms (uncentered and biased) calculation',
         'time_frequency': 'monthly',
         'units': 'C/C'},
        'metric': {'datasets': "IPSL-CM5A-MR_r1i1p1; ERA-Interim's ts & HadISST's sst & Tropflux's sst; 's ",
         'method': 'The metric is the statistical value between the model and the observations',
         'name': 'EnsoSstTsRmse',
         'units': 'C/C'}},
       'SeasonalPrLatRmse': {'diagnostic': {'ERA-Interim': {'name': 'ERA-Interim',
          'nyears': 40,
          'time_period': ['1979-1-16 12:0:0.0', '2019-3-16 12:0:0.0']},
         'GPCPv2.3': {'name': 'GPCPv2.3',
          'nyears': 41,
          'time_period': ['1979-1-1 0:0:0.0', '2019-7-1 0:0:0.0']},
         'IPSL-CM5A-MR_r1i1p1': {'keyerror': None,
          'name': 'IPSL-CM5A-MR_r1i1p1',
          'nyears': 156,
          'time_period': ['1850-1-16 12:0:0.0', '2005-12-16 12:0:0.0']},
         'method': 'Meridional root mean square error of nino3_LatExt climatological pr STD, time series are linearly detrended, observations and model regridded to generic_1x1deg',
         'name': 'pr meridional seasonality RMSE',
         'ref': 'Using CDAT regridding and rms (uncentered and biased) calculation',
         'time_frequency': 'monthly',
         'units': 'mm/day'},
        'metric': {'datasets': "IPSL-CM5A-MR_r1i1p1; ERA-Interim's pr & GPCPv2.3's precip; 's ",
         'method': 'The metric is the statistical value between the model and the observations',
         'name': 'SeasonalPrLatRmse',
         'units': 'mm/day'}},
       'SeasonalPrLonRmse': {'diagnostic': {'ERA-Interim': {'name': 'ERA-Interim',
          'nyears': 40,
          'time_period': ['1979-1-16 12:0:0.0', '2019-3-16 12:0:0.0']},
         'GPCPv2.3': {'name': 'GPCPv2.3',
          'nyears': 41,
          'time_period': ['1979-1-1 0:0:0.0', '2019-7-1 0:0:0.0']},
         'IPSL-CM5A-MR_r1i1p1': {'keyerror': None,
          'name': 'IPSL-CM5A-MR_r1i1p1',
          'nyears': 156,
          'time_period': ['1850-1-16 12:0:0.0', '2005-12-16 12:0:0.0']},
         'method': 'Zonal root mean square error of equatorial_pacific climatological pr STD, time series are linearly detrended, observations and model regridded to generic_1x1deg',
         'name': 'pr zonal seasonality RMSE',
         'ref': 'Using CDAT regridding and rms (uncentered and biased) calculation',
         'time_frequency': 'monthly',
         'units': 'mm/day'},
        'metric': {'datasets': "IPSL-CM5A-MR_r1i1p1; ERA-Interim's pr & GPCPv2.3's precip; 's ",
         'method': 'The metric is the statistical value between the model and the observations',
         'name': 'SeasonalPrLonRmse',
         'units': 'mm/day'}},
       'SeasonalSstLonRmse': {'diagnostic': {'ERA-Interim': {'name': 'ERA-Interim',
          'nyears': 40,
          'time_period': ['1979-1-16 12:0:0.0', '2019-3-16 12:0:0.0']},
         'HadISST': {'name': 'HadISST',
          'nyears': 151,
          'time_period': ['1870-1-16 11:59:59.5', '2020-10-16 12:0:0.0']},
         'IPSL-CM5A-MR_r1i1p1': {'keyerror': None,
          'name': 'IPSL-CM5A-MR_r1i1p1',
          'nyears': 156,
          'time_period': ['1850-1-16 12:0:0.0', '2005-12-16 12:0:0.0']},
         'Tropflux': {'name': 'Tropflux',
          'nyears': 40,
          'time_period': ['1979-1-15 0:0:0.0', '2018-12-15 12:0:0.0']},
         'method': 'Zonal root mean square error of equatorial_pacific climatological sst STD, time series are linearly detrended, observations and model regridded to generic_1x1deg',
         'name': 'sst zonal seasonality RMSE',
         'ref': 'Using CDAT regridding and rms (uncentered and biased) calculation',
         'time_frequency': 'monthly',
         'units': 'C'},
        'metric': {'datasets': "IPSL-CM5A-MR_r1i1p1; ERA-Interim's ts & HadISST's sst & Tropflux's sst; 's ",
         'method': 'The metric is the statistical value between the model and the observations',
         'name': 'SeasonalSstLonRmse',
         'units': 'C'}},
       'SeasonalTauxLonRmse': {'diagnostic': {'ERA-Interim': {'name': 'ERA-Interim',
          'nyears': 40,
          'time_period': ['1979-1-16 12:0:0.0', '2019-3-16 12:0:0.0']},
         'IPSL-CM5A-MR_r1i1p1': {'keyerror': None,
          'name': 'IPSL-CM5A-MR_r1i1p1',
          'nyears': 156,
          'time_period': ['1850-1-16 12:0:0.0', '2005-12-16 12:0:0.0']},
         'Tropflux': {'name': 'Tropflux',
          'nyears': 40,
          'time_period': ['1979-1-15 0:0:0.0', '2018-12-15 12:0:0.0']},
         'method': 'Zonal root mean square error of equatorial_pacific climatological taux STD, time series are linearly detrended, observations and model regridded to generic_1x1deg',
         'name': 'taux zonal seasonality RMSE',
         'ref': 'Using CDAT regridding and rms (uncentered and biased) calculation',
         'time_frequency': 'monthly',
         'units': '1e-3 N/m2'},
        'metric': {'datasets': "IPSL-CM5A-MR_r1i1p1; ERA-Interim's tauu & Tropflux's taux; 's ",
         'method': 'The metric is the statistical value between the model and the observations',
         'name': 'SeasonalTauxLonRmse',
         'units': '1e-3 N/m2'}}},
      'name': 'Metrics Collection for ENSO performance'},
     'value': {'BiasPrLatRmse': {'diagnostic': {'ERA-Interim': {'value': None,
         'value_error': None},
        'GPCPv2.3': {'value': None, 'value_error': None},
        'IPSL-CM5A-MR_r1i1p1': {'value': None, 'value_error': None}},
       'metric': {'ERA-Interim': {'value': 1.4500233304779542,
         'value_error': None},
        'GPCPv2.3': {'value': 1.5132452149567213, 'value_error': None}}},
      'BiasPrLonRmse': {'diagnostic': {'ERA-Interim': {'value': None,
         'value_error': None},
        'GPCPv2.3': {'value': None, 'value_error': None},
        'IPSL-CM5A-MR_r1i1p1': {'value': None, 'value_error': None}},
       'metric': {'ERA-Interim': {'value': 3.4689250717449127,
         'value_error': None},
        'GPCPv2.3': {'value': 2.4810174514164895, 'value_error': None}}},
      'BiasSstLonRmse': {'diagnostic': {'ERA-Interim': {'value': None,
         'value_error': None},
        'HadISST': {'value': None, 'value_error': None},
        'IPSL-CM5A-MR_r1i1p1': {'value': None, 'value_error': None},
        'Tropflux': {'value': None, 'value_error': None}},
       'metric': {'ERA-Interim': {'value': 1.0220596544561047,
         'value_error': None},
        'HadISST': {'value': 0.8787155276940066, 'value_error': None},
        'Tropflux': {'value': 1.067561126307594, 'value_error': None}}},
      'BiasTauxLonRmse': {'diagnostic': {'ERA-Interim': {'value': None,
         'value_error': None},
        'IPSL-CM5A-MR_r1i1p1': {'value': None, 'value_error': None},
        'Tropflux': {'value': None, 'value_error': None}},
       'metric': {'ERA-Interim': {'value': 4.775698994561712,
         'value_error': None},
        'Tropflux': {'value': 5.402183965512219, 'value_error': None}}},
      'EnsoAmpl': {'diagnostic': {'ERA-Interim': {'value': 0.8989844997845644,
         'value_error': 0.14214193002531866},
        'HadISST': {'value': 0.7665787872085695,
         'value_error': 0.06238329697691264},
        'IPSL-CM5A-MR_r1i1p1': {'value': 0.7766568642105679,
         'value_error': 0.06218231490304325},
        'Tropflux': {'value': 0.9039789553693535,
         'value_error': 0.14293162279134272}},
       'metric': {'ERA-Interim': {'value': 13.607313096422851,
         'value_error': 20.57683391792054},
        'HadISST': {'value': 1.3146824788482356,
         'value_error': 16.35653845987842},
        'Tropflux': {'value': 14.084630001896837,
         'value_error': 20.463147551143724}}},
      'EnsoDuration': {'diagnostic': {'ERA-Interim': {'value': 13.0,
         'value_error': None},
        'HadISST': {'value': 13.0, 'value_error': None},
        'IPSL-CM5A-MR_r1i1p1': {'value': 15.0, 'value_error': None},
        'Tropflux': {'value': 13.0, 'value_error': None}},
       'metric': {'ERA-Interim': {'value': 15.384615384615385,
         'value_error': None},
        'HadISST': {'value': 15.384615384615385, 'value_error': None},
        'Tropflux': {'value': 15.384615384615385, 'value_error': None}}},
      'EnsoSeasonality': {'diagnostic': {'ERA-Interim': {'value': 2.0466846866656914,
         'value_error': 0.6513411033995022},
        'HadISST': {'value': 1.6639865947361325,
         'value_error': 0.2712772451657809},
        'IPSL-CM5A-MR_r1i1p1': {'value': 1.0301502463602321,
         'value_error': 0.16522168750078076},
        'Tropflux': {'value': 2.0532132553583624,
         'value_error': 0.6534187683977347}},
       'metric': {'ERA-Interim': {'value': 49.667369230260995,
         'value_error': 24.090608745876313},
        'HadISST': {'value': 38.09143357169962,
         'value_error': 20.022128909153466},
        'Tropflux': {'value': 49.82741107521087,
         'value_error': 24.014008230252678}}},
      'EnsoSstDiversity_2': {'diagnostic': {'ERA-Interim': {'value': 33.25,
         'value_error': None},
        'HadISST': {'value': 49.0, 'value_error': None},
        'IPSL-CM5A-MR_r1i1p1': {'value': 67.0, 'value_error': None},
        'Tropflux': {'value': 32.0, 'value_error': None}},
       'metric': {'ERA-Interim': {'value': 101.50375939849626,
         'value_error': None},
        'HadISST': {'value': 36.734693877551024, 'value_error': None},
        'Tropflux': {'value': 109.375, 'value_error': None}}},
      'EnsoSstLonRmse': {'diagnostic': {'ERA-Interim': {'value': None,
         'value_error': None},
        'HadISST': {'value': None, 'value_error': None},
        'IPSL-CM5A-MR_r1i1p1': {'value': None, 'value_error': None},
        'Tropflux': {'value': None, 'value_error': None}},
       'metric': {'ERA-Interim': {'value': 0.29181809811636483,
         'value_error': None},
        'HadISST': {'value': 0.3082825176342241, 'value_error': None},
        'Tropflux': {'value': 0.2937434337995267, 'value_error': None}}},
      'EnsoSstSkew': {'diagnostic': {'ERA-Interim': {'value': 0.39098111106809963,
         'value_error': 0.061819541653923164},
        'HadISST': {'value': 0.38989908235027515,
         'value_error': 0.03172953733021198},
        'IPSL-CM5A-MR_r1i1p1': {'value': 0.19550644733988756,
         'value_error': 0.015653043234763842},
        'Tropflux': {'value': 0.39744741059612115,
         'value_error': 0.06284195338099416}},
       'metric': {'ERA-Interim': {'value': 49.995935403172204,
         'value_error': 11.909866092928434},
        'HadISST': {'value': 49.85716658746848,
         'value_error': 8.095205582572659},
        'Tropflux': {'value': 50.809480165777785,
         'value_error': 11.716097661074784}}},
      'EnsoSstTsRmse': {'diagnostic': {'ERA-Interim': {'value': None,
         'value_error': None},
        'HadISST': {'value': None, 'value_error': None},
        'IPSL-CM5A-MR_r1i1p1': {'value': None, 'value_error': None},
        'Tropflux': {'value': None, 'value_error': None}},
       'metric': {'ERA-Interim': {'value': 0.12596578510409084,
         'value_error': None},
        'HadISST': {'value': 0.10420636599681496, 'value_error': None},
        'Tropflux': {'value': 0.12481098916148746, 'value_error': None}}},
      'SeasonalPrLatRmse': {'diagnostic': {'ERA-Interim': {'value': None,
         'value_error': None},
        'GPCPv2.3': {'value': None, 'value_error': None},
        'IPSL-CM5A-MR_r1i1p1': {'value': None, 'value_error': None}},
       'metric': {'ERA-Interim': {'value': 1.069650328972458,
         'value_error': None},
        'GPCPv2.3': {'value': 1.171784193202519, 'value_error': None}}},
      'SeasonalPrLonRmse': {'diagnostic': {'ERA-Interim': {'value': None,
         'value_error': None},
        'GPCPv2.3': {'value': None, 'value_error': None},
        'IPSL-CM5A-MR_r1i1p1': {'value': None, 'value_error': None}},
       'metric': {'ERA-Interim': {'value': 0.9676421588096707,
         'value_error': None},
        'GPCPv2.3': {'value': 0.6822386174696072, 'value_error': None}}},
      'SeasonalSstLonRmse': {'diagnostic': {'ERA-Interim': {'value': None,
         'value_error': None},
        'HadISST': {'value': None, 'value_error': None},
        'IPSL-CM5A-MR_r1i1p1': {'value': None, 'value_error': None},
        'Tropflux': {'value': None, 'value_error': None}},
       'metric': {'ERA-Interim': {'value': 0.10127623495983053,
         'value_error': None},
        'HadISST': {'value': 0.0888707543705843, 'value_error': None},
        'Tropflux': {'value': 0.10670568114744111, 'value_error': None}}},
      'SeasonalTauxLonRmse': {'diagnostic': {'ERA-Interim': {'value': None,
         'value_error': None},
        'IPSL-CM5A-MR_r1i1p1': {'value': None, 'value_error': None},
        'Tropflux': {'value': None, 'value_error': None}},
       'metric': {'ERA-Interim': {'value': 1.8875141118174554,
         'value_error': None},
        'Tropflux': {'value': 2.131172866768149, 'value_error': None}}}}},
    'r2i1p1': {'metadata': {'description_of_the_collection': 'Describe which science question this collection is about',
      'metrics': {'BiasPrLatRmse': {'diagnostic': {'ERA-Interim': {'name': 'ERA-Interim',
          'nyears': 40,
          'time_period': ['1979-1-16 12:0:0.0', '2019-3-16 12:0:0.0']},
         'GPCPv2.3': {'name': 'GPCPv2.3',
          'nyears': 41,
          'time_period': ['1979-1-1 0:0:0.0', '2019-7-1 0:0:0.0']},
         'IPSL-CM5A-MR_r2i1p1': {'keyerror': None,
          'name': 'IPSL-CM5A-MR_r2i1p1',
          'nyears': 156,
          'time_period': ['1850-1-16 12:0:0.0', '2005-12-16 12:0:0.0']},
         'method': 'Meridional root mean square error of nino3_LatExt pr, time series are linearly detrended, observations and model regridded to generic_1x1deg',
         'name': 'pr Meridional RMSE',
         'ref': 'Using CDAT regridding and rms (uncentered and biased) calculation',
         'time_frequency': 'monthly',
         'units': 'mm/day'},
        'metric': {'datasets': "IPSL-CM5A-MR_r2i1p1; ERA-Interim's pr & GPCPv2.3's precip; 's ",
         'method': 'The metric is the statistical value between the model and the observations',
         'name': 'BiasPrLatRmse',
         'units': 'mm/day'}},
       'BiasPrLonRmse': {'diagnostic': {'ERA-Interim': {'name': 'ERA-Interim',
          'nyears': 40,
          'time_period': ['1979-1-16 12:0:0.0', '2019-3-16 12:0:0.0']},
         'GPCPv2.3': {'name': 'GPCPv2.3',
          'nyears': 41,
          'time_period': ['1979-1-1 0:0:0.0', '2019-7-1 0:0:0.0']},
         'IPSL-CM5A-MR_r2i1p1': {'keyerror': None,
          'name': 'IPSL-CM5A-MR_r2i1p1',
          'nyears': 156,
          'time_period': ['1850-1-16 12:0:0.0', '2005-12-16 12:0:0.0']},
         'method': 'Zonal root mean square error of equatorial_pacific pr, time series are linearly detrended, observations and model regridded to generic_1x1deg',
         'name': 'pr Zonal RMSE',
         'ref': 'Using CDAT regridding and rms (uncentered and biased) calculation',
         'time_frequency': 'monthly',
         'units': 'mm/day'},
        'metric': {'datasets': "IPSL-CM5A-MR_r2i1p1; ERA-Interim's pr & GPCPv2.3's precip; 's ",
         'method': 'The metric is the statistical value between the model and the observations',
         'name': 'BiasPrLonRmse',
         'units': 'mm/day'}},
       'BiasSstLonRmse': {'diagnostic': {'ERA-Interim': {'name': 'ERA-Interim',
          'nyears': 40,
          'time_period': ['1979-1-16 12:0:0.0', '2019-3-16 12:0:0.0']},
         'HadISST': {'name': 'HadISST',
          'nyears': 151,
          'time_period': ['1870-1-16 11:59:59.5', '2020-10-16 12:0:0.0']},
         'IPSL-CM5A-MR_r2i1p1': {'keyerror': None,
          'name': 'IPSL-CM5A-MR_r2i1p1',
          'nyears': 156,
          'time_period': ['1850-1-16 12:0:0.0', '2005-12-16 12:0:0.0']},
         'Tropflux': {'name': 'Tropflux',
          'nyears': 40,
          'time_period': ['1979-1-15 0:0:0.0', '2018-12-15 12:0:0.0']},
         'method': 'Zonal root mean square error of equatorial_pacific sst, time series are linearly detrended, observations and model regridded to generic_1x1deg',
         'name': 'sst Zonal RMSE',
         'ref': 'Using CDAT regridding and rms (uncentered and biased) calculation',
         'time_frequency': 'monthly',
         'units': 'C'},
        'metric': {'datasets': "IPSL-CM5A-MR_r2i1p1; ERA-Interim's ts & HadISST's sst & Tropflux's sst; 's ",
         'method': 'The metric is the statistical value between the model and the observations',
         'name': 'BiasSstLonRmse',
         'units': 'C'}},
       'BiasTauxLonRmse': {'diagnostic': {'ERA-Interim': {'name': 'ERA-Interim',
          'nyears': 40,
          'time_period': ['1979-1-16 12:0:0.0', '2019-3-16 12:0:0.0']},
         'IPSL-CM5A-MR_r2i1p1': {'keyerror': None,
          'name': 'IPSL-CM5A-MR_r2i1p1',
          'nyears': 156,
          'time_period': ['1850-1-16 12:0:0.0', '2005-12-16 12:0:0.0']},
         'Tropflux': {'name': 'Tropflux',
          'nyears': 40,
          'time_period': ['1979-1-15 0:0:0.0', '2018-12-15 12:0:0.0']},
         'method': 'Zonal root mean square error of equatorial_pacific taux, time series are linearly detrended, observations and model regridded to generic_1x1deg',
         'name': 'taux Zonal RMSE',
         'ref': 'Using CDAT regridding and rms (uncentered and biased) calculation',
         'time_frequency': 'monthly',
         'units': '1e-3 N/m2'},
        'metric': {'datasets': "IPSL-CM5A-MR_r2i1p1; ERA-Interim's tauu & Tropflux's taux; 's ",
         'method': 'The metric is the statistical value between the model and the observations',
         'name': 'BiasTauxLonRmse',
         'units': '1e-3 N/m2'}},
       'EnsoAmpl': {'diagnostic': {'ERA-Interim': {'keyerror': None,
          'name': 'ERA-Interim',
          'nyears': 40,
          'time_period': ['1979-1-16 12:0:0.0', '2019-3-16 12:0:0.0']},
         'HadISST': {'keyerror': None,
          'name': 'HadISST',
          'nyears': 151,
          'time_period': ['1870-1-16 11:59:59.5', '2020-10-16 12:0:0.0']},
         'IPSL-CM5A-MR_r2i1p1': {'keyerror': None,
          'name': 'IPSL-CM5A-MR_r2i1p1',
          'nyears': 156,
          'time_period': ['1850-1-16 12:0:0.0', '2005-12-16 12:0:0.0']},
         'Tropflux': {'keyerror': None,
          'name': 'Tropflux',
          'nyears': 40,
          'time_period': ['1979-1-15 0:0:0.0', '2018-12-15 12:0:0.0']},
         'method': 'Standard deviation of nino3.4 sstA, time series are linearly detrended',
         'name': 'ENSO amplitude',
         'ref': 'Using CDAT regression calculation',
         'time_frequency': 'monthly',
         'units': 'C'},
        'metric': {'datasets': "IPSL-CM5A-MR_r2i1p1; ERA-Interim's ts & HadISST's sst & Tropflux's sst; 's ",
         'method': 'The metric is the absolute value of the relative difference between model and observations values (M = 100 * abs[[model-obs] / obs])',
         'name': 'EnsoAmpl',
         'units': '%'}},
       'EnsoDuration': {'diagnostic': {'ERA-Interim': {'keyerror': None,
          'name': 'ERA-Interim',
          'nyears': 40,
          'time_period': ['1979-1-16 12:0:0.0', '2019-3-16 12:0:0.0']},
         'HadISST': {'keyerror': None,
          'name': 'HadISST',
          'nyears': 151,
          'time_period': ['1870-1-16 11:59:59.5', '2020-10-16 12:0:0.0']},
         'IPSL-CM5A-MR_r2i1p1': {'keyerror': None,
          'name': 'IPSL-CM5A-MR_r2i1p1',
          'nyears': 156,
          'time_period': ['1850-1-16 12:0:0.0', '2005-12-16 12:0:0.0']},
         'Tropflux': {'keyerror': None,
          'name': 'Tropflux',
          'nyears': 40,
          'time_period': ['1979-1-15 0:0:0.0', '2018-12-15 12:0:0.0']},
         'method': 'nino3.4 SSTA during DEC regressed against nino3.4 SSTA during 6 years (centered on ENSO), the duration is the number of consecutive months during which the regression is above 0.25, time series are linearly detrended, smoothing using a triangle shaped window of 5 points',
         'name': 'ENSO Duration based on life cyle SSTA pattern',
         'ref': 'Using CDAT',
         'time_frequency': 'monthly',
         'units': 'months'},
        'metric': {'datasets': "IPSL-CM5A-MR_r2i1p1; ERA-Interim's ts & HadISST's sst & Tropflux's sst; 's ",
         'method': 'The metric is the absolute value of the relative difference between model and observations values (M = 100 * abs[[model-obs] / obs])',
         'name': 'EnsoDuration',
         'units': '%'}},
       'EnsoSeasonality': {'diagnostic': {'ERA-Interim': {'keyerror': None,
          'name': 'ERA-Interim',
          'nyears': 40,
          'time_period': ['1979-1-16 12:0:0.0', '2019-3-16 12:0:0.0']},
         'HadISST': {'keyerror': None,
          'name': 'HadISST',
          'nyears': 151,
          'time_period': ['1870-1-16 11:59:59.5', '2020-10-16 12:0:0.0']},
         'IPSL-CM5A-MR_r2i1p1': {'keyerror': None,
          'name': 'IPSL-CM5A-MR_r2i1p1',
          'nyears': 156,
          'time_period': ['1850-1-16 12:0:0.0', '2005-12-16 12:0:0.0']},
         'Tropflux': {'keyerror': None,
          'name': 'Tropflux',
          'nyears': 40,
          'time_period': ['1979-1-15 0:0:0.0', '2018-12-15 12:0:0.0']},
         'method': 'Ratio between NDJ and MAM standard deviation nino3.4 sstA, time series are linearly detrended',
         'name': 'ENSO seasonality',
         'ref': 'Using CDAT std dev calculation',
         'time_frequency': 'monthly',
         'units': 'C/C'},
        'metric': {'datasets': "IPSL-CM5A-MR_r2i1p1; ERA-Interim's ts & HadISST's sst & Tropflux's sst; 's ",
         'method': 'The metric is the absolute value of the relative difference between model and observations values (M = 100 * abs[[model-obs] / obs])',
         'name': 'EnsoSeasonality',
         'units': '%'}},
       'EnsoSstDiversity_2': {'diagnostic': {'ERA-Interim': {'keyerror': None,
          'name': 'ERA-Interim',
          'nyears': 40,
          'time_period': ['1979-1-16 12:0:0.0', '2019-3-16 12:0:0.0']},
         'HadISST': {'keyerror': None,
          'name': 'HadISST',
          'nyears': 151,
          'time_period': ['1870-1-16 11:59:59.5', '2020-10-16 12:0:0.0']},
         'IPSL-CM5A-MR_r2i1p1': {'keyerror': None,
          'name': 'IPSL-CM5A-MR_r2i1p1',
          'nyears': 156,
          'time_period': ['1850-1-16 12:0:0.0', '2005-12-16 12:0:0.0']},
         'Tropflux': {'keyerror': None,
          'name': 'Tropflux',
          'nyears': 40,
          'time_period': ['1979-1-15 0:0:0.0', '2018-12-15 12:0:0.0']},
         'method': 'Nino (Nina) events = nino3.4 sstA > 0.75 (< -0.75) during DEC, zonal SSTA (meridional averaged [-5.0 ; 5.0]), the zonal SSTA maximum (minimum) is located for each event, the diversity is the interquartile range (IQR = Q3 - Q1), time series are linearly detrended, smoothing using a triangle shaped window of 5 points',
         'name': 'ENSO Diversity (interquartile range)',
         'ref': 'Using CDAT regridding',
         'time_frequency': 'monthly',
         'units': 'long'},
        'metric': {'datasets': "IPSL-CM5A-MR_r2i1p1; ERA-Interim's ts & HadISST's sst & Tropflux's sst; 's ",
         'method': 'The metric is the absolute value of the relative difference between model and observations values (M = 100 * abs[[model-obs] / obs])',
         'name': 'EnsoSstDiversity',
         'units': '%'}},
       'EnsoSstLonRmse': {'diagnostic': {'ERA-Interim': {'name': 'ERA-Interim',
          'nyears': 40,
          'time_period': ['1979-1-16 12:0:0.0', '2019-3-16 12:0:0.0']},
         'HadISST': {'name': 'HadISST',
          'nyears': 151,
          'time_period': ['1870-1-16 11:59:59.5', '2020-10-16 12:0:0.0']},
         'IPSL-CM5A-MR_r2i1p1': {'keyerror': None,
          'name': 'IPSL-CM5A-MR_r2i1p1',
          'nyears': 156,
          'time_period': ['1850-1-16 12:0:0.0', '2005-12-16 12:0:0.0']},
         'Tropflux': {'name': 'Tropflux',
          'nyears': 40,
          'time_period': ['1979-1-15 0:0:0.0', '2018-12-15 12:0:0.0']},
         'method': 'nino3.4 SSTA during DEC regressed against equatorial_pacific SSTA, time series are linearly detrended, smoothing using a triangle shaped window of 5 points, observations and model regridded to generic_1x1deg',
         'name': 'ENSO Zonal SSTA pattern',
         'ref': 'Using CDAT regridding and rms (uncentered and biased) calculation',
         'time_frequency': 'monthly',
         'units': 'C/C'},
        'metric': {'datasets': "IPSL-CM5A-MR_r2i1p1; ERA-Interim's ts & HadISST's sst & Tropflux's sst; 's ",
         'method': 'The metric is the statistical value between the model and the observations',
         'name': 'EnsoSstLonRmse',
         'units': 'C/C'}},
       'EnsoSstSkew': {'diagnostic': {'ERA-Interim': {'keyerror': None,
          'name': 'ERA-Interim',
          'nyears': 40,
          'time_period': ['1979-1-16 12:0:0.0', '2019-3-16 12:0:0.0']},
         'HadISST': {'keyerror': None,
          'name': 'HadISST',
          'nyears': 151,
          'time_period': ['1870-1-16 11:59:59.5', '2020-10-16 12:0:0.0']},
         'IPSL-CM5A-MR_r2i1p1': {'keyerror': None,
          'name': 'IPSL-CM5A-MR_r2i1p1',
          'nyears': 156,
          'time_period': ['1850-1-16 12:0:0.0', '2005-12-16 12:0:0.0']},
         'Tropflux': {'keyerror': None,
          'name': 'Tropflux',
          'nyears': 40,
          'time_period': ['1979-1-15 0:0:0.0', '2018-12-15 12:0:0.0']},
         'method': 'Standard deviation of nino3.4 sstA, time series are linearly detrended',
         'name': 'ENSO skewness',
         'ref': 'Using CDAT regression calculation',
         'time_frequency': 'monthly',
         'units': 'C'},
        'metric': {'datasets': "IPSL-CM5A-MR_r2i1p1; ERA-Interim's ts & HadISST's sst & Tropflux's sst; 's ",
         'method': 'The metric is the absolute value of the relative difference between model and observations values (M = 100 * abs[[model-obs] / obs])',
         'name': 'EnsoSstSkew',
         'units': '%'}},
       'EnsoSstTsRmse': {'diagnostic': {'ERA-Interim': {'name': 'ERA-Interim',
          'nyears': 40,
          'time_period': ['1979-1-16 12:0:0.0', '2019-3-16 12:0:0.0']},
         'HadISST': {'name': 'HadISST',
          'nyears': 151,
          'time_period': ['1870-1-16 11:59:59.5', '2020-10-16 12:0:0.0']},
         'IPSL-CM5A-MR_r2i1p1': {'keyerror': None,
          'name': 'IPSL-CM5A-MR_r2i1p1',
          'nyears': 156,
          'time_period': ['1850-1-16 12:0:0.0', '2005-12-16 12:0:0.0']},
         'Tropflux': {'name': 'Tropflux',
          'nyears': 40,
          'time_period': ['1979-1-15 0:0:0.0', '2018-12-15 12:0:0.0']},
         'method': 'nino3.4 SSTA during DEC regressed against nino3.4 SSTA during 6 years (centered on ENSO), time series are linearly detrended, smoothing using a triangle shaped window of 5 points',
         'name': 'ENSO life cyle SSTA pattern',
         'ref': 'Using CDAT regridding and rms (uncentered and biased) calculation',
         'time_frequency': 'monthly',
         'units': 'C/C'},
        'metric': {'datasets': "IPSL-CM5A-MR_r2i1p1; ERA-Interim's ts & HadISST's sst & Tropflux's sst; 's ",
         'method': 'The metric is the statistical value between the model and the observations',
         'name': 'EnsoSstTsRmse',
         'units': 'C/C'}},
       'SeasonalPrLatRmse': {'diagnostic': {'ERA-Interim': {'name': 'ERA-Interim',
          'nyears': 40,
          'time_period': ['1979-1-16 12:0:0.0', '2019-3-16 12:0:0.0']},
         'GPCPv2.3': {'name': 'GPCPv2.3',
          'nyears': 41,
          'time_period': ['1979-1-1 0:0:0.0', '2019-7-1 0:0:0.0']},
         'IPSL-CM5A-MR_r2i1p1': {'keyerror': None,
          'name': 'IPSL-CM5A-MR_r2i1p1',
          'nyears': 156,
          'time_period': ['1850-1-16 12:0:0.0', '2005-12-16 12:0:0.0']},
         'method': 'Meridional root mean square error of nino3_LatExt climatological pr STD, time series are linearly detrended, observations and model regridded to generic_1x1deg',
         'name': 'pr meridional seasonality RMSE',
         'ref': 'Using CDAT regridding and rms (uncentered and biased) calculation',
         'time_frequency': 'monthly',
         'units': 'mm/day'},
        'metric': {'datasets': "IPSL-CM5A-MR_r2i1p1; ERA-Interim's pr & GPCPv2.3's precip; 's ",
         'method': 'The metric is the statistical value between the model and the observations',
         'name': 'SeasonalPrLatRmse',
         'units': 'mm/day'}},
       'SeasonalPrLonRmse': {'diagnostic': {'ERA-Interim': {'name': 'ERA-Interim',
          'nyears': 40,
          'time_period': ['1979-1-16 12:0:0.0', '2019-3-16 12:0:0.0']},
         'GPCPv2.3': {'name': 'GPCPv2.3',
          'nyears': 41,
          'time_period': ['1979-1-1 0:0:0.0', '2019-7-1 0:0:0.0']},
         'IPSL-CM5A-MR_r2i1p1': {'keyerror': None,
          'name': 'IPSL-CM5A-MR_r2i1p1',
          'nyears': 156,
          'time_period': ['1850-1-16 12:0:0.0', '2005-12-16 12:0:0.0']},
         'method': 'Zonal root mean square error of equatorial_pacific climatological pr STD, time series are linearly detrended, observations and model regridded to generic_1x1deg',
         'name': 'pr zonal seasonality RMSE',
         'ref': 'Using CDAT regridding and rms (uncentered and biased) calculation',
         'time_frequency': 'monthly',
         'units': 'mm/day'},
        'metric': {'datasets': "IPSL-CM5A-MR_r2i1p1; ERA-Interim's pr & GPCPv2.3's precip; 's ",
         'method': 'The metric is the statistical value between the model and the observations',
         'name': 'SeasonalPrLonRmse',
         'units': 'mm/day'}},
       'SeasonalSstLonRmse': {'diagnostic': {'ERA-Interim': {'name': 'ERA-Interim',
          'nyears': 40,
          'time_period': ['1979-1-16 12:0:0.0', '2019-3-16 12:0:0.0']},
         'HadISST': {'name': 'HadISST',
          'nyears': 151,
          'time_period': ['1870-1-16 11:59:59.5', '2020-10-16 12:0:0.0']},
         'IPSL-CM5A-MR_r2i1p1': {'keyerror': None,
          'name': 'IPSL-CM5A-MR_r2i1p1',
          'nyears': 156,
          'time_period': ['1850-1-16 12:0:0.0', '2005-12-16 12:0:0.0']},
         'Tropflux': {'name': 'Tropflux',
          'nyears': 40,
          'time_period': ['1979-1-15 0:0:0.0', '2018-12-15 12:0:0.0']},
         'method': 'Zonal root mean square error of equatorial_pacific climatological sst STD, time series are linearly detrended, observations and model regridded to generic_1x1deg',
         'name': 'sst zonal seasonality RMSE',
         'ref': 'Using CDAT regridding and rms (uncentered and biased) calculation',
         'time_frequency': 'monthly',
         'units': 'C'},
        'metric': {'datasets': "IPSL-CM5A-MR_r2i1p1; ERA-Interim's ts & HadISST's sst & Tropflux's sst; 's ",
         'method': 'The metric is the statistical value between the model and the observations',
         'name': 'SeasonalSstLonRmse',
         'units': 'C'}},
       'SeasonalTauxLonRmse': {'diagnostic': {'ERA-Interim': {'name': 'ERA-Interim',
          'nyears': 40,
          'time_period': ['1979-1-16 12:0:0.0', '2019-3-16 12:0:0.0']},
         'IPSL-CM5A-MR_r2i1p1': {'keyerror': None,
          'name': 'IPSL-CM5A-MR_r2i1p1',
          'nyears': 156,
          'time_period': ['1850-1-16 12:0:0.0', '2005-12-16 12:0:0.0']},
         'Tropflux': {'name': 'Tropflux',
          'nyears': 40,
          'time_period': ['1979-1-15 0:0:0.0', '2018-12-15 12:0:0.0']},
         'method': 'Zonal root mean square error of equatorial_pacific climatological taux STD, time series are linearly detrended, observations and model regridded to generic_1x1deg',
         'name': 'taux zonal seasonality RMSE',
         'ref': 'Using CDAT regridding and rms (uncentered and biased) calculation',
         'time_frequency': 'monthly',
         'units': '1e-3 N/m2'},
        'metric': {'datasets': "IPSL-CM5A-MR_r2i1p1; ERA-Interim's tauu & Tropflux's taux; 's ",
         'method': 'The metric is the statistical value between the model and the observations',
         'name': 'SeasonalTauxLonRmse',
         'units': '1e-3 N/m2'}}},
      'name': 'Metrics Collection for ENSO performance'},
     'value': {'BiasPrLatRmse': {'diagnostic': {'ERA-Interim': {'value': None,
         'value_error': None},
        'GPCPv2.3': {'value': None, 'value_error': None},
        'IPSL-CM5A-MR_r2i1p1': {'value': None, 'value_error': None}},
       'metric': {'ERA-Interim': {'value': 1.4289660494379433,
         'value_error': None},
        'GPCPv2.3': {'value': 1.499959574378846, 'value_error': None}}},
      'BiasPrLonRmse': {'diagnostic': {'ERA-Interim': {'value': None,
         'value_error': None},
        'GPCPv2.3': {'value': None, 'value_error': None},
        'IPSL-CM5A-MR_r2i1p1': {'value': None, 'value_error': None}},
       'metric': {'ERA-Interim': {'value': 3.4632879714706704,
         'value_error': None},
        'GPCPv2.3': {'value': 2.475142522220454, 'value_error': None}}},
      'BiasSstLonRmse': {'diagnostic': {'ERA-Interim': {'value': None,
         'value_error': None},
        'HadISST': {'value': None, 'value_error': None},
        'IPSL-CM5A-MR_r2i1p1': {'value': None, 'value_error': None},
        'Tropflux': {'value': None, 'value_error': None}},
       'metric': {'ERA-Interim': {'value': 0.999866764247787,
         'value_error': None},
        'HadISST': {'value': 0.8583613989935591, 'value_error': None},
        'Tropflux': {'value': 1.0452672599661623, 'value_error': None}}},
      'BiasTauxLonRmse': {'diagnostic': {'ERA-Interim': {'value': None,
         'value_error': None},
        'IPSL-CM5A-MR_r2i1p1': {'value': None, 'value_error': None},
        'Tropflux': {'value': None, 'value_error': None}},
       'metric': {'ERA-Interim': {'value': 4.853090429710968,
         'value_error': None},
        'Tropflux': {'value': 5.477986061921993, 'value_error': None}}},
      'EnsoAmpl': {'diagnostic': {'ERA-Interim': {'value': 0.8989844997845644,
         'value_error': 0.14214193002531866},
        'HadISST': {'value': 0.7665787872085695,
         'value_error': 0.06238329697691264},
        'IPSL-CM5A-MR_r2i1p1': {'value': 0.7762294976070714,
         'value_error': 0.06214809819043532},
        'Tropflux': {'value': 0.9039789553693535,
         'value_error': 0.14293162279134272}},
       'metric': {'ERA-Interim': {'value': 13.654851914233273,
         'value_error': 20.56551121927787},
        'HadISST': {'value': 1.2589326184780143,
         'value_error': 16.347538039475694},
        'Tropflux': {'value': 14.131906169218883,
         'value_error': 20.45188741005855}}},
      'EnsoDuration': {'diagnostic': {'ERA-Interim': {'value': 13.0,
         'value_error': None},
        'HadISST': {'value': 13.0, 'value_error': None},
        'IPSL-CM5A-MR_r2i1p1': {'value': 15.0, 'value_error': None},
        'Tropflux': {'value': 13.0, 'value_error': None}},
       'metric': {'ERA-Interim': {'value': 15.384615384615385,
         'value_error': None},
        'HadISST': {'value': 15.384615384615385, 'value_error': None},
        'Tropflux': {'value': 15.384615384615385, 'value_error': None}}},
      'EnsoSeasonality': {'diagnostic': {'ERA-Interim': {'value': 2.0466846866656914,
         'value_error': 0.6513411033995022},
        'HadISST': {'value': 1.6639865947361325,
         'value_error': 0.2712772451657809},
        'IPSL-CM5A-MR_r2i1p1': {'value': 0.9735935720773923,
         'value_error': 0.1561507881854054},
        'Tropflux': {'value': 2.0532132553583624,
         'value_error': 0.6534187683977347}},
       'metric': {'ERA-Interim': {'value': 52.43070032133286,
         'value_error': 22.76800098363013},
        'HadISST': {'value': 41.49029955185544,
         'value_error': 18.922886320836852},
        'Tropflux': {'value': 52.58195564749245,
         'value_error': 22.69560594233156}}},
      'EnsoSstDiversity_2': {'diagnostic': {'ERA-Interim': {'value': 33.25,
         'value_error': None},
        'HadISST': {'value': 49.0, 'value_error': None},
        'IPSL-CM5A-MR_r2i1p1': {'value': 54.0, 'value_error': None},
        'Tropflux': {'value': 32.0, 'value_error': None}},
       'metric': {'ERA-Interim': {'value': 62.40601503759399,
         'value_error': None},
        'HadISST': {'value': 10.204081632653061, 'value_error': None},
        'Tropflux': {'value': 68.75, 'value_error': None}}},
      'EnsoSstLonRmse': {'diagnostic': {'ERA-Interim': {'value': None,
         'value_error': None},
        'HadISST': {'value': None, 'value_error': None},
        'IPSL-CM5A-MR_r2i1p1': {'value': None, 'value_error': None},
        'Tropflux': {'value': None, 'value_error': None}},
       'metric': {'ERA-Interim': {'value': 0.28503889841840285,
         'value_error': None},
        'HadISST': {'value': 0.30157076859229587, 'value_error': None},
        'Tropflux': {'value': 0.28695775718834854, 'value_error': None}}},
      'EnsoSstSkew': {'diagnostic': {'ERA-Interim': {'value': 0.39098111106809963,
         'value_error': 0.061819541653923164},
        'HadISST': {'value': 0.38989908235027515,
         'value_error': 0.03172953733021198},
        'IPSL-CM5A-MR_r2i1p1': {'value': 0.14214799554682028,
         'value_error': 0.011380948047003039},
        'Tropflux': {'value': 0.39744741059612115,
         'value_error': 0.06284195338099416}},
       'metric': {'ERA-Interim': {'value': 63.64325755827588,
         'value_error': 8.659374743778155},
        'HadISST': {'value': 63.5423621184319,
         'value_error': 5.885827617242786},
        'Tropflux': {'value': 64.23476622136846,
         'value_error': 8.518490417133105}}},
      'EnsoSstTsRmse': {'diagnostic': {'ERA-Interim': {'value': None,
         'value_error': None},
        'HadISST': {'value': None, 'value_error': None},
        'IPSL-CM5A-MR_r2i1p1': {'value': None, 'value_error': None},
        'Tropflux': {'value': None, 'value_error': None}},
       'metric': {'ERA-Interim': {'value': 0.13511178045154668,
         'value_error': None},
        'HadISST': {'value': 0.10162604021389429, 'value_error': None},
        'Tropflux': {'value': 0.1316753131831724, 'value_error': None}}},
      'SeasonalPrLatRmse': {'diagnostic': {'ERA-Interim': {'value': None,
         'value_error': None},
        'GPCPv2.3': {'value': None, 'value_error': None},
        'IPSL-CM5A-MR_r2i1p1': {'value': None, 'value_error': None}},
       'metric': {'ERA-Interim': {'value': 1.0554838573400764,
         'value_error': None},
        'GPCPv2.3': {'value': 1.162009237408064, 'value_error': None}}},
      'SeasonalPrLonRmse': {'diagnostic': {'ERA-Interim': {'value': None,
         'value_error': None},
        'GPCPv2.3': {'value': None, 'value_error': None},
        'IPSL-CM5A-MR_r2i1p1': {'value': None, 'value_error': None}},
       'metric': {'ERA-Interim': {'value': 0.9589732857256309,
         'value_error': None},
        'GPCPv2.3': {'value': 0.6820113866552355, 'value_error': None}}},
      'SeasonalSstLonRmse': {'diagnostic': {'ERA-Interim': {'value': None,
         'value_error': None},
        'HadISST': {'value': None, 'value_error': None},
        'IPSL-CM5A-MR_r2i1p1': {'value': None, 'value_error': None},
        'Tropflux': {'value': None, 'value_error': None}},
       'metric': {'ERA-Interim': {'value': 0.10871412491894751,
         'value_error': None},
        'HadISST': {'value': 0.09805895327838629, 'value_error': None},
        'Tropflux': {'value': 0.11382403246859701, 'value_error': None}}},
      'SeasonalTauxLonRmse': {'diagnostic': {'ERA-Interim': {'value': None,
         'value_error': None},
        'IPSL-CM5A-MR_r2i1p1': {'value': None, 'value_error': None},
        'Tropflux': {'value': None, 'value_error': None}},
       'metric': {'ERA-Interim': {'value': 1.8695718426918753,
         'value_error': None},
        'Tropflux': {'value': 2.102220359535579, 'value_error': None}}}}},
    'r3i1p1': {'metadata': {'description_of_the_collection': 'Describe which science question this collection is about',
      'metrics': {'BiasPrLatRmse': {'diagnostic': {'ERA-Interim': {'name': 'ERA-Interim',
          'nyears': 40,
          'time_period': ['1979-1-16 12:0:0.0', '2019-3-16 12:0:0.0']},
         'GPCPv2.3': {'name': 'GPCPv2.3',
          'nyears': 41,
          'time_period': ['1979-1-1 0:0:0.0', '2019-7-1 0:0:0.0']},
         'IPSL-CM5A-MR_r3i1p1': {'keyerror': None,
          'name': 'IPSL-CM5A-MR_r3i1p1',
          'nyears': 156,
          'time_period': ['1850-1-16 12:0:0.0', '2005-12-16 12:0:0.0']},
         'method': 'Meridional root mean square error of nino3_LatExt pr, time series are linearly detrended, observations and model regridded to generic_1x1deg',
         'name': 'pr Meridional RMSE',
         'ref': 'Using CDAT regridding and rms (uncentered and biased) calculation',
         'time_frequency': 'monthly',
         'units': 'mm/day'},
        'metric': {'datasets': "IPSL-CM5A-MR_r3i1p1; ERA-Interim's pr & GPCPv2.3's precip; 's ",
         'method': 'The metric is the statistical value between the model and the observations',
         'name': 'BiasPrLatRmse',
         'units': 'mm/day'}},
       'BiasPrLonRmse': {'diagnostic': {'ERA-Interim': {'name': 'ERA-Interim',
          'nyears': 40,
          'time_period': ['1979-1-16 12:0:0.0', '2019-3-16 12:0:0.0']},
         'GPCPv2.3': {'name': 'GPCPv2.3',
          'nyears': 41,
          'time_period': ['1979-1-1 0:0:0.0', '2019-7-1 0:0:0.0']},
         'IPSL-CM5A-MR_r3i1p1': {'keyerror': None,
          'name': 'IPSL-CM5A-MR_r3i1p1',
          'nyears': 156,
          'time_period': ['1850-1-16 12:0:0.0', '2005-12-16 12:0:0.0']},
         'method': 'Zonal root mean square error of equatorial_pacific pr, time series are linearly detrended, observations and model regridded to generic_1x1deg',
         'name': 'pr Zonal RMSE',
         'ref': 'Using CDAT regridding and rms (uncentered and biased) calculation',
         'time_frequency': 'monthly',
         'units': 'mm/day'},
        'metric': {'datasets': "IPSL-CM5A-MR_r3i1p1; ERA-Interim's pr & GPCPv2.3's precip; 's ",
         'method': 'The metric is the statistical value between the model and the observations',
         'name': 'BiasPrLonRmse',
         'units': 'mm/day'}},
       'BiasSstLonRmse': {'diagnostic': {'ERA-Interim': {'name': 'ERA-Interim',
          'nyears': 40,
          'time_period': ['1979-1-16 12:0:0.0', '2019-3-16 12:0:0.0']},
         'HadISST': {'name': 'HadISST',
          'nyears': 151,
          'time_period': ['1870-1-16 11:59:59.5', '2020-10-16 12:0:0.0']},
         'IPSL-CM5A-MR_r3i1p1': {'keyerror': None,
          'name': 'IPSL-CM5A-MR_r3i1p1',
          'nyears': 156,
          'time_period': ['1850-1-16 12:0:0.0', '2005-12-16 12:0:0.0']},
         'Tropflux': {'name': 'Tropflux',
          'nyears': 40,
          'time_period': ['1979-1-15 0:0:0.0', '2018-12-15 12:0:0.0']},
         'method': 'Zonal root mean square error of equatorial_pacific sst, time series are linearly detrended, observations and model regridded to generic_1x1deg',
         'name': 'sst Zonal RMSE',
         'ref': 'Using CDAT regridding and rms (uncentered and biased) calculation',
         'time_frequency': 'monthly',
         'units': 'C'},
        'metric': {'datasets': "IPSL-CM5A-MR_r3i1p1; ERA-Interim's ts & HadISST's sst & Tropflux's sst; 's ",
         'method': 'The metric is the statistical value between the model and the observations',
         'name': 'BiasSstLonRmse',
         'units': 'C'}},
       'BiasTauxLonRmse': {'diagnostic': {'ERA-Interim': {'name': 'ERA-Interim',
          'nyears': 40,
          'time_period': ['1979-1-16 12:0:0.0', '2019-3-16 12:0:0.0']},
         'IPSL-CM5A-MR_r3i1p1': {'keyerror': None,
          'name': 'IPSL-CM5A-MR_r3i1p1',
          'nyears': 156,
          'time_period': ['1850-1-16 12:0:0.0', '2005-12-16 12:0:0.0']},
         'Tropflux': {'name': 'Tropflux',
          'nyears': 40,
          'time_period': ['1979-1-15 0:0:0.0', '2018-12-15 12:0:0.0']},
         'method': 'Zonal root mean square error of equatorial_pacific taux, time series are linearly detrended, observations and model regridded to generic_1x1deg',
         'name': 'taux Zonal RMSE',
         'ref': 'Using CDAT regridding and rms (uncentered and biased) calculation',
         'time_frequency': 'monthly',
         'units': '1e-3 N/m2'},
        'metric': {'datasets': "IPSL-CM5A-MR_r3i1p1; ERA-Interim's tauu & Tropflux's taux; 's ",
         'method': 'The metric is the statistical value between the model and the observations',
         'name': 'BiasTauxLonRmse',
         'units': '1e-3 N/m2'}},
       'EnsoAmpl': {'diagnostic': {'ERA-Interim': {'keyerror': None,
          'name': 'ERA-Interim',
          'nyears': 40,
          'time_period': ['1979-1-16 12:0:0.0', '2019-3-16 12:0:0.0']},
         'HadISST': {'keyerror': None,
          'name': 'HadISST',
          'nyears': 151,
          'time_period': ['1870-1-16 11:59:59.5', '2020-10-16 12:0:0.0']},
         'IPSL-CM5A-MR_r3i1p1': {'keyerror': None,
          'name': 'IPSL-CM5A-MR_r3i1p1',
          'nyears': 156,
          'time_period': ['1850-1-16 12:0:0.0', '2005-12-16 12:0:0.0']},
         'Tropflux': {'keyerror': None,
          'name': 'Tropflux',
          'nyears': 40,
          'time_period': ['1979-1-15 0:0:0.0', '2018-12-15 12:0:0.0']},
         'method': 'Standard deviation of nino3.4 sstA, time series are linearly detrended',
         'name': 'ENSO amplitude',
         'ref': 'Using CDAT regression calculation',
         'time_frequency': 'monthly',
         'units': 'C'},
        'metric': {'datasets': "IPSL-CM5A-MR_r3i1p1; ERA-Interim's ts & HadISST's sst & Tropflux's sst; 's ",
         'method': 'The metric is the absolute value of the relative difference between model and observations values (M = 100 * abs[[model-obs] / obs])',
         'name': 'EnsoAmpl',
         'units': '%'}},
       'EnsoDuration': {'diagnostic': {'ERA-Interim': {'keyerror': None,
          'name': 'ERA-Interim',
          'nyears': 40,
          'time_period': ['1979-1-16 12:0:0.0', '2019-3-16 12:0:0.0']},
         'HadISST': {'keyerror': None,
          'name': 'HadISST',
          'nyears': 151,
          'time_period': ['1870-1-16 11:59:59.5', '2020-10-16 12:0:0.0']},
         'IPSL-CM5A-MR_r3i1p1': {'keyerror': None,
          'name': 'IPSL-CM5A-MR_r3i1p1',
          'nyears': 156,
          'time_period': ['1850-1-16 12:0:0.0', '2005-12-16 12:0:0.0']},
         'Tropflux': {'keyerror': None,
          'name': 'Tropflux',
          'nyears': 40,
          'time_period': ['1979-1-15 0:0:0.0', '2018-12-15 12:0:0.0']},
         'method': 'nino3.4 SSTA during DEC regressed against nino3.4 SSTA during 6 years (centered on ENSO), the duration is the number of consecutive months during which the regression is above 0.25, time series are linearly detrended, smoothing using a triangle shaped window of 5 points',
         'name': 'ENSO Duration based on life cyle SSTA pattern',
         'ref': 'Using CDAT',
         'time_frequency': 'monthly',
         'units': 'months'},
        'metric': {'datasets': "IPSL-CM5A-MR_r3i1p1; ERA-Interim's ts & HadISST's sst & Tropflux's sst; 's ",
         'method': 'The metric is the absolute value of the relative difference between model and observations values (M = 100 * abs[[model-obs] / obs])',
         'name': 'EnsoDuration',
         'units': '%'}},
       'EnsoSeasonality': {'diagnostic': {'ERA-Interim': {'keyerror': None,
          'name': 'ERA-Interim',
          'nyears': 40,
          'time_period': ['1979-1-16 12:0:0.0', '2019-3-16 12:0:0.0']},
         'HadISST': {'keyerror': None,
          'name': 'HadISST',
          'nyears': 151,
          'time_period': ['1870-1-16 11:59:59.5', '2020-10-16 12:0:0.0']},
         'IPSL-CM5A-MR_r3i1p1': {'keyerror': None,
          'name': 'IPSL-CM5A-MR_r3i1p1',
          'nyears': 156,
          'time_period': ['1850-1-16 12:0:0.0', '2005-12-16 12:0:0.0']},
         'Tropflux': {'keyerror': None,
          'name': 'Tropflux',
          'nyears': 40,
          'time_period': ['1979-1-15 0:0:0.0', '2018-12-15 12:0:0.0']},
         'method': 'Ratio between NDJ and MAM standard deviation nino3.4 sstA, time series are linearly detrended',
         'name': 'ENSO seasonality',
         'ref': 'Using CDAT std dev calculation',
         'time_frequency': 'monthly',
         'units': 'C/C'},
        'metric': {'datasets': "IPSL-CM5A-MR_r3i1p1; ERA-Interim's ts & HadISST's sst & Tropflux's sst; 's ",
         'method': 'The metric is the absolute value of the relative difference between model and observations values (M = 100 * abs[[model-obs] / obs])',
         'name': 'EnsoSeasonality',
         'units': '%'}},
       'EnsoSstDiversity_2': {'diagnostic': {'ERA-Interim': {'keyerror': None,
          'name': 'ERA-Interim',
          'nyears': 40,
          'time_period': ['1979-1-16 12:0:0.0', '2019-3-16 12:0:0.0']},
         'HadISST': {'keyerror': None,
          'name': 'HadISST',
          'nyears': 151,
          'time_period': ['1870-1-16 11:59:59.5', '2020-10-16 12:0:0.0']},
         'IPSL-CM5A-MR_r3i1p1': {'keyerror': None,
          'name': 'IPSL-CM5A-MR_r3i1p1',
          'nyears': 156,
          'time_period': ['1850-1-16 12:0:0.0', '2005-12-16 12:0:0.0']},
         'Tropflux': {'keyerror': None,
          'name': 'Tropflux',
          'nyears': 40,
          'time_period': ['1979-1-15 0:0:0.0', '2018-12-15 12:0:0.0']},
         'method': 'Nino (Nina) events = nino3.4 sstA > 0.75 (< -0.75) during DEC, zonal SSTA (meridional averaged [-5.0 ; 5.0]), the zonal SSTA maximum (minimum) is located for each event, the diversity is the interquartile range (IQR = Q3 - Q1), time series are linearly detrended, smoothing using a triangle shaped window of 5 points',
         'name': 'ENSO Diversity (interquartile range)',
         'ref': 'Using CDAT regridding',
         'time_frequency': 'monthly',
         'units': 'long'},
        'metric': {'datasets': "IPSL-CM5A-MR_r3i1p1; ERA-Interim's ts & HadISST's sst & Tropflux's sst; 's ",
         'method': 'The metric is the absolute value of the relative difference between model and observations values (M = 100 * abs[[model-obs] / obs])',
         'name': 'EnsoSstDiversity',
         'units': '%'}},
       'EnsoSstLonRmse': {'diagnostic': {'ERA-Interim': {'name': 'ERA-Interim',
          'nyears': 40,
          'time_period': ['1979-1-16 12:0:0.0', '2019-3-16 12:0:0.0']},
         'HadISST': {'name': 'HadISST',
          'nyears': 151,
          'time_period': ['1870-1-16 11:59:59.5', '2020-10-16 12:0:0.0']},
         'IPSL-CM5A-MR_r3i1p1': {'keyerror': None,
          'name': 'IPSL-CM5A-MR_r3i1p1',
          'nyears': 156,
          'time_period': ['1850-1-16 12:0:0.0', '2005-12-16 12:0:0.0']},
         'Tropflux': {'name': 'Tropflux',
          'nyears': 40,
          'time_period': ['1979-1-15 0:0:0.0', '2018-12-15 12:0:0.0']},
         'method': 'nino3.4 SSTA during DEC regressed against equatorial_pacific SSTA, time series are linearly detrended, smoothing using a triangle shaped window of 5 points, observations and model regridded to generic_1x1deg',
         'name': 'ENSO Zonal SSTA pattern',
         'ref': 'Using CDAT regridding and rms (uncentered and biased) calculation',
         'time_frequency': 'monthly',
         'units': 'C/C'},
        'metric': {'datasets': "IPSL-CM5A-MR_r3i1p1; ERA-Interim's ts & HadISST's sst & Tropflux's sst; 's ",
         'method': 'The metric is the statistical value between the model and the observations',
         'name': 'EnsoSstLonRmse',
         'units': 'C/C'}},
       'EnsoSstSkew': {'diagnostic': {'ERA-Interim': {'keyerror': None,
          'name': 'ERA-Interim',
          'nyears': 40,
          'time_period': ['1979-1-16 12:0:0.0', '2019-3-16 12:0:0.0']},
         'HadISST': {'keyerror': None,
          'name': 'HadISST',
          'nyears': 151,
          'time_period': ['1870-1-16 11:59:59.5', '2020-10-16 12:0:0.0']},
         'IPSL-CM5A-MR_r3i1p1': {'keyerror': None,
          'name': 'IPSL-CM5A-MR_r3i1p1',
          'nyears': 156,
          'time_period': ['1850-1-16 12:0:0.0', '2005-12-16 12:0:0.0']},
         'Tropflux': {'keyerror': None,
          'name': 'Tropflux',
          'nyears': 40,
          'time_period': ['1979-1-15 0:0:0.0', '2018-12-15 12:0:0.0']},
         'method': 'Standard deviation of nino3.4 sstA, time series are linearly detrended',
         'name': 'ENSO skewness',
         'ref': 'Using CDAT regression calculation',
         'time_frequency': 'monthly',
         'units': 'C'},
        'metric': {'datasets': "IPSL-CM5A-MR_r3i1p1; ERA-Interim's ts & HadISST's sst & Tropflux's sst; 's ",
         'method': 'The metric is the absolute value of the relative difference between model and observations values (M = 100 * abs[[model-obs] / obs])',
         'name': 'EnsoSstSkew',
         'units': '%'}},
       'EnsoSstTsRmse': {'diagnostic': {'ERA-Interim': {'name': 'ERA-Interim',
          'nyears': 40,
          'time_period': ['1979-1-16 12:0:0.0', '2019-3-16 12:0:0.0']},
         'HadISST': {'name': 'HadISST',
          'nyears': 151,
          'time_period': ['1870-1-16 11:59:59.5', '2020-10-16 12:0:0.0']},
         'IPSL-CM5A-MR_r3i1p1': {'keyerror': None,
          'name': 'IPSL-CM5A-MR_r3i1p1',
          'nyears': 156,
          'time_period': ['1850-1-16 12:0:0.0', '2005-12-16 12:0:0.0']},
         'Tropflux': {'name': 'Tropflux',
          'nyears': 40,
          'time_period': ['1979-1-15 0:0:0.0', '2018-12-15 12:0:0.0']},
         'method': 'nino3.4 SSTA during DEC regressed against nino3.4 SSTA during 6 years (centered on ENSO), time series are linearly detrended, smoothing using a triangle shaped window of 5 points',
         'name': 'ENSO life cyle SSTA pattern',
         'ref': 'Using CDAT regridding and rms (uncentered and biased) calculation',
         'time_frequency': 'monthly',
         'units': 'C/C'},
        'metric': {'datasets': "IPSL-CM5A-MR_r3i1p1; ERA-Interim's ts & HadISST's sst & Tropflux's sst; 's ",
         'method': 'The metric is the statistical value between the model and the observations',
         'name': 'EnsoSstTsRmse',
         'units': 'C/C'}},
       'SeasonalPrLatRmse': {'diagnostic': {'ERA-Interim': {'name': 'ERA-Interim',
          'nyears': 40,
          'time_period': ['1979-1-16 12:0:0.0', '2019-3-16 12:0:0.0']},
         'GPCPv2.3': {'name': 'GPCPv2.3',
          'nyears': 41,
          'time_period': ['1979-1-1 0:0:0.0', '2019-7-1 0:0:0.0']},
         'IPSL-CM5A-MR_r3i1p1': {'keyerror': None,
          'name': 'IPSL-CM5A-MR_r3i1p1',
          'nyears': 156,
          'time_period': ['1850-1-16 12:0:0.0', '2005-12-16 12:0:0.0']},
         'method': 'Meridional root mean square error of nino3_LatExt climatological pr STD, time series are linearly detrended, observations and model regridded to generic_1x1deg',
         'name': 'pr meridional seasonality RMSE',
         'ref': 'Using CDAT regridding and rms (uncentered and biased) calculation',
         'time_frequency': 'monthly',
         'units': 'mm/day'},
        'metric': {'datasets': "IPSL-CM5A-MR_r3i1p1; ERA-Interim's pr & GPCPv2.3's precip; 's ",
         'method': 'The metric is the statistical value between the model and the observations',
         'name': 'SeasonalPrLatRmse',
         'units': 'mm/day'}},
       'SeasonalPrLonRmse': {'diagnostic': {'ERA-Interim': {'name': 'ERA-Interim',
          'nyears': 40,
          'time_period': ['1979-1-16 12:0:0.0', '2019-3-16 12:0:0.0']},
         'GPCPv2.3': {'name': 'GPCPv2.3',
          'nyears': 41,
          'time_period': ['1979-1-1 0:0:0.0', '2019-7-1 0:0:0.0']},
         'IPSL-CM5A-MR_r3i1p1': {'keyerror': None,
          'name': 'IPSL-CM5A-MR_r3i1p1',
          'nyears': 156,
          'time_period': ['1850-1-16 12:0:0.0', '2005-12-16 12:0:0.0']},
         'method': 'Zonal root mean square error of equatorial_pacific climatological pr STD, time series are linearly detrended, observations and model regridded to generic_1x1deg',
         'name': 'pr zonal seasonality RMSE',
         'ref': 'Using CDAT regridding and rms (uncentered and biased) calculation',
         'time_frequency': 'monthly',
         'units': 'mm/day'},
        'metric': {'datasets': "IPSL-CM5A-MR_r3i1p1; ERA-Interim's pr & GPCPv2.3's precip; 's ",
         'method': 'The metric is the statistical value between the model and the observations',
         'name': 'SeasonalPrLonRmse',
         'units': 'mm/day'}},
       'SeasonalSstLonRmse': {'diagnostic': {'ERA-Interim': {'name': 'ERA-Interim',
          'nyears': 40,
          'time_period': ['1979-1-16 12:0:0.0', '2019-3-16 12:0:0.0']},
         'HadISST': {'name': 'HadISST',
          'nyears': 151,
          'time_period': ['1870-1-16 11:59:59.5', '2020-10-16 12:0:0.0']},
         'IPSL-CM5A-MR_r3i1p1': {'keyerror': None,
          'name': 'IPSL-CM5A-MR_r3i1p1',
          'nyears': 156,
          'time_period': ['1850-1-16 12:0:0.0', '2005-12-16 12:0:0.0']},
         'Tropflux': {'name': 'Tropflux',
          'nyears': 40,
          'time_period': ['1979-1-15 0:0:0.0', '2018-12-15 12:0:0.0']},
         'method': 'Zonal root mean square error of equatorial_pacific climatological sst STD, time series are linearly detrended, observations and model regridded to generic_1x1deg',
         'name': 'sst zonal seasonality RMSE',
         'ref': 'Using CDAT regridding and rms (uncentered and biased) calculation',
         'time_frequency': 'monthly',
         'units': 'C'},
        'metric': {'datasets': "IPSL-CM5A-MR_r3i1p1; ERA-Interim's ts & HadISST's sst & Tropflux's sst; 's ",
         'method': 'The metric is the statistical value between the model and the observations',
         'name': 'SeasonalSstLonRmse',
         'units': 'C'}},
       'SeasonalTauxLonRmse': {'diagnostic': {'ERA-Interim': {'name': 'ERA-Interim',
          'nyears': 40,
          'time_period': ['1979-1-16 12:0:0.0', '2019-3-16 12:0:0.0']},
         'IPSL-CM5A-MR_r3i1p1': {'keyerror': None,
          'name': 'IPSL-CM5A-MR_r3i1p1',
          'nyears': 156,
          'time_period': ['1850-1-16 12:0:0.0', '2005-12-16 12:0:0.0']},
         'Tropflux': {'name': 'Tropflux',
          'nyears': 40,
          'time_period': ['1979-1-15 0:0:0.0', '2018-12-15 12:0:0.0']},
         'method': 'Zonal root mean square error of equatorial_pacific climatological taux STD, time series are linearly detrended, observations and model regridded to generic_1x1deg',
         'name': 'taux zonal seasonality RMSE',
         'ref': 'Using CDAT regridding and rms (uncentered and biased) calculation',
         'time_frequency': 'monthly',
         'units': '1e-3 N/m2'},
        'metric': {'datasets': "IPSL-CM5A-MR_r3i1p1; ERA-Interim's tauu & Tropflux's taux; 's ",
         'method': 'The metric is the statistical value between the model and the observations',
         'name': 'SeasonalTauxLonRmse',
         'units': '1e-3 N/m2'}}},
      'name': 'Metrics Collection for ENSO performance'},
     'value': {'BiasPrLatRmse': {'diagnostic': {'ERA-Interim': {'value': None,
         'value_error': None},
        'GPCPv2.3': {'value': None, 'value_error': None},
        'IPSL-CM5A-MR_r3i1p1': {'value': None, 'value_error': None}},
       'metric': {'ERA-Interim': {'value': 1.4789126973234958,
         'value_error': None},
        'GPCPv2.3': {'value': 1.526371132162746, 'value_error': None}}},
      'BiasPrLonRmse': {'diagnostic': {'ERA-Interim': {'value': None,
         'value_error': None},
        'GPCPv2.3': {'value': None, 'value_error': None},
        'IPSL-CM5A-MR_r3i1p1': {'value': None, 'value_error': None}},
       'metric': {'ERA-Interim': {'value': 3.475893639596321,
         'value_error': None},
        'GPCPv2.3': {'value': 2.485969730556649, 'value_error': None}}},
      'BiasSstLonRmse': {'diagnostic': {'ERA-Interim': {'value': None,
         'value_error': None},
        'HadISST': {'value': None, 'value_error': None},
        'IPSL-CM5A-MR_r3i1p1': {'value': None, 'value_error': None},
        'Tropflux': {'value': None, 'value_error': None}},
       'metric': {'ERA-Interim': {'value': 1.0296891546723275,
         'value_error': None},
        'HadISST': {'value': 0.8832153614828123, 'value_error': None},
        'Tropflux': {'value': 1.0755382137456773, 'value_error': None}}},
      'BiasTauxLonRmse': {'diagnostic': {'ERA-Interim': {'value': None,
         'value_error': None},
        'IPSL-CM5A-MR_r3i1p1': {'value': None, 'value_error': None},
        'Tropflux': {'value': None, 'value_error': None}},
       'metric': {'ERA-Interim': {'value': 4.897622450515157,
         'value_error': None},
        'Tropflux': {'value': 5.528142710170185, 'value_error': None}}},
      'EnsoAmpl': {'diagnostic': {'ERA-Interim': {'value': 0.8989844997845644,
         'value_error': 0.14214193002531866},
        'HadISST': {'value': 0.7665787872085695,
         'value_error': 0.06238329697691264},
        'IPSL-CM5A-MR_r3i1p1': {'value': 0.7713945970560315,
         'value_error': 0.061760996340900716},
        'Tropflux': {'value': 0.9039789553693535,
         'value_error': 0.14293162279134272}},
       'metric': {'ERA-Interim': {'value': 14.19266992468824,
         'value_error': 20.437414822744334},
        'HadISST': {'value': 0.628221120623276,
         'value_error': 16.245714131831285},
        'Tropflux': {'value': 14.666752751910003,
         'value_error': 20.32449874212783}}},
      'EnsoDuration': {'diagnostic': {'ERA-Interim': {'value': 13.0,
         'value_error': None},
        'HadISST': {'value': 13.0, 'value_error': None},
        'IPSL-CM5A-MR_r3i1p1': {'value': 15.0, 'value_error': None},
        'Tropflux': {'value': 13.0, 'value_error': None}},
       'metric': {'ERA-Interim': {'value': 15.384615384615385,
         'value_error': None},
        'HadISST': {'value': 15.384615384615385, 'value_error': None},
        'Tropflux': {'value': 15.384615384615385, 'value_error': None}}},
      'EnsoSeasonality': {'diagnostic': {'ERA-Interim': {'value': 2.0466846866656914,
         'value_error': 0.6513411033995022},
        'HadISST': {'value': 1.6639865947361325,
         'value_error': 0.2712772451657809},
        'IPSL-CM5A-MR_r3i1p1': {'value': 1.0523916982909425,
         'value_error': 0.16878890522794565},
        'Tropflux': {'value': 2.0532132553583624,
         'value_error': 0.6534187683977347}},
       'metric': {'ERA-Interim': {'value': 48.58066290585181,
         'value_error': 24.61073687116299},
        'HadISST': {'value': 36.75479708670213,
         'value_error': 20.454416548026387},
        'Tropflux': {'value': 48.74416013317327,
         'value_error': 24.532482512624572}}},
      'EnsoSstDiversity_2': {'diagnostic': {'ERA-Interim': {'value': 33.25,
         'value_error': None},
        'HadISST': {'value': 49.0, 'value_error': None},
        'IPSL-CM5A-MR_r3i1p1': {'value': 56.0, 'value_error': None},
        'Tropflux': {'value': 32.0, 'value_error': None}},
       'metric': {'ERA-Interim': {'value': 68.42105263157895,
         'value_error': None},
        'HadISST': {'value': 14.285714285714285, 'value_error': None},
        'Tropflux': {'value': 75.0, 'value_error': None}}},
      'EnsoSstLonRmse': {'diagnostic': {'ERA-Interim': {'value': None,
         'value_error': None},
        'HadISST': {'value': None, 'value_error': None},
        'IPSL-CM5A-MR_r3i1p1': {'value': None, 'value_error': None},
        'Tropflux': {'value': None, 'value_error': None}},
       'metric': {'ERA-Interim': {'value': 0.28405754631360797,
         'value_error': None},
        'HadISST': {'value': 0.300603224152934, 'value_error': None},
        'Tropflux': {'value': 0.28601643031916224, 'value_error': None}}},
      'EnsoSstSkew': {'diagnostic': {'ERA-Interim': {'value': 0.39098111106809963,
         'value_error': 0.061819541653923164},
        'HadISST': {'value': 0.38989908235027515,
         'value_error': 0.03172953733021198},
        'IPSL-CM5A-MR_r3i1p1': {'value': 0.0891441111788733,
         'value_error': 0.007137240972834206},
        'Tropflux': {'value': 0.39744741059612115,
         'value_error': 0.06284195338099416}},
       'metric': {'ERA-Interim': {'value': 77.19989312646193,
         'value_error': 5.430482940891214},
        'HadISST': {'value': 77.13661939353102,
         'value_error': 3.6911309897321365},
        'Tropflux': {'value': 77.5708411220573,
         'value_error': 5.342131304067245}}},
      'EnsoSstTsRmse': {'diagnostic': {'ERA-Interim': {'value': None,
         'value_error': None},
        'HadISST': {'value': None, 'value_error': None},
        'IPSL-CM5A-MR_r3i1p1': {'value': None, 'value_error': None},
        'Tropflux': {'value': None, 'value_error': None}},
       'metric': {'ERA-Interim': {'value': 0.14164536680330383,
         'value_error': None},
        'HadISST': {'value': 0.11253065692686405, 'value_error': None},
        'Tropflux': {'value': 0.14244704003024555, 'value_error': None}}},
      'SeasonalPrLatRmse': {'diagnostic': {'ERA-Interim': {'value': None,
         'value_error': None},
        'GPCPv2.3': {'value': None, 'value_error': None},
        'IPSL-CM5A-MR_r3i1p1': {'value': None, 'value_error': None}},
       'metric': {'ERA-Interim': {'value': 1.0697142036725529,
         'value_error': None},
        'GPCPv2.3': {'value': 1.1766250155227598, 'value_error': None}}},
      'SeasonalPrLonRmse': {'diagnostic': {'ERA-Interim': {'value': None,
         'value_error': None},
        'GPCPv2.3': {'value': None, 'value_error': None},
        'IPSL-CM5A-MR_r3i1p1': {'value': None, 'value_error': None}},
       'metric': {'ERA-Interim': {'value': 0.9632048322889516,
         'value_error': None},
        'GPCPv2.3': {'value': 0.686087900342545, 'value_error': None}}},
      'SeasonalSstLonRmse': {'diagnostic': {'ERA-Interim': {'value': None,
         'value_error': None},
        'HadISST': {'value': None, 'value_error': None},
        'IPSL-CM5A-MR_r3i1p1': {'value': None, 'value_error': None},
        'Tropflux': {'value': None, 'value_error': None}},
       'metric': {'ERA-Interim': {'value': 0.11152900562535066,
         'value_error': None},
        'HadISST': {'value': 0.10129287082569864, 'value_error': None},
        'Tropflux': {'value': 0.1164476164932506, 'value_error': None}}},
      'SeasonalTauxLonRmse': {'diagnostic': {'ERA-Interim': {'value': None,
         'value_error': None},
        'IPSL-CM5A-MR_r3i1p1': {'value': None, 'value_error': None},
        'Tropflux': {'value': None, 'value_error': None}},
       'metric': {'ERA-Interim': {'value': 1.8396249756294059,
         'value_error': None},
        'Tropflux': {'value': 2.0612364166548023, 'value_error': None}}}}}},
   'IPSL-CM5B-LR': {'r1i1p1': {'metadata': {'description_of_the_collection': 'Describe which science question this collection is about',
      'metrics': {'BiasPrLatRmse': {'diagnostic': {'ERA-Interim': {'name': 'ERA-Interim',
          'nyears': 40,
          'time_period': ['1979-1-16 12:0:0.0', '2019-3-16 12:0:0.0']},
         'GPCPv2.3': {'name': 'GPCPv2.3',
          'nyears': 41,
          'time_period': ['1979-1-1 0:0:0.0', '2019-7-1 0:0:0.0']},
         'IPSL-CM5B-LR_r1i1p1': {'keyerror': None,
          'name': 'IPSL-CM5B-LR_r1i1p1',
          'nyears': 156,
          'time_period': ['1850-1-16 12:0:0.0', '2005-12-16 12:0:0.0']},
         'method': 'Meridional root mean square error of nino3_LatExt pr, time series are linearly detrended, observations and model regridded to generic_1x1deg',
         'name': 'pr Meridional RMSE',
         'ref': 'Using CDAT regridding and rms (uncentered and biased) calculation',
         'time_frequency': 'monthly',
         'units': 'mm/day'},
        'metric': {'datasets': "IPSL-CM5B-LR_r1i1p1; ERA-Interim's pr & GPCPv2.3's precip; 's ",
         'method': 'The metric is the statistical value between the model and the observations',
         'name': 'BiasPrLatRmse',
         'units': 'mm/day'}},
       'BiasPrLonRmse': {'diagnostic': {'ERA-Interim': {'name': 'ERA-Interim',
          'nyears': 40,
          'time_period': ['1979-1-16 12:0:0.0', '2019-3-16 12:0:0.0']},
         'GPCPv2.3': {'name': 'GPCPv2.3',
          'nyears': 41,
          'time_period': ['1979-1-1 0:0:0.0', '2019-7-1 0:0:0.0']},
         'IPSL-CM5B-LR_r1i1p1': {'keyerror': None,
          'name': 'IPSL-CM5B-LR_r1i1p1',
          'nyears': 156,
          'time_period': ['1850-1-16 12:0:0.0', '2005-12-16 12:0:0.0']},
         'method': 'Zonal root mean square error of equatorial_pacific pr, time series are linearly detrended, observations and model regridded to generic_1x1deg',
         'name': 'pr Zonal RMSE',
         'ref': 'Using CDAT regridding and rms (uncentered and biased) calculation',
         'time_frequency': 'monthly',
         'units': 'mm/day'},
        'metric': {'datasets': "IPSL-CM5B-LR_r1i1p1; ERA-Interim's pr & GPCPv2.3's precip; 's ",
         'method': 'The metric is the statistical value between the model and the observations',
         'name': 'BiasPrLonRmse',
         'units': 'mm/day'}},
       'BiasSstLonRmse': {'diagnostic': {'ERA-Interim': {'name': 'ERA-Interim',
          'nyears': 40,
          'time_period': ['1979-1-16 12:0:0.0', '2019-3-16 12:0:0.0']},
         'HadISST': {'name': 'HadISST',
          'nyears': 151,
          'time_period': ['1870-1-16 11:59:59.5', '2020-10-16 12:0:0.0']},
         'IPSL-CM5B-LR_r1i1p1': {'keyerror': None,
          'name': 'IPSL-CM5B-LR_r1i1p1',
          'nyears': 156,
          'time_period': ['1850-1-16 12:0:0.0', '2005-12-16 12:0:0.0']},
         'Tropflux': {'name': 'Tropflux',
          'nyears': 40,
          'time_period': ['1979-1-15 0:0:0.0', '2018-12-15 12:0:0.0']},
         'method': 'Zonal root mean square error of equatorial_pacific sst, time series are linearly detrended, observations and model regridded to generic_1x1deg',
         'name': 'sst Zonal RMSE',
         'ref': 'Using CDAT regridding and rms (uncentered and biased) calculation',
         'time_frequency': 'monthly',
         'units': 'C'},
        'metric': {'datasets': "IPSL-CM5B-LR_r1i1p1; ERA-Interim's ts & HadISST's sst & Tropflux's sst; 's ",
         'method': 'The metric is the statistical value between the model and the observations',
         'name': 'BiasSstLonRmse',
         'units': 'C'}},
       'BiasTauxLonRmse': {'diagnostic': {'ERA-Interim': {'name': 'ERA-Interim',
          'nyears': 40,
          'time_period': ['1979-1-16 12:0:0.0', '2019-3-16 12:0:0.0']},
         'IPSL-CM5B-LR_r1i1p1': {'keyerror': None,
          'name': 'IPSL-CM5B-LR_r1i1p1',
          'nyears': 156,
          'time_period': ['1850-1-16 12:0:0.0', '2005-12-16 12:0:0.0']},
         'Tropflux': {'name': 'Tropflux',
          'nyears': 40,
          'time_period': ['1979-1-15 0:0:0.0', '2018-12-15 12:0:0.0']},
         'method': 'Zonal root mean square error of equatorial_pacific taux, time series are linearly detrended, observations and model regridded to generic_1x1deg',
         'name': 'taux Zonal RMSE',
         'ref': 'Using CDAT regridding and rms (uncentered and biased) calculation',
         'time_frequency': 'monthly',
         'units': '1e-3 N/m2'},
        'metric': {'datasets': "IPSL-CM5B-LR_r1i1p1; ERA-Interim's tauu & Tropflux's taux; 's ",
         'method': 'The metric is the statistical value between the model and the observations',
         'name': 'BiasTauxLonRmse',
         'units': '1e-3 N/m2'}},
       'EnsoAmpl': {'diagnostic': {'ERA-Interim': {'keyerror': None,
          'name': 'ERA-Interim',
          'nyears': 40,
          'time_period': ['1979-1-16 12:0:0.0', '2019-3-16 12:0:0.0']},
         'HadISST': {'keyerror': None,
          'name': 'HadISST',
          'nyears': 151,
          'time_period': ['1870-1-16 11:59:59.5', '2020-10-16 12:0:0.0']},
         'IPSL-CM5B-LR_r1i1p1': {'keyerror': None,
          'name': 'IPSL-CM5B-LR_r1i1p1',
          'nyears': 156,
          'time_period': ['1850-1-16 12:0:0.0', '2005-12-16 12:0:0.0']},
         'Tropflux': {'keyerror': None,
          'name': 'Tropflux',
          'nyears': 40,
          'time_period': ['1979-1-15 0:0:0.0', '2018-12-15 12:0:0.0']},
         'method': 'Standard deviation of nino3.4 sstA, time series are linearly detrended',
         'name': 'ENSO amplitude',
         'ref': 'Using CDAT regression calculation',
         'time_frequency': 'monthly',
         'units': 'C'},
        'metric': {'datasets': "IPSL-CM5B-LR_r1i1p1; ERA-Interim's ts & HadISST's sst & Tropflux's sst; 's ",
         'method': 'The metric is the absolute value of the relative difference between model and observations values (M = 100 * abs[[model-obs] / obs])',
         'name': 'EnsoAmpl',
         'units': '%'}},
       'EnsoDuration': {'diagnostic': {'ERA-Interim': {'keyerror': None,
          'name': 'ERA-Interim',
          'nyears': 40,
          'time_period': ['1979-1-16 12:0:0.0', '2019-3-16 12:0:0.0']},
         'HadISST': {'keyerror': None,
          'name': 'HadISST',
          'nyears': 151,
          'time_period': ['1870-1-16 11:59:59.5', '2020-10-16 12:0:0.0']},
         'IPSL-CM5B-LR_r1i1p1': {'keyerror': None,
          'name': 'IPSL-CM5B-LR_r1i1p1',
          'nyears': 156,
          'time_period': ['1850-1-16 12:0:0.0', '2005-12-16 12:0:0.0']},
         'Tropflux': {'keyerror': None,
          'name': 'Tropflux',
          'nyears': 40,
          'time_period': ['1979-1-15 0:0:0.0', '2018-12-15 12:0:0.0']},
         'method': 'nino3.4 SSTA during DEC regressed against nino3.4 SSTA during 6 years (centered on ENSO), the duration is the number of consecutive months during which the regression is above 0.25, time series are linearly detrended, smoothing using a triangle shaped window of 5 points',
         'name': 'ENSO Duration based on life cyle SSTA pattern',
         'ref': 'Using CDAT',
         'time_frequency': 'monthly',
         'units': 'months'},
        'metric': {'datasets': "IPSL-CM5B-LR_r1i1p1; ERA-Interim's ts & HadISST's sst & Tropflux's sst; 's ",
         'method': 'The metric is the absolute value of the relative difference between model and observations values (M = 100 * abs[[model-obs] / obs])',
         'name': 'EnsoDuration',
         'units': '%'}},
       'EnsoSeasonality': {'diagnostic': {'ERA-Interim': {'keyerror': None,
          'name': 'ERA-Interim',
          'nyears': 40,
          'time_period': ['1979-1-16 12:0:0.0', '2019-3-16 12:0:0.0']},
         'HadISST': {'keyerror': None,
          'name': 'HadISST',
          'nyears': 151,
          'time_period': ['1870-1-16 11:59:59.5', '2020-10-16 12:0:0.0']},
         'IPSL-CM5B-LR_r1i1p1': {'keyerror': None,
          'name': 'IPSL-CM5B-LR_r1i1p1',
          'nyears': 156,
          'time_period': ['1850-1-16 12:0:0.0', '2005-12-16 12:0:0.0']},
         'Tropflux': {'keyerror': None,
          'name': 'Tropflux',
          'nyears': 40,
          'time_period': ['1979-1-15 0:0:0.0', '2018-12-15 12:0:0.0']},
         'method': 'Ratio between NDJ and MAM standard deviation nino3.4 sstA, time series are linearly detrended',
         'name': 'ENSO seasonality',
         'ref': 'Using CDAT std dev calculation',
         'time_frequency': 'monthly',
         'units': 'C/C'},
        'metric': {'datasets': "IPSL-CM5B-LR_r1i1p1; ERA-Interim's ts & HadISST's sst & Tropflux's sst; 's ",
         'method': 'The metric is the absolute value of the relative difference between model and observations values (M = 100 * abs[[model-obs] / obs])',
         'name': 'EnsoSeasonality',
         'units': '%'}},
       'EnsoSstDiversity_2': {'diagnostic': {'ERA-Interim': {'keyerror': None,
          'name': 'ERA-Interim',
          'nyears': 40,
          'time_period': ['1979-1-16 12:0:0.0', '2019-3-16 12:0:0.0']},
         'HadISST': {'keyerror': None,
          'name': 'HadISST',
          'nyears': 151,
          'time_period': ['1870-1-16 11:59:59.5', '2020-10-16 12:0:0.0']},
         'IPSL-CM5B-LR_r1i1p1': {'keyerror': None,
          'name': 'IPSL-CM5B-LR_r1i1p1',
          'nyears': 156,
          'time_period': ['1850-1-16 12:0:0.0', '2005-12-16 12:0:0.0']},
         'Tropflux': {'keyerror': None,
          'name': 'Tropflux',
          'nyears': 40,
          'time_period': ['1979-1-15 0:0:0.0', '2018-12-15 12:0:0.0']},
         'method': 'Nino (Nina) events = nino3.4 sstA > 0.75 (< -0.75) during DEC, zonal SSTA (meridional averaged [-5.0 ; 5.0]), the zonal SSTA maximum (minimum) is located for each event, the diversity is the interquartile range (IQR = Q3 - Q1), time series are linearly detrended, smoothing using a triangle shaped window of 5 points',
         'name': 'ENSO Diversity (interquartile range)',
         'ref': 'Using CDAT regridding',
         'time_frequency': 'monthly',
         'units': 'long'},
        'metric': {'datasets': "IPSL-CM5B-LR_r1i1p1; ERA-Interim's ts & HadISST's sst & Tropflux's sst; 's ",
         'method': 'The metric is the absolute value of the relative difference between model and observations values (M = 100 * abs[[model-obs] / obs])',
         'name': 'EnsoSstDiversity',
         'units': '%'}},
       'EnsoSstLonRmse': {'diagnostic': {'ERA-Interim': {'name': 'ERA-Interim',
          'nyears': 40,
          'time_period': ['1979-1-16 12:0:0.0', '2019-3-16 12:0:0.0']},
         'HadISST': {'name': 'HadISST',
          'nyears': 151,
          'time_period': ['1870-1-16 11:59:59.5', '2020-10-16 12:0:0.0']},
         'IPSL-CM5B-LR_r1i1p1': {'keyerror': None,
          'name': 'IPSL-CM5B-LR_r1i1p1',
          'nyears': 156,
          'time_period': ['1850-1-16 12:0:0.0', '2005-12-16 12:0:0.0']},
         'Tropflux': {'name': 'Tropflux',
          'nyears': 40,
          'time_period': ['1979-1-15 0:0:0.0', '2018-12-15 12:0:0.0']},
         'method': 'nino3.4 SSTA during DEC regressed against equatorial_pacific SSTA, time series are linearly detrended, smoothing using a triangle shaped window of 5 points, observations and model regridded to generic_1x1deg',
         'name': 'ENSO Zonal SSTA pattern',
         'ref': 'Using CDAT regridding and rms (uncentered and biased) calculation',
         'time_frequency': 'monthly',
         'units': 'C/C'},
        'metric': {'datasets': "IPSL-CM5B-LR_r1i1p1; ERA-Interim's ts & HadISST's sst & Tropflux's sst; 's ",
         'method': 'The metric is the statistical value between the model and the observations',
         'name': 'EnsoSstLonRmse',
         'units': 'C/C'}},
       'EnsoSstSkew': {'diagnostic': {'ERA-Interim': {'keyerror': None,
          'name': 'ERA-Interim',
          'nyears': 40,
          'time_period': ['1979-1-16 12:0:0.0', '2019-3-16 12:0:0.0']},
         'HadISST': {'keyerror': None,
          'name': 'HadISST',
          'nyears': 151,
          'time_period': ['1870-1-16 11:59:59.5', '2020-10-16 12:0:0.0']},
         'IPSL-CM5B-LR_r1i1p1': {'keyerror': None,
          'name': 'IPSL-CM5B-LR_r1i1p1',
          'nyears': 156,
          'time_period': ['1850-1-16 12:0:0.0', '2005-12-16 12:0:0.0']},
         'Tropflux': {'keyerror': None,
          'name': 'Tropflux',
          'nyears': 40,
          'time_period': ['1979-1-15 0:0:0.0', '2018-12-15 12:0:0.0']},
         'method': 'Standard deviation of nino3.4 sstA, time series are linearly detrended',
         'name': 'ENSO skewness',
         'ref': 'Using CDAT regression calculation',
         'time_frequency': 'monthly',
         'units': 'C'},
        'metric': {'datasets': "IPSL-CM5B-LR_r1i1p1; ERA-Interim's ts & HadISST's sst & Tropflux's sst; 's ",
         'method': 'The metric is the absolute value of the relative difference between model and observations values (M = 100 * abs[[model-obs] / obs])',
         'name': 'EnsoSstSkew',
         'units': '%'}},
       'EnsoSstTsRmse': {'diagnostic': {'ERA-Interim': {'name': 'ERA-Interim',
          'nyears': 40,
          'time_period': ['1979-1-16 12:0:0.0', '2019-3-16 12:0:0.0']},
         'HadISST': {'name': 'HadISST',
          'nyears': 151,
          'time_period': ['1870-1-16 11:59:59.5', '2020-10-16 12:0:0.0']},
         'IPSL-CM5B-LR_r1i1p1': {'keyerror': None,
          'name': 'IPSL-CM5B-LR_r1i1p1',
          'nyears': 156,
          'time_period': ['1850-1-16 12:0:0.0', '2005-12-16 12:0:0.0']},
         'Tropflux': {'name': 'Tropflux',
          'nyears': 40,
          'time_period': ['1979-1-15 0:0:0.0', '2018-12-15 12:0:0.0']},
         'method': 'nino3.4 SSTA during DEC regressed against nino3.4 SSTA during 6 years (centered on ENSO), time series are linearly detrended, smoothing using a triangle shaped window of 5 points',
         'name': 'ENSO life cyle SSTA pattern',
         'ref': 'Using CDAT regridding and rms (uncentered and biased) calculation',
         'time_frequency': 'monthly',
         'units': 'C/C'},
        'metric': {'datasets': "IPSL-CM5B-LR_r1i1p1; ERA-Interim's ts & HadISST's sst & Tropflux's sst; 's ",
         'method': 'The metric is the statistical value between the model and the observations',
         'name': 'EnsoSstTsRmse',
         'units': 'C/C'}},
       'SeasonalPrLatRmse': {'diagnostic': {'ERA-Interim': {'name': 'ERA-Interim',
          'nyears': 40,
          'time_period': ['1979-1-16 12:0:0.0', '2019-3-16 12:0:0.0']},
         'GPCPv2.3': {'name': 'GPCPv2.3',
          'nyears': 41,
          'time_period': ['1979-1-1 0:0:0.0', '2019-7-1 0:0:0.0']},
         'IPSL-CM5B-LR_r1i1p1': {'keyerror': None,
          'name': 'IPSL-CM5B-LR_r1i1p1',
          'nyears': 156,
          'time_period': ['1850-1-16 12:0:0.0', '2005-12-16 12:0:0.0']},
         'method': 'Meridional root mean square error of nino3_LatExt climatological pr STD, time series are linearly detrended, observations and model regridded to generic_1x1deg',
         'name': 'pr meridional seasonality RMSE',
         'ref': 'Using CDAT regridding and rms (uncentered and biased) calculation',
         'time_frequency': 'monthly',
         'units': 'mm/day'},
        'metric': {'datasets': "IPSL-CM5B-LR_r1i1p1; ERA-Interim's pr & GPCPv2.3's precip; 's ",
         'method': 'The metric is the statistical value between the model and the observations',
         'name': 'SeasonalPrLatRmse',
         'units': 'mm/day'}},
       'SeasonalPrLonRmse': {'diagnostic': {'ERA-Interim': {'name': 'ERA-Interim',
          'nyears': 40,
          'time_period': ['1979-1-16 12:0:0.0', '2019-3-16 12:0:0.0']},
         'GPCPv2.3': {'name': 'GPCPv2.3',
          'nyears': 41,
          'time_period': ['1979-1-1 0:0:0.0', '2019-7-1 0:0:0.0']},
         'IPSL-CM5B-LR_r1i1p1': {'keyerror': None,
          'name': 'IPSL-CM5B-LR_r1i1p1',
          'nyears': 156,
          'time_period': ['1850-1-16 12:0:0.0', '2005-12-16 12:0:0.0']},
         'method': 'Zonal root mean square error of equatorial_pacific climatological pr STD, time series are linearly detrended, observations and model regridded to generic_1x1deg',
         'name': 'pr zonal seasonality RMSE',
         'ref': 'Using CDAT regridding and rms (uncentered and biased) calculation',
         'time_frequency': 'monthly',
         'units': 'mm/day'},
        'metric': {'datasets': "IPSL-CM5B-LR_r1i1p1; ERA-Interim's pr & GPCPv2.3's precip; 's ",
         'method': 'The metric is the statistical value between the model and the observations',
         'name': 'SeasonalPrLonRmse',
         'units': 'mm/day'}},
       'SeasonalSstLonRmse': {'diagnostic': {'ERA-Interim': {'name': 'ERA-Interim',
          'nyears': 40,
          'time_period': ['1979-1-16 12:0:0.0', '2019-3-16 12:0:0.0']},
         'HadISST': {'name': 'HadISST',
          'nyears': 151,
          'time_period': ['1870-1-16 11:59:59.5', '2020-10-16 12:0:0.0']},
         'IPSL-CM5B-LR_r1i1p1': {'keyerror': None,
          'name': 'IPSL-CM5B-LR_r1i1p1',
          'nyears': 156,
          'time_period': ['1850-1-16 12:0:0.0', '2005-12-16 12:0:0.0']},
         'Tropflux': {'name': 'Tropflux',
          'nyears': 40,
          'time_period': ['1979-1-15 0:0:0.0', '2018-12-15 12:0:0.0']},
         'method': 'Zonal root mean square error of equatorial_pacific climatological sst STD, time series are linearly detrended, observations and model regridded to generic_1x1deg',
         'name': 'sst zonal seasonality RMSE',
         'ref': 'Using CDAT regridding and rms (uncentered and biased) calculation',
         'time_frequency': 'monthly',
         'units': 'C'},
        'metric': {'datasets': "IPSL-CM5B-LR_r1i1p1; ERA-Interim's ts & HadISST's sst & Tropflux's sst; 's ",
         'method': 'The metric is the statistical value between the model and the observations',
         'name': 'SeasonalSstLonRmse',
         'units': 'C'}},
       'SeasonalTauxLonRmse': {'diagnostic': {'ERA-Interim': {'name': 'ERA-Interim',
          'nyears': 40,
          'time_period': ['1979-1-16 12:0:0.0', '2019-3-16 12:0:0.0']},
         'IPSL-CM5B-LR_r1i1p1': {'keyerror': None,
          'name': 'IPSL-CM5B-LR_r1i1p1',
          'nyears': 156,
          'time_period': ['1850-1-16 12:0:0.0', '2005-12-16 12:0:0.0']},
         'Tropflux': {'name': 'Tropflux',
          'nyears': 40,
          'time_period': ['1979-1-15 0:0:0.0', '2018-12-15 12:0:0.0']},
         'method': 'Zonal root mean square error of equatorial_pacific climatological taux STD, time series are linearly detrended, observations and model regridded to generic_1x1deg',
         'name': 'taux zonal seasonality RMSE',
         'ref': 'Using CDAT regridding and rms (uncentered and biased) calculation',
         'time_frequency': 'monthly',
         'units': '1e-3 N/m2'},
        'metric': {'datasets': "IPSL-CM5B-LR_r1i1p1; ERA-Interim's tauu & Tropflux's taux; 's ",
         'method': 'The metric is the statistical value between the model and the observations',
         'name': 'SeasonalTauxLonRmse',
         'units': '1e-3 N/m2'}}},
      'name': 'Metrics Collection for ENSO performance'},
     'value': {'BiasPrLatRmse': {'diagnostic': {'ERA-Interim': {'value': None,
         'value_error': None},
        'GPCPv2.3': {'value': None, 'value_error': None},
        'IPSL-CM5B-LR_r1i1p1': {'value': None, 'value_error': None}},
       'metric': {'ERA-Interim': {'value': 1.4015345957742082,
         'value_error': None},
        'GPCPv2.3': {'value': 1.2108930449104152, 'value_error': None}}},
      'BiasPrLonRmse': {'diagnostic': {'ERA-Interim': {'value': None,
         'value_error': None},
        'GPCPv2.3': {'value': None, 'value_error': None},
        'IPSL-CM5B-LR_r1i1p1': {'value': None, 'value_error': None}},
       'metric': {'ERA-Interim': {'value': 1.3880401023969844,
         'value_error': None},
        'GPCPv2.3': {'value': 0.8207062635871967, 'value_error': None}}},
      'BiasSstLonRmse': {'diagnostic': {'ERA-Interim': {'value': None,
         'value_error': None},
        'HadISST': {'value': None, 'value_error': None},
        'IPSL-CM5B-LR_r1i1p1': {'value': None, 'value_error': None},
        'Tropflux': {'value': None, 'value_error': None}},
       'metric': {'ERA-Interim': {'value': 0.5648199136533119,
         'value_error': None},
        'HadISST': {'value': 0.6058998201366794, 'value_error': None},
        'Tropflux': {'value': 0.5791772539878387, 'value_error': None}}},
      'BiasTauxLonRmse': {'diagnostic': {'ERA-Interim': {'value': None,
         'value_error': None},
        'IPSL-CM5B-LR_r1i1p1': {'value': None, 'value_error': None},
        'Tropflux': {'value': None, 'value_error': None}},
       'metric': {'ERA-Interim': {'value': 8.196287271389938,
         'value_error': None},
        'Tropflux': {'value': 8.230451627635246, 'value_error': None}}},
      'EnsoAmpl': {'diagnostic': {'ERA-Interim': {'value': 0.8989844997845644,
         'value_error': 0.14214193002531866},
        'HadISST': {'value': 0.7665787872085695,
         'value_error': 0.06238329697691264},
        'IPSL-CM5B-LR_r1i1p1': {'value': 0.7004436243392919,
         'value_error': 0.0560803722049974},
        'Tropflux': {'value': 0.9039789553693535,
         'value_error': 0.14293162279134272}},
       'metric': {'ERA-Interim': {'value': 22.08501653730977,
         'value_error': 18.557631807639943},
        'HadISST': {'value': 8.627314500849046,
         'value_error': 14.751473409209542},
        'Tropflux': {'value': 22.51549439520966,
         'value_error': 18.4551014696585}}},
      'EnsoDuration': {'diagnostic': {'ERA-Interim': {'value': 13.0,
         'value_error': None},
        'HadISST': {'value': 13.0, 'value_error': None},
        'IPSL-CM5B-LR_r1i1p1': {'value': 14.0, 'value_error': None},
        'Tropflux': {'value': 13.0, 'value_error': None}},
       'metric': {'ERA-Interim': {'value': 7.6923076923076925,
         'value_error': None},
        'HadISST': {'value': 7.6923076923076925, 'value_error': None},
        'Tropflux': {'value': 7.6923076923076925, 'value_error': None}}},
      'EnsoSeasonality': {'diagnostic': {'ERA-Interim': {'value': 2.0466846866656914,
         'value_error': 0.6513411033995022},
        'HadISST': {'value': 1.6639865947361325,
         'value_error': 0.2712772451657809},
        'IPSL-CM5B-LR_r1i1p1': {'value': 1.1621872574202523,
         'value_error': 0.18639857684966435},
        'Tropflux': {'value': 2.0532132553583624,
         'value_error': 0.6534187683977347}},
       'metric': {'ERA-Interim': {'value': 43.216106272158484,
         'value_error': 27.178364133656498},
        'HadISST': {'value': 30.156453117066924,
         'value_error': 22.588416754604886},
        'Tropflux': {'value': 43.396661092692625,
         'value_error': 27.09194553259888}}},
      'EnsoSstDiversity_2': {'diagnostic': {'ERA-Interim': {'value': 33.25,
         'value_error': None},
        'HadISST': {'value': 49.0, 'value_error': None},
        'IPSL-CM5B-LR_r1i1p1': {'value': 41.25, 'value_error': None},
        'Tropflux': {'value': 32.0, 'value_error': None}},
       'metric': {'ERA-Interim': {'value': 24.06015037593985,
         'value_error': None},
        'HadISST': {'value': 15.816326530612246, 'value_error': None},
        'Tropflux': {'value': 28.90625, 'value_error': None}}},
      'EnsoSstLonRmse': {'diagnostic': {'ERA-Interim': {'value': None,
         'value_error': None},
        'HadISST': {'value': None, 'value_error': None},
        'IPSL-CM5B-LR_r1i1p1': {'value': None, 'value_error': None},
        'Tropflux': {'value': None, 'value_error': None}},
       'metric': {'ERA-Interim': {'value': 0.10193630577550127,
         'value_error': None},
        'HadISST': {'value': 0.09136495485002362, 'value_error': None},
        'Tropflux': {'value': 0.09822826754936735, 'value_error': None}}},
      'EnsoSstSkew': {'diagnostic': {'ERA-Interim': {'value': 0.39098111106809963,
         'value_error': 0.061819541653923164},
        'HadISST': {'value': 0.38989908235027515,
         'value_error': 0.03172953733021198},
        'IPSL-CM5B-LR_r1i1p1': {'value': 0.04149465423634253,
         'value_error': 0.0033222311878229834},
        'Tropflux': {'value': 0.39744741059612115,
         'value_error': 0.06284195338099416}},
       'metric': {'ERA-Interim': {'value': 89.38704375692585,
         'value_error': 2.5277722665997104},
        'HadISST': {'value': 89.3575912038016,
         'value_error': 1.7181415814742265},
        'Tropflux': {'value': 89.55971201973469,
         'value_error': 2.4866464920225355}}},
      'EnsoSstTsRmse': {'diagnostic': {'ERA-Interim': {'value': None,
         'value_error': None},
        'HadISST': {'value': None, 'value_error': None},
        'IPSL-CM5B-LR_r1i1p1': {'value': None, 'value_error': None},
        'Tropflux': {'value': None, 'value_error': None}},
       'metric': {'ERA-Interim': {'value': 0.12032878304628031,
         'value_error': None},
        'HadISST': {'value': 0.11385083650455154, 'value_error': None},
        'Tropflux': {'value': 0.12090566881517924, 'value_error': None}}},
      'SeasonalPrLatRmse': {'diagnostic': {'ERA-Interim': {'value': None,
         'value_error': None},
        'GPCPv2.3': {'value': None, 'value_error': None},
        'IPSL-CM5B-LR_r1i1p1': {'value': None, 'value_error': None}},
       'metric': {'ERA-Interim': {'value': 0.9232021105293055,
         'value_error': None},
        'GPCPv2.3': {'value': 1.1685819507322817, 'value_error': None}}},
      'SeasonalPrLonRmse': {'diagnostic': {'ERA-Interim': {'value': None,
         'value_error': None},
        'GPCPv2.3': {'value': None, 'value_error': None},
        'IPSL-CM5B-LR_r1i1p1': {'value': None, 'value_error': None}},
       'metric': {'ERA-Interim': {'value': 0.6864071761365607,
         'value_error': None},
        'GPCPv2.3': {'value': 0.6495971574066665, 'value_error': None}}},
      'SeasonalSstLonRmse': {'diagnostic': {'ERA-Interim': {'value': None,
         'value_error': None},
        'HadISST': {'value': None, 'value_error': None},
        'IPSL-CM5B-LR_r1i1p1': {'value': None, 'value_error': None},
        'Tropflux': {'value': None, 'value_error': None}},
       'metric': {'ERA-Interim': {'value': 0.20926570706661315,
         'value_error': None},
        'HadISST': {'value': 0.20214590406257713, 'value_error': None},
        'Tropflux': {'value': 0.21955182716012003, 'value_error': None}}},
      'SeasonalTauxLonRmse': {'diagnostic': {'ERA-Interim': {'value': None,
         'value_error': None},
        'IPSL-CM5B-LR_r1i1p1': {'value': None, 'value_error': None},
        'Tropflux': {'value': None, 'value_error': None}},
       'metric': {'ERA-Interim': {'value': 2.8022109358234655,
         'value_error': None},
        'Tropflux': {'value': 2.5809025435492963, 'value_error': None}}}}}},
   'MIROC-ESM': {'r1i1p1': {'metadata': {'description_of_the_collection': 'Describe which science question this collection is about',
      'metrics': {'BiasPrLatRmse': {'diagnostic': {'ERA-Interim': {'name': 'ERA-Interim',
          'nyears': 40,
          'time_period': ['1979-1-16 12:0:0.0', '2019-3-16 12:0:0.0']},
         'GPCPv2.3': {'name': 'GPCPv2.3',
          'nyears': 41,
          'time_period': ['1979-1-1 0:0:0.0', '2019-7-1 0:0:0.0']},
         'MIROC-ESM_r1i1p1': {'keyerror': None,
          'name': 'MIROC-ESM_r1i1p1',
          'nyears': 156,
          'time_period': ['1850-1-16 12:0:0.0', '2005-12-16 12:0:0.0']},
         'method': 'Meridional root mean square error of nino3_LatExt pr, time series are linearly detrended, observations and model regridded to generic_1x1deg',
         'name': 'pr Meridional RMSE',
         'ref': 'Using CDAT regridding and rms (uncentered and biased) calculation',
         'time_frequency': 'monthly',
         'units': 'mm/day'},
        'metric': {'datasets': "MIROC-ESM_r1i1p1; ERA-Interim's pr & GPCPv2.3's precip; 's ",
         'method': 'The metric is the statistical value between the model and the observations',
         'name': 'BiasPrLatRmse',
         'units': 'mm/day'}},
       'BiasPrLonRmse': {'diagnostic': {'ERA-Interim': {'name': 'ERA-Interim',
          'nyears': 40,
          'time_period': ['1979-1-16 12:0:0.0', '2019-3-16 12:0:0.0']},
         'GPCPv2.3': {'name': 'GPCPv2.3',
          'nyears': 41,
          'time_period': ['1979-1-1 0:0:0.0', '2019-7-1 0:0:0.0']},
         'MIROC-ESM_r1i1p1': {'keyerror': None,
          'name': 'MIROC-ESM_r1i1p1',
          'nyears': 156,
          'time_period': ['1850-1-16 12:0:0.0', '2005-12-16 12:0:0.0']},
         'method': 'Zonal root mean square error of equatorial_pacific pr, time series are linearly detrended, observations and model regridded to generic_1x1deg',
         'name': 'pr Zonal RMSE',
         'ref': 'Using CDAT regridding and rms (uncentered and biased) calculation',
         'time_frequency': 'monthly',
         'units': 'mm/day'},
        'metric': {'datasets': "MIROC-ESM_r1i1p1; ERA-Interim's pr & GPCPv2.3's precip; 's ",
         'method': 'The metric is the statistical value between the model and the observations',
         'name': 'BiasPrLonRmse',
         'units': 'mm/day'}},
       'BiasSstLonRmse': {'diagnostic': {'ERA-Interim': {'name': 'ERA-Interim',
          'nyears': 40,
          'time_period': ['1979-1-16 12:0:0.0', '2019-3-16 12:0:0.0']},
         'HadISST': {'name': 'HadISST',
          'nyears': 151,
          'time_period': ['1870-1-16 11:59:59.5', '2020-10-16 12:0:0.0']},
         'MIROC-ESM_r1i1p1': {'keyerror': None,
          'name': 'MIROC-ESM_r1i1p1',
          'nyears': 156,
          'time_period': ['1850-1-16 12:0:0.0', '2005-12-16 12:0:0.0']},
         'Tropflux': {'name': 'Tropflux',
          'nyears': 40,
          'time_period': ['1979-1-15 0:0:0.0', '2018-12-15 12:0:0.0']},
         'method': 'Zonal root mean square error of equatorial_pacific sst, time series are linearly detrended, observations and model regridded to generic_1x1deg',
         'name': 'sst Zonal RMSE',
         'ref': 'Using CDAT regridding and rms (uncentered and biased) calculation',
         'time_frequency': 'monthly',
         'units': 'C'},
        'metric': {'datasets': "MIROC-ESM_r1i1p1; ERA-Interim's ts & HadISST's sst & Tropflux's sst; 's ",
         'method': 'The metric is the statistical value between the model and the observations',
         'name': 'BiasSstLonRmse',
         'units': 'C'}},
       'BiasTauxLonRmse': {'diagnostic': {'ERA-Interim': {'name': 'ERA-Interim',
          'nyears': 40,
          'time_period': ['1979-1-16 12:0:0.0', '2019-3-16 12:0:0.0']},
         'MIROC-ESM_r1i1p1': {'keyerror': None,
          'name': 'MIROC-ESM_r1i1p1',
          'nyears': 156,
          'time_period': ['1850-1-16 12:0:0.0', '2005-12-16 12:0:0.0']},
         'Tropflux': {'name': 'Tropflux',
          'nyears': 40,
          'time_period': ['1979-1-15 0:0:0.0', '2018-12-15 12:0:0.0']},
         'method': 'Zonal root mean square error of equatorial_pacific taux, time series are linearly detrended, observations and model regridded to generic_1x1deg',
         'name': 'taux Zonal RMSE',
         'ref': 'Using CDAT regridding and rms (uncentered and biased) calculation',
         'time_frequency': 'monthly',
         'units': '1e-3 N/m2'},
        'metric': {'datasets': "MIROC-ESM_r1i1p1; ERA-Interim's tauu & Tropflux's taux; 's ",
         'method': 'The metric is the statistical value between the model and the observations',
         'name': 'BiasTauxLonRmse',
         'units': '1e-3 N/m2'}},
       'EnsoAmpl': {'diagnostic': {'ERA-Interim': {'keyerror': None,
          'name': 'ERA-Interim',
          'nyears': 40,
          'time_period': ['1979-1-16 12:0:0.0', '2019-3-16 12:0:0.0']},
         'HadISST': {'keyerror': None,
          'name': 'HadISST',
          'nyears': 151,
          'time_period': ['1870-1-16 11:59:59.5', '2020-10-16 12:0:0.0']},
         'MIROC-ESM_r1i1p1': {'keyerror': None,
          'name': 'MIROC-ESM_r1i1p1',
          'nyears': 156,
          'time_period': ['1850-1-16 12:0:0.0', '2005-12-16 12:0:0.0']},
         'Tropflux': {'keyerror': None,
          'name': 'Tropflux',
          'nyears': 40,
          'time_period': ['1979-1-15 0:0:0.0', '2018-12-15 12:0:0.0']},
         'method': 'Standard deviation of nino3.4 sstA, time series are linearly detrended',
         'name': 'ENSO amplitude',
         'ref': 'Using CDAT regression calculation',
         'time_frequency': 'monthly',
         'units': 'C'},
        'metric': {'datasets': "MIROC-ESM_r1i1p1; ERA-Interim's ts & HadISST's sst & Tropflux's sst; 's ",
         'method': 'The metric is the absolute value of the relative difference between model and observations values (M = 100 * abs[[model-obs] / obs])',
         'name': 'EnsoAmpl',
         'units': '%'}},
       'EnsoDuration': {'diagnostic': {'ERA-Interim': {'keyerror': None,
          'name': 'ERA-Interim',
          'nyears': 40,
          'time_period': ['1979-1-16 12:0:0.0', '2019-3-16 12:0:0.0']},
         'HadISST': {'keyerror': None,
          'name': 'HadISST',
          'nyears': 151,
          'time_period': ['1870-1-16 11:59:59.5', '2020-10-16 12:0:0.0']},
         'MIROC-ESM_r1i1p1': {'keyerror': None,
          'name': 'MIROC-ESM_r1i1p1',
          'nyears': 156,
          'time_period': ['1850-1-16 12:0:0.0', '2005-12-16 12:0:0.0']},
         'Tropflux': {'keyerror': None,
          'name': 'Tropflux',
          'nyears': 40,
          'time_period': ['1979-1-15 0:0:0.0', '2018-12-15 12:0:0.0']},
         'method': 'nino3.4 SSTA during DEC regressed against nino3.4 SSTA during 6 years (centered on ENSO), the duration is the number of consecutive months during which the regression is above 0.25, time series are linearly detrended, smoothing using a triangle shaped window of 5 points',
         'name': 'ENSO Duration based on life cyle SSTA pattern',
         'ref': 'Using CDAT',
         'time_frequency': 'monthly',
         'units': 'months'},
        'metric': {'datasets': "MIROC-ESM_r1i1p1; ERA-Interim's ts & HadISST's sst & Tropflux's sst; 's ",
         'method': 'The metric is the absolute value of the relative difference between model and observations values (M = 100 * abs[[model-obs] / obs])',
         'name': 'EnsoDuration',
         'units': '%'}},
       'EnsoSeasonality': {'diagnostic': {'ERA-Interim': {'keyerror': None,
          'name': 'ERA-Interim',
          'nyears': 40,
          'time_period': ['1979-1-16 12:0:0.0', '2019-3-16 12:0:0.0']},
         'HadISST': {'keyerror': None,
          'name': 'HadISST',
          'nyears': 151,
          'time_period': ['1870-1-16 11:59:59.5', '2020-10-16 12:0:0.0']},
         'MIROC-ESM_r1i1p1': {'keyerror': None,
          'name': 'MIROC-ESM_r1i1p1',
          'nyears': 156,
          'time_period': ['1850-1-16 12:0:0.0', '2005-12-16 12:0:0.0']},
         'Tropflux': {'keyerror': None,
          'name': 'Tropflux',
          'nyears': 40,
          'time_period': ['1979-1-15 0:0:0.0', '2018-12-15 12:0:0.0']},
         'method': 'Ratio between NDJ and MAM standard deviation nino3.4 sstA, time series are linearly detrended',
         'name': 'ENSO seasonality',
         'ref': 'Using CDAT std dev calculation',
         'time_frequency': 'monthly',
         'units': 'C/C'},
        'metric': {'datasets': "MIROC-ESM_r1i1p1; ERA-Interim's ts & HadISST's sst & Tropflux's sst; 's ",
         'method': 'The metric is the absolute value of the relative difference between model and observations values (M = 100 * abs[[model-obs] / obs])',
         'name': 'EnsoSeasonality',
         'units': '%'}},
       'EnsoSstDiversity_2': {'diagnostic': {'ERA-Interim': {'keyerror': None,
          'name': 'ERA-Interim',
          'nyears': 40,
          'time_period': ['1979-1-16 12:0:0.0', '2019-3-16 12:0:0.0']},
         'HadISST': {'keyerror': None,
          'name': 'HadISST',
          'nyears': 151,
          'time_period': ['1870-1-16 11:59:59.5', '2020-10-16 12:0:0.0']},
         'MIROC-ESM_r1i1p1': {'keyerror': None,
          'name': 'MIROC-ESM_r1i1p1',
          'nyears': 156,
          'time_period': ['1850-1-16 12:0:0.0', '2005-12-16 12:0:0.0']},
         'Tropflux': {'keyerror': None,
          'name': 'Tropflux',
          'nyears': 40,
          'time_period': ['1979-1-15 0:0:0.0', '2018-12-15 12:0:0.0']},
         'method': 'Nino (Nina) events = nino3.4 sstA > 0.75 (< -0.75) during DEC, zonal SSTA (meridional averaged [-5.0 ; 5.0]), the zonal SSTA maximum (minimum) is located for each event, the diversity is the interquartile range (IQR = Q3 - Q1), time series are linearly detrended, smoothing using a triangle shaped window of 5 points',
         'name': 'ENSO Diversity (interquartile range)',
         'ref': 'Using CDAT regridding',
         'time_frequency': 'monthly',
         'units': 'long'},
        'metric': {'datasets': "MIROC-ESM_r1i1p1; ERA-Interim's ts & HadISST's sst & Tropflux's sst; 's ",
         'method': 'The metric is the absolute value of the relative difference between model and observations values (M = 100 * abs[[model-obs] / obs])',
         'name': 'EnsoSstDiversity',
         'units': '%'}},
       'EnsoSstLonRmse': {'diagnostic': {'ERA-Interim': {'name': 'ERA-Interim',
          'nyears': 40,
          'time_period': ['1979-1-16 12:0:0.0', '2019-3-16 12:0:0.0']},
         'HadISST': {'name': 'HadISST',
          'nyears': 151,
          'time_period': ['1870-1-16 11:59:59.5', '2020-10-16 12:0:0.0']},
         'MIROC-ESM_r1i1p1': {'keyerror': None,
          'name': 'MIROC-ESM_r1i1p1',
          'nyears': 156,
          'time_period': ['1850-1-16 12:0:0.0', '2005-12-16 12:0:0.0']},
         'Tropflux': {'name': 'Tropflux',
          'nyears': 40,
          'time_period': ['1979-1-15 0:0:0.0', '2018-12-15 12:0:0.0']},
         'method': 'nino3.4 SSTA during DEC regressed against equatorial_pacific SSTA, time series are linearly detrended, smoothing using a triangle shaped window of 5 points, observations and model regridded to generic_1x1deg',
         'name': 'ENSO Zonal SSTA pattern',
         'ref': 'Using CDAT regridding and rms (uncentered and biased) calculation',
         'time_frequency': 'monthly',
         'units': 'C/C'},
        'metric': {'datasets': "MIROC-ESM_r1i1p1; ERA-Interim's ts & HadISST's sst & Tropflux's sst; 's ",
         'method': 'The metric is the statistical value between the model and the observations',
         'name': 'EnsoSstLonRmse',
         'units': 'C/C'}},
       'EnsoSstSkew': {'diagnostic': {'ERA-Interim': {'keyerror': None,
          'name': 'ERA-Interim',
          'nyears': 40,
          'time_period': ['1979-1-16 12:0:0.0', '2019-3-16 12:0:0.0']},
         'HadISST': {'keyerror': None,
          'name': 'HadISST',
          'nyears': 151,
          'time_period': ['1870-1-16 11:59:59.5', '2020-10-16 12:0:0.0']},
         'MIROC-ESM_r1i1p1': {'keyerror': None,
          'name': 'MIROC-ESM_r1i1p1',
          'nyears': 156,
          'time_period': ['1850-1-16 12:0:0.0', '2005-12-16 12:0:0.0']},
         'Tropflux': {'keyerror': None,
          'name': 'Tropflux',
          'nyears': 40,
          'time_period': ['1979-1-15 0:0:0.0', '2018-12-15 12:0:0.0']},
         'method': 'Standard deviation of nino3.4 sstA, time series are linearly detrended',
         'name': 'ENSO skewness',
         'ref': 'Using CDAT regression calculation',
         'time_frequency': 'monthly',
         'units': 'C'},
        'metric': {'datasets': "MIROC-ESM_r1i1p1; ERA-Interim's ts & HadISST's sst & Tropflux's sst; 's ",
         'method': 'The metric is the absolute value of the relative difference between model and observations values (M = 100 * abs[[model-obs] / obs])',
         'name': 'EnsoSstSkew',
         'units': '%'}},
       'EnsoSstTsRmse': {'diagnostic': {'ERA-Interim': {'name': 'ERA-Interim',
          'nyears': 40,
          'time_period': ['1979-1-16 12:0:0.0', '2019-3-16 12:0:0.0']},
         'HadISST': {'name': 'HadISST',
          'nyears': 151,
          'time_period': ['1870-1-16 11:59:59.5', '2020-10-16 12:0:0.0']},
         'MIROC-ESM_r1i1p1': {'keyerror': None,
          'name': 'MIROC-ESM_r1i1p1',
          'nyears': 156,
          'time_period': ['1850-1-16 12:0:0.0', '2005-12-16 12:0:0.0']},
         'Tropflux': {'name': 'Tropflux',
          'nyears': 40,
          'time_period': ['1979-1-15 0:0:0.0', '2018-12-15 12:0:0.0']},
         'method': 'nino3.4 SSTA during DEC regressed against nino3.4 SSTA during 6 years (centered on ENSO), time series are linearly detrended, smoothing using a triangle shaped window of 5 points',
         'name': 'ENSO life cyle SSTA pattern',
         'ref': 'Using CDAT regridding and rms (uncentered and biased) calculation',
         'time_frequency': 'monthly',
         'units': 'C/C'},
        'metric': {'datasets': "MIROC-ESM_r1i1p1; ERA-Interim's ts & HadISST's sst & Tropflux's sst; 's ",
         'method': 'The metric is the statistical value between the model and the observations',
         'name': 'EnsoSstTsRmse',
         'units': 'C/C'}},
       'SeasonalPrLatRmse': {'diagnostic': {'ERA-Interim': {'name': 'ERA-Interim',
          'nyears': 40,
          'time_period': ['1979-1-16 12:0:0.0', '2019-3-16 12:0:0.0']},
         'GPCPv2.3': {'name': 'GPCPv2.3',
          'nyears': 41,
          'time_period': ['1979-1-1 0:0:0.0', '2019-7-1 0:0:0.0']},
         'MIROC-ESM_r1i1p1': {'keyerror': None,
          'name': 'MIROC-ESM_r1i1p1',
          'nyears': 156,
          'time_period': ['1850-1-16 12:0:0.0', '2005-12-16 12:0:0.0']},
         'method': 'Meridional root mean square error of nino3_LatExt climatological pr STD, time series are linearly detrended, observations and model regridded to generic_1x1deg',
         'name': 'pr meridional seasonality RMSE',
         'ref': 'Using CDAT regridding and rms (uncentered and biased) calculation',
         'time_frequency': 'monthly',
         'units': 'mm/day'},
        'metric': {'datasets': "MIROC-ESM_r1i1p1; ERA-Interim's pr & GPCPv2.3's precip; 's ",
         'method': 'The metric is the statistical value between the model and the observations',
         'name': 'SeasonalPrLatRmse',
         'units': 'mm/day'}},
       'SeasonalPrLonRmse': {'diagnostic': {'ERA-Interim': {'name': 'ERA-Interim',
          'nyears': 40,
          'time_period': ['1979-1-16 12:0:0.0', '2019-3-16 12:0:0.0']},
         'GPCPv2.3': {'name': 'GPCPv2.3',
          'nyears': 41,
          'time_period': ['1979-1-1 0:0:0.0', '2019-7-1 0:0:0.0']},
         'MIROC-ESM_r1i1p1': {'keyerror': None,
          'name': 'MIROC-ESM_r1i1p1',
          'nyears': 156,
          'time_period': ['1850-1-16 12:0:0.0', '2005-12-16 12:0:0.0']},
         'method': 'Zonal root mean square error of equatorial_pacific climatological pr STD, time series are linearly detrended, observations and model regridded to generic_1x1deg',
         'name': 'pr zonal seasonality RMSE',
         'ref': 'Using CDAT regridding and rms (uncentered and biased) calculation',
         'time_frequency': 'monthly',
         'units': 'mm/day'},
        'metric': {'datasets': "MIROC-ESM_r1i1p1; ERA-Interim's pr & GPCPv2.3's precip; 's ",
         'method': 'The metric is the statistical value between the model and the observations',
         'name': 'SeasonalPrLonRmse',
         'units': 'mm/day'}},
       'SeasonalSstLonRmse': {'diagnostic': {'ERA-Interim': {'name': 'ERA-Interim',
          'nyears': 40,
          'time_period': ['1979-1-16 12:0:0.0', '2019-3-16 12:0:0.0']},
         'HadISST': {'name': 'HadISST',
          'nyears': 151,
          'time_period': ['1870-1-16 11:59:59.5', '2020-10-16 12:0:0.0']},
         'MIROC-ESM_r1i1p1': {'keyerror': None,
          'name': 'MIROC-ESM_r1i1p1',
          'nyears': 156,
          'time_period': ['1850-1-16 12:0:0.0', '2005-12-16 12:0:0.0']},
         'Tropflux': {'name': 'Tropflux',
          'nyears': 40,
          'time_period': ['1979-1-15 0:0:0.0', '2018-12-15 12:0:0.0']},
         'method': 'Zonal root mean square error of equatorial_pacific climatological sst STD, time series are linearly detrended, observations and model regridded to generic_1x1deg',
         'name': 'sst zonal seasonality RMSE',
         'ref': 'Using CDAT regridding and rms (uncentered and biased) calculation',
         'time_frequency': 'monthly',
         'units': 'C'},
        'metric': {'datasets': "MIROC-ESM_r1i1p1; ERA-Interim's ts & HadISST's sst & Tropflux's sst; 's ",
         'method': 'The metric is the statistical value between the model and the observations',
         'name': 'SeasonalSstLonRmse',
         'units': 'C'}},
       'SeasonalTauxLonRmse': {'diagnostic': {'ERA-Interim': {'name': 'ERA-Interim',
          'nyears': 40,
          'time_period': ['1979-1-16 12:0:0.0', '2019-3-16 12:0:0.0']},
         'MIROC-ESM_r1i1p1': {'keyerror': None,
          'name': 'MIROC-ESM_r1i1p1',
          'nyears': 156,
          'time_period': ['1850-1-16 12:0:0.0', '2005-12-16 12:0:0.0']},
         'Tropflux': {'name': 'Tropflux',
          'nyears': 40,
          'time_period': ['1979-1-15 0:0:0.0', '2018-12-15 12:0:0.0']},
         'method': 'Zonal root mean square error of equatorial_pacific climatological taux STD, time series are linearly detrended, observations and model regridded to generic_1x1deg',
         'name': 'taux zonal seasonality RMSE',
         'ref': 'Using CDAT regridding and rms (uncentered and biased) calculation',
         'time_frequency': 'monthly',
         'units': '1e-3 N/m2'},
        'metric': {'datasets': "MIROC-ESM_r1i1p1; ERA-Interim's tauu & Tropflux's taux; 's ",
         'method': 'The metric is the statistical value between the model and the observations',
         'name': 'SeasonalTauxLonRmse',
         'units': '1e-3 N/m2'}}},
      'name': 'Metrics Collection for ENSO performance'},
     'value': {'BiasPrLatRmse': {'diagnostic': {'ERA-Interim': {'value': None,
         'value_error': None},
        'GPCPv2.3': {'value': None, 'value_error': None},
        'MIROC-ESM_r1i1p1': {'value': None, 'value_error': None}},
       'metric': {'ERA-Interim': {'value': 0.8989635368239366,
         'value_error': None},
        'GPCPv2.3': {'value': 0.9180047032005041, 'value_error': None}}},
      'BiasPrLonRmse': {'diagnostic': {'ERA-Interim': {'value': None,
         'value_error': None},
        'GPCPv2.3': {'value': None, 'value_error': None},
        'MIROC-ESM_r1i1p1': {'value': None, 'value_error': None}},
       'metric': {'ERA-Interim': {'value': 1.9281730572471811,
         'value_error': None},
        'GPCPv2.3': {'value': 1.2341673575684748, 'value_error': None}}},
      'BiasSstLonRmse': {'diagnostic': {'ERA-Interim': {'value': None,
         'value_error': None},
        'HadISST': {'value': None, 'value_error': None},
        'MIROC-ESM_r1i1p1': {'value': None, 'value_error': None},
        'Tropflux': {'value': None, 'value_error': None}},
       'metric': {'ERA-Interim': {'value': 2.1645441771001788,
         'value_error': None},
        'HadISST': {'value': 2.0031627390941957, 'value_error': None},
        'Tropflux': {'value': 2.2097171935327538, 'value_error': None}}},
      'BiasTauxLonRmse': {'diagnostic': {'ERA-Interim': {'value': None,
         'value_error': None},
        'MIROC-ESM_r1i1p1': {'value': None, 'value_error': None},
        'Tropflux': {'value': None, 'value_error': None}},
       'metric': {'ERA-Interim': {'value': 13.827694446409824,
         'value_error': None},
        'Tropflux': {'value': 13.725659777720624, 'value_error': None}}},
      'EnsoAmpl': {'diagnostic': {'ERA-Interim': {'value': 0.8989844997845644,
         'value_error': 0.14214193002531866},
        'HadISST': {'value': 0.7665787872085695,
         'value_error': 0.06238329697691264},
        'MIROC-ESM_r1i1p1': {'value': 0.4407361665215621,
         'value_error': 0.03528713433011459},
        'Tropflux': {'value': 0.9039789553693535,
         'value_error': 0.14293162279134272}},
       'metric': {'ERA-Interim': {'value': 50.97399714598176,
         'value_error': 11.676913342359093},
        'HadISST': {'value': 42.506083669955856,
         'value_error': 9.281985894371521},
        'Tropflux': {'value': 51.24486428542097,
         'value_error': 11.61239875968054}}},
      'EnsoDuration': {'diagnostic': {'ERA-Interim': {'value': 13.0,
         'value_error': None},
        'HadISST': {'value': 13.0, 'value_error': None},
        'MIROC-ESM_r1i1p1': {'value': 21.0, 'value_error': None},
        'Tropflux': {'value': 13.0, 'value_error': None}},
       'metric': {'ERA-Interim': {'value': 61.53846153846154,
         'value_error': None},
        'HadISST': {'value': 61.53846153846154, 'value_error': None},
        'Tropflux': {'value': 61.53846153846154, 'value_error': None}}},
      'EnsoSeasonality': {'diagnostic': {'ERA-Interim': {'value': 2.0466846866656914,
         'value_error': 0.6513411033995022},
        'HadISST': {'value': 1.6639865947361325,
         'value_error': 0.2712772451657809},
        'MIROC-ESM_r1i1p1': {'value': 1.1141686852800146,
         'value_error': 0.17869706966814422},
        'Tropflux': {'value': 2.0532132553583624,
         'value_error': 0.6534187683977347}},
       'metric': {'ERA-Interim': {'value': 45.56226992174664,
         'value_error': 26.05542440903541},
        'HadISST': {'value': 33.042207863658035,
         'value_error': 21.65512178639777},
        'Tropflux': {'value': 45.73536468399867,
         'value_error': 25.972576401100934}}},
      'EnsoSstDiversity_2': {'diagnostic': {'ERA-Interim': {'value': 33.25,
         'value_error': None},
        'HadISST': {'value': 49.0, 'value_error': None},
        'MIROC-ESM_r1i1p1': {'value': 54.0, 'value_error': None},
        'Tropflux': {'value': 32.0, 'value_error': None}},
       'metric': {'ERA-Interim': {'value': 62.40601503759399,
         'value_error': None},
        'HadISST': {'value': 10.204081632653061, 'value_error': None},
        'Tropflux': {'value': 68.75, 'value_error': None}}},
      'EnsoSstLonRmse': {'diagnostic': {'ERA-Interim': {'value': None,
         'value_error': None},
        'HadISST': {'value': None, 'value_error': None},
        'MIROC-ESM_r1i1p1': {'value': None, 'value_error': None},
        'Tropflux': {'value': None, 'value_error': None}},
       'metric': {'ERA-Interim': {'value': 0.286505876354357,
         'value_error': None},
        'HadISST': {'value': 0.3024687484178541, 'value_error': None},
        'Tropflux': {'value': 0.2875015703266471, 'value_error': None}}},
      'EnsoSstSkew': {'diagnostic': {'ERA-Interim': {'value': 0.39098111106809963,
         'value_error': 0.061819541653923164},
        'HadISST': {'value': 0.38989908235027515,
         'value_error': 0.03172953733021198},
        'MIROC-ESM_r1i1p1': {'value': 0.1535042893178042,
         'value_error': 0.012290179224810972},
        'Tropflux': {'value': 0.39744741059612115,
         'value_error': 0.06284195338099416}},
       'metric': {'ERA-Interim': {'value': 60.738694281558935,
         'value_error': 9.351177699458898},
        'HadISST': {'value': 60.62973824085589,
         'value_error': 6.356050128996486},
        'Tropflux': {'value': 61.37745894794809,
         'value_error': 9.199038034355125}}},
      'EnsoSstTsRmse': {'diagnostic': {'ERA-Interim': {'value': None,
         'value_error': None},
        'HadISST': {'value': None, 'value_error': None},
        'MIROC-ESM_r1i1p1': {'value': None, 'value_error': None},
        'Tropflux': {'value': None, 'value_error': None}},
       'metric': {'ERA-Interim': {'value': 0.2160004875577134,
         'value_error': None},
        'HadISST': {'value': 0.17611669420792428, 'value_error': None},
        'Tropflux': {'value': 0.2137007828951638, 'value_error': None}}},
      'SeasonalPrLatRmse': {'diagnostic': {'ERA-Interim': {'value': None,
         'value_error': None},
        'GPCPv2.3': {'value': None, 'value_error': None},
        'MIROC-ESM_r1i1p1': {'value': None, 'value_error': None}},
       'metric': {'ERA-Interim': {'value': 0.40757907407141675,
         'value_error': None},
        'GPCPv2.3': {'value': 0.7029010300589942, 'value_error': None}}},
      'SeasonalPrLonRmse': {'diagnostic': {'ERA-Interim': {'value': None,
         'value_error': None},
        'GPCPv2.3': {'value': None, 'value_error': None},
        'MIROC-ESM_r1i1p1': {'value': None, 'value_error': None}},
       'metric': {'ERA-Interim': {'value': 0.9671945660739307,
         'value_error': None},
        'GPCPv2.3': {'value': 1.2279618467583233, 'value_error': None}}},
      'SeasonalSstLonRmse': {'diagnostic': {'ERA-Interim': {'value': None,
         'value_error': None},
        'HadISST': {'value': None, 'value_error': None},
        'MIROC-ESM_r1i1p1': {'value': None, 'value_error': None},
        'Tropflux': {'value': None, 'value_error': None}},
       'metric': {'ERA-Interim': {'value': 0.5874147642588601,
         'value_error': None},
        'HadISST': {'value': 0.6129195739863141, 'value_error': None},
        'Tropflux': {'value': 0.5833471892932828, 'value_error': None}}},
      'SeasonalTauxLonRmse': {'diagnostic': {'ERA-Interim': {'value': None,
         'value_error': None},
        'MIROC-ESM_r1i1p1': {'value': None, 'value_error': None},
        'Tropflux': {'value': None, 'value_error': None}},
       'metric': {'ERA-Interim': {'value': 5.618748571499511,
         'value_error': None},
        'Tropflux': {'value': 5.241751752424308, 'value_error': None}}}}},
    'r2i1p1': {'metadata': {'description_of_the_collection': 'Describe which science question this collection is about',
      'metrics': {'BiasPrLatRmse': {'diagnostic': {'ERA-Interim': {'name': 'ERA-Interim',
          'nyears': 40,
          'time_period': ['1979-1-16 12:0:0.0', '2019-3-16 12:0:0.0']},
         'GPCPv2.3': {'name': 'GPCPv2.3',
          'nyears': 41,
          'time_period': ['1979-1-1 0:0:0.0', '2019-7-1 0:0:0.0']},
         'MIROC-ESM_r2i1p1': {'keyerror': None,
          'name': 'MIROC-ESM_r2i1p1',
          'nyears': 156,
          'time_period': ['1850-1-16 12:0:0.0', '2005-12-16 12:0:0.0']},
         'method': 'Meridional root mean square error of nino3_LatExt pr, time series are linearly detrended, observations and model regridded to generic_1x1deg',
         'name': 'pr Meridional RMSE',
         'ref': 'Using CDAT regridding and rms (uncentered and biased) calculation',
         'time_frequency': 'monthly',
         'units': 'mm/day'},
        'metric': {'datasets': "MIROC-ESM_r2i1p1; ERA-Interim's pr & GPCPv2.3's precip; 's ",
         'method': 'The metric is the statistical value between the model and the observations',
         'name': 'BiasPrLatRmse',
         'units': 'mm/day'}},
       'BiasPrLonRmse': {'diagnostic': {'ERA-Interim': {'name': 'ERA-Interim',
          'nyears': 40,
          'time_period': ['1979-1-16 12:0:0.0', '2019-3-16 12:0:0.0']},
         'GPCPv2.3': {'name': 'GPCPv2.3',
          'nyears': 41,
          'time_period': ['1979-1-1 0:0:0.0', '2019-7-1 0:0:0.0']},
         'MIROC-ESM_r2i1p1': {'keyerror': None,
          'name': 'MIROC-ESM_r2i1p1',
          'nyears': 156,
          'time_period': ['1850-1-16 12:0:0.0', '2005-12-16 12:0:0.0']},
         'method': 'Zonal root mean square error of equatorial_pacific pr, time series are linearly detrended, observations and model regridded to generic_1x1deg',
         'name': 'pr Zonal RMSE',
         'ref': 'Using CDAT regridding and rms (uncentered and biased) calculation',
         'time_frequency': 'monthly',
         'units': 'mm/day'},
        'metric': {'datasets': "MIROC-ESM_r2i1p1; ERA-Interim's pr & GPCPv2.3's precip; 's ",
         'method': 'The metric is the statistical value between the model and the observations',
         'name': 'BiasPrLonRmse',
         'units': 'mm/day'}},
       'BiasSstLonRmse': {'diagnostic': {'ERA-Interim': {'name': 'ERA-Interim',
          'nyears': 40,
          'time_period': ['1979-1-16 12:0:0.0', '2019-3-16 12:0:0.0']},
         'HadISST': {'name': 'HadISST',
          'nyears': 151,
          'time_period': ['1870-1-16 11:59:59.5', '2020-10-16 12:0:0.0']},
         'MIROC-ESM_r2i1p1': {'keyerror': None,
          'name': 'MIROC-ESM_r2i1p1',
          'nyears': 156,
          'time_period': ['1850-1-16 12:0:0.0', '2005-12-16 12:0:0.0']},
         'Tropflux': {'name': 'Tropflux',
          'nyears': 40,
          'time_period': ['1979-1-15 0:0:0.0', '2018-12-15 12:0:0.0']},
         'method': 'Zonal root mean square error of equatorial_pacific sst, time series are linearly detrended, observations and model regridded to generic_1x1deg',
         'name': 'sst Zonal RMSE',
         'ref': 'Using CDAT regridding and rms (uncentered and biased) calculation',
         'time_frequency': 'monthly',
         'units': 'C'},
        'metric': {'datasets': "MIROC-ESM_r2i1p1; ERA-Interim's ts & HadISST's sst & Tropflux's sst; 's ",
         'method': 'The metric is the statistical value between the model and the observations',
         'name': 'BiasSstLonRmse',
         'units': 'C'}},
       'BiasTauxLonRmse': {'diagnostic': {'ERA-Interim': {'name': 'ERA-Interim',
          'nyears': 40,
          'time_period': ['1979-1-16 12:0:0.0', '2019-3-16 12:0:0.0']},
         'MIROC-ESM_r2i1p1': {'keyerror': None,
          'name': 'MIROC-ESM_r2i1p1',
          'nyears': 156,
          'time_period': ['1850-1-16 12:0:0.0', '2005-12-16 12:0:0.0']},
         'Tropflux': {'name': 'Tropflux',
          'nyears': 40,
          'time_period': ['1979-1-15 0:0:0.0', '2018-12-15 12:0:0.0']},
         'method': 'Zonal root mean square error of equatorial_pacific taux, time series are linearly detrended, observations and model regridded to generic_1x1deg',
         'name': 'taux Zonal RMSE',
         'ref': 'Using CDAT regridding and rms (uncentered and biased) calculation',
         'time_frequency': 'monthly',
         'units': '1e-3 N/m2'},
        'metric': {'datasets': "MIROC-ESM_r2i1p1; ERA-Interim's tauu & Tropflux's taux; 's ",
         'method': 'The metric is the statistical value between the model and the observations',
         'name': 'BiasTauxLonRmse',
         'units': '1e-3 N/m2'}},
       'EnsoAmpl': {'diagnostic': {'ERA-Interim': {'keyerror': None,
          'name': 'ERA-Interim',
          'nyears': 40,
          'time_period': ['1979-1-16 12:0:0.0', '2019-3-16 12:0:0.0']},
         'HadISST': {'keyerror': None,
          'name': 'HadISST',
          'nyears': 151,
          'time_period': ['1870-1-16 11:59:59.5', '2020-10-16 12:0:0.0']},
         'MIROC-ESM_r2i1p1': {'keyerror': None,
          'name': 'MIROC-ESM_r2i1p1',
          'nyears': 156,
          'time_period': ['1850-1-16 12:0:0.0', '2005-12-16 12:0:0.0']},
         'Tropflux': {'keyerror': None,
          'name': 'Tropflux',
          'nyears': 40,
          'time_period': ['1979-1-15 0:0:0.0', '2018-12-15 12:0:0.0']},
         'method': 'Standard deviation of nino3.4 sstA, time series are linearly detrended',
         'name': 'ENSO amplitude',
         'ref': 'Using CDAT regression calculation',
         'time_frequency': 'monthly',
         'units': 'C'},
        'metric': {'datasets': "MIROC-ESM_r2i1p1; ERA-Interim's ts & HadISST's sst & Tropflux's sst; 's ",
         'method': 'The metric is the absolute value of the relative difference between model and observations values (M = 100 * abs[[model-obs] / obs])',
         'name': 'EnsoAmpl',
         'units': '%'}},
       'EnsoDuration': {'diagnostic': {'ERA-Interim': {'keyerror': None,
          'name': 'ERA-Interim',
          'nyears': 40,
          'time_period': ['1979-1-16 12:0:0.0', '2019-3-16 12:0:0.0']},
         'HadISST': {'keyerror': None,
          'name': 'HadISST',
          'nyears': 151,
          'time_period': ['1870-1-16 11:59:59.5', '2020-10-16 12:0:0.0']},
         'MIROC-ESM_r2i1p1': {'keyerror': None,
          'name': 'MIROC-ESM_r2i1p1',
          'nyears': 156,
          'time_period': ['1850-1-16 12:0:0.0', '2005-12-16 12:0:0.0']},
         'Tropflux': {'keyerror': None,
          'name': 'Tropflux',
          'nyears': 40,
          'time_period': ['1979-1-15 0:0:0.0', '2018-12-15 12:0:0.0']},
         'method': 'nino3.4 SSTA during DEC regressed against nino3.4 SSTA during 6 years (centered on ENSO), the duration is the number of consecutive months during which the regression is above 0.25, time series are linearly detrended, smoothing using a triangle shaped window of 5 points',
         'name': 'ENSO Duration based on life cyle SSTA pattern',
         'ref': 'Using CDAT',
         'time_frequency': 'monthly',
         'units': 'months'},
        'metric': {'datasets': "MIROC-ESM_r2i1p1; ERA-Interim's ts & HadISST's sst & Tropflux's sst; 's ",
         'method': 'The metric is the absolute value of the relative difference between model and observations values (M = 100 * abs[[model-obs] / obs])',
         'name': 'EnsoDuration',
         'units': '%'}},
       'EnsoSeasonality': {'diagnostic': {'ERA-Interim': {'keyerror': None,
          'name': 'ERA-Interim',
          'nyears': 40,
          'time_period': ['1979-1-16 12:0:0.0', '2019-3-16 12:0:0.0']},
         'HadISST': {'keyerror': None,
          'name': 'HadISST',
          'nyears': 151,
          'time_period': ['1870-1-16 11:59:59.5', '2020-10-16 12:0:0.0']},
         'MIROC-ESM_r2i1p1': {'keyerror': None,
          'name': 'MIROC-ESM_r2i1p1',
          'nyears': 156,
          'time_period': ['1850-1-16 12:0:0.0', '2005-12-16 12:0:0.0']},
         'Tropflux': {'keyerror': None,
          'name': 'Tropflux',
          'nyears': 40,
          'time_period': ['1979-1-15 0:0:0.0', '2018-12-15 12:0:0.0']},
         'method': 'Ratio between NDJ and MAM standard deviation nino3.4 sstA, time series are linearly detrended',
         'name': 'ENSO seasonality',
         'ref': 'Using CDAT std dev calculation',
         'time_frequency': 'monthly',
         'units': 'C/C'},
        'metric': {'datasets': "MIROC-ESM_r2i1p1; ERA-Interim's ts & HadISST's sst & Tropflux's sst; 's ",
         'method': 'The metric is the absolute value of the relative difference between model and observations values (M = 100 * abs[[model-obs] / obs])',
         'name': 'EnsoSeasonality',
         'units': '%'}},
       'EnsoSstDiversity_2': {'diagnostic': {'ERA-Interim': {'keyerror': None,
          'name': 'ERA-Interim',
          'nyears': 40,
          'time_period': ['1979-1-16 12:0:0.0', '2019-3-16 12:0:0.0']},
         'HadISST': {'keyerror': None,
          'name': 'HadISST',
          'nyears': 151,
          'time_period': ['1870-1-16 11:59:59.5', '2020-10-16 12:0:0.0']},
         'MIROC-ESM_r2i1p1': {'keyerror': None,
          'name': 'MIROC-ESM_r2i1p1',
          'nyears': 156,
          'time_period': ['1850-1-16 12:0:0.0', '2005-12-16 12:0:0.0']},
         'Tropflux': {'keyerror': None,
          'name': 'Tropflux',
          'nyears': 40,
          'time_period': ['1979-1-15 0:0:0.0', '2018-12-15 12:0:0.0']},
         'method': 'Nino (Nina) events = nino3.4 sstA > 0.75 (< -0.75) during DEC, zonal SSTA (meridional averaged [-5.0 ; 5.0]), the zonal SSTA maximum (minimum) is located for each event, the diversity is the interquartile range (IQR = Q3 - Q1), time series are linearly detrended, smoothing using a triangle shaped window of 5 points',
         'name': 'ENSO Diversity (interquartile range)',
         'ref': 'Using CDAT regridding',
         'time_frequency': 'monthly',
         'units': 'long'},
        'metric': {'datasets': "MIROC-ESM_r2i1p1; ERA-Interim's ts & HadISST's sst & Tropflux's sst; 's ",
         'method': 'The metric is the absolute value of the relative difference between model and observations values (M = 100 * abs[[model-obs] / obs])',
         'name': 'EnsoSstDiversity',
         'units': '%'}},
       'EnsoSstLonRmse': {'diagnostic': {'ERA-Interim': {'name': 'ERA-Interim',
          'nyears': 40,
          'time_period': ['1979-1-16 12:0:0.0', '2019-3-16 12:0:0.0']},
         'HadISST': {'name': 'HadISST',
          'nyears': 151,
          'time_period': ['1870-1-16 11:59:59.5', '2020-10-16 12:0:0.0']},
         'MIROC-ESM_r2i1p1': {'keyerror': None,
          'name': 'MIROC-ESM_r2i1p1',
          'nyears': 156,
          'time_period': ['1850-1-16 12:0:0.0', '2005-12-16 12:0:0.0']},
         'Tropflux': {'name': 'Tropflux',
          'nyears': 40,
          'time_period': ['1979-1-15 0:0:0.0', '2018-12-15 12:0:0.0']},
         'method': 'nino3.4 SSTA during DEC regressed against equatorial_pacific SSTA, time series are linearly detrended, smoothing using a triangle shaped window of 5 points, observations and model regridded to generic_1x1deg',
         'name': 'ENSO Zonal SSTA pattern',
         'ref': 'Using CDAT regridding and rms (uncentered and biased) calculation',
         'time_frequency': 'monthly',
         'units': 'C/C'},
        'metric': {'datasets': "MIROC-ESM_r2i1p1; ERA-Interim's ts & HadISST's sst & Tropflux's sst; 's ",
         'method': 'The metric is the statistical value between the model and the observations',
         'name': 'EnsoSstLonRmse',
         'units': 'C/C'}},
       'EnsoSstSkew': {'diagnostic': {'ERA-Interim': {'keyerror': None,
          'name': 'ERA-Interim',
          'nyears': 40,
          'time_period': ['1979-1-16 12:0:0.0', '2019-3-16 12:0:0.0']},
         'HadISST': {'keyerror': None,
          'name': 'HadISST',
          'nyears': 151,
          'time_period': ['1870-1-16 11:59:59.5', '2020-10-16 12:0:0.0']},
         'MIROC-ESM_r2i1p1': {'keyerror': None,
          'name': 'MIROC-ESM_r2i1p1',
          'nyears': 156,
          'time_period': ['1850-1-16 12:0:0.0', '2005-12-16 12:0:0.0']},
         'Tropflux': {'keyerror': None,
          'name': 'Tropflux',
          'nyears': 40,
          'time_period': ['1979-1-15 0:0:0.0', '2018-12-15 12:0:0.0']},
         'method': 'Standard deviation of nino3.4 sstA, time series are linearly detrended',
         'name': 'ENSO skewness',
         'ref': 'Using CDAT regression calculation',
         'time_frequency': 'monthly',
         'units': 'C'},
        'metric': {'datasets': "MIROC-ESM_r2i1p1; ERA-Interim's ts & HadISST's sst & Tropflux's sst; 's ",
         'method': 'The metric is the absolute value of the relative difference between model and observations values (M = 100 * abs[[model-obs] / obs])',
         'name': 'EnsoSstSkew',
         'units': '%'}},
       'EnsoSstTsRmse': {'diagnostic': {'ERA-Interim': {'name': 'ERA-Interim',
          'nyears': 40,
          'time_period': ['1979-1-16 12:0:0.0', '2019-3-16 12:0:0.0']},
         'HadISST': {'name': 'HadISST',
          'nyears': 151,
          'time_period': ['1870-1-16 11:59:59.5', '2020-10-16 12:0:0.0']},
         'MIROC-ESM_r2i1p1': {'keyerror': None,
          'name': 'MIROC-ESM_r2i1p1',
          'nyears': 156,
          'time_period': ['1850-1-16 12:0:0.0', '2005-12-16 12:0:0.0']},
         'Tropflux': {'name': 'Tropflux',
          'nyears': 40,
          'time_period': ['1979-1-15 0:0:0.0', '2018-12-15 12:0:0.0']},
         'method': 'nino3.4 SSTA during DEC regressed against nino3.4 SSTA during 6 years (centered on ENSO), time series are linearly detrended, smoothing using a triangle shaped window of 5 points',
         'name': 'ENSO life cyle SSTA pattern',
         'ref': 'Using CDAT regridding and rms (uncentered and biased) calculation',
         'time_frequency': 'monthly',
         'units': 'C/C'},
        'metric': {'datasets': "MIROC-ESM_r2i1p1; ERA-Interim's ts & HadISST's sst & Tropflux's sst; 's ",
         'method': 'The metric is the statistical value between the model and the observations',
         'name': 'EnsoSstTsRmse',
         'units': 'C/C'}},
       'SeasonalPrLatRmse': {'diagnostic': {'ERA-Interim': {'name': 'ERA-Interim',
          'nyears': 40,
          'time_period': ['1979-1-16 12:0:0.0', '2019-3-16 12:0:0.0']},
         'GPCPv2.3': {'name': 'GPCPv2.3',
          'nyears': 41,
          'time_period': ['1979-1-1 0:0:0.0', '2019-7-1 0:0:0.0']},
         'MIROC-ESM_r2i1p1': {'keyerror': None,
          'name': 'MIROC-ESM_r2i1p1',
          'nyears': 156,
          'time_period': ['1850-1-16 12:0:0.0', '2005-12-16 12:0:0.0']},
         'method': 'Meridional root mean square error of nino3_LatExt climatological pr STD, time series are linearly detrended, observations and model regridded to generic_1x1deg',
         'name': 'pr meridional seasonality RMSE',
         'ref': 'Using CDAT regridding and rms (uncentered and biased) calculation',
         'time_frequency': 'monthly',
         'units': 'mm/day'},
        'metric': {'datasets': "MIROC-ESM_r2i1p1; ERA-Interim's pr & GPCPv2.3's precip; 's ",
         'method': 'The metric is the statistical value between the model and the observations',
         'name': 'SeasonalPrLatRmse',
         'units': 'mm/day'}},
       'SeasonalPrLonRmse': {'diagnostic': {'ERA-Interim': {'name': 'ERA-Interim',
          'nyears': 40,
          'time_period': ['1979-1-16 12:0:0.0', '2019-3-16 12:0:0.0']},
         'GPCPv2.3': {'name': 'GPCPv2.3',
          'nyears': 41,
          'time_period': ['1979-1-1 0:0:0.0', '2019-7-1 0:0:0.0']},
         'MIROC-ESM_r2i1p1': {'keyerror': None,
          'name': 'MIROC-ESM_r2i1p1',
          'nyears': 156,
          'time_period': ['1850-1-16 12:0:0.0', '2005-12-16 12:0:0.0']},
         'method': 'Zonal root mean square error of equatorial_pacific climatological pr STD, time series are linearly detrended, observations and model regridded to generic_1x1deg',
         'name': 'pr zonal seasonality RMSE',
         'ref': 'Using CDAT regridding and rms (uncentered and biased) calculation',
         'time_frequency': 'monthly',
         'units': 'mm/day'},
        'metric': {'datasets': "MIROC-ESM_r2i1p1; ERA-Interim's pr & GPCPv2.3's precip; 's ",
         'method': 'The metric is the statistical value between the model and the observations',
         'name': 'SeasonalPrLonRmse',
         'units': 'mm/day'}},
       'SeasonalSstLonRmse': {'diagnostic': {'ERA-Interim': {'name': 'ERA-Interim',
          'nyears': 40,
          'time_period': ['1979-1-16 12:0:0.0', '2019-3-16 12:0:0.0']},
         'HadISST': {'name': 'HadISST',
          'nyears': 151,
          'time_period': ['1870-1-16 11:59:59.5', '2020-10-16 12:0:0.0']},
         'MIROC-ESM_r2i1p1': {'keyerror': None,
          'name': 'MIROC-ESM_r2i1p1',
          'nyears': 156,
          'time_period': ['1850-1-16 12:0:0.0', '2005-12-16 12:0:0.0']},
         'Tropflux': {'name': 'Tropflux',
          'nyears': 40,
          'time_period': ['1979-1-15 0:0:0.0', '2018-12-15 12:0:0.0']},
         'method': 'Zonal root mean square error of equatorial_pacific climatological sst STD, time series are linearly detrended, observations and model regridded to generic_1x1deg',
         'name': 'sst zonal seasonality RMSE',
         'ref': 'Using CDAT regridding and rms (uncentered and biased) calculation',
         'time_frequency': 'monthly',
         'units': 'C'},
        'metric': {'datasets': "MIROC-ESM_r2i1p1; ERA-Interim's ts & HadISST's sst & Tropflux's sst; 's ",
         'method': 'The metric is the statistical value between the model and the observations',
         'name': 'SeasonalSstLonRmse',
         'units': 'C'}},
       'SeasonalTauxLonRmse': {'diagnostic': {'ERA-Interim': {'name': 'ERA-Interim',
          'nyears': 40,
          'time_period': ['1979-1-16 12:0:0.0', '2019-3-16 12:0:0.0']},
         'MIROC-ESM_r2i1p1': {'keyerror': None,
          'name': 'MIROC-ESM_r2i1p1',
          'nyears': 156,
          'time_period': ['1850-1-16 12:0:0.0', '2005-12-16 12:0:0.0']},
         'Tropflux': {'name': 'Tropflux',
          'nyears': 40,
          'time_period': ['1979-1-15 0:0:0.0', '2018-12-15 12:0:0.0']},
         'method': 'Zonal root mean square error of equatorial_pacific climatological taux STD, time series are linearly detrended, observations and model regridded to generic_1x1deg',
         'name': 'taux zonal seasonality RMSE',
         'ref': 'Using CDAT regridding and rms (uncentered and biased) calculation',
         'time_frequency': 'monthly',
         'units': '1e-3 N/m2'},
        'metric': {'datasets': "MIROC-ESM_r2i1p1; ERA-Interim's tauu & Tropflux's taux; 's ",
         'method': 'The metric is the statistical value between the model and the observations',
         'name': 'SeasonalTauxLonRmse',
         'units': '1e-3 N/m2'}}},
      'name': 'Metrics Collection for ENSO performance'},
     'value': {'BiasPrLatRmse': {'diagnostic': {'ERA-Interim': {'value': None,
         'value_error': None},
        'GPCPv2.3': {'value': None, 'value_error': None},
        'MIROC-ESM_r2i1p1': {'value': None, 'value_error': None}},
       'metric': {'ERA-Interim': {'value': 0.9043388867174413,
         'value_error': None},
        'GPCPv2.3': {'value': 0.9039534920436711, 'value_error': None}}},
      'BiasPrLonRmse': {'diagnostic': {'ERA-Interim': {'value': None,
         'value_error': None},
        'GPCPv2.3': {'value': None, 'value_error': None},
        'MIROC-ESM_r2i1p1': {'value': None, 'value_error': None}},
       'metric': {'ERA-Interim': {'value': 1.9289541995649453,
         'value_error': None},
        'GPCPv2.3': {'value': 1.2240418189561495, 'value_error': None}}},
      'BiasSstLonRmse': {'diagnostic': {'ERA-Interim': {'value': None,
         'value_error': None},
        'HadISST': {'value': None, 'value_error': None},
        'MIROC-ESM_r2i1p1': {'value': None, 'value_error': None},
        'Tropflux': {'value': None, 'value_error': None}},
       'metric': {'ERA-Interim': {'value': 2.215145653860411,
         'value_error': None},
        'HadISST': {'value': 2.051952837674739, 'value_error': None},
        'Tropflux': {'value': 2.2605419029042513, 'value_error': None}}},
      'BiasTauxLonRmse': {'diagnostic': {'ERA-Interim': {'value': None,
         'value_error': None},
        'MIROC-ESM_r2i1p1': {'value': None, 'value_error': None},
        'Tropflux': {'value': None, 'value_error': None}},
       'metric': {'ERA-Interim': {'value': 14.054208071040149,
         'value_error': None},
        'Tropflux': {'value': 13.962113612935116, 'value_error': None}}},
      'EnsoAmpl': {'diagnostic': {'ERA-Interim': {'value': 0.8989844997845644,
         'value_error': 0.14214193002531866},
        'HadISST': {'value': 0.7665787872085695,
         'value_error': 0.06238329697691264},
        'MIROC-ESM_r2i1p1': {'value': 0.4808345260554144,
         'value_error': 0.038497572471498785},
        'Tropflux': {'value': 0.9039789553693535,
         'value_error': 0.14293162279134272}},
       'metric': {'ERA-Interim': {'value': 46.513591038483625,
         'value_error': 12.739283769417394},
        'HadISST': {'value': 37.27526327641653,
         'value_error': 10.126464827239957},
        'Tropflux': {'value': 46.80910178280069,
         'value_error': 12.668899623204185}}},
      'EnsoDuration': {'diagnostic': {'ERA-Interim': {'value': 13.0,
         'value_error': None},
        'HadISST': {'value': 13.0, 'value_error': None},
        'MIROC-ESM_r2i1p1': {'value': 34.0, 'value_error': None},
        'Tropflux': {'value': 13.0, 'value_error': None}},
       'metric': {'ERA-Interim': {'value': 161.53846153846155,
         'value_error': None},
        'HadISST': {'value': 161.53846153846155, 'value_error': None},
        'Tropflux': {'value': 161.53846153846155, 'value_error': None}}},
      'EnsoSeasonality': {'diagnostic': {'ERA-Interim': {'value': 2.0466846866656914,
         'value_error': 0.6513411033995022},
        'HadISST': {'value': 1.6639865947361325,
         'value_error': 0.2712772451657809},
        'MIROC-ESM_r2i1p1': {'value': 1.104766810972681,
         'value_error': 0.17718914056341756},
        'Tropflux': {'value': 2.0532132553583624,
         'value_error': 0.6534187683977347}},
       'metric': {'ERA-Interim': {'value': 46.02164084334427,
         'value_error': 25.8355566021634},
        'HadISST': {'value': 33.607228900310346,
         'value_error': 21.472385782563173},
        'Tropflux': {'value': 46.1932749513709,
         'value_error': 25.753407704307584}}},
      'EnsoSstDiversity_2': {'diagnostic': {'ERA-Interim': {'value': 33.25,
         'value_error': None},
        'HadISST': {'value': 49.0, 'value_error': None},
        'MIROC-ESM_r2i1p1': {'value': 54.0, 'value_error': None},
        'Tropflux': {'value': 32.0, 'value_error': None}},
       'metric': {'ERA-Interim': {'value': 62.40601503759399,
         'value_error': None},
        'HadISST': {'value': 10.204081632653061, 'value_error': None},
        'Tropflux': {'value': 68.75, 'value_error': None}}},
      'EnsoSstLonRmse': {'diagnostic': {'ERA-Interim': {'value': None,
         'value_error': None},
        'HadISST': {'value': None, 'value_error': None},
        'MIROC-ESM_r2i1p1': {'value': None, 'value_error': None},
        'Tropflux': {'value': None, 'value_error': None}},
       'metric': {'ERA-Interim': {'value': 0.31857122742060123,
         'value_error': None},
        'HadISST': {'value': 0.33668213179553275, 'value_error': None},
        'Tropflux': {'value': 0.32003801403620213, 'value_error': None}}},
      'EnsoSstSkew': {'diagnostic': {'ERA-Interim': {'value': 0.39098111106809963,
         'value_error': 0.061819541653923164},
        'HadISST': {'value': 0.38989908235027515,
         'value_error': 0.03172953733021198},
        'MIROC-ESM_r2i1p1': {'value': 0.26451041531381264,
         'value_error': 0.021177782233208833},
        'Tropflux': {'value': 0.39744741059612115,
         'value_error': 0.06284195338099416}},
       'metric': {'ERA-Interim': {'value': 32.347009145477315,
         'value_error': 16.113451343605217},
        'HadISST': {'value': 32.159261899420585,
         'value_error': 10.952407042486948},
        'Tropflux': {'value': 33.44769439632774,
         'value_error': 15.851292376053582}}},
      'EnsoSstTsRmse': {'diagnostic': {'ERA-Interim': {'value': None,
         'value_error': None},
        'HadISST': {'value': None, 'value_error': None},
        'MIROC-ESM_r2i1p1': {'value': None, 'value_error': None},
        'Tropflux': {'value': None, 'value_error': None}},
       'metric': {'ERA-Interim': {'value': 0.31312485683787095,
         'value_error': None},
        'HadISST': {'value': 0.275612710897618, 'value_error': None},
        'Tropflux': {'value': 0.3102245454879532, 'value_error': None}}},
      'SeasonalPrLatRmse': {'diagnostic': {'ERA-Interim': {'value': None,
         'value_error': None},
        'GPCPv2.3': {'value': None, 'value_error': None},
        'MIROC-ESM_r2i1p1': {'value': None, 'value_error': None}},
       'metric': {'ERA-Interim': {'value': 0.4134320860616464,
         'value_error': None},
        'GPCPv2.3': {'value': 0.7183523451023194, 'value_error': None}}},
      'SeasonalPrLonRmse': {'diagnostic': {'ERA-Interim': {'value': None,
         'value_error': None},
        'GPCPv2.3': {'value': None, 'value_error': None},
        'MIROC-ESM_r2i1p1': {'value': None, 'value_error': None}},
       'metric': {'ERA-Interim': {'value': 0.9765282309794348,
         'value_error': None},
        'GPCPv2.3': {'value': 1.2370801074757365, 'value_error': None}}},
      'SeasonalSstLonRmse': {'diagnostic': {'ERA-Interim': {'value': None,
         'value_error': None},
        'HadISST': {'value': None, 'value_error': None},
        'MIROC-ESM_r2i1p1': {'value': None, 'value_error': None},
        'Tropflux': {'value': None, 'value_error': None}},
       'metric': {'ERA-Interim': {'value': 0.5895934830741099,
         'value_error': None},
        'HadISST': {'value': 0.6146882705299371, 'value_error': None},
        'Tropflux': {'value': 0.5857822902119183, 'value_error': None}}},
      'SeasonalTauxLonRmse': {'diagnostic': {'ERA-Interim': {'value': None,
         'value_error': None},
        'MIROC-ESM_r2i1p1': {'value': None, 'value_error': None},
        'Tropflux': {'value': None, 'value_error': None}},
       'metric': {'ERA-Interim': {'value': 5.594426687891195,
         'value_error': None},
        'Tropflux': {'value': 5.214304104724028, 'value_error': None}}}}},
    'r3i1p1': {'metadata': {'description_of_the_collection': 'Describe which science question this collection is about',
      'metrics': {'BiasPrLatRmse': {'diagnostic': {'ERA-Interim': {'name': 'ERA-Interim',
          'nyears': 40,
          'time_period': ['1979-1-16 12:0:0.0', '2019-3-16 12:0:0.0']},
         'GPCPv2.3': {'name': 'GPCPv2.3',
          'nyears': 41,
          'time_period': ['1979-1-1 0:0:0.0', '2019-7-1 0:0:0.0']},
         'MIROC-ESM_r3i1p1': {'keyerror': None,
          'name': 'MIROC-ESM_r3i1p1',
          'nyears': 156,
          'time_period': ['1850-1-16 12:0:0.0', '2005-12-16 12:0:0.0']},
         'method': 'Meridional root mean square error of nino3_LatExt pr, time series are linearly detrended, observations and model regridded to generic_1x1deg',
         'name': 'pr Meridional RMSE',
         'ref': 'Using CDAT regridding and rms (uncentered and biased) calculation',
         'time_frequency': 'monthly',
         'units': 'mm/day'},
        'metric': {'datasets': "MIROC-ESM_r3i1p1; ERA-Interim's pr & GPCPv2.3's precip; 's ",
         'method': 'The metric is the statistical value between the model and the observations',
         'name': 'BiasPrLatRmse',
         'units': 'mm/day'}},
       'BiasPrLonRmse': {'diagnostic': {'ERA-Interim': {'name': 'ERA-Interim',
          'nyears': 40,
          'time_period': ['1979-1-16 12:0:0.0', '2019-3-16 12:0:0.0']},
         'GPCPv2.3': {'name': 'GPCPv2.3',
          'nyears': 41,
          'time_period': ['1979-1-1 0:0:0.0', '2019-7-1 0:0:0.0']},
         'MIROC-ESM_r3i1p1': {'keyerror': None,
          'name': 'MIROC-ESM_r3i1p1',
          'nyears': 156,
          'time_period': ['1850-1-16 12:0:0.0', '2005-12-16 12:0:0.0']},
         'method': 'Zonal root mean square error of equatorial_pacific pr, time series are linearly detrended, observations and model regridded to generic_1x1deg',
         'name': 'pr Zonal RMSE',
         'ref': 'Using CDAT regridding and rms (uncentered and biased) calculation',
         'time_frequency': 'monthly',
         'units': 'mm/day'},
        'metric': {'datasets': "MIROC-ESM_r3i1p1; ERA-Interim's pr & GPCPv2.3's precip; 's ",
         'method': 'The metric is the statistical value between the model and the observations',
         'name': 'BiasPrLonRmse',
         'units': 'mm/day'}},
       'BiasSstLonRmse': {'diagnostic': {'ERA-Interim': {'name': 'ERA-Interim',
          'nyears': 40,
          'time_period': ['1979-1-16 12:0:0.0', '2019-3-16 12:0:0.0']},
         'HadISST': {'name': 'HadISST',
          'nyears': 151,
          'time_period': ['1870-1-16 11:59:59.5', '2020-10-16 12:0:0.0']},
         'MIROC-ESM_r3i1p1': {'keyerror': None,
          'name': 'MIROC-ESM_r3i1p1',
          'nyears': 156,
          'time_period': ['1850-1-16 12:0:0.0', '2005-12-16 12:0:0.0']},
         'Tropflux': {'name': 'Tropflux',
          'nyears': 40,
          'time_period': ['1979-1-15 0:0:0.0', '2018-12-15 12:0:0.0']},
         'method': 'Zonal root mean square error of equatorial_pacific sst, time series are linearly detrended, observations and model regridded to generic_1x1deg',
         'name': 'sst Zonal RMSE',
         'ref': 'Using CDAT regridding and rms (uncentered and biased) calculation',
         'time_frequency': 'monthly',
         'units': 'C'},
        'metric': {'datasets': "MIROC-ESM_r3i1p1; ERA-Interim's ts & HadISST's sst & Tropflux's sst; 's ",
         'method': 'The metric is the statistical value between the model and the observations',
         'name': 'BiasSstLonRmse',
         'units': 'C'}},
       'BiasTauxLonRmse': {'diagnostic': {'ERA-Interim': {'name': 'ERA-Interim',
          'nyears': 40,
          'time_period': ['1979-1-16 12:0:0.0', '2019-3-16 12:0:0.0']},
         'MIROC-ESM_r3i1p1': {'keyerror': None,
          'name': 'MIROC-ESM_r3i1p1',
          'nyears': 156,
          'time_period': ['1850-1-16 12:0:0.0', '2005-12-16 12:0:0.0']},
         'Tropflux': {'name': 'Tropflux',
          'nyears': 40,
          'time_period': ['1979-1-15 0:0:0.0', '2018-12-15 12:0:0.0']},
         'method': 'Zonal root mean square error of equatorial_pacific taux, time series are linearly detrended, observations and model regridded to generic_1x1deg',
         'name': 'taux Zonal RMSE',
         'ref': 'Using CDAT regridding and rms (uncentered and biased) calculation',
         'time_frequency': 'monthly',
         'units': '1e-3 N/m2'},
        'metric': {'datasets': "MIROC-ESM_r3i1p1; ERA-Interim's tauu & Tropflux's taux; 's ",
         'method': 'The metric is the statistical value between the model and the observations',
         'name': 'BiasTauxLonRmse',
         'units': '1e-3 N/m2'}},
       'EnsoAmpl': {'diagnostic': {'ERA-Interim': {'keyerror': None,
          'name': 'ERA-Interim',
          'nyears': 40,
          'time_period': ['1979-1-16 12:0:0.0', '2019-3-16 12:0:0.0']},
         'HadISST': {'keyerror': None,
          'name': 'HadISST',
          'nyears': 151,
          'time_period': ['1870-1-16 11:59:59.5', '2020-10-16 12:0:0.0']},
         'MIROC-ESM_r3i1p1': {'keyerror': None,
          'name': 'MIROC-ESM_r3i1p1',
          'nyears': 156,
          'time_period': ['1850-1-16 12:0:0.0', '2005-12-16 12:0:0.0']},
         'Tropflux': {'keyerror': None,
          'name': 'Tropflux',
          'nyears': 40,
          'time_period': ['1979-1-15 0:0:0.0', '2018-12-15 12:0:0.0']},
         'method': 'Standard deviation of nino3.4 sstA, time series are linearly detrended',
         'name': 'ENSO amplitude',
         'ref': 'Using CDAT regression calculation',
         'time_frequency': 'monthly',
         'units': 'C'},
        'metric': {'datasets': "MIROC-ESM_r3i1p1; ERA-Interim's ts & HadISST's sst & Tropflux's sst; 's ",
         'method': 'The metric is the absolute value of the relative difference between model and observations values (M = 100 * abs[[model-obs] / obs])',
         'name': 'EnsoAmpl',
         'units': '%'}},
       'EnsoDuration': {'diagnostic': {'ERA-Interim': {'keyerror': None,
          'name': 'ERA-Interim',
          'nyears': 40,
          'time_period': ['1979-1-16 12:0:0.0', '2019-3-16 12:0:0.0']},
         'HadISST': {'keyerror': None,
          'name': 'HadISST',
          'nyears': 151,
          'time_period': ['1870-1-16 11:59:59.5', '2020-10-16 12:0:0.0']},
         'MIROC-ESM_r3i1p1': {'keyerror': None,
          'name': 'MIROC-ESM_r3i1p1',
          'nyears': 156,
          'time_period': ['1850-1-16 12:0:0.0', '2005-12-16 12:0:0.0']},
         'Tropflux': {'keyerror': None,
          'name': 'Tropflux',
          'nyears': 40,
          'time_period': ['1979-1-15 0:0:0.0', '2018-12-15 12:0:0.0']},
         'method': 'nino3.4 SSTA during DEC regressed against nino3.4 SSTA during 6 years (centered on ENSO), the duration is the number of consecutive months during which the regression is above 0.25, time series are linearly detrended, smoothing using a triangle shaped window of 5 points',
         'name': 'ENSO Duration based on life cyle SSTA pattern',
         'ref': 'Using CDAT',
         'time_frequency': 'monthly',
         'units': 'months'},
        'metric': {'datasets': "MIROC-ESM_r3i1p1; ERA-Interim's ts & HadISST's sst & Tropflux's sst; 's ",
         'method': 'The metric is the absolute value of the relative difference between model and observations values (M = 100 * abs[[model-obs] / obs])',
         'name': 'EnsoDuration',
         'units': '%'}},
       'EnsoSeasonality': {'diagnostic': {'ERA-Interim': {'keyerror': None,
          'name': 'ERA-Interim',
          'nyears': 40,
          'time_period': ['1979-1-16 12:0:0.0', '2019-3-16 12:0:0.0']},
         'HadISST': {'keyerror': None,
          'name': 'HadISST',
          'nyears': 151,
          'time_period': ['1870-1-16 11:59:59.5', '2020-10-16 12:0:0.0']},
         'MIROC-ESM_r3i1p1': {'keyerror': None,
          'name': 'MIROC-ESM_r3i1p1',
          'nyears': 156,
          'time_period': ['1850-1-16 12:0:0.0', '2005-12-16 12:0:0.0']},
         'Tropflux': {'keyerror': None,
          'name': 'Tropflux',
          'nyears': 40,
          'time_period': ['1979-1-15 0:0:0.0', '2018-12-15 12:0:0.0']},
         'method': 'Ratio between NDJ and MAM standard deviation nino3.4 sstA, time series are linearly detrended',
         'name': 'ENSO seasonality',
         'ref': 'Using CDAT std dev calculation',
         'time_frequency': 'monthly',
         'units': 'C/C'},
        'metric': {'datasets': "MIROC-ESM_r3i1p1; ERA-Interim's ts & HadISST's sst & Tropflux's sst; 's ",
         'method': 'The metric is the absolute value of the relative difference between model and observations values (M = 100 * abs[[model-obs] / obs])',
         'name': 'EnsoSeasonality',
         'units': '%'}},
       'EnsoSstDiversity_2': {'diagnostic': {'ERA-Interim': {'keyerror': None,
          'name': 'ERA-Interim',
          'nyears': 40,
          'time_period': ['1979-1-16 12:0:0.0', '2019-3-16 12:0:0.0']},
         'HadISST': {'keyerror': None,
          'name': 'HadISST',
          'nyears': 151,
          'time_period': ['1870-1-16 11:59:59.5', '2020-10-16 12:0:0.0']},
         'MIROC-ESM_r3i1p1': {'keyerror': None,
          'name': 'MIROC-ESM_r3i1p1',
          'nyears': 156,
          'time_period': ['1850-1-16 12:0:0.0', '2005-12-16 12:0:0.0']},
         'Tropflux': {'keyerror': None,
          'name': 'Tropflux',
          'nyears': 40,
          'time_period': ['1979-1-15 0:0:0.0', '2018-12-15 12:0:0.0']},
         'method': 'Nino (Nina) events = nino3.4 sstA > 0.75 (< -0.75) during DEC, zonal SSTA (meridional averaged [-5.0 ; 5.0]), the zonal SSTA maximum (minimum) is located for each event, the diversity is the interquartile range (IQR = Q3 - Q1), time series are linearly detrended, smoothing using a triangle shaped window of 5 points',
         'name': 'ENSO Diversity (interquartile range)',
         'ref': 'Using CDAT regridding',
         'time_frequency': 'monthly',
         'units': 'long'},
        'metric': {'datasets': "MIROC-ESM_r3i1p1; ERA-Interim's ts & HadISST's sst & Tropflux's sst; 's ",
         'method': 'The metric is the absolute value of the relative difference between model and observations values (M = 100 * abs[[model-obs] / obs])',
         'name': 'EnsoSstDiversity',
         'units': '%'}},
       'EnsoSstLonRmse': {'diagnostic': {'ERA-Interim': {'name': 'ERA-Interim',
          'nyears': 40,
          'time_period': ['1979-1-16 12:0:0.0', '2019-3-16 12:0:0.0']},
         'HadISST': {'name': 'HadISST',
          'nyears': 151,
          'time_period': ['1870-1-16 11:59:59.5', '2020-10-16 12:0:0.0']},
         'MIROC-ESM_r3i1p1': {'keyerror': None,
          'name': 'MIROC-ESM_r3i1p1',
          'nyears': 156,
          'time_period': ['1850-1-16 12:0:0.0', '2005-12-16 12:0:0.0']},
         'Tropflux': {'name': 'Tropflux',
          'nyears': 40,
          'time_period': ['1979-1-15 0:0:0.0', '2018-12-15 12:0:0.0']},
         'method': 'nino3.4 SSTA during DEC regressed against equatorial_pacific SSTA, time series are linearly detrended, smoothing using a triangle shaped window of 5 points, observations and model regridded to generic_1x1deg',
         'name': 'ENSO Zonal SSTA pattern',
         'ref': 'Using CDAT regridding and rms (uncentered and biased) calculation',
         'time_frequency': 'monthly',
         'units': 'C/C'},
        'metric': {'datasets': "MIROC-ESM_r3i1p1; ERA-Interim's ts & HadISST's sst & Tropflux's sst; 's ",
         'method': 'The metric is the statistical value between the model and the observations',
         'name': 'EnsoSstLonRmse',
         'units': 'C/C'}},
       'EnsoSstSkew': {'diagnostic': {'ERA-Interim': {'keyerror': None,
          'name': 'ERA-Interim',
          'nyears': 40,
          'time_period': ['1979-1-16 12:0:0.0', '2019-3-16 12:0:0.0']},
         'HadISST': {'keyerror': None,
          'name': 'HadISST',
          'nyears': 151,
          'time_period': ['1870-1-16 11:59:59.5', '2020-10-16 12:0:0.0']},
         'MIROC-ESM_r3i1p1': {'keyerror': None,
          'name': 'MIROC-ESM_r3i1p1',
          'nyears': 156,
          'time_period': ['1850-1-16 12:0:0.0', '2005-12-16 12:0:0.0']},
         'Tropflux': {'keyerror': None,
          'name': 'Tropflux',
          'nyears': 40,
          'time_period': ['1979-1-15 0:0:0.0', '2018-12-15 12:0:0.0']},
         'method': 'Standard deviation of nino3.4 sstA, time series are linearly detrended',
         'name': 'ENSO skewness',
         'ref': 'Using CDAT regression calculation',
         'time_frequency': 'monthly',
         'units': 'C'},
        'metric': {'datasets': "MIROC-ESM_r3i1p1; ERA-Interim's ts & HadISST's sst & Tropflux's sst; 's ",
         'method': 'The metric is the absolute value of the relative difference between model and observations values (M = 100 * abs[[model-obs] / obs])',
         'name': 'EnsoSstSkew',
         'units': '%'}},
       'EnsoSstTsRmse': {'diagnostic': {'ERA-Interim': {'name': 'ERA-Interim',
          'nyears': 40,
          'time_period': ['1979-1-16 12:0:0.0', '2019-3-16 12:0:0.0']},
         'HadISST': {'name': 'HadISST',
          'nyears': 151,
          'time_period': ['1870-1-16 11:59:59.5', '2020-10-16 12:0:0.0']},
         'MIROC-ESM_r3i1p1': {'keyerror': None,
          'name': 'MIROC-ESM_r3i1p1',
          'nyears': 156,
          'time_period': ['1850-1-16 12:0:0.0', '2005-12-16 12:0:0.0']},
         'Tropflux': {'name': 'Tropflux',
          'nyears': 40,
          'time_period': ['1979-1-15 0:0:0.0', '2018-12-15 12:0:0.0']},
         'method': 'nino3.4 SSTA during DEC regressed against nino3.4 SSTA during 6 years (centered on ENSO), time series are linearly detrended, smoothing using a triangle shaped window of 5 points',
         'name': 'ENSO life cyle SSTA pattern',
         'ref': 'Using CDAT regridding and rms (uncentered and biased) calculation',
         'time_frequency': 'monthly',
         'units': 'C/C'},
        'metric': {'datasets': "MIROC-ESM_r3i1p1; ERA-Interim's ts & HadISST's sst & Tropflux's sst; 's ",
         'method': 'The metric is the statistical value between the model and the observations',
         'name': 'EnsoSstTsRmse',
         'units': 'C/C'}},
       'SeasonalPrLatRmse': {'diagnostic': {'ERA-Interim': {'name': 'ERA-Interim',
          'nyears': 40,
          'time_period': ['1979-1-16 12:0:0.0', '2019-3-16 12:0:0.0']},
         'GPCPv2.3': {'name': 'GPCPv2.3',
          'nyears': 41,
          'time_period': ['1979-1-1 0:0:0.0', '2019-7-1 0:0:0.0']},
         'MIROC-ESM_r3i1p1': {'keyerror': None,
          'name': 'MIROC-ESM_r3i1p1',
          'nyears': 156,
          'time_period': ['1850-1-16 12:0:0.0', '2005-12-16 12:0:0.0']},
         'method': 'Meridional root mean square error of nino3_LatExt climatological pr STD, time series are linearly detrended, observations and model regridded to generic_1x1deg',
         'name': 'pr meridional seasonality RMSE',
         'ref': 'Using CDAT regridding and rms (uncentered and biased) calculation',
         'time_frequency': 'monthly',
         'units': 'mm/day'},
        'metric': {'datasets': "MIROC-ESM_r3i1p1; ERA-Interim's pr & GPCPv2.3's precip; 's ",
         'method': 'The metric is the statistical value between the model and the observations',
         'name': 'SeasonalPrLatRmse',
         'units': 'mm/day'}},
       'SeasonalPrLonRmse': {'diagnostic': {'ERA-Interim': {'name': 'ERA-Interim',
          'nyears': 40,
          'time_period': ['1979-1-16 12:0:0.0', '2019-3-16 12:0:0.0']},
         'GPCPv2.3': {'name': 'GPCPv2.3',
          'nyears': 41,
          'time_period': ['1979-1-1 0:0:0.0', '2019-7-1 0:0:0.0']},
         'MIROC-ESM_r3i1p1': {'keyerror': None,
          'name': 'MIROC-ESM_r3i1p1',
          'nyears': 156,
          'time_period': ['1850-1-16 12:0:0.0', '2005-12-16 12:0:0.0']},
         'method': 'Zonal root mean square error of equatorial_pacific climatological pr STD, time series are linearly detrended, observations and model regridded to generic_1x1deg',
         'name': 'pr zonal seasonality RMSE',
         'ref': 'Using CDAT regridding and rms (uncentered and biased) calculation',
         'time_frequency': 'monthly',
         'units': 'mm/day'},
        'metric': {'datasets': "MIROC-ESM_r3i1p1; ERA-Interim's pr & GPCPv2.3's precip; 's ",
         'method': 'The metric is the statistical value between the model and the observations',
         'name': 'SeasonalPrLonRmse',
         'units': 'mm/day'}},
       'SeasonalSstLonRmse': {'diagnostic': {'ERA-Interim': {'name': 'ERA-Interim',
          'nyears': 40,
          'time_period': ['1979-1-16 12:0:0.0', '2019-3-16 12:0:0.0']},
         'HadISST': {'name': 'HadISST',
          'nyears': 151,
          'time_period': ['1870-1-16 11:59:59.5', '2020-10-16 12:0:0.0']},
         'MIROC-ESM_r3i1p1': {'keyerror': None,
          'name': 'MIROC-ESM_r3i1p1',
          'nyears': 156,
          'time_period': ['1850-1-16 12:0:0.0', '2005-12-16 12:0:0.0']},
         'Tropflux': {'name': 'Tropflux',
          'nyears': 40,
          'time_period': ['1979-1-15 0:0:0.0', '2018-12-15 12:0:0.0']},
         'method': 'Zonal root mean square error of equatorial_pacific climatological sst STD, time series are linearly detrended, observations and model regridded to generic_1x1deg',
         'name': 'sst zonal seasonality RMSE',
         'ref': 'Using CDAT regridding and rms (uncentered and biased) calculation',
         'time_frequency': 'monthly',
         'units': 'C'},
        'metric': {'datasets': "MIROC-ESM_r3i1p1; ERA-Interim's ts & HadISST's sst & Tropflux's sst; 's ",
         'method': 'The metric is the statistical value between the model and the observations',
         'name': 'SeasonalSstLonRmse',
         'units': 'C'}},
       'SeasonalTauxLonRmse': {'diagnostic': {'ERA-Interim': {'name': 'ERA-Interim',
          'nyears': 40,
          'time_period': ['1979-1-16 12:0:0.0', '2019-3-16 12:0:0.0']},
         'MIROC-ESM_r3i1p1': {'keyerror': None,
          'name': 'MIROC-ESM_r3i1p1',
          'nyears': 156,
          'time_period': ['1850-1-16 12:0:0.0', '2005-12-16 12:0:0.0']},
         'Tropflux': {'name': 'Tropflux',
          'nyears': 40,
          'time_period': ['1979-1-15 0:0:0.0', '2018-12-15 12:0:0.0']},
         'method': 'Zonal root mean square error of equatorial_pacific climatological taux STD, time series are linearly detrended, observations and model regridded to generic_1x1deg',
         'name': 'taux zonal seasonality RMSE',
         'ref': 'Using CDAT regridding and rms (uncentered and biased) calculation',
         'time_frequency': 'monthly',
         'units': '1e-3 N/m2'},
        'metric': {'datasets': "MIROC-ESM_r3i1p1; ERA-Interim's tauu & Tropflux's taux; 's ",
         'method': 'The metric is the statistical value between the model and the observations',
         'name': 'SeasonalTauxLonRmse',
         'units': '1e-3 N/m2'}}},
      'name': 'Metrics Collection for ENSO performance'},
     'value': {'BiasPrLatRmse': {'diagnostic': {'ERA-Interim': {'value': None,
         'value_error': None},
        'GPCPv2.3': {'value': None, 'value_error': None},
        'MIROC-ESM_r3i1p1': {'value': None, 'value_error': None}},
       'metric': {'ERA-Interim': {'value': 0.8783846800283595,
         'value_error': None},
        'GPCPv2.3': {'value': 0.9123648326984852, 'value_error': None}}},
      'BiasPrLonRmse': {'diagnostic': {'ERA-Interim': {'value': None,
         'value_error': None},
        'GPCPv2.3': {'value': None, 'value_error': None},
        'MIROC-ESM_r3i1p1': {'value': None, 'value_error': None}},
       'metric': {'ERA-Interim': {'value': 1.932880625119194,
         'value_error': None},
        'GPCPv2.3': {'value': 1.2341131781479875, 'value_error': None}}},
      'BiasSstLonRmse': {'diagnostic': {'ERA-Interim': {'value': None,
         'value_error': None},
        'HadISST': {'value': None, 'value_error': None},
        'MIROC-ESM_r3i1p1': {'value': None, 'value_error': None},
        'Tropflux': {'value': None, 'value_error': None}},
       'metric': {'ERA-Interim': {'value': 2.2059583311677557,
         'value_error': None},
        'HadISST': {'value': 2.0425493569448205, 'value_error': None},
        'Tropflux': {'value': 2.251297508454143, 'value_error': None}}},
      'BiasTauxLonRmse': {'diagnostic': {'ERA-Interim': {'value': None,
         'value_error': None},
        'MIROC-ESM_r3i1p1': {'value': None, 'value_error': None},
        'Tropflux': {'value': None, 'value_error': None}},
       'metric': {'ERA-Interim': {'value': 13.932882073357677,
         'value_error': None},
        'Tropflux': {'value': 13.845336261921586, 'value_error': None}}},
      'EnsoAmpl': {'diagnostic': {'ERA-Interim': {'value': 0.8989844997845644,
         'value_error': 0.14214193002531866},
        'HadISST': {'value': 0.7665787872085695,
         'value_error': 0.06238329697691264},
        'MIROC-ESM_r3i1p1': {'value': 0.5178001320436365,
         'value_error': 0.041457189592088925},
        'Tropflux': {'value': 0.9039789553693535,
         'value_error': 0.14293162279134272}},
       'metric': {'ERA-Interim': {'value': 42.4016618564921,
         'value_error': 13.71865467328249},
        'HadISST': {'value': 32.45310975416356,
         'value_error': 10.904967385964708},
        'Tropflux': {'value': 42.719890881522744,
         'value_error': 13.642859533316235}}},
      'EnsoDuration': {'diagnostic': {'ERA-Interim': {'value': 13.0,
         'value_error': None},
        'HadISST': {'value': 13.0, 'value_error': None},
        'MIROC-ESM_r3i1p1': {'value': 34.0, 'value_error': None},
        'Tropflux': {'value': 13.0, 'value_error': None}},
       'metric': {'ERA-Interim': {'value': 161.53846153846155,
         'value_error': None},
        'HadISST': {'value': 161.53846153846155, 'value_error': None},
        'Tropflux': {'value': 161.53846153846155, 'value_error': None}}},
      'EnsoSeasonality': {'diagnostic': {'ERA-Interim': {'value': 2.0466846866656914,
         'value_error': 0.6513411033995022},
        'HadISST': {'value': 1.6639865947361325,
         'value_error': 0.2712772451657809},
        'MIROC-ESM_r3i1p1': {'value': 1.2004488547961312,
         'value_error': 0.19253520178108},
        'Tropflux': {'value': 2.0532132553583624,
         'value_error': 0.6534187683977347}},
       'metric': {'ERA-Interim': {'value': 41.34666357660522,
         'value_error': 28.073131839271564},
        'HadISST': {'value': 27.85705975074319,
         'value_error': 23.33207394212361},
        'Tropflux': {'value': 41.533162633580986,
         'value_error': 27.98386815993733}}},
      'EnsoSstDiversity_2': {'diagnostic': {'ERA-Interim': {'value': 33.25,
         'value_error': None},
        'HadISST': {'value': 49.0, 'value_error': None},
        'MIROC-ESM_r3i1p1': {'value': 41.5, 'value_error': None},
        'Tropflux': {'value': 32.0, 'value_error': None}},
       'metric': {'ERA-Interim': {'value': 24.81203007518797,
         'value_error': None},
        'HadISST': {'value': 15.306122448979592, 'value_error': None},
        'Tropflux': {'value': 29.6875, 'value_error': None}}},
      'EnsoSstLonRmse': {'diagnostic': {'ERA-Interim': {'value': None,
         'value_error': None},
        'HadISST': {'value': None, 'value_error': None},
        'MIROC-ESM_r3i1p1': {'value': None, 'value_error': None},
        'Tropflux': {'value': None, 'value_error': None}},
       'metric': {'ERA-Interim': {'value': 0.30628889081413285,
         'value_error': None},
        'HadISST': {'value': 0.3243239685043028, 'value_error': None},
        'Tropflux': {'value': 0.3077842829891996, 'value_error': None}}},
      'EnsoSstSkew': {'diagnostic': {'ERA-Interim': {'value': 0.39098111106809963,
         'value_error': 0.061819541653923164},
        'HadISST': {'value': 0.38989908235027515,
         'value_error': 0.03172953733021198},
        'MIROC-ESM_r3i1p1': {'value': 0.1849184101191811,
         'value_error': 0.014805321808478204},
        'Tropflux': {'value': 0.39744741059612115,
         'value_error': 0.06284195338099416}},
       'metric': {'ERA-Interim': {'value': 52.704004136155646,
         'value_error': 11.264863806807769},
        'HadISST': {'value': 52.57275061933713,
         'value_error': 7.656793759414011},
        'Tropflux': {'value': 53.47348977772262,
         'value_error': 11.081589286518573}}},
      'EnsoSstTsRmse': {'diagnostic': {'ERA-Interim': {'value': None,
         'value_error': None},
        'HadISST': {'value': None, 'value_error': None},
        'MIROC-ESM_r3i1p1': {'value': None, 'value_error': None},
        'Tropflux': {'value': None, 'value_error': None}},
       'metric': {'ERA-Interim': {'value': 0.3157332785243688,
         'value_error': None},
        'HadISST': {'value': 0.27871465856041705, 'value_error': None},
        'Tropflux': {'value': 0.3117439143714144, 'value_error': None}}},
      'SeasonalPrLatRmse': {'diagnostic': {'ERA-Interim': {'value': None,
         'value_error': None},
        'GPCPv2.3': {'value': None, 'value_error': None},
        'MIROC-ESM_r3i1p1': {'value': None, 'value_error': None}},
       'metric': {'ERA-Interim': {'value': 0.4113123453385065,
         'value_error': None},
        'GPCPv2.3': {'value': 0.6968569543368003, 'value_error': None}}},
      'SeasonalPrLonRmse': {'diagnostic': {'ERA-Interim': {'value': None,
         'value_error': None},
        'GPCPv2.3': {'value': None, 'value_error': None},
        'MIROC-ESM_r3i1p1': {'value': None, 'value_error': None}},
       'metric': {'ERA-Interim': {'value': 0.9482339093116773,
         'value_error': None},
        'GPCPv2.3': {'value': 1.2112719703495523, 'value_error': None}}},
      'SeasonalSstLonRmse': {'diagnostic': {'ERA-Interim': {'value': None,
         'value_error': None},
        'HadISST': {'value': None, 'value_error': None},
        'MIROC-ESM_r3i1p1': {'value': None, 'value_error': None},
        'Tropflux': {'value': None, 'value_error': None}},
       'metric': {'ERA-Interim': {'value': 0.5805046941531341,
         'value_error': None},
        'HadISST': {'value': 0.6057291161201198, 'value_error': None},
        'Tropflux': {'value': 0.5765030996448324, 'value_error': None}}},
      'SeasonalTauxLonRmse': {'diagnostic': {'ERA-Interim': {'value': None,
         'value_error': None},
        'MIROC-ESM_r3i1p1': {'value': None, 'value_error': None},
        'Tropflux': {'value': None, 'value_error': None}},
       'metric': {'ERA-Interim': {'value': 5.527288099426085,
         'value_error': None},
        'Tropflux': {'value': 5.14716199173061, 'value_error': None}}}}}},
   'MIROC-ESM-CHEM': {'r1i1p1': {'metadata': {'description_of_the_collection': 'Describe which science question this collection is about',
      'metrics': {'BiasPrLatRmse': {'diagnostic': {'ERA-Interim': {'name': 'ERA-Interim',
          'nyears': 40,
          'time_period': ['1979-1-16 12:0:0.0', '2019-3-16 12:0:0.0']},
         'GPCPv2.3': {'name': 'GPCPv2.3',
          'nyears': 41,
          'time_period': ['1979-1-1 0:0:0.0', '2019-7-1 0:0:0.0']},
         'MIROC-ESM-CHEM_r1i1p1': {'keyerror': None,
          'name': 'MIROC-ESM-CHEM_r1i1p1',
          'nyears': 156,
          'time_period': ['1850-1-16 12:0:0.0', '2005-12-16 12:0:0.0']},
         'method': 'Meridional root mean square error of nino3_LatExt pr, time series are linearly detrended, observations and model regridded to generic_1x1deg',
         'name': 'pr Meridional RMSE',
         'ref': 'Using CDAT regridding and rms (uncentered and biased) calculation',
         'time_frequency': 'monthly',
         'units': 'mm/day'},
        'metric': {'datasets': "MIROC-ESM-CHEM_r1i1p1; ERA-Interim's pr & GPCPv2.3's precip; 's ",
         'method': 'The metric is the statistical value between the model and the observations',
         'name': 'BiasPrLatRmse',
         'units': 'mm/day'}},
       'BiasPrLonRmse': {'diagnostic': {'ERA-Interim': {'name': 'ERA-Interim',
          'nyears': 40,
          'time_period': ['1979-1-16 12:0:0.0', '2019-3-16 12:0:0.0']},
         'GPCPv2.3': {'name': 'GPCPv2.3',
          'nyears': 41,
          'time_period': ['1979-1-1 0:0:0.0', '2019-7-1 0:0:0.0']},
         'MIROC-ESM-CHEM_r1i1p1': {'keyerror': None,
          'name': 'MIROC-ESM-CHEM_r1i1p1',
          'nyears': 156,
          'time_period': ['1850-1-16 12:0:0.0', '2005-12-16 12:0:0.0']},
         'method': 'Zonal root mean square error of equatorial_pacific pr, time series are linearly detrended, observations and model regridded to generic_1x1deg',
         'name': 'pr Zonal RMSE',
         'ref': 'Using CDAT regridding and rms (uncentered and biased) calculation',
         'time_frequency': 'monthly',
         'units': 'mm/day'},
        'metric': {'datasets': "MIROC-ESM-CHEM_r1i1p1; ERA-Interim's pr & GPCPv2.3's precip; 's ",
         'method': 'The metric is the statistical value between the model and the observations',
         'name': 'BiasPrLonRmse',
         'units': 'mm/day'}},
       'BiasSstLonRmse': {'diagnostic': {'ERA-Interim': {'name': 'ERA-Interim',
          'nyears': 40,
          'time_period': ['1979-1-16 12:0:0.0', '2019-3-16 12:0:0.0']},
         'HadISST': {'name': 'HadISST',
          'nyears': 151,
          'time_period': ['1870-1-16 11:59:59.5', '2020-10-16 12:0:0.0']},
         'MIROC-ESM-CHEM_r1i1p1': {'keyerror': None,
          'name': 'MIROC-ESM-CHEM_r1i1p1',
          'nyears': 156,
          'time_period': ['1850-1-16 12:0:0.0', '2005-12-16 12:0:0.0']},
         'Tropflux': {'name': 'Tropflux',
          'nyears': 40,
          'time_period': ['1979-1-15 0:0:0.0', '2018-12-15 12:0:0.0']},
         'method': 'Zonal root mean square error of equatorial_pacific sst, time series are linearly detrended, observations and model regridded to generic_1x1deg',
         'name': 'sst Zonal RMSE',
         'ref': 'Using CDAT regridding and rms (uncentered and biased) calculation',
         'time_frequency': 'monthly',
         'units': 'C'},
        'metric': {'datasets': "MIROC-ESM-CHEM_r1i1p1; ERA-Interim's ts & HadISST's sst & Tropflux's sst; 's ",
         'method': 'The metric is the statistical value between the model and the observations',
         'name': 'BiasSstLonRmse',
         'units': 'C'}},
       'BiasTauxLonRmse': {'diagnostic': {'ERA-Interim': {'name': 'ERA-Interim',
          'nyears': 40,
          'time_period': ['1979-1-16 12:0:0.0', '2019-3-16 12:0:0.0']},
         'MIROC-ESM-CHEM_r1i1p1': {'keyerror': None,
          'name': 'MIROC-ESM-CHEM_r1i1p1',
          'nyears': 156,
          'time_period': ['1850-1-16 12:0:0.0', '2005-12-16 12:0:0.0']},
         'Tropflux': {'name': 'Tropflux',
          'nyears': 40,
          'time_period': ['1979-1-15 0:0:0.0', '2018-12-15 12:0:0.0']},
         'method': 'Zonal root mean square error of equatorial_pacific taux, time series are linearly detrended, observations and model regridded to generic_1x1deg',
         'name': 'taux Zonal RMSE',
         'ref': 'Using CDAT regridding and rms (uncentered and biased) calculation',
         'time_frequency': 'monthly',
         'units': '1e-3 N/m2'},
        'metric': {'datasets': "MIROC-ESM-CHEM_r1i1p1; ERA-Interim's tauu & Tropflux's taux; 's ",
         'method': 'The metric is the statistical value between the model and the observations',
         'name': 'BiasTauxLonRmse',
         'units': '1e-3 N/m2'}},
       'EnsoAmpl': {'diagnostic': {'ERA-Interim': {'keyerror': None,
          'name': 'ERA-Interim',
          'nyears': 40,
          'time_period': ['1979-1-16 12:0:0.0', '2019-3-16 12:0:0.0']},
         'HadISST': {'keyerror': None,
          'name': 'HadISST',
          'nyears': 151,
          'time_period': ['1870-1-16 11:59:59.5', '2020-10-16 12:0:0.0']},
         'MIROC-ESM-CHEM_r1i1p1': {'keyerror': None,
          'name': 'MIROC-ESM-CHEM_r1i1p1',
          'nyears': 156,
          'time_period': ['1850-1-16 12:0:0.0', '2005-12-16 12:0:0.0']},
         'Tropflux': {'keyerror': None,
          'name': 'Tropflux',
          'nyears': 40,
          'time_period': ['1979-1-15 0:0:0.0', '2018-12-15 12:0:0.0']},
         'method': 'Standard deviation of nino3.4 sstA, time series are linearly detrended',
         'name': 'ENSO amplitude',
         'ref': 'Using CDAT regression calculation',
         'time_frequency': 'monthly',
         'units': 'C'},
        'metric': {'datasets': "MIROC-ESM-CHEM_r1i1p1; ERA-Interim's ts & HadISST's sst & Tropflux's sst; 's ",
         'method': 'The metric is the absolute value of the relative difference between model and observations values (M = 100 * abs[[model-obs] / obs])',
         'name': 'EnsoAmpl',
         'units': '%'}},
       'EnsoDuration': {'diagnostic': {'ERA-Interim': {'keyerror': None,
          'name': 'ERA-Interim',
          'nyears': 40,
          'time_period': ['1979-1-16 12:0:0.0', '2019-3-16 12:0:0.0']},
         'HadISST': {'keyerror': None,
          'name': 'HadISST',
          'nyears': 151,
          'time_period': ['1870-1-16 11:59:59.5', '2020-10-16 12:0:0.0']},
         'MIROC-ESM-CHEM_r1i1p1': {'keyerror': None,
          'name': 'MIROC-ESM-CHEM_r1i1p1',
          'nyears': 156,
          'time_period': ['1850-1-16 12:0:0.0', '2005-12-16 12:0:0.0']},
         'Tropflux': {'keyerror': None,
          'name': 'Tropflux',
          'nyears': 40,
          'time_period': ['1979-1-15 0:0:0.0', '2018-12-15 12:0:0.0']},
         'method': 'nino3.4 SSTA during DEC regressed against nino3.4 SSTA during 6 years (centered on ENSO), the duration is the number of consecutive months during which the regression is above 0.25, time series are linearly detrended, smoothing using a triangle shaped window of 5 points',
         'name': 'ENSO Duration based on life cyle SSTA pattern',
         'ref': 'Using CDAT',
         'time_frequency': 'monthly',
         'units': 'months'},
        'metric': {'datasets': "MIROC-ESM-CHEM_r1i1p1; ERA-Interim's ts & HadISST's sst & Tropflux's sst; 's ",
         'method': 'The metric is the absolute value of the relative difference between model and observations values (M = 100 * abs[[model-obs] / obs])',
         'name': 'EnsoDuration',
         'units': '%'}},
       'EnsoSeasonality': {'diagnostic': {'ERA-Interim': {'keyerror': None,
          'name': 'ERA-Interim',
          'nyears': 40,
          'time_period': ['1979-1-16 12:0:0.0', '2019-3-16 12:0:0.0']},
         'HadISST': {'keyerror': None,
          'name': 'HadISST',
          'nyears': 151,
          'time_period': ['1870-1-16 11:59:59.5', '2020-10-16 12:0:0.0']},
         'MIROC-ESM-CHEM_r1i1p1': {'keyerror': None,
          'name': 'MIROC-ESM-CHEM_r1i1p1',
          'nyears': 156,
          'time_period': ['1850-1-16 12:0:0.0', '2005-12-16 12:0:0.0']},
         'Tropflux': {'keyerror': None,
          'name': 'Tropflux',
          'nyears': 40,
          'time_period': ['1979-1-15 0:0:0.0', '2018-12-15 12:0:0.0']},
         'method': 'Ratio between NDJ and MAM standard deviation nino3.4 sstA, time series are linearly detrended',
         'name': 'ENSO seasonality',
         'ref': 'Using CDAT std dev calculation',
         'time_frequency': 'monthly',
         'units': 'C/C'},
        'metric': {'datasets': "MIROC-ESM-CHEM_r1i1p1; ERA-Interim's ts & HadISST's sst & Tropflux's sst; 's ",
         'method': 'The metric is the absolute value of the relative difference between model and observations values (M = 100 * abs[[model-obs] / obs])',
         'name': 'EnsoSeasonality',
         'units': '%'}},
       'EnsoSstDiversity_2': {'diagnostic': {'ERA-Interim': {'keyerror': None,
          'name': 'ERA-Interim',
          'nyears': 40,
          'time_period': ['1979-1-16 12:0:0.0', '2019-3-16 12:0:0.0']},
         'HadISST': {'keyerror': None,
          'name': 'HadISST',
          'nyears': 151,
          'time_period': ['1870-1-16 11:59:59.5', '2020-10-16 12:0:0.0']},
         'MIROC-ESM-CHEM_r1i1p1': {'keyerror': None,
          'name': 'MIROC-ESM-CHEM_r1i1p1',
          'nyears': 156,
          'time_period': ['1850-1-16 12:0:0.0', '2005-12-16 12:0:0.0']},
         'Tropflux': {'keyerror': None,
          'name': 'Tropflux',
          'nyears': 40,
          'time_period': ['1979-1-15 0:0:0.0', '2018-12-15 12:0:0.0']},
         'method': 'Nino (Nina) events = nino3.4 sstA > 0.75 (< -0.75) during DEC, zonal SSTA (meridional averaged [-5.0 ; 5.0]), the zonal SSTA maximum (minimum) is located for each event, the diversity is the interquartile range (IQR = Q3 - Q1), time series are linearly detrended, smoothing using a triangle shaped window of 5 points',
         'name': 'ENSO Diversity (interquartile range)',
         'ref': 'Using CDAT regridding',
         'time_frequency': 'monthly',
         'units': 'long'},
        'metric': {'datasets': "MIROC-ESM-CHEM_r1i1p1; ERA-Interim's ts & HadISST's sst & Tropflux's sst; 's ",
         'method': 'The metric is the absolute value of the relative difference between model and observations values (M = 100 * abs[[model-obs] / obs])',
         'name': 'EnsoSstDiversity',
         'units': '%'}},
       'EnsoSstLonRmse': {'diagnostic': {'ERA-Interim': {'name': 'ERA-Interim',
          'nyears': 40,
          'time_period': ['1979-1-16 12:0:0.0', '2019-3-16 12:0:0.0']},
         'HadISST': {'name': 'HadISST',
          'nyears': 151,
          'time_period': ['1870-1-16 11:59:59.5', '2020-10-16 12:0:0.0']},
         'MIROC-ESM-CHEM_r1i1p1': {'keyerror': None,
          'name': 'MIROC-ESM-CHEM_r1i1p1',
          'nyears': 156,
          'time_period': ['1850-1-16 12:0:0.0', '2005-12-16 12:0:0.0']},
         'Tropflux': {'name': 'Tropflux',
          'nyears': 40,
          'time_period': ['1979-1-15 0:0:0.0', '2018-12-15 12:0:0.0']},
         'method': 'nino3.4 SSTA during DEC regressed against equatorial_pacific SSTA, time series are linearly detrended, smoothing using a triangle shaped window of 5 points, observations and model regridded to generic_1x1deg',
         'name': 'ENSO Zonal SSTA pattern',
         'ref': 'Using CDAT regridding and rms (uncentered and biased) calculation',
         'time_frequency': 'monthly',
         'units': 'C/C'},
        'metric': {'datasets': "MIROC-ESM-CHEM_r1i1p1; ERA-Interim's ts & HadISST's sst & Tropflux's sst; 's ",
         'method': 'The metric is the statistical value between the model and the observations',
         'name': 'EnsoSstLonRmse',
         'units': 'C/C'}},
       'EnsoSstSkew': {'diagnostic': {'ERA-Interim': {'keyerror': None,
          'name': 'ERA-Interim',
          'nyears': 40,
          'time_period': ['1979-1-16 12:0:0.0', '2019-3-16 12:0:0.0']},
         'HadISST': {'keyerror': None,
          'name': 'HadISST',
          'nyears': 151,
          'time_period': ['1870-1-16 11:59:59.5', '2020-10-16 12:0:0.0']},
         'MIROC-ESM-CHEM_r1i1p1': {'keyerror': None,
          'name': 'MIROC-ESM-CHEM_r1i1p1',
          'nyears': 156,
          'time_period': ['1850-1-16 12:0:0.0', '2005-12-16 12:0:0.0']},
         'Tropflux': {'keyerror': None,
          'name': 'Tropflux',
          'nyears': 40,
          'time_period': ['1979-1-15 0:0:0.0', '2018-12-15 12:0:0.0']},
         'method': 'Standard deviation of nino3.4 sstA, time series are linearly detrended',
         'name': 'ENSO skewness',
         'ref': 'Using CDAT regression calculation',
         'time_frequency': 'monthly',
         'units': 'C'},
        'metric': {'datasets': "MIROC-ESM-CHEM_r1i1p1; ERA-Interim's ts & HadISST's sst & Tropflux's sst; 's ",
         'method': 'The metric is the absolute value of the relative difference between model and observations values (M = 100 * abs[[model-obs] / obs])',
         'name': 'EnsoSstSkew',
         'units': '%'}},
       'EnsoSstTsRmse': {'diagnostic': {'ERA-Interim': {'name': 'ERA-Interim',
          'nyears': 40,
          'time_period': ['1979-1-16 12:0:0.0', '2019-3-16 12:0:0.0']},
         'HadISST': {'name': 'HadISST',
          'nyears': 151,
          'time_period': ['1870-1-16 11:59:59.5', '2020-10-16 12:0:0.0']},
         'MIROC-ESM-CHEM_r1i1p1': {'keyerror': None,
          'name': 'MIROC-ESM-CHEM_r1i1p1',
          'nyears': 156,
          'time_period': ['1850-1-16 12:0:0.0', '2005-12-16 12:0:0.0']},
         'Tropflux': {'name': 'Tropflux',
          'nyears': 40,
          'time_period': ['1979-1-15 0:0:0.0', '2018-12-15 12:0:0.0']},
         'method': 'nino3.4 SSTA during DEC regressed against nino3.4 SSTA during 6 years (centered on ENSO), time series are linearly detrended, smoothing using a triangle shaped window of 5 points',
         'name': 'ENSO life cyle SSTA pattern',
         'ref': 'Using CDAT regridding and rms (uncentered and biased) calculation',
         'time_frequency': 'monthly',
         'units': 'C/C'},
        'metric': {'datasets': "MIROC-ESM-CHEM_r1i1p1; ERA-Interim's ts & HadISST's sst & Tropflux's sst; 's ",
         'method': 'The metric is the statistical value between the model and the observations',
         'name': 'EnsoSstTsRmse',
         'units': 'C/C'}},
       'SeasonalPrLatRmse': {'diagnostic': {'ERA-Interim': {'name': 'ERA-Interim',
          'nyears': 40,
          'time_period': ['1979-1-16 12:0:0.0', '2019-3-16 12:0:0.0']},
         'GPCPv2.3': {'name': 'GPCPv2.3',
          'nyears': 41,
          'time_period': ['1979-1-1 0:0:0.0', '2019-7-1 0:0:0.0']},
         'MIROC-ESM-CHEM_r1i1p1': {'keyerror': None,
          'name': 'MIROC-ESM-CHEM_r1i1p1',
          'nyears': 156,
          'time_period': ['1850-1-16 12:0:0.0', '2005-12-16 12:0:0.0']},
         'method': 'Meridional root mean square error of nino3_LatExt climatological pr STD, time series are linearly detrended, observations and model regridded to generic_1x1deg',
         'name': 'pr meridional seasonality RMSE',
         'ref': 'Using CDAT regridding and rms (uncentered and biased) calculation',
         'time_frequency': 'monthly',
         'units': 'mm/day'},
        'metric': {'datasets': "MIROC-ESM-CHEM_r1i1p1; ERA-Interim's pr & GPCPv2.3's precip; 's ",
         'method': 'The metric is the statistical value between the model and the observations',
         'name': 'SeasonalPrLatRmse',
         'units': 'mm/day'}},
       'SeasonalPrLonRmse': {'diagnostic': {'ERA-Interim': {'name': 'ERA-Interim',
          'nyears': 40,
          'time_period': ['1979-1-16 12:0:0.0', '2019-3-16 12:0:0.0']},
         'GPCPv2.3': {'name': 'GPCPv2.3',
          'nyears': 41,
          'time_period': ['1979-1-1 0:0:0.0', '2019-7-1 0:0:0.0']},
         'MIROC-ESM-CHEM_r1i1p1': {'keyerror': None,
          'name': 'MIROC-ESM-CHEM_r1i1p1',
          'nyears': 156,
          'time_period': ['1850-1-16 12:0:0.0', '2005-12-16 12:0:0.0']},
         'method': 'Zonal root mean square error of equatorial_pacific climatological pr STD, time series are linearly detrended, observations and model regridded to generic_1x1deg',
         'name': 'pr zonal seasonality RMSE',
         'ref': 'Using CDAT regridding and rms (uncentered and biased) calculation',
         'time_frequency': 'monthly',
         'units': 'mm/day'},
        'metric': {'datasets': "MIROC-ESM-CHEM_r1i1p1; ERA-Interim's pr & GPCPv2.3's precip; 's ",
         'method': 'The metric is the statistical value between the model and the observations',
         'name': 'SeasonalPrLonRmse',
         'units': 'mm/day'}},
       'SeasonalSstLonRmse': {'diagnostic': {'ERA-Interim': {'name': 'ERA-Interim',
          'nyears': 40,
          'time_period': ['1979-1-16 12:0:0.0', '2019-3-16 12:0:0.0']},
         'HadISST': {'name': 'HadISST',
          'nyears': 151,
          'time_period': ['1870-1-16 11:59:59.5', '2020-10-16 12:0:0.0']},
         'MIROC-ESM-CHEM_r1i1p1': {'keyerror': None,
          'name': 'MIROC-ESM-CHEM_r1i1p1',
          'nyears': 156,
          'time_period': ['1850-1-16 12:0:0.0', '2005-12-16 12:0:0.0']},
         'Tropflux': {'name': 'Tropflux',
          'nyears': 40,
          'time_period': ['1979-1-15 0:0:0.0', '2018-12-15 12:0:0.0']},
         'method': 'Zonal root mean square error of equatorial_pacific climatological sst STD, time series are linearly detrended, observations and model regridded to generic_1x1deg',
         'name': 'sst zonal seasonality RMSE',
         'ref': 'Using CDAT regridding and rms (uncentered and biased) calculation',
         'time_frequency': 'monthly',
         'units': 'C'},
        'metric': {'datasets': "MIROC-ESM-CHEM_r1i1p1; ERA-Interim's ts & HadISST's sst & Tropflux's sst; 's ",
         'method': 'The metric is the statistical value between the model and the observations',
         'name': 'SeasonalSstLonRmse',
         'units': 'C'}},
       'SeasonalTauxLonRmse': {'diagnostic': {'ERA-Interim': {'name': 'ERA-Interim',
          'nyears': 40,
          'time_period': ['1979-1-16 12:0:0.0', '2019-3-16 12:0:0.0']},
         'MIROC-ESM-CHEM_r1i1p1': {'keyerror': None,
          'name': 'MIROC-ESM-CHEM_r1i1p1',
          'nyears': 156,
          'time_period': ['1850-1-16 12:0:0.0', '2005-12-16 12:0:0.0']},
         'Tropflux': {'name': 'Tropflux',
          'nyears': 40,
          'time_period': ['1979-1-15 0:0:0.0', '2018-12-15 12:0:0.0']},
         'method': 'Zonal root mean square error of equatorial_pacific climatological taux STD, time series are linearly detrended, observations and model regridded to generic_1x1deg',
         'name': 'taux zonal seasonality RMSE',
         'ref': 'Using CDAT regridding and rms (uncentered and biased) calculation',
         'time_frequency': 'monthly',
         'units': '1e-3 N/m2'},
        'metric': {'datasets': "MIROC-ESM-CHEM_r1i1p1; ERA-Interim's tauu & Tropflux's taux; 's ",
         'method': 'The metric is the statistical value between the model and the observations',
         'name': 'SeasonalTauxLonRmse',
         'units': '1e-3 N/m2'}}},
      'name': 'Metrics Collection for ENSO performance'},
     'value': {'BiasPrLatRmse': {'diagnostic': {'ERA-Interim': {'value': None,
         'value_error': None},
        'GPCPv2.3': {'value': None, 'value_error': None},
        'MIROC-ESM-CHEM_r1i1p1': {'value': None, 'value_error': None}},
       'metric': {'ERA-Interim': {'value': 0.9248537898842214,
         'value_error': None},
        'GPCPv2.3': {'value': 0.9119492370892324, 'value_error': None}}},
      'BiasPrLonRmse': {'diagnostic': {'ERA-Interim': {'value': None,
         'value_error': None},
        'GPCPv2.3': {'value': None, 'value_error': None},
        'MIROC-ESM-CHEM_r1i1p1': {'value': None, 'value_error': None}},
       'metric': {'ERA-Interim': {'value': 1.8739218003398155,
         'value_error': None},
        'GPCPv2.3': {'value': 1.1920780591590965, 'value_error': None}}},
      'BiasSstLonRmse': {'diagnostic': {'ERA-Interim': {'value': None,
         'value_error': None},
        'HadISST': {'value': None, 'value_error': None},
        'MIROC-ESM-CHEM_r1i1p1': {'value': None, 'value_error': None},
        'Tropflux': {'value': None, 'value_error': None}},
       'metric': {'ERA-Interim': {'value': 2.143420419394625,
         'value_error': None},
        'HadISST': {'value': 1.982594427770493, 'value_error': None},
        'Tropflux': {'value': 2.1886836534893757, 'value_error': None}}},
      'BiasTauxLonRmse': {'diagnostic': {'ERA-Interim': {'value': None,
         'value_error': None},
        'MIROC-ESM-CHEM_r1i1p1': {'value': None, 'value_error': None},
        'Tropflux': {'value': None, 'value_error': None}},
       'metric': {'ERA-Interim': {'value': 13.837032561722019,
         'value_error': None},
        'Tropflux': {'value': 13.727784022107254, 'value_error': None}}},
      'EnsoAmpl': {'diagnostic': {'ERA-Interim': {'value': 0.8989844997845644,
         'value_error': 0.14214193002531866},
        'HadISST': {'value': 0.7665787872085695,
         'value_error': 0.06238329697691264},
        'MIROC-ESM-CHEM_r1i1p1': {'value': 0.49185921059442195,
         'value_error': 0.03938025366225617},
        'Tropflux': {'value': 0.9039789553693535,
         'value_error': 0.14293162279134272}},
       'metric': {'ERA-Interim': {'value': 45.28724235931846,
         'value_error': 13.031372995960458},
        'HadISST': {'value': 35.83709609478175,
         'value_error': 10.358646740488863},
        'Tropflux': {'value': 45.58952864190793,
         'value_error': 12.959375065864226}}},
      'EnsoDuration': {'diagnostic': {'ERA-Interim': {'value': 13.0,
         'value_error': None},
        'HadISST': {'value': 13.0, 'value_error': None},
        'MIROC-ESM-CHEM_r1i1p1': {'value': 26.0, 'value_error': None},
        'Tropflux': {'value': 13.0, 'value_error': None}},
       'metric': {'ERA-Interim': {'value': 100.0, 'value_error': None},
        'HadISST': {'value': 100.0, 'value_error': None},
        'Tropflux': {'value': 100.0, 'value_error': None}}},
      'EnsoSeasonality': {'diagnostic': {'ERA-Interim': {'value': 2.0466846866656914,
         'value_error': 0.6513411033995022},
        'HadISST': {'value': 1.6639865947361325,
         'value_error': 0.2712772451657809},
        'MIROC-ESM-CHEM_r1i1p1': {'value': 1.207231667786526,
         'value_error': 0.19362307009178015},
        'Tropflux': {'value': 2.0532132553583624,
         'value_error': 0.6534187683977347}},
       'metric': {'ERA-Interim': {'value': 41.015258693645706,
         'value_error': 28.231751511038272},
        'HadISST': {'value': 27.449435493922152,
         'value_error': 23.463905542941266},
        'Tropflux': {'value': 41.2028115133214,
         'value_error': 28.141983471321392}}},
      'EnsoSstDiversity_2': {'diagnostic': {'ERA-Interim': {'value': 33.25,
         'value_error': None},
        'HadISST': {'value': 49.0, 'value_error': None},
        'MIROC-ESM-CHEM_r1i1p1': {'value': 30.0, 'value_error': None},
        'Tropflux': {'value': 32.0, 'value_error': None}},
       'metric': {'ERA-Interim': {'value': 9.774436090225564,
         'value_error': None},
        'HadISST': {'value': 38.775510204081634, 'value_error': None},
        'Tropflux': {'value': 6.25, 'value_error': None}}},
      'EnsoSstLonRmse': {'diagnostic': {'ERA-Interim': {'value': None,
         'value_error': None},
        'HadISST': {'value': None, 'value_error': None},
        'MIROC-ESM-CHEM_r1i1p1': {'value': None, 'value_error': None},
        'Tropflux': {'value': None, 'value_error': None}},
       'metric': {'ERA-Interim': {'value': 0.30856035623585426,
         'value_error': None},
        'HadISST': {'value': 0.32718518985871814, 'value_error': None},
        'Tropflux': {'value': 0.3099367134847116, 'value_error': None}}},
      'EnsoSstSkew': {'diagnostic': {'ERA-Interim': {'value': 0.39098111106809963,
         'value_error': 0.061819541653923164},
        'HadISST': {'value': 0.38989908235027515,
         'value_error': 0.03172953733021198},
        'MIROC-ESM-CHEM_r1i1p1': {'value': 0.17095557978606568,
         'value_error': 0.013687400686910486},
        'Tropflux': {'value': 0.39744741059612115,
         'value_error': 0.06284195338099416}},
       'metric': {'ERA-Interim': {'value': 56.275233010862955,
         'value_error': 10.41427579905486},
        'HadISST': {'value': 56.15389019241557,
         'value_error': 7.078644119854324},
        'Tropflux': {'value': 56.98661628474222,
         'value_error': 10.244839982167516}}},
      'EnsoSstTsRmse': {'diagnostic': {'ERA-Interim': {'value': None,
         'value_error': None},
        'HadISST': {'value': None, 'value_error': None},
        'MIROC-ESM-CHEM_r1i1p1': {'value': None, 'value_error': None},
        'Tropflux': {'value': None, 'value_error': None}},
       'metric': {'ERA-Interim': {'value': 0.22396154221406514,
         'value_error': None},
        'HadISST': {'value': 0.18554257834416996, 'value_error': None},
        'Tropflux': {'value': 0.22000567708824295, 'value_error': None}}},
      'SeasonalPrLatRmse': {'diagnostic': {'ERA-Interim': {'value': None,
         'value_error': None},
        'GPCPv2.3': {'value': None, 'value_error': None},
        'MIROC-ESM-CHEM_r1i1p1': {'value': None, 'value_error': None}},
       'metric': {'ERA-Interim': {'value': 0.4260509047465993,
         'value_error': None},
        'GPCPv2.3': {'value': 0.7106413524384082, 'value_error': None}}},
      'SeasonalPrLonRmse': {'diagnostic': {'ERA-Interim': {'value': None,
         'value_error': None},
        'GPCPv2.3': {'value': None, 'value_error': None},
        'MIROC-ESM-CHEM_r1i1p1': {'value': None, 'value_error': None}},
       'metric': {'ERA-Interim': {'value': 0.9775756875652791,
         'value_error': None},
        'GPCPv2.3': {'value': 1.2325704139765468, 'value_error': None}}},
      'SeasonalSstLonRmse': {'diagnostic': {'ERA-Interim': {'value': None,
         'value_error': None},
        'HadISST': {'value': None, 'value_error': None},
        'MIROC-ESM-CHEM_r1i1p1': {'value': None, 'value_error': None},
        'Tropflux': {'value': None, 'value_error': None}},
       'metric': {'ERA-Interim': {'value': 0.5890345332808851,
         'value_error': None},
        'HadISST': {'value': 0.614146638730407, 'value_error': None},
        'Tropflux': {'value': 0.5855032434951192, 'value_error': None}}},
      'SeasonalTauxLonRmse': {'diagnostic': {'ERA-Interim': {'value': None,
         'value_error': None},
        'MIROC-ESM-CHEM_r1i1p1': {'value': None, 'value_error': None},
        'Tropflux': {'value': None, 'value_error': None}},
       'metric': {'ERA-Interim': {'value': 5.461007532460952,
         'value_error': None},
        'Tropflux': {'value': 5.092107827596136, 'value_error': None}}}}}},
   'MIROC4h': {'r1i1p1': {'metadata': {'description_of_the_collection': 'Describe which science question this collection is about',
      'metrics': {'BiasPrLatRmse': {'diagnostic': {'ERA-Interim': {'name': 'ERA-Interim',
          'nyears': 40,
          'time_period': ['1979-1-16 12:0:0.0', '2019-3-16 12:0:0.0']},
         'GPCPv2.3': {'name': 'GPCPv2.3',
          'nyears': 41,
          'time_period': ['1979-1-1 0:0:0.0', '2019-7-1 0:0:0.0']},
         'MIROC4h_r1i1p1': {'keyerror': None,
          'name': 'MIROC4h_r1i1p1',
          'nyears': 56,
          'time_period': ['1950-1-16 12:0:0.0', '2005-12-16 12:0:0.0']},
         'method': 'Meridional root mean square error of nino3_LatExt pr, time series are linearly detrended, observations and model regridded to generic_1x1deg',
         'name': 'pr Meridional RMSE',
         'ref': 'Using CDAT regridding and rms (uncentered and biased) calculation',
         'time_frequency': 'monthly',
         'units': 'mm/day'},
        'metric': {'datasets': "MIROC4h_r1i1p1; ERA-Interim's pr & GPCPv2.3's precip; 's ",
         'method': 'The metric is the statistical value between the model and the observations',
         'name': 'BiasPrLatRmse',
         'units': 'mm/day'}},
       'BiasPrLonRmse': {'diagnostic': {'ERA-Interim': {'name': 'ERA-Interim',
          'nyears': 40,
          'time_period': ['1979-1-16 12:0:0.0', '2019-3-16 12:0:0.0']},
         'GPCPv2.3': {'name': 'GPCPv2.3',
          'nyears': 41,
          'time_period': ['1979-1-1 0:0:0.0', '2019-7-1 0:0:0.0']},
         'MIROC4h_r1i1p1': {'keyerror': None,
          'name': 'MIROC4h_r1i1p1',
          'nyears': 56,
          'time_period': ['1950-1-16 12:0:0.0', '2005-12-16 12:0:0.0']},
         'method': 'Zonal root mean square error of equatorial_pacific pr, time series are linearly detrended, observations and model regridded to generic_1x1deg',
         'name': 'pr Zonal RMSE',
         'ref': 'Using CDAT regridding and rms (uncentered and biased) calculation',
         'time_frequency': 'monthly',
         'units': 'mm/day'},
        'metric': {'datasets': "MIROC4h_r1i1p1; ERA-Interim's pr & GPCPv2.3's precip; 's ",
         'method': 'The metric is the statistical value between the model and the observations',
         'name': 'BiasPrLonRmse',
         'units': 'mm/day'}},
       'BiasSstLonRmse': {'diagnostic': {'ERA-Interim': {'name': 'ERA-Interim',
          'nyears': 40,
          'time_period': ['1979-1-16 12:0:0.0', '2019-3-16 12:0:0.0']},
         'HadISST': {'name': 'HadISST',
          'nyears': 151,
          'time_period': ['1870-1-16 11:59:59.5', '2020-10-16 12:0:0.0']},
         'MIROC4h_r1i1p1': {'keyerror': None,
          'name': 'MIROC4h_r1i1p1',
          'nyears': 56,
          'time_period': ['1950-1-16 12:0:0.0', '2005-12-16 12:0:0.0']},
         'Tropflux': {'name': 'Tropflux',
          'nyears': 40,
          'time_period': ['1979-1-15 0:0:0.0', '2018-12-15 12:0:0.0']},
         'method': 'Zonal root mean square error of equatorial_pacific sst, time series are linearly detrended, observations and model regridded to generic_1x1deg',
         'name': 'sst Zonal RMSE',
         'ref': 'Using CDAT regridding and rms (uncentered and biased) calculation',
         'time_frequency': 'monthly',
         'units': 'C'},
        'metric': {'datasets': "MIROC4h_r1i1p1; ERA-Interim's ts & HadISST's sst & Tropflux's sst; 's ",
         'method': 'The metric is the statistical value between the model and the observations',
         'name': 'BiasSstLonRmse',
         'units': 'C'}},
       'BiasTauxLonRmse': {'diagnostic': {'ERA-Interim': {'name': 'ERA-Interim',
          'nyears': 40,
          'time_period': ['1979-1-16 12:0:0.0', '2019-3-16 12:0:0.0']},
         'MIROC4h_r1i1p1': {'keyerror': None,
          'name': 'MIROC4h_r1i1p1',
          'nyears': 56,
          'time_period': ['1950-1-16 12:0:0.0', '2005-12-16 12:0:0.0']},
         'Tropflux': {'name': 'Tropflux',
          'nyears': 40,
          'time_period': ['1979-1-15 0:0:0.0', '2018-12-15 12:0:0.0']},
         'method': 'Zonal root mean square error of equatorial_pacific taux, time series are linearly detrended, observations and model regridded to generic_1x1deg',
         'name': 'taux Zonal RMSE',
         'ref': 'Using CDAT regridding and rms (uncentered and biased) calculation',
         'time_frequency': 'monthly',
         'units': '1e-3 N/m2'},
        'metric': {'datasets': "MIROC4h_r1i1p1; ERA-Interim's tauu & Tropflux's taux; 's ",
         'method': 'The metric is the statistical value between the model and the observations',
         'name': 'BiasTauxLonRmse',
         'units': '1e-3 N/m2'}},
       'EnsoAmpl': {'diagnostic': {'ERA-Interim': {'keyerror': None,
          'name': 'ERA-Interim',
          'nyears': 40,
          'time_period': ['1979-1-16 12:0:0.0', '2019-3-16 12:0:0.0']},
         'HadISST': {'keyerror': None,
          'name': 'HadISST',
          'nyears': 151,
          'time_period': ['1870-1-16 11:59:59.5', '2020-10-16 12:0:0.0']},
         'MIROC4h_r1i1p1': {'keyerror': None,
          'name': 'MIROC4h_r1i1p1',
          'nyears': 56,
          'time_period': ['1950-1-16 12:0:0.0', '2005-12-16 12:0:0.0']},
         'Tropflux': {'keyerror': None,
          'name': 'Tropflux',
          'nyears': 40,
          'time_period': ['1979-1-15 0:0:0.0', '2018-12-15 12:0:0.0']},
         'method': 'Standard deviation of nino3.4 sstA, time series are linearly detrended',
         'name': 'ENSO amplitude',
         'ref': 'Using CDAT regression calculation',
         'time_frequency': 'monthly',
         'units': 'C'},
        'metric': {'datasets': "MIROC4h_r1i1p1; ERA-Interim's ts & HadISST's sst & Tropflux's sst; 's ",
         'method': 'The metric is the absolute value of the relative difference between model and observations values (M = 100 * abs[[model-obs] / obs])',
         'name': 'EnsoAmpl',
         'units': '%'}},
       'EnsoDuration': {'diagnostic': {'ERA-Interim': {'keyerror': None,
          'name': 'ERA-Interim',
          'nyears': 40,
          'time_period': ['1979-1-16 12:0:0.0', '2019-3-16 12:0:0.0']},
         'HadISST': {'keyerror': None,
          'name': 'HadISST',
          'nyears': 151,
          'time_period': ['1870-1-16 11:59:59.5', '2020-10-16 12:0:0.0']},
         'MIROC4h_r1i1p1': {'keyerror': None,
          'name': 'MIROC4h_r1i1p1',
          'nyears': 56,
          'time_period': ['1950-1-16 12:0:0.0', '2005-12-16 12:0:0.0']},
         'Tropflux': {'keyerror': None,
          'name': 'Tropflux',
          'nyears': 40,
          'time_period': ['1979-1-15 0:0:0.0', '2018-12-15 12:0:0.0']},
         'method': 'nino3.4 SSTA during DEC regressed against nino3.4 SSTA during 6 years (centered on ENSO), the duration is the number of consecutive months during which the regression is above 0.25, time series are linearly detrended, smoothing using a triangle shaped window of 5 points',
         'name': 'ENSO Duration based on life cyle SSTA pattern',
         'ref': 'Using CDAT',
         'time_frequency': 'monthly',
         'units': 'months'},
        'metric': {'datasets': "MIROC4h_r1i1p1; ERA-Interim's ts & HadISST's sst & Tropflux's sst; 's ",
         'method': 'The metric is the absolute value of the relative difference between model and observations values (M = 100 * abs[[model-obs] / obs])',
         'name': 'EnsoDuration',
         'units': '%'}},
       'EnsoSeasonality': {'diagnostic': {'ERA-Interim': {'keyerror': None,
          'name': 'ERA-Interim',
          'nyears': 40,
          'time_period': ['1979-1-16 12:0:0.0', '2019-3-16 12:0:0.0']},
         'HadISST': {'keyerror': None,
          'name': 'HadISST',
          'nyears': 151,
          'time_period': ['1870-1-16 11:59:59.5', '2020-10-16 12:0:0.0']},
         'MIROC4h_r1i1p1': {'keyerror': None,
          'name': 'MIROC4h_r1i1p1',
          'nyears': 56,
          'time_period': ['1950-1-16 12:0:0.0', '2005-12-16 12:0:0.0']},
         'Tropflux': {'keyerror': None,
          'name': 'Tropflux',
          'nyears': 40,
          'time_period': ['1979-1-15 0:0:0.0', '2018-12-15 12:0:0.0']},
         'method': 'Ratio between NDJ and MAM standard deviation nino3.4 sstA, time series are linearly detrended',
         'name': 'ENSO seasonality',
         'ref': 'Using CDAT std dev calculation',
         'time_frequency': 'monthly',
         'units': 'C/C'},
        'metric': {'datasets': "MIROC4h_r1i1p1; ERA-Interim's ts & HadISST's sst & Tropflux's sst; 's ",
         'method': 'The metric is the absolute value of the relative difference between model and observations values (M = 100 * abs[[model-obs] / obs])',
         'name': 'EnsoSeasonality',
         'units': '%'}},
       'EnsoSstDiversity_2': {'diagnostic': {'ERA-Interim': {'keyerror': None,
          'name': 'ERA-Interim',
          'nyears': 40,
          'time_period': ['1979-1-16 12:0:0.0', '2019-3-16 12:0:0.0']},
         'HadISST': {'keyerror': None,
          'name': 'HadISST',
          'nyears': 151,
          'time_period': ['1870-1-16 11:59:59.5', '2020-10-16 12:0:0.0']},
         'MIROC4h_r1i1p1': {'keyerror': None,
          'name': 'MIROC4h_r1i1p1',
          'nyears': 56,
          'time_period': ['1950-1-16 12:0:0.0', '2005-12-16 12:0:0.0']},
         'Tropflux': {'keyerror': None,
          'name': 'Tropflux',
          'nyears': 40,
          'time_period': ['1979-1-15 0:0:0.0', '2018-12-15 12:0:0.0']},
         'method': 'Nino (Nina) events = nino3.4 sstA > 0.75 (< -0.75) during DEC, zonal SSTA (meridional averaged [-5.0 ; 5.0]), the zonal SSTA maximum (minimum) is located for each event, the diversity is the interquartile range (IQR = Q3 - Q1), time series are linearly detrended, smoothing using a triangle shaped window of 5 points',
         'name': 'ENSO Diversity (interquartile range)',
         'ref': 'Using CDAT regridding',
         'time_frequency': 'monthly',
         'units': 'long'},
        'metric': {'datasets': "MIROC4h_r1i1p1; ERA-Interim's ts & HadISST's sst & Tropflux's sst; 's ",
         'method': 'The metric is the absolute value of the relative difference between model and observations values (M = 100 * abs[[model-obs] / obs])',
         'name': 'EnsoSstDiversity',
         'units': '%'}},
       'EnsoSstLonRmse': {'diagnostic': {'ERA-Interim': {'name': 'ERA-Interim',
          'nyears': 40,
          'time_period': ['1979-1-16 12:0:0.0', '2019-3-16 12:0:0.0']},
         'HadISST': {'name': 'HadISST',
          'nyears': 151,
          'time_period': ['1870-1-16 11:59:59.5', '2020-10-16 12:0:0.0']},
         'MIROC4h_r1i1p1': {'keyerror': None,
          'name': 'MIROC4h_r1i1p1',
          'nyears': 56,
          'time_period': ['1950-1-16 12:0:0.0', '2005-12-16 12:0:0.0']},
         'Tropflux': {'name': 'Tropflux',
          'nyears': 40,
          'time_period': ['1979-1-15 0:0:0.0', '2018-12-15 12:0:0.0']},
         'method': 'nino3.4 SSTA during DEC regressed against equatorial_pacific SSTA, time series are linearly detrended, smoothing using a triangle shaped window of 5 points, observations and model regridded to generic_1x1deg',
         'name': 'ENSO Zonal SSTA pattern',
         'ref': 'Using CDAT regridding and rms (uncentered and biased) calculation',
         'time_frequency': 'monthly',
         'units': 'C/C'},
        'metric': {'datasets': "MIROC4h_r1i1p1; ERA-Interim's ts & HadISST's sst & Tropflux's sst; 's ",
         'method': 'The metric is the statistical value between the model and the observations',
         'name': 'EnsoSstLonRmse',
         'units': 'C/C'}},
       'EnsoSstSkew': {'diagnostic': {'ERA-Interim': {'keyerror': None,
          'name': 'ERA-Interim',
          'nyears': 40,
          'time_period': ['1979-1-16 12:0:0.0', '2019-3-16 12:0:0.0']},
         'HadISST': {'keyerror': None,
          'name': 'HadISST',
          'nyears': 151,
          'time_period': ['1870-1-16 11:59:59.5', '2020-10-16 12:0:0.0']},
         'MIROC4h_r1i1p1': {'keyerror': None,
          'name': 'MIROC4h_r1i1p1',
          'nyears': 56,
          'time_period': ['1950-1-16 12:0:0.0', '2005-12-16 12:0:0.0']},
         'Tropflux': {'keyerror': None,
          'name': 'Tropflux',
          'nyears': 40,
          'time_period': ['1979-1-15 0:0:0.0', '2018-12-15 12:0:0.0']},
         'method': 'Standard deviation of nino3.4 sstA, time series are linearly detrended',
         'name': 'ENSO skewness',
         'ref': 'Using CDAT regression calculation',
         'time_frequency': 'monthly',
         'units': 'C'},
        'metric': {'datasets': "MIROC4h_r1i1p1; ERA-Interim's ts & HadISST's sst & Tropflux's sst; 's ",
         'method': 'The metric is the absolute value of the relative difference between model and observations values (M = 100 * abs[[model-obs] / obs])',
         'name': 'EnsoSstSkew',
         'units': '%'}},
       'EnsoSstTsRmse': {'diagnostic': {'ERA-Interim': {'name': 'ERA-Interim',
          'nyears': 40,
          'time_period': ['1979-1-16 12:0:0.0', '2019-3-16 12:0:0.0']},
         'HadISST': {'name': 'HadISST',
          'nyears': 151,
          'time_period': ['1870-1-16 11:59:59.5', '2020-10-16 12:0:0.0']},
         'MIROC4h_r1i1p1': {'keyerror': None,
          'name': 'MIROC4h_r1i1p1',
          'nyears': 56,
          'time_period': ['1950-1-16 12:0:0.0', '2005-12-16 12:0:0.0']},
         'Tropflux': {'name': 'Tropflux',
          'nyears': 40,
          'time_period': ['1979-1-15 0:0:0.0', '2018-12-15 12:0:0.0']},
         'method': 'nino3.4 SSTA during DEC regressed against nino3.4 SSTA during 6 years (centered on ENSO), time series are linearly detrended, smoothing using a triangle shaped window of 5 points',
         'name': 'ENSO life cyle SSTA pattern',
         'ref': 'Using CDAT regridding and rms (uncentered and biased) calculation',
         'time_frequency': 'monthly',
         'units': 'C/C'},
        'metric': {'datasets': "MIROC4h_r1i1p1; ERA-Interim's ts & HadISST's sst & Tropflux's sst; 's ",
         'method': 'The metric is the statistical value between the model and the observations',
         'name': 'EnsoSstTsRmse',
         'units': 'C/C'}},
       'SeasonalPrLatRmse': {'diagnostic': {'ERA-Interim': {'name': 'ERA-Interim',
          'nyears': 40,
          'time_period': ['1979-1-16 12:0:0.0', '2019-3-16 12:0:0.0']},
         'GPCPv2.3': {'name': 'GPCPv2.3',
          'nyears': 41,
          'time_period': ['1979-1-1 0:0:0.0', '2019-7-1 0:0:0.0']},
         'MIROC4h_r1i1p1': {'keyerror': None,
          'name': 'MIROC4h_r1i1p1',
          'nyears': 56,
          'time_period': ['1950-1-16 12:0:0.0', '2005-12-16 12:0:0.0']},
         'method': 'Meridional root mean square error of nino3_LatExt climatological pr STD, time series are linearly detrended, observations and model regridded to generic_1x1deg',
         'name': 'pr meridional seasonality RMSE',
         'ref': 'Using CDAT regridding and rms (uncentered and biased) calculation',
         'time_frequency': 'monthly',
         'units': 'mm/day'},
        'metric': {'datasets': "MIROC4h_r1i1p1; ERA-Interim's pr & GPCPv2.3's precip; 's ",
         'method': 'The metric is the statistical value between the model and the observations',
         'name': 'SeasonalPrLatRmse',
         'units': 'mm/day'}},
       'SeasonalPrLonRmse': {'diagnostic': {'ERA-Interim': {'name': 'ERA-Interim',
          'nyears': 40,
          'time_period': ['1979-1-16 12:0:0.0', '2019-3-16 12:0:0.0']},
         'GPCPv2.3': {'name': 'GPCPv2.3',
          'nyears': 41,
          'time_period': ['1979-1-1 0:0:0.0', '2019-7-1 0:0:0.0']},
         'MIROC4h_r1i1p1': {'keyerror': None,
          'name': 'MIROC4h_r1i1p1',
          'nyears': 56,
          'time_period': ['1950-1-16 12:0:0.0', '2005-12-16 12:0:0.0']},
         'method': 'Zonal root mean square error of equatorial_pacific climatological pr STD, time series are linearly detrended, observations and model regridded to generic_1x1deg',
         'name': 'pr zonal seasonality RMSE',
         'ref': 'Using CDAT regridding and rms (uncentered and biased) calculation',
         'time_frequency': 'monthly',
         'units': 'mm/day'},
        'metric': {'datasets': "MIROC4h_r1i1p1; ERA-Interim's pr & GPCPv2.3's precip; 's ",
         'method': 'The metric is the statistical value between the model and the observations',
         'name': 'SeasonalPrLonRmse',
         'units': 'mm/day'}},
       'SeasonalSstLonRmse': {'diagnostic': {'ERA-Interim': {'name': 'ERA-Interim',
          'nyears': 40,
          'time_period': ['1979-1-16 12:0:0.0', '2019-3-16 12:0:0.0']},
         'HadISST': {'name': 'HadISST',
          'nyears': 151,
          'time_period': ['1870-1-16 11:59:59.5', '2020-10-16 12:0:0.0']},
         'MIROC4h_r1i1p1': {'keyerror': None,
          'name': 'MIROC4h_r1i1p1',
          'nyears': 56,
          'time_period': ['1950-1-16 12:0:0.0', '2005-12-16 12:0:0.0']},
         'Tropflux': {'name': 'Tropflux',
          'nyears': 40,
          'time_period': ['1979-1-15 0:0:0.0', '2018-12-15 12:0:0.0']},
         'method': 'Zonal root mean square error of equatorial_pacific climatological sst STD, time series are linearly detrended, observations and model regridded to generic_1x1deg',
         'name': 'sst zonal seasonality RMSE',
         'ref': 'Using CDAT regridding and rms (uncentered and biased) calculation',
         'time_frequency': 'monthly',
         'units': 'C'},
        'metric': {'datasets': "MIROC4h_r1i1p1; ERA-Interim's ts & HadISST's sst & Tropflux's sst; 's ",
         'method': 'The metric is the statistical value between the model and the observations',
         'name': 'SeasonalSstLonRmse',
         'units': 'C'}},
       'SeasonalTauxLonRmse': {'diagnostic': {'ERA-Interim': {'name': 'ERA-Interim',
          'nyears': 40,
          'time_period': ['1979-1-16 12:0:0.0', '2019-3-16 12:0:0.0']},
         'MIROC4h_r1i1p1': {'keyerror': None,
          'name': 'MIROC4h_r1i1p1',
          'nyears': 56,
          'time_period': ['1950-1-16 12:0:0.0', '2005-12-16 12:0:0.0']},
         'Tropflux': {'name': 'Tropflux',
          'nyears': 40,
          'time_period': ['1979-1-15 0:0:0.0', '2018-12-15 12:0:0.0']},
         'method': 'Zonal root mean square error of equatorial_pacific climatological taux STD, time series are linearly detrended, observations and model regridded to generic_1x1deg',
         'name': 'taux zonal seasonality RMSE',
         'ref': 'Using CDAT regridding and rms (uncentered and biased) calculation',
         'time_frequency': 'monthly',
         'units': '1e-3 N/m2'},
        'metric': {'datasets': "MIROC4h_r1i1p1; ERA-Interim's tauu & Tropflux's taux; 's ",
         'method': 'The metric is the statistical value between the model and the observations',
         'name': 'SeasonalTauxLonRmse',
         'units': '1e-3 N/m2'}}},
      'name': 'Metrics Collection for ENSO performance'},
     'value': {'BiasPrLatRmse': {'diagnostic': {'ERA-Interim': {'value': None,
         'value_error': None},
        'GPCPv2.3': {'value': None, 'value_error': None},
        'MIROC4h_r1i1p1': {'value': None, 'value_error': None}},
       'metric': {'ERA-Interim': {'value': 1.4870297556116632,
         'value_error': None},
        'GPCPv2.3': {'value': 2.1263260919985147, 'value_error': None}}},
      'BiasPrLonRmse': {'diagnostic': {'ERA-Interim': {'value': None,
         'value_error': None},
        'GPCPv2.3': {'value': None, 'value_error': None},
        'MIROC4h_r1i1p1': {'value': None, 'value_error': None}},
       'metric': {'ERA-Interim': {'value': 1.7471149957738579,
         'value_error': None},
        'GPCPv2.3': {'value': 2.5590858358364366, 'value_error': None}}},
      'BiasSstLonRmse': {'diagnostic': {'ERA-Interim': {'value': None,
         'value_error': None},
        'HadISST': {'value': None, 'value_error': None},
        'MIROC4h_r1i1p1': {'value': None, 'value_error': None},
        'Tropflux': {'value': None, 'value_error': None}},
       'metric': {'ERA-Interim': {'value': 0.7682194519681959,
         'value_error': None},
        'HadISST': {'value': 0.9734976026186368, 'value_error': None},
        'Tropflux': {'value': 0.7410101430290212, 'value_error': None}}},
      'BiasTauxLonRmse': {'diagnostic': {'ERA-Interim': {'value': None,
         'value_error': None},
        'MIROC4h_r1i1p1': {'value': None, 'value_error': None},
        'Tropflux': {'value': None, 'value_error': None}},
       'metric': {'ERA-Interim': {'value': 12.741963510150388,
         'value_error': None},
        'Tropflux': {'value': 12.442749052250731, 'value_error': None}}},
      'EnsoAmpl': {'diagnostic': {'ERA-Interim': {'value': 0.8989844997845644,
         'value_error': 0.14214193002531866},
        'HadISST': {'value': 0.7665787872085695,
         'value_error': 0.06238329697691264},
        'MIROC4h_r1i1p1': {'value': 0.7138618252656673,
         'value_error': 0.09539379898718617},
        'Tropflux': {'value': 0.9039789553693535,
         'value_error': 0.14293162279134272}},
       'metric': {'ERA-Interim': {'value': 20.592421177813463,
         'value_error': 23.166724694511164},
        'HadISST': {'value': 6.876913739664839,
         'value_error': 20.02234512670869},
        'Tropflux': {'value': 21.03114557860552,
         'value_error': 23.038729261824898}}},
      'EnsoDuration': {'diagnostic': {'ERA-Interim': {'value': 13.0,
         'value_error': None},
        'HadISST': {'value': 13.0, 'value_error': None},
        'MIROC4h_r1i1p1': {'value': 14.0, 'value_error': None},
        'Tropflux': {'value': 13.0, 'value_error': None}},
       'metric': {'ERA-Interim': {'value': 7.6923076923076925,
         'value_error': None},
        'HadISST': {'value': 7.6923076923076925, 'value_error': None},
        'Tropflux': {'value': 7.6923076923076925, 'value_error': None}}},
      'EnsoSeasonality': {'diagnostic': {'ERA-Interim': {'value': 2.0466846866656914,
         'value_error': 0.6513411033995022},
        'HadISST': {'value': 1.6639865947361325,
         'value_error': 0.2712772451657809},
        'MIROC4h_r1i1p1': {'value': 1.8633727162046163,
         'value_error': 0.5002607789358686},
        'Tropflux': {'value': 2.0532132553583624,
         'value_error': 0.6534187683977347}},
       'metric': {'ERA-Interim': {'value': 8.956532076258092,
         'value_error': 53.416352533746036},
        'HadISST': {'value': 11.982435561633928,
         'value_error': 48.32031987159827},
        'Tropflux': {'value': 9.246021505964407,
         'value_error': 53.246505429009886}}},
      'EnsoSstDiversity_2': {'diagnostic': {'ERA-Interim': {'value': 33.25,
         'value_error': None},
        'HadISST': {'value': 49.0, 'value_error': None},
        'MIROC4h_r1i1p1': {'value': 33.0, 'value_error': None},
        'Tropflux': {'value': 32.0, 'value_error': None}},
       'metric': {'ERA-Interim': {'value': 0.7518796992481203,
         'value_error': None},
        'HadISST': {'value': 32.6530612244898, 'value_error': None},
        'Tropflux': {'value': 3.125, 'value_error': None}}},
      'EnsoSstLonRmse': {'diagnostic': {'ERA-Interim': {'value': None,
         'value_error': None},
        'HadISST': {'value': None, 'value_error': None},
        'MIROC4h_r1i1p1': {'value': None, 'value_error': None},
        'Tropflux': {'value': None, 'value_error': None}},
       'metric': {'ERA-Interim': {'value': 0.28779309027668676,
         'value_error': None},
        'HadISST': {'value': 0.3018589696247106, 'value_error': None},
        'Tropflux': {'value': 0.28849326976442513, 'value_error': None}}},
      'EnsoSstSkew': {'diagnostic': {'ERA-Interim': {'value': 0.39098111106809963,
         'value_error': 0.061819541653923164},
        'HadISST': {'value': 0.38989908235027515,
         'value_error': 0.03172953733021198},
        'MIROC4h_r1i1p1': {'value': 0.12036944861583379,
         'value_error': 0.016085044162690746},
        'Tropflux': {'value': 0.39744741059612115,
         'value_error': 0.06284195338099416}},
       'metric': {'ERA-Interim': {'value': 69.21348750403745,
         'value_error': 8.98179581693552},
        'HadISST': {'value': 69.12805029181962,
         'value_error': 6.637761446861187},
        'Tropflux': {'value': 69.7143709062553,
         'value_error': 8.83566583721135}}},
      'EnsoSstTsRmse': {'diagnostic': {'ERA-Interim': {'value': None,
         'value_error': None},
        'HadISST': {'value': None, 'value_error': None},
        'MIROC4h_r1i1p1': {'value': None, 'value_error': None},
        'Tropflux': {'value': None, 'value_error': None}},
       'metric': {'ERA-Interim': {'value': 0.19047703483369127,
         'value_error': None},
        'HadISST': {'value': 0.16317159952640112, 'value_error': None},
        'Tropflux': {'value': 0.1883070201991026, 'value_error': None}}},
      'SeasonalPrLatRmse': {'diagnostic': {'ERA-Interim': {'value': None,
         'value_error': None},
        'GPCPv2.3': {'value': None, 'value_error': None},
        'MIROC4h_r1i1p1': {'value': None, 'value_error': None}},
       'metric': {'ERA-Interim': {'value': 1.2229171355614603,
         'value_error': None},
        'GPCPv2.3': {'value': 1.6731064497588146, 'value_error': None}}},
      'SeasonalPrLonRmse': {'diagnostic': {'ERA-Interim': {'value': None,
         'value_error': None},
        'GPCPv2.3': {'value': None, 'value_error': None},
        'MIROC4h_r1i1p1': {'value': None, 'value_error': None}},
       'metric': {'ERA-Interim': {'value': 1.502025933471507,
         'value_error': None},
        'GPCPv2.3': {'value': 2.0020753579162336, 'value_error': None}}},
      'SeasonalSstLonRmse': {'diagnostic': {'ERA-Interim': {'value': None,
         'value_error': None},
        'HadISST': {'value': None, 'value_error': None},
        'MIROC4h_r1i1p1': {'value': None, 'value_error': None},
        'Tropflux': {'value': None, 'value_error': None}},
       'metric': {'ERA-Interim': {'value': 0.335733194333027,
         'value_error': None},
        'HadISST': {'value': 0.3577596859046938, 'value_error': None},
        'Tropflux': {'value': 0.327769077680785, 'value_error': None}}},
      'SeasonalTauxLonRmse': {'diagnostic': {'ERA-Interim': {'value': None,
         'value_error': None},
        'MIROC4h_r1i1p1': {'value': None, 'value_error': None},
        'Tropflux': {'value': None, 'value_error': None}},
       'metric': {'ERA-Interim': {'value': 4.097796616455399,
         'value_error': None},
        'Tropflux': {'value': 4.016742902524398, 'value_error': None}}}}},
    'r2i1p1': {'metadata': {'description_of_the_collection': 'Describe which science question this collection is about',
      'metrics': {'BiasPrLatRmse': {'diagnostic': {'ERA-Interim': {'name': 'ERA-Interim',
          'nyears': 40,
          'time_period': ['1979-1-16 12:0:0.0', '2019-3-16 12:0:0.0']},
         'GPCPv2.3': {'name': 'GPCPv2.3',
          'nyears': 41,
          'time_period': ['1979-1-1 0:0:0.0', '2019-7-1 0:0:0.0']},
         'MIROC4h_r2i1p1': {'keyerror': None,
          'name': 'MIROC4h_r2i1p1',
          'nyears': 56,
          'time_period': ['1950-1-16 12:0:0.0', '2005-12-16 12:0:0.0']},
         'method': 'Meridional root mean square error of nino3_LatExt pr, time series are linearly detrended, observations and model regridded to generic_1x1deg',
         'name': 'pr Meridional RMSE',
         'ref': 'Using CDAT regridding and rms (uncentered and biased) calculation',
         'time_frequency': 'monthly',
         'units': 'mm/day'},
        'metric': {'datasets': "MIROC4h_r2i1p1; ERA-Interim's pr & GPCPv2.3's precip; 's ",
         'method': 'The metric is the statistical value between the model and the observations',
         'name': 'BiasPrLatRmse',
         'units': 'mm/day'}},
       'BiasPrLonRmse': {'diagnostic': {'ERA-Interim': {'name': 'ERA-Interim',
          'nyears': 40,
          'time_period': ['1979-1-16 12:0:0.0', '2019-3-16 12:0:0.0']},
         'GPCPv2.3': {'name': 'GPCPv2.3',
          'nyears': 41,
          'time_period': ['1979-1-1 0:0:0.0', '2019-7-1 0:0:0.0']},
         'MIROC4h_r2i1p1': {'keyerror': None,
          'name': 'MIROC4h_r2i1p1',
          'nyears': 56,
          'time_period': ['1950-1-16 12:0:0.0', '2005-12-16 12:0:0.0']},
         'method': 'Zonal root mean square error of equatorial_pacific pr, time series are linearly detrended, observations and model regridded to generic_1x1deg',
         'name': 'pr Zonal RMSE',
         'ref': 'Using CDAT regridding and rms (uncentered and biased) calculation',
         'time_frequency': 'monthly',
         'units': 'mm/day'},
        'metric': {'datasets': "MIROC4h_r2i1p1; ERA-Interim's pr & GPCPv2.3's precip; 's ",
         'method': 'The metric is the statistical value between the model and the observations',
         'name': 'BiasPrLonRmse',
         'units': 'mm/day'}},
       'BiasSstLonRmse': {'diagnostic': {'ERA-Interim': {'name': 'ERA-Interim',
          'nyears': 40,
          'time_period': ['1979-1-16 12:0:0.0', '2019-3-16 12:0:0.0']},
         'HadISST': {'name': 'HadISST',
          'nyears': 151,
          'time_period': ['1870-1-16 11:59:59.5', '2020-10-16 12:0:0.0']},
         'MIROC4h_r2i1p1': {'keyerror': None,
          'name': 'MIROC4h_r2i1p1',
          'nyears': 56,
          'time_period': ['1950-1-16 12:0:0.0', '2005-12-16 12:0:0.0']},
         'Tropflux': {'name': 'Tropflux',
          'nyears': 40,
          'time_period': ['1979-1-15 0:0:0.0', '2018-12-15 12:0:0.0']},
         'method': 'Zonal root mean square error of equatorial_pacific sst, time series are linearly detrended, observations and model regridded to generic_1x1deg',
         'name': 'sst Zonal RMSE',
         'ref': 'Using CDAT regridding and rms (uncentered and biased) calculation',
         'time_frequency': 'monthly',
         'units': 'C'},
        'metric': {'datasets': "MIROC4h_r2i1p1; ERA-Interim's ts & HadISST's sst & Tropflux's sst; 's ",
         'method': 'The metric is the statistical value between the model and the observations',
         'name': 'BiasSstLonRmse',
         'units': 'C'}},
       'BiasTauxLonRmse': {'diagnostic': {'ERA-Interim': {'name': 'ERA-Interim',
          'nyears': 40,
          'time_period': ['1979-1-16 12:0:0.0', '2019-3-16 12:0:0.0']},
         'MIROC4h_r2i1p1': {'keyerror': None,
          'name': 'MIROC4h_r2i1p1',
          'nyears': 56,
          'time_period': ['1950-1-16 12:0:0.0', '2005-12-16 12:0:0.0']},
         'Tropflux': {'name': 'Tropflux',
          'nyears': 40,
          'time_period': ['1979-1-15 0:0:0.0', '2018-12-15 12:0:0.0']},
         'method': 'Zonal root mean square error of equatorial_pacific taux, time series are linearly detrended, observations and model regridded to generic_1x1deg',
         'name': 'taux Zonal RMSE',
         'ref': 'Using CDAT regridding and rms (uncentered and biased) calculation',
         'time_frequency': 'monthly',
         'units': '1e-3 N/m2'},
        'metric': {'datasets': "MIROC4h_r2i1p1; ERA-Interim's tauu & Tropflux's taux; 's ",
         'method': 'The metric is the statistical value between the model and the observations',
         'name': 'BiasTauxLonRmse',
         'units': '1e-3 N/m2'}},
       'EnsoAmpl': {'diagnostic': {'ERA-Interim': {'keyerror': None,
          'name': 'ERA-Interim',
          'nyears': 40,
          'time_period': ['1979-1-16 12:0:0.0', '2019-3-16 12:0:0.0']},
         'HadISST': {'keyerror': None,
          'name': 'HadISST',
          'nyears': 151,
          'time_period': ['1870-1-16 11:59:59.5', '2020-10-16 12:0:0.0']},
         'MIROC4h_r2i1p1': {'keyerror': None,
          'name': 'MIROC4h_r2i1p1',
          'nyears': 56,
          'time_period': ['1950-1-16 12:0:0.0', '2005-12-16 12:0:0.0']},
         'Tropflux': {'keyerror': None,
          'name': 'Tropflux',
          'nyears': 40,
          'time_period': ['1979-1-15 0:0:0.0', '2018-12-15 12:0:0.0']},
         'method': 'Standard deviation of nino3.4 sstA, time series are linearly detrended',
         'name': 'ENSO amplitude',
         'ref': 'Using CDAT regression calculation',
         'time_frequency': 'monthly',
         'units': 'C'},
        'metric': {'datasets': "MIROC4h_r2i1p1; ERA-Interim's ts & HadISST's sst & Tropflux's sst; 's ",
         'method': 'The metric is the absolute value of the relative difference between model and observations values (M = 100 * abs[[model-obs] / obs])',
         'name': 'EnsoAmpl',
         'units': '%'}},
       'EnsoDuration': {'diagnostic': {'ERA-Interim': {'keyerror': None,
          'name': 'ERA-Interim',
          'nyears': 40,
          'time_period': ['1979-1-16 12:0:0.0', '2019-3-16 12:0:0.0']},
         'HadISST': {'keyerror': None,
          'name': 'HadISST',
          'nyears': 151,
          'time_period': ['1870-1-16 11:59:59.5', '2020-10-16 12:0:0.0']},
         'MIROC4h_r2i1p1': {'keyerror': None,
          'name': 'MIROC4h_r2i1p1',
          'nyears': 56,
          'time_period': ['1950-1-16 12:0:0.0', '2005-12-16 12:0:0.0']},
         'Tropflux': {'keyerror': None,
          'name': 'Tropflux',
          'nyears': 40,
          'time_period': ['1979-1-15 0:0:0.0', '2018-12-15 12:0:0.0']},
         'method': 'nino3.4 SSTA during DEC regressed against nino3.4 SSTA during 6 years (centered on ENSO), the duration is the number of consecutive months during which the regression is above 0.25, time series are linearly detrended, smoothing using a triangle shaped window of 5 points',
         'name': 'ENSO Duration based on life cyle SSTA pattern',
         'ref': 'Using CDAT',
         'time_frequency': 'monthly',
         'units': 'months'},
        'metric': {'datasets': "MIROC4h_r2i1p1; ERA-Interim's ts & HadISST's sst & Tropflux's sst; 's ",
         'method': 'The metric is the absolute value of the relative difference between model and observations values (M = 100 * abs[[model-obs] / obs])',
         'name': 'EnsoDuration',
         'units': '%'}},
       'EnsoSeasonality': {'diagnostic': {'ERA-Interim': {'keyerror': None,
          'name': 'ERA-Interim',
          'nyears': 40,
          'time_period': ['1979-1-16 12:0:0.0', '2019-3-16 12:0:0.0']},
         'HadISST': {'keyerror': None,
          'name': 'HadISST',
          'nyears': 151,
          'time_period': ['1870-1-16 11:59:59.5', '2020-10-16 12:0:0.0']},
         'MIROC4h_r2i1p1': {'keyerror': None,
          'name': 'MIROC4h_r2i1p1',
          'nyears': 56,
          'time_period': ['1950-1-16 12:0:0.0', '2005-12-16 12:0:0.0']},
         'Tropflux': {'keyerror': None,
          'name': 'Tropflux',
          'nyears': 40,
          'time_period': ['1979-1-15 0:0:0.0', '2018-12-15 12:0:0.0']},
         'method': 'Ratio between NDJ and MAM standard deviation nino3.4 sstA, time series are linearly detrended',
         'name': 'ENSO seasonality',
         'ref': 'Using CDAT std dev calculation',
         'time_frequency': 'monthly',
         'units': 'C/C'},
        'metric': {'datasets': "MIROC4h_r2i1p1; ERA-Interim's ts & HadISST's sst & Tropflux's sst; 's ",
         'method': 'The metric is the absolute value of the relative difference between model and observations values (M = 100 * abs[[model-obs] / obs])',
         'name': 'EnsoSeasonality',
         'units': '%'}},
       'EnsoSstDiversity_2': {'diagnostic': {'ERA-Interim': {'keyerror': None,
          'name': 'ERA-Interim',
          'nyears': 40,
          'time_period': ['1979-1-16 12:0:0.0', '2019-3-16 12:0:0.0']},
         'HadISST': {'keyerror': None,
          'name': 'HadISST',
          'nyears': 151,
          'time_period': ['1870-1-16 11:59:59.5', '2020-10-16 12:0:0.0']},
         'MIROC4h_r2i1p1': {'keyerror': None,
          'name': 'MIROC4h_r2i1p1',
          'nyears': 56,
          'time_period': ['1950-1-16 12:0:0.0', '2005-12-16 12:0:0.0']},
         'Tropflux': {'keyerror': None,
          'name': 'Tropflux',
          'nyears': 40,
          'time_period': ['1979-1-15 0:0:0.0', '2018-12-15 12:0:0.0']},
         'method': 'Nino (Nina) events = nino3.4 sstA > 0.75 (< -0.75) during DEC, zonal SSTA (meridional averaged [-5.0 ; 5.0]), the zonal SSTA maximum (minimum) is located for each event, the diversity is the interquartile range (IQR = Q3 - Q1), time series are linearly detrended, smoothing using a triangle shaped window of 5 points',
         'name': 'ENSO Diversity (interquartile range)',
         'ref': 'Using CDAT regridding',
         'time_frequency': 'monthly',
         'units': 'long'},
        'metric': {'datasets': "MIROC4h_r2i1p1; ERA-Interim's ts & HadISST's sst & Tropflux's sst; 's ",
         'method': 'The metric is the absolute value of the relative difference between model and observations values (M = 100 * abs[[model-obs] / obs])',
         'name': 'EnsoSstDiversity',
         'units': '%'}},
       'EnsoSstLonRmse': {'diagnostic': {'ERA-Interim': {'name': 'ERA-Interim',
          'nyears': 40,
          'time_period': ['1979-1-16 12:0:0.0', '2019-3-16 12:0:0.0']},
         'HadISST': {'name': 'HadISST',
          'nyears': 151,
          'time_period': ['1870-1-16 11:59:59.5', '2020-10-16 12:0:0.0']},
         'MIROC4h_r2i1p1': {'keyerror': None,
          'name': 'MIROC4h_r2i1p1',
          'nyears': 56,
          'time_period': ['1950-1-16 12:0:0.0', '2005-12-16 12:0:0.0']},
         'Tropflux': {'name': 'Tropflux',
          'nyears': 40,
          'time_period': ['1979-1-15 0:0:0.0', '2018-12-15 12:0:0.0']},
         'method': 'nino3.4 SSTA during DEC regressed against equatorial_pacific SSTA, time series are linearly detrended, smoothing using a triangle shaped window of 5 points, observations and model regridded to generic_1x1deg',
         'name': 'ENSO Zonal SSTA pattern',
         'ref': 'Using CDAT regridding and rms (uncentered and biased) calculation',
         'time_frequency': 'monthly',
         'units': 'C/C'},
        'metric': {'datasets': "MIROC4h_r2i1p1; ERA-Interim's ts & HadISST's sst & Tropflux's sst; 's ",
         'method': 'The metric is the statistical value between the model and the observations',
         'name': 'EnsoSstLonRmse',
         'units': 'C/C'}},
       'EnsoSstSkew': {'diagnostic': {'ERA-Interim': {'keyerror': None,
          'name': 'ERA-Interim',
          'nyears': 40,
          'time_period': ['1979-1-16 12:0:0.0', '2019-3-16 12:0:0.0']},
         'HadISST': {'keyerror': None,
          'name': 'HadISST',
          'nyears': 151,
          'time_period': ['1870-1-16 11:59:59.5', '2020-10-16 12:0:0.0']},
         'MIROC4h_r2i1p1': {'keyerror': None,
          'name': 'MIROC4h_r2i1p1',
          'nyears': 56,
          'time_period': ['1950-1-16 12:0:0.0', '2005-12-16 12:0:0.0']},
         'Tropflux': {'keyerror': None,
          'name': 'Tropflux',
          'nyears': 40,
          'time_period': ['1979-1-15 0:0:0.0', '2018-12-15 12:0:0.0']},
         'method': 'Standard deviation of nino3.4 sstA, time series are linearly detrended',
         'name': 'ENSO skewness',
         'ref': 'Using CDAT regression calculation',
         'time_frequency': 'monthly',
         'units': 'C'},
        'metric': {'datasets': "MIROC4h_r2i1p1; ERA-Interim's ts & HadISST's sst & Tropflux's sst; 's ",
         'method': 'The metric is the absolute value of the relative difference between model and observations values (M = 100 * abs[[model-obs] / obs])',
         'name': 'EnsoSstSkew',
         'units': '%'}},
       'EnsoSstTsRmse': {'diagnostic': {'ERA-Interim': {'name': 'ERA-Interim',
          'nyears': 40,
          'time_period': ['1979-1-16 12:0:0.0', '2019-3-16 12:0:0.0']},
         'HadISST': {'name': 'HadISST',
          'nyears': 151,
          'time_period': ['1870-1-16 11:59:59.5', '2020-10-16 12:0:0.0']},
         'MIROC4h_r2i1p1': {'keyerror': None,
          'name': 'MIROC4h_r2i1p1',
          'nyears': 56,
          'time_period': ['1950-1-16 12:0:0.0', '2005-12-16 12:0:0.0']},
         'Tropflux': {'name': 'Tropflux',
          'nyears': 40,
          'time_period': ['1979-1-15 0:0:0.0', '2018-12-15 12:0:0.0']},
         'method': 'nino3.4 SSTA during DEC regressed against nino3.4 SSTA during 6 years (centered on ENSO), time series are linearly detrended, smoothing using a triangle shaped window of 5 points',
         'name': 'ENSO life cyle SSTA pattern',
         'ref': 'Using CDAT regridding and rms (uncentered and biased) calculation',
         'time_frequency': 'monthly',
         'units': 'C/C'},
        'metric': {'datasets': "MIROC4h_r2i1p1; ERA-Interim's ts & HadISST's sst & Tropflux's sst; 's ",
         'method': 'The metric is the statistical value between the model and the observations',
         'name': 'EnsoSstTsRmse',
         'units': 'C/C'}},
       'SeasonalPrLatRmse': {'diagnostic': {'ERA-Interim': {'name': 'ERA-Interim',
          'nyears': 40,
          'time_period': ['1979-1-16 12:0:0.0', '2019-3-16 12:0:0.0']},
         'GPCPv2.3': {'name': 'GPCPv2.3',
          'nyears': 41,
          'time_period': ['1979-1-1 0:0:0.0', '2019-7-1 0:0:0.0']},
         'MIROC4h_r2i1p1': {'keyerror': None,
          'name': 'MIROC4h_r2i1p1',
          'nyears': 56,
          'time_period': ['1950-1-16 12:0:0.0', '2005-12-16 12:0:0.0']},
         'method': 'Meridional root mean square error of nino3_LatExt climatological pr STD, time series are linearly detrended, observations and model regridded to generic_1x1deg',
         'name': 'pr meridional seasonality RMSE',
         'ref': 'Using CDAT regridding and rms (uncentered and biased) calculation',
         'time_frequency': 'monthly',
         'units': 'mm/day'},
        'metric': {'datasets': "MIROC4h_r2i1p1; ERA-Interim's pr & GPCPv2.3's precip; 's ",
         'method': 'The metric is the statistical value between the model and the observations',
         'name': 'SeasonalPrLatRmse',
         'units': 'mm/day'}},
       'SeasonalPrLonRmse': {'diagnostic': {'ERA-Interim': {'name': 'ERA-Interim',
          'nyears': 40,
          'time_period': ['1979-1-16 12:0:0.0', '2019-3-16 12:0:0.0']},
         'GPCPv2.3': {'name': 'GPCPv2.3',
          'nyears': 41,
          'time_period': ['1979-1-1 0:0:0.0', '2019-7-1 0:0:0.0']},
         'MIROC4h_r2i1p1': {'keyerror': None,
          'name': 'MIROC4h_r2i1p1',
          'nyears': 56,
          'time_period': ['1950-1-16 12:0:0.0', '2005-12-16 12:0:0.0']},
         'method': 'Zonal root mean square error of equatorial_pacific climatological pr STD, time series are linearly detrended, observations and model regridded to generic_1x1deg',
         'name': 'pr zonal seasonality RMSE',
         'ref': 'Using CDAT regridding and rms (uncentered and biased) calculation',
         'time_frequency': 'monthly',
         'units': 'mm/day'},
        'metric': {'datasets': "MIROC4h_r2i1p1; ERA-Interim's pr & GPCPv2.3's precip; 's ",
         'method': 'The metric is the statistical value between the model and the observations',
         'name': 'SeasonalPrLonRmse',
         'units': 'mm/day'}},
       'SeasonalSstLonRmse': {'diagnostic': {'ERA-Interim': {'name': 'ERA-Interim',
          'nyears': 40,
          'time_period': ['1979-1-16 12:0:0.0', '2019-3-16 12:0:0.0']},
         'HadISST': {'name': 'HadISST',
          'nyears': 151,
          'time_period': ['1870-1-16 11:59:59.5', '2020-10-16 12:0:0.0']},
         'MIROC4h_r2i1p1': {'keyerror': None,
          'name': 'MIROC4h_r2i1p1',
          'nyears': 56,
          'time_period': ['1950-1-16 12:0:0.0', '2005-12-16 12:0:0.0']},
         'Tropflux': {'name': 'Tropflux',
          'nyears': 40,
          'time_period': ['1979-1-15 0:0:0.0', '2018-12-15 12:0:0.0']},
         'method': 'Zonal root mean square error of equatorial_pacific climatological sst STD, time series are linearly detrended, observations and model regridded to generic_1x1deg',
         'name': 'sst zonal seasonality RMSE',
         'ref': 'Using CDAT regridding and rms (uncentered and biased) calculation',
         'time_frequency': 'monthly',
         'units': 'C'},
        'metric': {'datasets': "MIROC4h_r2i1p1; ERA-Interim's ts & HadISST's sst & Tropflux's sst; 's ",
         'method': 'The metric is the statistical value between the model and the observations',
         'name': 'SeasonalSstLonRmse',
         'units': 'C'}},
       'SeasonalTauxLonRmse': {'diagnostic': {'ERA-Interim': {'name': 'ERA-Interim',
          'nyears': 40,
          'time_period': ['1979-1-16 12:0:0.0', '2019-3-16 12:0:0.0']},
         'MIROC4h_r2i1p1': {'keyerror': None,
          'name': 'MIROC4h_r2i1p1',
          'nyears': 56,
          'time_period': ['1950-1-16 12:0:0.0', '2005-12-16 12:0:0.0']},
         'Tropflux': {'name': 'Tropflux',
          'nyears': 40,
          'time_period': ['1979-1-15 0:0:0.0', '2018-12-15 12:0:0.0']},
         'method': 'Zonal root mean square error of equatorial_pacific climatological taux STD, time series are linearly detrended, observations and model regridded to generic_1x1deg',
         'name': 'taux zonal seasonality RMSE',
         'ref': 'Using CDAT regridding and rms (uncentered and biased) calculation',
         'time_frequency': 'monthly',
         'units': '1e-3 N/m2'},
        'metric': {'datasets': "MIROC4h_r2i1p1; ERA-Interim's tauu & Tropflux's taux; 's ",
         'method': 'The metric is the statistical value between the model and the observations',
         'name': 'SeasonalTauxLonRmse',
         'units': '1e-3 N/m2'}}},
      'name': 'Metrics Collection for ENSO performance'},
     'value': {'BiasPrLatRmse': {'diagnostic': {'ERA-Interim': {'value': None,
         'value_error': None},
        'GPCPv2.3': {'value': None, 'value_error': None},
        'MIROC4h_r2i1p1': {'value': None, 'value_error': None}},
       'metric': {'ERA-Interim': {'value': 1.5769071499145908,
         'value_error': None},
        'GPCPv2.3': {'value': 2.22054885617193, 'value_error': None}}},
      'BiasPrLonRmse': {'diagnostic': {'ERA-Interim': {'value': None,
         'value_error': None},
        'GPCPv2.3': {'value': None, 'value_error': None},
        'MIROC4h_r2i1p1': {'value': None, 'value_error': None}},
       'metric': {'ERA-Interim': {'value': 1.8981889906756104,
         'value_error': None},
        'GPCPv2.3': {'value': 2.7085499193140885, 'value_error': None}}},
      'BiasSstLonRmse': {'diagnostic': {'ERA-Interim': {'value': None,
         'value_error': None},
        'HadISST': {'value': None, 'value_error': None},
        'MIROC4h_r2i1p1': {'value': None, 'value_error': None},
        'Tropflux': {'value': None, 'value_error': None}},
       'metric': {'ERA-Interim': {'value': 0.8499910234059324,
         'value_error': None},
        'HadISST': {'value': 1.0611496299078669, 'value_error': None},
        'Tropflux': {'value': 0.8189749207352596, 'value_error': None}}},
      'BiasTauxLonRmse': {'diagnostic': {'ERA-Interim': {'value': None,
         'value_error': None},
        'MIROC4h_r2i1p1': {'value': None, 'value_error': None},
        'Tropflux': {'value': None, 'value_error': None}},
       'metric': {'ERA-Interim': {'value': 13.474932374656737,
         'value_error': None},
        'Tropflux': {'value': 13.17034573290172, 'value_error': None}}},
      'EnsoAmpl': {'diagnostic': {'ERA-Interim': {'value': 0.8989844997845644,
         'value_error': 0.14214193002531866},
        'HadISST': {'value': 0.7665787872085695,
         'value_error': 0.06238329697691264},
        'MIROC4h_r2i1p1': {'value': 0.7337495828504664,
         'value_error': 0.0980514123826695},
        'Tropflux': {'value': 0.9039789553693535,
         'value_error': 0.14293162279134272}},
       'metric': {'ERA-Interim': {'value': 18.380174182502078,
         'value_error': 23.812135596805533},
        'HadISST': {'value': 4.282561023850897,
         'value_error': 20.580155520913443},
        'Tropflux': {'value': 18.83112117906922,
         'value_error': 23.680574288977706}}},
      'EnsoDuration': {'diagnostic': {'ERA-Interim': {'value': 13.0,
         'value_error': None},
        'HadISST': {'value': 13.0, 'value_error': None},
        'MIROC4h_r2i1p1': {'value': 12.0, 'value_error': None},
        'Tropflux': {'value': 13.0, 'value_error': None}},
       'metric': {'ERA-Interim': {'value': 7.6923076923076925,
         'value_error': None},
        'HadISST': {'value': 7.6923076923076925, 'value_error': None},
        'Tropflux': {'value': 7.6923076923076925, 'value_error': None}}},
      'EnsoSeasonality': {'diagnostic': {'ERA-Interim': {'value': 2.0466846866656914,
         'value_error': 0.6513411033995022},
        'HadISST': {'value': 1.6639865947361325,
         'value_error': 0.2712772451657809},
        'MIROC4h_r2i1p1': {'value': 2.3009268815099877,
         'value_error': 0.6177312053614226},
        'Tropflux': {'value': 2.0532132553583624,
         'value_error': 0.6534187683977347}},
       'metric': {'ERA-Interim': {'value': 12.422147705540763,
         'value_error': 65.95949398006212},
        'HadISST': {'value': 38.27796983393717,
         'value_error': 59.666819176240914},
        'Tropflux': {'value': 12.064680836496452,
         'value_error': 65.74976365309347}}},
      'EnsoSstDiversity_2': {'diagnostic': {'ERA-Interim': {'value': 33.25,
         'value_error': None},
        'HadISST': {'value': 49.0, 'value_error': None},
        'MIROC4h_r2i1p1': {'value': 17.0, 'value_error': None},
        'Tropflux': {'value': 32.0, 'value_error': None}},
       'metric': {'ERA-Interim': {'value': 48.87218045112782,
         'value_error': None},
        'HadISST': {'value': 65.3061224489796, 'value_error': None},
        'Tropflux': {'value': 46.875, 'value_error': None}}},
      'EnsoSstLonRmse': {'diagnostic': {'ERA-Interim': {'value': None,
         'value_error': None},
        'HadISST': {'value': None, 'value_error': None},
        'MIROC4h_r2i1p1': {'value': None, 'value_error': None},
        'Tropflux': {'value': None, 'value_error': None}},
       'metric': {'ERA-Interim': {'value': 0.2880847985476854,
         'value_error': None},
        'HadISST': {'value': 0.3052978288171303, 'value_error': None},
        'Tropflux': {'value': 0.2891856877641837, 'value_error': None}}},
      'EnsoSstSkew': {'diagnostic': {'ERA-Interim': {'value': 0.39098111106809963,
         'value_error': 0.061819541653923164},
        'HadISST': {'value': 0.38989908235027515,
         'value_error': 0.03172953733021198},
        'MIROC4h_r2i1p1': {'value': 0.28465110832182816,
         'value_error': 0.038038104360919915},
        'Tropflux': {'value': 0.39744741059612115,
         'value_error': 0.06284195338099416}},
       'metric': {'ERA-Interim': {'value': 27.195687908245596,
         'value_error': 21.24025791769509},
        'HadISST': {'value': 26.99364496936542,
         'value_error': 15.697057470581402},
        'Tropflux': {'value': 28.38018295429645,
         'value_error': 20.89468799803642}}},
      'EnsoSstTsRmse': {'diagnostic': {'ERA-Interim': {'value': None,
         'value_error': None},
        'HadISST': {'value': None, 'value_error': None},
        'MIROC4h_r2i1p1': {'value': None, 'value_error': None},
        'Tropflux': {'value': None, 'value_error': None}},
       'metric': {'ERA-Interim': {'value': 0.10522512910083096,
         'value_error': None},
        'HadISST': {'value': 0.12209583333633225, 'value_error': None},
        'Tropflux': {'value': 0.10572548590990648, 'value_error': None}}},
      'SeasonalPrLatRmse': {'diagnostic': {'ERA-Interim': {'value': None,
         'value_error': None},
        'GPCPv2.3': {'value': None, 'value_error': None},
        'MIROC4h_r2i1p1': {'value': None, 'value_error': None}},
       'metric': {'ERA-Interim': {'value': 1.2313431940277366,
         'value_error': None},
        'GPCPv2.3': {'value': 1.680981925104154, 'value_error': None}}},
      'SeasonalPrLonRmse': {'diagnostic': {'ERA-Interim': {'value': None,
         'value_error': None},
        'GPCPv2.3': {'value': None, 'value_error': None},
        'MIROC4h_r2i1p1': {'value': None, 'value_error': None}},
       'metric': {'ERA-Interim': {'value': 1.4561291433594967,
         'value_error': None},
        'GPCPv2.3': {'value': 1.9630323584514073, 'value_error': None}}},
      'SeasonalSstLonRmse': {'diagnostic': {'ERA-Interim': {'value': None,
         'value_error': None},
        'HadISST': {'value': None, 'value_error': None},
        'MIROC4h_r2i1p1': {'value': None, 'value_error': None},
        'Tropflux': {'value': None, 'value_error': None}},
       'metric': {'ERA-Interim': {'value': 0.32920739057712434,
         'value_error': None},
        'HadISST': {'value': 0.35200335657605725, 'value_error': None},
        'Tropflux': {'value': 0.32119538785111484, 'value_error': None}}},
      'SeasonalTauxLonRmse': {'diagnostic': {'ERA-Interim': {'value': None,
         'value_error': None},
        'MIROC4h_r2i1p1': {'value': None, 'value_error': None},
        'Tropflux': {'value': None, 'value_error': None}},
       'metric': {'ERA-Interim': {'value': 3.8525979928637226,
         'value_error': None},
        'Tropflux': {'value': 3.7753187548275813, 'value_error': None}}}}},
    'r3i1p1': {'metadata': {'description_of_the_collection': 'Describe which science question this collection is about',
      'metrics': {'BiasPrLatRmse': {'diagnostic': {'ERA-Interim': {'name': 'ERA-Interim',
          'nyears': 40,
          'time_period': ['1979-1-16 12:0:0.0', '2019-3-16 12:0:0.0']},
         'GPCPv2.3': {'name': 'GPCPv2.3',
          'nyears': 41,
          'time_period': ['1979-1-1 0:0:0.0', '2019-7-1 0:0:0.0']},
         'MIROC4h_r3i1p1': {'keyerror': None,
          'name': 'MIROC4h_r3i1p1',
          'nyears': 56,
          'time_period': ['1950-1-16 12:0:0.0', '2005-12-16 12:0:0.0']},
         'method': 'Meridional root mean square error of nino3_LatExt pr, time series are linearly detrended, observations and model regridded to generic_1x1deg',
         'name': 'pr Meridional RMSE',
         'ref': 'Using CDAT regridding and rms (uncentered and biased) calculation',
         'time_frequency': 'monthly',
         'units': 'mm/day'},
        'metric': {'datasets': "MIROC4h_r3i1p1; ERA-Interim's pr & GPCPv2.3's precip; 's ",
         'method': 'The metric is the statistical value between the model and the observations',
         'name': 'BiasPrLatRmse',
         'units': 'mm/day'}},
       'BiasPrLonRmse': {'diagnostic': {'ERA-Interim': {'name': 'ERA-Interim',
          'nyears': 40,
          'time_period': ['1979-1-16 12:0:0.0', '2019-3-16 12:0:0.0']},
         'GPCPv2.3': {'name': 'GPCPv2.3',
          'nyears': 41,
          'time_period': ['1979-1-1 0:0:0.0', '2019-7-1 0:0:0.0']},
         'MIROC4h_r3i1p1': {'keyerror': None,
          'name': 'MIROC4h_r3i1p1',
          'nyears': 56,
          'time_period': ['1950-1-16 12:0:0.0', '2005-12-16 12:0:0.0']},
         'method': 'Zonal root mean square error of equatorial_pacific pr, time series are linearly detrended, observations and model regridded to generic_1x1deg',
         'name': 'pr Zonal RMSE',
         'ref': 'Using CDAT regridding and rms (uncentered and biased) calculation',
         'time_frequency': 'monthly',
         'units': 'mm/day'},
        'metric': {'datasets': "MIROC4h_r3i1p1; ERA-Interim's pr & GPCPv2.3's precip; 's ",
         'method': 'The metric is the statistical value between the model and the observations',
         'name': 'BiasPrLonRmse',
         'units': 'mm/day'}},
       'BiasSstLonRmse': {'diagnostic': {'ERA-Interim': {'name': 'ERA-Interim',
          'nyears': 40,
          'time_period': ['1979-1-16 12:0:0.0', '2019-3-16 12:0:0.0']},
         'HadISST': {'name': 'HadISST',
          'nyears': 151,
          'time_period': ['1870-1-16 11:59:59.5', '2020-10-16 12:0:0.0']},
         'MIROC4h_r3i1p1': {'keyerror': None,
          'name': 'MIROC4h_r3i1p1',
          'nyears': 56,
          'time_period': ['1950-1-16 12:0:0.0', '2005-12-16 12:0:0.0']},
         'Tropflux': {'name': 'Tropflux',
          'nyears': 40,
          'time_period': ['1979-1-15 0:0:0.0', '2018-12-15 12:0:0.0']},
         'method': 'Zonal root mean square error of equatorial_pacific sst, time series are linearly detrended, observations and model regridded to generic_1x1deg',
         'name': 'sst Zonal RMSE',
         'ref': 'Using CDAT regridding and rms (uncentered and biased) calculation',
         'time_frequency': 'monthly',
         'units': 'C'},
        'metric': {'datasets': "MIROC4h_r3i1p1; ERA-Interim's ts & HadISST's sst & Tropflux's sst; 's ",
         'method': 'The metric is the statistical value between the model and the observations',
         'name': 'BiasSstLonRmse',
         'units': 'C'}},
       'BiasTauxLonRmse': {'diagnostic': {'ERA-Interim': {'name': 'ERA-Interim',
          'nyears': 40,
          'time_period': ['1979-1-16 12:0:0.0', '2019-3-16 12:0:0.0']},
         'MIROC4h_r3i1p1': {'keyerror': None,
          'name': 'MIROC4h_r3i1p1',
          'nyears': 56,
          'time_period': ['1950-1-16 12:0:0.0', '2005-12-16 12:0:0.0']},
         'Tropflux': {'name': 'Tropflux',
          'nyears': 40,
          'time_period': ['1979-1-15 0:0:0.0', '2018-12-15 12:0:0.0']},
         'method': 'Zonal root mean square error of equatorial_pacific taux, time series are linearly detrended, observations and model regridded to generic_1x1deg',
         'name': 'taux Zonal RMSE',
         'ref': 'Using CDAT regridding and rms (uncentered and biased) calculation',
         'time_frequency': 'monthly',
         'units': '1e-3 N/m2'},
        'metric': {'datasets': "MIROC4h_r3i1p1; ERA-Interim's tauu & Tropflux's taux; 's ",
         'method': 'The metric is the statistical value between the model and the observations',
         'name': 'BiasTauxLonRmse',
         'units': '1e-3 N/m2'}},
       'EnsoAmpl': {'diagnostic': {'ERA-Interim': {'keyerror': None,
          'name': 'ERA-Interim',
          'nyears': 40,
          'time_period': ['1979-1-16 12:0:0.0', '2019-3-16 12:0:0.0']},
         'HadISST': {'keyerror': None,
          'name': 'HadISST',
          'nyears': 151,
          'time_period': ['1870-1-16 11:59:59.5', '2020-10-16 12:0:0.0']},
         'MIROC4h_r3i1p1': {'keyerror': None,
          'name': 'MIROC4h_r3i1p1',
          'nyears': 56,
          'time_period': ['1950-1-16 12:0:0.0', '2005-12-16 12:0:0.0']},
         'Tropflux': {'keyerror': None,
          'name': 'Tropflux',
          'nyears': 40,
          'time_period': ['1979-1-15 0:0:0.0', '2018-12-15 12:0:0.0']},
         'method': 'Standard deviation of nino3.4 sstA, time series are linearly detrended',
         'name': 'ENSO amplitude',
         'ref': 'Using CDAT regression calculation',
         'time_frequency': 'monthly',
         'units': 'C'},
        'metric': {'datasets': "MIROC4h_r3i1p1; ERA-Interim's ts & HadISST's sst & Tropflux's sst; 's ",
         'method': 'The metric is the absolute value of the relative difference between model and observations values (M = 100 * abs[[model-obs] / obs])',
         'name': 'EnsoAmpl',
         'units': '%'}},
       'EnsoDuration': {'diagnostic': {'ERA-Interim': {'keyerror': None,
          'name': 'ERA-Interim',
          'nyears': 40,
          'time_period': ['1979-1-16 12:0:0.0', '2019-3-16 12:0:0.0']},
         'HadISST': {'keyerror': None,
          'name': 'HadISST',
          'nyears': 151,
          'time_period': ['1870-1-16 11:59:59.5', '2020-10-16 12:0:0.0']},
         'MIROC4h_r3i1p1': {'keyerror': None,
          'name': 'MIROC4h_r3i1p1',
          'nyears': 56,
          'time_period': ['1950-1-16 12:0:0.0', '2005-12-16 12:0:0.0']},
         'Tropflux': {'keyerror': None,
          'name': 'Tropflux',
          'nyears': 40,
          'time_period': ['1979-1-15 0:0:0.0', '2018-12-15 12:0:0.0']},
         'method': 'nino3.4 SSTA during DEC regressed against nino3.4 SSTA during 6 years (centered on ENSO), the duration is the number of consecutive months during which the regression is above 0.25, time series are linearly detrended, smoothing using a triangle shaped window of 5 points',
         'name': 'ENSO Duration based on life cyle SSTA pattern',
         'ref': 'Using CDAT',
         'time_frequency': 'monthly',
         'units': 'months'},
        'metric': {'datasets': "MIROC4h_r3i1p1; ERA-Interim's ts & HadISST's sst & Tropflux's sst; 's ",
         'method': 'The metric is the absolute value of the relative difference between model and observations values (M = 100 * abs[[model-obs] / obs])',
         'name': 'EnsoDuration',
         'units': '%'}},
       'EnsoSeasonality': {'diagnostic': {'ERA-Interim': {'keyerror': None,
          'name': 'ERA-Interim',
          'nyears': 40,
          'time_period': ['1979-1-16 12:0:0.0', '2019-3-16 12:0:0.0']},
         'HadISST': {'keyerror': None,
          'name': 'HadISST',
          'nyears': 151,
          'time_period': ['1870-1-16 11:59:59.5', '2020-10-16 12:0:0.0']},
         'MIROC4h_r3i1p1': {'keyerror': None,
          'name': 'MIROC4h_r3i1p1',
          'nyears': 56,
          'time_period': ['1950-1-16 12:0:0.0', '2005-12-16 12:0:0.0']},
         'Tropflux': {'keyerror': None,
          'name': 'Tropflux',
          'nyears': 40,
          'time_period': ['1979-1-15 0:0:0.0', '2018-12-15 12:0:0.0']},
         'method': 'Ratio between NDJ and MAM standard deviation nino3.4 sstA, time series are linearly detrended',
         'name': 'ENSO seasonality',
         'ref': 'Using CDAT std dev calculation',
         'time_frequency': 'monthly',
         'units': 'C/C'},
        'metric': {'datasets': "MIROC4h_r3i1p1; ERA-Interim's ts & HadISST's sst & Tropflux's sst; 's ",
         'method': 'The metric is the absolute value of the relative difference between model and observations values (M = 100 * abs[[model-obs] / obs])',
         'name': 'EnsoSeasonality',
         'units': '%'}},
       'EnsoSstDiversity_2': {'diagnostic': {'ERA-Interim': {'keyerror': None,
          'name': 'ERA-Interim',
          'nyears': 40,
          'time_period': ['1979-1-16 12:0:0.0', '2019-3-16 12:0:0.0']},
         'HadISST': {'keyerror': None,
          'name': 'HadISST',
          'nyears': 151,
          'time_period': ['1870-1-16 11:59:59.5', '2020-10-16 12:0:0.0']},
         'MIROC4h_r3i1p1': {'keyerror': None,
          'name': 'MIROC4h_r3i1p1',
          'nyears': 56,
          'time_period': ['1950-1-16 12:0:0.0', '2005-12-16 12:0:0.0']},
         'Tropflux': {'keyerror': None,
          'name': 'Tropflux',
          'nyears': 40,
          'time_period': ['1979-1-15 0:0:0.0', '2018-12-15 12:0:0.0']},
         'method': 'Nino (Nina) events = nino3.4 sstA > 0.75 (< -0.75) during DEC, zonal SSTA (meridional averaged [-5.0 ; 5.0]), the zonal SSTA maximum (minimum) is located for each event, the diversity is the interquartile range (IQR = Q3 - Q1), time series are linearly detrended, smoothing using a triangle shaped window of 5 points',
         'name': 'ENSO Diversity (interquartile range)',
         'ref': 'Using CDAT regridding',
         'time_frequency': 'monthly',
         'units': 'long'},
        'metric': {'datasets': "MIROC4h_r3i1p1; ERA-Interim's ts & HadISST's sst & Tropflux's sst; 's ",
         'method': 'The metric is the absolute value of the relative difference between model and observations values (M = 100 * abs[[model-obs] / obs])',
         'name': 'EnsoSstDiversity',
         'units': '%'}},
       'EnsoSstLonRmse': {'diagnostic': {'ERA-Interim': {'name': 'ERA-Interim',
          'nyears': 40,
          'time_period': ['1979-1-16 12:0:0.0', '2019-3-16 12:0:0.0']},
         'HadISST': {'name': 'HadISST',
          'nyears': 151,
          'time_period': ['1870-1-16 11:59:59.5', '2020-10-16 12:0:0.0']},
         'MIROC4h_r3i1p1': {'keyerror': None,
          'name': 'MIROC4h_r3i1p1',
          'nyears': 56,
          'time_period': ['1950-1-16 12:0:0.0', '2005-12-16 12:0:0.0']},
         'Tropflux': {'name': 'Tropflux',
          'nyears': 40,
          'time_period': ['1979-1-15 0:0:0.0', '2018-12-15 12:0:0.0']},
         'method': 'nino3.4 SSTA during DEC regressed against equatorial_pacific SSTA, time series are linearly detrended, smoothing using a triangle shaped window of 5 points, observations and model regridded to generic_1x1deg',
         'name': 'ENSO Zonal SSTA pattern',
         'ref': 'Using CDAT regridding and rms (uncentered and biased) calculation',
         'time_frequency': 'monthly',
         'units': 'C/C'},
        'metric': {'datasets': "MIROC4h_r3i1p1; ERA-Interim's ts & HadISST's sst & Tropflux's sst; 's ",
         'method': 'The metric is the statistical value between the model and the observations',
         'name': 'EnsoSstLonRmse',
         'units': 'C/C'}},
       'EnsoSstSkew': {'diagnostic': {'ERA-Interim': {'keyerror': None,
          'name': 'ERA-Interim',
          'nyears': 40,
          'time_period': ['1979-1-16 12:0:0.0', '2019-3-16 12:0:0.0']},
         'HadISST': {'keyerror': None,
          'name': 'HadISST',
          'nyears': 151,
          'time_period': ['1870-1-16 11:59:59.5', '2020-10-16 12:0:0.0']},
         'MIROC4h_r3i1p1': {'keyerror': None,
          'name': 'MIROC4h_r3i1p1',
          'nyears': 56,
          'time_period': ['1950-1-16 12:0:0.0', '2005-12-16 12:0:0.0']},
         'Tropflux': {'keyerror': None,
          'name': 'Tropflux',
          'nyears': 40,
          'time_period': ['1979-1-15 0:0:0.0', '2018-12-15 12:0:0.0']},
         'method': 'Standard deviation of nino3.4 sstA, time series are linearly detrended',
         'name': 'ENSO skewness',
         'ref': 'Using CDAT regression calculation',
         'time_frequency': 'monthly',
         'units': 'C'},
        'metric': {'datasets': "MIROC4h_r3i1p1; ERA-Interim's ts & HadISST's sst & Tropflux's sst; 's ",
         'method': 'The metric is the absolute value of the relative difference between model and observations values (M = 100 * abs[[model-obs] / obs])',
         'name': 'EnsoSstSkew',
         'units': '%'}},
       'EnsoSstTsRmse': {'diagnostic': {'ERA-Interim': {'name': 'ERA-Interim',
          'nyears': 40,
          'time_period': ['1979-1-16 12:0:0.0', '2019-3-16 12:0:0.0']},
         'HadISST': {'name': 'HadISST',
          'nyears': 151,
          'time_period': ['1870-1-16 11:59:59.5', '2020-10-16 12:0:0.0']},
         'MIROC4h_r3i1p1': {'keyerror': None,
          'name': 'MIROC4h_r3i1p1',
          'nyears': 56,
          'time_period': ['1950-1-16 12:0:0.0', '2005-12-16 12:0:0.0']},
         'Tropflux': {'name': 'Tropflux',
          'nyears': 40,
          'time_period': ['1979-1-15 0:0:0.0', '2018-12-15 12:0:0.0']},
         'method': 'nino3.4 SSTA during DEC regressed against nino3.4 SSTA during 6 years (centered on ENSO), time series are linearly detrended, smoothing using a triangle shaped window of 5 points',
         'name': 'ENSO life cyle SSTA pattern',
         'ref': 'Using CDAT regridding and rms (uncentered and biased) calculation',
         'time_frequency': 'monthly',
         'units': 'C/C'},
        'metric': {'datasets': "MIROC4h_r3i1p1; ERA-Interim's ts & HadISST's sst & Tropflux's sst; 's ",
         'method': 'The metric is the statistical value between the model and the observations',
         'name': 'EnsoSstTsRmse',
         'units': 'C/C'}},
       'SeasonalPrLatRmse': {'diagnostic': {'ERA-Interim': {'name': 'ERA-Interim',
          'nyears': 40,
          'time_period': ['1979-1-16 12:0:0.0', '2019-3-16 12:0:0.0']},
         'GPCPv2.3': {'name': 'GPCPv2.3',
          'nyears': 41,
          'time_period': ['1979-1-1 0:0:0.0', '2019-7-1 0:0:0.0']},
         'MIROC4h_r3i1p1': {'keyerror': None,
          'name': 'MIROC4h_r3i1p1',
          'nyears': 56,
          'time_period': ['1950-1-16 12:0:0.0', '2005-12-16 12:0:0.0']},
         'method': 'Meridional root mean square error of nino3_LatExt climatological pr STD, time series are linearly detrended, observations and model regridded to generic_1x1deg',
         'name': 'pr meridional seasonality RMSE',
         'ref': 'Using CDAT regridding and rms (uncentered and biased) calculation',
         'time_frequency': 'monthly',
         'units': 'mm/day'},
        'metric': {'datasets': "MIROC4h_r3i1p1; ERA-Interim's pr & GPCPv2.3's precip; 's ",
         'method': 'The metric is the statistical value between the model and the observations',
         'name': 'SeasonalPrLatRmse',
         'units': 'mm/day'}},
       'SeasonalPrLonRmse': {'diagnostic': {'ERA-Interim': {'name': 'ERA-Interim',
          'nyears': 40,
          'time_period': ['1979-1-16 12:0:0.0', '2019-3-16 12:0:0.0']},
         'GPCPv2.3': {'name': 'GPCPv2.3',
          'nyears': 41,
          'time_period': ['1979-1-1 0:0:0.0', '2019-7-1 0:0:0.0']},
         'MIROC4h_r3i1p1': {'keyerror': None,
          'name': 'MIROC4h_r3i1p1',
          'nyears': 56,
          'time_period': ['1950-1-16 12:0:0.0', '2005-12-16 12:0:0.0']},
         'method': 'Zonal root mean square error of equatorial_pacific climatological pr STD, time series are linearly detrended, observations and model regridded to generic_1x1deg',
         'name': 'pr zonal seasonality RMSE',
         'ref': 'Using CDAT regridding and rms (uncentered and biased) calculation',
         'time_frequency': 'monthly',
         'units': 'mm/day'},
        'metric': {'datasets': "MIROC4h_r3i1p1; ERA-Interim's pr & GPCPv2.3's precip; 's ",
         'method': 'The metric is the statistical value between the model and the observations',
         'name': 'SeasonalPrLonRmse',
         'units': 'mm/day'}},
       'SeasonalSstLonRmse': {'diagnostic': {'ERA-Interim': {'name': 'ERA-Interim',
          'nyears': 40,
          'time_period': ['1979-1-16 12:0:0.0', '2019-3-16 12:0:0.0']},
         'HadISST': {'name': 'HadISST',
          'nyears': 151,
          'time_period': ['1870-1-16 11:59:59.5', '2020-10-16 12:0:0.0']},
         'MIROC4h_r3i1p1': {'keyerror': None,
          'name': 'MIROC4h_r3i1p1',
          'nyears': 56,
          'time_period': ['1950-1-16 12:0:0.0', '2005-12-16 12:0:0.0']},
         'Tropflux': {'name': 'Tropflux',
          'nyears': 40,
          'time_period': ['1979-1-15 0:0:0.0', '2018-12-15 12:0:0.0']},
         'method': 'Zonal root mean square error of equatorial_pacific climatological sst STD, time series are linearly detrended, observations and model regridded to generic_1x1deg',
         'name': 'sst zonal seasonality RMSE',
         'ref': 'Using CDAT regridding and rms (uncentered and biased) calculation',
         'time_frequency': 'monthly',
         'units': 'C'},
        'metric': {'datasets': "MIROC4h_r3i1p1; ERA-Interim's ts & HadISST's sst & Tropflux's sst; 's ",
         'method': 'The metric is the statistical value between the model and the observations',
         'name': 'SeasonalSstLonRmse',
         'units': 'C'}},
       'SeasonalTauxLonRmse': {'diagnostic': {'ERA-Interim': {'name': 'ERA-Interim',
          'nyears': 40,
          'time_period': ['1979-1-16 12:0:0.0', '2019-3-16 12:0:0.0']},
         'MIROC4h_r3i1p1': {'keyerror': None,
          'name': 'MIROC4h_r3i1p1',
          'nyears': 56,
          'time_period': ['1950-1-16 12:0:0.0', '2005-12-16 12:0:0.0']},
         'Tropflux': {'name': 'Tropflux',
          'nyears': 40,
          'time_period': ['1979-1-15 0:0:0.0', '2018-12-15 12:0:0.0']},
         'method': 'Zonal root mean square error of equatorial_pacific climatological taux STD, time series are linearly detrended, observations and model regridded to generic_1x1deg',
         'name': 'taux zonal seasonality RMSE',
         'ref': 'Using CDAT regridding and rms (uncentered and biased) calculation',
         'time_frequency': 'monthly',
         'units': '1e-3 N/m2'},
        'metric': {'datasets': "MIROC4h_r3i1p1; ERA-Interim's tauu & Tropflux's taux; 's ",
         'method': 'The metric is the statistical value between the model and the observations',
         'name': 'SeasonalTauxLonRmse',
         'units': '1e-3 N/m2'}}},
      'name': 'Metrics Collection for ENSO performance'},
     'value': {'BiasPrLatRmse': {'diagnostic': {'ERA-Interim': {'value': None,
         'value_error': None},
        'GPCPv2.3': {'value': None, 'value_error': None},
        'MIROC4h_r3i1p1': {'value': None, 'value_error': None}},
       'metric': {'ERA-Interim': {'value': 1.4893492007990967,
         'value_error': None},
        'GPCPv2.3': {'value': 2.1410587483303827, 'value_error': None}}},
      'BiasPrLonRmse': {'diagnostic': {'ERA-Interim': {'value': None,
         'value_error': None},
        'GPCPv2.3': {'value': None, 'value_error': None},
        'MIROC4h_r3i1p1': {'value': None, 'value_error': None}},
       'metric': {'ERA-Interim': {'value': 1.7599901121411472,
         'value_error': None},
        'GPCPv2.3': {'value': 2.561232142205437, 'value_error': None}}},
      'BiasSstLonRmse': {'diagnostic': {'ERA-Interim': {'value': None,
         'value_error': None},
        'HadISST': {'value': None, 'value_error': None},
        'MIROC4h_r3i1p1': {'value': None, 'value_error': None},
        'Tropflux': {'value': None, 'value_error': None}},
       'metric': {'ERA-Interim': {'value': 0.7857169319479281,
         'value_error': None},
        'HadISST': {'value': 0.9891947860432199, 'value_error': None},
        'Tropflux': {'value': 0.7586961672713189, 'value_error': None}}},
      'BiasTauxLonRmse': {'diagnostic': {'ERA-Interim': {'value': None,
         'value_error': None},
        'MIROC4h_r3i1p1': {'value': None, 'value_error': None},
        'Tropflux': {'value': None, 'value_error': None}},
       'metric': {'ERA-Interim': {'value': 12.706079001599283,
         'value_error': None},
        'Tropflux': {'value': 12.403816604981143, 'value_error': None}}},
      'EnsoAmpl': {'diagnostic': {'ERA-Interim': {'value': 0.8989844997845644,
         'value_error': 0.14214193002531866},
        'HadISST': {'value': 0.7665787872085695,
         'value_error': 0.06238329697691264},
        'MIROC4h_r3i1p1': {'value': 0.603849870079341,
         'value_error': 0.0806928331030304},
        'Tropflux': {'value': 0.9039789553693535,
         'value_error': 0.14293162279134272}},
       'metric': {'ERA-Interim': {'value': 32.8297795763943,
         'value_error': 19.596542638679782},
        'HadISST': {'value': 21.227944191071586,
         'value_error': 16.936737720842864},
        'Tropflux': {'value': 33.20089295302055,
         'value_error': 19.488272350701312}}},
      'EnsoDuration': {'diagnostic': {'ERA-Interim': {'value': 13.0,
         'value_error': None},
        'HadISST': {'value': 13.0, 'value_error': None},
        'MIROC4h_r3i1p1': {'value': 11.0, 'value_error': None},
        'Tropflux': {'value': 13.0, 'value_error': None}},
       'metric': {'ERA-Interim': {'value': 15.384615384615385,
         'value_error': None},
        'HadISST': {'value': 15.384615384615385, 'value_error': None},
        'Tropflux': {'value': 15.384615384615385, 'value_error': None}}},
      'EnsoSeasonality': {'diagnostic': {'ERA-Interim': {'value': 2.0466846866656914,
         'value_error': 0.6513411033995022},
        'HadISST': {'value': 1.6639865947361325,
         'value_error': 0.2712772451657809},
        'MIROC4h_r3i1p1': {'value': 2.4622341839363053,
         'value_error': 0.661037472571451},
        'Tropflux': {'value': 2.0532132553583624,
         'value_error': 0.6534187683977347}},
       'metric': {'ERA-Interim': {'value': 20.30354260125905,
         'value_error': 70.5836079094654},
        'HadISST': {'value': 47.97199639260047,
         'value_error': 63.849782886657515},
        'Tropflux': {'value': 19.921015389439102,
         'value_error': 70.35917436287158}}},
      'EnsoSstDiversity_2': {'diagnostic': {'ERA-Interim': {'value': 33.25,
         'value_error': None},
        'HadISST': {'value': 49.0, 'value_error': None},
        'MIROC4h_r3i1p1': {'value': 18.5, 'value_error': None},
        'Tropflux': {'value': 32.0, 'value_error': None}},
       'metric': {'ERA-Interim': {'value': 44.3609022556391,
         'value_error': None},
        'HadISST': {'value': 62.244897959183675, 'value_error': None},
        'Tropflux': {'value': 42.1875, 'value_error': None}}},
      'EnsoSstLonRmse': {'diagnostic': {'ERA-Interim': {'value': None,
         'value_error': None},
        'HadISST': {'value': None, 'value_error': None},
        'MIROC4h_r3i1p1': {'value': None, 'value_error': None},
        'Tropflux': {'value': None, 'value_error': None}},
       'metric': {'ERA-Interim': {'value': 0.3292968723864246,
         'value_error': None},
        'HadISST': {'value': 0.34633209430736167, 'value_error': None},
        'Tropflux': {'value': 0.33037290338184305, 'value_error': None}}},
      'EnsoSstSkew': {'diagnostic': {'ERA-Interim': {'value': 0.39098111106809963,
         'value_error': 0.061819541653923164},
        'HadISST': {'value': 0.38989908235027515,
         'value_error': 0.03172953733021198},
        'MIROC4h_r3i1p1': {'value': 0.6304556642185342,
         'value_error': 0.08424818189488394},
        'Tropflux': {'value': 0.39744741059612115,
         'value_error': 0.06284195338099416}},
       'metric': {'ERA-Interim': {'value': 61.2496477121944,
         'value_error': 47.04369848626568},
        'HadISST': {'value': 61.69713978761029,
         'value_error': 34.76641581420822},
        'Tropflux': {'value': 58.626184851205835,
         'value_error': 46.27831761521694}}},
      'EnsoSstTsRmse': {'diagnostic': {'ERA-Interim': {'value': None,
         'value_error': None},
        'HadISST': {'value': None, 'value_error': None},
        'MIROC4h_r3i1p1': {'value': None, 'value_error': None},
        'Tropflux': {'value': None, 'value_error': None}},
       'metric': {'ERA-Interim': {'value': 0.1796255081875928,
         'value_error': None},
        'HadISST': {'value': 0.1916149274126757, 'value_error': None},
        'Tropflux': {'value': 0.181586044463979, 'value_error': None}}},
      'SeasonalPrLatRmse': {'diagnostic': {'ERA-Interim': {'value': None,
         'value_error': None},
        'GPCPv2.3': {'value': None, 'value_error': None},
        'MIROC4h_r3i1p1': {'value': None, 'value_error': None}},
       'metric': {'ERA-Interim': {'value': 1.2278376589067852,
         'value_error': None},
        'GPCPv2.3': {'value': 1.678365004445241, 'value_error': None}}},
      'SeasonalPrLonRmse': {'diagnostic': {'ERA-Interim': {'value': None,
         'value_error': None},
        'GPCPv2.3': {'value': None, 'value_error': None},
        'MIROC4h_r3i1p1': {'value': None, 'value_error': None}},
       'metric': {'ERA-Interim': {'value': 1.6005327611993192,
         'value_error': None},
        'GPCPv2.3': {'value': 2.1043814196670008, 'value_error': None}}},
      'SeasonalSstLonRmse': {'diagnostic': {'ERA-Interim': {'value': None,
         'value_error': None},
        'HadISST': {'value': None, 'value_error': None},
        'MIROC4h_r3i1p1': {'value': None, 'value_error': None},
        'Tropflux': {'value': None, 'value_error': None}},
       'metric': {'ERA-Interim': {'value': 0.3486516794157163,
         'value_error': None},
        'HadISST': {'value': 0.3714454219056565, 'value_error': None},
        'Tropflux': {'value': 0.3405643212515411, 'value_error': None}}},
      'SeasonalTauxLonRmse': {'diagnostic': {'ERA-Interim': {'value': None,
         'value_error': None},
        'MIROC4h_r3i1p1': {'value': None, 'value_error': None},
        'Tropflux': {'value': None, 'value_error': None}},
       'metric': {'ERA-Interim': {'value': 4.311834398026247,
         'value_error': None},
        'Tropflux': {'value': 4.2156888704853115, 'value_error': None}}}}}},
   'MIROC5': {'r1i1p1': {'metadata': {'description_of_the_collection': 'Describe which science question this collection is about',
      'metrics': {'BiasPrLatRmse': {'diagnostic': {'ERA-Interim': {'name': 'ERA-Interim',
          'nyears': 40,
          'time_period': ['1979-1-16 12:0:0.0', '2019-3-16 12:0:0.0']},
         'GPCPv2.3': {'name': 'GPCPv2.3',
          'nyears': 41,
          'time_period': ['1979-1-1 0:0:0.0', '2019-7-1 0:0:0.0']},
         'MIROC5_r1i1p1': {'keyerror': None,
          'name': 'MIROC5_r1i1p1',
          'nyears': 163,
          'time_period': ['1850-1-16 12:0:0.0', '2012-12-16 12:0:0.0']},
         'method': 'Meridional root mean square error of nino3_LatExt pr, time series are linearly detrended, observations and model regridded to generic_1x1deg',
         'name': 'pr Meridional RMSE',
         'ref': 'Using CDAT regridding and rms (uncentered and biased) calculation',
         'time_frequency': 'monthly',
         'units': 'mm/day'},
        'metric': {'datasets': "MIROC5_r1i1p1; ERA-Interim's pr & GPCPv2.3's precip; 's ",
         'method': 'The metric is the statistical value between the model and the observations',
         'name': 'BiasPrLatRmse',
         'units': 'mm/day'}},
       'BiasPrLonRmse': {'diagnostic': {'ERA-Interim': {'name': 'ERA-Interim',
          'nyears': 40,
          'time_period': ['1979-1-16 12:0:0.0', '2019-3-16 12:0:0.0']},
         'GPCPv2.3': {'name': 'GPCPv2.3',
          'nyears': 41,
          'time_period': ['1979-1-1 0:0:0.0', '2019-7-1 0:0:0.0']},
         'MIROC5_r1i1p1': {'keyerror': None,
          'name': 'MIROC5_r1i1p1',
          'nyears': 163,
          'time_period': ['1850-1-16 12:0:0.0', '2012-12-16 12:0:0.0']},
         'method': 'Zonal root mean square error of equatorial_pacific pr, time series are linearly detrended, observations and model regridded to generic_1x1deg',
         'name': 'pr Zonal RMSE',
         'ref': 'Using CDAT regridding and rms (uncentered and biased) calculation',
         'time_frequency': 'monthly',
         'units': 'mm/day'},
        'metric': {'datasets': "MIROC5_r1i1p1; ERA-Interim's pr & GPCPv2.3's precip; 's ",
         'method': 'The metric is the statistical value between the model and the observations',
         'name': 'BiasPrLonRmse',
         'units': 'mm/day'}},
       'BiasSstLonRmse': {'diagnostic': {'ERA-Interim': {'name': 'ERA-Interim',
          'nyears': 40,
          'time_period': ['1979-1-16 12:0:0.0', '2019-3-16 12:0:0.0']},
         'HadISST': {'name': 'HadISST',
          'nyears': 151,
          'time_period': ['1870-1-16 11:59:59.5', '2020-10-16 12:0:0.0']},
         'MIROC5_r1i1p1': {'keyerror': None,
          'name': 'MIROC5_r1i1p1',
          'nyears': 163,
          'time_period': ['1850-1-16 12:0:0.0', '2012-12-16 12:0:0.0']},
         'Tropflux': {'name': 'Tropflux',
          'nyears': 40,
          'time_period': ['1979-1-15 0:0:0.0', '2018-12-15 12:0:0.0']},
         'method': 'Zonal root mean square error of equatorial_pacific sst, time series are linearly detrended, observations and model regridded to generic_1x1deg',
         'name': 'sst Zonal RMSE',
         'ref': 'Using CDAT regridding and rms (uncentered and biased) calculation',
         'time_frequency': 'monthly',
         'units': 'C'},
        'metric': {'datasets': "MIROC5_r1i1p1; ERA-Interim's ts & HadISST's sst & Tropflux's sst; 's ",
         'method': 'The metric is the statistical value between the model and the observations',
         'name': 'BiasSstLonRmse',
         'units': 'C'}},
       'BiasTauxLonRmse': {'diagnostic': {'ERA-Interim': {'name': 'ERA-Interim',
          'nyears': 40,
          'time_period': ['1979-1-16 12:0:0.0', '2019-3-16 12:0:0.0']},
         'MIROC5_r1i1p1': {'keyerror': None,
          'name': 'MIROC5_r1i1p1',
          'nyears': 163,
          'time_period': ['1850-1-16 12:0:0.0', '2012-12-16 12:0:0.0']},
         'Tropflux': {'name': 'Tropflux',
          'nyears': 40,
          'time_period': ['1979-1-15 0:0:0.0', '2018-12-15 12:0:0.0']},
         'method': 'Zonal root mean square error of equatorial_pacific taux, time series are linearly detrended, observations and model regridded to generic_1x1deg',
         'name': 'taux Zonal RMSE',
         'ref': 'Using CDAT regridding and rms (uncentered and biased) calculation',
         'time_frequency': 'monthly',
         'units': '1e-3 N/m2'},
        'metric': {'datasets': "MIROC5_r1i1p1; ERA-Interim's tauu & Tropflux's taux; 's ",
         'method': 'The metric is the statistical value between the model and the observations',
         'name': 'BiasTauxLonRmse',
         'units': '1e-3 N/m2'}},
       'EnsoAmpl': {'diagnostic': {'ERA-Interim': {'keyerror': None,
          'name': 'ERA-Interim',
          'nyears': 40,
          'time_period': ['1979-1-16 12:0:0.0', '2019-3-16 12:0:0.0']},
         'HadISST': {'keyerror': None,
          'name': 'HadISST',
          'nyears': 151,
          'time_period': ['1870-1-16 11:59:59.5', '2020-10-16 12:0:0.0']},
         'MIROC5_r1i1p1': {'keyerror': None,
          'name': 'MIROC5_r1i1p1',
          'nyears': 163,
          'time_period': ['1850-1-16 12:0:0.0', '2012-12-16 12:0:0.0']},
         'Tropflux': {'keyerror': None,
          'name': 'Tropflux',
          'nyears': 40,
          'time_period': ['1979-1-15 0:0:0.0', '2018-12-15 12:0:0.0']},
         'method': 'Standard deviation of nino3.4 sstA, time series are linearly detrended',
         'name': 'ENSO amplitude',
         'ref': 'Using CDAT regression calculation',
         'time_frequency': 'monthly',
         'units': 'C'},
        'metric': {'datasets': "MIROC5_r1i1p1; ERA-Interim's ts & HadISST's sst & Tropflux's sst; 's ",
         'method': 'The metric is the absolute value of the relative difference between model and observations values (M = 100 * abs[[model-obs] / obs])',
         'name': 'EnsoAmpl',
         'units': '%'}},
       'EnsoDuration': {'diagnostic': {'ERA-Interim': {'keyerror': None,
          'name': 'ERA-Interim',
          'nyears': 40,
          'time_period': ['1979-1-16 12:0:0.0', '2019-3-16 12:0:0.0']},
         'HadISST': {'keyerror': None,
          'name': 'HadISST',
          'nyears': 151,
          'time_period': ['1870-1-16 11:59:59.5', '2020-10-16 12:0:0.0']},
         'MIROC5_r1i1p1': {'keyerror': None,
          'name': 'MIROC5_r1i1p1',
          'nyears': 163,
          'time_period': ['1850-1-16 12:0:0.0', '2012-12-16 12:0:0.0']},
         'Tropflux': {'keyerror': None,
          'name': 'Tropflux',
          'nyears': 40,
          'time_period': ['1979-1-15 0:0:0.0', '2018-12-15 12:0:0.0']},
         'method': 'nino3.4 SSTA during DEC regressed against nino3.4 SSTA during 6 years (centered on ENSO), the duration is the number of consecutive months during which the regression is above 0.25, time series are linearly detrended, smoothing using a triangle shaped window of 5 points',
         'name': 'ENSO Duration based on life cyle SSTA pattern',
         'ref': 'Using CDAT',
         'time_frequency': 'monthly',
         'units': 'months'},
        'metric': {'datasets': "MIROC5_r1i1p1; ERA-Interim's ts & HadISST's sst & Tropflux's sst; 's ",
         'method': 'The metric is the absolute value of the relative difference between model and observations values (M = 100 * abs[[model-obs] / obs])',
         'name': 'EnsoDuration',
         'units': '%'}},
       'EnsoSeasonality': {'diagnostic': {'ERA-Interim': {'keyerror': None,
          'name': 'ERA-Interim',
          'nyears': 40,
          'time_period': ['1979-1-16 12:0:0.0', '2019-3-16 12:0:0.0']},
         'HadISST': {'keyerror': None,
          'name': 'HadISST',
          'nyears': 151,
          'time_period': ['1870-1-16 11:59:59.5', '2020-10-16 12:0:0.0']},
         'MIROC5_r1i1p1': {'keyerror': None,
          'name': 'MIROC5_r1i1p1',
          'nyears': 163,
          'time_period': ['1850-1-16 12:0:0.0', '2012-12-16 12:0:0.0']},
         'Tropflux': {'keyerror': None,
          'name': 'Tropflux',
          'nyears': 40,
          'time_period': ['1979-1-15 0:0:0.0', '2018-12-15 12:0:0.0']},
         'method': 'Ratio between NDJ and MAM standard deviation nino3.4 sstA, time series are linearly detrended',
         'name': 'ENSO seasonality',
         'ref': 'Using CDAT std dev calculation',
         'time_frequency': 'monthly',
         'units': 'C/C'},
        'metric': {'datasets': "MIROC5_r1i1p1; ERA-Interim's ts & HadISST's sst & Tropflux's sst; 's ",
         'method': 'The metric is the absolute value of the relative difference between model and observations values (M = 100 * abs[[model-obs] / obs])',
         'name': 'EnsoSeasonality',
         'units': '%'}},
       'EnsoSstDiversity_2': {'diagnostic': {'ERA-Interim': {'keyerror': None,
          'name': 'ERA-Interim',
          'nyears': 40,
          'time_period': ['1979-1-16 12:0:0.0', '2019-3-16 12:0:0.0']},
         'HadISST': {'keyerror': None,
          'name': 'HadISST',
          'nyears': 151,
          'time_period': ['1870-1-16 11:59:59.5', '2020-10-16 12:0:0.0']},
         'MIROC5_r1i1p1': {'keyerror': None,
          'name': 'MIROC5_r1i1p1',
          'nyears': 163,
          'time_period': ['1850-1-16 12:0:0.0', '2012-12-16 12:0:0.0']},
         'Tropflux': {'keyerror': None,
          'name': 'Tropflux',
          'nyears': 40,
          'time_period': ['1979-1-15 0:0:0.0', '2018-12-15 12:0:0.0']},
         'method': 'Nino (Nina) events = nino3.4 sstA > 0.75 (< -0.75) during DEC, zonal SSTA (meridional averaged [-5.0 ; 5.0]), the zonal SSTA maximum (minimum) is located for each event, the diversity is the interquartile range (IQR = Q3 - Q1), time series are linearly detrended, smoothing using a triangle shaped window of 5 points',
         'name': 'ENSO Diversity (interquartile range)',
         'ref': 'Using CDAT regridding',
         'time_frequency': 'monthly',
         'units': 'long'},
        'metric': {'datasets': "MIROC5_r1i1p1; ERA-Interim's ts & HadISST's sst & Tropflux's sst; 's ",
         'method': 'The metric is the absolute value of the relative difference between model and observations values (M = 100 * abs[[model-obs] / obs])',
         'name': 'EnsoSstDiversity',
         'units': '%'}},
       'EnsoSstLonRmse': {'diagnostic': {'ERA-Interim': {'name': 'ERA-Interim',
          'nyears': 40,
          'time_period': ['1979-1-16 12:0:0.0', '2019-3-16 12:0:0.0']},
         'HadISST': {'name': 'HadISST',
          'nyears': 151,
          'time_period': ['1870-1-16 11:59:59.5', '2020-10-16 12:0:0.0']},
         'MIROC5_r1i1p1': {'keyerror': None,
          'name': 'MIROC5_r1i1p1',
          'nyears': 163,
          'time_period': ['1850-1-16 12:0:0.0', '2012-12-16 12:0:0.0']},
         'Tropflux': {'name': 'Tropflux',
          'nyears': 40,
          'time_period': ['1979-1-15 0:0:0.0', '2018-12-15 12:0:0.0']},
         'method': 'nino3.4 SSTA during DEC regressed against equatorial_pacific SSTA, time series are linearly detrended, smoothing using a triangle shaped window of 5 points, observations and model regridded to generic_1x1deg',
         'name': 'ENSO Zonal SSTA pattern',
         'ref': 'Using CDAT regridding and rms (uncentered and biased) calculation',
         'time_frequency': 'monthly',
         'units': 'C/C'},
        'metric': {'datasets': "MIROC5_r1i1p1; ERA-Interim's ts & HadISST's sst & Tropflux's sst; 's ",
         'method': 'The metric is the statistical value between the model and the observations',
         'name': 'EnsoSstLonRmse',
         'units': 'C/C'}},
       'EnsoSstSkew': {'diagnostic': {'ERA-Interim': {'keyerror': None,
          'name': 'ERA-Interim',
          'nyears': 40,
          'time_period': ['1979-1-16 12:0:0.0', '2019-3-16 12:0:0.0']},
         'HadISST': {'keyerror': None,
          'name': 'HadISST',
          'nyears': 151,
          'time_period': ['1870-1-16 11:59:59.5', '2020-10-16 12:0:0.0']},
         'MIROC5_r1i1p1': {'keyerror': None,
          'name': 'MIROC5_r1i1p1',
          'nyears': 163,
          'time_period': ['1850-1-16 12:0:0.0', '2012-12-16 12:0:0.0']},
         'Tropflux': {'keyerror': None,
          'name': 'Tropflux',
          'nyears': 40,
          'time_period': ['1979-1-15 0:0:0.0', '2018-12-15 12:0:0.0']},
         'method': 'Standard deviation of nino3.4 sstA, time series are linearly detrended',
         'name': 'ENSO skewness',
         'ref': 'Using CDAT regression calculation',
         'time_frequency': 'monthly',
         'units': 'C'},
        'metric': {'datasets': "MIROC5_r1i1p1; ERA-Interim's ts & HadISST's sst & Tropflux's sst; 's ",
         'method': 'The metric is the absolute value of the relative difference between model and observations values (M = 100 * abs[[model-obs] / obs])',
         'name': 'EnsoSstSkew',
         'units': '%'}},
       'EnsoSstTsRmse': {'diagnostic': {'ERA-Interim': {'name': 'ERA-Interim',
          'nyears': 40,
          'time_period': ['1979-1-16 12:0:0.0', '2019-3-16 12:0:0.0']},
         'HadISST': {'name': 'HadISST',
          'nyears': 151,
          'time_period': ['1870-1-16 11:59:59.5', '2020-10-16 12:0:0.0']},
         'MIROC5_r1i1p1': {'keyerror': None,
          'name': 'MIROC5_r1i1p1',
          'nyears': 163,
          'time_period': ['1850-1-16 12:0:0.0', '2012-12-16 12:0:0.0']},
         'Tropflux': {'name': 'Tropflux',
          'nyears': 40,
          'time_period': ['1979-1-15 0:0:0.0', '2018-12-15 12:0:0.0']},
         'method': 'nino3.4 SSTA during DEC regressed against nino3.4 SSTA during 6 years (centered on ENSO), time series are linearly detrended, smoothing using a triangle shaped window of 5 points',
         'name': 'ENSO life cyle SSTA pattern',
         'ref': 'Using CDAT regridding and rms (uncentered and biased) calculation',
         'time_frequency': 'monthly',
         'units': 'C/C'},
        'metric': {'datasets': "MIROC5_r1i1p1; ERA-Interim's ts & HadISST's sst & Tropflux's sst; 's ",
         'method': 'The metric is the statistical value between the model and the observations',
         'name': 'EnsoSstTsRmse',
         'units': 'C/C'}},
       'SeasonalPrLatRmse': {'diagnostic': {'ERA-Interim': {'name': 'ERA-Interim',
          'nyears': 40,
          'time_period': ['1979-1-16 12:0:0.0', '2019-3-16 12:0:0.0']},
         'GPCPv2.3': {'name': 'GPCPv2.3',
          'nyears': 41,
          'time_period': ['1979-1-1 0:0:0.0', '2019-7-1 0:0:0.0']},
         'MIROC5_r1i1p1': {'keyerror': None,
          'name': 'MIROC5_r1i1p1',
          'nyears': 163,
          'time_period': ['1850-1-16 12:0:0.0', '2012-12-16 12:0:0.0']},
         'method': 'Meridional root mean square error of nino3_LatExt climatological pr STD, time series are linearly detrended, observations and model regridded to generic_1x1deg',
         'name': 'pr meridional seasonality RMSE',
         'ref': 'Using CDAT regridding and rms (uncentered and biased) calculation',
         'time_frequency': 'monthly',
         'units': 'mm/day'},
        'metric': {'datasets': "MIROC5_r1i1p1; ERA-Interim's pr & GPCPv2.3's precip; 's ",
         'method': 'The metric is the statistical value between the model and the observations',
         'name': 'SeasonalPrLatRmse',
         'units': 'mm/day'}},
       'SeasonalPrLonRmse': {'diagnostic': {'ERA-Interim': {'name': 'ERA-Interim',
          'nyears': 40,
          'time_period': ['1979-1-16 12:0:0.0', '2019-3-16 12:0:0.0']},
         'GPCPv2.3': {'name': 'GPCPv2.3',
          'nyears': 41,
          'time_period': ['1979-1-1 0:0:0.0', '2019-7-1 0:0:0.0']},
         'MIROC5_r1i1p1': {'keyerror': None,
          'name': 'MIROC5_r1i1p1',
          'nyears': 163,
          'time_period': ['1850-1-16 12:0:0.0', '2012-12-16 12:0:0.0']},
         'method': 'Zonal root mean square error of equatorial_pacific climatological pr STD, time series are linearly detrended, observations and model regridded to generic_1x1deg',
         'name': 'pr zonal seasonality RMSE',
         'ref': 'Using CDAT regridding and rms (uncentered and biased) calculation',
         'time_frequency': 'monthly',
         'units': 'mm/day'},
        'metric': {'datasets': "MIROC5_r1i1p1; ERA-Interim's pr & GPCPv2.3's precip; 's ",
         'method': 'The metric is the statistical value between the model and the observations',
         'name': 'SeasonalPrLonRmse',
         'units': 'mm/day'}},
       'SeasonalSstLonRmse': {'diagnostic': {'ERA-Interim': {'name': 'ERA-Interim',
          'nyears': 40,
          'time_period': ['1979-1-16 12:0:0.0', '2019-3-16 12:0:0.0']},
         'HadISST': {'name': 'HadISST',
          'nyears': 151,
          'time_period': ['1870-1-16 11:59:59.5', '2020-10-16 12:0:0.0']},
         'MIROC5_r1i1p1': {'keyerror': None,
          'name': 'MIROC5_r1i1p1',
          'nyears': 163,
          'time_period': ['1850-1-16 12:0:0.0', '2012-12-16 12:0:0.0']},
         'Tropflux': {'name': 'Tropflux',
          'nyears': 40,
          'time_period': ['1979-1-15 0:0:0.0', '2018-12-15 12:0:0.0']},
         'method': 'Zonal root mean square error of equatorial_pacific climatological sst STD, time series are linearly detrended, observations and model regridded to generic_1x1deg',
         'name': 'sst zonal seasonality RMSE',
         'ref': 'Using CDAT regridding and rms (uncentered and biased) calculation',
         'time_frequency': 'monthly',
         'units': 'C'},
        'metric': {'datasets': "MIROC5_r1i1p1; ERA-Interim's ts & HadISST's sst & Tropflux's sst; 's ",
         'method': 'The metric is the statistical value between the model and the observations',
         'name': 'SeasonalSstLonRmse',
         'units': 'C'}},
       'SeasonalTauxLonRmse': {'diagnostic': {'ERA-Interim': {'name': 'ERA-Interim',
          'nyears': 40,
          'time_period': ['1979-1-16 12:0:0.0', '2019-3-16 12:0:0.0']},
         'MIROC5_r1i1p1': {'keyerror': None,
          'name': 'MIROC5_r1i1p1',
          'nyears': 163,
          'time_period': ['1850-1-16 12:0:0.0', '2012-12-16 12:0:0.0']},
         'Tropflux': {'name': 'Tropflux',
          'nyears': 40,
          'time_period': ['1979-1-15 0:0:0.0', '2018-12-15 12:0:0.0']},
         'method': 'Zonal root mean square error of equatorial_pacific climatological taux STD, time series are linearly detrended, observations and model regridded to generic_1x1deg',
         'name': 'taux zonal seasonality RMSE',
         'ref': 'Using CDAT regridding and rms (uncentered and biased) calculation',
         'time_frequency': 'monthly',
         'units': '1e-3 N/m2'},
        'metric': {'datasets': "MIROC5_r1i1p1; ERA-Interim's tauu & Tropflux's taux; 's ",
         'method': 'The metric is the statistical value between the model and the observations',
         'name': 'SeasonalTauxLonRmse',
         'units': '1e-3 N/m2'}}},
      'name': 'Metrics Collection for ENSO performance'},
     'value': {'BiasPrLatRmse': {'diagnostic': {'ERA-Interim': {'value': None,
         'value_error': None},
        'GPCPv2.3': {'value': None, 'value_error': None},
        'MIROC5_r1i1p1': {'value': None, 'value_error': None}},
       'metric': {'ERA-Interim': {'value': 0.6809142603705576,
         'value_error': None},
        'GPCPv2.3': {'value': 1.5440271794714036, 'value_error': None}}},
      'BiasPrLonRmse': {'diagnostic': {'ERA-Interim': {'value': None,
         'value_error': None},
        'GPCPv2.3': {'value': None, 'value_error': None},
        'MIROC5_r1i1p1': {'value': None, 'value_error': None}},
       'metric': {'ERA-Interim': {'value': 2.047612699961617,
         'value_error': None},
        'GPCPv2.3': {'value': 1.2705284824420011, 'value_error': None}}},
      'BiasSstLonRmse': {'diagnostic': {'ERA-Interim': {'value': None,
         'value_error': None},
        'HadISST': {'value': None, 'value_error': None},
        'MIROC5_r1i1p1': {'value': None, 'value_error': None},
        'Tropflux': {'value': None, 'value_error': None}},
       'metric': {'ERA-Interim': {'value': 1.047191659394279,
         'value_error': None},
        'HadISST': {'value': 0.8909159329938655, 'value_error': None},
        'Tropflux': {'value': 1.0911821868769613, 'value_error': None}}},
      'BiasTauxLonRmse': {'diagnostic': {'ERA-Interim': {'value': None,
         'value_error': None},
        'MIROC5_r1i1p1': {'value': None, 'value_error': None},
        'Tropflux': {'value': None, 'value_error': None}},
       'metric': {'ERA-Interim': {'value': 2.795650977869691,
         'value_error': None},
        'Tropflux': {'value': 3.1576652750391254, 'value_error': None}}},
      'EnsoAmpl': {'diagnostic': {'ERA-Interim': {'value': 0.8989844997845644,
         'value_error': 0.14214193002531866},
        'HadISST': {'value': 0.7665787872085695,
         'value_error': 0.06238329697691264},
        'MIROC5_r1i1p1': {'value': 1.1312816350097514,
         'value_error': 0.088608816250085},
        'Tropflux': {'value': 0.9039789553693535,
         'value_error': 0.14293162279134272}},
       'metric': {'ERA-Interim': {'value': 25.839948884642112,
         'value_error': 29.753588454716358},
        'HadISST': {'value': 47.57539001688474,
         'value_error': 23.568511558616677},
        'Tropflux': {'value': 25.144687084836526,
         'value_error': 29.589200804824156}}},
      'EnsoDuration': {'diagnostic': {'ERA-Interim': {'value': 13.0,
         'value_error': None},
        'HadISST': {'value': 13.0, 'value_error': None},
        'MIROC5_r1i1p1': {'value': 23.0, 'value_error': None},
        'Tropflux': {'value': 13.0, 'value_error': None}},
       'metric': {'ERA-Interim': {'value': 76.92307692307693,
         'value_error': None},
        'HadISST': {'value': 76.92307692307693, 'value_error': None},
        'Tropflux': {'value': 76.92307692307693, 'value_error': None}}},
      'EnsoSeasonality': {'diagnostic': {'ERA-Interim': {'value': 2.0466846866656914,
         'value_error': 0.6513411033995022},
        'HadISST': {'value': 1.6639865947361325,
         'value_error': 0.2712772451657809},
        'MIROC5_r1i1p1': {'value': 1.2440253640164545,
         'value_error': 0.19517945007094034},
        'Tropflux': {'value': 2.0532132553583624,
         'value_error': 0.6534187683977347}},
       'metric': {'ERA-Interim': {'value': 39.21753692098369,
         'value_error': 28.879906104449603},
        'HadISST': {'value': 25.238258051368113,
         'value_error': 23.917923697591476},
        'Tropflux': {'value': 39.410805927252525,
         'value_error': 28.788077138145816}}},
      'EnsoSstDiversity_2': {'diagnostic': {'ERA-Interim': {'value': 33.25,
         'value_error': None},
        'HadISST': {'value': 49.0, 'value_error': None},
        'MIROC5_r1i1p1': {'value': 53.0, 'value_error': None},
        'Tropflux': {'value': 32.0, 'value_error': None}},
       'metric': {'ERA-Interim': {'value': 59.3984962406015,
         'value_error': None},
        'HadISST': {'value': 8.16326530612245, 'value_error': None},
        'Tropflux': {'value': 65.625, 'value_error': None}}},
      'EnsoSstLonRmse': {'diagnostic': {'ERA-Interim': {'value': None,
         'value_error': None},
        'HadISST': {'value': None, 'value_error': None},
        'MIROC5_r1i1p1': {'value': None, 'value_error': None},
        'Tropflux': {'value': None, 'value_error': None}},
       'metric': {'ERA-Interim': {'value': 0.2523972348321122,
         'value_error': None},
        'HadISST': {'value': 0.2690666919163825, 'value_error': None},
        'Tropflux': {'value': 0.25288771569919133, 'value_error': None}}},
      'EnsoSstSkew': {'diagnostic': {'ERA-Interim': {'value': 0.39098111106809963,
         'value_error': 0.061819541653923164},
        'HadISST': {'value': 0.38989908235027515,
         'value_error': 0.03172953733021198},
        'MIROC5_r1i1p1': {'value': 0.6875149139812012,
         'value_error': 0.05385032408983475},
        'Tropflux': {'value': 0.39744741059612115,
         'value_error': 0.06284195338099416}},
       'metric': {'ERA-Interim': {'value': 75.84351123843742,
         'value_error': 41.57642713775199},
        'HadISST': {'value': 76.33150348467755,
         'value_error': 28.161003522005874},
        'Tropflux': {'value': 72.98261245431573,
         'value_error': 40.89999643519835}}},
      'EnsoSstTsRmse': {'diagnostic': {'ERA-Interim': {'value': None,
         'value_error': None},
        'HadISST': {'value': None, 'value_error': None},
        'MIROC5_r1i1p1': {'value': None, 'value_error': None},
        'Tropflux': {'value': None, 'value_error': None}},
       'metric': {'ERA-Interim': {'value': 0.26800494175538864,
         'value_error': None},
        'HadISST': {'value': 0.24719705542111253, 'value_error': None},
        'Tropflux': {'value': 0.2629154152387304, 'value_error': None}}},
      'SeasonalPrLatRmse': {'diagnostic': {'ERA-Interim': {'value': None,
         'value_error': None},
        'GPCPv2.3': {'value': None, 'value_error': None},
        'MIROC5_r1i1p1': {'value': None, 'value_error': None}},
       'metric': {'ERA-Interim': {'value': 0.5879945664262926,
         'value_error': None},
        'GPCPv2.3': {'value': 0.3499852143388839, 'value_error': None}}},
      'SeasonalPrLonRmse': {'diagnostic': {'ERA-Interim': {'value': None,
         'value_error': None},
        'GPCPv2.3': {'value': None, 'value_error': None},
        'MIROC5_r1i1p1': {'value': None, 'value_error': None}},
       'metric': {'ERA-Interim': {'value': 0.680542239478116,
         'value_error': None},
        'GPCPv2.3': {'value': 0.3121652961180728, 'value_error': None}}},
      'SeasonalSstLonRmse': {'diagnostic': {'ERA-Interim': {'value': None,
         'value_error': None},
        'HadISST': {'value': None, 'value_error': None},
        'MIROC5_r1i1p1': {'value': None, 'value_error': None},
        'Tropflux': {'value': None, 'value_error': None}},
       'metric': {'ERA-Interim': {'value': 0.2141003891725785,
         'value_error': None},
        'HadISST': {'value': 0.2251243030340837, 'value_error': None},
        'Tropflux': {'value': 0.2183658139696359, 'value_error': None}}},
      'SeasonalTauxLonRmse': {'diagnostic': {'ERA-Interim': {'value': None,
         'value_error': None},
        'MIROC5_r1i1p1': {'value': None, 'value_error': None},
        'Tropflux': {'value': None, 'value_error': None}},
       'metric': {'ERA-Interim': {'value': 1.2912347232535222,
         'value_error': None},
        'Tropflux': {'value': 1.342725873114606, 'value_error': None}}}}},
    'r2i1p1': {'metadata': {'description_of_the_collection': 'Describe which science question this collection is about',
      'metrics': {'BiasPrLatRmse': {'diagnostic': {'ERA-Interim': {'name': 'ERA-Interim',
          'nyears': 40,
          'time_period': ['1979-1-16 12:0:0.0', '2019-3-16 12:0:0.0']},
         'GPCPv2.3': {'name': 'GPCPv2.3',
          'nyears': 41,
          'time_period': ['1979-1-1 0:0:0.0', '2019-7-1 0:0:0.0']},
         'MIROC5_r2i1p1': {'keyerror': None,
          'name': 'MIROC5_r2i1p1',
          'nyears': 163,
          'time_period': ['1850-1-16 12:0:0.0', '2012-12-16 12:0:0.0']},
         'method': 'Meridional root mean square error of nino3_LatExt pr, time series are linearly detrended, observations and model regridded to generic_1x1deg',
         'name': 'pr Meridional RMSE',
         'ref': 'Using CDAT regridding and rms (uncentered and biased) calculation',
         'time_frequency': 'monthly',
         'units': 'mm/day'},
        'metric': {'datasets': "MIROC5_r2i1p1; ERA-Interim's pr & GPCPv2.3's precip; 's ",
         'method': 'The metric is the statistical value between the model and the observations',
         'name': 'BiasPrLatRmse',
         'units': 'mm/day'}},
       'BiasPrLonRmse': {'diagnostic': {'ERA-Interim': {'name': 'ERA-Interim',
          'nyears': 40,
          'time_period': ['1979-1-16 12:0:0.0', '2019-3-16 12:0:0.0']},
         'GPCPv2.3': {'name': 'GPCPv2.3',
          'nyears': 41,
          'time_period': ['1979-1-1 0:0:0.0', '2019-7-1 0:0:0.0']},
         'MIROC5_r2i1p1': {'keyerror': None,
          'name': 'MIROC5_r2i1p1',
          'nyears': 163,
          'time_period': ['1850-1-16 12:0:0.0', '2012-12-16 12:0:0.0']},
         'method': 'Zonal root mean square error of equatorial_pacific pr, time series are linearly detrended, observations and model regridded to generic_1x1deg',
         'name': 'pr Zonal RMSE',
         'ref': 'Using CDAT regridding and rms (uncentered and biased) calculation',
         'time_frequency': 'monthly',
         'units': 'mm/day'},
        'metric': {'datasets': "MIROC5_r2i1p1; ERA-Interim's pr & GPCPv2.3's precip; 's ",
         'method': 'The metric is the statistical value between the model and the observations',
         'name': 'BiasPrLonRmse',
         'units': 'mm/day'}},
       'BiasSstLonRmse': {'diagnostic': {'ERA-Interim': {'name': 'ERA-Interim',
          'nyears': 40,
          'time_period': ['1979-1-16 12:0:0.0', '2019-3-16 12:0:0.0']},
         'HadISST': {'name': 'HadISST',
          'nyears': 151,
          'time_period': ['1870-1-16 11:59:59.5', '2020-10-16 12:0:0.0']},
         'MIROC5_r2i1p1': {'keyerror': None,
          'name': 'MIROC5_r2i1p1',
          'nyears': 163,
          'time_period': ['1850-1-16 12:0:0.0', '2012-12-16 12:0:0.0']},
         'Tropflux': {'name': 'Tropflux',
          'nyears': 40,
          'time_period': ['1979-1-15 0:0:0.0', '2018-12-15 12:0:0.0']},
         'method': 'Zonal root mean square error of equatorial_pacific sst, time series are linearly detrended, observations and model regridded to generic_1x1deg',
         'name': 'sst Zonal RMSE',
         'ref': 'Using CDAT regridding and rms (uncentered and biased) calculation',
         'time_frequency': 'monthly',
         'units': 'C'},
        'metric': {'datasets': "MIROC5_r2i1p1; ERA-Interim's ts & HadISST's sst & Tropflux's sst; 's ",
         'method': 'The metric is the statistical value between the model and the observations',
         'name': 'BiasSstLonRmse',
         'units': 'C'}},
       'BiasTauxLonRmse': {'diagnostic': {'ERA-Interim': {'name': 'ERA-Interim',
          'nyears': 40,
          'time_period': ['1979-1-16 12:0:0.0', '2019-3-16 12:0:0.0']},
         'MIROC5_r2i1p1': {'keyerror': None,
          'name': 'MIROC5_r2i1p1',
          'nyears': 163,
          'time_period': ['1850-1-16 12:0:0.0', '2012-12-16 12:0:0.0']},
         'Tropflux': {'name': 'Tropflux',
          'nyears': 40,
          'time_period': ['1979-1-15 0:0:0.0', '2018-12-15 12:0:0.0']},
         'method': 'Zonal root mean square error of equatorial_pacific taux, time series are linearly detrended, observations and model regridded to generic_1x1deg',
         'name': 'taux Zonal RMSE',
         'ref': 'Using CDAT regridding and rms (uncentered and biased) calculation',
         'time_frequency': 'monthly',
         'units': '1e-3 N/m2'},
        'metric': {'datasets': "MIROC5_r2i1p1; ERA-Interim's tauu & Tropflux's taux; 's ",
         'method': 'The metric is the statistical value between the model and the observations',
         'name': 'BiasTauxLonRmse',
         'units': '1e-3 N/m2'}},
       'EnsoAmpl': {'diagnostic': {'ERA-Interim': {'keyerror': None,
          'name': 'ERA-Interim',
          'nyears': 40,
          'time_period': ['1979-1-16 12:0:0.0', '2019-3-16 12:0:0.0']},
         'HadISST': {'keyerror': None,
          'name': 'HadISST',
          'nyears': 151,
          'time_period': ['1870-1-16 11:59:59.5', '2020-10-16 12:0:0.0']},
         'MIROC5_r2i1p1': {'keyerror': None,
          'name': 'MIROC5_r2i1p1',
          'nyears': 163,
          'time_period': ['1850-1-16 12:0:0.0', '2012-12-16 12:0:0.0']},
         'Tropflux': {'keyerror': None,
          'name': 'Tropflux',
          'nyears': 40,
          'time_period': ['1979-1-15 0:0:0.0', '2018-12-15 12:0:0.0']},
         'method': 'Standard deviation of nino3.4 sstA, time series are linearly detrended',
         'name': 'ENSO amplitude',
         'ref': 'Using CDAT regression calculation',
         'time_frequency': 'monthly',
         'units': 'C'},
        'metric': {'datasets': "MIROC5_r2i1p1; ERA-Interim's ts & HadISST's sst & Tropflux's sst; 's ",
         'method': 'The metric is the absolute value of the relative difference between model and observations values (M = 100 * abs[[model-obs] / obs])',
         'name': 'EnsoAmpl',
         'units': '%'}},
       'EnsoDuration': {'diagnostic': {'ERA-Interim': {'keyerror': None,
          'name': 'ERA-Interim',
          'nyears': 40,
          'time_period': ['1979-1-16 12:0:0.0', '2019-3-16 12:0:0.0']},
         'HadISST': {'keyerror': None,
          'name': 'HadISST',
          'nyears': 151,
          'time_period': ['1870-1-16 11:59:59.5', '2020-10-16 12:0:0.0']},
         'MIROC5_r2i1p1': {'keyerror': None,
          'name': 'MIROC5_r2i1p1',
          'nyears': 163,
          'time_period': ['1850-1-16 12:0:0.0', '2012-12-16 12:0:0.0']},
         'Tropflux': {'keyerror': None,
          'name': 'Tropflux',
          'nyears': 40,
          'time_period': ['1979-1-15 0:0:0.0', '2018-12-15 12:0:0.0']},
         'method': 'nino3.4 SSTA during DEC regressed against nino3.4 SSTA during 6 years (centered on ENSO), the duration is the number of consecutive months during which the regression is above 0.25, time series are linearly detrended, smoothing using a triangle shaped window of 5 points',
         'name': 'ENSO Duration based on life cyle SSTA pattern',
         'ref': 'Using CDAT',
         'time_frequency': 'monthly',
         'units': 'months'},
        'metric': {'datasets': "MIROC5_r2i1p1; ERA-Interim's ts & HadISST's sst & Tropflux's sst; 's ",
         'method': 'The metric is the absolute value of the relative difference between model and observations values (M = 100 * abs[[model-obs] / obs])',
         'name': 'EnsoDuration',
         'units': '%'}},
       'EnsoSeasonality': {'diagnostic': {'ERA-Interim': {'keyerror': None,
          'name': 'ERA-Interim',
          'nyears': 40,
          'time_period': ['1979-1-16 12:0:0.0', '2019-3-16 12:0:0.0']},
         'HadISST': {'keyerror': None,
          'name': 'HadISST',
          'nyears': 151,
          'time_period': ['1870-1-16 11:59:59.5', '2020-10-16 12:0:0.0']},
         'MIROC5_r2i1p1': {'keyerror': None,
          'name': 'MIROC5_r2i1p1',
          'nyears': 163,
          'time_period': ['1850-1-16 12:0:0.0', '2012-12-16 12:0:0.0']},
         'Tropflux': {'keyerror': None,
          'name': 'Tropflux',
          'nyears': 40,
          'time_period': ['1979-1-15 0:0:0.0', '2018-12-15 12:0:0.0']},
         'method': 'Ratio between NDJ and MAM standard deviation nino3.4 sstA, time series are linearly detrended',
         'name': 'ENSO seasonality',
         'ref': 'Using CDAT std dev calculation',
         'time_frequency': 'monthly',
         'units': 'C/C'},
        'metric': {'datasets': "MIROC5_r2i1p1; ERA-Interim's ts & HadISST's sst & Tropflux's sst; 's ",
         'method': 'The metric is the absolute value of the relative difference between model and observations values (M = 100 * abs[[model-obs] / obs])',
         'name': 'EnsoSeasonality',
         'units': '%'}},
       'EnsoSstDiversity_2': {'diagnostic': {'ERA-Interim': {'keyerror': None,
          'name': 'ERA-Interim',
          'nyears': 40,
          'time_period': ['1979-1-16 12:0:0.0', '2019-3-16 12:0:0.0']},
         'HadISST': {'keyerror': None,
          'name': 'HadISST',
          'nyears': 151,
          'time_period': ['1870-1-16 11:59:59.5', '2020-10-16 12:0:0.0']},
         'MIROC5_r2i1p1': {'keyerror': None,
          'name': 'MIROC5_r2i1p1',
          'nyears': 163,
          'time_period': ['1850-1-16 12:0:0.0', '2012-12-16 12:0:0.0']},
         'Tropflux': {'keyerror': None,
          'name': 'Tropflux',
          'nyears': 40,
          'time_period': ['1979-1-15 0:0:0.0', '2018-12-15 12:0:0.0']},
         'method': 'Nino (Nina) events = nino3.4 sstA > 0.75 (< -0.75) during DEC, zonal SSTA (meridional averaged [-5.0 ; 5.0]), the zonal SSTA maximum (minimum) is located for each event, the diversity is the interquartile range (IQR = Q3 - Q1), time series are linearly detrended, smoothing using a triangle shaped window of 5 points',
         'name': 'ENSO Diversity (interquartile range)',
         'ref': 'Using CDAT regridding',
         'time_frequency': 'monthly',
         'units': 'long'},
        'metric': {'datasets': "MIROC5_r2i1p1; ERA-Interim's ts & HadISST's sst & Tropflux's sst; 's ",
         'method': 'The metric is the absolute value of the relative difference between model and observations values (M = 100 * abs[[model-obs] / obs])',
         'name': 'EnsoSstDiversity',
         'units': '%'}},
       'EnsoSstLonRmse': {'diagnostic': {'ERA-Interim': {'name': 'ERA-Interim',
          'nyears': 40,
          'time_period': ['1979-1-16 12:0:0.0', '2019-3-16 12:0:0.0']},
         'HadISST': {'name': 'HadISST',
          'nyears': 151,
          'time_period': ['1870-1-16 11:59:59.5', '2020-10-16 12:0:0.0']},
         'MIROC5_r2i1p1': {'keyerror': None,
          'name': 'MIROC5_r2i1p1',
          'nyears': 163,
          'time_period': ['1850-1-16 12:0:0.0', '2012-12-16 12:0:0.0']},
         'Tropflux': {'name': 'Tropflux',
          'nyears': 40,
          'time_period': ['1979-1-15 0:0:0.0', '2018-12-15 12:0:0.0']},
         'method': 'nino3.4 SSTA during DEC regressed against equatorial_pacific SSTA, time series are linearly detrended, smoothing using a triangle shaped window of 5 points, observations and model regridded to generic_1x1deg',
         'name': 'ENSO Zonal SSTA pattern',
         'ref': 'Using CDAT regridding and rms (uncentered and biased) calculation',
         'time_frequency': 'monthly',
         'units': 'C/C'},
        'metric': {'datasets': "MIROC5_r2i1p1; ERA-Interim's ts & HadISST's sst & Tropflux's sst; 's ",
         'method': 'The metric is the statistical value between the model and the observations',
         'name': 'EnsoSstLonRmse',
         'units': 'C/C'}},
       'EnsoSstSkew': {'diagnostic': {'ERA-Interim': {'keyerror': None,
          'name': 'ERA-Interim',
          'nyears': 40,
          'time_period': ['1979-1-16 12:0:0.0', '2019-3-16 12:0:0.0']},
         'HadISST': {'keyerror': None,
          'name': 'HadISST',
          'nyears': 151,
          'time_period': ['1870-1-16 11:59:59.5', '2020-10-16 12:0:0.0']},
         'MIROC5_r2i1p1': {'keyerror': None,
          'name': 'MIROC5_r2i1p1',
          'nyears': 163,
          'time_period': ['1850-1-16 12:0:0.0', '2012-12-16 12:0:0.0']},
         'Tropflux': {'keyerror': None,
          'name': 'Tropflux',
          'nyears': 40,
          'time_period': ['1979-1-15 0:0:0.0', '2018-12-15 12:0:0.0']},
         'method': 'Standard deviation of nino3.4 sstA, time series are linearly detrended',
         'name': 'ENSO skewness',
         'ref': 'Using CDAT regression calculation',
         'time_frequency': 'monthly',
         'units': 'C'},
        'metric': {'datasets': "MIROC5_r2i1p1; ERA-Interim's ts & HadISST's sst & Tropflux's sst; 's ",
         'method': 'The metric is the absolute value of the relative difference between model and observations values (M = 100 * abs[[model-obs] / obs])',
         'name': 'EnsoSstSkew',
         'units': '%'}},
       'EnsoSstTsRmse': {'diagnostic': {'ERA-Interim': {'name': 'ERA-Interim',
          'nyears': 40,
          'time_period': ['1979-1-16 12:0:0.0', '2019-3-16 12:0:0.0']},
         'HadISST': {'name': 'HadISST',
          'nyears': 151,
          'time_period': ['1870-1-16 11:59:59.5', '2020-10-16 12:0:0.0']},
         'MIROC5_r2i1p1': {'keyerror': None,
          'name': 'MIROC5_r2i1p1',
          'nyears': 163,
          'time_period': ['1850-1-16 12:0:0.0', '2012-12-16 12:0:0.0']},
         'Tropflux': {'name': 'Tropflux',
          'nyears': 40,
          'time_period': ['1979-1-15 0:0:0.0', '2018-12-15 12:0:0.0']},
         'method': 'nino3.4 SSTA during DEC regressed against nino3.4 SSTA during 6 years (centered on ENSO), time series are linearly detrended, smoothing using a triangle shaped window of 5 points',
         'name': 'ENSO life cyle SSTA pattern',
         'ref': 'Using CDAT regridding and rms (uncentered and biased) calculation',
         'time_frequency': 'monthly',
         'units': 'C/C'},
        'metric': {'datasets': "MIROC5_r2i1p1; ERA-Interim's ts & HadISST's sst & Tropflux's sst; 's ",
         'method': 'The metric is the statistical value between the model and the observations',
         'name': 'EnsoSstTsRmse',
         'units': 'C/C'}},
       'SeasonalPrLatRmse': {'diagnostic': {'ERA-Interim': {'name': 'ERA-Interim',
          'nyears': 40,
          'time_period': ['1979-1-16 12:0:0.0', '2019-3-16 12:0:0.0']},
         'GPCPv2.3': {'name': 'GPCPv2.3',
          'nyears': 41,
          'time_period': ['1979-1-1 0:0:0.0', '2019-7-1 0:0:0.0']},
         'MIROC5_r2i1p1': {'keyerror': None,
          'name': 'MIROC5_r2i1p1',
          'nyears': 163,
          'time_period': ['1850-1-16 12:0:0.0', '2012-12-16 12:0:0.0']},
         'method': 'Meridional root mean square error of nino3_LatExt climatological pr STD, time series are linearly detrended, observations and model regridded to generic_1x1deg',
         'name': 'pr meridional seasonality RMSE',
         'ref': 'Using CDAT regridding and rms (uncentered and biased) calculation',
         'time_frequency': 'monthly',
         'units': 'mm/day'},
        'metric': {'datasets': "MIROC5_r2i1p1; ERA-Interim's pr & GPCPv2.3's precip; 's ",
         'method': 'The metric is the statistical value between the model and the observations',
         'name': 'SeasonalPrLatRmse',
         'units': 'mm/day'}},
       'SeasonalPrLonRmse': {'diagnostic': {'ERA-Interim': {'name': 'ERA-Interim',
          'nyears': 40,
          'time_period': ['1979-1-16 12:0:0.0', '2019-3-16 12:0:0.0']},
         'GPCPv2.3': {'name': 'GPCPv2.3',
          'nyears': 41,
          'time_period': ['1979-1-1 0:0:0.0', '2019-7-1 0:0:0.0']},
         'MIROC5_r2i1p1': {'keyerror': None,
          'name': 'MIROC5_r2i1p1',
          'nyears': 163,
          'time_period': ['1850-1-16 12:0:0.0', '2012-12-16 12:0:0.0']},
         'method': 'Zonal root mean square error of equatorial_pacific climatological pr STD, time series are linearly detrended, observations and model regridded to generic_1x1deg',
         'name': 'pr zonal seasonality RMSE',
         'ref': 'Using CDAT regridding and rms (uncentered and biased) calculation',
         'time_frequency': 'monthly',
         'units': 'mm/day'},
        'metric': {'datasets': "MIROC5_r2i1p1; ERA-Interim's pr & GPCPv2.3's precip; 's ",
         'method': 'The metric is the statistical value between the model and the observations',
         'name': 'SeasonalPrLonRmse',
         'units': 'mm/day'}},
       'SeasonalSstLonRmse': {'diagnostic': {'ERA-Interim': {'name': 'ERA-Interim',
          'nyears': 40,
          'time_period': ['1979-1-16 12:0:0.0', '2019-3-16 12:0:0.0']},
         'HadISST': {'name': 'HadISST',
          'nyears': 151,
          'time_period': ['1870-1-16 11:59:59.5', '2020-10-16 12:0:0.0']},
         'MIROC5_r2i1p1': {'keyerror': None,
          'name': 'MIROC5_r2i1p1',
          'nyears': 163,
          'time_period': ['1850-1-16 12:0:0.0', '2012-12-16 12:0:0.0']},
         'Tropflux': {'name': 'Tropflux',
          'nyears': 40,
          'time_period': ['1979-1-15 0:0:0.0', '2018-12-15 12:0:0.0']},
         'method': 'Zonal root mean square error of equatorial_pacific climatological sst STD, time series are linearly detrended, observations and model regridded to generic_1x1deg',
         'name': 'sst zonal seasonality RMSE',
         'ref': 'Using CDAT regridding and rms (uncentered and biased) calculation',
         'time_frequency': 'monthly',
         'units': 'C'},
        'metric': {'datasets': "MIROC5_r2i1p1; ERA-Interim's ts & HadISST's sst & Tropflux's sst; 's ",
         'method': 'The metric is the statistical value between the model and the observations',
         'name': 'SeasonalSstLonRmse',
         'units': 'C'}},
       'SeasonalTauxLonRmse': {'diagnostic': {'ERA-Interim': {'name': 'ERA-Interim',
          'nyears': 40,
          'time_period': ['1979-1-16 12:0:0.0', '2019-3-16 12:0:0.0']},
         'MIROC5_r2i1p1': {'keyerror': None,
          'name': 'MIROC5_r2i1p1',
          'nyears': 163,
          'time_period': ['1850-1-16 12:0:0.0', '2012-12-16 12:0:0.0']},
         'Tropflux': {'name': 'Tropflux',
          'nyears': 40,
          'time_period': ['1979-1-15 0:0:0.0', '2018-12-15 12:0:0.0']},
         'method': 'Zonal root mean square error of equatorial_pacific climatological taux STD, time series are linearly detrended, observations and model regridded to generic_1x1deg',
         'name': 'taux zonal seasonality RMSE',
         'ref': 'Using CDAT regridding and rms (uncentered and biased) calculation',
         'time_frequency': 'monthly',
         'units': '1e-3 N/m2'},
        'metric': {'datasets': "MIROC5_r2i1p1; ERA-Interim's tauu & Tropflux's taux; 's ",
         'method': 'The metric is the statistical value between the model and the observations',
         'name': 'SeasonalTauxLonRmse',
         'units': '1e-3 N/m2'}}},
      'name': 'Metrics Collection for ENSO performance'},
     'value': {'BiasPrLatRmse': {'diagnostic': {'ERA-Interim': {'value': None,
         'value_error': None},
        'GPCPv2.3': {'value': None, 'value_error': None},
        'MIROC5_r2i1p1': {'value': None, 'value_error': None}},
       'metric': {'ERA-Interim': {'value': 0.7108994796294356,
         'value_error': None},
        'GPCPv2.3': {'value': 1.5179001892570765, 'value_error': None}}},
      'BiasPrLonRmse': {'diagnostic': {'ERA-Interim': {'value': None,
         'value_error': None},
        'GPCPv2.3': {'value': None, 'value_error': None},
        'MIROC5_r2i1p1': {'value': None, 'value_error': None}},
       'metric': {'ERA-Interim': {'value': 2.207329803593066,
         'value_error': None},
        'GPCPv2.3': {'value': 1.3964838901205343, 'value_error': None}}},
      'BiasSstLonRmse': {'diagnostic': {'ERA-Interim': {'value': None,
         'value_error': None},
        'HadISST': {'value': None, 'value_error': None},
        'MIROC5_r2i1p1': {'value': None, 'value_error': None},
        'Tropflux': {'value': None, 'value_error': None}},
       'metric': {'ERA-Interim': {'value': 1.1347263961213514,
         'value_error': None},
        'HadISST': {'value': 0.9658472094989241, 'value_error': None},
        'Tropflux': {'value': 1.1801431716161164, 'value_error': None}}},
      'BiasTauxLonRmse': {'diagnostic': {'ERA-Interim': {'value': None,
         'value_error': None},
        'MIROC5_r2i1p1': {'value': None, 'value_error': None},
        'Tropflux': {'value': None, 'value_error': None}},
       'metric': {'ERA-Interim': {'value': 3.2347988877030067,
         'value_error': None},
        'Tropflux': {'value': 3.697535178537527, 'value_error': None}}},
      'EnsoAmpl': {'diagnostic': {'ERA-Interim': {'value': 0.8989844997845644,
         'value_error': 0.14214193002531866},
        'HadISST': {'value': 0.7665787872085695,
         'value_error': 0.06238329697691264},
        'MIROC5_r2i1p1': {'value': 1.0874667178822823,
         'value_error': 0.08517696707954035},
        'Tropflux': {'value': 0.9039789553693535,
         'value_error': 0.14293162279134272}},
       'metric': {'ERA-Interim': {'value': 20.966125460771174,
         'value_error': 28.601221995256438},
        'HadISST': {'value': 41.85974566843918,
         'value_error': 22.655695201662667},
        'Tropflux': {'value': 20.29779138364546,
         'value_error': 28.44320113417606}}},
      'EnsoDuration': {'diagnostic': {'ERA-Interim': {'value': 13.0,
         'value_error': None},
        'HadISST': {'value': 13.0, 'value_error': None},
        'MIROC5_r2i1p1': {'value': 27.0, 'value_error': None},
        'Tropflux': {'value': 13.0, 'value_error': None}},
       'metric': {'ERA-Interim': {'value': 107.6923076923077,
         'value_error': None},
        'HadISST': {'value': 107.6923076923077, 'value_error': None},
        'Tropflux': {'value': 107.6923076923077, 'value_error': None}}},
      'EnsoSeasonality': {'diagnostic': {'ERA-Interim': {'value': 2.0466846866656914,
         'value_error': 0.6513411033995022},
        'HadISST': {'value': 1.6639865947361325,
         'value_error': 0.2712772451657809},
        'MIROC5_r2i1p1': {'value': 1.2545607085681398,
         'value_error': 0.1968323767839994},
        'Tropflux': {'value': 2.0532132553583624,
         'value_error': 0.6534187683977347}},
       'metric': {'ERA-Interim': {'value': 38.70278520469227,
         'value_error': 29.12448291954634},
        'HadISST': {'value': 24.60511926377133,
         'value_error': 24.12047870523336},
        'Tropflux': {'value': 38.897690958595916,
         'value_error': 29.031876276333517}}},
      'EnsoSstDiversity_2': {'diagnostic': {'ERA-Interim': {'value': 33.25,
         'value_error': None},
        'HadISST': {'value': 49.0, 'value_error': None},
        'MIROC5_r2i1p1': {'value': 56.0, 'value_error': None},
        'Tropflux': {'value': 32.0, 'value_error': None}},
       'metric': {'ERA-Interim': {'value': 68.42105263157895,
         'value_error': None},
        'HadISST': {'value': 14.285714285714285, 'value_error': None},
        'Tropflux': {'value': 75.0, 'value_error': None}}},
      'EnsoSstLonRmse': {'diagnostic': {'ERA-Interim': {'value': None,
         'value_error': None},
        'HadISST': {'value': None, 'value_error': None},
        'MIROC5_r2i1p1': {'value': None, 'value_error': None},
        'Tropflux': {'value': None, 'value_error': None}},
       'metric': {'ERA-Interim': {'value': 0.26638469484578936,
         'value_error': None},
        'HadISST': {'value': 0.2836049833641321, 'value_error': None},
        'Tropflux': {'value': 0.2670500609444636, 'value_error': None}}},
      'EnsoSstSkew': {'diagnostic': {'ERA-Interim': {'value': 0.39098111106809963,
         'value_error': 0.061819541653923164},
        'HadISST': {'value': 0.38989908235027515,
         'value_error': 0.03172953733021198},
        'MIROC5_r2i1p1': {'value': 0.7818443215061422,
         'value_error': 0.06123877350834302},
        'Tropflux': {'value': 0.39744741059612115,
         'value_error': 0.06284195338099416}},
       'metric': {'ERA-Interim': {'value': 99.96984492940466,
         'value_error': 47.28085573872232},
        'HadISST': {'value': 100.5247913878786,
         'value_error': 32.024789926516114},
        'Tropflux': {'value': 96.71642100610846,
         'value_error': 46.51161642052123}}},
      'EnsoSstTsRmse': {'diagnostic': {'ERA-Interim': {'value': None,
         'value_error': None},
        'HadISST': {'value': None, 'value_error': None},
        'MIROC5_r2i1p1': {'value': None, 'value_error': None},
        'Tropflux': {'value': None, 'value_error': None}},
       'metric': {'ERA-Interim': {'value': 0.2778816498377675,
         'value_error': None},
        'HadISST': {'value': 0.2508669929651064, 'value_error': None},
        'Tropflux': {'value': 0.27250729342470026, 'value_error': None}}},
      'SeasonalPrLatRmse': {'diagnostic': {'ERA-Interim': {'value': None,
         'value_error': None},
        'GPCPv2.3': {'value': None, 'value_error': None},
        'MIROC5_r2i1p1': {'value': None, 'value_error': None}},
       'metric': {'ERA-Interim': {'value': 0.6264100554214536,
         'value_error': None},
        'GPCPv2.3': {'value': 0.3635050987644913, 'value_error': None}}},
      'SeasonalPrLonRmse': {'diagnostic': {'ERA-Interim': {'value': None,
         'value_error': None},
        'GPCPv2.3': {'value': None, 'value_error': None},
        'MIROC5_r2i1p1': {'value': None, 'value_error': None}},
       'metric': {'ERA-Interim': {'value': 0.7424859933517475,
         'value_error': None},
        'GPCPv2.3': {'value': 0.3860814210949524, 'value_error': None}}},
      'SeasonalSstLonRmse': {'diagnostic': {'ERA-Interim': {'value': None,
         'value_error': None},
        'HadISST': {'value': None, 'value_error': None},
        'MIROC5_r2i1p1': {'value': None, 'value_error': None},
        'Tropflux': {'value': None, 'value_error': None}},
       'metric': {'ERA-Interim': {'value': 0.20458441235767325,
         'value_error': None},
        'HadISST': {'value': 0.21360797542235252, 'value_error': None},
        'Tropflux': {'value': 0.209421326003357, 'value_error': None}}},
      'SeasonalTauxLonRmse': {'diagnostic': {'ERA-Interim': {'value': None,
         'value_error': None},
        'MIROC5_r2i1p1': {'value': None, 'value_error': None},
        'Tropflux': {'value': None, 'value_error': None}},
       'metric': {'ERA-Interim': {'value': 1.2284949890232995,
         'value_error': None},
        'Tropflux': {'value': 1.3038363156248942, 'value_error': None}}}}},
    'r3i1p1': {'metadata': {'description_of_the_collection': 'Describe which science question this collection is about',
      'metrics': {'BiasPrLatRmse': {'diagnostic': {'ERA-Interim': {'name': 'ERA-Interim',
          'nyears': 40,
          'time_period': ['1979-1-16 12:0:0.0', '2019-3-16 12:0:0.0']},
         'GPCPv2.3': {'name': 'GPCPv2.3',
          'nyears': 41,
          'time_period': ['1979-1-1 0:0:0.0', '2019-7-1 0:0:0.0']},
         'MIROC5_r3i1p1': {'keyerror': None,
          'name': 'MIROC5_r3i1p1',
          'nyears': 163,
          'time_period': ['1850-1-16 12:0:0.0', '2012-12-16 12:0:0.0']},
         'method': 'Meridional root mean square error of nino3_LatExt pr, time series are linearly detrended, observations and model regridded to generic_1x1deg',
         'name': 'pr Meridional RMSE',
         'ref': 'Using CDAT regridding and rms (uncentered and biased) calculation',
         'time_frequency': 'monthly',
         'units': 'mm/day'},
        'metric': {'datasets': "MIROC5_r3i1p1; ERA-Interim's pr & GPCPv2.3's precip; 's ",
         'method': 'The metric is the statistical value between the model and the observations',
         'name': 'BiasPrLatRmse',
         'units': 'mm/day'}},
       'BiasPrLonRmse': {'diagnostic': {'ERA-Interim': {'name': 'ERA-Interim',
          'nyears': 40,
          'time_period': ['1979-1-16 12:0:0.0', '2019-3-16 12:0:0.0']},
         'GPCPv2.3': {'name': 'GPCPv2.3',
          'nyears': 41,
          'time_period': ['1979-1-1 0:0:0.0', '2019-7-1 0:0:0.0']},
         'MIROC5_r3i1p1': {'keyerror': None,
          'name': 'MIROC5_r3i1p1',
          'nyears': 163,
          'time_period': ['1850-1-16 12:0:0.0', '2012-12-16 12:0:0.0']},
         'method': 'Zonal root mean square error of equatorial_pacific pr, time series are linearly detrended, observations and model regridded to generic_1x1deg',
         'name': 'pr Zonal RMSE',
         'ref': 'Using CDAT regridding and rms (uncentered and biased) calculation',
         'time_frequency': 'monthly',
         'units': 'mm/day'},
        'metric': {'datasets': "MIROC5_r3i1p1; ERA-Interim's pr & GPCPv2.3's precip; 's ",
         'method': 'The metric is the statistical value between the model and the observations',
         'name': 'BiasPrLonRmse',
         'units': 'mm/day'}},
       'BiasSstLonRmse': {'diagnostic': {'ERA-Interim': {'name': 'ERA-Interim',
          'nyears': 40,
          'time_period': ['1979-1-16 12:0:0.0', '2019-3-16 12:0:0.0']},
         'HadISST': {'name': 'HadISST',
          'nyears': 151,
          'time_period': ['1870-1-16 11:59:59.5', '2020-10-16 12:0:0.0']},
         'MIROC5_r3i1p1': {'keyerror': None,
          'name': 'MIROC5_r3i1p1',
          'nyears': 163,
          'time_period': ['1850-1-16 12:0:0.0', '2012-12-16 12:0:0.0']},
         'Tropflux': {'name': 'Tropflux',
          'nyears': 40,
          'time_period': ['1979-1-15 0:0:0.0', '2018-12-15 12:0:0.0']},
         'method': 'Zonal root mean square error of equatorial_pacific sst, time series are linearly detrended, observations and model regridded to generic_1x1deg',
         'name': 'sst Zonal RMSE',
         'ref': 'Using CDAT regridding and rms (uncentered and biased) calculation',
         'time_frequency': 'monthly',
         'units': 'C'},
        'metric': {'datasets': "MIROC5_r3i1p1; ERA-Interim's ts & HadISST's sst & Tropflux's sst; 's ",
         'method': 'The metric is the statistical value between the model and the observations',
         'name': 'BiasSstLonRmse',
         'units': 'C'}},
       'BiasTauxLonRmse': {'diagnostic': {'ERA-Interim': {'name': 'ERA-Interim',
          'nyears': 40,
          'time_period': ['1979-1-16 12:0:0.0', '2019-3-16 12:0:0.0']},
         'MIROC5_r3i1p1': {'keyerror': None,
          'name': 'MIROC5_r3i1p1',
          'nyears': 163,
          'time_period': ['1850-1-16 12:0:0.0', '2012-12-16 12:0:0.0']},
         'Tropflux': {'name': 'Tropflux',
          'nyears': 40,
          'time_period': ['1979-1-15 0:0:0.0', '2018-12-15 12:0:0.0']},
         'method': 'Zonal root mean square error of equatorial_pacific taux, time series are linearly detrended, observations and model regridded to generic_1x1deg',
         'name': 'taux Zonal RMSE',
         'ref': 'Using CDAT regridding and rms (uncentered and biased) calculation',
         'time_frequency': 'monthly',
         'units': '1e-3 N/m2'},
        'metric': {'datasets': "MIROC5_r3i1p1; ERA-Interim's tauu & Tropflux's taux; 's ",
         'method': 'The metric is the statistical value between the model and the observations',
         'name': 'BiasTauxLonRmse',
         'units': '1e-3 N/m2'}},
       'EnsoAmpl': {'diagnostic': {'ERA-Interim': {'keyerror': None,
          'name': 'ERA-Interim',
          'nyears': 40,
          'time_period': ['1979-1-16 12:0:0.0', '2019-3-16 12:0:0.0']},
         'HadISST': {'keyerror': None,
          'name': 'HadISST',
          'nyears': 151,
          'time_period': ['1870-1-16 11:59:59.5', '2020-10-16 12:0:0.0']},
         'MIROC5_r3i1p1': {'keyerror': None,
          'name': 'MIROC5_r3i1p1',
          'nyears': 163,
          'time_period': ['1850-1-16 12:0:0.0', '2012-12-16 12:0:0.0']},
         'Tropflux': {'keyerror': None,
          'name': 'Tropflux',
          'nyears': 40,
          'time_period': ['1979-1-15 0:0:0.0', '2018-12-15 12:0:0.0']},
         'method': 'Standard deviation of nino3.4 sstA, time series are linearly detrended',
         'name': 'ENSO amplitude',
         'ref': 'Using CDAT regression calculation',
         'time_frequency': 'monthly',
         'units': 'C'},
        'metric': {'datasets': "MIROC5_r3i1p1; ERA-Interim's ts & HadISST's sst & Tropflux's sst; 's ",
         'method': 'The metric is the absolute value of the relative difference between model and observations values (M = 100 * abs[[model-obs] / obs])',
         'name': 'EnsoAmpl',
         'units': '%'}},
       'EnsoDuration': {'diagnostic': {'ERA-Interim': {'keyerror': None,
          'name': 'ERA-Interim',
          'nyears': 40,
          'time_period': ['1979-1-16 12:0:0.0', '2019-3-16 12:0:0.0']},
         'HadISST': {'keyerror': None,
          'name': 'HadISST',
          'nyears': 151,
          'time_period': ['1870-1-16 11:59:59.5', '2020-10-16 12:0:0.0']},
         'MIROC5_r3i1p1': {'keyerror': None,
          'name': 'MIROC5_r3i1p1',
          'nyears': 163,
          'time_period': ['1850-1-16 12:0:0.0', '2012-12-16 12:0:0.0']},
         'Tropflux': {'keyerror': None,
          'name': 'Tropflux',
          'nyears': 40,
          'time_period': ['1979-1-15 0:0:0.0', '2018-12-15 12:0:0.0']},
         'method': 'nino3.4 SSTA during DEC regressed against nino3.4 SSTA during 6 years (centered on ENSO), the duration is the number of consecutive months during which the regression is above 0.25, time series are linearly detrended, smoothing using a triangle shaped window of 5 points',
         'name': 'ENSO Duration based on life cyle SSTA pattern',
         'ref': 'Using CDAT',
         'time_frequency': 'monthly',
         'units': 'months'},
        'metric': {'datasets': "MIROC5_r3i1p1; ERA-Interim's ts & HadISST's sst & Tropflux's sst; 's ",
         'method': 'The metric is the absolute value of the relative difference between model and observations values (M = 100 * abs[[model-obs] / obs])',
         'name': 'EnsoDuration',
         'units': '%'}},
       'EnsoSeasonality': {'diagnostic': {'ERA-Interim': {'keyerror': None,
          'name': 'ERA-Interim',
          'nyears': 40,
          'time_period': ['1979-1-16 12:0:0.0', '2019-3-16 12:0:0.0']},
         'HadISST': {'keyerror': None,
          'name': 'HadISST',
          'nyears': 151,
          'time_period': ['1870-1-16 11:59:59.5', '2020-10-16 12:0:0.0']},
         'MIROC5_r3i1p1': {'keyerror': None,
          'name': 'MIROC5_r3i1p1',
          'nyears': 163,
          'time_period': ['1850-1-16 12:0:0.0', '2012-12-16 12:0:0.0']},
         'Tropflux': {'keyerror': None,
          'name': 'Tropflux',
          'nyears': 40,
          'time_period': ['1979-1-15 0:0:0.0', '2018-12-15 12:0:0.0']},
         'method': 'Ratio between NDJ and MAM standard deviation nino3.4 sstA, time series are linearly detrended',
         'name': 'ENSO seasonality',
         'ref': 'Using CDAT std dev calculation',
         'time_frequency': 'monthly',
         'units': 'C/C'},
        'metric': {'datasets': "MIROC5_r3i1p1; ERA-Interim's ts & HadISST's sst & Tropflux's sst; 's ",
         'method': 'The metric is the absolute value of the relative difference between model and observations values (M = 100 * abs[[model-obs] / obs])',
         'name': 'EnsoSeasonality',
         'units': '%'}},
       'EnsoSstDiversity_2': {'diagnostic': {'ERA-Interim': {'keyerror': None,
          'name': 'ERA-Interim',
          'nyears': 40,
          'time_period': ['1979-1-16 12:0:0.0', '2019-3-16 12:0:0.0']},
         'HadISST': {'keyerror': None,
          'name': 'HadISST',
          'nyears': 151,
          'time_period': ['1870-1-16 11:59:59.5', '2020-10-16 12:0:0.0']},
         'MIROC5_r3i1p1': {'keyerror': None,
          'name': 'MIROC5_r3i1p1',
          'nyears': 163,
          'time_period': ['1850-1-16 12:0:0.0', '2012-12-16 12:0:0.0']},
         'Tropflux': {'keyerror': None,
          'name': 'Tropflux',
          'nyears': 40,
          'time_period': ['1979-1-15 0:0:0.0', '2018-12-15 12:0:0.0']},
         'method': 'Nino (Nina) events = nino3.4 sstA > 0.75 (< -0.75) during DEC, zonal SSTA (meridional averaged [-5.0 ; 5.0]), the zonal SSTA maximum (minimum) is located for each event, the diversity is the interquartile range (IQR = Q3 - Q1), time series are linearly detrended, smoothing using a triangle shaped window of 5 points',
         'name': 'ENSO Diversity (interquartile range)',
         'ref': 'Using CDAT regridding',
         'time_frequency': 'monthly',
         'units': 'long'},
        'metric': {'datasets': "MIROC5_r3i1p1; ERA-Interim's ts & HadISST's sst & Tropflux's sst; 's ",
         'method': 'The metric is the absolute value of the relative difference between model and observations values (M = 100 * abs[[model-obs] / obs])',
         'name': 'EnsoSstDiversity',
         'units': '%'}},
       'EnsoSstLonRmse': {'diagnostic': {'ERA-Interim': {'name': 'ERA-Interim',
          'nyears': 40,
          'time_period': ['1979-1-16 12:0:0.0', '2019-3-16 12:0:0.0']},
         'HadISST': {'name': 'HadISST',
          'nyears': 151,
          'time_period': ['1870-1-16 11:59:59.5', '2020-10-16 12:0:0.0']},
         'MIROC5_r3i1p1': {'keyerror': None,
          'name': 'MIROC5_r3i1p1',
          'nyears': 163,
          'time_period': ['1850-1-16 12:0:0.0', '2012-12-16 12:0:0.0']},
         'Tropflux': {'name': 'Tropflux',
          'nyears': 40,
          'time_period': ['1979-1-15 0:0:0.0', '2018-12-15 12:0:0.0']},
         'method': 'nino3.4 SSTA during DEC regressed against equatorial_pacific SSTA, time series are linearly detrended, smoothing using a triangle shaped window of 5 points, observations and model regridded to generic_1x1deg',
         'name': 'ENSO Zonal SSTA pattern',
         'ref': 'Using CDAT regridding and rms (uncentered and biased) calculation',
         'time_frequency': 'monthly',
         'units': 'C/C'},
        'metric': {'datasets': "MIROC5_r3i1p1; ERA-Interim's ts & HadISST's sst & Tropflux's sst; 's ",
         'method': 'The metric is the statistical value between the model and the observations',
         'name': 'EnsoSstLonRmse',
         'units': 'C/C'}},
       'EnsoSstSkew': {'diagnostic': {'ERA-Interim': {'keyerror': None,
          'name': 'ERA-Interim',
          'nyears': 40,
          'time_period': ['1979-1-16 12:0:0.0', '2019-3-16 12:0:0.0']},
         'HadISST': {'keyerror': None,
          'name': 'HadISST',
          'nyears': 151,
          'time_period': ['1870-1-16 11:59:59.5', '2020-10-16 12:0:0.0']},
         'MIROC5_r3i1p1': {'keyerror': None,
          'name': 'MIROC5_r3i1p1',
          'nyears': 163,
          'time_period': ['1850-1-16 12:0:0.0', '2012-12-16 12:0:0.0']},
         'Tropflux': {'keyerror': None,
          'name': 'Tropflux',
          'nyears': 40,
          'time_period': ['1979-1-15 0:0:0.0', '2018-12-15 12:0:0.0']},
         'method': 'Standard deviation of nino3.4 sstA, time series are linearly detrended',
         'name': 'ENSO skewness',
         'ref': 'Using CDAT regression calculation',
         'time_frequency': 'monthly',
         'units': 'C'},
        'metric': {'datasets': "MIROC5_r3i1p1; ERA-Interim's ts & HadISST's sst & Tropflux's sst; 's ",
         'method': 'The metric is the absolute value of the relative difference between model and observations values (M = 100 * abs[[model-obs] / obs])',
         'name': 'EnsoSstSkew',
         'units': '%'}},
       'EnsoSstTsRmse': {'diagnostic': {'ERA-Interim': {'name': 'ERA-Interim',
          'nyears': 40,
          'time_period': ['1979-1-16 12:0:0.0', '2019-3-16 12:0:0.0']},
         'HadISST': {'name': 'HadISST',
          'nyears': 151,
          'time_period': ['1870-1-16 11:59:59.5', '2020-10-16 12:0:0.0']},
         'MIROC5_r3i1p1': {'keyerror': None,
          'name': 'MIROC5_r3i1p1',
          'nyears': 163,
          'time_period': ['1850-1-16 12:0:0.0', '2012-12-16 12:0:0.0']},
         'Tropflux': {'name': 'Tropflux',
          'nyears': 40,
          'time_period': ['1979-1-15 0:0:0.0', '2018-12-15 12:0:0.0']},
         'method': 'nino3.4 SSTA during DEC regressed against nino3.4 SSTA during 6 years (centered on ENSO), time series are linearly detrended, smoothing using a triangle shaped window of 5 points',
         'name': 'ENSO life cyle SSTA pattern',
         'ref': 'Using CDAT regridding and rms (uncentered and biased) calculation',
         'time_frequency': 'monthly',
         'units': 'C/C'},
        'metric': {'datasets': "MIROC5_r3i1p1; ERA-Interim's ts & HadISST's sst & Tropflux's sst; 's ",
         'method': 'The metric is the statistical value between the model and the observations',
         'name': 'EnsoSstTsRmse',
         'units': 'C/C'}},
       'SeasonalPrLatRmse': {'diagnostic': {'ERA-Interim': {'name': 'ERA-Interim',
          'nyears': 40,
          'time_period': ['1979-1-16 12:0:0.0', '2019-3-16 12:0:0.0']},
         'GPCPv2.3': {'name': 'GPCPv2.3',
          'nyears': 41,
          'time_period': ['1979-1-1 0:0:0.0', '2019-7-1 0:0:0.0']},
         'MIROC5_r3i1p1': {'keyerror': None,
          'name': 'MIROC5_r3i1p1',
          'nyears': 163,
          'time_period': ['1850-1-16 12:0:0.0', '2012-12-16 12:0:0.0']},
         'method': 'Meridional root mean square error of nino3_LatExt climatological pr STD, time series are linearly detrended, observations and model regridded to generic_1x1deg',
         'name': 'pr meridional seasonality RMSE',
         'ref': 'Using CDAT regridding and rms (uncentered and biased) calculation',
         'time_frequency': 'monthly',
         'units': 'mm/day'},
        'metric': {'datasets': "MIROC5_r3i1p1; ERA-Interim's pr & GPCPv2.3's precip; 's ",
         'method': 'The metric is the statistical value between the model and the observations',
         'name': 'SeasonalPrLatRmse',
         'units': 'mm/day'}},
       'SeasonalPrLonRmse': {'diagnostic': {'ERA-Interim': {'name': 'ERA-Interim',
          'nyears': 40,
          'time_period': ['1979-1-16 12:0:0.0', '2019-3-16 12:0:0.0']},
         'GPCPv2.3': {'name': 'GPCPv2.3',
          'nyears': 41,
          'time_period': ['1979-1-1 0:0:0.0', '2019-7-1 0:0:0.0']},
         'MIROC5_r3i1p1': {'keyerror': None,
          'name': 'MIROC5_r3i1p1',
          'nyears': 163,
          'time_period': ['1850-1-16 12:0:0.0', '2012-12-16 12:0:0.0']},
         'method': 'Zonal root mean square error of equatorial_pacific climatological pr STD, time series are linearly detrended, observations and model regridded to generic_1x1deg',
         'name': 'pr zonal seasonality RMSE',
         'ref': 'Using CDAT regridding and rms (uncentered and biased) calculation',
         'time_frequency': 'monthly',
         'units': 'mm/day'},
        'metric': {'datasets': "MIROC5_r3i1p1; ERA-Interim's pr & GPCPv2.3's precip; 's ",
         'method': 'The metric is the statistical value between the model and the observations',
         'name': 'SeasonalPrLonRmse',
         'units': 'mm/day'}},
       'SeasonalSstLonRmse': {'diagnostic': {'ERA-Interim': {'name': 'ERA-Interim',
          'nyears': 40,
          'time_period': ['1979-1-16 12:0:0.0', '2019-3-16 12:0:0.0']},
         'HadISST': {'name': 'HadISST',
          'nyears': 151,
          'time_period': ['1870-1-16 11:59:59.5', '2020-10-16 12:0:0.0']},
         'MIROC5_r3i1p1': {'keyerror': None,
          'name': 'MIROC5_r3i1p1',
          'nyears': 163,
          'time_period': ['1850-1-16 12:0:0.0', '2012-12-16 12:0:0.0']},
         'Tropflux': {'name': 'Tropflux',
          'nyears': 40,
          'time_period': ['1979-1-15 0:0:0.0', '2018-12-15 12:0:0.0']},
         'method': 'Zonal root mean square error of equatorial_pacific climatological sst STD, time series are linearly detrended, observations and model regridded to generic_1x1deg',
         'name': 'sst zonal seasonality RMSE',
         'ref': 'Using CDAT regridding and rms (uncentered and biased) calculation',
         'time_frequency': 'monthly',
         'units': 'C'},
        'metric': {'datasets': "MIROC5_r3i1p1; ERA-Interim's ts & HadISST's sst & Tropflux's sst; 's ",
         'method': 'The metric is the statistical value between the model and the observations',
         'name': 'SeasonalSstLonRmse',
         'units': 'C'}},
       'SeasonalTauxLonRmse': {'diagnostic': {'ERA-Interim': {'name': 'ERA-Interim',
          'nyears': 40,
          'time_period': ['1979-1-16 12:0:0.0', '2019-3-16 12:0:0.0']},
         'MIROC5_r3i1p1': {'keyerror': None,
          'name': 'MIROC5_r3i1p1',
          'nyears': 163,
          'time_period': ['1850-1-16 12:0:0.0', '2012-12-16 12:0:0.0']},
         'Tropflux': {'name': 'Tropflux',
          'nyears': 40,
          'time_period': ['1979-1-15 0:0:0.0', '2018-12-15 12:0:0.0']},
         'method': 'Zonal root mean square error of equatorial_pacific climatological taux STD, time series are linearly detrended, observations and model regridded to generic_1x1deg',
         'name': 'taux zonal seasonality RMSE',
         'ref': 'Using CDAT regridding and rms (uncentered and biased) calculation',
         'time_frequency': 'monthly',
         'units': '1e-3 N/m2'},
        'metric': {'datasets': "MIROC5_r3i1p1; ERA-Interim's tauu & Tropflux's taux; 's ",
         'method': 'The metric is the statistical value between the model and the observations',
         'name': 'SeasonalTauxLonRmse',
         'units': '1e-3 N/m2'}}},
      'name': 'Metrics Collection for ENSO performance'},
     'value': {'BiasPrLatRmse': {'diagnostic': {'ERA-Interim': {'value': None,
         'value_error': None},
        'GPCPv2.3': {'value': None, 'value_error': None},
        'MIROC5_r3i1p1': {'value': None, 'value_error': None}},
       'metric': {'ERA-Interim': {'value': 0.7179890318159114,
         'value_error': None},
        'GPCPv2.3': {'value': 1.5312208529200215, 'value_error': None}}},
      'BiasPrLonRmse': {'diagnostic': {'ERA-Interim': {'value': None,
         'value_error': None},
        'GPCPv2.3': {'value': None, 'value_error': None},
        'MIROC5_r3i1p1': {'value': None, 'value_error': None}},
       'metric': {'ERA-Interim': {'value': 2.229850637417764,
         'value_error': None},
        'GPCPv2.3': {'value': 1.4256912739881427, 'value_error': None}}},
      'BiasSstLonRmse': {'diagnostic': {'ERA-Interim': {'value': None,
         'value_error': None},
        'HadISST': {'value': None, 'value_error': None},
        'MIROC5_r3i1p1': {'value': None, 'value_error': None},
        'Tropflux': {'value': None, 'value_error': None}},
       'metric': {'ERA-Interim': {'value': 1.1268142897505915,
         'value_error': None},
        'HadISST': {'value': 0.9598660975463388, 'value_error': None},
        'Tropflux': {'value': 1.1720456679623712, 'value_error': None}}},
      'BiasTauxLonRmse': {'diagnostic': {'ERA-Interim': {'value': None,
         'value_error': None},
        'MIROC5_r3i1p1': {'value': None, 'value_error': None},
        'Tropflux': {'value': None, 'value_error': None}},
       'metric': {'ERA-Interim': {'value': 3.3528629531269494,
         'value_error': None},
        'Tropflux': {'value': 3.814428422870506, 'value_error': None}}},
      'EnsoAmpl': {'diagnostic': {'ERA-Interim': {'value': 0.8989844997845644,
         'value_error': 0.14214193002531866},
        'HadISST': {'value': 0.7665787872085695,
         'value_error': 0.06238329697691264},
        'MIROC5_r3i1p1': {'value': 1.010332610318461,
         'value_error': 0.07913535749955454},
        'Tropflux': {'value': 0.9039789553693535,
         'value_error': 0.14293162279134272}},
       'metric': {'ERA-Interim': {'value': 12.385987807418317,
         'value_error': 26.572534866205693},
        'HadISST': {'value': 31.797621741856446,
         'value_error': 21.048724797987862},
        'Tropflux': {'value': 11.765058723701483,
         'value_error': 26.425722438354104}}},
      'EnsoDuration': {'diagnostic': {'ERA-Interim': {'value': 13.0,
         'value_error': None},
        'HadISST': {'value': 13.0, 'value_error': None},
        'MIROC5_r3i1p1': {'value': 22.0, 'value_error': None},
        'Tropflux': {'value': 13.0, 'value_error': None}},
       'metric': {'ERA-Interim': {'value': 69.23076923076923,
         'value_error': None},
        'HadISST': {'value': 69.23076923076923, 'value_error': None},
        'Tropflux': {'value': 69.23076923076923, 'value_error': None}}},
      'EnsoSeasonality': {'diagnostic': {'ERA-Interim': {'value': 2.0466846866656914,
         'value_error': 0.6513411033995022},
        'HadISST': {'value': 1.6639865947361325,
         'value_error': 0.2712772451657809},
        'MIROC5_r3i1p1': {'value': 1.2305716938131208,
         'value_error': 0.1930686571340145},
        'Tropflux': {'value': 2.0532132553583624,
         'value_error': 0.6534187683977347}},
       'metric': {'ERA-Interim': {'value': 39.874876583071625,
         'value_error': 28.567580694155666},
        'HadISST': {'value': 26.046778399181797,
         'value_error': 23.659260275861083},
        'Tropflux': {'value': 40.066055457140514,
         'value_error': 28.476744823863815}}},
      'EnsoSstDiversity_2': {'diagnostic': {'ERA-Interim': {'value': 33.25,
         'value_error': None},
        'HadISST': {'value': 49.0, 'value_error': None},
        'MIROC5_r3i1p1': {'value': 44.0, 'value_error': None},
        'Tropflux': {'value': 32.0, 'value_error': None}},
       'metric': {'ERA-Interim': {'value': 32.33082706766917,
         'value_error': None},
        'HadISST': {'value': 10.204081632653061, 'value_error': None},
        'Tropflux': {'value': 37.5, 'value_error': None}}},
      'EnsoSstLonRmse': {'diagnostic': {'ERA-Interim': {'value': None,
         'value_error': None},
        'HadISST': {'value': None, 'value_error': None},
        'MIROC5_r3i1p1': {'value': None, 'value_error': None},
        'Tropflux': {'value': None, 'value_error': None}},
       'metric': {'ERA-Interim': {'value': 0.2759964406045241,
         'value_error': None},
        'HadISST': {'value': 0.2958020755524672, 'value_error': None},
        'Tropflux': {'value': 0.2770189410888194, 'value_error': None}}},
      'EnsoSstSkew': {'diagnostic': {'ERA-Interim': {'value': 0.39098111106809963,
         'value_error': 0.061819541653923164},
        'HadISST': {'value': 0.38989908235027515,
         'value_error': 0.03172953733021198},
        'MIROC5_r3i1p1': {'value': 1.0281351925225577,
         'value_error': 0.08052976335436737},
        'Tropflux': {'value': 0.39744741059612115,
         'value_error': 0.06284195338099416}},
       'metric': {'ERA-Interim': {'value': 162.96288066547567,
         'value_error': 62.174924573114865},
        'HadISST': {'value': 163.69264229221957,
         'value_error': 42.113004662059744},
        'Tropflux': {'value': 158.68458696975384,
         'value_error': 61.16336511970467}}},
      'EnsoSstTsRmse': {'diagnostic': {'ERA-Interim': {'value': None,
         'value_error': None},
        'HadISST': {'value': None, 'value_error': None},
        'MIROC5_r3i1p1': {'value': None, 'value_error': None},
        'Tropflux': {'value': None, 'value_error': None}},
       'metric': {'ERA-Interim': {'value': 0.22722290795831013,
         'value_error': None},
        'HadISST': {'value': 0.2041422628331093, 'value_error': None},
        'Tropflux': {'value': 0.22219910949840474, 'value_error': None}}},
      'SeasonalPrLatRmse': {'diagnostic': {'ERA-Interim': {'value': None,
         'value_error': None},
        'GPCPv2.3': {'value': None, 'value_error': None},
        'MIROC5_r3i1p1': {'value': None, 'value_error': None}},
       'metric': {'ERA-Interim': {'value': 0.6004462904385464,
         'value_error': None},
        'GPCPv2.3': {'value': 0.3553393897350266, 'value_error': None}}},
      'SeasonalPrLonRmse': {'diagnostic': {'ERA-Interim': {'value': None,
         'value_error': None},
        'GPCPv2.3': {'value': None, 'value_error': None},
        'MIROC5_r3i1p1': {'value': None, 'value_error': None}},
       'metric': {'ERA-Interim': {'value': 0.72058826565502,
         'value_error': None},
        'GPCPv2.3': {'value': 0.36890215284346634, 'value_error': None}}},
      'SeasonalSstLonRmse': {'diagnostic': {'ERA-Interim': {'value': None,
         'value_error': None},
        'HadISST': {'value': None, 'value_error': None},
        'MIROC5_r3i1p1': {'value': None, 'value_error': None},
        'Tropflux': {'value': None, 'value_error': None}},
       'metric': {'ERA-Interim': {'value': 0.21454414645701925,
         'value_error': None},
        'HadISST': {'value': 0.22453052511965665, 'value_error': None},
        'Tropflux': {'value': 0.21886709755144143, 'value_error': None}}},
      'SeasonalTauxLonRmse': {'diagnostic': {'ERA-Interim': {'value': None,
         'value_error': None},
        'MIROC5_r3i1p1': {'value': None, 'value_error': None},
        'Tropflux': {'value': None, 'value_error': None}},
       'metric': {'ERA-Interim': {'value': 1.3269369766439334,
         'value_error': None},
        'Tropflux': {'value': 1.306183033544636, 'value_error': None}}}}},
    'r4i1p1': {'metadata': {'description_of_the_collection': 'Describe which science question this collection is about',
      'metrics': {'BiasPrLatRmse': {'diagnostic': {'ERA-Interim': {'name': 'ERA-Interim',
          'nyears': 40,
          'time_period': ['1979-1-16 12:0:0.0', '2019-3-16 12:0:0.0']},
         'GPCPv2.3': {'name': 'GPCPv2.3',
          'nyears': 41,
          'time_period': ['1979-1-1 0:0:0.0', '2019-7-1 0:0:0.0']},
         'MIROC5_r4i1p1': {'keyerror': None,
          'name': 'MIROC5_r4i1p1',
          'nyears': 163,
          'time_period': ['1850-1-16 12:0:0.0', '2012-12-16 12:0:0.0']},
         'method': 'Meridional root mean square error of nino3_LatExt pr, time series are linearly detrended, observations and model regridded to generic_1x1deg',
         'name': 'pr Meridional RMSE',
         'ref': 'Using CDAT regridding and rms (uncentered and biased) calculation',
         'time_frequency': 'monthly',
         'units': 'mm/day'},
        'metric': {'datasets': "MIROC5_r4i1p1; ERA-Interim's pr & GPCPv2.3's precip; 's ",
         'method': 'The metric is the statistical value between the model and the observations',
         'name': 'BiasPrLatRmse',
         'units': 'mm/day'}},
       'BiasPrLonRmse': {'diagnostic': {'ERA-Interim': {'name': 'ERA-Interim',
          'nyears': 40,
          'time_period': ['1979-1-16 12:0:0.0', '2019-3-16 12:0:0.0']},
         'GPCPv2.3': {'name': 'GPCPv2.3',
          'nyears': 41,
          'time_period': ['1979-1-1 0:0:0.0', '2019-7-1 0:0:0.0']},
         'MIROC5_r4i1p1': {'keyerror': None,
          'name': 'MIROC5_r4i1p1',
          'nyears': 163,
          'time_period': ['1850-1-16 12:0:0.0', '2012-12-16 12:0:0.0']},
         'method': 'Zonal root mean square error of equatorial_pacific pr, time series are linearly detrended, observations and model regridded to generic_1x1deg',
         'name': 'pr Zonal RMSE',
         'ref': 'Using CDAT regridding and rms (uncentered and biased) calculation',
         'time_frequency': 'monthly',
         'units': 'mm/day'},
        'metric': {'datasets': "MIROC5_r4i1p1; ERA-Interim's pr & GPCPv2.3's precip; 's ",
         'method': 'The metric is the statistical value between the model and the observations',
         'name': 'BiasPrLonRmse',
         'units': 'mm/day'}},
       'BiasSstLonRmse': {'diagnostic': {'ERA-Interim': {'name': 'ERA-Interim',
          'nyears': 40,
          'time_period': ['1979-1-16 12:0:0.0', '2019-3-16 12:0:0.0']},
         'HadISST': {'name': 'HadISST',
          'nyears': 151,
          'time_period': ['1870-1-16 11:59:59.5', '2020-10-16 12:0:0.0']},
         'MIROC5_r4i1p1': {'keyerror': None,
          'name': 'MIROC5_r4i1p1',
          'nyears': 163,
          'time_period': ['1850-1-16 12:0:0.0', '2012-12-16 12:0:0.0']},
         'Tropflux': {'name': 'Tropflux',
          'nyears': 40,
          'time_period': ['1979-1-15 0:0:0.0', '2018-12-15 12:0:0.0']},
         'method': 'Zonal root mean square error of equatorial_pacific sst, time series are linearly detrended, observations and model regridded to generic_1x1deg',
         'name': 'sst Zonal RMSE',
         'ref': 'Using CDAT regridding and rms (uncentered and biased) calculation',
         'time_frequency': 'monthly',
         'units': 'C'},
        'metric': {'datasets': "MIROC5_r4i1p1; ERA-Interim's ts & HadISST's sst & Tropflux's sst; 's ",
         'method': 'The metric is the statistical value between the model and the observations',
         'name': 'BiasSstLonRmse',
         'units': 'C'}},
       'BiasTauxLonRmse': {'diagnostic': {'ERA-Interim': {'name': 'ERA-Interim',
          'nyears': 40,
          'time_period': ['1979-1-16 12:0:0.0', '2019-3-16 12:0:0.0']},
         'MIROC5_r4i1p1': {'keyerror': None,
          'name': 'MIROC5_r4i1p1',
          'nyears': 163,
          'time_period': ['1850-1-16 12:0:0.0', '2012-12-16 12:0:0.0']},
         'Tropflux': {'name': 'Tropflux',
          'nyears': 40,
          'time_period': ['1979-1-15 0:0:0.0', '2018-12-15 12:0:0.0']},
         'method': 'Zonal root mean square error of equatorial_pacific taux, time series are linearly detrended, observations and model regridded to generic_1x1deg',
         'name': 'taux Zonal RMSE',
         'ref': 'Using CDAT regridding and rms (uncentered and biased) calculation',
         'time_frequency': 'monthly',
         'units': '1e-3 N/m2'},
        'metric': {'datasets': "MIROC5_r4i1p1; ERA-Interim's tauu & Tropflux's taux; 's ",
         'method': 'The metric is the statistical value between the model and the observations',
         'name': 'BiasTauxLonRmse',
         'units': '1e-3 N/m2'}},
       'EnsoAmpl': {'diagnostic': {'ERA-Interim': {'keyerror': None,
          'name': 'ERA-Interim',
          'nyears': 40,
          'time_period': ['1979-1-16 12:0:0.0', '2019-3-16 12:0:0.0']},
         'HadISST': {'keyerror': None,
          'name': 'HadISST',
          'nyears': 151,
          'time_period': ['1870-1-16 11:59:59.5', '2020-10-16 12:0:0.0']},
         'MIROC5_r4i1p1': {'keyerror': None,
          'name': 'MIROC5_r4i1p1',
          'nyears': 163,
          'time_period': ['1850-1-16 12:0:0.0', '2012-12-16 12:0:0.0']},
         'Tropflux': {'keyerror': None,
          'name': 'Tropflux',
          'nyears': 40,
          'time_period': ['1979-1-15 0:0:0.0', '2018-12-15 12:0:0.0']},
         'method': 'Standard deviation of nino3.4 sstA, time series are linearly detrended',
         'name': 'ENSO amplitude',
         'ref': 'Using CDAT regression calculation',
         'time_frequency': 'monthly',
         'units': 'C'},
        'metric': {'datasets': "MIROC5_r4i1p1; ERA-Interim's ts & HadISST's sst & Tropflux's sst; 's ",
         'method': 'The metric is the absolute value of the relative difference between model and observations values (M = 100 * abs[[model-obs] / obs])',
         'name': 'EnsoAmpl',
         'units': '%'}},
       'EnsoDuration': {'diagnostic': {'ERA-Interim': {'keyerror': None,
          'name': 'ERA-Interim',
          'nyears': 40,
          'time_period': ['1979-1-16 12:0:0.0', '2019-3-16 12:0:0.0']},
         'HadISST': {'keyerror': None,
          'name': 'HadISST',
          'nyears': 151,
          'time_period': ['1870-1-16 11:59:59.5', '2020-10-16 12:0:0.0']},
         'MIROC5_r4i1p1': {'keyerror': None,
          'name': 'MIROC5_r4i1p1',
          'nyears': 163,
          'time_period': ['1850-1-16 12:0:0.0', '2012-12-16 12:0:0.0']},
         'Tropflux': {'keyerror': None,
          'name': 'Tropflux',
          'nyears': 40,
          'time_period': ['1979-1-15 0:0:0.0', '2018-12-15 12:0:0.0']},
         'method': 'nino3.4 SSTA during DEC regressed against nino3.4 SSTA during 6 years (centered on ENSO), the duration is the number of consecutive months during which the regression is above 0.25, time series are linearly detrended, smoothing using a triangle shaped window of 5 points',
         'name': 'ENSO Duration based on life cyle SSTA pattern',
         'ref': 'Using CDAT',
         'time_frequency': 'monthly',
         'units': 'months'},
        'metric': {'datasets': "MIROC5_r4i1p1; ERA-Interim's ts & HadISST's sst & Tropflux's sst; 's ",
         'method': 'The metric is the absolute value of the relative difference between model and observations values (M = 100 * abs[[model-obs] / obs])',
         'name': 'EnsoDuration',
         'units': '%'}},
       'EnsoSeasonality': {'diagnostic': {'ERA-Interim': {'keyerror': None,
          'name': 'ERA-Interim',
          'nyears': 40,
          'time_period': ['1979-1-16 12:0:0.0', '2019-3-16 12:0:0.0']},
         'HadISST': {'keyerror': None,
          'name': 'HadISST',
          'nyears': 151,
          'time_period': ['1870-1-16 11:59:59.5', '2020-10-16 12:0:0.0']},
         'MIROC5_r4i1p1': {'keyerror': None,
          'name': 'MIROC5_r4i1p1',
          'nyears': 163,
          'time_period': ['1850-1-16 12:0:0.0', '2012-12-16 12:0:0.0']},
         'Tropflux': {'keyerror': None,
          'name': 'Tropflux',
          'nyears': 40,
          'time_period': ['1979-1-15 0:0:0.0', '2018-12-15 12:0:0.0']},
         'method': 'Ratio between NDJ and MAM standard deviation nino3.4 sstA, time series are linearly detrended',
         'name': 'ENSO seasonality',
         'ref': 'Using CDAT std dev calculation',
         'time_frequency': 'monthly',
         'units': 'C/C'},
        'metric': {'datasets': "MIROC5_r4i1p1; ERA-Interim's ts & HadISST's sst & Tropflux's sst; 's ",
         'method': 'The metric is the absolute value of the relative difference between model and observations values (M = 100 * abs[[model-obs] / obs])',
         'name': 'EnsoSeasonality',
         'units': '%'}},
       'EnsoSstDiversity_2': {'diagnostic': {'ERA-Interim': {'keyerror': None,
          'name': 'ERA-Interim',
          'nyears': 40,
          'time_period': ['1979-1-16 12:0:0.0', '2019-3-16 12:0:0.0']},
         'HadISST': {'keyerror': None,
          'name': 'HadISST',
          'nyears': 151,
          'time_period': ['1870-1-16 11:59:59.5', '2020-10-16 12:0:0.0']},
         'MIROC5_r4i1p1': {'keyerror': None,
          'name': 'MIROC5_r4i1p1',
          'nyears': 163,
          'time_period': ['1850-1-16 12:0:0.0', '2012-12-16 12:0:0.0']},
         'Tropflux': {'keyerror': None,
          'name': 'Tropflux',
          'nyears': 40,
          'time_period': ['1979-1-15 0:0:0.0', '2018-12-15 12:0:0.0']},
         'method': 'Nino (Nina) events = nino3.4 sstA > 0.75 (< -0.75) during DEC, zonal SSTA (meridional averaged [-5.0 ; 5.0]), the zonal SSTA maximum (minimum) is located for each event, the diversity is the interquartile range (IQR = Q3 - Q1), time series are linearly detrended, smoothing using a triangle shaped window of 5 points',
         'name': 'ENSO Diversity (interquartile range)',
         'ref': 'Using CDAT regridding',
         'time_frequency': 'monthly',
         'units': 'long'},
        'metric': {'datasets': "MIROC5_r4i1p1; ERA-Interim's ts & HadISST's sst & Tropflux's sst; 's ",
         'method': 'The metric is the absolute value of the relative difference between model and observations values (M = 100 * abs[[model-obs] / obs])',
         'name': 'EnsoSstDiversity',
         'units': '%'}},
       'EnsoSstLonRmse': {'diagnostic': {'ERA-Interim': {'name': 'ERA-Interim',
          'nyears': 40,
          'time_period': ['1979-1-16 12:0:0.0', '2019-3-16 12:0:0.0']},
         'HadISST': {'name': 'HadISST',
          'nyears': 151,
          'time_period': ['1870-1-16 11:59:59.5', '2020-10-16 12:0:0.0']},
         'MIROC5_r4i1p1': {'keyerror': None,
          'name': 'MIROC5_r4i1p1',
          'nyears': 163,
          'time_period': ['1850-1-16 12:0:0.0', '2012-12-16 12:0:0.0']},
         'Tropflux': {'name': 'Tropflux',
          'nyears': 40,
          'time_period': ['1979-1-15 0:0:0.0', '2018-12-15 12:0:0.0']},
         'method': 'nino3.4 SSTA during DEC regressed against equatorial_pacific SSTA, time series are linearly detrended, smoothing using a triangle shaped window of 5 points, observations and model regridded to generic_1x1deg',
         'name': 'ENSO Zonal SSTA pattern',
         'ref': 'Using CDAT regridding and rms (uncentered and biased) calculation',
         'time_frequency': 'monthly',
         'units': 'C/C'},
        'metric': {'datasets': "MIROC5_r4i1p1; ERA-Interim's ts & HadISST's sst & Tropflux's sst; 's ",
         'method': 'The metric is the statistical value between the model and the observations',
         'name': 'EnsoSstLonRmse',
         'units': 'C/C'}},
       'EnsoSstSkew': {'diagnostic': {'ERA-Interim': {'keyerror': None,
          'name': 'ERA-Interim',
          'nyears': 40,
          'time_period': ['1979-1-16 12:0:0.0', '2019-3-16 12:0:0.0']},
         'HadISST': {'keyerror': None,
          'name': 'HadISST',
          'nyears': 151,
          'time_period': ['1870-1-16 11:59:59.5', '2020-10-16 12:0:0.0']},
         'MIROC5_r4i1p1': {'keyerror': None,
          'name': 'MIROC5_r4i1p1',
          'nyears': 163,
          'time_period': ['1850-1-16 12:0:0.0', '2012-12-16 12:0:0.0']},
         'Tropflux': {'keyerror': None,
          'name': 'Tropflux',
          'nyears': 40,
          'time_period': ['1979-1-15 0:0:0.0', '2018-12-15 12:0:0.0']},
         'method': 'Standard deviation of nino3.4 sstA, time series are linearly detrended',
         'name': 'ENSO skewness',
         'ref': 'Using CDAT regression calculation',
         'time_frequency': 'monthly',
         'units': 'C'},
        'metric': {'datasets': "MIROC5_r4i1p1; ERA-Interim's ts & HadISST's sst & Tropflux's sst; 's ",
         'method': 'The metric is the absolute value of the relative difference between model and observations values (M = 100 * abs[[model-obs] / obs])',
         'name': 'EnsoSstSkew',
         'units': '%'}},
       'EnsoSstTsRmse': {'diagnostic': {'ERA-Interim': {'name': 'ERA-Interim',
          'nyears': 40,
          'time_period': ['1979-1-16 12:0:0.0', '2019-3-16 12:0:0.0']},
         'HadISST': {'name': 'HadISST',
          'nyears': 151,
          'time_period': ['1870-1-16 11:59:59.5', '2020-10-16 12:0:0.0']},
         'MIROC5_r4i1p1': {'keyerror': None,
          'name': 'MIROC5_r4i1p1',
          'nyears': 163,
          'time_period': ['1850-1-16 12:0:0.0', '2012-12-16 12:0:0.0']},
         'Tropflux': {'name': 'Tropflux',
          'nyears': 40,
          'time_period': ['1979-1-15 0:0:0.0', '2018-12-15 12:0:0.0']},
         'method': 'nino3.4 SSTA during DEC regressed against nino3.4 SSTA during 6 years (centered on ENSO), time series are linearly detrended, smoothing using a triangle shaped window of 5 points',
         'name': 'ENSO life cyle SSTA pattern',
         'ref': 'Using CDAT regridding and rms (uncentered and biased) calculation',
         'time_frequency': 'monthly',
         'units': 'C/C'},
        'metric': {'datasets': "MIROC5_r4i1p1; ERA-Interim's ts & HadISST's sst & Tropflux's sst; 's ",
         'method': 'The metric is the statistical value between the model and the observations',
         'name': 'EnsoSstTsRmse',
         'units': 'C/C'}},
       'SeasonalPrLatRmse': {'diagnostic': {'ERA-Interim': {'name': 'ERA-Interim',
          'nyears': 40,
          'time_period': ['1979-1-16 12:0:0.0', '2019-3-16 12:0:0.0']},
         'GPCPv2.3': {'name': 'GPCPv2.3',
          'nyears': 41,
          'time_period': ['1979-1-1 0:0:0.0', '2019-7-1 0:0:0.0']},
         'MIROC5_r4i1p1': {'keyerror': None,
          'name': 'MIROC5_r4i1p1',
          'nyears': 163,
          'time_period': ['1850-1-16 12:0:0.0', '2012-12-16 12:0:0.0']},
         'method': 'Meridional root mean square error of nino3_LatExt climatological pr STD, time series are linearly detrended, observations and model regridded to generic_1x1deg',
         'name': 'pr meridional seasonality RMSE',
         'ref': 'Using CDAT regridding and rms (uncentered and biased) calculation',
         'time_frequency': 'monthly',
         'units': 'mm/day'},
        'metric': {'datasets': "MIROC5_r4i1p1; ERA-Interim's pr & GPCPv2.3's precip; 's ",
         'method': 'The metric is the statistical value between the model and the observations',
         'name': 'SeasonalPrLatRmse',
         'units': 'mm/day'}},
       'SeasonalPrLonRmse': {'diagnostic': {'ERA-Interim': {'name': 'ERA-Interim',
          'nyears': 40,
          'time_period': ['1979-1-16 12:0:0.0', '2019-3-16 12:0:0.0']},
         'GPCPv2.3': {'name': 'GPCPv2.3',
          'nyears': 41,
          'time_period': ['1979-1-1 0:0:0.0', '2019-7-1 0:0:0.0']},
         'MIROC5_r4i1p1': {'keyerror': None,
          'name': 'MIROC5_r4i1p1',
          'nyears': 163,
          'time_period': ['1850-1-16 12:0:0.0', '2012-12-16 12:0:0.0']},
         'method': 'Zonal root mean square error of equatorial_pacific climatological pr STD, time series are linearly detrended, observations and model regridded to generic_1x1deg',
         'name': 'pr zonal seasonality RMSE',
         'ref': 'Using CDAT regridding and rms (uncentered and biased) calculation',
         'time_frequency': 'monthly',
         'units': 'mm/day'},
        'metric': {'datasets': "MIROC5_r4i1p1; ERA-Interim's pr & GPCPv2.3's precip; 's ",
         'method': 'The metric is the statistical value between the model and the observations',
         'name': 'SeasonalPrLonRmse',
         'units': 'mm/day'}},
       'SeasonalSstLonRmse': {'diagnostic': {'ERA-Interim': {'name': 'ERA-Interim',
          'nyears': 40,
          'time_period': ['1979-1-16 12:0:0.0', '2019-3-16 12:0:0.0']},
         'HadISST': {'name': 'HadISST',
          'nyears': 151,
          'time_period': ['1870-1-16 11:59:59.5', '2020-10-16 12:0:0.0']},
         'MIROC5_r4i1p1': {'keyerror': None,
          'name': 'MIROC5_r4i1p1',
          'nyears': 163,
          'time_period': ['1850-1-16 12:0:0.0', '2012-12-16 12:0:0.0']},
         'Tropflux': {'name': 'Tropflux',
          'nyears': 40,
          'time_period': ['1979-1-15 0:0:0.0', '2018-12-15 12:0:0.0']},
         'method': 'Zonal root mean square error of equatorial_pacific climatological sst STD, time series are linearly detrended, observations and model regridded to generic_1x1deg',
         'name': 'sst zonal seasonality RMSE',
         'ref': 'Using CDAT regridding and rms (uncentered and biased) calculation',
         'time_frequency': 'monthly',
         'units': 'C'},
        'metric': {'datasets': "MIROC5_r4i1p1; ERA-Interim's ts & HadISST's sst & Tropflux's sst; 's ",
         'method': 'The metric is the statistical value between the model and the observations',
         'name': 'SeasonalSstLonRmse',
         'units': 'C'}},
       'SeasonalTauxLonRmse': {'diagnostic': {'ERA-Interim': {'name': 'ERA-Interim',
          'nyears': 40,
          'time_period': ['1979-1-16 12:0:0.0', '2019-3-16 12:0:0.0']},
         'MIROC5_r4i1p1': {'keyerror': None,
          'name': 'MIROC5_r4i1p1',
          'nyears': 163,
          'time_period': ['1850-1-16 12:0:0.0', '2012-12-16 12:0:0.0']},
         'Tropflux': {'name': 'Tropflux',
          'nyears': 40,
          'time_period': ['1979-1-15 0:0:0.0', '2018-12-15 12:0:0.0']},
         'method': 'Zonal root mean square error of equatorial_pacific climatological taux STD, time series are linearly detrended, observations and model regridded to generic_1x1deg',
         'name': 'taux zonal seasonality RMSE',
         'ref': 'Using CDAT regridding and rms (uncentered and biased) calculation',
         'time_frequency': 'monthly',
         'units': '1e-3 N/m2'},
        'metric': {'datasets': "MIROC5_r4i1p1; ERA-Interim's tauu & Tropflux's taux; 's ",
         'method': 'The metric is the statistical value between the model and the observations',
         'name': 'SeasonalTauxLonRmse',
         'units': '1e-3 N/m2'}}},
      'name': 'Metrics Collection for ENSO performance'},
     'value': {'BiasPrLatRmse': {'diagnostic': {'ERA-Interim': {'value': None,
         'value_error': None},
        'GPCPv2.3': {'value': None, 'value_error': None},
        'MIROC5_r4i1p1': {'value': None, 'value_error': None}},
       'metric': {'ERA-Interim': {'value': 0.6650620178799438,
         'value_error': None},
        'GPCPv2.3': {'value': 1.5298329396628796, 'value_error': None}}},
      'BiasPrLonRmse': {'diagnostic': {'ERA-Interim': {'value': None,
         'value_error': None},
        'GPCPv2.3': {'value': None, 'value_error': None},
        'MIROC5_r4i1p1': {'value': None, 'value_error': None}},
       'metric': {'ERA-Interim': {'value': 2.112016340638596,
         'value_error': None},
        'GPCPv2.3': {'value': 1.3301315365925093, 'value_error': None}}},
      'BiasSstLonRmse': {'diagnostic': {'ERA-Interim': {'value': None,
         'value_error': None},
        'HadISST': {'value': None, 'value_error': None},
        'MIROC5_r4i1p1': {'value': None, 'value_error': None},
        'Tropflux': {'value': None, 'value_error': None}},
       'metric': {'ERA-Interim': {'value': 1.1030586496907924,
         'value_error': None},
        'HadISST': {'value': 0.9429823692047393, 'value_error': None},
        'Tropflux': {'value': 1.147245752043471, 'value_error': None}}},
      'BiasTauxLonRmse': {'diagnostic': {'ERA-Interim': {'value': None,
         'value_error': None},
        'MIROC5_r4i1p1': {'value': None, 'value_error': None},
        'Tropflux': {'value': None, 'value_error': None}},
       'metric': {'ERA-Interim': {'value': 3.1626834638271517,
         'value_error': None},
        'Tropflux': {'value': 3.556332119554821, 'value_error': None}}},
      'EnsoAmpl': {'diagnostic': {'ERA-Interim': {'value': 0.8989844997845644,
         'value_error': 0.14214193002531866},
        'HadISST': {'value': 0.7665787872085695,
         'value_error': 0.06238329697691264},
        'MIROC5_r4i1p1': {'value': 1.1655098018273102,
         'value_error': 0.09128977318446341},
        'Tropflux': {'value': 0.9039789553693535,
         'value_error': 0.14293162279134272}},
       'metric': {'ERA-Interim': {'value': 29.64737457727211,
         'value_error': 30.653815911374622},
        'HadISST': {'value': 52.040445323488996,
         'value_error': 24.28160272911283},
        'Tropflux': {'value': 28.93107686905154,
         'value_error': 30.484454532811206}}},
      'EnsoDuration': {'diagnostic': {'ERA-Interim': {'value': 13.0,
         'value_error': None},
        'HadISST': {'value': 13.0, 'value_error': None},
        'MIROC5_r4i1p1': {'value': 25.0, 'value_error': None},
        'Tropflux': {'value': 13.0, 'value_error': None}},
       'metric': {'ERA-Interim': {'value': 92.3076923076923,
         'value_error': None},
        'HadISST': {'value': 92.3076923076923, 'value_error': None},
        'Tropflux': {'value': 92.3076923076923, 'value_error': None}}},
      'EnsoSeasonality': {'diagnostic': {'ERA-Interim': {'value': 2.0466846866656914,
         'value_error': 0.6513411033995022},
        'HadISST': {'value': 1.6639865947361325,
         'value_error': 0.2712772451657809},
        'MIROC5_r4i1p1': {'value': 1.2340515212700078,
         'value_error': 0.19361461932178226},
        'Tropflux': {'value': 2.0532132553583624,
         'value_error': 0.6534187683977347}},
       'metric': {'ERA-Interim': {'value': 39.70485393720153,
         'value_error': 28.64836448934302},
        'HadISST': {'value': 25.83765246824611,
         'value_error': 23.72616425547601},
        'Tropflux': {'value': 39.8965734295038,
         'value_error': 28.5572717521355}}},
      'EnsoSstDiversity_2': {'diagnostic': {'ERA-Interim': {'value': 33.25,
         'value_error': None},
        'HadISST': {'value': 49.0, 'value_error': None},
        'MIROC5_r4i1p1': {'value': 26.5, 'value_error': None},
        'Tropflux': {'value': 32.0, 'value_error': None}},
       'metric': {'ERA-Interim': {'value': 20.30075187969925,
         'value_error': None},
        'HadISST': {'value': 45.91836734693878, 'value_error': None},
        'Tropflux': {'value': 17.1875, 'value_error': None}}},
      'EnsoSstLonRmse': {'diagnostic': {'ERA-Interim': {'value': None,
         'value_error': None},
        'HadISST': {'value': None, 'value_error': None},
        'MIROC5_r4i1p1': {'value': None, 'value_error': None},
        'Tropflux': {'value': None, 'value_error': None}},
       'metric': {'ERA-Interim': {'value': 0.2847581409840898,
         'value_error': None},
        'HadISST': {'value': 0.3014466536165638, 'value_error': None},
        'Tropflux': {'value': 0.2854329213004645, 'value_error': None}}},
      'EnsoSstSkew': {'diagnostic': {'ERA-Interim': {'value': 0.39098111106809963,
         'value_error': 0.061819541653923164},
        'HadISST': {'value': 0.38989908235027515,
         'value_error': 0.03172953733021198},
        'MIROC5_r4i1p1': {'value': 0.7633217578308438,
         'value_error': 0.05978797435241853},
        'Tropflux': {'value': 0.39744741059612115,
         'value_error': 0.06284195338099416}},
       'metric': {'ERA-Interim': {'value': 95.2323875047486,
         'value_error': 46.16073164629941},
        'HadISST': {'value': 95.77418680485518,
         'value_error': 31.26609513998974},
        'Tropflux': {'value': 92.05603998927985,
         'value_error': 45.40971626841609}}},
      'EnsoSstTsRmse': {'diagnostic': {'ERA-Interim': {'value': None,
         'value_error': None},
        'HadISST': {'value': None, 'value_error': None},
        'MIROC5_r4i1p1': {'value': None, 'value_error': None},
        'Tropflux': {'value': None, 'value_error': None}},
       'metric': {'ERA-Interim': {'value': 0.28786358511322435,
         'value_error': None},
        'HadISST': {'value': 0.26721805145323485, 'value_error': None},
        'Tropflux': {'value': 0.28239872346342737, 'value_error': None}}},
      'SeasonalPrLatRmse': {'diagnostic': {'ERA-Interim': {'value': None,
         'value_error': None},
        'GPCPv2.3': {'value': None, 'value_error': None},
        'MIROC5_r4i1p1': {'value': None, 'value_error': None}},
       'metric': {'ERA-Interim': {'value': 0.5827340450845203,
         'value_error': None},
        'GPCPv2.3': {'value': 0.342994084223525, 'value_error': None}}},
      'SeasonalPrLonRmse': {'diagnostic': {'ERA-Interim': {'value': None,
         'value_error': None},
        'GPCPv2.3': {'value': None, 'value_error': None},
        'MIROC5_r4i1p1': {'value': None, 'value_error': None}},
       'metric': {'ERA-Interim': {'value': 0.6660035770777266,
         'value_error': None},
        'GPCPv2.3': {'value': 0.30233231674656524, 'value_error': None}}},
      'SeasonalSstLonRmse': {'diagnostic': {'ERA-Interim': {'value': None,
         'value_error': None},
        'HadISST': {'value': None, 'value_error': None},
        'MIROC5_r4i1p1': {'value': None, 'value_error': None},
        'Tropflux': {'value': None, 'value_error': None}},
       'metric': {'ERA-Interim': {'value': 0.2109643452309322,
         'value_error': None},
        'HadISST': {'value': 0.22103104913880667, 'value_error': None},
        'Tropflux': {'value': 0.21568221068119214, 'value_error': None}}},
      'SeasonalTauxLonRmse': {'diagnostic': {'ERA-Interim': {'value': None,
         'value_error': None},
        'MIROC5_r4i1p1': {'value': None, 'value_error': None},
        'Tropflux': {'value': None, 'value_error': None}},
       'metric': {'ERA-Interim': {'value': 1.3378452422824008,
         'value_error': None},
        'Tropflux': {'value': 1.3251422681757423, 'value_error': None}}}}},
    'r5i1p1': {'metadata': {'description_of_the_collection': 'Describe which science question this collection is about',
      'metrics': {'BiasPrLatRmse': {'diagnostic': {'ERA-Interim': {'name': 'ERA-Interim',
          'nyears': 40,
          'time_period': ['1979-1-16 12:0:0.0', '2019-3-16 12:0:0.0']},
         'GPCPv2.3': {'name': 'GPCPv2.3',
          'nyears': 41,
          'time_period': ['1979-1-1 0:0:0.0', '2019-7-1 0:0:0.0']},
         'MIROC5_r5i1p1': {'keyerror': None,
          'name': 'MIROC5_r5i1p1',
          'nyears': 163,
          'time_period': ['1850-1-16 12:0:0.0', '2012-12-16 12:0:0.0']},
         'method': 'Meridional root mean square error of nino3_LatExt pr, time series are linearly detrended, observations and model regridded to generic_1x1deg',
         'name': 'pr Meridional RMSE',
         'ref': 'Using CDAT regridding and rms (uncentered and biased) calculation',
         'time_frequency': 'monthly',
         'units': 'mm/day'},
        'metric': {'datasets': "MIROC5_r5i1p1; ERA-Interim's pr & GPCPv2.3's precip; 's ",
         'method': 'The metric is the statistical value between the model and the observations',
         'name': 'BiasPrLatRmse',
         'units': 'mm/day'}},
       'BiasPrLonRmse': {'diagnostic': {'ERA-Interim': {'name': 'ERA-Interim',
          'nyears': 40,
          'time_period': ['1979-1-16 12:0:0.0', '2019-3-16 12:0:0.0']},
         'GPCPv2.3': {'name': 'GPCPv2.3',
          'nyears': 41,
          'time_period': ['1979-1-1 0:0:0.0', '2019-7-1 0:0:0.0']},
         'MIROC5_r5i1p1': {'keyerror': None,
          'name': 'MIROC5_r5i1p1',
          'nyears': 163,
          'time_period': ['1850-1-16 12:0:0.0', '2012-12-16 12:0:0.0']},
         'method': 'Zonal root mean square error of equatorial_pacific pr, time series are linearly detrended, observations and model regridded to generic_1x1deg',
         'name': 'pr Zonal RMSE',
         'ref': 'Using CDAT regridding and rms (uncentered and biased) calculation',
         'time_frequency': 'monthly',
         'units': 'mm/day'},
        'metric': {'datasets': "MIROC5_r5i1p1; ERA-Interim's pr & GPCPv2.3's precip; 's ",
         'method': 'The metric is the statistical value between the model and the observations',
         'name': 'BiasPrLonRmse',
         'units': 'mm/day'}},
       'BiasSstLonRmse': {'diagnostic': {'ERA-Interim': {'name': 'ERA-Interim',
          'nyears': 40,
          'time_period': ['1979-1-16 12:0:0.0', '2019-3-16 12:0:0.0']},
         'HadISST': {'name': 'HadISST',
          'nyears': 151,
          'time_period': ['1870-1-16 11:59:59.5', '2020-10-16 12:0:0.0']},
         'MIROC5_r5i1p1': {'keyerror': None,
          'name': 'MIROC5_r5i1p1',
          'nyears': 163,
          'time_period': ['1850-1-16 12:0:0.0', '2012-12-16 12:0:0.0']},
         'Tropflux': {'name': 'Tropflux',
          'nyears': 40,
          'time_period': ['1979-1-15 0:0:0.0', '2018-12-15 12:0:0.0']},
         'method': 'Zonal root mean square error of equatorial_pacific sst, time series are linearly detrended, observations and model regridded to generic_1x1deg',
         'name': 'sst Zonal RMSE',
         'ref': 'Using CDAT regridding and rms (uncentered and biased) calculation',
         'time_frequency': 'monthly',
         'units': 'C'},
        'metric': {'datasets': "MIROC5_r5i1p1; ERA-Interim's ts & HadISST's sst & Tropflux's sst; 's ",
         'method': 'The metric is the statistical value between the model and the observations',
         'name': 'BiasSstLonRmse',
         'units': 'C'}},
       'BiasTauxLonRmse': {'diagnostic': {'ERA-Interim': {'name': 'ERA-Interim',
          'nyears': 40,
          'time_period': ['1979-1-16 12:0:0.0', '2019-3-16 12:0:0.0']},
         'MIROC5_r5i1p1': {'keyerror': None,
          'name': 'MIROC5_r5i1p1',
          'nyears': 163,
          'time_period': ['1850-1-16 12:0:0.0', '2012-12-16 12:0:0.0']},
         'Tropflux': {'name': 'Tropflux',
          'nyears': 40,
          'time_period': ['1979-1-15 0:0:0.0', '2018-12-15 12:0:0.0']},
         'method': 'Zonal root mean square error of equatorial_pacific taux, time series are linearly detrended, observations and model regridded to generic_1x1deg',
         'name': 'taux Zonal RMSE',
         'ref': 'Using CDAT regridding and rms (uncentered and biased) calculation',
         'time_frequency': 'monthly',
         'units': '1e-3 N/m2'},
        'metric': {'datasets': "MIROC5_r5i1p1; ERA-Interim's tauu & Tropflux's taux; 's ",
         'method': 'The metric is the statistical value between the model and the observations',
         'name': 'BiasTauxLonRmse',
         'units': '1e-3 N/m2'}},
       'EnsoAmpl': {'diagnostic': {'ERA-Interim': {'keyerror': None,
          'name': 'ERA-Interim',
          'nyears': 40,
          'time_period': ['1979-1-16 12:0:0.0', '2019-3-16 12:0:0.0']},
         'HadISST': {'keyerror': None,
          'name': 'HadISST',
          'nyears': 151,
          'time_period': ['1870-1-16 11:59:59.5', '2020-10-16 12:0:0.0']},
         'MIROC5_r5i1p1': {'keyerror': None,
          'name': 'MIROC5_r5i1p1',
          'nyears': 163,
          'time_period': ['1850-1-16 12:0:0.0', '2012-12-16 12:0:0.0']},
         'Tropflux': {'keyerror': None,
          'name': 'Tropflux',
          'nyears': 40,
          'time_period': ['1979-1-15 0:0:0.0', '2018-12-15 12:0:0.0']},
         'method': 'Standard deviation of nino3.4 sstA, time series are linearly detrended',
         'name': 'ENSO amplitude',
         'ref': 'Using CDAT regression calculation',
         'time_frequency': 'monthly',
         'units': 'C'},
        'metric': {'datasets': "MIROC5_r5i1p1; ERA-Interim's ts & HadISST's sst & Tropflux's sst; 's ",
         'method': 'The metric is the absolute value of the relative difference between model and observations values (M = 100 * abs[[model-obs] / obs])',
         'name': 'EnsoAmpl',
         'units': '%'}},
       'EnsoDuration': {'diagnostic': {'ERA-Interim': {'keyerror': None,
          'name': 'ERA-Interim',
          'nyears': 40,
          'time_period': ['1979-1-16 12:0:0.0', '2019-3-16 12:0:0.0']},
         'HadISST': {'keyerror': None,
          'name': 'HadISST',
          'nyears': 151,
          'time_period': ['1870-1-16 11:59:59.5', '2020-10-16 12:0:0.0']},
         'MIROC5_r5i1p1': {'keyerror': None,
          'name': 'MIROC5_r5i1p1',
          'nyears': 163,
          'time_period': ['1850-1-16 12:0:0.0', '2012-12-16 12:0:0.0']},
         'Tropflux': {'keyerror': None,
          'name': 'Tropflux',
          'nyears': 40,
          'time_period': ['1979-1-15 0:0:0.0', '2018-12-15 12:0:0.0']},
         'method': 'nino3.4 SSTA during DEC regressed against nino3.4 SSTA during 6 years (centered on ENSO), the duration is the number of consecutive months during which the regression is above 0.25, time series are linearly detrended, smoothing using a triangle shaped window of 5 points',
         'name': 'ENSO Duration based on life cyle SSTA pattern',
         'ref': 'Using CDAT',
         'time_frequency': 'monthly',
         'units': 'months'},
        'metric': {'datasets': "MIROC5_r5i1p1; ERA-Interim's ts & HadISST's sst & Tropflux's sst; 's ",
         'method': 'The metric is the absolute value of the relative difference between model and observations values (M = 100 * abs[[model-obs] / obs])',
         'name': 'EnsoDuration',
         'units': '%'}},
       'EnsoSeasonality': {'diagnostic': {'ERA-Interim': {'keyerror': None,
          'name': 'ERA-Interim',
          'nyears': 40,
          'time_period': ['1979-1-16 12:0:0.0', '2019-3-16 12:0:0.0']},
         'HadISST': {'keyerror': None,
          'name': 'HadISST',
          'nyears': 151,
          'time_period': ['1870-1-16 11:59:59.5', '2020-10-16 12:0:0.0']},
         'MIROC5_r5i1p1': {'keyerror': None,
          'name': 'MIROC5_r5i1p1',
          'nyears': 163,
          'time_period': ['1850-1-16 12:0:0.0', '2012-12-16 12:0:0.0']},
         'Tropflux': {'keyerror': None,
          'name': 'Tropflux',
          'nyears': 40,
          'time_period': ['1979-1-15 0:0:0.0', '2018-12-15 12:0:0.0']},
         'method': 'Ratio between NDJ and MAM standard deviation nino3.4 sstA, time series are linearly detrended',
         'name': 'ENSO seasonality',
         'ref': 'Using CDAT std dev calculation',
         'time_frequency': 'monthly',
         'units': 'C/C'},
        'metric': {'datasets': "MIROC5_r5i1p1; ERA-Interim's ts & HadISST's sst & Tropflux's sst; 's ",
         'method': 'The metric is the absolute value of the relative difference between model and observations values (M = 100 * abs[[model-obs] / obs])',
         'name': 'EnsoSeasonality',
         'units': '%'}},
       'EnsoSstDiversity_2': {'diagnostic': {'ERA-Interim': {'keyerror': None,
          'name': 'ERA-Interim',
          'nyears': 40,
          'time_period': ['1979-1-16 12:0:0.0', '2019-3-16 12:0:0.0']},
         'HadISST': {'keyerror': None,
          'name': 'HadISST',
          'nyears': 151,
          'time_period': ['1870-1-16 11:59:59.5', '2020-10-16 12:0:0.0']},
         'MIROC5_r5i1p1': {'keyerror': None,
          'name': 'MIROC5_r5i1p1',
          'nyears': 163,
          'time_period': ['1850-1-16 12:0:0.0', '2012-12-16 12:0:0.0']},
         'Tropflux': {'keyerror': None,
          'name': 'Tropflux',
          'nyears': 40,
          'time_period': ['1979-1-15 0:0:0.0', '2018-12-15 12:0:0.0']},
         'method': 'Nino (Nina) events = nino3.4 sstA > 0.75 (< -0.75) during DEC, zonal SSTA (meridional averaged [-5.0 ; 5.0]), the zonal SSTA maximum (minimum) is located for each event, the diversity is the interquartile range (IQR = Q3 - Q1), time series are linearly detrended, smoothing using a triangle shaped window of 5 points',
         'name': 'ENSO Diversity (interquartile range)',
         'ref': 'Using CDAT regridding',
         'time_frequency': 'monthly',
         'units': 'long'},
        'metric': {'datasets': "MIROC5_r5i1p1; ERA-Interim's ts & HadISST's sst & Tropflux's sst; 's ",
         'method': 'The metric is the absolute value of the relative difference between model and observations values (M = 100 * abs[[model-obs] / obs])',
         'name': 'EnsoSstDiversity',
         'units': '%'}},
       'EnsoSstLonRmse': {'diagnostic': {'ERA-Interim': {'name': 'ERA-Interim',
          'nyears': 40,
          'time_period': ['1979-1-16 12:0:0.0', '2019-3-16 12:0:0.0']},
         'HadISST': {'name': 'HadISST',
          'nyears': 151,
          'time_period': ['1870-1-16 11:59:59.5', '2020-10-16 12:0:0.0']},
         'MIROC5_r5i1p1': {'keyerror': None,
          'name': 'MIROC5_r5i1p1',
          'nyears': 163,
          'time_period': ['1850-1-16 12:0:0.0', '2012-12-16 12:0:0.0']},
         'Tropflux': {'name': 'Tropflux',
          'nyears': 40,
          'time_period': ['1979-1-15 0:0:0.0', '2018-12-15 12:0:0.0']},
         'method': 'nino3.4 SSTA during DEC regressed against equatorial_pacific SSTA, time series are linearly detrended, smoothing using a triangle shaped window of 5 points, observations and model regridded to generic_1x1deg',
         'name': 'ENSO Zonal SSTA pattern',
         'ref': 'Using CDAT regridding and rms (uncentered and biased) calculation',
         'time_frequency': 'monthly',
         'units': 'C/C'},
        'metric': {'datasets': "MIROC5_r5i1p1; ERA-Interim's ts & HadISST's sst & Tropflux's sst; 's ",
         'method': 'The metric is the statistical value between the model and the observations',
         'name': 'EnsoSstLonRmse',
         'units': 'C/C'}},
       'EnsoSstSkew': {'diagnostic': {'ERA-Interim': {'keyerror': None,
          'name': 'ERA-Interim',
          'nyears': 40,
          'time_period': ['1979-1-16 12:0:0.0', '2019-3-16 12:0:0.0']},
         'HadISST': {'keyerror': None,
          'name': 'HadISST',
          'nyears': 151,
          'time_period': ['1870-1-16 11:59:59.5', '2020-10-16 12:0:0.0']},
         'MIROC5_r5i1p1': {'keyerror': None,
          'name': 'MIROC5_r5i1p1',
          'nyears': 163,
          'time_period': ['1850-1-16 12:0:0.0', '2012-12-16 12:0:0.0']},
         'Tropflux': {'keyerror': None,
          'name': 'Tropflux',
          'nyears': 40,
          'time_period': ['1979-1-15 0:0:0.0', '2018-12-15 12:0:0.0']},
         'method': 'Standard deviation of nino3.4 sstA, time series are linearly detrended',
         'name': 'ENSO skewness',
         'ref': 'Using CDAT regression calculation',
         'time_frequency': 'monthly',
         'units': 'C'},
        'metric': {'datasets': "MIROC5_r5i1p1; ERA-Interim's ts & HadISST's sst & Tropflux's sst; 's ",
         'method': 'The metric is the absolute value of the relative difference between model and observations values (M = 100 * abs[[model-obs] / obs])',
         'name': 'EnsoSstSkew',
         'units': '%'}},
       'EnsoSstTsRmse': {'diagnostic': {'ERA-Interim': {'name': 'ERA-Interim',
          'nyears': 40,
          'time_period': ['1979-1-16 12:0:0.0', '2019-3-16 12:0:0.0']},
         'HadISST': {'name': 'HadISST',
          'nyears': 151,
          'time_period': ['1870-1-16 11:59:59.5', '2020-10-16 12:0:0.0']},
         'MIROC5_r5i1p1': {'keyerror': None,
          'name': 'MIROC5_r5i1p1',
          'nyears': 163,
          'time_period': ['1850-1-16 12:0:0.0', '2012-12-16 12:0:0.0']},
         'Tropflux': {'name': 'Tropflux',
          'nyears': 40,
          'time_period': ['1979-1-15 0:0:0.0', '2018-12-15 12:0:0.0']},
         'method': 'nino3.4 SSTA during DEC regressed against nino3.4 SSTA during 6 years (centered on ENSO), time series are linearly detrended, smoothing using a triangle shaped window of 5 points',
         'name': 'ENSO life cyle SSTA pattern',
         'ref': 'Using CDAT regridding and rms (uncentered and biased) calculation',
         'time_frequency': 'monthly',
         'units': 'C/C'},
        'metric': {'datasets': "MIROC5_r5i1p1; ERA-Interim's ts & HadISST's sst & Tropflux's sst; 's ",
         'method': 'The metric is the statistical value between the model and the observations',
         'name': 'EnsoSstTsRmse',
         'units': 'C/C'}},
       'SeasonalPrLatRmse': {'diagnostic': {'ERA-Interim': {'name': 'ERA-Interim',
          'nyears': 40,
          'time_period': ['1979-1-16 12:0:0.0', '2019-3-16 12:0:0.0']},
         'GPCPv2.3': {'name': 'GPCPv2.3',
          'nyears': 41,
          'time_period': ['1979-1-1 0:0:0.0', '2019-7-1 0:0:0.0']},
         'MIROC5_r5i1p1': {'keyerror': None,
          'name': 'MIROC5_r5i1p1',
          'nyears': 163,
          'time_period': ['1850-1-16 12:0:0.0', '2012-12-16 12:0:0.0']},
         'method': 'Meridional root mean square error of nino3_LatExt climatological pr STD, time series are linearly detrended, observations and model regridded to generic_1x1deg',
         'name': 'pr meridional seasonality RMSE',
         'ref': 'Using CDAT regridding and rms (uncentered and biased) calculation',
         'time_frequency': 'monthly',
         'units': 'mm/day'},
        'metric': {'datasets': "MIROC5_r5i1p1; ERA-Interim's pr & GPCPv2.3's precip; 's ",
         'method': 'The metric is the statistical value between the model and the observations',
         'name': 'SeasonalPrLatRmse',
         'units': 'mm/day'}},
       'SeasonalPrLonRmse': {'diagnostic': {'ERA-Interim': {'name': 'ERA-Interim',
          'nyears': 40,
          'time_period': ['1979-1-16 12:0:0.0', '2019-3-16 12:0:0.0']},
         'GPCPv2.3': {'name': 'GPCPv2.3',
          'nyears': 41,
          'time_period': ['1979-1-1 0:0:0.0', '2019-7-1 0:0:0.0']},
         'MIROC5_r5i1p1': {'keyerror': None,
          'name': 'MIROC5_r5i1p1',
          'nyears': 163,
          'time_period': ['1850-1-16 12:0:0.0', '2012-12-16 12:0:0.0']},
         'method': 'Zonal root mean square error of equatorial_pacific climatological pr STD, time series are linearly detrended, observations and model regridded to generic_1x1deg',
         'name': 'pr zonal seasonality RMSE',
         'ref': 'Using CDAT regridding and rms (uncentered and biased) calculation',
         'time_frequency': 'monthly',
         'units': 'mm/day'},
        'metric': {'datasets': "MIROC5_r5i1p1; ERA-Interim's pr & GPCPv2.3's precip; 's ",
         'method': 'The metric is the statistical value between the model and the observations',
         'name': 'SeasonalPrLonRmse',
         'units': 'mm/day'}},
       'SeasonalSstLonRmse': {'diagnostic': {'ERA-Interim': {'name': 'ERA-Interim',
          'nyears': 40,
          'time_period': ['1979-1-16 12:0:0.0', '2019-3-16 12:0:0.0']},
         'HadISST': {'name': 'HadISST',
          'nyears': 151,
          'time_period': ['1870-1-16 11:59:59.5', '2020-10-16 12:0:0.0']},
         'MIROC5_r5i1p1': {'keyerror': None,
          'name': 'MIROC5_r5i1p1',
          'nyears': 163,
          'time_period': ['1850-1-16 12:0:0.0', '2012-12-16 12:0:0.0']},
         'Tropflux': {'name': 'Tropflux',
          'nyears': 40,
          'time_period': ['1979-1-15 0:0:0.0', '2018-12-15 12:0:0.0']},
         'method': 'Zonal root mean square error of equatorial_pacific climatological sst STD, time series are linearly detrended, observations and model regridded to generic_1x1deg',
         'name': 'sst zonal seasonality RMSE',
         'ref': 'Using CDAT regridding and rms (uncentered and biased) calculation',
         'time_frequency': 'monthly',
         'units': 'C'},
        'metric': {'datasets': "MIROC5_r5i1p1; ERA-Interim's ts & HadISST's sst & Tropflux's sst; 's ",
         'method': 'The metric is the statistical value between the model and the observations',
         'name': 'SeasonalSstLonRmse',
         'units': 'C'}},
       'SeasonalTauxLonRmse': {'diagnostic': {'ERA-Interim': {'name': 'ERA-Interim',
          'nyears': 40,
          'time_period': ['1979-1-16 12:0:0.0', '2019-3-16 12:0:0.0']},
         'MIROC5_r5i1p1': {'keyerror': None,
          'name': 'MIROC5_r5i1p1',
          'nyears': 163,
          'time_period': ['1850-1-16 12:0:0.0', '2012-12-16 12:0:0.0']},
         'Tropflux': {'name': 'Tropflux',
          'nyears': 40,
          'time_period': ['1979-1-15 0:0:0.0', '2018-12-15 12:0:0.0']},
         'method': 'Zonal root mean square error of equatorial_pacific climatological taux STD, time series are linearly detrended, observations and model regridded to generic_1x1deg',
         'name': 'taux zonal seasonality RMSE',
         'ref': 'Using CDAT regridding and rms (uncentered and biased) calculation',
         'time_frequency': 'monthly',
         'units': '1e-3 N/m2'},
        'metric': {'datasets': "MIROC5_r5i1p1; ERA-Interim's tauu & Tropflux's taux; 's ",
         'method': 'The metric is the statistical value between the model and the observations',
         'name': 'SeasonalTauxLonRmse',
         'units': '1e-3 N/m2'}}},
      'name': 'Metrics Collection for ENSO performance'},
     'value': {'BiasPrLatRmse': {'diagnostic': {'ERA-Interim': {'value': None,
         'value_error': None},
        'GPCPv2.3': {'value': None, 'value_error': None},
        'MIROC5_r5i1p1': {'value': None, 'value_error': None}},
       'metric': {'ERA-Interim': {'value': 0.767615244603694,
         'value_error': None},
        'GPCPv2.3': {'value': 1.5238724398805301, 'value_error': None}}},
      'BiasPrLonRmse': {'diagnostic': {'ERA-Interim': {'value': None,
         'value_error': None},
        'GPCPv2.3': {'value': None, 'value_error': None},
        'MIROC5_r5i1p1': {'value': None, 'value_error': None}},
       'metric': {'ERA-Interim': {'value': 2.2970384540758384,
         'value_error': None},
        'GPCPv2.3': {'value': 1.4784878397159356, 'value_error': None}}},
      'BiasSstLonRmse': {'diagnostic': {'ERA-Interim': {'value': None,
         'value_error': None},
        'HadISST': {'value': None, 'value_error': None},
        'MIROC5_r5i1p1': {'value': None, 'value_error': None},
        'Tropflux': {'value': None, 'value_error': None}},
       'metric': {'ERA-Interim': {'value': 1.157483883937813,
         'value_error': None},
        'HadISST': {'value': 0.9840574556580232, 'value_error': None},
        'Tropflux': {'value': 1.2036664889137823, 'value_error': None}}},
      'BiasTauxLonRmse': {'diagnostic': {'ERA-Interim': {'value': None,
         'value_error': None},
        'MIROC5_r5i1p1': {'value': None, 'value_error': None},
        'Tropflux': {'value': None, 'value_error': None}},
       'metric': {'ERA-Interim': {'value': 3.6216979582854,
         'value_error': None},
        'Tropflux': {'value': 4.167055311809335, 'value_error': None}}},
      'EnsoAmpl': {'diagnostic': {'ERA-Interim': {'value': 0.8989844997845644,
         'value_error': 0.14214193002531866},
        'HadISST': {'value': 0.7665787872085695,
         'value_error': 0.06238329697691264},
        'MIROC5_r5i1p1': {'value': 0.8545498028182389,
         'value_error': 0.0669335063092534},
        'Tropflux': {'value': 0.9039789553693535,
         'value_error': 0.14293162279134272}},
       'metric': {'ERA-Interim': {'value': 4.942765640227834,
         'value_error': 22.475325648589468},
        'HadISST': {'value': 11.475795714359409,
         'value_error': 17.803229789867192},
        'Tropflux': {'value': 5.467953900643461,
         'value_error': 22.351150174106557}}},
      'EnsoDuration': {'diagnostic': {'ERA-Interim': {'value': 13.0,
         'value_error': None},
        'HadISST': {'value': 13.0, 'value_error': None},
        'MIROC5_r5i1p1': {'value': 23.0, 'value_error': None},
        'Tropflux': {'value': 13.0, 'value_error': None}},
       'metric': {'ERA-Interim': {'value': 76.92307692307693,
         'value_error': None},
        'HadISST': {'value': 76.92307692307693, 'value_error': None},
        'Tropflux': {'value': 76.92307692307693, 'value_error': None}}},
      'EnsoSeasonality': {'diagnostic': {'ERA-Interim': {'value': 2.0466846866656914,
         'value_error': 0.6513411033995022},
        'HadISST': {'value': 1.6639865947361325,
         'value_error': 0.2712772451657809},
        'MIROC5_r5i1p1': {'value': 1.2385553432249015,
         'value_error': 0.19432123955461694},
        'Tropflux': {'value': 2.0532132553583624,
         'value_error': 0.6534187683977347}},
       'metric': {'ERA-Interim': {'value': 39.48479942737711,
         'value_error': 28.75292019932352},
        'HadISST': {'value': 25.56698791066247,
         'value_error': 23.81275579370389},
        'Tropflux': {'value': 39.67721862341438,
         'value_error': 28.661495008030652}}},
      'EnsoSstDiversity_2': {'diagnostic': {'ERA-Interim': {'value': 33.25,
         'value_error': None},
        'HadISST': {'value': 49.0, 'value_error': None},
        'MIROC5_r5i1p1': {'value': 57.5, 'value_error': None},
        'Tropflux': {'value': 32.0, 'value_error': None}},
       'metric': {'ERA-Interim': {'value': 72.93233082706767,
         'value_error': None},
        'HadISST': {'value': 17.346938775510203, 'value_error': None},
        'Tropflux': {'value': 79.6875, 'value_error': None}}},
      'EnsoSstLonRmse': {'diagnostic': {'ERA-Interim': {'value': None,
         'value_error': None},
        'HadISST': {'value': None, 'value_error': None},
        'MIROC5_r5i1p1': {'value': None, 'value_error': None},
        'Tropflux': {'value': None, 'value_error': None}},
       'metric': {'ERA-Interim': {'value': 0.3495897677689399,
         'value_error': None},
        'HadISST': {'value': 0.3670091570266416, 'value_error': None},
        'Tropflux': {'value': 0.3504898844094339, 'value_error': None}}},
      'EnsoSstSkew': {'diagnostic': {'ERA-Interim': {'value': 0.39098111106809963,
         'value_error': 0.061819541653923164},
        'HadISST': {'value': 0.38989908235027515,
         'value_error': 0.03172953733021198},
        'MIROC5_r5i1p1': {'value': 0.423949710300179,
         'value_error': 0.033206304086198235},
        'Tropflux': {'value': 0.39744741059612115,
         'value_error': 0.06284195338099416}},
       'metric': {'ERA-Interim': {'value': 8.432274168441092,
         'value_error': 25.63771909804478},
        'HadISST': {'value': 8.733190071812897,
         'value_error': 17.365222255008643},
        'Tropflux': {'value': 6.66812740440495,
         'value_error': 25.220604364161918}}},
      'EnsoSstTsRmse': {'diagnostic': {'ERA-Interim': {'value': None,
         'value_error': None},
        'HadISST': {'value': None, 'value_error': None},
        'MIROC5_r5i1p1': {'value': None, 'value_error': None},
        'Tropflux': {'value': None, 'value_error': None}},
       'metric': {'ERA-Interim': {'value': 0.2355176932630607,
         'value_error': None},
        'HadISST': {'value': 0.20896979844346875, 'value_error': None},
        'Tropflux': {'value': 0.23035731076869959, 'value_error': None}}},
      'SeasonalPrLatRmse': {'diagnostic': {'ERA-Interim': {'value': None,
         'value_error': None},
        'GPCPv2.3': {'value': None, 'value_error': None},
        'MIROC5_r5i1p1': {'value': None, 'value_error': None}},
       'metric': {'ERA-Interim': {'value': 0.6184196139152686,
         'value_error': None},
        'GPCPv2.3': {'value': 0.39036529802643866, 'value_error': None}}},
      'SeasonalPrLonRmse': {'diagnostic': {'ERA-Interim': {'value': None,
         'value_error': None},
        'GPCPv2.3': {'value': None, 'value_error': None},
        'MIROC5_r5i1p1': {'value': None, 'value_error': None}},
       'metric': {'ERA-Interim': {'value': 0.7417685610918248,
         'value_error': None},
        'GPCPv2.3': {'value': 0.38455583399971155, 'value_error': None}}},
      'SeasonalSstLonRmse': {'diagnostic': {'ERA-Interim': {'value': None,
         'value_error': None},
        'HadISST': {'value': None, 'value_error': None},
        'MIROC5_r5i1p1': {'value': None, 'value_error': None},
        'Tropflux': {'value': None, 'value_error': None}},
       'metric': {'ERA-Interim': {'value': 0.20361720156089277,
         'value_error': None},
        'HadISST': {'value': 0.21472023989560818, 'value_error': None},
        'Tropflux': {'value': 0.20756689298474618, 'value_error': None}}},
      'SeasonalTauxLonRmse': {'diagnostic': {'ERA-Interim': {'value': None,
         'value_error': None},
        'MIROC5_r5i1p1': {'value': None, 'value_error': None},
        'Tropflux': {'value': None, 'value_error': None}},
       'metric': {'ERA-Interim': {'value': 1.4051750779891348,
         'value_error': None},
        'Tropflux': {'value': 1.4121109713334101, 'value_error': None}}}}}},
   'MPI-ESM-LR': {'r1i1p1': {'metadata': {'description_of_the_collection': 'Describe which science question this collection is about',
      'metrics': {'BiasPrLatRmse': {'diagnostic': {'ERA-Interim': {'name': 'ERA-Interim',
          'nyears': 40,
          'time_period': ['1979-1-16 12:0:0.0', '2019-3-16 12:0:0.0']},
         'GPCPv2.3': {'name': 'GPCPv2.3',
          'nyears': 41,
          'time_period': ['1979-1-1 0:0:0.0', '2019-7-1 0:0:0.0']},
         'MPI-ESM-LR_r1i1p1': {'keyerror': None,
          'name': 'MPI-ESM-LR_r1i1p1',
          'nyears': 156,
          'time_period': ['1850-1-16 12:0:0.0', '2005-12-16 12:0:0.0']},
         'method': 'Meridional root mean square error of nino3_LatExt pr, time series are linearly detrended, observations and model regridded to generic_1x1deg',
         'name': 'pr Meridional RMSE',
         'ref': 'Using CDAT regridding and rms (uncentered and biased) calculation',
         'time_frequency': 'monthly',
         'units': 'mm/day'},
        'metric': {'datasets': "MPI-ESM-LR_r1i1p1; ERA-Interim's pr & GPCPv2.3's precip; 's ",
         'method': 'The metric is the statistical value between the model and the observations',
         'name': 'BiasPrLatRmse',
         'units': 'mm/day'}},
       'BiasPrLonRmse': {'diagnostic': {'ERA-Interim': {'name': 'ERA-Interim',
          'nyears': 40,
          'time_period': ['1979-1-16 12:0:0.0', '2019-3-16 12:0:0.0']},
         'GPCPv2.3': {'name': 'GPCPv2.3',
          'nyears': 41,
          'time_period': ['1979-1-1 0:0:0.0', '2019-7-1 0:0:0.0']},
         'MPI-ESM-LR_r1i1p1': {'keyerror': None,
          'name': 'MPI-ESM-LR_r1i1p1',
          'nyears': 156,
          'time_period': ['1850-1-16 12:0:0.0', '2005-12-16 12:0:0.0']},
         'method': 'Zonal root mean square error of equatorial_pacific pr, time series are linearly detrended, observations and model regridded to generic_1x1deg',
         'name': 'pr Zonal RMSE',
         'ref': 'Using CDAT regridding and rms (uncentered and biased) calculation',
         'time_frequency': 'monthly',
         'units': 'mm/day'},
        'metric': {'datasets': "MPI-ESM-LR_r1i1p1; ERA-Interim's pr & GPCPv2.3's precip; 's ",
         'method': 'The metric is the statistical value between the model and the observations',
         'name': 'BiasPrLonRmse',
         'units': 'mm/day'}},
       'BiasSstLonRmse': {'diagnostic': {'ERA-Interim': {'name': 'ERA-Interim',
          'nyears': 40,
          'time_period': ['1979-1-16 12:0:0.0', '2019-3-16 12:0:0.0']},
         'HadISST': {'name': 'HadISST',
          'nyears': 151,
          'time_period': ['1870-1-16 11:59:59.5', '2020-10-16 12:0:0.0']},
         'MPI-ESM-LR_r1i1p1': {'keyerror': None,
          'name': 'MPI-ESM-LR_r1i1p1',
          'nyears': 156,
          'time_period': ['1850-1-16 12:0:0.0', '2005-12-16 12:0:0.0']},
         'Tropflux': {'name': 'Tropflux',
          'nyears': 40,
          'time_period': ['1979-1-15 0:0:0.0', '2018-12-15 12:0:0.0']},
         'method': 'Zonal root mean square error of equatorial_pacific sst, time series are linearly detrended, observations and model regridded to generic_1x1deg',
         'name': 'sst Zonal RMSE',
         'ref': 'Using CDAT regridding and rms (uncentered and biased) calculation',
         'time_frequency': 'monthly',
         'units': 'C'},
        'metric': {'datasets': "MPI-ESM-LR_r1i1p1; ERA-Interim's ts & HadISST's sst & Tropflux's sst; 's ",
         'method': 'The metric is the statistical value between the model and the observations',
         'name': 'BiasSstLonRmse',
         'units': 'C'}},
       'BiasTauxLonRmse': {'diagnostic': {'ERA-Interim': {'name': 'ERA-Interim',
          'nyears': 40,
          'time_period': ['1979-1-16 12:0:0.0', '2019-3-16 12:0:0.0']},
         'MPI-ESM-LR_r1i1p1': {'keyerror': None,
          'name': 'MPI-ESM-LR_r1i1p1',
          'nyears': 156,
          'time_period': ['1850-1-16 12:0:0.0', '2005-12-16 12:0:0.0']},
         'Tropflux': {'name': 'Tropflux',
          'nyears': 40,
          'time_period': ['1979-1-15 0:0:0.0', '2018-12-15 12:0:0.0']},
         'method': 'Zonal root mean square error of equatorial_pacific taux, time series are linearly detrended, observations and model regridded to generic_1x1deg',
         'name': 'taux Zonal RMSE',
         'ref': 'Using CDAT regridding and rms (uncentered and biased) calculation',
         'time_frequency': 'monthly',
         'units': '1e-3 N/m2'},
        'metric': {'datasets': "MPI-ESM-LR_r1i1p1; ERA-Interim's tauu & Tropflux's taux; 's ",
         'method': 'The metric is the statistical value between the model and the observations',
         'name': 'BiasTauxLonRmse',
         'units': '1e-3 N/m2'}},
       'EnsoAmpl': {'diagnostic': {'ERA-Interim': {'keyerror': None,
          'name': 'ERA-Interim',
          'nyears': 40,
          'time_period': ['1979-1-16 12:0:0.0', '2019-3-16 12:0:0.0']},
         'HadISST': {'keyerror': None,
          'name': 'HadISST',
          'nyears': 151,
          'time_period': ['1870-1-16 11:59:59.5', '2020-10-16 12:0:0.0']},
         'MPI-ESM-LR_r1i1p1': {'keyerror': None,
          'name': 'MPI-ESM-LR_r1i1p1',
          'nyears': 156,
          'time_period': ['1850-1-16 12:0:0.0', '2005-12-16 12:0:0.0']},
         'Tropflux': {'keyerror': None,
          'name': 'Tropflux',
          'nyears': 40,
          'time_period': ['1979-1-15 0:0:0.0', '2018-12-15 12:0:0.0']},
         'method': 'Standard deviation of nino3.4 sstA, time series are linearly detrended',
         'name': 'ENSO amplitude',
         'ref': 'Using CDAT regression calculation',
         'time_frequency': 'monthly',
         'units': 'C'},
        'metric': {'datasets': "MPI-ESM-LR_r1i1p1; ERA-Interim's ts & HadISST's sst & Tropflux's sst; 's ",
         'method': 'The metric is the absolute value of the relative difference between model and observations values (M = 100 * abs[[model-obs] / obs])',
         'name': 'EnsoAmpl',
         'units': '%'}},
       'EnsoDuration': {'diagnostic': {'ERA-Interim': {'keyerror': None,
          'name': 'ERA-Interim',
          'nyears': 40,
          'time_period': ['1979-1-16 12:0:0.0', '2019-3-16 12:0:0.0']},
         'HadISST': {'keyerror': None,
          'name': 'HadISST',
          'nyears': 151,
          'time_period': ['1870-1-16 11:59:59.5', '2020-10-16 12:0:0.0']},
         'MPI-ESM-LR_r1i1p1': {'keyerror': None,
          'name': 'MPI-ESM-LR_r1i1p1',
          'nyears': 156,
          'time_period': ['1850-1-16 12:0:0.0', '2005-12-16 12:0:0.0']},
         'Tropflux': {'keyerror': None,
          'name': 'Tropflux',
          'nyears': 40,
          'time_period': ['1979-1-15 0:0:0.0', '2018-12-15 12:0:0.0']},
         'method': 'nino3.4 SSTA during DEC regressed against nino3.4 SSTA during 6 years (centered on ENSO), the duration is the number of consecutive months during which the regression is above 0.25, time series are linearly detrended, smoothing using a triangle shaped window of 5 points',
         'name': 'ENSO Duration based on life cyle SSTA pattern',
         'ref': 'Using CDAT',
         'time_frequency': 'monthly',
         'units': 'months'},
        'metric': {'datasets': "MPI-ESM-LR_r1i1p1; ERA-Interim's ts & HadISST's sst & Tropflux's sst; 's ",
         'method': 'The metric is the absolute value of the relative difference between model and observations values (M = 100 * abs[[model-obs] / obs])',
         'name': 'EnsoDuration',
         'units': '%'}},
       'EnsoSeasonality': {'diagnostic': {'ERA-Interim': {'keyerror': None,
          'name': 'ERA-Interim',
          'nyears': 40,
          'time_period': ['1979-1-16 12:0:0.0', '2019-3-16 12:0:0.0']},
         'HadISST': {'keyerror': None,
          'name': 'HadISST',
          'nyears': 151,
          'time_period': ['1870-1-16 11:59:59.5', '2020-10-16 12:0:0.0']},
         'MPI-ESM-LR_r1i1p1': {'keyerror': None,
          'name': 'MPI-ESM-LR_r1i1p1',
          'nyears': 156,
          'time_period': ['1850-1-16 12:0:0.0', '2005-12-16 12:0:0.0']},
         'Tropflux': {'keyerror': None,
          'name': 'Tropflux',
          'nyears': 40,
          'time_period': ['1979-1-15 0:0:0.0', '2018-12-15 12:0:0.0']},
         'method': 'Ratio between NDJ and MAM standard deviation nino3.4 sstA, time series are linearly detrended',
         'name': 'ENSO seasonality',
         'ref': 'Using CDAT std dev calculation',
         'time_frequency': 'monthly',
         'units': 'C/C'},
        'metric': {'datasets': "MPI-ESM-LR_r1i1p1; ERA-Interim's ts & HadISST's sst & Tropflux's sst; 's ",
         'method': 'The metric is the absolute value of the relative difference between model and observations values (M = 100 * abs[[model-obs] / obs])',
         'name': 'EnsoSeasonality',
         'units': '%'}},
       'EnsoSstDiversity_2': {'diagnostic': {'ERA-Interim': {'keyerror': None,
          'name': 'ERA-Interim',
          'nyears': 40,
          'time_period': ['1979-1-16 12:0:0.0', '2019-3-16 12:0:0.0']},
         'HadISST': {'keyerror': None,
          'name': 'HadISST',
          'nyears': 151,
          'time_period': ['1870-1-16 11:59:59.5', '2020-10-16 12:0:0.0']},
         'MPI-ESM-LR_r1i1p1': {'keyerror': None,
          'name': 'MPI-ESM-LR_r1i1p1',
          'nyears': 156,
          'time_period': ['1850-1-16 12:0:0.0', '2005-12-16 12:0:0.0']},
         'Tropflux': {'keyerror': None,
          'name': 'Tropflux',
          'nyears': 40,
          'time_period': ['1979-1-15 0:0:0.0', '2018-12-15 12:0:0.0']},
         'method': 'Nino (Nina) events = nino3.4 sstA > 0.75 (< -0.75) during DEC, zonal SSTA (meridional averaged [-5.0 ; 5.0]), the zonal SSTA maximum (minimum) is located for each event, the diversity is the interquartile range (IQR = Q3 - Q1), time series are linearly detrended, smoothing using a triangle shaped window of 5 points',
         'name': 'ENSO Diversity (interquartile range)',
         'ref': 'Using CDAT regridding',
         'time_frequency': 'monthly',
         'units': 'long'},
        'metric': {'datasets': "MPI-ESM-LR_r1i1p1; ERA-Interim's ts & HadISST's sst & Tropflux's sst; 's ",
         'method': 'The metric is the absolute value of the relative difference between model and observations values (M = 100 * abs[[model-obs] / obs])',
         'name': 'EnsoSstDiversity',
         'units': '%'}},
       'EnsoSstLonRmse': {'diagnostic': {'ERA-Interim': {'name': 'ERA-Interim',
          'nyears': 40,
          'time_period': ['1979-1-16 12:0:0.0', '2019-3-16 12:0:0.0']},
         'HadISST': {'name': 'HadISST',
          'nyears': 151,
          'time_period': ['1870-1-16 11:59:59.5', '2020-10-16 12:0:0.0']},
         'MPI-ESM-LR_r1i1p1': {'keyerror': None,
          'name': 'MPI-ESM-LR_r1i1p1',
          'nyears': 156,
          'time_period': ['1850-1-16 12:0:0.0', '2005-12-16 12:0:0.0']},
         'Tropflux': {'name': 'Tropflux',
          'nyears': 40,
          'time_period': ['1979-1-15 0:0:0.0', '2018-12-15 12:0:0.0']},
         'method': 'nino3.4 SSTA during DEC regressed against equatorial_pacific SSTA, time series are linearly detrended, smoothing using a triangle shaped window of 5 points, observations and model regridded to generic_1x1deg',
         'name': 'ENSO Zonal SSTA pattern',
         'ref': 'Using CDAT regridding and rms (uncentered and biased) calculation',
         'time_frequency': 'monthly',
         'units': 'C/C'},
        'metric': {'datasets': "MPI-ESM-LR_r1i1p1; ERA-Interim's ts & HadISST's sst & Tropflux's sst; 's ",
         'method': 'The metric is the statistical value between the model and the observations',
         'name': 'EnsoSstLonRmse',
         'units': 'C/C'}},
       'EnsoSstSkew': {'diagnostic': {'ERA-Interim': {'keyerror': None,
          'name': 'ERA-Interim',
          'nyears': 40,
          'time_period': ['1979-1-16 12:0:0.0', '2019-3-16 12:0:0.0']},
         'HadISST': {'keyerror': None,
          'name': 'HadISST',
          'nyears': 151,
          'time_period': ['1870-1-16 11:59:59.5', '2020-10-16 12:0:0.0']},
         'MPI-ESM-LR_r1i1p1': {'keyerror': None,
          'name': 'MPI-ESM-LR_r1i1p1',
          'nyears': 156,
          'time_period': ['1850-1-16 12:0:0.0', '2005-12-16 12:0:0.0']},
         'Tropflux': {'keyerror': None,
          'name': 'Tropflux',
          'nyears': 40,
          'time_period': ['1979-1-15 0:0:0.0', '2018-12-15 12:0:0.0']},
         'method': 'Standard deviation of nino3.4 sstA, time series are linearly detrended',
         'name': 'ENSO skewness',
         'ref': 'Using CDAT regression calculation',
         'time_frequency': 'monthly',
         'units': 'C'},
        'metric': {'datasets': "MPI-ESM-LR_r1i1p1; ERA-Interim's ts & HadISST's sst & Tropflux's sst; 's ",
         'method': 'The metric is the absolute value of the relative difference between model and observations values (M = 100 * abs[[model-obs] / obs])',
         'name': 'EnsoSstSkew',
         'units': '%'}},
       'EnsoSstTsRmse': {'diagnostic': {'ERA-Interim': {'name': 'ERA-Interim',
          'nyears': 40,
          'time_period': ['1979-1-16 12:0:0.0', '2019-3-16 12:0:0.0']},
         'HadISST': {'name': 'HadISST',
          'nyears': 151,
          'time_period': ['1870-1-16 11:59:59.5', '2020-10-16 12:0:0.0']},
         'MPI-ESM-LR_r1i1p1': {'keyerror': None,
          'name': 'MPI-ESM-LR_r1i1p1',
          'nyears': 156,
          'time_period': ['1850-1-16 12:0:0.0', '2005-12-16 12:0:0.0']},
         'Tropflux': {'name': 'Tropflux',
          'nyears': 40,
          'time_period': ['1979-1-15 0:0:0.0', '2018-12-15 12:0:0.0']},
         'method': 'nino3.4 SSTA during DEC regressed against nino3.4 SSTA during 6 years (centered on ENSO), time series are linearly detrended, smoothing using a triangle shaped window of 5 points',
         'name': 'ENSO life cyle SSTA pattern',
         'ref': 'Using CDAT regridding and rms (uncentered and biased) calculation',
         'time_frequency': 'monthly',
         'units': 'C/C'},
        'metric': {'datasets': "MPI-ESM-LR_r1i1p1; ERA-Interim's ts & HadISST's sst & Tropflux's sst; 's ",
         'method': 'The metric is the statistical value between the model and the observations',
         'name': 'EnsoSstTsRmse',
         'units': 'C/C'}},
       'SeasonalPrLatRmse': {'diagnostic': {'ERA-Interim': {'name': 'ERA-Interim',
          'nyears': 40,
          'time_period': ['1979-1-16 12:0:0.0', '2019-3-16 12:0:0.0']},
         'GPCPv2.3': {'name': 'GPCPv2.3',
          'nyears': 41,
          'time_period': ['1979-1-1 0:0:0.0', '2019-7-1 0:0:0.0']},
         'MPI-ESM-LR_r1i1p1': {'keyerror': None,
          'name': 'MPI-ESM-LR_r1i1p1',
          'nyears': 156,
          'time_period': ['1850-1-16 12:0:0.0', '2005-12-16 12:0:0.0']},
         'method': 'Meridional root mean square error of nino3_LatExt climatological pr STD, time series are linearly detrended, observations and model regridded to generic_1x1deg',
         'name': 'pr meridional seasonality RMSE',
         'ref': 'Using CDAT regridding and rms (uncentered and biased) calculation',
         'time_frequency': 'monthly',
         'units': 'mm/day'},
        'metric': {'datasets': "MPI-ESM-LR_r1i1p1; ERA-Interim's pr & GPCPv2.3's precip; 's ",
         'method': 'The metric is the statistical value between the model and the observations',
         'name': 'SeasonalPrLatRmse',
         'units': 'mm/day'}},
       'SeasonalPrLonRmse': {'diagnostic': {'ERA-Interim': {'name': 'ERA-Interim',
          'nyears': 40,
          'time_period': ['1979-1-16 12:0:0.0', '2019-3-16 12:0:0.0']},
         'GPCPv2.3': {'name': 'GPCPv2.3',
          'nyears': 41,
          'time_period': ['1979-1-1 0:0:0.0', '2019-7-1 0:0:0.0']},
         'MPI-ESM-LR_r1i1p1': {'keyerror': None,
          'name': 'MPI-ESM-LR_r1i1p1',
          'nyears': 156,
          'time_period': ['1850-1-16 12:0:0.0', '2005-12-16 12:0:0.0']},
         'method': 'Zonal root mean square error of equatorial_pacific climatological pr STD, time series are linearly detrended, observations and model regridded to generic_1x1deg',
         'name': 'pr zonal seasonality RMSE',
         'ref': 'Using CDAT regridding and rms (uncentered and biased) calculation',
         'time_frequency': 'monthly',
         'units': 'mm/day'},
        'metric': {'datasets': "MPI-ESM-LR_r1i1p1; ERA-Interim's pr & GPCPv2.3's precip; 's ",
         'method': 'The metric is the statistical value between the model and the observations',
         'name': 'SeasonalPrLonRmse',
         'units': 'mm/day'}},
       'SeasonalSstLonRmse': {'diagnostic': {'ERA-Interim': {'name': 'ERA-Interim',
          'nyears': 40,
          'time_period': ['1979-1-16 12:0:0.0', '2019-3-16 12:0:0.0']},
         'HadISST': {'name': 'HadISST',
          'nyears': 151,
          'time_period': ['1870-1-16 11:59:59.5', '2020-10-16 12:0:0.0']},
         'MPI-ESM-LR_r1i1p1': {'keyerror': None,
          'name': 'MPI-ESM-LR_r1i1p1',
          'nyears': 156,
          'time_period': ['1850-1-16 12:0:0.0', '2005-12-16 12:0:0.0']},
         'Tropflux': {'name': 'Tropflux',
          'nyears': 40,
          'time_period': ['1979-1-15 0:0:0.0', '2018-12-15 12:0:0.0']},
         'method': 'Zonal root mean square error of equatorial_pacific climatological sst STD, time series are linearly detrended, observations and model regridded to generic_1x1deg',
         'name': 'sst zonal seasonality RMSE',
         'ref': 'Using CDAT regridding and rms (uncentered and biased) calculation',
         'time_frequency': 'monthly',
         'units': 'C'},
        'metric': {'datasets': "MPI-ESM-LR_r1i1p1; ERA-Interim's ts & HadISST's sst & Tropflux's sst; 's ",
         'method': 'The metric is the statistical value between the model and the observations',
         'name': 'SeasonalSstLonRmse',
         'units': 'C'}},
       'SeasonalTauxLonRmse': {'diagnostic': {'ERA-Interim': {'name': 'ERA-Interim',
          'nyears': 40,
          'time_period': ['1979-1-16 12:0:0.0', '2019-3-16 12:0:0.0']},
         'MPI-ESM-LR_r1i1p1': {'keyerror': None,
          'name': 'MPI-ESM-LR_r1i1p1',
          'nyears': 156,
          'time_period': ['1850-1-16 12:0:0.0', '2005-12-16 12:0:0.0']},
         'Tropflux': {'name': 'Tropflux',
          'nyears': 40,
          'time_period': ['1979-1-15 0:0:0.0', '2018-12-15 12:0:0.0']},
         'method': 'Zonal root mean square error of equatorial_pacific climatological taux STD, time series are linearly detrended, observations and model regridded to generic_1x1deg',
         'name': 'taux zonal seasonality RMSE',
         'ref': 'Using CDAT regridding and rms (uncentered and biased) calculation',
         'time_frequency': 'monthly',
         'units': '1e-3 N/m2'},
        'metric': {'datasets': "MPI-ESM-LR_r1i1p1; ERA-Interim's tauu & Tropflux's taux; 's ",
         'method': 'The metric is the statistical value between the model and the observations',
         'name': 'SeasonalTauxLonRmse',
         'units': '1e-3 N/m2'}}},
      'name': 'Metrics Collection for ENSO performance'},
     'value': {'BiasPrLatRmse': {'diagnostic': {'ERA-Interim': {'value': None,
         'value_error': None},
        'GPCPv2.3': {'value': None, 'value_error': None},
        'MPI-ESM-LR_r1i1p1': {'value': None, 'value_error': None}},
       'metric': {'ERA-Interim': {'value': 1.8527397242476178,
         'value_error': None},
        'GPCPv2.3': {'value': 1.7125523202876818, 'value_error': None}}},
      'BiasPrLonRmse': {'diagnostic': {'ERA-Interim': {'value': None,
         'value_error': None},
        'GPCPv2.3': {'value': None, 'value_error': None},
        'MPI-ESM-LR_r1i1p1': {'value': None, 'value_error': None}},
       'metric': {'ERA-Interim': {'value': 3.9592435509754633,
         'value_error': None},
        'GPCPv2.3': {'value': 2.823668454454153, 'value_error': None}}},
      'BiasSstLonRmse': {'diagnostic': {'ERA-Interim': {'value': None,
         'value_error': None},
        'HadISST': {'value': None, 'value_error': None},
        'MPI-ESM-LR_r1i1p1': {'value': None, 'value_error': None},
        'Tropflux': {'value': None, 'value_error': None}},
       'metric': {'ERA-Interim': {'value': 1.7234000131640341,
         'value_error': None},
        'HadISST': {'value': 1.524406051762158, 'value_error': None},
        'Tropflux': {'value': 1.7715707027596923, 'value_error': None}}},
      'BiasTauxLonRmse': {'diagnostic': {'ERA-Interim': {'value': None,
         'value_error': None},
        'MPI-ESM-LR_r1i1p1': {'value': None, 'value_error': None},
        'Tropflux': {'value': None, 'value_error': None}},
       'metric': {'ERA-Interim': {'value': 8.981132618447539,
         'value_error': None},
        'Tropflux': {'value': 8.872148982834851, 'value_error': None}}},
      'EnsoAmpl': {'diagnostic': {'ERA-Interim': {'value': 0.8989844997845644,
         'value_error': 0.14214193002531866},
        'HadISST': {'value': 0.7665787872085695,
         'value_error': 0.06238329697691264},
        'MPI-ESM-LR_r1i1p1': {'value': 0.7829015584810048,
         'value_error': 0.06268229058534439},
        'Tropflux': {'value': 0.9039789553693535,
         'value_error': 0.14293162279134272}},
       'metric': {'ERA-Interim': {'value': 12.912674393315799,
         'value_error': 20.742281547101772},
        'HadISST': {'value': 2.12930119445038,
         'value_error': 16.488052886276243},
        'Tropflux': {'value': 13.39382915599822,
         'value_error': 20.627681087324625}}},
      'EnsoDuration': {'diagnostic': {'ERA-Interim': {'value': 13.0,
         'value_error': None},
        'HadISST': {'value': 13.0, 'value_error': None},
        'MPI-ESM-LR_r1i1p1': {'value': 25.0, 'value_error': None},
        'Tropflux': {'value': 13.0, 'value_error': None}},
       'metric': {'ERA-Interim': {'value': 92.3076923076923,
         'value_error': None},
        'HadISST': {'value': 92.3076923076923, 'value_error': None},
        'Tropflux': {'value': 92.3076923076923, 'value_error': None}}},
      'EnsoSeasonality': {'diagnostic': {'ERA-Interim': {'value': 2.0466846866656914,
         'value_error': 0.6513411033995022},
        'HadISST': {'value': 1.6639865947361325,
         'value_error': 0.2712772451657809},
        'MPI-ESM-LR_r1i1p1': {'value': 1.056616561779273,
         'value_error': 0.16946651422475825},
        'Tropflux': {'value': 2.0532132553583624,
         'value_error': 0.6534187683977347}},
       'metric': {'ERA-Interim': {'value': 48.374238168526325,
         'value_error': 24.70953753996031},
        'HadISST': {'value': 36.500896995097094,
         'value_error': 20.53653152269713},
        'Tropflux': {'value': 48.53839176121751,
         'value_error': 24.630969026547113}}},
      'EnsoSstDiversity_2': {'diagnostic': {'ERA-Interim': {'value': 33.25,
         'value_error': None},
        'HadISST': {'value': 49.0, 'value_error': None},
        'MPI-ESM-LR_r1i1p1': {'value': 61.0, 'value_error': None},
        'Tropflux': {'value': 32.0, 'value_error': None}},
       'metric': {'ERA-Interim': {'value': 83.45864661654136,
         'value_error': None},
        'HadISST': {'value': 24.489795918367346, 'value_error': None},
        'Tropflux': {'value': 90.625, 'value_error': None}}},
      'EnsoSstLonRmse': {'diagnostic': {'ERA-Interim': {'value': None,
         'value_error': None},
        'HadISST': {'value': None, 'value_error': None},
        'MPI-ESM-LR_r1i1p1': {'value': None, 'value_error': None},
        'Tropflux': {'value': None, 'value_error': None}},
       'metric': {'ERA-Interim': {'value': 0.32086598210740364,
         'value_error': None},
        'HadISST': {'value': 0.33142411828344187, 'value_error': None},
        'Tropflux': {'value': 0.32111377900434374, 'value_error': None}}},
      'EnsoSstSkew': {'diagnostic': {'ERA-Interim': {'value': 0.39098111106809963,
         'value_error': 0.061819541653923164},
        'HadISST': {'value': 0.38989908235027515,
         'value_error': 0.03172953733021198},
        'MPI-ESM-LR_r1i1p1': {'value': 0.2849078819124486,
         'value_error': 0.022810886567579083},
        'Tropflux': {'value': 0.39744741059612115,
         'value_error': 0.06284195338099416}},
       'metric': {'ERA-Interim': {'value': 27.13001374052968,
         'value_error': 17.356024666020513},
        'HadISST': {'value': 26.9277885459359,
         'value_error': 11.79699139111742},
        'Tropflux': {'value': 28.31557727722453,
         'value_error': 17.07364956150571}}},
      'EnsoSstTsRmse': {'diagnostic': {'ERA-Interim': {'value': None,
         'value_error': None},
        'HadISST': {'value': None, 'value_error': None},
        'MPI-ESM-LR_r1i1p1': {'value': None, 'value_error': None},
        'Tropflux': {'value': None, 'value_error': None}},
       'metric': {'ERA-Interim': {'value': 0.22773398545916596,
         'value_error': None},
        'HadISST': {'value': 0.1866417035746854, 'value_error': None},
        'Tropflux': {'value': 0.22347774386549057, 'value_error': None}}},
      'SeasonalPrLatRmse': {'diagnostic': {'ERA-Interim': {'value': None,
         'value_error': None},
        'GPCPv2.3': {'value': None, 'value_error': None},
        'MPI-ESM-LR_r1i1p1': {'value': None, 'value_error': None}},
       'metric': {'ERA-Interim': {'value': 1.3335184942365097,
         'value_error': None},
        'GPCPv2.3': {'value': 1.1661966761588847, 'value_error': None}}},
      'SeasonalPrLonRmse': {'diagnostic': {'ERA-Interim': {'value': None,
         'value_error': None},
        'GPCPv2.3': {'value': None, 'value_error': None},
        'MPI-ESM-LR_r1i1p1': {'value': None, 'value_error': None}},
       'metric': {'ERA-Interim': {'value': 1.1523646021069494,
         'value_error': None},
        'GPCPv2.3': {'value': 0.7438777620784196, 'value_error': None}}},
      'SeasonalSstLonRmse': {'diagnostic': {'ERA-Interim': {'value': None,
         'value_error': None},
        'HadISST': {'value': None, 'value_error': None},
        'MPI-ESM-LR_r1i1p1': {'value': None, 'value_error': None},
        'Tropflux': {'value': None, 'value_error': None}},
       'metric': {'ERA-Interim': {'value': 0.23308067258419182,
         'value_error': None},
        'HadISST': {'value': 0.24796130785573745, 'value_error': None},
        'Tropflux': {'value': 0.23443928434972228, 'value_error': None}}},
      'SeasonalTauxLonRmse': {'diagnostic': {'ERA-Interim': {'value': None,
         'value_error': None},
        'MPI-ESM-LR_r1i1p1': {'value': None, 'value_error': None},
        'Tropflux': {'value': None, 'value_error': None}},
       'metric': {'ERA-Interim': {'value': 2.58979712568747,
         'value_error': None},
        'Tropflux': {'value': 2.8330435615637053, 'value_error': None}}}}},
    'r2i1p1': {'metadata': {'description_of_the_collection': 'Describe which science question this collection is about',
      'metrics': {'BiasPrLatRmse': {'diagnostic': {'ERA-Interim': {'name': 'ERA-Interim',
          'nyears': 40,
          'time_period': ['1979-1-16 12:0:0.0', '2019-3-16 12:0:0.0']},
         'GPCPv2.3': {'name': 'GPCPv2.3',
          'nyears': 41,
          'time_period': ['1979-1-1 0:0:0.0', '2019-7-1 0:0:0.0']},
         'MPI-ESM-LR_r2i1p1': {'keyerror': None,
          'name': 'MPI-ESM-LR_r2i1p1',
          'nyears': 156,
          'time_period': ['1850-1-16 12:0:0.0', '2005-12-16 12:0:0.0']},
         'method': 'Meridional root mean square error of nino3_LatExt pr, time series are linearly detrended, observations and model regridded to generic_1x1deg',
         'name': 'pr Meridional RMSE',
         'ref': 'Using CDAT regridding and rms (uncentered and biased) calculation',
         'time_frequency': 'monthly',
         'units': 'mm/day'},
        'metric': {'datasets': "MPI-ESM-LR_r2i1p1; ERA-Interim's pr & GPCPv2.3's precip; 's ",
         'method': 'The metric is the statistical value between the model and the observations',
         'name': 'BiasPrLatRmse',
         'units': 'mm/day'}},
       'BiasPrLonRmse': {'diagnostic': {'ERA-Interim': {'name': 'ERA-Interim',
          'nyears': 40,
          'time_period': ['1979-1-16 12:0:0.0', '2019-3-16 12:0:0.0']},
         'GPCPv2.3': {'name': 'GPCPv2.3',
          'nyears': 41,
          'time_period': ['1979-1-1 0:0:0.0', '2019-7-1 0:0:0.0']},
         'MPI-ESM-LR_r2i1p1': {'keyerror': None,
          'name': 'MPI-ESM-LR_r2i1p1',
          'nyears': 156,
          'time_period': ['1850-1-16 12:0:0.0', '2005-12-16 12:0:0.0']},
         'method': 'Zonal root mean square error of equatorial_pacific pr, time series are linearly detrended, observations and model regridded to generic_1x1deg',
         'name': 'pr Zonal RMSE',
         'ref': 'Using CDAT regridding and rms (uncentered and biased) calculation',
         'time_frequency': 'monthly',
         'units': 'mm/day'},
        'metric': {'datasets': "MPI-ESM-LR_r2i1p1; ERA-Interim's pr & GPCPv2.3's precip; 's ",
         'method': 'The metric is the statistical value between the model and the observations',
         'name': 'BiasPrLonRmse',
         'units': 'mm/day'}},
       'BiasSstLonRmse': {'diagnostic': {'ERA-Interim': {'name': 'ERA-Interim',
          'nyears': 40,
          'time_period': ['1979-1-16 12:0:0.0', '2019-3-16 12:0:0.0']},
         'HadISST': {'name': 'HadISST',
          'nyears': 151,
          'time_period': ['1870-1-16 11:59:59.5', '2020-10-16 12:0:0.0']},
         'MPI-ESM-LR_r2i1p1': {'keyerror': None,
          'name': 'MPI-ESM-LR_r2i1p1',
          'nyears': 156,
          'time_period': ['1850-1-16 12:0:0.0', '2005-12-16 12:0:0.0']},
         'Tropflux': {'name': 'Tropflux',
          'nyears': 40,
          'time_period': ['1979-1-15 0:0:0.0', '2018-12-15 12:0:0.0']},
         'method': 'Zonal root mean square error of equatorial_pacific sst, time series are linearly detrended, observations and model regridded to generic_1x1deg',
         'name': 'sst Zonal RMSE',
         'ref': 'Using CDAT regridding and rms (uncentered and biased) calculation',
         'time_frequency': 'monthly',
         'units': 'C'},
        'metric': {'datasets': "MPI-ESM-LR_r2i1p1; ERA-Interim's ts & HadISST's sst & Tropflux's sst; 's ",
         'method': 'The metric is the statistical value between the model and the observations',
         'name': 'BiasSstLonRmse',
         'units': 'C'}},
       'BiasTauxLonRmse': {'diagnostic': {'ERA-Interim': {'name': 'ERA-Interim',
          'nyears': 40,
          'time_period': ['1979-1-16 12:0:0.0', '2019-3-16 12:0:0.0']},
         'MPI-ESM-LR_r2i1p1': {'keyerror': None,
          'name': 'MPI-ESM-LR_r2i1p1',
          'nyears': 156,
          'time_period': ['1850-1-16 12:0:0.0', '2005-12-16 12:0:0.0']},
         'Tropflux': {'name': 'Tropflux',
          'nyears': 40,
          'time_period': ['1979-1-15 0:0:0.0', '2018-12-15 12:0:0.0']},
         'method': 'Zonal root mean square error of equatorial_pacific taux, time series are linearly detrended, observations and model regridded to generic_1x1deg',
         'name': 'taux Zonal RMSE',
         'ref': 'Using CDAT regridding and rms (uncentered and biased) calculation',
         'time_frequency': 'monthly',
         'units': '1e-3 N/m2'},
        'metric': {'datasets': "MPI-ESM-LR_r2i1p1; ERA-Interim's tauu & Tropflux's taux; 's ",
         'method': 'The metric is the statistical value between the model and the observations',
         'name': 'BiasTauxLonRmse',
         'units': '1e-3 N/m2'}},
       'EnsoAmpl': {'diagnostic': {'ERA-Interim': {'keyerror': None,
          'name': 'ERA-Interim',
          'nyears': 40,
          'time_period': ['1979-1-16 12:0:0.0', '2019-3-16 12:0:0.0']},
         'HadISST': {'keyerror': None,
          'name': 'HadISST',
          'nyears': 151,
          'time_period': ['1870-1-16 11:59:59.5', '2020-10-16 12:0:0.0']},
         'MPI-ESM-LR_r2i1p1': {'keyerror': None,
          'name': 'MPI-ESM-LR_r2i1p1',
          'nyears': 156,
          'time_period': ['1850-1-16 12:0:0.0', '2005-12-16 12:0:0.0']},
         'Tropflux': {'keyerror': None,
          'name': 'Tropflux',
          'nyears': 40,
          'time_period': ['1979-1-15 0:0:0.0', '2018-12-15 12:0:0.0']},
         'method': 'Standard deviation of nino3.4 sstA, time series are linearly detrended',
         'name': 'ENSO amplitude',
         'ref': 'Using CDAT regression calculation',
         'time_frequency': 'monthly',
         'units': 'C'},
        'metric': {'datasets': "MPI-ESM-LR_r2i1p1; ERA-Interim's ts & HadISST's sst & Tropflux's sst; 's ",
         'method': 'The metric is the absolute value of the relative difference between model and observations values (M = 100 * abs[[model-obs] / obs])',
         'name': 'EnsoAmpl',
         'units': '%'}},
       'EnsoDuration': {'diagnostic': {'ERA-Interim': {'keyerror': None,
          'name': 'ERA-Interim',
          'nyears': 40,
          'time_period': ['1979-1-16 12:0:0.0', '2019-3-16 12:0:0.0']},
         'HadISST': {'keyerror': None,
          'name': 'HadISST',
          'nyears': 151,
          'time_period': ['1870-1-16 11:59:59.5', '2020-10-16 12:0:0.0']},
         'MPI-ESM-LR_r2i1p1': {'keyerror': None,
          'name': 'MPI-ESM-LR_r2i1p1',
          'nyears': 156,
          'time_period': ['1850-1-16 12:0:0.0', '2005-12-16 12:0:0.0']},
         'Tropflux': {'keyerror': None,
          'name': 'Tropflux',
          'nyears': 40,
          'time_period': ['1979-1-15 0:0:0.0', '2018-12-15 12:0:0.0']},
         'method': 'nino3.4 SSTA during DEC regressed against nino3.4 SSTA during 6 years (centered on ENSO), the duration is the number of consecutive months during which the regression is above 0.25, time series are linearly detrended, smoothing using a triangle shaped window of 5 points',
         'name': 'ENSO Duration based on life cyle SSTA pattern',
         'ref': 'Using CDAT',
         'time_frequency': 'monthly',
         'units': 'months'},
        'metric': {'datasets': "MPI-ESM-LR_r2i1p1; ERA-Interim's ts & HadISST's sst & Tropflux's sst; 's ",
         'method': 'The metric is the absolute value of the relative difference between model and observations values (M = 100 * abs[[model-obs] / obs])',
         'name': 'EnsoDuration',
         'units': '%'}},
       'EnsoSeasonality': {'diagnostic': {'ERA-Interim': {'keyerror': None,
          'name': 'ERA-Interim',
          'nyears': 40,
          'time_period': ['1979-1-16 12:0:0.0', '2019-3-16 12:0:0.0']},
         'HadISST': {'keyerror': None,
          'name': 'HadISST',
          'nyears': 151,
          'time_period': ['1870-1-16 11:59:59.5', '2020-10-16 12:0:0.0']},
         'MPI-ESM-LR_r2i1p1': {'keyerror': None,
          'name': 'MPI-ESM-LR_r2i1p1',
          'nyears': 156,
          'time_period': ['1850-1-16 12:0:0.0', '2005-12-16 12:0:0.0']},
         'Tropflux': {'keyerror': None,
          'name': 'Tropflux',
          'nyears': 40,
          'time_period': ['1979-1-15 0:0:0.0', '2018-12-15 12:0:0.0']},
         'method': 'Ratio between NDJ and MAM standard deviation nino3.4 sstA, time series are linearly detrended',
         'name': 'ENSO seasonality',
         'ref': 'Using CDAT std dev calculation',
         'time_frequency': 'monthly',
         'units': 'C/C'},
        'metric': {'datasets': "MPI-ESM-LR_r2i1p1; ERA-Interim's ts & HadISST's sst & Tropflux's sst; 's ",
         'method': 'The metric is the absolute value of the relative difference between model and observations values (M = 100 * abs[[model-obs] / obs])',
         'name': 'EnsoSeasonality',
         'units': '%'}},
       'EnsoSstDiversity_2': {'diagnostic': {'ERA-Interim': {'keyerror': None,
          'name': 'ERA-Interim',
          'nyears': 40,
          'time_period': ['1979-1-16 12:0:0.0', '2019-3-16 12:0:0.0']},
         'HadISST': {'keyerror': None,
          'name': 'HadISST',
          'nyears': 151,
          'time_period': ['1870-1-16 11:59:59.5', '2020-10-16 12:0:0.0']},
         'MPI-ESM-LR_r2i1p1': {'keyerror': None,
          'name': 'MPI-ESM-LR_r2i1p1',
          'nyears': 156,
          'time_period': ['1850-1-16 12:0:0.0', '2005-12-16 12:0:0.0']},
         'Tropflux': {'keyerror': None,
          'name': 'Tropflux',
          'nyears': 40,
          'time_period': ['1979-1-15 0:0:0.0', '2018-12-15 12:0:0.0']},
         'method': 'Nino (Nina) events = nino3.4 sstA > 0.75 (< -0.75) during DEC, zonal SSTA (meridional averaged [-5.0 ; 5.0]), the zonal SSTA maximum (minimum) is located for each event, the diversity is the interquartile range (IQR = Q3 - Q1), time series are linearly detrended, smoothing using a triangle shaped window of 5 points',
         'name': 'ENSO Diversity (interquartile range)',
         'ref': 'Using CDAT regridding',
         'time_frequency': 'monthly',
         'units': 'long'},
        'metric': {'datasets': "MPI-ESM-LR_r2i1p1; ERA-Interim's ts & HadISST's sst & Tropflux's sst; 's ",
         'method': 'The metric is the absolute value of the relative difference between model and observations values (M = 100 * abs[[model-obs] / obs])',
         'name': 'EnsoSstDiversity',
         'units': '%'}},
       'EnsoSstLonRmse': {'diagnostic': {'ERA-Interim': {'name': 'ERA-Interim',
          'nyears': 40,
          'time_period': ['1979-1-16 12:0:0.0', '2019-3-16 12:0:0.0']},
         'HadISST': {'name': 'HadISST',
          'nyears': 151,
          'time_period': ['1870-1-16 11:59:59.5', '2020-10-16 12:0:0.0']},
         'MPI-ESM-LR_r2i1p1': {'keyerror': None,
          'name': 'MPI-ESM-LR_r2i1p1',
          'nyears': 156,
          'time_period': ['1850-1-16 12:0:0.0', '2005-12-16 12:0:0.0']},
         'Tropflux': {'name': 'Tropflux',
          'nyears': 40,
          'time_period': ['1979-1-15 0:0:0.0', '2018-12-15 12:0:0.0']},
         'method': 'nino3.4 SSTA during DEC regressed against equatorial_pacific SSTA, time series are linearly detrended, smoothing using a triangle shaped window of 5 points, observations and model regridded to generic_1x1deg',
         'name': 'ENSO Zonal SSTA pattern',
         'ref': 'Using CDAT regridding and rms (uncentered and biased) calculation',
         'time_frequency': 'monthly',
         'units': 'C/C'},
        'metric': {'datasets': "MPI-ESM-LR_r2i1p1; ERA-Interim's ts & HadISST's sst & Tropflux's sst; 's ",
         'method': 'The metric is the statistical value between the model and the observations',
         'name': 'EnsoSstLonRmse',
         'units': 'C/C'}},
       'EnsoSstSkew': {'diagnostic': {'ERA-Interim': {'keyerror': None,
          'name': 'ERA-Interim',
          'nyears': 40,
          'time_period': ['1979-1-16 12:0:0.0', '2019-3-16 12:0:0.0']},
         'HadISST': {'keyerror': None,
          'name': 'HadISST',
          'nyears': 151,
          'time_period': ['1870-1-16 11:59:59.5', '2020-10-16 12:0:0.0']},
         'MPI-ESM-LR_r2i1p1': {'keyerror': None,
          'name': 'MPI-ESM-LR_r2i1p1',
          'nyears': 156,
          'time_period': ['1850-1-16 12:0:0.0', '2005-12-16 12:0:0.0']},
         'Tropflux': {'keyerror': None,
          'name': 'Tropflux',
          'nyears': 40,
          'time_period': ['1979-1-15 0:0:0.0', '2018-12-15 12:0:0.0']},
         'method': 'Standard deviation of nino3.4 sstA, time series are linearly detrended',
         'name': 'ENSO skewness',
         'ref': 'Using CDAT regression calculation',
         'time_frequency': 'monthly',
         'units': 'C'},
        'metric': {'datasets': "MPI-ESM-LR_r2i1p1; ERA-Interim's ts & HadISST's sst & Tropflux's sst; 's ",
         'method': 'The metric is the absolute value of the relative difference between model and observations values (M = 100 * abs[[model-obs] / obs])',
         'name': 'EnsoSstSkew',
         'units': '%'}},
       'EnsoSstTsRmse': {'diagnostic': {'ERA-Interim': {'name': 'ERA-Interim',
          'nyears': 40,
          'time_period': ['1979-1-16 12:0:0.0', '2019-3-16 12:0:0.0']},
         'HadISST': {'name': 'HadISST',
          'nyears': 151,
          'time_period': ['1870-1-16 11:59:59.5', '2020-10-16 12:0:0.0']},
         'MPI-ESM-LR_r2i1p1': {'keyerror': None,
          'name': 'MPI-ESM-LR_r2i1p1',
          'nyears': 156,
          'time_period': ['1850-1-16 12:0:0.0', '2005-12-16 12:0:0.0']},
         'Tropflux': {'name': 'Tropflux',
          'nyears': 40,
          'time_period': ['1979-1-15 0:0:0.0', '2018-12-15 12:0:0.0']},
         'method': 'nino3.4 SSTA during DEC regressed against nino3.4 SSTA during 6 years (centered on ENSO), time series are linearly detrended, smoothing using a triangle shaped window of 5 points',
         'name': 'ENSO life cyle SSTA pattern',
         'ref': 'Using CDAT regridding and rms (uncentered and biased) calculation',
         'time_frequency': 'monthly',
         'units': 'C/C'},
        'metric': {'datasets': "MPI-ESM-LR_r2i1p1; ERA-Interim's ts & HadISST's sst & Tropflux's sst; 's ",
         'method': 'The metric is the statistical value between the model and the observations',
         'name': 'EnsoSstTsRmse',
         'units': 'C/C'}},
       'SeasonalPrLatRmse': {'diagnostic': {'ERA-Interim': {'name': 'ERA-Interim',
          'nyears': 40,
          'time_period': ['1979-1-16 12:0:0.0', '2019-3-16 12:0:0.0']},
         'GPCPv2.3': {'name': 'GPCPv2.3',
          'nyears': 41,
          'time_period': ['1979-1-1 0:0:0.0', '2019-7-1 0:0:0.0']},
         'MPI-ESM-LR_r2i1p1': {'keyerror': None,
          'name': 'MPI-ESM-LR_r2i1p1',
          'nyears': 156,
          'time_period': ['1850-1-16 12:0:0.0', '2005-12-16 12:0:0.0']},
         'method': 'Meridional root mean square error of nino3_LatExt climatological pr STD, time series are linearly detrended, observations and model regridded to generic_1x1deg',
         'name': 'pr meridional seasonality RMSE',
         'ref': 'Using CDAT regridding and rms (uncentered and biased) calculation',
         'time_frequency': 'monthly',
         'units': 'mm/day'},
        'metric': {'datasets': "MPI-ESM-LR_r2i1p1; ERA-Interim's pr & GPCPv2.3's precip; 's ",
         'method': 'The metric is the statistical value between the model and the observations',
         'name': 'SeasonalPrLatRmse',
         'units': 'mm/day'}},
       'SeasonalPrLonRmse': {'diagnostic': {'ERA-Interim': {'name': 'ERA-Interim',
          'nyears': 40,
          'time_period': ['1979-1-16 12:0:0.0', '2019-3-16 12:0:0.0']},
         'GPCPv2.3': {'name': 'GPCPv2.3',
          'nyears': 41,
          'time_period': ['1979-1-1 0:0:0.0', '2019-7-1 0:0:0.0']},
         'MPI-ESM-LR_r2i1p1': {'keyerror': None,
          'name': 'MPI-ESM-LR_r2i1p1',
          'nyears': 156,
          'time_period': ['1850-1-16 12:0:0.0', '2005-12-16 12:0:0.0']},
         'method': 'Zonal root mean square error of equatorial_pacific climatological pr STD, time series are linearly detrended, observations and model regridded to generic_1x1deg',
         'name': 'pr zonal seasonality RMSE',
         'ref': 'Using CDAT regridding and rms (uncentered and biased) calculation',
         'time_frequency': 'monthly',
         'units': 'mm/day'},
        'metric': {'datasets': "MPI-ESM-LR_r2i1p1; ERA-Interim's pr & GPCPv2.3's precip; 's ",
         'method': 'The metric is the statistical value between the model and the observations',
         'name': 'SeasonalPrLonRmse',
         'units': 'mm/day'}},
       'SeasonalSstLonRmse': {'diagnostic': {'ERA-Interim': {'name': 'ERA-Interim',
          'nyears': 40,
          'time_period': ['1979-1-16 12:0:0.0', '2019-3-16 12:0:0.0']},
         'HadISST': {'name': 'HadISST',
          'nyears': 151,
          'time_period': ['1870-1-16 11:59:59.5', '2020-10-16 12:0:0.0']},
         'MPI-ESM-LR_r2i1p1': {'keyerror': None,
          'name': 'MPI-ESM-LR_r2i1p1',
          'nyears': 156,
          'time_period': ['1850-1-16 12:0:0.0', '2005-12-16 12:0:0.0']},
         'Tropflux': {'name': 'Tropflux',
          'nyears': 40,
          'time_period': ['1979-1-15 0:0:0.0', '2018-12-15 12:0:0.0']},
         'method': 'Zonal root mean square error of equatorial_pacific climatological sst STD, time series are linearly detrended, observations and model regridded to generic_1x1deg',
         'name': 'sst zonal seasonality RMSE',
         'ref': 'Using CDAT regridding and rms (uncentered and biased) calculation',
         'time_frequency': 'monthly',
         'units': 'C'},
        'metric': {'datasets': "MPI-ESM-LR_r2i1p1; ERA-Interim's ts & HadISST's sst & Tropflux's sst; 's ",
         'method': 'The metric is the statistical value between the model and the observations',
         'name': 'SeasonalSstLonRmse',
         'units': 'C'}},
       'SeasonalTauxLonRmse': {'diagnostic': {'ERA-Interim': {'name': 'ERA-Interim',
          'nyears': 40,
          'time_period': ['1979-1-16 12:0:0.0', '2019-3-16 12:0:0.0']},
         'MPI-ESM-LR_r2i1p1': {'keyerror': None,
          'name': 'MPI-ESM-LR_r2i1p1',
          'nyears': 156,
          'time_period': ['1850-1-16 12:0:0.0', '2005-12-16 12:0:0.0']},
         'Tropflux': {'name': 'Tropflux',
          'nyears': 40,
          'time_period': ['1979-1-15 0:0:0.0', '2018-12-15 12:0:0.0']},
         'method': 'Zonal root mean square error of equatorial_pacific climatological taux STD, time series are linearly detrended, observations and model regridded to generic_1x1deg',
         'name': 'taux zonal seasonality RMSE',
         'ref': 'Using CDAT regridding and rms (uncentered and biased) calculation',
         'time_frequency': 'monthly',
         'units': '1e-3 N/m2'},
        'metric': {'datasets': "MPI-ESM-LR_r2i1p1; ERA-Interim's tauu & Tropflux's taux; 's ",
         'method': 'The metric is the statistical value between the model and the observations',
         'name': 'SeasonalTauxLonRmse',
         'units': '1e-3 N/m2'}}},
      'name': 'Metrics Collection for ENSO performance'},
     'value': {'BiasPrLatRmse': {'diagnostic': {'ERA-Interim': {'value': None,
         'value_error': None},
        'GPCPv2.3': {'value': None, 'value_error': None},
        'MPI-ESM-LR_r2i1p1': {'value': None, 'value_error': None}},
       'metric': {'ERA-Interim': {'value': 1.8088306219379116,
         'value_error': None},
        'GPCPv2.3': {'value': 1.6698961286640313, 'value_error': None}}},
      'BiasPrLonRmse': {'diagnostic': {'ERA-Interim': {'value': None,
         'value_error': None},
        'GPCPv2.3': {'value': None, 'value_error': None},
        'MPI-ESM-LR_r2i1p1': {'value': None, 'value_error': None}},
       'metric': {'ERA-Interim': {'value': 4.005651471334551,
         'value_error': None},
        'GPCPv2.3': {'value': 2.8568457413153565, 'value_error': None}}},
      'BiasSstLonRmse': {'diagnostic': {'ERA-Interim': {'value': None,
         'value_error': None},
        'HadISST': {'value': None, 'value_error': None},
        'MPI-ESM-LR_r2i1p1': {'value': None, 'value_error': None},
        'Tropflux': {'value': None, 'value_error': None}},
       'metric': {'ERA-Interim': {'value': 1.802527633956328,
         'value_error': None},
        'HadISST': {'value': 1.602600694832737, 'value_error': None},
        'Tropflux': {'value': 1.8507096547046133, 'value_error': None}}},
      'BiasTauxLonRmse': {'diagnostic': {'ERA-Interim': {'value': None,
         'value_error': None},
        'MPI-ESM-LR_r2i1p1': {'value': None, 'value_error': None},
        'Tropflux': {'value': None, 'value_error': None}},
       'metric': {'ERA-Interim': {'value': 8.999671453780639,
         'value_error': None},
        'Tropflux': {'value': 8.91316379115376, 'value_error': None}}},
      'EnsoAmpl': {'diagnostic': {'ERA-Interim': {'value': 0.8989844997845644,
         'value_error': 0.14214193002531866},
        'HadISST': {'value': 0.7665787872085695,
         'value_error': 0.06238329697691264},
        'MPI-ESM-LR_r2i1p1': {'value': 0.8100745315375866,
         'value_error': 0.06485786958981729},
        'Tropflux': {'value': 0.9039789553693535,
         'value_error': 0.14293162279134272}},
       'metric': {'ERA-Interim': {'value': 9.890044630167095,
         'value_error': 21.462205337654684},
        'HadISST': {'value': 5.67400834132171,
         'value_error': 17.060320768465097},
        'Tropflux': {'value': 10.387899328187217,
         'value_error': 21.343627321348162}}},
      'EnsoDuration': {'diagnostic': {'ERA-Interim': {'value': 13.0,
         'value_error': None},
        'HadISST': {'value': 13.0, 'value_error': None},
        'MPI-ESM-LR_r2i1p1': {'value': 21.0, 'value_error': None},
        'Tropflux': {'value': 13.0, 'value_error': None}},
       'metric': {'ERA-Interim': {'value': 61.53846153846154,
         'value_error': None},
        'HadISST': {'value': 61.53846153846154, 'value_error': None},
        'Tropflux': {'value': 61.53846153846154, 'value_error': None}}},
      'EnsoSeasonality': {'diagnostic': {'ERA-Interim': {'value': 2.0466846866656914,
         'value_error': 0.6513411033995022},
        'HadISST': {'value': 1.6639865947361325,
         'value_error': 0.2712772451657809},
        'MPI-ESM-LR_r2i1p1': {'value': 1.0012528386841537,
         'value_error': 0.16058694759025893},
        'Tropflux': {'value': 2.0532132553583624,
         'value_error': 0.6534187683977347}},
       'metric': {'ERA-Interim': {'value': 51.07928225547427,
         'value_error': 23.41482757264049},
        'HadISST': {'value': 39.82807061958766,
         'value_error': 19.460475282728495},
        'Tropflux': {'value': 51.234834663611316,
         'value_error': 23.340375827388947}}},
      'EnsoSstDiversity_2': {'diagnostic': {'ERA-Interim': {'value': 33.25,
         'value_error': None},
        'HadISST': {'value': 49.0, 'value_error': None},
        'MPI-ESM-LR_r2i1p1': {'value': 44.0, 'value_error': None},
        'Tropflux': {'value': 32.0, 'value_error': None}},
       'metric': {'ERA-Interim': {'value': 32.33082706766917,
         'value_error': None},
        'HadISST': {'value': 10.204081632653061, 'value_error': None},
        'Tropflux': {'value': 37.5, 'value_error': None}}},
      'EnsoSstLonRmse': {'diagnostic': {'ERA-Interim': {'value': None,
         'value_error': None},
        'HadISST': {'value': None, 'value_error': None},
        'MPI-ESM-LR_r2i1p1': {'value': None, 'value_error': None},
        'Tropflux': {'value': None, 'value_error': None}},
       'metric': {'ERA-Interim': {'value': 0.2826534146103482,
         'value_error': None},
        'HadISST': {'value': 0.2944203260867981, 'value_error': None},
        'Tropflux': {'value': 0.2828981680948865, 'value_error': None}}},
      'EnsoSstSkew': {'diagnostic': {'ERA-Interim': {'value': 0.39098111106809963,
         'value_error': 0.061819541653923164},
        'HadISST': {'value': 0.38989908235027515,
         'value_error': 0.03172953733021198},
        'MPI-ESM-LR_r2i1p1': {'value': 0.19902432701637318,
         'value_error': 0.01593469902371588},
        'Tropflux': {'value': 0.39744741059612115,
         'value_error': 0.06284195338099416}},
       'metric': {'ERA-Interim': {'value': 49.096178464307485,
         'value_error': 12.124168365042962},
        'HadISST': {'value': 48.95491268749001,
         'value_error': 8.240868089274528},
        'Tropflux': {'value': 49.9243618878126,
         'value_error': 11.92691332680044}}},
      'EnsoSstTsRmse': {'diagnostic': {'ERA-Interim': {'value': None,
         'value_error': None},
        'HadISST': {'value': None, 'value_error': None},
        'MPI-ESM-LR_r2i1p1': {'value': None, 'value_error': None},
        'Tropflux': {'value': None, 'value_error': None}},
       'metric': {'ERA-Interim': {'value': 0.2119843535586562,
         'value_error': None},
        'HadISST': {'value': 0.17683764819603867, 'value_error': None},
        'Tropflux': {'value': 0.20734885117228655, 'value_error': None}}},
      'SeasonalPrLatRmse': {'diagnostic': {'ERA-Interim': {'value': None,
         'value_error': None},
        'GPCPv2.3': {'value': None, 'value_error': None},
        'MPI-ESM-LR_r2i1p1': {'value': None, 'value_error': None}},
       'metric': {'ERA-Interim': {'value': 1.3168878323576723,
         'value_error': None},
        'GPCPv2.3': {'value': 1.1426285998229986, 'value_error': None}}},
      'SeasonalPrLonRmse': {'diagnostic': {'ERA-Interim': {'value': None,
         'value_error': None},
        'GPCPv2.3': {'value': None, 'value_error': None},
        'MPI-ESM-LR_r2i1p1': {'value': None, 'value_error': None}},
       'metric': {'ERA-Interim': {'value': 1.1542043261761905,
         'value_error': None},
        'GPCPv2.3': {'value': 0.7438402580795954, 'value_error': None}}},
      'SeasonalSstLonRmse': {'diagnostic': {'ERA-Interim': {'value': None,
         'value_error': None},
        'HadISST': {'value': None, 'value_error': None},
        'MPI-ESM-LR_r2i1p1': {'value': None, 'value_error': None},
        'Tropflux': {'value': None, 'value_error': None}},
       'metric': {'ERA-Interim': {'value': 0.2401095725688853,
         'value_error': None},
        'HadISST': {'value': 0.2542447743914251, 'value_error': None},
        'Tropflux': {'value': 0.24224911485526088, 'value_error': None}}},
      'SeasonalTauxLonRmse': {'diagnostic': {'ERA-Interim': {'value': None,
         'value_error': None},
        'MPI-ESM-LR_r2i1p1': {'value': None, 'value_error': None},
        'Tropflux': {'value': None, 'value_error': None}},
       'metric': {'ERA-Interim': {'value': 2.641633870104341,
         'value_error': None},
        'Tropflux': {'value': 2.8768751407674285, 'value_error': None}}}}},
    'r3i1p1': {'metadata': {'description_of_the_collection': 'Describe which science question this collection is about',
      'metrics': {'BiasPrLatRmse': {'diagnostic': {'ERA-Interim': {'name': 'ERA-Interim',
          'nyears': 40,
          'time_period': ['1979-1-16 12:0:0.0', '2019-3-16 12:0:0.0']},
         'GPCPv2.3': {'name': 'GPCPv2.3',
          'nyears': 41,
          'time_period': ['1979-1-1 0:0:0.0', '2019-7-1 0:0:0.0']},
         'MPI-ESM-LR_r3i1p1': {'keyerror': None,
          'name': 'MPI-ESM-LR_r3i1p1',
          'nyears': 156,
          'time_period': ['1850-1-16 12:0:0.0', '2005-12-16 12:0:0.0']},
         'method': 'Meridional root mean square error of nino3_LatExt pr, time series are linearly detrended, observations and model regridded to generic_1x1deg',
         'name': 'pr Meridional RMSE',
         'ref': 'Using CDAT regridding and rms (uncentered and biased) calculation',
         'time_frequency': 'monthly',
         'units': 'mm/day'},
        'metric': {'datasets': "MPI-ESM-LR_r3i1p1; ERA-Interim's pr & GPCPv2.3's precip; 's ",
         'method': 'The metric is the statistical value between the model and the observations',
         'name': 'BiasPrLatRmse',
         'units': 'mm/day'}},
       'BiasPrLonRmse': {'diagnostic': {'ERA-Interim': {'name': 'ERA-Interim',
          'nyears': 40,
          'time_period': ['1979-1-16 12:0:0.0', '2019-3-16 12:0:0.0']},
         'GPCPv2.3': {'name': 'GPCPv2.3',
          'nyears': 41,
          'time_period': ['1979-1-1 0:0:0.0', '2019-7-1 0:0:0.0']},
         'MPI-ESM-LR_r3i1p1': {'keyerror': None,
          'name': 'MPI-ESM-LR_r3i1p1',
          'nyears': 156,
          'time_period': ['1850-1-16 12:0:0.0', '2005-12-16 12:0:0.0']},
         'method': 'Zonal root mean square error of equatorial_pacific pr, time series are linearly detrended, observations and model regridded to generic_1x1deg',
         'name': 'pr Zonal RMSE',
         'ref': 'Using CDAT regridding and rms (uncentered and biased) calculation',
         'time_frequency': 'monthly',
         'units': 'mm/day'},
        'metric': {'datasets': "MPI-ESM-LR_r3i1p1; ERA-Interim's pr & GPCPv2.3's precip; 's ",
         'method': 'The metric is the statistical value between the model and the observations',
         'name': 'BiasPrLonRmse',
         'units': 'mm/day'}},
       'BiasSstLonRmse': {'diagnostic': {'ERA-Interim': {'name': 'ERA-Interim',
          'nyears': 40,
          'time_period': ['1979-1-16 12:0:0.0', '2019-3-16 12:0:0.0']},
         'HadISST': {'name': 'HadISST',
          'nyears': 151,
          'time_period': ['1870-1-16 11:59:59.5', '2020-10-16 12:0:0.0']},
         'MPI-ESM-LR_r3i1p1': {'keyerror': None,
          'name': 'MPI-ESM-LR_r3i1p1',
          'nyears': 156,
          'time_period': ['1850-1-16 12:0:0.0', '2005-12-16 12:0:0.0']},
         'Tropflux': {'name': 'Tropflux',
          'nyears': 40,
          'time_period': ['1979-1-15 0:0:0.0', '2018-12-15 12:0:0.0']},
         'method': 'Zonal root mean square error of equatorial_pacific sst, time series are linearly detrended, observations and model regridded to generic_1x1deg',
         'name': 'sst Zonal RMSE',
         'ref': 'Using CDAT regridding and rms (uncentered and biased) calculation',
         'time_frequency': 'monthly',
         'units': 'C'},
        'metric': {'datasets': "MPI-ESM-LR_r3i1p1; ERA-Interim's ts & HadISST's sst & Tropflux's sst; 's ",
         'method': 'The metric is the statistical value between the model and the observations',
         'name': 'BiasSstLonRmse',
         'units': 'C'}},
       'BiasTauxLonRmse': {'diagnostic': {'ERA-Interim': {'name': 'ERA-Interim',
          'nyears': 40,
          'time_period': ['1979-1-16 12:0:0.0', '2019-3-16 12:0:0.0']},
         'MPI-ESM-LR_r3i1p1': {'keyerror': None,
          'name': 'MPI-ESM-LR_r3i1p1',
          'nyears': 156,
          'time_period': ['1850-1-16 12:0:0.0', '2005-12-16 12:0:0.0']},
         'Tropflux': {'name': 'Tropflux',
          'nyears': 40,
          'time_period': ['1979-1-15 0:0:0.0', '2018-12-15 12:0:0.0']},
         'method': 'Zonal root mean square error of equatorial_pacific taux, time series are linearly detrended, observations and model regridded to generic_1x1deg',
         'name': 'taux Zonal RMSE',
         'ref': 'Using CDAT regridding and rms (uncentered and biased) calculation',
         'time_frequency': 'monthly',
         'units': '1e-3 N/m2'},
        'metric': {'datasets': "MPI-ESM-LR_r3i1p1; ERA-Interim's tauu & Tropflux's taux; 's ",
         'method': 'The metric is the statistical value between the model and the observations',
         'name': 'BiasTauxLonRmse',
         'units': '1e-3 N/m2'}},
       'EnsoAmpl': {'diagnostic': {'ERA-Interim': {'keyerror': None,
          'name': 'ERA-Interim',
          'nyears': 40,
          'time_period': ['1979-1-16 12:0:0.0', '2019-3-16 12:0:0.0']},
         'HadISST': {'keyerror': None,
          'name': 'HadISST',
          'nyears': 151,
          'time_period': ['1870-1-16 11:59:59.5', '2020-10-16 12:0:0.0']},
         'MPI-ESM-LR_r3i1p1': {'keyerror': None,
          'name': 'MPI-ESM-LR_r3i1p1',
          'nyears': 156,
          'time_period': ['1850-1-16 12:0:0.0', '2005-12-16 12:0:0.0']},
         'Tropflux': {'keyerror': None,
          'name': 'Tropflux',
          'nyears': 40,
          'time_period': ['1979-1-15 0:0:0.0', '2018-12-15 12:0:0.0']},
         'method': 'Standard deviation of nino3.4 sstA, time series are linearly detrended',
         'name': 'ENSO amplitude',
         'ref': 'Using CDAT regression calculation',
         'time_frequency': 'monthly',
         'units': 'C'},
        'metric': {'datasets': "MPI-ESM-LR_r3i1p1; ERA-Interim's ts & HadISST's sst & Tropflux's sst; 's ",
         'method': 'The metric is the absolute value of the relative difference between model and observations values (M = 100 * abs[[model-obs] / obs])',
         'name': 'EnsoAmpl',
         'units': '%'}},
       'EnsoDuration': {'diagnostic': {'ERA-Interim': {'keyerror': None,
          'name': 'ERA-Interim',
          'nyears': 40,
          'time_period': ['1979-1-16 12:0:0.0', '2019-3-16 12:0:0.0']},
         'HadISST': {'keyerror': None,
          'name': 'HadISST',
          'nyears': 151,
          'time_period': ['1870-1-16 11:59:59.5', '2020-10-16 12:0:0.0']},
         'MPI-ESM-LR_r3i1p1': {'keyerror': None,
          'name': 'MPI-ESM-LR_r3i1p1',
          'nyears': 156,
          'time_period': ['1850-1-16 12:0:0.0', '2005-12-16 12:0:0.0']},
         'Tropflux': {'keyerror': None,
          'name': 'Tropflux',
          'nyears': 40,
          'time_period': ['1979-1-15 0:0:0.0', '2018-12-15 12:0:0.0']},
         'method': 'nino3.4 SSTA during DEC regressed against nino3.4 SSTA during 6 years (centered on ENSO), the duration is the number of consecutive months during which the regression is above 0.25, time series are linearly detrended, smoothing using a triangle shaped window of 5 points',
         'name': 'ENSO Duration based on life cyle SSTA pattern',
         'ref': 'Using CDAT',
         'time_frequency': 'monthly',
         'units': 'months'},
        'metric': {'datasets': "MPI-ESM-LR_r3i1p1; ERA-Interim's ts & HadISST's sst & Tropflux's sst; 's ",
         'method': 'The metric is the absolute value of the relative difference between model and observations values (M = 100 * abs[[model-obs] / obs])',
         'name': 'EnsoDuration',
         'units': '%'}},
       'EnsoSeasonality': {'diagnostic': {'ERA-Interim': {'keyerror': None,
          'name': 'ERA-Interim',
          'nyears': 40,
          'time_period': ['1979-1-16 12:0:0.0', '2019-3-16 12:0:0.0']},
         'HadISST': {'keyerror': None,
          'name': 'HadISST',
          'nyears': 151,
          'time_period': ['1870-1-16 11:59:59.5', '2020-10-16 12:0:0.0']},
         'MPI-ESM-LR_r3i1p1': {'keyerror': None,
          'name': 'MPI-ESM-LR_r3i1p1',
          'nyears': 156,
          'time_period': ['1850-1-16 12:0:0.0', '2005-12-16 12:0:0.0']},
         'Tropflux': {'keyerror': None,
          'name': 'Tropflux',
          'nyears': 40,
          'time_period': ['1979-1-15 0:0:0.0', '2018-12-15 12:0:0.0']},
         'method': 'Ratio between NDJ and MAM standard deviation nino3.4 sstA, time series are linearly detrended',
         'name': 'ENSO seasonality',
         'ref': 'Using CDAT std dev calculation',
         'time_frequency': 'monthly',
         'units': 'C/C'},
        'metric': {'datasets': "MPI-ESM-LR_r3i1p1; ERA-Interim's ts & HadISST's sst & Tropflux's sst; 's ",
         'method': 'The metric is the absolute value of the relative difference between model and observations values (M = 100 * abs[[model-obs] / obs])',
         'name': 'EnsoSeasonality',
         'units': '%'}},
       'EnsoSstDiversity_2': {'diagnostic': {'ERA-Interim': {'keyerror': None,
          'name': 'ERA-Interim',
          'nyears': 40,
          'time_period': ['1979-1-16 12:0:0.0', '2019-3-16 12:0:0.0']},
         'HadISST': {'keyerror': None,
          'name': 'HadISST',
          'nyears': 151,
          'time_period': ['1870-1-16 11:59:59.5', '2020-10-16 12:0:0.0']},
         'MPI-ESM-LR_r3i1p1': {'keyerror': None,
          'name': 'MPI-ESM-LR_r3i1p1',
          'nyears': 156,
          'time_period': ['1850-1-16 12:0:0.0', '2005-12-16 12:0:0.0']},
         'Tropflux': {'keyerror': None,
          'name': 'Tropflux',
          'nyears': 40,
          'time_period': ['1979-1-15 0:0:0.0', '2018-12-15 12:0:0.0']},
         'method': 'Nino (Nina) events = nino3.4 sstA > 0.75 (< -0.75) during DEC, zonal SSTA (meridional averaged [-5.0 ; 5.0]), the zonal SSTA maximum (minimum) is located for each event, the diversity is the interquartile range (IQR = Q3 - Q1), time series are linearly detrended, smoothing using a triangle shaped window of 5 points',
         'name': 'ENSO Diversity (interquartile range)',
         'ref': 'Using CDAT regridding',
         'time_frequency': 'monthly',
         'units': 'long'},
        'metric': {'datasets': "MPI-ESM-LR_r3i1p1; ERA-Interim's ts & HadISST's sst & Tropflux's sst; 's ",
         'method': 'The metric is the absolute value of the relative difference between model and observations values (M = 100 * abs[[model-obs] / obs])',
         'name': 'EnsoSstDiversity',
         'units': '%'}},
       'EnsoSstLonRmse': {'diagnostic': {'ERA-Interim': {'name': 'ERA-Interim',
          'nyears': 40,
          'time_period': ['1979-1-16 12:0:0.0', '2019-3-16 12:0:0.0']},
         'HadISST': {'name': 'HadISST',
          'nyears': 151,
          'time_period': ['1870-1-16 11:59:59.5', '2020-10-16 12:0:0.0']},
         'MPI-ESM-LR_r3i1p1': {'keyerror': None,
          'name': 'MPI-ESM-LR_r3i1p1',
          'nyears': 156,
          'time_period': ['1850-1-16 12:0:0.0', '2005-12-16 12:0:0.0']},
         'Tropflux': {'name': 'Tropflux',
          'nyears': 40,
          'time_period': ['1979-1-15 0:0:0.0', '2018-12-15 12:0:0.0']},
         'method': 'nino3.4 SSTA during DEC regressed against equatorial_pacific SSTA, time series are linearly detrended, smoothing using a triangle shaped window of 5 points, observations and model regridded to generic_1x1deg',
         'name': 'ENSO Zonal SSTA pattern',
         'ref': 'Using CDAT regridding and rms (uncentered and biased) calculation',
         'time_frequency': 'monthly',
         'units': 'C/C'},
        'metric': {'datasets': "MPI-ESM-LR_r3i1p1; ERA-Interim's ts & HadISST's sst & Tropflux's sst; 's ",
         'method': 'The metric is the statistical value between the model and the observations',
         'name': 'EnsoSstLonRmse',
         'units': 'C/C'}},
       'EnsoSstSkew': {'diagnostic': {'ERA-Interim': {'keyerror': None,
          'name': 'ERA-Interim',
          'nyears': 40,
          'time_period': ['1979-1-16 12:0:0.0', '2019-3-16 12:0:0.0']},
         'HadISST': {'keyerror': None,
          'name': 'HadISST',
          'nyears': 151,
          'time_period': ['1870-1-16 11:59:59.5', '2020-10-16 12:0:0.0']},
         'MPI-ESM-LR_r3i1p1': {'keyerror': None,
          'name': 'MPI-ESM-LR_r3i1p1',
          'nyears': 156,
          'time_period': ['1850-1-16 12:0:0.0', '2005-12-16 12:0:0.0']},
         'Tropflux': {'keyerror': None,
          'name': 'Tropflux',
          'nyears': 40,
          'time_period': ['1979-1-15 0:0:0.0', '2018-12-15 12:0:0.0']},
         'method': 'Standard deviation of nino3.4 sstA, time series are linearly detrended',
         'name': 'ENSO skewness',
         'ref': 'Using CDAT regression calculation',
         'time_frequency': 'monthly',
         'units': 'C'},
        'metric': {'datasets': "MPI-ESM-LR_r3i1p1; ERA-Interim's ts & HadISST's sst & Tropflux's sst; 's ",
         'method': 'The metric is the absolute value of the relative difference between model and observations values (M = 100 * abs[[model-obs] / obs])',
         'name': 'EnsoSstSkew',
         'units': '%'}},
       'EnsoSstTsRmse': {'diagnostic': {'ERA-Interim': {'name': 'ERA-Interim',
          'nyears': 40,
          'time_period': ['1979-1-16 12:0:0.0', '2019-3-16 12:0:0.0']},
         'HadISST': {'name': 'HadISST',
          'nyears': 151,
          'time_period': ['1870-1-16 11:59:59.5', '2020-10-16 12:0:0.0']},
         'MPI-ESM-LR_r3i1p1': {'keyerror': None,
          'name': 'MPI-ESM-LR_r3i1p1',
          'nyears': 156,
          'time_period': ['1850-1-16 12:0:0.0', '2005-12-16 12:0:0.0']},
         'Tropflux': {'name': 'Tropflux',
          'nyears': 40,
          'time_period': ['1979-1-15 0:0:0.0', '2018-12-15 12:0:0.0']},
         'method': 'nino3.4 SSTA during DEC regressed against nino3.4 SSTA during 6 years (centered on ENSO), time series are linearly detrended, smoothing using a triangle shaped window of 5 points',
         'name': 'ENSO life cyle SSTA pattern',
         'ref': 'Using CDAT regridding and rms (uncentered and biased) calculation',
         'time_frequency': 'monthly',
         'units': 'C/C'},
        'metric': {'datasets': "MPI-ESM-LR_r3i1p1; ERA-Interim's ts & HadISST's sst & Tropflux's sst; 's ",
         'method': 'The metric is the statistical value between the model and the observations',
         'name': 'EnsoSstTsRmse',
         'units': 'C/C'}},
       'SeasonalPrLatRmse': {'diagnostic': {'ERA-Interim': {'name': 'ERA-Interim',
          'nyears': 40,
          'time_period': ['1979-1-16 12:0:0.0', '2019-3-16 12:0:0.0']},
         'GPCPv2.3': {'name': 'GPCPv2.3',
          'nyears': 41,
          'time_period': ['1979-1-1 0:0:0.0', '2019-7-1 0:0:0.0']},
         'MPI-ESM-LR_r3i1p1': {'keyerror': None,
          'name': 'MPI-ESM-LR_r3i1p1',
          'nyears': 156,
          'time_period': ['1850-1-16 12:0:0.0', '2005-12-16 12:0:0.0']},
         'method': 'Meridional root mean square error of nino3_LatExt climatological pr STD, time series are linearly detrended, observations and model regridded to generic_1x1deg',
         'name': 'pr meridional seasonality RMSE',
         'ref': 'Using CDAT regridding and rms (uncentered and biased) calculation',
         'time_frequency': 'monthly',
         'units': 'mm/day'},
        'metric': {'datasets': "MPI-ESM-LR_r3i1p1; ERA-Interim's pr & GPCPv2.3's precip; 's ",
         'method': 'The metric is the statistical value between the model and the observations',
         'name': 'SeasonalPrLatRmse',
         'units': 'mm/day'}},
       'SeasonalPrLonRmse': {'diagnostic': {'ERA-Interim': {'name': 'ERA-Interim',
          'nyears': 40,
          'time_period': ['1979-1-16 12:0:0.0', '2019-3-16 12:0:0.0']},
         'GPCPv2.3': {'name': 'GPCPv2.3',
          'nyears': 41,
          'time_period': ['1979-1-1 0:0:0.0', '2019-7-1 0:0:0.0']},
         'MPI-ESM-LR_r3i1p1': {'keyerror': None,
          'name': 'MPI-ESM-LR_r3i1p1',
          'nyears': 156,
          'time_period': ['1850-1-16 12:0:0.0', '2005-12-16 12:0:0.0']},
         'method': 'Zonal root mean square error of equatorial_pacific climatological pr STD, time series are linearly detrended, observations and model regridded to generic_1x1deg',
         'name': 'pr zonal seasonality RMSE',
         'ref': 'Using CDAT regridding and rms (uncentered and biased) calculation',
         'time_frequency': 'monthly',
         'units': 'mm/day'},
        'metric': {'datasets': "MPI-ESM-LR_r3i1p1; ERA-Interim's pr & GPCPv2.3's precip; 's ",
         'method': 'The metric is the statistical value between the model and the observations',
         'name': 'SeasonalPrLonRmse',
         'units': 'mm/day'}},
       'SeasonalSstLonRmse': {'diagnostic': {'ERA-Interim': {'name': 'ERA-Interim',
          'nyears': 40,
          'time_period': ['1979-1-16 12:0:0.0', '2019-3-16 12:0:0.0']},
         'HadISST': {'name': 'HadISST',
          'nyears': 151,
          'time_period': ['1870-1-16 11:59:59.5', '2020-10-16 12:0:0.0']},
         'MPI-ESM-LR_r3i1p1': {'keyerror': None,
          'name': 'MPI-ESM-LR_r3i1p1',
          'nyears': 156,
          'time_period': ['1850-1-16 12:0:0.0', '2005-12-16 12:0:0.0']},
         'Tropflux': {'name': 'Tropflux',
          'nyears': 40,
          'time_period': ['1979-1-15 0:0:0.0', '2018-12-15 12:0:0.0']},
         'method': 'Zonal root mean square error of equatorial_pacific climatological sst STD, time series are linearly detrended, observations and model regridded to generic_1x1deg',
         'name': 'sst zonal seasonality RMSE',
         'ref': 'Using CDAT regridding and rms (uncentered and biased) calculation',
         'time_frequency': 'monthly',
         'units': 'C'},
        'metric': {'datasets': "MPI-ESM-LR_r3i1p1; ERA-Interim's ts & HadISST's sst & Tropflux's sst; 's ",
         'method': 'The metric is the statistical value between the model and the observations',
         'name': 'SeasonalSstLonRmse',
         'units': 'C'}},
       'SeasonalTauxLonRmse': {'diagnostic': {'ERA-Interim': {'name': 'ERA-Interim',
          'nyears': 40,
          'time_period': ['1979-1-16 12:0:0.0', '2019-3-16 12:0:0.0']},
         'MPI-ESM-LR_r3i1p1': {'keyerror': None,
          'name': 'MPI-ESM-LR_r3i1p1',
          'nyears': 156,
          'time_period': ['1850-1-16 12:0:0.0', '2005-12-16 12:0:0.0']},
         'Tropflux': {'name': 'Tropflux',
          'nyears': 40,
          'time_period': ['1979-1-15 0:0:0.0', '2018-12-15 12:0:0.0']},
         'method': 'Zonal root mean square error of equatorial_pacific climatological taux STD, time series are linearly detrended, observations and model regridded to generic_1x1deg',
         'name': 'taux zonal seasonality RMSE',
         'ref': 'Using CDAT regridding and rms (uncentered and biased) calculation',
         'time_frequency': 'monthly',
         'units': '1e-3 N/m2'},
        'metric': {'datasets': "MPI-ESM-LR_r3i1p1; ERA-Interim's tauu & Tropflux's taux; 's ",
         'method': 'The metric is the statistical value between the model and the observations',
         'name': 'SeasonalTauxLonRmse',
         'units': '1e-3 N/m2'}}},
      'name': 'Metrics Collection for ENSO performance'},
     'value': {'BiasPrLatRmse': {'diagnostic': {'ERA-Interim': {'value': None,
         'value_error': None},
        'GPCPv2.3': {'value': None, 'value_error': None},
        'MPI-ESM-LR_r3i1p1': {'value': None, 'value_error': None}},
       'metric': {'ERA-Interim': {'value': 1.8551803763081658,
         'value_error': None},
        'GPCPv2.3': {'value': 1.72403818125649, 'value_error': None}}},
      'BiasPrLonRmse': {'diagnostic': {'ERA-Interim': {'value': None,
         'value_error': None},
        'GPCPv2.3': {'value': None, 'value_error': None},
        'MPI-ESM-LR_r3i1p1': {'value': None, 'value_error': None}},
       'metric': {'ERA-Interim': {'value': 3.9221916971334934,
         'value_error': None},
        'GPCPv2.3': {'value': 2.7858592845191748, 'value_error': None}}},
      'BiasSstLonRmse': {'diagnostic': {'ERA-Interim': {'value': None,
         'value_error': None},
        'HadISST': {'value': None, 'value_error': None},
        'MPI-ESM-LR_r3i1p1': {'value': None, 'value_error': None},
        'Tropflux': {'value': None, 'value_error': None}},
       'metric': {'ERA-Interim': {'value': 1.7366210977061691,
         'value_error': None},
        'HadISST': {'value': 1.5375017994534301, 'value_error': None},
        'Tropflux': {'value': 1.7848153027991998, 'value_error': None}}},
      'BiasTauxLonRmse': {'diagnostic': {'ERA-Interim': {'value': None,
         'value_error': None},
        'MPI-ESM-LR_r3i1p1': {'value': None, 'value_error': None},
        'Tropflux': {'value': None, 'value_error': None}},
       'metric': {'ERA-Interim': {'value': 9.209817796431585,
         'value_error': None},
        'Tropflux': {'value': 9.087608649239206, 'value_error': None}}},
      'EnsoAmpl': {'diagnostic': {'ERA-Interim': {'value': 0.8989844997845644,
         'value_error': 0.14214193002531866},
        'HadISST': {'value': 0.7665787872085695,
         'value_error': 0.06238329697691264},
        'MPI-ESM-LR_r3i1p1': {'value': 0.8356383451960697,
         'value_error': 0.06690461273249237},
        'Tropflux': {'value': 0.9039789553693535,
         'value_error': 0.14293162279134272}},
       'metric': {'ERA-Interim': {'value': 7.046412324536759,
         'value_error': 22.139495878946626},
        'HadISST': {'value': 9.008801070399379,
         'value_error': 17.598699453511752},
        'Tropflux': {'value': 7.559978002514528,
         'value_error': 22.017175853485586}}},
      'EnsoDuration': {'diagnostic': {'ERA-Interim': {'value': 13.0,
         'value_error': None},
        'HadISST': {'value': 13.0, 'value_error': None},
        'MPI-ESM-LR_r3i1p1': {'value': 22.0, 'value_error': None},
        'Tropflux': {'value': 13.0, 'value_error': None}},
       'metric': {'ERA-Interim': {'value': 69.23076923076923,
         'value_error': None},
        'HadISST': {'value': 69.23076923076923, 'value_error': None},
        'Tropflux': {'value': 69.23076923076923, 'value_error': None}}},
      'EnsoSeasonality': {'diagnostic': {'ERA-Interim': {'value': 2.0466846866656914,
         'value_error': 0.6513411033995022},
        'HadISST': {'value': 1.6639865947361325,
         'value_error': 0.2712772451657809},
        'MPI-ESM-LR_r3i1p1': {'value': 1.0944242769450847,
         'value_error': 0.17553034279958524},
        'Tropflux': {'value': 2.0532132553583624,
         'value_error': 0.6534187683977347}},
       'metric': {'ERA-Interim': {'value': 46.52697193293411,
         'value_error': 25.59369096986358},
        'HadISST': {'value': 34.22878042364076,
         'value_error': 21.27136699886681},
        'Tropflux': {'value': 46.69699924793897,
         'value_error': 25.51231112821309}}},
      'EnsoSstDiversity_2': {'diagnostic': {'ERA-Interim': {'value': 33.25,
         'value_error': None},
        'HadISST': {'value': 49.0, 'value_error': None},
        'MPI-ESM-LR_r3i1p1': {'value': 71.5, 'value_error': None},
        'Tropflux': {'value': 32.0, 'value_error': None}},
       'metric': {'ERA-Interim': {'value': 115.0375939849624,
         'value_error': None},
        'HadISST': {'value': 45.91836734693878, 'value_error': None},
        'Tropflux': {'value': 123.4375, 'value_error': None}}},
      'EnsoSstLonRmse': {'diagnostic': {'ERA-Interim': {'value': None,
         'value_error': None},
        'HadISST': {'value': None, 'value_error': None},
        'MPI-ESM-LR_r3i1p1': {'value': None, 'value_error': None},
        'Tropflux': {'value': None, 'value_error': None}},
       'metric': {'ERA-Interim': {'value': 0.2978165992412797,
         'value_error': None},
        'HadISST': {'value': 0.3102575136741727, 'value_error': None},
        'Tropflux': {'value': 0.2982206819840047, 'value_error': None}}},
      'EnsoSstSkew': {'diagnostic': {'ERA-Interim': {'value': 0.39098111106809963,
         'value_error': 0.061819541653923164},
        'HadISST': {'value': 0.38989908235027515,
         'value_error': 0.03172953733021198},
        'MPI-ESM-LR_r3i1p1': {'value': 0.23152806426488237,
         'value_error': 0.01853708074240059},
        'Tropflux': {'value': 0.39744741059612115,
         'value_error': 0.06284195338099416}},
       'metric': {'ERA-Interim': {'value': 40.782800572543344,
         'value_error': 14.104231751272245},
        'HadISST': {'value': 40.618463919111356,
         'value_error': 9.586728744044471},
        'Tropflux': {'value': 41.7462391017671,
         'value_error': 13.874761927882115}}},
      'EnsoSstTsRmse': {'diagnostic': {'ERA-Interim': {'value': None,
         'value_error': None},
        'HadISST': {'value': None, 'value_error': None},
        'MPI-ESM-LR_r3i1p1': {'value': None, 'value_error': None},
        'Tropflux': {'value': None, 'value_error': None}},
       'metric': {'ERA-Interim': {'value': 0.19584732087970766,
         'value_error': None},
        'HadISST': {'value': 0.15577006233267687, 'value_error': None},
        'Tropflux': {'value': 0.1913077793587819, 'value_error': None}}},
      'SeasonalPrLatRmse': {'diagnostic': {'ERA-Interim': {'value': None,
         'value_error': None},
        'GPCPv2.3': {'value': None, 'value_error': None},
        'MPI-ESM-LR_r3i1p1': {'value': None, 'value_error': None}},
       'metric': {'ERA-Interim': {'value': 1.352904416093818,
         'value_error': None},
        'GPCPv2.3': {'value': 1.190213599995441, 'value_error': None}}},
      'SeasonalPrLonRmse': {'diagnostic': {'ERA-Interim': {'value': None,
         'value_error': None},
        'GPCPv2.3': {'value': None, 'value_error': None},
        'MPI-ESM-LR_r3i1p1': {'value': None, 'value_error': None}},
       'metric': {'ERA-Interim': {'value': 1.1435919954687672,
         'value_error': None},
        'GPCPv2.3': {'value': 0.7352076660719811, 'value_error': None}}},
      'SeasonalSstLonRmse': {'diagnostic': {'ERA-Interim': {'value': None,
         'value_error': None},
        'HadISST': {'value': None, 'value_error': None},
        'MPI-ESM-LR_r3i1p1': {'value': None, 'value_error': None},
        'Tropflux': {'value': None, 'value_error': None}},
       'metric': {'ERA-Interim': {'value': 0.24513242283052528,
         'value_error': None},
        'HadISST': {'value': 0.26074681235456953, 'value_error': None},
        'Tropflux': {'value': 0.24604180488436814, 'value_error': None}}},
      'SeasonalTauxLonRmse': {'diagnostic': {'ERA-Interim': {'value': None,
         'value_error': None},
        'MPI-ESM-LR_r3i1p1': {'value': None, 'value_error': None},
        'Tropflux': {'value': None, 'value_error': None}},
       'metric': {'ERA-Interim': {'value': 2.5673752839177104,
         'value_error': None},
        'Tropflux': {'value': 2.809841408384925, 'value_error': None}}}}}},
   'MPI-ESM-MR': {'r1i1p1': {'metadata': {'description_of_the_collection': 'Describe which science question this collection is about',
      'metrics': {'BiasPrLatRmse': {'diagnostic': {'ERA-Interim': {'name': 'ERA-Interim',
          'nyears': 40,
          'time_period': ['1979-1-16 12:0:0.0', '2019-3-16 12:0:0.0']},
         'GPCPv2.3': {'name': 'GPCPv2.3',
          'nyears': 41,
          'time_period': ['1979-1-1 0:0:0.0', '2019-7-1 0:0:0.0']},
         'MPI-ESM-MR_r1i1p1': {'keyerror': None,
          'name': 'MPI-ESM-MR_r1i1p1',
          'nyears': 156,
          'time_period': ['1850-1-16 12:0:0.0', '2005-12-16 12:0:0.0']},
         'method': 'Meridional root mean square error of nino3_LatExt pr, time series are linearly detrended, observations and model regridded to generic_1x1deg',
         'name': 'pr Meridional RMSE',
         'ref': 'Using CDAT regridding and rms (uncentered and biased) calculation',
         'time_frequency': 'monthly',
         'units': 'mm/day'},
        'metric': {'datasets': "MPI-ESM-MR_r1i1p1; ERA-Interim's pr & GPCPv2.3's precip; 's ",
         'method': 'The metric is the statistical value between the model and the observations',
         'name': 'BiasPrLatRmse',
         'units': 'mm/day'}},
       'BiasPrLonRmse': {'diagnostic': {'ERA-Interim': {'name': 'ERA-Interim',
          'nyears': 40,
          'time_period': ['1979-1-16 12:0:0.0', '2019-3-16 12:0:0.0']},
         'GPCPv2.3': {'name': 'GPCPv2.3',
          'nyears': 41,
          'time_period': ['1979-1-1 0:0:0.0', '2019-7-1 0:0:0.0']},
         'MPI-ESM-MR_r1i1p1': {'keyerror': None,
          'name': 'MPI-ESM-MR_r1i1p1',
          'nyears': 156,
          'time_period': ['1850-1-16 12:0:0.0', '2005-12-16 12:0:0.0']},
         'method': 'Zonal root mean square error of equatorial_pacific pr, time series are linearly detrended, observations and model regridded to generic_1x1deg',
         'name': 'pr Zonal RMSE',
         'ref': 'Using CDAT regridding and rms (uncentered and biased) calculation',
         'time_frequency': 'monthly',
         'units': 'mm/day'},
        'metric': {'datasets': "MPI-ESM-MR_r1i1p1; ERA-Interim's pr & GPCPv2.3's precip; 's ",
         'method': 'The metric is the statistical value between the model and the observations',
         'name': 'BiasPrLonRmse',
         'units': 'mm/day'}},
       'BiasSstLonRmse': {'diagnostic': {'ERA-Interim': {'name': 'ERA-Interim',
          'nyears': 40,
          'time_period': ['1979-1-16 12:0:0.0', '2019-3-16 12:0:0.0']},
         'HadISST': {'name': 'HadISST',
          'nyears': 151,
          'time_period': ['1870-1-16 11:59:59.5', '2020-10-16 12:0:0.0']},
         'MPI-ESM-MR_r1i1p1': {'keyerror': None,
          'name': 'MPI-ESM-MR_r1i1p1',
          'nyears': 156,
          'time_period': ['1850-1-16 12:0:0.0', '2005-12-16 12:0:0.0']},
         'Tropflux': {'name': 'Tropflux',
          'nyears': 40,
          'time_period': ['1979-1-15 0:0:0.0', '2018-12-15 12:0:0.0']},
         'method': 'Zonal root mean square error of equatorial_pacific sst, time series are linearly detrended, observations and model regridded to generic_1x1deg',
         'name': 'sst Zonal RMSE',
         'ref': 'Using CDAT regridding and rms (uncentered and biased) calculation',
         'time_frequency': 'monthly',
         'units': 'C'},
        'metric': {'datasets': "MPI-ESM-MR_r1i1p1; ERA-Interim's ts & HadISST's sst & Tropflux's sst; 's ",
         'method': 'The metric is the statistical value between the model and the observations',
         'name': 'BiasSstLonRmse',
         'units': 'C'}},
       'BiasTauxLonRmse': {'diagnostic': {'ERA-Interim': {'name': 'ERA-Interim',
          'nyears': 40,
          'time_period': ['1979-1-16 12:0:0.0', '2019-3-16 12:0:0.0']},
         'MPI-ESM-MR_r1i1p1': {'keyerror': None,
          'name': 'MPI-ESM-MR_r1i1p1',
          'nyears': 156,
          'time_period': ['1850-1-16 12:0:0.0', '2005-12-16 12:0:0.0']},
         'Tropflux': {'name': 'Tropflux',
          'nyears': 40,
          'time_period': ['1979-1-15 0:0:0.0', '2018-12-15 12:0:0.0']},
         'method': 'Zonal root mean square error of equatorial_pacific taux, time series are linearly detrended, observations and model regridded to generic_1x1deg',
         'name': 'taux Zonal RMSE',
         'ref': 'Using CDAT regridding and rms (uncentered and biased) calculation',
         'time_frequency': 'monthly',
         'units': '1e-3 N/m2'},
        'metric': {'datasets': "MPI-ESM-MR_r1i1p1; ERA-Interim's tauu & Tropflux's taux; 's ",
         'method': 'The metric is the statistical value between the model and the observations',
         'name': 'BiasTauxLonRmse',
         'units': '1e-3 N/m2'}},
       'EnsoAmpl': {'diagnostic': {'ERA-Interim': {'keyerror': None,
          'name': 'ERA-Interim',
          'nyears': 40,
          'time_period': ['1979-1-16 12:0:0.0', '2019-3-16 12:0:0.0']},
         'HadISST': {'keyerror': None,
          'name': 'HadISST',
          'nyears': 151,
          'time_period': ['1870-1-16 11:59:59.5', '2020-10-16 12:0:0.0']},
         'MPI-ESM-MR_r1i1p1': {'keyerror': None,
          'name': 'MPI-ESM-MR_r1i1p1',
          'nyears': 156,
          'time_period': ['1850-1-16 12:0:0.0', '2005-12-16 12:0:0.0']},
         'Tropflux': {'keyerror': None,
          'name': 'Tropflux',
          'nyears': 40,
          'time_period': ['1979-1-15 0:0:0.0', '2018-12-15 12:0:0.0']},
         'method': 'Standard deviation of nino3.4 sstA, time series are linearly detrended',
         'name': 'ENSO amplitude',
         'ref': 'Using CDAT regression calculation',
         'time_frequency': 'monthly',
         'units': 'C'},
        'metric': {'datasets': "MPI-ESM-MR_r1i1p1; ERA-Interim's ts & HadISST's sst & Tropflux's sst; 's ",
         'method': 'The metric is the absolute value of the relative difference between model and observations values (M = 100 * abs[[model-obs] / obs])',
         'name': 'EnsoAmpl',
         'units': '%'}},
       'EnsoDuration': {'diagnostic': {'ERA-Interim': {'keyerror': None,
          'name': 'ERA-Interim',
          'nyears': 40,
          'time_period': ['1979-1-16 12:0:0.0', '2019-3-16 12:0:0.0']},
         'HadISST': {'keyerror': None,
          'name': 'HadISST',
          'nyears': 151,
          'time_period': ['1870-1-16 11:59:59.5', '2020-10-16 12:0:0.0']},
         'MPI-ESM-MR_r1i1p1': {'keyerror': None,
          'name': 'MPI-ESM-MR_r1i1p1',
          'nyears': 156,
          'time_period': ['1850-1-16 12:0:0.0', '2005-12-16 12:0:0.0']},
         'Tropflux': {'keyerror': None,
          'name': 'Tropflux',
          'nyears': 40,
          'time_period': ['1979-1-15 0:0:0.0', '2018-12-15 12:0:0.0']},
         'method': 'nino3.4 SSTA during DEC regressed against nino3.4 SSTA during 6 years (centered on ENSO), the duration is the number of consecutive months during which the regression is above 0.25, time series are linearly detrended, smoothing using a triangle shaped window of 5 points',
         'name': 'ENSO Duration based on life cyle SSTA pattern',
         'ref': 'Using CDAT',
         'time_frequency': 'monthly',
         'units': 'months'},
        'metric': {'datasets': "MPI-ESM-MR_r1i1p1; ERA-Interim's ts & HadISST's sst & Tropflux's sst; 's ",
         'method': 'The metric is the absolute value of the relative difference between model and observations values (M = 100 * abs[[model-obs] / obs])',
         'name': 'EnsoDuration',
         'units': '%'}},
       'EnsoSeasonality': {'diagnostic': {'ERA-Interim': {'keyerror': None,
          'name': 'ERA-Interim',
          'nyears': 40,
          'time_period': ['1979-1-16 12:0:0.0', '2019-3-16 12:0:0.0']},
         'HadISST': {'keyerror': None,
          'name': 'HadISST',
          'nyears': 151,
          'time_period': ['1870-1-16 11:59:59.5', '2020-10-16 12:0:0.0']},
         'MPI-ESM-MR_r1i1p1': {'keyerror': None,
          'name': 'MPI-ESM-MR_r1i1p1',
          'nyears': 156,
          'time_period': ['1850-1-16 12:0:0.0', '2005-12-16 12:0:0.0']},
         'Tropflux': {'keyerror': None,
          'name': 'Tropflux',
          'nyears': 40,
          'time_period': ['1979-1-15 0:0:0.0', '2018-12-15 12:0:0.0']},
         'method': 'Ratio between NDJ and MAM standard deviation nino3.4 sstA, time series are linearly detrended',
         'name': 'ENSO seasonality',
         'ref': 'Using CDAT std dev calculation',
         'time_frequency': 'monthly',
         'units': 'C/C'},
        'metric': {'datasets': "MPI-ESM-MR_r1i1p1; ERA-Interim's ts & HadISST's sst & Tropflux's sst; 's ",
         'method': 'The metric is the absolute value of the relative difference between model and observations values (M = 100 * abs[[model-obs] / obs])',
         'name': 'EnsoSeasonality',
         'units': '%'}},
       'EnsoSstDiversity_2': {'diagnostic': {'ERA-Interim': {'keyerror': None,
          'name': 'ERA-Interim',
          'nyears': 40,
          'time_period': ['1979-1-16 12:0:0.0', '2019-3-16 12:0:0.0']},
         'HadISST': {'keyerror': None,
          'name': 'HadISST',
          'nyears': 151,
          'time_period': ['1870-1-16 11:59:59.5', '2020-10-16 12:0:0.0']},
         'MPI-ESM-MR_r1i1p1': {'keyerror': None,
          'name': 'MPI-ESM-MR_r1i1p1',
          'nyears': 156,
          'time_period': ['1850-1-16 12:0:0.0', '2005-12-16 12:0:0.0']},
         'Tropflux': {'keyerror': None,
          'name': 'Tropflux',
          'nyears': 40,
          'time_period': ['1979-1-15 0:0:0.0', '2018-12-15 12:0:0.0']},
         'method': 'Nino (Nina) events = nino3.4 sstA > 0.75 (< -0.75) during DEC, zonal SSTA (meridional averaged [-5.0 ; 5.0]), the zonal SSTA maximum (minimum) is located for each event, the diversity is the interquartile range (IQR = Q3 - Q1), time series are linearly detrended, smoothing using a triangle shaped window of 5 points',
         'name': 'ENSO Diversity (interquartile range)',
         'ref': 'Using CDAT regridding',
         'time_frequency': 'monthly',
         'units': 'long'},
        'metric': {'datasets': "MPI-ESM-MR_r1i1p1; ERA-Interim's ts & HadISST's sst & Tropflux's sst; 's ",
         'method': 'The metric is the absolute value of the relative difference between model and observations values (M = 100 * abs[[model-obs] / obs])',
         'name': 'EnsoSstDiversity',
         'units': '%'}},
       'EnsoSstLonRmse': {'diagnostic': {'ERA-Interim': {'name': 'ERA-Interim',
          'nyears': 40,
          'time_period': ['1979-1-16 12:0:0.0', '2019-3-16 12:0:0.0']},
         'HadISST': {'name': 'HadISST',
          'nyears': 151,
          'time_period': ['1870-1-16 11:59:59.5', '2020-10-16 12:0:0.0']},
         'MPI-ESM-MR_r1i1p1': {'keyerror': None,
          'name': 'MPI-ESM-MR_r1i1p1',
          'nyears': 156,
          'time_period': ['1850-1-16 12:0:0.0', '2005-12-16 12:0:0.0']},
         'Tropflux': {'name': 'Tropflux',
          'nyears': 40,
          'time_period': ['1979-1-15 0:0:0.0', '2018-12-15 12:0:0.0']},
         'method': 'nino3.4 SSTA during DEC regressed against equatorial_pacific SSTA, time series are linearly detrended, smoothing using a triangle shaped window of 5 points, observations and model regridded to generic_1x1deg',
         'name': 'ENSO Zonal SSTA pattern',
         'ref': 'Using CDAT regridding and rms (uncentered and biased) calculation',
         'time_frequency': 'monthly',
         'units': 'C/C'},
        'metric': {'datasets': "MPI-ESM-MR_r1i1p1; ERA-Interim's ts & HadISST's sst & Tropflux's sst; 's ",
         'method': 'The metric is the statistical value between the model and the observations',
         'name': 'EnsoSstLonRmse',
         'units': 'C/C'}},
       'EnsoSstSkew': {'diagnostic': {'ERA-Interim': {'keyerror': None,
          'name': 'ERA-Interim',
          'nyears': 40,
          'time_period': ['1979-1-16 12:0:0.0', '2019-3-16 12:0:0.0']},
         'HadISST': {'keyerror': None,
          'name': 'HadISST',
          'nyears': 151,
          'time_period': ['1870-1-16 11:59:59.5', '2020-10-16 12:0:0.0']},
         'MPI-ESM-MR_r1i1p1': {'keyerror': None,
          'name': 'MPI-ESM-MR_r1i1p1',
          'nyears': 156,
          'time_period': ['1850-1-16 12:0:0.0', '2005-12-16 12:0:0.0']},
         'Tropflux': {'keyerror': None,
          'name': 'Tropflux',
          'nyears': 40,
          'time_period': ['1979-1-15 0:0:0.0', '2018-12-15 12:0:0.0']},
         'method': 'Standard deviation of nino3.4 sstA, time series are linearly detrended',
         'name': 'ENSO skewness',
         'ref': 'Using CDAT regression calculation',
         'time_frequency': 'monthly',
         'units': 'C'},
        'metric': {'datasets': "MPI-ESM-MR_r1i1p1; ERA-Interim's ts & HadISST's sst & Tropflux's sst; 's ",
         'method': 'The metric is the absolute value of the relative difference between model and observations values (M = 100 * abs[[model-obs] / obs])',
         'name': 'EnsoSstSkew',
         'units': '%'}},
       'EnsoSstTsRmse': {'diagnostic': {'ERA-Interim': {'name': 'ERA-Interim',
          'nyears': 40,
          'time_period': ['1979-1-16 12:0:0.0', '2019-3-16 12:0:0.0']},
         'HadISST': {'name': 'HadISST',
          'nyears': 151,
          'time_period': ['1870-1-16 11:59:59.5', '2020-10-16 12:0:0.0']},
         'MPI-ESM-MR_r1i1p1': {'keyerror': None,
          'name': 'MPI-ESM-MR_r1i1p1',
          'nyears': 156,
          'time_period': ['1850-1-16 12:0:0.0', '2005-12-16 12:0:0.0']},
         'Tropflux': {'name': 'Tropflux',
          'nyears': 40,
          'time_period': ['1979-1-15 0:0:0.0', '2018-12-15 12:0:0.0']},
         'method': 'nino3.4 SSTA during DEC regressed against nino3.4 SSTA during 6 years (centered on ENSO), time series are linearly detrended, smoothing using a triangle shaped window of 5 points',
         'name': 'ENSO life cyle SSTA pattern',
         'ref': 'Using CDAT regridding and rms (uncentered and biased) calculation',
         'time_frequency': 'monthly',
         'units': 'C/C'},
        'metric': {'datasets': "MPI-ESM-MR_r1i1p1; ERA-Interim's ts & HadISST's sst & Tropflux's sst; 's ",
         'method': 'The metric is the statistical value between the model and the observations',
         'name': 'EnsoSstTsRmse',
         'units': 'C/C'}},
       'SeasonalPrLatRmse': {'diagnostic': {'ERA-Interim': {'name': 'ERA-Interim',
          'nyears': 40,
          'time_period': ['1979-1-16 12:0:0.0', '2019-3-16 12:0:0.0']},
         'GPCPv2.3': {'name': 'GPCPv2.3',
          'nyears': 41,
          'time_period': ['1979-1-1 0:0:0.0', '2019-7-1 0:0:0.0']},
         'MPI-ESM-MR_r1i1p1': {'keyerror': None,
          'name': 'MPI-ESM-MR_r1i1p1',
          'nyears': 156,
          'time_period': ['1850-1-16 12:0:0.0', '2005-12-16 12:0:0.0']},
         'method': 'Meridional root mean square error of nino3_LatExt climatological pr STD, time series are linearly detrended, observations and model regridded to generic_1x1deg',
         'name': 'pr meridional seasonality RMSE',
         'ref': 'Using CDAT regridding and rms (uncentered and biased) calculation',
         'time_frequency': 'monthly',
         'units': 'mm/day'},
        'metric': {'datasets': "MPI-ESM-MR_r1i1p1; ERA-Interim's pr & GPCPv2.3's precip; 's ",
         'method': 'The metric is the statistical value between the model and the observations',
         'name': 'SeasonalPrLatRmse',
         'units': 'mm/day'}},
       'SeasonalPrLonRmse': {'diagnostic': {'ERA-Interim': {'name': 'ERA-Interim',
          'nyears': 40,
          'time_period': ['1979-1-16 12:0:0.0', '2019-3-16 12:0:0.0']},
         'GPCPv2.3': {'name': 'GPCPv2.3',
          'nyears': 41,
          'time_period': ['1979-1-1 0:0:0.0', '2019-7-1 0:0:0.0']},
         'MPI-ESM-MR_r1i1p1': {'keyerror': None,
          'name': 'MPI-ESM-MR_r1i1p1',
          'nyears': 156,
          'time_period': ['1850-1-16 12:0:0.0', '2005-12-16 12:0:0.0']},
         'method': 'Zonal root mean square error of equatorial_pacific climatological pr STD, time series are linearly detrended, observations and model regridded to generic_1x1deg',
         'name': 'pr zonal seasonality RMSE',
         'ref': 'Using CDAT regridding and rms (uncentered and biased) calculation',
         'time_frequency': 'monthly',
         'units': 'mm/day'},
        'metric': {'datasets': "MPI-ESM-MR_r1i1p1; ERA-Interim's pr & GPCPv2.3's precip; 's ",
         'method': 'The metric is the statistical value between the model and the observations',
         'name': 'SeasonalPrLonRmse',
         'units': 'mm/day'}},
       'SeasonalSstLonRmse': {'diagnostic': {'ERA-Interim': {'name': 'ERA-Interim',
          'nyears': 40,
          'time_period': ['1979-1-16 12:0:0.0', '2019-3-16 12:0:0.0']},
         'HadISST': {'name': 'HadISST',
          'nyears': 151,
          'time_period': ['1870-1-16 11:59:59.5', '2020-10-16 12:0:0.0']},
         'MPI-ESM-MR_r1i1p1': {'keyerror': None,
          'name': 'MPI-ESM-MR_r1i1p1',
          'nyears': 156,
          'time_period': ['1850-1-16 12:0:0.0', '2005-12-16 12:0:0.0']},
         'Tropflux': {'name': 'Tropflux',
          'nyears': 40,
          'time_period': ['1979-1-15 0:0:0.0', '2018-12-15 12:0:0.0']},
         'method': 'Zonal root mean square error of equatorial_pacific climatological sst STD, time series are linearly detrended, observations and model regridded to generic_1x1deg',
         'name': 'sst zonal seasonality RMSE',
         'ref': 'Using CDAT regridding and rms (uncentered and biased) calculation',
         'time_frequency': 'monthly',
         'units': 'C'},
        'metric': {'datasets': "MPI-ESM-MR_r1i1p1; ERA-Interim's ts & HadISST's sst & Tropflux's sst; 's ",
         'method': 'The metric is the statistical value between the model and the observations',
         'name': 'SeasonalSstLonRmse',
         'units': 'C'}},
       'SeasonalTauxLonRmse': {'diagnostic': {'ERA-Interim': {'name': 'ERA-Interim',
          'nyears': 40,
          'time_period': ['1979-1-16 12:0:0.0', '2019-3-16 12:0:0.0']},
         'MPI-ESM-MR_r1i1p1': {'keyerror': None,
          'name': 'MPI-ESM-MR_r1i1p1',
          'nyears': 156,
          'time_period': ['1850-1-16 12:0:0.0', '2005-12-16 12:0:0.0']},
         'Tropflux': {'name': 'Tropflux',
          'nyears': 40,
          'time_period': ['1979-1-15 0:0:0.0', '2018-12-15 12:0:0.0']},
         'method': 'Zonal root mean square error of equatorial_pacific climatological taux STD, time series are linearly detrended, observations and model regridded to generic_1x1deg',
         'name': 'taux zonal seasonality RMSE',
         'ref': 'Using CDAT regridding and rms (uncentered and biased) calculation',
         'time_frequency': 'monthly',
         'units': '1e-3 N/m2'},
        'metric': {'datasets': "MPI-ESM-MR_r1i1p1; ERA-Interim's tauu & Tropflux's taux; 's ",
         'method': 'The metric is the statistical value between the model and the observations',
         'name': 'SeasonalTauxLonRmse',
         'units': '1e-3 N/m2'}}},
      'name': 'Metrics Collection for ENSO performance'},
     'value': {'BiasPrLatRmse': {'diagnostic': {'ERA-Interim': {'value': None,
         'value_error': None},
        'GPCPv2.3': {'value': None, 'value_error': None},
        'MPI-ESM-MR_r1i1p1': {'value': None, 'value_error': None}},
       'metric': {'ERA-Interim': {'value': 1.8624755655213807,
         'value_error': None},
        'GPCPv2.3': {'value': 1.6486446218551836, 'value_error': None}}},
      'BiasPrLonRmse': {'diagnostic': {'ERA-Interim': {'value': None,
         'value_error': None},
        'GPCPv2.3': {'value': None, 'value_error': None},
        'MPI-ESM-MR_r1i1p1': {'value': None, 'value_error': None}},
       'metric': {'ERA-Interim': {'value': 3.5132536711310993,
         'value_error': None},
        'GPCPv2.3': {'value': 2.3612448661338883, 'value_error': None}}},
      'BiasSstLonRmse': {'diagnostic': {'ERA-Interim': {'value': None,
         'value_error': None},
        'HadISST': {'value': None, 'value_error': None},
        'MPI-ESM-MR_r1i1p1': {'value': None, 'value_error': None},
        'Tropflux': {'value': None, 'value_error': None}},
       'metric': {'ERA-Interim': {'value': 1.4436879420239443,
         'value_error': None},
        'HadISST': {'value': 1.257438435158783, 'value_error': None},
        'Tropflux': {'value': 1.4912090976850538, 'value_error': None}}},
      'BiasTauxLonRmse': {'diagnostic': {'ERA-Interim': {'value': None,
         'value_error': None},
        'MPI-ESM-MR_r1i1p1': {'value': None, 'value_error': None},
        'Tropflux': {'value': None, 'value_error': None}},
       'metric': {'ERA-Interim': {'value': 9.838601171606186,
         'value_error': None},
        'Tropflux': {'value': 9.820787646436989, 'value_error': None}}},
      'EnsoAmpl': {'diagnostic': {'ERA-Interim': {'value': 0.8989844997845644,
         'value_error': 0.14214193002531866},
        'HadISST': {'value': 0.7665787872085695,
         'value_error': 0.06238329697691264},
        'MPI-ESM-MR_r1i1p1': {'value': 0.6484460192110592,
         'value_error': 0.05191723194926248},
        'Tropflux': {'value': 0.9039789553693535,
         'value_error': 0.14293162279134272}},
       'metric': {'ERA-Interim': {'value': 27.86905454249157,
         'value_error': 17.180001435518268},
        'HadISST': {'value': 15.41038833433947,
         'value_error': 13.65639414410062},
        'Tropflux': {'value': 28.267575770487603,
         'value_error': 17.085082462452956}}},
      'EnsoDuration': {'diagnostic': {'ERA-Interim': {'value': 13.0,
         'value_error': None},
        'HadISST': {'value': 13.0, 'value_error': None},
        'MPI-ESM-MR_r1i1p1': {'value': 24.0, 'value_error': None},
        'Tropflux': {'value': 13.0, 'value_error': None}},
       'metric': {'ERA-Interim': {'value': 84.61538461538461,
         'value_error': None},
        'HadISST': {'value': 84.61538461538461, 'value_error': None},
        'Tropflux': {'value': 84.61538461538461, 'value_error': None}}},
      'EnsoSeasonality': {'diagnostic': {'ERA-Interim': {'value': 2.0466846866656914,
         'value_error': 0.6513411033995022},
        'HadISST': {'value': 1.6639865947361325,
         'value_error': 0.2712772451657809},
        'MPI-ESM-MR_r1i1p1': {'value': 1.0326732799851528,
         'value_error': 0.16562634679645488},
        'Tropflux': {'value': 2.0532132553583624,
         'value_error': 0.6534187683977347}},
       'metric': {'ERA-Interim': {'value': 49.54409505708921,
         'value_error': 24.149611222578535},
        'HadISST': {'value': 37.93980773331233,
         'value_error': 20.071166905949354},
        'Tropflux': {'value': 49.70452887491646,
         'value_error': 24.072823097742273}}},
      'EnsoSstDiversity_2': {'diagnostic': {'ERA-Interim': {'value': 33.25,
         'value_error': None},
        'HadISST': {'value': 49.0, 'value_error': None},
        'MPI-ESM-MR_r1i1p1': {'value': 52.0, 'value_error': None},
        'Tropflux': {'value': 32.0, 'value_error': None}},
       'metric': {'ERA-Interim': {'value': 56.390977443609025,
         'value_error': None},
        'HadISST': {'value': 6.122448979591836, 'value_error': None},
        'Tropflux': {'value': 62.5, 'value_error': None}}},
      'EnsoSstLonRmse': {'diagnostic': {'ERA-Interim': {'value': None,
         'value_error': None},
        'HadISST': {'value': None, 'value_error': None},
        'MPI-ESM-MR_r1i1p1': {'value': None, 'value_error': None},
        'Tropflux': {'value': None, 'value_error': None}},
       'metric': {'ERA-Interim': {'value': 0.24793498403542114,
         'value_error': None},
        'HadISST': {'value': 0.26776790315407034, 'value_error': None},
        'Tropflux': {'value': 0.24903376154059642, 'value_error': None}}},
      'EnsoSstSkew': {'diagnostic': {'ERA-Interim': {'value': 0.39098111106809963,
         'value_error': 0.061819541653923164},
        'HadISST': {'value': 0.38989908235027515,
         'value_error': 0.03172953733021198},
        'MPI-ESM-MR_r1i1p1': {'value': 0.07154837719460673,
         'value_error': 0.005728454773961188},
        'Tropflux': {'value': 0.39744741059612115,
         'value_error': 0.06284195338099416}},
       'metric': {'ERA-Interim': {'value': 81.70029825759416,
         'value_error': 4.358585627985308},
        'HadISST': {'value': 81.64951382718836,
         'value_error': 2.9625561221664403},
        'Tropflux': {'value': 81.99802658487745,
         'value_error': 4.287673302385276}}},
      'EnsoSstTsRmse': {'diagnostic': {'ERA-Interim': {'value': None,
         'value_error': None},
        'HadISST': {'value': None, 'value_error': None},
        'MPI-ESM-MR_r1i1p1': {'value': None, 'value_error': None},
        'Tropflux': {'value': None, 'value_error': None}},
       'metric': {'ERA-Interim': {'value': 0.2199133029685066,
         'value_error': None},
        'HadISST': {'value': 0.17945554814509204, 'value_error': None},
        'Tropflux': {'value': 0.21565916805221672, 'value_error': None}}},
      'SeasonalPrLatRmse': {'diagnostic': {'ERA-Interim': {'value': None,
         'value_error': None},
        'GPCPv2.3': {'value': None, 'value_error': None},
        'MPI-ESM-MR_r1i1p1': {'value': None, 'value_error': None}},
       'metric': {'ERA-Interim': {'value': 1.3947921386159559,
         'value_error': None},
        'GPCPv2.3': {'value': 1.2718147444161652, 'value_error': None}}},
      'SeasonalPrLonRmse': {'diagnostic': {'ERA-Interim': {'value': None,
         'value_error': None},
        'GPCPv2.3': {'value': None, 'value_error': None},
        'MPI-ESM-MR_r1i1p1': {'value': None, 'value_error': None}},
       'metric': {'ERA-Interim': {'value': 1.1675984079665462,
         'value_error': None},
        'GPCPv2.3': {'value': 0.833093275434345, 'value_error': None}}},
      'SeasonalSstLonRmse': {'diagnostic': {'ERA-Interim': {'value': None,
         'value_error': None},
        'HadISST': {'value': None, 'value_error': None},
        'MPI-ESM-MR_r1i1p1': {'value': None, 'value_error': None},
        'Tropflux': {'value': None, 'value_error': None}},
       'metric': {'ERA-Interim': {'value': 0.22334957394805885,
         'value_error': None},
        'HadISST': {'value': 0.23874077090886506, 'value_error': None},
        'Tropflux': {'value': 0.22481906018256342, 'value_error': None}}},
      'SeasonalTauxLonRmse': {'diagnostic': {'ERA-Interim': {'value': None,
         'value_error': None},
        'MPI-ESM-MR_r1i1p1': {'value': None, 'value_error': None},
        'Tropflux': {'value': None, 'value_error': None}},
       'metric': {'ERA-Interim': {'value': 2.0016023386866397,
         'value_error': None},
        'Tropflux': {'value': 2.1562864066556813, 'value_error': None}}}}},
    'r2i1p1': {'metadata': {'description_of_the_collection': 'Describe which science question this collection is about',
      'metrics': {'BiasPrLatRmse': {'diagnostic': {'ERA-Interim': {'name': 'ERA-Interim',
          'nyears': 40,
          'time_period': ['1979-1-16 12:0:0.0', '2019-3-16 12:0:0.0']},
         'GPCPv2.3': {'name': 'GPCPv2.3',
          'nyears': 41,
          'time_period': ['1979-1-1 0:0:0.0', '2019-7-1 0:0:0.0']},
         'MPI-ESM-MR_r2i1p1': {'keyerror': None,
          'name': 'MPI-ESM-MR_r2i1p1',
          'nyears': 156,
          'time_period': ['1850-1-16 12:0:0.0', '2005-12-16 12:0:0.0']},
         'method': 'Meridional root mean square error of nino3_LatExt pr, time series are linearly detrended, observations and model regridded to generic_1x1deg',
         'name': 'pr Meridional RMSE',
         'ref': 'Using CDAT regridding and rms (uncentered and biased) calculation',
         'time_frequency': 'monthly',
         'units': 'mm/day'},
        'metric': {'datasets': "MPI-ESM-MR_r2i1p1; ERA-Interim's pr & GPCPv2.3's precip; 's ",
         'method': 'The metric is the statistical value between the model and the observations',
         'name': 'BiasPrLatRmse',
         'units': 'mm/day'}},
       'BiasPrLonRmse': {'diagnostic': {'ERA-Interim': {'name': 'ERA-Interim',
          'nyears': 40,
          'time_period': ['1979-1-16 12:0:0.0', '2019-3-16 12:0:0.0']},
         'GPCPv2.3': {'name': 'GPCPv2.3',
          'nyears': 41,
          'time_period': ['1979-1-1 0:0:0.0', '2019-7-1 0:0:0.0']},
         'MPI-ESM-MR_r2i1p1': {'keyerror': None,
          'name': 'MPI-ESM-MR_r2i1p1',
          'nyears': 156,
          'time_period': ['1850-1-16 12:0:0.0', '2005-12-16 12:0:0.0']},
         'method': 'Zonal root mean square error of equatorial_pacific pr, time series are linearly detrended, observations and model regridded to generic_1x1deg',
         'name': 'pr Zonal RMSE',
         'ref': 'Using CDAT regridding and rms (uncentered and biased) calculation',
         'time_frequency': 'monthly',
         'units': 'mm/day'},
        'metric': {'datasets': "MPI-ESM-MR_r2i1p1; ERA-Interim's pr & GPCPv2.3's precip; 's ",
         'method': 'The metric is the statistical value between the model and the observations',
         'name': 'BiasPrLonRmse',
         'units': 'mm/day'}},
       'BiasSstLonRmse': {'diagnostic': {'ERA-Interim': {'name': 'ERA-Interim',
          'nyears': 40,
          'time_period': ['1979-1-16 12:0:0.0', '2019-3-16 12:0:0.0']},
         'HadISST': {'name': 'HadISST',
          'nyears': 151,
          'time_period': ['1870-1-16 11:59:59.5', '2020-10-16 12:0:0.0']},
         'MPI-ESM-MR_r2i1p1': {'keyerror': None,
          'name': 'MPI-ESM-MR_r2i1p1',
          'nyears': 156,
          'time_period': ['1850-1-16 12:0:0.0', '2005-12-16 12:0:0.0']},
         'Tropflux': {'name': 'Tropflux',
          'nyears': 40,
          'time_period': ['1979-1-15 0:0:0.0', '2018-12-15 12:0:0.0']},
         'method': 'Zonal root mean square error of equatorial_pacific sst, time series are linearly detrended, observations and model regridded to generic_1x1deg',
         'name': 'sst Zonal RMSE',
         'ref': 'Using CDAT regridding and rms (uncentered and biased) calculation',
         'time_frequency': 'monthly',
         'units': 'C'},
        'metric': {'datasets': "MPI-ESM-MR_r2i1p1; ERA-Interim's ts & HadISST's sst & Tropflux's sst; 's ",
         'method': 'The metric is the statistical value between the model and the observations',
         'name': 'BiasSstLonRmse',
         'units': 'C'}},
       'BiasTauxLonRmse': {'diagnostic': {'ERA-Interim': {'name': 'ERA-Interim',
          'nyears': 40,
          'time_period': ['1979-1-16 12:0:0.0', '2019-3-16 12:0:0.0']},
         'MPI-ESM-MR_r2i1p1': {'keyerror': None,
          'name': 'MPI-ESM-MR_r2i1p1',
          'nyears': 156,
          'time_period': ['1850-1-16 12:0:0.0', '2005-12-16 12:0:0.0']},
         'Tropflux': {'name': 'Tropflux',
          'nyears': 40,
          'time_period': ['1979-1-15 0:0:0.0', '2018-12-15 12:0:0.0']},
         'method': 'Zonal root mean square error of equatorial_pacific taux, time series are linearly detrended, observations and model regridded to generic_1x1deg',
         'name': 'taux Zonal RMSE',
         'ref': 'Using CDAT regridding and rms (uncentered and biased) calculation',
         'time_frequency': 'monthly',
         'units': '1e-3 N/m2'},
        'metric': {'datasets': "MPI-ESM-MR_r2i1p1; ERA-Interim's tauu & Tropflux's taux; 's ",
         'method': 'The metric is the statistical value between the model and the observations',
         'name': 'BiasTauxLonRmse',
         'units': '1e-3 N/m2'}},
       'EnsoAmpl': {'diagnostic': {'ERA-Interim': {'keyerror': None,
          'name': 'ERA-Interim',
          'nyears': 40,
          'time_period': ['1979-1-16 12:0:0.0', '2019-3-16 12:0:0.0']},
         'HadISST': {'keyerror': None,
          'name': 'HadISST',
          'nyears': 151,
          'time_period': ['1870-1-16 11:59:59.5', '2020-10-16 12:0:0.0']},
         'MPI-ESM-MR_r2i1p1': {'keyerror': None,
          'name': 'MPI-ESM-MR_r2i1p1',
          'nyears': 156,
          'time_period': ['1850-1-16 12:0:0.0', '2005-12-16 12:0:0.0']},
         'Tropflux': {'keyerror': None,
          'name': 'Tropflux',
          'nyears': 40,
          'time_period': ['1979-1-15 0:0:0.0', '2018-12-15 12:0:0.0']},
         'method': 'Standard deviation of nino3.4 sstA, time series are linearly detrended',
         'name': 'ENSO amplitude',
         'ref': 'Using CDAT regression calculation',
         'time_frequency': 'monthly',
         'units': 'C'},
        'metric': {'datasets': "MPI-ESM-MR_r2i1p1; ERA-Interim's ts & HadISST's sst & Tropflux's sst; 's ",
         'method': 'The metric is the absolute value of the relative difference between model and observations values (M = 100 * abs[[model-obs] / obs])',
         'name': 'EnsoAmpl',
         'units': '%'}},
       'EnsoDuration': {'diagnostic': {'ERA-Interim': {'keyerror': None,
          'name': 'ERA-Interim',
          'nyears': 40,
          'time_period': ['1979-1-16 12:0:0.0', '2019-3-16 12:0:0.0']},
         'HadISST': {'keyerror': None,
          'name': 'HadISST',
          'nyears': 151,
          'time_period': ['1870-1-16 11:59:59.5', '2020-10-16 12:0:0.0']},
         'MPI-ESM-MR_r2i1p1': {'keyerror': None,
          'name': 'MPI-ESM-MR_r2i1p1',
          'nyears': 156,
          'time_period': ['1850-1-16 12:0:0.0', '2005-12-16 12:0:0.0']},
         'Tropflux': {'keyerror': None,
          'name': 'Tropflux',
          'nyears': 40,
          'time_period': ['1979-1-15 0:0:0.0', '2018-12-15 12:0:0.0']},
         'method': 'nino3.4 SSTA during DEC regressed against nino3.4 SSTA during 6 years (centered on ENSO), the duration is the number of consecutive months during which the regression is above 0.25, time series are linearly detrended, smoothing using a triangle shaped window of 5 points',
         'name': 'ENSO Duration based on life cyle SSTA pattern',
         'ref': 'Using CDAT',
         'time_frequency': 'monthly',
         'units': 'months'},
        'metric': {'datasets': "MPI-ESM-MR_r2i1p1; ERA-Interim's ts & HadISST's sst & Tropflux's sst; 's ",
         'method': 'The metric is the absolute value of the relative difference between model and observations values (M = 100 * abs[[model-obs] / obs])',
         'name': 'EnsoDuration',
         'units': '%'}},
       'EnsoSeasonality': {'diagnostic': {'ERA-Interim': {'keyerror': None,
          'name': 'ERA-Interim',
          'nyears': 40,
          'time_period': ['1979-1-16 12:0:0.0', '2019-3-16 12:0:0.0']},
         'HadISST': {'keyerror': None,
          'name': 'HadISST',
          'nyears': 151,
          'time_period': ['1870-1-16 11:59:59.5', '2020-10-16 12:0:0.0']},
         'MPI-ESM-MR_r2i1p1': {'keyerror': None,
          'name': 'MPI-ESM-MR_r2i1p1',
          'nyears': 156,
          'time_period': ['1850-1-16 12:0:0.0', '2005-12-16 12:0:0.0']},
         'Tropflux': {'keyerror': None,
          'name': 'Tropflux',
          'nyears': 40,
          'time_period': ['1979-1-15 0:0:0.0', '2018-12-15 12:0:0.0']},
         'method': 'Ratio between NDJ and MAM standard deviation nino3.4 sstA, time series are linearly detrended',
         'name': 'ENSO seasonality',
         'ref': 'Using CDAT std dev calculation',
         'time_frequency': 'monthly',
         'units': 'C/C'},
        'metric': {'datasets': "MPI-ESM-MR_r2i1p1; ERA-Interim's ts & HadISST's sst & Tropflux's sst; 's ",
         'method': 'The metric is the absolute value of the relative difference between model and observations values (M = 100 * abs[[model-obs] / obs])',
         'name': 'EnsoSeasonality',
         'units': '%'}},
       'EnsoSstDiversity_2': {'diagnostic': {'ERA-Interim': {'keyerror': None,
          'name': 'ERA-Interim',
          'nyears': 40,
          'time_period': ['1979-1-16 12:0:0.0', '2019-3-16 12:0:0.0']},
         'HadISST': {'keyerror': None,
          'name': 'HadISST',
          'nyears': 151,
          'time_period': ['1870-1-16 11:59:59.5', '2020-10-16 12:0:0.0']},
         'MPI-ESM-MR_r2i1p1': {'keyerror': None,
          'name': 'MPI-ESM-MR_r2i1p1',
          'nyears': 156,
          'time_period': ['1850-1-16 12:0:0.0', '2005-12-16 12:0:0.0']},
         'Tropflux': {'keyerror': None,
          'name': 'Tropflux',
          'nyears': 40,
          'time_period': ['1979-1-15 0:0:0.0', '2018-12-15 12:0:0.0']},
         'method': 'Nino (Nina) events = nino3.4 sstA > 0.75 (< -0.75) during DEC, zonal SSTA (meridional averaged [-5.0 ; 5.0]), the zonal SSTA maximum (minimum) is located for each event, the diversity is the interquartile range (IQR = Q3 - Q1), time series are linearly detrended, smoothing using a triangle shaped window of 5 points',
         'name': 'ENSO Diversity (interquartile range)',
         'ref': 'Using CDAT regridding',
         'time_frequency': 'monthly',
         'units': 'long'},
        'metric': {'datasets': "MPI-ESM-MR_r2i1p1; ERA-Interim's ts & HadISST's sst & Tropflux's sst; 's ",
         'method': 'The metric is the absolute value of the relative difference between model and observations values (M = 100 * abs[[model-obs] / obs])',
         'name': 'EnsoSstDiversity',
         'units': '%'}},
       'EnsoSstLonRmse': {'diagnostic': {'ERA-Interim': {'name': 'ERA-Interim',
          'nyears': 40,
          'time_period': ['1979-1-16 12:0:0.0', '2019-3-16 12:0:0.0']},
         'HadISST': {'name': 'HadISST',
          'nyears': 151,
          'time_period': ['1870-1-16 11:59:59.5', '2020-10-16 12:0:0.0']},
         'MPI-ESM-MR_r2i1p1': {'keyerror': None,
          'name': 'MPI-ESM-MR_r2i1p1',
          'nyears': 156,
          'time_period': ['1850-1-16 12:0:0.0', '2005-12-16 12:0:0.0']},
         'Tropflux': {'name': 'Tropflux',
          'nyears': 40,
          'time_period': ['1979-1-15 0:0:0.0', '2018-12-15 12:0:0.0']},
         'method': 'nino3.4 SSTA during DEC regressed against equatorial_pacific SSTA, time series are linearly detrended, smoothing using a triangle shaped window of 5 points, observations and model regridded to generic_1x1deg',
         'name': 'ENSO Zonal SSTA pattern',
         'ref': 'Using CDAT regridding and rms (uncentered and biased) calculation',
         'time_frequency': 'monthly',
         'units': 'C/C'},
        'metric': {'datasets': "MPI-ESM-MR_r2i1p1; ERA-Interim's ts & HadISST's sst & Tropflux's sst; 's ",
         'method': 'The metric is the statistical value between the model and the observations',
         'name': 'EnsoSstLonRmse',
         'units': 'C/C'}},
       'EnsoSstSkew': {'diagnostic': {'ERA-Interim': {'keyerror': None,
          'name': 'ERA-Interim',
          'nyears': 40,
          'time_period': ['1979-1-16 12:0:0.0', '2019-3-16 12:0:0.0']},
         'HadISST': {'keyerror': None,
          'name': 'HadISST',
          'nyears': 151,
          'time_period': ['1870-1-16 11:59:59.5', '2020-10-16 12:0:0.0']},
         'MPI-ESM-MR_r2i1p1': {'keyerror': None,
          'name': 'MPI-ESM-MR_r2i1p1',
          'nyears': 156,
          'time_period': ['1850-1-16 12:0:0.0', '2005-12-16 12:0:0.0']},
         'Tropflux': {'keyerror': None,
          'name': 'Tropflux',
          'nyears': 40,
          'time_period': ['1979-1-15 0:0:0.0', '2018-12-15 12:0:0.0']},
         'method': 'Standard deviation of nino3.4 sstA, time series are linearly detrended',
         'name': 'ENSO skewness',
         'ref': 'Using CDAT regression calculation',
         'time_frequency': 'monthly',
         'units': 'C'},
        'metric': {'datasets': "MPI-ESM-MR_r2i1p1; ERA-Interim's ts & HadISST's sst & Tropflux's sst; 's ",
         'method': 'The metric is the absolute value of the relative difference between model and observations values (M = 100 * abs[[model-obs] / obs])',
         'name': 'EnsoSstSkew',
         'units': '%'}},
       'EnsoSstTsRmse': {'diagnostic': {'ERA-Interim': {'name': 'ERA-Interim',
          'nyears': 40,
          'time_period': ['1979-1-16 12:0:0.0', '2019-3-16 12:0:0.0']},
         'HadISST': {'name': 'HadISST',
          'nyears': 151,
          'time_period': ['1870-1-16 11:59:59.5', '2020-10-16 12:0:0.0']},
         'MPI-ESM-MR_r2i1p1': {'keyerror': None,
          'name': 'MPI-ESM-MR_r2i1p1',
          'nyears': 156,
          'time_period': ['1850-1-16 12:0:0.0', '2005-12-16 12:0:0.0']},
         'Tropflux': {'name': 'Tropflux',
          'nyears': 40,
          'time_period': ['1979-1-15 0:0:0.0', '2018-12-15 12:0:0.0']},
         'method': 'nino3.4 SSTA during DEC regressed against nino3.4 SSTA during 6 years (centered on ENSO), time series are linearly detrended, smoothing using a triangle shaped window of 5 points',
         'name': 'ENSO life cyle SSTA pattern',
         'ref': 'Using CDAT regridding and rms (uncentered and biased) calculation',
         'time_frequency': 'monthly',
         'units': 'C/C'},
        'metric': {'datasets': "MPI-ESM-MR_r2i1p1; ERA-Interim's ts & HadISST's sst & Tropflux's sst; 's ",
         'method': 'The metric is the statistical value between the model and the observations',
         'name': 'EnsoSstTsRmse',
         'units': 'C/C'}},
       'SeasonalPrLatRmse': {'diagnostic': {'ERA-Interim': {'name': 'ERA-Interim',
          'nyears': 40,
          'time_period': ['1979-1-16 12:0:0.0', '2019-3-16 12:0:0.0']},
         'GPCPv2.3': {'name': 'GPCPv2.3',
          'nyears': 41,
          'time_period': ['1979-1-1 0:0:0.0', '2019-7-1 0:0:0.0']},
         'MPI-ESM-MR_r2i1p1': {'keyerror': None,
          'name': 'MPI-ESM-MR_r2i1p1',
          'nyears': 156,
          'time_period': ['1850-1-16 12:0:0.0', '2005-12-16 12:0:0.0']},
         'method': 'Meridional root mean square error of nino3_LatExt climatological pr STD, time series are linearly detrended, observations and model regridded to generic_1x1deg',
         'name': 'pr meridional seasonality RMSE',
         'ref': 'Using CDAT regridding and rms (uncentered and biased) calculation',
         'time_frequency': 'monthly',
         'units': 'mm/day'},
        'metric': {'datasets': "MPI-ESM-MR_r2i1p1; ERA-Interim's pr & GPCPv2.3's precip; 's ",
         'method': 'The metric is the statistical value between the model and the observations',
         'name': 'SeasonalPrLatRmse',
         'units': 'mm/day'}},
       'SeasonalPrLonRmse': {'diagnostic': {'ERA-Interim': {'name': 'ERA-Interim',
          'nyears': 40,
          'time_period': ['1979-1-16 12:0:0.0', '2019-3-16 12:0:0.0']},
         'GPCPv2.3': {'name': 'GPCPv2.3',
          'nyears': 41,
          'time_period': ['1979-1-1 0:0:0.0', '2019-7-1 0:0:0.0']},
         'MPI-ESM-MR_r2i1p1': {'keyerror': None,
          'name': 'MPI-ESM-MR_r2i1p1',
          'nyears': 156,
          'time_period': ['1850-1-16 12:0:0.0', '2005-12-16 12:0:0.0']},
         'method': 'Zonal root mean square error of equatorial_pacific climatological pr STD, time series are linearly detrended, observations and model regridded to generic_1x1deg',
         'name': 'pr zonal seasonality RMSE',
         'ref': 'Using CDAT regridding and rms (uncentered and biased) calculation',
         'time_frequency': 'monthly',
         'units': 'mm/day'},
        'metric': {'datasets': "MPI-ESM-MR_r2i1p1; ERA-Interim's pr & GPCPv2.3's precip; 's ",
         'method': 'The metric is the statistical value between the model and the observations',
         'name': 'SeasonalPrLonRmse',
         'units': 'mm/day'}},
       'SeasonalSstLonRmse': {'diagnostic': {'ERA-Interim': {'name': 'ERA-Interim',
          'nyears': 40,
          'time_period': ['1979-1-16 12:0:0.0', '2019-3-16 12:0:0.0']},
         'HadISST': {'name': 'HadISST',
          'nyears': 151,
          'time_period': ['1870-1-16 11:59:59.5', '2020-10-16 12:0:0.0']},
         'MPI-ESM-MR_r2i1p1': {'keyerror': None,
          'name': 'MPI-ESM-MR_r2i1p1',
          'nyears': 156,
          'time_period': ['1850-1-16 12:0:0.0', '2005-12-16 12:0:0.0']},
         'Tropflux': {'name': 'Tropflux',
          'nyears': 40,
          'time_period': ['1979-1-15 0:0:0.0', '2018-12-15 12:0:0.0']},
         'method': 'Zonal root mean square error of equatorial_pacific climatological sst STD, time series are linearly detrended, observations and model regridded to generic_1x1deg',
         'name': 'sst zonal seasonality RMSE',
         'ref': 'Using CDAT regridding and rms (uncentered and biased) calculation',
         'time_frequency': 'monthly',
         'units': 'C'},
        'metric': {'datasets': "MPI-ESM-MR_r2i1p1; ERA-Interim's ts & HadISST's sst & Tropflux's sst; 's ",
         'method': 'The metric is the statistical value between the model and the observations',
         'name': 'SeasonalSstLonRmse',
         'units': 'C'}},
       'SeasonalTauxLonRmse': {'diagnostic': {'ERA-Interim': {'name': 'ERA-Interim',
          'nyears': 40,
          'time_period': ['1979-1-16 12:0:0.0', '2019-3-16 12:0:0.0']},
         'MPI-ESM-MR_r2i1p1': {'keyerror': None,
          'name': 'MPI-ESM-MR_r2i1p1',
          'nyears': 156,
          'time_period': ['1850-1-16 12:0:0.0', '2005-12-16 12:0:0.0']},
         'Tropflux': {'name': 'Tropflux',
          'nyears': 40,
          'time_period': ['1979-1-15 0:0:0.0', '2018-12-15 12:0:0.0']},
         'method': 'Zonal root mean square error of equatorial_pacific climatological taux STD, time series are linearly detrended, observations and model regridded to generic_1x1deg',
         'name': 'taux zonal seasonality RMSE',
         'ref': 'Using CDAT regridding and rms (uncentered and biased) calculation',
         'time_frequency': 'monthly',
         'units': '1e-3 N/m2'},
        'metric': {'datasets': "MPI-ESM-MR_r2i1p1; ERA-Interim's tauu & Tropflux's taux; 's ",
         'method': 'The metric is the statistical value between the model and the observations',
         'name': 'SeasonalTauxLonRmse',
         'units': '1e-3 N/m2'}}},
      'name': 'Metrics Collection for ENSO performance'},
     'value': {'BiasPrLatRmse': {'diagnostic': {'ERA-Interim': {'value': None,
         'value_error': None},
        'GPCPv2.3': {'value': None, 'value_error': None},
        'MPI-ESM-MR_r2i1p1': {'value': None, 'value_error': None}},
       'metric': {'ERA-Interim': {'value': 1.8634641571855046,
         'value_error': None},
        'GPCPv2.3': {'value': 1.634989804888192, 'value_error': None}}},
      'BiasPrLonRmse': {'diagnostic': {'ERA-Interim': {'value': None,
         'value_error': None},
        'GPCPv2.3': {'value': None, 'value_error': None},
        'MPI-ESM-MR_r2i1p1': {'value': None, 'value_error': None}},
       'metric': {'ERA-Interim': {'value': 3.5955702203300186,
         'value_error': None},
        'GPCPv2.3': {'value': 2.4353450373796686, 'value_error': None}}},
      'BiasSstLonRmse': {'diagnostic': {'ERA-Interim': {'value': None,
         'value_error': None},
        'HadISST': {'value': None, 'value_error': None},
        'MPI-ESM-MR_r2i1p1': {'value': None, 'value_error': None},
        'Tropflux': {'value': None, 'value_error': None}},
       'metric': {'ERA-Interim': {'value': 1.5129382110568068,
         'value_error': None},
        'HadISST': {'value': 1.3252822850482784, 'value_error': None},
        'Tropflux': {'value': 1.5605235205380554, 'value_error': None}}},
      'BiasTauxLonRmse': {'diagnostic': {'ERA-Interim': {'value': None,
         'value_error': None},
        'MPI-ESM-MR_r2i1p1': {'value': None, 'value_error': None},
        'Tropflux': {'value': None, 'value_error': None}},
       'metric': {'ERA-Interim': {'value': 10.028119291765881,
         'value_error': None},
        'Tropflux': {'value': 10.022685640226129, 'value_error': None}}},
      'EnsoAmpl': {'diagnostic': {'ERA-Interim': {'value': 0.8989844997845644,
         'value_error': 0.14214193002531866},
        'HadISST': {'value': 0.7665787872085695,
         'value_error': 0.06238329697691264},
        'MPI-ESM-MR_r2i1p1': {'value': 0.6620758488594904,
         'value_error': 0.053008491678403054},
        'Tropflux': {'value': 0.9039789553693535,
         'value_error': 0.14293162279134272}},
       'metric': {'ERA-Interim': {'value': 26.352918318596984,
         'value_error': 17.541111668272592},
        'HadISST': {'value': 13.63238066234751,
         'value_error': 13.943440899391657},
        'Tropflux': {'value': 26.759816152028087,
         'value_error': 17.444197572413778}}},
      'EnsoDuration': {'diagnostic': {'ERA-Interim': {'value': 13.0,
         'value_error': None},
        'HadISST': {'value': 13.0, 'value_error': None},
        'MPI-ESM-MR_r2i1p1': {'value': 25.0, 'value_error': None},
        'Tropflux': {'value': 13.0, 'value_error': None}},
       'metric': {'ERA-Interim': {'value': 92.3076923076923,
         'value_error': None},
        'HadISST': {'value': 92.3076923076923, 'value_error': None},
        'Tropflux': {'value': 92.3076923076923, 'value_error': None}}},
      'EnsoSeasonality': {'diagnostic': {'ERA-Interim': {'value': 2.0466846866656914,
         'value_error': 0.6513411033995022},
        'HadISST': {'value': 1.6639865947361325,
         'value_error': 0.2712772451657809},
        'MPI-ESM-MR_r2i1p1': {'value': 1.1270457244709002,
         'value_error': 0.18076236660191577},
        'Tropflux': {'value': 2.0532132553583624,
         'value_error': 0.6534187683977347}},
       'metric': {'ERA-Interim': {'value': 44.933104165302545,
         'value_error': 26.35656078603382},
        'HadISST': {'value': 32.26834110105183,
         'value_error': 21.905401529143152},
        'Tropflux': {'value': 45.10819947564635,
         'value_error': 26.272755259674035}}},
      'EnsoSstDiversity_2': {'diagnostic': {'ERA-Interim': {'value': 33.25,
         'value_error': None},
        'HadISST': {'value': 49.0, 'value_error': None},
        'MPI-ESM-MR_r2i1p1': {'value': 16.0, 'value_error': None},
        'Tropflux': {'value': 32.0, 'value_error': None}},
       'metric': {'ERA-Interim': {'value': 51.8796992481203,
         'value_error': None},
        'HadISST': {'value': 67.3469387755102, 'value_error': None},
        'Tropflux': {'value': 50.0, 'value_error': None}}},
      'EnsoSstLonRmse': {'diagnostic': {'ERA-Interim': {'value': None,
         'value_error': None},
        'HadISST': {'value': None, 'value_error': None},
        'MPI-ESM-MR_r2i1p1': {'value': None, 'value_error': None},
        'Tropflux': {'value': None, 'value_error': None}},
       'metric': {'ERA-Interim': {'value': 0.24054068777659682,
         'value_error': None},
        'HadISST': {'value': 0.26168392804137935, 'value_error': None},
        'Tropflux': {'value': 0.24182876421393232, 'value_error': None}}},
      'EnsoSstSkew': {'diagnostic': {'ERA-Interim': {'value': 0.39098111106809963,
         'value_error': 0.061819541653923164},
        'HadISST': {'value': 0.38989908235027515,
         'value_error': 0.03172953733021198},
        'MPI-ESM-MR_r2i1p1': {'value': 0.5018284031108822,
         'value_error': 0.0401784278585503},
        'Tropflux': {'value': 0.39744741059612115,
         'value_error': 0.06284195338099416}},
       'metric': {'ERA-Interim': {'value': 28.35106067911183,
         'value_error': 30.57039378495902},
        'HadISST': {'value': 28.70725421714449,
         'value_error': 20.778875303760465},
        'Tropflux': {'value': 26.26284377050102,
         'value_error': 30.073026541814517}}},
      'EnsoSstTsRmse': {'diagnostic': {'ERA-Interim': {'value': None,
         'value_error': None},
        'HadISST': {'value': None, 'value_error': None},
        'MPI-ESM-MR_r2i1p1': {'value': None, 'value_error': None},
        'Tropflux': {'value': None, 'value_error': None}},
       'metric': {'ERA-Interim': {'value': 0.23624163613135965,
         'value_error': None},
        'HadISST': {'value': 0.19413542052843163, 'value_error': None},
        'Tropflux': {'value': 0.2326092781576639, 'value_error': None}}},
      'SeasonalPrLatRmse': {'diagnostic': {'ERA-Interim': {'value': None,
         'value_error': None},
        'GPCPv2.3': {'value': None, 'value_error': None},
        'MPI-ESM-MR_r2i1p1': {'value': None, 'value_error': None}},
       'metric': {'ERA-Interim': {'value': 1.3764640728013484,
         'value_error': None},
        'GPCPv2.3': {'value': 1.2420653822198995, 'value_error': None}}},
      'SeasonalPrLonRmse': {'diagnostic': {'ERA-Interim': {'value': None,
         'value_error': None},
        'GPCPv2.3': {'value': None, 'value_error': None},
        'MPI-ESM-MR_r2i1p1': {'value': None, 'value_error': None}},
       'metric': {'ERA-Interim': {'value': 1.1828160632665585,
         'value_error': None},
        'GPCPv2.3': {'value': 0.8461289982752908, 'value_error': None}}},
      'SeasonalSstLonRmse': {'diagnostic': {'ERA-Interim': {'value': None,
         'value_error': None},
        'HadISST': {'value': None, 'value_error': None},
        'MPI-ESM-MR_r2i1p1': {'value': None, 'value_error': None},
        'Tropflux': {'value': None, 'value_error': None}},
       'metric': {'ERA-Interim': {'value': 0.22328833140591522,
         'value_error': None},
        'HadISST': {'value': 0.23822164506035443, 'value_error': None},
        'Tropflux': {'value': 0.2247759898840539, 'value_error': None}}},
      'SeasonalTauxLonRmse': {'diagnostic': {'ERA-Interim': {'value': None,
         'value_error': None},
        'MPI-ESM-MR_r2i1p1': {'value': None, 'value_error': None},
        'Tropflux': {'value': None, 'value_error': None}},
       'metric': {'ERA-Interim': {'value': 2.11685255230353,
         'value_error': None},
        'Tropflux': {'value': 2.3020232270172514, 'value_error': None}}}}},
    'r3i1p1': {'metadata': {'description_of_the_collection': 'Describe which science question this collection is about',
      'metrics': {'BiasPrLatRmse': {'diagnostic': {'ERA-Interim': {'name': 'ERA-Interim',
          'nyears': 40,
          'time_period': ['1979-1-16 12:0:0.0', '2019-3-16 12:0:0.0']},
         'GPCPv2.3': {'name': 'GPCPv2.3',
          'nyears': 41,
          'time_period': ['1979-1-1 0:0:0.0', '2019-7-1 0:0:0.0']},
         'MPI-ESM-MR_r3i1p1': {'keyerror': None,
          'name': 'MPI-ESM-MR_r3i1p1',
          'nyears': 156,
          'time_period': ['1850-1-16 12:0:0.0', '2005-12-16 12:0:0.0']},
         'method': 'Meridional root mean square error of nino3_LatExt pr, time series are linearly detrended, observations and model regridded to generic_1x1deg',
         'name': 'pr Meridional RMSE',
         'ref': 'Using CDAT regridding and rms (uncentered and biased) calculation',
         'time_frequency': 'monthly',
         'units': 'mm/day'},
        'metric': {'datasets': "MPI-ESM-MR_r3i1p1; ERA-Interim's pr & GPCPv2.3's precip; 's ",
         'method': 'The metric is the statistical value between the model and the observations',
         'name': 'BiasPrLatRmse',
         'units': 'mm/day'}},
       'BiasPrLonRmse': {'diagnostic': {'ERA-Interim': {'name': 'ERA-Interim',
          'nyears': 40,
          'time_period': ['1979-1-16 12:0:0.0', '2019-3-16 12:0:0.0']},
         'GPCPv2.3': {'name': 'GPCPv2.3',
          'nyears': 41,
          'time_period': ['1979-1-1 0:0:0.0', '2019-7-1 0:0:0.0']},
         'MPI-ESM-MR_r3i1p1': {'keyerror': None,
          'name': 'MPI-ESM-MR_r3i1p1',
          'nyears': 156,
          'time_period': ['1850-1-16 12:0:0.0', '2005-12-16 12:0:0.0']},
         'method': 'Zonal root mean square error of equatorial_pacific pr, time series are linearly detrended, observations and model regridded to generic_1x1deg',
         'name': 'pr Zonal RMSE',
         'ref': 'Using CDAT regridding and rms (uncentered and biased) calculation',
         'time_frequency': 'monthly',
         'units': 'mm/day'},
        'metric': {'datasets': "MPI-ESM-MR_r3i1p1; ERA-Interim's pr & GPCPv2.3's precip; 's ",
         'method': 'The metric is the statistical value between the model and the observations',
         'name': 'BiasPrLonRmse',
         'units': 'mm/day'}},
       'BiasSstLonRmse': {'diagnostic': {'ERA-Interim': {'name': 'ERA-Interim',
          'nyears': 40,
          'time_period': ['1979-1-16 12:0:0.0', '2019-3-16 12:0:0.0']},
         'HadISST': {'name': 'HadISST',
          'nyears': 151,
          'time_period': ['1870-1-16 11:59:59.5', '2020-10-16 12:0:0.0']},
         'MPI-ESM-MR_r3i1p1': {'keyerror': None,
          'name': 'MPI-ESM-MR_r3i1p1',
          'nyears': 156,
          'time_period': ['1850-1-16 12:0:0.0', '2005-12-16 12:0:0.0']},
         'Tropflux': {'name': 'Tropflux',
          'nyears': 40,
          'time_period': ['1979-1-15 0:0:0.0', '2018-12-15 12:0:0.0']},
         'method': 'Zonal root mean square error of equatorial_pacific sst, time series are linearly detrended, observations and model regridded to generic_1x1deg',
         'name': 'sst Zonal RMSE',
         'ref': 'Using CDAT regridding and rms (uncentered and biased) calculation',
         'time_frequency': 'monthly',
         'units': 'C'},
        'metric': {'datasets': "MPI-ESM-MR_r3i1p1; ERA-Interim's ts & HadISST's sst & Tropflux's sst; 's ",
         'method': 'The metric is the statistical value between the model and the observations',
         'name': 'BiasSstLonRmse',
         'units': 'C'}},
       'BiasTauxLonRmse': {'diagnostic': {'ERA-Interim': {'name': 'ERA-Interim',
          'nyears': 40,
          'time_period': ['1979-1-16 12:0:0.0', '2019-3-16 12:0:0.0']},
         'MPI-ESM-MR_r3i1p1': {'keyerror': None,
          'name': 'MPI-ESM-MR_r3i1p1',
          'nyears': 156,
          'time_period': ['1850-1-16 12:0:0.0', '2005-12-16 12:0:0.0']},
         'Tropflux': {'name': 'Tropflux',
          'nyears': 40,
          'time_period': ['1979-1-15 0:0:0.0', '2018-12-15 12:0:0.0']},
         'method': 'Zonal root mean square error of equatorial_pacific taux, time series are linearly detrended, observations and model regridded to generic_1x1deg',
         'name': 'taux Zonal RMSE',
         'ref': 'Using CDAT regridding and rms (uncentered and biased) calculation',
         'time_frequency': 'monthly',
         'units': '1e-3 N/m2'},
        'metric': {'datasets': "MPI-ESM-MR_r3i1p1; ERA-Interim's tauu & Tropflux's taux; 's ",
         'method': 'The metric is the statistical value between the model and the observations',
         'name': 'BiasTauxLonRmse',
         'units': '1e-3 N/m2'}},
       'EnsoAmpl': {'diagnostic': {'ERA-Interim': {'keyerror': None,
          'name': 'ERA-Interim',
          'nyears': 40,
          'time_period': ['1979-1-16 12:0:0.0', '2019-3-16 12:0:0.0']},
         'HadISST': {'keyerror': None,
          'name': 'HadISST',
          'nyears': 151,
          'time_period': ['1870-1-16 11:59:59.5', '2020-10-16 12:0:0.0']},
         'MPI-ESM-MR_r3i1p1': {'keyerror': None,
          'name': 'MPI-ESM-MR_r3i1p1',
          'nyears': 156,
          'time_period': ['1850-1-16 12:0:0.0', '2005-12-16 12:0:0.0']},
         'Tropflux': {'keyerror': None,
          'name': 'Tropflux',
          'nyears': 40,
          'time_period': ['1979-1-15 0:0:0.0', '2018-12-15 12:0:0.0']},
         'method': 'Standard deviation of nino3.4 sstA, time series are linearly detrended',
         'name': 'ENSO amplitude',
         'ref': 'Using CDAT regression calculation',
         'time_frequency': 'monthly',
         'units': 'C'},
        'metric': {'datasets': "MPI-ESM-MR_r3i1p1; ERA-Interim's ts & HadISST's sst & Tropflux's sst; 's ",
         'method': 'The metric is the absolute value of the relative difference between model and observations values (M = 100 * abs[[model-obs] / obs])',
         'name': 'EnsoAmpl',
         'units': '%'}},
       'EnsoDuration': {'diagnostic': {'ERA-Interim': {'keyerror': None,
          'name': 'ERA-Interim',
          'nyears': 40,
          'time_period': ['1979-1-16 12:0:0.0', '2019-3-16 12:0:0.0']},
         'HadISST': {'keyerror': None,
          'name': 'HadISST',
          'nyears': 151,
          'time_period': ['1870-1-16 11:59:59.5', '2020-10-16 12:0:0.0']},
         'MPI-ESM-MR_r3i1p1': {'keyerror': None,
          'name': 'MPI-ESM-MR_r3i1p1',
          'nyears': 156,
          'time_period': ['1850-1-16 12:0:0.0', '2005-12-16 12:0:0.0']},
         'Tropflux': {'keyerror': None,
          'name': 'Tropflux',
          'nyears': 40,
          'time_period': ['1979-1-15 0:0:0.0', '2018-12-15 12:0:0.0']},
         'method': 'nino3.4 SSTA during DEC regressed against nino3.4 SSTA during 6 years (centered on ENSO), the duration is the number of consecutive months during which the regression is above 0.25, time series are linearly detrended, smoothing using a triangle shaped window of 5 points',
         'name': 'ENSO Duration based on life cyle SSTA pattern',
         'ref': 'Using CDAT',
         'time_frequency': 'monthly',
         'units': 'months'},
        'metric': {'datasets': "MPI-ESM-MR_r3i1p1; ERA-Interim's ts & HadISST's sst & Tropflux's sst; 's ",
         'method': 'The metric is the absolute value of the relative difference between model and observations values (M = 100 * abs[[model-obs] / obs])',
         'name': 'EnsoDuration',
         'units': '%'}},
       'EnsoSeasonality': {'diagnostic': {'ERA-Interim': {'keyerror': None,
          'name': 'ERA-Interim',
          'nyears': 40,
          'time_period': ['1979-1-16 12:0:0.0', '2019-3-16 12:0:0.0']},
         'HadISST': {'keyerror': None,
          'name': 'HadISST',
          'nyears': 151,
          'time_period': ['1870-1-16 11:59:59.5', '2020-10-16 12:0:0.0']},
         'MPI-ESM-MR_r3i1p1': {'keyerror': None,
          'name': 'MPI-ESM-MR_r3i1p1',
          'nyears': 156,
          'time_period': ['1850-1-16 12:0:0.0', '2005-12-16 12:0:0.0']},
         'Tropflux': {'keyerror': None,
          'name': 'Tropflux',
          'nyears': 40,
          'time_period': ['1979-1-15 0:0:0.0', '2018-12-15 12:0:0.0']},
         'method': 'Ratio between NDJ and MAM standard deviation nino3.4 sstA, time series are linearly detrended',
         'name': 'ENSO seasonality',
         'ref': 'Using CDAT std dev calculation',
         'time_frequency': 'monthly',
         'units': 'C/C'},
        'metric': {'datasets': "MPI-ESM-MR_r3i1p1; ERA-Interim's ts & HadISST's sst & Tropflux's sst; 's ",
         'method': 'The metric is the absolute value of the relative difference between model and observations values (M = 100 * abs[[model-obs] / obs])',
         'name': 'EnsoSeasonality',
         'units': '%'}},
       'EnsoSstDiversity_2': {'diagnostic': {'ERA-Interim': {'keyerror': None,
          'name': 'ERA-Interim',
          'nyears': 40,
          'time_period': ['1979-1-16 12:0:0.0', '2019-3-16 12:0:0.0']},
         'HadISST': {'keyerror': None,
          'name': 'HadISST',
          'nyears': 151,
          'time_period': ['1870-1-16 11:59:59.5', '2020-10-16 12:0:0.0']},
         'MPI-ESM-MR_r3i1p1': {'keyerror': None,
          'name': 'MPI-ESM-MR_r3i1p1',
          'nyears': 156,
          'time_period': ['1850-1-16 12:0:0.0', '2005-12-16 12:0:0.0']},
         'Tropflux': {'keyerror': None,
          'name': 'Tropflux',
          'nyears': 40,
          'time_period': ['1979-1-15 0:0:0.0', '2018-12-15 12:0:0.0']},
         'method': 'Nino (Nina) events = nino3.4 sstA > 0.75 (< -0.75) during DEC, zonal SSTA (meridional averaged [-5.0 ; 5.0]), the zonal SSTA maximum (minimum) is located for each event, the diversity is the interquartile range (IQR = Q3 - Q1), time series are linearly detrended, smoothing using a triangle shaped window of 5 points',
         'name': 'ENSO Diversity (interquartile range)',
         'ref': 'Using CDAT regridding',
         'time_frequency': 'monthly',
         'units': 'long'},
        'metric': {'datasets': "MPI-ESM-MR_r3i1p1; ERA-Interim's ts & HadISST's sst & Tropflux's sst; 's ",
         'method': 'The metric is the absolute value of the relative difference between model and observations values (M = 100 * abs[[model-obs] / obs])',
         'name': 'EnsoSstDiversity',
         'units': '%'}},
       'EnsoSstLonRmse': {'diagnostic': {'ERA-Interim': {'name': 'ERA-Interim',
          'nyears': 40,
          'time_period': ['1979-1-16 12:0:0.0', '2019-3-16 12:0:0.0']},
         'HadISST': {'name': 'HadISST',
          'nyears': 151,
          'time_period': ['1870-1-16 11:59:59.5', '2020-10-16 12:0:0.0']},
         'MPI-ESM-MR_r3i1p1': {'keyerror': None,
          'name': 'MPI-ESM-MR_r3i1p1',
          'nyears': 156,
          'time_period': ['1850-1-16 12:0:0.0', '2005-12-16 12:0:0.0']},
         'Tropflux': {'name': 'Tropflux',
          'nyears': 40,
          'time_period': ['1979-1-15 0:0:0.0', '2018-12-15 12:0:0.0']},
         'method': 'nino3.4 SSTA during DEC regressed against equatorial_pacific SSTA, time series are linearly detrended, smoothing using a triangle shaped window of 5 points, observations and model regridded to generic_1x1deg',
         'name': 'ENSO Zonal SSTA pattern',
         'ref': 'Using CDAT regridding and rms (uncentered and biased) calculation',
         'time_frequency': 'monthly',
         'units': 'C/C'},
        'metric': {'datasets': "MPI-ESM-MR_r3i1p1; ERA-Interim's ts & HadISST's sst & Tropflux's sst; 's ",
         'method': 'The metric is the statistical value between the model and the observations',
         'name': 'EnsoSstLonRmse',
         'units': 'C/C'}},
       'EnsoSstSkew': {'diagnostic': {'ERA-Interim': {'keyerror': None,
          'name': 'ERA-Interim',
          'nyears': 40,
          'time_period': ['1979-1-16 12:0:0.0', '2019-3-16 12:0:0.0']},
         'HadISST': {'keyerror': None,
          'name': 'HadISST',
          'nyears': 151,
          'time_period': ['1870-1-16 11:59:59.5', '2020-10-16 12:0:0.0']},
         'MPI-ESM-MR_r3i1p1': {'keyerror': None,
          'name': 'MPI-ESM-MR_r3i1p1',
          'nyears': 156,
          'time_period': ['1850-1-16 12:0:0.0', '2005-12-16 12:0:0.0']},
         'Tropflux': {'keyerror': None,
          'name': 'Tropflux',
          'nyears': 40,
          'time_period': ['1979-1-15 0:0:0.0', '2018-12-15 12:0:0.0']},
         'method': 'Standard deviation of nino3.4 sstA, time series are linearly detrended',
         'name': 'ENSO skewness',
         'ref': 'Using CDAT regression calculation',
         'time_frequency': 'monthly',
         'units': 'C'},
        'metric': {'datasets': "MPI-ESM-MR_r3i1p1; ERA-Interim's ts & HadISST's sst & Tropflux's sst; 's ",
         'method': 'The metric is the absolute value of the relative difference between model and observations values (M = 100 * abs[[model-obs] / obs])',
         'name': 'EnsoSstSkew',
         'units': '%'}},
       'EnsoSstTsRmse': {'diagnostic': {'ERA-Interim': {'name': 'ERA-Interim',
          'nyears': 40,
          'time_period': ['1979-1-16 12:0:0.0', '2019-3-16 12:0:0.0']},
         'HadISST': {'name': 'HadISST',
          'nyears': 151,
          'time_period': ['1870-1-16 11:59:59.5', '2020-10-16 12:0:0.0']},
         'MPI-ESM-MR_r3i1p1': {'keyerror': None,
          'name': 'MPI-ESM-MR_r3i1p1',
          'nyears': 156,
          'time_period': ['1850-1-16 12:0:0.0', '2005-12-16 12:0:0.0']},
         'Tropflux': {'name': 'Tropflux',
          'nyears': 40,
          'time_period': ['1979-1-15 0:0:0.0', '2018-12-15 12:0:0.0']},
         'method': 'nino3.4 SSTA during DEC regressed against nino3.4 SSTA during 6 years (centered on ENSO), time series are linearly detrended, smoothing using a triangle shaped window of 5 points',
         'name': 'ENSO life cyle SSTA pattern',
         'ref': 'Using CDAT regridding and rms (uncentered and biased) calculation',
         'time_frequency': 'monthly',
         'units': 'C/C'},
        'metric': {'datasets': "MPI-ESM-MR_r3i1p1; ERA-Interim's ts & HadISST's sst & Tropflux's sst; 's ",
         'method': 'The metric is the statistical value between the model and the observations',
         'name': 'EnsoSstTsRmse',
         'units': 'C/C'}},
       'SeasonalPrLatRmse': {'diagnostic': {'ERA-Interim': {'name': 'ERA-Interim',
          'nyears': 40,
          'time_period': ['1979-1-16 12:0:0.0', '2019-3-16 12:0:0.0']},
         'GPCPv2.3': {'name': 'GPCPv2.3',
          'nyears': 41,
          'time_period': ['1979-1-1 0:0:0.0', '2019-7-1 0:0:0.0']},
         'MPI-ESM-MR_r3i1p1': {'keyerror': None,
          'name': 'MPI-ESM-MR_r3i1p1',
          'nyears': 156,
          'time_period': ['1850-1-16 12:0:0.0', '2005-12-16 12:0:0.0']},
         'method': 'Meridional root mean square error of nino3_LatExt climatological pr STD, time series are linearly detrended, observations and model regridded to generic_1x1deg',
         'name': 'pr meridional seasonality RMSE',
         'ref': 'Using CDAT regridding and rms (uncentered and biased) calculation',
         'time_frequency': 'monthly',
         'units': 'mm/day'},
        'metric': {'datasets': "MPI-ESM-MR_r3i1p1; ERA-Interim's pr & GPCPv2.3's precip; 's ",
         'method': 'The metric is the statistical value between the model and the observations',
         'name': 'SeasonalPrLatRmse',
         'units': 'mm/day'}},
       'SeasonalPrLonRmse': {'diagnostic': {'ERA-Interim': {'name': 'ERA-Interim',
          'nyears': 40,
          'time_period': ['1979-1-16 12:0:0.0', '2019-3-16 12:0:0.0']},
         'GPCPv2.3': {'name': 'GPCPv2.3',
          'nyears': 41,
          'time_period': ['1979-1-1 0:0:0.0', '2019-7-1 0:0:0.0']},
         'MPI-ESM-MR_r3i1p1': {'keyerror': None,
          'name': 'MPI-ESM-MR_r3i1p1',
          'nyears': 156,
          'time_period': ['1850-1-16 12:0:0.0', '2005-12-16 12:0:0.0']},
         'method': 'Zonal root mean square error of equatorial_pacific climatological pr STD, time series are linearly detrended, observations and model regridded to generic_1x1deg',
         'name': 'pr zonal seasonality RMSE',
         'ref': 'Using CDAT regridding and rms (uncentered and biased) calculation',
         'time_frequency': 'monthly',
         'units': 'mm/day'},
        'metric': {'datasets': "MPI-ESM-MR_r3i1p1; ERA-Interim's pr & GPCPv2.3's precip; 's ",
         'method': 'The metric is the statistical value between the model and the observations',
         'name': 'SeasonalPrLonRmse',
         'units': 'mm/day'}},
       'SeasonalSstLonRmse': {'diagnostic': {'ERA-Interim': {'name': 'ERA-Interim',
          'nyears': 40,
          'time_period': ['1979-1-16 12:0:0.0', '2019-3-16 12:0:0.0']},
         'HadISST': {'name': 'HadISST',
          'nyears': 151,
          'time_period': ['1870-1-16 11:59:59.5', '2020-10-16 12:0:0.0']},
         'MPI-ESM-MR_r3i1p1': {'keyerror': None,
          'name': 'MPI-ESM-MR_r3i1p1',
          'nyears': 156,
          'time_period': ['1850-1-16 12:0:0.0', '2005-12-16 12:0:0.0']},
         'Tropflux': {'name': 'Tropflux',
          'nyears': 40,
          'time_period': ['1979-1-15 0:0:0.0', '2018-12-15 12:0:0.0']},
         'method': 'Zonal root mean square error of equatorial_pacific climatological sst STD, time series are linearly detrended, observations and model regridded to generic_1x1deg',
         'name': 'sst zonal seasonality RMSE',
         'ref': 'Using CDAT regridding and rms (uncentered and biased) calculation',
         'time_frequency': 'monthly',
         'units': 'C'},
        'metric': {'datasets': "MPI-ESM-MR_r3i1p1; ERA-Interim's ts & HadISST's sst & Tropflux's sst; 's ",
         'method': 'The metric is the statistical value between the model and the observations',
         'name': 'SeasonalSstLonRmse',
         'units': 'C'}},
       'SeasonalTauxLonRmse': {'diagnostic': {'ERA-Interim': {'name': 'ERA-Interim',
          'nyears': 40,
          'time_period': ['1979-1-16 12:0:0.0', '2019-3-16 12:0:0.0']},
         'MPI-ESM-MR_r3i1p1': {'keyerror': None,
          'name': 'MPI-ESM-MR_r3i1p1',
          'nyears': 156,
          'time_period': ['1850-1-16 12:0:0.0', '2005-12-16 12:0:0.0']},
         'Tropflux': {'name': 'Tropflux',
          'nyears': 40,
          'time_period': ['1979-1-15 0:0:0.0', '2018-12-15 12:0:0.0']},
         'method': 'Zonal root mean square error of equatorial_pacific climatological taux STD, time series are linearly detrended, observations and model regridded to generic_1x1deg',
         'name': 'taux zonal seasonality RMSE',
         'ref': 'Using CDAT regridding and rms (uncentered and biased) calculation',
         'time_frequency': 'monthly',
         'units': '1e-3 N/m2'},
        'metric': {'datasets': "MPI-ESM-MR_r3i1p1; ERA-Interim's tauu & Tropflux's taux; 's ",
         'method': 'The metric is the statistical value between the model and the observations',
         'name': 'SeasonalTauxLonRmse',
         'units': '1e-3 N/m2'}}},
      'name': 'Metrics Collection for ENSO performance'},
     'value': {'BiasPrLatRmse': {'diagnostic': {'ERA-Interim': {'value': None,
         'value_error': None},
        'GPCPv2.3': {'value': None, 'value_error': None},
        'MPI-ESM-MR_r3i1p1': {'value': None, 'value_error': None}},
       'metric': {'ERA-Interim': {'value': 1.8804029007677021,
         'value_error': None},
        'GPCPv2.3': {'value': 1.6528409226473786, 'value_error': None}}},
      'BiasPrLonRmse': {'diagnostic': {'ERA-Interim': {'value': None,
         'value_error': None},
        'GPCPv2.3': {'value': None, 'value_error': None},
        'MPI-ESM-MR_r3i1p1': {'value': None, 'value_error': None}},
       'metric': {'ERA-Interim': {'value': 3.6308397635360645,
         'value_error': None},
        'GPCPv2.3': {'value': 2.466466304635582, 'value_error': None}}},
      'BiasSstLonRmse': {'diagnostic': {'ERA-Interim': {'value': None,
         'value_error': None},
        'HadISST': {'value': None, 'value_error': None},
        'MPI-ESM-MR_r3i1p1': {'value': None, 'value_error': None},
        'Tropflux': {'value': None, 'value_error': None}},
       'metric': {'ERA-Interim': {'value': 1.5187818515293403,
         'value_error': None},
        'HadISST': {'value': 1.331485525114276, 'value_error': None},
        'Tropflux': {'value': 1.566329297005618, 'value_error': None}}},
      'BiasTauxLonRmse': {'diagnostic': {'ERA-Interim': {'value': None,
         'value_error': None},
        'MPI-ESM-MR_r3i1p1': {'value': None, 'value_error': None},
        'Tropflux': {'value': None, 'value_error': None}},
       'metric': {'ERA-Interim': {'value': 10.245933959414506,
         'value_error': None},
        'Tropflux': {'value': 10.25139297579219, 'value_error': None}}},
      'EnsoAmpl': {'diagnostic': {'ERA-Interim': {'value': 0.8989844997845644,
         'value_error': 0.14214193002531866},
        'HadISST': {'value': 0.7665787872085695,
         'value_error': 0.06238329697691264},
        'MPI-ESM-MR_r3i1p1': {'value': 0.578247077607553,
         'value_error': 0.046296818490242204},
        'Tropflux': {'value': 0.9039789553693535,
         'value_error': 0.14293162279134272}},
       'metric': {'ERA-Interim': {'value': 35.67774775359019,
         'value_error': 15.320142816928218},
        'HadISST': {'value': 24.567821696033384,
         'value_error': 12.17799133702879},
        'Tropflux': {'value': 36.03312619470338,
         'value_error': 15.235499504827537}}},
      'EnsoDuration': {'diagnostic': {'ERA-Interim': {'value': 13.0,
         'value_error': None},
        'HadISST': {'value': 13.0, 'value_error': None},
        'MPI-ESM-MR_r3i1p1': {'value': 21.0, 'value_error': None},
        'Tropflux': {'value': 13.0, 'value_error': None}},
       'metric': {'ERA-Interim': {'value': 61.53846153846154,
         'value_error': None},
        'HadISST': {'value': 61.53846153846154, 'value_error': None},
        'Tropflux': {'value': 61.53846153846154, 'value_error': None}}},
      'EnsoSeasonality': {'diagnostic': {'ERA-Interim': {'value': 2.0466846866656914,
         'value_error': 0.6513411033995022},
        'HadISST': {'value': 1.6639865947361325,
         'value_error': 0.2712772451657809},
        'MPI-ESM-MR_r3i1p1': {'value': 1.0878608677641721,
         'value_error': 0.17447766379042132},
        'Tropflux': {'value': 2.0532132553583624,
         'value_error': 0.6534187683977347}},
       'metric': {'ERA-Interim': {'value': 46.84765685444028,
         'value_error': 25.440202172306993},
        'HadISST': {'value': 34.62321924915025,
         'value_error': 21.14379975790554},
        'Tropflux': {'value': 47.01666449283176,
         'value_error': 25.359310376482124}}},
      'EnsoSstDiversity_2': {'diagnostic': {'ERA-Interim': {'value': 33.25,
         'value_error': None},
        'HadISST': {'value': 49.0, 'value_error': None},
        'MPI-ESM-MR_r3i1p1': {'value': 19.0, 'value_error': None},
        'Tropflux': {'value': 32.0, 'value_error': None}},
       'metric': {'ERA-Interim': {'value': 42.857142857142854,
         'value_error': None},
        'HadISST': {'value': 61.224489795918366, 'value_error': None},
        'Tropflux': {'value': 40.625, 'value_error': None}}},
      'EnsoSstLonRmse': {'diagnostic': {'ERA-Interim': {'value': None,
         'value_error': None},
        'HadISST': {'value': None, 'value_error': None},
        'MPI-ESM-MR_r3i1p1': {'value': None, 'value_error': None},
        'Tropflux': {'value': None, 'value_error': None}},
       'metric': {'ERA-Interim': {'value': 0.2505180973089456,
         'value_error': None},
        'HadISST': {'value': 0.2684309505879965, 'value_error': None},
        'Tropflux': {'value': 0.2514530526458567, 'value_error': None}}},
      'EnsoSstSkew': {'diagnostic': {'ERA-Interim': {'value': 0.39098111106809963,
         'value_error': 0.061819541653923164},
        'HadISST': {'value': 0.38989908235027515,
         'value_error': 0.03172953733021198},
        'MPI-ESM-MR_r3i1p1': {'value': -0.11550004669267767,
         'value_error': -0.009247404620649918},
        'Tropflux': {'value': 0.39744741059612115,
         'value_error': 0.06284195338099416}},
       'metric': {'ERA-Interim': {'value': 129.541080994207,
         'value_error': -7.0360344047647265},
        'HadISST': {'value': 129.6230619463001,
         'value_error': -4.7824337022935985},
        'Tropflux': {'value': 129.06046023030876,
         'value_error': -6.921561131728601}}},
      'EnsoSstTsRmse': {'diagnostic': {'ERA-Interim': {'value': None,
         'value_error': None},
        'HadISST': {'value': None, 'value_error': None},
        'MPI-ESM-MR_r3i1p1': {'value': None, 'value_error': None},
        'Tropflux': {'value': None, 'value_error': None}},
       'metric': {'ERA-Interim': {'value': 0.22739596221343783,
         'value_error': None},
        'HadISST': {'value': 0.1833217360383234, 'value_error': None},
        'Tropflux': {'value': 0.2240984410508071, 'value_error': None}}},
      'SeasonalPrLatRmse': {'diagnostic': {'ERA-Interim': {'value': None,
         'value_error': None},
        'GPCPv2.3': {'value': None, 'value_error': None},
        'MPI-ESM-MR_r3i1p1': {'value': None, 'value_error': None}},
       'metric': {'ERA-Interim': {'value': 1.4030027550458064,
         'value_error': None},
        'GPCPv2.3': {'value': 1.2752347006886329, 'value_error': None}}},
      'SeasonalPrLonRmse': {'diagnostic': {'ERA-Interim': {'value': None,
         'value_error': None},
        'GPCPv2.3': {'value': None, 'value_error': None},
        'MPI-ESM-MR_r3i1p1': {'value': None, 'value_error': None}},
       'metric': {'ERA-Interim': {'value': 1.1949998324388011,
         'value_error': None},
        'GPCPv2.3': {'value': 0.8692366750024243, 'value_error': None}}},
      'SeasonalSstLonRmse': {'diagnostic': {'ERA-Interim': {'value': None,
         'value_error': None},
        'HadISST': {'value': None, 'value_error': None},
        'MPI-ESM-MR_r3i1p1': {'value': None, 'value_error': None},
        'Tropflux': {'value': None, 'value_error': None}},
       'metric': {'ERA-Interim': {'value': 0.23503940015520478,
         'value_error': None},
        'HadISST': {'value': 0.25179597181223395, 'value_error': None},
        'Tropflux': {'value': 0.23494785391143846, 'value_error': None}}},
      'SeasonalTauxLonRmse': {'diagnostic': {'ERA-Interim': {'value': None,
         'value_error': None},
        'MPI-ESM-MR_r3i1p1': {'value': None, 'value_error': None},
        'Tropflux': {'value': None, 'value_error': None}},
       'metric': {'ERA-Interim': {'value': 2.0580008655105853,
         'value_error': None},
        'Tropflux': {'value': 2.2049499129403864, 'value_error': None}}}}}},
   'MPI-ESM-P': {'r1i1p1': {'metadata': {'description_of_the_collection': 'Describe which science question this collection is about',
      'metrics': {'BiasPrLatRmse': {'diagnostic': {'ERA-Interim': {'name': 'ERA-Interim',
          'nyears': 40,
          'time_period': ['1979-1-16 12:0:0.0', '2019-3-16 12:0:0.0']},
         'GPCPv2.3': {'name': 'GPCPv2.3',
          'nyears': 41,
          'time_period': ['1979-1-1 0:0:0.0', '2019-7-1 0:0:0.0']},
         'MPI-ESM-P_r1i1p1': {'keyerror': None,
          'name': 'MPI-ESM-P_r1i1p1',
          'nyears': 156,
          'time_period': ['1850-1-16 12:0:0.0', '2005-12-16 12:0:0.0']},
         'method': 'Meridional root mean square error of nino3_LatExt pr, time series are linearly detrended, observations and model regridded to generic_1x1deg',
         'name': 'pr Meridional RMSE',
         'ref': 'Using CDAT regridding and rms (uncentered and biased) calculation',
         'time_frequency': 'monthly',
         'units': 'mm/day'},
        'metric': {'datasets': "MPI-ESM-P_r1i1p1; ERA-Interim's pr & GPCPv2.3's precip; 's ",
         'method': 'The metric is the statistical value between the model and the observations',
         'name': 'BiasPrLatRmse',
         'units': 'mm/day'}},
       'BiasPrLonRmse': {'diagnostic': {'ERA-Interim': {'name': 'ERA-Interim',
          'nyears': 40,
          'time_period': ['1979-1-16 12:0:0.0', '2019-3-16 12:0:0.0']},
         'GPCPv2.3': {'name': 'GPCPv2.3',
          'nyears': 41,
          'time_period': ['1979-1-1 0:0:0.0', '2019-7-1 0:0:0.0']},
         'MPI-ESM-P_r1i1p1': {'keyerror': None,
          'name': 'MPI-ESM-P_r1i1p1',
          'nyears': 156,
          'time_period': ['1850-1-16 12:0:0.0', '2005-12-16 12:0:0.0']},
         'method': 'Zonal root mean square error of equatorial_pacific pr, time series are linearly detrended, observations and model regridded to generic_1x1deg',
         'name': 'pr Zonal RMSE',
         'ref': 'Using CDAT regridding and rms (uncentered and biased) calculation',
         'time_frequency': 'monthly',
         'units': 'mm/day'},
        'metric': {'datasets': "MPI-ESM-P_r1i1p1; ERA-Interim's pr & GPCPv2.3's precip; 's ",
         'method': 'The metric is the statistical value between the model and the observations',
         'name': 'BiasPrLonRmse',
         'units': 'mm/day'}},
       'BiasSstLonRmse': {'diagnostic': {'ERA-Interim': {'name': 'ERA-Interim',
          'nyears': 40,
          'time_period': ['1979-1-16 12:0:0.0', '2019-3-16 12:0:0.0']},
         'HadISST': {'name': 'HadISST',
          'nyears': 151,
          'time_period': ['1870-1-16 11:59:59.5', '2020-10-16 12:0:0.0']},
         'MPI-ESM-P_r1i1p1': {'keyerror': None,
          'name': 'MPI-ESM-P_r1i1p1',
          'nyears': 156,
          'time_period': ['1850-1-16 12:0:0.0', '2005-12-16 12:0:0.0']},
         'Tropflux': {'name': 'Tropflux',
          'nyears': 40,
          'time_period': ['1979-1-15 0:0:0.0', '2018-12-15 12:0:0.0']},
         'method': 'Zonal root mean square error of equatorial_pacific sst, time series are linearly detrended, observations and model regridded to generic_1x1deg',
         'name': 'sst Zonal RMSE',
         'ref': 'Using CDAT regridding and rms (uncentered and biased) calculation',
         'time_frequency': 'monthly',
         'units': 'C'},
        'metric': {'datasets': "MPI-ESM-P_r1i1p1; ERA-Interim's ts & HadISST's sst & Tropflux's sst; 's ",
         'method': 'The metric is the statistical value between the model and the observations',
         'name': 'BiasSstLonRmse',
         'units': 'C'}},
       'BiasTauxLonRmse': {'diagnostic': {'ERA-Interim': {'name': 'ERA-Interim',
          'nyears': 40,
          'time_period': ['1979-1-16 12:0:0.0', '2019-3-16 12:0:0.0']},
         'MPI-ESM-P_r1i1p1': {'keyerror': None,
          'name': 'MPI-ESM-P_r1i1p1',
          'nyears': 156,
          'time_period': ['1850-1-16 12:0:0.0', '2005-12-16 12:0:0.0']},
         'Tropflux': {'name': 'Tropflux',
          'nyears': 40,
          'time_period': ['1979-1-15 0:0:0.0', '2018-12-15 12:0:0.0']},
         'method': 'Zonal root mean square error of equatorial_pacific taux, time series are linearly detrended, observations and model regridded to generic_1x1deg',
         'name': 'taux Zonal RMSE',
         'ref': 'Using CDAT regridding and rms (uncentered and biased) calculation',
         'time_frequency': 'monthly',
         'units': '1e-3 N/m2'},
        'metric': {'datasets': "MPI-ESM-P_r1i1p1; ERA-Interim's tauu & Tropflux's taux; 's ",
         'method': 'The metric is the statistical value between the model and the observations',
         'name': 'BiasTauxLonRmse',
         'units': '1e-3 N/m2'}},
       'EnsoAmpl': {'diagnostic': {'ERA-Interim': {'keyerror': None,
          'name': 'ERA-Interim',
          'nyears': 40,
          'time_period': ['1979-1-16 12:0:0.0', '2019-3-16 12:0:0.0']},
         'HadISST': {'keyerror': None,
          'name': 'HadISST',
          'nyears': 151,
          'time_period': ['1870-1-16 11:59:59.5', '2020-10-16 12:0:0.0']},
         'MPI-ESM-P_r1i1p1': {'keyerror': None,
          'name': 'MPI-ESM-P_r1i1p1',
          'nyears': 156,
          'time_period': ['1850-1-16 12:0:0.0', '2005-12-16 12:0:0.0']},
         'Tropflux': {'keyerror': None,
          'name': 'Tropflux',
          'nyears': 40,
          'time_period': ['1979-1-15 0:0:0.0', '2018-12-15 12:0:0.0']},
         'method': 'Standard deviation of nino3.4 sstA, time series are linearly detrended',
         'name': 'ENSO amplitude',
         'ref': 'Using CDAT regression calculation',
         'time_frequency': 'monthly',
         'units': 'C'},
        'metric': {'datasets': "MPI-ESM-P_r1i1p1; ERA-Interim's ts & HadISST's sst & Tropflux's sst; 's ",
         'method': 'The metric is the absolute value of the relative difference between model and observations values (M = 100 * abs[[model-obs] / obs])',
         'name': 'EnsoAmpl',
         'units': '%'}},
       'EnsoDuration': {'diagnostic': {'ERA-Interim': {'keyerror': None,
          'name': 'ERA-Interim',
          'nyears': 40,
          'time_period': ['1979-1-16 12:0:0.0', '2019-3-16 12:0:0.0']},
         'HadISST': {'keyerror': None,
          'name': 'HadISST',
          'nyears': 151,
          'time_period': ['1870-1-16 11:59:59.5', '2020-10-16 12:0:0.0']},
         'MPI-ESM-P_r1i1p1': {'keyerror': None,
          'name': 'MPI-ESM-P_r1i1p1',
          'nyears': 156,
          'time_period': ['1850-1-16 12:0:0.0', '2005-12-16 12:0:0.0']},
         'Tropflux': {'keyerror': None,
          'name': 'Tropflux',
          'nyears': 40,
          'time_period': ['1979-1-15 0:0:0.0', '2018-12-15 12:0:0.0']},
         'method': 'nino3.4 SSTA during DEC regressed against nino3.4 SSTA during 6 years (centered on ENSO), the duration is the number of consecutive months during which the regression is above 0.25, time series are linearly detrended, smoothing using a triangle shaped window of 5 points',
         'name': 'ENSO Duration based on life cyle SSTA pattern',
         'ref': 'Using CDAT',
         'time_frequency': 'monthly',
         'units': 'months'},
        'metric': {'datasets': "MPI-ESM-P_r1i1p1; ERA-Interim's ts & HadISST's sst & Tropflux's sst; 's ",
         'method': 'The metric is the absolute value of the relative difference between model and observations values (M = 100 * abs[[model-obs] / obs])',
         'name': 'EnsoDuration',
         'units': '%'}},
       'EnsoSeasonality': {'diagnostic': {'ERA-Interim': {'keyerror': None,
          'name': 'ERA-Interim',
          'nyears': 40,
          'time_period': ['1979-1-16 12:0:0.0', '2019-3-16 12:0:0.0']},
         'HadISST': {'keyerror': None,
          'name': 'HadISST',
          'nyears': 151,
          'time_period': ['1870-1-16 11:59:59.5', '2020-10-16 12:0:0.0']},
         'MPI-ESM-P_r1i1p1': {'keyerror': None,
          'name': 'MPI-ESM-P_r1i1p1',
          'nyears': 156,
          'time_period': ['1850-1-16 12:0:0.0', '2005-12-16 12:0:0.0']},
         'Tropflux': {'keyerror': None,
          'name': 'Tropflux',
          'nyears': 40,
          'time_period': ['1979-1-15 0:0:0.0', '2018-12-15 12:0:0.0']},
         'method': 'Ratio between NDJ and MAM standard deviation nino3.4 sstA, time series are linearly detrended',
         'name': 'ENSO seasonality',
         'ref': 'Using CDAT std dev calculation',
         'time_frequency': 'monthly',
         'units': 'C/C'},
        'metric': {'datasets': "MPI-ESM-P_r1i1p1; ERA-Interim's ts & HadISST's sst & Tropflux's sst; 's ",
         'method': 'The metric is the absolute value of the relative difference between model and observations values (M = 100 * abs[[model-obs] / obs])',
         'name': 'EnsoSeasonality',
         'units': '%'}},
       'EnsoSstDiversity_2': {'diagnostic': {'ERA-Interim': {'keyerror': None,
          'name': 'ERA-Interim',
          'nyears': 40,
          'time_period': ['1979-1-16 12:0:0.0', '2019-3-16 12:0:0.0']},
         'HadISST': {'keyerror': None,
          'name': 'HadISST',
          'nyears': 151,
          'time_period': ['1870-1-16 11:59:59.5', '2020-10-16 12:0:0.0']},
         'MPI-ESM-P_r1i1p1': {'keyerror': None,
          'name': 'MPI-ESM-P_r1i1p1',
          'nyears': 156,
          'time_period': ['1850-1-16 12:0:0.0', '2005-12-16 12:0:0.0']},
         'Tropflux': {'keyerror': None,
          'name': 'Tropflux',
          'nyears': 40,
          'time_period': ['1979-1-15 0:0:0.0', '2018-12-15 12:0:0.0']},
         'method': 'Nino (Nina) events = nino3.4 sstA > 0.75 (< -0.75) during DEC, zonal SSTA (meridional averaged [-5.0 ; 5.0]), the zonal SSTA maximum (minimum) is located for each event, the diversity is the interquartile range (IQR = Q3 - Q1), time series are linearly detrended, smoothing using a triangle shaped window of 5 points',
         'name': 'ENSO Diversity (interquartile range)',
         'ref': 'Using CDAT regridding',
         'time_frequency': 'monthly',
         'units': 'long'},
        'metric': {'datasets': "MPI-ESM-P_r1i1p1; ERA-Interim's ts & HadISST's sst & Tropflux's sst; 's ",
         'method': 'The metric is the absolute value of the relative difference between model and observations values (M = 100 * abs[[model-obs] / obs])',
         'name': 'EnsoSstDiversity',
         'units': '%'}},
       'EnsoSstLonRmse': {'diagnostic': {'ERA-Interim': {'name': 'ERA-Interim',
          'nyears': 40,
          'time_period': ['1979-1-16 12:0:0.0', '2019-3-16 12:0:0.0']},
         'HadISST': {'name': 'HadISST',
          'nyears': 151,
          'time_period': ['1870-1-16 11:59:59.5', '2020-10-16 12:0:0.0']},
         'MPI-ESM-P_r1i1p1': {'keyerror': None,
          'name': 'MPI-ESM-P_r1i1p1',
          'nyears': 156,
          'time_period': ['1850-1-16 12:0:0.0', '2005-12-16 12:0:0.0']},
         'Tropflux': {'name': 'Tropflux',
          'nyears': 40,
          'time_period': ['1979-1-15 0:0:0.0', '2018-12-15 12:0:0.0']},
         'method': 'nino3.4 SSTA during DEC regressed against equatorial_pacific SSTA, time series are linearly detrended, smoothing using a triangle shaped window of 5 points, observations and model regridded to generic_1x1deg',
         'name': 'ENSO Zonal SSTA pattern',
         'ref': 'Using CDAT regridding and rms (uncentered and biased) calculation',
         'time_frequency': 'monthly',
         'units': 'C/C'},
        'metric': {'datasets': "MPI-ESM-P_r1i1p1; ERA-Interim's ts & HadISST's sst & Tropflux's sst; 's ",
         'method': 'The metric is the statistical value between the model and the observations',
         'name': 'EnsoSstLonRmse',
         'units': 'C/C'}},
       'EnsoSstSkew': {'diagnostic': {'ERA-Interim': {'keyerror': None,
          'name': 'ERA-Interim',
          'nyears': 40,
          'time_period': ['1979-1-16 12:0:0.0', '2019-3-16 12:0:0.0']},
         'HadISST': {'keyerror': None,
          'name': 'HadISST',
          'nyears': 151,
          'time_period': ['1870-1-16 11:59:59.5', '2020-10-16 12:0:0.0']},
         'MPI-ESM-P_r1i1p1': {'keyerror': None,
          'name': 'MPI-ESM-P_r1i1p1',
          'nyears': 156,
          'time_period': ['1850-1-16 12:0:0.0', '2005-12-16 12:0:0.0']},
         'Tropflux': {'keyerror': None,
          'name': 'Tropflux',
          'nyears': 40,
          'time_period': ['1979-1-15 0:0:0.0', '2018-12-15 12:0:0.0']},
         'method': 'Standard deviation of nino3.4 sstA, time series are linearly detrended',
         'name': 'ENSO skewness',
         'ref': 'Using CDAT regression calculation',
         'time_frequency': 'monthly',
         'units': 'C'},
        'metric': {'datasets': "MPI-ESM-P_r1i1p1; ERA-Interim's ts & HadISST's sst & Tropflux's sst; 's ",
         'method': 'The metric is the absolute value of the relative difference between model and observations values (M = 100 * abs[[model-obs] / obs])',
         'name': 'EnsoSstSkew',
         'units': '%'}},
       'EnsoSstTsRmse': {'diagnostic': {'ERA-Interim': {'name': 'ERA-Interim',
          'nyears': 40,
          'time_period': ['1979-1-16 12:0:0.0', '2019-3-16 12:0:0.0']},
         'HadISST': {'name': 'HadISST',
          'nyears': 151,
          'time_period': ['1870-1-16 11:59:59.5', '2020-10-16 12:0:0.0']},
         'MPI-ESM-P_r1i1p1': {'keyerror': None,
          'name': 'MPI-ESM-P_r1i1p1',
          'nyears': 156,
          'time_period': ['1850-1-16 12:0:0.0', '2005-12-16 12:0:0.0']},
         'Tropflux': {'name': 'Tropflux',
          'nyears': 40,
          'time_period': ['1979-1-15 0:0:0.0', '2018-12-15 12:0:0.0']},
         'method': 'nino3.4 SSTA during DEC regressed against nino3.4 SSTA during 6 years (centered on ENSO), time series are linearly detrended, smoothing using a triangle shaped window of 5 points',
         'name': 'ENSO life cyle SSTA pattern',
         'ref': 'Using CDAT regridding and rms (uncentered and biased) calculation',
         'time_frequency': 'monthly',
         'units': 'C/C'},
        'metric': {'datasets': "MPI-ESM-P_r1i1p1; ERA-Interim's ts & HadISST's sst & Tropflux's sst; 's ",
         'method': 'The metric is the statistical value between the model and the observations',
         'name': 'EnsoSstTsRmse',
         'units': 'C/C'}},
       'SeasonalPrLatRmse': {'diagnostic': {'ERA-Interim': {'name': 'ERA-Interim',
          'nyears': 40,
          'time_period': ['1979-1-16 12:0:0.0', '2019-3-16 12:0:0.0']},
         'GPCPv2.3': {'name': 'GPCPv2.3',
          'nyears': 41,
          'time_period': ['1979-1-1 0:0:0.0', '2019-7-1 0:0:0.0']},
         'MPI-ESM-P_r1i1p1': {'keyerror': None,
          'name': 'MPI-ESM-P_r1i1p1',
          'nyears': 156,
          'time_period': ['1850-1-16 12:0:0.0', '2005-12-16 12:0:0.0']},
         'method': 'Meridional root mean square error of nino3_LatExt climatological pr STD, time series are linearly detrended, observations and model regridded to generic_1x1deg',
         'name': 'pr meridional seasonality RMSE',
         'ref': 'Using CDAT regridding and rms (uncentered and biased) calculation',
         'time_frequency': 'monthly',
         'units': 'mm/day'},
        'metric': {'datasets': "MPI-ESM-P_r1i1p1; ERA-Interim's pr & GPCPv2.3's precip; 's ",
         'method': 'The metric is the statistical value between the model and the observations',
         'name': 'SeasonalPrLatRmse',
         'units': 'mm/day'}},
       'SeasonalPrLonRmse': {'diagnostic': {'ERA-Interim': {'name': 'ERA-Interim',
          'nyears': 40,
          'time_period': ['1979-1-16 12:0:0.0', '2019-3-16 12:0:0.0']},
         'GPCPv2.3': {'name': 'GPCPv2.3',
          'nyears': 41,
          'time_period': ['1979-1-1 0:0:0.0', '2019-7-1 0:0:0.0']},
         'MPI-ESM-P_r1i1p1': {'keyerror': None,
          'name': 'MPI-ESM-P_r1i1p1',
          'nyears': 156,
          'time_period': ['1850-1-16 12:0:0.0', '2005-12-16 12:0:0.0']},
         'method': 'Zonal root mean square error of equatorial_pacific climatological pr STD, time series are linearly detrended, observations and model regridded to generic_1x1deg',
         'name': 'pr zonal seasonality RMSE',
         'ref': 'Using CDAT regridding and rms (uncentered and biased) calculation',
         'time_frequency': 'monthly',
         'units': 'mm/day'},
        'metric': {'datasets': "MPI-ESM-P_r1i1p1; ERA-Interim's pr & GPCPv2.3's precip; 's ",
         'method': 'The metric is the statistical value between the model and the observations',
         'name': 'SeasonalPrLonRmse',
         'units': 'mm/day'}},
       'SeasonalSstLonRmse': {'diagnostic': {'ERA-Interim': {'name': 'ERA-Interim',
          'nyears': 40,
          'time_period': ['1979-1-16 12:0:0.0', '2019-3-16 12:0:0.0']},
         'HadISST': {'name': 'HadISST',
          'nyears': 151,
          'time_period': ['1870-1-16 11:59:59.5', '2020-10-16 12:0:0.0']},
         'MPI-ESM-P_r1i1p1': {'keyerror': None,
          'name': 'MPI-ESM-P_r1i1p1',
          'nyears': 156,
          'time_period': ['1850-1-16 12:0:0.0', '2005-12-16 12:0:0.0']},
         'Tropflux': {'name': 'Tropflux',
          'nyears': 40,
          'time_period': ['1979-1-15 0:0:0.0', '2018-12-15 12:0:0.0']},
         'method': 'Zonal root mean square error of equatorial_pacific climatological sst STD, time series are linearly detrended, observations and model regridded to generic_1x1deg',
         'name': 'sst zonal seasonality RMSE',
         'ref': 'Using CDAT regridding and rms (uncentered and biased) calculation',
         'time_frequency': 'monthly',
         'units': 'C'},
        'metric': {'datasets': "MPI-ESM-P_r1i1p1; ERA-Interim's ts & HadISST's sst & Tropflux's sst; 's ",
         'method': 'The metric is the statistical value between the model and the observations',
         'name': 'SeasonalSstLonRmse',
         'units': 'C'}},
       'SeasonalTauxLonRmse': {'diagnostic': {'ERA-Interim': {'name': 'ERA-Interim',
          'nyears': 40,
          'time_period': ['1979-1-16 12:0:0.0', '2019-3-16 12:0:0.0']},
         'MPI-ESM-P_r1i1p1': {'keyerror': None,
          'name': 'MPI-ESM-P_r1i1p1',
          'nyears': 156,
          'time_period': ['1850-1-16 12:0:0.0', '2005-12-16 12:0:0.0']},
         'Tropflux': {'name': 'Tropflux',
          'nyears': 40,
          'time_period': ['1979-1-15 0:0:0.0', '2018-12-15 12:0:0.0']},
         'method': 'Zonal root mean square error of equatorial_pacific climatological taux STD, time series are linearly detrended, observations and model regridded to generic_1x1deg',
         'name': 'taux zonal seasonality RMSE',
         'ref': 'Using CDAT regridding and rms (uncentered and biased) calculation',
         'time_frequency': 'monthly',
         'units': '1e-3 N/m2'},
        'metric': {'datasets': "MPI-ESM-P_r1i1p1; ERA-Interim's tauu & Tropflux's taux; 's ",
         'method': 'The metric is the statistical value between the model and the observations',
         'name': 'SeasonalTauxLonRmse',
         'units': '1e-3 N/m2'}}},
      'name': 'Metrics Collection for ENSO performance'},
     'value': {'BiasPrLatRmse': {'diagnostic': {'ERA-Interim': {'value': None,
         'value_error': None},
        'GPCPv2.3': {'value': None, 'value_error': None},
        'MPI-ESM-P_r1i1p1': {'value': None, 'value_error': None}},
       'metric': {'ERA-Interim': {'value': 1.8014718246755053,
         'value_error': None},
        'GPCPv2.3': {'value': 1.6655517043035408, 'value_error': None}}},
      'BiasPrLonRmse': {'diagnostic': {'ERA-Interim': {'value': None,
         'value_error': None},
        'GPCPv2.3': {'value': None, 'value_error': None},
        'MPI-ESM-P_r1i1p1': {'value': None, 'value_error': None}},
       'metric': {'ERA-Interim': {'value': 4.053924224157592,
         'value_error': None},
        'GPCPv2.3': {'value': 2.9030661780435003, 'value_error': None}}},
      'BiasSstLonRmse': {'diagnostic': {'ERA-Interim': {'value': None,
         'value_error': None},
        'HadISST': {'value': None, 'value_error': None},
        'MPI-ESM-P_r1i1p1': {'value': None, 'value_error': None},
        'Tropflux': {'value': None, 'value_error': None}},
       'metric': {'ERA-Interim': {'value': 1.819438413116001,
         'value_error': None},
        'HadISST': {'value': 1.6206918255122706, 'value_error': None},
        'Tropflux': {'value': 1.8675558608296168, 'value_error': None}}},
      'BiasTauxLonRmse': {'diagnostic': {'ERA-Interim': {'value': None,
         'value_error': None},
        'MPI-ESM-P_r1i1p1': {'value': None, 'value_error': None},
        'Tropflux': {'value': None, 'value_error': None}},
       'metric': {'ERA-Interim': {'value': 9.268354577842842,
         'value_error': None},
        'Tropflux': {'value': 9.17454641015099, 'value_error': None}}},
      'EnsoAmpl': {'diagnostic': {'ERA-Interim': {'value': 0.8989844997845644,
         'value_error': 0.14214193002531866},
        'HadISST': {'value': 0.7665787872085695,
         'value_error': 0.06238329697691264},
        'MPI-ESM-P_r1i1p1': {'value': 0.7722441471014796,
         'value_error': 0.06182901478107203},
        'Tropflux': {'value': 0.9039789553693535,
         'value_error': 0.14293162279134272}},
       'metric': {'ERA-Interim': {'value': 14.098168846454781,
         'value_error': 20.459922896767367},
        'HadISST': {'value': 0.7390446993113362,
         'value_error': 16.263605814287587},
        'Tropflux': {'value': 14.572773789191675,
         'value_error': 20.34688245974263}}},
      'EnsoDuration': {'diagnostic': {'ERA-Interim': {'value': 13.0,
         'value_error': None},
        'HadISST': {'value': 13.0, 'value_error': None},
        'MPI-ESM-P_r1i1p1': {'value': 19.0, 'value_error': None},
        'Tropflux': {'value': 13.0, 'value_error': None}},
       'metric': {'ERA-Interim': {'value': 46.15384615384615,
         'value_error': None},
        'HadISST': {'value': 46.15384615384615, 'value_error': None},
        'Tropflux': {'value': 46.15384615384615, 'value_error': None}}},
      'EnsoSeasonality': {'diagnostic': {'ERA-Interim': {'value': 2.0466846866656914,
         'value_error': 0.6513411033995022},
        'HadISST': {'value': 1.6639865947361325,
         'value_error': 0.2712772451657809},
        'MPI-ESM-P_r1i1p1': {'value': 0.9831168306329693,
         'value_error': 0.15767818562535948},
        'Tropflux': {'value': 2.0532132553583624,
         'value_error': 0.6534187683977347}},
       'metric': {'ERA-Interim': {'value': 51.96539862549169,
         'value_error': 22.99070742539319},
        'HadISST': {'value': 40.917983729979056,
         'value_error': 19.10798156408769},
        'Tropflux': {'value': 52.11813346386278,
         'value_error': 22.9176042480549}}},
      'EnsoSstDiversity_2': {'diagnostic': {'ERA-Interim': {'value': 33.25,
         'value_error': None},
        'HadISST': {'value': 49.0, 'value_error': None},
        'MPI-ESM-P_r1i1p1': {'value': 48.5, 'value_error': None},
        'Tropflux': {'value': 32.0, 'value_error': None}},
       'metric': {'ERA-Interim': {'value': 45.86466165413533,
         'value_error': None},
        'HadISST': {'value': 1.0204081632653061, 'value_error': None},
        'Tropflux': {'value': 51.5625, 'value_error': None}}},
      'EnsoSstLonRmse': {'diagnostic': {'ERA-Interim': {'value': None,
         'value_error': None},
        'HadISST': {'value': None, 'value_error': None},
        'MPI-ESM-P_r1i1p1': {'value': None, 'value_error': None},
        'Tropflux': {'value': None, 'value_error': None}},
       'metric': {'ERA-Interim': {'value': 0.29566027609577245,
         'value_error': None},
        'HadISST': {'value': 0.31000073968249187, 'value_error': None},
        'Tropflux': {'value': 0.2961771525959026, 'value_error': None}}},
      'EnsoSstSkew': {'diagnostic': {'ERA-Interim': {'value': 0.39098111106809963,
         'value_error': 0.061819541653923164},
        'HadISST': {'value': 0.38989908235027515,
         'value_error': 0.03172953733021198},
        'MPI-ESM-P_r1i1p1': {'value': -0.17696261378331826,
         'value_error': -0.014168348318822709},
        'Tropflux': {'value': 0.39744741059612115,
         'value_error': 0.06284195338099416}},
       'metric': {'ERA-Interim': {'value': 145.2611670420302,
         'value_error': -10.780212429260049},
        'HadISST': {'value': 145.3867736021855,
         'value_error': -7.327373385875526},
        'Tropflux': {'value': 144.52478719584477,
         'value_error': -10.604822979776047}}},
      'EnsoSstTsRmse': {'diagnostic': {'ERA-Interim': {'value': None,
         'value_error': None},
        'HadISST': {'value': None, 'value_error': None},
        'MPI-ESM-P_r1i1p1': {'value': None, 'value_error': None},
        'Tropflux': {'value': None, 'value_error': None}},
       'metric': {'ERA-Interim': {'value': 0.20064176852141577,
         'value_error': None},
        'HadISST': {'value': 0.16012238223578149, 'value_error': None},
        'Tropflux': {'value': 0.1965396989353668, 'value_error': None}}},
      'SeasonalPrLatRmse': {'diagnostic': {'ERA-Interim': {'value': None,
         'value_error': None},
        'GPCPv2.3': {'value': None, 'value_error': None},
        'MPI-ESM-P_r1i1p1': {'value': None, 'value_error': None}},
       'metric': {'ERA-Interim': {'value': 1.3026362985431401,
         'value_error': None},
        'GPCPv2.3': {'value': 1.1284028975341265, 'value_error': None}}},
      'SeasonalPrLonRmse': {'diagnostic': {'ERA-Interim': {'value': None,
         'value_error': None},
        'GPCPv2.3': {'value': None, 'value_error': None},
        'MPI-ESM-P_r1i1p1': {'value': None, 'value_error': None}},
       'metric': {'ERA-Interim': {'value': 1.1454552461371574,
         'value_error': None},
        'GPCPv2.3': {'value': 0.7427289534966679, 'value_error': None}}},
      'SeasonalSstLonRmse': {'diagnostic': {'ERA-Interim': {'value': None,
         'value_error': None},
        'HadISST': {'value': None, 'value_error': None},
        'MPI-ESM-P_r1i1p1': {'value': None, 'value_error': None},
        'Tropflux': {'value': None, 'value_error': None}},
       'metric': {'ERA-Interim': {'value': 0.2402621590276404,
         'value_error': None},
        'HadISST': {'value': 0.2549278264008837, 'value_error': None},
        'Tropflux': {'value': 0.24182152941493462, 'value_error': None}}},
      'SeasonalTauxLonRmse': {'diagnostic': {'ERA-Interim': {'value': None,
         'value_error': None},
        'MPI-ESM-P_r1i1p1': {'value': None, 'value_error': None},
        'Tropflux': {'value': None, 'value_error': None}},
       'metric': {'ERA-Interim': {'value': 2.6092831963323477,
         'value_error': None},
        'Tropflux': {'value': 2.851110722932924, 'value_error': None}}}}},
    'r2i1p1': {'metadata': {'description_of_the_collection': 'Describe which science question this collection is about',
      'metrics': {'BiasPrLatRmse': {'diagnostic': {'ERA-Interim': {'name': 'ERA-Interim',
          'nyears': 40,
          'time_period': ['1979-1-16 12:0:0.0', '2019-3-16 12:0:0.0']},
         'GPCPv2.3': {'name': 'GPCPv2.3',
          'nyears': 41,
          'time_period': ['1979-1-1 0:0:0.0', '2019-7-1 0:0:0.0']},
         'MPI-ESM-P_r2i1p1': {'keyerror': None,
          'name': 'MPI-ESM-P_r2i1p1',
          'nyears': 156,
          'time_period': ['1850-1-16 12:0:0.0', '2005-12-16 12:0:0.0']},
         'method': 'Meridional root mean square error of nino3_LatExt pr, time series are linearly detrended, observations and model regridded to generic_1x1deg',
         'name': 'pr Meridional RMSE',
         'ref': 'Using CDAT regridding and rms (uncentered and biased) calculation',
         'time_frequency': 'monthly',
         'units': 'mm/day'},
        'metric': {'datasets': "MPI-ESM-P_r2i1p1; ERA-Interim's pr & GPCPv2.3's precip; 's ",
         'method': 'The metric is the statistical value between the model and the observations',
         'name': 'BiasPrLatRmse',
         'units': 'mm/day'}},
       'BiasPrLonRmse': {'diagnostic': {'ERA-Interim': {'name': 'ERA-Interim',
          'nyears': 40,
          'time_period': ['1979-1-16 12:0:0.0', '2019-3-16 12:0:0.0']},
         'GPCPv2.3': {'name': 'GPCPv2.3',
          'nyears': 41,
          'time_period': ['1979-1-1 0:0:0.0', '2019-7-1 0:0:0.0']},
         'MPI-ESM-P_r2i1p1': {'keyerror': None,
          'name': 'MPI-ESM-P_r2i1p1',
          'nyears': 156,
          'time_period': ['1850-1-16 12:0:0.0', '2005-12-16 12:0:0.0']},
         'method': 'Zonal root mean square error of equatorial_pacific pr, time series are linearly detrended, observations and model regridded to generic_1x1deg',
         'name': 'pr Zonal RMSE',
         'ref': 'Using CDAT regridding and rms (uncentered and biased) calculation',
         'time_frequency': 'monthly',
         'units': 'mm/day'},
        'metric': {'datasets': "MPI-ESM-P_r2i1p1; ERA-Interim's pr & GPCPv2.3's precip; 's ",
         'method': 'The metric is the statistical value between the model and the observations',
         'name': 'BiasPrLonRmse',
         'units': 'mm/day'}},
       'BiasSstLonRmse': {'diagnostic': {'ERA-Interim': {'name': 'ERA-Interim',
          'nyears': 40,
          'time_period': ['1979-1-16 12:0:0.0', '2019-3-16 12:0:0.0']},
         'HadISST': {'name': 'HadISST',
          'nyears': 151,
          'time_period': ['1870-1-16 11:59:59.5', '2020-10-16 12:0:0.0']},
         'MPI-ESM-P_r2i1p1': {'keyerror': None,
          'name': 'MPI-ESM-P_r2i1p1',
          'nyears': 156,
          'time_period': ['1850-1-16 12:0:0.0', '2005-12-16 12:0:0.0']},
         'Tropflux': {'name': 'Tropflux',
          'nyears': 40,
          'time_period': ['1979-1-15 0:0:0.0', '2018-12-15 12:0:0.0']},
         'method': 'Zonal root mean square error of equatorial_pacific sst, time series are linearly detrended, observations and model regridded to generic_1x1deg',
         'name': 'sst Zonal RMSE',
         'ref': 'Using CDAT regridding and rms (uncentered and biased) calculation',
         'time_frequency': 'monthly',
         'units': 'C'},
        'metric': {'datasets': "MPI-ESM-P_r2i1p1; ERA-Interim's ts & HadISST's sst & Tropflux's sst; 's ",
         'method': 'The metric is the statistical value between the model and the observations',
         'name': 'BiasSstLonRmse',
         'units': 'C'}},
       'BiasTauxLonRmse': {'diagnostic': {'ERA-Interim': {'name': 'ERA-Interim',
          'nyears': 40,
          'time_period': ['1979-1-16 12:0:0.0', '2019-3-16 12:0:0.0']},
         'MPI-ESM-P_r2i1p1': {'keyerror': None,
          'name': 'MPI-ESM-P_r2i1p1',
          'nyears': 156,
          'time_period': ['1850-1-16 12:0:0.0', '2005-12-16 12:0:0.0']},
         'Tropflux': {'name': 'Tropflux',
          'nyears': 40,
          'time_period': ['1979-1-15 0:0:0.0', '2018-12-15 12:0:0.0']},
         'method': 'Zonal root mean square error of equatorial_pacific taux, time series are linearly detrended, observations and model regridded to generic_1x1deg',
         'name': 'taux Zonal RMSE',
         'ref': 'Using CDAT regridding and rms (uncentered and biased) calculation',
         'time_frequency': 'monthly',
         'units': '1e-3 N/m2'},
        'metric': {'datasets': "MPI-ESM-P_r2i1p1; ERA-Interim's tauu & Tropflux's taux; 's ",
         'method': 'The metric is the statistical value between the model and the observations',
         'name': 'BiasTauxLonRmse',
         'units': '1e-3 N/m2'}},
       'EnsoAmpl': {'diagnostic': {'ERA-Interim': {'keyerror': None,
          'name': 'ERA-Interim',
          'nyears': 40,
          'time_period': ['1979-1-16 12:0:0.0', '2019-3-16 12:0:0.0']},
         'HadISST': {'keyerror': None,
          'name': 'HadISST',
          'nyears': 151,
          'time_period': ['1870-1-16 11:59:59.5', '2020-10-16 12:0:0.0']},
         'MPI-ESM-P_r2i1p1': {'keyerror': None,
          'name': 'MPI-ESM-P_r2i1p1',
          'nyears': 156,
          'time_period': ['1850-1-16 12:0:0.0', '2005-12-16 12:0:0.0']},
         'Tropflux': {'keyerror': None,
          'name': 'Tropflux',
          'nyears': 40,
          'time_period': ['1979-1-15 0:0:0.0', '2018-12-15 12:0:0.0']},
         'method': 'Standard deviation of nino3.4 sstA, time series are linearly detrended',
         'name': 'ENSO amplitude',
         'ref': 'Using CDAT regression calculation',
         'time_frequency': 'monthly',
         'units': 'C'},
        'metric': {'datasets': "MPI-ESM-P_r2i1p1; ERA-Interim's ts & HadISST's sst & Tropflux's sst; 's ",
         'method': 'The metric is the absolute value of the relative difference between model and observations values (M = 100 * abs[[model-obs] / obs])',
         'name': 'EnsoAmpl',
         'units': '%'}},
       'EnsoDuration': {'diagnostic': {'ERA-Interim': {'keyerror': None,
          'name': 'ERA-Interim',
          'nyears': 40,
          'time_period': ['1979-1-16 12:0:0.0', '2019-3-16 12:0:0.0']},
         'HadISST': {'keyerror': None,
          'name': 'HadISST',
          'nyears': 151,
          'time_period': ['1870-1-16 11:59:59.5', '2020-10-16 12:0:0.0']},
         'MPI-ESM-P_r2i1p1': {'keyerror': None,
          'name': 'MPI-ESM-P_r2i1p1',
          'nyears': 156,
          'time_period': ['1850-1-16 12:0:0.0', '2005-12-16 12:0:0.0']},
         'Tropflux': {'keyerror': None,
          'name': 'Tropflux',
          'nyears': 40,
          'time_period': ['1979-1-15 0:0:0.0', '2018-12-15 12:0:0.0']},
         'method': 'nino3.4 SSTA during DEC regressed against nino3.4 SSTA during 6 years (centered on ENSO), the duration is the number of consecutive months during which the regression is above 0.25, time series are linearly detrended, smoothing using a triangle shaped window of 5 points',
         'name': 'ENSO Duration based on life cyle SSTA pattern',
         'ref': 'Using CDAT',
         'time_frequency': 'monthly',
         'units': 'months'},
        'metric': {'datasets': "MPI-ESM-P_r2i1p1; ERA-Interim's ts & HadISST's sst & Tropflux's sst; 's ",
         'method': 'The metric is the absolute value of the relative difference between model and observations values (M = 100 * abs[[model-obs] / obs])',
         'name': 'EnsoDuration',
         'units': '%'}},
       'EnsoSeasonality': {'diagnostic': {'ERA-Interim': {'keyerror': None,
          'name': 'ERA-Interim',
          'nyears': 40,
          'time_period': ['1979-1-16 12:0:0.0', '2019-3-16 12:0:0.0']},
         'HadISST': {'keyerror': None,
          'name': 'HadISST',
          'nyears': 151,
          'time_period': ['1870-1-16 11:59:59.5', '2020-10-16 12:0:0.0']},
         'MPI-ESM-P_r2i1p1': {'keyerror': None,
          'name': 'MPI-ESM-P_r2i1p1',
          'nyears': 156,
          'time_period': ['1850-1-16 12:0:0.0', '2005-12-16 12:0:0.0']},
         'Tropflux': {'keyerror': None,
          'name': 'Tropflux',
          'nyears': 40,
          'time_period': ['1979-1-15 0:0:0.0', '2018-12-15 12:0:0.0']},
         'method': 'Ratio between NDJ and MAM standard deviation nino3.4 sstA, time series are linearly detrended',
         'name': 'ENSO seasonality',
         'ref': 'Using CDAT std dev calculation',
         'time_frequency': 'monthly',
         'units': 'C/C'},
        'metric': {'datasets': "MPI-ESM-P_r2i1p1; ERA-Interim's ts & HadISST's sst & Tropflux's sst; 's ",
         'method': 'The metric is the absolute value of the relative difference between model and observations values (M = 100 * abs[[model-obs] / obs])',
         'name': 'EnsoSeasonality',
         'units': '%'}},
       'EnsoSstDiversity_2': {'diagnostic': {'ERA-Interim': {'keyerror': None,
          'name': 'ERA-Interim',
          'nyears': 40,
          'time_period': ['1979-1-16 12:0:0.0', '2019-3-16 12:0:0.0']},
         'HadISST': {'keyerror': None,
          'name': 'HadISST',
          'nyears': 151,
          'time_period': ['1870-1-16 11:59:59.5', '2020-10-16 12:0:0.0']},
         'MPI-ESM-P_r2i1p1': {'keyerror': None,
          'name': 'MPI-ESM-P_r2i1p1',
          'nyears': 156,
          'time_period': ['1850-1-16 12:0:0.0', '2005-12-16 12:0:0.0']},
         'Tropflux': {'keyerror': None,
          'name': 'Tropflux',
          'nyears': 40,
          'time_period': ['1979-1-15 0:0:0.0', '2018-12-15 12:0:0.0']},
         'method': 'Nino (Nina) events = nino3.4 sstA > 0.75 (< -0.75) during DEC, zonal SSTA (meridional averaged [-5.0 ; 5.0]), the zonal SSTA maximum (minimum) is located for each event, the diversity is the interquartile range (IQR = Q3 - Q1), time series are linearly detrended, smoothing using a triangle shaped window of 5 points',
         'name': 'ENSO Diversity (interquartile range)',
         'ref': 'Using CDAT regridding',
         'time_frequency': 'monthly',
         'units': 'long'},
        'metric': {'datasets': "MPI-ESM-P_r2i1p1; ERA-Interim's ts & HadISST's sst & Tropflux's sst; 's ",
         'method': 'The metric is the absolute value of the relative difference between model and observations values (M = 100 * abs[[model-obs] / obs])',
         'name': 'EnsoSstDiversity',
         'units': '%'}},
       'EnsoSstLonRmse': {'diagnostic': {'ERA-Interim': {'name': 'ERA-Interim',
          'nyears': 40,
          'time_period': ['1979-1-16 12:0:0.0', '2019-3-16 12:0:0.0']},
         'HadISST': {'name': 'HadISST',
          'nyears': 151,
          'time_period': ['1870-1-16 11:59:59.5', '2020-10-16 12:0:0.0']},
         'MPI-ESM-P_r2i1p1': {'keyerror': None,
          'name': 'MPI-ESM-P_r2i1p1',
          'nyears': 156,
          'time_period': ['1850-1-16 12:0:0.0', '2005-12-16 12:0:0.0']},
         'Tropflux': {'name': 'Tropflux',
          'nyears': 40,
          'time_period': ['1979-1-15 0:0:0.0', '2018-12-15 12:0:0.0']},
         'method': 'nino3.4 SSTA during DEC regressed against equatorial_pacific SSTA, time series are linearly detrended, smoothing using a triangle shaped window of 5 points, observations and model regridded to generic_1x1deg',
         'name': 'ENSO Zonal SSTA pattern',
         'ref': 'Using CDAT regridding and rms (uncentered and biased) calculation',
         'time_frequency': 'monthly',
         'units': 'C/C'},
        'metric': {'datasets': "MPI-ESM-P_r2i1p1; ERA-Interim's ts & HadISST's sst & Tropflux's sst; 's ",
         'method': 'The metric is the statistical value between the model and the observations',
         'name': 'EnsoSstLonRmse',
         'units': 'C/C'}},
       'EnsoSstSkew': {'diagnostic': {'ERA-Interim': {'keyerror': None,
          'name': 'ERA-Interim',
          'nyears': 40,
          'time_period': ['1979-1-16 12:0:0.0', '2019-3-16 12:0:0.0']},
         'HadISST': {'keyerror': None,
          'name': 'HadISST',
          'nyears': 151,
          'time_period': ['1870-1-16 11:59:59.5', '2020-10-16 12:0:0.0']},
         'MPI-ESM-P_r2i1p1': {'keyerror': None,
          'name': 'MPI-ESM-P_r2i1p1',
          'nyears': 156,
          'time_period': ['1850-1-16 12:0:0.0', '2005-12-16 12:0:0.0']},
         'Tropflux': {'keyerror': None,
          'name': 'Tropflux',
          'nyears': 40,
          'time_period': ['1979-1-15 0:0:0.0', '2018-12-15 12:0:0.0']},
         'method': 'Standard deviation of nino3.4 sstA, time series are linearly detrended',
         'name': 'ENSO skewness',
         'ref': 'Using CDAT regression calculation',
         'time_frequency': 'monthly',
         'units': 'C'},
        'metric': {'datasets': "MPI-ESM-P_r2i1p1; ERA-Interim's ts & HadISST's sst & Tropflux's sst; 's ",
         'method': 'The metric is the absolute value of the relative difference between model and observations values (M = 100 * abs[[model-obs] / obs])',
         'name': 'EnsoSstSkew',
         'units': '%'}},
       'EnsoSstTsRmse': {'diagnostic': {'ERA-Interim': {'name': 'ERA-Interim',
          'nyears': 40,
          'time_period': ['1979-1-16 12:0:0.0', '2019-3-16 12:0:0.0']},
         'HadISST': {'name': 'HadISST',
          'nyears': 151,
          'time_period': ['1870-1-16 11:59:59.5', '2020-10-16 12:0:0.0']},
         'MPI-ESM-P_r2i1p1': {'keyerror': None,
          'name': 'MPI-ESM-P_r2i1p1',
          'nyears': 156,
          'time_period': ['1850-1-16 12:0:0.0', '2005-12-16 12:0:0.0']},
         'Tropflux': {'name': 'Tropflux',
          'nyears': 40,
          'time_period': ['1979-1-15 0:0:0.0', '2018-12-15 12:0:0.0']},
         'method': 'nino3.4 SSTA during DEC regressed against nino3.4 SSTA during 6 years (centered on ENSO), time series are linearly detrended, smoothing using a triangle shaped window of 5 points',
         'name': 'ENSO life cyle SSTA pattern',
         'ref': 'Using CDAT regridding and rms (uncentered and biased) calculation',
         'time_frequency': 'monthly',
         'units': 'C/C'},
        'metric': {'datasets': "MPI-ESM-P_r2i1p1; ERA-Interim's ts & HadISST's sst & Tropflux's sst; 's ",
         'method': 'The metric is the statistical value between the model and the observations',
         'name': 'EnsoSstTsRmse',
         'units': 'C/C'}},
       'SeasonalPrLatRmse': {'diagnostic': {'ERA-Interim': {'name': 'ERA-Interim',
          'nyears': 40,
          'time_period': ['1979-1-16 12:0:0.0', '2019-3-16 12:0:0.0']},
         'GPCPv2.3': {'name': 'GPCPv2.3',
          'nyears': 41,
          'time_period': ['1979-1-1 0:0:0.0', '2019-7-1 0:0:0.0']},
         'MPI-ESM-P_r2i1p1': {'keyerror': None,
          'name': 'MPI-ESM-P_r2i1p1',
          'nyears': 156,
          'time_period': ['1850-1-16 12:0:0.0', '2005-12-16 12:0:0.0']},
         'method': 'Meridional root mean square error of nino3_LatExt climatological pr STD, time series are linearly detrended, observations and model regridded to generic_1x1deg',
         'name': 'pr meridional seasonality RMSE',
         'ref': 'Using CDAT regridding and rms (uncentered and biased) calculation',
         'time_frequency': 'monthly',
         'units': 'mm/day'},
        'metric': {'datasets': "MPI-ESM-P_r2i1p1; ERA-Interim's pr & GPCPv2.3's precip; 's ",
         'method': 'The metric is the statistical value between the model and the observations',
         'name': 'SeasonalPrLatRmse',
         'units': 'mm/day'}},
       'SeasonalPrLonRmse': {'diagnostic': {'ERA-Interim': {'name': 'ERA-Interim',
          'nyears': 40,
          'time_period': ['1979-1-16 12:0:0.0', '2019-3-16 12:0:0.0']},
         'GPCPv2.3': {'name': 'GPCPv2.3',
          'nyears': 41,
          'time_period': ['1979-1-1 0:0:0.0', '2019-7-1 0:0:0.0']},
         'MPI-ESM-P_r2i1p1': {'keyerror': None,
          'name': 'MPI-ESM-P_r2i1p1',
          'nyears': 156,
          'time_period': ['1850-1-16 12:0:0.0', '2005-12-16 12:0:0.0']},
         'method': 'Zonal root mean square error of equatorial_pacific climatological pr STD, time series are linearly detrended, observations and model regridded to generic_1x1deg',
         'name': 'pr zonal seasonality RMSE',
         'ref': 'Using CDAT regridding and rms (uncentered and biased) calculation',
         'time_frequency': 'monthly',
         'units': 'mm/day'},
        'metric': {'datasets': "MPI-ESM-P_r2i1p1; ERA-Interim's pr & GPCPv2.3's precip; 's ",
         'method': 'The metric is the statistical value between the model and the observations',
         'name': 'SeasonalPrLonRmse',
         'units': 'mm/day'}},
       'SeasonalSstLonRmse': {'diagnostic': {'ERA-Interim': {'name': 'ERA-Interim',
          'nyears': 40,
          'time_period': ['1979-1-16 12:0:0.0', '2019-3-16 12:0:0.0']},
         'HadISST': {'name': 'HadISST',
          'nyears': 151,
          'time_period': ['1870-1-16 11:59:59.5', '2020-10-16 12:0:0.0']},
         'MPI-ESM-P_r2i1p1': {'keyerror': None,
          'name': 'MPI-ESM-P_r2i1p1',
          'nyears': 156,
          'time_period': ['1850-1-16 12:0:0.0', '2005-12-16 12:0:0.0']},
         'Tropflux': {'name': 'Tropflux',
          'nyears': 40,
          'time_period': ['1979-1-15 0:0:0.0', '2018-12-15 12:0:0.0']},
         'method': 'Zonal root mean square error of equatorial_pacific climatological sst STD, time series are linearly detrended, observations and model regridded to generic_1x1deg',
         'name': 'sst zonal seasonality RMSE',
         'ref': 'Using CDAT regridding and rms (uncentered and biased) calculation',
         'time_frequency': 'monthly',
         'units': 'C'},
        'metric': {'datasets': "MPI-ESM-P_r2i1p1; ERA-Interim's ts & HadISST's sst & Tropflux's sst; 's ",
         'method': 'The metric is the statistical value between the model and the observations',
         'name': 'SeasonalSstLonRmse',
         'units': 'C'}},
       'SeasonalTauxLonRmse': {'diagnostic': {'ERA-Interim': {'name': 'ERA-Interim',
          'nyears': 40,
          'time_period': ['1979-1-16 12:0:0.0', '2019-3-16 12:0:0.0']},
         'MPI-ESM-P_r2i1p1': {'keyerror': None,
          'name': 'MPI-ESM-P_r2i1p1',
          'nyears': 156,
          'time_period': ['1850-1-16 12:0:0.0', '2005-12-16 12:0:0.0']},
         'Tropflux': {'name': 'Tropflux',
          'nyears': 40,
          'time_period': ['1979-1-15 0:0:0.0', '2018-12-15 12:0:0.0']},
         'method': 'Zonal root mean square error of equatorial_pacific climatological taux STD, time series are linearly detrended, observations and model regridded to generic_1x1deg',
         'name': 'taux zonal seasonality RMSE',
         'ref': 'Using CDAT regridding and rms (uncentered and biased) calculation',
         'time_frequency': 'monthly',
         'units': '1e-3 N/m2'},
        'metric': {'datasets': "MPI-ESM-P_r2i1p1; ERA-Interim's tauu & Tropflux's taux; 's ",
         'method': 'The metric is the statistical value between the model and the observations',
         'name': 'SeasonalTauxLonRmse',
         'units': '1e-3 N/m2'}}},
      'name': 'Metrics Collection for ENSO performance'},
     'value': {'BiasPrLatRmse': {'diagnostic': {'ERA-Interim': {'value': None,
         'value_error': None},
        'GPCPv2.3': {'value': None, 'value_error': None},
        'MPI-ESM-P_r2i1p1': {'value': None, 'value_error': None}},
       'metric': {'ERA-Interim': {'value': 1.8167669228713939,
         'value_error': None},
        'GPCPv2.3': {'value': 1.6900532093920426, 'value_error': None}}},
      'BiasPrLonRmse': {'diagnostic': {'ERA-Interim': {'value': None,
         'value_error': None},
        'GPCPv2.3': {'value': None, 'value_error': None},
        'MPI-ESM-P_r2i1p1': {'value': None, 'value_error': None}},
       'metric': {'ERA-Interim': {'value': 4.014815822670141,
         'value_error': None},
        'GPCPv2.3': {'value': 2.8755661589140074, 'value_error': None}}},
      'BiasSstLonRmse': {'diagnostic': {'ERA-Interim': {'value': None,
         'value_error': None},
        'HadISST': {'value': None, 'value_error': None},
        'MPI-ESM-P_r2i1p1': {'value': None, 'value_error': None},
        'Tropflux': {'value': None, 'value_error': None}},
       'metric': {'ERA-Interim': {'value': 1.7103438540249833,
         'value_error': None},
        'HadISST': {'value': 1.513639654056288, 'value_error': None},
        'Tropflux': {'value': 1.7583801088803828, 'value_error': None}}},
      'BiasTauxLonRmse': {'diagnostic': {'ERA-Interim': {'value': None,
         'value_error': None},
        'MPI-ESM-P_r2i1p1': {'value': None, 'value_error': None},
        'Tropflux': {'value': None, 'value_error': None}},
       'metric': {'ERA-Interim': {'value': 8.968202768335205,
         'value_error': None},
        'Tropflux': {'value': 8.864259652901818, 'value_error': None}}},
      'EnsoAmpl': {'diagnostic': {'ERA-Interim': {'value': 0.8989844997845644,
         'value_error': 0.14214193002531866},
        'HadISST': {'value': 0.7665787872085695,
         'value_error': 0.06238329697691264},
        'MPI-ESM-P_r2i1p1': {'value': 0.7346261231074651,
         'value_error': 0.05881716241509352},
        'Tropflux': {'value': 0.9039789553693535,
         'value_error': 0.14293162279134272}},
       'metric': {'ERA-Interim': {'value': 18.282670804278236,
         'value_error': 19.463266757209546},
        'HadISST': {'value': 4.168216579206071,
         'value_error': 15.471363210640288},
        'Tropflux': {'value': 18.734156503974486,
         'value_error': 19.355732814326917}}},
      'EnsoDuration': {'diagnostic': {'ERA-Interim': {'value': 13.0,
         'value_error': None},
        'HadISST': {'value': 13.0, 'value_error': None},
        'MPI-ESM-P_r2i1p1': {'value': 22.0, 'value_error': None},
        'Tropflux': {'value': 13.0, 'value_error': None}},
       'metric': {'ERA-Interim': {'value': 69.23076923076923,
         'value_error': None},
        'HadISST': {'value': 69.23076923076923, 'value_error': None},
        'Tropflux': {'value': 69.23076923076923, 'value_error': None}}},
      'EnsoSeasonality': {'diagnostic': {'ERA-Interim': {'value': 2.0466846866656914,
         'value_error': 0.6513411033995022},
        'HadISST': {'value': 1.6639865947361325,
         'value_error': 0.2712772451657809},
        'MPI-ESM-P_r2i1p1': {'value': 0.9561960256500118,
         'value_error': 0.15336046513373297},
        'Tropflux': {'value': 2.0532132553583624,
         'value_error': 0.6534187683977347}},
       'metric': {'ERA-Interim': {'value': 53.280735822195645,
         'value_error': 22.361150152306173},
        'HadISST': {'value': 42.53583360137339,
         'value_error': 18.58474543458967},
        'Tropflux': {'value': 53.42928830434032,
         'value_error': 22.290048767958737}}},
      'EnsoSstDiversity_2': {'diagnostic': {'ERA-Interim': {'value': 33.25,
         'value_error': None},
        'HadISST': {'value': 49.0, 'value_error': None},
        'MPI-ESM-P_r2i1p1': {'value': 69.0, 'value_error': None},
        'Tropflux': {'value': 32.0, 'value_error': None}},
       'metric': {'ERA-Interim': {'value': 107.51879699248121,
         'value_error': None},
        'HadISST': {'value': 40.816326530612244, 'value_error': None},
        'Tropflux': {'value': 115.625, 'value_error': None}}},
      'EnsoSstLonRmse': {'diagnostic': {'ERA-Interim': {'value': None,
         'value_error': None},
        'HadISST': {'value': None, 'value_error': None},
        'MPI-ESM-P_r2i1p1': {'value': None, 'value_error': None},
        'Tropflux': {'value': None, 'value_error': None}},
       'metric': {'ERA-Interim': {'value': 0.32440554351732415,
         'value_error': None},
        'HadISST': {'value': 0.3356391603028059, 'value_error': None},
        'Tropflux': {'value': 0.3244937938551036, 'value_error': None}}},
      'EnsoSstSkew': {'diagnostic': {'ERA-Interim': {'value': 0.39098111106809963,
         'value_error': 0.061819541653923164},
        'HadISST': {'value': 0.38989908235027515,
         'value_error': 0.03172953733021198},
        'MPI-ESM-P_r2i1p1': {'value': -0.43667712410893056,
         'value_error': -0.03496215084623898},
        'Tropflux': {'value': 0.39744741059612115,
         'value_error': 0.06284195338099416}},
       'metric': {'ERA-Interim': {'value': 211.6875244729845,
         'value_error': -26.60150672648115},
        'HadISST': {'value': 211.997474186572,
         'value_error': -18.081199576619657},
        'Tropflux': {'value': 209.87041617756915,
         'value_error': -26.168711579741842}}},
      'EnsoSstTsRmse': {'diagnostic': {'ERA-Interim': {'value': None,
         'value_error': None},
        'HadISST': {'value': None, 'value_error': None},
        'MPI-ESM-P_r2i1p1': {'value': None, 'value_error': None},
        'Tropflux': {'value': None, 'value_error': None}},
       'metric': {'ERA-Interim': {'value': 0.22026153294293485,
         'value_error': None},
        'HadISST': {'value': 0.1802399487459419, 'value_error': None},
        'Tropflux': {'value': 0.21664277358619957, 'value_error': None}}},
      'SeasonalPrLatRmse': {'diagnostic': {'ERA-Interim': {'value': None,
         'value_error': None},
        'GPCPv2.3': {'value': None, 'value_error': None},
        'MPI-ESM-P_r2i1p1': {'value': None, 'value_error': None}},
       'metric': {'ERA-Interim': {'value': 1.315732598403537,
         'value_error': None},
        'GPCPv2.3': {'value': 1.1399346122192355, 'value_error': None}}},
      'SeasonalPrLonRmse': {'diagnostic': {'ERA-Interim': {'value': None,
         'value_error': None},
        'GPCPv2.3': {'value': None, 'value_error': None},
        'MPI-ESM-P_r2i1p1': {'value': None, 'value_error': None}},
       'metric': {'ERA-Interim': {'value': 1.1623188807401688,
         'value_error': None},
        'GPCPv2.3': {'value': 0.7610085276792554, 'value_error': None}}},
      'SeasonalSstLonRmse': {'diagnostic': {'ERA-Interim': {'value': None,
         'value_error': None},
        'HadISST': {'value': None, 'value_error': None},
        'MPI-ESM-P_r2i1p1': {'value': None, 'value_error': None},
        'Tropflux': {'value': None, 'value_error': None}},
       'metric': {'ERA-Interim': {'value': 0.253045057764712,
         'value_error': None},
        'HadISST': {'value': 0.26823545904004437, 'value_error': None},
        'Tropflux': {'value': 0.2545778205358436, 'value_error': None}}},
      'SeasonalTauxLonRmse': {'diagnostic': {'ERA-Interim': {'value': None,
         'value_error': None},
        'MPI-ESM-P_r2i1p1': {'value': None, 'value_error': None},
        'Tropflux': {'value': None, 'value_error': None}},
       'metric': {'ERA-Interim': {'value': 2.541317403716177,
         'value_error': None},
        'Tropflux': {'value': 2.7786733344194685, 'value_error': None}}}}}},
   'MRI-CGCM3': {'r1i1p1': {'metadata': {'description_of_the_collection': 'Describe which science question this collection is about',
      'metrics': {'BiasPrLatRmse': {'diagnostic': {'ERA-Interim': {'name': 'ERA-Interim',
          'nyears': 40,
          'time_period': ['1979-1-16 12:0:0.0', '2019-3-16 12:0:0.0']},
         'GPCPv2.3': {'name': 'GPCPv2.3',
          'nyears': 41,
          'time_period': ['1979-1-1 0:0:0.0', '2019-7-1 0:0:0.0']},
         'MRI-CGCM3_r1i1p1': {'keyerror': None,
          'name': 'MRI-CGCM3_r1i1p1',
          'nyears': 156,
          'time_period': ['1850-1-16 12:0:0.0', '2005-12-16 12:0:0.0']},
         'method': 'Meridional root mean square error of nino3_LatExt pr, time series are linearly detrended, observations and model regridded to generic_1x1deg',
         'name': 'pr Meridional RMSE',
         'ref': 'Using CDAT regridding and rms (uncentered and biased) calculation',
         'time_frequency': 'monthly',
         'units': 'mm/day'},
        'metric': {'datasets': "MRI-CGCM3_r1i1p1; ERA-Interim's pr & GPCPv2.3's precip; 's ",
         'method': 'The metric is the statistical value between the model and the observations',
         'name': 'BiasPrLatRmse',
         'units': 'mm/day'}},
       'BiasPrLonRmse': {'diagnostic': {'ERA-Interim': {'name': 'ERA-Interim',
          'nyears': 40,
          'time_period': ['1979-1-16 12:0:0.0', '2019-3-16 12:0:0.0']},
         'GPCPv2.3': {'name': 'GPCPv2.3',
          'nyears': 41,
          'time_period': ['1979-1-1 0:0:0.0', '2019-7-1 0:0:0.0']},
         'MRI-CGCM3_r1i1p1': {'keyerror': None,
          'name': 'MRI-CGCM3_r1i1p1',
          'nyears': 156,
          'time_period': ['1850-1-16 12:0:0.0', '2005-12-16 12:0:0.0']},
         'method': 'Zonal root mean square error of equatorial_pacific pr, time series are linearly detrended, observations and model regridded to generic_1x1deg',
         'name': 'pr Zonal RMSE',
         'ref': 'Using CDAT regridding and rms (uncentered and biased) calculation',
         'time_frequency': 'monthly',
         'units': 'mm/day'},
        'metric': {'datasets': "MRI-CGCM3_r1i1p1; ERA-Interim's pr & GPCPv2.3's precip; 's ",
         'method': 'The metric is the statistical value between the model and the observations',
         'name': 'BiasPrLonRmse',
         'units': 'mm/day'}},
       'BiasSstLonRmse': {'diagnostic': {'ERA-Interim': {'name': 'ERA-Interim',
          'nyears': 40,
          'time_period': ['1979-1-16 12:0:0.0', '2019-3-16 12:0:0.0']},
         'HadISST': {'name': 'HadISST',
          'nyears': 151,
          'time_period': ['1870-1-16 11:59:59.5', '2020-10-16 12:0:0.0']},
         'MRI-CGCM3_r1i1p1': {'keyerror': None,
          'name': 'MRI-CGCM3_r1i1p1',
          'nyears': 156,
          'time_period': ['1850-1-16 12:0:0.0', '2005-12-16 12:0:0.0']},
         'Tropflux': {'name': 'Tropflux',
          'nyears': 40,
          'time_period': ['1979-1-15 0:0:0.0', '2018-12-15 12:0:0.0']},
         'method': 'Zonal root mean square error of equatorial_pacific sst, time series are linearly detrended, observations and model regridded to generic_1x1deg',
         'name': 'sst Zonal RMSE',
         'ref': 'Using CDAT regridding and rms (uncentered and biased) calculation',
         'time_frequency': 'monthly',
         'units': 'C'},
        'metric': {'datasets': "MRI-CGCM3_r1i1p1; ERA-Interim's ts & HadISST's sst & Tropflux's sst; 's ",
         'method': 'The metric is the statistical value between the model and the observations',
         'name': 'BiasSstLonRmse',
         'units': 'C'}},
       'BiasTauxLonRmse': {'diagnostic': {'ERA-Interim': {'name': 'ERA-Interim',
          'nyears': 40,
          'time_period': ['1979-1-16 12:0:0.0', '2019-3-16 12:0:0.0']},
         'MRI-CGCM3_r1i1p1': {'keyerror': None,
          'name': 'MRI-CGCM3_r1i1p1',
          'nyears': 156,
          'time_period': ['1850-1-16 12:0:0.0', '2005-12-16 12:0:0.0']},
         'Tropflux': {'name': 'Tropflux',
          'nyears': 40,
          'time_period': ['1979-1-15 0:0:0.0', '2018-12-15 12:0:0.0']},
         'method': 'Zonal root mean square error of equatorial_pacific taux, time series are linearly detrended, observations and model regridded to generic_1x1deg',
         'name': 'taux Zonal RMSE',
         'ref': 'Using CDAT regridding and rms (uncentered and biased) calculation',
         'time_frequency': 'monthly',
         'units': '1e-3 N/m2'},
        'metric': {'datasets': "MRI-CGCM3_r1i1p1; ERA-Interim's tauu & Tropflux's taux; 's ",
         'method': 'The metric is the statistical value between the model and the observations',
         'name': 'BiasTauxLonRmse',
         'units': '1e-3 N/m2'}},
       'EnsoAmpl': {'diagnostic': {'ERA-Interim': {'keyerror': None,
          'name': 'ERA-Interim',
          'nyears': 40,
          'time_period': ['1979-1-16 12:0:0.0', '2019-3-16 12:0:0.0']},
         'HadISST': {'keyerror': None,
          'name': 'HadISST',
          'nyears': 151,
          'time_period': ['1870-1-16 11:59:59.5', '2020-10-16 12:0:0.0']},
         'MRI-CGCM3_r1i1p1': {'keyerror': None,
          'name': 'MRI-CGCM3_r1i1p1',
          'nyears': 156,
          'time_period': ['1850-1-16 12:0:0.0', '2005-12-16 12:0:0.0']},
         'Tropflux': {'keyerror': None,
          'name': 'Tropflux',
          'nyears': 40,
          'time_period': ['1979-1-15 0:0:0.0', '2018-12-15 12:0:0.0']},
         'method': 'Standard deviation of nino3.4 sstA, time series are linearly detrended',
         'name': 'ENSO amplitude',
         'ref': 'Using CDAT regression calculation',
         'time_frequency': 'monthly',
         'units': 'C'},
        'metric': {'datasets': "MRI-CGCM3_r1i1p1; ERA-Interim's ts & HadISST's sst & Tropflux's sst; 's ",
         'method': 'The metric is the absolute value of the relative difference between model and observations values (M = 100 * abs[[model-obs] / obs])',
         'name': 'EnsoAmpl',
         'units': '%'}},
       'EnsoDuration': {'diagnostic': {'ERA-Interim': {'keyerror': None,
          'name': 'ERA-Interim',
          'nyears': 40,
          'time_period': ['1979-1-16 12:0:0.0', '2019-3-16 12:0:0.0']},
         'HadISST': {'keyerror': None,
          'name': 'HadISST',
          'nyears': 151,
          'time_period': ['1870-1-16 11:59:59.5', '2020-10-16 12:0:0.0']},
         'MRI-CGCM3_r1i1p1': {'keyerror': None,
          'name': 'MRI-CGCM3_r1i1p1',
          'nyears': 156,
          'time_period': ['1850-1-16 12:0:0.0', '2005-12-16 12:0:0.0']},
         'Tropflux': {'keyerror': None,
          'name': 'Tropflux',
          'nyears': 40,
          'time_period': ['1979-1-15 0:0:0.0', '2018-12-15 12:0:0.0']},
         'method': 'nino3.4 SSTA during DEC regressed against nino3.4 SSTA during 6 years (centered on ENSO), the duration is the number of consecutive months during which the regression is above 0.25, time series are linearly detrended, smoothing using a triangle shaped window of 5 points',
         'name': 'ENSO Duration based on life cyle SSTA pattern',
         'ref': 'Using CDAT',
         'time_frequency': 'monthly',
         'units': 'months'},
        'metric': {'datasets': "MRI-CGCM3_r1i1p1; ERA-Interim's ts & HadISST's sst & Tropflux's sst; 's ",
         'method': 'The metric is the absolute value of the relative difference between model and observations values (M = 100 * abs[[model-obs] / obs])',
         'name': 'EnsoDuration',
         'units': '%'}},
       'EnsoSeasonality': {'diagnostic': {'ERA-Interim': {'keyerror': None,
          'name': 'ERA-Interim',
          'nyears': 40,
          'time_period': ['1979-1-16 12:0:0.0', '2019-3-16 12:0:0.0']},
         'HadISST': {'keyerror': None,
          'name': 'HadISST',
          'nyears': 151,
          'time_period': ['1870-1-16 11:59:59.5', '2020-10-16 12:0:0.0']},
         'MRI-CGCM3_r1i1p1': {'keyerror': None,
          'name': 'MRI-CGCM3_r1i1p1',
          'nyears': 156,
          'time_period': ['1850-1-16 12:0:0.0', '2005-12-16 12:0:0.0']},
         'Tropflux': {'keyerror': None,
          'name': 'Tropflux',
          'nyears': 40,
          'time_period': ['1979-1-15 0:0:0.0', '2018-12-15 12:0:0.0']},
         'method': 'Ratio between NDJ and MAM standard deviation nino3.4 sstA, time series are linearly detrended',
         'name': 'ENSO seasonality',
         'ref': 'Using CDAT std dev calculation',
         'time_frequency': 'monthly',
         'units': 'C/C'},
        'metric': {'datasets': "MRI-CGCM3_r1i1p1; ERA-Interim's ts & HadISST's sst & Tropflux's sst; 's ",
         'method': 'The metric is the absolute value of the relative difference between model and observations values (M = 100 * abs[[model-obs] / obs])',
         'name': 'EnsoSeasonality',
         'units': '%'}},
       'EnsoSstDiversity_2': {'diagnostic': {'ERA-Interim': {'keyerror': None,
          'name': 'ERA-Interim',
          'nyears': 40,
          'time_period': ['1979-1-16 12:0:0.0', '2019-3-16 12:0:0.0']},
         'HadISST': {'keyerror': None,
          'name': 'HadISST',
          'nyears': 151,
          'time_period': ['1870-1-16 11:59:59.5', '2020-10-16 12:0:0.0']},
         'MRI-CGCM3_r1i1p1': {'keyerror': None,
          'name': 'MRI-CGCM3_r1i1p1',
          'nyears': 156,
          'time_period': ['1850-1-16 12:0:0.0', '2005-12-16 12:0:0.0']},
         'Tropflux': {'keyerror': None,
          'name': 'Tropflux',
          'nyears': 40,
          'time_period': ['1979-1-15 0:0:0.0', '2018-12-15 12:0:0.0']},
         'method': 'Nino (Nina) events = nino3.4 sstA > 0.75 (< -0.75) during DEC, zonal SSTA (meridional averaged [-5.0 ; 5.0]), the zonal SSTA maximum (minimum) is located for each event, the diversity is the interquartile range (IQR = Q3 - Q1), time series are linearly detrended, smoothing using a triangle shaped window of 5 points',
         'name': 'ENSO Diversity (interquartile range)',
         'ref': 'Using CDAT regridding',
         'time_frequency': 'monthly',
         'units': 'long'},
        'metric': {'datasets': "MRI-CGCM3_r1i1p1; ERA-Interim's ts & HadISST's sst & Tropflux's sst; 's ",
         'method': 'The metric is the absolute value of the relative difference between model and observations values (M = 100 * abs[[model-obs] / obs])',
         'name': 'EnsoSstDiversity',
         'units': '%'}},
       'EnsoSstLonRmse': {'diagnostic': {'ERA-Interim': {'name': 'ERA-Interim',
          'nyears': 40,
          'time_period': ['1979-1-16 12:0:0.0', '2019-3-16 12:0:0.0']},
         'HadISST': {'name': 'HadISST',
          'nyears': 151,
          'time_period': ['1870-1-16 11:59:59.5', '2020-10-16 12:0:0.0']},
         'MRI-CGCM3_r1i1p1': {'keyerror': None,
          'name': 'MRI-CGCM3_r1i1p1',
          'nyears': 156,
          'time_period': ['1850-1-16 12:0:0.0', '2005-12-16 12:0:0.0']},
         'Tropflux': {'name': 'Tropflux',
          'nyears': 40,
          'time_period': ['1979-1-15 0:0:0.0', '2018-12-15 12:0:0.0']},
         'method': 'nino3.4 SSTA during DEC regressed against equatorial_pacific SSTA, time series are linearly detrended, smoothing using a triangle shaped window of 5 points, observations and model regridded to generic_1x1deg',
         'name': 'ENSO Zonal SSTA pattern',
         'ref': 'Using CDAT regridding and rms (uncentered and biased) calculation',
         'time_frequency': 'monthly',
         'units': 'C/C'},
        'metric': {'datasets': "MRI-CGCM3_r1i1p1; ERA-Interim's ts & HadISST's sst & Tropflux's sst; 's ",
         'method': 'The metric is the statistical value between the model and the observations',
         'name': 'EnsoSstLonRmse',
         'units': 'C/C'}},
       'EnsoSstSkew': {'diagnostic': {'ERA-Interim': {'keyerror': None,
          'name': 'ERA-Interim',
          'nyears': 40,
          'time_period': ['1979-1-16 12:0:0.0', '2019-3-16 12:0:0.0']},
         'HadISST': {'keyerror': None,
          'name': 'HadISST',
          'nyears': 151,
          'time_period': ['1870-1-16 11:59:59.5', '2020-10-16 12:0:0.0']},
         'MRI-CGCM3_r1i1p1': {'keyerror': None,
          'name': 'MRI-CGCM3_r1i1p1',
          'nyears': 156,
          'time_period': ['1850-1-16 12:0:0.0', '2005-12-16 12:0:0.0']},
         'Tropflux': {'keyerror': None,
          'name': 'Tropflux',
          'nyears': 40,
          'time_period': ['1979-1-15 0:0:0.0', '2018-12-15 12:0:0.0']},
         'method': 'Standard deviation of nino3.4 sstA, time series are linearly detrended',
         'name': 'ENSO skewness',
         'ref': 'Using CDAT regression calculation',
         'time_frequency': 'monthly',
         'units': 'C'},
        'metric': {'datasets': "MRI-CGCM3_r1i1p1; ERA-Interim's ts & HadISST's sst & Tropflux's sst; 's ",
         'method': 'The metric is the absolute value of the relative difference between model and observations values (M = 100 * abs[[model-obs] / obs])',
         'name': 'EnsoSstSkew',
         'units': '%'}},
       'EnsoSstTsRmse': {'diagnostic': {'ERA-Interim': {'name': 'ERA-Interim',
          'nyears': 40,
          'time_period': ['1979-1-16 12:0:0.0', '2019-3-16 12:0:0.0']},
         'HadISST': {'name': 'HadISST',
          'nyears': 151,
          'time_period': ['1870-1-16 11:59:59.5', '2020-10-16 12:0:0.0']},
         'MRI-CGCM3_r1i1p1': {'keyerror': None,
          'name': 'MRI-CGCM3_r1i1p1',
          'nyears': 156,
          'time_period': ['1850-1-16 12:0:0.0', '2005-12-16 12:0:0.0']},
         'Tropflux': {'name': 'Tropflux',
          'nyears': 40,
          'time_period': ['1979-1-15 0:0:0.0', '2018-12-15 12:0:0.0']},
         'method': 'nino3.4 SSTA during DEC regressed against nino3.4 SSTA during 6 years (centered on ENSO), time series are linearly detrended, smoothing using a triangle shaped window of 5 points',
         'name': 'ENSO life cyle SSTA pattern',
         'ref': 'Using CDAT regridding and rms (uncentered and biased) calculation',
         'time_frequency': 'monthly',
         'units': 'C/C'},
        'metric': {'datasets': "MRI-CGCM3_r1i1p1; ERA-Interim's ts & HadISST's sst & Tropflux's sst; 's ",
         'method': 'The metric is the statistical value between the model and the observations',
         'name': 'EnsoSstTsRmse',
         'units': 'C/C'}},
       'SeasonalPrLatRmse': {'diagnostic': {'ERA-Interim': {'name': 'ERA-Interim',
          'nyears': 40,
          'time_period': ['1979-1-16 12:0:0.0', '2019-3-16 12:0:0.0']},
         'GPCPv2.3': {'name': 'GPCPv2.3',
          'nyears': 41,
          'time_period': ['1979-1-1 0:0:0.0', '2019-7-1 0:0:0.0']},
         'MRI-CGCM3_r1i1p1': {'keyerror': None,
          'name': 'MRI-CGCM3_r1i1p1',
          'nyears': 156,
          'time_period': ['1850-1-16 12:0:0.0', '2005-12-16 12:0:0.0']},
         'method': 'Meridional root mean square error of nino3_LatExt climatological pr STD, time series are linearly detrended, observations and model regridded to generic_1x1deg',
         'name': 'pr meridional seasonality RMSE',
         'ref': 'Using CDAT regridding and rms (uncentered and biased) calculation',
         'time_frequency': 'monthly',
         'units': 'mm/day'},
        'metric': {'datasets': "MRI-CGCM3_r1i1p1; ERA-Interim's pr & GPCPv2.3's precip; 's ",
         'method': 'The metric is the statistical value between the model and the observations',
         'name': 'SeasonalPrLatRmse',
         'units': 'mm/day'}},
       'SeasonalPrLonRmse': {'diagnostic': {'ERA-Interim': {'name': 'ERA-Interim',
          'nyears': 40,
          'time_period': ['1979-1-16 12:0:0.0', '2019-3-16 12:0:0.0']},
         'GPCPv2.3': {'name': 'GPCPv2.3',
          'nyears': 41,
          'time_period': ['1979-1-1 0:0:0.0', '2019-7-1 0:0:0.0']},
         'MRI-CGCM3_r1i1p1': {'keyerror': None,
          'name': 'MRI-CGCM3_r1i1p1',
          'nyears': 156,
          'time_period': ['1850-1-16 12:0:0.0', '2005-12-16 12:0:0.0']},
         'method': 'Zonal root mean square error of equatorial_pacific climatological pr STD, time series are linearly detrended, observations and model regridded to generic_1x1deg',
         'name': 'pr zonal seasonality RMSE',
         'ref': 'Using CDAT regridding and rms (uncentered and biased) calculation',
         'time_frequency': 'monthly',
         'units': 'mm/day'},
        'metric': {'datasets': "MRI-CGCM3_r1i1p1; ERA-Interim's pr & GPCPv2.3's precip; 's ",
         'method': 'The metric is the statistical value between the model and the observations',
         'name': 'SeasonalPrLonRmse',
         'units': 'mm/day'}},
       'SeasonalSstLonRmse': {'diagnostic': {'ERA-Interim': {'name': 'ERA-Interim',
          'nyears': 40,
          'time_period': ['1979-1-16 12:0:0.0', '2019-3-16 12:0:0.0']},
         'HadISST': {'name': 'HadISST',
          'nyears': 151,
          'time_period': ['1870-1-16 11:59:59.5', '2020-10-16 12:0:0.0']},
         'MRI-CGCM3_r1i1p1': {'keyerror': None,
          'name': 'MRI-CGCM3_r1i1p1',
          'nyears': 156,
          'time_period': ['1850-1-16 12:0:0.0', '2005-12-16 12:0:0.0']},
         'Tropflux': {'name': 'Tropflux',
          'nyears': 40,
          'time_period': ['1979-1-15 0:0:0.0', '2018-12-15 12:0:0.0']},
         'method': 'Zonal root mean square error of equatorial_pacific climatological sst STD, time series are linearly detrended, observations and model regridded to generic_1x1deg',
         'name': 'sst zonal seasonality RMSE',
         'ref': 'Using CDAT regridding and rms (uncentered and biased) calculation',
         'time_frequency': 'monthly',
         'units': 'C'},
        'metric': {'datasets': "MRI-CGCM3_r1i1p1; ERA-Interim's ts & HadISST's sst & Tropflux's sst; 's ",
         'method': 'The metric is the statistical value between the model and the observations',
         'name': 'SeasonalSstLonRmse',
         'units': 'C'}},
       'SeasonalTauxLonRmse': {'diagnostic': {'ERA-Interim': {'name': 'ERA-Interim',
          'nyears': 40,
          'time_period': ['1979-1-16 12:0:0.0', '2019-3-16 12:0:0.0']},
         'MRI-CGCM3_r1i1p1': {'keyerror': None,
          'name': 'MRI-CGCM3_r1i1p1',
          'nyears': 156,
          'time_period': ['1850-1-16 12:0:0.0', '2005-12-16 12:0:0.0']},
         'Tropflux': {'name': 'Tropflux',
          'nyears': 40,
          'time_period': ['1979-1-15 0:0:0.0', '2018-12-15 12:0:0.0']},
         'method': 'Zonal root mean square error of equatorial_pacific climatological taux STD, time series are linearly detrended, observations and model regridded to generic_1x1deg',
         'name': 'taux zonal seasonality RMSE',
         'ref': 'Using CDAT regridding and rms (uncentered and biased) calculation',
         'time_frequency': 'monthly',
         'units': '1e-3 N/m2'},
        'metric': {'datasets': "MRI-CGCM3_r1i1p1; ERA-Interim's tauu & Tropflux's taux; 's ",
         'method': 'The metric is the statistical value between the model and the observations',
         'name': 'SeasonalTauxLonRmse',
         'units': '1e-3 N/m2'}}},
      'name': 'Metrics Collection for ENSO performance'},
     'value': {'BiasPrLatRmse': {'diagnostic': {'ERA-Interim': {'value': None,
         'value_error': None},
        'GPCPv2.3': {'value': None, 'value_error': None},
        'MRI-CGCM3_r1i1p1': {'value': None, 'value_error': None}},
       'metric': {'ERA-Interim': {'value': 2.391942713056941,
         'value_error': None},
        'GPCPv2.3': {'value': 2.4505443395259134, 'value_error': None}}},
      'BiasPrLonRmse': {'diagnostic': {'ERA-Interim': {'value': None,
         'value_error': None},
        'GPCPv2.3': {'value': None, 'value_error': None},
        'MRI-CGCM3_r1i1p1': {'value': None, 'value_error': None}},
       'metric': {'ERA-Interim': {'value': 2.629545543671874,
         'value_error': None},
        'GPCPv2.3': {'value': 1.6115579981365675, 'value_error': None}}},
      'BiasSstLonRmse': {'diagnostic': {'ERA-Interim': {'value': None,
         'value_error': None},
        'HadISST': {'value': None, 'value_error': None},
        'MRI-CGCM3_r1i1p1': {'value': None, 'value_error': None},
        'Tropflux': {'value': None, 'value_error': None}},
       'metric': {'ERA-Interim': {'value': 0.8904359694820737,
         'value_error': None},
        'HadISST': {'value': 0.7121475833716178, 'value_error': None},
        'Tropflux': {'value': 0.9384651338560948, 'value_error': None}}},
      'BiasTauxLonRmse': {'diagnostic': {'ERA-Interim': {'value': None,
         'value_error': None},
        'MRI-CGCM3_r1i1p1': {'value': None, 'value_error': None},
        'Tropflux': {'value': None, 'value_error': None}},
       'metric': {'ERA-Interim': {'value': 10.255492583826575,
         'value_error': None},
        'Tropflux': {'value': 9.941059113314827, 'value_error': None}}},
      'EnsoAmpl': {'diagnostic': {'ERA-Interim': {'value': 0.8989844997845644,
         'value_error': 0.14214193002531866},
        'HadISST': {'value': 0.7665787872085695,
         'value_error': 0.06238329697691264},
        'MRI-CGCM3_r1i1p1': {'value': 0.6220640463718844,
         'value_error': 0.04980498364702598},
        'Tropflux': {'value': 0.9039789553693535,
         'value_error': 0.14293162279134272}},
       'metric': {'ERA-Interim': {'value': 30.8036961125628,
         'value_error': 16.481034493288803},
        'HadISST': {'value': 18.851909712101882,
         'value_error': 13.10078487406597},
        'Tropflux': {'value': 31.186003537248553,
         'value_error': 16.38997729081833}}},
      'EnsoDuration': {'diagnostic': {'ERA-Interim': {'value': 13.0,
         'value_error': None},
        'HadISST': {'value': 13.0, 'value_error': None},
        'MRI-CGCM3_r1i1p1': {'value': 15.0, 'value_error': None},
        'Tropflux': {'value': 13.0, 'value_error': None}},
       'metric': {'ERA-Interim': {'value': 15.384615384615385,
         'value_error': None},
        'HadISST': {'value': 15.384615384615385, 'value_error': None},
        'Tropflux': {'value': 15.384615384615385, 'value_error': None}}},
      'EnsoSeasonality': {'diagnostic': {'ERA-Interim': {'value': 2.0466846866656914,
         'value_error': 0.6513411033995022},
        'HadISST': {'value': 1.6639865947361325,
         'value_error': 0.2712772451657809},
        'MRI-CGCM3_r1i1p1': {'value': 1.0614112794596997,
         'value_error': 0.17023551986160482},
        'Tropflux': {'value': 2.0532132553583624,
         'value_error': 0.6534187683977347}},
       'metric': {'ERA-Interim': {'value': 48.13997063764262,
         'value_error': 24.821664550650453},
        'HadISST': {'value': 36.21275058240397,
         'value_error': 20.62972225465074},
        'Tropflux': {'value': 48.30486912698,
         'value_error': 24.742739508810562}}},
      'EnsoSstDiversity_2': {'diagnostic': {'ERA-Interim': {'value': 33.25,
         'value_error': None},
        'HadISST': {'value': 49.0, 'value_error': None},
        'MRI-CGCM3_r1i1p1': {'value': 52.0, 'value_error': None},
        'Tropflux': {'value': 32.0, 'value_error': None}},
       'metric': {'ERA-Interim': {'value': 56.390977443609025,
         'value_error': None},
        'HadISST': {'value': 6.122448979591836, 'value_error': None},
        'Tropflux': {'value': 62.5, 'value_error': None}}},
      'EnsoSstLonRmse': {'diagnostic': {'ERA-Interim': {'value': None,
         'value_error': None},
        'HadISST': {'value': None, 'value_error': None},
        'MRI-CGCM3_r1i1p1': {'value': None, 'value_error': None},
        'Tropflux': {'value': None, 'value_error': None}},
       'metric': {'ERA-Interim': {'value': 0.16931799237617684,
         'value_error': None},
        'HadISST': {'value': 0.1881117227188268, 'value_error': None},
        'Tropflux': {'value': 0.1717269956444639, 'value_error': None}}},
      'EnsoSstSkew': {'diagnostic': {'ERA-Interim': {'value': 0.39098111106809963,
         'value_error': 0.061819541653923164},
        'HadISST': {'value': 0.38989908235027515,
         'value_error': 0.03172953733021198},
        'MRI-CGCM3_r1i1p1': {'value': -0.05084905436127311,
         'value_error': -0.004071182598802589},
        'Tropflux': {'value': 0.39744741059612115,
         'value_error': 0.06284195338099416}},
       'metric': {'ERA-Interim': {'value': 113.00550152470575,
         'value_error': -3.0976238207733235},
        'HadISST': {'value': 113.04159375158305,
         'value_error': -2.105473012960513},
        'Tropflux': {'value': 112.7939075725782,
         'value_error': -3.0472268049260913}}},
      'EnsoSstTsRmse': {'diagnostic': {'ERA-Interim': {'value': None,
         'value_error': None},
        'HadISST': {'value': None, 'value_error': None},
        'MRI-CGCM3_r1i1p1': {'value': None, 'value_error': None},
        'Tropflux': {'value': None, 'value_error': None}},
       'metric': {'ERA-Interim': {'value': 0.09485667347598477,
         'value_error': None},
        'HadISST': {'value': 0.07643130873360211, 'value_error': None},
        'Tropflux': {'value': 0.09399132165468681, 'value_error': None}}},
      'SeasonalPrLatRmse': {'diagnostic': {'ERA-Interim': {'value': None,
         'value_error': None},
        'GPCPv2.3': {'value': None, 'value_error': None},
        'MRI-CGCM3_r1i1p1': {'value': None, 'value_error': None}},
       'metric': {'ERA-Interim': {'value': 1.7623818692494935,
         'value_error': None},
        'GPCPv2.3': {'value': 1.8790280257158316, 'value_error': None}}},
      'SeasonalPrLonRmse': {'diagnostic': {'ERA-Interim': {'value': None,
         'value_error': None},
        'GPCPv2.3': {'value': None, 'value_error': None},
        'MRI-CGCM3_r1i1p1': {'value': None, 'value_error': None}},
       'metric': {'ERA-Interim': {'value': 1.1141944466733926,
         'value_error': None},
        'GPCPv2.3': {'value': 0.9368837502433505, 'value_error': None}}},
      'SeasonalSstLonRmse': {'diagnostic': {'ERA-Interim': {'value': None,
         'value_error': None},
        'HadISST': {'value': None, 'value_error': None},
        'MRI-CGCM3_r1i1p1': {'value': None, 'value_error': None},
        'Tropflux': {'value': None, 'value_error': None}},
       'metric': {'ERA-Interim': {'value': 0.16826374678993009,
         'value_error': None},
        'HadISST': {'value': 0.18251236774941054, 'value_error': None},
        'Tropflux': {'value': 0.16980270652911933, 'value_error': None}}},
      'SeasonalTauxLonRmse': {'diagnostic': {'ERA-Interim': {'value': None,
         'value_error': None},
        'MRI-CGCM3_r1i1p1': {'value': None, 'value_error': None},
        'Tropflux': {'value': None, 'value_error': None}},
       'metric': {'ERA-Interim': {'value': 3.1241509642634093,
         'value_error': None},
        'Tropflux': {'value': 2.6943190077151806, 'value_error': None}}}}},
    'r2i1p1': {'metadata': {'description_of_the_collection': 'Describe which science question this collection is about',
      'metrics': {'BiasPrLatRmse': {'diagnostic': {'ERA-Interim': {'name': 'ERA-Interim',
          'nyears': 40,
          'time_period': ['1979-1-16 12:0:0.0', '2019-3-16 12:0:0.0']},
         'GPCPv2.3': {'name': 'GPCPv2.3',
          'nyears': 41,
          'time_period': ['1979-1-1 0:0:0.0', '2019-7-1 0:0:0.0']},
         'MRI-CGCM3_r2i1p1': {'keyerror': None,
          'name': 'MRI-CGCM3_r2i1p1',
          'nyears': 156,
          'time_period': ['1850-1-16 12:0:0.0', '2005-12-16 12:0:0.0']},
         'method': 'Meridional root mean square error of nino3_LatExt pr, time series are linearly detrended, observations and model regridded to generic_1x1deg',
         'name': 'pr Meridional RMSE',
         'ref': 'Using CDAT regridding and rms (uncentered and biased) calculation',
         'time_frequency': 'monthly',
         'units': 'mm/day'},
        'metric': {'datasets': "MRI-CGCM3_r2i1p1; ERA-Interim's pr & GPCPv2.3's precip; 's ",
         'method': 'The metric is the statistical value between the model and the observations',
         'name': 'BiasPrLatRmse',
         'units': 'mm/day'}},
       'BiasPrLonRmse': {'diagnostic': {'ERA-Interim': {'name': 'ERA-Interim',
          'nyears': 40,
          'time_period': ['1979-1-16 12:0:0.0', '2019-3-16 12:0:0.0']},
         'GPCPv2.3': {'name': 'GPCPv2.3',
          'nyears': 41,
          'time_period': ['1979-1-1 0:0:0.0', '2019-7-1 0:0:0.0']},
         'MRI-CGCM3_r2i1p1': {'keyerror': None,
          'name': 'MRI-CGCM3_r2i1p1',
          'nyears': 156,
          'time_period': ['1850-1-16 12:0:0.0', '2005-12-16 12:0:0.0']},
         'method': 'Zonal root mean square error of equatorial_pacific pr, time series are linearly detrended, observations and model regridded to generic_1x1deg',
         'name': 'pr Zonal RMSE',
         'ref': 'Using CDAT regridding and rms (uncentered and biased) calculation',
         'time_frequency': 'monthly',
         'units': 'mm/day'},
        'metric': {'datasets': "MRI-CGCM3_r2i1p1; ERA-Interim's pr & GPCPv2.3's precip; 's ",
         'method': 'The metric is the statistical value between the model and the observations',
         'name': 'BiasPrLonRmse',
         'units': 'mm/day'}},
       'BiasSstLonRmse': {'diagnostic': {'ERA-Interim': {'name': 'ERA-Interim',
          'nyears': 40,
          'time_period': ['1979-1-16 12:0:0.0', '2019-3-16 12:0:0.0']},
         'HadISST': {'name': 'HadISST',
          'nyears': 151,
          'time_period': ['1870-1-16 11:59:59.5', '2020-10-16 12:0:0.0']},
         'MRI-CGCM3_r2i1p1': {'keyerror': None,
          'name': 'MRI-CGCM3_r2i1p1',
          'nyears': 156,
          'time_period': ['1850-1-16 12:0:0.0', '2005-12-16 12:0:0.0']},
         'Tropflux': {'name': 'Tropflux',
          'nyears': 40,
          'time_period': ['1979-1-15 0:0:0.0', '2018-12-15 12:0:0.0']},
         'method': 'Zonal root mean square error of equatorial_pacific sst, time series are linearly detrended, observations and model regridded to generic_1x1deg',
         'name': 'sst Zonal RMSE',
         'ref': 'Using CDAT regridding and rms (uncentered and biased) calculation',
         'time_frequency': 'monthly',
         'units': 'C'},
        'metric': {'datasets': "MRI-CGCM3_r2i1p1; ERA-Interim's ts & HadISST's sst & Tropflux's sst; 's ",
         'method': 'The metric is the statistical value between the model and the observations',
         'name': 'BiasSstLonRmse',
         'units': 'C'}},
       'BiasTauxLonRmse': {'diagnostic': {'ERA-Interim': {'name': 'ERA-Interim',
          'nyears': 40,
          'time_period': ['1979-1-16 12:0:0.0', '2019-3-16 12:0:0.0']},
         'MRI-CGCM3_r2i1p1': {'keyerror': None,
          'name': 'MRI-CGCM3_r2i1p1',
          'nyears': 156,
          'time_period': ['1850-1-16 12:0:0.0', '2005-12-16 12:0:0.0']},
         'Tropflux': {'name': 'Tropflux',
          'nyears': 40,
          'time_period': ['1979-1-15 0:0:0.0', '2018-12-15 12:0:0.0']},
         'method': 'Zonal root mean square error of equatorial_pacific taux, time series are linearly detrended, observations and model regridded to generic_1x1deg',
         'name': 'taux Zonal RMSE',
         'ref': 'Using CDAT regridding and rms (uncentered and biased) calculation',
         'time_frequency': 'monthly',
         'units': '1e-3 N/m2'},
        'metric': {'datasets': "MRI-CGCM3_r2i1p1; ERA-Interim's tauu & Tropflux's taux; 's ",
         'method': 'The metric is the statistical value between the model and the observations',
         'name': 'BiasTauxLonRmse',
         'units': '1e-3 N/m2'}},
       'EnsoAmpl': {'diagnostic': {'ERA-Interim': {'keyerror': None,
          'name': 'ERA-Interim',
          'nyears': 40,
          'time_period': ['1979-1-16 12:0:0.0', '2019-3-16 12:0:0.0']},
         'HadISST': {'keyerror': None,
          'name': 'HadISST',
          'nyears': 151,
          'time_period': ['1870-1-16 11:59:59.5', '2020-10-16 12:0:0.0']},
         'MRI-CGCM3_r2i1p1': {'keyerror': None,
          'name': 'MRI-CGCM3_r2i1p1',
          'nyears': 156,
          'time_period': ['1850-1-16 12:0:0.0', '2005-12-16 12:0:0.0']},
         'Tropflux': {'keyerror': None,
          'name': 'Tropflux',
          'nyears': 40,
          'time_period': ['1979-1-15 0:0:0.0', '2018-12-15 12:0:0.0']},
         'method': 'Standard deviation of nino3.4 sstA, time series are linearly detrended',
         'name': 'ENSO amplitude',
         'ref': 'Using CDAT regression calculation',
         'time_frequency': 'monthly',
         'units': 'C'},
        'metric': {'datasets': "MRI-CGCM3_r2i1p1; ERA-Interim's ts & HadISST's sst & Tropflux's sst; 's ",
         'method': 'The metric is the absolute value of the relative difference between model and observations values (M = 100 * abs[[model-obs] / obs])',
         'name': 'EnsoAmpl',
         'units': '%'}},
       'EnsoDuration': {'diagnostic': {'ERA-Interim': {'keyerror': None,
          'name': 'ERA-Interim',
          'nyears': 40,
          'time_period': ['1979-1-16 12:0:0.0', '2019-3-16 12:0:0.0']},
         'HadISST': {'keyerror': None,
          'name': 'HadISST',
          'nyears': 151,
          'time_period': ['1870-1-16 11:59:59.5', '2020-10-16 12:0:0.0']},
         'MRI-CGCM3_r2i1p1': {'keyerror': None,
          'name': 'MRI-CGCM3_r2i1p1',
          'nyears': 156,
          'time_period': ['1850-1-16 12:0:0.0', '2005-12-16 12:0:0.0']},
         'Tropflux': {'keyerror': None,
          'name': 'Tropflux',
          'nyears': 40,
          'time_period': ['1979-1-15 0:0:0.0', '2018-12-15 12:0:0.0']},
         'method': 'nino3.4 SSTA during DEC regressed against nino3.4 SSTA during 6 years (centered on ENSO), the duration is the number of consecutive months during which the regression is above 0.25, time series are linearly detrended, smoothing using a triangle shaped window of 5 points',
         'name': 'ENSO Duration based on life cyle SSTA pattern',
         'ref': 'Using CDAT',
         'time_frequency': 'monthly',
         'units': 'months'},
        'metric': {'datasets': "MRI-CGCM3_r2i1p1; ERA-Interim's ts & HadISST's sst & Tropflux's sst; 's ",
         'method': 'The metric is the absolute value of the relative difference between model and observations values (M = 100 * abs[[model-obs] / obs])',
         'name': 'EnsoDuration',
         'units': '%'}},
       'EnsoSeasonality': {'diagnostic': {'ERA-Interim': {'keyerror': None,
          'name': 'ERA-Interim',
          'nyears': 40,
          'time_period': ['1979-1-16 12:0:0.0', '2019-3-16 12:0:0.0']},
         'HadISST': {'keyerror': None,
          'name': 'HadISST',
          'nyears': 151,
          'time_period': ['1870-1-16 11:59:59.5', '2020-10-16 12:0:0.0']},
         'MRI-CGCM3_r2i1p1': {'keyerror': None,
          'name': 'MRI-CGCM3_r2i1p1',
          'nyears': 156,
          'time_period': ['1850-1-16 12:0:0.0', '2005-12-16 12:0:0.0']},
         'Tropflux': {'keyerror': None,
          'name': 'Tropflux',
          'nyears': 40,
          'time_period': ['1979-1-15 0:0:0.0', '2018-12-15 12:0:0.0']},
         'method': 'Ratio between NDJ and MAM standard deviation nino3.4 sstA, time series are linearly detrended',
         'name': 'ENSO seasonality',
         'ref': 'Using CDAT std dev calculation',
         'time_frequency': 'monthly',
         'units': 'C/C'},
        'metric': {'datasets': "MRI-CGCM3_r2i1p1; ERA-Interim's ts & HadISST's sst & Tropflux's sst; 's ",
         'method': 'The metric is the absolute value of the relative difference between model and observations values (M = 100 * abs[[model-obs] / obs])',
         'name': 'EnsoSeasonality',
         'units': '%'}},
       'EnsoSstDiversity_2': {'diagnostic': {'ERA-Interim': {'keyerror': None,
          'name': 'ERA-Interim',
          'nyears': 40,
          'time_period': ['1979-1-16 12:0:0.0', '2019-3-16 12:0:0.0']},
         'HadISST': {'keyerror': None,
          'name': 'HadISST',
          'nyears': 151,
          'time_period': ['1870-1-16 11:59:59.5', '2020-10-16 12:0:0.0']},
         'MRI-CGCM3_r2i1p1': {'keyerror': None,
          'name': 'MRI-CGCM3_r2i1p1',
          'nyears': 156,
          'time_period': ['1850-1-16 12:0:0.0', '2005-12-16 12:0:0.0']},
         'Tropflux': {'keyerror': None,
          'name': 'Tropflux',
          'nyears': 40,
          'time_period': ['1979-1-15 0:0:0.0', '2018-12-15 12:0:0.0']},
         'method': 'Nino (Nina) events = nino3.4 sstA > 0.75 (< -0.75) during DEC, zonal SSTA (meridional averaged [-5.0 ; 5.0]), the zonal SSTA maximum (minimum) is located for each event, the diversity is the interquartile range (IQR = Q3 - Q1), time series are linearly detrended, smoothing using a triangle shaped window of 5 points',
         'name': 'ENSO Diversity (interquartile range)',
         'ref': 'Using CDAT regridding',
         'time_frequency': 'monthly',
         'units': 'long'},
        'metric': {'datasets': "MRI-CGCM3_r2i1p1; ERA-Interim's ts & HadISST's sst & Tropflux's sst; 's ",
         'method': 'The metric is the absolute value of the relative difference between model and observations values (M = 100 * abs[[model-obs] / obs])',
         'name': 'EnsoSstDiversity',
         'units': '%'}},
       'EnsoSstLonRmse': {'diagnostic': {'ERA-Interim': {'name': 'ERA-Interim',
          'nyears': 40,
          'time_period': ['1979-1-16 12:0:0.0', '2019-3-16 12:0:0.0']},
         'HadISST': {'name': 'HadISST',
          'nyears': 151,
          'time_period': ['1870-1-16 11:59:59.5', '2020-10-16 12:0:0.0']},
         'MRI-CGCM3_r2i1p1': {'keyerror': None,
          'name': 'MRI-CGCM3_r2i1p1',
          'nyears': 156,
          'time_period': ['1850-1-16 12:0:0.0', '2005-12-16 12:0:0.0']},
         'Tropflux': {'name': 'Tropflux',
          'nyears': 40,
          'time_period': ['1979-1-15 0:0:0.0', '2018-12-15 12:0:0.0']},
         'method': 'nino3.4 SSTA during DEC regressed against equatorial_pacific SSTA, time series are linearly detrended, smoothing using a triangle shaped window of 5 points, observations and model regridded to generic_1x1deg',
         'name': 'ENSO Zonal SSTA pattern',
         'ref': 'Using CDAT regridding and rms (uncentered and biased) calculation',
         'time_frequency': 'monthly',
         'units': 'C/C'},
        'metric': {'datasets': "MRI-CGCM3_r2i1p1; ERA-Interim's ts & HadISST's sst & Tropflux's sst; 's ",
         'method': 'The metric is the statistical value between the model and the observations',
         'name': 'EnsoSstLonRmse',
         'units': 'C/C'}},
       'EnsoSstSkew': {'diagnostic': {'ERA-Interim': {'keyerror': None,
          'name': 'ERA-Interim',
          'nyears': 40,
          'time_period': ['1979-1-16 12:0:0.0', '2019-3-16 12:0:0.0']},
         'HadISST': {'keyerror': None,
          'name': 'HadISST',
          'nyears': 151,
          'time_period': ['1870-1-16 11:59:59.5', '2020-10-16 12:0:0.0']},
         'MRI-CGCM3_r2i1p1': {'keyerror': None,
          'name': 'MRI-CGCM3_r2i1p1',
          'nyears': 156,
          'time_period': ['1850-1-16 12:0:0.0', '2005-12-16 12:0:0.0']},
         'Tropflux': {'keyerror': None,
          'name': 'Tropflux',
          'nyears': 40,
          'time_period': ['1979-1-15 0:0:0.0', '2018-12-15 12:0:0.0']},
         'method': 'Standard deviation of nino3.4 sstA, time series are linearly detrended',
         'name': 'ENSO skewness',
         'ref': 'Using CDAT regression calculation',
         'time_frequency': 'monthly',
         'units': 'C'},
        'metric': {'datasets': "MRI-CGCM3_r2i1p1; ERA-Interim's ts & HadISST's sst & Tropflux's sst; 's ",
         'method': 'The metric is the absolute value of the relative difference between model and observations values (M = 100 * abs[[model-obs] / obs])',
         'name': 'EnsoSstSkew',
         'units': '%'}},
       'EnsoSstTsRmse': {'diagnostic': {'ERA-Interim': {'name': 'ERA-Interim',
          'nyears': 40,
          'time_period': ['1979-1-16 12:0:0.0', '2019-3-16 12:0:0.0']},
         'HadISST': {'name': 'HadISST',
          'nyears': 151,
          'time_period': ['1870-1-16 11:59:59.5', '2020-10-16 12:0:0.0']},
         'MRI-CGCM3_r2i1p1': {'keyerror': None,
          'name': 'MRI-CGCM3_r2i1p1',
          'nyears': 156,
          'time_period': ['1850-1-16 12:0:0.0', '2005-12-16 12:0:0.0']},
         'Tropflux': {'name': 'Tropflux',
          'nyears': 40,
          'time_period': ['1979-1-15 0:0:0.0', '2018-12-15 12:0:0.0']},
         'method': 'nino3.4 SSTA during DEC regressed against nino3.4 SSTA during 6 years (centered on ENSO), time series are linearly detrended, smoothing using a triangle shaped window of 5 points',
         'name': 'ENSO life cyle SSTA pattern',
         'ref': 'Using CDAT regridding and rms (uncentered and biased) calculation',
         'time_frequency': 'monthly',
         'units': 'C/C'},
        'metric': {'datasets': "MRI-CGCM3_r2i1p1; ERA-Interim's ts & HadISST's sst & Tropflux's sst; 's ",
         'method': 'The metric is the statistical value between the model and the observations',
         'name': 'EnsoSstTsRmse',
         'units': 'C/C'}},
       'SeasonalPrLatRmse': {'diagnostic': {'ERA-Interim': {'name': 'ERA-Interim',
          'nyears': 40,
          'time_period': ['1979-1-16 12:0:0.0', '2019-3-16 12:0:0.0']},
         'GPCPv2.3': {'name': 'GPCPv2.3',
          'nyears': 41,
          'time_period': ['1979-1-1 0:0:0.0', '2019-7-1 0:0:0.0']},
         'MRI-CGCM3_r2i1p1': {'keyerror': None,
          'name': 'MRI-CGCM3_r2i1p1',
          'nyears': 156,
          'time_period': ['1850-1-16 12:0:0.0', '2005-12-16 12:0:0.0']},
         'method': 'Meridional root mean square error of nino3_LatExt climatological pr STD, time series are linearly detrended, observations and model regridded to generic_1x1deg',
         'name': 'pr meridional seasonality RMSE',
         'ref': 'Using CDAT regridding and rms (uncentered and biased) calculation',
         'time_frequency': 'monthly',
         'units': 'mm/day'},
        'metric': {'datasets': "MRI-CGCM3_r2i1p1; ERA-Interim's pr & GPCPv2.3's precip; 's ",
         'method': 'The metric is the statistical value between the model and the observations',
         'name': 'SeasonalPrLatRmse',
         'units': 'mm/day'}},
       'SeasonalPrLonRmse': {'diagnostic': {'ERA-Interim': {'name': 'ERA-Interim',
          'nyears': 40,
          'time_period': ['1979-1-16 12:0:0.0', '2019-3-16 12:0:0.0']},
         'GPCPv2.3': {'name': 'GPCPv2.3',
          'nyears': 41,
          'time_period': ['1979-1-1 0:0:0.0', '2019-7-1 0:0:0.0']},
         'MRI-CGCM3_r2i1p1': {'keyerror': None,
          'name': 'MRI-CGCM3_r2i1p1',
          'nyears': 156,
          'time_period': ['1850-1-16 12:0:0.0', '2005-12-16 12:0:0.0']},
         'method': 'Zonal root mean square error of equatorial_pacific climatological pr STD, time series are linearly detrended, observations and model regridded to generic_1x1deg',
         'name': 'pr zonal seasonality RMSE',
         'ref': 'Using CDAT regridding and rms (uncentered and biased) calculation',
         'time_frequency': 'monthly',
         'units': 'mm/day'},
        'metric': {'datasets': "MRI-CGCM3_r2i1p1; ERA-Interim's pr & GPCPv2.3's precip; 's ",
         'method': 'The metric is the statistical value between the model and the observations',
         'name': 'SeasonalPrLonRmse',
         'units': 'mm/day'}},
       'SeasonalSstLonRmse': {'diagnostic': {'ERA-Interim': {'name': 'ERA-Interim',
          'nyears': 40,
          'time_period': ['1979-1-16 12:0:0.0', '2019-3-16 12:0:0.0']},
         'HadISST': {'name': 'HadISST',
          'nyears': 151,
          'time_period': ['1870-1-16 11:59:59.5', '2020-10-16 12:0:0.0']},
         'MRI-CGCM3_r2i1p1': {'keyerror': None,
          'name': 'MRI-CGCM3_r2i1p1',
          'nyears': 156,
          'time_period': ['1850-1-16 12:0:0.0', '2005-12-16 12:0:0.0']},
         'Tropflux': {'name': 'Tropflux',
          'nyears': 40,
          'time_period': ['1979-1-15 0:0:0.0', '2018-12-15 12:0:0.0']},
         'method': 'Zonal root mean square error of equatorial_pacific climatological sst STD, time series are linearly detrended, observations and model regridded to generic_1x1deg',
         'name': 'sst zonal seasonality RMSE',
         'ref': 'Using CDAT regridding and rms (uncentered and biased) calculation',
         'time_frequency': 'monthly',
         'units': 'C'},
        'metric': {'datasets': "MRI-CGCM3_r2i1p1; ERA-Interim's ts & HadISST's sst & Tropflux's sst; 's ",
         'method': 'The metric is the statistical value between the model and the observations',
         'name': 'SeasonalSstLonRmse',
         'units': 'C'}},
       'SeasonalTauxLonRmse': {'diagnostic': {'ERA-Interim': {'name': 'ERA-Interim',
          'nyears': 40,
          'time_period': ['1979-1-16 12:0:0.0', '2019-3-16 12:0:0.0']},
         'MRI-CGCM3_r2i1p1': {'keyerror': None,
          'name': 'MRI-CGCM3_r2i1p1',
          'nyears': 156,
          'time_period': ['1850-1-16 12:0:0.0', '2005-12-16 12:0:0.0']},
         'Tropflux': {'name': 'Tropflux',
          'nyears': 40,
          'time_period': ['1979-1-15 0:0:0.0', '2018-12-15 12:0:0.0']},
         'method': 'Zonal root mean square error of equatorial_pacific climatological taux STD, time series are linearly detrended, observations and model regridded to generic_1x1deg',
         'name': 'taux zonal seasonality RMSE',
         'ref': 'Using CDAT regridding and rms (uncentered and biased) calculation',
         'time_frequency': 'monthly',
         'units': '1e-3 N/m2'},
        'metric': {'datasets': "MRI-CGCM3_r2i1p1; ERA-Interim's tauu & Tropflux's taux; 's ",
         'method': 'The metric is the statistical value between the model and the observations',
         'name': 'SeasonalTauxLonRmse',
         'units': '1e-3 N/m2'}}},
      'name': 'Metrics Collection for ENSO performance'},
     'value': {'BiasPrLatRmse': {'diagnostic': {'ERA-Interim': {'value': None,
         'value_error': None},
        'GPCPv2.3': {'value': None, 'value_error': None},
        'MRI-CGCM3_r2i1p1': {'value': None, 'value_error': None}},
       'metric': {'ERA-Interim': {'value': 2.3437647215320765,
         'value_error': None},
        'GPCPv2.3': {'value': 2.3867375873753134, 'value_error': None}}},
      'BiasPrLonRmse': {'diagnostic': {'ERA-Interim': {'value': None,
         'value_error': None},
        'GPCPv2.3': {'value': None, 'value_error': None},
        'MRI-CGCM3_r2i1p1': {'value': None, 'value_error': None}},
       'metric': {'ERA-Interim': {'value': 2.794064556711856,
         'value_error': None},
        'GPCPv2.3': {'value': 1.7662637865182262, 'value_error': None}}},
      'BiasSstLonRmse': {'diagnostic': {'ERA-Interim': {'value': None,
         'value_error': None},
        'HadISST': {'value': None, 'value_error': None},
        'MRI-CGCM3_r2i1p1': {'value': None, 'value_error': None},
        'Tropflux': {'value': None, 'value_error': None}},
       'metric': {'ERA-Interim': {'value': 0.9894914859394551,
         'value_error': None},
        'HadISST': {'value': 0.809666425352238, 'value_error': None},
        'Tropflux': {'value': 1.0376775260026352, 'value_error': None}}},
      'BiasTauxLonRmse': {'diagnostic': {'ERA-Interim': {'value': None,
         'value_error': None},
        'MRI-CGCM3_r2i1p1': {'value': None, 'value_error': None},
        'Tropflux': {'value': None, 'value_error': None}},
       'metric': {'ERA-Interim': {'value': 9.754624382094368,
         'value_error': None},
        'Tropflux': {'value': 9.478878001696872, 'value_error': None}}},
      'EnsoAmpl': {'diagnostic': {'ERA-Interim': {'value': 0.8989844997845644,
         'value_error': 0.14214193002531866},
        'HadISST': {'value': 0.7665787872085695,
         'value_error': 0.06238329697691264},
        'MRI-CGCM3_r2i1p1': {'value': 0.6251624507063739,
         'value_error': 0.05005305452993772},
        'Tropflux': {'value': 0.9039789553693535,
         'value_error': 0.14293162279134272}},
       'metric': {'ERA-Interim': {'value': 30.45904007731058,
         'value_error': 16.563123964636173},
        'HadISST': {'value': 18.44772368632206,
         'value_error': 13.166037847414563},
        'Tropflux': {'value': 30.8432517158609,
         'value_error': 16.471613220392207}}},
      'EnsoDuration': {'diagnostic': {'ERA-Interim': {'value': 13.0,
         'value_error': None},
        'HadISST': {'value': 13.0, 'value_error': None},
        'MRI-CGCM3_r2i1p1': {'value': 15.0, 'value_error': None},
        'Tropflux': {'value': 13.0, 'value_error': None}},
       'metric': {'ERA-Interim': {'value': 15.384615384615385,
         'value_error': None},
        'HadISST': {'value': 15.384615384615385, 'value_error': None},
        'Tropflux': {'value': 15.384615384615385, 'value_error': None}}},
      'EnsoSeasonality': {'diagnostic': {'ERA-Interim': {'value': 2.0466846866656914,
         'value_error': 0.6513411033995022},
        'HadISST': {'value': 1.6639865947361325,
         'value_error': 0.2712772451657809},
        'MRI-CGCM3_r2i1p1': {'value': 1.0890724138281442,
         'value_error': 0.174671978829302},
        'Tropflux': {'value': 2.0532132553583624,
         'value_error': 0.6534187683977347}},
       'metric': {'ERA-Interim': {'value': 46.788461313873356,
         'value_error': 25.468534818256344},
        'HadISST': {'value': 34.55040940393847,
         'value_error': 21.167347518591846},
        'Tropflux': {'value': 46.957657175359486,
         'value_error': 25.38755293357936}}},
      'EnsoSstDiversity_2': {'diagnostic': {'ERA-Interim': {'value': 33.25,
         'value_error': None},
        'HadISST': {'value': 49.0, 'value_error': None},
        'MRI-CGCM3_r2i1p1': {'value': 54.0, 'value_error': None},
        'Tropflux': {'value': 32.0, 'value_error': None}},
       'metric': {'ERA-Interim': {'value': 62.40601503759399,
         'value_error': None},
        'HadISST': {'value': 10.204081632653061, 'value_error': None},
        'Tropflux': {'value': 68.75, 'value_error': None}}},
      'EnsoSstLonRmse': {'diagnostic': {'ERA-Interim': {'value': None,
         'value_error': None},
        'HadISST': {'value': None, 'value_error': None},
        'MRI-CGCM3_r2i1p1': {'value': None, 'value_error': None},
        'Tropflux': {'value': None, 'value_error': None}},
       'metric': {'ERA-Interim': {'value': 0.18571532459477783,
         'value_error': None},
        'HadISST': {'value': 0.20319417652601632, 'value_error': None},
        'Tropflux': {'value': 0.18781644836076505, 'value_error': None}}},
      'EnsoSstSkew': {'diagnostic': {'ERA-Interim': {'value': 0.39098111106809963,
         'value_error': 0.061819541653923164},
        'HadISST': {'value': 0.38989908235027515,
         'value_error': 0.03172953733021198},
        'MRI-CGCM3_r2i1p1': {'value': -0.026375388546153462,
         'value_error': -0.0021117211368936973},
        'Tropflux': {'value': 0.39744741059612115,
         'value_error': 0.06284195338099416}},
       'metric': {'ERA-Interim': {'value': 106.74594956111818,
         'value_error': -1.6067365041293806},
        'HadISST': {'value': 106.76467058787753,
         'value_error': -1.0921081913485464},
        'Tropflux': {'value': 106.63619584452537,
         'value_error': -1.5805955878186582}}},
      'EnsoSstTsRmse': {'diagnostic': {'ERA-Interim': {'value': None,
         'value_error': None},
        'HadISST': {'value': None, 'value_error': None},
        'MRI-CGCM3_r2i1p1': {'value': None, 'value_error': None},
        'Tropflux': {'value': None, 'value_error': None}},
       'metric': {'ERA-Interim': {'value': 0.13233313023704538,
         'value_error': None},
        'HadISST': {'value': 0.0955406916499014, 'value_error': None},
        'Tropflux': {'value': 0.13120367269362737, 'value_error': None}}},
      'SeasonalPrLatRmse': {'diagnostic': {'ERA-Interim': {'value': None,
         'value_error': None},
        'GPCPv2.3': {'value': None, 'value_error': None},
        'MRI-CGCM3_r2i1p1': {'value': None, 'value_error': None}},
       'metric': {'ERA-Interim': {'value': 1.7232385775312604,
         'value_error': None},
        'GPCPv2.3': {'value': 1.828424451707454, 'value_error': None}}},
      'SeasonalPrLonRmse': {'diagnostic': {'ERA-Interim': {'value': None,
         'value_error': None},
        'GPCPv2.3': {'value': None, 'value_error': None},
        'MRI-CGCM3_r2i1p1': {'value': None, 'value_error': None}},
       'metric': {'ERA-Interim': {'value': 1.0868524025975985,
         'value_error': None},
        'GPCPv2.3': {'value': 0.8914744363913386, 'value_error': None}}},
      'SeasonalSstLonRmse': {'diagnostic': {'ERA-Interim': {'value': None,
         'value_error': None},
        'HadISST': {'value': None, 'value_error': None},
        'MRI-CGCM3_r2i1p1': {'value': None, 'value_error': None},
        'Tropflux': {'value': None, 'value_error': None}},
       'metric': {'ERA-Interim': {'value': 0.17019173926043465,
         'value_error': None},
        'HadISST': {'value': 0.1811451491092616, 'value_error': None},
        'Tropflux': {'value': 0.17323404024390923, 'value_error': None}}},
      'SeasonalTauxLonRmse': {'diagnostic': {'ERA-Interim': {'value': None,
         'value_error': None},
        'MRI-CGCM3_r2i1p1': {'value': None, 'value_error': None},
        'Tropflux': {'value': None, 'value_error': None}},
       'metric': {'ERA-Interim': {'value': 2.957395517396392,
         'value_error': None},
        'Tropflux': {'value': 2.5328135282287696, 'value_error': None}}}}},
    'r3i1p1': {'metadata': {'description_of_the_collection': 'Describe which science question this collection is about',
      'metrics': {'BiasPrLatRmse': {'diagnostic': {'ERA-Interim': {'name': 'ERA-Interim',
          'nyears': 40,
          'time_period': ['1979-1-16 12:0:0.0', '2019-3-16 12:0:0.0']},
         'GPCPv2.3': {'name': 'GPCPv2.3',
          'nyears': 41,
          'time_period': ['1979-1-1 0:0:0.0', '2019-7-1 0:0:0.0']},
         'MRI-CGCM3_r3i1p1': {'keyerror': None,
          'name': 'MRI-CGCM3_r3i1p1',
          'nyears': 156,
          'time_period': ['1850-1-16 12:0:0.0', '2005-12-16 12:0:0.0']},
         'method': 'Meridional root mean square error of nino3_LatExt pr, time series are linearly detrended, observations and model regridded to generic_1x1deg',
         'name': 'pr Meridional RMSE',
         'ref': 'Using CDAT regridding and rms (uncentered and biased) calculation',
         'time_frequency': 'monthly',
         'units': 'mm/day'},
        'metric': {'datasets': "MRI-CGCM3_r3i1p1; ERA-Interim's pr & GPCPv2.3's precip; 's ",
         'method': 'The metric is the statistical value between the model and the observations',
         'name': 'BiasPrLatRmse',
         'units': 'mm/day'}},
       'BiasPrLonRmse': {'diagnostic': {'ERA-Interim': {'name': 'ERA-Interim',
          'nyears': 40,
          'time_period': ['1979-1-16 12:0:0.0', '2019-3-16 12:0:0.0']},
         'GPCPv2.3': {'name': 'GPCPv2.3',
          'nyears': 41,
          'time_period': ['1979-1-1 0:0:0.0', '2019-7-1 0:0:0.0']},
         'MRI-CGCM3_r3i1p1': {'keyerror': None,
          'name': 'MRI-CGCM3_r3i1p1',
          'nyears': 156,
          'time_period': ['1850-1-16 12:0:0.0', '2005-12-16 12:0:0.0']},
         'method': 'Zonal root mean square error of equatorial_pacific pr, time series are linearly detrended, observations and model regridded to generic_1x1deg',
         'name': 'pr Zonal RMSE',
         'ref': 'Using CDAT regridding and rms (uncentered and biased) calculation',
         'time_frequency': 'monthly',
         'units': 'mm/day'},
        'metric': {'datasets': "MRI-CGCM3_r3i1p1; ERA-Interim's pr & GPCPv2.3's precip; 's ",
         'method': 'The metric is the statistical value between the model and the observations',
         'name': 'BiasPrLonRmse',
         'units': 'mm/day'}},
       'BiasSstLonRmse': {'diagnostic': {'ERA-Interim': {'name': 'ERA-Interim',
          'nyears': 40,
          'time_period': ['1979-1-16 12:0:0.0', '2019-3-16 12:0:0.0']},
         'HadISST': {'name': 'HadISST',
          'nyears': 151,
          'time_period': ['1870-1-16 11:59:59.5', '2020-10-16 12:0:0.0']},
         'MRI-CGCM3_r3i1p1': {'keyerror': None,
          'name': 'MRI-CGCM3_r3i1p1',
          'nyears': 156,
          'time_period': ['1850-1-16 12:0:0.0', '2005-12-16 12:0:0.0']},
         'Tropflux': {'name': 'Tropflux',
          'nyears': 40,
          'time_period': ['1979-1-15 0:0:0.0', '2018-12-15 12:0:0.0']},
         'method': 'Zonal root mean square error of equatorial_pacific sst, time series are linearly detrended, observations and model regridded to generic_1x1deg',
         'name': 'sst Zonal RMSE',
         'ref': 'Using CDAT regridding and rms (uncentered and biased) calculation',
         'time_frequency': 'monthly',
         'units': 'C'},
        'metric': {'datasets': "MRI-CGCM3_r3i1p1; ERA-Interim's ts & HadISST's sst & Tropflux's sst; 's ",
         'method': 'The metric is the statistical value between the model and the observations',
         'name': 'BiasSstLonRmse',
         'units': 'C'}},
       'BiasTauxLonRmse': {'diagnostic': {'ERA-Interim': {'name': 'ERA-Interim',
          'nyears': 40,
          'time_period': ['1979-1-16 12:0:0.0', '2019-3-16 12:0:0.0']},
         'MRI-CGCM3_r3i1p1': {'keyerror': None,
          'name': 'MRI-CGCM3_r3i1p1',
          'nyears': 156,
          'time_period': ['1850-1-16 12:0:0.0', '2005-12-16 12:0:0.0']},
         'Tropflux': {'name': 'Tropflux',
          'nyears': 40,
          'time_period': ['1979-1-15 0:0:0.0', '2018-12-15 12:0:0.0']},
         'method': 'Zonal root mean square error of equatorial_pacific taux, time series are linearly detrended, observations and model regridded to generic_1x1deg',
         'name': 'taux Zonal RMSE',
         'ref': 'Using CDAT regridding and rms (uncentered and biased) calculation',
         'time_frequency': 'monthly',
         'units': '1e-3 N/m2'},
        'metric': {'datasets': "MRI-CGCM3_r3i1p1; ERA-Interim's tauu & Tropflux's taux; 's ",
         'method': 'The metric is the statistical value between the model and the observations',
         'name': 'BiasTauxLonRmse',
         'units': '1e-3 N/m2'}},
       'EnsoAmpl': {'diagnostic': {'ERA-Interim': {'keyerror': None,
          'name': 'ERA-Interim',
          'nyears': 40,
          'time_period': ['1979-1-16 12:0:0.0', '2019-3-16 12:0:0.0']},
         'HadISST': {'keyerror': None,
          'name': 'HadISST',
          'nyears': 151,
          'time_period': ['1870-1-16 11:59:59.5', '2020-10-16 12:0:0.0']},
         'MRI-CGCM3_r3i1p1': {'keyerror': None,
          'name': 'MRI-CGCM3_r3i1p1',
          'nyears': 156,
          'time_period': ['1850-1-16 12:0:0.0', '2005-12-16 12:0:0.0']},
         'Tropflux': {'keyerror': None,
          'name': 'Tropflux',
          'nyears': 40,
          'time_period': ['1979-1-15 0:0:0.0', '2018-12-15 12:0:0.0']},
         'method': 'Standard deviation of nino3.4 sstA, time series are linearly detrended',
         'name': 'ENSO amplitude',
         'ref': 'Using CDAT regression calculation',
         'time_frequency': 'monthly',
         'units': 'C'},
        'metric': {'datasets': "MRI-CGCM3_r3i1p1; ERA-Interim's ts & HadISST's sst & Tropflux's sst; 's ",
         'method': 'The metric is the absolute value of the relative difference between model and observations values (M = 100 * abs[[model-obs] / obs])',
         'name': 'EnsoAmpl',
         'units': '%'}},
       'EnsoDuration': {'diagnostic': {'ERA-Interim': {'keyerror': None,
          'name': 'ERA-Interim',
          'nyears': 40,
          'time_period': ['1979-1-16 12:0:0.0', '2019-3-16 12:0:0.0']},
         'HadISST': {'keyerror': None,
          'name': 'HadISST',
          'nyears': 151,
          'time_period': ['1870-1-16 11:59:59.5', '2020-10-16 12:0:0.0']},
         'MRI-CGCM3_r3i1p1': {'keyerror': None,
          'name': 'MRI-CGCM3_r3i1p1',
          'nyears': 156,
          'time_period': ['1850-1-16 12:0:0.0', '2005-12-16 12:0:0.0']},
         'Tropflux': {'keyerror': None,
          'name': 'Tropflux',
          'nyears': 40,
          'time_period': ['1979-1-15 0:0:0.0', '2018-12-15 12:0:0.0']},
         'method': 'nino3.4 SSTA during DEC regressed against nino3.4 SSTA during 6 years (centered on ENSO), the duration is the number of consecutive months during which the regression is above 0.25, time series are linearly detrended, smoothing using a triangle shaped window of 5 points',
         'name': 'ENSO Duration based on life cyle SSTA pattern',
         'ref': 'Using CDAT',
         'time_frequency': 'monthly',
         'units': 'months'},
        'metric': {'datasets': "MRI-CGCM3_r3i1p1; ERA-Interim's ts & HadISST's sst & Tropflux's sst; 's ",
         'method': 'The metric is the absolute value of the relative difference between model and observations values (M = 100 * abs[[model-obs] / obs])',
         'name': 'EnsoDuration',
         'units': '%'}},
       'EnsoSeasonality': {'diagnostic': {'ERA-Interim': {'keyerror': None,
          'name': 'ERA-Interim',
          'nyears': 40,
          'time_period': ['1979-1-16 12:0:0.0', '2019-3-16 12:0:0.0']},
         'HadISST': {'keyerror': None,
          'name': 'HadISST',
          'nyears': 151,
          'time_period': ['1870-1-16 11:59:59.5', '2020-10-16 12:0:0.0']},
         'MRI-CGCM3_r3i1p1': {'keyerror': None,
          'name': 'MRI-CGCM3_r3i1p1',
          'nyears': 156,
          'time_period': ['1850-1-16 12:0:0.0', '2005-12-16 12:0:0.0']},
         'Tropflux': {'keyerror': None,
          'name': 'Tropflux',
          'nyears': 40,
          'time_period': ['1979-1-15 0:0:0.0', '2018-12-15 12:0:0.0']},
         'method': 'Ratio between NDJ and MAM standard deviation nino3.4 sstA, time series are linearly detrended',
         'name': 'ENSO seasonality',
         'ref': 'Using CDAT std dev calculation',
         'time_frequency': 'monthly',
         'units': 'C/C'},
        'metric': {'datasets': "MRI-CGCM3_r3i1p1; ERA-Interim's ts & HadISST's sst & Tropflux's sst; 's ",
         'method': 'The metric is the absolute value of the relative difference between model and observations values (M = 100 * abs[[model-obs] / obs])',
         'name': 'EnsoSeasonality',
         'units': '%'}},
       'EnsoSstDiversity_2': {'diagnostic': {'ERA-Interim': {'keyerror': None,
          'name': 'ERA-Interim',
          'nyears': 40,
          'time_period': ['1979-1-16 12:0:0.0', '2019-3-16 12:0:0.0']},
         'HadISST': {'keyerror': None,
          'name': 'HadISST',
          'nyears': 151,
          'time_period': ['1870-1-16 11:59:59.5', '2020-10-16 12:0:0.0']},
         'MRI-CGCM3_r3i1p1': {'keyerror': None,
          'name': 'MRI-CGCM3_r3i1p1',
          'nyears': 156,
          'time_period': ['1850-1-16 12:0:0.0', '2005-12-16 12:0:0.0']},
         'Tropflux': {'keyerror': None,
          'name': 'Tropflux',
          'nyears': 40,
          'time_period': ['1979-1-15 0:0:0.0', '2018-12-15 12:0:0.0']},
         'method': 'Nino (Nina) events = nino3.4 sstA > 0.75 (< -0.75) during DEC, zonal SSTA (meridional averaged [-5.0 ; 5.0]), the zonal SSTA maximum (minimum) is located for each event, the diversity is the interquartile range (IQR = Q3 - Q1), time series are linearly detrended, smoothing using a triangle shaped window of 5 points',
         'name': 'ENSO Diversity (interquartile range)',
         'ref': 'Using CDAT regridding',
         'time_frequency': 'monthly',
         'units': 'long'},
        'metric': {'datasets': "MRI-CGCM3_r3i1p1; ERA-Interim's ts & HadISST's sst & Tropflux's sst; 's ",
         'method': 'The metric is the absolute value of the relative difference between model and observations values (M = 100 * abs[[model-obs] / obs])',
         'name': 'EnsoSstDiversity',
         'units': '%'}},
       'EnsoSstLonRmse': {'diagnostic': {'ERA-Interim': {'name': 'ERA-Interim',
          'nyears': 40,
          'time_period': ['1979-1-16 12:0:0.0', '2019-3-16 12:0:0.0']},
         'HadISST': {'name': 'HadISST',
          'nyears': 151,
          'time_period': ['1870-1-16 11:59:59.5', '2020-10-16 12:0:0.0']},
         'MRI-CGCM3_r3i1p1': {'keyerror': None,
          'name': 'MRI-CGCM3_r3i1p1',
          'nyears': 156,
          'time_period': ['1850-1-16 12:0:0.0', '2005-12-16 12:0:0.0']},
         'Tropflux': {'name': 'Tropflux',
          'nyears': 40,
          'time_period': ['1979-1-15 0:0:0.0', '2018-12-15 12:0:0.0']},
         'method': 'nino3.4 SSTA during DEC regressed against equatorial_pacific SSTA, time series are linearly detrended, smoothing using a triangle shaped window of 5 points, observations and model regridded to generic_1x1deg',
         'name': 'ENSO Zonal SSTA pattern',
         'ref': 'Using CDAT regridding and rms (uncentered and biased) calculation',
         'time_frequency': 'monthly',
         'units': 'C/C'},
        'metric': {'datasets': "MRI-CGCM3_r3i1p1; ERA-Interim's ts & HadISST's sst & Tropflux's sst; 's ",
         'method': 'The metric is the statistical value between the model and the observations',
         'name': 'EnsoSstLonRmse',
         'units': 'C/C'}},
       'EnsoSstSkew': {'diagnostic': {'ERA-Interim': {'keyerror': None,
          'name': 'ERA-Interim',
          'nyears': 40,
          'time_period': ['1979-1-16 12:0:0.0', '2019-3-16 12:0:0.0']},
         'HadISST': {'keyerror': None,
          'name': 'HadISST',
          'nyears': 151,
          'time_period': ['1870-1-16 11:59:59.5', '2020-10-16 12:0:0.0']},
         'MRI-CGCM3_r3i1p1': {'keyerror': None,
          'name': 'MRI-CGCM3_r3i1p1',
          'nyears': 156,
          'time_period': ['1850-1-16 12:0:0.0', '2005-12-16 12:0:0.0']},
         'Tropflux': {'keyerror': None,
          'name': 'Tropflux',
          'nyears': 40,
          'time_period': ['1979-1-15 0:0:0.0', '2018-12-15 12:0:0.0']},
         'method': 'Standard deviation of nino3.4 sstA, time series are linearly detrended',
         'name': 'ENSO skewness',
         'ref': 'Using CDAT regression calculation',
         'time_frequency': 'monthly',
         'units': 'C'},
        'metric': {'datasets': "MRI-CGCM3_r3i1p1; ERA-Interim's ts & HadISST's sst & Tropflux's sst; 's ",
         'method': 'The metric is the absolute value of the relative difference between model and observations values (M = 100 * abs[[model-obs] / obs])',
         'name': 'EnsoSstSkew',
         'units': '%'}},
       'EnsoSstTsRmse': {'diagnostic': {'ERA-Interim': {'name': 'ERA-Interim',
          'nyears': 40,
          'time_period': ['1979-1-16 12:0:0.0', '2019-3-16 12:0:0.0']},
         'HadISST': {'name': 'HadISST',
          'nyears': 151,
          'time_period': ['1870-1-16 11:59:59.5', '2020-10-16 12:0:0.0']},
         'MRI-CGCM3_r3i1p1': {'keyerror': None,
          'name': 'MRI-CGCM3_r3i1p1',
          'nyears': 156,
          'time_period': ['1850-1-16 12:0:0.0', '2005-12-16 12:0:0.0']},
         'Tropflux': {'name': 'Tropflux',
          'nyears': 40,
          'time_period': ['1979-1-15 0:0:0.0', '2018-12-15 12:0:0.0']},
         'method': 'nino3.4 SSTA during DEC regressed against nino3.4 SSTA during 6 years (centered on ENSO), time series are linearly detrended, smoothing using a triangle shaped window of 5 points',
         'name': 'ENSO life cyle SSTA pattern',
         'ref': 'Using CDAT regridding and rms (uncentered and biased) calculation',
         'time_frequency': 'monthly',
         'units': 'C/C'},
        'metric': {'datasets': "MRI-CGCM3_r3i1p1; ERA-Interim's ts & HadISST's sst & Tropflux's sst; 's ",
         'method': 'The metric is the statistical value between the model and the observations',
         'name': 'EnsoSstTsRmse',
         'units': 'C/C'}},
       'SeasonalPrLatRmse': {'diagnostic': {'ERA-Interim': {'name': 'ERA-Interim',
          'nyears': 40,
          'time_period': ['1979-1-16 12:0:0.0', '2019-3-16 12:0:0.0']},
         'GPCPv2.3': {'name': 'GPCPv2.3',
          'nyears': 41,
          'time_period': ['1979-1-1 0:0:0.0', '2019-7-1 0:0:0.0']},
         'MRI-CGCM3_r3i1p1': {'keyerror': None,
          'name': 'MRI-CGCM3_r3i1p1',
          'nyears': 156,
          'time_period': ['1850-1-16 12:0:0.0', '2005-12-16 12:0:0.0']},
         'method': 'Meridional root mean square error of nino3_LatExt climatological pr STD, time series are linearly detrended, observations and model regridded to generic_1x1deg',
         'name': 'pr meridional seasonality RMSE',
         'ref': 'Using CDAT regridding and rms (uncentered and biased) calculation',
         'time_frequency': 'monthly',
         'units': 'mm/day'},
        'metric': {'datasets': "MRI-CGCM3_r3i1p1; ERA-Interim's pr & GPCPv2.3's precip; 's ",
         'method': 'The metric is the statistical value between the model and the observations',
         'name': 'SeasonalPrLatRmse',
         'units': 'mm/day'}},
       'SeasonalPrLonRmse': {'diagnostic': {'ERA-Interim': {'name': 'ERA-Interim',
          'nyears': 40,
          'time_period': ['1979-1-16 12:0:0.0', '2019-3-16 12:0:0.0']},
         'GPCPv2.3': {'name': 'GPCPv2.3',
          'nyears': 41,
          'time_period': ['1979-1-1 0:0:0.0', '2019-7-1 0:0:0.0']},
         'MRI-CGCM3_r3i1p1': {'keyerror': None,
          'name': 'MRI-CGCM3_r3i1p1',
          'nyears': 156,
          'time_period': ['1850-1-16 12:0:0.0', '2005-12-16 12:0:0.0']},
         'method': 'Zonal root mean square error of equatorial_pacific climatological pr STD, time series are linearly detrended, observations and model regridded to generic_1x1deg',
         'name': 'pr zonal seasonality RMSE',
         'ref': 'Using CDAT regridding and rms (uncentered and biased) calculation',
         'time_frequency': 'monthly',
         'units': 'mm/day'},
        'metric': {'datasets': "MRI-CGCM3_r3i1p1; ERA-Interim's pr & GPCPv2.3's precip; 's ",
         'method': 'The metric is the statistical value between the model and the observations',
         'name': 'SeasonalPrLonRmse',
         'units': 'mm/day'}},
       'SeasonalSstLonRmse': {'diagnostic': {'ERA-Interim': {'name': 'ERA-Interim',
          'nyears': 40,
          'time_period': ['1979-1-16 12:0:0.0', '2019-3-16 12:0:0.0']},
         'HadISST': {'name': 'HadISST',
          'nyears': 151,
          'time_period': ['1870-1-16 11:59:59.5', '2020-10-16 12:0:0.0']},
         'MRI-CGCM3_r3i1p1': {'keyerror': None,
          'name': 'MRI-CGCM3_r3i1p1',
          'nyears': 156,
          'time_period': ['1850-1-16 12:0:0.0', '2005-12-16 12:0:0.0']},
         'Tropflux': {'name': 'Tropflux',
          'nyears': 40,
          'time_period': ['1979-1-15 0:0:0.0', '2018-12-15 12:0:0.0']},
         'method': 'Zonal root mean square error of equatorial_pacific climatological sst STD, time series are linearly detrended, observations and model regridded to generic_1x1deg',
         'name': 'sst zonal seasonality RMSE',
         'ref': 'Using CDAT regridding and rms (uncentered and biased) calculation',
         'time_frequency': 'monthly',
         'units': 'C'},
        'metric': {'datasets': "MRI-CGCM3_r3i1p1; ERA-Interim's ts & HadISST's sst & Tropflux's sst; 's ",
         'method': 'The metric is the statistical value between the model and the observations',
         'name': 'SeasonalSstLonRmse',
         'units': 'C'}},
       'SeasonalTauxLonRmse': {'diagnostic': {'ERA-Interim': {'name': 'ERA-Interim',
          'nyears': 40,
          'time_period': ['1979-1-16 12:0:0.0', '2019-3-16 12:0:0.0']},
         'MRI-CGCM3_r3i1p1': {'keyerror': None,
          'name': 'MRI-CGCM3_r3i1p1',
          'nyears': 156,
          'time_period': ['1850-1-16 12:0:0.0', '2005-12-16 12:0:0.0']},
         'Tropflux': {'name': 'Tropflux',
          'nyears': 40,
          'time_period': ['1979-1-15 0:0:0.0', '2018-12-15 12:0:0.0']},
         'method': 'Zonal root mean square error of equatorial_pacific climatological taux STD, time series are linearly detrended, observations and model regridded to generic_1x1deg',
         'name': 'taux zonal seasonality RMSE',
         'ref': 'Using CDAT regridding and rms (uncentered and biased) calculation',
         'time_frequency': 'monthly',
         'units': '1e-3 N/m2'},
        'metric': {'datasets': "MRI-CGCM3_r3i1p1; ERA-Interim's tauu & Tropflux's taux; 's ",
         'method': 'The metric is the statistical value between the model and the observations',
         'name': 'SeasonalTauxLonRmse',
         'units': '1e-3 N/m2'}}},
      'name': 'Metrics Collection for ENSO performance'},
     'value': {'BiasPrLatRmse': {'diagnostic': {'ERA-Interim': {'value': None,
         'value_error': None},
        'GPCPv2.3': {'value': None, 'value_error': None},
        'MRI-CGCM3_r3i1p1': {'value': None, 'value_error': None}},
       'metric': {'ERA-Interim': {'value': 2.3862040436923455,
         'value_error': None},
        'GPCPv2.3': {'value': 2.4559345860463018, 'value_error': None}}},
      'BiasPrLonRmse': {'diagnostic': {'ERA-Interim': {'value': None,
         'value_error': None},
        'GPCPv2.3': {'value': None, 'value_error': None},
        'MRI-CGCM3_r3i1p1': {'value': None, 'value_error': None}},
       'metric': {'ERA-Interim': {'value': 2.6157723440001583,
         'value_error': None},
        'GPCPv2.3': {'value': 1.5972030923894753, 'value_error': None}}},
      'BiasSstLonRmse': {'diagnostic': {'ERA-Interim': {'value': None,
         'value_error': None},
        'HadISST': {'value': None, 'value_error': None},
        'MRI-CGCM3_r3i1p1': {'value': None, 'value_error': None},
        'Tropflux': {'value': None, 'value_error': None}},
       'metric': {'ERA-Interim': {'value': 0.8900420600889827,
         'value_error': None},
        'HadISST': {'value': 0.7120096975274003, 'value_error': None},
        'Tropflux': {'value': 0.9380963523238809, 'value_error': None}}},
      'BiasTauxLonRmse': {'diagnostic': {'ERA-Interim': {'value': None,
         'value_error': None},
        'MRI-CGCM3_r3i1p1': {'value': None, 'value_error': None},
        'Tropflux': {'value': None, 'value_error': None}},
       'metric': {'ERA-Interim': {'value': 10.438825830258212,
         'value_error': None},
        'Tropflux': {'value': 10.129392385433297, 'value_error': None}}},
      'EnsoAmpl': {'diagnostic': {'ERA-Interim': {'value': 0.8989844997845644,
         'value_error': 0.14214193002531866},
        'HadISST': {'value': 0.7665787872085695,
         'value_error': 0.06238329697691264},
        'MRI-CGCM3_r3i1p1': {'value': 0.6196219058202114,
         'value_error': 0.04960945591809001},
        'Tropflux': {'value': 0.9039789553693535,
         'value_error': 0.14293162279134272}},
       'metric': {'ERA-Interim': {'value': 31.07535158073364,
         'value_error': 16.41633214808121},
        'HadISST': {'value': 19.17048630102184,
         'value_error': 13.049352938421563},
        'Tropflux': {'value': 31.45615811741521,
         'value_error': 16.325632424053634}}},
      'EnsoDuration': {'diagnostic': {'ERA-Interim': {'value': 13.0,
         'value_error': None},
        'HadISST': {'value': 13.0, 'value_error': None},
        'MRI-CGCM3_r3i1p1': {'value': 15.0, 'value_error': None},
        'Tropflux': {'value': 13.0, 'value_error': None}},
       'metric': {'ERA-Interim': {'value': 15.384615384615385,
         'value_error': None},
        'HadISST': {'value': 15.384615384615385, 'value_error': None},
        'Tropflux': {'value': 15.384615384615385, 'value_error': None}}},
      'EnsoSeasonality': {'diagnostic': {'ERA-Interim': {'value': 2.0466846866656914,
         'value_error': 0.6513411033995022},
        'HadISST': {'value': 1.6639865947361325,
         'value_error': 0.2712772451657809},
        'MRI-CGCM3_r3i1p1': {'value': 1.1014718835032657,
         'value_error': 0.17666068029404142},
        'Tropflux': {'value': 2.0532132553583624,
         'value_error': 0.6534187683977347}},
       'metric': {'ERA-Interim': {'value': 46.182629367413554,
         'value_error': 25.758502979362085},
        'HadISST': {'value': 33.80524296363504,
         'value_error': 21.408345160554845},
        'Tropflux': {'value': 46.35375158285651,
         'value_error': 25.676599087653678}}},
      'EnsoSstDiversity_2': {'diagnostic': {'ERA-Interim': {'value': 33.25,
         'value_error': None},
        'HadISST': {'value': 49.0, 'value_error': None},
        'MRI-CGCM3_r3i1p1': {'value': 49.0, 'value_error': None},
        'Tropflux': {'value': 32.0, 'value_error': None}},
       'metric': {'ERA-Interim': {'value': 47.368421052631575,
         'value_error': None},
        'HadISST': {'value': 0.0, 'value_error': None},
        'Tropflux': {'value': 53.125, 'value_error': None}}},
      'EnsoSstLonRmse': {'diagnostic': {'ERA-Interim': {'value': None,
         'value_error': None},
        'HadISST': {'value': None, 'value_error': None},
        'MRI-CGCM3_r3i1p1': {'value': None, 'value_error': None},
        'Tropflux': {'value': None, 'value_error': None}},
       'metric': {'ERA-Interim': {'value': 0.1501152664186701,
         'value_error': None},
        'HadISST': {'value': 0.16996554929497162, 'value_error': None},
        'Tropflux': {'value': 0.15269095570231547, 'value_error': None}}},
      'EnsoSstSkew': {'diagnostic': {'ERA-Interim': {'value': 0.39098111106809963,
         'value_error': 0.061819541653923164},
        'HadISST': {'value': 0.38989908235027515,
         'value_error': 0.03172953733021198},
        'MRI-CGCM3_r3i1p1': {'value': 0.0061682427589008154,
         'value_error': 0.0004938546626021924},
        'Tropflux': {'value': 0.39744741059612115,
         'value_error': 0.06284195338099416}},
       'metric': {'ERA-Interim': {'value': 98.42236809291116,
         'value_error': 0.3757571491208629},
        'HadISST': {'value': 98.4179899265935,
         'value_error': 0.2554043301176068},
        'Tropflux': {'value': 98.44803548986538,
         'value_error': 0.3696437408780798}}},
      'EnsoSstTsRmse': {'diagnostic': {'ERA-Interim': {'value': None,
         'value_error': None},
        'HadISST': {'value': None, 'value_error': None},
        'MRI-CGCM3_r3i1p1': {'value': None, 'value_error': None},
        'Tropflux': {'value': None, 'value_error': None}},
       'metric': {'ERA-Interim': {'value': 0.10682533017615777,
         'value_error': None},
        'HadISST': {'value': 0.09540770395378151, 'value_error': None},
        'Tropflux': {'value': 0.10954711000680102, 'value_error': None}}},
      'SeasonalPrLatRmse': {'diagnostic': {'ERA-Interim': {'value': None,
         'value_error': None},
        'GPCPv2.3': {'value': None, 'value_error': None},
        'MRI-CGCM3_r3i1p1': {'value': None, 'value_error': None}},
       'metric': {'ERA-Interim': {'value': 1.7255555784396224,
         'value_error': None},
        'GPCPv2.3': {'value': 1.84044266540961, 'value_error': None}}},
      'SeasonalPrLonRmse': {'diagnostic': {'ERA-Interim': {'value': None,
         'value_error': None},
        'GPCPv2.3': {'value': None, 'value_error': None},
        'MRI-CGCM3_r3i1p1': {'value': None, 'value_error': None}},
       'metric': {'ERA-Interim': {'value': 1.1530838130636665,
         'value_error': None},
        'GPCPv2.3': {'value': 0.9819068524551378, 'value_error': None}}},
      'SeasonalSstLonRmse': {'diagnostic': {'ERA-Interim': {'value': None,
         'value_error': None},
        'HadISST': {'value': None, 'value_error': None},
        'MRI-CGCM3_r3i1p1': {'value': None, 'value_error': None},
        'Tropflux': {'value': None, 'value_error': None}},
       'metric': {'ERA-Interim': {'value': 0.173139488605604,
         'value_error': None},
        'HadISST': {'value': 0.18695515328145088, 'value_error': None},
        'Tropflux': {'value': 0.17488422741030912, 'value_error': None}}},
      'SeasonalTauxLonRmse': {'diagnostic': {'ERA-Interim': {'value': None,
         'value_error': None},
        'MRI-CGCM3_r3i1p1': {'value': None, 'value_error': None},
        'Tropflux': {'value': None, 'value_error': None}},
       'metric': {'ERA-Interim': {'value': 3.0216210378755077,
         'value_error': None},
        'Tropflux': {'value': 2.5939097331113343, 'value_error': None}}}}},
    'r4i1p2': {'metadata': {'description_of_the_collection': 'Describe which science question this collection is about',
      'metrics': {'BiasPrLatRmse': {'diagnostic': {'ERA-Interim': {'name': 'ERA-Interim',
          'nyears': 40,
          'time_period': ['1979-1-16 12:0:0.0', '2019-3-16 12:0:0.0']},
         'GPCPv2.3': {'name': 'GPCPv2.3',
          'nyears': 41,
          'time_period': ['1979-1-1 0:0:0.0', '2019-7-1 0:0:0.0']},
         'MRI-CGCM3_r4i1p2': {'keyerror': None,
          'name': 'MRI-CGCM3_r4i1p2',
          'nyears': 156,
          'time_period': ['1850-1-16 12:0:0.0', '2005-12-16 12:0:0.0']},
         'method': 'Meridional root mean square error of nino3_LatExt pr, time series are linearly detrended, observations and model regridded to generic_1x1deg',
         'name': 'pr Meridional RMSE',
         'ref': 'Using CDAT regridding and rms (uncentered and biased) calculation',
         'time_frequency': 'monthly',
         'units': 'mm/day'},
        'metric': {'datasets': "MRI-CGCM3_r4i1p2; ERA-Interim's pr & GPCPv2.3's precip; 's ",
         'method': 'The metric is the statistical value between the model and the observations',
         'name': 'BiasPrLatRmse',
         'units': 'mm/day'}},
       'BiasPrLonRmse': {'diagnostic': {'ERA-Interim': {'name': 'ERA-Interim',
          'nyears': 40,
          'time_period': ['1979-1-16 12:0:0.0', '2019-3-16 12:0:0.0']},
         'GPCPv2.3': {'name': 'GPCPv2.3',
          'nyears': 41,
          'time_period': ['1979-1-1 0:0:0.0', '2019-7-1 0:0:0.0']},
         'MRI-CGCM3_r4i1p2': {'keyerror': None,
          'name': 'MRI-CGCM3_r4i1p2',
          'nyears': 156,
          'time_period': ['1850-1-16 12:0:0.0', '2005-12-16 12:0:0.0']},
         'method': 'Zonal root mean square error of equatorial_pacific pr, time series are linearly detrended, observations and model regridded to generic_1x1deg',
         'name': 'pr Zonal RMSE',
         'ref': 'Using CDAT regridding and rms (uncentered and biased) calculation',
         'time_frequency': 'monthly',
         'units': 'mm/day'},
        'metric': {'datasets': "MRI-CGCM3_r4i1p2; ERA-Interim's pr & GPCPv2.3's precip; 's ",
         'method': 'The metric is the statistical value between the model and the observations',
         'name': 'BiasPrLonRmse',
         'units': 'mm/day'}},
       'BiasSstLonRmse': {'diagnostic': {'ERA-Interim': {'name': 'ERA-Interim',
          'nyears': 40,
          'time_period': ['1979-1-16 12:0:0.0', '2019-3-16 12:0:0.0']},
         'HadISST': {'name': 'HadISST',
          'nyears': 151,
          'time_period': ['1870-1-16 11:59:59.5', '2020-10-16 12:0:0.0']},
         'MRI-CGCM3_r4i1p2': {'keyerror': None,
          'name': 'MRI-CGCM3_r4i1p2',
          'nyears': 156,
          'time_period': ['1850-1-16 12:0:0.0', '2005-12-16 12:0:0.0']},
         'Tropflux': {'name': 'Tropflux',
          'nyears': 40,
          'time_period': ['1979-1-15 0:0:0.0', '2018-12-15 12:0:0.0']},
         'method': 'Zonal root mean square error of equatorial_pacific sst, time series are linearly detrended, observations and model regridded to generic_1x1deg',
         'name': 'sst Zonal RMSE',
         'ref': 'Using CDAT regridding and rms (uncentered and biased) calculation',
         'time_frequency': 'monthly',
         'units': 'C'},
        'metric': {'datasets': "MRI-CGCM3_r4i1p2; ERA-Interim's ts & HadISST's sst & Tropflux's sst; 's ",
         'method': 'The metric is the statistical value between the model and the observations',
         'name': 'BiasSstLonRmse',
         'units': 'C'}},
       'BiasTauxLonRmse': {'diagnostic': {'ERA-Interim': {'name': 'ERA-Interim',
          'nyears': 40,
          'time_period': ['1979-1-16 12:0:0.0', '2019-3-16 12:0:0.0']},
         'MRI-CGCM3_r4i1p2': {'keyerror': None,
          'name': 'MRI-CGCM3_r4i1p2',
          'nyears': 156,
          'time_period': ['1850-1-16 12:0:0.0', '2005-12-16 12:0:0.0']},
         'Tropflux': {'name': 'Tropflux',
          'nyears': 40,
          'time_period': ['1979-1-15 0:0:0.0', '2018-12-15 12:0:0.0']},
         'method': 'Zonal root mean square error of equatorial_pacific taux, time series are linearly detrended, observations and model regridded to generic_1x1deg',
         'name': 'taux Zonal RMSE',
         'ref': 'Using CDAT regridding and rms (uncentered and biased) calculation',
         'time_frequency': 'monthly',
         'units': '1e-3 N/m2'},
        'metric': {'datasets': "MRI-CGCM3_r4i1p2; ERA-Interim's tauu & Tropflux's taux; 's ",
         'method': 'The metric is the statistical value between the model and the observations',
         'name': 'BiasTauxLonRmse',
         'units': '1e-3 N/m2'}},
       'EnsoAmpl': {'diagnostic': {'ERA-Interim': {'keyerror': None,
          'name': 'ERA-Interim',
          'nyears': 40,
          'time_period': ['1979-1-16 12:0:0.0', '2019-3-16 12:0:0.0']},
         'HadISST': {'keyerror': None,
          'name': 'HadISST',
          'nyears': 151,
          'time_period': ['1870-1-16 11:59:59.5', '2020-10-16 12:0:0.0']},
         'MRI-CGCM3_r4i1p2': {'keyerror': None,
          'name': 'MRI-CGCM3_r4i1p2',
          'nyears': 156,
          'time_period': ['1850-1-16 12:0:0.0', '2005-12-16 12:0:0.0']},
         'Tropflux': {'keyerror': None,
          'name': 'Tropflux',
          'nyears': 40,
          'time_period': ['1979-1-15 0:0:0.0', '2018-12-15 12:0:0.0']},
         'method': 'Standard deviation of nino3.4 sstA, time series are linearly detrended',
         'name': 'ENSO amplitude',
         'ref': 'Using CDAT regression calculation',
         'time_frequency': 'monthly',
         'units': 'C'},
        'metric': {'datasets': "MRI-CGCM3_r4i1p2; ERA-Interim's ts & HadISST's sst & Tropflux's sst; 's ",
         'method': 'The metric is the absolute value of the relative difference between model and observations values (M = 100 * abs[[model-obs] / obs])',
         'name': 'EnsoAmpl',
         'units': '%'}},
       'EnsoDuration': {'diagnostic': {'ERA-Interim': {'keyerror': None,
          'name': 'ERA-Interim',
          'nyears': 40,
          'time_period': ['1979-1-16 12:0:0.0', '2019-3-16 12:0:0.0']},
         'HadISST': {'keyerror': None,
          'name': 'HadISST',
          'nyears': 151,
          'time_period': ['1870-1-16 11:59:59.5', '2020-10-16 12:0:0.0']},
         'MRI-CGCM3_r4i1p2': {'keyerror': None,
          'name': 'MRI-CGCM3_r4i1p2',
          'nyears': 156,
          'time_period': ['1850-1-16 12:0:0.0', '2005-12-16 12:0:0.0']},
         'Tropflux': {'keyerror': None,
          'name': 'Tropflux',
          'nyears': 40,
          'time_period': ['1979-1-15 0:0:0.0', '2018-12-15 12:0:0.0']},
         'method': 'nino3.4 SSTA during DEC regressed against nino3.4 SSTA during 6 years (centered on ENSO), the duration is the number of consecutive months during which the regression is above 0.25, time series are linearly detrended, smoothing using a triangle shaped window of 5 points',
         'name': 'ENSO Duration based on life cyle SSTA pattern',
         'ref': 'Using CDAT',
         'time_frequency': 'monthly',
         'units': 'months'},
        'metric': {'datasets': "MRI-CGCM3_r4i1p2; ERA-Interim's ts & HadISST's sst & Tropflux's sst; 's ",
         'method': 'The metric is the absolute value of the relative difference between model and observations values (M = 100 * abs[[model-obs] / obs])',
         'name': 'EnsoDuration',
         'units': '%'}},
       'EnsoSeasonality': {'diagnostic': {'ERA-Interim': {'keyerror': None,
          'name': 'ERA-Interim',
          'nyears': 40,
          'time_period': ['1979-1-16 12:0:0.0', '2019-3-16 12:0:0.0']},
         'HadISST': {'keyerror': None,
          'name': 'HadISST',
          'nyears': 151,
          'time_period': ['1870-1-16 11:59:59.5', '2020-10-16 12:0:0.0']},
         'MRI-CGCM3_r4i1p2': {'keyerror': None,
          'name': 'MRI-CGCM3_r4i1p2',
          'nyears': 156,
          'time_period': ['1850-1-16 12:0:0.0', '2005-12-16 12:0:0.0']},
         'Tropflux': {'keyerror': None,
          'name': 'Tropflux',
          'nyears': 40,
          'time_period': ['1979-1-15 0:0:0.0', '2018-12-15 12:0:0.0']},
         'method': 'Ratio between NDJ and MAM standard deviation nino3.4 sstA, time series are linearly detrended',
         'name': 'ENSO seasonality',
         'ref': 'Using CDAT std dev calculation',
         'time_frequency': 'monthly',
         'units': 'C/C'},
        'metric': {'datasets': "MRI-CGCM3_r4i1p2; ERA-Interim's ts & HadISST's sst & Tropflux's sst; 's ",
         'method': 'The metric is the absolute value of the relative difference between model and observations values (M = 100 * abs[[model-obs] / obs])',
         'name': 'EnsoSeasonality',
         'units': '%'}},
       'EnsoSstDiversity_2': {'diagnostic': {'ERA-Interim': {'keyerror': None,
          'name': 'ERA-Interim',
          'nyears': 40,
          'time_period': ['1979-1-16 12:0:0.0', '2019-3-16 12:0:0.0']},
         'HadISST': {'keyerror': None,
          'name': 'HadISST',
          'nyears': 151,
          'time_period': ['1870-1-16 11:59:59.5', '2020-10-16 12:0:0.0']},
         'MRI-CGCM3_r4i1p2': {'keyerror': None,
          'name': 'MRI-CGCM3_r4i1p2',
          'nyears': 156,
          'time_period': ['1850-1-16 12:0:0.0', '2005-12-16 12:0:0.0']},
         'Tropflux': {'keyerror': None,
          'name': 'Tropflux',
          'nyears': 40,
          'time_period': ['1979-1-15 0:0:0.0', '2018-12-15 12:0:0.0']},
         'method': 'Nino (Nina) events = nino3.4 sstA > 0.75 (< -0.75) during DEC, zonal SSTA (meridional averaged [-5.0 ; 5.0]), the zonal SSTA maximum (minimum) is located for each event, the diversity is the interquartile range (IQR = Q3 - Q1), time series are linearly detrended, smoothing using a triangle shaped window of 5 points',
         'name': 'ENSO Diversity (interquartile range)',
         'ref': 'Using CDAT regridding',
         'time_frequency': 'monthly',
         'units': 'long'},
        'metric': {'datasets': "MRI-CGCM3_r4i1p2; ERA-Interim's ts & HadISST's sst & Tropflux's sst; 's ",
         'method': 'The metric is the absolute value of the relative difference between model and observations values (M = 100 * abs[[model-obs] / obs])',
         'name': 'EnsoSstDiversity',
         'units': '%'}},
       'EnsoSstLonRmse': {'diagnostic': {'ERA-Interim': {'name': 'ERA-Interim',
          'nyears': 40,
          'time_period': ['1979-1-16 12:0:0.0', '2019-3-16 12:0:0.0']},
         'HadISST': {'name': 'HadISST',
          'nyears': 151,
          'time_period': ['1870-1-16 11:59:59.5', '2020-10-16 12:0:0.0']},
         'MRI-CGCM3_r4i1p2': {'keyerror': None,
          'name': 'MRI-CGCM3_r4i1p2',
          'nyears': 156,
          'time_period': ['1850-1-16 12:0:0.0', '2005-12-16 12:0:0.0']},
         'Tropflux': {'name': 'Tropflux',
          'nyears': 40,
          'time_period': ['1979-1-15 0:0:0.0', '2018-12-15 12:0:0.0']},
         'method': 'nino3.4 SSTA during DEC regressed against equatorial_pacific SSTA, time series are linearly detrended, smoothing using a triangle shaped window of 5 points, observations and model regridded to generic_1x1deg',
         'name': 'ENSO Zonal SSTA pattern',
         'ref': 'Using CDAT regridding and rms (uncentered and biased) calculation',
         'time_frequency': 'monthly',
         'units': 'C/C'},
        'metric': {'datasets': "MRI-CGCM3_r4i1p2; ERA-Interim's ts & HadISST's sst & Tropflux's sst; 's ",
         'method': 'The metric is the statistical value between the model and the observations',
         'name': 'EnsoSstLonRmse',
         'units': 'C/C'}},
       'EnsoSstSkew': {'diagnostic': {'ERA-Interim': {'keyerror': None,
          'name': 'ERA-Interim',
          'nyears': 40,
          'time_period': ['1979-1-16 12:0:0.0', '2019-3-16 12:0:0.0']},
         'HadISST': {'keyerror': None,
          'name': 'HadISST',
          'nyears': 151,
          'time_period': ['1870-1-16 11:59:59.5', '2020-10-16 12:0:0.0']},
         'MRI-CGCM3_r4i1p2': {'keyerror': None,
          'name': 'MRI-CGCM3_r4i1p2',
          'nyears': 156,
          'time_period': ['1850-1-16 12:0:0.0', '2005-12-16 12:0:0.0']},
         'Tropflux': {'keyerror': None,
          'name': 'Tropflux',
          'nyears': 40,
          'time_period': ['1979-1-15 0:0:0.0', '2018-12-15 12:0:0.0']},
         'method': 'Standard deviation of nino3.4 sstA, time series are linearly detrended',
         'name': 'ENSO skewness',
         'ref': 'Using CDAT regression calculation',
         'time_frequency': 'monthly',
         'units': 'C'},
        'metric': {'datasets': "MRI-CGCM3_r4i1p2; ERA-Interim's ts & HadISST's sst & Tropflux's sst; 's ",
         'method': 'The metric is the absolute value of the relative difference between model and observations values (M = 100 * abs[[model-obs] / obs])',
         'name': 'EnsoSstSkew',
         'units': '%'}},
       'EnsoSstTsRmse': {'diagnostic': {'ERA-Interim': {'name': 'ERA-Interim',
          'nyears': 40,
          'time_period': ['1979-1-16 12:0:0.0', '2019-3-16 12:0:0.0']},
         'HadISST': {'name': 'HadISST',
          'nyears': 151,
          'time_period': ['1870-1-16 11:59:59.5', '2020-10-16 12:0:0.0']},
         'MRI-CGCM3_r4i1p2': {'keyerror': None,
          'name': 'MRI-CGCM3_r4i1p2',
          'nyears': 156,
          'time_period': ['1850-1-16 12:0:0.0', '2005-12-16 12:0:0.0']},
         'Tropflux': {'name': 'Tropflux',
          'nyears': 40,
          'time_period': ['1979-1-15 0:0:0.0', '2018-12-15 12:0:0.0']},
         'method': 'nino3.4 SSTA during DEC regressed against nino3.4 SSTA during 6 years (centered on ENSO), time series are linearly detrended, smoothing using a triangle shaped window of 5 points',
         'name': 'ENSO life cyle SSTA pattern',
         'ref': 'Using CDAT regridding and rms (uncentered and biased) calculation',
         'time_frequency': 'monthly',
         'units': 'C/C'},
        'metric': {'datasets': "MRI-CGCM3_r4i1p2; ERA-Interim's ts & HadISST's sst & Tropflux's sst; 's ",
         'method': 'The metric is the statistical value between the model and the observations',
         'name': 'EnsoSstTsRmse',
         'units': 'C/C'}},
       'SeasonalPrLatRmse': {'diagnostic': {'ERA-Interim': {'name': 'ERA-Interim',
          'nyears': 40,
          'time_period': ['1979-1-16 12:0:0.0', '2019-3-16 12:0:0.0']},
         'GPCPv2.3': {'name': 'GPCPv2.3',
          'nyears': 41,
          'time_period': ['1979-1-1 0:0:0.0', '2019-7-1 0:0:0.0']},
         'MRI-CGCM3_r4i1p2': {'keyerror': None,
          'name': 'MRI-CGCM3_r4i1p2',
          'nyears': 156,
          'time_period': ['1850-1-16 12:0:0.0', '2005-12-16 12:0:0.0']},
         'method': 'Meridional root mean square error of nino3_LatExt climatological pr STD, time series are linearly detrended, observations and model regridded to generic_1x1deg',
         'name': 'pr meridional seasonality RMSE',
         'ref': 'Using CDAT regridding and rms (uncentered and biased) calculation',
         'time_frequency': 'monthly',
         'units': 'mm/day'},
        'metric': {'datasets': "MRI-CGCM3_r4i1p2; ERA-Interim's pr & GPCPv2.3's precip; 's ",
         'method': 'The metric is the statistical value between the model and the observations',
         'name': 'SeasonalPrLatRmse',
         'units': 'mm/day'}},
       'SeasonalPrLonRmse': {'diagnostic': {'ERA-Interim': {'name': 'ERA-Interim',
          'nyears': 40,
          'time_period': ['1979-1-16 12:0:0.0', '2019-3-16 12:0:0.0']},
         'GPCPv2.3': {'name': 'GPCPv2.3',
          'nyears': 41,
          'time_period': ['1979-1-1 0:0:0.0', '2019-7-1 0:0:0.0']},
         'MRI-CGCM3_r4i1p2': {'keyerror': None,
          'name': 'MRI-CGCM3_r4i1p2',
          'nyears': 156,
          'time_period': ['1850-1-16 12:0:0.0', '2005-12-16 12:0:0.0']},
         'method': 'Zonal root mean square error of equatorial_pacific climatological pr STD, time series are linearly detrended, observations and model regridded to generic_1x1deg',
         'name': 'pr zonal seasonality RMSE',
         'ref': 'Using CDAT regridding and rms (uncentered and biased) calculation',
         'time_frequency': 'monthly',
         'units': 'mm/day'},
        'metric': {'datasets': "MRI-CGCM3_r4i1p2; ERA-Interim's pr & GPCPv2.3's precip; 's ",
         'method': 'The metric is the statistical value between the model and the observations',
         'name': 'SeasonalPrLonRmse',
         'units': 'mm/day'}},
       'SeasonalSstLonRmse': {'diagnostic': {'ERA-Interim': {'name': 'ERA-Interim',
          'nyears': 40,
          'time_period': ['1979-1-16 12:0:0.0', '2019-3-16 12:0:0.0']},
         'HadISST': {'name': 'HadISST',
          'nyears': 151,
          'time_period': ['1870-1-16 11:59:59.5', '2020-10-16 12:0:0.0']},
         'MRI-CGCM3_r4i1p2': {'keyerror': None,
          'name': 'MRI-CGCM3_r4i1p2',
          'nyears': 156,
          'time_period': ['1850-1-16 12:0:0.0', '2005-12-16 12:0:0.0']},
         'Tropflux': {'name': 'Tropflux',
          'nyears': 40,
          'time_period': ['1979-1-15 0:0:0.0', '2018-12-15 12:0:0.0']},
         'method': 'Zonal root mean square error of equatorial_pacific climatological sst STD, time series are linearly detrended, observations and model regridded to generic_1x1deg',
         'name': 'sst zonal seasonality RMSE',
         'ref': 'Using CDAT regridding and rms (uncentered and biased) calculation',
         'time_frequency': 'monthly',
         'units': 'C'},
        'metric': {'datasets': "MRI-CGCM3_r4i1p2; ERA-Interim's ts & HadISST's sst & Tropflux's sst; 's ",
         'method': 'The metric is the statistical value between the model and the observations',
         'name': 'SeasonalSstLonRmse',
         'units': 'C'}},
       'SeasonalTauxLonRmse': {'diagnostic': {'ERA-Interim': {'name': 'ERA-Interim',
          'nyears': 40,
          'time_period': ['1979-1-16 12:0:0.0', '2019-3-16 12:0:0.0']},
         'MRI-CGCM3_r4i1p2': {'keyerror': None,
          'name': 'MRI-CGCM3_r4i1p2',
          'nyears': 156,
          'time_period': ['1850-1-16 12:0:0.0', '2005-12-16 12:0:0.0']},
         'Tropflux': {'name': 'Tropflux',
          'nyears': 40,
          'time_period': ['1979-1-15 0:0:0.0', '2018-12-15 12:0:0.0']},
         'method': 'Zonal root mean square error of equatorial_pacific climatological taux STD, time series are linearly detrended, observations and model regridded to generic_1x1deg',
         'name': 'taux zonal seasonality RMSE',
         'ref': 'Using CDAT regridding and rms (uncentered and biased) calculation',
         'time_frequency': 'monthly',
         'units': '1e-3 N/m2'},
        'metric': {'datasets': "MRI-CGCM3_r4i1p2; ERA-Interim's tauu & Tropflux's taux; 's ",
         'method': 'The metric is the statistical value between the model and the observations',
         'name': 'SeasonalTauxLonRmse',
         'units': '1e-3 N/m2'}}},
      'name': 'Metrics Collection for ENSO performance'},
     'value': {'BiasPrLatRmse': {'diagnostic': {'ERA-Interim': {'value': None,
         'value_error': None},
        'GPCPv2.3': {'value': None, 'value_error': None},
        'MRI-CGCM3_r4i1p2': {'value': None, 'value_error': None}},
       'metric': {'ERA-Interim': {'value': 2.363968360953125,
         'value_error': None},
        'GPCPv2.3': {'value': 2.433042123539411, 'value_error': None}}},
      'BiasPrLonRmse': {'diagnostic': {'ERA-Interim': {'value': None,
         'value_error': None},
        'GPCPv2.3': {'value': None, 'value_error': None},
        'MRI-CGCM3_r4i1p2': {'value': None, 'value_error': None}},
       'metric': {'ERA-Interim': {'value': 2.5904080299979357,
         'value_error': None},
        'GPCPv2.3': {'value': 1.575503722720228, 'value_error': None}}},
      'BiasSstLonRmse': {'diagnostic': {'ERA-Interim': {'value': None,
         'value_error': None},
        'HadISST': {'value': None, 'value_error': None},
        'MRI-CGCM3_r4i1p2': {'value': None, 'value_error': None},
        'Tropflux': {'value': None, 'value_error': None}},
       'metric': {'ERA-Interim': {'value': 0.886135014068642,
         'value_error': None},
        'HadISST': {'value': 0.7060932128094128, 'value_error': None},
        'Tropflux': {'value': 0.9342613895648904, 'value_error': None}}},
      'BiasTauxLonRmse': {'diagnostic': {'ERA-Interim': {'value': None,
         'value_error': None},
        'MRI-CGCM3_r4i1p2': {'value': None, 'value_error': None},
        'Tropflux': {'value': None, 'value_error': None}},
       'metric': {'ERA-Interim': {'value': 10.265591602018585,
         'value_error': None},
        'Tropflux': {'value': 9.948278144476324, 'value_error': None}}},
      'EnsoAmpl': {'diagnostic': {'ERA-Interim': {'value': 0.8989844997845644,
         'value_error': 0.14214193002531866},
        'HadISST': {'value': 0.7665787872085695,
         'value_error': 0.06238329697691264},
        'MRI-CGCM3_r4i1p2': {'value': 0.6407151621495945,
         'value_error': 0.0512982680149708},
        'Tropflux': {'value': 0.9039789553693535,
         'value_error': 0.14293162279134272}},
       'metric': {'ERA-Interim': {'value': 28.72900897589029,
         'value_error': 16.975179242954976},
        'HadISST': {'value': 16.418876592880505,
         'value_error': 13.493580852052785},
        'Tropflux': {'value': 29.12277898241481,
         'value_error': 16.881391906126836}}},
      'EnsoDuration': {'diagnostic': {'ERA-Interim': {'value': 13.0,
         'value_error': None},
        'HadISST': {'value': 13.0, 'value_error': None},
        'MRI-CGCM3_r4i1p2': {'value': 14.0, 'value_error': None},
        'Tropflux': {'value': 13.0, 'value_error': None}},
       'metric': {'ERA-Interim': {'value': 7.6923076923076925,
         'value_error': None},
        'HadISST': {'value': 7.6923076923076925, 'value_error': None},
        'Tropflux': {'value': 7.6923076923076925, 'value_error': None}}},
      'EnsoSeasonality': {'diagnostic': {'ERA-Interim': {'value': 2.0466846866656914,
         'value_error': 0.6513411033995022},
        'HadISST': {'value': 1.6639865947361325,
         'value_error': 0.2712772451657809},
        'MRI-CGCM3_r4i1p2': {'value': 1.1851558451880786,
         'value_error': 0.19008241699232156},
        'Tropflux': {'value': 2.0532132553583624,
         'value_error': 0.6534187683977347}},
       'metric': {'ERA-Interim': {'value': 42.0938724509222,
         'value_error': 27.71549671535034},
        'HadISST': {'value': 28.77611821289851,
         'value_error': 23.03483709646617},
        'Tropflux': {'value': 42.27799562003,
         'value_error': 27.627370202585304}}},
      'EnsoSstDiversity_2': {'diagnostic': {'ERA-Interim': {'value': 33.25,
         'value_error': None},
        'HadISST': {'value': 49.0, 'value_error': None},
        'MRI-CGCM3_r4i1p2': {'value': 51.0, 'value_error': None},
        'Tropflux': {'value': 32.0, 'value_error': None}},
       'metric': {'ERA-Interim': {'value': 53.383458646616546,
         'value_error': None},
        'HadISST': {'value': 4.081632653061225, 'value_error': None},
        'Tropflux': {'value': 59.375, 'value_error': None}}},
      'EnsoSstLonRmse': {'diagnostic': {'ERA-Interim': {'value': None,
         'value_error': None},
        'HadISST': {'value': None, 'value_error': None},
        'MRI-CGCM3_r4i1p2': {'value': None, 'value_error': None},
        'Tropflux': {'value': None, 'value_error': None}},
       'metric': {'ERA-Interim': {'value': 0.14173260082453912,
         'value_error': None},
        'HadISST': {'value': 0.16171806728744534, 'value_error': None},
        'Tropflux': {'value': 0.14439642152302176, 'value_error': None}}},
      'EnsoSstSkew': {'diagnostic': {'ERA-Interim': {'value': 0.39098111106809963,
         'value_error': 0.061819541653923164},
        'HadISST': {'value': 0.38989908235027515,
         'value_error': 0.03172953733021198},
        'MRI-CGCM3_r4i1p2': {'value': 0.27883245817319835,
         'value_error': 0.022324463374104216},
        'Tropflux': {'value': 0.39744741059612115,
         'value_error': 0.06284195338099416}},
       'metric': {'ERA-Interim': {'value': 28.6839056210487,
         'value_error': 16.985921867996286},
        'HadISST': {'value': 28.485992710620806,
         'value_error': 11.545430356483251},
        'Tropflux': {'value': 29.844188000876713,
         'value_error': 16.709568177848208}}},
      'EnsoSstTsRmse': {'diagnostic': {'ERA-Interim': {'value': None,
         'value_error': None},
        'HadISST': {'value': None, 'value_error': None},
        'MRI-CGCM3_r4i1p2': {'value': None, 'value_error': None},
        'Tropflux': {'value': None, 'value_error': None}},
       'metric': {'ERA-Interim': {'value': 0.09268721746397089,
         'value_error': None},
        'HadISST': {'value': 0.05447868371953464, 'value_error': None},
        'Tropflux': {'value': 0.08926163962540513, 'value_error': None}}},
      'SeasonalPrLatRmse': {'diagnostic': {'ERA-Interim': {'value': None,
         'value_error': None},
        'GPCPv2.3': {'value': None, 'value_error': None},
        'MRI-CGCM3_r4i1p2': {'value': None, 'value_error': None}},
       'metric': {'ERA-Interim': {'value': 1.7398976792055463,
         'value_error': None},
        'GPCPv2.3': {'value': 1.8521981747552196, 'value_error': None}}},
      'SeasonalPrLonRmse': {'diagnostic': {'ERA-Interim': {'value': None,
         'value_error': None},
        'GPCPv2.3': {'value': None, 'value_error': None},
        'MRI-CGCM3_r4i1p2': {'value': None, 'value_error': None}},
       'metric': {'ERA-Interim': {'value': 1.0966930979347373,
         'value_error': None},
        'GPCPv2.3': {'value': 0.9068186352583163, 'value_error': None}}},
      'SeasonalSstLonRmse': {'diagnostic': {'ERA-Interim': {'value': None,
         'value_error': None},
        'HadISST': {'value': None, 'value_error': None},
        'MRI-CGCM3_r4i1p2': {'value': None, 'value_error': None},
        'Tropflux': {'value': None, 'value_error': None}},
       'metric': {'ERA-Interim': {'value': 0.16799816594381642,
         'value_error': None},
        'HadISST': {'value': 0.1798018926295382, 'value_error': None},
        'Tropflux': {'value': 0.17086637791072434, 'value_error': None}}},
      'SeasonalTauxLonRmse': {'diagnostic': {'ERA-Interim': {'value': None,
         'value_error': None},
        'MRI-CGCM3_r4i1p2': {'value': None, 'value_error': None},
        'Tropflux': {'value': None, 'value_error': None}},
       'metric': {'ERA-Interim': {'value': 2.954017751026657,
         'value_error': None},
        'Tropflux': {'value': 2.5343983582794904, 'value_error': None}}}}},
    'r5i1p2': {'metadata': {'description_of_the_collection': 'Describe which science question this collection is about',
      'metrics': {'BiasPrLatRmse': {'diagnostic': {'ERA-Interim': {'name': 'ERA-Interim',
          'nyears': 40,
          'time_period': ['1979-1-16 12:0:0.0', '2019-3-16 12:0:0.0']},
         'GPCPv2.3': {'name': 'GPCPv2.3',
          'nyears': 41,
          'time_period': ['1979-1-1 0:0:0.0', '2019-7-1 0:0:0.0']},
         'MRI-CGCM3_r5i1p2': {'keyerror': None,
          'name': 'MRI-CGCM3_r5i1p2',
          'nyears': 156,
          'time_period': ['1850-1-16 12:0:0.0', '2005-12-16 12:0:0.0']},
         'method': 'Meridional root mean square error of nino3_LatExt pr, time series are linearly detrended, observations and model regridded to generic_1x1deg',
         'name': 'pr Meridional RMSE',
         'ref': 'Using CDAT regridding and rms (uncentered and biased) calculation',
         'time_frequency': 'monthly',
         'units': 'mm/day'},
        'metric': {'datasets': "MRI-CGCM3_r5i1p2; ERA-Interim's pr & GPCPv2.3's precip; 's ",
         'method': 'The metric is the statistical value between the model and the observations',
         'name': 'BiasPrLatRmse',
         'units': 'mm/day'}},
       'BiasPrLonRmse': {'diagnostic': {'ERA-Interim': {'name': 'ERA-Interim',
          'nyears': 40,
          'time_period': ['1979-1-16 12:0:0.0', '2019-3-16 12:0:0.0']},
         'GPCPv2.3': {'name': 'GPCPv2.3',
          'nyears': 41,
          'time_period': ['1979-1-1 0:0:0.0', '2019-7-1 0:0:0.0']},
         'MRI-CGCM3_r5i1p2': {'keyerror': None,
          'name': 'MRI-CGCM3_r5i1p2',
          'nyears': 156,
          'time_period': ['1850-1-16 12:0:0.0', '2005-12-16 12:0:0.0']},
         'method': 'Zonal root mean square error of equatorial_pacific pr, time series are linearly detrended, observations and model regridded to generic_1x1deg',
         'name': 'pr Zonal RMSE',
         'ref': 'Using CDAT regridding and rms (uncentered and biased) calculation',
         'time_frequency': 'monthly',
         'units': 'mm/day'},
        'metric': {'datasets': "MRI-CGCM3_r5i1p2; ERA-Interim's pr & GPCPv2.3's precip; 's ",
         'method': 'The metric is the statistical value between the model and the observations',
         'name': 'BiasPrLonRmse',
         'units': 'mm/day'}},
       'BiasSstLonRmse': {'diagnostic': {'ERA-Interim': {'name': 'ERA-Interim',
          'nyears': 40,
          'time_period': ['1979-1-16 12:0:0.0', '2019-3-16 12:0:0.0']},
         'HadISST': {'name': 'HadISST',
          'nyears': 151,
          'time_period': ['1870-1-16 11:59:59.5', '2020-10-16 12:0:0.0']},
         'MRI-CGCM3_r5i1p2': {'keyerror': None,
          'name': 'MRI-CGCM3_r5i1p2',
          'nyears': 156,
          'time_period': ['1850-1-16 12:0:0.0', '2005-12-16 12:0:0.0']},
         'Tropflux': {'name': 'Tropflux',
          'nyears': 40,
          'time_period': ['1979-1-15 0:0:0.0', '2018-12-15 12:0:0.0']},
         'method': 'Zonal root mean square error of equatorial_pacific sst, time series are linearly detrended, observations and model regridded to generic_1x1deg',
         'name': 'sst Zonal RMSE',
         'ref': 'Using CDAT regridding and rms (uncentered and biased) calculation',
         'time_frequency': 'monthly',
         'units': 'C'},
        'metric': {'datasets': "MRI-CGCM3_r5i1p2; ERA-Interim's ts & HadISST's sst & Tropflux's sst; 's ",
         'method': 'The metric is the statistical value between the model and the observations',
         'name': 'BiasSstLonRmse',
         'units': 'C'}},
       'BiasTauxLonRmse': {'diagnostic': {'ERA-Interim': {'name': 'ERA-Interim',
          'nyears': 40,
          'time_period': ['1979-1-16 12:0:0.0', '2019-3-16 12:0:0.0']},
         'MRI-CGCM3_r5i1p2': {'keyerror': None,
          'name': 'MRI-CGCM3_r5i1p2',
          'nyears': 156,
          'time_period': ['1850-1-16 12:0:0.0', '2005-12-16 12:0:0.0']},
         'Tropflux': {'name': 'Tropflux',
          'nyears': 40,
          'time_period': ['1979-1-15 0:0:0.0', '2018-12-15 12:0:0.0']},
         'method': 'Zonal root mean square error of equatorial_pacific taux, time series are linearly detrended, observations and model regridded to generic_1x1deg',
         'name': 'taux Zonal RMSE',
         'ref': 'Using CDAT regridding and rms (uncentered and biased) calculation',
         'time_frequency': 'monthly',
         'units': '1e-3 N/m2'},
        'metric': {'datasets': "MRI-CGCM3_r5i1p2; ERA-Interim's tauu & Tropflux's taux; 's ",
         'method': 'The metric is the statistical value between the model and the observations',
         'name': 'BiasTauxLonRmse',
         'units': '1e-3 N/m2'}},
       'EnsoAmpl': {'diagnostic': {'ERA-Interim': {'keyerror': None,
          'name': 'ERA-Interim',
          'nyears': 40,
          'time_period': ['1979-1-16 12:0:0.0', '2019-3-16 12:0:0.0']},
         'HadISST': {'keyerror': None,
          'name': 'HadISST',
          'nyears': 151,
          'time_period': ['1870-1-16 11:59:59.5', '2020-10-16 12:0:0.0']},
         'MRI-CGCM3_r5i1p2': {'keyerror': None,
          'name': 'MRI-CGCM3_r5i1p2',
          'nyears': 156,
          'time_period': ['1850-1-16 12:0:0.0', '2005-12-16 12:0:0.0']},
         'Tropflux': {'keyerror': None,
          'name': 'Tropflux',
          'nyears': 40,
          'time_period': ['1979-1-15 0:0:0.0', '2018-12-15 12:0:0.0']},
         'method': 'Standard deviation of nino3.4 sstA, time series are linearly detrended',
         'name': 'ENSO amplitude',
         'ref': 'Using CDAT regression calculation',
         'time_frequency': 'monthly',
         'units': 'C'},
        'metric': {'datasets': "MRI-CGCM3_r5i1p2; ERA-Interim's ts & HadISST's sst & Tropflux's sst; 's ",
         'method': 'The metric is the absolute value of the relative difference between model and observations values (M = 100 * abs[[model-obs] / obs])',
         'name': 'EnsoAmpl',
         'units': '%'}},
       'EnsoDuration': {'diagnostic': {'ERA-Interim': {'keyerror': None,
          'name': 'ERA-Interim',
          'nyears': 40,
          'time_period': ['1979-1-16 12:0:0.0', '2019-3-16 12:0:0.0']},
         'HadISST': {'keyerror': None,
          'name': 'HadISST',
          'nyears': 151,
          'time_period': ['1870-1-16 11:59:59.5', '2020-10-16 12:0:0.0']},
         'MRI-CGCM3_r5i1p2': {'keyerror': None,
          'name': 'MRI-CGCM3_r5i1p2',
          'nyears': 156,
          'time_period': ['1850-1-16 12:0:0.0', '2005-12-16 12:0:0.0']},
         'Tropflux': {'keyerror': None,
          'name': 'Tropflux',
          'nyears': 40,
          'time_period': ['1979-1-15 0:0:0.0', '2018-12-15 12:0:0.0']},
         'method': 'nino3.4 SSTA during DEC regressed against nino3.4 SSTA during 6 years (centered on ENSO), the duration is the number of consecutive months during which the regression is above 0.25, time series are linearly detrended, smoothing using a triangle shaped window of 5 points',
         'name': 'ENSO Duration based on life cyle SSTA pattern',
         'ref': 'Using CDAT',
         'time_frequency': 'monthly',
         'units': 'months'},
        'metric': {'datasets': "MRI-CGCM3_r5i1p2; ERA-Interim's ts & HadISST's sst & Tropflux's sst; 's ",
         'method': 'The metric is the absolute value of the relative difference between model and observations values (M = 100 * abs[[model-obs] / obs])',
         'name': 'EnsoDuration',
         'units': '%'}},
       'EnsoSeasonality': {'diagnostic': {'ERA-Interim': {'keyerror': None,
          'name': 'ERA-Interim',
          'nyears': 40,
          'time_period': ['1979-1-16 12:0:0.0', '2019-3-16 12:0:0.0']},
         'HadISST': {'keyerror': None,
          'name': 'HadISST',
          'nyears': 151,
          'time_period': ['1870-1-16 11:59:59.5', '2020-10-16 12:0:0.0']},
         'MRI-CGCM3_r5i1p2': {'keyerror': None,
          'name': 'MRI-CGCM3_r5i1p2',
          'nyears': 156,
          'time_period': ['1850-1-16 12:0:0.0', '2005-12-16 12:0:0.0']},
         'Tropflux': {'keyerror': None,
          'name': 'Tropflux',
          'nyears': 40,
          'time_period': ['1979-1-15 0:0:0.0', '2018-12-15 12:0:0.0']},
         'method': 'Ratio between NDJ and MAM standard deviation nino3.4 sstA, time series are linearly detrended',
         'name': 'ENSO seasonality',
         'ref': 'Using CDAT std dev calculation',
         'time_frequency': 'monthly',
         'units': 'C/C'},
        'metric': {'datasets': "MRI-CGCM3_r5i1p2; ERA-Interim's ts & HadISST's sst & Tropflux's sst; 's ",
         'method': 'The metric is the absolute value of the relative difference between model and observations values (M = 100 * abs[[model-obs] / obs])',
         'name': 'EnsoSeasonality',
         'units': '%'}},
       'EnsoSstDiversity_2': {'diagnostic': {'ERA-Interim': {'keyerror': None,
          'name': 'ERA-Interim',
          'nyears': 40,
          'time_period': ['1979-1-16 12:0:0.0', '2019-3-16 12:0:0.0']},
         'HadISST': {'keyerror': None,
          'name': 'HadISST',
          'nyears': 151,
          'time_period': ['1870-1-16 11:59:59.5', '2020-10-16 12:0:0.0']},
         'MRI-CGCM3_r5i1p2': {'keyerror': None,
          'name': 'MRI-CGCM3_r5i1p2',
          'nyears': 156,
          'time_period': ['1850-1-16 12:0:0.0', '2005-12-16 12:0:0.0']},
         'Tropflux': {'keyerror': None,
          'name': 'Tropflux',
          'nyears': 40,
          'time_period': ['1979-1-15 0:0:0.0', '2018-12-15 12:0:0.0']},
         'method': 'Nino (Nina) events = nino3.4 sstA > 0.75 (< -0.75) during DEC, zonal SSTA (meridional averaged [-5.0 ; 5.0]), the zonal SSTA maximum (minimum) is located for each event, the diversity is the interquartile range (IQR = Q3 - Q1), time series are linearly detrended, smoothing using a triangle shaped window of 5 points',
         'name': 'ENSO Diversity (interquartile range)',
         'ref': 'Using CDAT regridding',
         'time_frequency': 'monthly',
         'units': 'long'},
        'metric': {'datasets': "MRI-CGCM3_r5i1p2; ERA-Interim's ts & HadISST's sst & Tropflux's sst; 's ",
         'method': 'The metric is the absolute value of the relative difference between model and observations values (M = 100 * abs[[model-obs] / obs])',
         'name': 'EnsoSstDiversity',
         'units': '%'}},
       'EnsoSstLonRmse': {'diagnostic': {'ERA-Interim': {'name': 'ERA-Interim',
          'nyears': 40,
          'time_period': ['1979-1-16 12:0:0.0', '2019-3-16 12:0:0.0']},
         'HadISST': {'name': 'HadISST',
          'nyears': 151,
          'time_period': ['1870-1-16 11:59:59.5', '2020-10-16 12:0:0.0']},
         'MRI-CGCM3_r5i1p2': {'keyerror': None,
          'name': 'MRI-CGCM3_r5i1p2',
          'nyears': 156,
          'time_period': ['1850-1-16 12:0:0.0', '2005-12-16 12:0:0.0']},
         'Tropflux': {'name': 'Tropflux',
          'nyears': 40,
          'time_period': ['1979-1-15 0:0:0.0', '2018-12-15 12:0:0.0']},
         'method': 'nino3.4 SSTA during DEC regressed against equatorial_pacific SSTA, time series are linearly detrended, smoothing using a triangle shaped window of 5 points, observations and model regridded to generic_1x1deg',
         'name': 'ENSO Zonal SSTA pattern',
         'ref': 'Using CDAT regridding and rms (uncentered and biased) calculation',
         'time_frequency': 'monthly',
         'units': 'C/C'},
        'metric': {'datasets': "MRI-CGCM3_r5i1p2; ERA-Interim's ts & HadISST's sst & Tropflux's sst; 's ",
         'method': 'The metric is the statistical value between the model and the observations',
         'name': 'EnsoSstLonRmse',
         'units': 'C/C'}},
       'EnsoSstSkew': {'diagnostic': {'ERA-Interim': {'keyerror': None,
          'name': 'ERA-Interim',
          'nyears': 40,
          'time_period': ['1979-1-16 12:0:0.0', '2019-3-16 12:0:0.0']},
         'HadISST': {'keyerror': None,
          'name': 'HadISST',
          'nyears': 151,
          'time_period': ['1870-1-16 11:59:59.5', '2020-10-16 12:0:0.0']},
         'MRI-CGCM3_r5i1p2': {'keyerror': None,
          'name': 'MRI-CGCM3_r5i1p2',
          'nyears': 156,
          'time_period': ['1850-1-16 12:0:0.0', '2005-12-16 12:0:0.0']},
         'Tropflux': {'keyerror': None,
          'name': 'Tropflux',
          'nyears': 40,
          'time_period': ['1979-1-15 0:0:0.0', '2018-12-15 12:0:0.0']},
         'method': 'Standard deviation of nino3.4 sstA, time series are linearly detrended',
         'name': 'ENSO skewness',
         'ref': 'Using CDAT regression calculation',
         'time_frequency': 'monthly',
         'units': 'C'},
        'metric': {'datasets': "MRI-CGCM3_r5i1p2; ERA-Interim's ts & HadISST's sst & Tropflux's sst; 's ",
         'method': 'The metric is the absolute value of the relative difference between model and observations values (M = 100 * abs[[model-obs] / obs])',
         'name': 'EnsoSstSkew',
         'units': '%'}},
       'EnsoSstTsRmse': {'diagnostic': {'ERA-Interim': {'name': 'ERA-Interim',
          'nyears': 40,
          'time_period': ['1979-1-16 12:0:0.0', '2019-3-16 12:0:0.0']},
         'HadISST': {'name': 'HadISST',
          'nyears': 151,
          'time_period': ['1870-1-16 11:59:59.5', '2020-10-16 12:0:0.0']},
         'MRI-CGCM3_r5i1p2': {'keyerror': None,
          'name': 'MRI-CGCM3_r5i1p2',
          'nyears': 156,
          'time_period': ['1850-1-16 12:0:0.0', '2005-12-16 12:0:0.0']},
         'Tropflux': {'name': 'Tropflux',
          'nyears': 40,
          'time_period': ['1979-1-15 0:0:0.0', '2018-12-15 12:0:0.0']},
         'method': 'nino3.4 SSTA during DEC regressed against nino3.4 SSTA during 6 years (centered on ENSO), time series are linearly detrended, smoothing using a triangle shaped window of 5 points',
         'name': 'ENSO life cyle SSTA pattern',
         'ref': 'Using CDAT regridding and rms (uncentered and biased) calculation',
         'time_frequency': 'monthly',
         'units': 'C/C'},
        'metric': {'datasets': "MRI-CGCM3_r5i1p2; ERA-Interim's ts & HadISST's sst & Tropflux's sst; 's ",
         'method': 'The metric is the statistical value between the model and the observations',
         'name': 'EnsoSstTsRmse',
         'units': 'C/C'}},
       'SeasonalPrLatRmse': {'diagnostic': {'ERA-Interim': {'name': 'ERA-Interim',
          'nyears': 40,
          'time_period': ['1979-1-16 12:0:0.0', '2019-3-16 12:0:0.0']},
         'GPCPv2.3': {'name': 'GPCPv2.3',
          'nyears': 41,
          'time_period': ['1979-1-1 0:0:0.0', '2019-7-1 0:0:0.0']},
         'MRI-CGCM3_r5i1p2': {'keyerror': None,
          'name': 'MRI-CGCM3_r5i1p2',
          'nyears': 156,
          'time_period': ['1850-1-16 12:0:0.0', '2005-12-16 12:0:0.0']},
         'method': 'Meridional root mean square error of nino3_LatExt climatological pr STD, time series are linearly detrended, observations and model regridded to generic_1x1deg',
         'name': 'pr meridional seasonality RMSE',
         'ref': 'Using CDAT regridding and rms (uncentered and biased) calculation',
         'time_frequency': 'monthly',
         'units': 'mm/day'},
        'metric': {'datasets': "MRI-CGCM3_r5i1p2; ERA-Interim's pr & GPCPv2.3's precip; 's ",
         'method': 'The metric is the statistical value between the model and the observations',
         'name': 'SeasonalPrLatRmse',
         'units': 'mm/day'}},
       'SeasonalPrLonRmse': {'diagnostic': {'ERA-Interim': {'name': 'ERA-Interim',
          'nyears': 40,
          'time_period': ['1979-1-16 12:0:0.0', '2019-3-16 12:0:0.0']},
         'GPCPv2.3': {'name': 'GPCPv2.3',
          'nyears': 41,
          'time_period': ['1979-1-1 0:0:0.0', '2019-7-1 0:0:0.0']},
         'MRI-CGCM3_r5i1p2': {'keyerror': None,
          'name': 'MRI-CGCM3_r5i1p2',
          'nyears': 156,
          'time_period': ['1850-1-16 12:0:0.0', '2005-12-16 12:0:0.0']},
         'method': 'Zonal root mean square error of equatorial_pacific climatological pr STD, time series are linearly detrended, observations and model regridded to generic_1x1deg',
         'name': 'pr zonal seasonality RMSE',
         'ref': 'Using CDAT regridding and rms (uncentered and biased) calculation',
         'time_frequency': 'monthly',
         'units': 'mm/day'},
        'metric': {'datasets': "MRI-CGCM3_r5i1p2; ERA-Interim's pr & GPCPv2.3's precip; 's ",
         'method': 'The metric is the statistical value between the model and the observations',
         'name': 'SeasonalPrLonRmse',
         'units': 'mm/day'}},
       'SeasonalSstLonRmse': {'diagnostic': {'ERA-Interim': {'name': 'ERA-Interim',
          'nyears': 40,
          'time_period': ['1979-1-16 12:0:0.0', '2019-3-16 12:0:0.0']},
         'HadISST': {'name': 'HadISST',
          'nyears': 151,
          'time_period': ['1870-1-16 11:59:59.5', '2020-10-16 12:0:0.0']},
         'MRI-CGCM3_r5i1p2': {'keyerror': None,
          'name': 'MRI-CGCM3_r5i1p2',
          'nyears': 156,
          'time_period': ['1850-1-16 12:0:0.0', '2005-12-16 12:0:0.0']},
         'Tropflux': {'name': 'Tropflux',
          'nyears': 40,
          'time_period': ['1979-1-15 0:0:0.0', '2018-12-15 12:0:0.0']},
         'method': 'Zonal root mean square error of equatorial_pacific climatological sst STD, time series are linearly detrended, observations and model regridded to generic_1x1deg',
         'name': 'sst zonal seasonality RMSE',
         'ref': 'Using CDAT regridding and rms (uncentered and biased) calculation',
         'time_frequency': 'monthly',
         'units': 'C'},
        'metric': {'datasets': "MRI-CGCM3_r5i1p2; ERA-Interim's ts & HadISST's sst & Tropflux's sst; 's ",
         'method': 'The metric is the statistical value between the model and the observations',
         'name': 'SeasonalSstLonRmse',
         'units': 'C'}},
       'SeasonalTauxLonRmse': {'diagnostic': {'ERA-Interim': {'name': 'ERA-Interim',
          'nyears': 40,
          'time_period': ['1979-1-16 12:0:0.0', '2019-3-16 12:0:0.0']},
         'MRI-CGCM3_r5i1p2': {'keyerror': None,
          'name': 'MRI-CGCM3_r5i1p2',
          'nyears': 156,
          'time_period': ['1850-1-16 12:0:0.0', '2005-12-16 12:0:0.0']},
         'Tropflux': {'name': 'Tropflux',
          'nyears': 40,
          'time_period': ['1979-1-15 0:0:0.0', '2018-12-15 12:0:0.0']},
         'method': 'Zonal root mean square error of equatorial_pacific climatological taux STD, time series are linearly detrended, observations and model regridded to generic_1x1deg',
         'name': 'taux zonal seasonality RMSE',
         'ref': 'Using CDAT regridding and rms (uncentered and biased) calculation',
         'time_frequency': 'monthly',
         'units': '1e-3 N/m2'},
        'metric': {'datasets': "MRI-CGCM3_r5i1p2; ERA-Interim's tauu & Tropflux's taux; 's ",
         'method': 'The metric is the statistical value between the model and the observations',
         'name': 'SeasonalTauxLonRmse',
         'units': '1e-3 N/m2'}}},
      'name': 'Metrics Collection for ENSO performance'},
     'value': {'BiasPrLatRmse': {'diagnostic': {'ERA-Interim': {'value': None,
         'value_error': None},
        'GPCPv2.3': {'value': None, 'value_error': None},
        'MRI-CGCM3_r5i1p2': {'value': None, 'value_error': None}},
       'metric': {'ERA-Interim': {'value': 2.36677654737218,
         'value_error': None},
        'GPCPv2.3': {'value': 2.4322769677803815, 'value_error': None}}},
      'BiasPrLonRmse': {'diagnostic': {'ERA-Interim': {'value': None,
         'value_error': None},
        'GPCPv2.3': {'value': None, 'value_error': None},
        'MRI-CGCM3_r5i1p2': {'value': None, 'value_error': None}},
       'metric': {'ERA-Interim': {'value': 2.5700676148953105,
         'value_error': None},
        'GPCPv2.3': {'value': 1.5578972371487463, 'value_error': None}}},
      'BiasSstLonRmse': {'diagnostic': {'ERA-Interim': {'value': None,
         'value_error': None},
        'HadISST': {'value': None, 'value_error': None},
        'MRI-CGCM3_r5i1p2': {'value': None, 'value_error': None},
        'Tropflux': {'value': None, 'value_error': None}},
       'metric': {'ERA-Interim': {'value': 0.8849466243103553,
         'value_error': None},
        'HadISST': {'value': 0.7053106491687702, 'value_error': None},
        'Tropflux': {'value': 0.9330646412953516, 'value_error': None}}},
      'BiasTauxLonRmse': {'diagnostic': {'ERA-Interim': {'value': None,
         'value_error': None},
        'MRI-CGCM3_r5i1p2': {'value': None, 'value_error': None},
        'Tropflux': {'value': None, 'value_error': None}},
       'metric': {'ERA-Interim': {'value': 10.42901803639116,
         'value_error': None},
        'Tropflux': {'value': 10.12400661524261, 'value_error': None}}},
      'EnsoAmpl': {'diagnostic': {'ERA-Interim': {'value': 0.8989844997845644,
         'value_error': 0.14214193002531866},
        'HadISST': {'value': 0.7665787872085695,
         'value_error': 0.06238329697691264},
        'MRI-CGCM3_r5i1p2': {'value': 0.6294336227347035,
         'value_error': 0.05039502197567789},
        'Tropflux': {'value': 0.9039789553693535,
         'value_error': 0.14293162279134272}},
       'metric': {'ERA-Interim': {'value': 29.98392932408256,
         'value_error': 16.676284874571785},
        'HadISST': {'value': 17.890550425125685,
         'value_error': 13.25598952719678},
        'Tropflux': {'value': 30.370765934752818,
         'value_error': 16.58414891982347}}},
      'EnsoDuration': {'diagnostic': {'ERA-Interim': {'value': 13.0,
         'value_error': None},
        'HadISST': {'value': 13.0, 'value_error': None},
        'MRI-CGCM3_r5i1p2': {'value': 15.0, 'value_error': None},
        'Tropflux': {'value': 13.0, 'value_error': None}},
       'metric': {'ERA-Interim': {'value': 15.384615384615385,
         'value_error': None},
        'HadISST': {'value': 15.384615384615385, 'value_error': None},
        'Tropflux': {'value': 15.384615384615385, 'value_error': None}}},
      'EnsoSeasonality': {'diagnostic': {'ERA-Interim': {'value': 2.0466846866656914,
         'value_error': 0.6513411033995022},
        'HadISST': {'value': 1.6639865947361325,
         'value_error': 0.2712772451657809},
        'MRI-CGCM3_r5i1p2': {'value': 1.1268099333888544,
         'value_error': 0.18072454901112175},
        'Tropflux': {'value': 2.0532132553583624,
         'value_error': 0.6534187683977347}},
       'metric': {'ERA-Interim': {'value': 44.944624800776204,
         'value_error': 26.351046686781405},
        'HadISST': {'value': 32.28251135235024,
         'value_error': 21.900818664209588},
        'Tropflux': {'value': 45.11968347914333,
         'value_error': 26.267258693513064}}},
      'EnsoSstDiversity_2': {'diagnostic': {'ERA-Interim': {'value': 33.25,
         'value_error': None},
        'HadISST': {'value': 49.0, 'value_error': None},
        'MRI-CGCM3_r5i1p2': {'value': 41.5, 'value_error': None},
        'Tropflux': {'value': 32.0, 'value_error': None}},
       'metric': {'ERA-Interim': {'value': 24.81203007518797,
         'value_error': None},
        'HadISST': {'value': 15.306122448979592, 'value_error': None},
        'Tropflux': {'value': 29.6875, 'value_error': None}}},
      'EnsoSstLonRmse': {'diagnostic': {'ERA-Interim': {'value': None,
         'value_error': None},
        'HadISST': {'value': None, 'value_error': None},
        'MRI-CGCM3_r5i1p2': {'value': None, 'value_error': None},
        'Tropflux': {'value': None, 'value_error': None}},
       'metric': {'ERA-Interim': {'value': 0.1498622088738023,
         'value_error': None},
        'HadISST': {'value': 0.16917228521706992, 'value_error': None},
        'Tropflux': {'value': 0.15231306218503973, 'value_error': None}}},
      'EnsoSstSkew': {'diagnostic': {'ERA-Interim': {'value': 0.39098111106809963,
         'value_error': 0.061819541653923164},
        'HadISST': {'value': 0.38989908235027515,
         'value_error': 0.03172953733021198},
        'MRI-CGCM3_r5i1p2': {'value': 0.09258039108999234,
         'value_error': 0.007412363551896706},
        'Tropflux': {'value': 0.39744741059612115,
         'value_error': 0.06284195338099416}},
       'metric': {'ERA-Interim': {'value': 76.32100670104572,
         'value_error': 5.639814316690287},
        'HadISST': {'value': 76.25529392582142,
         'value_error': 3.833414749159326},
        'Tropflux': {'value': 76.70625380320546,
         'value_error': 5.5480569478362645}}},
      'EnsoSstTsRmse': {'diagnostic': {'ERA-Interim': {'value': None,
         'value_error': None},
        'HadISST': {'value': None, 'value_error': None},
        'MRI-CGCM3_r5i1p2': {'value': None, 'value_error': None},
        'Tropflux': {'value': None, 'value_error': None}},
       'metric': {'ERA-Interim': {'value': 0.1289767064024115,
         'value_error': None},
        'HadISST': {'value': 0.09915640634915235, 'value_error': None},
        'Tropflux': {'value': 0.12900336682070224, 'value_error': None}}},
      'SeasonalPrLatRmse': {'diagnostic': {'ERA-Interim': {'value': None,
         'value_error': None},
        'GPCPv2.3': {'value': None, 'value_error': None},
        'MRI-CGCM3_r5i1p2': {'value': None, 'value_error': None}},
       'metric': {'ERA-Interim': {'value': 1.759008617392554,
         'value_error': None},
        'GPCPv2.3': {'value': 1.8724449530149194, 'value_error': None}}},
      'SeasonalPrLonRmse': {'diagnostic': {'ERA-Interim': {'value': None,
         'value_error': None},
        'GPCPv2.3': {'value': None, 'value_error': None},
        'MRI-CGCM3_r5i1p2': {'value': None, 'value_error': None}},
       'metric': {'ERA-Interim': {'value': 1.1427387089427534,
         'value_error': None},
        'GPCPv2.3': {'value': 0.9682725272942712, 'value_error': None}}},
      'SeasonalSstLonRmse': {'diagnostic': {'ERA-Interim': {'value': None,
         'value_error': None},
        'HadISST': {'value': None, 'value_error': None},
        'MRI-CGCM3_r5i1p2': {'value': None, 'value_error': None},
        'Tropflux': {'value': None, 'value_error': None}},
       'metric': {'ERA-Interim': {'value': 0.17277307582884724,
         'value_error': None},
        'HadISST': {'value': 0.18593581897843633, 'value_error': None},
        'Tropflux': {'value': 0.17525807110111102, 'value_error': None}}},
      'SeasonalTauxLonRmse': {'diagnostic': {'ERA-Interim': {'value': None,
         'value_error': None},
        'MRI-CGCM3_r5i1p2': {'value': None, 'value_error': None},
        'Tropflux': {'value': None, 'value_error': None}},
       'metric': {'ERA-Interim': {'value': 3.198535614584281,
         'value_error': None},
        'Tropflux': {'value': 2.778947108263815, 'value_error': None}}}}}},
   'MRI-ESM1': {'r1i1p1': {'metadata': {'description_of_the_collection': 'Describe which science question this collection is about',
      'metrics': {'BiasPrLatRmse': {'diagnostic': {'ERA-Interim': {'name': 'ERA-Interim',
          'nyears': 40,
          'time_period': ['1979-1-16 12:0:0.0', '2019-3-16 12:0:0.0']},
         'GPCPv2.3': {'name': 'GPCPv2.3',
          'nyears': 41,
          'time_period': ['1979-1-1 0:0:0.0', '2019-7-1 0:0:0.0']},
         'MRI-ESM1_r1i1p1': {'keyerror': None,
          'name': 'MRI-ESM1_r1i1p1',
          'nyears': 155,
          'time_period': ['1851-1-16 12:0:0.0', '2005-12-16 12:0:0.0']},
         'method': 'Meridional root mean square error of nino3_LatExt pr, time series are linearly detrended, observations and model regridded to generic_1x1deg',
         'name': 'pr Meridional RMSE',
         'ref': 'Using CDAT regridding and rms (uncentered and biased) calculation',
         'time_frequency': 'monthly',
         'units': 'mm/day'},
        'metric': {'datasets': "MRI-ESM1_r1i1p1; ERA-Interim's pr & GPCPv2.3's precip; 's ",
         'method': 'The metric is the statistical value between the model and the observations',
         'name': 'BiasPrLatRmse',
         'units': 'mm/day'}},
       'BiasPrLonRmse': {'diagnostic': {'ERA-Interim': {'name': 'ERA-Interim',
          'nyears': 40,
          'time_period': ['1979-1-16 12:0:0.0', '2019-3-16 12:0:0.0']},
         'GPCPv2.3': {'name': 'GPCPv2.3',
          'nyears': 41,
          'time_period': ['1979-1-1 0:0:0.0', '2019-7-1 0:0:0.0']},
         'MRI-ESM1_r1i1p1': {'keyerror': None,
          'name': 'MRI-ESM1_r1i1p1',
          'nyears': 155,
          'time_period': ['1851-1-16 12:0:0.0', '2005-12-16 12:0:0.0']},
         'method': 'Zonal root mean square error of equatorial_pacific pr, time series are linearly detrended, observations and model regridded to generic_1x1deg',
         'name': 'pr Zonal RMSE',
         'ref': 'Using CDAT regridding and rms (uncentered and biased) calculation',
         'time_frequency': 'monthly',
         'units': 'mm/day'},
        'metric': {'datasets': "MRI-ESM1_r1i1p1; ERA-Interim's pr & GPCPv2.3's precip; 's ",
         'method': 'The metric is the statistical value between the model and the observations',
         'name': 'BiasPrLonRmse',
         'units': 'mm/day'}},
       'BiasSstLonRmse': {'diagnostic': {'ERA-Interim': {'name': 'ERA-Interim',
          'nyears': 40,
          'time_period': ['1979-1-16 12:0:0.0', '2019-3-16 12:0:0.0']},
         'HadISST': {'name': 'HadISST',
          'nyears': 151,
          'time_period': ['1870-1-16 11:59:59.5', '2020-10-16 12:0:0.0']},
         'MRI-ESM1_r1i1p1': {'keyerror': None,
          'name': 'MRI-ESM1_r1i1p1',
          'nyears': 155,
          'time_period': ['1851-1-16 12:0:0.0', '2005-12-16 12:0:0.0']},
         'Tropflux': {'name': 'Tropflux',
          'nyears': 40,
          'time_period': ['1979-1-15 0:0:0.0', '2018-12-15 12:0:0.0']},
         'method': 'Zonal root mean square error of equatorial_pacific sst, time series are linearly detrended, observations and model regridded to generic_1x1deg',
         'name': 'sst Zonal RMSE',
         'ref': 'Using CDAT regridding and rms (uncentered and biased) calculation',
         'time_frequency': 'monthly',
         'units': 'C'},
        'metric': {'datasets': "MRI-ESM1_r1i1p1; ERA-Interim's ts & HadISST's sst & Tropflux's sst; 's ",
         'method': 'The metric is the statistical value between the model and the observations',
         'name': 'BiasSstLonRmse',
         'units': 'C'}},
       'BiasTauxLonRmse': {'diagnostic': {'ERA-Interim': {'name': 'ERA-Interim',
          'nyears': 40,
          'time_period': ['1979-1-16 12:0:0.0', '2019-3-16 12:0:0.0']},
         'MRI-ESM1_r1i1p1': {'keyerror': None,
          'name': 'MRI-ESM1_r1i1p1',
          'nyears': 155,
          'time_period': ['1851-1-16 12:0:0.0', '2005-12-16 12:0:0.0']},
         'Tropflux': {'name': 'Tropflux',
          'nyears': 40,
          'time_period': ['1979-1-15 0:0:0.0', '2018-12-15 12:0:0.0']},
         'method': 'Zonal root mean square error of equatorial_pacific taux, time series are linearly detrended, observations and model regridded to generic_1x1deg',
         'name': 'taux Zonal RMSE',
         'ref': 'Using CDAT regridding and rms (uncentered and biased) calculation',
         'time_frequency': 'monthly',
         'units': '1e-3 N/m2'},
        'metric': {'datasets': "MRI-ESM1_r1i1p1; ERA-Interim's tauu & Tropflux's taux; 's ",
         'method': 'The metric is the statistical value between the model and the observations',
         'name': 'BiasTauxLonRmse',
         'units': '1e-3 N/m2'}},
       'EnsoAmpl': {'diagnostic': {'ERA-Interim': {'keyerror': None,
          'name': 'ERA-Interim',
          'nyears': 40,
          'time_period': ['1979-1-16 12:0:0.0', '2019-3-16 12:0:0.0']},
         'HadISST': {'keyerror': None,
          'name': 'HadISST',
          'nyears': 151,
          'time_period': ['1870-1-16 11:59:59.5', '2020-10-16 12:0:0.0']},
         'MRI-ESM1_r1i1p1': {'keyerror': None,
          'name': 'MRI-ESM1_r1i1p1',
          'nyears': 155,
          'time_period': ['1851-1-16 12:0:0.0', '2005-12-16 12:0:0.0']},
         'Tropflux': {'keyerror': None,
          'name': 'Tropflux',
          'nyears': 40,
          'time_period': ['1979-1-15 0:0:0.0', '2018-12-15 12:0:0.0']},
         'method': 'Standard deviation of nino3.4 sstA, time series are linearly detrended',
         'name': 'ENSO amplitude',
         'ref': 'Using CDAT regression calculation',
         'time_frequency': 'monthly',
         'units': 'C'},
        'metric': {'datasets': "MRI-ESM1_r1i1p1; ERA-Interim's ts & HadISST's sst & Tropflux's sst; 's ",
         'method': 'The metric is the absolute value of the relative difference between model and observations values (M = 100 * abs[[model-obs] / obs])',
         'name': 'EnsoAmpl',
         'units': '%'}},
       'EnsoDuration': {'diagnostic': {'ERA-Interim': {'keyerror': None,
          'name': 'ERA-Interim',
          'nyears': 40,
          'time_period': ['1979-1-16 12:0:0.0', '2019-3-16 12:0:0.0']},
         'HadISST': {'keyerror': None,
          'name': 'HadISST',
          'nyears': 151,
          'time_period': ['1870-1-16 11:59:59.5', '2020-10-16 12:0:0.0']},
         'MRI-ESM1_r1i1p1': {'keyerror': None,
          'name': 'MRI-ESM1_r1i1p1',
          'nyears': 155,
          'time_period': ['1851-1-16 12:0:0.0', '2005-12-16 12:0:0.0']},
         'Tropflux': {'keyerror': None,
          'name': 'Tropflux',
          'nyears': 40,
          'time_period': ['1979-1-15 0:0:0.0', '2018-12-15 12:0:0.0']},
         'method': 'nino3.4 SSTA during DEC regressed against nino3.4 SSTA during 6 years (centered on ENSO), the duration is the number of consecutive months during which the regression is above 0.25, time series are linearly detrended, smoothing using a triangle shaped window of 5 points',
         'name': 'ENSO Duration based on life cyle SSTA pattern',
         'ref': 'Using CDAT',
         'time_frequency': 'monthly',
         'units': 'months'},
        'metric': {'datasets': "MRI-ESM1_r1i1p1; ERA-Interim's ts & HadISST's sst & Tropflux's sst; 's ",
         'method': 'The metric is the absolute value of the relative difference between model and observations values (M = 100 * abs[[model-obs] / obs])',
         'name': 'EnsoDuration',
         'units': '%'}},
       'EnsoSeasonality': {'diagnostic': {'ERA-Interim': {'keyerror': None,
          'name': 'ERA-Interim',
          'nyears': 40,
          'time_period': ['1979-1-16 12:0:0.0', '2019-3-16 12:0:0.0']},
         'HadISST': {'keyerror': None,
          'name': 'HadISST',
          'nyears': 151,
          'time_period': ['1870-1-16 11:59:59.5', '2020-10-16 12:0:0.0']},
         'MRI-ESM1_r1i1p1': {'keyerror': None,
          'name': 'MRI-ESM1_r1i1p1',
          'nyears': 155,
          'time_period': ['1851-1-16 12:0:0.0', '2005-12-16 12:0:0.0']},
         'Tropflux': {'keyerror': None,
          'name': 'Tropflux',
          'nyears': 40,
          'time_period': ['1979-1-15 0:0:0.0', '2018-12-15 12:0:0.0']},
         'method': 'Ratio between NDJ and MAM standard deviation nino3.4 sstA, time series are linearly detrended',
         'name': 'ENSO seasonality',
         'ref': 'Using CDAT std dev calculation',
         'time_frequency': 'monthly',
         'units': 'C/C'},
        'metric': {'datasets': "MRI-ESM1_r1i1p1; ERA-Interim's ts & HadISST's sst & Tropflux's sst; 's ",
         'method': 'The metric is the absolute value of the relative difference between model and observations values (M = 100 * abs[[model-obs] / obs])',
         'name': 'EnsoSeasonality',
         'units': '%'}},
       'EnsoSstDiversity_2': {'diagnostic': {'ERA-Interim': {'keyerror': None,
          'name': 'ERA-Interim',
          'nyears': 40,
          'time_period': ['1979-1-16 12:0:0.0', '2019-3-16 12:0:0.0']},
         'HadISST': {'keyerror': None,
          'name': 'HadISST',
          'nyears': 151,
          'time_period': ['1870-1-16 11:59:59.5', '2020-10-16 12:0:0.0']},
         'MRI-ESM1_r1i1p1': {'keyerror': None,
          'name': 'MRI-ESM1_r1i1p1',
          'nyears': 155,
          'time_period': ['1851-1-16 12:0:0.0', '2005-12-16 12:0:0.0']},
         'Tropflux': {'keyerror': None,
          'name': 'Tropflux',
          'nyears': 40,
          'time_period': ['1979-1-15 0:0:0.0', '2018-12-15 12:0:0.0']},
         'method': 'Nino (Nina) events = nino3.4 sstA > 0.75 (< -0.75) during DEC, zonal SSTA (meridional averaged [-5.0 ; 5.0]), the zonal SSTA maximum (minimum) is located for each event, the diversity is the interquartile range (IQR = Q3 - Q1), time series are linearly detrended, smoothing using a triangle shaped window of 5 points',
         'name': 'ENSO Diversity (interquartile range)',
         'ref': 'Using CDAT regridding',
         'time_frequency': 'monthly',
         'units': 'long'},
        'metric': {'datasets': "MRI-ESM1_r1i1p1; ERA-Interim's ts & HadISST's sst & Tropflux's sst; 's ",
         'method': 'The metric is the absolute value of the relative difference between model and observations values (M = 100 * abs[[model-obs] / obs])',
         'name': 'EnsoSstDiversity',
         'units': '%'}},
       'EnsoSstLonRmse': {'diagnostic': {'ERA-Interim': {'name': 'ERA-Interim',
          'nyears': 40,
          'time_period': ['1979-1-16 12:0:0.0', '2019-3-16 12:0:0.0']},
         'HadISST': {'name': 'HadISST',
          'nyears': 151,
          'time_period': ['1870-1-16 11:59:59.5', '2020-10-16 12:0:0.0']},
         'MRI-ESM1_r1i1p1': {'keyerror': None,
          'name': 'MRI-ESM1_r1i1p1',
          'nyears': 155,
          'time_period': ['1851-1-16 12:0:0.0', '2005-12-16 12:0:0.0']},
         'Tropflux': {'name': 'Tropflux',
          'nyears': 40,
          'time_period': ['1979-1-15 0:0:0.0', '2018-12-15 12:0:0.0']},
         'method': 'nino3.4 SSTA during DEC regressed against equatorial_pacific SSTA, time series are linearly detrended, smoothing using a triangle shaped window of 5 points, observations and model regridded to generic_1x1deg',
         'name': 'ENSO Zonal SSTA pattern',
         'ref': 'Using CDAT regridding and rms (uncentered and biased) calculation',
         'time_frequency': 'monthly',
         'units': 'C/C'},
        'metric': {'datasets': "MRI-ESM1_r1i1p1; ERA-Interim's ts & HadISST's sst & Tropflux's sst; 's ",
         'method': 'The metric is the statistical value between the model and the observations',
         'name': 'EnsoSstLonRmse',
         'units': 'C/C'}},
       'EnsoSstSkew': {'diagnostic': {'ERA-Interim': {'keyerror': None,
          'name': 'ERA-Interim',
          'nyears': 40,
          'time_period': ['1979-1-16 12:0:0.0', '2019-3-16 12:0:0.0']},
         'HadISST': {'keyerror': None,
          'name': 'HadISST',
          'nyears': 151,
          'time_period': ['1870-1-16 11:59:59.5', '2020-10-16 12:0:0.0']},
         'MRI-ESM1_r1i1p1': {'keyerror': None,
          'name': 'MRI-ESM1_r1i1p1',
          'nyears': 155,
          'time_period': ['1851-1-16 12:0:0.0', '2005-12-16 12:0:0.0']},
         'Tropflux': {'keyerror': None,
          'name': 'Tropflux',
          'nyears': 40,
          'time_period': ['1979-1-15 0:0:0.0', '2018-12-15 12:0:0.0']},
         'method': 'Standard deviation of nino3.4 sstA, time series are linearly detrended',
         'name': 'ENSO skewness',
         'ref': 'Using CDAT regression calculation',
         'time_frequency': 'monthly',
         'units': 'C'},
        'metric': {'datasets': "MRI-ESM1_r1i1p1; ERA-Interim's ts & HadISST's sst & Tropflux's sst; 's ",
         'method': 'The metric is the absolute value of the relative difference between model and observations values (M = 100 * abs[[model-obs] / obs])',
         'name': 'EnsoSstSkew',
         'units': '%'}},
       'EnsoSstTsRmse': {'diagnostic': {'ERA-Interim': {'name': 'ERA-Interim',
          'nyears': 40,
          'time_period': ['1979-1-16 12:0:0.0', '2019-3-16 12:0:0.0']},
         'HadISST': {'name': 'HadISST',
          'nyears': 151,
          'time_period': ['1870-1-16 11:59:59.5', '2020-10-16 12:0:0.0']},
         'MRI-ESM1_r1i1p1': {'keyerror': None,
          'name': 'MRI-ESM1_r1i1p1',
          'nyears': 155,
          'time_period': ['1851-1-16 12:0:0.0', '2005-12-16 12:0:0.0']},
         'Tropflux': {'name': 'Tropflux',
          'nyears': 40,
          'time_period': ['1979-1-15 0:0:0.0', '2018-12-15 12:0:0.0']},
         'method': 'nino3.4 SSTA during DEC regressed against nino3.4 SSTA during 6 years (centered on ENSO), time series are linearly detrended, smoothing using a triangle shaped window of 5 points',
         'name': 'ENSO life cyle SSTA pattern',
         'ref': 'Using CDAT regridding and rms (uncentered and biased) calculation',
         'time_frequency': 'monthly',
         'units': 'C/C'},
        'metric': {'datasets': "MRI-ESM1_r1i1p1; ERA-Interim's ts & HadISST's sst & Tropflux's sst; 's ",
         'method': 'The metric is the statistical value between the model and the observations',
         'name': 'EnsoSstTsRmse',
         'units': 'C/C'}},
       'SeasonalPrLatRmse': {'diagnostic': {'ERA-Interim': {'name': 'ERA-Interim',
          'nyears': 40,
          'time_period': ['1979-1-16 12:0:0.0', '2019-3-16 12:0:0.0']},
         'GPCPv2.3': {'name': 'GPCPv2.3',
          'nyears': 41,
          'time_period': ['1979-1-1 0:0:0.0', '2019-7-1 0:0:0.0']},
         'MRI-ESM1_r1i1p1': {'keyerror': None,
          'name': 'MRI-ESM1_r1i1p1',
          'nyears': 155,
          'time_period': ['1851-1-16 12:0:0.0', '2005-12-16 12:0:0.0']},
         'method': 'Meridional root mean square error of nino3_LatExt climatological pr STD, time series are linearly detrended, observations and model regridded to generic_1x1deg',
         'name': 'pr meridional seasonality RMSE',
         'ref': 'Using CDAT regridding and rms (uncentered and biased) calculation',
         'time_frequency': 'monthly',
         'units': 'mm/day'},
        'metric': {'datasets': "MRI-ESM1_r1i1p1; ERA-Interim's pr & GPCPv2.3's precip; 's ",
         'method': 'The metric is the statistical value between the model and the observations',
         'name': 'SeasonalPrLatRmse',
         'units': 'mm/day'}},
       'SeasonalPrLonRmse': {'diagnostic': {'ERA-Interim': {'name': 'ERA-Interim',
          'nyears': 40,
          'time_period': ['1979-1-16 12:0:0.0', '2019-3-16 12:0:0.0']},
         'GPCPv2.3': {'name': 'GPCPv2.3',
          'nyears': 41,
          'time_period': ['1979-1-1 0:0:0.0', '2019-7-1 0:0:0.0']},
         'MRI-ESM1_r1i1p1': {'keyerror': None,
          'name': 'MRI-ESM1_r1i1p1',
          'nyears': 155,
          'time_period': ['1851-1-16 12:0:0.0', '2005-12-16 12:0:0.0']},
         'method': 'Zonal root mean square error of equatorial_pacific climatological pr STD, time series are linearly detrended, observations and model regridded to generic_1x1deg',
         'name': 'pr zonal seasonality RMSE',
         'ref': 'Using CDAT regridding and rms (uncentered and biased) calculation',
         'time_frequency': 'monthly',
         'units': 'mm/day'},
        'metric': {'datasets': "MRI-ESM1_r1i1p1; ERA-Interim's pr & GPCPv2.3's precip; 's ",
         'method': 'The metric is the statistical value between the model and the observations',
         'name': 'SeasonalPrLonRmse',
         'units': 'mm/day'}},
       'SeasonalSstLonRmse': {'diagnostic': {'ERA-Interim': {'name': 'ERA-Interim',
          'nyears': 40,
          'time_period': ['1979-1-16 12:0:0.0', '2019-3-16 12:0:0.0']},
         'HadISST': {'name': 'HadISST',
          'nyears': 151,
          'time_period': ['1870-1-16 11:59:59.5', '2020-10-16 12:0:0.0']},
         'MRI-ESM1_r1i1p1': {'keyerror': None,
          'name': 'MRI-ESM1_r1i1p1',
          'nyears': 155,
          'time_period': ['1851-1-16 12:0:0.0', '2005-12-16 12:0:0.0']},
         'Tropflux': {'name': 'Tropflux',
          'nyears': 40,
          'time_period': ['1979-1-15 0:0:0.0', '2018-12-15 12:0:0.0']},
         'method': 'Zonal root mean square error of equatorial_pacific climatological sst STD, time series are linearly detrended, observations and model regridded to generic_1x1deg',
         'name': 'sst zonal seasonality RMSE',
         'ref': 'Using CDAT regridding and rms (uncentered and biased) calculation',
         'time_frequency': 'monthly',
         'units': 'C'},
        'metric': {'datasets': "MRI-ESM1_r1i1p1; ERA-Interim's ts & HadISST's sst & Tropflux's sst; 's ",
         'method': 'The metric is the statistical value between the model and the observations',
         'name': 'SeasonalSstLonRmse',
         'units': 'C'}},
       'SeasonalTauxLonRmse': {'diagnostic': {'ERA-Interim': {'name': 'ERA-Interim',
          'nyears': 40,
          'time_period': ['1979-1-16 12:0:0.0', '2019-3-16 12:0:0.0']},
         'MRI-ESM1_r1i1p1': {'keyerror': None,
          'name': 'MRI-ESM1_r1i1p1',
          'nyears': 155,
          'time_period': ['1851-1-16 12:0:0.0', '2005-12-16 12:0:0.0']},
         'Tropflux': {'name': 'Tropflux',
          'nyears': 40,
          'time_period': ['1979-1-15 0:0:0.0', '2018-12-15 12:0:0.0']},
         'method': 'Zonal root mean square error of equatorial_pacific climatological taux STD, time series are linearly detrended, observations and model regridded to generic_1x1deg',
         'name': 'taux zonal seasonality RMSE',
         'ref': 'Using CDAT regridding and rms (uncentered and biased) calculation',
         'time_frequency': 'monthly',
         'units': '1e-3 N/m2'},
        'metric': {'datasets': "MRI-ESM1_r1i1p1; ERA-Interim's tauu & Tropflux's taux; 's ",
         'method': 'The metric is the statistical value between the model and the observations',
         'name': 'SeasonalTauxLonRmse',
         'units': '1e-3 N/m2'}}},
      'name': 'Metrics Collection for ENSO performance'},
     'value': {'BiasPrLatRmse': {'diagnostic': {'ERA-Interim': {'value': None,
         'value_error': None},
        'GPCPv2.3': {'value': None, 'value_error': None},
        'MRI-ESM1_r1i1p1': {'value': None, 'value_error': None}},
       'metric': {'ERA-Interim': {'value': 2.327604777192569,
         'value_error': None},
        'GPCPv2.3': {'value': 2.3958133096216483, 'value_error': None}}},
      'BiasPrLonRmse': {'diagnostic': {'ERA-Interim': {'value': None,
         'value_error': None},
        'GPCPv2.3': {'value': None, 'value_error': None},
        'MRI-ESM1_r1i1p1': {'value': None, 'value_error': None}},
       'metric': {'ERA-Interim': {'value': 2.4011541632408986,
         'value_error': None},
        'GPCPv2.3': {'value': 1.433243405036624, 'value_error': None}}},
      'BiasSstLonRmse': {'diagnostic': {'ERA-Interim': {'value': None,
         'value_error': None},
        'HadISST': {'value': None, 'value_error': None},
        'MRI-ESM1_r1i1p1': {'value': None, 'value_error': None},
        'Tropflux': {'value': None, 'value_error': None}},
       'metric': {'ERA-Interim': {'value': 0.6546879445654754,
         'value_error': None},
        'HadISST': {'value': 0.4917182302331993, 'value_error': None},
        'Tropflux': {'value': 0.7016656411076839, 'value_error': None}}},
      'BiasTauxLonRmse': {'diagnostic': {'ERA-Interim': {'value': None,
         'value_error': None},
        'MRI-ESM1_r1i1p1': {'value': None, 'value_error': None},
        'Tropflux': {'value': None, 'value_error': None}},
       'metric': {'ERA-Interim': {'value': 9.931273684078128,
         'value_error': None},
        'Tropflux': {'value': 9.62531735330845, 'value_error': None}}},
      'EnsoAmpl': {'diagnostic': {'ERA-Interim': {'value': 0.8989844997845644,
         'value_error': 0.14214193002531866},
        'HadISST': {'value': 0.7665787872085695,
         'value_error': 0.06238329697691264},
        'MRI-ESM1_r1i1p1': {'value': 0.616252641448402,
         'value_error': 0.04949860330985777},
        'Tropflux': {'value': 0.9039789553693535,
         'value_error': 0.14293162279134272}},
       'metric': {'ERA-Interim': {'value': 31.45013717187752,
         'value_error': 16.34474247316522},
        'HadISST': {'value': 19.610005947016514,
         'value_error': 12.999124643471335},
        'Tropflux': {'value': 31.828873029836235,
         'value_error': 16.254438279862743}}},
      'EnsoDuration': {'diagnostic': {'ERA-Interim': {'value': 13.0,
         'value_error': None},
        'HadISST': {'value': 13.0, 'value_error': None},
        'MRI-ESM1_r1i1p1': {'value': 15.0, 'value_error': None},
        'Tropflux': {'value': 13.0, 'value_error': None}},
       'metric': {'ERA-Interim': {'value': 15.384615384615385,
         'value_error': None},
        'HadISST': {'value': 15.384615384615385, 'value_error': None},
        'Tropflux': {'value': 15.384615384615385, 'value_error': None}}},
      'EnsoSeasonality': {'diagnostic': {'ERA-Interim': {'value': 2.0466846866656914,
         'value_error': 0.6513411033995022},
        'HadISST': {'value': 1.6639865947361325,
         'value_error': 0.2712772451657809},
        'MRI-ESM1_r1i1p1': {'value': 1.0763027298686678,
         'value_error': 0.1731816612352417},
        'Tropflux': {'value': 2.0532132553583624,
         'value_error': 0.6534187683977347}},
       'metric': {'ERA-Interim': {'value': 47.41238174688739,
         'value_error': 25.197160929402106},
        'HadISST': {'value': 35.3178244780666,
         'value_error': 20.952673910196072},
        'Tropflux': {'value': 47.57959373875108,
         'value_error': 25.11704192785242}}},
      'EnsoSstDiversity_2': {'diagnostic': {'ERA-Interim': {'value': 33.25,
         'value_error': None},
        'HadISST': {'value': 49.0, 'value_error': None},
        'MRI-ESM1_r1i1p1': {'value': 37.0, 'value_error': None},
        'Tropflux': {'value': 32.0, 'value_error': None}},
       'metric': {'ERA-Interim': {'value': 11.278195488721805,
         'value_error': None},
        'HadISST': {'value': 24.489795918367346, 'value_error': None},
        'Tropflux': {'value': 15.625, 'value_error': None}}},
      'EnsoSstLonRmse': {'diagnostic': {'ERA-Interim': {'value': None,
         'value_error': None},
        'HadISST': {'value': None, 'value_error': None},
        'MRI-ESM1_r1i1p1': {'value': None, 'value_error': None},
        'Tropflux': {'value': None, 'value_error': None}},
       'metric': {'ERA-Interim': {'value': 0.13008539479034462,
         'value_error': None},
        'HadISST': {'value': 0.15082415116644554, 'value_error': None},
        'Tropflux': {'value': 0.13289049859327376, 'value_error': None}}},
      'EnsoSstSkew': {'diagnostic': {'ERA-Interim': {'value': 0.39098111106809963,
         'value_error': 0.061819541653923164},
        'HadISST': {'value': 0.38989908235027515,
         'value_error': 0.03172953733021198},
        'MRI-ESM1_r1i1p1': {'value': 0.04011568159178435,
         'value_error': 0.0032221690846619354},
        'Tropflux': {'value': 0.39744741059612115,
         'value_error': 0.06284195338099416}},
       'metric': {'ERA-Interim': {'value': 89.73973922111108,
         'value_error': 2.446413650147492},
        'HadISST': {'value': 89.71126545105703,
         'value_error': 1.6636963890947793},
        'Tropflux': {'value': 89.90666927943603,
         'value_error': 2.406611545492774}}},
      'EnsoSstTsRmse': {'diagnostic': {'ERA-Interim': {'value': None,
         'value_error': None},
        'HadISST': {'value': None, 'value_error': None},
        'MRI-ESM1_r1i1p1': {'value': None, 'value_error': None},
        'Tropflux': {'value': None, 'value_error': None}},
       'metric': {'ERA-Interim': {'value': 0.1139285804807429,
         'value_error': None},
        'HadISST': {'value': 0.07888974529056147, 'value_error': None},
        'Tropflux': {'value': 0.1131783157364191, 'value_error': None}}},
      'SeasonalPrLatRmse': {'diagnostic': {'ERA-Interim': {'value': None,
         'value_error': None},
        'GPCPv2.3': {'value': None, 'value_error': None},
        'MRI-ESM1_r1i1p1': {'value': None, 'value_error': None}},
       'metric': {'ERA-Interim': {'value': 1.7675116142737712,
         'value_error': None},
        'GPCPv2.3': {'value': 1.9001503863004432, 'value_error': None}}},
      'SeasonalPrLonRmse': {'diagnostic': {'ERA-Interim': {'value': None,
         'value_error': None},
        'GPCPv2.3': {'value': None, 'value_error': None},
        'MRI-ESM1_r1i1p1': {'value': None, 'value_error': None}},
       'metric': {'ERA-Interim': {'value': 1.1779838660348614,
         'value_error': None},
        'GPCPv2.3': {'value': 1.0363883157052212, 'value_error': None}}},
      'SeasonalSstLonRmse': {'diagnostic': {'ERA-Interim': {'value': None,
         'value_error': None},
        'HadISST': {'value': None, 'value_error': None},
        'MRI-ESM1_r1i1p1': {'value': None, 'value_error': None},
        'Tropflux': {'value': None, 'value_error': None}},
       'metric': {'ERA-Interim': {'value': 0.1688418977100261,
         'value_error': None},
        'HadISST': {'value': 0.18297800684437796, 'value_error': None},
        'Tropflux': {'value': 0.17131187614313437, 'value_error': None}}},
      'SeasonalTauxLonRmse': {'diagnostic': {'ERA-Interim': {'value': None,
         'value_error': None},
        'MRI-ESM1_r1i1p1': {'value': None, 'value_error': None},
        'Tropflux': {'value': None, 'value_error': None}},
       'metric': {'ERA-Interim': {'value': 3.2612350613427394,
         'value_error': None},
        'Tropflux': {'value': 2.8383530469973737, 'value_error': None}}}}}},
   'NorESM1-M': {'r1i1p1': {'metadata': {'description_of_the_collection': 'Describe which science question this collection is about',
      'metrics': {'BiasPrLatRmse': {'diagnostic': {'ERA-Interim': {'name': 'ERA-Interim',
          'nyears': 40,
          'time_period': ['1979-1-16 12:0:0.0', '2019-3-16 12:0:0.0']},
         'GPCPv2.3': {'name': 'GPCPv2.3',
          'nyears': 41,
          'time_period': ['1979-1-1 0:0:0.0', '2019-7-1 0:0:0.0']},
         'NorESM1-M_r1i1p1': {'keyerror': None,
          'name': 'NorESM1-M_r1i1p1',
          'nyears': 156,
          'time_period': ['1850-1-16 12:0:0.0', '2005-12-16 12:0:0.0']},
         'method': 'Meridional root mean square error of nino3_LatExt pr, time series are linearly detrended, observations and model regridded to generic_1x1deg',
         'name': 'pr Meridional RMSE',
         'ref': 'Using CDAT regridding and rms (uncentered and biased) calculation',
         'time_frequency': 'monthly',
         'units': 'mm/day'},
        'metric': {'datasets': "NorESM1-M_r1i1p1; ERA-Interim's pr & GPCPv2.3's precip; 's ",
         'method': 'The metric is the statistical value between the model and the observations',
         'name': 'BiasPrLatRmse',
         'units': 'mm/day'}},
       'BiasPrLonRmse': {'diagnostic': {'ERA-Interim': {'name': 'ERA-Interim',
          'nyears': 40,
          'time_period': ['1979-1-16 12:0:0.0', '2019-3-16 12:0:0.0']},
         'GPCPv2.3': {'name': 'GPCPv2.3',
          'nyears': 41,
          'time_period': ['1979-1-1 0:0:0.0', '2019-7-1 0:0:0.0']},
         'NorESM1-M_r1i1p1': {'keyerror': None,
          'name': 'NorESM1-M_r1i1p1',
          'nyears': 156,
          'time_period': ['1850-1-16 12:0:0.0', '2005-12-16 12:0:0.0']},
         'method': 'Zonal root mean square error of equatorial_pacific pr, time series are linearly detrended, observations and model regridded to generic_1x1deg',
         'name': 'pr Zonal RMSE',
         'ref': 'Using CDAT regridding and rms (uncentered and biased) calculation',
         'time_frequency': 'monthly',
         'units': 'mm/day'},
        'metric': {'datasets': "NorESM1-M_r1i1p1; ERA-Interim's pr & GPCPv2.3's precip; 's ",
         'method': 'The metric is the statistical value between the model and the observations',
         'name': 'BiasPrLonRmse',
         'units': 'mm/day'}},
       'BiasSstLonRmse': {'diagnostic': {'ERA-Interim': {'name': 'ERA-Interim',
          'nyears': 40,
          'time_period': ['1979-1-16 12:0:0.0', '2019-3-16 12:0:0.0']},
         'HadISST': {'name': 'HadISST',
          'nyears': 151,
          'time_period': ['1870-1-16 11:59:59.5', '2020-10-16 12:0:0.0']},
         'NorESM1-M_r1i1p1': {'keyerror': None,
          'name': 'NorESM1-M_r1i1p1',
          'nyears': 156,
          'time_period': ['1850-1-16 12:0:0.0', '2005-12-16 12:0:0.0']},
         'Tropflux': {'name': 'Tropflux',
          'nyears': 40,
          'time_period': ['1979-1-15 0:0:0.0', '2018-12-15 12:0:0.0']},
         'method': 'Zonal root mean square error of equatorial_pacific sst, time series are linearly detrended, observations and model regridded to generic_1x1deg',
         'name': 'sst Zonal RMSE',
         'ref': 'Using CDAT regridding and rms (uncentered and biased) calculation',
         'time_frequency': 'monthly',
         'units': 'C'},
        'metric': {'datasets': "NorESM1-M_r1i1p1; ERA-Interim's ts & HadISST's sst & Tropflux's sst; 's ",
         'method': 'The metric is the statistical value between the model and the observations',
         'name': 'BiasSstLonRmse',
         'units': 'C'}},
       'BiasTauxLonRmse': {'diagnostic': {'ERA-Interim': {'name': 'ERA-Interim',
          'nyears': 40,
          'time_period': ['1979-1-16 12:0:0.0', '2019-3-16 12:0:0.0']},
         'NorESM1-M_r1i1p1': {'keyerror': None,
          'name': 'NorESM1-M_r1i1p1',
          'nyears': 156,
          'time_period': ['1850-1-16 12:0:0.0', '2005-12-16 12:0:0.0']},
         'Tropflux': {'name': 'Tropflux',
          'nyears': 40,
          'time_period': ['1979-1-15 0:0:0.0', '2018-12-15 12:0:0.0']},
         'method': 'Zonal root mean square error of equatorial_pacific taux, time series are linearly detrended, observations and model regridded to generic_1x1deg',
         'name': 'taux Zonal RMSE',
         'ref': 'Using CDAT regridding and rms (uncentered and biased) calculation',
         'time_frequency': 'monthly',
         'units': '1e-3 N/m2'},
        'metric': {'datasets': "NorESM1-M_r1i1p1; ERA-Interim's tauu & Tropflux's taux; 's ",
         'method': 'The metric is the statistical value between the model and the observations',
         'name': 'BiasTauxLonRmse',
         'units': '1e-3 N/m2'}},
       'EnsoAmpl': {'diagnostic': {'ERA-Interim': {'keyerror': None,
          'name': 'ERA-Interim',
          'nyears': 40,
          'time_period': ['1979-1-16 12:0:0.0', '2019-3-16 12:0:0.0']},
         'HadISST': {'keyerror': None,
          'name': 'HadISST',
          'nyears': 151,
          'time_period': ['1870-1-16 11:59:59.5', '2020-10-16 12:0:0.0']},
         'NorESM1-M_r1i1p1': {'keyerror': None,
          'name': 'NorESM1-M_r1i1p1',
          'nyears': 156,
          'time_period': ['1850-1-16 12:0:0.0', '2005-12-16 12:0:0.0']},
         'Tropflux': {'keyerror': None,
          'name': 'Tropflux',
          'nyears': 40,
          'time_period': ['1979-1-15 0:0:0.0', '2018-12-15 12:0:0.0']},
         'method': 'Standard deviation of nino3.4 sstA, time series are linearly detrended',
         'name': 'ENSO amplitude',
         'ref': 'Using CDAT regression calculation',
         'time_frequency': 'monthly',
         'units': 'C'},
        'metric': {'datasets': "NorESM1-M_r1i1p1; ERA-Interim's ts & HadISST's sst & Tropflux's sst; 's ",
         'method': 'The metric is the absolute value of the relative difference between model and observations values (M = 100 * abs[[model-obs] / obs])',
         'name': 'EnsoAmpl',
         'units': '%'}},
       'EnsoDuration': {'diagnostic': {'ERA-Interim': {'keyerror': None,
          'name': 'ERA-Interim',
          'nyears': 40,
          'time_period': ['1979-1-16 12:0:0.0', '2019-3-16 12:0:0.0']},
         'HadISST': {'keyerror': None,
          'name': 'HadISST',
          'nyears': 151,
          'time_period': ['1870-1-16 11:59:59.5', '2020-10-16 12:0:0.0']},
         'NorESM1-M_r1i1p1': {'keyerror': None,
          'name': 'NorESM1-M_r1i1p1',
          'nyears': 156,
          'time_period': ['1850-1-16 12:0:0.0', '2005-12-16 12:0:0.0']},
         'Tropflux': {'keyerror': None,
          'name': 'Tropflux',
          'nyears': 40,
          'time_period': ['1979-1-15 0:0:0.0', '2018-12-15 12:0:0.0']},
         'method': 'nino3.4 SSTA during DEC regressed against nino3.4 SSTA during 6 years (centered on ENSO), the duration is the number of consecutive months during which the regression is above 0.25, time series are linearly detrended, smoothing using a triangle shaped window of 5 points',
         'name': 'ENSO Duration based on life cyle SSTA pattern',
         'ref': 'Using CDAT',
         'time_frequency': 'monthly',
         'units': 'months'},
        'metric': {'datasets': "NorESM1-M_r1i1p1; ERA-Interim's ts & HadISST's sst & Tropflux's sst; 's ",
         'method': 'The metric is the absolute value of the relative difference between model and observations values (M = 100 * abs[[model-obs] / obs])',
         'name': 'EnsoDuration',
         'units': '%'}},
       'EnsoSeasonality': {'diagnostic': {'ERA-Interim': {'keyerror': None,
          'name': 'ERA-Interim',
          'nyears': 40,
          'time_period': ['1979-1-16 12:0:0.0', '2019-3-16 12:0:0.0']},
         'HadISST': {'keyerror': None,
          'name': 'HadISST',
          'nyears': 151,
          'time_period': ['1870-1-16 11:59:59.5', '2020-10-16 12:0:0.0']},
         'NorESM1-M_r1i1p1': {'keyerror': None,
          'name': 'NorESM1-M_r1i1p1',
          'nyears': 156,
          'time_period': ['1850-1-16 12:0:0.0', '2005-12-16 12:0:0.0']},
         'Tropflux': {'keyerror': None,
          'name': 'Tropflux',
          'nyears': 40,
          'time_period': ['1979-1-15 0:0:0.0', '2018-12-15 12:0:0.0']},
         'method': 'Ratio between NDJ and MAM standard deviation nino3.4 sstA, time series are linearly detrended',
         'name': 'ENSO seasonality',
         'ref': 'Using CDAT std dev calculation',
         'time_frequency': 'monthly',
         'units': 'C/C'},
        'metric': {'datasets': "NorESM1-M_r1i1p1; ERA-Interim's ts & HadISST's sst & Tropflux's sst; 's ",
         'method': 'The metric is the absolute value of the relative difference between model and observations values (M = 100 * abs[[model-obs] / obs])',
         'name': 'EnsoSeasonality',
         'units': '%'}},
       'EnsoSstDiversity_2': {'diagnostic': {'ERA-Interim': {'keyerror': None,
          'name': 'ERA-Interim',
          'nyears': 40,
          'time_period': ['1979-1-16 12:0:0.0', '2019-3-16 12:0:0.0']},
         'HadISST': {'keyerror': None,
          'name': 'HadISST',
          'nyears': 151,
          'time_period': ['1870-1-16 11:59:59.5', '2020-10-16 12:0:0.0']},
         'NorESM1-M_r1i1p1': {'keyerror': None,
          'name': 'NorESM1-M_r1i1p1',
          'nyears': 156,
          'time_period': ['1850-1-16 12:0:0.0', '2005-12-16 12:0:0.0']},
         'Tropflux': {'keyerror': None,
          'name': 'Tropflux',
          'nyears': 40,
          'time_period': ['1979-1-15 0:0:0.0', '2018-12-15 12:0:0.0']},
         'method': 'Nino (Nina) events = nino3.4 sstA > 0.75 (< -0.75) during DEC, zonal SSTA (meridional averaged [-5.0 ; 5.0]), the zonal SSTA maximum (minimum) is located for each event, the diversity is the interquartile range (IQR = Q3 - Q1), time series are linearly detrended, smoothing using a triangle shaped window of 5 points',
         'name': 'ENSO Diversity (interquartile range)',
         'ref': 'Using CDAT regridding',
         'time_frequency': 'monthly',
         'units': 'long'},
        'metric': {'datasets': "NorESM1-M_r1i1p1; ERA-Interim's ts & HadISST's sst & Tropflux's sst; 's ",
         'method': 'The metric is the absolute value of the relative difference between model and observations values (M = 100 * abs[[model-obs] / obs])',
         'name': 'EnsoSstDiversity',
         'units': '%'}},
       'EnsoSstLonRmse': {'diagnostic': {'ERA-Interim': {'name': 'ERA-Interim',
          'nyears': 40,
          'time_period': ['1979-1-16 12:0:0.0', '2019-3-16 12:0:0.0']},
         'HadISST': {'name': 'HadISST',
          'nyears': 151,
          'time_period': ['1870-1-16 11:59:59.5', '2020-10-16 12:0:0.0']},
         'NorESM1-M_r1i1p1': {'keyerror': None,
          'name': 'NorESM1-M_r1i1p1',
          'nyears': 156,
          'time_period': ['1850-1-16 12:0:0.0', '2005-12-16 12:0:0.0']},
         'Tropflux': {'name': 'Tropflux',
          'nyears': 40,
          'time_period': ['1979-1-15 0:0:0.0', '2018-12-15 12:0:0.0']},
         'method': 'nino3.4 SSTA during DEC regressed against equatorial_pacific SSTA, time series are linearly detrended, smoothing using a triangle shaped window of 5 points, observations and model regridded to generic_1x1deg',
         'name': 'ENSO Zonal SSTA pattern',
         'ref': 'Using CDAT regridding and rms (uncentered and biased) calculation',
         'time_frequency': 'monthly',
         'units': 'C/C'},
        'metric': {'datasets': "NorESM1-M_r1i1p1; ERA-Interim's ts & HadISST's sst & Tropflux's sst; 's ",
         'method': 'The metric is the statistical value between the model and the observations',
         'name': 'EnsoSstLonRmse',
         'units': 'C/C'}},
       'EnsoSstSkew': {'diagnostic': {'ERA-Interim': {'keyerror': None,
          'name': 'ERA-Interim',
          'nyears': 40,
          'time_period': ['1979-1-16 12:0:0.0', '2019-3-16 12:0:0.0']},
         'HadISST': {'keyerror': None,
          'name': 'HadISST',
          'nyears': 151,
          'time_period': ['1870-1-16 11:59:59.5', '2020-10-16 12:0:0.0']},
         'NorESM1-M_r1i1p1': {'keyerror': None,
          'name': 'NorESM1-M_r1i1p1',
          'nyears': 156,
          'time_period': ['1850-1-16 12:0:0.0', '2005-12-16 12:0:0.0']},
         'Tropflux': {'keyerror': None,
          'name': 'Tropflux',
          'nyears': 40,
          'time_period': ['1979-1-15 0:0:0.0', '2018-12-15 12:0:0.0']},
         'method': 'Standard deviation of nino3.4 sstA, time series are linearly detrended',
         'name': 'ENSO skewness',
         'ref': 'Using CDAT regression calculation',
         'time_frequency': 'monthly',
         'units': 'C'},
        'metric': {'datasets': "NorESM1-M_r1i1p1; ERA-Interim's ts & HadISST's sst & Tropflux's sst; 's ",
         'method': 'The metric is the absolute value of the relative difference between model and observations values (M = 100 * abs[[model-obs] / obs])',
         'name': 'EnsoSstSkew',
         'units': '%'}},
       'EnsoSstTsRmse': {'diagnostic': {'ERA-Interim': {'name': 'ERA-Interim',
          'nyears': 40,
          'time_period': ['1979-1-16 12:0:0.0', '2019-3-16 12:0:0.0']},
         'HadISST': {'name': 'HadISST',
          'nyears': 151,
          'time_period': ['1870-1-16 11:59:59.5', '2020-10-16 12:0:0.0']},
         'NorESM1-M_r1i1p1': {'keyerror': None,
          'name': 'NorESM1-M_r1i1p1',
          'nyears': 156,
          'time_period': ['1850-1-16 12:0:0.0', '2005-12-16 12:0:0.0']},
         'Tropflux': {'name': 'Tropflux',
          'nyears': 40,
          'time_period': ['1979-1-15 0:0:0.0', '2018-12-15 12:0:0.0']},
         'method': 'nino3.4 SSTA during DEC regressed against nino3.4 SSTA during 6 years (centered on ENSO), time series are linearly detrended, smoothing using a triangle shaped window of 5 points',
         'name': 'ENSO life cyle SSTA pattern',
         'ref': 'Using CDAT regridding and rms (uncentered and biased) calculation',
         'time_frequency': 'monthly',
         'units': 'C/C'},
        'metric': {'datasets': "NorESM1-M_r1i1p1; ERA-Interim's ts & HadISST's sst & Tropflux's sst; 's ",
         'method': 'The metric is the statistical value between the model and the observations',
         'name': 'EnsoSstTsRmse',
         'units': 'C/C'}},
       'SeasonalPrLatRmse': {'diagnostic': {'ERA-Interim': {'name': 'ERA-Interim',
          'nyears': 40,
          'time_period': ['1979-1-16 12:0:0.0', '2019-3-16 12:0:0.0']},
         'GPCPv2.3': {'name': 'GPCPv2.3',
          'nyears': 41,
          'time_period': ['1979-1-1 0:0:0.0', '2019-7-1 0:0:0.0']},
         'NorESM1-M_r1i1p1': {'keyerror': None,
          'name': 'NorESM1-M_r1i1p1',
          'nyears': 156,
          'time_period': ['1850-1-16 12:0:0.0', '2005-12-16 12:0:0.0']},
         'method': 'Meridional root mean square error of nino3_LatExt climatological pr STD, time series are linearly detrended, observations and model regridded to generic_1x1deg',
         'name': 'pr meridional seasonality RMSE',
         'ref': 'Using CDAT regridding and rms (uncentered and biased) calculation',
         'time_frequency': 'monthly',
         'units': 'mm/day'},
        'metric': {'datasets': "NorESM1-M_r1i1p1; ERA-Interim's pr & GPCPv2.3's precip; 's ",
         'method': 'The metric is the statistical value between the model and the observations',
         'name': 'SeasonalPrLatRmse',
         'units': 'mm/day'}},
       'SeasonalPrLonRmse': {'diagnostic': {'ERA-Interim': {'name': 'ERA-Interim',
          'nyears': 40,
          'time_period': ['1979-1-16 12:0:0.0', '2019-3-16 12:0:0.0']},
         'GPCPv2.3': {'name': 'GPCPv2.3',
          'nyears': 41,
          'time_period': ['1979-1-1 0:0:0.0', '2019-7-1 0:0:0.0']},
         'NorESM1-M_r1i1p1': {'keyerror': None,
          'name': 'NorESM1-M_r1i1p1',
          'nyears': 156,
          'time_period': ['1850-1-16 12:0:0.0', '2005-12-16 12:0:0.0']},
         'method': 'Zonal root mean square error of equatorial_pacific climatological pr STD, time series are linearly detrended, observations and model regridded to generic_1x1deg',
         'name': 'pr zonal seasonality RMSE',
         'ref': 'Using CDAT regridding and rms (uncentered and biased) calculation',
         'time_frequency': 'monthly',
         'units': 'mm/day'},
        'metric': {'datasets': "NorESM1-M_r1i1p1; ERA-Interim's pr & GPCPv2.3's precip; 's ",
         'method': 'The metric is the statistical value between the model and the observations',
         'name': 'SeasonalPrLonRmse',
         'units': 'mm/day'}},
       'SeasonalSstLonRmse': {'diagnostic': {'ERA-Interim': {'name': 'ERA-Interim',
          'nyears': 40,
          'time_period': ['1979-1-16 12:0:0.0', '2019-3-16 12:0:0.0']},
         'HadISST': {'name': 'HadISST',
          'nyears': 151,
          'time_period': ['1870-1-16 11:59:59.5', '2020-10-16 12:0:0.0']},
         'NorESM1-M_r1i1p1': {'keyerror': None,
          'name': 'NorESM1-M_r1i1p1',
          'nyears': 156,
          'time_period': ['1850-1-16 12:0:0.0', '2005-12-16 12:0:0.0']},
         'Tropflux': {'name': 'Tropflux',
          'nyears': 40,
          'time_period': ['1979-1-15 0:0:0.0', '2018-12-15 12:0:0.0']},
         'method': 'Zonal root mean square error of equatorial_pacific climatological sst STD, time series are linearly detrended, observations and model regridded to generic_1x1deg',
         'name': 'sst zonal seasonality RMSE',
         'ref': 'Using CDAT regridding and rms (uncentered and biased) calculation',
         'time_frequency': 'monthly',
         'units': 'C'},
        'metric': {'datasets': "NorESM1-M_r1i1p1; ERA-Interim's ts & HadISST's sst & Tropflux's sst; 's ",
         'method': 'The metric is the statistical value between the model and the observations',
         'name': 'SeasonalSstLonRmse',
         'units': 'C'}},
       'SeasonalTauxLonRmse': {'diagnostic': {'ERA-Interim': {'name': 'ERA-Interim',
          'nyears': 40,
          'time_period': ['1979-1-16 12:0:0.0', '2019-3-16 12:0:0.0']},
         'NorESM1-M_r1i1p1': {'keyerror': None,
          'name': 'NorESM1-M_r1i1p1',
          'nyears': 156,
          'time_period': ['1850-1-16 12:0:0.0', '2005-12-16 12:0:0.0']},
         'Tropflux': {'name': 'Tropflux',
          'nyears': 40,
          'time_period': ['1979-1-15 0:0:0.0', '2018-12-15 12:0:0.0']},
         'method': 'Zonal root mean square error of equatorial_pacific climatological taux STD, time series are linearly detrended, observations and model regridded to generic_1x1deg',
         'name': 'taux zonal seasonality RMSE',
         'ref': 'Using CDAT regridding and rms (uncentered and biased) calculation',
         'time_frequency': 'monthly',
         'units': '1e-3 N/m2'},
        'metric': {'datasets': "NorESM1-M_r1i1p1; ERA-Interim's tauu & Tropflux's taux; 's ",
         'method': 'The metric is the statistical value between the model and the observations',
         'name': 'SeasonalTauxLonRmse',
         'units': '1e-3 N/m2'}}},
      'name': 'Metrics Collection for ENSO performance'},
     'value': {'BiasPrLatRmse': {'diagnostic': {'ERA-Interim': {'value': None,
         'value_error': None},
        'GPCPv2.3': {'value': None, 'value_error': None},
        'NorESM1-M_r1i1p1': {'value': None, 'value_error': None}},
       'metric': {'ERA-Interim': {'value': 1.4612723944027584,
         'value_error': None},
        'GPCPv2.3': {'value': 1.2776487049381702, 'value_error': None}}},
      'BiasPrLonRmse': {'diagnostic': {'ERA-Interim': {'value': None,
         'value_error': None},
        'GPCPv2.3': {'value': None, 'value_error': None},
        'NorESM1-M_r1i1p1': {'value': None, 'value_error': None}},
       'metric': {'ERA-Interim': {'value': 0.8368070324936655,
         'value_error': None},
        'GPCPv2.3': {'value': 0.6470182608799538, 'value_error': None}}},
      'BiasSstLonRmse': {'diagnostic': {'ERA-Interim': {'value': None,
         'value_error': None},
        'HadISST': {'value': None, 'value_error': None},
        'NorESM1-M_r1i1p1': {'value': None, 'value_error': None},
        'Tropflux': {'value': None, 'value_error': None}},
       'metric': {'ERA-Interim': {'value': 0.8420815666591608,
         'value_error': None},
        'HadISST': {'value': 0.6149828803303297, 'value_error': None},
        'Tropflux': {'value': 0.8897956320741629, 'value_error': None}}},
      'BiasTauxLonRmse': {'diagnostic': {'ERA-Interim': {'value': None,
         'value_error': None},
        'NorESM1-M_r1i1p1': {'value': None, 'value_error': None},
        'Tropflux': {'value': None, 'value_error': None}},
       'metric': {'ERA-Interim': {'value': 9.47123439275413,
         'value_error': None},
        'Tropflux': {'value': 9.833317897038764, 'value_error': None}}},
      'EnsoAmpl': {'diagnostic': {'ERA-Interim': {'value': 0.8989844997845644,
         'value_error': 0.14214193002531866},
        'HadISST': {'value': 0.7665787872085695,
         'value_error': 0.06238329697691264},
        'NorESM1-M_r1i1p1': {'value': 0.9251779222960015,
         'value_error': 0.07407351631924254},
        'Tropflux': {'value': 0.9039789553693535,
         'value_error': 0.14293162279134272}},
       'metric': {'ERA-Interim': {'value': 2.91366786832411,
         'value_error': 24.511767459831816},
        'HadISST': {'value': 20.689215216215022,
         'value_error': 19.48441965248911},
        'Tropflux': {'value': 2.3450730573685106,
         'value_error': 24.37634070774245}}},
      'EnsoDuration': {'diagnostic': {'ERA-Interim': {'value': 13.0,
         'value_error': None},
        'HadISST': {'value': 13.0, 'value_error': None},
        'NorESM1-M_r1i1p1': {'value': 13.0, 'value_error': None},
        'Tropflux': {'value': 13.0, 'value_error': None}},
       'metric': {'ERA-Interim': {'value': 0.0, 'value_error': None},
        'HadISST': {'value': 0.0, 'value_error': None},
        'Tropflux': {'value': 0.0, 'value_error': None}}},
      'EnsoSeasonality': {'diagnostic': {'ERA-Interim': {'value': 2.0466846866656914,
         'value_error': 0.6513411033995022},
        'HadISST': {'value': 1.6639865947361325,
         'value_error': 0.2712772451657809},
        'NorESM1-M_r1i1p1': {'value': 1.621255937460463,
         'value_error': 0.26002677066215835},
        'Tropflux': {'value': 2.0532132553583624,
         'value_error': 0.6534187683977347}},
       'metric': {'ERA-Interim': {'value': 20.78623795726472,
         'value_error': 37.91392819085063},
        'HadISST': {'value': 2.567968841266154,
         'value_error': 31.510932982112383},
        'Tropflux': {'value': 21.03811266416682,
         'value_error': 37.79337389189653}}},
      'EnsoSstDiversity_2': {'diagnostic': {'ERA-Interim': {'value': 33.25,
         'value_error': None},
        'HadISST': {'value': 49.0, 'value_error': None},
        'NorESM1-M_r1i1p1': {'value': 9.5, 'value_error': None},
        'Tropflux': {'value': 32.0, 'value_error': None}},
       'metric': {'ERA-Interim': {'value': 71.42857142857143,
         'value_error': None},
        'HadISST': {'value': 80.61224489795919, 'value_error': None},
        'Tropflux': {'value': 70.3125, 'value_error': None}}},
      'EnsoSstLonRmse': {'diagnostic': {'ERA-Interim': {'value': None,
         'value_error': None},
        'HadISST': {'value': None, 'value_error': None},
        'NorESM1-M_r1i1p1': {'value': None, 'value_error': None},
        'Tropflux': {'value': None, 'value_error': None}},
       'metric': {'ERA-Interim': {'value': 0.14392620928054034,
         'value_error': None},
        'HadISST': {'value': 0.13220367974645442, 'value_error': None},
        'Tropflux': {'value': 0.14112413300378493, 'value_error': None}}},
      'EnsoSstSkew': {'diagnostic': {'ERA-Interim': {'value': 0.39098111106809963,
         'value_error': 0.061819541653923164},
        'HadISST': {'value': 0.38989908235027515,
         'value_error': 0.03172953733021198},
        'NorESM1-M_r1i1p1': {'value': -0.15161272637632747,
         'value_error': -0.012138732983998578},
        'Tropflux': {'value': 0.39744741059612115,
         'value_error': 0.06284195338099416}},
       'metric': {'ERA-Interim': {'value': 138.77750665809535,
         'value_error': -9.23594742625892},
        'HadISST': {'value': 138.88512008348934,
         'value_error': -6.277727438916557},
        'Tropflux': {'value': 138.14661319567472,
         'value_error': -9.085682508458408}}},
      'EnsoSstTsRmse': {'diagnostic': {'ERA-Interim': {'value': None,
         'value_error': None},
        'HadISST': {'value': None, 'value_error': None},
        'NorESM1-M_r1i1p1': {'value': None, 'value_error': None},
        'Tropflux': {'value': None, 'value_error': None}},
       'metric': {'ERA-Interim': {'value': 0.1048454518123474,
         'value_error': None},
        'HadISST': {'value': 0.10368462869282168, 'value_error': None},
        'Tropflux': {'value': 0.10526134914561627, 'value_error': None}}},
      'SeasonalPrLatRmse': {'diagnostic': {'ERA-Interim': {'value': None,
         'value_error': None},
        'GPCPv2.3': {'value': None, 'value_error': None},
        'NorESM1-M_r1i1p1': {'value': None, 'value_error': None}},
       'metric': {'ERA-Interim': {'value': 1.1882023863249815,
         'value_error': None},
        'GPCPv2.3': {'value': 1.412612606880112, 'value_error': None}}},
      'SeasonalPrLonRmse': {'diagnostic': {'ERA-Interim': {'value': None,
         'value_error': None},
        'GPCPv2.3': {'value': None, 'value_error': None},
        'NorESM1-M_r1i1p1': {'value': None, 'value_error': None}},
       'metric': {'ERA-Interim': {'value': 0.2804028213499271,
         'value_error': None},
        'GPCPv2.3': {'value': 0.4372637724336723, 'value_error': None}}},
      'SeasonalSstLonRmse': {'diagnostic': {'ERA-Interim': {'value': None,
         'value_error': None},
        'HadISST': {'value': None, 'value_error': None},
        'NorESM1-M_r1i1p1': {'value': None, 'value_error': None},
        'Tropflux': {'value': None, 'value_error': None}},
       'metric': {'ERA-Interim': {'value': 0.1735161484583269,
         'value_error': None},
        'HadISST': {'value': 0.16945068656518608, 'value_error': None},
        'Tropflux': {'value': 0.18455988328788184, 'value_error': None}}},
      'SeasonalTauxLonRmse': {'diagnostic': {'ERA-Interim': {'value': None,
         'value_error': None},
        'NorESM1-M_r1i1p1': {'value': None, 'value_error': None},
        'Tropflux': {'value': None, 'value_error': None}},
       'metric': {'ERA-Interim': {'value': 3.845294223233808,
         'value_error': None},
        'Tropflux': {'value': 3.859575691574018, 'value_error': None}}}}},
    'r2i1p1': {'metadata': {'description_of_the_collection': 'Describe which science question this collection is about',
      'metrics': {'BiasPrLatRmse': {'diagnostic': {'ERA-Interim': {'name': 'ERA-Interim',
          'nyears': 40,
          'time_period': ['1979-1-16 12:0:0.0', '2019-3-16 12:0:0.0']},
         'GPCPv2.3': {'name': 'GPCPv2.3',
          'nyears': 41,
          'time_period': ['1979-1-1 0:0:0.0', '2019-7-1 0:0:0.0']},
         'NorESM1-M_r2i1p1': {'keyerror': None,
          'name': 'NorESM1-M_r2i1p1',
          'nyears': 156,
          'time_period': ['1850-1-16 12:0:0.0', '2005-12-16 12:0:0.0']},
         'method': 'Meridional root mean square error of nino3_LatExt pr, time series are linearly detrended, observations and model regridded to generic_1x1deg',
         'name': 'pr Meridional RMSE',
         'ref': 'Using CDAT regridding and rms (uncentered and biased) calculation',
         'time_frequency': 'monthly',
         'units': 'mm/day'},
        'metric': {'datasets': "NorESM1-M_r2i1p1; ERA-Interim's pr & GPCPv2.3's precip; 's ",
         'method': 'The metric is the statistical value between the model and the observations',
         'name': 'BiasPrLatRmse',
         'units': 'mm/day'}},
       'BiasPrLonRmse': {'diagnostic': {'ERA-Interim': {'name': 'ERA-Interim',
          'nyears': 40,
          'time_period': ['1979-1-16 12:0:0.0', '2019-3-16 12:0:0.0']},
         'GPCPv2.3': {'name': 'GPCPv2.3',
          'nyears': 41,
          'time_period': ['1979-1-1 0:0:0.0', '2019-7-1 0:0:0.0']},
         'NorESM1-M_r2i1p1': {'keyerror': None,
          'name': 'NorESM1-M_r2i1p1',
          'nyears': 156,
          'time_period': ['1850-1-16 12:0:0.0', '2005-12-16 12:0:0.0']},
         'method': 'Zonal root mean square error of equatorial_pacific pr, time series are linearly detrended, observations and model regridded to generic_1x1deg',
         'name': 'pr Zonal RMSE',
         'ref': 'Using CDAT regridding and rms (uncentered and biased) calculation',
         'time_frequency': 'monthly',
         'units': 'mm/day'},
        'metric': {'datasets': "NorESM1-M_r2i1p1; ERA-Interim's pr & GPCPv2.3's precip; 's ",
         'method': 'The metric is the statistical value between the model and the observations',
         'name': 'BiasPrLonRmse',
         'units': 'mm/day'}},
       'BiasSstLonRmse': {'diagnostic': {'ERA-Interim': {'name': 'ERA-Interim',
          'nyears': 40,
          'time_period': ['1979-1-16 12:0:0.0', '2019-3-16 12:0:0.0']},
         'HadISST': {'name': 'HadISST',
          'nyears': 151,
          'time_period': ['1870-1-16 11:59:59.5', '2020-10-16 12:0:0.0']},
         'NorESM1-M_r2i1p1': {'keyerror': None,
          'name': 'NorESM1-M_r2i1p1',
          'nyears': 156,
          'time_period': ['1850-1-16 12:0:0.0', '2005-12-16 12:0:0.0']},
         'Tropflux': {'name': 'Tropflux',
          'nyears': 40,
          'time_period': ['1979-1-15 0:0:0.0', '2018-12-15 12:0:0.0']},
         'method': 'Zonal root mean square error of equatorial_pacific sst, time series are linearly detrended, observations and model regridded to generic_1x1deg',
         'name': 'sst Zonal RMSE',
         'ref': 'Using CDAT regridding and rms (uncentered and biased) calculation',
         'time_frequency': 'monthly',
         'units': 'C'},
        'metric': {'datasets': "NorESM1-M_r2i1p1; ERA-Interim's ts & HadISST's sst & Tropflux's sst; 's ",
         'method': 'The metric is the statistical value between the model and the observations',
         'name': 'BiasSstLonRmse',
         'units': 'C'}},
       'BiasTauxLonRmse': {'diagnostic': {'ERA-Interim': {'name': 'ERA-Interim',
          'nyears': 40,
          'time_period': ['1979-1-16 12:0:0.0', '2019-3-16 12:0:0.0']},
         'NorESM1-M_r2i1p1': {'keyerror': None,
          'name': 'NorESM1-M_r2i1p1',
          'nyears': 156,
          'time_period': ['1850-1-16 12:0:0.0', '2005-12-16 12:0:0.0']},
         'Tropflux': {'name': 'Tropflux',
          'nyears': 40,
          'time_period': ['1979-1-15 0:0:0.0', '2018-12-15 12:0:0.0']},
         'method': 'Zonal root mean square error of equatorial_pacific taux, time series are linearly detrended, observations and model regridded to generic_1x1deg',
         'name': 'taux Zonal RMSE',
         'ref': 'Using CDAT regridding and rms (uncentered and biased) calculation',
         'time_frequency': 'monthly',
         'units': '1e-3 N/m2'},
        'metric': {'datasets': "NorESM1-M_r2i1p1; ERA-Interim's tauu & Tropflux's taux; 's ",
         'method': 'The metric is the statistical value between the model and the observations',
         'name': 'BiasTauxLonRmse',
         'units': '1e-3 N/m2'}},
       'EnsoAmpl': {'diagnostic': {'ERA-Interim': {'keyerror': None,
          'name': 'ERA-Interim',
          'nyears': 40,
          'time_period': ['1979-1-16 12:0:0.0', '2019-3-16 12:0:0.0']},
         'HadISST': {'keyerror': None,
          'name': 'HadISST',
          'nyears': 151,
          'time_period': ['1870-1-16 11:59:59.5', '2020-10-16 12:0:0.0']},
         'NorESM1-M_r2i1p1': {'keyerror': None,
          'name': 'NorESM1-M_r2i1p1',
          'nyears': 156,
          'time_period': ['1850-1-16 12:0:0.0', '2005-12-16 12:0:0.0']},
         'Tropflux': {'keyerror': None,
          'name': 'Tropflux',
          'nyears': 40,
          'time_period': ['1979-1-15 0:0:0.0', '2018-12-15 12:0:0.0']},
         'method': 'Standard deviation of nino3.4 sstA, time series are linearly detrended',
         'name': 'ENSO amplitude',
         'ref': 'Using CDAT regression calculation',
         'time_frequency': 'monthly',
         'units': 'C'},
        'metric': {'datasets': "NorESM1-M_r2i1p1; ERA-Interim's ts & HadISST's sst & Tropflux's sst; 's ",
         'method': 'The metric is the absolute value of the relative difference between model and observations values (M = 100 * abs[[model-obs] / obs])',
         'name': 'EnsoAmpl',
         'units': '%'}},
       'EnsoDuration': {'diagnostic': {'ERA-Interim': {'keyerror': None,
          'name': 'ERA-Interim',
          'nyears': 40,
          'time_period': ['1979-1-16 12:0:0.0', '2019-3-16 12:0:0.0']},
         'HadISST': {'keyerror': None,
          'name': 'HadISST',
          'nyears': 151,
          'time_period': ['1870-1-16 11:59:59.5', '2020-10-16 12:0:0.0']},
         'NorESM1-M_r2i1p1': {'keyerror': None,
          'name': 'NorESM1-M_r2i1p1',
          'nyears': 156,
          'time_period': ['1850-1-16 12:0:0.0', '2005-12-16 12:0:0.0']},
         'Tropflux': {'keyerror': None,
          'name': 'Tropflux',
          'nyears': 40,
          'time_period': ['1979-1-15 0:0:0.0', '2018-12-15 12:0:0.0']},
         'method': 'nino3.4 SSTA during DEC regressed against nino3.4 SSTA during 6 years (centered on ENSO), the duration is the number of consecutive months during which the regression is above 0.25, time series are linearly detrended, smoothing using a triangle shaped window of 5 points',
         'name': 'ENSO Duration based on life cyle SSTA pattern',
         'ref': 'Using CDAT',
         'time_frequency': 'monthly',
         'units': 'months'},
        'metric': {'datasets': "NorESM1-M_r2i1p1; ERA-Interim's ts & HadISST's sst & Tropflux's sst; 's ",
         'method': 'The metric is the absolute value of the relative difference between model and observations values (M = 100 * abs[[model-obs] / obs])',
         'name': 'EnsoDuration',
         'units': '%'}},
       'EnsoSeasonality': {'diagnostic': {'ERA-Interim': {'keyerror': None,
          'name': 'ERA-Interim',
          'nyears': 40,
          'time_period': ['1979-1-16 12:0:0.0', '2019-3-16 12:0:0.0']},
         'HadISST': {'keyerror': None,
          'name': 'HadISST',
          'nyears': 151,
          'time_period': ['1870-1-16 11:59:59.5', '2020-10-16 12:0:0.0']},
         'NorESM1-M_r2i1p1': {'keyerror': None,
          'name': 'NorESM1-M_r2i1p1',
          'nyears': 156,
          'time_period': ['1850-1-16 12:0:0.0', '2005-12-16 12:0:0.0']},
         'Tropflux': {'keyerror': None,
          'name': 'Tropflux',
          'nyears': 40,
          'time_period': ['1979-1-15 0:0:0.0', '2018-12-15 12:0:0.0']},
         'method': 'Ratio between NDJ and MAM standard deviation nino3.4 sstA, time series are linearly detrended',
         'name': 'ENSO seasonality',
         'ref': 'Using CDAT std dev calculation',
         'time_frequency': 'monthly',
         'units': 'C/C'},
        'metric': {'datasets': "NorESM1-M_r2i1p1; ERA-Interim's ts & HadISST's sst & Tropflux's sst; 's ",
         'method': 'The metric is the absolute value of the relative difference between model and observations values (M = 100 * abs[[model-obs] / obs])',
         'name': 'EnsoSeasonality',
         'units': '%'}},
       'EnsoSstDiversity_2': {'diagnostic': {'ERA-Interim': {'keyerror': None,
          'name': 'ERA-Interim',
          'nyears': 40,
          'time_period': ['1979-1-16 12:0:0.0', '2019-3-16 12:0:0.0']},
         'HadISST': {'keyerror': None,
          'name': 'HadISST',
          'nyears': 151,
          'time_period': ['1870-1-16 11:59:59.5', '2020-10-16 12:0:0.0']},
         'NorESM1-M_r2i1p1': {'keyerror': None,
          'name': 'NorESM1-M_r2i1p1',
          'nyears': 156,
          'time_period': ['1850-1-16 12:0:0.0', '2005-12-16 12:0:0.0']},
         'Tropflux': {'keyerror': None,
          'name': 'Tropflux',
          'nyears': 40,
          'time_period': ['1979-1-15 0:0:0.0', '2018-12-15 12:0:0.0']},
         'method': 'Nino (Nina) events = nino3.4 sstA > 0.75 (< -0.75) during DEC, zonal SSTA (meridional averaged [-5.0 ; 5.0]), the zonal SSTA maximum (minimum) is located for each event, the diversity is the interquartile range (IQR = Q3 - Q1), time series are linearly detrended, smoothing using a triangle shaped window of 5 points',
         'name': 'ENSO Diversity (interquartile range)',
         'ref': 'Using CDAT regridding',
         'time_frequency': 'monthly',
         'units': 'long'},
        'metric': {'datasets': "NorESM1-M_r2i1p1; ERA-Interim's ts & HadISST's sst & Tropflux's sst; 's ",
         'method': 'The metric is the absolute value of the relative difference between model and observations values (M = 100 * abs[[model-obs] / obs])',
         'name': 'EnsoSstDiversity',
         'units': '%'}},
       'EnsoSstLonRmse': {'diagnostic': {'ERA-Interim': {'name': 'ERA-Interim',
          'nyears': 40,
          'time_period': ['1979-1-16 12:0:0.0', '2019-3-16 12:0:0.0']},
         'HadISST': {'name': 'HadISST',
          'nyears': 151,
          'time_period': ['1870-1-16 11:59:59.5', '2020-10-16 12:0:0.0']},
         'NorESM1-M_r2i1p1': {'keyerror': None,
          'name': 'NorESM1-M_r2i1p1',
          'nyears': 156,
          'time_period': ['1850-1-16 12:0:0.0', '2005-12-16 12:0:0.0']},
         'Tropflux': {'name': 'Tropflux',
          'nyears': 40,
          'time_period': ['1979-1-15 0:0:0.0', '2018-12-15 12:0:0.0']},
         'method': 'nino3.4 SSTA during DEC regressed against equatorial_pacific SSTA, time series are linearly detrended, smoothing using a triangle shaped window of 5 points, observations and model regridded to generic_1x1deg',
         'name': 'ENSO Zonal SSTA pattern',
         'ref': 'Using CDAT regridding and rms (uncentered and biased) calculation',
         'time_frequency': 'monthly',
         'units': 'C/C'},
        'metric': {'datasets': "NorESM1-M_r2i1p1; ERA-Interim's ts & HadISST's sst & Tropflux's sst; 's ",
         'method': 'The metric is the statistical value between the model and the observations',
         'name': 'EnsoSstLonRmse',
         'units': 'C/C'}},
       'EnsoSstSkew': {'diagnostic': {'ERA-Interim': {'keyerror': None,
          'name': 'ERA-Interim',
          'nyears': 40,
          'time_period': ['1979-1-16 12:0:0.0', '2019-3-16 12:0:0.0']},
         'HadISST': {'keyerror': None,
          'name': 'HadISST',
          'nyears': 151,
          'time_period': ['1870-1-16 11:59:59.5', '2020-10-16 12:0:0.0']},
         'NorESM1-M_r2i1p1': {'keyerror': None,
          'name': 'NorESM1-M_r2i1p1',
          'nyears': 156,
          'time_period': ['1850-1-16 12:0:0.0', '2005-12-16 12:0:0.0']},
         'Tropflux': {'keyerror': None,
          'name': 'Tropflux',
          'nyears': 40,
          'time_period': ['1979-1-15 0:0:0.0', '2018-12-15 12:0:0.0']},
         'method': 'Standard deviation of nino3.4 sstA, time series are linearly detrended',
         'name': 'ENSO skewness',
         'ref': 'Using CDAT regression calculation',
         'time_frequency': 'monthly',
         'units': 'C'},
        'metric': {'datasets': "NorESM1-M_r2i1p1; ERA-Interim's ts & HadISST's sst & Tropflux's sst; 's ",
         'method': 'The metric is the absolute value of the relative difference between model and observations values (M = 100 * abs[[model-obs] / obs])',
         'name': 'EnsoSstSkew',
         'units': '%'}},
       'EnsoSstTsRmse': {'diagnostic': {'ERA-Interim': {'name': 'ERA-Interim',
          'nyears': 40,
          'time_period': ['1979-1-16 12:0:0.0', '2019-3-16 12:0:0.0']},
         'HadISST': {'name': 'HadISST',
          'nyears': 151,
          'time_period': ['1870-1-16 11:59:59.5', '2020-10-16 12:0:0.0']},
         'NorESM1-M_r2i1p1': {'keyerror': None,
          'name': 'NorESM1-M_r2i1p1',
          'nyears': 156,
          'time_period': ['1850-1-16 12:0:0.0', '2005-12-16 12:0:0.0']},
         'Tropflux': {'name': 'Tropflux',
          'nyears': 40,
          'time_period': ['1979-1-15 0:0:0.0', '2018-12-15 12:0:0.0']},
         'method': 'nino3.4 SSTA during DEC regressed against nino3.4 SSTA during 6 years (centered on ENSO), time series are linearly detrended, smoothing using a triangle shaped window of 5 points',
         'name': 'ENSO life cyle SSTA pattern',
         'ref': 'Using CDAT regridding and rms (uncentered and biased) calculation',
         'time_frequency': 'monthly',
         'units': 'C/C'},
        'metric': {'datasets': "NorESM1-M_r2i1p1; ERA-Interim's ts & HadISST's sst & Tropflux's sst; 's ",
         'method': 'The metric is the statistical value between the model and the observations',
         'name': 'EnsoSstTsRmse',
         'units': 'C/C'}},
       'SeasonalPrLatRmse': {'diagnostic': {'ERA-Interim': {'name': 'ERA-Interim',
          'nyears': 40,
          'time_period': ['1979-1-16 12:0:0.0', '2019-3-16 12:0:0.0']},
         'GPCPv2.3': {'name': 'GPCPv2.3',
          'nyears': 41,
          'time_period': ['1979-1-1 0:0:0.0', '2019-7-1 0:0:0.0']},
         'NorESM1-M_r2i1p1': {'keyerror': None,
          'name': 'NorESM1-M_r2i1p1',
          'nyears': 156,
          'time_period': ['1850-1-16 12:0:0.0', '2005-12-16 12:0:0.0']},
         'method': 'Meridional root mean square error of nino3_LatExt climatological pr STD, time series are linearly detrended, observations and model regridded to generic_1x1deg',
         'name': 'pr meridional seasonality RMSE',
         'ref': 'Using CDAT regridding and rms (uncentered and biased) calculation',
         'time_frequency': 'monthly',
         'units': 'mm/day'},
        'metric': {'datasets': "NorESM1-M_r2i1p1; ERA-Interim's pr & GPCPv2.3's precip; 's ",
         'method': 'The metric is the statistical value between the model and the observations',
         'name': 'SeasonalPrLatRmse',
         'units': 'mm/day'}},
       'SeasonalPrLonRmse': {'diagnostic': {'ERA-Interim': {'name': 'ERA-Interim',
          'nyears': 40,
          'time_period': ['1979-1-16 12:0:0.0', '2019-3-16 12:0:0.0']},
         'GPCPv2.3': {'name': 'GPCPv2.3',
          'nyears': 41,
          'time_period': ['1979-1-1 0:0:0.0', '2019-7-1 0:0:0.0']},
         'NorESM1-M_r2i1p1': {'keyerror': None,
          'name': 'NorESM1-M_r2i1p1',
          'nyears': 156,
          'time_period': ['1850-1-16 12:0:0.0', '2005-12-16 12:0:0.0']},
         'method': 'Zonal root mean square error of equatorial_pacific climatological pr STD, time series are linearly detrended, observations and model regridded to generic_1x1deg',
         'name': 'pr zonal seasonality RMSE',
         'ref': 'Using CDAT regridding and rms (uncentered and biased) calculation',
         'time_frequency': 'monthly',
         'units': 'mm/day'},
        'metric': {'datasets': "NorESM1-M_r2i1p1; ERA-Interim's pr & GPCPv2.3's precip; 's ",
         'method': 'The metric is the statistical value between the model and the observations',
         'name': 'SeasonalPrLonRmse',
         'units': 'mm/day'}},
       'SeasonalSstLonRmse': {'diagnostic': {'ERA-Interim': {'name': 'ERA-Interim',
          'nyears': 40,
          'time_period': ['1979-1-16 12:0:0.0', '2019-3-16 12:0:0.0']},
         'HadISST': {'name': 'HadISST',
          'nyears': 151,
          'time_period': ['1870-1-16 11:59:59.5', '2020-10-16 12:0:0.0']},
         'NorESM1-M_r2i1p1': {'keyerror': None,
          'name': 'NorESM1-M_r2i1p1',
          'nyears': 156,
          'time_period': ['1850-1-16 12:0:0.0', '2005-12-16 12:0:0.0']},
         'Tropflux': {'name': 'Tropflux',
          'nyears': 40,
          'time_period': ['1979-1-15 0:0:0.0', '2018-12-15 12:0:0.0']},
         'method': 'Zonal root mean square error of equatorial_pacific climatological sst STD, time series are linearly detrended, observations and model regridded to generic_1x1deg',
         'name': 'sst zonal seasonality RMSE',
         'ref': 'Using CDAT regridding and rms (uncentered and biased) calculation',
         'time_frequency': 'monthly',
         'units': 'C'},
        'metric': {'datasets': "NorESM1-M_r2i1p1; ERA-Interim's ts & HadISST's sst & Tropflux's sst; 's ",
         'method': 'The metric is the statistical value between the model and the observations',
         'name': 'SeasonalSstLonRmse',
         'units': 'C'}},
       'SeasonalTauxLonRmse': {'diagnostic': {'ERA-Interim': {'name': 'ERA-Interim',
          'nyears': 40,
          'time_period': ['1979-1-16 12:0:0.0', '2019-3-16 12:0:0.0']},
         'NorESM1-M_r2i1p1': {'keyerror': None,
          'name': 'NorESM1-M_r2i1p1',
          'nyears': 156,
          'time_period': ['1850-1-16 12:0:0.0', '2005-12-16 12:0:0.0']},
         'Tropflux': {'name': 'Tropflux',
          'nyears': 40,
          'time_period': ['1979-1-15 0:0:0.0', '2018-12-15 12:0:0.0']},
         'method': 'Zonal root mean square error of equatorial_pacific climatological taux STD, time series are linearly detrended, observations and model regridded to generic_1x1deg',
         'name': 'taux zonal seasonality RMSE',
         'ref': 'Using CDAT regridding and rms (uncentered and biased) calculation',
         'time_frequency': 'monthly',
         'units': '1e-3 N/m2'},
        'metric': {'datasets': "NorESM1-M_r2i1p1; ERA-Interim's tauu & Tropflux's taux; 's ",
         'method': 'The metric is the statistical value between the model and the observations',
         'name': 'SeasonalTauxLonRmse',
         'units': '1e-3 N/m2'}}},
      'name': 'Metrics Collection for ENSO performance'},
     'value': {'BiasPrLatRmse': {'diagnostic': {'ERA-Interim': {'value': None,
         'value_error': None},
        'GPCPv2.3': {'value': None, 'value_error': None},
        'NorESM1-M_r2i1p1': {'value': None, 'value_error': None}},
       'metric': {'ERA-Interim': {'value': 1.5089821722592016,
         'value_error': None},
        'GPCPv2.3': {'value': 1.2973174480893828, 'value_error': None}}},
      'BiasPrLonRmse': {'diagnostic': {'ERA-Interim': {'value': None,
         'value_error': None},
        'GPCPv2.3': {'value': None, 'value_error': None},
        'NorESM1-M_r2i1p1': {'value': None, 'value_error': None}},
       'metric': {'ERA-Interim': {'value': 0.7732326935836333,
         'value_error': None},
        'GPCPv2.3': {'value': 0.5873658998732889, 'value_error': None}}},
      'BiasSstLonRmse': {'diagnostic': {'ERA-Interim': {'value': None,
         'value_error': None},
        'HadISST': {'value': None, 'value_error': None},
        'NorESM1-M_r2i1p1': {'value': None, 'value_error': None},
        'Tropflux': {'value': None, 'value_error': None}},
       'metric': {'ERA-Interim': {'value': 0.8387109874122113,
         'value_error': None},
        'HadISST': {'value': 0.6122316232440536, 'value_error': None},
        'Tropflux': {'value': 0.8861332471990906, 'value_error': None}}},
      'BiasTauxLonRmse': {'diagnostic': {'ERA-Interim': {'value': None,
         'value_error': None},
        'NorESM1-M_r2i1p1': {'value': None, 'value_error': None},
        'Tropflux': {'value': None, 'value_error': None}},
       'metric': {'ERA-Interim': {'value': 9.789427290643365,
         'value_error': None},
        'Tropflux': {'value': 10.156360777661654, 'value_error': None}}},
      'EnsoAmpl': {'diagnostic': {'ERA-Interim': {'value': 0.8989844997845644,
         'value_error': 0.14214193002531866},
        'HadISST': {'value': 0.7665787872085695,
         'value_error': 0.06238329697691264},
        'NorESM1-M_r2i1p1': {'value': 0.8234132714447572,
         'value_error': 0.06592582348752801},
        'Tropflux': {'value': 0.9039789553693535,
         'value_error': 0.14293162279134272}},
       'metric': {'ERA-Interim': {'value': 8.406288246117409,
         'value_error': 21.815603406212507},
        'HadISST': {'value': 7.414043433571324,
         'value_error': 17.34123711949705},
        'Tropflux': {'value': 8.912340651965538,
         'value_error': 21.695072876579562}}},
      'EnsoDuration': {'diagnostic': {'ERA-Interim': {'value': 13.0,
         'value_error': None},
        'HadISST': {'value': 13.0, 'value_error': None},
        'NorESM1-M_r2i1p1': {'value': 13.0, 'value_error': None},
        'Tropflux': {'value': 13.0, 'value_error': None}},
       'metric': {'ERA-Interim': {'value': 0.0, 'value_error': None},
        'HadISST': {'value': 0.0, 'value_error': None},
        'Tropflux': {'value': 0.0, 'value_error': None}}},
      'EnsoSeasonality': {'diagnostic': {'ERA-Interim': {'value': 2.0466846866656914,
         'value_error': 0.6513411033995022},
        'HadISST': {'value': 1.6639865947361325,
         'value_error': 0.2712772451657809},
        'NorESM1-M_r2i1p1': {'value': 1.6372868769735383,
         'value_error': 0.2625979090838901},
        'Tropflux': {'value': 2.0532132553583624,
         'value_error': 0.6534187683977347}},
       'metric': {'ERA-Interim': {'value': 20.002974193309374,
         'value_error': 38.28882019617008},
        'HadISST': {'value': 1.604563272748492,
         'value_error': 31.82251232561078},
        'Tropflux': {'value': 20.25733943122384,
         'value_error': 38.16707385922252}}},
      'EnsoSstDiversity_2': {'diagnostic': {'ERA-Interim': {'value': 33.25,
         'value_error': None},
        'HadISST': {'value': 49.0, 'value_error': None},
        'NorESM1-M_r2i1p1': {'value': 12.0, 'value_error': None},
        'Tropflux': {'value': 32.0, 'value_error': None}},
       'metric': {'ERA-Interim': {'value': 63.90977443609023,
         'value_error': None},
        'HadISST': {'value': 75.51020408163265, 'value_error': None},
        'Tropflux': {'value': 62.5, 'value_error': None}}},
      'EnsoSstLonRmse': {'diagnostic': {'ERA-Interim': {'value': None,
         'value_error': None},
        'HadISST': {'value': None, 'value_error': None},
        'NorESM1-M_r2i1p1': {'value': None, 'value_error': None},
        'Tropflux': {'value': None, 'value_error': None}},
       'metric': {'ERA-Interim': {'value': 0.1433270602553856,
         'value_error': None},
        'HadISST': {'value': 0.1286950346777803, 'value_error': None},
        'Tropflux': {'value': 0.1404974965712768, 'value_error': None}}},
      'EnsoSstSkew': {'diagnostic': {'ERA-Interim': {'value': 0.39098111106809963,
         'value_error': 0.061819541653923164},
        'HadISST': {'value': 0.38989908235027515,
         'value_error': 0.03172953733021198},
        'NorESM1-M_r2i1p1': {'value': 0.006002423136812571,
         'value_error': 0.0004805784676273684},
        'Tropflux': {'value': 0.39744741059612115,
         'value_error': 0.06284195338099416}},
       'metric': {'ERA-Interim': {'value': 98.46477925227259,
         'value_error': 0.36565574570669557},
        'HadISST': {'value': 98.46051878331424,
         'value_error': 0.2485383471861333},
        'Tropflux': {'value': 98.48975663778769,
         'value_error': 0.3597066829807976}}},
      'EnsoSstTsRmse': {'diagnostic': {'ERA-Interim': {'value': None,
         'value_error': None},
        'HadISST': {'value': None, 'value_error': None},
        'NorESM1-M_r2i1p1': {'value': None, 'value_error': None},
        'Tropflux': {'value': None, 'value_error': None}},
       'metric': {'ERA-Interim': {'value': 0.09772163490195734,
         'value_error': None},
        'HadISST': {'value': 0.07971554175641021, 'value_error': None},
        'Tropflux': {'value': 0.09376265504540192, 'value_error': None}}},
      'SeasonalPrLatRmse': {'diagnostic': {'ERA-Interim': {'value': None,
         'value_error': None},
        'GPCPv2.3': {'value': None, 'value_error': None},
        'NorESM1-M_r2i1p1': {'value': None, 'value_error': None}},
       'metric': {'ERA-Interim': {'value': 1.2382088330136434,
         'value_error': None},
        'GPCPv2.3': {'value': 1.4514777102138254, 'value_error': None}}},
      'SeasonalPrLonRmse': {'diagnostic': {'ERA-Interim': {'value': None,
         'value_error': None},
        'GPCPv2.3': {'value': None, 'value_error': None},
        'NorESM1-M_r2i1p1': {'value': None, 'value_error': None}},
       'metric': {'ERA-Interim': {'value': 0.3457750986688298,
         'value_error': None},
        'GPCPv2.3': {'value': 0.47952080886657833, 'value_error': None}}},
      'SeasonalSstLonRmse': {'diagnostic': {'ERA-Interim': {'value': None,
         'value_error': None},
        'HadISST': {'value': None, 'value_error': None},
        'NorESM1-M_r2i1p1': {'value': None, 'value_error': None},
        'Tropflux': {'value': None, 'value_error': None}},
       'metric': {'ERA-Interim': {'value': 0.1517307194091035,
         'value_error': None},
        'HadISST': {'value': 0.14813681101122989, 'value_error': None},
        'Tropflux': {'value': 0.1628756763465747, 'value_error': None}}},
      'SeasonalTauxLonRmse': {'diagnostic': {'ERA-Interim': {'value': None,
         'value_error': None},
        'NorESM1-M_r2i1p1': {'value': None, 'value_error': None},
        'Tropflux': {'value': None, 'value_error': None}},
       'metric': {'ERA-Interim': {'value': 3.9219590854779076,
         'value_error': None},
        'Tropflux': {'value': 3.9396561427316157, 'value_error': None}}}}},
    'r3i1p1': {'metadata': {'description_of_the_collection': 'Describe which science question this collection is about',
      'metrics': {'BiasPrLatRmse': {'diagnostic': {'ERA-Interim': {'name': 'ERA-Interim',
          'nyears': 40,
          'time_period': ['1979-1-16 12:0:0.0', '2019-3-16 12:0:0.0']},
         'GPCPv2.3': {'name': 'GPCPv2.3',
          'nyears': 41,
          'time_period': ['1979-1-1 0:0:0.0', '2019-7-1 0:0:0.0']},
         'NorESM1-M_r3i1p1': {'keyerror': None,
          'name': 'NorESM1-M_r3i1p1',
          'nyears': 156,
          'time_period': ['1850-1-16 12:0:0.0', '2005-12-16 12:0:0.0']},
         'method': 'Meridional root mean square error of nino3_LatExt pr, time series are linearly detrended, observations and model regridded to generic_1x1deg',
         'name': 'pr Meridional RMSE',
         'ref': 'Using CDAT regridding and rms (uncentered and biased) calculation',
         'time_frequency': 'monthly',
         'units': 'mm/day'},
        'metric': {'datasets': "NorESM1-M_r3i1p1; ERA-Interim's pr & GPCPv2.3's precip; 's ",
         'method': 'The metric is the statistical value between the model and the observations',
         'name': 'BiasPrLatRmse',
         'units': 'mm/day'}},
       'BiasPrLonRmse': {'diagnostic': {'ERA-Interim': {'name': 'ERA-Interim',
          'nyears': 40,
          'time_period': ['1979-1-16 12:0:0.0', '2019-3-16 12:0:0.0']},
         'GPCPv2.3': {'name': 'GPCPv2.3',
          'nyears': 41,
          'time_period': ['1979-1-1 0:0:0.0', '2019-7-1 0:0:0.0']},
         'NorESM1-M_r3i1p1': {'keyerror': None,
          'name': 'NorESM1-M_r3i1p1',
          'nyears': 156,
          'time_period': ['1850-1-16 12:0:0.0', '2005-12-16 12:0:0.0']},
         'method': 'Zonal root mean square error of equatorial_pacific pr, time series are linearly detrended, observations and model regridded to generic_1x1deg',
         'name': 'pr Zonal RMSE',
         'ref': 'Using CDAT regridding and rms (uncentered and biased) calculation',
         'time_frequency': 'monthly',
         'units': 'mm/day'},
        'metric': {'datasets': "NorESM1-M_r3i1p1; ERA-Interim's pr & GPCPv2.3's precip; 's ",
         'method': 'The metric is the statistical value between the model and the observations',
         'name': 'BiasPrLonRmse',
         'units': 'mm/day'}},
       'BiasSstLonRmse': {'diagnostic': {'ERA-Interim': {'name': 'ERA-Interim',
          'nyears': 40,
          'time_period': ['1979-1-16 12:0:0.0', '2019-3-16 12:0:0.0']},
         'HadISST': {'name': 'HadISST',
          'nyears': 151,
          'time_period': ['1870-1-16 11:59:59.5', '2020-10-16 12:0:0.0']},
         'NorESM1-M_r3i1p1': {'keyerror': None,
          'name': 'NorESM1-M_r3i1p1',
          'nyears': 156,
          'time_period': ['1850-1-16 12:0:0.0', '2005-12-16 12:0:0.0']},
         'Tropflux': {'name': 'Tropflux',
          'nyears': 40,
          'time_period': ['1979-1-15 0:0:0.0', '2018-12-15 12:0:0.0']},
         'method': 'Zonal root mean square error of equatorial_pacific sst, time series are linearly detrended, observations and model regridded to generic_1x1deg',
         'name': 'sst Zonal RMSE',
         'ref': 'Using CDAT regridding and rms (uncentered and biased) calculation',
         'time_frequency': 'monthly',
         'units': 'C'},
        'metric': {'datasets': "NorESM1-M_r3i1p1; ERA-Interim's ts & HadISST's sst & Tropflux's sst; 's ",
         'method': 'The metric is the statistical value between the model and the observations',
         'name': 'BiasSstLonRmse',
         'units': 'C'}},
       'BiasTauxLonRmse': {'diagnostic': {'ERA-Interim': {'name': 'ERA-Interim',
          'nyears': 40,
          'time_period': ['1979-1-16 12:0:0.0', '2019-3-16 12:0:0.0']},
         'NorESM1-M_r3i1p1': {'keyerror': None,
          'name': 'NorESM1-M_r3i1p1',
          'nyears': 156,
          'time_period': ['1850-1-16 12:0:0.0', '2005-12-16 12:0:0.0']},
         'Tropflux': {'name': 'Tropflux',
          'nyears': 40,
          'time_period': ['1979-1-15 0:0:0.0', '2018-12-15 12:0:0.0']},
         'method': 'Zonal root mean square error of equatorial_pacific taux, time series are linearly detrended, observations and model regridded to generic_1x1deg',
         'name': 'taux Zonal RMSE',
         'ref': 'Using CDAT regridding and rms (uncentered and biased) calculation',
         'time_frequency': 'monthly',
         'units': '1e-3 N/m2'},
        'metric': {'datasets': "NorESM1-M_r3i1p1; ERA-Interim's tauu & Tropflux's taux; 's ",
         'method': 'The metric is the statistical value between the model and the observations',
         'name': 'BiasTauxLonRmse',
         'units': '1e-3 N/m2'}},
       'EnsoAmpl': {'diagnostic': {'ERA-Interim': {'keyerror': None,
          'name': 'ERA-Interim',
          'nyears': 40,
          'time_period': ['1979-1-16 12:0:0.0', '2019-3-16 12:0:0.0']},
         'HadISST': {'keyerror': None,
          'name': 'HadISST',
          'nyears': 151,
          'time_period': ['1870-1-16 11:59:59.5', '2020-10-16 12:0:0.0']},
         'NorESM1-M_r3i1p1': {'keyerror': None,
          'name': 'NorESM1-M_r3i1p1',
          'nyears': 156,
          'time_period': ['1850-1-16 12:0:0.0', '2005-12-16 12:0:0.0']},
         'Tropflux': {'keyerror': None,
          'name': 'Tropflux',
          'nyears': 40,
          'time_period': ['1979-1-15 0:0:0.0', '2018-12-15 12:0:0.0']},
         'method': 'Standard deviation of nino3.4 sstA, time series are linearly detrended',
         'name': 'ENSO amplitude',
         'ref': 'Using CDAT regression calculation',
         'time_frequency': 'monthly',
         'units': 'C'},
        'metric': {'datasets': "NorESM1-M_r3i1p1; ERA-Interim's ts & HadISST's sst & Tropflux's sst; 's ",
         'method': 'The metric is the absolute value of the relative difference between model and observations values (M = 100 * abs[[model-obs] / obs])',
         'name': 'EnsoAmpl',
         'units': '%'}},
       'EnsoDuration': {'diagnostic': {'ERA-Interim': {'keyerror': None,
          'name': 'ERA-Interim',
          'nyears': 40,
          'time_period': ['1979-1-16 12:0:0.0', '2019-3-16 12:0:0.0']},
         'HadISST': {'keyerror': None,
          'name': 'HadISST',
          'nyears': 151,
          'time_period': ['1870-1-16 11:59:59.5', '2020-10-16 12:0:0.0']},
         'NorESM1-M_r3i1p1': {'keyerror': None,
          'name': 'NorESM1-M_r3i1p1',
          'nyears': 156,
          'time_period': ['1850-1-16 12:0:0.0', '2005-12-16 12:0:0.0']},
         'Tropflux': {'keyerror': None,
          'name': 'Tropflux',
          'nyears': 40,
          'time_period': ['1979-1-15 0:0:0.0', '2018-12-15 12:0:0.0']},
         'method': 'nino3.4 SSTA during DEC regressed against nino3.4 SSTA during 6 years (centered on ENSO), the duration is the number of consecutive months during which the regression is above 0.25, time series are linearly detrended, smoothing using a triangle shaped window of 5 points',
         'name': 'ENSO Duration based on life cyle SSTA pattern',
         'ref': 'Using CDAT',
         'time_frequency': 'monthly',
         'units': 'months'},
        'metric': {'datasets': "NorESM1-M_r3i1p1; ERA-Interim's ts & HadISST's sst & Tropflux's sst; 's ",
         'method': 'The metric is the absolute value of the relative difference between model and observations values (M = 100 * abs[[model-obs] / obs])',
         'name': 'EnsoDuration',
         'units': '%'}},
       'EnsoSeasonality': {'diagnostic': {'ERA-Interim': {'keyerror': None,
          'name': 'ERA-Interim',
          'nyears': 40,
          'time_period': ['1979-1-16 12:0:0.0', '2019-3-16 12:0:0.0']},
         'HadISST': {'keyerror': None,
          'name': 'HadISST',
          'nyears': 151,
          'time_period': ['1870-1-16 11:59:59.5', '2020-10-16 12:0:0.0']},
         'NorESM1-M_r3i1p1': {'keyerror': None,
          'name': 'NorESM1-M_r3i1p1',
          'nyears': 156,
          'time_period': ['1850-1-16 12:0:0.0', '2005-12-16 12:0:0.0']},
         'Tropflux': {'keyerror': None,
          'name': 'Tropflux',
          'nyears': 40,
          'time_period': ['1979-1-15 0:0:0.0', '2018-12-15 12:0:0.0']},
         'method': 'Ratio between NDJ and MAM standard deviation nino3.4 sstA, time series are linearly detrended',
         'name': 'ENSO seasonality',
         'ref': 'Using CDAT std dev calculation',
         'time_frequency': 'monthly',
         'units': 'C/C'},
        'metric': {'datasets': "NorESM1-M_r3i1p1; ERA-Interim's ts & HadISST's sst & Tropflux's sst; 's ",
         'method': 'The metric is the absolute value of the relative difference between model and observations values (M = 100 * abs[[model-obs] / obs])',
         'name': 'EnsoSeasonality',
         'units': '%'}},
       'EnsoSstDiversity_2': {'diagnostic': {'ERA-Interim': {'keyerror': None,
          'name': 'ERA-Interim',
          'nyears': 40,
          'time_period': ['1979-1-16 12:0:0.0', '2019-3-16 12:0:0.0']},
         'HadISST': {'keyerror': None,
          'name': 'HadISST',
          'nyears': 151,
          'time_period': ['1870-1-16 11:59:59.5', '2020-10-16 12:0:0.0']},
         'NorESM1-M_r3i1p1': {'keyerror': None,
          'name': 'NorESM1-M_r3i1p1',
          'nyears': 156,
          'time_period': ['1850-1-16 12:0:0.0', '2005-12-16 12:0:0.0']},
         'Tropflux': {'keyerror': None,
          'name': 'Tropflux',
          'nyears': 40,
          'time_period': ['1979-1-15 0:0:0.0', '2018-12-15 12:0:0.0']},
         'method': 'Nino (Nina) events = nino3.4 sstA > 0.75 (< -0.75) during DEC, zonal SSTA (meridional averaged [-5.0 ; 5.0]), the zonal SSTA maximum (minimum) is located for each event, the diversity is the interquartile range (IQR = Q3 - Q1), time series are linearly detrended, smoothing using a triangle shaped window of 5 points',
         'name': 'ENSO Diversity (interquartile range)',
         'ref': 'Using CDAT regridding',
         'time_frequency': 'monthly',
         'units': 'long'},
        'metric': {'datasets': "NorESM1-M_r3i1p1; ERA-Interim's ts & HadISST's sst & Tropflux's sst; 's ",
         'method': 'The metric is the absolute value of the relative difference between model and observations values (M = 100 * abs[[model-obs] / obs])',
         'name': 'EnsoSstDiversity',
         'units': '%'}},
       'EnsoSstLonRmse': {'diagnostic': {'ERA-Interim': {'name': 'ERA-Interim',
          'nyears': 40,
          'time_period': ['1979-1-16 12:0:0.0', '2019-3-16 12:0:0.0']},
         'HadISST': {'name': 'HadISST',
          'nyears': 151,
          'time_period': ['1870-1-16 11:59:59.5', '2020-10-16 12:0:0.0']},
         'NorESM1-M_r3i1p1': {'keyerror': None,
          'name': 'NorESM1-M_r3i1p1',
          'nyears': 156,
          'time_period': ['1850-1-16 12:0:0.0', '2005-12-16 12:0:0.0']},
         'Tropflux': {'name': 'Tropflux',
          'nyears': 40,
          'time_period': ['1979-1-15 0:0:0.0', '2018-12-15 12:0:0.0']},
         'method': 'nino3.4 SSTA during DEC regressed against equatorial_pacific SSTA, time series are linearly detrended, smoothing using a triangle shaped window of 5 points, observations and model regridded to generic_1x1deg',
         'name': 'ENSO Zonal SSTA pattern',
         'ref': 'Using CDAT regridding and rms (uncentered and biased) calculation',
         'time_frequency': 'monthly',
         'units': 'C/C'},
        'metric': {'datasets': "NorESM1-M_r3i1p1; ERA-Interim's ts & HadISST's sst & Tropflux's sst; 's ",
         'method': 'The metric is the statistical value between the model and the observations',
         'name': 'EnsoSstLonRmse',
         'units': 'C/C'}},
       'EnsoSstSkew': {'diagnostic': {'ERA-Interim': {'keyerror': None,
          'name': 'ERA-Interim',
          'nyears': 40,
          'time_period': ['1979-1-16 12:0:0.0', '2019-3-16 12:0:0.0']},
         'HadISST': {'keyerror': None,
          'name': 'HadISST',
          'nyears': 151,
          'time_period': ['1870-1-16 11:59:59.5', '2020-10-16 12:0:0.0']},
         'NorESM1-M_r3i1p1': {'keyerror': None,
          'name': 'NorESM1-M_r3i1p1',
          'nyears': 156,
          'time_period': ['1850-1-16 12:0:0.0', '2005-12-16 12:0:0.0']},
         'Tropflux': {'keyerror': None,
          'name': 'Tropflux',
          'nyears': 40,
          'time_period': ['1979-1-15 0:0:0.0', '2018-12-15 12:0:0.0']},
         'method': 'Standard deviation of nino3.4 sstA, time series are linearly detrended',
         'name': 'ENSO skewness',
         'ref': 'Using CDAT regression calculation',
         'time_frequency': 'monthly',
         'units': 'C'},
        'metric': {'datasets': "NorESM1-M_r3i1p1; ERA-Interim's ts & HadISST's sst & Tropflux's sst; 's ",
         'method': 'The metric is the absolute value of the relative difference between model and observations values (M = 100 * abs[[model-obs] / obs])',
         'name': 'EnsoSstSkew',
         'units': '%'}},
       'EnsoSstTsRmse': {'diagnostic': {'ERA-Interim': {'name': 'ERA-Interim',
          'nyears': 40,
          'time_period': ['1979-1-16 12:0:0.0', '2019-3-16 12:0:0.0']},
         'HadISST': {'name': 'HadISST',
          'nyears': 151,
          'time_period': ['1870-1-16 11:59:59.5', '2020-10-16 12:0:0.0']},
         'NorESM1-M_r3i1p1': {'keyerror': None,
          'name': 'NorESM1-M_r3i1p1',
          'nyears': 156,
          'time_period': ['1850-1-16 12:0:0.0', '2005-12-16 12:0:0.0']},
         'Tropflux': {'name': 'Tropflux',
          'nyears': 40,
          'time_period': ['1979-1-15 0:0:0.0', '2018-12-15 12:0:0.0']},
         'method': 'nino3.4 SSTA during DEC regressed against nino3.4 SSTA during 6 years (centered on ENSO), time series are linearly detrended, smoothing using a triangle shaped window of 5 points',
         'name': 'ENSO life cyle SSTA pattern',
         'ref': 'Using CDAT regridding and rms (uncentered and biased) calculation',
         'time_frequency': 'monthly',
         'units': 'C/C'},
        'metric': {'datasets': "NorESM1-M_r3i1p1; ERA-Interim's ts & HadISST's sst & Tropflux's sst; 's ",
         'method': 'The metric is the statistical value between the model and the observations',
         'name': 'EnsoSstTsRmse',
         'units': 'C/C'}},
       'SeasonalPrLatRmse': {'diagnostic': {'ERA-Interim': {'name': 'ERA-Interim',
          'nyears': 40,
          'time_period': ['1979-1-16 12:0:0.0', '2019-3-16 12:0:0.0']},
         'GPCPv2.3': {'name': 'GPCPv2.3',
          'nyears': 41,
          'time_period': ['1979-1-1 0:0:0.0', '2019-7-1 0:0:0.0']},
         'NorESM1-M_r3i1p1': {'keyerror': None,
          'name': 'NorESM1-M_r3i1p1',
          'nyears': 156,
          'time_period': ['1850-1-16 12:0:0.0', '2005-12-16 12:0:0.0']},
         'method': 'Meridional root mean square error of nino3_LatExt climatological pr STD, time series are linearly detrended, observations and model regridded to generic_1x1deg',
         'name': 'pr meridional seasonality RMSE',
         'ref': 'Using CDAT regridding and rms (uncentered and biased) calculation',
         'time_frequency': 'monthly',
         'units': 'mm/day'},
        'metric': {'datasets': "NorESM1-M_r3i1p1; ERA-Interim's pr & GPCPv2.3's precip; 's ",
         'method': 'The metric is the statistical value between the model and the observations',
         'name': 'SeasonalPrLatRmse',
         'units': 'mm/day'}},
       'SeasonalPrLonRmse': {'diagnostic': {'ERA-Interim': {'name': 'ERA-Interim',
          'nyears': 40,
          'time_period': ['1979-1-16 12:0:0.0', '2019-3-16 12:0:0.0']},
         'GPCPv2.3': {'name': 'GPCPv2.3',
          'nyears': 41,
          'time_period': ['1979-1-1 0:0:0.0', '2019-7-1 0:0:0.0']},
         'NorESM1-M_r3i1p1': {'keyerror': None,
          'name': 'NorESM1-M_r3i1p1',
          'nyears': 156,
          'time_period': ['1850-1-16 12:0:0.0', '2005-12-16 12:0:0.0']},
         'method': 'Zonal root mean square error of equatorial_pacific climatological pr STD, time series are linearly detrended, observations and model regridded to generic_1x1deg',
         'name': 'pr zonal seasonality RMSE',
         'ref': 'Using CDAT regridding and rms (uncentered and biased) calculation',
         'time_frequency': 'monthly',
         'units': 'mm/day'},
        'metric': {'datasets': "NorESM1-M_r3i1p1; ERA-Interim's pr & GPCPv2.3's precip; 's ",
         'method': 'The metric is the statistical value between the model and the observations',
         'name': 'SeasonalPrLonRmse',
         'units': 'mm/day'}},
       'SeasonalSstLonRmse': {'diagnostic': {'ERA-Interim': {'name': 'ERA-Interim',
          'nyears': 40,
          'time_period': ['1979-1-16 12:0:0.0', '2019-3-16 12:0:0.0']},
         'HadISST': {'name': 'HadISST',
          'nyears': 151,
          'time_period': ['1870-1-16 11:59:59.5', '2020-10-16 12:0:0.0']},
         'NorESM1-M_r3i1p1': {'keyerror': None,
          'name': 'NorESM1-M_r3i1p1',
          'nyears': 156,
          'time_period': ['1850-1-16 12:0:0.0', '2005-12-16 12:0:0.0']},
         'Tropflux': {'name': 'Tropflux',
          'nyears': 40,
          'time_period': ['1979-1-15 0:0:0.0', '2018-12-15 12:0:0.0']},
         'method': 'Zonal root mean square error of equatorial_pacific climatological sst STD, time series are linearly detrended, observations and model regridded to generic_1x1deg',
         'name': 'sst zonal seasonality RMSE',
         'ref': 'Using CDAT regridding and rms (uncentered and biased) calculation',
         'time_frequency': 'monthly',
         'units': 'C'},
        'metric': {'datasets': "NorESM1-M_r3i1p1; ERA-Interim's ts & HadISST's sst & Tropflux's sst; 's ",
         'method': 'The metric is the statistical value between the model and the observations',
         'name': 'SeasonalSstLonRmse',
         'units': 'C'}},
       'SeasonalTauxLonRmse': {'diagnostic': {'ERA-Interim': {'name': 'ERA-Interim',
          'nyears': 40,
          'time_period': ['1979-1-16 12:0:0.0', '2019-3-16 12:0:0.0']},
         'NorESM1-M_r3i1p1': {'keyerror': None,
          'name': 'NorESM1-M_r3i1p1',
          'nyears': 156,
          'time_period': ['1850-1-16 12:0:0.0', '2005-12-16 12:0:0.0']},
         'Tropflux': {'name': 'Tropflux',
          'nyears': 40,
          'time_period': ['1979-1-15 0:0:0.0', '2018-12-15 12:0:0.0']},
         'method': 'Zonal root mean square error of equatorial_pacific climatological taux STD, time series are linearly detrended, observations and model regridded to generic_1x1deg',
         'name': 'taux zonal seasonality RMSE',
         'ref': 'Using CDAT regridding and rms (uncentered and biased) calculation',
         'time_frequency': 'monthly',
         'units': '1e-3 N/m2'},
        'metric': {'datasets': "NorESM1-M_r3i1p1; ERA-Interim's tauu & Tropflux's taux; 's ",
         'method': 'The metric is the statistical value between the model and the observations',
         'name': 'SeasonalTauxLonRmse',
         'units': '1e-3 N/m2'}}},
      'name': 'Metrics Collection for ENSO performance'},
     'value': {'BiasPrLatRmse': {'diagnostic': {'ERA-Interim': {'value': None,
         'value_error': None},
        'GPCPv2.3': {'value': None, 'value_error': None},
        'NorESM1-M_r3i1p1': {'value': None, 'value_error': None}},
       'metric': {'ERA-Interim': {'value': 1.5081003853452086,
         'value_error': None},
        'GPCPv2.3': {'value': 1.3256931626518191, 'value_error': None}}},
      'BiasPrLonRmse': {'diagnostic': {'ERA-Interim': {'value': None,
         'value_error': None},
        'GPCPv2.3': {'value': None, 'value_error': None},
        'NorESM1-M_r3i1p1': {'value': None, 'value_error': None}},
       'metric': {'ERA-Interim': {'value': 0.8145372929519737,
         'value_error': None},
        'GPCPv2.3': {'value': 0.6660464870504684, 'value_error': None}}},
      'BiasSstLonRmse': {'diagnostic': {'ERA-Interim': {'value': None,
         'value_error': None},
        'HadISST': {'value': None, 'value_error': None},
        'NorESM1-M_r3i1p1': {'value': None, 'value_error': None},
        'Tropflux': {'value': None, 'value_error': None}},
       'metric': {'ERA-Interim': {'value': 0.8192331184544785,
         'value_error': None},
        'HadISST': {'value': 0.5923284535054455, 'value_error': None},
        'Tropflux': {'value': 0.8667393513949748, 'value_error': None}}},
      'BiasTauxLonRmse': {'diagnostic': {'ERA-Interim': {'value': None,
         'value_error': None},
        'NorESM1-M_r3i1p1': {'value': None, 'value_error': None},
        'Tropflux': {'value': None, 'value_error': None}},
       'metric': {'ERA-Interim': {'value': 9.613054431371344,
         'value_error': None},
        'Tropflux': {'value': 9.966888334745294, 'value_error': None}}},
      'EnsoAmpl': {'diagnostic': {'ERA-Interim': {'value': 0.8989844997845644,
         'value_error': 0.14214193002531866},
        'HadISST': {'value': 0.7665787872085695,
         'value_error': 0.06238329697691264},
        'NorESM1-M_r3i1p1': {'value': 0.8894687928431987,
         'value_error': 0.07121449783261045},
        'Tropflux': {'value': 0.9039789553693535,
         'value_error': 0.14293162279134272}},
       'metric': {'ERA-Interim': {'value': 1.0584951068284376,
         'value_error': 23.56568578597612},
        'HadISST': {'value': 16.030968725618212,
         'value_error': 18.732378724019068},
        'Tropflux': {'value': 1.6051438410118877,
         'value_error': 23.43548610568039}}},
      'EnsoDuration': {'diagnostic': {'ERA-Interim': {'value': 13.0,
         'value_error': None},
        'HadISST': {'value': 13.0, 'value_error': None},
        'NorESM1-M_r3i1p1': {'value': 13.0, 'value_error': None},
        'Tropflux': {'value': 13.0, 'value_error': None}},
       'metric': {'ERA-Interim': {'value': 0.0, 'value_error': None},
        'HadISST': {'value': 0.0, 'value_error': None},
        'Tropflux': {'value': 0.0, 'value_error': None}}},
      'EnsoSeasonality': {'diagnostic': {'ERA-Interim': {'value': 2.0466846866656914,
         'value_error': 0.6513411033995022},
        'HadISST': {'value': 1.6639865947361325,
         'value_error': 0.2712772451657809},
        'NorESM1-M_r3i1p1': {'value': 1.5448679750461873,
         'value_error': 0.2477752101743308},
        'Tropflux': {'value': 2.0532132553583624,
         'value_error': 0.6534187683977347}},
       'metric': {'ERA-Interim': {'value': 24.5185159633469,
         'value_error': 36.12755525940786},
        'HadISST': {'value': 7.1586285650837524,
         'value_error': 30.02624699968399},
        'Tropflux': {'value': 24.75852320676012,
         'value_error': 36.01268106132162}}},
      'EnsoSstDiversity_2': {'diagnostic': {'ERA-Interim': {'value': 33.25,
         'value_error': None},
        'HadISST': {'value': 49.0, 'value_error': None},
        'NorESM1-M_r3i1p1': {'value': 12.0, 'value_error': None},
        'Tropflux': {'value': 32.0, 'value_error': None}},
       'metric': {'ERA-Interim': {'value': 63.90977443609023,
         'value_error': None},
        'HadISST': {'value': 75.51020408163265, 'value_error': None},
        'Tropflux': {'value': 62.5, 'value_error': None}}},
      'EnsoSstLonRmse': {'diagnostic': {'ERA-Interim': {'value': None,
         'value_error': None},
        'HadISST': {'value': None, 'value_error': None},
        'NorESM1-M_r3i1p1': {'value': None, 'value_error': None},
        'Tropflux': {'value': None, 'value_error': None}},
       'metric': {'ERA-Interim': {'value': 0.1469869475923206,
         'value_error': None},
        'HadISST': {'value': 0.12705519427161696, 'value_error': None},
        'Tropflux': {'value': 0.1436117115226541, 'value_error': None}}},
      'EnsoSstSkew': {'diagnostic': {'ERA-Interim': {'value': 0.39098111106809963,
         'value_error': 0.061819541653923164},
        'HadISST': {'value': 0.38989908235027515,
         'value_error': 0.03172953733021198},
        'NorESM1-M_r3i1p1': {'value': 0.06671481487310944,
         'value_error': 0.005341460068539592},
        'Tropflux': {'value': 0.39744741059612115,
         'value_error': 0.06284195338099416}},
       'metric': {'ERA-Interim': {'value': 82.93656317798705,
         'value_error': 4.0641345713366395},
        'HadISST': {'value': 82.88920956906111,
         'value_error': 2.762416018241005},
        'Tropflux': {'value': 83.21417800331228,
         'value_error': 3.9980128385996405}}},
      'EnsoSstTsRmse': {'diagnostic': {'ERA-Interim': {'value': None,
         'value_error': None},
        'HadISST': {'value': None, 'value_error': None},
        'NorESM1-M_r3i1p1': {'value': None, 'value_error': None},
        'Tropflux': {'value': None, 'value_error': None}},
       'metric': {'ERA-Interim': {'value': 0.11332559172934832,
         'value_error': None},
        'HadISST': {'value': 0.08953936739580493, 'value_error': None},
        'Tropflux': {'value': 0.11115623812858066, 'value_error': None}}},
      'SeasonalPrLatRmse': {'diagnostic': {'ERA-Interim': {'value': None,
         'value_error': None},
        'GPCPv2.3': {'value': None, 'value_error': None},
        'NorESM1-M_r3i1p1': {'value': None, 'value_error': None}},
       'metric': {'ERA-Interim': {'value': 1.2140436269239625,
         'value_error': None},
        'GPCPv2.3': {'value': 1.437623506510688, 'value_error': None}}},
      'SeasonalPrLonRmse': {'diagnostic': {'ERA-Interim': {'value': None,
         'value_error': None},
        'GPCPv2.3': {'value': None, 'value_error': None},
        'NorESM1-M_r3i1p1': {'value': None, 'value_error': None}},
       'metric': {'ERA-Interim': {'value': 0.2735712132148087,
         'value_error': None},
        'GPCPv2.3': {'value': 0.4550980740765266, 'value_error': None}}},
      'SeasonalSstLonRmse': {'diagnostic': {'ERA-Interim': {'value': None,
         'value_error': None},
        'HadISST': {'value': None, 'value_error': None},
        'NorESM1-M_r3i1p1': {'value': None, 'value_error': None},
        'Tropflux': {'value': None, 'value_error': None}},
       'metric': {'ERA-Interim': {'value': 0.16430931476137625,
         'value_error': None},
        'HadISST': {'value': 0.16101268046078984, 'value_error': None},
        'Tropflux': {'value': 0.1753812621771339, 'value_error': None}}},
      'SeasonalTauxLonRmse': {'diagnostic': {'ERA-Interim': {'value': None,
         'value_error': None},
        'NorESM1-M_r3i1p1': {'value': None, 'value_error': None},
        'Tropflux': {'value': None, 'value_error': None}},
       'metric': {'ERA-Interim': {'value': 3.919635820684615,
         'value_error': None},
        'Tropflux': {'value': 3.929618877413432, 'value_error': None}}}}}},
   'NorESM1-ME': {'r1i1p1': {'metadata': {'description_of_the_collection': 'Describe which science question this collection is about',
      'metrics': {'BiasPrLatRmse': {'diagnostic': {'ERA-Interim': {'name': 'ERA-Interim',
          'nyears': 40,
          'time_period': ['1979-1-16 12:0:0.0', '2019-3-16 12:0:0.0']},
         'GPCPv2.3': {'name': 'GPCPv2.3',
          'nyears': 41,
          'time_period': ['1979-1-1 0:0:0.0', '2019-7-1 0:0:0.0']},
         'NorESM1-ME_r1i1p1': {'keyerror': None,
          'name': 'NorESM1-ME_r1i1p1',
          'nyears': 156,
          'time_period': ['1850-1-16 12:0:0.0', '2005-12-16 12:0:0.0']},
         'method': 'Meridional root mean square error of nino3_LatExt pr, time series are linearly detrended, observations and model regridded to generic_1x1deg',
         'name': 'pr Meridional RMSE',
         'ref': 'Using CDAT regridding and rms (uncentered and biased) calculation',
         'time_frequency': 'monthly',
         'units': 'mm/day'},
        'metric': {'datasets': "NorESM1-ME_r1i1p1; ERA-Interim's pr & GPCPv2.3's precip; 's ",
         'method': 'The metric is the statistical value between the model and the observations',
         'name': 'BiasPrLatRmse',
         'units': 'mm/day'}},
       'BiasPrLonRmse': {'diagnostic': {'ERA-Interim': {'name': 'ERA-Interim',
          'nyears': 40,
          'time_period': ['1979-1-16 12:0:0.0', '2019-3-16 12:0:0.0']},
         'GPCPv2.3': {'name': 'GPCPv2.3',
          'nyears': 41,
          'time_period': ['1979-1-1 0:0:0.0', '2019-7-1 0:0:0.0']},
         'NorESM1-ME_r1i1p1': {'keyerror': None,
          'name': 'NorESM1-ME_r1i1p1',
          'nyears': 156,
          'time_period': ['1850-1-16 12:0:0.0', '2005-12-16 12:0:0.0']},
         'method': 'Zonal root mean square error of equatorial_pacific pr, time series are linearly detrended, observations and model regridded to generic_1x1deg',
         'name': 'pr Zonal RMSE',
         'ref': 'Using CDAT regridding and rms (uncentered and biased) calculation',
         'time_frequency': 'monthly',
         'units': 'mm/day'},
        'metric': {'datasets': "NorESM1-ME_r1i1p1; ERA-Interim's pr & GPCPv2.3's precip; 's ",
         'method': 'The metric is the statistical value between the model and the observations',
         'name': 'BiasPrLonRmse',
         'units': 'mm/day'}},
       'BiasSstLonRmse': {'diagnostic': {'ERA-Interim': {'name': 'ERA-Interim',
          'nyears': 40,
          'time_period': ['1979-1-16 12:0:0.0', '2019-3-16 12:0:0.0']},
         'HadISST': {'name': 'HadISST',
          'nyears': 151,
          'time_period': ['1870-1-16 11:59:59.5', '2020-10-16 12:0:0.0']},
         'NorESM1-ME_r1i1p1': {'keyerror': None,
          'name': 'NorESM1-ME_r1i1p1',
          'nyears': 156,
          'time_period': ['1850-1-16 12:0:0.0', '2005-12-16 12:0:0.0']},
         'Tropflux': {'name': 'Tropflux',
          'nyears': 40,
          'time_period': ['1979-1-15 0:0:0.0', '2018-12-15 12:0:0.0']},
         'method': 'Zonal root mean square error of equatorial_pacific sst, time series are linearly detrended, observations and model regridded to generic_1x1deg',
         'name': 'sst Zonal RMSE',
         'ref': 'Using CDAT regridding and rms (uncentered and biased) calculation',
         'time_frequency': 'monthly',
         'units': 'C'},
        'metric': {'datasets': "NorESM1-ME_r1i1p1; ERA-Interim's ts & HadISST's sst & Tropflux's sst; 's ",
         'method': 'The metric is the statistical value between the model and the observations',
         'name': 'BiasSstLonRmse',
         'units': 'C'}},
       'BiasTauxLonRmse': {'diagnostic': {'ERA-Interim': {'name': 'ERA-Interim',
          'nyears': 40,
          'time_period': ['1979-1-16 12:0:0.0', '2019-3-16 12:0:0.0']},
         'NorESM1-ME_r1i1p1': {'keyerror': None,
          'name': 'NorESM1-ME_r1i1p1',
          'nyears': 156,
          'time_period': ['1850-1-16 12:0:0.0', '2005-12-16 12:0:0.0']},
         'Tropflux': {'name': 'Tropflux',
          'nyears': 40,
          'time_period': ['1979-1-15 0:0:0.0', '2018-12-15 12:0:0.0']},
         'method': 'Zonal root mean square error of equatorial_pacific taux, time series are linearly detrended, observations and model regridded to generic_1x1deg',
         'name': 'taux Zonal RMSE',
         'ref': 'Using CDAT regridding and rms (uncentered and biased) calculation',
         'time_frequency': 'monthly',
         'units': '1e-3 N/m2'},
        'metric': {'datasets': "NorESM1-ME_r1i1p1; ERA-Interim's tauu & Tropflux's taux; 's ",
         'method': 'The metric is the statistical value between the model and the observations',
         'name': 'BiasTauxLonRmse',
         'units': '1e-3 N/m2'}},
       'EnsoAmpl': {'diagnostic': {'ERA-Interim': {'keyerror': None,
          'name': 'ERA-Interim',
          'nyears': 40,
          'time_period': ['1979-1-16 12:0:0.0', '2019-3-16 12:0:0.0']},
         'HadISST': {'keyerror': None,
          'name': 'HadISST',
          'nyears': 151,
          'time_period': ['1870-1-16 11:59:59.5', '2020-10-16 12:0:0.0']},
         'NorESM1-ME_r1i1p1': {'keyerror': None,
          'name': 'NorESM1-ME_r1i1p1',
          'nyears': 156,
          'time_period': ['1850-1-16 12:0:0.0', '2005-12-16 12:0:0.0']},
         'Tropflux': {'keyerror': None,
          'name': 'Tropflux',
          'nyears': 40,
          'time_period': ['1979-1-15 0:0:0.0', '2018-12-15 12:0:0.0']},
         'method': 'Standard deviation of nino3.4 sstA, time series are linearly detrended',
         'name': 'ENSO amplitude',
         'ref': 'Using CDAT regression calculation',
         'time_frequency': 'monthly',
         'units': 'C'},
        'metric': {'datasets': "NorESM1-ME_r1i1p1; ERA-Interim's ts & HadISST's sst & Tropflux's sst; 's ",
         'method': 'The metric is the absolute value of the relative difference between model and observations values (M = 100 * abs[[model-obs] / obs])',
         'name': 'EnsoAmpl',
         'units': '%'}},
       'EnsoDuration': {'diagnostic': {'ERA-Interim': {'keyerror': None,
          'name': 'ERA-Interim',
          'nyears': 40,
          'time_period': ['1979-1-16 12:0:0.0', '2019-3-16 12:0:0.0']},
         'HadISST': {'keyerror': None,
          'name': 'HadISST',
          'nyears': 151,
          'time_period': ['1870-1-16 11:59:59.5', '2020-10-16 12:0:0.0']},
         'NorESM1-ME_r1i1p1': {'keyerror': None,
          'name': 'NorESM1-ME_r1i1p1',
          'nyears': 156,
          'time_period': ['1850-1-16 12:0:0.0', '2005-12-16 12:0:0.0']},
         'Tropflux': {'keyerror': None,
          'name': 'Tropflux',
          'nyears': 40,
          'time_period': ['1979-1-15 0:0:0.0', '2018-12-15 12:0:0.0']},
         'method': 'nino3.4 SSTA during DEC regressed against nino3.4 SSTA during 6 years (centered on ENSO), the duration is the number of consecutive months during which the regression is above 0.25, time series are linearly detrended, smoothing using a triangle shaped window of 5 points',
         'name': 'ENSO Duration based on life cyle SSTA pattern',
         'ref': 'Using CDAT',
         'time_frequency': 'monthly',
         'units': 'months'},
        'metric': {'datasets': "NorESM1-ME_r1i1p1; ERA-Interim's ts & HadISST's sst & Tropflux's sst; 's ",
         'method': 'The metric is the absolute value of the relative difference between model and observations values (M = 100 * abs[[model-obs] / obs])',
         'name': 'EnsoDuration',
         'units': '%'}},
       'EnsoSeasonality': {'diagnostic': {'ERA-Interim': {'keyerror': None,
          'name': 'ERA-Interim',
          'nyears': 40,
          'time_period': ['1979-1-16 12:0:0.0', '2019-3-16 12:0:0.0']},
         'HadISST': {'keyerror': None,
          'name': 'HadISST',
          'nyears': 151,
          'time_period': ['1870-1-16 11:59:59.5', '2020-10-16 12:0:0.0']},
         'NorESM1-ME_r1i1p1': {'keyerror': None,
          'name': 'NorESM1-ME_r1i1p1',
          'nyears': 156,
          'time_period': ['1850-1-16 12:0:0.0', '2005-12-16 12:0:0.0']},
         'Tropflux': {'keyerror': None,
          'name': 'Tropflux',
          'nyears': 40,
          'time_period': ['1979-1-15 0:0:0.0', '2018-12-15 12:0:0.0']},
         'method': 'Ratio between NDJ and MAM standard deviation nino3.4 sstA, time series are linearly detrended',
         'name': 'ENSO seasonality',
         'ref': 'Using CDAT std dev calculation',
         'time_frequency': 'monthly',
         'units': 'C/C'},
        'metric': {'datasets': "NorESM1-ME_r1i1p1; ERA-Interim's ts & HadISST's sst & Tropflux's sst; 's ",
         'method': 'The metric is the absolute value of the relative difference between model and observations values (M = 100 * abs[[model-obs] / obs])',
         'name': 'EnsoSeasonality',
         'units': '%'}},
       'EnsoSstDiversity_2': {'diagnostic': {'ERA-Interim': {'keyerror': None,
          'name': 'ERA-Interim',
          'nyears': 40,
          'time_period': ['1979-1-16 12:0:0.0', '2019-3-16 12:0:0.0']},
         'HadISST': {'keyerror': None,
          'name': 'HadISST',
          'nyears': 151,
          'time_period': ['1870-1-16 11:59:59.5', '2020-10-16 12:0:0.0']},
         'NorESM1-ME_r1i1p1': {'keyerror': None,
          'name': 'NorESM1-ME_r1i1p1',
          'nyears': 156,
          'time_period': ['1850-1-16 12:0:0.0', '2005-12-16 12:0:0.0']},
         'Tropflux': {'keyerror': None,
          'name': 'Tropflux',
          'nyears': 40,
          'time_period': ['1979-1-15 0:0:0.0', '2018-12-15 12:0:0.0']},
         'method': 'Nino (Nina) events = nino3.4 sstA > 0.75 (< -0.75) during DEC, zonal SSTA (meridional averaged [-5.0 ; 5.0]), the zonal SSTA maximum (minimum) is located for each event, the diversity is the interquartile range (IQR = Q3 - Q1), time series are linearly detrended, smoothing using a triangle shaped window of 5 points',
         'name': 'ENSO Diversity (interquartile range)',
         'ref': 'Using CDAT regridding',
         'time_frequency': 'monthly',
         'units': 'long'},
        'metric': {'datasets': "NorESM1-ME_r1i1p1; ERA-Interim's ts & HadISST's sst & Tropflux's sst; 's ",
         'method': 'The metric is the absolute value of the relative difference between model and observations values (M = 100 * abs[[model-obs] / obs])',
         'name': 'EnsoSstDiversity',
         'units': '%'}},
       'EnsoSstLonRmse': {'diagnostic': {'ERA-Interim': {'name': 'ERA-Interim',
          'nyears': 40,
          'time_period': ['1979-1-16 12:0:0.0', '2019-3-16 12:0:0.0']},
         'HadISST': {'name': 'HadISST',
          'nyears': 151,
          'time_period': ['1870-1-16 11:59:59.5', '2020-10-16 12:0:0.0']},
         'NorESM1-ME_r1i1p1': {'keyerror': None,
          'name': 'NorESM1-ME_r1i1p1',
          'nyears': 156,
          'time_period': ['1850-1-16 12:0:0.0', '2005-12-16 12:0:0.0']},
         'Tropflux': {'name': 'Tropflux',
          'nyears': 40,
          'time_period': ['1979-1-15 0:0:0.0', '2018-12-15 12:0:0.0']},
         'method': 'nino3.4 SSTA during DEC regressed against equatorial_pacific SSTA, time series are linearly detrended, smoothing using a triangle shaped window of 5 points, observations and model regridded to generic_1x1deg',
         'name': 'ENSO Zonal SSTA pattern',
         'ref': 'Using CDAT regridding and rms (uncentered and biased) calculation',
         'time_frequency': 'monthly',
         'units': 'C/C'},
        'metric': {'datasets': "NorESM1-ME_r1i1p1; ERA-Interim's ts & HadISST's sst & Tropflux's sst; 's ",
         'method': 'The metric is the statistical value between the model and the observations',
         'name': 'EnsoSstLonRmse',
         'units': 'C/C'}},
       'EnsoSstSkew': {'diagnostic': {'ERA-Interim': {'keyerror': None,
          'name': 'ERA-Interim',
          'nyears': 40,
          'time_period': ['1979-1-16 12:0:0.0', '2019-3-16 12:0:0.0']},
         'HadISST': {'keyerror': None,
          'name': 'HadISST',
          'nyears': 151,
          'time_period': ['1870-1-16 11:59:59.5', '2020-10-16 12:0:0.0']},
         'NorESM1-ME_r1i1p1': {'keyerror': None,
          'name': 'NorESM1-ME_r1i1p1',
          'nyears': 156,
          'time_period': ['1850-1-16 12:0:0.0', '2005-12-16 12:0:0.0']},
         'Tropflux': {'keyerror': None,
          'name': 'Tropflux',
          'nyears': 40,
          'time_period': ['1979-1-15 0:0:0.0', '2018-12-15 12:0:0.0']},
         'method': 'Standard deviation of nino3.4 sstA, time series are linearly detrended',
         'name': 'ENSO skewness',
         'ref': 'Using CDAT regression calculation',
         'time_frequency': 'monthly',
         'units': 'C'},
        'metric': {'datasets': "NorESM1-ME_r1i1p1; ERA-Interim's ts & HadISST's sst & Tropflux's sst; 's ",
         'method': 'The metric is the absolute value of the relative difference between model and observations values (M = 100 * abs[[model-obs] / obs])',
         'name': 'EnsoSstSkew',
         'units': '%'}},
       'EnsoSstTsRmse': {'diagnostic': {'ERA-Interim': {'name': 'ERA-Interim',
          'nyears': 40,
          'time_period': ['1979-1-16 12:0:0.0', '2019-3-16 12:0:0.0']},
         'HadISST': {'name': 'HadISST',
          'nyears': 151,
          'time_period': ['1870-1-16 11:59:59.5', '2020-10-16 12:0:0.0']},
         'NorESM1-ME_r1i1p1': {'keyerror': None,
          'name': 'NorESM1-ME_r1i1p1',
          'nyears': 156,
          'time_period': ['1850-1-16 12:0:0.0', '2005-12-16 12:0:0.0']},
         'Tropflux': {'name': 'Tropflux',
          'nyears': 40,
          'time_period': ['1979-1-15 0:0:0.0', '2018-12-15 12:0:0.0']},
         'method': 'nino3.4 SSTA during DEC regressed against nino3.4 SSTA during 6 years (centered on ENSO), time series are linearly detrended, smoothing using a triangle shaped window of 5 points',
         'name': 'ENSO life cyle SSTA pattern',
         'ref': 'Using CDAT regridding and rms (uncentered and biased) calculation',
         'time_frequency': 'monthly',
         'units': 'C/C'},
        'metric': {'datasets': "NorESM1-ME_r1i1p1; ERA-Interim's ts & HadISST's sst & Tropflux's sst; 's ",
         'method': 'The metric is the statistical value between the model and the observations',
         'name': 'EnsoSstTsRmse',
         'units': 'C/C'}},
       'SeasonalPrLatRmse': {'diagnostic': {'ERA-Interim': {'name': 'ERA-Interim',
          'nyears': 40,
          'time_period': ['1979-1-16 12:0:0.0', '2019-3-16 12:0:0.0']},
         'GPCPv2.3': {'name': 'GPCPv2.3',
          'nyears': 41,
          'time_period': ['1979-1-1 0:0:0.0', '2019-7-1 0:0:0.0']},
         'NorESM1-ME_r1i1p1': {'keyerror': None,
          'name': 'NorESM1-ME_r1i1p1',
          'nyears': 156,
          'time_period': ['1850-1-16 12:0:0.0', '2005-12-16 12:0:0.0']},
         'method': 'Meridional root mean square error of nino3_LatExt climatological pr STD, time series are linearly detrended, observations and model regridded to generic_1x1deg',
         'name': 'pr meridional seasonality RMSE',
         'ref': 'Using CDAT regridding and rms (uncentered and biased) calculation',
         'time_frequency': 'monthly',
         'units': 'mm/day'},
        'metric': {'datasets': "NorESM1-ME_r1i1p1; ERA-Interim's pr & GPCPv2.3's precip; 's ",
         'method': 'The metric is the statistical value between the model and the observations',
         'name': 'SeasonalPrLatRmse',
         'units': 'mm/day'}},
       'SeasonalPrLonRmse': {'diagnostic': {'ERA-Interim': {'name': 'ERA-Interim',
          'nyears': 40,
          'time_period': ['1979-1-16 12:0:0.0', '2019-3-16 12:0:0.0']},
         'GPCPv2.3': {'name': 'GPCPv2.3',
          'nyears': 41,
          'time_period': ['1979-1-1 0:0:0.0', '2019-7-1 0:0:0.0']},
         'NorESM1-ME_r1i1p1': {'keyerror': None,
          'name': 'NorESM1-ME_r1i1p1',
          'nyears': 156,
          'time_period': ['1850-1-16 12:0:0.0', '2005-12-16 12:0:0.0']},
         'method': 'Zonal root mean square error of equatorial_pacific climatological pr STD, time series are linearly detrended, observations and model regridded to generic_1x1deg',
         'name': 'pr zonal seasonality RMSE',
         'ref': 'Using CDAT regridding and rms (uncentered and biased) calculation',
         'time_frequency': 'monthly',
         'units': 'mm/day'},
        'metric': {'datasets': "NorESM1-ME_r1i1p1; ERA-Interim's pr & GPCPv2.3's precip; 's ",
         'method': 'The metric is the statistical value between the model and the observations',
         'name': 'SeasonalPrLonRmse',
         'units': 'mm/day'}},
       'SeasonalSstLonRmse': {'diagnostic': {'ERA-Interim': {'name': 'ERA-Interim',
          'nyears': 40,
          'time_period': ['1979-1-16 12:0:0.0', '2019-3-16 12:0:0.0']},
         'HadISST': {'name': 'HadISST',
          'nyears': 151,
          'time_period': ['1870-1-16 11:59:59.5', '2020-10-16 12:0:0.0']},
         'NorESM1-ME_r1i1p1': {'keyerror': None,
          'name': 'NorESM1-ME_r1i1p1',
          'nyears': 156,
          'time_period': ['1850-1-16 12:0:0.0', '2005-12-16 12:0:0.0']},
         'Tropflux': {'name': 'Tropflux',
          'nyears': 40,
          'time_period': ['1979-1-15 0:0:0.0', '2018-12-15 12:0:0.0']},
         'method': 'Zonal root mean square error of equatorial_pacific climatological sst STD, time series are linearly detrended, observations and model regridded to generic_1x1deg',
         'name': 'sst zonal seasonality RMSE',
         'ref': 'Using CDAT regridding and rms (uncentered and biased) calculation',
         'time_frequency': 'monthly',
         'units': 'C'},
        'metric': {'datasets': "NorESM1-ME_r1i1p1; ERA-Interim's ts & HadISST's sst & Tropflux's sst; 's ",
         'method': 'The metric is the statistical value between the model and the observations',
         'name': 'SeasonalSstLonRmse',
         'units': 'C'}},
       'SeasonalTauxLonRmse': {'diagnostic': {'ERA-Interim': {'name': 'ERA-Interim',
          'nyears': 40,
          'time_period': ['1979-1-16 12:0:0.0', '2019-3-16 12:0:0.0']},
         'NorESM1-ME_r1i1p1': {'keyerror': None,
          'name': 'NorESM1-ME_r1i1p1',
          'nyears': 156,
          'time_period': ['1850-1-16 12:0:0.0', '2005-12-16 12:0:0.0']},
         'Tropflux': {'name': 'Tropflux',
          'nyears': 40,
          'time_period': ['1979-1-15 0:0:0.0', '2018-12-15 12:0:0.0']},
         'method': 'Zonal root mean square error of equatorial_pacific climatological taux STD, time series are linearly detrended, observations and model regridded to generic_1x1deg',
         'name': 'taux zonal seasonality RMSE',
         'ref': 'Using CDAT regridding and rms (uncentered and biased) calculation',
         'time_frequency': 'monthly',
         'units': '1e-3 N/m2'},
        'metric': {'datasets': "NorESM1-ME_r1i1p1; ERA-Interim's tauu & Tropflux's taux; 's ",
         'method': 'The metric is the statistical value between the model and the observations',
         'name': 'SeasonalTauxLonRmse',
         'units': '1e-3 N/m2'}}},
      'name': 'Metrics Collection for ENSO performance'},
     'value': {'BiasPrLatRmse': {'diagnostic': {'ERA-Interim': {'value': None,
         'value_error': None},
        'GPCPv2.3': {'value': None, 'value_error': None},
        'NorESM1-ME_r1i1p1': {'value': None, 'value_error': None}},
       'metric': {'ERA-Interim': {'value': 1.4256576958565477,
         'value_error': None},
        'GPCPv2.3': {'value': 1.1487609443249653, 'value_error': None}}},
      'BiasPrLonRmse': {'diagnostic': {'ERA-Interim': {'value': None,
         'value_error': None},
        'GPCPv2.3': {'value': None, 'value_error': None},
        'NorESM1-ME_r1i1p1': {'value': None, 'value_error': None}},
       'metric': {'ERA-Interim': {'value': 0.8849899564213228,
         'value_error': None},
        'GPCPv2.3': {'value': 0.5949633386553073, 'value_error': None}}},
      'BiasSstLonRmse': {'diagnostic': {'ERA-Interim': {'value': None,
         'value_error': None},
        'HadISST': {'value': None, 'value_error': None},
        'NorESM1-ME_r1i1p1': {'value': None, 'value_error': None},
        'Tropflux': {'value': None, 'value_error': None}},
       'metric': {'ERA-Interim': {'value': 1.0467551796522485,
         'value_error': None},
        'HadISST': {'value': 0.8215385339256356, 'value_error': None},
        'Tropflux': {'value': 1.09404035574318, 'value_error': None}}},
      'BiasTauxLonRmse': {'diagnostic': {'ERA-Interim': {'value': None,
         'value_error': None},
        'NorESM1-ME_r1i1p1': {'value': None, 'value_error': None},
        'Tropflux': {'value': None, 'value_error': None}},
       'metric': {'ERA-Interim': {'value': 9.495500903052976,
         'value_error': None},
        'Tropflux': {'value': 9.956511088257153, 'value_error': None}}},
      'EnsoAmpl': {'diagnostic': {'ERA-Interim': {'value': 0.8989844997845644,
         'value_error': 0.14214193002531866},
        'HadISST': {'value': 0.7665787872085695,
         'value_error': 0.06238329697691264},
        'NorESM1-ME_r1i1p1': {'value': 0.8766922107094253,
         'value_error': 0.07019155257810035},
        'Tropflux': {'value': 0.9039789553693535,
         'value_error': 0.14293162279134272}},
       'metric': {'ERA-Interim': {'value': 2.4797189585005452,
         'value_error': 23.227181588408055},
        'HadISST': {'value': 14.364266966194597,
         'value_error': 18.463301520575715},
        'Tropflux': {'value': 3.0185154751505476,
         'value_error': 23.098852133265225}}},
      'EnsoDuration': {'diagnostic': {'ERA-Interim': {'value': 13.0,
         'value_error': None},
        'HadISST': {'value': 13.0, 'value_error': None},
        'NorESM1-ME_r1i1p1': {'value': 13.0, 'value_error': None},
        'Tropflux': {'value': 13.0, 'value_error': None}},
       'metric': {'ERA-Interim': {'value': 0.0, 'value_error': None},
        'HadISST': {'value': 0.0, 'value_error': None},
        'Tropflux': {'value': 0.0, 'value_error': None}}},
      'EnsoSeasonality': {'diagnostic': {'ERA-Interim': {'value': 2.0466846866656914,
         'value_error': 0.6513411033995022},
        'HadISST': {'value': 1.6639865947361325,
         'value_error': 0.2712772451657809},
        'NorESM1-ME_r1i1p1': {'value': 1.5875394467486952,
         'value_error': 0.25461911725268216},
        'Tropflux': {'value': 2.0532132553583624,
         'value_error': 0.6534187683977347}},
       'metric': {'ERA-Interim': {'value': 22.433608992550873,
         'value_error': 37.12545021019583},
        'HadISST': {'value': 4.594216577781986,
         'value_error': 30.855615055644385},
        'Tropflux': {'value': 22.680245580646698,
         'value_error': 37.007403021813865}}},
      'EnsoSstDiversity_2': {'diagnostic': {'ERA-Interim': {'value': 33.25,
         'value_error': None},
        'HadISST': {'value': 49.0, 'value_error': None},
        'NorESM1-ME_r1i1p1': {'value': 10.0, 'value_error': None},
        'Tropflux': {'value': 32.0, 'value_error': None}},
       'metric': {'ERA-Interim': {'value': 69.92481203007519,
         'value_error': None},
        'HadISST': {'value': 79.59183673469387, 'value_error': None},
        'Tropflux': {'value': 68.75, 'value_error': None}}},
      'EnsoSstLonRmse': {'diagnostic': {'ERA-Interim': {'value': None,
         'value_error': None},
        'HadISST': {'value': None, 'value_error': None},
        'NorESM1-ME_r1i1p1': {'value': None, 'value_error': None},
        'Tropflux': {'value': None, 'value_error': None}},
       'metric': {'ERA-Interim': {'value': 0.14520503132540324,
         'value_error': None},
        'HadISST': {'value': 0.14432609308703653, 'value_error': None},
        'Tropflux': {'value': 0.14357545853464462, 'value_error': None}}},
      'EnsoSstSkew': {'diagnostic': {'ERA-Interim': {'value': 0.39098111106809963,
         'value_error': 0.061819541653923164},
        'HadISST': {'value': 0.38989908235027515,
         'value_error': 0.03172953733021198},
        'NorESM1-ME_r1i1p1': {'value': 0.16181339203161868,
         'value_error': 0.012955439863480947},
        'Tropflux': {'value': 0.39744741059612115,
         'value_error': 0.06284195338099416}},
       'metric': {'ERA-Interim': {'value': 58.61350140686601,
         'value_error': 9.857351802770573},
        'HadISST': {'value': 58.49864763563364,
         'value_error': 6.700099625011838},
        'Tropflux': {'value': 59.28684205316147,
         'value_error': 9.696976901310798}}},
      'EnsoSstTsRmse': {'diagnostic': {'ERA-Interim': {'value': None,
         'value_error': None},
        'HadISST': {'value': None, 'value_error': None},
        'NorESM1-ME_r1i1p1': {'value': None, 'value_error': None},
        'Tropflux': {'value': None, 'value_error': None}},
       'metric': {'ERA-Interim': {'value': 0.07966539173883842,
         'value_error': None},
        'HadISST': {'value': 0.06885955355179388, 'value_error': None},
        'Tropflux': {'value': 0.07851343494412877, 'value_error': None}}},
      'SeasonalPrLatRmse': {'diagnostic': {'ERA-Interim': {'value': None,
         'value_error': None},
        'GPCPv2.3': {'value': None, 'value_error': None},
        'NorESM1-ME_r1i1p1': {'value': None, 'value_error': None}},
       'metric': {'ERA-Interim': {'value': 1.1175939248109552,
         'value_error': None},
        'GPCPv2.3': {'value': 1.3287493804780544, 'value_error': None}}},
      'SeasonalPrLonRmse': {'diagnostic': {'ERA-Interim': {'value': None,
         'value_error': None},
        'GPCPv2.3': {'value': None, 'value_error': None},
        'NorESM1-ME_r1i1p1': {'value': None, 'value_error': None}},
       'metric': {'ERA-Interim': {'value': 0.4288091464874073,
         'value_error': None},
        'GPCPv2.3': {'value': 0.5846776538992703, 'value_error': None}}},
      'SeasonalSstLonRmse': {'diagnostic': {'ERA-Interim': {'value': None,
         'value_error': None},
        'HadISST': {'value': None, 'value_error': None},
        'NorESM1-ME_r1i1p1': {'value': None, 'value_error': None},
        'Tropflux': {'value': None, 'value_error': None}},
       'metric': {'ERA-Interim': {'value': 0.11147684214687681,
         'value_error': None},
        'HadISST': {'value': 0.11975436226428014, 'value_error': None},
        'Tropflux': {'value': 0.11892174199206576, 'value_error': None}}},
      'SeasonalTauxLonRmse': {'diagnostic': {'ERA-Interim': {'value': None,
         'value_error': None},
        'NorESM1-ME_r1i1p1': {'value': None, 'value_error': None},
        'Tropflux': {'value': None, 'value_error': None}},
       'metric': {'ERA-Interim': {'value': 4.274361614689152,
         'value_error': None},
        'Tropflux': {'value': 4.248843544142059, 'value_error': None}}}}},
    'r1i1p2': {'metadata': {'description_of_the_collection': 'Describe which science question this collection is about',
      'metrics': {'BiasSstLonRmse': {'diagnostic': {'ERA-Interim': {'name': 'ERA-Interim',
          'nyears': 40,
          'time_period': ['1979-1-16 12:0:0.0', '2019-3-16 12:0:0.0']},
         'HadISST': {'name': 'HadISST',
          'nyears': 151,
          'time_period': ['1870-1-16 11:59:59.5', '2020-10-16 12:0:0.0']},
         'NorESM1-ME_r1i1p2': {'keyerror': None,
          'name': 'NorESM1-ME_r1i1p2',
          'nyears': 156,
          'time_period': ['1850-1-16 12:0:0.0', '2005-12-16 12:0:0.0']},
         'Tropflux': {'name': 'Tropflux',
          'nyears': 40,
          'time_period': ['1979-1-15 0:0:0.0', '2018-12-15 12:0:0.0']},
         'method': 'Zonal root mean square error of equatorial_pacific sst, time series are linearly detrended, observations and model regridded to generic_1x1deg',
         'name': 'sst Zonal RMSE',
         'ref': 'Using CDAT regridding and rms (uncentered and biased) calculation',
         'time_frequency': 'monthly',
         'units': 'C'},
        'metric': {'datasets': "NorESM1-ME_r1i1p2; ERA-Interim's ts & HadISST's sst & Tropflux's sst; 's ",
         'method': 'The metric is the statistical value between the model and the observations',
         'name': 'BiasSstLonRmse',
         'units': 'C'}},
       'EnsoAmpl': {'diagnostic': {'ERA-Interim': {'keyerror': None,
          'name': 'ERA-Interim',
          'nyears': 40,
          'time_period': ['1979-1-16 12:0:0.0', '2019-3-16 12:0:0.0']},
         'HadISST': {'keyerror': None,
          'name': 'HadISST',
          'nyears': 151,
          'time_period': ['1870-1-16 11:59:59.5', '2020-10-16 12:0:0.0']},
         'NorESM1-ME_r1i1p2': {'keyerror': None,
          'name': 'NorESM1-ME_r1i1p2',
          'nyears': 156,
          'time_period': ['1850-1-16 12:0:0.0', '2005-12-16 12:0:0.0']},
         'Tropflux': {'keyerror': None,
          'name': 'Tropflux',
          'nyears': 40,
          'time_period': ['1979-1-15 0:0:0.0', '2018-12-15 12:0:0.0']},
         'method': 'Standard deviation of nino3.4 sstA, time series are linearly detrended',
         'name': 'ENSO amplitude',
         'ref': 'Using CDAT regression calculation',
         'time_frequency': 'monthly',
         'units': 'C'},
        'metric': {'datasets': "NorESM1-ME_r1i1p2; ERA-Interim's ts & HadISST's sst & Tropflux's sst; 's ",
         'method': 'The metric is the absolute value of the relative difference between model and observations values (M = 100 * abs[[model-obs] / obs])',
         'name': 'EnsoAmpl',
         'units': '%'}},
       'EnsoDuration': {'diagnostic': {'ERA-Interim': {'keyerror': None,
          'name': 'ERA-Interim',
          'nyears': 40,
          'time_period': ['1979-1-16 12:0:0.0', '2019-3-16 12:0:0.0']},
         'HadISST': {'keyerror': None,
          'name': 'HadISST',
          'nyears': 151,
          'time_period': ['1870-1-16 11:59:59.5', '2020-10-16 12:0:0.0']},
         'NorESM1-ME_r1i1p2': {'keyerror': None,
          'name': 'NorESM1-ME_r1i1p2',
          'nyears': 156,
          'time_period': ['1850-1-16 12:0:0.0', '2005-12-16 12:0:0.0']},
         'Tropflux': {'keyerror': None,
          'name': 'Tropflux',
          'nyears': 40,
          'time_period': ['1979-1-15 0:0:0.0', '2018-12-15 12:0:0.0']},
         'method': 'nino3.4 SSTA during DEC regressed against nino3.4 SSTA during 6 years (centered on ENSO), the duration is the number of consecutive months during which the regression is above 0.25, time series are linearly detrended, smoothing using a triangle shaped window of 5 points',
         'name': 'ENSO Duration based on life cyle SSTA pattern',
         'ref': 'Using CDAT',
         'time_frequency': 'monthly',
         'units': 'months'},
        'metric': {'datasets': "NorESM1-ME_r1i1p2; ERA-Interim's ts & HadISST's sst & Tropflux's sst; 's ",
         'method': 'The metric is the absolute value of the relative difference between model and observations values (M = 100 * abs[[model-obs] / obs])',
         'name': 'EnsoDuration',
         'units': '%'}},
       'EnsoSeasonality': {'diagnostic': {'ERA-Interim': {'keyerror': None,
          'name': 'ERA-Interim',
          'nyears': 40,
          'time_period': ['1979-1-16 12:0:0.0', '2019-3-16 12:0:0.0']},
         'HadISST': {'keyerror': None,
          'name': 'HadISST',
          'nyears': 151,
          'time_period': ['1870-1-16 11:59:59.5', '2020-10-16 12:0:0.0']},
         'NorESM1-ME_r1i1p2': {'keyerror': None,
          'name': 'NorESM1-ME_r1i1p2',
          'nyears': 156,
          'time_period': ['1850-1-16 12:0:0.0', '2005-12-16 12:0:0.0']},
         'Tropflux': {'keyerror': None,
          'name': 'Tropflux',
          'nyears': 40,
          'time_period': ['1979-1-15 0:0:0.0', '2018-12-15 12:0:0.0']},
         'method': 'Ratio between NDJ and MAM standard deviation nino3.4 sstA, time series are linearly detrended',
         'name': 'ENSO seasonality',
         'ref': 'Using CDAT std dev calculation',
         'time_frequency': 'monthly',
         'units': 'C/C'},
        'metric': {'datasets': "NorESM1-ME_r1i1p2; ERA-Interim's ts & HadISST's sst & Tropflux's sst; 's ",
         'method': 'The metric is the absolute value of the relative difference between model and observations values (M = 100 * abs[[model-obs] / obs])',
         'name': 'EnsoSeasonality',
         'units': '%'}},
       'EnsoSstDiversity_2': {'diagnostic': {'ERA-Interim': {'keyerror': None,
          'name': 'ERA-Interim',
          'nyears': 40,
          'time_period': ['1979-1-16 12:0:0.0', '2019-3-16 12:0:0.0']},
         'HadISST': {'keyerror': None,
          'name': 'HadISST',
          'nyears': 151,
          'time_period': ['1870-1-16 11:59:59.5', '2020-10-16 12:0:0.0']},
         'NorESM1-ME_r1i1p2': {'keyerror': None,
          'name': 'NorESM1-ME_r1i1p2',
          'nyears': 156,
          'time_period': ['1850-1-16 12:0:0.0', '2005-12-16 12:0:0.0']},
         'Tropflux': {'keyerror': None,
          'name': 'Tropflux',
          'nyears': 40,
          'time_period': ['1979-1-15 0:0:0.0', '2018-12-15 12:0:0.0']},
         'method': 'Nino (Nina) events = nino3.4 sstA > 0.75 (< -0.75) during DEC, zonal SSTA (meridional averaged [-5.0 ; 5.0]), the zonal SSTA maximum (minimum) is located for each event, the diversity is the interquartile range (IQR = Q3 - Q1), time series are linearly detrended, smoothing using a triangle shaped window of 5 points',
         'name': 'ENSO Diversity (interquartile range)',
         'ref': 'Using CDAT regridding',
         'time_frequency': 'monthly',
         'units': 'long'},
        'metric': {'datasets': "NorESM1-ME_r1i1p2; ERA-Interim's ts & HadISST's sst & Tropflux's sst; 's ",
         'method': 'The metric is the absolute value of the relative difference between model and observations values (M = 100 * abs[[model-obs] / obs])',
         'name': 'EnsoSstDiversity',
         'units': '%'}},
       'EnsoSstLonRmse': {'diagnostic': {'ERA-Interim': {'name': 'ERA-Interim',
          'nyears': 40,
          'time_period': ['1979-1-16 12:0:0.0', '2019-3-16 12:0:0.0']},
         'HadISST': {'name': 'HadISST',
          'nyears': 151,
          'time_period': ['1870-1-16 11:59:59.5', '2020-10-16 12:0:0.0']},
         'NorESM1-ME_r1i1p2': {'keyerror': None,
          'name': 'NorESM1-ME_r1i1p2',
          'nyears': 156,
          'time_period': ['1850-1-16 12:0:0.0', '2005-12-16 12:0:0.0']},
         'Tropflux': {'name': 'Tropflux',
          'nyears': 40,
          'time_period': ['1979-1-15 0:0:0.0', '2018-12-15 12:0:0.0']},
         'method': 'nino3.4 SSTA during DEC regressed against equatorial_pacific SSTA, time series are linearly detrended, smoothing using a triangle shaped window of 5 points, observations and model regridded to generic_1x1deg',
         'name': 'ENSO Zonal SSTA pattern',
         'ref': 'Using CDAT regridding and rms (uncentered and biased) calculation',
         'time_frequency': 'monthly',
         'units': 'C/C'},
        'metric': {'datasets': "NorESM1-ME_r1i1p2; ERA-Interim's ts & HadISST's sst & Tropflux's sst; 's ",
         'method': 'The metric is the statistical value between the model and the observations',
         'name': 'EnsoSstLonRmse',
         'units': 'C/C'}},
       'EnsoSstSkew': {'diagnostic': {'ERA-Interim': {'keyerror': None,
          'name': 'ERA-Interim',
          'nyears': 40,
          'time_period': ['1979-1-16 12:0:0.0', '2019-3-16 12:0:0.0']},
         'HadISST': {'keyerror': None,
          'name': 'HadISST',
          'nyears': 151,
          'time_period': ['1870-1-16 11:59:59.5', '2020-10-16 12:0:0.0']},
         'NorESM1-ME_r1i1p2': {'keyerror': None,
          'name': 'NorESM1-ME_r1i1p2',
          'nyears': 156,
          'time_period': ['1850-1-16 12:0:0.0', '2005-12-16 12:0:0.0']},
         'Tropflux': {'keyerror': None,
          'name': 'Tropflux',
          'nyears': 40,
          'time_period': ['1979-1-15 0:0:0.0', '2018-12-15 12:0:0.0']},
         'method': 'Standard deviation of nino3.4 sstA, time series are linearly detrended',
         'name': 'ENSO skewness',
         'ref': 'Using CDAT regression calculation',
         'time_frequency': 'monthly',
         'units': 'C'},
        'metric': {'datasets': "NorESM1-ME_r1i1p2; ERA-Interim's ts & HadISST's sst & Tropflux's sst; 's ",
         'method': 'The metric is the absolute value of the relative difference between model and observations values (M = 100 * abs[[model-obs] / obs])',
         'name': 'EnsoSstSkew',
         'units': '%'}},
       'EnsoSstTsRmse': {'diagnostic': {'ERA-Interim': {'name': 'ERA-Interim',
          'nyears': 40,
          'time_period': ['1979-1-16 12:0:0.0', '2019-3-16 12:0:0.0']},
         'HadISST': {'name': 'HadISST',
          'nyears': 151,
          'time_period': ['1870-1-16 11:59:59.5', '2020-10-16 12:0:0.0']},
         'NorESM1-ME_r1i1p2': {'keyerror': None,
          'name': 'NorESM1-ME_r1i1p2',
          'nyears': 156,
          'time_period': ['1850-1-16 12:0:0.0', '2005-12-16 12:0:0.0']},
         'Tropflux': {'name': 'Tropflux',
          'nyears': 40,
          'time_period': ['1979-1-15 0:0:0.0', '2018-12-15 12:0:0.0']},
         'method': 'nino3.4 SSTA during DEC regressed against nino3.4 SSTA during 6 years (centered on ENSO), time series are linearly detrended, smoothing using a triangle shaped window of 5 points',
         'name': 'ENSO life cyle SSTA pattern',
         'ref': 'Using CDAT regridding and rms (uncentered and biased) calculation',
         'time_frequency': 'monthly',
         'units': 'C/C'},
        'metric': {'datasets': "NorESM1-ME_r1i1p2; ERA-Interim's ts & HadISST's sst & Tropflux's sst; 's ",
         'method': 'The metric is the statistical value between the model and the observations',
         'name': 'EnsoSstTsRmse',
         'units': 'C/C'}},
       'SeasonalSstLonRmse': {'diagnostic': {'ERA-Interim': {'name': 'ERA-Interim',
          'nyears': 40,
          'time_period': ['1979-1-16 12:0:0.0', '2019-3-16 12:0:0.0']},
         'HadISST': {'name': 'HadISST',
          'nyears': 151,
          'time_period': ['1870-1-16 11:59:59.5', '2020-10-16 12:0:0.0']},
         'NorESM1-ME_r1i1p2': {'keyerror': None,
          'name': 'NorESM1-ME_r1i1p2',
          'nyears': 156,
          'time_period': ['1850-1-16 12:0:0.0', '2005-12-16 12:0:0.0']},
         'Tropflux': {'name': 'Tropflux',
          'nyears': 40,
          'time_period': ['1979-1-15 0:0:0.0', '2018-12-15 12:0:0.0']},
         'method': 'Zonal root mean square error of equatorial_pacific climatological sst STD, time series are linearly detrended, observations and model regridded to generic_1x1deg',
         'name': 'sst zonal seasonality RMSE',
         'ref': 'Using CDAT regridding and rms (uncentered and biased) calculation',
         'time_frequency': 'monthly',
         'units': 'C'},
        'metric': {'datasets': "NorESM1-ME_r1i1p2; ERA-Interim's ts & HadISST's sst & Tropflux's sst; 's ",
         'method': 'The metric is the statistical value between the model and the observations',
         'name': 'SeasonalSstLonRmse',
         'units': 'C'}}},
      'name': 'Metrics Collection for ENSO performance'},
     'value': {'BiasSstLonRmse': {'diagnostic': {'ERA-Interim': {'value': None,
         'value_error': None},
        'HadISST': {'value': None, 'value_error': None},
        'NorESM1-ME_r1i1p2': {'value': None, 'value_error': None},
        'Tropflux': {'value': None, 'value_error': None}},
       'metric': {'ERA-Interim': {'value': 1.1111472403956237,
         'value_error': None},
        'HadISST': {'value': 0.8861451193861818, 'value_error': None},
        'Tropflux': {'value': 1.158714411438173, 'value_error': None}}},
      'EnsoAmpl': {'diagnostic': {'ERA-Interim': {'value': 0.8989844997845644,
         'value_error': 0.14214193002531866},
        'HadISST': {'value': 0.7665787872085695,
         'value_error': 0.06238329697691264},
        'NorESM1-ME_r1i1p2': {'value': 0.7818418717955161,
         'value_error': 0.06259744774906481},
        'Tropflux': {'value': 0.9039789553693535,
         'value_error': 0.14293162279134272}},
       'metric': {'ERA-Interim': {'value': 13.030550361782737,
         'value_error': 20.71420608940979},
        'HadISST': {'value': 1.991065346658729,
         'value_error': 16.46573568697583},
        'Tropflux': {'value': 13.51105386340922,
         'value_error': 20.599760745662312}}},
      'EnsoDuration': {'diagnostic': {'ERA-Interim': {'value': 13.0,
         'value_error': None},
        'HadISST': {'value': 13.0, 'value_error': None},
        'NorESM1-ME_r1i1p2': {'value': 13.0, 'value_error': None},
        'Tropflux': {'value': 13.0, 'value_error': None}},
       'metric': {'ERA-Interim': {'value': 0.0, 'value_error': None},
        'HadISST': {'value': 0.0, 'value_error': None},
        'Tropflux': {'value': 0.0, 'value_error': None}}},
      'EnsoSeasonality': {'diagnostic': {'ERA-Interim': {'value': 2.0466846866656914,
         'value_error': 0.6513411033995022},
        'HadISST': {'value': 1.6639865947361325,
         'value_error': 0.2712772451657809},
        'NorESM1-ME_r1i1p2': {'value': 1.6037398475039473,
         'value_error': 0.25721743488686116},
        'Tropflux': {'value': 2.0532132553583624,
         'value_error': 0.6534187683977347}},
       'metric': {'ERA-Interim': {'value': 21.642065436242518,
         'value_error': 37.50430515635549},
        'HadISST': {'value': 3.6206269583403055,
         'value_error': 31.170488069020507},
        'Tropflux': {'value': 21.89121888247138,
         'value_error': 37.385053329081735}}},
      'EnsoSstDiversity_2': {'diagnostic': {'ERA-Interim': {'value': 33.25,
         'value_error': None},
        'HadISST': {'value': 49.0, 'value_error': None},
        'NorESM1-ME_r1i1p2': {'value': 11.25, 'value_error': None},
        'Tropflux': {'value': 32.0, 'value_error': None}},
       'metric': {'ERA-Interim': {'value': 66.16541353383458,
         'value_error': None},
        'HadISST': {'value': 77.04081632653062, 'value_error': None},
        'Tropflux': {'value': 64.84375, 'value_error': None}}},
      'EnsoSstLonRmse': {'diagnostic': {'ERA-Interim': {'value': None,
         'value_error': None},
        'HadISST': {'value': None, 'value_error': None},
        'NorESM1-ME_r1i1p2': {'value': None, 'value_error': None},
        'Tropflux': {'value': None, 'value_error': None}},
       'metric': {'ERA-Interim': {'value': 0.17480145355338786,
         'value_error': None},
        'HadISST': {'value': 0.17343749357474267, 'value_error': None},
        'Tropflux': {'value': 0.17335203150193837, 'value_error': None}}},
      'EnsoSstSkew': {'diagnostic': {'ERA-Interim': {'value': 0.39098111106809963,
         'value_error': 0.061819541653923164},
        'HadISST': {'value': 0.38989908235027515,
         'value_error': 0.03172953733021198},
        'NorESM1-ME_r1i1p2': {'value': 0.0007938998118844778,
         'value_error': 6.35628555916337e-05},
        'Tropflux': {'value': 0.39744741059612115,
         'value_error': 0.06284195338099416}},
       'metric': {'ERA-Interim': {'value': 99.79694676049293,
         'value_error': 0.048362806339103566},
        'HadISST': {'value': 99.79638325714978,
         'value_error': 0.032872482092612475},
        'Tropflux': {'value': 99.80025034992838,
         'value_error': 0.047575964146986865}}},
      'EnsoSstTsRmse': {'diagnostic': {'ERA-Interim': {'value': None,
         'value_error': None},
        'HadISST': {'value': None, 'value_error': None},
        'NorESM1-ME_r1i1p2': {'value': None, 'value_error': None},
        'Tropflux': {'value': None, 'value_error': None}},
       'metric': {'ERA-Interim': {'value': 0.09206319458614177,
         'value_error': None},
        'HadISST': {'value': 0.0818447693868448, 'value_error': None},
        'Tropflux': {'value': 0.08810227349974636, 'value_error': None}}},
      'SeasonalSstLonRmse': {'diagnostic': {'ERA-Interim': {'value': None,
         'value_error': None},
        'HadISST': {'value': None, 'value_error': None},
        'NorESM1-ME_r1i1p2': {'value': None, 'value_error': None},
        'Tropflux': {'value': None, 'value_error': None}},
       'metric': {'ERA-Interim': {'value': 0.11345338857885123,
         'value_error': None},
        'HadISST': {'value': 0.13009520454651768, 'value_error': None},
        'Tropflux': {'value': 0.11711470108057648, 'value_error': None}}}}}}},
  'obs': {'ERA-Interim': {'pr': {'areaname': None,
     'landmaskname': 'lsmask',
     'path + filename': '/p/user_pub/PCMDIobs/PCMDIobs2/atmos/mon/pr/ERA-INT/gn/v20200707/pr_mon_ERA-INT_BE_gn_v20200707_197901-201903.nc',
     'path + filename_area': None,
     'path + filename_landmask': None,
     'varname': 'pr'},
    'sst': {'areaname': None,
     'landmaskname': 'lsmask',
     'path + filename': '/p/user_pub/PCMDIobs/PCMDIobs2/atmos/mon/ts/ERA-INT/gn/v20200707/ts_mon_ERA-INT_BE_gn_v20200707_197901-201903.nc',
     'path + filename_area': None,
     'path + filename_landmask': None,
     'varname': 'ts'},
    'taux': {'areaname': None,
     'landmaskname': 'lsmask',
     'path + filename': '/p/user_pub/PCMDIobs/PCMDIobs2/atmos/mon/tauu/ERA-INT/gn/v20200707/tauu_mon_ERA-INT_BE_gn_v20200707_197901-201903.nc',
     'path + filename_area': None,
     'path + filename_landmask': None,
     'varname': 'tauu'}},
   'GPCPv2.3': {'pr': {'areaname': None,
     'landmaskname': 'lsmask',
     'path + filename': '/p/user_pub/pmp/pmp_obs_preparation/orig/data/GPCP_v2.3_mon_jwl/precip.mon.mean.nc',
     'path + filename_area': None,
     'path + filename_landmask': '/work/lee1043/DATA/GPCP/gpcp_25_lsmask.nc',
     'varname': 'precip'}},
   'HadISST': {'sst': {'areaname': None,
     'landmaskname': None,
     'path + filename': '/work/lee1043/DATA/HadISSTv1.1/HadISST_sst.nc',
     'path + filename_area': None,
     'path + filename_landmask': None,
     'varname': 'sst'}},
   'Tropflux': {'sst': {'areaname': None,
     'landmaskname': None,
     'path + filename': '/work/lee1043/DATA/TropFlux/monthly/xmls/Tropflux_sst_mo.xml',
     'path + filename_area': None,
     'path + filename_landmask': None,
     'varname': 'sst'},
    'taux': {'areaname': None,
     'landmaskname': None,
     'path + filename': '/work/lee1043/DATA/TropFlux/monthly/xmls/Tropflux_taux_mo.xml',
     'path + filename_area': None,
     'path + filename_landmask': None,
     'varname': 'taux'}}}},
 'YAML': 'name: pmp_nightly_20201021\nchannels:\n  - pcmdi/label/nightly\n  - cdat/label/nightly\n  - conda-forge\n  - defaults\ndependencies:\n  - _libgcc_mutex=0.1=main\n  - argon2-cffi=20.1.0=py37h7b6447c_1\n  - async_generator=1.10=py37h28b3542_0\n  - attrs=20.3.0=pyhd3eb1b0_0\n  - backcall=0.2.0=py_0\n  - basemap=1.2.1=py37hd1be537_2\n  - bleach=3.2.1=py_0\n  - bokeh=2.2.3=py37_0\n  - brotlipy=0.7.0=py37h27cfd23_1003\n  - bzip2=1.0.8=h7b6447c_0\n  - ca-certificates=2020.11.8=ha878542_0\n  - cdat_info=8.2.2020.08.27.15.53.ga42e5c8=pyh9f0ad1d_0\n  - cdms2=3.1.4.2020.08.28.18.50.gb7d81f3=py37h46565e8_0\n  - cdp=1.6.0=py_0\n  - cdtime=3.1.4.2020.10.12.15.52.g2b715b5=py37hd741776_0\n  - cdutil=8.2.2020.09.28.17.09.g484910c=pyh9f0ad1d_0\n  - certifi=2020.11.8=py37h89c1867_0\n  - cffi=1.14.0=py37h2e261b9_0\n  - cftime=1.3.0=py37ha21ca33_0\n  - chardet=3.0.4=py37h06a4308_1003\n  - cia=0.0.6=0\n  - click=7.1.2=py_0\n  - cloudpickle=1.6.0=py_0\n  - cmocean=2.0=py_3\n  - colorspacious=1.1.2=pyh24bf2e0_0\n  - cryptography=3.2.1=py37h3c74f83_1\n  - curl=7.71.1=hbc83047_1\n  - cycler=0.10.0=py37_0\n  - cytoolz=0.11.0=py37h7b6447c_0\n  - dask=2.30.0=py_0\n  - dask-core=2.30.0=py_0\n  - decorator=4.4.2=py_0\n  - defusedxml=0.6.0=py_0\n  - distarray=2.12.2=py_1\n  - distributed=2.30.1=py37h06a4308_0\n  - dv3d=8.2.2020.07.17.21.42.g86f50aa=pyh9f0ad1d_0\n  - entrypoints=0.3=py37_0\n  - eofs=1.4.0=py_0\n  - esmf=8.0.1=nompi_hbeb3ca6_1\n  - esmpy=8.0.1=nompi_py37h59b2dc9_2\n  - expat=2.2.10=he6710b0_2\n  - ffmpeg=4.2.3=h167e202_0\n  - freetype=2.10.4=h5ab3b9f_0\n  - fsspec=0.8.3=py_0\n  - future=0.18.2=py37_1\n  - g2clib=1.6.0=h838ce51_4\n  - genutil=8.2.2020.10.07.17.47.ge34ccd5=py37h161383b_0\n  - geos=3.8.0=he1b5a44_1\n  - ghostscript=9.53.3=he1b5a44_1\n  - gmp=6.2.0=he1b5a44_3\n  - gnutls=3.6.5=h71b1129_1002\n  - hdf4=4.2.13=h3ca952b_2\n  - hdf5=1.10.6=nompi_h54c07f9_1110\n  - heapdict=1.0.1=py_0\n  - idna=2.10=py_0\n  - importlib-metadata=2.0.0=py_1\n  - importlib_metadata=2.0.0=1\n  - ipykernel=5.3.4=py37h5ca1d4c_0\n  - ipython=7.19.0=py37hb070fc8_0\n  - ipython_genutils=0.2.0=py37_0\n  - jasper=1.900.1=hd497a04_4\n  - jedi=0.17.2=py37_0\n  - jinja2=2.11.2=py_0\n  - jpeg=9d=h516909a_0\n  - json5=0.9.5=py_0\n  - jsonschema=3.2.0=py_2\n  - jupyter_client=6.1.7=py_0\n  - jupyter_core=4.6.3=py37_0\n  - jupyterlab=2.2.6=py_0\n  - jupyterlab_pygments=0.1.2=py_0\n  - jupyterlab_server=1.2.0=py_0\n  - kiwisolver=1.3.0=py37h2531618_0\n  - krb5=1.18.2=h173b8e3_0\n  - lame=3.100=h7b6447c_0\n  - lazy-object-proxy=1.5.1=py37h7b6447c_0\n  - lcms2=2.11=h396b838_0\n  - ld_impl_linux-64=2.33.1=h53a641e_7\n  - libblas=3.8.0=17_openblas\n  - libcblas=3.8.0=17_openblas\n  - libcdms=3.1.2=h054cd8a_112\n  - libcf=1.0.3=py37hda0e254_109\n  - libcurl=7.71.1=h20c2e04_1\n  - libdrs=3.1.2=hc2e2db3_113\n  - libdrs_f=3.1.2=hae7e664_110\n  - libedit=3.1.20191231=h14c3975_1\n  - libffi=3.2.1=hf484d3e_1007\n  - libgcc-ng=9.1.0=hdf63c60_0\n  - libgfortran-ng=7.5.0=hae1eefd_17\n  - libgfortran4=7.5.0=hae1eefd_17\n  - libiconv=1.15=h63c8f33_5\n  - liblapack=3.8.0=17_openblas\n  - libnetcdf=4.7.4=nompi_hefab0ff_106\n  - libopenblas=0.3.10=pthreads_hb3c22a3_5\n  - libpng=1.6.37=hbc83047_0\n  - libsodium=1.0.18=h7b6447c_0\n  - libssh2=1.9.0=h1ba5d50_1\n  - libstdcxx-ng=9.1.0=hdf63c60_0\n  - libtiff=4.1.0=h2733197_1\n  - libuuid=2.32.1=h14c3975_1000\n  - locket=0.2.0=py37_1\n  - lz4-c=1.9.2=heb0550a_3\n  - markupsafe=1.1.1=py37h14c3975_1\n  - matplotlib=3.3.2=0\n  - matplotlib-base=3.3.2=py37h817c723_0\n  - mesalib=18.3.1=h590aaf7_0\n  - mistune=0.8.4=py37h14c3975_1001\n  - msgpack-python=1.0.0=py37hfd86e86_1\n  - nb_conda=2.2.1=py37_0\n  - nb_conda_kernels=2.3.0=py37_0\n  - nbclient=0.5.1=py_0\n  - nbconvert=6.0.7=py37_0\n  - nbformat=5.0.8=py_0\n  - ncurses=6.2=he6710b0_1\n  - nest-asyncio=1.4.2=pyhd3eb1b0_0\n  - netcdf-fortran=4.5.3=nompi_hfef6a68_101\n  - netcdf4=1.5.4=nompi_py37hcbfd489_103\n  - nettle=3.4.1=hbb512f6_0\n  - notebook=6.1.4=py37_0\n  - numpy=1.19.2=py37h7008fea_1\n  - olefile=0.46=py37_0\n  - openblas=0.3.10=pthreads_h43bd3aa_5\n  - openh264=2.1.1=h8b12597_0\n  - openssl=1.1.1h=h516909a_0\n  - output_viewer=1.3.1=py_1\n  - packaging=20.4=py_0\n  - pandas=1.1.3=py37he6710b0_0\n  - pandoc=2.11=hb0f4dca_0\n  - pandocfilters=1.4.3=py37h06a4308_1\n  - parso=0.7.0=py_0\n  - partd=1.1.0=py_0\n  - pcmdi_metrics=1.2.2020.07.22.22.42.gf7c21da=pyh95af2a2_0\n  - pexpect=4.8.0=pyhd3eb1b0_3\n  - pickleshare=0.7.5=py37_1001\n  - pillow=8.0.1=py37he98fc37_0\n  - pip=20.2.4=py37h06a4308_0\n  - proj4=5.2.0=he6710b0_1\n  - prometheus_client=0.8.0=py_0\n  - prompt-toolkit=3.0.8=py_0\n  - psutil=5.7.2=py37h7b6447c_0\n  - ptyprocess=0.6.0=pyhd3eb1b0_2\n  - pycparser=2.20=py_2\n  - pygments=2.7.2=pyhd3eb1b0_0\n  - pyopenssl=19.1.0=pyhd3eb1b0_1\n  - pyparsing=2.4.7=py_0\n  - pyproj=1.9.6=py37h516909a_1002\n  - pyrsistent=0.17.3=py37h7b6447c_0\n  - pyshp=2.1.2=pyh9f0ad1d_0\n  - pysocks=1.7.1=py37_1\n  - python=3.7.7=hcf32534_0_cpython\n  - python-dateutil=2.8.1=py_0\n  - python_abi=3.7=1_cp37m\n  - pytz=2020.1=py_0\n  - pyyaml=5.3.1=py37h7b6447c_1\n  - pyzmq=19.0.2=py37he6710b0_1\n  - readline=8.0=h7b6447c_0\n  - requests=2.24.0=py_0\n  - scipy=1.5.2=py37hb14ef9d_2\n  - send2trash=1.5.0=py37_0\n  - setuptools=50.3.1=py37h06a4308_1\n  - six=1.15.0=py37h06a4308_0\n  - sortedcontainers=2.2.2=py_0\n  - sqlite=3.33.0=h62c20be_0\n  - tblib=1.7.0=py_0\n  - terminado=0.9.1=py37_0\n  - testpath=0.4.4=py_0\n  - tk=8.6.10=hbc83047_0\n  - toolz=0.11.1=py_0\n  - tornado=6.0.4=py37h7b6447c_1\n  - traitlets=5.0.5=py_0\n  - typing_extensions=3.7.4.3=py_0\n  - udunits2=2.2.25=hd30922c_1\n  - urllib3=1.25.11=py_0\n  - vcs=8.2.2020.08.06.20.48.g4abe712=pyh9f0ad1d_0\n  - vcsaddons=8.2.2020.07.22.18.33.g40b269e=py37h8f50634_0\n  - vtk-cdat=8.2.0.8.2.2020.07.20.18.56.g3aa9eaf=py37_mesalibh34e701b_0\n  - wcwidth=0.2.5=py_0\n  - webencodings=0.5.1=py37_1\n  - wheel=0.35.1=pyhd3eb1b0_0\n  - x264=1!152.20180806=h7b6447c_0\n  - xarray=0.16.1=py_0\n  - xz=5.2.5=h7b6447c_0\n  - yaml=0.2.5=h7b6447c_0\n  - zeromq=4.3.3=he6710b0_3\n  - zict=2.0.0=py_0\n  - zipp=3.4.0=pyhd3eb1b0_0\n  - zlib=1.2.11=h7b6447c_3\n  - zstd=1.4.5=h9ceee32_0\n  - pip:\n    - ensometrics==1.0-2020\nprefix: /export/lee1043/anaconda3/envs/pmp_nightly_20201021\n\n',
 'json_structure': ['type', 'data', 'metric', 'item', 'value or description'],
 'json_version': 3.0,
 'provenance': {'commandLine': 'PMPdriver_EnsoMetrics.py -p ./my_Param_ENSO.py --mip cmip5 --metricsCollection ENSO_perf --case_id v20210104 --modnames NorESM1-M --realization r3i1p1',
  'conda': {'Platform': 'linux-64',
   'PythonVersion': '3.7.3.final.0',
   'Version': '4.8.3',
   'buildVersion': '3.18.8'},
  'date': '2021-01-04 23:16:29',
  'history': 'import EnsoMetrics\nfrom ...script.PMPdriver_lib import AddParserArgument\nfrom ...script.PMPdriver_lib import AddParserArgument\nfrom script.PMPdriver_lib import AddParserArgument\nfrom script.PMPdriver_libfrom PMPdriver_lib import AddParserArgument\n import AddParserArgument\nfrom PMPdriver_lib import AddParserArgument\n',
  'openGL': {'GLX': {'client': {}, 'server': {}}},
  'osAccess': False,
  'packages': {'PMP': 'v1.2.1-404-g9652ad1',
   'PMPObs': "See 'References' key below, for detailed obs provenance information.",
   'blas': '0.3.10',
   'cdat_info': '8.2.2020.08.27.15.53.ga42e5c8',
   'cdms': '3.1.4.2020.08.28.18.50.gb7d81f3',
   'cdp': '1.6.0',
   'cdtime': '3.1.4.2020.10.12.15.52.g2b715b5',
   'cdutil': '8.2.2020.09.28.17.09.g484910c',
   'clapack': None,
   'esmf': '8.0.1',
   'esmpy': '8.0.1',
   'genutil': '8.2.2020.10.07.17.47.ge34ccd5',
   'lapack': '3.8.0',
   'matplotlib': '3.3.2',
   'mesalib': '18.3.1',
   'numpy': '1.19.2',
   'python': '3.7.7',
   'scipy': '1.5.2',
   'uvcdat': None,
   'vcs': '8.2.2020.08.06.20.48.g4abe712',
   'vtk': '8.2.0.8.2.2020.07.20.18.56.g3aa9eaf'},
  'platform': {'Name': 'gates.llnl.gov',
   'OS': 'Linux',
   'Version': '3.10.0-1127.19.1.el7.x86_64'},
  'script': '#!/usr/bin/env python\n# =================================================\n# Dependencies\n# -------------------------------------------------\nfrom __future__ import print_function\n\nimport cdms2\nimport glob\nimport json\nimport os\nimport pkg_resources\nimport sys\n\nfrom genutil import StringConstructor\nfrom PMPdriver_lib import AddParserArgument\nfrom PMPdriver_lib import metrics_to_json\nfrom PMPdriver_lib import sort_human\nfrom PMPdriver_lib import find_realm, get_file\nfrom EnsoMetrics.EnsoCollectionsLib import CmipVariables, defCollection, ReferenceObservations\nfrom EnsoMetrics.EnsoComputeMetricsLib import ComputeCollection\n\n# To avoid below error when using multi cores\n# OpenBLAS blas_thread_init: pthread_create failed for thread XX of 96: Resource temporarily unavailable\nos.environ[\'OPENBLAS_NUM_THREADS\'] = \'1\'\n\n# =================================================\n# Collect user defined options\n# -------------------------------------------------\nparam = AddParserArgument()\n\n# Pre-defined options\nmip = param.mip\nexp = param.exp\nprint(\'mip:\', mip)\nprint(\'exp:\', exp)\n\n# Path to model data as string template\nmodpath = param.process_templated_argument("modpath")\nmodpath_lf = param.process_templated_argument("modpath_lf")\n\n# Check given model option\nmodels = param.modnames\n\n# Include all models if conditioned\nif (\'all\' in [m.lower() for m in models]) or (models == \'all\'):\n    model_index_path = param.modpath.split(\'/\')[-1].split(\'.\').index("%(model)")\n    models = ([p.split(\'/\')[-1].split(\'.\')[model_index_path] for p in glob.glob(modpath(\n                mip=mip, exp=exp, model=\'*\', realization=\'*\', variable=\'ts\'))])\n    # remove duplicates\n    models = sorted(list(dict.fromkeys(models)), key=lambda s: s.lower())\n\nprint(\'models:\', models)\n\n# Realizations\nrealization = param.realization\nprint(\'realization: \', realization)\n\n# Metrics Collection\nmc_name = param.metricsCollection \ndict_mc = defCollection(mc_name)\nlist_metric = sorted(dict_mc[\'metrics_list\'].keys())\nprint(\'mc_name:\', mc_name)\n\n# case id\ncase_id = param.case_id\n\n# Output\noutdir_template = param.process_templated_argument("results_dir")\noutdir = StringConstructor(str(outdir_template(\n    output_type=\'%(output_type)\',\n    mip=mip, exp=exp, metricsCollection=mc_name, case_id=case_id)))\nnetcdf_path = outdir(output_type=\'diagnostic_results\')\njson_name_template = param.process_templated_argument("json_name")\nnetcdf_name_template = param.process_templated_argument("netcdf_name")\n\nprint(\'outdir:\', str(outdir_template(\n    output_type=\'%(output_type)\',\n    mip=mip, exp=exp, metricsCollection=mc_name))) \nprint(\'netcdf_path:\', netcdf_path)\n\n# Switches\ndebug = param.debug\nprint(\'debug:\', debug)\n\n# =================================================\n# Prepare loop iteration\n# -------------------------------------------------\n# Environmental setup\ntry:\n    egg_pth = pkg_resources.resource_filename(\n        pkg_resources.Requirement.parse("pcmdi_metrics"), "share/pmp")\nexcept Exception:\n    egg_pth = os.path.join(sys.prefix, "share", "pmp")\nprint(\'egg_pth:\', egg_pth)\n\n# Create output directory\nfor output_type in [\'graphics\', \'diagnostic_results\', \'metrics_results\']:\n    if not os.path.exists(outdir(output_type=output_type)):\n        os.makedirs(outdir(output_type=output_type))\n    print(outdir(output_type=output_type))\n\n# list of variables\nlist_variables = list()\nfor metric in list_metric:\n    listvar = dict_mc[\'metrics_list\'][metric][\'variables\']\n    for var in listvar:\n        if var not in list_variables:\n            list_variables.append(var)\nlist_variables = sorted(list_variables)\nprint(list_variables)\n\n# list of observations\nlist_obs = list()\nfor metric in list_metric:\n    dict_var_obs = dict_mc[\'metrics_list\'][metric][\'obs_name\']\n    for var in dict_var_obs.keys():\n        for obs in dict_var_obs[var]:\n            if obs not in list_obs:\n                list_obs.append(obs)\nlist_obs = sorted(list_obs)\n\n#\n# finding file and variable name in file for each observations dataset\n#\ndict_obs = dict()\n\nfor obs in list_obs:\n    # be sure to add your datasets to EnsoCollectionsLib.ReferenceObservations if needed\n    dict_var = ReferenceObservations(obs)[\'variable_name_in_file\']\n    dict_obs[obs] = dict()\n    for var in list_variables:\n        #\n        # finding variable name in file\n        #\n        try: var_in_file = dict_var[var][\'var_name\']\n        except:\n            print(\'\\033[95m\' + str(var) + " is not available for " + str(obs) + " or unscripted" + \'\\033[0m\')\n        else:\n            if isinstance(var_in_file, list):\n                var0 = var_in_file[0]\n            else:\n                var0 = var_in_file\n\n            try:\n                # finding file for \'obs\', \'var\'\n                file_name = param.reference_data_path[obs].replace(\'VAR\', var0)\n                file_areacell = None ## temporary for now\n                try:\n                    file_landmask = param.reference_data_lf_path[obs]\n                except:\n                    file_landmask = None\n                try:\n                    areacell_in_file = dict_var[\'areacell\'][\'var_name\']\n                except:\n                    areacell_in_file = None\n                try:\n                    landmask_in_file = dict_var[\'landmask\'][\'var_name\']\n                except:\n                    landmask_in_file = None\n                # if var_in_file is a list (like for thf) all variables should be read from the same realm\n                if isinstance(var_in_file, list):\n                    list_files = list()\n                    list_files = [param.reference_data_path[obs].replace(\'VAR\', var1) for var1 in var_in_file]\n                    list_areacell = [file_areacell for var1 in var_in_file]\n                    list_name_area = [areacell_in_file for var1 in var_in_file]\n                    try:\n                        list_landmask = [param.reference_data_lf_path[obs] for var1 in var_in_file]\n                    except:\n                        list_landmask = None\n                    list_name_land = [landmask_in_file for var1 in var_in_file]\n                else:\n                    list_files = file_name\n                    list_areacell = file_areacell\n                    list_name_area = areacell_in_file\n                    list_landmask = file_landmask\n                    list_name_land = landmask_in_file\n                dict_obs[obs][var] = {\'path + filename\': list_files, \'varname\': var_in_file,\n                                      \'path + filename_area\': list_areacell, \'areaname\': list_name_area,\n                                      \'path + filename_landmask\': list_landmask, \'landmaskname\': list_name_land}\n            except:\n                print(\'\\033[95m\' + \'Observation dataset\' + str(obs) + " is not given for variable " + str(var) + \'\\033[0m\')\n\nprint(\'PMPdriver: dict_obs readin end\')\n\n# =================================================\n# Loop for Models \n# -------------------------------------------------\n# finding file and variable name in file for each observations dataset\ndict_metric, dict_dive = dict(), dict()\ndict_var = CmipVariables()[\'variable_name_in_file\']\n\nprint(\'models:\', models)\n\nfor mod in models:\n    print(\' ----- model: \', mod, \' ---------------------\')\n    print(\'PMPdriver: var loop start for model \', mod)\n    dict_mod = {mod: {}}\n    dict_metric[mod], dict_dive[mod] = dict(), dict()\n\n    model_path_list = glob.glob(\n        modpath(mip=mip, exp=exp, realm=\'atmos\', model=mod, realization=\'*\', variable=\'ts\'))\n\n    model_path_list = sort_human(model_path_list)\n    if debug:\n        print(\'model_path_list:\', model_path_list)\n\n    # Find where run can be gripped from given filename template for modpath\n    print(\'realization:\', realization)\n    run_in_modpath = modpath(mip=mip, exp=exp, realm=\'atmos\',  model=mod, realization=realization,\n        variable=\'ts\').split(\'/\')[-1].split(\'.\').index(realization)\n    print(\'run_in_modpath:\', run_in_modpath)\n    # Collect all available runs\n    runs_list = [model_path.split(\'/\')[-1].split(\'.\')[run_in_modpath] for model_path in model_path_list]\n\n    # Adjust realization to be included\n    if realization in ["all" ,"*"]:\n        pass\n    elif realization in ["first"]:\n        runs_list = runs_list[:1]\n    else:\n        runs_list = [realization]\n\n    if debug:\n        print(\'runs_list:\', runs_list)\n\n    # =================================================\n    # Loop for Realizations\n    # -------------------------------------------------\n    for run in runs_list:\n\n        print(\' --- run: \', run, \' ---\')\n        mod_run = \'_\'.join([mod, run])\n        dict_mod = {mod_run: {}}\n\n        if debug:\n            print(\'list_variables:\', list_variables)\n    \n        try:\n            for var in list_variables:\n                print(\' --- var: \', var, \' ---\')\n                # finding variable name in file\n                var_in_file = dict_var[var][\'var_name\']\n                print(\'var_in_file:\', var_in_file)\n                if isinstance(var_in_file, list):\n                    var0 = var_in_file[0]\n                else:\n                    var0 = var_in_file\n                # finding variable type (atmos or ocean)\n                areacell_in_file, realm = find_realm(var0)\n                if realm == \'Amon\':\n                    realm2 = \'atmos\'\n                elif realm == \'Omon\':\n                    realm2 = \'ocean\'\n                else:\n                    realm2 = realm\n                print(\'var, areacell_in_file, realm:\', var, areacell_in_file, realm)\n                #\n                # finding file for \'mod\', \'var\'\n                #\n                file_name = get_file(modpath(mip=mip, realm=realm, exp=exp, model=mod, realization=run, variable=var0))\n                file_areacell = get_file(modpath_lf(mip=mip, realm=realm2, model=mod, variable=areacell_in_file))\n                if not os.path.isfile(file_areacell):\n                    file_areacell = None\n                file_landmask = get_file(modpath_lf(mip=mip, realm=realm2, model=mod, variable=dict_var[\'landmask\'][\'var_name\']))\n                # -- TEMPORARY --\n                if mip == \'cmip6\':\n                    if mod in [\'IPSL-CM6A-LR\', \'CNRM-CM6-1\']:\n                        file_landmask = \'/work/lee1043/ESGF/CMIP6/CMIP/\'+mod+\'/sftlf_fx_\'+mod+\'_historical_r1i1p1f1_gr.nc\'\n                    elif mod in [\'GFDL-ESM4\']:\n                        file_landmask = modpath_lf(mip=mip, realm="atmos", model=\'GFDL-CM4\', variable=dict_var[\'landmask\'][\'var_name\'])\n                if mip == \'cmip5\':\n                    if mod == "BNU-ESM":\n                        # Incorrect latitude in original sftlf fixed\n                        file_landmask = "/work/lee1043/ESGF/CMIP5/BNU-ESM/sftlf_fx_BNU-ESM_historical_r0i0p0.nc"\n                    elif mod == "HadCM3":\n                        # Inconsistent lat/lon between sftlf and other variables\n                        file_landmask = None \n                        # Inconsistent grid between areacella and tauu (probably staggering grid system)\n                        file_areacell = None\n                # -- TEMPORARY END --\n                """\n                try:\n                    areacell_in_file = dict_var[\'areacell\'][\'var_name\']\n                except:\n                    areacell_in_file = None\n                """\n                try:\n                    landmask_in_file = dict_var[\'landmask\'][\'var_name\']\n                except:\n                    landmask_in_file = None\n        \n                if isinstance(var_in_file, list):\n                    list_areacell, list_files, list_landmask, list_name_area, list_name_land = \\\n                        list(), list(), list(), list(), list()\n                    for var1 in var_in_file:\n                        areacell_in_file, realm = find_realm(var1)\n                        modpath_tmp = get_file(modpath(mip=mip, exp=exp, realm=realm, model=mod, realization=realization, variable=var1))\n                        #modpath_lf_tmp = get_file(modpath_lf(mip=mip, realm=realm2, model=mod, variable=dict_var[\'landmask\'][\'var_name\']))\n                        if not os.path.isfile(modpath_tmp):\n                            modpath_tmp = None\n                        #if not os.path.isfile(modpath_lf_tmp):\n                        #    modpath_lf_tmp = None\n                        file_areacell_tmp = get_file(modpath_lf(mip=mip, realm=realm2, model=mod, variable=areacell_in_file))\n                        print("file_areacell_tmp:", file_areacell_tmp)\n                        if not os.path.isfile(file_areacell_tmp):\n                            file_areacell_tmp = None\n                        list_files.append(modpath_tmp)\n                        list_areacell.append(file_areacell_tmp)\n                        list_name_area.append(areacell_in_file)\n                        #list_landmask.append(modpath_lf_tmp)\n                        list_landmask.append(file_landmask)\n                        list_name_land.append(landmask_in_file)\n                else:\n                    if not os.path.isfile(file_name):\n                        file_name = None\n                    if file_landmask is not None:\n                        if not os.path.isfile(file_landmask):\n                            file_landmask = None\n                    list_files = file_name\n                    list_areacell = file_areacell\n                    list_name_area = areacell_in_file\n                    list_landmask = file_landmask\n                    list_name_land = landmask_in_file\n\n                # Variable from ocean grid\n                if var in [\'ssh\']:\n                    list_landmask = None\n                    # Temporay control of areacello for models with zos on gr instead on gn\n                    if mod in [\'BCC-ESM1\', \'CESM2\', \'CESM2-FV2\', \'CESM2-WACCM\', \'CESM2-WACCM-FV2\',\n                               \'GFDL-CM4\', \'GFDL-ESM4\', \'MRI-ESM2-0\',  # cmip6\n                               #\'BCC-CSM1-1\', \'BCC-CSM1-1-M\', \'EC-EARTH\', \'GFDL-CM3\', \'GISS-E2-R\',\n                               \'BCC-CSM1-1\', \'BCC-CSM1-1-M\', \'GFDL-CM3\', \'GISS-E2-R\',\n                               \'MRI-CGCM3\']:  # cmip5\n                        list_areacell = None\n\n                dict_mod[mod_run][var] = {\n                    \'path + filename\': list_files, \'varname\': var_in_file,\n                    \'path + filename_area\': list_areacell, \'areaname\': list_name_area,\n                    \'path + filename_landmask\': list_landmask, \'landmaskname\': list_name_land}\n\n                print(\'PMPdriver: var loop end\')\n            \n            # dictionary needed by EnsoMetrics.ComputeMetricsLib.ComputeCollection\n            dictDatasets = {\'model\': dict_mod, \'observations\': dict_obs}\n            print(\'dictDatasets:\')\n            print(json.dumps(dictDatasets, indent=4, sort_keys=True))\n\n            # regridding dictionary (only if you want to specify the regridding)\n            dict_regrid = {}\n            """\n            # Usage of dict_regrid (select option as below):\n            dict_regrid = {\n                \'regridding\': {\n                    \'model_orand_obs\': 2, \'regridder\': \'cdms\', \'regridTool\': \'esmf\', \'regridMethod\': \'linear\',\n                    \'newgrid_name\': \'generic 1x1deg\'},\n            }\n            """\n\n            # Prepare netcdf file setup\n            json_name = json_name_template(mip=mip, exp=exp, metricsCollection=mc_name, case_id=case_id, model=mod, realization=run)\n            netcdf_name = netcdf_name_template(mip=mip, exp=exp, metricsCollection=mc_name, case_id=case_id, model=mod, realization=run)\n            netcdf = os.path.join(netcdf_path, netcdf_name)\n\n            if debug:\n                print(\'file_name:\', file_name)\n                print(\'list_files:\', list_files)\n                print(\'netcdf_name:\', netcdf_name)\n                print(\'json_name:\', json_name)\n\n            # Computes the metric collection\n            print("\\n### Compute the metric collection ###\\n")\n            cdms2.setAutoBounds(\'on\')\n            dict_metric[mod][run], dict_dive[mod][run] = ComputeCollection(mc_name, dictDatasets, mod_run, netcdf=param.nc_out,\n                                                                           netcdf_name=netcdf, debug=debug)\n            if debug:\n                print(\'file_name:\', file_name)\n                print(\'list_files:\', list_files)\n                print(\'netcdf_name:\', netcdf_name)\n                print(\'dict_metric:\')\n                print(json.dumps(dict_metric, indent=4, sort_keys=True))\n\n            # OUTPUT METRICS TO JSON FILE (per simulation)\n            metrics_to_json(mc_name, dict_obs, dict_metric, dict_dive, egg_pth, outdir, json_name, mod=mod, run=run)\n\n        except Exception as e: \n            print(\'failed for \', mod, run)\n            print(e)\n            if not debug:\n                pass\n\nprint(\'PMPdriver: model loop end\')\n\n# =================================================\n# OUTPUT METRICS TO JSON FILE (for all simulations)\n# -------------------------------------------------\n#json_name = json_name_template(mip=mip, exp=exp, metricsCollection=mc_name, model=\'all\', realization=\'all\')\n#metrics_to_json(mc_name, dict_obs, dict_metric, dict_dive, egg_pth, outdir, json_name)\n',
  'userId': 'lee1043'}}
[18]:
models = list(json_data["RESULTS"]["model"].keys())
models
[18]:
['ACCESS1-0',
 'ACCESS1-3',
 'BCC-CSM1-1',
 'BCC-CSM1-1-M',
 'BNU-ESM',
 'CCSM4',
 'CESM1-BGC',
 'CESM1-CAM5',
 'CESM1-FASTCHEM',
 'CESM1-WACCM',
 'CMCC-CESM',
 'CMCC-CM',
 'CMCC-CMS',
 'CNRM-CM5',
 'CNRM-CM5-2',
 'CSIRO-Mk3-6-0',
 'CSIRO-Mk3L-1-2',
 'CanCM4',
 'CanESM2',
 'EC-EARTH',
 'FGOALS-g2',
 'FGOALS-s2',
 'FIO-ESM',
 'GFDL-CM2p1',
 'GFDL-CM3',
 'GFDL-ESM2G',
 'GFDL-ESM2M',
 'GISS-E2-H',
 'GISS-E2-H-CC',
 'GISS-E2-R',
 'GISS-E2-R-CC',
 'HadCM3',
 'HadGEM2-AO',
 'HadGEM2-CC',
 'HadGEM2-ES',
 'INMCM4',
 'IPSL-CM5A-LR',
 'IPSL-CM5A-MR',
 'IPSL-CM5B-LR',
 'MIROC-ESM',
 'MIROC-ESM-CHEM',
 'MIROC4h',
 'MIROC5',
 'MPI-ESM-LR',
 'MPI-ESM-MR',
 'MPI-ESM-P',
 'MRI-CGCM3',
 'MRI-ESM1',
 'NorESM1-M',
 'NorESM1-ME']